
Form Y30-2002-2

Program Logic

IBM System/360 Operating System

Oueued Telecommunications Access Method

Program Logic Manual

Program Number 360S-CO-519

This Program Logic Manual describes the internal logic
of the Queued Telecommunications Access Method (QTAM)
under option 2 and Option 4 of the IBM System/360
operating System. This publication is intended for use
by personnel involved in program maintenance and by
system programmers who are altering the system design.
Program logic information is not necessary for the use
and operation of the program; therefore~ distribution
of this publication is limited to persons with program
maintenance or modification responsibilities .•

Restricted Distribution

PREFACE

This Program Logic Manual is a guide to the
internal structure of the Queued Telecom­
munications Access Method (QTAM). It is
designed to be used with ·the prcgram list­
ing; program structure at the rrachine
instruction level is not discussedo

Effective use of this manual requires a
knowledge of the concepts presented in the
following IBM System/360 publications:

IBM System/360 Principles of Operation,
Form A22-6821

IBM system/360 Operating System: Queued
Telecommunications Access Method, Mes­
sage Control Program, Forn C30-2005-2

IBM system/360 Operating System: Queued
Telecommunications Access Method" Mes­
sage Processing Program Services w Form
C30-2003-3

In addition, the following publications
may be used when information accut other
elements of the control program is
required:

IBM System/300 Operating system:
Assembler 32K~ Form Y26-3598

IBM System/360 Operating System:
Assembler 64K, Form Y26-3700

IBM System/360 Operating System: Basic
Direct Access Method, Program Logic
Manual, Form Y28-6617

IBM System/300 Operating System: I/O
Supervisor., Program Logic Manual" Form
Y28-b616

IBM System/360 Operating System: I/O
Support (OPEN/CLOSE/EOV) " Program Logic
Manual., Form Y28-66Q9

IBM system/360 Operating System: Job
Management, Program Logic Manual, Form
Y28-6613

IBM System/360 Operating system: Link­
age Editor. Program Logic Manual. Form
Y28-6610

IBM System/360 Operating system:
Seguential Access Method, Program Logic
Manual9 Form Y28-6604

IBM system/360 operating System: Direct
Access Device Space Management, Program
Logic Manua1~ Form Y28-6607

IBM System/360 Operating System: Cata­
log Management, Prcgram Logic Manua1w
Form Y28-6606

IBM System/360 Operating System: Fixed­
Task Supervisor 11 Program Logic ManuaL,
Form Y28-€612

This publication contains the following:
discussions on the physical organization
and logical organization as an introduction
to QTAMw an outline of the QTAM operation
as an overall logic flow v the function of
BTAM within QTAMo a summary of the internal
logic at the routine level" flowcharts of
each routine. and appendixes. The routine
names that appear as labels on the overall
logic flowchart can be used to access the
detailed flowchart for the specific rou­
tine. The labels on these detailed flow­
charts relate to the labels on the listings
for the routine.

Throughout this publication, option 2 of
multiprogramming with a fixed number of
tasks is assumed (MFT) '. QTAM also runs
under option 4 of multiprogramming with a
variable number of tasks (MVT). There are
no major differences in these two options
of the operating system for the logic of
QTAM except that partitions are regions and
priority of partitions must be assigned to
jobs in MVT.

RESTRI~TED DISTRIBUTION: This publication is intended for use by
IBM personnel only and may not be made available to others
without the approval of local IBM management.

Third Edition., November 1968

This edition, Y30-2002-2, corresponds to OS Release 17. It is a major
revision of, and renders obsolete., Form Y30-2002-1 and associated Tech­
nical Newsletters. Changes not documented in Technical Newsletters to
the previous edition are indicated in the following manner: changes to
the text are indicated by a vertical line to the left of the change; in
the case of a page which contains all new information. a bullet (.) is
placed next to the page number; Similarly, changed or added .illustra­
tions are denoted by a bullet to the left of the caption.

Significant changes or additions to the specifications contained in this
publication are continually being made. When using this publication in
connection with the use of IBM equipment, check the latest SRL Newslet­
ter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com­
ments. If the form has been removed, comments may be addressed to IBM
corporation, Programming Documentation, Dept. 844. P.O. Box 12275w
Research Triangle Park, North Carolina, 27709.

@ copyright International Business Machines Corporation 1966., 1967,
1968

PHYSICAL ORGANIZATION OF QTAM 9
system Generation 9

QTAM Nucleus • • • • • 9
QTAM Macro Definitions 9
External Routines 9
Support Modules 9

Assembling and Linkage Editing a
Message Control Program 9
Assembling and Linkage Editing a
Message Processing Program ••• ~. • 10
Initializing the Message Control
Program • • . • • • • • .. • • 10
Initializing a Message Processing
Program • • • • • ,. 10

LOGICAL ORGANIZATION OF QTAM ..
QTAM within the operating system
Control Program Structure ... ' ...

Message Control Problem Program
Message Processing Problem Program '.
QTAM Supervisory Routines

QTAM as a Separate Control Program
Queue Management
Control Blocks •
QWAIT and QPOST
QPOST Example • .• •
QTAM Nucleus •• • '. ,.0

Qdispatch Routine

OUTLINE OF QTAM OPERATION • • .. •
Initialization • • • • •
Receiving • • • • . • • •

PCI Interrupt (receiving the first

• 13

• 13
• 13
• 15
• 15
• 15
• 16
• 19
• 22
• 23
• 25
• 25

• 30
• 30
• 33

buffer) ••• '. • .. '.. • 'W ,. • • 35
PCl Interrupt (receiving all buffers
except First) •• '. •• • '. '. .. • 35
Timer Interrupt - Checkpoint Interval 37
Disk Interrupt (Receiving) • , ... '. .. • 37
Disk Interrupt--Checkpoint Write • • • 37
Line £nd Interrupt (receive an EOB) • 38
Line End Interrupt (Receive WRU
Signal on WTTA Line) • • • ' ...
Line End Interrupt (Receive
EOT--Receive EOT/EOM on WTTA Lines)

Sending • • • • • • .. . •• .. • .. • ..
Disk Interrupt (send,ing - header)
Disk Interrupt (sending - all
buffers) • • • • . .. • • • .. • .. _ ..
PC I Interrupt (sending) ,... '.
Line End Interrupt (sending - EOB) •
Line ~nd Interrupt (sending -
response to EOB) . • .. • '.. .
Line End Interrupt (Send EOB/EOT)

Message Processing . .. •• • ,.
Disk Interrupt (first buffer -
header) • . • • •
Disk Interrupt (rewrite) • ,.
Disk Interrupt •

CLOSEDOWN • • • ,.. •

BTAM OPERATION WITHIN QTAM
BTAM Read/Write Routine (IGG019NZ)

• 39

• 39
• 40

41

• 41
• 42
• 42

· 42
43

• 44

• 45
• 45
• 45
• 47

• 53
• 53

CONTENTS

Index Value '. ,. • . '.
BTAM Control Information for Channel
Program Generation • . ..
BTAM Channel Programs
Channel Programs For AT&T 83B3
Selective Calling station Lines

'. • 53

• 54
• 56

• 57
Channel Programs for Western Union Plan
115A Outstations • • ,. • • •
Channel Programs for IBM 1030 Lines
Channel Programs for IBM 1050 Lines

58
58
59

Channel Programs for IBM 1050 Dial
(switched Connection Lines) .. ~ • • 60
Channel Programs for IBM 1060 Lines 62
Channel Programs for TTY Models 33 and
35 TWX Lines • .. '. '. ..;, ,. .. • • 63
Channel Programs for IBM 2740
Communications Lines •• .. '. • 63

.. • • 63 IBM 2740 Basic Channel Programs
IBM 2140 With Checking
IBM 2740 with Dial, ,.
IBM 2140 With Dial and Checking
IBM 2740 with Dial and Transmit
Control .. •
IBM 2740 With Dial. Transmit
Control" and Checking ,
IBM 2740 With Station Control
ibm 2740 with Station Control and

• 64
• • 65

• 66

• • 67

• 68
'. 69

Checking • 70
Channel Programs for IBM 2848 - 2260
Remote Lines • .. '. •• • • • ,. '. • 71

Channel Programs Employing the Auto
Poll Feature '. • .. •• • '. • • • 73

Channel Programs for World Trade
Telegraph Adapter ..0 . ,. .. '. .. '. . 74

MESSAGE CONTROL PROGRAM (LPS) ROUTINES. 76
Breakoff Routine (Chart BY) '. ,. • '. • • 76
Cancel Message Routine (Chart CL) • 76
Date Stamp Routine (Chart CH) • • 77
Distribution List Routine (Chart DB) • 77
End of Address Routine (Chart DC) 78
End of Block Routine (Chart CY) • • 78
End of Block and Line Correction
Routine (Chart CZ) '. • • ,. •
Error Message Routine (Chart CQ)
Expand Routine (Chart CU)
Intercept Routin'e (Chart CT)
Lookup Routine (Chart CO)

• 79
• • 80

• 80
• 80
• 81
• 81

ex) '. 81
82

Message Mode Routine (Chart CW)
Conversational Mode Routine (Chart
Initiate Mode Routine (Chart CW)
Priority Mode Routine (Chart CW) '. ,.
Message Type Routine (Chart CAl
operator Awareness (Chart EO)
Operator ControL Routine (Chart EE)
Pause Routine (Chart CO) ' ...
Polling Limit Routine (Chart CR)
Reroute Routine (Chart CS)
Route Routine (Chart CN) •

• • 82
• 83
• 83

83
• 88

• • 88
• 89

Scan Routine (Chart CF) • ,.
Sequence In Routine (Chart CV) .. '. '. •
Sequence out Routine (Chart CM)

• 89
'. 89
• 90
• 90

Skip (Character Count) Routine (Chart
CJ) '. • • .. • ,. • 90
Skip (Character Set) Routine (Chart CJ) 91
Source Routine (Chart CI) • 91
Time Stamp Routine (Chart CK) • 91
Translate Routine (Chart CP) '. • 92

ROUTINES IN THE TRANSIENT AREA • 93
Close Communications Line Group Routine
(Chart EB) • '. • • • '. • • • .. • .. • 93
Close Direct Access Message Queue
Routine (Chart EC) . '. • • • 93
Close Process Queue (Input and output)
Routine (Chart EA)• .. .• .. • ,. • 93
Line Group Open Executor - Load 1
Routine (Chart Fl) • '. • • • ,. • '. • 94
Line Group Open Executor - Load 2
Routine (Chart F2) . • • • • .. • • • 94
Line Group Open Executor - Load 3
Routine (Chart F3) • .. • • ,.. 95
Open Line Group Executor Load 4 Routine 95
Open Direct Access Message Queue
Routine (Chart F4) . .• • .• ,. • . 95
Open Direct Access-Load 2 (Chart F5) .. • 96
Open Checkpoint Records Data Set
Routine (Charts F6 and F7) • .. • • 96
Open Message Processing Program Routine
(Input and Output) (Chart C4) 97

MESSAGE PROCESSING PROGRAM ROUTINES
Get Message Routine (Chart C6)
Get Record Routine (Chart C7)
Get Segment Routine (Chart C5)
Put Message Routine (Chart DA)
Put Record Routine (Chart C9)
Put Segment Routine (Chart C8)
Change Polling List Routine (Chart CD)
Change Terminal Table Routine (Chart
CB) '..... • • • • '. • ,. '. • • • ..
Checkpoint Request Routine (Chart C3)
Close Message Control Routine (chart
ED) '. • • • • • • • ,. • •
Copy Terminal Table Routine (Chart CG)
Copy Polling List Routine (Chart CC) •
copy Queue Control Block Routine
(Chart CE) . • • • . • ,. • • '. .
Locate DCBRoutine (Chart BW) ••••
Release Intercepted Message Routine
(Chart BZ) • .. • • • • • • • • •
Retrieve - DASD Routine (Chart Cl) • .•
Retrieve by Sequence Number Routine
(Chart C2) • ,. • • . '. '. ,. • .. • • '. •
Start Line - Stop Line Routine (Chart

98
• 98
• 98
,. 99
• 99
.100
.100
.101

.101

.102

.102

.102
• 103

.103

.103

.1'03

.104

.104

BX) • • • • • .. • .. • .. .105

QTAM CONTROL MODULE SUBROUTINES
Entry Interface Subroutine • •
QTAM Post (QPOS'I') Subroutine ,.
QTAM Wait (~WAIT) Subroutine •
Defer Entry Subroutine • .•
Priority Search Subroutine
Queue Insert Subroutine
QDispatch Subroutine .. • •
Exit Select Subroutine • • •
Exit Interface Subroutine

.106

.106

.106

.106

.107

.107

.107

.107

.108

.108

QTAM IMPLEMENTATION ~lODULE ROUTINES .. .110
Receive Scheduler Routine (Chart DH) • .110

BRB-Ring Routine (Chart DI) • ,.110
Active Buffer Request Routine (Chart
DL) 111
Available Buffer Routine (Chart DM) •• 111
Buffer BRB Routine (Chart DN) •• 111
Disk I/O Routine (Chart D2) ... '. '. • .111
Disk End Appendage (Charts DO and Dl) .112
LPS Control Routine (Chart DO) .. '. ,. '. .112
Activate Routine (Chart DP) '. • .112
Line SIO Appendage Routine (Chart DQ) .112
Line PCI Appendage Routine (Chart DR) .113
Line End Appendage Routine (Charts DS
and DT) 113
WTTA Line Appendage Routine (Charts
Rl, R2, R3~ and R4) .114

WTTA Line PCI Routine '. .. • '. '. ,. • .114
WTTA Line End Routine • '. .. .114

Buffer Cleanup and Recall Routine
(Charts DD and DE) • • • • •• '. .. .115
DASD Destination Routine (Chart DX) • .116
Get Scheduler Routine (Chart DV) .. ,. . .116
Return Buffer Routine (Chart DW) • • '. .118
End of Poll Time Delay Routine (Chart
DJ)118

.118

.118
Interim LPS Routine (Chart DU) .. 0

Send Scheduler Routine (Chart DK)
Free BRB Routine (Chart DF)
End Insert Routine (Chart DG)
Cross Partition Move Routine (Chart

• .118
.119

DY) 119

I COMMUNICATIONS SERVICEABILITY
FACILITIES.. • • ,. • .. • • '. '. • '. • .120
Checkpoint/Restart '. •• • • • '. • 0 • .120

Checkpoint Routine (Charts FA and FB) 120
Error Recovery Procedure • • .. '.122

Time-Out and Data Check for Auto Poll
Routine (Chart AF) • '. • • • '. .123
Data Check Routine (Chart AB) ,.124
Time-out Routine (Chart AC) '. '. .. • .124
Intervention Required Routine
(Charts AD and AE) • .. • • • .. • .125
Lost Data Routine (Chart AG) .. '. .125
Error Post Routine (Charts AH and AI) 125
Bus-out and Overrun Routine (Chart
AJ) •• '. • • • • • • • • '. • ..
Link Routine (Charts AK and ALl
Status Check Routine (Chart AM)
Command Reject'll Equipment Check"

.126

.126

.127

SIOCC1" SNO Error Routine (Chart AN) .127
Read Skip Return Routine (Chart AO) ,.127
Diagnostic Write/Read Routine (Chart
AP) 128
Line Error Recording Routine (Chart
AQ) .. • •128
Operator Control LER Addition Routine
(Chart AR) 128
Open and Checkpoint Restart Routine
(Chart AS) .• .. '.. . '. .• . '. .. ,. '. • ,.128
Not Operational Start I/O Routine
(Chart AT) 129
Bus-out and Overrun for Auto Poll
Routine (Chart AU) • • • .129
Overrun Routine (Chart AV) ' •.••••. 129

On-Line Terminal Test ••• '. .130
Resident Terminal Test Routine
(Charts QL and QS) • • • • •• •• 130
Terminal Test Header Analysis Routine
(Chart QA) 131

Terminal Test Routines (Charts Q3,
Q4, Q5" Q6, and Q8) ••• ,.

QTAM CHARTS

APPENDIX A: QTru~ QUEUES AND SUBTASKS •
Queues . • • • • • • _ • • • •

Active Buffer Request Queue
Additional CCW Queue •
Available Buffer Queue •••
Move Da ta Queue • ,. . • • '. '. '.
communications Line Queue
DASD Destination Queue • •
Disk Input/Output Queue
Distribution List Queue
Inactive BRB Queue • • • ••
Interim LPS Queue
Time Queue • • • . ..
LPS Queue • • • • • •
DASD Process Queue • • '. '. •
Return Buffer Queue • • • '.
Copy Clear Queue
Change Queue • • . '.
stop Queue .. • _ . .. _
Stop4 Queue • '. .•
stop The Line Queue • • • '.
Get SVC 1 Queue
Checkpoint Queue . • • • • •
Check Request Queue '. • .. '.
Line Change Queue
Dial Out-Call Queue

Subtasks • • • • • . _
Active Buffer Request Subtask
Available Buff er Subtask • ,.
DASD Destination Subtask •
Disk Input/Output Subtask
Distribution List Subtask
Get Scheduling Subtask • • •
LPS Subtask • • •• • '.
Queue Insert Subtask • •
Queue Insert by Priority Subtask
Qdispatch Subtask • • • •
Receive Scheduling Subtask '.
Return Buffer Subtask
Send scheduling Subtask
Time Subtask • • .
Move Data Subtask
Copy Clear Subtask .. •

• 131

• 132

.267

.267

.267

.267

.267

.267

.267

.267
• 267
.268
.268
• 268
.268
.268
.268
.268
• 268
• 269
.269
.269
.269
• 269
.269
.269
.269
.269
.269
.269
.269
.270
.270
.270
.270
.270
.270
.270
.270
.270
,.270
.270
.270
.271
.271

Change 1 Subtask '. • .. • ,.
stop 1 subtask • ' •

• .. I. .. • ,.271

stop 3 Subtask ,. '.
Getsvc 2 Subtask •

• .271
.271

• .271
stop 5 Subtask I. .. •
Checkpoint Subtask

.. '. '" ... 271
.271

Check Request Subtask
Line Change Subtask
Qdispatch Subtask

• .. I. • • .271
.. I. .. • .271
'. '. .271

APPENDIX B: SYSTEM CONTROL BLOCKS
General Control Block Forms

Queue Control Block ... • • •
Resource Element Control Block •
Truncated Subtask Control Block
Full Subtask Control Block
Line Control Block •
Data Control Biock •
Data Extent Block
Data Event Control Block '.
Unit Control Block
Terminal Table .. ' •
Buff er Prefix • ,. • ..

special Control Block Forms
Queue Control Block
Buff er Request Block ,. ' •
Insert Block • .. •
Resource Element Control Block
(IECKSTOP) • ,. • .. ,.

APPENDIX C: QTAM LINKAGES

.272

.272
'. .272

.273

.274
• .274

.274

.277
• .280

.284

.284
,. ,.286

.287

.289

.289

.289

.291

,.291

.292

APPENDIX D: LIST OF QTAM MODULES •• 297
Alphabetical List of QTAM Modules .. '. .. 297
List of Modules by Macro instruction
Category 299

Support Macro instructions '. .299
Message Control Macro Instructions •• 299
Message ProceSSing Macro Instructions 300

APPENDIX E: QUEUES AFFECTED BY QTAM
ROUTINES '. '. • 'co '. • • '. .. I. ,.301

APPENDIX F: OPERATING SYSTEM CONTROL
BLOCK LINKAGES . • • '.. '. .. , .. 303

APPENDIX G: HEADER AND TEXT
RELATIONSHIPS ON A DASD QUEUE .304

INDEX ... 307

Chart AB.
Chart AC.
Chart AD.

Data Check Routine
Time Out Routine
Intervention Required

.132

.133

Routine .. . • • .. • . • • • .. • .. .134
Chart AE. Intervention Required
Routine (Continued) •• '. •
Chart AF. Time out and Data Check
for Auto Poll Routine •• • •
Chart AG. Lost Data Routine ..
Chart AH. Error Post Routine
Chart AI. Error Post Routine
(Continued) • .. • •
Chart AJ. Bus Out and Overrun

.135

.136

.137

.138

.139

Routine ,. • .. • .. • • • • • .. .140
Chart AK. Link Routine .141
Chart AL. Link Routine (Continued) 142
Chart AM. Status Check Routine .. .143
Chart AN. Command Reject,
Equipment Check, SIO CC 1, SNO
Error Routine • • • '. • • •144
Chart AO. Read Skip Return Routine 145
Chart AP. Diagnostic write/Read
Routine • • • . • • • • .. • '. • '.
Chart AQ. Line Error Recording
Routine . '. '. • '. • • '. • • ,. .. •
Chart AR. Operator Control LER
Addi tion Routine '. • • • '.
Chart AS. OPEN and
Checkpoint/Restart Routine
Chart AT. Not Operational Start
I/O Routine
Chart AU. Bus Out and Overrun for
Auto Poll Routine • • • .. • q

Chart AV. Overrun Routine
Chart BW. Locate DeB Routine
Chart BX. Start Line-Stop Line

.146

.. 147

,.148

.149

.150

.151

.152

.153

Routine • • • .. • • .154

I Chart BX1. QT~ Start Line-Stop
Line Routine ' ••••• ,.155
Chart BY. Breakoff Routine ' •• '. ,.156
Chart BZ. Release Intercepted
Messages Routine • • • • • .157
Chart co. Pause Routine ... '. .158
Chart Cl. Retrieve - DASD Routine .159
Chart C2. Retrieve by Sequence
Number Routine . • • • • • • '. .,160
Chart C3. Checkpoint Request
Routine
Chart C4.
Queue
Chart C5.
Chart C6.
Chart C7.
Chart C8.
Routine
Chart C9.
Chart CA.
Chart CB.
Routine
Chart CC.
Routine

.161
Open Message Process

. '. • • • • • • • ... 162
Get Segments Routine ... 163
Get Messages Routine 0 .164
Get Records Routine .165
Put Message Segment

Put Record Routine
Message Type Routine
Change Terminal Table

Copy Polling List

,.166
.167

'. .168

.169

.170

CHARTS

Chart CD. Change Polling List
Routine • '. • '. • '. '. • • '. '. '. '. .171
Chart CEo Copy Queue Control
Block Routine .. '. '.
Chart CF. Scan Routine
Chart CG. Copy Terminal Table
Routine • • • ..
Chart CB. Date Stamp Routine
Chart CI. Source Routine

• • .172
.173

.174
,.175
.176

Chart CJ. Skip to Character Set -
Skip on Count Routines • ,. • ,.177
Chart CK. Time Stamp Routine .. 178
Chart CL. Cancel Message Routine .179
Chart CM,. Sequence Out Routine 0 .180
Chart CN. Route Routine181
Chart CO.. Lookup Routine ' 182
Chart CP. Translate Routine 183
Chart CQ. Error Message Routine •• 184
Chart CR. Polling Limit Routine • ,.185
Chart CS,. Reroute Routine .. • .186
Chart CT,. Intercept Routine. ,.187
Chart CU. Expand Routine '. • .188
Chart CV. Sequence in Routine .189
Chart CW.. Mode, Initiate. and
Priority Routines190
Chart CX,. Mode Conversational
Routine .. ,. ,. '. ,. ,. '. ,. ,. 191
Chart CY. End of Block Routine '. ,.192
Chart CZ. End of Block and Line
Correction Routine.. .. • •193
Chart DO,. Disk End Appendage
Routine • • •194
Chart Dl. Disk End Appendage
Routine (Continued) '...... ,. .195
Chart D2. Disk I/O Routine .196
Chart DA. Put Message Routine .. '. .197
Chart DB. Distribution List
Routine 198
Chart DC. End of Address Routine .199
Chart DD. Buffer Cleanup and
Recall Routine .. •
Chart DE. Buffer Cleanup and

,.200

Recall Routine (Continued) 201
Chart OF,. Free BRB Routine .202
Chart DG. End Insert Routine .203
Chart DB. Receive Scheduler
Routine • •
Chart DI. BRB Ring Routine

.204

.205

I Chart DI1. BRB Ring Routine
(Continued) 206
Chart DJ. End of Poll Time Delay
Routine .. '. • '. .. '. '. '. '. .207
Chart DK. Send Scheduler Routine .208
Chart DK1. Send Scheduler Routine
(Continued) '. ,. '. .209
Chart DL. Active Buffer Request
Routine '. ," • • '. '. • • • • 210
Chart DM. Available Buffer Routine 211
Chart DN.. Buffer BRB Routine .212
Chart DO. LPS Control Routine 213
Chart DP. Activate Routine .214

Chart DQ. Line SIO Appendage
Routine • • • . • • • • • • .. .215
Chart DQ1.. Line SIO Appendage
Routine (Continued)216
Chart DR. Line PCI Appendage
Routine .• • '. •• • • • '. • • .217
Chart os. Line End Appendage
ROl,ltine • • • • '. • • ,. .. .218
Chart DT. Line End Appendage
Routine (Continued) '. .. .219
Chart DT1. Line End Appendage
(continued) '. .. .220
Chart DU. Interim LPS Routine .221
Chart DV. Get Scheduler Routine •• 222
Chart ow. Return Buffer Routine.. .223
Chart ox. Destination DASD Routine 224
Chart DY. Cross Partition Move
Routine ,. • • .• • • • .. • • • '. • 225
Chart EA. Close Process Queue •• .226

I Chart EA1,. Close Process Queue
(Continued) •• '. • • • '. • ,. .227
Chart EB. Close Communications
Line Group •.•••• '. .228
Chart EC. Close Direct Access
Message Queue •• • • • .. • ,. .229
Chart ED. Close Routine '. • ,. .230
Chart EE. Operator Control Routine 231
Chart EF. Common Subroutines OPTCL 232
Chart EG. Common Subroutines
OPTCL (Continued)233
Chart EH. Copy Termtbl Entry
OPTCL Routine . '. • • • .. • '. • 234
Chart EI. Change Termtbl Entry
OPTCL Routine 235
Chart EJ. Intercept and Release
OPTCL Routine • ,. • • • .. '. •236
Chart EK. Start Line OPTCL Routine 237
Chart EL. Stop Line OPTCL Routine ,.238
Chart EM. stop Line OPTCL Routine
(Continued) • .. . ,. .• ,. .239
Chart EN. Intrel OPTCL Routine ... 240
Chart EO. Operator Awareness
Routine • • • . .. • • ... ' •• 241
Chart Fl. OPEN Line Group Load 1
Executor Routine .. ,. • ,. • ,. .242

Chart F2. OPEN Line Group Load 2
Executor Routine '. .. ,. ' ... ' ... 243
Chart F3. Open Line Group Load 3
Executor Routine '. ,.244
Chart F4. OPEN Direct Access
Message Queue Routine ' •• 245
Chaxt F5,. OPEN Direct Access Load
2 Routine ,..,. • '. ,. • • .246
ChartF6. OPEN Checkpoint Data
Set Routine ,. '. • ,. ,. 247
Chart F7. OPEN Checkpoint Data
Set Routine (Continued) ' ... '. '. ' •• 248
Chart F8. QTAM Open Line Group
Load 4 • 249
Chart F9. Close Process Queue
Load 2 • • .. • .. •
Chart FA. Checkpoint Routine
Chart FB. Checkpoint Routine

.250

.251

(Continued) 0 252
Chart NU.. QTAM Nucleus (1 of 2) ,. .253
Chart NV,. QTAM Nucleus (2 of 2) •• 254
Chart QA. Terminal Test HDR
Analysis Module . '. • .. ,. ..
Chart QL. Resident Terminal Test

,.255

Module .. ,. '. .• • • • .. • '. .. ,. .. • ,.256
Chart QS. Terminal Subtasks •• 257
Chart Q3. 1030 Terminal Test
Module • • ,.258
Chart Q4.. 2740 Terminal Test
Mod ule .. • '. '. .. • '. • '. .. '. '. .. • ,., 259
Chart Q5. 1050 Terminal Test
Module • ,. ,. • '. .260
Chart Q6. 1060 Terminal Test
Module '0 •• .. • .. • '. .. 261
Chart Q8. 2848/2260 Terminal Test
Module Q ,. '. • .. • '. • .. .262
Chart Rl. WTTA Line PCI Appendage
Routine '. • '. 0 .. .• .. • .263
Chart R2. WTTA Line End Appendage
Routine (Part 1 of 3) ,. ,. ,. ,.264
Chart R3. WTTA Line End Appendage
Routine (Part 2 of 3) • '. ,. .265
Chart R4. WTTA Line End Appendage
Routine (Part 3 of 3) '. .. • ... 266

FIGURES

Figure 1. Physical Organization Figure 19. Queuing in Message
of QTAM . · '. · .. · · · .. . , . · 12 Processing . '. '. ' . .. · 46
Figure 2,. Flowchart of Message Figure 20. Ready Queue to Obtain
Control Program .. · '. · .. · 14 Message '. '. , . ,. ' ,. · 47

, Figure 3. (Part 1 of 2) '. · 16 Figure 21. Ready Queue After
, Figure 4. · · · .. · · · '. · 17 Obtaining Message . .. · .. · .. · 48
Figure 5. · · · '. · 17 Figure 22. Functional Flowchart
Figure 6. Element Chain , . ' . · 18 of QTAM Components (Part 1 of 2) · 49
Figure 7. Second step of Qpost Figure 23. 1050 Nonswitched
Operation · · · '. · · 19 Device I/O Module '. .. ,. '. , . '. · 55
Figure 8. Resource Eleltent Figure 24. Interaction Between
Control Block · .. '. · · '. 20 BTAM and QTAM Channel Programs . .117
Figure 9. General Form of Full Figure 25. Linkage of ERP Modules 123
and Truncated STCB '. · · . · '. .. '. · 20 Figure 26. Typical DSECT for BRB ,.290
Figure 10,. General Form of QCB Fiqure 21". BRB on Inactive-BRB
and Example of QCB on the Ready Queue · .. . · .. · ' . .290
Queue · · · . · · · .. · .. · 22 Figure 28. BRB Assignment of Next
Figure 11. QTAM Nucleus · 29 Segment Address '. '. ,. · .. ,. .. · '. ,.290
Figure 12. Blocks Initialized by Figure 29. BRB After Assignment
Open Direct Access Device · 31 of Next segment Address · .. .291
Figure 13. Control Block after Figure 30. BRB/CCW Initialized
open Line Groups · '. ' . .. ' . .. · 32 for Direct Access Read or Write '. ,.291
Figure 14. Buffer Ready to Figure 31. QT AM Linkages (Part 1
Receive Message from Line · 33 of 4) '. .. . · '. ,. · '.293
Figure 15. Channel Program Figure 32. Queues Affected by
Prepared for First Buffer '. 34 QTAM Routines .. · .. ' ,. '. ,.302
Figure 16. Effect of PCI Figure 33. Control Block Linkages 303
Interrupt '. · · ,. . · 36 Figure 34. Example of Message
Figure 17,. Path of a Buffer for Header and Text Relationships in
Receiving · · · ,. · · · '. 38 Direct Access Destination and
Figure 18. Ready Queue at Sending Process Queues · .. '. · ,. · . · '. .305
Time · · · '. · · · ,. '. . , . .. · 40

This section describes the various parts
of the total package called QTAM and
explains what the parts are,. where they
corne from" how they get into the system,
and their relationship to the rest of the
package. The function of these QTAM parts
and the logic of their operation are dis­
cussed in detail in subsequent sections.

Figure 1 shows the steps taken to begin
processing in the QTAM environment. The
following discussion deals with these
steps:

1. System generation.

2. Assembling and linkage editing a mes­
sage control program, ..

3,. Assembling and linkage editing a mes­
sage processing program.

4. Initializing a message control
program.

5. Initializing a message processing
program.

SYSTEM GENERATION

QTAM NUCLEUS

When QTAM is called for during a system
generation procedure (QTAM operand in
DATAMGT syst~m generation macro instruc­
tion), a number of routines collectively
called the QTAM nucleus are included as a
permanent part of the System/360 Operating
System supervisor nucleus. These routines
are then always present in the system.
whether or not a telecommunications appli­
cation is being run.

The QTAM nucleus is packaged as a single
module named IECKQQ01. During system
generation, it is linkage edited from
SYS1. MODLIB into SYS1,. NUCLEUS. It is
loaded from there by the IPL program as one
of the resident SVC routines. The QTAM
nucleus consists of the following nine sub­
routines, each of which is discussed later
in this manual:

1. Entry interface
2. QTAM wait
3,. QTAM post
4. Qdispatch
5. Defer entry
6. Priority search
7. Queue insert

PHYSICAL ORGANIZATION OF.QTAM

8. Exit select
9. Exit interface

QTAM MACRO DEFINITIONS

The operating system macro definition
library (SYS1.MACLIB) includes the macro
definitions used during the assembly of the
message control program and message pro­
cessing programs. Appendix D lists the
QTAM macro instructions.

EXTERNAL ROUTINES

When performing a system generation to
include QTAM. the user must define a spe­
cial library area named SYS1.TELCMLIB,.
During the generation run l, all routines
that will later be linkage edited with mes­
sage control and message processing object
modules are copied frem SYS1.MODLIB into
SYS1,.TELCMLIB,. In this pUblication,. these
routines are defined as external routines.
Appendix D lists the modules in
SYS1.TELCMLIB and indicates the function
performed by the routine or routines in
each module,.

SUPPORT MODULES

During the generation run. all modules
that are loaded into main storage by the
various Open executors and the QTAM Open
and Close executors are copied from
SYS1,. MODLIB into the SYS1. SVCLIB. In this
publication, these modules are defined as

, support modules. Appendix D lists the QTAM
support modules in SYS1,. SVCLIB.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
CONTROL PROGRAM

The user codes the QTAM macro instruc­
tions necessary to design a message control
program,.. The output of this assembly
includes: several tables and control
blocks, a buffer area, linkages to QTAM
external and support routines, and, except
for these linkages and a few minor Line
Procedure Specification (LPS) macro
instruction expansions, very little other
executable code. The message control
object module may include some user-written
routines n but these usually will not be
extensive.

Physical Organization of QTAM 9

The assembled object module is then
linkage edited to include the necessary
external routines from SYS1.TELCMLIB.
These external routines are the LPS rou­
tines used in processing header informa­
tion, translating from one code to another,
directing messages to the proper lines and
queues, etc.

The resulting load module is stored in a
system library to be loaded for execution.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
PROCESSING PROGRAM

A message processing program normally
needs only the OPEN, CLOSE" GET, and PUT
macro instructions and some data set
definition macro instructions. When this
is the case, no external routines are
required to be linked with the Object
module.. An installation will also write
one or more message processing programs
that use the following macro instructions
to examine and modify the status of the
control program:

• CHNGP
• CKREQ
• CLOSEMC
• CHNGT
• COPYP
• COPYT
• COPYQ
• RELEASEM
• RETRIEVE
• STOPLN
• STARTLN

When any of these macros are used, the
linkage editor will include the correspond­
ing external routines in the load module.
The load module is stored into a system
library for execution.

INITIALIZING THE MESSAGE CONTROL PROGRAM

The QTAM message control program is
normally executed in partition 0 as the
highest priority task in the system. The
initiator/terminator loads and transfers
control to the message control program.
The first QTAM macro instruction executed
must open the DASD queue area.. When the
system open routine detects the unique
organization code for the QT~M DASD queue.
it loads and transfers control to the first
QTAM Open executor (module IGG01930). The
Open routine performs several functions
described in more detail in subsequent sec­
tions. For the purposes of this section,
however, we need note only that the Open
routine loads a large module called the
QTAM Implementation module (IGG019NG) and
Checkpoint/Restart module (IGG019NH) into

10

partition 0 6 along with the Message Control
Load module.

The Implementation module contains three
distinct types of routines - distinct as
far as their logical relationship to the
rest of the system. The three types are:

1. Problem program routines - executed
enabled to all interruptions as part
of the message control program task.
These routines receive control through
branches from the external routines
linkage edited with the message con­
trol program.

2. Supervisory routines ~ executed dis­
abled to all interruptions as part of
the QTAM nucleus "task." These rou­
tines receive control through branches
from the QTAM nucleus.

3.. I/O appendages - executed disabled to
all interruptions u again logically as
part of the QTAM nucleus "task,."
These appendages receive control from
the I/O Interruption Handler in the
input/output supervisor (lOS).

The logical relaticnship of the preced­
ing routines is discussed more fully in the
next section. When only phySical organiza­
tion is considered" this collection·of rou­
tines represents no more than a convenient
and efficient packaging technique. The
Implementation module can in no way be
thought of as a "program."

When the DCBs for the communications
line groups are opened~ four other QTAM
Open executors are used (modules IGG0193N"
IGG0193R" IGG0193T n and IGG0194A). These
routines also perform several functions to
be discussed later. For this discussion g

however, note that only the WTTA Line
Appendage (IGG019QB) is loaded by the first
of these four executors when opening a WTTA
line group; the BTAM Read/Write routine and
BTAM modules containing model channel pro­
grams are loaded by the third of these four
executors. These modules are also loaded
into partition o. The BTAM Read/Write rou­
tine is run in the problem program state as
part of the user's message control task.

INITIALIZING A MESSAGE PROCESSING PROGRAM

It is possible to run a message control
program with no message processing program.
For exampleD a message switching applica­
tion can be handled entirely within the
message control program with a single mes­
sage processing program loaded at the end
of the day to initiate a system shutdown
procedure. However" there is usually at
least one D and possibly two or three, mes­
sage processing programs being executed at

the same time as the message control
program.

In this discussion, assume the normal
case where a message processing program is
to be loaded into partition 1 immediately
after the message control program is loaded

t
'and initiated. A start Initiator Function
lshould be employed. This will load the
'message processing program into partition
1. When the message control task goes into
the wait state, the message processing pro­
gram opens the process queues" at which
time the GET/PUT macro instruction support
routines needed are also brought into par­
tition 1. There are three Get modules and
three Put modules. The modules selected
depend on the unit of data processed by the
program: segment, message, or record.

At any point during the initialization
of this message processing program task ..
control may return to the message control
program because of an I/O interruption from
one of the communications lines or from a
direct access storage deviceq More of tend
execution of the processing program task
continues up to the pcint of a GET instruc­
tion before the message control task has a
message to pass on,. In this case, the pro­
cessing task is placed in a wait state
until the conditions for accomplishing the
GET are satisf ied.. At any rate 17 the pro­
cess of initialization is complete at this
point with all of the parts of QTAM in
pIa ce and runn ing .•

Physical Organization of QTAM 11

~/_------1/
Message Processing
Source Program

L..--__ r--_---'V

/ /

System Generation
Macro Instructions

10 S/360 Starter Systeml

I
System Residence

----------------~

Assembler

Linkage Editor

User Code and
GET /PUT Linkages

Status Changing
External Routines

Job Scheduler

/v---

'I------ ~ ----_._ .. -_._------
MACLIB

Includes all QTAM

J4------t--J'i'-- Macro Definitions

SYSl • TELCMLlB

r---- All QTAM External Routines
to be Linked with User

14------+-""i'-- Object Modules

SYSl • SVCLlB

~ Includes all QTAM Support
Modules Loaded by OPEN

SYSl • NUCLEUS

~ Includes QT AM Nucleus

I

Core Storage

Supervisor Nucleus
,---.------

Partition
N

Partition
2

Parti tion
1

Partition
o

_
-~

: QTAM Nucleus

::~

Message Processing Program 2
or other Programs

GET/PUT Modules

Message Processing Program 1

GET/PUT Programs

Read/Write Module

Message Control Program

Check Point/Restart Module

QTAM Implementation Module

•

Figure 1. Physical Organization of QTAM

12

OPEN

" r/

~/_------1/
Message Control
Source Program

'--_---. __ ---'V

Assembler

Linkage Editor

Macro Linkage
and User Code

LPS External Routines

Job Schec.:uler

The previous section explained how the
physical pieces of QTAM are positioned in
main storage. This section discusses how
these pieces are logically related and how
they pass control back and forth,.

In tnis section, the logical organiza­
tion of QTAM is discussed within two dif­
ferent frameworks. First, QTAM is consid­
ered as a part of operating system task
management and within the structure and
categories of that control program. Then
QTAM is considered as a separate logical
entity outside of the framework of the
operating system control program, and is
viewed as a control program in its own
right. The key to understanding the logi­
cal organization of QTAM lies in under­
standing the overlap of the two control
program structures.

QTAM WITHIN THE OPERATING SYSTEM CONTROL
PROGRAM STRUCTURE

The various pieces of QTAM discussed in
the preceding section can be grouped into
three logical categories:

1. Message control program
2. Message processing program(s)
3. QTAM supervisory routines

The message control program and message
processing programs are both run under con­
trol of the operating system task manage­
ment routines. When considered as a part
of operating system task management, these
programs are in no way different from any
other processing program tasks. They are
scheduled and dispatched according to the
priorities indicated in the task control
blocks (TCBs) for the partitions in which
they are being run.

After distinguishing and separating the
two processing program tasks, only the
third category, the QTAM supervisory rou­
tines, remains. These routines are
executed as type 2 SVC routines or as asyn­
chronously scheduled I/O interruption­
handling routines. Strictly speaking" they
are executed as part of the processing pro­
gram tasks. Practically speaking, however"
it is more meaningful to think of these
routines as a separate category outside of
the task framework established by operating
system task management. This section is
primarily an explanation of the nature of

LOGICAL ORGANIZATION OF QTAM

this third category in relation to the
other two categories. The discussion con­
tinues subsequently in the section QTAM
supervisory Routines" but first the messag e
control program and message processing
problem programs are more closely defined.

MESSAGE CONTROL PROBLEM PROGRAM

The message control problem program
includes the following:

1. The object module output from the
assembly of the user's code.

2. The external routines linkage edited
with the assembly output.

Note: If the DLIST macro instruction
is used" a single supervisory routine"
called the Distribution List routine
in a module named IECKDLQT" is 'linkage
edited into the message control load
module,. This routine is one of the
supervisory routines, and is not part
of the problem program. ---

3,. Five of the routines in the implemen­
tation module brcught into partition 0
by the DASD OPEN:

Note: Full descriptions of these rou­
tines may be found under the heading
QTAM Implementation Module Routines,.
Flowchart "IDS" for each are identi­
fied below:

• Activate (Chart DP)
• LPS Control (Chart DO)
• Buffer Cleanup and Recall (Charts

DD'oDE)
• Free BRB (buffer request block)

(Chart DF)
• End Insert (Chart DG)

4. The BTAM Read/Write routine and BTAM
Device I/O modules (modified for and
incorporated into QTAM) brought in by
the line group OPEN,.

A simplified flowchart of the message
control problem program is shown in Figure
2,. The flowchart is included to show how
four problem program routines in the Imple­
mentation module and the BTAM Read/Write
routine are related to the rest of the mes­
sage control program..

Logical Organization of QTAM 13

AVAILABLE
BUFFER FOR
RE(:EIVING

ACTIVATE
DJ~...,L.----.

INITIATE LINE
R~AD

OPERATION

BIAM
El~....,..L~_---,

BUilD CHANNEL
PROGRAM AND
EXCp

_Figure 2.

14

REQUEST FOR
QTAM
CLOSEDOWN

CLEANUP
F2 ----:-----.

POST BUFFER
TO SPECIFIED
DESTINATION
QUEUE

G2-------.

SET UP FIRST
BUFFER AND
READ CONTINUE
FLAG

B3---1-----,

OPEN DISK AND
LINE GROUPS
ISSUE ENDREADY

LPS
RECEIVE
GROUP

YES

:~R~FO-::-:-RM.L...,L"""P S""""--'
RECEIVE
FUNCTION ON
MESSAGE
PORTION IN THE
BUFFER

/UNE

F3 STtLL~
RCVING THIS
.MSG (NOT

EOT)

EOT

H3 _.....1. __ --.

PERFORM LPS
ERROR
CHECKING
FUNCTIONS ON
RECEIVED
MESSAGE

<.::LEAN UP
J3 --1.----.
POST LAST
BUFFER TO
DESTINATION
QUEUE AND
RELEASE BUFFERS

RELEASE BRB'S
AND FREE THE
LINE

RCVD

MESSAGE-FILLED
BUFFER

LPS SEND
GROUP

REQUEST FOR
DISK I/O
OPERATION

D5--L---,-,

EXCP

E5 ____ --,

PERFORM LPS
YES ERROR

.>---__ oot CHECKING ON

F4 _---ll...-_---,

PERFORM LPS
SEND FUNCTION
ON MESSAGE
PORTION IN
THIS BUFFER

ACTIVATE

G4---1-----.

INITIATE
SENDING OF
MESSAGE OVER
THE LINE

BTAM
H4 _.....1. __ --.

BUILD CHANNEL
PROGRAM
AND EXCP

TRANSMISSION
OF MESSAGE

CLEANUP

F5-~-----,

RELEASE BUFFERS

Flowchart of Message Control Program

MESSAGE PROCESSING PROBLEM PROGRAM

A message processing problem program
incl udes: the assembled user code., any
external routines linkage edited with the
code, and the Get and Put routines,. The
only difference between a QTAM message pro­
cessing program and any other processing
program is the requirement for and the
implementation of interpartition communica­
tion. The various macro instructions that
can be used in a message processing program
are handled as follows:

1. COPYP" COPYT" and COPYQ. These macro
instructions present no prOblem. The
corresponding external routine simply
reads the requested information from
partition 0, using address pointers
stored in the communications vector
table (CVT) and in the terminal table.

2. All other macro instructions. The
remaining macro instructions cause SVC
interruptions to the QTAM supervisory
routines. Any cross-partition com­
munication is done by the supervisory
routines, operating under the storage
protection key of the supervisor.

The only unusual operation to be noticed
when logical organization is ,considered is
in the case of a PUT macro instruction. To
avoid including a large amount of code in
the supervisory routines for each of the
three types of PUT (segment" record., or
message), certain code that rrust be
executed in the supervisor state is pack­
aged within the Put modules. The SVC rou­
tine entered as a result of a PUT branches
directly back to these routines in the
problem program Put modules to execute them
in the supervisor state.

QTAM SUPERVISORY ROUTINES

This discussion of the QTAM supervisory
routines is still within the framework of
the operating system control program. When
the physical organization of these routines
is considered, they consist of:

1.. The routines within the supervisor
nucleus.

2. The routines within the Implementation
module (in partition 0) that are
executed in the supervisor state.
This includes all except the five rou­
tines previously identified as part of
the message control problem program.

3. The Distribution List routine linkage
edited with the message control
program.

4. Part of the Put modules in the message
processing problem partition(s).

When the interruption-handling facili­
ties of the operating system are consid­
ered., the QTAM supervisory routines consist
of:

1. Type 2 SVC routines entered by SVCS 65
and 67 from problem program
partitions.

2. Asynchronously scheduled I/O
interruption-handling routines entered
from lOS.)

Although the QTAM supervisory routines
can be considered from either point of
view, neither is very helpful in under­
standing the log ical organization of QTAM .•
For example, a routine within an appendage,
to which control is passed to process an
I/O interruption, nay also be executed as
the result of an SVC interruption. The
problem is that both points of view are
taken from within the framework of the
operating system control program environ­
ment and are seen within the categories of
that system. The solution to the problem
lies in understanding the implications of
the statement: "QTAM is a Control Program."

QTAM is a control program that is within
a second control program. Before discuss­
ing how the two control programs overlap,
it is important to describe the QTAM con­
trol program within its own framework as a
separate logical entity.

QTAM AS A SEPARATE CONTROL PROGRAM

The one essential function of a control
program is the allocation of system
resources. The system resources to be
allocated by QTAM are:

1. CPU processing time
2. Main storage space
3. I/O paths

In order to perform this allocation
function efficientlyw it is necessary to
break up the system resources into the
smallest practical number of pieces. This
is done as follows:

1. The work to be done is broken into
many separate work units that are
defined as QTAM subtasks of message
processing and message control tasks.
Small pieces 0 f the time resource are
then allocated to individual subtasks.

2. The main storage space to be allocated
is broken into a large number of buf­
fers. Thus, only that amount of
storage absolutely required at a given

Logical Organization of QTAM 15

time need be tied up for a given
function.

3. The I/O paths controlled by QTAM are
the communications lines and the disk
queue. Only that I/O path absolutely
required at a given time need be tied
up for a given function.

The term allocation is usually used only
to refer to physical resources; scheduling
refers to time resources. In a QTAM con­
trol program (as opposed to the operating
system) the entire allocation function is
performed by a single mechanism. This
allows interdependence of scheduling and
allocation.

The following sections describe the
resource allocation mechanisrr of QTAM. The
key to the mechanism is the ready queue,
the structure through which a resource is
allocated to a subtask. The actual
mechanism of allocation is the Qwait and
Qpost operations performed by the QTAM sub­
tasks. Qwait, in effect, puts a request
for a resource on the ready queue. Qpost
passes an available resource to the ready
queue. The QTAM nucleus performs a gueue
management function that includes dispatch­
ing the subtask that is at the top of the
ready queue.

QUEUE MANAGEMENT

Elements, Queues, and Subtasks

The physical resources of the system are
broken into elements (e.g., the buffer
pool, a resource, is broken into individual
buffers" the elements) with each element
represented by an RECB (resource element
control block), which can be thought of as
an 8-byte identifying prefix.

r--------T--------------------------------,
I RECB I BUFFER I l ________ L ________________________________ J

If the RECB points to an available buffer
queue" the buffer is free and not in use.
The RECB is an identifier.

For every element in the system, there
is at least one subtask that works with the
element. These subtasks are represented by
STCBS (subtask control blocks).

The elements, and the subtasks that
operate on these elements" are associated
with one another through the use of a third
control block, the QCB (queue control
block). Thus, a QCB will have a pointer to
the chain of elements under its control and
a pointer to the chain of subtasks waiting
to operate on these elements •

• 16

QCB

Figure 3. (Part 1 of 2)

When a subtask needs an element, it
requests one from the QCB that handles that
particular element by "Qwaiting" in the
STCB chain of the QCB. If the element is
available, the subtask that Qwaited is
dispatched.

No elements available

QCB

r-----,
I PRI=2 t----------~---+_'
L ____J '--___ ~

Figure 3. (Part 2 of 2)

When a subtask has finished using an
element, it gives (Qpcsts) the element to
the appropriate QCB (Figure 4). The QTAM
nucleus gives this element to the first
(highest priority) subtask in the STCB
chain of the QCB. (Subtask A in Figure 5
would be dispatched). Note, however, that
STCB A is not usually removed from the STCB
chain unless it Qwaits on another QCB.) If
another element is posted to this QCB" sub­
task B will be dispatched. The STCB chains
end with a pexmanent STCB. <STCB C, in
Figure 4, will remain the last STCB in the
chain,.) STCB C might point to a routine
that does nothing more than chain elements
into the QCB'S element chain. Subtask C
would have a lower priority than any other
subtask that might use the element and
would" therefore" be dispatched only if no
other subtask needed the element.

r---------,
I I

Subtask D ~ Element used I
'--------'1Il by D I

L----
T

----1

QCB QPOST

r---- i -- -,
I I

I
I I L ________ J

Figure 4.

QCB Element
Chain

Figure 5.

The Ready Queue

The previous discussions pointed out
that suntasks gain control depending on:

1. The availablity of elements;

2. The priority of the subtask.

since QT&~ is a control program, it is
responsible for allocating CPU processing
time to the various tasks under its con­
trol. The mechanism it uses is called the
ready QCB, which can be thought of as a QCB
whose element chain is "time" and whose
subtask STCB chain is all the work to be
done in the system. (Note that the ready
QCB's subtask chain is called the ready
queue). The work to be done is represented

by the various QCBS and RECBs. These QCBS
and RECBs" just like the STCBs within their
own chains" appear on the ready queue in a
priority order (Figure 6).

To complete the general picture (Figure
6), an RECB (resource element control
block) appears on the ready queue. As was
mentioned previously" when an element is
QPosted to a QCB'II the first subtask in the
QCB'S chain gets control (register 1 points
to the RECB being Qposted).

In most cases'll however, the Qpost is a
two step operation. The element" s RECB
contains a pointer to the queue to which it
is being posted ~d is placed on the ready
queue in priority order (this is the first
step). AS time becomes available for pro­
cessing. the ready queue is examined by a
routine called Qdispatch in the QTAM nu­
cleus. If the routine finds an RECB on the
ready queue" the RECB is replaced with its
QCB; then the first subtask in the QCB's
chain is executed (this is the second step
of the Qpost operation [Figure 7).

The ready queue i' s opera tion can be
understood through an illustrative example
dealing with two simultaneous events:

First Event: A message starts corning
across the line into an allocated buffer.
other buffers must be obtained to accommo­
date the message in case its length exceeds
that of one buffer (high priority event),.

Second Event: At the same time," a subtask
that has written a buffer to a disk now
frees the buffer by posting it to some QCB
whose subtask will chain it into an element
chain (low priority event).

In order to obtain a buffer" a BRB (buf­
fer request block) is posted to a QCB whose
subtask will eventually fulfill the request
!or the buffer. The empty buffer and a BRB
will be placed on the ready queue "on their
way" to their appropriate queues,. It is
much more vital to obtain a buffer for the
incoming message than to chain the freed
buffer, so QTAM assigns a higher priority
to the BRB than to the buffer and chains
them both into the ready queue in priority
order. The BRB will" therefore'll be handled
first (i.e •• the BRB will be replaced on
the ready queue by the QCB to which it was
posted; and the first subtask in the QCB'S
STCB chain will get ccntrol to obtain the
needed buffer).

Logical Organization of QTAM 17.

QATTACH

READY

DUMMY

READY QCB

READY QUEUE

LAST DIS­
PATCHED QCB

"STCB CHAIN"
(READY QUEUE)

WAITR B

QCB

LINK TO NEXT
IN CHAIN

Figure 6. Element Chain

.18

QCB

QCB

STCB

STCB IBI

STCB

QCB IXI (IS NOT ON THE
READY QUEUE)

READY QCB

QATTACH

"STCBs"
(READY QUEUE

DUMMY WAITR RECB "X"

RECB "X"
r-- -- - -.,

I L _______ ...J

LINK

STCB "Z"

• Figure 7,. Second Step of Qpost Operation

CONTROL BLOCKS

Resource Element Control Blocks

There are three main types of permanent
resource element control blocks (RECBs):

1. Buffer RECBs
2. Communications line RECBs
3,. Buffer request RECBs

Figure 8 shows the general form of a
RECB.

Buffers are areas of main storage used
to contain message data and/or control
information. The first 8 bytes of each
buffer comprise an RECB. As with all QTAM
elements, the identity of a buffer at a
particular time depends solely upon the

QCB "X"
r---T-----'

I I
1----+------1
I I I
1-----+------1
I I r---+----, L ___l. __ + ___ .J I

L _______J

STCB "Z"

queue its representative RECB is chained
into at that time. The buffer itself is
always physically identifiable as a fixed
number of bytes of main storage. If the
RECB representing the buffer is chained
into a destination queue control block
(QCB), the buf fer is full; tha t is, it con­
tains a message segment to be transmitted
to a destination. When the same RECB is
subsequently chained into the available
buffer QCB g the element involved is an
available buffer 6 even though there has
been no change in the physical storage
area.

Communications lines are represented to
QTAM through the line control block (LCB),.
There is an LCB for each line. When a sub­
task has control of an LCB, it has control
of the line. Therefore, the LCB itself is

Logical Organization of QTAM 19

treated as the resource element. The RECB
is contained within the LCB.

In .order to avoid preassigning buffers
before they are actually needed, QTAM uses
buffer request blocks (BRBS) to queue buf­
fer requests. (This process is explained
later in the section entitled Outline of
QTAM Operation~) These BRBs are elements.
The RECB is contained within the BRB.
There are at least as many BRBs in the sys­
tem as the number of buffers in the buffer
pool. Thus l, this pool of BRBs is itself a
pool of resources to be allocated to the
various subtasks that use them.

r---,
I RECB
I r----------T--------------------------,
I I Key I QCB address I
I ~----------+--------------------------~
I I priority I Link address I I l __________ ~ __________________________ J

IKey is always zero.
IQCB address is a pointer to the QCB to
Iwhich the element has been posted.
IPriority is of the element represented.
ILink address is a pointer to the next
lelement in the chain. l __ _

Figure 8. Resource Element Control Block

Subtask Control Blocks

There are two types of subtask control
blocks (STCBs):

1. Truncated STCBs
2. Full STCBs

These are shown in Figure 9.

Truncated STCBs represent subtasks that are
executed in supervisory state. These sub­
tasks are performed by routines that are
packaged within the Implementation module
(and also by the Distribution List routine
linked with the message control program).
These routines are called implementation
routines and the truncated STCB represents
an implementation sUbtask.

Full STCBs represent subtasks that are
executed in problem program state. These
subtasks are performed by the message con­
trol program and message processing problem
programs. At this point, we see the over­
lap of the operating system control program
structure with the QTAM control program
structure. A QTAM problem program subtask
is created when an SVC 65 (Qwait) or 67
(Qpost) is issued within an operating sys­
tem task. More specifically, the supervi­
sor request block (SVRB) created by the
second-level Interruption Handler is modi­
fied and used as a QTAM STCB. As a sub­
task, the problem program is placed under
the subtask management of QTAM and must

20

r---,
I Truncated STCB
I
J
I
1
J
I
I

r----------T--------------------------l
~ Return I I
I code I J
~----------+--------------------------i
I Priority I Link address 1 l __________ ~ __________________________ J

lReturn code is a nonzero value to distin-
19uish between a truncated and a full
I STCB. It is also used", in some cases" as
la branch modifier to the routine asso­
Jciated with this STCB.
IPriority is of the subtask the STCB
1 represents.
~Link address' is a -pointer to' the next
;STCB in the chain. If the STCB can be
Ithe only STCB in a chain, the last 2 I
Ibytes of this field are truncated and the
~STCB is assembled directly preceding its
'routine.
~
~
l
~
~
1
I
]
I
I
~
~
J
~
~
~
~
J

t
I
I
~
I
]
J

Full STCB
r---------T-----------------------1

+01 Return I QCB address I
I code=O I (QATTACH) I
~---------+-----------------------~

+4, Priority .~ Link address ~

~---------·t-----------------------i
+8ISTCB ~ J

Isize=96 1 I
~---------~-----------------------i
I ~
I I

r---------------------------------l
+241 Event Control Block 1

~---------------------------------~
+281 Link field of SVRB ~

~---------------------------------~
+321 Register save area ~

~---------------------------------i
I ~

+421 I

1 l _________________________________ J
l ______ ~ __________________________________ J

Figure 9. General Form of Full and Trun­
cated STCB

contend for control in that multi task
environment before it is released to con­
tend with other operating system tasks in
the system. The way in which this is
implemented is discussed more fully in the
following sections. Note at this point"
however", that every problem program request
that results in a QTAM SVC 65 or 67 causes
a subtask to be created. These problem
program subtasks are always lower in
priority than any implementation subtask;
thus they are never considered for dis­
patching until all of the internal imple­
mentation subtasks have done all of the
work possible with the resources available.

I There can never be more than one full STCB
per problem program partition at a time.

Queue control Blocks

The ready queue can be thought of as a
queue of queues, each queue being asso­
ciated with a queue control block (QCB).
Figure 10 gives the general form of all
QCBS that are on the ready queue and an

I example of a QCB that has replaced an RECB
on the ready queue. The types of queues
that may appear at any given time on the
ready queue are discussed in the following
paragraphs. A more complete and detailed
list of queues is given in Appendix A..

Available Buffer Queue: This queue is used
to keep track of unassigned buffers. The
element chain is the chain of all buffers
that are not assigned,. As soon as a buffer
is no longer needed, it is posted to this
queue. The STCB chain for this QCB is
limited to the STCB for the available buf­
fer'subtask, which is used whenever a buf­
fer is made available.

LPS Queue: This queue is used to pass ele­
ments from the QTAM control program to the
message control problem program. As, shown
in Figure 2" the element chain may point
to:

1. An empty buffer" signifying that a
Line Read operation is to be
initiated.

2. A message-filled buffer to be passed
through some portion of the LPS.

3. A request for a disk I/O operation to
be started.

4. A request for a QTAM closedown.

The LPS queue controls the problem pro­
gram of the message control task,. The LPS
Control routine in the message control pro­
gram waits for the LPS queue. When an ele­
ment is available,. the LPS Control routine
is given control. This routine examines
the element to determine which of the four
possibilities is the first item in its ele­
ment chain,. Figure 2 shows the action that
is taken for each case.. The STCB chain for
this QCB is the STCB for the LPS Control
routine.

'Main storage Process Queue: This queue is
used to pass full buffers from the QTAM
control program to a message processing
program. The element chain is the chain of
buffers containing the message unit that is
passed to the message processing program.
This is the QCB that a message processing
program GET waits for.

Inactive BRB Queue: This queue is used to
keep .track of inactive buffer request
blocks. The element chain is the chain of
ail BRBs that are not assigned. As soon as
a BRB is no longer needed. it is posted to
this queue. The STCB chain may contain the
STCB for a receive-scheduling subtask and/
or one or more send-scheduling subtasks,.

Active BRB Queue: This queue is used to
pass active buffer requests from the
various subtasks that require buffers to
the active buffer request subtask, which
obtains the bufferS. The element chain is
the chain of active BRBs. The STCB chain
is limited to the STCB for the active buf­
fer request subtask.

Additional CCW Queue: This is a queue of
insert blocks containing the CCWs used to
transmit idle characters when certain line
control characters are encountered in an
outgoing message,. When one of these line
control characters is encountered by the
send portion of the LPS,,, the problem pro­
gram waits for this queue to obtain one of
these insert blocks,.

Disk Input/Output Queue: BRBs containing
channel command words are posted to this
queue when a Disk Read operation is
required. Full buffers are posted to the
same queue for writing messages on the
disk,. The STCB chain is limited to the
STCB for the disk input/output subtask.

Communications Line Queue: There is one
QCB for each communications line. The QCB
is created from the LCB itself when the LCB
is encountered on the ready queue. This
occurs as follows:

1. When a send or receive operation is
completed. the LCB is posted to the
ready queue as an element.

2. When the LCB reaches the top of the
ready queue,; afield wi thin it is
initialized as a QCB.

3. The element chain is then completed by
posting the LCB to itself.

4. A receive-scheduling subtask is then
dispatched for the line unless there
is already,a send-scheduling subtask
waiting for the line.

Return Buffer Queue: This queue is used by
the GET macro instructions to return a buf­
fer. After the data has been transferred
to the work area, the buffer is returned to
the available buffer queue via this QCB.

Time Queue: This queue is used to delay
the polling of a line for a specified
amount of time. The element chain for this
queue is the LCB waiting for an interrupt
from the Timer,.

Logical organization of QTAM 21

QCB

key element chain pointer

priority link address

STCB chain pointer

Example of the Available Buffer QCB on the Ready Queue

Ready Queue Buffer

pointer _~o RECB

next item on
ready queue

t to Available Buffer
subtask A (BFRENQ)

next item
on ready
queue

Buffers

Figure 10. General Form of QCB and Example of QCB on the Ready Queue

Move Data Queue: This queue is used to
move data while in supervisor mode. Data
can be moved within a partition or across
partitions.

Interim LPS Queue: This queue is used to
delay processing of buffers until all
requests have been processed. Elements of
this queue are transferred to the LPS
queue,.

Note: Both the DASD destination QCB and
the DASD process QCB never appear on the
ready queue. They are assembled off the
ready queue, but with a Key of 3 (see the
following discussion of Keys and Appendix A
for a description of the above QCBs).

QWAIT AJ.~D QPOST

A suotask requests a resource from a
queue by iSsuing a Qwait on the associated
QCB. A subtask passes a resource that it
is finished with by Qposting the resource
to the proper QCB.

Qwait from Problem Program: A problem pro­
gram (either message coritrol or message
processing) requests an element from the
QTAM system by issuing an SVC 65.

22

Note: All QTAM SVCs are macro generated.
The programmer should never have to issue
one directly. Because this is a type 2
SVC, the supervisor call second-level
Interruption Handler (SVC SLIH) creates an
SVRB and passes control to the Entry Inter­
face routine in the QTAM nucleus,.

The operating system SVRB is converted
to a QTAM full STCB and is temporarily
chained into the STCB chain of the last
dispatched QCB (i.e •• if the message con­
trol problem program [LPS] was issuing the
Qwait, the LPS QCB would have been the last
dispatched QCB). The address of the QCB
for the element queue being waited for is
passed in register 2,. If the element is
available, the full STCB is removed from
its temporary chain, the element's address
is placed in register i. and control is
returned to the problem program.

If an element is not available, the full
STCB is added to the STCB chain of the QCB
whose element chain is being waited for.
An SVC 1 (WAIT) is issued to place the
requesting task in the wait state. The
operating system task management routines
then dispatch some other task if there is
one waiting. otherwise. these routines
place the entire system in the wait state.

When another subtask subsequently posts
an element to the queue that the problem

program waited for, QTAM dispatches the
problem program subtask by posting the
event control block waited for as complete.
The problem program is then dispatched in
its proper task priority by operating sys­
tem task management.

~t from Problem Program: A problem pro­
gram (either message control or message
processing) passes an element to the ready
queue by issuing an SVC 67. As with the
Qwai t" the SVRB contains the address of the
Qattach QCB and is converted to a QTAM full
STCB. The Qpost STCB is then chained into
the STCB chain of the last dispatched QCB.
However, in the case of the Qpost" the last
dispatched QCB will usually be the ready
QCB itself. Thus, the full STCB will be
chained directly on the ready queue (see
the discussion of Keys for an example of
Qpost). The address of the queue that the
element is being posted to is passed in
register 2, and the address of the RECB for
the element being passed is in register 1.
The RECB is placed on the ready queue.
(Note that when the ready QCB is the last
one dispatched, the RECB is placed on the
ready queue above the full STCB. The RECB
has a higher priority,.) If a subtask is
waiting for the element, it is dispatched
in priority order. If no subtask is wait­
ing for the element, the RECB is chained to
the proper QCB. When the full STCB gets to
the top of the ready queue, control is
returned to the problem program by the as
supervisor routines.

Qwait from Internal Implementation Subtask:
When one of the implementation subtasks
requires an element, the subtask checks the
QCB for the element queue being waited for.
If the element is available, the subtask
removes it from the chain and relinks the
element chain" if necessary.

If tne element chain is errpty" the sub­
task branches directly to the queue manage­
ment routines in the QTAM nucleus. If the
STCB for the requesting subtask is not
already chained to the QCB for the
requested element, it is placed on the
chain. Control then passes to the Dispatch
routine to activate the next subtask.

Qp2st from Internal Implementation Subtask:
When one of the implementation subtasks has
an element to pass to the ready queue" it
branches directly to the Qpost routine in
the QTAM nucleus. The RECB, containing the
address of the QCB to which it was posted,
is placed on the ready queue. The STCB for
the subtask that posted the element is left
chained to the QCB that it was already on!,
and either the Qposting sub task or the sub­
task waiting for the element will be
executed.

QPOST EXAMPLE

The new, full STCB is placed on the chain
of the last dispatch QCB (the ready queue).

QATTACH

READY

DUMMY

{pointer to
next in the ready
queue chain, i.e.,
dummy}

READY QCB

QA TTACH ADDR

The Priority Search/Queue Insert routine
places the posted element on the ready
queue in priority order in front of the
full STCB.

Logical Organization of QTAM 23

The Dispatch routine finds an RECB with
a key of 0 and replaces it with its QCB
(III).

QATTACH

READY

DUMMY

READY QCB

FULL STCB
QATTACH
ADDR

Element's RECB
ADDR of
ITS QCB

LINK

The QCB has replaced the RECB. The QCB
has a key of 3, and the truncated STCB in
its chain is dispatched. When the subtask
terminates, the Dispatch routine is
entered. The key in the ready queue's QCB
is set to 2. A QCB with' a key of 3 is
found at the top of the ready queue. The
QCB is removed and its key is set to 1.

• 24

QATTACH

READY

DUMMY

Key=2

FULL STCS

READY QCS
LAST DIS­
PATCHED QCS

(QES-towloichthe-eit'lment
was
posted)

LINK

STCS ADDR

TRUNCATED
STCS

QATTACH
ADDR

The QCB at the top of the ready queue
has been removed. The ready QCB is dis­
patched by setting the key to 2. The ready
queue is examined and an RECB (full STCB)
with a key of 0 is found. The QCB pointed
to (Qattach or the ready queue) looks as if
it were on the ready queue (since it has a
key of 2). The Exit Select ·routine sets
the ready queue" s key to 3; finds the full
STCB in the chain (this chain is the ready
queue); and posts it complete and exits •

QATTACH

READY

DUMMY

QTAM NUCLEUS

READY QCB

QATTACH
ADDR

The QTAM nucleus provides the overall
queue management facilities. These facili­
ties include:

\
1. Interfacing with the operating system

to convert SVRBs to STCBs.

2. Placing problem programs in the wait
state and then posting them as
complete.

3. Chaining RECBs to the ready queue, and
STCBs to QCBs in the proper priority
sequence.

4. Dispatching the highest-priority
suotask.

The nucleus is composed of several sub­
routines; each is discussed in the section
QTAM Control Module. At this point, how­
ever, we can look at the queue management
facility as a whole. Figure 11 shows a
generalized flowchart of the nucleus. The
Qdispatch routine examines the item at the
head of the ready queue. The position of
all items on the ready queue is determined
by the relative priorities of elements as
they are posted to the queue. Generally
speaking, the priority of an element is
determined by the type of suhtask to which
it is being passed. There are four priori­
ties, indicated by a hexadecimal code in
the RECB.

Highest-code (EC): The only elements ever
given a code of EC are a BRB or special
dummy element. This is done in five
instances:

1. To indicate that the buffer request
for a disk operation has been unable
to be assigned a buffer.

2. To indicate that a buffer request is
made by the PCI interruption routine
for the first PCI on a receive
operation.

3. To execute a portion of the code of
the Put routine in supervisor mode,.

4. To recognize that a SIO is to be
issued to the DASD.

5. To recognize that a QTAM closedown is
in progress,.

Second Highest-Code (E4): This priority is
given to all elements being passed to
implementation subtasks that are disabled
to interruption" except those with a code
of EC.

Third Highest-Code (EO): This priority is
given to all elements being passed to the
message control program.

Lowest-Code (DC): This lowest priority
code is given to all elements being passed
to message processing programs.

QDISPATCH ROUTINE

Qdispatch follows the address pointer in
location READY to the item (either an RECB
or QCB) at the top of the ready queue. To
determine whether the item is an RECB or
QCB, Qdispatch examines the key field in
the first byte.

• Key=O: All RECBs have a key of zero.
In some instances full STCBs appear
directly on the ready queue instead of
being chained to the QCB. Qdispatch
will find a full STCB during initiali­
zation 7 when the ENDREADY macro
instruction is executed and during a
Qpost from a processing program (see
sample Qpost above in Qpost Example).
This full STCB appears to Qdispatch as
an RECB pointing to a location labeled
QATTACH at READY-8" the QCB of the
ready queue. Therefore" the full STCB,
whose address is at location READY (the
top of the ready queue), appears at the
head of an STCB chain in a QCB labeled
QATTACH'6 and the full STCB is given
control. If Qdispatch finds an RECH,
one of the following events will
result:

Logical Organization of QTAM 25

26

1. If the QCB pointed to by the RECB
is not on the ready queue (key=l),
the RECB is replaced by its QCB,
and the first STCB in that QCB's
chain is dispatched (see the queue
management discussion).

2. If the QCB pointed to by the RECB
has a key of 2, the RECB remains
chained to the ready queue, and the
first subtask in the QCB's STCB
chain is dispatched.

3. If the QCB has a key of 3, the RECB
is removed., and then the first sub­
task in the QCB's chain is dis­
pa_tche_d_. __ N_ote __ that __ th.e __ QC.E_ does-­
not, in the this case, replace the
RECB on the ready queue.

• Key=l: Indicates a QCB that is not on
the ready queue.

• Key=2: A key of 2 indicates a QCB with
a subtask at the top of its STCB chain
that is ready to be dispatched. A QCB
with a key of 2, however, represents a
special case. The STCB that is ready
was previously entered when an element
was made available to it. At some
point in its processing, it exited (by
Qposting or branching to either another
Implementation module routine or to
another part of the nucleus). Before
it exited, however., it elected to be
reentered whether or not another ele­
ment was made available to it. In
order to be reentered, this STCB had
set its own QCB key to 2. NOw, when an
element is posted to this QCB., Qdis­
patch will discover that it is already
on the ready queue with a key of 2.
The STCB will, at this point" be reen­
tered immediately.. The element, how­
ever, will not be removed from the
ready queue.

In summary then, when Qdispatch finds
an RECB pointirig to a QCB with a key of
2, the first STcB in its chain will be
gaining control for a second time
(reentered), and that RECB will not be
removed from the ready queue.

• Key=3: A key of 3 indicates a QCB with
an associated subtask that has been
dispatched, and the subtask has
finished all the processing required
with the element passed to it.

Note: The dispatched STCB mayor may
not be the top STCB of the QCB'S chain.
The subtask might have, during the
course of its operation, Qwaited on
another QCB, in which case it would
have been chained into the new QCB's
STCB chain. Regardless of the location
of the STCB, when Qdispatch finds a QCB

with key=3. it removes the QCB from the
ready queue and sets its key to 1.

The flowchart in Figure 11 further shows
how control is passed to the dispatched
subtask,. If the suntask is represented by
a truncated STCB, the Exit Select routine
simply branches to the entry point of the
subtask. If it is a problem program sub­
task (full STCB), the Exit Interface rou­
tine branches to the Supervisor Post rou­
tine to post this SVRBlSTCB as complete,
and then issues an SVCl (WAIT) on the STCB
that the QTAM control program is currently
operating under. These SVRBs mayor may
not be the same. When they are not the
same,- -we--s-ee t-he--ca-se--where - QTAM---i-s----plaein-g
one problem program task in the wait state
and enabling another task that was pre­
viously placed in the wait state to again
be dispatched by the operating system task
supervisor.

There is one dummy element that is used
to indicate the end of all element chains
and is permanently the last item on the
ready queue. This dummy element is preas­
sembled in the ready queue's QCB (see
Figure 6). Note that the physical blocks
of main storage--the RECBS, QCBS, STCBs,
and this dummy element--are never physical­
ly moved in main storage. Their pointers
are merely changed to reflect their current
relative positions (on or off the ready
queue" in a chain., etc.) -. When this dummy
element reaches the top of the ready queue,
a final wait is issued to place the last
QTAM problem program in the wait state
until an asynchronous item is put on the
ready queue.

Summary: The ready queue controls alloca­
tion of the resources. The contents of the
ready queue tie an element with a suhtask.
Each resource element is represented by an
RECB (Resource Element Control Block),
which contains a pointer to an appropriate
QCB. The QCB contains a pointer to an STCB
associated with a routine that performs the
desired function. To allow more than one
item to request a subtask or wait for a
resource, items are chained or queued to a
QCB. Each subtask has an associated trun­
cated STCB that contains a code that is
used to gain access to the routine address.
RECBs to be acted upon, QCBs with a~so-

ICiated STCBs waiting for a resource~ and
full STCBs representing processing programs
are chained to the ready queue. The second
word of each item on the chain of the ready
queue contains the address of the next item
on that queue. The last item points to a
dummy item. The position of all items on
the ready queue is determined by priorities
of the resource. These priorities" set by
the subtask posting the resource., are
determined by the type of function to be
performed.

A suotask requests the resource (Qwaits)
it requires for its execution from the
appropriate QCB, performs its function., and
passes (Qposts) the resource to another QCB
for the next function to be performed. The
Qposting and Qwaiting is done by the QTAM
control program (IECKQQ01 in the nucleus).
After chaining the item into its proper
place, the QTAM nucleus examines the first
item in the ready queue chain to determine
which routine is to receive control. Three
items can appear on the ready queue:

1. RECBs
2. Full STCBs
3. QCBS

'The first byte of these control blocks
contains a key, QKEY. A key of zero indi­
cates an RECB or a full STCB. A QCB has a
nonzero key whose value shows the status of
the QCB. These keys are either preas­
sembled in the QCB or set by IECKQQ01.

The three main types of elements repre­
sented Dy RECBs are: buffers., buffer re­
quest blocks (BRBs), and line control
blocks (LCBS). By posting an element to a
queue the QTAM nucleus (refer to Figure 11)
causes:

1. The QCB address, passed in register 2,
to be placed in the RECB whose address
is passed in register 1.

2. The RBCB to be inserted into the chain
of the ready queue in priority order.

3. When the RECB reaches the top of the
ready queue, the QCB, in the RECB, to
replace the RECB on the ready queue if
the QCB is not on the ready queue.

4. A subtask to be given control to per­
form the function. The truncated STCB
in the STCB chain of the QCB provides
the address of the routine for the
sUDtask.

There are three ways of posting this
element:

1. If a Qpost is issued via an SVC (only
done in the problem program), an SVRB
is created by the system, and the nu­
cleus is entered at the Entry Inter­
face subroutine. This subroutine
transforms the SVRB into a full STCB
that is used to return to the problem
program. The RECB is chained as
described above.

2. If posting is done in the implementa­
tion subtasks, registers 1 and 2 are
set with the address of the RECB and
QCB respectively. and the subtask
branches directly to the pret subrou­
tine in the nucleus.

3. If the implementation subtask wishes
to post several elements before anoth­
er subtask gets control D the implemen­
tation subtask places the RECB con­
taining a QCB address directly on the
ready queue.

A full STCB is made from an SVRB created
by the operating system as the result of an
SVC. The STCB is chained to the last dis­
patched QCB. If this QCB is the ready
queue, then the STCB is chained directly
onto the ready queue. This STCB appears to
the nucleus as an RECB whose QCB is on the
ready queue with key=2. When the Exit
Select subroutine discovers that it is a
full STCB (by a zero code for the address
of the routine), control is not given to a
routine. The Exit Interface routine posts
the ECE in the STCB as complete and issues
a WAIT (SVC 1) for the entry STCB. Normal­
ly lOS, through the SVRB-STCB, returns con­
trol to the problem program. If this STCB
that was serviced was not for the SVC that
caused the entry, the message control task
is in a wait state until there is an asyn­
chronous interrupt.

The special form of the QCB (12 bytes)
is the only type of QCB that appears on the
ready queue. DASD process and destination
QCBs (full QCBs) are not chained on the
ready queue. A QCB can be placed on the
ready queue by a Qpost or Qwait.

When an element has been posted to a
queue and that queue is not on the ready
queue, then the QCB is chained on the ready
queue in place of the RECB. The key of the
QCB is set to 3 to indicate that the QCB is
on the ready queue but has been dispatched.
When this QCB is encountered on the ready
queue with a key of 3, it is removed and
the key is set to 1 to indicate that it is
not on the ready queue.

The above occurs for all QCBs with the
exception of DASD destination and DASD pro­
cess QCBs. As mentioned previously., these
two QCBs never appear on the ready queue.
They are preassembled off the ready queue
with key=3. When an element is posted to
one of these QCBs, it appears (to Qdis­
patch) that it is on the ready queue (since
its key=3)n and the first STCB in its chain
will get control. Note, however, that
these two QCBs do not replace the RECBs on
the ready queue. ---

As the result of a Qwait, the full STCB
is chained to the last dispatched queue.
If there is an element available in the QCB
being waited for (passed in register 2 to
the wait subroutine)8 the subtask is given
control. The ECB in the full STCB is post­
ed oomplete. Control returns to the prob­
lem program as the Qwait was satisfied.

Logical Organization of QTAM 27

If the QCB being waited on is ready to
be activated (key=2), the Defer Entry sub­
routine causes the STCB to be chained to
the correct QCB but deferred. If the QCB
is not ready to be activated (key=1 or 3) "
the STCB is chained to the correct QCB (if
the last dispatched queue is the one being
~aited for, the QCB is immediately dis­
patched), and the QCB is inserted in
priority order on the ready queue. When an
element is posted to this QCB, the STCB
chained to the QCB is the full STCB pre­
viously chained. The QTAM control routine
recognizes the full STCB and posts the

28

event as complete. Return is made to the
routine that issued the Qwait" for now this
wait has been fulfilled.

Therefore, at a given moment" the ready
queue consists of a chain of full STCBs"
QCBs, and RECBs# arranged ,in priority
sequence. The rate at which a subtask
acquires resources is based on the avail­
ability of the resources and priority of
subtasks. This allocating and dispatching
of subtasks, and resources is done by the
single mechanism of the control program
acting on the ready queue~

Branch from QTAM
Implementation Subtask

RECB

Q9

IGGOJ9NG
Implementation Module

Contents of Ready =
Contents of QSAVE

• Figure 11. QTAM Nucleus

SVC First Level Interruption Handler
and Second Level Interruption Handler

QPOST
REG J • RECB
REG 2 • QCB

QWAIT
REG 2 • QCB

Subroutine

QWAIT (65)

I
I
I
I

--J
PO ST Subroutine

(. Ready Q)
Passed

(+ RECB)

~ Priorit~e~h Subroutine __

DEFER ENTRY
Subroutine

I

QCB KEY
J = not on Ready queue

2 = on Ready queue and ready to
be activated

3 = on Ready queue but STCB is waiting
for RECB and cannot be reactivated
unti I RECB is avai lable

Defer Entry Subroutine

YES

QDispatch

PRIORITY SEARCH
Subroutine

FJ

Logical Organization of QTAM 29

OUTLINE OF QTAM OPERATION

The following description is intended to
give a functional flow of messages through
the QT~l operation.

Processing of a QTAM message control
task is activated as a result of interrupts
(SVe, program control" disk, line end, and
line SI0) that occur during the sending and
receiving of a message. These interrupts
result in the processing of one or more
-as-y-nehro-nous-ly-ope-rating- QTAM-- subtasksor
appendages. These subtasks communicate
with one another and the message control
task by means of the Qpost and Qwait func­
tions (see section on Qwait and Qpost).
When a subtask has a resource element to be
processed by another subtask, the element
is posted to a queue representing that sub­
task. This is done in the problem program
by a Qpost supervisory call; the implemen­
tation subtasks branch to post in IECKQQ01.
Or an effective Qpost is issued by placing
the resource element control block (RECB)
in the buffer on the ready queue and the
address of the QCB in the first word of the
RECB. When a subtask is ready to receive
an element, the Qwait function is used.
The subtask sequence is managed by queuing
to the ready queue as discussed earlier
under Queue Management. The interference
of one line with another is handled by the
queuing provided within the Qpost/Qwait
functions. This description shows the log­
ical sequence of events for a message
without regard for other suotasks and
interrupts that may occur and that do not
effect the processing of the message.
Therefore, when an element is posted to a
queue, the subtask associated with that
queue is activated immediately. Also for
the sake of continuity and simplicity, that
function of the QTAM nucleus that is
entered as the result of Qposting and
Qwaiting is not included in this discus­
sion. The description takes the example of
a multisegment message ending in an EOB-EOT
from a nonswitched terminal.

Figure 22 is a functional flowchart of
the components of QTAM: message control
task, opens and closes, message processing
task, subtasks., and appendages. These com­
ponents are separated by solid lines. Also
on the flowchart, each subtask or module is
separated oy broken lines. The labels on
the flowchart, Figure 22, are the names of
the routines. The functional blocks for
the routine follow the label. When more
detailed information is needed for a par­
ticular functional block, refer to the
detailed explanation of each routine. This
detailed description also gives the

30

sequence number of the logical flowchart
for that routine. This detailed flowchart
contains the labels that are in the listing
of the routine. Note that some of the
labels in Figure 22 are names of LPS delim­
iter macros for that group of the LPS. The
function of the expansion of these macros
is also represented with a functional
block. For the QTAM nucleus subroutines,
see Figure 11 in the Logical Organization
of QTAM- section,.

This description is divided into five
sections: Initialization, Receiving, Send­
ing, Message Processing., and Closedown.
The flow of QTAM operation can be traced by
following the steps in the description of
the flowchart" Figure 22.

INITIALIZATION

The initial function of QTAM is
initiated by the OPEN macros in the problem
program. Upon discovering QTAM" the system
Open shifts control to the open routines in
the transient area. These routines obtain
and initialize the control blocks (DEB,
DCB, and LCB/IOB), load QTAM resident rou­
tines into partition 08 and prepare the
lines for transmission.

Enter Message Control Task

1. Open disk (see Figure 12)
2. Open checkpoint data set
3. O~en line groups (see Figure 13)

Enter QTAM Open Routines

• Open DASD

~essage queues

1. Put the address of the terminal table
in the CVT.

2. Build DEBs.
3. Load Implementation module and store

the address in the terminal table.
4. Load the Checkpoint/Restart module and

store the address in the Implementa­
tion module.

Load 2

1. Initialize the QeB whose address is in
the terminal table with the address of
the DASD destination STCB.

2. Execute subtask to put address of
IECKQQ01 in the Implementation module.

3. Free main storage for secondary DSCBs.
4. Replace offset to polling list with

CVT

l lOB

DCB

r--- +156 TERMTBL

+20 t DCB

+28 t lOB

+44 t DEB

TERMTBL DASD/QCB

+0 +8 t DASD Dest.
~ t IMP

STCB if
+4 Process QCB

DEB

+8 t DASD +12 t DASD Dest.
Destination STCB

+24 t DCB

Implementation routine

QCB for +0 tLPSQ.

LPS+12 t Active BRB Q.
Active BRB Q.

QCB for
Inactive BRB Q.

LPS +48 t Inactive BRB Q.

LPS +288 t TCB +4 t IECKBUFF +4 t IECKRQ
LPS+304 t IGG019NH

LPS +316 t IECKOPAW

GETRET -8 t IECKQQ01

Figure 12. Blocks Initialized by Open Direct Access Device

the polling characters and index
bytes.

5. Put buffers in the available buffer
queue.

6. Put buffer request blocks (BRB) in
inactive BRB queue.

• Open Checkpoint/Restart

1. Calculate size of checkpoint records.
2. For disposition NEW, write control

record for first record of data set
and two dummy checkpoint records.

3. For disposition OLD, the control rec­
ord is read from the disk.

4. If not for a restart, the data set is
formatted. If this is initialization
for a restart, the checkpoint record
is read (into the work area obtained
by a GETMAIN) ,. The data previously
recorded is restored.

• Open Line Group Executors

Load 1

1. Build DEB.
2. If the line group is a WTTA line

group, load the WTTA Line Appendage
module and establish linkages with the
Implementation module.

Load 2

1. Build LeBs and lOBs.
2. Build NOP g SAD, or Enable commands.

Load 3

1. Load BTAM Read/Write module and skele­
ton CCWS.

2. EXCP for each line.

Outline of QTAM Operation 31

LCB

+18 t STCB if INPUT
DCB DEB

t Dispatch STCB
+28 t lOB i1 if OUTPUT

+24 tDCB
tLCB I +12 link address

+32

+48 lOB
+44 tDEB

+68 t DCB

TCB

U +18 t DEB

QCB to
Ready Queue

QATTA~

full STCB

+4 element
chain

READY

DUMMY
tQATTACH -

Figure 13. Control Block after Open Line Groups

The channel program for a SAD, Enable or
NOP is executed to put the line in receive
status. lOS gives control to the SIO Line
Appendage routine, which requests that
Error ReCOvery Procedures be given ·control.
The Special Open and Checkpoint routine in
the ERPs checks for SIO errors. If there
was a normal Start I/O, return is made to
lOS. The channel end/device end interrupt
gives the Line End Appendage control. If
IDLE has been specified, return is made to
lOS. Otherwise, the LCB is posted to
itself, i.e., the QCB and RECB are the same
address.

The STCB for the Receive Scheduler is in
the LCB if the line was opened for input.
(If the line was opened for output, the
STCB is for the Qdispatch subroutine.) The
receive scheduler STCB contains the address
of the .t{eceive Scheduler routine, which
gets control.

Enter Receive Scheduler subtask

• Receive Scheduler routine

1. Test for end of polling list.
2. If not end of polling list, set LCB-

32

STATE for receiving (X I 08) '.
not end of polling list.)

'3. Branch to BRB-Ring routine.

(Assume

If it is the end of the polling list, the
End of Poll Time Delay routine is entered.
If a time interval is specified n the Send
Sc~eduler is placed in the LCB that trans­
mits messages during the interval (receive
has priority over sending) or until all
messages on the queue have been sent
(receive and send have equal priority).

• BRB-Ring routine

1. Build ring of buffer request blocks
(BRB) to be used for dynamic buffer
allocation. (BRBs are obtained from
the inactive BRB queue.)

2. Make BRBs unaddressable.
3. Post the first BRB to the active BRB

queue with high priority.

The number of BRBs in the ring is equal
to the value specified in the BUFRQ
operand. The address of the first BRB in
the ring is stored in the LCB so the Acti­
vate routine can gain access to it later.
The first BRB is then posted with a priori-

I

I

ty of X'EC' to cause immediate servicing of
the request for a buffer.

Enter Active BRB subtask

• Active BRB routine (High priority)

1. Test for available buffer (assume
available). If the buffer is not
available, the request is put into the
active BRB chain of requests.

2. Branch to Buffer BRB routine.

• Buffer BRB routine

1. Assign empty buffer for receiving;
i.e., the LCB address is placed in the
prefix of the buffer.

2. Post empty buffer to LPS queue with
priority of X'EO~_

Return is to Open Load 3 as the result of
the EXCP.

Open Line Group Executors

Load 3

QCB for
Ready
Queue

RECB

BRB

EC

08

o

1. EXCP is issued for each line to cause
each line to be made ready.

Load 4

1. Test for completion of I/O on each
line. If I/O has not completed there
is a 30-second delay.

2. Return is to the message control
program.

For option 2 (MFT) and option 4 (MVT) a
start Initiator function should be em­
ployed. This will load the message pro­
cessing program into another partition or
region. (See the section on Initializing
Message Processing Program.) The message
processing program gains control when the
message control task enters a WAIT state.
Figure 14 illustrates the formation of the
BRB ring and relation of the buffer to
queues.

RECEIVING

Now there is an empty buffer for each
line chained on the LPS queue and a ring of

QCB for
LPS Queue

empty buffer

LCB

BRB

t LCB

BRB

t LCB

Figure 14. Buffer Ready to Receive Message from Line

Outline of QTAM Operation 33

BRBs for each line. The next function is
to read the messages from the terminal into
the buffers. To do this, the CCWs must be
prepared for a particular terminal.

• ENDREADY macro instruction

1. Establish save registers.
2. Issue an SVC Qpost to enter the check­

point subtask.

Enter Checkpoint Subtask

• Checkpoint routine

1. Set interval time via the Time Delay
- -- --routine---(if -C-PI-NTV- is-specif-ied)-~-

2. Release main storage obtained in the
Open Checkpoint (if restart).

3. Return to ENDREADY via the full STCB
of the SVC Qpost_

ENDREADY continued

1. Branch to LPS Control routine.

• LPS Control Routine

1. Set up registers for Activate routine.
2. Issue an SVC Qwait for buffer in LPS

queue (empty buffer posted in Buffer
BRB routine).

Buffer

MSLCB

DECB

+12 tFirst
Buffer

TIC

3. Since buffer is available" set MSTATUS
to 5 and branch to the Activate
routine.

• Activate routine

1. Prepare CCW for entire buffer in first
BRB (buffer address, operation code,
count) •

2. Build DECB for BTAM Read/Write
routine.

3. Branch to BTAM Read/Write routine .•

• BTAM Read/Write routine

1. Prepare CCWs for terminal selection
-and reading first segment (address in
DECB) '.

2. Issue EXCP supervisor call,.

• lOS branches to SIO Appendage

• Line SIO Appendage routine (refer to
Figure 11)

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

2. Test for send request on line or end
of polling list.

3. Get poll characters for next terminal
that can be polled.

4. Change poll CCw to point to poll

Read
Data

PCI

TIC

LCB

LCBCPA

BTAM

Channel

Program

BRB

Figure 15. Channel Program Prepared for First Buffer

34

characters found in terminal table.
5. Set PCI flag in the BTAM Read CCW.

• lOS issues Start I/O

Return is to the LPS Control routine.

• LPS Control routine

1. Issue a SVC Qwait for buffer in LPS
queue.

After a Start I/O is executed for each
line, the LPS Control routine will find no
buffers on the LPS queue. The message con­
trol task will enter a wait state. Subse­
quent I/O interrupts activate subtasks that
cause buffers to be posted to the LPS
queue" allowing the message control task to
continue.

PCI INTERRUPT (RECEIVING THE FIRST BUFFER)

The PCI Appendage is entered as a result
of a PCI flag set in the BTAM CCW by the
Line SIO Appendage. This PCI interrupt is
to allow buffers to be assigned to the BRBs
in the chain.

• PCI Appendage routine

1. Post (effective) all BRBs except the
first to the active BRB queue with
high priority to obtain a buffer.

Enter Active BRB subtask

• Active BRB routine

1. Obtain empty buffer from the available
buffer queue (assume available).

2. Branch to Buffer BRB routine.

• Buffer BRB routine

1. Assign empty buffer for receiving.
2. Set MSTATUS to 5 to signify empty

buffer.
3. Post empty buffer to the LPS queue

with priority of X'EO'.

Enter Message Control task

• LPS Control routine

1. Set up register for Activate routine.
2. Branch to Activate routine (empty

buffer).

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Clear low-order bits from TIC command

in previous BRB to make it
addressable.

3. Branch to LPS Control routine.

• LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

PCI INTERRUPT (RECEIVING ALL BUFFERS EXCEPT
FIRST)

PCI Appendage is entered as a result of
a PCI flag in the QTAM CCW in the BRB in
the ring. The PCI interrupt is needed to
return the BRB to the active BRB queue so
it can be reassigned. This interrupt also
indicates that the preceding buffer is full
and ready for the LPS macro instructions as
shown in Figure 16.

• PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority .•

2. Post (effective) all message-filled
buffers to LPS queue (via interim LPS
queue) •

Enter Active BRB subtask

• Active BRB routine (low priority')

1. Chain BRB into active BRB element
chain.

The interim LPS subtask is entered to post
the buffer to the LPS queue. This subtask
provides a means of delaying the processing
of all buffers until all BRBs are pro­
cessed. Since a PCI interrupt may be
missed due to extended CPU disable time, a
buffer may be out of order.

Enter Message Control task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART (message-filled

buffer) .•

• RCVSEG portion to LPS

• RCVHDR portion of LPS (if header)

• ENDRCV macro instruction

1. Test for end of message. MSTATUS=X'42'
(assume not end of message).

2. Branch to Cleanup routine.

• Cleanup routine

1. Post buffer to DASD process or
destination queue specified by the
ROUTE or DIRECT macro.

Outline of QTAM Operation 35

QCB for
Ready Q.

,--
W

RECB

Used
BRB

Figure 16. Effect of PCI Interrupt

If posted to a process queue, the Get
Scheduler routine is entered; if posted to
a destination queue, the Send Scheduler
routine is entered. After the Send Sched­
uler has been entered" the STCB in the DASD
destination queue changes to point to the
DASD Destination routine. Therefore, con­
trol would pass to the DASD Destination
routine and exit to the Qdispatch subrou­
tine to dispatch the next item an the ready
queue. Both schedulers use the common code
of the DASD destination routine. (If GET
has been previously issued in message pro­
cessing program, posting to the process
queue is changed. This is covered later in
the Message Processing section.)

• DASD Destination routine

1. Assign direct access location.
2. Reserve and record location of direct

access space for next message and/or
segment.

3. Post (effective) buffer to disk I/O
queue.

4. Return to scheduler.

• Send Scheduler routine

1. Set 'line trying to send' bit in LCB
(LCBINCAM = X'Ol') (Assume line is not
free so the Send Scheduler will wait
for the line to be free.)

2. Place Send Scheduler STCB in LCB's
STCB chain.

36

-

~

Destination
LCB

Destination
QCB

DASD
Destination
STCB

RECB

message-
filled
Buffer

Message is queued for sending

QCB for
Active BRB
Qu'=ue

Send
Scheduler
STCB

Message is queued for sending

Enter Disk I/O subtask

• Disk I/O routine (write)

QCB for
Interim
LPS Queue

Receive
Scheduler
STCB

1. convert relative record number to
actual DASD address.

2. Execute EXCP supervisor call.

Return to Message Control task

• LPS Control routine

1. Issue a SVC Qwait for buffer in LPS
queue. At this point there is no buf­
fer on the LPS queue so the message
control program enters a wait state.

TIMER INTERRUPT - CHECKPOINT INTERVAL

Enter Checkpoint/Restart routine

1. Issue a GETMAIN for main storage
required for checkpoint record.

2. Transfer data to work area (informa­
tion from terminal table, polling
list, LCB, and QCB).

3. Chain element to disk I/O queue below
any other request for a Disk Write.
(If no elements are in the queue and

EXCP is issued for the disk
operation.)

Note: The first buffer has now been read
from the line and processed by the LPS
macros. The operations now 1n prog~ess,
filling the second buffer from the line and
writing the first buffer to the disk, cause
the following possible interrupts.

1. Channel end/device end from the disk
indicating the Disk Write operation is
complete. Control passes to the Disk
End Appendage routine.

2. PCI indicating another full buffer has
been received.

3. Channel end/device end from the line
indicating an EOB was received from
the terminal. Control passes to the
Line End Appendage routine.

4. Channel end/device end/unit exception
from the line indicating an EOT was
received from the line. Control
passes to the Line End Appendage.

In this example, it is assumed that the
channel end/device end from the disk opera­
tion occurs first and the others follow in
order given.

DISK INTERRUPT (RECEIVING)

The Disk End Appendage is entered as the
result of a disk operation. This interrupt
is used to free the message-filled buffer
and to initiate for another disk or read
operation.

• Disk End Appendage routine

1. Place the disk I/O QCB (effective
Qwait) on the ready queue to initiate
another disk operation if one is
stacked. (Assume none.)

2. Post buffer to available buffer queue~

Enter Available Buffer subtask

• Available Buffer routine

1. Find and remove BRB (from PCI inter­
rupt) from active BRB element chain,.

2. Branch to Buffer BRB routine.

• Buffer BRB routine

1. Assign empty buffer for receiving.
2. Post empty buffer to LPS queue.

Now that a buffer is available" it can
be assigned to a BRB and used to continue
reading the message,. Note tha t the basic
structure of the channel program has been
set~ therefore all that is needed is to
complete the CCW. Figure 17 shows the
normal path of a buffer. Actually the buf­
fer is chained to the ready queue; however!,
the diagram shows the logical association
between the buffer and function to be
performed.

Enter Message Control task

• LPS Control routine

1. Set up registers for Activate routine.
2.. Branch to Activate routine (empty

buffer).

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Clear low-order bit from TIC command

in previous BRB.

• Return is to LPS Control routine

1. Issue a SVC Qwait for buffer in LPS
queue.

DISK INTERRUPT--CHECKPOINT WRITE

Enter Checkpoint/Restart Routine

1. If there are errors. a WTO macro is
issued for a message. (Assume no
errors.)

2. If the complete record has not been
written, another disk operation is
started.

Outline of QTAM Operation 37

Available
~ss~gn_ e_mp!y _bu~fe! t~ I~ne_ Buffer - - - -.-

Queue

~

I
I

I

I Insert in

BRB/CCW

I

I Assign
I toCCW

LPS
Queue

Send to

-- -
I--

........... Data filled buffer

..........

Interim
LPS Queue

, available disk destination , buffer chain
I ,
I

I

Disk I/o Write on disk DASD

Queue Destination
Queue

Figure 17. Path of a Buffer for Receiving

3. When complete record is written, the
control record is written.

4. FREEMAIN is issued to free the check­
point record.

5. Timer is reset.

6. Dispatch next item on queue.

LINE END INTERRUPT (RECEIVE AN EOB)

The Line End Appendage routine is
entered as a result of an EOB indication.
The CCW must be set up to read the rest of
the buffer.

• Line End Appendage routine

1. Check for errors.
2. Post message-filled buffer to LPS

queue.

Enter Message Control task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

• RCVSEG portion of LPS

38

empty buffer

data in buffer

data after LPS

• RCVHDR portion of LPS (if header)

• ENDRCV macro instruction

1. Test for end of message
(MSTATUS=X'42').

• EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routine.

• EOB or EOBLC routine

1. set up "first buffer" and "read con­
tinue" flags for Activate routine.

2. Branch to Acti va te routine,.

• LPS macro instructions for error checking
of received messages .•

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for BTAM Read/Write

routine .•
3. Branch to BTAM Read/Write routine.

• BTAM Read/Write routine

1. Prepare CCws to respond to EOB and
read portion of buffer that follows
EOB.

2. Execute EXCP supervisor call,.

• lOS branches to Line SIO Appendage

• Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

• lOS issues Start I/O

• LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

LI~E END INTERRUPT (RECEIVE WRU SIGNAL ON
WTTA LINE)

The WTTA Line Appendage routine is
entered as a result of a WRU indication.
If EOM is different from WRU, the CCW must
be set up to read the rest of the buffer.

• WTTA Line Appendage routine

1. Check for errors.
2. If this is the first buffer" the

requested identification exchange is
performed. On completion, restart the
Read CCW. If this is not the first
buffer, post it to the LPS queue" and
set the "WRU" flag in the LCB.

Enter Message Control Task

• LPS Control routine

• RCVSEG portion of LPS

• ENDRCV macro instruction

1. Test for end of message
(MSTATUS=X'42').

2. Branch to EOB routine.

• EOB routine

1. set up "first buffer" and "read con­
tinue" flags for Activate routine.

2. Branch to Activate routine.

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for BTAM Read/Write

routine.
3. Branch to BTAM Read/Write routine.

• BTAM Read/Write routine

1. Prepare CCW for ID Exchange and read
portion of buffer including WRU.

2 •. Execute EXCP supervisor call.

• lOS branches to line SIO Appendage.

• Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCws.

• lOS issues Start I/O.

• LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue,.

I LINE END INTERRUPT (RECEIVE EOT--RECEIVE
EOT/EOM ON WTTA LINES)

The Line End Appendage is entered as a
result of an EOT indication.

• Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.

Enter Message Control Task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

• RCVSEG portion of LPS

• RCVHDR portion of LPS Cif header)

• ENDRCV portion of LPS

• EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routine.

• EOB or EOBLC routine

1. Test for EOT.
2. Return to LPS macro instruction.

• LPS macro instructions to perform error
checking

• POSTRCV macro instruction

1. Branch to Cleanup routine.

• Cleanup routine

1. Issue a SVC Qpost to post buffer to
DASD process or destination queue,.

Note: Enter DASD Destination ·routine and
disk I/O subtask as already explained under
the PCl Interrupt section (receiving all
buffers except first). Upon returning to
the Cleanup routine the following functions
have been performed:

Outline of QTAM Operation 39

1. Allocated disk location for text
segment.

2. Placed necessary linkages in text
prefix.

3. Initiated Disk Write operation for
last buffer.

Return to Cleanup routine

• Cleanup routine (continued)

1. Issue an SVC Qpost to post any
assigned but unused buffers to the
available buffer queue.

2. Branch to Free BRB routine.

• Free BRB routine

1. Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in the
active BRB queue it is not posted. A
flag is set so that when this buffer
is available it is not assigned and
the BRB is posted to the inactive BRB
queue.)

2. Issue an SVC Qpost to post the LCB to
itself to free the line.

The LCB contains the STCB for either the
Receive or Send Scheduler depending upon
the priority of sending and receiving,. The
following priorities may be specified for
nonswitched lines.

Dummy

QCB

Ready
Queue

Figure 18. Ready Queue at Sending Time

40

1. Receive over send: Messages are sent
only during the polling interval
delay. If no polling delay is speci­
fied, no messages are sent.

2. Receive equal to send: For WTTA
lines" messages are sent if an EOT
signal has been received. For all
other lines. messages are sent at the
end of the polling list. All messages
queued for that line are sent before
polling is reinitiated.

3. Send over receive: Messages are sent
at EOT time,,, at the end of polling
list, and after a negative response to
poll.

The STCB contains the address of the
scheduler subtask in the link field. When
the LCB is posted to itself and is subse­
quently dispatched, the STCB is activated
so that the Send Scheduler routine (assume
line is free to send) is entered.

SENDING

Sending is initiated when a line is
free., and a full message has been received.
The message must be read into buffers and
then the header rewritten on the disk with
the "message sent" flag set. (See Figure
18.) The buffers are then routed through
the send LPS.

Enter Send Scheduler subtask

• Send Scheduler routine

1. Test for full message in queue.
2. Branch to BRB-Ring routine.

• BRB-Ring routine

1. Build ring of BRBs used for dynamic
buffer allocation. (BRBs are obtained
from the inactive BRB queue.)

2. Post first BRB to disk I/O queue.

Return to Message Control task

• LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

Enter Disk I/O subtask

• Disk I/O routine (read)

1. Assign buffer from available buffer
queue for Disk Read. (If no buffer
available, BRB is posted to active BRB
queue.)

2. Put buffer on disk I/O queue before
BRB (BRB is.a request to read buffeI.)

3. Convert relative record number to
actual DASD address.

4. Execute EXCP supervisor call.

DISK INTERRUPT (SENDING - HEADER)

The Disk End Appendage is entered as a
result of a disk operation. This interrupt
is used to initiate the writing of the buf­
fer back on this disk.

• Disk End Appendage routine (read)

1. Assign sequence number and set "mes­
sage sent" flag in prefix.

2. Return to lOS to rewrite buffer on
disk.

DISK INTERRUPT (SENDING - ALL BUFFERS)

The Disk End Appendage is entered as a
result of a disk operation. Note that the
buffer containing the header enters the
Disk End Appendage twice (read, rewrite).
Now that the header has been written back
on the disk the message-filled buffer can
be sent through the send LPS. This inter­
rupt also provides the opportunity to
initiate the reading of the next buffer
from the disk.

• Disk End Appendage routine

1. Post (effective) buffer to LPS queue.
2. Set up next BRB to read next segment

of message.
3. Turn off the "send" bit so that the

buffer can go through send LPS.

4. Post next BRB to disk I/O queue if
available buffer for read.

Enter Disk I/O subtask

• Disk I/O routine (read)

1. Assign buffer from available buffer
queue for read. (If no buffer is
available g BRB is posted to active BRB
queue.)

2. Put buffer on disk I/O queue ahead of
BRB (BRB is a request to read buffer).

3. Convert relative record number to
actual DASD address,.

4. Execute EXCP supervisor call. Since
this routine was entered through an
appendage" an EXCP may not be able to
be executed,. If the disk is idle" a
SIO element (STARTIO) is posted to the
LPS queue. The LPS Control routine
would then issue the EXCP.

Enter Message Control task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

• SENDHDR macro instruction

1. Test for complete "message sent.,"
"serviced" bit MSTATUS=X'10·. (Assume
complete message not sent) ,.

2. Branch to header port ion of LPS,.

• SENDHDR portion of LPS (if header)

• ENDSEND macro instruction

1. Branch to Activate routine,.

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Indicate "message sent" flag in

prefix,.
3. Prepare DECB for BTAM Read/Write rou­

tine (first buffer).

For all buffers except first:

4. Clear low-order bits from TIC command
in previous BRB.

5. Set "PCI" flag in CCW.
6. Branch back to LPS Control routine.

• BTAM Read/Write routine

1. Prepare CCWs for terminal selection
and writing first segment.

2. Execute EXCP supervisor call,.
3. lOS branches to Line SIO Appendage

• Line SIO Appendage routine

Outline of QTAM Operation 41

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

2. lOS issues start I/O

The sequence of Disk End Appendage, disk
I/O subtask, and message control task is
repeated for each buffer. For the last
buffer the BRB is not posted to the disk
I/O queue, but the disk I/O QCB is chained
to the ready queue to request another
operation.

Return to LPS Control routine

• LPS Control routine

1. Issue an SVC Qwaitfor buffer in LPS
queue.

PCI INTERRUPT (SENDING)

The PCI Appendage is entered as a result
of a "PCI" flag set in the CCW for every
buffer except the first.

• PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority.

2. Post (effective) buffer to available
buffer queue.

Enter Active BRB subtask

• Active BRB routine (low priority)

1. Chain BRB into active BRB element
chain.

Enter Available Buffer subtask

• Available Buffer routine

1. Find and remove BRB (from PCI inter­
rupt) from active BRB element chain..

2. Test if valid or idle BRB. When there
is no more to read, the buffer is
placed in the available buffer chain
and the next item is dispatched.

3. Branch to Buffer BRB routine.

• Buffer BRB routine

1. Reserve buffer for Disk Read.
2. Post BRB to disk I/O queue.

Enter Disk I/O subtask

• Disk I/O routine (read>

1. Assign buffer from available buffer
queue for Disk Read.

2. Put buffer on disk I/O queue ahead of
BRB (BRB is a request to read buffer).

3. Convert relative record number to
actual DASD address.

4. Post disk request element to LPS

42

queue" if disk is idle (assume true
for this case). Execute EXCP super­
visor call., if disk is not idle. The
Start I/O element is the CCWs created
by Disk I/O routine for reading the
next segment.

QCB QCB

for for
Ready LPS

READY Queue Queue
DUMMY

Start I/o

Start I/O Element on Ready Queue

Enter Message Control task

• LPS Control routine

1. Issue EXCP supervisor call for disk.

Disk End Appendage is same as explained
under Sending - All Buffers.

LINE END INTERRUPT (SENDING - EOB)

The Line End Appendage is entered as a
resul t of an EOB indication,.

• Line End Appendage routine

1. Check for errors.
2. Return to lOS to read EOB.

LINE END INTERRUPT (SENDING - RESPONSE TO
EOB)

The Line End Appendage is entered as a
result of a response to an EOB.

• Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.

Enter Message Control task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPS.

• SENDHDR macro instruction

1. Test for complete message sent.
2. Branch to the macro instructions fol­

lowing ENDSEND, as a complete message
has been sent (EOB).

• EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routines.

• EOB or EOBLC routine

1. Set up "first buffer" and "write con­
tinue" flags for Activate routine.

2. Branch to Activate routine.

• Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for Read/Write routine.

• Read/Write routine

1. Prepare CCW to write portion of buffer
that follows EOB.

2. Execute EXCP supervisor call.

• lOS branches to Line SIO Appendage

• Line SIO Appendage routine

1. Move TIC command from BRB to end of
prepared CCW.

• lOS issues Start I/O

Return to LPS Control routine

• LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

Available
Buffer
Queue

:

buffer
returned

CCW/BRB

Path of buffer for sending

reserved buffer ..

sent through LPS

Path of Buffer for Sending

Disk
I/o Queue

I message read from
disk

+

LPS
Queue

LINE END INTERRUPT (SEND EOB/EOT')

The Line End Appendage is entered as a
result of an EOT indication.. Now the buf­
fer is ready for the send LPS. Also the
EOT indicates that all BRBs and the line
can be freed.

• Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.

Enter Message Control task

• LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

• SENDHDR macro instruction

1. Test for complete message sent
(MSTATUS=X'10').

2. Branch to the macro instructions fol­
lowing ENDSEND" as a complete message
has been sent (EOB).

• EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routine.

• EOB or EOBLC routine

1. Test for EOT following EOB.
2. Return to LPS since line interrupt is

for EOT.

• LPS macro instruction for error checking

• POSTSEND macro instruction

1. Branch to Cleanup routine,.

• Cleanup routine

1. Issue an SVC Qpost to post the buffer
to available buffer queue.

2. Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in th·e
active BRB queue, it is not posted. A
flag is set so that when a buffer is
available it is not assigned and the
BRB is posted to the inactive BRB
queue.)

3. Issue an SVC Qpost to post the LCB to
itself.

Enter Send Scheduler subtask

• Send Scheduler routine

1. Test for full message in queue.
2. Since no messages are now in the

queue" the Send Scheduler removes the
STCB from the line and places it back
in the destination line QCB's STCB
chain.

Outline of QTAM Operation 43

The line (LCB) would now be free to
execute the next STCB on its chain" which
may be the Receive Scheduler or another
Send Scheduler for another terminal on its
line.

Enter Receive Scheduler (If send and
receive have egual priority)

Cycle now complete.

MESSAGE PROCESSING

The procedure for routing buffers to a
message processing program before a GET has
been issued is similar to the description
in the Receiving section. The only dif­
ference is that the messages are posted to
the DASD process queue and the GET Schedul­
er is entered, which branches to the DASD
destination routine. Prior to the first
GET the incoming buffers accumulate on the
DASD process queue.

Enter Message Processing task

1. Open process queues.

• Open Process Queue routine

1 Build DEB (144 bytes).
2. Build chain of message processing

DEBs.
3. Initialize BRB and QCB in DEB.
4. Load Get and/or Put modules.

DEB MS Process DASD Process QCB

+ 36 t IECK STOP
+40 QCB +4
+44 t QPRIRTY t GET Scheduler subtask +8
+ 48
+ 52 'FE' (priority) +12 tLCB

+56 t QCB for
DASD Process Q.

+ 60 '07' t LCB BRB

DEB MS Destination

+ 32

+ 36

+40 '18' tQPRIRTY

+44

Process OPEN

Process OPEN

44

Return to Message Processing task

The first GET is to initialize the pro­
cess of reading the buffers from the disk.
No buffers could be queued to the MS pro­
cess queue until this time because the mes­
sage processing queue may not have been
opened.

1. Issue GET.

• Get routine

1. T est for message in queue (if none"
exit to EODAD).

2. Issue an SVC Qpost to post the preced­
ing buffer to return buffer queue
(first time dummy buffer in BRB of
process DEB is used).

Enter Return Buffer subtask

• Return Buffer routine

1. Make BRB eligible for reading into MS
process queue.

2. Branch to Get Scheduler routine.

• Get Scheduler routine (special entry)

1. Get address of DASD process queue.
2. Test to see if BRB is eligible for a

read MSTIC=3. (assume it is eligible)
3. Set the relative record number of the

header segment on the DASD process
queue in BRB.

4. Indicate disk operation for buffer in
BRB (MSTATUS=9).

5. Post BRB to disk '1/0 queue for read.

Enter Disk I/O subtask (read)

• Disk I/O routine

1. Test for buffer available (assume
available)

2. Assign buffer from available buffer
queue for Disk Read.

3. Put buffer on disk I/O queue ahead of
BRB. (BRB is requested to read
buffer,.)

4. Convert relative record number to
actual DASD address,.

5. Execute EXCP supervisor call.

Return to Get routine

1. Issue an SVC Qwait for a buffer.

If the MS process queue had a message"
this wait would be satisfied,. However to
illustrate a complete cycle" the disk end
procedure follows,. The disk operation
replenishes the MS process queue depleted
by a GET (if there is a buffer in the DASD
process queue). Therefore the disk I/O
operation overlaps with the processing in
the user's processing program.

DISK INTERRUPT (FIRST BUFFER - HEADER)

The Disk End Appendage is entered as a
result of a disk operation.

Disk End Appendage routine (read)

1. Indicate message sent and assign
sequence number.

2. Return to lOS indicating that start
I/O is for a rewrite to write the mes­
sage back on disk.

DISK INTERRUPT (REWRITE)

The Disk End Appendage is entered as a
result of a disk operation.

• Disk End Appendage routine (BRB is still
a request to read a buffer).

1. Remove BRB and buffer from disk I/O
queue.

2. Put Duffer in MS process queue.
3. Test for more space in MS process

queue. (Assume more space.)
4. Set up for new Disk Read to fill MS

process queue.
S. Post BRB to disk I/O queue to cause

the reading of the next segment.

The wait is now satisfied for a buffer
in the MS process queue.

Return is to the Get routine

• Get routine (continued'

1. Move buffer to work area.
2. Return is made to the message process­

ing.program.

For Get Message and Segment if the buf­
fer is empty or it is not end of message"
another buffer is requested.

Enter Message Processing task

1. Execute modifying and examining macro
instructions.

After the first GET has been issued,
then the MS process queue can continue to
be filled. If a message is posted to the
process queue after the first GET and there
is space in the MS process queue, the buf­
fer is put in the MS process queue without
actually doing the Disk Read. (See Figure
19.) This procedure is initiated when the
Cleanup routine posts a buffer to the DASD
process queue as follows.

Enter the Get Scheduler subtask (activated
~posting the buffer to the DASD process
queue)

• DASD Destination routine

1. Assign direct access location.
2. Reserve and record location of direct

access space for next message.
3. Post (effective) buffer to disk I/O

queue for write.

• Get Scheduler routine

1.

2.

Test for EXPEDITE (assume not
EXPEDITE).

If EXPEDITE~ the message is not put on
the disk but is put directly into the
MS process queue.

Test for space in MS process queue.
(Assume space.)

3. Test for disk address in BRB. (Assume
disk address is the same as for write
in DASD destination routine. This BRB
is in the active BRB queue as a result
of the post to the disk I/O queue by
Disk End Appendage .•)

4. Post BRB to disk I/O queue for read.
<Second element on disk I/O queue,
BRB., is now a request to read first
element,.)

Enter Disk I/O subtask

• Disk I/O routine (write)

1. Convert relative record number to
actual DASD address.

2. Execute EXCP supervisor call.

DIS1\ INTERRUPT

The Disk End Appendage is entered as a
result of a disk operation,.

• Disk End Appendage routine (write)

1. Remove BRB and buffer from disk I/O
queue.

2. Put buffer in MS process queue.
3. Test for more space in MS process

queue. (Assume space.)
4. Set up for disk read,.
5. Post BRB to disk I/O queue. (Continue

to fill up MS process queue .•)

Enter Message Processing task (when Message
Control task enters a WAIT sta tel

1. Issue GET (not first time)

• Get routine

Outline of QTAM Operation 45

read into buffer
Chained to DASD Queue

DASD Process Queue
written on disk rewritten if header Buffer

Queue
~~------------,

Process Queue
moved on GET

work area

Buffer returned on next GET.

Before first GET or MS Process Queue filled.

Chained to DASD and
MS Queue written on disk

DASD Process Queue I----------t
~---

qo.
/.f)(9Q'

""0 1-t.s
Q(,.

After first GET, MS Queue not filled. (9v(9

MS Process
Queue

moved on GET
work area

Figure 19. Queuing in Message Processing

1. Test for message in DASD process
queue.

2. Post preceding buffer to return buffer
queue.

Enter Return Buffer subtask

• Return Buffer routine (not first time)

1. Make BRB eligible for Disk Read.
2. Post (effective.) buffer to available

buffer queue.
3. Branch to Get Scheduler routine.

Note: Get Scheduler, Disk I/O, Disk End
Appendage" and Message Processing are the

46

Buffer returned on next GET.

same as in posting buffer to process queue
after first GET.

Enter Message Processing task

1. Issue PUT macro instruction.

• Put routine

1. Set high priority in BRB in destina­
tion queue in DEB,.

2. Issue an SVC Qpost to post BRB to
active BRB queue.

QCB

for
Ready
Queue

to return
to PUT

I
I

I I

~

QCB

3

for

Active
BRB Queue

Figure 20. Ready Queue to Obtain Message

Enter Active BRB subtask

• Active BRB routine

- 1. Assign empty buffer frorr available
buffer queue.

2. Branch to buffer BRB routine.

• Buffer BRB routine

1. Make BRB into QCB for MS destination
queue.

2. Exit to Put routine

• Return to Put routine (special entry in
supervisory mode)

1. Move message from work area to buffer.
2. Post buffer to MS destination queue.

The STCB for the MS destination queue is
QPRIORTY, which inserts the buffer in the
queue and dispatches the next item on the
ready queue. In Figure 21 the MS destina­
tion queue will be removed and the full
STCB will be dispatched to return to the
Put routine.

BRB

Buffer

• Return to Put routine

1,. Issue an SVC Qwait for new filled
buffer.

2. Issue an SVC Qpost to post the buffer
to DASD destination QCB.

Note: The results of the post to the DASD
destination queue are as explained in the
section on Receiving. The message is now
sent out to the terminal as explained in
the section on Sending .•

CLOSEDOWN

Enter Message Processing Task

1. Issue CLOSEMC macro instruction.

• Close routine

1. Turn off master receive switch by the
move data subtask.. This is to prevent
further receive operations.

2. Issue a STOPLN macro for all active
lines.

outline of QTAM Operation 47

QCB

for Ready Queue

QCB

for MS
Destination Queue

l Buffer

IL-------...I

full STCB

I
I

I I

~

Figure 21. Ready Queue After obtaining
Message

• stop Line routine

1. Issue a Halt I/O for all dial lines or
2740 terminals (basic or with check­
ing) that are not in active
transmission.

2. Issue an SVC Qwait for the LCB. This
wait can be satisfied by
a. End of poll list"
b. Negative response with "send" flag

for the LCE,
c. Completion of current operation"
d. Completion of interval delay"

which will indicate that the line
is free.

3. Return to Close routine.

• Close routine

1. Issue STARTLN macro instruction.

• start Line routine

1. set up SAD/Enable or NOP command,.
2. Issue a SVC Qpost to post LCB to queue

QCB to get in supervisor mode.

48

• Queue routine (in Line Change Routine)

1. EXCP
2,. Dispatch next item on queue. This

should be the full STCB to return to
the Start Line routine, which returns
to the Close routine.

This starts all lines for output only.
The master receive switch keeps the input
lines inactive. The Close routine returns
to the message processing task,.

Return to Message Processing task

1.. Issue CLOSE process queue macro
instruction.

• Enter Close Process Queue routine

1. Remove DEB for each DCB from DEB chain
and TCB chain.

2. Test for general closedown.. (Assume
general closedown.. If not, return.)

3. Issue a STOPLN macro instruction.

• stop Line routine

1. Issue a Halt I/O for all dial lines or
2740 terminals (basic or with check­
ing) that are not in active
transmiss ion .•

2. Issue an SVC Qwait for the LCB.
3.. Return to Close Process Queue routine.

(All process queues have been closed.)

• Return to Close Process Queue routine

4. Post request for message control close
to LPS queue.

Return to Message Control Task

• LPS Control routine

1. Test for request for closedown.
2. Branch to CLOSE macro instructions.

• Close line group routine

1. Free main storage for LCB.
2. Clear DCB pointers.
3. Purge request for I/O on each line.
4. Disable all dial lines.

• Close DASD routine

1. Clear terminal table from the communi­
cations vector table.

2. Post as complete the event control
block to return to the message pro­
c essing task.

The message processing task is now com­
plete and the system does the deal location
to terminate the job.

QTAM OPEN EXECUTORS

OPEN
DASD

'----,-----'

Store Address of
Imp I ementati on
Module in
Terminal Table

Store Address of
IGGOJ9NH in
Implementation
Module

rr __ ~ __ ,L,OAD2

Put Address of
IECKQQOJ in
Implementation
Module

QTAM CLOSE

'-----"--r---'

'---~---'

Empty Buffer
for Receiving

CLOSE
LlNEGROUPS

CLOSE
DASD

Clear Low Order
Bits from TIC
Command in
Previous BRB

r-P-r-ep-a-re-C-C-W-to---' BT AM

Respond to EOB READj
and Read Portion WRITE
Buffer after EO B

~_--L __ --, lOS

MESSAGE CONTROL TASK

Request far
a Closedown

POSTRCV I"T"-:----,,-L--,,
Post Last
Buffer to
DASD Process
or Destination
Queue

(
Return from

__ S_V_C_Pro_st __

t
Post Assigned
but Unused
Buffers to
Available
Buffer Queue

LPS CONTROL

Message-Filled
Buffer

CLEANUP

Figure 22.

OPEN MESSAGE PROCESS QUEUE

Request for
I/O Operation

GET ROUTINE MESSAGE PROCESSING TASK

I
I
I
I
I

PUT ROUTINE

I to MS

-----~------~----
CLOSE ROUTINE

Post Move
to Turn Off
Moster
Receive Switch

CLOSEMC

r-r---"------,nSTO PLN

n---"----n S TARTLN

r-r--...L---,.., Queue

rr---'----n CLO SE

from DEB
Chain and
TCB Chain

PROCESS
DCB

Post Request
for Message
Control to
Close Down

Functional Flowchart of QTAM Components (Part 1 of 2)

outline of QTAM operation 49

RECEIVE SCHEDULER SUBTASK

Post First
BRB to Active
BRB with
High Priority

END OF POLL I
TIME DELAY

I
I
I

I

I
I

I
I
I
I
I
I

---~ SEND SCHEDULER SUBTASK

GET SCHEDULER SUBTASK

Reserve and Record

Location of Direct
Access Space
for Next MSG

DASD DESTINATION

Fi nd a nd Remove
BRB from Active
BRB Element
Chain

ACTIVE BRB SUBTASK

~-----,--T RETURN BUFFER SUBTASK I

GET SCHEDULER

Convert Relative
Record Number

DISK I/O SUBTASK

Assign Buffer
from Available
Buffer Queue
for Disk Read

DISK END APPENDAGE

LINE PCI APPENDAGE

Post Precedi ng
BRB to Active

BRB Queue with
Low Priority

Post a II BRBs
Except First to
Active BRB
Queue High
Priority

-T
I
I

I
I
I
I
I

I
I
I
I

LINE SIO APPENDAGE

Prepare CCW

Access Poll
Characters for
Next Terminal that
Can be Polled

itself giving
Scheduler
Control

LINE END APPENDAGE

Yes

Figure 22. Functional Flowchart of QTAM Components (Part 2 of 2)

Outline of QTAM Operation 51

QTAM uses the services of BTAM to per­
form the read and write operations for the
system. The BTAM module IGG019MA is the
Read/Write routine that QT~l uses under the
name IGG019NZ.

QTAM uses BTAM's Device I/O modules for
every device type. However, QTAM does not
use BTAM's appendages or other routines.
QTAM appendages and routines are located in
module IGG019NG.

QTAM uses BTAM's channel programs for
the operations used by BTAM. The following
channel programs are provided for each com­
munications line type, where applicable:

• Read Initial
• Write Initial
• Read continue
• Write Contiune
• Read Repeat
• Write Conversational
• Write at Line Address
• Write Erase
• Write Negative Acknowledgment

The BRB-Ring routine, LPS Control, Acti­
vate, Line SIO Appendage, and Line End
Appendage routines modify BTAM's channel
programs for QTAM use.

The data event control block required by
BTAM is constructed in the Activate routine
in the Implementation module, and is
labeled LlNEDECB (see Appendix B: system
Control Blocks).

The following sections will explain BTAM
Read/Write routine, BTAM control informa­
tion for channel program generation, and
BTAM channel programs.

BTAM READ/WRITE ROUTINE (IGG019NZ)

The BTAM Read/Write routine is entered
by a branch and link from the Activate rou­
tine in IGG019NG and acts as an interme­
diary between the Activate routine and the
input/output supervisor. Read/Write per­
forms tne following functions.

• Gets the lOB of the LCB from a pointer
in the DCB specified by the Activate
routine.

• Obtains the Device I/O module, com­
putes" if necessary" the area address
and length, and loops on the ccw count
until all CCWs have been moved and com-

BTAM OPERATION WITHIN QTAM

pleted in the channel program area of
the LCB for the line.

• Issues an execute channel program SVC,
passing control to the I/O supervisor
with the address of the lOB as a param­
eter. The I/O supervisor checks access
method and~ upon discovering QTAM,
gives control to QTAM's SIO Appendage
routine.

The CCWs in the Device I/O modules are
complete except for the area address and
count fields. An index in the second and
seventh bytes of the CCW determines which
subroutine is used to complete either the
area address or the count. If an offset to
the normal address is required" this value
already exists in the CCW. The subroutines
for computing the area address are:

INDEX VAllJE

00 TESTLNG - If there is no area address
index byte then Read/Write go directly
to compute the length.

04

08

OC

10

14

DATAREA - The fourth byte of the CCW
is added to the address of the area.
The area address is the DECAREA field
in the DCB for this Read or Write
operation. This subroutine computes
the area address for a Read or Write
Data or Read Response CCW. If there
is a Read Response CCW" then it will
read into the first two bytes of the
area, and the Read Data CCW that fol­
lows will read into the original area
address plus two.

RESPAREA - The address of the response
field in the DCB (DECRESPN) is loaded
into the area field of the ccw to read
the response to addressing or to text.

SPECCHAR - The address of the control
characters are provided for the CCW.
The control characters are defined as
constants at the end of the Device I/O
module. The count is not computed.

LIST - The number of dial characters
is moved to the count field.. The
address of the dial digits is set in
the CCW,. This sets up the field to
dial a terminal on a switch line.

PALIST - The offset in the CCW is
picked up to load the polling or ad­
dressing pointer, if necessary. The
count of characters is added to the

BTAM Operation within QTAM 53

18

1C

20

24

28

54

terminal address. The subroutine
finds the polling or addressing entry
and places the address in the CCW.

TWXIDENT - The number of dial charac­
ters plus one is added to the list
address and then the nurrber of ID
characters is moved into the count
field. The address of the ID charac­
ters is placed in the area address
field of the CCW.

PA1050D - The address of the address­
ing characters in the 1050 Dial list
is placed in the area address field.

DISABLE - The entry is checked to see
if this is an Answer list. If it is
an Answer list, then an Enable CCW is
set up instead of a Dial in the chan­
nel program area.

AUTO POLL - This subroutine builds the
additional CCWs in the channel program
in the Device I/O module. The second
and third CCWs (poll and TIC) are
copied into the channel program as the
fifth and sixth CCws. A TIC CCW,
defined in this subroutine, is moved
into the channel prograrr as the fourth
CCW.

The data address., obtained from the
IOBPOLPT field of the lOB, and the
count are set in the first poll CCW.
The data address, address of first
polling character, and the count are
set in the second poll CCW.

If there was a permanent error~ the
first poll CCW is adjusted to start
polling at the next terminal. If at
the end of the polling list, the first
poll CCW is made the sarre as the
second CCW.

If there is a message to be sent, then
the STCB in the link field of the LCB
requires a channel program that allows
a message to be sent to the end of a
polling list. For this case, the TIC
after the first and second poll CCW
are changed to NOP to prevent con­
tinuous polling.

If the line is in conversational mode"
the "converse mode" flag is turned
off. Also the first poll CCW is
changed to NOP to cause an immediate
interrupt.

WTTASNS - This subroutine builds the
Sense CCW of the Read Initial channel
program for WTTA. The TP Op Code
address of the CCW is placed in the
area address field of the CCW. The
EOT flag in the LCB is reset.

2C

30

34

WTTATIC - This subroutine builds the
transfer address of the TIC CCW. If
ID exchange is requested at the begin­
ning of an outgoing messagew this will
be the address of the third CCW; if
not., this will be the address of the
sixth CCW .•

WTTADID - A number of characters equal
to the terminal ID minus one is moved
into the count field of the CCW,. The
address of the area reserved by the
TERM macro instruction is place in the
area address field of the CCW.

WTTATID - A number of characters equal
to the computer ID is moved into the
count field of the CCW" and the
address of the computer ID is placed
in the area address field of the CCW.
If WRU=YES has been coded in the DCB,
the CC flag of the CCW is set on.

The subroutines for computing the count
field, if not already computed" are:

00 TESTLAST - There is no length to com­
pute; the number of CCWs is checked to
see if they have finished building the
channel program.

04 DATALNG - The length is picked up from
the area length in the DECB for Read
or Write Data CCWs.

BTAM CONTROL INFORMATION FOR CHANNEL
PROGRAM GENERATION

This section describes the form and con­
tent of the channel command word (CCW) of
the channel program generated by the Read/
Write routine.

Channel Command Word

The format of the BTAM channel command
word is as follows:

I Command Code I Data Address

a 78 31

I Flags 000 I TP Op Code Count

32 36 37 39 40 47 48 63

The CCW used within BTAM is identical to
that used throughout System/360 except for
the addition of an operation code (TP Op
Code) in the sixth byte (bits 40 through
47). This byte., which is unused in other
environments., has no effect upon channel
operations. Bit 0 in the byte is set to
one in the last CCW created dynamically for

a channel program,. Bi t 1 is reserved for
use with dynamic buffering. The use of
bits 2 through 7 is described in the sec­
tion on Channel Programs.

DEVICE I/O MODULE: A Device I/O module
contains the control information for the
generation of channel programs for a given
device type. Every device type (e.g." IBM
1050, IBM 1030, 115A, 83B3~ etc.) speci­
fied for a data set opened in a problem
program is represented by a Device I/O
module in main storage.

The Device I/O module has four parts as
shown in Figure 23:

• A 1b-byte table of offsets.
• The offset to the channel command

words.
• A table of special characters.
• The channel command words for the chan­

nel programs.

The 16-byte table of offsets is at the
beginning of the Device I/O module. Each
byte contains the binary offset factor used
to gain access to the model channel program
for an I/O operation. Unused bytes,
reserved for future use, contain an offset
value of all ones (hexadecimal FF). If
access is gained to a reserved byte" con­
trol is immediately returned to the calling
routine with register 15 containing return
a code of 8 to indicate that the requested
operation is not valid for the device type
involved. The sixteenth byte contains the
bffset factor for the table of special
characters.

FF
(Reserved)

4 21
(Write Continue)

27
(Reserved)

FF
(Write at Line Addr)

C

10

15

2C

2E : .

10 15
(Read Initial) (Write Initial)

FF
FF

(Write
(Reserved) Conversational)

2A 2C
(Reserved) (Reserved)

FF FF
(Reserved) (Write Erase)

Read Initial
Channel Program

Write Initial
Channel Program

Write Negative Acknowledge
Channel Program

Channel Command
Words (8 Bytes Each)

Special Characters

1 E
(Read Continue)

24
(Read Repeat)

FF
(Reserved)

2E + n

2E ~ "I
~--~

Figure 23. 1050 Nonswitched Device I/O
Module

An operation type is associated with
each byte in the table of offsets:

Byte
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E

Operation Type
Reserved
Read Initial
Write Initial
Read Continue
write Continue
Reserved
write Conversational
Read Repeat
Reserved
Reserved
Write Negative Acknowledgment
Reserved
Write at Line Address
Reserved
Write Erase

Thus" byte 4 in the table of offsets
contains the appropriate offset value for
any device for which the Write Continue
operation is valid. (Otherwise g byte 4
will contain a hexadecimal FF.)

Note: Although the position of the offset
byte for an operation is fixed, the actual
offset value contained in that byte is not
fixed. The offset value is a function of
the number of bytes occupied by preceding
channel programs. which varies depending on
the device involved.

All offset factors are calculated with
respect to the first byte following the
table of offsets.

Following the table of offsets in the
Device I/O module are the offsets to the
CCW for the channel program for the device;
they are contiguous w beginning immediately
after the sixteenth byte of the table.

Following the last offset to the CCW for
the channel program in the Device I/O
module is the table of special characters
for the device (e.g.~ circle c. circle Ng

etc.). The field contains the actual hexa­
decimal representations of the character
sequence.

Device I/O modules are loaded into main
storage by the QTAM Open routine. The
names of the modules are:

BTAM Operation Within QTAM 55

Device

IBM 1050 (nonswitched)
IBM 1060
IBM 1030
AT&T 83B3
Western Union 115A
IBM 1050 (switched)
TWX 33/35
IBM 2740 (basic)
IBM 2740 (with dial)
IBM 2740 (with transmit control

and checking)

I/O Module

IGG019NY
IGG019NW
IGG019NV
IGG019NU

. IGG019NT
IGG019NX*
IGG019NS*
IGG019NJ
IGG019NK
IGG019NL

IBM 2740 (with dial and transmit IGG019NM
control)

IBM 2740 (with dial and
checking)
IBM 2740 (with station control

and checking)
IBM 2740 (with station control)
IBM 2740 (with checking)
IBM 2260
World Trade Telegraph Adapter

IGG019NN

IGG019NO

IGG019NP
IGG019NQ
IGG019NR
IGG019QA

*This module supports both Auto Call and
Auto Answer facilities.

Device I/O Directory

The format of the Device I/O directory is
as follows:

r--------------- 4 bytes -----------------,
~-------------T---------------------------~
I Device Code I Device I/O Module Address I
~-------------+---------------------------~
I Device Code I Device I/O Module Address I l _____________ ~ ___________________________ J

The Device I/O directory" contained
within module IGG019NZ and initialized by
the Open executor when Device I/O modules
are loaded" contains the address of each
Device I/O module in main storage. The
directory allows up to 21 separate devices.

As each DCB is opened, the Device I/O
module for the corresponding device is
loaded into main storage, unless the
required module is already present. The
address of the module is placed in the
first available directory word, and an
index value, representing the position of
the entry within the directory, is placed
in field DCBDEVTP of the DCB. The index
value for the first directory entry is 0;
for the second~ 1, etc.

~ote: The value contained in DCBDEVTP is
not a fixed code related to a physical
device type.

Before the index value is placed into
DCBDEVTP, the contents of that field are
placed into the first byte of the directory
entry.. This data is a fixed code for each

56

device type. specifying physical device
type and optional features or mode of
operation. This device code is used by the
Open routine in determining whether a given
Device I/O module is in main storage.

BTAM CHANNEL PROGRAMS

This section describes the BTAM channel
programs that are generated by the Read/
write routine, and ·describes the action of
the Read/Write routine during channel pro­
gram operation. Channel programs are
listed by operation types within communica­
tion line types.

Each description begins with a graphic
representation of the model channel pro­
gram., as follows:

1.

2.

3.

Operation - Command code type with
brief description of information being
tr ans f err ed .•

Flags - Flags that are set in the
generated CCW: chain command (CC) "
chain data (CD)1/1 suppress length indi­
cation (SLI). etc.

TP Op Code - Code carried in bits 2
through 7 in the generated CCW through
channel program execution and re­
trieved by the Channel End Appendage
on channe 1 and device end.. Bit 0 is
on (in addition to the TP Op code) in
the last CCW generated in the channel
program. Currently defined TP Op
codes are:

Code
01

02

03

Definition
Disable (only when first ccw of
channel program)

Dial

Enable

Prepare

Write pad characters

Write circle D and three circle
Cs prior to selection

Write EOT sequence prior to
selection

Write circle D and 15 idle
characters (basic 2740)

Write response to text

Write polling or addressing
characters or / space (2740)

Turnaround sequence (TWX)

CPU - 10 sequence (TWX)

04 write space (2740)

05

06

07

08

10

OA

11

20

88

Write code (2260)

Write shift (83B3)

Write one (1030)

Write WRU (WTTA).

Read response to polling

Read response to addressing

Read 10 response (TWX, WTTA)

Write CPU-ID sequence (WTTA).

write EOA character following
addressing (1050, 1030, 2740)"
or
STX (22bO)

Write at line address (2260)

Break sequence (WTTA).

Read index (Auto Poll only)

Read text

write text

Read response to text

Sense for 2740 (basic or with
checking)

4. Count - Data count set in the
generated CCW before execution.
Length refers to the buffer length
(number of bytes) specified by the
Acti vate routine,.

5. Address - Data address set in the
generated CCW before execution.
"Area" refers to the buffer address
specified by the calling program.
"Table" refers to the appropriate
location in the table of special
characters provided in the Device I/O
module. "Respn" refers to the
DECRESPN field in the DECB. "List"
refers to the applicable polling or
addressing list entry.

For a description of the subroutines
that compute the address and count value
for generated CCWs, refer to the section on
Read/Write Subroutines.

CHANNEL PROGRAMS FOR AT&T 83B3 SELECTIVE
CALLING STATION LINES

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect chars Table CD 02 3
(Figs H Ltrs)

2.Write polling chars List CC,SLI 03 2

3. Read response Area CD 05 2

4.Read data Area +2 SLI 11 Length -2

Ini tiated by the Read/Write routine'l th e
Read Initial channel program places the
line in control mode. polls the terminals,
and reads the response to polling. If the
response is positive~ the response will be
read into the first byte of the input area.
The positive response is followed by the
message.. Since the Read Response command
specifies a count of 2 (with no suppressed
length)~ the positive response followed by
the message will reduce the count to zero
and data-chain to the Read will continue to
read the data until the transmission is
ended with an EOT. When a negative
response is received on the Read Response"
only one byte of data (the negative
response) will be read into the message
area and channel end/device end occurs (no
unit exception). With the "wrong length"
flag on and a nonzero data count" there is
no data-chaining to the next Read command.
Instead. QTAM's channel end detects the
polling TP Op code and initializes for the
next terminal to be polled by returning to
lOS for execution of the CCW beginning with
the one containing a 03 TP Op code.

write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect chars Table CD 02 3
(Figs H Ltrs)

2.Write addressing chars List CD 03 2

3.Write Shift chars Table CC,SLI 04 1
(Ltrs)

4. Read response Respn 06 1

5.Write data Area SLI 11 Length

The Write Initial channel program places
the line in control mode (to allow selec­
tion of the terminals) by sending Figs H
Ltrs and addresses the terminal by sending
two addressing characters. The 83B3

BTAM Operation Within QTAM 57

requires a shift character after the
addressing characters. The response is
read.

CHANNEL PROGRAMS FOR WESTERN UNION PLAN
115A OUTSTATIONS

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(Figs H Ltrs)

2. Writepollit'g characters List CC, SLI 03 2

3. Read response Area CD 05 2

4. Read data Area+2 SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine places
the line in control mode by sending the
Figs H Ltrs sequence, polls the terminal
with the two polling characters, and reads
the response.

The Read Response command specified a
data count of 2, with wrong length indica­
tion not suppressed, whereas the length of
the response is one byte. When a positive
response character and the first byte of
the message are read under control of the
Read Response CCW, it reduces the data
count to zero and causes data-chaining to
take place. The rest of the message is
read under control of the address and count
fie'lds of the Read Data CCW. The execution
of the Read continues in the channel until
an interrupt occurs at the end of transmis­
sion. when, on a Read Response, a negative
response (one byte) is received, a channel
end/device end interrupt occurs. There is
no unit exception indication. The data
count of 2 for a one-byte polling response
character signals wrong length, which sup­
presses data-chaining and allows BTAM to
determine that a negative response was
received.

The channel end routine detects the
polling restart TP op code and reinitial­
izes for the next terminal to be polled.
Control is returned to lOS for execution of
the CCWs beginning with the one containing
a 03 TP Op code.

58

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(Figs H Ltrs)

2. Write addressing chars List CC, SLI 03 2

3. Read response Respn 06 1

4. Write data Area SLI 11 l.ength

The Write Initial channel program,
ini tiated by the Read/Write routine,,, places
the line in control mode (which allows it
to be selected) " addresses the terminal"
an? reads the response to addressing.

CHANNEL PROGRAMS FOR IBM 1030 LINES

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect chc.racters Table CD 02 3
(3 circle Cs)

2. Write polling character List CC, SLI 03 1

3. Read response Area CD 05 2

4. Reod data Area+2 SLI 11 Length-2

The Read Initial channel program places
the line in control mode by sending three
circle Cs, polls a terminal with one poll­
ing character, and reads the response to
polling. The Read Response command has a
data count of 2 with no suppressed length.
Thus" when the response (one byte) is read
and it is a positive response, the' response
will be followed by data. This will reduce
the count to zero and cause data-chaining
to read the rest of the data until an EOB
or EOT is received or the count is zero.
If the negative response is received., chan­
nel end/device end interrupt occurs with
unit exception. There was no data-chaining
because of wrong length indication and QTAM
reinitializes to poll the next terminal if
one was specified in the list.

Read Continue Channel Program

Operation Address Flags TP-OP Code Count

1. Write positive response Table CD 01 4
and 3 deselect characters

2. Write 3 circle Cs Table 11 3

The Read continue channel program sends
a positive response to the previous message
block, followed by three circle Cs to put
the terminal in control mode. These are
followed by three additional circle Cs.

Read Repeat Channel Program

Operation Address Flags TP-OP Codes Count

1. Write negative response Table CD 02 4
and 3 deselect characters

2. Write 3 circle Cs Table SLI 01 3

The Read Repeat channel program sends a
negative response followed by three circle
Cs to put the terminal in control mode.
These are followed by three additional
circle Cs.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. (Write 3 circle Cs , Table CD 02 4
circle 5)
Write deselect characters

2. Write addressing List CD 03 1
characters

3. Write "1" Table CC , SLI 04 Table

4. Read addressing response Respn CC 06 1

5. Write circle D Table CD 08

6. Write data Area+1 CC , SLI 11 Length

7. Read response to LRC Respn +1 20 1

The Write Initial channel program sends
out a circle C and a circle S to deselect
the 1030 terminals, transmits a single
addressing character followed by a 1, and
reads the addressing response into the
first byte of the DECRESPN in the DECB.
Because multiple addressing is not possible
with 1030 lines, the Read Response CCW is
command-chained to a Write Circle D CCW to
send a circle D before the message. The
Circle D CCW is data-chained to write the
message. This is followed by a CCW with
read the LRC response.

Write Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Write data Area CC , SLI 11 Length

/

2. Read response to LRC Respn+1 20 1

Initiated by the EOB or EOBLC routine
after a successful Write Initial or Write
continue operation" the Write continue
channel program writes data and then
command-chains to read the response to lon­
gitudinal redundancy checking,. This
response is read into the DECRESPN+l, which
is the second byte of a two-byte response
field in the DECB,.

CHANNEL PROGRAMS FOR IBM 1050 LINES

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2. Write polling characters List CC , SLI 03 2

3. Read response Area CD 05 2

4. R.ead data Area +2 SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine places
the line in control mode, polls a terminal"
and reads the response. (Control mode is
that state of the system that allows a ter­
minal to be selected,.) The third command
(Read Response character) specifies a data
count of 2" with wrong length indication
not suppressed, while the length of the
response character is one byte. Under the
existing configuration of BTAM" the effect
of this technique is as follows:

1. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response CCW. This reduces the
data count to zero and causes data­
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
end of transmission,.

2. Negative response,. This response
causes channel end and device end with
unit exception and wrong length record
indicated. The QTAM Appendages detect
the polling restart TP Op code. reini­
tialize for the next terminal to be
polled, and return control to lOS for
execution of the CCWs beginning with
the one containing a 03 TP Op code.

BTAM Operation Within QTAM 59

Read continue Channel Prograrr,

Operation Address Flags TP-Op Code Count

1. Write response Table CC, SLI 02 1
(circle Y)

2. Read data Area SLI 11 Length

The Read Continue channel program is
initiated by the BOB or EOBLC routine after
a successful Read Initial or Read Continue
operation; the program writes the response
character and command-chains to Read Data.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1. Write negative response Table CC, SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurs during execution of the Read
Data command of a Read Initial or Read Con­
tinue operation. The prograrr transmits a
negative response, and then chains to the
second CCW ~o read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circ Ie Cs)

2. Write addressing chars List CC, SLI 03 2

3. Read response Respn 06 1

4. Write circle D Table CD 08 1

5. Wri te data Area CC, SLI 11 Length

6. Read response to LRC Respn +1 20 1

The write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode, addresses a ter­
minal" and reads the response. Following
the Read Response, a circle D is written to
the terminal and is followed by the data.

60

Write Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Write Data Area CC , SLI 11 Length

2. Read response to LRC Respn +1 20 1

The Write continue channel program is
initiated by the EOB or EOBLC routine after
a successful write Initial or Write Con­
tinue operation; the program writes data
and command-chains to read the response to
longitudinal redundancy checking. The
response is read into DECRESPN+1# the
second byte of the 2-byte response field in
the DECB .•

CHANNEL PROGRAMS FOR IBM 1050 DIAL
(SWITCHED CONNECTION LINES)

Read Initial Channel Program

Operation Address Flags TP-Op Code

1. Disable Zero CC , SLI 01

2. Dial List CC,SLI 01

Enable Zero SLI 01

3. Write pad characters Table CD 01

4. Write deselect characters Table CD 02
(3 circle Cs)

5. Write polling characters List CC , SLI 03

6. Read response Area CD 05

7. Read data Area +2 SLI 11

Count

1

Dial List

1

15

3

2

2

Length-2

The Read Initial channel program
initiated by the Read/Write routine dis­
ables and then enables the line adapter so
that a remote terminal may dial the CPU.

When a terminal dials the CPU_ the
enable is complete" and 15 pad characters
are sent.. These are followed by three
circle Cs to place the terminal in control
mode. The two polling characters are sent.
The sixth command (Read Response character>
specifies a data count of 2, with wrong
length indication not suppressed. while the
length of the response character is one
byte. Under BTAM" the effect of this tech­
nique is as follows:

1.. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response CCW. This reduces the

data count to zero and causes data­
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
end of transmission.

2. Negative response. This response
causes channel end and device end with
unit exception and wrong length record
indicated. The Channel End routine
detects the Read Response to polling
TP Op code, reinitializes for the next
terminal to be polled l, and returns
control to lOS for execution of the
CCws beginning with the one containing
a 03 TP Op code.

Read Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Wri te response Table CC , SLI 02]

(circle Y)

2. Read data Area SLI 11 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial or Read Continue
operation; the program writes the response
character and command-chains to read data.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1. Write negative response Table CC , SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a
transmission error occurred during execu­
tion of the Read Data command of a previous
Read operation. The program transmits a
negative response" and then chains to the
second CCW to read data into the main
storage area originally specified .•

write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Disable Zero CC , SLI 0] 1

2. Dial List CC , SLI 01 List

Enable Zero SLI 01 1

3. Write pad characters Table CD 01 15

4. Wri te deselect characters Table CD 02 3
(3 circle Cs)

5. Write addressing chars List CC , SLI 03 2

6. Read response to address Respn 06]

7. Write end-of-addressing Table CD 08 1

8. Write data Area CC , SLI]] Length

9. Read response to LRC Respn+1 20]

The Write Initial channel program
initiated by the Read/Write routine dis­
ables and dials a terminal. When the
remote terminal answers., the pad characters
and three circle Cs are sent to place the
terminal in cont~l mode. The addressing
characters are sent to address the com­
ponent. This is followed by a circle D and
then the data.

write continue Channel Program

Operation Address Flags TP-Op Code Count

] . Write data Area CC I SLI 11 Length

2. Read response to LRC Respn +] SLI 20 1

After the line connection has previously
been established., the Write continue chan­
nel program is initiated by the EOB or
EOBLC routine; the program writes data and
command-chains to read the response to lon­
gitudinal redundancy checking. The
response is read into DECRESPN+1~ the
second byte of the two-byte response field
in the DECB ..

BTAM Operation Wi thin QTAM 61

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write response and Table CD 02 2
deselect character
(circle D and circle C)

2. Write addressing chars List CC, SLl 03 2

3. Read response Respn 06 2

4. Write circle D Table CD 08 1

5. Write data Area CC, SLl 11 Length

6. Read response Respn + 1 20 1

The channel program transrr:its a circle D
and a circle C with a single CCW. For a
discussion of the channel program see the
Write Initial Channel Program.

Write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code

1. Write circle C Table CC , SLI 01

2. Disable Zero SLI 01

Count

1

1

The Write Negative Acknowledgment chan­
nel program sends a circle C to deselect
the remote terminal and then issues a dis­
able to disconnect the line.

CHANNEL PROGRAMS FOR IBM 1060 LINES

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2. Write polling characters List CC , SLI 03 2

3. Read response Area CD 05 2

4. Read data Area +2 SLI 11 Length-2

The Read Initial channel program places
the line in control mode by sending three
circle Cs, polls a terminal with one poll­
ing character, and reads the response to
polling. The Read Response command has a
data count of 2 with no suppressed length.
Thus, when the response (one byte) is read
and it is a positive response., the response

62

will be followed by data. This will reduce
the count to zero and cause data-chaining
to read the rest of the data until an ECB
or EOT is received or the count is zero.
If the negative response is received" chan­
nel end/device end interrupt occurs with
unit exception. There is no data-chaining
because of wrong length indication and QTAM
reinitializes to poll the next terminal if
one was specified in the list.

Read Continue Channel Program

Operation Address Flags TP-OP Code Count

1. Wri te response and Table CD 02 4
deselect characters
(circle Y and 3
circle Cs)

2. Write 3 circle Cs Table CD 01 3

The Read Continue channel program sends
a positive response to the previous message
block, followed by three circle Cs to put
the terminal in control mode. This is fol­
lowed by three additional circle Cs.

Read Repeat Channel Program

Operation Address Flags TP-OP Code Count

1. Write dese lect characters Table SLI 01 3
(3 circle Cs)

The Read Repeat channel program sends a
negative response and 3 circle Cs are sent
to put the terminal in control mode.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2. Write addressing chars List CC , SLI 03 2

3. Read response Respn 06 1

4. Write circle D Table CD 08 1

5. Write data ' Area CC , SLI 11 Length

6. Read response to LRC Respn + 1 SLI 20 1

The Write Initial channel program~
initiated by the Read/Write routine. places
the line in control mode~ addresses a ter­
minal, and reads the response. Following
the Read Response, a circle D is written to
the terminal and is followed by the data.

CHANNEL PROGRAMS FOR TTY MODELS 33 AND 35
TWX LINES

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Disable Zero CC , SLI 01 1

2. Enable Zero SLI 01 1

3. Write pad characters Table CD 01 15

4. Write identification List CC , SLI 03 List

5. Read data Area SLI 11 Length

The Read Initial channel program,
ini tia ted by the Read/Write routine" dis­
ables the line in case this was not done
previously. The enable latch is set within
the line adapter so that the remote termi­
nal may dial the cpu. After the pad char­
acters have been sent" the fourth command
writes the identification assigned to the
CPU in the polling list for the line. This
is followed by the data transmitted by the
terminal.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Disable Zero CC , SLI 01 1

2. Dial List CC , SLI 01 List

3. Read identification List 07 List

4. Write data Area SLI 11 Length

The Write Initial channel program,
initiated by the Read/Write routine" dis­
ables and dials a terminal and, if the
identification received was valid, writes
the data to the terminal. If the identifi­
cation was invalid, the channel program is
terminated.

After the CPU has read the identifica­
tion sent from the terminal, an interrupt
occurs and the Channel End routine compares
the identification supplied by the user in
the TEru~ macro. If an unequal compare
results, the addressing bit in the error
halfword (bit 12) is set. If an equal
identification is received, it is assumed
the correct terminal has been contacted and
the channel is restarted with the Write
Data command.

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write data Area SLI 11 Length

The write Conversational channel program
is initiated by QTAM after a successful
write Initial operation.

write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code

1. Write circle C Table CC , SLI 01

2. Disable Zero SLI 01

Count

1

1

The Write Negative Acknowledgment chan­
nel program sends a circle C to deselect
the remote terminal and then issues a dis­
able to disconnect the line.

CHANNEL PROGRAMS FOR IBM 2740
COMMUNICATIONS LINES

IBM 2740 BASIC CHANNEL PROGRAMS

Read Initial Channel Program

Operation Address Flags TP-OP Code

1. Write deselect Table CD 02
characters (3 circle Cs)

2. Prepare Zero CC/SLI 01

3. Read data Area SLI 11

Count

3

1

Length

The Read Initial channel program places
the line in control mode by sending three
circle Cs. The Prepare command is sent to
condition the control unit to receive a
message from a terminal. The Prepare com­
mand removes the circle D from the begin­
ning of the message and the count is
reduced to zero, causing command-chaining
to the Read Data command,,, which reads the
message.

BTAM Operation Within QTAM 63

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D and 15 Table CD 02 16
idle characters

2. Write data Area SLI 11 Length

The Write Initial channel program sends
a circle D and 15 idle characters" and
data-chains to the write Data command to
send the message.

IBM 2740 WITH CHECKING

Read Initial Channel Program

Operation Address Flags TP-OP Code Count

1. Write deselect characters Table CC,SLI 02 3
(3 circle Cs)

2. Prepare Zero CC,SLI 01 1

3. Read data Area SLI 11 Length

The Read Initial channel program places
the line in control mode by sending three
circle Cs. The Prepare command conditions
the control unit to receive a message and
then command-chains to the Read command
when a character is received. The circle D
sent by the transmitting terminal is
deleted by the Prepare command.

Read Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Wri te response Table CC , SLI 02 1
(circle Y)

2. Read data Area SLI 11 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial operation; the
program writes the response character and
command-chains to Read Data.

64

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1. Write negative response Table CC , SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a
transmission error occurred during execu­
tion of the Read Data command of a Read
Initial or Read Continue operation,. The
program transmits a negative response, and
then chains to the second CCW to read data
into the main storage area originally
specified.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D and 15 Table CD 02 16
idle characters

2. Wri te data Area CC , SLI 11 Length

3. Read response to Respn +1 20 1
VRC/LRS

The Write Initial channel program sends
the circle D to put the terminal in control
mode and 15 idle characters to allow termi­
nal motors to get up to speed. This write
command data-chains to the Write Data com­
mand, which sends the message and command­
chains to the Read Response command,.

Write continue Channel Program

Operation Address Flags TP-Op Code Count

1. Write data Area CC , SLI 11 Length

2. Read response to Respn +1 20 1
VRC/LRC

The Write Continue channel program will
write the data and then command-chain to
read the response into DECRESPN +1 (VRC/LRC
response field in the DECB).

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D Table CD 02 1

2. Write data Area CC , SLI 11 Length

3. Read response to Respn +1 20 1
VRC/LRC

The Write Conversational channel program
first writes a circle D to put the terminal
in receive mode, and then data-chains to
the next write to send the data. When the
count is zero, this command chains to read
the VRC/LRC response into the response
field of the DECB (DECRESPN+1).

IBM 2740 WITH DIAL

Read Initial Channel Program

Operation Address Flags Tp-Op Code Count

1. Disable Zero CC , SLI 01 1

2. Enable Zero CC , SLI 01 1

3. Prepare Zero CC , SLI 01 1

4. Read data Area SLI 11 Length

Initiated by the Read/Write routine, the
Read Initial channel program disables and
then enables the line to receive a call.
When a call is received, the Enable command
chains to the Write Deselect Characters to
set the terminal in control mode. The Pre­
pare command conditions the control unit to
receive a message. When a character is
received, the count goes to zero and the
Prepare command chains to read the data.
The Prepare command deletes the circle Di,

which is sent by the depression of the BID
key at the transmitting terminal,.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Disable Zero CC , SLI 01 1

2. Dial List+1 CC , SLI 01 List

3. Write pad characters Table CD 01 15

4. Write circle D Table CD 02 1

5. Write data Area SLI 11 Length

Ini tiated by the Read/Write routine,. the
Write Initial channel program disables the
line and command-chains to the Dial command
to dial the terminal specified in the ter­
minal table. After dialing" the channel
program sends 15 pad characters before
data-chaining" when the count is zero" to a
Write Circle D command" which is sent
before the data.

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D Table CD 02 1

2. Write data Area SLI 11 Length

The write Conversational channel program
sends a circle 0, and then data-chains when
the count is zero to a Write Data command
to send the message,.

Write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code

1. Write 3 circle Cs Table CC, SLI 01

2. Disable Zero SLI 01

Count

3

1

To disconnectw the channel program sends
three circle Cs to put the terminal in con­
trol mode and command-chains to disable the
line.

BTAM Operation Within QTAM 65

IBM 2740 WITH DIAL AND CHECKING

Read Initial Channel Program

Operation Address Flags TP-OP Code Count

1. Disable Zero CC/SLI 01 1

2. Enable Zero CC/SLI 01 1

3. Write dese lect characters Table CC/SLI 01 3
(3 circle Cs)

4. Prepare Zero CC/SLI 01 1

5. Read data Area SLI 11 Length

Initiated by the Read/Write routine, the
Read Initial channel program disables and
then enables the line to receive a call.
When a call is received, the Enable command
chains to the Write Deselect Characters
command, which places the line in control
mode and is chained to the Prepare command,
which conditions the control unit to
receive a message. When a character is
received, the count goes to zero and the
Prepare command chains to read the data.
The Prepare command deletes the circle D,
which is sent by the depression of the BID
key at the transmitting terminal.

Read Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Write response Table CC , SLI 02 1
(circle Y)

2. Read data Area SLI 11 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial operation; the
program writes the response character and
command-chains to read data.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1. Write negative response Table CC , SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

66

The Read Repeat channel program is
initiated by the EOBLC routine after a
transmission error occurred during execu­
tion of the Read Data command of a previous
Read operation.. The program transmits a
negati veresponse., and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Disable Zero CC , SLI 01 1

2. Dial List CC , SLI 01 List

3. Write pad characters Table CD 01 15

4. Write circle D Table CD 02 1

5. Write data Area CC , SLI 11 Length

6. Read response to VRC/LRC Respn +1 20 1

Initiated by the Read/Write routine, the
Write Initial channel program disables the
line before dialing the terminal specified
in the terminal table. The 15 pad charac­
ters are sent to allow the terminal motors
to reach the necessary speed before the
message is sent to it. Before the data is
sent" a circle D is sent to the terminal.
After the message is sent the response to
VRC/LRC is read into the response field in
the DECB (DECRESPN+l).

Write Continue Channel Program

Operation Address Flags TP-Op Code Count

1. Write data Area CC , SLI 11 Length

2. Read response to LRC Respn +1 SLI 20 1

After the line connection has previously
been establishedw the Write continue chan­
nel program is initiated by QTAM; the pro­
gram writes data and command-chains to read
the response to longitudinal redundancy
checking.. The response is read into
DECRESPN +1" the second byte of the two­
byte response field in the DECB .•

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D Table CD 02 1

2. Write data Area CC , SLI 11 Length

3. Read response to VRC/LRC Respn +1 20 1

The Write Conversational channel program
sends a circle 0 after the line has pre­
viously been established. The data is sent
and the Write Data command chains to the
Read Response CCW.

Write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code Count

10 Write circle C Table CC , SLI 01 1

2. Disable Zero SLI 01 1

To disconnect, the channel program sends
a circle C to put the terminal in control
mode and command-chains to disable the
line.

IBM 2740 WITH DIAL AND TRANSMIT CONTROL

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

l. Disable Zero CC, SLI 01 1

2. Enable Zero SLI 01 1

3. Write pad characters Table CD 01 15

4. Write selection chars Table CC,SLI 03 2
(/ space)

5. Read response Area CD 05 2

6. Read data Area+2 SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine dis­
ables and sets the enable latch within the
line adapter so that the remote terminal
may dial tne cpu.

After writing 15 pad characters, 3
circle Cs are sent to place the line in
control mode. They are followed by the

selection characters (/ space) to select
the fifth command (Read Response charac­
ter). The Read Response CCW specifies a
data count of 2, with wrong length indica­
tion not suppressed" while the length of
the response character is one byte. Under
BTAM'6 the effect of this technique is as
follows:

1. Positive response. The response
character. a circle 0 caused by the
depression of the transmitting ter­
minal's BID key. and the first byte of
the message are read under control of
the Read Response CCW. This reduces
the data count to zero" and causes
data-chaining to take place. The
second and subsequent bytes of the
message are read under control of the
address and count fields of the Read
Data CCW. Execution continues in the
channel with an interrupt occurring
only at the end of the transmission.

2. Negative response. Only one byte is
received on this response" which
causes channel end and device end with
unit exception and wrong length record
indicated. There is no polling of
components or terminals on the 2740
with dial and transmit control; only
the sending of the selection
characters.

Write Initial Channel Program

Operation Address Flags TP-OP Code Count

1. Disable Zero CC, SLI 01 1

2. Dial list CC,SLI 01 list

3. Wri te pad characters Table CD 01 15

4. Write data Area SLI 11 Length

The Write Initial channel program
initiated by the Read/Write routine dis­
ables and then dials a terminal. After
writing the pad characters, the channel
program sends the data,.

Write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write data Area SLI 11 Length

The Write Conversational channel program
sends a write Data command to send the
message .•

BTAM Operation Within QTAM 67

Write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code

1. Write circle C Table CC , SLI 01

2. Disable Zero SLI 01

Count

1

1

To disconnect, the channel program sends
a circle C to put terminal in control mode
and command-chains to disable the line.

IBM 2740 WITH DIAL, TRANSMIT CONTROL" AND
CHECKING

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1- Disable Zero CC,SLI 01 1

2. Enable Zero SLI 01 1

3. Write pad characters Table CD 01 15

4. Write selection chars Table CC/SLI 03 2

5. Read response Area CD 05 2

6. Read data Area+2 SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine dis­
ables and sets the enable latch within the
line adapter so that the remote terminal
may dial the cpu.

After writing 15 pad characters" 3
circle Cs are sent to place the line in
control mode. They are followed by the
selection characters (/ space) to select
the fifth command (Read Response charac­
ter). The Read Response CCW specifies a
data count of 2, with wrong length indica­
tion not suppressed, while the length of
the response character is one byte.. Under
BTAM, the effect of this technique is as
follows:

1. Positive response. The response
character, a circle D caused by the
depression of the transmitting ter­
minal's BID key, and the first byte of
the message are read under contr.ol of
the Read Response CCW. This reduces
the data count to zero and causes
data-chaining to take place. The
second and subsequent bytes of the
message are read under control of the
address and count fields of the Read

68

Data CCW. Execution continues in the
channel with an interrupt occurring
only at the end of the transmission.

2. Negative response. Only one byte is
received on this response" which
causes channel end and device end with
unit exception and wrong length record
indicated. There is no polling of
components or terminals on the 2740
with dial and transmit control; only
the sending of the selection
characters.

Read Continue Channel Program

Operation Address Flags TP-Op Code Count

1 • Wri te response Table CC , SLI 02 1
(circle Y)

2. Read data Area SLI 11 Length

After the line connection has previously
been established" the Read Continue channel
program is initiated by the problem program
through the Read/Write routine; the program
writes the response character and command­
chains to read data.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1 • Wri te negati ve response Table CC , SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurred during execution of the Read
Data command of a Read Initial or Read Con­
tinue operation. The program transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address Flags TP-OP Code Count

1. Disable Zero CC/SLI 01 1

2. Dial List CC/SLI 01 List

3. Write pad characters Table CD 01 15

4. Write circle D Table CD 08 1

5. Write data Area SLI 11 Length

The Write Initial channel program
initiated by the Read/Write routine dis­
ables and then sets the enable latch within
the line adapter so that the remote termi­
nal may dial the cpu. After writing the
pad characters, a circle D is sent before
the message is sent.

Write Continue Channel Program

Operation Address Flags TP-Op Code Count

1 • Wri te data Area CC , SLI 11 Length

2. Read response to VRC/LRC Respn +1 20 1

The Write Continue channel program will
write the data and then command chain to
read the response into DECRESPN +1 (VRC/
LRC) response field in the DECB.

write Conversational Channel Program

Operation Address Flags TP-Op Code Count

1. Write circle D Table CD 02 1

2. Write data Area CC , SLI 11 Length

3. Read response to Respn +1 20 1
VRC/LRC

The Write Conversational channel program
first writes a circle D to put the terminal
in receive mode, and then data-chains to
the next write to send the data. When the
count is zero, this command chains to read
the VRC/LRC response into the response
field of the DECB (DECRESPN +1).

Write Negative Acknowledgment Channel
Program

Operation Address Flags TP-Op Code

1. Write circle C Table CC , SLI 01

2. Disable Zero SLI 01

Count

1

1

To disconnect, the channel program sends
a circle C to put the terminal in control
mode and command-chains to disable the
line.

IBM 2740 WITH STATION CONTROL

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2. Write polling character List CD 03 1

3. Write space character Table CC , SLI 04 1

4. Read response Area CD 05 2

5. Read data Area +2 SLI 11 Length-2

Initiated by the Read/Write routine n the
Read Initial channel program places the
line in control mode" polls the terminals"
with one character followed by a space
character, and reads the response to poll­
ing. If the response is positive, the
response will be read into the first byte
of the input area. The positive response
is followed by the message.. Since the Read
Response command specifies a count of 2
(with no suppress length), the positive
response followed by the message will
reduce the count to zero" and data-chaining
will occur to continue reading the data
until the transmission is ended with an
EOT. When a negative response is received
on the Read Response~ only one byte of data
(the negative response) will be read into
the message area and channel end/device end
occurs (no unit exception). With the
"wrong length" flag on and a nonzero data
count., there is no data-chaining to the
next Read command. Instead, QTAM channel
end detects the polling TP Op code and
initializes for the next terminal to be
polled by returning to lOS for execution
with a pointer to the write Polling Charac­
ters CCW.

BTAM Operation within QTAM 69

write Initial Channel Program

Operation Address Flags TP-Op Code Count

l. Write deselect characters Table CD 02 4
(3 circle Cs and circle S)

2. Write addressing chars List CD 03 1

3. Write space characters Table CC/SLI 04 1

4. Read response Respn CC 06 1

5. Write data Area 11 Length

The Write Initial channel program places
the terminal in control mode and sends a
circle S to denote that addressing will
follow. The terminal is addressed with a
one-character code followed by a space
character. The response to addressing is
read into the first byte of the response
field in the DECB (DECRESPN). The Read
Response CCW is command-chained to write
the data.

IBM 2740 WITH STATION CONTROL AND CHECKING

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2. Write polling character List CD 03 1

3. Write space character Table CC , SLI 04 1

4. Read response Area CD 05 2

5. Read data Area +2 SLI 11 Length-2

The aead Initial channel program
initiated by the Read/Write routine places
the line in control mode, polls a terminal
with one character followed by a space
character, and reads the response.. (Con­
trol mode is that state of the system that
allows a terminal to be selected.) The
third command (Read Response character)
specifies a data count of 2, with wrong
length indication not suppressed" while the
length of the response character is one
byte. Under the existing configuration of
BTAM, the effect of this technique is as
follows:

1. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response ccw. This reduces the

70

data count to zero and causes data­
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
the end of transmission.

2. Negative response,. This response
causes channel end and device end with
unit exception and wrong length record
indicated,. The Channel End routine
detects the polling restart TP Op
code 6 reinitializes for the next ter­
minal to be polled" and returns con­
trol to lOS for execution of the CCws
beginning with the one containing a 03
TP Op code.

Read Continue Channel Program

Operation Address Flags TP-Op Code Count

1 • Wri te response Table CC , SLI 02 1
(circle Y)

2. Read data Area SLI 11 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial operation; the
program writes the response character and
command-chains to read data.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

1. Wri te negati ve response Table CC , SLI 02 1
(circle N)

2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurs during execution of the Read
Data command of a Read Initial or Read Con­
tinue operation. The program transmits a
negative response. and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 4
(3 circ Ie Cs and circle S)

2. Wri te addressing chars List CD 03 1

3. Wri te space charac ters Table CC, SLI 04 1

4. Read response Respn CC 06 1

5. Write circle D Table CD 08 1

6. Write data Area CC, SLI 11 Length

7. Read response Respn + 1 20 1

The write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode and informs it
that the addressing function will follow by
circle S, addresses a terminal with a one­
character code followed by a space charac­
ter, and reads the response. The status of
the chaining flags for the third command
depends upon the status of the addressing
list. For multiple component addressing"
all specified components must be logically
connected to the line before message trans­
mission occurs. A negative response from
any component terminates the channel pro­
gram and suppresses transmission..

write continue Channel Program

Operation Address Flags TP-Op Code Count

1 • Wri te data Area ec, SLI 11 Length

2. Read response to VRC/LRC Respn +1 20 1

The Write Continue channel program is
initiated by QTAM after a successful Write
Initial operation; the program writes data
and command-chains to read the response to
longitudinal redundancy checking. The
response is read into DECRESPN +1, the
second oyte of the two-byte response field
in the DECB.

CHANNEL PROGRAMS FOR IBM 2848 - 2260 REMOTE
LINES

Specific Poll of a Display Station: On
positive response (STX), chains the Read
Response to read the message. On negative

response (EOT) '11 an interruption occurs,.
QTAM detects the polling restart TP code,
initializes the channel program to poll the
next entry within the list" and returns
control to the supervisor.

Request of a Printer Status: If the
printer is ready and the buffer is empty" a
reservation is set on the printer buffer
that prevents transmission of messages from
the display stations to the printer buffer.
If a message is received indicating these
condi tions" the Read Response chains to the
Read Data CCW. The next EOT resets the
reservation condition.

A negative response is either NAK, which
indicates the printer is not ready" or EOT"
which indicates the printer is ready but
the buffer is not empty. Both negative
responses set the printer request condi­
tion,,, which causes the 2848 Display Control
<DC) " upon receipt of a general poll, to
sense if the printer is in a ready condi­
tion" and if the buffer is empty.

Read Initial Channel Program

Operation Address Flags TP-Op Code Count

1. Write deselect characters Table CD 02 3
(3 circle Cs)

2.Write polling characters List CD 03 2

3.Write READ MI code Table CC, SLI 04 1

4.Read response Area CD 05 2

5.Read data Area +2 SLI 11 Length-2

Initiated by the Read/Write routine" the
Read Initial channel program places the
line in control mode and polls a terminal
with a two-character code. For the 2260
devices '/1 the polling characters specify a
general poll of the DC" a specific poll of
a display station,. or a request of a print­
er status. After the polling characters
are sentw the special READ MI code is sent
to inform the 2848 that the CPU wants a
message,.

General Poll of a DC: The polling list
must specify a general poll" with the
second byte a hexadecimal FF. If the
printer has a status pending as a result of
a previous request (printer status or write
Initial)w this message will be transmitted
and the Read Response CCW will chain to the
Read Data CCW.

If the printer is not ready, the display
stations are scanned for a message. If a
message is pending" it is sent. If there
is no message waiting for transmission, a

BTAM Operation Within QTAM 71

negative response EOT is received. The
channel program is interrupted; QTAM
detects the polling restart TP code,
updates the channel program, and returns
control to the supervisor.

Read continue Channel Program

Operation Address Flags TP-Op Code Count

I.Write ACK Table CC,SLI 02 1

2.Read data Area SLI 11 Length

The Read Continue channel program sends
a positive response ACK and reads the mes­
sage. If the previous operation was a spe­
cific poll of a display station, an EOT
will be returned, which ends the operation.
If the previous operation was a general
poll, a message (if one is sending) will be
received; otherwise an EOT is received.

Read Repeat Channel Program

Operation Address Flags TP-Op Code Count

I.Write NAK Table CC,SLI 02 1

2.Read data Area SLI 11 Length

The rtead Repeat channel program sends a
negative response (NAK) and reads the data.

Write Initial Channel Program

Operation Address Flags TP-Op Code Count

I.Write deselect characters Table CD 02 3
(3 circle Cs)

2. Wri te addressi ng chars List CD 03 2

3.Write WRITE code Table CC,SLI 04 1

4.Read response Respn CC 06 1

5.Write STX Table CD 08 1

6. Wri te data Area CC,SLI 11 Length

7 .Read response to Text Respn +1 20 1

The write Initial channel program is for
either the printer or the display station.
The channel program places the line in con­
trol mode, sends the addressing characters"
and sends the WRITE code. If a printer is
addressed, the Read Response CCW reads the
addressing sequence response. If either an
EOT or an NAK (negative responses) is

72

received" there is an interrupt. The EOT
indicates the printer is not ready" and the
NAK indicates the printer is ready but the
buffer is not empty. Either of these sets
is a printer request,.

If the response is positive (ACK), which
indicates that the printer is ready and the
buffer is empty, the Read Response CCW
comman~-chains to send the STX (Start of
text character) and then sends the data.
If a transmission error occurs., the opera­
tion is stopped and the printer buffer is
cleared.

If a display station is addressed, the
Read Response CCW reads the addressing
sequence response, which is normally posi­
tive (ACK) and chains to read the data. If
a transmission error occurs" the EOBLC rou­
tine will retry transmission three times
before setting the error bit in the error
halfword.

Write Continue Channel Program

Operation Address Flags TP-OP Code Count

1. Write STX Table CC, SLI 08 1

2. Write data Area CC, SLI 11 Length

3. Read response to test Respn + 1 20 1

The Write continue channel program
writes the STX character and the data. The
Write Data command is chained to the Read
Response command, which reads the response
into the second byte of the DECB response
field.

Write Erase Channel Program

Operation Address Flags TP-Op Code Count

I.Write deselect characters Table CD 02 3
(3 circle Cs)

2.Write addressing chars List CD 03 2

3.Write ERASE Code Table CC,SLI 04 1

4. Read response Respn CC 06 1

5.Write STX Table CD 08 1

6. Wri te data Area CC,SLI 11 Length

7.Read response to text Respn +1 20 1

The Write Erase channel program places
the line in control mode~ addresses a ter­
minal with the two-character code" and
sends the special code ERASE. This opera-

-tion is to erase the CRT and any message on

the display screen starting in the upper
left-hand corner. The response to address­
ing is read in the first byte of the
response field in the DECB (DECRESPN). If
a negative response is received, the chan­
nel program is terminated.

If a positive response is received, the
Read Response is chained to the write STX
character followed by data. The response
to text is read into the second byte of the
DECB response field.

write at Line Address Channel Program

Operation Address Flags TP-Op Code Count

1.Write deselect characters Table CD 02 3
(3 circle Cs)

2.Write addressing chars List CD 03 2

3.Write WRITE LINE code Table CC,SLI 04 1

4.Read response Respn CC 06 1

5.Write STX Table CD 08 1

6 • Wri te data Area CC,SLI 11 Length

7.Read response to text Respn +1 20 1

The Write at Line Address channel pro­
gram places the line in control mode,.
addresses a terminal with a two-character
code, and sends the WRITE LINE code to in­
dicate the operation to the 2848,. The
response to addressing is read. If it is
positive, the Read Response chains to write
the STX character and the data. If the
response is negative, the channel program
is terminated. The cursor is positioned on
a specified line and the characters are
displayed from that point. The response is
read into the second byte of the response
field in the DECB. If a transmission error
occurs, the EOBLC routine will retry three
times before setting the error indication
in the error halfword.

CHANNEL PROGRAMS EMPLOYING THE AUTO POLL
FEATURE

The QTAM Device I/O modules incorporated
for each of the terminals supported by OS
QTAM with Auto Poll are the following:

IGG019N3 IBM 1030

IGG019Nl IBM 1050 (nonswitched)

IGG019N2 IBM lObO

IGG019N9 IBM 2740 (with station control)

IGG019N8 IBM 2740 (with station control
and checking)

The Device I/O modules are essentially
the same for Auto Poll as for the other
terminal types except for the Read Initial
operation for the 2740'6 which deletes the
write space character.

After the Read/Write module (IGG019NZ)
has built the channel program, the Read
Ini tial channel program,. independent of
terminal type" is in the following form:

Operation Address Flags
TP-op

Count
Code

1. Write EOT sequence Table CC,SLI 02 3

2. Poll List CC,SLI 03 k{n) *

3. TIC 2nd Poll SLI 09 1
Command

4. TIC Read Response
Command

5. Poll First entry CC,SLI 03 k{n) *
in List

6. TIC 2nd Poll SLI 09 1
Command

7. Read Response Area CD OA 2

8. Read Data Area + 2 CC,SLI,PCI 11 length -2

*k 2 for IBM 1030 8 3 for other devices
n total number of entries in the poll­

ing list,.

Where,. on a Read Initial command. the CCWs
(1-8) have the following effect:

1. EOT sequence of three circle Cs in
line code.

2. Polls the terminal with polling
character,.

3. On a negative response to polling at
the end of the list, this TIC will be
executed to start the second Poll
command.

4. On a positive response to polling_
this TIC command will be executed to
start the Read Response command.

5. If either Poll canmand terminates with
negative response at the end of the
list,. this Poll command will restart
polling at the beginning of the list.

6. On a negative response to polling at
the end of the list g this TIC command
will be executed to restart the second
Poll command.

7. On a positive response to pollingl6
this command will read the list entry

BTAM Operation Within QTAM 73

index byte and the first byte of· text
into the message area and then chain
to 8.

8. This command causes the remainder of
the text to be read into the message
area.

CHANNEL PROGRAMS FOR WORLD TRADE TELEGRAPH
ADAPTER

The channel programs for terminal-to-CPU
transmission (Read Initia.1 and Read Con­
tinue) and for CPU-to-terminal transmission
(Write Initial) are made up of two parts:

• The first part (identification exchange
channel program) is a channel subpro­
gram automatically associated with the
second part. On request, it performs
identification exchanges at any time
during message transmission.

• The second part (Read or Write channel
program) is set up to receive input
messages or to send output messages.

Read Initial Channel Program

r-------------T-----T------T-----T--------,
I Operation IAd- IFlags ITP OplC6unt I
I I dress I ICode I I
~-------------+-----+------+-----+--------~
1. write CPU- List CD SLI 07 n I

ID se-
quence
(Note 2)

2. write (see WRU
Note 1)

CC SLI 04 1

I
I
I
I
I
I
I

3. Read ter­
minal-IO
(Note 3)

List SLI 07 Length-ll
I
I
I

14. Prepare 0 CC SLI 01 1 I
I I
15. Sense TP OplCC SLI FF 1 I
I IArea I I
I I I I
16. Read IArea I SLI 11 Length I l _____________ L _____ ~ ______ L _____ L ________ J

The Read Initial channel program is
started by the Read/Write routine at the
fourth CCW.

The Prepare command prepares the control
unit to receive a message and, when a
character is received, command-chains to
the Sense command and to the Read command.
When the Sense command is executed, the TP
Op code of the Sense overlaid by the adapt­
er sense byte (which is never x' FF')., the
contents of the Sense command TP Op code
indicates when data is to be received •

• 74

Read Continue Channel Program

r-------------T-----T------T-----T--------,
I Operation I Ad-]Flags ITP OplCount I
I J dress 1 I Code I I
~-------------t-----t------+-----+--------~
11. Write CPU-]List ICD SLI 07 n I
I 10 se- I ~ I
I quence I ~ I
I (Note 2) I ~ I
I I ~ I
~ 2. Wri te (see l WRU ~ CC SL I 04 1 I
l Note 1) I 1 I
l I I I
13. Read ter- !List 1 SLI 07 Length-it
] minal-ID 1 1 I
] (Note 3) ~ 1 I
f 1 I I
~ 4.. Read ~ Area I SLI 11 Length I l _____________ L _____ L ______ L _____ ~ ________ J

The Read Continue channel program is
initiated by:

• Tha EOB routine when a WRU signal has
been received. The channel program
started at the first CCW performs an 10
exchange,,, and then the fourth CCw reads
the remaining data into the main
storage area originally specified.

• The Activate routine when the last mes­
sage received was ended by EOMi the
channel program is started at the
fourth CCW,.

Write I.nitial Channel Program

r-------------T-----T------T-----T--------,
I Operation lAd- IFlags ITP OplCount I
~ 1 dressJ I Code I I
~-------------+-----+------+-----+--------~
11. Write ~Table~CD SLI 04 I l+m
l ~ ~ I (Note)
J ~'~ I
]2. Write ITable]CD SLI 01 I 12
] .J ~ I
13 • TIC 1 1 I
] ~ 1 I
] 4. Write CPU- J List 'J CD SLI 07 I n
l ID se- 1 1 I
I quence 1 ~ I
] (Note 2) l J I
I ~ ~ I
~5. write (seelWRU ~CC SLI 04 I 1
1 Note 1) l J I
~ J ~ I
J6. Read ter- lList ~ SLI 07 I Length-lI
1 minal-ID 1 ~ I I
J (Note 3) J ~ I I
J] 1 I I
J 7. Write J Area 1 SLI 11 I Length I L _____________ ~ _____ ~ ______ L _____ L ________ J

Note: m is the number of mark characters
specified by the user.

The Write Initial channel program is
started by the Read/Wr ite routine" and the
CCws have the following effect:

1. Twelve letters shift characters are
sent at the beginning of the output
message.

2. The transfer address in the TIC CCW is
that of the third or of the sixth CCW,
depending on whether the WRU macro
instruction is present in the Send
Header subgroup of the LPS.

Notes

1. When the Automatic Answerback Unit
feature is installed on the terminal,

the CPU sends the WRU signal to the
terminal~ which then sends its identi­
fication sequence to the CPU.

2. The computer identification (CPU ID)
defined in the POLL macro instruction
associated with the line is sent to
the terminal.

3. The terminal identification is read
into the area reserved by the TERM
macro instruction associated with the
line.

BTAM Operation Within 'QTAM 75.'

MESSAGE CONTROL PROGRAM (LPS) ROUTINES

This section summarizes the operation of
each of the LPS routines from which the
user selects those required for his partic­
ular message control functions. The rou­
tines selected form collectively the Line
Procedure Specification (LPS) section of
the message control program. Each LPS rou­
tine is contained within a module; each
module contains a single routine,.

The majority of the LPS routines corre­
spond to LPS macro instructions, and are
linkage edited into the Message Control
Program Load module because of the inclu­
sion of the macro instructions in the mes­
sage control source program. They are
entered upon execution through linkages
generated in the macro expansions.

The remaining LPS routines are general
routines; each of these is linkage edited
into the Message Control Program Load
module oecause of a linkage generated in
any of several LPS macro instructions.

Each of the following LPS routine
descriptions provides:

• Name of the routine.

• Name of the module that contains the
routine.

• Function of the routine.

• Entry point and linkage information.

• Names of external routines used.

BREAKOFF ROUTINE (CHART BY)

Function: This routine causes a message to
be terminated and an error bit to be set,
if the incoming message exceeds maximum
length" or if the characters in the buffers
are identical (usually an indication of
terminal or line malfunction). If the
characters are identical, the routine skips
the length comparison and sets up for an
error. If the characters are not identi­
cal, the routine adds the previous count of
characters in LCBERCCW+6 field of the LCB
to the length of the current message, and
restores the LCBERCCW+6.

The Breakoff routine obtains the speci­
fied maximum length of a message passed by
register 14. If the specified length is
greater than zero, the accumulated length
is compared with the maximum length speci­
fied; otherwise, the length comparison is

76

bypassed. If the accumulated length is
greater than the maximum length, the rou­
tine sets up for an error by turning off
the "receive" bit in the LCBSTATE field of
the LCB: this keeps buffers from being
assigned, which causes a program check. If
the accumulated length is less than or
equal to the maximum length~ it tests for
end of message. If it is not the end of
message" the routine returns to the next
LPS instruction; otherwise" it tests for
program check. Breakoff characters are not
written until end of message., and a program
check indicates Breakoff characters are to
be written. If there is no program check r,

return is made to the next LPS instruction.
If there is a program check as a result of
no buffer assignment," the Read Initial
operation code is cleared" the "breakoff"
bit in the error halfword is set," and
LCBTRST field of the LCB is set to the EOB
of the text segment. The address of the
CCW with a BREAK command code is moved into
LCBSTART field of the LCB. The channel
program is executed to write the control
characters necessary for the breakoff. The
Breakoff routine branches to the LPS con­
trol to wait for the breakoff.

Module Name: IECKBRKF

Entry Point: Expansion of the BREAKOFF
macro instruction generates a BALR to the
routine at IECKBRKF" using register 15 as
the branch register and register 14 as the
return register. Register 14 also serves
as a parameter register,. The parameter
list passed to the routine consists of the
maximum length of a message.

External Routines Used: EXCP (SVC 0)

CANCEL MESSAGE ROUTINE (CHART CL)

Function: This routine causes the message
to be cancelled when any of the error con­
ditions specified by the error mask is
indicated in the error halfword" or when
the error mask is zero. If the error mask
is not zero, and none of the error condi­
tions specified by the error mask is indi­
cated in the error halfword, return is made
to the next LPS instruction. If the error
mask is zero or the specified errors are
detected" and if the destination code has
not been specified in the error mask, or no
destination code error is set in the error
halfword_ linkage is made to the Recall
routine to obtain the header. When the
header is available" the "cancel" bit is
set on in the MSTATUS field of the header

prefix. When any of the error conditions
specified by the error mask is indicated in
the error halfword, or when the error mask
is zero, the previous sequence number is
stored in the TSEQUIN field of the terminal
table unless it is equal to zero. Zeros
are moved into the LCBMPLRT byte and
LCBDLPTR of the LCB to cancel the multiple
route option and distribution list, and the
conversational mode bit in the LCB is
cleared before returning to the next LPS
instruction.

Module Name: IECKCNCL

Entry Point: Expansion of the CANCELM
macro instruction generates a BALR to the
routine at IECKCNCL, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of the error mask in hexadecimal
notation.

External Routines Used: Recall (IECKRC in
module IGG019NG)

Check I/O has been deleted in QTAM.

DATE STAMP ROUTINE (CHART CH)

Function: This routine obtains the current
date in packed decimal form (via a TIME
macro), unpacks the date, and inserts it in
the message header in the format byy.ddd,
where b = blank, yy = year, and ddd = day
of the year. Prior to inserting the date"
the Date Stamp routine links to the Expand
routine (which "expands" the header by
shifting, seven places to the left" all
message characters from the end of the pre­
fix plus seven, up to and including the
character pointed to by the scan pointer).
The date is then inserted in the field
created. The scan pointer points to the
last character in the date.

Module Name: IECKDATE

Entry Point: Expansion of the DATESTMP
macro instruction generates a BALR to the
routine at IECKDATE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as the parameter list register. The
parameter list passed to the routine con­
sists of a halfword containing, in binary
form, the length (7) of the date field to
be inserted in the message header.

External Routines Used: Expand (module
IECKEXPD)

DISTRIBUTION LIST ROUTINE (CHART DB)

Function: This routine stores the destina­
tion key in the LCBDLPTR field of the LCB.
The address of the terminal list is
obtained from the terminal table. If there
is an entry in the list" the address of the
QCB for the destination is put in the
LCBDESTQ field of the LCB. If there is no
entry in the list or after the address of
the QCB has been stored in the LCBDESTQ,
the destination key is stored in the TTDKEY
field of the prefix. The address of the
QCB is moved into the RECB section of the
buffer. If the Distribution List routine
was previously entered" it branches to the
Priority subroutine in IECKQQ01. If the
Distribution List routine has not been
entered previouslyo it branches to the
Endinsrt (End Insert) routine. The
Endinsrt routine places the address of a
special entry point in the Distribution
List routine, which the Cleanup routine
will process in a chain according to the
priori ty specified.. Endinsrt replaces the
second operand of the BAL instruction to
the Endinsrt routine with the address of
the Priority subroutine. Endinsrt returns
via the return register minus four. which
returns to the same BAL instruction. This
time the BAL instruction branches to the
Priority subroutine.

The code is entered from the Cleanup
routine by a branch to a routine in the
chain. If there is no entry in the list"
the routine branches to the next routine in
the chain. If there is an entry in the
list. the address of the header is saved
for the next destination. The destination
key of the next entry is stored in the
LCBDLPTR field of the LCB. If there is an
entry in the terminal table" the address of
the QCB is placed in the LCBDESTQ field of
the LCB. The routine links to the Recall
routine to obtain the headero Upon return,
the destination is stored in the TTDKEY
field of the prefix. When there are more
destinations to be satisfied. return is
made to the start of the Cleanup routine,.

Module Name: IECKDLQT

Entry Point: The routine is entered from
the module IECKQQ01.

External Routines Used:

• End Insert (Endinsrt in module
IGG019NG)

• Priority (in module IECKQQ01)

• Recall (IECKRC in module IGG019NG)

Message Control Program (LPS) Routines 77

END OF ADDRESS ROUTINE (CHART DC)

Function: The EOA macro expansion branches
to the Message Type routine, which branches
to the End of Address routine if the EOA
character is not found by the Scan routine.
The End of Address routine computes and
saves the offset of the destination in the
header from the start of the header. If
this is the first time the EOA macro
appears in the LPS, the routine branches
and links (BAL) to the Endinsrt (End
Insert) routine. The Endinsrt routine
places the address of a special entry point
in the Bnd of Address routine" which the
Cleanup routine will process in a chain
according to the priority specified by a DC
in the routine. Endinsrt replaces the
second operand of the BAL instruction to
Endinsrt with the address of the Skip
Character Set routine. Endinsrt returns
via the return register minus four" which
returns to the same BAL instruction. This
time the BAL instruction branches to the
Skip routine.

If the EOA macro has been entered
before" the routine branches immediately to
the Skip routine because the code has
already been inserted in the chain. The
Skip Character Set routine advances the
scan pointer past the specified EOA
character and returns to the code generated
by the macro. If the EOA character speci­
fied in the macro is found by the Scan rou­
tine through the use of Message Type rou­
tine, return is made to the code generated
by the BOA macro, which tests to determine
if the header is being copied. If the
header is being copied" a branch is made to
the ENDRCV macro expansion, which branches
to the Cleanup routine. If no header is
being copied, return is made to the next
LPS instruction.

The Bnd of Address routine is entered at
the special entry point from the Cleanup
routine by a branch to the next routine in
the chain. The routine tests for multiple
routing. If there is no multiple routing
indicated in the LCBMPLRT field of the LCB,
the routine returns to the Cleanup routine,
which links to the next routine in the
chain. If there is another destination"
the routine links to the Recall routine to
obtain the header from the disk. Multiple
routing is set up by clearing the error
indication in the LCBERRST field" the dis­
tribution list pointer in the LCBDLPTR
field, and the multiple routine indicator
in the LCBMPLRT field in the LCB. The scan
pointer is reset to the offset of the next
destination from the end of the prefix,.
The routine branches to the Route routine,
which handles the next destination code and
returns to the first instruction in the EOA
macro expansion. The End of Address rou-

78

tine is repeated until all destination
codes in the header have been handled.

Module Name: IECKEOAD

Entry Point: Expansion of the EOA macro
instruction generates a BALR to the Message
Type routine at IECKTYPK, using register 15
as the branch address register and register
14 as the return register. Register 14
also serves as a parameter list register.
The parameter passed to the routine con­
sists of the field size and the EOA
character speci~ied in the macro. The
parameter register 1 contains the address
of the End of Address rout ine,.

External Routines Used:

• Skip Character Set (module IECKSKPS)

• End Insert (Endinsrt in module
IGG019NG)

• Recall (IECKRC in module IGG019NG)

• Route (module IECKROUT)

END OF BLOCK ROUTINE (CHART CY)

Function: The function of this routine
depends on whether it is entered from the
EOB macro expansion or from the ENDRCV
macro expans ion.

1. When this routine is entered from the
EOB macro expansion, and if the mes­
sage has been cancelledw an error mes­
sage has been sent, or the message has
been rerouted'lI this macro is not
executed and return is made to the
next LPS instruction. Similarly, if
the status byte of the CSW indicates
either an end of transmission,. a unit
exception,,, or a res idual count of zero
in the CSW, return is made to the next
LPS instruction. The end-of-block bit
in the prefix is set because there was
a positive indication that the message
was correctly transmitted. In setting
up for transmission of the next mes­
sage" the scan pointer is adjusted to
segment size and is stored in the
header prefix. The LCBTRST halfword
is updated by storing the segment size
in this field,.

If the transmission was a Write
operation" a check is made for 1030 or
1060. If a 1030 or 1060# return is
made to the next LPS instruction.
Otherwise~ the 9peration code is set
for write Continue,. If the transmis­
sion was a Read# the operation code
for Read Continue is set in the
LCBCECB field of the LCB. For both
operations" the buffer is set to be

reused. The End of Block routine
branches to the Activate routine.
Return is made from the Activate
routine.

2. When this routine is entered from the
ENDRCV macro expansion, it tests the
WRu flag in the LCB. If this flag is
not set, return is made to the next
LPS instruction. If the WRU flag is
set, this indicates that the last
character received is WRU. In this
case~ an identification exchange must
be performed. The EOB bit in the buf­
fer prefix is set" and the buffer is
set to be reused. The Read continue
indicator is set in the LCBECB field
of the LCB. The End of Block routine
exits to the phys ical I/O routine.,
which generates and initiates execu­
tion of the appropriate channel pro­
gram. This channel program performs
an identification exchange and reads
the rest of the input message, pro­
vided EOM is different from WRU.

Module Name: IECKEOBK

Entry Point: Expansion of the EOB macro 'I instruction or of the ENDRCV macro instruc­
tion Cif this is an LPS for a WTTA line)
generates a BALR to the routine at IEC­
KEOBK'I using register 15 as the branch
address register and register 14 as the
return register.

External Routines Used: Activate (IECKACT
in module IGG019NG)

END OF BLOCK AND LINE CORRECTION ROUTINE
(CHART CZ)

Function: For the following conditions the
retry counter and error flag in the LCB are
cleared and return is made to the next LPS
instruction.

1. A message has been cancelled.
2. An error message has been sent .•
3. The message has been rerouted.
4. Transmission has failed three times

and an EO,T has been received.
5. Transmission has failed and there is a

time-out or intervention required.
6. An EOT was received or other errors

occurred .•

I f there was a transmission error., but
not one of the above, the "transmission
error" and "time-out" bits are set to zero
in the error halfword unless the permanent
error flag was set in the LCBERCCW field of
the LCB. The routine branches and links to
the Hecall routine to obtain the header.
If the line is sending, Write Continue is
set in the LCBCECB field of·the LCB. If
the device is an IBr·l 1030 or IBM 1060, the

Write Initial operation code is set in the
LCBCECB field of the LCB,. Return is made
to the start of the LPS for another try at
transmission.

If the line is not sending~ action is
taken to retry receiving the message.. If
an EOB is present in the header segment"
the entire message is cancelled and a new
buffer is set up. If no EOB is present in
any buffer position other than the last
position'lI the cancel bit of the MSTATUS
field is set,. If the sequence number is
not zerou the last sequence number in the
terminal table is stored in the TSEQUIN
field of the terminal table. Linkage is
made to the Recall routine to obtain the
header. The scan pointer and the LCBTRST
field of the LCB are updated. An end of
address (EOA) character is set up" and the
header is filled with idle characters in
the space reserved for time'll date" or
sequence number. (The EOA and idles are
not set for an IBM 2260 device.) The dis­
tribution list and multiple route indica­
tors are cleared~ and error flags are reset
to zero. For all receiving messages" the
end of message is set in the MSTATUS field
of the prefix, and the transmission operand
for the retry is set in the LCBCECB field
of the LCB. The buffer size is stored in
the MSEGSZE field of the prefix to indicate
the message size. The LCBCLCCW field of
the LCB is set to reuse the buffer. A
branch is made to the Activate routine.

If there were no transmission errors or
an EOT had not been received g tests are
made on the CSW. If the status byte of the
CSW indicates either an end of transmission
or a residual count of zero. the retry
counter and error flag in the LCB are
cleared and return is made to the next LPS
instruction,. The end of block bit in the
prefix is set" because there was a positive
indication that the message was correctly
transmitted. In setting up for transmis­
sion of the next messageg the scan pointer
is adjusted to segment size and is stored
in the header prefix. The current segment
is set as the last correctly transmitted
message in the LCBRCADD field of the LCB.
The LCBTRST halfword is updated by storing
the segment size in this field. If the
transmission was a write operation" a Write
Continue is set in the LCBCECB field of the
LCB. If an IBM 1030 or IBM 1060 was the
transmitting terminal, there is no further
execution of this routine; the retry count­
er and error flag are cleared before
returning to the next LPS instruction. For
a Read operation 6 the Read Continue opera­
tion code is set in the LCBCECB field of
the LCB. For both operations" the buffer
is set to be reused. The routine branches
to the Activate routine. Return is made
from the Activate routine.

Message Control Program (LPS) Routines 79

Module Name: IECKEOBC

Entry Point: Expansion of the EOBLC macro
instruction generates a BALR to the routine
at IECKBOBC, using register 15 as the
branch address register and register 14 as
the return register.

External Routines Used:

• Activate (IECKACT in module IGG019NG)
• Recall (IECKRC in module IGG019NG)

ERROR MESSAGE ROUTINE (CHART CQ)

Function: This routine causes a user­
written error message to be sent to a
designated terminal when any of the error
conditions specified in the error mask is
indicated in the error halfword" or when
the error mask is zero. If the error mask
is not zero and none of the error condi­
tions specified by the error mask is indi­
cated in the error halfword, return is made
to the next LPS instruction. If there has
been a sequence number error, the last
valid sequence-in number is obtained from
the terminal table. The error text is
scanned for a dollar sign ($). If a $ is
found, the sequence-in number is inserted"
in decimal form, in the error text. Upon
encountering a second $, the specified
sequence number, obtained from the header
prefix, is inserted in decimal form in the
error text.

When an error condition is encountered,.
linkage is made to the Recall routine (in
module IGG019NG) to obtain the header,. A
test is made for the option of including
the header of the message in the error mes­
sage. If the header is not to be included"
the scan pointer is reset to the beginning
of the header of the message in error. The
specified error message then overlays the
header. If the header is included, the
pointer remains positioned at the end of
the header. The buffer is loaded with the
error text. If the error message exceeds
the space in the buffer, the text is trun­
cated. The size of the message is stored
in MSEGSZE field~ and single segment is
indicated in MSTATUS field of the prefix.
Linkage is made to the Lookup rout ine,
which looks up the destination code in the
terminal table and places the relative
address in the TTDKEY field of the header
prefix for the error message to be sent.
Return to the next LPS instruction is made
by the Lookup routine,.

Module Name: IECKERMG

Entry Point: Expansion of the ERRMSG macro
instruction generates a BALR to the routine
at IECKERMG, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also

80

serves as a parameter list register. The
parameter list passed to the routine con­
sists of the error mask in hexadecimal
notation. Register 0 contains the length
of the error message (0 if an address is
specified). The address of the destination
terminal is contained in register 2; the
address of the error message is in
register 1.

External Routines Used:

• Recall (IECKRC in module IGG019NG)
• Lookup (module IECKLKUP)

EXPAND ROUTINE (CHART CU)

Function: If the scan pointer is pointing
to a blank character~ the pointer is
shifted. back one position. The number of
characters to be shifted is computed by
subtracting the end of 'the prefix and the
number of spaces to be expanded from the
value in the scan pointer. If the result
is negative" return is made to the next LPS
instruction because there is no space for
the shift. If there is sufficient space,.
the characters are moved to the left the
number of spaces indicated. After the
characters of the header have been shifted,
a blank is inserted as a left delimiter at
the start of the field. The scan pointer
for the next destination is shifted to the
left the length of the new field. If an
EOA has not been reached~ the scan pointer
is stored in LCBMPLRT of the prefix.
Return is made to the calling routine.

Module Name: IECKEXPD

Entry Point: The routine is entered via a
BALR from SEQOUT" TIMESTMP" or DATESTMP;
register 15 is the branch address register
and register 3 is the return register. The
address of the parameter list is passed to
the routine in register 14,. The parameter
list contains the number of spaces the
header is to be expanded.

External Routines Used: None

INTERCEPT ROUTINE (CHART CT)

Function: This routine causes suppression
of all message transmission to a terminal
when any of the error conditions specified
by the error mask is indicated in the error
halfword,. or when the error mask is speci­
fied as zero. If the error mask is not
zero" and none of the error conditions
specified by the error mask is indicated in
the error halfword,. return is made to the
next LPS instruction. The routine makes
linkage to the Recall routine to recall the
header. The "serviced" bit is turned off
and the "priority" bit is turned on in the
prefix so that a new sequence number is not

assigned. The "send" bit of the TSTATUS
byte of the terminal table for that entry
is turned off to indicate that messages on
the queue for the destination were withheld
from transmission. If the "intercept" bit
in the TSTATUS byte is on, indicatin'g that
a previous message is in the INTERCPT
field, and if the header address is greater
than the address in the INTERCPT field,
return is made to the next LPS instruction.
If the header address is less than the
address in the INTERCPT field" and if the
"intercept" bit in the TSTATUS byte is off"
the "intercept" bit is set to one" to indi­
cate that a message on the queue was not
transmitted" and the header address is put
into the INTERCPT field in the user area of
the terminal table entry. The offset to
the INTERCPT field in the terminal table is
obtained and saved in LPSTART for the
Release Intercepted Message routine.
Return is made to the next LPS instruction.

Module Name: IECKI'I'CP

Entry Point: Expansion of the INTERCPT
macro instruction generates a BALR to the
routine at IECKITCP, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of the address of the error mask in
hexadecimal notation for the communication
line. The parameter register 1 contains
the address of the INTERCPT field in the
terminal table.

External Routines Used: Recall (IECKRC in
module IGG019NG)

LOOKUP ROUTINE (CHART CO)

FGnction: This routine obtains, in succes­
sion, the destination name contained in
each terminal table entry and compares it
with the destination name provided in a
work area. Each time a no-compare results,
the process is repeated with the destina­
tion name from the next terminal table
entry. When a match results, the routine
obtains, from the terminal table entry, the
address of the queue control block for the
destination queue, and places this QCB
address in the LCBDESTQ field of the LCB.

If the terminal name in the work area
does not match any destination name in the
terminal table, the routine turns on the
invalid destination bit (bit 0) in the
error halfword, and places the address of
the QCB for the dead-letter queue in the
LCBDESTQ field of the LCB.

Module ~ame: IECKLKUP

Entry Point: The Lookup routine is
entered" either:

1. At IECKDRCT, via a BALR in the DIRECT
macro expansion. (Register 15 is the
branch address register and register
14 is the return register).

2,. At IECKLKUP,n via unconditional
branches from the Routing, Error Mes­
sage" and Reroute routines ..

External Routines Used: None

MESSAGE MODE ROUTINE (CHART cvt>

Function: This routine is entered when a
specific character is specified in the
second operand of the macro. Linkage is
made to the Scan routine to obtain the next
nonblank character in the header. If the
character provided by the Scan routine is
identical to the one specified in the MODE
macro, the Message Mode routine branches to
the routine deSignated in the first
operand. If the characters do not match~
the scan pointer is restored. and return is
made to the next LPS instruction.

Module Name: IECKMODE

Entry Point: Expansion of the MODE macro
instruction generates a BALR to the routine
at IECKMODE" using register 15 as the
branch address register and register 14 as
the return register,. The parameter list
passed to the routine consists of the
character that is compared with the first
nonblank character in the header. Register
1 is a parameter register that contains the
address of the routine specified by the
first operand of the macro.

External Routines Used: Scan (module
IECKSCAN)

CONVERSATIONAL MODE ROUTINE (CHART CX)

Function: The "converse" bit is set in the
LCBSTATE field of the LCB. If this is the
first appearance of the macro in the LPS"
the COnversational Mode routine branches
and links (BAL) to the End Insert routine.
If the Conversational Mode routine has been
previously entered" return is made to the
next LPS instruction. The End Insert rou­
tine places the address of a special entry
point in the code of the Conversational
Mode routine, which the Cleanup routine
will process for the conversational mode in
a chain according to the priority specified
by a DC in the routine. End Insert
replaces the second operand of the BAL
instruction to End Insert with the address
of the next LPS instruction" and returns
via the return register minus four, which

Message Control Program (LPS) Routines 81

returns to the same BAL instruction. This
time the BAL instruction branches to the
next LPS instruction.

This section of the routine is entered
from the Cleanup routine by a branch to the
next routine in the chain. If the conver­
sational mode has not been indicated" an
error message is to be processed" or a
polling or addressing error has,occurred,
return is made to the next routine in the
chain. The conversational mode must be
used for processing i therefore" if the
queue is not a processing queue, return is
made to the next routine in the chain..

If the line is receiving, the routine
branches to the LPS Control routine at
STARTUP to wait for the incoming message to
be processed. If the line is sending" the
line is turned around to receive by setting
the highest priority, the "converse" and
"receive" bits in the LCBSTATE field of the
LCB, and the Read operation code in the
LCBCECB field of the LCB. If the end of
the polling list has been reached" the
start of the polling list is stored in the
LCB poll pointer. The LCBCLCCW field of
the LCB is reset with the BRB address for
initialization of the Activate routine.
The routine issues a post to insert the BRB
into the ready queue, and branches to the
LPS Control routine at STARTUP to wait for
the message to be received. The LPS Con­
trol routine returns to the code in the
Conversational Mode routine. The "service"
bit is set in the prefix of the message and
the "converse" bit is cleared in LCBSTATE
field of the LCB. If the source terminal
was not identified, then return is to the
start of the Cleanup routine. The chain"
pointed to by the QCB for a source termi­
nal, is searched for a DEB to see if the
process queue contains a reply. If the
chain has been searched completely, return
is to the start of the Cleanup routine. If
there is a reply, the LCBSTATE field is set
to send, and the Write operation code is
set in the LCBCECB field of the LCB. The
routine posts the original message to the
empty buffer queue. The LCB is restored
with the disk address of the reply. The
relative address of the EOB is set in the
LCBTRST field of the LCB. The routine
posts to the I/O queue, and branches to the
LPS Control routine at STARTUP to wait for
the message to be received.

Module Name: IECKCVRS

Entry Point: If there is no specified
character in the second operand of the
macro" the expansi on of the MODE macro
instruction generates a BALR to the routine
at IECKCVRS, using register 1 as the branch
address register and register 14 as the
return register. If there is a character

82

specified in the second operand, the
address of the Conversational Mode routine
is placed in the parameter register 1" and
the routine is entered by a branch from the
Message Mode routine.

External-Routines Used:

• End Insert (Endinsrt in module
IGG019NG)

• LPS Control (STARTUP in module
IGG019NG)

• Qpost (IGC067 in module IECKQQ01)

INITIATE MODE ROUTINE (CHART CW)

Function: The routine sets the "initiate"
bit in the LCBSTATE field of the LCB.
Return is made to the next LPS instruction.

Module Name: IECKNATE

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at IECKNATE., using register 1 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand'/1 the
address of the Initiate routine is placed
in parameter register 1" and the routine is
entered by a branch from the Message Mode
routine.

External Routines Used: None

PRIORITY MODE ROUTINE <CHART CW')

Function: Linkage is made to the Sc an rou­
tine, which obtains and provides the
address of the first nonblank character in
the header. This character is moved into
the LCBPTEMP field of the LCB to be the
priori ty of the message,. Return is made to
the next LPS instruction.

Module Name: IECKPRTY

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at ~IECKPRTY., using register 1 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand~ the
address of the Priority subroutine is
placed in parameter reg ister 1 " and the
routine is entered by a branch from the
Message Mode routine.

External Routine Used: Scan (module
IECKSCAN)

MESSAGE TYPE ROUTINE (CHART CAl

Function: This routine saves the scan
pointer, and then links to the Scan rou­
tine, which obtains and provides (for the
Message Type routine) the message header
character pointed to. The Message Type
routine compares the character provided
with the character specified in the MSGTYPE
macro statement. If the characters are
identical, the routine branches to the next
executable LPS instruction. If they are
not identical, the routine restores the
scan pointer and branches to the next Mes­
sage Type routine (if this is the last Mes­
sage Type routine, it branches to the next
delimiter routine). Because the scan
pointer is restored when the two characters
are not the same, a series of Message Type
routines may be executed, each examining
the same message type character in the
header.

Module aame: IECKTYPE

Entry Point: Expansion of the MSGTYPE
macro instruction generates a BALR to the
routine at IECKTYPE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of:

• A halfword containing the field size
(one byte).

• A character constant containing the
character to be compared with the
scanned character.

• A character constant containing a
blank.

External Routines Used: Scan <module
IECKSCA1~)

OPERATOR AWARENESS <CHART EO)

Function: This routine is used to format
messages to be sent to the operator control
terminal. If an I/O error message is to be
sent, indicated by a hexadecimal IFF' in
LCBCPA +28" the line number, status, sense"
TP Op Code" index byte" and terminal ID are
obtained from the LCB and put into the mes­
sage in printable form in the following
format:

I/O ERR" aaa" bb, cccc" ddee, ffgghhhh

where: aaa
bo

cccc
ddee

ff
gg

hhhh

Line number
Operation code
Status halfword
Sense information
TP Op code
Index byte
Terminal identifier

If a threshold message is to be sent~
indicated by a nonzero value in the next to
the last byte in the LCB'n the line number
(in next to last byte) and counters are
obtained from the LCB and placed in the
message in printable form in the following
format:

THRESHOLD aaa TRANS=bbb DC=ccc IR=ddd TU=eee

Where: aaa
bbb
ccc
ddd
eee

Line number
Transmission counter
Data check counter
Intervention required counter
Time-out counter

After the message has been formatted the
threshold counters are cleared.

The routine branches and links to the
Buffer Recall routine in the Implementation
module to obtain the header. Idle charac­
ters are inserted if specified. The mes­
sage is moved into the buffer. The QCB
address is obtained from the operator con­
trol entry in the terminal table,.

The routine exits by branching to the
Buffer Cleanup routine to post the message
and return all buffers.

Module Name: IECKOPAW

Entry Point: Expansion of the POSTSEND or
POSTRCV macro instruction generates an
unconditional branch to the Implementation
module (IGG019NG). This location in the
module is a branch instruction to an
address constant of the Operator Awareness
routine at IECKOPAW. The routine is passed
the LCB address" which contains information
for the messages" in register 4 and the
address of the buffer" into which the mes­
sage is to be placedv in register 6.

External Routines Used: Buffer Recall and
Cleanup (IECKRC and IECKPR in IGG019NG)

OPERATOR CONTROL ROUTINE (CHART EE)

Function: After saving the base register,
scan pointer register, and return register,
the routine branches to the Scan routine to
get the first field of the current message
header. A test is made for a header error.
If one has occurred, control is returned to
the next LPS instruction after the scan
pointer register and return register are
restored.

The control message indicator characters
are moved into a work area and compared
against this first field of the header. If
they are not the same, then that message is
not a control message; scan pointer and
return registers are restored and control
returns to the next LPS instruction.

Message Control Program (LPS) Routines 83

If this is a control message, a test is
made to see if it is a single-segment mes­
sage. If it is a mul tisegment message" or
if it is cancelled, the source key is moved
to the destination key field of the termi­
nal table entry, the QCB for that terminal
is moved into the destination queue field
of the LCB" registers are restored" and
control is returned to the macro" which
branches to ENDRCV" thus initiating the
resending of that message to the source
terminal.

If this is a single-segment message and
it was not cancelled, the next field of the
header is obtained by the Scan routine.
This field" which should be the message
type, is compared to find the type of
operation desired. When the operation type
is found, control passes to the routine to
handle that process. If the operation
specified is not valid, the rressage is
retransmitted to the source terminal as
described above.

SUBl (CriART EF): Common subroutine to get
the next field in the header (termname) "
find the offset of that terminal from the
beginning of the terminal table" get the
size of the remainder of the buffer, and
the address of the terminal table" IECKSCAN
and IECKDRCT are used to scan the header
and look up the next field in the terminal
table. If the terminal table entry is
found, control returns to the calling rou­
tine. If not found, control is passed to
the routine that will initialize for
resending the message to the source
terminal.

UNPAK (CHART EF): Common subroutine used
to unpack the terminal table entry or the
counters and convert the data to EBCDIC.
The data is unpacked 8 bytes at a time into
the buffer until there are less than eight
bytes left to be converted. When this
occurs" the next 8 bytes are unpacked into
a work area. The data in the work area is
moved into the buffer for the remaining
number of characters. A check is made to
see if the EOB and EOT characters can fit
in the buffer. If they cannot, the EOB and
EOT are moved into the last two bytes of
the buffer. Otherwise" they are moved into
the two bytes following the converted data.
The actual size of the data to be trans­
mitted is stored in the MSEGSZE field of
the message prefix.

RCOPYT (CHART EH): Control is passed here
when a COPYT control message is received.
The routine uses the SUBl subroutine to get
the offset of the terrnname and the number
of' bytes remaining in the buffer. The size
of the terminal table entry is Obtained and
doubled to get the number of bytes after
conversion. The size of the unpacked entry
is compared with the number of bytes

84

remaining in the buffer. The lesser figure
is passed to the UNPAK subroutine to unpack
the entry into the buffer and translate it.
The message is then sent to the source.

RCOPYC (CHART EG): Control is passed to
the SUBl subroutine to get the termname"
offset to that terminal table entry. and
the number of bytes remaining in the buf­
fer. The QCB address is obtained from the
entry and a check is made to see if this is
a terminal entry. If a list or process
entry, then the message is returned to the
source terminal. If it is a terminal
entry" the relative line number and DCB
address are gotten from the QCB. The LCB
size and the address of the start of the
LCBs are obtained from the DCB. The LCB
address for this line is calculated~ and
the address of the counters in that LCB is
calculated. The copy QCB is posted to
itself. When the QCB comes to the top of
the ready queue" the COpyclr routine is
executed.

The Copyclr routine restores the regis­
ters to their values before the Qpost. The
threshold counters are added to the cumula­
tive counters. The number of bytes remain­
ing in the buffer is compared with the num­
ber of bytes needed to receive the trans­
lated counter data,. The smaller figure is
used as the number of bytes to be unpacked
and translated by the UNPAK subroutine.
When control returns from the UNPAK subrou­
tine" the threshold counters are cleared to
zero and control passes to the Qdispatch
subroutine,.

RSWITCH (CHART EK): Control comes here
when a SWITCH control message is received.
A test is made to see if the ALTERM parame­
ter was specified,. If it was notll the mes­
sage is returned to the source terminal.
If ALTERM was specified,,, the offsets to the
primary control terminal and the alternate
are reversed in the macro-generated parame­
ter list. The "serviced" bit in the prefix
is set, and control is returned to the
macro" which then branches to the ENDRCV
macro expansion.

RCHNGT (CHART EI): Control comes here when
a CHNGT control me$sage is received. SUBl
is used to get the offset to the terminal
table entry and the number of bytes left in
the buffer. The blank delimiters following
termname in the header are skipped over.
The data to be placed in the terminal table
is translated and this data is scanned for
a delimited blank, EOB" EOT" or invalid
character. If a delimiter is not found or
if an invalid character is found~ a test is
made to see if there is enough room to
insert the EOB and EOT in the buffer. If
there is room" it is put in af ter the data.
If not, it is put in after termname. In

either case, the message is returned to the
source terminal.

If the data is valid, and the delimiter
is found, the number of bytes to be moved
into the terminal table entry is checked
for zero. If zero, the serviced bit is
turned on in the header prefix and control
is returned to the macro, which branches to
ENDRCV. If greater than zero" a test is
made for an odd number of bytes to be
moved. If odd, then the same procedure is
followed as for an invalid character. If
even, a test is made to see if the data in
the buffer" when converted, will fit in the
terminal table entry. If not" the same
procedure is followed as for an invalid
character,.

If the data will fit, then registers are
set up and Qpost is issued, posting the
change QCB to itself. When the QCB comes
to the top of the ready queue" the terminal
table is changed. The routine doing this"
Change, is disabled to interrupts.

Change routine gets the QCB address from
the terminal table entry to be changed. If
this is a list or process entry" the point­
er to the area in the terminal table to be
changed is bumped past the size and QCB
address fields. The data to be inserted is
packed and moved into the terminal table.
Exit is to the Qdispatch sunroutine. If
this is a terminal entry, the relative line
number and DCB address are taken from the
QCB. The LCB size and start of the LCB is
obtained from the DCB. with this informa­
tion, the address of this LCB is calcu­
lated.. A test is made to see if this line
is active. If not, the pack and move is
initiated (INACTIVE). If the line is
active, the pointer to the area in the ter­
minal table entry is bumped past the
sequence numbers. If there is no data to
move, control passes to the Qdispatch sub­
routine. If there is data to be moved" the
pack and move operation is initiated,.

RINTRCPT (CHART EJ): Control is passed
here when an INTERCPT control message is
received. A test is made to be sure
INTRCPT was specified in the macro. If it
was not, the message is returned to the
source terminal. If INTRCPT was specified,
SUBl is used to get the offset of the ter­
minal specified in termname, and the number
of bytes in the remainder of the buffer. A
test is made for a terminal entry. If not
a terminal entry, the message is returned
to the source terminal. If it is a termi­
nal entrYr, the "send" bit in the TSTATUS
field of the entry is set off, the "ser­
viced" bit in the header prefix is turned
on and control is passed to the macro,
which branches to ENDRCV.

RRELEASM (CHART EJ): Control is passed
here when a RELEASM control message is
received. SUBl is used to get the offset
to ·the terminal table entry corresponding
to the termname in the message header, and
the number of bytes remaining in the buf­
fer. A test is made to see if that termi­
nal is in intercept mode. If not, the
"serviced" bit in the header prefix is set
on and control passes to the ENDRCV macro.
If the terminal is in intercept mode, the
address of the intercept field in the ter­
minal table entry is obtained and the QCB
address is acquired,. The rela ti ve record
number of the first message intercepted is
compared with the relative record number of
the highest-priority message received to
see if any priority messages were inter­
cepted. If priority messages were inter­
cepted, the relative record number of the
first message intercepted overlays the
relative record number of the highest­
priority message intercepted. In either
case" the first:: message intercepted will be
the first released.

The "intercept" bit and the bits in
TSTATUS are set to 0 and the send bit is
turned on. The "serviced" bit in MSTATUS
is turned on and control is passed to
ENDRCV.

RSTARTLN (CHART EK): Control is passed
here when a STARTLN control message is
received. SUBl is used to get the offset
of the terminal indicated by termname, and
the number of bytes remaining ip the buf­
fer. The QCB for that entry is obtained
and a test is made to make sure this is a
terminal entry. (If it is a process or
list entry4 the message is returned to the
source terminal.) The RLN and DCB address
are acquired and the scan pointer is
adjusted for the next field. The next
characters are compared for an "All" entry.
If "All" is specified, control passes to
the Line Change routine (IECKLNCH) at the
"start all" entry point. If "All" is not
specified, then control passes to the Line
Change routine at the "start one line"
entry point. When control returns" a test
is made of the error flags for errors. If
there are no errors~ then the "serviced"
bit in the MSTATUS field of the header pre­
fix is set on so the buffer will be
returned to the available buffer queue, and
control passes to ENDRCVQ If there was an
error, the message is returned to the
source terminal.

RSTOPLN (CHARTS EL AND EM): Control is
passed here when a STOPLN control message
is received or from the RINTREL routine
when an INTREL control message is received.
SUBl is used to get the offset of the table
entry for the terminal specified in term­
name, and the number of bytes remaining in
the buffer.. SUB2 is used to check for a

Message control Program (LPS) Routines 85

terminal entry, and if it is one" to get
the relative line number and the DCB
address. The size of the buffer is checked
to. be sure it is at least the minimum size.
If less than the minimum, the message is
returned to the source terminal. The line
count is set to 1 and the line number is
obtained from the QCB. The DCB address
(acquired in SUB2) is obtained and the
address of the source terminal is calcu­
lated. If the source terminal is in the
line group to be stopped and either

1. "All" is specified, or
2. The source terminal is on the line to

be stopped, then the message is
returned to the source. Any of these
conditions would cause the control
terminal to become permanently
inoperative.

If the source terminal is not on a line
to be stopped, a test is made to be sure
the DCB for that line group has been
opened. If it has not, the rressage will be
returned to the source.

The address of the DEB is obtained from
the DCB and the number of extents is
acquired from the DEB. A test is made to
see if the relative line number of the line
to be stopped is too high. If so" the mes­
sage is returned to the source terminal.

If a STOPLN is being handled, the next
field in the message is compared for the
characters "All". If "All" is specifiedD

the line number is set to one and the line
index is set to the number of lines in that
group.

If this routine is executed as a result
of receiving a STOPLN operator control mes­
sage, and "All" was specified, the line
count index is set to the number of lines
in the line group, and the relative line
pointer is set to one so that the first
line in the line group will be the first
one stopped. If this routine is executed
as a result of receiving an INTREL control
message, or if "All" was not specified in a
STOPLN control message, the line count
index is one and the relative line pointer
has the relative line number of the line to
be stopped. These values will be used in a
BCT loop to stop the desired number of
lines.

For either STOPLN or INTREL functions,
the registers are saved and the QCB for the
stop routine is posted to itself" causing
it to be placed on the ready queue with
highest-priority. An SVRB is built by the
SVC-handling routine with the address of
the instruction following the Qpost as the
point to receive control. This SVRB is
placed on the ready queue following the QCB
for the line to be stopped (i. e. " the QCB

86

is at the head of the ready queue and the
STCB is next.)

When the next item on the ready queue is
dispatched, the STOP1 routine receives con­
trol. STOP1 will execute disabled to
interrupts as a result of Qposting,.

STOP1 restores the registers and places
the address of the Operator Awareness rou­
tine (IECKOPAW) in the buffer recall/
cleanup address in IGG019NG to insure that
IECKOPAW is executed at buffer recall/
cleanup time.

The size of an LCB is obtained from the
DCB for that line group and is stored in
the header for that message. The relative
line number is also stored in the header.
The relative line number is multiplied by
the size of an LCB. This product is added
to the DCBLCBAD (address of first LCB minus
the size of an LCB) in order to point to
the LCB for that line. A test is made to
see if this line is active. If it is not,
control is passed to the loop control code
to determine if another line is to be
stopped.

If this line is active, a test is made
to see if there is an STCB for an operator
control subtask pending for this LCB. If
there is" the STCB is tested for a STOPLN
function,. If the STOPLN function STCB is
the one pending" then it is ignored.

If this line was already stopped~ or if
a STOPLN subtask was pending for this LCB,
the relative line index is incremented by
one" and a BCT is executed on the line
counter. If this is the last line to be
stopped. then one is subtracted from the
relative line number to get the relative
line number of the last line stopped. A
test is made to see if this routine was
activated as a result of an INTREL control
message. If it was not, a test is made to
see if this is the first pass. If it is~
the "serviced" bit is set in the buffer and
the next element on the ready queue is dis­
patched. If it is not the first pass., the
buffer is posted to the available buffer
queue.

If there is no operator control STCB on
the queue for that LCB., or if the operator
control STCB is not a STOPLN STCB., access
is gained to UCB for that line. If this is
a dial line or 2740 (basic or with check­
ing)e and not in active transmission. a
Halt I/O command is issued to clear the
enable. If the CSW was stored, the Halt
I/O command is repeated until the CSW is
not stored.

I
If this is a WI'TA line., and not an inac­

tive transmission" a Halt I/O command is
issued to clear the Prepare command. If

I the csw was stored" the Halt I/O command is
repeated until the csw is not stored.

I If this is not a dial line nor a WTTA
line, or if the dial line or the WTTA line
is active, or if the CSW was not stored
after the Halt I/O, then a first pass
switch is tested. If this is the first
time through for this message, the address
of the STOP2 routine is placed in the
LCBDESTQ field of the LCB so this buffer
will be posted to STOP2 when the LCB for
the operator control terminal goes through
the Cleanup routine. Control is passed to
the Qdispatch subroutine in IECKQQOl to
activate the next it~m on the ready queue.

The next item on the ready queue is the
SVRB created as a result of Qposting the
QCB for STOP to itself. The SVRB activates
the instruction following the Qpost, which
is a branch back to the macro. The macro
branches immediately to the ENDRCV macro,
which performs buffer: cleanup.. The buffer
is posted to the destination queue, which
in this case is the queue for the STOP2
routine, and STOP2 receives control.

When STOP2 receives control, the address
of the LCB for this line is retrieved from
the QCB for STOP2. An STCB to stop the
line is dynamically built in the buffer.
The message itself is of no use, so the
buffer is used as a convenient place. The
STCB is placed at the head of the STCB
chain for the LCB. If RSTOPLN was entered
from RINTREL, the INTREL switch is turned
off, and the INTREL switch in the LCB is
set, the next element on the ready queue is
dispatched.

Subtaskl is activated when the LCB for
the line to be stopped is posted to itself"
thus indicating that that line was stopped.
The STOPLN STCB is removed from the LCB'S
STCB chain" and the LCBSTATE is set to zero
to deactivate the LeB. The address of the
DCB is obtained from the LCB, and the
address of the DEB is obtained from the
DCB. If entry was from RINTREL, control is
passed to Subtask2.

The following procedure will be followed
only if this was a STOPLN control message .•
The address of the next STCB in the LCB
chain is obtained and a test is made to see
if it is a full STCB. If it is not, the
LCB is removed from the ready queue. In
either case, if there are more lines to be
stopped, the procedure is looped through
again to stop the rest.

If there are not more lines to be
stopped, the buffer is returned to the
available buffer queue and the next item on
the ready queue is dispatched.

If the IN'IREL switch is set" control
passes to the Subtask2 routine to put the
buffer on the time queue.

RINTREL (CHART EN): Control is passed to
RINTREL when an INTREL operator control
message is received. A switch is set to
indicate to the RSTOPLN that an INTREL con­
trol message is currently being handled,.

RSTOPLN will handle the stopping of the
desired line. After the LCB address and
the relative line number have been re­
trieved from the buffer by Subtaskl." a test
is made for an INTREL function. If the
message was an INTREL message" control is
passed to Subtask2.

Subtask2 removes the LCB for the line to
be stopped from the ready queue. The
INTREL switch is turned off. The address
of the STCB2 routine is stored into the
STCB in the buffer" as is the LCB address.
If this routine is entered by way of an I/O
interrupt" an SVC QCB is set up and put on
the ready queue. When it comes to the top
of the queue, an SVC interrupt will occur"
and control will be passed to HAVESVC.
When Subtask2 is sure it was entered via an
SVC interrupt, the buffer is made to look
like an LCB and placed on the time queue
for two minutes.

When the two-minute interval has
elapsedw the buffer comes to the head of
the time queue., is posted to the queue for
the STCB2 routine, and STCB2 receives con­
trol. The address of the available buffer
queue is acquired and the LCB is posted to
itself. This action posts the buffer to
the available buffer queue and puts the LCB
back on the ready queue.

When the operator awareness routine
detects an irrecoverable error on a line in
INTREL mode" it acquires a buffer and posts
that buffer to the queue for the STOP4 rou­
tine.. The relative line number and the LCB
address of the line are stored in the buf­
fer. If the line is already inactive, the
buffer is placed on the time queue. If the
line is active, control is passed to a
point in RSTOPLN to stop the line .•

The TIMEQ subroutine is entered from
RSTOPLN when an INTREL message is being
processed and a STOPLN is pending on that
line,. TIMEQ turns off the INTREL switch
and sets the INTREL switch in the LCB. The
line is always active at this point. A
switch is set in the buffer to denote
INTREL. The next item on the ready queue
is dispatched.

Module Name: IECKOCTL

Message Control Program (LPS) Routines 87

Entry Point: Expansion of the OPCTL macro
instruction generates a BALR to the Opera­
tor control routine at IECKOCTL, using reg­
ister 15 as the branch register, and regis­
ter 14 as the return address register.
Before branching, the macro-generated code
checks the message to assure that it is
from either the control terminal or the
alternate. If the message is a control
message, control will eventually return to
the macro-generated code. The first
instruction executed upon return is a BALR
to the ENDRCV macro.

Register 1 is the parameter register.
The parameter list will vary from 20-50
bytes. If all parameters are specified,
the list will look like this:

4 bytes

1 byte

1 byte

2 bytes
2 bytes

2 bytes

Address of Operator
Awareness routine

Length of control
message name
identifier

status byte X'OO' neither INTRCPT
nor ALTERM specified

X' 01' ALTERM
specified

X'02' INTRCPT
specified

X'03' Both ALTERM and
INTRCPT specified

Offset to control terminal
Offset to alternate terminal

(included only if
ALTERM is specified)

Offset to INTRCPT field
(included only if
INTRCPT is
specified)

Variable Control message name identifier

External Routines Used:

SCAN (IECKSCAN)

stop Line-Start Line (IECKLNCH)

Look-up (IECKDRCT)

PAUSE ROUTINE (CHART CO)

Function: The address of the first byte to
scan for a special device control character
is computed for a header or text segment.
If there has been a previous pause" the
number of remaining insert blocks is
obtained from COUNT. If there have been no
previous insertions, COUNT (a defined con­
stant in the Pause routine) is the number
of available insert blocks. The buffer is
scanned for the special character specified
in the PAUSE macro. If the specified
character is not found, return is made to
the next LPS instruction.

88

When the special character is found. the
COUNT is decremented by one. If COUNT
reaches 0" indicating that the limit of the
insert blocks has been reached, return is
to the next LPS instruction. The routine
issues a wait for an insert block" obtained
from the queue defined by the queue control
block (INSERTQ) assembled in the routine.
The address of the queue for the insert
block is placed in the last word of the
insert block. To fill in the insert block,
the address of the next BRB is stored, and
the command and the address of the next
character after the previous special
character are placed in the insert block.
The next block in the chain is updated by
placing the address of the next character
after the special character in the data
address and by adjusting the count. The
count of characters up to the special
character is placed in the second word of
the insert block. The address of the next
block of the previous BRB is updated to
point to the insert block. The flags.,
counts, and TIC command are placed in the
insert block to complete this bloc~. The
routine loops back to scan for other spe­
cial characters i~ the buffer.

Module Name: IECKPAUS

Entry Point: Expansion of the PAUSE macro
instruction generates a BALR to the routine
at IECKPAUS,o using register 15 as the
branch address register. The routine
returns via register 3. Register 14 is
used as a parameter list register. The
parameter list passed to the routine con­
sists of:

• The number of idle characters.

• The special characters.

• The bit configuration for the idle
characters.

External Routines Used: Qwait (IGC065 in
module IECKQQ01)

POLLING LIMIT ROUTINE (CHART CR)

Function: This routine limits the number
of messages to. be accepted from a non­
switched terminal during one polling pass.
If the polling pointer is not equal to the
terminal entry for the current message or
is at the end of the polling list" return
is made to the next LPS instruction,.
otherwise" the current poll count is com­
pared to the limit specified. If the
count, incremented by one" is less than the
limit, return is made to the next LPS
instruction,. If the count, incremented by
one, exceeds or is equal to the limit, the
pointer is set to the next terminal before
returning to the next LPS instruction. If.

this is an autopolled line" the length of
the next entry is obtained from the start
of the polling listo If the entry is the
end of the polling list, the pointer is set
to the first entry.

Module Name: IECKPLMT

Entry Point: Expansion of the POLLIMIT
macro instruction generates a BALR to the
routine at IECKPLMT, using register 15 as
the branch address register and register 14
as the return register. The parameter reg­
ister 1 contains the maximum number of
messages o.

External Routines Used: None

REROUTE ROUTINE (CHART CS)

Function: This routine causes a message to
be sent to an alternate destination, in
addition to its normal routing, when any of
the error conditions specified by the error
mask is indicated in the error halfword, or
when the error mask is zero. If the error
mask is not zero, and none of the error
conditions specified by the rrask is indi­
cated in the error halfword, return is made
to the next LPS instruction. Linkage is
made to the Recall routine (in module
IGG019NG), which obtains the header. Upon
return, the Reroute routine branches to the
Lookup routine, which looks up the destina­
tion code in the terminal table and places
the relative address in the TTDKEY field of
the incoming header prefix. Return to the
next LPS instruction is made by the Lookup
routine.

Module Name: IECKRRTE

Entry Point: Expansion of the REROUTE
macro instruction generates a BALR to the
routine at IECKRRTE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of the address of the error mask in
hexadecimal notation. The parameter regis­
ter 2 contains the address of the alternate
destination.

External Routines Used:

• Recall (IECKRC in module IGG019NG)

• Lookup (module IECKLKUP)

ROUTE ROUTINE (CHART CN)

Function: This routine links to the Scan
routine to obtain the destination code in
the incoming message header, and then
branches to the Lookup routine, which looks

up the destination code in the terminal
table and places the relative address in
the TTDKEY field of the incoming header
prefix. Return to the next LPS instruction
is made by the Lookup routine" rather than
the Route routine.

Module Name: IECKROUT

Entry Point: Expansion of the ROUTE macro
instruction generates a BALR to the routine
at IECKROUT" using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of a hal fword containing" in binary
form" either:

1. The maximum size of each destination
code in incoming message headers, or

2. All ones" indicating that the destina­
tion code fields are of variable
length (the end of the field is indi­
cated by a blank).

External Routines Used:

• Scan (module IECKSCAN)

• Lookup (module IECKLKUP)

SCAN ROUTINE (CHART CF)

Function: This routine obtains one or more
nonblank characters from a fixed length or
variable length header field and places
them in a work area'lI the address of which
is provided in a parameter register to the
calling routine. The Scan routine moves
the scan pointer one position at a time"
and places the header characters pointed to
into the work area. This operation is
repeated until either the end of the field
is reached or the work area is filled (work
area size is eight bytes).

If the field to be scanned is of fixed
length, its size is provided to the routine
in a parameter list; the routine places
into the work area the number of characters
specified,. During scanning(6 any blank
characters encountered are passed over.
They are not placed in the work area and
they are not included in. the count of
characters maintained by the routine.

If the field to be scanned is of vari­
able length, an indicator (2X' FF') is
passed to the routine in a parameter list .•
If end of segment is reached before the
specified scan length has been satisfied.,
bit five ("incomplete message header") is
set in the error halfword. The Scan rou-

Message Control Program (LPS) Routines 89

tine places all header characters up to the
first blank in the work area.

Module Name: IECKSCAN

Entry Point: The routine is entered via
BALR from the IECKPRTY, IECKSEQIN" IECKSKPS"
IECKMODE,IECKROUT,IECKSRCE, andIECKTYPE
modules; register 15 is the branch address
register and register 3 is the return reg­
ister. The address of a single-item param­
eter list is passed to the routine in reg­
ister 14. The parameter list contains the
field length or variable field length
indicator.

External Routines Used: None

SEQUENCE IN ROUTINE <CHART CV)

Function: This routine links to the Scan
routine to obtain the sequence number from
the header. All characters in sequence are
converted to binary notation and put into
the MSNUMIN field of the header prefix. If
the numoer is not in sequence according to
the TSEQUIN field in the terrrinal table
entry" the "sequence error" bit is set ac­
cordingly in the LCB. If the sequence num­
ber is too low, the routine sets the "too
low" bit in the LCBERRST field of the LCB'I
and return is made to the next LPS instruc­
tion. If the sequence is too high" the
"too high" bit is set in the LCBERRST field
of the LCB and return is made to the next
LPS instruction. If the number is in the
correct sequence, the expected sequence
numner is stored in the LCBBRKCT field of
the LCB. The sequence number from the
header is also incremented by one and
restored in TSEQUIN field of the terminal
table for the next message before returning
to the next LPS instruction.

Module ~ame: IECKSEQN

Entry Point: Expansion of the SEQIN macro
instruction generates a BALR to the routine
at IECKSEQN, using register 15 as the
branch address register and 'register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of the address of the number of
character positions for the input message
sequence number. If this operand is
omitted, a hexadecimal 'FF' indicates a
variable length field.

External Routines Used: Scan <module
IECKSCAl.~)

90

SEQUENCE OUT ROUTINE (CHART CM)

Function: If the SEQOUT macro appears in
the Receive header portion of the LPS, the
destination QCB is checked for being a pro­
cess QCB. If this is not a process QCB'I
return is made to the next LPS instruction.
If this is a Process QCB~ linkage is made
to the expand routine" which expands the
header to create a new field. The value of
the scan pointer is stored in the MSNUMOUT
field of the header. Return is made to the
next LPS instruction.

If this macro is in the Send header por­
tion of the LPS~ linkage is also made to
the Expand routine" which "expands" the
header by creating a new field whose high­
order byte is the location pointed to by
the scan pointer. The binary sequence num­
ber is obtained from the header prefix and
converted to decimal form. The sequence
number is unpacked and inserted into the
new header field. Return is made to the
next LPS instruction.

Module Name: IECKSEQT

Ent~Eoint: Expansion of the SEQOUT macro
instruction generates a BALR to the routine
at IECKSEQT, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of the address of the number of
character positions for the output sequence
number.

External Routine Used: Expand (module
IECKEXPD)

SKIP <CHARACTER COUNT) ROUTINE (CHART CJ)

Function: This routine advances the scan
pointer from its current position past a
specified number of nonblank header charac­
ters. The pointer then points to the last
nonblank character needed to complete the
count. Moving the scan pointer causes all
characters bypassed to be ignored during
header processing,. If the scan pOinter
reaches the end of the segment prior to
exhausting the specified count'l bit five"
"incomplete message header, n is set in the
error halfword,.

External Routines Used: None

Module Name: IECKSKPC

Entry Point: Expansion of the SKIP macro
instruction specifying a number of charac­
ters to be skipped ge.nerates a BALR to the
routine at IECKSKPC, using register 15 as
the branch address register and register 14
as the return register. Register 14 serves

also as a parameter list register. The
parameter list passed to the routine con­
sists of a halfword containing the number
of characters to be skipped.

SKIP (CHARACTER SET) ROUTINE (CHART CJ)

Function: This routine ad.vances the scan
pointer from its current position past all
header characters up to and including a
specified character sequence. The scan
pointer then points to the last character
in the sequence. Moving the scan pointer
causes all characters bypassed to be
ignored during header processing. If the
Scan routine returns an error indication in
LCBERRST, the Skip routine clears the mul­
tiple routing indicator in the LCB and
points the scan pointer to the end of the
buffer. Return is made to the next LPS
instruction.

Module Name: IECKSKPS

Entry Point: Expansion of the SKIP macro
instruction specifying a particular
sequence of characters to be skipped
generates a BALR to the routine at
IECKSKPS, using register 15 as the branch
address register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The parame­
ter list passed to the routine consists of:

1. A halfword containing the length of
the character sequence to be found;

2. A character constant containing the
characters to be found.

External Routines Used: Scan (module
IECKSCAN)

SOURCE kOUTINE (CHART CI)

Function: This routine determines the
validity of the source code field of an
incoming message header. The routine links
to the Scan routine to obtain the source
code from the header.

If the message orginated from a non­
switched terminal, the contents of the
source code field are compared with the
name of the originating terminal (as the
name appears in the terminal table entry).
If the characters match, return is made to
the next LPS instruction because the source
code is considered valid.

If tne message originated fram a
switched terminal or an autopolled line,
the contents of the source code field are
compared with each terminal entry name in
the terminal table until a match is found.
If a match is found, the addresses of the

DCB" obtained from the LCB, and the
destination QCB of the terminal table are
compared. If the source is in the same
line group then it is considered valid,.
Therefore, for dial lines only" the priori­
ty of the Send Scheduler is set to 2 to
prevent a dial. This priority had been
initialized to 1 by the expansion of the
TERM macro. The routine places the rela­
tive address of the source entry in the
TTSKEY field of the header prefix and in
the LCBTTIND field of the LCB. Return is
made to the next LPS instruction.

If no match is found or the switched
line was not in the line group specified~
the code is considered invalid. If the
source code is invalid~ the routine sets
bit 6 ("invalid source code") of the error
halfword for the line to 1. Control
returns to the next LPS instruction,.

Module Name: IECKSRCE

Entry Point: Expansion of the SOURCE macro
instruction generates a BALR to the routine
at IECKSRCE,. using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of a halfword containing a source
code field-length indicator.

External Routines Used: Scan (module
IECKSCAN)

TIME STAMP ROUTINE (CHART CK)

Function: This routine obtains the current
time in packed decimal format (via a TIME
macro), unpacks the timew and inserts a
specified portion of the time information
in the message header. Prior to inserting
the time,. the routine links to the Expand
routine,. which "expands" the header by
shifting to the left all message characters
from the end of the prefix plus the count
up to and including the character pointed
to by the scan pointer. The number of
character positions by which the header
characters are shifted is equal to the
length of the time information to be
inserted,. The time is then inserted in the
field created. The maximum field size is
nine characters in the format bhh.mm.ss,
where b = blank" hh = hours" mm = minutes,
and ss = seconds. The scan pointer points
to the last character in the time. Smaller
field sizes have a similar format" trun­
cated from the right.

Module Name: IECKTIME

Entry Point: Expansion of the TIMESTMP
macro instruction generates a BALR to the
routine at IECKTIME" using register 15 as

Message Control Program (LPS) Routines 91

the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con­
sists of a halfword containing, in binary
notation l, the length of the time informa­
tion field to be inserted in the message
header.

External Routines Used: Expand (module
IECKEXPD)

TRANSLATE ROUTINE (CHART CP)

Function: This routine translates message
segments from one code to another. The
number of characters to be translated is
computed by subtracting the address of the

92

first byte to be translated from the
address of the end of the segment. If the
number is not negative. the message is
translated using the table specified in the
macro. Return is made to the next LPS
instruction,.

Module Name: IECKTRNS

Entry Point: Expansion of the TRANS macro
instruction generates a BALR to the routine
at IECKTRNS, using register 15 as the
branch address register and register 14 as
the return register. The parameter regis­
ter 1 contains the address of the transla­
tion code tabl e named in the operand of. the
macro.

External Routines Used: None

The Open and Close routines are in the
transient area. The expansion of these
macro instructions is a system expansion.
The system Open and Close routines branch
to the QTAM Open and Close routines via an
XCTL from the where-to-go-table.

CLOSE COMMUNICATIONS LINE GROUP ROUTINE
(CHART l!:B)

Module Name: IGG0203N

Function: The Close Communications Line
Group routine is entered from the system
Close routine. This routine obtains the
address of the DCB being closed. From this
DCB and the associated DEB, the routine
calculates the size and starting address of
the LCB. A FREEMAIN is issued for the main
storage occupied by the LCB. The LCB and
the lOB pointers and status bytes are
cleared in the DCB. Completion of this
executor is indicated in the where-to-go
table. If the routine is to be used again
for another DCB, a branch is taken to the
beginning of the routine. The normal exit
of this routine is an XCTL to the next non­
zero entry in the where-to-go table.

CLOSE DIRECT ACCESS MESSAGE QUEUE ROUTINE
(CHART EC)

Module Name: IGG02030

Function: The Close Direct Access Message
Queue routine is entered from the system
Close routine. If the CLOSE is for a
checkpoint data set, a test is made for
normal completion. If an abnormal comple­
tion is set in the TCB address, the next
entry in the where-to-go-table is obtained.
If normal completion, the TTR is converted
to a disk address. A CCW is set up in the
Checkpoint routine to write the control
record to indicate that there was normal
completion. A EXCP is issued to write the
record. If, upon completion, there was a
permanent I/O error, the routine is ended
abnormally with an error code of OA4.
otherwise{, the next entry in the where-to­
go table is obtained.

If the Close routine is entered for a
direct access message queue data set" the
routine clears the terminal table entry in
the communications vector table. The
address of the first available buffer is
moved into the link field of the first
available request. The lOB address is
reset in the DCB.

ROUTINES IN THE TRANSIENT AREA

If there are any items in the ready
queue, each element is tested for a QCB.
If it is a QCB and items are present in th£
chain of STCBs" a test is made for a full
STCB. If the item on the ready queue or in
the chain is a full STCB. the ECB address
is obtained,. The routine then links to the
OS Post routine to post the ECB as complete
and to remove the ,STCB,. When there are no
more items on the ready queue" the entry in
the where-to-go table'is cleared4 If the
routine appears again in the where-to-go
table, it is ended with a dump because
there is only one DCB for the direct access
device. The normal exit of this routine is
to the next nonzero entry in the where-to­
go table.

CLOSE PROCESS QUEUE (INPUT AND OUTPUT)
ROUTINE <CHART EA)

Module Name: IGG0203P

Function: The Close Process Queue routine
is entered from the operating system Close
routine. The DEB for the DCB being closed
is searched for in the chain of processing
program DEBs. If the DEB for the DCB is
not found, a branch is taken to the end of
the routine to set up for a new entry. If
the DEB is found 1f it is removed from the
message queue DEB chain and from the TCB
chain of DEBs.

If the DCB is for input" the unprocessed
header segment is placed into the disk
queue and the unprocessed text segments are
placed into the unavailable buffer queue by
a Qpost,. When the last dummy element is
reached" a branch is taken to the common
part of the program. If the DCB is for
output and there is a remaining buffer"
this buffer is returned to the available
buffer queue by Qpost. If an LCB is found
in the chain" the dummy LCB in the DEB is
removed from the destination queue.

For both input and output DCBs, if there
are no more DCBs to close" a test is made
for general closedown. If a general close­
down exists. each DEB in the chain is
obtained. If the associated DCB is for
communications. the routine prepares to
stop each line represented in the extents.
If the line is a dial line or an active
transmitting line~ the Halt I/O is skipped;
otherwise" the line is stopped with a Halt
I/O. The routine waits if the line is
acti vee At the end of the chain of DEBs"
the message control partition is requested
to issue a CLOSE.

Routines in Transient Area 93

If there are more DCBs to close or it is
not a general closedown, the current entry
is cleared in the where-to-go table. If
this routine is to be used again for anoth­
er DCB, a branch is taken to the begin'ning
of the routine. The normal exit of the
routine is an XCTL to the next nonzero
entry in the where-to-go table.

LINE GROUP OPEN EXECUTOR - LOAD 1 ROUTINE
(CHART Fl)

Module l~ame: IGG0193N

Function: This routine is entered from the
system Open routine. The routine obtains
the length of the DEB by adding the minimum
size of a DEB, and four bytes for the
extents of each device. The routine then
performs a GETMAIN to obtain storage for
the DEB. The DEB is cleared to zeros and
then initialized. The pointer to the STCB
of the dial out-call queue, located at
DEB -28, and the STCB chain pointer are
initialized to point to DEB -20. The
priority field is set to X'FF' to indicate
a dummy last element. The address of the
basic DEB is stored in the TCB and the
DCBDEBAD field of the DCB. The DCB address
is stored in the DEBDCBAD field of the DEB.
If the numoer of buffers is less than or
equal to two, the DCBBUFRQ field of the DCB
is set equal to two. The UCB information
is moved from the TIOT to the DEB. If the
direct access device has not been opened"
an ABEND is issued with the completion code
of OA6.

Analysis of the device type set in the
UCB is done on the telecommunication
devices found in the UCBs. Error codes are
set for incorrect specifications" and the
program is ended with a dump. Tests are
performed on the model type (1060" 2740"
1050, and 1030) for each terreinal adapter.
Error codes are set if adapter type or ter­
minal is found to be in error" and the pro­
gram is ended with a dump,. Tests are made
for the optional features of Auto Call"
Auto Poll, terminal-to-terminal, or Auto
Answer for the IBM 1060, 27408 1050, and
1030. If the correct optional bits are not
set, an error code is set and the program
is ended with a dump. The device code used
for the vector directory is set.

The WTTA Line Appendage module IGG019QB
is loaded into main storage, and its
address is set in the DEB appendage table.
Linkages are established with the QTAM Line
Appendage routine. The "WRU" bits of the
LPS (LPSTART macro expansion) are moved
into the DCB.

If this routine is required again" the
routine branches to the beginning of this
routine. Upon completion" control is

94

passed via an XCTL to the Line Group Open
Executor - Loa d 2 Routine,.

LINE GROUP OPEN EXECUTOR - LOAD 2 ROUTINE
(CHART F2)

Module Name: IGG0193R

Function: This routine is entered by an
XCTL from the Line Group Executor-Load 1.
Tests are continued for model types 83B3"
115A, TWX, and 2260 for each terminal
adapter. Error codes are set if adapter
type or terminal is found to be in error~
and the program is ended with a dump.
Tests are made for optional features of
Auto Call" Auto Poll\IP terminal-to-terminal"
or Auto Answer for 83B3" liSA" TWX" and
2260 .•

To the minimum size of an tCB (88 bytes)
is added the size of the channel program
for a particular device. A GETMAIN is done
for an LCB for each line in the group. The
address of the LCB minus the size of an LCB
is stored in the DCBLCBAD field of the DCB~
and the size of the LCB is stored in the
DCBEIOBX field of the DCB. The lOB address
is stored in the DCBIOBAD field of the DCB"
and the device type is inserted in the
DCBDEVTP field of the DCB. The lOB is
initialized.

For an IBM 2702 adapter" a channel com­
mand word is built in the channel program
area with the correct SAD command. Except
for an IBM 2701 with type III adapter,,, if
there is no Auto Call or Auto Answer fea­
ture w a CCW with an Enable command code is
set in the channel program area. If there
is no Auto Call or Auto Answer and a
restart is in progress" a READ Skip com­
mand" for a 'ITY device. or a Break command 'I

for other devices, is set in the CCW .•

If the line is being opened for input#
the receive scheduler STCB is initialized.
For input and output" the return code,
priority,,, and line start indication are set
for posting the LCB to start the line.

If a restart is to be done" a search is
done on the saved data. If the LCB was
saved" the saved data is restored; other­
wise'l the line is treated as usual. If the
line was checkpointed, it is only restarted
if it was active. The dummy ECB address is
stored in the lOB and the address of the
next LCB is obtained. This process con­
tinues for all lines.

Upon completion, the routine tests for
another DCB to be opened,. If there is
another DCB n a branch is made to the start
of the Load 2 routine. The routine exits
to Line Group Executor - Load 3 via an
XCTL.

LINE GROUP OPEN EXECUTOR - LOAD 3 ROUTINE
(CHART F3)

Module Name: IGG0193T

Function: This routine is entered by an
XCTL from the Line Group Executor - Load 2
routine. The identification, relative
track number, and record address of the
BTAM Read/Write module is set for the Load
subroutine. The Load subroutine loads the
BTAM Read/Write module for use by QTAM.
The offset to the channel identification
tableJ record address~ and relative track
number are obtained to load in the Device
I/O module,. The model channel program for
the device specified in the DCBDEVTP field
of the DCB is loaded into the channel pro­
gram area.

If a restart is in progress, a search of
the terminal table is made for a destina­
tion QCB. If the DCB specified in the QCB
is not the current DCB" the search is con­
tinued for another destination QCB. The
address of the LCB is obtained for the DCB
being opened.

If the "send" bit is not on, this is a
receive-only terminal, therefore setting up
the Send Scheduler is skipped.

If the "send" bit is on for this termi­
nal, the send scheduler STCB is set up in
the QCB. If the Send Scheduler is already
in the QCB, the search is continued on the
terminal table. If the address of the next
segment is equal to the next message" one
less segment is put in the link field of
the QCB. If the line is trying to send,
the address of the header is set in the
QFAC field of the QCB.

If there is an incoming message, the
header is read from the disk and the "can­
cel" bit is set to cancel the message. The
header is rewritten on the disk. This is
done for each DCB to be opened.

Each line is started by issuing an EXCP
on the channel program. After all lines
have been started., the next DCB is gotten.
The routine exits to Line Group Executor­
Load 4 via an XCTL.

OPEN LINE GROUP EXECUTOR LOAD 4 ROUTINE

Module Name: IGG0194A

Function: This routine is entered by an
XCTL from the Line Group Executor - Load 3
routine. The time of day is obtained by
the TIME macro instruction and saved in the
routine. A test is made on each line to
determine if I/O has completed. If I/O has
not completed' on a line, the time is
obtained until there has been a 30-second

delay from the time of entry to the rou­
tine,. If the line still has not completed
I/O after 30 secondsg an error message is
put to the console.

IEC806I ENDING STATUS NOT RECEIVED FROM
LINE XXX - LINE UNAVAILABLE

If I/O has not completed on any of the
remaining lines~ a message is also sent for
each line .•

If the line had completed I/O during the
30-second interval J the test continues on
the remaining lines.

If I/O has completed on all lines" or
after all messages have been written" an
XCTL is taken to the next nonzero entry in
the where-to-go table. If this routine is
required again., a branch is taken to the
beginning of the routine.

For WTTA lines., the LCB fields are com­
pleted as follows:

1. The LCBTTIND field is updated with the
offset of the associated TERM entry of
the terminal table,. If this entry
does not exist" the program is ended
with a dump.

2. The LCBPOLPT field is updated with the
address of the associated POLL macro
instruction.

OPEN DIRECT ACCESS MESSAGE QUEUE ROUTINE
(CHART F4)

Module Name: IGG01930

Function: This routine is entered from the
system Open routine. The size of the DEB
is calculated by adding the basic size"
appendage size w and the size of the
extents. This routine issues a GETMAIN for
the DEB and initializes it. The terminal
table address is obtained from the DCB and
stored in the communications vector table.
The Implementation module is loaded into
main storage. For each device type and
each extent~ the routine determines the
number of bytes required for each record
(other than the first) on a track for this
device. The number of records that will
fit on each track is determined.

If this is an OPEN for a checkpoint
device, a test is made to ensure that the
direct access data set has been opened,. If
it has not been opened., the program is
ended abnormally. The module for
checkpoint/restart (IGG019NH) is loaded by
using the load subroutine in the Open
module. The address of IGG019NH is stored
in the Implementation module (IGG019NG) and
the terminal table address is stored in

Routines in Transient Area 95

IGG019NH. The track length and overhead
value are saved in IGG019NH. The number of
tracks for the extent in the DEB is calcu­
lated and stored in the DEB. The Open
Checkpoint Records Data set routine address
is set in the where-to-go table.

If this is not an OPEN for a checkpoint
data set, the Direct Access-Load 2 address
is set in the WTG table.

If tnis routine is needed for another
DCB, a branch is taken to the start of the
routine. Upon completion, control is
passed to the next nonzero entry in the
where-to-go table via an XCTL.

OPEN DIRECT ACCESS-LOAD 2 (CHART F5)

Module Name: IGG0193U

Function: Entered from the system OPEN"
this routine initializes the Implementation
module with the TCB address, prior it y., and
master receive switch. The message pro­
cessing DEB chain is zeroed. For each ter­
minal table entry that is not a distribu­
tion list" the routine stores the address
of the DASD destination STCB in the link
field and priority in the send scheduler of
the QCB. If the QCB is for a process
queue., the DASD destination STCB address is
set in the chain pointer of the STCB. If
there are no more entries in the terminal
table" the relative record number available
for the next segment is determined and
stored in the Implementation module for
placement in the QCB. The address of the
first buffer is stored in the available
buffer QCB, the lOB address in the DCB, and
the DCB address in the lOB.

A subroutine and STCB in this routine
are moved into the OPEN work area. An STCB
is set up for this subroutine. This STCB
is posted to cause the subroutine to be
activated. This subroutine obtains the
address of IECKQQOl (obtained from the base
register set up as a result of the Qpost)
and stores the address of the Implementa­
tion module.

If the DSCBs in the chain have not been
freed., a FREEMAIN is issued to free main
storage for these DSCBs.

If operator control has been speci~ied
in the terminal table, an address constant
in the Implementation module is changed
from the address of Buffer Recall/Cleanup
routine to the address of operator
Awareness routine. For all the entries in
the terminal table" the polling list
address is obtained and tested for Auto
Poll (bit 7 of the fourth byte is one). If

96

this is an Auto Poll polling list,. the
polling characters and index bytes replace
the offset value in the polling list .•

If the where-to-go table indicates that
this routine is required again.. the program
is abnormally ended because there is only
one DCB for the direct access device for
message queues. Normal completion of the
routine is an XCTL to the next nonzero
entry in the where-to-go table of the sys­
tem OPEN .•

OPEN CHECKPOINT RECORDS DATA SET ROUTINE
(CHARTS F6 AND F7)

Module Name: IGG0193V

Function: This routine is entered by an
XCTL from the QTAM Open Direct Access Mes­
sage Queue routine when a DD card specify­
ing the checkpoint records data set is
entered. The name of this DD statement
must be TPCHKPNT.

The first function performed is that of
calculating the size of the checkpoint
records. A scan of the terminal table pro­
vides access to all control information to
be counted. Included in the size are:
each terminal table entry, each pol'ling
list.; 11 bytes for each destination QCB" 14
bytes for each process QCB" and 11 bytes
for each LCB. After the checkpoint record
size has been computed. the total size and
offsets to each type of data are saved in
the Checkpoint routine for later use by
that routine.

A test is then made to determine if the
disposition of the checkpoint records data
set is old or new. If it is new. a four­
byte control record is written in the first
record of the data seto The data set is
then further formatted by writing two com­
plete dummy checkpoint records.. Exit is
then made via an XCTL.

If the data set disposition is old. the
four-byte control record is read from the
disk to determine if a restart procedure
should be initiated. If the first byte of
the control record is zero" the checkpoint
records data set was properly closed and no
restart is necessary. The procedure
described for formatting the data set is
performed" and exit is made by an XCTL ..

If the first byte of the control record
is nonzero" the checkpoint records data set
was not properly closed. This indicates a
system failure, and a restart procedure
must be performed.. A GETMAIN macro is
issued to obtain a work area into which is
read the current checkpoint record. The
control record contains an indicator as to
which checkpoint record is the most recent.

The checkpoint record is then read from the
disk into the work area. A scan through
the terminal table is again used to locate
the control blocks and tables that must be
res.tored with the data contained in the
checkpoint record. At this poin.t" the ter­
minal table entries, polling lists " and
QCBs are restored with the data previously
recorded in the checkpoint record. Restor­
ing of the LCB data is deferred until the
line groups are opened because the storage
required for the LCBs is not obtained until
that time. A code of X'F2' is set in the
TERMTBL field of the Checkpoint module to
indicate that a restart procedure has been
initiated. Exit is then made via an XCTL .•

All of the disk I/O operations initiated
in this routine are accomplished via an
EXCP/WAIT sequence. If an error occurs on
any disk operation" the job is terminated
via an ABEND macro. If a checkpoint record
cannot be contained on a single track~ as
many EXCP/WAIT sequences as are needed are
issued to read or write the entire logical
record. Linkage is generated to the Con­
vert routine to convert a TTR to an actual
DASD address.

The checkpoint interval or number of
CKREQ macros specified in the TERMTBL macro
is stored in the Checkpoint module prior to
giving up control via an XCTL.

OPEN MESSAGE PROCESSING PROGRAM ROUTINE
(INPUT AND OUTPUT) (CHART C4)

Module Name: IGG0193P

Function: This routine is entered from the
system open routine. If no TRMAD field has
been specified in the DCB, the program is
abnormally ended with a dump.. An error
code is set and the program is ended with a
dump when any of the following conditions
exist:

• The direct access device has not been
opened.

• A MS process queue DCB is being opened
and the SOWA field has not been
specified ..

• The DDNAME is not found in the terminal
table.

A GETMAIN for the DEB is issued for 144
bytes~ and part of the DEB is initialized.
The DEB is chained to the chain of process~
ing program DEBs. If an MS process queue
DCB is being opened" the routine sets up
the QCB and BRB in main storage obtained
for the DEB. If an MS destination queue
DCB is being opened~ the routine sets the
priority and link address of the BRB in the
DEB. The address of the Get or Put module
is obtained according to the mode (message"
record, or segment), and the Get or Put
module is loaded. The basic part of the
DEB is initialized. If the routine is
required again. a branch is taken to the
beginning of the routine; otherwise" an
XCTL is executed to the next nonzero entry
in the where-to-go-table found in the sys­
tem Open routine.

Routines in Transient Area 97

MESSAGE PROCESSING PROGRAM ROUTINES

The Get and Put routines are in the par­
tition that contains the message processing
program. The expansion of these macro
instructions is a system expansion., which
branches to the QTAM routine. The remain­
der of the macros are used to examine and
to modify the status of the control pro­
gram. The expansion of these macro
instructions link to a corresponding rou­
tine for the macro.

GET MESSAGE ROUTINE (CHART C6)

Module Name: IGG019NB

Function: The Get Message routine is
entered by the system expansion of a GET
macro" which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry" or upon
returning from the POST, the routine checks
for the inclusion of EODAD by the user. If
it has been specified and the disk is not
in the process of reading, a test is made
for a dummy last element. If there are no
more messages in the MS process queue" the
routine branches and links to the user's
exit address.

If EO DAD was not specified" or the disk
was in the process of reading" or there are
messages in the MS process queue" the rou­
tine obtains the address of the work area.
If this is not the first entry" the routine
posts the previously used buffer to the
return buffer queue. Upon returning from
the post, or if this is the first entry,
the routine issues a Qwait to obtaiL the
next buffer.

If it is a header segment, the address
of the source area is obtained. If the
prefix indicates a process queue~ the area
specified by the TRMAD operand is cleared.
The terminal ID is moved into the user's
area.

If a header or text segment (but not the
last segment) and the buffer is empty" the
routine branches back and obtains another
buffer. If the buffer is empty and it is
the end of message, a zero is set in DCBSE­
GAD, data count is set in the work area,
and return is made to the next instruction
in the processing program. If the buffer
is smaller than or equal to the work area"
a test is made for end of message. If it
is not end of message" a branch is taken to

98

request another buffer; otherwise," a zero
is set in DEBS EGAD., data count is set in
the work area., and return is made to the
next instruction in the processing program.
If the work area is filled" da ta remains in
the buffer" and no SYNAD is specified" a
zero is set in DCBSEGAD, data count is set
in the work area~ and return is made to the
next instruction in the processing program.
If the SYNAD is specified" the routine
branches and links to the user's synchro­
nous exit routine before returning.

GET RECORD ROUTINE (CHART C7)

Module Name: IGG019NC

Function: The Get Record routine is
entered by the system expansion of a GET
macro, which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry" or upon
returning from the POST, the routine checks
for the inclusion of EODAD by the user. If
it has been specified and the disk is not
in the process of reading, a test is made
for a dummy last element.. If there are no
more messages in the MS process queue, the
routine branches and links to the user's
exit address .•

If EODAD was not specified" or the disk
was in the process of reading., or there are
messages in the MS process queue~ the rou­
tine obtains the address of the work area.
If this is not the first entryw the routine
posts the previously used buffer to the
return buffer queue. Upon returning from
the post or if this is the first entry" the
routine issues a Qwait to obtain the next
buffer.

If it is a header segment, the address
of the source area is obtained. If the
prefix indicates a process queue., the area
specified by the TRMAD operand is cleared.
The terminal ID is moved into the user's
area.

If the segment is not the last and the
buffer is empty., the routine branches back
to obtain another buffer,. If the buffer is
empty and it is the end of a message" the
data count is set in the work area" and
return is made to the next instruction in
the processing program.

Each character is moved into the work
area, if space is available. If there is
no space available and SYNAD is specified"
the count is stored in the work area,. The
program branches and links to the user's
synchronous exit routine before returning
to the next instruction in the processing
program. If SYNAD is not specified, the
count is stored in the work area" and the
routine returns to the next instruction in
the processing program,. Each character in
the buffer is checked for new line (NL),
end of Dlock (EOB) " or start of text (STX
for 2260). If the character is an NL~ EOB.
or STX, all consecutive NLS, EOBs" or STXs
are moved into the work area, the count is
stored in the work area, and the routine
returns to the next instruction in the pro­
cessing program. If the buffer is empty
and it is not an end of message, the rou­
tine branches to request another buffer.
If the buffer is empty and it is an end of
message, the data count is stored in the
work area, and the routine returns to the
next instruction in the processing program.

GET SEGMENT ROUTINE (CHART C5)

Module Name: IGG019NA

Function: The Get Segment routine is
entered by the system expansion of a GET
macro" which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry or upon
returning from the POST" the routine checks
for the inclusion of EODAD by the user. If
it has Deen specified and the disk is not
in the process of reading, a test is made
for a dummy last element. If there are no
more messages in the MS process queue" the
routine branches and links to the user's
exit address.

If EODAD was not specified" or the disk
was in the process of readingw or there are
messages in the MS process queue" the rou­
tine obtains the address of the work area.
If this is not the first entry, the routine
posts tne previously used buffer to the
return buffer queue. Upon returning from
the post, or if this is the first entry,
the routine issues a Qwait to obtain the
next buffer.

If it is a header segment, the address
of the source area is obtained. If the
pref ix indicates a process queue" the area
specified by the TRMAD operand is cleared.
The terminal ID i's moved into the user's
area.

If the buffer is empty, the data count
is stored in the work area" and return is

made to the next instruction in the pro­
cessing program.. If the buffer is not
empty, the segment is moved to the work
area. If all the data in the buffer has
been moved" the data count is stored in the
work area and return is made to the next
instruction in the processing program.

If the work area is filled and data is
left in the buffer" a check is made for
SYNAD specification. If SYNAD is not spec­
ified" the routine returns to the next
instruction f'n the processing program; if
specified, it branches to the user's syn­
chronous exit routine before returning.

PUT MESSAGE ROUTINE (CHART DA)

Module Name: IGG019NE

Function: The Put Message routine is com­
posed of two parts. The first section is
entered by a branch and link from the sys­
tem macro expansion. which obtained the
address from the DCB specified. This sec­
tion sets priority for the BRB and sets a
new entry switch.

The following error codes are set in
reg ister 15 when an error is detected.,

1. Bit 26 is set to 1 for an invalid ter­
minal name,.

2,. Bit 27 is set to 1 for wrong length
specified.

If any error flags are set" return is made
to the next instruction in the processing
program. The routine then issues a Qpost
to request a new buffer from the active BRB
queue" waits f or the buf fer" and posts the
buffer to the destination queue. If there
is any more data in the work area~ the rou­
tine branches back to request a new buffer;
otherwise, it returns to the next instruc­
tion in the processing program..

The second section of the routine is
entered by a branch from the Buffer BRB
routine.. If this is the first PUT for this
buffer, a new entry is set and the buffer
size is loaded.. For every request., a 0 is
set in the source key (TTSKEY) in the pre­
fix to show a process queue. If this is a
header segment~ the sequence number is
zeroed and the scan pointer in the prefix
is set to the number of idle characters in
the header. If the user has specified
priority" that priority is taken from the
work area and placed in the DEB; otherwise"
a blank is set for the priority. The off­
set to the terminal entry is stored in the
TTDKEY field" and the EOM header bit is set
in MSTATUS field of the prefix .•

Message Processing Program Routines 99

For a text segment" the EOM bit is set
in the MSTATUS field of the prefix. For a
header or text segment, the length of the
buffer is compared with the work area,. If
the work area is larger than the buffer"
the EOM bit in lJ1STA'I'US is turned off and
the buffer length is used to move the data
from the work area into the buffer. The
work area length is used for th~ data move
if the work area is smaller than the buf­
fer. If there is more data to move, the
work area pointer is updated before branch­
ing to the Interim LPS routine to post the
buffer to the MS destination queue.

PUT RECORD ROUTINE (CHART C9)

Module Name: IGG019NF

Function: The Put Record routine is com­
posed of two parts. The first section is
entered by a branch and link from the sys­
tem macro expansion, which obtained the
address from the DCB specified in the PUT
macro. This section sets priority for the
BRB and sets a new entry switch.

The following error codes are set in
register 15 when an error is detected .•

1. Bit 26 is set to 1 for an invalid ter­
minal name.

2. Bit 27 is set to 1 for a wrong length
specified.

3. Bit 25 is set to 1 for invalid
sequence; that is" if this is the last
segment and the next segment is not a
header, or if this is not the last
segment and the next segment is a
header (other than the first time).

If any error f lags are set" return is made
to the next instruction in the processing
program.

The routine then issues a Qpost to re­
quest a new buffer from the active BRB
queue., and waits for this buffer.. If a
buffer address has been saved" use this
buffer and save the address of the new buf­
fer. The Put Record routine issues a Qwait
to wait for the BRB to be removed from the
ready queue. If the buffer is full" the
routine posts the buffer to the DASD
destination queue. If there is more data
to be moved, this routine branches to re­
quest a new buffer,. If no more data is to
be moved, or the buffer is not full., it
switches buffer addresses with the saved
buffer. If there is an extra buffer, the
unused buffer is posted to the free buffer
queue before return is made to the next
instruction in the message processing
program.

100

The second section of the routine is
entered by a branch from the Buffer BRB
routine. If this is the first PUT request
for this buffer, a new entry is set" the
buffer size is loaded, and the buffer save
area is zeroed. The present buffer is
saved for every PUT request if no buffer is
left over from a previous PUT. The LeB
address" source key" and text indicator are
placed in the prefix.

If this is the start of the work area
and a header segment, the sequence number
is zeroed and the scan pointer in the pre­
fix is set to the number of idle characters
in the header. If the user has specified
priority" that priority from the work area
is placed in the DEB; otherwise" a blank is
set for the priority. The offset to the
terminal entry is stored in TTSKEY field of
the prefix.

For a text or header segment and not the
start of a work area" the length of the
buffer and the work area are compared if
the buffer has been filled. If the buffer
is larger than the work area. the length of
the work area is used to move the data;
otherwise, the buffer length is used. The
data is moved from the work area to the
buffer and the data count is set in the
prefix. If data is left in the work area,
the address of the next character in the
work area is obtained. If no data is left
in the work area and it is the end of mes­
sage" the EOM is set before the address of
the next character is obtained.

If a buffer is left over from the pre­
vious PUT., the extra buffer address is
stored. If this is not a text segment" the
EOM is set in MSTATUS. The switch is set
to indicate that no buffer is left over.
If a buffer has been saved" the saved buf­
fer and present buffer are exchanged. The
routine exits to the Interim LPS routine in
the Implementation module to post the buf­
fer to the MS destination queue .•

PUT SEGMENT ROUTINE (CHART CS)

Module Name: IGG019ND

The Put Segment routine is composed of
two parts.. The first section is entered by
a branch and 1 ink from the system macro
expansion., which obtains the address from
the DCB specified in the PUT macro.

The following error codes are set in
register 15 when an error is detected.

1. Bit 26 is set to 1 for an invalid ter­
minal name.

2. Bit 27 is set to 1 for a wrong length
specified.

3. Bit 25 is set to 1 for invalid
sequence; that is" if this is the last
segment and the next segment is not a
header, or if this is not the last
segment and the next segment is a
header (other than the first time).

If any error flags are set, return is made
to the next instruction in the processing
program.

Otherwise" the Put Segment routine sets
priority for the BRB, and issues a Qpost to
request a new buffer from the active BRB
queue, waits for the buffer" and then posts
the buffer to the DASD destination queue.
The routine waits for the BRB to be removed
from the ready queue, and returns to the
next instruction in the processing program.

The second part of the routine is
entered by a branch from the Buffer BRB
routine. This section of the routine moves
the LCB address in the MSLCB field" moves
the message type in the work area to the
MSTATUS field, and zeros (shows process
queue) into the TTSKEY field of the prefix.
If it is a headerJ the message sequence
number is set to zero" and the scan pointer
in the prefix is set to the number of idle
characters in the header. The header is
moved in the buffer. If the user has spec­
ified priority., that priority is placed
from the work area into DEB; otherwise" the
priority is set to a blank. The offset to
the terminal entry is stored into TTDKEY
field (destination key) of the prefix.. For
a text segment, the text is rroved into the
buffer. For a header of text segment. the
segment size is stored in the MSEGSZE field
of the prefix. The routine exits to the
Interim LPS routine in the Implementation
module to post the buffer to the MS
destination queue.

CHANGE POLLING LIST ROUTINE (CHART CD)

Function: This routine sets up the DCB
base with the DCB address given in the
macro. If the terminal name is specified,
the macro expansion has branched to
IECKDCBL to find the address of the DCB.
If the DCB specified has not been opened"
an error code of hex '01' is set in regis­
ter 15, and return is made to the next
instruction in the processing program.. If
the relative line number specified is too
high, an error code of hex '08' is set in
register 15, and return is made to the next
instruction in the processing program. If
character number is specified in the third
operand of the macro, the numerics are
moved into the STATUS field of the polling
list by the Cross Partition Move routine.

If the third operand is an address., the
length of the new polling list is compared
to the present one. If they are not equal,
an error code of hex '10' is placed in reg­
ister 15~ and return is made to the next
instruction in the process ing program .•
otherwise" the routine obtains the address
of QMOVE and posts the QCB to itself to
execute the move. The new polling list in
the area specified is moved to the address
of the polling list area. A normal comple­
tion code of hex '00' is placed in register
15 before return is made to the next
instruction in the processing program..

Module Name: IECKCHPL

Entry Point: Expansion of the CHNGP macro
instruction generates a BALR to the routine
at IECKCHPL. using register 15 as the
branch address register and register 14 as
the return register. Parameter register 0
passes to the routine the address of the
DCB with the relative line number in the
high-order byte. Parameter register 1 con­
tains the address of the area that contains
the new polling list of the character num­
ber, either 0 or 1,,, which results in deac­
tivation or activation of the polling list,
respectively.

External Routines Used:

• Qpost (IGC067 in module IECKQQ01)

• Cross Partition Move (QMOVER +6 in
module IGG019NG)

CHANGE TERMINAL TABLE ROUTINE (CHART CB)

Function: The terminal name specified in
the macro is compared with each TERMID
field in the terminal table. If the termi­
nal entry specified is not found in the
terminal table., an error code of hex '20'
is set in register 15., and return is made
to the next instruction in the processing
program. When the entry is found" the
length of the entry is compared to that of
the present entry.. If the size specified
in the work area is nct equal to the size
in the terminal table, an error code of hex
'10' is set in register 15" and return is
made to the next instruction in the pro­
cessing program.

If the QCB from the terminal table is
not a destination queue or a STOPLN has
been issued. the move data QCB is posted to
itself to execute the move.. The new entry
from the work area is moved into the speci­
fied entry of the terminal table.. If the
QCB is a destination queue and a STOPLN has
not been issued" the change is made in two
moves, leaving the new sequence number.
Because the sequence numbers may have been
incremented after the entry was copied into

Message Processing Program Routines 101

the work area, the old sequence numbers are
not changed. Return is made to the next
instruction in the processing program.

Module ~ame: IECKCHGT

Entry Point: Expansion of the CHNGT macro
instruction generates a BALR to the routine
at IECKCHGT, using register 15 as a branch
address register. Parameter register 0
contains the address of the work area.
Parameter register 1 passes to the routine
the address of the name of the entry in the
terminal table.

External Routines Used:

• Qpost (IGC067 in module IECKQQ01)

• Cross Partition Move (QMOVER +6 in
module IGG019NG)

CHECKPOINT REQUEST ROUTINE (CHART C3)

Function: This routine initiates a request
for a checkpoint record to be written on
the checkpoint records data set.

If any of the following error conditions
are detected, the request is ignored and
return is made to the calling program with
an error code in register 15,
right-adjusted.

1. QTAM message queues data set not
opened (error code = X'Ol').

2. A checkpoint interval was specified in
the CKITV operand of the TERMTBL macro
(error code = X'02').

3. Checkpoint records data set not opened
(error code = X'04').

If no errors are detected, a checkpoint
is requested by Qposting the passed ECB to
the checkpoint request queue. An SVC WAIT
is then issued to wait for the checkpoint
to be taken. Return is made to the calling
program.

Note: The checkpoint record is not written
until the number of message processing par­
titions specified in CKPART operand of the
TERMTBL macro have initiated checkpoint
requests.

Module Name: IECKCKRQ

Entry Point: Expansion of the CKREQ macro
instruction generates a BALR to the routine
at IECKCKRQ, using register 15 as the
branch address register and register 14 as
the return reg ister. Upon entry" parameter
register 1 contains the address of an event
control block (ECB) representing the check­
point request from this partition.

102

External Routines Used:

• Qpost (IGC067 in IECKQQ01)

• WAIT (SVC 1)

CLOSE MESSAGE CONTROL ROUTINE (CHART ED)

Function: This routine is entered for a
complete closedown. To turn off the master
recei ve swi tch" the routine se ts up for the
Cross Partition Move routine by placing the
address of the master receive switch and
the mask in registers 4 and 5" respective­
ly. The routine posts the move data QCB to
itself; the Move Data subtask moves the
mask to turn off the master receive switch •

The TCB for message control is used to
obtain the DEB chain. For each DEB on the
chain~ the associated DCB is refered to.
If the DCB is not for a communications
line, the next DEB is obtained. If the DEB
is for a line" each LCB is obtained. If
the line for that LCB is active~ the rou­
tine issues a STOPLN macro instruction to
stop the line,. The STARTLN macro is then
issued to put out all messages. Only the
lines for output will be started because
the master receive switch has been turned
off. If the line is not active" the next
LCB is obtained. When the end of the DEB
chain is reached,,, the routine returns to
the next message processing program
instruction. The net effect is that all
input lines to the system are stopped"
while line output operations continue as
normal.

Module Name: IECKCLOS

Entry Point: Expansion of the CLOSEMC
macro instruction generates a BALR to the
routine at IECKCLOS," using register 15 as
the branch address register and register 14
as the return register.

External Routines Used:

• Qpost (IGC067 in module IECKQQ01)
• Line Change (in module IECKLNCH)
• Cross Partition Move (QMOVER + 6 in

module IGG019NG)

COPY TERMINAL TABLE ROUTINE (CHART CG)

Function: After saving the registers" the
routine obtains the address of the terminal
table from the communications vector table.
The terminal table is searched for the name
of the entry specified in the macro,. If no
entry of the specified name is found or the
entry size is zero" an error code of a hex
'20' is placed in register 15. When the
name is found" the table is moved to the
work area specified in the macrow and a

normal completion code of hex '00' is
placed in register 15. After restoring
registers, the routine returns to the next
processing program instruction.

Module Name: IECKCPYT

Entry Point: Expansion of the OOPYT macro
instruction generates a BALR to the routine
at IECKCPYT, using register 15 as a branch
address register and register 14 as a
return register. Parameter register 0 con­
tains the address of the work area speci­
fied in the macro. Register 1 contains the
address of a location containing the termi­
nal name.

External Routines Used: None

COPY POLLING LIST ROUTINE (CHART CC)

Function: After saving the registers" the
routine obtains the size of the polling
list, using the relative line number and
the address of the DCB specified in the
macro,. If the terminal name is specified"
the macro expansion has branched to
IECKDCBL to find the address of the DCB.
If the DCB has not been opened, an error
code of hex '01' is set in register 15, and
return is made to the next instruction in
the processing program. If the relative
line number is too high, an error code of
hex '08' is set in register 15" and return
is made to the next instruction in the pro­
cessing program. The polling list is moved
into the work area specified in the macro.
Registers are restored before return is
made to the next instruction in the pro­
cessing program.

Module Name: IECKCPPL

Entry Point: Expansion of the OOPYP macro
instruction generates a BALR to the routine
at IECKCPPL, using register 15 as the
branch address register and register 14 as
the return register. Parameter register 0
passes, to the routine" the address of the
DCB specified in the macro plus four times
the relative line number. Register 1 con­
tains the address of the work area that
contains the new polling list.

External Routines Used: None

COpy QUEUE CONTROL BLOCK ROUTINE (CHAR~ CE)

Func tion: After saving the registers,,, the
routine searches the terminal table for the
name of the terminal specified in the
macro. Upon obtaining the address of the
QCB from the terminal table" the queue of
32 bytes is moved into the area specified
by the macro. If the terminal entry is not
found~ an error code of a hex '20' is

placed in register 15. If there was no
error" the routine returns a hex '00" in
register 15,. The routine restores regis­
ters and returns to the next LPS
instruction.

Module Name: IECKCPYQ

Entry Point: Expansion of the COPYQ macro
instruction generates a BALR to the routine
at IECKCPYQ. using register 15 as a branch
address register and register 14 as a
return register. Parameter register 0 con­
tains the address of the work area speci­
fied in the macro,. Parameter register 1
passes" to the routine, the address of a
location that contains the terminal name.

External Routines Used: None

LOCATE DCB ROUTINE (CHART BW)

Function: The routine obtains the maximum
size of the terminal name. If the speci­
fied terminal name is not in the terminal
table" an error code of hex '20' is set in
register 15 and return is made to the macro
expansion. If the terminal name is found"
the QCB address is obtained from the termi­
nal entry. If this is a list or process
entry, an error code of hex '20' is set in
register 15 and return is made to the macro
expansion. If it is not a list or process
entry" the DCB address is obtained from the
QCB and placed in register O. The relative
line number is inserted in the high-order
byte. The normal exit code of hex '00' is
set in register 15 and return is made to
the macro expansion.

Module Name: IECKDCBL

Entry Point: This routine is entered via a
BALR from the macro expansion of STOPLN"
STARTLN., COPYF, or CHNGP. The address of
the terminal name is passed in parameter
register 1.

External Routines Used: None

RELEASE INTERCEPTED MESSAGE ROUTINE (CHART
BZ)

Function: Each TERMID field of the termi­
nal table is compared with the specified
terminal name" until there is an equal com­
pare. If the name is not found in the ter­
minal table. the routine returns to the
next instruction in the processing program
with an error code of hex "20' in register
15. If the entry is found" the TSTATUS
field is tested. If the ftintercept ft bit is
not on" ret urn is roade to the next ins truc­
tion in the processing program with a code
of hex '04' in register 15. If the inter­
cept bit is on,. indicating that messages

Message Processing Program Routines 103

may have been intercepted, the address of
the INT~RCPT field is obtained from the LPS
routine.

If the message header address in the
INTERCPT field is greater than the message
address in queue, a priority message has
been intercepted. The "intercept" bit is
reset to zero, the' "send n bit is set on"
and return is made to the next instruction
in the processing program with the code of
hex '00' in register 15 for normal comple­
tion. If the header address is less than
the address in queue, the header address of
the intercepted message is inserted (using
Cross Partition Move routine) as the first
message to be released. This is done by
posting the move data QCB to itself. The
"intercept" bit is reset to zerq, the
"send" nit is set on, and return is made to
the next instruction in the processing pro­
gram with a code of hex '00' in register 15
for normal completion..

Module ~ame: IECKRELM

Entry Point: Expansion of the RELEASEM
macro instruction generates a BALR to the
routine at IECKRELM, using register 15 as
the branch address register and register 14
as the return register. Register 1 is the
parameter register, which passes the
address of the terminal name to the
routine.

External Routines Used:

• Cross Partition Move (QMOVER+6 in
module IGG019NG)

• Qpost (IGC067 in module IECKQQ01)

RETRIEVE - DASD ROUTINE (CHART Cl)

Function: This routine causes a message
segment to be retrieved by direct access
address from the DASD destination or pro­
cess queues, and to be placed into the work
area. The routine saves registers and sets
up addressability. If an invalid disk
address is received, an error code of hex
'02' is set in register 15~ and return is
made to the next instruction in the pro­
cessing program.

A combination BRB and QCB is built in
the user's work area. The routine stores
the address of the STCB, queue-insert-by­
priority, into the QTRAN field. It stores
the direct access address in the BRB as the
relative record address of the next segment
to be read. The routine then sets the
MSTATUS field equal to 9 in the BRB and
sets priority in the QPRI field to a hexa­
decimal 'E4'. The routine posts the BRB/
QCB to the disk queue, and waits for disk
completion. Another Qwait is issued to

104

ensure that the BRB/QCB is off the ready
queue so that the work area can be used.
The message is moved into the work area
specified by the user. The buffer is
returned by posting the buffer to the
available buffer queue,. The registers are
restored and return is made to the next
instruction in the processing program.

Module Name: IECKRETD

Entry Point: Expansion of the RETRIEVE
macro instruction generates a BALR to the
routine at IECKRETD" using register 15 as
the branch register and register 14 as the
return register. Registers 0 and 1 are
used as parameter registers. Register 0
contains the work area specified by the
user" and register 1 contains the relative
record address of the message segment to be
retrieved.

External Routines Used:

• Qwait (IGC065 in module IECKQQ01)

• Qpost (IGC067 in module IECKQQ01)

RETRIEVE BY SEQUENCE NUMBER ROUTINE (CHART
C2)

Function: This routine causes a message
segment to be retrieved and placed in a
work area specified by the user. After
saving registers and setting up addressa­
bility-, the termjnal table address is
obtained from the CVT. The terminal table
is searched for the destination named in
the operand of the macro instruction. If
the name of the destination is not found •
an error code of a hexadecimal' 20" is
placed in register 15, and return is made
to the next instruction in the processing
program. If the name is found" the offset
of the entry from the start of the terminal
table is savedw and the destination queue
address is obtained from the terminal table
entry.

The routine branches to the Retrieve
DASD routine passing in register 1 the
direct access address of the message (a
negative address indicates sequence in and
a positive address indicates sequence out)
and in register 0 the address of the work
area.

The Retrieve DASD routine retrieves the
next segment of the message and places it
in the work area. If the direct access
address is zero" an error code of hexadeci­
mal '40' is placed in register 15" and
return is made to the next instruction in
the processing program. If the sequence
number specified by the macro instruction
is greater than the sequence of the re­
trieved message or it was a priority mes-

sage, the next message is obtained by the
Retrieve DASD routine,. If the sequence
number of the retrieved message is larger
than the one specified. an error code indi­
cating invalid sequence of hexadecimal '40'
is set in register 15. Return is made to
the next instruction in the processing pro­
gram. If the correct message is retrieved
and registers are restored" return is made
to the next instruction in the processing
program with a hexadecimal '00' set in reg­
ister 15,.

Module Name: IECKRETS

Entry Point: Expansion of the RETRIEVE
macro instruction generates a BALR to the
routine at IECKRETS, using register 15 as
the branch address register and register 14
as the return register. Register 0 is used
as a parameter register. It contains the
address of the work area into which the
message segment is to be placed.

External Routines Used: Retrieve DASD (in
module IECKRETD)

START LINE - STOP LINE ROUTINE (CHART BX)

Function: This routine sets up the DCB
base with the DCB address given in the
macro. If the terminal name is specified"
the macro expansion has branched to
IECKDCBL to find the address of the DCB.
If the DCB has not been opened, an error
flag of hex' 01' is set in register 15" and
return is made to the next instruction in
the processing program. If the relative
line number is greater than the number of
lines" an error code of hex '08' is set for
invalid relative line number, and return is
made to the next instruction in the pro­
cessing program.

For each line to be stopped or started"
the associated LeB is obtained. If the
routine was entered for a Start Line and is
not active" the operation codes for the SAD

and Enable commands" needed for starting a
line" are stored in the QCB/STCB,. Unless
there is a type III adapter~ 2260# or
switched connection" an Enable operation
code is set. otherwise" NOP is set in the
QCB. The LCB is posted to the queue QCB to
enter the subtask in the routine.

If the routine is for a stop line" the
UCB address for the line is obtained. If
the line is a dial line or a WTTA line and
is not in active transmission" a Halt I/O
is issued to disable the line. If it is in
active transmission. a Qwait is issued to
wait for the line to become inactive. For
an autopolled line,. the line is stopped by
causing the TIC after the second Poll CCW
to be replaced with a NOP. The move data
QCB is posted to itself to cause the NOP to
replace the TIC across partitions. If
there are no more I ines to change" the
normal exit code of hex '00' is set in reg­
ister 15" and return is made to the next
instruction in the processing program.

The Queue routine associated with the
queue subtask is in this module,. This rou­
tine takes the Op code set in the start
line-Stop Line routine and places it in the
channel program area. A flag is set in the
LCBCPA + 32 field of the LeB so that Line
SIO Appendage will give control to ERP at
completion,. An EXCP is issued for the
line. Upon return. the routine exits to
Qdispatch subroutine in IECKQQ01.

Module Name: IECKLNCH

Entry Point: Expansion of the STOPLN or
STARTLN macro instruction generates a BALR
to the routine IECKLNCHw using register 15
as the branch address register and register
14 as the return register. Parameter reg­
ister 0 passes to the routine the relative
line number in the high-order byte and the
DeB address in the three low-order bytes.

External Routines Used:

• Qpost (IGC067 in module IECKQQ01)
• Qwait (IGC065 in module IECKQQ01)

Message Processing Program Routines 105

QTAM CO~TROL MODULE SUBROUTINES

The QTAl.'4 control module (module IECKQQ01) "
consisting of nine subroutines, is included
in the supervisor nucleus as a resident
routine at system generation.

ENTRY I~TERFACE SUBROUTINE

This subroutine performs initialization
for the QTAM control program. It is
entered from the first-level Interrupt
Handler (FLIH) of the supervisor whenever a
QTAM supervisor call (Qwait or Qpost) is
issued .•

Associated with each entry to the Entry
Interface subroutine is a supervisor­
created supervisor request block (SVRB)i
the SVRB is converted to a subtask control
block (STCB). One otherwise unused word in
the SVRB is zeroed and is later used pS an
event control block (ECB) for controlling
the dispatching of its associated subtask.

The "new" STCB is placed at the head of
the STCB chain of the QCB for the last dis­
patched queue (i.e., the queue from which
QTAM last activated a subtask). The sub­
routine then exits to the Qwait or the
Qpost subroutine, depending on which SVC
was issued.

QTAM POST (QPOST) SUBROUTINE

The Qpost subroutine places the address
of the QCB named by the calling routine
into the QCB address field of the specified
resource element control block (this is the
means by which an element becomes asso­
ciated with a QCB). The subroutine then
branches to the Priority Search subroutine
to cause the element to be placed on the
ready queue in priority order.

QTAM WAIT (QWAIT) SUBROUTINE

When the Qwait subroutine is entered,
the STCB representing reentry to the call­
ing routine (when the wait condition is
satisfied) has already been chained into a
QCB by the Entry Interface subroutine. The
Qwait subroutine determines what further
disposition should be made, based on cur~
rent conditions, to schedule the subtask
for activation. Four sets of conditions
determine the disposition:

1. If the QCB into which the STCB has
been chained (i.e~, the user-specified
or "new" QCB) has a key of 2 (the

106

highest-priority subtask is "not wait­
ing")" the Qwait subroutine makes no
further disposition. but branches
immediately to the Defer Entry subrou­
tine at UNA VAIL.. Reasons for this
branch are explained in the discussion
of that subroutine.

2. If the new QCB has an element avail­
able on its element control block
chain" the STCB remains linked into
the QCB (the "old" QCB) that had been
selected by the Entry Interface sub­
routine. The Qwait subroutine then
branches to the Exit Select subroutine
at RETURNX. This causes the address
of the element found on the element
chain of the new QCB to be placed in
the calling routine~s parameter regis­
ter., which is itself stored in the
save area of the STCB. The net effect
is that at the time the subtask is
acti vated'I1 it appears in the STCB
chain of the Qattach QCB" or the STCB
chain of the dispatched (old) QCB; the
element chain from which it is drawing
el ements" however '6 is tha t of the QCB
specified by the calling routine
(i.e." the new QCB). This action
insures immediate satisfaction of the
wait condition when the requested ele­
ment is available .•

3. If the new QCB has no elements avail­
able, but the last dispatched queue
(old QCB) and the queue specified by
the calling routine (new QCB) are the
same., the STCB is already chained into
the correct QCB and that QCB is al­
ready waiting on the ready queue. The
Qwait subroutine branches to the Qdis­
patch subroutine.

4. If the new QCB has no elements avail­
able and is not the QCB for the last
dispatched queue, the STCB must be
linked into the STCB chain .of the new
QCB; therefore., the Qwait subroutine
branches to the Defer Entry subroutine
at UNAVAIL.

The Wait subroutine is also entered at a
special entry point" UNAVAIL-6" by the BRB
Ring and Send Scheduler routines in the
Implementation module.. The purpose is to
determine if the last dispatched QCB and a
QCB specified by the calling routine are
the same .•

DEFER ENTRY SUBROUTINE

This subroutine causes entry to a sub­
task to be deferred. When a control sub­
routine encounters an STCB for a subtask
that cannot be activated, a branch to the
Defer Entry subroutine is taken; this sub­
routine causes the STCB to be removed from
the position at which it was encountered
and linked into the appropriate STCB chain.
After retrieving the pointer to the STCB
from the location where it was encountered
and restoring that location to its former
state, the Defer Entry subroutine branches
to the Priority Search subroutine; this
causes the STCB to be placed, by priority
order" into the STCB chain of the QCB spec­
ified by the calling routine.

An exception arises if the key of the
QCB specified by the calling routine is 2,.
This condition indicates that the highest­
priority subtask on the QCB's STCB chain is
a ready subtask (not waiting for elements)
and is ready to receive control. The STCB
being processed, however, is not ready; if
it is of higher priority than the ready
subtask!, it cannot be placed at the head of
the STCB chain without preempting the
"ready" status that applies to the current
top STCB, and that STCB should be honored
first for maximum efficiency. Therefore"
the Defer Entry subroutine enters the
Priority Search subroutine by a path that
ensures that the new STCB is enqueued by
priority order below the current top STCB.

PRIORITY SEARCH SUBROUTINE

This is a generalized subroutine that
determines the position within a chain that
an item should assume in order to be in
correct priority sequ~nce; items in the
chain are arranged in descending order of
priorities from the top of the chain. This
subroutine acts on all chains including the
ready queue.

The subroutine examines each item on the
chain until it finds either an item with
lower priority than that of the search
argument!, or the last item on the chain
(signalled by priority 255). When either
condition is met, the subroutine exits to
the Queue Insert subroutine.

QUEUE I~SERT SUBROUTINE

This is a generalized subroutine that
links items into a chain; it is applied to
all chains including that of the ready
queue,. When this subroutine is entered, a
register contains a pointer to the link
address portion of the item at the point in
the chain at which the new item is to be
inserted; a second register holds the

address of the item to be inserted. (The
point of insertion is the head of the chain
except when this subroutine is entered from
the Priority Search subroutine" which
selects the insertion point according to
the item's priority,.) The subroutine
places the old link address in the new
item. replaces the old link address with
the new item's address, and exits to the
Qdispatch subroutine,.

QDISPATCH SUBROUTINE

This subroutine performs the primary
internal management function within QTAM,
except for those cases in which another
subroutine is able to determine the next
subtask to be activated (e.g. 6 when the
Qwait subroutine finds that elements are
already available to a subtask requesting
elements and that the Qdispatch subroutine
can be bypassed). The Qdispatch subroutine
maintains continuity by receiving control
from a completed subtask and by selecting
another subtask that is to receive control.

The Qdispatch subroutine examines the
item at the head of the ready queue and
takes one of four courses of action"
depending on the type of item encountered.
Items that can appear on the ready queue
are:

1. Queue control blocks for which the
highest-priority subtask is not wait­
ing for elements (QCB key is 2') ,.

2. Queue control blocks waiting fQr ele­
ments (QCB key is 3).

3. Resource element control blocks con­
taining the address of the QCB to
which the element has been posted
(RECB key is 0).

4. Full subtask control blocks for which
the key value is also zero. The first
word of a full STCB contains the
address of the Qattach QCB.

The effect of the appearance of each
type of item at the head of the ready queue
is described in the following paragraphs.

Queue Control Block - Not Waiting (Key Is
2): When the item at the head of the ready
queue is a "not waiting" QCB" control is
given to the first (highest-priority) sub­
task represented in the QCB' s STCB chain"
and the QCB" s key is set to 3 ..

Queue Control Block - waiting (Key Is 3):
A "waiting" QCB at the head of the ready
queue is removed from the ready queue
(i.e., replaced by the item linked to it),
and its key is set to 1,. A QCB waiting for
elements cannot contend for control; how-

QTAM Control Module Subroutines 107

ever, it is automatically returned to the
ready queue when an element becomes
available.

When a subtask requiring rrore than one
element (e.g." a series of buffers) to
accomplish its functio .1 receives control"
the associated QCB continues to appear as
"waiting" (key is 3) until all required
elements have been received. Before a
waiting QCB is removed" it is determined
whether the QTAM subtask that had control
last was associated with that QCB. If it
was, that subtask is again given control.
This cycle continues until the subtask ful­
fills all of its requirements or until the
subtask exhausts the queue's element chain.

Resource Element Control Block: Each
resource element control block (RECB) that
has been posted to the ready queue contains
the address of the QCB for.the queue to
which the element has .been posted. .When an
element reaches the top of the ready queue"
it is immediately replaced by the QCB to
which it points. However, the QCB pointer
in the RECB is retained. That QCB is then
treated as though it, rather than an ele­
ment associated with it, had been encoun­
tered; its highest-priority subtask is
activated, and its key is set to 3.

This convention has several significant
aspects:

1. It is the means by which a removed
"waiting" QCB is returned to the ready
queue .•

2. It illustrates the case where the
active QCB (i.e." the QCB with which
the active subtask control block is
associated) is not necessa~ily at the
head of the ready queue.

3. It explains the fact that an RECB need
not be physically chained into a QCB
to become associated with that QCB.
Specifically" it ensures that an ele­
ment is immediately acted upon" except
in the case where the queue involved
already has at least one other "real"
element and is already contending for
computing time.

Full Subtask Control Block: This is the
only form of STCB that appears an the ready
queue. Its appearance at the head of the
ready queue has exactly the same effect as
the appearance of a "no~ waitingn (key=2)
QCB with this STCB at the head of its' STCB
chain; the)subtask is activated and the key
of the QCB with which it is associated
(Qattach) is set to 3.

The mecnanism by which this is accom­
plished is as follows:

108

1. Location READY contains a pointer to
the STCBi this situation is the phys­
ical counterpart of· the STCB's being
at the head of the ready queue.

2. The STCB itself has the appearance (to
the QTAM control routines) of an ele­
ment. Its QCB address is QATTACH.

3. QATTACH is a storage location equiva­
lent to READY minus 8 bytes'; it also
appears to be the first word of a nnot
waiting" QCB.

4. Since the STCB is apparently a
resource element control block asso­
ciated with a "not waiting" QCB" the
first STCB in that QCB's chain should
be selected for activation,. The
address of the first STCB is to be
found in the third fullword of the
QCB.

5. The third full word of the QATTACH"
which appears as a QCB" is the loca­
tion READY. Therefore" the full sub­
task whose address is at READY is
selected for control.

EXIT SELECT SUBROUTINE

This subroutine activates subtasks
represented by truncated STCBs or falls
through to the Exit Interface subroutine if
the STCB is a full STCB.

The first byte of a truncated STCB is a
branch modifier of the form (entrypt-NRET).,
where entrypt is the address of the desired
entry point. NRET is the location from
which the branch offset is applied. When
the Exit Select subroutine encounters a
nonzero return code" it computes the branch
address and branches to the computed entry
pOint.

EXIT INTERFACE SUBROUTINE

This subroutine is entered to process
full STCBs. First the subroutine deter­
mines whether or not the subtask is being
scheduled for activation because it was
represented in the STCB chain of a waiting
QCB for which an element has been encoun­
tered. If this condition exists. the
address of the element is placed in the
parameter register in the save area of the
full STCB.

The subroutine links to the operating
system Post routine~ which posts completion
in the event control block of the STCB
(SVRB) being dispatched. The subroutine

then exits in one of two ways" depending on
how the Qdispatch subroutine was entered:

1. If entry to Qdispatch resulted from an
asynchronous interrupt, the subroutine
branches back to the I/O supervisor.

2. If entry to Qdispatch resulted from an
svc w the subroutine issues a wait on
the resource element control block of
the entry SVRB. After the wait is
satisfied" the subroutine returns to
the routine that iss~ed the svc.

QTAM control Module Subroutines 109

QTAM IMPLEMENTATION MODULE ROUTINES

The QTAM Implementation module (module
IGG019NG) I, consisting of 21 routines" is
loaded into main storage by the open Execu­
tor used to open the direct access queues
data set.

RECEIVE SCHEDULER ROUTINE (CHART DH)

If the line is a WT'IA line" thi s routine
tests the EOT flag. If this flag is set"
exit is made to the Defer Entry subroutine
at UNAVAIL in order to enter the line's
Send Scheduler subtask (if any). If the
EOT flag is not set, exit is made to the
BRB-Ring routine at RQCONST to initialize
for receiving.

If the line is not a WTTA line" this
routine examines the current polling list
entry for a line. If polling is to be per­
formed on the line and the current entry is
valid (i.e., is not the dummy entry signal­
ling the end of the polling list) " the rou­
tine branches to the BRB-Ring routine
(RQCONSTR) to initialize for receiving.
Before the branch is executed~ the routine
sets the 'line receiving' code (LCBSTATE=8)
in the LCB to indicate the kind of opera­
tion anticipated.

If the current polling list entry is the
dummy last entry, the routine clears the
line receiving code and branches to the
Defer Entry subroutine at UNAVAIL after
resetting the current entry pointer to the
top of the polling list. The purpose of
this branch is to permit the line's Send
Scheduling subtask to become eligible for
activation if its STCB is also in the
chain. If the Send Scheduling subtask is
not in the chain, the Receive Scheduling
subtask will again be activated to start
polling at the top of tne polling list.

Before the branch to the Defer Entry
subroutine is taken, a possible endless
loop is avoided by a test to determine that
the polling list contains at least one
entry in addition to the dumrry last entry.
If the list contains no true entry and the
next STCB is a full STCB, the LeB is
removed from the ready queue and its
address is stored in the save area of the
STCB. This is done in case of a closedown.
The routine branches to the Exit Interface
routine to post the ECB completed. If the
list contains no true entry and the next
STCB is not a full STCB , the Receive Sched­
uling subtask is left at the head of the
STCB chain but is skipped over. Control
passes to the second subtask in the chain.

110

BRB-RING ROUTINE (CHART DI)

This routine constructs the BRB ring
used to send or to receive a message, and
begins initialization of a CCW in each BRB.
The BRBs are drawn from the pool generated
on expansion of the BUFFER macro instruc­
tion; the routine attempts to form a ring
containing the number of BRBs specified in
the BUFRQ parameter of the DCB.

As an extension of the Receive Scheduler
routine,,, the BRB-Ring routine checks for
messages on the dial out-call queue. If
the line is a dial line and the terminal
has transmitted all messages,,, the dial out­
call queue for the line is obtained in the
DEB. The STCB chain is searched for a mes­
sage whose relative line number is equal to
or less than the relative line number of
the free line. If the terminal for the
STCB is connected to the free line" the
Send Scheduler is removed from the dial
out-call queue and inserted into the STCB
chain for the line by IECKQQ01.

If the terminal is not free, the search
is continued for a message with a relative
line number that is less than the relative
line number of the current line. At the
end of the chain,,, the dial digits are
obtained and the line is set to allow a
dial up. The STCB is removed from the dial
out-call queue chain and inserted into the
STCB chain for the line,o

If no messages are found" the line was
not a dial line~ or the terminal could not
be disconnectedw the LCB is set to receive
and the BRB ring is constructed.

When the routine is entered, a register
is adjusted so that the line control block
appears to the system to be an STCB.. This
anticipates the situation in which not
enough BRBs are available to complete the
ring; in this case" the LCB is placed on
the STCB chain of the active buffer request
queue (through a branch to UNAVAIL- 6" the
instruction preceding the Defer Entry sub­
routine) '. When a BRB is posted to that
queue" the BRB-Ring routine makes another
attempt to complete the ring. When suffi­
cient BRBs are available g the resulting BRB
ring consists of a series of BRBs, each
containing:(l) in the third fullword. the
transfer-in-channel operation code and the
address of the preceding BRB/CCW in the
ring" and (2) in the fourth fullword" a
pointer to the LCB for which the ring was
constructed.

Since each BRB/CCW contains a transfer­
in-channel to the previously built BRB/CCW"
the TIC address in the first BRB/CCW is
initially meaningless. The last step in
completing the ring (if enough BRBs were
available) is, therefore, to reset the
first BRB/CCW to transfer-in-channel to the
last one. If the order of construction of
a four-member BRB/CCW chain was A-B-C-D,
the order of execution will be A-D-C-B.

When the BRB/CCW ring is completed, the
LCB is removed from the location where it
was encountered as an apparent STCB (that
is, from the head of an STCB chain or the
ready queue). Depending upon whether a
Send or a Receive operation is being pre­
pared for, further initialization is
performed:

1. The element control block portion of
the first BRB/CCW is given a priority
value:

RECEIVE - 12
SEND - 0

2. Into the LCB is inserted an operation­
type code for subsequent use by BTAM:

RECEIVE - 1 (Read Initial)
SEclD - 2 (Write Initial)

3. A register is initialized for the QCB
of the queue to which the first BRB/
CCW is to be effectively (but not lit­
erally) posted:

RECEIVE - Active buffer request queue
SEND - Disk input/output queue (for

Send operations, additional
initialization consists of
setting an MSTATUS code of 9
and of inserting the rela­
tive record number for this
first segment of the
message.)

ACTIVE BUFFER REQUEST ROUTINE (CHART DL)

This routine is entered on activation of
the active buffer request subtask. The
element passed to the routine is an active
BRBi the routine determines whether a buf­
fer to satisfy the request is available and
should oe assigned, or whether the active
BRB should be enqueued for later servicing.

If the active BRB represents the begin­
ning of a BRB ring to be used for a receive
opera tion" the routine removes a buffer
from the element chain of the available
buffer QCB and exits to the Buffer BRB rou­
tine. Parameters passed to that routine
are: the address of the active BRB" the
address of the removed buffer" and the
address of the available buffer QCB.

If the active BRB is not the first of a
ring for a Receive operation n or if it is
the first but no buffer is available'll the
routine branches to the Priority Search
subroutine to cause the active BRB to be
enqueued on th.e element chain of the active
buffer request queue.

AVAILABLE BUFFER ROUTINE (CHART DM)

This routine is entered on activation of
the available buffer subtask~ or from the
Buffer BRB routine. The routine responds
to the availability of a buffer by attempt­
ing to locate an available BRB. If no BRB
is available~ the buffer is chained into
the element chain of the available buffer
queue through a branch to the Queue Insert
subroutine. If a BRB. is available" this
routine branches to the Buffer BRB routine.

BUFFER BRB ROUTINE (CHART DN)

This routine is entered from either the
Active Buffer Request routine or the Avail­
able Buffer routine. Its function is to
examine a buffer request block and to make
the appropriate disposition of the buffer
depending upon the status of the BRB.

1. If the BRB is associated with a Read
from DASD operation~ the routine
effectively (but not through an SVC)
posts the BRB to the disk I/O queue
and the buffer to the available buffer
queue.

2. If the BRB is associated with a Read
from line operation~ the routine
assigns the buffer to the line and
exits to the Interim LPS routine to
cause the buffer to be placed on the
LPS queue.

3. If the BRB is associated with a PUT
operation, this routine branches to
the Put routine., which places the data
into the buffer, ..

DISK I/O ROUTINE (CHART D2)

This routine is entered on activation of
the disk input/output subtask. The routine
chains message-filled buffers (for disk
writes) and BRBs (for disk reads) to the
element chain of the disk input/output
queue" and issues the SIO command (through
an SVC 0) to write on or read from disk.
Before issuing the Start I/O command, the
routine converts the relative record number
used by QTAM into a relative track address"
and then branches (through a BALR) to a
module of the basic partitioned access
method to convert the relative track
address to an actual DASD address.

QTAM Implementation Module Routines 111

DISK END APPENDAGE (CHARTS DO AND 01)

This routine is an I/O appendage entered
from the I/O supervisor following a DASD
Read or write operation. In a Receive
operation" the routine routes the empty
buffer required for the next segment to be
received to the available buffer queue. In
a Send operation, the routine routes the
message-filled buffer to the LPS queue"
initializes the next BRB in the ring to
read the next segment of the message, and
if a buffer has been assigned" routes it to
the disk input/output queue.

LPS CONTROL ROUTINE (CHART DO)

When entered, the LPS Control routine
issues an immediate SVC to Qwait on the LPS
queue for:

1. An available buffer into which a mes­
sage segment is to be read.

2. A buffer containing a text or header
segment (that is" a message-filled
buffer) that has been read or is to be
written.

3. The last segment of a message after it
has been written.

4. A request to start a disk I/O
operation.

5. A request for a closedown.

When an available "first" buffer is
encountered, the routine exits to the
Activate routine to cause receipt of the
message to be initiated. When a full buf­
fer or the last buffer is encountered, the
routine branches to the beginning of the
line group routine defined by the user
through LPS macro instructions. If the LCE
is for checkpoint, an SVC Qpost is issued
to post the LCB. Upon encountering a re­
quest for a closedown" the routine returns
to the problem program at the instruction
following ENDREADY.

ACTIVAT~ ROUTINE (CHART DP)

This routine initializes for a communi­
cations line Read or Write operation and
branches to the BTAM Read/Write routine.
An exception arises if a Send operation is
scheduled for a terminal not eligible for
receiving; an error status code is set in
the LCB" and the routine exits to the
user's LPS routine.

If the line is a WTTA line with the
receiving code in the LCB, and if the EOT
flag is set, the Read Initial operation

112

I
code is set in the LCB (01 in LCBCECB); if
the EOT flag is not set" the Read Continue
operation code is se~ (03 in LCBCECB).

Before entering BTAM'I the routine
initializes the LCB to route the received
message segment to a queue of messageshav­
ing erroneous destination information.
This routing information will be overlaid
if valid destination information appears
later.

LINE S10 APPENDAGE ROUTINE (CHART DQ)

This routine is entered from the super­
visor EXCP handler after an EXCP (SVC 0)
has been issued by BTAM" but before an SIO
command has been issued. The routine modi­
fies the BTAM generated channel program to
meet QTAM requirements.

If this routine was entered at Open
time u flags are set to indicate ERP is in
control. Return is made to lOS, which will
give control to the Open and Checkpoint
routines,.

When this routine is entered, BTAM has
generated a channel program consisting of
several channel corr.mands including a Write
Data or Read Data CCW. QTAM has created a
ring of BRB/CCWs " each containing the PCI,
flag and a transfer-in-channel command to
the following BRB/CCW. The routine links
these two channel programs together by al­
tering the flags in the BTAM Read or write
Data CCW and by adding a transfer-in­
channel command to the second QTAM BRB/CCW
(see Figure 24).

When the channel program is executed"
the first buffer is transmitted under the
BTAM Read or Write Data CCW. If QTAM has
already scheduled a second buffer (usually
this is the case) " a transfer-in-channel to
the QTAM CCW takes place" and the second
buffer begins to fill. The PCI flag in the
QTAM CCW causes the Line PCI Appendage to
be entered as filling of the second buffer
begins. (If a second buffer is not avail­
able" QTAM sets the PCI flag in the BTAM
CCW.)

If the channel program involved is for
an initial Read" the Line SIO Appendage
also replaces the polling character pointer
in the BTAM Write Polling Characters CCW
with a pointer compatible with the QTAM
polling technique. If the CCW is for an
autopolled I ine" a header indicator is set
and the polling pointer is not adjusted.
If polling has been suppressed for the ter­
minal, QTAM replaces the Write Polling
Characters CCW with a NO-poll CCW,.

When the required adjustments have been
made, QTAM branches back to the EXCP Hand­
ler to cause the SIO command to be issued.

LINE PCL APPENDAGE ROUTINE (CHART DR)

This routine is entered when a program
controlled interrupt occurs during the
execution of a QTAM channel command for the
line. The function of the routine is to
dispose of the buffer filled or emptied by
the channel command preceding that which
caused the PCI, and to place a request for
the buffer that is to be emptied or filled
by the CCW when it is again encountered in
the ring. For an autopolled terminal" the
routine adjusts the poll pointer to enable
the terminal that has messages to send" to
be repeatedly polled until it has no more
messages or the limit is reached.
Graphically:

r--------T------,
IREAD (A)I TIC I
I I
I I I L ________ ~ ______ J

r--------T------,
READ (B) I TIC I

I I
I I I L ________ ~ ______ J

r--------T------,
READ ec) I TIC I

I I I
I I I L ________ ~ ______ J

This CCW pair filled
buffer (A), ~hich is to
be disposed of.

This CCW pair is fill­
ing buffer (B) and
caused the PCI.

This CCW pair will fill
buffer (C), which must
now be obtained.

For receive operations" buffer (A) is
routed to the interim LPS queue; for send
operations" the buffer is routed to the
available buffer queue. In either case,
the request for buffer (C) is routed to the
active buffer request queue.

LINE END APPENDAGE ROUTINE (CHARTS DS AND
DT)

This routine is an I/O appendage entered
on channel end during line I/O operations

lor by the WTTA Line End Appendage when a
I channel end has occurred on a WTTA line.

NormallYr, the routine routes a message­
filled buffer to the LPS queue or exits to
the supervisor to restart. the channel pro­
gram. When entered because of a negative
response to polling, the routine resets the
polling list pointer to the next entry in
the polling list before initiating restart.

If the routine was entered due to a SAD
or Enable command, return is to lOS if IDLE
was specified; otherwise the LCB is posted

to start the line~ If there is terminal
test activity the buffer is posted to the
LPS queue.

If this routine was entered from the
WTTA Line Appendage and if no program check
has occurred., return is made to the WTTA
appendage.

If the buffer is a header on an auto­
polled line. the indication is cleared. If
the CCW is for a Read Text" the routine
links to the Line PCI Appendage to adjust
the polling pointer.. Otherwise" a test is
made for possible errors.

If there were no errors" a test is made
for an autopolled line. If there is a mes­
sage to send and it is either send priority
or end of poll ing I ist" the message is sent
by posting to the interim LPS queue.

If the status" or unit exception (not
for a Read Response to polling CCW or
enable) is not a normal indica tion" return
is made to lOS to call in Error Recovery
Procedures. If the completion code is not
normal and the SIO condition code is 3 r,
return is made to the LPS Control routine
to free the buffer.

This routine may also be entered as a
result of a program check occurring because
a buff er was not provided on time" or
because a CCW with a zero data count was
accessed. The two low-order bits of the
TIC command in each BRB/CCW are used to in­
dicate BRB status. When a buffer has been
allocated" these bits are set to zero.
Because of timing considerations" a PCI
flag in the CCW preceding a CCW containing
a TIC may not interrupt the channel program
before the transfer-in-channel command is
executed,. If this happens before the
required buffer has been allocated and the
BRB status code has been cleared~ the
requirement that the TIC address be on a
doubleword boundary is violated by the non­
zero low-order bits and a program check
occurs. Four possibilities arise:

1. The check occurred on the TIC follow­
ing the CCW for.the last segment of an
outgoing message. This is a normal
situation and is ignored. (The miss­
ing buffer is for the next segment and
there is no next segment.) If this is
not the case., the start channel pro­
gram pointer (LCBSTART) is reset to
the CCW to which the TIC command was
to have transferred control; this
anticip~tes correction of the
condition.

2. It ~8 possible that through asynchro­
nous operations a buffer was allocated
and the TIC address was made valid in
the period between the generation of

QTAM Implementation Module Routines 113

program check and its detection by the
program. If this is true, the channel
program is simply restarted.

3. The process of allocating a buffer may
already have been initiated; if SOl'

the routine exits to the supervisor to
allow time for the process to
complete.

4. If the process of allocating a buffer
has not already been initiated, the
routine branches to the Line PCI
Appendage (at NOTINO) to release the
buffer filled by the CCW immediately
preceding the TIC that caused the pro­
gram check.

WTTA LINE APPENDAGE ROUTINE (CHARTS R1'I R2"
R3, AND R4)

This routine is entered from the
supervisor:

1. When a program controlled interrupt
(PCI) occurs during the execution of a
QTAM channel command for the line; or

2. On channel end during I/O operations.

Furthermore, this routine can be reentered
from the QTAM Line End Appendage routine.

The WTTA Line Appendage is composed of
the following two routines:

• The WTTA Line PCI routine

• The WTTA Line End routine

WTTA LINE PCI ROUTINE

The WTTA Line PCI routine is entered
when a program controlled interrupt (PCI)
occurs during execution of a QTAM channel
command for the line.

If the interrupted channel command is a
Write CCW or a Read CCW with a residual
count in the CSW that is different from the
ini tial count" control is returned to the
QTAM Line PCI Appendage routine.

If the interrupted channel command is a
Read CCW with identical initial and residu­
al counts, the action taken depends on the
type of Read CCW, as follows:

1. If the interrupted channel command is
the first Read CCW" the PCI is ignored
and control is returned to the
supervisor.

2. If the interrupted channel command is
a Read CCW in a BRB, the Line PCI rou­
tine tests the last character con-

.114

tained in the last filled buffer" as
follows:

a. If this character is EOM. EOT. or
WRU" the residual count of the CSW
is set to zero and the address of
the CCW corresponding to the last
filled buffer is inserted in the
CSW .•

b. If this character is other than
EOM.., EOT" or WRU., the CSW remains
unchanged.

Then the routine exits to the QTAM Line PCI
Appendage routine.

WTTA LINE END ROUTINE

The WTTA Line End routine is entered
when an I/O operation ends with a channel
end condition l, or is reentered from the
QTAM Line End Appendage routine.. If an I/O
operation ends with channel end (C,. E.) and
uni t check (u.. C,.) .., the result of the Sense
operation is analyzed to check whether an
abnormal condition occurred and" if so,, the
ERP routine is entered,.

The operations executed by the WTTA Line
End routine depend on whether this routine
is entered 'on completion of a Halt I/O
operation" of a Read ("hannel programl, of a
Wri te channel program l, or of an excnange of
identifications" as follows:

1. On completion of a Halt I/O operation:
If data is being received at the same
time as the Halt I/O operation is
executed. the interrupted Read Initial
channel program is restarted. If no
data is being received" a Write chan­
nel program is started to send a "let­
ters shift" character followed by "n"
padding characters (where "nn is the
number specified in the DCB macro
instruction). On completion of this
Wri te channel program" control returns
to the Interim LPS routine.

2. On completion of a Read channel pro­
gram: The last character received in
the corresponding buffer is analyzed.,
as follows:

a. If this character is EOT, the EOT
flag is set, and the buffer is
posted to the Interim LPS routine.

b. If this character is EOM., the buf­
fer is posted to the Interim LPS
routine.

c. If this. character is WRU. the
action taken depends on whether or
not the buffer is the first one.
If the WRU character is in the
first buffer" the Read CCW is
updated to read the rest of the
buffer" and the first part (identi-

fication exchange) of the Read
channel program is started. If the
WRU character is in another buffer"
the "WRU" flag is set in the LCB,
and the buffer is posted to the
Interim LPS routine.

3. On completion of a write channel pro­
gram: The operations to be executed
depend on how the I/O operation has
ended:

a. If the I/O operation has ended with
a normal end condition, the buffer
is posted to the LPS queue, .pro­
vided no exchange of identifica­
tions is requested at the end of
the output message. If this
exchange is requested" the first
part (identification exchange) of
the Write channel program is
started.

b. If the I/O operation has ended with
an abnormal end condition (conten­
tion), the contention counter is
incremented, and a Write Break CCW
is started (provided the threshold
value has not been reached). On
completion of this CCW, the inter­
rupted Wr i te CCW is restarted,.

4. On completion of an exchange of iden­
tifications: The result of the
exchange is analyzed to determine
whether or not the exchange has been
successfully performed and to take the
appropriate action, as follows:

a. If the exchange is unsuccessful,
this condition is set in the line
error halfword, and the buffer is
posted to the Interim LPS queue
(for receiving operations) or to
the LPS queue (for sending
operations) .

b. If the exchange is successful, the
action taken depends on when the
exchange has been performed.

At the beginning of an output mes­
sage: The Write channel program is
restarted.

At the end of an output message:
The last buffer is posted to the
LPS queue.

When receiving an input message:
If EOM=WRU, the last buffer is
posted to the Interim LPS queue.
If EOM is not WRU, the Read channel
program is restarted to read the
rest of the input message.

BUFFER CLEANUP AND RECALL ROUTINE (CHARTS
DD AND DE)

This routine is entered through a branch
instruction generated on expansion of a
macro instruction in the problem program.
The routine performs a cleanup function
when entered at IECKPR through the calling
sequence generated by a POSTSEND or POST­
RCVE macro instruction,. The recall func­
tion entry IECKRC is performed when entry
is through the calling sequence associated
with a CANCEL" EOBLC" ERRMSG, or REROUTE
macro instruction. The difference between
the two entry paths is that in the second
case the recall flag is set on in the LCB
(LCBSTATE = 64).

For either a cleanup or a recall opera­
tion,g the routine releases all buffers
assigned to the line,. Buffers are released
to the appropriate queue through an SVC 67.
(The first buffer to be released may al­
ready contain a message segment; if so, it
is posted to its destination queue.) The
first buffer (if it does not already con­
tain a message segment) and all subsequent
buffers not scheduled to be filled are
posted to the available buffer queue.
Additional CCWs encountered in the BRB ring
from which buffers are being released are
posted to the additional CCW queue.

Buffers that have been assigned to the
line and have also been scheduled for a
read from direct access storage are treated
differently. When such a buffer is encoun­
tered" the routine branches to the LPS Con­
trol routine. At that time, the "cleanup"
flag or the "recall" flag (but not both) is
on in the LCB for the line" indicating the
type of operation in progress.

When the LPS Control routine is entered,
it waits for a message-filled buffer and
proceeds as usual unless the buffer is
assigned to a line for which the "recall"
or "cleanup" flag is on. When a buffer
with either flag (but not both) on is
found, the LPS Control routine branches
back into the Buffer Cleanup and Recall
routine n where the buffer is then released
to the available buffer queue.

To recall a message segment, the routine
provides the buffer request blocks required·
to read message segments from direct access
storage,,, obtains the segment being
recalled, and exits to the calling routine.
When the cleanup operation is complete,
exit is made to the Free BRB routine. This
routine frees all BRBs in the BRB ring and
posts each to the inactive BRB queue. The
routine then posts the line to itself,
which is the standard technique for return­
ing a line to the free condition,,, and exits
to the LPS Control routine.

QTAM Implementation Module Routines 115.

DASD DESTINATION ROUTINE <CHART DX)

This routine is entered on activation of
the DASD destination subtask, or by a
branch-and-link from the Send Scheduler
routine. The latter entry occurs when the
Send SCheduling subtask is activated
because of the availability of a message­
filled Duffer.

For buffers contain ing text segments.,
the routine routes a full buffer to the
disk I/O queue and increments the message
count (unless a CANCEL operation is in pro­
gress). The LCB for the source line (the
line on which the segment now in the buffer
was received) is removed from the source
chain in which it previously appeared and
linked into the source chain for the
destination queue. The next segment rela­
tive record number is calculated and
stored, and the routine either:

116

1. Returns to the Send Scheduler routine"
or

2. Exits to the Qdispatch subroutine.

GET SCHEDULER ROUTINE (CHART DV)

This routine is entered when a buffer
has been returned or when a disk read from
a process queue has been completed. The
routine makes three tests to determine
whether the proceSSing program is ready to
accept another segment.. If (1) there is no
message segment in the DASD process queue"
or (2) there are too many buffers in the
process queue for the proceSSing program to
handle, or (3) a segment is currently being
read from the DASD process queue" no furth­
er disk reading can be initiatedn and this
routine exits to the Qdispatch routine. If
none of the three conditions exists. the
routine initiates a disk read from the DASD
process queue.

Before Line 510 Routine Entry

BTAM CCWl CHAIN

BTAM CCW2 CHAIN

BTAM CCW3 (DATA) CHAIN

.--

On Initial Exit from Line 510 Routine

BTAM CCWl CHAIN

BTAM CCW2 CHAIN

BTAM CCW3 (DATA) TIC to 2

During Channel Program Execution

L
P

OT AM BRB/CCWl C TIC to 2
I

P
OT AM BRB/CCW2 C TIC to 3

I

~
OT AM BRB/CCW3

OTAM BRB/CCWl

OTAM BRB/CCW2

OT AM BRB/CCW3

OT AM BRB/CCWl

OT AM BRB/CCW2

OT AM BRB/CCW3

P
C
I

P
C
I

P
C
I

P
C
I

P
C
I

P
C

\ I

TIC to 1

I

TIC to 3

TIC to 1

TIC to 2

TIC to 3

TIC to 1

Figure 24. Interaction Between BTAM and QTAM Channel Programs

QTAM Implementation Module Routines 117

RETURN BUFFER ROUTINE (CHART DW)

This routine returns a buffer from the
MS process queue and exits to the Get
Scheduler routine to allow resumption of
disk reading from the DASD process queue ..
If the Duffer is not the dumrry buffer for
the first GET, the routine effectively
posts the nuffer to the available buffer
queue if the buffer is not the last seg­
ment. If it is the last segment and if the
"cleanup," "recall," and "converse" bits
are set, the buffer is posted to the LPS
queue.

END OF POLL TIME DELAY ROUTINE (CHART DJ)

This routine delays polling for a speci­
fied amount of time. If entered from an
I/O interrupt, the routine goes to the
Defer Entry routine, because the SVC cannot
be given when an interrupt has occurred.

The routine issues the TIME macro
instruction to obtain the tirre of day. The
interval of intentional delay specified by
the user is added to the time of day and
stored in the LCB. The LCB is inserted
into the time queue. If the interval of
time has not yet elapsed, the routine
issues an STIMER macro instruction to time
the intentional delay. The exiting routine
sets the condition code and obtains the
address of the time queue QCB. The routine
branches to the Line PCI Appendage to put
the time queue on the ready queue.

When the time queue is dispatched from
the ready queue and an LCB is in the time
queue, the TIME macro is used to obtain the
current time of day. If the time has
elapsed, the LCB is removed from the time
queue. If the LCB is for a checkpoint, a
branch is taken to the Post subroutine to
post the LCB. If the line is active, the
LCB is placed into the top of the ready
queue to activate the line before going to
the Priority Search subroutine.

INTERIM LPS ROUTINE (CHART DU)

Before the buffers are processed, the
INTERM queue is put on the ready queue
behind the LPS queue. This is a special
queue to delay the LPS until all buffer
requests are processed.

SEND SCclEDULER ROUTINE (CHAR'I' DK)

This routine is entered when an LCB is
on the top of the ready queue or when a
message is to be written on a disk. If a
message is to be written, the routine links
to the DASD Destination routine at entry
point SCREEN to cause a post to the disk

118

I/O QCB. If the DCB has not been opened or
the DEB is not open for output, the routine
branches to the Dispatch subroutine
(IECKQQ01) '.

If the DCB is open for output and the
line is a WTTA line~ the routine tests the
line for availability. If the line is not
available" a branch is made to the defer
entry subroutine. If the line is avail­
able, the HIO flag is set in the LCB" and a
Halt I/O operation is issued to clear the
Prepare command,.

For dial lines, if the relative line
number of the STCB is greater than the
relative line number of the current line,
the STCB is placed on the dial out-call
queue. If the line is connected to the
destination terminalw the STCB is chained
to the LCB and immediately dispatched. If
the line is not connected to the correct
terminal n the line group is searched by
relative line number for a line that is
free and the terminal available for dial,.
(This test is made on the priority of the
Send Scheduler and is set to 1 by the TERM
macro for dial lines that are not con­
nected.) If no line is found, the STCB is
chained to the dial out-call queue.

For all lines, the LCB is set to indi­
cate that the line is trying to send. If
the line is free the destination LCB with
the send scheduler STCB is placed on the
ready queue and dispatched. If the line is
not free and is not an autopolled linev a
branch is taken to the Defer Entry subrou­
tine. If an autopolled line with receive
status (LCBSTATE is X'08'), the TIC command
code is changed to a NOP before branching
to the Defer Entry subroutine ..

If the routine was entered because the
LCB was on top of the ready queue" the rou­
tine tests for an incoming priority mes­
sage. If the line is sending or is in
initiate mode, and if there are no complete
nonpriority messagesw or if there are
priority messages coming in, the LCB is
removed from the source chain. If the line
is neither in an initiate mode nor sending,
the status of the LCB is cleared~ If a
partial message is present in the queue (an
invalid condition) the routine branches to
the wait subroutine. After setting the
status code u the routine exits.. If the
routine was entered via the Get Scheduler
routine" return is to that routine,. If a
line is sending. the routine branches to
the BRB Ring routine at RQCONST.

FREE BRB ROUTINE (CHART DF)

This routine returns the BRBs to the
inactive BRB queue. If a buffer request is
pending (BRB is in the buffer request

queue) " the BRB is not freed. If the BRBs
are not in the active buffer request queue.
the routine posts all BRBs to the inactive
buffer request queue. The remaining BRBs
will be freed by the Buffer BRB routine.
When all the BRBs that have no buffer re­
quest pending are freed, the line is freed
by posting the LCB to itself.

END INSERT ROUTINE (CHART DG)

This routine is entered by a branch and
link from the End of Address, conversation­
al Mode, or Distribution List routines.
The End Insert routine enters the address
of a special entry point in these routines
in a chain to be executed according to the
priority specified by the Buffer Cleanup
routine.

The End Insert routine corrpares the
priority specified in the calling routine
with the priority that has been set in the
End Insert routine. If the priority is
less than that of the highest-priority rou­
tine, the priority of the calling routine
is compared with the next routine in the
chain until the priority is higher.

When the priority of the calling routine
is higher than the one in the chain" the
address and priority of the calling routine
are inserted in the constant of the higher­
priority routine in the chain.. The pointer
to the calling routine is adjusted to the
BAL instruction. The operand of this
instruction in the calling routine is over­
laid with the constant following the BAL
instruction. This constant contains a reg­
ister that has been set up by the calling
routine. To complete the chain,,, the con­
stant is overlaid with the address and
priori ty of the lower-priority routine,.
This routine branches back to the calling
routine at the BAL instruction.

CROSS PARTITION MOVE ROUTINE (CHART DY)

This routine is entered on activation of
the Move Data subtask., and it is used to
move data while in the supervisor mode.
The routine allows data to be moved between
partitions or within the same partition.
control is passed to the Dispatch subrou­
tine. The routine is passed the address of
the data to be moved in register 5" and the
location into which it is to be placed in
register 4.

QTAM Implementation Module Routines 119

COMMUNICATIONS SERVICEABILITY FACILITIES

This section summarizes the following
operations of the services that QTAM pro­
vides to aid the user in error recovery:

• Checkpoint/Restart
• Error Recovery Procedures
• On-Line Terminal Tests

Note: Since Operator Control has an asso­
ciated LPS macro instruction, the summary
of this facility appears in the section
Message Control Program (LPS) Routines.

CHECKPOINT/RESTART

Checkpoint/Restart is provided as an
optional facility for the QTAM message con­
trol program at user-specified intervals
(every 15 seconds to 15 minutes, or when a
specified number of message processing par­
titions have issued CKREQ macros).. By
using tne QTAM Checkpoint/Restart facility
for the message control program and other
QTAMfacilities such as sequence numbers,
an effective restart can be accomplished in
a message processing program.

The Checkpoint routine (module IGG019NH)
stores tables and other control information
necessary for a subsequent restart after a
system failure. Two such records are kept
(flip/flop) with a pointer to the current
record. For example, the initial check­
point record is placed in area 1; after the
user specified interval, the second record
is placed in area 2; the third, after the
interval~ is placed in area 1~ etc. The
pointer is updated each time and also
stored on the disk in a data set control
record.

Restart of the QTN~ job after a system
failure is accomplished by initial program
loading (IPL) the system again, and loading
the QTAM message control program in the
same location as it was when the failure
occurred. QTAM automatically reinitializes
the tables and pointers from the latest
checkpoint record on the disk.

The Open Checkpoint Records Data Set
routine checks the pointer to the latest
checkpoint record to determine if the data
set was properly closed, never opened., or
left open due to a system failure. If the
data set was never opened or properly
closed, no restart procedure is performed.
If the data set is left open due to a sys­
tem failure, restart is performed in addi­
tion to normal open procedures for the data
set.

120

Restart involves getting main storage
for reading the checkpoint record. The
checkpoint information is then moved to the
proper areas overlaying the ini t.ial values.
The checkpoint information includes the
terminal table, polling lists" the disk
pointers from the QCBs for destination and
process queues n and the address of the next
record to be written on the diska An indi­
cator is set for the line group DCB open
routines to clear the lines in addition to
normal open initial ization.

The ENDREADY macro instruction initiates
the initial time interval request for the
first checkpoint if Checkpoint/Restart has
been specified and the time interval method
is used,.

When the Checkpoint routine gairis con­
trol after the initial time interval has
elapsed or when the specified number of
CKREQ macros have been issued~ storage is
reserved (GETMAIN) and the necessary data
moved into this area.. This record is writ­
ten on the disk in the area specified by
the pointer. The pointer is then updated
and written on the disk.. The storage is
then freed (FREEMAIN).

Close for the Checkpoint/Restart data
set sets the pointer on the disk to indi­
cate that it has been properly closed to
enable a subsequent OPEN of this data set
to distinguish between a normal close and a
system failure.

CHECKPOINT ROUTINE (CHARTS FA AND FB)

Module Name: IGG019NH

Function: This routine causes checkpoint
records to be written on the Checkpoint
Records data set at specified intervals or
when CKREQ macros have been issued from a
specified number of message processing
partitions.

This routine is entered at QUEUEST +10

1. At ENDREADY time (A restart procedure
mayor, may not be in process) 'f

2. When a timer interruption occurs or
the required number of CKREQ macros
have been issued,

3. When the checkpoint element reaches
the top of the disk I/O queuew or

4. When a disk Write operation has been
completed.

The action taken for each type of entry
is discussed in the following paragraphs.

ENDREADY Time: The expansion of the
ENDREADY macro issues an SVC Qpost to cause
the checkpoint subtask to be entered when
the Checkpoint/Restart facility has been
specified. The purpose of this entry is to
set the timer for the first checkpoint
interval and/or to release main storage
obtained during a Restart operation.

If a Restart is in process~ the storage
obtained to read the checkpoint record by
the Open Checkpoint Data set routine
(module IGG0193V) is released by issuing a
FREEMAIN macro. A test is made to deter­
mine if the CKREQ or interval method of
checkpointing is being used. If the CKREQ
method nas been specified (via the CKPART
operand of the TERMTBL macro) " no further
action is required; therefore., exit is made
to the Qdispatch subroutine for a return to
the ENDREADY expansion.

If the interval method has been speci­
fied (via the CKINTV operand)., exit is made
to the Time Delay routine to set the timer
for the first checkpoint interval. The
checkpoint interval is passed in register
6, and the address of the checkpoint ele­
ment (apparent LCB) is passed in register
4.

Timer Interruption or Required Number of
CKREQ Macros Have Been Issued: The check­
point subtask is entered for the purpose of
collecting the data required for a check­
pOint record and for preparing to write the
record on the Checkpoint Records data set,.

A GETMAIN macro is issued to obtain the
main storage required to contain the check­
point record. The following data is then
located and transferred to the checkpoint
work area: each terminal table entry; each
polling list (except for the size byte);
required data from each LCB (LCBCHDR,
LCBNASEG., LCBTTIND, and LCBSTATE fields and
unit address from the UCB); the data
required from each destination QCB (QSIZE"
QNASEG, QBACK, and QFAC fields) and each
process QCB (same as for destination QCB
plus the disk address of the current mes­
sage); and the disk pointers in the error
queue .•

The element chain of the disk I/O queue
is then examined. If other elements appear
on the disk I/O queue, the checkpoint ele­
ment is chained in below them to schedule
the disk Write operation for the checkpoint
record. Exit is then made to the Qdispatch
subroutine to wait for the checkpoint ele­
ment to reach the top of the disk I/O queue

element chain. When this occurs,,, this rou­
tine will be reentered for writing of the
checkpoint record.

If no element is on the disk I/O queue
element chain, an EXCP is issued to start
the disk Write operation. Linkage is made
to the Convert routine to convert the TTR
to an actual DASD address prior to issuance
of the EXCP,. After the I/O has been
started" exit is made to the Qdispatch sub­
routine for dispatching the next ready
item.

Checkpoint Element Reaches TOp of Disk I/O
Queue: The TTR is converted to an actual
DASD address., and an EXCP is issued to
start the disk Write operation.

Disk Write Operation Completed: When a
write to the checkpoint records data set is
completed, the disk interrupt is processed
by an appendage within this routine., and
control eventually returns to this routine
at QUEUEST +10. This disk completion is
recognized., and error checking is per­
formed. If an error occurred on the disk
Wri te" a WTO macro is issued to print an
error message on the system console. The
address of the Checkpoint routine is
cleared in module IGG019NG to prevent any
further attempts to write on the Checkpoint
Records data set.

If no error is detected" a test is made
to determine if the entire checkpoint rec­
ord was written. If not,,, the new write
address and count of remaining data to be
written are computed, and another Disk
Write operation is started. When writing
of the checkpoint· record has been com­
pleted, the current record indicator is set
in the four-byte control record., and the
counter of CKREQ macros required is reset
to its initial value.. An EXCP is then
issued to start writing the control record.

When writing of the control record is
completed, several cleanup and re­
initialization procedures must be per­
formed. The main storage obtained to build
the checkpoint record is released via a
FREEMAIN. If the time interval method is
being usedw exit is made to the Time Delay
routine to set the timer for the next
checkpoint interval. If the CKREQ method
is being used, the ECBs for the waiting
message processing partitions are removed
from the wait queue and posted complete.
Exit is then made to the Qdispatch
subroutine,.

When a CKREQ macro is issued in a mes­
sage processing program, the Checkpoint Re­
quest routine (module IECKCKRQ) issues an
SVC Qpost that causes this routine to be
entered at CKSTCB + 6,. Upon en try, reg ister
1 contains the address of an ECB associated

Communications serviceability Facilities 121

with the partition from which the CKREQ was
issued. This ECB is chained into a wait
queue. The CKREQ counter is decremented by
one and tested to determine if the speci­
fied number of CKREQ macros have been
issued. If not, exit is made to the Qdis­
patch subroutine. If CKREQ rracros have
been issued from the specified number of
message processing partitions~ an exit is
made to the Post subroutine in IECKQQOl to
post the checkpoint element to itself.
This causes this routine to be reentered at
QUEUEST +10 so a checkpoint may be taken.

ERROR R~COVERY PROCEDURE

The Error Recovery Procedure (ERP) rou­
tines are designed to diagnose and recover"
if possible, from all errors occurring dur­
ing a telecommunications operation. The
error routines provide the following basic
functions:

• Automatic retry of all errors not
involving data transfer. Data transfer
is handled by the End of Block and Line
Correction routine.

• statistical recording of all control
unit errors.

• Error messages to the operator console
for all permanent errors.

• Line error recording for all data
checks, nontext time-outs" and inter­
vention required errors.

ERP, which consists of 19 modules"
operates in the nucleus error transient
area within the supervisor protection key.
lOS gives control to the QTAM/BTAM Control
module (IGE0004A) on any error of a TP
device. If the Line End Appendage routine
finds any error in the status or sense,
return is made to lOS indicating that con­
trol is to be given to ERP. Ten routines,
module names ending in E, are called by
IGE0004A according to the error found by
the Control module. The remaining eight
routines are linked by other ERP routines
for error recording and other functions.

The ERP routines and module names are:

IGE0004l!:

IGE0104B

IGE0204£

IGE0304B

IGE0404E

122

Time-out and Data Check for Auto
Poll

Data Check

Time-out

Intervention Required

Lost Data

IGE0504E

IGE0604E

IGE0704E

IGE0804E

IGE0904E

IGE0004F

IGE0104F

IGE0204F

IGE0304F

IGE0404F

IGE0504F

IGE0604F

IGE0704F

Error Post

Bus-out and Overrun

Link

Status Check

Command Reject" Equipment Check"
SNO Error" SIO CCl

Read Skip~ Break Return

Diagnostic Write/Read

Line Error Recording

Operator Control and LER
Addition

special Open and Checkpoint
Restart

Not Operational SIO

Bus-out and Overrun for Auto
Poll

Overrun

Linkage between the modules is done by
lOS through the XCTL routine with a branch
on register 14,. The last four digits of
the module name are placed in register 13#
and the address of the XCTL routine. 44
(CVT address) is placed in register 14.
The possible linkages between modules are
shown in Figure 25.

In this section there is a description
of each module for the QTAM ERP. The
descriptions explain the action taken under
different commands and types of transfer.

Generally~ if there has been no text
transfer, the channel program is retried.
If there is an error after two retries~ the
error is considered permanent. In the case
of a permanent errorw if on a nonswitched
connection" a message is written to the
operator. For a switched line" the sense
bytes,. CSWI/I and failing CCW are saved in
the channel program area LCBCPA +32 through
40 for the message. A CCW for the Disable
to hang up the phone is created as the
first CCW in the channel program. A dis­
able return (X-40') is set in LCBERRCT + 1.
An EXCP is issued to execute the disable,.
Upon return,,, exit is made to lOS ..

For conditions that should not happen"
the "should not occur" bit (bit 7) is set
in the error halfword in the LCB.. This
condition is considered a permanent error.

When there has been an error on a Read
Response to autopolling, the polling list
address and entry size are obtained. The

IGEOI04E
QTAM
DATA CHECK
MODULE

IGE0204E
QTAM
TIMEOUT
MODULE

IGE0004E

IGE0304E
QTAM
INTERVENTION
REQUIRED
MODULE

IGE0404E
QTAM
LOST DATA
MODULE

IGE0004A
BTAM/QTAM
CONTROL
MODULE

!
!

IGE0604E
QTAM
BUSOUT&
OVERRUN

MODULE l
~

IGE0804E
QTAM
STATUS
CHECK
MODULE

IGE0904E
QTAM
MISC
ERROR
MODULE

IGE0704E
QTAM
LINK
MODULE

QTAM
TIMEOUT &
DATA CHECK
FOR AUTOPOLL
MODULE

IGE0604F
QTAM
BUS OUT AND
OVERRUN FOR
AUTOPOLL
MODULE

IGE0704F
QTAM
OVERRUN
MODULE

IGEOI04F
QTAM
DIAGNOSTIC
WRITE/READ
MODULE

IGE0204F
QTAM
LINE ERROR
RECORDING
MODULE

I
NOTE

IGE0304F
QTAM
opcn LER
EXTENSION
MODULE

ALL MODULES CAN EXIT VIA AN SVC 3

Figure 25. Linkage of ERP Modules

polling list is searched for an equal com­
parison on the index byte. If no match is
found, the channel program is restarted
with the existing Poll CCW. If there is an
equal comparison, the address of the match­
ing entry is used, and the count is set to
the new count plus the initial address
minus the address of the matching entry.

When there is an error on the poll CCW"
tpe polling list address and entry size are
obtained. The count is set to the residual
count plus the width of the poll charac­
ters. The data address is the poll list
address and original count minus the new
count.

The following summarizes the switches
that ERP sets in the LCB:

LCBERRCT Retry counter

LCBERRCT +1 X'OO' Normal return
X'Ol' No message required
X'02' Exit to Error Post

routine
X'04' Exit to Diagnostic

Write/Read routine
X'08' Read skip return

IGE0004F
QTAM
READ SKIP,
BREAK
RETURN
MODULE

IGE0504E
QTAMERROR
POST ROUTINE

IGE0404F
QTAM
SPECIAL
OPEN
EXTENSION
MODULE

!
IGE0504F
QTAM NOT
OPERATIONAL
START I/O
MODULE

X-40' Disable return
XuOC' Special open for

Checkpoint/Restart

LCBINCAM +1 XU 03' Time-out update for
Line Error Recording

X·Ol' Data Check update for
Line Error Recording

XV 02' Intervention Required
update for Line Error
Recording

TIME-OUT AND DATA CHECK FOR AUTO POLL
ROUTINE (CHART AF)

~dule Name: IGE0004E

Function: After adjusting to the failing
CCW, the routine tests the CCW:

• For a Read Response to autopolling" the
polling list address and entry size are
obtained. The polling list is searched
to obtain the new count and data
address for the poll CCW,. The channel
program is retried with the first ccw.
Upon return~ linkage is made to the
Line Error Recording module.

Communications Servic~ability Facilities 123

• For a Poll ccw" the poll ing list
address and entry size are obtained.
The new count and data address are
placed in the poll CCW. The channel
program is retried with the first CCW.
Upon return, linkage is made to the LER
module.

If the retry has failed two times" the
time-out error is set in the error half­
word, and linkage is made in order to post
with message.

DATA CHECK ROUTINE (CHART AB)

Module Name: IGE0104E

Function: After initializing" the routine
indicates a data check update for the Line
Error Recording module in LCBINCAM +1
(X' 01')

If the failing CCW is a Read,

• If there has been a text transfer and
no permanent error" linkage is made to
the Error Post routine with an indica­
tion for no message.

• If a read TWX ID response, the channel
program is executed to disable and
redial for the retry.

• If a Read Response to autopolling"
linkage is made to the Time-out and
Data Check for Auto Poll module.

• If a switched connection, the routine
sets up for a retry after the disable­
dial or disable-enable sequence. Upon
returning from the EXCP, linkage is
made to the Line Error Recording
routine.

If the failing CCW is a write"

• For a type I adapter,

(a) If text transfer, linkage is made
to the Error Post routine with no
message indication.

(b) If not text transfer" the channel
program is restarted the same as a
read. Return is made to the Line
Error Recording routine.

• For a WTTA adapter" this is a conten­
tion situation., and the error recovery
procedure has been performed by the
WTTA Line End Appendage routine as long
as the threshold value has not been
reached. When the Data Check routine
is entered, linkage is made to the Line
Error Recording routine with a per­
manent error indication.

124

• For other adapters the routine indi­
cates no linkage to the LER (Line Error
Recording) routine and the ftshould not
occur" bit in the error halfword of the
LCB. A permanent error condition
exists.

If the failing CCW is a poll" linkage is
made to the Time-Out and Data Check for
Auto Poll module.

If retry has failed two times. then it
is considered a permanent error.

• On a 2701 control unit"

(a) If the LER routine is required" an
indication (X'04') for Diagnostic
Write/Read is set in LCBERRCT + 1"
and linkage is made to the LER
routine.

(b) If the LER routine is not required"
linkage is made to the Diagnostic
Write/Read routine.

• Otherwise a normal retry is executed .•

If the failing CCW is a Break for a WTTA
adapter"

• On a 2701 control unit. an indication
(X'04') for Diagnostic Write/Read is
set in LCBERRCT + 1" and linkage is
made to the LER routine.

• Otherwise" linkage is made to the LER
routine .•

TIME-OUT ROUTINE (CHART AC>

Module Name: IGE0204E

Function: After initialization" the rou­
tine tests the failing CCW.

If the failing CCW is a Read"

• For a text transfer" linkage is made to
the Error Post routine with a no mes­
sage indication.

• For a Read Response to autopolling"
linkage is made to the Time-Out and
Data Check for Auto Poll module.

• For a Read Response to polling"

(a')- on a TWX terminal., return is made
to lOS via an EXCP.

(b) otherwise. the channel program is
retried with the first CCW (third
CCW for a Write Initial on a
switched line) '. For switched
lines. a Disable is set in the
first ccw. Upon return. linkage

is made to the LER rrodule (return
to lOS if a text time-out).

If the failing CCW is a Dial" Enable, or
Disable, the channel program is retried
with the first CCW.. Upon return" linkage
is made to the LER module. If the failing
CCW is a prepare, the channel program is
retried beginning with the prepare CCW.

If the failing CCW is a poll" linkage is
made to the Time-out and Data Check for
Auto Poll module.

If retried two times without success., a
permanent error condition exists.

INTERVENTION REQUIRED ROUTINE (CHARTS AD
ANO AE)

Module Name: IGE0304E

Function: After the retry counter in the
LCBERRCT field of the LCB is updated (if
nontext transfer), the CCW is examined.

If the failing CCW is a Read or Write,

• If a Read Response to autopolling" the
polling list address and entry size are
obtained. The polling list is
searched, and the new count and program
is restarted with the first CCW.

• If a text transfer, the error halfword
is updated and posted without a message
(X'03') is indicated in LCBERRCT + 1.
The "time-out" bit is set in the error
halfword. Linkage is made to the LER
routine.

• If this is a switched connection, a
Disable is performed to hang up the
transmitter.

If the failing CCW is a Prepare command
or a Dial" the channel program is restarted
with the first CCW. Upon return, normal
retry is indicated, and return is made to
lOS or the LER module, if required.

If the failing CCW is a poll ccw., the
polling list address and entry size are
obtained, the count and data address are
set in the poll CCW. The channel program
is restarted with the first CCW.

If the retry has failed two times" the
routine considers it a permanent error.

LOST DATA ROUTINE (CHART AG)

Module Name: IGE0404E

Function: After initialization, the CCW is
examined.

If a diaL, the unit failure is recorded
in the Statistical Data Recorder (SOR) and
the channel program is retried using the
first CCW.

If a Read command"

• For TWX 10 response'l the channel pro­
gram is retried using the first CCW .•

• For Read Response to autopolling" the
new count and new data address are
stored in the poll CCW before the chan­
nel program is retried with the first
CCW,.

• For a text transfer"

(a) if the residual count is not zero l,

there is a permanent error
condition..

(b) if the residual count is zero" a
Read Skip return indication (X" 08')
is set in LCBERRCT +1. The Read
Skip CCW is set and executed. Upon
return from the EXCP. the routine
returns to lOS.

• For a switch initial program~ the third
CCW is used to restart. The control
unit failure is recorded in the SORe

If the retry has failed two times" the
routine proceeds with a permanent error,.

ERROR POST ROUTINE (CHARTS AH AND AI)

Module Name: IGE0504E

Function: After initialization. a branch
is taken according to the indication set in
LCBERRCT + 1 by the other ERP modules.

If from a normal post, a permanent error
is indicated in the lOB. If no message is
requiredw an EXCP is issued to return to
lOS. lOS detects the permanent error
condition.

If a disable return, the Redial/Enable
sequence is indicated in LCBINCAM.. For any
error" the "hardware error" bit is set in
the error halfword. The sense bytes., CSW
and CCW are restored for use in message. A
permanent error condition is set in
IOBFLAG1. If a message is not required" an
EXCP is issued to return to lOS.

If a message is required for either
entry,

• If no operator control, linkage is made
to the W~o (Write to Operator) module
supplied by the system.

communications serviceability Facilities 125

• If an error occurred at the operator
control terminal, linkage is made to
the WTO module supplied by the operat­
ing system.

• If operator control and outboard re­
cording (OBR) bits are indicated" the
OBR nit is turned off and linkage is
made to the OBR module.

• If no outboard recording, a message is
prepared.

If a message is to be prepared for the
console,

• For a switched connection, include the
dial digits in the message. The device
type, adapter type, and terminal ID (if
required) are put into the message.
For an autopolled line, the index byte
for the polling list is placed in the
message.

• For operator control, return is made to
lOS through an EXCP and RETURN.

• For no operator control, linkage is
made to the write to operator module.

BUS-OUT AND OVERRUN ROUTINE (CHART AJ)

Module Name: IGE0604E

Function: After initializing. the routine
determines if entered for bus-out check or
overrun.

If the failing CCW is a poll CCW or a
Read Response to autopolling, linkage is
made to the Bus-out and Overrun for Auto
Poll module.

Bus-out check:

If failing CCW is a Write,

• For a response expected (next CCW a
Read) or an IBM Type III adapter" a
Read Skip Return is indicated for the
ERP control module. The retry counter
in the LCB is updated. The Read Skip
CCW is set up in a save area after the
CCws. EXCP is issued to execute the
Read Skip. Upon return, return is made
to lOS.

• For a text transfer and a type I or II
adapter, linkage is made to the Error
Post routine with no message indicated.

• If not a text transfer,

126

(a) If TWX, redial is set, and if a
switched connection, the disable
and redial sequence is bypassed.
The retry counter in the LCB is

updated and control unit failure is
recorded in the SDR table. The
channel program is restarted, and
upon return" exit is made to lOS.

(b) If dial" a disable-redial sequence
is set. The retry counter in the
LCB is updated, and control failure
is recorded in the SDR table. The
channel program is restarted. Upon
return~ exit is made to lOS.

OVerrun check: Linkage is made to the
Overrun module,.

If an error occurs after two retries, a
permanent error condition exists.

LINK ROUTINE (CHARTS AK AND AL)

Module Name: IGE0704E

Function: This routine is entered as a
return from special functions performed by
ERP.

If entry to routine was for the diag­
nostic Write/Read"

• For a Disable, control unit failure is
indicated and the channel program
restarted with the first CCW. Return
is made to lOS.

• For a diagnostic Read that failed,. if a
teletype adapter. a check is made for
unit exception in addition to channel
end/device end. If an error is
detected, control unit failure is indi­
cated in the error halfword,. If an
Enable is not required, linkage is made
to the Error Post routine with indica­
tion for a message. If Enable is
required, the channel program is
executed at the enable CCW. Return is
made to lOS.

• For a diagnostic Write failure, control
uni t failure is indicated in the LCB,.
If Enable is required" the channel pro­
gram is restarted at the Enable CCW.
Return is made to lOS,. If Enable is
not required" the CSW, sense byte" and
CCW is restored f or the message" and
linkage is made to the Error Post rou­
tine with a message indica ted,.

• For an Enable. if not channel end/
device end, control unit failure is
indicated in the LCB,. The sense byte"
CSW, and failing CCW are restored for
message and linkage is made to the
Error Post routine with message
indicated.

If entry was for a Read Skip, post with
message is indicated in the LCBERRCT +1

field of the LCB. Linkage is made to the
Read Skip Return routine.

If entry to the routine was for a Write
Break:

• If channel end" device end, and unit
check are indicated" the sense byte is
tested. If any indication other than
bus-out, linkage is made to the Error
Post routine.

• If a text transfer and if channel end"
device end, or a bus-out indication,
linkage is made to the Error Post rou­
tine with no message indicated.

• If no text transfer and initial type
channel program, the channel program is
restarted with the first ccw. Return
is made to lOS,. If not an initial
channel program, linkage is made to the
Error Post routine,.

If entry to the routine is made for the
special OPEN, linkage is made to the Spe­
cial Open and Checkpoint/Restart module.

STATUS CHECK ROUTINE <CHART AM)

Module Name: IGE0804E

Function: The routine branches to the
operating system supplied Interpreter to
determine the type of status check.

For chaining, program or protection
check,

• If a nonswitched connection or failing
CCW is a Disable, the routine indicates
an outboard recording, and linkage is
made to the Error Post routine.

• If switched connection, the routine
sa ves the CCW sense byte, CSW,. and
indicates a Disable Return. The chan­
nel program is restarted.

For an unit exception, the retry counter
in the LCB is updated and,

• If teletype I adapter, the CCW for a
break is set up.

• If 2701 control unit or permanent
error" the Read Sk ip CCW is set up.
The sense byte", and CSW are savedn and
a Read Skip return is indicated. After
execution of the Read Skip, return is
made to lOS.

• otherwise, a retry is done an the write
CCW. Upon return from the EXCP, return
is made to lOS ..

After two retries, a permanent error
condition exists.

COMMAND REJECT" EQUIPMENT CHECK" SIOCC1,,,
SNO ERROR ROUTINE <CHART AN)

Module Name: IGE0904E

Function: After initialization" action is
taken according to the error.

If initial selection error <SIO condi­
tion code equal to 1), control unit failure
is recorded and the retry counter is
updated in the LCB,. The channel program is
restarted. Return is made to lOS,.

If command reject error" the retry coun­
ter in the LCB is updated and the channel
program is restarted at the command in
error. Return is wade to IOS,.

If equipment check or "should not occur"
(SNO) error, the outboard recording is
indicated. The proper error indicator is
set in the error halfword. For a non-
swi tched connection,,, linkage is made to the
Error Post routine. For a switched connec­
tion" the routine indicates a Disa1;>le
Ret urn and saves the sense byte" and CSW,.
After the EXCP of the Disable" return is
made to lOS.

After two retries. a permanent error
condition exists.

READ SKIP RETURN ROUTINE <CHART AO)

Module Name: IGE0004F

Function: After initialization" action is
taken according to errors found.

For the following indications the
"should not occur" bit is set in the error
halfword,,, and linkage is made to the Error
post routine: uni t check, uni t exception"
command reject, bus-out check" equipment
check, overrun", or residual count equal to
zero.

If the second CCW is for a switched
line,'I the Read Skip sense byte is checked.

• For intervention required or time-out,
a Disable CCW and Disable Return is
set. The channel program is restarted
at the Disable CCW.

• Otherwise" if no text transmitted, the
channel program is restarted at the
third CCW. Return from the error EXCP
is to lOS.

communications Serviceability Facilities 127

• For a text error, linkage is made to
the Error Post routine with no message
indication set.

If the second CCW is not for a switched
line,

• For a text transfer, linkage is made to
the Error Post routine with no message
indicated. Prior to linking, if the
Read Skip ended with a time-out or
intervention required, the routine
indicates that reselection is
necessary.

• For no text transfer" the channel pro­
gram is restarted at the first CCW.
Return from the error EXCP is to lOS.

DIAGNOSTIC WRITE/READ ROUTINE (CHART AP)

Module Name: IGE0104F

Function: After initialization, the diag­
nostic Write/Read indication is set in the
LCBERRCT +1 field of the LCB for returning.
The CCW in LCBERCCW is set up with a Dis­
able. Enable is set at completion unless a
switched connection. If a TWX or 2260 and
type III adapter, the Disable CCW for the
2260 is skipped and the chained Enable is
removed. The address and command code for
the diagnostic Read and write are set in
the channel program area. The test data
for the particular device is also moved to
the channel program area. The EXCP is
issued" and upon return, exit is made to
lOS.

LINE ERROR RECORDING ROUTINE (CHART AQ)

Module Name: IGE0204F

Function: A test is made on the LERFLG1
field of the LCB. If operator control is
to put out a threshold message" linkage is
made to the Operator Control LER module.

If a normal update to the counters, one
is added to the proper error counter in the
LCB. If the transmission threshold value
specified has not been reached, the routine
compares the updated threshold counter. If
that threshold has not been reached" an
exit is made to the module indicated in
LCBERRCT +1, i.e., diagnostic Write/Read"
Error Post routine, or lOS. If the thresh­
old value has been reached (not transmis­
sion) message output is indicated in the
LERFLG1 byte of the LCB. All threshold
values are added to their respective accu­
mulative counters.

If no message is to be printed, the
counters are cleared and the exit is to the
module indicated in LCBERRCT +1, i.e.,

128

Error Post routine, Diagnostic Write/Read
routine, or lOS. If no operator control is
specified" the threshold counters are con­
verted to decimal and inserted into the
message. A Write to Operator macro is
issued to write the message.

OPERATOR CONTROL LER ADDITION ROUTINE
(CHART AR)

Module Name: IGE0304F

Function: This module is linked by the
Line Error Recording module. If this
module was entered to update the temporary
counters, because a message is to be writ­
ten with existing counters, one is added to
the temporary counters and exit is made to
the module indicated in the LCBERRCT + 1
field of the LCB, i.e., Diagnostic Write/
Read routine" Error Post routine l1 or lOS.

If the temporary counters are no longer
needed, they are added to the corresponding
threshold counters, and the temporary coun­
ters are cleared. Return is made to the
Line Error Recording module, which proceeds
as a normal update.

OPEN AND CHECKPOINT RESTART ROUTINE
(CHART AS)

Module Name: IGE0404F

Function: This module is entered from the
ERP control module after the SIO has been
issued.

• If the condition code is 3" linkage is
made to the Not Operational SIO module.

• If the condition code is a 0 or 1, the
TP Op code is examined. For the condi­
tion code of 0 the failing CCW is used;
for condition code of 1 the first CCW
is considered in error.

(a) For an Enable, NOP, or SAD command,
a channel end or device end indica­
tion is valid, so the line can be
started; otherwise, there is an
error.

(b) For a Write Break, if the CSW indi­
cates channel end/device end alone"
the break was successful so the
line is started. If a unit check
is indicated~ the sense byte is
examined. For a data check" the
channel program is restarted with
the first CCW to retry the Write
Break unless ,retried two times. If
retried two times, an error exists.
For all other conditions an error
exists.

(c) For a Read Skip, a test is made in
the status and sense bytes. If no
errors exist, the line is started.

• For an error, if it is Open time, link­
age is made to the Error Post module to
post complete with error. Otherwise,
the line number, operation code, sta­
tus, and sense bytes are placed in the
message. A write to Operator macro is
issued to write the message. Upon
return, the CCWs are restored and the
line is started bypassing the check for
OPEi.~ .

• To start the line the CSW is initial­
ized for the retry. An EXCP is issued
to retry the channel program. If it is
Open time" an indicator is cleared for
Line SIO. Error corrected is indicated
to lOS in LCBFLAG1. An ERREXCP (SVC1S)
is issued to return to lOS.

NOT OPERATIONAL START I/O ROUTINE
(CHART AT)

Module l~ame: IGE0504F

Function: After initialization, the rou­
tine issues a Write to Operator macro"
which writes the message, IEC8041 ---- CON­
TROL UNIT NOT OPERATIONAL. Upon return, a
write to operator with Reply is issued to
write the following message: IEC804A REPLY
CONT OR POST.

If the reply is a Cont,

• If this is OPEN time, an EXCP is issued
to return to lOS to retry the channel
program.

• If this is not OPEN time" the SAD and
Enable commands are needed. If a 2702,
the SAD command is used and then stored
in the channel program. A CCW is set
up for an Enable except for the type
III adapter. A Read Skip CCW is placed
in the next CCW except for a type I
adapter, which uses a write Break CCW.
The channel program is executed and
upon return, exits to lOS.

If the reply is a Post,

• If this is OPEN time, Idle Open is
indicated in the CCW in the LCB and
normal completion is set in the lOB.
Return is to lOS via an EXCP.

• If it is not OPEN time,
sets the "cleanup" flag
a special flag for Line
BRB to ignore the line.
to indicate a permanent
Return is to lOS via an

the routine
in LCBSTATE and
End and Free

The lOB is set
error to lOS.
EXCP.

BUS-OUT AND OVERRUN FOR AUTO POLL ROUTINE
(CHART AU)

Module Name: IGE0604F

Function: After initialization, the rou­
tine tests for bus-out or overrun checks.

For bus-out check g

• If the failing CCW is a poll operation,
the address of the polling list and the
length of the entries are obtained.
The new count and data address are
stored in the poll CCW. The retry
counter is updatedn and the control
unit failure is recorded. The channel
program is retried with the first CCW.

• If the failing CCW is a Read Response
to polling w the address of the polling
list and the length of the entries are
obtained. A search is made for the
correct data address and count for the
Poll CCW. The retry counter is updated
and control unit failure is recorded,.
The channel program is retried with the
first CCW.

For an overrun check, the "should not
occur" bit is set in the error halfword and
a permanent error condition exists.

After two retries. a permanent error
condition exists. For a bus-out the con­
trol unit failure is set in the error half­
word. An indication is set for outboard
recording. Linkage is made to the Error
Post routine.

OVERRUN ROUTINE (CHART AV)

Module Name: IGE070F

Function: This module is linked to as the
result of an overrun indication found by
the IGE0604E module. After initialization,
the failing CCW is examined.

For a Read CCW;,

• If text transfer" linkage is made to
the Error Post routine with no message
indicated.

• If an initial channel program and a
response to a TWX IOu the channel pro­
gram is restarted after the Dial/Enable
sequence.

• Otherwise" the control unit failure is
recorded and the channel program is
retried at the first CCW Q Upon return
from the error EXCP, return is made to
lOS.

Communications Serviceability Facilities 129

For a NO-OP CCW"

• If a Read Initial channel program,
linkage is made to the Error Post rou­
tine with no message indicated •

• Otherwise, the "should not occur" bit
is set in the error halfword and a per­
manent error condition exists.

If the retry has failed two times" a
permanent error condition exists.

ON-LINE TERMINAL TEST

The Resident Terminal Test routine is
the only routine of the on-line terminal
test that remains in storage at all times.
This module is located by a "V" type
address constant in the LPSTART macro
expansion.

The Header Analysis routine is brought
into the SVC transient area and executed by
a SVC 77 from the Resident Terminal Test
routine.

The Header Analysis routine brings the
needed terminal test routines into the SVC
transient area.

These routines perform the function of
examining the test request message and per­
forming the desired test.

The test request message is sent from
the terminal to initiate the test. The
format of this message is:

99999 format-integer test-integer type­
integer [addr-char(s)] [unit-char(s)]
[text-char(s)] end-char

where:

99999 is the test activation code.

format is zero or one,.

test specifies kind of test (1 through
9) •

type specifies type of terminal test is
for one (1 through 6).

addr address of the terminal.

unit

130

• Format 0 means exact address.

• Format 1 means a symbolic
address.

specifies particular unit of the
terminal.

text

end

is the text of the message,.

specifies the end of the Test Re­
quest Message.

RESIDENT TERMINAL TEST ROUTINE (CHARTS QL
AND QS)

Module Name: IECKONLT

Function: This routine recognizes terminal
test activity, calls terminal test tran­
sient routines H sends test messages"
cleanup, stops and restarts line operation,.

The LPSTART macro generates a linkage to
the module that checks the incoming mes­
sages for the test activation code. If the
code is not present, normal operation of
LPS continues.

If the test activation code is present,
the buffers associated with the line opera­
tion are posted to a test QCB. The subtask
activated (Terminal Test Buffer Routing
subtask) will set test identification flags
in the buffer prefix containing the test
request and post it to the LPS queue. Sub­
sequent buffers will be posted to the
available buffer queue. (terminal tests
will utilize only the buffer containing the
header segment.)

Upon the next execution of the LPSTART
macro, the buffer with the "test request"
and "test identification" flags is pro­
cessed by the routine. The "test identifi­
cation" flags are recognized at entry to
the module and the terminal test transient
routines are called. These routines vali­
date the test request and set up the appro­
priate test.

The buffer is then posted to another
test queue control block. The subtask
activated stops the line to be utilized by
the terminal tests by placing a test sub­
task control block in the STCB chain of the
appropriate LCB,.

After the line operation has been
stopped, further identification flags are
set in the buffer prefix and again it is
posted to the LPS queue. Upon the follow­
ing execution of the LPSTART macro,.these
flags are recognized at entry into the
module and the test message is sent to the
terminal •

Upon completion of the test message
transmission" the Line End Appendage posts
the buffer to the LPS queue. All areas and
buffers utilized by the terminal tests will
then be freed and QTAM line operation will
be restarted on the subject line .•

If a test message is to be returned to
the requesting terminal on a dial line., the
transient routines are called immediately
upon recognition of the test activation
code. The test message is then sent to the
terminal without utilizing the stop Line
subtask. Buffers are released to the
available Duffer queue by the buffer rout­
ing subtask.

The Terminal Test Buffer Routing subtask
and Terminal Test Stop Line subtask are a
part of the Resident Terminal Test routine.

TERMINAL TEST HEADER ANALYSIS ROUTINE
(CHART QA)

Module ~ame: IGC0007G

Function: This routine performs prelimi­
nary validation of the test request, trans­
lates the input message as necessary., and
sets up terminal addressing characters.

The input message is located and any
translation necessary is performed. Trans­
lations that may be needed are symbolic
addresses of terminals and translation
between ASCII and BCD.

The proper terminal addressing charac­
ters are placed in the buffer prefix along
with the addresses of the LCB and UCB.

Control is then passed to the proper
terminal test routine to complete the acti­
vation of the on-line terminal test.

TERMINAL TEST ROUTINES (CHARTS Q3, Q4, Q5,
Q6., AND Q8)

Module Names: IGC 0107G.q IGC 02 07G,
IGC0407Gw IGC0307G. IGC0507G g IGC0607G

Function: These routines cause the genera­
tion of channel programs according to the
terminal used.

All of the following attributes are
independent of the terminal type. Addi­
tional functions are present in specific
Terminal Test modules (example: the IBM
1050 module, IGC0207G, considers the dial
capability).

The header of the test request message
is inspected. If any part of the header is
found to be invalid (example: test-integer
of zero)" the no-test switch is set and
control is returned to the Resident Termi­
nal Test module. If the header is valid~
processing of the test request message
continues.

If the format-integer is zerol!! the addr­
char is exact and is moved directly into
the buffer. With a format-integer of in
the addr-char must be interpreted and the
proper characters placed in the buffer.

A GETMAIN is issued to provide area for
building channel programs and output data.
If no main storage is available" the no­
test switch is set and control is returned
to the Resident Terminal Test module.

All general CCWs are built before deter­
mining the type of test to be performed.
After the test type has been determined,
the CCWs necessary for the data are con­
structed and any message to be sent to the
terminal is prepared. Control is then
returned to the Resident Terminal Test
module.

Communications Serviceability Facilities 131

QTAM CHARTS

Chart AB. Data Check Routine

132

BI---'-------,

INITIALIZE
REGISTERS

CI---'-----.

SET NEXT
MODULE EQUAL
TO LINE ERROR
RECORDING

ASSUME RESTART
AT FIRST CON

E 1---'-----.
ADD ONE TO SUM
OF ERPAND
EOBLC COUNTER,
ZERO EOBLC
COUNTER

INDICATE NO
LINE ERROR
RECORDING

KI---L------,

SET 'SHOULD NOT
OCCUR' IN ERROR
HALF WORD

SET RESTART AT
THIRD CCW

DCKPOLL

DCTXTER
A3-----,

STORE RETRY
COUNT IN
EOBLC ENTRY
COUNTER

DCFIRST
B3--------,

STORE RETRY
COUNT IN
ERP COUNTER

EREXCP SVC IS

F3
LINE ERROR
RECORDING

REQUIRED

NO

DCDIAGWR H3---'-------,

INDICATE LINE
ERROR RECORDING
TO EXIT TO
DIAGNOSTIC

RITE/READ

K2_---'-__ --,

SET NEXT
MODULE EQUAL
TO DIAGNOSTIC
WRITE/READ

A5,------.
INDICATE LINE

NO ERROR RECORDING
>---~TO EXIT TO POST,

NO MESSAGE

C4ISTHISA~
./ SWITCHED NO
<---CONNECTION

H4
YES

D4----'-----,

SAVE SENSE
AND STATUS IN
LCBCPA +32
TO 39

E4_--L __ ----,

SET UP
DISABLE CCW IN
LCBERCON

F4----'-----.

SET RESTART AT
LCBERCON

SET NEXT
MODULE EQUAL
TO POST

GET ADDRESS OF
LINK ROUTINE
FROM CVT

Chart AC. Time out Routine

Bl--'---~

INITIALIZE
REGISTERS

Cl----L--~

SET NEXT
MODULE EQUAL
TO LINE ERROR
RECORDING

Dl-----'-----.
ADD ONE TO SUM
OF ERPAND
EOBLC COUNTERS;
ZERO EOBLC
COUNTER

E l----L-----.

SET RESTART
AT FIRST CCW

Gl IS
FAILING CCW

~~ABLE, DIAL,
~OR DISABLE

SET 'SHOULD NOT
OCCUR' ERROR
AND INDICATE
NO LINE ERROR
RECORDING

TOCKCNT
A2 _--1. __ --,

STORE RETRY
COUNT IN
ERP COUNTER

TOEXCP
C2---'------,

INITIALIZE
10BSTART WITH
RESTART ADDRESS

D2'-----'-----.--.

TOREAD

ERROR
EXECUTE
CHANNEL
PROGRAM
SVC 15

STORE RETRY
COUNT IN
ERROR
HALF WORD

INDICATE
POST WITHOUT
MESSAGE

SET TIMEOUT
ERROR IN ERROR
HALF WORD

C3--'----.

SAVE SENSE
AND STATUS

D3:---'---­
INDICATE
DISABLE RETURN
AND SET UP
DISABLE CCW IN
LCBERCCW

E3--L---.

TOPRIOR

RESTART
ADDRESS IN
LCBERCCW

TOPERM

TOLINK

A4·-----,

INDICATE
POST WITH
MESSAGE

SET NEXT
MODULE EQUAL
TO POST

D4,-----L-----,

GET ADDRESS
OF LINK
ROUTINE
FROM CVT

G4-----

TO~ERB C5:--'----.

SET TIMEOUT
CODE FOR
LER UPDATE

MOVE DISABLE
OP CODE TO
FIRST CCW

SET RESTART YES G5 IS
ADDRESS EQUAL ~-'-:"-<SECOND CCW A
TO LCBCPA+16 DIAL

H5-----,

INDICATE
CORRECT
TO lOS

J5 --'-----,....,

~
J4RESIDUA[

E5 YES COUNT EQUAL

ORIGINAL
COUNT

ERROR
EXECUTE
CHANNEL
PROGRAM

NO

K4---'----.

INDICATE NO
LINE ERROR
RECORDING

QTAM Charts 133

Chart AD.

134

Intervention Required Routine

IGE0004E

Al-----­
ENTRY

B 1---'-----,

ADJUST TO
FAILING CCW

NO

TOPOLL
DI----I------.

TOPOLSUB ADDS

GET POLLING
LIST ADDRESS
AND ENTRY SIZE

ADJS

E 1---1.-----,
SET COUNT
EQUAL TO
RESIDUAL
COUNT +

,WIDTH

F1----I------.
SET DATA ADDR.
= POLL LIST ADDR
+ ORIGINAL
RESIDUAL COUNT
- WIDTH

TORDPOLL
C2-------.
TOPOLSUB ADDS

GET POLLING
LIST ADDRESS
AND ENTRY
SIZE

SET DATA
ADDRESS EQUAL
TO ADDRESS OF
MATCH ENTRY

G2-----'------,

SET COUNT
EQUAL TO COUNT
IN 2ND POLL +
POLL LIST ADDR -
ADDR OF MATCH

TOCOM
H2---'-----,

STORE NEW
COUNT IN FIRST
POLL CCW

J2 _---L __ ---,

STORE NEW
DATA ADDRESS IN
FIRST POLL CCW

K2 _--L __ ---,

RESTORE POLL
CCW OP CODE

YES

NO

E3:-------.

BUMP TO NEXT
Et(JTRY IN LIST

INITIALIZE
10BSTART WITH
RESTART ADDRESS

C4 --'-----,..,

ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC IS

TOLERB
D4 _--L __ ---,

SET TIME OUT
CODE FOR LER
UPDATE

E4 ----'---.,

GET ADDRESS OF
LINK ROUTINE
FROM CVT

YES

TOSWT
AS-------,

SET TIMEOUT
ERROR IN ERROR
HALFWORD

TOPOST
BS-----'------.

INDICA TE POST
WITH MESSAGE

TOPOLSUB
ES--'----,

GET POLLING
LIST ADDRESS
FOR THIS RLN
FROM THE DCB

FS--'----,

ASSUME WIDTH
EQUAL TO 3

DECREMENT
WIDTH
BY 1

Chart AE.

IGE0304F

B1

INITIALIZE
REGISTERS

C1

ADD ONE TO
SUM OF ERP AND
EOBLC RETRY
COUNTERS, ZERO
EOBLC COUNTER

D1

SET NEXT
MODULE EQUAL
TO LINE ERROR
RECORDING

STORE RETRY
COUNT IN
ERROR HALF
WORD

INDICATE POST
WITHOUT
MESSAGE

Intervention Required Routine (Continued)

B2 IS
FAILING

CCW A DIAL OR
PREPARE

CCW

D2
INDICATE
'SHOULD NOT
OCCUR' ERROR
AND NO LINE
ERROR RECORDING

INDICATE POST
WITH MESSAGE

SET TIMEOUT
EXCEEDED IN
ERROR HALFWORD

G2 IS THIS A
/' SWITCHED
~CONNECTION

INDICATE LER
TO EXIT TO
POST

NAME OF
NEXT MODULE
IS POST

YES

YES

B3

STORE UPDATED
RETRY COUNT IN
ERP RETYR
COUNTER

D3

RESTART ADDRESS
IS LCBCPA

E3
IS SECOND

~ CCW
A DIAL OR

ENABLE

F3

RESTORE DISABLE
OP CODE IN
LCBCPA

H3-----'---~

SAVE SENSE
AND STATUS

J3_-L __ ----.

RESTART
ADDRESS IS
LCBERCCW

IRRETRY
B4

INITIALIZE
IOBSTART WITH
REST ART ADDRESS

C4

ERROR EXECUTE
CHANNEL
PROGRAM
SVC 15

D4 LINE

~ ERROR
RECORDING

REOUIRED

NO

GET LINK
ROUTINE
ADDRESS FROM
CVT

YES

QTAM Charts 135

Chart AF.

136

Time out and Data Check for Auto Poll Routine

BI_----1 __ ---.
IRPOlSUB AFD5

GET POLLING
LIST ADDRESS
AND ENTRY
SIZE

CI-~-----,

SET COUNT
EQUAL TO
RESIDUAL
COUNT + WIDTH

DI_~ __ ---.

SET DATA ADDR.
= POll LIST
ADDR + ORIGINAL
RESIDUAL COUNT
- WIDTH

IRRDPOll
B2_----1 __ ----.

IRPOlSUB AFD5

GET POlLING
LIST ADDRESS
AND ENTRY
SIZE

AFJ5

C3 INDEX
BYTE STORED ~N:.;;O~_~
= INDEX BYTE
'IN ENTRY'

D3-........ ----,

SET DATA
ADDRESS EQUAL
TO ADDRESS OF
MATCH ENTRY

E3----L-----,
SET COUNT EQUA
TO COUNT IN

ND POll + POll
LIST ADDR. -

DDR. OF MATCH

STORE NEW
COUNT IN FIRST
POll CCW

G3-...L.--....,

STORE NEW
DATA ADDRESS
IN FIRST POll
CCW

H3-...L.---.

RESTORE POll
CCW OF CODE

C4--'-----.

BUMP TO
NEXT ENTRY

·IN LIST

IRPOLSUB

AF
D5

E5--L.----.

GET POlLING
LIST ADDRESS FOR
THIS RlN. FROM
THE DCB

F5 ---'-----.

ASSUME WIDTH
EQUAL TO 3

DECREMENT
WIDTH
BY 1

Chart AG. Lost Data Routine

IGE0404E LDREAD

LDPOLL
B1 B2 B4 B5

INITIALIZE STORE RETRY SAVE SENSE GET ADDRESS OF
REGISTERS COUNT IN ERP AND STATUS POLLING LIST

RETRY COUNTER

C1 C5

SET DISABLE RE-
ASSUME RESTART TURN AND SET UP ASSUME 3 BYTE
IS LCBCOA DISABLE CON IN ENTRY SIZE

LCBERCON

D1
ADD ONE TO SUM
OF RETRY RECORD CONTROL RESTART ADDRESS
COUNTERS: ZERO UNIT FAILURE IN IS LCBERCCW
EOBLC RETRY SDR TABLE
COUNTER

LDTEXT

E3

INITIALIZE STORE RETRY
SET ENTRY

IOSTART WITH COUNT IN ERROR
SIZE = 2

RESTART ADDRESS HALF WORD

F2 F4 F5

RR OR ,EXE CUTE SET READ SKIP NEW COUNT =
HANNEL PRO- RETURN RESIDUAL COUNT

GRAM SVC 15 +WIDTH

G3 G4 G5
NEW ADDRESS =

SET SHOULD NOT INCIDATE POST SET UP READ OLD ADDRESS +
OCCUR IN ERROR WiTHOUT MES- SKIP CON IN ORIGNAL COUNT
HALF WORD SAGE LCBERCON -WIDTH-

RESIDUAL COUNT

H4 H5

H11S THIS A SAVE SENSE AND
STORE NEW < SWITCH

NAME OF NEXT COUNT IN
MODULE = POST STATUS AFTER TIC FIRST POLL CONNECTION CON IN CPA CON

1 J5
H3

STORE NEW AD-GET ADDRESS OF
RESTART ADDRESS LINK ROUTINE DRESS IN FIRST
IS LCBCPA + 16 FROM CVT POLL CON

QTAM Charts 137

Chart Ali. Error Post Routine

IGE0504E

PORET
Bl B5

ERROR,

INITIALIZE
DECREMENT EXECUTE

REGISTERS
COUNT FOR CHANNEL
ID MOVE PROGRAM

SVC 15

Cl
SET TRANSMIT
ERROR IN ERROR INITIALIZE

TURN OFF OBR
HALF WORD; CCW REGISTER

REQUIRED
SET COUNT FOR INDICATOR
ID MOVE = 2

Dl D2 D3 POLL

CLEAR SET NEXT D4
EXTENDED

NEXT MODULE IS

MESSAGE
MODULE WRITE = OUTBOARD <'fAILING CCW

AREA
TO OPERATOR RECORDER TEXT TRANSFER

POGO
E3 E4 E5

E2 IS ACCESS < OPERATOR
NO ADDRESSING TERMINAL ID TERMINAL ID

CONTROL CHARACTERS ADDRESS FROM ADDRESS FROM

SPECIFIED FROM TERMTBL LCBPOLPT LCBCPA +8

~ PLOK
F4

F2 F3
INDICATE ~ERROR OCCUR
RE-DIAL ITH OPERATOR YES < IS THISA

NECESSARY CONTROL TERM SWITCHED
CONNECTION

NO

POSWT
G2

INDICATE NO
G3

NEXT < IS THISA YES

MODULE
READ TYPE

OPERATION

YES

H2 H3 H5

SET CONTROL INDICATE INDICATE MOVE LAST

UNIT ERROR IN I/O ERROR STEP TO EXTENDED FOUR DIAL

ERROR HALF MESSAGE FOR POLLING MESSAGE DIGITS TO

WORD OPERATOR CHARACTERS FORMAT MESSAGE

AWARENESS AREA

J 1 J2

RESTORE SAVED PUT OP CODE

SENSE AND OF FAILING

STATUS CCW IN
MESSAGE AREA

K2

INDICATE MOVE LINE K3 1030
PERMANENT NUMBER TO 0260 OR 2740 ZERO

ERROR TO lOS MESSAGE WITH STATION LCBSENSE + 1
AREA CONTROL

aDo
H4

138

Chart AI. Error Post Routine <Continued)

SET SECOND
SENSE BYTE IN
UCB70 X 'FF'

MOVE TP OP
CODE FROM CCW
TO MESSAGE
AREA

Dl--L-----,

ZERO ERP
LINKAGE
AND RETRY
COUNT

GET ADDRESS OF
LINK ROUTINE
FROM CVT

QTAM Charts 139

Chart AJ.

140

Bus Out and Overrun Routine

IGE0604E

BI

NAME OF
NEXT
MODULE =
POST

Cl

INITIALIZE
REGISTERS

FI
ADD ONE TO
SUM OF ERP
AND EOBLC
CTRS. ZERO
EOBLC COUNTER

Gl

RESTART
ADDRESS IS
LCBCPA

BOCKCNT

B2
STORE
RETRY
COUNT
IN ERP
COUNTER

INITIALIZE lOB
START
WITH RESTART
ADDRESS

F2
ERROR
EXECUTE
CHANNEL
PROGRAM
SVC 15

GET LINK
ROUTINE
ADDRESS FROM
CVT

BOSNO

A3.

SET 'SHOULD
NOT OCCUR
ERROR'

BOPERM

B3

SET CONTROL
UNIT FAILURE

IS
C3 THIS A NO < SWITCHED

CONNECTION

D3

SET DISABLE
RETURN

E3

SAVE SENSE
AND STATUS

F3
SETUP DISABLE
CCW IN
LCBERCCW
RESTART ADDRESS
=LCBERCCW

BOPOST
G3

INDICATE
OBR
REQUIRED

H3

GET NAME
OF OVERRUN
MODULE

BOWRIT

OVTXT

D4

STORE
RETRY COUNT
IN ERROR
HALFWORD

INDICATE
POST WITHOUT
MESSAGE

BORETRY

RESTART
ADDRESS IS
LCBCPA+16

YES

BOSKIP
B5

SET READ
SKIP
RETURN

STORE RETRY
COUNT IN
ERP COUNTER

D5

SETUP READ
SKIP CCW IN
LCBERCCW

E5

RESTART
ADDRESS IS
LCBERCCW

BOLOOP

F5

SAVE SENSE
AND STATUS
AFTER TIC
IN CPA

Chart AK. Link Routine

IGE0704E

83---.1.--__

INITIALIZE
REGISTERS

DIAGNOSTIC
READ SKIP READ/WRITE

RETURN------------------~S~P~EC~I~A~L~O~P~E~N~A~N~D~~~-+--~----------------------------LN-D--IA-G-W-RRETURN
LNRgi_K_IP---L __ --. CKPT/RSTRT ENTRY

INDICATE
POST WITH
MESSAGE

WAS ORIGINAL
<zCW FOR TEXT

TRANSFER

J1

RESTART
ADDRESS IS
LCBCPA

YES

K2

LNREAD
D2----------.

NAME OF NEXT
MODULE IS
IGE0004F

F2

STORE RETRY
COUNT IN
ERROR HALF
WORD

H2

INDICATE
RE-SELECTION
NE CESSARY TO
EOBLC

J2

INDICATE
POST WITHOUT
MESSAGE

RESTORE SAVED
SENSE AND
STATUS

C3

NAME OF NEXT
MODULE IS
IGE0404F

GET LINK
ROUTINE
ADDRESS FROM
CVT

RESTORE SAVED
SENSE, STATUS
AND CCW

G5

INDICA TE POST
WITH MESSAGE

LNPOST

H5

NAME OF NEXT
MODULE IS
POST (IGE0504E)

QTAM Charts 141

Chart AL.

142

Link Routine (Continued)

ENDING CONDITIONS OO~§
RECEIVED ON Y

,....--------..... -,.....DIAGNOSTlC-------1-------DISABLE

DIAGNOSTIC
WRITE

DWRDRD READ DWTEST DWRDIS
B3 ~ D4·..:....-....L...---,

('

DWRDWR
D2--L..---,

RESTART ADDRESS
IS ENABLE CCW

CHANNEL SET CONTROL
END, DEVICE UNIT ERROR

END, UN IT IN ERROR
EXCEPTION ALONE HALF WORD

NO

DWEXCP
D4-....L.---,

INITIALIZE
IOBSTART WITH
RESTART ADDRESS
AND ZERO
SENSE

E 4 ---'-----.-,

ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15

Chart AI"l. status Check Routine

•

B2_--'-__ ----,

INITIALIZE
REGISTERS AND
SET CONTROL
UNIT ERROR IN
ERROR HALF WORD

C2---'-----,
ADD ONE TO SUM
OF ERPAND
EOBLC COUNTERS
AND ZERO EOBLC
COUNTER

STINT
D2_-,---,.,

ERROR INTER­
PRETER (OS SUB­
ROUTINE)

STSNO SHOULD NOT
E1----L--~OCCUR ERRORS

SET 'SHOULD NOT
OCCUR' ERRORS
IN ERROR HALF
WORD

STPERM

F1 TH\~ A <: SWITCHED
CONNECTION

G 1 ---'-------.

YES

INDICATE OBR
RECORDING
REQUIRED

H 1---1.-----,

NAME OF NEXT
MODULE IS POST
(lGE0504E)

J1_----L __ ----.

GET ADDRESS OF
LINK ROUTINE
FROM CVT

CHAINING CHECK
PROGRAM CHECK
PROTECTION CHECK

F2-------,

SAVE SENSE
STATUS AND
FAILING CCW

G2_-,-__,

SET UP
DISABLE
CCW

H2--'---....,

SET
DISABLE
RETURN

J2 ---'-----.

RESTART
ADDRESS IS
DISABLE CCW

B4 _--L __ --,

RESTART
ADDRESS IS
SPECIAL CCW

NOTE: ERROR INTERPRETER RETURNS TO
STSNO, STPERM OR STUNEX

STUNEX
E3

UNIT EXCEPTION

RESET CONTROL
UN IT ERROR BIT IN
ERROR HALF WORD

STORE RETRY
COUNT IN ERP
COUNTER

SET UP BREAK
CCWAND READ
SKIP RETURN

NO

RESTART
ADDRESS
IS LCBCPA

CS 1-----1

STRETRY
CS_....L. __ -,

INITIALIZE
IOBSTART WITH
RESTART AD­
DRESS AND ZERO
SENSE

D5--,---...,

ERROR,
EXECUTE
CHANNEL
PROGRAM

STSKIP
J5------,

SET UP READ SKIP
>-_...I-..... ~ CCW AND READ

SKIP RETURN

SAVE SENSE
AND STATUS
AFTER CHAN NE L
PROGRAM

QTAM Charts 143

Chart Al..~.

144

Command Reject, Equipment Check" SIO CC 1" SNO Error Routine

IGE0904E

B1--L----,

INIT. REGS, ADD
1 TO SUM OF ERP
AND EOBLC CTRS,
ZERO EOBLC CTR

RECORD
CONTROL UNIT
FAILURE IN
SDR TABLE

NO

HAS YES
RETRY FAILED >--------------'

INITIALIZE
10BSTART WITH
RESTART ADDRESS

G1
ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15

CKEQCHK

C3 CHANNEL SET 'SHOULD NOT « DATA CHECK >-N....;.O __ -tOCCUR' ERROR IN
OR EQUIPMENT ERROR HALF WORD

........ CHECK/

INDICATE OBR
RECORDING
REQUIRED

F3 IS THIS A < SWITCHED
CONNECTION

NO

POST

G3

INDICATE
POST WITH
MESSAGE

H3

NAME OF NEXT
MODULE IS
POST (IGE0504E)

J3

GET ADDRESS OF
LINK ROUTINE
FROM CVT

YES

YES

D4-----,

USE DUMMY
CCW ADDRESS
IN CSW

F4

SAVE SENSE
AND STATUS

G4

SET UP
DISABLE CCW

H4

SET DISABLE
RETURN

J4

RESTART
ADDRESS
DISABLE CCW

D5------,

CLEAR SIO
CONDITION
CODE IN LCB

Chart AO. Read Skip Return Routine

IGE004F

Bl---'---....,

INITIALIZE
REGISTERS

RDERROR
Dl---'-----,

SET CONTROL
UNIT ERROR
IN ERROR
HALF WORD

NAME OF NEXT
MODULE IS
POST (I GE0504E)

Fl-....L....-----,

GET LINK
ROUTINE
ADDRESS FROM
CVT

NO
C2 IS

RESIDUAL
COUNT

=0

YES

H2

C3------.

NO SAVE READ SKIP
>------1 SENSE BYTE

RDLOOP
D3--L...----.

NO

RESTORE SAVED
CCW SENSE,
AND STATUS

/DID READ NO
~~IP END WITH

PUT RETRY
COUNT IN
EOBLC
COUNTER

T.O. OR I.R.

J2--L...----.

INDICATE
RE-SELECTION
NECESSARY

INDICATE POST
NO MESSAGE

RESTART
ADDRESS IS
LCBCPA + 16

INiTIALIZE
IOBSTART WITH
RESTART
ADDRESS

J4 ---'----,,,
ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15

YES

RDISABLE
E5-----,

SAVE CCW
SENSE AND
STATUS

F5--'---....,

SET UP
DISABLE CCW

G5---'-----,

SET DISABLE
RETURN

H5--L..----,

RESTART
ADDRESS IS
DISABLE CCW

QTAM Charts 145

Chart AP. Diagnostic Write/Read Routine

IGEOI04F

A3

C ENTER

B3

INITIALIZE
REGISTERS

C3

INDICATE
DIAGNOSTIC
READ/WRITE
RETURN

D3

SAVE SENSE,
STATUS AND
FAILING CCW

E"3
SET UP
DIAGNOSTIC
READ/WRITE
CHANNEL
PROGRAM

F3

MOVE DEVICE
DEPENDENT DATA
TO CHANNEL
PROGRAM AREA

G3
STORE ADDRESS
OF DATA IN
DIAGNOSTIC
READ/WRITE
CCW'S

H3

ERR0R,EXECUTE
CHANNEL
PROGRAM
SVC 15

(J3 RETURN
SVC 3

146

Chart AQ. Line Error Recording Routine

IGE0204F

LERMSG
Bl B4

INITIALIZE YES
MOVE LINE
NUMBER FROM

REGISTERS UCB TO LERFLGI
FOR opcn

C2 C5
Cl IS

" OPERATOR YES
~NTROL ABOUT

NO
CLEAR LERFLG 1

TO OUTPUT
MESSAGE

LERLOOP

Dl D4 D5

GET LINK SET REGISTER CONVERT

DETERMINE ROUTINE SO TWO BIT CUMULATIVE

UPDATE TYPE ADDRESS FROM TRANSMISSION COUNTERS TO

CVT COUNTER IS PRINTABLE
UPDATED

LEREXIT

El E4 E5

CLEAR UPDATE ADD ONE TO

INDICATOR TRANSMISSION
COUNTER

Fl F4 F5

ADD ONE TO
THRESHOLD' NAME OF NEXT CLEAR

COUNTER TO BE MODULE IS THRESHOLD

UPDATED IGE0104F COUNTERS

G2~
HAS UPDATED NO YES
COUNTER HIT

THRESHOLD

YES

H2

INDICATE
MESSAGE
REQUIRED

LERADD
J2

ADD THRESHOLD
COUNTERS TO

NAME OF EXIT

CUMULATIVE
MODULE IS POST

COUNTERS
IGE0504E

QTAM Charts 147

Chart AR.

148

Operator Control LER Addition Routine

IGE0304F

B l_--IL.-_---.

INITIALIZE
REGISTERS

Cl

<NTRYFOR
TWO BIT

COUNTER
'UPDATE'

D 1----1-----.

ADD ONE TO
TWO BIT
TRANSMISSION
COUNTER

EI---1------,

ADD ONE TO
INDICATED
TWO BIT ERROR
COUNTER

Fl----L------,

CLEAR UPDATE­
TYPE

OPEXJT
G 1----1----,

NAME OF NEXT
MODULE IS
IGE0104F

IS

NO

HI CODE SET YES
<FOR DIAGNOSTlC~';;;';"'-------------------~

"WRITE/READ/"

YES

NO

J2--------,

NAME OF NEXT
MODULE IS 1-------------1
POST IGE05045

OPE LIM
D41-----lL------.,

CLEAR TWO
BIT COUNTERS

OPLOOP

E4----I-----.

UPDATE
THRESHOLD
COUNTERS BY
OLD TWO BIT

F4-----lL-----.

NAME OF NEXT
MODULE IS
IGE0204F

OPLINK
G4---L---.

GET LINK
ROUTINE ADDRESS
FROM CVT

Chart AS. OPEN and Checkpoint/Restart Routine

IGE0404F

B 1-----1'------.

INITIALIZE
REGISTERS

C 1----'-----.

UPDA TE RETRY
COUNTER

NAME OF NEXT
MODULE IS NOT
OPERA TlONAL
SIO IGE0504F

INDICATE
POST WITH
MESSAGE

G1
SUB A5

H1

GET LINK
ROUTINE
ADDRESS FROM
CVT

INITIALIZE
10BSTART WITH
CON

RESTART
G2

TURN OFF
SIO CODE

J2
ERROR
EXECUTE
CHANNEL
PROGRAM
SVC 15

D3-------,

SET FOR
FIRST CON

CLEAR SPECIAL
ENTRY
INDICATOR

H3
SUB A5

INDICATE TO
START LINE

F4 IS

~rArNrNG FLAG ON
(ERROR)

G3 YES

YES

PI?EPARE I/O
ERROR
MESSAGE

WRITE TO
OPERATOR

NO

B5 ---1.-----.
MOVE OPEN
INDICATOR
FROM LCBCPA +
32 TO LCBCPA +
1

C5--..I.-----,

ZERO LCBCPA +
32

ERR

H5

NAME OF NEXT
MODULE IS POST
IGE0504E

K5

RESTORE
SAVED CON'S

QTAM Charts 149

Chart AT.

150

Not Operational start I/O Routine

EXCP
F2

YES CLEAR UCB
BUSY FLAG

INITIALIZE
10BSTART WITH
ADDRESS OF
LCBERCCW

LOOP

H1 TESTRSTR

SAVE FIRST YES

TWO CCW'S

J1

SET UP
REQUIRED SADXXX SET UP READ

AND/OR ENABLE SKIP CCW

CCW

IGE0504F

ENTRY
B3----'----.

INITIALIZE
REGISTERS

C3-....L--T""'l
WRITE TO
OPERATOR
'XXX CONTROL
UNIT NOT
OPERATIONAL'

WTOR

YES

D3--'----T""'I

WTOR'REPLY
CONT OR
POST'

F3

ERROR EXECUTE
CHANNEL
PROGRAM
SVC 15

J3

SET UP
BREAK CCW

K3

SET SPECIAL
ENTRY
INDICATOR TO
GO TO IGE0404F

CHKPOST NO

NO

AFTOPEN

G4 G5

SET LCBSTA TE
INDICA TE OPEN CLEANUP FLAG
IDLE ON'

H4 H5
SET FLAG FOR

INDICA TE 'ERROR LINE END AND
CORRECTED' TO FREE BRB SO
lOS LINE IS IGNORED

TILL STARTLN

J4 J5

ZERO SPECIAL INDICATE
ENTRY 'PERMANENT
INDICATOR ERROR' TO lOS

Chart AU. Bus Out and Overrun for Auto Poll Routine

IGE0604F

B 1 _-L.. __ --,

INITIALIZE
REGISTERS

Cl

A4

GET POLLING
LIST ADDRESS
AND ENTRY SIZE

Fl--'----,

NEW COUNT =
RESIDUAL COUNT
+WIDTH

Gl
NEW ADDRESS =
OLD ADDRESS +
ORIGINAL COUNT
- RESIDUAL
COUNT - WIDTH

HI

STORE NEW
COUNT IN
FIRST POLL CCW

Jl

STORE NEW
ADDRESS IN
FIRST POLL CCW

Kl-....L...----,

RESTORE POLL
COMMAND CODE

NO

D2-...&----,

SET 'SHOULD
NOT OCCUR'
ERROR

F2---'-----,

SET CONTROL
UNIT FAILURE
ERROR

G2

INDICATE OBR
REQUIRED

H2

NAME OF NEXT
MODULE IS POST

J2

GET ADDRESS OF
LINK ROUTINE
FROM CVT

AURORSP

YES

G3

DOES ENTRY
INDEX =
STORED INDEX

YES

H3
NEW COUNT =
SIZE OF LIST
= START ADDRESS
- MATCH
ADDRESS

J3

NEW ADDRESS =
MA TCH ADDRESS

NO

AUPOLSUB

B4---'-----,

GET POLLING
LIST ADDRESS
FROM SECOND
POLL CCW

C4--.&.----,

G4

SET ENTRY
SIZE = 3

SET ENTRY
SIZE = 2

ACCESS NEXT
ENTRY

B5 _-L.. __ --,

ADD ONE TO SUM
OF ERP AND
EOBLC COUNTERS
ZERO EOBLC
CTRA

C5 _-L. __ --,

STORE COUNT IN
ERP RETRY
COUNTER

RESTART ADDRESS
IS LCBCPA

F5 --.&.----,

INITIALIZE
IOBSTART WITH
RESTART ADDRESS

G5

RECORD CONTROL
UNIT FAILURE
IS SDR TABLE

H5

ERROR EXECUTE
CHANNEL
PROGRAM
SVC 15

QTAM Charts 151

Chart AV.

152

Overrun Routine

IGE0704F

B2-~--....,

INIT. REGS. ADD
1 TO SUM OF ERP
AND EOBLC
COUNTERS; ZERO
EOBLC COUNTER

C2

G2

INDICATE
POST WITH NO
MESSAGE

OVPOST

H2

SET ORB
RECORDING

OVPOST2
J2
GET NAME OF
POST MODULE
AND ADDRESS
OF LINK
ROUTINE

YES

OVSNO

D3-----.

SET SNO BIT
IN ERROR
HALFWORD

F3--L--~

SET DISABLE
RETURN

G3

SAVE FAILING
CON, SENSE
AND STATUS

H3

INDICATE
REDIAL/ENABLE

J3

SET DISABLE OP
CODE, FLAGS,
AND COUNT

RESTART
AFTER DIAL
ENABLE

OVCKCNT

E4---'-----,

STORE
UPDATE
COUNT

RECORD UNIT
FAILURE

OVEXCP
H4

ERROR EXCP
SVC 15

Chart BW. Locate DeB Routine

B2 ---'----.
GET THE ADDRESS
OF THE TERMINAL
TABLE AND SET
USER'S ERROR
FLAG TO ZERO

C2--'---~

GET MAXIMUM
SIZE OF
TERMINAL NAME
FROM TERMTBL

NEXT

D2---L---.

SEARCH TERMTBL
FOR SPECIFIED
TERMINAL ENTRY

FOUND

F2--'----.
GET THE QCB
ADDRESS FROM
THE TERMTBL
ENTRY AND LOAD
REG 1 TO RETURN

YES

H2-....L.----.
GET DCB

NO

ERROR
G3-....L---...,

RET

SET USER'S
ERROR FLAG
TO X'20'

H3---'-----,
LOAD ERROR

ADDRESS FROM
QCBAND
COMBINE WITH
RLN FOR RETURN

FLAG IN
1------1~ REGISTER 15 AND

RESTORE
REGISTERS 4-12

QTAM Charts 153

Chart BX.

154

start Line-Stop Line Routine

IECKLNCH

Bl--L----,

SAVE REGISTERS
AND INITIALIZE
BASE REGISTER

CI_-L-__ --,

INITIALIZE WORK
REGISTERS AND
SET INDEX FOR
SINGLE LINE

DI_--,-__ ...,

SET FLAG
INDICATING
UNOPENED DCB

SET FLAG
INDICATING RLN
TOO HIGH

CLEAR
ERROR
INDICATOR

SET RLN = 1
INDEX = COUNT
OF LINES

LOOP

DETERMINE LCB
AND UCB
ADDRESSES FOR
THE LINE

INDICATE
STARTLN ENTRY

A3--L..----,

GET QCB
ADDRESS

B3---'------....,

POST
ACTIVE
SUBTASK

CLEAR HIGH
ORDER BYTE

SET INCAM TO
DISCONNECT
THE LINE

SET ENABLE
OPERATION
CODE

SETSTART
E4-....L.--....,

INITIALIZE
START; POST
TO LSP QUEUE

F4--L..----,

POST
LCB

S3START

K4----....,

SET FLAG
FOR STARTING

SETCHN
CS--L----,

GET
TIME

POST SIO
SUBTASK

GETTIME

H5--L.--...,

GET TIME
AND WAIT
1.5 MINUTES

• Chart BX1. QTAM start Line-Stop Line Routine

BI
NO

START LINE

YES

CI---'-----,

TURN OFF
INTREL BIT

STOPLN
B2----~

LOAD UCB AD­
DRESS AND SET
UP FOR LOOP

STCBLOOP
C2---'---....,

GET NEXT STCB
IN THE CHAIN

REMOVE
RECEIVE
SCHEDULER

REMOVE
SEND
SCHEDULER

AUTOPOLL

NO

A4---'----,

DETERMINE
PROPER
SAD CODE

B4---'----.

STORE IN
CHANNEL
PROGRAM
AREA

YES

L1NEADDR
G4-----'----,

GET LINE
ADDRESS
FROM UCB

HIOLOOP
H4_--'-__ --,

TURN OFF
ERP FLAGS
AND HALT
THE LINE

B5-----.

BUMP TO
NEXT
CCM SLOT

D5------,

CHANGE TIC
ADDRESS
AFTER POLL

QTAM Charts 155

Chart BY.

156

Breakoff Routine

IECKBRKF

Bl_--L.. __ --,

GET THE
DDRESS OF

THE START OF
DATA FOLLOWING
THE PREFIX

TEXT
Cl---L..-----.

GET THE
LENGTH OF DATA
IN MESSAGE

YES

D2 ARE AL
MESSAGE ~YE~S _______________________ --,

CHARACTERS
IDENTICAL

'TESTLNG
E2_-L-__,

IACCUMULA TE I ~OTAL MESSAGE
LENGTH TO
THIS POINT

F2----'-__ --,

GET MAXIMUM
MESSAGE LENGTH
SPECIFIED BY
USER

J3---_---.
J2

/_PROGRAM·
~HECK FROM

NO BUFFER

YES SET ERRORS AND
>------1 INITIALIZE LCB

FOR BREAKOFF

NO

K3--,---...,
EXCP

WRITE
BREAKOFF
CHARACTERS

GO TO LPS
CONTROL
ROUTINE

NO

G5------,

TURN OFF
RECE IVE BIT IN
LCBSTATE

Chart BZ. Release Intercepted Messages Routine

IECKRELM

B2--L----.

SAVE
REGISTERS 14-12

C2_-L __ ~

ACCESS TERMINAL
TABLE AND GET
TERMNAME SIZE
AND LPS QUEUE
ADDRESS

BUMP TO
NEXT ENTRY

RESTORE
REGISTERS 14-12

DESTERR
D3-----.

YES RESTORE
REGISTERS 14-12

F3------.

GET ADDRESS OF
QMOVE ROUTINE
AND SET UP FOR
ACTIVATION

G3-....L..--.....

GET ADDRESS OF
THE INTERCEPT
FIELD USING THE
OFFSET FROM
LPSTART

H4 ___ --,..,

QPOST H3 HEADER
ADDRESS MORE

/ THAN 1ST ~N:.::O~_-I
""-ELEMENT IN

CAUSE HEADER
ADDRESS TO

'QUEUE

YES

BE MOVED TO
QCB

RETURN
J4-....L..--n

QPOST

CAUSE RESET
OF INTERCEPT
BIT AND SET
SEND BIT

K4--L..--.....,

RESTORE
~ __ -lREGISTERS 14-12

AND LOAD X 'QQ'

RETURN CODE

QTAM Charts 157

Chart CO. Pause Routine

158

IECKPAUS

B2--L-----,

GET ADDRESS OF
FIRST CHARACTER
TO TRANSMIT

INDICE
D2--'----.,
SEARCH FOR
INDICATED
SPECIAL
CHARACTER IN
BUFFER

NO

YES

NEXTCHAR

C3-----.

GET PREVIOUS
COUNT OF
PAUSES

REQUEST AN
INSERT BLOCK

AGAIN
G3_...L-. __ -,

PUT INSERT
BLOCK INTO
BRB-RING

COMPLETE THE
INSERT BLOCK

H4------,

YES BUMP POINTER
TO NEXT
BLOCK

Chart C1. Retrieve - DASD Routine

IECKRETD

(

,A 1

RETRIEVE)
'---T------

r- B 1 --'----.

SAVE
REGISTERS
14-12

YES

r- D1---'---,

GET ADDRESS
OF QTAM
IMPLEMENTA TION
ROUTINE

r- E1---L.----,

BU I LD QCB/BRB
IN THE USER
SUPPLIED
WORK AREA

F1---'---rr
QPOST

POST QCB/BRB
TO DISK
QUEUE

C2------..

RETURN

B3----,...,
QWAIT

WAIT FOR
r-+- MESSAGE TO BE

RETRIEVED
FROM DISK

C3
QWAIT

WAIT FOR
QCB/BRB TO BE
REMOVED FROM
READY QUEUE

,. D3---'---...,

MOVE THE
MESSAGE TO
THE WORK AREA

E3---L..--T1

QPOST

RETURN BUFFER
TO AVAILABLE
BUFFER QUEUE

,- F3 --'---...,

RESTORE
REGISTERS
14-12

(

G3
RETURN

QTAM Charts 159

Chart C2.

160

Retrieve by Sequence Number Routine

IECKRETS

B 1--1.-----,

SAVE REGISTERS

OBTAIN ADDRESS
OF TERMINAL
TABLE AND
MAXIMUM
LENGTH
OF TERMNAME

TERMLOOP
Fl-....L..----,

COMPUTE
NEXT (FIRST)
ENTRY IN
TERMINAL

FOUND
Hl---'------,

COMPUTE OFFSET
OF ENTRY IN
TERMINAL TABLE

J 1--'------,
GET DISK
ADDRESS FROM
QBACK OF
DESTINATION
QCB

Kl-.....I...-----,

OBTAIN ADDRESS
OF SEQUENCE
FIELD

SEQCK 0
A2~ A3------.

~E?UENCE NO =>-=-Y=..;ES:""'-_-I
~OSEQ. NO

SET VALID
INDICATION

1N1~R

B2 SEQ • NO
IN HEADER

<SEQ. NO.
GIVEN

RESTORE
REGISTERS

H2--L--.....,

SET ERROR
CODE X'20'

LOADDASD~--------------------------J
E3 _.....1-__ --, SEQ OUT

GET DISK
ADDRESS OF
NEXT SEGMENT

QUECK
F3------.

YES

MOVE
DESTINA TlON
OFFSET TO
WORK AREA

G3'DEST"'-..
QCB ADDR OF
HEADER = QCB>

ADDR IN/,

TE~B~

G

NO

SEQCK C2A2

TEST
SEQUENCE
NUMBER

SET DISK
ADDRESS IN
REG 1

C5_--'-__ ----,
IECKRETD CIA 1

GET SEGMENT
IN WORK
AREA

D5-----'------,
OBTAIN FROM
HEADER THE NEXT
SEGMENT AND
PREVIOUS HEADER
ADDRE.SS

E5

F5S0URCE
ERMINAL ~

HEADER SAME»
AS SPECIFIED

H5_-1. __ ---,
IECKRETD C1Al

GET NEXT
RECORD

HEADERIN
J5_--'-___ ----,

SEQCK C2A2

TEST
SEQUENCE
NUMBER

Chart C3. Checkpoint Request Routine

IECKCKRO

C3--'---.....

GET ADDRESS OF
CURRENT TCB
AND STORE IN
PASSED ECB

D3

D4------.

NO SET X '01' ERROR
,)-~---1 CODE IN

E3 CHECK <" POINT
~INTERVAL

S~~

F3~

REGISTER 15

E4 ____ --,

"')-:.YE,::,;S~_-I SET X '02' ERROR
RETURN

F4------.

WAS CHECK NO
POINT DEVICE ~;",:"..._~ SET X '04' ERROR

OPENED RETURN

G3_...l-_~~
QPOST

POST C.P. ECB
TOC.P. QUEUE

H3 ---'-----,...,
QWAIT

WAIT FOR THE
C.P. TO
COMPLETE

QTAM Charts 161

Chart C4.

162

open Message Process Queue

IGG0193P

B1 TERMTBL

<ENTRY BEEN
SPECIFIED IN

CB

NO

C1 DIRECT
~CCESS DEVICE >-----/

BEEN OPENED

GET CORE FOR
DEB AND CLEAR
TO ZERO

SAVLEN
F3 _-L __ ---.

PARTIALLY
IN ITIALIZE DEB
AND INSERT IN
CHAIN

MQOUT
H3--L-----.

DETERMINE FROM
MODE THE
CORRECT PUT
MODULE TO
LOAD

GET

G4-___ -,

SET UP DUMMY
QCB AND BRB
IN DEB

H4---'-----.
DETERMINE FROM
MODE THE
CORRECT GET
MODULE TO
LOAD

KLDROUT

r J4---'-----,

SET UP THE
WHERE-TO-GO
TABLE

K4--L----,

LOAD THE GET
OR PUT MODULE
REQUIRED

H5 ____ --.

INITIALIZE THE
REMAINDER OF
THE DEB

RELOOP
J5 _--1. __ ---.

SET UP XCTL

TCTLRTN

Chart CS. Get Segments Routine

IGG019NA

RESTORE
REGISTERS 2-12
AND GET THE
USER'S EXIT
ADDRESS

B2-~--....,

RESTORE
REGISTERS 14-1

RETURN LAST
BUFFER TO
RETURN BUFFER
QUEUE

F2_--,-__ -,

SET FIRST TIME
FLAG NON
ZERO

SET SECOND
TIME FLAG
NON ZERO

G2---'---n
QWAIT

WAIT FOR
NEXT BUFFER

K2-----.

RESTORE
REGISTERS 14-12
UPON RETURN

NO

A3

TEXT SEGMENT

NO

B3,---'------,

CLEAR
TERMID IN
SOURCE AREA

MOVE TERMID
INTO SOURCE
AREA

TEXTSEG
E3-~---,

ACCESS BUFFER
FROM PROCESS
QUEUE

F3 IS
BUFFER

YES

YES

G4----~

G3 IS
/WORKAREA
~UFFICIENT

FOR DATA

YES USE COUNT OF
>-=-.:;..;...----i DA TA FOR MOVE

MOVE
H3--,---...., H4---'---~

USE SIZE OF
WORKAREA FOR
MOVE

MOVE THE
1-__ --1 SEGMENT TO THE

WORKAREA

J4BJ~FER
LARGER THAN "')...:-N.;,.:0::.......r_....,

WORKAREA

RESET

J5-----1---....,

STORE DATA
COUNT IN THE
WORKAREA
AND RESTORE

SYNEXIT

K4

YES

YES SYNCHRONOUS NO
14----< EXIT

SPECIFIED

~

REGISTERS 15-12

QTAM Charts 163

Chart Cb.

164

Get Messages Routine

IGGOl9NB

Bl

SAVE REGISTERS

Cl IS
BUFFER
PRESENT

YES

Fl--'---~

GET ADDRESS
OF EODAD

ROUTINE

Gl_-'-__ _

BALR EODAD

TO USER
SPECIFIED
ROUTINE

Jl_-L __ ~

SETUP TO MOVE
REMAINDER OF
BUFFER FROM
PREVIOUS GET

YES

B2
QPOST

RETURN
BUFFER

C2

INDICATE NO
BUFFER
PRESENT

YES

E2--'-----,

RESTORE
REGISTERS

G2------,

NO

A3
QWAIT

WAIT FOR
NEXT
BUFFER

B3
QWAIT

REMOVE
PROCESS QCB
FROM RDY Q

C3

INDICATE
BUFFER
PRESENT

G3 IS USE COUNT
OF DATA
FOR MOVE

14-__ YE_S< WORK AREA
SUFFICIENT

NO

H3--'-----,

USE SIZE
OF WORK
AREA FOR
MOVE

MOVE
J3-......L----.

MOVE DATA
TO WORK
AREA

SET NOT-1ST­
BUFFER SWITCH

FILL IN
WORK AREA
PREFIX

H4-......L----,

RESTORE
REGISTERS

SYNEXIT

C5 IS
SYNEXIT
SPECIFIED

D5,--'-----.

GET ADDRESS
OF SYNEXIT
ROUTINE

E5_--,-__ --,

BALR SYNEXIT

USER SPECIFIED
ROUTINE

Chart C7. Get Records Routine

IGG019NC

B1-...J....----,

SAVE
REGISTERS

GET ADDRESS
OF EODAD
ROUTINE

H1_-L __ ~

BALR EODAD

TO USER
SPECIFIED
ROUTINE

A2 IS
SYNEXIT

SPECIFIED

NO

INDICATE
NO BUFFER
PRESENT

RESTORE
REGISTERS

K2------,

RESTORE
REGISTER

YES

A 3,------,

GET ADDR
OF SYNEXIT
ROUTINE

A4 ____ -,

BALR SYNEXIT

TO USER
SPECIFIED
ROUTINE

A5-........ ----,

SAVE DATA
COUNT
REMAINING
IN BUFFER

RESET

NO

B3 _---L __ --,

STORE COUNT
IN WORK AREA
AND RESTORE
REGISTERS

C3:-------,

GET NUMBER
OF CHARACTERS ----1
TO BE MOVED

C4-----,

GET ADDR
OF FIRST
CHARACTER
TO MOVE

CHECK
D3----.,..,

QWAIT

WAIT FOR
NEW BUFFER

D4

B5 _--L __ ---,

FILL IN
WORK AREA
PREFIX

C5 ---'------,

RESTORE
REGISTERS

D5--'---.....
RETURN TO USER

E3 ---L----n
QWAIT

END
E5------,

MOVE MS
PROCESS QCB
FROM RDY Q

MOVE SOURCE
TERM NAME TO
USER AREA, IF
AVAILABLE

E4 TH:~ A

< 2260 ETX
CHARACTER

F4 IS

<THIS AN
EOB

CHARACTER

GET ADDRESS OF YES
1ST CHARACTER ~-~"-----------<.
IN BUFFER

K3-------,

FILL IN
WORK AREA
PREFIX

K4------,

CLEAR NOT-
1ST-SEGMENT
SWITCH

YES

MOVE
CHARACTER

H5---'-----,

INCREMENT
WORK AREA
AND BUFFER
POINTERS

QTAM Charts 165

Chart C8.

166

Put Message Segment Routine

IGGOIND

B 1 _-1. __ ---.

SAVE
REGISTERS 14-12

C 1 _-1. __ ---.

E 1

INITIALIZE
REGISTERS

NO

GET ADDR. OF
1ST TERM TABLE
ENTRY

TERMLOOP

Fl IS < THIS THE YES
PUT

DESTINA TlON

GITHI~\HE < LAST TERM
YES

TABLE ENTRY

HI

GET NEXT
ENTRY IN
TERM TABLE

FOUND
B2-------,

GET 2 BYTES
OF SEGMENT
LENGTH AND
SAVE THEM

C2

D2

ADD HDR
PREFIX SIZE
TO SEGMENT
SIZE

G2

SET ERROR
CODE

ENTRY FROM
BUFFER-BRB ROUTINE
IN IGG019NG

A3---'----,

INITIALIZE
REGISTERS

B3-------,

ADD TEXT
PREFIX SIZE
TO SEGMENT
SIZE

SET ERROR
CODE

SIZEOK

H3

SET ERROR
CODE

J3

RESTORE
REG ISTERS

A4-----,

FILL IN
BUFFER PREFIX

B4---L--~

SET NOT-IST­
TIME SWITCH

BYPASS ALL
IDLE
CHARACTERS

G4
QPOST

REQUEST
NEW BUFFER

H4
QWAIT

WAIT FOR
NEW BUFFER

POSTBUFF

J4
QPOST

POST BUFFER TO
DESTINATION
QUEUE

K4
QWAIT

WAIT FOR BRB
TO BE REMOVED
FROM RDY Q

MOVE DATA
INTO BUFFER

POST
C5--1-----,

FILL IN
BUFFER
PREFIX

D5

INVALID
E5

SET ERROR
CODE

F5

RESTORE
REGISTERS

J5

RESTORE
REGISTERS

Chart C9. Put Record Routine

IGG019NF

B 1 --'-----,
SAVE REGISTERS
14-12, SAVE THE
WORKAREA ADDR
AND SET NEW PUT
REQUEST SWITCHC

Cl-....l.----,
INITIALIZE
REGISTERS WITH
THE DEB ADDRESS
AND ADDRESS OF
THE LPS QUEUE

QPOST

REQUEST A
NEW BUFFER

F 1 _-L-_---,...,
QWAIT

WAIT FOR A
NEW BUFFER

POSTBUFF
Gl---'---T'"'I

QWAIT

WAIT FOR BRB
TO BE RE­
MOVED FROM
READY QUEUE

GET ADDRESS OF
DESTINATION
QUEUE

K 1--'-----,...,
QPOST

POST
BUFFER TO
DESTINA TlON
QUEUE

EXIT

A2---'-----.

GET SIZE OF
WORKAREA AND
SAVE WORKAREA
ADDRESS

POST UNUSED
BUFFER TO
AVAILABLE
BUFR QUEUE

F2 ---'-----.

RESTORE
REGISTERS 14-12

H2----L--~

GET ADDRESS OF
FIRST TERM ENTRY
SIZE OF ENTRY,
ADDR OF PUT
TERM NAME

K2-....L..---.

USE BUFFER
LENGTH
FOR MOVE

NO

ENTRY FROM
BUFFER-BRB
ROUTINE IN

A3 IGG019NG CONT A4-----,
MOVE

A5------,

INITIALIZE
REGISTERS WITH
TERMTBL ADDRESS
AND ADDRESS OF
THE LPS QUEUE

D3----L--~

PUT LCB ADDRESS
IN THE PREFIX,
CLEAR SOURCE
KEY, INSERT TEXT
INDICATOR

G3---'----.

ZERO SEQUENCE
NUMBERS AND
SCAN POINTER IN
HEADER PREFIX

H3------.

INCREMENT
POINTER

K3------.

SAVE EXTRA
BUFFER ADDRESS
AND LOAD
PREVIOUS BUFFER
ADDRESS

INDICATE END
OF MESSAGE
IN PREFIX

MOVE THE DATA
FROM THE
WORKAREA TO
THE BUFFER

B5 ---'-----.
GET ADDRESS OF
NEXT CHARACTER
IN BUFFER AND
STORE DATA
COUNT IN PREFIX

YES

D4------,

GET NEXT
BUFFER ADDRESS 104--.,._N_O-<
IF THERE IS AN
EXTRA BUFFER

E4 _---L __ --,

CLEAR NEW PUT
REQUEST SWITCH
AND SAVE NEW
WORKAREA
POINTER

SAVE REGISTERS
FOR RETURN TO
IGG019NG

COUNT IDLE
CHARACTERS

INDICA TE END
OF MESSAGE IN
THE PREFIX

F5 ---'-----,

GET ADDRESS OF
NEXT CHARACTER ~-----'
IN WORKAREA

FOUND H5-----,

MOVE PRIORITY
>Y_E_S __ -I FROM WORKAREA

INTO TEMPORARY
PRIORITY BYTE

J5---'----,

LOAD STATUS
MOVE BLANK 1-__ --t BIT AND
INTO TEMPORARY DESTINA TlON KEY
PRIORITY BYTE IN HEADER PREFIX

K4 IS
USE LENGTH
OF WORKAREA
FOR MOVE

~_-.,.,;.N..;..O~ WORKAREA
LARGER THAN

BUFFER

NO
K5HAS THE

BUFFER BEEN
FILLED

YES

QTAM Charts 161

Chart CA.. Message Type Routine

168

IECKTYPE

B3---L..---,

SAVE SCAN
POINTER

C3---'-----,

GET SCAN
SUBROUTINE
ADDRESS

D3---'-----,
IECKSCAN CFA 1

GET NEXT HEADER
NONBIANK
CHARACTER

RESTORE
SCAN POINTER

Chart CB. Change Terminal Table Routine

IECKCHGT

Bl--'-----,

SAVE REGISTERS
14-12 AND CLEAR
THE USER'S ERROR
INDICATOR

C l----L-----,

LOAD WORKING
PARAMETERS AND
ACCESS FIRST
ENTRY

LAST

FI

LNGTHOK
D3------,

INITIAliZE AND
GET ADDRESS OF

>---~ QMOVE QCB FOR
CHANGING
ENTRY

E2 _---I __ --,

SET X '10' AS
ERROR INDI­
CATORFOR
INVAliD
LENGTH

E3---L.----,

GET THE ADDRESS
OF THE DESTIN­
ATION QUEUE
QCB FROM THE
TERMTBL

F4------,
/IS IT A

SIZE OF ENTRY < INDICATED AS ")-:-Y:;;;ES;.....r..--1~

INVAliD
F2-------.
SET X '20' AS
ERROR INDI­
CATOR FOR
INVALID TABLE

F3'TERMINAL YES CALCULATE THE
DESTINATION >--,'-=--~ LCB ADDRESS FOR

THE TERMINAL ZERO IN TABLE

G 1---'-----,

ACCESS THE
NEXT ENTRY IN
TERMTBL

ENTRY

G3---1-----.
ADJUST THE SIZE
SO THAT THE
LENGTH BYTE IS
NOT DISTURBED
IN MOVE

H3_-,-__ ~
QPOST

RET

CAUSE MOVE
TO BE EXE­
CUTED FOR
ENTIRE ENTRY

J3 ----'-----,

LOAD ERROR FLAG
L-____ .L-~IN REGISTER 15

ND RESTORE
REGISTERS 0-12

YES

CAUSE QCB
ADDRESS TO BE
MOVED TO
TERMTBL

J4--'-----,
BYPASS
SEQUENCE
NUMBERS IN
TERMTBL AND
WORKAREA

K4--L----.-,

CAUSE
REMAINDER
OF ENTRY TO
BE CHANGED

QTAM Charts 169

Chart CC ..

170

copy Polling List Routine

IECKCPPL

B2----''-----,

SAVE
REGISTERS 14-12

C2----o. __ --,
LOAD PASSED DCB
ADDRESS AND DCB
NOT OPENED
ERROR FLAG FOR
USER

NO

D3------,

CLEAR DCB NOT
YES OPENE D ERROR

FLAG AND GET
THE DEB ADDRESS

E3 IS
PASSED RLN
TOO HIGH

GET THE ADDRESS
OF THE POLLING
LIST FROM THE
DCB

YES

G3;---'----,
GET THE LENGTH
FROM THE POLL
LIST AND COPY
POLLING LIST
INTO WORKAREA

RET
H3---'----,

LOAD USER'S
ERROR FLAG IN
REGISTER 15 FOR
RETURN

J3 ----'-----,

RESTORE
REGISTERS 0-12

E4------,

SET INVALID
RELA TlVE LINE
NUMBER ERROR
FLAG FOR USER

Chart CD. Change Polling List Routine

IECKCHPL

B1-.....L...----,

SAVE
REGISTERS 14-12

C1_.....L... __ ~

LOAD PASSED DCB
ADDRESS AND
DCB NOT OPENED
ERROR FLAG FOR
USER

D1 HAS THE
DCB BEEN
OPENED

NO

YES

D2------,

CLEAR DCB NOT
OPENED ERROR
FLAG AND GET
DEB ADDRESS

NORLNERR
E3------,

GET THE ADDRESS
>-1\1.:....;0;""""_-1 OF THE POLLING

LIST FROM THE

SET INVALID
RE LA TlVE LI NE
NUMBER ERROR
FLAG FOR USER

DCB

RET

LOAD INVALID
LENGTH
ERROR FLAG

J3_--'--__ --,

LOAD USER'S
ERROR FLAG IN
REGISTER 15 FOR
RETURN

GET THE ADDRESS
OF THE QMOVER
ROUTINE IN
IGG019NG

J4--'----.-.
QPOST

POST QMOVER
TO ITSELF TO
EXECUTE MOVE

QTAM Charts 171

Chart CE.

172

Copy Queue Control Block Routine

IECKCPYQ

B2--1...-_-,

SAVE
REGISTERS 14-12

C2--'----,

CLEAR ERROR
INDICATOR AND
LOAD PARAMETER
REGISTERS

D2--'----,

LOCATE
BEGINNING OF
TERMTBL

E2--L-_-,

SEARCH
TERMTBL FOR
TERM NAME

ERROR
F3-----,

F2
NO

SET X '20' IN
ERROR INDICATOR

>-----IFOR INVALID

GET QCB
ADDRESS FROM
ENTRY

H2--L-__

MOVE QCB
INFO TO WORK
AREA

RET
J2--'------,

LOAD USER'S
ERROR FLAG AND
RESTORE
REGISTERS 0-12

TERMTBL ENTRY

Chart CF. Scan Routine

IECKSCAN

B 1---''-------,

INSERT
BLANKS INTO
WORKWORD

Cl--L----.
LOAD

PTR 1

REGISTER WITH
WORKWORD
ADDRESS FOR
EXTERNAL USE

PTR2

D2------.

Dl END
OF SPECIFIED ~N..;;;,O __ -I

INCR SCAN
POINTER TO
NEXT HEADER FIELD

YES

CHARACTER

SET HEADERR
BIT IN ERROR
HALF WORD

YES

NO E3
BLANK

MOVE
CHARACTER TO
WORKWORD

G3----L---,

INCREMENT
FIELD SIZE
COUNTER BY
ONE

YES

INCREMENT
SCAN POINTER
TO NEXT HEADER
CHARACTER

NO

QTAM Charts 173

Chart CG.

174

Copy Terminal Table Routine

IECKCPYT

B2----lI...-_----.

SAVE
REGISTERS 14-12

C2-......L.---.

CLEAR ERROR
INDICATOR AND
LOAD
PARAMETERS

D2----1------.

LOCATE THE
BEGINNING OF
TERMTBL

LOOKUP
E2 _---L __ --.

SEARCH
TERMTBL FOR
TERMNAME

F2

G2----'-----.
MOVE TERMINAL
ENTRY TO
WORKAREA
STARTING IN
FIRST BYTE

NO

F3----.....
SET INVALID
TERMINAL TABLE
ENTRY ERROR
INDICATOR
FOR USER

Chart CB. Date stamp Routine

IECKDATE

B3_---L. __ ---,
IECKEXPD CUA 1

EXPAND HEADER
FOR DATE
INSERTION

C3_ __ -,
IEAORTOO

REQUEST CURRENT
DATE

D3----'-----,

UNPACK DATE
INFO

E3----'-----,

MOVE
FORMATTED
DATE INTO
HEADER

F3--'-----....

QTAM Charts 175

Chart CI.

176

Source Routine

IECKSRCE

Bl-...L..--.....,

GET SCAN
SUBROUTINE
ADDRESS

C1_--% __ ---,

IECKSCAN CFA1

GET SOURCE
CODE FROM
HEADER

D 1 _--L __ ---,

GET TERMINAL
SIZE FROM
TERMTBL

E1

DIALUP

PUT ENTRY
INDEX FOR
SOURCE TERM
INTO HEADER
PREFIX

H2_----L __ -,

STORE ENTRY
INDEX FOR
SOURCE TERM
INTO HEADER
PREFIX

NO

'E3------,

GENERATE
NEXT ENTRY
ADDRESS

SOURCERA
G3:---L----,

SET
INVALID
SOURCE
ERROR

Chart CJ. Skip to Character Set - Skip on Count Routines

Fl--­

INCREMENT
SCAN POINTER
VALUE BY ONE

CANCEL
MULTiPLE
ROUTiNG IN
LCB

Jl-....L..-----,

RESET SCAN
POINTER TO
END OF
BUFFER

IECKSKPS

NO

B2---L.-----,

SAVE BASE
REGISTER

C2--L. __ ---,

STORE SCAN
POINTER VALUE
IN SAVE REG

D2_-L. __ -.
IECKSCAN CFA 1

GET HEADER
CHARACTERS

E2---'-------,

LOAD FIELD
SIZE PARAME TER
FROM LINKAGE

YES

RETURN
J2_--'--__ ---,

INCREMENT
COUNT IF
ODD

IECKSKPC

C4--L----,

LOAD SKIP
COUNT PARAM
FROM LINKAGE

SKPCHAR
D4---'-------,

INCREMENT SCAN
POINTER TO
NEXT
CHARACTER

DECREMENT
SKIP COUNT

YES

YES

E5-----.

SET HEADERR
BIT IN LCB

QTAM Charts 177

Chart CK. Time stamp Routine

IECKTIME

A

(
3

ENTER

r- B3
IECKEXPD CUAl

EXPAND HEADER
FOR TIME
INSERTION

r- C3
IEAORTOO

GET TIME
OF DAY

r-D3

PUT TIME
DATA INTO
WORKWORD

;- E3

UNPACK TIME
DATA

r- F3

MOVE EDITED
TIME DATA
INTO HEADER

C
G3

RETURN

178

Chart CL. Cancel Message Routine

IECKCNCL

B2

YES

ERRACT
C2-........... ---,

IECKRC DDA2

NO

RECALL HEADER

~::N ON CANCEL

ERRRET D4_--I... __ -,

CANCEL

BIT IN HEADER 1----<
PREFIX

MULTIPLE ROUTE
>---r---i BYTE AND CLEAR

CONVERSE MODE
BIT IN LCB

E3---'-----.

RESTORE
PREVIOUS
SEQUENCE
NUMBER

QTAM Charts 179

Chart CIYl.

180

Sequence Out Routine

IECKSEQT

B4 ____ ---.

IECKEXPD CUA 1

B2 OUTPUT NO B3 DEST. YES
OPERATION ~':"'::""--<QCB A PROCESS~:"::""---l EXPAND HEADER

QUEUE

YES

C2_----l~ _ __.
IECKEXPD CUA 1

EXPAND HEADER

D2----L---~

GET BINARY
SEQUENCE NO.
FROM HDR PREFIX

E2-----l"--_ __.

CONVERT SEQ.
NO. TO
DECIMAL VALUE

F2-----l~-__.

UNPACK SEQ.
NO. INTO HDR
FIELD

NO

C4--'----,

SAVE OFFSET
TO SEQOUT
FIELD IN
MSNUMOUT

Chart Cli. Route Routine

IECKROUT

(A3
ENTER

B3

STORE LPS
RETURN ADDRESS
IN LCB FOR
MPLE ROUTE

C3
IECKSCAN CFA1

GET DEST CODE
FROM READER

D3
IECKLKUP COA2

LOOK UP DEST
CODE IN TERM
TABLE

(E3
RETURN

QTAM Charts 181

Chart co.

182

Lookup Routine

IECKLKUP

IECKDRCT
B2----''-----,

GET MAX SIZE
OF TERMNAME
FROM TERM
TABLE

C2----''-----,

TURN OFF EOB
STATUS BIT

D2 TST

D3-----,

<FRST (NXT)
TERM TABLE
ENTRY FOR
""-DE S V""

>N~O __ -i COMPUTE NEXT
ENTRY ADDRESS

YES

DESTOK2

E2----'----,

MOVE QUEUE
ADDR TO LCB

F2 ----''------,

PUT TERM TABLE
ENTRY INDEX
INTO PREFIX

NO

D4

SET
DESTINA TlON
ERROR BIT IN
LCB

F4---''-------,
ASSIGN
MESSAGE TO
ERROR
DESTINA nON
QUEUE

Chart CPo Translate Routine

B2----'---,
OBTAIN REL ADDR
FROM LCB OF
FIRST
CHARACTER TO
TRANSLATE

USETRST

RECOMPUTE
REL AODR OF
FIRST CHAR TO
TRANS

F2 ---'-----,

COMPUTE FU LL
ADDR OF FIRST
CHAR TO TRANS

G2--'-----.

COMPUTE CHAR
COUNT TO
TRANSLATE

IS
H2 COUNT NO
EQUAL ZERO '>-----1

YES

J2--'---......

H3-----.

TRANSLATE
CHARACTERS

QTAM Charts 183

Chart CQ. Error Message Routine

184

IECKERMG

B1

ERRACT3 C1---'-----,

IECKRC DDA2

RECALL
HEADER

B2 ANY
DESIGNATED

ERRORS

YES

D2------,

LEAVE SCAN
>YE_S __ -t POINTER

POINTING TO
END OF HEADER

E 1---1.----,

SET SCAN
POINTER TO END
OF HEADER
PREFIX

F1---'----,

SKIP POINTER
PAST IDLE
CHARACTERS FOR
DATE AND TIME
STAMP

ADDHDR
G1---'----'

GET START OF
ERROR TEXT IN
BUFFER USING
SCAN POINTER

H 1---'-----,

COMPUTE
SPACE LEFT
IN BUFFER

J2------,

MOVE ERROR
>-N;.;O;....-_--tTEXT INTO BUFFER

MOVE ERROR
TEXT INTO
BUFFER

AND TRUNCATE
EXCESS

D3---I:----,

COMPUTE
MESSAGE SIZE
AND STORE
IN PREFIX

E 3---1.----,

INDICATE SINGLE
SEGMENT
MESSAGE IN
PREFIX

F3 ---'-----,

GET THE ADDRESS
OF THE LOOKUP
ROUTINE

Chart CR. Polling Limit Routine

IECKPLMT

B2-~---,

GET CURRENT
POLL POINTER
FROM LCB

C2

~
POLL PTR

AT CORRECT
TERM LIST

GET CURRENT
POLL COUNT
FROM LCB

F2-......... ---,

INCREMENT
POLL COUNT

G2--'----,

RETURN POLL
COUNT TO
LCB

NO

NO

YES

H4

INCREMENT GET POINTER
POINTER TO TO POLLING
NEXT TERMINAL LIST

J3 J4

RETURN IF END OF

POINTER TO LIST, SET

LCB POINTER TO
BEGINNING

QTAM Charts 185

Chart cs.

186

Reroute Routine

IECKRRTE

ERRACTI

C2---'----,

MAKE HEADER
ADDRESS
AVAILABLE

D2--'-----,
IECKRC DDA2

RECALL
HEADER

E2_--'-__ --,
IECKLKUP COA2

LOOK UP
DEST CODE IN
TERM TBL

YES

Chart CT. Intercept Routine

IECKITCP

NO

ERRACT2
B2 ____ -.

IECKRC DDA2

BRANCH AND
>--....-~ LINK TO RECALL

THE HEADER

C2-....... __ -.

LOAD LCBDESTQ
WITH ORIGINAL
DESTINA TION
QUEUE ADDRESS

D2 _---L __ ---,

INCREMENT
QSIZE FIELD
IN QCB

E2 _---L __ -,

TURN ON THE
PRIORITY BIT AND
TURN OFF THE
SERVICED BIT
IN PREFIX

F2 ---------,

TURN OFF THE
SEND BIT IN
THE TERMTBL
ENTRY

NO

H3 ____ ---,

PUT HEADER
ADDRESS INTO

YES INTERCEPT

NO

FIELD AND SET
INTERCEPT BIT
IN TERMTBL

J3---L..---.
GET OFFSET TO
INTERCEPT FI ELD
IN TERMTBL AND
SAVE FOR
RELEASEM RTN

QTAM Charts 187

Chart CU. Expand Routine

IECKEXPD

NO

Cl

SHIFT POINTER
LEFT ONE
CHARACTER
POSITION

Dl

COMPUTE
ADDRESS OF
FIRST
CHARACTER TO
SHIFT

El

COMPUTE
NUMBER OF
CHARACTERS
TO SHIFT

YES

NO

188

C3

SHIFT
CHARACTERS TO
EXPAND HEADER

D3

COMPUTE
ADDRESS OF
START OF
FIELD

E3

INSERT BLANK
AS LEFT
DELIMITER OF
FIELD

F3
GET SCAN
POINTER FOR
NEXT
DESTINATION
CODE

G3

SHIFT POINTER
LEFT SIZE OF
NEW FIELD

RESTORE
STORED SCAN
POINTER

Chart cv. Sequence in Routine

IECKSEQN

B 11-----''------,

SAVE
BASE REGISTER

C 11-----1'------,
IECKSCAN CFA 1

GET SEQUENCE
NUMBER FROM
HEADER

D1---'"------,

RESTORE
BASE REGISTER

TOOLOW

TLOOP
E2-------,

CONVERT
NO CHARACTER IN

SEQUENCE
NUMBER TO
BINARY

F1----''------, F3---L..---,

SET SEQUENCE
LOW ERROR BIT
IN LCB

MOVE BINARY
SEQUENCE
NUMBER INTO
HEADER PREFIX

NO

YES

NO

INCREMENT
TO NEXT
CHARACTER

GOOD
H3:------,

STORE
EXPECTED
SEQUENCE
NUMBER IN LCB

J3-----''------,

SET SEQUENCE
HIGH ERROR
BIT IN LCB

H4·-------,
INCREMENT
EXPECTED
SEQUENCE
NUMBER FOR
NEXT MESSAGE

QTAM Charts 189

Chart cw. Mode, Initiate, and Priority Routines

IECKMODE

190

B]---''-------.

SAVE
SCAN POINTER

C]----J.------,
IECKSCAN CFA]

GET NEXT HEADER
NONBLANK
CHARACTERS

E]---''-----

RESTORE
SCAN POINTER

C4----J.--~

SET INITIATE
BIT IN LCB

IECKPRTY

C5,---''-------.
IECKSCAN CFA]

GET NEXT HEADER
NONBLANK
CHARACTER

D5;---''------,

MOVE PRIORITY
BYTE INTO LCB

Chart cx. Mode Conversational Routine

IECKCVRS

BI--1-__ -.

SET LCB
CONVERSA­
TIONAL MODE
BIT

CI

<: IRST TIME
IN THIS
ROUTINE

NO

YES

C2 ____ ~
IGGOl9NG DGA3

GO TO
ENDINSRT
ROUTINE

G2------,

FIND START
OF POLLING
LIST

YES

~ FROM CLEANUP ROUTINE
~ IN IGG<l19NG

A3CONVRSE~ MODE AND NO
<ORIG MESSAGE

PR~OC~::D DD
G5

B3
POLLING OR
ADDRESSING

ERROR

D3---'-----,

SAVE RETURN
REGISTERS 14-3

TURN LINE
AROUND TO
RECEIVE

INITIALIZE LCB
FOR ACTIVATE
LINE ROUTINE

J3---,---.-.

CVRET

FROM STARTUP
ROUTINE IN
IGG019NG

POST ORI GNAL
BUFFER TO
EMPTY BUFFER
QUEUE

cs---\---...,
INITIALIZE LCB
WITH DISK
ADDRESS OF
REPLY

QTAM Charts 191

Chart CY .•

192

End of Block Routine

IECKEOBK

1
BI MESSAGE B2----..

.(" CANCELLED~>-_YE_S __ -I(RETURN)
~ OR ERROR/" _ .

MESSAGE
SENT

GET UCB
ADDRESS

FI_....L. __ -,
PRTEXT

F2-----, F3-----,

SET UP
~---! READ CONTINUE

IN LCB

SET EOB
BIT IN
PREFIX

GET
REMAINDER OF
BUFFER TO
PROCESS

G4 ____ -,

SAVE BUFFER
NO SIZE AND FIND

r-,---1 ADDRESS OF LAST

RESTORE
SCAN POINTER
IN PREFIX

SET UP WRITE
CONTINUE
IN LCB

CHARACTER IN
BUFFER

H4_--L.. __ -,

RESET LCB
TO REUSE
BUFFER

GO TO ACTIVATE IN IGGOl9NG

Chart cz. End of Block and Line Correction Routine

IECKEOBC

B1MESSAG" (B2
~NCELLED OR)>-Y_E_S_ ~ RETURN

ERROR MESSAGE _
)

SENT

F2-------,

GET REMAINDER
'>--..... --1 OF BU FF ER TO

PROCESS

Gl---.L.---,

RESTORE SCAN
POINTER IN
PREFIX

SET UP
READ
CONTINUE
IN LCB

SET UP
WRITE
CONTINUE
IN LCB

RETRNSMT

RESET
TRANSMISSION
ERRORS

C4----"-----,
IECKRC DDA2

LINK TO
itECALL
SUBROUTINE

E4 ----"-----,
SET UP
WRITE
CONTINUE
IN LCB
FOR BTAM

SET UP WRITE
INITIAL IN
LCB FOR
BTAM

PREBTAM
H4·------,

SAVE BUFFER
NO SIZE AND FIND

>-....;.. --1 ADDRESS OF LAST
CHARACTER IN
BUFFER

J4--"----,

RESET LCB
TO REUSE
BUFFER

D5 ----"------,
CANCEL MESSAGE
AND RETURN TO
DASD AND RESET
TERMTBL
SEQUENCE
NUMBER

E5---L.-~----.
IECKRC DDA2

LINK TO
RECALL
SUBROUTINE

G5--'----,
SETUP EOA AND
FILL HEADER WITH
IDLES IF TIME
AND DATE
SPECIFIED

ENT260
H5----L----,

CLEAR LCB DIST
LiST POINTER,
MULTIPLE ROUTE
INDICATOR AND
ERROR FLAGS

GOOD

J5---L----,

TURN ON END OF
MESSAGE AND SET
RETRY CODE IN
LCB

1(5----"-----,

GET BUFFER SIZE

QTAM Charts 193

Chart DO. Disk End Appendage Routine

194

DISKABND

NO

DISKEND
DI

ESTABLISH
BASE REGISTER
FOR DISK END
APPENDAGE AND
IECKQQOI

E 1
ADJUST RETURN
REGISTER AND
SAVE REGISTERS
14-9 FROM I/O
FLiH

Fl

ACCESS 1ST AND
2ND ELEMENTS
ON DISK I/o
QUEUE

Gl

GET ADDRESS OF
AVAILABLE BUFFER
QUEUE FOR
POSTING

ACCESS BRB OR
QCB IN EL2 TIC
ADDRESS AND
MAKE IT
ADDRESSABLE

A2

ACCESS THE LCB
FROM THE BRB OR
DASD PROCESS
QUEUE QCB

B2 CLEANUP

rNDREm9 BOTH SET IN
CBSTATE

C3 NO

D2
STORE OFFSET TO
DESTINA TlON
TERMINAL TABLE
ENTRY IN LCB,
GET QCB ADDRESS

RTRV
G2

GET BRB ADDRESS
FOR POSTING
AND PUT READY
QUEUE ADDRESS
IN BRB FIRST WORD

H2

MOVE LINK FIELD
OF BRB INTO
BUFFER LINK
FIELD

J2

MOVE LINK FIELD
OF BRB INTO
DISK I/o QCB

INSERT THE DISK
I/o QCB AT THE
TOP OF THE
READY QUEUE

TO INTERIM
LPS ROUTINE
TO POST

A4

CAUSE LCBTTlND
TO BE ZEROED
LATER

CLEAR CANCE L
AND SENT FLAGS
IN PREFIX

D3 D4 D5
SET TSTATUS SEND SET BRB CODE
BIT ON & RESET REMOVE BRB AND TO INDICATE
INTERCEPT & BUFFER FROM WAITING AND
RELEASE PENDING DISK I/o QUEUE SAVE BRB
IN TSTATUS POINTER IN LCB

E4 E5
E3 RESTORE LCB UPDATE NEXT

<RETRANSMIT NO POINTER IN BRB AVAILABLE
FOR AND ASSIGN THE SEGMENT

CHECKPOINT BUFFER TO THE ADDRESS IN LCB
LINE

F3

SET SWITCH
TO ALLOW
RETRANSMISS ION

GET THE ADDRESS
OF THE LPS
QUEUE FOR
POSTING

H3 WRITE

<:;;OPERA TlON OR~
RETRANSMIT FOR

-CHECKPOINT

NO B4

TURN ON
CLEANUP FLAG
IN LCBSTATE

Chart 01. Disk End Appendage Routine <Continued)

SEGRDY
A 1----1.-----,

PUT DISK ADDRESS
INTO BRB AND
INDICA TE ADDR
ASSIGNED

RESET BRB STATUS
CODE AND GET
DISK I/o QUEUE
QCB ADDRESS

A2 _----1. __ --,

GET AVAILABLE
BUFFER ADDRESS

B2 _----1. __ ---.

INDICATE IN BRB
THAT BUFFER IS
ELIGIBLE FOR
DISK QUEUE

GETEND

TO INTERIM LPS G2----1.-----,

ROUTINE GET THE

ADDRESS OF THE
RETURN BUFFER
QUEUE

H2-...L..----,

X
l

A3

NOSRVC

A3 S IT
2740 MODEL 2

ON TIME DELAY
QUEUE

DE2740A
B3--'-------.
INDICATE IN
PREFIX THAT
MESSAGE SENT
AND SET DISK
CON TO WRITE

ADJUST SAVED
RETURN
REGISTER

RE IN ITIA L1ZE
lOB FOR THE
DISK

*FROM DISK I/o
ROUTINE

RESET START
POINTER FOR
CHAIN

~ ~DJ ADD /'...

C4 ELEMENT, C5{L~~~NT < IN CHAI N LESS YES LESS THAN
THAN CURRENT ELEMENT IN

ADDR 'CHAIN"

NO NO

ENABLE NEXT
ELEMENT TO
BE ACCESSED

ACCESS THE
FIRST (NEXT)
ELEMENT IN
THE CHAIN

< LESS THAN
J4 ~~~~N~YES
~URRENT

AT~~ C4

K4~

TH IS CODE INSERTS
THE DISK ROUTINE
INTO PROPER
POSITION IN DISK
I/o QUEUE

ELEMENT IN <: CHA I N LESS .>-YE_S __ '--_--,

THAN CURRENT
"ADDR/

~o
QTAM Charts 195

Chart D2. Disk I/O Routine

t ACTREQ WRITE
DISKENQ A3 A4

SET UP WRITE STORE COMMAND A5 ENTRY
CODE FOR CCW CODE AND BUFFER NO fHROUGH DI/
AND GETSEG- ADDRESS IN DISK END
MENT RELATIVE CCW APPENDAGE
RECORD NUMBER

B4
Bl CONVERT

SET UP BASE FOR RELA TIVE RECORD
THIS ROUTINE NUMBER TO TTR
AND SET QKEY IN AND GET
DISK I/O QCB TO ADDRESS OF
NOT WAITING BPAM ROUTINE

C4
BPAM

LINK TO BPAM
GET ADDRESS OF
THE LPS QUEUE

TO CONVERT TTR AND 510 ELE
TO ABSOLUTE

D4

REMOVE BRB OR SAVE LAST RESTORE BASE FOR

BUFFER FROM NON-EC THIS ROUTINE

READY QUEUE PRIORITY AND IECKQQOl

OPCHECK
E3 E5

SET HIGH
GET COMM
REGION & PRIORITY
TCB PTR

/15,
GET POINTER THIS A BRB
TO FIRST ITEM F3 ALREADY NO SET REQUEST
IN DISK I/o <CONTAINING ABEND PRIORITY
QCB'S ELEMENT "DISK ADDR"
CHAIN

VA Li DTTR
G3 G4

REMOVE FROM
QCB ELEMENT EXECUTE
CHAIN AND GET CHANNEL
BUFFER FROM PROGRAM
AVAILABLE BUFFER
QUEUE

H5
REMOVE CHECK
POINT ELE AND SET SVC
SET HIGH ENTRY
PRIORITY IN FLAG
CHECK POINT ELE

J3
INSERT BUFFER
INTO DISK I/O SET THE NO
QCB ELEMENT RESTART
CHAIN AND SAVE SWITCH
BRB ADDR IN ECB

K3

SET HI PRIORITY
IN NEW BUFFER
AND SET UP READ
CODE FOR CCW

196

Chart DA. Put Message Routine

IGG019NE

Bl---I.-----,
SAVE REGISTERS
14-12, SAVE THE
WORKAREA
ADDRESS AND SET
NEW PUT REQUEST

CI---I.-----,
INITIALIZE
REGISTERS WITH
THE DEB ADDRESS
AND ADDRESS OF
THE LPS QUEUE

RESTART
Dl-----,-,

QPOST

REQUEST A
NEW
BUFFER

EI--'----r"1
QWAIT

WAIT FOR
NEW
BUFFER

POSTBUFF

Fl-...L-----,

GET ADDRESS

YES

OF THE
DESTINATION
QUEUE

POST
BUFFER TO
DESTINATION
QUEUE

Hl-L--,...,
QWAIT

WAIT FOR BRB
TO BE RE­
MOVED FROM
READY QUEUE

JI IS
THERE MOREy
DATA IN THE
WORKAREA

RESTORE
REGISTERS 14-12

ENTRY FROM BUFFER-
BRB ROUTINE IN

IGG019NG NOH EADER
A3--'-----,

INITIALIZE
REGISTERS WITH
TERMTBL ADDRESS
AND ADDRESS OF
LPS QUEUE

A4---'----,

TURN OFF
TERM ERROR
FLAG

B2------,

GET SIZE OF
WORKAREA AND 14 __ Y_ES-<:
SAVE WORKAREA
ADDRESS

SKIPI

C3---'----,
GET BUFFER SIZE
GET LCB ADDRESS

'---------1 PUT LCB ADDRESS

D2-------,

ZERO SEQUENCE
NUMBERS AND
SCAN POINTER

FOUND

IN PREFIX

E2---'------,

COUNT
IDLE
CHARACTERS

NO

IN PREFIX, ZERO
SOURCE KEY

D3 IS
THIS A TEXT
SEGMENT

YES

F3-----,

D4------,

SET TEXT
INDICATOR IN
PREFIX

NO LOAD TEMPORARY
>----fiooI PRIORITY BYTE

LOAD TEMPORARY
PRIORITY BYTE
IN LCB WITH
PRIORITY BYTE
FROM WORKAREA

IN LCB WITH
BLANK

G3--'-----,
LOAD
DESTINATION
KEY AND
STA TUS BITS
IN PREFIX

YES

H4-------,

USE BUFFER
LENGTH
FOR MOVE

MOVE

J4---'---,

USE SIZE OF
WORKAREA FOR
MOVE

MOVE DATA
1----1 FROM WORKAREA

TO BUFFER

K4---I.-----,

STORE CORRECT
COUNT IN
MESSAGE PREFIX

YES

B5---'------,
GET ADDRESS OF
FIRST TERM
ENTRY, SIZE OF
ENTRY, ADDR OF
PUT TERM NAME

INCREMENT
POINTER

J5-------,

SAVE REFERENCES
TO WORKAREA
IF MORE DATA

SKIP
K5---'------,

SAVE REGISTERS
FOR RETURN TO
IGG019NG

QTAM Charts 197

Chart DB. Distribution List Routine

IFCKDLQT
Al
GET ADDRESS
OF LCB AND
DESTINA TlON
KEY FROM
MESSAGE PREFIX

DLTEST
Bl
STORE
DESTINA TlON

D KEY IN LCB AS
OFFSET TO NEXT

U ENTRY IN LIST

C2

NO
LOAD THE
DESTINA TlON

C
KEY IN THE
PREFIX

A

Dl D2

GET ADDRESS PUT QCB ADDRESS

OF TERMTBL FOR ENTRY INTO
C ENTRY ECB OF BUFFER

0

D
E 1 E2

PUT QCB ADDRESS GET ADDRESS
FOR ENTRY INTO OF THE READY
THE LCB QUEUE

IS
F2 THIS THE

<.. FIRST TIME IN

"'" LIST
ROUTINE

YES

NO

198

F3------,
IGG019NG DGA3

GO TO ENDINSRT
ROUTINE

DLRET

FROM CLEANUP ROUTINE
IN IGG019NG

A4----l----.

GET OFFSET FROM
THE LCB TO THE
NEXT ENTRY IN
DISTRIBUTION
LIST

C4----I----.
SAVE HEADER FOR
INSERTION INTO
QUEUE OF THE
NEXT
DESTINATION

D4·--I------,

BUMP OFFSET TO
THE NEXT ENTRY
IN THE LIST

DLTEST
E4--I-------,

STORE
DESTINATION

D KEY IN LCB AS
OFFSET TO NEXT

U ENTRY IN LIST

IS
F4 THERE AN

~RYINTHE
C TERMINAL

TABLE
A YES

G4

GET ADDRESS
OF TERMTBL

C ENTRY

0

D

H4

PUT QCB
ADDRESS FOR
ENTRY INTO
THE LCB

H5------,
IGG019NG DDD4

GO TO RECALL
ROUTINE TO
RETRIEVE
HEADER

J5-----'-----.
PUT
DESTINATION
IN PREFIX AND
TURN OFF THE 2
BIT IN LCBSTATE

K5----I'-------,

GET THE
ADDRESS OF THE
BUFFER CLEANUP
ROUTINE

Chart DC. End of Address Routine

FROM MESSAGE
TYPE ROUTINE

A 1--'----,

GET OFFSET TO
NEXT
DESTINA TlON IN
THE HEADER

BI--'-----,
STORE THE
OFFSET IN THE
LCB MULTIPLE
ROUTING
INDICATOR

Cl--'---,

GET ADDRESS
OF SKIP TO
CHARACTER
SET ROUTINE

Dl IS THIS < THE FIRST
TIME IN EOA

ROUTINE

NO

YES

D2 ____ -,

IGG019NG DGA3

GOTO
ENDINSRT
ROUTINE

A4 HAS

FROM CLEANUP ROUTINE
IN IGG019NG

<:, MULTIPLE
ROUTING BEEN

'SPECIFIED/'

YES

B4----L-----,
SAVE HEADER
FOR INSERTION
INTO QUEUE OF
THE NEXT
DESTINATION

C4---'-----,
IGG019NG DDD4

GO TO RECALL
ROUTINE TO
RETRIEVE HEADER

D4--'----,

CLEAR LCB ERROR
INDICATOR AND
DISTRIBUTION
LIST POINTER

E4---'-----,

RESET SCAN
POINTER TO
OFFSET OF NEXT
DESTINATION

F4--L----,

CLEAR THE
MULTIPLE
ROUTING
POINTER

G4----L------,
RELOAD ADDRESS
SAVED IN ROUTE
ROUTINE TO
RETURN TO EOA
MACRO

H4--'-----,

GET ADDRESS
OF ROUTE
ROUTINE FOR
EXIT

QTAM Charts 199

Chart DD. Buffer Cleanup and Recall Routine

200

CLEANUP ROUTINE
ENTRY POINT

RECALL ROUTINE
ENTRY POINT

IECKPR

A1----'-------,
GET THE

IECKRC
A2--L.----.

ADDRESS OF
DESTINA TlON
QUEUE FOR
POSTING

SAVE REGISTERS
w.--~ 14-3 AND SET

C1----'-------,
GET THE SCAN
POINTER
OFFSET AND
STORE IT IN THE
HEADER PREFIX

PRTEXT

D1
/WAS IECKRC YES
""-JHE ROUTINE

ENTRY POINT

~
o E1 ~~~

LINE
STOPPED

DF RECEIVING

J3 YES

F1----.J...-----,

SET THE
CLEANUP AND
IN lTIA TE CODES
IN LCBSTATE

RCPOST

G1--'-----,

GET THE ADDRESS
OF THE FIRST BRB
I N THE BRB-RI NG

H1

~
MESSAGE

SEGMENT IN
THE FIRST

""f~~
J1~

YES

..-<THIS RECALL1vES
~HE RESULT OF

A POLLING

~ERt~~ g~

G

THE RECALL CODE
IN LCBSTATE

RLslNS

E2-------,

REMOVE THE
INSERT BLOCK
FROM THE
BRB-RING

F2 ----'-----,
GET THE ADDRESS
OF THE
ADDITIONAL-CCW
QUEUE FOR
POSTING

RCLOOP

A3--'---,
GET THE ADDRESS
OF THE
AVAILABLE
BUFFER QUEUE
FOR POSTING

YES

B3---'-----,

SET THE BUFFER
PRIORITY FOR
POSTING

C3--'---ro
QPOST

POST TO THE
QUEUE
SPECIFIED
PREVIOUSLY

D3----'------,
ACCESS THE
NEXT BRB, MAKE
IT ADDRESSABLE
AND SAVE THE
ADDRESS IN LCB

E3 N~SXT
ELEMENT AN

INSERT
BLOCK

NO

F3----'------,

GET THE
ADDRESS OF THE
NEXT BRB

G3 HAS

~ A BUFFER NO
BEEN ASSIGNED

~OTy
BRB

YES

H3
SET NO BUFFER
ASSIGNED SWITCH
AND GET ADDRESS
OF THE START OF
iHE BUFFER

ALLGONE

A5------,

SET SWITCH
~ __________ ~ INDICATING BRB

NOT WAITING
FOR A BUFFER

B5---'------,

MAKE THE
NEXT BRB
ADDRESSABLE

C5 15 THE

ENTRY POI NTFROM lEeKD;:£:5 c.: BR' IN THE
OR IECKEOAD TO RETRIEVE BUFFER REQUEST
HEADER FROM DISK QUEUE

~
D~ ~ NO

D5-~---,

D4 IS CHANGE THE

<MESSAGE IN ANlPYES BRB FIELD TO
EXPEDITE PROCESS STOP FURTHER

"QUEUE" DF ASSIGNME NTs

NO A3

E4--L.----.

SAVE REGISTERS
15-3 FROM THE
CALLING
ROUTINE

E5 IS THE

~
ES BRB IN THE

'~T
~ iO

F5 'IS THE""

YES RECALL COD::>
14--""";";"-'-< SET IN

RCACT
F4----L--....,

INDICATE BOTH
RECALL AND
CLEANUP IN
LCBSTATE AND
ACCESS A BRB

LCBsTATE

ENDTL

G4 G5
MAKE HEADER GET THE ADDRESS
DISK ADDRESS OF NEXT ROUTINE
AVAILABLE AND IN QUEUE
SET DISK READ ESTABLISHED BY
INDICATOR ENDINSRT

H4 H5
NEXT RTN

GET ADDRESS OF LINK TO LIST,
DISK I/o QUEUE EOA OR
FOR POSTING CONVENTIONAL

MODE RTN

Chart DE. Buffer Cleanup and Recall Routine (Continued)

SPECIAL RETURN
FROM STARTUP
FOR RECALL RCRET

A3---L.----,

GET ADDRESS OF
LAST BRB FOR
WHICH A BUFFER
WAS ASSIGNED

B3 RECALL

<AND CLEANU~NO
",,-SET UP IN

LCBSTATE
DD

YES A3

C3----'-----,

GET ADDRESS OF
FIRST BRB IN
RING

RESET BRB
ADDRESS IN
THE LCB

E3---'-----,

SET DUPLICA TE
HEADER
INDICATOR IN
PREFIX

F3---'----,
RESET CLEANUP
AND RECAll.
FLAGS IN LCB
AND BLANK LCB
PRIORITY

G3---'-----,

RESTORE
REGISTERS 14-3

QTAM Charts 201

Chart DF. Free ERE Routine

202

C3-~-----,

GET THE ADDRESS
OF THE INACTIVE
BUFFER REQUEST
QUEUE FOR
POSTING

D3---'------,
MAKE THE BRB
ADDRESSABLE
AND ESTABLISH
PRIORITY FOR
POSTING

E3 QPOST

POST BRB TO
INACTIVE
BUFFER REQUES
QUEUE

G3---'------,
GET THE LCB
ADDRESS FOR
FREEING LINE BY
POSTING TO
ITSE LF

ESTABLISH
PRIORITY FOR
POSTING

FREE LINE OR
POST HEADER
TO REQUEST T
DISK QUEUE

Chart DG. End Insert Routine

ENDINSRT
A3-.....L.---.

NO

GET THE ADDRESS
OF THE START OF
THE QUEUE OF
ROUTINES

B3-----L----.

GET THE ADDRESS
OF THE NEXT
ROUTINE IN THE
QUEUE

D3---L.---.
INSERT NEW
ROUTINE INTO
QUEUE AND PUT
PRIORITY IN THE
ADDRESS

E3---'----.
RESET RETURN
ADDRESS TO THE
BRANCH THAT
ENTERED THIS
ROUTINE

F3---'----.
OVERLAY BRANCH
ADDRESS IN
CALLING ROUTIN
WITH CONSTANT
IN THAT ROUTINE

G3-----L-----.

OVERLAY THE
CONSTANT WITH
MRRE THUS
COMPLETING THE
QUEUE

QTAM Charts 203

Chart Dti.

204

Receive Scheduler Routine

RCVSCH
B2----IL------.

GET LCB ADDRESS
AND CLEAR FIRST
BYTE

C2----L.--....

GET THE ADDRESS
OF THE POLLING
LIST FROM THE
DCB

F2----IL------.

SET LINE
RECEIVING
CODE IN
LCBSTATE

H2---1.------.
GET THE ADDRESS
OF THE CURRENT
ACTIVE ENTRY
IN THE POLLING
LIST

ZERO RECEIVING
CODE IN LCB
AND SAVE LCB
ADDRESS OF LINE

B3,----I'------,
RESET LCB
POINTER TO

RSC

THE START OF
THE POLLING
LIST

CLOSELP
F3----I----.

LINK SEND
SCHEDULER
CHAIN BACK
INTO LCB

YES

F4----'-------.

REMOVE THE
LCB FROM THE
READY QUEUE

G4·-----''------,

PUT QATTACH
ADDRESS IN
QSAVE AND STOR
LCB ADDRESS IN
FULL STCB

B5--------.

RSA

RESET POINTER
FOR
AUTOPOLL

C5----L------.

RESET LCB
PTR

Chart 01. BRB Ring Routine

OUTONlY
DI--'---..,

ACCESS QCB
FOR TERMINAL

El-....L...--..,

ACCESS DEB
FOR CAll
QUEUE

GET NEXT ENTRY
IN CAll QUEUE

Kl
NEW CAll

<CLOSER THAN

~y,Ll

o

NO

B2

A2_-L __ -.

SAVE POINTER
TO SEND
SCHED

INDICATE
AUTO CAll

K2---'-----,

TURN OFF
DIAL CODES

QTAM Charts 205

• Chart DI1.

206

BRB Ring Routine (Continued)

A 1--'-----,
MAKE LCB AN
APPARENT STCB
AND GET ADDRESS
OF THE INACTIVE
BRB QCB

B 1_--'-__ ---.

SET THE READ
INITIAL
OPERATION CODE
IN LCB FOR
BTAM USE

GET FIRST BRB
OF INACTIVE
BRB QUEUE
FROM QCB

D1_--L __ --,

MAKE NEXT BRB
THE HEAD OF
THE CHAIN

RQSETUP

E2-------.

E1 ARE ALL START BUILDING

~
NO CCW BY STORING

BRB'S REMOVED-""';'':'''';;;'---I LCB POINTER IN
FROM BRB AND GET BRB

QUEUE COUNT

~
uYES '----r--------l

B3 F2 _--1. __ ---,

INSERT TIC
ADDRESS AND OP
CODE IN BRB AND
RESET POINTER
TO PREVIOUS BRB

NOTFIRST
G3------,

SET BRB COUNT
NO AND MAKE BRB

').:-:":;"r----l UNADDRESSABLE

STORE FIRST BRB
POINTER IN LCB
AND ACCESS DCB
FROM LCB

J2---L---.

GET THE NUMBER
OF BRB'S TO BE
ASSIGNED

TO INDICATE NO
BUFFER ASSIGNED

B4------,
REMOVE LCB
FROM READY
QUEUE AND GET
POINTER TO
FIRST BRB

C4_--L __ -,

MOVE TIC
ADDRESS INTO
FIRST BRB
COMPLETING
BRB RING

D4_--L __ ---,

SET HIGH
PRIORITY FOR
BUFFER REQUEST
AND GET ACTIVE
BFR REQUEST QCB

STORE SEGMENT
ADDRESS IN LCB
FOR SEND
SCHEDULER

G4--'------.
IN ITIALIZE LCB
AND PREFIX WITH
DISK ADDRESS
AND SET DISK
OPERA TlON CODE

H4_--L __ --.

CANCEL HIGH
PRIORITY FOR
BUFFER REQUEST
AND SET WRITE
INITIAL IN LCB

J4_----'-__ --,

GET THE ADDRESS
OF THE DISK
I/o QCB
FOR POSTING

YES

GOREQ
E5------,

CLEAR LCB
ERROR STATUS
AND TERMINAL
TABLE POINTER

F5_--L __ ---,

CLEAR LOW
ORDER BITS IN
LCBSTART

G5--'----,

SET THE LCB
POINTER TO AN
APPARENT BRB

H5--L----,

SET THE RECALL
ADDRESS IN
THE LCB

Chart DJ. End of Poll Time Delay Routlne

DELAY
Al-----'-------,

RESET TERMINAL
POLLED SWITCH
USED BY RCV
SCHEDULER

Bl----L--------,

GET THE
ADDRESS OF THE
READY QUEUE

C2-------,
MOVE LCB liNK

YES ADDRESS TO
~';;':""---l NEXT WAITING

GET CURRENT
TIME OF DAY

SUBTASK FIELD
IN LCB

CPENTRY
D2---'-----.

TIME

GET CURRENT
TIME OF DAY

F2

ADD TIME OF DAY
TO POLliNG
INTERVAL AND
STORE RESULT
IN LCB

TIME LOOP
G2
FIND POSITION
IN TIME QUEUE
FOR LCB FOR
INTERRUPT
PRIORITY

TIME INS

H2

PUT LCB IN
THE TIME QUEUE

STiMER

NO

K2---..I..-----,,..-,
STiMER

SET TIMER FOR
FIRST NON­
EXPIRED LCB

RESUME
C3------,

CLEAR ALL BUT
READY BIT IN
TIME QCB AND
REMOVE LCB
FROM TIME QUEUE

GET THE
ADDRESS OF THE
RECEIVE
SCHEDULER STCB
FROM THE LCB

YES

H3
liNK THE LCB
INTO THE TOP OF
THE READY QUEUE
TO ACTIVATE
THE liNE

ENTRY POINT FROM THE
SUPERVISOR WHEN
AN INTERRUPT OCCURS

B5---L------,

GET THE ADDRESS
OF THE TIME
QUEUE QCB FOR
POSTING

C5---L----.
SET CONDITION
CODE AND
INITIAliZE TO
PUT TIME QUEUE
ON READY QUEUE

D5---L-----,
GET THE ADDRESS
OF THE liNE PCI
APPENDAGE TO
UTiliZE COMMON
CODE

QTAM Charts 207

Chart DK. Send Scheduler Routine

208

SENDSCH
A2 ____ ---.
GET LCB ADDRESS
IN LCBREG
INDICATE
TERMINAL IS
CONNECTED

MSGTEST
B4-------,
GET THE ADDR OF

B 1_----J'--_---.

GET THE
ADDRESS OF THE
DESTINA TlON
DASD DCB

THE FIRST LCB ON
)--------------L------------~THECHAIN FOR

ROUTINE WAS
NO ENTERED WITH A BUFFER

TO BE WRITTEN ON THE
DISK

D 1_--''--_---.
THIS LINKS
TO A ROUTINE IGG019NG DXB1

WHICH CAUSE LINK TO SCREEN
THE BUFFER IN DESTINATION
TO BE WRITTEN DASD ROUTINE
ON THE DISK. '---_.,-__ ...1

F1-----'-----.
GET DEB AND
DIAL OUT CALL
ADDRESS AND
DCB ADDRESS
FROM THE QCB

~HAS
H1 THE DCB
~EEN OPENED

FO~RO~::UT
DK1
A2

D2_---' __ ---,

INDICATE ECB
ON DELAY
QUEUE PUT
ECB ON
READY QUEUE

E2 __ L-_---,

SET UP POINTERS
FOR TIME
DELAY
ROUTINE

D3 ----'-----,

SET UP POINTER
TO LINK SEND
SCHEDULER
IN DUMMYQCB

GET ADDR OF
SSUNAV

THE SOURCE
TERMINAL

C4_--'I...-_---,

E4_----"'--_----.

PUT MESSAGE
INTO LCB FOR
DESTINATION

H4_----' __ ----,

CLEAR LCB
STATUS
INFORMATION
IN CURRENT
LCB

UPDA TE ADDR OF
CURRENT SEG­
MENT IN LCB AND
REMOVE LCB FRO
SOURCE CHAIN

E5, __ .L-__ ...,

REMOVE
INSOURCE CHAIN
CODE FROM THE
DECHAINED LCB

PREPARE
G5-----'-_---.

STORE LCB ADDR
FOR SOURCE
INTO LCB FOR
DESTINA TlON

H5,_----' __ ---,

SET STATUS
CODE IN
LCBSTATE

Chart DK1. Send Scheduler Routine (Continued)

B J ----''-----,

GET THE ADDRESS
OF THE LCB FOR
THE LINE

B2_---''--_--,

SET HIO FLAG
CLEAR SENSE
BYTE

LNKLCB

F2 _---''--_----,

A 3_---, __ --,

CLEAR ENABLE

NONDIAL

E3_---L __ --,

SET LCBINCAM
TO INDICATE
LINE IS TRYING
TO SEND

YES PREPARE TO LINK
~";;';;"----I STCB INTO LCB I-----!~

G J _---L __ --,

INCREMENT THE
LINE NUMBER
BY ONE

CHAIN

PUT
DESTINA TlON
LCB AT HEAD OF
READY QUEUE

CHANGE THE TIC
AFTER POLL CCW
TO A NOP

QTAM Charts 209

Chart DL.

210

Active Buffer Request Routine

BREQENQ

C3---'----,
GET THE ADDRESS
OF THE FIRST
BUFFER IN THE
AVAILABLE
BUFFER QUEUE

D3,_--L.. __,

REMOVE THE
FIRST BUFFER
FROM THE
AVAILABLE
BUFFER QUEUE

SAVE THE BRB
ADDRESS AND
GET THE ADDRESS
OF THE BUFFER
IN FREG

G3;--L---.....,
POINT PARAMETER
REGISTER QREG
TO THE
AVAILABLE
BUFFER QCB

GO TO BUFFER
BRB ROUTINE

GO TO PRIORITY
SEARCH SUBROUTINE
IN IECKQQOl

GO TO PRIORITY
SEARCH SUBROUTINE
IN IECKQQOl

Chart DM. Available Buffer Routine

BFRREQ

A2-------,

ACCESS FIRST
BRB IN ACTIVE
BUFFER REQUEST
QUEUE

YES

GO TO QUEUE
INSERT ROUTINE
IN IECKQQl

C3------,
GET EXCESS

NO COUNT OF
BUFFERS OVER
BRB'S AND
DECREMENT BY 1

D4-----,

GET THE ADDRESS
:>-Y_ES __ -I OF THE INACTIVE

NO

BUFFER REQUEST
QUEUE

AVSZLOOP
E4---'-------.

GET THE ADDRESS
OF THE NEXT BRB
IN THE INACTIVE
BUFFER REQUEST
QUEUE

DECREMENT THE
THE COUNT OF
EXCESS BRB'S

LOWPR
J4-----''-------.

RESTORE
DECREMENTED
EXCESS COUNT
OF BUFFERS

BFRSCH
1(4---'----.

REMOVE BRB
FROM TOP OF
ACTIVE BUFFER
REQUEST QUEUE

GO TO QUEUE
INSERT ROUTINE
IN IECKQQOl

GO TO BUFFER
BRB ROUTINE

QTAM Charts 211

Chart Dl'~.

212

Buffer BRB Routine

A 1---1..-----,

POINT TREG TO
THE DISK I/o
QUEUE

POINT TREG
TO THE BRB

D1--'------,

MAKE BRB A QCB
BY PUTTING END
OF QUEUE
ELEMENT ADDRESS
IN FIRST WORD

YES

NOTPUT
E2-------,

NO GET LCB ADDRESS
>-----1 FROM THE BRB

F 1---'------,
GET DCB ADDRESS
FROM THE DEB
AND GET ENTRY
AND RETURN
POINTS FOR PUT

INTO LCBREG

YES

NO

IBUF
H2 _---L __ ---,

STORE LCB
POINTER IN
BUFFER AND SET
MSTATUS FOR
ACTIVATE

J2----L----,

REPLACE SEGMENT
SIZE IN BUFFER
WITH TOTAL
BUFFER SIZE

GO TO INTERIM
LPS ROUTINE
IN IGG019NG

GET POiNTER
TO FIRST BRB

SET BRB STATUS
CODE TO IDLE

DISCARD
A4---L-----,

POINT TREG TO
THE INACTIVE
BUFFER REQUEST
QUEUE

DISKFNT
B4----'-----,

PUT CONTENTS
OF TREG IN THE
BRB

C4----L----,

PLACE THE BRB
AT THE TOP OF
THE READY
QUEUE

NO

GO TO INSERT
SUBROUTINE IN
IECKQQ01

NO

RQIDLE
J4----L-----,

GO TO AVAILABLE
BUFFER ROUTINE

D5------.

CHANGE MSTIC
TO BE USED IN
DISK QUEUE

GO TO AVAILABLE
BUFFER ROUTINE

Chart DO. LPS Control Routine

YES

Bl--'-----.

CHAIN THE FIRST
TO THE SECOND
WITH A TIC

IECKSU
A2---L----,

B2---'---~
QWAIT

WAIT FOR
NEXT EVENT
IN LPS QUEUE

C2 WAS
/' STARTIO
~ ELEMENT

NOTSf:9:
D2)~

CLOSE OUT YES
ELEMENT ">------1

RETURNED

GET LCB ADDRESS
FROM BUFFER

F2

CHECKPOINT ~Y;:.:ES~_-I
ELEMENT

NO

G2---L------.

GET THE ADDRESS
OF THE USER'S
LPS PROGRAM

H2--'-----,

SET EOSREG TO
END-OF­
SEGMENT
ADDRESS

J2---'------.

B3---L---r1
EXCP

START DISK
OPERA TlON

D3------.

RESTORE THE
USER'S SAVE
AREA ADDRESS

F3-----r1
QPOST

SVC 67

J3 /v:As GET APPLICABLE
TERMINAL TABLE
ENTRY AND
INITIALIZE THE
SCAN POINTER

ENTRY FROM NO
I-----<RECALL AND/OR~:':::""--<

CLEANUP

RCRET

J4 SHOULD

BUFFER BE
ROUTED TO
ACTIVATE

NO

YES

J5--------.

SET SERVICED
CODE IN
MSTATUS

QTAM Charts 213

Chart DP. Activate Routine

IECKACT STCLCCW ACTRCV BTAMRDT
Al A3 A5

GET START OF
SAVE THE ADDRESS INDICA TE HEADER

TEXT ADDRESS
OF THE LAST BRB

YES IN MESSAGE

FOR CURRENT
FOR WHICH A PREFIX AND GET
BUFFER WAS EXPENSION

BUFFER ASSIGNED COUNT FROM
USER

BI B3 B5

WEAR REROUTE
STORE DATE

B4 /WRITE~ ~TORE HEADER
AND CANCEL BITS COUNT IN FIRST NO INITIAL OP EXPANSION
AND GET BRB BRB/CCW COUNT CODE SET IN COUNT IN PREFIX
ADDRESS FOR FIELD LCB FOR AND INSERT IDLES
CURRENT BUFFER ENCOUNTERED. BTAM AFTER PREFIX

INSBF
CI C2 C5

PUT TEXT START MOVE BRB/CCW ZERO SEQUENCE
ADDRESS AND ADDRESS FOR YES NUMBER AND GET
'READ' CHANNEL NEW BUFFER INTO ADDRESS OF
COMMAND CODE lOB AND GET DESTINATION
INTO BRB/CCW lOB ADDRESS ERROR QUEUE

D2 Q2260 D4
D5

CLEAR POLLING GET THE ADDRESS
AND ADDRESSING OF THE CURRENT
ERROR ACTIVE POLLING
INDICATOR LIST ENTRY FROM
IN LCBINCAM THE LCB

BTAMC
EI E5

PUT 'WRITE'
E4 STORE ADDRESS

CHANNEL OF POLLING OR
COMMAND CODE ADDRESSING
IN BRB CCW AND CHARACTERS IN
SET SERVICED BTAM'S DECB
BIT IN PREFIX

YES

BTAMENT
STSCK F2 F5

FI THI~ AN
ACCESS NEXT

YES BLOCK FROM TIC NO BUILD THE DECB
<INSERT BLOCK ADDRESS AND FOR ENTRY

RATHER THAN ACCESS NEXT INTO BTAM
A BRB/ BLOCK'S BUFFER

NO

NOTINSRT XLOOP

GI G2 G3 G4

SET CHAIN DATA ACCESS THE
CAUSE BUFF TO BE

SET WRITE
AND PCI FLAGS NEXT BLOCK

POSTED TO AVAIL
CONVERSA TIONA

IN CURRENT FOR LOOP
BUFF QUEUE AND

OP CODE IN LCB
BRB/CCW CLEAR DIAL OUT

FOR BTAM
SWITCH

H3

NO
H1 END H2 NlixT

OF MSG FLAG NO BLOCK AN YES GET THE ADDRESS

ON IN PREFIX INSERT
OF BTAM'S READ/

BLOCK
WRITE ROUTINE

"'v'

J1 J2 J3

TURN GET THE ADDRESS SET ERROR CODE
CHAINING OF THE NEXT LINK TO BTAM IN LCB FOR THE
FLAG OFF BLOCK AND ITS READ/WRITE USER

BUFFER RTN

K2 K3
ADJUST THE SAVE THE

BUFFER ADDRESS MESSAGE SET READ

TO THE START STARTING CONTINUE

OFFSET IN OP CODE
OF THE PREFIX

THE LCB

214

Chart DQ. Line 810 Appendage Routine

YES

B]_---L __ --,

SET FLAGS FOR
ERP & INDICATE
ERP IN CONTROL

NOTSAD

NO

D]_---L __ --,

SAVE REGS 10-13

L1NEX
E]---'------.

ADJUST TO
START OF LCB

SET SWITCH FOR
RCV SCHEDULER

GET ADDRESS OF
STARTING CCW

NO

B2 _---L __ ---,

SET DISABLE
RETURN FOR ERP
AND SET FOR
ERP TO HANDLE
BREAK

D2---"------,

GET THE QTAM
CCW POINTER
AND THE BTAM
CCW POINTER

E2---'-------,

TURN OFF PCI
FLAG IN QTAM'S
INITIAL CCW

F2 _---L __ ---,

MOVE THE TIC
COMMAND AND
FLAGS FROM
QTAM TO BTAM
CCW

G2 IS < QTAM CCW
FROM AN

INSERT BLOCK

H2
GET THE ADDRESS
OF WRITE IDLES
CCW AND STORE
AS TIC ADDRESS
IN BTAM'S CCW

J2

MOVE THE TIC
COMMAND CODE
INTO THE -BTAM
CCW

CHART DQ. LINE SIO APPENDAGE RTN

NO

B3----'------.

SET PCI FLAG IN
BTAM'S CCW AND
CLEAR SWITCH
FOR REQUEST

D3----L-----,

GET ADDRESS
OF NEXT CCW

SET PROG
CHECK BIT

ISAREAD

A4----'------,

TURN OFF DON'T
DIAL FLAG

DISABLEC

)~RESTART TP
"'-...OP CODE IN

2ND BTAM
'CCW~

YES

E4----'------.

IDENTIFY HEADER
BUFFER ON
AUTOPOLL LINE

LSIOUT
H4
INITIALIZE WITH
POINTER TO
POLLING CHAR-
ACTER FOR FIRST
PASS THRU LOOP

NEXT

J4
STORE ACTIVE
POLLING ENTRY
POINTER IN LCB
AND STORE
OFFSET IN LCB

NO

NO

A5----L----,

NOP THE DISABLE

GET THE OFFSET
TO THE TERMINAL
TABLE ENTRY
DEVICE ADDRESS

ACCESS THE
POLLING
CHARACTERS

F5----L-----,
INITIALIZE
BTAM'S 2ND CCW
TO WRITE THE
POLLING
CHARACTERS

BUMP TO NEXT
ENTRY IN THE
POLLING LIST

QTAM Charts 215

• Chart DQ1. Line S10 Appendage Routine (Continued)

216

LEAVE
A 1---'-------,

FIND THRESHOLD
COUNTER

LOOPST
A2--'----,

RELOAD
REGISTERS

APNDGNRT

INCREMENT
THRESHOLD
TRANSMISSION
COUNTER

UPDATE
CUMULATIVE
THRESHOLD
COUNTER

NOADD

H 1 HAS

<TRANSMISSION~NO CNTR REACHED
ITS THRESHOLD

YES B2

J 1----'"-----,

ADD CUMULATIVE
TO THRESHOLD

Chart DR. Line pcr Appendage Routine

X PCITEST PCILOOP
A1 A3 A5

STORE ADDRESS

A4ISNEX~ OF ACTIVE INCREMENT TO

BUFFER REQUEST ~OCKAN YES NEXT POLL

QUEUE IN FIRST INSERT CHARS

WORD OF BRB BLOCK
F3

NO

NOBUFY
B3

SET BASE FOR SET FLAG IN
IECKQQ01 AND TIC ADDRESS TO
IGG019NG AND INDICATE BRB
SAVE REGISTERS IN ACTIVE BRB
14-9 FOR lOS QUEUE

NOBUFX PCIEXIT
C3 C4
LINK NEXT BRB LINK CURRENT
INTO PREVIOUS CHAIN OF BRB'S
ELEMENT AND AND BUFFERS
GET ADDRESS OF INTO READY
NEXT BLOCK QUEUE

CLOSE
D4

D3 1S NEXT NO RESET LCBCLPCI ADJUST POLL ~OCKAN WITH NEXT BRB POINTER
INSERT ADDRESS
BLOCK

PClRT
E2 E3

SET PRIORITY REMOVE INSERT
AND GET ADDRESS BLOCK FROM BRB
OF INTERIM LPS RING AND SHOW
QUEUEANDCLEAR NEW BRB IN
EOM IN PREFIX REQUEST QUEUE

NOTTIME PCIAP
F1 F4

POINT TO
GET ADDR OF CLEAR HEADER

LCB HEAD
POLLING CHARS BUFFER
LAST USED TO INDICATOR
START AUTOPOLL

RLSINSP PC LOOP

G3 G4
GET FIRST PCI
CCW ADDRESS FIND START OF
AND GET TIC POLLING LIST
ADDRESS TO
NEXT BLOCK

H3 H4

GET AVAILABLE MOVE BUFFER
BUFFER QUEUE INTO NEXT BLOCK FIND NO. OF
ADDRESS AND ND PUT POLLING CHARS
RESET BRB TO COMBINED COUNT IN EACH ENTRY
HIGHER PRIORITY INTO NEXT BLOCK

PCIENT
J2 J3 J4

FIND THE CCW
PUT QCB ADDRESS PUT INSERT QCB FIND POLLING
INTO PREFIX AND IN INSERT BLOCK CHARS THAT

PRECEDING THE BUMP EXCESS SET PRIORITY HAVE SAME
TIC COMMAND BUFFERS COUNT AND PUT INSERT INDEX BYTE AS

BY 1 BLOCK IN CHAIN IN FIRST BUFFER

NOBUF
K1 K2

GET THE ADDRESS MAKE NEXT BRB
OF THE CCW ADDRESSABLE AND
CONTAINING GET ADDRESS OF
THE FIRST PCI ACTIVE BUFFER
NOT SERVICED REQUEST QUEUE

QTAM Charts 217

Chart DS. Line End Appendage Routine

218

Al--L----,

SET CLEAN UP
CODE IN lOB
AND ERROR BYTE
IN IOBCSW

Bl--L-----.

SET UP BASE FOR
IECKQQOl AND
ADJUST RETURN
REGISTER

DI_-L-__ --.

El--L-----.

GET lOB POINTER
AND RESET TO
START OF lOB

PLACE REQUEST
ON READY QUEUE
& POST LCB TO
ITSELF

L---__ -+-I~--___4 K 1

C2_----I __ ---,

LOAD TEST
BUFFER
ADDRESS

GET BRB/CCW
ADDR FOR WHICH
THE LAST PCI
WAS SERVICED

YES

F2 ---'----,

CLEAR
HEADER BUFFER
INDICATOR

K2 _---" __ --,
WTTA LlNEAPPEND

Chart DT. Line End Appendage Routine (Continued)

ADERR
A I----''---~

SET MSTATUS
TO BYPASS
HEADER
ROUTINES

BI---'---~

SET DATA CHECK,
TIME OUT, OR
NEGA TlVE
RESPONSE

CI---''---~

SET POLLING/
ADDRESSING
ERROR FLAG

FI--L----.

SET OFFSET IN
BUFFER OF NEXT
AVAILABLE
CHAR POS

HI----'--~

ACCESS
RESPCCW
FOR WRITE EOB

A2 WAS

<'PERMENENT
ERROR POSTED

TURN ON
MESSAGE
SENT FLAG

LOAD UCB
ADDRESS

K2-----L-----,

LOAD ADDRESS
OF DCB

ANDOUT
B3---''------.

CLEAR DATA
CHK, TIMEOUT
OR NEG
RESPONSE

TURN OFF
lOB EXCEPTION
FLAG

F3-----L-----.

COUNT + PREFIX
SIZE -
SEG SIZE

H3-----L--~

ZERO THE CN
IN LCBCSW

C4 IS

/rHE RECEIVE
""~IT ON FOR

'THE LINE'

YES

D4----'"---,

SET
INSUFFICIENT
BUFFERS FLAG
ON IN LCB

NOERROR
E4----'"------,
INITIALIZE LOOP
TO LOCATE
START OF BRB
THAT PROG CHK
OCCURRED IN

FINNTlC

F4---''----,

FIND NEXT TIC

H4--"-----,

IN ITIALIZE WITH
CCW PRECEDING
THE FAILING
TIC

GET ADDR OF
NEXT BRB'S
CCW

C5'NBER~T~
HAVE A BUFF

IN LPS OR
DISK QUEUE

D5 IS

<BUFFER
IN DISK

OPERATION

RLPREV

E5-----'-------.

SET TIC
POINTER FOR
FIRST TIME

PKRCVR

H5;----'-----,

MOVE HIGH
PRIORITY INTO
BRB

QTAM Charts 219

Chart DT1.

220

Line End Appendage (continued)

SET UP CCW
ADDR FOR
RESTART

LOAD ADDRESS
OF CON

LOOPWl
E 1

WRITE POLLING
CHARS CCW

BUMP TO
NEXT CCW

G2~FIRST,

<NTERRU~~ AFTER
CONVERSE

NO B3

J2--"----.

RESTART ON
i4----i WRITE EOT CON

APRSET
K2:---L----,

PREPARE TO
START POLLING

YES

APMSG
6
A3~

<FOLLOWING~O THE SECOND
POLL CCW NOW

'A NOP DS

B3 YES H4

APCLN
B3--'----,

MOVE CLEANUP
CODE TO
LCBSTATE

INDICATE
TERMINAL OFF
DELAY QUEUE &
CALCULATE TERM
ENTRY START

E3

FREE SEND SCHED
& PICK UP
DCB ADDRESS

PICK UP FIRST
LCB ADDR

PUT LCB ON
READY QUEUE

J3 ---'----,

FIND END
OF LCB

DELINK THE
SCHED

CLl2740

POINTAT
NEXT IN LCB

XYZ2740
F4

LINK IN
SEND SCHED

LOOK FOR QCB

CHLOOP

LINK IN SEND
SCHED & RCV
SCHED

RCVSCHDR
E5

MOVE ADDR OF
RCV SCHED
TO LCB

CHEND
G5

PUT NEXT
WAITING
SUBTASK IN
CHAIN

SSUNAV
J5-.....L...---.

Chart DU. Interim LPS Routine

A3----L--~

LPSDRCT
B3---''------.

SET SOURCE
TERMINAL KEY
IN MESSAGE
PREFIX FROM
LCB ENTRY

GET THE ADDRESS
OF THE LPS
QUEUE

SET LOW
PRIORITY IN
BUFFER

QTAM Charts 221

Chart DV.

222

Get Scheduler Routine

XCHECK
B3-----,

GET THE ADDRESS
YES OF THE LCB

>------1 CONTAINED IN

GETSCH
C2---'----,
IGG019NG DXBl

LINK TO SCREEN
IN DESTINATION
DASD ROUTINE

GET THE
ADDRESS OF THE
BRB FROM THE
CORE PROCESS
QUEUE DEB

IS

THE DEB FOR MS
PROCESS QUEUES

DSKREO
G3----~

SET FLAG TO
G2 BUFFER

FOR A DISK
OPERATION

YES SHOW BUFFER IN
DISK QUEUE AND
GET DISK QCB
FOR POSTING

J2---''------.
GET ADDRESS OF
DASD PROCESS
QCB FROM BRB
AND MAKE IT
ADDRESSABLE

K2---L-----,
IGG019NG DKB4

K3----1--~

LOAD PREFIX WITH

LINK TO SEND
SCHEDULER
ROUTINE

1---I1..---1~~~~~~~Rl~ D OF

SET DISK
OPERATION

GET ADDRESS OF
MS PROCESS
QUEUE DCB

D4-----''-----,

GET NUMBER OF
BUFFERS TO BE
FILLED IN
ADVANCE OF
GET

TURN OFF FLAG
SHOWING
BUFFER IN DISK
QUEUE

G4----'-----,

RESET BUFFER
COUNT WITH
DECREMENTED
VALUE

H4---''------,

GET ADDRESS OF
MAIN STORAGE
PROCESS QCB
FROM DEB
FOR POSTING

NOTE: SEE RETURN BUFFER
ROUTINE FOR CODE
OF FLOWCHART
BEGINNING WITH
XCHECK.

TO DISK END
APPENDAGE

Chart Dw. Return Buffer Routine

RETURN BUFFER ROUTINE A2-------.
GET THE MAIN
STORAGE

1------1 PROCESS QUEUE

GO TO GET
SCHEDULER

LCB FROM
MESSAGE PREFIX

B2---''------.
INDICA TE THE BRB
IN MS PROCESS
DEB THAT BUFFER
IS IN THE DISK
QUEUE

GETRETl

E2
GET DCB ADDRESS
FROM MS PROCESS
QUEUE DEB AND
BUMP COUNT OF
ADVANCE BUFFERS

F2
GET THE ADDRESS
OF THE
AVAILABLE
BUFFER QUEUE
FOR POSTING

G2 IS THIS < THE LAST
SEGMENT OF

'MESSAGE

NO

NO

YES

D3
PUT RE LA TIVE
RECORD ADDRESS
OF NEXT
MESSAGE IN MS
PROCESS DEB

G3

GET ADDRESS OF
SOURCE LCB

H3 BOTH

<~~E~~E~~:~~
""'IN LCB/

NO

D5-------.
D4 PLACE REL REC

IS THIS A NO ADDR OF NEXT
~---/PRIORITY MSG ~~---I MSG IN THE

YES

YES

J4---''-----,
SET BOTH
CLEANUP AND
RECALL AND GET
ADDRESS OF LPS
QUEUE TO POST

GETTESTX
K4----l'-----,

STORE QUEUE
ADDRESS IN
PREFIX AND
RESTORE BUFFER
ON READY QUEUE

GO TO GET
SCHEDULER

PROCESS QUEUE
DEB

NOTE: SEE GET SCHEDULER
RTN FOR FLOWCHART OF
CODE BEGINNING WITH
XCHECK.

QTAM Charts 223

Chart

224

DX. Destination

A1

SET UP ADDRESS
OF THE DISPATCH
ROUTINE FOR
EXlT ADDRESS

SCREEN
B1

GET SOURCE
LCB ADDRESS
FROM MESSAGE
PREFIX

C1
STORE ADDRESS
OF DISK I/O
QUEUE IN PREFIX
AND PUT BUFFER
ON READY QUEUE

SHOW NEXT
SEGMENT ADDRESS
ASSI GNED AND
SET DISK ADDRESS
IN BRB

LINK THE BRB
INTO THE BUFFER
ON THE READY
QUEUE

DX
B1

DASD Routine

FROM SEND SCHEDULER
OR GET SCHEDULER

B2

GET NUMBER OF
MSGS AND
INCREMENT BY
ONE

SET UP NEW
LCB ADDRESS

MOVE CURRENT
ADDRESS TO
CURRENT HDR

INIT
K2----'----,

USE SOURCE LCB

NOTlNlT SEGRSM
A3 A4

INDICATE
PUT NEXT
MESSAGE ADDRESS

PARTIAL-MSG IN PREFIX AND
AND SET MSG UPDA TED ADDRESS
PRIORITY INTO LCB

INITIALIZE FOR
SEARCH LOOP
AND TO RESET
BASE REG

RLOOP TEXTX
D3 D4 D5
REMOVE LCB INITIALIZE LCB
FROM SOURCE WITH NEXT MOVE HEADER
CHAIN FOR SEGMENT ADDRESS TO
PREVIOUS ADDRESS FROM PREFIX
MESSAGE PREFIX

ILOOP
E3 E5

LINK LCB INTO MOVE UPDATED
SOURCE CHAIN DISK ADDRESS
FOR DESTINATION TO LCB AND
QUEUE BY BUMP DISK
PRIORITY ADDRESS

F3
SET NEXT
SEGMENT ADDR
IN LCB AND PUT
DISK ADDR IN
QCB AND PREFIX

YES

G3 G5
BUMP DISK
ADDRESS AND LINK LAST

ESTABLISH SEGMENT INTO

BACKWARD BACKWARD

CHAIN CHAIN

Chart DY. Cross Partition Move Routine

B2 ----'----,

ACCESS COM­
MUNICATIONS
VECTOR TABLE
AND TCB ADDR

C2----''------.,

ACCESS SVRB
AND USER'S
PASSED
REGISTERS

F2 ---''-------.,

MOVE REQUESTED
DATA

D3-------,

GET QCB
ADDRESS

F3----'-----.

UPDATE QFAC
WITH NEW RRN

G3-....L----,

SHOW
RELEASEIN
PENDING

QTAM Charts 225

Chart EA.

226

Close Process Queue

IGG0203P

B 1----'----.

ACCESS DCB TO
BE CLOSED &
GET DEB ADDRESS
FROM DeB

C1----'--~

GET NAME OF
MODULE AND
RECFM

SUBTRACT ONE
FROM TRANSLATE
TABLE ADDRESS

F 1----''-----.

TRANSLATE
RECFM TO
CHARACTER

G 1_--'-__ --.

DELETE MODULE
WITH SVC 9

H 1_---' __ --.

DISABLE
INTERRUPTS

J1 MESSAGE
~ CONTROL

YET ACTIVE

K1---'-------.

ACCESS
INPLEMENTATION
MODULE

REMOVE
02_--''--_---,

INDICATE DCB
IS CLOSED

G2:---''------,

GET NEXT RB
WHICH IS A
TYPE II SVC

RESET QSAVE
FOR SUBSEQUENT
QPOST

RMVB~IS
D3 NEXT

~
ELEMENi
THE LAST

LEMENT

rO

E3~
THIS ELEMENT YES -<TO BE REMOVED

SET UP FOR
NEXT ELEMENT

RELINK
H3----L----,

REMOVE ELEMENT

REMOVE ELEMENT
FOR THIS TASK

LOOPDEB
04----'-----,

GET FIRST DEB
IN TCB

REMOVE THE
DEB FROM
THE CHAIN

J4-----L __ --.

RELOAD DCB
ADDRESS

RESET FIRST
TIME FLAGS
FOR GET

C5 ADD

OFBRB WITHIN~S
<DEB ON ACTIV

""'BRB QUEUE

E5
NO

REMOVE
ELEMENT

NOREMOVE
H5_----L __ ----.

SET ADDRESS
TO START OF
PROCESS QUEUE

CLRQCB
J5 ---''--_--.

CLEAR QCB
ADDRESS

• Chart EA1. Close Process Queue <Continued)

POST BUFFER

XPOST
C1

RESTORE SUBTASK
POINTER IN
PROC QCB

NO

E 1

POST BUFFER

POST BUFFER

MQOUTl
J1--1----,

REACT1VATE
QTAM READY
QUEUE

REMOVE DUMMY
LCB (DEB) FROM
DESTINATION
CHAIN

RMVLCB
C2

LOAD TERMTBL
ADDRESS AND
INITIALIZE FOR
FIRST TIME

TERM LOOP
D2

LOAD QCB
ADDRESS

G2 REL1[INE
<NUMBER GREATER YES

'THAN NO. OF
'EXTENTS

IS
H2 LCB THE < SAME LCB IN
PROCESS QUEUE

DEB

YES

J2_ __ -,

RESTORE
LCB STATE

GET NEXT
MQ-DCB

IS
D3 THIS A

<"GENERAL CLOSE NO
DO'{l'N PROCEqURE

FOR QTAM

~s
G3

CLEAR ID TO
INDICATE
COMPLETE

SET UP FOR
NEXT ENTRY IN
WHERE-TO-GO
TABLE

QTAM Charts 227

Chart EB.

228

Close Communications Line Group

B2---'-----,

ACCESS THE DCB
BEING CLOSED

C2---'------,
FIND SIZE OF
LCB AREA AND
START OF LCB'S
FOR LINE
GROUP

D2---'-----,

FREE STORAGE
OCCUPIED BY
LCB'S

E2-----L-----,
CLEAR LCB AND
lOB POINTERS,
STATUS BYTE
AND LCB SIZE
IN DCB

SETUPWTG
F2----'----,
CLEAR ID IN
WHERE-TO-GO
TABLE AND
ACCESS
WORKAREA

RELOOP

G2 NEXT
ENTRY IN

WTG CALL FOR
'TH IS ENTRY~

H2 THIS
YES CLOSE

MODULE TO BE
EXECUTED

AGAIN

NO

XCTLRTNE

Chart EC. Close Direct Access Message Queue

IGG02030

B1---1------.

ACCESS DCB
AND THE
TERMINAL
TABLE

C1---'------.
CLEAR TERMINAL
TABLE ENTRY IN
COMMUNICA­
TIONS VECTOR
TABLE

D1----1.------,
LINK FIRST
AVAILABLE
BUFFER INTO
FIRST
AVAILABLE BRB

E 1----1.-----,
RESET lOB
ADDRESS IN
DCB AND
DISABLE
INTERRUPTS

F1----1.----,

SAVE REGISTERS
5-15 IN SPECIAL
SAVE AREA
IN IGG019NG

SETUPWTG
G2-------.
RELOAD G1 ANY

ITEMS
ON READY

QUEUE

NO REGISTERS 5-15,
").:.';':;;"---1 ENABLE

INTERRUPTS AND
CLEAR WTG ID

H2 THIS

~
OUTINE

APPEAR AGAIN >-----(
INWTG '------/

TABLE

NO

XCTLRTNE

GET ECB
ADDRESS &
REMOVE STCB
FROM CHAIN

D4---L--~

FIND THE TCB
ADDRESS FROM
LAST ELEMENT
IN SVRB CHAIN

E4----'-----,

LINK TO OS
POST ROUTINE TO
POST ECB DONE

F4

<:lAS ENTRY
FROM QCB
SECTION

NO

QTAM Charts 229

Chart ED.

230

Close Routine

IECKCLOS

B1--'-----,

SAVE
REGISTERS
14-12

C1--1---.....,

ACCESS THE
QMOVE
STCB IN
IGG019NG

E1!--'----,
ACCESS TCB FOR
MESSAGE
CONTROL AND
INITIALIZE FOR
FIRST DEB

RESTORE
REGISTERS
14-12

F2'-----,

ACCESS
DCB FROM­
THE DEB

NEXTEXT
H2'--L---,
GET START PF
LCB AREA AND
INCREMENT
LCB
COUNTER

NO

J4-___ ~
STOPLN

STOP THE
LINE

TRANSMISSION

K4--l __-,

STARTLN

RESTART THE
LINE

TRANSMISSION

Chart EE. Operator Control Routine

IECKOCTL

YES

B 1----'------,

SAVE BASE REG.,
RETURN REG. TO
MACRO, AND
SCAN POINTER

C 1----L-----,

GET THE
ADDRESS OF
SCAN ROUTINE

D1_---L __ ----,

IECKSCAN CFA 1

ACCESS CTLMSG
FIELD IN THE
HEADER

E 1---'------,

RESTORE THE
BASE REGISTER

COMPARE
G1 IS

CTLMS~ IS

<' THIS A
""'" CONTROL

MESSAGE?

YES /G2 THIS A YES
>-;....----SINGLE SEGMENT

MESSAGE

RETURN
H 1----'-----,

RESET END OF
SEGMENT, SCAN
ERROR
(LCBERRST)

NO

E3-------,
SAVE SCAN
POINTER AND
GET ADDRESS
OF SCAN
ROUTINE

F3, __ '--_---.
IECKSCAN (FA 1

ACCESS MSGTYPE
NAME FIELD IN
HEADER

ROUTE
H3----I-----,

SET LCBDESTO
AND TTDKEY
TO RETURN
MESSAGE TO
SOURCE

RESTORE RETURN
REGISTER AND
SCAN POINTER

YES

REENTER
J4 ----'------,

SET SERVICED
FLAG IN PREFIX
AND RETURN TO
FREE BUFFER

QTAM Charts 231

Chart EF. Common Subroutines OPTCL

232

SUBI

A 1'----'------.

SAVE SCAN
POINTER AND
GET ADDRESS OF
SCAN ROUTINE

B 1---'-----.
IECKSCAN CFA I

ACCESS
TERMNAME FROM
INCOMING
MESSAGE

CI---'-----,
RESTORE BASE
REGISTER AND
ADJUST SCAN PTR
TO BLANK
FOLLOWING
TERM NAME

DII---L--~

GET ADDRESS OF
THE LOOKUP
ROUTINE

EI_---'-__ ---.
IECKDRCT COBI

FIND NO OFFSET
TERMINAL ENTRY
IN TERMBTL

FI----'--~

RESTORE BASE
REGISTER AND
PARAMETER LIST
POINTER

G2----~

YES GET ADDRESS OF
>-=":;':;'---1 LAST CHARACTER

RETURN MESSAGE
TO SOURCE

IN THE BUFFER

H2---'---~

GET BUFFER SIZE
REMAINING
FOLLOWING THE
TERMNAME ENTRY

J2~---''-------,

GET ADDRESS OF
TERMINAL ENTRY
IN TERMTBL

LASTSECT
A4------,

YES UNPACK 8 BYTES
~~----1 INTO A

UNPACK 8 BYTES
FROM TERMTBL
OR COUNTER
INTO BUFFER

C31--'---­

BUMP THE
POINTERS TO
OVERLAY LAST
BYTE UNPACKED

D3~---'--~

ADJUST THE
COUNT FOR
THOSE
UNPACKED

WORKAREA

B4 ---'-----,

MOVE THE
WORKAREA TO
THE BUFFER FOR
COUNT

C4--'----.

TRANSLATE THE
BUFFER TO
EBCDIC

INSERT
EOB-EOT INTO
BUFFER

G4---'----.

RESET MSEGSZE
IN BUFFER
PREFIX

SUB2

A5,----'------,
SAVE SCAN
POINTER AND
ACCESS QCB
FOR TERMINAL
ENTRY

C5 _--L __ --,

GET RELA TIVE
LINE NUMBER
AND DCB
ADDRESS FROM
THE QCB

CHKBLKI
D5,---L--~

SKIP BLANKS
IN BUFFER
FOLLOWING THE
SCAN POINTE'l.

E5-----L-----.

ADJUST THE
BUFFER SIZE
REMAINING

Chart EG. Common Subroutines OPTCL (Continued)

RCOPYC
A 1_---,-__ ---,

SUB1 EFA1

ACCESS TERMINAL
ADDR AND
BUFFER SIZE INFO

EFA2

B1-...L-----,

GET QCB
ADDRESS FROM
TERMINAL
ENTRY

D1----L..----,

GET RE LA TlVE
LINE NUMBER
AND DCB
ADDRESS FROM
QCB

E1----'------,

ACCESS LCB
SIZE AND START
OF LCB'S FROM
THE DCB

F1--.l---...,

CA LCU LA TE LCB
ADDRESS FOR
THIS LINE
NUMBER

G1--'-----,

GET ADDRESS OF
THE COUNTERS
IN THE LCB

H1--L.--...,

SAVE
REGISTERS 14-11

J1----'---,..,
QPOST

POST COPY
QCB TO
ITSELF

GO SEND COPIED
COUNTERS TO
SOURCE

D2------,

USE SIZE OF
COUNTERS FOR
MOVE

ROUTINE ACTIVATED AS RESULT
OF POSTING COpy QCB TO ITSELF

COPYCLR1
B3-----'---~

YES

RESTORE
REGISTERS 14-11
SAVED BEFORE
QPOST

C3--.l-----,

ADD THRESHOLD
COUNTERS TO
CUMULATIVE CTRS
AND RESTORE
CUMULA TlVE CTRS

E3-----'-----,

USE SIZE OF
BUFFER FOR
MOVE

F3_---' __ ----.
UNPAK EFA3

GO UNPACK
AND TRANSLATE
INTO BUFFER

G3-----'---~

CLEAR ALL
THRESHOLD
COUNTERS

QTAM Charts 233

Chart Eri.

234

Copy Termtbl Entry OPTCL Routine

RCOPYT
A3 ----"---..,

SUBl EFAl

ACCESS
TERMINAL
ADDRESS AND
BUFFER SIZE

EFK2

B3----''--------.,

ACCESS TNTRYSZE
AND ADJUST
FOR PORTION
NOT COPIED

D3----'------,

USE BUFFER
SIZE FOR MOVE

E3,_----''--_----,
UNPAK EFA3

TRANSLATE
INTO BUFFER

YES

C4-------,

USE TERMTBL
ENTRY SIZE
FOR MOVE

Chart EI. Change Termtbl Entry OPTCL Routine

A 1----''---~
SUBI EEA 1

ACCESS
TERMINAL ADDR
AND BUFFER SIZE

CHKBLK
Bl---....JL-_~

SKIP BLANKS
FOLLOWING
TERMNAME

TRANSLATE
TEXT
INFORMA TlON
IN BUFFER

El_----' __ ---.

SCAN BUFFER
FOR DELIMITER
(BLANK, EOB,
EOT, OR INVALiD
CHARACTER)

VALiD

YES F2 ANY DA TA YES
>-------< TO BE ~~----~

EFF4

LINK TO PUT
EOB-EOT INTO
BUFFER

NO

G21~~ QY
INSERT EOT IN
BUFFER
FOLLOWING
TERMNAME ~

G3

ACCESS TNTRYSZE
AND ADJUST
FOR PORTION
NOT CHANGED

J3---'-----,
USE DATA
LENGTH FOR
MOVE AND
SAVE REGISTERS
14-11

K3 -Q-=-=-PO':-S':"'"T--""

POST CHANGE
QCB TO ITSE LF

ROUTINE ACTIVATED AS RESULT
OF POSTING CHANGE QCB TO ITSELF

CHANGEI
B4 _---' __ ---,

RESTORE 14-11
AND ACCESS
QCB ADDRESS
FOR TERMINAL

GET RE LA TIVE
LINE NUMBER
AND DCB
ADDRESS FROM
QCB

E4-----'------,

ACCESS LCB
SIZE AND START
OF LCB'S
FROM THE DCB

F4--L-_--,

BUMP POINTERS
PAST SEQUENCE
NUMBERS

INACTIVE

C5-------,

BUMP POINTERS
NO PAST SIZE AND

QCB ADDRESS

YES

D5 _---L __ ---,

PACK 15 BYTES
FROM BUFFER
INTO WORKAREA

F5----L--~

MOVE 7 BYTES
TO TERMTBL
ENTRY AND
BUMP POINTERS

ENDPACK

G5-------,

J4 ANY YES
DATA LEFT TO

MOVE

QTAM Charts 235

Chart EJ.

236

Intercept and Release OPTCL Routine

GET TERMINAL
ADDRESS

EFK2

C1-----'----,

GET THE QCB
ADDRESS FROM
THE TERMTBL
ENTRY

TURN OFF THE
SEND BIT IN
THE TERMTBL
ENTRY

RRELEASM
A4----L.--...,

SUB1 EFA1 LINE
TO GET
TERMINAL
ADDRESS

GET ADDRESS OF
THE INTERCPT
FIELD IN THE
TERMTBL ENTRY

D4---'------,

GET THE QCB
ADDRESS FROM
THE TERMTBL
ENTRY

F4---'-----,
PUT HEADER
ADDRESS OF
INTERCEPTED
MESSAGE IN
QUEUE

G4-----'-----,

RESET INTERCEPT
BIT TO ZERO IN
TSTATUS

H4-----'-----,

SET THE SEND
BIT ON IN
TSTATUS

Chart EK. Start Line OPTCL Routine

RSTARTLN
A2---'-----.

NOBLK

SUBl EFAl

LlNK TO GET
TERM1NAL
ADDRESS

EFK2

B2'----I'-------,
SUB2 EFA5

LlNK TO GET
LlNE NUMBER
AND DCB
ADDRESS

EFF5

C2---L-----.

SAVE BASE
REGISTER FOR
LlNKAGE

NOTALL
D3------.

NO GET ADDRESS OF
IECKLNCH FOR
LlNKAGE

GET ADDRESS OF
IECKLNCH FOR
LlNKAGE

F2 IECKLNCH

GO TO START
ALL LlNES
ENTRY POINT

E3 IECKLNCH

GO TO START
ONE LINE
ENTRY POINT

B4--.L..-----,
REVERSE OFFSETS
TO ALTERNATE
AND CONTROL
TERMINALS IN
MACRO LlST

QTAM Charts 237

Chart EL. stop Line OPTCL Routine

RSTOPLN
A 1---'-----,

EFA1
STOPOK

238

SUB1

ACCESS THE
TERMINAL
ADDRESS

EFK2

B1-----L----,
SUB2 EFA5

LINK TO GET
LINE NUMBER
AND DCB
ADDRESS

SET LINE COUNT
EQUAL TO 1 AND
GET LI NE NUMBER
FROM THE QCB

E1-~------'

MAKE DCB ADDR
AVAILABLE FOR
TERMINAL ON
LINE TO BE
STOPPED

F1--'-----,
GET THE ADDRESS
OF THE SOURCE
TERMINAL ENTRY
AND ACCESS THE
QCB FOR SOURCE

G1-~----'

GET LINE NUMBER
AND DCB
ADDRESS FOR
SOURCE TERMINAL

.sOURCE
H1 TERMINA[NO

<lINE GROUPTO>------------~
~BE STOPPED

HAS
J1STOP'ALL

~ BEEN 59a'
K1~
STOPLI~~URCE >-N_O __________ ---'

SPECIFIED

B3-~-----'

GET DEB ADDRESS
FROM THE DCB
AND GET NUMBER
OF EXTENTS FROM
THE DEB

E3-----'-------,
SET LINE COUNT
EQUAL TO THE
COUNT OF LINES
AND SET LINE
NUMBER TO 1

SUBTASK
F3-~------'

SAVE REGISTERS
14-11 FOR
SUBTASK

G3---L---..,
QPOST

POST STOP
LINE QCB
TO ITSELF

EXIT TO
MACRO

chart El"1. stop Line OPTCL Routine (Continued)

ROUTINE ACTIVATED
BY POSTING THE
STOP QCB TO ITSELF

B1---'-------.

ENSURE THAT
THE IECKOPAW
ROUTINE WILL
BE ENTERED

C1---I--~

GET LCB SIZE
AND SAVE IN
BUFFER WITH
RELA TlVE LINE
NUMBER

LOOP1

D 1---1.----,

MULTIPLY LINE
NUMBER BY
SIZE AND GET
THE START OF
THE LCB'S

E 1---1.----,

GET THE LCB
ADDRESS FOR
SPECIFIED
LINE NUMBER

STOP1
A2--------.

RESTORE
REGISTER SAVED
BEFORE QPOST

NO

G3---L----,

LOAD LCBDESTQ
TO FORCE THE
RETURN OF THE
BUFFER BY
CLEANUP

H3---'------.

USE QCB FOR
LCB ADDRESS
AND COUNT
INDEX STORAGE

SUBTASK ACTIVATED WHEN
LCB IS POSTED TO ITSELF
INDICATING LINE IS STOPPED SUBTA1~_1 ____ --,

SUBTASK ACTIVATED
WHEN CLEANUP POSTS
THE BUFFER TO THE
DESTINATION QUEUE

S TOP2 B4------,

GENSTCB ENJ5
C4--'----,

BUILD AN STCB
IN THE BUFFER
BEGINNING AT
HDSTRT TO STOP
THE LINE

D4-----'-----,
PUT STCB INTO
STCB CHAIN OF
LCB FOR THE
LINE TO BE
STOPPED

F4---'"----,
CLEAR INTREL
CONTROL
SWITCH AND SET
INTREL SWITCH
IN LCBDCBPT

G4----L---,

SET A SWITCH
IN THE BUFFER
TO BE TESTED
WHEN THE LINE
IS STOPPED

REMOVE THE
STOPLN STCB
FROM THE LCB'S
STCB CHAIN

B5---1.-----.

SET LCBS TA TE TO
ZERO TO
DEACTIVATE THE
LCB

C5---1.----,

ACCESS THE DCB
FROM THE LCB
AND THE DEB
FROM THE DCB

E51S NEXT
STCB A FULL

STCB

NO

F5-----1-----.

REMOVE THE LCB
FROM THE
READY QUEUE

FREEBUF
H5---'-----.

SET UP TO
RETURN THE
BUFFER TO THE
AVAILABLE
BUFFER QUEUE

YES

QTAM Charts 239

Chart E!.~.

240

Intrel OPTCL Routine

RINTREL
A 1----1.------.

SET THE SWITCH
INDICATING
INTREL
CONTROL TO
RSTOPLN

TIMEQ
A2 _---1. __ ---.

CLEAR INTREL
INDICA TlON TO
RSTOPLN AND
SET INTREL SWITCH
IN THE LCB

SUBTASK2
A 3-----'----.

REMOVE LCB
FROM READY
QUEUE I CLEAR
INTREL
INDICATION
TO RSTOPLN

SET UP ADDRESS
NO OF STCB2 FOR

TlMEQ EXIT AND
SAVE LCB IN
BUFFER

C2--1---....,
SET A SWITCH IN
THE BUFFER STCB
FOR INTREL
CONTROL WHEN
LINE IS STOPPED

THIS CODE ENTERED
WHEN 2 MINUTE
INTERVAL EXPIRES
FOR THE BUFFER

F3----
ENTER

D3_-,-__ ~

INITIALIZE TO
INSERT BUFFER
INTO TlMEQ AS
AN LCB FOR 2
MINUTE DELAY

E3 _---1. __ ---,

PREVENT LCB
BEING STARTED
WHILE BUFFER IS
IN TlMEQ

F3---'-------r
GET ENTRY
POINT TO THE
TIME DELAY
ROUTINE IN
IGG019NG

NO

STCB2

G2--'---....,

ACCESS THE LCB
ADDRESS FROM
THE BUFFER

EXIT TO PUT
BUFFER I N TIME
QUEUE

H2--'---~

SET UP TO FREE
BUFFER
REMAINING ON
READY QUEUE

J2-----'------.

SET UP TO POST
THE LCB TO
ITSELF TO
RESTART LINE

EXIT TO POST
ROUTINE IN
IECKQQ01

C4----....,
SET UP TO POST
A SPECIAL QCB
TO THE LPS
QUEUE AND
SAVE REGISTERS

D4·-----''------.

EXIT TO POST
QCB TO LPS
QUEUE

THIS CODE IS
ACTIVATED BY
IECKOPAW FOR
AN IRRECOVERABLE
ERROR

ES:-----...

STOP4

FS-----'------.

RESTORE BASE
AND ACCESS
BUFFER AND LCB
FROM IECKOPAW

GS---'------.

GET THE LINE
NUMBER AND
STORE IT IN
THE BUFFER

SET INTREL
SWITCH FOR
RSTOPLN AND
GO STOP THE
LINE

EXIT TO
STOP THE
LINE

Chart EO. Operator Awareness Routine

Dl

TURN OFF
PARTIAL.
MESSAGE
SWITCH IN LCB

MOVE QCB
ADDRESS TO
DESTINA TlON
QUEUE

Fl

MOVE OFFSET TO
opcn TERMINAL
TO DESTINATION
KEY

Gl G2

INDICATE SINGLE COMPUTE
SEGMENT MESSAGE SIZE
MESSAGE IN AND STORE IT
PREFIX IN PREF,IX

H2
MOVE
TRUNCATED
MESSAGE TO
BUFFER

NO

B3 HAS A
PERMANENT

ERROR
OCCURRED

NO

C3---L..---.

GET DCB
ADDRESS

MOVE LINE
NUMBER AND
LER COUNTERS
TO MESSAGE

G3

MOVE MESSAGE
TO BUFFER

D4 D5

MOVE LINE MOVE STATUS
YES NUMBER AND FROM CSW AND

OP CODE TO SENSE INFO
MESSAGE TO MESSAGE

E5

MOVE TP OP
CODE AND TERM
IDENTlFICA nON
TO MESSAGE

F4 F5

CLEAR LER CTRS MAKE HEADER
AND LINE ADDRESS
NUMBER SO AVAILABLE FOR
NEXT THRESHOLD RECALL
CHECK IS
NEGATIVE

G5
IECKRC DDA2

LINK TO
RECALL TO
OBTAIN HEADER

H4 H5

COMPUTE SPACE INSERT IDLE

LEFT IN BUFFER CHARACTERS AT
START OF HEADER

QTAM Charts 241

Chart Fl. OPEN Line Group Load 1 Executor Routine

242

IGG0193N

B1

B 1----'------,

DOBLKLP

LOCATE THE
TlOT FOR
PARAMETERS

C1---L------,
GET CORE FOR
DATA EXTENT
BLOCK AND
CONVERT TO
ZERO

INITDEB1
D1---L------,

INITIALIZE AND
I NSERT THE DATA
EXTENT BLOCK
IN THE TCB
CHAIN

E 1----L-----,

FORCE BUFFER
REQUEST TO BE
NOT LESS
THAN 2

DEBMOV1
F1----'------,

MOVE UCB FROM
THE nOT TO
THE DEB

H 1---'-----.

INITIALIZE DEB
WITH lOS RETURN
ADDRESSES

J2'~~ ~';;';"' __ .o(MODULE TO BE YES B1
USED

AGAIN

NO NO

Chart F2. OPEN Line Group Load 2 Executor Routine

IGG0193R

Bl----L...---,

INITIALIZE
REGISTERS WITH
CONTROL BLOCK
ADDRESS

Dl-----"L-------,

DETERMINE THE
NUMBER OF LCB'S
NECESSARY

El------'L-------,

GET CORE FOR
THE LCB/IOB

Fl-----"'--------,
THE LCB AND
lOB ADDRESSES
AND DEVICE
TYPE ARE STORED
IN THE DCB

STARTLP
Gl-----'-----,

lOB IS
INITIALIZED

H11------''-------,

IF AUTOPOLL
LINE BIT 7 OF
LCBFLAG2
IS SET ON

MOVE DEVICE
TYPE TO THE
UCB

SET UP PROPER
SAD COMMAND

NOT2702

D2------,

NO
SET ENABLE CCW ~----<

E2

TTY DEVICE
YES

F2----I----,

STARTLN

SET WRITE
BREAK CCW

H2'----IL------,

INITIALIZE
RECEIVE
SCHEDULER

OUTONLY
J2-----'------.

SET RETURN
CODE, PRIORITY,
AND START LINE
INDICATION

SET READ
SKIP CCW

F3---''-------,

F40f~~IS
BUMP TO NEXT ~ __ N-O-<.. DCB THE SAME
POINTER AS SAVED?

FOUNDCCB
G4---'------,

RESTORE
LCB DATA

SET 'DO NOT
START'
INDICATION

K4--------,

SET UP
WHERE- TO-GO
TABLE

NO

YES

YES

E5
LINE TO

BE STARTED?

YES

STOREECB
H5---'------,

NO

STORE ECB
ADDRESS IN lOB

J5---'-----,

GET NEXT LCB
ADDRESS

K5

MORE LCB'S

QTAM Charts 243

Chart F3.

244

Open Line Group Load 3 Executor Routine

IGG0193T

CPFIAG
Bl-......... -----,

LOAD RE GS FROM
LOAD 2; ID & TTRL
FLD NEEDED FOR
LOAD

Cl_---'-__ ---,

LOADROUT F3D3

ISSUE LOAD SVC

Dl----'------,

PICK UP
DEVICE CODE

SAVE DEVICE
TYPE AND
DEVICE COUNT

Gl_-L. __ -,

LOADROUT F3D3

ISSUE LOAD SVC

NEXTSPIO

H l----L----,
STORE: VECTOR
LIST ADDR
DEVICE CODE
AND NO OF
ROUTINES

Jl----'------.
LOAD: NUMBER
OF LINES, SIZE
OF EACH LCB/
lOB AND LCB
POINTER

NEXTSIO
Kl'----'-----,

LOAD lOB ADDR
AND BUMP LCB
POINTER TO THE
NEXT LCB

Bl

A2!---L---,

SET SIO CODE FOR
IECKLNCH AND
SET NO PRIORITY
SW IN LCB

ISSUE SVC
EXCP (0)

GET ADDRESS OF
EXECUTOR
WORK AREA

RELOOP
E2 _--1 __ ---,

INCREMENT
CURRENT WTG
REG & PARAMETER
LIST REG

GET NEXT ENTRY

XCTLRTNE
A 3----1----,

MOVE ID TO
NAME FIELD &
TTR TO WTG
TABLE

B3---'-----,

SET DE SWITCH
ON

C3i----L---r1

ISSUE SVC
XCTL (7)

SET STANDARD
LOAD ATTRIBUTES

E31----I-----,

GET TOTAL
LENGTH OF
MODULE

GET COMM
VECTOR TABLE
ADDRESS AND
ADDRESS OF DCB
FOR SVC LIB

H3---'---n

ISSUE SVC
LOAD (8)

J3 ----1-----,
UPDATE POINTER
TO SUBROUTINE
ID SECTION IN
DEB & INCREMENT
COUNT OF
SUBROUTI NE S
LOADED

LONGLOAD
A4---L---,

SET LENGTH OF
FIRST TEXT
RECORD TO 1024

INDICATE MORE
THAN ONE
RECORD

VDI

BUMP TO GET
NEXT VD FIELD
& BUMP DEVICE
COUNT BY ONE

Chart F4. OPEN Direct Access Message Queue Routine

IGG01930 OPENCP

CTLOOP
B1

OBTAIN NUMBER
OF EXTENTS ON
THIS VOLUME

C1

ADD TO
PREVIOUS
COUNT

GET ADDRESS
OF NEXT DSCB

CALCULATE
SIZE AND GET
CORE FOR DEB

J 1---1.-----.

INITIALIZE
THE DEB

K1--'-----.

BUILD DISK
EXTENTS FOR
ENTIRE DATA
SET

B2

GET TERMTBL
ADDRESS FROM
DCB AND STORE
IN CVT

C2

LOAD MODULE
IGG019NG

D2

STORE ADDRESS
OF IGG019NG

NMTRKS
E2
GET THE
NUMBER OF
RECORDS THAT
WILL FIT ON
EACH TRACK

F2

GET ADDRESS
OF NEXT LOAD 2

RELOOP
G2

SET UP XCTL
FROM WHERE-
TO-GO TABLE

PAOPEN
B3

LOAD CHECK
POINT MODULE
IGG019NH

C3
STORE ADDRESS
OF NH IN
IGG019NG AND
TERMINAL TABLE
ADDRESS IN NH

D3

STORE LENGTH
AND OVER HEAD
IN IGG019NG

E3

CALCULATE
NUMBER OF
TRACKS FOR
EXTENTS IN DEB

F3

GET ADDRESS OF
NEXT LOAD FOR
CHECK POINT

QTAM Charts 245

Chart FS.

246

OPEN Direct Access Load 2 Routine

IGG0193U

Bl---I.------,

PUT MSGCTL TCB
ADDRESS IN
IGG019NG, SET
PRIORITY

C 1---'------,
SET MASTER
RECEIVE SWITCH,
ZERO MESSAGE
PROCESSING
DEB CHAIN

QLOOP
D 11_--1. __ --,

OBTAIN ADDRESS
OF QCB FROM
TERMINAL
TABLE

STORE MESSAGE
QUEUE ADDRESS
IN THE QCB
FOR THIS ENTRY

B2------,

SET LENGTH
OF FORMAT 1

D2:------,

BUMP POINTER
TO THE NEXT
ENTRY IN
TERMTBL

ALLOCATE DISK
SPACE FOR
FIRST RECORD IN
EACH QUEUE

G2

STORE ADDRESS
OF FIRST BUFFER
IN AVAILABLE
BUFFER QUEUE

H2
lOB ADDRESS IN
DCB AND DCB
ADDRESS IS
STORED IN THE
lOB

J2

MOVE SUBTASK
ROUTINE TO
OPEN WORK
AREA

K2
QPOST

ACTIVATE
SUBTASK TO
STORE ADDR OF
QQOl IN NG

YES

SET THE
FORMAT 3 INDEX
AND LENGTH

FORMAT 1
E3---1-----r1

FREEMAIN ALL
SECONDARY
DSCB

ZERO POINTER
IN LAST DSCB
OF FIRST
VOLUME

CHANGE ADCON
IN IGG019NG
FROM A (lECKPR)
TO A (IECKOPAW)

NO

SUBTASK+l0

C4---1------,

GET ADDRESS OF
QQPTR ADCON

D4·---'------.

STORE IECKQQOl
BASE IN ADCON
IN IGG019NG

EXIT TO
QDISPATCH

NOOPCTL
A5---'----,

INDICATE
COMPLETION
IN WHERE-TO­
GO TABLE

AUTOPOLL
B5 _--lL--_---,

LOCATE FIRST
ENTRY IN
TERMINAL TABLE

APNXTERM cs---'---1----,

LOCATE NEXT
ENTRY IN
TERMINAL TABLE

APN

E5----'---'-----,
OBTAIN ADDRESS
OF POLLING
LIST
ASSOCIA TE D WITH
THIS ENTRY

G5
REPLACE OFFSET
VALUE WITH
POLLING
CHARACTERS AND
INDEX BYTES

RELOOP

H5

SET UP XCTL
FROM WHERE-
TO-GO TABLE

NO

Chart Fil. OPEN Checkpoint Data set Routine

Bl

IGG0193V

TERM LOOP
B 1

LOAD QUEUE
ADDRESS

Dl

STORE ADDRESS
OF FIRST QUEUE

ADD TO QUEUE
SIZE THE SIZE
OF QUEUE +3

SUBTRACT 3
FROM QUEUE
SIZE

Jl-----'-----,

ACCESS POLL
ADDRESS

A2

ADD LCB SIZE
AND POLL LIST
SIZE TO
TOTAL SIZE

SAMEQUE
B2

I NCREME NT TO
NEXT TERM
ENTRY

STORE TERM
LENGTH AND
TOTAL SIZE IN
IGG019NH

E;2

BUILD BASIC I/o
COMMAND IN
OPEN WORKAREA

SET READ
COMMAND
IN CCW

~~--P-:-A--REJ-----:F:::7 A-:-3'"

READ CONTROL
RECORD

NEW

RESTART

A3

GETMAIN FOR
CHECK POINT
AREA

B3

STORE ADDRESS
IN WORK AREA

SET NO-OP
COMMAND
FOR FIRST

NEWDS
F3

WRITE COUNT,
KEY, AND DATA

G3_-,-__ --,

PREPARE F7A3

WRITE CONTROL
RECORD

H3_--L __ --,

PREP F7A2

WRITE FIRST
CHECK POINT
RECORD

J3_----'_-=~
PREP F7A2

WRITE SECOND
CHECK POINT
RECORD

REREAD
A4

SET READ
COMMAND.

B4
DISKIO F7B2

READ CHECK
POINT RECORD

C4
RESTORE
ADDRESSES OF
INPUT AREA,
TERMTBL, NG,
AND LPS QUEUE

D4

GET ADDRESS OF
QUEUE DATA AND
POI.:L1NG LIST
DATA

E4
RESTORE QUEUE
SIZE AND
QNASEQ, QBACK,
AND QFAC IN
QCB FROM
SAVED DATA

F4

FLIP COUNT
SWITCH

MOVE TERMINAL
ENTRY FROM
WORK AREA TO
TERMINAL TABLE

H4----L-----,

COMPUTE THE
ADDRESS OF THE
NEW QUEUE

STORE QUEUE
ADDRESS IN
TERMINAL
TABLE ENTRY

STORE TERMINAL
SIZE IN
TERMINAL TABLE

RESTORE QUEUE
SIZE, QNASEG,
QBACK, AND
QFAC TO THE
QCB

E5
RESTORE QUEUE
FIELDS IF
DIFFERENT
QUEUE THAN
LAST

NO

H5-----'-----,

SET QFAC TO
LAST MESSAGE

J5-------,

QTAM Charts 247

Chart F7. OPEN Checkpoint Data set Routine (Continued)

248

NOTPROC
Bl-~-----,

OBTAIN POLLING
LIST POINTER

TURN OFF
'NOT RESTORED'
FLAG

El

SAVE QUEUE
ADDRESS

UPDATE POINTERS
IN WORK AREA

Jl----.l-----.

SET RESTART
INDICATOR IN
TERMINAL TABLE

PREP
A2---'------.

PREPARE FORMAT
FOR CHECK
POINT RECORD

STORE

SET WRITE
DATA ADDRESS

NO

D2'---''------.

STORE DATA
LENGTH IN CCW

E2

NO-OP

F2

SAVE REGISTERS

H2----'------,
CONVERT

J2

RESTORE
REGISTERS

YES

YES

YES

PREPARE

NOFIT

A3----'-----,

PREPARE READ
OR WRITE
CONTROL
RECORD

C3-------,

COMPUTE
LENGTH OF
REMAINING
DATA

G3

SET LENGTH IN
CCW FOR READ

B4

EXCP

C4

WAIT

ZERO RECORD
NUMBER, RESET
TRACK LENGTH

J4----'L---___.

COMPUTE
LENGTH OF
NEXT READ

LEAVE
B5
MOVE CHECK
POINT INTERVAL
FROM TERMINAL
TABLE TO
IGG019NH

C5

SET INITIAL
REQUEST VALUE
IN CKREQ
QUEUE

STORE INTERVAL
IN PLACE OF
REQUEST

CKREQ
F5

RESTORE IOBCCW
ADDRESS

RELOOP
G5

SET UP XCTL
BY WHERE-TO-
GO TABLE

YES

• Chart Fa. QTAM open Line Group Load 4

IGG0194A

Cl---'-----,

PREPARE FOR
SCAN OF THE
TERMINAL
TABLE

Fl RELlilNE
<NO GREATER

THAN NUMBER
OF EXTENTS

NO

Gl--'----~

LOCATE LCB

A2 ---'------,

PlACE SEND
SCHEDULER IN
STCB CHAIN
OF THE LCB

D2---1.----,

ASSURE QFAC
SET CORRECTLY

PlACE SEND
SCHEDULER ON
DIAL-OUT CALL
QUEUE

J2---J~---.

CONVERT
INCOMING
HEADER RECORD
NUMBER TO A
TTR

K2 DISKRWRT

A3---L----,

TURN ON THE
CANCEL FlAG

C3,----'----,

RESET SEQ IN
THE TERM
ENTRY

SETWRITE
D3:--.1..----,

DISKRWRT

REWRITE THE
HEADER

FlAG TO
INDICATE NO
TIME DElAY
EXECUTED YET

H3---J~---,

NEXTL!NE
A4---L.----.

INCREMENT TO
THE NEXT
LCB/IOB

INDICATE
COMPLETE

SET UP FOR
NEXT ENTRY IN
WHERE-TO-GO
TABLE

WTO

A5--'------.

DElAY FOR
28 SECS

QTAM Charts 249

.Chart F9. Close Process Queue Load 2

250

IGG0203R

BJ ~----I

B 1----1'--_---.

SET PRIORITY
MASK TO MAKE
SVRB ZERO

NEXDDEB
Cl--1-----,
ACCESS ADDRESS
OF NEXT DEB
INDEX TCB OF
MESSAGE
CONTROL

ACCESS START
OF LCB'S
FOR DEB

NEXTEXT

Gl---'--_----.

COpy RELA TlVE
LINE NUMBER

SET STOP
INDICATION

ISSUE SVC
QWAIT (65)

SKIPSTOP

F2----I'---~

RESTORE THE
DCB ADDRESS

CXEOL
A3----I'------.

CLOSE ELEMENT
ADDRESS IN NG

B3-....I---..-,

ISSUE SVC
QPOST (67)

C3-....L---.

CHAR ID TO
INDICATE
COMPLETION

SET UP FOR
NEXT ENTRY IN
WHERE- TO-GO
TABLE

XCTLRTNE

Chart FA. Checkpoint Routine

DISWRT
D 1---1.-----.

CONVERT RTN

CONVERT TTR TO 14-------------<
ACTUAL DISK
ADDRESS

EI---L--,-,

EXCP TO WRITE
C.P. OR
CONTROL
RECORD

POSTLCB
GI------,

SET UP TO POST
C.P. ELEMENT
TO ITSELF TO
CAUSE REENTRY
FOR TAKING C.P.

CHECK POINT
REQUEST SUBTASK

E2-------,

CHAIN PARTITION
ECB INTO TOP ~---<
OF WAIT QUEUE

H2-----I-----.

DECREMENT
CKREQ
COUNTER

J3i-----'-----.

FLIP POINTER
TO MOST
CURRENT C.P.
RECORD

K3:---L----,

SET UP TO SET
TIMER FOR
CHECK POINT
INTERVAL

F4 ____

ISSUE WTO TO
PRINT ERROR
MSG

G4---'-----,
PREVENT C.P.
ROUTINE FROM
TAKING
FURTHER CHECK
POINTS

H4-------.

YES

RESTART

B5---L--......

FREEMAIN TO
RELEASE C.P.
WORK AREA

ACCESS FIRST
(NEXT) PARTITION
ECB IN WAITG

POST
PARTITION ECB
COMPLETE

SET UP TO
WRITE RESET
OF C.P.
RECORD

1-----\ DI

K4-------.

SET UP TO RESET CKREQ
COUNTER TO
INITIAL VALUE

1----1 WRITE CONTROL I----i DI
RECORD

QTAM Charts 251

Chart FB.

252

Checkpoint Routine (Continued)

Bl---L..--......

GETMAIN TO
OBTAIN WORK
AREA FOR
C.P. RECORD

Cl_--L.. __ -,

SET REGISTERS
TO START OF
EACH FIELD IN
THE WORK AREA

TERMLOOP
Dll-......L.--..-,

ACCESS FIRST
(NEXT) ENTRY IN YES
TERMINAL TABLE 14----<
AND MOVE TO
WORK AREA

E 1----'"-----,

OBTAIN QCB
ADDRESS FROM
TERMTBL ENTRY

Hl----'-__ ~
MOVEQUE

MOVE QCB
FIELDS TO C.P.
WORK AREA

DEST
Kl--,----.

MOVE POLLING
LIST AND LCB
DATA TO WORK
AREA

YES

E2_---'" __ ---,
MOVEQUE

MOVE ERROR
QUEUE DATA TO
WORK AREA

LINK CHECK
POINT ELEMENT
INTO BOTTOM
OF DISK I/O
QUEUE

J2--------.

MOVE DISK
ADDRESS OF
CURRENT MSG
TO WORK AREA

K2-......L.----.
INCREMENT
QSIZE BY ONE
FOR EACH MSG
IN MS PROCESS
QUEUE

Chart NU. QTAM Nucleus (1 of 2)

Bl

GET ADDRESS OF
TERMINAL TABLE
IGG019NGI TCB
AND RB

Cl

ZERO ECB IN
SVRB

Dl

PLACE NEW STCB
IN CHAIN OF
LAST DISPATCHED
QUEUE

E 1

SET PRIORITY
OF EO

SET KEY IN
LAST
DISPATCHED
QCB TO 2

Jl-~-----.

SET PRIORITY

PUT QCB
ADDRESS IN
RECB

ENTRY INTERFACE
SUBROUTINE

WAIT

F2

WAIT SET QKEY OF
READY QUEUE
EQUAL TO ZERO

WAIT
SUB-
ROUTINE

B3

REMOVE STCB
FROM PRESENT
CHAIN

SKIP TO TOP
OF STCB IN

. CHAIN

E3

SET REGISTERS
TO POINT TO
STCB AND QCB

F3
SEARCH CHAIN
BY PRIORITY FOR
INSERTION
POINT FOR
ITEM PASSED

G3

DEFER ENTRY
SUBROUTINE

PRIORITY SEARCH
SUBROUTINE

QUEUE INSERT
SUBROUTINE

J4------.,

SET UP READY
QUEUE AS QCB
FOR STCB

YES

C5

SET KEY IN
READY QUEUE
QCB TO 2

D5

OBTAIN FIRST
ITEM IN READY
QUEUE CHAIN

REMOVE
ELEMENT FROM
READY QUEUE

QTAM Charts 253

Chart NV.

254

QTAM Nucleus (2 of 2)

B 1----1-----,

REMOVE ITEM
FROM HEAD OF
READY QUEUE

C1

SET KEY
IN QCB TO 1

REPLACE RECB
ON READY QUEUE
WITH ITS QCB

SET QKEY IN
QCB EQUAL
TO 3

REMOVE STCB
FROM QUEUE

LNKLOOP
F2----1--~

LOAD ECB
ADDRESS

G2'----1--~

OBTAIN TCB
ADDRESS

H2--L--.-.

POST ECB IN
FULL STCB
COMPLETE

EXIT SELECT
SUBROUTINE

NO

EXIT INTERFACE
SUBROUTINE

NO
ASYNCHRONOUS ----I

INTERRUPT

J3----~

WAIT ON ECB
ASSOCIATED
WITH CURRENT
TCB

YES

Chart QA. Terminal Test HDR Analysis Module

B 1---'------,

ESTABLISH BASE
REGISTERS AND
CLEAR NO-TEST
SWITCH

D1----'------,

PICK-UP COUNT
OF CHARACTERS
IN SYMBOL

f:i 1--.1.-----,

TRANSLA TE
SYMBOL TO
EBCDIC

J1----'-------,

SET-UP TO
SEARCH
TERMINAL
TABLE

YES

YES

YES

YES
----~

ZERO CONTINUE
C3----'------.

FIND ADDRESS
OF TABLE
ENTRY

IDFOUND
B4----''--------,

ZERO FIND LCB
ADDRESS & PUT IT I
DEVICE TYPE AND
FEATURES IN
BUFFER

PUT DIAL
INFORMATION
ADDRESS IN
BUFFER

NODIAL
E4---'------,

PUT
ADDRESSING
CHARACTERS IN
BUFFER

YES

RESTART
AS.;..;....---'------,
SET NO-TEST
SWITCH AND
CLEAR ADDRESS
AREAS IN
BUFFER

BCD2260
GS---L-----,

TRANSLATE
INPUT TO ASCII
FROM BCD

TRANSLATE
INPUT TO BCD
FROM ASCII

QTAM charts 255

Chart QL. Resident Terminal Test Module

256

NO

SET LCB
DESTINA TlON
FIELD TO TEST
QCB ADDRESS

NOTE--THE QTAM BUFFER RECALL-CLEANUP ROUTINE POSTS
THE BUFFER TO THE TEST BUFFER ROUTING QCB.

E3-----"-----,

QPOST BUFFER
TO AVAILABLE
BUFFER QUEUE

YES

SET FLAGS FOR
LINE END
APPENDAGE

F4-.......1-----,

INITIALIZE
FOR SENDING
OF TEST
MESSAGE

SET TERMINAL
TEST ACTIVITY
FLAGS

D5_---L __ --,
SVC 77

CALL & EXECUTE
TERMINAL TEST
TRANSIENTS

E5----'-----,

POST BUFFER
TO TEST STOP
LINE QCB

Chart QS. Terminal Subtasks

TERMINAL TEST
BUFFER ROUTINE SUBTASK

D 1---'------,

SET UP POST
TO AVAILABLE
BUFFER QUEUE

NO

SET TERMINAL
TEST
IDENTlFICA TlON
IN BUFFER

E2-----L----,

SET UP POST
TO LPS QUEUE

NOTE--QTAM POST ROUTINE WILL PLACE THE BUFFER
ON THE APPROPRIATE QUEUE.

D3'_-.l'--_---,

SET UP TO
STOP LINE

NO

TERMINAL TEST
STOP LINE SUBTASK

D4 LINE IN <: ACTIVE
TRANSMISSION

YES

NOTE--THE DEFER ENTRY ROUTINE
WILL PLACE A TEST STCB
IN THE LCB STCB CHAIN

LlNEAVAL
E5_---' __ -...,

SET LINE NOT
AVAILABLE
FLAGS IN
BUFFER

F5_-,-__ -,

SET BUFFER FOR
LINK TO
LPSQUEUE

G5 ---'------,

PLACE BUFFER
ON READY
QUEUE

REMOVE NEXT
BUFFER FROM
BUFFER CHAIN

QTAM Charts 257

Chart Q3.

258

1030 Terminal Test Module

1030 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

NO

ZERO

E2----''-----.
MOVE
ADDRESSING
CHARACTERS
FROM MESSAGE
TO BUFFER

CONVERT
ADDRESSING
CHARACTERS

GETCORE
J2--L.----,

GETMAIN

GET CORE FOR
CHANNEL
PROGRAM

RESTART
D3 ---1----,

SET NO-TEST
SWITCH

NO

D4-----'-----

SET UP ALL
BUT DATA CCW

GET CORE FOR
TH IS PA TTERN

K4--'----­
SET USAGE
COUNT TO ONE
& MOVE DATA
TO AREA AND
PAD

MSGSWTCH
BS----''------,

NO

SET UP DATA
CCW FOR
MESSAGE
SWITCH

YES

SET UP VAliD
COMPARE
MESSAGE AND
DATA CCW

HS---L----,

I-UP USAGE
COUNT

SETDATA
JS-.....L.--__

SET UP DATA
CCW FOR THIS
PATTERN

Chart Q4. 2740 Terminal Test Module

K 1----"'------,
BUILD CHANNEL
PROGRAM AND
SPECIAL
CHARACTERS FOR
STATION­
CONTROL

2740 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

YES

C2 _---1 __ ~

GETMAIN

GET CORE FOR
CHANNEL
PROGRAM AND
SPEC CHARS

NOTDIAL
G2-----'------.
BUILD CHANNEL
PROGRAM AND
SPECIAL
CHARACTERS FOR
BASIC TERMINAL

BUILD CHANNEL
PROGRAM AND
SPECIAL
CHARACTERS FOR
DIAL-ANSWER

K2----I!---~

BUILD CHANNEL
PROGRAM AND
SPECIAL
CHARACTERS FOR
DIAL-TERMINAL

RESTART

D3----~

NO SET NO-TEST
SWITCH

H4--'----,

1-UP USAGE
COUNT

SETCCW

J4 --'-----.,

SET UP DATA
CCW FOR THIS
PA TTERN

MSGSWTCH
C5-~-----.

SET UP DATA
CCW FOR
MESSAGE
SWITCH

COMPARE

F5 _---IL-_~

SET UP VALID
COMPARE
MEsSAGE AND
DATA CCW

NOTINUSE

H5 GETMAIN

GET CORE
FOR THIS
PATTERN

SET USAGE
COUNT TO ONE
& MOVE DATA
TO AREA

QTAM Charts 259

Chart QS.

260

1050 Terminal Test Module

SET COUNT FOR
DIAL CHANNEL
PROGRAM

YES

E2-~----.

MOVE
ADDRESSING
CHARACTERS
FROM MESSAGE
TO BUFFER

NOTDIAL
G2-~----.

SET COUNT FOR
NON-DIAL
CHANNEL
PROGRAM

GETCORE
H2-~----.

GETMAIN

GET CORE FOR
CHANNEl
PROGRAM

NO

1050 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

RESTART
D3----I.----.

SET NO-TEST
SWITCH

K3-----.

SET UP
DIAL CCW'S

NOTDIALl
D4 _---1 __ ---,

SET UP ALL
BUT DATA CON

H4-----''-------.

I-UP USAGE
COUNT

SETCON
J4---'----,

SET UP DATA
CCW FOR THIS
PATTERN

MSGSWTCH
C5-~-----.

SET UP DATA
CCW FOR
MESSAGE
SWITCH

SET UP VALID
COMPARE
MESSAGE AND
DATA CCW

NOTINUSE
H5-G-E-T~MA-1 N----.

GET CORE FOR
THIS PATTERN

SET USAGE
COUNT TO ONE
& MOVE DATA
TO AREA

Chart Qb. 1060 Terminal Test Module

NO

E2-----II....---...,

CONVERT & MOVE
ADDRESSING
CHARACTERS
FROM MESSAGE
TO BUFFER

F2 GETMAIN

GET CORE
FOR CCW'S

1060 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

RESTART
D3:----L-----,

SET NO-TEST
SWITCH

D4.---L---.

SET UP ALL
BUT DATA CCW

H4--L.--.....

1-UP USAGE
COUNT

SETCCW
J4-----I-----.

SET UP DATA
CCW FOR THIS
PATTERN

MSGSWTCH
C5-......I.-----,

SET UP DATA
CCW FOR
MESSAGE
SWITCH

SET UP VALID
COMPARE
MESSAGE AND
DATA CCW

NOTINUSE
H5-G-ET...JMLA-I-N--'

GET CORE FOR
THIS PATTERN

SET USAGE
COUNT TO ONE
& MOVE DATA
TO AREA

QTAM Charts 261

Chart Q8.

262

2848/2260 Terminal Test Module

D2

2848/2260 TERMINAL TEST MODULES
(TYPE 4 SVC ROUTINE)

YES

C4------.

ADJUST DATA
POINTER AND
COUNT

D4----....,
MOVE MESSAGE

------..:.:YE~S'<' FORMA T
ONE

YES TO INPUT &
~':":""-..+J CONVERT DC &

ADJUST DATA
POINTER

E2----I~---,

CONVERT
ADDRESSES AND
PUT IN BUFFER

G2-----'----,

CHECK AND
CONVERT LINE
ADDRESS AND
PUT IN MESSAGE

NOTEST8
H2---L-----,

GETMAIN

GET CORE FOR
CCW'S

BUILD CHANNEL
PROGRAM
EXCEPT DATA
CCW

NO

RESTART
H3----I.-----,

SET NO-TEST
SWITCH

DS ADDRESSES
FOR MESSAGE

H4---'-----,

I-UP USAGE
COUNT

J4----'-----.

SET UP DATA
CCW FOR THIS
PATTERN

MSGSWTCH
CS----I.-----,

SET UP DATA
CCW FOR
MESSAGE
SWITCH

F5---L-----,

SET UP VALID
COMPARE
MESSAGE AND
DATA CCW

NOTINUSE
H5 -G-E-T.L

MA
-

IN
---.

GET CORE FOR
THIS PATTERN

YES

K5----L.---,

SET USAGE
COUNT TO ONE
MOVE DATA TO
AREA

• Chart Ri. WTTA Line pcr Appendage Routine

Al_-'-__ ~

LOAD BASE
FOR IGG019QB
LOAD BASE FOR
QTAM LINE-END
APPENDAGE

RETREIVE
LAST EXECUTED
CCW

LOAD BASE
FOR
QTAM PCI
APPENDAGE

TO QTAM LINE-END
APPENDAGE

TO QTAM LlNE-PCI
APPENDAGE

CLEAR
RESIDUAL
COUNT
IN CSW

C3--'-----.

GET FROM
LCBCLPCI
LAST USED
BRB

D3---'"-----.

POINT ON
BUFFER
PREFIX

MOVE IN
CSW THE
BRB
ADDRESS

YES

F4---'---.......,

MOVE IN
CSW THE
BTAM CCW
ADDRESS

QTAM Charts 263

• Chart R2.

264

WTTA Line End Appendage Routine (Part 1 of 3)

FROM QTAM
LINE-END
APPENDAGE

YES

YES

RETURN TO QTAM
LINE-END

ADD ONE TO
THE THRESHOLD
COUNTER

SAVE
RESTART
ADDRESS

E4--..L.----,

MOVE BREAK
CON ADDRESS
INTO LCBSTART

K4
).N_O ___ < COM~~TION)oN_O __ -<

IO-J3
s
GE

IDRTN

A5--'---~

ADD ONE TO
THE BREAK
COUNTER

YES

E5--'---~

MOVE SAVED
RESTART ADDRESS
INTO LCBSTART

• Chart R3. WTTA Line End Appendage Routine (Part 2 of 3)

Al---'-----,

POINT ON

Gl

LAST
RECEIVED
CHARACTER

SUBTRACT
ONE TO THE
RESIDUAL
COUNT

MOVE X'lF'
IN THE
BUFFER

YES

YES

YES

E2

SET WRU
FLAG AND
DATA FLAG
IN LCB

H2

SET
EOT FLAG
IN LCB

C3

OVERLAID MOVE

WRU CHARACTER WRITE PAD

BY X'lF' ADDRESS IN
LCBSTART

F3

SET DATA
FLAG IN
LCB

G3
UPDATE
BTAM CCW
ADDRESS
AND COUNT

H3
MOVE
ID-EXCHANGE
CHAN. PROG.
ADDRESS IN

(TO RESTART
LCBSTART

CHANNEL PROGRAM)

UPDATE
ADDRESS AND
COUNT
IN CCW

D5

MOVE
BTAM CCW
ADDRESS
IN LCBSTART

(TO RESTART
CHANNEL PROGRAM)

J5

SET EOT
FLAG AND
CLEANUP CODE
IN LCB

QTAM Charts 265

• Chart R4.

266

WTTA Line End Appendage Routine (Part 3 of 3)

Al_-L. __ ...,

UPDATE
MSGSIZE
IN BUFFER
PREFIX

Bl--'----,

SET EOT
FLAG
IN LCB

Cl ID

~
XCHANGE

REQUESTED
AT THE

EN

Dl---L..---,

SET TP
CODE
INDICATING
ENDSEND

El---L..---,

MOVE
ID-EXCHANGE
CHAN.PROG
IN LCBSTART

NO

(TO RESTART CHANNEL
PROGRAM)

J2 ---'----,

MOVE
READ TEXT
CCW ADDRESS
IN LCBSTART

(TO RESTART
CHANNEL PROGRAM)

NO

NO

A3
IS

LINE
RECEIVING

YES

E3 ID
EXCHANGE

VALID

YES

NO

NO

A4 TP
CODE

ENDSEND

SET
TRANS. ERROR
MSG NOT SEND
BITS IN
ERROR HALFWORD

D4-----,

MOVE
WRITE TEXT
CCW ADDRESS
IN LCBSTART

F4 -----''-----,

SET
EOT FLAG
IN LCB

G4--L.---,

SET
TRANSMISSION
ERROR BIT IN
ERROR HALFWORD

FLAG ON

YES

NO

SET
TRANSMISSION
ERROR BIT IN
ERROR HALFWORD

(TO RESTART
CHANNEL PROGRAM)

H5-----,

SET
CLEANUP CODE
IN LCB

ACTIVE BUFFER REQUEST QUEUE

QCB: Preassembled in the Implementation
module; laDeled BREQ.

Element Chain: Dynamically created. An
element appearing on this chain is an
active buffer request block (BRB) repre­
senting a BRB ring. The ring is formed by
a transfer-in-channel address in each BRB
pointing to the next BRB. The element
chain, which is distinct from the ring, is
formed by the link address in the BRBs in
the chain.

STCB Chain: Limited to the STCB for the
active buffer request subtask.

ADDITIOi.~AL CCW QUEUE

QCB: Preassembled in the module (IECKPAUS)
introduced through the appearance of the
PAUSE macro instruction in the message con­
trol program; labeled INSERTQ.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKISRT. A chain of
special purpose BRBs used to schedule and
contain channel commands for the transmis­
sion of idle characters.

STCB Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the queue insert subtask.

AVAILABLE BUFFER QUEUE

QCB: Preassembled in the Implementation
module; laneled BUFFER.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKBUFF. A chain of
operationally empty buffers.

STCB Chain: Limited to the STCB for the
available buffer subtask.

MOVE DATA QUEUE

QC~: Preassembled in the QTAM Implementa­
tion module; labeled QMOVE.

Element Chain: Limited to the dummy last
element (IECKSTOP).

APPENDIX A: QTAM QUEUES AND SUBTASKS

COMMUNICATIONS LINE QUEUE

QCB: Formed by the first 12 bytes of the
line control block, which is created during
OPEN.

Element Chain: Limited to a pointer to the
LCB itself.

STCB Chain: May contain the STCB for the
line's receive scheduling subtask and/or
the STCB for the line's send scheduling
subtask (or more than one send scheduling
STCB if separate queues are maintained for
each terminal). Always ends with the STCB
for the QEVENT generalized queue handling
subtask.

DASD DESTINATION QUEUE

QCB: Generated in the problem program on
expansion of a TERM macro instruction;
labeled QUEUEn, where "n" is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: The element chain pointer
in a DASD destination QCB is the relative
record number of the header segment of the
first message in the queue of messages, on
the direct access storage device" for the
destination. In the message chain, each
header segment is linked to the next header
segment and the preceding header segment by
means of internal control fields. Text
segments, which are also on the direct
access storage device, are linked to each
other and to the header segment to which
they relate. through self contained DASD
addresses.

Note that the relative record number
simply reflects the sequence (1 through n)
in which header segments were encountered.
This number is subsequently converted to a
relative DASD address, which'6 in turn., is
converted to an actual DASD address.

STCB Chain: May contain the STCB for the
destination line's send scheduling subtask.
Always ends with the STCB for th'e DASD
destination subtask.

DISK INPUT/OUTPUT QUEUE

QCB: Preassembled in the Implementation
module; labeled DISK.

Appendix A: QTAM Queues and subtasks 267

Element Chain: Dynamically created. A
chain of BRBs (containing channel command
words) for direct access Read operations,
intermixed with full buffers, to be written
on the DASD.

STCB Chain: Limited to the STCB for the
disk input/output subtask.

DISTRIBUTION LIST QUEUE

QCB: Preassembled in the module (IECKDLST)
introduced by the appearance of the LIST
macro instruction in the problem program.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. No element chain
is developed. Elements related to a dis­
tribution list are immediately transferred
to the DASD destination queue for the first
terminal in the distribution list.

STCB: Limited to the STCB for the distri­
bution list subtask.

INACTIVE BRB QUEUE

QCB: Preassembled in the Implementation
module; labeled AVREQ.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKAVRQ. A chain of
BRBs of which the third and fourth full­
words are effectively empty.

STCB Chain: May contain the STCB for the
line's receive scheduling subtask and/or
the STCB for the line's send scheduling
subtask (or more than one send scheduling
STCB if a separate queue is maintained for
each terminal). Always ends with the STCB
for the queue insert subtask.

INTERIM LPS QUEUE

QCB: Preassembled in the Implementation
module; labeled INTLRM.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. Elements are
immediately transferred to the LPS queue.

STCB Chain: Limited to the STCB for the
interim LPS subtask.

TIME QUEUE

QCB: Preassembled in the QTAM Implementa­
tion module; labeled TIMEQ.

Element Chain: Dynamically created. An
element appearing on this chain is an LCB
waiting for an interrupt frow the TIMER.

268

LPS QUEUE

QCB: Preassembled in the Implementation
module; labeled LPS,.

Element Chain: Dynamically created. A
chain of empty buffers, to be used for mes­
sages coming in from terminals, inter­
spersed with message-filled buffers to be
processed by the LPS routine.

STCB Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the queue insert by priority subtask.

DASD PROCESS QUEUE

QCB: Generated in the problem program on
expansion of the PROCESS macro instruction;
labeled QUEUEn" where "n" is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: (Refer to the element chain
description for the DASD destination QCB).

STCB Chain: May contain the STCB for the
pro'cess queue's Get scheduling subtask.
Always ends with the STCB for the DASD
destination subtask.

RETURN BUFFER QUEUE

QCB: Preassembled in the Implementation
module; labeled GETRET.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. Buffers returned
from a GET are immediately transferred to
the available buffer queue.

STCB Chain: Limited to the STCB for the
return buffer subtask.

COPY CLEAR QUEUE

QCB: Preassembled in the operator Control
routine; labeled COPYCLR.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
copy Clear subroutine in the operator Con­
trol routine.

CHANGE QUEUE

QCB: Preassembled in the Operator Control
routine; labeled CHANGE.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
Change subroutine in the Operator Control
routine.

STOP QU.bUE

QCB: Preassembled in the Operator Control
routine; labeled STOP.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
stop subroutine in the Operator Control
routine.

STOP4 QUEUE

QCB: Preassembled in the Operator Control
routine; labeled STOP4.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
stop 4 subroutine in the Operator Control
routine and is used by the Operator
Awareness routine.

STOP THE LINE QUEUE

QCB: Preassembled in the Operator Control
routine; labeled STOP2.

Element Chain: Dynamically created,. The
element chain consists of buffers that are
used to transmit operator control messages.

STCB Chain: Limited to the STCB for the
stop 3 subtask in the Operator Control
routine.

GET SVC 1 QUEUE

QCB: Preassembled in the Operator Control
routine; labeled GETSVC1.

Element Chain: Dynamically created. Ele­
ments are transferred to the LPS queue.

STCB Chain: Limited to the STCB for the
Get SVC 2 subtask in the Operator Control
routine.

CHECKPOINT QUEUE

QCB: Preassembled in IGG019NH module in a
dummy checkpoint LCB; labeled START.

Element Chain: This QCB has no element
chain as it is posted to itself.

STCB Chain: Limited to the STCB for the
Checkpoint subtask. Always ends with a
dummy end element.

CHECK REQUEST QUEUE

QCB: Preassembled in IGG019NH module;
labeled CKQUE.

Element Chain: Dynamically created. The
elements are ECBs of partitions waiting for
a checkpoint to be taken.

STCB Chain: Limited to the check request
subtask in the Checkpoint/Restart routine.
Always ends with a dummy end element.

LINE CHANGE QUEUE

QCB: Preassembled in IECKLNCH module;
labeled QUEUE.

Element Chain: Dynamically created. An
element appearing on this chain is an LCB
for a line that is to be started.

STCB Chain: Limited to the STCB for a sub­
task in the Line Change routine.

DIAL OUT-CALL QUEUE

QCB: Formed in the DEB during OPEN for
each line group of dial lines.

Element Chain: None .•

STCB Chain: The chain may consist of send
scheduler STCBs for messages that were sent
to terminals that were busy.

ACTIVE BUFFER REQUEST SUBTASK

STCB: Preassembled in the Implementation
module; labeled BREQENQ.

Program Entry: Enters the Active Buffer
Request routine at BREQENQ+6,.

AVAILABLE BUFFER SUBTASK

STCB: Preassembled in the Implementation
module; labeled BFRENQ.

Appendix A: QTAM Queues and Subtasks 269

Proqram Entry: Enters the Available Buffer
routine at BFRENQ+6 (alternate label
BFRREQ) •

DASD DESTINATION SUBTASK

STCB: Preassembled in the Implementation
module; labeled IECKMQ.

Program Entry: Enters the DASD Destination
routine at IECKMQ+6.

DISK INPUT/OUTPUT SUBTASK

STCB: Preassembled in the Implementation
module; laoeled DISKENQ.

Program Entry: Enters the Disk Input/
Output routine at DISKENQ+6.

DISTRIBUTION LIST SUBTASK

STCB: Preassembled in module IECKDLQT,
located at IECKDLQT+8.

Program Entry: Enters the module at
IECKDLQT+14.

GET SCHEDULING SUBTASK

STCB: Preas sembled within the Implementa­
tion module; labeled GETSCH.

Program Entry: Enters the GET Scheduler
routine at GETSCH+6.

LPS SUBTASK

STCB: The STCB for the LPS subtask is
transient and is dynamically formed within
the supervisor request block created on
issuance of an SVC 05 or 67 by the subtask.

Program Entry: Activation of the LPS sub­
task causes the message control program to
be re-entered at the instruction following
the supervisor call.

QUEU~ I~SERT SUBTASK

STCB: Preassembled in the Implementation
module; labeled QLIFO.

Program Entry: Enters the Implementation
module at QLIFO+6 (an unconditional branch
to the Queue Insert subroutine (LIFO) in
the QTAI:·1 control program).

270

QUEUE INSERT BY PRIORITY SUBTASK

STCB: Preassembled in the Implementation
module; labeled QPRIRTY.

Program Entry: Enters the Implementation
module at QPRIRTY+6 (an unconditional
branch to the Queue Insert subroutine by
the Search Priority subroutine (PRIORITY)
of the QTAM control program).

QDISPATCH SUBTASK

STCB: Preassembled in the Implementation
module; labeled QEVENT.

Program Entry: Enters the Implementation
module at QEVENT+6 (an unconditional branch
to the Qdispatch subroutine (DISPATCH) of
the QTAM control program).

RECEIVE SCHEDULING SUBTASK

STCB: There is one receive scheduling sub­
task for each line; the STCB for the sub­
task is contained in the third and fourth
fullwords of the corresponding line control
block.

Progra~ Entry: All receive scheduling sub­
tasks enter the Receive Scheduler routine
at RCVSCH.

RETURN BUFFER SUBTASK

STCB: Preas sembled with the Implementation
module; located at GETRET+8.

Program Entry: Enters the Return Buffer
routine at GETRET+14.

SEND SCHEDULING SUBTASK

STCB: There is one send scheduling subtask
for-each line or for each terminal, as
specified by the user. The STCB for the
subtask is contained within the third and
fourth full words of the QCB for the corre­
sponding DASD destination queue.

Program Entry: All send scheduler subtasks
enter the Send Scheduler routine at
ENQUEUE.

TIME SUBTASK

STCB: Preassembled within the QTAM Imple­
mentation module; labeled TIMEEND.

Program Entry: Enters the End of Poll Time
Delay routine at TIMEEND+6.

MOVE DATA SUBTASK

STCB: Preas sembled within the QTAM Imple­
mentation module; labeled QMOVER.

~rogram Entry: Enters the Cross Partition
Move routine at QMOVER+6.

COPY CLEAR SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled COPYCLR1.

Program Entry: Enters the subtask in the
operator Control routine at COPYCLR1+6 to
be in supervisory mode.

CHANGE 1 SUBTASK

STCB: Preas sembled in the Operator Control
routine; labeled CHANGE1.

~rogram Entry: Enter the subtask in the
operator Control routine at CHANGE1+6 to be
in supervisory mode.

STOP 1 SUBTASK

STCB: Preassembled in the Operator Control
routine at STOP1+6 to be in the supervisory
mode.

PrQgram Entry: Enters the subtask in the
operator Control routine at STOP1+6 to be
in supervisory mode.

STOP 3 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled STOP3.

Program Entry: Enters the subtask in the
operator Control routine at STOP3+8.

GETSVC 2 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled GETSVC2.

~rogram Entry: Enters the subtask in the
Operator Control routine at GETSVC2 + 8.

STOP 5 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled STOP5.

Program Entry: Enters the subtask in the
Operator Control routine at STOP5+8.

CHECKPOINT SUB TASK

STCB: Preassembled in the Checkpoint/
Restart module; labeled TERMTBL,.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at CON+2.

CHECK REQUEST SUBTASK

STCB: Preassernbled in the Checkpoint/
Restart module; labeled CKSTCB.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at CKSTCB+6,.

LINE CHANGE SUBTASK

STCB: Preassembled in the Line Change rou­
tine; labeled STCB.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at STCB+8.

QDISPATCH SUBTASK

STCB: Preassembled in the Implementation
module; labeled QEVENT.

Program Entry: Enters the Implementation
module at QEVENT+6. If the LCB indicates a
dial line, a switch is set to cause the
Activate routine to set up a write Negative
Acknowledgment channel program. A branch
is taken to the BRB Ring routine to check
the dial out-call queue. If the line is
not for a dial line, a branch is taken to
the Qdispatch subroutine (DISPATCH) of the
QTAM control program.

Appendix A: QTAM Queues and Subtasks 271

APPENDIX B: SYSTEM CONTROL BLOCKS

GENERAL CONTROL BLOCK FORMS

QUEUE CONTROL BLOCK

Typical DSECT:

r--------T--------------------------,
o I QKEY I QFAC I

~--------+--------------------------i
+4 I QPRI I QLINK I

~--------+--------------------------1
+8 I I QTRAN I

~--------~--------------------------1
+12 I I

~--------T--------------------------i
+16 I QRLN I QDCB I

~--------~--------T-----------------1
+20 I QSIZE 1 QNASEG 1

~--------T--------~-----------------1
+24 1 1 QSORCE I

~--------+--------------------------i
+28 I QDUMMY 1 QBACK 1 l ________ ~ __________________________ J

General Form:

r--------T--------------------------,
1 key 1 element chain pointer I
~--------+--------------------------i
1 priority 1 link address 1
~--------+--------------------------i
1 1 STCB chain pointer 1
~--------+--------------------------i
I I 1 l ________ ~ __________________________ J

r--------T---------------~----------,
I line no.1 DCB address 1
~--------~--------T-----------------i
1 no. of messages I address of I
~--------T--------~-----------------i
Isegment I LCB address I
~--------+--------------------------1
Idurnmy=O I message address 1 l ________ ~ __________________________ J

272

contents:

key: a numeric value (1,,2 r or 3) indicat­
ing queue status.

1 not on ready queue

2 not waiting

3 waiting

(See Queue Status for more information on
key meanings .•)

element chain pointer: a pointer to the
head of the element control block chain for
the queue.

priority: priority of the queue the QCB
represents; determines the relative posi­
tion of the QCB when linked into the ready
queue.

link address: a pointer to the next item
on the ready queue. This field is meaning­
ful only when the QCB is on the ready
queue.

line no.: the relative line number within
the line group of the DCB.

DCB address: the address of the DCB asso­
ciated with this QCB.

no. of messages: the number of messages on
the queue to determine the size of the
queue.

address of segment: the address of the
area into which the next message segment is
to be read.

LCB address: the address of the first LCB
on the line control block chain.

durn~: always equal to zero.

message address: the disk address of the
last message placed on this queue.

DASD QCB:

QCB for DASD Process Queue
r-----------------T---1

o I QKEY 3 I Disk address of next message to come off queue I
~--------------~--~---i

+4 I I
~-----------------T---~

+8 I 0 I Address of the Get Scheduler I
~-----------------+---i

+12 I 0 I Address of the LCB I
~-----------------~---~End bit

+16 I Zero Iset to 1
I lif expedite
~-----------------------------------T-----------------------------------~

+20 I QSIZE size of queue I Disk address of next available I
I I segment to be written on queue I
~-----------------T-----------------~-----------------------------------i

+24 I I QSOURCE pointer to start chain of LCBs I
~-----------------~---i

+28 I Disk address of last message placed on this queue I L ___ J

QCB and STCB for DASD Destination Queue
r-----------------T---1

o IQKEY 0 I Disk address of next message to corne off queue I
~-----------------+---i

+4 I I DASD address of the last message to be I
I I retransmitted in a restart I
~-----------------+---i

+8 IRelative offset I Pointer to send Scheduler routine J Send
Ito Send Scheduler I I Scheduler
~-----------------+---i STCB

+12 IPriority of I Link field of Send Scheduler I
ISend Scheduler I I
~-----------------+---i

+16 I Relative I DCB address I
Iline number I I
~-----------------~-----------------T-----------------------------------~

+20 I QSIZE size of queue I Disk address of the next 1
I I message to go into queue I
~-----------------T-----------------~-----------------------------------i

+24 IDisk address I QSOURCE pointer to start of chain of LCBs I
I continued I I
~-----------------+---i

+28 I reserved I Disk address of last message placed on this queue I L _________________ ~ ___ J

RESOURCE ELEMENT CONTROL BLOCK

Typical DSECT:

r---------T----------------------------,
o I FKEY I FQUEUE I

~---------+----------------------------i
+4 I FPRI I FLINK I L _________ ~ ____________________________ J

General Form:

r----------T---------------------------,
I key = 0 I QCB address I
~----------+---------------------------i
I priority I link address I L __________ ~ ___________________________ J

key: always equal to zero.

QCB address: a pOinter to the QCB for the
queue to which the element has been posted.
This field is meaningful only while the
element is on the ready queue" or is being
handled by the Qdispatch subroutine after
having been encountered on the ready queue.

priority: priority of the element that the
control block represents.. This field
determines the relative pOSition of the
element when linked into the element chain
of a QCB,. Priority 255 identifies the last
element in a chain; this is a dummy element
usable only as an indication that the end
of the chain has been reached. QTAM con-

Appendix B: system Control Blocks 273

troIs element priority as required for
internal sequencing.

link address: a pointer to the next ele­
ment control block in the chain; the last
element in a chain links to itself. This
field is meaningful only when the element
control block is linked either into the
element chain of a queue control block or
into the ready queue.

TRUNCATED SUBTASK CONTROL BLOCK

~cal DSECT:

r--------------------------------------, o , TFILL ,
~-------------------T------------------~

+4 , TPRI , TLINK , l ___________________ ~ __________________ J

General Form:

r-----------T--------------------------,
'return code, I
~-----------+--------------------------~
,priority, link address , l ___________ ~ __________________________ J

Contents:

return code: branch modifier; a numeric
value (a multiple of 2 greater than zero)
added to the resolved address of storage
location NRET to provide the instruction
address to be branched to when the subtask
this STCB represents is activated. Common­
ly appears in the QTAM assembly listing in
the form DC ALl (entry - NRET) , where
"entry"is the label of the branch address.

priority: priority of the subtask the STCB
represents; determines the relative posi­
tion of the STCB when linked into the STCB
chain of a queue control block. Priority
255 identifies the last STCB in a chain.

QTAM sets the priority value of STCBs
for send scheduling subtasks as required to
support the send versus receive priority
specified by the user in the DCB for the
data set.

link address: a pointer to the next STCB
in the STCB chain; the last STCB in a chain
links to itself. This field is meaningful
only when the STCB is linked into the STCB
chain of a queue control block. If the
STCB is not linked in a chain, the last two
bytes of the link address field are
truncated.

274

FULL SUBTASK CONTROL BLOCK

Typical DSECT:
r-----------------------------------,

o I TFILL I
~--------T--------------------------~

+4 I TPRI] TLINK ,
r--------~--------T-----------------~

+8 I XRBSZ J XSTZB I
r--------T--------~-----------------~

+12 'XRBUSE I XRBEP ,
~--------~--------------------------~

+16 , XRBPSW I
, I

+20 I I
~-----------------------------------~

+24 , XRBQ I
~--------T--------------------------~

+28 'XRBWT I XRBLNK ,
t--------~--------------------------~

+32 , XRBREG , , ,
+92 I I l ______ -_____________________________ J

General Form:
r--------T--------------------------,

o 'return I QCB address ,
'code=O 1 ,
t--------t--------------------------~

+4 'priority~ link address ,
t--------~--------T-----------------~

+8, STCB size ~ , l _________________ ~ _________________ J

r-----------------------------------,
+24 , ECB ,

~-----------------------------------1
+32 , register save area , l ___________________________________ J

r-----------------------------------,
+92 I I l ___________________________________ J

contents:

Return code: always zero.

QCB address: the address of QATTACH.

priority: same as for a truncated STCB ,
but never 255.

link address: same as for a truncated
STCB.

STCB size: 96. The size of the STCB is 96
bytes since the STCB is created within an
SVRB including a register save area.

ECB: Event Control Block. This word is
used for waiting or posting completion of
the task,.

LINE CONTROL BLOCK

The LCB contains the lOB, which can be
referred to as prefixed by the LCB or ICB
depending upon the DSECT issued.

Typical DSECT:
r--------T--------------------------, o I LCBSTATEI LCBENDOP I
~--------+-----------~--------------~

+4 ILCBCECB I LCBRCADD I
~--------~--------------------------~

+8 I LCBSCHAD I
~--------T--------------------------~

+12 ILCBCPRI I LCBSCHLK I
~--------~-----------------T--------~

+16 I LCBCHDR I I
~-----------------T--------~--------~

+20 I LCBCSEG I LCBNASEG I
~--------T--------~-----------------~

+24 I I LCBSORCE I
~--------+--------------------------~

+28 ILCBMSGPRI LCBDESTQ I
~--------+--------------------------~

+32 I LCBMPLRTI LCBCLPCI I
~--------~--------------------------~

+ 36 I LCBCLCCW I
~-----------------T-----------------~

+ 40 I LCBERRST I LCBBRKCT I
~-----------------+-----------------~

+44 I LCBTTIND I LCBDLPTR I
~--------T--------+-----------------~

+48 ILCBFLAG1ILCBFLAG21LCBSENSE I
IIOBFLAG11IOBFLAG21IOBSENSO IOBSENS11
~--------~--------~-----------------~

+52 I LCBECBPT I
I IOBECBPT I
~-----------------------------------~

+56 f IOBCOMAD I
~--------T--------T-----------------~

+60 I IOBSTATO I IOBSTAT1 I IOBCNT I
~--------+--------~-----------------~

+64 I LCBSIOCCI LCBSTART I
I IOBSIOCCI IOBSTART I
~--------+--------------------------~

+68 I I LCBDCBPT I
IIOBWGHT I IOBDCBPT I
~--------~--------------------------1

+72 I LCBRESTR I
~-----------------T-----------------~

+ 76 I LCBINCAM I LCBERRCT I
I IOBINCAM I IOBERRCT I
~--------T--------+-----------------~

+80 ILCBUCBX I LCBPTEMPI LCBTRST I
~--------+--------~-----------------1

+84 ILCBPOLCTI LCBPOLPT I
~--------~--------------------------~

+ 8 8 I LCBERCCW I
+92 I I

~-----------------------------------~
+96 I LCBCPA I

I (CHANNEL PROGRAM AREA) I
~-----------------------------------~
I LERACTR I
~-----------------T-----------------~
I LERACDC I LERACIR I
~-----------------+--------T--------~
I LERACTO I LERTHTR I LERTHDC I
~--------T--------+--------+--------~
I I I line I temporary
ILERTHIR ILERTHTO Inumber I counters I l ________ L ________ ~ ________ ~ ________ J

Contents:

LCBSTATE 1

LCBENDOP 3

LCBCECB 1

LCBRCADD 3

00
01
02

04
08
10
20
40
80

Description

inactive
free
partial message
in queue
send
receive
initate
converse
recall
cleanup

(all numbers given in hex
notation)

For an incoming message.,
contains the contents of
the return register (14)
from the ROUTE macro. For
an outgoing message, con­
tains the address of the
LCB for the originating
line.

BTAM opcode for current
segment of current
message, ..

Disk address of the last
correctly transmitted seg­
ment in current message.

(The receive scheduler STCB is bytes 8-15.)

LCBSCHAD

LCBCRPI

LCBSCHLK

LCBCHDR

LCBCSEG

LCBNASEG

LCBSORCE

LCBMSGPR

4

1

3

3

3

3

3

1

Address of the first wait­
ing QTAM subtask for the
LCB.

Priority of the receive
scheduler.

Link field of the receive
scheduler.

Disk address of the cur­
rent message header.

Disk address of the cur­
rent message segment.

Pointer to the first seg­
ment of the last message
received on this line that
is to be transmitted.

Address of the chain of
LCBs for source lines cur­
rently sending to the same
destination (low order bit
= "in-source chain" flag).

Priority of the current
incoming message.

Appendix B: System Control Blocks 275

LCBDESTQ 3

LCBMPLRT 1

LCBCLPCI 3

LCBCLCCW 4

LCBERRST 2

LCBBRKCT 2

LCBTTIND 2

LCBDLPTR 2

LCBFLAG1 1

LCBFLAG2 1

LCBSENSE 2

LCBECBPT 4

LCBCSW 8

LCBSIOCC 1

LCBSTART 3

LCBDCBPT 4

LCBRESTR 4

LCBINCAM 2

276

Address of the QCB for
destination terminal.

Scan pointer for next
destination.

Address of last CCW for
which PCI was received.

Address of the last BRB
for which a buffer was
assigned.

Error halfword.

If re~eiving, contains the
last status of the SEQUIN
(terminal table). If not
receiving, contains the
time of the requested
interrupt.

Pointer to terminal table
entry for current message.

Pointer to next entry in
distribution list.

Status bits used by the
I/O supervisor.

Status bits used by the
I/O supervisor.

Sense inforrration stored
by the I/O supervisor.

Not used by QTAM.

Channel status word.

Start I/O condition code.

Pointer to the first CCW
executed in the channel
program.

Pointer to the DCB.

Used by ERP to send error
messages. contains termi­
nal ID and TP Op code.

byte 1:
01 Tells Poll routine

the line is trying
to send.

02 Dial line not
available.

04 = Polling or

LCBERRCT 2

LCBUCBX 1

LCBPTEMP 1

LCBTRST 2

LCBPOLCT 1

LCBPOLPT 3

LCBERCCW 8

addressing error.
08 Halt I/O issued on

WTTA line.
10 = EOT received on

WTTA line.
40 WRU received on

WTTA line.
byte 2 = Used by ERP.

Number of retries.

Index to the UCB in the
DEB.

Temporary storage for mes­
sage priority.

Address of EOB character
relative to the address of
the last correctly trans­
mitted segment of current
message.

count of messages received
from terminal.

Pointer to currently
active entry in polling
list.

Channel Command Word for
ERP .•

LCBCPA variable Channel program area.

LERACTR 4

LERACDC 2

LERACIR 2

LERACTO 2

LERTHTR 1

LERTHDC 1

LERTHIR 1

LERTHTO 1

Cumulative counter for
number of transmissions.

Cumulative counter for
number of data checks.

Cumulative counter for
number of intervention
required.

Cumulative counter for
number of time-outs.

Threshold counter for num­
ber of transmissions.

Threshold counter for num­
ber of data checks.

Threshold counter for num­
ber of intervention
required.

Threshold counter for num­
ber of time-outs.

DATA CO~TROL BLOCK

Typical DSECT:

QTAM Line Group Interface
r--------T------------T--------------T-----------,

+16 I DCBQFLG I DCBWTEOM I DCBWTEOT I DCBWTPAD I WTTA Device
L~ _______ ..l ____________ ..l ______________ .1. ___________ J Interface

r--------T---------------------------------------,
+20 I DCBBUFRQ I I

I DCBCLPS I
~~-------+--------T------------------------------~

+24 I DCBINTVL I DCBACLOC I DCBDSORG I
~--------+--------.1.------------------------------~ Common

+28 I DCBDEVTP I I Interface
I DCBIOBAD I
~--------+---------------------------------------~

+32 IDCBCPRI I I
I DCBLCBAD I
~--------+---------------------------------------~

+36 I DCBEIOBXI I
I DCBEXLST I L ________ .1. _______________________________________ J

QTAM Processing Program Message
Queue Interface
r--------T--------------------------,

+20 I DCBBUFRQI I
I DCBTRMAD I
~--------..l--------T-----------------~

+ 2 4 I DCBSOWA I DCBDSORG I
~----------------..l-----------------~

+28 I DCBSEGAD I
~-----------------------------------~

+32 I DCBEODAD I
~--------T--------------------------~

+36 I DCBRECFM I I
I DCBEXLST I L ________ .1. __________________________ J

QTAM Direct Access Message
Queue Interface

r--------T--------------------------,
+20 I DCBBUFNOI DCBBUFCB I

~--------.1.--------T-----------------~
+24 I DCBBUFL I DCBDSORG I

~------_----------.1.-----------------~
+28 I DCBIOBAD I L ___________________________________ J

Foundation Before OPEN
r-----------------------------------l

+40 I DCBDDNAM I
I I

+44 I I
~--------T--------T-----------------1

+48 IDCBOFLGSIDCBIFLG I DC BMAC R I
L_~ ______ ..l ________ .1. _________________ J

Foundation after OPEN
r-----------------T-----------------,

+40 I DCBTIOT I DCBMACRF I
~--------T--------.1.-----------------1

+44 I DCBIFLGS I I
I DCBDEBAD I
~--------+--------------------------1

+48 IDCBOFLGSJ I
IDCBREAD/]DCBWRITE/ DCBGET/ DCBPUT I L ________ ..l __________________________ J

QTAM Polling List Origin
r-----------------------------------,

+52 I DCBKSTAT I
I I
I I
I Foundation After OPEN I
I (TR) (DC) (IR) (TO) I
~-----------------------------------1

+56 I DCBCPOLL (VECTOR) I L ___________________________________ J

QTAM processing Program Message
Queue Interface

r-----------------------------------,
+52 I DCBRECRD I

~-----------------------------------1
+56 I DCBSYNAD I

r-----------------------------------i
+60 I DCBEOBLK I L ___________________________________ J

Appendix B: system Control Blocks 277

contents: ----

DCBBQFLG

DCBWTEOM

DCBWT:EOT

DC BWTPAD

DCBBUFRQ

DCBCLPS

DCBINTVL

DCBACLOC

DCBDSORG

DCBDEVTP

278

Description

QTAM LINE GROUP

1

1

1

1

1

4

1

1

2

1

Bit setting
xlxxxxxx

xxlxxxxx

xxxlxxxx

xxxxlxxx

Meaning
WRU=YES in
the DCB macro
instruction.
IAM=YES in
the DCB macro
instruction.
WRU macro
instruction
in the Send
Header sub­
group of the
LPS.
WRU macro
instruction
in the End
Send subgroup
of the LPS.

Hexadecimal representation
of the EOM character.

Hexadecimal representation
of the EOT character.
When EOT=2EOM, this byte
contains Xl 00 I.

Ntnnber of padding charac­
ters when MON=NO is coded
or omitted in the DCB
macro instruction.

The number of buffers to
be requested for a Read or
write operation in advance
of actual transmission.

Address of the line proce­
dure specification for the
line group.

The number of seconds of
intentional delay between
passes through a polling
list for nonswitched
lines.

The offset, relative to
zero, of the device access
field for each terminal
table entry.

Data set organization.

DSORG= Byte 1
CX xxOlxxxx

Byte 2
reserved

Device type pointer. A
one-byte value calculated
during OPEN and used in
the BTAM Read/Write module

DCBIOBAD

DCBCPRI

DCBLCBAD

DCBEIOBX

DCBEXLST

DCBBUFRQ

DCBTRMAD

DCBSOWA

DCBDSORG

DCBSEGAD

DCBEODAD

DCBRECFM

4

1

4

1

4

to calculate the appropri­
ate Device I/O module.

The first lOB address.

communication priority.
Indicates the relative
priority to be given to
sending and receiving
operations.

CPRI=
R
E
S

Bit settings
xxxxxlxx
xxxxxxlx
xxxxxxxl

Line control block
address. The first LCB
address minus the length
of an LCB.

Extended lOB index; the
size of an LCB.

Address of the exit list.

QTAM PROCESSING PROGRAM MESSAGE
QUEUE

1 Specifies the number of
buffers to be filled with
data from the direct
access queue before they
are requested by a GET
macro instruction. Used
only in process queue DCB.

4

2

2

4

4

1

Address of a user-provided
area in which the terminal
name is stored.

The size of the user­
provided work area. Used
only in process queue DCB.

Data set organization.
Byte 1 has MQ=xxxxxlxx.
Byte 2 is reserved.

Address of current
segment.

Address of a user provided
routine to be entered if
no messages are available
(the process queue is
empty) when a GET macro is
issued. Used only in pro­
cess queue DeB.

Record
Format

G
S
R

Bit Settinqs

xxxxxlxx
xxxxlxxx
xxxxxxlx

DCBEXLST

DCBBUFNO

DCBBUFCB

DCBBUFL

DCBDSORG

DCBIOBAD

DCBDDNAH

DCBOFLGS

DCBIFLG

4 Address of the exit list.

QTAM DIRECT ACCESS MESSAGE
QUEUE

1 Not used.

3 Address of the terminal
table, TERMTBL.

2

2

Size of the data in the
buffer equated to
lECKBUFL.

Data set organization

DSORG= Byte 1
CQ xxxx1xxx

Byte 2
reserved

4 Input/output block
address.

FOUNDATION BEFORE OPEN

8

1

1

Data set name as used in
data definition statement.
Used by OPEN to locate job
file control block (JFCB)
address.

Flags used by OPEN.

Bit setting
xxx1xxxx

xxxxxxxi

Meaning
OPEN has been
successfully
completed.

This bit is
set to 1 by a
I/O support
function if
the DCB is to
be processed
by that
function.

Used by lOS in communicat­
ing error conditions and
in determining error
procedures.

Bit Setting Meaning
OOxxxxxx Not in error

procedure.
01xxxxxx Error correc­

tion in process
11xxxxxx Permanent error

condition.
xx10xxxx Channel 9 prin­

ter carriage.
xx01xxxx Channel 12 prin­

ter carriage.
xxxxOOxx Always use lOS

error routine.
xxxx01xx Reserved.
xxxx11xx Never use lOS

error routine.
xxxxxx11 Reserved.

DCBMACR

DCBTIOT

DCBMACRF

DCBIFLGS

DCBOFLGS

DCBDEBAD

DCBRead

DCBWrite

DCBGet

DCBPut

DCBKSTAT

2

xxxxxx01
xxxxxxOO

Reserved.
Reserved.

Macro instruc tion
reference. Specifies the
major macros and various
options associated with
them. Used by OPEN to
determine the access
method.

For line group:

Byte 1
INPUT xx1xxxxx
Byte 2
OUTPUT xx1xxxxx

For message queue:

Byte 1
GET x1xxxxxx
Byte 2
PUT x1xxxxxx

FOUNDATION AFTER OPEN

2 Points to the DD entry in
the task I/O table for
this DCB. It is the off­
set of the DD entry rela­
tive to the beginning of
the task I/O table.

2

1

1

4

4

4

4

4

Same as DCBMACR in founda­
tion before OPEN.

Same as DCBIFLG in founda­
tion before OPEN.

Same as DCBOFLGS in foun­
dation before OPEN.

Address of the associated
DEB.

Address of the READ
module.

Address of the WRITE
module.

Address of the Get module.

Address of the Put module.

QTAM Polling List Origin

4 Threshold values for error
counts:
+0 Threshold value for

number of
transmissions.

+1 Threshold value for
number of data
checks.

+2 Threshold value for

Appendix B: System Control Blocks 279

number of interven­
tion required.

+3 Threshold value for
number of time-outs.

DCBCPOLL 4 Byte 1:
bits 0-3=Adapter type.
bit 4=If on, World Trade

Telegraph Adapter.
bits 5-6=Reserved.
bit 7=Internal use

(Checkpoint/Restart
routine).

Bytes 2-4: Address of the
polling list for the first
line in the line group.

Each line in the line
group requires 4 bytes for
its polling list address.

QTAM PROCESSING PROGRAM MESSAGE
QUEUE

DCBRECRD 4 Not used by QTAM.

DCBSYNAD 4 Address of the user pro­
vided routine to be
entered if a work unit is
longer than the work area
provided for input. Used
only in process queue DCB.

DCBEOBLK 4 Not used in QTAM.

DATA EXTENT BLOCK

Typical Dsect:

APPENDAGE TABLE
r------------------------------------,

-36 I DEBEOEA I
t--------------~---------------------~

-32 I DEBSIOA I
~------------------------------------~

-28 I DEBPCIA I
t------------------------------------~

-24 I DEBCEA I
~------------------------------------i

-20 I DEBXCEA I L ____________________________________ J

PREFIX
r--------T---------------------------,

-16 IDEBWKARAI DEBDSCBA I
t--------~---------------------------i

-12 I I
~------------------------------------i

- 8 I DEBDCBMK I
t------------------------------------~

- 4 I DEBLNGTH I L ____________________________________ J

280

BASIC
r--------T---------------------------,

o IDEBNMSUB\ DEBTCBAD I
t--------t---------------------------i

+ 4 IDEBAMLNG] DEBDEBAD I
~--------+---------------------------i

+ 8 IDEBOFLGS\ DEBIRBAD \
~--------t---------------------------~

+12 IDEBOPATBI DEBSYSPG \
~--------+---------------------------i

+16 IDEBNMEXTI DEBUSRPG I
~--------+---------------------------i

+20 IDEBPRIORl DEBECBAD I
~--------+---------------------------i

+24 IDEBPROTGI DEBDCBAD I
I DEBDEBID ~ I
t--------t---------------------------i

+28 IDEBEXSCLJ DEBAPPAD I
~--------~---------------------------i

+32 IDEBUCBAD {4-byte address per device} I L ____________________________________ J

. Contents: ------

DEBEOEA

DEBSIOA

DEBPCIA

DEBCEA

DEBXCEA

DEBWKARA

DEBDSCBA

DEBDCBMK

DEBLNGTH

DEBNMSUB

DEBTCBAD

Description

APPENDAGE TABLE

4

4

4

4

Address of the End of
Extent Appendage branched
to by lOS.

Address of the Start I/O
Appendage branched to by
lOS.

Address of Program Con­
trolled Interrupt Appen­
dage branched to by IOS~

Address of the Channel End
Appendage branched to by
lOS.

4 Address of the Abnormal
End Appendage branched to
by lOS.

PREFIX

1 I/O support work area.

7 DSCB address (BBCCHHR)
used by I/O support.

4 DCB modification mask used
by I/O support.

4 Length of DEB in
doublewords.

1 Number of subroutines
loaded by Open module.

3 Address of the TCB for
this DEB.

DEBAMLNG 1

DEBDEBAD 3

DEBOFLGS 1

DEBIRBAu 3

DEBOPATB 1

DEBSYSPG 3

DEBNMEXT 1

DEBUSRPG 3

DEBPRIOR 1

Number of bytes in access
method section.

Address of the next DEB in
the same task.

Data set status flags.

IRB address for error
exit.

Indicates file type.

Address of first lOB in
system purge chain.

Number of extents (number
of lines in the line
group).

Address of first lOB in
the user purge chain.

Dispatching priority field
from TeB, used by lOS for
channel queuing of lOBs.

DEBECBAD

DEBPROTG

DEBDEBID

DEBDCBAD

DEBEXSCL

DEBAPPAD

DEBUCBAD

3

1/2

1/2

3

1

3

lOS internal ECB address.

Protection tag assigned to
this task.

Hex 'OF- identifies this
block as a DEB.

Address of DCB associated
with this DEB.

Extent scale: four for
direct access device and
two for nondirect access
device.

Address of I/O appendage
table ahead of DEB.

4(n) Pointer to UCB. n = num­
ber of devices.

Appendix B: System control Blocks 281

DEB DSECT for a Processing Program:

PREFIX Process and Destination Queue
r-------------T---,
I I I

-16 IWork area fori DSCB address (BBCCHHR) used I
11/0 support I I
~-------------~---~

-12 I by I/O support I
r---~

- 8 I DCB modification mask used by I/O support J

~-------------T---~
- 4 ILength of DEBI I L _____________ ~ __ · _______________________________________ JJ

BASIC for MS Process Queue
r-------------T---,

o I I Address of TeB I
~-------------+--~~

+ 4 I I Address of next DEB in the same task I
r-~-----------~---~

+ 8 I I
~---1

+12 I I
t-------------T----------------------------~------------~

+16 I I Address of the next available record I
I I on DASD from queue I
r-------------t---~

+20 I I Pointer to next DEB on the chain of I
I I processing program DEBs I
r-------------t---~

+24 IX'OF ' iden- I Address of DCB I
Itify DEB I I
r-------------t---~

+28 I I Address of DEB + 48 (BRB) I
~-------------~---1

+32 I First word of a dummy LCB I
r-------------T---1 A

+36 I I Dummy last entry in queue (IECKSTOP) 11
~---~ I

+40 I IIQCB
r-------------T---~ J

+44 I I QPRIRITY subtask I l
~-------------+---~v

+48 I I IA
r-------------t---~ I

+ 5 2 I X I FE I = I I 1
I priority I IIBRB
r-------------t---~ I

+56 IX ' 08' I Address of QCB for DASD Process Queue I I
ITIC command I I I
r-------------t~--~ I

+60 I Xl 07' indi- I Address of DEB + 32 (LCB) II
Icate dummy I I I
IBRB I II
~-------------~-------------T---------------------------~V

+64 ISize of work area for GET I I
r---------------------------~---------------------------1

+68 I I
+72 I I
+76 I Reserved I
+80 I I
+84 I I L ___ J

282

BASIC for MS Destination Queue
r-------------T---,

o I I Address of TeB ,
~-------------+---~

+ 4 , I Address of next DEB in same Task I
~-------------L---i

+ 8 I J

~-------------------------~-----------------------------~
+12 I ,

~---~
+16 I I

~-------------T---~
+20 , , Pointer to next DEB on the chain of I

I I processing program DEBs I
~-------------+---~

+24 IX'OF' iden- , Address of DCB I
Itify DEB I I
~-------------i---------------------------------------__ ~

+28 I I
~---~A A

+32 I I! IQCB
~---~ I ,

+36 , IIBRB I
~-------------T---~ I A I

+40 I (LCBSTATE)' QPRIRITY subtask II I
I X'18' I II I
~-------------i---~ I V

+44 I II
~---~V

+48 I I LCB
~---1

+52 I I
~---~

+56 I I
~---1

+60 I I
~---~

+64 I 1
~-------------T---1

+68 I I Address of QCB for destination queue I
~----,---------L--------------------------------------___ ~
I I

+72 I Save Area I
I ~

+76 I I
I I

+80 I I
t-------------T-------------T---------------------------~

+84 I I Temporary I ~
I ,location for' I
J 'message' I
, ,priority, I L _____________ i _____________ i ___________________________ J V

Appendix B: System Control Blocks 283

DATA EVENT CONTROL BLOCK

The main storage for the DECB is reserved in the Activate routine. This
routine also initializes the DECB for use by the BTAM Read/Write routine.

General Form:

r---1
o ILINEDECB Set to zero I

~-----------------T-----------------T-----------------------------------~
+ 4 I I BTAM opcode for I Length of input area ,

I I current segment , for initial read I
~-----------------~-----------------~-----------------------------------~

+ 8 I Pointer to DCB I
r---~

+12 I starting address for data in buffer ,
~---~

+16 I ,
r-----------------T---~

+20 'Count of messages I Pointer to currently active entry in polling list I
'received I I
r-----------------t-----------------T------------------.-----------------~

+24 , , Index to UCB , I
I , in DEB I I
r-----------------~-----------------~-----------------------------------~

+28 I Reserved I
~---~

+32 I Address of addressing characters in terminal entry I
~-----------------T---------------------------------------~-------------~

+36 I Reserved I Address of the polling list , L _________________ ~ ___ J

UNIT CONTROL BLOCK

A unit control block" (UCB) is built for each line at system generation time
and is used by lOS during execution to determine physical locations. The only
field that QTAM uses is the device-type word (UCBTYP), which gives details of
the terminals on the line: control unit" adapter, model, and optional fea­
tures. This word is explained in detail following the UCB figure.

r-----------------T-----------------T--------------~--T-----------------l
o ,Internal , Allocation , UCB ID I status "A" I

I Job Number , Channel Mask I I I
~--------T--------t-----------------t-----------------+-----------------~

4 I Flags IChannel I Unit Address I Flags I Device Table I
I IAddress I for SIO I I Index I
~--------~--------t-----------------t-----------------+-----------------i

8 I Error Routine ,Statistical J Logical Channel , Attention I
I Table Index , Table Index I Table Index I Table Index ,
~-----------------t-----------------t-----------------~-----------------~

12 I Weight I Channel Mask I Unit Name ,
I I I I
~-----------------~-----------------~-----------------------------------~

16 , Device Type ~
I ,
r-----------------------------------T-----------------------------------~

20 I Last 12* Pointer I Sense I
I I I L ___________________________________ ~ __________________________________ J

284

UCBTYP

lOS Flags

Model

Optional
Features

Device Class

Adapter Type

Control Unit

4

Descr iption·

Device type brOken down as follows:

o
1
2
3

4-7

8
9
10
11
12
13
14-15

16
17
18
19
20
21
22
23

24-27

28-31

Description

Unassigned
Data chaining (l=yes)
Burst/byte (l=burst)
May overrun (l=yes)

If Adapter Type
(Bits 24-27)

Equals
Model Code

1
1
1
2
3
4
4
5
8

Automatic
Automatic
Checking
Automatic
SCONTROL
XCONTROL
SADZER
SADONE
SADTWO
SAD THREE

Tape

Calling
Polling

Answering

(hex value
(hex value
(hex value
(hex value

Equals
1
2
4
1
1
1
2
1
1

0)
1)
2)
3)

Comrrunication equipment
Direct access
Display
Unit record
Character reader
Spare
Spare

Type of Adapter
IBM Terminal Adapter, Type
IBM Terminal Adapter, Type
IBM Telegraph Adapter
Telegraph Adapter, Type I
Telegraph Adapter, Type II

I
II

World Trade Telegraph Adapter
Synchronous Adapter#
IBM Terminal Adapter"

Type of Control Unit
2702 (hex value 1)
2701 (hex value 2)
2703 (hex value 3)

Type I
Type III

Then Model
Is

(hex
(hex
(hex
(hex
(hex
(hex
(hex
(hex

1050
1060
2740
1030
1050
83B3
115A
TWX
2260

value
value
value
value
value
value
value
value

1)
2)
3)
4)
5)
6)
7)
8)

Appendix B: system Control Blocks 285

TERMINAL TABLE

The terminal consists of a table of information about each terminal as
specified through the T.ERMTBL, LIST, PROCESS, TERM, and OPTION macros.

Entry Type

Single
Terminal

Group
Code

Distribution
List

o 2 3

TQCBADDR

TQCBADDR

TDSTRQCB

TERMID D;,ect ;cce" I
Area

~~~~------~~----~------~~------~----~~~--~--~ 

TERMID 

Process 
Program I L.. T_N_T_RY_S_Z_E....L.I_T_Q_C_B_A_D_DR __ I..,.! .. :.i.:.i.lili;:.i.:.i..ilil:.i.:.i.i1.1""'·I-i""'ilil""'.li.""'ilil""'il·I.i,I..'I_T_S_E_Q_O_U_T----1I_T_S_T A_T_U_S-.l...I ___ TE---j~~ 

~------~v~-------w 
Terminal List Portion 

contents: 

Field Bytes 

TNTRYSZE 1 

TQCBADD.rt 3 

(TDSTRQCB 
for dist. 

list) 

TSEQUIN 2 

TSEQOUT 2 

TLISTKEY 1 

(distribution 
list only) 

TSTATUS 1 

TERMID 1 to 8 

286 

Descri2tion 

Entry size. 

Address of the destination 
QCB for the queue of out-
going messages. 

Sequence number for incom-
ing messages. Used only 
in single-terminal 
entries. 

Sequence nurober for outgo-
ing messages q except for 
distr ibution list. 

Starting address of the 
terminal list portion of 
this entry. 

bit 
0-3 not used 
4 interval stop bit 
5 "intercept" bit 
6 "send" bit 
7 "receive" bit (single 

terminal only) 

Name of the terminal that 
this entry represents. 

Offset 

User 
Area 

Device 
Access 
Area 

Reladdr 

1 

variable 

variable 

vari-
able 

* Unused Field of One Byte 

Dial terminal: offset 
from beginning of entry to 
code for number of dial 
digits. 
Nondial terminal: offset 
from beginning of entry to 
direct access field 
(single-terminal and group 
code only). 

Subfields as defined by 
the user in OPTIOP and 
TERM macro instructions 
(Single-terminal and group 
code only). 

Nonswitched: polling and 
addressing characters. 
Switched: number of dial 
digits, dial digits, and 
addressing characters. 
TWX: number of dial 
digits, dial digits, num­
ber of ID characters, ID 
characters" and same num­
ber of reserved bytes 
(single and group code 
only> • 
WTTA: number of ID chara­
cters, and same number of 
reserved bytes. 

Address of a Single 
terminal entry relative to 
the address of the termin­
al table {distribution 
list only>. 



BUFFER PREFIX 

F" 8 b Irst ytes are not pace d ~ R I " ff e ahve 0 set 0 en ry rom th f" st e Ir h " I bl en ry In t e termJna ta e-
on direct access queue 

... 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

QCB Link Source 
Message Next Previous Next Destin -

Address Address Key 
Address Segment Header Header ation 

on DASD Link Link Link Key 
FQUEUE MSQLlNK TTSKEY 

MSLCB MSLlNK MSHEAD MSDLlNK TTDKEY 

T 
Buffer 

T 

MSTATUS* 
Me_e Sequence Numbe, (I~) MSNJMINJ .J Key FKEY Segment 

I 
Scheduler Size Stored Scan Pointer MSPTR 

Priority MSEGSZE Set to the last character of Message Sequence Number (OUT) MSNUMOUT 

0 
MSPRI 31 

last processed field in header 

, 

\HDSTRT 
HEADER 

I 
TEXT (Optional) I titAl)EI PlEFIX. 

.::: •. 
.J: 

Format of Buffer containing Header 

First 8 bytes are not placed 
on direct ac~cess queue 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

QCB Link Source 
Message Next Message 

Address Address Key 
Address Segment Header 

on DASD Link Link 
FQUEUE MSQLlNK TTSKEY MSLCB MSLlNK MSHEAD 

T '1" 

Key FKEY, egment MSTATUS* 

o 

Scheduler Size 
Priority MSEGSZE 
MSPRI 21 

I 

TEXT I 
Format of Buffer containing Text 

Appendix B: System control Blocks 287 



Contents 
r--------T------------------------------------------------------T-----------------------, 
IField I Description I Initialized by: I 
~--------+------------------------------------------------------t-----------------------i 
IFKEY IThe ECB key when the buffer appears on the ready I Assembler I 
I I queue; always zero. I I 
~--------+------------------------------------------------------t-----------------------~ 
IFQUEUE ·IA pointer to the QCB for the queue to which the bufferlPost or Put I 
I Ihas been posted. This field is meaningful only when I I 
I Ithe buffer is on the ready queue. I I 
~--------t------------------------------------------------------f-----------------------i 
I MSPRI IThe priority of the buffer. This field I Cleanup" Free BRB, I 
I Idetermines the relative position of the buffer 1 Interim LPS, or I 
I Iwhen it is linked into the ready queue or the element IDisk End Appendage I 
I I chain of a QCB. I I 
~--------+------------------------------------------------------+-----------------------i 
IMSQLINK IA pointer to the next item in the chain in which the INumerous routines I 
I Ibuffer appears. I I 
~--------+------------------------------------------------------f-----------------------i 
IMSEGSZE ISegment size (includes buffer prefix minus 8). lBuffer-BRB, Line I 
I I I Appendage" Put I 
~--------+------------------------------------------------------f-----------------------i 
I TTSKEY I Relative address in terminal table of entry for I Source" Interim LPS'I I 
I isource terminal. JLine Appendage I 
~--------+------------------------------------------------------+---------~-------------i 
MSTATUS IUsed to indicate the status of the message segment I 

Icontained in the buffer. The significance of the bitsl 
lin this field is as follows: I 
IBit 0: If 1, do not send or process message. ICancel Message 
IBit 1: If 1, duplicate copy of header. I Recall 
IBit 2: If 1, an EOB character is present in some ILine Appendage 
I position in ,the buffer other than the last. I 
IBit 3: If 1, the message was previously serviced or IDisk End Appendage 
sent. I 

Bit 4: Not used. 
Bit 5: If 1, this message was sent with priority. 

I 
I 
JDisk End Appendage 
J 

Bit 6-7 I 
00 header segment (not last segment) I Activate, Line 
01 text segment (not last segment) JAppendage~ LPS 
10 header segment (last segment) JControl, Put 
11 text segment (last segment) 1 

I MSLCB When in main storage, the address of the LCB to which lBuffer-BRB 
I the buffer is assigned. I 
I IWhen on the disk, the relative record number of the IDASD Destination 
I I segment. 1 l ________ ~ ______________________________________________________ ~ ______________________ _ 

(Continued) 

288 



contents (Continued) 
r--------T------------------------------------------------------T-----------------------, 
IField I Description ] Initialized by: I 
~--------+------------------------------------------------------+-----------------------i 
I MSLINK IRelative record number of the next segment in this IDASD Destination I 
I I message. I I 
~--------+------------------------------------------------------+-----------------------i 
I MSHEAD IFor a header segment, the relative record number of ~DASD Destination I 
I Ithe previous header segment in this queue. For a text I I 
I I segment, the relative record number of the header seg-] I 
I I ment of this message. I I 
~--------+------------------------------------------------------+-----------------------~ 
I TXSTRT Istart of message data for a text segment. The remain-] I 
I ling fields in the prefix apply only to a header I I 
I I segment. I I 
~--------+------------------------------------------------------t-----------------------i 
IMSDLINK IThe relative record number of the next header segment 'DASD Destination I 
I I in this queue. I I 
~--------+------------------------------------------------------+-----------------------i 
I MSPTR I stored scan pointer; indicates the relative I Activate, Put" Cleanup I 
I I position within the buffer where scanning is to begin IEOB g or EOBLC I 
I I resume. I I 
~--------+------------------------------~-----------------------t-----------------------~ 
ITTDKEY IKelative address in terminal table of entry for ILookup or Put I 

'1 Idestination terminal. I 1 
~--------+------------------------------------------------------+-----------------------~ 
IMSNUMIN Isequence-in number assigned to message. ISequence Number In I 
~--------+------------------------------------------------------t-----------------------i 
I MSNUMOUTI sequence-out number assigned to message. IDisk End Appendage I 
~--------+------------------------------------------------------+-----------------------i 
IHDSTRT Istart of message data for header segment. I I L ________ ~ ______________________________________________________ ~ _______________________ J 

Buffer Prefix formats 

SPECIAL CONTROL BLOCK FORMS 

QUEUE CONTROL BLOCK 

The pattern of unused bytes in the QCB 
and the truncated STCB is such that they 
are capable of being combined to conserve 
storage, as may be seen from the following 
general forms: 

Queue Control Block 
r-------------T---------------------------, 
I key I element chain pointer I 
~-------------+---------------------------i 
I priority I link address I 
~-------------+---------------------------i 
I I STCB chain pointer I L _____________ L ___________________________ J 

Subtask Control Block 
r-------------T---------------------------, 
I return code I I 
~-------------+---------------------------i 
I priority I link address I L _____________ ~ ___________________________ J 

The general form of these control blocks 
when combined is·: 

r-------------T---------------------------, 
l key I element chain pointer I 
~-------------+---------------------------i 
] QCB priority]QCB (ready queue) link addrl 
~-------------t---------------------------~ 
I return code J *STCB chain pointer I 
r-------------t---------------------------i 
ISTCB priority~STCB {STCB chain> link addrl L _____________ ~ ___________________________ J 

*Address of this field minus 1 

BUFFER REQUEST BLOCK 

The buffer request block (BRB) is basic­
ally a resource element control block, with 
the element control block characteristics 
outlined in the preceding section. The 
BRB, however, tak~s several different forms 
during its processing cycle. These forms 
are illustrated in Figures 8 through 12 and 
are described below. 

Figure 26 illustrates the DSECT typical­
ly used to refer to fields of the BRB. The 
first two fullwords (FKEY through FLINK) 
are typical for all element control blocks. 
Of the alternate labels available for the 
third full warda MSTIC is most commonly used 
when the DSECT applies to a BRB. The 
fourth fullword (MSTATUS and MSLCB) is 
standard for this DSECT. 

Appendix B: System Control Blocks 289 



Figure 27 illustrates the significant 
fields of the BRB when it is in the element 
control block chain of the inactive BRB 
queue control block. This is also the form 
in which the BRB is generated on expansion 
of the BUFFER macro instruction. 

The BRB-Ring routine removes BRBs from 
the inactive BRB queue and forms the BRB 
ring. Figure 28 is a representation of a 
BRB after it has been processed by the BRB 
Ring routine. The contents of each field 
are as follows: 

key: always zero. The BRB is still an 
element, and the key of all elements is 
zero. 

QCB address: variable. For the first BRB 
in a ring, this field contains the address 
of the active buffer request QCB if the BRB 
is to be used for a Receive operation, or 
the address of the disk I/O QCB if the BRB 
is to be used for a Send operation. For 
the remaining BRBs in the ring, the con­
tents of this field are not significant. 

priority: The first BRB in a ring to be 
used for a receive operation has a priority 
of 12. The contents of this field is nor­
mally zero for all other BRBs. 

MSTIC: This fullword contains a transfer­
in-channel (TIC) command. The first byte 
contains the TIC command code (08), and the 
remaining three bytes contain the address 
of the next BRB in the r.ing. For the first 
BRB in the ring only, the TIC address 
points to the actual address of the next 
BRB, which begins at a doubleword boundary. 
For all other BRBs in the ring, the last 
two bits of the TIC address are set to one. 
This configuration represents the BRB 
address (always on a doubleword boundary) 
plus the BRB idle flag (see BRB status 
Cooes). 

MSTATUS: zero. A zero value for this 
field indicates that no next segment 
address has been assigned to this BRB. 

LCB address: the address of the line con­
trol block for the line over which the Send 
or Receive operation is to be conducted. 

The Disk I/O Appendage further initial­
izes the BRB when the BRB is to be used for 
a Read from direct access stqrage. The 
appendage replaces the LCB address in the 
fourth fullword of the BRB with the rela­
tive record number for the message segment 
with which this BRB is now associated. The 
assigning of the next segment address is 
indicated ny changing the value of MSTATUS 
to 9. Figure 29 illustrates this 
configuration. 

290 

Figure 30 represents a buffer request 
block that has been converted to a CCW 
(BRB/CCW). A BRB/CCW is fully initialized 
for a write to or read from direct access 
storage. The first two fullwords have been 
converted to a standard channel command 
word, and are followed (in the third full­
word) by the previously initialized 
transfer-in-channel command. (Note that a 
complete BRB/CCW cannot be enqueued by the 
standard QTAM conventions because the queu­
ing information fields are occupied by the 
channel command word. The BRB ring is 
formed by the TIC addresses of the 
BRB/CCWs.) 

In the BRB/CCW, as in any other form of 
the BRB except that appropriate to the 
inactive BRB queue, the fourth fullword may 
contain either MSTATUS=O and an LCB. 
address n or MSTATUS=9 and a next segment 
relative record number. The next segment 
address is inserted in the BRB when the 
Disk I/O Appendage is processing another 
BRB in the ring. The BRB in which the next 
segment address is placed is selected 
according to its position in the ring, 
without reference to the queue (if any) 
upon which it appears. 

r-------------T---------------------------l 
I FKEY I FQUEUE I 
~-------------+---------------------------i 
I FPRI I FLINK I 
r-------------~---------------------------i 
~ MSTIC I 
r-------------T---------------------------i 
1 MSTATUS I MSLCB I L _____________ ~ ___________________________ J 

Figure 26. Typical DSECT for BRB 

r-------------T---------------------------, 
I key l QCB address I 
'r-------------+---------------------------~ 
~ priority 1 link address I 
t-------------t---------------------------~ 
~ I I 
t-------------+---------------------------~ 
~ J I L _____________ ~ ___________________________ J 

Figure 27. BRB on Inactive-BRB Queue 

r-------------T---------------------------, 
1 key I QCB address I 
r-------------+---------------------------~ 
1 priority ~ link address I 
t-------------+---------------------------~ 
]TIC comm codeladdress of next BRB in ring I 
j--------------+---------------------------i 
l MSTATUS (0) l LCB address I L _____________ ~ ___________________________ J 

Figure 28. BRB Assignment of Next segment 
Address 



r-------------T---------------------------, 
I key I QCB address I 
~-------------+---------------------------~ 
I priority I link address I 
~-------------+---------------------------~ 
ITIC corom code I address of next BRB in ringl 
~-------------+---------------------------~ 
IMSTATUS (9) Irelative record number I 
I Ifor next segment I 
l ____________ -i---------------------------J 
Figure 29. BRB After Assignment of Next 

Segment Address 

r-------------T---------------------------, 
Icommand code I data address I 
~-------------+---------------------------~ 
I flags I 0 data count I 
~-------------+---------------------------~ 
ITIC corom codeladdress of next BRB in ringl 
~-------------+---------------------------~ 
I MSTATUS I MSLCB I l _____________ i ___________________________ J 

Figure 30. BRB/CCW Initialized for Direct 
Access Read or write 

BRB status Codes 

The status of a ERB at any point in time 
is indicated by a code in the two low-order 

INSERT BLOCK 

bits of MSTIC+3 (the fourth byte of the 
third fullword of the BRB.) The codes used 
are: 

00 - Buffer is allocated. This code, which 
never appears in the BRB used to send 
or to receive the last segment of a 
message, makes valid the address por­
tion of a CCW containing a TIC com­
mand. (Refer to the discussion of the 
Line End Appendage for additional 
information on the invalid TIC 
address. ) 

01 - Buffer is in LPS queue (if receiving), 
or BRB is in disk I/O queue (if send­
ing). This code appears in the BRB 
used for the last segment of a 
message. 

10 - BRB is in active buffer request queue. 

11 - BRB is idle. This code is set, typic­
ally, when a buffer has been allocated 
to the BRB but could not be used 
because the preceding segment had not 
yet been read when this BRB was 
selected. 

The insert block is inserted into the chain of BRBs. The chain of 
insert blocks contains a special purpose BRE used to schedule an.d to 
contain channel commands for the transmission of idle characters. 

Form: 

r-----------------T-----------------------------------------------------, 
I write I Address of the next character after the previous I 

+ 0 I command code Ispecial character or addr. of beginning of the buffer I 
~-----------------+-----------------T-----------------------------------~ 

+ 4 I - flags I I byte count I 
~-----------------+-----------------L-----------------__________________ ~ 
I write I I 

+ 8 I command code I Address of the Idles I 
~-----------------+-----------------T-----------------------------------~ 

+12 I flags I I byte count I 
~-----------------+-----------------L-----------------------------------1 
I TIC I Address of the next Insert Block I 

+16 I command code I or original BRB I 
~---------------~-+-----------------------------------------------------i 

+20 I 0 I Address of queue for Insert Blocks I l _________________ i _____________________________________________________ J 

RESOURCE ELEMENT CONTROL BLOCK (IECKSTOP) 

The IECKSTOP resource element control 
block is used as a dummy last element on 
the element chain of several queues, and is 
permanently the last item on the ready 
queue. Its sole purpose is to signal the 
end of a chain; it is never altered or used 
as an available element. 

Form: 

r-----------T----------------------, 
WAITRB lkey = 0 IQCB address = QATTACH I 

r-----------+----------------------~ 
Ipriority = Ilink address = WAITRB I 
1 255 1 I l ___________ i ______________________ J 

Appendix B: System Control Blocks 291 



APPENDIX C: QTAM LINKAGES 

Figure 31 depicts the linkages between the 
macro expansions and the modules they call, 
for each of the LPS, system status modify­
ing, GET, and PUT macro instructions, with 
the exception of five of the LPS delimiter 
macro instructions. These five branch 
directly to the QTAM Implementation module" 
rather than to macro-called modules. 

The entry point of each module is the 
same as the module name except where it is 
shown in parentheses below the module name. 
Types of linkages are as follows: 

292 

-... 
is 

SVCxx 

-... 
is 

........... 
is 

.a branch. 

an SVC. 

a branch and link. 



Macro Instruction Modules QTAM Control Module QTAM Implementation 
Module 

BREAKOFF 

CANCELM 

CHNGP 

CHNGT 

CKREQ 

CLOSEMC 

COPYT 

COPYP 

COPYQ 

DATESTMP 

DIRECT 

ENDRCV 

ENDREADY 

ENDSEND 

EOA 

EOB 

EOBLC 

ERRMSG 

-----+i., IECKBKRF 

_---.t·1 IECKCNCL 1 

I I L SVC 67 
...----I~ IECKDCBL • IECKCHPL ,-- - -

/' 
SVC 67 /" _---.t./ IECKCHGT r- - -- -- - - -- -/" 

----t·IIECKCKRQ r - SVC 67 

-I IECKCPYT 
SVC 67 

-I IECKDCBL I-----.~I IECKCPPL 

-I'ECKCPYQ I 

-I IECKDATE .... ---~J IIECKEXPD I-

., IECKLKUP 
IECKDRCT 

IGGOJ9NG 
(QMOVER +6) 

IGGOJ9NG 
(IECKPR) 

(IECKSU) 

(I ECKACT) 

~---~I IECKEOBK~ :-----------------------~~IG~G~O~J9;N~G~ 
(JECKACT) 

...----~I IECKEOBC I .... -----------------------~ (I ECKRC) 

(JECKRC) 

{ 

I IECKERMG I~.--___ ..., 

~-----------~ IECKLKUP I 

Figure 31. QTAM Linkages (Part 1 of 4) 

Appendix C: QTAM Linkages 293 



Macro Instruction Modules QTAM Control Module QTAM Implementation 
Module 

GET Message 

GET Record 

GET Segment 

INTERCPT 

LOGSEG 

LPSTART 

MODE 
Priority 

-I IGG019NB 

-I IGG019NC 

-I IGG019NA 

~ ____ SvC~ 

" '" SVC 67 '--

SVC 65 
/""----

\<'- ___ SVC £.. 

SVC 65 
,;-- ---

1<,,- SVC 67 -

IECKQQOl 

(lGC065) 

(lGC067) 

(I GC065) 

(lGC067) 

(IGC065) 

(IGC067) 

-----------!---tl IECKITCP 1--_______________ ~_l_IG_G_O_l_9_N_G__' 
. _ (IECKRC) 

-----------!,~' [QSAM PUT Routine] IGC0007G 

_-----,~I IECKONLT ~ __ SVC 77 _ _ _ _ _ IGC0107G 

IGC0207G 

IGC0307G 

IGC0407G 

IGC0507G 

IGC0607G 

{ 
,I IECKMODE I~. -, ;IIECKSCAN I 

MODE Initiate ~. 

~.-------------------------~ IECKNATE I 

MODE 
Converse 

MSGTYPE 

OPCTL 

PAUSE 

POLLIMIT 

Figure 

294 

31. QTAM 

-I IECKTYPE 

I IECKOCTL I 

, I IECKPAUS 

,I IE~KPLMT 

Linkages (Part 2 

SVC 67 --------
I------,MIIECKSCAN I 

IGG019NG 

(ENDINSRT) 

IECKSU) 

IECKQQOl 
IGC067 

I 
IECKSCAN ~ ______ sV~7I -'--------' 

~----~~ IECKLNCH ---I 

r--

of 4) 

IECKDRCT 

SVC 65 IECKQQOl 
IGC065 



Modules QT AM Control Module QT AM Implementation 
Module 

Macro Instruction 

IGG019NG 
POSTRCV (lECKPR OR 

IECKOPAW) 

POSTSEND{ ________________________________________________________ ~ (lECKACT) 
(IECKPR OR 

IECKQQOl ,I IGG019NE I~" SVC 65 , --------- (lGC065) , 
PUT Message 

, 
SVC 67 \ 

'-------- -- (lGC067) 

SVC 65 ,---------- (lGC065) 
IGG019NF 1<:: ____ S_V_C_ ':! __ 

(lGC067) 
PUT Record 

SVC 65 ,--------- (lGC065) ,I IGG019ND I<"~ ____ S'!5_6! __ 
(IGC067) 

PUT Segment 

RCVHDR * 

RCVSEG * 

I 
RELEASEM ---~I IECKRELM r 

{ ~---~IIECKRRTE -----.., 

R EROUT E _---------------~---J' I ECK LK U P 

SVC 65 IECKQQOl 
- - - - - - - - - - - - - - - - -.. (lGC065) 

RETRIEVE (D) ~.--,.j IECKRETD 1<:' SVC 67 
'- - - - - - - - - - - - - - - - -~ (I GC067) 

RETRIEVE(S) -·--~·I IECKRETS "1---"',/ IECKRETD 

ROUTE 
{ 

---. IECKROUT IECKSCAN 

~--------------------~ IECKLKUP 

SENDHDR * 

SENDSEG * 

IECKOPAW 

IGG0l9NG 
(QMOVER +6) 

........ (IECKRC) 

*This macro instruction genterates no code or generates only in-line code; there is no module linkage. 

Figure 31. QT~l Linkages (Part 3 of 4) 

Appendix C: QTAM Linkages 295 



1< This macro instruction generates no code or generates only in - line code; there is no linkage. 

Figure 31. QTAM Linkages (Part 4 of 4) 

296 



This appendix identifies the modules that 
comprise QTAM. Two lists are provided. 
The first list presents each module name 
included in QTAM, with a brief description 
of the nature of the module. For those 
modules that represent macro instruction 
implementing routines" the mnemoni c opera­
tion code for the macro instruction is 
included in the description (e.g., 
DATESTMP) • 

The second list provides a more con­
venient cross-reference for identifying the 
routines (as modules) that implement a 
given macro instruction. This list 
includes all macro instructions., but does 
not include modules that are not specific­
ally related to one or more macro instruc­
tions. The notation (-none-) in the Module 
column means that the macro instruction's 
function is fulfilled at assembly time, 
usually through the macro expansion. Macro 
instructions are grouped alphabetically 
within categories. 

All Open, Close, Get, and Put modules 
are part of the supervisor call library 
(SVCLIB); the QTAM Implementation module, 
IGG019NG, is also part of SVCLIB. The QTAM 
control module, IECKQQ01, is resident in 
the supervisor nucleus. (Entry points for 
the two QTAM SVCs are IGC065 and IGC067.) 
All other QTAM modules are contained in the 
library identified as SYS1.TELCMLIB. 

ALPHABETICAL LIST OF Q~AM MODULES 

SYS1.TELCMLIB 

IECKBRKF 

IECKCHGT 

IECKCHPL 

IECKCKRQ 
IECKCLOS 

IECKCNCL 

I ECKCPP.f.. 

IECKCPYQ 

IECKCPYT 

IECKCVRS 

IECKDATE 

Halt Receive (BREAKOFF) 
routine. 
Change Terminal Table (CHNGT) 
routine. 
Change Polling List (CHNGP) 
routine. 
Check Request (CKREQ) routine 
Close Telecommunications Sys­
tem (CLOSEMC) routine. 
Cancel Message (CANCELM) 
routine. 
Copy Polling List (COPYP) 
routine. 
Copy Queue Status (COPYQ) 
routine. 
Copy Terminal Table (COPYT) 
routine. 
Conversational Mode (MODE) 
routine; used with IECKMODE 
and IECKSCAN. 
Datestamp (DATESTMP) routine; 
requires IECKEXPD. 

IECKDCBL 

IECKDLQT 

IECKEOAD 
IECKEOBC 

IECKEOBK 
IECKERNl.G 

IECKEXPD 

IECKITCP 
IECKLKUP 

IECKLNCH 

IECKMODE 

IECKNATE 

IECKOCTL 

IECKONTL 
IECKOPAW 
IECKPAUS 
IECKPLMT 

IECKPRTY 

IECKRELM 

IECKRETD 

IECKRETS 

IECKRF40 

IECKRF50 

IECKROUT 

IECKRRTE 
IECKRV30 

IECKRV40 

APPENDIX D: LIST OF QTAM MODULES 

Data Control Block Locate 
routine. 
Distribution List (DLIST) 
routine. 
End of Address (EOA) routine. 
End of Block and Line Correc­
tion (EOBLC) routine. 
End of Block (EOB) routine. 
Error Message (ERRMSG) rou­
tine, requires IECKLKUP. 
Expand routine; a second-level 
routine that provides the 
number of' spaces and the mes­
sage header required for in­
sertion of timestamp or date­
stamp characters, or for 
sequence-out numbers. 
Intercept (INTERCPT) routine,. 
Lookup routine; a second-level 
routine that locates the ter­
minal table entry for a speci­
fied destination. 
Line Change Routine (STARTLN, 
STOPLN) • 
Message Mode (MODE) routine; 
requires IECKSCAN and one of 
the following: IECKCVRS" 
IECKNATE, IECKPRTY" or a user­
written subroutine. 
Initiate mode (MODE) routine; 
used with IECKMODE and 
IECKSCAN. 
Operator Control (OPCTL) rou­
tine~ requires IECKSCAN, 
IECKLNCH, and IECKDRCT. 
On-Line Terminal Test routine. 
Operator Awareness routine. 
Pause (PAUSE) routine .• 
Polling Limit (POLLIMIT) 
routine. 
Priority Mode (MODE) routine; 
used with IECKMODE and 
IECKSCAN. 
Release Intercept (RELEASEM) 
routine. 
Retrieve DASD (RETRIEVE) rou­
tine (by relative track 
number). 
Retrieve (RETRIEVE) routine 
(by sequence number). 
Translate Table RCAP2740i 2740 
to monocase EBCDIC. 
Translate Table RCAP1050; 1050 
to monocase EBCDIC. 
Routing (ROUTE) routine; 
requires IECKSCAN and 
IECKLKUP. 
Reroute (REROUTE) routine. 
Translate Table RCVE1030; 1030 
to EBCDIC,. 
Translate Table RCVE2740; 2740 
to EBCDIC. 

Appendix D: List of QTAM Modules 297 



IECKRV50 

IECKRV60 

IECKR260 

IECKRVTl 

IECKRVT2 

IECKRVTW 

IECKRVTZ 

IECKSCA1\l 

IECKSD30 

IECKSD40 

IECKSD50 

IECKSD60 

IECKS260 

IECKSDTl 

IECKSDT2 

IECKSDT3 

IECKSDTW 

IECKSDTZ 

IECKSEQd 

IECKSEQT 

IECKSKPC 
IECKSKPS 

IECKSRCE 

IECKTIMb 

IECKTRNS 

IECKTYPE 

Translate Table RCVEI050; 1050 
to BBCDIC. 
Translate Table RCVEI060; 1060 
to EBCDIC. 
Translate Table RCVE2260; 2260 
to EBCDIC. 
Translate Table RCVET1; 5-
level Baudot to EBCDIC. 
Translate Table RCVET2; TWX 
code to EBCDIC. 
WTTA Translate table RCVEITA2; 
ITA2 code to EBCDIC. 
WTTA Translate table RCVEZSC3; 
ZSC3 code to EBCDIC. 
Scan Header routine; a second 
level routine that steps 
through a header segment, 
maintaining a pointer to the 
portion of the segment to be 
operated upon by the next LPS 
routine. 
Translate Table SENDI030; 
EBCDIC to 1030. 
Translate Table SEND2740; 
EBCDIC to 2740. 
Translate Table SENDI050; 
EBCDIC to 1050. 
Translate Table SENDI060; 
EBCDIC to 1060. 
Translate Table SEND2260; 
EBCDIC to 2260. 
Translate Table SENDT1; EBCDIC 
to 5-level Baudot code. 
Translate Table SENDT2; EBCDIC 
to TWX code. 
Translate Table SENDT3; EBCDIC 
to TWX code with parity bit 
on. 
WTTA Translate Table SENDITA2; 
EBCDIC CODE TO ITA2 code. 
WTTA Translate Table SENDZSC3; 
EBCDIC CODE TO ZSC3 code. 
Sequence-in (SEQIN) routine; 
requires IECKSCAN. 
Sequence-out (SEQOUT) routine; 
requires IECKEXPD. 
Skip on Count (SKIP) routine. 
Skip to Character Set (SKIP) 
routine; requires IECKSCAN. 
Source (SOURCE) routine; 
requires IECKSCAN. 
Timestamp (TlMESTMP) routine; 
requires IECKEXPD. 
Translate (TRANS) routine; 
used in conjunction with a 
QTAM or user-provided 
translations. 
Message Type (MSGTYPE) rou­
tine: requires IECKSCAN. 

SYS1.SVC Library 

IGC0007G 

IGCOI07G 
IGC0207G 
IGC0307G 
IGC0407G 

298 

Terminal Test Header Analysis 
routine. 
1030 Terminal Test routine. 
1050 Terminal Test routine. 
1060 Terminal Test routine. 
2740 Terminal Test routine. 

IGC0507G 

IGC0607G 

IGE0004E 

IGEOI04E 
IGE0204E 
IGE0304R 
IGE0404E 
IGE0504E 
IGE0604E 
IGE0704E 
IGE0804E 
IGE0904E 

IGE0004F 

IGEOI04F 
IGE0204F 
IGE0304F 

IGE0404F 

IGE0504F 
IGE0604F 

IGE0704F 
IGG0193N 

IGG01930 

IGG0193P 
IGG0193R 

IGG0193T 

IGG0193U 

IGG0193V 
IGG0194A 

IGG019NA 

IGG019NB 
IGG019NC 
IGG019ND 

IGG019NE 
IGG019NF 
IGG019NG 
IGG019NH 
IGG019NJ 

IGG019NK 

IGG019NL 

IGG019NM 

IGG019NN 

IGG019NO 

IGG019NP 

2848/2260 Terminal Test 
routine. 
2848/2260 Terminal Test 
routine. 
Time-Out and Data Check for 
Auto Poll routine. 
Data Check routine. 
Time-Out routine. 
Intervention Required routine. 
Lost Data routine. 
Error Post routine. 
Bus-out and Overrun routine. 
Link routine. 
Status Check routine. 
Command Reject, Equipment 
Check, SNO Error, SIO CC 1 
routine. 
Read Skip, Break Return 
routine. 
Diagnostic Write/Read routine. 
Line Error Recording routine. 
Operator Control and LER Addi­
tion routine. 
Special OPEN and Checkpoint 
Restart routine. 
Not Operational SIO routine. 
Bus-out and Overrun for Auto 
Poll routine. 
Overrun routine. 
Open Communications Line Group 
(load 1) (OPEN) .. 
Open Direct Access Message 
Queue (OPEN). 
Open Process Queue (OPEN). 
Open communications Line Group 
(load 2) (OPEN). 
Open Communications Line Group 
(load 3) (OPEN). 
Open Direct Access Message 
Queue (load 2) (OPEN). 
Open Checkpoint/Restart. 
Open Communications Line Group 
(load 4) (OPEN) .• 
Get Message Segment (GET) 
routine. 
Get Message (GET) routine .• 
Get Record (GET) routine. 
Put Message segment (PUT) 
routineo 
Put Message (PUT) routine. 
Put Record (PUT) routine. 
QTAM Implementation Module. 
Checkpoint/Restart routine. 
IBM 2740 (Basic) Device I/O 
Module. 
IBM 2740 with Dial Device I/O 
Module. 
IBM 2740 with Transmit Control 
and Checking Device I/O 
Module. 
IBM 2740 with Dial and Trans­
mit Control Device I/O Module. 
IBM 2740 with Dial and Check­
ing Device I/O Module. 
IBM 2740 with Station Control 
and Checking Device I/O 
Module. 
IBM 2740 with Station Control 



IGG019NQ 

IGG019NR 
IGG0203 .. ~ 

IGG02030 

IGG0203P 
IGG019NS 
IGG019NT 
IGG019NU 
IGG019NV 
IGG019NW 
IGG019NX 

IGG019NY 

IGG019NZ 
IGG019Nl 

IGG019N2 
IGG019N3 
IGG019N8 

IGG019N9 

IIGG019 QA 
IGG019QB 

Device I/O Module. 
IBM 2740 with Checking Device 
I/O Module. 
IBM 2260 Device I/O Module. 
Close Communications Line 
Group (CLOSE). 
Close Direct Access Message 
Queue <CLOSE). 
Close Process Queue (CLOSE). 
TWX Device I/O Module. 
WU 115A Device I/O Module. 
AT&T 83B3 Device I/O Module. 
IBM 1030 Device I/O Module. 
IBM lObO Device I/O Module. 
IBM 1050 (Switched) Device I/O 
Module. 
IBM 1050 (Nonswitched) Device 
I/O Module. 
Read/Write Routines. 
IBM 1050 (nonswitched) for 
Auto Poll. 
IBM lObO for Auto Poll. 
IBM 1030 for Auto Poll. 
IBM 2740 with Station Control 
and Checking for Auto Poll. 
IBM 2740 with station Control 
for Auto Poll. 
WTTA Device I/O Module. 
WTTA Line Appendage Module. 

QTAM DSECTs in SYS1.~~CLIB 

CTLPROGD 

DCBD 
IECDSECT 

IECTDEBX 
IECTDECB 

IECTIOBX 
IECKQIOB 
LCBD 
PREFIXD 

QCBD 
STCBD 

TCBD 
TERMTBLD 

DSECT for QTAM Control Module 
IECKQQ01. 
DSECT for Data Control Blocks. 
DSECT for System OPEN Work 
Area. 
DSECT for Data Extent Block. 
DSECT for Data Event Control 
Block. 
DSECT for Input/Output Block. 
DSECT for Input/Output Block. 
DSEC'!' for Line Control Block. 
DSECT for Header & Text 
Prefixes. 
DSECT for Queue Control Block. 
DSECT for Full Subtask Control 
Block. 
DSECT for Task Control Block. 
DSECT for Terminal Table. 

LIST OF MODULES BY MACRO INSTRUCTION 
CATEGORY 

SUPPORT MACRO INSTRUCTIONS 

Macro instruction 

CLOSEMC Telecommuni­
cations System 

CLOSE Communications 
Line Group 

CLOSE Direct Access 
Message queue 

CLOSE Process queue 
(input) 

Module 

IECKCLOS, IECKLNCH 

IGG0203N 

IGG02030 

IGG0203P 

CLOSE Process queue 
(output) 

GET message 
GET record 
GET message segment 
OPEN communications 

line group 

OPEN direct access 
message queue 

OPEN Checkpoint/Restart 
OPEN process queue 

(input and output) 
PUT message 
PUT record 
PUT message segment 

IGG0203P 

IGG019NB 
IGG019NC 
IGG019NA 
IGG0193N (loadl) 
IGG0193R (load2) 
IGG0193T (load3) 
IGG0194A (load4) 
IGG01930 

IGG019NU (load2) 
IGG019NV 
IGG0193P 

IGG019NE 
IGG019NF 
IGG019ND 

MESSAGE CONTROL MACRO INSTRUCTIONS 

Macro Instruction 

Initialization 

ENDREADY 

Control Information 

BUFFER 
DLIST 
OPTION 
POLL 
PROCESS 
TERM 
TERMTBL 

Module 

-none­
IECKDLQT 
-none-
-none-
-none-
-none-
-none-

Line Procedure Specification 

BREAKOFF 
CANCELM 
COUNTER 
DATESTMP 
DIRECT 

IENDRCV 
ENDSEND 
EOA 
EOB 
EOBLC 
ERRMSG 
INTERCPT 
LOGSEG 
LPSTART 
MODE 

-CONVERSE 
-INITIATE 
-PRIORITY 

MSGTYPE 
OPCTL 

PAUSE 
POLLIMIT 
POSTRCV 
POSTSEND 
RCVHDR 

IECKBRKF 
IECKCNCL 
-none-
IE CK DATE, IECKEXPD 
IECKDRCTe IECKLKUP 
IECKEOBK(WTTA only) 
-none-
IECKEOAD 
IECKEOBK 
IECKEOBC 
IECKERMGo IECKLKUP 
IECKITCP 
-none-
-none-
IECKMODE6 IECKSCAN 

I ECKCVRS 
I ECKNATE 
IECKPRTY, 
IECKSCAN 

IECKTYPEn IECKSCAN 
IECKOCTL~ IECKSCAN, 
IECKLNCH" IECKDRCT 
IECKPAUS 
IECKPLMT 
IECKOPAW 
IECKOPAW 
-none-

Appendix D: List of QTAM Modules 299 



RCVSEG -none- SENDITA2 -none-
REROUTE IECKRRTE, IECKLKUP SENDZSC3 -none-
ROUTE IECKROUT., IECKSCAN 

IECKLKUP 
SENDHDR -none-
SENDSEG -none- MESSAGE PROCESSING MACRO INSTRUCTIONS 
SEQIN IECKSEQN., IECKSCAN 
SEQOUT IECKSEQT" IECKEXPD 
SKIP on count IECKSKPC Macro Instruction Module 
SKIP to character set IECKSKPS., IECKSCAN CKREQ IECKCKRQ 
SOURCE IECKSRCE, IECKSCAN CHNGP IECKCHPL." I ECKDCBL 
TIMESTMP IECKTIME, IECKEXPD CHNGT IECKCHGT 
TRANS IECKTRNS COPYT IECKCPYT 
WRU -none- COPYP IECKCPPL.., IECKDCBL 

COPYQ IECKCPYQ 
WTTA Translation Tables RELEASEM IECKRELM 

RETRIEVE IECKRETD" IECKRETS 
RCVEITA2 -none- STARTLN IECKLNCH II IECKDCBL 
RCVEZSC3 -none- STOPLN IECKLNCBtn IECKDCBL 

300 



Figure 32 is a grid showing the QTAM 
routines that effect the queues. The grid 
specifies whether the action was through a 
Qpost or Qwait and what was posted. The 

APPENDIX E: QUEUES AFFECTED BY QTAM ROUTINES 

subtask associated with the queue is acti­
vated through the QTAM nucleus each time 
the queue is acted upon. 

Appendix E: Queues Affected By QTAM Routines 301 



;s: 

~ 
.~ 

u 

} g 
~ u 

'" ~ ] '" "0 '" c .~ "" 0 

j "" £ '" 0 '" ~ j '" 1 0 g '" 0 g 
~ '" Ol -" > '" c > :g .~ 

c 0 

~ ~ 6i '" ::0 '" ::0 Q. ] '" :::J 0 .B '" -" 0 '" ~ '" "0 

ROUTINE ..<: <{ <{ E ~ "- ~ <3 ~ ~ 
a 

~ 
E a <{ <{ <{ u u u u 0 0 Ci --' ;.:: 

Post Post Wait 
BRB Ring BRB BRB BRB 

Post Post Post 
Buffer BRB BRB BRB Buffer 

Post Post Post Post Post 
Buffer Recall/Cleanup BRB Buffer Buffer Buffer BRB Wait 

Post 
Move 

Change Poll ing List Data 

Post 
Move 

Change Terminal Data 

Post Post Post 
Dummy Ck.pt. Dummy 

Checkpoint IRestart LCB elem. LCB 

Post 
Check Request ECB 

Post 
Move 

Close Message Control Data 

Post Post Post 
Converse BRB Buffer BRB 

Post 
DASD Destination Buffer 

Post Post 
Post Post Post 

Buffer Dummy 
BRB Buffer Buffer Disk End Appendage LCB 

Post 
Post Start 

Disk I/o BRB I/o 
elem. 

Post Post Post 
LCB Time Time End of Poll Time Delay elem. 

Post Post 

Free BRB BRB LCB 

Post 
Get Wait Wait Buffer 

Post 
Get Scheduler Buffer 

Post 
Interim LPS Buffer 

Wait 
Post Post 
Dummy Move Post 

Line Change 
Line LCB Data 

LCB 

Post Post 

Line End Appendage LCB Buffer 

Post Post Post 
Line PCI Appendage BRB Buffer Buffer 

Post Post 
Dummy LCB Wait 

LPS Control LCB 

Wait 
Pause BRB 

Post Post 
Post 
Wait 

PUT BRB Buffer Buffer 
Wait 

Post Post Post Post Post Post 
Operator Control Buffer Change Copy Line QCB Stop 

Post 
Move 

Rei ease Intercepted Data 

Post Post Wait 
Retrieve DASD Buffer BRB 

Post Post Post 
Return Buffer Buffer Buffer Buffer 

Post Wait 
Send Schedu I er Line Line 

Post Post Post Post Post 
Terminal Test Recognition Buffer LCB Buffer Buffer Buffer 

Figure 32. Queues Affected by QTAM Routines 

302 



APPENDIX F: OPERATING SYSTEM CONTROL BLOCK LINKAGES 

The System/3bO Operating System provides 
interfaces among program by means of con­
trol blocks and tables. These blocks have 
standardized formats. They contain 
numerous fields of information and 

Main Storage 
Location 16 

Communication Vector 
Table 

Task Control Block 

Appendages 

Destination QCB 

Next DEB In Task 

Figure 33. Control Block Linkages 

references by the program. Some of these 
fields are pointers te other blocks. 
Figure 33 shows the various blocks and the 
linkages pertinent to QTAM. 

Channel Program 

Line Control Block 

Input-Output Block 

Read/Write Routine 

Device I/o Modules 

Appendix F: Operating System Contrel Block Linkages 303 



APPENDIX G: HEADER AND TEXT RELATIONSHIPS ON A DASD QUEUE 

Header and Text Relationships on a DASD 
Queue 

Figure 34 illustrates how chains of mes­
sage segments for destination and process 
queues are formed on a direct access 
storage device. 

Each chain consists of a series of areas 
on the direct access device. Each area 
either: (1) contains a message segment and 
the segment's associated header or text 
prefix; or (2) is reserved for the next 
segment to be placed on the chain,. The 
areas, and thus the segments, are linked 
into the chain by means of information, 
called relative record numbers, contained 
in the link fields of the prefixes. Each 
chain is formed as follows. At the time 
the direct access queues data set is 
opened, one area is reserved for each chain 
to be formed. The header segment of the 
first message to be put on the chain is 
placed in the reserved area for that chain. 
At the same time, the next two available 
areas are reserved: the first is reserved 
for the header of the next message to be 
put on the chain, and the second is 
reserved for the first text segment of the 
same (tnat is, the first) message. This 
process is repeated for each succeeding 
message segment placed on the chain. Each 
time a header segment is placed in its 
reserved area, two more areas are reserved; 
each time a text segment is placed on the 
chain,. one more area is reserved. 

If tne current segment is the last seg­
ment of the message, no area is reserved 
for a next text segment. Specifically, 
when a message consisting of only a header 
segment is placed on the chain, only one 
area is reserved (that is, for the header 
of the next message); when the last of a 
series of text segments is placed on the 
chain, no area is reserved. 

At the time an area is reserved, link 
information is placed in the link fields of 
the prefixes of the associated segments. 
Each header prefix contains the relative 
record numbers of the areas occupied by: 
(1) the first text segment of the same mes­
sage; (2) the previous header segment; and 
(3) the next header segment. Each text 
prefix contains the relative record numbers 
of the areas occupied by: (1) the next 
text segment of the same message; and (2) 
the header of the same message. If the 

304 

header is the only segment in the message" 
the relative record number of the area 
occupied by that header is placed in its 
"next segment" link (MSLINK) field. If the 
text segment is the last segment in the 
message, the relative record number of the 
header of the same message is placed in the 
MSLINK field. 

The figure illustrates the progressive 
development of two chains" one for queue A 
and one for queue B. The time span covered 
begins with the initialization of the 
queues (when the direct access queues data 
set is opened) and ends when there are 
three complete messages on the chain for 
queue A, and two complete messages on the 
chain for queue B. 

The five messages contain a total of 
fourteen segments" which are placed on the 
chains in the following sequence: 

1. Header of message 1~ queue B (B-1) 

2. Text segment of B-1 

3. Header of A-l 

4. Header of A-2 

5. Header of B-2 

6. Text segment of A-l 

7. Text segment of A-2 (last segment) 

8. Header of A-3 

9. Text segment of A-l 

10. Text segment of B-2 (last segment) 

11. Text segment of B-1 (last segment) 

12. Text segment of A-3 

13. Text segment of A-l (last segment) 

14. Text segment of A-3 (last segment) 

Each step in the development of the 
chains is shown in Figure 34. Each step 
shows the currently filled areas of the 
direct access space allotted to the chains, 
the areas reserved for succeeding segments " 
and the location of the next available area 
(that is, the area that will be reserved in 
a succeeding step). 



Relative record numbers representing consecutive direct access areas: 

12 .3 ... 4,5,6,7,8,9 
8eg inni'lJ of Olain -"...-: J:o- _ 
for Queue A -.. H H Beginning of Chain for Queue 8 

Step No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

10 11 

Text 

This header link (MSHEAD) 
Next segment link (MSLlNK) 

12 13 

I , 
I 

14 15 16 17 18 19 20 , __ 

r----------
I 0-15 16-1819-21 

: I~~f" ~8 8 I Text I •• ::;?x lill~""'·:~'-... _-...L.~--'_I.-_______ --J_ 

I I 

I I 

: This header link (MSlINK)(MSHEAD) : 
I 
I 
I I .L ________________________ J L _____________________ J 

Intermediate Text Segment Link Fields 
H 

Last Text Segment Link Fields 

legend: c:J Unl'8served' unfilled area CD Area containing header segment of message 1 

H T 
CJ Area I'8served for, but not yet containing, the next header segment []] Area containing text segment of message 2 

T 
o Area reserved for, but not yet containing, the next text segment c:::J Area filled during this event 

Shaded blocks I'8pntsent areas on queue Ai Unshaded blocks represent areas on queue 8 • Points to next available area 

Figure 34. Example of Message Header and Text Relationships in Direct Access Destination 
and Process Queues 

Appendix G: Header and Text Relationships on a DASD Queue 305 





Activate routine 
112,13,34.37.38,39,41,43,79 

chart 214 
Active Duffer request queue 21,267 
Active buffer request routine 

111 , 3 3 , 3 5 " 3 7 , 4 2 
chart 210 

Active buffer request subtask 
269,33,,35,37,,42 

Additional CCW queue 21,267 
Allocation 

CPU processing time 15 
I/O paths It> 
main storage space 15-16 

Assembling QTAM 9-10 
Auto PolL feature 73 6 54 

channel programs 73 
Available buffer queue 21,266 
Available buffer routine 111,37,42 

chart 211 
Available buffer subtask 269,37,42 

BRB (see Buffer request block) 
BRB ring routine 110-111,32 

chart 205 
Breakoff routine 76 

chart 156 
BTAM operation within QTAM 53-75 
BTAM Read/Write module 53,34,39 
BTAM Read/Write subroutines 49,53,54 
Buffer BRB routine 111,33.350 37,42,47 

chart 212 
Buffer cleanup and recall routine 
115,13,35,39-40,43,77,78,80,81,83,89 

charts 200,201 
Buffer request block 289 

fields 290 
format 290,,291 
status codes 291 

Bus out and overrun routine 126,122 
chart 140 

Bus out and overrun for auto poll routine 
129,122 

chart 151 

Cancel message routine 76-77 
chart 179 

Change polling list routine 101 
chart 171 

Change queue 269 
Change terminal table routine 101,102 

chart 169 
Changel subtask 271 
Channel command word (CCW) 

format 54-55 
Channel programs for: 

AT&T 83B3 selective calling station 
57,58 

IBM 1030 lines 58,59 
IBM 1050 (nonswitched) lines 59-60 
IBM 1050 (switched> lines 60-62 
IBM 1060 lines 62 

IBM 2740 basic 63-64 
IBM 2740 with checking 64-65 
IBM 2740 with dial 65 
IBM 2740 with dial and checking 66.67 
IBM 2740 with dial and transmit control 

67,68 
IBM 2740 with dial, transmit control, 

and checking 68,69 
IBM 2740 with station control 69,70 
IBM 2740 with station control and 

checking 70,71 
IBM 2848/2260 remote 71-73 
TTY models 33/35 TWX 63 
Western Union plan 115A outstation 58 

Channel program generation 54-56 
Check point queue 269 
Check point request routine 102w121 

chart 161 
Check point/restart 100 
Check point routine 120-122,34 

charts 251'1252 
Check point subtask 271,121 
Check request queue 269,102 
Check request subtask 271 
Cleanup routine 

(see Buffer cleanup and recall routine) 
Close communications line group routine 

93,48 
chart 228 

Close direct access message queue routine 
93,48 

chart 229 
Close message control routine 102,47 

chart 230 
Close process queue (input and output) 
routine 93,,48 

chart 226 
Closedown 47-48 
Command rej ect, equipment check" SIOCC1, 

SNO error routine 127 
chart 144 

Communications line queue 247,,22 
Communications serviceability facilities 

120-131 
Control blocks,,, QTAM 272-291 
Control module 106-109 

(see also nucleus) 
Conversational mode routine 81-82 

chart 191 
Copy clear queue 268,84 
Copy clear subtask 271 
Copy polling list routine 103 

chart 170 
copy queue control block routine 103 

chart 172 
Copy terminal table routine 102-103 

chart 174 
Cross partition move routine 

119 , 101" 1 0 2 " 1 04 
chart 225 

Index 307. 



DASD destination queue 267,35 
DASD destination routine 116,36,.45 

chart 224 
DASD destination subtask 270 
DASD process queue 268.35~45 
Data check routine 124 

chart 132 
Data control block (DCB) 

fields and description of 277-279 
format of 277 

Data event control block (OECB) 
description of fie1ds 284 
format of 284 

Data extent block (DEB) 
fields and description of 280-281 
format of 280 
for MS destination queue 282 
for MS process queue 282 

Date stamp routine 77 
chart 175 

DCB (see data control block) 
DEB (see data extent block> 
DECB (see data event control block) 
Defer entry subroutine 107,9 
Device I/O directory 

format and description 56 
Device I/O module 55-56 
Diagnostic Write/Read routine 128 

chart 146 
Dial Out-Call queue 269 
Disk end appendage routine 112,37,,41,45,46 

chart 194,195 
Disk input/output queue 267,21 
Disk I/O routine 111~36,41,42,44,45 

chart 196 
Disk I/O subtask 269,36,41,42.44.45 
Distribution list queue 268 
Distribution list routine 77 

chart 198 
Distribution list subtask 270 

Element control block 
(see resource element control block) 

End insert routine 119,77,78~82 
chart 203 

End of address routine 78 
chart 199 

End of block 78,79,38,39,43 
chart 192 

End of block and line correction routine 
79- 80 , 38" 3 9 , 4 3 

chart 193-194 
End of poll time delay routine 118,32 

chart 207 
ENDREAD~ macro instruction 11,34 
Entry interface subroutine 106,9 
Error message routine 80 

chart 184 
Error post routine 125 

charts 138,139 
Error recovery procedures 122-129 
Exit interface subroutine 108,,109,9 
Exit select subroutine 108,9 
Expand routine 80,77,90,92 

chart 188 
External routines 9,13,76 

.308 

Free BRB routine 118~13~40 
chart 202 

Get message routine 98'144,,45 
chart 164 

Get record routine 98.44,45 
chart 165 

Get scheduler routine 116"36,,44,,,45 
chart 222 

Get scheduler subtask 270'145 
Get segment routine 99,44,45 

chart 163 
Get SVCl queue 269 
Get SVC subtask 271 

Header and text on the DASD queue 304 

Implementation. module 10,13,,110 
Inactive BRB queue 218268 
Initialization 10-11,30-33 
Initiate mode routine 82 

chart 190 
Input/output block (lOB) 274-275 
Insert block 

description of 291 
format of 291 

Intercept routine 80-81 
chart 187 

Interim LPS queue 268~22~34 
Interim LPS routine 118 0 34 

chart 221 
Intervention required routine 125 

charts 134,135 

Key" field of QCB 25 

Line change queue 269_102 
Line change routine (see start line-stop 
line routine) 

Line change subtask 271 
Line control block (LCB) 

fields and description 274-276 
format 275 

Line end appendage routine 113" 38 1 39" 42,43 
charts 218,.219 

Line error recording routine 128 
chart 147 

Line group open executor load 1 routine 
94,31 

chart 242 
Line group open executor load 2 routine 

94,31 
chart 243 

Line group open executor load 3 routine 
95,13,,31,.33 

chart 244 
Line group open executor load 4 routine 

95 .. 33 
Line PCI appendage routine 113-114 

chart 217 
Line procedure specification (LPS) 
routines 76-92 

Line S10 appendage routine 112.34,,39,41,43 
chart 215 

Link routine 126 
chart 141,,142 

Linkage editing QTAM 9-10 
Linkage of QTAM modules 292-296 



Locate DCB routine 103 
chart 153 

Logical organization of QTAM 13-29 
Lookup routine 81,80.88~89 

chart 182 
Lost data routine 125 

chart 137 
LPS control routine 
112,13,34~35,37,38,39,41,42,43.48,82 

chart 213 
LPS queue 21~268 
LPS subtask 270 

Macro instructions 
list of 299-300 
(see associated routine) 

Main-storage process queue 21.44~45 

Main-storage destination queue 47 
Message control program 

assembling 9 
contents of 13 
initializing 10-11 
linkage editing 9-10 
routines 76-92 

Message mode routine 81 
chart 190 

Message processing operational flow 44-47 
Message processing program 

assembling 10 
contents of 15 
initializing 10-11 
linkage editing 10 
routines 98-105 

Message type routine 83 
chart 168 

Mode 
conversational 81 
initiate 82 
message 81 
priority 82 

Modules, list of QTAM 297-300 
by macro instruction 299-300 
by module name 297-299 

Move data queue 267,22 
Move data subtask 271 

Not operational start I/O routine 129 
chart 150 

Nucleus, QTAM 9,25,29 
charts 253,254 
(see also control program module) 

On line terminal test 130 
Open checkpoint records data set routine 

96,,30 
chart 247,248 

Open direct access load 2 routine 96,30-31 
chart 246 

Open direct access message queue routine 
95,30 

chart 245 
Open line group (see line group open 

executor) 
Open message processing program routine 

97,44 
chart 162 

Operator awareness 83 
chart 241 

Operator control LER addition routine 128 
chart 148 

operator control routine 83-88 
chart 231 

Overrun routine 129 
chart 152 

Pause routine 88 
chart 158 

PCI appendage routine 35,42 
Physical organization of QTAM 9-12 
Polling limit routine 88 

chart 185 
Posting 21 
Prefix 

format 287 
description and used by 288-289 

Priority mode routine 82 
chart 190 

Priority of subtasks 20 
Priority search subroutine 107",9'177 
Put message routine 97,46 

chart 197 
Put record routine 100,46 

chart 167 
Put segment routine 100",101,46 

chart 166 

QCB (see queue control block) 
Qdispatch routine 25-28 
Qdispatch subroutine 107,108,9 
Qdispatch subtask 270 
QPOST 

from problem program 23 
from internal implementation subtask 23 

QTAM 
logical organization 13-29 
outline of operation 30-52 
physical organization 9-12 
separate control progra,m 15-16 
within the operating system control 13 

QTAM linkages 292-296 
QTAM post subroutine 
106,9,82,101,102~104,105 

QTAM wait subroutine 106,9,88,104.105 
Queue 

management of 16-17,25 
Queue control block (QCB) 

DASD destination queue 273 
DASD process queue 273 
fields and description 272 
format 272 
special form 289 
types of 21-22 

Queue insert by priority subtask 270 
Queue insert subroutine 107",9 
Queue insert subtask 270 
QWAIT 

from problem program 22 
from internal implementation subtask 23 

RCHNGT subroutine 84-85 
chart 235 

RCOPYC subroutine 84 
chart 233 

RCOPYT subroutine 84 
chart 234 

Index 309. 



Read skip return routine 127 
chart 145 

Ready queue 17 
example of 17,22 

Receiving operational flow 34-40 
Receive scheduler routine 110,32 

chart 204 
Receive scheduling subtask 270,32 
Release intercepted message routine 103 

chart 157 
Reroute routine 89 

chart 186 
Resident terminal test routine 130 

charts 256,257 
Resource element control block 19-20 

fields and description of 273,274 
format 273 
special form <IECKS~OP) 269 

Retrieve by sequence number routine 104 
chart 160 

Retrieve DASD routine 104,105 
chart 159 

Return buffer queue 268~22~44,46 

Return Duffer routine 118~44.46 
chart 223 

Return Duffer subtask 270.44~46 
RINTRCPT subroutine 85 

chart 236 
RINTREL subroutine 87-88 

chart 240 
Route routine 89,,78 

chart 181 
RRELEASM subroutine 85 

chart 236 
RSTARTLN subroutine 85 

chart 237 
RSTOPLN subroutine 85 

chart 238,,239 
RSWITCH subroutine 84 

chart 237 

Scan routine 89~81,82~83,88,89~90#91 
chart 173 

Sending operational flow 40-44 
Send scheduler routine 118,36,40.43 

chart 208-209 
Send scheduling subtask 270,40,43 
Sequence-in routine 90 

chart 189 
Sequence-out routine 90 

chart 180 
Skip <character count) routine 90 

chart 177 
Skip <character set) routine 91~78 

chart 177 
Source routine 91 

chart 176 
Start line-stop line routine 105,48,,88,,102 

chart 154 
Status check routine 127 

chart 143 

.310 

Stop queue 269,,86 
stop the line queue 269" 8 5.,86,,87 
Stop 1 subtask 271,,86 
STOP2 routine 87 
stop 3 subtask 271 
Stop 4 queue 269,,87 
stop 7 subtask 251 
SUBl subroutine 84 

chart 232 
Subtask control block (STCB) 

full 20.,274 
fields and description 27.274 
format 20,,274 

truncated 20,,274 
fields and description 27w274 
format 20,274 

Supervisory routines 15 
(see also nucleus" QTAM) 

Support routines 9 
System control block linkages 303 
System generation 9 
SYS1,.MACLIB, DSECTS in 299 
SYS1.SVC library 9 

modules in 298-299 
SYS1.TELCMLIB 9 

modules in 297-298 

Terminal table 
format 286 
field and description 286 

Terminal test routine charts for: 
1030 258 
2740 259 
1050 260 
1060 261 
2848/2260 262 

Terminal test header analysis routine 131 
chart 255 

Threshold 83 
Time delay routine (see end of poll time 
delay routine) 

Time out routine 124 
chart 133 

Time out and data check for auto poll 
routine 123 

chart 136 
Time queue 268 6 22 
Time stamp routine 91 

chart 178 
Time subtask 270 
TP op code 

definition 56 
location 54 

Transient area routines 93-97 
Translate routine 92 

chart 183 

UNPAK subroutine 84 
chart 232 

Waiting 22 





Y30-2002-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

to< 
() 

C 
I 
l\. 
C 

~ 
I 
l\. 



READER'S COMMENT FORM 

IBM System/360 Operating System 
Queued Telecommunications Access Method 
P:rogranl Logic Manual 

• How did you use this publication? 

As a reference source 0 
As a classroom text 0 
As a self-study text 0 

• Based on your own experience, rate this publication. 

As a reference source: Very Good Fair 
Good 

Poor 

As a text: Very Good Fair Poor 
Good 

• What is your occupation? 

Very 
Poor 

Very 

Poor 

• We would appreciate your other comments; please give specific page and line 
references where appropriate. If you wish a reply, be sure to include your name 
and address • 

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A. 

Y30-2002-2 



Y30-2002-2 

YOUR COMMENTS, PLEASE. 

This publication is. one' of a series that serves as a reference source for systems analysts, 
programmers,. and operators. of IBM systems. Your answers to the questions on the 
back of this form, to"gether with your comments,_,help u,s produce better publications 
fo'r your use. Each reply is c1uMully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using your IBM 
system should be directed to yom IBM representative or to the IBM sales office serving 
your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY ... 

I BM Corporation 
P.O. Box 12275 
Research Triangle Park 
North Carolina 27709 

Attention: Programming Documentation, Dept. 844 

Fold· 

Inter~ati~nai.Business Machines Corporation 
-Data .Processing Divi~ion 
·112 past Post Road, White Plains, N.Y.I06m 
[USA.Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] . 

FIRST CLASS 
PERMIT NO. 569 

Fold 

RESEARCH TRIANGLE PARK 
NORTH CAROLINA 

Fold 

Q) 
c 

...... 

Ol 
c 
0 

< 
:; • 
U 


