File No. $360-36 "
Order No. GC28-6763-2 0s

l

Systems Reference Library

IBM System /360 Operating System:
Time Sharing Option
Terminal User's Guide

OS Release 21

The Time Sharing Option (TSO) of the IBM
Systen/ 360 Operating System lets you use the
facilities of a computer from a terminal. You
define your work to the system through the TSO
Command Language. This publication explains to
all users of TSO how to use the TSO Command
Language to perform the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use command procedures.
Control a system with TSO.

After becoming familiar with the information
presented in this manual, you may use IBM
System/360 Operating System: Time Sharing
Option, Command Language Reference, GC28-6732
for review and reference.

X 1 1 1 31

Third Edition (July, 1972)

This is a reprint of GC28-6763-1 incorporating changes
released in the following Technical Newsletter:

GN28-2522 (dated April 15, 1972)

This edition applies to release 21 as updated by component
release 3605-0S-586, of IBM System/360 Operating System,

and to all subsequent releases until otherwise indicated

in new editions or Technical Newsletters. Changes are con-
tinually made to the information herein; before using this
publication in connection with the operation of IBM Systems,
consult the latest IBM System/360 and System/370 Bibliography,
Order No. GA22-6822, and the current SRL Newsletter, Order No.
GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

©® Copyright International Business Machines Corporation 1971,1972

This publication describes how to use the
TSO Command Language to all TSO terminal
users. The commands can be used to perform
the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use command procedures.
Control a system with TSO.

This publication tells you what commands to
use to perform these functions. For

details on how to code each command, refer
to the publication IBM System/360 Operating

Preface

terminal refer to the publication IBM
System/360 Operating System: Time

Sharing Option, Terminals, GC28-6762.

Additional publications referenced in
this manual include:

IBM Data Processing Glossary, GC20-1699.

IBM System/360 Operating System:

System: Time Sharing Option, Command
Lanquage Reference, GC28-6732.

Before reading this manual you should be
aware of three facts:

e Program Products are not discussed in
this manual.

e All examples in this manual show the
user's input in lowercase letters and
the system output in uppercase letters.

e All examples in this manual assume that
you are using an IBM 2741
Communications Terminal, and that you
must press the RETURN key to enter
data. For information on your type of

Assembler F Programmer's Guide,
GC26-3756.

Job Control Language Reference,
GC28-6704.

Linkage Editor and Loadexr, GC28-6538.

Operator's Procedures, GC28-6692.

PL/I (F) Programmer's Guide, GC28-6594.

Time Sharing Option Command Lanquage
Reference, GC28-6732.

Time Sharing Option Guide to Writing a
Terminal Monitor Program or a Command

Processor, GC28-6764.

4 TSO Terminal User's Guide (Release 21)

Page of GC28-6763-1, Revised April 15, 1972, By TNL:

SUMMARY OF AMENDMENTS FOR GC28-6763-1
AS UPDATED BY GN28-2522 COMPONENT
.RELEASE 360S-0S=586 .« ¢ « ¢ o o = o = &

SUMMARY OF AMENDMENTS FOR GC28-6763-1
OS RELEASE 21 <« ¢ o o o o o o o = o o =

SUMMARY OF AMENDMENTS For GC28-6763-0
OS RELEASE 20 < & o o 4 o o o o » o o =

INTRODUCTION +. 4 & o o = o = o o = = »

WHAT YOU MUST KNOW TO USE TSO .« « « «
Entering Information at the Terminal . .
CommMandsS « o o « o o = o « = o o s« = o =
When to Enter a Command or Subcommand
How to Enter a Command or Subcommand
MEeSSaAgEeS v o o = « « o -
Mode Messages . « « «
Prompting Messages . .
Informational Messages
Broadcast Messages . .
The Attention Interruption
The HELP Command . . . « »

- e

s s 8 0 8
« & s 2 3 &«
s 2 s & 8 & @
L] . '] [L] L]
« 2 s a s s 8
e & 2 @ s @
R R T)
s o & & 5 0 8

STARTING AND ENDING A TERMINAL SESSION
Identifying Yourself to the System . . .
Defining Operational Characteristics .
Receiving and Sending Broadcast
MESSAgES « « o = % o+ = * o = =
Receiving Broadcast Messages
Sending MeSsSages « « « =« o o
Displaying Session Time Used .
Ending Your Terminal Session .

s o & a s
s 6 e s @
LI S T)
@ s e s O
¢ s 8 s @

ENTER ING AND MANIPULATING DATA
Identifying the Data Set . . .
Creating A Data Set . « « « =«
Placing Data into Columns
Finding and Positioning the Current
Line Pointer . ¢ o o o o o o o « « o
Finding the Current Line Pointer . .
Positioning the Current Line Pointer
Updating a Data Set . « «
Deleting Data From a Data Set -
Inserting Data in a Data Set . .
Replacing Data in a Data Set . .
Renumbering Lines of Data . . .
Listing the Contents of a Data Set
Storing a Data Set « . « &« ¢ o o o
Ending the Edit Functions
Renaming a Data Set . - &« o « & o o«

« v &

s s .
. s s e
L] . - L]
s o &

GN28-2522

Contents

Deleting a Data Set . « o = = .« & « - 56
Establishing Passwords for a Data Set « 57
Allocating a Data Set .« « « « « « « « « 58

Assigning Attributes to a Data Set . 61
Freeing an Allocated Data Set . . « . « 61

Listing Information About Your Data
SEES o 2 o ¢ o o 2 o % % = o s = & o « « 62

PROGRAMMING AT THE TERMINAL . .
Creating a Program . « « « =« « «
Compiling a Program
Link Editing a Compiled Program
Executing a Program .« « « « « =
Loading a Program . « « o « « =«
Processing Background Jobs . . .
Submitting Background Jobs . .
Displaying the Status of Backgrou
JObS « o o = . - o = =
Cancelling Background Jobs . e -
Controlling the Output of a
Background JOD o & o o« o o o o o « « « 16

S o s s & 8 s
=)
[o o]

¢« 8 s 8 s 8 &

Ol

d

2 8 3 s 4 & s a2 a2 s e

TESTING A PROGRAM . v o 4 o o = o o« « o 19

USING AND WRITING COMMAND PROCEDURES .

Using Command Procedures . . « « o« = «
Calling a Command Procedure
Assigning Values to Symbolic Values

Writing Command Procedures
Assigning Symbolic Values
Testing Conditions for Termination

« & 8 s 8 8 s &
o]
[\V]

Ending the Command Procedure . . . 85
CONTROLLING A SYSTEM WITH TSO . « « « . 86
The OPERATOR Command « « « « =« « « « « « 86

Monitoring Terminal Activity 87

Displaying TSO Information 89

Cancelling a Session or Background
JOD & e 4 e 4 e e e e e e e e s e « o 90
Sending Messages to Texminal Users . . 90
Modifying Time Sharing Parameters . . 91
Ending Operation of the Operator
Command . « « o o o « o « o = « « o & 91
The ACCOUNT Command . « « « « « « « » « 91
Adding New Entries or Data to an
ENtry o o o ¢ o @ o o o o o o » « « = 92
Deleting Entries or Parts of Entries . 96
Changing Data in an Entry
Displaying the Contents of an Entry
Displaying All User Identifications
Ending Operation of the ACCOUNT
Command . o« « © o o o o o o « = = =

GLOSSARY ¢ « « o « o o o o o« =« = =« @« &»

INDEX &« ¢ o o o o o o o o o o o o o

Contents 5

lllustrations

Figures

Figure 1. TSO Commands and
Subcommands, Including Abbreviations
Figure 2. sSample Instruction Sheet
for a Terminal © e e o e o s e s o
Figure 3. Descriptive Qualifiers .
Figure 4. Default Tab Settings . .
Figure 5. Values of the Line Pointer
Referred to by an Asterisk (#) . e e
Figure 6. Sample Data Set
Figure 7. Allocating Data Sets for
the Assembler F . o & ¢ o ¢ o ¢ o « @
Figure 8. Creating an assembler
source program e e 4 & s s e o s e @

6 TSO Terminal User's Guide

14
22
31
36

38
40

60
64

(Release 21)

Figure 9.
Compilers .
Figure 10.
Figure 11.
a program .
Figure 12.
Figure 13.

Data Set Names of the

COBOL Compilatio:
Link editing and executing

-

Loading a Program

Submitting a Program as a

Background Job .

Figure 14.
Command Proc
Figure 15.

Figure 16.
Entry in the

Symbolic Val

edure

The Simplest Structure
That an Entry in the UADS Can Have
A Complex Structure for an

UADS

-

-

ues

for

L1

3

.

a

-

65
66

70
73

75
82
93

93

Summary of Amendments

For GC28-6763-1

As Updated By GN28-2522
Component Release 360S-0S-586

DYNAMIC SPECIFICATION OF DCB PARAMETERS
The discussion about Allocating a Data
Set was expanded to include Assigning
Attributes to a Data set.

The discussion about Freeing a Data Set
was expanded to include freeing a list
of attributes.

Summary of Amendments
for GC28-6763-1
OS Release 21

QUOTED STRING NOTATION FOR_FIND AND CHANGE
SUBCOMMANDS
The FIND and CHANGE subcommands, of the
EDIT command, can now accept quoted
string as well as special delimiter
syntax.

STOPMN
The STOP subcommand, of the OPERATOR
command, is changed to STOPMN.

EDITORIAL CHANGES
Many editorial changes have been made.

Summary of Amendments
for GC28-6763-0
as updated by GY28-2483
OS Release 20.1

CTLX KEYWORD FOR PROFILE COMMAND
Keyword added.

COPY SUBCOMMAND OF TEST
Subcommand added.

Summary of Amendments 7

8 TSO Terminal User's Guide (Release 21)

Introduction

TSO is the time sharing option of the IBM System/360 Operating System.
TSO lets you use the facilities of a computer at a terminal. A terminal
is a typewriter-like device connected through telephone or other
communication lines to the computer. A terminal can be at any distance
from the computer -- in the same room or in another city. Because the
system processes instructions much faster than you can enter them
through the terminal, it can process input from many terminals at the
same time it is processing work entered in the conventional manner in
the computer room. However, due to the speed of the system,:-you will be
able to work as though you had almost exclusive use of the system.

You can tell the system what work you want done by typing in one or
more of the commands that form the TSO command language. The command
language can be used to:

e Enter, store, modify, and retrieve data at the terminal.

e Solve mathematical problems.

e Develop programs written in Assembler, FORTRAN, COBOL, PL/I, orx
other languages.

e Execute programs.

e Control the operation of a system with TSO from the terminal.

Your installation determines which of the facilities of the system
you can use. That is, the installation determines which commands are
available to you.

When you enter a command in the system, the system performs the work
requested by that command and sends messages back to your terminal. The
messages tell you the status of your program and whether the system is
ready to accept another command. You can interrupt the processing of a
command at any time and enter a new one.

If you make a mistake typing in a command, or if you fail to include
some necessary information with the command, the system sends you a
message prompting you for the necessary information. You may then
respond by typing in the information requested.

If you receive a message you don't understand, you can type in a
question mark to request more information. The system will then send
you a more detailed message, if available.

Whenever you are not sure which command to use or how to use a
particular command, you can type HELP. HELP is a command that provides
you with information on all other TSO commands.

This manual explains how to use the command language. The manual is
divided into the following sections:

1. What you must know to use TSO.

2. Starting and ending a terminal session.
3. Entering and manipulating data.

4. Programming at the terminal.

5. Testing a program.

6. Using and writing command procedures.
7. Controlling a system with TSO.

Introduction 9

The first three items must be known by all system users. Items 4 - 6
describe specific functions a user may wish to perform. Item 7
describes capabilities that you may use if your installation has given

you authorization.

This manual tells you what commands to use to perform the functions
mentioned above. For details on how to enter each command, refer to the

manual Command Language Reference.

10 TSO Terminal User's Guide (Release 21)

What You Must Know to Use TSO

Before you begin a terminal session, you should know:

How to enter information at the terminal.
How to use the TSO commands.

How to interpret TSO messages.

How to use the attention interruption.
How to use the HELP command.

Entering Information at the Terminal

All TSO terminals have a typewriter-like keyboard through which you
enter information into the system. The features of each keyboard vary
from terminal to terminal; for example, one terminal may not have a
backspace key, while another may not allow for lowercase letters. The
features of each terminal as they apply to TSO are described in the
publication, TSO Terminals.

Certain conventions apply to the use of all TSO terminals. They are:

e Any lowercase letters you type are interpreted by the system as
uppercase letters. For example, if you type in:

abcDe8-fg
the system interprets it as:
ABCDES8-FG

The only exceptions are certain text-handling applications which
allow you to type in text with both uppercase and lowercase letters.
Text handling is discussed in the section "Entering and Manipulating
Data".

e All messages or other output sent to you by the system come out in
uppercase letters. The only exception is the output from the
special text-handling applications mentioned previously which comes
out both in uppercase and lowercase.

TSO also provides a method for you to correct your typing mistakes. You
can request that the character you just typed be deleted or that all the
preceding characters in the line be deleted. You can define your own
character-deletion and line-deletion control characters, or you can use
the default characters in the system. For example, if the control
characters are the quotation mark (") for deleting the preceding
character, and the percent sign (%) for deleting all the preceding
characters of the line, and you type the following message:

first ent%Sect"onft""d ENR"try
it is received by the system as:
SECOND ENTRY

Note that you can use the character-deletion character repetitively to
delete more than one of the preceding characters in the line.

What you Must Know to Use TSO 11

The blank space produced when you hit the space bar is also
considered to be a character, and you can delete it using the
character-deletion or line-deletion characters. For example, if you
type the following line:

a bk¢d "E "f
it is received by the system as:
CD EF

After you type a line and make any necessary corrections, you can
enter that line as follows:

e Press the RETURN key on an IBM 2741 Communications Terminal.

e Press the RETURN key on an IBM 1052 Printer-Keyboard (If the 1052
does not have the automatic EOB feature, hold down the ALTN coding
key and press the EOB(s) key.)?

e Hold the CTRL key and press the XOFF key on a Teletype? terminal.
Notes:

e All examples in this manual assume that you are using an IBM 2741
Communications terminal, and that you must press the RETURN key to
enter a line.?1

e If you want to enter a null line, that is a line with no characters
in it, press the key used to enter a line (RETURN key on the 2741).

You cannot use the character-deletion and line-deletion characters to
make corrections to the line after you enter it. If the line you
entered was a command, you must use the attention interruption
(described later in this section) to cancel the command, and then you
must reenter the command. If the line you entered was data, you can
change it by using the EDIT command (described in the section, "Entering
and Manipulating Data").

Normally, you will use the default characters in the system, (usually
the backspace and the attention key). However, you can use the PROFILE
command to establish your own character-deletion and line-deletion
characters. The PROFILE command is described in the section, "Starting
and Ending a Terminal Session"™. The ability to change the
character—-deletion and line-deletion characters is particularly useful
when you use more than one type of terminal. For example, any time you
have to use a terminal that does not have backspace and attention keys,
you can use the PROFILE command to select two other suitable characters
as the character-deletion and line-deletion characters.

Commands

You can communicate with the system by typing requests for work,
commands, at the terminal. Different commands specify different kinds
of work. You can store data in the system, change the data, and
retrieve it at your convenience. You can create programs, test them,
execute them and obtain the results at your terminal. The commands make
the facilities of the system available at your terminal.

iFor information about the terminal you are using, refer to TSO
Texrminals.
2 Trademark of the Teletype Corporation.

12 TSO Terminal User's Guide (Release 21)

When you use a command to request work, the command establishes the
scope of the work to the system. For some commands, the scope of the
work encompasses several operations that you can identify separately.
After entering the command, you may specify one of the separately
identifiable operations by entering a subcommand. A subcommand, like a
command, is a request for work; however, the work requested by a
subcommand is a particular operation within the scope of work
established by a command.

The commands and subcommands recognized by TSO form the TSO command
language. The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English words,
often verbs, that describe the work to be done. The number of command
names and subcommand names that you must learn has been kept to a
minimum. (Your installation can add its own commands to perform
functions not provided by the TSO command language.)

Besides entering the name of the command or subcommand, you are often
required to specify additional information to pinpoint the function you
want performed. You define the additional information with operands
(words or numbers that accompany the command names and subcommand
names). Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
However, some operands do not have default values. If you fail to
provide a required operand for which there is no default, the system
sends you a prompting message asking you to supply the operands. The
publication, Command Lanquage Reference shows all operands for each
command, indicates the default values where applicable, and describes
how to enter the commands.

You can abbreviate many of the command names, subcommand names and
operands. Together, the defaults and abbreviations decrease the amount
of typing required. (The abbreviations and their use are discussed in
the publication, Command Language Reference.)

Figure 1 lists the commands and their subcommands in alphabetical
order.

What you Must Know to Use TSO 13

COMMAND (abbreviation)
SUBCOMMAND (abbreviation)

COMMAND (abbreviation)

SUBCOMMAND (abbreviation)

ACCOUNT
ADD (A)
[CHANGE (C)
DELETE (D)
END
| HELP (H)
| LIST (L)
LISTIDS (LISTI)
ALLOCATE (ALLOC)
*ASM
ATTRIB (ATTR)
*CALC

CALL
CANCEL
#COBOL (COB)
*CONVERT (CON)
| *copY
| DELETE (D)
EDIT (E)
BOTTOM (B)
CHANGE (C)
DELETE (D)
DOWN
END
FIND (F)
+FORMAT (FORM)
| HELP (H)
INPUT (I)
INSERT (IN)
LIST (L)
*+MERGE (M)
PROFILE (PROF)
RENUM (REN)
| RUN (R)
SAVE (S)
SCAN (SC)
TABSET (TAB)
TOP
UP
VERIFY (V)
EXEC (EX)
*FORMAT (FORM)
+FORT
FREE
HELP (H)
LINK
*LIST (L)
LISTALC (LISTA)
LISTBC (LISTB)
LISTCAT (LISTC)

e e e e e e e e e e e e e e e e o e e e e e e e e e B B e A B e e A P S e e ot e e s e e e e e e

LISTDs (LISTD)
LOADGO (LOAD)

LOGOFF

LOGON

*MERGE

OPERATOR (OPER)
CANCEL (C)
DISPLAY (D)
END
HELP (H)
MODIFY (F)
MONITOR (MN)
SEND

STOPMN (PM)
OUTPUT (OUT)
CONTINUE (CONT)
END
HELP (H)
SAVE (S)
PROFILE (PROF)
PROTECT (PROT)
RENAME (REN)
RUN (R)
SEND (SE)
STATUS (ST)
SUBMIT (SUB)
TERMINAL (TERM)
TEST (T)
Assign (=)
AT
CALL
COPY (C)
DELETE (D)
DROP
END
EQUATE (EQ)
FREEMAIN (FREE)
GETMAIN (GET)
GO
HELP (H)
LIST (L)
LISTDCB
LISTDEB
LISTMAP
LISTPSW
LISTTCB
LOAD
OFF
QUALIFY (Q)
RUN (R)
WHERE (W)
TIME

**PROC
**END
**WHEN

[S ——

*Available as program products
| **For use in command procedures
L

— . o e . — — Tt He . S S — o S o — — —

Figure 1. TSO Commands and Subcommands, Including Abbreviations

14 TSO Terminal Userxr's Guide (Release 21)

s = s g e . e e e i s . . S S T S S S S S . et S o S S, S S S St e e S

WHEN TO ENTER A COMMAND OR SUBCOMMAND

The system lets you know when it is ready to accept a new command by
sending you the message:

READY

The ACCOUNT, EDIT, OPERATOR, OUTPUT and TEST commands have
subcommands. After entering one of these commands the system lets you
know it is ready to accept a subcommand by sending you the name of the
command. For example, in the following sequence you entexr the OPERATOR
command after receiving a READY message. The system then sends you the

OPERATOR message indicating that you can enter any of the subcommands of
the OPERATOR command:

READY
operator
OPERATOR

If instead of entering a subcommand you want to enter a command,
enter the END subcommand to make the READY message appear again.

The system remains able to receive commands until you enter one of
the five commands that have subcommands. The system then accepts only
that command's subcommands until you request a READY message by entering
the END subcommand.

HOW TO ENTER A COMMAND OR SUBCOMMAND

After you receive a message letting you know the system is ready to
receive a command or subcommand, do the following:

1. Type the command or subcommand name and the selected operands.

2. Correct any typing mistakes with the character-deletion and
line-deletion characters.

3. Press the RETURN key.

If all the operands do not fit in one line you should follow this
sequence:

1. Type the command and subcommand name and the selected operands.

2. Type a hyphen (-) at the end of the line.

3. Press the RETURN key.

4. Continue entering the operands. If they do not fit in the second
line repeat from 2.

5. Press the RETURN key to enter the command.

You can type command and subcommand names and operands in either
uppercase or lowercase letters. You may prefer to type your commands
and subcommands in lowercase since it is usually more convenient, and it
allows you to distinguish your input from the system's messages in your
listing. (The system prints in uppercase letters.) All examples in
this manual show the user's input in lowercase letters, and the system
output in uppercase letters.

Messages
There are four types of messages:

Mode messages.
Prompting messages.

Informat ional messages.
Broadcast messages.

What you Must Know to Use TSO 15

MODE MESSAGES

A mode message tells you when the system is ready to accept a new
command or subcommand. (See "When to Enter a Command or Subcommand".)
When ~he system is ready to accept a new command it prints:

READY

When you enter a command that has subcommands and the system is ready
to accept its subcommands, it prints the name of the command, which can
be any one of the following:

ACCOUNT
EDIT
OPERATOR
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST message
also appears after each TEST subcommand has been processed. If the
system has to print any output or other messages, as a result of the
previous command or TEST subcommand, it does so before printing the mode
message. (The use of mode messages in the EDIT command is discussed in
the section "Entering and Manipulating Data".)

Sometimes you can save a little time by entering two or more commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
For example, if you enter the DELETE, FREE, and RENAME commands and wait
for the intervening mode message between the commands, the output (or
listing) will be:

READY
delete...
READY
free...
READY
rename...
READY

If you enter the same commands without waiting for the intervening
mode messages, your listing will be:

READY
delete...
free...
rename...
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the
commands, the system sends you messages telling you of your mistake, and
then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you
should wait for a READY message before entering a new command.

Note: Some terminals "lock™ the keyboard after you enter a command, and
therefore you cannot enter commands without waiting for the intervening
READY message. Terminals which do not normally lock the keyboard may
occasionally do so, for example when all buffers allocated to the
terminal are used. See the publication TSO Terminals for information on
your terminal.

16 TSO Terminal User's Guide (Release 21)

PROMPTING MESSAGES

A prompting message tells you that required information is missing or
that information you supplied was incorrectly specified. A prompting
message asks you to supply or correct that information. For example,
data-set-name ‘is a required operand of the CALL command; if you enter
the CALL command without that operand the system will prompt you for the
data-set-name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case
the data set name, and by pressing the RETURN key to enter it. For
example if the data set name is ALPHA.DATA you would complete the
prompting message as follows:

ENTER DATA SET NAME-
alpha.data

To specify whether or not you want to receive prompting messages, use
the PROMPT or NOPROMPT operand of the PROFILE command. This command is
described in the section, "Starting and Ending a Terminal Session".

Sometimes you can request another message that explains the initial

message more fully. If the second message is not enough, you can
request a further message to give you more detailed information.

To request an additional level of message:
1. Type a question mark (?) in the first position of the 1line.
2. Press the RETURN key.

If you enter a question mark, when there are no messages to provide
further detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption.

INFORMATIONAL MESSAGES

An informational message tells you about the status of the system and
your terminal session. For example, an informational message can tell
you how much time you have used. Informational messages do not require
a response.

If an informational message ends with a plus sign (+) you can request
an additional message by entering a question mark (?) after READY, as
described in "Prompting Messages." Informational messages have only one
second level message, while prompting messages may have more than one.

What you Must Know to Use TSO 17

BROADCAST MESSAGES

Broadcast messages are messages of general interest to users of the
system. Both the system operator and any user of the system can send
broadcast messages. The system operator can send messages to all users
of the system or to individual users. For example, he may send the
following message to all users:

DO NOT USE TERMINALS #U4, 5 AND 6 ON 6/30. THEY ARE RESERVED FOR
DEPARTMENT 791.

You, or any other user, can send messages to other users or to the
system operator. For example, you may send, or receive, the following
message:

ACCOUNT NO. 4672 WILL BE CHANGED TO 4675 STARTING 8/25

A message sent by another user will show his user identification so
you will know who sent you the message.

To find out how to send or receive broadcast messages, refer to the
section "Starting and Ending a Terminal Session".

The Attention Interruption

The attention interruption allows you to interrupt processing of your
job so that you can enter a new command or subcommand. The ability to
interrupt processing prevents you from being "locked out" by the system
while a long-running program executes or while voluminous output is
displayed at your terminal. You can use the attention interruption for
access to the system.

When you enter an attention interruption, the system suspends
processing and sends you a mode message. If the system was processing a

command, you receive the following mode message:

READY

You can then enter a new command. If the system was processing a

subcommand, the mode message will be the name of the command to which
the subcommand belongs:

ACCOUNT

EDIT

OPERATOR

OUTPUT
TEST

If you do not want to enter another subcommand, you should enter
another attention interruption which will cause the READY message to
appear.

See the section "Displaying Session Time Used" for other uses of
attention interruption.

There are two ways to cause an attention interruption:
1. Press the attention (or substitute attention) key:

¢ ATTN key on an IBM 2741 Communications terminal.

18 TSO Terminal User's Guide (Release 21)

e LINE RESET key on an IBM 1052 Printer-Keyboard. (If the
"proceed" light is on, press the ALTERNATE CODING and "6" keys
instead of the LINE RESET key.)

e BREAK key on a Teletype terminal.

If the attention key is also the line-deletion character key and
you have entered any characters in a line of input, you must press
it twice to enter an attention interruption. (You need only press
it once if you have not entered any characters in the line.)

2. Use a simulated attention key:

If your terminal does not have a key that can be used for attention
interruption, you can use the facilities of the TERMINAL command to
simulate the attention key. The TERMINAL command lets you specify
a string of characters, such as HALT or ATTN, that when entered as
a line of input is interpreted by the system as a request for an
attention interruption. The TERMINAL command also lets you request
an interruption at specified intervals while output is being
produced. The TERMINAL command is described in the section,
"Starting and Ending a Terminal Session".

Note: The attention interruption will not halt the output from system
operator commands, such as DISPLAY A.

The HELP Command

The HELP command provides you with information about all other TSO
commands. At the most general level you can enter:

help

This will cause you to receive a list of all commands and a brief
explanation of their functions.

If you want all the information available on a specific command, for
example CALL, enter the HELP command and use the other command's name as
an operand:

help call

If you want to know only the function, syntax, or operands, of the
CALL command, enter one of the following:

help call function
help call syntax
help call operands

You can also obtain the same information for the subcommands of the
ACCOUNT, EDIT, OPERATOR, OUTPUT and TEST commands. To do this, enter
the command with any required operands and wait for the mode message.
After you have received it, you can enter:

help

This will cause you to receive a list of all subcommands for the command
that you specified.

What you Must Know to Use TSO 19

If you want all the available information on a given subcommand,
enter the HELP command and use the subcommand name as an operand. For
example, the following sequence could be used to obtain all the
information available on the DISPLAY subcommand of the OPERATOR command:

READY
operator
OPERATOR
help display

If you want to know only the function, syntax, or operands of the
DISPLAY subcommand you would enter one of the following:

help display function
help display syntax
help display operands

There is one restriction on using the HELP command: you cannot use
it before you use the LOGON command. As explained in the section
"Starting and Ending a Terminal Session", LOGON must be the first
command used in your session because it identifies you as an authorized
user of the system.

Note: Your installation can add "help" information to the system by
following the instructions in the publication, Time Sharing Option Guide
t0o Writing a Terminal Monitor Program or a Command Processor.

20 TSO Terminal Usex's Guide (Release 21)

Starting and Ending a Terminal Session

This section describes the commands you can use to:

Identify yourself to the system.

Define operational characteristics of your session.
Receive and send broadcast messages.

Display session time used.

End your terminal session.

Identifying Yourself to the System

The first thing you must do to start your terminal session is to turn on
the power according to instructions provided by your installation. In
many cases, you will find an instruction sheet such as the one shown in
Figure 2 attached to the terminal. In the example shown in Figure 2,
instructions 1 through 8 must be followed to turn on the power and to
establish the connection with the system. If there is no instruction
sheet attached to the terminal, consult the publication, TSO Terminals.

After you turn on the power you must use the LOGON command to
identify yourself to the system. You must supply, as operands of LOGON,
the user attributes assigned to you by your installation. Your user
attributes are:

1. User identification (required) -- The name or code by which you are
known to the system.

2. Password (required if your installation assigns you one) -- A
further identification used for additional security protection.

3. Account number (optional) -- The account to which your terminal
session is charged.

4. Procedure name (optional) -- The name of a series of statements
that defines your job to the system.

Starting and Ending a Terminal Session 21

-

TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additional time call A. Jones ext. 1234)

1. Turn ON/OFF switch to ON.

2. Make sure the COM/ICL switch is set to COM.

3. Remove handset from telephone (data set).

4. Press TALK button on telephone.

5. Dial ext. 5555, 5556, or 5557.

6. Wait for a high pitched tone. When you hear this tone you
are in contact with the computer. If you get a busy signal
or no answer, hang up and repeat from step 3 trying ancther

extension.

7. Push the DATA button on the telephone. If DATA button light
goes off at any point during session, repeat from step 3.

8. Replace handset on the cradle.

9. Enter LOGON command:

logon / acct() proc() size() | notices mail
nonotices nomail

userid password account procedure nnnn

10. The default TERMINAL command is:
terminal nolines noseconds noinput break notimeout linesize(120)
If you want to change any of the following defaults use this
TERMINAL command:
terminal lines() seconds() input() linesize()
11. If you want to change your user profile, use the PROFILE
command :
char() line() prompt intercom pause msgid
profile |char(bs)| |line(attn)||noprompt nointercom| |nopause| | nomsgid
nochar line(ctlx)
noline

The following operands are recommended for this terminal:
char(bs) and 1line(attn)

Note: Please turn ON/OFF switch to OFF after you enter LOGOFF.

[e e s . S . . S —— — — — —— — — — ——— T——— t— {— — — — S— — T— {——— S {—— Mo B S— {— T— T— —— T——— —— S S Bt s St . S St
Lop =t . o s . . i . ki . it . e Tt i e o e A T . " o e A o et S M — o — . T o T s, S ottt S S, it i e B S, S, s, s . v, s, e)

Figure 2. Sample Instruction Sheet for a Terminal

Your user attributes are recorded in the system togethexr with the
attributes of all other terminal users. When you log on, the system
compares the attributes you specify in the LOGON command to the recorded
attributes of each user to determine if you are an authorized user of
the system.

22 TSO Terminal User's Guide (Release 21)

You can have a simple set of attributes, such as the following:

SMITH User identification
LOCK Password

79345 Account Number

P79 ’ Procedure name

or a more complex set, such as

SMITH User identification
LOCK SE&EN\\\\KEY Passwords
79345 79374 74325 Account Numbers
P7 P80 P81 P82 Procedure Names

The latter set has three passwords (LOCK, SEVEN, and KEY) associated
with your user identification. If you use the password LOCK, you can
have your processing charged only to account 79345 and you can use only
procedure P79. If you use the password SEVEN, you can have your
processing charged to either account 79374 or 74325. If you choose
account 79374, you can use either procedure P80 or P81l. If you choose
account 74325, you can use only procedure P82. Another way of using
procedure P82 is to choose password KEY. KEY only has account 74325 and
procedure P82 associated with it.

The LOGON command is a simple means of telling the system your user
identification, password, account number and procedure name. For
exanmple, if you want to use procedure P81, you must enter:

logon smith/seven acct (79374) proc(p8l)

Whenever there is only one account number or procedure name
associated with the user identification and password the system selects
it by default. For example, account 79345 and procedure P79 are the
only account and procedure associated with password LOCK. Therefore,
when you log on you need only enter:

logon smith/lock
instead of:
logon smith/lock acct(79345) proc(p79)
Note: Some terminals have a feature which inhibits the printing of

passwords on the console listing. See the publication, TSQO Terminals,
for more information.

If you choose password SEVEN, you must specify which account number
you want. If you select account 74325, you do not have to specify the
procedure because there is only one procedure associated with the
account.

logon smith/seven acct (74325)
If you select account 79374, you must also select a procedure name
because there are two procedures associated with the account. For

example,

logon smith/seven acct(79374) proc(p80)

Starting and Ending a Terminal Session 23

If you choose password KEY, you do not have to specify an account
number and procedure name because there are only one account number and
one Procedure name associated with KEY.

Note: 1In some instances your installation may require a modification in
the way that you enter the LOGON command; for example, you may have to
precede LOGON with a quotation mark ("LOGON). Your installation's
management is responsible for advising you of such a change.

Defining Operational Characteristics

Operational characteristics can be divided into terminal characteristics
and a user profile. Terminal characteristics identify:

e How you can request an attention interruption.

e Whether the keyboard is to lock up if you do not enter anything for
a while.

e What the length of the line that can be displayed or printed at your
terminal is.

A user profile identifies:
e What your character-deletion and line-deletion characters are.
e Whether you want to receive prompting messages.
e Whether you will accept messages from other terminals.

Your installation establishes default terminal characteristics for
all the TSO terminals. If you want to change any of those
characteristics for the duration of your session you can use the
TERMINAL command. After your session is over the defaults selected by
the installation will again be valid for the terminal. For example,
assume that the default for the number of lines of continuous output
that are printed before you receive an automatic interruption is 50.
You can use the TERMINAL command to regquest that 100 lines be printed
before you receive an interruption. When you log on for your next
session, 50 lines will again be the default.

The system has a user profile for you. When you log on that profile
will be in effect. If you want to change any item in your profile, you
can do so with the PROFILE command. Any change you make becomes part of
your profile. That is, the next time you log on that change will be in
effect. For example, assume that the line-deletion charactexr in your
profile is a percent (%) sign. You can use the PROFILE command to
change it to a number (#) sign, throughout the current session. When
you log on for your next session your line deletion character will be
the number sign. If you want to change it back to the original percent
sign you must again use the PROFILE command.

Receiving and Sending Broadcast Messages

There are two types of broadcast messages you can receive: notices and
mail. Notices are messages sent by the system operator to all users.
Mail consists of messages sent by the operator or other user directly to
you. You can send mail to other users and to the system operator.

24 TSO Terminal User's Guide (Release 21)

RECEIVING BROADCAST MESSAGES

You can use three commands to control which broadcast messages you
receive: LOGON, PROFILE, and LISTBC.

When you log on, broadcast messages sent to all users (notices) and
those broadcast messages intended only for you (mail) are displayed at
your terminal. You can use the following operands of the LOGON command
to prevent printing either type of message at your terminal:

e NONOTICES suppresses printing of broadcast messages intended for all
terminal users.

e NOMAIL suppresses printing of broadcast messages intended
specifically for you.

For example, if you enter:
logon smith acct(72411) nomail

You will not receive mail but you will receive all notices that are
available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at
the time you log on. You will automatically receive any broadcast
messages issued after you log on. You cannot stop the operator from
sending you notices, but you can specify that you do not want to receive
any mail by using the NOINTERCOM operand of the PROFILE command. For
example, if you enter the following commands:

logon jones/cloud proc (ab)

READY

profile nointercom
you request that all broadcast messages available at logon be displayed,
but that all mail sent to you after logon be suppressed throughout your
session. (Note that NOINTERCOM can be a default of your user profile,
and therefore you may not have to specify it with the PROFILE command.)

At any time dquring your session you can use the LISTBC command to

request that either all available notices for users, or all your mail
(or both) be displayed. If you enter:

listbc
you will get all broadcast messages.
If you enter:

listbc nomail
you will get only notices.
If you enter:

listbc nonotices
you will get only your mail.

The notices you get are both the notices available at the time you

logged on and those issued throughout your session. This enables you to

see what notices were available at log on time, if you specified
NONOTICES in your LOGON command. (The system operator can delete

notices at any time. Consequently you will get only those notices he
has not deleted.)

Starting and Ending a Terminal Session 25

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore the mail you get when you use
the LISTBC command are those messages available at log on time, if you
specified NOMAIL in your LOGON command, and those suppressed as a result
of the NOINTERCOM operand of the PROFILE command. After you use the
LISTBC command to see your mail, the NOINTERCOM operand will again be in
effect. :

If there are no messages available when you use the LISTBC command
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:
profile intercom

You will receive any mail issued after you enter this command. To

obtain your mail messages issued before you entered INTERCOM, use the
LISTBC command.

SENDING MESSAGES

You can use the SEND command to send mail messages to another terminal
user or to a system operator. The SEND command can be used at any time

after you log on.

You can send a mail message to another user only if you know his user
identification. For example, the command:

send "do not use procedure 245 until notified' user (jones,deptd)

will send the message enclosed in quotes to the two users whose
identifications are JONES and DEPT4.

When you send a message to another user, he will receive it
immediately provided that he is logged on and is accepting messages. If
he is not logged on or is not accepting messages, you are notified and
your message is deleted. Foxr example, assume that SMITH is not logged
on, JONES is not accepting messages, and CILARK is both logged on and
accepting messages. When you send the following message:

send 'this is a message' user(smith, jones,clark)

SMITH and JONES do not receive the message, you are notified, and the
message is deleted. CLARK receives the message.

You can request the system to save your message until the user you
sent it to logs on or decides to accept messages, by using the LOGON
operand of the SEND command. For example, if you enter:

send 'this is a message' user(smith, jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CIARK will receive it immediately.

You can send a message to only one operator at a time. With the SEND
command, you can identify an operator by a number. For example,

send "'important message' operator(7)

26 TSO Terminal User's Guide (Release 21)

If there is only one operator at your installation, you can omit the
number. For example,

send 'important message' operator

If there are several operators and you omit the number, your message
is sent to the main operator. A message is also sent to the main
operator if no specific user is specified on the SEND command.

Displaying Session Time Used

You can use the TIME command to find out how much time you have used
during the current session. If you enter:

time

the system sends you a message telling you how long you have been using
the terminal since you logged on.

If you are executing a program, you can use the TIME command to find
out how long the program has been running. You must first enter an
attention interruption and then enter the TIME command. The system then
sends you a message telling you how long a program has been running. If
you want to continue processing the program, press the RETURN key and
the program continues. If you want to stop processing the program,
enter another attention interruption and wait for the READY message
before you enter another command. .

Ending Your Terminal Session

You can end your terminal session in either of two ways:

e By entering the LOGOFF command to end the session.
e By entering the LOGON command to start a new session.

The LOGOFF command:

e Displays your user identification.

e Displays the length of time you have been using the terminal, and
the time of day and date your session ended.

e Logically disconnects your terminal from the system. The terminal
remains physically connected and you can enter a new LOGON command;
however, terminal characteristics established by a TERMINAL command
during the previous session are no longer in effect.

The LOGON command terminates your current session and starts a new
session at the same time. LOGON must be specified as described in the
section "Identifying Yourself to the System". In this case, terminal
characteristics established by a TERMINAL command during the previous
session remain in effect for the new session.

'Starting and Ending a Terminal Session 27

Entering and Manipulating Data

Almost all system applications are concerned with the processing of
data. Therefore, you should learn how to enter data into the system and
how to modify, store, and retrieve data after it has been entered. Any
group of related data entered into the system is called a data set. For
example, a data set may contain:

e Text used for information storage and retrieval.
e A source program.
e Data used as input to a program.

When you create a data set you must give it a name. The system uses
the name to identify the data set whenever you want to modify or
retrieve it.

The EDIT command, which is used to create and manipulate data sets,
operates in either of two modes: input mode or edit mode. When you use
the EDIT command to enter data into a data set, you are using the input
mode. When you use the EDIT command to enter subcommands to manipulate
the data in a data set you are using the edit mode.

In input mode, you can type a line of data and then enter it into the
data set by pressing the RETURN key. You can continue entering lines of
data as long as EDIT is operating in input mode. If you enter a command
or subcommand while in input mode the system adds it to the data set as
input data.

You can have the system assign a line number to each line as it is
entered. Line numbers make edit mode operations much easierxr, since you
can refer to each line by its own number. When you are working with a
line-numbered data set, you can request the system to print out the new
line number at the start of each new input line. If the data set does
not have line numbers, you can request that a prompting character be
displayed at the terminal before each line is entered.

After you finish entering data in the data set, you can switch to
edit mode by entering a null line. (Press the RETURN key to enter a
null line.)

The system lets you know you are in edit mode by printing the
following message:

EDIT

In edit mode you can enter subcommands to point to particular lines
of the data set, to modify or renumber lines, to add and delete lines,
or to control editing of input.

When EDIT is operating in edit mode, it uses an indicator called the
current-line pointer to keep track of the next line of data to be
processed. The operations you indicate with the subcommands are
performed starting at the line indicated by the pointer. For example,
the DELETE subconmand deletes the line indicated by the pointer. After
a subcommand is executed the system repositions the pointer.

You may want to reposition the pointer before a subcommand is
executed., You can do so by using one of two methods: 1line number
editing or context editing. Line number editing can be used only if
your data set has line numbers. You can specify a line number as an
operand of a subcommand and the system will move the pointer to that

28 TSO Terminal User's Guide (Release 21)

line before it executes the subcommand. Context editing can be used for
data sets with or without line numbers. A set of subcommands (UP, DOWN,
TOP, BOTTOM, and FIND) allows you to move the pointer up or down a
specified number of lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the pointer is
positioned you can enter the subcommand that performs the functions you
require. The subcommand may use an asterisk (*) instead of a line
number to specify the line indicated by the pointer, or it may operate
on the current line by default.

After you finish editing the data, you can switch to input mode by
either of two methods:

1. Entering the INPUT or INSERT subcommand.
2. Entering a mull line. (Press the RETURN key to enter a null line.)

The system lets you know you have selected input mode by printing the
following message:

INPUT

You can terminate the EDIT command at any time by switching to edit
mode (if not already in edit mode) and entering the END subcommand. The
system then prints a READY meéssage, and you can enter any command you
choose.

Note: If you want to enter a blank line in your data set, you must
enter a blank by pressing the space bar, and then press the RETURN key.
You can then enter other lines after the blank line. If you fail to
enter a blank and press only the RETURN key, you enter a null line which
causes EDIT to switch modes.

The remainder of this chapter describes how you can use the
subcommands of EDIT to:

Identify a data set.

Create a data set.

Place data into columns.

Find and position the current line pointer.
Update a data set.

List the contents of a data set.

Store a data set.

End the EDIT functions.

The following functions described in this chapter are performed with
commands other than EDIT:

Rename a data set.

Delete a data set.

Establish passwords for a data set.
Allocate a data set.

Free an allocated data set.

List the names of your data sets.

Identifying the Data Set

The EDIT command is used to specify the name of a data set and whether
you want to create it or edit it. If you indicate that you are going to
create a new data set, the system enters input mode. If you indicate
that you are going to edit an existing data set, the system enters edit
mode after you enter the EDIT command. For example, the NEW operand in

Entering and Manipulating Data 29

the following EDIT command specifies that you are going to create a new
data set named ACCTS.DATA. After you enter the command the system
enters input mode.

READY
edit accts.data new
INPUT

In the following example, the OLD operand of the EDIT command
specifies that you want to edit an existing data set named PARTS.TEXT.
After you enter the command, the system enters edit mode.

READY
edit parts.text old
EDIT

As you can see, the NEW operand specifies that you are going to
create a data set, and the OLD operand specifies that the data set
already exists.

The name you give a data set should follow certain conventions. A
data set name has three fields.

1. Identification qualifier.
2. User-supplied name.
3. Descriptive qualifier.

The fields must be separated by periods. The total length of the
name, including periods, must not exceed 44 characters. For example, a
typical data set name is:

SMITH.ACCTS.DATA

Identification qualifier T

User-supplied name

Descriptive gqualifier

When you create a data set you need only specify the user-supplied
name. The system supplies values for the other two fields. The
identification qualifier is the user identification you specified with
the LOGON command. The descriptive qualifier is one of those listed in
Figure 3. The system infers the descriptive qualifier from the data set
type operand entered with the EDIT command. If you do not specify a
data set type the system prompts you for it. (You should carefully note
the distinction, as shown in the following paragraphs, between data set
type and descriptive qualifier.) If you prefer you can specify the
descriptive qualifier as part of a data set name, for example:

PARTS.DATA

You may specify a fully qualified name (a name with all three
qualifiers) by enclosing it in apostrophes. For example,

'JONES .PROG1.ASM"

This is a useful procedure when you have to use a data set with an
identification qualifier other than your own user identification.

30 TS0 Terminal User's Guide (Release 21)

-

i Descriptive Qualifier ! Data Set Contents ?
i ASM { Assembler (F) input T
} BASIC { ITF: BASIC statements {
: CLIST } TSO commands }
: CNTL ’ JCL and SYSIN for SUBMIT command {
I COBOL = American National Standard COBOL {
statements
: DATA Uppercase text
FORT FORTRAN IV (E, G, G1 or H)
statements and free- or
fixed-format code anrd go FORTRAN
statements
: IPLI { ITF:PL/I statements }
: LINKLIST : Output listing from 1linkage editorl
= LIST } Listings
LOAD } Load module
LOADLIST { Output listing from loader }
OBJ i Object module
{ OUTLIST = Output listing from OUTPUT command{
l PLI : PL/I (F) statements or PL/I :
| checkout and optimizing compiler
| statements
© STEX = STATIC external data from ITF:PLI
TESTLIST } Output listing from TEST command
TEXT i Uppercase and lowercase text

L

Figure 3. Descriptive Qualifiers

Any name that does not conform to the naming conventions must be
enclosed in apostrophes. For example, if you have a data set named
RECORDS, with no identification or descriptive qualifiers, enter

*records'

The system will not append the identification and descriptive
qualifiers to data set names that are enclosed in apostrophes.

Entering and Manipulating Data 31

You can refer to an existing data set by its user-supplied name. In
some cases, you may also have to include the descriptive qualifier. For-
example, if two of your data sets were named:

SMITH.PART1.ASM
SMITH.PART1.DATA

and you want to refer to the latter, you should specify:
partl.data
or specify the data set type as an EDIT command operand. For example:

edit partl new data

You can also create and edit partitioned data sets. A partitioned
data set consists of one or more data sets called members. Each member
can be created and edited separately and each has a name. The member
name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of
member MEM1 of the SMITH.PART1.DATA data set is:

SMITH.PART1.DATA(MEM1)

You need only use the user-supplied name and member name to refer to
the member. The system appends the identification and descriptive
qualifiers and moves the member name to the end to form the fully
qualified name. For example, to refer to member MEM1l you can specify:

partl1l(meml)
or you might specify
partl.data (meml)

In the second example, the system will append only the identification
qualifier.

The following example uses the EDIT command to create member ONE of a
partitioned data set named JONES.TU42.DATA. The second EDIT command,
creates member TWO of JONES.T42.DATA. Note that the NEW operand must be
specified in both cases. The third EDIT command, specifies that changes
are to be made to member ONE.

READY
edit t42.data(one) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one) old
EDIT

32 TSO Terminal User's Guide (Release 21)

After you specify the data set name and the NEW or OLD operand, you
should specify the data set type. The data set type is an operand that
describes the purpose for which the data set is to be or was created.
The type operand is one of the sources from which the system can obtain
the descriptive qualifier. The valid types are:

ASM
BASIC
CLIST
CNTL
COBOL
DATA
FORTE
FORTG
FORTGI
FORTH
GOFORT
IPLI
PLI
PLIF
TEXT

Note: Any user data set types, specified at system generation time, are
also valid data set types.

If the szstem cannot find the data set type from other sources, you
are prompted for it.

If you do not want your data set to have line numbers, use the NONUM
operand. For example,

jedit ab75 new asm nonumn

Do not specify NONUM for the BASIC, IPLI, and GOFORT data set types,
because they must always have line numbers.

Except for TEXT type data sets, lines of input are translated to
uppercase letters by the system. If you want the system to retain your
input in the same form as you enter it (uppercase and lowercase), code
the ASIS operand. For example:

Cedit mydata new data asis

The ASIS operand is not valid for all data set types. If it is invalid
for your data set type, a message will be printed at your terminal
notifying you that translation to CAPS is in effect.

Creating a Data Set

You usually create a data set when EDIT is in input mode. You request
input mode when you enter one of the following:

The NEW operand in the EDIT command.

The INPUT subcommand while you are in edit mode.
The INSERT subcommand with no operands.

A null line if the system is in EDIT mode.

After you enter the EDIT command with the NEW operand the system sends
you the following message:

INPUT

Entering and Manipulating Data 33

After this message is printed the system prints the first line number of
your data set, unless you specified NONUM in the EDIT command. The
first line number printed is 00010. Type the first line of input to the
right of the line number and press the RETURN key to enter it.? The
system then prints the second line number, which is 00020, and you may
then enter your second line of input, and so on.

Caution: A hyphen (minus sign) at the end of an input line indicates
Togical continuation of the line. In input mode logical continuation is
meaningful only if you are using the syntax checking facility. Whether
syntax checking or not, the input processor will delete the hyphen from
the end of the line, except in a few special instances. The rules
governing input mode handling of a hyphen at the end of a line are
detailed in Command Language Reference.

When you reach the end of the data you want to enter, press the
RETURN key without entering anything (a null line) and the system
switches to edit mode. The following example illustrates the points
just discussed:

READY

edit accts new data

INPUT

00010 #23942 5 22.75 acme inc
00020 #32135 21 23.90 bbb corp
00030 #32174 12 21.80 alpha inds
00040 #49213 35 a7.95 xyz dist
00050 #52221 50 ?2.35 beta mfg
00060 (null line)

EDIT

In the example, the line numbers have the standard increment of 10.
If you prefer a different increment, you can use the INPUT subcommand to
create the data set. To do this you must first request a switch to edit
mode by entering a null line after you receive the INPUT message. Then
enter the INPUT subcommand specifying the number of the first line and
the size of the increment. After entering the INPUT subcommand the
system switches to input mode and prompts you with the first line
number. For example, to start with line 5 and use incremwents of 5, you
could use the following sequence:

READY

edit accts new data

INPUT

00010 (null line)

EDIT

input 5 5

INPUT

00005 #23942 5 82.75 acme inc
00010 #32135 21 23.90 bbb corp
00015 #32174 12 2l1.80 alpha inds
00020 #49213 35 a7.95 xyz dist
00025 #52221 50 82.35 beta mfg
00030 (null line)

EDIT

You can create the same data set in edit mode. However, you must
enter the line numbers you wish to use.

iInternally, as the system enters the line into the data set, it places
the line number at the proper position within the line. For example,
the line number becomes the first six characters of the line for a
COBOL data set, the first eight characters for a free format GOFORT
data set, and the last eight characters for a PLIF data set.

34 TSO Terminal User's Guide (Release 21)

READY
edit accts new data

INPUT

00010 (null line)

EDIT

5 #23942 5 282.75 acme inc
10 #32135 21 23.90 bbb corp
15 #32174 12 2l.80 alpha inds
20 #49213 35 a7.95 xyz dist
25 #52221 50 22.35 beta mfg

Note: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data set later on. (See the section "Updating a
Data Set" for instructions on how to inserxrt lines in your data set.)

Placing Data into Columns

You can use the TAB key of your terminal to align your data in columns,-
just as you would with an ordinary typewriter. However, this mechanical
tab setting is not recognized by the system which interprets each
striking of the TAB key as a space. For example, if you enter the
following three lines and align them with the TAB key, they appear at
the terminal as follows:

39427 abcde 49211 72669 abl
22 fghijkl 4u1 123456 723e
987654 mnop 2 31 Xyz

but they are received by the system as follows:

39427 ABCDE 49211 72669 ABU
22 FGHIJKL 441 123456 72DE
987654 MNOP 2 31 XYZ

If you want the system to place your data into columns, you must
establish logical tab settings with the TABSET subcommand of the EDIT
command or else use the defaults provided by the system. If you have
established logical tab settings for your data set, the system will
arrange each item in its proper column whenever you press the TAB key.
The mechanical tab settings in your terminal need not correspond to the
logical tab settings. For example, assume that the logical tab settings
for the data set are columns 10, 20, and 30, while the mechanical tab
settings in the terminal are columns 5, 10 and 15. When you type in the
following three lines using the TAB key: ‘

abc def ghi jkl1
mno pgr stu Vvwx
yz0 123 456 789
l | L = column 15
—» cOolumn 10
- column 5
» column 1

they are arranged by the system as follows:

ABC DEF GHI JKL
MNO POR STU VWX
YZ0 123 456 789
| L L s column 30
-» column 20

—» column 10
»column 1

Entering and Manipulating Data 35

You may find it convenient to make the mechanical tab settings
coincide with the logical tab settings. Details for doing this are
given in the section describing EDIT (TABSET) in the Command

Language Re

If you do not use the TABSET subcommand, the default tab settings
used by the system vary with the data set type. The defaults are shown
in Figure 4.

r : T 1
|Descriptive Qualifier | Default Tab Setting Columns |
1 [l

L} T

| AsM | 10,16,31,72

| BASIC] 10,20,30,40,50,60

| CLIST | 10,20,30,40,50,60

| CNTL | 10,20,30,40,50,60

| COBOL | 8,12,72

| DATA | 10,20,30,40,50,60

| FORT | 7,72

IPLI	5,10,15,20,25,30,35,40,45,50
PLI	5,10,15,20,25,30,35,40,45,50
TEXT	5,10,15,20,30,40
user defined qualifier	10,20,30,40,50,60
L 1 J

Figure 4. Default Tab Settings

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TABSET
subcommand. If you want to change the default settings, you will
probably do so before you create the data set. That means you must
request edit mode after you enter the EDIT command, then enter the
TABSET subcommand and return to the input,K mode to create the data set.
For example, if you want to create a TEXT data set with the logical tabs
at columns 10, 25, and 35, you can use the following sequence:

READY

edit series new text

INPUT

00010 (null line)

EDIT

tabset 10 25 35
(null line)

INPUT
00010

36 TSO Terminal User's Guide (Release 21)

If you prefer, you can define tab settings by entering a line
containing t's in positions corresponding to desired tab settings. For
example, to establish tab settings in columns 10, 25, and 35 you can use
the TABSET subcommand as follows:

tabset image
123456789tbbbbbbbbbbbbbbtaaaaaaaaat

You must fill the spaces between the t's with blanks or characters
other than t. Do not use the TAB key when entering the IMAGE line, nor
the backspace except as a character-deletion character

If you want to nullify the existing tab settings for the data set,
enter the TABSET subcommand as follows:

tabset off

The maximum number of logical tab settihgs that can be defined is
ten.

Finding and Positioning the Current Line Pointer

Unless you plan to use line numbers for all your edit operations, you
should know how to find and reposition the current line pointer. These
operations are described in the following paragraphs.

FINDING THE CURRENT LINE POINTER

The location of the current line pointer is determined by the last-
subcommand you entered. If you are editing an old data set, the current
line pointer is positioned at the last line of the data set upon initial
entry into Edit mode. Fiqure 5 shows the location of the pointer at the
end of each subcommand. If you do not remember this information, you
can use the LIST subcommand with the * operand to find the line at which
the pointer is positioned. For example:

list #*
THIS IS THE LINE AT WHICH THE CURRENT LINE POINTER IS POSITIONED

You can also have the system display the line at which the pointer is
positioned every time the pointer changes as a result of the CHANGE,
T0P, BOTTOM, UP, DOWN, FIND and DELETE subcommands. To do this use the
VERIFY subcommand as follows:

verify

The VERIFY subcommand is in effect until you enter it again with the

OFF operand:

verify off

Entering and Manipulating Data 37

r
|Edit Subcommands

T . 1
| Value of the Pointer at Completion of Subcommand]
i

t +

| BOTTOM |Last line (or line zero for empty data sets) |

I |

| CHANGE | Last line changed

| I

| DELETE | Line preceding deleted 1line, if any, else zero

]

| DOWN |The line n down from where you were at the start|

| |of the subcommand, or the bottom of the data

| |set. (n is the value of the ‘count' parameter.)

I |

END | No change |
FIND |Found 1line, if any, else no change

I
HELP | No change
INPUT | Last line entered

| INSERT |Last line entered

| Insext/Replaces/Delete| Inserted or replaced line, or line preceding the

[
|
|LIST

|
| PROFILE

|

| RENUM
|

| RUN

|
| SAVE

|
| SCAN

|

| TABSET
|

| TOP

I
jup

I
I
|
| VERIFY
i

|
|
oT Ter '
|deleted line, if any, or else zero.

|Last line listed

| No change

|same relative record

| No change

| I
| No change |

| Last line referred to, if any

|No change

| Zero value |
|

|The line n lines up from where you were at the
| start of the subcommand, or the top of the data
|set. (n is the value of the 'count' parameter.) |

|
| No change |
i 4

Figure 5. Values of the Line Pointer Referred to by an Asterisk (%)

POSITIONING THE CURRENT LINE POINTER

You can use the UP, DOWN, TOP, BOTTOM and FIND subcommands to move the

current line pointer.

The UP subcommand moves the pointer a specified number of lines up,
relative to the beginning of your data set. For example, to move the
pointer so that it refers to a line located five lines before the
location currently referred to, enter:

up 5

38 TSO Terminal User's Guide (Release 21)

The DOWN subcommand moves the pointer a specified number of lines
down, relative to the end of your data set. For example, to move the
pointer so that it refers to a line located 12 lines after the location
currently referred to, enter:

down 12

The TOP subcommand moves the pointer to the position preceding the
first line of your data set. (For line numbered data sets, the pointer
is set to zero. If line number zero exists, then line number zero
becomes the current line.) TOP is often used in combination with the
DOWN subcommand. For example, if you want the pointer to refer to the
third line of your data set, use the following sequence:

top
down 3

The BOTTOM subcommand moves the pointer to the last line of the data
set.

The FIND subcommand moves the pointer to a line that contains a
specified sequence of characters. For example, to move the pointer to
the line that contains PLACED BEFORE ENTRY enter:

find xplaced before entry

The "x" inserted before "placed" is a special delimiter that marks
the beginning of the sequence of characters the system has to search
for. The special delimiter can be any character other than a number,
apostrophe, semicolon, blank, tab, comma, parenthesis, asterisk, or one
of the characters in the sequence you want to find. The special
delimiter must be placed next to the first character of the sequence you
want to find. Any blanks inserted between the special delimiter and the
first character are considered to be part of the sequence of characters.

An alternate method for specifying the sequence of characters for
FIND is quoted-string notation. With this method, the specified
sequence must start and end with an apostrophe. If an apostrophe is one
of the characters in the specified sequence, you must enter two

apostrophes for the single apostrophe in the specified sequence. For
example, to find the character sequence:

single '"quote'
using quoted-string notation, enter:
FIND 'single '‘'quote''’

If you prefer, you can have the system search for the sequence of
characters starting at the same column of each line. For example, if
you want to search for PLACED BEFORE ENTRY in column seven of each line,
enter:

find xplaced before entry x7
or
find "placed before entry '7
Note that the same special delimiter or apostrophe used at the

beginning of the sequence of characters must also precede the column
number.

Entering and Manipulating Data 39

The FIND subcommand starts looking for the sequence of characters
beginning with the line at which the pointer is located. Therefore,
unless you are sure the characters are in a line following the one
indicated by the pointer, you should use the TOP subcommand to move the
pointer to the beginning of the data set. For example:

top
find xplaced before entry

Figure 6 shows a data set used to illustrate the examples of
positioning the current line pointer. Although this data set has line
numbers, they are not used in the examples.

r

I 00010 TEMPERATURE DATA FOR 7/29/70

| 00020 HIGHEST, 90 AT 12:30 P.M.

| 00030 LOWEST, 73 AT 5:40 A.M.

| 00040 MEAN, 83

| 00050 NORMAL ON THIS DATE, 77

| 00060 DEPARTURE FROM NORMAL, +6

| 00070 HIGHEST TEMPERATURE THIS DATE, 99 IN 1949
| 00080 LOWEST TEMPERATURE THIS DATE, 59 IN 1914
[00090 TEMPERATURE HUMIDITY INDEX, 81

L .

Figure 6. Sample Data Set

Assume that you do not know the present location of the current line
pointer, and would like to move it to the fifth line (00050). Enter:

top
down S5

To move the pointer from the fifth line (00050) to the third line
(00030), enter:

up 2

To move the pointer to the line that contains FROM NORMAL enter:
find xfrom normal

To move the pointer to the last line (00090), enter:

bottom

Updating a Data Set
The subcommands of the EDIT command allow you to update a data set.
That is, they allow you to:

e Delete data from a data set.

e Insert data in a data set.

e Replace data in a data set.

e Renumber lines of a data set.

These functions are described in the following paragraphs.

40 TSO Terminal User's Guide (Release 21)

s o et s e s, s . e St sl

DELETING DATA FROM A DATA SET

If you want to delete only one line of data you do not need a
subcommand. Indicate only the line number or an asterisk. For example,
if you want to delete line 30, enter:

30

If you want to delete the line indicated by the current line pointer,
enter:

*

You can also use the DELETE subcommand to perform the same function.
For example,

delete 30
or
delete *

DELETE also allows you to delete more than one consecutive line. To
do so you can specify the line numbers of the first and last lines to be
deleted, or the number of lines to be deleted starting with the line
indicated with the current line pointer. For example, if you want to
delete all the lines between, and including lines 15 and 75, enter:

delete 15 75

If you want to delete 12 lines starting with the line indicated by the
current line pointer, enter:

delete * 12

If you want to delete all the lines in your data set, use the TOP and
DELETE subcommands in combination, specifying for DELETE a number of
lines greater than the number of lines in your data set.

top
delete * 99999999

After the system deletes the lines you requested, the current line
pointer is positioned at the line before the first deleted line.

INSERTING DATA IN A DATA SET

To insert only one line of data in a line-numbered data set, you do not
need a subcommand; indicate only the line number. The line number
referred to should not exist. (That is, it should fall between two
nonconsecutive line numbers in the data set.) For example, if you want
to insert "RECORDED DAILY IN CENTRAL" as line 22, enter:

22 recorded daily in central

The characters you want to enter must be separated from the line
number or the asterisk by a single blank or a comma. Any additional
blanks or commas are considered to be part of the input data. You may
optionally use the tab key to separate characters from the line number
or asterisk. In this case all blanks, including the first, resulting
from the tab will be part of your input data. The number of blanks
resulting from the tab is determined by the logical tab setting. The
logical tab setting results from the TABSET subcommand or the default
tab setting.

Entering and Manipulating Data 41

To insert one line of data after the current line, use the INSERT
subcommand with the insert-data operand. For example:

list *
TAKE ME OUT
insert to the ballgame

The rules for separating inserted data from the subcommand name are
the same as for separating data from line numbers.

To insert more than one line, use the INSERT or INPUT subcommands.
INPUT or INSERT can be used for data sets with or without line numbers.

The INSERT subcommand inserts one or more lines of data following the
location pointed to by the current line pointer.

For example, assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 792
C. DXCKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT Du9

To insert three lines after the entry for E. FARRELL and before the
entry for C. LEVI, you must first position the current line pointer at
the fifth line. Your listing would look like this:

EDIT

top

down 5

insert

INPUT

e. glotz dept 741

p. henry dept 333

h. hill dept R92
(null line)

EDIT

You must enter a null line to indicate the end of your input.

The INPUT subcommand is used in a manner similar to the INSERT
subcommand if your data set does not have line numbers. Use an asterisk
in the INPUT subcommand to indicate that the lines of input that follow
are to be inserted in the location following the current line pointer.
For example, assume that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT 245
E. FARRELL DEPT B32
C. LEVI DEPT 229
D. MADISON DEPT D49

42 TSO Terminal User's Guide (Release 21)

| To insert three lines after the line for E. FARRELL and before the line
for C. LEVI, your listing would look like the following:

EDIT
top

down 5
input *

INPUT

e. glotz dept 741
p- henry dept 333
h. hill dept R92

EDIT

(null line)

Note that after you enter the INSERT or the INPUT subcommand, EDIT
switches to input mode.

If your data set has line numbers, you can use the INPUT or INSERT
subcommand to insert one or more lines of data between two existing

lines of the data set.

You can also indicate a smaller increment for

the new line numbers so that they fit between the line numbers of the
For example, assume you have the following data set:

existing lines.

00010 1932 $1.50
00020 2579 $1.39
00030 4798 $1.75
00040 5344 $2.49

To insert three lines between lines 20 and 30, to have the first line
numbered 22, and to increment this number by two in the following lines,
your listing would look as follows:

EDIT
input 22 2
INPUT
00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00028 (null line)
EDIT
The updated data set would look like this:

© 00010 1932 $1.50
00020 2579 $1.39
00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00030 4798 $1.75
00040 5344 $2.49

Another way to insert three lines between lines 20 and 30 is to use
the INSERT subcommand, as follows:

EDIT

top

down 2

insert

INPUT '
00021 2795 0.79
00022 3241 2.81
00023 4152 1.79
00024 (null line)
EDIT

(Note that INSERT automatically increments the line numbers by one.)

Entering and Manipulating Data 43

The updated data set woﬁld look like this:

00010 1932 1.50
00020 2579 1.39
00021 2795 0.79
00022 3241 2.81
00023 4152 1.79
00030 4798 1.75
00040 5344 2.49

If you do not change the increment, and there is no room for the new
lines, you receive an error message. If you wish, you can renumber the
lines of your data set. This procedure is explained in the section
"Renumbering Lines of Data".

To enter lines at the end of the data set, enter the INPUT subcommand
without operands. If the data set has line numbers you will be prompted
with the line number. For example:

EDIT

input

INPUT

0005C¢ 6211 $3.95
00060 7199 $0.85
00070 (null line)
EDIT

REPLACING DATA IN A DATA SET

You can replace an entire line, or a sequence of characters in a line or
in a range of lines.

If you are only replacing one line of data, you do not need a
subcommand. Indicate only the line number or an asterisk. For example,
if you want to replace the contents of line 70 with "SEVERAL REPORTS
WERE MADE", enter:

70 several reports were made

If you want to replace the contents of the line indicated by the current
line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line
number or the asterisk by a single blank or a comma. Any additional
blanks or commas are considered to be part of the input data. You may
optionally use the tab key to separate characters from the line number
or asterisk. In this case all blanks, including the first, resulting
from the tab will be part of your input data. The number of blanks
resulting from the tab is determined by the logical tab setting. The
logical tab setting results from the TABSET sub command or the default
tab setting.

You can also replace lines of data when you use the INPUT subcommand.
If you use the R operand, the lines starting with the line indicated by
the line number or the asterisk are replaced by the lines you enter.
For example, assume that you have the following data set:

COMPLETION SCHEDULE
STAGE 1 7719
STAGE 2 8/15
STAGE 3 9/29

44 TSO Terminal User's Guide (Release 21)

To replace the third and fourth lines, you must first position the
current line pointer at the third line.

EDIT

top

down 3

input * r

INPUT

stage 2 8/21

stage 3 9/15
(null 1line)

EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE
STAGE 1 7719
STAGE 2 8721
STAGE 3 9/15

In the following example, assume that the data set has line numbers:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9729

To replace lines 30 and 40, your listing should look as follows:

EDIT

input 30 r

INPUT

00030 stage 2 8/21
00040 stage 3 9715
00050 (null line)
EDIT

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8r21
00040 STAGE 3 9715

If the data set has line numbers, you can replace a line and insert
additional lines. For example, assume the same data set:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9729

To replace line 30 and insert two lines with a line increment of 2, your
listing should look as follows:

EDIT

input 30 2 r

INPUT

00030 stage 2 part 1 8/15
00032 stage 2 part 2 8/21
00034 stage 2 part 3 9/15
00036 (null line)
EDIT

Entering and Manipulating Data 45

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19

00030 STAGE 2 PART 1 8/15
00032 STAGE 2 PART 2 8/21
00034 STAGE 2 PART 3 9/15
00040 STAGE 3 9/29

To replace more than one line with a greater number of lines, you can
also use the DELETE subcommand to delete those lines and then use either
INPUT or INSERT to insert the replacement lines. Use this procedure
when the data set does not have line numbers.

Use the CHANGE subcommand to change only part of a line or lines.
For example, to change the characters "DAILY INVENTORY" to "WEEKLY
REPORT" in line 12 of your data set, enter:

change 12/daily inventory/weekly report/

The "/" placed before the characters to be changed and the
replacement characters is a special delimiter that marks the beginning
of those sequences of characters. The special delimiter can be any
character cther than a number, blank, tab, comma, semicolon, apostrophe,
parenthesis, or asterisk. Make sure the character you select as a
special delimiter does not appear in the sequence of characters you
specify. If you leave blanks between the last character to be replaced
and the special delimiter for the replacement characters, the blanks are
considered part of the characters to be replaced. The special delimiter
need not appear at the end of the replacement characters unless other
parameters are to follow.

Instead of using a line number you can use an asterisk. For example
if the change is to be made to the line indicated by the current line
pointer, enter:

change * xdaily inventoryxweekly reportx

You can have the system search for a sequence of characters in a
range of lines rather than in one line. You can indicate the range of
lines by giving the numbers for the first and last lines of the range,
or by indicating the current line pointer and the number of lines you
want to have searched. For example, if the characters "DAILY INVENTORY"
appear somewhere between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

If the characters appear within the 10 lines starting with the ome
indicated by the current line pointer, enter:

change * 10 ?daily inventory?weekly report?

You can change the sequence of characters every time it appears
within the range of lines. To do this specify the ALL operand after the
replacement sequence. The special delimiter must be used to terminate
the replacement string before typing "all." For example,

change 15 19 !daily inventory!weekly report! all

or
change * 10 !daily inventoryl!weekly report! all

46 TSO Terminal User's Guide (Release 21)

If you wish, you can have the system locate a sequence of characters
in a line and print that line up to those characters. You can then type
new characters to complete the line and enter the new line when you
press the RETURN key. For example, assume that you want to change the
characters "TUESDAY" to "THURSDAY" in the following line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY
Your listing will look as follows:

change 15 /tuesday
00015 PARTS DELIVERIES ARE MADE ON thursday

If the characters you want to change are in the line indicated by the
current line pointer, your listing would look like this:

change * /tuesday
00015 PARTS DELIVERIES ARE MADE ON thursday

You can also request that the system print out a specified number of
characters of a given line. Then you can enter the characters you want
to replace the remaining characters in the line. For example, you can
request that the first 26 characters of the line "PARTS DELIVERIES ARE
MADE ON TUESDAY" be printed:

change 15 26
00015 PARTS DELIVERIES ARE MADE after thursday

You can have the system print the first several characters of a range
of lines. This is particularly useful when you want to change a column
in a table. For example, assume that you have the following data set:

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 JUNE 12

00014 A. SMITH MAY 31 JULY 19

00016 J. DOE JUNE 7 JULY 17

00018 B. GREEN JUNE 9 AUGUST 3

If you want to change the data in the last column, which begins in
position 17, enter:

change 10 18 17

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 june 25
00014 A. SMITH MAY 31 july 23
00016 J. DOE JUNE 7 july 31
00018 B. GREEN JUNE 9 august 10

If you want to change the data in the last column and the current line
pointer is at line 10, enter:

change * 5 17

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 june 24
00014 A, SMITH MAY 31 Jjuly 22
00016 J. DOE JUNE 7 3july 30
00018 B. GREEN JUNE 9 august 9

Entering and Manipulating Data 47

You can insert a sequence of characters at the beginning of the line.
For example, if line 15 of your data set is as follows: _
00015 EMPLOYEE ABSENTEEISM
enter:
change 15 //weekly report of /
to obtain:
00015 WEEKLY REPORT OF EMPLOYEE ABSENTEEISM

You can also delete a sequence of characters using the CHANGE
subcommand. For example, to delete WEEKLY from line 15 above, enter:

change 15 /weeklys//
or
change 15 /weekly/
to obtain:
00015 REPORT OF EMPLOYEE ABSENTEEISM
In these examples of the CHANGE subcommand, special-delimiter notation
has been used to specify character sequences. 'You may, however, use an
alternate form of notation, the quoted-string notation. General rules
for quoted-string notation are:
¢ Begin and end each sequence with an apostrophe. (The system will
not use the apostrophes in its operations on your character
sequence.)
e Separate character sequences with a blank.

e Specify two apostrophes in place of one whenever you wish to include
an apostrophe within a character sequence.

for example, to replace WEEKLY with DAILY in the current line, you
can use the special-delimiter notation:

change * /weeklys/daily/
or the quoted-string notation:
change * 'weekly' 'daily'
To delete DAILY from the current line, you can use:
change * *daily' "
instead of:
change * sdaily//
To insert WEEKLY at the beginning of line 15, you can use:
change 15 " ‘'weekly'
or

change 15 //weekly/

48 TSO Terminal User's Guide (Release 21)

To replage characters after TUESDAY'S in line 30 of your data set, you
can use the special-delimiter notation:

change 30 /tuesday's/
00030 THIS IS TUESDAY'S child

or the quoted-string notation:

change 30 'tuesday''s"'
00030 THIS IS TUESDAY'S child

RENUMBERING LINES OF DATA

You can use the RENUM subcommand to assign line numbers to a data set
without line numbers, or to renumber the lines of a data set with line
numbers. If you enter:

renum

the system assigns new line numbers to all the lines of the data set.
The first line will be assigned the number 10 and subsequent lines will
be incremented by 10.

You can assign a number to the first line of the data set. For
example, if you want the first line to have number 5, enter the
following:

renum 5
The remaining line numbers will be 15,25,35, etc.

You can specify an increment other than 10 in addition to the number
of the first line. For example if you want the first line to be number
one, and the remaining line numbers to increase by 3, enter:

renum 1 3

If your data set already has line numbers you can specify that
renumbering is to start at a given line. You must also specify the new
number for this line (which must be equal to or greater than the old
line number) and the increment. For example, if you want to start
renumbering at line 23, and the new line number is to be 25 and the
increment is to be 5, enter:

renum 25 5 23

If you use the RENUM subcommand to renumber your data set, the
renumber increment that you specify is used when you enter the INPUT
subcommand the next time during the Edit session. For example, if the
following sequence occurred:

list

00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

renum 3 3

input

INPUT

00012 line 4 of data
00015 line 5 of data
00018 (null line)
EDIT

Entering and Manipulating Data 49

Your data set would look like this:

00003 LINE 1 OF DATA

00006 LINE 2 OF DATA
00009 LINE 3 OF DATA
00012 LINE 4 OF DATA
00015 LINE 5 OF DATA

If you want to override the existing line number increment use the
increment operand on the INPUT subcommand.

Listing the Contents of a Data Set

The LIST subcommand allows you to display the contents of a data set at
your terminal. To list the entire contents of the data set, enter:
list
. your data set is listed here

To list a group of lines, enter the number of the first and last
lines of the group. For example, to list lines 20 through 110 of the
data set, enter:

list 20 110

If your data set does not have line numbers, you can use the current
line pointer and the number of lines to be listed. For example, to list
the 20 lines that begin with the line indicated by the pointer enter:

list * 20

To list only one line, indicate the line number or the current line
pointer. For example, if you wish to list 1line 22, enter:

list 22

If you want to list the line pointed at by the current line pointer,
enter:

list =*

You can use the SNUM operand to suppress listing the line numbers of
a line-numbered data set. (If your data set does not have line numbers,
this operand has no effect.) For example, any of the following commands
produces a listing of the lines indicated without their 1line numbers:

list snum

list 20 110 snum
list * 20 snum
list 22 snum
list * snum

The LIST subcommand uses a standard listing format. If you list a
non-line numbered data set, or a line numbered data set using the SNUM
operand (to suppress line numbers), the lines displayed will consist of
only the data portion of the records. For example, to list a non
line-numbered@ data set:

list

LINE 1 OF DATA
LINE 2 OF DATA
LINE 3 OF DATA
END OF DATA

50 TSO Terminal User's Guide (Release 21)

If you list a line-numbered data set, the system will suppress up to
three leading zeros in each line number, and separate the line number
from the data with a blank. The line number prints to the left of the
data. For example, data with an 8-digit line number would print:

list

00010 LINE 1 OF DATA
00020 LINE 2 OF DATA
00030 LINE 3 OF DATA
END OF DATA

If you are editing a line-numbered COBOL data set, with a
six-character sequence (line number) field, either one or three leading
zeros will be deleted depending on the command. For the INPUT command,
one leading zero is suppressed; for the LIST command three leading zeros
are suppressed, as follows:

edit a new cobol

INPUT

00010 identification division
00020 program—-id. calc.
00030 environment division
00040 (null line)

EDIT

list

010 IDENTIFICATION DIVISION
020 PROGRAM-ID. CAIC.

030 ENVIRONMENT DIVIVION
END OF DATA

Storing a Data Set

The data set you have created or the changes you made to a previously
existing data set are retained by the system only until you finish using
the EDIT command and its subcommands. That is, as soon as you notify
the system that you want to use another command and you get a READY
message, your newly created data set, or your new set of changes, is
discarded. If you want the system to make your new data set a permanent
data set, or if you want the system to incorporate your changes into the
existing data set, you must use the SAVE subcommand of the EDIT command.

For example, in the following sequence you create a data set named
RECORDS and ask the system to store it as a permanent data set:

READY

edit records new data

INPUT

00010 project 21 7/10-8/25 a. jones
00020 project 23 7/10-9/12 p. smith
00030 = project 39 8/1-9/15 r. brown
00040 (null line)

EDIT

save

SAVED

end

READY

Entering and Manipulating Data 51

In the following sequence you add a line to the RECORDS data set and
ask the system to make it part of the data set:

READY

edit records old data
EDIT

40 project 42
save

SAVED

end

READY

8/15-9/21 s. green

In some cases you may want to preserve the existing data set intact
and have the system make the changes to a data set that is a copy of the
original data set. To do this you must enter a new data set name for
the copy when you enter the SAVE subcommand. For example, if you want
to keep the RECORDS data set intact, and you want your changes to be
made to a copy of RECORDS named PROJS, use the following sequence:

READY

edit records old data
EDIT

40 project 42
save projs
SAVED

end

READY

8/15-9/21 s. green

Now you have

00010
00020
00030

The data

00010
00020
00030
00040

52 TSO Terminal User's Guide

two data sets.

PROJECT 21
PROJECT 23
PROJECT 39

7/10-8/25
7/10-9/12
8/1-9/15

A.
P.
R.

The one named RECORDS looks like this:

JONES
SMITH
BROWN

set named PROJS looks as follows:

PROJECT 21
PROJECT 23
PROJECT 39
PROJECT 42

7/10-8/25
7/10-9/12
8/1-9/15

8/15-9/21

A.
P.
R.
S.

JONES
SMITH
BROWN
GREEN

(Release 21)

You can use the SAVE subcommand whenever you are using the EDIT
command. For example, you can create a data set and save it. Then you
can start making changes to the data set and once you are satisfied with
those changes you can save them to make them part of the data set. For
example, in the following sequence you create a data set, save it,
replace line 30, insert three lines after line 50, list the data set,
delete line 56, renumber the data set, and save it.

READY

edit phones new text

INPUT

00010 telephone listing - sales dept
00020 j. adams 1291
00030 c. allan 2431
00040 a. bailey 3255
00050 b. crane 4072
00060 e. foster 1384
00070 f. graham 2291
00080 d. murphy 9217
00090 (null line)

EDIT

save

SAVED

30 c. alden 2441
input 52 2

INPUT

00052 1. davis 4119
00054 j. egan 6835
00056 e. foster 1384
00058 (null line)

EDIT

list

00010 TELEPHONE LISTING - SALES DEPT
00020 J. ADAMS 1291
00030 C. ALDEN 2441
00040 A. BAILEY 3255
00050 B. CRANE 4072
00052 L. DAVIS 4119
00054 J. EGAN 6835
00056 E. FOSTER 1384
00060 E. FOSTER 1384
00070 F. GRAHAM 2291
00080 D. MURPHY 9217
delete 56

renum

save

SAVED

end

READY

Ending the Edit Functions

Use the END subcommand to terminate the operation of the EDIT command.
If you have made changes to your data set and have not entered the SAVE
subcommand, the system will ask you if you want to save the modified
data set. If so you can enter the SAVE subcommand. If you do not want
to save the changes, reenter the END subcommand.

After you enter the END subcommand you receive the READY message.
You can then enter any command you choose.

Entering and Manipulating Data 53

Renaming A Data Set

The RENAME command allows you tos

¢ Change the name of a data set.
e Change the name of a member of a partitioned data set.
e Assign an alias to a member of a partitioned data set.

If your LOGON user identification is SMITH and you have a data set
named SMITH.RECPT.DATA and you want to change it to SMITH.ACCT.DATA, you
can do so with any of the following RENAME commands:

rename ‘smith.recpt.data' 'smith.acct.data’
rename recpt.data acct.data
rename recpt acct

Note that the fully qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data
set with that name. However, if you have two data sets named
SMITH.RECPT.DATA and SMITH.RECPT.TEXT, you must specify either
RECPT.DATA or 'SMITH.RECPT.DATA' in the RENAME subcommand. If you do
not specify the descriptive qualifier, the system will prompt you for
it.

The following examples show how you can use RENAME to change the
identification qualifier or the descriptive qualifier.

rename 'smith.acct.data' 'jones.acct.data'
rename acct.data acct.text

The following examples show how you can change more than one qualifier.

rename 'smith.acct.data' 'jones.recpt.text'
rename acct.data recpt.text

When changing the name of a member of a partitioned data set, you
must specify the existing data set name and member name and the new
member name. For example, to change the name of a member of SMITH.AB79.
DATA from INPUT to ENTRY, you can do so with any of the following
commands :

rename 'smith.ab79.data(input)' (entry)
rename ab79.data(input) (entry)
rename ab79 (input) (entry)

Use the ALIAS operand to indicate that the new member name is an
alias and not a replacement. For example to assign the alias DAILY to
member INPUT of SMITH.AB79.DATA, use any of the following:

rename ‘'smith.ab79.data(input)' (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(input) (daily) alias

After entering this command the name of the member is either
SMITH.AB79.DATA(INPUT) or SMITH.AB79.DATA(DAILY).

Sometimes you may have two or more data set names that are identical
in all but one of their qualifiers. For example, you may have these
data sets:

JONES.ALPHA.DATA
JONES . BETA .DATA
ox

54 TSO Terminal User's Guide (Release 21)

JONES.ALPHA. DATA
JONES . ALPHA.ASM
or

JONES .ALPHA .DATA
SMITH.ALPHA. DATA

You can use the RENAME command to replace one or both of their common
qualifiers. For example, you may want to change the group:
JONES.ALPHA.DATA
JONES . BETA .DATA
to
JONES .ALPHA .TEXT
JONES. BETA.TEXT
or to
) SMITH.ALPHA. DATA
SMITH.BETA .DATA
or to
SMITH.ALPHA.TEXT
SMITH.BETA.TEXT

In order to make the change, replace the dissimilar qualifier with an
asterisk. For example,

jones.*.data
stands for "all data sets whose identification qualifier is JONES and
whose descriptive qualifier is DATA". If your logon identifier is
Jones, you can then enter the RENAME command as follows:

rename *.data *.text

to change the group

JONES . ALPHA. DATA
JONES.BETA.DATA

to

JONES . ALPHA.TEXT
JONES.BETA.TEXT

Enter the command
rename 'jones.*.data' ‘'smith.*.data’
to change the group

JONES .ALPHA.DATA
JONES.BETA.DATA

to

SMITH.ALPHA.DATA
SMITH.BETA.DATA

Enter the command
rename 'jones.*.data' 'smith.*.text'
to change the group
JONES.ALPHA.DATA
JONES . BETA.DATA

Entering and Manipulating Data 55

to

SMITH.ALPHA.TEXT
SMITH.BETA.TEXT

Deleting a Data Set

Use the DELETE command to delete one or more data sets or one or more
members of a partitioned data set.

If your LOGON user identification is BROWN, you have a data set named
BROWN. INPUT.TEXT, and you want to delete it, enter

READY
delete input
READY

If you have two data sets named BROWN.INPUT.TEXT and BROWN.DAYS.DATA
and you want to delete them, enter:

READY
delete (input days)
READY

If you want to delete member FIRST of the BROWN.ALPHA.ASM rartitioned
data set enter:

READY
delete alpha (first)
READY

If membexr FIRST has the alias LAST, and you want to delete both the
member name and its alias, enter:

READY
delete alpha(first) alpha(last)
READY

You may have a group of data sets whose names differ only in the
user-supplied name or in the descriptive qualifier. For examrle,

BROWN.LIST.DATA

BROWN.LINES.DATA

BROWN.DATES.DATA
or

BROWN.WEATHER. ASM

BROWN . WEATHER . DATA

BROWN.WEATHER. TEXT

To delete the entire group, place an asterisk in the position where
the names do not match. (The asterisk cannot replace the user
identification.) For example, to delete the first group use the
following:

READY
delete *.data
READY
To delete the second group use the following:
READY

delete weather.*
READY

56 TSO Terminal User's Guide (Release 21)

Establishing Passwords for a Data Set

Use the PROTECT command to establish passwords for your data set.
Passwords prevent unauthorized persons from reading (listing) or writing
(making changes to) your data set. Whenever anyone attempts to use a
password-protected data set, the system requests a password unless the
data set is protected with the same password that was entered in the
logon procedure. The system allows two chances to provide the correct
password. If your terminal has the "print-inhibit" feature, the system
disengages the printing mechanism at your terminal while you enter the
password in response. However, the "print-inhibit" feature is not used
if the prompting is for a new password you are adding to the data set.

The PROTECT command also specifies what the person who knows the
password can do to the data set; that is, whether he is allowed to read
it, or write in it, or both. You can require a password for both
reading and writing; or just for reading and not writing. You can also
assign one password for reading and a different one for writing. The
operands that control the type of operations are:

PWREAD -- you must specify a password before you can read from the data
set.

PWWRITE -- you must specify a password before you can write in the data
set.

NOPWREAD -- you can read from the data set without specifying a
password.

NOWRITE -~ you cannot write into the data set (with this password).
There are three valid combinations of operands:

PWREAD PWWRITE -- the password is required for either reading or writing
your data set.

PWREAD NOWRITE -- the password is required for reading. Writing is not
allowed with this password.

NOPWREAD PWWRITE -- you can read without a password. The password
allows you to both read and write the data set.

If you specify only one operand you get two values by default. They
are:

Operand Default Values
PWREAD PWREAD PWWRITE
NOPWREAD NOPWREAD PWWRITE
PWWRITE NOPWREAD PWWRITE
NOWRITE ‘PWREAD NOWRITE

The type of password operand, the number of times the password is
used, and optional security information that you can specify are
recorded in the PASSWORD data set of the operating system.

The following example adds the password HUSH for reading and writing
the BROWN.SECRET.DATA data set:

READY

protect secret add(hush) pwread
READY

Entering and Manipulating Data 57

The following example adds another password, WHUSH, to the same data
set. This password can be used only for reading the data set:

READY
protect secret/hush add(whush) nowrite
READY

Note how you must use the password in subsequent commands once you
have established it.

You can replace a password. For example, to replace the password
SESAME for HUSH in the BROWN.SECRET.DATA data set, enter

READY
protect secret/hush replace(hush, sesame)
READY

Note that when you are replacing a password you do not have to
specify the function of the password.

You can also delete a password. For example, if you no longer
require the WHUSH password for reading the data set, enter

READY
protect secret/sesame delete(whush)
READY

You can use the DATA operand to specify optional security information
to be recorded in the system. For example, when you establish the
password AB#72 for the BROWN.SALES.TEXT data set, you can also specify
other information:

READY
protect sales add(ab#72) data(password changes on monday)
READY

To find out what the optional information is, the type of operation
allowed, and the number of times the password has been used, use the
LIST operand. - For example,

protect sales list(ab#72)

1. Data sets which are allocated as part of the LOGON procedure or by
use of the ALLOCATE command cannot be accessed by the PROTECT
command. These data sets should be freed by using the FREE command
prior to issuing the PROTECT command.

2. When a protected data set is renamed or deleted you should update
the password data set to reflect the change. This procedure saves
sufficient space for future entries. Updating consists of deleting
all passwords for the old data set name and adding them for the new
name. This requires that two PROTECT commands be issued.

Allocating a Data Set

This section is intended for those users who are going to compile, link
edit, or execute (or load) a program. Knowledge of a programming
language (such as System/360 Assembler, COBOL, FORTRAN or PL/I) and of
the Job Control Language (JCL) statements required to compile, link
edit, and execute the program is useful for understanding this section.

58 TSO Terminal User's Guide (Release 21)

The compiler, linkage editor, loader, and your own program regquire
data sets in order to operate. In an operating system without TSO these
data sets are defined with data definition (DD) JCL statements. In TSO,
these data sets are defined through the EDIT and ALLOCATE commands. You
can use the EDIT command to define and crxeate input data sets. You can
use the ALLOCATE command to define output and work data sets and
libraries, and to allocate the data sets you created with the EDIT
command. This section discusses the ALLOCATE command.

Note: Compilers that have prompters associated with them will allocate
data sets for you. Your installation can tell you if these Program
Product facilities are available to you. The data sets for the linkage
editor and loader are allocated for you by the LINK and LOADGO commands,
respectively. You need only allocate them if you invoke the linkage
editor or the loader with the CALL command.

The number of data sets you need is determined by the program
(compiler, linkage editor, loader, or your own program) you are going to
use. (The publications associated with the IBM-supplied programs list
the data set requirements.) The number of data sets you can allocate
depends on the number of data sets assigned to you in your LOGON
procedure. The LOGON procedure defines a series of data sets. Some of
these data sets are fully defined and corxrrespond to data sets that you
always need in your processing. The remaining data sets are left
undefined; they are defined when you define a data set~with an ALLOCATE
or EDIT command.

When you define a data set with the ALLOCATE command, it remains
allocated until you use the FREE command to free the data set
definition. (The FREE command is described in "Freeing an Allocated
Data Set.")

When jyou create a data set with the EDIT command, the system uses one
of the undefined data sets in the LOGON procedure to define the data
set. When you save the data set and end the EDIT command, the system
saves the data set, enters its name in the system catalog, and frees the
definition in the LOGON procedure for further use. When you again use
the EDIT command to make changes to the saved data /set, the system finds
the data set through the system catalog and uses another of the
available definitions to define the data set. When you end the EDIT
command, the system frees the data set definition. If you want the data
set to remain allocated in your LOGON procedure, you must use the
ALLOCATE command.

You can list the data sets allocated +o you with the LISTALC command
(described in "Listing the Names of Your Data Sets"). The system lets
you know, as part of the LISTALC listing, how many DD statements are
available for allocation. For example, if there are five available data
sets you get the following message:

5 DATA SETS CAN BE ALLOCATED DYNAMICALLY

You can allocate as many data sets as there are available
definitions. If you need more data sets you can free a previously
allocated data set with the FREE command (described in "Freeing an
Allocated Data Set"™). After you free a data set, you can use the
available definition to allocate another data set with the ALLOCATE
command.

If you have to allocate the same data sets every time you log on, you
can have your installation allocate them in the form of fully defined
data sets in the LOGON procedure or you can build a procedure containing
your ALLOCATE statements and execute that procedure as soon as you are
logged on. (See section on "Writing Command Procedures".) In either
case you do not have to type the same ALLOCATE commands every time you
log on.

Entering and Manipulating Data 59

The example in Figure 7 illustrates the use of the ALLOCATE command
for allocating the data sets required for an execution of the Assembler

F compiler. The assembler requires eight data sets for this
compilation. They are:

SYSLIB The macro library (usually SYS1.MACLIB).

SYSUT1 Work data set.

SYSUT2 Work data set.

SYSUT3 Work data set.

SYSPRINT Output listing data set. Your terminal is allocated
for this purpose.

SYSPUNCH Data set for a punched deck of an object module. It
is to be produced on the standard message output
class. (To change this output class to a punch
output class, see "Freeing an Allocated Data Set".)

SYSGO Data set for the object module.

SYSIN Input source statements to the Assembler. It is
created with the EDIT command and defined to the
assembler with the ALLOCATE command.

r 1
-
- I
READY
edit input.asm new
INPUT
[- l
.source statements
. I
.
EDIT
save
SAVED
end
READY
allocate dataset('sysl.maclib') file(syslib) shr [
READY
allocate file(sysutl) new block (400) space(400,50)
READY i
allocate file(sysut2) new block (400) space(400,50)
READY
allocate file(sysut3) new block (400) space(400,50)
READY
" allocate dataset(*) file(sysprint)
READY
allocate file(syspunch) sysout
READY
allocate dataset (prog.obj) file(sysgo) new block (80) space(200,50)
READY I
allocate dataset (input.asm) file(sysin) old
READY
- [
l -
I -
L (]
Figure 7. Allocating Data Sets for the Assembler F

60 TSO Terminal User's Guide

(Release 21)

Assigning Attributes to a Data Set

TSO data set characteristics are called attributes. Generally, you do
not have to be concerned with attributes because TSO assigns them
automatically. In some instances, however, you may want to allocate a
data set with attributes different from those assigned automatically.
The ATTRIB command provides a way for you to do this.

Basically, you use the ATTRIB command to build a list of the
attributes that you want to assign to a data set. Then you use the
ALLOCATE command, specifying the name of the attribute list as the value
for the USING(attribute-list-name) operand. The attributes in the list
are assigned to the data set when it is allocated.

You can refer to the attribute list any number of times during the
remainder of your terminal session. When you finish using the attribute
list, you can use the FREE command to delete it from the system.

The operands of the ATTRIB command correspond to data control block
(DCB) parameters discussed in the following publications:

e IBM System/360 Operating System: Job Control Language Reference,

GC28-670U4.
e IBM System/360 Operating System: Data Management Services,
GC26-3746.

You should understand the purpose of DCB parameters as presented in
these publications before using the ATTRIB command.

The example in Figure 7.1 illustrates the use of the ATTRIB command.
In this example, the attributes are the logical record length, the block
size, and the expiration date.

L]
| attr dcbparms lrecl(24) blksize(96) expdt(72111)

| READY .
| alloc da('attr.show) using(dcbparms) new bl(80) sp(1,1) vol(231400)
| READY

| free attrlist(dcbparms)

L

[B

Figure 7.1 Assigning Attributes to a Data Set

Freeing an Allocated Data Set

Use the FREE command to release any data sets allocated to you. You can
also use this command to change the output class of a SYSOUT data set,
or to release attribute lists created by the ATTRIB command.

To free a data set specify its data set name or its file name
(ddname). If your terminal has been allocated as a data set, you must
free it through its file name. You can use the LISTALC command to
obtain the file names and data set names of the data sets allocated to
you. (LISTALC is described in the Section, "Listing the Names of Your
Data Sets".) ‘

The following example frees the data sets allocated in Figure 7 of
the section "Allocating a Data Set". The output class of the SYSPUNCH
data set is changed to B.

free dataset('sysi.maclib',prog.obj,input.asm) file(sysuti,-
sysut2, sysut3, sysprint, syspunch) sysout (b)

Entering and Manipulating Data 61

Listing Information About Your Data Sets

Use the LISTALC, LISTCAT, and LISTDS commands to list the names of your
data sets and obtain further information about them.

LISTALC lists the data sets presently allocated to you and tells how
many more data sets you can dynamically allocate using the ALLOCATE
command. Other information can be obtained about these data sets
depending on the parameters you specify.

LISTCAT lists thé names of all cataloged data sets that have your
user identification. Cataloged data sets are those whose names are
entered in the system catalog. The system catalog is a list the system
keeps of the names and locations of cataloged data sets.

LISTDS gives you information on specific data sets which are
currently cataloged or allocated, or both. The information you receive,
which is described in detail in the publication, Job Control Langquage
Reference, includes:

e The serial number of the volume on which the data set resides.

e The record format, logical record length, and blocksize of the data
set.

e The data set organization.

e Directory information for a member of a partitioned data set.

In addition to the information listed above for the three commands,
there are certain operands you can use to obtain additional information
on the data sets. The operands and the commands to which they apply
are:

Operand LISTALC LISTCAT LISTDS
STATUS X X
HISTORY X X X
MEMBERS X X X
SYSNAMES X

VOLUMES X

LEVEL X

LABEL X

The STATUS operand provides you with:
e The file name(ddname) for the data set.

¢ The scheduled disposition and conditional disposition of the data
set. The scheduled disposition determines whether the system will
retain or delete the data set after it is used. The conditional
disposition determines whether the system is to retain or delete the
.data set in case of abnormal termination. The keywords that denote
the dispositions are CATLG, KEEP, DELETE and UNCATLG. CATLG means
that the data set is retained and its name is kept in the system
catalog. KEEP means that the data is retained but not cataloged.
DELETE means that all references to the data set are to be removed
from the system and that the space it occupies is to be released for
use by other data sets. UNCATLG means that a previously cataloged
data set is retained, but its name is removed from the catalog.

62 TSO Terminal User's Guide (Release 21)

The HISTORY operand provides you with:

The creation date of the data set.

The expiration date of the data set.

An indication as to whether or not the data set has password
protection.

The data set organization.

The MEMBERS operand provides you with a list of the member names of a
partitioned data set including any aliases.

The SYSNAMES operand provides you the names assigned by the system to
any allocated data set you did not name.

The VOLUMES operand provides you with the serial numbers of the
volumes on which your cataloged data sets reside.

The LEVEL operand lets you request a listing of only part of your
cataloged data sets, or a listing of some other user's cataloged data
sets.

The LABEL operand provides you with the information in the Data Set
Control Block (DSCB) of a specific data set.

Entering and Manipulating Data 62.1

Programming at the Terminal

You can use the TSO commands to compile, link edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use other programs, such as utilities, at the terminal. That is,
instead of taking your job to the computer room to run it directly under
the operating system, you can use the TSO commands to enter it through
your terminal. These commands reduce your jcb turnaround time because
you get immediate results at the terminal. Since TSO commands are
designed to operate on cataloged data sets, data sets created in the
|background for use with TSO in the foreground should be cataloged.

You can also use the terminal to submit your job for processing at
the computer in the conventional manner. That is, you submit your job
through the terminal even if you do not want to get immediate results at
the terminal. The results are sent to you from the computer room after
your job is executed or you may obtain them at the terminal at a later
time. Jobs submitted in this manner are called background jobs.

Most compilers or assemblers that can be used under the operating
system can be used from your TSO terminal. They can be used to obtain
results at the terminal, or for background jobs. In addition to these
programs, your installation may have one or more of the special TSO
Program Product. compilers and other TSO programs for your use at the
terminal. They are:

e Interactive Terminal Facility (ITF):PL/I -- A problem-solving
language processor.

e Interactive Terminal Facility (ITF):BASIC -- A problem-solving
language processor.

e Code and Go FORTRAN -- A FORTRAN compiler designed for a very fast
compile-execute sequence at the terminal.

e FORTRAN IV (G1l) -- A version of the FORTRAN IV (G) compiler modified
for the terminal environment.

e TSO FORTRAN Prompter -- An initialization routine to prompt you for
options and invoke the FORTRAN IV (Gl) Processor.

e FORTRAN IV Library (Mod I) -- Execution-time routines for use with
either Code-and-Go FORTRAN or FORTRAN IV (Gl).

e Full American National Standard COBOL Version 3 =-- A version of the
American National Standard COBOL modified for the terminal
environment.

e TSO COBOL Prompter -—- An initialization routine to prompt you for
options and invoke the full American National Standard COBOL Version
3 Processor.

* TSO Assembler Prompter -- An initialization routine to prompt you
for options and invoke the Assembler (F).

Programming at the Terminal 63

If your installation has one or more of the TSO Program Products, it
will provide you with documentation that explains how to use them. This
section explains how to use the programs normally available under the
operating system. The following paragraphs describe how you can:

Create a program

Compile your program

Link edit a compiled program
Execute a program

Load a program

Process background jobs

It is assumed that you are familiar with a programming language. The
options and data set requirements of the comgilers, linkage editor, and
loader are summarized in the publication, Job Control Langquage

Reference.

Creating a Program

Before your source program is compiled you must introduce it into the
system. You do so with the EDIT command, as described in the section,
"Entering and Manipulating Data".

When you enter the EDIT command you must specify the type operand or
give a descriptive qualifier to the data set name. The type (or
descriptive qualifier) tells the system which programming language you
are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive
qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
when the data set type is GOFORT, FORTE, FORTG, FORTGI, FORTH, BASIC,
PLIF, PLI, or IPLI. You can use the LINE operand to specify the length
of the input line for PL/I source programs. The length of the input
line for the Assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand
to save the data set before you end the EDIT command. Your source
program is now ready for compilation.

The example in Figure 8 shows the creation of an assembler source
progran.

READY
edit progl new asm
INPUT

. source program

EDIT
save
SAVED
end
READY

= e S S— . M- . . S, o S S s, S T

e e

Figure 8. Creating an assembler source program

684 TSO Terminal User's Guide (Release 21)

Compiling a Program

If you are using a TSO Program Product compiler and prompter, you can
ignore this section. The prompter allocates data sets and calls the
compiler for you.

You can use the CALL command to invoke the compiler that will compile
your source program. Before you use the CALL command to invoke the
compiler you must use ALLOCATE commands to allocate all the data sets
required for compilation. Data set allocation is discussed in
"Allocating a Data Set"™ in the section "Entering and Manipulating Data".

The data sets required by your compiler are described in the Texrminal
User's Guide.

You must give the data set name of your compiler in the CALL command.
The data set names are shown in Figure 9 (For the example, the compilers
are stored in LINKLIB.)

r

| Compiler]Data Set Name i
L " L

{Assembler F {'SYSl.LINKLIB(IEUASM)' 1
American National Standard COBOL	' SYS1.LINKLIB(IKFCBLOO) '
FORTRAN E	*sYS1.LINKLIB(IEJFAAAQ)'
FORTRAN G	*SYS1.LINKLIB(IEYFORT) '
FORTRAN H	'SYS1.LINKLIB(IEKAAQQ)"®
PL/I F	*SYS1.LINKLIB(IEMARA) *
L 4 K

Figure 9. Data Set Names of the Compilers

Note that the data set name is a fully qualified name and must be
enclosed in apostrophes. For example, if you want to use the FORTRAN H
compiler, enter:

READY
call 'sysl.linklib(iekaa00)"

In addition to the compiler's data set name, you can enter the
compiler options you desire in the CALL command. These options are
those specified with the PARM parameter of the EXEC statement when you
are running your program directly under the operating system rather than
through TSO. For example, if you want to use the MAP, NOID, and OPT=2
options of the FORTRAN H compiler, enter:

READY
call "sysl.linklib(iekaa00)' "map noid opt=2'

Any messages and other output produced by the compiler will appear in
your listing after the CALL command. Once the compiler completes its
processing you receive the READY message. You can then free any
allocated data sets you no longer need.

Figure 10 shows the commands required to create a COBOL source
program, allocate the eight data sets required for compilation, call the
COBOL compiler, and free all allocated data sets except the one that
contains the compiled program (object module). It is assumed you are
using your user identification as part of all data set names except
SYS1.COBLIB.

Programming at the Terminal 65

READY

edit prog2 new cobol

| INPUT |

I |
. source program

EDIT

save

SAVED |

end

READY

allocate dataset('sysl.coblib') file(syslib) shr

READY I

allocate file(sysutl) new block(460) space(700,100)

READY

allocate file(sysut2) new block(460) space(700,100) |

READY

allocate file(sysut3) new block (460) space(700,100)

READY

allocate file(sysutld) new block(460) space(700,100)

READY

allocate dataset(*) file(sysprint)

READY

allocate dataset (prog2.obj) file(syslin) new block(80) space(500,100)

| READY |

| allocate data set(prog2.cobol) file(sysin) old |

READY

call "sysl.linklib(ikfcbl00)' 'map load nodeck flagw'

-

COBOL listings and messages |

READY
free file(syslib, sysutl,sysut2,sysut3,sysutl,sysprint,sysin)
| READY.

L]

Figure 10. COBOL Compilation

Link Editing a Compiled Program

The LINK command makes available to you the services of the linkage
editor. The linkage editor processes the compiled program (object
module) and readies it for execution. The processed object module
becomes a load module. Optionally, the linkage editor can process more
than one object module ands/or load module and transform them into a
single load module. For complete information on the linkage editor,
refer to the publication, Linkage Editor and Loader.

In your LINK command you must first list the name or names of the
object modules you want to link edit. (If you omit the descriptive
qualifier the system assumes OBJ.) After the names of the ocbject
modules you should use the LOAD operand to indicate the name of a member
of a partitioned data set where you want the load module placed. (If
you omit the user-supplied name of the load module data set the system
assumes it has the same user-supplied nam€ as the object module. If you
omit the descriptive qualifier the system assumes LOAD. If you omit the
member name the system assumes TEMPNAME.) For example, if you want to

66 TSO Terminal User's Guide (Release 21)

link edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the JONES.PROG2.LOAD data
set, enter:

READY
link prog2

If you want to link edit the load module in the JONES.PROG2.0BJ data
set and place the resultant load module in member ONE of the
JONES.MODS .LOAD data set, enter:

READY
link prog2 load(mods(one))

The following example shows how to link edit the two object modules
in the SMITH.PGM1l.OBJ and SMITH.PGM2.0BJ data sets. The resultant locad
module is placed in member TEMPNAME of the SMITH.LM.LOAD data set.

READY i
link (pgml,pgm2) load(lm)

You can control the link editing process with linkage editor control
statements. These control statements can be in a previously created
data set, or can be introduced through the terminal. You must give the
name of the data set, or an asterisk (indicating that you will introduce
the control statements through the terminal) in the list of input data
sets. The following example shows how to link edit the object module in
the CARTER.TRAJ.OBJ data set. There are control statements in the
CARTER.CNTL.DATA data set. The load module is placed in member TEMPNAME
of CARTER.TRAJ.LOAD.

READY
link (traj,cntl.data)

Using the same example, if you want to introduce the control
statements through your terminal, enter:

READY
link (traj,*)

The system will prompt you for the control statements at the
appropriate time. You must follow your last control statement with a
null line.

You can also have the linkage editor search a subroutine library to
resolve external references. (External references are references to
other modules.) The subroutine library is usually one of the language
libraries and it is specified with one of the following operands:

Operand Subroutine Library
COBLIB SY¥S1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYS1.PL1LIB

In addition to, or instead of a language library, you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

The following example shows how to link edit the object module in
JAMES.PRG.OBJ. The load module is placed in JAMES.PRG.LOAD (TEMPNAME).
The libraries S¥YS1.PL1LIB, and DEPT39.LIB.SUBRT2 are to be searched to
resolve external references.

READY
link prg plilib lib('dept39.1ib.subrt2")

Programming at the Terminal 67

The LINK command also lets you specify the linkage editor options.
These options are those specified with the PARM parameter of the EXEC
statement when you are running the linkage editor directly under the
operating system rather than through TSO. For example, if you want to
use the LET and XCAL options when the object module in AGNES.RET.OBJ is
link edited and placed in AGNES.TBD.LOAD(MOD), enter:

READY
link ret load(tbd(mod)) let xcal

Linkage editor listings (specified with the MAP, XREF, and LIST
options) are directed to a data set or to your terminal. You indicate
your choice with the PRINT operand. The following example shows that
the object module in BILL.PRGM.OBJ is to be link edited and placed in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP option is to
be placed in the BILL.LIST.LINKLIST data set.

READY
link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set
name, the system assumes LINKLIST. If you omit the user-supplied name,
the system assumes it has the same user-supplied name as the object
module. For example if the listing is to be placed in the
BILL.PRGM.LINKLIST data set, enter:

READY
link prgm map print

Using the same example, if you want the listing to appear on your
terminal, enter an asterisk in the PRINT operand.

READY .
link prgm map print(*)

Error messages are listed at the terminal as well as on the print data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example,

READY
link prgm map print noterm

Executing a Program

You can use the CALL command to execute your program after it has been
link edited. You can also use CALL to execute any other program in load
module form, such as utilities and compilers.

Before you use CALL to execute your program you can use the EDIT and
ALLOCATE ccommands to define your data sets. Use EDIT to create your
input data sets, and ALLOCATE to allocate your input, work, and output
data sets.

You must specify the data set name and member name of the member that
contains your program in load module form. If you want to execute a
program that resides in DEPTB.PROGS.DAILY(NUM3), enter:

READY
call 'deptb.progs.daily(num3)"’

68 TSO Terminal User's Guide (Release 21)

If you omit the descriptive qualifier and member name, the system
assumes LOAD and TEMPNAME, respectively. For example, if your LOGON
identifier is “JONES" and if your program resides in
JONES.LIB.LOAD(MEM2), enter:

READY
call lib(mem2)

If your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

READY
call 1lib

You can pass parameters to your program if you wrote it in assembler
or PL/I(F). These are the parameters you would specify with the PARM
parameter of the EXEC statement if you were running your program
directly under the operating system. For example, if you want to pass
the parameters OPTION1 and OPTIONS to a program that resides in
JONES.ASMPG.LOAD (MEM3), enter:

READY
call asmpg(mem3) 'optionl option5'

Figure 11 shows how the COBOL program created and compiled in Figure
10 can be 1link edited and executed. 1In Figure 10, the compiled program
(object module) was placed in PROG2.0BJ. After 1link editing, the load
module is placed in PROG2.LOAD(TEMPNAME). Your program requires three
data sets for execution. The input data set, INPUT.DATA, is created
with the EDIT command. ALLOCATE commands are used to allocate the input
data set, a work data set, and an output data set. CALL is used to
execute your program. The PROG2.COBOL, PROG2.0BJ, PROG2.LOAD, and
INPUT.DATA data set are deleted. (The other data sets, allocated in
Figure iJ0, are automatically deleted because they were not given a data
set name when allocated.) It is assumed you are using your user
identification as part of the data set nanes.

Programming at the Terminal 69

READY , ‘

link prog2 print(*) map
. |
- |

linkage editor messages and listings

READY
edit input.data new
INPUT

input data

EDIT

save

SAVED

| end

| READY

| allocate dataset(input.data) file(input) old
READY

allocate file(work) new block(100) space(300,10)
READY

allocate dataset(*) file(print)

READY

| call prog2 |

output from your program

READY
delete (prog2.* input.data)
READY

b e e e i

L
Figure 11. Link editing and executing a program

Loading a Program

The LOADGO command makes available to you the services of the loader.
The loader combines the basic functions of the linkage editor and
program fetch. That is, the loader link edits and executes your
program. Therefore, the LOADGO command 'combines the basic functions of
the LINK and CALL commands. No load module is produced. For complete
information on the loader, refer to the publication, lLinkage Editor and
Loader.

70 TSO Terminal User's Guide (Release 21)

The loader can process and execute a compiled program (object module)
or a link edited program (load module). Optionally, it can combine
object modules and/or load modules and execute them. (If you want to
load and execute a single load module, the CALL command is more
efficient.)

Before you use the LOADGO command you can use the EDIT and ALLOCATE
commands to create and allocate any data sets required to execute your
program.

In your LOADGO command you must list the name or names of the object
and load modules you want to load. For example, if you want to load the
object module in JONES.PROG3.0BJ, enter:

READY
loadgo prog3

If you want to load the object modules in JONES.PROG3.0BJ,
JONES.COB.OBJ, and the load module in JONES.COB.LOAD(TWO), enter:

READY
loadgo (prog3 cob.obj cob.load(two))

You can also pass parameters to your program if you wrote it in
assembler or PL/I(F). These are the parameters you would specify with
the PARM parameter of the EXEC statement if you were running your
program directly under the operating system. For example, if you want
to pass the parameters OPTION1l and OPTIONS to a compiled program that
resides in JONES.ASMPG.OBJ, enter:

READY
loadgo asmpg ‘optionl option5’

You can have the loader search a subroutine library to resolve
external references. The subroutine library is usually one of the
language libraries. If so, it is specified with one of the following
operands: '

Operand Subroutine Library
COBLIB SYS1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYs1.PL1LIB

In addition to, or instead of, a language library you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

The following example shows how to load the object module in
JONES.PRG.OBJ . The libraries S¥S1.PL1LIB, and DEPT39.LIB.SUBRT2 are to
be searched to resolve external references.

READY
loadgo prg plilib 1lib('dept39.l1lib.subrt2')

Programming at the Terminal 71

The LOADGO command also lets you specify the loader options. These
options are those specified with the PARM parameter of the EXEC
statement when you are running the loader directly under the operating
system. For example, if you want to use the LET and EP(MAIN) options
when the object module in JONES.CIR.OBJ is locaded, enter:

READY
loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a
data set or to your terminal. You indicate your choice with the PRINT
operand. The following example shows that the object module in
JONES.PRGM.OBJ is to be loaded. The listing produced by the MAP 0pt10n
is to be placed in the JONES.LISTING.LOADLIST data set.

READY
loadgo prgm map print(listing)

Note that if you omit the descriptive qualifier from the print data
set name, the system assumes LOADLIST. If you omit the user-supplied
name, the system assumes it has the same user-supplied name as the
object module. For example, if the listing is to be placed in the
JONES.PRGM.LOADLIST data set, enter:

READY
loadgo prgm map print

Using the same exémple, if you want the listing to appear on your
terminal, enter an asterisk in the PRINT operand.

READY
loadgo prgm map print (%)

Error messages are listed on the terminal as well as on the print data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example,

READY
loadgo prgm map print noterm

Figure 12 shows how the COBOL program created and compiled in Figure 10
can be loaded. The loading operation shown in Figure 12 is the
equivalent of the link editing and execution shown in Figure 11. The
same data sets required for execution of your program in Figure 11 are
required in this example. The object module resides in PROG2.0BJ. A
load module is not produced by the loader, therefore, only PROG2.COBOL,
PROG2.0BJ, and INPUT.DATA are deleted at the end. It is assumed you are
using your user identification as part of the data set names.

72 TSO Terminal Usef's Guide (Release 21)

READY
edit input.data new

INPUT

—— —— ———

input data

EDIT

save

SAVED

] end

| READY

allocate dataset (input.data) file(input) old
READY

allocate file(work) new block(100) space(300,10)
READY

allocate dataset(*) file(print)

| READY |
| 1loadgo prog2 map print(*) i

—— —— — —— — ——— — — —— ——— " S—— o——— o]

loader listings and output from your program

s s 8 & s 2 s

READY
delete(prog2.* input.data)
READY

b v

L
Figure 12. Loading a Program

Processing Background Jobs

You can submit background jobs for processing if your installation
authorizes you to do so. This authorization is recorded in the system
with your user attributes. If you have this authorization, the system
lets you use the four commands (SUBMIT, STATUS, CANCEL and OUTPUT) that
control the processing of background jobs. You can use those commands
to submit a background job, to display the status of a background job,
to cancel execution of a background job, and to control the output of a
background job.

SUBMITTING BACKGROUND JOBS

Before you submit a background job with the SUBMIT command you can use
the EDIT command to create a data set (or a member of a partitioned data
set) that contains the job or jobs you want to submit. Each job
consists of Job Control Language (JCL) statements and of program
instructions and/or data.

The JCL Statements required for a job must conform to System/360
Operating System (MVT) standards. They are described in the
publication, Job Control Lanquage Reference.

Programming at the Terminal 73

The first JCL statement in the data set is usually a JOB statement.
The jobname in the JOB statement can be up to eight characters in length
and consists of your user identification followed by one or more letters
or numbers. For example SMITH23 or JONESXYZ.

I1f the jobname consists of only your user identification, the system
will prompt you for a single character to complete the jobname. When
you submit the job with the SUBMIT command this allows you to change
jobnames without re-editing the data. For example, you may submit the
same job several times, and supply a different character for the job
name each time you are prompted.

If the jobname does not begin with your user identification, you can
submit it with the SUBMIT command and request its status with the STATUS
command, but you cannot refer to it with the CANCEL or OUTPUT command.

If the first statement of your data set is not a JOB statement, the
system generates the following JOB statement when you submit it with the
SUBMIT command.

//7userid JOB " GENERATED JOB STATEMENT
/7 userid,

/7 MSGLEVEL=(1,1),

7/ NOTIFY=userid

You will be prompted for a character to complete the jobname.

When you enter the SUBMIT command you must give the name of the data
set (or data sets) that contains the background jobs. You can also
specify the NONOTIFY operand to specify that you do not want to be
notified when a background job with a generated JOB statement
terminates.

Figure 13 shows how to create and submit a background job. Note that
the data set type in the EDIT command must be CNTL.

You may include more than one job in one data set. You can omit the
JOB statement for the first job, but all jobs after the first must have
their own JOB statement. Although you submit all jobs in the data set
with one SUBMIT command, you can subsequently refer to each job with
separate STATUS, CANCEL, and OUTPUT commands.

If an error occurs while the jobs are being processed by TSO before
actually being submitted, further processing will be terminated. No
other input specified by the SUBMIT command will be processed. When you
submit more than one job with a single command, and TSO finds an error
while processing the first job, the second job is not processed. An
error that occurs in the second job does not affect the first. Any jobs
processed prior to the error are submitted for execution; jobs that were
not processed because of the error cannot be submitted.

74 TSO Terminal User's Guide (Release 21)

READY

| INPUT

//smith3

/7/stepl

| 77plll.sysin
. source

/*

//step?2

//plll.sysin
. source

| 7*
//go.sysin

Vi

(null line)
EDIT

save

SAVED

end

READY

READY

o= — e —

edit backpgm new c¢ntl nonum

job 7924,smith,msglevel=(1,1)
exec plilfc,parm.plll="nodeck,list’

dad *
statement

exec plilfclg
dd *
statements

dad *

- input data

submit backpgm nonotify

b s e

Figuie 13. Submitting a Program as a Background Job

DISPLAYING THE STATUS OF BACKGROUND JOBS

Any time after you submit a background job you can use the STATUS

command to have its status displayed.

The display will tell you whether

the job is awaiting execution, is currently executing, or has executed.
For example, if you want to display the status of SMITH23, enter:

READY

status smith23

If you want to know the status of all the jobs that begin with your user
identification, enter the STATUS command without operands:

READY
status

CANCELLING BACKGROUND JOBS

You can use the CANCEL command to cancel execution of a background job.
If the job has already been executed, the CANCEL command has no effect.

For example, if you want to cancel job JONESAB, enter:

READY

cancel jonesab

After you enter the CANCEL command, the system will send you a message
telling you that the jobs specified have been cancelled.

Programming at the Terminal 75

CONTROLLING THE OUTPUT OF A BACKGROUND JOB .

You can use the OUTPUT command to:

e Direct the JCL statements and system messages (MSGCLASS) and system
output data sets (SYSOUT) produced by a background job to your
terminal.

e Direct the MSGCLASS and SYSOUT output from a background job to a
specific data set.

e Change an output class used in a background job.

e Delete the output data sets (SYSOUT) or the system messages
(MSGCLASS) for background jobs.

Unless you use the NONOTIFY operand of the SUBMIT command, a message is
written to your terminal or placed in the broadcast data set when the
background job terminates. You can then use the OUTPUT command to
control the output produced by the job on the MSGCLASS and SYSOUT
classes before the system processes them,

For example, assume that job GREEN67 produces output on classes A, B,
D, G, and M. If you want the output on classes G and M listed at the
terminal, enter:

READY ‘
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN.KEEP.OUTLIST
data set, enter:

READY 7

output green67 class(b) print(keep)
If you want to change the output in class A to class C, enter:

READY
output green67 class(a) noprint(c)

If you want to delete the output from class D, enter:

READY
output green67 class(d) noprint

If you wish, you can enter the PAUSE operand in the OUTPUT command.

PAUSE will make the szstem stop after each data set is listed on your
terminal or on the data set you indicate with the PRINT operand. When

the system pauses it sends you the message OUTPUT. You then have the
option of pressing the RETURN key to continue processing or entering the
CONTINUE or SAVE subcommand.

The CONTINUE subcommand allows you to continue processing your output
after an interruption occurs. An interruption occurs when:

e An output operation completes and you used the PAUSE operand in the
OUTPUT command.

e An output operation terminates because of an error condition.

e You press the attention key.

76 TSO Terminal User's Guide (Release 21)

When you enter the CONTINUE subcommand, the system will resume
printing with the next data set being processed or with the next message
if a block of messages is being processed. In the following example you
request that the data sets in output classes B and C be listed at your
terminal. The system pauses after printing the data set in B. You

enter the CONTINUE subcommand to resume processing with the data set in
C.

READY
output jones2 class(b c) print(*) pause

o output class R

OuUTPUT
continue

output class C

» s 8 s & s s

If the interruption was not caused by a pause, you may prefer to
resume printing at the beginning of the data set being processed or a
few lines before the interruption. If you want to resume printing at
the beginning, enter:

OUTPUT
continue begin

If you prefer to resume printing approximately 10 lines before the
interruption occurred, enter:

ouTPUT
continue here

The CONTINUE subcommand also lets you respecify the PAUSE operand of
the OUTPUT command. If you entered PAUSE in the OUTPUT command, you can
enter NOPAUSE in the CONTINUE subcommand, for example,

READY
output smithc c¢lass(d) print(data) pause

OUTPUT
continue begin nopause
If you did not specify PAUSE in the OUTPUT command, you can do so in the

CONTINUE subcommand. This causes the system to pause at the end of each
data set processed subseguently.

Programming at the Terminal 77

The SAVE subcommand allows you to place the data set listed before
the pause into another data set. This allows you to retrieve the data
set at a later time. In the following example, if your logon identifier
is Brown, you request that data sets in output classes E and F be listed
at your terminal. After listing the data set in E you request that it
be saved in the BROWN.OUTDATA.OUTLIST data set. You continue processing
the next data set after saving the data set in class E.

Note: If you want to list output at a terminal when submitting one or
more job cards, the name you specify must begin with your userid and end
with a single alphameric character. This character must be unique for
each job card.

READY
output brownb class(e f) print(#) pause

ouTPUT

save outdata
OUTPUT
continue

-

The END subcommand is used to terminate the OUTPUT command. For
example,

READY
output dept30a class(a) print(*) pause

OUTPUT
end
READY

78 TSO Terminal User's Guide (Release 21)

Testing a Program

The operating system provides you with facilities to test your program
from the terminal. They are the test facilities, if any, provided by
your compiler, and the TSO TEST command. The compiler test facilities
are described in the publications associated with the compiler. A brief
description of the TEST command follows.

The TEST command allows you to "debug" your program. That is, it
helps you to test a program for proper execution and to find programming
errors. To use TEST effectively, you should be familiar with the
assembler language. If you are using ancther language, for example
COBOL, you can still use the TEST command to obtain listings and other
information to give to your installation's system programmer who can
help you debug your program. (You can use the full facilities of the
TEST command to debug your program if you can correlate the statements
in your source program listing to the resultant assembler language
statements in the object listing.)

If you are an assembler language programmer, refer to the
publications, TSO Guide to Writing a Terminal Monitor Program or a
command Processor and Command Lanqguage Reference for a complete
description of the facilities of the TEST command.

If you are not an assembler language programmer, your system
programmer will probably provide you with a test procedure. The most
common situation he may provide for occurs when your program is
executing and you receive a message that the program has abnormally
terminated. He may tell you to enter the TEST command and then the LOAD
subcommand with the name of a program that will test your program. For
example, if the name of the program that will test yours is DPTEST, use
the following sequence.

READY

test

TEST

load (dptest)

If the system programmer does not give you the name of a testing
program, he may instruct you to use the TEST command and a set of its
subcommands that produce listings of your program and other pertinent
information. For example, he could ask you to perform procedures
similar to the following.

Example 1:

READY

test

TEST

listpsw

SYSTEM MASK KEY AMWP INTRPT CODE ILC CC PROG MASK INSTR ADDR
11111111 D 0101 0061 11 00 0000 067ABS

TEST

wheére 67ab8.

67AB8. LOCATED AT +38 IN (load-module name.csectname) UNDER TCB
LOCATED AT 660D0.

TEST

list 67ab8.-32n length(32)

First, you begin testing by entering the TEST command. You can now use
the subcomnands of TEST to "debug® your program.

Testing a Program 79

Enter the LISTPSW subcommand to determine the address of the instruction
that failed in your program. The last five characters of the PSW that
is listed can then be entered with the WHERE subcommand and the system
will then provide the location and the program name in which the ABEND
occurred. When LIST is entered in the preceeding manner, the thirty-two
bytes of instructions prior to the ABEND will be displayed.

At this time all the registers may be listed in the following manner to
aid you in solving the problem:

list OR:15R

If you wish to trace the execution of your program you may enter the
following:

Example 2:

at +0:4200 (go)
at +32

at +8c

at +10a

go +0

In this case breakpoints will be set at every instruction in your
program between relative addresses 0 and 200 (inclusive), stopping at
the first invalid opcode encountered. Breakpoints set at relative
addresses 32, 8C, and 10A supplement the previous settings. The last GO
causes the program to resume execution from the beginning (assuming the
first address contains a valid instruction). Before execution of the
instruction at any of the breakpoint location a message is printed at
the terminal. If the location is other than 32, 8C, or 10A, execution
continues because of the GO subcommand in the subcommand list of the
first AT. (Other subcommands could also be executed automatically here
prior to GO; see the AT subcommand description under TEST in the Command
Lanquage Reference manual.) Before 32, 8C, or 10A are executed, the
associated AT subcommand causes control to return to the terminal so
that you can enter any TEST subcommands before continuing execution.

Example 3:
To supply new values for a range of registers, you.can enter:
Or=(x*0°*,x'0*',x"'0")

The values specified would be assigned starting with register 0,
register 1, etc. until all values in the list have been assigned.

Example 4:

If you want to display storage at a known relative address you may
enter:

list +34
+34 47F0C220

If you want not only to display storage, but also to find out the
absolute address associated with the relative address, you can enter:

list +34+40
A0680. 47F0C220

If you prefer, you can elect not to test your program. Simply enter

any command you wish after receiving the abnormal termination and READY
messages.

80 TSO Terminal User's Guide (Release 21)

Using and Writing Command Procedures

In many cases a given function is performed by a sequence of commands.
For example, several commands are needed to allocate data sets for a
compilation. Every time you want to accomplish that function you must
enter the same sequence of commands, or else, you can simplify your work
by using a command procedure. A command procedure is a set of TSO
commands, and, optionally, subcommands and data that have been placed in
a data set. Whenever you want to accomplish the functions performed by
the command procedure you can use the EXEC command to call the
procedure. The command procedure you call may contain symbolic values.
A symbolic value stands as a symbol for an operand or the value of an
operand. Symbolic values are used so that the command procedure can be
easily modified when it is called by the EXEC command.

This section consists of two parts. The first part, "Using Command
Procedures™, describes how to call a command procedure and how to assign
actual values to symbolic values. The second part, "Writing Command
Procedures" describes how to write a command procedure and place it in a
data set.

Using Command Procedures

Use the EXEC command to call a command procedure and to assign values to
any symbolic values it may contain. You will not get any prompting
messages once execution of the command procedure has begun.

CALLING A COMMAND PROCEDURE

To call a command procedure, enter an EXEC command. In the EXEC command
you identify the command procedure in one of two ways:

1. If the command procedure is in a data set, enter EXEC followed by
the name of the data set. The following example, if your LOGON
identifier is JP, calls the command procedure that resides in the
JP.COMPROC.CLIST data set:

READY
exec comproc

Note that if you omit the descriptive qualifier the system assumes
CLIST. If the descriptive qualifier is not CLIST you must enter
the fully qualified name enclosed in apostrophes. For example, if
the command procedure resides in the data set JP.COMPROC.CP, you
must enter:

READY
exec ' jp.comproc.cp’

2. If the command procedure resides in a member of a partitioned data
set called a command procedure library, enter only the member name.
(The command procedure library must have been defined by your
installation.) The following example shows how to call the command
procedure in member PROC3 of your command procedure library:

READY
proc3

Using and Writing Command Procedures 81

ASSIGNING VALUES TO SYMBOLIC VALUES

If the command procedure contains symbolic values, the installation
should provide you with a list of the symbolic values used, what meaning
is associated with each symbolic value, whether you must supply an
actual value for each symbolic value, and whether a symbolic value will
assume a default value if you fail to provide one. Figure 14 shows a
sample sheet for a command procedure such as your installation may
provide you

U
|
|

P e St e S e, S s W s

Command Procedure: LISTUPDT (member name)
Purpose: Update inventory list

—— e ol

Symbolic values:
WEEKIN WEEKOUT NEW OUTPUT (*)

WEEKIN:
WEEKOUT 3
NEW:

OUTPUT (%) :

Required. Replace with name of input data set.
Required. Replace with name of output data set.
Optional. Code NEW if output data set does not exist.
omit if output data set already exists.

Optional. Directs reports prepared by procedure to
your terminal. If you want to direct reports to a
data set, replace the #* with the data set name. If
OUTPUT is not specified, reports go to a central
printer.

L —

Figuxe 14.

Symbolic Values for a Command Procedure

After you decide which values you are going to replace for the required
symbolic values, and which optional symbolic values you are going to
use, enter the values in the EXEC command used to call the procedure.

the procedure.
values in apostrophes. The required values must be entered in the orxrder
given to you.
enter the required values. The following example calls the procedure

The values must follow the name of the data set or member that contains

If the procedure resides in a data set, enclose the

Optional values can be entered in any order after you

ishown in Figure 14. The name of the input data set is JP.W26IN.DATA.
The name of the output data set is JP.W260UT.DATA. The output data set

does not yet exist. The reports produced by the command procedure are
directed to the JP.W26REP.DATA data set.

Note:

READY

listupdt w26in w26out output(w2é6rep) new

If syntax errors or certain other error conditions arise in

executing a command within a procedure, the procedure will be terminated
and the remaining commands will not be executed.

Writing Command Procedures

Functions that are performed on a regular basis, such as calling a
compiler, can be simplified when the commands that perform the functions
are kept as command procedures. Once the commands are placed in a
partitioned or sequential data set or in a command procedure library (a
partitioned data set), any terminal user who wants to perform those
functions need only enter an EXEC command.

procedure.

Command procedures contain commands and, optionally, subcommands,
data and line numbers. A command procedure may also contain command
procedure statements (PROC, WHEN, and END) that control execution of the

The PROC statement defines symbolic values in the procedure.

The WHEN statement initiates or terminates a procedure according to
certain conditions. The END statement marks the end of the procedure.

82 TSO Terminal User's Guide (Release 21)

The command procedure is entered in the data set or into a member of
a command procedure library with the EDIT command. The descriptive
qualifier normally used is CLIST. You must also use the SAVE subcommand
to save the command procedure.

ASSIGNING SYMBOLIC VALUES

When you enter the commands and subcommands in the procedure, you can
include symbolic values for any operand or value of an operand. A
symbolic value is characterized by a name preceded by an ampersand (§&).
The name consists of letters and numbers, but it must begin with a
letter. For example, if you want to substitute the symbolic value
EDSNAME for the 'data set name' operand in the following statement:

EDIT data set name NEW DATA
enter:
edit &dsname new data

If the symbolic value must be immediately followed by a special
character (such as a right parenthesis, apostrophe, or periocd), the
symbolic value must end with a period. For example, if you want to
substitute the symbolic value §DSNAME for the "data set name" operand in
the following expression:

DATASET (data set name)
enter:
dataset (édsname.)

A command procedure that contains symbolic wvalues must begin with a PROC
statement. The symbolic values that are identified by ampersands are
defined by the operands of the PROC statement. There are two types of
symbolic values:

e Positional -- a required operand that must be replaced by the user
in the EXEC command. It can contain up to 252 characters.

e Keyword -- an optional operand that can be replaced by the user if
desired. It can contain up to 31 characters.

The PROC statement must indicate the number of positional symbolic
values to be supplied by the user. (If none of the symbolic values are
positional, enter zero.) After the number, list the positional symbolic
values omitting their ampersands. After the positional symbolic values,
list the keyword symbolic values omitting their ampersands. For
example, assume you have the following command procedure named PR39:

PROC 3 INPUT OUTPUT LIST LINES()

ALLOCATE DATASET(§INPUT.) FILE(INDATA) OLD
ALLOCATE DATASET(§OUTPUT.) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(ELIST.) FILE(PRINT)

CALL PROG2 "§LINES."*

END

Using and Writing Command Procedures 83

The PROC statement indicates that the three symbolic values §INPUT,
§OUTPUT, and ELIST are required, and that the symbolic value SLINES is
optional. When the user substitutes values for the positional symbolic
values in the EXEC command he must provide the values in the same order
in which they appear in the PROC statement. The keyword values can
follow the positional values in any order. For example, if the user
wants to replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST, and
20 for LINES, he would enter:

READY
pr39 alpha beta comment lines(20)

In this case, the following substitutions will be made in the command
procedure:

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(COMMENT) FILE (PRINT)

CALL PROGZ2 '20°'

END

You can also use the PROC statement to assign default values to optional
symbolic values. That is, if the user fails to provide an actual value
for the symbolic value, the system will use the default value to replace
the symbolic value. You assign a default value by enclosing it in
parentheses after the symbolic value in the PROC statement. For
example, in the command procedure illustrated above, you may want to
assign 35 as a default value for ELINES. To do this, enter LINES(35) in
the PROC statement. That is, the PROC statement would be as follows:

PROC 3 INPUT OUTPUT LIST LINES(35)

If the user enters the following EXEC command:

READY
pr39 alpha beta comment

the following substitutions will be made in the command procedure:

ALILOCATE DATASET(ALPHA) FILE(INDATA) OLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET{(COMMENT) FILE (PRINT)

CALL PROG2 '35°

END

TESTING CONDITIONS FOR TERMINATION

The programs invoked with a CALL or LOADGO command can issue a return
code (a number) to indicate its relative "success". The return codes of
IBM-supplied programs are listed in the publications associated with the
program. Only those user programs written in the assembler language or
PL/I can issue return codes. (For description of how to issue return
codes, see Assembler F Programmer's Guide and PL/I (F) Programmer's
Guide.) User return codes are usually standardized in each
installation.

84 TSO Terminal User's Guide (Release 21)

You can insert a WHEN statement after any CALL or LOADGO command or a
processor (such as a compiler or link editor) in the command procedure
to test its return code. If the test you request is true, you have the
option of ending the command procedure or of executing another procedure
or another command. If the test you request is not true, the command
procedure will continue its course. The test is specified with the
SYSRC operand of the WHEN statement. For example, assume that you want
to end a procedure if a given CALL command produces a return code of 8.
Enter the following WHEN statement after the command you want to test:

call "sysl.linklib(ieqcbl100)*' *nodeck'
when sysrc(eq 8) end

If instead of ending the procedure when the test is true, you want to
execute another procedure that resides in the JONES.PROCS5.CLIST data
set, enter:

when sysrc(eq 8) exec procS

Unless an error occurs in proc5, the command after the "when" will be
executed after proc5 completes. If instead of executing a procedure,
you want to enter a LIST command, enter:

when sysrc(eq 8) list pgm.list snum

ENDING THE COMMAND PROCEDURE

You must write an END statement after the last line of the command
procedure. When the system encounters an END statement in a command
procedure it sends a READY message to the terminal so you can enter
another command.

Using and Writing Command Procedures 85

Controlling a System With TSO

Two commands are used to control TSO: OPERATOR and ACCOUNT. The
OPEFATOR command is used to regulate the operation of the system from a
terminal. The ACCOUNT command is used to maintain the list of
authorized users of the system.

You must have authorization from your installation to use either the
OPERATOR or the ACCOUNT command. This authorization is recorded in the
system with your user attributes. Use of the OPERATOR command is
restricted to terminals that have the transmit-interruption capability.

The OPERATOR Command

The OPERATOR command, through its subcommands, allows you to perform the
following functions:

Monitor terminal activity (MONITOR and STOPMN subcommands) .
Display TSO information (DISPIAY subcommand) .

Cancel a terminal session or a background job (CANCEL subcommand).
Send messages to terminal users (SEND subcommand).

Modify time sharing parameters (MODIFY subcommand).

End operation of the OPERATOR command (END subcommand).

Note:

1. The OPERATOR command is supported only for those terminals for
which the BREAK operand of the TERMINAL command is valid, that is,
for those terminals which have the transmit interruption
capability.

2. The attention interruption will not halt the output from system
operator commands, such as DISPLAY ACTIVE.

You must first enter the command and then the subcommand you wish to
use. For example, use the following sequence to enter the MONITOR
subcommand :

READY
operator
OPERATOR
monitor...

Subcommands of operator which are also system operator commands follow
the 0S/360 operator command language syntax. For further information on
system operator commands and procedures refer to the publications, Time
Sharing Option, Command Lanquage Reference, and Operator's Procedures.

86 TSO Teéerminal User's Guide (Release 21)

MONITORING TERMINAL ACTIVITY

The MONITOR subcommand lets you keep track of the users of the system
and of any background jobs submitted with the SUBMIT command.

If you want to be notified whenevexr a terminal session starts or
ends, enter the SESS operand of the MONITOR subcommand. For example,
after using the following sequence:

READY
operator
OPERATOR
monitor sess

you will receive messages, such as the following, interspersed with
other messages and input at your terminal:

IEF125I JONES LOGGED ON

IEF1251I SMITH LOGGED ON

-

IEF1261I JONES LOGGED OFF

IEF1251 BROWN LOGGED ON

' IEF126I BROWN LOGGED OFF

IEF1261I SMITH LOGGED OFF

You can also request the time at which the session starts and ends as
part of the message. You do this by entering SESS,T with the MONITOR
subcommand. For example, if you enter:

monitor sess,t
the message informing you that JONES logged on may appear as follows:
IEF1251I JONES LOGGED ON TIME = 1.35.05

The LOGON time is shown in hours, minutes and seconds.

You can request that the system display information about all tasks
by entering:

monitor a
the message may appear as:
IEE1021I TSO DATAPROG 02 00240K 00290K 3 ...

(This message is explained in Messages and Codes.)

Controlling a System With TSO 87

If you want the name of each background job submitted during a
terminal session displayed when the job starts and ends, you must enter
another MONITOR subcommand. For example, after using the following

sequences:

OPERATOR
monitor jobnames

you will start receiving messages, such as the following, interspersed
with other messages and input at your terminal:

IEF403I JONES79 STARTED

IEF403I COPYDS STARTED

IEF404I JONES79 ENDED

IEF404TI COPYDS ENDED
You can also request the time at which the background job starts and

ends as part of the message. You do this by entering JOBNAMES,T in the
subcommand. For example, if you enter:

monitor jobnames,t
the message informing you that job COPYDS ended may appear as follows:
IEF4041I COPYDS ENDED TIME = 17.11.58

where the time the background job ended is shown in hours, minutes, and
seconds.

You can also use MONITOR subcommands to obtain information on data
sets and space available on direct access devices. The following
subcommand :

monitor status
requests that the data set names and volume serial numbers be displayed
whenever data sets with dispositions of KEEP, CATLG, or UNCATLG are
| freed.
The following subcommand:
monitor space
requests that the system display in demount messages the amount of space

available in a direct access device. (Demount messages are explained in
] the publication, Operator's Procedures.)

The following subcommand:
monitor dsname
requests that the system display within the mount and K-type demount

messages, the name of the first nontemporary data set allocated to the
volume to which the message refers. (These concepts are explained in

the publication Operator's Procedures.)

88 TSO Terminal User's Guide (Release 21)

You can use the STOPMN subcommand to stop the monitoring operations
of the MONITOR subcommand. For example, if you issue the following
subcommands :

READY

operator

OPERATOR

monitor jobnames, t
monitor space

~monitor status
monitor sess

and you want to stop receiving messages about background jobs and freed
data sets, enter:

stopmn jobnames
stopmn status

DISPLAYING TSO INFORMATION
You can use the DISPLAY subcommand to obtain information about users
currently logged on. If you enter:

display user
you will get the number of active terminals, the identification of each
usexr and the corresponding region number of each user. If you want to
know only the number of active terminals, enter:

display user=nmbr

You can request that the system display information about all tasks by
entering:

display a
'the message may appear as:
IEE102I TSO DATAPROG 02 00240K 00290K 3 ...

(This message is explained in Messages and Codes.)

You can also use DISPLAY to obtain a list of the jobnames of background
jobs on the input, hold, output, BRDR, and ASB queues. (These queues
are described in the publication, Operator Procedures.) To obtain this
list enter:

display n
If you want only the jobnames in up to four specific queues enter the
input work gqueue name (A-0), SOUT for system output queues, BRDR for
background reader, or HOLD for system hold queue. For example, if you
want the jobnames of background jobs in queues B, F, M, and the hold
queue, enter:

display n=(b,f,m,hold)

If you want to know only the number of entries on the input, hold,
output, BRDR and ASB queues, enter:

display gq

Controlling a System With TSO 89

You can also obtain the number of entries in up to four specific queues,
for example:

display gq=(b, f,m, hold)
You can enter a jobname as the operand of DISPLAY to obtain status
information about that job. The status information consists of jobname,
class, job priority, type of queue the job is in, and the job's position
in the queue. For example, to obtain the status of job JONES79, enter:
display jones79
DISPIAY also lets you obtain a listing of messages from background jobs
that are awaiting reply from an operator. To obtain such a listing
enter:
display r
If you want to know the time of day and the date, enter:

display t

CANCELLING A SESSION OR BACKGROUND JOB

You can use the CANCEL subcommand of the OPERATOR command to cancel a
terminal session or a background job submitted by a terminal user. To
cancel a session enter the U=user identification operand in the CANCEL
subcommand. For example, if you want to cancel the session of user
SMITH, enter:

cancel u=smith

SMITH will be presented with information that notifies him of the end of
his session.

To cancel a background job, enter its jobname in the CANCEL subcommand.
For example, if you want to cancel job AB999, enter:

cancel ab9%999

You can also request that when the job is cancelled a dump be taken of
any step of that job currently being executed, for example,

cancel ab999, dump

In addition to the dump, you can request that all input and output for
the job be cancelled. For example,

cancel ab9%999,dump,all

SENDING MESSAGES TO TERMINAL USERS

You can use the SEND subcommand to send broadcast messages (notices) to
all users or to individual users. For example, if you want to send the
message TSO NOT AVAILABLE ON TUESDAY 9/29 to all users, enter:

send '"tso not available on tuesday 9/29°

90 TSO Terminal User's Guide (Release 21)

If you only want users SMITH and JONES to receive the message, enter:

send 'tso not available on tuesday 9/29* ,user=(smith, jones)

SMITH and JONES will receive the message only if they are logged on and
are not suppressing messages. If you want to make sure that Smith
receives the message when he logs on, enter .

send 'tso not available on tuesday 9/29"',user=(smith),logon

When the LOGON operand is specified with Smith's userid, and Smith is
already logged on and is mnot suppressing messages, he receives the
message immediately. Until Smith receives the message, it is retained
by the system and printed the next time Smith logs on (or requests mail
with the LISTBC comwand).

When you specify the LOGON operand with a message that you are sending
to all users, the message is retained by the system, given a number, and
printed at each users termial. This message is printed each time a user
logs on (or if the user has logged on suppressing messages, and now
requests the messages with the LISTBC command) until the message is
deleted by the operator. If you want to receive a 1list of all retained
messages, enter the following:

send list
If you want to delete a given message, enter its number in the SEND
subcommand. For example, if you want to delete message number three
enter:

send 3

If you want to list a given message without deleting it, enter the LIST
operand. For example

send 3,1list

MODIFYING TIME SHARING PARAMETERS

You can use the MODIFY subcommand to change the time sharing parameters
specified during system generation or specified by the system operator
with the START command. For information on this subcommand refer to the
publications, Command Lanquage Reference, and Operator's Procedures.

ENDING OPERATION OF THE OPERATOR COMMAND
Whenever you want to end the OPERATOR command, enter the END subcommand.

After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

The ACCOUNT Command

The user attributes of each authorized user of TSO are recorded in the
User Attribute Data Set (UADS). There is an entry in the UADS for each
user. Each entry contains:

1. A single user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

Controlling a System With TSO 91

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a LOGON cataloged procedure that is
invoked when the user begins a terminal session by entering the
LOGON command.

5. The main storage region size requirements for each procedure.

6. The name of the group of devices that the user will be rermitted to
use. Data sets allocated via the catalog are an exception. (See
the ALLOCATE command.)

7. The authority to.use, or a restriction against using, the ACCOUNT
command .

8. The authority to use, or a restriction against using, the OPERATOR
command .

9. The authority to use, or a restriction against using, the SUBMIT,
STATUS, CANCEL, and OUTPUT commands.

10. The maximum main storage region size authorized for this user.

Figure 15 shows the simplest structure that an entry in the UADS can
have, and Figure 16 shows a more complex structure.

The ACCOUNT command allows you to update entries in the UADS.
Specifically, it allows you to:

Add new entries or more data to an existing entry.
Delete entries or parts of entries.

Change data in an entry.

Display the contents of an entry.

Display the user identifications for all entries.
End operation of the command.

These functions are performed with the subcommands of the ACCOUNT
command. You must first enter the command and then the subcommand you
want to use. For example, use the following sequence to enter the ADD
subcommand:

READY
account
ACCOUNT
add. ..

ADDING NEW ENTRIES OR DATA TO AN ENTRY

You can use the ADD subcommand to add a new entry to the UADS or to add
new data to an existing entry.

To add a new entry, enter the user identification, password, account
or procedure name. For example, to add the following entry:

For example, to add: enter:

JONES add (jones zzz d993 procab)
Zﬁ?

D993

PROCAB

92 TSO Terminal User's Guide (Release 21)

UADS
data set

T

L
user
identification
T

|

L

a null
field

e

N

b e e e

—— -

o e e o

= ———

a null
field

T

L

procedure
name

b — e ol

e ——

———
b s e o

Figure 15. The Simplest Structure That an Entry in the UADS Can Have

r 1
| UADS [
| data set |
L T 1
|
[l
¥ 1
| user |
jidentification |
L T i |
r 1 1
T L 1 o=t
| password | | password |
| | | |
L T 1 b gp———-1
r . 1 |
L s ————— I,
r 1 r 1 r 1
| account | | account | | account |
| number | | nunmber | | number |
L] L] | IS —— |
H H H
r 1 r 1
L L L R 1
I 1T 1 r 1 T 1 r 1
| procedure | | procedure | | procedure | | procedure | | procedure |
| name | | name | name | | name I name |
L J L J L 3 L J L 3

Figure 16. A Complex Structure for an Entry in the UADS

controlling a System With TSO 93

If either the password or the account (or both) is a null field,
enter an asterisk to indicate its absence. For example, to add the

following entry:

SMITH
null
null
PRO7

enter

add (smith * * pro7)

In addition to the user identification, password, account, and
procedure name, you can enter one or more of the following operands:

Operand
SIZE (integer)

UNIT (name)
MAXSIZE(integer)
ACCT

OPER

JCL

Meaning

Region size (in units of 1024 bytes) of the procedure
added. For example for a 10K region size specify
SIZE(10). If you omit this parameter the minimum
region size established by the installation is
assumed.

The name of the group of devices that can be used for
the user's data set.

The maximum region size (in units of 1024 bytes) that
the user can request when he logs on. If you omit
this parameter, no maximum limit is enforced.
Authorization to use the ACCOUNT command.
Authorization to use the OPERATOR command.

Authorization to use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

You can use the MAXSIZE, ACCT, OPER, and JCL operands of the ADD
subcommand only when you are adding a complete entry to the UADS. (See
section "Change Subcommand®™ for description of modifying these four

operands.)

For example,
BROWN
null
DEPTS

PR37

if you want to add the following entry

and you also want to establish the region size for PR37 as 12K, and
authorize the user to submit background jobs, enter:

add (brown * dept5 pr37) size(1l2) jcl

94 TSO Terminal User's Guide (Release 21)

You can follow a similar procedure to add data to an existing entry.
For example, assume the following entry already exists in the UADS:
MCs
HUSH
¥
79325
PRO67

If you want to add the password SECRET with account 3925 and procedure
PRO53, enter:

add (mcs) data(secret 3925 pro53)

the resulting entry will be:

MCs
HUSH SECRET
79&25 3925
PRO67 PROS53

Now assume you want to add to password HUSH, account 83241 and procedure
PRO77. Enter:.

add (mcs hush) data (83241 pro77)
The resulting entry will be:
MCSs
HUSH SECRET
79325 83241 3925
PRO67 _ PRO77 PRO53

If you want to add account 4522 and procedures PRO54 and PRO55 to
password SECRET, enter:

add (mcs secret) data(u4522 (pro54 pro55))

The resulting entry will be:
MCs
HUSQ\ ’/SECRET\\\

79325 83241 3925)/5522

PRO67 PRO77 PRO53 PRO54 PRO55
If yoﬁ want to add the same data to all user identifications, or
passwords, or account numbers, replace that field with an asterisk. For
example, if you want to add account 9999 and procedure PR0O99 to all
passwords in the MCS entry, enter:

add (mcs *) data (9999 pro99)

Controlling a System With TSO 95

The resulting entry will be:
MCs
HUSH SECRET

79325 83%41 9999 3924 4522 9%?9

PRO67 PRO77 PRO99 PRO53 PRO54 PRO55 PRO99
When you are adding data to an existing entry, you can specify the SIZE
operand, to give the region size of the new procedure. For example, if
the region size of procedure PR0O99 is 25K, enter:

add (mcs *) data(9999 pro99) size(25)

Note: You cannot add a password or an account number to an entry that
has a null field for that item. You must delete the 0ld entry that has
the null fields, then add a new entry including the new password and
account number.

DELETING ENTRIES OR PARTS OF ENTRIES

You can use the DELETE subcommand to delete an entry or portions of an
entry.

To delete an entire entry, simply enter the user identification in
the DELETE subcommand. For example, to delete the entry for SMITH,
enter:

delete (smith)

To delete a password, and consequently all accounts and procedures
associated with the password, enter the password in the DATA operand.
For example, assume the following entry:

JONES
SECRET HUSH\\\
2531 2922 295;, 3998
PROCA PROCB PRéCC PRég; QEECCA

If you want to delete password SECRET and its accounts and procedures,
enter:

delete (jones) data(secret)
The resultant entry is:
JONES
HUSH
2922 3998

PROCC PROCD PROCA

96 TSO Terminal User's Guide (Release 21)

If the password happens to be the only password associated with the
user identification, the entire entry is deleted. For example, if you
now enter:

delete (jones) data(hush)
the entire entry is deleted.
To delete an account number, and consequently all procedures

assoclated with the account, enter the account number in the DATA
operand. For example, assume the following entry:

JAMES
ALPHA BETA
221 223 \320,
A91 A92 Agg }94
To delete account 224 and its procedures, enter:
delete (james beta) data(224)
the resultant entry is:
JAMES

X\

ALPHA BETA

}

A91 A92

221 2

(%)

If the account number happens to be the only account asscciated with
the password, then the password is also deleted. For example, if you
now enters:

delete (james beta) data(223)
The resultant entry is:
JAMES
ALPHA
221
A91

To delete a procedure, enter the procedure name in the DATA operand.
For example, assume the following entry:

JASON
WHO
¥
1%3“ 2345 3456
PR1 PR2 PR3 PRY

To delete procedure PR3, enter:

delete (jason who 3456) data(pr3)

Controlling a System With TSO 97

the resultant entry is:
JASON
WHO
1234 2345 3456
¥ ¥ ¥
PR1 PR2 PRU4
If the procedure happens to be the only procedure associated with the
account, then the account is also deleted. For example, if you now
enter:
delete (jason who 2345) data(pr2)
the resultant entry is:
JASON
WHO,
1234 3456
PR1 PRY4
If you want to delete the same data from all user identifications, or
passwords, or account numbers, replace that field with an asterisk. For

example, if you want to delete password SECRET from all user
identifications in the system, enter:

delete (*) datal(secret)
To delete accowmt 3994 from all passwords in the system, enter:
delete (* *) data (3994)

If you only want to delete account 3994 from all passwords in the
following entry:

/ ACR\
0 Yi"s MAYBE
3994 3995 3!96 3994 3997
ONE TWO THREE FOUR FIVE SIX SEVEN
enter:

delete (acr *) data(3994)

the resultant entry is:

NO YES MAYBE
3995 3%96 3997

TWO THREE FOUR SIX SEVEN

To delete procedure P67 from all account numbers in the system,
enter:

delete (* * *) data(pé67)

98 TSO Terminal User's Guide (Release 21)

If you only want to delete procedure P67 from all accounts in the
following entry:

delete (roger * *) data(p67)

the resultant entry is:

ROGER
AR BB
N
12 23 3
R
P65 P68 P62

To delete procedure P67 from all accounts under password HUSH of the
following entry:

SECRET HUSH
N N\
999 888 797 666
pd ' <\
P67 P68 P69 P67 P67 PT0

enter:
delete (ks hush *) data(p67)

the resultant entry is:

KS
SECREf(// \\\HUSH
999 \388 66‘6
PR

The asterisk is also used to denote a null field. For examrle,
assume the following entry:

to delete procedure CD, enter:

delete (mary * 777) dataf{cd)

Note: You cannot delete a null field.

Controlling a System With TSO 99

CHANGING DATA IN AN ENTRY
You can use the CHANGE subcommand to change any item of data in a UADS
entry. For example, if you have the following entry:
JONES
CHECK
AB2S
P792
and you want to change the user identification to SMITH, enter:
change (jones) data(smith)
If you have the following entry:
JONES
CHECK
AB25
P792
and would like to change password CHECK to PASS, enter:
change (jones check) data(pass)
The resultant entry will be:
JONES
PASS
AB25
P792
If you have the following entry:
SMITH
ALPHA
B222 B212
P9292 P1314
and would like to change account B222 to B333, enter:
change (smith alpha b222) data(b333)

The result will be:

SMITH
‘//,ALPHA
B333 B212
P9292 P1314

100 TSO Terminal User's Guide (Release 21)

If you have the following entry:

BOB
‘////BETA\\\\\
BA BB
JES 475

and would like to change procedure B25 to B88, enter:
change (bob beta ba b25) data(b8s)

The result will be:

BOB
\
/BETA\
BA BB
]3‘88 1!75

In addition to changing the user identification, passwords, accounts,
and procedures, you can change any user attributes. For example, if you
want to authorize user JONES to use the OPERATOR command, enter:

change (jones) oper

If you want to take away the authorization to submit background jobs
from usexr SMITH, enter:

change (smith) nojcl

DISPLAYING THE CONTENTS OF AN ENTRY

You can use the LIST subcommand to display the contents of all entries
in the UADS, of one particular entry, or of parts of one entry. To
display the contents of all entries, enter:

list (%)

To display the contents of entry GREEN, enter:

list (green)
If you want to display all the account numbers under password BBB of
entry GREEN, enter:

list (green bbb)
If you want to display all the procedures in account 3399 of password
BBB of entry GREEN, enter:

list (green bbb 3399)

Controlling a System With TSO 101

DISPLAYING ALL USER IDENTIFICATIONS

You can use the LISTIDS subcommand to list all user identifications in
the UADS. The contents of each entry will not be displayed. To list
the user identifications, enter: '

listids

ENDING OPERATION OF THE ACCOUNT COMMAND

When you want to end the ACCOUNT command, enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

102 TSO Terminal User's Guide (Release 21)

The following are definitions of words and
phrases which are unique to this
publication. For words and phrases which
are in general use in IBM publications,
refer to IBM Data Processing Glossary,
GC20-1699.

character-deletion character: A character
within a line of terminal input specifying
that the immediately preceding character is
to be deleted from the line.

default option: A language statement
option that is selected by the operating
system control program or a processing
program in the absence of a selection by a
user.

file name: A name of a collection of data.
(The file name corresponds to the data
definition name).

LOGOFF: The TSO command that terminates a
user's terminal session.

LOGON: The TSO command that a user must
enter to initiate a terminal session.

Glossary

LOGON procedure: A cataloged procedure
that is executed as a result of a user
entering the LOGON command.

national characters:
and d.

The characters #, §,

profile (user): The set of characteristics
that describe the user to the system.

receive interruption: The interruption of
a transmission to a terminal by a higher
priority transmission from the terminal.
Also called a "break".

storage dump: A recording of the contents
of main or auxiliary storage so that it can
be examined by a programmer or operator.

user: Under TSO, anyone with an entry in
the User Attribute Data Set; anyone
eligible to log on.

Glossary 103

104 TSO Terminal User's Guide (Release 21)

Indexes to systems reference library

manuals are consolidated in the publication
IBM System/360 Operating System: Systems

Reference Library Master Index, Order No.
GC28-6644., For additional information
about any subject listed below, refer to
other publications listed for the same

subject in the Master Index.

abbreviations 13
access to the system 18
account

message 16

number 21

number, delete a 97
ACCOUNT command 91
ADD subcommand 92
adding data to the UADS 92
alias, assign an 54
ALLOCATE command 65
allocating a data set 58
ammendments, summary of 7
ampersand, use of 83
apostrophes, use of 30
assign symbolic values 81
assign attributes to data sets 60.1
attention interruption 8,12,18
attention, simulated 19
attributes

data set 60.1

user 21

background jobs 63,86,87
canceling 75,90
controling the output of 76
displaying status of 75
submitting 73

blank line 29

BOTTOM subcommand 38

break key 19

broadcast messages 14,18,24
displaying 25
receiving 25
sending 26
suppressing 25

CALL
command 65,68,84
command, authority to use 91
subcommand 90

CANCEL command 75

change
data in the UADS 100
output class 61
part of a line 46

CHANGE subcommand 46,100
operational 24
terminal 24

character-deletion character 11,12
CLIST 82
columns of data 35

command
language 9
procedure
using 81

writing a 82
commands,
ACCOUNT 91
ALLOCATE 65
CALL 65,69,84

CANCEL 75
definition of 12
DELETE 56

EDIT 28,64
EXEC 65,81

FREE 61
function of 13
HELP 19
how to enter 15
LINK 66

list of 14
LISTALC 59,61

LISTBC 25
LISTCAT 61
LISTDS 61
LOADGO 71
LOGOFF 27

LOGON 21,27
operands of 19
OPERATOR 86

OUTPUT 76
PROTECT 57
RENAME 54
SEND 26
STATUS 74
SUBMIT 73

syntax of 12

TERMINAL 19

TEST 79

TIME 27

TERMINAL 19

WHEN 82,85

when to enter 15
communication lines 9
compile 63
compiler 59
compilers, data set names 65
context editing 29
controlling output of background jobs
conventions 11
correcting mistakes 11
create

a data set 33

a program 6u
current line pointer 28

finding 37

positioning 37

Index

76

Index 105

data definition statement (DD) 58
data set,
allocation 58
attributes 60.1
cataloging 62
changing the name of 51
creating 33
definition of 28
deletion 41,56
entering 28
freeing 61
inserting 41
listing contents of 50
listing names of your 61
name compiler 65
naming 19,30
manipulating 28
password 57
protecting 57
renaming 54
replacing 44
storing 51
type 30
updating 40
data control block (DCB) parameters 60.1
DD statement 58

debug 79
default
tab setting 36
values 13,82
delete

account number 97
data set 57
procedure 97
DELETE
command 56
subcommand 96
delete data from
data set 41l
UADS 96
delimiter, special
CHANGE subcommand 46
FIND subcommand 39
descriptive qualifier 32,82
DISPLAY subcommand 89
displaying
broadcast messages 25
contents of UADS 101
status of background jobs 75
time used 27
DOWN subcommand 38

edit
function, end the 53
line number 28
message 16

mode 28
EDIT command 28,64
end

subcommand 91,102

the edit function 53
END statement 82,85
ending a terminal session 27
entering

a line 12

data 28

information at terminal 11
entering and manipulating data 28

106 TSO Terminal User's Guide

(Release 21)

error messages 68
errors, correcting 11
EXEC command 65,81
execute 63

executing a program 68
external references 67

FIND subcommand 38
free a data set 61
| free a list of data set attributes 61
FREE command 61
fully qualified name 30
function of
command 13
subcommands 15

glossary 103

HELP command 19
hyphen, use of 15

identification

qualifier 30

user 21
identifing yourself to the system 21
increment, line number 34
information, requesting additional 17

informational messages 15,17
input

line, end of 35

mode 28

INPUT subcommand 34,43

inserting data into a data set 41
interruption, attention 8,12,18
introduction 9

JCL statement 58,74
job statement 74
jobname 74

keyboard 11

library, subroutine 67,71
line-deletion characters
line
entering 12
renumbering 49
line number
editing 28
increment 34
line pointer 28
finding 37
positioning 37
lines, renumber 49
LINK command 66
link edit 63
LIST subcommand 37,50,101
LISTALC command 59,61
LISTBC command 25
LISTCAT command 61
LISTDS command 61
listing
contents of data set 50
data set names 61
line numbers 50

11,12

load 63

module 66
program 71,73
loader 59

LOADGO command 71

locking the terminal 16

logical tab settings 35

LOGOFF command 27

logon procedure 21,25

LOGON command 21,27

lowercase letters in examples 15

mail 24
manipulating data 28
message 9,15
broadcast 18,24
error 68
informational 15,17
mode 16
output 16
prompting 13,17
sending 83
mistakes, correcting 11
mode
edit 28
input is8
messages 16
modifing time sharing parameters
MODIFY subcommand 91
module, load 66
MONITOR subcommand 86
monitoring terminal activity 86
msgclass 76

naming conventions
NO INTERCOM 26
NO MAIL 25

NO NOTICES 25
notices 24

null line 29

30,31

object module 66
operands 14
default values 13
definition of 13
operational characteristics 24
operator message 16
OPERATOR command 86 :
output class, change the 61
OUTPUT
command 76
command, authority to use 91
data set (SYSOoUT) 76
message 16

parm parameter 65
partitioned data sets 32
password 21,57

data set 57

delete a 97
PROC statement 82
procedure name 21
procedure, delete a 97
profile, user 24,25

91

PROFILE command 12
program execution 68
program, loading 71,73
prompting 9
messages 13,15,17
messages, response to 17
PROTECT command 57

qualified name 30
qualifier
description 32
identification 30
question mark, using a 9,17

ready message 15

receiving broadcast messages 25
RENAME command 54

renaming a data set 54

RENUM subcommand 49

renurbering lines 49

replacing data in a data set 41
requesting session time 86
reference, external 67

SAVE command 6U
SEND

command 26

subcommand 90
sending boradcast messages 26
session time 27,86
simulated attention 19
special delimiter,

CHANGE subcommand 46

FIND subcommand 39
starting and ending a terminal session
statement

END 82,85
JCL 58,74
JOB 74
PROC 82

status command, authority to use 92
STATUS command 74
stoxing a data set 51
subcommands,
ADD 92
BOTTOM 38
CANCEL 86
CHANGE
ACCOUNT 100
EDIT 46
definition of 13
DELETE 96
DISPLAY 89
DOWN 38
END 91,102
FIND 38
function of 19
how to enter 15
INPUT 34,43
INSERT 42
LisTt 37,50,101
LISTDC 25
LISTIDS 102
MODIFY 91
MONITOR 86

Index

21

107

GC28-6763-2

subcommands (continued)

operands of 20

RENUM 49

SAVE 51,64

SEND 90

syntax of 13

TABSET 36

TOP 38

UP 38

VERIFY 37
SUBMIT command 73,92
submitting background jobs 73
subroutine library 67,71
summary of amendments 7
suppressing broadcast messages 25
symbolic values 81

assign 83

types of 83
syntax of

commands 12

subcommands 13
sysout 76
system

access 18

catalog 61

pause 77

tab settings 35
default 37
logical 37

TABSET subcommand 36

terminal 9
charactexistics 24
ending a session 27
locking 16
monitoring 86
using a 11

TIBIM]

[
International Business Machines Corporation
Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Terminal User's Guide, TSO 1
termination, testing conditions for
test
message 16
program 79
TEST command 79
text handling 11
time 27,87
TIME command 27
TOP subcommand 38
TSO 9
types of
data sets 32
symbolic values 81

UADS (user attributes data set) 91
UP subcommand 38
updating a data set 41
uppercase letters
in examples 15
in output 11
user
attributes 21
identification 21
profile 24
user-supplied name 30

VERIFY subcommand 37

what you must know to use TSO 11
WHEN command 82,85

84

(9£-09€S) PPIND 5,495 [PuIIIR] OSL SO 09¢Auaishs

"V'S"N Ul posuLg

2-€9£9-8209

—_———— e ———_—— e ——— — — — — — — — — — — N8P N) — —— — —— — - — e —— — — — — -

IBM System/360 Operating System:
Time Sharing Option
Terminal User's Guide GC28-6763-2

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an

IBM office or representative will be happy to forward your comments,

READER'S
COMMENT
FORM

GC28-6763-2

Your comments, please . . .

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold
Business Reply Mail
No postage stamp necessary if mailed in the U.S,A.
Postage will be paid by:
International Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602
Fold

TBM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 16017
(International)

First Class
Permit 81
Poughkeepsie
New York

(96-09€S) PINO 5,395 [PuIL OSL SO 098 Auoisks

—— —— — - auIl 3uoly p|oj o Ny — — — — —

VSN ui pajulyg

T-€9£9-8209

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062.0
	062.1
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110

