
Systems
BASIC Language
Reference Manual

This publication contains a complete description of the
BASIC programming language as it is defined by IBM.

BASIC is a terminal-oriented language used by both
progn~mmers and non-programmers for the solution of
prdblems requ iring lengthy or repetitive computations.

The syntax and semantics of BASIC are presented in
this publication for readers who are already acquainted
with the fundamental techniques and terminology of
programming. Topics covered include program struc­
ture, data representation, and statement descriptions.
Sample BASI C programs and a formalized definition
of the language are included in appendixes.

Preface

This publication contains a complete description of the BASIC programming lan­
guage as it is defined by IBM.

BASIC is a terminal-oriented language which was developed for people who wish
to solve problems of a mathematical nature, but who need not acquire expertise
in the extensive discipline of modern computer programming.

The syntax and semantics of the BASIC language are presented here for the reader
who is already acquainted with the fundamental techniques and terminology of
programming. The first section of the book describes BASIC program structure and
data representation. In the second section, the BASIC statements are grouped ac­
cording to general function (data definition, input/output, etc.) and presented
with examples of their use.

Sample BASIC programs and a formalized definition of the language are included
in appendixes.

FIRST EDITION (June 1970)

Changes are periodically made to the specifications herein; any such changes will be reported in'
subsequent revisions.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM

branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, 1271
Avenue of the Americas, New York, New York 10020.

©Copyright International Business Machines Corporation 1970

Contents

Introduction 5 Syntax Conventions 7

Part J: BASIC Program Structure
Statements ,. 11 Arithmetic Values , .. , , , ... , 16
Statement Numbers , , , ,. 11 Arithmetic Constants ..,.,..."..,.....,........... 16
Statement Lines , , 11 Internal Constants , , 17

The BASIC Character Set , , ,... 13
Alphabetic Characters .. , , .. " .. ' ' ' 13
Numeric Characters '., "., ,' 13
Special Characters .,.,." , ' ... ,...... 13
Use of Blanks .. ,.,." , , .. " ... , .. , " ... 14

Arithmetic Variables .. 17
Character Data , .. , ... , ... , , 17

Character Constants ,....................... 17
Character Variables , ... ,.......... 18

Arrays ,...... ., , ... , 18
Arithmetic Arrays , " ... , ,......... 19

Data Representation , , ... , , , ... , , , , , 15
Arithmetic Data ,."., .. ,.,., .. ,',., 15

Character Arrays. , , ... , ... , 19
Naming Conventions for Variables and Arrays 20

Magnitude , .. , . , .. , .. , , , .. 15 Functions . . , , .. 20
A.rithmetic Precision , , .. , ... , , .. , 15 Expressions , , .. , 21
Arithmetic Data Formats , , ... ,. 15 Arithmetic Expressions and Operators " , 21

Integer ... , , , , , , , .. , , . , .. 15 Priority of Operators , , . , 22
Fixed-point , ... , .. ,', " ... ,., ,... 15 Character Expressions . ,,.............. 23
Floating-point ... "., .. , , , , , 15 Relational Expressions , , ,. 23

Part II: BASIC Statements
BASIC Statements , . , . , . , . , .. , , .. , .. , ... , , " 27 The PRINT USING and Image Statements 49

The PUT Statement , , 52
The Assignment Statement ... , ... , . , , ,. 29 The GET Statement .. , , , .. , , 53

Descriptive Statements . .. , , , 31
The DEF Statement, , . , , . , ... , , , , , 31

The RESET Statement .. , ... , , 54
The CLOSE Statement ., , .. , , . , , , ., 54

The DIM Statement , , . , .. , . , , , 32 Matrix Operations , . , , .. , . , , .. , , , , , , .. 57
Redimensioning Arithmetic Arrays ... , ... ,.,.,., , 57

Control Statements ,., , ... ,' ,'..... 35 The MAT Assignment Statement , . , . , ... , .. , ., 58
The GOTO Statement , , , , , , .. 35 Simple " .. ,"', .. , .. , , .. ,.,., .. ,., .. ,'... 58
The IF Statement , , , ... , ... ,', ,... 36 Addition and Subtraction .. , . , . , . , . , , ... , , 59
The FOR and NEXT Statements .. , .. , ... , , , , . , , . , ., 36 Multiplication .. , .. ,. ~ .. , , , . , , ... , ... , 59
The GOSUB and RETURN Statements .. , .. , , .. , 38 Scalar Multiplication ... , ... , " , " .. 60
The REM Statement ., , , , . , , 39 Inversion Function , , "., , .. ,.. 61
The PAUSE Statement , . , ... , , . , , . , . , ... , 39 Transpose Function .,...,........,.".,..,..".... 62
The STOP Statement ,. , , . , , , . , , , .. , , , .. 40 Identity Function , , , ... , .. , ... , 62
The END Statement, . , .. , .. , .. , ,. 40 ZER Function , , , , , , , 63

CON Function ... , , . , , . , , . , , , . , .. , , , 63
Input/Output Statements. , . . . , . , . , , .. , .. 43 MAT READ Statement .. , , . , .. , , , . , , . , . , . , , , . , , . , ., 64
The DATA Statement , . . , , . , , , , , ... ,. 43 MAT INPUT Statement. , . , . , . , . . . , ... , , .. 65
The READ Statement ... , , .. , , , . , ... , ... , . , , ., 44 MAT PRINT Statement, , , , , ... , ... ,. 66
The RESTORE Statement . , , . , , ... , 44 MAT PRINT USING Statement, , .. , , .. , .. 67
The INPUT Statement .. , , . , ... , ... , .. , , , , .. 45 MAT GET Statement, , , . , .. , ... , , 68
The PRINT Statement . , , . , , , , ... , . . 46 MAT PUT Statement, , .. , , . , ... , , , , .. , . .. 69

Appendixes
Appendix A: Implementation-defined Restrictions., 71

Appendix B: Collating Sequence of the BASIC
Character Set. , , . , . , , ... , ... , . .. 73

Appendix C: Sample BASIC Programs . . , , , ... 75

Appendix D: Formalized Definition of the BASIC
Language ,',.".,',." ,.. 77

Illustrations
Table 1. Naming Conventions for Variables and Arrays 20
Table 2. Intrinsic Functions ... , ... ,., .. ,., ,.,.," 20

Table 3. Packed Print Zone Lengths for
Arithmetic Expressions , , , , . , . , , , . , 47

Table 4. Carriage Position in PlUNT Statement . , . , 48

Introduc,tion

The BASIC programming language implemented by IBM is based on the BASIC lan­
guage developed at Dartmouth College as a tool for teaching the fundamentals
of programming. As the use of terminals has increased, more and more students,
as well as scientists and engineers, have found BASIC to be a relatively simple
yet powerful tool for the solution of problems requiring lengthy or repetitive
computations. Because BASIC programs and data are usually entered line by line
from an interactive terminal, debugging is facilitated, and results are available
almost immediately.

Despite its comparative simplicity, BASIC provides many of the convenient
features usually associated with more extensive higher-level languages. For
example, both arithmetic and character data may be manipulated in BASIC. Num­
bers can be expressed in any of three formats (integer, fixed-point, and floating­
point), and the BASIC user may choose the level of arithmetic precision with which
the numbers are handled.

Data items may be treated individually or grouped together to form arrays of
either one or two dimensions. The BASIC language provides extensive facilities
for performing matrix mathematics, including matrix inversion and multiplication.

As a built-in feature of the language, BASIC has the ability to compute a number
of such common mathematical and trigonometric functions as square roots, loga­
rithms, sines, and hyperbolic sines. In addition, the user is given the means to define
and name his own often-needed functions through the use of the DEF statement.

BASIC programs consist of statements that specify such operations as assigning
values to variables, defining functions and array sizes, and controlling the flow of
program execution. Loops, conditional and unconditional transfers of control, and
subroutines may all be controlled by BASIC statements. In addition, BASIC state­
ments direct the transmission of data between programs and terminals, and
between programs and on-line data files.

At the terminal, the BASIC language is used in conjunction with a command
language which consists of instructions for such procedures as beginning and
ending sessions at the terminal, running and saving programs, and listing or
modifying the contents of program li~raries. Command languages vary from
system to system, and a detailed description of them does not fall within the scope
of this book. The BASIC language, however, is essentially the same in all IBM imple­
mentations. Those aspects of it that may vary among IBM implementations, such
as arithmetic precision, will be noted in the text. A special appendix, listing all
such aspects, appears in the back of this book.

Introduction 5

Syntax Notation Conventions

The syntax notation conventions used to illustrate the definitions in this document
are:
a. Upper-case letters, digits, and special characters represent information that

must appear exactly as shown.
b .. Lower-case letters represent information that must be supplied by the user.
c. Information contained within brackets [] represents an option that can be

omitted.
d. The appearance of braces {} indicates that a choice must be made between the

items contained in the braces.
e. The appearance of the vertical bar I indicates that a choice must be made

between the item to the left of the bar and the item to the right of the bar.
f. An ellipsis (a series of three periods) indicates that the preceding syntactical

unit may be used one or more times in succession.
g. A list whose length is variable is specified by the format Xl, X2, ••• , XU' This

format indicates that a variable number of items may be specified, but that at
least one is required (commas must separate the items).

h. The appearance of one or more items in sequence indicates that the items (or
their replacements) must also appear in the specified order.

Syntax Notation Conventions 7

Part I: BASIC Program Structure

9

Statements

Statement Numbers

Statemelnt Lines

A BASIC program consists of a group of numbered statements. The statements may
be of either the executable or non-executable type.

Executable statements are those which specify a program action such as assign­
ing a value to a variable (the LET statement), printing a value at the terminal (the
PRINT statement), or directing the order of program How (the GOTO statement).

Non-executable statements are those that specify information which is necessary
for program execution. The DATA statement, which provides values to be used, and
the DIM statement, which specifies the size of data arrays, are typical non-execu­
table statements.

Executable and non-executable statements may be intermixed when a BASIC

program is entered at the terminal. The maximum number of statements permitted
in a single BASIC program varies among IBM implementations of the language.

Each statement in a BASIC program must be preceded by a statement number. The
statement number determines the position the statement will occupy in the pro­
gram when it is compiled. BASIC statements are executed in numerical order,
regardless of the order in which they are entered at the terminal, unless, of course,
the normal order of execution is altered by branches, loops, or subroutines.

The maximum number of digits permitted in a statement number varies among
IBM implementations of BASIC, but no implementation permits blank characters
before or within a statement number.

A BASIC statement and its statement number together are called a statement line.
At the terminal, statement lines are entered one per line; they must not be split
between lines, nor can there be more than one statement line per print line. A
typical statement line appears as follows:

10

Statement
Number

LET X = 2*X + Y

----~--~--~----
BASIC

Statement

Statements 11

The BASIC Character Set

Alphabetic Characters

Numeric Characters

Special Characters

The characters which have syntactic meaning in BASIC fall into three categories:
alphabetic, numeric, and special characters. All elements that make up a BASIC

program are constructed from characters in these three categories, with the excep­
tion of comments and character constants, either of which may contain any char­
acter permitted by the machine configuration on which the BASIC program is
processed.

The BASIC character set is arranged according to the Extended Binary Coded
Decimal Interchange Code (EBCDIC) collating sequence (See Appendix B).

The alphabetic characters in BASIC are the upper- and lower-case letters of the
standard English alphabet (A-Z and a-z) and the following three characters, called
the "alphabet extenders":

@ (the commercial "at" sign)
(the number or pound sign)
$ (the currency symbol)

Corresponding upper- and lower-case letters of the standard alphabet are evalu­
ated identically and may be used interchangeably; however, the characters on
the same keys as the alphabetic extenders are treated differently from the ex­
tenders and may not be used in their places. Thus, the symbols A2 and a2 are
equivalent, while the symbols $$ and 4$ (where the digit 4 is the lower-case
character corresponding to the upper-case $) are not equivalent.

When BASIC is used with languages other than English, the three alphabet
extenders can be used to cause printing of letters that are not in the standard
English alphabet. In such instances, the EBCDIC representation of the added char­
acter is the same as that of the alphabet extender which it replaces in printing.

The numeric characters in BASIC are the digits 0 through 9.

There are twenty-four special characters in BASIC. They are:

CHARACTER NAME

Blank
= Equal sign or assignment ~mbol
+ Plus sign

Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol
-+- Up-arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis

Comma
Point or period

The BASIC Character Set 13

CHAHACfER NAME

Use of BIonICs

14 Part I: BASIC Program Structure

Single quotation mark
Double quotation mark
Semicolon
Colon
Exclamation symbol

& Ampersand
? Question mark
> Greater than symbol
< Less than symbol
=1= Not equal symbol
< Less than or equal to symbol
> Greater than or equal to symbol

OR sign or vertical bar

Certain special characters may be combined to produce other syntactic forms
in BASIC, of which the following combinations are examples:

SYMBOL

>=
<=
<>
**

MEANING

Greater than or equal to
Less than or equal to
Not equal
Exponentiation

Blanks may be used freely throughout a BASIC program to improve readability.
They have no syntactic meaning except within character constants and in the
image specification statement, which specifies the format of printed output. Thus,
the following statements are all evaluated identically; that is, the integer value
twenty-five is assigned to an arithmetic variable named A2:

LET A2 = 25
LETA2=25
LET A 2 = 2 5
L ET A2 = 25

Data Representa;tion

Arithmetic: Data

Magnitude

Arithmetic Precision

Arithmetic Data Formats

Integer Formclt

Fixed-point Format

Floating-point Format

The BASIC character set can be used to represent either arithmetic or character
data.

Arithmetic data items are simply those having a numeric value. All numbers in
BASIC are expressed to the base ten; that is, they are treated as decimal numbers.

The magnitude of a number is its absolute value. The maximum magnitude per­
mitted in BASIC programs varies among IBM implementations of the language.

In BASIC, the precision of an integer or fixed-point number is the maximum number
of digits it may contain. The precision of a floating-point number is the number
of digits in the number to the left of the E (see format descriptions below).

Every IBM implementation of BASIC supports two levels of arithmetic precision,
designated "short form" and "long form." The minimum level of precision for the
two forms is six significant decimal digits and eleven significant decimal digits,
respectively.

The BASIC user specifies the level of precision (long or short form) under which
his program is to be run by a command language statement entered when the
program is executed.

Arithmetic data may be entered or printed in any of three formats: integer,
fixed-point, or floating-point. The appropriate format for a given number depends
on its magnitude and the level of arithmetic precision required by the user.

Numbers in any format may be either positive or negative. Negative numbers
must be preceded by a minus sign. A plus sign before positive numbers is optional;
when no sign is specified, the number is treated as a positive number. The three
formats are defined as follows:

Numbers expressed in fixed-point format (F-format) are written as an optional
sign followed by a number of digits.

Examples of numbers in integer format are:
o +2 -23 2683

Numbers expressed in fixed-pOint format (F-format) are written as an optional
sign, optionally followed by a number of digits, followed by a decimal point, fol­
lowed by a number of digits which are required if no digit precedes the decimal
point.

Examples of numbers in fixed-pOint format are:
33. 33.00 - .3 + 3.56

Numbers expressed in floating-point format (E-format) are written as an integer or
fixed-pOint number followed by the letter E and an optionally signed one- or
two-digit characteristic (exponent).

Data Representation 15

Arithmetic V1alues

Arithmetic Constants

The value of a floating-point number is equal to the number to the left of the E,

multiplied by ten to the power represented by the number to the right of the E.

This notation corresponds to standard scientific notation in which numbers are
expressed as powers of ten; however, while the number 107 is permissible in scien­
tific notation, the number E7 is not a valid floating-point number. The value 107

must be expressed as lEi in BASIC floating-point format.
Examples of numbers in floating-point format are:

FLOATING-POINT NUMBER
.2SE--4
+l.OE+S
SE-7
-lS.33E6

EQUIVALENT DECIMAL VALUE
.00002S
100000
.OOOOOOS
-lS330000

Arithmetic values may be entered at the terminal in whichever format the BASIC
user finds most convenient. The number one million, for example, could be entered
in any of the following ways:

1000000
1000000.00
1 E + 6

The numeric size of arithmetic values is limited only by the magnitude sup­
ported by the implementation of BASIC under which a program is run. The physical
length of values entered, however, is also subject to limitation by the implemen­
tation, so that some very large and very small numbers may be entered only in
E-format. For example, with an implementation that supported a magnitude of
107\ but which limited the number of digits in each value entered to sixteen, the
BASIC user could enter the E-format value:

1.00000 E + 20

but not the equivalent 1- or F-format number, a one followed by twenty zeros.
The formats of arithmetic values printed at the terminal as output are deter­

mined only by the action of the PRINT statement, and not by the form in which
the values were originally entered. The BASIC user may control the format of
output values, if he wishes, through the PRINT USING and Image statements.

An arithmetic constant in a BASIC program is either an integer, fixed-point, or
floating-point number whose value is never altered during execution of the pro­
gram. Thus, the integer one is a constant in the following statement:

LET X = X + 1

In the example below, the integers eleven and four are each constants, but the
number 11/4 is not a constant since it is not expressed according to one of the
three formats recognized in BASIC:

LET X = X + 11/4

When this statement is executed, the number 11/4 will be converted to its decimal
equivalent before being added to the current value of the variable x.

16 Part I: BASIC Program Structure

Internal Constants

Arithmetic Variables

Character l)ota

CharaGter Constants

An internal constant is an arithmetic constant whose value is pre-defined by the
BASIC language processor. Unlike normal arithmetic constants, the internal con­
stants are referred to by names, though like normal constants their values are
never altered during program execution. The threc internal constants are:

CONSTANT
7T'

Natural Log
Square Root of Two

MINIMUM SHORT MINIMUM LONG
NAME FORM VALUE FORM VALUE
&PI 3.14159 3.1414926536
&E 2.71828 2.7182818285
&SQR2 1.41421 1.4142135624

A variable is a named data item whose value is subject to change during execution
of the program.

Arithmetic variables are named by a single letter of the extended alphabet or by
a letter of the extended alphabet followed by a single digit. Examples of such
names are: #, #3, A, and A2. As stated in the section "Alphabetic Characters,"
the variables A and A2 can also be referred to by thc symbols a and a2.

When a BASIC program is executed, the initial value of all arithmetic variables
is set to zero.

Character data in BASIC is any data not having a numeric value. Like arithmetic
data, character data may be handled in the form of constants or variables.

A character constant is a string of characters enclosed in a pair of single or double
quotation marks. Any EBCDIC character may appear in a character constant, includ­
ing digits and characters which are not part of the BASIC character set. Thus, the
following are all valid character constants:

"ABCDEF"
'1234567'
"a%%345"
'A B C'

The length of a character constant is defined as the total number of characters
it contains, including blanks, but excluding the delimiting quotation marks. The
maximum number of characters permitted in a single character constant varies
among IBM implementations of the BASIC language.

If a character constant bounded by a pair of single quotation marks is to contain
a single quotation mark as part of the constant itself, two consecutive single
quotation marks must be entered to represent the single quotation mark to be
contained in the constant. Unless this procedure is followed, the contained quota­
tion mark will be recognized as the end of the constant. The same procedure is
required for character constants containing double quotation marks which are
bounded by double quotation marks. The following are some examples -of how
quotation marks are handled in BASIC character constants:

FORM ENTERED ACTUAL
CaNST ANT VALUE LENGTH

'i ts' its 3
"its" its 3
"it's" it's 4
'it"s' it's 4
'"its''' "its" 5
''''''i ts""" "its" 5
'''it''sH' "it's" 6

Data Representation 17

Character Variables

Arrays

A character variable is a named item of character data whose value is subject to
change during execution of the program.

Character variables are named by a single letter of the extended alphabet fol­
lowed by the currency symbol ($). Examples of such names are: A$ and $$. As
stated under the heading "Alphabetic Characters," the variable A$ can also be
referred to by the symbol a$.

When a BASIC program is executed, the initial value of all character variables
is set to eighteen blank characters.

When character constants are assigned to character variables, the values of the
constants are adjusted to a length of eighteen. Longer constants are truncated on
the right, and shorter ones are left-justified and padded to the right with blanks.

Data items of the same type (arithmetic or character) may be grouped together
to form an array. An array is a collection of such data items that is referred to
by a single name.

BASIC arrays may be either one- or two-dimensional. A one-dimensional array
can be thought of as a row of successive data items. A two-dimensional array can
be thought of as a rectangular' matrix of rows and columns. The following illus­
tration shows a schematic representation of both types of array.

_~_0 ____ ==~ ____ O_:_~_;_~_M_E_N_S_ID_N_A_L_A_R_R_n_N_A-:-~_:_)_A-========~~_A(J
r-------~---

TWO-DIMENSIDNAL ARRAY NAMED B
B (1,1) B (1,2) B (1,3)

B (2,1) B (2,2) B (2,3)

B (3,1) B (3,2) B (3,3)

B (4, 1) B (4,2) B (4,3)

Each data item in an array is referred to by the name of the array followed by
a subscript in parentheses which indicates its position within the array. The
general form for referring to an array memberis:

name (el [,e2])

where name is the name of the entire array and ei is any positive arithmetic
expression whose truncated integer value is greater than zero.

The expression in a subscript referring to a member of a one-dimensional array
gives the position of the member in the row, counting from left to right. Thus, the
third member of a one-dimensional array named A can be referred to by the
sym bol A (3), as in this example:

LET A(3) = 25

The first expression in a subscript referring to a member of a two-dimensional
array gives the number of the row containing the referenced member. Rows are
numbered from top to bottom. The second expression in the subscript gives the
number of the column containing the referenced member. Columns are numbered
from left to right. Thus, the second member in the fourth row of a two-dimensional
array named B can be referred to by the symbol.B(4,2), as in this example:

LET B(4,2) =1.53E6

The number of dimensions in an array, and the number of data items in each
dimension, is established when the array is declared. In BASIC, arrays may be

18 Part I: BASIC Program Structure

Arithmetic Arrays

Character Arrays

declared either explicitly, by use of the DIM statement, or implicitly, by a reference
to a member of an array that has not been explicitly declared.

When an array is declared explicitly, the number of dimensions and the maxi­
mum number of data items which can be contained in each dimension is specified
by the BASIC user through the DIM statement (see section 2, "BASIC Statements").

When an array is declared implicitly, by a reference to a member of it without
its name having appeared in a prior DIM statement, it will have the number of
dimensions specified in the reference, and each dimension will be able to contain a
maximum of ten data items. For example, when no prior DIM statement exists for
an array named A, the statement

LET A(3) = 50

will establish a one-dimensional array containing ten data items, the third of which
will have the integer value 50.

Likewise, when no prior DIM statement exists for an array named B, the statement

LET B (5 , 6) = 6. 913

will establish a two-dimensional array containing ten rows and ten columns (100
items), with the sixth member of the fifth row equal to 6.913.

Arrays containing dimensions of more than ten items may not be implicitly
declared. Thus, without appropriate prior DIM statements, the following statements
would both result in error conditions:

LET A(15) = 22.4
LET B(3,20) = 66.6

After an array has been declared, either explicitly or implicitly, it may not be
explicitly dimensioned by a DIM statement anywhere in the program. Arithmetic
arrays may be redimensioned according to the rules described in the section
"Matrix Operations." Character arrays can. never be redimensioned.

An arithmetic array may contain only arithmetic data and may be of either one or
two dimensions.

Arithmetic arrays are named by a single letter of the extended alphabet. Thus,
the letter A (or a) may stand for either a single arithmetic variable or an arithmetic
array, while the symbol A2 (or a2) may only stand for a single arithmetic variable.

All members of an arithmetic array are initially set to zero when the program
is executed.

Before being used in any of the matrix-handling statements provided by BASIC,
an arithmetic array must have been previously dimensioned, either explicitly or
implicitly. Arithmetic arrays may be redimensioned as described in the section
"Matrix Operations."

A character array may contain only character data and must be only one­
dimensional.

Character arrays, like simple character variables, are named by a single letter of
the extended alphabet followed by the currency symbol ($). Thus, the name D$
(or d$) may refer to either a simple character variable or a character array.

All elements of a character array are initially set to eighteen blank characters
when the program 'is executed.

Character arrays may not be used in matrix-handling statements and may not
be redimensioned.

Data Representation 19

Naming Conventions for Variables and Arrays

Functions

Expressions

The table below provides a concise rcview of the names used to refer to variables
and arrays in the BASIC language. Thc symbol "ext" denotes a letter of the
extended alphabet.

Table 1. Naming Conventions for Variables and Arrays

I
-~~--~-·-·--~

DATA TYPE

A~ith~~etfc·v a~fable···-

'IArithmetic Array
----_._----------- ---- -- - ------

I
.<?haracter V ariable

Character Array
----------------"--------

NAME

ext [digit]

ext

ext$

EXAMPLES

A, a2, $3
---~--~-- ---------- ~~---

A,b,#

A$, c$, @$

----.-~--

Often a BASIC user finds it necessary to compute the same mathematical function
of many different values during the course of a program. Rather than writing the
necessary calculations· for each value, he may employ the function capability of
the BASIC language.

A BASIC function is a named arithmetic expression that computes a single value
from another arithmetic expression. The SIN function, for example, computes the
sine of any number of radians. The expression SIN(;»), called a "function reference,"
computes the sine of five radians. Likewise, the function reference SIN(x) repre­
sents the sine of the number of radians equal to the value of the variable x.

The value in parentheses following the name of a function is called its "argu­
ment." A function reference is thus the name of any function and its argument.
Function references may be used anywhere in a BASIC expression that a constant,
variable, or array member reference may be used, as illustrated in the follow­
ing examples:

LET A = SIN(&PI) + 1
LET B = SQR (X+3)
LET C = INT (Y) + 3

The BASIC language supplies functions that perform a number of common
mathematical operations. These are called the "intrinsic functions." In addition,
BASIC allows the user to define and name his own frequently used functions through
use of the DEF statement (see Part II, "BASIC Statements") .

The intrinsic functions provided in all IBM implementations of BASIC are shown
in Table 2.

An expression in BASIC is any representation of an arithmetic or character value.
Constants, variables, arrays, array member referenccs, and function references
are all considered expressions. Exprcssiops may also be formed by combining any
of these value representations with symbols called "operators."

An operator specifies either the relationship between data items, an arithmetic
operation to be performed on them, or whethcr they are positive or negative. For
example, the symbols>, *, and + are operators specifying "greater than," multipli­
cation, and positivity (or addition), respectively.

A special class of expressions, called "relational expressions," is uscd with the
IF statement to test the truth of specified relationships between two values.

Expressions referring to entire arrays, rather than individual array members,
are called array expressions and are discusscd in the section "Matrix Operations."
Any expression which does not contain a reference to an entire array is called a
scalar expression.

20 Part I: BASIC Program Structure

Table 2. Intrinsic Functions

FUNCTION NAME

ABS (x)

DESCRIPTION

Absolute value of x

Arithmetic Expressions and Operators

ACS (x)
ASN (x)
ATN (x)
cos (x)
COT (x)
csc (x)
DEC (x)
DET (x)
EXP (x)
HCS (x)
HSN (x)
HTN (x)
INT (x)
LCT (x;)
LOC (x)
LTW (x)
RAD (x)
RND [(x)]
SEC (x)
SCN (x)
SIN (x)
SQR (x)
TAN (x)

Arccosine (in radians) of x
Arcsine (in radians) of x
Arctangent (in radians) of x
Cosine of x radians
Cotangent of x radians
Cosecant of x radians
Number of degrees in x radians
Determinant of an arithmetic array
Natural exponential of x
Hyperbolic cosine of x radians
Hyperbolic sine of x radians
Hyperbolic tangent of x radians
Integral part of x
Logarithm of x to the base 10
Logarithm of x to the base e
Logarithm of x to the base 2
Number of radians in x degrees
Random number between 0 and 1
Secant of x radians
Sign of x (-1, 0, or + 1)
Sine of x radians
Square root of x
Tangent of x radians

An arithmetic expression may be an arithmetic variable, array member, constant,
or function reference; or it may be a series of the above separated by binary oper­
ators and parentheses. Some examples of arithmetic expressions are:

Al
X3/(-6)
X+Y+Z
SIN(R)
-6.4
- (x-x,:n:<2/2+X)

The value of an arithmetic expression is obtained by performing the implied
operations on the specified data items according to the rules below.

The five binary arithmetic operators are:

MEANING SYMBOL

** or'+' Exponentiation (either form of the operator is accept-

*
/

+

able)
Multiplication
Division
Addition
Subtraction

The two unary operators are:

+ Positive
Negative

Data Representation 21

Priority of Opercttors

Special cases for the arithmetic operators and the resulting actions are as follows:
Exponentiation: The expression A. B or A **B is defined as the variable A raised to
the Bpower.

1. If A = B = 0 an error will occur.
2~ If A = 0 and B < 0 an error will occur.
3. If A<O and B is not an integer, an error of "a negative number to a frac­

tional power" will occur.
4. If A#O and B = 0, A. B is evaluated as l.
5. If A=O and B>O, A.B is evaluated as O.

Multiplication and Addition: A *B and A + B, multiplication and addition respec­
tively, are both commutative, i.e., A*B=B*A and A+B=B+A, but are not always
associative due to low-order rounding errors, i.e., A * (B*C) does not necessarily
give the same results as (A *B) *c.
Division: A/B is defined as A divided by B. If B = 0, an error "division by zero" will
occur.
Subtraction: A - B is defined as A minus B. No special conditions exist.
Unary Operators: The + and - signs may also be used as unary operators. Unary
operators may be used in only two situations:

l. Following a left parenthesis and preceding an arithmetic expression, or
2. As the leftmost character in an entire expression which is not preceded by

an operator.
For example:

- A + (- (B)) and B. (- 2) are valid.
A + -B or B. -2 is invalid.

Arithmetic expressions are evaluated according to the priorities of the operators
involved. Operations with the higher priorities are performed first; those at the
same priority level are performed from left to right. The levels of priority of the
operators are:

OPERATOR

** or •
unary + and -
* and /
binary + and -

PRIORITY LEVEL

Hiles!
Lowest

An expression is evaluated by being reduced to its component sub-expressions.
A sub-expression is defined as a group which can be read "operand-operator­
operand," where an operand is' either

a. a simple reference to data (constant or variable)
b. or a subscripted array reference
c. or a function reference
d. or a parenthesized sub-expression.
Starting with the first operator to be executed according to the priority scheme

above, the operands of its sub-expression are reduced to simple references to data
in a left to right order. This process is repeated as many times as required in a
left to right and/or descending order of priority of the remaining operators, until
the entire expression is reduced to a simple reference to the evaluated result.

22 Part I: BASIC Program Structure

Character Expressions

Relational Expressions

The following examples illustrate the successive steps in the evaluation of four
arithmetic expressions according to the rules described above. In each expression,
the variables A, B, and c have been assigned the integer values 4, 6, and 2
respecti vely.

EXPRESSION

-A>:o:c2+ B/C>:c2. 5
EVALUATION AND RESULT

-4**2+6/2*2.5
-16 + 6/2*2.5
-16 + 3 *2.5
-16 + 7.5

-8.5

(-4**2) +6/2*2.5
-16 + 6/2*2.5
-16 +3 *2.5
-16 + 7.5

-8.5

- 4** (2 + 6/2) *2.5
-4**(2+3) *2.5
-4**5 *2.5

1024 *2.5
-1024 *2.5

-2560

-4**((2+6)/2)*2.5
- 4** (8/2) *2.5
-4**4 *2.5

256 *2.5
-256 *2.5

-640

A character expression is a character constant, character variable, or single member
of a character array. The only operators ever associated with character expressions
are the relational operators described below. The following are examples of valid
character expressions:

A$ "ABC" 'abc' D$(4)

The following are examples of invalid character expressions:

A$ (4) + " IN G " 'STATEMENT'-"MENT"

A relational expression compares the values of two arithmetic expressions or two
character expressions. The expressions to be compared are evaluated and then
compared according to the definition of the relational operator specified. Accord­
ing to the result, the relational expression is either satisfied (true) or not satisfied
(false). Relational expressions may appear in a BASIC program only as part of an
IF statement.

Data Representation 23

The relational operators and their definitions are:

OPERATOR

=

<> or =/=
>= or>
<= or<

>
<

The general format of a relational expression is:

e 1 relational-operator e 2

MEANING

Equal
Not equal
Greater than or equal to
Less than or equal to
Greater than
Less than

where ei is any expression other than an array or relational expression, and rela­
tional-operator is any of those described above. Both eland e:e must be of the
same data type (character or arithmetic), and only two expressions may be
compared in a single relational expression.

When character data appears in a relational expression, it is evaluated according
to the EBCDIC collating sequence (see Appendix B) character by character, left to
right. Thus, the following relational expressions would all be satisfied:

"ABC" = 'ABC'
'able' < 'BALL'
"Able" > "BALL"

"123" > "ball"
'$123' < "able"

24 Part I: BASIC Program Structure

Part II: BASIC Statements

2:i

BASIC Sjtatements

This section presents the statements of the BASIC language arranged according to
the functions they perform.

Each functional group of statements is introduced by a list of all the statements
in it, including a brief description of each statement. The functional groupings
have been chosen for purposes of presentation only; they have no fundamental
significance in the language. The groupings are as follows:

l. The Assignment Statement-for assigning data from an expression to a vari­
able within a program.

2. Descriptive Statements-for specifying array sizes and for defining functions.
3. Control Statements-for directing the flow of program execution, including

loops, unconditional and conditional branches, subroutines, and interruption
and termination of programs.

4. Input/Output Statements-for transmitting data to a program for processing
and from a program after processing. The Input/Output statements are
further divided into those controlling I/O (Input/Output) of internal files,
those controlling I/O of interactive terminals, and those controlling I/O of
on-line storage devices.

5. Matrix Operation Statements-for computation and I/O involving entire
arrays.

The statements within each functional group are presented in the following
format:

l. Function-a short description of what the statement does.
2. General Format-a format definition of the syntax of the statement.
3. Action-a description of how the statem~nt works.
4. Rules-a list of rules governing the use of the statement in a BASIC program.
5. Examples-illustrations of how the statement might appear in a BASIC program.

BASIC Statements 27

The Assignment Statement

The Assignment Statement

The Assignment statement, which is the only statcment in its group, assigns the
value of an expression to one or more variables.

Function:
The assignment statcment assigns the value of an expression to one or more

variables.
General Format:

[LET]Vl [,vn] ••.• = exp

where Vi is the name of a variable and exp is an expression.
Action:

The expression exp is evaluated once, and the resulting value is assigned to the
specified variable from left to right.

Character constants containing less than eighteen characters are padded on the
right with blanks to a length of eighteen before being assigned to character vari­
ables. Character constants containing more than eighteen characters are truncated
on the right to a length of eighteen before being assigned. Character constants
containing no characters (null) are assigned as eighteen blank characters.
Rules:

1. Data values to the right of the equal sign must be of the same type (arith­
metic or character) as the variables to which they are assigned.

2. Subscripted references to array members are permitted in the assignment
statement, but unsubscripted array references may appear only in the MAT

Assignment statement (see the section, "Matrix Operations").
3. The maximum number of variables permitted on the left side of the equal

sign in a multiple assignment statement varies among IBM implementations
of the BASIC language.

Examples:

10 LET Z$ = "CAT"
20 LET X = 9
30 LET Y(X) =2
40 X, Y(X) = X/Y(X)

After execution of statement 10, the character variable z$ will contain the word
CAT followed by fifteen blank characters.

After execution of statement 20, the arithmetic variable x will have the integer
value 9.

After execution of statement 30, the ninth memb~r of the one-dimensional
arithmetic array y will have the integer value 2.

After execution of statement 40, the arithmetic variable x will have the decimal
value 4.5, as will the fourth member of the one-dimensional arithmetic array Y.

The action of the assignment statement in statement 40 is to first evaluate the
expression on the right according to the current values of the variables x and y(x),
9 and 2, respectively. The resulting value, 4.5, is then assigned to the variable x.
The new value of x, 4.5, is then used in the evaluation of the subscript of the

The Assignment Statement 29

30 Part II: BASIC Statements

array variable y (x), for which purpose only the truncated integer portion, 4, is
considered. Thus, the fourth member of array y is set to the expression value 4.5.

If statement 40 had been LET Y (x) ,x = x/y (x), the resulting values would have
been 4.5 for the ninth member of array y and for the variable x.

Descriptive Statements

The DEF Statement

The descriptive statements are non-executable statements used for specifying the
size of data arrays and for defining user-written functions. User-written functions
simplify coding by allowing the BASIC user to write an expression that will calcu­
late the same mathematical f~nction for a number of different values.

The DEF statement is. used to define arithmetic functions.
The DIM statement is used to define the size of data arrays.

Function:

The DEF statement is a non-executable statement that defines a user-written
function.
General Format:

DEF FNa (v) = arithmetic expression

where a is any letter of the extended alphabet and v is a single arithmetic vari­
able name, called the "dummy variable."

A reference to a user-:-written function has the general format:
FNa (x)

where FNa is the name of the function and x is an arithmetic expression called the
"argument."
Action:

When a reference to a user-written function is encountered in an expression at
execution time, the current value of the argument (x) is substituted for each
occurrence, if any, of the dummy variable (v) in the arithmetic expression of the
corresponding DEF statement. The expression in the DEF statement is then evaluated
and the result is assigned as the value of the function reference in the expression
in which it appears.

The values of any program variables or array member references that appear in
the arithmetic expression of the DEF statement are evaluated at the time of invo­
cation.
Rules:

1. A function may be defined anywhere in a BASIC program, either before or
after references to it.

2. A function of a given name may be defined only once in a program.
3. A function definition may not contain references to itself, nor to other func­

tions which refer to it in their definitions.
4. A function reference to a user-written function may appear anywhere in a

BASIC expression that a constant, variable, array member reference, or intrinsic
function reference may appear.

5. The dummy variable (v) has meaning only in the DEF statement. Conse­
quently, it is possible to have a dummy variable with the same name as a
simple arithmetic variable used elsewhere in the program. The BASIC lan­
guage will recognize each as a unique identifier, and no conflict of names or
values will result from this duplicate usage.

Descriptive Statements 31

The DIM Statement

32 Part II: BASIC Statements

6. The maximum number of user-written functions permitted in a BASIC pro­
gram varies among IBM implementations of the language, as does the maxi­
mum number of nested function references in each expression, e.g., X=FNA

(FNB (FNC (z))).
Examples:

After execution of the following series of BASIC statements, the variable z will
have the integer value 500.

10 LET Y = 10
20 DEF FNA eX) = X):o:~3/2

30 LET Z = FNA(Y)

In the following example, the variable R will have the integer value 8 after
execution of statement 60. The argument (10) in statement 60 will have no effeet
on the value of R since it will be substituted for each occurrence of the dummy
variable (x) in the arithmetic expression of the DEF statement, and, in this example,
x does not appear there.

40 LET Y = 2
50 DEF FNZ (X) =Y::o:~3

60 LET R = FN Z (10)

In the next example, the variable R will have the integer value 72 after execu­
tion of statement 80. When statement 80 is executed, the current value of Y,

which is 2, is substituted for each occurrence of the dummy variable x in the
arithmetic expression of statement 100. Since the function FNC, defined in state­
ment 100, uses the function FNB, in its definition, the value 2 is substituted for
each occurrence of x in the arithmetic expression of statement 90. The resulting
value, 47, is then substituted for the function reference FNB(x) in statement 100.
The current value of Y, 2, is then added to 47, and the resulting value, 49, is
substituted for the function reference FNC(Y) in statement 80. This value is added
to 23, and the resulting value, 72, is assigned to the variable H.

70 LET Y = 2
80 LET R = FNC(Y) + 23
90 DEF FNB (X) = 5*X**2+ 27
100 DEF FNC (X) = FNB (X) + X

Function:
The DIM statement is used to specify the size of arrays.

General Format:

DIM name-l (rl [,Cl]) [,name-n (rn[,cn])] •••

where name-i is the name of an array, and ri and Ci are positive integers specifying
a dimension.
Action:

A one-dimensional array whose name is specified in a DIM statement is defined
as having the number of members represented by the integer rio

A two-dimensional array whose name is specified in a DIM statement is defined
as having ri number of rows and Ci number of columns.

If a variable name subscripted by one or two expressions is used in a program
without prior definition of an array for that name, an array of the appropriate
number of dimensions is automatically defined for that name. One-dimensional
arrays thus defined contain ten members; two-dimensional arrays contain ten rows
and ten columns.

The initial value of all arithmetic array members is zero. The initial value of
all character array members is eighteen blank characters.
Rules:

l. An array name may nof appear in a DIM statement if it has been previously
defined, either implicitly, or explicitly in a prior DIM statement. (Arithmetic
arrays may be redimensioned after definition according to the rules explained
in the section, "Matrix Operations".)

2. Arrays of one or two dimensions may be defined in a DIM statement.
3. A character array may have only one dimension.
4. The maximum permissible size of one- and two-dimensional arrays varies

among IBM implementations of the BASIC language.
Example:

20 DIM Z$ (5), A(4,2)

The result of the above statement is:

A= [! n
z$ = Five strings of eighteen blank characters each.

Descriptive Statements 33

Control Statements

The GOTO Statement

The control statement$ are used to direct the flow of program execution.
The GOTO statement causes control to be transferred either unconditionally

(simple form) or conditionally (computed form).
The IF statement is: a conditional branch statement that causes control to be

transferred according to the result of the evaluation of a relational expression.
The FOR and NEXT statements together define a loop which may be executed a

number of times.
The GOSUB and RETURN statements define a subroutine.
The PAUSE statement causes program execution to be interrupted.
The STOP statement causes the termination of program execution.
The END statement causes the termination of program compilation and execu­

tion.
The REM statement allows the user to insert comments in a BASIC program.

Function:
The GOTO statement transfers control, either conditionally or unconditionally, to

a specified statement.
General F orrnat:

The GOTO statement may be written in either of two forms, simple or computed.
Simple:

GOTOS

Computed:
GOTO S1 [,Sn] . ~ . ON x

where Si is a statement number and x is an arithmetic expression.
Action:

Execution of a simple GOTO statement causes an unconditional transfer of control
to the statement whose number is specified.

Execution of a computed GOTO statement causes the arithmetic expression (x)
to be evaluated and c0ntrol to be transferred to the statement whose numerical
position in the list of statement numbers (read left to right) is equal to the trun­
cated integer value of the expression. Thus, an expression with a value of 2.75
would cause control tq be transferred to the second statement on the list. If the
expression has a value less than 1 or greater than the total number of statement
numbers listed, control "falls through" to the first executable statement following
the computed GOTO statement.

When a simple or computed GOTO statement causcs control to be transferred to a
non-executable statement, control is passed to the first executable statement follow­
ing the one specified.
Examples:

The following statement will pass control to statement number twcnty:

100 GOTO 20

When X = 4, the following statement will pass control to statement number
sixty:

50 GOTO 40,60,15,100 ON (X+4)/4

Control Statements 35

The If Statement
Function:

The IF statement causes control to be transferred according to the result of the
evaluation of a relational expression.
General Fonnat:

IF el op e2 {THEN I GOTO } s

where eland e~ are scalar cxpressions, op is a relational operator, and s is the num­
ber of the statement to which control is transferred if the expression is satisfied.
Action:

When an IF statement.is executed, the two expressions arc compared as specified
by the relational operator. If the relationship is true, control is transferred to the
specified statement number. If the relationship is not true, control is passed to the
first executable statement following the IF statement.

Before being compared, a character constant containing less than eighteen char­
acters is blank-padded on the right to a length of eighteen. A character constant
containing more than eighteen characters is truncated on the right to a length of
eighteen before comparsion. A character constant containing no characters (null)
is compared as eightecn blank characters.

All comparisons are made according to the collating sequence of the Extended
Binary Coded Decimal Interchange Code (EBCDIC) (see Appendix B).

In the event that the specified relationship is true and the specified statement is
non-executable, control is passed to the first executable statement following the
specified statement.
Rules:

l. The expressions being compared must contain data of the same type (char­
acter or arithmetic).

2. The keywords THEN and GOTO are interchangeable in the IF statement. Either
may be used, but not both.

Examples:

30 I F A (3) =1= X + 2/ Z THEN 85
40 IF R$ > "CAT" GOTO 70
50 IF 82 = 37.222 THEN 110

The fOR and NEXT Statements

.3(1 Part II: BASIC Statements

Function:
Together, a FOR statement and its paired NEXT statement delimit a "FOR loop"­

a set of BASIC statements which may be executed a number of times. The FOR

statement marks the beginning of the loop and specifies the conditions of its
execution and termination. The NEXT statement marks the end of the loop.
General Format:

FOR av = Xl TO X2 [STEP X,i]

(BASIC statements)

NEXTav

where av is a simple arithmetic variable called the control variable, Xl is an arith­
metic expression which assigns an initial value to av, X2 is an arithmetic expression
representing the value of av which will cause execution of the loop to be term i-

nated, and XJ is an arithmetic expression representing the value of the increment to
be added to av at the end of each execution of the loop. The arithmetic variable au
must be the same in any given pair of FOR and NEXT statements.

Action:
When the loop is first executed, the control variable (av) is set equal to the ini­

tial value (Xl)' The statements in the loop are executed, and the specified incre­
ment (X;I) is added to the control variable (av), which is then compared with the
specified final value (x2). If the control variable (av) is still less than (greater than
for negative increments) or equal to the final value (Xl!), the loop is executed and
the cycle continues until an increment is made which renders the control
variable greater than (less than for negative increments) the specified fiJlal
value (Xl!)' At that time, the specified increment value (X,I) is subtracted from the
value of the control variable and control "falls through" to the first executahle
statement following the NEXT statement.

Rules:
1. The value of the control variable (av) may be modified by statements within

the FOR loop, but its initial value (Xl), final value (Xi!), and increment (XJ)
are established during the initial execution of the Fon statement and are not
affected by any statements within the FOR loop.

2. If the optional STEP expression is omitted in the Fon statement, the increment
value is automatically set to + 1.

3. If the initial value (Xl) to be assigned to the control variable is greater than
(less than for negative increments) the final value (X2) when the Fon state­
ment is evaluated, the loop is not executed, no value is assigned to the control
variable (av), and execution proceeds from the first executable statement fol­
lowing the associated NEXT statement.

4. If the STEP option is to be assigned a value which is contradictory to the incre­
ment direction implied by the initial and final values (e.g., Fon X = 1 TO

5 STEP - 1), the FOR loop is not executed, no value is assigned to the control
variable (av), and execution proceeds from the first executable statement
following the associated NEXT statement.

5. If the value of the STEP option is zero, the Fon loop is executed an infinite
number of times, or until the control variable is set outside of the specified
range.

6. Transfer of control into or out of a FOR loop is permitted; however, a NEXT

statement may not be executed unless its corresponding FOR statemcnt has
been executed previously.

7. FOR loops may be nested within one another as long as the intenlal FOR loop
falls entirely within the external FOR loop (see example). Nested Fon loops
may use the same control variable.

8. The maximum number of levels permitted when Fon loops are nested varies
among IBM implementations of the BASIC language.

Examples:
The first example shows a simple FOR loop:

20 FOR 1= 1 TO 25 STEP 2

.
(BASIC statements)

95 NEXT I

Control Statements 37

The second example shows the correct technique for nesting FOR loops. The
inner loop is executed 100 times for each execution of the outer loop.

10 FOR J= A TO B STEP C(l) **3

(BASIC statements)

150 FOR K = 1 TO 100

(BASIC statements)

280 NEXT K

(BASIC statements)

620 NEXT J

The GOSU!l and RETURN Statements
Function:

38 Part II:]BASIC Statements

The GOSUB statement transfers control to a specified statement. The RETURN state­
ment transfers control to the first executable statement following the last GOSUB

statement executed. Together GOSUB and RETURN statements are used in the crea­
tion of subroutines.
General Format:

GOSUBS

RETURN [comment]

where S is the number of the statement to which control is to be transferred and
comment is one or more EBCDIC characters.
Action:

Execution of a GOSUB statement causes an unconditional transfer of control to the
statement whose number is specified. If the specified statement is non-executable,
control is passed to the first executable statement following the specified statement.

Execution of the RETURN statement causes an unconditional transfer of control to
the first executable statement following the last GOSUB statement executed.
Rules:

l. More than one GOSUB statement may be executed before a RETURN statement
is executed, but when a RETURN statement is executed, there must be at least
one GOSUB statement already executed for which a corresponding RETURN

statement has not been executed.
2. The maximum number of levels permitted when subroutines are nested varies

among IBM implementations of the BASIC language.

The REM Statement

The PAUSE Statement

Examples:
50
60

Function:

RETURN

RETURN

The REM statement allows the BASIC user to insert comments in the program
listing.
General Format:

REM [comment]

where comment is one or more EBCDIC characters.

Action:
The REM statement is non-executable. It appears in the program listing, but has

no effect on program execution.

Rule:
A REM statement may appear anywhere in a BASIC program.

Example:

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT

Function:
The PAUSE statement causes program execution to be interrupted.

Control Statements 39

The STOP Statement

The END Statement

40 Part II; BASIC Statements

General Format:

PAUSE [comment]

where comment is one or more EBCDIC characters.
Action:

When a PAUSE statement is encountered during program execution, execution is
interrupted and the following message is printed out at the terminal:

PAUSE AT S

where S is the number of the PAUSE statement.
When a PAUSE statement is executed immediately after a PRINT or MAT PRINT

statement, the message PAUSE AT S is printed on the line below the last line of
output from the PRINT or MAT PRINT statement, even if the final delimiter of that
statement is a comma or semicolon.
Rule:

The procedure for subsequent resumption of program execution after a PAUSE

statement varies among IBM implementations of the BASIC language.
Example:

The following statement would cause the message PAUSE AT 80 to be displayed at
the terminal and processing to be suspended until the user executed the appro­
priate resumption procedure.

80 PAUSE

Function:
The STOP statement causes program execution to be terminated.

General Format:

STOP [comment]

where comment is one or more EBCDIC characters.
Action:

When a STOP statement is executed, program processing is terminated and all
open files are automatically closed. Unlike the END statement, which functions
identically at execution time, the STOP statement has no effect on the compilation of
the program.
Rule:

A STOP statement may appear anywhere in a BASIC program.
Example:

75 STOP

Function:
The END statement causes the termination both of compilation and of execution

of a BASIC program.
General Format:

END [comment]

where comment is one or more EBCDIC characters.
Action:

The END statement indicates the logical end of a program. When it is encoun­
ten'd during program compilation, it causes any statements which follow it numer­
ically to be excluded from the program. When an END statement is encountered at
execution time it causes termination of processing and closing of all open files.

Rule:
The END statement is optional. If omitted by the user, END will be assumed by

the system to follow the highest-numbered statement in the program.
Example:

999 END

Control Statements 41

Input/Output Statements

The DAT)~ Statement

The input/output statements are used for transmitting data to a program for
processing, and from a program after processing. They are divided into three
subgroups:

1. Statements controlling the creation and use of internal files:
• The DATA statement creates an internal data file.
• The READ statement assigns values to variables from the internal data file.
• The RESTORE statement causes the internal data file to be positioned at its

beginning.
2. Statements controlling data transmission to and from interactive terminals:

• The INPUT statement allows the user to assign values to variables from the
terminal at execution time.

• The PRINT statement causes data values to be printed at the terminal.
• The PRINT USING and Image statements together allow the BASIC user to have

data values printed at the terminal in a format of his own choosing.
3. Statements controlling the writing and reading of files stored on on-line stor­

age devices:
• The PUT statement causes data values to he placed in an external file.
• The GET statement causes data values to be assigned to variables from an

external file.
• The RESET statement causes a file to be repositioned at its beginning.
• The CLOSE statement causes external files to be deactivated.

Function:
The DATA statement is a non-executable statement that creates an internal data

file from which values are supplied to variables in corresponding READ statements.
General Format:

DATA constant [, constant] ...

where constant is either an arithmetic or character constant.
Action:

Before execution time, a single table is constructed containing all the values
from all the DATA statements in the program in their order of appearance by state­
ment number. At the same time, a pointer is set to the first item in the table. The
pointer is advanced through the table, item by item, as the data is supplied to READ

statement variables.
Rules:

1. Each item of data in a DATA statement must be of the same type as that spec­
ified by the variable to which it is to be assigned in the corresponding READ

statement. Thus, if the third constant in the DATA statement is a character con­
stant, then the READ statement variable to which it is assigned must be a char­
acter variable.

2. DATA statements may be placed anywhere in a BASIC program, either before
or after the READ statements to which they supply data.

Example:

10 DATA 'JONES', 15.00, 'SMITH',20.50

Input/Output Statements 43

The READ S'tatement

The RESTORE Statement

44 Part II: BASIC Statements

Function:
The READ statement assigns values to variables from the data table created by

DATA statements.
General ForrrUlt:

where Vj is a simple arithmetic or character variable, or a subscripted reference to
a single array member.
Action:

When a READ statement is executed, successive values from the data table are
assigned to the variables in the READ statement from left to right, beginning at the
current position of the data table pointer.

Subscripts of array variables in the READ statement are evaluated as they occur;
thus, an assigned variable in a READ statement may be used subsequently as the
subscript of another variable in the same statement.

Character constants containing less than eighteen characters are padded on the
right with blanks to a length of eighteen before being assigned to character var­
iables. Character constants containing more than eighteen characters are truncated
on the right to a length of eighteen before being assigned. Character constants con­
taining no characters (null) are assigned as eighteen blank characters.
Rules:

l. Each data value read from the table must be of the same type (character or
arithmetic) as the variable to which it is assigned.

2. A READ statement is invalid if there arc no DATA statements in the program.
3. If the data table is exhausted and unassigned variables still remain in the READ

statement, an error condition results.
Examples:

10 DATA 'JONES', 15.00, 'SMITH', 20.50
20 READ A$,A1,B$,B1
30 DATA 1,2,3,4,5,6
40 READ A,B,C,X(A),X(B),X(C)

After execution of the above statements, the character variables A$ and B$ will con­
tain the characters strings JONES and SMITH respectively, each padded on the right
with blanks to a length of eighteen. The arithmetic variables Al and Bl will contain
the decimal values 15.00 and 20.50, respectively. The arithmetic variables A, B, and
C will contain the integer values 1, 2, and 3 respectively, and the first three mem­
hers of the one-dimensional array named x will contain the integer values 4, 5, and
6, respectively.

Function:
The RESTOHE statement causes the subsequent READ statement to begin assigning

values from the first item in the first DATA statement of the program.
General Format:

RESTOHE [comment]

where comment is one or more EBCDIC characters.
Action: .

The RESTOHE statement returns the data table pointer from its current position to
the beginning of the table. The optional comment is a character string that does
not effect the execution of the statement.

The INPUT ~5tatement

Rules:
1. A RESTORE statement in a program containing no DATA statements is ignored.

No error condition. results.
2. A RESTORE statement for an already restored table is ignored.

Example:
After the following series of statements is executed, the variables A and C will

each have a value of one, and the variables Band D will each have a value of two.

10 DATA 1,2
20 READ A,B
30 RESTORE
40 READ C,D

Function:
The INPUT statement allows the BASIC user to assign values to variables from

the terminal at execution time.

General Format:

INPUT Vl [, V n] •••

where Vi is a variable reference.

Action:
When an INPUT statement is encountered at execution time, it causes a question

mark to be printed out at the terminal and program execution to be temporarily
interrupted. The user then enters a list of values which are assigned, in order of
appearance, to the variables specified in the INPUT statement. When the complete
list has been entered, signalled by a carriage return, program execution resumes.

Subscripts of array variables in the INPUT statement are evaluated as they occur;
thus an assigned variable in an INPUT statement may be used subsequently as the
subscript of another variable in the same statement.

Character constants entered at the terminal that contain less than eighteen
characters are padded to the right with blanks to a length of eighteen before being
assigned to character variables. Character constants containing more than eigh­
teen characters are truncated to the right to a length of eighteen before being
assigned. Character constants containing no characters (null) are assigned as
eighteen blank characters.

Arithmetic data values are assigned to variables in the form (short or long)
which has been specified for the program. Thus, llong-form values entered at the
terminal during execution of a program for which short-form arithmetic has been
specified are truncated to the implementation-defined numb~r of significant digits
for short form (at least six) before being assigned. Likewise, short-form values
entered at the terminal during execution of a program for which long-form arith­
metic has been specified are zero-filled to the implementation-defined number
of digits for long form .(at least eleven) before being assigned.

When an INPUT statement is executed immedia1tely after a PRINT or MAT PRINT
statement in which the final delimiter is a comma or semicolon, the question mark
generated by the INPUT statement is printed directly following the last data item
on the same print line. In all other instances, the question mark appears as the
first character on the next print line.

Rules:
1. Each value entered must be of the same data type (character or arithmetic)

as the corresponding variable reference in the INPUT statement. Data types
may be mixed in the same statement.

Input/Output Statements 45

The PRINT Statement

46 Part II: BASIC Statements

2. Each value entered must be separated from the next by a comma. Two
consecutive commas are treated as an error. A carriage return ends the series
of values entered.

3. Only a single line of input may be entered in response to an INPUT statement.
4. A character constant in the input stream must be bounded by a pair of

single or double quotation marks.
5. The number of values entered at execution time must be equal to the

number of variable references specified in the INPUT statement.
6. The procedure for retry or re-entry of data after an error varies among IBM

implementations of the BASIC language.
Example:

10 INPUT A$, R(3), X, Y(X)
? "DOG", 4E-7, 8, .013

Function:
The PRINT statement causes the values of specified scalar expressions to be

printed at the terminal. The format of printed values is standardized, but the
PRINT statement allows the BASIC user to control the spacing between values on
the printed line.
General Format:

PRINT exp-l [[, I;] [exp-n]] . . .

where exp-i is a scalar expression and the comma and semicolon are delimiters
which specify the position of the carriage.

As the format description indicates, a comma or semicolon delimiter is optional.
A scalar expression in a PRINT statement may be followed by a delimiter of one or
more blank characters, or of no characters at all (that is, directly concatenated to
the next specified expression). Such specifications are evaluated as a "nuB" delim­
iter. Null delimiters may only be used between two expressions when one, and only
one, of them is a character constant. Two consecutive character constants, or two
expressions of which neither is a character constant, must be separated by either
a comma or semicolon delimiter.
Action:

When a PRINT statement is executed, each specified expression value is con­
verted to the appropriate standard output format, as described below, and printed
at the terminal in the order in which it appears in the PRINT statement. The car­
riage is then positioned as specified by the delimiter immediately following the
expression.

Standard Output Formats: If the expression value to be printed is a character ex­
pression, the actual characters contained or referred to in it are printed at the ter­
minal, with the exception of trailing blanks in character variables or array members.

If the expression value is an arithmetic expression it is converted for printing to
one of the following standard output formats. (The letter P in these descriptions
denotes the maximum number of digits provided by the implementation for long
and short form arithmetic.)

1. I-format (integer) consisting of a sign (blank or minus), and up to p signifi­
cant decimal digits for integers whose absolute value is ~qual to or greater
than zero, and less than 1E + P. Printed values are rounded off, not truncated.

2. E-format (floating-point), consisting of a sign (blank or minus), up to P
significant decimal digits, a decimal point following the first digit, the letter
E, and a signed exponent consisting of two'digits. E-format is used to print
numbers, not included in the I-format described above, whose absolute value
is less than 1E -1 or greater than or equal to 1E + P. Printed values are rounded
off, not truncated.

3. F-format (fixed-point), consisting of a sign (blank or minus), up to P signiH·,
cant digits, and a. decimal point in the appropriate position. F-format is used
to print numbers whose absolute values are not included in the 1- and E-format
descriptions above. Printed values are rounded off, not truncated.

The following examples show how various arithmetic values would be printed
in response to a PRINT statement in a program run under short form arithmetic in
an IBM implementation of BASIC providing the minimum precision, six significant
digits. The symbol b represents a blank character.

VALUE GIVEN
123
1234567
123.4
12345.678
12345.645

VALUE PRINTED
b123
b1.23457E + 06
b123.400
b12345.7
b12345.6

Spacing of Printed Values: The converted value of each expression specified in the
PRINT statement is printed at the terminal in its own print zone. Print zones may be
either "full" or "packed," as speCified by the delimiter following the expression, and
a single printed line may be made up of values in either or both zone types.

The full print zone, which is speCified by a comma, is always eighteen char­
acters in length, measured from the first character of the expression value to be
printed, regardless of the length or data type of the expression. Since most
printed values are shorter than eighteen characters, a line of full print zones
usually produces widely spaced output.

The packed print zone, which is specified by a semicolon or null delimiter,
varies in length according to the length and data type of the expression which it
contains. Packed zones usually produce a denser line of output than full zones.

If the expression to be printed is a character constant, the length of the packed
print zone containing it is equal to the length of the character string itself, includ­
ing all trailing and embedded blanks, but neither counting nor printing the enclos­
ing single or double quotation marks.

If the expression isa character variable or a member of a character array, the
length of the packed print zone containing it is equal to the length of the char­
acter string, minus any trailing blanks.

If the expression is. arithmetic, the length of the packed print zone containing
it is determined by the length of the converted value, including sign, digits,
decimal point and exponent, as shown in Table 3. (Note that positive numbers
are preceded by a blank character in the sign position, as described in the stand­
ard output formats above.)

Table 3. Packed Print Zone Lengths for Arithmetic Expressions

LENGTH OF CONVERTED
DATA ITEM

2- 4 characters
5- 7 characters
8-10 characters

11-13 characters
14-17 characters

LENGTH OF PACKED
PRINT ZONE

6 characters
9 characters

12 characters
15 characters
18 characters

EXAMPLE
(b represents a blank)

b17.3b
b17.357bb
-45.~)3927bbb
b1.73579E-23bbb
- 892270493115663bb

Input/Output Statements 47

Positioning of the Carriage: The movements of the carriage at the terminal before,
during and after the printing of expression values depends on both the type of
expression being printed and the delimiter following it in the PRINT statement.
Table 4 shows the variety of carriage actions which are possible.

Table 4. Carriage Positions in PRINT Statement

DATA
TYPE

Arithmetic
Expression

Simple
Character
Variable or
Subscripted
Character
Array
Reference

Character
Constant

Null

D ELIMITER

Co mma

r--'

1--

-,

--

r--

1--

1-'

1-'

Se micolon

n (Not end Nu
of statement)

11 (End of Nu
sta tenient)

Co mma

Se micolon

H (Not end Nu
of statement)

Nu
sta

11 (End of
tement)

Co mma

micolon or Se
Nt
of

III (Not end
:;tatement)

lH (End of Nt
sta tement)

Co mma

Se micolon

Nt III

48 Part II: BASIC Statements

--
CARRIAGE POSITION CARRIAGE: POSITION

FOR PRINTING AFTER PRINTING

If the line contains sufficient space to accommo- The carriage will be moved past any remaining
date the value, printing will begin at the current spaces in the full print zone. If the end of the line
carriage position. If not, printing will start at the is encountered the carriage will be moved to the
beginning of the next line. beginning of the next line.

" The carriage will be moved past any remaining
spaces in the packed print zone. If the end of the
line is encountered, the carriage will be moved to
the beginning of the next line.

" The carriage will be left at the print position
immediately following the data item.

" The carriage will be moved to the beginning of
the next line.

If at least 18 spaces remain on the line, printing The carriage will be moved past any remaining
will start at the current carriage position. If less spaces in the full print zone. If the end of the line
than 18 spaces remain On the line, printing will is encountered, the carriage will be moved to the
start at the beginning of the next line. beginning of the next line.

Printing will start at the current carriage position. The carriage will be moved past any remammg
If the end of the line is encountered before the spaces in the packed print zone. If the end of the
data item is exhausted printing of the remaining line is encountered, the carriage will be moved to
characters will begin on the next line. the beginning of the next line.

" The carriage will be left at the print position
immediately following the end of the data item.

" The carriage will be moved to the beginning of
the next line.

If at least 18 spaces remain on the line, printing The carriage will be moved past any remaining
will start at the current carriage position. If less spaces in the full print zone. If the end of the
than 18 spaces remain on the line, printing will line is encountered, the carriage will be moved
start at the beginning of the next line. If the end to the beginning of the next line.
of the line is encountered before the character
constant is exhausted, printing of the remaining
characters will begin on the next line.

Printing will start at the current carriage position. The carriage will be left at the print position
If the end of the line is encountered before the immediately following the constant.
character constant is exhausted, printing of the
remaining characters will begin on the next line.

" The carriage will be moved to the beginning of
the next line.

No printing will occur. The carriage will be moved 18 spaces. If the end
of the line is encountered, the carriage will be
moved to the beginning of the next line.

" The carriage will be moved three spaces. If the
end of the line is encountered, the carriage will
be moved to the beginning of the next line.

" If the null data item is the first item on the list,
the carriage will be moved to the beginning of
the next line. Otherwise, no movement of the
carriage will occur.

Exampl~s:

STATEMENT
10 PRINT 'A',' B'
20 PRINT 'A' ,; 'B'
30 LET A$== "B"
40 PRINT 'A" A$
50 PRINT A$ 'I' A' ,A$;A$
60 PRINT A$;' A'
70 LET A$ == "
80 PRINT 'A'~A$;'A'

The PRINT USING and Image Statements
Function:

PlUNTED OUTPUT
A -17 blanks-- B
AB

AB
BA -16 blanks-- BB
BA

AA

The PRINT USING st~tement and its associated Image statement allow the BASIC
user to have programyalues printed at the terminal in a format of his own choos­
ing. The PRINT USING statement specifies the v.alues to be printed and the statement
number of the Image statement to be used. The Image statement specifies the
format of the line to be printed.
General Format:

PRINT USING statement .. number [,ref-l ... ,ref-n]
: [[c ...] format] . ..

where statement-number is the number of the Image statement to be used, and
ref-i is the name of a single variable or array member to be printed. The symbol
for an Image statemerit is a colon (:) following the statement number. The term
c represents any EBC~)IC character other than the pound sign (#), and the
term format represent~ a conversion specification, as described below.
Action:

When a PRINT USINC statement is executed, the specified references are evalu­
ated, and their values are edited, in order of appearance in the PRINT USING state­
ment, into the corresponding format specifications in the specified Image state­
ment. The EBCDIC characters represented by c in the general format description
in the print line are printed exactly as entered in the Image statement itself.

If the carriage is not at the beginning of a new line before printing begins, it
is so pOSitioned. After printing, the carriage is repositioned to the beginning of
the next line.

Input/Output Statements 49

50 Part II: BASIC Statements

Format Specifications: For each occurrence of the pound sign (#) in an Image
statement, a single space is reserved in the print line for a character in the corre­
sponding data reference of the associated PRINT USING statement. The pound sign
may represent either character or arithmetic data. Decimal points and the plus and
minus signs, like the characters represented by c in the general format description,
are printed as entered, provided the values are appropriate to the specified signs.
(See below under "Conversion of Data Reference Values" for a discussion of the
printing of signs in the Image statement.)

1. The various format specifications are:
a. C haracter-fornwt-one or more # characters

Example: # [#] ...

b. I -fornwt (integer format) -an optional sign followed by one or more #
characters.

Example: [+ \-] # [#] ...

c. F -format (fixed-decimal format) -an optional sign followed by either:
(1) no #'s, a decimal point, one or more # characters
(2) one or more #'s, a decimal point, no #'s
(3) one or more #'s, a decimal point, one or more # characters

Example: [+ \-]{[#] #[#] ... \#[#] [#] ... }

d. E-fonnat (exponential format)-either the 1- or F-format (given above)
followed by four ! characters or four \ characters

Example: {I-formatIF-format} {I!!! 11111}

2. The following rules define the start of a format-specification:
a. A # sign is encountered and the preceding character is not a # sign,

decimal point, plus sign, or minus sign.
b. A plus or minus sign is encountered, which is followed by:

(1) A # sign or
(2) A decimal point which is followed by a # sign.

c. A decimal point is encountered, which is followed by a # sign and:
(1) The preceding character is not a # sign, plus sign, or minus sign or
(2) The preceding character string is an F-format specification.

3. The following rules define the end of a format-specification that has been
started:
a. A # sign is encountered and:

(1) The following character is not a # sign or
(2) The following character is not 'a decimal point or
(3) The following character is a decimal point and a decimal point has

already been encountered or
(4) The following four consecutive characters are not! or \ characters.

b. A decimal point is encountered and:
(1) The following character is not a # sign or
(2) The following character is another decimal point or
(3) The following four consecutive characters are not! or \ characters.

c. Four consecutive! or \ characters are encountered.

Conversion of Data Reference Values: When ~he data referred to is a character
value, the characters contained in it are edite,(l into the line in the conversion
specification including sign, pound sign, decimal point, and ! III or 1111.

If an edited character reference is shorter than its format specification, blank
padding occurs on the right. If an edited character reference is longer than its
format specification, it is truncated on the right. A character constant containing
no characters (null) causes blank padding of the entire format specification.

An arithmetic expression is converted in accordance with its format specifi­
cation as follows:

1. If the format specification contains a plus sign, and the expression value is
positive, a plus sign is edited into the line.

2. If the format specification contains a plus sign, and the expression value is
negative, a minus sign is edited into the line.

3. If the format specification contains a minus sign, and the expression value
is positive, a blank is edited into the line.

4. If the format specification contains a minus sign, and the expression value
is negative, a minus sign is edited into the line.

5. If the format specification does not contain a sign, and the expression value
is negative, the negative number will be printed with a minus sign provided
that the format specification is long enough Ito contain both the number and
the sign. If the format specification is not long enough, asterisks are edited
into the line instead of the negative expression value.

6. The expression value is converted according to the type of its format specifi­
cation as follows:

I-format: The value of the expression is converted to an integer, rounding
any fraction.

F-format: The value of the expression is converted to a fixed-point number,
rounding the value or extending it with zeros in accordance with
the format specification.

E-format: The value of the expression is converted to a Roating-point num­
ber, rounding the value or extending it with zeros in accordance
with the format specification.

If the length of the arithmetic expression value is less than or equal to the length
of the format specification, the expression value is edited, right-justified, into the
line. If the length of the format specification is less than the length of the expres­
sion value, asterisks are edited into the line instead of the expression value.

Input/Output Statements 51

The PUT Statement

52 Part II: BASIC Statements

Some examples of reference values and the way they are printed under various
format specifications are as follows:

FORMAT REFERENCE PRINTED
SPECIFICATION VALUE FORM

123 123

12 b12

1.23 bb1

##.## 123 *****
##.## 1.23 b1.23

##.## 1.23456 b1.23

##.## .123 bb.12

##.## 12.345 12.35
###!!!I 123 123E+OO
###!!I! 12.3 123E-01
###!!!! .1234 123E-03
##.##!!!I 123 12.30E+01
##.##!!!! 1.23 b1.23E+OO
##.##!!!I .1234 12.34E-02
##.##!!!I 1234 12.34E+02

Rules:
1. The maximum number of Image statements permitted in a single BASIC

program varies among IBM implementations of the language.
2. If the PRINT USING statement contains at least one data reference, and no

format specification appears in the corresponding Image statement, an error
condition results.

3. If the number of data references in the PRINT USING statement exceeds the
number of format specifications in the corresponding Image statement, a
carriage return occurs at the end of the Image statement and the Image
statement is reused for the remaining data references.

4. If the number of data references in the PRINT USING statement is less than
the number of format specifications in the corresponding Image statement,
the print line is terminated at the first unused format specification.

5. Image statements are non-executable and may be placed anywhere in a
BASIC program, either before or after the PRINT USING statements that refer
to them.

Examples:

30 PRINT USING 40, A,B
40 :RATE OF LOSS #### EQUALS ####.## POUNDS

Printed Output:

RATE OF LOSS 342 EQUALS
Value
of A

Function:

42.02 POUNDS
Value
of B

The PUT statement causes data values to be placed in a specified file.
General F orr-nat:

PUT file-reference, V1 LVII] ...

where file-reference is a character constant enclosed in single or double quotation
marks, and Vi is a constant, simple variable, function reference, or subscripted
array reference.

The GET Statement

Action:
When a PUT statement is executed, the specified scalar reference values are

entered from left to right in the specified file, beginning at the current file position.
The file is arranged sequentially so that the first value entered in response to a PUT

statement will be the first value assigned from the file when it is used for
program input.

All arithmetic data is truncated or zero-filled, as necessary, to conform to the
form of arithmetic (long or short) specified for the program before the values
are placed in files.

A file is activated for output by the first execution of a PUT (or MAT PUT) state­
ment using its file name. At the time, the file is positioned at the beginning before
scalar references are written into it.

A file is deactivated in response to a CLOSE statement, or at the end of execu­
tion of a program.
Rules:

l. A file currently activated as an input file may not be specified in a PUT

statement. It must first be closed.
2. The maximum number of data items permitted in each file varies among

IBM implementationss of the BASIC language.
3. Naming conventions for on-line data files vary among IBM implementations

of the BASIC language.
Example:

30 PUT "ABF" , Z3, 5~:cX-7, A, D$, 9.005

Function:
The GET statement causes values to be assigned to variables from a specified file.

General Format:
GET file-reference, V1 [,vnl ...

where file-reference is a character constant enclosed by single or double quotation
marks, and Vi is either a simple variable or a subscripted reference to an array
member.
Action:

A file is activated for input by the first execution of a GET (or MAT GET) state­
ment specifying its file name, at which time the file is positioned at the beginning
and values are assigned from it to the variables specified in the GET statement.
Subsequent GET statements for the same file cause values to be assigned beginning
at the current file position.

Subscripts in variable references are evaluated as they occur, from left to
right. Thus, an assigned variable in a GET statement may be used subsequently
as the subscript of another variable in the same GET statement.

Arithmetic values are assigned in the form (long or short) specified for the pro­
gram in which the GET statement appears. Thus, arithmetic values from a file which
was created in long form are truncated to the implementation-defined number of
significant digits for short form (at least six) before being assigned in a program for
which short-form arithmetic has been specified. Likewise, arithmetic values from
a file which was created in short form are zero-filled to the implementation­
defined number of digits for long form (at least eleven), before being assigned
in a program for which long-form arithmetic has been specified.

A file is deactivated in response to a CLOSE statement or at the end of program
execution.
Rules:

l. A file currently activated as an output file lTIay not be be specified in a GET

statement. It must first be closed.

Input/Output Statements 53

The RESET Statement

The CLOSE Statement

. 54 Part II: BASIC Statements

2. Each value assigned in a GET statement must be of the same data type
(character or arithmctic) as its corresponding variable.

3. Naming conventions for on-line data files vary among IBM implementations
of the BASIC language.

Example:

70 GET "ABF" , X,Y,Z,A(4), A(5), D$, E$

Function:
The BESET statemcnt causcs an input or output file to be positioned to the

bcginning.

Genera 1 Format:

BESET file-reference-l [,file-reference-n] ...

wherc file-reference-i is a litcral constant enclosed in single or double quotes.

Action:
Execution of a BESET statement for a specified file positions an internal pointer

so that subsequent GET or PUT references to the file will refer to the first item in it.
The BESET statement docs not close files. If a file is to be used for both output

and input during execution of a single program, it must be closed between output
and input references. When a file is opened in response to a PUT or GET statement,
it is automatically reset.

Rules:
1. If a file specificd in a BESET statement is not currently active, its name in the

BESET statement will be ignored.
2. Naming conventions for on-line data files vary among IBM implementations

of the BASIC language.

Exmnple:
The BESET statement in 120 repositions the file named IN to the beginning. The
GET statement in 130, therefore, reads the first three values of IN into A, B, and
c, respectively.

60 GET 'IN' X, Y, Z

120 RESET 'IN'
130 GET 'IN', A, B, C

Function:
The CLOSE statement causes input and output files to be deactivated.

General Format:

CLOSE file reference-l [,file-reference-n] ...

where file-reference-i is a literal constant enclosed in single or double quotes.
Action:

The file or files specified in the CLOSE statement are deactivated. An implicit
CLOSE statement is automatically executed for each active file at the completion
of program execution .

Rules:
l. If a file is to be used for both output and input during execution of a single

program, it must be closed between output: and input references.
2. If a file specified in a CLOSE statement is not active at the time the CLOSE

statement is executed, its appearance in the statement is ignored.
3. Naming conventions for on-line data files vary among IBM implementations

of the BASIC language.
Example:

25 CLOSE 'CDF' ,"ABF"

Input/Output Statements 55

Matrix O'perations

In mathematics, a matrix is a group of arithmetic values arranged in a rectangular
system of rows and columns. A vector is a seri.es of arithmetic values arranged
in a single row.

A matrix in the BASIC programming language is an arithmetic array of one or two
dimensions. MAT statements specify operations which are performed on the entire
collection of members of an array at once, rather 1than on each member individually
(scalar operations).

There are seven MAT statements, each performing a function for an entire array
corresponding to the functions performed for single values by the equivalent
scalar statement. The MAT statements are:

MAT Assignment
MAT READ
MAT INPUT
MAT PRINT
MAT PRINT USING
MAT GET
MAT PUT

Array expressions used in the MAT assignment statement may be in either binary
or unary form. The binary array expressions are:

A + BThe sumiof two matrices.
A - B The difference of two matrices.
A * B The product of two matrices.
(x) * A The product of a scalar value· (x) and a matrix (A).

The unary array expressions used in the MAT assignment statement are:

An array itself
ZER The zero array function
CON The unity array function
ION The identity matrix function
INV The inverse matrix function
TRN The transpose matrix function

The following pages contain complete descriptions of the matrix operations
available in the BASIC language.

Redimens;:oning Arithmetic Arrays

It is sometimes desirable to change the dimensions of an arithmetic array during
the course of a BASIC program. As an example, an array of four rows and three
columns can be schematically represented this way:

A(1,1)
A(2,1)
A(3,1)
A(4,1)

A(1,2)
A(2,2)
A(3,2)
A(4,2)

A(1,3)
A(2,3)
A(3,3)
A(4,3)

If the array were named A, a reference to the Hfth item in the array would be
written A(2,2).

Matrix Operations 57

This alTay could be redimensioned according to the rules below so that it was
arranged as three rows and four columns. It could then be represented this way:

A(1,1)
A(2,1)
A(3,1)

A(1,2)
A(2,2)
A(3,2)

A(1,3)
A(2,3)
A(3,3)

A(1,4)
A(2,4)
A(3,4)

Now, a reference to the fifth item would be written A(2,1).
If the array were redimensioned again, this time to contain three rows and two

columns, it could be reprcsented this way:

A(1,1)
A(2,1)
A(3,1)

A(1,2)
A(2,2)
A(3,2)

A reference to the fifth item would now be written A (3,1).

Arithmetic alTays may bc redimensioned when used in any of the following
matrix operations:

MAT READ statement
MAT GET statement
MAT INPUT statement
CON function
ION function
ZER function

Both one- and two-dimensional arrays may be redimensioned, but the number
of dimcnsions in the array may be not be changed during redimensioning.

The total number of elements in an array after redimensioning must not exceed
the number originally specified when the array was declared. Thus, the array in
the example above could not be redimensioned to contain three rows and five
columns since a total of fifteen members would then be required.

Both implicitly and explicitly declared arithmetic arrays may be redimensioned.

The MAT)'ssignment Statement (Simple)
Function:

58 Part II: BASIC Statements

This statement assigns the clements of one alTay to another array.
General Format:

MAT name-l = name-2

where name-i is the name of an arithmetic array.
Action:

The value of each element of the array specified to the right of the equal sign
is assigned to the corresponding clement position in the array to the left of the
equal sign.
Rules:

l. Before being used in a MAT assignment statement, both arrays specified must
have been previously defined, either implicitly, or explicitly in a DIM state­
ment.

2. If both arrays specified in the simplc MAT assignment statement do not have
identical dimensions, program execution is terminated.

Example:

20 DIM A (2,2), B(2,2)

100 MAT A _. B

The resulting values are represented below:

The MAT Assignment Statement (Addition and Subtraction)
Function:

. [a
A IS C bJ d

These statements assign the sum or difference of the elements of two arrays
to the elements of a third array.
General Format:

MAT name-l = name-2{ + I - }name-3

where name-i is the name of an arithmetic array.
Action:

The values of the elements of the arrays specified to the right of the equal sign
are added or subtracted, as specified, and the result of the operation is assigned to
the corresponding element position in the array to the left of the equal sign.
Rules:

1. Before being used in a MAT assignment statement, all three arrays specified
must have been previously defined, either implicitly, or explicitly in a DIM

statement.
2. If all three arrays specified in the statement do not have identical dimensions,

program execution is terminated.
Example:

10 DIM X(2,2), Y(2,2), Z(2,2)

100 MAT X = Y + Z

The resulting values are represented below:

IfY=[: ~ J andz = [:

The MAT Assignment Statement (Multiplication)
Function:

fJ . [a+e h x IS C + g b + fJ
d+h

This statement performs the mathematical matrix multiplication of two arith­
metic arrays and assigns the product to a third.
General Format:

MAT name-l = name-2 * name-3

where name-i is the name of a two-dimensional arlithmetic array.
Action:

In matrix multiplication, an array A of dimensions (p,m) and an array B of
dimensions (m,n) yield a product array c of dimensions (p,n) such that for
i = 1,2 ... p and for j = 1,2, ... n,

m
C (i,j) = L: A (i,k) * B (k,j)

k=l

Matrix Operations 59

Rules:
1. Before being used in the MAT assignment statement, all three arrays speci­

fied must have been previously defined, either implicitly, or explicitly in
a DIM statement.

2. The array specified to the left of the equal sign may not be the same array
as either array to the right of the equal sign.

3. If any of the following relationships is not true, program execution will be
terminated:
a. The number of columns in the array specified by name-2 in the format

example must be equal to the number of rows in the array specified by
name-3.

b. The number of rows in the array specified by name-l must equal the
number of rows in the array specified by name-2.

c. The number of columns in the array specified by name-l must equal the
number of columns in the array specified by name-3.

Example:

10 DIM Z(2,2), Y(2,2), Z(2,2)

100 MAT Z = X * Y
The resulting values are represented below:

Ifx=[: fhJ . [a*e + b*g
Z IS c*f + d*h

a*f + b*hJ
c*e + d*g

The MAT ~4ssi9nment Statement (Scalar Multiplication)
Function:

60 Part II: BASIC Statements

This statement causes the elements of an arithmetic array to be multiplied by
the value of an arithmetic expression, and the resulting products to be assigned
to the elements of another arithmetic array.
General Format:

MAT name-l = (x) * name-2

where name-i is the name of an arithmetic array and the parenthesized x is an
arithmetic expression.
Action:

The scalar expression is evaluated, and that value is multiplied by the value of
each element in the array to the right of the equal sign. The resulting products
are then assigned to the elements of the array to the left of the equal sign, in the
corresponding positions.
Rules:

1. Before being used in the MAT assignment statement, both arrays specified
must have been previously defined either implicitly, or explicitly in a DIM

statement.
2. If both arrays specified do not have identical dimensions, program execution

. is terminated.

Example:

20 DIM X(2,2), Y(2,2)

100 MAT Y = (4) * X

The resulting values are represented below:

Ifx = [~

The MAT Assignment Statement (Inversion Function)

Function:

[
4*a

y is 4*c 4*bJ
4*d

This statement causes one array to be assigned the mathematical matrix inverse
of another array.
General Format:

MAT name-l = INV (name-2)

where name-i is the name of a two-dimensional arithmetic array.
Action:

The matrix inverse of the array specified by the name to the right of the equal
sign is assigned to the array specified by the name to the left of the equal sign .. For
a square array A of dimensions (m,m) the inverse array, B if it exists, is an
array of identical dimensions such that:

A*B = B*A = I
where I is an identity matrix.

Not every matrix has an inverse. The intrinsic function DET (see "Functions")
may be used to determine if a given array has an inverse. The inverse of array A

exists if DET (A) #0.

Rules:
1. Before being used in a MAT assignment statement, both specified arrays must

have been previously defined, either implicitly, or explicitly in a DIM

statement.
2. Both arrays specified must be square, and both must have identical

dimensions.
3. The same array name may not be used on both sides of the equal sign, even

if the matrix is square.
Example:

20 DIM X (2,2), Y (2,2)

80 IF DET (Y) = a THEN 100
90 MAT X = INV (Y)

100 END

The resulting values are represented below:

~J [2 -IIJ Then x is -1

Matrix Operations 61

The MAT Assignment Statement (Transpose Function)
Function:

This statement causes onc array to bc replaced by the matrix transpose of an­
other array.
General Format:

MAT name-l = TRN (name-2)

where name-i is the name of a two-dimensional arithmetic array.
Action:

The transpose matrix of the array specified by the name to the right of the equal
sign is assigned to the array specified by the name to the left of the equal sign.
Thus, the value of element (x,y) in the former is assigned to element position (y,x)
in the latter, where x and yare row and column numbers of the elements.
Rules:

1. Before being used in a MAT assignment statement, both specified arrays must
have been previously defined, either implicitly, or explicitly in a DIM

statement.
2. The number of rows in each array must be equal to the number of columns in

the other.
3. The same array name may not be used on both sides of the equal sign, even

if it is a square matrix.
Example:

40 DIM A (3,2), B(2,3)
60 MAT B = TRN (A)

The resulting values are represented below:

e ~J Then B becomes
b [ba

c

The MAT Assignment Statement (Identity Function)
Function:

62 Part II: BASIC Statements

This statement causes an arithmetic array to assume the form of an identity
matrix. It may also be used to redimension the array.
General Format:

MAT name = IDN [(Xl ,X2)]
where name is the name of an arithmetic array containing equal numbers of rows
and columns, and Xi is an arithmetic expression.
Action:

Each element of the specified array for which the values of both subscripts are
equal, e.g., A (2,2) or A (3,3), is assigned the integer value one (1). Each element
of the specified array for which the subscripts are unequal, e.g., A (2,3) or A (3,1),
is assigned the value zero (0).

If the optional arithmetic expressions follow the keyword ION in the statement,
the truncated integer portions of their values are used to redimension the array
before the assignment of one or zero to each of its elements.

Rules:
1. Before being used in a MAT assignment statement, the specified array must

have been previously defined, either implicitly, or explicitly in a DIM

statement.
2. Redimensioning of the array must not change the original number of dimen­

sions, nor exceed the original number of array members.
3. The specified arithmetic array must be a square matrix; that is, the number of

rows must equal the number of columns. If redimensioning is specified, the
truncated integer portions of the specifying arithmetic expressions must be
equal.

Example:

50 DIM X (5,5)
60 MAT X = IDN (4,4)

The resulting values are represented below:

[

1
. 0

x IS ~

o
1
o
o

The MAT Assignment Statement (ZER Function)
Function:

o
o
1
o iJ

This statement assigns the value zero (0) to all elements of an arithmetic array.
It may be used to redimension the array.

General Fonnat:

MAT nmne = ZER [(Xl [,X;!])]

where nmne is the name of an arithmetic array and Xi is an arithmetic expression.

Action:
The value zero (0) is assigned to each element of the specified array. If the

optional arithmetic expressions follow the keyword ZER in the statement, the trun­
cated integer portions of their values are used to redimension the array before
assignment of the zero to each element.

Rules:
1. Before being used in a MAT assignment statement, the specified array must

have been previously defined, either implicitly, or explicitly in a DIM

statement.
2. Redimensioning of the array must not change the original number of dimen­

sions, nor exceed the original number of array members.
Example:

40 DIM Y (3,3)
50 MAT Y = ZER

The resulting values are represented below:

o
o
o

The MAT Assignment Statement (CON Function)
Function:

~J

This statement assigns the value one (1) to all elements of an arithmetic array.
It may also be used to redimension the array.

Matrix Operations 63

The MAT READ Statement

64 Part II: BASIC Statements

General F onnat:

MAT name = CON [(Xl [,X2])]

where name is the name of an arithmetic array and Xi is an arithmetic expression.
Action:

The integer value one (1) is assigned to each element of the specified array.
If the optional arithmetic expressions follow the keyword CON in the statement,
the truncated integer portions of their values are used to redimension the arrays
before assignment of the integer one to each element.

Rules:
1. Before being used in a MAT assignment statement, the specified array must

have been previously defined, either implicitly, or explicitly in a DIM state­
ment.

2. Redimensioning of the array must not change the original number of dimen­
sions, nor exceed the original number of array members.

Example:

20 DIM X (4,5)

80 MAT X = CON (3 , 3)

The resulting values are represented below:

Function:

1
1
1

The MAT READ statement causes arithmetic values from the data table estab­
lished by DATA statements to be assigned to the members of an arithmetic array
without referencing each array member individually. The MAT READ statement
may also be used to redimension arithmetic arrays.
General F onnat:

MAT READ name-l [(Xl [,X2])] [,name-2[(x.1 [,x~])]] ...

where name-i is the name of an arithmetic array and Xi is an arithmetic expression.

Action:
At the beginning of program execution, a pointer is set to the first value in the

data table, if one exists. When a MAT READ statement is encountered, successive
values from the data table are assigned to the arrays in the MAT READ statement.
The values are assigned to the array references by rows, beginning at the current
position of the data table pointer.

All arithmetic data is truncated or zero-filled, if necessary, to conform to the
form of arithmetic (long or short) specified for the program in which the values
are assigned.

If the optional arithmetic expressions follow the array names in the MAT READ

statement, the truncated integer portions of the expression values are used to
redimension the arrays before values are assigned from the data table.

The MAT INPUT Statement

Rules:
1. Before use in a: MAT READ statement, arrays must have been previously

defined, either implicitly, or explicitly in a DIM statement.
2. Redimensioning of arrays in a MAT READ statement must not change the

original number pf dimensions nor exceed the original number of members.
3. AU data values assigned must be arithmetic.
4. If the data table is exhausted and unassigned arrays or array members

remain in the MAT READ statement, an error condition results.
5. The MAT READ statement is invalid if there are no DATA statements in the

program.
6. The pointer in the data table maybe reset by use of the RESTORE statement.

Example:

7 a MAT READ $' (2 , X - 3), A , B (12)

Function:
The MAT INPUT statement allows the BASIC user to assign values from the terminal

at execution time to members of an arithmetic array without specifying each array
member individually. The MAT INPUT statement may also be used to redimension
arithmetic arrays.
General Format:

MAT INPUT name-l [(Xt[,X2])][,name-2[(X3[,l:d)]] ...

where name-i is the name of an arithmetic array and Xi is an arithmetic expression.
Action:

When a MAT INPUT statement is executed, it causes a question mark to be printed
out at the terminal and program execution to be temporarily interrupted. The user
then enters a list of arithmetic values, a row at a ti.me, which are assigned to mem­
bers of the specified arrays by rows. Each ne'Y row is requested by the system
with the printing of two question marks as soon as the previous row is completed.

All arithmetic data is truncated or zero-filled, if- necessary, to conform to the
form of arithmetic (long or short) specified for the program in which the values
are assigned.

If the optional arithtnetic expressions follow the array names in the MAT INPUT

statement, the truncated integer portions of the expression values are used to
redimension the arrays before data values are entered at the terminal.

When a MAT INPUT statement is executed immediately after a PRINT or MAT

PRINT statement in which the final delimiter is a comma or semicolon, the question
mark generated by the MAT INPUT statement is printed directly following the last
data item on the same print line. In all other instances, the question mark appears
as the first character on the next print line.

Matrix Operations 65

The MAT PIUNT Statement

66 Part II: BASIC Statements

Rules:
1. Array references may be one- or two-dimension arrays.
2. Before use in a MAT INPUT statement, an array must have been previously

defined, either implicitly, or explicitly in a DIM statement.
.'3. Redimensioning of arrays in a MAT INPUT statement must not change the

original number of dimensions nor exceed the original number of members.
4. The final entry for each row of each array must be followed by a carriage

return to signify end of row.
5. If a line is full and input data remains to be entered for the same row, the

last value entered must be followed by a comma before the carriage is
returncd to continue .

. 6. All data values entered must be arithmetic.
7. 1£ the number of values entered for a row does not equal the number of

mcmbers in the corresponding row of the array, an error conditions results.
8. Thc proccdurc for retry or re-entering of data after an error varies among

IBM implementations of the BASIC language.
Example:

90 MAT INPUT A, B(20), C(5,20)

Function:
The MAT PRINT statement causes the values of all members of a specified

arithmetic array to be printed at the terminal without references to each array
member individually.
General Fonnat:
~1AT PRINT name-l ['1; name-n] ... ['1;]
wherc name-i is the name of an arithmetic array and the characters enclosed in
braccs (comma and semicolon) arc delimiting characters which determine the
position of the print element.
Action:

When a MAT PRINT statement is executed, each array specified in the statement
is converted to a specified output format and printed at the terminal. (See the
PRINT statement for information on print zones and the conversion of values for
printing.)

Each array in the MAT PRINT statement is printed by rows, the first row of each
array beginning at the start of a new line and being separated from the preceding
line by two blank lines. The remaining rows of each array begin at the start of a
new linc and are separated from the preceding line by a single blank line.

After the printing of each array member, the carriage is repositioned as specified
by the delimiting character, as described below. After the final or only full array
has been printed, the carriage is positioned to the start of the next line.
Printing of Converted Array Alembers: If the line contains sufficient space to
accommodate the value of the converted array member, printing starts at the
current carriage position.

1£ the line does not contain sufficient space to accommodate the value of the
converted array member, printing begins at the start of the next line.
Positioning of the Carriage After Printing: If the delimiter is a comma, the carriage
is moved past any remaining spaces in the full print zone. Sl{~uld the end of the
line bc\encountercd during the movement, the carriage is moved to the beginning
of the next line.

1£ the delimitcr is a scmicolon, the carriage is moved past any remaining spaces
in the packed print zone. Should the end of the line be encountered during the
movement, the carriage is moved to the beginning of the next line.

1£ the final delimiter is null, it is treated as a comma.

Rules:
1. Before being used in a MAT PRINT statement, arrays must have been pre-

viously defined, either implicitly, or explicitlly in a DIM statement.
2. Array references ,may be to one- or two-dimension arrays.
3. All data values printed must be arithmetic.
4. Null delimiters are not permitted in a MAT PRINT statement except as the

final delimiter.

Example:

20 MAT PRINT D,X
In the following example, assume that there am 18 spaces from the beginning

of one print zone to the next.

10 DIM A (15), X(2,2)
20 MAT READ A
30 DATA, 1,2',3,4,5,6,7,8,9,10,11,12,13,14,15
40 MAT X = CON
50 PRINT A,X

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15

1 1

1 1

The MAT PRINT USING Statement
Function:

The MAT PRINT USING statement and its associated Image statement allow the
BASIC user to have the values of all the membcrs of a specified arithmetic array
printed at the terminal in a format of his own choosing, without having to specify
each array member individually.

General Format:

MAT PRINT USING s, name-l [,name-n] ...

where s is the number of the associated Image statement and name-i is the name
of an arithmetic array.

Action:
Each array referenced in the MAT PlUNT USING statement is printed by rows at

the terminal according to the format defined by the associ~ted Image statement.
(See the PRINT USING and Image Statements for information on format specifica­
tion.)

When printed, the first row of each array begins at the start of a new line and
is separated from the preceding line by two blank lines. Each succeeding array
row begins at the start of a new line and is separated from the preceding row by
one blank line. After the last or only array has been printed, the carriage is
repositioned to the beginning of the next line.

Matrix Operations 67

T he MAT GET Statement

68 Part II: BASIC Statements

Rules:
l. Before being used in a MAT PRINT USING statement, an array must have pre­

viously defined, either implicitly, or explicitly in a DIM statement.
2. One- or two-dimension arrays may be specified in a MAT PRINT USING state­

ment.
3. If the Image statement specified in the MAT PRINT USING statement does not

contain at least one conversion specification, an error condition results.
4. If the number of members in the array row exceeds the number of conver­

sion specifications in the associated Image statement, a c'arriage return occurs
at the end of the Image statement and the Image statement is reused for the
printing of the remaining members of that row.

5. If the number of members in the array row is less than the number of con­
version specifications in the specified Image statement, the line for that row
is terminated at the first unused conversion specification.

6. All values printed must be arithmetic.

Example:

10 DEF A (4,3)
20 : ### ##.## ##.##
30 MAT A = CON
40 MAT PRINT USING 20, A

The output would appear as follows:

1 1.00
1 1.00
1 1.00
1 1.00

Function:

1.00EOO
1.00EOO
1.00EOO
1.00EOO

The MAT GET statement causes values from a specified file to be assigned to all
members of a specified arithmetic array without referring to each array member
individually. The MAT GET statement may also be used to re-dimension arithmetic
arrays.

General Format:

MAT GET file-reference, name-l [(Xl [,X2])] [,name-2[(XS[,X4])]]

where file-reference is a character constant enclosed in single or double quotation
marks, name-i is the name of an arithmetic array, and Xi is an arithmetic expression.

Action:
A file is activated for input by the first execution of a MAT GET (or GET) state­

ment specifying its file name. The file is positioned at the beginning and values
from the file are assigned to the specified arrays row by row. Subsequent MAT GET

statements for the same file cause values to be assigned from the current file
position.

All arithmetic data is truncated or zero-filled, as necessary, to conform to the
form of arithmetic (long or short) specified for the program in which the values
are assigned.

If the optional arithmetic expressions follow the array names in the MAT GET

statement, the truncated integer portions of the expression values are used to
redimension the arrays before data values are assigned from files.

A file is deactivated in response to a CLOSE statement or at the end of program
execution.

The MAT PUT Statement

Rules:
1. The arithmetic arrays specified in the MAT GET statement may be either one­

or two-dimen~ional.
2. Before being used in a MAT GET statement, an array must have been pre­

viously defined, either implicitly, or explicitly in a DIM statement.
3. Redimensioning of arrays in a MAT GET statement must not change the

original number of dimensions nor exceed the original number of members.
4. A RIe currently activated as an output RIe may not be specified in a MAT GET

statement. It must first be closed.
5. If the input RIe is exhausted before a specified array is filled, program

execution is terminated.
6. Naming conventions for on-line data RIes vary among IBM implementations

of the BASIC language.

Example:

50 MAT GET "ABF", A, B(lO), Z(5,~~0)

Function:
The MAT PUT statement causes the value of each member of an arithmetic array

to be placed in a specified RIc without referring to each array member individually.
The MAT GET statement may also be used to redimension arithmetic arrays.

General F Ol'mat:

MAT PUT file-reference, name-l [,name-n] ...

where file-reference is a character constant enclosed in single or double quotation
marks and name-i is the namc of an arithmetic array.

Action:
A RIe is activated for output by the first execution of a MAT PUT (or PUT) state­

ment specifying its RIc name. The RIe is positioned at the beginning and values of
array members are placed in it row by row. Subsequent MAT PUT statemcnts for
the same RIe cause values to be placed in it starting at the current RIe position.

All arithmetic data is truncated or zero-filled, as necessary, to conform to the
form of arithmetic (long or short) specified for the program before the values
are placed in RIes.

A file is deactivated in response to a CLOSE stajtement or at the end of program
execution.

Rules:
1. The arithmetic arrays specified in the MAT PUT statement may be either

one- or two-dimensional.
2. Before being used in a MAT PUT statement, an array must have been pre­

viously defined, either implicitly, or explicitly in a DIM statement.
3. A file currently activated as an input RIe may not be referenced in a MAT PUT

statement. It must first be closed.
4. Naming conventions for on-line data RIes vary among IBM implementations

of the BASIC language.

Example:

60 MAT PUT "ABF", A, M, Q

Matrix Operations 69

Appendix A: Implementation-defined Restrictions

The following aspects of the BASIC language are subject to restrictions in each
IBM implementation of the language. The actual values of the restrictions vary
among the implementations and may be found in the appropriate documentation
for each implementation.

• Arithmetic Precision*
• Maximum magnitude of numeric values
• Maximum number of digits per statement number
• Maximum number of characters in a character constant entered at the terminal
• Maximum number of digits in an arithmetic value entered at the terminal
• I\1aximum size of arrays
• Maximum number of data items per £Ie
• Maximum number of statements per program
• Maximum number of levels of nested subroutines
• Maximum number of levels of nested FOR loops
• Maximum number of user-written functions per program
• Maximum number of nested function references per expression
• Maximum number of variables per multiple assignment statement
• Maximum number of Image statements per program
• Naming conventions of files and programs
• Procedures for resumption of processing after the PAUSE statement and error

conditions.

*See under the heading "Arithmetic Precision" for minimum values.

Appendix A: Implementation-defined Restrictions 71

Appendix B: Collating Sequence of the BASIC Character Set

Note that both upper and lower case letters of the standard English alphabet
are represented internally by the EBCDIC bit configuration of the upper case
characters only.

CHARACTER

<
(

+
I
&
!
$

*

/

>
?

@ ,

=

,t,
<
>

A,a
B,b
C,c
D,d
E,e
F,f
e,g
H,h
I,i
J,j
K,k
L,l
M,m

INTERNAL
HEXADECIMAL
REPRESENTATION

40
4B
4C
4D
4E
4F
50
5A
5B
5C
5D
5E
60
61
6B
6E
6F
7A
7B
7C
7D
7E
7F
8A
8C
AE
BE
C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4

NAME
Blank
Point or Period
Less Than Sign
Left Parenthesis
Plus Sign
Logical OR Sign or Vertical Bar
Ampersand
Exclamation Symbol
Dollar Sign
Asterisk
Right Parenthesis
Semicolon
Hyphen or Minus Sign
Slash or Division Symbol
Comma
Greater Than Sign
Question Mark
Colon
Pound or Number Sign
Commercial "at" Sign
Apostrophe or Single Quotation
Equal Sign
Double Quotation Mark
Up-Arrow or Exponentiation Sign
Less Than or Equal To Sign
Greater Than or Equal To Sign
Not Equal Sign

Appendix B: Collating Sequence of the BASIC Character Set 73

74

CHARACTER

N,n
0,0
P,p
Q,q
R,r
S,S
T,t
U,U
V,V
W,W
X,X
Y,y
Z,Z
o
1
2
3
4
5
6
7
8
9

INTEHNAL

HEXADECIMAL

REPHESENTATION

D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
FO
FI
F2
F3
F4
F5
F6
F7
F8
F9

Appendix C: Sample BASIC Programs

Example 1 The following is a si~ple program for computing compound interest using the
formula A=P(1 +R)N, where P is the principle, R is the rate of interest per period,
and N is the number of interest periods. The value A, the final amount yielded after
the specified time, is to be computed.

Input to the program consists of values for the variables P, I, Y, and T, whieh
represent the principle ;in dollars and cents, the yearly interest rate in percent, the
number of years for wh:ich the interest is to be computed, and the number of times
per year the interest is to be compounded, respectively.

The program is designed to request values for each of the variables, reject nega­
tive or zero values, calctilate the final amount, and print the answer at the terminal.
After each answer is ptinted, the program asks if the user wishes to make further
calculations. If so, new values for the variables P, I, Y, and T are requested. If not,
the program ends.

10 PRINT "P,I,Y,T";
20 INPUT P,I,Y,T
30 REM BAD DATA CHECK
40 IF P < = 0 THEN 200
50 IF I <= 0' THEN 200
60 IF Y < = 0 THEN 200
70 1FT < = 0 THEN 200
80 REM COMPUTATION
90 LET N = Y*T
100 LET R= I!100/T
110 LET A = If)):c (1 + R)):o:cN
120 REM PRINTING OF ANSWER
130 PRINT USING 140,A
140 : FINAL TOTAL IS $#####.##
150 REM TERMINATION ROUTINE
160 PRINT 'TYPE "YES" OR "NO". ANOTHER';
170 INPUT S$
180 IF S$= "YES" GOTO 10
190 GO TO 999
200 REM ERROR ROUTINE
210 PRINT "INCORRECT DATA. PLEASE: RETYPE."
220 GOTO 10
999 END

A typical session using this program might appear as follows:

P,I,Y,T? 1000,6,10,4
FINAL TOTAL IS $ 1813.97

TYPE "YES" OR "NO". ANOTHER?
P,I,Y,T? 100,7,00,12

"yes"

INCORRECT DATA. PLEASE RETYPE.
P,I,Y,T? 100,7,20,12
~INAL TOTAL IS $ 403.81
TYPE "YES" OR "NO". ANOTHER? "no"

Appendix C: Sample BASIC Programs 75

Example 2

76

This program approximates the sum:

00

S- ~~ 1
L..j XII

n=O

Statement 10 gives the variable x a value of 1.065. Statement 20 computes the
term and adds it to the sum, s, which is initially zero. Statement 30 increments the
value of N, the number of terms. Statement 40 compares the tentative "next sum"
with the sum at that point, and, if they are different, the sequence of statements
20, 30, and 40 is repeated. vVhen the limit of precision is reached, that is, when the
computer can no longer distinguish between the "present sum" and the "next
sum" the values of the number of terms (N), the sum of terms (s), and the last
term are printed out and the program ends.

10 LET X= 1 . .065
20 LET S= S+I/(X,:n:<N)
30 LET N= N+l
40 IF S =F S+I/(X):o:<N) THEN 20
50 PRINT 'NUMBER OF TERMS:', (N-l)
60 PRINT USING 70, S
70 :THE SUM OF TERMS: ##.##############
80 PRINT 'THE LAST TERM:', 1/(x,:o:«N-l))
90 END

When run under an IBM implementation of BASIC providing seven and eleven
significant digits in E-format for short and long form respectively, the program
produces the following output:

NUMBER OF TERMS:
THE SUM OF TERMS:
THE LAST TERM:

In long form, the results are:

NUMBER OF TERMS:
THE SUM OF TERMS:
THE LAST TERM:

176
16.38363647460938
1.536384E-05

528
16.38461538461450
3.6258271359E-15

Appendix D: Formalized Definition of the BASIC Language

INTRODUCTION

1.1 SCOPE. This standard establishes:

1. The syntax of the individual BASIC
statements.

2. The semantics of both individual BASIC
statements and aggregates of the
individual statements.

3. The language which must be implemented
by a processor to satisfy the
requirements of a BASIC processor.

4. The minimum precision required for
numerical quantities and operations
herein referred to as the "apparent
precision."

This standard does not establish:

1. The rnE~chanism by which programs are
transformed for use on a data
processing system, herein referred to
as a "processor."

2. The manual operations required for
setup, initiation, and control of the
use of such programs on data
processing equipment.

3. The size or complexity of a program
which will exceed the capacity of any
specific data processing system or
processor.

4. The range or precision of numerical
quantities provided they minimally
satisfy the apparent precision defined
in the requirements.

REQUIREMENTS

2.1 Processor Requirements.

2.1.1 IBM BASIC processors must accept all
of the syntax described in Sections 2.2 and
2.3 of this standard. The processors may
not support any syntax beyond that which is
described in Sections 2.2 and 2.3 except in
the manner as defined in Section 3.2.

2.1.2 Syntax accepted must be interpreted
as specified by the semantics in Section
2.2.

2.1.3 The results of execution of a BASIC
program must be in conformance to the
semantics as defined in Section 2.2.

Appendix D: Formalized Definition of the BASIC Language 77

~ificat~ion Table of contents

2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.3
2.2.3".1
2.2.3.2
2.2.3.2.1
2.2.3.2.2
2.2. 3.3
2.2.3.4
2.2.4
2.2.4.1
2.2.4.1.1
2.2.4.1.2
2.2.4.2
2.2.4.2.1
2.2.4. 2.1.1
2.2.4.2.1.,2
2.2. 4. 2. 1. 3
2.2.4.2.1.,4
2.2.4.2.2
2.2.4.2.2.,1
2.2.4.2.2.,2
2.2.4.2.2 .. 3
2.2.4. 2. 2.,4
2.2.4.2.2 .. 5
2.2. 4. 2. 2.6
2.2.4.2.3
2.2.4.2.3.1
2.2.4.2.3 .. 2
2.2.4. 2. 3.,3
2.2.4.2.3 .. 4
2.2.4.2.3.,5
2.2.4.2.3",6
2.2.4.3
2.2.4".3.1
2.2.4.3.2
2.2.4.4
2.2.4.4.1
2.2.4.4.2
2.2.4.4. 3
2.2.4.4.4
2.2.4.4. 5
2.2.4.4.6
2.2.4.4.7
2.2.4.5
2.2.5
2.2.5.1
2.2.5.2
2.2.5.3
2.3

78

BASIC Language
BASIC Program Elements
Character Set
Use of Blanks
Comments
Data Types
Arithmetic Data
Character Data
Data Aggregates-Arrays
Expressions and Operators
Character Expressions
Arithmetic Expressions
Scalar Operators
Priority of Arithmetic Operators
Array Expressions
Relational Operators
Statements
Descriptive Statements
DIM
DEF
Input/Output Statements
Internal File I/O Statements
DATA
READ
RESTORE
MAT READ
Interactive Terminal I/O Statements
INPUT
MAT INPUT
PRINT
MAT PRINT
PRINT USING and Image
MAT PRINT USING
External File I/O Statements
GET
MAT GET
PUT
MAT PUT
RESET
CLOSE
Data Movement and Computational Statements
LET
MAT Assignment
Control Statements
GOTO
GOSUB and RETURN
FOR and NEXT
IF
PAUSE
STOP
END
REM Statement
Functions
User Functions
Intrinsic Function
Internal Constants
Syntax of the BASIC Language

2.2 BASIC Language

2.2.1 BASIC Program Elements. This
section, 2.2 BASIC Language, will define
the syntax and semantics of the BASIC
Language. section 2.3, BASIC Language
Syntax, will summarize in a formal manner
the syntax of the entire language.

The BASIC Language is defined in terms of a
terminal input data processing system, and
the few restrictions inherent in the
definition are related to this terminal
input concept. The action taken for all
errors in BASIC processing is
implementation defined.

2.2.1.1 Character Set. The character set
of BASIC is in the collating sequence of
the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC). The following
characters are directly related to the
syntactic structure of BASIC programs.

Alphabetic Characters: A through Z, a
through z, and the three alphabetic
extenders, currency symbol ($), the number
sign (#), and the commercial "at" sign (@).
The upper case and lower case alphabetic
letters are: treated equivalently and may be
used interchangeably.

Numeric Characters: There are ten digits,
o through 9.

Speci~l Ch~~~cters: There are 24 special
characters.

NAME
Blank

CHARACTER

Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiply symbol
Slash or di.vide symbol
Up-arrow or exponentiation symbol
Right parenthesis
Left parent~hesis
Comma
Point or per'iod
Single quotation mark
Double quotation mark
Semicolon

, Colon
OR sign or vertical bar
Exclamation symbol
Question mark
Ampersand
"Less than~ symbol
"Greater than" symbol
"Not equal~ symbol
"Less than or equal to" symbol
"Greater than or equal to" symbol

+

*
/
t
)
(

"

?
&
<
>
=l:-

S
~

Special characters are combined to
create other syntactic forms in BASIC. For
example:

"greater than or equal" >=
"less than or equal" <=
"not equal" <>
exponentiation **

All elements that make up a BASIC
program are constructed from the preceding
BASIC character set. There are two
exceptions: character constants and
comments which may contain any character
permitted by a particular machine
configuration.

2.2.1.2 Use of Blanks. Blanks may be used
freely throughout a BASIC program with two
exceptions. Blanks are meaningful within:

1. Character constants

2. Image specifications

In all other instances, blanks are
ignored and assume no syntatic meaning.

2.2.1.3 Comments. Comments may be included
in a BASIC program through the use of a REM
statement whose sole purpose is to enable a
user to insert comments or remarks
throughout his program. Similarly, all
single keyword statements in BASIC allow a
user to insert comments following the
keyword. The single keyword st~atements
are:

END
PAUSE
REM
RESTORE
RETURN
STOP

2.2.2 Data Types. In BASIC, data may be
referenced through the use of a variable or
a constant. A variable is a symbolic name
(identifier) whose value may change during
the execution of a program. A constant has
a value that cannot be changed.

The two types of data supported by BASIC
are arithmetic and character-string data.

2.2.2.1 Arithmetic Data. An item of
arithmetic data is one with a numeric
value. Arithmetic da'ta items have the
characteristics of base, scale, and
precision.

The base of an ari,thmetic data item is
decimal-. --

Appendix D: Formalized Definition of the BASIC Language 19

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal point is either
explicitly indicated by a decimal pOint or
implicitly assumed to be to the right of
the data i1:em. A floating-point number is
a fixed-point number followed by an
optionally signed exponent to indicate a
scaling factor. The exponent specifies the
assumed position of the decimal point,
relative to the position in which it
appears.

The 2£~£i~ion of an arithmetic data item
is the maximum number of decimal digits the
data item may contain, in the case of
fixed-point, or the maximum number of
significant decimal digits (excluding the
exponent» to be maintained. This standard
defines precision in terms of two execu·tion
time modes, short and long. Minimum short
form "apparent" precision (S) is six
significant; decimal digits, and minimum
long form "apparent" precision (L) is
eleven significant decimal digits. This
"apparent." precision defines the minimum
precision which will be guaranteed for all
BASIC opera.tions. Each implementation must
support a :real or internal precision equal
to or grE~ater than its "apparent"
precision. A reference to precision
throughollt this standard henceforth will
refer to the apparent precision.

Whenever an expression is evaluated and
is assigned to a numeric variable, the
precision is maintained. The assigned item
is aligned on the decimal point. Leading
zeros arE~ inserted if the assigned item
contains fewer integer digits than the real
precision; trailing zeros are inserted if
the assic~ed item contains fewer fractional
digits. -An error will occur if the
assigned item contains too many integer
digi ts; t;runcation on the right will occur
if it contains too many fractional digits.
That is, if an arithmetic operation yields
a loss in magnitude, an error will occur;
if t!?-e loss is precision, truncation will
occur.

A decimal fixed-20int constant consists
of one or more decimal digits with an
optional decimal point. If no decimal
point appears, the point is assumed to be
irnmediateTy to the right of the rightmost
digit. A sign may optionally precede a
decimal fixed-point constant. The sign is
considered ·to be part of the constant.

A decimal floati~g-20int constant is
written as a qecimal fixed-point constant
followed by the letter E, followed by an
optionally signed one- or two-digit decimal
integer constant. The entire constant may
be preceded by a sign. The sign is
considered to be part of the constant.

80

A simple arithmetic variable identifier
consists of a letter, or a letter followed
by a digit. Simple arithmetic variables
can be used to represent only arithmetic
data. The initial value of arithmetic
variables is zero.

2.2.2.2 Character Data. A character string
can include any character recognized by the
particular hardware configuration. Any
blank included in the character string is
included in the length count.

Character string constants must be
enclosed within single or double quotation
marks. If the delimiting characters are
single quotation marks, a double quotation
mark may be included in the string, and
vice versa. If a single quotation mark is
to be a part of a string delimited by
single quotation marks, it must be
represented as two consecutive single
quotation marks. Double quotation marks
must be treated similarly. ·The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single or double quotation
marks are used within a character string to
represent quotation marks, they are counted
as a single character.

For example:

'IT' • S'

actually is:

IT'S of length 4.

A simple character variable's identifier
consists of a letter followed by a dollar
sign.

The maximum number of characters that
can be assigned to a character variable is
18. The initial value of all character
variables is 18 blanks. Character
variables can be used to represent only
character data.

2.2.2.3 Data Aggregates-Arrays. Single
data elements of the sa~ data type,
numeric or character, may be grouped
together to form an array. An array is an
n-dimensional collection of members
referenced by a single name (identifier).
An individual member of the array is
referred to by giving its relative position
within the array.

Arithmetic Arrays: An arithmetic array can
have either one or two dimensions. The
arithmetic array identifier consists of a
single letter, and the array can only
contain arithmetic data. All members of an
arithmetic array are initially set to zero
when the program is executed. Associated
with each dimension of an array is an

extent. The lower bound of an array (i.e.,
the subscript reference to the first member
of an array) is always one. Theupper
bound of an extent is dependent upon
whether the array has been explicitly
defined through the use of a DIM statement
or implicitly defined by a reference to an
array without an explicit corresponding DIM
statement. A one-dimensional arithmetic
array is processed as a row vector, that
is, it conBists of a single row of members.

The extents of the dimensions of an
arithmetic array are allocated in the
following manner.

1. An array explicitly defined with a
single dimension N is assigned the
extent: of 1 through N. The array
contains N members.

2. An array explicitly defined with two
dimensions M,N is assigned the extents
of 1 through M and 1 through N. The
array contains M times N members.

3. An array implicitly defined by
reference with a single subscript is
assigned the extent of 1 through 10.
The array contains 10 members.

4. An array implicitly defined by
reference with a double subscript is
assigned the extents of 1 through 10
and 1 through 10. The array contains
100 data members.

The following specific rules are
associated with the use of arithmetic
arrays:

1. A member of an arithmetic array is
referenced in the form a(ell,e2])
where a is the arithmetic array name,
and el and e2 are arithmetic
expressions. The comma and expression
e2 may not appear if the array is
one-dimensional. When a reference to
an array member is made, el and then
(if applicable) e2 is evaluated at the
point of reference.

2. An arithmetic array cannot be
explicitly dimensioned by a DIM
statement after it has been defined
either lexplicitly or implicitly in a
logically preceding statement.

3. An ari,thmetic array must be either
explicitly or implicitly defined
before its use in any of the MAT
statements.

4. A one-dimensional array may be
referenced by one and only one
subscript. Two-dimensional arrays may
be referenced by two and only two
subscripts.

5. An array may be re-dimensioned as long
as the original number of dimensions
is not changed and the original total
number of members is not exceeded.
For example: if an array X was
explicitly dimensioned as a 4 by 5
member array, the following references
to a member after redimensioning would
be valid, X(5,4), X(2,10). The
following would be invalid, X(3,10)
because the total number of members
would be 30.

An arithmetic array may be
re-dimensioned by its occurrence as a
target in a MAT input statement or by use
of the intrinsic func·tions ZER, CON, or
ION. The extents may be changed within the
constraints of rule 5 above.

Character Arra~: A character array may
have only one dimension. The character
array identifier consists of a single
letter followed by a dollar sign ($), and
the array may only contain character data.
All members of a character array are
initially set to 18 blanks when the program
is executed. The single dimension of a
character array has an associated extent.
The lower bound of the character array
(i. e., the first memb~~r) is always one.
The upper bound of an extent is dependent
upon whether the array has been explicitly
defined through the use of a DIM statement
or implicitly defined by a reference to the
array without a corresponding DIM
statement. A character array is processed
as a row vector, that is, it consists of
only a single row of members.

The extent of the dimension of a
character array is allocated in the
following manner:

1. A character array explicitly defined
with a di~ension N is assigned the
extent of 1 through N. The array
contains N members.

2. A character array implicitly defined
by reference with a single subscript
is assigned the extent of 1 through
10. The array has 10 members.

The following specific rules are
associated with the use of character
arrays:

1. A member of a character array is
referenced in th.~ form a (e) where a is
the character array name and e is an
arithmetic expression.

2. A character array cannot be explicitly
dimensioned by a DIM statement aft~r
it has been defined either explicitly
or implicitly in a logically preceding
statement.

Appendix 0: Formalized Definition of the BASIC Language 81

3. A character array may not be used in a
MAT statement. Therefore, a character
array cannot be re-dimensioned.

4. A character array may be referenced by
one and only one subscript.

2.2.3 Expressions and Operators. An
expression is a representation of a value.
A single constant or a variable is an
expression. constants, variables, and
function references may be combined with
operators and parenthesis to form an
expression. Three forms of expressions are
defined for BASIC: scalar, array, and
relational. The result of the evaluation
of a scalar expression is a single value
a scalar. A scalar expression may be
either an arithmetic expression or a
character expression. The result of the
evaluation of an array expression is a
collection of values -- an array. A
relational expression is used only in the
context of an IF statement and results in a
true or false value.

2.2.3.1 Character Expressions. A character
expression may be composed of a character
variable, character array member, or a
character constant.

In all operations with character
constants, except for output via PRINT or
PRINT USING statements, character constants
containing :fewer than 18 characters will be
blank padded on the right to 18 characters.
A character constant containing more than
18 characters will be truncated on the
right to 18 characters. Character
constants containing no characters, a null
character s-tring, will be interpreted as 18
blank characters.

Characte:c constants in PRINT and PRINT
USING statements are processed with a
length defined by their enclosing quotation
marks with no truncation or padding.

2.2.3. 2 A,ri-thmetic Expressions and
Operators. An arithmetic expression may be
an arithmetic variable, arithmetic array
member, constant or function reference, or
a series of the above separated by binary
operators and parentheses and preceded by

. unary operators. A discussion of function
references, which may only be arithmetic,
will be found in section 2.2.5.

2.2.3.2.1 There are five binary operators,
two unary operators and the right and left
parentheses. The evaluation of an
arithmetic expression is performed left to
right with the priority of various
operators defining the order of evaluation.
The prior'ity of operators will be defined
later.

82

The five binary arithmetic operators
are:

** or exponentiation (either form of the

* /
+

operator is acceptable)
multiplication
division
addition
subtraction

The two unary operators are + and -

Special cases for the arithmetic
operators and the resulting action are as
follows:

Exponentiation: AtB or A**B is defined as
A raised to the B power.

1. If A=B=O an error will occur.

2. If A=O and B<O an error will occur.

3. If A<O and B is not an integer, an
error of "a negative number to a
fractional power" will occur.

4. If A*O and B=O, AtB is evaluated as 1.

5. If A=O and B>O, AtB is evaluated as 0.

Multiplication and Addition: A*B and A+B,
multiplication and addition respectively,
are both commutative (i.e., A*B=B*A and
A+B=B+A), but are not always associative
due to low-order rounding errors (i.e.,
A*CB*C) does not necessarily give the same
results as (A*B)*C).

Division: A/B is defined as A divided by
B. If B=O, an error "division by zero"
will occur.

Subtraction: A-B is defined as A minus B.
No special conditions exist.

Unary Operators: The + and - signs may
also be used as unary operators. Unary
operators may be used in only two
situations:

1. Following a left parenthesis and
preceding an arithmetic expression, or

2. As the leftmost character in an entire
expression which is not preceded by an
operator.

For example:

-A+(-(Bt(-2») is valid.
A+-B or B'-2 is invalid.

2.2.3.2.2 Priority of Arithmetic Operators.
An expession is evaluated
operation-by-operation, from left to .right.
The priority of the operators in an

expression 1~ill determine the order of
evaluation.

operators
t or *:.
unary .. IJ unary -
*, /
binary +, binary -

Priority
Highest

l
Lowest

An arithmetic expression is evaluated in a
left to right order. The Qrder of
evaluation of an expression is determined
as follows:

1. Since an operand may "appear to be
concurrently an operand to two
operators, the priority of operators
determines to which operator an
operand is associated for purposes of
evaluation. This requires that the
two operators in question (if both
exist) be compared in terms of their
priority. The operation defined by
the opE~rator of the highest priority,
of thE~ two being compared, is
performed first to reduce a
subexpression (operand-1 operator
operand-2) to a simple reference to
data. Note that a subexpression for a
prefiJc operator is "operator operand."
If thE~ operators are of equal
priority, the operation defined by the
operat,or on the left is performed
first ..

2. An opE~rand may be:

a. A constant,

b. scalar reference,

c. array reference,

d. int:rinsic function,

e. USE~r defined function,

f. parenthetical subexpression.

When the decision of which operation is to
be performed first, using Rule 1 above, the
operands are accessed and reduced to simple
references t:o data prior to the execution
of the operator. The operands are accessed
and reduced to simple references in a left
to right order.

2.2.3.3 Array Expressions. Array
expressions are composed of operations
which are pE~rformed on the entire
collection of members of an arithmetic
array. Arithmetic array expressions
consist of unary or binary operands.

A unary array expression may have one of
the following forms:

A
ZER
CON
IDN
INV
TRN

An array itself
Zero array function
Unity array function
Identity matrix function
Inverse matrix function
Transpose matrix function

A binary array expression may have one
of the followipg forms:

A+B Sum of two matrices
A-B Difference of two matrices
A*B Product of two matrices

(e)*A Product of the scalar value of e
and the matrix A

Matrix multiplication, the inverse
function, the transpose function, and the
identity function are restricted to
two-dimensional arrays only.

The definition of the preceding
operations is as follows:

Terminology: Let A (m,n) represent an
array with dimensions m rows and n columns.
A (i,j) represents the member at the ith
row and jth column in A.

Array Assignment

For A (m,n), the array B
array such that

A is an (m,n)

B (i,j) = A (i,j)

for i =
j

or

For A (m), the array B
such that

B (i) A (i)

1,2, ••• m
1,2, ••• n

A is an (m) array

for i'= 1,2, ••• m

Matrix Addition

A+B

For A (m,n) and B (m,n), the array
C = A + B is an (m,n) array such that

C (i,j) A (i,j) + B (i,j)

for i
j

1,2, ••• m
1,2, ••• n

Appendix D: Formalized Definition of 'the BASIC Language 83

or

For A (m) and B (m), the array C
an (m) array such that

C (i) ~ A (i) + B (i)

for i 1,2, •• m

Matrix Subtraction

A-B

A + B is

Same as Matl~ix Addition except that the
operation is subtraction.

A*B

For A (p,m) and B (m,n), the array
C = A * B is a (p,n) array such that

C (i"j)

(e)*A

m
~ A (i,k) * B (k,j)
k=l

for i
j

1, 2, ••• p
1,2, ••• n

For A (m,n) and r the value of the
expression e, then B = (e) * A is an (m,n)
array such t:hat

B (i~j) = r * A (i,j)

for i
j

or

1,2, ••• m
1,2, ••• n

For A (m) and r the value of the expression
e, B (e)": A is an (m) array such that

B (i) r * A (i)

for i = 1,2, ••• m

The expression, e, is evaluated only
once, and the result, r, is used throughout
the rest of the evaluation of the
statementfl

84

Zero Array

ZER [(e, [, e2])]

An array A (m, n) such that

A (i,j) = 0

for i 1,2, ••• m
j l,2, ••• n

or

An array A (m) such that

A (i) 0

for i 1,2, ••• m

Unity Array

CON [(e, [, e2])]

Same as Zero Array except that each member
equals 1.

Identity Matrix

IDN [(e i [, e i])]

A square array A (m,m) such that

A(i,j) = 0

for i 1,2, ••• m
j l,2 f ••• m

and i "* j

A(i,j) 1

for i j

Inverse Matrix

INV(A)

For the square array A(m,m), the inverse
array of A (if it exists) is the array
B(m,m) such that

A*B = B*A = I

where I is an m by m identity matrix.

The above relationship is approximately
true since internal precision may not yield
exactly an identity matrix.

Not every matrix has an inverse; matrices
that do not are called ·singular.· The

function DET may be used to evaluate the
determinant of a square array. A singular
matrix is one for which the determinant is
zero. An attempt to evaluate the inverse
of a singular matrix will result in an
error.

TRN(A)

For A (m,n) the transpose matrix of A is
the (n,m) array B such that

B (j,i) = A (i,j)

for i
j

1,2, ••• m
1,2, ••• n

2.2.3.4 Relational Expressions. Relational
expressions are of the general form:

e1 relational-operator e2

The senantic of a relational expression
is that the expression is either satisfied
(true) or not satisfied (false). The
relational operators are binary and are
defined as:

Operator Definition
Equal

<> or "* Not equal
>= or ~~ Greater than or equal
<= or ~~ Less than or equal
> Greater than
< Less than

Two forms of relational expressions are
allowable in BASIC, arithmetic and
character'. The expressions e1 and then e2
are evaluated and their values are compared
according t:o the definition of the
relational operator used. The evaluation
of the entire relational expression results
in the expression being either satisfied or
not satisfied.

2.2.4 Stat:ements. The definition of the
BASIC statements is presented in this
section grouped according to their
functions. The following classes of
statements exist in BASIC.

1. Descriptive

2. Input./'Output

3. Data Movement and Computational

4. Control

These classes are defined solely for the
convenience of presenting the BASIC
statements, and in a few cases, the choice

of class is arbitrarily chosen for a
particular BASIC statement.

In the following descriptions of the
individual statements, the syntactical
definition is stated without the required
preceding statement number and the
following carriage return.

The program is considered to be ordered
with respect to statement numbers in
qscending numerical order. The phrase
"previous statement" refers to the
statement with the next lower statement
number. The phrase "next logical
statement" refers to the statement with the
next higher statement number. A program is
executed in the logical order (i.e., in
ascending sequence of statement numbers)
unless that order is modified by the
execution of a GOTO, GOSUB, IF, or RETURN
statement.

2.2.4.1 Descriptive Statements. BASIC has
two statements which are referred to as
descriptive statements:

DIM

DEF

is used to explicitly dimension an
array

is used to define a user function

2.2.4.1.1 DIM Statement

Syntax

DIM array-dimension-specification

[,array-dimension-specificationJ •••

The DIM statement is non-executable and is
used to explicitly define array sizes.
Arrays of one or two dimensions can be
defined; there is no limitation on the size
of an array ,other than the availability of
storage. Indexing begins at 1 for each
dimension.

DIM statements may appear anywhere in a
program, but an array name cannot appear in
a DIM statement after (i.e., according to
an ascending logical sequence of statement
numbers) it has either been defined
implicitly or explicitly. If a subscripted
variable is used without being defined in a
DIM statement, the processor automatically
defines an array with the appropriate
number of dimensions of ten members each.
An"array must either be defined implicitly
or explicitly in a DIM statement before its
use in a MAT statement. (See Section
2.2.2.1.3 for a detailed description of
dimensioning rules.) A MAT statement may
redimension an array only through the ZER,

Appendix D: Formalized Definition of the BASIC Language 85

CON, ION functions, and the MAT INPUT, MAT
GET, MAT READ I/O statements.

2.2.4.1.2 DEF Statement

DEF FN alphabetic-character
(arithmetic-variable)
arithmetic-expression

Descriptio!!

The DEF statement is non-executable and is
used to define user functions. A user
function i.s called in other statements in a
similar manner as the intrinsic functions
(see Section 2.2.5.2). When used in an
executable statement, the function name, FN
alphabetic-character, is specified followed
by an arit~hmetic expression in parentheses.
When the function is called, the value of
this argument is substituted for any
appearance of the dummy variable in the DEF
expression. This dummy variable is the
variable name given as the argument in the
DEF statement. The use of a variable name
in a DEF statement does not assign any
value to t~he variable name used. The
evaluated arithmetic value of the
expression is returned to the calling
expression to replace the user function
reference in the expression.

The function cannot contain references to
itself or to other functions which
reference it. Function references may not
be recursi.ve at any level. A DEF statement
can appear anywhere in a program, and the
function may be referenced anywhere within
a BASIC program.

2.2.4.2 Input/Output Statements.
Input/output statements are used to
transmit data to a program for processing
and from a program after processing. Input
data may be transmitted to a program
internally (READ), externally from an
interactive terminal (INPUT), or externally
from an on-line storage device (GET).
Output data may be transmitted from a
program externally to an interactive
terminal (PRINT or PRINT USING) or to an
on-line s1::o:r"age device (PUT).

Input/output statements are of two
forms:

1. A simple form which performs I/O upon
scalar values and lists of scalar
values.

2. A complex form which performs I/O upon
arrays. The syntax of this form is
the simple form prefaced with the
keyword MAT.

86

The input/output statements are:

Si!!!E!e FOr!!!
GET

£omplex F2£!!
MAT GET

INPUT
PRINT

MAT INPUT
MAT PRINT

PRINT USING
PUT

MAT PRINT USING
MAT PUT

READ MAT READ

The internal file statements are:

DATA
RESTORE

Tqe external file control statements
are:

RESET
CLOSE

Input/output statements are further
classified and described in terms of the
three modes of I/O they perform.

1. I/O of internal files

2. I/O of interactive terminals

3. I/O of on-line storage devices

2.2.4.4.1 Internal File I/O Statements.
The internal file I/O statements in BASIC
are:

DATA

RESTORE

READ
MAT READ

to create an internal data
file.

to position the data file to
its beginning.

to assign "the values of the
data file to variables or
arrays.

2.2.4.2.1.1 DATA Statement

Syntax

DATA constant [,constant] •••

Description

DATA statements are non-executable and are
used to create a data file, internal to the
program that can be used to initialize
variable references in READ statements
during execution. They can be placed
anywhere in the program, but the logical
order of the DATA statements in a program
determines the order of the values .in the
data file. All DATA statements in a
program are collected into a single data
file

2.2.4.2.1.2 READ statement

RFAD variab14e-reference [, variable­
reference)

At the beginning of execution of a program,
a pointer is set to the first value in the
data file, if one exists. When a READ
statement is encountered, successive values
from the da1ta file are assigned to the
variables in the READ statement beginning
at the current data file position. The
execution o:E a READ statement is in error
if there are no DATA statements in the
program.

Each data value read must be of the same
type (character or arithmetic) as the
variable to which it is assigned. If the
data file is exhausted and unassigned
variables remain in the READ statement, an
error results. subscripts in READ
statements are evaluated as they occur.
(Thus, an assigned variable reference in a
RFAD statement may be subsequently used as
a subscript in that statement).

Truncation will occur if the arithmetic
data exceeds the implementation supported
precision. Zero fill will occur if the
arithmetic d.ata is less than the
implementation supported precision.

2.2.4.2.1.3 RESTORE Statement

~ax

RESTORE [s'tring-characterl •••

Description

The RESTORE statement resets the DATA
pointer to 'the first value in the data
file.' The RESTORE statement is ignored if
there are no DATA statements in the
program. The string characters following
the keyword RESTORE is simply a comment.

2.2.4.2.1.4 MAT READ Statement

syntax

MAT READ arithmetic-array-reference
[, arithme't.ic-array-referencel •••

Description

The array references in the MAT READ
statement ar·e assigneq values from the data

file by rows, beginning at the current data
file position. Array references previously
must either have been implicitly defined or
explicitly defined by a DIM statement. If
the optional expressions follow the array
names, the truncated integer portion of the
expressions is used to redimension the
arrays before the values are assigned.
Redimensioning must not change ·the number
of original dimensions nor exceed the
number of original members.

At the beginning of execution of a program,
a pointer is set to the first value in the
data file, if one exists. When a MAT READ
statement is encountered, successive values
from the data file are assigned to the
arrays in the MAT READ statement.

Each data value read must be arithmetic.
If the data file is exhausted and
unassigned arrays or array members remain
in the MAT READ statement, an error
results.

Conversion of arithmetic input is a
function of the precision specification (S
or L) which is employed during execution.
This implies that all arithmetic data which
is read is either truncated or zero padded
to appropriate precision specification (S
or L), if required, prior to assignment to
internal variables.

The pointer may be reset by executing the
RESTORE statement. The MAT READ statement
is invalid if there are no DATA statements
in the program.

2.2.4.2.2 Interactive Terminal I/O
Statements. The interactive terminal I/O
statements in BASIC are:

INPUT

MAT INPUT

PRINT

MAT PRINT

PRINT USING

MAT PRINT
USING

to input data into a
program from a terminal to
be assigned to variables.

to input data into
arithmetic arrays within a
program from a terminal.

to output data to a
terminal.

to output values of
arithmetic arrays to a
terminal.

to output formatted data to
a terminal.

to output formatted values
of arithmetic arrays to a
terminal.

This group of statements is referred to
as interactive terminal statements because
they either request data to be supplied, or

Appendix D: Formalized Definition of the BASIC Language 87

they generate printed output back to the
user at execution time.

2.2.4.2.2.1 INPUT statement

Syntax

INPUT variable-reference [,variable­
reference] •••

Descriptior~

Execution of an INPUT statement causes a
question mark to be printed at the
terminal j • at the current print position,
which is then activated for input. The
user enters a list of values which are
assigned to the variable references in the
INPUT stat€!ment. Each value entered must
be of the same type (character or
arithmetic) as the corresponding variable
reference. Each value must be separated
from the next value by a comma. A carriage
return ends the series of values entered.

Only a single line of input may be entered
in respons€~ to an INPUT statement.

Conversion of arithmetic input is a
function of the precision specification (S
or L) which is employed during execution.
This implies that all arithmetic data which
is read is either truncated or zero padded
to appropriate precision specification (S
or L) prior to assignment to program
variables.

A character constant in the input stream
must be delimited by single or double
quotation marks.

Subscript;s on variable references are
evaluated as they occur. An error occurs
if the nLuuber of values entered does not
equal thE! number of variable references in
the INPUT statement, or any of the values
are of the wrong data type.

The procedure for retry or re-entering of
data, aft,er an error, is implementation
defined.

2.2.4.2.2.2 MAT INPUT Statement

Syntax

MAT INPUT arithmetic-array-reference
[, ari thrne'tic-array-reference] •••

Description

Execution of a MAT INPUT statement causes a
question mark to be printed at the terminal
which is then activated for input. The

88

user enters a list of values which are
assigned to members of the specified arrays
by rows, each new row being requested with
two question marks by the system as the
previous row is completed. A single
question mark is used to indicate a request
for input to the first row of an array.

Array references may be one- or two­
dimensional arrays which previously must
either have been implicitly or explicitly
defined by a DIM statement. If the
optional expressions follow the array
names, the truncated integer portion of
these expressions is used to redimension
the arrays before the values are entered.

Redimensioning must not change the number
of original dimensions nor exceed the
number of original members.

Conversion of arithmetic input to internal
format is a function of the precision
specification (S or L) which is employed
during execution. This impli'es that all
arithmetic data which is read is either
truncated or zero padded to appropriate
precision specification (S or L) prior to
assignment to internal variables.

Each value is separated from the next value
by a comma. The final entry for each row
of each array is followed by a carriage
return from the user to signify end of row.
If a line is full and input data remains to
be entered, the last value entered must be
followed by a comma before the carriage is
returned to continue. An error will occur
if the number of values entered for a row
does not equal the number of members in the
corresponding array or if any of the values
are not arithmetic. The procedure for
retry or re-entering of data, after an
error, is implementation defined.

2.2.4.2.2.3 PRINT Statement

Syntax

PRINT [print-reference] [character-constant
[, Ii] print-reference I [character­
constant]{, I i} [print-reference]] •••
[character- constantl, Ii]

Each data item in the PRINT statement
(print-reference, character-constant, or
null) is converted to a specified output
format and printed at the terminal, the
carriage being positioned as specified by
the delimiting character (comma, null
delimiter, or semicolon) or item following
the data item being considered. A null
delimiter is indicated by the absence of an
explicit delimiter, either a comma or a
semicolon.

Each line is constructed from two types of
print zones, full or packed. Print zones
are defined relative to the carriage
position at which a data item begins. The
length of a line cannot be less than a full
print zone; a full print zone consists of
18 charactE~rs.

If the data item is an arithmetic
expression ll the size of the packed print
zone is determined by the size of the
converted field (including the sign,
digits, decimal point, and exponent) as
follows:

converted Print Field
~4 characters

5- 7 characters
8-10 characters

11-13 characters
14-17 characters

Packed Print Zone
6 characters
9 characters

12 characters
15 characters
18 characters

Short form apparent precision or
significant number of digits will be
referred to throughout this standard as S.

Where:

S~6 significant digits

Long form apparent precision or significant
number of digits will be refferred to
throughout ~this standard as L.

Where:

L~11 significant digits

If the data item is a character reference,
the size of the packed print zone is 18
characters minus any trailing blanks.

If the data item is a character constant,
the size of the packed print zone equals
the length of the string enclosed by
quotation marks.

Each data item is converted to output
format as follows:

1. Arithmetic expressions in short-form
arithmetic are formatted as follows:

a. I-format consisting of a sign
(blank or minus) and up to S
significant decimal digits for
integers whose absolute value is
greater than or equal to zero and
less than lE+S. Printed values
are rounded.

b. E-format consisting of a sign
(blank or minus), up to S
significant decimal digits, a
de~cimal point following the first
digit, the letter "E", and a
si.gned exponent for numbers, not
i.ncluded in the I-format described

above, whose absolute value is
less than iE-lor greater than or
equal to lE+S. PrintE~d values are
rounded.

c. F-format consisting of a sign
(blank or minus), up to S
significant digits, and a decimal
point in the proper position for
numbers not included in the 1- or
E-formats described above.
Printed values are rounded.

2. Arithmetic expressions in long form
arithmetic are formatted as follows:

a. I-format consisting of a sign
(blank or minus) and up to eleven
Significant decimal digits for
integers, whose absolute value is
greater than or equal to zero and
less than lE+L. Printed values
are rounded.

b. E-format consisting of a sign
(blank or minus), and up to eleven
significant decimal digits, a
decimal point following the first
digit, the letter "E", and a
signed exponent for numbers not
included in the I-format described
above, whose absolute value is
less than iE-lor greater than or
equal to lE+L. Printed values are
rounded.

c. F-format consisting of a sign
(blank or minus), up to L
significant digits, and a decimal
point in the proper position for
numbers not included in the 1- or
E-formats described above.
Printed values are rounded.

The converted data item will be printed as
follows:

1. If the data item is an arithmetic
expression, the converted field will
be printed as follows:

a. If the line contains sufficient
space to accommodate the value,
printing will start at the current
carriage position.

b. If the line does not contain
sufficient space to accomodate the
value, printing will start at the
beginning of the next line.

2. If the data item is a character
reference or a character constant, the
converted field will be printed as
follows:

a. If the delimiting character is a
comma and at least 18 spaces

Appendix D: Formalized Definition of the BASIC Language 89

remain on the line, printing will
start at the current carriage
position. If the end of the print
line is encountered before a
character constant is exhausted,
printing of the remaining
ch,aracters will begin on the next
line.

b. If the delimiting character is a
comma and fewer than 18 spaces
remain on the line, printing will
start at the beginning of the next
print line. If the end of the
line is encountered before a
character constant is exhausted,
printing of the rema1n1ng
characters will begin on the next
line.

c. If the delimiting character is not
a comma, printing will sta.rt at
-the current carriage position. If
the end of the print line is
encountered before the data item
is exhausted, printing of the
remaining characters will begin on
~thE~ next 1 ine.

After the converted data item has been
printed, thE! carriage will be positioned as
specified by the delimiting character:

1. If the data item is a print reference,
the carriage will be positioned as
follows:

a. If the delimiter is a comma, the
carriage will be moved past any
remaining spaces in the full print
:;~one; if the end of the print line
is encountered, the carriage will
l~ moved to the beginning of the
next print line.

b. If the delimiter is a semicolon,
t:he carriage will be moved past
any remaining spaces in the packed
print zone; if the end of the
print line is encountered, the
carriage will be moved to the
l~ginning of the next print line.

c. If the delimiter is null (not end
of statement) followed by a
character constant, the carriage
is left at the print position
immediately following the data
item.

d. If the delimiter is null (end of
sta-tement), the carriage will be
moved to the beginning of the next
print line.

2. If the data item is a character
constant, the carriage will be
positioned as follows:

90

a. If the delimiter is a comma, the
carriage will be moved past any
remaining spaces in the full print
zone; if the end of the print line
is encountered, the carriage will
be moved to the beginning of the
next line.

b. If the delimiter is null (not end
of statement) or is a semicolon,
the carriage is left at the print
position immediately following the
data item.

c. If the delimiter is null (end of
statement), the carriage will be
moved to the beginning of the next
print line.

3. If the data item is null, the carriage
will be positioned as follows:

a. If the delimiter is a comma, the
carriage will be moved 18 spaces;
if the end of the line is
encountered, the carriage will be
moved to the beginning of the next
print line.

b. If the delimiter is a semicolon,
the carriage will be moved three
spaces; if the end of the print
line is encountered, the carriage
will be moved too the beginning of
the next line.

c. If the delimiter is null (end of
statement) and the null is the
first data item in the list, the
carriage will be moved to 'the
beginning of the next print line.

~~.2.2.4 MAT PRINT Statement

Syntax

MAT PRINT arithmetic-array
[{, I; larithmetic-arrayl ••• [, I; 1

Description

Each array in a MAT PRINT statement, which
previously must either have been defined
implicitly or explicitly by a DIM
statement, is printed in row-major order.
The first row of each array begins at the
start of a new line, and is separated from
the preceding line by two blank lines. The
remaining rows of each array begin at the
start of a new line, and are separated from
the preceding line by a single blank line.
After the final or only array has been
printed, the carriage will be repositioned
to a new print line. One- or
two-dimensional arrays may be printed.

Each array mE~mber is converted to a
specified output format and printed, the
carriage being repositioned as specified by
the delimiting character following the
array name. (See section 2.2.4.2.2.3,
PRINT Statement for specific format
information on print zones and conversion
of values.)

The converted array member will be printed
at the terminal as follows:

1. If the line contains sufficient space
to accommodate the value, printing
will s'tart at the current carriage
position.

2. If the line does not contain
suffic:ient space to accommodate the
value, printing will begin at the
start of the next line.

After the converted member has been
printed, the carriage will be positioned as
specified by the delimiting character:

1. If the delimiter is a comma, the
carriage will be moved past any
remaining spaces in the full print
zone; if the end of the line is
encountered, the carriage will be
moved ·to the beginning of the next
line.

2. If the delimiter is a semicolon, the
carriage will be moved past any
remaining spaces in the packed print
zone. If the end of the line is
encountered, the carriage will be
moved to the beginning of the next
line.

3. If the final delimiter is a null, it
will be treated as a comma.

2.2.4.2.2.5 PRINT USING and Image
Statements

Syntax

PRINT USING statement-number
[,scalar-reference] •••

[{not! string-character} ••• I
conversion.-specification] •••

Description:

Each scalar reference in the PRINT USING
statement is edited into a line as directed
by an Image! statement, and the line is
printed at t.he terminal. The statement
number in the PRINT USING statement is the
statement number of the associated Image
statement.

Image statements are non-executable and may
be placed anywhere in a program; they
specify format pictures for single print
lines. String characters appearing in an
Image statement are printed exactly as they
are entered. Conversion specifications
appearing in an Image statement specify
Integer, Fixed Point, or Floating Point
format (see Section 2.3 BASIC Language
Syntax). Each scalar reference is edited
(in order of appearance in the PRINT USING
statement) into a corresponding conversion
specification (in order of appearance in
the referenced Image statement).

If the PRINT USING statement contains at
least one scalar reference and no
conversion specification appears in the
referenced Image statement, an error
occurs. If the number of scalar references
in the PRINT USING statement otherwise
exceeds the number of conversion
specifications in the Image statement, a
carriage return occurs at the end of the
Image statement and the Image statement is
reused for the remaining scalar references.
If the number of scalar references in the
PRINT USING statement is less than the
number of conversion specifications in the
Image statement, the line is te:rminated at
the first unused conversion specification.

The carriage is repositioned to a new line,
if required, before printing the edited
line. The carriage is repOSitioned to a
new print line after printing is completed.

Each scalar reference is converted to
output format as follows:

1. The meaning of a scalar reference is
extracted from the specified strin.g
and edited into the line, replacing
all elements in the conversion
specification (including sign, #,
decimal point, and I III or I!!!). If
an edited character reference is
shorter than the conversion
specification, blank padding occurs on
the right. If an edited character
reference is longer than the
conversion specification, truncation
occurs on the right. A character
constant containing no characters
results in blank padding of the entire
conversion specification.

2. An arithmetic expression is converted
in accordance with its conversion
specification as follows:

a. If the conversion specification
contains a plus sign and the
expression value is positive, a
plus sign is edited into the line.

b. If the conversion specification
contains a plus sign and the

Appendix D: Formalized Definition of the BASIC Language 91

expression value is negative, a
minus sign is edited into the
line.

c. If the conversion specification
contains a minus sign and the
expression value is positive, a
blank is edited into the line.

d. If the conversion specification
contains a minus sign and the
expression value is negative, a
minus sign is edited into the
line.

e. I:E the conversion specification
does not contain a sign, the
expression value is negative and
the conversion specification is
la.rge enough to contain the number
and the minus sign, then the
negative number will be printed.
If the expression value is
~)sitive and the conversion
specification is large enough to
contain the number, the number is
printed without a sign.
otherwise, asterisks are edited
into the line instead of the
expression value.

f. The expression value is converted
according to the type of its
conversion specification as
follows:

I-·format: The value of the
expression is converted to an
integer, rounding any fraction.

F-format: The value of the
expression is converted to a
fixed-point number, rounding the
value or extending it with zeros
in accordance with the conversion
specification.

E-format: The value of the
expression is converted to a
floating-point number, rounding
the value or extending it with
zeros in accordance with the
conversion specification. The
four exclamation marks or OR signs
in an E-format specification are
used to indicate the print
positions of the exponent part of
a floating point number, for
example E!xx, where x is any
numeric digit.

3. If the length of the arithmetic
expression value is less than or equal
to the length of the conversion
specification, the expression value is
edited" right-justified, into the
line. If the length of the expression
value is greater than the length of

92

the conversion specification,
asterisks are edited into the line
instead of the expression value.

The following rules define the start of a
conversion specification:

1. A number sign is encountered and the
preceding character is not a number
sign decimal point, plus sign, or
minus sign.

2. A plus or minus sign is encountered,
which is followed by:

a. A number sign or

b. A decimal point which is followed
by a number sign.

3. A decimal point is encountered, which
is followed by a number sign and:

a. The preceding character is not a
number sign, plus sign, or minus
sign or

b. The preceding character string is
a fixed point conversion
specification.

The following rules define the end of a
conversion specification that has been
started:

1. A number sign is encountered and:

a. The following character is not a
number sign or

b. The following character is not a
decimal point or

c. The following character is a
decimal point and a decimal point
has already been encountered or

d. The following four consecuti.ve
characters are not exclamation
points or OR signs.

2. A decimal point is encountered and:

a. The following character is not a
number sign or

b. The following character is another
decimal point or

c. The following four consecutive
characters are not exclamation
points or OR signs.

3. Four consecutive exclamation points or
OR signs are encountered.

2.2.4.2.2.6 MAT PRINT USING Statement

MAT PRINT USING statement-number,
arithmetic-array [,~rithmetic-array) •••

Description

Each array in the MAT PRINT USING
statement, which previously must have been
either implicitly or explicitly defined by
a DIM statement, is printed by rows at the
terminal according to the format defined by
an Image statement (see Section 2.2.4.2.2.5
PRINT USING statement). The statement
number in the MAT PRINT USING statement is
the statement number of the Image statement
used. One- or two- dimensional arrays may
be printed.

If the Image statement does not contain at
least one conversion specification, an
error occurs. If the number of members in
the array row exceeds the number of
conversion specifications in the Image
statement, a carriage return occurs at the
end of the Image statement and the Image
statement is reused for the remainder of
that row. If the number of members in the
array row is less than the number of
conversion specifications in the Image
statement, the line for that row is
terminated a,t the first unused conversion
specification.

The first row of each array begins at the
start of a new line and is separated from
the precedi.ng line by two blank lines.
Each succeeding array row begins at the
start of a new line and is separated from
the precedi.ng row by one blank line. When
the last or only array has been printed,
the carriasre is repositioned.

2.2.4.2.3 External File I/O Statements.
The external file statements in BASIC are:

GET

MAT GET

PUT

MAT PUT

RESET

to input data into a program
from an external file to be
assigned to variables.

to input data into a program
from an external file to be
assigned to arithmetic
arrays.

to output data to an external
file.

to output values of
arithmetic arrqys to an
external file.

to reposition an external
file at the beginning.

CLOSE to deactivate an external
file and disassociate it from
the program.

This group of statements is referred to
as external file I/O statements since they
process data and data collections which may
be retained at the end of a program and may
be accessed at a later time.

BASIC external files are processed as a
continuous stream of arithmetic constants
expressed as a floating point notation in a
character format, and character data
expressed as character constants enclosed
by quotes. Data items on external files
are separated from each other by a blank.

Arithmetic constants are written onto an
external file in either S or L precision
(see Section 2.2.4.2.2.3 PRINT statement)
depending upon the mode of execution. A
file generated with S precision arithmetic
constants may be accessed in a long
precision execution of a program with the
extra significance generated by zero
padding. Similarly, a file generated with
L precision arithmetic constants may be
accessed in a short precision execution of
a program with the extra digits being
truncated. However, an access of a long
precision number which would cause a loss
of magnitude would cause an error.

Character data is written onto external
files as eighteen characters delimited by
single quotation marks. Character strings
read into character variables from an
external file are either extended to
eighteen characters with blank padding on
the right, if the source field has fewer
than eighteen characters, or directly
assigned if equal to eighteen characters.

2.2.4.2.3.1 GET Statement

Syntax

GET file-reference, variable-reference
[,variable-reference) •••

The variable references in the GET
statement are assigned values read from the
specified file, beginning at the current
file position. Each value read must be of
the same type (character or arithmetic) as
the corresponding variable reference in the
GET statement. Subscripts in variable
references are evaluated as they occur
since the variable references are assigned
from left to right.

Conversion of arithmetic input to internal
format is a function of the precision

Appendix D: Formalized Definition of the BASIC Language 93

specification (S or L) which is employed
during execution. This implies that all
arithmetic data which is read is either
truncated. or zero padded to appropriate
precision specification (S or L) prior to
assignment to internal variables.

A file is activated for input by the first
execution of a GET or MAT GET statement for
the file, at which point the file is
posi tionE!d at the beginning and the
variable re!ferences are assigned the values
read from t.he file. A file is deactivated
when it is closed or at the end of
execution of a program.

A file currently activated as an output
file cannot be referenced by a GET
statement. It must first be closed.

2.2.4.2.3.2 MAT GET Statement

syntax

MAT GET file-reference,
arithmeti.c-array-reference
(,arithmetic-array-reference] •••

Description

The array references in the MAT GET
statement are assigned values from the
specified file by rows, beginning at the
current file position. Array references
may be one- or two-dimensional arrays,
which previously must have been either
implicitly or explicitly defined by a DIM
statement. If the optional expressions
follow the array names, the truncated
integer por1:ion of these expressions is
used to redimension the arrays before the
values ar,e f~ntered. Redimensioning must
not change 1:he number of original
dimensions nor exceed the number of
original members.

Whether short-form arithmetic is specified
and the filE~ was created in long-form, or
long-form arithmetic is specified and the
file was created in short-form, all
arithmetic data read is truncated to an
implementation defined number of
significant digits or zero filled to an
implementation defined number of digits.

A file is activated for input by the first
execution of a MAT GET or GET statement for
the file. 'Jlhe file is positioned at the
beginning aIlld then the arrays are assigned
the values r·ead from the file. A file is
deactivatE!d when it is closed o:r at the end
of execution. of a program.

A file cUl~rently activated as an output
file cannc.t be referenced by a MAT GET
statement. It must first be closed.

94

2.2.4.2.3.3 PUT Statement

Syntax

PUT file-reference, scalar-reference
(,scalar-reference] •••

Deser iption

Scalar references in the PUT statement are
written into the specified file beginning
at the current file position.

Whether short- or long-form arithmetic is
specified, arithmetic data written will be
~uncated to an implementation defined
number of significant digits or zero filled
to an implementation defined number of
digits.

A file is activated for output by the first
execution of a PUT or MAT PUT statement for
the file. The file is positioned to the
beginning and the scalar references are
written into the file. A file is
deactivated when it is closed or at the end
of execution of a program.

A file currently activated as an input file
cannot be referenced by a PUT statement.
It must first be closed.

2.2.4.2.3.4 MAT PUT statement

Syntax

MAT PUT file-reference, arithmetic-array
(,arithmetic-array] •••

Desqription

Values from the specified array are written
into the specified file by rows, beginning
at the current file position. The arrays
previously must have been defined either
implicitly or explicitly by a DIM
statement.

Whether short- or long-form arithmetic is
specified, all arithmetic data written will
be truncated to an implementation defined
number of significant digits or zero filled
to an implementation defined number of
digits.

A file is activated for output by the first
execution of a MAT PUT or PUT statement.
The file is positioned at the beginning and
then the arrays are written into the file.
A file is deactivated when it is closed or
at the end of execution of a program.

A file currently activated as an input file
cannot be referenced by a MAT PUT
statement. It must firs·t be closed.

2.2.4.2.3 .. !i RESET Statement

Syntax

RESET file--reference [, file-reference] •••

Desc,riptioll

File refel:ences are repositioned at the
beginning of the file. If a specified file
is not act:ive, its appearance in the RESET
statement will be ignored.

2.2.4.2.3!6 CLOSE Statement

Syntax

CLOSE file-reference [,file-reference] •••

Description

The CLOSE statement is used to deactivate a
file, that is, it disassociates a file from
its attribute, input or output. An
implicit CLOSE is executed for each active
file at completion of the execution of a
program. If a file is to be used both as
an input file and an output file during
program execution, it must be closed
between input and output references. If a
specified file is not active, its
appearance in the CLOSE statement will be
ignored. An abnormal termination of a
program due to an error raised in the
program will cause all files to be closed.

2.2.4.3 Data Movement and Computational
Statements. The data movement statements
referred to in this section deal solely
with internal data assignment of an
expression 'to a variable. The two forms of
assignment ,are:

LET which assigns the value of
a scalar expression to a
variable.

MAT Assignment which assigns the values
of an array expression to
an arithmetic array.

2.2. 4. 3.1:LET Statement

~~

[LET] {arithmetic-reference
[, c:J.ri thmetic-reference] •••
arithmetic-expression I
character-reference
[,character-reference]... =
character-expression}

Description

The value of the arithmetic or character
expressions are evaluated once and assigned
to the arithmetic or character references
in a left to right order as in the input
statements. The exact expansion of a
multiple LET statement is as follows:

LET var-l [(sub11 [,sub12])], ••• var-n [(sub
n1[,sub-n 2])]=exp

is equivalent to:

LET temp = exp

LET var-l [(tSub11 [,tsub12])1 temp

[LET tsub-n2 sub-na]

LET var-n [(tsub-n1 [,tsub-n2])] = temp

A general rule is that all multiple list
assignments, either by a LET or an input
statement (GET, INPUT, READ), are to be
treated in the above manner. That is,
subscripts for the first variable are
evaluated and then the assignment is made
followed by the evaluation of the second
variable's subscripts and its assignment.
This process continues in a left to right
order until the list is exhausted.

2.2.4.3.2 MAT Assignment Statement

Syntax

MAT arithmetic-array = {arithmetic-array I
arithmetic-array
{+I-} arithmetic-arraylarithmetic-array
* arithmetic-array I
(arithmetic-expression)
* arithmetic-array I {CONI ZER I IDN}
[arithmetic-array-subscriptlI {INVITRN}
(arithmetic-array)}

Description

The MAT statement evaluates the array
expression to the right of the equal sign
and assigns the result to the array to the
left of the equal sign. The dimensions
specified for the array on the left must
conform to the array expression on the
right. If the array expression involves
matrix multiplication, inversion, or
transposition, the array named on the left
must not appear in the expression. An
array must be defined either implicitly or

Appendix D: Formalized Definition of the BASIC Language 95

explicitly by a DIM statement before it can
appear in a MAT statement.

The array operations available are: (where
A and B are arithmetic array names)

A A simple array reference

A + B Sum of two matrices

A - B Difference of two matrices

A * B Product of two matrices1

(e) * A Product of the scalar value of e
and matrix A

ZER [(e1 [,e2])] produces e1
[by e2] zero array2

CON [(e1 [,e2])] produces e1
[by €2] unity array2

ION [(e1 ,€1)] produces e 1
by e~. identity matrix1 2

INV(A) Inverse matrix of A1 3

TRN(A) Transpose matrix of A1

If e1 is not specified for ZER, CON, ION
functions, the dimensions used are those of
the array being assigned.

~:

1. Restricted to two-dimensional arrays
only.

2. If the optional expressions are
included, the truncated integer
portion of these expressions is used
to redimension the arrays on the left
of the equal sign before the operation
is pE~rformed. Redimensioning must not
change the o~iginal number of
dimensions nor exceed the original
number of members.

3. The INV of a singular array will cause
an error. The action of this error is
implementation defined.

2.2.4.4 Control Statements. Control
statements in BASIC are used to direct the
flow of execution of a program. The
following statements constitute the set of
control st~atements in BASIC.

GOTO

GOSUB

96

']~ransfers control, unconditionally
or conditionally, to a specific
statement.

,]'ransf ers control unconditionally
t~o a group of statements.

RETURN

FOR

NEXT

IF

PAUSE

STOP

END

Returns control to the first
executable statement following the
last active GOSUB statement.

Is the initial delimiter of a
group of statements which will
continue to execute a number of
times until an iteration criteria
is satisfied.

Is the end delimiter of a FOR
group.

Is a conditional branch statement
dependent on the truth or false
value of a relational expression.

Causes suspension of the execution
of a program until it is resumed
by a user.

Causes the end of a program
execution.

Indicates the end of a program and
therefore is logically the last
statement in a program.

The control statements are defined in
the following subsections.

2.2.-4.4.1 GOTO Statement

Syntax

GOTO statement-number
[[,statement-number] •••

ON arithmetic-expression]

Oesc-r iption

Execution of a simple GOTO statement
(without the ON option) causes an
unconditional transfer of control to the
statement whose statement number is
specified. If the ON option is employed,
the GOTO is called a "computed GOTO." The
words GOTO are followed by an n-element
statement-number list. The value of the
arithmetic expression is computed at
execution time; the program branches to
element i of the statement-number list,
where i is the truncated integer value of
the arithmetic expression. If i < 1 or i >
n, control is passed to the next logically
executable statement in the program.

If the statement branched to is a
non-executable statement, control will be
passed to the first logically executable
statement following the statement
specified.

2.2.4.4.2 GOSUB and ,RETURN statements

Syntax

GOSUB statement-number

RETURN [string-character] •••

Description

Execution of a GOSUB statement causes a
transfer of control to the statement whose
statement number is specified. The GOSUB
statement also sets up a return path such
that, when a RETURN statement is executed,
control is returned to the next logically
executable statement following the last
GOSUB statement executed. An active GOSUB
is one where a GOSUB statement has been
executed without a complimentary execution
of a RETURN statement. GOSUB statements
may be multiply active in a recursive
manner.

GOSUB statements may be used in any manner
but care should be used in defining
recursive GOSUB loops, i.e., a GOSUB into
an area of' the program that contains a
GOSUB leading back to the first GOSUB.
This could result in an infinite loop.

If the statement branched to is a
non-executable statement, control will be
passed to the first logically executable
statement following the specified
statement.

Execution of a RETURN statement without an
active GOSUB will cause an error.

2.2.4.4.3, FOR and @XT statements

FOR arithmetic-variable
expression

arithmetic-

TO arithmetic-expression

[STEP arithmetic-expression]

NEXT arithmetic-variable

Description

The FOR and NEXT statements delineate a
"FOR loopft: a set of statements which are
executed zero or more times. The FOR
statements are paired because the same
arithmetic variable occurs in both
statements. FOR-NEXT pairs must be
properly nested inside each other. That
is, a FOR-NEXT loop properly nested within
another FOR-NEXT loop must be completely
enclosed within the outer loop. FOR-NEXT
loops may not overlap each other.

The three arithmetic expressions in the FOR
statement are called the initial value, the
final value, and the increment,
respectively. These expressions are
evaluated only during initial execution of
the FOR statement, and are not affected by
any statements within the FOR loop. The
arithmetic variable is called the control
variable and may be modified within the FOR
loop. If the initial value is greater than
(less than for negative increments) the
final value at evaluation time, the loop is
not executed and the value of the control
variable is left unchanged.

When the loop is first executed, the
control variable is set to the initial
value. The statements in the loop are
executed, and the increment is added to the
control variable. This process continues
until the control variable is greater than
(less than for negative increments) the
final value. At this time control is
passed to the first executable statement
logically following the NEXT statement. At
this point, the control variable has a
value equal to the value which caused the
loop to fail less the value of the STEP
expression.

If the STEP arithmetic expression is
omitted, it is assumed to be +1. Transfer
of control into or out of a FOR loop is
allowable within the constraints that a
NEXT statement cannot be executed if its
associated FOR statement has not been
executed and is, therefore, inactive.

A FOR loop is active as long as a FOR
statement has been executed, and the loop
has not been completed. An active FOR-loop
may be re-entered via the FOR-statement,
but the effect is an immediate deactivation
of the previous generation of the FOR-loop.

An exact expansion of the FOR loop is as
follows:

10

20

30

FOR v = exp--1

[STEP exp-- 3]

NEXT v

is equivalent to:

e2 exp-2

TO exp-2

e3 exp-3le3 = 1 if the STEP
is not explicitly stated

Appendix D: Formalized Definition of the BASIC Language 97

40 IF e 3 <0 GO TO 70

50 IF e:l.>e2 GO TO 210

60 GO TO 80

70 IF e:l.<e2 GO TO 210

80 v e1.

90

loop

150 v v + e 3

160 IF e3?0 GO TO 190

170 IF v<e2 GO TO 200

180 GO ~ro 90

190 IF v<=:e2 GO TO 90

200 v v - e3

210

2.2.4.4.4 IF Statement

Syntax

IF {arithmE~tic-expression
relational-operator
arithmetic-expression \
character-expression
relational-operator
character-expression}
{THEN\GOTO} statement-number

J)escript;io!~

The two arithmetic or character expressions
in the IF statement are compared. If the
specified relation is satisfied, control is
passed to the statement whose statement
number is specified. If the statement
branched to is a non-executable statement,
control will be passed to the first
logically E~xecutable statement following
the specified statement. If the specified
relation is not satisfied, control is
passed to t~he next logically executable
statement in the program.

Relational operations on character data is
always pc~rformed on strings of 18
characters in"length by previously
extending t:he strings on the right with
blanks, or by truncation on the right when
requiredu

98

syntax

PAUSE [string-character] •••

This statement causes program execution to
be interrupted after printing the following
message:

PAUSE AT LINE statement-number

where the statement-number is the statement
number of the PAUSE statement.

The procedure for subsequent resumption of
program execution is implementation
defined.

2.2.·4.4.6 STOP Statement

Syntax

STOP [string-character] •••

Description

Program execution is terminated. This
statement causes exactly the same action as
an END statement during execution.
However, unlike the END statement which is
the last logical statement in the program,
the STOP statement may appear anywhere in
the program.

~2 •. 4.4.7 END Statement

Syntax

END [string-character] •••

Description

The END statement indicates the logical end
of a program, i.e., any statements
numerically following END are ignored. END
is optional and, if omitted, is assumed to
follow the highest numbered statement in
the program.

2.2.4.5 REM Statement

Syntax

REM [string-character] •••

Descriptiol1

The REM statement is non-executable and is
used to insert a comment into a program.
It can be placed anywhere in a program.

2.2.5 Functions. A function reference is a
shorthand notation for expressing an
algorithm to be evaluated, resulting in the
function rE~ference being. replaced at
execution time with a numeric value. Three
types of functions will be discussed in
this secticm:

User functions

Intrinsic
function

Internal
constants

where the user defines
the algorithm.

parameterized
invocations of a system
defined algorithm.

non-parameterized
invocation of a system
defined algorithm which
returns a constant
result.

2.2. 5.1 USE~r Functions. User functions are
defined by t:he user through the use of the
DEF statement. Once defined, they may be
used like intrinsic functions in arithmetic
expressions.

During execution, any statement that
references the user function will supply an
expression argument whose value is used in
any function in place of any dummy
variable. 1\.11 other arithmetic data
elements in the user function take on the
values current at the time of function
invocation.

2.2.5.2. Intrinsic Functions.
IBM-supplied routines can be used to
compute the values of various mathematical
functions. Each of these functions has a
single argument (optional with RND), which
can be any valid arithmetic expression and
produces a single arithmetic result. An
invalid argument will cause an error. The
DET function: is an exception in that its
argument must be a reference to an
arithmetic array. A function reference may
be used anywhere in arithmetic expressions
that a variable or a constant can be used.
The intrinsic functions defined are:

SIN (X)

computes the sine of X radians.

COS (X)

computes the cosine of X radians.

TAN (X)

computes the tangent of X radians.

COT ·(X)

Computes the cotangent of X radians.

SEC (X)

Computes the secant of X radians.

Computes the cosecant of X radians.

Computes the arc sine (in radians) of the
real number X. where:

(- /2)~ASN(X)~(/2)

ACS (X)

Computes the arc cosine (in radians) of the
real number X. where:

°IACS(X)~

ATN ·(X)

Computes the arctangent (in radians) of the
real number X. where:

-(/2)<ATN(x)« .12)

Computes the hyperbolic sine of the real
number X.

HCS ·(X)

Computes the hyperbolic cosine of the real
number X.

HTN ·(X)

Computes the hyperbolic tangent. of the real
number X.

DEG (X)

Computes the number of degrees in X
radians.

RAD (X)

Computes the number of radians in X
degrees.

Computes the value of e raised to the X
power.

ABS ·(X)

Computes the absolute value of the real
number X by forcing it positive.

Appendix D: Formalized Definition of the BASIC Language 99

LOG (X)

computes the natural logarithm (base e) of
the positive number X greater than zero.

LTW (X)

computes the logarithm to the base 2 of the
positive number X greater than zero.

LGT . (X)

computes the logarithm to the base 10 of
the positive number X greater than zero.

computes the square root of the
non-negat.i ve number X.

INT (X)

Returns the integer part of the real number
X. If X < 0 then the value returned is the
smallest integer;::: X. INT(-3.14) = -3. If
X ;::: 0 the!n the value returned is the
largest int'eger $ X. INT(3.14) = 3.

Returns t.he sign of the real number X. If
X < 0, SGN (X) = -1; if X = 0, SGN (X) = 0;
if X > 0, SGN (X) = +1.

RND [(X)]

Returns a. random number in the interval
between 0 and 1 according to a uniform
distribut.ion on this interval. Each random
number is computed from the previous one
according to a fixed algorithm.

100

The random number generator can be
initialized by specifying an argument: the
argument may be any number. Subsequent
references to RND without using an argument
will cause the new number to be generated
from the previous one.

Each time RND is called with an argument,
the generator is initialized with the
absolute value of the argument. If RND is
called without an argument and there has
been no previous initialization, then the
generator will initialize itself, using an
implementation defined value.

Returns the value of the determinant of the
square arithmetic array X. The array must
have been either defined implicitly, or
explicitly in a DIM statement before its
use as an argument in the DET function.

2.2.5.3 Internal Constants. An internal
constant is an arithmetic constant whose
value is predefined in the BASIC language.
It may be used anywhere an arithmetic
constant may be used. The three internal
constants defined in terms of -apparent"
precision are the mathematical values of
pi, e, and the square root of 2.

Name
&PI
&E
&SQR2

Short-Form Value
3":-14159----
2.71828
1.41421

Long-Form Value
3.1415926536
2.7182818285
1.4142135624

The syntax conventions used for the following definitions are as defined in the
System/360 DSB, section 3.30.1, and are summarized and expanded by the following:

a. The underscoring of a character is used to indicate that this is a single
printable character. This distinguishes it from a syntactic variable' consisting
o:E a printable character optionally followed by any number of blank characters.

b. Lower-case letters represent information that must be supplied by the user.

c. Information contained within brackets [] represents an option that can be
omitted.

d. The appearance of braces { } indicates that a choice must be made between the
items contained in the braces.

e. The appearance of the vertical bar I indicates that a choice must be made
between the item to the left of the bar and the item to the right of the bar.

f. An ellipsis (a series of three periods) indicates that the preceding syntactic
unit may be repeated any ~umber of times.

g. not syntactic-unit-1 syntactic-unit-2. The "not" operator is used to define a
unit which contains all of syntactic-unit-2 except for that which is explicitly
stated as syntactic-unit-l. For example, a print-special-character (2.3.1.3) is
defined as any EBCDIC character except upper- and lower-case alphabetics, the
digits 0 through 9, or the three alphabetic extenders.

2.3.1.1 print-alphabetic-character ::= ~1~1£IQI~I~I§I~I!I~I~I~I~I~lgIEI2Igl§I!IQIYI~1
!1!1!1~1~1£IQlgl~lglhliljl~I!I~lnIQIElgl~121~1~1~1~1!1YI~I!I!I~

2.3.1.2 print-numeric-character ::= QI!I.fI~I~I~I~lll!!l.2.

2.3.1.3 print-special-character ::= not {print-alphabetic-characterI print-numeric-
character} any-character1

2.3.1.4 alphabetic-character ::= print-alphabetic-character q~) •••

2.3.1.5 numeric-character ::= print-numeric-character[~] •••

2.3.1.6 string-character ::= any-character~

2.3.1.1

2.3.1.8

2.3.1.9

2.3.1.10

2.3.1.11

2.3.1.12

2.3.1.13

2.3.1.14

2.3.1.15

2.3.1.16

2.3.1.11

relational-operator ::= =I<>I*I>=I~I<=I$I>I<

: : = ::. [M;] • • •

< ::= < [~) •••

> :: = > [~] •••

*::=![~] •••

$: := ~[~] ...
~ : := ~IM) •••

... : := ! IM.J •••

/ : := !; lM.l •••

+ : := :!:; lM.l •••

- ::= = 1M.] •••

Appendix D: Formalized Definition of the BASIC Language 101

Character Set

2.3.1.18 t : :=t [~] •••

2.3.1.19 : := '!J~] •••

2.3.1.20 , : := L[~] •••

2.3.1.21 : : = l.J~] •• •

2.3.1. 22 . : : = ~[~] .. .
2.3.1.23 & : := ![~] •••

2.3.1.24 : : = i[~] •••

2.3.1. 25 : : = l[~] •••

2.3.1.26 A : : = {~I~} [~) •••

2.3.1. 27 B : : = {I! I~} [~) •••

2.3.1.28 C : : = {~I£} [~] •••

2.3.1.29 D : := {Q.IQ}[~) •••

2.3.1.30 E : := {~I~} [M.] •••

2.3.1. 31 F : : = {!:If}[Ml •••

2.3.1. 32 G : : = {§I.9:}[~] •••

2.3.1.33 H : : = {!!Ih}[~]···
2.3.1. 34 I : : = {II i} [~:l • • •

2.3.1.35 J : := {~lj}[M] •••

2.3.1.36 K : := {1SI~}[M] •••

2.3.1.37 L : : = {~I!) [M] •••

2.3.1.38 M : : = {M I!!!} O~] • • •

2.3.1.39 N : : = {!'!I!!} [Ml •••

2.3.1.40 0 : := {QIQ} [~) •••

2.3.1.41 P : := {f I E} [JE.] • • •

2.3.1.42 Q : : = {.Q I g} [M.] • • •

2.3.1.43 R : := {BI~} [M.]

2.3.1.44 S : : = {~I~} [~] •••

2.3.1.45 T : : = {:£I~} [~] •••

2.3.1.46 U : : = {Q L~~} [M.l • • •

2.3.1.47 V : := {Yly} [M.] •••

2.3.1.48 W : := {!ll~}[~]···

2.3.1.49 X : : = qU~} [M.] •••

2.3.1.50 y : := {XIY}[~]· ••

102

2.3.1.51

2.3.1.52

2.3.1.53

2.3.1.54

2.3.1.55

2.3.1.56

2.3.1.57

2.3.1.58

2.3.1.59

2.3.1.60

2.3.2

2.3.2.1

2.3.2.2

2.3.2.4

2.3.3

2.3.3.1

2.3.3.2

2.3.3.3

2.3.3.4

2.3.3.5

2.3.3.6

2.3.3.7

2.3.4

2.3.4.1

2.3.4.2

2.3.4.3

Character Set

Z ::= {!!~}[~] •••

$::= ~[~] •••

::= ! [~] ...

Q :: =~ [M,]. • •

: : = .!. [M,] • • •

: : = 1 [~] ...
II : := : [}~.l. • •
0 : := Q [~] •••

: := ! [M.l. • •

~ ::= blank character [blank

Conversion specifications

character] •••

integer-specification ::= [!!=] ![!] ••.

fixed-point-specification ::= [!!=]{[!] ••• !.. ! [!]···I! [~.l ••• .!...

floating-point-specification ::=
{integer-specificationlfixed-point-specification} {!!!!IJJJ1)

conversion-specification ::= integer-specificationlfixed-point-specificationl
floating-point-specification

Constants

integer-constant ::= numeric-character •••

fixed-point-constant ::= [numeric-character]... numeric-character ••• I
numeric-character... • [numeric-character] •••

floating-point-constant ::= {integer-constant I fixed-paint-constant}
E[+I-]numeric-character [numeric-character]

internal-constant ::= tPII&EltSQR2

arithmetic-constant ::= fixed-point-constantl integer-constant!
floating-point-constantl internal-constant

character-constant ::= ~[~ ~Inot ~ string-character] ••• • 1 ~[~ ~Inot ..
string-character]

constant ::= [+1-] arithmetic-constant 1 character-constant

arithmetic-variable ::= alphabetic-character [numeric-character]

arithmetic-array ::= alphabetic-character

character-variable ::= alphabetic-character $

character-array ::= alphabetic-character $

Appendix D: Formalized Definition of the BASIC Language 103

2.3.4.5

2.3.4.6

2.3.4.7

2.3.4.8

2.3.4.9

2.3.5

2.3.5.1

2.3.5.2

2.3.5.3

2.3.5.4

2.3.5.5

2.3.5.6

2.3. 5. 7

2.3.5.8

2.3.6

2.3.6.1

2.3.6.3

2.3.6.4

2.3.6.5

2.3.6.6

2.3.7

2.3.7.1

2.3.7.2

2.3.7.3

104

user-function ::= FN alphabetic-character

intrinsic-function ::= {SINICOSITANIATNIEXPIABSILOGILTWILGTICOTISECICSCIASNI
ACSIHSN!HCS!HTNIDEG!RADISQRIINTISGN} (arithmetic-expression) I DET
(arithmetic-array) 7 I RND[(arithmetic-expression»)

array-dimension-specification ::= arithmetic-array (not 0 integer-constant
[,not 0 integer-constant) 1 character-array (not 0 integer­
constant)

character-array-subscript ::= (arithmetic-expression2)

arithmetic-array-subscript ::= (arithmetic-expression2

[,arithmetic-expression2)

References

function-reference ::= user-function (arithmetic-expression) 1
intrinsic-function

character-reference ::= character-variable I character-array
character-array-subscript

arithmetic-reference ::= arithmetic-variable 1 arithmetic-array
arithmetic-array-subscript

variable-reference ::= character-reference 1 arithmetic-reference

arithmetic-array-reference ::= arithmetic-array[arithmetic-array-subscript)

file-reference ::= character-constant10

print-reference ::= arithmetic-expression! character-reference

scalar-reference ::= arithmetic-expression! character-expression

Expressions

character-expression ::= character-reference 1 character-constant

primitive-arithrnetic-expression ::= arithmetic-reference 1 function-reference!
arithmetic-constant I (arithmetic-expression)

one-aritbmetic-expression ::= [one-arithmetic-expression {**It}]
primitive-arithmetic-expression

two-arithrnetic-expression ::= [two-arithrnetic-expression {*I/}]
one-arithmetic-expression

three-arithmetic-expression ::= [three-arithmetic-expression {+I-}]
two-arithmetic-expression

arithmetic-expression ::= [+1-] three-arithrnetic-expression

Stat emeI\t s

DATA-statement ::= DATA constant [,constant] •••

DEF-statement ::= DEF user-function (arithmetic-variable) =
arithmetic-expression

DIM-statement ::= DIM array-dimension-specification
[,array-dimension-specificationl •••

2.3.7.4

2.3.7.5

2.3.7.6

2.3.7.7

2.3.7.8

2.3.7.9

2.3.7.10

2.3.7.11

2.3.7.12

2.3.7.13

2.3.7.14

2.3.7.15

2.3.7.16

2.3.7.17

2.3.7.18

2.3.7.19

2.3.7.20

2.3.7.21

2.3.7.22

2.3.7.23

2.3.7.24

2.3.7.25

2.3.7.26

.statements

END-statement ::= END [string-character] •••

FOR-statement ::= FOR arithmetic~variable = arithmetic-expression TO
arithmetic-expression [STEP arithmetic-expression]

GET-statement ::= GET file-reference, variable-reference
[,variable-reference] •••

GOSUB-statement ::= GOSUB statement-number

GOTO-statement ::= GOTO statement-number [[,statement-number] ••• ON
arithmetic-expression]

IF-statement ::= IF {arithmetic-expression relational-operator
arithmetic-expression I character-expression relational-operator
character-expression} {THENIGOTO} statement-number

Image-statement ::= ~ [{not! string-character} ••• I
conversion-specification] •••

INPUT-statement::= INPUT variable-reference [,variable-reference] •••

LET-statement ::= [LET] {arithmetic-reference [,arithmetic-reference]... =
arithmetic-expression 1 character-reference (,character-reference] •••
= character-expression}

MAT-statement ::= MAT arithmetic-array = {arithmetic-array I arithmetic-array
{+I-}arithmetic-array31' arithmetic-array * arithmetic-arra~ 5 I
(arithmetic-expression) * arithmetic-array 1 {CONIZERIIDN7}
[arithmetic-array-subscript] 61 {INV71 TRN} (ari·thmetic-array) At}

MAT-GET-statement ::= MAT GET file-reference, arithmetic-array-reference
[,arithmetic-array-reference] 6 •••

MAT-INPUT-statement ::= MAT INPUT arithmetic-array-reference
[, ari thmetic-array-refe;rence] 6 •••

MAT-PRINT-statement ::= MAT PRINT arithmetic array [{,11} arithmetic­
array] ••• [, I ;]

MAT-PRINT-USING-statement ::= MAT PRINT USING statement-number,
arithmetic-array [,arithmetic-array] •••

MAT-PUT-statement ::= MAT PUT file-reference, arithmetic-array
[,arithmetic-array] •••

MAT-READ-statement ::= MAT READ arithmetic-array-reference
[,arithmetic-array-reference] 6 •••

NEXT-statement ::= NEXT arithmetic-variable

PAUSE-statement ::= PAUSE [string-character] •••

PRINT-statement ::= PRINT (print-reference] [character-·constant [, I;]
print-reference I [character-constant] {,I;} [print-reference]] •••
[character-constantl,I;]

PRINT-USING-statement ::= PRINT USING statement-number (,scalar-reference] •••

PUT-statement ::= PUT file-refe.rence, scalar-reference (, scalar-reference] •••

READ-statement ::= READ variable-reference (,variable-reference] •••

REM-statement ::= REM (string-character] •••

Appendix D: Formalized Definition of the BASIC Language 105

2.3.7.27

2.3.7.28

2.3.7.29

2.3.7.30

2.3.7.31

2.3.8

2.3.8.1

2.3.8.2

2.3.8.3

2.3.8.4

2.3.8.5

2.3.8.6

2.3.8.7

2.3.8.8

2.3.8.9

106

Statements

RESET-statement ::= RESET file-reference [,file-reference] •••

RESTORE-statement ::= RESTORE [string-character.] •••

RETURN-statement ::= RETURN [string-character] •••

STOP-statement ::= STOP [string-character] •••

CLOSE-statement ::= CLOSE file-reference [,file-reference] •••

Program Structure

statement-number ::= [b)... numeric-character [numeric-character] •••

basic-statement ::= CLOSE-statement I DATA-statement I DEF-statementl
DIM-statement I GET-statement I GOSUB-staternentl GOTO-statementl
IF-statement I Image-statement I INPUT-statement I LET-statement I
MAT-statement I MAT-GET-statementl MAT-I NPUT-statementI
MAT-PRINT-statementl MAT-PRINT-USING-statementl MAT-PUT-statementl
MAT-READ-statementl PAUSE-statement I PRINT-statement I
PRINT-USING-statementl PUT-statement I READ-statement I REM-statement I
RESET-statement I RESTORE-statement I RETURN-statement I STOP-statement

basic-line ::= statement-number basic-statement statement-end

for-line ::= statement-number FOR-statement statement-end

next-line ::= statement-number NEXT-statement statement-end

for-group ::= for-line [statement-group I for-grouplreturn-line] ••• next-line9

end-line ::= statement-number END-statement statement-end

basic-program ::={not return-line basic-line I for-group} [for-group I
statement-grouplreturn-line)... [end-line]

statement-end ::= 8

1. Any character possible in the EBCDIC 7.
character set is denoted by
any-character. It is assumed that the :
reader knows what these are. 8.

2. Subscripts for character and
aritrunetic arrays are arithmetic
expressions whose values must be
positive and the· truncated integer
portion gr.eater than zero and not
exceeding the current maximum.

3. The arrays must have identical 9.
dimensions.

4. The array on the left may not appear
on the right.

5. The nwnber of columns in the first
array must equal the number of rows in 10.
the second array.

6. If dimension specifications are
supplied, the dimensions of the array
will lbe changed.

The array must be square.

Statement-end is a terminal-depenqent
action which indicates the end of a
physical line of input, e.g. carriage
return. A BASIC statement may not
exceed a physical line of input nor
may more than one BASIC statement be
entered on a physical line.

A prope~ for-group requires that the
arithmetic variable referenced in the
NEXT~statement be the same as the
arithmetic control variable in the
FOR-statement.

A file-reference is a character
constant of an implementation defined
length and character content.

Appendix D: Formalized Definition of the BASIC Language 107

&E 17
&PI 17
&SQR2 17

A
ABS function 21
absolute value function 21
ACS function 21
addition 22
alphabet extend4:;)rs 13
alphabetic characters 13
arccosine function 21
arcsine function 21
arctangent function 21
argument of function 20
arithmetic arrays (see arrays, arithmetic)
arithmetic characters 13
arithmetic constants 16

in expressions 21
arithmetic data 15
arithmetic data formats 15
arithmetic expressions 21
arithmetic precision 15
arithmetic values 16
arithmetic variables 17

in arithmetic expression 21
naming of 20

array expressions 21
binary 57
unary 57

array operations (see matrix operations)
arrays 18, 19

arithmetic 19,21
character 19, 23

ASN function 21
Assignment statement 27, 29
ATN function 21

B
binary operators 21
blanks

in statement numbers 11
use of 14

branch (see IF. GOTO statements)

c
17 character constants

assigned to variables
characters permitted in
in Assignment statement
in character expressions
in IF statement 36
length of 17
use of blanks in 14

18
13
29

23

character data 17
character expressions 23
character format 50
character set of BASIC
character variables 18

23 in expressions

13-14

naming of
characteristic

20
15

CLOSE statement
collating sequence

54-55
73-74

comma
as special character
in PRINT statement

comments 13
in END statement
in PAUSE statement
in REM statement
in RESTORE statement

13
48

40
40

39
44

in STOP statement 40
compilation, end of 40
computed GOTO statement (see GOTO statement)
CON function 63-64

Index

constant (see arithmetic constants; character constants)
control statements 27, 35-42
control variable 36
conversion of data values 51
conversion specification (see format specifications)
cos function 21
cosecant function 21
cosine functio11 21
COT function 21
cotangent function 21
csc function 21

D
data representation 15
DATA statement 43
DEF statement 31
DEG function 21
degree function 21
delimiters

in MAT PRINT statement 66
in PRINT statement 46

descriptive statements 27, 31-33
DET function 21

in MAT assignment statement 61
determinant of matrix 21
DIM statement 32
dimensions of arrays 19
division

symbol 22
by zero 23

Do-loop (see FOR and NEXT statements)
dummy variable 31

E
e (natural log) 17
E-format (see floating-point format)
EBCDIC collating sequence 7.'3-74

in IF statement 36
in relational expressions 24

END statement 40
EXP function 21
exponent (see characteristic)
exponential format (see floating-point format)
exponential function 21
expressions 21-22

(see also arithmetic expressions; character expressions)

Index 109

F
F -format (see fixed-point format)
files 43

(see also input/ output statements)
fixed-point format 15

in Image statement 50-51
floating-point format 15-16

in Image statement 50
FOR statement 36
formalized definition of BASIC 77
format specifications 50
~ull print zone 47, 66
function reference 20
functions 20

intrinsic 20
user written (see DEF statement)

G
GET statement 53
GOSUB statement 38
GOTO as keyword in IF statement
GOTO statement 35

H
IICS function 21
HSN function 21
HTN function 21
hyperbolic cosine function
hyperbolic sine' function
hyperbolic tangent function

identity matrix 62
IDN function 62-63
IF statement 36

21
21

21

I-format (see integer format)

36

image specifications (see format specifications)
Image statement 49
implicitly defined arrays (see arrays)
INPUT statement 45
input/ output statements
INT function ~n
integer format 15

in Image statement
integral part function
internal constants 17

43-55

50-51
21

~nte:ru:ption of execution (see PAUSE and STOP statements)
mtrmsIC functions 21
INV function 2,1
inversion of matrices 61

L
LET statement (see Assignment statement)
LGT function 2,1
literal data (see character data)
LOG function 21
logarithm function 21
long precision 15
loop (see FOR and NEXT statements)
lower-case letters 13
LTW function 21

M
magnitude of numbers 15
mantissa 15
MA T assignment statement

addition and subtraction 59

110 Index

63 CON function
identity function
inversion function
multiplication 59

62
61

scalar multiplication 60
simple 58
transpose function 62
ZER function 63

MAT GET statement
MAT INPUT statement
MAT PRINT statement

68

with INPUT statement
with PAUSE statement

65
66

MAT PRINT USING statement
MAT PUT statement 69
MAT READ statement 64
matrix operations 57 -70
multiplication 22

N

45
40

naming of variables and arrays
natural logarithm 17
NEXT statement 36
null 46
numbers

(see 'also arithmetic data)
as characters 13
large and small 17
of lines 11
of statements 11
precision of 15
random 21

numeric characters 13

67

numeric data (see arithmetic data)

o

20

one-dimensional arrays (see arrays)
operands 22
operators 21-22
order of execution 11

p

packed PRINT zone
in MAT PRINT statement 66
in PRINT statement 47

PAUSE statement 39
pi 17
pointer, data 43
precision 15
PRINT statement 46

with INPUT statement
with PAUSE statement

PRINT USING statement
print zones 47
priority of operators
program 11
PUT statement 52

Q
question mark

22

45
40

49

in INPUT statement 45
in MAT INPUT statement

quotation marks 17

R
HAD function 21
radian function 21

65

random number function 21

READ statement 44 categories 11
redimensioning arithmetic arrays 57 definition 27
relational expressions 23-24 executable 11

in IF statement 36 non-executable 11
relational operators 23-24 numbers 11

in IF statement 36 STEP as keyword in FOR statement 36
REM statement 39 STOP statement 40
RESET statement 54 sub-expression 22
RESTORE statement 44 subroutines (see GOSUB and RETURN statements)
restrictions 71 subscripts of array references 18
RETURN statement 38 subtraction 22
RND function 21
rounding errors 22 T

5 TAN function 21
tangent function 21

sample programs 75 THEN as keyword in IF statement 36
scalar expressions 21 two-dimensional arrays (see arrays)
scientific notation 16
SEC function 21
secant function 21

u
semicolon in PRINT statement 48 unary operators 21
SGN function 21 user-written functions (see DEF statement)
short precision 15
sign of number function 21
SIN function 21 v
sine function 21 variables (see arithmetic variables; character variables)
special characters 13-14 vectors 57
SQR function 21
square root function 21
standard output formats 46-47 z
statement line 11 ZER function 63
statements zero-divide 23

Index 111

TITLE: BASIC Language
Reference Manual

READER'S COMMENTS

FORM: GC28-6837-0

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6837·0

fold

Attention: PUBlICA'IlONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY .••

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

fold

FIRST CLAS~
PERMIT NO. 3350 ..
NEW YORK, N.Y.

••• I) ••••••••••••••••• ~ •• " •• •

fold

International BlisinHSS Machines Corporation
Data Processing Division
112 East Post Roael, White Plains, N.Y. 10601

I BM World Trade Corporation
821 United Nations. Plaza, New York, N.Y. 10017
II nternational)

fold

· (") :a
:~

.S:
• CIl · • 5-

(!)

c
~

~
C
(

" o
C o
" ...
c

GC28-6837-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

IBM World Trade Corporation
821 United Nations Plaza, New York, N.Y. 10017
(International)

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	replyA
	replyB
	xBack

