Form Y30-2002-2

Program Logic

IBM Systemn/360 Operating System
Queued Telecommunications Access Method

Program Logic Manual

Program Number 3605-C0-519

This Program Logic Manual describes the internal logic
of the Queued Telecommunications Access Method (QTAM)
under Option 2 and COption 4 of the IBM System/360
Operating System. This publication is intended for use
by personnel involved in program maintenance and by
system programmers who are altering the system design.
Program logic information is not necessary for the use
and operation of the program; therefore, distribution
of this publication is limited to persons with program
maintenance or modification responsibilities.

Restricted Distribution



PREFACE

This Program Logic Manual is a guide to the
internal structure of the Queued Telecom-
munications Access Method (QTAM). It is
designed to be used with the prcgram list-
ing; program structure at the machine
instruction level is not discussed.

Effective'use of this manual requires a
knowledge of the concepts presented in the
following IBM System/360 publications:

IBM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Operating System: Queued
Telecommunications Access Method, Mes-
sage Control Program, Form C30-2005-2

IBM System/360 Operating System: OQueued
Telecommunications Access Method, Mes-
sage Processing Program Services, Form
C30-2003-3

In addition, the following publications
may be used when information akcut other
elements of the control program is
required:

IBM System/360 Operating System:
Assembler 32K, Form ¥26-3598

IBM System/360 Operating System:
Assembler 64K, Form Y26-3700

IBM System/360 Operating System: Basic
Direct Access Method, Program Logic
Manual, Form Y28-6617

IBM System/360 Operating System: I/0
Supervisor, Program Logic Manual, Form
Y28-6616

IBM System/360 Operating System: I/O
Support (OPEN/CLOSE/EOV), Program Logic
Manual, Form Y28-6609

IBM System/360 Operating System: Job
Management, Program Logic Manual, Form
Y28-6613

RESTRICTED DISTRIBUTION:

IBM System/360 Operating System: Link-
age Editor, Program Logic Manual, Form
¥28-6610

IBM System/360 Operating System:
Sequential Access Method, Program Logic
Manual, Form ¥28-6604

IBM System/360 Operating System: Direct
Access Device Space Management, Program
Logic Manual, Form Y28-6607

IBM System/360 Operating System: Cata-
log Management, Prcgram Logic Manual,
Form Y28-6606

IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic Manual,
Form Y28-€612

This publication contains the following:
discussions on the physical organization
and logical organization as an introduction
to QTAM, an outline of the QTAM operation
as an overall logic flow, the function of
BTAM within QTAM, a summary of the internal
logic at-the routine level, flowcharts of
each routine, and appendixes. The routine
names that appear as labels on the overall
logic flowchart can be used to access the
detailed flowchart for the specific rou-
tine. The labels on these detailed flow-
charts relate to the labels on the listings
for the routine.

Throughout this publication, option 2 of
multiprogramming with a fixed number of
tasks is assumed (MFT). . QTAM also runs
under option 4 of multiprogramming with a
variable number of tasks (MVT). There are
no major differences in these two options
of the operating system for the logic of
QTAM except that partitions are regions and
priority of partitions must be assigned to
jobs in MVT.

This publication is intended for use by

IBM personnel only and may not be made available to others

without the approval of local IBM management.

Third Edition, November 1968

This edition, Y30-2002-2, corresponds to 0OS Release 17.

It is a major

revision of, and renders obsolete, Form ¥Y30-2002-1 and associated Tech-

nical Newsletters.

the previous edition are indicated in the following manner:

Changes not documented in Technical Newsletters to

changes to

the text are indicated by a vertical line to the left of the change; in
the case of a page which contains all new information, a bullet (e) is
placed next to the page number; similarly, changed or added .illustra-
tions aré denoted by a bullet to the left of the caption.

Significant changes or additions to the specifications contained in this

publication are continually being made.

When using this publication in

connection with the use of IBM equipment, check the latest SRL Newslet-
ter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM

representative or to the IBM branch office serving

A form is provided at the back of this publication
ments. If the form has been removed, comments may
Corporation, Programming Documentation, Dept. 84l,
Research Triangle Park, North Carolina, 27709.

your locality.

for reader's com-
be addressed to IBM
P.0O. Box 12275,

C) Ccopyright International Business Machines Corporation 1966, 1967,

1968



PHYSICAL ORGANIZATION OF QTAM . . . .
System Generation . . . . ¢ & . . o .
QTAM Nucleus . . . « « « « o « « « &«
OTAM Macro Definitions . « « . .« . .
External Routines . . . . . .
Support Modules . . . . .
Assembling and Linkage Edltlng a
Message Control Program . « « « « « «
Assembling and Linkage Editing a
Message Processing Program . « . « « %
Initializing the Message Control

Program . « « « o « o o o o o = o = =
Initializing a Message Processing
PrOgram .+ « o« « o o o o o o o o » = @

LOGICAL ORGANIZATION OF QTAM . . « .« &
QTAM Within the Operating System
Control Program Structure . . . . . .
Message Control Problem Program . .
Message Processing Problem Program .
OTAM Supervisory Routines . . . . .
QOTAM as a Separate Control Program . .
Queue Management . ¢ .« ¢ « & 0 6 e =
Control BloCKS ¢ « ¢ ¢ o ¢ o o o o @
OWAIT and QPOST . ¢ v o « = = = =
QPOST Example . . « . o ¢ o o & « =
OTAM NUCLEeUS . . ¢ o o = o o o« o = =
Qdispatch Routine . . . « « @ =« = =

OUTLINE OF QTAM OPERATION . « v « « =«
Initialization . . . . . .+ v 4« ¢ & « .
RECeiVINGg .« v o o ¢ o o o o o o o o =
PCI Interrupt (receiving the first
buffer) . . . ¢ ¢ ¢ 4 @ o ¢ i 4 e .
PCI Interrupt (receiving all buffers
except First) .« ¢ o ¢ ¢ o o o o o »
Timer Interrupt - Checkpoint Interval
Disk Interrupt (Receiving) . . . . .
Disk Interrupt--Checkpoint Write . .
Line End Interrupt (receive an EOB)
Line End Interrupt (Receive WRU
Signal on WTTA Line) . . ¢ o o « o »
Line End Interrupt (Receive
EOT--Receive EOT/EOM on WTTA Lines)
Sending . . ¢ 4 ¢ 4 e . e e e 4 2 o o
Disk Interrupt (sending - header) .
Disk Interrupt (sending - all
buffers) . . . e o e + 0 - =
PCI Interrupt (sendlng) . e e m e e
Line End Interrupt (sending - EOB) .
Line &nd Interrupt (sending -
response to EOB) . . . . . . . - .
Line End Interrupt (Send EOB/EOT) -
Message Processing . « . . . « e e e
Disk Interrupt (first buffer -
header) . . ¢ ¢ ¢ ¢ ¢ o 6 o o o o
Disk Interrupt (rewrite) . . . . . .
Disk Interrupt « « « « « « w « o« « o
CLOSEDOWN &« &« & o « o 2 o © o o o =

BTAM OPERATION WITHIN QTAM . &« « o «
BTAM Read/Write Routine (IGGO19NZ) . .

OO WYY

Xe]

10
10
10

CONTENTS

Index Value o « o o« w o o o o o o o
BTAM Control Information for Channel
Program Generation .« . o « ¢ o o © o o
BTAM Channel Programs . . . “ o e e

Channel Programs For ATET 83B3
Selective Calling Station Lines . . .
Channel Programs for Western Union Plan
115A Outstations . <« . & <« ¢ o ¢ . . .
Channel Programs for IBM 1030 Lines .
Channel Programs for IBM 1050 Lines
Channel Programs for IBM 1050 Dial
(Switched Connection Lines) . . . . .
Channel Programs for IBM 1060 Lines .
Channel Programs for TTY Models 33 and
35 TWX LiN€S v w o o o o o & » = o = =
Channel Programs for IBM 2740
Communications Lines . o . ¢ o © « = =
IBM 2740 Basic Channel Programs . .
IBM 2740 With Checking « o« « o « = =
IBM 2740 With Dial . « o« o = « « = =
IBM 2740 With Dial and Checking . .
IBM 2740 with Dial and Transmit ]
Control w ¢ o 0 ¢ .t s e 4 e . e w
IBM 2740 With Dial, Transmit
Control, and Checking . . “ . e e
IBM 2740 With Station Control - e e
ibm 2740 With Station Control and
Checking w « o « o « o o o e e
Channel Programs for IBM 28&8 - 2260
Remote Lines . . . - . e
Channel Programs Employlng the Auto
Poll Feature « .« o« o ¢ o « o o o o o
Channel Programs for World Trade
Telegraph Adapter . e « o« o « o o =

MESSAGE CONTROL PROGRAM (LPS) ROUTINES
Breakoff Routine (Chart BY) . . . « .
Cancel Message Routine (Chart CL) . .
Date Stamp Routine (Chart CH) . . -
Distribution List Routine (Chart DB) .
End of Address Routine (Chart DC) . .
End of Block Routine (Chart CY) . . .
End of Block and Line Correction

Routine (Chart CZ) . . . « . « .« . .
Error Message Routine (Chart CQ) - . .
Expand Routine (Chart CU) . . « . o =
Intercept Routine (Chart CT) . - . . .
Lookup Routine (Chart CO) & w &« « - .
Message Mode Routine (Chart CW) . . .
Conversational Mode Routine (Chart CX)
Initiate Mode Routine (Chart CW) . . .
Priority Mode Routine (Chart CW) . . .
Message Type Routine (Chart CA) . . .
Operator Awareness (Chart EO) . . . .
Operator Control Routine (Chart EE) .
Pause Routine (Chart CO) . w v « « = .
Polling Limit Routine (Chart CR) . . .
Reroute Routine (Chart CS) . . . . . .
Route Routine (Chart CN) . . o « o« o
Scan Routine (Chart CF) . . - e . e
Sequence In Routine (Chart CV) o . e e
Sequence Out Routine (Chart CM) . . .

53

54
56

57

68
69

70

71



Skip (Character Count) Routine (Chart
cJ) .
Skip (Character Set) Routlne (Chart CJ)
Source Routine (Chart CI) . . . « . .
Time Stamp Routine (Chart CK) . . . .
Translate Routine (Chart CP) . . . . .

ROUTINES IN THE TRANSIENT AREA . . . .
Close Communications Line Group Routine
(Chart EB) o @ « o o o o o o o a o o =
Close Direct Access Message Queue
Routine (Chart EC) . . . . . - .
Close Process Queue (Input and output)
Routine (Chart EA) . . . . . . .
Line Group Open Executor - Load 1
Routine (Chart F1) . . . “ e e e
Line Group Open Executor Load 2
Routine (Chart F2) . . . ¢« ¢ w o & « &
Line Group Open Executor - Load 3
Routine (Chart F3) . . . « v « ¢ o o« w
Open Line Group Executor Load 4 Routine
Open Direct Access Message Queue
Routine (Chart F4) .
Open Direct Access-Load 2 (Chart FS) .
Open Checkpoint Records Data Set
Routine (Charts F6 and F7) « w « « . «
Open Message Processing Program Routine
(Input and Output) (Chart C4) . . . .

a
.
*

- .

MESSAGE PROCESSING PROGRAM ROUTINES .
Get Message Routine (Chart C6) . . . .
Get Record Routine (Chart C7) . . . .
Get Segment Routine (Chart C5) . . . .
Put Message Routine (Chart DAY . . . .
Put Record Routine (Chart C9) . . . .
Put Segment Routine (Chart C8) . . .
Change Polling List Routine (Chart CD)
Change Terminal Table Routlne (Chart
CB) 4 s o o o o o o o = @

Checkpoint Request Routine (Chart C3)
Close Message Control Routine (Chart
ED) . . .

Copy Termlnal Table Routlne (Chart CG)
Copy Polling List Routine (Chart CC) .
Copy Queue Control Block Routine
(Chart CE) . . . . . . . “- o e e .
Locate DCB Routine (Chart BW) .« o = o
Release Intercepted Message Routine
(Chart BZ) . . . « . . “ e .«
Retrieve - DASD Routlne (Chart Cl) .
Retrieve by Sequence Number Routine
(Chart C2) ¢ v v & & o 0 o o = o -
Start Line - Stop Line Routine (Chart
BX) 4 ¢ 4 ¢ e 2 e s o o m o w o = o =
QTAM CONTROL MODULE SUBROUTINES . . .
Entry Interface Subroutine . . . . . .
QTAM Post (QPOST) Subroutine . . . . .
OTAM Wait (QWAIT) Subroutine . . . . .
Defer Entry Subroutine . . . . . . . .
Priority Search Subroutine . . . . . .
Queue Insert Subroutine . .« . .« « «
QODispatch Subroutine . . . . . . . . .
Exit Select Subroutine . . . . . . . .
Exit Interface Subroutine . . . . . .

QTAM IMPLEMENTATION MODULE ROUTINES .
Receive Scheduler Routine (Chart DH) .

. 90
. 9
. 921
. 92
. 93

. 93

. 93

-« 95
95

. 95

. 96

. 96

. 97

BRB-Ring Routine (Chart DI) . . . . .
Active Buffer Request Routine (Chart
DL) . . - e
Avallable Buffer Routlne (Chart DM) .
Buffer BRB Routine (Chart DN) . . . .
Disk I/0 Routine (Chart D2) . . . .
Disk End Appendage (Charts DO and D1)
LPS Control Routine (Chart DO) . . . .
Activate Routine (Chart DP) . . . -
Line SIO Appendage Routine (Chart DQ)
Line PCI Appendage Routine (Chart DR)
Line End Appendage Routine (Charts DS
and DT) . & « « o = - .
WTTA Line Appendage Routlne (Charts
Rl, R2, R3, and RU) . o v o © o w = =
WTTA Line PCI Routine . . « @« o «
WTTA Line End Routine . . . o« o = =
Buffer Cleanup and Recall Routine
(Charts DD and DE) . . . . . - . -
DASD Destination Routine (Chart DX) -
Get Scheduler Routine (Chart DV) . . .
Return Buffer Routine (Chart DW) . . .
End of Poll Time Delay Routine (Chart
DJ) « o o w . .o - = e e
Interim LPS Routlne (Chart DU) “ o e e
Send Scheduler Routine (Chart DK) . .
Free BRB Routine (Chart DF) . . o « &
End Insert Routine (Chart DG) . . .
Cross Partition Move Routine (Chart DY)

COMMUNICATIONS SERVICEABILITY
FACILITIES @« « o 2« © o« o o o @® © o« o =
Checkpoint/Restart . . . . o o
Checkpoint Routine (Charts FA and FB)
Exror Recovery Procedure . . o o < « =«
Time-Out and Data Check for Auto Poll
Routine (Chart AF) .
Data Check Routine (Chart AB) . o
Time-Out Routine (Chart AC) . . - .
Intervention Required Routine
(Charts AD and AE) . . . . o o e e
Lost Data Routine (Chart AG) . e om .
Error Post Routine (Charts AH and AI)
Bus-Out and Overrun Routine (Chart
AJ) . . . . - - -
Link Routlne (Charts AK and AL) - -
Status Check Routine (Chart aM) . .
Command Reject, Equipment Check,
SIOCC1, SNO Error Routine (Chart AN)
Read Skip Return Routine (Chart AO)
Diagnostic Write/Read Routine (Chart
BP) 4 4 e e e e e e e o o e w
Line Error Recording Routlne (Chart
AQ) LI LI - - e - -
Operator Control LER Addltlon Routine
(Chart AR) . . . . . « o o = @& =
Open and Checkpoint Restart Routine
(Chart AS) . . . =« . . . . e
Not Operational Start I/O Routlne
(Chart AT) + o o « - « e - -
Bus-Out and Overrun for Auto Poll
Routine (Chart AU) . . . ¢ o « « « &
Overrun Routine (Chart AV) . . . . .
On-Line Terminal TesSt . « o« o o « = «
Resident Terminal Test Routine
(Charts QL and Q0S) . « « =« « o o « =
Terminal Test Header Analysis Routine
(Chart QBA) . ¢ 4 4« ¢ o o a = o o = =

° e e .- o @ e

-110

-111
.111
.111
.111
.112
.112
112
.112
.113

.113

114
.114
.114

.115
.116
.116
.118

.118
.118
.118
.118
.119

119

.120
.120

120
.122
-123
124
.124
.125
.125

125
.126
.126
.127

.127
127

.128
.128
.128
.128
.129
.129
.129
-130
.130

.131



Terminal Test Routines (Charts Q3,

o4, 05, 06, and Q8) . . . .

QTAM CHARTS « « w « o« o o o =

APPENDIX A:

QUEUES « o o o« = @ s o« o « o o
Active Buffer Request Queue
Additional CCW Queue . . .
Available Buffer Queue . .
Move Data Queue . . . . .
Communications Line Queue
DASD Destination Queue .
Disk Input/Output Queue
Distribution List Queue
Inactive BRB Queuve . .
Interim LPS Queue . .
Time QUEeUE + . « « w
LPS Queue « « o o« o«
DASD Process Queue . .
Return Buffer Cueue .
Copy Clear Queue . .
Change Queue . . . .
Stop Queue .« . . . . .
Stopld Queue . . . .
Stop The Line Queue .
Get SVC 1 Queue . .
Checkpoint Queue . .
Check Request Cueue
Line Change Queue .
Dial Out-Call Queue

Subtasks . . . .
Active Buffer Request Subta k
Available Buffer Subtask .
DASD Destination Subtask .
Disk Input/Output Subtask
Distribution List Subtask
Get Scheduling Subtask . .
LPS Subtask .« « « « + o .
Queue Insert Subtask . . .
Queue Insert by Priority Su
Qdispatch Subtask . . . .
Receive Scheduling Subtask
Return Buffer Subtask . .
Send Scheduling Subtask .
Time Subtask . . . « . . .

¢ & 32 e O
e 4 & o & & @

P Y
[ 3]
e & o o @

0 3 e 4 e & 4 & 4
i s F e s s s
@ & & s s 0

S

nilibo-isoi.oi

Move Data Subtask . . .
Copy Clear Subtask . . .

-

8 s % & & 2 4 & e+ & 2 8 o b s s a2 s % 4 b e

a8 4 & 8 4 e B

w. ¢ & e & & & & & 3 & 6 & @ & 4 0¥ & 0¥ 4

QTAM QUEUES AND SUBTASKS

e & 2 8 & & @ o s s

8 3 o 4 & 8 B s e 0 2 s 5 e @

& o & & 8 4 3 4 @ & & @ s e

8 4 & & 8 & o & e o6 & & o & © o 8 o 6 & & B B & 6 ¥ & 9

.131
.132
.267

.267

.267
.267
.267
.267
.267
.267
.267
.268
.268
.268
-268
.268
.268
.268
.268
.269
269
.269
.269
.269
.269
.269
.269
.269
<269
.269
.269
.270
.270
.270
.270

.270

.270
.270
.270
.270

270

.270
.270
.271
.271

Change 1 Subtask
Stop 1 subtask .
Stop 3 Subtask .
Getsvc 2 Subtask
Stop 5 Subtask . .
Checkpoint Subtask
Check Request Subtask
Line Change Subtask .
Qdispatch Subtask . .

s & 3 @

s o & s e

8 & & & & o

a8 F & B 4 5 &
e & 2 0 8 @ e

e & 5 & ¢ @ 0

& 3 % & 8 3 @ & 8

8 & e & a4 3 6 3
¢ % & & 5 3 ¥ o

APPENDIX B: SYSTEM CONTROL BLOCKS

General Control Block FOrms . o «
Queue Control BLOCK & v « o o
Resource Element Control Block .
Truncated Subtask Control Block
Full Subtask Control Block
Line Control Block . .
Data Control Block . . .
Data Extent Block . .
Data Event Control Block
Unit Control Block . . .
Terminal Table . . . . .
Buffer Prefix . « . «

Special Control Block Forms
Queue Control Block . .
Buffer Request Block . .
Insert Block « = . . «
Resource Element Control
(IECKSTOP) . 2 o o o« =

& 8 o & 4 @
@ & & % o 3 B B & ¢ ¥ 4 " s F ¥ b

& 0§ & e o F ¥ F a4 b

Q

¢ O 5 8 B & 5 e e & 4 &
lwililtiiéili

« e o &
[

APPENDIX C: QTAM LINKAGES .« w o o «

APPENDIX D: LIST OF QTAM MODULES . .
Alphabetical List of QTAM Modules .
List of Modules by Macro instruction
CAategOYY w « o o o o « © v = © 0 o o
Support Macro instructions . . . .
Message Control Macro Instructions

@ e 8 o F 4 2 s

& & & & ¥ @ & 8 0 8 & s 4 s i B o

271
.271
.271
. 271
.271
. 271
.271
.271
.271

272
.272
.272
.273
. 274
. 274
-274
. 277
.280
.284
.284
- 286
. 287
.289
.289
.289
.291

-291
292

297
- 297

.299
.299
.299

Message Processing Macro Instructions 300

APPENDIX E: QUEUES AFFECTED BY QTAM
ROUTINES @« 2 ¢ © @ o o © o 2 =2 © o »

APPENDIX F: OPERATING SYSTEM CONTROL
BLOCK LINKAGES « « o o o o « o © o =

APPENDIX G: HEADER AND TEXT
RELATIONSHIPS ON A DASD QUEUE . . «

INDEX & o o o o % @ s © = o a o = =

«~301

-303

. 304

«307



Chart AB. Data Check Routine . . .132
Chart AC. Time Out Routine . . . .133
Chart AD. Intervention Required
ROULINE « o o o w o o « o« o« » « = <134
Chart AE. Intervention Required
Routine (Continued) . . . . .« .135
Chart AF. Time Out and Data Check

for Auto Poll Routine . . . « . . .136
Chart AG. Lost Data Routine . . . .137
Chart AH. Error Post Routine . . .138
Chart AI. Error Post Routine
(Continued) . . . ¢ « ¢« & « « « « 2139
Chart AJ. Bus Out and Overrun

Routine .« ¢ = o« o « o o o « = « « <140
Chart AK. Link Routine . . . . .141
Chart AL. Link Routine (Contlnued) 142
Chart AM. Status Check Routine . .1u43
Chart AN. Command Reject,

Equipment Check, SIO CC 1, SNO

Error Routine . . . . . « e e « o144
Chart AO. Read Skip Return Routine 145
Chart AP. Diagnostic Write/Read
ROULINE & 4 4 ¢ o o o o 2 o« « o« « <1446
Chart AQ. Line Error Recording

ROUtinNe . & o ¢ & o« o @ o « o = o =187
Chart AR. Operator Control LER
Addition Routine « . « & & « v « - 148
Chart AS. OPEN and

Checkpoint/Restart Routine . . . . .149
Chart AT. Not Operational Start

I/0 Routine . . & « « « « « +» « o« 150
Chart AU. Bus Out and Overrun for

Auto Poll Routine . . «. & o« o - « .151
Chart AV. Overrun Routine e « o 152
Chart BW. Locate DCB Routine . . .153
Chart BX. Start Line-Stop Line

ROULINE .« ¢ 2 ¢ w o « w =« « = « « 2154
Chart BX1l. QTAM Start Line-Stop

Line Routine e e s s e e e s « « =155
Chart BY. Breakoff Routine . . . .156
Chart BZ. Release Intercepted

Messages Routine . . . . . o« « .« » 157
Chart C0. Pause Routine . . . . . 158
Chart Cl. Retrieve - DASD Routine .159
Chart C2. Retrieve by Sequence

Number Routine . . . . . - <« « 2160
Chart C3. Checkpoint Request

ROUtiNE w +v o ¢ @ o o = o & o « « =161
Chart C4. Open Message Process

QUEUE o« 4 « o o« o o o o« » o o o o <162
Chart C5. Get Segments Routine . .163
Chart C6. Get Messages Routine . .164
Chart C7. Get Records Routine . . .165
Chart C8. Put Message Segment

ROULINE =+ v v ¢ ¢ o o 2 o =« o « » <166
Chart C9. Put Record Routine . . .167
Chart CA. Message Type Routine . .168
Chart CB. Change Terminal Table
ROUtINE @& ¢« ¢ &« @ 2 o o =« =« o =« « <169
Chart CC. Copy Polliing List

ROULINE 4 4 ¢ ¢ 2 o o o w o =« « « 2170

CHARTS

Chart CD. Change Polling List

Routine . w o v o @ o o w @« =« « = <171
Chart CE. Copy Queue Control

Block Routine . . o« v o o » = « o« 2172
Chart CF. Scan Routine . . e « <173
Chart CG. Copy Terminal Table

Routine . . . . - e e e e e <174
Chart CH. Date Stamp Routine o - «175
Chart CI. Source Routine . . . . .176
Chart CJ. Skip to Character Set -

Skip on Count Routines . . o « « « 177
Chart CK. Time Stamp Routine . . .178
Chart CL. Cancel Message Routine .179
Chart CM. Sequence Out Routine ., .180
Chart CN. Route Routine . « - - . .181
Chart CO. Lookup Routine . . - . .182
Chart CP. Translate Routine . . . .183
Chart CQ. Error Message Routine . .184
Chart CR. Polling Limit Routine . .185
Chart CS. Reroute Routine . . . . .186
Chart CT. Intercept Routine . . . .187
Chart CU. Expand Routine . . . . ,188
Chart CV. Sequence in Routine . . .189
Chart CW. Mode, Initiate, and
Priority Routines . . & « o « =« « .190
Chart CX. Mode Conversational

Routine . . . W e e e e e e e = 2191
Chart CY. End of Block Routine . .192
Chart CZ. End of Block and Line
Correction Routine . . . . « = = +193
Chart DO. Disk End Appendage

Routine . . . = - . o o« <198
Chart D1. Disk End Appendage

Routine (Continued) . . « . « - - .195
Chart D2. Disk I/0 Routine . . . .196
Chart DA. Put Message Routine . . .197
Chart DB. Distribution List

Routine . <« o o o & o o o « » « « 198
Chart DC. End of Address Routine .199
Chart DD. Buffer Cleanup and

Recall Routine . . . . - e = = 200
Chart DE. Buffer Cleanup and

Recall Routine (Continued) . . . . .201
Chart DF. Free BRB Routine . . . .202
Chart DG. End Insert Routine . . .203
Chart DH. Receive Scheduler

ROULINE & & « o o o 2 = = =» o o « 204
Chart DI. BRB Ring Routine . . . .205
Chart DI1. BRB Ring Routine
(Continued) o« o o o o o o o « = o« 2206
Chart DJ. End of Poll Time Delay
ROUtInNe . v ¢ o o o o « = = o =« o« <207
Chart DK. Send Scheduler Routine .208
Chart DK1l. Send Scheduler Routine
(Continued) o o « o « « @« = = = « 209
Chart DL. Active Buffer Request
RoOUtine . w w o o w o o « « « « = 2210
Chart DM. Available Buffer Routine 211
Chart DN. Buffer BRB Routine . . .212
Chart DO. LPS Control Routine . . .213
Chart DP. Activate Routine . . . .214



Chart DQ. Line SIO Appendage

Routine . ¢ o« ¢ & o & o o o = = « 2215
Chart DQ1. Line SIO Appendage

Routine (Continued) . . . . . . < .216
Chart DR. Line PCI Appendage

ROULINEG <« v w ¢ o o o o = = = o = 2217
Chart DS. Line End Appendage

Routine . . & ¢ o o ¢ o o = « - « 2218
Chart DT. Line End Appendage

Routine (Continued) . . « <« « <« « .219
Chart DT1. Line End Appendage

(continued) . . o o o o o « = = » 2220
Chart DU. Interim LPS Routine . . .221
Chart DV. Get Scheduler Routine . .222

Chart DW. Return Buffer Routine .223
Chart DX. Destination DASD Routlne 224
Chart DY. Cross Partition Move

ROULINE w o o ¢ o o o o @« 2 @ o o« 225
Chart EA. Close Process Queue . .226
Chart EAl. Close Process Queue
(Continued) . . «u o o« @« = o = o = 2227
Chart EB. Close Communications

Line Group . « « o« « o« o = « = « = 228
Chart EC. Close Direct Access

Message QUEUE . .o « « » o o w o« « 229
Chart ED. Close Routine . . . . 230
Chart EE. Operator Control Routlne 231
Chart EF. Common Subroutines OPTCL 232
Chart EG. Common Subroutines

OPTCL (Continued) . . . o o« o 4233
Chart EH. Copy Termtbl Entry

OPTCL Routine . . . . . - . - o <2304
Chart EI. Change Termtbl Entry

OPTCL Routine . . o« « « ¢« « « o+ « 4235
Chart EJ. Intercept and Release

OPTCL Routine . .« . ¢« o o o « « = 236
Chart EK. Start Line OPTCL Routine 237
Chart EL. Stop Line OPTCL Routine .238
Chart EM. Stop Line OPTCL Routine
(Continued) . . . . ¢ 4 4 <« o 2 « 239
Chart EN. Intrel OPTCL Routine . .240
Chart EO. Operator Awareness

ROUtINEe . ¢ o & w ¢ o o = o« = « = 241
Chart F1. OPEN Line Group Load 1
Executor Routine . . o o o« o w o« « 2242

Chart F2. OPEN

Line Group Load 2

Executor Routine v« v o« « o o = o =

Chart F3. Open

Line Group Load 3

Executor ROUtINEe w « v o = o 0 = o

Chart F4. OPEN

Direct Access

Message Queue Routine . o o < « =

Chart F5. OPEN
2 Routine . . .
Chart F6. OPEN
Set Routine . .
Chart F7. OPEN

Direct Access Load
Checkpoint Data

Checkpoint Data

Set Routine (Continued) . o« <« =«

Chart F8. QTAM
Load 4 v o o o

Open Line Group

s @ ®» ® © ©®© e o =

Chart F9. Close Process Queue

Load 2 v o o o o

e © @ o @ ° ® e

Chart FA. Checkpoint Routine . .
Chart FB. Checkpoint Routine

(Continued) . .
Chart NU. QTAM
Chart NV. QTAM

Nucleus (1 of 2) .
Nucleus (2 of 2) .

Chart QA. Terminal Test HDR

Analysis Module

e @ ® o @ e e w -

Chart QL. Resident Terminal Test

Module « « o « =

e © e ©®@ ® e . =

Chart QS. Terminal Subtasks . . .

Chart Q3. 1030
Module w &« « »
Chart Q4. 2740
Module o « & o =
Chart Q5. 1050
Module - . « «
Chart Q6. 1060
Module . .

Terminal Test

Terminal Test

Terminal Test

» o @ w ® o e e

Terminal Test

. e @

Chart Q8. 2848/2260 Terminal Test

Module . . - . .
Chart R1. WTTA
Routine . . . .
Chart R2. WTTA
Routine (Part 1
Chart R3. WITA
Routine (Part 2
Chart R4. WITA
Routine (Part 3

Line PCI Appendage
Line End Appendage
of 3) . . . . -
Line End Appendage
Oof 3) . 4 o a e
Line End Appendage
0f 3) @ o o o o .

~243
244
. 245
.246
- 247
.248
.249

.250
.251

.252
.253
.254
- 255

256
257

- 258
- 259
.260
- 261
.262
.263
-260
.265

-« 266



Figure 1. Physical Organization
Of QTAM « ¢ 6 ¢ o o ¢ o < o = o
Figure 2. Flowchart of Message
Control Program . .
' Figure 3. (Part 1 of 2) .

- Figure 4. . . . < . . . .
Figure 5. . . . &« « . . .
Figure 6. Element Chain .
Figure 7. Second Step of Qp
Operation . . . « « « .« . .
Figure 8. Resource Element
Control BlOCK . w o o« o o« o o « =
Figure 9. General Form of Full
and Truncated STCB . . . . . - e
Figure 10. General Form of QCB
and Example of QCB on the Ready
Queue . . e ®» e o - e e e
Figure 11. QTAM Nucleus -
Figure 12. Blocks Initialized by
Open Direct Access Device . . e
Figure 13. Control Block after
Open Line Groups « % e e w e e ow
Figure 14. Buffer Ready to
Receive Message from Line . . . .
Figure 15. Channel Program
Prepared for First Buffer . . . .
Figure 16. Effect of PCI
Interrupt .« « < &« ¢ ¢« o o o o o o
Figure 17. Path of a Buffer for
RECeiving .+ ¢« ¢ @ « o o o o o o« =
Figure 18. Ready Queue at Sending
Time e e e e e e e e e mee .

¢ 3 & o

» td F 8 e e

OS

20
22
29
31
32
33
34
36
38
40

FIGURES

Figure 19. Queuing in Message
Processing e e . o e e e w o o o o U6
Figure 20. Ready Queue to Obtain
MESSAGE « o « o o o 0 = 0 6w . . e o 47
Figure 21. Ready Queue After

Obtaining Message . . . - o U8
Figure 22. Functional Flowchart
of QTAM Components (Part 1 of 2)
Figure 23. 1050 Nonswitched
Device I/0 Module . w « o w < » - « 55
Figure 24. Interaction Between
BTAM and QTAM Channel Programs -

. 49

.117

Figure 25. Linkage of ERP Modules 123
Figure 26. Typical DSECT for BRB .290
Figure 27. BRB on Inactive-BRB

QUEUE o & o w o o« = « o s o » o « 290
Figure 28. BRB Assignment of Next
Segment AdAYeSS . o « o = © o « o 2290

Figure 29. BRB After Assignment
of Next Segment AdAreSS . o « » - 291

Figure 30. BRB/CCW Initialized

for Direct Access Read or Write . .291
Figure 31. QOTAM Linkages (Part 1

Of B) v i e e v ¢ e e e e oe e . 2293
Figure 32. Queues Affected by

QTAM Routines . . « <302
Figure 33. Control Block Llnkages 303
Figure 34, Example of Message

Header and Text Relationships in
Direct Access Destination and
Process Queues e e e o« = o s = « 305



This section describes the various parts
of the total package called QTAM and
explains what the parts are, where they
come from, how they get into the system,
and their relationship to the rest of the
package. The function of these QTAM parts
and the logic of their operation are dis-
cussed in detail in subsequent sections.

Figure 1 shows the steps taken to begin
processing in the QTAM environmwent. The
following discussion deals with these
steps:

1. System generation.

2. Assembling and linkage editing a mes-
sage control program.

3. Assembling and linkage editing a mes-
sage processing program.

4. Initializing a message control
program.

5. Initializing a message processing
program.

SYSTEM GENERATION

OTAM NUCLEUS

When QTAM is called for during a system
generation procedure (QTAM operand in
DATAMGT system generation macro instruc-
tion), a number of routines collectively
called the QTAM nucleus are included as a
permanent part of the System/360 Operating
System supervisor nucleus. These routines
are then always present in the system,
whether or not a telecommunications appli-
cation is being run.

The QTAM nucleus is packaged as a single
module named IECKQQO1l. During system
generation, it is linkage edited from
SYS1.MODLIB into SYS1.NUCLEUS. It is
loaded from there by the IPL program as one
of the resident SVC routines. The QTAM
nucleus consists of the following nine sub-
routines, each of which is discussed later
in this manual:

1. Entry interface
2. QTAM wait

3. QTAM post

4. Qdispatch

5. Defer entry

6. Priority search
7. Queue insert

. support modules.

PHYSICAL ORGANIZATION OF.QOTAM

8. Exit select
9. Exit interface

QTAM MACRO DEFINITIONS

The operating system macro definition
library (SYS1.MACLIB) includes the macro
definitions used during the assembly of the
message control program and message pro-
cessing programs. Appendix D lists the
OTAM macro instructions.

EXTERNAL ROUTINES

When performing a system generation to
include QTAM, the user must define a spe-
cial library area named SYS1.TELCMLIB.
During the generation run, all routines
that will later be linkage edited with mes-
sage control and message processing object
modules are copied frcm SYS1.MODLIB into
SYS1.TELCMLIB. In this publication, these
routines are defined as external routines.
Appendix D lists the modules in
SYS1.TELCMLIB and indicates the function
performed by the routine or routines in
each module.

SUPPORT MODULES

During the generation run, all modules
that are loaded into main storage by the
various Open executors and the QTAM Open
and Close executors are copied from
SYS1.MODLIB into the SYS1.SVCLIB. In this
publication, these modules are defined as
Appendix D lists the QTAM
support modules in SYS1.SVCLIB.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
CONTROL PROGRAM

The user codes the QTAM macro instruc-
tions necessary to design a message control
program. The output cf this assembly
includes: several tables and control
blocks, a buffer area, linkages to QTAM
external and support routines, and, except
for these linkages and a few minor Line
Procedure Specificaticn (LPS) macro
instruction expansions, very little other
executable code. The message control
object module may include some user-written
routines, but these usually will not be
extensive.

Physical Organization of QTAM 9



The assembled object module is then
linkage edited to include the necessary
external routines from SYS1.TELCMLIB.
These external routines are the LPS rou-
tines used in processing header informa-
tion, translating from one code to another,
directing messages to the proper lines and
queues, etc.

The resulting load module is stored in a
system library to be loaded for execution.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
PROCESSING PROGRAM

A message processing program normally
needs only the OPEN, CLOSE, GET, and PUT
macro instructions and some data set
definition macro instructions. When this
is the case, no external routines are
required to be linked with the odbject
module. An installation will also write
one Or mOre message processing programs
that use the following macro instructions
to examine and modify the status of the
control program:

CHNGP
CKREQ
CLOSEMC
CHNGT
COPYP
COPYT
COPYQ
RELEASEM
RETRIEVE
STOPLN
STARTLN

When any of these macros are used, the
linkage editor will include the correspond-
ing external routines in the load module.
The load module is stored into a system
library for execution.

INITIALIZING THE MESSAGE CONTROL PROGRAM

The QTAM message control program is
normally executed in partition 0 as the
highest priority task in the system. The
initiator/terminator loads and transfers
control to the message control program.

The first QTAM macro instruction executed
must open the DASD queue area. When the
system Open routine detects the unique
organization code for the QTAM DASD queue,
it loads and transfers control to the first
QOTAM Open executor (module IGG01930). The
Open routine performs several functions
described in more detail in subsequent sec-
tions. For the purposes of this section,
however, we need note only that the Open
routine loads a large module called the
OTAM Implementation module (IGG019NG) and
Checkpoint/Restart module (IGGO19NH) into

10

partition 0, along with the Message Control
Load module.

The Implementation module contains three
distinct types of routines - distinct as
far as their logical relationship to the
rest of the system. The three types are:

1. Problem program routines - executed
enabled to all interruptions as part
of the message control program task.
These routines receive control through
branches from the external routines
linkage edited with the message con-
trol program.

2. Supervisory routines - executed dis-
abled to all interruptions as part of
the QTAM nucleus "task." These rou-
tines receive control through branches
from the QTAM nucleus.

3. I/0 appendages - executed disabled to
all interruptions, again logically as
part of the QTAM nucleus "task."
These appendages receive control from
the I/0 Interruption Handler in the
input/output supervisor (IOS).

The logical relaticnship of the preced-
ing routines is discussed more fully in the
next section. When only physical organiza-
tion is considered, this collection of rou-
tines represents no more than a convenient
and efficient packaging technique. The
Implementation module can in no way be
thought of as a "program."

When the DCBs for the communications
line groups are opened, four other QTAM
open executors are used (modules IGG0193N,
IGG0193R, IGG0193T, and IGGO0194A). These
routines also perform several functions to
be discussed later. For this discussion,
however, note that only the WTTA Line
Appendage (IGG019QB) is loaded by the first
of these four executors when opening a WITA
line group; the BTAM Read/Write routine and
BTAM modules containing model channel pro-
grams are loaded by the third of these four
executors. These modules are also loaded
into partition 0. The BTAM Read/Write rou-
tine is run in the problem program state as
part of the user's message control task.

INITIALIZING A MESSAGE PROCESSING PROGRAM

. It is possible to run a message control
program with no message processing program.
For example, a message switching applica-
tion can be handled entirely within the
message control program with a single mes-
sage processing program loaded at the end
of the day to initiate a system shutdown
procedure. However, there is usually at
least one, and possibly two or three, mes-
sage processing programs being executed at



the same time as the message control
program.

In this discussion, assume the normal
case where a message processing program is
to be loaded into partition 1 immediately
after the message control program is loaded
‘and initiated. A Start Initiator Function
 should be employed. This will load the
message processing program into partition
1. When the message control task goes into
the wait state, the message processing pro-
gram opens the process queues, at which
time the GET/PUT macro instruction support
routines needed are also brought into par-
tition 1. There are three Get modules and
three Put modules. The modules selected
depend on the unit of data processed by the
program: segment, message, or record.

At any point during the initialization
of this message processing program task,
control may return to the message control
program because of an I/0 interruption from
one of the communications lines or from a
direct access storage device. More often,
execution of the processing program task
continues up to the pcint of a GET instruc-
tion before the message control task has a
message to pass on. In this case, the pro-
cessing task is placed in a wait state
until the conditions for accomplishing the
GET are satisfied. At any rate, the pro-
cess of initialization is complete at this
point with all of the parts of QTAM in
place and running.

Physical Organization of QTAM 11



/ [/ /

Message Processing System Generation Message Conftrol
Source Program Macro Instructions Source Program

OS/360 Starter System

System Residence
MACLIB
Includes all QTAM - Assembler
Assembler ] Macro Definitions
SYS1 o TELCMLIB
All QTAM External Routines
fo be Linked with User Linkage Editor
Linkage Editor —/\— Object Modules
SYS1 e SVCLIB
Includes all QTAM Support Macro Linkage
User Code and Modules Loaded by OPEN and User Code
GET /PUT Linkages
; .
Status Changing SYST ¢ NUCLEUS LPS External Routines
External Routines
+ Includes QTAM Nucleus
. . IPL
Job Scheduler Core Storage ¥ OPEN Job Scheduler

Supervisor Nucleus

l QTAM Nucleus

Partition
N ._1P\ ~

Message Processing Program 2
Partition or other Programs

2
GET/PUT Modules

Partition Message Processing Program 1
! GET/PUT Programs

Read/Write Module D —

Partition J Message Control Program P
0

Check Point/Restart Module

QTAM Implementation Module -~

Figure 1. Physical Organization of QTAM

12



The previous section explained how the
physical pieces of QTAM are positioned in
main storage. This section discusses how
these pieces are logically related and how
they pass control back and forth.

In this section, the logical organiza-
tion of QTAM is discussed within two dif-
ferent frameworks. First, QTAM is consid-
ered as a part of operating system task
management and within the structure and
categories of that control program. Then
QTAM is considered as a separate logical
entity outside of the framework of the
operating system control program, and is
viewed as a control program in its own
right. The key to understanding the logi-
cal organization of QTAM lies in under-
standing the overlap of the two control
program structures.

OTAM WITHIN THE OPERATING SYSTEM CONTROL
PROGRAM STRUCTURE

The various pieces of QTAM discussed in
the preceding section can be grauped into
three logical categories:

1. Message control program
2. Message processing program(s)
3. QTAM supervisory routines

The message control program and message
processing programs are both run under con-
trol of the operating system task manage-
ment routines. When considered as a part
of operating system task management, these
programs are in no way different from any
other processing program tasks. They are
scheduled and dispatched according to the
priorities indicated in the task control
blocks (TCBs) for the partitions in which
they are being run.

After distingqguishing and separating the
two processing program tasks, only the
third category, the QTAM supervisory rou-
tines, remains. These routines are
executed as type 2 SVC routines or as asyn-
chronously scheduled I/0 interruption-
handling routines. Strictly speaking, they
are executed as part of the processing pro-
gram tasks. Practically speaking, however,
it is more meaningful to think of these
routines as a separate category outside of
the task framework established by operating
system task management. This section is
primarily an explanation of the nature of

LOGICAL ORGANIZATION OF QOTAM

this third category in relation to the
other two categories. The discussion con-
tinues subsequently in the section QTAM
Supervisory Routines, but first the message
control program and message processing
problem programs are more closely defined.

MESSAGE CONTROL PROBLEM PROGRAM

The message control problem program
includes the following:

1. The object module output from the
assembly of the user's code.

2. The external routines linkage edited
with the assembly output.

Note: 1If the DLIST macro instruction
is used, a single supervisory routine,
called the Distribution List routine
in a module named IECKDLQT, is linkage
edited into the message control load
module. This routine is one of the
supervisory routines, and is not part
of the problem program.

3. Five of the routines in the implemen-
tation module brcught into partition 0
by the DASD OPEN:

Note: Full descriptions of these rou-
tines may be found under the heading
QTAM Implementation Module Routines.
Flowchart "IDs" for each are identi-
fied below:

(Chart DP)
(Chart DO}

¢ Activate
e LPS Control

e Buffer Cleanup and Recall (Charts
DD, DE)

» Free BRB (buffer request block)
(Chart DF)

e End Insert (Chart DG)

4. The BTAM Read/Write routine and BTAM
Device I/0 modules (modified for and
incorporated into QTAM) brought in by
the line group OPEN.

A simplified flowchart of the message
control problem program is shown in Figure
2. The flowchart is included to show how
four problem program routines in the Imple-
mentation module and the BTAM Read/Write
routine are related to the rest of the mes-
sage control program.

Logical Organization of QTAM 13



AVAILABLE
BUFFER FOR
RECEIVING

LPSCONTROL

REQUEST FOR
QTAM
CLOSEDOWN

A3

pa—Y

=0

OPEN DISK AND
LINE GROUPS
ISSUE ENDREADY

MESSAGE-FILLED
BUFFER

REQUEST FOR
DISK 1/O
OPERATION

INITIATE LINE
READ
OPERATION

ACTIVATE i )
- DJ X

BTAM
~El

BUILD CHANNEL
PROGRAM AND
EXCP

eFigure 2.

14

p2_Y
RETURN TO
INSTRUCTION
AFTER ENDREADY,

CLEANUP
rF2 -

POST BUFFER
TO SPECIFIED
DESTINATION
QUEUE

SET UP FIRST
BUFFER AND
READ CONTINUE
FLAG

]

( ) TRECORD

YES

LPS
RECEIVE
GROUP

E3

PERFORM LPS
RECEIVE
FUNCTION ON
MESSAGE
PORTION IN THE

BUFFER

LINE

F3" sTiLL

RCVING THIS

MSG (NOT
EOT)

~H3
PERFORM LPS
ERROR
CHECKING
FUNCTIONS ON
RECEIVED
MESSAGE

CLEANUP
rJ3
POST LAST
BUFFER TO
DESTINATION
QUEUE AND
RELEASE BUFFERS

(KS

RELEASE BRB'S
AND FREE THE
LINE

D4

RCYD ~ MESSAGE
r——-——< BEING

RECEIVED OR
SENT

SENT

LPS SEND
GROUP

E4
MESSAGE
ALREADY SENT

F4
PERFORM LPS
SEND FUNCTION
ON MESSAGE
PORTION IN
THIS BUFFER

ACTIVATE
A
’—G-r

INITIATE
SENDING OF
MESSAGE OVER
THE LINE

BTAM
rH4

BUILD CHANNEL
PROGRAM
AND EXCP

Flowchart of Message Control Program

YES

0s.Y

EXCP

PERFORM LPS
ERROR
CHECKING ON
TRANSMISSION
OF MESSAGE

CLEANUP

- F5

RELEASE BUFFERS




MESSAGE PROCESSING PROBLEM PROGRAM

A message processing problem program
includes: the assembled user code, any
external routines linkage edited with the
code, and the Get and Put routines. The
only difference between a QTAM message pro-
cessing program and any other processing
program is the requirement for and the
implementation of interpartition communica-
tion. The various macro instructions that
can be used in a message processing program
are handled as follows:

1. COPYP, COPYT, and COPYQ. These macro
instructions present no problem. The
corresponding external routine simply
reads the requested information from
partition 0, using address pointers
stored in the communications vector
table (CVT) and in the terminal table.

2. All other macro instructions. The
remaining macro instructions cause SVC
interruptions to the QTAM supervisory
routines. Any cross-partition com-
munication is done by the supervisory
routines, operating under the storage
protection key of the supervisor.

The only unusual operation to be noticed
when logical organization is considered is
in the case of a PUT macro instruction. To
avoid including a large amount of code in
the supervisory routines for each of the
three types of PUT (segment, record, or
message), certain code that must be
executed in the supervisor state is pack-
aged within the Put modules. The SVC rou-
tine entered as a result of a PUT branches
directly back to these routines in the
problem program Put modules to execute them
in the supervisor state.

OTAM SUPERVISORY ROUTINES

This discussion of the QT2AM supervisory
routines ‘is still within the framework of
the operating system control program. When
the physical organization of these routines
is considered, they consist of:

1. The routines within the supervisor
nucleus.

2. The routines within the Implementation
module (in partition 0) that are
executed in the supervisor state.

This includes all except the five rou-
tines previously identified as part of
the méssage control problem program.

3. The Distribution List routine linkage
edited with the message control
program.

4. Part of the Put modules in the message
processing problem partition(s).

When the interruption-handling facili-
ties of the operating system are consid-
ered, the QTAM supervisory routines consist
of:

1. Type 2 SVC routines entered by SVCs 65
and 67 from problem program
partitions.

2. Asynchronously scheduled I1I/0
interruption-handling routines entered
from I0S. |

Although the QTAM supervisory routines
can be considered from either point of
view, neither is very helpful in under-
standing the logical crganization of QTAM.
For example, a routine within an appendage,
to which control is passed to process an
I/0 interruption, may also be executed as
the result of an SVC interruption. The
problem is that both points of view are
taken from within the framework of the
operating system control program environ-
ment and are seen within the categories of
that system. The solution to the problem
lies in understanding the implications of
the statement: "QTAM is a Control Program."

QTAM is a control program that is within
a second control program. Before discuss-
ing how the two control programs overlap,
it is important to describe the QTAM con-
trol program within its own framework as a
separate logical entity.

OTAM AS A SEPARATE CONTROL PROGRAM

The one essential function of a control
program is the allocation of system
resources. The system resources to be
allocated by QTAM are:

1. CPU processing time
2. Main storage space
3. I/O paths

In order to perform this allocation
function efficiently, it is necessary to
break up the system resources into the
smallest practical number of pieces. This
is done as follows: :

1. The work to be done is broken into
many separate work units that are
defined as QTAM subtasks of message
processing and message control tasks.
Small pieces of the time resource are
then allocated to individual subtasks.

2. The main storage space to be allocated
is broken into a large number of buf-
fers. Thus, only that amount of
storage absolutely required at a given

Logical Organization of QTAM 15



time need be tied up for a given
function.

3. The I/0 paths controlled by QTAM are
the communications lines and the disk
queue. Only that I/0 path absolutely
required at a given time need be tied
up for a given function.

The term allocation is usually used only
to refer to physical resources; scheduling
refers to time resources. In a QTAM con-
trol program (as opposed to the operating
system) the entire allocation function is
performed by a single mechanism. This
allows interdependence of scheduling and
allocation.

The following sections describe the
resource allocation mechanisr of QTAM.
key to the mechanism is the ready queue,
the structure through which a resource is
allocated to a subtask. The actual
mechanism of allocation is the Qwait and
Opost operations performed by the QTAM sub-
tasks. OQwait, in effect, puts a request
for a resource on the ready queue. Qpost
passes an availlable resource to the ready
queue. The QTAM nucleus performs a queue
management function that includes dispatch-
ing the subtask that is at the top of the
ready gqueue.

The

QUEUE MANAGEMENT

Elements, Queues, and Subtasks

The physical resources of the system are
broken into elements (e.g., the buffer
pool, a resource, is broken into individual
buffers, the elements) with each element
represented by an RECB (resource element
control block), which can be thought of as
an 8-byte identifying prefix.

r T
| RECB | ~ BUFFER
L 1 J

If the RECB points to an available buffer
queue, the buffer is free and not in use.
The RECB is an identifier.

For every element in the system, there
is at least one subtask that works with the
element. These subtasks are represented by
STCBs (subtask control blocks).

The elements, and the subtasks that
operate on these elements, are associated
with one another through the use of a third
control block, the OCB (gueue control
block). Thus, a QCB will have a pointer to
the chain of elements under its control and
a pointer to the chain of subtasks waiting
to operate on these elements.

el6

Elements
QCB

Subtasks

Figure 3. (Part 1 of 2)

When a subtask needs an element, it
requests one from the QCB that handles that
particular element by "Qwaiting™ in the
STCB chain of the QCB. If the element is
available, the subtask that Qwaited is
dispatched.

No elements available

Qce
Subtask A
- Subtask B
FRISS Subtask C
F————n PRI=2
I PRI=]
L |

Figure 3. (Part 2 of 2)

When a subtask has finished using an
element, it gives (Qpcsts) the element to
the appropriate QCB (Figure 4). The QTAM
nucleus gives this element to the first
(highest priority) subtask in the STCB
chain of the QCB. (Subtask A in Figure 5
would be dispatched). Note, however, that
STCB A is not usually removed from the STCB
chain unless it Qwaits on another QCB.) If
another element is posted to this QCB, sub-
task B will be dispatched. The STCB chains
end with a pexmanent STCB. (STCB C, in
Figure 4, will remain the last STCB in the
chain.) STCB C might point to a routine
that does nothing more than chain elements
into the QCB's element chain. Subtask C
would have a lower priority than any other
subtask that might use the element and
would, therefore, be dispatched only if no
other subtask needed the element.



r—-—————=—-<7 T
! El d I
1 ement use
Subtask D i by D :
L - —
QCB QPOST
F=-—" "= =71
|
Element Element used [
Chain | by D I
L J
Subtask A
PRI=3 Subtask B
PRI=2 | |Subtask C
PRI=1
Figure 4.
QcB Element
Chain |— ——————— -
|
Elegenf used !
A 2 |
Vb - J
\
~ -
KN
\
Subtask A P
PRI=3 Subtask B
PRI=2 Subtask C

PRI=1

by the various QCBs and RECBs. These QCBs

and RECBs, just like the STCBs within their
own chains, appear on the ready queue in a

priority oxrder (Figure 6).

To complete the general picture (Figure
6), an RECB (resource element control
block) appears on the ready queue. As was
mentioned previously, when an element is
Qposted to a QCB, the first subtask in the
QCB's chain gets control (register 1 points
to the RECB being Qposted).

In most cases, however, the Qpost is a
two step operation. The element®'s RECB
contains a pointer to the queue to which it
is being posted and is placed on the ready
queue in priority order (this is the first
step). As time becomes available for pro-
cessing, the ready queue is examined by a
routine called Qdispatch in the QTAM nu-
cleus. If the routine finds an RECB on the
ready queue, the RECB is replaced with its
QCB; then the first subtask in the QCB's
chain is executed (this is the second step
of the Qpost operation [Figure 7]).

The ready queue"s operation can be
understood through an illustrative example
dealing with two simultaneous events:

First Event: A message starts coming
across the line into an allocated buffer.
other buffers must be obtained to accommo-
date the message in case its length exceeds
that of one buffer (high priority event).

Second Event: At the same time, a subtask

Figure 5.

The Ready Queue

The previous discussions pointed out
that subtasks gain control depending on:

1. The availablity of elements;
2. The priority of the subtask.

Since QTAM is a control program, it is
responsible for allocating CPU processing
time to the various tasks under its con-
trol. The mechanism it uses is called the
ready QCB, which can be thought of as a QCB
whose element chain is "time" and whose
subtask STCB chain is all the work to be
done in the system. (Note that the ready
QCB's subtask chain is called the ready
queue). The work to be done is represented

that has written a buffer to a disk now
frees the buffer by posting it to some QCB
whose subtask will chain it into an element
chain (low priority event).

In order to obtain a buffer, a BRB (buf-
fer request block) is posted to a QCB whose
subtask will eventually fulfill the request
for the buffer. The empty buffer and a BRB
will be placed on the ready queue "on their
way" to their appropriate queues. It is
much more vital to obtain a buffer for the
incoming message than to chain the freed
buffer, so QTAM assigns a higher priority
to the BRB than to the buffer and chains
them both into the ready queue in priority
order. The BRB will, therefore, be handled
first (i.e., the BRB will be replaced on
the ready queue by the QCB to which it was
posted; and the first subtask in the QCB's
STCB chain will get ccntrol to obtain the
needed buffer).

Logical Organization of QTAM 17e



QATTACH

READY

DUMMY

Figure

READY QCB

LAST DIS~

(IS NOT ON THE
READY QUEUE)

PATCHED QCB
"STCB CHAIN"
(READY QUEUE)
WAITR B
QCB
LINK TO NEXT
_LIN CHAIN
/ STCB 'B'
READY QUEUE Qcs
LINK TO NEXT
IN CHAIN
STCB
RECB *X'
POINTER TO
ITS QCB
LINK TO NEXT
IIN CHAIN
QCB QCB X!
LINK TO NEXT
IN CHAIN
STCB
6. Element Chain




eFigure 7.

READY QCB

L ——

QATTACH
"STCBs”
(READY QUEUE
DUMMY ) WAITR
RECB "X"
T
:
QcB "X Lo
LINK
STCB "zll
QCB "y LINK

Second Step of Qpost Operation

CONTROL BLOCKS

Resource Element Control Blocks

There are three main types of permanent
resource element control blocks (RECBs):

1. Buffer RECBs
2. Communications line RECBs
3. Buffer request RECBS

Figure 8 shows the general form of a
RECB.

Buf fers are areas of main storage used
to contain message data and/or control
information. The first 8 bytes of each
buffer comprise an RECB. As with all QTAM
elements, the identity of a buffer at a
particular time depends solely upon the

RECB "X"
/
|

QCB IIXII
r——T- === =

! I
ot ——-—-- 1
1 | !
e ~

| —_——t - -
L_..___L__.::......._I —:

-

STCB "Z"

queue its representative RECB is chained
into at that time. The buffer itself is
always physically identifiable as a fixed
number of bytes of main storage. TIf the
RECB representing the buffer is chained
into a destination queue control block
(oCB), the buffer is full; that is, it con-
tains a message segment to be transmitted
to a destination. When the same RECB is
subsequently chained into the available
buffer QCB, the element involved is an
available buffer, even though there has
been no change in the physical storage
area.

Communications lines are represented to
QTAM through the line control block (LCB).
There is an LCB for each line. When a sub-
task has control of an LCB, it has control
of the line. Therefore, the LCB itself is

Logical Organization of QTAM 19



treated as the resource element. The RECB

is contained within the LCB.

In order to avoid preassigning buffers
before they are actually needed, QTAM uses
buffer request blocks (BRBs) to queue buf-
fer requests. (This process is explained
later in the section entitled Outline of
QTAM Operation.) These BRBs are elements.
The RECB is contained within the BRB.
There are at least as many BRBs in the sys-
tem as the number of buffers in the buffer
pool. Thus, this pool of BRBs is itself a
pool of resources to be allocated to the
various subtasks that use them.

r
| RECB

I T 1
| | Key | OCB address i
I :
| | Priority | Link address |
Il 1 J

|Key is always zero.

|9CB _address is a pointer to the QCB to
|which the element has been posted.
|Priority is of the element represented.
|Link address is a pointer to the next
|element in the chain.

[|

b i B e it S i — a— — — ——— — ]

Figure 8. Resource Element Control Block

Subtask Control Blocks

There are two types of subtask control
blocks (STCBs):

1. Truncated STCBs
2. Full STCBs

These are shown in Figure 9.

Truncated STCBs represent subtasks that are
executed in supervisory state. These sub-
tasks are performed by routines that are
packaged within the Implementation module
(and also by the Distribution List routine
linked with the message control program).
These routines are called implementation
routines and the truncated STCB represents
an implementation subtask.

Full STCBs represent subtasks that are
executed in problem program state. These
subtasks are performed by the message con-
trol program and message processing problem
programs. At this point, we see the over-
lap of the operating system control program
structure with the QTAM control program
structure. A QTAM problem program subtask
is created when an SVC 65 (Qwait) or 67
(Qpost) is issued within an operating sys-
tem task. More specifically, the supervi-
sor request block (SVRB) created by the
second-level Interruption Handler is modi-
fied and used as a QTAM STCB. As a sub-
task, the problem program is placed under
the subtask management of QTAM and must

20

Truncated STCB

Return
code

Priority Link address

pm e - =
O S .

o e g o o

|
|
]
I
]
]
I
|

JReturn code is a nonzero value to distin-
Jguish between a truncated and a full
]STCB. It is also used, in some cases, as
]a branch modifier to the routine asso-
jciated with this STCB.

|Priority is of the subtask the STCB

] represents.

1Link address is a pointer to-the next
}{sTCB in the chain. If the STCB can be
|the only STCB in a chain, the last 2
|bytes of this field are truncated and the
|STCB is assembled directly preceding its
{routine.

Full STCB

OCB address
(QATTACH)

1 L)
+0|Return

| code=0

|8 4

1}
+4 | Priority Link address
L

r

+8]| STCB 4
|size=96
| 8

i
|
1
JTL
]
!

— D el B s e R i s e b

e s =y

Event Control Block

Link field of SVRB

Register save area

e o ki s ki e ek e )

[
b e

b e i S . e i e S i, G e o, i s S T e, — i, T —— — — — — — — —— — ——— — T————— o—— — — —— — — — ——— et o, Sl

o e e et R e e S i R D M S G w3 R s S e it o R e D M

General Form of Full and Trun-
cated STCB

Figure 9.

contend for control in that multitask
environment before it is released to con-
tend with other operating system tasks in
the system. The way in which this is
implemented is discussed more fully in the
following sections. Note at this point,
however, that every problem program request
that results in a QTAM SVC 65 or 67 causes
a subtask to be created. These problem
program subtasks are always lower in
priority than any implementation subtask;
thus they are never considered for dis-
patching until all of the internal imple-
mentation subtasks have done all of the
work possible with the resources available.



Main Storage Process Queue:

There can never be more than one full STCB
per problem program partition at a time.

Queue Control Blocks

The ready queue can be thought of as a
queue of queues, each queue being asso-
ciated with a queue control block (QCB).
Figure 10 gives the general form of all
QCBs that are on the ready queue and an
example of a QCB that has replaced an RECB
on the ready queue. The types of queues
that may appear at any given time on the
ready queue are discussed in the following
paragraphs. A more complete and detailed
list of queues is given in Appendix A.

Available Buffer Queue: This queue is used
to keep track of unassigned buffers. The
element chain is the chain of all buffers
that are not assigned. As soon as a buffer
is no longer needed, it is posted to this
queue. The STCB chain for this QCB is
limited to the STCB for the available buf-
fer subtask, which is used whenever a buf-
fer is made available.

LPS Queue: This queue is used to pass ele-
ments from the QTAM control program to the
message control problem program. As shown
in Figure 2, the element chain may point
to:

1. An empty buffer, signifying that a
Line Read operation is to be
initiated.

2. A message-filled buffer to be passed
through some portion of the LPS.

3. A request for a disk 1I/0 operation to
be started. :

4. A request for a QTAM closedown.

The LPS queue controls the problem pro-
gram of the message control task. The LPS
Control routine in the message control pro-
gram waits for the LPS queue. When an ele-
ment is available, the LPS Control routine
is given control. This routine examines
the element to determine which of the four
possibilities is the first item in its ele-
ment chain. Figure 2 shows the action that
is taken for each case. The STCB chain for
this QCB is the STCB for the LPS Control
routine.

This queue is
used to pass full buffers from the QTAM
control program to a message processing
program. The element chain is the chain of
buffers containing the message unit that is
passed to the message processing program.
This is the QCB that a message processing
program GET waits for.

Inactive BRB Queue: This queue is used to
keep track of inactive buffer request
blocks. The element chain is the chain of
all BRBs that are not assigned. As soon as
a BRB is no longer needed, it is posted to
this queue. The STCB chain may contain the
STCB for a receive-scheduling subtask and/
or one or more send-scheduling subtasks.

Active BRB Queue: This queue is used to
pass active buffer requests from the
various subtasks that require buffers to
the active buffer request subtask, which
obtains the buffers. The element chain is
the chain of active BRBs. The STCB chain
is limited to the STCB for the active buf-
fer request subtask.

Additional CCW Queue: This is a queue of
insert blocks containing the CCWs used to
transmit idle characters when certain line
control characters are encountered in an
outgoing message. When one of these line
control characters is encountered by the
send portion of the LPS, the problem pro-
gram waits for this gqueue to obtain one of
these insert blocks.

Disk Input/Qutput Queue: BRBs containing
channel command words are posted to this
queue when a Disk Read operation is
required. Full buffers are posted to the
same queue for writing messages on the
disk. The STCB chain is limited to the
STCB for the disk input/output subtask.

Communications Line Queue: There is one
QCB for each communications line. The QCB
is created from the LCB itself when the LCB
is encountered on the ready queue. This
occurs as follows:

1. When a send or receive operation is
completed, the LCB is posted to the
ready queue as an element.

2. When the LCB reaches the top of the
ready queue, a field within it is
initialized as a QCB.

3. The element chain is then completed by
posting the LCB to itself.

4. A receive-scheduling subtask is then
dispatched for the line unless there
is already.a send-scheduling subtask
waiting for the line.

Return Buffer Queue: This queue is used by
the GET macro instructions to return a buf-
fer. After the data has been transferred
to the work area, the buffer is returned to
the available buffer gqueue via this QCB.

Time Queue: This queue is used to delay
the polling of a line for a specified
amount of time. The element chain for this
queue is the LCB waiting for an interrupt
from the Timer.

Logical Organization of QTAM 21



QCB

key element chain pointer

priority link address

STCB chain pointer

Example of the Available Buffer QCB on the Ready Queue

Ready Queue Buffer QCB for Available Buffer

Q. RECB

3 ~ pointer to RECB

next item on

E4 ready queue

to Available Buffer
subtask A (BFRENQ)

RECB

C STCB

BFRENQ |code

Buffers

(f—ﬁzj;cs

next item
on ready
queve

Figure 10. General Form of QCB and Example of QCB on the Ready Queue

Move Data Queue: This queue is used to
move data while in supervisor mode. Data
can be moved within a partition or across
partitions.

Interim LPS Queue: This queue is used to
delay processing of buffers until all
requests have been processed. Elements of
this queue are transferred to the LPS
queue.

Note: Both the DASD destination QCB and
the DASD process QCB never appear on the
ready queue. They are assembled off the
ready gqueue, but with a Key of 3 (see the
following discussion of Keys and Appendix A
for a description of the above QCBs).

QWAIT AND QPOST

A suptask requests a resource from a
gueue by issuing a Qwait on the associated
QCB. A subtask passes a resource that it
is finished with by Qposting the resource
to the proper QCB.

Qwait from Problem Program: A problem pro-
gram (either message control or message
processing) requests an element from the
OTAM system by issuing an SVC 65.

22

Note: All QTAM SVCs are macro generated.
The programmer should never have to issue
one directly. Because this is a type 2
SvVC, the supervisor call second-level
Interruption Handler (SVC SLIH) creates an
SVRB and passes control to the Entry Inter-
face routine in the QTAM nucleus.

The operating system SVRB is converted
to a QTAM full STCB and is temporarily
chained into the STCB chain of the last
dispatched QCB (i.e., if the message con-
trol problem program [LPS} was issuing the
Qwait, the LPS QCB would have been the last
dispatched QCB). The address of the QCB
for the element queue being waited for is
passed in register 2. If the element is
available, the full STCB is removed from
its temporary chain, the element's address
is placed in register 1, and control is
returned to the problem program.

If an element is not available, the full
STCB is added to the STCB chain of the QCB
whose element chain is being waited for.

An SVC 1 (WAIT) is issued to place the
requesting task in the wait state. The
operating system task management routines
then dispatch some other task if there is
one waiting. Otherwise, these routines
place the entire system in the wait state.

When another subtask subsequently posts
an element to the queue that the problem



program waited for, QTAM dispatches the
problem program subtask by posting the
event control block waited for as complete.
The problem program is then dispatched in
its proper task priority by operating sys-
tem task management.

Opost from Problem Program: A problem pro-
gram (either message control or message
processing) passes an element to the ready
queue by issuing an SVC 67. As with the
Qwait, the SVRB contains the address of the
Qattach OCB and is converted to a QTAM full
STCB. The Qpost STCB is then chained into
the STCB chain of the last dispatched QCB.
However, in the case of the Qpost, the last
dispatched QCB will usually be the ready
OCB itself. Thus, the full STCB will be
chained directly on the ready queue (see
the discussion of Keys for an example of
Opost). The address of the queue that the
element is being posted to is passed in
register 2, and the address of the RECB for
the element being passed is in register 1.
The RECB is placed on the ready queue.
(Note that when the ready QCB is the last
one dispatched, the RECB is placed on the
ready queue above the full STCB. The RECB
has a higher priority.) If a subtask is
waiting for the element, it is dispatched
in priority order. If no subtask is wait-
ing for the element, the RECB is chained to
the proper QCB. When the full STCB gets to
the top of the ready queue, control is
returned to the problem program by the 0S
supervisor routines.

Owait from Internal Implementation Subtask:
When one of the implementation subtasks
requires an element, the subtask checks the
OCB for the element queue being waited for.
If the element is available, the subtask
removes it from the chain and relinks the
element chain, if necessary.

If tne element chain is empty, the sub-
task branches directly to the queue manage-
ment routines in the QTAM nucleus. If the
STCB for the requesting subtask is not
already chained to the QCB for the
requested element, it is placed on the
chain. Control then passes to the Dispatch
routine to activate the next subtask.

opost from Internal Implementation Subtask:
When one of the implementation subtasks has
an element to pass to the ready queue, it
branches directly to the Qpost routine in
the QTAM nucleus. The RECB, containing the
address of the QCB to which it was posted,
is placed on the ready queue. The STCB for
the subtask that posted the element is left
chained to the QCB that it was already on,
and either the Qposting subtask or the sub-
task waiting for the element will be
executed.

QPOST EXAMPLE

The new, full STCB is placed on the chain
of the last dispatch QCB (the ready queue).

READY QCB
LAST DIs-
QATTACH PATCHED QCB
Ist item
READY (READY QUEUE)
ponior KEY=0 |QATTACHADDR
oinfer to

next in the ready
queue chain, i.e.,

LINK ADDR

dummy)

T(

The Priority Search/Queue Insert routine
places the posted element on the ready
queue in priority order in front of the
full STCB.

Logical Organization of QTAM 23




The Dispatch routine finds an RECB with
a key of 0 and replaces it with its QCB
(I1I1).

READY QCB
QATTACH
READY READY QUEUE
DUMMY WAITR

Element's RECB
ADDR of
ITS QCB

Key=0

LINK

FULL STCB

QATTACH

Key=0 | ADDR

LINK

/

The QCB has replaced the RECB. The QCB
has a key of 3, and the truncated STCB in
its chain is dispatched. When the subtask
terminates, the Dispatch routine is
entered. The key in the ready queue's QCB
is set to 2. A QCB with'a key of 3 is
found at the top of the ready queue. The
QCB is removed and its key is set to 1.

o2y

READY QCB
LAST DIS-
QATTACH Key=2 | pATCHED QCB
READY (READY QUEUE
DUMMY WAITR

ST "(@GB"f‘o"Wh‘i’ch"fhé"é'lemenf’ .

was
Key=3 posted)
/' LINK
STCB ADDR
TRUNCATED
STCB
FULL STCB
QATTACH

Key=0 | ADDR

,LINK ADDR

The OCB at the top of the ready queue
has been removed. The ready QCB is dis-
patched by setting the key to 2. The ready
queue is examined and an RECB (full STCB)
with a key of 0 is found. The QCB pointed
to (Qattach or the ready queue) looks as if
it were on the ready queue (since it has a
key of 2). The Exit Select routine sets
the ready queue's key to 3; finds the full
STCB in the chain (this chain is the ready
queue); and posts it complete and exits.



READY QCB
. LAST DIS-
QATTACH Key=2 | pATCHED QCB
1Ist item
READY (READY QUEUE
DUMMY WAITR

QATTACH
ADDR

KEY=0

| LINK ADDR

Highest-Code (EC): The only elements ever
given a code of EC are a BRB or special
dummy element. This is done in five
instances:

1. To indicate that the buffer request
for a disk operation has been unable
to be assigned a buffer.

2. To indicate that a buffer request is
made by the PCI interruption routine
for the first PCI on a receive
operation.

3. To execute a portion of the code of
the Put routine in supervisor mode.

4. To recognize that a SIO is to be
issued to the DASD.

5. To recognize that a QTAM closedown is
in progress.

Second Highest-Code (E4): This priority is

QTAM NUCLEUS

The QTAM nucleus provides the overall
queue management facilities. These facili-
ties include:

1. Interfacing with the operating system
to convert SVRBs to STCBs.

2. Placing problem programs in the wait
state and then posting them as
complete.

3. Chaining RECBs to the ready queue, and
STCBs to QCBs in the proper priority
sequence.

4. Dispatching the highest-priority
suptask.

The nucleus is composed of several sub-
routines; each is discussed in the section
QTAM Control Module. At this point, how-
ever, we can look at the gueue management
facility as a whole. Figure 11 shows a
generalized flowchart of the nucleus. The
Qdispatch routine examines the item at the
head of the ready queue. The position of
all items on the ready queue is determined
by the relative priorities of elements as
they are posted to the gqueue. Generally
speaking, the priority of an element is
determined by the type of subtask to which
it is being passed. There are four priori-
ties, indicated by a hexadecimal code in
the RECB.

given to all elements being passed to
implementation subtasks that are disabled
to interruption, except those with a code
of EC.

Third Highest-Code (E0): This priority .is
given to all elements being passed to the
message control program.

Lowest-Code (DC): This lowest priority
code is given to all elements being passed
to message processing programs.

ODISPATCH ROUTINE

Odispatch follows the address pointer in
location READY to the item (either an RECB
or QCB) at the top of the ready queue. To
determine whether the item is an RECB or
QCB, Qdispatch examines the key field in
the first byte.

s Key=0: All RECBs have a key of zero.
In some instances full STCBs appear
directly on the ready queue instead of
being chained to the QCB. Qdispatch
will find a full STCB during initiali-
zation, when the ENDREADY macro
instruction is executed and during a
Qpost from a processing program (see
sample Qpost above in Qpost Example).
This full STCB appears to Qdispatch as
an RECB pointing to a location labeled
QATTACH at READY-8, the QCB of the
ready queue. Therefore, the full STCB,
whose address is at location READY (the
top of the ready queue), appears at the
head of an STCB chain in a QCB labeled
QATTACH, and the full STCB is given
control . If Qdispatch finds an RECB,
one of the following events will
result:

Logical Organization of QTAM 25



26

1. If the QCB pointed to by the RECB
is not on the ready queue (key=1),
the RECB is replaced by its QCB,
and the first STCB in that QCB's
chain is dispatched (see the queue
management discussion).

2. If the QCB pointed to by the RECB
has a key of 2, the RECB remains
chained to the ready queue, and the
first subtask in the QCB's STCB
chain is dispatched.

3. If the QCB has a key of 3, the RECB
is removed, and then the first sub-
task in the QCB's chain is dis-

. patched. _Note that the QCB does.
not, in the this case, replace the
RECB on the ready queue.

Key=1: Indicates a QOCB that is not on
the ready queue.

Key=2: A key of 2 indicates a QCB with
a subtask at the top of its STCB chain
that is ready to be dispatched. A QCB
with a key of 2, however, represents a
special case. The STCB that is ready
was previously entered when an element
was made available to it. At some
point in its processing, it exited (by
Qgposting or branching to either another
Implementation module routine or to
another part of the nucleus). Before
it exited, however, it elected to be
reentered whether or not another ele-
ment was made available to it. 1In
order to be reentered, this STCB had
set its own CCB key to 2. Now, when an
element is posted to this QCB, Qdis-
patch will discover that it is already
on the ready queue with a key of 2.

The STCB will, at this point, be reen-
tered immediately. The element, how-
ever, will not be removed from the
ready queue.

In summary then, when Qdispatch finds
an RECB pointing to a QCB with a key of
2, the first STCB in its chain will be
gaining control for a second time
(reentered), and that RECB will not be
removed from the ready queue.

Key=3: A key of 3 indicates a QCB with
an associated subtask that has been
dispatched, and the subtask has
finished all the processing required
with the element passed to it.

Note: The dispatched STCB may or may
not be the top STCB of the QCB's chain.
The subtask might have, during the
course of its operation, Qwaited on
another QCB, in which case it would
have been chained into the new QCB's
STCB chain. Regardless of the location
of the STCB, when Qdispatch finds a QCB

| ready gueue.

with key=3, it removes the QCB from the
ready queue and sets its key to 1.

The flowchart in Figure 11 further shows
how control is passed to the dispatched
subtask. If the supbtask is represented by
a truncated STCB, the Exit Select routine
simply branches to the entry point of the
subtask. If it is a problem program sub-
task (full STCB), the Exit Interface rou-
tine branches to the Supervisor Post rou-
tine to post this SVRB/STCB as complete,
and then issues an SVC1 (WAIT) on the STCB
that the QTAM control program is currently
operating under. These SVRBS may or may
not be the same. When they are not the
same,. Wwe see.the.case-where - QTAM--is--placing -
one problem program task in the wait state
and enabling another task that was pre-
viously placed in the wait state to again
be dispatched by the operating system task
supervisor.

There is one dummy element that is used
to indicate the end of all element chains
and is permanently the last item on the
This dummy element is preas-
sembled in the ready queue's QCB (see
Figure 6). Note that the physical blocks
of main storage--the RECBs, QCBs, STCBs,
and this dummy element--are never physical-
ly moved in main storage. Their pointers
are merely changed to reflect their current
relative positions (on or off the ready
queue, in a chain, etc.). When this dummy
element reaches the top of the ready queue,
a final wait is issued to place the last
QTAM problem program in the wait state
until an asynchronous item is put on the
ready queue.

Summary: The ready queue controls alloca-
tion of the resources. The contents of the
ready queue tie an element with a subtask.
Each resource element is represented by an
RECB (Resource Element Control Block),
which contains a pointer to an appropriate
QCB. The QCB contains a pointer to an STCB
associated with a routine that performs the
desired function. To allow more than one
item to request a subtask or wait for a
resource, items are chained or queued to a
QCB. Each subtask has an associated trun-
cated STCB that contains a code that is
used to gain access to the routine address.
RECBs to be acted upon, QCBs with acso-
ciated STCBs waiting for a resource, and
full STCBs representing processing programs
are chained to the ready queue. The second
word of each item on the chain of the ready
queue contains the address of the next item
on that queue. The last item points to a
dummy item. The position of all items on
the ready queue is determined by priorities
of the resource. These priorities, set by
the subtask posting the resource, are
determined by the type of function to be
performed.



A suptask requests the resource (Qwaits)
it requires for its execution from the
appropriate QCB, performs its function, and
passes (Qposts) the resource to another QCB
for the next function to be performed. The
Qposting and Qwaiting is done by the QTAM
control program (IECKQQ01 in the nucleus).
After chaining the item into its proper
place, the QTAM nucleus examines the first
item in the ready queue chain to determine
which routine is to receive control. Three
items can appear on the ready queue:

1. RECBs
2. Full STCBs
3. QCBs

The first byte of these control blocks
contains a key, QKEY. A key of zero indi-
cates an RECB or a full STCB. A QCB has a
nonzero key whose value shows the status of
the OCB. These keys are either preas-
sembled in the (QCB or set by IECKQQO1.

The three main types of elements repre-
sented py RECBs are: buffers, buffer re-
quest blocks (BRBs), and line control
blocks (LCBs). By posting an element to a
queue the QTAM nucleus (refer to Figure 11)
causes:

1. The QCB address, passed in register 2,
to be placed in the RECB whose address
is passed in register 1.

2. The RECB to be inserted into the chain
of the ready queue in priority order.

3. When the RECB reaches the top of the
ready queue, the QCB, in the RECB, to
replace the RECB on the ready queue if
the QCB is not on the ready queue.

4. A subtask to be given control to per-
form the function. The truncated STCB
in the STCB chain of the QCB provides
the address of the routine for the
suptask.

There are three ways of posting this
element:

1. If a Qpost is issued via an SVC (only
done in the problem program), an SVRB
is created by the system, and the nu-
cleus is entered at the Entry Inter-
face subroutine. This subroutine
transforms the SVRB into a full STCB
that is used to return to the problem
program. The RECB is chained as
described above.

2. If posting is done in the implementa-
tion subtasks, registers 1 and 2 are
set with the address of the RECB and
QCB respectively, and the subtask
branches directly to the post subrou-
tine in the nucleus.

3. If the implementation subtask wishes
to post several elements before anoth-
er subtask gets control, the implemen-
tation subtask places the RECB con-
taining a QCB address directly on the
ready queue.

A full STCB is made from an SVRB created
by the operating system as the result of an
SVC. The STCB is chained to the last dis-
patched QCB. 1If this QCB is the ready
queue, then the STCB is chained directly
onto the ready queue. This STCB appears to
the nucleus as an RECB whose QCB is on the
ready queue with key=2. When the Exit
Select subroutine discovers that it is a
full STCB (by a zero code for the address
of the routine), control is not given to a
routine. The Exit Interface routine posts
the ECB in the STCB as complete and issues
a WAIT (svC 1) for the entry STCB. Normal-
ly I0S, through the SVRB-STCB, returns con-
trol to the problem program. If this STCB
that was serviced was not for the SVC that
caused the entry, the message control task
is in a wait state until there is an asyn-
chronous interrupt.

The special form of the QCB (12 bytes)
is the only type of QCB that appears on the
ready queue. DASD process and destination
QCBs (full QCBs) are not chained on the
ready queue. A QCB can be placed on the
ready queue by a Qpost or Qwait.

When an element has been posted to a
queue and that queue is not on the ready
queue, then the QCB is chained on the ready
queue in place of the RECB. The key of the
QCB is set to 3 to indicate that the QCB is
on the ready queue but has been dispatched.
When this QCB is encountered on the ready
queue with a key of 3, it is removed and
the key is set to 1 to indicate that it is
not on the ready queue.

The above occurs for all QCBs with the
exception of DASD destination and DASD pro-
cess QCBs. As mentioned previously, these
two QCBs never appear on the ready queue.
They are preassembled off the ready gqueue
with key=3. When an element is posted to
one of these QCBs, it appears (to Qdis-
patch) that it is on the ready queue (since
its key=3), and the first STCB in its chain
will get control. Note, however, that
these two QCBs do not replace the RECBs on
the ready queue.

As the result of a Qwait, the full STCB
is chained to the last dispatched queue.
If there is an element available in the QCB
being waited for (passed in register 2 to
the Wait subroutine), the subtask is given
control. The ECB in the full STCB is post-
ed complete. Control returns to the prob-
lem program as the Qwait was satisfied.

Logical Organization of QTAM 27



If the QCB being waited on is ready to
be activated (key=2), the Defer Entry sub-
routine causes the STCB to be chained to
the correct QCB but deferred. If the QCB
is not ready to be activated (key=1 or 3),
the STCB is chained to the correct QCB (if
the last dispatched queue is the one being
waited for, the QCB is immediately dis-
patched), and the QCB is inserted in
priority order on the ready queue. When an
element is posted to this QCB, the STCB
chained to the QCB is the full STCB pre-
viously chained. The QTAM control routine
recognizes the full STCB and posts the

28

event as complete. Return is made to the
routine that issued the Qwait, for now this
wait has been fulfilled.

Therefore, at a given moment, the ready
queue consists of a chain of full STCBs,
0CBs, and RECBs, arranged ‘in priority
sequence. The rate at which a subtask
acquires resources is based on the avail-
ability of the resources and priority of
subtasks. This allocating and dispatching
of subtasks and resources is done by the
single mechanism of the control program
acting on the ready queue.



Branch from QTAM
Implementation Subtask

Waiting or Posting

Waiting

Posting

DISPATCH QDISPATCH Subroutine

Get item from
Top of Ready Q

Asynch.
Interrupt or End or
Ready Q

YES

Contents of Ready =
Contents of QSAVE

Top of Ready Q
=QCB or RECB

Remove QCB from
Top of Ready Q

Get AKey to 1
Element, YES
Posted to itself
NO

Associated YES

QKEY = ejther
20r 3

Remove RECB from Top
and Replace with QCB

NO

Remove RECB from Top
of Ready Q and
Dispatch Associated QCB

!

Q9
Exif Select.

EXIT SELECT

Subroutine

Top QCB Key
Set to 3

Exit
Interface

IGGOIING
Implementation Module

SVC First Level Interruption Handler
and Second Level Interruption Handler

|
I SVC from QTAM
I Problem Program
I
|
I

QPOST
REG 1 4 RECB
REG 2 A QcCs
QWAIT

SLIH Creates SVRB and REG 2 ) QcB

Passes it to QTAM
Nucleus

I— Initialize Full STCB | ENTRY

| and Chain to Last ISNJERFfACE
Dispatched QCB ubroutine

| Al

| QWAIT or QPOST > SWAIT (69)

l_ . QPOST (67)

Set last dispatched QCB

Place specified
QCB address in

[
|
I
I
I
| RECB
|
I
I
I
I

Set up Parameters (A I;:ad{‘ Q)
in Registers for (‘ REsé;)

Priority

Priority Search Subroutine

QCB KEY
1 = not on Ready queue

2 = on Ready queve and ready to
be activated

3 = on Ready queue but STCB is waiting
for RECB and cannot be reactivated
until RECB is available

WAIT
Subroutine

Specified
QCB Key =2

Defer Entry
Subroutine

RECB Available

Exit Select
Routine

Remove RECB From
element chain

STCB on
Correct Chain

QDispatch

Defer Entry Subroutine

DEFER ENTRY
Subroutine

Specified
QCB Key=2

Skip Top STCB
in Chain

-——————-

PRIORITY SEARCH
Subroutine

Search Specified Chain by
Priority and Find Insertion
‘Point for ltem Passed

!

Set up Parameters
is Registers for
Queue Insert

QUEUE INSERT
Subroutine

v

Insert "ltem"

3)
Set up Parameters E:ggm) I into Chain
in Registers |
L Priority Search Subroutine I Dispatch
EXIT _—_—.—‘
INTERFACE
ISubroutine Past ECB for Full STCB

Associated with QCB on
Top of Ready Q

NO

()

Asynch. Interrupt

b

Wait on RECB in
STCB Associated
with Current TCB

Branch to 10$

Exit to
OS Dispatcher

®Figure 11. QTAM Nucleus

Logical Organization of QTAM 29



OUTLINE OF QTAM OPERATION

The following description is intended to
give a functional flow of messages through
the QTAM operation.

Processing of a CTAM message control
task is activated as a result of interrupts
(svCc, program control, disk, line end, and
line SIV) that occur during the sending and
receiving of a message. These interrupts
result in the processing of one or more
- asynchronously-operating QTAM-subtasks-or --
appendages. These subtasks communicate
with one another and the message control
task by means of the Qpost and Qwait func-
tions (see section on Qwait and Qpost).
When a subtask has a resource element to be
processed by another subtask, the element
is posted to a gueue representing that sub-
task. This is done in the problem program
by a Qpost supervisory call; the implemen-
tation subtasks branch to post in IECKQQO1.
Or an effective Qpost is issued by placing
the resource element control block (RECB)
in the buffer on the ready queue and the
address of the QCB in the first word of the
RECB. When a subtask is ready to receive
an element, the Qwait function is used.

The subtask sequence is managed by queuing
to the ready queue as discussed earlier
under Queue Management. The interference
of one liine with another is handled by the
queuing provided within the Qpost/Qwait
functions. This description shows the log-
ical sequence of events for a message
without regard for other suptasks and
interrupts that may occur and that do not
effect the processing of the message.
Therefore, when an element is posted to a
queue, the subtask associated with that
queue is activated immediately. Also for
the sake of continuity and simplicity, that
function of the (TAM nucleus that is
entered as the result of Qposting and
Owaiting is not included in this discus-
sion. The description takes the example of
a multisegment message ending in an EOB-EOT
from a nonswitched terminal.

Figure 22 is a functional flowchart of
the components of QTAM: message control
task, opens and closes, message processing
task, subtasks, and appendages. These com-
ponents are separated by solid lines. Also
on the flowchart, each subtask or module is
separated by broken lines. The labels on
the flowchart, Figure 22, are the names of
the routines. The functional blocks for
the routine follow the label. When more
detailed information is needed for a par-
ticular functional block, refer to the
detailed explanation of each routine.
detailed description also gives the

This

30

sequence number of the logical flowchart
for that routine. This detailed flowchart
contains the labels that are in the listing
of the routine. Note that some of the
labels in Figure 22 are names of LPS delim-
iter macros for that group of the LPS. The
function of the expansion of these macros
is also represented with a functional
block. For the QTAM nucleus subroutines,
see Figure 11 in the Logical Organization

—of QTAM section. =~ - -

This description is divided into five
sections: Initialization, Receiving, Send-
ing, Message Processing, and Closedown.

The flow of QTAM operation can be traced by
following the steps in the description of
the flowchart, Figure 22.

INITIALIZATION

The initial function of QTAM is
initiated by the OPEN macros in the problem
program. Upon discovering QTAM, the system
Open shifts control to the Open routines in
the transient area. These routines obtain
and initialize the control blocks (DEB,
DCB, and LCB/IOB), load QTAM resident rou-
tines into partition 0, and prepare the
lines for transmission.

Enter Message Control Task

1. Open disk (see Figure 12)
2. Open checkpoint data set
3. Open line groups (see Figure 13)

Enter OTAM Open Routines

® Open DASD
Message queues

1. Put the address of the terminal table
in the CVT.

2. Build DEBs.

3. Load Implementation module and store
the address in the terminal table.

4, Load the Checkpoint/Restart module and
store the address in the Implementa-
tion module. .

Load 2

1. Initialize the QCB whose address is in
the terminal table with the address of
the DASD destination STCB.

2. Execute subtask to put address of
IECKQQ01 in the Implementation module.

3. Free main storage for secondary DSCBs.

4. Replace offset tc polling list with



CvT

+156 TERMTBL

TERMTBL

+0

DCB

+4 §imp

+8 { DASD
Destination

Implementation routine

Figure 12.

e Open Checkpoint/Restart

1.
2.

+0 {LPS Q.
LPS+12 | Active BRB Q.

LPS +48 } Inactive BRB Q.

LPs +288 | TCB

LPS+304 { IGGOI9NH
LPs+316 | IECKOPAW
GETRET-8 { IECKQQOI

the polling characters and index

bytes.

108
+28 {108
+44 {DEB
+20 }DCB
DASD/QCB
+8 | DASD Dest.
STCB if DEB
Process QCB
+12 | DASD Dest.
sTc +24 }pCB
QCB for QCB for
Active BRB Q. Inactive BRB Q.
+4 | IECKBUFF +4 } IECKRQ

Put buffers in the available buffer

queue.

Put buffer request blocks (BRB) in

inactive BRB queue.

Blocks Initialized by Open Direct Access Device

e Open Line Group Executors

Load 1
1. Build DEB.
2. If the line group is a WTTA line

Calculate size of checkpoint records.
For disposition NEW, write control

record for first record of data set Load
and two dummy checkpoint records.

For disposition OLD, the control rec- 1.
ord is read from the disk. 2.
If not for a restart, the data set is
formatted. If this is initialization Load
for a restart, the checkpoint record

is read (into the work area obtained 1.
by a GETMAIN). The data previously

recorded is restored. 2.

group, load the WITA Line Appendage
module and establish linkages with the
Implementation module. :

2

Build ILCBs and IOBs.
Build NOP, SAD, or Enable commands.

3
Load BTAM Read/Write module and skele-

ton CCWs.
EXCP for each line.

Outline of QTAM Operation 31



LCB

+18 { STCB if INPUT
DCB DEB
e 2 fion ]
+24 {pcs
+12  link address +32 fLCB
48 108 +44 {DeB
+68 {DCB
TCB
+18 | DEB
QCB to
Ready Queue
QATTACH
full STCB
+4 element
chain
READY
DUMMY] {aAtTACH
Figure 13. Control Block after Open Line Groups

The channel program for a SAD, Enable or
NOP is executed to put the line in receive
status. IOS gives control to the SIO Line
Appendage routine, which requests that
Error Recovery Procedures be given control.
The Special Open and Checkpoint routine in
the ERPs checks for SIO errors. If there
was a normal Start I/0, return is made to
I0S. The channel end/device end interrupt
gives the Line £nd Appendage control. If
IDLE has been specified, return is made to

I0S. Otherwise, the LCB is posted to
itself, i.e., the QCB and RECB are the same
address.

The STCB for the Receive Scheduler is in
the LCB if the line was opened for input.
(If the line was opened for output, the
STCB is for the (Qdispatch subroutine.) The
receive scheduler STCB contains the address
of the Receive Scheduler routine, which
gets control.

Enter Receive Scheduler subtask

e Receive Scheduler routine

1. Test for end of polling list.
2. If not end of polling list, set LCB-

32

STATE for receiving (X'08). (Assume
not end of polling list.)

3. Branch to BRB-Ring routine.

If it is the end of the polling list, the
End of Poll Time Delay routine is entered.
If a time interval is specified, the Send
Scheduler is placed in the LCB that trans-
mits messages during the interval (receive
has priority over sending) or until all
messages on the queue have been sent
(receive and send have equal priority).

e BRB-Ring routine

1. Build ring of buffer request blocks
(BRB) to be used for dynamic buffer
allocation. (BRBs are obtained from
the inactive BRB queue.)

2. Make BRBs unaddressable.

3. Post the first BRB to the active BRB
queue with high priority.

The number of BRBs in the ring is equal
to the value specified in the BUFRQ
operand. The address of the first BRB in
the ring is stored in the LCB so the Acti-
vate routine can gain access to it later.
The first BRB is then posted with a priori-



ty of X'EC' to cause immediate servicing of 1. EXCP is issued for each line to cause
the request for a buffer. each line to be made ready.

Load 4
Enter Active BRB subtask

1. Test for completion of I/0 on each

e Active BRB routine (High priority) line. If I/O has not completed there
is a 30-second delay.
1. Test for available buffer (assume 2. Return is to the message control
available). If the buffer is not program.
available, the request is put into the
active BRB chain of requests. For option 2 (MFT) and option 4 (MVT) a
2. Branch to Buffer BRB routine. Start Initiator function should be em-
ployed. This will load the message pro-
* Buffer BRB routine cessing program into another partition or
region. (See the section on Initializing
1. Assign empty buffer for receiving; Message Processing Prcgram.) The message
i.e., the LCB address is placed in the processing program gains control when the
prefix of the buffer. message control task enters a WAIT state.
2. Post empty buffer to LPS queue with Figure 14 illustrates the formation of the
priority of X'EQO"'. BRB ring and relation of the buffer to
queues.

Return is to Open Load 3 as the result of
the EXCP.
RECEIVING
Open Line Group Executors
Now there is an empty buffer for each

Load 3 line chained on the LPS queue and a ring of
QCB for
LPS Queue
QCB for
Ready
Queve
RECB empty buffer
LCB
o
BRB BRB L BRB
EC — EC — EC
08 08 08
— P
0  Les 0 f Les 0 bl

Figure 14. Buffer keady to Receive Message from Line

Outline of QTAM Operation 33




BRBs for each line. The next function is 3. Since buffer is available, set MSTATUS
to read the messages from the terminal into to 5 and branch to the Activate
the buffers. To do this, the CCWs must be routine.
prepared for a particular terminal.
e Activate routine
e ENDREADY macro instruction
1. Prepare CCW for entire buffer in first

1. Establish save registers. BRB (buffer address, operation code,
2. Issue an SVC Qpost to enter the check- count) .
point subtask. 2. Build DECB for BTAM Read/Write
routine.
Enter Checkpoint Subtask 3. Branch to BTAM Read/Write routine.
® Checkpoint routine ¢ BTAM Read/Write routine
1. Set interval time via the Time Delay 1. Prepare CCWs for terminal selection
-~ --routine (if CPINTV is-specified). - - and reading first segment (address in
2. Release main storage obtained in the DECB) .
Open Checkpoint (if restart). 2. Issue EXCP supervisor call.
3. Return to ENDREADY via the full STCB
of the SVC gQpost. e I0S branches to SIO Appendage
ENDREADY continued e Line SIO Appendage routine (refer to
Figure 11)

1. Branch to LPS Control routine.
1. Move TIC command from BRB to end of

¢ LPS Control Routine BTAM-prepared CCWs.
2. Test for send request on line or end
1. Set up registers for Activate routine. of polling 1list.
2. 1Issue an SVC Qwait for buffer in LPS 3. Get poll characters for next terminal
queue (empty buffer posted in Buffer that can be polled.
BRB routine). 4. Change poll CCW to point to poll
LCB
LCBCPA
BTAM
Channel
Buffer
MSLCB Program
Read
Dcf04|
PCI
TIC
DECB
+12 {First { BRB BRB BRB
Buffer
TIC TIC TIC
{1cs fLcs Tt

Figure 15. Channel Program Prepared for First Buffer

34



”

characters found in terminal table.
5. ©Set PCI flag in the BTAM Read CCW.

e IOS issues Start I/0
Return is to the LPS Control routine.
e LPS Control routine

1. Issue a SVC Qwait for buffer in LPS
queue.

After a Start I/0O is executed for each
line, the LPS Control routine will find no
buffers on the LPS queue. The message con-
trol task will enter a wait state. Subse-
quent I/0 interrupts activate subtasks that
cause buffers to be posted to the LPS
queue, allowing the message control task to
continue.

PCI INTERRUPT (RECEIVING THE FIRST BUFFER)

The PCI Appendage is entered as a result
of a PCI flag set in the BTAM CCW by the
Line SIO Appendage. This PCI interrupt is
to allow buffers to be assigned to the BRBs
in the chain.

e PCI Appendage routine
1. Post (effective) all BRBs except the

first to the active BRB queue with
high priority to obtain a buffer.

Enter Active BRB subtask

e Active BRB routine

1. Obtain empty buffer from the available
buffer queue (assume available).
2. Branch to Buffer BRB routine.

¢ Buffer BRB routine

1. Assign empty buffer for receiving.

2. Set MSTATUS to 5 to signify empty
buffer.

3. Post empty buffer to the LPS queue
with priority of X'EO0'.

Enter Message Control task

¢ LPS Control routine

1. Set up register for Activate routine.
2. Branch to Activate routine (empty
buffer).

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Clear low-order bits from TIC command
in previous BRB to make it
addressable.

3. Branch to LPS Control routine.

e LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

PCI INTERRUPT (RECEIVING ALL BUFFERS EXCEPT
FIRST)

PCI Appendage is entered as a result of
a PCI flag in the QTAM CCW in the BRB in
the ring. The PCI interrupt is needed to
return the BRB to the active BRB queue so
it can be reassigned. This interrupt also
indicates that the preceding buffer is full
and ready for the LPS macro instructions as
shown in Figure 16.

e PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority.

2. Post (effective) all message-filled
buffers to LPS queue (via interim LPS
queue).

Enter Active BRB subtask

e Active BRB routine (low priority)

1. Chain BRB into active BRB element
chain.

The interim LPS subtask is entered to post
the buffer to the LPS queue. This subtask
provides a means of delaying the processing
of all buffers until all BRBs are pro-
cessed. Since a PCI interrupt may be
missed due to extended CPU disable time, a
buffer may be out of order.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.

2. Branch to LPSTART (message-filled
buffer).

e RCVSEG portion to LPS

e RCVHDR portion of LPS (if header)

e ENDRCV macro instruction

1. Test for end of message, MSTATUS=X'42'
(assume not end of message).

2. Branch to Cleanup routine.

e Cleanup routine

1. Post buffer to DASD process or

destination queue specified by the
ROUTE or DIRECT macro.

Outline of QTAM Operation 35



QCB for
Ready Q.

RECB

Used
BRB

QCB for
Active BRB
Queue

Figure 16. Effect of PCI Interrupt

If posted to a process queue, the Get
Scheduler routine is entered; if posted to
a destination queue, the Send Scheduler
routine is entered. After the Send Sched-
uler has been entered, the STCB in the DASD
destination queue changes to point to the
DASD Destination routine. Therefore, con-
trol would pass to the DASD Destination
routine and exit to the Qdispatch subrou-
tine to dispatch the next item on the ready
queue. Both schedulers use the common code
of the DASD destination routine. (If GET
has been previously issued in message pro-
cessing program, posting to the process
queue is changed. This is covered later in
the Message Processing section.)

e DASD Destination routine:

1. Assign direct access location.

2. Reserve and record location of direct
access space for next message and/or
segment.

3. Post (effective) buffer to disk 1I/0
queue.

4. Return to scheduler.

s Send Scheduler routine

1. Set 'line trying to send' bit in LCB
(LCBINCAM = X'01') (Assume line is not
free so the Send Scheduler will wait
for the line to be free.)

2. Place send Scheduler STCB in LCB's
STCB chain.

36

RECB

message —
filled
Buffer

Destination

LCB

QCB for
Interim
LPS Queve

Destination

Qcs

DASD
Destination

STCB

Message is queued for sending

Send
Scheduler
STCB

Message is queued for sending

Enter Disk I/0 subtask

e Disk I/O0 routine (write)

Receive
Scheduler
STCB

1. Convert relative record number to
‘ actual DASD address.
2. Execute EXCP supervisor call.




Return to Message Control task

e LPS Control routine
1. Issue a SVC Qwait for buffer in LPS
queue. At this point there is no buf-

fer on the LPS queue so the message
control program enters a wait state.

TIMER INTERRUPT - CHECKPOINT INTERVAL

Enter Checkpoint/Restart routine

1. 1Issue a GETMAIN for main storage
required for checkpoint record.

2. Transfer data to work area (informa-
tion from terminal table, polling
list, LCB, and QCB).

3. Chain element to disk I/0 queue below
any other request for a Disk Write.
(If no elements are in the queue and
EXCP is issued for the disk
operation.)

Note: The first buffer has now been read
from the line and processed by the LPS
macros. The operations now in progress,
filling the second buffer from the line and
writing the first buffer to the disk, cause
the following possible interrupts.

1. Channel ends/device end from the disk
indicating the Disk Write operation is
complete. Control passes to the Disk
End Appendage routine.

2. PCI indicating another full buffer has
been received.

3. Channel end/device end from the line
indicating an EOB was received from
the terminal. Control passes to the
Line End Appendage routine.

4. Channel ends/device end/unit exception
from the line indicating an EOT was
received from the line. Control
passes to the Line End Appendage.

In this example, it is assumed that the
channel ends/device end from the disk opera-
tion occurs first and the others follow in
order given.

DISK INTERRUPT (RECEIVING)

The Disk End Appendage is entered as the
result of a disk operation. This interrupt
is used to free the message-filled buffer
and to initiate for another disk or read
operation.

e Disk End Appendage routine

1. Place the disk I/0 QCB (effective
Qwait) on the ready queue to initiate
another disk operation if one is
stacked. (Assume none.)

2. Post buffer to available buffer queue.

Enter Available Buffer subtask

e Available Buffer routine

1. Find and remove BRB (from PCI inter-
rupt) from active BRB element chain.
2. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Assign empty buffer for receiving.
2. Post empty buffer to LPS queue.

Now that a buffer is available, it can
be assigned to a BRB and used to continue
reading the message. Note that the basic
structure of the channel program has been
set, therefore all that is needed is to
complete the CCW. Figure 17 shows the
normal path of a buffer. Actually the buf-
fer is chained to the ready queue; however,
the diagram shows the logical association
between the buffer and function to be
performed.

Enter Message Control task

e LPS Control routine

1. Set up registers for Activate routine.

2. Branch to Activate routine (empty
buffer).

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Clear low-order bit from TIC command
in previous BRB.

e Return is to LPS Control routine

1. 1Issue a SVC Qwait for buffer in LPS
queue.

DISK INTERRUPT--CHECKPOINT WRITE

Enter Checkpoint/Restart Routine

1. If there are errors, a WTO macro is
issued for a message. (Assume no
errors.)

2. If the complete record has not been

written, another disk operation is
started.

Outline of QTAM Operation 37



Available
Buffer
Queue

Assign empty buffer to line

Insert in
available
buffer chain

Uy

Disk /O
Queve

Write on disk

BRB/CCW I~

e e e e = e

Assign
to CCW
LPS
Queve <
Send to
disk destination

Figure 17.

3. When complete record is written, the
control record is written.

4, FRZEMAIN is issued to free the check-

point record.

5. Timer is

6. Dispatch next item on queue.

LINE END INTERRUPT (RECEIVE AN EOB)

reset.

DASD
Destination
Queve

Path of a Buffer for Receiving

1.

~ Data filled buffer
~

~

~
N

—_—— = TNl - Interim

LPS Queue

--=- = = - -=--- empty buffer
————— data in buffer
data after LPS

e RCVHDR portion of LPS (if header)

¢ ENDRCV macro instruction

Test for end of message
(MSTATUS=X'42"').

¢ EOB or EOBLC macro instruction

1.

Branch to EOB or EOBLC routine.

e EOB or EOBLC routine

The Line End Appendage routine is 1.
entered as a result of an EOB indication.
The CCW must be set up to read the rest of 2.

the buffer.

e Line End Appendage routine

1. Check for errors.

2. Post message-filled buffer to LPS

queue.

Enter Message

Control task

e ILPS Control

1. Set up registers for LPS.

routine

2. Branch to LPSTART.

* RCVSEG portion of LPS

38

Set up "first buffer" and "read con-
tinue" flags for Activate routine.
Branch to Activate routine.

e LPS macro instructions for error checking
of received messages.

¢ Activate routine

1.
2.

3.

Prepare CCW for entire buffer in BRB.
Prepare DECB for BTAM Read/Write
routine.

Branch to BTAM Read/Write routine.

¢ BTAM Read/Write routine

1.

2.

Prepare CCWs to respond to EOB and
read portion of buffer that follows
EOB.

Execute EXCP supervisor call.




e I0S branches to Line SIO Appendage
¢ Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

e JOS issues Start 1I/0
e LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
gueue.

LINE END INTERRUPT (RECEIVE WRU SIGNAL ON
WTTA LINE)

The WTTA Line Appendage routine is
entered as a result of a WRU indication.
If EOM is different from WRU, the CCW must
be set up to read the rest of the buffer.

e WITA Line Appendage routine

1. Check for errors.

2. If this is the first buffer, the
requested identification exchange is
performed. On completion, restart the
Read CCW. If this is not the first
buffer, post it to the LPS queue, and
set the "WRU" flag in the LCB.

Enter Message Control Task

e LPS Control routine
® RCVSEG portion of LPS
e ENDRCV macro instruction
1. Test for end of message
(MSTATUS=X"42"').
2. Branch to EOB routine.
¢ EOB routine
1. Set up "first buffer"™ and "read con-
tinue" flags for Activate routine.
2. Branch to Activate routine.
e Activate routine
1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for BTAM Read/Write
routine.
3. Branch to BTAM Read/Write routine.
e BTAM Read/Write routine
1. Prepare CCW for ID Exchange and read
portion of buffer including WRU.
2.. Execute EXCP supervisor call.

e I0S branches to line SIO Appendage.

e Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

e I0S issues Start I/0.
e LPS Control routine

1. 1Issue an SVC Qwait for buffer in LPS
queue.

LINE END INTERRUPT (RECEIVE EOT--RECEIVE
EOT/EOM ON WTTA LINES)

The Line End Appendage is entered as a
result of an EOT indication.

e Line End Appendage routine
1. Check for errors.

2. Post buffer to LPS queue.

Enter Message Control Task

s LPS Control routine

1. sSet up registers for LPS.
2. Branch to LPSTART.

¢ RCVSEG portion of LPS
e RCVHDR portion of LPS (if header)
e ENDRCV portion of LPS
e EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routine.
e EOB or EOBIC routine

1. Test for EOT.
2. Return to LPS macro instruction.

e LPS macro instructions to perform error
checking

e POSTRCV macro instruction
1. Branch to Cleanup routine.
¢ Cleanup routine

1. 1Issue a SVC Qpost to post buffer to
DASD process or destination gueue.

Note: Enter DASD Destination routine and
disk I/0 subtask as already explained under
the PCI Interrupt section (receiving all
buffers except first). Upon returning to
the Cleanup routine the following functions
have been performed:

Outline of QTAM Operation 39



1. Allocated disk location for text
segment.

2. Placed necessary linkages in text
prefix.

3. Initiated Disk Write operation for
last buffer.

Return to Cleanup routine

e Cleanup routine (continued)

1. 1Issue an SVC Qpost to post any
assigned but unused buffers to the
available buffer queue.

2. Branch to Free BRB routine.

s Free BRB routine

1. Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in the
active BRB queue it is not posted. A
flag is set so that when this buffer
is available it is not assigned and
the BRB is posted to the inactive BRB
.queue.)

2. 1Issue an SVC Qpost to post the LCB to
itself to free the line.

The LCB contains the STCB for either the
Receive or Send Scheduler depending upon
the priority of sending and receiving. The
following priorities may be specified for
nonswitched lines.

1. Receive over send: Messages are sent
only during the polling interval
delay. If no polling delay is speci-
fied, no messages are sent.

2. Receive equal to send: For WTTA
lines, messages are sent if an EOT
signal has been received. For all
other lines, messages are sent at the
end of the polling list. All messages
queued for that line are sent before
polling is reinitiated.

3. Send over receive: Messages are sent
at EOT time, at the end of polling
list, and after a negative response to
poll.

The STCB contains the address of the
scheduler subtask in the link field. When
the LCB is posted to itself and is subse-
quently dispatched, the STCB is activated
so that the Send Scheduler routine (assume
line is free to send) is entered.

SENDING

Sending is initiated when a line is
free, and a full message has been received.
The message must be read into buffers and
then the header rewritten on the disk with
the "message sent" flag set. (See Figure
18.) The buffers are then routed through
the send LPS.

Enter Send Scheduler subtask

¢ Send Scheduler routine

QCB
Ready
Queve
Dummy
QCB
RECB RECB
Disk 1/O
Buffer BRB
BRB BRB
Figure 18. Ready Queue at Sending Time

40



1. Test for full message in queue.
2. Branch to BRB-Ring routine.

* BRB-Ring routine

1. Build ring of BRBs used for dynamic
buffer allocation.
from the inactive BRB gleue.)

2. Post first BRB to disk I/0 queue.

Return to Message Control task

e LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
- queue.

Enter Disk I/0 subtask

e Disk I/0 routine (read)

1. Assign buffer from available buffer
queue for Disk Read. (If no buffer

available, BRB is posted to active BRB

queue.)

2. Put buffer on disk I/0 queue before
BRB (BRB is a request to read buffer.)

3. Convert relative record number to
actual DASD address.

4. Execute EXCP supervisor call.

DISK INTERRUPT (SENDING - HEADER)

The Disk End Appendage is entered as a
result of a disk operation. This interrupt
is used to initiate the writing of the buf-
fer back on this disk.

e Disk £nd Appendage routine (read)

1. Assign sequence number and set "mes-
sage sent" flag in prefix.

2. Return to IOS to rewrite buffer on
disk.

DISK INTERRUPT (SENDING - ALL BUFFERS)

The Disk End Appendage is entered as a
result of a disk operation. Note that the
buffer containing the header enters the
Disk End Appendage twice (read, rewrite).
Now that the header has been written back
on the disk the message-filled buf fer can
be sent through the send LPS. This inter-
rupt also provides the opportunity to
initiate the reading of the next buffer
from the disk.

e Disk End Appendage routine

1. Post (effective) buffer to LPS queue.

2. Set up next BRB to read next segment
of message.

3. Turn off the "send" bit so that the
buffer can go through send LPS.

(BRBs are obtained

4. Post next BRB to disk I/0 queue if
available buffer for read.

Enter Disk I/0 subtask

e Disk I/0O routine (read)

1. Assign buffer from available buffer
queue for read. (If no buffer is
available, BRB is posted to active BRB
queue.)

2. Put buffer on disk I/0 queue ahead of
BRB (BRB is a request to read buffer).

3. Convert relative record number to
actual DASD address.

4. Execute EXCP supervisor call. Since
this routine was entered through an
appendage, an EXCP may not be able to
be executed. If the disk is idle, a
SI0 element (STARTIO) is posted to the
LPS queue. The LPS Control routine
would then issue the EXCP.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

e SENDHDR macro instruction

1. Test for complete "message sent,"
"serviced" bit MSTATUS=X'10"'. (Assume
complete message not sent).

2. Branch to header portion of LPS.

e SENDHDR portion of LPS (if header)

¢ ENDSEND macro instruction

1. Branch to Activate routine.

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Indicate "message sent" flag in
prefix.

3. Prepare DECB for BTAM Read/Write rou-
tine (first buffer).
For all buffers except first:

4. Clear low-order bits from TIC command
in previous BRB.

5. Set "PCI" flag in CCW.

6. Branch back to LPS Control routine.

e BTAM Read/Write routine

1. Prepare CCWs for terminal selection
and writing first segment.

2. Execute EXCP supervisor call.

3. 1I0S branches to Line SIO Appendage

e Line SIO Appendage routine

Outline of QTAM Operation 41



1. Move TIC command from BRB to end of
BTAM-prepared CCWs.
2. I0s issues Start I/0

The sequence of Disk End Appendage, disk
I/0 subtask, and message control task is
repeated for each buffer. For the last
buffer the BRB is not posted to the disk
1/0 queue, but the disk I/0 QCB is chained
to the ready queue to request another
operation.

Return to LPS Control routine

* LPS Control routine
1. Issue an SVC Qwait for buffer in LPS
queue.
PCI INTERRUPT (SENDING)

The PCI Appendage is entered as a result
of a "PCI" flag set in the CCW for every
buffer except the first.

e PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority.

2. Post (effective) buffer to available
buffer queue.

Enter Active BRB subtask

e Active BRB routine (low priority)

1. Chain BRB into active BRB element
chain.

Enter Available Buffer subtask

s Available Buffer routine

1. Find and remove BRB (from PCI inter-
rupt) from active BRB element chain.

2. Test if valid or idle BRB. When there
is no more to read, the buffer is
placed in the available buffer chain
and the next item is dispatched.

3. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Reserve buifer for Disk Read.
2. Post BRB to disk I/O queue.

Enter Disk I/0 subtask

e Disk 1I/0 routine (read)

1. Assign buffer from available buffer
queue for Disk Read.

2. Put buffer on disk I/0 queue ahead of
BRB (BRB is a request to read buffer).

3. Coavert relative record number to
actual DASD address.

4. Post disk request element to LPS

queue, if disk is idle (assume true
for this case). Execute EXCP super-
visor call, if disk is not idle. The
Start I/0 element is the CCWs created
by Disk I/O routine for reading the
next segment.

QCB QCB

for for
Ready LPS
READY Queuve Qusve

DUMMY

]

Start 1/O

o]

buffer

Start 1/O Element on Ready Queve

Enter Message Control task

¢ LPS Control routine
1. 1Issue EXCP supervisor call for disk.

Disk End Appendage is same as explained
under Sending - All Buffers.

LINE END INTERRUPT (SENDING - EOB)

The Line End Appendage is entered as a
result of an EOB indication.

e Line End Appendage routine

1. Check for errors.

2. Return to I0OS to read EOB.
LINE END INTERRUPT (SENDING - RESPONSE TO
EOB)

The Line End Appendage is entered as a
result of a response to an EOB.

e Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.



Entexr Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPS.

* SENDHDR macro instruction

1. Test for complete message sent.

2. Branch to the macro instructions fol-
lowing ENDSEND, as a complete message
has been sent (EOB).

¢ EOB or EOBLC macro instruction
1. Branch to EOB or EOBLC routines.
e EOB or EOBLC routine

1. Set up "first buffer" and "write con-
tinue®" flags for Activate routine.

2. Branch to Activate routine.

s Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for Read/Write routine.

¢ Read/Write routine
1. Prepare CCW to write portion of buffer
that follows EOB.
2. Execute EXCP supervisor call.
¢ I0S branches to Line SIO Appendage

e Line SIO Appendage routine

1. Move TIC command from BRB to end of
prepared CCW.

¢ T0S issues Start I1I/0

Return to LPS Control routine

e ILPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

Available reserved buffer pisk

3,::; ........................................... - /0 Queve

T

 buffer

message read from
1 returned isk

e — = = ]
Q.

sent through LPS Lps

Queue

CCW/BRB

Path of buffer for sending

Path of Buffer for Sending

LINE END INTERRUPT (SEND EOB/EOT)

The Line End Appendage is entered as a
result of an EOT indication. Now the buf-
fer is ready for the send LPS. Also the
EOT indicates that all BRBs and the line
can be freed.

* Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

e SENDHDR macro. instruction

1. Test for complete message sent
(MSTATUS=X"'10"').

2. Branch to the macro instructions fol-
lowing ENDSEND, as a complete message
has been sent (EOB).

e EOB or EOBLC macro instruction
1. Branch to EOB or EOBLC routine.
e EOB or EOBLC routine

1. Test for EOT following EOB.
2. Return to LPS since line interrupt is
for EOT.

e LPS macro instruction for error checking
* POSTSEND macro instruction

1. Branch to Cleanup routine.
¢ Cleanup routine

1. Issue an SVC Qpost to post the buffer
to available buffer gqueue.

2. Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in the
active BRB queue, it is not posted. A
flag is set so that when a buffer is
available it is not assigned and the
BRB is posted to the inactive BRB
queue.)

3. 1Issue an SVC Qpost to post the ICB to
itself.

Enter Send Scheduler subtask

e Send Scheduler routine

1. Test for full message in queue.

2. Since no messages are now in the
queue, the Send Scheduler removes the
STCB from the line and places it back
in the destination line QCB's STCB
chain.

Outline of QTAM Operation 43



The line (LCB) would now be free to
execute the next STCB on its chain, which
may be the Receive Scheduler or another
Send Scheduler for another terminal on its
line.

Enter Receive Scheduler (If send and
receive have equal priority)

Cycle now complete.

MESSAGE PROCESSING

The procedure for routing buffers to a
message processing program before a GET has
been issued is similar to the description
in the Receiving section. The only dif-
ference is that the messages are posted to
the DASD process queue and the GET Schedul-
er is entered, which branches to the DASD
destination routine. Prior to the first
GET the incoming buffers accumulate on the
DASD process queue.

Enter Message Processing task

1. Open process queues.
e Open Process Queue routine

1 Build DEB (144 bytes).

2. Build chain of message processing
DEBs.

3. Initialize BRB and QCB in DEB.

4. Load Get and/or Put modules.

DEB MS Process DASD Process QCB

+36 { 1ECK sTOP
+ 40 CB +4
44 { QPRIRTY Q
subtask +8 f GET Scheduler
+48

+52 | 'FE* (priority) 12 fues

+56 { Qcs for

DASD Process Q.

+60 | ‘07 1 LCB BRB
DEB MS Destination
+32
+3e BRB QCB
+40 |18’ { QPRIRTY
+ 44

Process OPEN

Process OPEN

o

Return to Message Processing task

The first GET is to initialize the pro-
cess of reading the buffers from the disk.
No buffers could be queued to the MS pro-
cess queue until this time because the mes-
sage processing queue may not have been
opened.

1. Issue GET.
e Get routine

1. Test for message in queue (if none,
exit to EODAD).

2. 1Issue an SVC Qpost to post the preced-
ing buffer to return buffer queue
(first time dummy buffer in BRB of
process DEB is used).

Entexr Return Buffer subtask

e Return Buffer routine

1. Make BRB eligible for reading into MS
process queue.
2. Branch to Get Scheduler routine.

¢ Get Scheduler routine (special entry)

1. Get address of DASD process queue.

2. Test to see if BRB is eligible for a
read MSTIC=3. (assume it is eligible)

3. Set the relative record number of the
header segment on the DASD process
gueue in BRB.

4. Indicate disk operation for buffer in
BRB (MSTATUS=9).

5. Post BRB to disk I/0 queue for read.

Enter Disk I/0 subtask (read)

e Disk I/0 routine

1. Test for buffer available (assume
available)

2. Assign buffer from available buffer
queue for Disk Read.

3. Put buffer on disk I/0 queue ahead of
BRB. (BRB is requested to read
buffer.)

4. Convert relative record number to
actual DASD address.

5. Execute EXCP supervisor call.

Return to Get routine

1. Issue an SVC Qwait for a buffer.

If the MS process queue had a message,
this wait would be satisfied. However to
illustrate a complete cycle, the disk end
procedure follows. The disk operation
replenishes the MS process queue depleted
by a GET (if there is a buffer in the DASD
process queue). Therefore the disk I/O
operation overlaps with the processing in
the user's processing program.



DISK INTERRUPT (FIRST BUFFER - HEADER)

The Disk End Appendage is entered as a
result of a disk operation.

Disk End Appendage routine (read)

1. Indicate message sent and assign
seguence number.

2. Return to IOS indicating that Start
1/0 is for a rewrite to write the mes-
sage back on disk.

DISK INTERRUPT (REWRITE)

The Disk End Appendage is entered as a
result of a disk operation.

s Disk End Appendage routine (BRB is still
a request to read a buffer).

1. Remove BRB and buffer from disk I/0
queue.

2. Put puffer in MS process queue.

3. Test for more space in MS process
queue. (Assume more space.)

4. Set up for new Disk Read to £ill Ms
process queue.

5. Post BRB to disk I/0 queue to cause
the reading of the next segment.

The wait is now satisfied for a buffer
in the MS process queue.

Return is to the Get routine

e Get routine (continued)

1. Move buffer to work area.
2. Return is made to the message process-
ing program.

For Get Message and Segment if the buf-

fer is empty or it is not end of message,
another buffer is requested.

Enter Message Processing task

1. Execute modifying and examining macro
instructions.

After the first GET has been issued,
then the MS process queue can continue to
be filled. If a message is posted to the
process queue after the first GET and there
is space in the MS process queue, the buf-
fer is put in the MS process queue without
actually doing the Disk Read. (See Figure
19.) This procedure is initiated when the
Cleanup routine posts a buffer to the DASD
process queue as follows.

Enter the Get Scheduler subtask (activated
by posting the buffer to the DASD process

queue)

e DASD Destination routine

1. Assign direct access location.

2. Reserve and record location of direct
access space for next message.

3. Post (effective) buffer to disk I/0
queve for write.

® Get Scheduler routine

1. Test for EXPEDITE (assume not
EXPEDITE) .

If EXPEDITE, the message is not put on
the disk but is put directly into the
MS process queue.

2. Test for space in MS process queue.
(Assume space.)

3. Test for disk address in BRB. (Assume
disk address is the same as for write
in DASD destination routine. This BRB
is in the active BRB queue as a result
of the post to the disk I/0 gqueue by
Disk End Appendage.)

4. Post BRB to disk I/0 queue for read.
{Second element on disk I/O queue,
BRB, is now a request to read first
element.)

Enter Disk I/0 subtask

® Disk I/0 routine (write)

1. Convert relative record number to
actual DASD address.
2. Execute EXCP supervisor call.

DISK INTERRUPT

The Disk End Appendage is entered as a
result of a disk operation.

* Disk End Appendage routine (write)

1. Remove BRB and buffer from disk I/O
queue.

2. Put buffer in MS process queue.

3. Test for more space in MS process
queue. (Assume space.)

4. Set up for disk read.

5. Post BRB to disk I/O queue.
to fill up MS process queue.)

(Continue

Enter Message Processing task (when Message
Control task enters a WAIT state)

1. Issue GET (not first time)

s Get routine

Outline of QTAM Operation 45



Chained to DASD Queue

read into buffer
written on disk rewritten if header Buffer

DASD Process Queue

Before first GET or MS Process Queue filled.

Chained to DASD and
MS Queue

DASD Process Queue

N—

chained to MS Queue

d on GET
MS Process Queue moved on work area

written on disk

Buffer returned on next GET.

(2
After first GET, MS Queue not filled. e

Buffer

MS Process moved on GET
Queve

work area

Figure 19. Queuing in Message Processing

1.

2.

Test for message in DASD process
queue.

Post preceding buffer to return buffer

queue.

Enter Return Buffer subtask

e Return Buffer routine (not first time)

1.
2.

3.

Note:

Make BRB eligible for Disk Read.
Post (effective) buffer to available
buifer queue.

Branch to Get Scheduler routine.

Get Scheduler, Disk I/0, Disk End

Appendage, and Message Processing are the

e

Buffer returned on next GET.

same as in posting buffer to process queue
after first GET.

Enter Message Processing task

1. 1Issue PUT macro instruction.
¢ Put routine

1. Set high priority in BRB in destina-
tion queue in DEB.

2. 1Issue an SVC Qpost to post BRB to
active BRB queue.




QCB

for

Ready
Queve
QcCB
N
for
Active
BRB Queue
BRB \\\\\\‘
Buffer
full STCB
to PUT

to return ‘
[
]
|

Figure 20. Ready Queue to Obtain Message

Enter Active BRB subtask ¢ Return to Put routine
e Active BRB routine 1. 1Issue an SVC Qwait for new filled
buffer.
2. 1Issue an SVC Qpost to post the buffer
- 1. Assign empty buffer fror available to DASD destination QCB.
buffer gqueue.
2. Branch to buffer BRB routine. Note: The results of the post to the DASD

destination queue are as explained in the
section on Receiving. The message is now
e Buffer BRB routine sent out to the terminal as explained in
the section on Sending.
1. Make BRB into QCB for MS destination

queue.
2. Exit to Put routine CLOSEDOWN
e Return to Put routine (special entry in Enter Message Processing Task

supervisory mode)

1. Move message from work area to buffer. 1. Issue CLOSEMC macro instruction.
2. Post puffer to MS destination queue.
e Close routine
The STCB for the MS destination queue is

QPRIORTY, which inserts the buffer in the 1. Turn off master receive switch by the
queue and dispatches the next item on the move data subtask. This is to prevent
ready queue. In Figure 21 the MS destina- further receive operations.

tion queuwe will be removed and the full

STCB will be dispatched to return to the 2. Issue a STOPLN macro for all active
Put routine. lines.

outline of QTAM Operation 47



QcCB

for Ready Queve [~

Buffer

QCB

for MS
Destination Queue

full STCB

i
| |
i
v T—
Ready Queue After Obtaining

Figure 21.
Message

e Stop Line routine

1. Issue a Halt 1/0 for all dial lines or
2740 terminals (basic or with check-
ing) that are not in active
transmission.

2. Issue an SVC Qwait for the LCB. This

wait can be satisfied by

a. End of poll list,

b. Negative response with "send" flag
for the LCB,

c. Completion of current operation,

d. Completion of interval delay,
which will indicate that the line
is free.

3. Return to Close routine.

* Close routine

1. Issue STARTLN macro instruction.
e Start Line routine

1. Set up SAD/Enable or NOP command.

2. 1Issue a SVC Qpost to post LCB to queue
QCB to get in supervisor mode.

48

¢ Queue routine (in Line Change Routine)

1. EXCP

2. Dispatch next item on queue. This
should be the full STCB to return to
the Start Line routine, which returns
to the Close routine.

This starts all lines for output only.
The master receive switch keeps the input
lines inactive. The Close routine returns
to the message processing task.

Return to Message Processing task

1. Issue CLOSE process queue macro
instruction.

¢ Enter Close Process Queue routine

1. Remove DEB for each DCB from DEB chain
and TCB chain.

2. Test for general closedown. (Assume
general closedown. If not, return.)

3. Issue a STOPLN macro instruction.

e Stop Line routine

1. 1Issue a Halt 1I/0 for all dial lines or
2740 terminals (basic or with check-
ing) that are not in active
transmission.

2. Issue an SVC Qwait for the LCB.

3. Return to Close Process Queue routine.
(All process queues have been closed.)

e Return to Close Process Queue routine
4. Post request for message control close

to LPS queue.

Return to Message Control Task

¢ LPS Control routine

1. Test for request for closedown.
2. Branch to CLOSE macro instructioms.

e Close line group routine

1. Free main storage for LCB.

2. Clear DCB pointers.

3. Purge request for I/0 on each line.
4. Disable all dial lines.

¢ Close DASD routine

1. Clear terminal table from the communi-
cations vector table.

2. Post as complete the event control
block to return to the message pro-
cessing task.

The message processing task is now com-
plete and the system does the deallocation
to terminate the job.



QTAM OPEN EXECUTORS
Build DEB for [OPEN
DASD Queve DASD

Put Address
of Terminal

Table in CVT

Load
Implementation
Module

Store Address of
Implementation
Module in
Terminal Table

oad Check Point,
Restart Module

Store Address of
IGGOI9NH in
Implementation

Module
¥ LOAD 2

Put Address of
IECKQQO1 in
Implementation
Module

¥

Put Buffer in
Available Buffer
Queve

¥

Put BRBs in
Inactive BRB
Queve

¥ LINE GROUP

Build DEB for |LOADI
Line Group

Y
Build LCBs

LOAD 2
and [OBs

Build SAD and
Enable Commands
as Necessary

—t A

Load BTAM
Read/Write
Module and

CCW Skeletons

EXCP

for line

Branch to SIO
Return from EXCP

10§

/O
Completed?

QTAM CLOSE

Clear DCB
Pointers

Purge Request
for I/O

Disable All Lines
Close Terminal
Table from CVT

Post ECB
Complete

CLOSE
DASD

Free Core CLOSE
for LCB LINEGROUPS)

Empty Buffer
for Receiving

Request for
a Closedown

MESSAGE CONTROL TASK

OPEN Disk and
Line Group DCBs

ENDREADY Set up
Save Registers

Issue SVC
Post for Check
Point Restart

‘I’_____ﬁr

Set up Regi
LPS or Acti

for

QWAIT
on LPS Queue

ors for | LPS CONTROL

vate

Message-Filled
Buffer

OPEN MESSAGE PROCESS QUEUE

Build DEB
for Message
Processing Queue

Y

Build Chain
of Message
Processing DEBs

Load GET
and/or
PUT Module

Return to
System OPEN

GET ROUTINE

From GET
Expansion

Post Preceding
Buffer to Return
Buffer Queue

Return to POST

I WAIT for Buffer
in MS

Process Queve

Return from WAIT

Request for

1/O Operation

Prepare CCW
in BRB for
Assigned Buffer

ACTIVATE

Clear Low Order
Bits from TIC
Command in
Previous BRB

EOB Last
Character

Prepare CCW to
Respond to EOB

and Read Portion
Buffer after EOB

Prepare CCW for
Terminal Selection
and Reading First
Segment

/

10S

Branch to Line
SIO App.

Return from
Line SIO

Issue SIO
Return from IOS

Wait 30 Seconds

1/O Completed
No

Write Message
to Operator

Return to
MCP Task

BTAM
READ/
WRITE

Branch to
Close

Restore
Registers

RCV

Receive Segment RCV
Portion of LPS

SEG LPSTART

Message
being Received
or Sent

Receive Header
Portion of LPS

Y CLEA

NUP

Post Buffer to
DASD Process
or Destination
Queve

Return from Post

Set up First Buffer

Flags

and Read Continue

Branch to
Activate

SENT

SENDHDR
Message Sent (pre-

viously ser-
viced)

Send Header
Portion of LPS

EXCP
Return from 10S

EOB or EOBLC

Setup First Buffer
and Write
Continue Flags

Y

Perform LPS Error
Checking on
Sent Message

No

Y SENDSEG

Send Segment
Portion of LPS

ENDSEND

Perform LPS Error
Checking Function:
on Received
Message

S

POSTRCYV *

Post Last
Buffer to
DASD Process
or Destination
Queuve

CLEANUP

Return from
SVC Post

Post Assigned
but Unused
Buffers to
Available

Buffer Queue

Return from Post

Figure 22.

Y

Post Buffer
to Available
Buffer Queuve

( Return from Post ’
Y C

Post all BRBs FREE BRB
to the Inactive
BRB Queue

Return from Post

Post LCB
to itself to
Free Line

CLEANUP

Branch to
Activate

Move Buffer to
Work Area

MESSAGE PROCESSING TASK

OPEN Message
Process Queues

Modification
Macros

Issue PUT

PUT ROUTINE
From Put
Expansion

Post BRB to
Active Buffer
Request Queue

Return from Post
Wait for
New Buffer
Wait Satisfied

Post Buffer to
DASD Destina~
tion Queve

Return from Post

WAIT for
BRB to be
Removed from
Ready Queve

Wait Satisfied

CLOSE ROUTINE

Post Move

to Turn Off
Master
Receive Switch

Y

Halt I/O
for Dial
Line

General
Close Down

Issue Halt 1/O

From Buffer
BRB Routine

Move Message
from Work
Area to Buffer

| Post Buffer
fo MS

CLOSEMC

STOPLN

Wait for
Free Line
STARTLN
Set up
SAD/ENABLE,
or NOP
Command
Queve
EXCP
: Y
CLOSE
Remove DEB PROCESS
from DEB DCB
Chain and
TCB Chain

Wait for
Free Line

Post Request
for Message
Control to

Close Down

Functional Flowchart of QTAM Components (Part 1 of 2)

Outline of QTAM Operation 49



RECE{VE SCHEDULER SUBTASK

STCB Activated by\ RECEIVE
Control Supervisor / SCHEDULER
TIME DELAY

WAIT Specified.
Time and

Dispatch Next
item (Send or
Receive Scheduler)

END
of Polling

Dispatch Next
Element

Build Ring
of BRBs

}

Post First
BRB to Active
BRB with
High Priority

END OF POLL

-

Entry
from
Return
Buffer

SEND SCHEDULER

DASD

DESTINATION

GET SCHEDULER SUBTASK

STCB Activated by
Control Supervisor

Assign Direct
Access Location

!

Reserve and Record
Location of Direct
Access Space

for Next MSG

}

Post Buffer to
Disk /O Queue

BRB Eligible
for Read,

Disk
Address
in BRB

GET SCHEDULER

DASD DESTINATION

Message
on Disk fo
be Read

Post BRB to
Disk I/O Queuve

Get Disk Address
o be Read

Waiting for
Free Line

Assign Direct
Access Location

}

Post LCB and Full

Reserve and
Record Location
of DASD Space
for Message

BUFFER BRB

AVAILABLE BUFFER

Find and Remove
BRB from Active
BRB Element
Chain

Message
in Queue

Wait for
More Messages

'

Reserve Buffer
for Disk Read

Yes

Is BRB for Disk
Read

Disk I/O Queuve

Assign

BRB Post Buffer to
Yes  RING Disk I/O Queue
Build Ring of ‘
BRBs from Inactive Place send
BRB Queue Scheduler
‘ STCB on LCB
Post First BRB ‘
to Disk Wait for
1/O Queve Free Line

| Post BRB to

Empty Buffer

!

Post Empty
Buffer to
LPS Queuve

Branch to
Dispatch

| ACTIVE BRB SUBTASK

STCB Activated by
Control Supervisor

ACTIVE BRB
Does
Request
Have High
Priority

Buffer
Available

Chain BRB in
Active BRB Chain

Dispatch Next
Element

PUT
Operation

Make BRB a
QCB in MS

Destination DEB

Set BRB

Assign Empty
Buffer

!

Post Buffer to
LPS Queue

— 1

RETURN BUFFER

Make BRB
Eligible to Read

Available
Buffer Queue

GET SCHEDULER

Post Buffer to |

Exit to
PUT Routine

Ineligible for
Disk Read

!

Post Buffer to
Available *
Buffer Queue

DISK END APPENDAGE

From Disk
Interrupt

Assign Sequence
Number and
Turn on MSG
Sent Flag

Post Buffer
to Available
Buffer Queue

Return to 1OS
for Rewrite

Put Buffer in MS
Process Queue

Disk
Read Request
for GET

Yes Is M5 Post Buffer
Procesvs Queue fo LPS Queve
Filled ¢
No Set up to
Read Next
Set up for Message
 Disk Read

!

!

Post Next BRB

Post BRB to Disk to Disk
/O Queve /0 Queue
DISK I/O SUBTASK LINE PClI APPENDAGE
STCB Activated by PCI Interrupt
Control Supervisor
DISK 1/O First v Post all BRBs
e "
Read READ BufF No Post BRB Buffer for s Except First to
or uffer to Acti . Active BRB
. Available o Active Line ;
Write Buffer Queue Queue High
Priority
WRITE Yes

Assign Buffer
from Available
Buffer Queve
for Disk Read

'

Put Buffer on
Disk 1/O Queue
Ahead of BRB

Convert Relative
Record Number
to Actual

DASD Address

From
Appendage Post S1O
and Disk Element to
ldle LPS Queuve

Figure 22.

Post Preceding
BRB to Active
BRB Queue with

Low Priority

Post Buffer
to Available
Buffer Queue

Line
Sending

Post Full Buffer
to LPS Queue

Functional

LINE SIO APPENDAGE

From SIO
Interrupt

Move TIC Cc d

Indicate
ERP is to
Have Control

Return to IOS

from BRB to End
of BTAM
Prepare CCW

Read
Operation

End of
Poll List or
Sending
Request,

Access Poll
Characters for
Next Terminal that
Can be Polled

!

Change BTAM Poll
CCW to Conform
to QTAM

—Return to 10S

Routine
Entered for

ldle
Specified

Post LCB to
itself giving
Scheduler
Controf

Flowchart of QTAM Components

Return to 10S

Branch to
Line End App

LINE END APPENDAGE

There any
Errors

Indicate ERP to
Have Control

RCV

Last

Character
Sent EOB

Post Buffer to

LPS Queue

Y
Return to 10S

(Part 2 of 2)

Outline

of QTAM Operation 51



QTAM uses the services of BTAM to per-
form the read and write operations for the
system. The BTAM module IGGO19MA is the
Read/Write routine that QTAM uses under the
name IGGO019NZ.

QTAM uses BTAM's Device I/0 modules for
every device type. However, QTAM does not
use BTAM's appendages or other routines.
QTAM appendages and routines are located in
module IGGO19NG.

QTAM uses BTAM's channel programs for
the operations used by BTAM. The following
channel programs are provided for each com-
munications line type, where applicable:

Read Initial

Write Initial

Read Continue

Write Contiune

Read Repeat

Write Conversational

Write at Line Address

Write Erase

Write Negative Acknowledgment

The BRB-Ring routine, LPS Control, Acti-
vate, Line SIO Appendage, and Line End
Appendage routines modify BTAM's channel
programs for QTAM use.

The data event control block required by
BTAM is constructed in the Activate routine
in the Implementation module, and is
labeled LINEDECB (see Appendix B: System
Control Blocks).

The following sections will explain BTAM
Read/Write routine, BTAM control informa-
tion for channel program generation, and
BTAM channel programs.

BTAM READ/WRITE ROUTINE (IGGO019NZ)

The BTAM Read/Write routine is entered
by a branch and link from the Activate rou-
tine in IGGO19NG and acts as an interme-
diary between the Activate routine and the
input/output supervisor. Read/Write per-
forms the following functions.

e Gets the IOB of the LCB from a pointer
in the DCB specified by the Activate
routine. .

e Obtains the Device I/0 module, com-
putes, if necessary, the area address
and length, and loops on the CCW count
until all CCWs have been moved and com-

BTAM OPERATION WITHIN QTAM

pleted in the channel program area of
the LCB for the line.

e Issues an execute channel program SVC,
passing control to the I/0 supervisor
with the address of the IOB as a param-
eter. The I/0 supervisor checks access
method and, upon discovering QTAM,
gives control to QTAM's SIO Appendage
routine.

The CCWs in the Device I/0 modules are
complete except for the area address and
count fields. An index in the second and
seventh bytes of the CCW determines which
subroutine is used to complete either the
area address or the count. If an offset to
the normal address is required, this value
already exists in the CCW. The subroutines
for computing the area address are:

INDEX VALJJE

00 TESTLNG - If there is no area address
index byte then Read/Write go directly
to compute the length.

o4 DATAREA - The fourth byte of the CCW
is added to the address of the area.
The area address is the DECAREA field
in the DCB for this Read or Write
operation. This subroutine computes
the area address for a Read or Write
Data or Read Response CCW. If there
is a Read Response CCW, then it will
read into the first two bytes of the
area, and the Read Data CCW that fol-
lows will read into the original area
address plus two.

08 RESPAREA - The address of the response
field in the DCB (DECRESPN) is loaded
into the area field of the CCW to read
the response to addressing or to text.

0ocC SPECCHAR - The address of the control
characters are provided for the CCW.
The control characters are defined as
constants at the end of the Device I/0
module. The count is not computed.

10 LIST - The number of dial characters
is moved to the count field. The
address of the dial digits is set in
the CCW. This sets up the field to
dial a terminal on a switch line.

14 PALIST - The offset in the CCW is
picked up to load the polling or ad-
dressing pointer, if necessary. The
count of characters is added to the

BTAM Operation Within QTAM 53



18

ic

20

24

28

54

terminal address. The subroutine
finds the polling or addressing entry
and places the address in the CCW.

TWXIDENT - The number of dial charac-
ters plus one is added to the list
address and then the number of ID
characters is moved into the count
field. The address of the ID charac-
ters is placed in the area address
field of the CCW.

PA1050D - The address of the address-
ing characters in the 1050 Dial list
is placed in the area address field.

DISABLE - The entry is checked to see
if this is an Answer list. If it is
an Answer list, then an Enable CCW is
set up instead of a Dial in the chan-
nel program area.

AUTO POLL - This subroutine builds the
additional CCWs in the channel program
in the Device 1/0 module. The second
and third CCWs (poll and TIC) are
copied into the channel program as the
fifth and sixth CCWws. A TIC CCW,
defined in this subroutine, is moved
into the channel prograrx as the fourth
CCW.

The data address, obtained from the
IOBPOLPT field of the IOB, and the
count are set in the first poll CCW.
The data address, address of first
polling character, and the count are
set in the second poll CCW.

If there was a permanent error, the
first poll CCW is adjusted to start
polling at the next terminal. If at
the end of the polling list, the first
poll CCW is made the same as the
second CCW.

If there is a message to be sent, then
the STCB in the link field of the LCB
requires a channel program that allows
a message to be sent to the end of a
polling list. For this case, the TIC
after the first and second poll CCW
are changed to NOP to prevent con-
tinuous polling.

If the line is in conversational mode,
the "converse mode" flag is turned
off. Also the first poll CCW is
changed to NOP to cause an immediate
interrupt.

WTTASNS - This subroutine builds the
Sense CCW of the Read Initial channel
program for WITA. The TP Op Code
address of the CCW is placed in the
area address field of the CCW. The
EOT flag in the LCB is reset.

2C WTTATIC - This subroutine builds the
transfer address of the TIC CCW. If
ID exchange is requested at the begin-
ning of an outgoing message, this will
be the address of the third CCW; if
not, this will be the address of the
sixth CCW.

30 WTTADID - A number of characters equal
to the terminal ID minus one is moved
into the count field of the CCW. The
address of the area reserved by the
TERM macro instruction is place in the
area address field of the CCW.

34 WTTATID - A number of characters equal
to the computer ID is moved into the
count field of the CCW, and the
address of the computer ID is placed
in the area address field of the CCW.
If WRU=YES has been coded in the DCB,
the CC flag of the CCW is set on.

The subroutines for computing the count
field, if not already computed, are:

00 TESTLAST - There is no length to com-
pute; the number of CCWs is checked to
see if they have finished building the
channel program.

ou DATALNG - The length is picked up from
the area length in the DECB for Read
or Write Data CCWs.

BTAM CONTROL INFORMATION FOR CHANNEL
PROGRAM GENERATION

This section describes the form and con-
tent of the channel command word (CCW) of
the channel program generated by the Read/
Write routine.

Channel Command Word

The format of the BTAM channel command
word is as follows:

Command Code Data Address

0 78 31
Flags 000 TP Op Code Count

32 3637 3940 47 48 63

The CCW used within BTAM is identical to
that used throughout System/360 except for
the addition of an operation code (TP Op
Code) in the sixth byte (bits 40 through
47). This byte, which is unused in other
environments, has no effect upon channel
operations. Bit 0 in the byte is set to
one in the last CCW created dynamically for



a channel program. Bit 1 is reserved for
use with dynamic buffering. The use of
bits 2 through 7 is described in the sec-
tion on Channel Programs.

DEVICE I/0 MODULE: A Device I/O module
contains the control information for the
generation of channel programs for a given
device type. Every device type (e.g., IBM
1050, iBM 1030, 115A, 83B3, etc.) speci-
fied for a data set opened in a problem
program is represented by a Device I/0
module in main storage.

The Device I/0 module has four parts as
shown in Figure 23:

e A 1l6-byte table of offsets.

e The offset to the channel command
words.

e A table of special characters.

e The channel command words for the chan-
nel programs.

The 16-byte table of offsets is at the
beginning of the Device I/0 module. Each
byte contains the binary offset factor used
to gain access to the model channel program
for an I/0 operation. Unused bytes,
reserved for future use, contain an offset
value of all ones (hexadecimal FF). If
access is gained to a reserved byte, con-
trol is immediately returned to the calling
routine with register 15 containing return
a code of 8 to indicate that the requested
operation is not valid for the device type
involved. The sixteenth byte contains the
offset factor for the table of special
characters.

0 FF 10 15 1E
{Reserved) (Read Initial) (Write Initial) (Read Continue)
FF
4 oo FF (Write 24
(Write Continue) (Reserved) Conversational) (Read Repeat)
8 27 2A 2C FF
(Reserved) (Reserved) (Reserved) (Reserved)
c FF FF FF 2E+n
(Write at Line Addr) (Reserved) (Write Erase)
0 Read Initial
Channel Program
Write [nitial

Channel Program

Write Negative Acknowledge
Channel Program

e Channel Command
. M4 Words (8 Bytes Each)

2E+n Special Characters

1050 Nonswitched Device I1I/0
Module

Figure 23.

An operation type is associated with
each byte in the table of offsets:

Byte Operation Type
Reserved

Read Initial

Write Initial

Read Continue

Write Continue
Reserved

Write Conversational
Read Repeat

Reserved

Reserved

Write Negative Acknowledgment
Reserved

Write at Line Address
Reserved

Write Erase

HOUQWPOWONOUOMEWNRO

Thus, byte 4 in the table of offsets
contains the appropriate offset value for
any device for which the Write Continue
operation is valid. (Otherwise, byte U
will contain a hexadecimal FF.)

Note: Although the position of the offset
byte for an operation is fixed, the actual
offset value contained in that byte is not
fixed. The offset value is a function of
the number of bytes occupied by preceding
channel programs, which varies depending on
the device involved.

All offset factors are calculated with
respect to the first byte following the
table of offsets.

Following the table of offsets in the
Device I/70 module are the offsets to the
CCW for the channel program for the device;
they are contiguous, beginning immediately
after the sixteenth byte of the table.

Following the last offset to the CCW for
the channel program in the Device I/0
module is the table of special characters
for the device (e.g., circle C, circle N,
etc.). The field contains the actual hexa-
decimal representations of the character
sequence.

Device I/0 modules are loaded into main
storage by the QTAM Open routine. The
names of the modules are:

BTAM Operation Within QTAM 55



Device I/0 Module
IBM 1050 (nonswitched) IGGO19NY
IBM 1060 IGGO19NW
IBM 1030 IGGO19NV
ATET 83B3 IGGO19NU
Western Union 115A - IGGO19NT
IBM 1050 (switched) IGGO19INX*
TWX 33/35 IGGO19NS*
IBM 2740 (basic) IGGO019NT
IBM 2740 (with dial) IGGO19NK
IBM 2740 (with transmit control IGGO019NL

and checking)
IBM 2740 (with dial and transmit
control)

IGGO19NM

device type, specifying physical device
type and optional features or mode of
operation. This device code is used by the
Open routine in determining whether a given
Device I/0 module is in main storage.

BTAM CHANNEL PROGRAMS

This section describes the BTAM channel
programs that are generated by the Read/
Write routine, and describes the action of

IBM 2740 (with dial and IGGO19NN the Read/Write routine during channel pro-

checking) gram operation. Channel programs are

IBM 2740 (with station control IGGO019NO listed by operation types within communica-
and checking) tion line types.

IBM 2740 (with station control) IGGO19NP

IBM 2740 (with checking) IGGO019NQ Each description begins with a graphic

IBM 2260 IGGO19NR representation of the model channel pro-

World Trade Telegraph Adapter IGG0190A gram, as follows:

*This module supports both Auto Call and 1. Operation - Command code type with

Auto Answer facilities.

2.
Device I/0 Directory
The format of the Device I/0 directory is
as follows:

3.

4 bytes Y

Device I/0 Module Address |

-——
Device I/0 Module Address |
J

Device Code

Device Code

[ oy e e

e o e oo o}

The Device I/0 directory, contained
witnin module IGGO19NZ and initialized by
the Open executor when Device I/0O modules
are loaded, contains the address of each
Device I/0 module in main storage. The
directory allows up to 21 separate devices.

As each DCB is opened, the Device I1/0
module for the corresponding device is
loaded into main storage, unless the
required module is already present. The
address of the module is placed in the
first available directory word, and an
index value, representing the position of
the entry within the directory, is placed
in field DCBDEVTP of the DCB. The index
value for the first directory entry is 0;
for the second, 1, etc.

Note: The value contained in DCBDEVTP is
not a fixed code related to a physical
device type.

Before the index value is placed into-
DCBDEVTP, the contents of that field are
placed into the first byte of the directory
entry. This data is a fixed code for each

56

brief description of information being
transferred.

Flags - Flags that are set in the
generated CCW: chain command (CC),
chain data (CD), suppress length indi-
cation (SLI), etc.

TP _Op_Code - Code carried in bits 2
through 7 in the generated CCW through
channel program execution and re-
trieved by the Channel End Appendage
on channel and device end. Bit 0 is
on (in addition to the TP Op code) in
the last CCW generated in the channel
program. Currently defined TP Op
codes are:

Code Definition
01 Disable (only when first CCW of
channel program)

Dial

Enable

Prepare

Write pad characters

02 Write circle D and three circle
Cs prior to selection

Write EOT sequence prior to
selection

Write circle D and 15 idle
characters (basic 2740)

Write response to text

03 Write polling or addressing
characters or / space (2740)



Turnaround sequence (TWX)

CPU - ID sequence (TWX)

ou Write space (2740)

Write code (2260)

Write shift (83B3)
Write one (1030)

Write WRU (WTTA).

05 Read response to polling
06 Read response to addressing
Read ID response (TWX, WTTA)

l 07

Write CPU-ID sequence (WTITA).

08 Write EOA character following
addressing (1050, 1030, 2740),
or
STX (2260)

10 Write at line address (2260)
Break sequence (WTTA).

oA Read index (Auto Poll only)

11 Read text
Write text

20 Read response to text

88 Sense for 2740 (basic or with
checking)

4. Count - Data count set in the
- generated CCW before execution.
Length refers to the buffer length
(number of bytes) specified by the
Activate routine.

5. Address - Data address set in the
generated CCW before execution.
"Area" refers to the buffer address
specified by the calling program.
"Table" refers to the appropriate
location in the table of special
characters provided in the Device I/0
module. "Respn" refers to the
DECRESPN field in the DECB. "List"
refers to the applicable polling or
addressing list entry.

For a description of the subroutines
that compute the address and count value
for generated CCWs, refer to the section on
Read/Write Subroutines.

CHANNEL PROGRAMS FOR AT&T 83B3 SELECTIVE
CALLING STATION LINES

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1.Write deselect chars Table Ccb 02 3
(Figs H Lirs)
2.Write polling chars List CC,SLI | 03 2
3.Read response Area Ccb 05 2
4.Read data Area +2 | SLI 1 Length -2

Initiated by the Read/Write routine, the
Read Initial channel program places the
line in control mode, polls the terminals,
and reads the response to polling. If the
response is positive, the response will be
read into the first byte of the input area.
The positive response is followed by the
message. Since the Read Response command
specifies a count of 2 (with no suppressed
length), the positive response followed by
the message will reduce the count to zero
and data-chain to the Read will continue to
read the data until the transmission is
ended with an EOT. When a negative
response is received on the Read Response,
only one byte of data (the negative
response) will be read into the message
area and channel end/device end occurs (no
unit exception). With the "wrong length"
flag on and a nonzero data count, there is
no data-chaining to the next Read command.
Instead, QTAM's channel end detects the
polling TP Op code and initializes for the
next terminal to be polled by returning to
I0Ss for execution of the CCW beginning with
the one containing a 03 TP Op code.

Write Initial Channel Program

Operation Address| Flags TP-Op Code | Count

1.Write deselect chars Table CD 02 3

(Figs H Lirs)
2.Write addressing chars| List CcD 03 2
3.Write Shift chars Table Ccc,sh 04 1

(Ltrs )
4.Read response Respn 06 1
5.Write data Area SLi 11 Length

The Write Initial channel program places
the line in control mode (to allow selec-
tion of the terminals) by sending Figs H
Ltrs and addresses the terminal by sending
two addressing characters. The 83B3

BTAM Operation Within QTAM 57



requires a shift character after the
addressing characters. The response is
read.

CHANNEL PROGRAMS FOR WESTERN UNION PLAN
115A OUTSTATIONS

Read Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write deselect characters| Table Cb 02 3
(Figs H Lirs )
2. Write polling characters | List CC, sLif 03 2
3. Read response Area CcD 05 2
4. Read data Areat2 | SLI 11 Length-2

The Read Initial channel program
initiated by the Kead/Write routine places
the line in control mode by sending the
Figs H Ltrs sequence, polls the terminal
with the two polling characters, and reads
the response.

The Read Response command specified a
data count of 2, with wrong length indica-
tion not suppressed, whereas the length of
the response is one byte. When a positive
response character and the first byte of
the message are read under control of the
Read Response CCW, it reduces the data
count to zero and causes data-chaining to
take place. The rest of the message is
read under control of the address and count
fields of the Read Data CCW. The execution
of the Read continues in the channel until
an interrupt occurs at the end of transmis-
sion. When, on a Read Response, a negative
response (one byte) is received, a channel
end/device end interrupt occurs. There is
no unit exception indication. The data
count of 2 for a one-byte polling response
character signals wrong length, which sup-
presses data-chaining and allows BTAM to
determine that a negative response was
received.

The channel end routine detects the
polling restart TP Op code and reinitial-
izes for the next terminal to be polled.
Control is returned to IOS for execution of
the CCWs beginning with the one containing
a 03 TP Op code.

58

‘Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write deselect characters| Table CD 02 3
(Figs H Lirs )
2. Write addressing chars List CC, SLI| 03 2
3. Read response Respn 06 1
4. Write data Area su 11 Length

The Write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode (which allows it
to be selected), addresses the terminal,
and reads the response to addressing.

CHANNEL PROGRAMS FOR IBM 1030 LINES

Read Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write deselect characters | Table CcD 02 3
(3 circle Cs)
2. Write polling character List CC, SLI| 03 1
3. Read response Area cD 05 2
4. Read data Areat2 | SLI 11 Length-2

The Read Initial channel program places
the line in control mode by sending three
circle Cs, polls a terminal with one poll-
ing character, and reads the response to
polling. The Read Response command has a
data count of 2 with no suppressed length.
Thus, when the response (one byte) is read
and it is a positive response, the response
will be followed by data. This will reduce
the count to zero and cause data-chaining
to read the rest of the data until an EOB
or EOT is received or the count is zero.

If the negative response is received, chan-
nel end/device end interrupt occurs with
unit exception. There was no data-chaining
because of wrong length indication and QTAM
reinitializes to poll the next terminal if
one was specified in the list.

Read Continue Channel Program

Operation Address | Flags TP-OP Code Count
1. Write positive response Table cb 01 4
and 3 deselect characters
2. Write 3 circle Cs Table 1 3




The Read Continue channel program sends
a positive response to the previous message
block, followed by three circle Cs to put
the terminal in control mode. These are
followed by three additional circle Cs.

Read Repeat Channel Program

Operation Address | Flags TP-OP Codes | Count
1. Write negative response Table CD 02 4
and 3 deselect characters
2. Write 3 circle Cs Table St 01 3

The Read Repeat channel program sends a
negative response followed by three circle
Cs to put the terminal in control mode.
These are followed by three additional
circle Cs.

Write Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. (Write 3 circle Cs, Table CcD 02 4
circle S)
Write deselect characters
2. Write addressing List CcD 03 1
characters
3. Write "1" Table CC, SLI | 04 Table
4. Read addressing response | Respn cC 06 1
5. Write circle D Table CcD 08
6. Write data Area+l [CC, SLI| 11 Length
7. Read response to LRC Respn +1 20 1

The Write Initial channel program sends
out a circle C and a circle S to deselect
the 1030 terminals, transmits a single
addressing character followed by a 1, and
reads the addressing response into the
first byte of the DECRESPN in the DECB.
Because multiple addressing is not possible
with 1030 lines, the Read Response CCW is
command-chained to a Write Circle D CCW to
send a circle D before the message. The
Circle D CCW is data-chained to write the
message. This is followed by a CCW with
read the LRC response.

Write Continue Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write data Area CC, su| 11 Length
2. Read response to LRC Respn +1 20 ’ 1

Initiated by the EOB or EOBLC routine
after a successful Write Initial or Write
Continue operation, the Write Continue
channel program writes data and then
command-chains to read the response to lon-
gitudinal redundancy checking. This
response is read into the DECRESPN+1, which
is the second byte of a two-byte response
field in the DECB.

CHANNEL PROGRAMS FOR IBM 1050 LINES

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write deselect characters | Table CcD 02 3
(3 circle Cs)
2. Write polling characters List CC, SLI| 03 2
3. Read response Area cD 05 2
4. Read data Area+2 [ SLi 1 Length-2

The Read Initial channel program
initiated by the Read/Write routine places
the line in control mode, polls a terminal,
and reads the response. (Control mode is
that state of the system that allows a ter-
minal to be selected.) The third command
(Read Response character) specifies a data
count of 2, with wrong length indication
not suppressed, while the length of the
response character is one byte. Under the
existing configuration of BTAM, the effect
of this technique is as follows:

1. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response CCW. This reduces the
data count to zero and causes data-
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
end of transmission.

2. Negative response. This response
causes channel end and device end with
unit exception and wrong length record
indicated. The QTAM Appendages detect
the polling restart TP Op code, reini-
tialize for the next terminal to be
polled, and return control to IOS for
execution of the CCWs beginning with
the one containing a 03 TP Op code.

BTAM Operation Within QTAM 59



Read Continue Channel Program

Write Continue Channel Program

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial or Read Continue
operation; the program writes the response
character and command-chains to Read Data.

Read Repeat Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write negative response Table CC, SLI | 02 1
(circle N)
2. Read data Area SLi 1 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurs during execution of the Read
Data command of a Read Initial or Read Con-
tinue operation. The prograr transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write deselect characters| Table CcD 02 3
(3 circle Cs)
2. Write addressing chars List CC, SLI| 03 2
3. Read response Respn 06 1
4. Write circle D Table cb 08 1
5. Write data Area CC, sl n Length
6. Read response to LRC Respn +1 20 1

The Write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode, addresses a ter-
minal, and reads the response. Following
the Read Response, a circle D is written to
the terminal and is followed by the data.

60

Operation Address | Flags TP-Op Code | Count Operation Address | Flags TP-Op Code | Count
I m;;eler?s‘;"“se Toble | CC, SLI | 02 1 1. Write Data Area | CC, L[ 11 Length
2. Read data Area SLI 11 Length 2. Reod response to LRC Respn +1 2 !

The Write Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Write Initial or Write Con-
tinue operation; the program writes data
and command-chains to read the response to
longitudinal redundancy checking. The
response is read into DECRESPN+1, the
second byte of the 2-byte response field in
the DECB.

CHANNEL_PROGRAMS FOR IBM 1050 DIAL
(SWITCHED CONNECTION LINES)

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Disable Zero CC, St | 01 1
2. Didl List CC, SLI | 01 Dial List
Enable Zero N 01 1
3. Write pad characters Table CcD 01 15
4. Write deselect characters { Table cb 02 3
(3 circle Cs)
5. Write polling characters | List CC, stI | o3 2
6. Read response Area CcD 05 2
7. Read data Area+2 | SLI 1 Length-2

The Read Initial channel program
initiated by the Read/Write routine dis-
ables and then enables the line adapter so
that a remote terminal may dial the CPU.

When a terminal dials the CPU, the
enable is complete, and 15 pad characters
are sent. These are followed by three
circle Cs to place the terminal in control
mode. The two polling characters are sent.
The sixth command (Read Response character)
specifies a data count of 2, with wrong
length indication not suppressed, while the
length of the response character is one
byte. Under BTAM, the effect of this tech-
nique is as follows:

1. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response CCW. This reduces the




data count to zero and causes data-
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
end of transmission.

2. Negative response. This response
causes channel end and device end with
unit exception and wrong length record
indicated. The Channel End routine
detects the Read Response to polling
TP Op code, reinitializes for the next
terminal to be polled, and returns
control to IOS for execution of the
CCWs beginning with the one containing
a 03 TP Op code.

Read Continue Channel Progran

Operation Address | Flags TP-Op Code | Count
1. Write response Table cc ,' SLI | 02 1
(circle Y)
2. Read data Area SLI 1 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial or Read Continue
operation; the program writes the response
character and command-chains to read data.

Read Repeat Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write negative response Table CC, SLI | 02 1
(circle N)
2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a
transmission error occurred during execu-
tion of the Read Data command of a previous
Read operation. The program transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Disable Zero CC, sL [Oo1 1
2. Didl List CC, SLi |01 List
Enable Zero SLI 01 1
3. Write pad characters Table [elb] 01 15
4. Write deselect characters | Table CcD 02 3
(3 circle Cs)
5. Write addressing chars List CC, SLI |03 2
6. Read response to address | Respn 06 1
7. Write end-of-addressing | Table CD 08 1
8. Write data Area CC, sLl |n Length
9. Read response to LRC Respn+1 20 1

The Write Initial channel program
jnitiated by the Read/Write routine dis-
ables and dials a terminal. When the
remote terminal answers, the pad characters
and three circle Cs are sent to place the
terminal in control mode. The addressing
characters are sent to address the com-
ponent. This is followed by a circle D and
then the data.

Write Continue Channel Program

Operation Address | Flags TP-Op Code | Count

1. Write data Area CC, sl | Length

2. Read response to LRC Respn+1 | SLI 20 1

After the line connection has previously
been established, the Write Continue chan-
nel program is initiated by the EOB or
EOBLC routine; the program writes data and
command-chains to read the response to lon-
gitudinal redundancy checking. The
response is read into DECRESPN+1, the
second byte of the two-byte response field
in the DECB.

BTAM Operation Within QTAM 61



Write Conversational Channel Program

Operation Address | Flags TP-Op Code | Count

1. Write response and Table cD 02 2

deselect character

(circle D and circle C)
2. Write addressing chars List CC, sLi |03 2
3. Read response Respn 06 2
4. Write circle D Table Ccb 08 1
5. Write data Area CC, st |11 Length
6. Read response Respn +1 20 1

The channel program transmits a circle D
and a circle C with a single CCW. For a
discussion of the channel program see the
Write Initial Channel Program.

Write Negative Acknowledgment Channel
Program

Operation Address | Flags TP-Op Code | Count
1. Write circle C Table CC, sLi | 01 1
2. Disable Zero SLI 01 1

The Write Negative Acknowledgment chan-
nel program sends a circle C to deselect
the remote terminal and then issues a dis-
able to disconnect the 1line.

CHANNEL PROGRAMS FOR IBM 1060 LINES

Read Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write deselect characters | Table Ccb 02 3
(3 circle Cs)
2. Write polling characters | List CC, sul| 03 2
3. Read response Area CD 05 2
4. Read data Area+2 | SLI 11 Length-2

The Read Initial channel program places
the line in control mode by sending three
circle Cs, polls a terminal with one poll-
ing character, and reads the response to
polling. The Read Response command has a
data count of 2 with no suppressed length.
Thus, when the response (one byte) is read
and it is a positive response, the response

62

will be followed by data. This will reduce
the count to zero and cause data-chaining
to read the rest of the data until an ECB
or EOT is received or the count is zero.

If the negative response is received, chan-
nel end/device end interrupt occurs with
unit exception. There is no data-chaining
because of wrong length indication and QTAM
reinitializes to poll the next terminal if
one was specified in the list.

Read Continue Channel Program

Operation Address Flags | TP-OP Code Count
1. Write response and Table cD 02 4
deselect characters
(circle Y and 3
circle Cs)
2. Write 3 circle Cs Table Ccb 01 3

The Read Continue channel program sends
a positive response to the previous message
block, followed by three circle Cs to put
the terminal in control mode. This is fol-
lowed by three additional circle Cs.

Read Repeat Channel Program

Operation Address | Flags | TP-OP Code Count

1. Write deselect characters | Table SLi 01 3

(3 circle Cs)

The Read Repeat channel program sends a
negative response and 3 circle Cs are sent
to put the terminal in control mode.

Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write deselect characters | Table CcD 02 3
(3 circle Cs)
2. Write addressing chars List CC, sul |03 2
3. Read response Respn 06 1
4. Write circle D Table CcD 08 1
5. Write data | Area CC, SLI |11 Length
6. Read response to LRC Respn+1 | SLI 20 1

The Write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode, addresses a ter-
minal, and reads the response. Following
the Read Response, a circle D is written to
the terminal and is followed by the data.



CHANNEL PROGRAMS FOR TTY MODELS 33 AND 35
TWX LINES

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Disable Zero CC, st |01 ]
2. Enable Zero SLI 01 1
3. Write pad characters Table CcD 01 15
4. Write identification List CC, SLt |03 List
5. Read dato Area SL! 11 Length

The Read Initial channel program,
initiated by the Read/Write routine, dis-
ables the line in case this was not done
previously. The enable latch is set within
the line adapter so that the remote termi-
nal may dial the CPU. After the pad char-
acters have been sent, the fourth command
writes the identification assigned to the
CPU in the polling list for the line. This
is followed by the data transmitted by the
terminal.

Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Disable Zero CC, su |01 1
2. Dial List CC, SLI (o1 List
3. Read identification List 07 List
4. Write data Area SLI 11 Length

The Write Initial channel program,
initiated by the Read/Write routine, dis-
ables and dials a terminal and, if the
identification received was valid, writes
the data to the terminal. If the identifi-
cation was invalid, the channel program is
terminated.

After the CPU has read the identifica-
tion sent from the terminal, an interrupt
occurs and the Channel End routine compares
the identification supplied by the user in
the TERM macro. If an unequal compare
results, the addressing bit in the error
halfword (bit 12) is set. 1If an equal
identification is received, it is assumed
the correct terminal has been contacted and
the channel is restarted with the Write
Data command.

Write Conversational Channel Program

Operation Address | Flags TP-Op Code | Count

1. Write data Area SLI ihl Length

The Write Conversational channel program
is initiated by QTAM after a successful
Write Initial operation.

Write Negative Acknowledgment Channel
Program

Operation Address | Flags TP-Op Code | Count
1. Write circle C Table CC, SLI | 01 1
2. Disable Zero SLI 01 1

The Write Negative Acknowledgment chan-
nel program sends a circle C to deselect
the remote terminal and then issues a dis-
able to disconnect the line.

CHANNEL PROGRAMS FOR IBM 2740
COMMUNICATIONS LINES

IBM 2740 BASIC CHANNEL PROGRAMS

Read Initial Channel Program

Operation Address | Flags TP-OP Code Count
1. Write deselect Table (@] 02 3
characters (3 circle Cs)
2. Prepare Zero |CC,SLI o1 1
3. Read data Area Su 1 Length

The Read Initial channel program places
the line in control mode by sending three
circle Cs. The Prepare command is sent to
condition the control unit to receive a
message from a terminal. The Prepare com—
mand removes the circle D from the begin-
ning of the message and the count is
reduced to zero, causing command-chaining
to the Read Data command, which reads the
message.

BTAM Operation Within QTAM 63




Write Initial Channel Program

Read Repeat Channel Program

The Write Initial channel program sends
a circle D and 15 idle characters, and
data-chains to the Write Data command to
send the message.

IBM 2740 WITH CHECKING

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count Operation Address | Flags TP-Op Code | Count
1. Write circle D and 15 Table CcD 02 16 1. Write negative response Table CC, SLi | 02 1
idle characters (circle N)
2. Write data Area sl n Length 2. Read data Area st n Length

Operation Address | Flags TP-OP Code | Count
1. Write deselect characters Table CC,SLl 02 3
(3 circle Cs)
2. Prepare Zero Ccc,su 01 1
3. Read data Area SLI 1 Length

The Read Initial channel program places
the line in control mode by sending three
circle Cs. The Prepare command conditions
the control unit to receive a message and
then command-chains to the Read command
when a character is received. The circle D
sent by the transmitting terminal is
deleted by the Prepare command.

Read Continue Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write response Table CC, sLi| 02 1
(circle Y)
2. Read data Area su 1" Length

The Read Continue channel program is

“initiated by the EOB or EOBLC routine after

a successful Read Initial operation; the
program writes the response character and
command-chains to Read Data.

64

The Read Repeat channel program is
initiated by the EOBLC routine after a
transmission error occurred during execu-
tion of the Read Data command of a Read
Initial or Read Continue operation. The
program transmits a negative response, and
then chains to the second CCW to read data
into the main storage area originally
specified.

Write Initial Channel Program

Operation Address | Flags TP-Op Code [ Count
1. Write circle D and 15 Table (o] 02 16
idle characters
2. Write data Area CC, Su} 11 Length
3. Read response to Respn +1 20 1
VRC/LRS

The Write Initial channel program sends

"the circle D to put the terminal in control

mode and 15 idle characters to allow termi-
nal motors to get up to speed. This Write
command data-chains to the Write Data com~
mand, which sends the message and command-
chains to the Read Response command.

Write Continue Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write data Area CC, St | 11 Length
2. Read response to Respn +1 20 1
VRC/LRC

The Write Continue channel program will
write the data and then command-chain to
read the response intc DECRESPN +1 (VRC/LRC
response field in the DECB).



Write Conversational Channel Program

Write Initial Channel Program

The Write Conversational channel program
first writes a circle D to put the terminal
in receive mode, and then data-chains to
the next write to send the data. When the
count is zero, this command chains to read
the VRC/LRC response into the response
field of the DECB (DECRESPN+1).

IBM 2740 WITH DIAL

Read Initial Channel Program

Operation Address | Flags Tp~Op Code | Count
1. Disable Zero CC, SLI | 01 1
2. Endble Zero CC, su | 01 1
3. Prepare Zero CC, sLii o1 1
4. Read data Area SLI 11 Length

Initiated by the Read/Write routine, the
Read Initial channel program disables and
then enables the line to receive a call.
When a call is received, the Enable command
chains to the Write Deselect Characters to
set the terminal in control mode. The Pre-
pare command conditions the control unit to
receive a message. When a character is
received, the count goes to zero and the
Prepare command chains to read the data.
The Prepare command deletes the circle D,
which is sent by the depression of the BID
key at the transmitting terminal.

Operation Address | Flags TP-Op Code | Count Operation Address | Flags TP-Op Code | Count
1. Write circle D Table CD 02 1 1. Disable Zero CC, SLI | O1 1
2. Write data Area CC, SLL | 11 Length 2. Dial List+1 CC, sLI {01 List
3. Read response to Respn +1 20 1 3. Write pad characters Table CD 01 15
VRC/LRC
4. Write circle D Table cb 02 1
5. Write data Area SLI 11 Length

Initiated by the Read/Write routine, the
Write Initial channel program disables the
line and command-chains to the Dial command
to dial the terminal specified in the ter-
minal table. After dialing, the channel
program sends 15 pad characters before
data-chaining, when the count is zero, to a
Write Circle D command, which is sent
before the data.

Write Conversational Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write circle D Table CD 02 1
2. Write data Area SLl 1 Length

The Write Conversational channel program
sends a circle D, and then data-chains when
the count is zero to a Write Data command
to send the message.

Write Negative Acknowledgment Channel
Program

Operation Address | Flags TP-Op Code | Count
1. Write 3 circle Cs Table CC, SLl | 01 3
2. Disable Zero SLI 0l 1

To disconnect, the channel program sends
three circle Cs to put the terminal in con-
trol mode and command-chains to disable the
line.

BTAM Operation Within QTAM 65



IBM 2740 WITH DIAL AND CHECKING

Read Initial Channel Program

Operation Address | Flags TP-OP Code Count
1. Disable Zero CC,SLI 01 1
2. Endble Zero CC,SLI 01 1
3. Write deselect characters | Table CC,SLI 01 3
(3 circle Cs)
4. Prepare Zero CC,sLi 01 1
5. Read data Area SLI N Length

Initiated by the Read/Write routine, the
Read Initial channel program disables and
then enables the line to receive a call.
When a call is received, the Enable command
chains to the Write Deselect Characters
command, which places the line in control
mode and is chained to the Prepare command,
which conditions the control unit to
receive a message. When a character is
received, the count goes to zero and the
Prepare command chains to read the data.
The Prepare command deletes the circle D,
which is sent by the depression of the BID
key at the transmitting terminal.

Read Continue Channel Program

Operation Address [ Flags TP-Op Code | Count
1. Write response Table CC, sLi| 02 1
(circle Y)
2. Read data Area su 1 Length

The Read Continue channel program is
initiated by the EOB or EOBLC routine after
a successful Read Initial operation; the
program writes the response character and
command-chains to read data.

Read Repeat Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write negative response Table CC, SL| 02 1
(circle N)
2. Read data Area SLI 11 Length

66

The Read Repeat channel program.is
initiated by the EOBLC routine after a
transmission error occurred during execu-
tion of the Read Data command of a previous
Read operation. The program transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.

Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Disable Zero CC, SLij OV 1
2. Didl List CC, sty o1 List
3. Write pad characters Table CD 01 15
4. Write circle D Table cD 02 1
5. Write data Area CC, sl Length
6. Read response to VRC/LRC| Respn +1 20 1

Initiated by the Read/Write routine, the
Write Initial channel program disables the
line before dialing the terminal specified
in the terminal table. The 15 pad charac-
ters are sent to allow the terminal motors
to reach the necessary speed before the
message is sent to it. Before the data is
sent, a circle D is sent to the terminal.
After the message is sent the response to
VRC/LRC is read into the response field in
the DECB (DECRESPN+1).

Write Continue Channel Program

Operation Address | Flags TP-Op Code Count
1. Write data Area CC, su | n Length
2. Read response to LRC Respn+1{ SLI 20 1

After the line connection has previously
been established, the Write Continue chan-
nel program is initiated by QTAM; the pro-
gram writes data and command-chains to read
the response to longitudinal redundancy
checking. The response is read into
DECRESPN +1, the second byte of the two-
byte response field in the DECB.



Write Conversational Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write circle D Table CD 02 1
2. Write data Area CC, st [ 11 Length
3. Read response to VRC/LRC| Respn +1 20 1

The Write Conversational channel program
sends a circle D after the line has pre-
viously been established. The data is sent
and the Write Data command chains to the
Read Response CCW.

Write Negative Acknowledgment Channel
Program

Operation Address | Flags TP-Op Code | Count
1. Write circle C Table CC, Sl | o1 1
2. Disable Zero SLI 01 1

To disconnect, the channel program sends
a circle C to put the terminal in control
mode and command-chains to disable the
line.

IBM 2740 WITH DIAL AND TRANSMIT CONTROL

Read Initial Channel Program

Operation Address | Flags TP-Op Code Count
1. Disable Zero | CC,SLI 01 1
2. Endble Zero SLI 01 1
3. Write pad characters Table cb 01 15
4. Write selection chars Table CC,sLi 03 2
(/ space)
5. Read response Area CcD 05 2
6. Read data Area+2 [ SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine dis-
ables and sets the enable latch within the
line adapter so that the remote terminal
may dial the CPU.

After writing 15 pad characters, 3
circle Cs are sent to place the line in
control mode. They are followed by the

selection characters (/ space) to select
the fifth command (Read Response charac-
ter). The Read Response CCW specifies a
data count of 2, with wrong length indica-
tion not suppressed, while the length of
the response character is one byte. Under
BTAM, the effect of this technique is as
follows:

1. Positive response. The response
character, a circle D caused by the
depression of the transmitting ter-
minal's BID key, and the first byte of
the message are read under control of
the Read Response CCW. This reduces
the data count to zero, and causes
data-chaining to take place. The
second and subsequent bytes of the
message are read under control of the
address and count fields of the Read
Data CCW. Execution continues in the
channel with an interrupt occurring
only at the end of the transmission.

2. Negative response. Only one byte is
received on this response, which
causes channel end and device end with
unit exception and wrong length record
indicated. There is no polling of
components or terminals on the 2740
with dial and transmit control; only
the sending of the selection
characters.

Write Initial Channel Program

Operation Address | Flags | TP-OP Code Count
1. Discble Zero | cCC,5LI 01 1
2. Dial List CC, sLi 01 List
3. Write pad characters Table cD 01 15
4. Write data Area SLI 11 Length

The Write Initial channel program
initiated by the Read/Write routine dis-
ables and then dials a terminal. After
writing the pad characters, the channel
program sends the data.

Write Conversational Channel Program

Operation Address | Flags TP-Op Code Count

1. Write data Area SLI 1 Length

The Write Conversational channel program
sends a Write Data command to send the
message.

BTAM Operation Within QTAM 67



Write Negative Acknowledgment Channel
Program

Operation Address | Flags TP-Op Code | Count
1. Write circle C Table CC, sL | O 1
2. Disable Zero su 01 1

To disconnect, the channel program sends
a circle C to put terminal in control mode
and command-chains to disable the line.

IBM 2740 WITH DIAL, TRANSMIT CONTROL, AND
CHECKING

Read Initial Channel Program

Operation Address | Flags TP-Op Code Count
1. Discble Zero CC,SLi 01 1
2. Enable Zero SLI 01 1
3. Write pad characters Table |CD 01 15
4. Write selection chars Table |CC,SLI 03 2
5. Read response Area CD 05 2
6. Read data Area+2 [SLI 11 Length-2

The Read Initial channel program
initiated by the Read/Write routine dis-
ables and sets the enable latch within the
line adapter so that the remote terminal
may dial the CPU.

After writing 15 pad characters, 3
circle Cs are sent to place the line in
control mode. They are followed by the
selection characters (/ space) to select
the fifth command (Read Response charac-
ter). The Read Response CCW specifies a
data count of 2, with wrong length indica-
tion not suppressed, while the length of
the response character is one byte. Under
BTAM, the effect of this technique is as
follows:

1. Positive response. The response
character, a circle D caused by the
depression of the transmitting ter-
minal's BID key, and the first byte of
the message are read under control of
the Read Response CCW. This reduces
the data count to zero and causes
data-chaining to take place. The
second and subsequent bytes of the
message are read under control of the
address and count fields of the Read

68

Data CCW. Execution continues in the
channel with an interrupt occurring
only at the end of the transmission.

2. Negative response. Only one byte is
received on this response, which
causes channel end and device end with
unit exception and wrong length record
indicated. There is no polling of
components or terminals on the 2740
with dial and transmit control; only
the sending of the selection
characters.

Read Continue Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write response Table CC, sui| 02 1
(circle Y)
2. Read data Area Su 11 Length

After the line connection has previously
been established, the Read Continue channel
program is initiated by the problem program
through the Read/Write routine; the program
writes the response character and command-
chains to read data.

Read Repeat Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write negative response|  Table CC, sLl| 02 1
(circle N)
2. Read data Area SLl 1 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurred during execution of the Read
Data command of a Read Initial or Read Con-
tinue operation. The program transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.



Write Initial Channel Program

Operation Address | Flags TP-OP Code Count
1. Disable Zero |CC,SLI 01 1
2. Didl List |CC,SLI 01 List
3. Write pad characters Table |CD 01 15
4. Write circle D Table |CD 08 1
5. Write data Area |SLI 1 Length

The Write Initial channel program
initiated by the Read/Write routine dis-
ables and then sets the enable latch within
the line adapter so that the remote termi-
nal may dial the CPU. After writing the
pad characters, a circle D is sent before
the message is sent.

Write Continue Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write data Area CC, sLi| 11 Length
2. Read response to VRC/LRC| Respn+1 20 1

The Write Continue channel program will
write the data and then command chain to
read the response into DECRESPN +1 (VRC/
LRC) response field in the DECB.

Write Conversational Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write circle D Table (o]»] 02 1
2. Write data Area CC, su | 1 Length
3. Read response to Respn +1 20 1
VRC/LRC

The Write Conversational channel program

first writes a circle D to put the terminal

in receive mode, and then data-chains to
the next write to send the data. When the
count is zero, this command chains to read
the VRC/LRC response into the response
field of the DECB (DECRESPN +1).

Write Negative Acknowledgment Channel
Program ’

Operation Address | Flags TP-Op Code | Count
1. Write circle C Table CC, sl | o1 1
2. Disable Zero SLI 01 1

To disconnect, the channel program sends
a circle C to put the terminal in control
mode and command-chains to disable the
line.

IBM 2740 WITH STATION CONTROL

Read Initial Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write deselect characters| Table cD 02 3
(3 circle Cs)
2. Write polling character List CD 03 1
3. Write space character Table CC, SLI | 04 1
4. Read response Area CcD 05 2
5. Read data Area+2 | SL 11 Length-2

Initiated by the Read/Write routine, the
Read Initial channel program places the
line in control mode, polls the terminals,
with one character followed by a space
character, and reads the response to poll-
ing. If the response is positive, the
response will be read into the first byte
of the input area. The positive response
is followed by the message. Since the Read
Response command specifies a count of 2
(with no suppress length), the positive
response followed by the message will
reduce the count to zero, and data-chaining
will occur to continue reading the data
until the transmission is ended with an
EOT. When a negative response is received
on the Read Response, only one byte of data
(the negative response) will be read into
the message area and channel end/device end
occurs (no unit exception). With the
"wrong length" flag on and a nonzero data
count, there is no data-chaining to the
next Read command. Instead, QTAM channel
end detects the polling TP Op code and
initializes for the next terminal to be
polled by returning to IOS for execution
with a pointer to the Write Polling Charac-
ters CCW.

BTAM Operation Within QTAM 69



Write Initial Channel Program

Operation Address | Flags | TP-Op Code Count
1. Write deselect characters | Table b 02 4
(3 circle Cs and circle S)
2. Write addressing chars List cb 03 1
3. Write space characters Table CC,SLI 04 1
4. Read response Respn CcC 06 1
5. Write data Area 11 Length

The Write Initial channel program places
the terminal in control mode and sends a
circle S to denote that addressing will
follow. The terminal is addressed with a
one-character code followed by a space
character. The response to addressing is
read into the first byte of the response
field in the DECB (DECRESPN). The Read
Response CCW is command-chained to write
the data.

IBM 2740 WITH STATION CONTROL AND CHECKING

Read Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write deselect characters | Table CcD 02 3
(3 circle Cs)
2. Write polling character List CcD 03 1
3. Write space character Table CC, SLi |04 1
4. Read response Area CcD 05 2
5. Read data Area+2 | SLI n Length-2

The rRead Initial channel program
initiated by the Read/Write routine places
the line in control mode, polls a terminal
with one character followed by a space
character, and reads the response. (Con-
trol mode is that state of the system that
allows a terminal to be selected.) The
third command (Read Response character)
specifies a data count of 2, with wrong
length indication not suppressed, while the
length of the response character is one
byte. Under the existing configuration of
BTAM, the effect of this technique is as
follows:

1. Positive response. The response
character and the first byte of the
message are read under control of the
Read Response CCW. This reduces the

70

*

data count to zero and causes data-
chaining to take place. The second
and subsequent bytes of the message
are read under control of the address
and count fields of the Read Data CCW.
Execution continues in the channel
with an interrupt occurring only at
the end of transmission.

2. Negative response. This response
causes channel end and device end with
unit exception and wrong length record
indicated. The Channel End routine
detects the polling restart TP Op
code, reinitializes for the next ter-
minal to be polled, and returns con-
trol to IOS for execution of the CCWs
beginning with the one containing a 03
TP Op code.

Read Continue Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write response Table CC, st | 02 1
(circle Y)
2. Read data Area SLi 11 Length

The Read Continue channel program is
initiated by the EOB or FOBLC routine after
a successful Read Initial operation; the
program writes the response character and
command-chains to read data.

Read Repeat Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write negative response Table CC, sL | 02 1
(circle N)
2. Read data Area SLI 11 Length

The Read Repeat channel program is
initiated by the EOBLC routine after a data
check occurs during execution of the Read
Data command of a Read Initial or Read Con-
tinue operation. The program transmits a
negative response, and then chains to the
second CCW to read data into the main
storage area originally specified.



Write Initial Channel Program

Operation Address | Flags TP-Op Code | Count
1. Write deselect characters| Table cD 02 4
(3 circle Cs and circle S
2. Write addressing chars List cD 03 1
3. Write space characters Table CC, su | 04 1
4. Read response Respn cC 06 1
5. Write circle D Table CcD 08 1
6. Write data Area CC, sU | 11 Length
7. Read response Respn+1 20 1

The Write Initial channel program,
initiated by the Read/Write routine, places
the line in control mode and informs it
that the addressing function will follow by
circle s, addresses a terminal with a one-
character code followed by a space charac-
ter, and reads the response. The status of
the chaining flags for the third command
depends upon the status of the addressing
list. For multiple component addressing,
all specified components must be logically
connected to the line before message trans-
mission occurs. A negative response from
any component terminates the channel pro-
gram and suppresses transmission.

Write Continue Channel Program

Operation Address | Flags TP-Op Code| Count
1. Write data Area CC, st 1 Length
2. Read response to VRC/LRC| Respn+1 20 1

The Write Continue channel program is
initiated by QTAM after a successful Write
Initial operation; the program writes data
and command-chains to read the response to
longitudinal redundancy checking. The
response is read into DECRESPN +1, the
second poyte of the two-byte response field
in the DECB.

CHANNEL PROGRAMS FOR IBM 2848 - 2260 REMOTE
LINES

Specific Poll of a Display Station: On
positive response (STX), chains the Read
Response to read the message. On negative

response (EOT), an interruption occurs.
OTAM detects the polling restart TP code,
initializes the channel program to poll the
next entry within the 1list, and returns
control to the supervisor.

Request of a Printer Status: If the
printer is ready and the buffer is empty, a
reservation is set on the printer buffer
that prevents transmission of messages from
the display stations to the printer buffer.
If a message is received indicating these
conditions, the Read Response chains to the
Read Data CCW. The next EOT resets the
reservation condition.

A negative response is either NAK, which
indicates the printer is not ready, or EOT,
which indicates the printer is ready but
the buffer is not empty. Both negative
responses set the printer request condi-
tion, which causes the 2848 Display Control
(DC), upon receipt of a general poll, to
sense if the printer is in a ready condi-
tion, and if the buffer is empty.

Read Initial Channel Program

Operation Address | Flags TP-Op Code [ Count
1.Write deselect characters | Table CcD 02 3
(3 circle Cs)
2.Write polling characters | List CcD 03 2
3.Write READ MI code Table CC,SLI |04 1
4.Read response Area cD 05 2
5.Read data Area +2 | SLI 11 Length-2

Initiated by the Read/Write routine, the
Read Initial channel program places the
line in control mode and polls a terminal
with a two-character code. For the 2260
devices, the polling characters specify a
general poll of the DC, a specific poll of
a display station, or a request of a print-
er status. After the polling characters
are sent, the special READ MI code is sent
to inform the 2848 that the CPU wants a
message.

General Poll of a DC: The polling list
must specify a general poll, with the
second byte a hexadecimal FF. If the
printer has a status pending as a result of
a previous request (printer status or Write
Initial), this message will be transmitted
and the Read Response CCW will chain to the
Read Data CCW.

If the printer is not ready, the display
stations are scanned for a message. If a
message is pending, it is sent. If there
is no message waiting for transmission, a

BTAM Operation Within QTAM 71



negative response EOT is received. The
channel program is interrupted; QTAM
detects the polling restart TP code,
updates the channel program, and returns
control to the supervisor.

Read Continue Channel Program

Operation Address | Flags TP-Op Code | Count
1.Write ACK Table CcC,su | 02 1
2.Read data Area SLI n Length

The Read Continue channel program sends
a positive response ACK and reads the mes-
sage. If the previous operation was a spe-
cific poll of a display station, an EOT
will be returned, which ends the operation.
If the previous operation was a general
poll, a message (if one is sending) will be
received; otherwise an EOT is received.

Read Repeat Channel Program

Operation Address | Flags TP~Op Code | Count
1.Write NAK Table CcC,su (02 1
2.Read data Area MR 1 Length

The Read Repeat channel program sends a
negative response (NAK) and reads the data.

Write Initial Channel Program

Operation Address | Flags TP-Op Code |Count

1.Write deselect characters | Table CcD 02 3
(3 circle Cs)

2.Write addressing chars List CcD 03 2
3.Write WRITE code Table CC,SLI | 04 1
4 .Read response Respn cC 06 1
5.Write STX Table CcD 08 1
6.Write data Area CC,SLE [ 11 Length
7 .Read response to Text Respn +1 20 1

The Write Initial channel program is for
either the printer or the display station.
The channel program places the line in con-
trol mode, sends the addressing characters,
and sends the WRITE code. If a printer is
addressed, the Read Response CCW reads the
addressing sequence response. If either an
EOT or an NAK (negative responses) is

72

received, there is an interrupt. The EOT
indicates the printer is not ready, and the
NAK indicates the printer is ready but the
buffer is not empty. Either of these sets
is a printer request.

If the response is positive (ACK), which
indicates that the printer is ready and the
buffer is empty, the Read Response CCW
command-chains to send the STX (start of
text character) and then sends the data.

If a transmission error occurs, the opera-
tion is stopped and the printer buffer is
cleared.

If a display station is addressed, the
Read Response CCW reads the addressing
sequence response, which is normally posi-
tive (ACK) and chains to read the data. If
a transmission error occurs, the EOBLC rou-
tine will retry transmission three times
before setting the error bit in the error
halfword.

Write Continue Channel Program

Operation Address | Flags | TP-OP Code Count
1. Write STX - Table CC,su 08 1
2. Write data Area CC,sLl 1" Length
3. Read response to test Respn + 1 20 1

The Write Continue channel program
writes the STX character and the data. The
Write Data command is chained to the Read
Response command, which reads the response
into the second byte of the DECB response
field.

Write Erase Channel Program

Operation Address | Flags TP-Op Code | Count

1.Write deselect characters | Table CD 02 3
(3 circle Cs)

2.Write addressing chars List CD 03 2
3.Write ERASE Code Table cC,su (04 1
4.Read response Respn cC 06 1
5.Write STX Table cD 08 1
6.Write data Area cc,st |1 Length
7 .Read response to text Respn +1 20 1

The Write Erase channel program places
the line in control mode, addresses a ter-
minal with the two-character code, and
sends the special code ERASE. This opera-

‘tion is to erase the CRT and any message on



the display screen starting in the upper
left-hand corner. The response to address-
ing is read in the first byte of the
response field in the DECB (DECRESPN). If
a negative response is received, the chan-
nel program is terminated.

If a positive response is received, the
Read Response is chained to the Write STX
character followed by data. The response
to text is read into the second byte of the
DECB response field.

Write at Line Address Channel Program

Operation Address | Flags TP-Op Code |Count

1.Write deselect characters | Table cD 02 3
(3 circle Cs)

2.Write addressing chars List cD 03 2
3.Write WRITE LINE code Table CC,SLI | 04 1
4 .Read response Respn CcC 06 1
5.Write STX Table CD’ 08 1
6.Write data Area CC,stl 11 Length
7 .Read response to text Respn +1 20 1

The Write at Line Address channel pro-
gram places the line in control mode,
addresses a terminal with a two-character
code, and sends the WRITE LINE code to in-
dicate the operation to the 28u48. The
response to addressing is read. If it is
positive, the Read Response chains to write
the STX character and the data. If the
response is negative, the channel program
is terminated. The cursor is positioned on
a specified line and the characters are
displayed from that point. The response is
read into the second byte of the response
field in the DECB. If a transmission error
occurs, the EOBLC routine will retry three
times before setting the error indication
in the error halfword.

CHANNEL PROGRAMS EMPLOYING THE AUTO POLL
FEATURE

The QUTAM Device I/0 modules incorporated
for each of the terminals supported by 0S
QOTAM with Auto Poll are the following:

IGGO19N3 1IBM 1030

IGGO19N1 IBM 1050 (nonswitched)
IGG019N2 1IBM 1060

IGGO19N9 1IBM 2740 (with station control)

IBM 2740 (with station control
and checking)

IGG019N8

The Device I/0 modules are essentially
the same for Auto Poll as for the other
terminal types except for the Read Initial
operation for the 2740, which deletes the
write space character.

After the Read/Write module (IGGO19NZ)
has built the channel program, the Read
Initial channel program, independent of
terminal type, is in the following form:

. TP-op
Operation Address Flags Code Count
1. Write EOT sequence | Table CC,SLl 02 3
2. Poll List CC, sl 03 k(n)*
3.TIC 2nd Poll su 09 1
Command
4.TIC Read Response
Command
5. Poll First entry Cc,su 03 k(n) *
in List
6. TIC 2nd Poll SLl 09 1
Command
7. Read Response Area cD 0A 2
8. Read Data Area + 2 CC,SLI,PCi 1 length -2
*k = 2 for IBM 1030, 3 for other devices
n = total number of entries in the poll-

ing list.

Where, on a Read Initial command, the CCWs
(1-8) have the following effect:

1. EOT sequence of three circle Cs in
line code.

2. Polls the terminal with polling
character.

3. On a negative response to polling at
the end of the list, this TIC will be
executed to start the second Poll
command.

4. On a positive response to polling,
this TIC command will be executed to
start the Read Response command.

5. If either Poll cammand terminates with
negative response at the end of the
list, this Poll command will restart
polling at the beginning of the list.

6. On a negative response to polling at
the end of the list, this TIC command
will be executed to restart the second
Poll command.

7. On a positive response to polling,
this command will read the list entry

BTAM Operation Within QTAM 73



index byte and the first byte of text
into the message area and then chain
to 8.

8. This command causes the remainder of
the text to be read into the message
area.

CHANNEL PROGRAMS FOR WORLD TRADE TELEGRAPH
ADAPTER

The channel programs for terminal-to-CPU
transmission (Read Initial and Read Con-
tinue) and for CPU-to-terminal transmission
(Write Initial) are made up of two parts:

e The first part (identification exchange
channel program) is a channel subpro-
gram automatically associated with the
second part. On request, it performs
identification exchanges at any time
during message transmission.

¢ The second part (Read or Write channel
program) is set up to receive input
messages or to send output messages.

Read Initial Channel Program

) L) L T 1
|Operation |Ad- |Flags |TP Op|Count |
| |dress| | Code | |
t e 1 N 1 d
T L) . T ] T 1
|1. Write CPU-|List |CD SLI| 07 | n |
[ ID se- | | I | |
|  quence | | [ | |
| (Note 2) | | | | |
| | | | | |
12. Write (see|WRU |CC SLI| 04 | 1 |
| Note 1) | | | | |
| | | | | |
|3. Read ter- |List | SLI | 07 |Length-1}
| minal-ID | | | | |
| (Note 3) | | | | |
| i | [ | |
|4. Prepare 10 |cc sLI| 01 | 1 |
| | | | | |
|5. Sense |TP Op|CC SLI| FF | 1 |
| |Area | . | | |
| | | | | |
|6. Read |Area | SLI | 11 | Length |
L 1 i Lo L 4

The Read Initial channel program is
started by the Read/Write routine at the
fourth CCW.

The Prepare command prepares the control
unit to receive a message and, when a
character is received, command-chains to
the Sense command and to the Read command.
When the Sense command is executed, the TP
Op code of the Sense overlaid by the adapt-
er sense byte (which is never X'FF'), the
contents of the Sense command TP Op code
indicates when data is to be received.

o774

Read Continue Channel Program

v T T k) T 1
|Operation |Ad- |Flags |TP Op|Count |
| jdress] | Code | |
L ——— 1 4+ 1 .l
T . T L T

|1. Write CPU-{List |CD SLI] 07 | n |
| ID se- ] ] | | I
| quence | ] | | I
| (Note 2) | 1 ] | |
I I i I I |
12. Write (see]WRU |CC SLI| 04 | 1 ]
] Note 1) | ] | | |
] 1 | | [
13. Read ter- |List |} SLI | 07 |Length-1|
] minal-ID | 1 | | |
] (Note 3) | ] | | |
| 1 | I | |
]4. Read {Area | SLI | 11 | Length |
[ N _____L L 1 J

The Read Continue channel program is
initiated by:

e Tha EOB routine when a WRU signal has
been received. The channel program
started at the first CCW performs an ID
exchange, and then the fourth CCW reads
the remaining data into the main
storage area originally specified.

e The Activate routine when the last mes-
sage received was ended by EOM; the
channel program is started at the
fourth CCW.

Write Initial Channel Program

r T T T T 1
{Operation ]Ad- |JFlags |TP Op]Count |
| jdress] |Code |

F R -t 1
1. Write {Table]CD SLI| 04 | 1+m |
] ! | I | (Note) |
| ] | | | I
12. Write |Table]CD SLI| 01 | 12 |
] 1 { I I I
j3. TIC ] ] | | |
] | ] | I I
}J4. Write CPU-]List ]CD SLI|j 07 | n ]
| ID se- ! ] I | !
|  quence ] ] | ! I
| (Note 2) ] 1 | | |
! ] | ! |
|5. Write (see|WRU jcc SLI| o4 | 1 |
| Note 1) | i | ] |
] ] ] | I |
]6. Read ter- ]JList | SLI | 07 |Length-1]
] minal-ID ] 1 | | |
i (Note 3) | i | | |
] ] ] | | I
17. Write {Area ] SLI | 11 | Length |
L 1 A L1 4 J
Note: m is the number of mark characters

specified by the user.



The Write Initial channel program is
started by the Read/Write routine, and the
CCWs have the following effect:

1. Twelve letters shift characters are
sent at the beginning of the output 2.
message.

2. The transfer address in the TIC CCW is
that of the third or of the sixth CCW,
depending on whether the WRU macro
instruction is present in the Send 3.
Header subgroup of the LPS.

Notes

1. When the Automatic Answerback Unit
feature is installed on the terminal,

the CPU sends the WRU signal to the
terminal, which then sends its identi-
fication sequence to the CPU.

The computer identification (CPU ID)
defined in the POLL macro instruction
associated with the line is sent to
the terminal.

The terminal identification is read
into the area reserved by the TERM
macro instruction associated with the
line.

BTAM Operation Within QTAM 75 6@



MESSAGE CONTROL PROGRAM (LPS) ROUTINES

This section summar izes the operation of
each of the LPS routines from which the
user selects those required for his partic-
ular message control functions. The rou-
tines selected form collectively the Line
Procedure Specification (LPS) section of
the message control program. Each LPS rou-
tine is contained within a module; each
module contains a single routine.

The majority of the LPS routines corre-
spond to LPS macro instructions, and are
linkage edited into the Message Control
Program Load module because of the inclu-
sion of the macro instructions in the mes-
sage control source program. They are
entered upon execution through linkages
generated in the macro expansions.

The remaining LPS routines are general
routines; each of these is linkage edited
into the Message Control Program Load
module pecause of a linkage generated in
any of several LPS macro instructions.

Each of the following LPS routine
descriptions provides:

e Name of the routine.

s Name of the module that contains the
routine.

e Function of the routine.
e Entry point and linkage information.

e Names of external routines used.

BREAKOFF ROQUTINE_(CHART BY)

Function: This routine causes a message to
be terminated and an error bit to be set,
if the incoming message exceeds maximum
length, or if the characters in the buffers
are identical (usually an indication of
terminal or line malfunction). If the
characters are identical, the routine skips
the length comparison and sets up for an
error. If the characters are not identi-
cal, the routine adds the previous count of
characters in LCBERCCW+6 field of the LCB
to the length of the current message, and
restores the LCBERCCW+6.

The Breakoff routine obtains the speci-
fied maximum length of a message passed by
register 14. If the specified length is
greater than zero, the accumulated length
is compared with the maximum length speci-
fied; otherwise, the length comparison is

76

bypassed. If the accumulated length is
greater than the maximum length, the rou-
tine sets up for an error by turning off
the "receive" bit in the LCBSTATE field of
the LCB: this keeps buffers from being
assigned, which causes a program check. If
the accumulated length is less than or
equal to the maximum length, it tests for
end of message. If it is not the end of
message, the routine returns to the next
LPS instruction; otherwise, it tests for
program check. Breakoff characters are not
written until end of message, and a program
check indicates Breakoff characters are to
be written. If there is no program check,
return is made to the next LPS instruction.
If there is a program check as a result of
no buffer assignment, the Read Initial
operation code is cleared, the "breakoff"
bit in the error halfword is set, and
LCBTRST field of the LCB is set to the EOB
of the text segment. The address of the
CCW with a BREAK command code is moved into
LCBSTART field of the LCB. The channel
program is executed to write the control
characters necessary for the breakoff. The
Breakoff routine branches to the LPS con-
trol to wait for the breakoff.

Module Name: IECKBRKF

Entry Point: Expansion of the BREAKOFF
macro instruction generates a BALR to the
routine at IECKBRKF, using register 15 as
the branch register and register 1% as the
return register. Register 14 also serves
as a parameter register. The parameter
list passed to the routine consists of the
maximum length of a message.

External Routines Used: EXCP (sSvC 0)

CANCEL MESSAGE ROUTINE (CHART CL)

Function: This routine causes the message
to be cancelled when any of the error con-
ditions specified by the error mask is
indicated in the error halfword, or when
the error mask is zero. If the error mask
is not zero, and none of the error condi-
tions specified by the error mask is indi-
cated in the error halfword, return is made
to the next LPS instruction. If the error
mask is zero or the specified errors are
detected, and if the destination code has
not been specified in the error mask, or no
destination code error is set in the error
halfword, linkage is made to the Recall
routine to obtain the header. When the
header is available, the "cancel" bit is
set on in the MSTATUS field of the header



prefix. When any of the error conditions
specified by the error mask is indicated in
the error halfword, or when the error mask
is zero, the previous sequence number is
stored in the TSEQUIN field of the terminal
table unless it is equal to zero. Zeros
are moved into the LCBMPLRT byte and
LCBDLPTR of the LCB to cancel the multiple
route option and distribution 1list, and the
conversational mode bit in the LCB is
cleared before returning to the next LPS
instruction.

Module Name: IECKCNCL

Entry Point: Expansion of the CANCELM
macro instruction generates a BALR to the
routine at IECKCNCL, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of the error mask in hexadecimal
notation.

External Routines Used: Recall (IECKRC in

module IGGO019NG)

Check 1/0 has been deleted in QTAM.

DATE STAMP ROUTINE (CHART_ CH)

Function: This routine obtains the current
date in packed decimal form (via a TIME
macro), unpacks the date, and inserts it in
the message header in the format byy.ddd,
where b = blank, yy = year, and ddd = day
of the year. Prior to inserting the date,
the Date Stamp routine links to the Expand
routine (which "expands" the header by
shifting, seven places to the left, all
message characters from the end of the pre-
fix plus seven, up to and including the
character pointed to by the scan pointer).
The date is then inserted in the field
created. The scan pointer points to the
last character in the date.

Module Name: IECKDATE

Entry Point: Expansion of the DATESTMP
macro instruction generates a BALR to the
routine at IECKDATE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as the parameter list register. The
parameter list passed to the routine con-
sists of a halfword containing, in binary
form, the length (7) of the date field to
be inserted in the message header.

External Routines Used:
IECKEXPD)

Expand (module

DISTRIBUTION LIST ROUTINE (CHART DB)

Function: This routine stores the destina-
tion key in the LCBDLPTR field of the LCB.
The address of the terminal list is
obtained from the terminal table. If there
is an entry in the list, the address of the
QCB for the destination is put in the
LCBDESTQ field of the LCB. If there is no
entry in the list or after the address of
the QCB has been stored in the LCBDESTQ,
the destination key is stored in the TTDKEY
field of the prefix. The address of the
OCB is moved into the RECB section of the
buffer. If the Distribution List routine
was previously entered, it branches to the
Priority subroutine in IECRQQ01. If the
Distribution List routine has not been
entered previously, it branches to the
Endinsrt (End Insert) routine. The
Endinsrt routine places the address of a
special entry point in the Distribution
List routine, which the Cleanup routine
will process in a chain according to the
priority specified. Endinsrt replaces the
second operand of the BAL instruction to
the Endinsrt routine with the address of
the Priority subroutine. Endinsrt returns
via the return register minus four, which
returns to the same BAL instruction. This
time the BAL instruction branches to the
Priority subroutine.

The code is entered from the Cleanup
routine by a branch tc a routine in the
chain. If there is no entry in the list,
the routine branches to the next routine in
the chain. If there is an entry in the
list, the address of the header is saved
for the next destination. The destination
key of the next entry is stored in the
ICBDLPTR field of the LCB. If there is an
entry in the terminal table, the address of
the QOCB is placed in the LCBDESTQ field of
the LCB. The routine links to the Recall
routine to obtain the header. Upon return,
the destination is stored in the TTDKEY
field of the prefix. When there are more
destinations to be satisfied, return is
made to the start of the Cleanup routine.

Module Name: IECKDLQT

Entry Point: The routine is entered from
the module IECKQQO1l.

External Routines Used:

¢ End Insert (Endinsrt in module
IGGO19NG)

e Priority (in module IECKQQO01)

e Recall (IECKRC in module IGG019NG)

Message Control Program (LPS) Routines 77



END_OF ADDRESS ROUTINE (CHART DC)

Function: The EOA macro expansion branches
to the Message Type routine, which branches
to the End of Address routine if the EOA
character is not found by the Scan routine.
The End of Address routine computes and
saves the offset of the destination in the
header from the start of the header. If
this is the first time the EOA macro
appears in the LPS, the routine branches
and links (BAL) to the Endinsrt (End
Insert) routine. The Endinsrt routine
places the address of a special entry point
in the £nd of Address routine, which the
Cleanup routine will process in a chain
according to the priority specified by a DC
in the routine. Endinsrt replaces the
second operand of the BAL instruction to
Endinsrt with the address of the Skip
Character Set routine. Endinsrt returns
via the return register minus four, which
returns to the same BAL instruction. This
time the BAL instruction branches to the
Skip routine.

If the EOA macro has been entered
before, the routine branches immediately to
the Skip routine because the code has
already been inserted in the chain. The
Skip Character Set routine advances the
scan pointer past the specified EOA
character and returns to the code generated
by the macro. If the EOA character speci-
fied in the macro is found by the Scan rou-
tine through the use of Message Type rou-
tine, return is made to the code generated
by the EOA macro, which tests toc determine
if the header is being copied. If the
header is being copied, a branch is made to
the ENDRCV macro expansion, which branches
to the Cleanup routine. If no header is
being copied, return is made to the next
LPS instruction.

The £nd of Address routine is entered at
the special entry point from the Cleanup
routine by a branch to the next routine in
the chain. The routine tests for multiple
routing. If there is no multiple routing
indicated in the LCBMPLRT field of the LCB,
the routine returns to the Cleanup routine,
which links to the next routine in the
chain. If there is another destination,
the routine links to the Recall routine to
obtain the header from the disk. Multiple
routing is set up by clearing the error
indication in the LCBERRST field, the dis-
tribution list pointer in the LCBDLPTR
field, and the multiple routine indicator
in the LCBMPLRT field in the LCB. The scan
pointer is reset to the offset of the next
destination from the end of the prefix.

The routine branches to the Route routine,
which handles the next destination code and
returns to the first instruction in the EOA
macro expansion. The End of Address rou-

78

tine is repeated until all destination
codes in the header have been handled.
Module Name: IECKEOAD

Entry Point: Expansion of the EOA macro
instruction generates a BALR to the Message
Type routine at IECKTYPE, using register 15
as the branch address register and register
14 as the return register. Register 14
also serves as a parameter list register.
The parameter passed to the routine con-
sists of the field size and the EOA
character specili=d in the macro. The
parameter register 1 contains the address
of the End of Address routine.

External Routines Used:

¢ Skip Character Set (module IECKSKPS)

¢ End Insert (Endinsrt in module
IGGO019NG)

¢ Recall (IECKRC in module IGGO019NG)

¢ Route (module IECKROUT)

END OF BLOCK ROUTINE (CHART CY)

Function: The function of this routine
depends on whether it is entered from the
EOB macro expansion or from the ENDRCV
macro expansion.

1. When this routine is entered from the
EOB macro expansion, and if the mes-
sage has been cancelled, an error mes-
sage has been sent, or the message has
been rerouted, this macro is not
executed and return is made to the
next LPS instruction. Similarly, if
the status byte of the CSW indicates
either an end of transmission, a unit
exception, or a residual count of zero
in the CSW, return is made to the next
LPS instruction. The end-of-block bit
in the prefix is set because there was
a positive indication that the message
was correctly transmitted. In setting
up for transmission of the next mes-
sage, the scan pointer is adjusted to
segment size and is stored in the
header prefix. The LCBTRST halfword
is updated by storing the segment size
in this field.

If the transmission was a Write
operation, a check is made for 1030 or
1060. If a 1030 or 1060, return is
made to the next LPS instruction.
Otherwise, the operation code is set
for Write Continue. If the transmis-
sion was a Read, the operation code
for Read Continue is set in the
LCBCECB field of the LCB. For both
operations, the buffer is set to be



reused. The End of Block routine
branches to the Activate routine.
Return is made from the Activate
routine.

2. When this routine is entered from the
ENDRCV macro expansion, it tests the
WRJ flag in the LCB. If this flag is
not set, return is made to the next
LPS instruction. If the WRU flag is
set, this indicates that the last
character received is WRU. 1In this
case, an identification exchange must
be performed. The EOB bit in the buf-
fer prefix is set, and the buffer is
set to be reused. The Read Continue
indicator is set in the LCBECB field
of the LCB. The End of Block routine
exits to the physical 1/0 routine,
which generates and initiates execu-
tion of the appropriate channel pro-
gram. This channel program performs
an identification exchange and reads
the rest of the input message, pro-
vided EOM is different from WRU.
Module Name: IECKEOBK
Entry Point: Expansion of the EOB macro
instruction or of the ENDRCV macro instruc-
tion (if this is an LPS for a WITA line)
generates a BALR to the routine at IEC-
KEOBK, using register 15 as the branch
address register and register 14 as the
return register.
External Routines Used: Activate (IECKACT
in module IGGO019NG)

END OF BLOCK AND LINE CORRECTION ROUTINE
(CHART CZ)

Function: For the following conditions the
retry counter and error flag in the LCB are
cleared and return is made to the next LPS
instruction.

1. A message has been cancelled.

2. An error message has been sent.

3. The message has been rerouted.

4. Transmission has failed three times
and an EOT has been received.

5. Transmission has failed and there is a
time-out or intervention required.

6. An EOT was received or other errors
occurred.

If there was a transmission error, but
not one of the above, the "transmission
error” and "time-out" bits are set to zero
in the error halfword unless the permanent
error flag was set in the LCBERCCW field of
the LCB. The routine branches and links to
the Recall routine to obtain the header.

If the line is sending, Write Continue is
set in the LCBCECB field of the LCB. If
the device is an IBM 1030 or IBM 1060, the

Write Initial operation code is set in the
LCBCECB field of the LCB. Return is made
to the start of the LPS for another try at
transmission.

If the line is not sending, action is
taken to retry receiving the message. If
an EOB is present in the header segment,
the entire message is cancelled and a new
buffer is set up. If no EOB is present in
any buffer position other than the last
position, the cancel bit of the MSTATUS
field is set. If the sequence number is
not zero, the last sequence number in the
terminal table is stored in the TSEQUIN
field of the terminal table. Linkage is
made to the Recall routine to obtain the
header. The scan pointer and the LCBTRST
field of the LCB are updated. An end of
address (EOA) character is set up, and the
header is filled with idle characters in
the space reserved for time, date, or
sequence number. (The EOA and idles are
not set for an IBM 2260 device.) The dis-
tribution list and multiple route indica-
tors are cleared, and error flags are reset
to zero. For all receiving messages, the
end of message is set in the MSTATUS field
of the prefix, and the transmission operand
for the retry is set in the LCBCECB field
of the LCB. The buffer size is stored in
the MSEGSZE field of the prefix to indicate
the message size. The LCBCLCCW field of
the LCB is set to reuse the buffer. A
branch is made to the Activate routine.

If there were no transmission errors or
an EOT had not been received, tests are
made on the CSW. If the status byte of the
CSW indicates either an end of transmission
or a residual count of zero, the retry
counter and error flag in the LCB are
cleared and return is made to the next LPS
instruction. The end of block bit in the
prefix is set, because there was a positive
indication that the message was correctly
transmitted. 1In setting up for transmis-
sion of the next message, the scan pointer
is adjusted to segment size and is stored
in the header prefix. The current segment
is set as the last correctly transmitted
message in the LCBRCADD field of the LCB.
The LCBTRST halfword is updated by storing
the segment size in this field. If the
transmission was a Write operation, a Write
Continue is set in the LCBCECB field of the
LCB. If an IBM 1030 or IBM 1060 was the
transmitting terminal, there is no further
execution of this routine; the retry count-
er and error flag are cleared before
returning to the next LPS instruction. For
a Read operation, the Read Continue opera-
tion code is set in the LCBCECB field of
the LCB. For both operations, the buffer
is set to be reused. The routine branches
to the Activate routine. Return is made
from the Activate routine.

Message Control Program (LPS) Routines 79



Module Name: IECKEOBC

Entry Point: Expansion of the EOBLC macro
instruction generates a BALR to the routine
at IECKEOBC, using register 15 as the
branch address register and register 14 as
the return register.

External Routines Used:

e Activate (IECKACT in module IGGO19NG)
¢ Recall (IECKRC in module IGG019NG)

ERROR MESSAGE ROUTINE (CHART CQ)

Function: This routine causes a user-
written error message to be sent to a
designated terminal when any of the error
conditions specified in the error mask is
indicated in the error halfword, or when
the error mask is zero. If the error mask
is not zero and none of the error condi-
tions specified by the error mask is indi-
cated in the error halfword, return is made
to the next LPS instruction. If there has
been a sequence number error, the last
valid sequence-in number is obtained from
the terminal table. The error text is
scanned for a dollar sign ($). If a $§ is
found, the sequence-in number is inserted,
in decimal form, in the error text. Upon
encountering a second $, the specified
sequence number, obtained from the header
prefix, is inserted in decimal form in the
error text.

When an error condition is encountered,
linkage is made to the Recall routine (in
module IGGO19NG) to obtain the header. A
test is made for the option of including
the header of the message in the error mes-
sage. If the header is not to be included,
the scan pointer is reset to the beginning
of the header of the message in error. The
specified error message then overlays the
header. If the header is included, the
pointer remains positioned at the end of
the header. The buffer is loaded with the
error text. If the error message exceeds
the space in the buffer, the text is trun-
cated. The size of the message is stored
in MSEGSZE field, and single segment is
indicated in MSTATUS field of the prefix.
Linkage is made to the Lookup routine,
which looks up the destination code in the
terminal table and places the relative
address in the TTDKEY field of the header
prefix for the error message to be sent.
Return to the next LPS instruction is made
by the Lookup routine.

Module Name: IECKERMG

Entry Point: Expansion of the ERRMSG macro
instruction generates a BALR to the routine
at IECKERMG, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also

80

serves as a parameter list register. The
parameter list passed to the routine con-
sists of the error mask in hexadecimal
notation. Register 0 contains the length
of the error message (0 if an address is
specified). The address of the destination
terminal is contained in register 2; the
address of the error message is in

register 1.

External Routines Used:

e Recall (IECKRC in module IGGO19NG)
e Lookup (module IECKLKUP)

EXPAND ROUTINE (CHART CU)

Function: .If the scan pointer is pointing
to a blank character, the pointer is
shifted back one position. The number of
characters to be shifted is computed by
subtracting the end of the prefix and the
number of spaces to be expanded from the
value in the scan pointer. If the result
is negative, return is made to the next LPS
instruction because there is no space for
the shift. If there is sufficient space,
the characters are moved to the left the
number of spaces indicated. After the
characters of the header have been shifted,
a blank is inserted as a left delimiter at
the start of the field. The scan pointer
for the next destination is shifted to the
left the length of the new field. If an
EOA has not been reached, the scan pointer
is stored in LCBMPLRT of the prefix.

Return is made to the calling routine.
Module Name: IECKEXPD

Entry Point: The routine is entered via a
BALR from SEQOUT, TIMESTMP, or DATESTMP;
register 15 is the branch address register
and register 3 is the return register. The
address of the parameter list is passed to
the routine in register 14. The parameter
list contains the number of spaces the
header is to be expanded.

External Routines Used: None

INTERCEPT ROUTINE (CHART CT)

Function: This routine causes suppression
of all message transmission to a terminal
when any of the error conditions specified
by the error mask is indicated in the error
halfword, or when the error mask is speci-
fied as zero. If the error mask is not
zero, and none of the error conditions
specified by the error mask is indicated in
the error halfword, return is made to the
next LPS instruction. The routine makes
linkage to the Recall routine to recall the
header. The "serviced" bit is turned off
and the "priority" bit is turned on in the
prefix so that a new sequence number is not



assigned. The "send" bit of the TSTATUS
byte of the terminal table for that entry
is turned off to indicate that messages on
the queue for the destination were withheld
from transmission. If the "intercept" bit
in the TSTATUS byte is on, indicating that
a previous message is in the INTERCPT
field, and if the header address is greater
than the address in the INTERCPT field,
return is made to the next LPS instruction.
If the header address is less than the
address in the INTERCPT field, and if the
"intercept" bit in the TSTATUS byte is off,
the "intercept" bit is set to one, to indi-
cate that a message on the queue was not
transmitted, and the header address is put
into the INTERCPT field in the user area of
the terminal table entry. The offset to
the INTERCPT field in the terminal table is
obtained and saved in LPSTART for the
Release Intercepted Message routine.

Return is made to the next LPS instruction.

Module Name: IECKITCP

Entry Point: Expansion of the INTERCPT
macro instruction generates a BALR to the
routine at IECKITCP, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of the address of the error mask in
hexadecimal notation for the communication
line. The parameter register 1 contains
the address of the INTERCPT field in the
terminal table.
External Routines Used: Recall (IECKRC in
module IGGO19NG)

LOOKUP ROUTINE (CHART CO)

Function: This routine obtains, in succes-
sion, the destination name contained in
each terminal table entry and compares it
with the destination name provided in a
work area. Each time a no-compare results,
the process is repeated with the destina-
tion name from the next terminal table
entry. When a match results, the routine
obtains, from the terminal table entry, the
address of the queue control block for the
destination queue, and places this QCB
address in the LCBDESTQ field of the LCB.

If the terminal name in the work area
does not match any destination name in the
terminal table, the routine turns on the
invalid destination bit (bit 0) in the
error halfword, and places the address of
the CCB for the dead-letter queue in the
LCBDESTQ field of the ILCB.

Module Name: IECKLKUP

Entry Point: The Lookup routine is
entered, either:

1. At IECKDRCT, via a BALR in the DIRECT
macro expansion. (Register 15 is the
branch address register and register
14 is the return register).

2. At IECKLKUP, via unconditional
branches from the Routing, Error Mes-
sage, and Reroute routines.

External Routines Used: None

MESSAGE MODE ROUTINE (CHART CW)

Function: This routine is entered when a
specific character is specified in the
second operand of the macro. Linkage is
made to the Scan routine to obtain the next
nonblank character in the header. If the
character provided by the Scan routine is
identical to the one specified in the MODE
macro, the Message Mode routine branches to
the routine designated in the first
operand. If the characters do not match,
the scan pointer is restored, and return is
made to the next LPS instruction.

Module Name: IECKMODE

Entry Point: Expansion of the MODE macro
instruction generates a BALR to the routine
at IECKMODE, using register 15 as the
branch address register and register 14 as
the return register. The parameter list
passed to the routine consists of the
character that is compared with the first
nonblank character in the header. Register
1 is a parameter register that contains the
address of the routine specified by the
first operand of the macro.

External Routines Used: Scan (module
IECKSCAN)

CONVERSATIONAL MODE ROUTINE (CHART CX)

Function: The "converse" bit is set in the
LCBSTATE field of the LCB. If this is the
first appearance of the macro in the LPS,
the Conversational Mode routine branches
and links (BAL) to the End Insert routine.
If the Conversational Mode routine has been
previously entered, return is made to the
next LPS instruction. The End Insert rou-
tine places the address of a special entry
point in the code of the Conversational
Mode routine, which the Cleanup routine
will process for the conversational mode in
a chain according to the priority specified
by a DC in the routine. End Insert
replaces the second operand of the BAL
instruction to End Insert with the address
of the next LPS instruction, and returns
via the return register minus four, which

Message Control Program (LPS) Routines 81



returns to the same BAL instruction. This
time the BAL instruction branches to the
next LPS instruction.

This section of the routine is entered
from the Cleanup routine by a branch to the
next routine in the chain. If the conver-
sational mode has not been indicated, an
error message is to be processed, or a
polling or addressing error has occurred,
return is made to the next routine in the
chain. The conversational mode must be
used for processing; therefore, if the
queue is not a processing queue, return is
made to the next routine in the chain.

If the line is receiving, the routine
branches to the LPS Control routine at
STARTUP to wait for the incoming message to
be processed. If the line is sending, the
line is turned around to receive by setting
the highest priority, the "converse" and
"receive" bits in the LCBSTATE field of the
LCB, and the Read operation code in the
LCBCECB field of the LCB. If the end of
the polling list has been reached, the
start of the polling list is stored in the
LCB poll pointer. The LCBCLCCW field of
the LCB is reset with the BRB address for
initialization of the Activate routine.

The routine issues a post to insert the BRB
into the ready queue, and branches to the
LPS Control routine at STARTUP to wait for
the message to be received. The LPS Con-
trol routine returns to the code in the
Conversational Mode routine. The "service"
bit is set in the prefix of the message and
the "converse" bit is cleared in LCBSTATE
field of the LCB. If the source terminal
was not identified, then return is to the
start of the Cleanup routine. The chain,
pointed to by the QCB for a source termi-
nal, is searched for a DEB to see if the
process queue contains a reply. If the
chain has been searched completely, return
is to the start of the Cleanup routine. 1If
there is a reply, the LCBSTATE field is set
to send, and the Write operation code is
set in the LCBCECB field of the LCB. The
routine posts the original message to the
empty buffer queue. The LCB is restored
with the disk address of the reply. The
relative address of the EOB is set in the
LCBTRST field of the LCB. The routine
posts to the I/0 queune, and branches to the
LPS Control routine at STARTUP to wait for
the message to be received.

Module Name: IECKCVRS

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at IECKCVRS, using register 1 as the branch
address register and register 14 as the
return register. If there is a character

82

specified in the second operand, the
address of the Conversational Mode routine
is placed in the parameter register 1, and
the routine is entered by a branch from the
Message Mode routine.

External Routines Used:

e End Insert (Endinsrt in module
IGGO19NG)

e LPS Control (STARTUP in module
IGG019NG)

e QOpost (IGC067 in module IECKQQO01)

INITIATE MODE ROUTINE (CHART CW)

Function: The routine sets the "initiate"
bit in the LCBSTATE field of the LCB.
Return is made to the next LPS instruction.
Module Name: IECKNATE

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at IECKNATE, using register 1 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand, the
address of the Initiate routine is placed
in parameter register 1, and the routine is
entered by a branch from the Message Mode
routine.

External Routines Used: None

PRIORITY MODE ROUTINE (CHART CW)

Function: Linkage is made to the Scan rou-
tine, which obtains and provides the
address of the first nonblank character in
the header. This character is moved into
the LCBPTEMP field of the LCB to be the
priority of the message. Return is made to
the next LPS instruction.

Module Name: IECKPRTY

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at ‘IECKPRTY, using register 1 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand, the
address of the Priority subroutine is
placed in parameter register 1, and the
routine is entered by a branch from the
Message Mode routine.
External Routine Used: Scan (module
IECKSCAN)




MESSAGE TYPE ROUTINE (CHART CA)

Function: This routine saves the scan
pointer, and then links to the Scan rou-
tine, which obtains and provides (for the
Message Type routine) the message header
character pointed to. The Message Type
routine compares the character provided
with the character specified in the MSGTYPE
macro statement. If the characters are
identical, the routine branches to the next
executable LPS instruction. If they are
not identical, the routine restores the
scan pointer and branches to the next Mes-
sage Type routine (if this is the last Mes-
sage Type routine, it branches to the next
delimiter routine). Because the scan
pointer is restored when the two characters
are not the same, a series of Message Type
routines may be executed, each examining
the same message type character in the
header.
Module dame: IECKTYPE

Entry Point: Expansion of the MSGTYPE
macro instruction generates a BALR to the
routine at IECKTYPE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of:

e A halfword containing the field size
(one byte).

e A character constant containing the
character to be compared with the
scanned character.

e A character constant containing a
blank.

External Routines Used: Scan {(module
IECKSCAN)

OPERATOR AWARENESS (CHART EO)

Function: This routine is used to format
messages to be sent to the operator control
terminal. If an I/O error message is to be
sent, indicated by a hexadecimal 'FF' in
LCBCPA +28, the line number, status, sense,
TP Op Code, index byte, and terminal ID are
obtained from the LCB and put into the mes-
sage in printable form in the following
format:

1/0 ERR,aaa,bb,cccc,ddee, ffgghhhh

where: aaa Line number

bb = Operation code
ccce = Status halfword
ddee = Sense information
ff = TP Op code
gg = Index byte
hhhh = Terminal identifier

If a threshold message is to be sent,
indicated by a nonzeroc value in the next to
the last byte in the LCB, the line number
(in next to last byte) and counters are
obtained from the LCB and placed in the
message in printable form in the following
format:

THRESHOLD aaa TRANS=bbb DC=ccc IR=ddd TU=eee

Where: aaa Line number

bbb = Transmission counter

ccc = Data check counter

ddd = Intervention required counter
eee = Time-out counter

After the message has been formatted the
threshold counters are cleared.

The routine branches and links to the
Buffer Recall routine in the Implementation
module to obtain the header. Idle charac-
ters are inserted if specified. The mes-
sage is moved into the buffer. The QCB
address is obtained from the operator con-
trol entry in the terminal table.

The routine exits by branching to the
Buffer Cleanup routine to post the message
and return all buffers.

Module Name: IECKOPAW

Entry Point: Expansion of the POSTSEND or
POSTRCV macro instruction generates an
unconditional branch to the Implementation
module (IGGO19NG). This location in the
module is a branch instruction to an
address constant of the Operator Awareness
routine at IECKOPAW. The routine is passed
the LCB address, which contains information
for the messages, in register 4 and the
address of the buffer, into which the mes-
sage is to be placed, in register 6.

External Routines Used: Buffer Recall and
Cleanup (IECKRC and IECKPR in IGGO019NG)

OPERATOR CONTROL ROUTINE (CHART EE)

Function: After saving the base register,
scan pointer register, and return register,
the routine branches to the Scan routine to
get the first field of the current message
header. A test is made for a header error.
If one has occurred, control is returned to
the next LPS instruction after the scan
pointer register and return register are
restored.

The control message indicator characters
are moved into a work area and compared
against this first field of the header. If
they are not the same, then that message is
not a control message; scan pointer and
return registers are restored and control
returns to the next LPS instruction.

Message Control Program (LPS) Routines 83



If this is a control message, a test is
made to see if it is a single-segment mes-
sage. If it is a multisegment message, or
if ‘it is cancelled, the source key is moved
to the destination key field of the termi-
nal table entry, the QCB for that terminal
is moved into the destination queue field
of the LCB, registers are restored, and
control is returned to the macro, which
branches to ENDRCV, thus initiating the
resending of that message to the source
terminal.

If this is a single-segment message and
it was not cancelled, the next field of the
header is obtained by the Scan routine.
This field, which should be the message
type, is compared to find the type of
operation desired. When the operation type
is found, control passes to the routine to
handle that process. 1If the operation
specified is not valid, the message is
retransmitted to the source terminal as
described above.

SUB1 (CHART EF): Common Subroutine to get
the next field in the header (termname),
find the offset of that terminal from the
beginning of the terminal table, get the
size of the remainder of the buffer, and
the address of the terminal table, IECKSCAN
and IECKDRCT are used to scan the header
and look up the next field in the terminal
table. If the terminal table entry is
found, control returns to the calling rou-
tine. If not found, control is passed to
the routine that will initialize for
resending the message to the source
terminal.

UNPAK (CHART EF): Common subroutine used
to unpack the terminal table entry or the
counters and convert the data to EBCDIC.
The data is unpacked 8 bytes at a time into
the buffer until there are less than eight
bytes left to be converted. When this
occurs, the next 8 bytes are unpacked into
a work area. The data in the work area is
moved into the buffer for the remaining
number of characters. A check is made to
see if the EOB and EOT characters can fit
in the puffer. If they cannot, the EOB and
EOT are moved into the last two bytes of
the buffer. Otherwise, they are moved into
the two bytes following the converted data.
The actual size of the data to be trans-
mitted is stored in the MSEGSZE field of
the message prefix.

RCOPYT (CHART EH): Control is passed here
when a COPYT control message is received.
The routine uses the SUB1 subroutine to get
the offset of the termname and the number
of bytes remaining in the buffer. The size
of the terminal table entry is obtained and
doubled to get the number of bytes after
conversion. The size of the unpacked entry
is compared with the number of bytes

8u

remaining in the buffer. The lesser figure
is passed to the UNPAK subroutine to unpack
the entry into the buffer and translate it.
The message is then sent to the source.

RCOPYC (CHART EG): Control is passed to
the SUB1 subroutine tc get the termname,
offset to that terminal table entry, and
the number of bytes remaining in the buf-
fer. The QCB address is obtained from the
entry and a check is made to see if this is
a terminal entry. If a list or process
entry, then the message is returned to the
source terminal. If it is a terminal
entry, the relative line number and DCB
address are gotten from the QCB. The LCB
size and the address of the start of the
LCBs are obtained from the DCB. The LCB
address for this line is calculated, and
the address of the counters in that LCB is
calculated. The copy QCB is posted to
itself. When the QCB comes to the top of
the ready queue, the Copyclr routine is
executed.

The Copyclr routine restores the regis-
ters to their values before the Qpost. The
threshold counters are added to the cumula-
tive counters. The number of bytes remain-
ing in the buffer is compared with the num-
ber of bytes needed to receive the trans-
lated counter data. The smaller figure is
used as the number of bytes to be unpacked
and translated by the UNPAK subroutine.
When control returns from the UNPAK subrou-
tine, the threshold counters are cleared to
zero and control passes to the Qdispatch
subroutine.

RSWITCH (CHART EK): Control comes here
when a SWITCH control message is received.
A test is made to see if the ALTERM parame-
ter was specified. If it was not, the mes-
sage is returned to the source terminal.

If ALTERM was specified, the offsets to the
primary control terminal and the alternate
are reversed in the macro-generated parame-
ter list. The "serviced" bit in the prefix
is set, and control ‘is returned to the
macro, which then branches to the ENDRCV
macro expansion.

RCHNGT (CHART EI): Control comes here when
a CHNGT control message is received. SUB1
is used to get the offset to the terminal
table entry and the number of bytes left in
the buffer. The blank delimiters following
termname in the header are skipped over.
The data to be placed in the terminal table
is translated and this data is scanned for
a delimited blank, EOB, EOT, or invalid
character. If a delimiter is not found or
if an invalid character is found, a test is
made to see if there is enough room to
insert the EOB and EOT in the buffer. 1If
there is room, it is put in after the data.
If not, it is put in after termname. 1In




either case, the message is returned to the
source terminal.

If the data is valid, and the delimiter
is found, the number of bytes to be moved
into the terminal table entry is checked
for zero. 1If zero, the serviced bit is
turned on in the header prefix and control
is returned to the macro, which branches to
ENDRCV. If greater than zero, a test is
made for an odd number of bytes to be
moved. If odd, then the same procedure is
followed as for an invalid character. If
even, a test is made to see if the data in
the buffer, when converted, will fit in the
terminal table entry. If not, the same
procedure is followed as for an invalid
character.

If the data will fit, then registers are
set up and Qpost is issued, posting the
change QCB to itself. When the QCB comes
to the top of the ready queue, the terminal
table is changed. The routine doing this,
Change, is disabled to interrupts.

Change routine gets the QCB address from
the terminal table entry to be changed. If
this is a list or process entry, the point-
er to the area in the terminal table to be
changed is bumped past the size and QCB
address fields. The data to be inserted is
packed and moved into the terminal table.
Exit is to the Qdispatch suproutine. If
this is a terminal entry, the relative line
numper and DCB address are taken from the
QCB. The LCB size and start of the LCB is
obtained from the DCB. With this informa-
tion, the address of this LCB is calcu-
lated. A test is made to see if this line
is active. 1If not, the pack and move is
initiated (INACTIVE). If the line is
active, the pointer to the area in the ter-
minal table entry is bumped past the
sequence numbers. If there is no data to
move, control passes to the Qdispatch sub-
routine. If there is data to be moved, the
pack and move operation is initiated.

RINTRCPT (CHART EJ): Control is passed
here when an INTERCPT control message is
received. A test is made to be sure
INTRCPT was specified in the macro. 1If it
was not, the message is returned to the
source terminal. If INTRCPT was specified,
SUBL is used to get the offset of the ter-
minal specified in termname, and the number
of bytes in the remainder of the buffer. A
test is made for a terminal entry. If not
a terminal entry, the message is returned
to the source terminal. If it is a termi-
nal entry, the "send" bit in the TSTATUS
field of the entry is set off, the "ser-
viced" pit in the header prefix is turned
on and control is passed to the macro,
which branches to ENDRCV.

RRELEASM (CHART EJ): Control is passed
here when a RELEASM control message is
received. SUB1 is used to get the offset
to the terminal table entry corresponding
to the termname in the message header, and
the number of bytes remaining in the buf-
fer. A test is made to see if that termi-
nal is in intercept mode. If not, the
"serviced" bit in the header prefix is set
on and control passes to the ENDRCV macro.
If the terminal is in intercept mode, the
address of the intercept field in the ter-
minal table entry is obtained and the QCB
address is acquired. The relative record
number of the first message intercepted is
compared with the relative record number of
the highest-priority message received to
see if any priority messages were inter-
cepted. If priority messages were inter-
cepted, the relative record number of the
first message intercepted overlays the
relative record number of the highest-
priority message intercepted. 1In either
case, the first message intercepted will be
the first released.

The "intercept" bit and the bits in
TSTATUS are set to 0 and the send bit is
turned on. The "serviced" bit in MSTATUS
is turned on and control is passed to
ENDRCV.

RSTARTLN (CHART EK): Control is passed
here when a STARTLN control message is
received. SUB1l is used to get the offset
of the terminal indicated by termname, and
the number of bytes remaining in the buf-
fer. The QCB for that entry is obtained
and a test is made to make sure this is a
terminal entry. (If it is a process or
list entry, the message is returned to the
source terminal.) The RLN and DCB address
are acquired and the scan pointer is
adjusted for the next field. The next
characters are compared for an "All" entry.
If "All" is specified, control passes to
the Line Change routine - (IECKLNCH) at the
"start all" entry point. If "All" is not
specified, then control passes to the Line
Change routine at the "start one line"
entry point. When control returns, a test
is made of the error flags for errors. If
there are no errors, then the "serviced"™
bit in the MSTATUS field of the header pre-
fix is set on so the buffer will be
returned to the available buffer queue, and
control passes to ENDRCV. If there was an
error, the message is returned to the
source terminal.

RSTOPLN (CHARTS EL AND EM): Control is
passed here when a STOPLN control message
is received or fromw the RINTREL routine
when an INTREL control message is received.
SUB1 is used to get the offset of the table
entry for the terminal specified in term-
name, and the number of bytes remaining in
the buffer. SUB2 is used to check for a

Message Control Program {(LPS) Routines 85



terminal entry, and if it is one, to get
the relative line number and the DCB
address. The size of the buffer is checked
to be sure it is at least the minimum size.
If less than the minimum, the message is
returned to the source terminal. The line
count is set to 1 and the line number is
obtained from the QCB. The DCB address
(acquired in SUB2) is obtained and the
address of the source terminal is calcu-
lated. If the source terminal is in the
line group to be stopped and either

1.
2.

"All" is specified, or

The source terminal is on the line to
be stopped, then the message is
returned to the source. Any of these
conditions would cause the control
terminal to become permanently
inoperative.

If the source terminal is not on a line
to be stopped, a test is made to be sure
the DCB for that line group has been
opened. If it has not, the message will be
returned to the source.

The address of the DEB is obtained from
the DCB and the number of extents is
acquired from the DEB. A test is made to
see if the relative line number of the line
to be stopped is too high. If so, the mes-
sage is returned to the source terminal.

If a STOPLN is being handled, the next
field in the message is compared for the
characters "All". If "All" is specified,
the line number is set to one and the line
index is set to the number of lines in that
group.

If this routine is executed as a result
of receiving a STOPLN operator control mes-
sage, and "All" was specified, the line
count index is set to the number of lines
in the line group, and the relative line
pointer is set to one so that the first
line in the line group will be the first
one stopped. If this routine is executed
as a result of receiving an INTREL control
message, or if "All" was not specified in a
STOPLN control message, the line count
index is one and the relative line pointer
has the relative line number of the line to
be stopped. These values will be used in a
BCT loop to stop the desired number of
lines.

For either STOPLN or INTREL functions,
the registers are saved and the QCB for the
Stop routine is posted to itself, causing
it to be placed on the ready queue with
highest-priority. An SVRB is built by the
SvVC-handling routine with the address of
the instruction following the Qpost as the
point to receive control. This SVRB is
placed on the ready queue following the QCB
for the line to be stopped (i.e., the QCB

86

is at the head of the ready queue and the
STCB is next.)

When the next item on the ready queue is
dispatched, the STOP1 routine receives con-
trol. STOP1 will execute disabled to
interrupts as a result of Qposting.

STOP1 restores the registers and places
the address of the Operator Awareness rou-
tine (IECKOPAW) in the buffer recalls/
cleanup address in IGGO19NG to insure that
IECKOPAW is executed at buffer recall/
cleanup time.

The size of an LCB is obtained from the
DCB for that line group and is stored in
the header for that message. The relative
line number is also stored in the header.
The relative line number is multiplied by
the size of an LCB. This product is added
to the DCBLCBAD (address of first LCB minus
the size of an LCB) in order to point to
the LCB for that line. A test is made to
see if this line is active. If it is not,
control is passed to the loop control code
to determine if another line is to be
stopped.

If this line is active, a test is made
to see if there is an STCB for an operator
control subtask pending for this LCB. If
there is, the STCB is tested for a STOPLN
function. If the STOPLN function STCB is
the one pending, then it is ignored.

If this line was already stopped, or if
a STOPLN subtask was pending for this LCB,
the relative line index is incremented by
one, and a BCT is executed on the line
counter. If this is the last line to be
stopped, then one is subtracted from the
relative line number to get the relative
line number of the last line stopped. A
test is made to see if this routine was
activated as a result of an INTREL control
message. If it was not, a test is made to
see if this is the first pass. If it is,
the "serviced" bit is set in the buffer and
the next element on the ready queuve is dis-
patched. 1If it is not the first pass, the
buffer is posted to the available buffer
queue.

If there is no operator control STCB on
the queue for that LCB, or if the operator
control STCB is not a STOPLN STCB, access
is gained to UCB for that line. If this is
a dial line or 2740 (basic or with check-
ing), and not in active transmission, a
Halt I/0 command is issued to clear the
enable. If the CSW was stored, the Halt
I/0 command is repeated until the CSW is
not stored.

If this is a WI'TA line, and not an inac-
tive transmission, a Halt I/O command is
issued to clear the Prepare command. If



the CSW was stored, the Halt I/0 command is
repeated until the CSW is not stored.

1f this is not a dial line nor a WTTA
line, or if the dial line or the WTTA line
is active, or if the CSW was not stored
after the Halt I/O, then a first pass
switch is tested. If this is the first
time through for this message, the address
of the STOP2 routine is placed in the
LCBDESTQ field of the LCB so this buffer
will be posted to STOP2 when the LCB for
the operator control terminal goes through
the Cleanup routine. Control is passed to
the Qdispatch subroutine in IECKQQO01 to
activate the next item on the ready gueue.

The next item on the ready queue is the
SVRB created as a result of Qposting the
OCB for STOP to itself. The SVRB activates
the instruction following the Qpost, which
is a branch back to the macro. The macro
branches immediately to the ENDRCV macro,
which performs buffer cleanup. The buffer
is posted to the destination queue, which
in this case is the queue for the STOP2
routine, and STOP2 receives control.

When STOP2 receives control, the address
of the LCB for this line is retrieved from
the QCB for STOP2. An STCB to stop the
line is dynamically built in the buffer.
The message itself is of no use, so the
buffer is used as a convenient place. The
STCB is placed at the head of the STCB
chain for the LCB. If RSTOPLN was entered
from RINTREL, the INTREL switch is turned
off, and the INTREL switch in the LCB is
set, the next element on the ready queue is
dispatched.

Subtaskl is activated when the LCB for
the line to be stopped is posted to itself,
thus indicating that that line was stopped.
The STOPLN STCB is removed from the LCB's
STCB chain, and the LCBSTATE is set to zero
to deactivate the LCB. The address of the
DCB is obtained from the LCB, and the
address of the DEB is obtained from the
DCB. If entry was from RINTREL, control is
passed to Subtask2.

The following procedure will be followed
only if this was a STOPLN control message.
The address of the next STCB in the LCB
chain is obtained and a test is made to see
if it is a full sTCB. If it is not, the
LCB is removed from the ready queue. In
either case, if there are more lines to be
stopped, the procedure is looped through
again to stop the rest.

If there are not more lines to be
stopped, the buffer is returned to the
available buffer queue and the next item on
the ready queue is dispatched.

If the INTREL switch is set, control
passes to the Subtask2 routine to put the
buffer on the time queue.

RINTREL (CHART EN): Control is passed to
RINTREL when an INTREL operator control
message is received. A switch is set to
indicate to the RSTOPLN that an INTREL con-
trol message is currently being handled.

RSTOPLN will handle the stopping of the
desired line. After the LCB address and
the relative line number have been re-
trieved from the buffer by Subtaskl, a test
is made for an INTREL function. If the
message was an INTREL message, control is
passed to Subtask2.

Subtask2 removes the ILCB for the line to
be stopped from the ready queue. The
INTREL switch is turned off. The address
of the STCB2 routine is stored into the
STCB in the buffer, as is the LCB address.
If this routine is entered by way of an I/0
interrupt, an SVC QCB is set up and put on
the ready queue. When it comes to the top
of the queue, an SVC interrupt will occur,
and control will be passed to HAVESVC.

When Subtask2 is sure it was entered via an
SVC interrupt, the buffer is made to look
like an LCB and placed on the time queue
for two minutes.

When the two-minute interval has
elapsed, the buffer comes to the head of
the time queuwe, is posted to the queue for
the STCB2 routine, and STCB2 receives con-
trol. The address of the available buffer
queue is acquired and the LCB is posted to
itself. This action posts the buffer to
the available buffer queue and puts the LCB
back on the ready queue.

When the operator awareness routine
detects an irrecoverable error on a line in
INTREL mode, it acquires a buffer and posts
that buffer to the queue for the STOP4 rou-
tine. The relative line number and the LCB
address of the line are stored in the buf-
fer. If the line is already inactive, the
buffer is placed on the time queue. If the
line is active, control is passed to a
point in RSTOPLN to stop the line.

The TIMEQ subroutine is entered from
RSTOPLN when an INTREL message is being
processed and a STOPLN is pending on that
line. TIMEQ turns off the INTREL switch
and sets the INTREL switch in the LCB.
line is always active at this point. A
switch is set in the buffer to denote
INTREL. The next item on the ready queue
is dispatched.

The

Module Name: IECKOCTL

Message Control Program (LPS) Routines 87



Entry Point: Expansion of the OPCTL macro
instruction generates a BALR to the Opera-
tor Control routine at IECKOCTL, using reg-
ister 15 as the branch register, and regis-
ter 14 as the return address register.
Before branching, the macro-generated code
checks the message to assure that it is
from either the control terminal or the
alternate. If the message is a control
message, control will eventually return to
the macro-generated code. The first
instruction executed upon return is a BALR
to the ENDRCV macro.

Register 1 is the parameter register.
The parameter list will vary from 20-50
bytes. If all parameters are specified,
the list will look 1like this:

4 bytes Address of Operator
Awareness routine
Length of control
message name
identifier
X'00' neither INTRCPT
nor ALTERM specified
X'01' ALTERM
specified
X'02'" INTRCPT
specified
X'03' Both ALTERM and
INTRCPT specified
Offset to control terminal
Offset to alternate terminal
(included only if
ALTERM is specified)
Offset to INTRCPT field
(included only if
INTRCPT is
specified)
Variable Control message name identifier

1 byte

1 byte status byte

bytes
bytes

NN

2 bytes

External Routines Used:

SCAN (IECKSCAN)
Stop Line-Start Line (IECKLNCH)

Look-up (IECKDRCT)

PAUSE ROUTINE (CHART CO0)

Function: The address of the first byte to
scan for a special device control character
is computed for a header or text segment.
If there has been a previous pause, the
number of remaining insert blocks is
obtained from COUNT. If there have been no
previous insertions, COUNT (a defined con-
stant in the Pause routine) is the number
of available insert blocks. The buffer is
scanned for the special character specified
in the PAUSE macro. If the specified
character is not found, return is made to
the next LPS instruction.

88

When the special character is found, the
COUNT is decremented by one. If COUNT
reaches 0, indicating that the limit of the
insert blocks has been reached, return is
to the next LPS instruction. The routine
issues a wait for an insert block, obtained
from the queue defined by the queue control
block (INSERTQ) assembled in the routine.
The address of the queue for the insert
block is placed in the last word of the
insert block. To fill in the insert block,
the address of the next BRB is stored, and
the command and the address of the next
character after the previous special
character are placed in the insert block.
The next block in the chain is updated by
placing the address of the next character
after the special character in the data
address and by adjusting the count. The
count of characters up to the special
character is placed in the second word of
the insert block. The address of the next
block of the previous BRB is updated to
point to the insert block. The flags,
counts, and TIC command are placed in the
insert block to complete this block. The
routine loops back to scan for other spe-
cial characters in the buffer.

Module Name: IECKPAUS

Entry Point: Expansion of the PAUSE macro
instruction generates a BALR to the routine
at IECKPAUS, using register 15 as the
branch address register. The routine
returns via register 3. Register 14 is
used as a parameter list register. The
parameter list passed to the routine con-
sists of:

¢ The number of idle characters.
e The special characters.

e The bit configuration for the idle
characters.
External Routines Used: Qwait (IGC065 in
module IECKQQO01)

POLLING _LIMIT ROUTINE (CHART CR)

Function: This routine limits the number
of messages to. be accepted from a non-
switched terminal during one polling pass.
If the polling pointer is not equal to the
terminal entry for the current message or
is at the end of the polling list, return
is made to the next LPS instruction.
Otherwise, the current poll count is com-
pared to the 1limit specified. If the
count, incremented by one, is less than the
limit, return is made to the next LPS
instruction. If the count, incremented by
one, exceeds or is equal to the limit, the
pointer is set to the next terminal before
returning to the next LPS instruction. If



this is an autopolled line, the length of
the next entry is obtained from the start
of the polling list. If the entry is the
end of the polling list, the pointer is set
to the first entry.

Module Name: IECKPLMT

Entry Point: Expansion of the POLLIMIT
macro instruction generates a BALR to the
routine at IECKPLMT, using register 15 as
the branch address register and register 14
as the return register. The parameter reg-
ister 1 contains the maximum number of
messages.

External Routines Used: None

REROUTE ROUTINE (CHART CS)

Function: This routine causes a message to
be sent to an alternate destination, in
addition to its normal routing, when any of
the error conditions specified by the error
mask is indicated in the error halfword, or
when the error mask is zero. If the error
mask is not zero, and none of the error
conditions specified by the mask is indi-
cated in the error halfword, return is made
to the next LPS instruction. Linkage is
made to the Recall routine (in module
IGG019NG), which obtains the header. Upon
return, the Reroute routine branches to the
Lookup routine, which looks up the destina-
tion code in the terminal table and places
the relative address in the TTDKEY field of
the incoming header prefix. Return to the
next LPS instruction is made by the Lookup
routine.
Module Name: IECKRRTE

Entry Point: Expansion of the REROUTE
macro instruction generates a BALR to the
routine at IECKRRTE, using register 15 as
the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of the address of the error mask in
hexadecimal notation. The parameter regis-
ter 2 contains the address of the alternate
destination.

External Routines Used:

e Recall (IECKRC in module IGGO19NG)

e Lookup (module IECKLKUP)

ROUTE_ROUTINE (CHART CN)

Function: This routine links to the Scan
routine to obtain the destination code in
the incoming message header, and then
branches to the Lookup routine, which looks

up the destination code in the terminal
table and places the relative address in
the TTDKEY field of the incoming header
prefix. Return to the next LPS instruction
is made by the Lookup routine, rather than
the Route routine.

Module Name: IECKROUT

Entry Point: Expansion of the ROUTE macro
instruction generates a BALR to the routine
at IECKROUT, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of a hal fword containing, in binary
form, either:

1. The maximum size of each destination
code in incoming message headers, or

2. All ones, indicating that the destina-
tion code fields are of variable
length (the end of the field is indi-
cated by a blank).

External Routines Used:
s Scan (module IECKSCAN)

e Lookup (module IECKLKUP)

SCAN ROUTINE (CHART CF)

Function: This routine obtains one or more
nonblank characters from a fixed length or
variable length header field and places
them in a work area, the address of which
is provided in a parameter register to the
calling routine. The Scan routine moves
the scan pointer one position at a time,
and places the header characters pointed to
into the work area. This operation is
repeated until either the end of the field
is reached or the work area is filled (work
area size is eight bytes).

If the field to be scanned is of fixed
length, its size is provided to the routine
in a parameter list; the routine places
into the work area the number of characters
specified. During scanning, any blank
characters encountered are passed over.
They are not placed in the work area and
they are not included in the count of
characters maintained by the routine.

If the field to be scanned is of vari-
able length, an indicator (2X'FF') is
passed to the routine in a parameter list.
If end of segment is reached before the
specified scan length has been satisfied,
bit five ("incomplete message header") is
set in the error halfword. The Scan rou-

Message Control Program (LPS) Routines 89



tine places all header characters up to the
first blank in the work area.

Module Name: IECKSCAN

Entry Point: The routine is entered via
BALR from the IECKPRTY,IECKSEQIN, IECKSKPS,
IECKMODE, IECKROUT , IECKSRCE, and IECKTYPE
modules; register 15 is the branch address
register and register 3 is the return reg-
ister. The address of a single-item param-
eter list is passed to the routine in reg-
ister 14. The parameter list contains the
field length or variable field length
indicator.

External Routines Used: None

SEQUENCE IN RCOUTINE (CHART CV)

Function: This routine links to the Scan
routine to obtain the sequence number from
the header. All characters in sequence are
converted to binary notation and put into
the MSNUMIN field of the header prefix. If
the numoer is not in sequence according to
the TSEQUIN field in the terminal table
entry, the "sequence error" bit is set ac-
cordingly in the LCB. If the sequence num-
ber is too low, the routine sets the "too
low" bit in the LCBERRST field of the LCB,
and return is made to the next LPS instruc-
tion. If the sequence is too high, the
"too high"™ bit is set in the LCBERRST field
of the LCB and return is made to the next
LPS instruction. If the number is in the
correct sequence, the expected sequence
numper is stored in the LCBBRKCT field of
the LCB. The sequence number from the
header is also incremented by one and
restored in TSEQUIN field of the terminal
table for the next message before returning
to the next LPS instruction.

Module nName: TIECKSEQON

Entry Point: Expansion of the SEQIN macro
instruction generates a BALR to the routine
at IECKSEQN, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of the address of the number of
character positions for the input message
sequence number. If this operand is
omitted, a hexadecimal 'FF' indicates a
variable length field.
External Routines Used: Scan (module
IECKSCAN)

90

SEQUENCE OUT RQUTINE (CHART CM)

Function: If the SEQOUT macro appears in
the Receive header portion of the LPS, the
destination QCB is checked for being a pro-
cess QCB. If this is not a process QCB,
return is made to the next LPS instruction.
If this is a Process QCB, linkage is made
to the expand routine, which expands the
header to create a new field. The value of
the scan pointer is stored in the MSNUMOUT
field of the header. Return is made to the
next LPS instruction.

If this macro is in the Send header por-
tion of the LPS, linkage is also made to
the Expand routine, which "expands" the
header by creating a new field whose high-
order byte is the location pointed to by
the scan pointer. The binary sequence num-
ber is obtained from the header prefix and
converted to decimal form. The sequence
number is unpacked and inserted into the
new header field. Return is made to the
next LPS instruction.

Module Name: IECKSEQT

Entry Point: Expansion of the SEQOUT macro
instruction generates a BALR to the routine
at IECKSEQT, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of the address of the number of
character positions for the output sequence
number.

External Routine Used: (module
IECKEXPD)

Expand

SKIP (CHARACTER COUNT) ROUTINE (CHART CJ)

Function: This routine advances the scan
pointer from its current position past a
specified number of nonblank header charac-
ters. The pointer then points to the last
nonblank character needed to complete the
count. Moving the scan pointer causes all
characters bypassed to be ignored during
header processing. If the scan pointer
reaches the end of the segment prior to
exhausting the specified count, bit five,
"incomplete message header," is set in the
error halfword.

External Routines Used: None

Module Name: IECKSKPC

Entry Point: Expansion of the SKIP macro
instruction specifying a number of charac-
ters to be skipped generates a BALR to the
routine at IECKSKPC, using register 15 as
the branch address register and register 14
as the return register. Register 14 serves



also as a parameter list register. The
parameter list passed to the routine con-
sists of a halfword containing the number
of characters to be skipped.

SKIP (CHARACTER SET) ROUTINE (CHART CJ)

Function: This routine advances the scan
pointer from its current position past all
header characters up to and including a
specified character sequence. The scan
pointer then points to the last character
in the sequence. Moving the scan pointer
causes all characters bypassed to be
ignored during header processing. If the
Scan routine returns an error indication in
LCBERRST, the Skip routine clears the mul-
tiple routing indicator in the LCB and
points the scan pointer to the end of the
buffer. Return is made to the next LPS
instruction.
Module Name: IECKSKPS

Entry Point: Expansion of the SKIP macro
instruction specifying a particular
sequence of characters to be skipped
generates a BALR to the routine at
IECKSKPS, using register 15 as the branch
address register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The parame-
ter list passed to the routine consists of:

1. A halfword containing the length of
the character sequence to be found;

2. A character constant containing the
characters to be found.
External Routines Used: Scan (module
TIECKSCAN)

SOURCE ROUTINE (CHART CI)

Function: This routine determines the
validity of the source code field of an
incoming message header. The routine links
to the Scan routine to obtain the source
code from the header.

If the message orginated from a non-
switched terminal, the contents of the
source code field are compared with the
name of the originating terminal (as the
name appears in the terminal table entry).
If the characters match, return is made to
the next LPS instruction because the source
code is considered val id.

If tne message originated from a
switched terminal or an autopolled line,
the contents of the source code field are
compared with each terminal entry name in
the terminal table until a match is found.
If a match is found, the addresses of the

DCB, obtained from the LCB, and the
destination QCB of the terminal table are
compared. If the source is in the same
line group then it is considered valid.
Therefore, for dial lines only, the priori-
ty of the Send Scheduler is set to 2 to
prevent a dial. This priority had been
initialized to 1 by the expansion of the
TERM macro. The routine places the rela-
tive address of the source entry in the
TTSKEY field of the header prefix and in
the LCBTTIND field of the LCB. Return is
made to the next LPS instruction.

If no match is found or the switched
line was not in the line group specified,
the code is considered invalid. If the
source code is invalid, the routine sets
bit 6 ("invalid source code®") of the error
halfword for the line to 1. Control
returns to the next LPS instruction.
Module Name: IECKSRCE
Entry Point: Expansion of the SOURCE macro
instruction generates a BALR to the routine
at IECKSRCE, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of a halfword containing a source
code field-length indicator.

External Routines Used: Scan (module
IECKSCAN)

TIME STAMP ROUTINE (CHART CK)

Function: This routine obtains the current
time in packed decimal format (via a TIME
macro) , unpacks the time, and inserts a
specified portion of the time information
in the message header. Prior to inserting
the time, the routine links to the Expand
routine, which "expands" the header by
shifting to the left all message characters
from the end of the prefix plus the count
up to and including the character pointed
to by the scan pointer. The number of
character positions by which the header
characters are shifted is equal to the
length of the time information to be
inserted. The time is then inserted in the
field created. The maximum field size is
nine characters in the format bhh.mm.ss,
where b = blank, hh = hours, mm = minutes,
and ss = seconds. The scan pointer points
to the last character in the time. Smaller
field sizes have a similar format, trun-
cated from the right.

Module Name: IECKTIME

Entry Point: Expansion of the TIMESTMP
macro instruction generates a BALR to the
routine at IECKTIME, using register 15 as

Message Control Program (LPS) Routines 91



the branch address register and register 14
as the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine con-
sists of a halfword containing, in binary
notation, the length of the time informa-
tion field to be inserted in the message
header.

External Routines Used:
IECKEXPD)

Expand (module

TRANSLATE ROUTINE (CHART CP)

Function: This routine translates message
segments from one code to another. The
number of characters to be translated is
computed by subtracting the address of the

92

first byte to be translated from the
address of the end of the segment. If the
number is not negative, the message is
translated using the table specified in the
macro. Return is made to the next LPS
instruction.

Module Name: IECKTRNS

Entry Point: Expansion of the TRANS macro
instruction generates a BALR to the routine
at IECKTRNS, using register 15 as the
branch address register and register 14 as
the return register. The parameter regis-
ter 1 contains the address of the transla-
tion code table named in the operand of the
macro.

External Routines Used: None




The Open and Close routines are in the
transient area. The expansion of these
macro instructions is a system expansion.
The system Open and Close routines branch
to the QTAM Open and Close routines via an
XCTL from the where-to-go-table.

CLOSE COMMUNICATIONS LINE GROUP ROUTINE
(CHART 1B)

Module Name: IGGO0203N

Function: The Close Communications Line
Group routine is entered from the system
Close routine. This routine obtains the
address of the DCB being closed. From this
DCB and the associated DEB, the routine
calculates the size and starting address of
the LCB. A FREEMAIN is issued for the main
storage occupied by the LCB. The LCB and
the IOB pointers and status bytes are
cleared in the DCB. Completion of this
executor is indicated in the where-to-go
table. If the routine is to be used again
for another DCB, a branch is taken to the
beginning of the routine. The normal exit
of this routine is an XCTL to the next non-
zero entry in the where-to-go table.

CLOSE DIRECT ACCESS MESSAGE QUEUE ROUTINE
(CHART EC)

Module Name: IGG02030

Function: The Close Direct Access Message
Queue routine is entered from the system
Close routine. If the CLOSE is for a
checkpoint data set, a test is made for
normal completion. If an abnormal comple-
tion is set in the TCB address, the next

- entry in the where-to-go-table is obtained.
If normal completion, the TTR is converted
to a disk address. A CCW is set up in the
Checkpoint routine to write the control
record to indicate that there was normal
completion. A EXCP is issued to write the
record. If, upon completion, there was a
permanent I/0 error, the routine is ended
abnormally with an error code of 0AL4.
Otherwise, the next entry in the where-to-
go table is obtained.

If the Close routine is entered for a
direct access message queue data set, the
routine clears the terminal table entry in
the communications vector table. The
address of the first available buffer is
moved into the link field of the first
available request. The IOB address is
reset in the DCB.

ROUTINES IN THE TRANSIENT AREA

If there are any items in the ready
queue, each element is tested for a QCB.
If it is a QCB and items are present in the
chain of STCBs, a test is made for a full
STCB. If the item on the ready queue or in
the chain is a full STCB, the ECB address
is obtained. The routine then links to the
0S Post routine to post the ECB as complete
and to remove the STCB. When there are no
more items on the ready queue, the entry in
the where-to-go table is cleared. If the
routine appears again in the where-to-go
table, it is ended with a dump because
there is only one DCB for the direct access
device. The normal exit of this routine is
to the next nonzero entry in the where-to-
go table.

CLOSE PROCESS QUEUE_ (INPUT AND OUTPUT)
ROUTINE (CHART EA)

Module Name: IGGO0203P

Function: The Close Process Queue routine
is entered from the operating system Close
routine. The DEB for the DCB being closed
is searched for in the chain of processing
program DEBs. If the DEB for the DCB is
not found, a branch is taken to the end of
the routine to set up for a new entry. If
the DEB is found, it is removed from the
message queue DEB chain and from the TCB
chain of DEBs.

If the DCB is for input, the unprocessed
header segment is placed into the disk
queue and the unprocessed text segments are
placed into the unavailable buffer queue by
a Qpost. When the last dummy element is
reached, a branch is taken to the common
part of the program. If the DCB is for
output and there is a remaining buffer,
this buffer is returned to the available
buffer queue by Qpost. If an LCB is found
in the chain, the dummy LCB in the DEB is
removed from the destination queue.

For both input and output DCBs, if there
are no more DCBs to close, a test is made
for general closedown. If a general close-
down exists, each DEB in the chain is
obtained. If the associated DCB is for
communications, the routine prepares to
stop each line represented in the extents.
If the line is a dial line or an active
transmitting line, the Halt I/O is skipped;
otherwise, the line is stopped with a Halt
I/0. The routine waits if the line is
active. At the end of the chain of DEBs,
the message control partition is requested
to issue a CLOSE.

Routines in Transient Area 93



If there are more DCBs to clcse or it is
not a general closedown, the current entry
is cleared in the where-to-go table. If
this routine is to be used again for anoth-
er DCB, a branch is taken to the beginning
of the routine. The normal exit of the
routine is an XCTL to the next nonzero
entry in the where-to-go table.

LINE GRQUP OPEN EXECUTOR - LOAD 1 ROUTINE
(CHART F1)

Module dame: IGGO0193N

Function: This routine is entered from the
system Open routine. The routine obtains
the length of the DEB by adding the minimum
size of a DEB, and four bytes for the
extents of each device. The routine then
performs a GETMAIN to obtain storage for
the DEB. The DEB is cleared to zeros and
then initialized. The pointer to the STCB
of the dial out-call queue, located at

DEB -28, and the STCB chain pointer are
initialized to point to DEB -20. The
priority field is set to X'FF' to indicate
a dummy last element. The address of the
basic DEB is stored in the TCB and the
DCBDEBAD field of the DCB. The DCB address
is stored in the DEBDCBAD field of the DEB.
If the numper of buffers is less than or
equal to two, the DCBBUFRQ field of the DCB
is set equal to two. The UCB information
is moved from the TIOT to the DEB. If the
direct access device has not been opened,
an ABEND is issued with the completion code
of 0ORn6.

Analysis of the device type set in the
UCB is done on the telecommunication
devices found in the UCBs. Error codes are
set for incorrect specifications, and the
program is ended with a dump. Tests are
performed on the model type (1060, 2740,
1050, and 1030) for each terminal adapter.
Error codes are set if adapter type or ter-
minal is found to be in error, and the pro-
gram is ended with a dump. Tests are made
for the optional features of Auto cCcall,
Auto Poll, terminal-to-terminal, or Auto
Answer for the IBM 1060, 2740, 1050, and
1030. If the correct optional bits are not
set, an error code is set and the program
is ended with a dump. The device code used
for the vector directory is set.

The WTTA Line Appendage module IGG019QB
is loaded into main storage, and its
address is set in the DEB appendage table.
Linkages are established with the QTAM Line
Appendage routine. The "WRU" bits of the
LPS (LPSTART macro expansion) are moved
into the DCB.

If this routine is required again, the

routine branches to the beginning of this
routine. Upon completion, control is

oL

passed via an XCTL to the Line Group Open
Executor - Load 2 Routine.

LINE GROUP OPEN EXECUTOR - LOAD 2 ROUTINE
(CHART F2)

Module Name: IGGO193R

Function: This routine is entered by an
XCTL from the Line Group Executor-Load 1.
Tests are continued for model types 83B3,
1157, TWX, and 2260 for each terminal
adapter. Error codes are set if adapter
type or terminal is found to be in error,
and the program is ended with a dump.
Tests are made for optional features of
Auto Call, Auto Poll, terminal-to-terminal,
or Auto Answer for 83B3, 115A, TWX, and
2260.

To the minimum size of an LCB (88 bytes)
is added the size of the channel program
for a particular device. A GETMAIN is done
for an LCB for each line in the group. The
address of the LCB minus the size of an LCB
is stored in the DCBLCBAD field of the DCB,
and the size of the LCB is stored in the
DCBEIOBX field of the DCB. The IOB address
is stored in the DCBIOBAD field of the DCB,
and the device type is inserted in the
DCBDEVTP field of the DCB. The IOB is
initialized.

For an IBM 2702 adapter, a channel com-
mand word is built in the channel program
area with the correct SAD command. Except
for an IBM 2701 with type III adapter, if
there is no Auto Call or Auto Answer fea-
ture, a CCW with an Enable command code is
set in the channel program area. If there
is no Auto Call or Auto Answer and a
restart is in progress, a READ Skip com-
mand, for a TTY device, or a Break command,
for other devices, is set in the CCW.

If the line is being opened for input,
the receive scheduler STCB is initialized.
For input and output, the return code,
priority, and line start indication are set
for posting the ICB to start the line.

If a restart is to be done, a search is
done on the saved data. If the LCB was
saved, the saved data is restored; other-
wise, the line is treated as usual. If the
line was checkpointed, it is only restarted
if it was active. The dummy ECB address is
stored in the IOB and the address of the
next LCB is obtained. This process con-
tinues for all lines.

Upon completion, the routine tests for
another DCB to be opened. If there is
another DCB, a branch is made to the start
of the Load 2 routine. The routine exits
to Line Group Executor - Load 3 via an
XCTL.



LINE GROUP QOPEN EXECUTOR - LOAD 3 ROUTINE
(CHART F3)

Module Name: IGG0193T

Function: This routine is entered by an
XCTL from the Line Group Executor - Load 2
routine. The identification, relative
track number, and record address of the
BTAM Read/Write module is set for the Load
subroutine. The Load subroutine loads the
BTAM Read/Write module for use by QTAM.
The offset to the channel identification
table, record address, and relative track
number are obtained to load in the Device
I/0 module. The model channel program for
the device specified in the DCBDEVTP field
of the DCB is loaded into the channel pro-
gram area.

If a restart is in progress, a search of
the terminal table is made for a destina-
tion QCB. If the DCB specified in the QCB
is not the current DCB, the search is con-
tinued for another destination QCB. The
address of the LCB is obtained for the DCB
being opened.

If the "send" bit is not on, this is a
receive-only terminal, therefore setting up
the Send Scheduler is skipped.

If the "send" bit is on for this termi-
nal, the send scheduler STCB is set up in
the OCcB. If the Send Scheduler is already
in the ¢CB, the search is continued on the
terminal table. If the address of the next
segment is equal to the next message, one
less segment is put in the link field of
the 0CB. If the line is trying to send,
the address of the header is set in the
QFAC field of the QCB.

If there is an incoming message, the
header is read from the disk and the "can-
cel"™ bit is set to cancel the message. The
header is rewritten on the disk. This is
done for each DCB to be opened.

Each line is started by issuing an EXCP
on the channel program. After all lines
have been started, the next DCB is gotten.
The routine exits to Line Group Executor-
Load 4 via an XCTL.

OPEN LINE GROUP EXECUTOR LOAD 4 ROUTINE

Module Name: IGG0194A

Function: This routine is entered by an
XCTL from the Line Group Executor - Load 3
routine. The time of day is obtained by
the TIME macro instruction and saved in the
routine. A test is made on each line to
determine if I/O has completed. If I/0 has
not completed on a line, the time is
obtained until there has been a 30-second

delay from the time of entry to the rou-
tine. If the line still has not completed
I/0 after 30 seconds, an error message is
put to the console.

IEC806I ENDING STATUS NOT RECEIVED FROM
LINE XXX - LINE UNAVAILABLE

If I/0 has not completed on any of the
remaining lines, a message is also sent for
each line.

If the line had completed I/O during the
30-second interval, the test continues on
the remaining lines.

If I/0 has completed on all lines, or
after all messages have been written, an
XCTL is taken to the next nonzero entry in
the where-to-go table. 1If this routine is
required again, a branch is taken to the
beginning of the routine.

For WITA lines, the LCB fields are com—
pleted as follows:

1. The LCBTTIND field is updated with the
offset of the associated TERM entry of
the terminal table. If this entry
does not exist, the program is ended
with a dump.

2. The LCBPOLPT field is updated with the
address of the associated POLL macro
instruction.

OPEN DIRECT ACCESS MESSAGE QUEUE ROUTINE
(CHART F4)

Module Name: IGG01930

Function: This routine is entered from the
system Open routine. The size of the DEB
is calculated by adding the basic size,
appendage size, and the size of the
extents. This routine issues a GETMAIN for
the DEB and initializes it. The terminal
table address is obtained from the DCB and
stored in the communications vector table.
The Implementation module is loaded into
main storage. For each device type and
each extent, the routine determines the
number of bytes required for each record
(other than the first) on a track for this
device. The number of records that will
fit on each track is determined.

If this is an OPEN for a checkpoint
device, a test is made to ensure that the
direct access data set has been opened. 1If
it has not been opened, the program is
ended abnormally. The module for
checkpoint/restart (IGG019NH) is loaded by
using the load subroutine in the Open
module. The address of IGGO19NH is stored
in the Implementation module (IGG019NG) and
the terminal table address is stored in

Routines in Transient Area 95



IGG019NH. The track length and overhead
value are saved in IGG019NH. The number of
tracks for the extent in the DEB is calcu-
lated and stored in the DEB. The Open
Checkpoint Records Data Set routine address
is set in the where-to-go table.

If this is not an OPEN for a checkpoint
data set, the Direct Access-Load 2 address
is set in the WIG table.

If this routine is needed for another
DCB, a branch is taken to the start of the
routine. Upon completion, control is
passed to the next nonzero entry in the
where-to-go table via an XCTL.

OPEN DIRECT ACCESS-LOAD 2 (CHART F5)

Module Name: IGG0193U

Function: Entered from the system OPEN,
this routine initializes the Implementation
module with the TCB address, priority, and
master receive switch. The message pro-
cessing DEB chain is zeroed. For each ter-
minal table entry that is not a distribu-
tion list, the routine stores the address
of the DASD destination STCB in the 1link
field and priority in the send scheduler of
the QCB. If the QCB is for a process
queue, the DASD destination STCB address is
set in the chain pointer of the STCB. If
there are no more entries in the terminal
table, the relative record number available
for the next segment is determined and
stored in the Implementation module for
placement in the QCB. The address of the
first buffer is stored in the available
buffer QCB, the IOB address in the DCB, and
the DCB address in the IOB.

A subroutine and STCB in this routine
are moved into the OPEN work area. An STCB
is set up for this subroutine. This STCB
is posted to cause the subroutine to be
activated. This subroutine obtains the
address of IECKQQ01 (obtained from the base
register set up as a result of the Qpost)
and stores the address of the Implementa-
tion module.

If the DSCBs in the chain have not been
freed, a FREEMAIN is issued to free main
storage for these DSCBs.

If operator control has been specified
in the terminal table, an address constant
in the Implementation module is changed
from the address of Buffer Recall/Cleanup
routine to the address of Operator
Awareness routine. For all the entries in
the terminal table, the polling list
address is obtained and tested for Auto
Poll (bit 7 of the fourth byte is one). 1If

96

this is an Auto Poll polling list, the
polling characters and index bytes replace
the offset value in the polling list.

If the where-to-go table indicates that
this routine is required again, the program
is abnormally ended because there is only
one DCB for the direct access device for
message queues. Normal completion of the
routine is an XCTL to the next nonzero
entry in the where-to-go table of the sys-
tem OPEN.

OPEN CHECKPOINT RECORDS DATA SET ROUTINE
(CHARTS F6 AND F7)

Module Name: IGGO0193V

Function: This routine is entered by an
XCTL from the QTAM Open Direct Access Mes-
sage Queue routine when a DD card specify-
ing the checkpoint records data set is
entered. The name of this DD statement
must be TPCHKPNT.

The first function performed is that of
calculating the size of the checkpoint
records. A scan of the terminal table pro-
vides access to all control information to
be counted. Included in the size are:
each terminal table entry, each polling
list, 11 bytes for each destination QCB, 14
bytes for each process QCB, and 11 bytes
for each LCB. After the checkpoint record
size has been computed, the total size and
offsets to each type of data are saved in
the Checkpoint routine for later use by
that routine.

A test is then made to determine if the
disposition of the checkpoint records data
set is o0ld or new. If it is new, a four-
byte control record is written in the first
record of the data set. The data set is
then further formatted by writing two com-
plete dummy checkpoint records. Exit is
then made via an XCTL.

If the data set disposition is old, the
four-byte control record is read from the
disk to determine if a restart procedure
should be initiated. If the first byte of
the control record is zero, the checkpoint
records data set was properly closed and no
restart is necessary. The procedure
described for formatting the data set is
performed, and exit is made by an XCTL.

If the first byte of the control record
is nonzero, the checkpoint records data set
was not properly closed. This indicatesg a
system failure, and a restart procedure
must be performed. A GETMAIN macro is
issued to obtain a work area into which is
read the current checkpoint record. The
control record contains an indicator as to
which checkpoint record is the most recent.



The checkpoint record is then read from the
disk into the work area. A scan through
the terminal table is again used to locate
the control blocks and tables that must be
restored with the data contained in the
checkpoint record. At this point, the ter-
minal table entries, polling lists, and
OCBs are restored with the data previously
recorded in the checkpoint record. Restor-
ing of the LCB data is deferred until the
line groups are opened because the storage
required for the LCBs is not obtained until
that time. A code of X'F2' is set in the
TERMTBL field of the Checkpoint module to
indicate that a restart procedure has been
initiated. Exit is then made via an XCTL.

All of the disk I/0 operations initiated
in this routine are accomplished via an
EXCP/WAIT sequence. If an error occurs on
any disk operation, the job is terminated
via an ABEND macro. If a checkpoint record
cannot be contained on a single track, as
many EXCP/WAIT sequences as are needed are
issued to read or write the entire logical
record. Linkage is generated to the Con-
vert routine to convert a TTR to an actual
DASD address.

The checkpoint interval or number of
CKREQ macros specified in the TERMTBL macro
is stored in the Checkpoint module prior to
giving up control via an XCTL.

OPEN MESSAGE PROCESSING PROGRAM ROUTINE

(INPUT AND OUTPUT) (CHART CH#)
Module Name: IGG0193P

Function: This routine is entered from the
system Open routine. If no TRMAD field has
been specified in the DCB, the program is
abnormally ended with a dump. An error
code is set and the program is ended with a
dump when any of the following conditions
exist:

¢ The direct access device has not been
opened.

e A MS process queue DCB is being opened
and the SOWA field has not been
specified.

e The DDNAME is not found in the terminal
table.

A GETMAIN for the DEB is issued for 144
bytes, and part of the DEB is initialized.
The DEB is chained to the chain of process-
ing program DEBs. If an MS process queue
DCB is being opened, the routine sets up
the QCB and BRB in main storage obtained
for the DEB. If an MS destination gqueue
DCB is being opened, the routine sets the
priority and link address of the BRB in the
DEB. The address of the Get or Put module
is obtained according to the mode (message,
record, or segment), and the Get or Put
module is loaded. The basic part of the
DEB is initialized. If the routine is
required again, a branch is taken to the
beginning of the routine; otherwise, an
XCTL is executed to the next nonzero entry
in the where-to-go-table found in the sys-
tem Open routine.

Routines in Transient Area 97



MESSAGE PROCESSING PROGRAM ROUTINES

The Get and Put routines are in the par-
tition that contains the message processing
program. The expansion of these macro
instructions is a system expansion, which
branches to the QTAM routine. The remain-
der of the macros are used to examine and
to modify the status of the control pro-
gram. The expansion of these macro
instructions link to a corresponding rou-
tine for the macro.

GET MESSAGE ROUTINE (CHART C6)

Module Name: IGGO19NB

Function: The Get Message routine is
entered by the system expansion of a GET
macro, which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry, or upon
returning from the POST, the routine checks
for the inclusion of EODAD by the user. If
it has been specified and the disk is not
in the process of reading, a test is made
for a dummy last element. If there are no
more messages in the MS process gqueue, the
routine branches and links to the user's
exit address.

If EODAD was not specified, or the disk
was in the process of reading, or there are
messages in the MS process queue, the rou-
tine obtains the address of the work area.
If this is not the first entry, the routine
posts the previously used buffer to the
return buffer queue. Upon returning from
the post, or if this is the first entry,
the routine issues a Qwait to obtair the
next buffer.

If it is a header segment, the address
of the source area is obtained. If the
prefix indicates a process queue, the area
specified by the TRMAD operand is cleared.
The terminal ID is moved into the user's
area.

I1f a header or text segment (but not the
last segment) and the buffer is empty, the
routine branches back and obtains anocther
buffer. If the buffer is empty and it is
the end of message, a zero is set in DCBSE-
GAD, data count is set in the work area,
and return is made to the next instruction
in the processing program. If the buffer
is smaller than or equal to the work area,
a test is made for end of message. If it
is not end of message, a branch is taken to

98

request another buffer; otherwise, a zero
is set in DEBSEGAD, data count is set in
the work area, and return is made to the
next instruction in the processing program.
If the work area is filled, data remains in
the buffer, and no SYNAD is specified, a
zero is set in DCBSEGAD, data count is set
in the work area, and return is made to the
next instruction in the processing program.
If the SYNAD is specified, the routine
branches and links to the user‘'s synchro-
nous exit routine before returning.

GET RECORD ROUTINE (CHART C7)

Module Name: IGGO19NC

Function: The Get Record routine is
entered by the system expansion of a GET
macro, which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry, or upon
returning from the POST, the routine checks
for the inclusion of EODAD by the user. If
it has been specified and the disk is not
in the process of reading, a test is made
for a dummy last element. If there are no
more messages in the MS process queue, the
routine branches and links to the user's
exit address.

If EODAD was not specified, or the disk
was in the process of reading, or there are
messages in the MS process queue, the rou-
tine obtains the address of the work area.
If this is not the first entry, the routine
posts the previously used buffer to the
return buffer queue. Upon returning from
the post or if this is the first entry, the
routine issues a Qwait to obtain the next
buffer.

If it is a header segment, the address
of the source area is obtained. If the
prefix indicates a process queue, the area
specified by the TRMAD operand is cleared.
The terminal ID is moved into the user's
area.

If the segment is not the last and the
buffer is empty, the routine branches back
to obtain another buffer. If the buffer is
empty and it is the end of a message, the
data count is set in the work area, and
return is made to the next instruction in
the processing program.



Each character is moved into the work
area, if space is available. If there is
no space available and SYNAD is specified,
the count is stored in the work area. The
program branches and links to the user's
synchronous exit routine before returning
to the next instruction in the processing
program. If SYNAD is not specified, the
count is stored in the work area, and the
routine returns to the next instruction in
the processing program. Each character in
the buffer is checked for new line (NL),
end of plock (EOB), or start of text (STX
for 2260). If the character is an NL, EOB,
or STX, all consecutive NLs, EOBs, or STXs
are moved into the work area, the count is
stored in the work area, and the routine
returns to the next instruction in the pro-
cessing program. If the buffer is empty
and it is not an end of message, the rou-
tine branches to request another buffer.

If the buffer is empty and it is an end of
message, the data count is stored in the
work area, and the routine returns to the
next instruction in the processing program.

GET SEGMENT RQUTINE (CHART C5)

Module Name: IGGO19NA

Function: The Get Segment routine is
entered by the system expansion of a GET
macro, which obtains the address of the Get
module from the DCB specified in the GET
macro. If this is the first entry for a
process queue, the routine posts a dummy
buffer (in DEB) to the return buffer queue.
If this is not the first entry or upon
returning from the POST, the routine checks
for the inclusion of EODAD by the user. If
it has bpeen specified and the disk is not
in the process of reading, a test is made
for a qummy last element. If there are no
more messages in the MS process queue, the
routine branches and links to the user's
exit address.

If EODAD was not specified, or the disk
was in the process of reading, or there are
messages in the MS process queue, the rou-
tine obtains the address of the work area.
If this is not the first entry, the routine
posts tne previously used buffer to the
return buffer gqueue. Upon returning from
the post, or if this is the first entry,
the routine issues a Qwait to obtain the
next buffer.

If it is a header segment, the address
of the source area is obtained. If the
prefix indicates a process queue, the area
specified by the TRMAD operand is cleared.
The terminal ID is moved into the user's
area.

If the buffer is empty, the data count
is stored in the work area, and return is

made to the next instruction in the pro-
cessing program. If the buffer is not
empty, the segment is moved to the work
area. If all the data in the buffer has
been moved, the data count is stored in the
work area and return is made to the next
instruction in the processing program.

If the work area is filled and data is
left in the buffer, a check is made for
SYNAD specification. If SYNAD is not spec-
ified, the rqutine returns to the next
instruction in the processing program; if
specified, it branches to the user's syn-
chronous exit routine before returning.

PUT_ MESSAGE ROUTINE (CHART DA)

Module Name: IGGO19NE

Function: The Put Message routine is com-
posed of two parts. The first section is
entered by a branch and link from the sys-
tem macro expansion, which obtained the
address from the DCB specified. This sec-
tion sets priority for the BRB and sets a
new entry switch.

The following error codes are set in
register 15 when an error is detected.

1. Bit 26 is set to 1 for an invalid ter-
minal name.

2. Bit 27 is set to 1 for wrong length
specified.

If any error flags are set, return is made
to the next instruction in the processing
program. The routine then issues a Qpost
to request a new buffer from the active BRB
queue, waits for the buffer, and posts the
buffer to the destination queue. If there
is any more data in the work area, the rou-
tine branches back to request a new buffer;
otherwise, it returns to the next instruc-
tion in the processing program.

The second section of the routine is
entered by a branch from the Buffer BRB
routine. If this is the first PUT for this
buffer, a new entry is set and the buffer
size is loaded. For every request, a 0 is
set in the source key (TTSKEY) in the pre-
fix to show a process queue. If this is a
header segment, the sequence number is
zeroed and the scan pointer in the prefix
is set to the number of idle characters in
the header. If the user has specified
priority, that priority is taken from the
work area and placed in the DEB; otherwise,
a blank is set for the priority. The off-
set to the terminal entry is stored in the
TTDKEY field, and the EOM header bit is set
in MSTATUS field of the prefix.

Message Processing Program Routines 99



For a text segment, the EOM bit is set
in the MSTATUS field of the prefix. For a
header or text segment, the length of the
buffer is compared with the work area. If
the work area is larger than the buffer,
the EOM bit in MSTATUS is turned off and
the buffer length is used to move the data
from the work area into the buffer. The
work area length is used for the data move
if the work area is smaller than the buf-
fer. If there is more data to move, the
work area pointer is updated before branch-
ing to the Interim LPS routine to post the
buffer to the MS destination queune.

PUT RECORD ROUTINE (CHART C9)

Module Name: IGGO19NF

Function: The Put Record routine is com-
posed of two parts. .The first section is
entered by a branch and link from the sys-
tem macro expansion, which obtained the
address from the DCB specified in the PUT
macro. This section sets priority for the
BRB and sets a new entry switch.

The following error codes are set in
register 15 when an error is detected.

1. Bit 26 is set to 1 for an invalid ter-
minal name.

2. Bit 27 is set to 1 for a wrong length
specified.

3. Bit 25 is set to 1 for invalid
sequence; that is, if this is the last
segment and the next segment is not a
header, or if this is not the last
segment and the next segment is a
header (other than the first time).

If any error flags are set, return is made
to the next instruction in the processing
program.

The routine then issues a Qpost to re-
quest a new buffer from the active BRB
queue, and waits for this buffer. If a
buffer address has been saved, use this
buffer and save the address of the new buf-
fer. The Put Record routine issues a Qwait
to wait for the BRB to be removed from the
ready queue. If the buffer is full, the
routine posts the buffer to the DASD
destination queue. If there is more data
to be moved, this routine branches to re-
quest a new buffer. If no more data is to
be moved, or the buffer is not full, it
switches buffer addresses with the saved
buffer. If there is an extra buffer, the
unused buffer is posted to the free buffer
queue before return is made to the next
instruction in the message processing
program.

100

The second section of the routine is
entered by a branch from the Buffer BRB
routine. If this is the first PUT request
for this buffer, a new entry is set, the
buffer size is loaded, and the buffer save
area is zeroed. The present buffer is
saved for every PUT request if no buffer is
left over from a previous PUT. The LCB
address, source key, and text indicator are
placed in the prefix.

If this is the start of the work area
and a header segment, the sequence number
is zeroed and the scan pointer in the pre-
fix is set to the number of idle characters
in the header. If the user has specified
priority, that priority from the work area
is placed in the DEB; otherwise, a blank is
set for the priority. The offset to the
terminal entry is stored in TTSKEY field of
the prefix.

For a text or header segment and not the
start of a work area, the length of the
buffer and the work area are compared if
the buffer has been filled. If the buffer
is larger than the work area, the length of
the work area is used to move the data;
otherwise, the buffer length is used. The
data is moved from the work area to the
buffer and the data count is set in the
prefix. If data is left in the work area,
the address of the next character in the
work area is obtained. If no data is left
in the work area and it is the end of mes-
sage, the EOM is set before the address of
the next character is obtained.

If a buffer is left over from the pre-
vious PUT, the extra buffer address is
stored. If this is not a text segment, the
EOM is set in MSTATUS. The switch is set
to indicate that no buffer is left over.

If a buffer has been saved, the saved buf-
fer and present buffer are exchanged. The
routine exits to the Interim LPS routine in
the Implementation module to post the buf-
fer to the MS destination queue.

PUT_SEGMENT ROUTINE (CHART C8)

Module Name: IGGO19ND

The Put Segment routine is composed of
two parts. The first section is entered by
a branch and 1ink from the system macro
expansion, which obtains the address from
the DCB specified in the PUT macro.

The following error codes are set in
register 15 when an error is detected.

1. Bit 26 is set to 1 for an invalid ter-
minal name.



2. Bit 27 is set to 1 for a wrong length
specified.

3. Bit 25 is set to 1 for invalid
sequence; that is, if this is the last
segment and the next segment is not a
header, or if this is not the last
segment and the next segment is a
header (other than the first time).

If any error flags are set, return is made
to the next instruction in the processing
program.

Otherwise, the Put Segment routine sets
priority for the BRB, and issues a Qpost to
request a new buffer from the active BRB
queue, waits for the buffer, and then posts
the buffer to the DASD destination queue.
The routine waits for the BRB to be removed
from the ready queue, and returns to the
next instruction in the processing program.

The second part of the routine is
entered by a branch from the Buffer BRB
routine. This section of the routine moves
the LCB address in the MSLCB field, moves
the message type in the work area to the
MSTATUS field, and zeros (shows process
gueue) into the TTSKEY field of the prefix.
If it is a header, the message sequence
number is set to zero, and the scan pointer
in the prefix is set to the number of idle
characters in the header. The header is
moved in the buffer. If the user has spec-
ified priority, that priority is placed
from the work area into DEB; otherwise, the
priority is set to a blank. The offset to
the terminal entry is stored into TTDKEY
field (destination key) of the prefix. For
a text segment, the text is moved into the
buffer. For a header of text segment, the
segment size is stored in the MSEGSZE field
of the prefix. The routine exits to the
Interim LPS routine in the Implementation
module to post the buffer to the MS
destination queue.

CHANGE POLLING LIST ROUTINE (CHART CD)

Function: This routine sets up the DCB
base with the DCB address given in the
macro. If the terminal name is specified,
the macro expansion has branched to
IECKDCBL to find the address of the DCB.
If the DCB specified has not been opened,
an error code of hex '01' is set in regis-
ter 15, and return is made to the next
instruction in the processing program. If
the relative line number specified is too
high, an error code of hex *"08' is set in
register 15, and return is made to the next
instruction in the processing program. If
character number is specified in the third
operand of the macro, the numerics are
moved into the STATUS field of the polling
list by the Cross Partition Move routine.

If the third operand is an address, the
length of the new polling list is compared
to the present one. If they are not equal,
an error code of hex '10' is placed in reg-
ister 15, and return is made to the next
instruction in the processing program.
Otherwise, the routine obtains the address
of OMOVE and posts the QCB to itself to
execute the move. The new polling list in
the area specified is moved to the address
of the polling list area. A normal comple-
tion code of hex '00" is placed in register
15 before return is made to the next
instruction in the processing program.
Module Name: IECKCHPL

Entry Point: Expansion of the CHNGP macro
instruction generates a BALR to the routine
at IECKCHPL, using register 15 as the
branch address register and register 14 as
the return register. Parameter register 0
passes to the routine the address of the
DCB with the relative line number in the
high-order byte. Parameter register 1 con-
tains the address of the area that contains
the new polling list of the character num-
ber, either 0 or 1, which results in deac-
tivation or activation of the polling list,
respectively.

External Routines Used:

e QOpost (IGC067 in module IECKQQO1)

s Cross Partition Move (QMOVER +6 in
module IGG019NG)

CHANGE TERMINAL TABLE ROUTINE (CHART CB)

Function: The terminal name specified in
the macro is compared with each TERMID
field in the terminal table. If the termi-
nal entry specified is not found in the
terminal table, an error code of hex '20'
is set in register 15, and return is made
to the next instruction in the processing
program. When the entry is found, the
length of the entry is compared to that of
the present entry. If the size specified
in the work area is nct equal to the size
in the terminal table, an error code of hex
'10' is set in register 15, and return is
made to the next instruction in the pro-
cessing program.

If the QCB from the terminal table is
not a destination queue or a STOPLN has
been issued, the move data QCB is posted to
itself to execute the move. The new entry
from the work area is moved into the speci-
fied entry of the terminal table. If the
QCB is a destination queue and a STOPLN has
not been issued, the change is made in two
moves, leaving the new sequence number.
Because the sequence numbers may have been
incremented after the entry was copied into

Message Processing Program Routines 101



the work area, the 0ld sequence numbers are
not changed. Return is made to the next
instruction in the processing program.
Module dName: IECKCHGT

Entry Point: Expansion of the CHNGT macro
instruction generates a BALR to the routine
at IECKCHGT, using register 15 as a branch
address register. Parameter register 0
contains the address of the work area.
Parameter register 1 passes to the routine
the address of the name of the entry in the
terminal table.

External Routines Used:

¢ Opost (IGC067 in module IECKQQO01)

e Cross Partition Move (QMOVER +6 in
module IGGO019NG)

CHECKPOINT REQUEST ROUTINE (CHART C3)

Function: This routine initiates a request
for a checkpoint record to be written on
the checkpoint records data set.

If any of the following error conditions
are detected, the request is ignored and
return is made to the calling program with
an error code in register 15,
right-adjusted.

1. QTAM message queues data set not
opened (error code = X'01').

2. A checkpoint interval was specified in
the CKITV operand of the TERMTBL macro
(error code = X'02").

3. Checkpoint records data set not opened
(error code = X'04').

If no errors are detected, a checkpoint
is requested by Qposting the passed ECB to
the checkpoint request queue. An SVC WAIT
is then issued to wait for the checkpoint
to be taken. Return is made to the calling
program.

Note: The checkpoint record is not written
until the number of message processing par-
titions specified in CKPART operand of the
TERMTBL macro have initiated checkpoint
requests.
Module Name: IECKCKRQ

Entry Point: Expansion of the CKREQ macro
instruction generates a BALR to the routine
at IECKCKRQ, using register 15 as the
branch address register and register 14 as
the return register. Upon entry, parameter
register 1 contains the address of an event
control block (ECB) representing the check-
point request from this partition.

102

External Routines Used:

e Qpost (IGC067 in IECKQQO01)

e WAIT (SvVC 1)

CLOSE MESSAGE CONTROL ROUTINE (CHART ED)

Function: This routine is entered for a
complete closedown. To turn off the master
receive switch, the routine sets up for the
Cross Partition Move routine by placing the
address of the master receive switch and
the mask in registers 4 and 5, respective-
ly. The routine posts the move data QCB to
itself; the Move Data subtask moves the
mask to turn off the master receive switch.

The TCB for message control is used to
obtain the DEB chain. For each DEB on the
chain, the associated DCB is refered to.
If the DCB is not for a communications
line, the next DEB is obtained. If the DEB
is for a line, each LCB is obtained. 1If
the line for that LCB is active, the rou-
tine issues a STOPLN macro instruction to
stop the line. The STARTLN macro is then
issued to put out all messages. Only the
lines for output will be started because
the master receive switch has been turned
off. If the line is not active, the next
ICB is obtained. When the end of the DEB
chain is reached, the routine returns to
the next message processing program
instruction. The net effect is that all
input lines to the system are stopped,
while line output operations continue as
normal.
Module Name: IECKCLOS
Entry Point: Expansion of the CLOSEMC
macro instruction generates a BALR to the
routine at IECKCLOS, using register 15 as
the branch address register and register 14
as the return register.

External Routines Used:

e Opost (IGC067 in module IECKQQO01)

e Line Change (in module IECKLNCH)

e Cross Partition Move (QMOVER + 6 in
module IGG019NG)

COPY TERMINAL TABLE ROUTINE (CHART CG)

Function: After saving the registers, the
routine obtains the address of the terminal
table from the communications vector table.
The terminal table is searched for the name
of the entry specified in the macro. If no
entry of the specified name is found or the
entry size is zero, an error code of a hex
'20' is placed in register 15. When the
name is found, the table is moved to the
work area specified in the macro, and a



normal completion code of hex '00' is
placed in register 15. After restoring
registers, the routine returns to the next
processing program instruction.

Module Name: IECKCPYT

Entry Point: Expansion of the COPYT macro
instruction generates a BALR to the routine
at IECKCPYT, using register 15 as a branch
address register and register 14 as a
return register. Parameter register 0 con-
tains the address of the work area speci-
fied in the macro. Register 1 contains the
address of a location containing the termi-
nal name.

External Routines Used: None

COPY POLLING LIST ROUTINE (CHART CC)

Function: After saving the registers, the
routine obtains the size of the polling
list, using the relative line number and
the address of the DCB specified in the
macro. If the terminal name is specified,
the macro expansion has branched to
IECKDCBL to find the address of the DCB.

If the DCB has not been opened, an error
code of hex '01' is set in register 15, and
return is made to the next instruction in
the processing program. If the relative
line number is too high, an error code of
hex '08' is set in register 15, and return
is made to the next instruction in the pro-
cessing program. The polling list is moved
into the work area specified in the macro.
Registers are restored before return is
made to the next instruction in the pro-
cessing program.

Module name: IECKCPPL

Entry Point: Expansion of the COPYP macro
instruction generates a BALR to the routine
at IECKCPPL, using register 15 as the
branch address register and register 14 as
the return register. Parameter register 0
passes, to the routine, the address of the
DCB specified in the macro plus four times
the relative line number. Register 1 con-
tains the address of the work area that
contains the new polling list.

External Routines Used: None

COPY QUEUE CONTROL BLOCK ROUTINE (CHART CE)

Function: After saving the registers, the
routine searches the terminal table for the
name of the terminal specified in the
macro. Upon obtaining the address of the
OCB from the terminal table, the queue of
32 bytes is moved into the area specified
by the macro. If the terminal entry is not
found, an error code of a hex '20' is

placed in register 15. If there was no
error, the routine returns a hex '00" in
register 15. The routine restores regis-
ters and returns to the next LPS
instruction.
Module Name: IECKCPYQ

Entry Point: Expansion of the COPYQ macro
instruction generates a BALR to the routine
at IECKCPYQ, using register 15 as a branch
address register and register 14 as a
return register. Parameter register 0 con-
tains the address of the work area speci-
fied in the macro. Parameter register 1
passes, to the routine, the address of a
location that contains the terminal name.

External Routines Used: None

LOCATE DCB ROUTINE (CHART BW)

Function: The routine obtains the maximum
size of the terminal name. If the speci-
fied terminal name is not in the terminal
table, an error code of hex '20' is set in
register 15 and return is made to the macro
expansion. If the terminal name is found,
the QCB address is obtained from the termi-
nal entry. If this is a list or process
entry, an error code of hex '20' is set in
register 15 and return is made to the macro
expansion. If it is not a list or process
entry, the DCB address is obtained from the
OCB and placed in register 0. The relative
line number is inserted in the high-order
byte. The normal exit code of hex '00' is
set in register 15 and return is made to
the macro expansion.

Module Name: IECKDCBL

Entry Point: This routine is entered via a
BALR from the macro expansion of STOPLN,
STARTLN, COPYP, or CHNGP. The address of
the terminal name is passed in parameter
register 1.

External Routines Used: None

RELEASE INTERCEPTED MESSAGE ROUTINE (CHART
BZ)

Function: Each TERMID field of the termi-
nal table is compared with the specified
terminal name, until there is an equal com-
pare. If the name is not found in the ter-
minal table, the routine returns to the
next instruction in the processing program
with an error code of hex "20' in register
15. If the entry is found, the TSTATUS
field is tested. If the "intercept” bit is
not on, return is made to the next instruc-
tion in the processing program with a code
of hex '"04' in register 15. If the inter-
cept bit is on, indicating that messages

Message Processing Program Routines 103



may have been intercepted, the address of
the INTERCPT field is obtained from the LPS
routine.

If the message header address in the
INTERCPT field is greater than the message
address in queue, a priority message has
been intercepted. The "intercept" bit is
reset to zero, the "send" bit is set on,
and return is made to the next instruction
in the processing program with the code of
hex '00' in register 15 for normal comple-
tion. If the header address is less than
the address in queue, the header address of
the intercepted message is inserted (using
Cross Partition Move routine) as the first
message to be released. This is done by
posting the move data QCB to itself. The
"intercept" bit is reset to zero, the
"send" pit is set on, and return is made to
the next instruction in the processing pro-
gram with a code of hex '00' in register 15
for normal completion.

Module Name: IECKRELM

Entry Point: Expansion of the RELEASEM
macro instruction generates a BALR to the
routine at IECKRELM, using register 15 as
the branch address register and register 14
as the return register. Register 1 is the
parameter register, which passes the
address of the terminal name to the
routine.

External Routines Used:

e Cross Partition Move (QMOVER+6 in
module IGGO019NG)

* QOpost (IGC067 in module IECKQQO01)

RETRIEVE - DASD ROUTINE (CHART C1)

Function: This routine causes a message
segment to be retrieved by direct access
address from the DASD destination or pro-
cess queues, and to be placed into the work
area. The routine saves registers and sets
up addressability. If an invalid disk
address is received, an error code of hex
'02' is set in register 15, and return is
made to the next instruction in the pro-
cessing program.

A combination BRR and QCB is built in
the user's work area. The routine stores
the address of the STCB, queue-insert-by-
priority, into the QTRAN field. It stores
the direct access address in the BRB as the
relative record address of the next segment
to be read. The routine then sets the
MSTATUS field equal to 9 in the BRB and
sets priority in the QPRI field to a hexa-
decimal 'E4'. The routine posts the BRB/
QCB to the disk queue, and waits for disk
completion. Another Qwait is issued to

104

ensure that the BRB/QCB is off the ready
queue so that the work area can be used.
The message is moved into the work area
specified by the usexr. The buffer is
returned by posting the buffer to the
available buffer queue. The registers are
restored and return is made to the next
instruction in the processing program.
Module Name: IECKRETD

Entry Point: Expansion of the RETRIEVE
macro instruction generates a BALR to the
routine at IECKRETD, using register 15 as
the branch register and register 14 as the
return register. Registers 0 and 1 are
used as parameter registers. Register 0
contains the work area specified by the
user, and register 1 contains the relative
record address of the message segment to be
retrieved.

External Routines Used:

e Owait (IGC065 in module IECKQQO01)

e Qpost (IGC067 in module IECKQQO01)

RETRIEVE BY SEQUENCE NUMBER ROUTINE (CHART
c2)

Function: This routine causes a message
segment to be retrieved and placed in a
work area specified by the user. After
saving registers and setting up addressa-
bility, the terminal table address is
obtained from the CVT. The terminal table
is searched for the destination named in
the operand of the macro instruction. If
the name of the destination is not found,
an error code of a hexadecimal *20' is
placed in register 15, and return is made
to the next instruction in the processing
program. If the name is found, the offset
of the entry from the start of the terminal
table is saved, and the destination queue
address is obtained from the terminal table
entry.

The routine branches to the Retrieve
DASD routine passing in register 1 the
direct access address of the message (a
negative address indicates sequence in and
a positive address indicates sequence out)
and in register 0 the address of the work
area.

The Retrieve DASD routine retrieves the
next segment of the message and places it
in the work area. If the direct access
address is zero, an error code of hexadeci-
mal *'40"' is placed in register 15, and
return is made to the next instruction in
the processing program. If the sequence
number specified by the macro instruction
is greater than the sequence of the re-
trieved message or it was a priority mes-



sage, the next message is obtained by the
Retrieve DASD routine. If the sequence
number of the retrieved message is larger
than the one specified, an error code indi-
cating invalid sequence of hexadecimal '40°'
is set in register 15. Return is made to
the next instruction in the processing pro-
gram. If the correct message is retrieved
and registers are restored, return is made
to the next instruction in the processing
program with a hexadecimal '00' set in reg-
ister 15.

Module Name: IECKRETS

Entry Point: Expansion of the RETRIEVE
macro instruction generates a BALR to the
routine at IECKRETS, using register 15 as
the branch address register and register 14
as the return register. Register 0 is used
as a parameter register. It contains the
address of the work area into which the
message segment is to be placed.

External Routines Used: Retrieve DASD (in

module IECKRETD)

START LINE - STOP LINE ROUTINE (CHART BX)

Function: This routine sets up the DCB
base with the DCB address given in the
macro. If the terminal name is specified,
the macro expansion has branched to
IECKDCBL to find the address of the DCB.

If the DCB has not been opened, an error
flag of hex'01' is set in register 15, and
return is made to the next instruction in
the processing program. If the relative
line number is greater than the number of
lines, an error code of hex '08' is set for
invalid relative line number, and return is
made to the next instruction in the pro-
cessing program.

For each line to be stopped or started,
the associated LCB is obtained. 1If the
routine was entered for a Start Line and is
not active, the operation codes for the SAD

and Enable commands, needed for starting a
line, are stored in the QCB/STCB. Unless
there is a type III adapter, 2260, or
switched connection, an Enable operation
code is set. Otherwise, NOP is set in the
QCB. The LCB is posted to the queue QCB to
enter the subtask in the routine.

If the routine is for a stop line, the
UCB address for the line is obtained. If
the line is a dial line or a WTTA line and
is not in active transnission, a Halt I/O
is issued to disable the line. If it is in
active transmission, a Qwait is issued to
wait for the line to become inactive. For
an autopolled line, the line is stopped by
causing the TIC after the second Poll CCW
to be replaced with a NOP. The move data
QCB is posted to itself to cause the NOP to
replace the TIC across partitions. If
there are no more lines to change, the
normal exit code of hex '00' is set in reg-
ister 15, and return is made to the next
instruction in the processing program.

The Queue routine associated with the
queue subtask is in this module. This rou-
tine takes the Op code set in the Start
line-Stop Line routine and places it in the
channel program area. A flag is set in the
LCBCPA + 32 field of the LCB so that Line
SIO Appendage will give control to ERP at
completion. An EXCP is issued for the
line. Upon return, the routine exits to
Qdispatch subroutine in IECKQQO1.

Module Name: IECKLNCH

Entry Point: Expansion of the STOPLN or
STARTLN macro instruction generates a BALR
to the routine IECKLNCH, using register 15
as the branch address register and register
14 as the return register. Parameter reg-
ister 0 passes to the routine the relative
line number in the high-order byte and the
DCB address in the three low-order bytes.

External Routines Used:

¢ QOpost (IGC067 in module IECKQQO1)
¢ Owait (IGC065 in module IECKQQO01)

Message Processing Program Routines 105



OTAM CONTROL MODULE SUBROUTINES

The QTAM control module (module IECKQQO1),
consisting of nine subroutines, is included
in the supervisor nucleus as a resident
routine at system generation.

ENTRY INTERFACE SUBROUTINE

This subroutine performs initialization
for the QTAM control program. It is
entered from the first-level Interrupt
Handler (FLIH) of the supervisor whenever a
OTAM supervisor call (Qwait or Qpost) is
issued.

Associated with each entry to the Entry
Interface subroutine is a supervisor-
created supervisor request block (SVRB);
the SVRB is converted to a subtask control
block (STCB). One otherwise unused word in
the SVRB is zeroed and is later used as an
event control block (ECB) for controlling
the dispatching of its associated subtask.

The "new" STCB is placed at the head of
the STCB chain of the QCB for the last dis-
patched queue (i.e., the queue from which
QTAM last activated a subtask). The sub-
routine then exits to the Qwait or the
Opost subroutine, depending on which SVC
was issued.

OTAM POST (QPOST) SUBROUTINE

The Qpost subroutine places the address
of the QCB named by the calling routine
into the QCB address field of the specified
resource element control block (this is the
means by which an element becomes asso-
ciated with a QCB). The subroutine then
branches to the Priority Search subroutine
to cause the element to be placed on the
ready queue in priority order.

OTAM WAIT (QWAIT) SUBROUTINE

When the Qwait subroutine is entered,
the STCB representing reentry to the call-
ing routine (when the wait condition is
satisfied) has already been chained into a
OCB by the Entry Interface subroutine. The
Owait subroutine determines what further
disposition should be made, based on cur-
rent conditions, to schedule the subtask
for activation. Four sets of conditions
determine the disposition:

1. If the QCB into which the STCB has

been chained (i.e., the user-specified
or "new" QCB) has a key of 2 (the

106

highest-priority subtask is "not wait-
ing"), the QOwait subroutine makes no
further disposition, but branches
immediately to the Defer Entry subrou-
tine at UNAVAIL. Reasons for this
branch are explained in the discussion
of that subroutine.

2. If the new QCB has an element avail-
able on its element control block
chain, the STCB remains linked into
the QCB (the "o0l1ld" QCB) that had been
selected by the Entry Interface sub-
routine. The Qwait subroutine then
branches to the Exit Select subroutine
at RETURNX. This causes the address
of the element found on the element
chain of the new QCB to be placed in
the calling routine's parameter regis-
ter, which is itself stored in the
save area of the STCB. The net effect
is that at the time the subtask is
activated, it appears in the STCB
chain of the Qattach QCB, or the STCB
chain of the dispatched (0ld) QCB; the
element chain from which it is drawing
elements, however, is that of the QCB
specified by the calling routine
(i.e., the new QCB). This action
insures immediate satisfaction of the
wait condition when the requested ele-
ment is available.

3. If the new QCB has no elements avail-
able, but the last dispatched queue
(0old QCB) and the queue specified by
the calling routine (new QCB) are the
same, the STCB is already chained into
the correct QCB and that QCB is al-
ready waiting on the ready queue. The
Qwait subroutine branches to the Qdis-
patch subroutine.

4, If the new QCB has no elements avail-
able and is not the QCB for the last
dispatched queue, the STCB must be
linked into the STCB chain of the new
QCB; therefore, the Qwait subroutine
branches to the Defer Entry subroutine
at UNAVAIL.

The Wait subroutine is also entered at a
special entry point, UNAVAIL-6, by the BRB
Ring and Send Scheduler routines in the
Implementation module. The purpose is to
determine if the last dispatched QCB and a
OCB specified by the calling routine are
the same.



DEFER_ENTRY SUBROUTINE

This subroutine causes entry to a sub-
task to be deferred. When a control sub-
routine encounters an STCB for a subtask
that cannot be activated, a branch to the
Defer Entry subroutine is taken; this sub-
routine causes the STCB to be removed from
the position at which it was encountered
and linked into the appropriate STCB chain.
After retrieving the pointer to the STCB
from the location where it was encountered
and restoring that location to its former
state, the Defer Entry subroutine branches
to the Priority Search subroutine; this
causes the STCB to be placed, by priority
order, into the STCB chain of the QCB spec-
ified by the calling routine.

An exception arises if the key of the
QOCB specified by the calling routine is 2.
This condition indicates that the highest-
priority subtask on the QCB's STCB chain is
a ready subtask (not waiting for elements)
and is ready to receive control. The STCB
being processed, however, is not ready; if
it is of higher priority than the ready
subtask, it cannot be placed at the head of
the STCB chain without preempting the
"ready" status that applies to the current
top STCB, and that STCB should be honored
first for maximum efficiency. Therefore,
the Defer Entry subroutine enters the
Priority Search subroutine by a path that
ensures that the new STCB is enqueued by
priority order below the current top STCB.

PRIORITY SEARCH SUBROUTINE

This is a generalized subroutine that
determines the position within a chain that
an item should assume in order to be in
correct priority sequence; items in the
chain are arranged in descending order of
priorities from the top of the chain. This
subroutine acts on all chains including the
ready queue.

The subroutine examines each item on the
chain until it finds either an item with
lower priority than that of the search
argument, or the last item on the chain
(signalled by priority 255). When either
condition is met, the subroutine exits to
the Queue Insert subroutine.

QUEUE_INSERT SUBROUTINE

This is a generalized subroutine that
links items into a chain; it is applied to
all chains including that of the ready
queue. - When this subroutine is entered, a
register contains a pointer to the link
address portion of the item at the point in
the chain at which the new item is to be
inserted; a second register holds the

address of the item to be inserted. (The
point of insertion is the head of the chain
except when this subroutine is entered from
the Priority Search subroutine, which
selects the insertion point according to
the item's priority.) The subroutine
places the old link address in the new
item, replaces the old link address with
the new item's address, and exits to the
Qdispatch subroutine.

ODISPATCH SUBROUTINE

This subroutine performs the primary
internal management function within QTAM,
except for those cases in which another
subroutine is able to determine the next
subtask to be activated (e.g., when the
Qwait subroutine finds that elements are
already available to a subtask requesting
elements and that the Qdispatch subroutine
can be bypassed). The Qdispatch subroutine
maintains continuity by receiving control
from a completed subtask and by selecting
another subtask that is to receive control.

The Qdispatch subroutine examines the
item at the head of the ready queue and
takes one of four courses of action,
depending on the type of item encountered.
Items that can appear on the ready queue
are:

1. Queue control blocks for which the
highest-priority subtask is not wait-
ing for elements (QCB key is 2).

2. Queue control blocks waiting for ele-
ments (QCB key is 3).

3. Resource element control blocks con-
taining the address of the QCB to
which the element has been posted
(RECB key is 0).

4. Full subtask control blocks for which
the key value is also zero. The first
word of a full STCB contains the
address of the Qattach QCB.

The effect of the appearance of each
type of item at the head of the ready queue
is described in the following paragraphs.

Queue Control Block ~ Not Waiting (Key Is
2): When the item at the head of the ready
queue is a "not waiting"™ QCB, control is
given to the first (highest-priority) sub-
task represented in the QCB's STCB chain,
and the QCB's key is set to 3.

Queue Control Block - Waiting (Rey Is 3):

A "waiting" QCB at the head of the ready
queue is removed from the ready queue
(i.e., replaced by the item linked to it),
and its key is set to 1. A QCB waiting for
elements cannot contend for control; how-

QTAM Control Module Subroutines 107



ever, it is automatically returned to the
ready queue when an element becomes
available.

When a subtask requiring more than one
element (e.g., a series of buffers) to
accomplish its functioa receives control,
the associated QCB continues to appear as
"waiting" (key is 3) until all required
elements have been received. Before a
waiting QCB is removed, it is determined
whether the QTAM subtask that had control
last was associated with that QCB. If it
was, that subtask is again given control.
This cycle continues until the subtask ful-
fills all of its requirements or until the
subtask exhausts the queue's element chain.

Resource Element Control Block: Each
resource element control block (RECB) that
has béen posted to the ready queue contains
the address of the OCB for .the queue to
‘which the element has been posted. When an
element reaches the top of the ready queue,
it is immediately replaced by the QCB to
which it points. However, the QCB pointer
in the RECB is retained. That QCB is then
treated as though it, rather than an ele-
ment associated with it, had been encoun-
tered; its highest-priority subtask is
activated, and its key is set to 3.

This convention has several significant
aspects:

1. It is the means by which a removed
"waiting" QCB is returned to the ready
queue.

2. It illustrates the case where the
active QCB (i.e., the QCB with which
the active subtask control block is
associated) is not necessarily at the
head of the ready queue.

3. It explains the fact that an RECB need
not be physically chained into a QCB
to become associated with that QCB.
Specifically, it ensures that an ele-
ment is immediately acted upon, except
in the case where the queue involved
already has at least one other "real"
element and is already contending for
computing time.

Full Subtask Control Block: This is the
only form of STCB that appears on the ready
queue. Its appearance at the head of the
ready queue has exactly the same effect as
the appearance of a "not waiting" (key=2)
QCB with this STCB at the head of its STCB
chain; the’subtask is activated and the key
of the QCB with which it is associated
(Qattach) is set to 3.

The mecnanism by which this is accom-
plished is as follows:

108

1. Location READY contains a pointer to
the STCB; this situation is the phys-
ical counterpart of the STCB's being
at the head of the ready queue.

2. The STCB itself has the appearance (to
the QTAM control routines) of an ele-
ment. Its QCB address is QATTACH.

3. OQATTACH is a storage location equiva-
lent to READY minus 8 bytes; it also
appears to be the first word of a ™ot
waiting" QOCB. .

4. Since the STCB is apparently a
resource element control block asso-
ciated with a "not waiting"™ QCB, the
first STCB in that QCB's chain should
be selected for activation. The
address of the first STCB is to be
found in the third fullword of the
QCB.

5. The third fullword of the QATTACH,
which appears as a QCB, is the loca-
tion READY. Therefore, the full sub-
task whose address is at READY is
selected for control.

EXIT SELECT SUBROUTINE

This subroutine activates subtasks
represented by truncated STCBs or falls
through to the Exit Interface subroutine if
the STCB is a full STCB.

The first byte of a truncated STCB is a
branch modifier of the form (entrypt-NRET),
where entrypt is the address of the desired
entry point. NRET is the location from
which the branch offset is applied. When
the Exit Select subroutine encounters a
nonzero return code, it computes the branch
address and branches to the computed entry
point.

EXIT INTERFACE SUBROUTINE

This subroutine is entered to process
full STCBs. First the subroutine deter-
mines whether or not the subtask is being
scheduled for activation because it was
represented in the STCB chain of a waiting
OCB for which an element has been encoun-
tered. If this condition exists, the
address of the element is placed in the
parameter register in the save area of the
full STCB.

The subroutine links to the operating
system Post routine, which posts completion
in the event control block of the STCB
(SVRB) being dispatched. The subroutine



then exits in one of two ways, depending on 2.
how the Qdispatch subroutine was entered:

1. If entry to Qdispatch resulted from an
asynchronous interrupt, the subroutine
branches back to the I/0 supervisor.

If entry to Qdispatch resulted from an
SvC, the subroutine issues a wait on
the resource element control block of
the entry SVRB. After the wait is
satisfied, the subroutine returns to
the routine that issued the SVC.

QTAM Control Module Subroutines 109



oTAM IMPLEMENTATION MODULE ROUTINES

The QTAM Implementation module (module
IGG019NG), consisting of 21 routines, is
loaded into main storage by the Open Execu-
tor used to open the direct access queues
data set.

RECEIVE SCHEDULER_ROUTINE (CHART DH)

If the line is a WTTA line, this routine
tests the EOT flag. If this flag is set,
exit is made to the Defer Entry subroutine
at UNAVAIL in order to enter the line's
Send Scheduler subtask (if any). If the
EOT flag is not set, exit is made to the
BRB-Ring routine at RQCONST to initialize
for receiving.

If the line is not a WITA line, this
routine examines the current polling list
entry for a line. 1If polling is to be per-
formed on the line and the current entry is
valid (i.e., is not the dummy entry signal-
ling the end of the polling list), the rou-
tine branches to the BRB-Ring routine
(RQCONSTR) to initialize for receiving.
Before the branch is executed, the routine
sets the 'line receiving' code (LCBSTATE=8)
in the LCB to indicate the kind of opera-
tion anticipated.

If the current polling list entry is the
dummy last entry, the routine clears the
line receiving code and branches to the
Defer Entry subroutine at UNAVAIL after
resetting the current entry pointer to the
top of the polling list. The purpose of
this branch is to permit the line's Send
Scheduling subtask to become eligible for
activation if its STCB is also in the
chain. If the Send Scheduling subtask is
not in the chain, the Receive Scheduling
subtask will again be activated to start
polling at the top of the polling list.

Before the branch to the Defer Entry
subroutine is taken, a possible endless
loop is avoided by a test to determine that
the polling list contains at least one
entry in addition to the dummy last entry.
If the list contains no true entry and the
next STCB is a full STCB, the LCB is
removed from the ready queue and its
address is stored in the save area of the
STCB. This is done in case of a closedown.
The routine branches to the Exit Interface
routine to post the ECB completed. If the
list contains no true entry and the next
STCB is not a full STCB, the Receive Sched-
uling subtask is left at the head of the
STCB chain but is skipped over. Control
passes to the second subtask in the chain.

110

BRB-RING ROUTINE (CHART DI)

This routine constructs the BRB ring
used ta send or to receive a message, and
begins initialization of a CCW in each BRB.
The BRBs are drawn from the pool generated
on expansion of the BUFFFR macro instruc-
tion; the routine attempts to form a ring
containing the number of BRBs specified in
the BUFRQ parameter of the DCB.

As an extension of the Receive Scheduler
routine, the BRB-Ring routine checks for
messages on the dial out-call queue. If
the line is a dial line and the terminal
has transmitted all messages, the dial out-
call queue for the line is obtained in the
DEB. The STCB chain is searched for a mes-
sage whose relative line number is equal to
or less than the relative line number of
the free line. If the terminal for the
STCB is connected to the free line, the
Send Scheduler is removed from the dial
out-call queue and inserted into the STCB
chain for the line by IECKQQO1.

If the terminal is not free, the search
is continued for a message with a relative
line number that is less than the relative
line number of the current line. At the
end of the chain, the dial digits are
obtained and the line is set to allow a
dial up. The STCB is removed from the dial
out-call queue chain and inserted into the
STCB chain for the line.

If no messages are found, the line was
not a dial line, or the terminal could not
be disconnected, the LCB is set to receive
and the BRB ring is constructed.

When the routine is entered, a register
is adjusted so that the line control block
appears to the system to be an STCB. This
anticipates the situation in which not
enough BRBs are available to complete the
ring; in this case, the LCB is placed on
the STCB chain of the active buffer request
queue (through a branch to UNAVAIL-6, the
instruction preceding the Defer Entry sub-
routine). When a BRB is posted to that
queue, the BRB-Ring routine makes another
attempt to complete the ring. When suffi-
cient BRBs are available, the resulting BRB
ring consists of a series of BRBs, each
containing: (1) in the third fullword, the
transfer-in-channel operation code and the
address of the preceding BRB/CCW in the
ring, and (2) in the fourth fullword, a
pointer to the LCB for which the ring was
constructed.



Since each BRB/CCW contains a transfer-
in-channel to the previously built BRB/CCW,
the TIC address in the first BRB/CCW is
initially meaningless. The last step in
completing the ring (if enough BRBs were
available) is, therefore, to reset the
first BRB/CCW to transfer-in-channel to the
last one. If the order of construction of
a four-member BRB/CCW chain was A-B-C-D,
the order of execution will be A-D-C-B.

When the BRB/CCW ring is completed, the
LCB is removed from the location where it
was encountered as an apparent STCB (that
is, from the head of an STCB chain or the
ready gqueue). Depending upon whether a
Send or a Receive operation is being pre-
pared for, further initialization is
performed:

1. The element control block portion of
the first BRB/CCW is given a priority
value:

RECEIVE - 12
SEND -0

2. Into the LCB is inserted an operation-
type code for subsequent use by BTAM:

RECEIVE - 1 (Read Initial)
SEND - 2 (Write Initial)

3. A register is initialized for the QCB
of the queue to which the first BRB/
CCW is to be effectively (but not 1lit-
erally) posted:

RECEIVE - Active buffer request queue

SEND - Disk input/output queue (for
Send operations, additional
initialization consists of
setting an MSTATUS code of 9
and of inserting the rela-
tive record number for this
first segment of the
message.)

ACTIVE BUFFER REQUEST ROUTINE (CHART DL)

This routine is entered on activation of
the active buffer request subtask. The
element passed to the routine is an active
BRB; the routine determines whether a buf-
fer to satisfy the request is available and
should pe assigned, or whether the active
BRB should be enqueued for later servicing.

If the active BRB represents the begin-
ning of a BRB ring to be used for a receive
operation, the routine removes a buffer
from the element chain of the available
buffer QCB and exits to the Buffer BRB rou-
tine. Parameters passed to that routine
are: the address of the active BRB, the
address of the removed buffer, and the
address of the available buffer QCB.

If the active BRB is not the first of a
ring for a Receive operation, or if it is
the first but no buffer is available, the
routine branches to the Priority Search
subroutine to cause the active BRB to be
enqueued on the element chain of the active
buffer request queue.

AVAILABLE BUFFER ROUTINE (CHART DM)

This routine is entered on activation of
the available buffer subtask, or from the
Buffer BRB routine. The routine responds
to the availability of a buffer by attempt-
ing to locate an available BRB. If no BRB
is available, the buffer is chained into
the element chain of the available buffer
queue through a branch to the Queue Insert
subroutine. If a BRB is available, this
routine branches to the Buffer BRB routine.

BUFFER BRB ROUTINE (CHART DN)

This routine is entered from either the
Active Buffer Request routine or the Avail-
able Buffer routine. Its function is to
examine a buffer request block and to make
the appropriate disposition of the buffer
depending upon the status of the BRB.

1. If the BRB is associated with a Read
from DASD operation, the routine
effectively (but not through an SVC)
posts the BRB to the disk I/O queue
and the buffer to the available buffer
queue.

2. If the BRB is associated with a Read
from line operation, the routine
assigns the buffer to the line and
exits to the Interim LPS routine to
cause the buffer to be placed on the
LPS queue. :

3. If the BRB is associated with a PUT
operation, this routine branches to
the Put routine, which places the data
into the buffer.

DISK I/0 ROUTINE (CHART D2)

This routine is entered on activation of
the disk input/output subtask. The routine
chains message-filled buffers (for disk
writes) and BRBs (for disk reads) to the
element chain of the disk input/output
queue, and issues the SIO command (through
an SVC 0) to write on or read from disk.
Before issuing the Start I/0 command, the
routine converts the relative record number
used by QTAM into a relative track address,
and then branches (through a BALR) to a
module of the basic partitioned access
method to convert the relative track
address to an actual DASD address.

QTAM Implementation Module Routines 111



DISK END APPENDAGE (CHARTS DO AND D1)

This routine is an I/0 appendage entered
from the I/0 supervisor following a DASD
Read or Write operation. 1In a Receive
operation, the routine routes the empty
buffer required for the next segment to be
received to the available buffer queue. 1In
a Send operation, the routine routes the
message-filled buffer to the LPS queue,
initializes the next BRB in the ring to
read the next segment of the message, and
if a buffer has been assigned, routes it to
the disk input/output gqueue.

LPS CONTROL ROUTINE (CHART DO)

When entered, the LPS Control routine
issues an immediate SVC to Qwait on the LPS
queue for:

1. An available buffer into which a mes-
sage segment is to be read.

2. A puffer containing a text or header
segment (that is, a message-filled
buffer) that has been read or is to be
written.

3. The last segment of a message after it
has been written.

4. A request to start a disk I/0
operation.

5. A request for a closedown.

When an available "first" buffer is
encountered, the routine exits to the
Activate routine to cause receipt of the
message to be initiated. When a full buf-
fer or the last buffer is encountered, the
routine branches to the beginning of the
line group routine defined by the user
through LPS macro instructions. If the LCB
is for checkpoint, an SVC Qpost is issued
to post the LCB. Upon encountering a re-
quest for a closedown, the routine returns
to the problem program at the instruction
following ENDREADY.

ACTIVATE ROUTINE (CHART DP)

This routine initializes for a communi-
cations line Read or Write operation and
branches to the BTAM Read/Write routine,
An exception arises if a Send operation is
scheduled for a terminal not eligible for
receiving; an error status code is set in
the LCB, and the routine exits to the
user's LPS routine.

If the line is a WTTA line with the

receiving code in the LCB, and if the EOT
flag is set, the Read Initial operation

112

code is set in the LCB (01 in LCBCECB); if
the EOT flag is not set, the Read Continue
operation code is set (03 in LCBCECB).

Before entering BTAM, the routine
initializes the ICB to route the received
message segment to a queue of messages hav-
ing erroneous destination information.

This routing information will be overlaid
if valid destination information appears
later.

LINE SYIO APPENDAGE ROUTINE (CHART DQ)

This routine is entered from the super-
visor EXCP handler after an EXCP (SVC 0)
has been issued by BTAM, but before an SIO
command has been issued. The routine modi-
fies the BTAM generated channel program to
meet QTAM requirements.

If this routine was entered at Open
time, flags are set to indicate ERP is in
control. Return is made to I0S, which will
give control to the Open and Checkpoint
routines.

When this routine is entered, BTAM has
generated a channel program consisting of
several channel commands including a Write
Data or Read Data CCW. QTAM has created a
ring of BRB/CCWs, each containing the PCIL
flag and a transfer-in-channel command to
the following BRB/CCW. The routine links
these two channel programs together by al-
tering the flags in the BTAM Read or Write
Data CCW and by adding a transfer-in-
channel command to the second QTAM BRB/CCW
(see Figure 24).

When the channel program is executed,
the first buffer is transmitted under the
BTAM Read or Write Data CCW. If QTAM has
already scheduled a second buffer (usually
this is the case), a transfer-in-channel to
the QTAM CCW takes place, and the second
buffer begins to f£ill. The PCI flag in the
QTAM CCW causes the Line PCI Appendage to
be entered as filling of the second buffer
begins. (If a second buffer is not avail-
able, QOTAM sets the PCI flag in the BTAM
CCW.)

If the channel program involved is for
an initial Read, the Line SIO Appendage
also replaces the polling character pointer
in the BTAM Write Polling Characters CCW
with a pointer compatible with the QTAM
polling technique. If the CCW is for an
autopolled line, a header indicator is set
and the polling pointer is not adjusted.

If polling has been suppressed for the ter-
minal, QTAM replaces the Write Polling
Characters CCW with a No-poll CCW.



r T
READ (C)| TIC

When the required adjustments have been
made, QTAM branches back to the EXCP Hand-
ler to cause the SIO command to be issued.

LINE PCI_ APPENDAGE ROUTINE (CHART DR)

This routine is entered when a program
controlled interrupt occurs during the
execution of a QTAM channel command for the
line. The function of the routine is to
dispose of the buffer filled or emptied by
the channel command preceding that which
caused the PCI, and to place a request for
the buffer that is to be emptied or filled
by the CCW when it is again encountered in
the ring. For an autopolled terminal, the
routine adjusts the poll pointer to enable
the terminal that has messages to send, to
be repeatedly polled until it has no more
messages or the limit is reached.
Graphically:

T 1
READ (A)| TIC |

|
I
AL

This CCW pair filled
buffer (A), which is to
be disposed of.

r
I
|
I
L

T T |
READ (B)] TIC | This CCW pair is fill-
| ing buffer (B) and
| caused the PCI.
t L

This CCW pair will £ill
buffer (C), which must
now be obtained.

b e e e

|
]
N

[ a——

For receive operations, buffer (A) is
routed to the interim LPS queue; for send
operations, the buffer is routed to the
available buffer queue. In either case,
the request for buffer (C) is routed to the
active buffer request queue.

LINE END APPENDAGE ROUTINE (CHARTS DS_AND
DT)

This routine is an I/0 appendage entered
on channel end during line I/0 coperations
or by the WI'TA Line End Appendage when a
channel end has occurred on a WTTA 1line.
Normally, the routine routes a message-
filled buffer to the LPS queue or exits to
the supervisor to restart the channel pro-
gram. When entered because of a negative
response to polling, the routine resets the
polling list pointer to the next entry in
the polling list before initiating restart.

If the routine was entered due to a SAD
or Enable command, return is to IOS if IDLE
was specified; otherwise the LCB is posted

to start the line. If there is terminal
test activity the buffer is posted to the
LPS queue.

If this routine was entered from the
WITA Line Appendage and if no program check
has occurred, return is made to the WTTA
appendage.

If the buffer is a header on an auto-
polled line, the indication is cleared.
the CCW is for a Read Text, the routine
links to the Line PCI Appendage to adjust
the polling pointer. Otherwise, a test is
made for possible errors.

Iif

If there were no errors, a test is made
for an autopolled line. If there is a mes-
sage to send and it is either send priority
or end of polling list, the message is sent
by posting to the interim LPS queue.

If the status, or unit exception (not
for a Read Response to polling CCW or
enable) is not a normal indication, return
is made to IOS to call in Error Recovery
Procedures. If the completion code is not
normal and the SIO condition code is 3, .
return is made to the LPS Control routine
to free the buffer.

This routine may also be entered as a
result of a program check occurring because
a buffer was not provided on time, or
because a CCW with a zero data count was
accessed. The two low-order bits of the
TIC command in each BRB/CCW are used to in-
dicate BRB status. When a buffer has been
allocated, these bits are set to zero.
Because of timing considerations, a PCI
flag in the CCW preceding a CCW containing
a TIC may not interrupt the channel program
before the transfer-in-channel command is
executed., If this happens before the
required buffer has been allocated and the
BRB status code has been cleared, the
requirement that the TIC address be on a
doubleword boundary is violated by the non-
zero low-order bits and a program check
occurs. Four possibilities arise:

1. The check occurred on the TIC follow-
ing the CCW for the last segment of an
outgoing message. This is a normal
situation and is ignored. (The miss-
ing buffer is for the next segment and
there is no next segment.) If this is
not the case, the start channel pro-
gram pointer (LCBSTART) is reset to
the CCW to which the TIC command was
to have transferred control; this
anticipates correction of the
condition.

2. It 1s possible that through asynchro-
nous operations a buffer was allocated
and the TIC address was made valid in
the period between the generation of

QTAM Implementation Module Routines 113



program check and its detection by the
program. If this is true, the channel
program is simply restarted.

3. The process of allocating a buffer may
already have been initiated; if so,
the routine exits to the supervisor to
allow time for the process to
complete.

4. If the process of allocating a buffer
has not already been initiated, the
routine branches to the Line PCI
Appendage (at NOTINO) to release the
buffer filled by the CCW immediately
preceding the TIC that caused the pro-
gram check.

WITA LINE APPENDAGE ROUTINE (CHARTS R1l, R2,
R3, AND RY4)

This routine is entered from the
supervisor:

1. When a program controlled interrupt
(PCI) occurs during the execution of a
QTAM channel command for the line; or

2. On channel end during I/O operations.

Furthermore, this routine can be reentered
from the QTAM Line End Appendage routine.

The WTTA Line Appendage is composed of
the following two routines:

e The WITA Line PCI routine

e The WITA Line End routine

WITA LINE PCI ROUTINE

The WTTA Line PCI routine is entered
when a program controlled interrupt (PCI)
occurs during execution of a QTAM channel
command for the line.

If the interrupted channel cammand is a
Write CCW or a Read CCW with a residual
count in the CSW that is different from the
initial count, control is returned to the
OTAM Line PCI Appendage routine.

1f the interrupted channel command is a
Read CCW with identical initial and residu-
al counts, the action taken depends on the
type of Read CCW, as follows:

1. If the interrupted channel command is
the first Read CCW, the PCI is ignored
and control is returned to the
supervisor.

2. If the interrupted channel command is
a Read CCW in a BRB, the Line PCI rou-
tine tests the last character con-

®114

tained in the last filled buffer, as
follows:

a. If this character is EOM, EOT, or
WRU, the residual count of the CSW
is set to zero and the address of
the CCW corresponding to the last
filled buffer is inserted in the
CSW.

b. If this character is other than
EOM, EOT, or WRU, the CSW remains
unchanged.

Then the routine exits to the QTAM Line PCI
Appendage routine.

WITA LINE END ROUTINE

The WITA Line End routine is entered
when an I/0 operation ends with a channel
end condition, or is reentered from the
OTAM Line End Appendage routine. If an I/0
operation ends with channel end (C.E.) and
unit check (U.C.), the result of the Sense
operation is analyzed to check whether an
abnormal condition occurred and, if so, the
ERP routine is entered.

The operations executed by the WTTA Line
End routine depend on whether this routine
is entered on completion of a Halt I/0
operation, of a Read channel program, of a
Write channel program, or of an exchange of
identifications, as follows:

1. On_completion of a Halt I/0 operation:
If data is being received at the same
time as the Halt I/O operation is
executed, the interrupted Read Initial
channel program is restarted. If no
data is being received, a Write chan-
nel program is started to send a "let-
ters shift" character followed by "n"
padding characters (where "n" is the
number specified in the DCB macro
instruction). On completion of this
Write channel program, control returns
to the Interim LPS routine.

2. On completion of a Read channel pro-
gram: The last character received in
the corresponding buffer is analyzed,
as follows:

a. If this character is EOT, the EOT
flag is set, and the buffer is
posted to the Interim LPS routine.

b. If this character is EOM, the buf-
fer is posted to the Interim LPS
routine.

c. If this character is WRU, the
action taken depends on whether or
not the buffer is the first ome.
If the WRU character is in the
first buffer, the Read CCW is
updated to read the rest of the
buffer, and the first part (identi-



fication exchange) of the Read
channel program is started. If the
WRU character is in another buffer,
the "WRU" flag is set in the LCB,
and the buffer is posted to the
Interim LPS routine.

Oon completion of a Write channel pro-

gram:

The operations to be executed

depend on how the I/O operation has
ended:

a.

If the I/0 operation has ended with
a normal end condition, the buffer
is posted to the LPS queue, pro-
vided no exchange of identifica-
tions is requested at the end of
the output message. If this
exchange is requested, the first
part (identification exchange) of
the Write channel program is
started.

If the I/0 operation has ended with
an abnormal end condition (conten-
tion), the contention counter is
incremented, and a Write Break CCW
is started (provided the threshold
value has not been reached). On
completion of this CCW, the inter-
rupted Write CCW is restarted.

On completion of an exchange of iden-

tifications:

The result of the

exchange is analyzed to determine
whether or not the exchange has been
successfully performed and to take the
appropriate action, as follows:

ad.

If the exchange is unsuccessful,
this condition is set in the line
error halfword, and the buffer is
posted to the Interim LPS queue
(for receiving operations) or to
the LPS queue (for sending
operations).

If the exchange is successful, the
action taken depends on when the
exchange has been performed.

At the beginning of an output mes-

sage: The Write channel program is
restarted. '

At the end of an output message:
The last buffer is posted to the
LPS queue.

wWwhen receiving an input message:

If EOM=WRU, the last buffer is
posted to the Interim LPS queue.

If EOM is not WRU, the Read channel
program is restarted to read the
rest of the input message.

BUFFER_CLEANUP AND RECALL ROUTINE (CHARTS

DD_AND DE)

This routine is entered through a branch
instruction generated on expansion of a
macro instruction in the problem program.
The routine performs a cleanup function
when entered at IECKPR through the calling
sequence generated by a POSTSEND or POST-
RCVE macro instruction. The recall func-
tion entry IECKRC is performed when entry
is through the calling sequence associated
with a CANCEL, EOBLC, ERRMSG, or REROUTE
macro instruction. The difference between
the two entry paths is that in the second
case the recall flag is set on in the LCB
(LCBSTATE = 6U4).

For either a cleanup or a recall opera-
tion, the routine releases all buffers
assigned to the line. Buffers are released
to the appropriate queue through an SVC 67.
(The first buffer to be released may al-
ready contain a message segment; if so, it
is posted to its destination queue.) The
first buffer (if it does not already con-
tain a message segment) and all subsequent
buffers not scheduled to be filled are
posted to the available buffer queue.
Additional CCWs encountered in the BRB ring
from which buffers are being released are
posted to the additional CCW queue.

Buffers that have been assigned to the
line and have also been scheduled for a
read from direct access storage are treated
differently. When such a buffer is encoun-
tered, the routine branches to the LPS Con-
trol routine. At that time, the "cleanup"
flag or the "recall" flag (but not both) is
on in the LCB for the line, indicating the
type of operation in progress. )

When the LPS Control routine is entered,
it waits for a message-filled buffer and
proceeds as usual unless the buffer is
assigned to a line for which the "recall"
or "cleanup" flag is on. When a buffer
with either flag (but not both) on is
found, the LPS Control routine branches
back into the Buffer Cleanup and Recall
routine, where the buffer is then released
to the available buffer queue.

To recall a message segment, the routine
provides the buffer request blocks required-
to read message segments from direct access
storage, obtains the segment being
recalled, and exits to the calling routine.
When the cleanup operation is complete,
exit is made to the Free BRB routine. This
routine frees all BRBs in the BRB ring and
posts each to the inactive BRB queue. The
routine then posts the line to itself,
which is the standard technique for return-
ing a line to the free condition, and exits
to the LPS Control routine.

QTAM Implementation Module Routines 115@



DASD DESTINATION ROUTINE (CHART DX)

This routine is entered on activation of
the DASD destination subtask, or by a
branch-and-link from the Send Scheduler
routine. The latter entry occurs when the
Send Scheduling subtask is activated
because of the availability of a message-
filled opuffer.

For buffers containing text segments,
the routine routes a full buffer to the
disk I/0 queue and increments the message
count (unless a CANCEL operation is in pro-
gress). The LCB for the source line (the
line on which the segment now in the buffer
was received) is removed from the source
chain in which it previously appeared and
linked into the source chain for the
destination queue. The next segment rela-
tive record number is calculated and
stored, and the routine either:

116

t. Returns to the Send Scheduler routine,
or
2. Exits to the Qdispatch subroutine.

GET SCHEDULER ROUTINE (CHART DV)

This routine is entered when a buffer
has been returned or when a disk read from
a process queue has been completed. The
routine makes three tests to determine
whether the processing program is ready to
accept another segment. If (1) there is no
message segment in the DASD process queue,
or (2) there are too many buffers in the
process queue for the processing program to
handle, or (3) a segment is currently being
read from the DASD process queue, no furth-
er disk reading can be initiated, and this
routine exits to the Qdispatch routine. If
none of the three conditions exists, the
routine initiates a disk read from the DASD
process queue.



Before Line SIO Routine Entry /

P
BTAM CCWI CHAIN QTAM BRB/CCWI C| TICt2
|
P
BTAM CCW2 CHAIN QTAM BRB/CCW?2 C| TICt3
[
P
BTAM CCW3 (DATA) CHAIN QTAM BRB/CCW3 c| TICto1
|
— L
On Initial Exit from Line SIO Routine e
BTAM CCW1 CHAIN QTAM BRB/CCWI
P
BTAM CCW2 CHAIN QTAM BRB/CCW2 Cl| TICt3
|
P
BTAM CCW3 (DATA) TIC 1o 2 QTAM BRB/CCW3 C| TICt1
I
o ]
During Channel Program Execution /
P
QTAM BRB/CCWI1 C| TICto?2
I
P
QTAM BRB/CCW2 C| TiICt3
|
P
QTAM BRB/CCW3 C| TICt1
.

L

Figure 24. Interaction Between BTAM and QTAM Channel Programs

OTAM Implementation Module Routines 117



RETURN BUFFER ROUTINE (CHART DW)

This routine returns a buffer from the
MS process queue and exits to the Get
Scheduler routine to allow resumption of
disk reading from the DASD process queue.
If the puffer is not the dumny buffer for
the first GET, the routine effectively
posts the pbuffer to the available buffer
queue if the buffer is not the last seg-
ment. If it is the last segment and if the
"cleanup," "recall," and "converse" bits
are set, the buffer is posted to the LPS
gueue.

END_OF POLL_ TIME DELAY ROUTINE (CHART DJ)

This routine delays polling for a speci-
fied amount of time. If entered from an
I/0 interrupt, the routine goes to the
Defer Entry routine, because the SVC cannot
be given when an interrupt has occurred.

The routine issues the TIME macro
instruction to obtain the tire of day. The
intexrval of intentional delay specified by
the user is added to the time of day and
stored in the LCB. The LCB is inserted
into the time queue. If the interval of
time has not yet elapsed, the routine
issues an STIMER macro instruction to time
the intentional delay. The exiting routine
sets the condition code and obtains the
address of the time queue QCB. The routine
branches to the Line PCI Appendage to put
the time queue on the ready queue.

When the time queue is dispatched from
the ready queue and an LCB is in the time
queue, the TIME macro is used to obtain the
current time of day. If the time has
elapsed, the LCB is removed from the time
queue. If the LCB is for a checkpoint, a
branch is taken to the Post subroutine to
post the LCB. If the line is active, the
LCB is placed into the top of the ready
queue to activate the line before going to
the Priority Search subroutine.

INTERIM LPS ROUTINE (CHART DU)

Before the buffers are processed, the
INTERM queue is put on the ready gqueue
behind the LPS queue. This is a special
queue to delay the LPS until all buffer
requests are processed.

SEND_ SCHEDULER ROUTINE (CHART DK)

This routine is entered when an LCB is
on the top of the ready queue or when a
message is to be written on a disk. If a
message is to be written, the routine links
to the DASD Destination routine at entry
point SCREEN to cause a post to the disk

118

I/0 QCB. If the DCB has not been opened or
the DEB is not open for output, the routine
branches to the Dispatch subroutine
(IECKQQ01) .

If the DCBR is open for output and the
line is a WTTA line, the routine tests the
line for availability. If the line is not
available, a branch is made to the defer
entry subroutine. If the line is avail-
able, the HIO flag is set in the LCB, and a
Halt I/0 operation is issued to clear the
Prepare command.

For dial lines, if the relative line
number of the STCB is greater than the
relative line number of the current line,
the STCB is placed on the dial out-call
queue. If the line is connected to the
destination terminal, the STCB is chained
to the LCB and immediately dispatched. If
the line is not connected to the correct
terminal, the line group is searched by
relative line number for a line that is
free and the terminal available for dial.
(This test is made on the priority of the
Send Scheduler and is set to 1 by the TERM
macro for dial lines that are not con-
nected.) If no line is found, the STCB is
chained to the dial out-call gqueue.

For all lines, the LCB is set to indi-
cate that the line is trying to send. If
the line is free the destination LCB with
the send scheduler STCB is placed on the
ready queue and dispatched. If the line is
not free and is not an autopolled line, a
branch is taken to the Defer Entry subrou-
tine. If an autopolled line with receive
status (LCBSTATE is X'08'), the TIC command
code is changed to a NOP before branching
to the Defer Entry subroutine.

If the routine was entered because the
ILCB was on top of the ready queue, the rou-
tine tests for an incoming priority mes-
sage. If the line is sending or is in
initiate mode, and if there are no complete
nonpriority messages, or if there are
priority messages coming in, the LCB is
removed from the source chain. If the line
is neither in an initiate mode nor sending,
the status of the LCB is cleared. If a
partial message is present in the queue (an
invalid condition) the routine branches to
the Wait subroutine. After setting the
status code, the routine exits. If the
routine was entered via the Get Scheduler
routine, return is to that routine. If a
line is sending, the routine branches to
the BRB Ring routine at RQCONST.

FREE BRB ROUTINE (CHART DF)

This routine returns the BRBs to the
inactive BRB queue. If a buffer request is
pending (BRB is in the buffer request



queue), the BRB is not freed. If the BRBs
are not in the active buffer request queue,
the routine posts all BRBs to the inactive
buffer request queue. The remaining BRBs
will be freed by the Buffer BRB routine.
When all the BRBs that have no buffer re-
quest pending are freed, the line is freed
by posting the LCB to itself.

END INSERT ROUTINE (CHART DG)

This routine is entered by a branch and
link from the End of Address, Conversation-
al Mode, or Distribution List routines.

The End Insert routine enters the address
of a special entry point in these routines
in a chain to be executed according to the
priority specified by the Buffer Cleanup
routine.

The End Insert routine compares the
priority specified in the calling routine
with the priority that has been set in the
End Insert routine. If the priority is
less than that of the highest-priority rou-
tine, the priority of the calling routine
is compared with the next routine in the
chain until the priority is higher.

When the priority of the calling routine
is higher than the one in the chain, the
address and priority of the calling routine
are inserted in the constant of the higher-
priority routine in the chain. The pointer
to the calling routine is adjusted to the
BAL instruction. The operand of this
instruction in the calling routine is over-
laid with the constant following the BAL
instruction. This constant contains a reg-
ister that has been set up by the calling
routine. To complete the chain, the con-
stant is overlaid with the address and
priority of the lower-priority routine.
This routine branches back to the calling
routine at the BAL instruction.

CROSS PARTITION MOVE ROUTINE (CHART DY)

This routine is entered on activation of
the Move Data subtask, and it is used to
move data while in the supervisor mode.

The routine allows data to be moved between
partitions or within the same partition.
control is passed to the Dispatch subrou-
tine. The routine is passed the address of
the data to be moved in register 5, and the
location into which it is to be placed in
register 4.

OTAM Implementation Module Routines 119



COMMUNICATIONS SERVICEABILITY FACILITIES

This section summarizes the following
operations of the services that QTAM pro-
vides to aid the user in error recovery:

¢ Checkpoint/Restart
e Error Recovery Procedures
e On-Line Terminal Tests

Note: Since Operator Control has an asso-
ciated LPS macro instruction, the summary
of this facility appears in the section
Message Control Program (LPS) Routines.

CHECKPOINT/RESTART

Checkpoint/Restart is provided as an
optional facility for the QTAM message con-
trol program at user-specified intervals
(every 15 seconds to 15 minutes, or when a
specified number of message processing par-
titions have issued CKREQ macros). By
using the QTAM Checkpoint/Restart facility
for the message control program and other
OTAM facilities such as sequence numbers,
an effective restart can be accomplished in
a message processing program.

The Checkpoint routine (module IGGO019NH)
stores tables and other control information
necessary for a subsequent restart after a
system failure. Two such records are kept
(flip/flop) with a pointer to the current
record. For example, the initial check-
point record is placed in area 1; after the
user specified interval, the second record
is placed in area 2; the third, after the
intervali, is placed in area 1, etc. The
pointer is updated each time and also
stored on the disk in a data set control
record.

Restart of the QTAM job after a system
failure is accomplished by initial program
loading (IPL) the system again, and loading
the QTAM message control program in the
same location as it was when the failure
occurred. QTAM automatically reinitializes
the tables and pointers from the latest
checkpoint record on the disk.

The Open Checkpoint Records Data Set
routine checks the pointer to the latest
checkpoint record to determine if the data
set was properly closed, never opened, or
left open due to a system failure. If the
data set was never opened or properly
closed, no restart procedure is performed.
If the data set is left open due to a sys-
tem failure, restart is performed in addi-
tion to normal open procedures for the data
set.

120

Restart involves getting main storage
for reading the checkpoint record. The
checkpoint information is then moved to the
proper areas overlaying the initial values.
The checkpoint information includes the
terminal table, polling lists, the disk
pointers from the QCBs for destination and
process queues, and the address of the next
record to be written on the disk. An indi-
cator is set for the line group DCB open
routines to clear the lines in addition to
normal open initialization.

The ENDREADY macro instruction initiates
the initial time interval request for the
first checkpoint if Checkpoint/Restart has
been specified and the time interval method
is used.

When the Checkpoint routine gains con-
trol after the initial time interval has
elapsed or when the specified number of
CKREQ macros have been issued, storage is
reserved (GETMAIN) and the necessary data
moved into this area. This record is writ-
ten on the disk in the area specified by
the pointer. The pointer is then updated
and written on the disk. The storage is
then freed (FREEMAIN).

Close for the Checkpoint/Restart data
set sets the pointer on the disk to indi-
cate that it has been properly closed to
enable a subsequent OPEN of this data set-
to distinguish between a normal close and a
system failure.

CHECKPOINT ROUTINE (CHARTS FA AND FB)

Module Name: IGGO19NH

Function: This routine causes checkpoint
records to be written on the Checkpoint
Records data set at specified intervals or
when CKREQ macros have been issued from a
specified number of message processing
partitions.

This routine is entered at QUEUEST +10

1. At ENDREADY time (A restart procedure
may or may not be in process),

2. When a timer interruption occurs or
the required number of CKREQ macros
have been issued,

3. When the checkpoint element reaches
the top of the disk I/0 queue, or



4. When a disk Write operation has been
completed.

The action taken for each type of entry
is discussed in the following paragraphs.

ENDREADY Time: The expansion of the
ENDREADY macro issues an SVC Qpost to cause
the checkpoint subtask to be entered when
the Checkpoint/Restart facility has been
specified. The purpose of this entry is to
set the timer for the first checkpoint
interval and/or to release main storage
obtained during a Restart operation.

If a Restart is in process, the storage
obtained to read the checkpoint record by
the Open Checkpoint Data Set routine
(module IGG0193V) is released by issuing a
FREEMAIN macro. A test is made to deter-
mine if the CKREQ or interval method of
checkpointing is being used. If the CKREQ
method nhas been specified (via the CKPART
operand of the TERMTBL macro), no further
action is required; therefore, exit is made
to the Qdispatch subroutine for a return to
the ENDREADY expansion.

If the interval method has been speci-
fied (via the CKINTV operand), exit is made
to the Time Delay routine to set the timer
for the first checkpoint interval. The
checkpoint interval is passed in register
6, and the address of the checkpoint ele-
ment (apparent LCB) is passed in register
4.

Timer Interruption or Required Number of
CKREQ Macros Have Been Issued: The check-
point subtask is entered for the purpose of
collecting the data required for a check-
point record and for preparing to write the
record on the Checkpoint Records data set.

A GETMAIN macro is issued to obtain the
main storage required to contain the check-
point record. The following data is then
located and transferred to the checkpoint
work area: each terminal table entry; each
polling list (except for the size byte);
required data from each LCB (LCBCHDR,
LCBNASEG, LCBTTIND, and LCBSTATE fields and
unit address from the UCB); the data
required from each destination QCB (QSIZE,
ONASEG, QBACK, and QFAC fields) and each
process QCB (same as for destination QCB
plus the disk address of the current mes-
sage); and the disk pointers in the error
queue.

The element chain of the disk I/O queue
is then examined. If other elements appear
on the disk I/0 queue, the checkpoint ele-
ment is chained in below them to schedule
the disk Write operation for the checkpoint
record. Exit is then made to the Qdispatch
subroutine to wait for the checkpoint ele-
ment to reach the top of the disk I/O queue

element chain. When this occurs, this rou-
tine will be reentered for writing of the
checkpoint record.

If no element is on the disk I/O queue
element chain, an EXCP is issued to start
the disk Write operation. Linkage is made
to the Cconvert routine to convert the TTR
to an actual DASD address prior to issuance
of the EXCP. After the I/0 has been
started, exit is made to the Qdispatch sub-
routine for dispatching the next ready
item.

Checkpoint Element Reaches Top of Disk I/0
Queue: The TTR is converted to an actual
DASD address, and an EXCP is issued to
start the disk Write operation.

Disk Write Operation Completed: When a
write to the checkpoint records data set is
completed, the disk interrupt is processed
by an appendage within this routine, and
control eventually returns to this routine
at QUEUEST +10. This disk completion is
recognized, and error checking is per-
formed. If an error cccurred on the disk
Write, a WTO macro is issued to print an
error message on the system console. The
address of the Checkpoint routine is
cleared in module IGGO19NG to prevent any
further attempts to write on the Checkpoint
Records data set.

If no error is detected, a test is made
to determine if the entire checkpoint rec-
ord was written. If not, the new write
address and count of remaining data to be
written are computed, and another Disk
Write operation is started. When writing
of the checkpoint record has been com-
pleted, the current record indicator is set
in the four-byte control record, and the
counter of CKREQ macros required is reset
to its initial value. An EXCP is then
issued to start writing the control record.

When writing of the control record is
completed, several cleanup and re-
initialization procedures must be per-
formed. The main storage obtained to build
the checkpoint record is released via a
FREEMAIN, If the time interval method is
being used, exit is made to the Time Delay
routine to set the timer for the next
checkpoint interval. If the CKREQ method
is being used, the ECBs for the waiting
message processing partitions are removed
from the wait queue and posted complete.
Exit is then made to the Qdispatch
subroutine.

When a CKREQ macro is issued in a mes-
sage processing program, the Checkpoint Re-
quest routine (module IECKCKRQ) issues an
SVC Qpost that causes this routine to be
entered at CKSTCB +6. Upon entry, register
1 contains the address of an ECB associated

Communications Serviceability Facilities 121



with the partition from which the CKREQ was
issued. This ECB is chained into a wait
queue. The CKREQ counter is decremented by
one and tested to determine if the speci-
fied number of CKREQ macros have been
issued. If not, exit is made to the Qdis-
patch subroutine. If CKREQ macros have
been issued from the specified number of
message processing partitions, an exit is
made to the Post subroutine in IECKQQ01l to
post the checkpoint element to itself.

This causes this routine to be reentered at
QUEUEST +10 so a checkpoint may be taken.

ERROR RECQOVERY PROCEDURE

The Error Recovery Procedure (ERP) rou-
tines are designed to diagnose and recover,
if possible, from all errors occurring dur-
ing a telecommunications operation. The
error routines provide the following basic
functions:

¢ Automatic retry of all errors not
involving data transfer. Data transfer
is handled by the End of Block and Line
Correction routine.

e Statistical recording of all control
unit errors.

e Error messages to the operator console
for all permanent errors.

e Line error recording for all data
checks, nontext time-outs, and inter-
vention required errors.

ERP, which consists of 19 modules,
operates in the nucleus error transient
area within the supervisor protection key.
I0S gives control to the QTAM/BTAM Control
module (IGE0OO4A) on any error of a TP
device. 1If the Line End Appendage routine
finds any error in the status or sense,
return is made to IOS indicating that con-
trol is to be given to ERP. Ten routines,
module names ending in E, are called by
IGEOOOU4A according to the error found by
the Control module. The remaining eight
routines are linked by other ERP routines
for error recording and other functions.

The ERP routines arnd module names are:

IGEOOOUK Time-out and Data Check for Auto
Poll

IGE0104:5 Data Check

IGEO204k Time-out

IGEO304L Intervention Required

IGEO4OUE Lost Data

122

IGEOS0ULE Error Post

IGEO60LE Bus-out and Overrun

IGEO704E Link

IGEOSOUE Status Check

IGEO904E Command Reject, Equipment Check,
SNO Error, SIO CC1

IGEOOOUF Read Skip, Break Return

IGEQ104F Diagnostic Write/Read

IGEO204F Line Error Recording

IGEO304F Operator Control and LER
Addition

IGEOUOUF Special Open and Checkpoint
Restart

IGEO504F Not Operational SIO

IGEO60U4F Bus-out and Overrun for Auto
Poll

IGEO704F Overrun

Linkage between the modules is done by
I0S through the XCTL routine with a branch
on register 14. The last four digits of
the module name are placed in register 13,
and the address of the XCTL routine, 44
(CVT address) is placed in register 14.
The possible linkages between modules are
shown in Figure 25.

In this section there is a description
of each module for the QTAM ERP. The
descriptions explain the action taken under
different commands and types of transfer.

Generally, if there has been no text
transfer, the channel program is retried.
If there is an error after two retries, the
error is considered permanent. In the case
of a permanent error, if on a nonswitched
connection, a message is written to the
operator. For a switched line, the semnse
bytes, CSW, and failing CCW are saved in
the channel program area LCBCPA +32 through
40 for the message. A CCW for the Disable
to hang up the phone is created as the
first CCW in the channel program. A dis-
able return (X°40') is set in LCBERRCT + 1.
An EXCP is issued to execute the disable.
Upon return, exit is made to I0S.

For conditions that should not happen,
the "should not occur"™ bit (bit 7) is set
in the error halfword in the LCB. This
condition is considered a permanent error.

When there has been an error on a Read
Response to autopolling, the polling list
address and entry size are obtained. The



IGEOQO4A
BTAM/QTAM
CONTROL
MODULE

|
| | | | |

| I |

GEOTO04E IGE0204E IGEO304E |GEO404E IGE0S04E IGEC804E IGEOS04E GE0704E
S
DATA CHECK TIME OUT INTERVENTION LOST DATA fshgdte s e LINK
MODULE MODULE ﬁ%’é’lﬁo MODULE oo i MODULE MODULE
IGEQOO4E IGE0604F
QTAM QTAM IGEQ704F
TIME OUT & BUS OUT AND QTAM
DATA CHECK OVERRUN FOR OVERRUN
FOR AUTOPOLL AUTOPOLL MODULE
MODULE MODULE
IGEQ004F 1GEQ404F
QTAM QTAM
READ SKIP, SPECIAL
BREAK OPEN
J 1 RETURN EXTENSION
MODULE MODULE
IGE0204F IGEO304F
QTAM QTAM
LINE ERROR OPCTL LER
RECORDING EXTENSION
MODULE MODULE
I B 1 l
TE
IGEQ104F IGEQ504F
QTAM ALL MODULES CAN EXIT VIA AN SVC 3 |GEO504E QTAM NOT
DIAGNOSTIC QTAM ERROR OPERATIONAL
WRITE/READ POST ROUTINE START /O
MODULE MODULE
WTO ’
COR
Figure 25. Linkage of ERP Modules
polling list is searched for an equal com- X"40" Disable return
parison on the index byte. If no match is X"0C' Special open for
found, the channel program is restarted Checkpoint/Restart

with the existing Poll CCW. If there is an
equal comparison, the address of the match-
ing entry is used, and the count is set to
the new count plus the initial address
minus the address of the matching entry.

When there is an error on the poll CCW,
the polling list address and entry size are
obtained. The count is set to the residual
count plus the width of the poll charac-
ters. The data address is the poll 1list
address and original count minus the new
count.

The following summarizes the switches
that ERP sets in the LCB:

LCBERRCT Retry counter
LCBERRCT +1 X'00' Normal return
X'01*' No message required
X'02' Exit to Error Post
routine
X'04' Exit to Diagnostic

Write/Read routine
X'08' Read skip return

Communications Serviceability Facilities

LCBINCAM +1 X'03' Time-out update for

Line Error Recording

X?01" Data Check update for
Line Error Recording
X'02' Intervention Required

update for Line Error
Recording

TIME-OUT AND DATA CHECK FOR AUTO POLL
ROUTINE (CHART AF)
Module Name: IGEOOO4LE

Function: After adjusting to the failing
CCW, the routine tests the CCW:

e For a Read Response to autopolling, the
polling list address and entry size are
obtained. The polling list is searched
to obtain the new count and data
address for the pocll CCW. The channel
program is retried with the first CCw.
Upon return, linkage is made to the
Line Error Recording module.

123



e For a Poll CCW, the polling list
address and entry size are obtained.
The new count and data address are
placed in the poll CCW. The channel
program is retried with the first CCwW.
Upon return, linkage is made to the LER
module.

If the retry has failed two times, the
time-out error is set in the error half-
word, and linkage is made in order to post
with message.

DATA CHECK ROUTINE (CHART AB)

Module Name: IGEO1O04E

Function: After initializing, the routine
indicates a data check update for the Line
Error Recording module in LCBINCAM +1
(x'01*")

If the failing CCW is a Read,

e If there has been a text transfer and
no permanent error, linkage is made to
the Error Post routine with an indica-
tion for no message.

e If a read TWX ID response, the channel
program is executed to disable and
redial for the retry.

¢ If a Read Response to autopolling,
linkage is made to the Time-Out and
Data Check for Auto Poll module.

¢ If a switched connection, the routine
sets up for a retry after the disable-
dial or disable-enable sequence. Upon
returning from the EXCP, linkage is
made to the Line Error Recording
routine.

If the failing CCW is a Write,
'® For a type I adapter,

(a) If text transfer, linkage is made
to the Error Post routine with no
message indication.

(b) If not text transfer, the channel
program is restarted the same as a
read. Return is made to the Line
Error Recording routine.

e For a WITA adapter, this is a conten-
tion situation, and the error recovery
procedure has been performed by the
WTTA Line End Appendage routine as long
as the threshold wvalue has not been
reached. When the Data Check routine
is entered, linkage is made to the Line
Error Recording routine with a per-
manent error indication.

124

e For other adapters the routine indi-
cates no linkage to the LER (Line Error
Recording) routine and the "should not
occur” bit in the error halfword of the
LCB. A permanent error condition
exists,

If the failing CCW is a poll, linkage is
made to the Time-Out and Data Check for
Auto Poll module.

If retry has failed two times, then it
is considered a permanent error.

e On a 2701 control unit,

(a) If the LER routine is required, an
indication (X'04") for Diagnostic
Write/Read is set in LCBERRCT + 1,
and linkage is made to the LER
routine.

(b) If the LER routine is not required,
linkage is made to the Diagnostic
Write/Read routine.

e Otherwise a normal retry is executed.

If the failing CCW is a Break for a WTTA
adapter,

e On a 2701 control unit, an indication
(X'04') for Diagnostic Write/Read is
set in LCBERRCT + 1, and linkage is
made to the LER routine.

e Otherwise, linkage is made to the LER
routine.

TIME-OUT ROUTINE (CHART AC)

Module Name: IGEO204E
Function: After initialization, the rou-
tine tests the failing CCW.

If the failing CCW is a Read,

s For a text transfer, linkage is made to
the Error Post routine with a no mes-
sage indication.

e For a Read Response to autopolling,
linkage is made tc the Time-Out and
Data Check for Auto Poll module.

e For a Read Response to polling,

(a)> on a TWX terminal, return is made
to IO0S via an EXCP.

(b) otherwise, the channel program is
retried with the first CCW (third
CCW for a Write Initial on a
switched line). For switched
lines, a Disable is set in the
first CCW. Upon return, linkage



is made to the LER nmodule (return
to IOS if a text time-out).

If the failing CCW is a Dial, Enable, or
Disable, the channel program is retried
with the first CCW. Upon return, linkage
is made to the LER module. If the failing
CCW is a prepare, the channel program is
retried beginning with the prepare CCW.

If the failing CCW is a poll, linkage is
made to the Time-Out and Data Check for
Auto Poll module.

If retried two times without success, a
permanent error condition exists.

INTERVENTION REQUIRED ROUTINE (CHARTS AD
AND AE)
Module Name: IGEO304E

Function: After the retry counter in the

LCBERRCT field of the LCB is updated (if
nontext transfer), the CCW is examined.

If the failing CCW is a Read or Write,

e If a Read Response to autopolling, the
polling list address and entry size are
obtained. The polling list is
searched, and the new count and program
is restarted with the first CCW.

e If a text transfer, the error halfword
is updated and posted without a message
(X'03') is indicated in LCBERRCT + 1.
The "time-out"™ bit is set in the error
halfword. Linkage is made to the LER
routine.

e If this is a switched connection, a
Disable is performed to hang up the
transmitter.

If thne failing CCW is a Prepare command
or a Dial, the channel program is restarted
with the first CCW. Upon return, normal
retry is indicated, and return is made to
I0S or the LER module, if required.

If the failing CCW is a poll CCW, the
polling list address and entry size are
obtained, the count and data address are
set in the poll CCW. The channel program
is restarted with the first CCW.

If the retry has failed two times, the
routine considers it a permanent error.
LOST DATA ROUTINE (CHART AG)

IGEOULOLE

Module Name:

Function: After initialization, the CCW is

examined.

If a dial, the unit failure is recorded
in the Statistical Data Recorder (SDR) and
the channel program is retried using the
first CCW.

If a Read command,

e For TWX ID response, the channel pro-
gram is retried using the first CCW.

e For Read Response to autopolling, the
new count and new data address are
stored in the poll CCW before the chan-
nel program is retried with the first
CCW.

s For a text transfer,

(a) if the residual count is not zero,
there is a permanent error
condition.

(b) if the residual count is zero, a
Read Skip return indication (X'08')
is set in LCBERRCT +1. The Read
Skip CCW is set and executed. Upon
return from the EXCP, the routine
returns to IOS.

e For a switch initial program, the third
CCW is used to restart. The control
unit failure is recorded in the SDR.

If the retry has failed two times, the
routine proceeds with a permanent error.

ERROR POST ROUTINE (CHARTS AH AND AI)

Module Name: IGEOS504E

Function: After initialization, a branch
is taken according to the indication set in
LCBERRCT + 1 by the other ERP modules.

If from a normal post, a permanent error
is indicated in the IOB. If no message is
required, an EXCP is issued to return to
I0S. IOS detects the permanent error
condition.

If a disable return, the Redial/Enable
sequence is indicated in LCBINCAM. For any
error, the "hardware error" bit is set in
the error halfword. The sense bytes, CSW
and CCW are restored for use in message. A
permanent error condition is set in
IOBFLAGl. If a message is not required, an
EXCP is issued to return to IOS.

If a message is required for either
entry,

e If no operator control, linkage is made
to the WTO (Write to Operator) module
supplied by the system.

Communications Serviceability Facilities 125



e If an error occurred at the operator
control terminal, linkage is made to
the WIO module supplied by the operat-
ing system.

e If operator control and outboard re-
cording (OBR) bits are indicated, the
OBR bit is turned off and linkage is
made to the OBR module.

e If no outboard recording, a message is
prepared.

If a message is to be prepared for the
console,

e For a switched connection, include the
dial digits in the message. The device
type, adapter type, and terminal ID (if
required) are put into the message.

For an autopolled line, the index byte
for the polling list is placed in the
message.

e For operator control, return is made to
I0S through an EXCP and RETURN.

¢ For no operator control, linkage is
made to the Write to Operator module.

BUS-OUT AND OVERRUN ROUTINE (CHART AJ)

Module Name: IGEO60LE

Function: After initializing, the routine
determines if entered for bus-out check or
overrun.

If the failing CCW is a poll CCW or a
Read Response to autopolling, linkage is
made to the Bus-out and Overrun for Auto
Poll module.

Bus-out check:
If failing CCW is a Write,

e For a response expected (next CCW a
Read) or an IBM Type III adapter, a
Read Skip Return is indicated for the
ERP Control module. The retry counter
in the LCB is updated. The Read Skip
CCW is set up in a save area after the

CCWs. EXCP is issued to execute the
Read Skip. Upon return, return is made
to I0S.

e For a text transfer and a type I or II
adapter, linkage is made to the Error
Post routine with no message indicated.

e If not a text transfer,
(a) If TWX, redial is set, and if a
switched connection, the disable

and redial sequence is bypassed.
The retry counter in the LCB is

126

Module Name:

updated and control unit failure is
recorded in the SDR table. The
channel program is restarted, and
upon return, exit is made to IOS.

(b) If dial, a disable-redial sequence
is set. The retry counter in the
LCB is updated, and control failure
is recorded in the SDR table. The
channel program is restarted. Upon
return, exit is made to IOS.

Overrun check:
Overrun module.

Linkage is made to the

If an error occurs after two retries, a
permanent error condition exists.

LINK ROUTINE (CHARTS AK AND AL)
IGEQO704E

Function: This routine is entered as a
return from special functions performed by
ERP.

If entry to routine was for the diag-
nostic Write/Read,

e For a Disable, control unit failure is
indicated and the channel program
restarted with the first CCW. Return
is made to IOsS.

e For a diagnostic Read that failed, if a
teletype adapter, a check is made for
unit exception in addition to channel
end/device end. If an error is
detected, control unit failure is indi-
cated in the error halfword. If an
Enable is not required, linkage is made
to the Error Post routine with indica-
tion for a message. If Enable is
required, the channel program is
executed at the enable CCW. Return is
made to IOS.

¢ For a diagnostic Write failure, control
unit failure is indicated in the LCB.
If Enable is required, the channel pro-
gram is restarted at the Enable CCW.
Return is made to IO0S. If Enable is
not required, the CSW, sense byte, and
CCW is restored for the message, and
linkage is made to the Error Post rou-
tine with a message indicated.

e For an Enable, if not channel end/
device end, control unit failure is
indicated in the LCB. The sense byte,
CSW, and failing CCW are restored for
message and linkage is made to the
Error Post routine with message
indicated.

If entry was for a Read Skip, post with
message is indicated in the LCBERRCT +1



field of the LCB. Linkage is made to the
Read Skip Return routine.

If entry to the routine was for a Write
Break:

e If channel end, device end, and unit
check are indicated, the sense byte is
tested. If any indication other than
bus-out, linkage is made to the Error
Post routine.

e If a text transfer and if channel end,
device end, or a bus-out indication,
linkage is made to the Error Post rou-
tine with no message indicated.

e If no text transfer and initial type
channel program, the channel program is
restarted with the first CCW. Return
is made to I0S. If not an initial
channel program, linkage is made to the
Error Post routine.

If entry to the routine is made for the
special OPEN, linkage is made to the Spe-
cial Open and Checkpoint/Restart module.

STATUS CHECK ROUTINE (CHART AM)

Module Name: IGEO8OUE

Function: The routine branches to the
operating system supplied Interpreter to
determine the type of status check.

For chaining, program or protection
check,

e If a nonswitched connection or failing
CCW is a Disable, the routine indicates
an outboard recording, and linkage is
made to the Error Post routine.

e If switched connection, the routine
saves the CCW sense byte, CSW, and
indicates a Disable Return. The chan-
nel program is restarted.

For an unit exception, the retry counter
in the LCB is updated and,

e If teletype I adapter, the CCW for a
break is set up.

e If 2701 control unit or permanent
error, the Read Skip CCW is set up.
The sense byte, and CSW are saved, and
a Read Skip return is indicated. After
execution of the Read Skip, return is
made to IOS.

e Otherwise, a retry is done on the Write
CCW. Upon return from the EXCP, return
is made to IOS.

After two retries, a permanent error
condition exists.

COMMAND REJECT, EQUIPMENT CHECK, SIoCCl,
SNO ERROR ROUTINE (CHART AN)

Module Name: IGEO904E
Function: After initialization, action is
taken according to the error.

If initial selection error (SIO condi-
tion code equal to 1), control unit failure
is recorded and the retry counter is
updated in the LCB. The channel program is
restarted. Return is made to IOS.

If command reject error, the retry coun-
ter in the LCB is updated and the channel
program is restarted at the command in
error. Return is made to IOS.

If equipment check or "should not occur”
(SNQ) error, the outboard recording is
indicated. The proper error indicator is
set in the error halfword. For a non-
switched connection, linkage is made to the
Error Post routine. For a switched connec-
tion, the routine indicates a Disable
Return and saves the sense byte, and CSW.
After the EXCP of the Disable, return is
made to IOS.

After two retries, a permanent error
condition exists.

READ SKIP RETURN ROUTINE (CHART AO)

Module Name: IGEOOOUF
Function: After initialization, action is
taken according to errors found.

For the following indications the
"should not occur" bit is set in the error
halfword, and linkage is made to the Error
Post routine: wunit check, unit exception,
command reject, bus-out check, equipment
check, overrun, or residual count equal to
zero.

If the second CCW is for a switched
line, the Read Skip sense byte is checked.

e For intervention required or time-out,
a Disable CCW and Disable Return is
set. The channel program is restarted
at the Disable CCW.

¢ Otherwise, if no text transmitted, the
channel program is restarted at the
third CCW. Return from the error EXCP
is to IOS.

Communications Serviceability Facilities 127



e For a text error, linkage is made to
the Error Post routine with no message
indication set.

If the second CCW is not for a switched
line,

e For a text transfer, linkage is made to
the Error Post routine with no message
indicated. Prior to linking, if the
Read Skip ended with a time-out or
intervention required, the routine
indicates that reselection is
necessary.

e For no text transfer, the channel pro-
gram is restarted at the first CCW.
Return from the error EXCP is to IOS.

DIAGNOSTIC WRITE/READ ROUTINE (CHART AP)

Module Name: IGEO104F

Function: After initialization, the diag-
nostic Writes/Read indication is set in the
LCBERRCT +1 field of the LCB for returning.
The CCW in LCBERCCW is set up with a Dis-
able. Enable is set at completion unless a
switched connection. If a TWX or 2260 and
type III adapter, the Disable CCW for the
2260 is skipped and the chained Enable is
removed. The address and command code for
the diagnostic Read and Write are set in
the channel program area. The test data
for the particular device is also moved to
the channel program area. The EXCP is
issued, and upon return, exit is made to
I0S.

LINE ERROR RECORDING ROUTINE (CHART AQ)

Module dName: IGEO204F

Function: A test is made on the LERFLG1
field of the LCB. If operator control is
to put out a threshold message, linkage is
made to the Operator Control LER module.

If a normal update to the counters, one
is added to the proper error counter in the
LCB. If the transmission threshold value
specified has not been reached, the routine
compares the updated threshold counter. 1If
that threshold has not been reached, an
exit is made to the module indicated in
LCBERRCT +1, i.e., diagnostic Write/Read,
Error Post routine, or I0S. If the thresh-
0ld value has been reached (not transmis-
sion) message output is indicated in the
LERFLG1 byte of the LCB. All threshold
values are added to their respective accu-
mulative counters.

If no message is to be printed, the

counters are cleared and the exit is to the
module indicated in LCBERRCT +1, i.e.,

128

Module Name:

Module Name:

Error Post routine, Diagnostic Write/Read
routine, or I0S. If no operator control is
specified, the threshold counters are con-
verted to decimal and inserted into the
message. A Write to Operator macro is
issued to write the message.

OPERATOR CONTROL LER ADDITION ROUTINE
(CHART AR)

IGEO30u4F

Function: This module is linked by the
Line Error Recording module. If this
module was entered to update the temporary
counters, because a message is to be writ-
ten with existing counters, one is added to
the temporary counters and exit is made to
the module indicated in the LCBERRCT + 1
field of the LCB, i.e., Diagnostic Write/
Read routine, Exrror Post routine, or IOS.

If the temporary counters are no longer
needed, they are added to the corresponding
threshold counters, and the temporary coun-
ters are cleared. Return is made to the
Line Error Recording module, which proceeds
as a normal update.

OPEN AND CHECKPOINT RESTART ROUTINE
(CHART AS)

IGEQUOUF

Function: This module is entered from the
ERP control module after the SIO has been
issued.
e If the condition code is 3, linkage is
made to the Not Operational SIO module.

e If the condition code is a 0 or 1, the
TP Op code is examined. For the condi-
tion code of 0 the failing CCW is used;
for condition code of 1 the first CCW
is considered in error.

(a) For an Enable, NOP, or SAD command,
a channel end or device end indica-
tion is valid, so the line can be
started; otherwise, there is an
error.

(b) For a Write Break, if the CSW indi-
cates channel end/device end alone,
the break was successful so the
line is started. If a unit check
is indicated, the sense byte is
examined. For a data check, the
channel program is restarted with
the first CCW to retry the Write
Break unless retried two times. If
retried two times, an error exists.
For all other conditions an error
exists.



(c) For a Read Skip, a test is made in
the status and sense bytes. If no
errors exist, the line is started.

e For an error, if it is Open time, link-
age is made to the Error Post module to
post complete with error. Otherwise,
the line number, operation code, sta-
tus, and sense bytes are placed in the
message. A Write to Operator macro is
issued to write the message. Upon
return, the CCWs are restored and the
line is started bypassing the check for
OPEN.

e To start the line the CSW is initial-
ized for the retry. An EXCP is issued
to retry the channel program. If it is
Open time, an indicator is cleared for
Line SIO. Error corrected is indicated
to I0S in LCBFLAGl. An ERREXCP (SVC15)
is issued to return to IOS.

NOT OPERATIONAL START I/0 ROUTINE
(CHART AT)
Module Name: IGEOS04F

Function: After initialization, the rou-
tine issues a Write to Operator macro,
which writes the message, IEC8041 ---- CON-
TROL UNIT NOT OPERATIONAL. Upon return, a
Write to Operator with Reply is issued to
write the following message: IEC804A REPLY
CONT OR POST.

If the reply is a Cont,

¢ If this is OPEN time, an EXCP is issued
to return to IOS to retry the channel
program.

e If this is not OPEN time, the SAD and
Enable commands are needed. If a 2702,
the SAD command is used and then stored
in the channel program. A CCW is set
up for an Enable except for the type
ITI adapter. A Read Skip CCW is placed
in the next CCW except for a type I
adapter, which uses a Write Break CCW.
The channel program is executed and
upon return, exits to IO0S.

I1f the reply is a Post,

e Tf this is OPEN time, Idle Open is
indicated in the CCW in the LCB and
normal completion is set in the IOB.
Return is to IOS via an EXCP.

e If it is not OPEN time, the routine
sets the "cleanup" flag in LCBSTATE and
a special flag for Line End and Free
BRB to ignore the line. The IOB is set
to indicate a permanent error to IOS.
Return is to I0S via an EXCP.

BUS-OUT AND OVERRUN FOR AUTO POLL ROUTINE
(CHART AU)

Module Name: IGEQ604F
Function: After initialization, the rou-
tine tests for bus-out or overrun checks.

For bus-out check,

e If the failing CCW is a poll operation,
the address of the polling list and the
length of the entries are obtained.

The new count and data address are
stored in the poll CCW. The retry
counter is updated, and the control
unit failure is recorded. The channel
program is retried with the first CCW.

o If the failing CCW is a Read Response
to polling, the address of the polling
list and the length of the entries are
obtained. A search is made for the
correct data address and count for the
Poll CCW. The retry counter is updated
and control unit failure is recorded.
The channel program is retried with the
first CCW.

For an overrun check, the "should not
occur" bit is set in the error halfword and
a permanent error condition exists.

After two retries, a permanent error
condition exists. For a bus-out the con-
trol unit failure is set in the error half-
word. An indication is set for outboard
recording. Linkage is made to the Error
Post routine.

OVERRUN ROUTINE (CHART AV)

Module Name: IGEQO70F

Function: This module is linked to as the
result of an overrun indication found by
the IGE0604E module. After initialization,
the failing CCW is examined.

For a Read CCW,

e If text transfer, linkage is made to
the Error Post routine with no message
indicated.

e If an initial channel program and a
response to a TWX ID, the channel pro-
gram is restarted after the Dial/Enable
sequence.

¢ Otherwise, the control unit failure is
recorded and the channel program is
retried at the first CCW. Upon return
from the error EXCP, return is made to
I0s.

Communications Serviceability Facilities 129



For a NO-OP CCW,

e If a Read Initial channel program,
linkage is made to the Error Post rou-
tine with no message indicated.

e Otherwise, the "should not occur" bit
is set in the error halfword and a per-
manent error condition exists.

If the retry has failed two times, a
permanent error condition exists.

ON-LINE TERMINAL TEST

The Resident Terminal Test routine is
the only routine of the on-line terminal
test that remains in storage at all times.
This module is located by a "V" type
address constant in the LPSTART macro
expansion.

The Header Analysis routine is brought
into the SVC transient area and executed by
a SvC 77 from the Resident Terminal Test
routine.

The Header Analysis routine brings the
needed terminal test routines into the SVC
transient area.

These routines perform the function of
examining the test request message and per-
forming the desired test.

The test request message is sent from
the terminal to initiate the test. The
format of this message is:

99999 format-integer test-integer type-
integer l[addr-char(s)] [unit-char(s)]
[text-char(s)] end-char

where:
99999 is the test activation code.
format is zero or one.
test g?ecifies kind of test (1 through
type specifies type of terminal test is
for one (1 through 6).
addr address of the terminal.
e Format 0 means exact address.
e Format 1 means a symbolic
address.
unit specifies particular unit of the

terminal.

130

text is the text of the message.
end specifies the end of the Test Re-
quest Message.

RESIDENT TERMINAL TEST ROUTINE (CHARTS QL
AND 0S)

Module Name: IECKONLT

Function: This routine recognizes terminal
test activity, calls terminal test tran-
sient routines, sends test messages,
cleanup, stops and restarts line operation.

The LPSTART macro generates a linkage to
the module that checks the incoming mes-
sages for the test activation code. If the
code is not present, normal operation of
LPS continues.

If the test activation code is present,
the buffers associated with the line opera-
tion are posted to a test QCB. The subtask
activated (Terminal Test Buffer Routing
subtask) will set test identification flags
in the buffer prefix containing the test
request and post it to the LPS queue. Sub-
sequent buffers will be posted to the
available buffer queue. (terminal tests
will utilize only the buffer containing the
header segment.)

Upon the next execution of the LPSTART
macro, the buffer with the "test request"
and "test identification®" flags is pro-
cessed by the routine. The "test identifi-
cation" flags are recognized at entry to
the module and the terminal test transient
routines are called. These routines vali-
date the test request and set up the appro-
priate test.

The buffer is then posted to another
test queue control block. The subtask
activated stops the line to be utilized by
the terminal tests by placing a test sub-
task control block in the STCB chain of the
appropriate ICB.

After the line operation has been
stopped, further identification flags are
set in the buffer prefix and again it is
posted to the LPS queue. Upon the follow-
ing execution of the LPSTART macro, . these
flags are recognized at entry into the
module and the test message is sent to the
terminal.

Upon completion of the test message
transmission, the Line End Appendage posts
the buffer to the LPS queue. All areas and
buffers utilized by the terminal tests will
then be freed and QTAM line operation will
be restarted on the subject line.



If a test message is to be returned to
the requesting terminal on a dial line, the
transient routines are called immediately
upon recognition of the test activation
code. The test message is then sent to the
terminal without utilizing the Stop Line
subtask. Buffers are released to the
available buffer queue by the buffer rout-
ing subtask.

The Terminal Test Buffer Routing subtask
and Terminal Test Stop Line subtask are a
part of the Resident Terminal Test routine.

TERMINAL TEST HEADER ANALYSIS ROUTINE
(CHART QA)
Module Name: IGC0007G

Function: This routine performs prelimi-
nary validation of the test request, trans-
lates the input message as necessary, and
sets up terminal addressing characters.

The input message is located and any
translation necessary is performed. Trans-
lations that may be needed are symbolic
addresses of terminals and translation
between ASCII and BCD.

The proper terminal addressing charac-
ters are placed in the buffer prefix along
with the addresses of the LCB and UCB.

Control is then passed to the proper
terminal test routine to complete the acti-
vation of the on-line terminal test.

TERMINAL TEST ROUTINES (CHARTS Q3, Q4, Q5,
06, AND Q8)

IGC0107G, IGC0207G,
IGC0507G, IGC0607G

Module Names:
IGCO407G, IGCO307G,

Function: These routines cause the genera-
tion of channel programs according to the
terminal used.

All of the following attributes are
independent of the terminal type. Addi-
tional functions are present in specific
Terminal Test modules (example: the IBM
1050 module, IGC0207G, considers the dial
capability).

The header of the test request message
is inspected. If any part of the header is
found to be invalid (example: test-integer
of zero), the no-test switch is set and
control is returned to the Resident Termi-
nal Test module. If the header is wvalid,
processing of the test request message
continues.

If the format-integer is zero, the addr-
char is exact and is moved directly into
the buffer. With a format-integer of 1,
the addr-char must be interpreted and the
proper characters placed in the buffer.

A GETMAIN is issued to provide area for
building channel programs and output data.
If no main storage is available, the no-
test switch is set and control is returned
to the Resident Terminal Test module.

All general CCWs are built before deter-
mining the type of test to be performed.
After the test type has been determined,
the CCWs necessary for the data are con-
structed and any message to be sent to the
terminal is prepared. Control is then
returned to the Resident Terminal Test
module.

Communications Serviceability Facilities 131



Chart AB.

QTAM CHARTS

Al
( IGEQ104E )

[—Bl
INITIALIZE
REGISTERS

~Cl

SET NEXT
MODULE EQUAL
TO LINE ERRCR
RECORDING

—D1

ASSUME RESTART
AT FIRST CCW

r El
ADD ONE TO SUM|
OF ERP AND
EOBLC COUNTER,
ZERO EOBLC
COUNTER

F17 1S

FAILING
CCW A
READ

Gl IS
FAILING
CCw A
WRITE

H1
YES 1S ADAPTER
TYPE TTYI

() o

DCKPOLL

Data Check Routine

DCTEXT
ccw

READ TWX ID
RESPONSE

AUTOPOLL
READ

RESPONSE

CCW A DIAL
OR ENABLE

E2

SET RESTART AT
THIRD CCW

TEXT TRANSFER

DCTXTER
—A3

STORE RETRY

A4

~J1

INDICATE NO
LINE ERROR
RECORDING

—K1

SET 'SHOULD NOT
OCCUR" IN ERROR
HALF WORD

COUNT IN HAS A RETRY ‘;'}DROR ';E]Fg;’ﬁglsNTG
EOBLC ENTRY FAILED EXI :
COUNTER INO MESSAGE

DCFIRST .@ DCLERB
~B3 r B5
STORE RETRY SET DATA CHECK
COUNT IN IS CONTROL CODE OF LER
ERP COUNTER UNIT A 2701 UPDATE
( )DCLINK <t
~C5
c3 C4 1S THIS A
HAS RETRY SWITCHED “\\NO ﬁﬂ&%ﬁﬁrﬂ? "
FAILED CONNECTION FROM CVT
o v O
DCEXCP)
~D3 ~D4
INITIALIZE SAVE SENSE D5___|
JOBSTART WITH AND STATUS IN LINK TO
RESTART LCBCPA +32 NEXT MODULE
ADDRESS 7O 39
DCRDPOLL
€3 E4 E5
SET TO LINK TO
SET UP TIME OUT AND
EREXCP SVC 15 DISABLE CCW IN DATA CHECK
LCBERCCW FOR AUTOPOLL
MODULE
~F4
F3
RECORDING iagfgmr AT
REQUIRED

G3
RETURN SVC 3

DCDIAGWR

H3
NDICATE LINE

RECORDING
REQUIRED,

SET NEXT

MODULE EQUAL
TO DIAGNOSTIC
WRITE/READ ‘

A5
INDICATE LINE

DCPERM
H4

INDICATE LINE
ERROR RECORDING|
TO EXIT TO POST;
ITH MESSAGE

RECORDING
REQUIRED,

K3

SET NEXT
MODULE EQUAL
TO POST




Chart AC. Time Out Routine

TOCKCNT TOPERM
[GE0204E A2 TOSWT A3
Al STORE RETRY SET TIMEOUT INDICATE
ENTER COUNT IN ERROR IN ERROR POST WITH
ERP COUNTER HALF WORD MESSAGE
Bl
B2
INITIALIZE HAS
RETRY FAILED CONNECTION RECORDING
REGISTERS AT
NO YES e NO
TOEXCP .TOPOST
—a Fe 3 Pl TOLERE
SET NEXT
MODULE EQUAL INITIALIZE SAVE SENSE SET NEXT SET TIMEOUT
7O LINE ERROR IOBSTART WITH AND STATUS MODULE EQUAL CODE FOR
RECORDING RESTART ADDRESS TO POST LER UPDATE
TOLINK
-1 D2 —D3 D4
ADD ONE TO SUM ERROR INDICATE
OF ERP AND EXECUTE DISABLE RETURN GET ADDRESS
EOBLC COUNTERS; CHANNEL AND SET UP OF LINK
ZERO EOBLC PROGRAM DISABLE CCW IN ROUTINE
COUNTER SVC 15 LCBERCCW FROM CVT
rE —E3 TOADERR
g LN .
SET RESTART YES ERROR RESTART ELINK 70
AT FIRST CCW RECORDING ADDRESS IN NEXT MODULE
EQUIRED, LCBERCCW

IS
F1 FAILING
CCW A READ

F4

LINK TO
AUTOPOLL
MODULE

MOVE DISABLE
OP CODE TO
FIRST CCW

RETURN SVC 3

TOREAD TOPRIOR G4

Gl IS

FAILING CCW._ YES
Q\IABLE, DIALP_
QR DISABLE

G3 READ SET RESTART

ADDRESS EQUAL
TO LCBCPA+16

.

AUTOPOLL

H2
STORE RETRY H3 READ
COUNT IN RESPONSE INDICATE
ERROR TO POLLING CORRECT
HALF WORD 7O 105
TOCKPOLL J5
! HAS vis 2 RESIDUAD ERROR
POLL CCW RETRY FAILED COUNT EQUAL EXECUTE
ORIGINAL CHANNEL
OUN PROGRAM
NO
K1 K2 K4
SET 'SHOULD NOT
OCCUR' ERROR INDICATE INDICATE NO Ks—
AND INDICATE POST WITHOUT LINE ERROR RETURN SVC 3
NO LINE ERROR MESSAGE RECORDING
RECORDING

QTAM Charts

133



Chart AD. Intervention Required Routine

134

IGEOO04E

Al
( ENTRY )

B1

ADJUST TO
FAILING CCW

Cl
POLL CCW

TOPOLL

~D1
TOPOLSUB ADDS

TOLOOP /
D2

GET POLLING
LIST ADDRESS
AND ENTRY SIZE

ADJ5

rEl
SET COUNT
EQUAL TO
RESIDUAL
COUNT +
WIDTH

il
SET DATA ADDR.
= POLL LIST ADDR
+ ORIGINAL
RESIDUAL COUNT
- WIDTH

TORDPOLL

R ——
TOPOLSUB _ADDS5

GET POLLING
LIST ADDRESS
AND ENTRY
SIZE

END OF LIST

NO

SET DATA
ADDRESS EQUAL
TO ADDRESS OF
MATCH ENTRY

rE3

BUMP TO NEXT
ENTRY IN LIST

rG2

SET COUNT
EQUAL TO COUNT
IN'2ND POLL +

POLL LIST ADDR -
ADDR OF MATCH

TOCOM
rH2

STORE NEW
COUNT IN FIRST
POLL CCW

rJ2

STORE NEW
DATA ADDRESS IN
FIRST POLL CCW

K2

RESTORE POLL
CCw OP CODE

TOSWT
“A5
Ad
FAILED v
I HALFWORD
TOEXCP TOPOST
~B4 s
INITIALIZE INDICATE POST
IOBSTART WITH e oo
RESTART ADDRESS
c4
ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15
AD
D5
TOLERB
~D4
D5 —
SET TIME OUT
CODE FOR LER ( enmy )
UPDATE
TOPOLSUB
rE4 ~ E5
GET ADDRESS OF ﬁg; ZODEIF-{ISS
LINK ROUTINE o
FROM CVT FROM THE DCB

F4—
LINK TO
NEXT MODULE

5

ASSUME WIDTH
EQUALTO3

H5

DECREMENT
WIDTH
BY 1

J5—
‘ EXIT ’



Chart AE.

IGEQ304F

Al

()

B1

( INITIALIZE
REGISTERS

~Cl1
ADD ONE TO
SUM OF ERP AND
EOBLC RETRY
COUNTERS, ZERO
EOBLC COUNTER

—D1

SET NEXT
MODULE EQUAL
TO LINE ERROR
RECORDING

CCW A READ
OR WRITE

IRTEST

F1“READ
RESPONSE
JO AUTOPOLL

TEST TRANSFER
cCw

STORE RETRY
COUNT IN

ERROR HALF
WORD

Ji
HAS RETRY
FAILED

INDICATE POST
WITHOUT
MESSAGE

PREPARE
CCw,

IS
FAILING A
CCW POLL

&/

IRCKCNT
83

(STORE UPDATED
RETRY COUNT IN
ERP RETYR
COUNTER

C3

YES ~” HAS RETRY
FAILED

_D2
INDICATE
'SHOULD NOT
' RESTART ADDRESS
OCCUR' ERROR 1S LCBCPA
IAND NO LINE
ERRORRECORDING
®
IRMSG
—E2 .
IS SECOND

INDICATE POST
WITH MESSAGE

: IRSWT

— F2

SET TIMEOUT
EXCEEDED IN
ERROR HALFWORD

ccw NO
A DIAL OR
ENABLE

YES

F3

RESTORE DISABLE
OpP CODE IN
LCBCPA

G2 IS THIS A
SWITCHED \/ YES
CONNECTION

NO
IRPOST
H2 H3
INDICATE LER SAVE SENSE
TO EXIT TO AND STATUS
POST
3
INDICATE
DISABLE RETURN
RECORDING AND SET UP
REQUIRED, DISABLE CCW IN
LCBERCCW
IRPERM
K2 K3
NAME OF RESTART
NEXT MODULE ADDRESS IS
IS POST LCBERCCW

Intervention Required Routine (Continued)

IRRETRY
— B4
INITIALIZE

IOBSTART WITH
RESTART ADDRESS

C4

ERROR EXECUTE
CHANNEL
PROGRAM

SVC 15

D4
QECORDING
REQUIRED

NO

E4—
( RETURN SVC3 )

YES

IRLERB

— F4
SET
INTERVENTION
REQUIRED CODE
FOR LINE ERROR
RECORDING

. IRLINK

~G4

GET LINK
ROUTINE
ADDRESS FROM
CvT

if

H4 __
LINK TO
NEXT MODULE

L |

QTAM Charts

135



Chart AF.

136

Time Out and Data Check for Auto Poll Routine

&)

&)

IRRDPOLL
_Bl B2
IRPOLSUB  AFD5 IRPOLSUB  AFD5
GET POLLING GET POLLING
LIST ADDRESS LIST ADDRESS
AND ENTRY AND ENTRY
SIZE SIZE
AFJ5
~C1 IRPLOOP
SET COUNT c2
EQUAL TO
RESIDUAL END OF LIST

COUNT +WIDTH

D1

FSET DATA ADDR,
=POLL LIST

ADDR + ORIGINAL
RESIDUAL COUNT
- WIDTH

“INENTRY”
YES

D3

SET DATA
ADDRESS EQUAL
TO ADDRESS OF
MATCH ENTRY

’-C4—L-—

BUMP TO
'NEXT ENTRY
IN LIST

E3

ET COUNT EQUAL
O COUNT IN
ND POLL +POLL
LIST ADDR, -
DDR, OF MATCH

»

TRCOM
- F3

STORE NEW
COUNT IN FIRST
POLL CCW

’— G3
STORE NEW
DATA ADDRESS
IN FIRST POLL
cow

~ H3

RESTORE POLL
CCW OF CODE

&

AF
D5

o5 —

Cam)

IRPOLSUB
—~ES5
GET POLLING

LIST ADDRESS FOR

THIS RLN. FROM
THE DCB

~F5

ASSUME WIDTH
EQUALTO 3

G5
IS WIDTH 3

DECREMENT
WIDTH
BY 1

YES

J5—
‘ EXIT )



Chart AG.

IGEQ404E

Al .
( ENTER )

— B1

INITIALIZE
REGISTERS

—C1

ASSUME RESTART
IS LCBCOA

—D1
ADD ONE TO SUM
OF RETRY
COUNTERS : ZERO
EOBLC RETRY
COUNTER

Lost Data Routine

(»)

y

LDCKCNT
B2

STORE RETRY
COUNT IN ERP
RETRY COUNTER

HAS RETRY
FAILED

D2

RECORD CONTROL
UNIT FAILURE IN
SDR TABLE

IS
FAILING CCw
A DIAL

YES

IS FAILING
CCW A READ

G1

SET SHOULD NOT
OCCUR IN ERROR
HALF WORD

@_

LDPFRM

SWITCH
CONNECTION

NO

( :)LDEXCP ‘

FE2
“INITIALIZE
TOSTART WITH
RESTART ADDRESS

F2

ERROR,EXECUTE
ICHANNEL PRO-
IGRAM SVC 15

G2

( RETURN SVC 3 ’

A DIAL OR
NABL

J2

RESTART ADDRESS
1S LCBCPA + 16

LDREAD

A3IS THIS
A TWX ID
RESPONSE

TEXT TRANSFER

LDCKRS

D3
1S RESIDUAL
COUNT =0

LDTEXT
E3

STORE RETRY
COUNT IN ERROR
HALF WORD

HAS RETRY
FAILED

—G3

INCIDATE POST
WITHOUT MES-
SAGE

O

— H3

NAME OF NEXT
MODULE = POST

—J3

GET ADDRESS OF
LINK ROUTINE
FROM CVT

K3

LINK TO
NEXT MODULE

— B4

SAVE SENSE
AND STATUS

~C4

SET DISABLE RE-
TURN AND SET UP

LDPOLL
—B5

GET ADDRESS OF
POLLING LIST

—C5

ASSUME 3 BYTE

DISABLE CCW IN ENTRY SIZE
LCBERCCW
LDERRC _.
— D4
D5
RESTART ADDRESS IS ENTRY
1S LCBERCCW THREE BYTES

YES

—E5
SET ENTRY
SIZE =2
SET READ SKIP NEW COUNT =
RETURN RESIDUAL COUNT
+WIDTH
—G4 —G5
NEW ADDRESS =
SET UP READ OLD ADDRESS +
SKIP CCW IN ORIGNAL COUNT
LCBERCCW ~WIDTH-
RESIDUAL COUNT
— H4. — H5
SAVE SENSE AND SCTOC{;(:”N ,E,;N
STATUS AFTER TIC FIRST POLL
CCW IN CPA cow
~J5

STORE NEW AD-
DRESS IN FIRST
POLL CCW

QTAM Charts

137



Chart AH.

Error Post Routine

1GEQ504E

Al
( ENTER }

—B1

INITIALIZE
REGISTERS

—Cl

SET TRANSMIT
ERROR IN ERROR
HALF WORD;
SET COUNT FOR
ID MOVE =2

—DI

CLEAR
EXTENDED
MESSAGE
AREA

ELis This
A DISABLE
RETURN

INDICATE
RE-DIAL
NECESSARY

ANY ERRORS

—H1

SET CONTROL
UNIT ERROR IN
ERROR HALF
WORD

NO

’——Jl
RESTORE SAVED
SENSE AND
STATUS

138

PONORM

’-Kl
INDICATE
PERMANENT
ERROR TO 10S

&)

PODECNT PORET
B4 85
ERROR,
B2 B3 DECREMENT EXECUTE
1S MESSAGE 1S OBR COUNT FOR CHANNEL
REQUIRED REQUIRED ID MOVE PROGRAM
SVC 15
—C2 —C3 POMOVE
S
TURN OFF OBR ca_ ) c5—
INITIALIZE THIS AN
CCW REGISTER e AUTOPOLL ( ReurNSVC3 )
OPERATION
b2 —D3
SET NEXT NEXT MODULE b4
MODULE WRITE = OUTBOARD éAluNe cew
TO OPERATOR RECORDER TEXT TRANSFER
YES
POGO
& E4 E5
ACCESS
Eépz;guo;{ ADDRESSING TERMINAL 1D TERMINAL ID
C CHARACTERS ADDRESS FROM ADDRESS FROM
ONTROL LCBPOLPT LCBCPA +8
SPECIFIED FROM TERMTBL
YES l
PLOK
F4
R OCCWR £3 STORE INDEX
IE:THOOPERATOR YES IS THIS A BYTE IN
CONTROL TERM SWITCHED MESSAGE
CONNECTION AREA
" (s—
POSWT
62 PONOPOLL _ ¢,
G3 MOVE 1D G5
IACATE NO I5 THIS A \_NO CHARACTERS TO YES_~ 15 THIS A
MODULE READ TYPE MESSAGE READ TYPE
OPERATION AREA OPERATION
Yes o
PONOID
k " [ Mo OVE AsT
INDICATE
1/0 ERROR STEP TO XA ATE FOUR DIAL
MESSAGE FOR POLLING MESSAGE DIGITS TO
OPERATOR CHARACTERS FORMAT MESSAGE
AWARENESS AREA
®
PUT OP CODE 3371050, 1478
OF FAILING 1060,8383, OR LCBSENSE +1
ﬁ\?sf's /'\"éE AREA 115A TERMINAL FROM JCB
—K2 K4
MOVE LINE K3'1030
NUMBER TO 2260 OR 2740 CE S NSE + 1
MESSAGE WITH STATION !
AREA CONTROL
NO




Chart AI.

Error Post Routine (Continued)

&)

81

SET SECOND
SENSE BYTE IN
UCB70 X 'FF*

—C1

MOVE TP OP
CODE FROM CCW
TO MESSAGE
AREA

—D1

ZERO ERP
LINKAGE
AND RETRY
COUNT

ET s

THERE A NEXT
MODULE

NO

F1

GET ADDRESS OF
LINK ROUTINE
FROM CVT

Gl—

LINK TO
NEXT MODULE

QTAM Charts

139



Chart AJ.

140

BUSOUT

Bus Out and

|GE0604E

Al
( ENTER ’

F B1

NAME OF
NEXT
MODULE =
POST

rC1

INITIALIZE
REGISTERS

IS
FAILING
CCW A POLL

D1

ADD ONE TO
SUM OF ERP
AND EOBLC
CTRS, ZERO
EOBLC COUNTER

o=
BOEXCFP

Gl

RESTART
ADDRESS IS
LCBCPA

J171s
FAILING
CCW A

DIAL

IS

Ki
FAILING
CCW A
WRITE

P MODULE IS

Ot
OPOST2]
FJZ

Overrun Routine

BOCKCNT

B2

STORE
RETRY
COUNT
IN ERP
COUNTER

€2 pas
RETRY
FAILED

D2

RECORD
CONTROL UNIT
FAILURE IN
SDR TABLE

BOSNO
- A3:

SET 'SHOULD
NOT OCCUR
ERROR'

BOPERM
—B3

SET CONTROL

BOWRIT

UNIT FAILURE

SWITCHED
CONNECTION

YES

D3

SET DISABLE
RETURN

E2

INITIALIZE 1OB
START

WITH RESTART
ADDRESS

F2
ERROR
EXECUTE
CHANNEL
PROGRAM
SVC 15

G2——
‘ RETURN SVC 3 ’

—H2
NAME OF NEXT

1GEO60UF

E3

SAVE SENSE
AND STATUS

BOPO!

—F3

SETUP DISABLE
CCW IN
LCBERCCW
RESTART ADDRESS
=LCBERCCW

INDICATE
OBR
REQUIRED

Y

YES

—H3

GET LINK
ROUTINE
ADDRESS FROM
CvT

K2 —
LINK TO NEXT
MODULE

GET NAME
OF OVERRUN
MODULE

BORETRY

B4 TEXT
TRANSFER
cow

1S
RESPONSE
EXPECTED

STORE
RETRY COUNT
IN ERROR

HALFWORD

B4 HAS
RETRY
FAILED

F4

INDICATE
POST WITHOUT
MESSAGE

CCW A DIAL
OR ENABL

TWX ID
RESPONSE

K4

RESTART
ADDRESS 1S
LCBCPA+16

NO

BOSKIP
 BS

SET READ
SKIP
RETURN

—C5

STORE RETRY
COUNT IN
ERP COUNTER

—D5

SETUP READ
SKIP CCW IN
LCBERCCW

BOLO

—Es

RESTART
ADDRESS 1S
LCBERCCW

OP

- F5

SAVE SENSE
AND STATUS
AFTER TIC

IN CPA




Chart AK. Link Routine
|GEO704
A3
( enmro )
B3
INITIALIZE
REGISTERS
DIAGNOSTIC
READ SKIP READ/WRITE
RETURN - > RETURN
SPECIAL OPEN AND
LNRDSKIP Y CKPT/RSTRT ENTRY - A LNDIAGWR
i c3
INDICATE NAME OF NEXT
POST WITH MODULE Is
MESSAGE @ |GEC404F
LNREAD INLINK
’—DZ D3
b1 NAME OF NEXT ( CET LINK ANY
READ Mo O e ROUTINE
SKIP CCW ADDRESS FROM ERRORS
IGE0004F
vt
~E5
£3__| SET CONTROL
LINK TO NEXT UNIT ERROR
MODULE IN ERROR
@ HALF WORD
DWRESTR
~F2

WAS ORIGINAL  vgs
CCW FOR TEXT
TRANSFER

CHANNEL
PROGRAM

H1

HAS RETRY
FAILED

RESTART
ADDRESS IS
LCBCPA

STORE RETRY
COUNT IN
ERROR HALF
WORD

INDICATE
RE-SELECTION
NECESSARY TO
EOBLC

HAS RETRY
FAILED

~J2

INDICATE
POST WITHOUT
MESSAGE

®

LNRESTR

FKZ

RESTORE SAVED
SENSE AND
STATUS

AND

( F5
RESTORE SAVED
SENSE, STATUS

ccw

G5

INDICATE POST
WITH MESSAGE

LNPOST

P

H5

NAME OF NEXT
MODULE 1S
(IGE0504E)

POST

QTAM Charts

141



Chart AL. Link Routine

(Continued)

ENDING CONDITIONS

&)

RECEIVED ON
-< DIAGNOSTIC
DWRDRD READ
DIAGNOSTIC
WRITE B2

TELETYPE 1
ADAPTER

c2
CHANNEL
END DEVICE °
END
ALONE
N
NO

YES

DWTEST

3 CRANNEL

END, DEVICE\ YES
END, UNIT
EXCEPTION ALONE

NO

E2

142

DWRDWR™ |

rD2
SET CONTROL
UNIT ERROR IN
ERROR HALF
WORD

FEZ
SAVE SENSE BYTE
FROM
DIAGNOSTIC

OPERATION

RESTART ADDRESS
IS ENABLE CCW

DISABLE
DWRDIS }
[D4
SET CONTROL
UNIT ERROR
IN ERROR
HALF WORD

rC4
RESTART
ADDRESS IS
DIAGNOSTIC
WRITE

DWEXCP
[ D4
INITIALIZE
IOBSTART WITH
RESTART ADDRESS
AND ZERO
SENSE

E4
ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15

F4—
RETURN
svC3



Chart AM. Status Check Routine

1GE0804E

A2
‘ ENTER ’
) ()

— B2 B4
INITIALIZE
REGISTERS AND RESTART
SET CONTROL ADDRESS IS
UNIT ERROR IN SPECIAL CCW
ERROR HALF WORD|
STRETRY
~c2 ~C5
ADD ONE TO SUM INITIALIZE
OF ERP AND IOBSTART WITH
EOBLC COUNTERS RESTART AD-~
AND ZERO EOBLC DRESS AND ZERO
COUNTER SENSE
STINT
D2 D5
NOTE: ERROR INTERPRETER RETURNS TO ERROR,
ERROR INTER- STSNO, STPERM OR STUNEX EXECUTE
PRETER (OS SUB-| CHANNEL
. ROUTINE) PROGRAM
STSNO — >
SHOULD NOT ¥ STUNEX i! UNIT EXCEPT
3 OCCUR ERRORS £3 CEPTION
SET 'SHOULD NOT

CHAINING CHECK

¢
OCCUR® ERRORS PROGRAM CHECK

IN ERROR HALF

RESET CONTROL E5—
UNIT ERROR BIT IN ( zs/‘ngi;N )
ERROR HALF WORD

WORD PROTECTION CHECK
STPERM k2
! THFé A SAVE SENSE F3
YES 1S
SWITCHED STATUS AND FAILING CCW NO
CONNECTION FAILING CCW A WRITE
NO
STPOST STUNIT
-Gl ' G2 G3
INDICATE OBR SET UP STORE RETRY
RECORDING DISABLE COUNT IN ERP
REQUIRED ccw COUNTER
~H1 ~H2
NAME OF NEXT SET H31s This YES
MODULE IS POST DISABLE A TELETYPE |
(IGE0504E) RETURN ADAPTER
STBREAK STSKIP
1 2 ] ~J5
GET ADDRESS OF RESTART SET UP BREAK 4 HAS YES ¥ SET UP READ SKIP
LINK ROUTINE ADDRESS 1S CCW AND READ RETRY FAILED. - CCW AND READ
FROM CVT DISABLE CCW SKIP RETURN SKIP RETURN
< )snoop
K4 K5
K1 SAVE SENSE
LINK TO NEXT E)Sr;ﬁgs AND STATUS
MODULE 1S LCBOPA AFTER CHANNEL
PROGRAM

QTAM Charts 143




Chart AN.

144

CKC

|GEQ904E

Al
( ENTER )

81

INIT. REGS, ADD
1 TO SUM OF ERP
AND EOBLC CTRS,
ZERO EOBLC CTR

RECORD
CONTROL UNIT
FAILURE IN
SDR TABLE

NT

E1
HAS YES

CKEQCHK

B3

COMMAND
REJECT

C3 CHANNEL

« DATA CHEC@&__

OR EQUIPMENT

Command Reject, Equipment Check, SIO CC 1, SNO Error Routine

—C4

SET 'SHOULD NOT
OCCUR' ERROR IN
ERROR HALF WORD

RETRY FAILED

NO

EQEXCP
—F1

INITIALIZE
IOBSTART WITH
RESTART ADDRESS

ERROR,
EXECUTE
CHANNEL
PROGRAM
SVC 15

HI —

‘ RETURN SVC 3 ’

NCHECK”
YES
e ]
SIPOST o4 s
3
START YES USE DUMMY CLEAR SIO
i/0 cONDITIO! CCW ADDRESS CONDITION
CODE =1 IN CsW CODE IN LCB
NO I
NORMAL (&
E3
INDICATE OBR
RECORDING
REQUIRED
—F4
F3
IS THIS A YES SAVE SENSE
SWITCHED AND STATUS
CONNECTION
NO
POST
—G3 — G4
INDICATE
SET UP
POST WITH
MESSAGE DISABLE CCW
— H3 —H4
NAME OF NEXT SET DISABLE
MODULE IS RETURN
POST (IGE0504E)
—J3 —J4
GET ADDRESS OF RESTART
LINK ROUTINE ADDRESS
FROM CVT DISABLE CCW

K3
LINK TO NEXT
MODULE




Chart AO. Read Skip Return Routine

IGEQ04F

Al
‘ ENTER ’

B1

INITIALIZE
REGISTERS

— C3

C1 2 IS

ANY RESIDUAL SAVE READ SKIP
ERRORS COUNT SENSE BYTE
=0
RDERROR | ¥ RDLOOP
— D1 — D3
SET CONTROL RESTORE SAVED
UNIT ERROR CCW SENSE
I ERROR AND STATUS
HALF WORD
C RDPOST
—El

NAME OF NEXT
MODULE IS
POST (IGE0504E)

_F1 RDCKCNT
GET LINK C g
ROUTINE NO HAS
ADDRESS FROM RETRY FAILED
cvT

RDCKTXT

—G4
Gl 2
TEXT RESTART
( HEEJE NEXT ) TRANSFER NO ADDRESS IS
ccw LCBCPA + 16
H3 —H4
PUT RETRY INITIALIZE
SKIP END WITH COUNT IN IOBSTART WITH
<.o OR IR EOBLC RESTART
D COUNTER ADDRESS
YES
—J2 14
ERROR,
INDICATE EXECUTE
RE-SELECTION CHANNEL
NECESSARY PROGRAM
SVC 15
K2
(}RDNOMSG
—~K2
K4——
INDICATE POST RN SvC
NO MESSAGE

RDISABLE
— E5

SAVE CCW
SENSE AND
STATUS

—F5

SET UP
DISABLE CCW

—G5

SET DISABLE
RETURN

—H5

RESTART
ADDRESS 1S
DISABLE CCW

L

QTAM

Charts

145



Chart AP. Diagnostic Write/Read Routine

IGEQ104F

A3
ENTER ’

{ B3
INITIALIZE
REGISTERS

c3

INDICATE
DIAGNOSTIC
READ/WRITE
RETURN

[-D3
SAVE SENSE,
STATUS AND

FAILING CCW

£3
[- SET UP
DIAGNOSTIC
READ/WRITE
CHANNEL
PROGRAM

- F3

MOVE DEVICE
DEPENDENT DATA
TO CHANNEL
PROGRAM AREA

rG3
STORE ADDRESS
OF DATA IN
DIAGNOSTIC
READ/WRITE
Cccw's

H3

ERROR,EXECUTE
CHANNEL
PROGRAM

SvC 15

B RETURN
SsVC3

146



Chart AQ.

IGEQ204F

Line Error Recording Routine

Al
‘ ENTER ’

B1

INITIALIZE
REGISTERS

r €2 ——————
Cl
_ OPERATORSN_ YES NAME OF NEXT
CONTROL ABOUT, -MODULE IS
JO OUTPUT~ OPCTL LER
MESSAGE @ (IGE0304F)
NO
LERLINK
D1 D2
GET LINK
DETERMINE ROUTINE
UPDATE TYPE ADDRESS FROM
CvT

’—El

INDICATOR

CLEAR UPDATE

E2___J
LINK TO NEXT
MODULE

Fl

ADD ONE TO
THRESHOLD'
COUNTER TO
UPDATED

BE

G1 “DOES

TRANSMISSIONS NO

COUNTER =
JHRESH,

G2

COUNTER HIT

HAS UPDATED No

3
MESSAGE
REQUIRED

LERMSG
-84

MOVE LINE
NUMBER FROM
UCB TO LERFLGI
FOR OPCTL

OPERATOR
CONTROL
PRESENT

r D4
SET REGISTER
SO TWO BIT
TRANSMISSION
COUNTER IS
UPDATED

THRESHOLD!

YES

r H2

INDICATE
MESSAGE
REQUIRED

LERADD

(JZ

ADD THRESHOLD
COUNTERS TO
CUMULATIVE
COUNTERS

LEREXIT
FE4

ADD ONE TO
TRANSMISSION
COUNTER

"F4

NAME OF NEXT
MODULE IS
IGEQ104F

1S
GACODE SET~.

FOR DIAGNOSTIC,
WRITE/READ,

M4 s cope

SET FOR
POST

Ja

NAME OF EXIT
MODULE 1S POST
IGEQ504E

CLEAR LERFLG1

rC5 ——————

LERLOOP
~D5

CONVERT
CUMULATIVE
COUNTERS TO
PRINTABLE

E5

WRITE TO
OPERATOR
THRESHOLD
MESSAGE

TERCLEAR
~F5

CLEAR
THRESHOLD
COUNTERS

L]

RETURN
SVC 3

QTAM Charts



Chart AR.

148

OPEXIT

Operator Control LER Addition Routine

IGEQ304F

Al
‘ ENTER )

INITIALIZE
REGISTERS

C1
NO

NTRY FOR
TWO BIT
COUNTER

“UPDATE
YES

rD1

ADD ONE TO
TWO BIT
TRANSMISSION
COUNTER

El
ADD ONE TO
INDICATED
TWO BIT ERROR
COUNTER

~Fl

CLEAR UPDATE:
TYPE

rG!

NAME OF NEXT
MODULE IS
1GEO104F

1S
HT'CODE SET™\__ vEs

OPELIM
D4

CLEAR TWO
BIT COUNTERS

OPLOOP

E4
’- UPDATE
THRESHOLD
COUNTERS BY
OLD TWO BIT

-F4

NAME OF NEXT
MODULE IS
IGE0204F

<For DIAGNOSTIC
“\WRITE/READ

IS
CODE SET FOR
POST

YES

RETURN SVC 3

—J2

NAME OF NEXT
MODULE IS
POST I1GE05045

OPLINK
rG4

GET LINK
ROUTINE ADDRESS
FROM CvT

H4____|

LINK TO NEXT
MODULE



Chart AS. OPEN and Checkpoint/Restart Routine

|GEQ404F

Al

Co

INITIALIZE
REGISTERS

UPDATE RETRY
COUNTER

rD3

SET FOR

IS THIS
OPEN TIME

85
MOVE OPEN
INDICATOR
FROM LCBCPA +
32 TO LCBCPA +
1

~C5.

ZERO LCBCPA +
32

FIRST CCW

D5t
( RETURN ’

NOTOPER
~E1 CHKCNT TSTENTRY /
E5
NAME OF NEXT E;E _— ANY
MODULE IS NOT HAS RETRY DT Ne ERRORS
OPERATIONAL FAILED READ SKIP NENDING
SIO IGE0504F
NOP ENABLE
@_ SADXXX
LINK
~F1 ~F2 NOPENSAD "
F3 F4” s F57W.
INDICATE INITIALIZE YES  NO BREAK
POST WITH IOBSTART WITH ANY ERRORS i"&éN'O'LG SUCCESSFUL
MESSAGE ceow i
AN
YES
RESTART STARTLN
-Gl ’-—GZ r G3
SUB A5
INITIALIZE
LEAR SPECIAL
IOBSTART WITH ECNETRY
ADDRESS OF
LCBCPA INDICATOR
H3
—H]1 _ ~ - H5
H2 SUB A5
l?chTJTL:SEK 15 THIS YES NAME OF NEXT
ADDRESS FROM TURN OFF OPEN TIME MODULE IS POST
F SIO CODE IGE0504E
ovT
J2 —J4
e Eiﬁ?ﬁn J3 PREPARE 1/O
HggJ,_oE NEXT CHANNEL OPEN TIME ﬁfggiGE
PROGRAM
SVC 15
K3 K4 K5
K2—
( ) INDICATE TO WRITE TO RESTORE
RETURN SvC 3 START LINE OPERATOR SAVED CCW'S

QTAM Charts

149



Chart AT.

150

Not Operational Start I/O Routine

IGEO504F

A3
( ENTER }

ENTRY

F B3
INITIALIZE
REGISTERS

— CQ
WRITE TO
OPERATOR
XXX CONTROL
UNIT NOT

OPERATIONAL'

WTOR
D3

WTOR 'REPLY
CONT OR
POST'

E3
YES REPLY NO

Fl
IS THIS
OPEN TIME

RESTRSAD
Gl

INITIALIZE
IOBSTART WITH
ADDRESS OF
LCBERCCW

LOOP
—HI

SAVE FIRST
TWO CCW'S

—J1

SET UP

REQUIRED SADXXX
AND/OR ENABLE
cow

EXCP
~F2

CLEAR UCB

WAS 'CONT'

F3

ERROR EXECUTE

BUSY FLAG

CHANNEL
PROGRAM
SvC 15

TESTRSTR

H2
TELETYPE |

G3—
( RETURN SVC 3 ’

ADAPTER

L |

CHKPOST/ NO
E4

REPLY
WAS 'POST'

F4
IS THIS
OPEN TIME

INDICATE OPEN
IDLE

’—H4
INDICATE 'ERROR
CORRECTED' TO
10S

J2 —J3 — 14
SET UP READ ST UP ZERO SPECIAL
SKip cew BREAK CCW INDICATOR
L !
Ka
SET SPECIAL
ENTRY
INDICATOR TO
GO TO IGE0404F

AFTOPEN

G5

SET LCBSTATE
CLEANUP FLAG
ON’

~H5

SET FLAG FOR
LINE END AND
FREE BRB SO

LINE IS IGNORED
TILL STARTLN

rJs

INDICATE
'PERMANENT
ERROR' TO 10S




Chart AU.

IGE0604F

Al
( ENTER )

B1

INITIALIZE
REGISTERS

s
FAILING CCOW

Bus Out and Overrun for

A POLL

AUPOLSUB A4

GET POLLING
LIST ADDRESS
AND ENTRY SIZE

K

SET 'SHOULD
NOT OCCUR'
ERROR

AUPERM/

EZIS THIS
A BUS OUT
CHECK

~F1 2
NEW COUNT = SET CONTROL
RESIDUAL COUNT UNIT FAILURE
+WIDTH ERROR
Gl rGZ
NEW ADDRESS =
OLD ADDRESS + INDICATE OBR
ORIGINAL COUNT REQUIRED
- RESIDUAL
COUNT - WIDTH
AUCOM
—H1 —H2
STORE NEW
COUNT IN NAME OF NEXT

FIRST POLL CCW

MODULE IS POST

—J1

STORE NEW
ADDRESS IN
FIRST POLL CCW

— K1

RESTORE POLL
COMMAND CODE

—J2

GET ADDRESS OF
LINK ROUTINE
FROM CVT

K2__|

LINK TO
NEXT MODULE

AURORSP

E3
[AUPOLSUB A4

GET POLLING
LIST ADDRESS
AND SIZE

AULOOP

s

DOES ENTRY
INDEX =
STORED INDEX

Auto Poll Routine

AUPOLSUB

A4
‘ ENTER )

AUCKCNT
B4 - B5
GET POLLING ADD ONE TO SUM
LIST ADDRESS OF ERP AND
FROM SECOND EOBLC COUNTERS
POLL CCW ZERO EOBLC
CTRA
c4 —C5
STORE COUNT IN
SET ENTRY ERP RETRY
SIZE =3 COUNTER

D4

1S SIZE =3

SET ENTRY
SIZE =2

NO

G4

ACCESS NEXT

ENTRY

YES

~H3
NEW COUNT =
SIZE OF LIST

= START ADDRESS
- MATCH
ADDRESS

a

rJ3

NEW ADDRESS =
MATCH ADDRESS

RESTART ADDRESS
IS LCBCPA

—F5

INITIALIZE
[OBSTART WITH
RESTART ADDRESS

G
lR_ECORD CONTROL
UNIT FAILURE
1S SDR TABLE

H5

ERROR EXECUTE
CHANNEL
PROGRAM

SVC 15

J5—
( RETURN SVC 3 ’

QTAM

Charts

151



Chart AV. Overrun Routine

IGEQ704F

A2
( ENTER >

B2
INIT. REGS. ADD
1 TO SUM OF ERP
AND EOBLC

COUNTERS; ZERC
EOBLC COUNTER

C2
YES

FAILING ccw
A READ

NO
NO OpP CODE

2 READ
OPERATION
CODE

OVSNO

D3

SET SNO BIT
IN ERROR
HALFWORD

©
OVPERM

NO

A

E3

SWITCHED
LINE

OVTEXT
FFS
F2
HAS RETRY SET DISABLE
FAILED RETURN
G2 ~G3
INDICATE SAVE FAILING
—— POST WITH NO CCW, SENSE
MESSAGE AND STATUS
rH2 rH3
SET ORB INDICATE
RECORDING REDIAL/ENABLE
OVPOST2 |
J2 J3
GET NAME OF (
POST MODULE SET DISABLE OP
AND ADDRESS CODE, FLAGS,
OF LINK AND COUNT
ROUTINE

K2 ___]

LINK TO
NEXT MODULE

152

L

OVCKTXT
Ad

OVRETRY

B4
SWITCHED
INITIAL

—D4

RESTART
AFTER DIAL
ENABLE

OVCKCNT
rE4

STORE
UPDATE
COUNT

YES

RETRY FAILED

RECORD UNIT
FAILURE

OVEXCP |
H4

ERROR EXCP
SvC 15

J4—
( RETURN >



Chart BW.

Locate DCB Routine

IECKDCBL

A2
LOCATE
DCB ROUTINE

~B2
GET THE ADDRESS
OF THE TERMINAL
TABLE AND SET
USER'S ERROR
FLAG TO ZERO

—C2

GET MAXIMUM
SIZE OF
TERMINAL NAME
FROM TERMTBL

NEXT had

D2

SEARCH TERMTBL
FOR SPECIFIED
TERMINAL ENTRY

E2”SPECIFIED
TERMINAL

GET THE QCB
ADDRESS FROM
THE TERMTBL
ENTRY AND LOAD

REG 1 TO RETURN

G27h1s LisT
OF PROCESS
ENTRY

H2
GET DCB
ADDRESS FROM

SET USER'S
ERROR FLAG
TO Xx'20'

RET
~H3
LOAD ERROR
FLAG IN

QCB AND
COMBINE WITH
RLN FOR RETURN

- REGISTER 15 AND
RESTORE
REGISTERS 4-12

JS—J'
RETURN TO USER

!

QTAM Charts

153



Chart BX.

154

IECKLNCH
Al

Cm

B1

SAVE REGISTERS
AND INITIALIZE
BASE REGISTER

- Cl

INITIALIZE WORK
REGISTERS AND
SET INDEX FOR
SINGLE LINE

~ D1

SET FLAG
INDICATING
UNOPENED DCB

DCB BEEN
OPENED

F1

SET FLAG
INDICATING RLN
TOO HIGH

IS RLN
TOO HIGH

CLEAR
ERROR
INDICATOR

K1

SETRLN =1
INDEX = COUNT
OF LINES

YES

Start Line-Stop Line Routine

LooP
A3
DETERMINE LCB
AND UCB GETQCB
ADDRESSES FOR ADDRESS
THE LINE
6
QPOST
POST
ACTIVE
SUBTASK
~C3
)
15 LINE CLEAR HIGH
ALREADY ORDER BYTE
STOPPED

P25 THis
AUTOPOLL
LINE

IS LINE
RECEIVING

QWAIT

WAIT FOR
LINE TO
BE INACTIVE

2
G IS THIS
DIAL LINE

STARTLN

J2
IS INTREL
BIT ON

K2

INDICATE
STARTLN ENTRY

E3

SET UP
DISABLE;
SET FLAG
FOR STOPLN

F31S THIS
AN OUTPUT
ONLY LINE

G315 THIS THE
RECEIVE
'SCHEDULER

END OF LCB
CHAIN

K3

SET INCAM TO
DISCONNECT

YES

YES

UNIT 2701
OR 2703

NOT2702

IBM
TYPE I1i
ADAPTER

ves C4
SWITCHED
LINE

SET ENABLE
OPERATION
CODE

NOINTREL

B5%s Line
ALREADY
ACTIVE

NO

<

SETSTART
—E4

INITIALIZE
START; POST
TO LSP QUEUE

—F4

POST
LCB

S3START
~ K4

SET FLAG

4

THE LINE

FOR STARTING

SETCHN
C5

1/O COMPLETE

QPOST

POST SIO
SUBTASK

C?g

RET
G5
RETURN TO
CALLER

GETTIME
H5

GET TIME
AND WAIT
1.5 MINUTES




CHAIN END

BI
START LINE

Cl

TURN OFF
INTREL BIT

A2

RETURN

STOPLN
B2

LOAD UCB AD~
| DRESS AND SET
UP FOR LOOP

STCBLOOP

rC2

GET NEXT STCB
IN THE CHAIN

D1—
RETURN )

END OF CHAIN

RECEIVE
SCHEDULER

REMOVE
RECEIVE
SCHEDULER

CHEKSEND
%

G2
NO SEND
SCHEDULER

J2

REMOVE
SEND
SCHEDULER

® Chart BX1l. QTAM Start Line-Stop Line Routine

AUTOPOLL

AUTOPOLL
LINE

RETURN

BX1
Ad

DETERMINE
PROPER
SAD CODE

A4

B4

STORE IN
CHANNEL

]

BUMP TO

PROGRAM
AREA

IS LINE
RECEIVING

YES

NEXT
CCM sLOT

BX

—D5

CHANGE TIC
ADDRESS
AFTER POLL

1S LINE ACTIVE

LINEADDR
—G4

GET LINE
ADDRESS
FROM UCB

HIOLOOP
H4
r

TURN OFF
ERP FLAGS
AND HALT
THE LINE

QTAM Charts

155



Chart BY. Breakoff Routine

IECKBRKF

Al

( BREAKOFF >

—~ Bl
GET THE
IADDRESS OF
THE START OF
DATA FOLLOWING]
THE PREFIX

TEXT
~Cl

GET THE
LENGTH OF DATA
IN MESSAGE

D2 ARE AL]
MESSAGE YES

CHARACTERS,
IDENTICAL
N

YES NO

‘TESTLNG
—E2

ACCUMULATE
TOTAL MESSAGE
LENGTH TO
THIS POINT

— F2

GET MAXIMUM
(MESSAGE LENGTH
SPECIFIED BY

USER

GafmN_
MAXIMUM
LENGTH BEEN
XCEEDE

H2 END OF
MESSAGE ONNNO

G4
CHANNEL
PROG. CHECK

NO

U ¢, S —

TURN OFF

YES

IN PREFIX

—J

YES SET ERRORS AND
INITIALIZE LCB
FOR BREAKOFF

<CHECK FROM

NO BUFFER

—K3

EXCP
WRITE
BREAKOFF
CHARACTERS

RETURN TO USER

GO TO LPS
CONTROL
ROUTINE

156

».
>

H4 —1
{ RETURN TO USER }

RECEIVE BIT IN
LCBSTATE




Chart Bz.

IECKRELM

A2
( ENTER

—B2

SAVE
REGISTERS 14-12

—~C2

ACCESS TERMINAL
TABLE AND GET
TERMNAME SIZE
AND LPS QUEUE
ADDRESS

>

COMPAR1T

D215 THiS
THE END OF
THE TABLE

BUMP TO
NEXT ENTRY

TERMINAL IN
INTERCEPT

RETURN2
H2

RESTORE
REGISTERS 14-12

J2
LOAD X '04'
RETURN CODE
AND RETURN

YES

Release Intercepted Messages Routine

‘DESTERR
—D3

RESTORE
REGISTERS 14-12

E3
LOAD X '20'
RETURN CODE
AND RETURN

~F3

GET ADDRESS OF
QMOVE ROUTINE
AND SET UP FOR

ACTIVATION

~G3
GET ADDRESS OF
THE INTERCEPT
FIELD USING THE
OFFSET FROM

LPSTART
— H4
H3 HEADER QPOST
ADDRESS MORE
THAN 1ST S.NO CAUSE HEADER
>———— | ADDRESS TO
ELEMENT IN BE MOVED 10
“QUEUE” Qcs
YES
RETURN
J4
( QPOST
CAUSE RESET
OF INTERCEPT
BIT AND SET
SEND BIT
—K4
K3 RESTORE
RETURN TO USER REGISTERS 14-12
AND LOAD X '00'
RETURN CODE

QTAM Charts

157



Chart CO.

158

Pause Routine

IECKPAUS

A2

T

B2

GET ADDRESS OF
FIRST CHARACTER
TO TRANSMIT

WAS THERE
A PREVIOUS
PAUSE

YES

NEXTCHAR
—C3
GET PREVIOUS

COUNT OF
PAUSES

INDICE <
D2
SEARCH FOR
INDICATED
SPECIAL
CHARACTER IN
BUFFER

E25pecial
CHARACTER

F2
RETURN

F3

1

QWAIT

REQUEST AN
INSERT BLOCK

>

AGAIN
~ G3

PUT INSERT
BLOCK INTO
BRB-RING

H31s NEXT

ELEMENT ANNYES

F4

RETURN

~H4

BUMP POINTER
TO NEXT
BLOCK

COMPLETE THE
INSERT BLOCK




Chart Cl.

IECKRETD

Al
‘ RETRIEVE ’

Bl

SAVE
REGISTERS
14-12

Clvatip
ADDRESS

c2
RETURN

D1
GET ADDRESS
OF QTAM
IMPLEMENTATION
ROUTINE

—El

BUILD QCB/BRB
IN THE USER
SUPPLIED
WORK AREA

F1

QPOST

POST QCB/BRB

Retrieve - DASD Routine

F—D MESSAGE TO BE

TO DISK
QUEUE

3
QWAIT
WAIT FOR

RETRIEVED
FROM DISK

TC3
QWAIT
WAIT FOR
QCB/BRB TO BE
REMOVED FROM
READY QUEUE

—D3

MOVE THE
MESSAGE TO
THE WORK AREA

QPOST

RETURN BUFFER
TO AVAILABLE
BUFFER QUEUE

—F3

RESTORE
REGISTERS
14~12

G3—
( RETURN }

QTAM Charts

159



Chart C2.

IE

SETSEQ

TE

Retrieve by Sequence Number Routine

CKRETS

Al
( ENTER )

B1

SAVE REGISTERS

Ci

POSITIVE
SEQUENCE
NUMBER

~D1

SET
INDICATION FOR
SEQUENCE IN

YES

—El
OBTAIN ADDRESS
OF TERMINAL
TABLE AND
MAXIMUM
LENGTH

OF TERMNAME

RMLOOP

— F1

COMPUTE
NEXT (FIRST)
ENTRY IN
TERMINAL

FOUND

—H1

COMPUTE OFFSET
OF ENTRY IN
TERMINAL TABLE

—J1
GET DISK
ADDRESS FROM
QBACK OF
DESTINATION
QCB

—K1

OBTAIN ADDRESS
OF SEQUENCE
FIELD

160

E2

SEQCK
—A3
A2 GIVEN
SEQUENCE NO = YES SET VALID
70 SEQ. NO.~ 1 INDICATION
IN_HEADER
NO

IN HEADER
<SEQ. NO.
GIVEN

C2

B3
RETURN TO
CALLING

ROUTINE

PRIORITY
MESSAGE

NO
ERROR
~D2-
LOAD
ERROR CODE
X 140
Xt LOADDASD
as AR SEQOUT
GET DISK
RESTORE —>| ADDRESS OF DR
REGISTERS NEXT SEGMENT
QUECK
r F3 LOCATE
o MOVE F4 “DEST
NO TERMINAL
(Rt ) DTV ARON < sAME AS TERM
OFFsETTO. SPECIFIED
© Ga*DESTS,

END OF

TERMINAL
TABLE

H2

SET ERROR
CODE X'20'

s QCBADDR OF

TERMTBL
NO

YE HEADER = QCB
ADDR IN

SEQUENCE
IN

OF QUEUE

~B5

SET DISK
ADDRESS IN
REG 1

_C5
IECKRETD

ClAl

GET SEGMENT
IN WORK
AREA

—D5
CBTAIN FROM
HEADER THE NEXT
SEGMENT AND
PREVIOUS HEADER
ADDRESS

E5
SEQUENCE
out

F5SOURCE
NO <1'ERMINAL %
HEADER SAME

AS SPECIFIED

HEADER
MESSAGE

_H4 _H5
SEQCK C2A2 IECKRETD  CIAIl
TEST
SEQUENCE SEECTOTQEXT
NUMBER
HEADERIN [
® :
SEQCK C2A2
TEST
SEQUENCE
NUMBER

RECORD A
HEADER
SEG.



Chart C3.

Checkpoint Request Routine

IECKCKRO

B3
’ ENTER ’

C3

GET ADDRESS OF
CURRENT TCB
AND STORE IN
PASSED ECB

WAS

NO
DASD OPENED

E3'CHECK

POINT
INTERVAL
SPECIFIED

NO

POINT DEVICE
OPENED

G3
M “apost

POST C.P, ECB
TOC.P. QUEUE

3
QWAIT

WAIT FOR THE
C.P. TO
COMPLETE

J3—
{ RETURN

—D4

SET X '01' ERROR
CODE IN

—E4

SET X '02' ERROR
RETURN

— F4

REGISTER 15 4

SET X '04' ERROR

S——
RETURN

D5
J‘ RETURN >

QTAM Charts

161



Chart C4.

1GG0193P

Al
ENTER

B teRmTaL
ENTRY BEEN

Open Message Process Queue

SPECIFIED IN

C2
ABEND DUMP
WITH ERROR
CODE

¢l DIRECT
ACCESS DEVICE
BEEN OPENED

DKO10K

D1
GET OR PUT

WORKAREA
SPECIFIED

LOOKUP
D3 IS
DDNAME IN
TERMTBL

162

GET CORE FOR
DEB AND CLEAR
TO ZERO

SAVLEN
~F3

PARTIALLY
INITIALIZE DEB
AND INSERT IN
CHAIN

GET OR PUT

DETERMINE FROM
MODE THE
CORRECT PUT
MODULE TO
LOAD

D4 —
ABEND DUMP
WITH ERROR

CODE

G4
SET UP DUMMY
QCB AND BRB
IN DEB
~ H4 —H5
DETERMINE FR
Mooih}lHE FroM INITIALIZE THE
CORRECT GET — REMAINDER OF
MODULE TO THE DEB
LOAD
KLDROUT RELOOP
|4 —J5
SET UP THE
WHERE-TO-GO SET UP XCTL
I TABLE
K4 TCTLRTN

LOAD THE GET
OR PUT MODULE
REQUIRED

K5 —
( XCTL ’




Chart C5.

IGGOI9NA

Al
{ ENTER )

Bl s

THIS FIRST
ENTRY

EODAD
SPECIFIED

IN PROCESS

Get Segments Routine

A2
RETURN FROM
EODAD EXIT

B2

RESTORE
REGISTERS 14-1

GETBUF

2" s

THIS FIRST
ENTRY

YES

OF READING
FROM DISK OBTAINED
: ‘/\ YES
— E2
QPOST
RETURN LAST
BUFFER TO
RETURN BUFFER
QUEUE
— F2
RESTORE
REGISTERS 2-12 SET FIRST TIME
AND GET THE FLAG NON
USER'S EXIT ZERO
ADDRESS
Gl—0oI G2
YES
( EXIT TO EODAD ) FIRST ENTRY
(@) -
—H2
SET SECOND
TIME FLAG
NON ZERO
2
QWAIT
WAIT FOR

K1
RETURN

NEXT BUFFER

O

RESTORE

—K2

TEXT SEGMENT

CLEAR
TERMID IN
SOURCE AREA

YES

PROCESS QUEUE

MOVE TERMID
INTO SOURCE
AREA

TEXTSEG
- E3

ACCESS BUFFER
FROM PROCESS
QUEUE

F3 |5

YES

CHECK
G3
YES

—G4

USE COUNT OF

WORKAREA
SUFFICIENT

FOR DATA
NO

H3

USE SIZE OF
WORKAREA FOR

DATA FOR MOVE

MOVE
—H4

MOVE THE
SEGMENT TO THE

MOVE

K3
STORE COUNT IN
WORKAREA AND

REGISTERS 14-12
UPON RETURN

TAKE THE
SYNCHRONOUS
EXIT

WORKAREA

s
4 Burrer
LARGER THAN

NO

RESET
35

W ORKAREA:

SYNEXIT

YES  SYNCHRONOUS NO
EXI

SPECIFIED:

STORE DATA
COUNT IN THE
WORKAREA -
AND RESTORE
REGISTERS 15-12

K5 —
{ RETURN ’

QTAM Charts

163



Chart Cb. Get Messages Routine

IGGOI9NB 3
QWAIT
Al A2 s A
ENTER BUFFER NO WAIT FOR
PRESENT 4 {B\IUE;;TER
YES
Bl B2 B3
QPOST QWAIT
: REMOVE
SAVE REGISTERS RETURN REMOVE s
BUFFER FROM RDY Q
X
o o SYNEXIT
¢S INDICATE NO INDICATE C4 ANy C55YI\IISE><|T
BUFFER BUFFER BUFFER < BUFFER
PRESENT PRESENT PRESENT M REMAINING SPECIFIED
NO
D4 —D5
23 b3 ADDRESS

ODAD THIS 15T IS THIS SET NOT-15T- gIETSYNEXEIT
SPECIFIED BUFFER OF A TEST BUFFER SWITCH

MSG SEG ROUTINE

E2 E3

E5
[BALR  SYNEXIT

3 MOVE SOURCE E4 1his
RESTORE TERM NAME SEGM
IS MS PROCESS ENT 44— USER SPECIFIED
QEMPTY REGISTERS IF AVAILABLE, ROUTINE

TO USER AREA

—F1 / — F4
F2 F3" s CLEAR
GET ADDRESS —
OF EODAD RE-ENITER ANYTHING NOT-15T-
ROUTINE THIS MODULE IN BUFFER SEGMENT
@ SWITCH
Gl &2 o4
BALR EODAD
USE COUNT FILL IN
TO USER OF DATA WORK AREA WORK AREA
SPECIFIED FOR MOVE SUFFICIENT PREFIX
ROUTINE
—H3 —H4
H1 USE SIZE
IS THIS YES OF WORK RESTORE
A NEW AREA FOR REGISTERS
MOVE
CONT : MOVE T

—J3

SETUP TO MOVE

MOVE DATA J4—
REMA INDER OF ( ) .
BUFFER FROM L%XVORK RETURN TO USER
PREVIOUS GET

led



Chart C7.

IGGOTINC

Al

Cm

SAVE
REGISTERS

cros

BUFFER
PRESENT

YES

EODAD
SPECIFIED

IS
MS PROCESS
QCB EMPTY,

REMAINING
FROM LAST

GET ADDRESS
OF EODAD
ROUTINE

H1
[BALR

Get Records

A

EODAD
TO USER —J

SPECIFIED
ROUTINE

K1

RETURN TO USER

Routine

SYNEXIT

IS
THIS 1ST
BUFFER OF
MSG

H2

RESTORE
REGISTERS

J2

RE-ENTER THIS
MODULE

FKZ——-———

RESTORE

G3

MOVE SOURCE
TERM NAME TO
USER AREA, IF
AVAILABLE

H3 s

ANYTHING
IN BUFFER

SWITCH
SET

A3 FM SYNEXIT °
BALR ]
A2” g SAVE DATA
SYNEXIT ST AR TO USER COUNT
SPECIFIED OF SYNE SPECIFIED REMAINING
ROUTINE ROUTINE IN BUFFER
. ]
RESET |
B3 1 (35
STORE COUNT B4 FILL IN
IN WORK AREA (RETURN TO USER WORK AREA
AND RESTORE PREFIX
REGISTERS
GETBUFF
~C3 ~C4 o
C2 “pATA GET ADDR
REMAINING\_ YES GET NUMBER OF FIRST RESTORE
— < ROM PREVIOUS OF CHARACTERS CHARACTER REGISTERS
GET @ TO BE MOVED 10 MOVE
NO
b3 CHECK
1" awarr o4 718
D2 1S NO THIS A D5—
BUFFER P | WAITFOR ->< NEW LINE ( RETURN TO USER )
PRESENT NEW BUFFER CHARACTER
YES NO
END
£2 £3 - E5
[ "arost [ awan g1 25
THIS A YEs Y SET END OF
RETURN MOVE MS < 2260 ETX y RECORD SWITCH
BUEFER PROCESS QCB CHARACTER
FROM RDY Q
~F2
INDICATE F3° s 1s ves
NO BUFFER THIS A TEXT WORK AREA
PRESENT SEGMENT

MOVSEG
rG5

MOVE
CHARACTER

rH5

INCREMENT
WORK AREA
AND BUFFER
POINTERS

REGISTER

sz
GET ADDRESS OF YES J5 " ANy
1ST CHARACTER it MORE DATA
IN BUFFER IN BUFFER
ks K4 TEOM
FILL IN CLEAR NOT- 1S
WORK AREA 1ST-SEGMENT THIS EOM
PREFIX SWITCH RECORD

QTAM Charts



Chart C8.

Put Message Segment Routine

IGGOIND

Al
‘ ENTER ’

’—Bl

SAVE
REGISTERS 14-12

Ci

INITIALIZE
REGISTERS

D1 IS
THIS A

TEXT SEG

GET ADDR. OF
1ST TERM TABLE
ENTRY

YES

166

TERMLOOP

1S
THIS THE
PUT
DESTINATION

1S

G]THIS THE
LAST TERM

TABLE ENTRY

NO

H1

GET NEXT
ENTRY IN
TERM TABLE

YES

YES

FOUND

B2
GET 2 BYTES

OF SEGMENT
LENGTH AND
SAVE THEM

ENTRY FROM

IN IGGOISNG

BUFFER~BRB ROUTINE

D2

ADD HDR
PREFIX SIZE
TO SEGMENT
SIZE

SIZE LARGER
THAN BFR

D3

SET ERROR
CODE

SET ERROR
CODE

LAST
QSEGMENT
AN EOM

SEGMENT

MSGEND

IS

THIS
SEGMENT A
HEADER

F3

1S

THIS
THE FIRST
PUT

G3

YES

FH3

SET ERROR
CODE

J3

RESTORE
REGISTERS

K3 —
RETURN TO USER )

—A3 A4
INITIALIZE FILL IN
REGISTERS BUFFER PREFIX
rB3 B4
ADD TEXT (
PREFIX SIZE SET NOT-15T-
TO SEGMENT TIME SWITCH
SIZE

BYPASS ALL

CHARACTERS

1S
THIS
SEGMENT A
HEADER

ANY YES

PUT ERRORS

G4
QPOST

REQUEST
NEW BUFFER

™ Gwar

WAIT FOR
NEW BUFFER

POSTBUFF

QPOST

POST BUFFER TO|
DESTINATION
QUEUE

IDLE —

DATA IN
WORK AREA

MOVE DATA
INTO BUFFER

POST
rCS

FILL IN
BUFFER
PREFIX

D5

RETURN TO
IGGOI9NG

INVALID

’—55

SET ERRCR
CODE

~F5

RESTORE
REGISTERS

G5—
RETURN TO USER

J5

RESTORE
REGISTERS

KA
T awar

WAIT FOR BRB
TO BE REMOVED
FROM RDY Q

K5—
( RETURN TO USER )



Chart C9.

Put Record Routine

IGGO19NF

Al
( ENTER )

Bl
SAVE REGISTERS
14~12, SAVE THE
WORKAREA ADDR
AND SET NEW PUT
REQUEST SWITCHC|

—Cl1

INITIALIZE
REGISTERS WITH
THE DEB ADDRESS
AND ADDRESS OF
THE LPS QUEUE

A2

GET SIZE OF
WORKAREA AND
SAVE WORKAREA
ADDRESS

ENTRY FROM
BUFFER~BRB
ROUTINE IN

RETURN

D2

1S THERE
AN EXTRA
BUFFER
( )RESTART
£l M
" “arost HgrosT
] POST UNUSED
REQUEST A g BUFFER TO
NEW BUFFER AVAILABLE
BUFR QUEUE
EXIT :
Fl — F2
QWAIT
RESTORE
WAIT FOR A REGISTERS 14-12
NEW BUFFER
POSTBUFF
1" qwar
WAIT FOR BRB GZ_J
TO BE RE- RETURN
MOVED FROM
READY QUEUE
H2
GET ADDRESS OF
FIRST TERM ENTRY,

BUFFER

rJi

GET ADDRESS OF
DESTINATION
QUEUE

K1
QPOST

POST

BUFFER TO
DESTINATION
QUEUE

SIZE OF ENTRY,
ADDR OF PUT
TERM NAME

PUT TERM
NTRY FOUND

A
_Caurrer
LEFT FROM

YES

PUT LCB ADDRESS
IN THE PREFIX,
CLEAR SOURCE
KEY, INSERT TEXT
INDICATOR

A3 IGGOIING CONT , , .
INITIALIZE SAVE EXTRA
REGISTERS WITH BUFFER ADDRESS 2’:{%‘5 TT:EE DATA
TERMTBL ADDRESS AND LOAD A 10
AND ADDRESS OF PREVIOUS BUFFER i
THE LPS QUEUE ADDRESS
—B5
GET ADDRESS OF
NEXT CHARACTER
IN BUFFER AND
REQUEST STORE DATA
COUNT IN PREFIX

INDICATE END
OF MESSAGE
IN PREFIX

D4

GET NEXT

D5IS THIS
END OF

BUFFER ADDRESS
IF THERE IS AN A
EXTRA BUFFER

START OF THE
ORKAREA

—G3

ZERO SEQUENCE
NUMBERS AND

rE4
CLEAR NEW PUT
REQUEST SWITCH
AND SAVE NEW
WORKAREA
POINTER

F4

SAVE REGISTERS
FOR RETURN TO

MESSAGE

rE5

INDICATE END
OF MESSAGE IN
THE PREFIX

rF5

GET ADDRESS OF
NEXT CHARACTER [

SCAN POINTER [N
HEADER PREFIX

~H3

INCREMENT
POINTER

LAST ENTRY

FOUND

H4
PRIORITY

SPECIFIED BY
USER

YES

IGGOIING IN WORKAREA
POST :
G4 G5
SET SWITCH
COUNT IDLE L INDICATING NO g
CHARACTERS BUFFER
REMAINING
Hs

MOVE PRIORITY
| FROM WORKAREA
INTO TEMPORARY

PRIORITY BYTE
14 5
LOAD STATUS
MOVE BLANK BIT AND
INTO TEMPORARY DESTINATION KEY]
PRIORITY BYTE

IN HEADER PREFIX

s

USE BUFFER
LENGTH
FOR MOVE

USE LENGTH
OF WORKAREA
FOR MOVE

K54as THE
BUFFER BEEN
FILLED

QTAM Charts

167



Chart CA. Message Type Routine

IECKTYPE

A3
( ENTER ’

(83
SAVE SCAN
POINTER

—C3

GET SCAN
SUBROUTINE
ADDRESS

D3
IECKSCAN _CFAI

GET NEXT HEADER
NONBLANK
CHARACTER

MSG E4

8 TYPE RETURN TO
CHARACTER NEXT MACRO
EQUAL STATEMENT

F3

RESTORE
SCAN POINTER

G3—
RETURN TO NEXT
MSGTYPE OR

EOA ROUTINE

168



Chart CB.

IECKCHGT

Al

Ca)

—B1

SAVE REGISTERS
14-12 AND CLEAR
THE USER'S ERROR
INDICATOR

—Cl1

LOAD WORKING
PARAMETERS AND
ACCESS FIRST
ENTRY

LOOKUP

1S
D1-THIS THE
ENTRY TO BE
CHANGED

IS THIS
THE LAST
ENTRY

YES

SI1ZE OF ENTRY YES

D2 IS

OLD SIZE

—E2
SET X '10' AS
ERROR INDI-
CATOR FOR
INVALID
LENGTH

ANEW ENTRYN_
SIZE EQUAL TO > QMOVE QCB FOR

INVALID

—F2

SET X '20' AS
ERROR INDI~

< INDICATED AS
ZERO IN TABLE

NO

G1

ACCESS THE
NEXT ENTRY IN
TERMTBL

P CATOR FOR

INVALID TABLE
ENTRY

Change Terminal Table Routine

LNGTHOK

~D3

INITIALIZE AND
GET ADDRESS OF

CHANGING
ENTRY

—E3
GET THE ADDRESS
OF THE DESTIN-
ATION QUEUE
QCB FROM THE
TERMTBL

AISITA
F3'TERMINAL
DESTINATION

YES

INACTIVE

~G3
ADJUST THE SIZE
SO THAT THE YE
LENGTH BYTE IS
NOT DISTURBED
IN MOVE

— H3
QPOST

| CAUSE MOVE
TO BE EXE-
CUTED FOR
ENTIRE ENTRY

RET
—J3

LOAD ERROR FLAG
IN REGISTER 15

JAND RESTORE
REGISTERS 0-12

K3—
RETURN TO USER )

1 | REMAINDER

— F4

CALCULATE THE
LCB ADDRESS FOR
THE TERMINAL

HAS STOP
LINE BEEN
ISSUED

s G4

H

4

QPOST
CAUSE QCB
ADDRESS TO BE
MOVED TO
TERMTBL

—J4

BYPASS
SEQUENCE
NUMBERS IN
TERMTBL AND
WORKAREA

4

QPOST
CAUSE

OF ENTRY TO
BE CHANGED

QTAM Charts

169



Chart CcC.

170

Copy Polling List Routine

IECKCPPL

A2
ENTER )

~B2

SAVE
REGISTERS 14-12

CC2e ]
LOAD PASSED DCB
IADDRESS AND DCB|
NOT OPENED

ERROR FLAG FOR
USER

D2 HAS THE
DCB BEEN
OPENED

NO

YES

NORLNERR

FD3

CLEAR DCB NOT
OPENED ERROR
FLAG AND GET
THE DEB ADDRESS

IS
PASSED RLN
TOO HIGH

E3

- F3

GET THE ADDRESS
OF THE POLLING
LIST FROM THE
DCB

rG3
GET THE LENGTH
FROM THE POLL
LIST AND COPY
POLLING LIST
INTO WORKAREA

rE4

SET INVALID
RELATIVE LINE
NUMBER ERROR
FLAG FOR USER

RET B
- H3
LOAD USER'S
ERROR FLAG IN
REGISTER 15 FOR
RETURN

rJ3

RESTORE
REGISTERS 0-12

K3—
RETURN TO USER }



Chart CD.

[ECKCHPL

Al
( ENTER }

—B1

SAVE
REGISTERS 14-12

C1
rLOAD PASSED DCB
ADDRESS AND
DCB NOT OPENED
ERROR FLAG FOR
USER

Dlyas THE
DCB BEEN
OPENED

NO

r D2

CLEAR DCB NOT
OPENED ERROR
FLAG AND GET
DEB ADDRESS

52/,5
PASSED RLN
TOO HIGH

F2

SET INVALID
RELATIVE LINE
NUMBER ERROR
FLAG FOR USER

Change Polling List Routine

NORLNERR
—E3

GET THE ADDRESS
OF THE POLLING
LIST FROM THE
DCB

F3 “USER

/ SPECIFIED

STATUS CHANGE
ONLY

YES

NO

CHANGE

9
G3 NEW LIST

OLD LIST
SIZE

ERR
— H3

LOAD INVALID
LENGTH
ERROR FLAG

RET

J3

(LOAD USER'S
ERROR FLAG IN

@ IN 2ND POSITION

—G4

GET LENGTH
AND DECREMENT
TO START MOVE

~ Ha4

GET THE ADDRESS
OF THE QMOVER
ROUTINE IN
IGGOI9NG

—J4
QPOST
POST QMOVER

REGISTER 15 FOR |
RETURN

12 AND RETURN
O USER

TO ITSELF TO
EXECUTE MOVE

QTAM Charts

171



Chart CE.

172

IECKCPYQ

A2
‘ ENTER ’

— B2

SAVE
REGISTERS 14~12

~C2

CLEAR ERROR
INDICATOR AND
LOAD PARAMETER
REGISTERS

—D2

LOCATE
BEGINNING OF
TERMTBL

E2

SEARCH
TERMTBL FOR
TERMNAME

G2

GET QCB
ADDRESS FROM
ENTRY

Copy Queue Control Block Routine

ERROR

- F3

SET X '20" IN
ERROR INDICATOR
FOR INVALID
TERMTBL ENTRY

—H2

MOVE QCB
INFO TO WORK
AREA

RET -
— J2

LOAD USER'S
ERROR FLAG AND
RESTORE
REGISTERS 0-12

K2—
RETURN TO USER ,




Chart CF. Scan Routine

IECKSCAN

Al
( ENTER )

rB1

INSERT
BLANKS INTO
WORKWORD

~Cl
LOAD
REGISTER WITH
WORKWORD
ADDRESS FOR
EXTERNAL USE

PTR2
D2
INCR SCAN
POINTER TO
NEXT HEADER

CHARACTER

PTR1

D1 END
{_ OF SPECIFIED
FIELD

YES
£2” END E3
ﬁemsm BLANK
VES NO
@ VARIFLD
F2 ~Fa—Y
SET HEADERR MOVE
BIT IN ERROR CHARACTER TO
HALF WORD WORKWORD
rG3
G2 — INCREMENT
( ) FIELD SIZE
RETURN COUNTER BY
ONE

WORKWORD
FILLED

G4 VARIABLE

LENGTH FIELD NO

H4

INCREMENT
SCAN POINTER
TO NEXT HEADER
CHARACTER

OF SEGMENT

RETURN

QTAM Charts

173



Chart CG. Copy Terminal Table Routine

IECKCPYT

2
ENTER )

B2

SAVE
REGISTERS 14-12

—C2

CLEAR ERROR
INDICATOR AND
LOAD
PARAMETERS

rD2

LOCATE THE
BEGINNING OF
TERMTBL

LOOKUP
rE2

SEARCH
TERMTBL FOR
TERMNAME

~F3
SET INVALID
TERMINAL TABLE
ENTRY ERROR
INDICATOR
FOR USER
G2
MOVE TERMINAL
ENTRY TO
WORKAREA
STARTING IN
FIRST BYTE
RET
H2
LOAD USER'S
ERROR FLAG
AND RESTORE
REGISTERS 0-12

J2—
RETURN TO USER )

174



Chart CH. Date Stamp Routine

IECKDATE

A3
ENTER )

B3
IECKEXPD  CUAI

EXPAND HEADER
FOR DATE
INSERTION

~C3
IEAORT00

REQUEST CURRENT
DATE

~D3

UNPACK DATE
INFO

—E3

MOVE
FORMATTED
DATE INTO
HEADER

F3—
RETURN )

QTAM Charts 175



Chart CI. Source Routine

|ECKSRCE

Al

( SOURCE )

rB]
GET SCAN

SUBROUTINE
ADDRESS

—Cl 4
IECKSCAN _ CFAIl

GET SOURCE
CODE FROM
HEADER

~pi—Y

GET TERMINAL
SIZE FROM
TERMTBL

DIALUP
~E3
E2_ATEST
FIRSTNEXT GENERATE
AUTOPOLL TERM TABLE NEXT ENTRY
ADDRESS

COMPAR2

DCB
FIELDS IN
CCB & QCB
SAME

SOURCERA
G2 G3
PUT ENTRY
SET
INDEX FOR
SOURCE TERM é’émé?
INTO HEADER ERROR
PREFIX

SOURCE
CODE
VALID

—H2 {
STORE ENTRY
INDEX FOR
SOURCE TERM
INTO HEADER
PREFIX

»lat
Lt

2—X
( reen )

176



Chart CJ.

Skip to Character Set - Skip on Count Routines

IECKSKPS

A2
( ENTER )

— B2

SAVE BASE
REGISTER

Fl

INCREMENT
SCAN POINTER
VALUE BY ONE

CANCEL
MULTIPLE
ROUTING IN
LCB

~C2

STORE SCAN
POINTER VALUE
IN SAVE REG

~D2
IECKSCAN  CFA]

GET HEADER
CHARACTERS

—E2

LOAD FIELD
SIZE PARAMETER
FROM LINKAGE

NO F2 was
SPECIFIED SET

—J1

RESET SCAN
POINTER TO
END OF
BUFFER

FOUND

YES

RETURN
r J2

INCREMENT

COUNT IF
ODD

K2 —
( RETURN )

IECKSKPC

B4
( ENTER

—C4

LOAD SKIP
COUNT PARAM
FROM LINKAGE

SKPCHAR

—D4

INCREMENT SCAN
POINTER TO
NEXT

CHARACTER

END
OF SEGMENT

DECREMENT
SKIP COUNT

J4

RETURN

YES

—ES

SET HEADERR
BIT IN LCB

F5—-
RETURN )

QTAM Charts

177



Chart CK. Time Stamp Routine

IECKTIME

A3
( ENTER )

B3
[ECKEXPD  CUAI

EXPAND HEADER
FOR TIME
INSERTION

~C3
IEAORTO0

GET TIME
OF DAY

r D3
PUT TIME

DATA INTO
WORKWCORD

rE3

UNPACK TIME
DATA

—F3

MOVE EDITED
TIME DATA
INTO HEADER

G3—1
{ RETURN ’

178



Chart CL.

Cancel Message Routine

IECKCNCL

B2 s

ERROR MASK
ZERO

ERRACT

—C2
IECKRC DDA2

D2

PREFIX

le—NO BITON IN
RECALL HEADER

ANY
DESIGNATED
ERRORS

C3 DESTERR

MASK AND ERR
HALF WORD

ERRRET

D3
TURN ON CANCEL] PREVIOUS
BIT IN HEADER | SEQUENCE

RESTORE
PREVIOUS
SEQUENCE
NUMBER

—D4

RETURN }

CANCEL

MULTIPLE ROUTE
BYTE AND CLEAR
CONVERSE MODE

BIT IN LCB

QTAM Charts

179



Chart CM. Sequence Out Routine

IECKSEQT

B4
IECKEXPD  CUA1

82" output

OPERATION EXPAND HEADER

~C2 —C4
IECKEXPD  CUAT
33— SAVE OFFSET
EXPAND HEADER ( RETURN ) TO SEQOUT
FIELD IN
MSNUMOUT
—D2
GET BINARY

SEQUENCE NO.
FROM HDR PREFIX

rE2

CONVERT SEQ.
NO. TO
DECIMAL VALUE

-F2

UNPACK SEQ.
NO. INTO HDR
FIELD

G2—
( RETURN )

180



Chart CN.

Route Routine

IECKROUT

A3
( ENTER )

~B3
STORE LPS
RETURN ADDRESS
IN LCB FOR
MPLE ROUTE

c3
IECKSCAN  CFA1

GET DEST CODE
FROM READER

D3
IECKLKUP  COA2,

LOOK UP DEST
CODE IN TERM
TABLE

]

E
RETURN

QTAM Charts

181



Chart CO. Lookup Routine

FECKLKUP
A2
( enmr )
[ECKDRCT
-B2
GET MAX SIZE
OF TERMNAME
FROM TERM
TABLE
—c2
TURN OFF EOB
STATUS BIT
COMPARI ~D3
D2 /TST
FRST (NXT)
<TERM TABLE ErReTe NEXT END OF TABLE
ENTRY FOR
DEST
YES
DESTOK2
rE2 rE4
SET
MOVE QUEUE DESTINATION
ADDR TO LCB ERROR BIT IN
LCB
~F2 ~F4
ASSIGN
PUT TERM TABLE MESSAGE TO
ENTRY INDEX ERROR
INTO PREFIX DESTINATION
QUEUE

c2—
RETURN

182



Chart CP. Translate Routine

IECKTRNS

A2
‘ ENTER )

B
OBTAIN REL ADDR
FROM LCB OF
FIRST
CHARACTER TO
TRANSLATE

NO
TEXT SEGMENT

—E2

RECOMPUTE
REL ADDR OF
FIRST CHAR TO
TRANS

USETRST
—F

COMPUTE FULL
ADDR OF FIRST
CHAR TO TRANS

rG2

COMPUTE CHAR
COUNT TO
TRANSLATE

15
H2 count
EQUAL ZERO

YES

H3

TRANSLATE
CHARACTERS

22—
( RETURN ,

QTAM Charts

183



Chart Cg.

Error Message Routine

IECKERMG

ERRACTS |

184

Bl s
ERROR MASK
ZERO

B2 ANY
DESIGNATED
ERRORS

IECKRC _ DDA2

RECALL
HEADER

SET SCAN
POINTER TO END
OF HEADER
PREFIX

F1
SKIP POINTER
PAST IDLE
CHARACTERS FOR
DATE AND TIME
STAMP

D2

LEAVE SCAN
POINTER
POINTING TO
END OF HEADER

B3
RETURN

[ b

COMPUTE
MESSAGE SIZE
AND STORE
IN PREFIX

ADDHDR
rGl

GET START OF
ERROR TEXT IN
BUFFER USING
SCAN POINTER

FH]

COMPUTE
SPACE LEFT
IN BUFFER

IV space
FOR ERROR
TEXT

K1

MOVE ERRCR
TEXT INTO
BUFFER

rJz
MOVE ERROR
| TEXT INTO BUFFER

AND TRUNCATE
EXCESS

FE3

INDICATE SINGLE
SEGMENT
MESSAGE IN
PREFIX

rF3

GET THE ADDRESS
OF THE LOOKUP
ROUTINE

&



Chart CR. Polling Limit Routine

IECKPLMT

A2
( ENTER )

B2

GET CURRENT
POLL POINTER
FROM LCB

C2

POLL PTR NO
AT CORRECT
TERM LIST’

D3—
RETURN

GET CURRENT
POLL COUNT
FROM LCB

rF2

INCREMENT
POLL COUNT

G2

G3
AUTOPOLL

RETURN POLL
COUNT TO
LCB

—H3 H4
H2 INCREMENT GET POINTER
COUNT AT POINTER TO TO POLLING
LIMIT NEXT TERMINAL LisT
r 3 J4
';IE)TILSER TO ILI:SET':'ES’E?F
RETURN LCB POINTER TO
BEGINNING

K3 —
( RETURN '

QTAM Charts 185



chart CS. Reroute Routine

IECKRRTE

B2 s B4

ERROR MASK
ZERO

B3 ANY
DESIGNATED
ERRORS

RETURN

ERRACTI
C2
MAKE HEADER

ADDRESS
AVAILABLE

D2
IECKRC DDA2

RECALL
HEADER

—E2
IECKLKUP  COA2

E3
LOOK UP RETURN
DEST CODE IN

TERM TBL

186



Chart CT. Intercept Routine

IECKITCP

Al
INTERCEPT

lEcKRC  DDA2

BRANCH AND

DESIGNATE
ERROR

RETURN

LINK TO RECALL
THE HEADER

oYX

LOAD LCBDESTQ
WITH ORIGINAL
DESTINATION

QUEUE ADDRESS

—D2

INCREMENT
QSIZE FIELD
IN QCB

E2 4
TURN ON THE
PRIORITY BIT AND
TURN OFF THE
SERVICED BIT
IN PREFIX

~F2

TURN OFF THE
SEND BIT IN
THE TERMTBL
ENTRY

G27 1S
INTERCEPT BIT
ON IN TERMTBL

J2
RETURN

~H3

PUT HEADER
ADDRESS INTO
INTERCEPT
FIELD AND SET
INTERCEPT BIT
IN TERMTBL

—J3
GET OFFSET TO
INTERCEPT FIELD
IN TERMTBL AND
SAVE FOR
RELEASEM RTN

K3——1

RETURN

QTAM Charts

187



Chart Cu.

Expand Routine

IECKEXPD

B1

SHIFT POINTER
LEFT ONE
CHARACTER
POSITION

188

— D1

COMPUTE
ADDRESS OF
FIRST
CHARACTER TO
SHIFT

—E1

COMPUTE
NUMBER OF
CHARACTERS
TO SHIFT

F1"space

FOR SHIFT MYES

—>

~C3

SHIFT
CHARACTERS TO
EXPAND HEADER

—D3

COMPUTE
ADDRESS OF
START OF
FIELD

LEFT

RETURN

—E3

INSERT BLANK
AS LEFT
DELIMITER OF
FIELD

—F3

GET SCAN
POINTER FOR
NEXT
DESTINATION
CODE

~G3

SHIFT POINTER
LEFT SIZE OF
NEW FIELD

EOA BEEN
DONE

RESTORE
STORED SCAN
POINTER

NO

Ja—
‘ RETURN ’



Chart CV.

Sequence in Routine

IECKSEQN

TOOLOW
1

Al
ENTER )

81

SAVE
BASE REGISTER

Cl
IECKSCAN CFAI

GET SEQUENCE
NUMBER FROM
HEADER

D1

RESTORE
BASE REGISTER

El
HEADER ERROR

SET SEQUENCE
LOW ERROR BIT
IN LCB

GlI—
‘ RETURN )

TLOOP

CONVERT
CHARACTER IN
SEQUENCE
NUMBER TO
BINARY

TEST
F2 ALL
CHARACTERS
CONVERTED,

G2

MOVE BINARY
SEQUENCE

NUMBER INTO
HEADER PREFIX

H2NUMBER IN
SEQUENCI

NONSEQ

15
YES 42 seQUENCE
NUMBER
LOW

e
INCREMENT

TO NEXT
CHARACTER

STORE
EXPECTED
SEQUENCE
NUMBER IN LCB

Hé4
INCREMENT
EXPECTED

SEQUENCE
NUMBER FOR

A

NEXT MESSAGE

J3

SET SEQUENCE
HIGH ERROR
BIT IN LCB

H5

QTAM Charts

189



190

Chart CW. Mode, Initiate, and Priority Routines

1ECKMODE

Al
( ENTER )

~B1

SAVE
SCAN POINTER

rCl
IECKSCAN _ CFA1

GET NEXT HEADER
NONBLANK
CHARACTERS

D2

D1_MODE LINK TO
CHARACTER SPECIFIED MODE
FOUND SUBROUTINE

El

RESTORE
SCAN POINTER

FlI—
( rern )

IECKNATE

B4
( ENTER )

IECKPRTY

B5
( ENTER ,

C4 rcs
IECKSCAN _ CFA1
SET INITIATE GET NEXT HEADER
BIT IN LCB NONBLANK
CHARACTER
D5

D4—
( RETURN ’

MOVE PRIORITY
BYTE INTO LCB

E5—
RETURN



Chart CX.

IECKCVRS

Al

Cm

Mode Conversational Routine

FROM CLEANUP ROUTINE
IN IGGOI19NG

A3 CONVRSE
MODE AND NO
ORIG MESSAGE

FROM STARTUP
ROUTINE IN
IGGOI9NG

A5DOES
NO PROCESS

REP
PROCESSED ty
o @ N3 ~
B5
Bl (’ QPOST
SET LCB B3 POST ORIGNAL
CONVERSA- BUFFER TO
TIONAL MODE EMPTY BUFFER
BIT QUEUE
~c2____ ~C5
019
Cl [CCOTING DoAS C37%s THis INITIALIZE LCB
FIRST TIME \_ YES o T10 A PROCESS WITH DISK
IN THIS ADDRESS OF
ENDINSRT QUEUE
ROUTINE ROUTINE REPLY
NO
D1—]
RETURN SAVE RETURN
TO MACRO REGISTERS 14-3
EXPANSION
IS LINE YES
RECEIVING
TURN LINE
AROUND TO
RECEIVE
G2
FIND START ves S END OF
OF POLLING POLLING
LIST LIST
NO
RESUME = |~
— H3
INITIALIZE LCB
FOR ACTIVATE
LINE ROUTINE
_ 3
QPOST
OST TO
IACTIVE
BUFFER REQUEST
IQUEUE

&

QTAM Charts

191



192

Chart CY.

End of Block Routine

IECKEOBK

Al
ENTER

B1 MESSAGE

CANCELLED

OR ERROR
MESSAGE
SENT

ClEoT oR
OTHER ERRORS

GET UCB
ADDRESS

F1

SET EOB
BIT IN
PREFIX

Gl IS
THIS TEXT
SEGMENT

RESTORE
SCAN POINTER
IN PREFIX

YES

B2
RETURN

PRTEXT
F2 —F3
GET SET UP
REMAINDER OF READ CONTINUE
BUFFER TO IN LCB
PROCESS
S
G3 THIS A

NO

’_G4
SAVE BUFFER
SIZE AND FIND

H2

H3 g

S—

RETURN

DEVICE 1030
OR 1060

SET UP WRITE

ADDRESS OF LAST
CHARACTER IN
BUFFER

~H4

RESET LCB
TO REUSE
BUFFER

CONTINUE
IN LCB

w GO TO ACTIVATE IN IGGOI9NG



Chart CiZ.

|ECKEOBC

N YES 82
LEANCELLED OR@
ERROR MESSAGE
3

DATA CHECK YES

End of Block and Line Correction Routine

RETRNSMT

A4 TRIED
TO TRANSMIT
THREE TIMES,

—B4

RESET
TRANSMISSION
ERRORS

A

— C4
JECKRC DDA2

LINK TO

EOT D2
OR OTHER

ERRORS

RETURN

TSTZERO
El

PRTEXT

—F2

Flois GET REMAINDER

THIS TEXT N\YES

e OF BUFFER TO
G PROCESS

G1

RESTORE SCAN
POINTER IN
PREFIX

J2
RETURN

F3
RETURN TO
LPS FOR RETRY

G3

SET UP
READ

CONTINUE
IN LCB

H3 IS
THIS A WRITE
QPERATION,

J3 s
DEVICE
1030 OR 1060

K3

SET UP
WRITE
CONTINUE
IN LCB

RECALL
SUBROUTINE

D4 Is
LINE

SENDING

E4
SET UP
WRITE
CONTINUE
IN LCB
FOR BTAM

A5
RETURN

YES

85 nHas
EOT BEEN
RCVD

5
FIRST EOB
IN MESSAGE

D5

[CANCEL mEssAGE
AND RETURN TO
DASD AND RESET
TERMTBL
SEQUENCE
NUMBER

/

— E5 "
IECKRC DDA2

LINK TO
RECALL
SUBROUTINE

1S
DEVICE
1030 OR 1060

F5 1s THIS
2260 DEVICE
TYPE

— G4 —G5
SET UP WRITE SETUP EOA AND
INITIAL IN FILL HEADER WITH
LCB FOR IDLES IF TIME
BTAM AND DATE
SPECIFIED
PREBTAM ENT260

H4&

SAVE BUFFER

H5
CLEAR LCB DIST

NO SIZE AND FIND LIST POINTER,
y ADDRESS OF LAST MULTIPLE ROUTE
CHARACTER IN INDICATOR AND
BUFFER ERROR FLAGS
GOOD Y
N J4 —J5

RESET LCB
TO REUSE
BUFFER

TURN ON END OF
MESSAGE AND SETi g
RETRY CODE IN
LCB

&

KS

GET BUFFER SIZE

QTAM Charts



Chart DO.

Al
ENTER

DISKABND

Bl pip A
'HARD' ERROR
OCCUR

RETURN TO
105 TO RETRY.

DISKEND

ESTABLISH

BASE REGISTER
FOR DISK END
APPENDAGE AND
IECKQQO1

A2

ACCESS THE LCB
FROM THE BRB OR
DASD PROCESS
QUEUE QCB

B2 CLEANUP,
YES

El

(ADJUST RETURN
REGISTER AND

SAVE REGISTERS

14-9 FROM /O

FLIH

rFl

ACCESS 15T AND
2ND ELEMENTS
ON DISK I/O
QUEUE

—G1

GET ADDRESS OF
AVAILABLE BUFFER
QUEUE FOR

POSTING

ACCESS BRB OR
QCB INEL2 TIC
ADDRESS AND
MAKE IT
ADDRESSABLE

194

STORE OFFSET TO
DESTINATION
TERMINAL TABLE
ENTRY IN LCB,
GET QCB ADDRESS)

YES ~AND RECALL
BOTH SET IN
CBSTATE

Disk End Appendage Routine

A3
OUT OF
SEQUENCE

83 vALID
DESTINATION

Cc3
RELEASEM
PENDING

D3
SET TSTATUS SEND
BIT ON & RESET
INTERCEPT &
RELEASE PENDING
IN TSTATUS

RTRYV

G2

GET BRB ADDRESS
FOR POSTING
AND PUT READY
QUEUE ADDRESS
IN BRB FIRSTWORD|

NOTVALID

E3
RETRANSMIT
FOR

CHECKPOINT

NO

YES

F3

SET SWITCH
TO ALLOW
RETRANSMISSION

NOSEND

YES

—H2
MOVE LINK FIELD
OF BRB INTO : OPERATION OR_ YES
BUFFER LINK RETRANSMIT FOR
FIELD @ CHECKPOINT
1 NO @
FRBUF " CANCEL

—J

MOVE LINK FIELD TURN ON

OF BRB INTO - CLEANUP FLAG

@ DISK 1/0 QCB IN-LCBSTATE
SNDBUF
~K2

INSERT THE DISK
1/0 QCB AT THE
TOP OF THE
READY QUEUE

TO INTERIM
LPS ROUTINE
TO POST

K3|s THIS
BUFFER FOR
A GET

CAUSE LCBTTIND
TO BE ZEROED
LATER

A4

RD
TXTRD_

END APPENDAGE

TURN OFF EOB
FLAG IN
PREFIX

- C4

CLEAR CANCEL
AND SENT FLAGS
IN PREFIX

D4

REMOVE BRB AND
BUFFER FROM
DISK 1/O QUEUE

AS |AST
SEGMENT OF

NEXTSEG

B LINE IN
INITIATE
MCDE

NO

SET BRB CODE
TO INDICATE
WAITING AND
SAVE BRB
POINTER [N LCB

rE4
RESTORE LCB
POINTER IN 8RB
AND ASSIGN THE
BUFFER TO THE
LINE

E5
UPDATE NEXT
AVAILABLE
SEGMENT
ADDRESS IN LCB

F4 pisk
READ FOR A
GET

G4

GET THE ADDRESS
OF THE LPS
QUEUE FOR
POSTING

H4 |5 THE
LINE SENDING

RESET BRB
STATUS CODE
INDICATING BRB
IS INACTIVE

YES




Chart Dl.

&)

SEGRDY
Al—

PUT DISK ADDRESS
INTO BRB AND
INDICATE ADDR
ASSIGNED

B1

1S
THIS AN
IDLE BRB

rCl1

RESET BRB STATUS
CODE AND GET

DISK 1/O QUEUE
QCB ADDRESS

RESCHEDD|
rD1

LINE DISK 1/O
QCB INTO BRB
AND SET X'F4'
PRIORITY IN BRB

~E1
LINK ITEM AT
READY QUEUE
HEAD INTO DISK
1/0 QCB

Fl
PUT BUFFER OR
BRB ON READY
QUEUE - INSERT
RETURN BUFFER OR|
DISK 1/O QCB

ROUTINE

&)

GETDEND
A2

GET AVAILABLE
BUFFER ADDRESS

~B2

INDICATE iN BRB
THAT BUFFER 1S
ELIGIBLE FOR
DISK QUEUE

Disk End Appendage Routine (Continued)

&)

NOSRVC

A3 IS 1T
2740 MODEL 2

QUEUE

DE2740A
B3
INDICATE IN
PREFIX THAT
MESSAGE SENT
AND SET DISK
CCW TO WRITE

BIT SET IN
LCBSTATE

_D2
IGGOI9NG DVC4

YES
IN MESSAGE
PREFIX

TO INTERIM LPS

IS
ves P3'MsG 1O
LINK TO RETURN A SECONDARY
BUFFER ROUTINE DESTINATION
TO LOCK AHEAD
NO
rE3
2 s Eom ouTeUT
FU:SES;J IN SEQUENCE
NUMBER
NOOUTSEQ
~F2 -F3
PUT SEQUENCE
SAVE MESSAGE NUMBER IN
SOURCE IN PREFIX, ADD ONE
PREFIX AND RESTORE
IN TERMTABLE
GETEND
rG2
GET THE

ADDRESS OF THE
RETURN BUFFER

QUEUE
~H2
INDICATE SET PRIORITY
DUMMY BRB IN BIT ON IN
DEB FOR MS MESSAGE
PROCESS QUEUE @ PREFIX
SETSIO )
-J3
ADJUST SAVED
RETURN
REGISTER
~K3
REINITIALIZE
1OB FOR THE
DISK

YES

*FROM DISK 1/O

&)

ROUTINE
DISKORD
A4TIS
CHECKPOINT

IN DISK
QUEUE

RESET START
POINTER FOR
CHAIN

&) o

NEW
C4 ELEMENT C5ELEMENT
IN CHAIN LESS«_YES YES
< LESS THAN
THAN CURRENT
P ELEMENT IN
/ “CHAIN”
NO NO
CSCAN
~D4

ENABLE NEXT
ELEMENT TO
BE ACCESSED

! STARTORD

rE4

THIS CODE INSERTS
THE DISK ROUTINE
INTO PROPER
POSITION IN DISK
1/O QUEUE

ACCESS THE
FIRST (NEXT)
ELEMENT IN
THE CHAIN

NOCPNT

F4 |5
THIS THE LAST
ELEMENT

YES

G4

ELEMENT
IN CHAIN HAS
HIGH PRIORITY

NEW
R4 e LEmeNT
&HAS HIGH
PRICRITY

NO

NEW
J4 ELEMENT

LESS THAN
CURRENT
ADDR.

NO

YES

K4
ELEMENT IN
& CHAIN LESS

THAN CURRENT
\ADDR”

NO

YES

QTAM Charts 195



Chart D2.

196

Disk 1/0 Routine

DISKENQ

Al
{ ENTER »

B1
SET UP BASE FOR
THIS ROUTINE
AND SET QKEY IN
DISK 1/O QCB TO
NOT WAITING

ST THe DISK
BEEN BUSY
WITH 1/Q

~D1

REMOVE BRB OR
BUFFER FROM
READY QUEUE

El was
2ND ITEM
REMOVED

DISKSIO
Fi
GET POINTER
TO FIRST ITEM
IN DISK 1/O
QCB'S ELEMENT

Gi

CHECK-POINT
ELEMENT

H1
REMOVE CHECK
POINT ELE AND
SET HIGH
PRIORITY IN
CHECK POINT ELE

TO DISK END
APPENDAGE

TO DISK END
APPENDAGE

Is
G2 ELEMENT

SET QKEY IN
DISK 1/O QCB
TO'1'TO
INDICATE DISK
IDLE

YE

ACTREQ e

A3

SET UP WRITE
CODE FOR CCW
AND GET SEG-
MENT RELATIVE
RECORD NUMBER

B3“DOES
THIS HAVE
EC PRIORITY,

C3° Cp
IN DISK

1/O QUEUE

S

—D3

SAVE LAST
NON-EC
PRIORITY

OPCHECK * |

CHAIN

TO DISK END
APPENDAGE

FES
SET HIGH
PRICRITY

PN
THIS A BRB
F3 ALREADY
CONTAINING
“DISK ADDR”

YES

G3
REMOVE FROM
QCB ELEMENT
CHAIN AND GET
BUFFER FROM
AVAILABLE BUFFER
QUEUE

H3 WAS A
BUFFER
AVAILABLE

—J3
INSERT BUFFER
INTO DISK /O
QCB ELEMENT
CHAIN AND SAVE
BRB ADDR IN ECB

~K3

SET HI PRIORITY
IN NEW BUFFER
AND SET UP READ
CODE FOR CCW

WRITE
~A4
STORE COMMAND A5ENTRY
CODE AND BUFFER NO _~fHROUGH DISK
ADDRESS IN DISK END
ccw APPENDA GE
_I__ YES
~B4
CONVERT
RELATIVE RECORD g5~ I
NUMBER TO TTR THE NO NO
AND GET RESTART SW
ADDRESS OF SET
BPAM ROUTINE
! YES BT
c5 > J3
L POSTSIO
~C4 cs
BPAM
GET ADDRESS OF
LINK TO BPAM THE LPS QUEUE
TO CONVERTTTR AND SIO ELE
TO ABSOLUTE
~D4

RESTORE BASE FOR
THIS ROUTINE
AND IECKQQO!

E4
SPACE LEFT
ON DISK

SET REQUEST
ABEND PRIORITY

E5

GET COMM
REGION &
TCB PTR

MSG

VALIDTTR ( )

CONTROL

~G4 : —G5
GET ADDRESS OF EXECUTE
THE UCB FOR THIS |ag- CHANNEL
QPERATION PROGRAM
H5
r
SET SVC
ENTRY
OPERATION FIAG

SET THE NO
RESTART
SWITCH

TESTAPP

K4 was
ENTRY VIA
AN SVC




Chart DA. Put Message Routine

ENTRY FROM BUFFER-
BRB ROUTINE IN

IGGOISNE IGCOIING  Noteaper

A3
INITIALIZE
Al REGISTERS WITH TURN OFF 5 ,LS Trgg
PUT MESSAGE TERMTBL ADDRESS TERM ERROR SEGMENT
AND ADDRESS OF FLAG
LPS QUEUE

—B1

B2 B5
SAVE REGISTERS GET ADDRESS OF
14-12, SAVE THE GET SIZE OF YES B3 ISTHIS YES FIRST TERM
WORKAREA WORKAREA AND A NEW PUT OTHER ERRORS ENTRY, SIZE OF
ADDRESS AND SET SAVE WORKAREA ENTRY, ADDR OF
NEW PUT REQUEST] ADDRESS PUT TERM NAME
SKIP1 i
TERMLOOP
~Cl ~C3
['{'E‘glsf*T'EléEW”H GET BUFFER SIZE
1 GET LCB ADDRESS
THE DEB ADDRESS —P@ PUT LCB ADDRESS TERM ENTRY
AND ADDRESS OF IN PREFIX, ZERO FOUND
THE LPS QUEUE SOURCE KEY
RESTART i
— D1 D2 ~D4 D5
F POt ZERO SEQUENCE D3
ERO SEQU IS ’
D1 REQUEST A NUMBERS AND THIS A TEXT MY ES fﬁg{gim N JINCREMENT
NEW SCAN POINTER SEGMENT PREFIX POINTER
BUFFER IN PREFIX
T—El —E2
QWAIT &
COUNT
ﬂ?vlvr FOR IDLE LAST ENTRY
Py CHARACTERS
POS TBUFF FOUND
—Fl —F3
GET ADDRESS F2 LOAD TEMPORARY
OF THE AN PRIORITY BYTE
DESTINATION IN LCB WITH
QUEUE USER BLANK
Gt G2 ~G3
QPOST LOAD TEMPORARY] LOAD
POST PRIORITY BYTE DESTINATION
BUFFER TO IN LCB WITH KEY AND
DESTINATION PRIORITY BYTE STATUS BITS
QUEUE FROM WORKAREA IN PREFIX
KLGN
pr—H1 CKLe H4—————
QWAIT B
WAIT FOR BRB YES USE BUFFER
TO BE RE- LARGER THAN LENGTH
MOVED FROM BUFFER FOR MOVE
READY QUEUE
MOVE
J3 r~J4 35—
n7us
YES . THERE MORE USE SIZE OF MOVE DATA SAVE REFERENCES
‘_<DATA IN THQ WORKAREA FOR FROM WORKAREA TO WORKAREA
WORKAREA MOVE TO BUFFER IF MORE DATA
NO
‘ SKIP
RETURN [K1 K4 kS
K2 STORE CORRECT SAVE REGISTERS
RESTORE 2 RETURN COUNT IN FOR RETURN TO
REGISTERS 14-1 MESSAGE PREFIX IGGOIING

&)

QTAM Charts 197



Chart DB.

Distribution List

DB
Al

IFCKDLQT

rAl

GET ADDRESS
OF LCB AND
DESTINATION
KEY FROM
MESSAGE PREFIX

> 0o -

—

DLTEST
rBi
STORE
DESTINATION
KEY IN LCB AS
OFFSET TO NEXT
ENTRY IN LIST

Is
CTTHERE AN

Routine

-C2

LOAD THE
DESTINATION

ENTRY IN THE D>
TERMINA 4
TABLE

YES

rD1

GET ADDRESS
OF TERMTBL
ENTRY

—El

PUT QCB ADDRESS
FOR ENTRY INTO —
THE LCB

198

KEY IN THE
PREFIX

rD2

PUT QCB ADDRESS
FOR ENTRY INTO
ECB OF BUFFER

’-EZ
.GET ADDRESS

OF THE READY
QUEUE

F2
FIRST TIME IN
LIST
RQUTINE
N

NO

P
IGGOI9NG DGA3

GO TO ENDINSRT
ROUTINE

i

EXIT TO PRIORITY

IN IECKQQO!?

DLRET
A4

DB
FROM CLEANUP ROUTINE

IN IGGOI9NG

GET OFFSET FROM
THE LCB TO THE
NEXT ENTRY IN
DISTRIBUTION

B4
DISTRIBUTION SO
LIST ENTRY,

rC4
SAVE HEADER FOR
INSERTION INTO
QUEUE OF THE
NEXT
DESTINATION

rD4

BUMP OFFSET TO
THE NEXT ENTRY

IN THE LIST
DLTEST
‘E4
STORE
DESTINATION
D | KEY IN LCB AS
OFFSET TO NEXT
U | ENTRY IN LIST
P
L
I F4-THERE AN
ENTRY IN THE
c TERMINAL
TABLE.
A YES
T
G4
E
GET ADDRESS
OF TERMTBL
ENTRY
o
~Ha Y R—
E IGGOI9NG DDD4
PUT QCB GO TO RECALL
ADDRESS FOR
ROUTINE TO
ENTRY INTO
THE LCB RETRIEVE
HEADER
rJ5
PUT
DESTINATION
IN PREFIX AND

TURN OFF THE 2
BIT IN LCBSTATE

K5
GET THE
ADDRESS OF THE
BUFFER CLEANUP
ROUTINE

&)




Chart DC. End of Address Routine

FROM MESSAGE
TYPE ROUTINE

IECKEOAD
Al
GET OFFSET TO
NEXT
DESTINATION IN
THE HEADER

— B1
STORE THE
OFFSET IN THE
LCB MULTIPLE
ROUTING
INDICATOR

rCl
GET ADDRESS
OF SKIP TO
CHARACTER
SET ROUTINE

~D2—
IGGOI9NG DGA3

P1s tHis
< THE FIRST

YES GO TO
ENDINSRT
TIME IN EOA
ROUTINE ROUTINE

NO

Xt To
JECKSKPS

IN IGGOIING
A4"HAS

( MULTIPLE
ROUTING BEEN
“SPECIFIED”

YES

—B4

SAVE HEADER
FOR INSERTION
INTO QUEUE OF
THE NEXT
DESTINATION

—C4
IGGOI9NG DDD4
GO TO RECALL

ROUTINE TO
RETRIEVE HEADER

—D4

CLEAR LCB ERROR
INDICATOR AND
DISTRIBUTION
LIST POINTER

—E4
RESET SCAN
POINTER TO
OFFSET OF NEXT
DESTINATION

—F4

CLEAR THE
MULTIPLE
ROUTING
POINTER

rG4
RELOAD ADDRESS
SAVED IN ROUTE
ROUTINE TO
RETURN TO EOA
MACRO

—H4

GET ADDRESS
OF ROUTE
ROUTINE FOR
EXIT

&)

FROM CLEANUP ROUTINE

QTAM Charts

199



200

Chart DD.

IECKPR
Al
GET THE
ADDRESS OF
DESTINATION
QUEUE FOR
POSTING

B1

IS THIS
A TEXT
SEGMENT

YES

NO

Cl

GET THE SCAN
POINTER
OFFSET AND
STORE IT IN THE
HEADER PREFIX

IECKRC
A2

SAVE REGISTERS
14-3 AND SET

THE RECALL CODE
IN LCBSTATE

Buffer Cleanup and Recall Routine

CLEANUP ROUTINE RECALL ROUTINE
ENTRY POINT ENTRY POINT

RCLOOP
—A3

OF THE
AVAILABLE
BUFFER QUEUE
FOR POSTING

GET THE ADDRESS

PRTEXT
D1

WAS IECKRC
JHE ROUTINE
ENTRY POINT

RECEIVING
YES

F1

SET THE
CLEANUP AND
INITIATE CODES
IN LCBSTATE

[ |ADDITIONAL-CCW|

rcposT |
—G1

GET THE ADDRESS
OF THE FIRST BRB
IN THE BRB-RING

H1

MESSAGE
QGMENT IN
THE FIRST

JI7IS

THIS RECALLN_ vES

THE RESULT OF
A POLLING
ERROR

NO

YES

RLSINS
—E2:

REMOVE THE
INSERT BLOCK
FROM THE
BRB-RING

~F2
GET THE ADDRESS
OF THE

[QUEUE FOR
POSTING

ves 3 NEXT

P

—B83

PRICRITY FOR
POSTING

SET THE BUFFER

M arost

POST TO THE
QUEUE
SPECIFIED
PREVIOUSLY

—D3

ACCESS THE

IT ADDRESSABLE
AND SAVE THE
ADDRESS IN LCB

NEXT BRB, MAKE

N

ELEMENT AN
INSERT
BLOCK

NO

F3

GET THE
ADDRESS OF THE
NEXT BRB

G337 HAS
A BUFFER
BEEN ASSIGNED.

TO n-V
BRE.

YES

H3
SET NO BUFFER
SSIGNED SWITCH
AND GET ADDRESS
OF THE START OF
THE BUFFER

NO

ALLGONE

— A5

HEADER FROM DISK

55
D4
P47 s

NQUEUE”
NO

—E4

SAVE REGISTERS
15-3 FROM THE

<MESSAGE IN AN
EXPEDITE PROCESS

SET SWITCH
INDICATING BRB
NOT WAITING
FOR A BUFFER

—BS

MAKE THE
NEXT BRB
ADDRESSABLE

D5

YES

&)

DiSK ADDRESS

1S THE

C5
ENTRY POINT FROM IECKDLQT vES ~BRB IN THE
OR JECKEOQAD TO RETRIEVE BUFFER REQUEST
QUEUE

CHANGE THE
BRB FIELD TO
STOP FURTHER
ASSIGNMENTS

E5 1S THE
YES BRB IN THE

NO

OF NEXT ROUTINE

CALLING BUFFER REQUEST:
ROUTINE QUEUE
B fe
RCACT
—F4
INDICATE BOTH F5 IS THEN,
RECALL AND YES_~RECALL CODE
CLEANUP IN ‘——< SET IN )
LCBSTATE AND LCBSTATE:
ACCESS A BRB @ N
NO
ENDTL
- G4 . G5
MAKE HEADER GET THE ADDRESS

AVAILABLE AND IN QUEUE
SET DISK READ ESTABLISHED BY
INDICATOR ENDINSRT
— H4 — H5
NEXT RTN

GET ADDRESS OF
DISK I/O QUEUE
FOR POSTING

EOA OR

MODE RTN

&/

LINK TO LIST,

CONVENTIONAL




Chart DE.

Buffer Cleanup and Recall Routine (Continued)

SPECIAL RETURN
FROM STARTUP
FOR RECALL

GET ADDRESS OF
LAST BRB FOR
WHICH A BUFFER
WAS ASSIGNED

AND CLEANUP\NO
&ser UP IN
LCBSTATE
YES

rC3

GET ADDRESS OF
FIRST BRB IN

@ RING

RCEXT
D3

RESET BRB
ADDRESS IN
THE LCB

—E3

SET DUPLICATE
HEADER
INDICATOR IN
PREFIX

—F3
RESET CLEANUP
AND RECALL
FLAGS IN LCB
AND BLANK LCB
PRIORITY

rG3

RESTORE
REGISTERS 14-3

H3
EXIT TO

CALLING
ROUTINE

QTAM Charts

201



Chart DF.

202

Free BRB Routine

LINEFREE
A3
CLEAR SWITCH
INDICATING BRB
1S ACTIVE AND

GET ADDRESS OF
NEXT BRB

REQUEST
PENDING IN
PREVIOUS

GET THE ADDRESS
OF THE INACTIVE
BUFFER REQUEST
QUEUE FOR
POSTING

D!
MAKE THE BRB
ADDRESSABLE
AND ESTABLISH
PRIORITY FOR
POSTING

HAVE ALL
BRB'S BEEN
FREED,

C’X
GET THE LCB
ADDRESS FOR
FREEING LINE BY"
POSTING TO
ITSELF

SPECIAL

H3
FLAG FOR SIO
CC=3

POSTSU

J3

ESTABLISH
PRIORITY FOR
POSTING

2

QPOST
FREE LINE OR
POST HEADER
TO REQUEST T
DISK QUEUE

&




Chart DG.

End Insert Routine

ENDINSRT

r A3

GET THE ADDRESS
OF THE START OF
THE QUEUE OF
ROUTINES

83

GET THE ADDRESS
OF THE NEXT
ROUTINE iN THE
QUEUE

D3

INSERT NEW
ROUTINE INTO
QUEUE AND PUT
PRIORITY [N THE
ADDRESS

rE3
RESET RETURN
ADDRESS TO THE
BRANCH THAT
ENTERED THIS
ROUTINE

~F3
OVERLAY BRANCH
ADDRESS IN
CALLING ROUTINg
WITH CONSTANT
IN THAT ROUTINE

G3
OVERLAY THE
CONSTANT WITH
MRRE THUS
COMPLETING THE
QUEUE

H3—
RETURN TO
THE CALLING
ROUTINE

QTAM Charts

203



Chart Did. Receive Scheduler Routine
RCVSCH
B2 83 B5
RESET LCB "
GET LCB ADDRESS POINTER TO RESET POINTER
AND CLEAR FIRST THE START OF AUTOPOLL FOR
BYTE THE POLLING LINE AUTOPOLL
LIST
RSA y
rC2 RSC —C5:
GET THE ADDRESS C3'HAS A
OF THE POLLING | y¢5 TERMINAL N\ YES RESET LCB
LIST FROM THE BEEN POLLED PTR
DCB
Q DELAY
IS
D2THIS AN
CTIVE POLLIN
NOCLOSE
E5
EXIT TO RETURN
IN IECKQQO!
CLOSELP
F2 F3 —F4
SET LINE LINK SEND
RECEIVING SCHEDULER REMOVE THE
CODE IN CHAIN BACK LCB FROM THE
LCBSTATE INTO LCB READY QUEUE
WTTARCVS

G2
ISITA
WTTA LINE

H2
GET THE ADDRESS
OF THE CURRENT
ACTIVE ENTRY

IN THE POLLING
LIST

1
IS1T
FIRST TIME

Dl
Al

ZERO RECEIVING
CODE IN LCB
AND SAVE LCB
ADDRESS OF LINE

204

G4
ﬁmr QATTACH
ADDRESS IN
QSAVE AND STORE
LCB ADDRESS IN
FULL STCB

Hi4—
BRANCH TO
EXIT INTERFACE
IN [ECKQQO!




Chart DI. BRB Ring Routine

RQCONSTR

B1
CLOSDOWN

TO POLL ON
DIAL LINI

YES

OUTONLY
~Di

A2

SAVE POINTER
TO SEND
SCHED

REMOVEOC

REMOVE SEND
SCHED & SET

UP TO SCHEDULE
y THE LINE TO
SEND

ACCESS QCB
FOR TERMINAL

ENDOCQ

F-El

ACCESS DEB
FOR CALL
QUEUE

E2'source
IDENTIFIED

( ) LOOPOCQ

I

GET NEXT ENTRY
IN CALL QUEUE

HI
CALL-OUT
PERMITTED

QCBRLN
HIGHER THAN
LCB RLN

NEW CA
L cLoser THI;I:M

PREVIOUS CALL

G2

INDICATE
AUTO CALL

TURN OFF

K3
CLOSE IN

DIAL CODES

PROGRESS

QTAM Charts

205



e Chart DI1.

206

ALOOP

BRB Ring Routine (Continued)

RQCONST I

—Al

MAKE LCB AN
APPARENT STCB
AND GET ADDRESS
OF THE INACTIVE
BRB QCB

—B81
SET THE READ
INITIAL
OPERATION CODE
IN LCB FOR
BTAM USE

rCi
GET FIRST BRB
OF INACTIVE
BRB QUEUE
FROM QCB

—DI1

MAKE NEXT BRB
THE HEAD OF
THE CHAIN

RQSETUP
—E2
START BUILDING

LCB POINTER IN
BRB AND GET BRB
COUNT

CCW BY STORING

~F2

INSERT TIC
ADDRESS AND OP
CODE IN BRB AND
RESET POINTER
TO PREVIOUS BRB

G2 FIRST
BRB

NOTFIRST

rG3

SET BRB COUNT
AND MAKE BRB

—H2

STORE FIRST BRB
POINTER IN LCB
AND ACCESS DCB
FROM LCB

—J2

GET THE NUMBER
OF BRB'S TO BE
ASS{GNED

[

UNADDRESSABLE
TO INDICATE NO
BUFFER ASSIGNED

3

ARE MORE
BRB'S TO BE
SSIGNED,

—B4

REMOVE LCB
FROM READY
—»{ QUEUE AND GET
POINTER TO
FIRST BRB

—C4
MOVE TIC
ADDRESS INTO
FIRST BRB
COMPLETING
BRB RING

—D4
SET HIGH
PRIORITY FOR
BUFFER REQUEST
AND GET ACTIVE
BFR REQUEST QCB

E47 IS
RECEIVE YES
CODE SET IN

GOREQ
— E5.

CLEAR LCB
ERROR STATUS

LCB

AND TERMINAL
TABLE POINTER

DISK ADDRESS
AND SET DISK
OPERATION CODE

—F4 —FS
STORE SEGMENT CLEAR LOW
ADDRESS IN LCB ORDER BITS IN
FOR SEND LCBSTART
SCHEDULER

G4 -G53

INITIALIZE LCB

AND PREFIX WITH SET THE LCB

POINTER TO AN
APPARENT BRB

—H4.
CANCEL HIGH
PRICRITY FOR

BUFFER REQUEST
AND SET WRITE
INITIAL IN LCB

—H5

SET THE RECALL
ADDRESS IN
THE LCB

—J4

GET THE ADDRESS
OF THE DISK

/O QCB
FOR POSTING




Chart DJ.

End of Poll Time Delay Routine

DELAY

YES

rAl

RESET TERMINAL
POLLED SWITCH
USED BY RCV
SCHEDULER

—B1

GET THE
ADDRESS OF THE
READY QUEUE

F1

TIMEEND

IS TIME
QUEUE EMPTY,

H1

TIME

GET CURRENT
TIME OF DAY

1

—C2

MOVE LCB LINK
ADDRESS TO
NEXT WAITING
SUBTASK FIELD
IN LCB

RESUME
C3
CLEAR ALL BUT
READY BIT IN
TIME QCB AND
REMOVE LCB
FROM TIME QUEUE

CPENTRY
—D2

GET POLLING
INTERVAL FROM
THE DCB AND
GENERATE TWO
DECIMAL PLACES

TIME

GET CURRENT

P35 1A
2740 MOD.
2ECB?

NO2740

E3
LINE OR
CH. PT. LCB

TIME OF DAY
~F2 F3
ADD TIME OF DAY/ GET THE
TO POLLING ADDRESS OF THE
INTERVAL AND RECEIVE
STORE RESULT SCHEDULER STCB
IN LCB FROM THE LCB
TIMELOOP
—G2
FIND POSITION G3
IN TIME QUEUE 1S THE NO
FOR LCB FOR LINE EREE
INTERRUPT
PRIORITY
YES
TIMEINS
—H2 H3
LINK THE LCB
INTO THE TOP OF
PUT LCB
T:E TI(;‘AEIEUEUE THE READY QUEUE
TO ACTIVATE
THE LINE
STIMER Eg
2 -
HAS TIME
ELAPSED FOR

FIRST LCB

K2
STIMER

SET TIMER FOR
FIRST NON-
EXPIRED LCB

ENTRY POINT FROM THE

SUPERVISOR WHEN

AN INTERRUPT OCCURS

A5

( TimMeexiT )

—~BS

GET THE ADDRESS
OF THE TIME
QUEUE QCB FOR
POSTING

—C5
SET CONDITION
CODE AND
INITIALIZE TO
PUT TIME QUEUE
ON READY QUEUE

—D5
GET THE ADDRESS
OF THE LINE PCI
APPENDAGE TO
UTILIZE COMMON
CODE

3

QTAM Charts

207



Chart DK.

208

Send Scheduler Routine

Al
‘ ENQUEUE }

THIS LINKS

B1

GET THE
ADDRESS OF THE
DESTINATION

DASD DCB

cl
WAITING FOR
A FREE LINE

DIsK
IGGOI9NG DXBI

TO A ROUTINE
WHICH CAUSEY
THE BUFFER

TO BE WRITTEN

ON THE DISK.

LINK TO SCREEN
IN DESTINATION
DASD ROUTINE

ET'COMPLETE
MESSAGE

GET DEB AND
DIAL OUT CALL
ADDRESS AND
DCB ADDRESS
FROM THE QCB

ROUTINE WAS
ENTERED WITH A BUFFER
TO BE WRITTEN ON THE

SENDSCH
Y.y S
GET L.CB ADDRESS
IN LCBREG
INDICATE
TERMINAL IS
CONNECTED

B2 ISITA

DK

MSGTEST

B4

GET THE ADDR OF
THE FIRST LCB ON

2740 MODEL 2

IS
IT ON
DELAY QUEUE

TIME
DELAY
NEEDED

c3

D2 |

INDICATE ECB SET UP POINTER
ON DELAY TO LINK SEND
S&Egﬁq PUT SCHEDULER

IN DUM
READY QUEUE MY acs
{52

SET UP POINTERS
FOR TIME YEs F3 ST
FOR T CLOSEDOWN
ROUTINE

XUNAVAIL
G3

GET ADDR OF
SSUNAV

YES

YES P4 pRIORITY

» THE CHAIN FOR

THE SOURCE
TERMINAL

C4

CLEAR THE
INSOURCE CODE
IN LOW ORDER
BIT OF THE
ADDRESS

ARE

MSGS COMING
IN?
NO
E4 E5
REMOVE
PUT MESSAGE INSOURCE CHAIN
INTO LCB FOR CODE FROM THE
DESTINATION

DECHAINED LCB

PREPARE

{es
STORE LCB ADDR
54 INITIATE FOR SOURCE
OR SEND BITS INTO LCB FOR
ON IN DESTINATION
e
NO
Ha Hs
CLEAR LCB i
STATUS SET STATUS
INFORMATION CODE IN
IN CURRENT LCBSTATE
LcB
35

NO J4PARTIALL

ENQUEUED
MESSAGE

YES

-

K4.

UPDATE ADDR OF
CURRENT SEG-
MENT IN LCB AND|
REMOVE LCB FROM
SOURCE CHAIN

GET OR SEND




Chart DK1.

DIALLOOP

GET THE ADDRESS
OF THE LCB FOR
THE LINE

Cl1
WTTA LINE

F1 IS
LINE RECEIVING

Gl

INCREMENT THE
LINE NUMBER
BY ONE

YES _ THIS TERMINAL
) (QCB) HAVE

AUTOCALL

NO

J1
IS LINE FREE

YES

Send Scheduler Routine (Continued)

A3
’— SET BIT IN
LCBINCAM TO
MAKE LINE
UNAVAILABLE
| HIOLOOP ™~
B2 rB3
HALTIO
SET HIO FLAG
CLEAR SENSE CLEAR ENABLE
BYTE
NO

€2l PREPARE

YES,

4

COMPLETE

D2” SENSE
COMMAND

E2° HIO
NECESSARY

A

NONDIAL

SEND
PRIORITY

SET LCBINCAM
TO INDICATE
LINE IS TRYING
TO SEND

NO

LNKLCB E

F2
[
PREPARE TO LINK

STCB INTO LCB
CHAIN

F3
IS LINE FREE

PUT
DESTINATION
LCB AT HEAD OF
READY QUEUE

Is
FYAUTOPOLL
LINE IN RCY

CHANGE THE TIC
AFTER POLL CCW
TO A NOP

Y

QTAM Charts

209



Chart DL. Active Buffer Request Routine

BREQENQ

BoEd
B3 EQUEST
QAVE HIGH
PRIORITY

GO TO PRICRITY
YES

SEARCH SUBROUTINE
IN' [ECKQQO!T

—C3

GET THE ADDRESS
OF THE FIRST
BUFFER IN THE
AVAILABLE
BUFFER QUEUE

—D3.
REMOVE THE
FIRST BUFFER
FROM THE
AVAILABLE
BUFFER QUEUE

GO TO PRIORITY
SEARCH SUBROUTINE
IN [ECKQQO1

SAVE THE BRB
ADDRESS AND
GET THE ADDRESS
OF THE BUFFER
IN FREG

~G3.
POINT PARAMETER
REGISTER QREG
TO THE
AVAILABLE
BUFFER QCB

GO TO BUFFER
w BRB ROUTINE

210



Chart DM. Available Buffer Routine

BFRREQ
A2

ACCESS FIRST
BRB IN ACTIVE
BUFFER REQUEST
QUEUE

82715 A BRB

AVAILABLE GO TO QUEUE

INSERT ROUTINE
IN [ECKQQ!

~C3

GET EXCESS

2’DoEs THE COUNT OF

BRB HAVE HIGH BUFFERS OVER
PRIORITY, BRB'S AND

DECREMENT BY 1

YES

D4

GET THE ADDRESS
OF THE INACTIVE
BUFFER REQUEST
QUEUE

D3" ARE
THERE MORE

BRB'S THAN

BUFFERS,

NO
AVSZLOOP
E4;
GET THE ADDRESS
OF THE NEXT BRB
IN THE INACTIVE
BUFFER REQUEST
QUEUE

F4"IS A BRB
IN THE QUEUE

NO

GO TO QUEUE
INSERT ROUTINE
IN IECKQQOT

G4

DECREMENT THE
THE COUNT OF
EXCESS BRB'S

H4” 1S THE
NO " EXCESS
‘ EXHAUSTED

YES

LOWPR
FM
RESTORE
DECREMENTED
EXCESS COUNT
OF BUFFERS

BFRSCH
K4
REMOVE BRB
FROM TOP OF
ACTIVE BUFFER
REQUEST QUEUE

GO TO BUFFER

w BRB ROUTINE

QTAM Charts 211



212

Chart Dn.

&)

Al

POINT TREG TO
THE DISK I/O
QUEUE

Buffer BRB Routine

POINT TREG TO
THE INACTIVE

BUFFER REQUEST
QUEUE

DISCARD l
A4

DISKFNT
—B4

PUT CONTENTS

POINT TREG
TO THE BRB

rD1
MAKE BRB A QCB
BY PUTTING END
OF QUEUE
ELEMENT ADDRESS)
IN FIRST WORD

ET IS
THIS A PUT
OPERATION

F1
GET DCB ADDRESS
FROM THE DEB
AND GET ENTRY
AND RETURN
POINTS FOR PUT

Gl—7
EXIT TO THE
PUT ROUTINE

IBUF

NOTPUT
E2

| FROM THE BRB
INTO LCBREG

GET LCB ADDRESS

G2 FRsT
BRB IN THE
RING

rH2
STORE LCB
POINTER IN

G3
1S LINE
RECEIVING

H3

REPLACE SEGMENT]
SIZE IN BUFFER
WITH TOTAL
BUFFER SI1ZE

GO TO INTERIM
LPS ROUTINE
IN IGGOI9NG

&)

BUFFER AND SET je— GET POINTER
MSTATUS FOR TO FIRST BRB
ACTIVATE

r-Jz

SET BRB STATUS
CODE TO IDLE

OF TREG IN THE
BRB

rC4

PLACE THE BRB
AT THE TOP OF
THE READY
QUEUE

D4 HAS
BRB BEEN |
DISK QUEUE
BEFORE,

YES
GO TO INSERT

SUBROUTINE IN
IECKQQO1

NO

RQIDLE
—J4

| SET THE IDLE
FLAG IN THE BRB

D5

CHANGE MSTIC
TO BE USED IN
DiSK QUEUE

GO TO AVAILABLE
BUFFER ROUTINE

GO TO AVAILABLE
BUFFER ROUTINE



Chart DO.

FROM
DPD3

ADDBUF

CCW THE 2ND
IN SERIES

Bl

CHAIN THE FIRST
TO THE SECOND
WITH A TIC

LPS Control Routine

IECKSU |:
—A2
GET THE ADDRESS

OF THE LPS
QUEUE

.

TB QWAIT

WAIT FOR
NEXT EVENT
IN LPS QUEUE

C2 " WAS
STARTIO

< ELEMENT

RETURNED

NO

NOTSIO

D2
CLOSE OUT
ELEMENT
RETURNED,

NOTCLOSE
E2

GET LCB ADDRESS
FROM BUFFER

CHECKPOINT
ELEMENT

rG2

GET THE ADDRESS
OF THE USER'S
LPS PROGRAM

—H2
SET EOSREG TO
END-OF-
SEGMENT
ADDRESS

—J2
GET APPLICABLE
TERMINAL TABLE
ENTRY AND
INITIALIZE THE
SCAN POINTER

EXCP

START DISK
OPERATION

ABEND
REQUESTED

—D3

RESTORE THE
USER'S SAVE
AREA ADDRESS

E3—oI
( RETURN TO USER

QPOST

SvVC 67

I

PN
B waS "
SHOULD

BUFFER BE
ROUTED TO
ACTIVATE

YES

5

SET SERVICED
CODE IN
MSTATUS

K4
EXIT TO USER'S
LPS PROGRAM

&)

QTAM Charts

213



ACTRCV

~A5
INDICATE HEADER
IN MESSAGE
PREFIX AND GET
EXPENSION
COUNT FROM
USER

_B5
STORE HEADER
EXPANSION
COUNT IN PREFIX
AND INSERT IDLES
AFTER PREFIX

~C5.
ZERO SEQUENCE
NUMBER AND GET
ADDRESS OF
DESTINATION
ERROR QUEUE

~D5
GET THE ADDRESS
OF THE CURRENT
ACTIVE POLLING

Chart DP. Activate Routine
IECKACT i STCLCCW @ .
i A3 BTAMRDT
GET START OF SAVE THE ADDRESS
TEXT ADDRESS OF Th st 3R INITIAL OP
FOR CURRENT ICH CODE SET IN
BUFFER BUFFER WAS
ASSIGNED
—~B1 B3
CLEAR REROUTE FTORE DATE B4 WRITE
AND CANCEL BITS COUNT [N FIRST NO  INITIAL OP
AND GET BRB BRB/CCW COUNT CODE SET IN
ADDRESS FOR FIELD LCB FOR
CURRENT BUFFER ENCOUNTERED, BTAM
YES
INSBF
_Cl _Cc2
PUT TEXT START MOVE BRB/CCW 3
ADDRESS AND ADDRESS FOR PROGRAM 4 it
'READ' CHANNEL NEW BUFFER INTO! CHECK BUT RASE OR LINE
COMMAND CODE 10B AND GET R &
INTO BRB/CCW OB ADDRESS
YES
Q2260
D2 D4
DY s EXCP 1S CLEAR POLLING
NO_~ LINE SEND RESTART THE NO BTAM AND ADDRESSING|
BIT ON IN CHANNEL INTERFACE ERROR
LCB PROGRAM REQUIRED INDICATOR
IN LCBINCAM
El BTAMRDT
PUT "WRITE" Y E3
CHANNEL SET IN DECB B4 s
COMMAND CODE ADDRESSING NO
IN BRB CCW AND AND POLLING TH'?_,’;IED'AL
SET SERVICED ENTRIES
BIT IN_PREFIX
YES
STSCK )
g s ACCESS NEXT BTAMC2
THIS AN YES BLOCK FROM TIC
INSERT BLOCK ADDRESS AND
RATHER THAN' ACCESS NEXT
N4 Bre” BLOCK'S BUFFER DISCONNECTED
NO YES
NOTINSRT XLOOP -
Gl G2 —G3 G4
SET CHAIN DATA CAUSE BUFF TO BE
A
AND PCI FLAGS nocEss THE POSTED TO AVAIL SET WRITE
IN CURRENT hise TL(B)OOCK BUFF QUEUE AND CONVERSATIONAL
BRB/CCW P CLEAR DIAL OUT OP CODE IN LCB
SwiteH FOR BTAM
H3 BTAMT
1S
H2 H4 IS
LO<OF MSG FLAC NO “pionk N GET THE ADDRESS SEND BIT
ON IN PREFIX. CINSERT OF BTAM'S READ/
BLOCK WRITE ROUTINE
YES he
N ~J2 13
GET THE ADDRESS [ 1ecoinz -
TURN ERR o
CHAINING OF THE NEXT LINK TO BTAM ISIEITLCB ?gé:?HEE
FLAG OFF BLOCK AND ITS READ/WRITE USER
BUFFER RTN
— K2 K3
ADJUST THE SAVE THE e
BUFFER ADDRESS MESSAGE
TO THE START STARTING RETURN TO THE
OF THE PREFIX OFFSET IN USER'S LPS
THE LCB ROUTINE

214

&

LIST ENTRY FROM
BTAMC

THE LCB

—E5

STORE ADDRESS
OF POLLING OR
ADDRESSING

CHARACTERS IN
BTAM'S DECB

BTAMENT

—F5

BUILD THE DECB
FOR ENTRY
INTO BTAM

L,

7 1S
THIS A READ
INITIAL

K5

SET READ
CONTINUE
OP CODE




Chart DQ.

A1 ENTRY
FOR SAD/

Q ENABLE
COMMAND

BI

|YES

SET FLAGS FOR
ERP & INDICATE
ERP IN CONTROL

“PROGRAM”

YES

B2

SET DISABLE
RETURN FOR ERP
AND SET FOR
ERP TO HANDLE
BREAK

Cl—
( RETURN TO 10S )

NOTSAD |
D1

&

D2
GET THE QTAM
CCW POINTER
SAVE REGS 10-13 RSN
CCW POINTER
LINEX
et ~E2
ADJUST TO TURN OFF PCI )
START OF LCB FLAG IN QTAM'S
INITIAL CCW
~F2
MOVE THE TIC
1
F TERMINAL COMMAND AND
TEST ACTIVE FLAGS FROM
QTAM TO BTAM
(e

Gi

SET SWITCH FOR
RCV SCHEDULER

IS
N THIS A
WRITE NOT
ACK

GET ADDRESS OF
STARTING CCW

G2 IS
QTAM CCW
FROM AN

INSERT BLOCK

YES

rH2

GET THE ADDRESS
OF WRITE IDLES
CCW AND STORE
AS TIC ADDRESS
IN BTAM'S CCW*

rJ2
MOVE THE TIC
COMMAND CODE
INTO THE BTAM
ccw

CHART DQ. LINE SIO APPENDAGE RTN

Line SIO Appendage Routine

NOSTINS

B3

SET PCI FLAG IN
BTAM'S CCW AND
CLEAR SWITCH
FOR REQUEST

OK

C3|/STH15

NO A 'READ
INITIAL' CHNL
PROGRAM

YES

D3

GET ADDRESS
OF NEXT CCW

G3

SET PROG
CHECK BIT

ISAREAD

J3
OUTGOING
MESSAGES IN
NQUEUE”

POLLING
ERROR

A4
TURN OFF DON'T
DIALFLAG

B4

A5

NOP THE DISABLE

DISABLEC

B4ESTART TP

OP CODE IN

2ND BTAM
Seew”

C4 is THIS
AN AUTOPOLL

FIRST

D4 S1O AFTER
CONVERSE
MODE

IDENTIFY HEADER
BUFFER ON
AUTOPOLL LINE

. LSIOUT

~H4
INITIALIZE WITH
POINTER TO

POLLING CHAR-
ACTER FOR FIRST
PASS THRU LOOP

NEXT
rJ4
STORE ACTIVE
POLLING ENTRY
POINTER IN LCB
AND STORE
OFFSET IN LCB

K4END OF
POLLING
LIST

NO

C5
2740 BASIC

rD5

GET THE OFFSET
TO THE TERMINAL
TABLE ENTRY

DEVICE ADDRESS

rE5

ACCESS THE
POLLING
CHARACTERS

rF5
INITIALIZE
BTAM'S 2ND CCW
TO WRITE THE
POLLING
CHARACTERS

BUMP TO NEXT
ENTRY IN THE
POLLING LIST

QTAM Charts



e Chart DQ1.

Line SIO Appendage Routine (Continued)

LEAVE LOOPST
—Al —A2
SET SWITCH ADD THRESHOLD
INDICATING A COUNTERS TO
53T TERMINAL WAS CUMULATIVE
oy POLLED DBC;‘ COUNTERS
NOSTAT
’-—Bl —B2
FIND THRESHOLD RELOAD
COUNTER REGISTERS
APNDGNRT

c2—
RETURN }

INCREMENT
THRESHOLD
TRANSMISSION
COUNTER

MSG WAITING,

YES

ADDCUM
F1

UPDATE
CUMULATIVE
THRESHOLD
COUNTER

NOADD

H1 “HAS
TRANSMISSION NO
CNTR REACHED.

ITS THRESHOLD

ADD CUMULATIVE
TO THRESHOLD

216



Chart DR.

&)

LINEPCI

Al
(SET CONDITION
CODE TO BE
USED FOR
NORMAL ENTRY
TO THIS ROUTINE

~—B1

SET BASE FOR
IECKQQO1 AND
IGGOI9NG AND
SAVE REGISTERS
14-9 FOR 10S

ADDRFIX

FROM
TIMEEXIT
RTN

D17 1S

TIME ELE
ALREADY ON
LPS Q

NOTTIME I
F

POINT TO
LCB HEAD

F{ssT 108
POINTER TO
POINT TO LCB
HEAD AND GET
CSW FROM LOC 64

—J1

FIND THE CCW
PRECEDING THE
TIC COMMAND

K1
E‘:ET THE ADDRESS
OF THE CCW
CONTAINING
THE FIRST PCI

NOT SERVICED

&/

IS THIS
AN INSERT
BLOCK

NOTINQ

BUFFER ON
AUTOPOLINE

| NO

SET PRIORITY
AND GET ADDRESS
OF INTERIM LPS
QUEUE AND CLEAR
EOM IN PREFIX

Line PCI Appendage Routine

—A3

STORE ADDRESS
OF ACTIVE
BUFFER REQUEST

PCITEST

A4S NEXT

BLOCK AN MYES

QUEUE IN FIRST DR INSERT
WORD OF BRB B3 BLOCK:
NOBUFY
—B3
SET FLAG IN ot
TIC ADDRESS TO THIS THE
INDICATE BRB END OF THE
IN ACTIVE BRB BRB RING
QUEUE
YES
NOBUFX PCIEXIT
~C3. ~C4
4

LINK NEXT BRB
INTO PREVIOUS
ELEMENT AND
GET ADDRESS OF
NEXT BLOCK

E3
REMOVE INSERT
BLOCK FROM BRB
RING AND SHOW
NEW BRB IN
REQUEST QUEUE

LINE SENDING

G2
SAVE POINTER TO
NEXT SEGMENT
IN LCBCSEG AS
THE CURRENT
SEGMENT

H2.

GET AVAILABLE
BUFFER QUEUE
ADDRESS AND
RESET BRB TO
HIGHER PRIORITY

PCIENT
)2

PUT QCB ADDRESS
INTO PREFIX AND
BUMP EXCESS
BUFFERS COUNT
BY 1

NOBUF
K2
MAKE NEXT BRB
ADDRESSABLE AND
GET ADDRESS OF
IACTIVE BUFFER

REQUEST QUEUE

INSLOOP

WITH A PCI
MISSED

RLSINSP
~G3
GET FIRST PCI
CCW ADDRESS
AND GET TIC
ADDRESS TO

NEXT BLOCK

—H3

MOVE BUFFER
INTO NEXT BLOCK
IAND PUT
ICOMBINED COUNT
INTO NEXT BLOCK

J3

PUT INSERT QCB
IN INSERT BLOCK
SET PRIORITY
AND PUT INSERT

BLOCK IN CHAIN

LINK CURRENT
CHAIN OF BRB'S
AND BUFFERS

PCILOOP
A5

INCREMENT TO
NEXT POLL
CHARS

BS SCAN
STOP BYTE
FOUND

BYTES THE

INTO READY SAME
QUEUE
—~D4 D5
RESET LCBCLPCI ADJUST POLL
WITH NEXT BRB POINTER
ADDRESS
GO 1O
DISPATCH <
PCGB
E5/
INDICATOR
STILL ON
PCIAP
~F4
GET ADDR OF CLEAR HEADER
POLLING CHARS BUFFER
LAST USED TO INDICATOR
START AUTOPOLL
PCLOOP
G4
FIND START OF
POLLING LIST
_H4
FIND NO. OF

POLLING CHARS
IN EACH ENTRY

J4
FIND POLLING
CHARS THAT
HAVE SAME
INDEX BYTE AS
IN FIRST BUFFER

QTAM Charts

217



Chart DsS.

218

X

ENDLIST
Al
SET CLEAN UP
CODE IN 10B
AND ERROR BYTE
IN 10OBCSW

B1
EET CSW IN 108
TO POINT TO
CCW FOLLOWING
RESPONSE CCW
AND SET BASE

LINEEND
—Cl1

NORMAL ENTRY

SET UP BASE FOR
IECKQQOT AND
ADJUST RETURN
REGISTER

’_DI
SAVE REGISTERS
14-9 FOR RETURN
AND GET BASE
FOR IFFOTI9NG

—E1

GET 10B POINTER
AND RESET TO
START OF 10B

1
ERP IN
CONTROL

CLOSEMC
IN PROGRESS

J

PLACE REQUEST
ON READY QUEUE
& POST LCB TO
ITSELF

()

Kil—1

{ RETURN TO 105 )

Line End Appendage Routine

TRYEXIT

A2
ENTRY FOR

NOTWTTA

A3
INTERRUPT

A4

SAD/ENABLE FROM HIO
o ()
52 TERMINAL B3 NO B4
CC NORMAL RESPONSE TO
ACTIVITY OR DATA
POLLING CHAINING
_C2 ERP
c3 c4___|
LOAD TEST
YES RETURN TO 108
e PROG CHECK (70 CALL er )
vy
PERMERR
D2 2
GET BRB/CCW D3 P4 HiGHER
STATUS YES YES f
oorormanle )l o
WAS SERVICED
o (<) ts :
_E5
E2{iEADER E3 SECOND SETFIAG
BUFFER ON STATUS BYTE ™\, YES :.ll\lIEEIC;/S&TING
AUTOPOLL ABNOR
MAL UNAVAILABLE
o ()
—F2 —Fs
f . SETPP DTIKI
CLEAR UNIT NO READ VES
HEADER BUFFER EXCEPTION <ONTINUE OR
INDICATOR READ REPEAT’
YES
LECT AGAINRET TWXID
G2
G3 : G4 15
GET BUFFER ADDR THIS AN TWX
YES NO
AND BUMP THE |t ENABLE CCw AUTOPOLL 1D RESPONSE
BUFFER COUNT HALTED LINE cew
NO
s GET BUFFER
PREPARE VES ADDRESS &
CCW HALTED COUNT &
DECREMENT
COUNT
4N

ENTRY FROM

k2
WTTA LINEAPPEND

S

% TWX
ID = EXPECTED
VALUE

J4CoUNT
= RESIDUAL
COUNT

YES



Chart DT.

Line End Appendage Routine (Continued)
ADERR !
FI
iEoT ;\;\(SPTAA;TUS A2 yas A3
mwms PERMENENT
ROUTINES ERROR POSTED
ANDOUT
- Bl ré3 ITSATIC
SET DATA CHECK, CLEAR DATA B4~ 1S
TIME OUT, OR CHK, TIMEOUT YES_~~ THE SEND
NEGATIVE OR NEG BIT ON FOR
RESPONSE 57 RESPONSE THE LINE
C3
AAA LNRESTR
Cl c rC3
c4
SET POLLING/ LOCATE TERM igggi‘m'\‘“
ADDRESSING TABLE ENTRY RESTART THE RECEIVE
ERROR FLAG FOR DEST E BIT ON FOR
@ D3 ADDRESS THE LINE
YES
RESREG
CTREST rb3 rD4
DT was TURN OFF SET
ENTRY FROM |OB EXCEPTION INSUFFICIENT
LINE SIO FLAG BUFFERS FLAG
ON IN LCB
NOERROR
—E4
3 E3__| INITIALIZE LOOP
EOB TURN ON RETURN TO TO LOCATE
RESPONSE MESSAGE 1/O FLIH START OF BRB
SENT FLAG THAT PROG CHK
OCCURRED IN
NEGRESPX | BYP2740 LNSIOENTI FINNTIC
F1 rF2 F3 rF4
SET OFFSET IN
BUFFER OF NEXT LOAD UCB SC%":” * PREFIX FIND NEXT TIC
AVAILABLE ADDRESS SEG SIZE
CHAR POS
Gl s G2 DOES G47 WAS
LINE UNIT HAVE D1E2 BUFFER YES
SENDING ASSIGNED TO
IBM ADAPTER NEXT BRB
&) @
PGMCHK
H1 H3 H4
ACCESS H2" s INITIALIZE WITH
RESPCCW LAST CHAR ZERO THE CN CCW PRECEDING
FOR WRITE EOB AN EOB IN LCBCSW THE FAILING
TIC

1S
LAST CHAR
AN ETX

JTcounTt
EQUAL TO
ZERO

K2

LOAD ADDRESS
OF DCB

A5 BUFF
REQUESTED
FOR NEXT
BRB

NOTIST
B5

GET ADDR OF
NEXT BRB'S
cew

C5,NE)<T
NO BRB
HAVE A BUFF
IN LPS OR

DISK QUEUE

1S
BUFFER

RLPREV
E5
SETTIC

POINTER FOR
FIRST TIME

PKRCVR
F5/IS

BUFFER
ALREADY
ASSIGNED TO'
THE BRB

s

&S BRB IN
ACTIVE BUFFER
REQUEST,

MOVE HIGH
PRICRITY INTO
BRB

RETURN TO 108

QTAM Charts

219



Chart DT1.

N

POLRESTR
Al

SET UP CCW
ADDR FOR
RESTART

IS
Bl This A

< RECEIVE
OPERATION

1S
THIS A
DIAL LINE

(@}

LOOPSET
~D1

LOAD ADDRESS
OF CCW

LOOPW1
—E1

WRITE POLLING
CHARS CCwW

THIS A 2260
LINE

INCRPPTR
—J1

PREPARE TO
RESTART WITH

APTST

2”18
LINE IN

RECEIVE

STATE

D27 IS
THIS A
PERMANENT

ERROR

NO

X

G27FIRSTN_

INTERRUPT YES
< AFTER

CONVERSE>1

H27 END

OF POLLING\_YES
LIST
REACHED

NO
P 2
RESTART ON @

NEW POLL
ENTRY

SETPP

’—Kl

BUMP TO
NEXT CCw

220

WRITE EOT CCW

Line End Appendage (continued)

APMSG

A37TIC
FOLLOWING
THE SECOND
POLL CCW NOW
‘A NOP

G
APCLN|
B3

MOVE CLEANUP
CODE TO
LCBSTATE

8

TIME2740

—D3

INDICATE
TERMINAL OFF
DELAY QUEUE &
CALCULATE TERM
ENTRY START

—E3

FREE SEND SCHED
& PICK UP
DCB ADDRESS”

NOMOVE
—F3

PICK UP FIRST
LCB ADDR

c3 LCB
INACTIVE

NO

&)

NO

SNDSCHLP

A% enp
OF QUEUE

YES

B4 ISIT
SEND SCHED

C4

DELINK THE
SCHED

NOTSEND

CL12740

D4
ST
SEND SCHED,

NO

LINK IN SEND
SCHED & RCV
SCHED

RCVSCHDR I ‘
E5

APRSET I
—K2:

PREPARE TO
START POLLING

SENDELNK
H3 H4
PUT LCB ON
READY QUEUE LOOK FOR QCB
TLNK
NO CHLOOP
~J3
FIND END
OF LCB

K4 Is

SEND SCHED
LINKED

—E4
POINT AT MOVE ADDR OF
NEXT IN LCB RCV SCHED
TO LCB
XYZ2740
O,
L_h LINK IN
SEND SCHED

PUT NEXT
WAITING
SUBTASK IN
CHAIN

. SSUNAV

J5

LOCATE END OF
TERMINAL
ENTRY & PICK
UP TIME DELAY
SEND SCHED




Chart DU. Interim LPS Routine

&)

e

&

&)

GET THE SOURCE
LCB ADDRESS
FROM THE
BUFFER PREFIX

LPSDRCT
.B’)
SET SOURCE
TERMINAL KEY
IN MESSAGE
PREFIX FROM
LCB ENTRY

rC3

GET THE ADDRESS
OF THE LPS
QUEUE

b3

SET LOW
PRIORITY IN
BUFFER

QTAM Charts

221



Chart DV.

222

GETSCH

GETTEST

Get Scheduler Routine

B2 s THIS
EXPEDITE

rC2
IGGOI9NG DXBI

LINK TO SCREEN
IN DESTINATION
DASD ROUTINE

rD
GET THE ADDRESS
OF THE LCB
CONTAINED IN
THE DEB FOR MS
PROCESS QUEUES

re2
GET THE
ADDRESS OF THE
BRB FROM THE
CORE PROCESS
QUEUE DEB

F2 THE BRB
ELIGIBLE FOR
ISK QUEU

XCHECK

OF THE LCB
CONTAINED IN
THE DEB FOR MS
PROCESS QUEUES

GET THE ADDRESS

B4———————
SAVE SOURCE
LCB ADDRESS

DSKREQ
G3
SETFLAG TO
o B N YES LHOW BUFFER IN
OPERATION [~ DISK QUEUE AND
GET DISK QCB
FOR POSTING

&

rJ2
GET ADDRESS OF
DASD PROCESS
QCB FROM BR8
AND MAKE IT
ADDRESSABLE

K2
IGGOI9NG DKB4

rK3:
LOAD PREFIX WITH
DISK ADDRESS OF

LINK TO SEND

SCHEDULER SEGMENT AND
ROUTINE SET DISK
OPERATION

AND PUT DASD
PROCESS LCB
IN PREFIX

XCOUNT
"CA

GET ADDRESS OF
MS PROCESS
QUEUE DCB

rD4
GET NUMBER OF
BUFFERS TO BE
FILLED IN
ADVANCE OF
GET

E4
ONE BUFFER
REQUESTED,

[F4

TURN OFF FLAG
SHOWING
BUFFER IN DISK
QUEUE

rG4

RESET BUFFER
COUNT WITH
DECREMENTED
VALUE

rH4
GET ADDRESS OF
MAIN STORAGE
PROCESS QCB
FROM DEB

FOR POSTING

NOTE: SEE RETURN BUFFER

ROUTINE FOR CODE
OF FLOWCHART
BEGINNING WITH
XCHECK.

TO DISK END

APPENDAGE



Chart DW. Return Buffer Routine

RETURN BUFFER ROUTINE A2
GET THE MAIN

Al STORAGE
ENTER PROCESS QUEUE
LCB FROM

MESSAGE PREFIX

rB2
INDICATE THE BRB
IN MS PROCESS
DEB THAT BUFFER
IS IN THE DISK
QUEUE

C2DumMY
BUFFER FOR
1ST TIME
GET

YES
GO TO GET
SCHEDULER

IS THIS
A TEXT
SEGMENT

GETRET1
rk2
GET DCB ADDRESS
FROM MS PROCESS
[QUEUE DEB AND

BUMP COUNT OF

ADVANCE BUFFERS

D3

PUT RELATIVE
RECORD ADDRESS

| OF NEXT

MESSAGE IN MS
PROCESS DEB

D5
PLACE REL REC
ADDR OF NEXT
NO MSG IN THE
PROCESS QUEUE
DEB

IS THIS A
PRICRITY MSG

~F2

GET THE ADDRESS
OF THE
AVAILABLE
BUFFER QUEUE

FOR POSTING

G2 THis
THE LAST

SEGMENT OF
“MESSAGE

NO

YES

rGS————‘

| GET ADDRESS OF
SOURCE LCB

H37BOTH

<CLEANUP ANDN YES

CONVERSE SET.
NN LcB”
-

NO

A

NOTE: SEE GET SCHEDULER
YES RTN FOR FLOWCHART OF
CODE BEGINNING WITH
XCHECK.

IS RECALL
BIT ALSO SET

rJ4
SET BOTH
CLEANUP AND
RECALL AND GET
ADDRESS OF LPS
QUEUE TO POST

GETTESTX
K4
STORE QUEUE
ADDRESS IN
PREFIX AND
RESTORE BUFFER
ON READY QUEUE

GO TO GET

@ SCHEDULER

QTAM Charts

223



Chart DX. Destination DASD Routine

&)

SET UP ADDRESS
OF THE DISPATCH
ROUTINE FOR
EXIT ADDRESS

SCREEN

—B1
GET SOURCE
LCB ADDRESS
FROM MESSAGE
PREFIX

rCl
STORE ADDRESS
OF DISK I/O
QUEUE IN PREFIX
AND PUT BUFFER
ON READY QUEUE

D1

HAS LAST

OR GET SCHEDULER

ENQUEUED

FROM SEND SCHEDULER

-X4

GET NUMBER OF
MSGS AND
INCREMENT BY
ONE

€2 |INE

SENDING

SEGMENT ADDRESS
IASSIGNED AND
SET DISK ADDRESS

LINK THE BRB
INTO THE BUFFER

F2
SAME MSG

NOTINIT
A3

INDICATE
PARTIALMSG
AND SET MSG
PRICRITY

\ INITIALIZE FOR
SEARCH LOOP
AND TO RESET
BASE REG

RLOOP

rD3
REMOVE L.CB
A FROM SOURCE
CHAIN FOR
PREVIOUS
MESSAGE

<

ILOOP

E3
LINK LCB INTO

b [SOURCE CHAIN

[ |[FOR DESTINATION
QUEUE BY
PRIORITY

~F3
SET NEXT

3 SEGMENT ADDR

IN LCB AND PUT
DISK ADDR IN
QCB AND PREFIX

SBACK

MOVE CURRENT

ON THE READY
QUEUE

224

ADDRESS TO
CURRENT HDR

G2 ~G3
BUMP DIsK
SET UP NEW ADDRESS AND
LCB ADDRESS ESTABLISH
BACKWARD
CHAIN
HZ
b ves
= st see
NO
2

USE SOURCE LCB

SEGRSM
A4

PUT NEXT
MESSAGE ADDRESS
IN PREFIX AND

UPDATED ADDRESS
INTO LCB

C4 IS THI

DUPLICATE
HEADER FCR
REROUTE

D4
INITIALIZE LCB

TEXTX

c5
EXIT TO LINK
ADDRESS SET

AT ENTRY

D5

WITH NEXT MOVE HEADER
SEGMENT ADDRESS TO
ADDRESS FROM PREFIX
PREFIX

rES

E4 IS
THIS LAST
SEGMENT

F4
1S SOURCE
KEY EQUAL
ZERO

G4
EXIT TO LINK
ADDRESS SET
AT ENTRY

MOVE UPDATED
DISK ADDRESS
TO LCB AND
BUMP DiSK

ADDRESS

F5—
EXIT TO LINK
ADDRESS SET
AT ENTRY

G5

LINK LAST
SEGMENT INTO
BACKWARD
CHAIN

H5—
EXIT TO LINK
ADDRESS SET
AT ENTRY




Chart DY.

QMOVE
QMOVER

A2
( ENTER )

B2

ACCESS COM-
MUNICATIONS
VECTOR TABLE
AND TCB ADDR

rC2

ACCESS SVRB
AND USER'S
PASSED
REGISTERS

D2

RELEASEIN
REQUEST

Cross Partition Move Routine

’-D3

GET QCB
ADDRESS

HAVE

E2” WAS YES B3 pRIORITY
< REQUEST TO MSGS BEEN
CHANGE POLL INTERCEPTED
STATUS
NO NO
F2 rF3
MOVE REQUESTED UPDATE QFAC
DATA WITH NEW RRN
-G3
SHOW
RELEASEIN
PENDING
NU
G

QTAM Charts

225



Chart EA.

226

Close Process Queue

1GG0203P

1
CLOSE PROCESS
QUEUE

B1
IVACCESS DCB TO
BE CLOSED &
GET DEB ADDRESS
FROM DCB

Cl
{ GET NAME OF
MODULE AND
RECFM

D1 IS
THIS A PUT

El

(SUBTRACT ONE
FROM TRANSLATE
TABLE ADDRESS

YES

~F1

TRANSLATE
RECFM TO
CHARACTER

Gl

DELETE MODULE
WITH SVC 9

DISABLE
INTERRUPTS

IMessace
CONTROL
YET ACTIVE

YES

K1

ACCESS
INPLEMENTATION
MODULE

END
OF CHAIN
REACHED

REMOVE
D2

INDICATE DCB
IS CLOSED

E2° CLOSE
INITIATED
BY ABEND

RBLOOP

F2” ANY
MORE SURB'S

GET NEXT RB
WHICH IS A
TYPE 11 SVC

ACTIVE BRB
QUEUE

15
K2 pg ON
DISK QUEUE

NO

RMVSTCB
c3

RESET QSAVE
FOR SUBSEQUENT
QPOST

TH]S ELEMENT
TO BE REMOVED

. lNO
F3

SET UP FOR
NEXT ELEMENT

YES

RELINK
H3

REMOVE ELEMENT

NORMCLOS

37 s
CHECKPOINT
IN SYSTEM

CPLOOP

K3” NEXT
ELEMENT
FOUND

!
A4°THIS THE
CHECKPOINT
TASK

is
THIS THE
OUTPUT
DCB

A5 YES

LOOPDEB
D4

GET FIRST DEB
IN TCB

E
DEB BEING
CLOSED

F4 THIS THE
END OF
CHAIN

NOREMOVE 4—@

MQIN
85
RESET FIRST
REMOVE ELEMENT TIME FLAGS
FOR THIS TASK FOR GET
NOCHKPT
~c4
C57ADDI
INITIALIZE FOR OF BRB WITHIN\_ ves
FIRST TIME DEB ON ACTIVI
BRB QUEUE

ON DISK
QUEUE

RMVBRB2

s
ES ELEMENT
IN CHAIN

f
r5 THIS THE

ELEMENT TO
BE REMOVED)

RELINK2
rG5

REMOVE
ELEMENT

FOUNDDEB

~H4. FHR
REMOVE THE SET ADDRESS
DEB FROM TO START OF
THE CHAIN PROCESS QUEUE

< CLRQCB
J4 ’_Js

RELOAD DCB CLEAR QCB
ADDRESS ADDRESS

5
DUMMY
LAST BUFFER




® Chart EAl.

AV BUFFER
PREVIOUSLY
RETURNED

B1

POST BUFFER

REMOVE DUMMY
LCB (DEB) FROM
DESTINATION

CHAIN
XPOST RMVLCB
] ~C2

RESTORE SUBTASK

LOAD TERMTBL

POINTER 1 ADDRESS AND
PROC QCB INITIALIZE FOR
FIRST TIME
NEXTBFR TERMLOOP‘_—_‘

POST BUFFER

1
G1 BUFFER
STILL TO BE
POSTED

POST BUFFER

MQOUTI
~J1

REACTIVATE
QTAM READY
QUEUE

FDZ

LOAD QCB
ADDRESS

G215

GZREL LINE YES

NUMBER GREATER——p
“THAN NO. OF

EXTENTS

H2'\ B THE

< SAME LCB IN

PROCESS QUEUE
EB

Close Process Queue (Continued)

ENDTEST

A3 MORE
ENTRIES TO
INSPECT

YES

GET NEXT
MQ-DCB

7S
THERE ANY
MQ-DCB

D3THIS A NO
<GENERAL CLOSESNO W
DOWN PROCEDURE

FOR QTAM

YES

EAT
F3

SETUPWTG |
F3.

CLEAR ID TO
INDICATE
COMPLETE

RELOOP :

BE USED
AGAIN

ZCHECK
H3.

SET UP FOR
NEXT ENTRY IN
WHERE-TO-GO
TABLE

YES

J2

RESTORE
LCB STATE

XCTLRTNE
J3

GO TO
1 GGO203R

QTAM Charts

227



Chart EB. Close Communications Line Group

1GG0203N

A2
CLOSE COM-
MUNICATIONS

LINE GROUP

™
ACCESS THE DCB
BEING CLOSED

~C2
FIND SIZE OF
LCB AREA AND
START OF LCB'S
FOR LINE
GROUP

D2

FREE STORAGE
OCCUPIED BY
LCB'S

~E2
CLEAR LCB AND
10B POINTERS,
STATUS BYTE
AND LCB SIZE
IN DCB

SETUPWTG
— F2
CLEAR ID IN
WHERE-TO-GO
TABLE AND
ACCESS
WORKAREA

RELOOP
G2 NEXT

YES\/ ENTRY IN
WTG CALL FOR

"THIS ENTRY”

YES

XCTLRTNE

J2.
TRANSFER
CONTROL TO
NEXT ROUTINE
IN'WTG TBL

228



Chart EC.

1GG02030

CLOSE DIRECT
ACCESS MESSAGE
QUEUE

—B1

ACCESS DCB
AND THE
TERMINAL
TABLE

—C1
CLEAR TERMINAL
TABLE ENTRY [N
COMMUNICA-
TIONS VECTOR
TABLE

DI
LINK FIRST
AVAILABLE
BUFFER INTO
FIRST
AVAILABLE BRB

—E1
RESET 108B
ADDRESS IN
DCB AND
DISABLE
INTERRUPTS

Fl
SAVE REGISTERS

Close Direct Access Message Queue

ELEMSTCB

B3
1S [TEM A
FULL STCB

NO

IS ITEM A QCB

QTRNLOOP

ITEM A FULL
STCB

POST
~C4
GET ECB
ADDRESS &
REMOVE STCB
FROM CHAIN

—D4

FIND THE TCB

ADDRESS FROM
LAST ELEMENT
IN SVRB CHAIN

rE4

LINK TO OS
POST ROUTINE TO
POST ECB DONE

F4
5-15 IN SPECIAL B TRy
SAVE AREA FROM QCB
IN IGGOIING Rom ac
SETUPWTG
RDYLOOP e
G ANY RELOAD
ITEMS NO REGISTERS 5-15,
ON READY ENABLE
QUEUE INTERRUPTS AND
CLEAR WTG ID
VES
A3 RELOOP
H2 “THIS
ROUTINE
APPEAR AGAIN
INWTG

XCTLRTNE

J2
TRANSFER
CONTROL TO
NEXT ROUTINE
IN WTG TBL

QTAM Charts

229



Chart ED. Close Routine

IECKCLOS

Al
{ CLOSEMC ,

Bl

SAVE
REGISTERS
14=-12

rCl
ACCESS THE
QMOVE
STCB IN
IGGOIING

D1

QPOST

POST QMOVE
TO ITSELF TO

RCV SWITCH

TURN OFF MASTER

L

— El

MESSAGE
CONTROL AND
INITIALIZE FOR
FIRST DEB

ACCESS TCB FOR

F2 <

NEXTDEB

F1”7 END
OF
DEB CHAIN

RESTORE
REGISTERS
14-12

Hl—
{ RETURN TO USER

230

— F2

ACCESS
DCB FROM-
THE DEB

COMMUNICATION
LINE

YES

NEXTEXT
H2
GET START PF
LCB AREA AND
INCREMENT
LCB
COUNTER

!
STOPLN
is STOP THE
THE LINE LINE
ACTIVE TRANSMISSION
BYPASS)‘ x4
STARTLN
NO K2 IS RESTART THE
LINE
LAST LCB TRANSMISSION




Chart EE.

COMPARE

IECKOCTL

Al
‘ OPCTL )

—B1

SAVE BASE REG.,
RETURN REG. TO
MACRO, AND
SCAN POINTER

-Cl

GET THE
ADDRESS OF
SCAN ROUTINE

~D1
IECKSCAN  CFAI

ACCESS CTIMSG
FIELD IN THE
HEADER

1

el

RESTORE THE
BASE REGISTER

E1” WAS

YES SCAN PTR

BEYOND END OF
“\HEADER”

1S

1
¢ THIS A
CONTROL
MESSAGE ?

NO

RETURN

rH1

RESET END OF
SEGMENT, SCAN
ERROR
(LCBERRST)

D RETURNI1

ran
RESTORE RETURN
REG. TO MACRO,

AND SCAN
POINTER

K1—
RETURN TO NEXT
LPS INSTRUCTION

Operator Control Routine

MESSAGE

NO

~E3

SAVE SCAN
POINTER AND
—P GET ADDRESS
OF SCAN
ROUTINE

~F3.

IECKSCAN  CFA1

ACCESS MSGTYPE
NAME FIELD IN
HEADER

G3 CAN
MSGTYPE BE

YES

COPY
ERROR
COUNTERS?,

B5 COPY

TERMINAL
TABLE

ENTRY

C5 CHANGE
TERMINAL

D5
INTERCEPT
MESSAGES

5 RELEASE
MESSAGES

STOP LINE

IDENTIFIED,

| ::> ROUTE

NO

rH3
SET LCBDESTQ
AND TTDKEY
TO RETURN
MESSAGE TO
SOURCE

START LINE

::: RETURN2

rJ3

RESTORE RETURN
REGISTER AND
SCAN POINTER

&)

REENTER

rJ4

SET SERVICED
FLAG IN PREFIX

AND RETURN TO
FREE BUFFER

K3—

EXIT TO MACRO
WHICH BRANCHE:
JO ENDRCY

SWITCH

INTREL

QTAM Charts 231



Chart EF.

SUBI

)

SAVE SCAN
POINTER AND
GET ADDRESS OF
SCAN ROUTINE

—~B1
IECKSCAN  CFAI

ACCESS
TERMNAME FROM
INCOMING
MESSAGE

~Cl

RESTORE BASE
REGISTER AND
ADJUST SCAN PTR
TO BLANK
FOLLOWING
TERMNAME

—D1

GET ADDRESS OF
THE LOOKUP
ROUTINE

—E1
IECKDRCT __ COBI

FIND NO OFFSET
TERMINAL ENTRY
IN TERMBTL

~F1

RESTORE BASE
REGISTER AND
PARAMETER LIST
POINTER

Gl
WAS ENTRY

YES

Common Subroutines OPTCL

G2
{—GET ADDRESS OF

RETURN MESSAGE
TO SOURCE

LAST CHARACTER
IN THE BUFFER

—H2

UNPAK

A3
LESS THAN
8 BYTES TO BE
UNPACKED

YES

—B3

UNPACK 8 BYTES
FROM TERMTBL

GET BUFFER SIZE
REMAINING

FOLLOWING THE
TERMNAME ENTRY!

J2

GET ADDRESS OF
TERMINAL ENTRY
IN TERMTBL

K2—
RETURN TO
CALLING
SUBROUTINE

SUB2 !

LASTSECT
A4 A5
SAVE SCAN
UNPACK 8 BYTES POINTER AND
INTO A ACCESS QCB
WORKAREA FOR TERMINAL
ENTRY
B4
MOVE THE B5'|S THE

WORKAREA TO

QCB FOR A

CR COUNTER THE BUFFER FOR TEERAATIE\\I(AL
INTO BUFFER COUNT
~C3 —C4 s
BUMP THE GET RELATIVE
POINTERS TO TRANSLATE THE LINE NUMBER
OVERLAY LAST BUFFER TO AND DCB
BYTE UNPACKED EBCDIC ADDRESS FROM
THE QCB
CHKBLK1
D3 —D5
ADJUST THE CAN SKIP BLANKS
COUNT FOR EOB~EOT IN BUFFER
THOSE BE NSERTED FOLLOWING THE
UNPACKED SCAN POINTER
—E4 r[u
ARRANGE TO
INSERT EOB- ADJUST THE
EOT INTO LAST BUFFER SIZE
2 BYTES OF REMAINING
@ BUFFER
ENDBUF
FA
B F5—1
INSERT RETURN TO
EOB-EOT INTO CALLING
BUFFER ROUTINE
CA
RESET MSEGSZE
IN BUFFER
PREFIX

H4—
RETURN TO
CALLING

ROUTINE




Chart EG.

common Subroutines OPTCL (Continued)

&

RCOPYC
Al

[suB1 EFAT

ACCESS TERMINAL
ADDR AND
BUFFER SIZE INFO

EFA2

—B1

GET QCB
ADDRESS FROM
TERMINAL
ENTRY

REGISTERS 14-11

17
QPOST

POST COPY
QCB TO
ITSELF

GO SEND COPIED
COUNTERS TO
SOURCE

ROUTINE ACTIVATED AS RESULT

OF POSTING COPY QCB TO ITSELF

A3
( ENTER )

COPYCLRT
B3

RESTORE
REGISTERS 14-11
SAVED BEFORE
QPOST

rC3
ADD THRESHOLD
COUNTERS TO
CUMULATIVE CTRS
AND RESTORE
CUMULATIVE CTRS

D2
GET RELATIVE WILL
LINE NUMBER USE SIZE OF COUNTERS
AND DCB COUNTERS FOR FIT INTO
ADDRESS FROM MOVE BUFFER
QcCB
—E1] —E3
ACCESS LCB USE SIZE OF
SI1ZE AND START BUFFER FOR
OF LCB'S FROM MOVE
THE DCB
—F1 _F3
UNPAK EFA3
CALCULATE LCB
ADDRESS FOR GO UNPACK .
THIS LINE AND TRANSLATE
NUMBER INTO BUFFER
~G1 -G3
GET ADDRESS OF CLEAR ALL
THE COUNTERS THRESHOLD
IN THE LCB COUNTERS
—H1
SAVE

H3—
EXIT TO
DISPATCH

QTAM Charts

233



Chart Ed. Copy Termtbl Entry OPTCL Routine

RCOPYT

&

SUB1 EFA1
ACCESS
TERMINAL
ADDRESS AND
BUFFER SIZE

EFK2

B3.

ACCESS TNTRYSZE
AND ADJUST
FOR PORTION
NOT COPIED

rC4

c3” WILL USE TERMTBL
TERMTBL FIT ENTRY SIZE
IN BUFFER FOR MOVE

USE BUFFER
SIZE FOR MOVE

"Eq
UNPAK EFA3

TRANSLATE
INTO BUFFER

EEH4

234



Chart EI.

&

RCHNGT

A1
SUB1 EEA1

ACCESS
TERMINAL ADDR
AND BUFFER SIZE

CHKBLK
rB1

SKIP BLANKS
FOLLOWING
TERMNAME

WAS
BUFFER ALL

YES

TRANSLATE
TEXT
INFORMATION
IN BUFFER

_El
SCAN BUFFER
FOR DELIMITER
(BLANK, EOB,
EOT, OR INVALID
CHARACTER)

VALID
DELIMITER
FOUND

Fl YES

INVALID

CAN
cl EOB-EOT
BE PUT IN
UFFE

-H1
ENDBUF EFF4

LINK TO PUT
EOB~EOT INTO
BUFFER

EFH4

VALID

F2ANY DATA
TO BE
INSERTED

NO

-G2

INSERT EOT IN
BUFFER
FOLLOWING
TERMNAME

Change Termtbl Entry OPTCL Routine

G3

ACCESS TNTRYSZE
AND ADJUST

FOR PORTION
NOT CHANGED

USE DATA
LENGTH FOR
MOVE AND
SAVE REGISTERS
14-11

K3
[T Qrost

POST CHANGE
QCB TO ITSELF

3

ROUTINE ACTIVATED AS RESULT
OF POSTING CHANGE QCB TO ITSELF

A4
ENTER ’

CHANGE1
B4

RESTORE 14-11
AND ACCESS
QCB ADDRESS
FOR TERMINAL

C4 1S THIS NO

INACTIVE
~C5

BUMP POINTERS
PAST SIZE AND

A TERMINAL
QCB

~D4
GET RELATIVE
LINE NUMBER
AND DCB
ADDRESS FROM
QCB

QCB ADDRESS

~D5

PACK 15 BYTES
FROM BUFFER
INTO WORKAREA

r—

~E4

ACCESS LCB
SI1ZE AND START
OF LCB'S

FROM THE DCB

F4

CALCULATE LCB
ADDRESS FOR
THIS LINE
NUMBER

MOVE 7 BYTES
TO TERMTBL
ENTRY AND
BUMP POINTERS

G4 1S
THE LINE

ACTIVE

H4

BUMP POINTERS
PAST SEQUENCE
NUMBERS

J47 ANY
DATA LEFT TO
MOVE

YES

ENDPACK
~G5

MOVE COUNT

~» REMAINING
INTO TERMTBL

@_

EXIT

H5——
EXITTO
DISPATCH

QTAM Charts

235



Chart EJ. Intercept and Release OPTCL Routine

RRELEASM
A4

SUB1 EFA1 LINE
TO GET
TERMINAL
ADDRESS

INTERCPT

suBl EFAT ;
Y
NO
GET TERMINAL TEI’m'E';éELP'TN
ADDRESS
EFK2

rci rC4
GET THE QCB GET ADDRESS OF
ADDRESS FROM THE INTERCPT
THE TERMTBL FIELD IN THE
ENTRY TERMTBL ENTRY

D4
GET THE QCB
ADDRESS FROM

THE TERMTBL
ENTRY

DTS THIS A
TERMINAL
ENTRY,

TURN OFF THE

SEND BIT IN YES FIELD > 1ST
THE TERMTBL ELEMENT
ENTRY INQ

rF4

PUT HEADER

ADDRESS OF
INTERCEPTED
MESSAGE IN
QUEUE

rG4

RESET INTERCEPT
BIT TO ZERO IN
TSTATUS

rH4

SET THE SEND
BIT ON IN
TSTATUS

&/

236



Chart EK.

RSTARTLN

A2
SUBL EFA1

NOBLK

LINK TO GET
TERMINAL
ADDRESS

EFK2

sUB2 EFA5
LINK TO GET
LINE NUMBER
AND DCB
ADDRESS

EFF5

rc2

SAVE BASE
REGISTER FOR
LINKAGE

D2'|s START
'ALL' SPECIFIED

GET ADDRESS OF
IECKLNCH FOR
LINKAGE

Start Line OPTCL Routine

NO

[ EckineH

GO TO START
ALL LINES
ENTRY POINT

NOTALL

rD3

GET ADDRESS OF
IECKLNCH FOR
LINKAGE

rE3
IECKLNCH

GO TO START
ONE LINE
ENTRY POINT

G2” | THE
ERROR FLAG
ZERO

TERMINAL
SPECIFIED,

B4
REVERSE OFFSETS
TO ALTERNATE
AND CONTROL
TERMINALS IN
MACRO LIST

QTAM Charts

237



Chart EL.

238

RSTOPLN
—Al
SUBI EFA1

ACCESS THE
TERMINAL
ADDRESS

EFK2

—B1
SUB2 EFA5

LINK TO GET
LINE NUMBER
AND DCB
ADDRESS

SET LINE COUNT
EQUAL TO 1 AND
GET LINE NUMBER|
FROM THE QCB

rEl
MAKE DCB ADDR
AVAILABLE FOR
TERMINAL ON
LINE TO BE
STOPPED

—F1
GET THE ADDRESS
OF THE SOURCE

TERMINAL ENTRY
AND ACCESS THE
QCB FOR SOURCE

Gl

GET LINE NUMBER
AND DCB
ADDRESS FOR
SOURCE TERMINAL|

SOURCE
HTTERMINADN o
LINE GROUP TO

Stop Line OPTCL Routine

BE STOPPED

K1
STOP SOURCEN NO
LINE

STOPOK

A3 HAS DCB
BEEN OPENEDN\NO
FOR LINE?

B3
GET DEB ADDRESS
FROM THE DCB
AND GET NUMBER
OF EXTENTS FROM

LINE NUMBER
JOO HIGH

!ALL' SPECIFIED

rE3
SET LINE COUNT

EQUAL TO THE
COUNT OF LINES
AND SET LINE
NUMBER TO 1

SUBTASK
rF3

SAVE REGISTERS
14-11 FOR
SUBTASK

G3
QPOST

POST STOP
LINE QCB
TO ITSELF

EXIT TO
MACRO

SPECIFIED,




Chart EM.

ROUTINE ACTIVATED
BY POSTING THE
STOP QCB TO ITSELF

Al
ENTER {

STOP1

A2

RESTORE
REGISTER SAVED
BEFORE QPOST

1

o 2

ENSURE THAT
THE IECKOPAW
ROUTINE WILL
BE ENTERED

rCi—
GET LCB SIZE
AND SAVE IN
BUFFER WITH
RELATIVE LINE
NUMBER

D1
MULTIPLY LINE
NUMBER BY
S1ZE AND GET
THE START OF
THE LCB'S

>
>

LOOP1

GET THE LCB
ADDRESS FOR
SPECIFIED
LINE NUMBER

5 AN
GTOPCTL
STOPLN
PENDING,

TRYEXIT

H1 ANY
MORE LINES
TO STOP

JT wAS
ENTRY FROM
INTREL

YES

K1is THIS
THE FIRST
PASS

DISPATCH

J2 WAS
THE CSW
STORED

K2 WAS
THE HIO
EXECUTED

YES

Stop Line OPTCL Routine (Continued)

F3 15 THIS
THE FIRST
PASS

G3
LOAD LCBDESTQ
TO FORCE THE
RETURN OF THE
BUFFER BY
CLEANUP

SUBTASK ACTIVATED WHEN
LCB IS POSTED TO ITSELF

INDICATING LINE IS STOPPED

A4
ENTER

SUBTASK ACTIVATED
WHEN CLEANUP POSTS
THE BUFFER TO THE
DESTINATION QUEUE
STOP2 ¢,

RETRIEVE LCB

H3

USE QCB FOR
LCB ADDRESS
AND COUNT
INDEX STORAGE

J3BRANCH TO
QDISPATCH

SUBTASKI1
rA5

REMOVE THE
STOPLN STCB
FROM THE LCB'S
STCB CHAIN

—BS

SET LCBSTATE TO

»| ADDRESS AND ZERO TO
COUNT INDEX DEACTIVATE THE
FROM THE QCB LCB
GENSTCB ENJ5
FC4 —C5

BUILD AN STCB
IN THE BUFFER
BEGINNING AT
HDSTRT TO STOP
THE LINE

ACCESS THE DCB
FROM THE LCB
AND THE DEB
FROM THE DCB

D4
PUT STCB INTO
STCB CHAIN OF
LCB FOR THE
LINE TO BE
STOPPED

E4 was
ENTRY FROM
INTREL

—F4
CLEAR INTREL
CONTROL
SWITCH AND SET
INTREL SWITCH
IN LCBDCBPT

D5 WAS
ENTRY FROM
INTREL

YES

E5 15 NEXT
STCB A FULL
STCB

F5

REMOVE THE LCB
FROM THE
READY QUEUE

G4
SET A SWITCH
IN THE BUFFER
TO BE TESTED
WHEN THE LINE
IS STOPPED

Fi4 BRANCH TO
DISPATCH

FREEBUF
H5
SETUP TO
RETURN THE
BUFFER TO THE
AVAILABLE
BUFFER QUEUE

EXIT TO POST
BUFFER TO QUEUI

QTAM Charts



Chart EN. Intrel OPTCL Routine

RINTREL TIMEQ SUBTASK2

Al A2 A3,

SET THE SWITCH REMOVE LCB
INDICATING FROM READY
INTREL QUEUE, CLEAR
CONTROL TO INTREL
RSTOPLN INDICATION

TO RSTOPLN

THE LCB
ACTIVE

SET A SWITCH IN
THE BUFFER STCB
FOR INTREL

CONTROL WHEN
LINE IS STOPPED

D2—
EXIT TO
DISPATCH

THIS CODE ENTERED
WHEN 2 MINUTE
INTERVAL EXPIRES
FOR THE BUFFER

F3
( ENTER )

STCB2
rG2

ACCESS THE LCB
ADDRESS FROM
THE BUFFER

rH2
SET UP TO FREE
BUFFER
REMAINING ON
READY QUEUE

rJ2

SET UP TO POST
THE LCB TO
ITSELF TO
RESTART LINE

. BUILDZ
B3

SET UP ADDRESS
OF STCB2 FOR
TIMEQ EXIT AND

SAVE LCB IN
BUFFER
O HAVESVC 4
yd SET UP TO POST
c3” wAs A SPECIAL QCB
ENTRY FROM TO THE LPS
QUEUE AND

SAVE REGISTERS

~D3 rD4
INITIALIZE TO
INSERT BUFFER EXIT TO POST
INTO TIMEQ AS QCB TO LPS
AN LCB FCR 2 QUEUE

MINUTE DELAY

rE3
PREVENT LCB
BEING STARTED
WHILE BUFFER IS
IN TIMEQ

F3
GET ENTRY
POINT TO THE
TIME DELAY
ROUTINE IN
IGGOI9NG

EXIT TO PUT
@ BUFFER IN TIME
QUEUE

EXIT TO POST
ROUTINE IN
[ECKQQO!

240

THIS CODE IS
ACTIVATED BY
IECKOPAW FOR
AN {RRECOVERABLE
ERROR

E5
‘ ENTER )

STOP4
F5
RESTORE BASE
AND ACCESS

BUFFER AND LCB
FROM IECKOPAW

~G5

GET THE LINE
NUMBER AND
STORE IT IN
THE BUFFER

IS THE
LINE ACTIVE?

SET INTREL
SWITCH FOR
RSTOPLN AND
GO STOP THE
LINE

EXIT TO
STOP THE
LINE



Chart EO.

Operator Awareness Routine

B1

ENTRY OF
[ECKOCTL

TURN OFF
PARTIAL
MESSAGE
SWITCH IN LCB

EXIT TO INTREL

D }—

INTREL SWITCH

A3
IECKOPAW

A

—E1

MOVE QCB
ADDRESS TO
DESTINATION
QUEUE

A

~F1

MOVE OFFSET TO
OPCTL TERMINAL
TO DESTINATION
KEY

rGl

INDICATE SINGLE
SEGMENT
MESSAGE IN
PREFIX

E2,

EXIT TO
RECALL/ CLEANUP

GET DCB
ADDRESS

£3 7 HAS A
THRESHOLD

BEEN
(IECKPR) REACHED
YES
~F3
MOVE LINE
NUMBER AND
LER COUNTERS
TO MESSAGE
G2 -G3
COMPUTE
MESSAGE SIZE MOVE MESSAGE
AND STORE IT TO BUFFER
IN PREFIX
A
~H2
MOVE H3
TRUNCATED ENOUGH
MESSAGE TO SPACE FOR
BUFFER MESSAGE

D4 rD5
MOVE LINE MOVE STATUS
NUMBER AND FROM CSW AND
OP CODE TO SENSE INFO
MESSAGE TO MESSAGE
E5
MOVE TP OP
CODE AND TERM
IDENTIFICATION
TO MESSAGE
~F4 rF5
CLEAR LER CTRS MAKE HEADER
AND LINE | ADDRESS
NUMBER SO "] AVAILABLE FOR
NEXT THRESHOLD RECALL
CHECK S
NEGATIVE
G5
IECKRC DDA2
LINK TO
RECALL TO
OBTAIN HEADER
~H4 ————— —H5
INSERT [DLE

COMPUTE SPACE |

| LEFT IN BUFFER

CHARACTERS AT
START OF HEADER

QTAM Charts

241



Chart Fl1. OPEN Line Group Load 1 Executor Routine

1IGGO193N

Al
OPEN LINE
GROUP LOADI

LOCATE THE
TIOT FOR
PARAMETERS

DOBLKLP
-Cl
GET CORE FOR
DATA EXTENT
BLOCK AND
CONVERT TO
ZERO

INITDEBI
rD1
INITIALIZE AND
INSERT THE DATA
EXTENT BLOCK
IN THE TCB
CHAIN

—El

FORCE BUFFER
REQUEST TO BE
NOT LESS
THAN 2

DEBMOV1

F1

MOVE UCB FROM
THE TIOT TO
THE DEB

G1 DRRECT

OPEN?

H1

INITIALIZE DEB
WITH 10S RETURN
ADDRESSES

Is
J2f®N
MODULE TO BENYES
USED
AGAIN

NO

K2
TO LOAD 2

242



Chart F2.

1IGGO193R
Al
P

OPEN LINE
GROUP LOAD 2

BI
INITIALIZE
REGISTERS WITH
CONTROL BLOCK
ADDRESS

CORRECT,

OPEN Line Group Load 2 Executor Routine

SET UP PROPER
SAD COMMAND

NOT2702

2701 WIT
TYPE Wi
ADAPTER

Cc4
RESTART
IN PROGRESS,

D1 D2 D4
DETERMINE THE OBTAIN ADDRESS
NUMBER OF LCB'S SET ENABLE CCW OR AUTO OF CHECK
NECESSARY ANSWER POINT DATA
rEl rE3
E2/ E4 E5
GET CORE FOR SET READ END OF LINE TO
THE LCB/10B TTY DEVICE SKIP CCW LCB DATA BE STARTED?
1 YES
i 62 I
THE LCB AND
L?\,BDASEDVRES B SET WRITE BUMP TO NEXT DCB THE SAME
BREAK CCW POINTER AS SAVED?
TYPE ARE STORED 2
IN THE DCB
STARTLP FOUNDCCB
Gl STARTLN G4
G2
108 1S OPEN FOR RESTORE
INITIALIZED LCB DATA
STOREECB
H1 —H2 FH:
e o s oF InITALIZE s YES STORE ECB
LCBFLAG2 SCiE'[\)/ULER LINE ACTIVE ADDRESS IN 10B
1S SET ON
NETLN OUTONLY NOSTART
— J1 (JZ rJ4 ~J5
MOVE DEVICe CODE, PRICRITY e Do ot GET NEXT LCB
TYPE TO THE AND <TAR ’ START! ADDRESS
uCB TART LINE INDICATION
INDICATION
O,
@ Ks SETUP
TO LOAD 3 WHERE-TO-GO MORE LCB'S
TABLE

QTAM Charts

243



Chart F3. Open Line Group Load 3 Executor Routine

XCTLRTNE LONGLOAD
1GGO193T a0 2o v
Al SET SIO CODE FOR| MOVE ID TO SET LENGTH OF
OPEN LINE IECKLNCH AND NAME FIELD & FIRST TEXT
GROUP LOAD 3 SET NO PRIORITY TTR TO WTG RECORD TO 1024
SW IN LCB : TABLE
CPFLAG l
~B1 B2 —~B3 B4
LOAD REGS FROM
D
LOAD 2; ID & TTRL ISSUE SVC SET DE SWITCH #T'AL?ZT'E‘EMORE
FLD NEEDED FOR EXCP (0) ON RECORD
LOAD
Cl. Cc3
LOADROUT F3D3
c2
legR$O YES ISSUE SVC
1SSUE LOAD SVC 510 ON XCTL (7)
LOADROUT
—D1 —D2 rD3
PICK UP GET ADDRESS OF SET STANDARD
DEVICE CODE EXECUTOR LOAD ATTRIBUTES
WORK AREA
RWVDLP ( ) RELOOP [
FEZ —E3:
£l INCREMENT BUMP TO GET
26R0 FIELD DNC CURRENT WTG o o NEXT VD FIELD
REG & PARAMETER MODULE & BUMP DEVICE
LIST REG COUNT BY ONE
™ @
RWVD}
~F1
]
TYPE AND O BE OPENED

DEVICE COUNT

—G1
LOADROUT _F3D3

GET COMM
VECTOR TABLE
ADDRESS AND
ADDRESS OF DCB

ISSUE LOAD SVC END OF TABLE

FOR SVC LIB
NEXTSP10
ZCHECK

—H1 H3
STORE: VECTOR o
LIST ADDR WTG REG ISSUE SVC
DEVICE CODE - LOAD (8)
AND NO OF
ROUTINES

rJ1 22 ~J3
LOAD: NUMBER UPDATE POINTER
OF LINES, SIZE TO SUBROUTINE
OF EACH LCB/ GET NEXT ENTRY ID SECTION IN
10B AND LCB DEB & INCREMENT
POINTER COUNT OF

SUBROUTINES

LOADED
NEXTSIO

~K1
LOAD OB ADDR

K3—
AND BUMP LCB

POINTER TO THE ( RETURN )
NEXT LCB

244



Chart F4. OPEN Direct Access Message Queue Routine

1GG01930
Al

CHECK POINT

D1 enD
OF DSCB
CHAIN

FORMTEST

El
FORMAT 1

F1

GET ADDRESS
OF NEXT DSCB

CTLOOP
Bl B2
OBTAIN NUMBER GET TERMTBL
ADDRESS FROM
OF EXTENTS ON R e
THIS VOLUME g
~Cl ~C2
ADD 1O LOAD MODULE
PREVIOUS
COUNT 1GGOIING
~D2

STORE ADDRESS
OF IGGOI9NG

NMTRKS
—E2
GET THE
NUMBER OF
RECORDS THAT
WILL FIT ON
EACH TRACK

-F2

GET ADDRESS
OF NEXT LOAD 2

Gl NO
END OF DSCB

YES

<
ENDDSCBS
rH1

CALCULATE
SIZE AND GET
CORE FOR DEB

rJ1

INITIALIZE
THE DEB

K1

BUILD DISK
EXTENTS FOR
ENTIRE DATA
SET

OPENCP

DIRECT ACCES!
OPEN

PAOPEN
B3

LOAD CHECK
POINT MODULE
1GGOT9NH

e
STORE ADDRESS
OF NH IN
IGGOI9NG AND
TERMINAL TABLE
ADDRESS IN NH

D3

STORE LENGTH
AND OVER HEAD
IN IGGOI9NG

—E3

CALCULATE
NUMBER OF
TRACKS FOR
EXTENTS IN DEB

—F3

GET ADDRESS OF
NEXT LOAD FOR
CHECK POINT

[

RELOOP
—G2

SET UP XCTL
FROM WHERE~
TO-GO TABLE

M50 TG NEXT
EXECUTER

QTAM Charts

245



Chart F5.

246

QLOOP

OPEN Direct Access Load 2 Routine

1GG0193U

Al
OPEN DIRECT
ACCESS LOAD

B'
-
PUT MSGCTL TCB
ADDRESS IN
IGGOIYNG, SET
PRICRITY

Cl

SET MASTER

ZERO MESSAGE
PROCESSING
DEB CHAIN

RECEIVE SWITCH,

~D1

OBTAIN ADDRESS
OF QCB FROM
TERMINAL

TABLE

B2

SET LENGTH
OF FORMAT 1

D2

BUMP POINTER
TO THE NEXT

A

DISTRIBUTION
LisT

F1

STORE MESSAGE
QUEUE ADDRESS
IN THE QCB

FOR THIS ENTRY

ENTRY IN
TERMTBL

STILLFST

DSCB'S FREE

B3
FORMAT |

SET THE

AND LENGTH

D3
FIRST DSCB

>

FORMAT 3 INDEX

STORED IN THE
108

-J2

MOVE SUBTASK
ROUTINE TO
OPEN WORK
AREA

K2

QPOST

ACTIVATE
SUBTASK TO
STORE ADDR OF|

QQOT IN NG

FORMAT 1
E3
FREEMAIN ALL
SECONDARY
DSCB
ALLOCATE DISK 3
SPACE FOR
FIRST RECORD IN END OF CHAIN
EACH QUEUE
YES
( )ALLFREE
~G2: G3 -
STORE ADDRESS ZERO POINTER
OF FIRST BUFFER IN LAST DSCB
IN AVAILABLE OF FIRST
BUFFER QUEUE VOLUME
ONE
~H2
JOB ADDRESS IN Ha
DCB AND DCB OPERATOR
ADDRESS 1S CONTROL

NO

B4
( ENTER

SUBTASK+10
—C4

GET ADDRESS OF
QQPTR ADCON

NOCOPCTL i
A5
INDICATE
COMPLETION
IN WHERE-TO-
GO TABLE

AUTOPOLL
~B5

LOCATE FIRST
ENTRY IN
TERMINAL TABLE

| I

APNXTERM
rcs

LOCATE NEXT
ENTRY IN
TERMINAL TABLE

—D4

STORE IECKQQO1
BASE IN ADCON
IN IGGOI9NG

EXIT TO
QDISPATCH

APN

D5 HAVE AL
ENTRIES BEEN

ES5
OBTAIN ADDRESS
OF POLLING

LIST

ASSOCIATED WITH
THIS ENTRY

F57 THIS AN
NO™ AuTOPOLL
A POLLING
LIST

rG5
REPLACE OFFSET
VALUE WITH
POLLING
CHARACTERS AND
INDEX BYTES

I
RELOOP

s—Y

SET UP XCTL

SPECIFIED,

J3

CHANGE ADCON
IN IGGOI9NG
FROM A (IECKPR)
TO A (IECKOPAW)

FROM WHERE-
TO-GO TABLE

57 SAME
EXECUTOR
REQUIRED,

K5.

GO TO NEXT
EXECUTOR OF
INCOMPLETE
DCB



Chart Fo.

. TE Rhé\ LOOP
rBl1

1IGGO193V

Al
OPEN CHECK
POINT DATA SET,

LOAD QUEUE
ADDRESS

—A2

ADD LCB SIZE
AND POLL LIST
SIZE TO
TOTAL SIZE

OPEN Checkpoint Data Set

SAMEQUE

B2

INCREMENT TO
NEXT TERM
ENTRY

Ci

DISTRIBUTION
LIST ENTRY,

D1

STORE ADDRESS
OF FIRST QUEUE

YES

d

C2
END OF TABLE

D2

STORE TERM
LENGTH AND
TOTAL SIZE IN
IGGOI9NH

NO

ADD TO QUEUE
SIZE THE SIZE
OF QUEUE +3

~E2

BUILD BASIC 1/O
COMMAND [N
OPEN WORKAREA

F27 DATA
SET
DISPOSITION
OLD CR
NEW,

NEW

Routine

RESTART REREAD

A3 rA4
GETMAIN FOR SET READ
CHECK POINT ™ COMMAND.
AREA

~B3 B4

DISKIO  F7B2

STORE ADDRESS READ CHECK

IN WORK AREA

POINT RECORD

OF RECORD
REQUIRED

D3

SET NO-OP
COMMAND
FOR FIRST

—~C4
RESTORE
ADDRESSES OF
INPUT AREA,
TERMTBL, NG,
AND LPS QUEUE

~D4

GET ADDRESS OF
QUEUE DATA AND
POLLING LIST
DATA

&/

NEWDS
~F3

WRITE COUNT,

ACCESS POLL
ADDRESS

G2
SET READ
COMMAND
IN Cow
—H1 _H2
PREPARE _ F7A3
SUBTRACT 3
FROM QUEUE READ CONTROL
SIZE RECORD
)

J2'CONTROL
RECORD FOR
RESTART

NO

KEY, AND DATA

~E4

RESTORE QUEUE
SIZE AND
QNASEQ, QBACK )
AND QFAC IN
QCB FROM
SAVED DATA

F4

FLIP COUNT
SWITCH

_G3
PREPARE _F7A3

WRITE CONTROL
RECORD

RESTLOOP
G4

MOVE TERMINAL
ENTRY FROM
WORK AREA TO
TERMINAL TABLE

&/

YES

—H3 Hd
PREP F7A2
WRITE FIRST COMPUTE THE
ADDRESS OF THE
CHECK POINT NEW QUEUE
RECORD
_J3
PREP F7A2
WRITE SECOND
CHECK POINT DISTR:E%TION
RECORD

STORE QUEUE
ADDRESS IN
TERMINAL
TABLE ENTRY

STORELN
A5

STORE TERMINAL
SIZE IN
TERMINAL TABLE

B5 "QUEUE
DIFFERENT
FROM LAST

c5
RESTORE QUEUE
SIZE, QNASEG,
QBACK, AND
QFAC TO THE
QCB

DISTRIBUTION
LIST

(=)
RESTORE QUEUE
FIELDS IF
DIFFERENT
QUEUE THAN
LAST

DESTINATION
QUEUE

rH5

SET QFAC TO
LAST MESSAGE

rJo————

UPDATE POINTER
TO WORK AREA

QTAM Charts



Chart F7.

N

NOTPROC
B1

OBTAIN POLLING
LIST POINTER

(@]

RESTORED

rDi1

TURN OFF
'NOT RESTORED'
FLAG

PREVIOUSLY ™\, YES

rE‘n

RESTORE POLLING|
LIST

&)

PREPARE FORMAT
FOR CHECK
POINT RECORD

PREP PREPARE

—A2

&/

PREPARE READ
OR WRITE
CONTROL
RECORD

|

ol
Ll B}

DISKIO w2
F

SET WRITE
DATA ADDRESS

COMPUTE
LENGTH OF
REMAINING
DATA

STORE DATA
LENGTH IN CCW

A

© QREST

~F1

SAVE QUEUE
ADDRESS

UPDATE
rGl

UPDATE POINTERS
IN WORK AREA

SET RESTART
INDICATOR IN
TERMINAL TABLE

248

SAVE REGISTERS

READ OP CODE

OPEN Checkpoint Data Set Routine (Continued)

EXCP

WAIT

PERMANENT
ERROR

rG3

SET LENGTH IN
CCW FOR READ

EXITTEST

NO

g

’—HZ
CONVERT

CONVERT TTR
TO DISK
ADDRESS

J2
VALID TTR

K2

RESTORE
REGISTERS

RETURN

ZERO RECORD
NUMBER, RESET
TRACK LENGTH

LEAVE
B5

MOVE CHECK
POINT INTERVAL
FROM TERMINAL
TABLE TO
IGGO19NH

rCs
SET INITIAL
REQUEST VALUE
IN CKREQ
QUEUE

D5
CKREQ MACRONYES
USED

NO

E5
ES

STORE INTERVAL
IN PLACE OF
REQUEST

CKREQ
Fs

RESTORE IOBCCW
ADDRESS

READ OP CODE

J4

COMPUTE
LENGTH OF
NEXT READ

NO

RELOOP
rG5

SET UP XCTL
BY WHERE-TO-
GO TABLE

NOABEND

J5
END OF TABLE

NO

ENTRY IN WHERE,
JO-GO-TABLE



e Chart F8.

1GGO194A

Al
COMPLETE THE
OPEN

PROCESSING

B1
RESTART IN
PROGRESS

Cl

PREPARE FOR
SCAN OF THE
TERMINAL
TABLE

TERMLOOP
D1” IS

QUEUE A
DESTINATION
QUEUE

NO GREATER

A2

PLACE SEND
SCHEDULER IN
STCB CHAIN
OF THE LCB

QTAM Open Line Group Load 4

TURN ON THE
CANCEL FLAG

A3

I SETNASEG

B2
SET QLINK TO
PERMIT
RETRANSMISSION
OF MESSAGES

‘NOCHANGE

C2' LINE
N SEND
STATUS

D2

ASSURE QFAC
SET CORRECTLY

B3
SOURCE
KEY =0

NEXTLINE
A4

INCREMENT TO
THE NEXT
LCB/1OB

A5

DELAY FOR
28 SECS

TESTLINE

B4" HAS
THIS LINE
COMPLETED

TESTDIAL/
VL]

UCB FOR
A SWITCHED
LINE

F2"ANY
OUTGOING \\NO

THAN NUMBER’ y MESSAGES
OF EXTENTS
Gl e2
PLACE SEND
LOCATE LCB SCHEDULER ON
DIAL-OUT CALL
QUEUE
TRYRCY
H1 H2"WAS
1S SEND MESSAGE N\ NO
BIT ON COMING
IN
YES E3
~J2
CONVERT
¢ YES INCOMING
iﬁ“&g?ﬁ@ HEADER RECORD
NUMBER TO A
TR
[ DiskRwRT
READ THE
HEADER OFF
THE DISK

E3 MORE
TERMTABLE
ENTRIES

~F3

RESTORE DISK
APPENDAGE
ADDRESSES

~C3
YES RESET SEQ IN C4 MORE
THE TERM LINES THIS
ENTRY GROUP
SETWRITE
-D3
DISKRWRT D4
REWRITE THE 'C'\(‘DDA}\?I\ETEE
HEADER
£3
ENDTEST RELOOP

YES

ENDLODE3

G3
FLAG TO
INDICATE NO
TIME DELAY
EXECUTED YET

H3

GET NUMBER
OF EXTENTS OF
THIS LINE
GROUP

E4'THIS
MODULE TO
BE USED
AGAIN

ZCHECK
F4

SET UP FOR
NEXT ENTRY IN
WHERE-TO-GO
TABLE

XCTLRTNE

G450 70 NEXT
ROUTINE

TRYMSG

J4 HAVE
WE ALREAD
DELAYED

N NO

K4

WTO

QTAM Charts



e Chart F9.

250

1GG0203R

(T

Al

DIAL LINE

Close Process Queue ILoad 2

CXEOL
rA3

CLOSE ELEMENT
ADDRESS IN NG

Qw

~B1 B3
is
SET PRIORITY B2"rhE Line ISSUE SVC
MASK TO MAKE IN ACTIVE QPOST (67)
SVRB ZERO TRANS
NEXDDEB ~ | @
- Cl c2 -C3
ACCESS ADDRESS
OF NEXT DEB CHAR ID TO
INDEX TCB OF ISSUE SVC 33 INDICATE
MESSAGE COMPLETION
CONTROL
- N RELOOP
SKIPHALT
D2 D3~ THIS
e Ling N MODULE TO
ACTIVE BE USED
GAI

E2
e
DATA
No ORGAI\IIZSE;IO ISSUE SVC
OMMUNICATIONS QWAIT (65)
LINE
YES
skipsTop [
rFl -F2
ACCESS START RESTORE THE
OF LCB'S DCB ADDRESS
FOR DEB
NEXTEXT
o1 BYPASS
[ ;
CURREN
COPY RELATIVE NO LA,G 2SETXE1;E{_\éL IT'HFEOR
L
INE NUMBER EXTENT |
YES

AUTOPOLL
LINE

s
LINE
RECEIVING

K1

SET STOP
INDICATION

D2

ZCHECK
E3

SET UP FOR
NEXT ENTRY IN
WHERE-TO-GO
TABLE

XCTLRTNE

F3__1

GO TO
NEXT RTN



Chart FA.

)

DISWRT"

~D1
CONVERT RTN

CONVERT TR TO

Checkpoint Routine

C3 7" TIMER
YES ~ INTERRPT OR

A3
{GGOI9NH

RESTART
B5
FROM YES FREEMAIN TO
ENDREADY RESTART RELEASE C.P.
WORK AREA

STARTUP
c4
CKREQ BEING
USED

YES
REQUIRED

EXIT TO
QDISPATCH
D4

SET UP TO SET

POSTECBS
D5

ACCESS FIRST

ACTUAL DISK
ADDRESS

E1l

EXCP TO WRITE
C.P. OR
CONTROL
RECORD

CHECK POINT
REQUEST SUBTASK

E2

CHAIN PARTITION
ECB INTO TOP
OF WAIT QUEUE

YES
I:IrTEEcRKFPooRINT (NEXT) PARTITION fa—
<] INTERVAL ECB IN WAITQ

ves E5 DUMMY
MACRO I[SSUED,

E4.—
EXIT TO
TIME DELAY

DISPATCH

POSTLCB
Gl
SET UP TO POST
C.P. ELEMENT
TO ITSELF TO
CAUSE REENTRY
FOR TAKING C.P.

H1
EXTTTO DECREMENT
POST IN QQO1 CKREQ

COUNTER

J2
EXIT TO
QDISPATCH

TESTERR

F4 F5
YES ISSUE WTO TO POST
DISK ERROR PRINT ERROR PARTITION ECB
MSG COMPLETE
G4

PREVENT C.P.
ROUTINE FROM

G5
EXIT TO
QDISPATCH

TAKING
FURTHER CHECK
POINTS
~H4
H3 SET UP TO
was Sib N\ No WRITE RESET @
OF C.P.
RECORD
WRTCONTR
3
-
FLIP POINTER
TO MOST
CURRENT C.P.
RECORD
~K3 K4
RESET CKREQ SET UP TO
COUNTER TO WRITE CONTROL ———.
INITIAL VALUE RECORD

QTAM Charts

251



Chart FB. Checkpoint Routine (Continued)

FB
Bl
B1

GETMAIN TO
OBTAIN WORK
AREA FOR
C.P. RECORD

~Cl

SET REGISTERS
TO START OF
EACH FIELD IN
THE WORK AREA

TERMLOOP

—D1
ACCESS FIRST
(NEXT) ENTRY IN
TERMINAL TABLE
AND MOVE TO
WORK AREA

rEl

OBTAIN QCB
ADDRESS FROM
TERMTBL ENTRY

F1

LIST QCB?

HAS

THIS QCB'S

DATA SET BEE
MOVED?,

HI
[ "MoveQuE

MOVE QCB
FIELDS TO C.P.
WORK AREA

MOVE POLLING
LIST AND LCB

DATA TO WORK
AREA

252

DISTRIBUTION, YES

MORE
TERM
ENTRIES?

E2

MOVEQUE

MOVE ERROR
QUEUE DATA TO
WORK AREA

F2 £l EMENT
IN DISK I/O
QUEUE?

G2
'LINK CHECK
POINT ELEMENT
INTO BOTTOM
OF DISK I/O.
QUEUE

H2

EXIT TO
QDISPATCH

FJZ

MOVE DISK
ADDRESS OF
CURRENT MSG
TO WORK AREA

K2
INCREMENT

QSIZE BY ONE
FOR EACH MSG
IN MS PROCESS

QUEUE




Chart NU.

QTAM Nucleus (1 of 2)

ENTER FROM
SVC PROBLEM
PROGRAM

—B1

GET ADDRESS OF
TERMINAL TABLE
IGGOI9NG, TCB
AND RB

ENTRY INTERFACE
SUBROUTINE

C1

ZERO ECB IN
SVRB

DI
’—PLACE NEW STCB
IN CHAIN OF
LAST DISPATCHED
QUEUE

—El

SET PRIORITY
OF EO

WAIT
F2

Fl
SET QKEY OF

READY QUEUE
EQUAL TO ZERO

QPOST
OR QWAIT

WAIT

POST
Gl POST
SETKEY N |SUBROUTINE G2
LAST KEY EQUAL
DISPATCHED o
QCB TO 2

PRIORITY
PASSED

ELEMENT
AVAILABLE

‘—Jl
STCB
SET PRIORITY ON CORRECT
CHAIN
posT T[T
’—K'.
PUT QCB
ADDRESS IN
RECB

&)

UNAVAIL
83

REMOVE STCB
FROM PRESENT
CHAIN

—D3

SKIP TO TOP
OF STCB IN
- CHAIN

-E3

SET REGISTERS
TO POINT TO
STCB AND QCB

DEFER ENTRY
SUBROUTINE

PRICRITY

WAIT
SUB-
ROUTINE

[re
SEARCH CHAIN
BY PRIORITY FOR
INSERTION
POINT FOR

ITEM PASSED

SET UP REGISTERS
FOR INSERTION

LIFO

[
INSERT ITEM
INTO CHAIN

PRICRITY SEARCH
SUBROUTINE

QUEUE INSERT
SUBROUTINE

J4

SET UP READY
QUEUE AS QCB
FOR STCB

QDISPATCH
SUBROUTINE

DISPATCH
~C5
SET KEY IN

READY QUEUE
QCBTO 2

~D5

OBTAIN FIRST
ITEM IN READY
QUEUE CHAIN

ES"ENTRY

YES _FROM ASYCHR

INTERRUPT O
END Ol

QCB OR RECB

G5
ELEMENT

POSTED TO

ITSELF

HS5

REMOVE
ELEMENT FROM
READY QUEUE

J5
FULL STCB

QTAM Charts

253



Chart nv.

254

QTAM Nucleus (2 of 2)

Al
QCB KEY
EQUALTO 2

B1

'REMOVE ITEM
FROM HEAD OF
READY QUEUE

DISABLE

A2

B2:

REPLACE RECB
ON READY QUEUE
WITH ITS QCB

BD

~C2

SET QKEY IN
QCB EQUAL

YES

D1

SET KEY
INQCBTO 1

4

TO3

EXIT SELECT
SUBROUTINE

p2”
STCB A
FULL STCB

D3
BRANCH TO
NRET (X)
SUBTASK

k2 EXIT INTERFACE
SUBROUTINE
REMOVE STCB
FROM QUEUE
LNKLOOP
sz
LOAD ECB
ADDRESS
G2
OBTAIN TCB
ADDRESS
H2
POST ECB IN
FULL STCB
COMPLETE
EXITZ/ 13
J \ NO WAIT ON ECB
SYNCHRONOUS ASSOCIATED
|NTERW WITH CURRENT
TCB

YES

J4

EXIT TO OS
DISPATCHER

K2—
( RETURN TO 10§ ’



Chart QA.

CHECK8
- ’-H'[

Terminal Test HDR Analysis Module

Al
1GC0007G }

Bl
ESTABLISH BASE
REGISTERS AND
CLEAR NO-TEST
SWITCH

FORMAT 0 YES

B3
1060
COMPARE TEST

REQUEST

YES

(ASCil OR
BCD)

D1

PICK-UP COUNT
OF CHARACTERS
IN SYMBOL

El
AsSCil
FORMAT 1

Fl
BCD
FORMAT 1

1
YMBOL YES

S
COUNT IS ZERO
(BCD)

NO

TRANSLATE
SYMBOL TO
EBCDIC

Y

ZERO | CONTINUE

FIND ADDRESS
OF TABLE
ENTRY

ASCIIN

(ASCII)

—J1

SET-UP TO
SEARCH
TERMINAL
TABLE

NEXTID

K1
1S SYMBOL YES

IN TERMINAL
TABLE

IDFOUND ;

4
B4

ZERO FIND LCB

FEATURES IN

BUFFER

ADDRESS & PUT IT,
DEVICE TYPE AND

D4

PUT DIAL
INFORMATION
ADDRESS IN
BUFFER

L
NODIAL

—E4
PUT
ADDRESSING
CHARACTERS IN
BUFFER

G4 FROM

A BCD
TERMINAL
AND
O A 2260

RESTART ™|
A5
SET NO-TEST
SWITCH AND
CLEAR ADDRESS
AREAS IN
BUFFER

RETURN

RESIDENT MODULE,

TO CORE

CALL2260

ROUT2260
F5

2260

r

TRANSFER
CONTROL TO

MODULE

G5

TRANSLATE
INPUT TO ASClI
FROM BCD

DEVICE

ASC11BCD 1
rH5

TRANSLATE
INPUT TO BCD
FROM ASCI]

L

|

TEST2740

K47 1S
MESSAGE

7O A 1030,

1050 OR
1060

702740 15

VALIDATE
HEADER AND
TRANSFER
CONTROL

CALL1030
CALL1050

CALL1060 Y
K5_J

TRANSFER
CONTROL TO
DEVICE MODULE

QOTAM Charts

255



Chart QL. Resident Terminal Test Module

B2
IECKONLT

c2”TEST
SET-UP YES

REQUEST

NO
TEST REQUEST

Y

F
‘ RETURN TO LPS )

F2RETURN
TEST ON DIAL
LINE

SET LCB

DESTINATION
FIELD TO TEST
QCB ADDRESS

H2 —
RETURN TO
QTAM BUFFER
RECALL-CLEAN-,
UP ROUTINE

NOTE--THE QTAM BUFFER RECALL~CLEANUP ROUTINE POSTS
THE BUFFER TO THE TEST BUFFER ROUTING QCB.

256

E3 Y

QPOST BUFFER
TO AVAILABLE
BUFFER QUEUE

F3

START LINE
VIA QPOST

~C5

SET TERMINAL
TEST ACTIVITY
FLAGS

D5
SVC 77
D4
TERMINAL _CALL & EXECUTE
TEST TERMINAL TEST
COMPLETE TRANSIENTS
NO
~E4 ~E5
SET FLAGS FOR POST BUFFER
LINE END TO TEST STOP
APPENDAGE LINE QCB
~F4
INITIALIZE
FOR SENDING
OF TEST
MESSAGE
CA
EXCP TO
SEND TEST
MESSAGE

H4—
ETURN TO QTA,
LPS CONTROL



Chart QsS.

D1

SET UP POST
TO AVAILABLE
BUFFER QUEUE

Terminal Subtasks

TERMINAL TEST

BUFFER ROUTINE SUBTASK

HEADER
SEGMENT

D2

SET TERMINAL
TEST
IDENTIFICATION
IN BUFFER

TERMINAL TEST
STOP LINE SUBTASK

D3.

SETUP TO
STOP LINE

FEZ
SET UP POST
TO LPS QUEUE

F2___|

EXIT TO QTAM
POST ROUTINE

NOTE--QTAM POST ROUTINE WILL PLACE THE BUFFER
ON THE APPROPRIATE QUEUE.

CONTROL DEFERS)
ENTRY ROUTINE

B4
ENTRY TO
STOP LINE
. PROLBFR

c4

DALINE IN
( ACTIVE YES
TRANSMISSION

HALT I/O
ON LINE

NOTE--THE DEFER ENTRY ROUTINE

WILL PLACE A TEST STCB
IN THE LCB STCB CHAIN

B5

ENTRY AFTER
LINE IS STOPPED,

LINEAVAL

FE5

SET LINE NOT
AVAILABLE
FLAGS IN
BUFFER

—F5

SET BUFFER FOR
LINK TO
LPSQUEUE

G5

PLACE BUFFER
ON READY
QUEUE

REMOVE NEXT
BUFFER FROM
BUFFER CHAIN

QTAM Charts

257



Chart Q3.

258

1030 Terminal Test Module

1030 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

B2
1GC0107G

C2 1S
THE HEADER

NO

MSGSWTCH{

R5.
BS:

SET UP DATA
CCW FOR
MESSAGE
SWITCH

NO S5 WAs core

VALID

RESTART ©
D3 Y
SET NO-TEST
SWITCH
E2
MOVE £3—1
ADDRESSING RETURN TO
CHARACTERS RESIDENT
FROM MESSA GE MODULE
TO BUFFER

F2“MANUAL

NO ENTRY OR
BADGE
READER

CONVERT
ADDRESSING
CHARACTERS

H5
H2 VALID
ADDRESSING 1-UP USAGE
GET CORE FOR
CHARACTE THIS PATTERN COUNT
YES
GETCORE SETDATA
12 o
[ cETmaIN B
GET CORE FOR NO 4 WAS CORE scxzcrvyggﬂﬁls
CHANNEL AVAILABLE cowro
PROGRAM
K4
) SET USAGE K5—
52 \as core COUNT TO ONE RETURN TO
AVAILABLE & MOVE DATA RESIDENT
TO AREA AND MODULE
PAD

SET UP ALL
BUT DATA CCW

D4

E4 MESSAGEN\_ YES
SWITCH TEST

COMPARE
TEST

IS
THIS PATTERN

AVAILABLE

D5
RETURN TO
RESIDENT

MODULE

COMPARE

S 1S COMPARE
DATA OK

F5

SET UP VALID
COMPARE
MESSAGE AND
DATA CCwW

G5
RETURN TO
RESIDENT

MODULE




Chart Q4. 2740 Terminal Test Module

2740 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

B2
{ 1GC0407G

MSGSWTCH i
C5

(< GEMAN
SET UP DATA
GET CORE FOR CCW FOR
CHANNEL MESSAGE
PROGRAM AND SWITCH
SPEC CHARS
RESTART
D3
[ D5 —

RETURN TO
RESIDENT
MODULE

2 WAS CORE
AVAILABLE

SET NO-TEST
SWITCH

COMPARE

B Is
z STATION RETURN TO E4" MESSAGE E 'COMPARE
CONTROL RESIDENT SWITCH TEST, DATA \

MODULE oK

F5
SET UP VALID
COMPARE COMPARE
TEST MESSAGE AND
DATA CCW

NOTDIAL
G2

BUILD CHANNEL 5
- PROGRAM AND G471s THIS N RETURN TO
SPECIAL > PATTERN | RESIDENT

USE

MODULE

CHARACTERS FOR
BASIC TERMINAL

NOTINUSE
~H4
[ CETmAIN
ANSWER 1-UP USAGE GET CORE
LIST COUNT FOR THIS
PATTERN
SETCCW  [e—
~J2 -4
BUILD CHANNEL
PROGRAM AND SET UP DATA
RE
| sPECIAL CCW FOR THIS XV\‘,\;LCAOBLE
CHARACTERS FOR PATTERN
DIAL-ANSWER
) P "
BUILD CHANNEL BUILD CHANNEL g N
PROGRAM AND PROGRAM AND RETURN TO SET USAGE
SPECIAL SPECIAL RESIDENT COUNT TaONE
CHARACTERS FOR CHARACTERS FOR MODULE b DATA
STATION- DIAL-TERMINAL ©
CONTROL

o)

QTAM Charts 259



Chart Q5.

260

1050 Terminal Test Module

1050 TERMINAL TEST MODULE

(TYPE 4 SVC ROUTINE)

B2
1GC0207G

2 s
THE HEADER
VALID

NO

E2
MOVE
ADDRESSING
CHARACTERS
FROM MESSAGE
TO BUFFER

NOTDIAL
rG2:

SET COUNT FOR
NON-DIAL
CHANNEL
PROGRAM

>

HI1

SET COUNT FOR
DIAL CHANNEL
PROGRAM

GETCORE
rH2
GETMAIN

GET CORE FOR
CHANNEL
PROGRAM

J2

WAS CORE
AVAILABLE

RESTART

Y

D3

SET NO-TEST
SWITCH

E3—
RETURN TO
RESIDENT
MODULE

kK3

SET UP
DIAL CCW'S

NOTDIALI }

D4

SET UP ALL
BUT DATA CCW

F4
COMPARE
TEST

F_—

Mseswro-i__
G5

SET UP DATA
CCW FOR
MESSAGE
SWITCH

D5

RETURN TO
RESIDENT
MODULE

COMPARE

‘E5 IS
COMPARE

DATA OK

F5

SET UP VALID
COMPARE
MESSAGE AND
DATA CCW

RETURN TO

RESIDENT
MODULE

NOTINUSE ;

" GETMAIN
1-UP USAGE
COUNT GET CORE FOR
THIS PATTERN
SETCCW
rJ4
SET UP DATA I5vas CORE
CCW FOR THIS AVAILABLE
PATTERN
K5
K4l SET USAGE
RETURN TO COUNT TO ONE
RESIDENT & MOVE DATA
MODULE TO AREA




Chart Qgb. 1060 Terminal Test Module

1060 TERMINAL TEST MODULE
(TYPE 4 SVC ROUTINE)

B2:
1GC0307G

MSGSWTCH '{'
<5

c2 IS

NO SET UP DATA

THE HEADER COW FOR
VALID MESSAGE

SWITCH

RESTART 1 I
b3 D4
D5—
SET NO~TEST SET UP ALL RETURN TO

BUT DATA CCW RESIDENT

SWITCH R DULE

E2 COMPARE
CONVERT & MOV 3l s
ADDRESSING RETURN 1O B raRE
CHARACTERS

RESIDENT DATA OK A
FROM MESSA GE MODULE
TO BUFFER
rF2
GETMAIN F5
F4 SET UP VALID
GET CORE COMPARE COMPARE
FOR CCW'S TEST MESSAGE AND
DATA CCW

G2
WAS CORE
AVAILABLE

G4 IS THIS
PATTERN
IN USE

G5—
NO RETURN TO
RESIDENT
MODULE

NOTINUSE ;
H4 H5
T GETMAIN
1-UP USAGE
COUNT GET CORE FOR
THIS PATTERN
SETCCW
rJ4
SET UP DATA I5\WAS CORE
CCW FOR THIS AVAILABLE
PATTERN
K5
RETURN TO SET USAGE
RESIDENT COUNT TO ONE
MODULE & MOVE DATA
TO AREA

QTAM Charts 261



Chart Q8.

2848/2260 Terminal Test Module

TEST

F1

ADJUST DATA

WRITE-AT-LINE

2848/2260 TERMINAL TEST MODULES
(TYPE 4 SVC ROUTINE)

B2

PUT IN

1GC0507G

CONVERT
ADDRESSES AND

WRITE-AT-LINE

B3

1GC0607G

WRITE-AT-LINE>E

D3 requEsT
ADDRESS
TEST

BUFFER

262

POINTER TEST
YES
TESTLINE
rG2
CHECK AND
CONVERT LINE
ADDRESS AND
PUT IN MESSAGE
. Y
NOTEST8 | A RESTART |!
H2 H3
[ GET™MAIN
SET NO-TEST
GET CORE FOR SWITCH
cew's
JsJ

WAS
AVA|

K2

BUILD C
PROGRA

EXCEPT DATA
ccw

RETURN TO
RESIDENT
MODULE

CORE
LABLE

K3

HANNEL TRANSFER
M CONTROL TO
1GC0607G

MSGSWTCH oy

T M

DS ADDRESSES
FOR MESSAGE

E4
MESSAGE
SWITCH
TEST

COMPARE
TEST

G4 s This
PATTERN
IN USE

—C4
E DATA
ADJUST DATA ZCT\/;J::OR T
POINTER AND MESSAGE
COUNT SWITCH
~D4
MOVE MESSAGE D5—
TO INPUT & RETURN TO
CONVERT DC & RESIDENT

MODULE

COMPARE

E5" IS
COMPARE
DATA OK

F5

SET UP VALID
COMPARE
MESSAGE AND
DATA CCW

G5—
RETURN TO
RESIDENT

MODULE

RETURN TO
RESIDENT
MODULE

NOTINUSE
H4 -
i B CETMAIN
1-UP USAGE
COUNT G GET CORE FOR
THIS PATTERN
~J4
35
SET UP DATA WAS CORE
CCW FOR THIS Koty
PATTERN
K5
K4

SET USAGE
COUNT TO ONE
MOVE DATA TO
AREA




® Chart R1.

D1-C
NO COou
—%SIDUAL
COUN

WTTA Line PCI Appendage Routine

X

FROM SUPERVISOR
Al

LOAD BASE

FOR IGG019QB
LOAD BASE FOR
QTAM LINE-END
APPENDAGE

INTERRUPTION

TO QTAM LINE-END
APPENDAGE

Cl

RETREIVE
LAST EXECUTED
cew

YES

E2
RETURN TO 10S

LAST
CHARACTER
EOM

YES

LAST
CHARACTER
EOT

LAST
CHARACTER
WRU

YES

>
t

J1

LOAD BASE
FOR

QTAM PCI
APPENDA GE

TO QTAM LINE-PC]
APPENDAGE

CLEAR
RESIDUAL
COUNT
IN CswW

— B3

~C3

GET FROM
LCBCLPCI
LAST USED
BRB

rD

POINT ON
BUFFER
PREFIX

1S
IT THE
FIRST
BUFFER

E3

F3

MOVE IN
CSW THE
BRB
ADDRESS

F4

MOVE IN
CSW THE
BTAM CCw
ADDRESS

G3—
{ RETURN TO 10S }

OTAM Charts

263



e Chart R2. WTTA Line End Appendage Routine (Part 1 of 3)
FROM QTAM
LINE-END 0
APPENDAGE
ENTRYNG A5
Al A2 LAST A4 ADD ONE TO
PROGRAM \YES IEG(';‘UE;‘(;SING THE BREAK
CHECK 3 UNTER
ESSAGE” countl
NO NO
Bl @ B3 B4 IS IT
HIO YES RETURN TO 105 1 TEXT
COMPLETION RETURN TO QTAM TO CALL ERP TRANSFER
LINE-END
RNV
HIORTN —C4
c2 .,
ClRETURN N\ YES LINE NO 3 ADD ONE TO
LPS THE THRESHOLD RETURN TO 105
FROM RECEIVING TO CALL ERP
ERP COUNTER
NO YES l
—D4
DV JoB b2 D3, SAVE
ES
EXCEPTION N ABNORMAL YES RETURN TO 10S RESTART
FLAG CswW TO CALL ERP ADDRESS
ON STATUS
NO NO
g4 Es
E2
YES TIMEOUT MOVE BREAK MOVE SAVED
piw CCW ADDRESS RESTART ADDRESS
READ INTO LCBSTART INTO LCBSTART
NO
B |
F2 F3 F4__|
DATA YES BREAK YES RETURN TO 10S
CHECK SEQUENCE TO RESTART
NO NO @
G2 LOST 3
YES DATA WRITE YES
ON READ OPERATION
NO NO @
Y
HT 2 H3—
UNIT BREAK RETURN TO 108
EXCEPTION SEQUENCE TO CALL ERP

WRBRKO

J2

WRITE YES

OPERATION

264

HIO
COMPLETION

HIORTN

K3
BREAK

SEQUENCE

ID-EXCHANGE

YES

@ IDRTN

S Lne NO

SENDING

YES
SENDRTN



e Chart R3. WTTA Line End Appendage Routine (Part 2 of 3)

&)

Al

POINT ON A
LAST <
RECEIVED

CHARACTER

B4 15
STATUS BTAM CCW
CE-DE-UE INTERRUPTED,
—C3 C4 ~Cs
1 st c OVERLAID MOVE prieass
CHARACTER IAMeYEs  NTES WRU CHARACTER WRITE PAD AOURESS AND
Y BY X'IF! ADDRESS IN COUNT
LCBSTART IN CCw
D5
517 s MOVE
BTAM CCW
CHARACTER
ARAC INTERRUPTED ADDRESS
IN LCBSTART
N
2
BV LasT SET WRU E3RESIDUAD B—
CHARACTER . YES FLAG AND COUNT EQUALS YES (reurn 10 105 )
roT DATA FLAG IO INITIA
IN LCB COUNT (TO RESTART
o CHANNEL PROGRAM)
~F3
1 ]
LAST F2 SET DATA
CHARACTER INTERIM LPS FLAG IN
WRU LCB
Gl ~G3
SUBTRACT UPDATE
ONE TO THE BTAM CCw
RESIDUAL ADDRESS
COUNT AND COUNT
( Hp— —H3
MOVE
HIuNIT vis SET ID-EXCHANGE H4
CHECK WITH EOT FLAG CHAN. PROG. RETURN TO 105
TIME-OUT IN LCB
oS IN (TO RESTART
< | ) CHANNEL PROGRAM)
’—JI 5
MOVE X'f* FAG A
MovE FLAG AND
P INTERRUPTED, CLEANUP CODE
IN LCB

f-

K5—
INTERIM LPS >

QTAM Charts 265



e Chart R4.

&)

UPDATE
MSGSIZE
IN BUFFER
PREFIX

~Al

—B1

SET EOT
FLAG
IN LCB

c1/Ip
EXCHANGE 2
REQUESTED

~ D1

SET TP

CODE
iNDICATING
ENDSEND

F El
MOVE
ID-EXCHANGE
CHAN.PROG

IN LCBSTART

F1—
( RETURN TO 105 )

(TO RESTART CHANNEL
PROGRAM)

J2

MOVE

READ TEXT
CCW ADDRESS
IN LCBSTART

K2—
{ RETURN TO 108

(TO RESTART
CHANNEL PROGRAM)

266

1S
LINE
RECEIVING

WTTA Line End Appendage Routine (Part 3 of

YES

3)

A4” TP
CODE
ENDSEND

B4" p

EXCHANGE
VALID

- C4
SET
TRANS. ERROR
MSG NOT SEND
BITS IN

ERROR HALFWORD

~D4

MOVE

WRITE TEXT
CCW ADDRESS
IN LCBSTART

1D
EXCHANGE
VALID

YES

BS
SET
TRANSMISSION
ERROR BIT IN
ERROR HALFWORD

[

C5—ri
( LPS )

D5
RETURN TO 1OS

E37 ID
NO

EXCHANGE

VALID

YES

~F4

SET
EOT FLAG
IN LCB

~G4
SET
TRANSMISSION
ERROR BIT IN
ERROR HALFWORD

Y
A

(TO RESTART
CHANNEL PROGRAM)

E—
SET

CLEANUP CODE
IN LCB

14—
( INTERIM LPS )



QUEUES

ACTIVE BUFFER REQUEST QUEUE

QCB: Preassembled in the Implementation
module; lapeled BREQ.

Element Chain: Dynamically created. An
element appearing on this chain is an
active buffer request block (BRB) repre-
senting a BRB ring. The ring is formed by
a transfer-in-channel address in each BRB
pointing to the next BRB. The element
chain, which is distinct from the ring, is
formed by the 1link address in the BRBs in
the chain.

STCB Chain: Limited to the STCB for the
active buffer request subtask. .

ADDITIONAL CCW QUEUE

OCB: Preassembled in the module (IECKPAUS)
introduced through the appearance of the
PAUSE macro instruction in the message con-
trol program; labeled INSERTQ.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKISRT. A chain of
special purpose BRBs used to schedule and
contain channel commands for the transmis-
sion of idle characters.

STCB _Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the queue insert subtask.

AVAILABLE BUFFER QUEUE

OCB: Preassembled in the Implementation
module; lapeled BUFFER.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKBUFF. A chain of
operationally empty buffers.

STCB Chain: Limited to the STCB for the
available buffer subtask.
MOVE DATA QUEUE

OCB: Preassembled in the QTAM Implementa-
tion module; labeled QMOVE.

Element Chain: Limited to the dummy last
element (IECKSTOP).

APPENDIX A: OQTAM QUEUES AND SUBTASKS

COMMUNICATIONS LINE QUEUE

QCB: Formed by the first 12 bytes of the
line control block, which is created during
OPEN.

Element Chain:
LCB itself.

Limited to a pointer to the

STCB Chain: May contain the STCB for the
line's receive scheduling subtask and/or
the STCB for the line's send scheduling
subtask (or more than one send scheduling
STCB if separate queues are maintained for
each terminal). Always ends with the STCB
for the QEVENT generalized queue handling
subtask.

DASD DESTINATION QUEUE

QCB: Generated in the problem program on
expansion of a TERM macro instruction;
labeled QUEUEn, where "n" is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: The element chain pointer
in a DASD destination QCB is the relative
record number of the header segment of the
first message in the queue of messages, on
the direct access storage device, for the
destination. In the message chain, each
header segment is linked to the next header
segment and the preceding header segment by
means of internal control fields. Text
segments, which are also on the direct
access storage device, are linked to each
other and to the header segment to which
they relate, through self contained DASD
addresses.

Note that the relative record number
simply reflects the sequence (1 through n)
in which header segments were encountered.
This number is subsequently converted to a
relative DASD address, which, in turn, is
converted to an actual DASD address.

STCB Chain: May contain the STCB for the
destination line's send scheduling subtask.
Always ends with the STCB for the DASD
destination subtask.

DISK INPUT/OUTPUT QUEUE
QCB: Preassembled in the Implementation
module; labeled DISK.

Appendix A: QTAM Queues and Subtasks 267



Element Chain: Dynamically created. A
chain of BRBs (containing channel command
words) for direct access Read operations,
intermixed with full buffers, to be written
on the DASD.

STCB Chain: Limited to the STCB for the
disk input/output subtask.

DISTRIBUTION LIST QUEUE

QCB: Preassembled in the module (IECKDLST)
introduced by the appearance of the LIST
macro instruction in the problem program.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. No element chain
is developed. Elements related to a dis-
tribution list are immediately transferred
to the DASD destination queue for the first
terminal in the distribution list.

STCB: Limited to the STCB for the distri-
bution list subtask.

INACTIVE BRB QUEUE

OCB: Preassembled in the Implementation
module; labeled AVREQ.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; labeled IECKAVRQ. A chain of
BRBs of which the third and fourth full-
words are effectively empty.

STCB Chain: May contain the STCB for the
line's receive schedul ing subtask and/or
the STCB for the line's send scheduling
subtask (or more than one send scheduling
STCB if a separate queue is maintained for
each terminal). Always ends with the STCB
for the queue insert subtask.

INTERIM LPS QUEUE

QCB: Preassembled in the Implementation
module; labeled INTLRM.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. Elements are
immediately transferred to the LPS queue.

STCB Chain: Limited to the STCB for the
interim LPS subtask.

TIME QUEUE
QCB: Preassembled in the QTAM Implementa-

tion module; labeled TIMEQ.

Element Chain: Dynamically created. An

element appearing on this chain is an LCB
waiting for an interrupt fromr the TIMER.

268

LPS QUEUE
QCB: Preassembled in the Implementation

module; labeled LPS.

Element Chain: Dynamically created. A
chain of empty buffers, to be used for mes-
sages coming in from terminals, inter-
spersed with message-filled buffers to be
processed by the LPS routine.

STCB Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the queue insert by priority subtask.

DASD PROCESS QUEUE

QCB: Generated in the problem program on
expansion of the PROCESS macro instruction;
labeled QUEUEn, where "n" is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: (Refer to the element chain
description for the DASD destination QCB). -

STCB Chain: May contain the STCB for the
process queue's Get scheduling subtask.
Always ends with the STCB for the DASD
destination subtask.

RETURN BUFFER QUEUE

QOCB:
module;

Preassembled in the Implementation
labeled GETRET.

Element Chain: Limited to the dummy last
element labeled IECKSTOP. Buffers returned
from a GET are immediately transferred to
the available buffer queue.

STCB Chain: Limited to the STCB for the
return buffer subtask.

COPY CLEAR QUEUE

QCB: Preassembled in the Operator Control
routine; labeled COPYCLR.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
Copy Clear subroutine in the Operator Con-
trol routine.



CHANGE QUEUE

QCB: Preassembled in the Operator Control
routine; labeled CHANGE.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
Change subroutine in the Operator Control
routine.

STOP QULUE
QCB: Preassembled in the Operator Control

routine; labeled STOP.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
Stop subroutine in the Operator Control
routine.

STOPY4 QUEUE

QCB: Preassembled in the Operator Control
routine; labeled STOPL.

Element Chain: There is no element chain
as this QCB is always posted to itself.

STCB Chain: Limited to the STCB for the
Stop 4 subroutine in the Operator Control
routine and is used by the Operator
Awareness routine.

STOP THE LINE QUEUE

QOCB: Preassembled in the Operator Control
routine; labeled STOP2.

Element Chain: Dynamically created. The
element chain consists of buffers that are
used to transmit operator control messages.

STCB Chain: Limited to the STCB for the
Stop 3 subtask in the Operator Control
routine.

GET SVC 1 QUEUE

QCB: Preassembled in the Operator Control
routine; labeled GETSVCI.

Element Chain: Dynamically created. Ele-
ments are transferred to the LPS queue.

STCB Chain: Limited to the STCB for the
Get SVC 2 subtask in the Operator Control
routine.

CHECKPOINT QUEUE

QOCB: Preassembled in IGGO19NH module in a
dummy checkpoint LCB; labeled START.

Element Chain: This QCB has no element
chain as it is posted to itself.

Limited to the STCB for the
Always ends with a

STCB Chain:
Checkpoint subtask.
dummy end element.

CHECK REQUEST QUEUE

QCB: Preassembled in IGG019NH module;

. labeled CKQUE.

Element Chain: Dynamically created. The
elements are ECBs of partitions waiting for
a checkpoint to be taken.

STCB Chain: Limited to the check request
subtask in the Checkpoint/Restart routine.
Always ends with a dummy end element.

LINE CHANGE QUEUE

QCB: Preassembled in IECKLNCH module;
labeled QUEUE.

Element Chain: Dynamically created. An
element appearing on this chain is an LCB
for a line that is to be started.

STCB Chain: Limited to the STCB for a sub-
task in the Line Change routine.
DIAL OUT-CALL QUEUE

QCB: Formed in the DEB during OPEN for
each line group of dial lines.

Element Chain: None.

STCB Chain: The chain may consist of send
scheduler STCBs for messages that were sent
to terminals that were busy.

SUBTASKS
ACTIVE BUFFER REQUEST SUBTASK

STCB: Preassembled in the Implementation
module; labeled BREQENQ.

Program Entry: Enters the Active Buffer
Request routine at BREQENQ+6.

AVAILABLE BUFFER SUBTASK
STCB: Preassembled in the Implementation
module; labeled BFRENQ.

Appéndix A: QTAM Queues and Subtasks 269



Program Entry: Enters the Available Buffer
routine at BFRENQ+6 (alternate label
BFRREQ) .

DASD DESTINATION SUBTASK

STCB: Preassembled in the Implementation
module; labeled IECKMQ.

Program Entry: Enters the DASD Destination
routine at IECKMQ+6.

DISK INPUT/OUTPUT SUBTASK

STCB: Preassembled in the Implementation
module; labeled DISKENQ.

Program Entry: Enters the Disk Input/
Output routine at DISKENQ+6.

DISTRIBUTION LIST SUBTASK

STCB: Preassembled in module IECKDLQT,
located at IECKDLQT+8.

Program Entry: Enters the module at

TIECKDLQT+14.

GET SCHEDULING SUBTASK

STCB: Preassembled within the Implementa-
tion module; labeled GETSCH.

Program Entry: Enters the GET Scheduler
routine at GETSCH+6.

LPS SUBTASK

STCB: The STCB for the LPS subtask is
transient and is dynamically formed within
the supervisor request block created on
issuance of an SVC 65 or 67 by the subtask.

Program Entry: Activation of the LPS sub-
task causes the message control program to
be re-entered at the instruction following
the supervisor call.

QUEUE IWNSERT SUBTASK

STCB: Preassembled in the Implementation
module; labeled QLIFO.

Program Entry: Enters the Implementation
module at QLIFO+6 (an unconditional branch
to the Queue Insert subroutine (LIFO) in
the QTAM control program).

270

QUEUE INSERT BY PRIORITY SUBTASK

STCB:
module;

Preassembled in the Implementation
labeled QPRIRTY.

Program Entry: Enters the Implementation
module at QPRIRTY+6 (an unconditional
branch to the Queue Insert subroutine by
the Search Priority subroutine (PRIORITY)
of the QTAM control program).

QDISPATCH SUBTASK

STCB: Preassembled in the Implementation
module; labeled QEVENT.

Program Entry: Enters the Implementation
module at QEVENT+6 (an unconditional branch
to the Qdispatch subroutine (DISPATCH) of
the QTAM control program).

RECEIVE SCHEDULING SUBTASK

STCB: There is one receive scheduling sub-
task for each line; the STCB for the sub-
task is contained in the third and fourth
fullwords of the corresponding line control
block.

Program Entry: All receive scheduling sub-
tasks enter the Receive Scheduler routine
at RCVSCH.

RETURN BUFFER SUBTASK

STCB: Preassembled with the Implementation
module; located at GETRET+8.

Program Entry: Enters the Return Buffer
routine at GETRET+14.

SEND SCHEDULING SUBTASK

STCB: There is one send scheduling subtask
for each line or for each terminal, as
specified by the user. The STCB for the
subtask is contained within the third and
fourth fullwords of the QCB for the corre-
sponding DASD destination queue.

Program Entry: All send scheduler subtasks
enter the Send Scheduler routine at
ENQUEUE.

TIME SUBTASK

STCB: Preassembled within the QTAM Imple-
mentation module; labeled TIMEEND.

Program Entry: Enters the End of Poll Time
Delay routine at TIMEEND+6.




MOVE DATA SUBTASK

STCB: Preassembled within the QTAM Imple-
mentation module; labeled QMOVER.

Program Entry: Enters the Cross Partition
Move routine at QMOVER+6.

COPY CLEAR SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled COPYCLR1.

Program Entry: Enters the subtask in the
Operator Control routine at COPYCLR1+6 to
be in supervisory mode.

CHANGE 1 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled CHANGE1l.

Program Entry: Enter the subtask in the
Operator Control routine at CHANGE1l+6 to be
in supervisory mode.

STOP 1 SUBTASK

STCB: Preassembled in the Operator Control
routine at STOP1+6 to be in the supervisory
mode.

Program Entry: Enters the subtask in the
Operator Control routine at STOP1+6 to be
in supervisory mode.

STOP 3 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled STOP3.

Program Entry: Enters the subtask in the
Operator Control routine at STOP3+8.

GETSVC 2 SUBTASK

STCB: Preassembled in the Operator Control
routine; labeled GETSVC2.

Program Entry: Enters the subtask in the
Operator Control routine at GETSVC2 + 8.

STOP 5 SUBTASK
STCB: Preassembled in the Operator Control
routine; labeled STOP5.

Program Entry: Enters the subtask in the
Operator Control routine at STOP5+8.

CHECKPOINT SUBTASK

STCB: Preassembled in the Checkpoint/
Restart module; labeled TERMTBL.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at CON+2.

CHECK REQUEST SUBTASK

STCB: Preassembled in the Checkpoint/
Restart module; labeled CKSTCB.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at CKSTCB+6.

LINE CHANGE SUBTASK

STCB: Preassembled in the Line Change rou-
tine; labeled STCB.

Program Entry: Enters the subtask in the
Checkpoint/Restart routine at STCB+8.

QODISPATCH SUBTASK

STCB: Preassembled in the Implementation
module; labeled QEVENT.

Program Entry: Enters the Implementation
module at QEVENT+6. If the LCB indicates a
dial line, a switch is set to cause the
Activate routine to set up a Write Negative
Acknowledgment channel program. A branch
is taken to the BRB Ring routine to check
the dial out-call queue. If the line is
not for a dial line, a branch is taken to
the Qdispatch subroutine (DISPATCH) of the
QTAM control program.

Appendix A: QTAM Queues and Subtasks 271



APPENDIX B: SYSTEM CONTROIL BLOCKS

GENERAL CONTROL BLOCK FORMS

QUEUE CONTROL BLOCK

Typical DSECT:

r T -1
0 | OKEY | QFAC |
[l 4 4
r 1} 1
+4 { QPRI | QLINK |
L 1 P .'
r T
+8 I | QTRAN |
L L _ 4
r 1
+12 | |
1 4
T L) 1
+16 | ORLN | QDCB |
[N 4 __,’
v T
+20 | QSIZE | ONASEG |
L iR 4
r T 1
+24 | | QSORCE |
L i - 4J
r L) 1
+28 | QDUMMY | OBACK ]
L L 4
General Form:
r T N R}
| key | element chain pointer |
i 4
b } pta—
| priority| link address |
[N i 4d
r T k]
| | STCB chain pointer |
L 4 4
T T 1
I I [
L 1 —_— J
= T ; -
|1line no. | DCB address |
R 1 4
r T 1
| no. of messages | address of |
L 4L ¥
r T 1
| segment | LCB address
k== ¢ 1
| durmy=0 | message address |
L 1 3

272

Contents:

key: a numeric value (1,2, or 3) indicat-
ing queue status.

1 -- not on ready queue
2 -- npot waiting
3 -~ waiting

(See Queue Status for more information on
key meanings.)

element chain pointer: a pointer to the
head of the element control block chain for
the queue.

priority: priority of the queue the QCB
represents; determines the relative posi-
tion of the QCB when linked into the ready
queue.

link address: a pointer to the next item
on the ready queuve. This field is meaning-
ful only when the QCB is on the ready
queue.

line no.: the relative line number within
the line group of the DCB.

DCB address: the address of the DCB asso- -
ciated with this QCB.

no. of messages: the number of messages on
the queue to determine the size of the
gueue.

address of segment: the address of the
area into which the next message segment is
to be read.

LCB address: the address of the first LCB
on the line control block chain.
dummy: always equal to zero.

message address: the disk address of the
last message placed on this queue.




DASD_QCB:

+4

+8

+12

+16

+20

+24

+28

+4

+8

+12

+16

+20

+24

+28

QCB for DASD Process Queue

r ) r ]
| QKEY 3 | Disk address of next message to come off queue ]
b -1 1
| I
k T - i
| 0 | Address of the Get Scheduler |
k ] d
r T 1
| 0 | Address of the LCB |
b L JEnd bit
| Zero |set to 1
| |if expedite
L
r T 4
| QSIZE size of queue | Disk address of next available |
| | segment to be written on queue |
[N L 4
r T - h]
| | QSOURCE pointer to start chain of LCBs ]
L L 4
r 1
| Disk address of last message placed on this gqueue
L —_ J
OCB and STCB for DASD Destination Queue
r
|QREY O Disk address of next message to come off queue
L -———
T
| DASD address of the last message to be
| retransmitted in a restart
b
v
|Relative offset Pointer to Send Scheduler routine Send
|to Send Scheduler Scheduler
t - STCB

T

|Priority of

| Send Scheduler
8

Link field of Send Scheduler

C
|Relative
| 1ine number

b e e o e e e e e e s 2 e e o]

DCB address

L

r T

| QSIZE size of queue | Disk address of the next
| | message to go into gueue
L EN

r T

|Disk address | QSOURCE pointer to start of chain of LCBs
| Continued |

L (]

r T

|reserved | Disk address of last message placed on this queue
L L

b i s ot e i, e € e et e b, ean i i, et s Sl et s, & B mnmer 2

RESOURCE ELEMENT CONTROL BLOCK

Typical DSECT:

r T 1
| FKEY | - FQUEUE |
t + i
| FPRI | FLINK i
| R L J
General Form:
r T - -
| key = 0 | QCB address |
% -+ {
| priority| link address |
L L J

key: always equal to zero.

OCB_address: a pointer to the QCB for the
queue to which the element has been posted.
This field is meaningful only while the
element is on the ready queue, or is being
handled by the Qdispatch subroutine after
having been encountered on the ready queue.

priority: priority of the element that the
control block represents. This field
determines the relative position of the
element when linked into the element chain
of a QCB. Priority 255 identifies the last
element in a chain; this is a dummy element
usable only as an indication that the end
of the chain has been reached. QTAM con-

Appendix B: System Control Blocks 273



trols element priority as required for
internal sequencing.

link address: a pointer to the next ele-
ment control block in the chain; the last
element in a chain links to itself. This
field is meaningful only when the element
control block is linked either into the
element chain of a queue control block or
into the ready queue.

TRUNCATED SUBTASK CONTROL BLOCK

Typical DSECT:

r—= 1
0 | TFILL I
p=———— : -
| TPRI | TLINK |
L L — Jd

General Form:

r
| return code
t

1link address

e o — o
(A - |

I
|priority
L

Contents:

return code: branch modifier; a numeric
value (a multiple of 2 greater than zero)
added to the resolved address of storage
location NRET to provide the instruction
address to be branched to when the subtask
this STCB represents is activated. Common-
ly appears in the QTAM assembly listing in
the form DC ALl (entry - NRET), where
"entry" is the label of the branch address.

priority: priority of the subtask the STCB
represents; determines the relative posi-
tion of the STCB when linked into the STCB
chain of a queue control block. Priority
255 identifies the last STCB in a chain.

QTAM sets the priority value of STCBs
for send scheduling subtasks as required to
support the send versus receive priority
specified by the user in the DCB for the
data set.

link address: a pointer to the next STCB
in the STCB chain; the last STCB in a chain
links to itself. This field is meaningful
only when the STCB is linked into the STCB
chain of a queue control block. If the
STCB is not linked in a chain, the last two
bytes of the link address field are
truncated.

274

FULL SUBTASK CONTROL BLOCK

Typical DSECT:

1} 1
0 | TFILL I
L ]
B EE 1
+4 | TPRI | TLINK [
L L J
r T 1
+8 | XRBSZ ] XSTZB |
k- T L i
+12 | XRBUSE | XRBEP

p-——- L !
+16 | XRBPSW i
| |
+20 | |
L 3}
r 1
+20 | XRBQ |
k- T i

+28 | XRBWT | XRBLNK
F i 1
+32 | XRBREG |
I I
+92 | |
L J

General Form:

T———

r
0 |return QCB address

1

| |

|code=0 | |

T {

+4 |oriority] link address |

______ i f]

T 1

+8 | STCB size 1 |

L L 1

r 1

+24 | ECB |

b S 1

+32 | register save area |

L _— _—

r - 1

+92 | ]

L— 1
contents:

Return code: always zero.

QCB address:

priority: same as for a truncated STCB,
but never 255.

the address of QATTACH.

link address: same as for a truncated

STCB.

STCB_size: 96. The size of the STCB is 96
bytes since the STCB is created within an
SVRB including a register save area.

ECB: Event Control Block. This word is
used for waiting or posting completion of
the task.

LINE CONTROL BLOCK
The LCB contains the 10B, which can be

referred to as prefixed by the LCB or ICB
depending upon the DSECT issued.



Typical DSECT:

0
+4
+8
+12
+16
+20
+24
+28
+32
+36
+40
+44

+48

+52

+56
+60

+64

+68

+72

+76

+80
+84

+88
+92

+96

L R
| LCBSTATE | LCBENDOP
L 1 R
L ) T
| LCBCECB | LCBRCADD
t L 1
[ LCBSCHAD
k T -
| LCBCPRI | LCBSCHLK
t L T
I LCBCHDR |
k T L
| LCBCSEG | LCBNASEG
t T 1
| | LCBSORCE
k +
| LCBMSGPR | LCBDESTQ
8 iR
r T
| LCBMPLRT | LCBCLPCI
L _—
LCBCLCCW
T
LCBERRST I LCBBRKCT
1
T
LCBTTIND | LCBDLPTR

-

T T
LCBFLAG1 | LCBFLAG2 | LCBSENSE

IOBFLAG] | IOBFLAG2 | IOBSENSO IOBSENS1
1 i

|
|
!
1
|
|
|
|
|
1
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
l

I
LERTHIR |LERTHTO
i

number |counter
4

s|
1

i
J
4
h
J
T
|

r ‘+

|

L 4

T k]

I

1 3

[ 3 1

|

[ J

T b

|

|

L 4

C 1

| LCBECBPT

| IOBECBPT

L p]

v a

I IOBCOMAD

% T T --"

{ TOBSTATO | IOBSTAT1 | IOBCNT

L 1 L —_— 4

r T ]

| LCBSIOCC| LCBSTART

| IOBSIOCC| IOBSTART

F t :

| | LCBDCBPT

| TOBWGHT | IOBDCBPT

L L — __.'

r

| LCBRESTR

b T 1

| LCBINCAM | LCBERRCT

| IOBINCAM | IOBERRCT

F T + i

| LCBUCBX |LCBPTEMP | LCBTRST

b t L —

| LCBPOLCT | LCBPOLPT

L L 4

13 1

| LCBERCCW

i

L 4

[ 1

| LCBCPA

| (CHANNEL PROGRAM AREA)

b 1

| LERACTR

t T 1

| LERACDC | LERACIR |

t f T i

| LERACTO | LERTHTR | LERTHDC |

b T oo

| | 1ine |temporary

! !

Contents:

Field Bytes
LCBSTATE 1
LCBENDOP 3
LCBCECB 1
LCBRCADD 3

Description

00 = inactive

01 = free

02 = partial message
in queue

04 = send

08 = receive

10 = initate

20 = converse

40 = recall

80 = cleanup

(all numbers given in hex

notation)

For an incoming message,
contains the contents of
the return register (14)
from the ROUTE macro. For
an outgoing message, con-
tains the address of the
LCB for the originating
line.

BTAM opcode for current
segment of current
message.

Disk address of the last
correctly transmitted seg-
ment in current message.

(The receive scheduler STCB is bytes 8-15.)

LCBSCHAD

LCBCRPI

LCBSCHLK

LCBCHDR

LCBCSEG

LCBNASEG

LCBSORCE

LCBMSGPR

mn

Apoendix B:

Address of the first wait-
ing QTAM subtask for the
LCB.

Priority of the receive
scheduler.

Link field of the receive
scheduler.

address of the cur-
message header.

Disk
rent

address of the cur-
message segment.

Disk
rent

Pointer to the first seg-
ment of the last message
received on this line that
is to be transmitted.

Address of the chain of

LCBs for source lines cur-
rently sending to the same
destination (low order bit
= "in-source chain" flag).

Priority of the current

incoming message.

System Control Blocks 275



LCBDESTQ

LCBMPLRT

LCBCLPCL

LCBCLCCW

LCBERRST

LCBBRKCT

LCBTTIND

LCBDLPTR

LCBFLAG1

LCBFLAG2

LCBSENSE

LCBECBPT
LCBCSW
LCBSIOCC

LCBSTART

LCBDCBPT

LCBRESTR

LCBINCAM

276

Address of the QCB for
destination terminal.

Scan pointer for next
destination.

Address of last CCW for
which PCI was received.

Address of the last BRB
for which a buffer was
assigned.

Error halfword.

If receiving, contains the
last status of the SEQUIN
(terminal table). If not
receiving, contains the
time of the requested
interrupt.

Pointer to terminal table
entry for current message.

Pointer to next entry in
distribution list.

Status bits used by the
I/0 supervisor.

Status bits used by the
I/0 supervisor.

Sense information stored
by the I/0 supervisor.

Not used by QTAM.
Channel status word.
Start 1I/0 condition code.

Pointer to the first CCW
executed in the channel

program.

Pointer to the DCB.

Used by ERP to send error
messages. Contains termi-
nal ID and TP Op code.

byte 1:

01 = Tells Poll routine
the line is trying
to send.

02 = Dial line not

available.
Polling or

]

oy

LCBERRCT

LCBUCBX

LCBPTEMP

LCBTRST

LCBPOLCT

LCBPOLPT

LCBERCCW

LCBCPA variable

LERACTR

LERACDC

LERACIR

LERACTO

LERTHTR

LERTHDC

LERTHIR

LERTHTO

8

4

addressing error.
08 = Halt I/0 issued on

WI'TA line.

10 = EOT received on
WI'TA line.

40 = WRU received on
WTTA line.

byte 2 = Used by ERP.
Number of retries.

Index to the UCB in the
DEB.

Temporary storage for mes-
sage priority.

Address of EOB character
relative to the address of
the last correctly trans-
mitted segment of current
message.

Count of messages received
from terminal.

Pointer to currently
active entry in polling
list.

Channel Command Word for
ERP.

Channel program area.

Cumulative counter for
number of transmissions.

Cumulative counter for
number of data checks.

Cumulative counter for
number of intervention
required.

Cumulative counter for
number of time-outs.

Threshold counter for num-
ber of transmissions.

Threshold counter for num-
ber of data checks.

Threshold counter for num-
ber of intervention
required.

Threshold counter for num-
ber of time-outs.



DATA CONTROL BLOCK

Typical DSECT:

+16

+20

+24

+28

+32

+36

+20

+24
+28
+32

+36

+20
+24

+28

+40
+44

+48

QTAM Line Group Interface

r T L] i e |
| DCBQFLG | DCBWTEOM | DCBWTEOT |DCBWTPAD | WTTA Device
L. L L 1 J Interface
r T 1
| DCBBUFRQ | i
| DCBCLPS i
L 4 "
L T T
| DCBINTVL | DCBACLOC | DCBDSORG ]
S + 4 {4 Common
| DCBDEVTP | | Interface
| DCBIOBAD |
t + 1
| DCBCPRI | I
| DCBLCBAD i
t 4 _'
L} T
| DCBEIOBX | |
| DCBEXLST |
L L _— ——d
QTAM Processing Program Message Foundation after OPEN
Queue Interface r ——————— ,
r T 1 +40 | DCBTIOT | DCBMACRF
| DCBBUFRQ | | b T P .|
| DCBTRMAD | +44 |DCBIFLGS| |
t 1 T 4 | DCBDEBAD
| DCBSOWA | DCBDSORG | b } — ]
F 1 i +48 |DCBOFLGS |
| DCBSEGAD | | DCBREAD/ | DCBWRITE/ DCBGET/ DCBPUT |
L __,' L —_—t J
L ]
| DCBEODAD |
k T 1
| DCBRECFM | |
| DCBEXLST | QTAM Polling List Origin
L L J
r 1
+52 | DCBKSTAT |
QTAM Direct Access Message | |
Queue Interface | |
r T -9 | Foundation After OPEN |
| DCBBUFNO| DCBBUFCB | | (TR) (DC) (IR) (TO) 1
L I __,,' [ ——— — J
T T ) 1
i DCBBUFL | DCBDSORG | +56 | DCBCPOLL (VECTOR) |
L L { L — J
T
| DCBIOBAD |
L J
OTAM Processing Program Message
Foundation Before OPEN Queue Interface
r 1 r - 1
| DCBDDNAM | +52 | DCBRECRD |
I | - 1
I | +56 | DCBSYNAD |
L ] L e 4
v T T 1 1 ) 1
| DCBOFLGS | DCBIFLG | DCBMACR | +60 | DCBEOBLK ]
| I 1 L J L 4

Appendix B:

System Control Blocks

277



Description

QTAM LINE GROUP

Contents:
Field Bytes
DCBBQFLG 1
DCBWTEOM 1
DCBWTLEOT 1
DCBWTPAD 1
DCBBUFRQ 1
DCBCLPS 4
DCBINTVL 1
DCBACLOC 1
DCBDSORG 2
DCBDEVTP 1

278

Bit Setting
X1XXXXXX

Meaning
WRU=YES in
the DCB macro
instruction.
IAM=YES in
the DCB macro
instruction.
WRU macro
instruction
in the Send
Header sub-
group of the
LPS.

WRU macro
instruction
in the End
Send subgroup
of the LPS.

XX1XXXXX

XXX1XXXX

XXXX1XXX

Hexadecimal representation
of the EOM character.

Hexadecimal representation
of the EOT character.

When EOT=2EOM, this byte
contains X'00°'.

Number of padding charac-
ters when MON=NO is coded
or omitted in the DCB
macro instruction.

The number of buffers to
be requested for a Read or
Write operation in advance
of actual transmission.

Address of the line proce-
dure specification for the
line group.

The number of seconds of
intentional delay between
passes through a polling
list for nonswitched
lines.

The offset, relative to
zero, of the device access
field for each terminal
table entry.

Data set organization.

DSORG= Byte 1
CX xx01xxxx

Byte 2
reserved

Device type pointer. A
one-byte value calculated
during OPEN and used in
the BTAM Read/Write module

DCBIOBAD

DCBCPRI

DCBLCBAD

DCBEIOBX

DCBEXLST

DCBBUFRQ

DCBTRMAD

DCBSOWA

DCBDSORG

DCBSEGAD

DCBEODAD

DCBRECFM

I

QTAM

to calculate the appropri-
ate Device I/0 module.

The first IOB address.

Communication priority.
Indicates the relative
priority to be given to
sending and receiving
operations.

CPRI= Bit settings
R XXXXX1XX
E XXXXXX1xX
s XXXXXXX1

Line control block
address. The first LCB
address minus the length
of an LCB.

Extended IOB index; the

size of an LCB.
Address of the exit list.

PROCESSING PROGRAM MESSAGE

QUEUE

Specifies the number of
buffers to be filled with
data from the direct
access queue before they
are requested by a GET
macro instruction. Used
only in process gqueue DCB.

Address of a user-provided
area in which the terminal
name is stored.

The size of the user-
provided work area. Used
only in process queue DCB.

Data set organization.
Byte 1 has MQ=xxxxxlxx.
Byte 2 is reserved.

Address of current
segment.

Address of a user provided
routine to be entered if
no messages are available
(the process queue is
empty) when a GET macro is
issued. Used only in pro-
cess queue DCB.

Record

Format Bit Settings

G XXXXX1XX
S XXXX1IXXX
R XXXXXX1xX



DCBEXLST

DCBBUFNO

DCBBUFCB

DCBBUFL

DCBDSORG

DCBIOBAD

DCBDDNAM

DCBOFLGS

DCBIFLG

4 Address of the exit list.

QOTAM DIRECT ACCESS MESSAGE
QUEUE

1 Not used.

3 Address of the terminal
table, TERMTEL.

2 Size of the data in the
buffer equated to
1ECKBUFL.

2 Data set organization
DSORG= Byte 1 Byte 2
cQ xxxx1xxx reserved

4 Input/output block

address.

FOUNDATION BEFORE OPEN

8

Data set name as used in
data definition statement.
Used by OPEN to locate job
file control block (JFCB)
address.

Flags used by OPEN.

Bit setting Meaning

XXX1XXXX OPEN has been
successfully
completed.

XXXXXxx1 This bit is

set to 1 by a
I/0 support
function if
the DCB is to
be processed
by that
function.

Used by IOS in communicat-
ing error conditions and
in determining errox

procedures.
Bit Setting Meaning
00xxxxxx Not in error
procedure.
0lxxxxxx Exrror correc-
tion in process
1ixxxxxx Permanent error
condition.
xx10xxxx Channel 9 prin-
ter carriage.
xx01xxxx Channel 12 prin-
ter carriage.
xxxx00xx Always use IOS
error routine.
xxxx01xx Reserved.
xxxx11xx Never use IOS
error routine.
xxxxxx1l1l Reserved.

DCBMACR

DCBTIOT

DCBMACRF

DCBIFLGS

DCBOFLGS

DCBDEBAD

DCBRead

DCBWrite

DCBGet

DCBPut

DCBKSTAT

xxxxxx01 Reserved.
xxxxxx00 Reserved.

Macro instruction
reference. Specifies the
major macros and various
options associated with
them. Used by OPEN to
determine the access
method.

For line group:

Byte 1
INPUT
Byte 2
OUTPUT

XX1XXXXX
XX1XXXXX

For message queue:

Byte 1

GET X1XXXXXX

Byte 2
PUT X1XXXXXX

FOUNDATION AFTEFR OPEN

It is the off-

2 Points to the DD entry in
the task I/0 table for
this DCB.
set of the DD entry rela-
tive to the beginning of
the task I/0 table.

2 Same as DCBMACR in founda-
tion before OPEN.

1 Same as DCBIFLG in founda-
tion before OPEN.

1 Same as DCBOFLGS in foun-
dation before OPEN.

4 Address of the associated
DEB.

) Address of the READ
module.

4 Address of the WRITE
module.

4 Address of the Get module.

u Address of the Put module.

QTAM Polling List Origin

4

Appendix B:

Threshold values for error

counts:

+0 Threshold value for
number of
transmissions.

+1 Threshold value for
number of data
checks.

+2 Threshold value for

System Control Blocks 279



DCBCPOLL 4
QTAM
DCBRECRD 4
DCBSYNAD 4
DCBEOBLK 4

number of interven-
tion required.

+3 Threshold value for
number of time-outs.

Byte 1:

bits 0-3=Adapter type.

bit 4=If on, World Trade
Telegraph Adapter.

bits 5-6=Reserved.

bit 7=Internal use
(Checkpoint/Restart
routine).

Bytes 2-4: Address of the
polling list for the first
line in the line group.

Each line in the 1line
group requires 4 bytes for
its polling list address.

PROCESSING PROGRAM MESSAGE

‘QUEUE

Not used by QTAM.

Address of the user pro-
vided routine to be
entered if a work unit is
longer than the work area
provided for input. Used
only in process queue DCB.

Not used in QTAM.

DATA EXTENT BLOCK

Typical Dsect:

-32

-28

-2y

280

APPENDAGE TABLE

r 1
| DEBEOEA |
% , - 1
I DEBSIOA |
F 1
| DEBPCIA {
t 1
| DEBCEA |
b -1
| DEBXCEA |
L J
PREFIX
r Ll 1
| DEBWKARA | DEBDSCBA |
b . 1
| |
b - -
i DEBDCBMK |
t -1
| DEBLNGTH |
L d

BASIC
r T T 1
0 |DEBNMSUB| DEBTCBAD [
- I s
T T
+ 4 |DEBAMLNG] DEBDEBAD
L L 3
) v 1
+ 8 |DEBOFLGS] DEBIRBAD |
i 1 k]
1 T 1
+12 |DEBOPATB] DEBSYSPG |
- J ]
v
+16 |DEBNMEXT] DEBUSRPG
L 1 }
v T 1
+20 |DEBPRIOR] DEBECBAD I
- - 1
+24 | DEBPROTG] DEBDCBAD |
| DEBDEBID] |
1
——1 :
+28 | DEBEXSCL] DEBAPPAD |
N L J
r 1
+32 |DEBUCBAD (4-byte address per device) |
L— J
" Contents:
Field Bytes Description
APPENDAGE TABLE

DEBEOEA 4 Address of the End of
Extent Appendage branched
to by IOsS.

DEBSIOA 4 Address of the start I/O
Appendage branched to by
IO0S.

DEBPCIA 4 Address of Program Con-
trolled Interrupt Appen-
dage branched to by I0S.

DEBCEA 4 Address of the Channel End
Appendage branched to by
I0sS.

DEBXCEA 4 Address of the Abnormal
End Appendage branched to
by IOs.

PREFIX
DEBWKARA 1 I/0 support work area.

DEBDSCBA 7 DSCB address (BBCCHHR)
used by I/0 support.

DEBDCBMK 4 DCB modification mask used
by I/O support.

DEBLNGTH 4 Length of DEB in
doublewords.

BASIC

DEBNMSUB 1 Number of subroutines
loaded by Open module.

DEBTCBAD 3 Address of the TCB for
this DEB.



DEBAMLNG

DEBDEBAD

DEBOFLGS

DEBIRBAD

DEBOPATB

DEBSYSPG

DEBNMEXT

DEBUSRPG

DEBPRIOR

Number of bytes in access
method section.

Address of the next DEB in
the same task.

Data set status flags.

IRB address for error
exit.

Indicates file type.

Address of first IOB in
system purge chain.

Number of extents (number
of lines in the line
group) .

Address of first IOB in
the user purge chain.

Dispatching priority field
from TCB, used by IOS for
channel queuing of IOBs.

DEBECBAD 3

DEBPROTG 172

DEBDEBID 1/2

DEBDCBAD 3

DEBEXSCL 1

DEBAPPAD 3

DEBUCBAD 4(n)

Appendix B:

IOS internal ECB address.

Protection tag assigned to
this task.

Hex '0OF* identifies this
block as a DEB.

Address of DCB associated
with this DEB.

Extent scale: four for
direct access device and
two for nondirect access
device.

Address of 1I/0 appendage
table ahead of DEB.

Pointer to UCB. n = num-
ber of devices.

System Control Blocks 281



DEB DSECT for a Processing Program:

+16

+20

+24

+28
+32
+36
+40
+uy
+48

+52

+56

+60

+6U

+68
+72
+76
+80
+84

282

PREF1X Process and Destination Queue

r T h
I | |
| Work area for| DSCB address (BBCCHHR) used |
|I/0 support | |
b L - |
| by I/0 support |
p-— -~ .
| DCB modification mask used by I/0O support |
b T e !
|Length of DEB| |
L 1 ']
BASIC for MS Process Queue

T T - ]
| | Address of TCB |
b 1 -—- —- -
| | Address of next DEB in the same task |
b L 1
| |
b - 1
| |
‘f T . JI
| | Address of the next available record ]
| | on DASD from queue |
I8 ! 4
v T 1
| | Pointer to next DEB on the chain of |
| | processing program DEBs |
L ]

r - 4
|X*0F' iden- | Address of DCB

|tify DER | |
% t !
| | Address of DEB + 48 (BRB) 1
L L . J
r - 1
| First word of a dummy ICB |
I y|
r T . 1
| | Dummy last entry in queue (IECKSTOP) |
! —- —- {
! |
L -
r T

| | QPRIRITY subtask |
p - -- -1
| | I
e : {
|X'FE'= | |
| priority | i
t t i
|x*o08"* | Address of QCB for DASD Process Queue |
| TIC command | |
i ] 4
t T - - H
|X*'07" indi- | Address of DEB + 32 (LCB) |
|cate dummy | |
| BRB | |
L 1 _ ]
v T 1
|Ssize of work area for GET | |
t 1 - f|
| |
I !
| Reserved [
| I
I I
L _ _— -J




BASIC for MS Destination Queue

Address of TCB

Address of next DEB in same Task

e e — |

]

|
b e s s e e e i e s e e e e s ek it ki e o

e —————>

+12

+16

Pointer to next DEB on the chain of
processing program DEBs

+20

X'0F* iden- Address of DCB

tify DEB

+24

b s e e e ]

]
|
f
|

+28

+32

0Q
@]
o

t
!

e e e — >

+36

+40 (LCBSTATE)

X'18"

b e —
10
o
]
I
w
[
H
<
4]
&
&
&
x

e — >

+4y

=
Q
[os]

+48

+52

+56

+60

+64

+68 Address of QCB for destination queue

+72 Save Area
+76

+80

T
| Temporary
|location for
| message
|priority

4

+84

[ e e e s e ey e o e e S ey e e Yt B s S e T G e oy S e S e T i s s . e ey e B — =

b e e e i e e e et W e A e e b iy s e ki i o e ekt e e s it e s iy e

= e —

Appendix B: System Control Blocks 283



DATA EVENT CONTROL BLOCK

The main storage for the DECB is reserved in the Activate routine. This
routine also initializes the DECB for use by the BTAM Read/Write routine.

General Form:

+32 Address of addressing characters in terminal entry

T
Reserved | Address of the polling list
i -

+36

)
0 |LINEDECB Set to zero ]
lf T T ‘1‘
+ 4 | | BTAM opcode for | Length of input area |
| | current segment | for initial read |
L L 1 4
T 1
+ 8 | Pointer to DCB ]
L - —_— 4}
r 1
+12 | Starting address for data in buffer
t - |
+16 | |
b y-——=-- —— 1
+20 |Count of messages| Pointer to currently active entry in polling list |
| received | I
L O —— 4
r T k] 1
+24 | | Index to UCB | ]
| | in DEB | |
b D e - {
+28 | Reserved |
t i
| I
t |
I |
L J

UNIT CONTROL BLOCK

A unit control block (UCB) is built for each line at system generation time
and is used by I0S during execution to determine physical locations. The only
field that QTAM uses is the device-type word (UCBTYP), which gives details of
the terminals on the line: control unit, adapter, model, and optional fea-
tures. This word is explained in detail following the UCB figure.

1) T T ] 1
0 | Internal | Allocation | UCB ID | Status "A" |
| Job Number | Channel Mask | | |
t T + $ t {
4 | Flags |Channel | Unit Address | Flags | Device Table |
| |Aaddress | for SIO | | Index i
b L + , -1 |
8 | B2rror Routine | Statistical | Logical Channel | Attention |
| Table Index | Table Index | Table Index | Table Index |
e 1 } T 3
12 | Weight | Channel Mask | Unit Name |
| | | |
. 1 L _—— ———————
16 | Device Type ]
| |
L _ S |

T T
20 | Last 12* Pointer | Sense |
1 ! !

284



Field Byte Description

UCBTYP 4 Device type broken down as follows:
Field Bit Description
10S Flags 0 Unassigned
1 Data chaining (1=yes)
2 Burst/byte (l=burst)
3 May overrun (l1l=yes)
Model 4-7 If Adapter Type
(Bits 24-27) Model Code Then Model
Equals Equals Is
1 1 1050
1 2 1060
1 4 2740
2 1 1030
3 1 1050
4 1 83B3
4 2 115A
5 1 TWX
8 1 2260
Optional 8 Automatic Calling
Features 9 Automatic Polling
10 Checking
11 Automatic Answering
12 SCONTROL
13 XCONTROL
14-15 SADZER (hex value 0)
SADONE (hex value 1)
SADTWO (hex value 2)

SADTHREE (hex value 3)

Device Class 16 Tape
17 Comrunication equipment
18 Direct access
19 Display
20 Unit record
21 Character reader
22 Spare
23 Spare
Adapter Type 24-27 Type of Adapter

IBM Terminal Adapter, Type I (hex value 1)
IBM Terminal Adapter, Type II (hex value 2)

IBM Telegraph Adapter (hex value 3)
Telegraph Adapter, Type I (hex wvalue 4)
Telegraph Adapter, Type II (hex value 5)
World Trade Telegraph Adapter (hex value 6)
Synchronous Adapter, Type I (hex value 7)

IBM Terminal Adapter, Type III (hex value 8)

Control Unit 28-31 Type of Comntrol Unit
2702 (hex value 1)
2701 (hex value 2)
2703 (hex value 3)

Appendix B: System Control Blocks 285



TERMINAL TABLE

The terminal consists of a table of information about each terminal as
specified through the TERMTBL, LIST, PROCESS, TERM, and OPTION macros.

e 243 Bytes Maximum ——————
le- 8 Bytes Maximum -’4
Entry Type 0 1 2 3 4 5 6 7 8 « B "
L4 F - T
?‘"9‘? TNTRYSZE( TQCBADDR | TSEQUIN | TSEQOUT | TSTATUS TERMID Offset | User | Direct Access
erminal . Areg Area
I " 17
—i it
Srowp TNTRYSZE| TQCBADDR TSEQOUT | TSTATUS TERMID Offset | User | Direct Access
ode i ) Area Area
U 1T J
..... # 45
LDi':t'”b“"” TNTRYSZE|  TDSTRQCB TSTATUS TERMID reladdr | reloddr |
1~ 5
I M
rocess TNTRYSZE| TQCBADDR TSEQOUT | TSTATUS TERMID Terminal List Portion
gram
i
* Unused Field of One Byte
Contents: Offset 1 Dial terminal: offset
from beginning of entry to
Field Bytes Description code for number of dial
digits.
TNTRYSZE 1 Entry size. Nondial terminal: offset
from beginning of entry to
TQCBADDR 3 Address of the destination direct access field
QOCB for the queue of out- (single-terminal and group
going messages. code only).
(TDSTRQCB
for dist.
list) User variable Subfields as defined by
Area the user in OPTION and
TSEQUIN 2 Sequence number for incom- TERM macro instructions
ing messages. Used only (Single-terminal and group
in single-terminal code only).
entries.
Device variable Nonswitched: polling and
TSEQOUT 2 Sequence number for outgo- Access addressing characters.
ing messages, except for Area Switched: number of dial
distribution list. digits, dial digits, and
addressing characters.
TLISTKEY 1 Starting address of the TWX: number of dial
terminal list portion of digits, dial digits, num-
this entry. ber of ID characters, ID
(distripution characters, and same num-
list only) ber of reserved bytes
(single and group code
TSTATUS 1 bit only).
0-3 not used WTTA: number of ID chara-
4 interval stop bit cters, and same number of
5 "intercept" bit reserved bytes.
6 "send" bit
7 "receive" bit (single Reladdr vari- Address of a single
terminal only) able terminal entry relative to
] the address of the termin-
TERMID 1 to 8 Name of the terminal that al table (distribution
this entry represents. list only).

286



BUFFER PREFIX

First 8 bytes are not placed Relative offset of entry from the first entry in the terminal table
on direct access queve

™ —

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26|27 28 29 30 31

. Message Next | Previous Next Destin - *
ASdCB " At;;::ss S;uerce Address Segment Header Header ation
FQU';GE MSQLINK TTSREY on DASD Link Link Link Key
MSLCB MSLINK MSHEAD MSDLINK TTDKEY
¥ ¥ ¥ } }
Key FKEY Buffer Segment MSTATUS* 1 _[
Scheduler Size Stored Scan Pointer MSPTR | Message Sequence Number (IN) MSNUMIN
Priority MSEGSZE  Set to the last character of Message Sequence Number (OUT) MSNUMOUT
0 MSPRI 31 last processed field in header
" HEADER PREFIX HDSTRT HEADER TEXT (Optional)

Format of Buffer containing Header
First 8 bytes are not placed
on direct access queue

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

. Message Next Message
Agdizss A;::ss S;‘:;e Address Segment Header
on DASD Link Link
FQUEUE MSQLINK TTSKEY MSLCB MSLINK MSHEAD
L T ¥ +
Key FKEY. Buffer Segment MSTATUS*
Scheduler Size
Priority MSEGSZE
0 MSPRI 5,
J1xsTRT TEXT

Format of Buffer containing Text

Appendix B: System Control Blocks 287



Contents

~ T T 1
|Field |Description |Initialized by:

% + } 1
| FKEY |The ECB key when the buffer appears on the ready | Assembler |
| |queue, always zero. | |
- - } 1
| FQUEUE 1A pointer to the QCB for the queue to which the buffer|Post or Put |
| |has been posted. This field is meaningful only when |

| |the buffer is on the ready queue. 1 |
t $ + 1
|MSPRI |The priority of the buffer. This field ] Cleanup, Free BRB, |
| | determines the relative position of the buffer ] Interim LPS, or

| |when it is linked into the ready queue or the element |Disk Ind Appendage |
| |]chain of a QCB. | i
b + ¢ {
|MSQLINK |A pointer to the next item in the chain in which the |Numerous routines |
| | buffer appears. | |
b 1 ——— 1 {
|MSEGSZE |Segment size (includes buffer prefix minus 8). ]Buffer-BRB, Line

| | | Appendage, Put ]
b + - !
| TTSKEY |Relative address in terminal table of entry for | Source, Interim LPS, ]
| {source terminal. ) | Line Appendage |
1L 1 1 J
r T T R 1
|MSTATUS |Used to indicate the status of the message segment ] |
| |contained in the buffer. The significance of the bits]| |
] |in this field is as follows: | |
| |Bit 0: If 1, do not send or process message. | Cancel Message |
| |Bit 1: If 1, duplicate copy of header. |Recall

| |Bit 2: If 1, an EOB character is present in some | Line Appendage |
| |position in the buffer other than the last. |
| |Bit 3: If 1, the message was previously serviced or |Disk FEnd Appendage

| | sent. | |
| I | |
| |Bit _4: Not used. | |
] |Bit 5: If 1, this message was sent with priority. |Disk End Appendage

| | | |
| |Bit 6-7 I |
| |00 = header segment (not last segment) |Activate, Line |
| |01 = text segment (not last segment) | Appendage, LPS |
| |10 = header segment (last segment) JControl, Put

| |11 = text segment (last segment) |
| MSLCB |Wwhen in main storage, the address of the LCB to which QBuffer-BRB |
| |the buffer is assigned. |
| |When on the disk, the relative record number of the | DASD Destination

| | segment. i |
L 1 1 J
(Continued)

28e



Contents (Continued)

r L} T T — L]
|Field |Description ]Initialized by:
t 1 [ 4
T T - - T 1
|[MSLINK |Relative record number of the next segment in this |DASD Destination |
| | message. ] |
% ¥ — —t 4-- i
|MSHEAD |For a header segment, the relative record number of |DASD Destination |
| | the previous header segment in this queue. For a text|
| | segment, the relative record number of the header seg-) |
| |ment of this message. } |
t t P B 1
| TXSTRT |Start of message data for a text segment. The remain-] |
| |ing fields in the prefix apply only to a header ] |
| | segment. | |
|8 1 4
r T - - - 1
|MSDLINK |The relative record number of the next header segment |DASD Destination |
| |in this queue. | |
% oo T e :
|MSPTR |stored scan pointer; indicates the relative |Activate, Put, Cleanup |
| |position within the buffer where scanning is to begin |EOB, or EOBLC |
| | resume. | |
k + - . ———————dt—- i
| TTDKEY |Relative address in terminal table of entry for | Lookup or Put |
1 |destination terminal. ] |
|8 + 4
r T - ——__'I' b
MSNUMIN |Sequence-in number assigned to message. Sequence Number In
I, 4 J g 4 J
T - T 1
| MSNUMOUT | Sequence-out number assigned to message. |Disk End Appendage
L i 1 .'
T T T
|HDSTRT |Start of message data for header segment. | |
L 1 1 4

Buffer Prefix formats

SPECIAL CONTROL BLOCK FORMS

QUEUE CONTROL BLOCK

The pattern of unused bytes in the QCB
and the truncated STCB is such that they
are capable of being combined to conserve
storage, as may be seen from the following
general forms:

Queue Control Block

r T 1
| key | element chain pointer |
L 4 4
r T L)
| priority | link address |
; + T —
] [ STCB chain pointer |
L 1 4
Subtask Control Block
r T 1
| return code | |
1 —_—t 1
r . T R 1
| priority | link address |
t 4 4

The general form of these control blocks
when combined is:

- —
key |

1
+

element chain pointer

QCB priority]QCB (ready queue) link addr

return code |
1 —_

} _
]STCB priority]STCB (STCB chain) 1link addr

| IS SN I,

*STCB chain pointer

Sy = e i e ey

1
|
4
1
I
4
1
I
J
T
I
4

*Address of this field minus 1

BUFFER REQUEST BLOCK

The buffer request block (BRB) is basic-
ally a resource element control block, with
the element control block characteristics
outlined in the preceding section. The
BRB, however, takes several different forms
during its processing cycle. These forms
are illustrated in Figures 8 through 12 and
are described below.

Figure 26 illustrates the DSECT typical-
ly used to refer to fields of the BRB. The
first two fullwords (FKEY through FLINK)
are typical for all element control blocks.
Of the alternate labels available for the
third fullword, MSTIC is most commonly used
when the DSECT applies to a BRB. The
fourth fullword (MSTATUS and MSLCB) is
standard for this DSECT.

Appendix B: System Control Blocks 289



Figure 27 illustrates the significant
fields of the BRB when it is in the element
control block chain of the inactive BRB
queue control block. This is also the form
in which the BRB is generated on expansion
of the BUFFER macro instruction.

The BRB-Ring routine removes BRBs from
the inactive BRB queue and forms the BRB
ring. Ffigure 28 is a representation of a
BRB after it has been processed by the BRB
Ring routine. The contents of each field
are as follows:

key: always zero. The BRB is still an
element, and the key of all elements is
Zero.

OCB address: variable. For the first BRB
in a ring, this field contains the address
of the active buffer request QCB if the BRB
is to be used for a Receive operation, or
the address of the disk I/0 QCB if the BRB
is to be used for a Send operation. For
the remaining BRBs in the ring, the con-
tents of this field are not significant.

priority: The first BRB in a ring to be
used for a receive operation has a priority
of 12. The contents of this field is nor-
mally zero for all other BRBs.

MSTIC: This fullword contains a transfer-
in-channel (TIC) command. The first byte
contains the TIC command code (08), and the
remaining three bytes contain the address
of the next BRB in the ring. For the first
BRB in the ring only, the TIC address
points to the actual address of the next
BRB, which begins at a doubleword boundary.
For all other BRBs in the ring, the last
two bits of the TIC address are set to one.
This configuration represents the BRB
address (always on a doubleword boundary)
plus the BRB idle flag (see BRB Status
Codes) .

MSTATUS: zero. A zero value for this
field indicates that no next segment
address has been assigned to this BRB.

LCB address: the address of the line con-
trol block for the line over which the Send
or Receive operation is to be conducted.

The Disk I/0 Appendage further initial-
izes the BRB when the BRB is to be used for
a Read from direct access storage. The
appendage replaces the LCB address in the
fourth fullword of the BRB with the rela-
tive record number for the message segment
with which this BRB is now associated. The
assigning of the next segment address is
indicated by changing the value of MSTATUS
to 9. Figure 29 illustrates this
configuration.

290

Figure 30 represents a buffer request
block that has been converted to a CCW
(BRB/CCW). A BRB/CCW is fully initialized
for a write to or read from direct access
storage. The first two fullwords have been
converted to a standard channel command
word, and are followed (in the third full-
word) by the previously initialized
transfer-in-channel command. (Note that a
complete BRB/CCW cannct be enqueued by the
standard QTAM conventions because the queu-
ing information fields are occupied by the
channel command word. The BRB ring is
formed by the TIC addresses of the
BRB/CCWs.)

In the BRB/CCW, as in any other form of
the BRB except that appropriate to the
inactive BRB queue, the fourth fullword may
contain either MSTATUS=0 and an LCB
address, or MSTATUS=9 and a next segment
relative record number. The next segment
address is inserted in the BRB when the
Disk I/0 Appendage is processing another
BRB in the ring. The BRB in which the next
segment address is placed is selected
according to its position in the ring,
without reference to the queue (if any)
upon which it appears.

r T 1
| FKEY | FQUEUE |
|8 1 —— J
T T 1
| FPRI | FLINK {
1 4 J
r 1
1 MSTIC |
1 4
T L 1
] MSTATUS | MSLCB ]
L L ]
Figure 26. Typical DSECT for BRB

T T 1
] key 1 QCB address
et - 1
i priority | link address

b t {
] I I
1 4 ————— 4
T T 1
1 { |
| I 3 I, —— Jd
Figure 27. BRB on Inactive-BRB Queue

r T 1
i key | QOCB address

F - {
i priority | link address |
L - - 4
v

]TIC comm code]address of next BRB in ring|
1 b 4
L 1 1
] MSTATUS (0) ] -LCB address

| S S —— R 4
Figure 28. BRB Assignment of Next Segment

Address



QCB address

link address

|TIC comm code|address of next BRB in ring

h-—- +

|MSTATUS (9) |relative record number

| |for next segment

L iR

Figure 29. BRB After Assignment of Next
Segment Address

+——

e e T Wp——

data address

T 1
| |
bommmmmmmmmm o - - i
| |

0 data count

L -———1 -——1
|TIC comm code|address of next BRB in ring]|
s i
|

MSLCB

(WA

+
MSTATUS |
L

BRB/CCW Initialized for Direct
Access Read or Write

Figure 30.

BRB Status Codes

The status of a BRB at any point in time
is indicated by a code in the two low-order

INSERT BLOCK

The insert block is inserted into the chain of BRBs.

bits of MSTIC+3 (the fourth byte of the
third fullword of the BRB.) The codes used
are:

00 - Buffer is allocated. This code, which
never appears in the BRB used to send
or to receive the last segment of a
message, makes valid the address por-
tion of a CCW containing a TIC com-
mand. (Refer to the discussion of the
Line End Appendage for additional
information on the invalid TIC
address.)

01 - Buffer is in LPS queue (if receiving),
or BRB is in disk I/0O queue (if send-
ing). This code appears in the BRB
used for the last segment of a
message.

10 - BRB is in active buffer request queue.

11 - BRB is idle. This code is set, typic-
ally, when a buffer has been allocated
to the BRB but could not be used
because the preceding segment had not
yet been read when this BRB was
selected.

The chain of

insert blocks contains a special purpose BRB used to schedule and to
contain channel commands for the transmission of idle characters.

Form:
T ) - T -= - ) 1
| write | Address of the next character after the previous |
+ 0 | command code |special character or addr. of beginning of the buffer|
F . T ——— 1
+ 4 |- flags | | byte count |
b t —1L - 1
| write | |
+ 8 | command code | Address of the Idles ]
F - e T--— - 1
+12 | flags | | byte count |
F + T e 4
| TIC | Address of the next Insert Block |
+16 | command code | or original BRB |
b -4 - =]
+20 | 0 | Address of queue for Insert Blocks ]
L 1 d
RESOURCE ELEMENT CONTROL BLOCK (IECKSTOP) Form:

The IECKSTOP resource element control r . 1
block is used as a dummy last element on WAITRB Jkey = 0 |]0CB address = QATTACH |
the element chain of several queues, and is - +——— 9
permanently the last item on the ready lpriority = |link address = WAITRB |
queue. Its sole purpose is to signal the ] 255 ] |
end of a chain; it is never altered or used L L 4

as an available element.

Appendix B: System Control Blocks 291



APPENDIX C: QTAM LINKAGES

Figure 31 depicts the linkages between the

macro expansions and the modules they call, is a branch.
for each of the LPS, system status modify-

ing, GET, and PUT macro instructions, with

the exception of five of the LPS delimiter SVCxx

macro instructions. These five branch

directly to the QTAM Implementation module, —_—

rather than to macro-called modules. is an svcC.

The entry point of each module is the
same as the module name except where it is
shown in parentheses below the module name. is a branch and link.
Types of linkages are as follows:

292



Macro  Instruction Modules QTAM Control Module

BREAKOFF IECKBKRF
CANCEWM IECKCNCL

QTAM Implementation
Module

IGGOI9NG

67
CHNGP IECKDCBL IECKCHPL —S'Y'C"‘ _ 7 :E;CCK()§7QO]
/
SVC 67 .
CHNGT IECKCHGT —_————

SVC 67
CKREQ ECKCKRQ - — — — — — — — 2272 :EGCC'B%’SOI

(QMOVER +6)

|

IGGOI9NG

67
CLOSEMC [ECKCLOS - IECKLNCH —_— _SL/C__ —1 |[ECKQQO1
IGC067
L _ 7

(QMOVER +6)

SVC 67
COPYT IECKCPYT
COPYP IECKDCBL IECKCPPL
COPYQ IECKCPYQ
DATESTMP IECKDATE IECKEXPD
IECKLKUP
e
DIRECT IECKDRCT
ENDRCY IGGOIING
(IECKPR)
ENDREADY (IECKSU)
ENDSEND (IECKACT)
r/ IECKTYPE IECKEOAD
IECKSCAN
EOA
JECKROUT
L JECKLKUP
EOB ———-@ IGGOI9NG
(IECKACT)
EOBLC IECKEOBC (IECKRC)
IECKERMG (IECKRC)

ERRMSG
IECKLKUP

Figure 31. QTAM Linkages (Part 1 of #)

Appendix C:

QTAM Linkages

293



Macro  Instruction

GET Message

Modules QTAM Control Module QTAM Implementation

GET Record

GET Segment

INTERCPT

LOGSEG

LPSTART

MODE
Priority

MODE Initiate

MODE

Converse

MSGTYPE &

OPCTL

PAUSE

Module
IECKQQO1
@ — — _NC (IGC065)
TN sy (1GC067)
o —— VCE I (16coss)
[iccane kT sweer | gocosn
— — NS (6coss)
~{ecooma K swewr | gocos
{_teckirce_} (ECKRO)
- QSAM PUT Routine ] IGC0007G
A@_ — w77 __ _ __ _ ] oG
IGC0207G
IECKMODE CC0307G
IECKPRTY IGC0407G
IGC0507G
IECKMODE (GCO07G
IECKMODE
IGGOIING
IECKCVRS (ENDINSRT)
| IECKSU)
|
L __sveer
IECKTYPE K0!
IECKSCAN svear I
@]——— [ECKLNCH f— — — — — == —
IECKDRCT
SVC 65 IECKQQO!
(s - —— —— — — — — ¥ o e

POLLIMIT

{ IECKPLMT |

Figure 31. QTAM Linkages (Part 2 of 4)

294




Macro Instruction Modules QTAM Control Module QTAM Impylemenfoﬂon

Module
iGGOI9NG
POSTRCV (IECKPR OR
[ECKOPAW)
(IECKACT)
POSTSEND{ »| (IECKPR OR
JECKOPAW)
IECKQQO1
PUT Message { |GGO19NE It\ SVC 65
V- > (IGC065)
\ SVC 67
NI ~| (1GC067)
SVC 65
LT > (IGC065)
PUT Record : IGGOT9NF |<\ SVC 67
T >~ (1GC067)
SVC 65
i > (1IGC065)
PUT Segment : IGGO19ND |’\\ SVC 67
R > (1GC067)
RCVHDR *
RCVSEG *

IGGOI9NG
RELEASEM IECKRELM (QMOVER +6)
[ECKRRTE S,_—_] (IECKRC)

REROUTE IECKLKUP
SVC 65 [ECKQQO1
LT mmm s s —m e > (1GC065)
RETRIEVE(D) IECKRETD <. SVC 67
A ettt » (IGC067)

RETRIEVE (S) IECKRETS IECKRETD
IECKROUT IECKSCAN

1ECKLKUP

ROUTE

SENDHDR *
SENDSEG *

*This macro instruction genterates no code or generates only in-line code; there is no module linkage.

Figure 31. OQTAM Linkages (Part 3 of 4)

Appendix C: QTAM Linkages 295



Macro Instrouction Modules 'QTAM Control Module
seqin
e
SKIP on Coum‘
souRce
STOPLN IECKQQO1

[TECKINCH_Je~==2~{ (16C065)

STARTLN s\\\/‘i:'éf (1GC067)
TINESTIVP

* This macro instruction generates no code or generates only in = line code; there is no linkage.
Figure 31. QTAM Linkages (Part 4 of 4)

296

QTAM Implementation
Module



This appendix identifies the modules that
comprise QTAM. Two lists are provided.
The first list presents each module name
included in QTAM, with a brief description
of the nature of the module. For those
modules that represent macro instruction
implementing routines, the mnemonic opera-
tion code for the macro instruction is
included in the description (e.g.,
DATESTMP) .

The second list provides a more con-
venient cross-reference for identifying the
routines (as modules) that implement a
given macro instruction. This 1list
includes all macro instructions, but does
not include modules that are not specific-
ally related to one or more macro instruc-
tions. The notation (-none-) in the Module
column means that the macro instruction's
function is fulfilled at assembly time,
usually through the macro expansion. Macro
instructions are grouped alphabetically
within categories.

All Open, Close, Get, and Put modules
are part of the supervisor call library
(SVCLIB); the QTAM Implementation module,
IGGO19NG, is also part of SVCLIB. The QTAM
control module, IECKQQ01, is resident in
the supervisor nucleus. (Entry points for
the two QTAM SVCs are IGC065 and IGC067.)
All other QTAM modules are contained in the
library identified as SYS1.TELCMLIB.

ALPHABETICAL LIST OF QTAM MODULES

SYS1.TELCMLIB

TECKBRKF Halt Receive (BREAKOFF)
routine.

IECKCHGT Change Terminal Table (CHNGT)
routine.

IECKCHPL Change Polling List (CHNGP)
routine.

IECKCKRQ Check Request (CKREQ) routine

IECKCLOS Close Telecommunications Sys-

] tem (CLOSEMC) routine.

IECKCNCL Cancel Message (CANCELM)
routine.

IECKCPPL Copy Polling List (COPYP)
routine.

IECKCPYQ Copy Queue Status (COPYQ)
routine.

IECKCPYT Copy Terminal Table (COPYT)
routine.

IECKCVRS Conversational Mode (MODE)
routine; used with IECKMODE
and IECKSCAN.

IECKDATE Datestamp (DATESTMP) routine;

requires IECKEXPD.

IECKDCBL
IECKDLQT

IECKEOAD
IECKEORC

IECKEOBK
TECKERMG

IECKEXPD

IECKITCP
IECKLKUP

TECKLNCH

TECKMODE

IECKNATE

IECKOCTL

IECKONTL
IECKOPAW
IECKPAUS
IECKPLMT

IECKPRTY

IECKRELM

IECKRETD

IECKRETS
IECKRFH40
JECKRFS50
TECKROUT
IECKRRTE
IECKRV30

IECKRVH0

Appendix D:

APPENDIX D:

LIST OF QTAM MODULES

Data Control Block Locate
routine.

Distribution List (DLIST)
routine.

End of Address (EOA) routine.
End of Block and Line Correc-
tion (EOBLC) routine.

End of Block (EOB) routine.
Error Message (ERRMSG) rou-
tine, requires IECKLKUP.
Expand routine; a second-level
routine that provides the
number of "spaces and the mes-
sage header required for in-
sertion of timestamp or date-
stamp characters, or for
sequence-out numbers.
Intercept (INTERCPT) routine.
Lookup routine; a second-level
routine that locates the ter-
minal table entry for a speci-
fied destination.

Line Change Routine (STARTLN,
STOPLN) . .

Message Mode (MODE) routine;
requires IECKSCAN and one cf
the following: IECKCVRS,
IECKNATE, IECKPRTY, Or a user-
written subroutine.

Initiate mode (MODE) routine;
used with IECKMODE and
IECKSCAN.

Operator Control (OPCTL) rou-
tine, requires IECKSCAN,
IECKLNCH, and IECKDRCT.
Oon-Line Terminal Test routine.
Operator Awareness routine.
Pause (PAUSE) routine.

Polling Limit (POLLIMIT)
routine.

Priority Mode (MODE) routine;
used with IECKMODE and
IECKSCAN.

Release Intercept (RELEASEM)
routine.

Retrieve DASD (RETRIEVE) rou-
tine (by relative track
number).

Retrieve (RETRIEVE) routine
(by sequence number).
Translate Table RCAP2740; 2740
to monocase EBCDIC.

Translate Table RCAP1050; 1050
to monocase EBCDIC.

Routing (ROUTE) routine;
requires IECKSCAN and
IECKLKUP.

Reroute (REROUTE) routine.
Translate Table RCVE1030; 1030
to EBCDIC.

Translate Table RCVE2740; 2740
to EBCDIC.

List of QTAM Modules 297



TIECKRV50 Translate Table RCVE1050; 1050
to EBCLIC.

IECKRV60 Translate Table RCVE1060; 1060
to EBCDIC.

IECKR260 Translate Table RCVE2260; 2260
to EBCDIC.

IECKRVT1 Translate Table RCVET1l; 5-
level Eaudot to EBRCDIC.

IECKRVT2 Translate Table RCVET2; TWX
code to EBCDIC.

IECKRVTW WTTA Translate table RCVEITAZ2;
ITA2 code to EBCDIC.

TIECKRVTZ WTTA Translate table RCVEZSC3;
7ZSC3 code to EBCDIC.

TECKSCAN Scan Header routine; a second
level routine that steps
through a header segment,
maintaining a pointer to the
portion of the segment to be
operated upon by the next LPS
routine.

IECKSD30 Translate Table SEND1030;
EBCDIC to 1030. )

TIECKSD40 Translate Table SEND2740;
EBCDIC to 2740.

IECKSD50 Translate Table SEND1050;
EBCDIC to 1050.

IECKSD60 Translate Table SEND1060;
EBCDIC to 1060.

IECKS260 Translate Table SEND2260;
EBCDIC to 2260.

IECKSDT1 Translate Table SENDT1; EBCDIC

) to 5-level Baudot code.

IECKSDT2 Translate Table SENDT2; EBCDIC
to TWX code.

IECKSDT3 Translate Table SENDT3; EBCDIC
to TWX code with parity bit
on.

IECKSDTW WTTA Translate Table SENDITAZ2;
EBCDIC CODE TO ITA2 code.

IECKSDTZ WITTA Translate Table SENDZSC3;
EBCDIC CODE TO ZSC3 code.

IECKSEQN Sequence-in (SEQIN) routine;
requires IECKSCAN.

TECKSEQT Sequence-out (SEQOUT) routine;
requires IECKEXPD.

IECKSKPC Skip on Count (SKIP) routine.

IECKSKPS Skip to Character Set (SKIP)
routine; requires IECKSCAN.

TIECKSRCE Source (SOURCE) routine;
requires IECKSCAN.

IECKTIML Timestamp (TIMESTMP) routine;
requires IECKEXPD.

IECKTRNS Translate (TRANS) routine;
used in conjunction with a
QTAM or user-provided
translations.

IECKTYPE Message Type (MSGTYPE) rou-
tine; requires IECKSCAN.

SY¥S1.SVC Library

IGC0007G Terminal Test Header Analysis
routine.

I1GC0107G 1030 Terminal Test routine.

IGC0207G 1050 Terminal Test routine.

IGC0307G 1060 Terminal Test routine.

IGCOuU07G 2740 Terminal Test routine.

298

IGC0507G
IGC0607G
IGEOOO4E
IGEO104E
IGEO204E
IGEO30U4R
IGEOUOUE
IGEO504E
IGEO60LE
IGEO704E
IGEOSOUE
IGEO904E
IGEOQO4F
IGEO104F
IGEO204F
IGEO304F
IGEQLOUF

IGEO504F
IGEO604F

IGEO70u4F
IGGO0193N

1GG01930

IGG0193P
IGGO0193R

IGG0193T
IGG0193U

IGG0193V
IGG0194A

IGGO19NA
IGGO19NB
IGG019NC
IGGO19ND
IGGO19NE
IGGO19NF
IGG019NG
IGGO19NH
IGGO19NJ
IGGO19NK

IGGO019NL

IGGO19NM
IGGO19NN

IGG019NO

IGGO19NP

2848/2260 Terminal Test
routine.

284872260 Terminal Test
routine.

Time-Out and Data Check for
Auto Poll routine.

Data Check routine.

Time-Out routine.

Intervention Required routine.
Lost Data routine.

Error Post routine.

Bus-Out and Overrun routine.
Link routine.

Status Check routine.

Command Reject, Equipment
Check, SNO Error, SIO CC 1
routine.

Read Skip, Break Return
routine.

Diagnostic Write/Read routine.
Line Error Recording routine.
Operator Control and LER Addi-
tion routine.

Special OPEN and Checkpoint
Restart routine.

Not Operational SIO routine.
Bus-Out and Overrun for Auto
Poll routine.

Overrun routine.

Open Communications Line Group
(load 1) (OPEN).

Open Direct Access Message
Queue (OPEN).

Open Process Queue (OPEN).
Open Communications Line Group
(load 2) (OPEN).

Open Communications Line Group
(load 3) (OPEN).

Open Direct Access Message
Queue (load 2) (OPEN).

Open Checkpoint/Restart.

Open Communications Line Group
(load 4) (OPEN).

Get Message Segment (GET)
routine.

Get Message (GET) routine.

Get Record (GET) routine.

Put Message Segment {(PUT)
routine.

Put Message (PUT) routine.

Put Record (PUT) routine.
QTAM Implementation Module.
Checkpoint/Restart routine.
IBM 2740 (Basic) Device I/O
Module.

IBM 2740 with Dial Device 1I/0
Module.

IBM 2740 with Transmit Control
and Checking Device I/0
Module.

IBM 2740 with Dial and Trans-
mit Control Device I/0O Module.
IBM 2740 with Dial and Check-
ing Device I/0 Module.

IBM 2740 with Station Control
and Checking Device I/0
Module.

IBM 2740 with Station Control



TIGGO19NQ

IGGO19NR
I1GG0203d

IGG02030

IGG0203P
IGGO19NS
IGGO19NT
IGGO19NU
IGGO19NV
IGGO19NwW
IGGO19NX

IGGO19NY

IGG019NZ
IGGO19N1

IGGO19N2
IGG019N3
IGGO019N8
IGGO19N9

IGG019QA
IGG0190B

Device I/0 Module.

IBM 2740 with Checking Device
I/0 Module.

IBM 2260 Device I/0 Module.
Close Communications Line
Group (CLOSE).

Close Direct Access Message
Queue (CLOSE).

Close Process Queue (CLOSE).
TWX Device I/0 Module.

WU 115A Device I/0 Module.
ATET 83B3 Device 1/0 Module.
IBM 1030 Device I/0 Module.
IBM 1060 Device I/0 Module.
IBM 1050 (Switched) Device I/0
Module.

IBM 1050 (Nonswitched) Device
I/0 Module.

Read/Write Routines.

IBM 1050 (nonswitched) for

Auto Poll.

IBM 1060 for Auto Poll.

IBM 1030 for Auto Poll.

IBM 2740 with Station Control
and Checking for Auto Poll.
IBM 2740 with Station Control
for Auto Poll.

WTTA Device I/0 Module.

WTTA Line

Appendage Module.

OTAM DSECTs in SYS1.MACLIB

CTLPROGD

DCBD
IECDSECT

IECTDEBX
IECTDECB

IECTIOBX
IECKQIOB
LCBD

PREF IXD

QCBD
STCBD

TCBD
TERMTBLD

DSECT for
IECKQQO1.
DSECT for
DSECT for
Area.
DSECT for
DSECT for
Block.
DSECT for
DSECT for
DSECT for
DSECT for
Prefixes.
DSECT for
DSECT for
Block.
DSECT for
DSECT for

QTAM Control Module

Data Ccontrol Blocks.
System OPEN Work

Data Extent Block.
Data Event Control

Input/Output Block.
Input/Output Block.
Line Control Block.
Header & Text

Queue Control Block.
Full Subtask Control

Task Control Block.
Terminal Table.

LIST OF MODULES BY MACRO INSTRUCTION

CATEGORY

SUPPORT MACRO INSTRUCTIONS

Macro instruction

CLOSEMC Telecommuni-—
cations System
CLOSE Communications

Line Group

CLOSE Direct Access
Message queue
CLOSE Process queue

(input)

Module

IECKCLOS, IECKLNCH
IGG0203N

IGG02030

IGG0203P

CLOSE Process queue
(output)

GET message

GET record

GET message segment

OPEN communications
line group

OPEN direct access
message queue

OPEN Checkpoint/Restart

OPEN process queue
(input and output)

PUT message

PUT record

PUT message segment

IGG0203P

IGGO19NB
IGGO19NC
IGGO019NA

IGG0193N (loadl)
IGG0193R (load?2)
IGG0193T {(load3)
IGG0194A (loadl)

16601930

IGGO19NU (load2)

IGGO19NV
IGG0193P

IGGO19NE
IGGO19NF
IGGO19ND

MESSAGE CONTROL MACRO INSTRUCTIONS

Macro Instruction

Initialization

ENDREADY

Control Information

BUFFER
DLIST
OPTION
POLL
PROCESS
TERM
TERMTBL

Module

-none-
IECKDLQT
—-none-
-none-
-none-
-none-
-none-

Line Procedure Specification

BREAKOFF
CANCELM
COUNTER
DATESTMP
DIRECT

| ENDRCV

ENDSEND

EOA

EOB

EOBLC

ERRMSG

INTERCPT

LOGSEG

LPSTART

MODE
-CONVERSE
-INITIATE
-PRIORITY

MSGTYPE
OPCTL

PAUSE
POLLIMIT
POSTRCV
POSTSEND
RCVHDR

Appendix D:

IECKBRKF
IECKCNCL
-none-

IECKDATE, IECKEXPD
IECKDRCT, IECKLKUP
IECKEOBK(WTTA only)

-none-

TECKEOAD
IECKEOBK
IECKEOBC

IECKERMG, IECKLKUP

IECKITCP
-none-
-none-

IECKMODE, IECKSCAN

IECKCVRS
IECKNATE
IECKPRTY,
IECKSCAN

IECKTYPE, IECKSCAN
IECKOCTL, IECKSCAN,
IECKLNCH, IECKDRCT

IECKPAUS
IECKPLMT
IECKOPAW
IECKOPAW
-none-

List of QTAM Modules

299



RCVSEG
REROUTE
ROUTE

SENDHDR
SENDSEG
SEQIN
SEQOUT

SKIP on count
SKIP to character set

SOURCE
TIMESTMP
TRANS
WRU

WTTA Translation Tables

RCVEITAZ2
RCVEZSC3

300

-none-
IECKRRTE,
IECKROUT,
IECKLKUP
-none-
-none-
IECKSEON,
IECKSEQT,
IECKSKPC
IECKSKPS,
IECKSRCE,
IECKTIME,
IECKTRNS
-none-

-none-
-none-

IECKLKUP
IECKSCAN

IECKSCAN
IECKEXPD

IECKSCAN
IECKSCAN
IECKEXPD

SENDITA2
SENDZSC3

~ -none-

-none-

MESSAGE PROCESSING MACRO INSTRUCTIONS

Macro Instruction

CKREQ
CHNGP
CHNGT
COPYT
COPYP
COPYQ
RELEASEM
RETRIEVE
STARTLN
STOPLN

Module

IECKCKRQ
IECKCHPL,
IECKCHGT
IECKCPYT
IECKCPPL,
IECKCPYQ
IECKRELM
IECKRETD,
IECKLNCH,
IECKLNCH,

IECKDCBL

IECKDCBL

IECKRETS
IECKDCBL
IECKDCBL



APPENDIX E: QUEUES AFFECTED BY QOQTAM ROUTINES

Figure 32 is a grid showing the QTAM subtask associated with the queue is acti-
routines that effect the queues. The grid vated through the QTAM nucleus each time
specifies whether the action was through a the queue is acted upon.

Opost or Qwait and what was posted. The

Appendix E: Queues Affected By QTAM Routines 301



2l s 8
5 g
9| % f HI o $ 5 ;
gl 3| e . 5 § .| B NI £ &
w ° 8 5 o g < o ap 2 4 a Z 3 ° @ ]
= 2 = = e 3 S > Q a = = o a & > > £ £
S| 5 8| E| = sl 2| Bl 2| 2 % % s el 3| o 2| & ¥ 2| & E 5 5
ROUTINE o < 2| =z S S S| S & & &] 2 © S E2 oz ol & & & it & =
Post Post | Wait
BRB Ring BRB BRB | BRB
Post | Post Post
Buffer BRB BRB | BRB Buffer
Post | post Post  |Post | Post
Buffer Recall/Cleanup BRB | Buffer Buffer |Buffer| BRB Wait
Post
Move
Change Polling List Data
Post
Move
Change Terminal Data
Post Post Post
Dummy | Ck.pt. Dummy
Checkpoint /Restart Lcs elem. LCs
. Post
Check Request ECB
Post
Move
Close Message Control Data
Post Post Post
Converse BRB Buffer BRB
Post
DASD Destination Buffer
Post I';?Jsrtlmy Post Post Post
Buff
Disk End Appendage offer LcB BRE Buffer Buffer
Post
Post S/h::rf
BRB 1/0
Disk 1/0 elem.
Post .';?:e Post
End of Poll Time Delay LCB | iem. Time
Post | Post
Free BRB BRB | LCB
Post
Get Wait Wait | Buffer
Post
Get Scheduler Buffer
| Post
Interim LPS Buffer
.| Post Post
\‘fl.arf Dummy { Move Post
. ine | | cp LCB
Line Change Data
Post | Post
Line End Appendage LCB | Buffer
Post Post Post
Line PCI Appendage BRB Buffer Buffer
Post Post
Dummy .
LPS Control LCB LCB | Wait
Wait
Pause BRB
Post Post 5;:;’ .
PUT BRB Buffer Buffer Wait
Post | Post Post Post | Post Post
Operator Control Buffer | Change Copy| Line | QCB Stop
Post
Move,
Release Intercepted Data
Post Post Wait
Retrieve DASD Buffer BRB
Post Post Post
Return Buffer Buffer Buffer Buffer
Post Wait
Send Scheduler Line Line
. X Post Posi | Post Post Post
Terminal Test Recognition Buffer LCB { Buffer Buffer | Buffer

Figure 32. Queues Affected by QTAM Routines

302



APPENDIX F: OPERATING SYSTEM CONTROL BLOCK LINKAGES

The System/360 Operating System provides references by the program. Some of these

interfaces among program by means of con- fields are pointers tc other blocks.
trol blocks and tables. These blocks have Figure 33 shows the various blocks and the
standardized formats. They contain linkages pertinent to QTAM.

numerous fields of information and

Main Storage
Location 16

Communication Vector

Terminal Table

Table
Task Control Channel Program
Block Word
Destination QCB
Line Control Block
Task Control Block Task 1/0O Table
Input-Output Block

Unit Control Blocks

Data Control Block

Data Extent Block Read/Write Routine

L Appendages Next DEB In Task Device /O Modules

Figure 33. Control Block Linkages

Appendix F: Operating System Control Block Linkages 303



APPENDIX G:

HEADER AND TEXT RELATIONSHIPS ON_A DASD QUEUE

Header and Text Relationships on a DASD
Queue

Figure 34 illustrates how chains of mes-
sage segments for destination and process
queues are formed on a direct access
storage device.

Each chain consists of a series of areas
on the direct access device. Each area
either: (1) contains a message segment and
the segment's associated header or text
prefix; or (2) is reserved for the next
segment to be placed on the chain. The
areas, and thus the segments, are linked
into the chain by means of information,
called relative record numbers, contained
in the link fields of the prefixes. Each
chain is formed as follows. At the time
the direct access queues data set is
opened, one area is reserved for each chain
to be formed. The header segment of the
first message to be put on the chain is
placed in the reserved area for that chain.
At the same time, the next two available
areas are reserved: the first is reserved
for the header of the next message to be
put on the chain, and the second is
reserved for the first text segment of the
same (tnat is, the first) message. This
process is repeated for each succeeding
message segment placed on the chain. Each
time a header segment is placed in its
reserved area, two more areas are reserved;
each time a text segment is placed on the
chain, one more area is reserved.

If the current segment is the last seg-
ment of the message, no area is reserved
for a next text segment. Specifically,
when a message consisting of only a header
segment is placed on the chain, only one
area is reserved (that is, for the header
of the next message); when the last of a
series of text segments is placed on the
chain, no area is reserved.

At the time an area is reserved, 1link
information is placed in the link fields of
the prefixes of the associated segments.
Each header prefix contains the relative
record numbers of the areas occupied by:
(1) the first text segment of the same mes-
sage; (2) the previous header segment; and
(3) the next header segment. Each text
prefix contains the relative record numbers
of the areas occupied by: (1) the next
text segment of the same message; and (2)
the header of the same message. If the

304

header is the only segment in the message,
the relative record number of the area
occupied by that header is placed in its
"next segment” link (MSLINK) field. 1If the
text segment is the last segment in the
message, the relative record number of the
header of the same message is placed in the
MSLINK field.

The figure illustrates the progressive
development of two chains, one for queue A
and one for queue B. The time span covered
begins with the initialization of the
queues (when the direct access queues data
set is opened) and ends when there are
three complete messages on the chain for
queue A, and two complete messages on the
chain for queue B.

The five messages contain a total of
fourteen segments, which are placed on the
chains in the following sequence:

1. Header of message 1, queue B (B-1)

2. Text segment of B-1

3. Header of A-1

4. Header of A-2

5. Header of B-2

6. Text segment of A-1

7. Text segment of A-2 (last segment)

8. Header of A-3

9. Text segment of A-1
10. Text segment of B-2 (last segment)
11. Text segment of B-1 (last segment)
12. Text segment of A-3
13. Text segment of A-1 (last segment)
14. Text segment of A-3 (last segment)

Each step in the development of the
chains is shown in Figure 34. Each step
shows the currently filled areas of the
direct access space allotted to the chains,
the areas reserved for succeeding segments,
and the location of the next available area

{that is, the area that will be reserved in
a succeeding step).



Relative record numbers represenﬁng consecutive direct access areas:

7 8 9 10 N 12 13 14 15 16 17 18 19 20
Begim"g of qun H 1 | 1 ! 1 L ! ] | | | S
for Queue A Boginmng of Chom for Queue B

: T T
; T T
; T T
10 T [ T 1.
y N 1T
. [ T
. [ T
’ AN T

o o ST e B s s e |1

Next header link (MSDLINK) |
Previous header link (MSHEAD)
Next segment link (MSLINK)

1
]
1
1
t { |
This header link (MSHEAD) |
Next segment link (MSLINK) !

[]

Fre———=-=

"7 " “Hoader Segment Link Fields " Intermediate Text Segment Link Fields _ _JH " Lost Text Segment Link Fields
Legend: [ ] Unreserved, unfilled area (3] Area containing header segment of messoge 1
EH] Area reserved for, but not yet containing, the next header segment i] Area containing text segment of messoge 2
!:T___] Area reserved for, but not yet containing, the next text segment D Area filled during this event
Shaded blocks represent areas on queve A; Unshaded blocks represent areas on queve B t  Points to next available area

Figure 34. Example of Message Header and Text Relationships in Dlrect Access Destination
and Process Queues

Appendix G: Header and Text Relationships on a DASD Queue 305






Activate routine
112,13,34,37,38,39,41,43,79
chart 214
Active puffer request queue 21,267
Active buffer request routine
111,33,35,37,42
chart 210
Active buffer request subtask
269,33,35,37,42
Additional CCW queue 21,267
Allocation
CPU processing time 15
I/0 paths 1o
main storage space 15-16
Assembling QTAM 9-10
Auto Poll feature 73,54
channel programs 73
Available buffer queue 21,266
Available buffer routine 111,37,42
chart 211
Available buffer subtask 269,37,42

BRB (see Buffer request block)
BRB ring routine 110-111,32

chart 205
Breakoff routine 76
chart 156

BTAM operation within QTAM 53-75
BTAM Read/Write module 53,34,39
BTAM Read/Write subroutines 49,53,54
Buffer BRB routine 111,33,35,37,42,47
chart 212
Buffer cleanup and recall routine
115,13,35,39-40,43,77,78,80,81,83,89
charts 200,201
Buffer request block 289
fields 290
format 290,291
status codes 291
Bus out and overrun routine 126,122
chart 140
Bus out and overrun for auto poll routine
129,122 :
chart 151

Cancel message routine 76-77
chart 179

Change polling list routine 101
chart 171

Change queue 269

Change terminal table routine 101,102
chart 169

Changel subtask 271

Channel command word (CCW)
format 54-55

Channel programs for:
AT&T 83B3 selective calling station

57,58 .

IBM 1030 lines 58,59
IBM 1050 (nonswitched) lines 59-60
IBM 1050 (switched) lines 60-62
IBM 1060 lines 62

INDEX

IBM 2740 basic 63-64
IBM 2740 with checking 64-65
IBM 2740 with dial 65
IBM 2740 with dial and checking 66,67
IBM 2740 with dial and transmit control
67,68
IBM 2740 with dial, transmit control,
and checking 68,69
IBM 2740 with station control 69,70
IBM 2740 with station control and
checking 70,71
IBM 2848/2260 remote 71-73
TTY models 33/35 TWX 63
Western Union plan 115A outstation 58
Channel program generation 54-56
Check point queue 269
Check point request routine 102,121
chart 161
Check point/restart 100
Check point routine 120-122,34
charts 251,252
Check point subtask 271,121
Check request queue 269,102
Check request subtask 271
Cleanup routine )
(see Buffer cleanup and recall routine)
Close communications line group routine

93,48
chart 228
Close direct access message queue routine
93,48
chart 229

Close message control routine 102,47
chart 230
Close process queue (input and output)
routine 93,48
chart 226
Closedown 47-48
Command reject, equipment check, SIOCC1,
SNO error routine 127
chart 144
Communications line queue 247,22
Communications serviceability facilities
120-131
Control blocks, QTAM 272-291
Control module 106-109
(see also nucleus)
Conversational mode routine 81-82
chart 191
Copy clear queue 268,84
Copy clear subtask 271
Copy polling list routine 103
chart 170
Copy queue control block routine 103
chart 172
Copy terminal table routine 102-103
chart 174
Cross partition move routine
119,101,102,104
chart 225

Index 307 e



DASD destination queue 267,35 Free BRB routine 118,13,40

DASD destination routine 116,36,45 chart 202
chart 224
DASD destination subtask 270 Get message routine 98,44,45
DASD process queue 268,35,45 chart 164
Data check routine 124 Get record routine 98,444,445
chart 132 chart 165 :
Data control block (DCB) Get scheduler routine 116,36,u44,45
fields and description of 277-279 chart 222
format of 277 Get scheduler subtask 270,45
Data event control block (DECB) : Get segment routine 99,44,45
description of fields 284 chart 163
format of 284 Get SVC1 queue 269
Data extent block (DEB) Get SVC subtask 271
fields and description of 280-281
format of 280 Header and text on the DASD queue 304
for MS destination queue 282
for MS process queue 282 Implementation module 10,13,110
Date stamp routine 77 Inactive BRB queue 21,268
chart 175 Initialization 10-11,30-33
DCB (see data control block) Initiate mode routine 82
DEB (see data extent block) chart 190
DECB (see data event control block) Input/output block (IOB) 27u4-275
Defer entry subroutine 107,9 Insert block
Device I/0 directory description of 291
format and description 56 format of 291
Device I/0 module 55-56 Intercept routine 80-81
Diagnostic Write/Read routine 128 ' chart 187
chart 146 : Interim LPS queue 268,22,34
Dial Out-Call queue 269 Interim LPS routine 118,34
Disk end appendage routine 112,37,41,45,46 chart 221
chart 194,195 Intervention required routine 125
Disk input/output queue 267,21 charts 134,135 :
Disk I/0 routine 111,36,41,42,44,45
chart 196 Key, field of QCB 25
Disk I/0 subtask 269,36,41,42, 044, 45
Distribution list queue 268 Line change queue 269,102
Distribution list routine 77 Line change routine (see start line-stop
chart 198 : line routine)
Distribution list subtask 270 Line change subtask 271

Line control block (LCB)
fields and description 274-276

Element control block format 275
(see resource element control block) Line end appendage routine 113,38,39,u42,43
End insert routine 119,77,78,82 charts 218,219
chart 203 Line error recording routine 128
End of address routine 78 chart 147
chart 199 Line group open executor load 1 routine
End of block 78,79,38,39,43 : 94,31
chart 192 chart 242
End of block and line correction routine Line group open executor load 2 routine
79-80,38,39,u3 94,31
chart 193-194 chart 243
End of poll time delay routine 118,32 Line group open executor load 3 routine
chart 207 95,13,31,33
ENDREADY macro instruction 11,34 chart 244
Entry interface subroutine 106,9 Line group open executor load 4 routine
Error message routine 80 95,33
chart 184 Line PCI appendage routine 113-114
Error post routine 125 chart 217
charts 138,139 Line procedure specification (LPS)
Error recovery procedures 122-129 routines 76-92
Exit interface subroutine 108,109,9 Line SIO appendage routine 112,34,39,41,43
Exit select subroutine 108,9 chart 215
Expand routine 80,77,90,92 Link routine 126
chart 188 chart 141,142
External routines 9,13,76 Linkage editing QTAM 9-10

Linkage of QTAM modules 292-296

¢ 308



Locate DCB routine 103

chart 153
Logical organization of QTAM 13-29
Lookup routine 81,80,88,89

chart 182
Lost data routine 125
chart 137

LPS control routine
112,13,34,35,37,38,39,41,42,43,48,82
chart 213
LPS queue 21,268
LPS subtask 270

Macro instructions
list of 299-300
(see associated routine)
Main-storage process queue 21,044,45
Main-storage destination queue 47
Message control program
assembling 9
contents of 13
initializing 10-11
linkage editing 9-10
routines 76-92
Message mode routine 81
chart 190
Message processing operational flow 44-47
Message processing program
assembling 10
contents of 15
initializing 10-11
linkage editing 10
routines 98-105
Message type routine 83
chart 168
Mode
conversational 81
initiate 82
message 81
priority 82
Modules, list of QTaM 297-300
by macro instruction 299-300
by module name 297-299
Move data queue 267,22
Move data subtask 271

Not operational start I/0 routine 129
chart 150

Nucleus, QTAM 9,25,29
charts 253,254
(see also control program module)

On line terminal test 130
Open checkpoint records data set routine
96,30
chart 247,248
Open direct access load 2 routine 96,30-31
chart 246
Open direct access message gqueue routine
95,30
chart 245
Open line group (see 1line group open
executor)
Open message processing program routine

97,44
chart 162
Operator awareness 83
chart 241

Operator control LER addition routine 128

chart 148

Operator control routine 83-88
chart 231

Overrun routine 129
chart 152

Pause routine 88

chart 158
PCI appendage routine 35,42
Physical organization of QTAM 9-12
Polling limit routine 88

chart 185
Posting 21
Prefix

format 287

description and used by 288-289
Priority mode routine 82

chart 190
Priority of subtasks 20
Priority search subroutine 107,9,77
Put message routine 97,46

chart 197
Put record routine 100,46
chart 167

Put segment routine 100,101,46
chart 166

QCB (see queue control block)
QOdispatch routine 25-28
Odispatch subroutine 107,108,9
Qdispatch subtask 270
QPOST
from problem program 23
from internal implementation subtask
QTAM
logical organization 13-29
outline of operation 30-52
physical organization 9-12
separate control program 15-16
within the operating system control
OTAM linkages 292-296
QTAM post subroutine
106,9,82,101,102,104,105
QTAM wait subroutine 106,9,88,104,105
Queue
management of 16-17,25
Queue control block {(QCB)
DASD destination queue 273
DASD process queue 273
fields and description 272
format 272
special form 289
types of 21-22
Queue insert by priority subtask 270
Queue insert subroutine 107,9
Queue insert subtask 270
QWAIT
from problem program 22
from internal implementation subtask

RCHNGT subroutine 84-85

chart 235

RCOPYC subroutine 84
chart 233

RCOPYT subroutine 84
chart 234

Index

23

13

23

3090



Read skip return routine 127
chart 145
Ready queue 17
example of 17,22
Receiving operational flow 34-40
Receive scheduler routine 110,32
chart 204
Receive scheduling subtask 270,32
Release intercepted message routine 103
chart 157
Reroute routine 89
chart 186
Resident terminal test routine 130
charts- 256,257
Resource element control block 19-20
fields and description of 273,274
format 273
special form (IECKSTOP) 269
Retrieve by sequence number routine 104
chart 160
Retrieve DASD routine 104,105
chart 159
Return buffer queue 268,22,44,46
Return puffer routine 118,44,046
chart 223
Return puffer subtask 270,44,046
RINTRCPT subroutine 85

chart 236

RINTREL subroutine 87-88
chart 240

Route routine 89,78
chart 181

RRELEASM subroutine 85
chart 236

RSTARTLN subroutine 85
chart 237

RSTOPLN subroutine 85
chart 238,239

RSWITCH subroutine 84
chart 237

Scan routine 89,81,82,83,88,89,90,91
chart 173

Sending operational flow 40-44

Send scheduler routine 118,36,40,43
chart 208-209

Send scheduling subtask 270,40,43

Sequence-in routine 90

chart 189
Sequence-out routine 90
chart 180

Skip (character count) routine 90
chart 177

Skip (character set) routine 91,78
chart 177

Source routine 91

chart 176

Start line-stop line routine 105,48,88,102
chart 154

Status check routine 127
chart 143

310

Stop queue 269,86
Stop the line queue 269,85,86,87
Stop 1 subtask 271,86
STOP2 routine 87
Stop 3 subtask 271
Stop 4 queue 269,87
Stop 7 subtask 251
SUB1 subroutine 84
chart 232
Subtask control block (STCB)
full 20,274
fields and description 27,274
format 20,274
truncated 20,274
fields and description 27,274
format 20,274
Supervisory routines 15
(see also nucleus, QTAM)
Support routines 9
System control block linkages 303
System generation 9
SY¥S1.MACLIB, DSECTS in 299
SYs1.sVC library 9
modules in 298-299
SYS1.TELCMLIB 9
modules in 297-298

Terminal table

format 286

field and description 286
Terminal test routine charts for:

1030 258
2740 259
1050 260
1060 261

284872260 262

Terminal test header analysis routine 131

chart 255
Threshold 83
Time delay routine (see end of poll time
delay routine)
Time out routine 124
chart 133
Time out and data check for auto poll
routine 123
chart 136
Time queue 268,22
Time stamp routine 91
chart 178
Time subtask 270
TP op code
definition 56
location 54
Transient area routines 93-97
Translate routine 92
chart 183

UNPAK subroutine 84
chart 232

Waiting 22






Y30-2002-2

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

°w*Q° N Ul PAULLY NTI WWTA €O nac /< ar

7=7NN7=N¢ X



READER’S COMMENT FORM

IBM System/360 Operating System
Queued Telecommunications Access Method
Program Logic Manual ‘

e How did you use this publication?

As a reference source a
As a classroom text (]
As a self-study text a

e Based on your own experience, rate this publication, . .

As a reference source: Very Good Fair Poor
Good

As a text: Very Good Fair Poor
Good

e What is your occupation?

e We would appreciate your other comments; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your name

and address,

® Thank you for your cooperation, No postage necessary if mailed in the U,S. A,

Very
Poor

Very
Poor

Y30-2002-2



Crapsan

Y30-2002-2 ‘ o L

YOUR COMMENTS, PLEASE .

This publication is one of a series that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the
back of this form, together with your comments, help us produce better publications
for your use. Each reply is caréfully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office servmg
your locality.

Fold . A = Fold

T — i A W v Y NS CAT Ty LI D W G UMD WL L W W S U T D U AT QAR GETR G G WD S WS G GA U G G W G D G S G SHS B i SN Gl SR Gwh S ey ke -

FIRST CLASS

PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

L]
L]
]
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. ]
L
]
POSTAGE WILL BE PAID BY . . . ———
]
IBM Corporation ]
P.O.Box 12275 L]
Research Triangle Park f ]
North Carolina 27709 L]
]
|
Attention: Programming Documentation, Dept. 844 S
L
Fold . Fold

SIS

®

) Ihte-r;\atioh-al«-Business Machines Corporation
. “Data Processing Division
" "'112 East Post Road, Whne Plains, N.Y. 10601
© [USAOnly]

" IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

L}
|
|
|
|
|
{
|
|
|
|
1
!
|
|
|
|
|
|
|
{
|
{
|
|
|
l
1
|
|
|
|
{
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
i
|
|
1
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ISJUDWWOY) [BUOTHPPY

Cut Along line



