
Program Product

IBM System/360 08(T80)
ITF: BASIC
Terminal User's Guide

Program Numbers: 5734-RC2
5734-RC4

This publication provides tutorial information and
reference material for users of the BASI C language
component of the Interactive Terminal Facility (lTF), a
Program Product that operates under the Time Sharing
Option (TSO) of the System/360 Operating System (OS).

The book tells how to use ITF in the TSO environment,
and how to write programs in BASIC; it also includes
detailed descriptions of the BASI C language elements, a
subset of the TSO command language, as well as error
recognition and correction. Sample programs and
examples of the use of ITF: BASI C appear throughout the
text.

This publication is intended for the TSO ITF:BASIC
terminal user. No previous knowledge of programming or
of the BASIC language is required.

This publication is being released prior to the availability of TSO ITF to permit installation
planning.

FIRST EDITION (April, 1971)

. This edition corresponds to Release 1 of TSO ITF.

Changes are continually made to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM System/360 SRL Newsletter, Order
No. GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, 1271
Avenue of the Americas, New York, New York 10020. Comments become the property of IBM.

@ Copyright International Business Machines Corporation, 1971

Preface

This publication is both an introduction and a reference guide for users of the IBM

System/360 Operating System, Time Sharing Option, Interactive Terminal Facil­
itY:BAsIc language. There are no prerequisite publications.

IBM'S ITF:BASIC is a terminal-oriented programming language which was devel­
oped for people who wish to solve problems of a mathematical nature but who
do not wish or do not need to become experts in the field of modem computer
programming.

The purpose of this publication is threefold: first, to lead the user with little
or no programming experience simply and easily to the point where he can write
elementary programs in ITF:BASIC; second, to provide him with enough information
to allow him to write more and more advanced programs in ITF: BASIC; and third,
to acquaint him with the TSO environment so that he can fulfill either or both of
the first two purposes by actually using the terminal from the beginning. To aid
the user of this publication, the material has been divided into three parts.

• Part I is tutorial. It explains what a program is, tells how to use the terminal,
introduces the use of modes in TSO, shows step-by-step how to write a pro­
gram, and introduces the more complex subjects of how to recognize errors,
how to create and use files, subroutines, and functions, and how to modify
and test programs. Sample programs appear throughout Part I.

• Part II is a source of reference material. It defines each element of an
ITF:BASIC statement and the structure of an ITF:BASIC program. It also con­
tains detailed rules, syntactical descriptions, and examples of each ITF:BASIC
program statement.

• Part III is also a source of reference material. It contains detailed rules and
syntactical descriptions for each command and subcommand introduced in
Part I.

For those who are unfamiliar with the IBM syntax notation used in this book,
Appendix A briefly describes the meaning of the format symbols. Other appen­
dixes describe the EBCDIC collating sequence, file usage considerations, a summary
of the use of the attention interruption in each mode, and the differences between
os ITF and TSO ITF.

A glossary and a complete set of ITF:BASIC error messages are contained at the
end of this book. Each message is accompanied by a detailed explanation and the
action required by the programmer to correct the error.

The following TSO publication describes the characteristics of all the terminals
supported by TSO, and may be required for TSO users in installations that do not
provide their own terminal usage instruction.

• IBM System/360 Operating System, Time Sharing Option, Terminals, Order
Number GC28-6762

Three other TSO publications contain information that may be of interest to the
TSO ITF:BASIC user, although they are not required for use of 1'SO ITF:BASIC. They are:

• IBM System/360 Operating System, Time Sharing Option Guide, Order
Number GC28-6698

• IBM System/360 Operating System, Time Sharing Option, Terminal User's
Guide, Order Number GC28-6763

• IBM System/360 Operating System, Time Sharing Option, Command Lan­
guage Reference, Order Number GC28-6732

Contents

Introduction .. .
Language

Part I. Using T50 ITF:SA5IC

9
9

What isa Program? , .. " " 13

Getting Started 15
Terminal Operating Procedures

Starting and Ending a Session
Logging On
Logging Off

The Attention Interruption .
Keyboard Entry Procedures

Your Entries
Correcting Typing Errors
Character Set

Mode Usage
The Edit Mode

Creating a Program
Syntax Checking in the Edit Mode

Using the SCAN Subcommand
Executing a Program in the Edit Mode

Test Execution of Your Programs
Interrupting Execution

Modifying Programs in the Edit Mode
Saving Programs
Terminating the Edit Mode

The Command Mode
Requesting Information on Commands and Subcommands
Sending Messages to Other Terminal Users
Executing a Program in the Command Mode

Test Execution of Permanent Programs
Interrupting Execution in the Command Mode

Other Uses of the Command Mode.
The Test Mode.

15
15
15
16
16
17
17
17
18
19
19
20
22
23
23
24
24
24
24
24
25
25
26
27
27
27
27
27

Writing a Program. 29
Building a BASIC Statement .. 29

Constants 29
Variables 30

Assigning Values to Variables . 30
Varying the Input .. 32

Expressions and Calculations .. 33
Arithmetic Expressions .. 33
Character Expressions 35
Relational Expressions 36

Printing Results ... 36
Loops ... 38

Looping by FOR and NEXT 39

Arra~itb~~ti~' A~~~ys' : . :: !g
Character Arrays .. 42
Input Values for Arrays 42
Matrix Operations (MAT Statements) 43

Large and Small Numbers 45

Creating and Using Files· 49
Naming Files 49

File Name Length .. 50

Creating a File ... 50
End-of-file Indicator , .. 50

Activating and Deactivating Files .. 52
Repositioning Files .. , , ... ,.................................. 53
Using Files ... , ,., ,.................................... 54

Defining Your Own Functions and Subroutines· 57
Functions ...,................ 57
Subroutines,...,.. 57

Errors and Corrections 61
Program Modification .. 61

Modifications in the Edit Mode .. 61
Deleting Statements .. 61
Inserting and Replacing Statements " .. 62
Adding Statements to the End of Your Program .. 62
Changing Parts of Statements , .. 63
Renumbering Statements ' , .. , , .. 65
Displaying Statements ,., , 66

Modifications in the Command Mode .. 66
Renaming Programs and Data Files ... 66

File Name Warning , .. 68
Deleting a Program or Data File , , 68
Displaying Names of Permanent Programs and Data Files 69

Messages ' , ' .. " 70
System Cues , , , .. '... 70
Prompting Messages .. 71
Informational Messages , .. 71
Broadcast Messages , .. 71
ITF Error Messages .. 72

Using the Test Mode to Debug Your Programs 72
Initiating the Test Mode , , .. 72
Terminating the Test Mode .. 73

Test Mode Subcommands , .. 73
Starting and Resuming Executions-Go Subcommand .. 73
Interrupting Execution-AT and OFF Subcommands 74

Attention Interruptions,...................................... 74
Setting Breakpoints,.. 74

Monitoring Program Execution-TRAcE and NOTRACE' Subcommands 75
Listing Values-LIsT Subcommand , , .. 76
Changing Values of Arithmetic Variables-Assignment Statement " 77

Part II. The BASIC Language

BASIC Program Structure. .. 81

Statement Numbers , .. , , , , , 81
BASIC Statements .,.. .. 81
Statement Lines,.. 81
BASIC Programs .. 81

Elements of BASIC Statements 83
BASIC Character Set,............................
BASIC Short Form (External Representation) .,
BASIC Long Form (External Representation)
Identifiers " , , ' , .

Numeric Constants ,
Internal Constants , , .
Character Constants .
Variables , .. .

Simple Variables ,'
Array Variables , ,
Array Declarations .. .

Functions , ,., .. .
Expressions and Operators,.........,................................

Character Expressions'............................
Arithmetic Expressions and Operators .. .

Unary Operators , , .
Priority of Arithmetic Operators

Array Expressions
Relational Expressions,.................

83
83
84
84
84
85
85
85
85
85
86
86
86
86
86
87
87
88
88

Program Statements· 89

CLOSE Statement 89
DATA Statement
DEF Statement

. .. 89
............................. 90

DIM Statement 90
END Statement , 91
FOR Statement 91
GET Statement 92
GOSUB Statement 93
GOTO Statement 94
IF Statement 94
Image Statement " 95
INPUT Statement 96
LET Statement 97
NEXT Statement 98
PAUSE Statement. , 99
PRINT Statement 99
PRINT USING Statement. 102
PUT Statement . 104
READ Statement. 104
REM Statement 105
RESET Statement. 105
RESTORE Statement ... 105
RETURN Statement106
STOP Statement 106

Array Operations (MAT Statements).
MAT Assignment (Simple)
MAT Assignment (Addition and Subtraction)
MAT Assignment (CON Function)
MAT Assignment (IDN Function)
MAT Assignment (Inversion)
MAT Assignment (Multiplication) '"
MAT Assignment (Scalar Multiplication)
MAT Assignment (Transpose)
MAT Assignment (ZER Function),.....................

· .107

.107

.107
· .108

. 108
. .. 109

........... 1l0
. .. 1l0

. 1ll

MAT GET Statement
.1l1

. ... 1ll
. .. 1l2

. ... 1l3
.1l5
.116

MAT INPUT Statement.
MAT PRINT Statement
MAT PRINT USING Statement.
MAT PUT Statement.
MAT READ Statement. · .117

Intrinsic Functions. · .1l9

Part II'. Command Language
Command Language for TSO ITF:BASIC······ .. , 123

General Rules of Usage. 123
Syntax of a Command 123

Positional Operands 123
Keyword Operands 123
Delimiters 123

Subcommands ... 123
How to Enter a Command or Subcommand 124

Continuations ... 124
AT Subcommand " 125
BASIC Command 125
CHANGE Subcommand 126
CONVERT Command 127
DELETE Command (Also a Subcommand of EDIT) 129
EDIT Command 130
END Subcommand 130
GO Subcommand 130
HELP Command and Subcommand 130
INPUT Subcommand 131
LIST Subcommand 132
LISTCAT Command. 132
LOGOFF Command 132
LOGON Command 133
NOTRACE Subcommand 133

OFF Subcommand .. 133
RENAME Command 134
RENUM Subcommand 134
RUN Command (Also a Subcommand of EDIT) 135
SAVE Subcommand. 136
SCAN Subcommand . , , . , .. , , . , 136
SEND Command , , .. ' , , . , ... , , . , .. , ... , .. , 136
TRACE Subcommand . ' , . , , , , , , .. , 137

Appendixes
Appendix A. Syntax Conventions , 141

Appendix B. Collating Sequence of the ITF:BASIC Character Set ,143

Appendix C. Attention Interruption Summary, , , , 145

Appendix D. File Usage Considerations, , , . , , , ... , , . ,147
File Maintenance , 147
Using Files in userid.DATA, , , , , , 147

Appendix E. Differences Between OS ITF and TSO ITF. , . , , , ... , 149
Terminological Differences " , 149
Visual Differences " .. 149
Functional Differences . , , , . , , , 150

Glossary, .. , " , , " . , , " .. 153

Error Messages ' , . , , , , , , ' ... , 161

Illustrations

Figures
Figure l. Creation of an ITF:BASIC Program " 21
Figure 2. Example of Program Creation (Including a Syntax Error) 22
Figure 3. Example of Executing a Program Created in an Earlier Session 23
Figure 4. Fixed-decimal Format (F -format) and Exponential Format (E-format) 45
Figure 5. Approximation of an Infinite Sum .. 46
Figure 6. The Output Data File " 51
Figure 7. The Input Loop Used To Put Values into a File 52
Figure 8. Searching a File for a Single Value 54
Figure 9. Processing All Values in a File 55
Figure 10. Subroutine Example 58
Figure 11. Two Ways of Adding Statements to the End of a Program 63
Figure 12. Example of Modifying a Program As It Is Being Created 67

Tables
Table l.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

Matrix Assignment Example '.
BASIC Special Characters and Their Representation on Some TSO Terminals
Carriage Positions in a PRINT Statement
Arithmetic Expression Conversions in a PRINT USING Statement

.... " 44
83

· .101
· .103

BASIC Intrinsic Functions119
Commands and Their Subcommands, ITF Test Mode Excluded
ITF Test Mode Subcommands
Attention Interruption Summary

... 124
.125

· .145

Introduction

Language

Time-sharing systems allow many users simultaneous access to the resources of a
central computer. Users have their own typewriter-like terminals with which they
communicate with the system. They type their instructions and the computer
responds, all through the same medium. A type of conversation develops and the
end result of that conversation is the accomplishment of work. One user's work
does not interfere with another's, even though they are working at the same time
with the same computer.

Many time-sharing systems are limited in scope and are usually aimed at one
field of application. The IBM System/360 Operating System Time Sharing Option
(TSO) is a time-sharing system that offers an unusually large range of comput­
ing capabilities to its users, namely, all of the numerous facilities of the IBM

System/360 Operating System and several IBM Program Products, each with a
particular application in mind.

ITF:BASIC is one of these program products. Its purpose is to meet your
problem-solving needs quickly and efficiently without requiring you to learn
complex computer techniques. Both TSO and ITF:BASIC have been deSigned for
easy use and they mesh well. As far as you're concerned, TSO and ITF:BASIC are
one and the same and this publication makes very little distinction between the
two. TSO facilities are discussed only insofar as they apply to your ITF:BASIC needs.

If your work takes you beyond ITF:BASIC, there are other TSO publications that
provide you with information about the full scope of TSO capabilities. A list of
these publications is given in the preface.

You communicate with TSO ITF:BASIC in two languages: a command language and
a programming language. Both are English-like and easy to use. The command
language is a set of commands and subcommands through which you control the
system and direct its acceptance and execution of your work. RUN, DELETE,

RENAME, and EDIT are examples of commands. A subset of the TSO full command
language is discussed throughout Part I of this book. The exact formats of these
commands and subcommands and rules for their use are given in Part III.

The programming language is called BASIC. It is used to write programs. BASIC

statements always begin with a statement number (up to five digits) and are
often mathematical in form, such as:

60 LET A = B + C

In BASIC, statement numbers determine the order in which statements are re­
tained by the system. This order is always sequential.

The BASIC language is completely described in Part II of this book; examples
and explanations of its use appear throughout Part I.

Introduction 9

Part I. Using T50 ITF:BA5IC

What Is a Program?

A program is a logical plan for obtaining a desired result for a particular problem
-in physics, mathematics, finance, statistics, or any field. For example, if you
wanted to find the average of four numbers-510, 371, 480, 791-you would first
add the four figures together and then divide by four. Your logical plan would
look something like this:

510 538
371 4/2152
480 20

+791 15
2152 12

32
32

-
0

Here you have used a scratch-pad kind of mathematical notation that you, as
the one performing the calculations, can understand. To have a computer perform
the calculations, the program must be written in a notation (or language) that the
computer understands and it must be sent to the computer by some convenient
means. In our case, the language is called BASIC; the means of transmission is a
terminal, which for all practical purposes is a typewriter connected by telephone
lines to an IBM computer.

Written in BASIC, the same problem would look like this:

.
00010 let x = 510+371+480+791
00020 let y = x/4
00030 print y
00040 end

run
538

For the present, do not be concerned with the information not shown (indicated
by three vertical dots); you will learn about these things later. The program itself,
the instruction to "run" it, and the results are all we need to know about now.
The four BASIC statements (the actual program entered by the user) have statement
numbers, which you will remember are a requirement. After we have typed the
program, we instruct the computer to "run" (or execute) it. The RUN subcommand
causes, the computer to evaluate and perform each instruction in numerical order.

Now on to our program. The first statement, statement 10, is an assignment
statement, that is, an instruction that causes the computer to assign the value on
the right side of the equal sign to the variable on the left. The computer evaluates
the expression (510+371+480+791) and assigns the sum (2152) to x. Statement

What Is a Program 13

14 Part 1. Using TSO ITF:BASIC

20 is another assignment statement; it tells the computer to divide the value of
x by 4 (the slash symbol means division) and assign the result (538) to Y. Y now
represents the average of the four values, but at this point, the average Y is
known only to the computer. We will not know the results until the computer
responds to the PRINT statement (statement 30) by printing the value of Y (538)
at the terminal.

So far, we have not mentioned the END statement, statement 40. An END state­
ment indicates the logical end of the program. Any statements numerically follow­
ing an END statement are ignored in execution. END is optional, and if omitted it
is assumed to follow the highest-numbered statement in the program.

Of course, there is much more to know about writing programs in BASIc-these
things will be discussed as you proceed through the book. The first thing to mow
is how to get started at your terminal.

Getting Started

This section presents the information that you as a terminal user require to estab­
lish communication with the system.

Terminal Operating Procedures

Starting and Ending a Session

Logging On

ITF can be used with any of the terminals supported by TSO. All TSO terminals
have a typewriter-like keyboard for entering information and either a typewriter-

, like printer or a display screen for recording your entries and system responses.
The features of each keyboard vary from terminal to terminal; for example, one
terminal may not have a backspace key, while another may not allow you to
enter lower-case letters. The features of each terminal as they apply to TSO are
described in the TSO Terminal publication mentioned in the preface.

Certain conventions apply to the use of all TSO terminals:
1. Any lower-case letters that you enter are received by the system as upper-case

letters. For example, if you enter

rem this is a comment

the system receives it as

REM THIS IS A COMMENT

The only exceptions are certain text-handling applications, which are not within
the scope of this book. Text-handling is described in the TSO Terminal User's
Guide listed in the preface.

2. All messages or other responses sent to you by the system appear in upper­
case letters. Again, the only exception is the output from special text-handling
applications.
The examples in this publication appear as they would look on an IBM 2741

Communications Terminal having a PTTC/EBCD keyboard. Lower-case letters are
used to illustrate your entries and upper-case letters are used for system responses.
This convention provides a visual aid in differentiating what you type from what
the system types.

Before you can begin to do any work at the terminal, you must first establish a
connection with the computer. Instructions for doing so will be provided by your
installation. In many cases, you will find an instruction sheet attached to your
terminal. If there is no instruction sheet, or if your installation has not provided
the information in some other way, consult the TSO Terminals publication listed
in the preface.

After you have established a connection, you must identify yourself to the system
by entering the LOGON command. In this command you must supply the user
identification code assigned to you by your installation. Other information may
be required, depending on the conventions established for ITF users at your in­
stallation. This optional information includes:

• password: further identification for additional security protection.

Getting Started 15

Logging Off

The AHention Interruption

16 Part I. Using TSO ITF:BASIC

• account number: the account to which your work is charged .
• log-on procedure name: the name of an installation-written procedure that de­

fines your scope of work (i.e., an ITF:BASIC user). This book assumes that
ITF: BASIC users will enter the log-on procedure name PROC(ITFB).l If your
installation has informed you otherwise, ignore references to this name.

If your user identification code were SMITH4, you would log on as follows:

logon smith4 proc(itfb)

One or more blanks must separate the three items from each other and the
command is sent to the system by pressing the appropriate key (e.g., the RETURN

key on IBM 2741 terminals) after the last item. Note that, for the sake of brevity,
the notation CR or @ will be used henceforth in this book to represent this
action on your part.

If you have typed the command corre~tly, the system will acknowledge you as
an authorized user and you will be ready to begin your work. If you have made
an error, TSO will require you to re-enter the command in part or entirely. A
typical log-on sequence looks like this:

logon jv4 proc(itfb)
IKJ564551 JV4 LOGON IN PROGRESS AT 10:44 ON MAY 3, 1971
{Other TSO informational messages may appear here}
READY

After giving its acknowledgment, TSO types the "system cue" READY, positions the
printing element at the beginning of the next line, and waits for you to type your
next entry. At this point the system is said to be in the command mode. (This
mode is always indicated by the system cue READY.) Only commands can be
entered in this mode; no BASIC statements are allowed. Some commands will
switch the system into other modes. The primary emphasis in this publication will
be on one such command, EDIT, which initiates the edit mode. Most of the work
that you, as an ITF:BASIC user, will be doing will be in the edit mode.

To end your session at the terminal, use the LOGOFF command. This command
causes the system to:

1. display your user identification code,
2. display the current date and time of day, and
3. terminate your session.

The LOGOFF command must be entered in the command mode (i.e., in response
to the system cue READY.) If you are currently in the edit mode and you wish to
log off, you must nrst switch back to the command mode (you'll see how to do
this later in this chapter under the heading "Terminating the Edit Mode").

The format of the LOGOFF command is simply:

logoff

The time you spend at the terminal from log on to log off is called a session.

The attention interruption allows you to interrupt the current action of the system
so you can enter a new command, subcommand, BASIC statement, etc. This ability
to interrupt the system prevents you from being «locked out" by the system while
a long-running program executes or while voluminous data is being displayed at
your terminal. You can use the attention interruption for access to the system
at any time.

1 Details about log-on procedures for ITF are given in the publication System/360 OS (TSO)
ITF, Installation Reference Material, Order Number SC28-6841.

Keyboard Entry Procedures

Your Entries

Correcting Typing Errors

In general, when you enter an attention interruption, the system cancels (or
at least, interrupts) what it was doing and sends you a system cue. For example,
if the system has been processing a command, the system cue it prints is READY,

indicating that it is in the command mode and ready to accept another command.
There are two ways to cause an attention interruption:

1. Press the attention key at your terminal. This key is one of the folloWing:
a. ATTN, on an mM 2741 terminal
b. LINE RESET, on an IBM 1052 Printer-Keyboard
c. BREAK, on a Teletype! tenninal

If the attention key is also the line-deletion character (described later in
this chapter), you may have to press it twice to cause an attention inter­
ruption, depending on whether or not the first was interpreted as a line
deletion.

2. If your tenninal does not have an attention key (e.g., the IBM 2260 Display
Station), use a simulated attention key, as instructed by your installation.
If your installation has not provided this information, consult the TSO
Terminals publication listed in the preface.

The attention interruption has many applications and it is discussed frequently
in Part I. A summary is given in Appendix C.

Normal communication between a terminal and the central computer is carried
on by means of entries from the keyboard.

In general, an entry is a command, subcommand, or BASIC statement that you type
at your terminal. You can never type more than one entry per line (e.g., you can't
type two BASIC statements on the same line), but, in some cases, you can type
multiple-line entries (e.g., you can continue an EDIT command over two, three,
or more lines). BASIC statements must always be one-line entries.2 Only certain
commands and sub commands can be multiple-line entries. The multiple-line tech­
nique, and those commands and subcommands for which it can be used, is de­
scribed in Part III. As an ITF user, you will rarely need more than one line for
your commands and subcommands.

The character position at which you begin typing your entries depends on the
command or subcommand currently in effect. In some cases, you can begin typing
at the left-hand margin; in other cases, you can begin typing seven or more po()i­
tions in from this margin. Where and when you can type should become quite
obvious as you proceed through this book. You should note, however, that any
references to character positions in this book are always relative to your left-hand
margin setting. Thus, if your margin is set at position 10, for example, a reference
to the ninth character position actually means position 18 on your terminal.

You can correct typing errors in a line either before or after you have sent the
line to the system, i.e., before or after you have ended the line by pressing the
appropriate key. (On IBM 2741 terminals, for example, you press the RETURN key

1 Trademark of Teletype Corp., Skokie, Illinois.

2 The physical characteristics of some terminals, notably Teletypes, permit line continuations,
regardless of the kind of entry being typed. Your TSO Terminals manual describes these char­
acteristics. If you make use of this physical feature, please note that the maximum number of
characters in a BASIC statement is 120. If you type more than 120 characters in such an entry,
the entry will be rejected by ITF.

Getting Started 17

Character Set

18 Part I. Using TSO ITF:BASIC

to end the line.) If you notice the error before you have completed the line, it is
generally easier to correct it at that time. This is what we will describe here.
Methods for correcting errors in completed lines are described in the chapter
"Errors and Corrections."

There are two ways you can correct a line as you are typing it. You can request
that the character you just typed be deleted, or you can request that all preceding
characters in a line be deleted. These requests are made by using the character­
deletion character and the line-deletion character selected for you by your instal­
lation.! For example, if the characters have been defined as ¢ for character dele­
tion and % for line deletion, this line

170 let a,b,c = %170 let s,y+z =¢¢¢¢,z = 10

1 t
character deletion, deletes "+ z

line deletion, deletes everything typed to this point

is received by the system as

170 let s,y,z = 10
This example illustrates how the character-deletion character can be used
repetitively to delete more than one of the preceding characters. In this case, the
characters "+z =" were in reverse order and replaced by ",z =".

Note that the blank space produced when you hit the space bar is always con­
sidered a character and should always be counted when using the character­
deletion function.

If you are using an IBM 2741 Communications Tenninal, then your installation
will probably assign the character-deletion and line-deletion functions to the
BACKSPACE and ATIN (attention) keys, respectively. If this is the case, you should
be very careful in your use of the ATTN key. If you want to delete the line you're
typing, press ATTN once and only once. The line will be deleted and the system
will space to a new line for you to restart from. If you press ATTN more than once
for a delete operation, the system will interpret your action in a way that you may
not have intended (see AppendiX C).

Note that BACKSPACE deletes all characters backspaced over, including the one
backspaced to. Thus, for example, to change DECETE to DELETE after having typed
the final E, you would backspace four times to the C and type LETE.

The characters with which you compose your entries depend, of course, on the
type of keyboard you have. All keyboards have the follOWing:

1. Alphabetic characters: 29 alphabetic characters-26 letters (A,B, ... ,Z) and
three alphabetic extenders ($,#,@).

2. Digits: ten digits: 0,1, ... ,9.
3. Special characters: all other characters on the keyboard.

Digits and alphabetic characters are often referred to as alphameric characters.
Special characters vary from terminal to terminal and not all special characters
have meaning to ITF:BASIC. The special characters that ITF:BASIC recognizes are
defIned in Part II under the heading "Elements of BASIC Statements."

You may notice when looking at this list that some characters are not physically
present on your keyboard. If this is the case, you can represent these characters
by others that are on your keyboard. For example, correspondence keyboards
(9812 feature) of 2741 terminals don't have the "less than" «) and "greater than"

1 You can use the PROFILE command to establish your own character-deletion and line-deletion
characters. This command is described in the TSO Terminal Users Guide, (see the preface).

Mode Usage

The Edit Mode

(» characters, but you can use the left bracket ([) and right bracket (]),
respectively, in their place. It all depends on how the characters on your keyboard
are translated by the system. Consult your TSO Terminals book (see the preface),
to see what characters you can use in place of those that are not physically present
on your keyboard.

Don't worry about character sets for now. Your need for certain characters will
become obvious as you progress through this book and become familiar with rules
for constructing statements and commands.

This section contains a general overview of the TSO and ITF modes required by the
ITF:BASIC user. It is intended to assist you in getting started and to allow you to
learn ITF:BASIC at the terminal. The remainder of Part I contains a more complete
discussion of the modes (and the commands and subcommands used in each
mode) in the context of their usefulness to the lTF: BASIC user. Part III contains
a detailed description of each command and subcommand, their functions, for­
mats, and rules for use. For the present, you need only enough information to
begin-the concepts of mode usage will become more clear to you as you proceed
through the book.

With TSO, programs are always created, modified, and saved in the edit mode.
You initiate the edit mode by using the EDIT command in the command mode.
The general format of this command is:

EDIT name BASIC [NEW I OLD] [SCAN I NOSCAN]

You are required to specify EDIT, the name of your program, and BASIC. In general,
the name that you specify for your program can contain from one to eight alpha­
meric characters, and the first character must be alphabetic.1 Some valid names
are:

X3
LOOKUP
A17Z3

DIVIDEA
PRe
MAY24JOE

If your program already exists (i.e., it's "old"), you can specify OLD, but you
don't have to. OLD is assumed if neither OLD nor NEW is specified. You specify NEW

only for programs that don't already exist, for programs that you are going to
build from scratch. The SCAN and NOSCAN options involve the syntax checking of
your program's statements and they determine the way you will be notified of
syntax errors. If you want to be notified of syntax errors after every statement you
type, then you must specify SCAN. If you don't want such interruptions while you
are building your program, you may specify NOSCAN, but, again, you don't have to;
NOSCAN is assumed if neither SCAN nor NOSCAN is specified. After you have finished
building your program, you can ask for notification of all syntax errors in it by
using the SCAN subcommand of the edit mode.

So much for the format of the command. Let's consider two types of edit mode
initiation. In the first type, we have an old ITF:BASIC program named ABC and we
wish to change some statements in it. We also want immediate notification of
syntax errors. Our EDIT command would look like this

edit abc basic old scan
or like this

edit abc basic scan

1 Program names can be qualified according to the TSO data set naming conventions (see the
TSO Terminal User's Guide for details). If qualified names are used, the descriptive qualifier
should always be BASIC for ITF:BASIC programs.

Getting Started 19

Creating a Program

20 Part I. Using TSO ITF:BASIC

Remember that OLD is assumed if neither OLD nor NEW is specified. For the second
type of edit mode initiation, we want to create an ITF:BASIC program and name it
CGA, but we don't want immediate notification of syntax errors. Now our EDIT

command would look like this

edit ega basic new noscan

or like this

edit ega basic new

If neither SCAN nor NOSCAN is specified in an EDIT command, NOSCAN is assumed.
For the time being we'll deal with "new" programs. Later on, you'll see what can
be done with "old" programs.

As you just saw, you initiate the creation of an ITF:BASIC program by specifying
either

EDIT name BASIC NEW SCAN or EDIT name BASIC NEW NOSCAN

After you've given an EDIT command for a "new" program, TSO facilitates the
building of the program by automatically supplying statement numbers before
each BASIC statement you type. This is known as the input phase of the edit mode.
Statement numbers are typed by TSO in the first five positions of a line and you
type your statements beginning in the seventh position. (The system automatically
skips to the seventh position for you.) The first statement number supplied by TSO

is 00010, the second is 00020, and so on. The increment used by TSO for number­
ing statements is 10, which allows you to make later insertions between existing
statements.

The input phase is discontinued when either of the following occurs:
l. A syntax error is detected in a statement and an error message is given. This

can happen only if you have specified SCAN in the EDIT command.
2. You explicitly terminate the input phase. You can do this by (a) giving a CR

in response to a statement number (a "null line") or (b) giving an attention inter­
ruption. In the latter case, you may have to press the attention key twice if the
attention key is also your line-deletion key.1

You can re-initiate the input phase by typing INPUT. This subcommand causes
numbering to resume from the highest statement number contained in your pro­
gram. If you want to type your own statement numbers, don't use the INPUT

subcommand; do either of the things listed in item 2 above and simply precede
each statement with a statement number. You can discontinue and restart the
input phase as often as you like.

With this in mind, look at Figure 1 to see what program creation looks like in
practice. The program created here is the same as the program to average four
numbers that you saw earlier in the chapter "What is a Program?" The braces
have been added to further illustrate the use of modes in program creation and
execution.

After T4 has logged on, he enters the edit mode to create the program he
calls AVG. In response to this command, the system types "ITF INITIALIZATION PRO­

CEEDING" and then, because this is a "new" program, it types the word INPUT on
the next line indicating that the system will type the statement numbers at the
beginning of each line.

1 If your line-deletion key is the attention key, line deletions will always be accompanied by an
automatic CR given by the system. The system will not type anything at the beginning of the
next line. If you're in the input phase, don't retype the statement number of the statement just
deleted. Just retype the contents of the statement. Remember that line deletion deletes only
what you have typed, not what the system has typed. Since you don't type statement numbers
in the input phase, the statement number is still there.

This is true provided you typed at least one character on the line before you pressed the
attention key. If you didn't type anything on the line, pressing the attention key would cause
an attention interruption (which would terminate the input phase).

i
l0g0n t4 proc(itfb)

ommand IKJ56455I T4 LOGON IN PROGRESS AT 11:06:51 ON MAY 1, 197
mode READY

edit avg basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 let x = 510 + 371 + 480 + 791
00020 let y = x/4 input phase of edit mode
00030 print y
00040 end

edit 00050 @
mode EDIT

run
538

EDIT
save
SAVED
end

1

READY
ommand logoff
mode IKJ56479I T4 LOGGED OFF TSO AT 11:10:07 ON MAY 1, 1971

Figure 1. Creation of an ITF:BASIC Program

After all statements have been typed, T4 ends the input phase by glvmg a
CR in response to statement number 50. The system then types the system cue
EDIT and gives T4 a new line in which to type his next e?try (the RUN sub­
command). The RUN subcommand causes the system to execute the program and
to display the value of y (538) at the terminal. Once again, the system types the
system cue EDIT and gives T4 a new line for his next entry (the SAVE subcommand).

The SAVE subcommand causes the system to permanently retain the program.
In this case, because no name is specified with SAVE, the program is saved under
the name specified in the EDIT command. Had a name been specified with SAVE,

the program would have been saved with that name instead of the name in the
EDIT command.

If T4 had terminated the edit mode without having saved his program, the
system would have reminded him of his possible oversight and would have given
him the opportunity to do so immediately. If he did not save it then, the program
would be irretrievably lost. (For details, see "Saving Programs" later in this chapter.)

Figure 2 shows how this session would look it T4 had made an error in statement
20. Because the SCAN option has been specified in the EDIT command, the system
checks each statement for syntactical correctness and informs the user of syntax
errors as they are encountered (as in statement 20). If SCAN had not been speci­
fied, the error in statement 20 would have gone unnoted until T4 requested that
the program be executed (by the RUN subcommand).

When the error is discovered at statement 20, the system terminates the input
phase and types an error message indicating the nature of the error. The message
contains a message number (615), the number of the statement in which the
error appears (20), and a brief summary of the type of error made. (Explanations
of all numbered ITF:BASIC messages are given at the end of this book.) Error mes­
sages that end with a plus sign have a longer more comprehensive deSCription, also.

Getting Started 21

logon t4 proc(itfb)
IKJ56455I T4 LOGON IN PROGRESS AT 11:06:51 ON MAY 1, 1971
READY
edit avg basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 let x = 510+371+480+791
00020 let y + x/4

615 00000020 MSNG = OR UNID STM +
EDIT
20 let y=x/4
input
INPUT
00030 print y
00040 end
00050 @
EDIT
save
SAVED
end
READY
logoff
IKJ56470I T4 LOGGED OFF TSO AT 11:12:10 ON MAY 1, 1971

Figure 2. Example of Program Creation (Including a Syntax Error)

Message 615 ends in a plus sign, so, had T4 not understood the brief summary,
he could have typed a question mark on the next line available to him (under the
word EDIT) and the system would have typed this more comprehensive description
of the error. In this case, however, T4 knows what's wrong (he typed a plus
sign instead of an equal sign); so he doesn't request the longer message. Instead
he types the number 20 and follows it with the corrected statement. This causes
the erroneous statement 20 to be replaced with the new statement 20. Now, not
wishing to type the rest of the statement numbers himself, T4 gives the INPUT

subcommand and the system resumes numbering from the last statement number
in the program (i.e., 20 plus the system-generated 10).

T4 didn't have to correct the error when he did. He could have waited until
he had typed all of his statements. It makes no difference to the system, but it's
a good practice to correct errors as soon as you're noti:6.ed of them. If you delay
making corrections, you may easily forget to make them, especially when you're
creating large programs. If you save your program without having corrected the
errors in it, the system saves it just as you created it, errors and all. Later, when
you try to execute that program, you will be noti:6.ed of all the errors in it and
the program will not be executed.

Syntax Checking in the Edit Mode Syntax checking is the process by which the system determines whether or not
the BASIC statements in your program are constructed properly. It involves the
veri:6.cation of punctuation, spelling of statement keywords, placement of statement
keywords and operands, etc. It does not involve the meaning or logic of your
program. Syntax is checked as you construct each statement; meaning and logic
are checked after you have requested that your program be executed.

22 Part I. Using TSO ITF:BASIC

In the edit mode, noti:6.cation of syntax errors is controlled by the SCAN/NOSCAN

options of EDIT and by the SCAN subcommand. If you specify the SCAN option,
you will be noti:6.ed of syntax errors immediately after each statement you type.
If you omit the SCAN option, or if you explicitly say NOSCAN, the syntax checking
will be performed but you will not be notified of syntax errors until either:

1. You request that the program be executed, or

Using the SCAN Subcommand

Executing a Program in the
Edit Mode

2. You explicitly request notification via the SCAN subcommand.
In the first case, all syntax errors will be listed immediately below your execution
request (which could be in another mode). You should then correct all errors
(first returning to the edit mode, if you have to) and then re-execute. Note that
semantic and logic errors cannot be discovered until the program is free of syntax
errors.

The SCAN subcommand is used to obtain notification of syntax errors, either in
existing statements or in future statements you will type in the edit mode. If you
specify

scan

you will be immediately notified of all syntax errors found in existing statements.
If you specify

scan on

you will be notified of syntax errors in subsequent statements you type, but not
those found in existing statements. To discontinue these notifications, you can type

scan off

at any time.
You can selectively apply the SCAN subcommand to existing statements by speci­

fying statement numbers in the subcommand. For example, assuming that the
last statement number in your program is 380.

scan 140

causes the system to notify you of syntax errors in statement 140 and nothing
more. Similarly,

scan 20 260

causes the system to notify you of all syntax errors existing in the range of state­
ments defined by 20 and 260. Any syntax errors existing outside this range will
not be noted at this time.

You can execute the program specified in the EDIT command at any time in the
edit mode (except in the input phase). The edit mode subcommand for doing so
is RUN. Figure 3 shows how the program created in Figure 1 can be executed in
a later session. Because we saved AVG when we created it (in Figure 1) it is known
to the system and it is therefore "old."

logon t4 proc(itfb)
IKJ56455I T4 LOGON IN PROGRESS AT 10:09:34 ON MAY 2, 1971
READY
edit avg basic old
ITF INITIALIZATION PROCEEDING
EDIT
run

538
EDIT
end
READY
logoff
IKJ56470I T4 LOGGED OFF TSO AT 10:11:50 ON MAY 2, 1971

Figure 3. Example of Executing a Program Created in an Earlier Session

Getting Started 23

Test Execution of Your Programs

Interrupting Execution

Modifying Programs in the

Edit Mode

Saving Programs

Terminating the Edit Mode

24 Part I. Using TSO ITF:BASIC

Through the edit mode, you can initiate the ITF test mode, where you can use
special subcommands to find errors of logic in your edited program. The ITF test
mode is initiated in the edit mode by using the TEST option of the RUN subcom­
mand. In other words, just type RUN TEST and all of the testing and debugging
subcommands of the ITF test mode will be available to you. The ITF test mode can
be initiated from the command mode as well as from the edit mode. A complete
description of the test mode is given in the chapter "Errors and Corrections."

You can interrupt and, as a result, cancel the execution of your program in the
edit mode at any time by entering an attention interruption. You cannot resume
execution from the point of interruption (as you can in the ITF test mode), but
you can, of course, re-execute the program by a subsequent RUN subcommand.

Press the attention key just once to interrupt execution. Two successive "atten­
tions" will terminate the edit mode and return you to the command mode.

It is possible to modify programs while in the edit mode. Through the use of edit
mode subcommands (i.e., LIST, DELETE, RENUM, etc.) and, in some instances, state­
ment numbers, you can insert, replace, or delete statements; you can change por­
tions of one or more statements; you can renumber all or part of the statements in
your program; and you can display the contents of one or more statement lines.
As you'll soon see, it is timesaving and very useful to be able to modify and update
programs without entirely retyping them each time a change must be made. A
complete discussion of program modification is given in the chapter "Errors and
Corrections."

The program you just created or the changes you made to a previously existing
program are retained by the system only as long as you remain in the edit mode.
That is, as soon as you return to the command mode, your newly created program
(or your new set of changes) is discarded. If you want the system to make your
program a permanent one, or if you want the system to incorporate your changes
into the existing program, you must use the SAVE subcommand of the edit mode.

The format of the SAVE subcommand is:
SAVE [name]

If you don't specify name, the program is saved under the name you speCified in
the EDIT command. If the program is an existing one (i.e., it's "old"), the old pro­
gram in permanent storage is replaced by the changed one. If your program is
"new," then this newly-created program is made permanent.

If you do specify name, the program is saved under that name; the name
specified in the EDIT command is ignored. If name is the name of one of your
existing programs, that program is replaced by the one currently in the edit mode.
Otherwise, no replacement occurs and the one currently in the edit mode is made
permanent with the name used in the SAVE subcommand.

When you are updating an "old" program, you may want to retain the "old"
program and save the updated one too. Whenever this is the case, you should
specify SAVE with a name that is different from the name of the old program
you wish to retain. Then you'll have two permanent versions of the program: the
old version without the changes and the updated version.

The name that can be specified with SAVE is constructed according to the rules
for naming programs; that is, it can contain from one to eight alphameric charac­
ters, the first of which must be alphabetic.

The edit mode can be terminated in either of two ways:
1. By the edit mode END subcommand.
2. By an attention interruption.
In the first case, you merely type END whenever you can type a subcommand. If

The Command Mode

Requesting Information on
Commands and Subcommands

you have not saved your program, the system will give you the option of entering
a SAVE subcommand at this point.

In the second case, give the attention interruption at the beginning of the
line. In some cases, a second attention interruption may be required (i.e., if
the Rrst attention interruption was given during the input phase or during program
execution). When you end the edit mode by an attention interruption, the system
will not give you the option of saving your program, if you haven't already done so.

By now, you should be familiar with some aspects of the command mode. For
instance, earlier in this chapter, you saw that a terminal session is begun by typing
LOGON and that it is terminated by typing LOGOFF. Both LOGON and LOGOFF are
commands that are used in the command mode. The EDIT command, which initiates
the edit mode, is also issued in the command mode. The discussion here will focus
on other aspects of the command mode-on such things as requesting information
from the system about the format or function of a command or subcommand,
sending messages to other terminal users, executing a program in the command
mode, making an existing os lTF:BASIC program acceptable to TSO lTF:BASIC, etc.

The HELP command can be used to request information about the function, syntax,
or operands of any command or subcommand available in TSO. For instance, if in
response to the system cue READY, you typed

help

you would receive an immediate list of all the TSO commands! (e.g., BASIC, DELETE,

EDIT, etc.) and a brief explanation of their function. This list is quite long, so it
would be more efficient to select the command you want information about and
specify that command name after HELP. For example, the command

help edit

will cause the system to respond with the specified command name (EDIT), its
function, its syntax, and a list of its operands. The function tells you what the
command does, syntax describes the format of the command, and the operand list
indicates which operands are optional and which are required when you use the
specified command.

If all you require is information on the function of the EDIT command, simply
request

help edit function

and the system will respond with the function only. Similarly, if you only want
information about the syntax of EDIT, you could type

help edit syntax

and only the syntax would be displayed. And, of course, the command

help edit operands

would cause the system to list only the operands of the EDIT command.
You can specify syntax, function, and operands (in any combination or order)

in a single HELP command. For example,

help basic operands syntax

would cause the syntax as well as the list of operands to be displayed for the
BASIC command.

1 This list will include all TSO commands (not just the subset included in this book). Unless you
are actually using the full TSO command language, it is not recommended that you request
this full list because it is quite extensive and not all of the information is pertinent to the
ITF user.

Getting Started 25

Sending Messages to Other
Terminal Users

26 Part I. Using TSO ITF:BASIC

You can also use HELP in any other mode to request information about any of its
subcommands. For instance, if you want to know something about RENUM in the
edit mode, you could, in response to the system cue EDIT, type the following

help renum

If you want to know only the function, syntax, or operands of the subcommand,
you could enter one of the following:

help renum function
help renum syntax
help renum operands

There is one restriction on using the HELP command; you cannot use it before
you use the LOGON command. As was pointed out in the section "Starting and
Ending a Session" earlier in this chapter, LOGON must be the first command used
in your session because it identifies you as an authorized user of the system.

It is possible, in the command mode, to send messages to any other terminal user
or to a system operator. The command used to do so is the SEND command. SEND

can be used at any time after you log on.
If you want to send a message to the console operator at the central computer

location, you would type SEND and follow it by the text of your message (enclosed
in single quotation marks). For example,

send 'effective 5/1--account #48 changed to #42'

The text of the message must be enclosed in single quotation marks, as shown,
and the message length (including blanks) cannot exceed 115 characters.

To send a message to another user, you must know his user identification code.
For example, the command

send 'terminal 5 not available til 13:00 2/1' user(djv,ram)

will send the message enclosed in quotation marks to the two users whose identi­
fications are DJV and RAM.

Generally, when you send a message to another user, he will receive it immedi­
ately, provided that he is logged on. If he is not logged on, you are notified by the
system and your message is deleted. By using the LOGON operand of the SEND

command, you can request the system to save your message until the user you
sent it to logs on.! For example, if you enter

send 'cost estimate is due 11/30' user(tad2) logon

TAD2 will receive your message when he logs on.
You can send a message to only one operator at a time. With the SEND command,

you must identify an operator by a number. For example,

send 'contact smith on ext.7943' operator(3)

If there is only one operator at your installation, you can omit the number. For
example,

send 'contact smith on ext.7043' operator

If there are several operators and you omit the number, your message is sent to the
main operator.

1 It is possible for a user to suppress the printing of messages at his terminal. This feature is
described in the TSO Terminal User's Guide (see the preface).

Executing a Program in the
Command Mode

Test Execution of Permanent

Programs

Interrupting Execution in the
Command Mode

Other Uses of the
Command Mode

The Test Mode 1

You can execute a permanent program (any program that has been saved as a part
of permanent storage) at any time in the command mode. There are two commands
for doing so: RUN and BASIC.

Returning to our now very familiar program to average four numbers (AVG),
which you'll remember, was saved in an earlier session, the two ways to execute
it in the command mode would look as follows:

USING RUN COMMAND

READY
run avg basic
ITF INITIALIZATION PROCEEDING

538
READY

USING BASIC COMMAND

READY
basic avg
ITF INITIALIZATION PROCEEDING

538
READY

In both cases, the program name must be specified immediately after the com­
mand name. The RUN command must further include the word BASIC to indicate
that the program is written in the BASIC language. The BASIC command makes this
known immediately, as you can see. In fact, the BASIC command is really a shorter
way to specify program execution in the command mode.

By specifying the TEST option of the RUN or BASIC command, you can initiate the
ITF test mode, where you can use special su bcommands to find errors in logic in
your permanent program. In other words, to test the program named A VG, just
specify either of the following

run avg basic test or basic avg test

and all of the testing and debugging subcommands of the ITF test mode will be
available to you. A complete description of the test mode is given in the chapter
"Errors and Corrections."

As in the edit mode, you can enter an attention interruption and cancel the
execution of your program in the command mode. You cannot resume execution
from the point of interruption (as you can in the ITF test mode), but you can, of
course, re-execute the program by a subsequent RUN or BASIC command.

While you are in the command mode, you can change the name of any of your
permanent programs or data files. You can also remove any program or data file
from permanent storage, or list the names of all the programs and data files in
permanent storage. These functions are performed through correspondingly named
commands-RENAME, DELETE, and LISTCAT, respectively. A thorough discussion of
these commands is contained in the chapter "Errors and Corrections" under the
heading "Modifications in the Command Mode."

The command mode has one other command, CONVERT, which is designed as an
aid for users who are moving from os ITF to TSO ITF. By using CONVERT, you can
make your os ITF:BASIC programs acceptable for use in the TSO environment. This
command is described thoroughly in Part III of this book.

You can use the test mode provided by ITF to help find any errors that could not
be detected by the syntax scan. The test mode can be entered both from the edit
mode and the command mode. In the edit mode, the subcommand that initiates
the test mode is RUN TEST. In the command mode, there are two ways to initiate the
test mode: (1) by the RUN command with the TEST option, or (2) by the BASIC

1 This mode is not to be confused with TSO'S test mode. It is entirely different and is only avail­
able with ITF.

Getting Started 27

28 Part I. Using TSO ITF:BASIC

command with the TEST option. Once in the test mode, you can use several sub­
commands to control the execution of your program-tracing changes to variables
and program How, stopping at various points in the execution to examine the
current values of variables, etc. The test mode and the subcommands that can
be used in the testing environment are discussed more fully in the chapter "Errors
and Corrections."

Now that you have a general understanding of how to begin and how to use
the modes in TSO, it is time to get acquainted with the ITF:BASIC language and to
actually begin to use the system.

Writing a Program

Building a BASIC Statement

Constants

BASIC statements are similar to handwritten mathematical notation except that
in BASIC, statements must be typed on a single line and, of course, each statement
must have a statement number. The expression

mlm2
f=G-­

d2

for example, could be typed like this in BASIC:

100 LET F = G * (Ml * M2) / D**2

We have already seen that the slash (!) indicates division. Here we see that
the asterisk C») denotes multiplication and the double asterisk (00) denotes
exponentiation. These symbols are called operators in BAsIc-they cause some
action to be performed. You'll learn more about operators later in this chapter.

BASIC statements are made up of operators and identifiers. Identifiers are values
which are either constant or variable. In our example above, the numeral 2 is a
constant-its value never changes.

BASIC has three types of constants:
1. Numeric-decimal numbers such as 2, 10, 17.3, 4.19E-3 (the latter is expressed

in the E, or "exponential," format which is discussed later in this chapter under
"Large and Small Numbers").

2. Character-any character or group of characters on the keyboard enclosed in
single or double quotes, such as 'ANSWER', "NAME CITY", etc.

3. Internal (or system-supplied)-BASIC provides the frequently needed values

of 7T', v2, and e as shown below:

VALUE VALUE
MEANING BASIC NAME (IN SHORT FORM) (IN LONG FORM)

e &E 2.718282 2.71828182845904
7T' &PI 3.141593 3.14159265358979

v2 &SQR2 1.414214 1.41421356237309

In your programs, constants can be used for such things as multipliers, divisors,
increments, and headings for your printouts. We'll see how to use character and
internal constants later. Right now, let's concentrate on numeric constants. In
BASIC, numeric constants can be Signed or unSigned and they can have up to 7
significant digits (long-form BASIC constants can have up to 15 significant digits).
If you supply a constant larger than 7 (or in long form, 15) digits, it will be
truncated by the computer. The following numbers are all valid as constants:

SHORT FORM LONG FORM
376 123456700000000
+ 10 .000000000000001

-1234567 -765.4321

Writing a Program 29

Variables

Identifiers can also be variable in nature. In our example

100 LET F = G * (M1 * M2) / D**2

the identifiers F, G, MI, M2, and D represent numeric values which can vary each
time they are used. For this reason they are called arithmetic variables.

In BASIC, arithmetic variables are indicated by a single alphabetic character or
by an alphabetic character followed by a digit. Examples of valid arithmetic
variable names are: Z, D3, AI, @4, #7, $. An important thing to remember is that
arithmetic variable names can never begin with a digit and the second character
(if there is one) must always be a digit.

Later you will see that you can use a variable to represent "character data"
whose value may change (i.e., an inventory item, an account name, etc.). These
are called character variables. In BASIC, each character variable name must be an
alphabetic character followed by the character "$." This naming scheme makes
the character variable easily recognizable to the computer. Examples of valid
character variable names are: C$, A$, $$, #$.

Assigning Values to Variables

30 Part I. Using TSO ITF:BASIC

Now that we understand that the primary elements of BASIC statements are oper­
ators (+, -, 0, etc.) and identifiers (constants and variables), let's see how to
use them in a program.

Initially, the system sets all arithmetic variables to zero and all character vari­
ables to 18 blanks. Now, we need to know how to assign other values to variables.
We have already seen the easiest way to do this-by using the LET statement.

10 let x = 40
20 let y = 172
30 let t = x + y
40 z = t + 120

Statements 10 and 20 are rather straightforward. The computer takes the numeric
constant on the right side of the equal sign and assigns that value to the arith­
metic variable on the left. In statement 30, we've used variables (x and y) on the
right side of the equal sign and we've assigned the sum of their values to T. Be­
cause we've already given x the value of 40 and y the value of 172 (in statements
10 and 20), the computer adds these known values together and assigns the
result (212) to T. Statement 40 shows that the word LET is not required in an
assignment statement. The computer treats this statement the same as statements
10 through 30; it adds 120 to the new value of T and assigns that value to z.

The paragraph above illustrates how to assign values to arithmetic variables.
Similarly, character variables can be given values through LET statements. For
example:

10 let a$ = 'city'
20 let b$ = 'state'
30 $$ = 'zip code'

The computer takes the character constant (enclosed in quotes) on the right
side of the equal sign, and assigns that character value to the variable on the left.

The LET statement can also be used to assign a value to more than one variable.
This is called the multiple LET statement. Examples are:

100 let x,y,z = 12
200 let aI, m = 100

Statement 100 tells the computer to assign the value of 12 to x, to Y, and to z.
Statement 200 instructs it to give Al and M each the value of 100.

The simple program we wrote to average four numbers used the LET statement
to assign values to variables. It looked like this:

10 let x = 510 + 371 + 480 + 791
20 let "I = x/4
30 print "I
40 end

Perhaps you can see that this program can be used to average only these four
numbers (510, 371, 480, 791). By using another method of assigning values to
variables, the DATA statement, we can write this program so that it will average
any four numbers supplied in the DATA statement.

10 read a,b,c,d
20 data 510,371,480,791
30 let x = a+b+c+d
40 let "I = x/4
50 print "I
60 end

When the computer executes the READ statement, it "reads" the values given
in the DATA statement and assigns them (in order) to the variables A, B, C, and D.
When all the data is consolidated in a single statement, you can change the data
by changing only the DATA statement. The advantages of this method of assigning
values (known as "program input") are more evident in the sample program shown
below.

USING LET STATEMENTS USING DATA STATEMENT
10 let p = 1000.00 10 read p,r,t
20 let r = 5 20 data 1000.00, 5, 10
30 let t = 10 30 let a = p* (1+r/100) **t
40 let a = p* (1 + r/lOO) **t 40 print a
50 print a 50 end
60 end

Using LET statements, we would have to replace three statements (10, 20, and 30)
to change the data. If we used the program with the DATA statement, we could
change the data by replacing one statement (20). You willleam how to replace
program statements later in the chapter "Errors and Corrections" under the head­
ing "Modifications in the Edit Mode."

Character variables also can be given values using READ and DATA statements.
In fact, arithmetic variables and character variables can be interspersed in the
same READ and DATA statements. Of course, the DATA statement must supply
values for these variables in the order in which they appear in the READ statement.
For example:

10 read a,b$,x,#$
20 data 2507,"john doe",33,"new york"

The values would be aSSigned as follows:

A = 2507
B$=JOHN DOE
X =33
#$ = NEW YORK

You can actually have more than one DATA statement in a program; the effect
is cumulative. For example:

10 read a,b,c,d,e,f,g
20 data 10012, -73621, 4308.973, 7.2, 15.0, -3.7
30 data 10

Writing a Program 31

Varying the Input

32 Part I. Using TSO ITF:BASIC

The values would be assigned like this:

A = 10012
B = -73621
C = 4308.973
D=7.2
E = 15.0
F = -3.7
G =10

You might want to do this when working with many numbers, or whenever
some numbers are more subject to change than others. Placing the «changing
value" in a separate statement permits you to change it without retyping every
other number or value. This is timesaving and it might prevent you from making
an error when typing a long list of numbers. However, take care to see that the
number of variables given in the READ statement is not greater than the total
number of values supplied by your DATA statements and that they are in a cor­
responding order. Should you have even one variable too many in the READ state­
ment, your program will be terminated. However, if you supply more values in
DATA statements than you have matching variables in the READ statement, your
program will run, but those values without a matching variable will be ignored.
A subsequent READ statement would continue where the previous READ left off.
If, however, you want to ignore the remaining values in the DATA statement and
start again with the first value, you could use the RESTORE statement which would
cause a subsequent READ statement to start at the beginning of the list of values.
For example:

10 read a,b,c,d
20 data 10012,-73621,4308.973,7.2,15.0,-3.7,10
30 restore
40 read e,f,g,h
50 read x,y,z

The values would be aSSigned like this:

A = 10012
B = -73621
C = 4308.973
D=7.2
E = 10012
F = -73621
G =4308.973
H=7.2
X = 15.0
Y = -3.7
Z=10

There are similarities in assigning values by the LET statement and by the DATA

statement. Both methods actually supply the numbers to be averaged within the
program itseH. In each case, we would have to retype one or more statements to
supply new data for our program. You can see that it would be advantageous
in many instances to have more flexibility.

A third means of assigning values to variables, the INPUT statement, prOvides this
flexibility. U sing the INPUT statement, our program to average four numbers
would now look like this:

READY
edit avg basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010
00020
00030
00040
00050
00060
run

input a,b,c,d
let x = a+b+c+d
let y = x/4
print y
end
@

? 30,50,75,29
46

EDIT

After we've typed our program, we signal the computer to run it (by the RUN

subcommand). The computer will then move to the first statement in the program
and attempt to execute it. Since our first statement (10) is an INPUT statement,
however, the computer knows that four values are to be supplied from the
terminal. It stops execution and prints a question mark (?) at the terminal. You
respond by typing any four signed or unsigned numeric constants (in this case
30,50, 75, 29) on the same line. The computer takes these values, assigns them to
A, B, c, and D in the order they are typed, performs the remaining operations on
them, and prints the answer (46). Note that if you do not supply a value for a
variable listed in the INPUT statement, or if you enter more values than there
are variables in the INPUT statement, the system will issue a message and allow
you to retype the line.

The INPUT statement is very useful for handling varying input, and, as you'll
see, it can be very handy in writing programs which can be used many times.
Supplying data by means of the INPUT statement is known as "terminal-oriented
input."

Expressions and Calculations

Arithmetic Expressions

That part of the assignment statement that is to the right of the equal sign is
called an expression. It is the expression that specifies the value to be assigned
to the variable on the left of the equal sign. An expression can be very simple,
involving no calculations, or it can be quite complicated, involving many vari­
ables and arithmetic operations. All of the following assignment statements con­
tain valid forms of arithmetic expressions (character expressions and relational
expressions are discussed later in this chapter):

40 let b = 5
50 let a = b
60 let z = 23.71
70 let y = 2**6 + (z/13.2) *a - a**3

An arithmetic expression is composed of an arithmetic variable, an internal con­
stant, a numeric constant, a subscripted arithmetic array reference, a function
reference (array and function references are discussed later in this chapter), or a
series of the above separated by operators and parentheses. Some examples of
arithmetic expressions are:

Al
-6.4
SIN(R)

X+Y+Z
X3/(-6)
-(X-xoo2/2+XOO(yoZ))

The symbols (arithmetic operators) used in expressions to specify mathematical
opera tions are defined as follows:

Writing a Program 33

34 Part I. Using TSO ITF:BASIC

OPERATOR

+

I
j or ~o

MEANING
addition (also the unary plus sign to indicate a positive value)
subtraction (also the unary minus sign to indicate sign
reversal, e.g., the expression -A means multiply the value
of A by -1)
multiplication (A ~B means A multiplied by B)
division (AlB means A divided by B)
exponentiation or raise to the power (A ~~B or AjB means A
raised to the power B, or A B)

In general, expressions are evaluated as follows:
1. Exponentiation is performed first; thus, it is said to have the highest priority.

If two or more of these operators appear in the same expression, they are
evaluated in the order they appear (from left to right).

2. Unary operations have the second priority and are evaluated from left to right.
3. Multiplication and division have the third priority. These operations are eval­

uated from left to right.
4. Finally, addition and subtraction have the lowest priority; they, too, are evalu­

ated from left to right.
For example, in the expression:

the evaluation process follows this sequence:
1. A 002 is evaluated first.
2. The unary minus sign is applied to the result of A 00 2 (i.e., the sign of A 002 is

reversed).
3. B is divided by c.
4. The result of B/ c is multiplied by 2.5.
5. Finally, the result of item 4 is added to the result of item 2.

Unary operators may be used in only two situations in a BASIC program:
1. Following a left parenthesis and preceding an arithmetic expression, or
2. As the leftmost character in an entire expression which is not preceded by an

operator.
Parentheses may be used in an expression to alter the order in which the ex­

pression is evaluated by the computer. Any part of an expression enclosed in
parentheses is evaluated before any other part of the expression. For example,
the expression

A-B/C

is always evaluated as follows: divide B by c and then subtract the result from A.
Spacing is ignored, i.e., even if the expression were written:

A-B /C

the division operation would be performed before the subtraction operation.
However, by using parentheses, this order of evaluation can be altered. For
example, the expression

(A-B)/C

is evaluated as follows: first subtract B from A and then divide the result by c.
Note that A-(B/C) is the same as A-B/C.

Thus, the use of parentheses in expressions is quite similar to the use of paren­
theses in algebra; that is, parentheses group operations and indicate which oper­
ations should be performed first.

With this in mind, let us reconsider an expression we evaluated earlier. Sub­
stituting the values 4, 6 and 2 for A, B, and c, respectively, notice how parentheses
affect the order of evaluation and change the result.

Character Expressions

EXPRESSION
-A 002+B/c02.5

EVALUATION AND RESULT
-4 ° °2+6/2°2.5

-16 +6/2°2.5
-16 + 3 °2.5
-16 + 7.5

-8.5
(-4)° °2+6/2°2.5

16 +6/2°2.5
16 +3 °2.5
16 + 7.5

23.5

-4 ° °(2+6/2)°2.5
-4°°(2+3) °2.5
-4°°5 °2.5

-1024 °2.5
-2560

_400((2+6)/2)02.5
_4°° (8/2) °2.5
-4°°4 °2.5

-256 °2.5
-640

This illustrates only four of the possibilities in this one expression. As you can
see, the use of parentheses can have drastic effects on the result. Thus, you must
understand the rules completely and apply them carefully. The last example
illustrates the nesting of parenthesized expressions. In such cases, the expression
within the innennost set of parentheses is always evaluated first; the expression
within the next innennost set is evaluated next, and so on until the outermost
level is reached. Thus, in this example, 2+B is evaluated first and then the result
of 2+B is divided by c.

As a further illustration, evaluation of (2°°3)°°2 or 2°°3°°2 gives 64, whereas,
evaluation of 2°°(3°°2) gives 512.

In addition to the five basic arithmetic operations, many familiar mathematical
functions such as sine (SIN), cosine (cos), square root (SQR), and natural loga­
rithm (LOG) are available. A list of these functions (called "intrinsic functions"
in BASIC) is given in Part II of this manual. Some examples of their use are shown
below:

70 let v = cos (y)
80 let z = 1 + sqr (x**3)
90 let w = 1 - sqr (cos (a))

The quantity in parentheses immediately following the name of the function
is an argument (e.g., XOOs). An argument is merely an expression representing a
value that the function is to act upon. The expression can be as simple or as
complicated as any of the expressions we've encountered so far, and it is evalu­
ated according to the same rules. Thus, in the second example, if the value of
x is 4, then the value of xoos is 64, and the value of SQR(XOOs)-or the square
root of 64--is 8. The last example shows nested function references, which are
evaluated like nested expressions. Thus, the cosine of A is found first and the
square root of that cosine value is found next.

A character expression is composed of a character variable, a character constant,
or a subscripted character array reference (arrays are discussed later in this
chapter). Character expressions may be used in assignment statements (LET,
READ and DATA, INPUT, and GET statements), in IF statements (to test relational

Writing a Program 35

Relational Expressions

Printing Results

36 Part I. Using 1 SO ITF:BASIC

conditions-equal to, greater than, etc.), and in output statements (PRINT, PRINT
USING, and PUT). A few examples of character expressions used in these state­
ments are:

let a$ = 'abcdefg'
if d$ = c$ then 20
print z$,'total',#$(lO)

In all operations with character expressions, except for output using the PRINT
and PRINT USING statements, character constants containing more than 18 charac­
ters will be truncated on the right to 18 characters. Character constants contain­
ing less than 18 characters will be padded with blanks, on the right, to 18
characters. Character constants containing no characters (two adjacent quotation
marks, known as a null character string) will be interpreted as 18 blank char­
acters.

Relational expressions are used to test the relationship between two expressions.
Two forms of relational expressions are allowed in BASIC, arithmetic and charac­
ter. The general format of a relational expression is:

expression-l relational-operator expression-2

The relational operators and their representation on some of the terminals sup­
ported by TSO are:

OPERATOR

2741 (#9571) 2741 (#9812) TELETYPE
DEFINITION PTTC/EBCD CORRESPONDENCE MODELS 33/35

equal to = = =
not equal to <> [] <>
greater than >] >
less than < [<
greater than or equal to >=]= >=
less than or equal to <= [= <=

When a relational expression is encountered in a program, the computer evalu­
ates expression-l and then expression-2. Their values are compared according to
the definition of the relational operator used. The evaluation of the entire rela­
tional expression results in the expression being either satisfied (relation is true)
or unsatisfied (relation is false).

Now that we've seen how values are assigned to variables (by the LET, READ and
DATA, and INPUT statements) and how certain calculations can be performed with
those values, let's explore the PRINT and PRINT USING statements and see how we
get the results of the calculations out of the computer.

You've probably noticed that we've been using the PRINT statement in examples
earlier in this book. For example:

edit avg basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010
00020
00030
00040
00050
00060
run

input a,b,c,d
let x = a+b+c+d
let y = x/4
print y
end
@

? 30,50,75,29
46

As you can see, the computer prints the value of the variable y (46) in response
to the PRINT statement. The PRINT statement can also contain arithmetic and
character expressions, character constants, and format control items (which are
described later). If, for some reason, we wanted to add 10 to the average found
in the example above, and to print that result following the phrase "average + 10
is:", we would type:

40 print 'average + 10 is:', y+ 10

The result would look like this:

AVERAGE + 10 IS: 56

It is often very helpful to use character constants in the PRINT statement in order
to label output, particularly if the program is printing several values.

In general, each PRINT statement causes the computer to begin a new line.
Therefore, a PRINT statement with nothing after it won't cause anything to be
printed, but it will cause a carriage return. This is a useful technique for improv­
ing the appearance of your printed output.

Horizontally, the page is divided into full print zones, each zone having 18
print positions. Assuming that the left-hand margin has been set at position 0 on
the IBM 2741 terminal, the zones would begin in positions 0, 18, 36, 54, 72, etc.
A comma is used as a signal to the computer to move across the page to the next
full print zone. For example, if we use the following statement:

70 print a,b,c

the computer would start at the left edge of the page and print the value of the
variable A. Then it would skip over to print position 18 and print the value of B.

The value of c would be printed beginning in print position 36.
It is possible to increase the number of print zones on a line. A semicolon or

a null delimiter (a blank or no separation at all between data items) indicates
to the computer to use a packed print zone rather than a full print zone. A null
delimiter may be used when one, and only one, of the data items is a character
constant. The size of the packed zone for arithmetic data is determined by the
length of the field to be printed, as follows:

LENGTH OF LENGTH OF PACKED EXAMPLES

PRINT FIELD PRINT ZONE (x REPRESENTS A BLANK)

2-4 characters 6 characters x173xx
5-7 characters 9 characters x 173576xx
8-10 characters 12 characters -45.63927 xxx

11-13 characters 15 characters xl.735790E-23xx
14-17 characters 18 characters -892270409311563xx

If the item to be printed is a character variable or a subscripted character array
reference, the size of the packed print zone is 18 characters minus any trailing
blanks. If the data item is a character constant, the size of the packed print zone
equals the length of the character string enclosed in quotes.

The PRINT USING statement is quite similar, but is much more useful for con­
trolling the format of the answer to be printed. PRINT USING is used in conjunction
with an Image statement to print values according to the format specified in the
Image statement. The PRINT USING statement includes the values to be printed
and the statement number of the Image statement to be used; the Image state­
ment specifies the format of the print line. For example:

Writing a Program 37

Loops

38 Part I. Using TSO ITF:BASIC

edit int basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 input ~,i,n
00020 let a = p*(1+i/l00)**n
00030 print using 40, n,a
00040 :in ## yrs amt = $####.##
00050 end
00060 @
run
? 1000.00, 5, 10
IN 10 YRS AMT = $1628.88

Statement 30 directs the computer to print the values of N and A using statement
40 as the image. The colon beginning statement 40 identifies it as the Image
statement. The alphabetic characters are printed as they appear in the statement,
the value of N replaces the first set of #' s, and the value of A replaces the final
set of symbols. Note that the decimal point in the value of A is aligned on the
decimal point in the image specification.

Details about PRINT and PRINT USING statements are given in Part II of this
publication.

Certain problems require that one specific operation or sequence of operations
be performed repeatedly over a set of values. Such calculations are generally
done most efficiently by a simple programming device known as a "loop." For
example, consider the problem of printing an integer along with its square. With­
out using a loop, you could do this by writing the following statements:

10 print 1,1**2
20 print 2,2**2
30 print 3,3**2
40 print 4,4**2

and so on, ending with:

490 print 49,49**2
500 print 50,50**2
510 end

ObViously, this method is very time consuming and tedious. A loop provides a
concise method. Consider this solution:

edit rtb basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 let x = 1
00020 print x,x**2
00030 let x = x + 1
00040 go to 20
00050 end
00060 @

In RTB we have created a loop in statements 20 through 40 so that when the
program is run the PRINT statement will be executed once each time the value
of x increases by 1. The statement that makes the loop possible is the GOTO state­
ment. It alters the normal sequence of execution by actually specifying the next
statement to be executed. It does this by referring to the number of that state­
ment.

There is one problem with the loop we have just shown: there is no provision
for ending the loop. Consequently, not only will we get results for values from
1 to 50, but also for 51, 52, and so on, unless some action is taken to stop the
execution once the requirements of the problem have been satisfied.

Either of two actions could be taken:

Looping by FOR and NEXT

1. We could press the attention key, thereby causing the computer to cancel exe­
cution at the point the "attention" signal is recognized.

2. Or, better still (since the first action cancels our program and requires our
physical intervention every time the program is executed), we could build into
the loop a test for some condition, so that when the condition was met the loop
would end automatically.
Taking the second action, we want the loop to end as soon as the value of x

becomes greater than 50, or put another way, we want the loop to continue as
long as x is less than or equal to 50. An IF statement says it quite concisely:

IF X < = 5 THEN 20 or IF X <= 50 GOTO 20

In the IF statement, THEN and GOTO have the same meaning-they are inter­
changeable. This IF statement, when inserted in RTB, would provide the test
needed to end the loop. RTB should now consist of this sequence:

10 let x = 1
20 print x,x**2
30 let x = x + 1
40 if x < = 50 then 20
50 end

As long as x satisfies the condition "x less than or equal to 50," execution will
loop back to the PRINT statement. However, when x no longer satisfies the condi­
tion, then the loop will end automatically and the execution will "fall through"
the IF statement to the statement on the next line, which in this case is an END

statement signifying the end of the program.
The IF statement has many applications, some of which can be quite sophisti­

cated, depending on the condition tested in the statement. For example, condi­
tions such as the following can be tested:

IF A = 0 THEN 60
IF A < > 0 GOTO 40
IF B - X/Y < z* ~c2 THEN 80

The second condition literally means "A is less than or greater than zero" or,
if you prefer, "A is not equal to zero." The last shows that expressions of various
complexities are permitted on both sides of the "relational operator" (the symbol
defining the condition). All of the relational operators and their meanings are
listed in Part II of this book. Use of arithmetic expressions and arithmetic ex­
pressions with relational operators was discussed earlier in this chapter.

A still more concise method of specifying a loop is by using the FOR and NEXT

statements. For example, our program for finding and printing the square of the
numbers from 1 through 50 could be further simplified to look like this:

10 for i = 1 to 50
20 print i,i**2
30 next i
40 end

The FOR statement identifies the beginning of the loop; the NEXT statement
identifies the end of it. In between is the statement (or sequence of statements­
we only need one for this example) that will be executed repeatedly until the
specification in the FOR statement has been satisfied.

In our example, the FOR statement specifies that the statement in the loop (the
PRINT statement) will be executed repeatedly for successive values of I from 1
through 50 (an increment of 1 is added to I for each execution of the PRINT

statement). When the value of I exceeds 50, execution of the loop is ended, and
control is passed to the next logically executable statement following the NEXT

statement. In this case, the following statement is an END statement denoting the
end of the program. However, other instructions could precede it, or the NEXT

Writing a Program 39

Arrays

Arithmetic Arrays

40 Part 1. Using TSO ITF:BASIC

could be the last statement in the program (in which case, the system would
supply an END statement).

The specification "I = 1 TO 50" is called a range specification because it defines
the range of values over which the loop will be executed. As we've seen, the range
in our example is 1, 2, 3, ... , 50. The increment is always 1 unless it is explicitly
stated to be otherwise; for example:

10 FOR I = 1 TO 50 STEP 2

This FOR statement explicitly states an increment (or step) of 2. Thus, the
statement(s) in the loop will be executed once for every odd value of I from 1
to 50 (i.e., the range is 1, 3, 5, ... , 49). When the value of I exceeds 50 (that is,
when it reaches 51), execution of the loop will end. The value of I is then adjusted
and will be 49 when the next logically executable statement is executed. If you
wanted to execute the loop once for every even value of I from 1 to 50 (i.e., 2, 4,
6, ... , 50), you would say the following:

10 FOR I = 2 TO 50 STEP 2

Again, when the value of I exceeds 50 (in this case, when it reaches 52), execu­
tion of the loop will end. The value of I is then adjusted and will be 50 when the
next logically executable statement is executed.

As with expressions appearing in assignment statements and in the body of
PRINT statements, the range specifications in FOR statements can be quite compli­
cated. For example, the following FOR statements are permitted:

FOR I = A TO B
FOR J = 8~cM+Y TO A**3
FOR K = SQR(B) C TO 550 STEP A/B*2

An array is a named list or table of data items, all of which are the same type.
In BASIC, there are two kinds of arrays-arithmetic (which contain only arith­
metic values) and character (which contain only character values 18 characters
in length).

An arithmetic array is named by a single alphabetic character. If your array
contains ten or fewer data items, no special indication of its size (dimension) is
necessary. By referring to an individual data item (member) of your array in
any program statement, the computer will recognize that you are working with
an array and will automatically allow space for as many as ten members. (This
is known as implicit declaration.) An individual item (member) is referred to
by giving its location in the array. For example, B(l) refers to the first member
of the array named B; B(2) refers to the second member, B(S) refers to the third
member, and so on. Each number giving the location of a particular member
(i.e., 1,2, 3, etc.) is called a subscript. If the following statement were typed:

40 LET B (9) = 44

only the ninth member of B would be assigned the value 44; all other members
would remain unchanged.

If you are working with an array of more than ten members, you must explicitly
state the array dimension (size) so the computer will allow enough space. For
example, to make T an array of 12 arithmetic items, the following statement would
have to be given:

10 DIM T(12)

The number appearing in parentheses is known as the bound of the dimension
of the array. It specifies that the array T represents 12 diHerent arithmetic items.

If your array has very few members (e.g., two or three), it is most efficient to use
a DIM statement such as,

10 DIM A(2), B(3)

so that the computer won't automatically provide space for ten members, most
of which will be unused.

Note the difference between a subscript and the array bound. A subSCript is
used to refer to a particular member of an array and it can be any valid arith­
metic expression (i.e., numeric constant, function reference, etc.). The bound
defines the number of members of an array; it can only appear in a DIM statement
and it must be indicated by positive integers only. An array name cannot appear
in a DIM statement if the array dimension has already been stated-either im­
plicitly (through usage) or explicitly (by appearing in another DIM statement).

In BASIC, you can have arrays of one dimension (arithmetic or character), or
arrays of two dimensions (arithmetic only). Assume that values have been as­
signed to T (a one-dimensional array) such that:

T(l) is 31 T(7) is 79
T(2) is 43 T(8) is 79
T(3) is 42 T(9) is 69
T(4) is 57 T(10) is 58
T(5) is 64 T(ll) is 44
T(6) is 73 T(12) is 39

Let's say that each of these values represents the average temperature for one
month of a particular year; T(l) represents January's average, T(2) represents
February's, etc.

For various reasons, another programmer might want to consider the year as
divided into four quarters of three months each; he could declare his array (call
it M) as follows:

10 DIM M(4,3)
In this statement, the bounds specify that the array M is a two-dimensional array
containing 12 members (the product of 4 and 3), just like the array T. The differ­
ence is that the members of M are distributed over two dimensions, whereas in T

they are distributed over only one dimension. Conceptually, the two dimensions
of M can be thought of as four lists of three items each (i.e., four quarters, three
months to each quarter). Assuming that the same temperatures assigned to Tare
assigned to M, notice the difference in the way each item is referred to:

ARRAY T ITEM AlmAy M
T(l) 31 ~1(1,1)

T(2) 43 M(1,2)
T(3) 42 M(1,3)
T(4) 57 M(2,1)
T(5) 64 M(2,2)
T(6) 73 M(2,3)
T(7) 79 M(3,1)
T(8) 79 M(3,2)
T(9) 69 M(3,3)
T(lO) 58 M(4,l)
T(ll) 44 M(4,.2)
T(12) 39 M(4,3)

Two subscripts are always used to refer to a particular member of M: e.g.,
M(S,l) refers to the temperature for July, the first month in the third quarter.
The number of subscripts in a reference to an array member must always be the
same as the number of bounds shown in the DIM statement.

Writing a Program 41

Character Arrays

Input Values for Arrays

42 Part I. Using TSO ITF:BASIC

You might also visualize a two-dimension~l array such as M as a table of 4
rows and 3 columns, in this way:

M (m,l) (m,2) (m,3)

(l,n) 31 43 42
(2,n) 57 64 73
(3,n) 79 79 69
(4,n) 58 44 39

You can use a two-dimensional array in a program without explicitly stating
its bounds in a DIM statement. You would do this by using two subscripts to
identify the location of a particular member in the array (for example, A(4,S)
would refer to the member in the fourth row and third column of the array A).
If the value of either subscript exceeds ten, however, you must use a DIM state­
ment to define how much space your array requires, before your first reference
to a member of that array. Again, if your two-dimensional array has very few
members, space is conserved by giving a DIM statement so that the computer will
allow only the amount of space that you require.

A character array is limited to one dimension, and the array must contain only
character data. A character array is named by a single alphabetic character fol­
lowed by a dollar sign (i.e., A$, ... ,Z$,#$,@$, and $$). The follOWing is an ex­
ample of a character array (A$) which contains twelve members:

A$(l)
A$(2)
A$(3)
A$(4)
A$(5)
A$(6)
A$(7)
A$(8)
A$(9)
A$(lO)
A$(ll)
A$(12)

'MARY ADAMS'
'JOHN BROWN'
'FRED CLAY'
'SARAH DUNN'
'SAMUEL EVANS'
'JACK FROST'
'RUTH GOLD'
'RICHARD HOWE'
WAYNE IVANS'
'ETTA JACOBS'
'CHARLES KLEIN'
'SUSAN LOWE'

Values are assigned to character arrays through LET statements, and through
READ and INPUT statements as explained below. A character array may not be used
in a MAT statement (discussed later in this chapter).

Initially the system sets all arithmetic arrays to zero and all character arrays to
blanks (18 blanks for each array member). Arrays can be given other values
through READ and INPUT statements just like other variables, and through various
MAT statements (arithmetic arrays only) which are discussed later in this chap­
ter. However, when supplying input values for arrays by means of READ and
INPUT statements, you must remember that every array member that is to receive
a value must be represented in the statement and a value must be typed for each
member specified. Consider the following statements:

10 dim x(5), y(12)
20 input x(l), x(2), x(3), x(4), x(5), y(4)

The DIM statement says that x is an array representing five arithmetic values
and y is an array representing twelve arithmetic values. The INPUT statement
says that you will assign values to all five members of x and to the fourth member

Matrix Operations
(MAT Statements)

of Y. Execution of the INPUT statement causes the computer to print a question
mark (?) at the terminal. A valid response would be:

? 25, 33, 17, 62, 95, 43

The first five values of the input line are assigned to X(l) through X(5), respec­
tively. The last value is assigned to Y(4).

After the input line has been typed, the values of the variables in the data
list are as follows:

X(I) is 25
X(2) is 33
X(3) is 17
X(4) is 62
X(5) is 95

Y(4) is 43

Note that Y(l) through Y(3) and Y(5) through Y(12) are left untouched.
Another way of assigning input values to arrays is through use of a FOR/NEXT

loop in conjunction with the READ and DATA statements. For example, if you
wanted a list of 15 numbers assigned to an array named A, you could write:

10 dim a(15)
20 for i = 1 to 15
30 read a(i)
40 next i
50 data 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

The subscript I is used to step through the numbers in the DATA statement.
Similarly, you could initialize a 3 by 5, two-dimensional array (named B) by

using nested FOR/NEXT loops, as follows:

10 dim b(3,5)
20 for i = 1 to 3
30 for j = 1 to 5
40 read b(i,j)
50 next j
60 next i
70 data 2,3,4,5,6
80 data 7,8,9,10,11
90 data 12,13,14,15,16

In this example, I represents the number of rows (3) in the array Band J rep­
resents the number of members in each row (5). For each iteration of I, J is
stepped through five times; that is, for each value of I, J is equal to one through
five. Thus, when I is one, the values for B(l,l), B(1,2), B(l,S), B(1,4), and B(l,S)
are read into the array. When I is two, the values for B(2,1) through B(2,5) are
read into the array, and when I is three, the values for B(3,1) through B(3,5)
are read into the array. When all fifteen members have been read, both loops are
satisfied and processing continues with the next executable statement in the
program. Rules for using nested FOR/ NEXT loops are given under the heading
"Program Statements" in Part II of this publication.

MAT input/ output statements (discussed in the next section) can be used to
assign values to entire arithmetic arrays without the necessity of using FOR/NEXT

loops.

Arithmetic arrays that have been defined implicitly through usage or explicitly
in DIM statements can be used subsequently in MAT statements. Arithmetic arrays
can be used in the following MAT input/ output statements:

MAT GET MAT PRINT MAT PUT
MAT INPUT MAT PRINT USING MAT READ

Writing a Program 43

44 Part I. Using TSO ITF:BASIC

Each of these statements must include the word MAT, as shown. They perform
the same functions as their non-MAT counterparts. For example, MAT READ reads
values from DATA statements and assigns them to an array variable according to
the dimensions and bounds of that array; if there are not enough values to fill
the array, execution is terminated.

MAT INPUT, MAT GET, and MAT READ statements allow an array to be redimen­
sioned; that is, new bounds can be specified for the array, provided that the
original number of members is not exceeded and the original number of dimen­
sions is not changed. For example, consider the following:

10 dim a (10,2)

80 mat input a(4,3)
The MAT INPUT statement changes the bounds of A as specified by the paren­

thesized numbers following A. Since the new size of A (12 members) is less than
the defined size (20) and the number of dimensions is the same, the statement
is valid. Therefore, twelve values are read from the terminal and assigned to A

in a 4 by 3 configuration.
One other MAT statement is available for matrix operations, the MAT assigmnent

statement. This statement provides true mathematical matrix functions (e.g.,
matrix multiplication and inversion) for two-dimensional arrays and other opera­
tions (e.g., addition and subtraction) for one- and two-dimensional arrays. In
certain cases, redimensioning is allowed. Table 1 illustrates most of the proper­
ties of the MAT assignment statement. Rules governing the use of MAT statements
are given in Part II of this publication.

Table 1. Matrix Assignment Examples

Assuming this DIM statement exists
DIM A (5,5), B (5,5), C (5,5)
consider each of the following MAT assignment statements:

Example

MAT A = B

MAT C = A+B

MAT C A-B

MAT C (3)*A

MAT C A*B

MAT C = INV(B)

MAT C TRN(B)

MAT C IDN(4,4)

MAT C CON(4,3)

MAT C ZER(2,5)

Effect

The members of B are assigned to the corresponding members of A.

A and B must have the same dimensions.

The members of B are subtracted from the corresponding members of
A and the resulting array is assigned to c. A, B, and c must have the
same dimensions.

Corresponding members of A and B are added and the resulting array
is assigned to c. A, B, and c must have the same dimensions.

Every member of A is multiplied by 3 and the resulting array is as­
Signed to c. A and c must have the same dimensions and the arithmetic
expression must be in parentheses.

The result of the mathematical matrix multiplication of B by A is as­
signed to c. A, B, and C must be two-dimensional and the rows and
columns must have the folloWing relationship: Clk= Alj!) Bjk

C is assigned the matrix inverse of B. Both must be two-dimensional
square arrays and have the same dimensions.

C is assigned the matrix transpose of B. Both must be two-dimensional
and their rows and columns must have the following relationship:
CIl = Bji

C is redimensioned to a 4 by 4 configuration and assigned an identity
matrix of that size. (Redimensioning is optional.) The array must be
square.

C is redimensioned to a 4 by 3 configuration and 1 is assigned to every
member of c. (Redimensioning is optional.)

c is redimensioned to a 2 by 5 configuration and zero is aSSigned to
every member of c. (Redimensioning is optional.)

Large and Small Numbers
In ITF:BASIC, short-form computation results have seven significant digits. Integer
format (or I-format) and fixed-decimal format (or F-format) are used to repre­
sent numbers whose absolute values are in the range 9,999,999 to 0.1. However,
very large and very small numbers can still be represented so long as seven-digit
significance is sufficient. (Numbers requiring more than seven-digit significance
are described below.) The mass of Earth, for example, about 6.6 sextillion tons,
would be written in full as:

6,600,000,000,000,000,000,000
This is normally expressed in scientific notation as 6.6xl()21 and in BASIC would

be expressed in the following comparable format (called exponential format,
or E-format):

6.6E+21
The E stands for "exponent to the base 10" and the number follOwing the E is the
exponent. Very small numbers are treated similarly. The mass of a proton
(1.7xl0- 24 grams) would be expressed in E-format as:

1.7E-24
E-format can be used for input or for constants within the program. The com­

puter automatically uses E-format for output when the absolute value is less than
0.1 or greater than 9,999,999, as illustrated by the third and fourth values printed
by the program in Figure 4. Note that E-format is not used to print the value
zero; zero is printed as O.

You can specify E-format for output in the Image statement accompanying a
PRINT USING statement in this manner:

100 :THE MASS IS #.#####!!!! GRAMS
The number signs represent the mantissa of the number (the mantissa includes

a decimal point and an optional sign); four exclamation points (I) or "or" signs (I)
are used for the four-position characteristic, which can range from E-79 to E+75.

logon joe proc(itfb)
IKJ56455I JOE LOGON IN PROGRESS AT 11:45:46 ON MAY 4, 1971
READY
edit exp basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010
00020
00030
00040
00050
EDIT

print
print
print
print
@

run
524289.7
524.2896

2**19
(2**19)/1000
2**100
1/(2**100)

1. 267661E + 30
7 .888541E- 31

EDIT
end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 11:48:10 ON MAY 4, 1971

Figure 4. Fixed-decimal Format (F -format) and Exponential Format (E-format)

Seven-digit precision is sufficient for most purposes, but there are situations
where greater significance is necessary. When you request "long" precision for a

Writing a Program 45

46 Part I. Using TSO ITF:BASIC

program run (by typing RUN LPREC in the edit mode; or by typing BASIC LPREC

or RUN BASIC LPREC in the command mode), internally computation is carried
out to 16 significant digits. Integers are printed with 15 significant digits, while
values printed in E-format have eleven significant digits in the mantissa. The
Image statement accompanying a PRINT USING statement can specify all 16 digits.
Actually, the Image statement can specify more than 16 digits. This will result in
padding with zeros for arithmetic data.

The program in Figure 5 approximates the sum:

00

S= L 1

n=O

Statement 10 gives x a value of 1.065, and statement 20 sets Nand S (the sum)
to zero. Statement 30 computes the term and adds it into the sum. Statement 40
increases the value of N. Statement 50 compares the tentative "next sum" with
the sum at that point, and, if they are different, the computer repeats the sequence
30, 40, 50. When the computer's limits of precision are reached, it cannot tell the
diHerence between the "present sum" and the "next sum," and the program ends.

logon joe proc(itfb)
IKJ56455I JOE LOGON IN PROGRESS AT 16:27:30 ON MAY 7, 1971
READY
edit sum basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 let x = 1.065
00020 let n, s = 0
00030 let s = s + 1/ (x**n)
00040 let n = n+l
00050 if s<>s+l/(x**n) then 30
00060 print "number of terms:", (n-l)
00070 print "the sum of terms:", s
00080 print "the last term:", l/(x**(n-l))
00090 end
00100 @
EDIT
save
SAVED
run
NUMBER OF TERMS: 176
THE SUM OF TERMS: 16.383634
THE LAST TERM: 1.536384E-05
EDIT
run lprec
NUMBER OF TERMS: 528
THE SUM OF TERMS: 16.3846153846145
THE LAST TERM: 3.6258271359E-15
EDIT
end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 16:30:44 ON MAY 7, 1971

Figure 5. Approximation of an Infinite Sum

Figure 5 shows the program run twice. The sum in the first run (in normal
"short" precision) contains 176 terms. BASIC long precision is requested for the
second run by the subcommand:

RUN LPREC

Over 500 terms are included in the sum this time, and the answer of 16.384615+
is considerably more precise.

Note: Because of the physical limitations of the computer, certain values cannot
be precisely represented internally, (e.g., 1/3). Computation involving those values
may result in a slight loss of precision and, as a result, printed results may be
inaccurate in the rightmost one or two Significant digits (i.e., in the least significant
positions). To overcome this problem, try printing fewer significant digits (by
using the Image and PRINT USING statements), or, if these least Significant digits
are important, try using long-form arithmetic for your computations. You'll prob­
ably find that a combination of the two gives the most satisfactory results.

Writing a Program 47

Creating and Using Files

Naming Files

A file is a group of related data items which are treated as a unit. For example,
one line of data collected from an experiment may form an item, and the data
collected over a period of time may form a series of related items, i.e., a file. Files
are created using the PUT statement.

The next few pages show how to create and use a file. In each example, we
will be using the compound interest formula:

A=P(1+~)T
100

where P is the amount originally invested or depOSited, R is the annual interest
rate, and T is the number of years involved. A, the amount available at the end of
T years, is unknown to us.

The program in Figure 6 calculates 200 values of A (from 1% to 20% for each
10 years), and it puts each one, and the corresponding T and R values, into a file.
No output is printed.

Whenever a file is created, it must be named. This is done by including the
file name enclosed in single or double quotes in every PUT statement of your
program. For example:

10 PUT 'TF', A, B

would create an output file, name it TF, and place the values of A and B in it.

Normally, file names can be any length, but because ITF and TSO recognize only
the first three characters of file names, it is recommended that you choose file
names that are three characters or less (you'll see why later). These three char­
acters should adhere to the following TSO file naming conventions:
l. The first character is required and it must be alphabetic-any letter of the

alphabet (A through z) or one of the three alphabetic extenders ($, #, and @).
2. The other two characters are optional; if specified, they must be alphameric­

any alphabetic character (including $, #, and @) or any digit (0-9).
Some examples of valid file names are

"int"
lab'
"t"
'cos'

'$60'
"f#l"
'rS'
"#09"

When you create a file, it is automatically saved in an area of permanent storage
set aside for your files. The number of files that this area can contain is determined
by your installation. Usually, this number is at least twenty. If you have used all
the space reserved for your files and you attempt to create a new file, an error
message will be displayed at your terminal. In order to create your new file, you
must do some "housekeeping!" and remove any unwanted files from permanent
storage to make room for your new file. This can be done by using the DELETE

command. (Just how to use DELETE is shown later in the chapter "Errors and

1 Detailed information about "housekeeping" and file maintenance is given in Appendix D.

Creating and Using Files 49

File Name Length

50 Part 1. Using TSO ITF:BASIC

Corrections" under the heading "Modifications in the Command Mode.") The
DELETE command (as well as the RENAME command) requires that file names
conform to the file naming conventions given earlier. Names which do not conform
to these rules cannot be used in the TSO DELETE and RENAME commands.

ITF:BASIC actually places fewer restrictions on file names than TSO does. Because
of this, it is entirely possible to create a file (with a valid ITF:BASIC name but an
invalid TSO name) and use it, but never be able to delete it or rename it. It will
always be taking up space in permanent storage; space that you may need later
on. This problem arises in part because when a file is named (and is actually
created) in the first PUT statement of your program, the syntax of that statement
(including the file name) is checked against what is acceptable to ITF, not against
what is acceptable to TSO. Consequently, you do not receive notification that your
file name is not acceptable to TSO until you try to use that name in a DELETE or
RENAME command.

ITF:BASIC will accept any file name that is acceptable to TSO. If you make
certain that all your file names are acceptable to TSO, file name conflicts will never
arise. The responsibility for typing an acceptable TSO file name is yours alone,
because when you create a file, ITF will notify you of an error only if your file
name violates one of the following ITF: BASIC conditions:
1. The first three characters cannot contain a period, a comma, or a semicolon;
2. A blank cannot precede a non-blank in the first three characters;
3. The first three characters cannot be all blank; and
4. The file name cannot be a null character string (two adjacent quotation marks).

To illustrate the relationship between what TSO accepts and what ITF accepts,
let's look at some more examples of file names you might supply:

NAME You SPECIFY

"q"
'f#l'
"$60"
"3t"
'aScb'
"%ft"
"av. "
, rt'

ACCEPTABLE TO ITF?

yes
yes
yes
yes
yes
yes
no
no

ACCEPTABLE TO TSO?

yes
yes
yes
no
no
no
no
no

As we've already mentioned, only the first three characters of file names are recog­
nized and retained by ITF. Because of this, you can use only these three characters
(or fewer, if fewer were specified) in the DELETE and RENAME commands. It is
possible, however, to use longer file names in ITF:BASIC statements. If you choose
to do so, you must remember that only the Rrst three characters can be used when
you delete or rename a file. Look at the follOWing examples:

NAME You SPECIFY

'q file'
'$60 million'
"cost sheet"
'f2 form'

ITF RETAINS

Q
$60
COS
F2

ACCEPTABLE FORM IN DELETE
AND RENAME COMMANDS

Q
$60
COS
F2

As you can see, any trailing blanks (a blank in the third character position, or
blanks in the second and third character positions) are also ignored and should
not be specified in the DELETE and RENAME commands.

Because ITF ignores everything beyond the first three characters of a :6le name,
any combination of characters can be used in character positions beyond the third
in file references within your program (e.g., in GET, PUT, CLOSE, and RESET state­
ments). As long as the first three characters are always identical, the remaining
characters may even vary from statement to statement. For example, a file named

Creating a File

End-of-fi/e Indicator

"interest" can be referred to as "interest", "int", "inter", or even "int;pq. fd", and
ITF ~ll always recognize it as the same file (INT).

logon joe proc(itfb)
IKJ564551 JOE LOGON IN PROGRESS AT 14:24:56 MAY 7, 1971
READY
edit int basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 read p
00020 data 1000.00
00030 for t = 1 to 10
00040 for r = 1 to 20
00050 let a = p*(1+r/100)**t
00060 put 'tf',t,r,a
00070 next r
00080 next t
00090 end
00100 @
EDIT
save
SAVED
run
EDIT
end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 14:30:39 ON MAY 7, 1971

Figure 6. The Output Data File

In Figure 6 the PUT statement (statement 60) is similar to a PRINT statement such
as:

10 PRINT T, R, A
except that it includes the name of the file to be created ('TF') enclosed in single
or double quotes. As far as the computer is concerned, both PUT and PlUNT mean
output; the only difference is whether the output goes into a HIe or is printed at
your terminal. By changing PUT to PRINT (removing the file name 'TF') , you can
run the program and have all 200 values of A printed at your terminal.

There are essentially two ways of putting values into a file: calculating all the
values in a statement or typing them individually. The program in Figure 6
generated a file from the repeated execution of a statement, using nested FOR/NEXT

loops (see Part II for rules governing the use of nested FOR/NEXT loops).

In Figure 7, an INPUT loop is used so that individual values can be entered from
the terminal. At statement 10 the computer asks for input; at statement 20 it
puts the four values (month, day, year, and price) into the file 'QF'. At statement 30
the computer tests the y value against 70. If the year entered was less than
1970, the computer goes back to statement 10 and asks for another set of values.
When 70 is entered for y the program ends. Notice that, in this example, the
year 1970 is used as an "end-of-file" indicator. If, by means of a subsequent GET,

you try to obtain more values from a file than it actually contains, execution of
your program is immediately discontinued. It is, therefore, essential that you know
how many items each of your files contains or that you actually place some sort of
end-of-file indicator (like 70 in the example above) in your file and test for that

Creating and Using Files 51

Activating and Deactivating Files

52 Part I. Using TSO ITF:BASIC

logon joe proc(itfb)
IKJ56455I JOE LOGON IN PROGRESS AT 09:45:53 ON MAY 8, 1971
READY .
edit que basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 input m,d, y, p
00020 put 'qf', m, d, y, P
00030 if y<70 then 10
00040 end
00050 @
EDIT
save
SAVED
run
? 1, 2, 69, 48.75
? 1, 3, 69, 48.375
? 1, 6, 69, 48.25
? 1, 7, 69, 48.75
? 1, 9, 69, 49
? 1, 10, 69, 49.125
? 1, 13, 69, 49

?

12, 29, 69, 45.50
12, 30, 69, 45.625
1, 2, 70, 45.625

EDIT
end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 09:55:15 ON MAY 8, 1971

Figure 7. The Input Loop Used To Put Values into a File

indicator in your program. When using MAT GET (see "Program Statements" in
Part II), you must actually know how many items your file contains.

Files must be activated or "opened" before they can be used. This is done by the
system at the first appearance of the file name in a PUT statement for output files
or in a GET statement for input files.

Normally, a file is deactivated or "closed" by the system after execution of
your program. However, if you want to switch an input file to output (or vice
versa) and continue to use it in the same program, you must explicitly deactivate
it by using the CLOSE statement. (If you did not do so and you attempted to use
an output file for input or an input file for output, execution of your program
would be terminated.) CLOSE deactivates the file; a subsequent GET or PUT state­
ment reactivates (or opens) the file for its new use and repositions it at the
beginning. For example:

40 put 'af', a, b, c, d, e

80 close 'af'
90 get 'af', a, b, c, d, e

Repositioning Files

Statement 40 creates an output file named 'AF' and places five values in it. At
statement 80, 'AF' is deactivated for output. In statement '90, 'AF' is reactivated as
an input file and the same five values are read and made available for use later
in the program.

Notice what happens when an input file is closed and reactivated as an output
file.

40 get 'af' , a, b, c, d, e
50 let b = a
60 let a = 36
70 let c = c+b
80 let d = alb
90 let e = a>.'<*3
100 close 'af'
110 put 'af' , a, b, 0, d, e

A previously created file, named 'AF', is activated for input in statement 40 and
five values are made available to the program. In statements 50 through 90, new
values are acquired for A, B, C, D, and E. Statement 100 deactivates 'AF' as an
input file; statement 110 reopens the file for output and places the new values
for A through E into the file. Actually, 'AF' is now a new file and any values could
be placed in it, not necessarily A, B, C, D, and E.

You may have an occasion to use an input file for input or an output file for
output more than one time in the same program. To do this, you need to re­
position the file so that each time you reuse it, it is set at the beginning. The
RESET statement allows you to reposition the file without deactivating it (deacti­
vation is necessary only when the function of the file is changed from input to
output or vice versa). For example:

50 get 'bf', X,Y,z,q,r,s

100 reset 'bf'
110 get 'bf', x,Y,z,q,r,s

150 reset 'bf'
160 get 'bf', X,Y,z,q,r,S

Between statements 50 and 100, the variables x, Y, Z, Q, R, and s might be used
in one set of calculations and their values changed. By repositioning the file, the
original values of x, Y, Z, Q, R, and s are available for different calculations or
uses between statements 110 and 150 and again between 160 and the end of the
program. Actually, the RESET statement functions for files in the same way that
the RESTORE statement does for READ and DATA statements.

Creating and Using Files 53

Using Files

54 Part I. Using TSO ITF:BASIC

Once a file has been created, it can be used as input to the same program by
deactivating and reactivating the file, as we've already seen, or it can be used as
input to some other program (not to the one in which it was created) just by
using the GET statement. In Figure 8 each set of four 'QF' values is read by the GET

statement and the program finds the year's high price and prints it after the file has
been completely read.

Initially, H, the variable representing the high price, is set to zero (remember
that all arithmetic variables are initialized to zero by the system). Statement 30
compares the price just read, P, with H. If P is greater, the computer sets H to
the new high price and records the date as Ml, Dl, and Yl. Statement 80 is an
unconditional branch; it returns the computer to statement 10.

Statement 20 tests the year shown in each set of incoming values. It branches
to the output statements, 90 and 100, when the set of values for 1970 appears
(notice that 1970 is the end-of.file indicator that you set up when you created
the file).

logon joe proc(itfb)
IKJ56455I JOE LOGON IN PROGRESS AT 11:50:22 ON MAY 9, 1971
READY
edit qtl basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 get 'qf', m,d,V,p
00020 if Y > 69 then 90
00030 if P < h then 10
00040 let h = P
00050 let ml = m
00060 let dl = d
00070 let yl = V
00080 go to 10
00090 print 'high price:'
00100 print using 110, ml, dl, VI, h
00110 :##/##/## $##.##
00120 end
00130 @
EDIT
save
SAVED
run
HIGH PRICE:

1/26/69 $52.00
EDIT
end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 11:54:44 ON MAY 9, 1971

Figure 8. Searching a File for a Single Value

The program in Figure 9 is an example of how the same fHe might be processed
to obtain an average price for each of the twelve months. The variable c is used to
keep count of each set of values read, and T represents the total of all prices for
the month. Remember that, initially, both c and T have a value of zero. Ml

represents the current month and statement 10 sets it initially to l. The table
heading (statement 20) is also included in this initializing procedure, since it is
printed only once, and statement 30 prints a blank line under it.

The processing of the file begins at statement 40. The computer gets a set of
values, checks the month (statement 50), adds the day's price into the monthly
total (statement 110), increases the count (statement 120), and goes back to
statement 40 for the next set of values.

When the incoming set of values includes a new month, statements 60 through
80 are executed. Statement 60 causes the month and average price to be edited
into a print line, as directed by statement 70. Statement 60 also shows the use
of an expression in a PRINT USING statement. The expression T / c tells the com­
puter to divide the monthly total of prices by the number of prices and print
the answer (average price). Statement 80 checks the incoming year. If the year
is 1970 or greater, statement 140 is executed; if the year is less than 1970, state­
ments 90 through 130 are executed. Statement 100 resets price count and monthly
total to O. Statement 110 adds the first price for the new month into the
monthly total, while statement 120 increases the count, and statement 130 directs
the computer back to statement 40.

logon joe proo(itfb)
IKJ56455I JOE LOGON IN PROGRESS AT 16:03:58 ON MAY 9, 1971
READY
edit qt2 basic new soan
ITF INITIALIZATION PROCEEDING
INPUT
00010 let ml = 1
00020 print 'month avg.'
00030 print
00040 get 'qf', m, d, y, P
00050 if m = ml then 110
00060 print using 70, ml, t/o
00070 :## ##.##
00080 if y > 69 then 140
00090 let ml = m
00100 let 0, t = 0
00110 let t = t + p
00120 let 0 = 0 + 1
00130 goto 40
00140 end
00150 @
EDIT
save
SAVED
run
MONTH

1
2
3
4
5
6
7
8
9

10
11
12

EDIT

AVG.
49.76
49.35
48.91
45.76
4:4.69
45.10
43.64
44.62
45.10
47.84
46.91
46.03

end
READY
logoff
IKJ56479I JOE LOGGED OFF TSO AT 16:10:32 ON MAY 9, 1971

Figure 9. Processing All Values in a File

Creating and Using Files 55

Defining Your Own Functions and Subroutines

Functions

Subroutines

In addition to the 24 intrinsic functions supplied as a part of the BASIC language
(a list of these functions is given in Part II of this publication), you can define
any other function or write a program segment (subroutine) which you expect
to use frequently in your program.

A user function is named and defined by the DEF statement. The name of the
defined function must be a single alphabetic character preceded by the letters
FN. Thus, you may define up to 29 functions (i.e., FNA, FNB, ... ,FNZ, FN@, FN#, FN$).

For example:

10 DEF FNE(X) = EXP(-X**2)

defines the function e-X2 using the intrinsic function EXP. The arithmetic variable x,
enclosed in parentheses after the function name (FNE) is called a dummy variable.
The dummy variable is required and must be a simple arithmetic variable. Your
function performs its defined calculation on the arithmetic expression value
substituted for this variable. (The expression value substituted for the dummy
variable is called an argument.) After defining a function, the function name and
its accompanying argument can be used anywhere in your program that an
arithmetic expression could appear. For example:

10 def rne (x) = exp (- x**2)
20 let y = fne(.5)
30 let z = fne(c+2)
40 print fne(3.75) +y/z

Defining functions and using them when you need to perform the same cal­
culation on many values of the same variable can be a great timesaving device.

The DEF statement can appear anywhere in your program, and the expression
on the right side of the equal sign can be any arithmetic expression that fits on a
single line. As we've already seen, it can include any combination of other func­
tions (even those defined by other DEF statements), but it cannot include a refer­
ence to itself. A function can involve other variables besides the dummy variable.
The follOwing example is valid:

70 DEF FNS (X) = SQR (2 + LOG (X) - EXP (y*X) * (X+ SIN (2*Z)))

User-defined functions are limited to those instances where the value of the
function can be expressed within a single BASIC statement. Often, much more
complicated functions or even segments of programs, must be calculated at
several different points within the program. For these functions, you can set up a
subroutine by using the GOSUB and RETURN statements.

Execution of a subroutine begins with the GOSUB statement, where the number
specifies the number of the first statement in the subroutine. For example:

100 GOSUB 200
causes the computer to skip to statement 200 (in this case, the first statement of
a five-statement subroutine) before continuing execution. The last statement of the
subroutine must be a RETURN statement which directs the computer to return and
execute the statement following the GOSUB. It would look something like this:

Defining Your Own Functions and Subroutines 57

58 Part I. Using TSO ITF:BASIC

100 GOSUB 200
110
120
130

~~g These are the statements that
160 will be executed after the RETURN.

170
180
190
200
210 These are the statements that
~~g will be executed after the GOSUB.

240
250 RETURN

Figure 10, a program that determines the greatest common divisor of three
integers using the Euclidean algorithm, illustrates the use of a subroutine. The

logon ida proc(ittb)
IKJ56455I IDA LOGON IN PROGRESS AT 11:56:30 ON MAY 2, 1971
READY
edit gcd basic new scan
ITF INITIALIZATION PROCEEDING
INPUT
00010 print 'a',' b' , 'c ' , 'cd'
00020 read a,b,c
00030 let x = a
00040 let y = b
00050 gosub 140
00060 let x = g
00070 let y = c
00080 gosub 140
00090 print a,b,c,g
00100 goto 20
00110 data 60,90,120
00120 data 38456,64872,98765
00130 data 32,384,72
00140 let q = int (x/y)
00150 let r = x-q *y
00160 if r = 0 then 200
00170 let x = y
00180 let y = r
00190 goto 140
00200 let g = y
00210 return
00220 end
00230 @
EDIT
save
SAVED
run
A

60
38456
32

B
90
64872
384

C

0668
EDIT

00000020 MSNG DATA+

120
98765
72

CD
30
1
8

end
READY
logoff
IKJ56479I IDA LOGGED OFF TSO AT 12:00:42 ON MAY 2, 1971

Figure 10. Subroutine Example

first two numbers are selected in statements 30 and 40 and their greatest common
divisor (CD) is determined in the subroutine, statements 140-210. The CD just
found is called x in statement 60, the third number is called Y in statement 70,
and the subroutine is entered again from statement 80 to find the greatest com­
mon divisor (CD) of these two numbers. The result is, of course, the greatest
common divisor of the three given numbers. It is printed out with them in state­
ment 90. Note that execution ends when no more data remains to be read.

The system prints a message at the terminal giving the error message's numeric
code, the line at which execution was interrupted, and the text of the message (in
this case, indicating that the data has been exhausted), and then it prints "EDIT"
on the next line to indicate that you are still in the edit mode. At this point you
can do any of the following:
1. Modify your program (adding or deleting statements, or making changes to

existing statements)
2. Type "END"-ending the edit mode, and then in response to the system cue

"READY":

a) type "LOGoFF"-ending the terminal session or
b) or enter another EDIT command and continue your session.

You may use a GOSUB inside a subroutine to "branch" to yet another subroutine.
(This is called "subroutine nesting" and is described in Part II of this publication.)

Defining Your Own Functions and Subroutines 59

Errors and Corredions

Program Modification

Modiflcations in the Edit Mode

Deleting Statements

Until you become experienced in using this system, you will probably make some
mistakes in typing and logic. This chapter presents information on program
modification, the error recognition and messages supplied by the system, and the
debugging facility (test mode) provided by ITF-all of which are designed to
assist you in correcting your programs.

In the chapter on "Getting Started" we saw how to correct typing errors in an
entry before it was actually sent to the computer. This section is concerned with
showing you how to modify all or part of a program even though the statements
aHected have been sent to the computer.

Programs can be manipulated and updated in several ways. You can insert,
replace, or delete entire statements in your program; you can change all or part
of an existing statement; you can list (have displayed at your terminal) all or
part of your program; and you can renumber all or part of the statemerits in your
program. You can also list the names of the programs and data files retained in
permanent storage,! or delete entirely any number of programs or data files from
permanent storage. Most of these modifications are performed through descrip­
tively named subcommands (DELETE, LIST, RENUM, etc.); the others are performed
through the command-like properties of statement numbers.

Most program modifications are performed in the edit mode, which is to say that
an EDIT command must be in effect for the program you wish to modify. For
example, if you wish to change an existing program called PRG, this EDIT command
must be in effect:

edit prg basic old

After this, you can make various kinds of corrections or alterations to PRG.

You can delete one or more statements from your program by using the DELETE
subcommand. For example,

delete 130

deletes statement 130 from the program being edited. Similarly,

delete 40 180

deletes statements 40 through 180 from the program. Finally,

delete

deletes all statements from the program.

There is one other way in which you can delete single statement lines. Just type
the number of the statement that you wish to delete and follow it immediately
with a CR. For example, to delete statement 230, you could type

230 @)

1 Programs must be explicitly placed in permanent storage by use of the SAVE subcommand;
files are automatically retained in permanent storage when they are created.

Errors and Corrections 61

Inserting and
Replacing Statements

Adding Statements to the
End of Your Program

62 Part I. Using TSO ITF:BASIC

To insert one or more statements into your program, you have a choice between
typing your own statement numbers or using the INPUT subcommand. Generally,
to insert one or two statements here and there, it is easier and more efficient to type
your own statement numbers. However, if you want to insert a block of statements,
it is probably better to use the INPUT subcommand.

To insert a statement by the statement-number technique, simply give the
statement a number that fits between those of the two surrounding statements
and type it. For example, let's assume that you want to insert a PRINT statement
between statements numbered 80 and 90 of your program. Choose a number
greater than 80 and less than 90 and then type the statement as shown here:

85 print a,x,b

Provided no statements exist between 80 and 90, any number from 81 through 89
could be used to cause the insertion. Statement number 85 was chosen to allow for
further insertions, should any be needed at that point in your program.

If statement 85 already existed, then the contents of the existing statement
would be replaced by the above PRINT statement.

To insert statements by the INPUT subcommand, you must speCify the INPUT

subcommand with the number of the statement you wish to insert. You can also
specify a smaller increment for the new statement numbers so that they fit between
the numbers of the existing statements. For example, assume that your program
begins as follows:

00010 dim a(5,5)
00020 mat a = con
00030 mat print a

To insert three statements between statements 20 and 30, to number the first
insertion 22, and to increment the following insertions by 2, your sequence would
look like this:

EDIT
input 22 2
00022 dim b(5,5)
00024 mat b = (3) *a
00026 mat a = inv (b)
00028 @
EDIT

Notice that the INPUT subcommand causes the automatic statement numbering
to start with statement 22 as speCified. Subsequent statements are incremented by
2, also as speCified. If the increment had not been specified, the standard increment
of 10 would have been assumed and only one statement (22) could have been
inserted; there would not have been room for the subsequent statements and an
error message would be given after the insertion of statement 22.

You can use the INPUT subcommand for replacements too. A full discussion of
this use of the INPUT subcommand is given in the TSO Terminal User's Guide
(see the preface).

Insertions and replacements cannot be done during program creation when you
are using the automatic statement numbering supplied by TSO (i.e., the input phase
is in effect). If, however, you number your own statements, insertions and replace­
ments (using the statement-number technique) can be made at any time during
the creation of a program.

You can add statements to the end of your program in the same way that you
insert statements into a program; i.e., (1) you can type the statement numbers
yourself, or (2) you can use the INPUT subcommand.

For example, assume that you have an old program named BAL and you want
to add three or four statements to the end of it. Let's also assume that the last

Changing Parts of Statements

statement currently in BAL is numbered 24U and that it is not an END statement.
Figure 11 shows both ways of doing it.

On the left-hand side of Figure 11, you type your own statement numbers. The
numbers used in this case are 250, 260, and 270, but they could have been any
three valid numbers greater than 240. These statements are added to the end of
the program, which is then saved under the old name BAL. The updated version
of BAL thus replaces the previous version of BAL in your permanent storage.

READY

ADDING STATEMENTS
VIA OWN NUMBERS

edit bal basic old scan
ITF INITIALIZATION PROCEEDING
EDIT
250 let x = cos (y)
260 print x,y,z
270 end
save
SAVED
end
READY

READY

ADDING STATEMENTS
VIA INPUT SUBCOMMAND

edit bal basic old scan
ITF INITIALIZATION PROCEEDING
EDIT
input
INPUT
00250 let x = cos (y)
00260 print x,y,z
00270 end
00280 ®
EDIT
save
SAVED
end
READY

Figure 11. Two \Vays of Adding Statements to the End of a Program

On the right-hand side of Figure 11, the INPUT subcommand is used to generate
the numbers for the statements to be added. Notice that nothing is specified in the
subcommand so numbering starts with the next available statement number in
the program (250) and the standard increment of 10 is used for the subsequent
numbers. As you can see, the INPUT subcommand method takes up more space on
your paper, but the number of characters that you actually type is slightly less,
because the system is typing the statement numbers for you. If you intend to add
many statements to your program, this method is more efficient; for just a couple
of statements, however, it would be just as fast for you to type your own numbers.

You can change a part of one or more statements without retyping those state­
ments by using the CHANGE subcommand. Essentially, there are two ways to make
changes using this subcommand: (1) you can specify the actual sequence of char­
acters to be changed and what they are to be changed to, or (2) you can cause
one or more statement lines to be partially displayed and then complete those
statements yourself. Rather than present the format of the CHANGE subcommand
for these two methods, we'll deal here with examples of each. (You can refer to
Part III for the syntax of CHANGE.)

Let's consider some examples of the first method. Assume that you want to
change the name of variable Al to BI every place that it appears in your program.
Further, the statements in your program are numbered from 10 to 380 and the
first use of Al appears in line 40. If you were to retype every statement that con­
tained a reference to AI, you might have a long and tedious job on your hands.
Just one CHANGE subcommand, however, would do the job for you:

change 40 380 !al!bl!all

Statement numbers 40 and 380 in this subcommand specify the range of statements
(i.e., from 40 to 380 inclusive) through which the change is to be made. In this
instance, the exclamation character (I) is called a special delimiter; the system

Errors and Corrections 63

64 Part I. Using TSO ITF:BASIC

requires it to recognize the sequence of characters to be changed and to recognize
its replacement. You can use any character as a special delimiter except digits,
blanks, commas, semicolons, parentheses, tabs, and asterisks. The system always
recognizes the first character after the last statement number as the special de­
limiter for a particular use of the CHANGE subcommand (provided the character is
not one of the previously mentioned exceptions). Thus, the exclamation point
is recognized as the special delimiter for this use of the CHANGE subcommand. The
sequence of characters appearing between the first and second use of the special
delimiter (AI) is recognized as the sequence to be changed. The sequence between
the second and the third use of the special delimiter (Bl) is recognized as the
replacement sequence. The word ALL that follows the third special delimiter
means that every appearance of Al within statements 40 through 380 is to be
change to Bl. If ALL were omitted, only the first appearance of Al would
be changed to BI; all subsequent appearances would remain the same. When ALL
is omitted, the third special delimiter is not required.

Now let's assume that you want to change the file name 'BF'in the same program
to the file name 'QF'. You don't remember exactly where 'BF' appears but you know
that it appears only once in the program. This CHANGE subcommand would do it:

change 10 380 /'bf'/'qf'

The range of statements encompasses the whole program and the special delimiter
is /. The system searches the program until it finds the sequence 'BF' and then
replaces it with 'QF'.

If you knew that 'BF' appeared in statement 160, however, you could have
speci£led this instead:

change 160 /'bf'/'qf'

To take one more example of this method, consider this statement in your
program:

00145 print a(6) ,a(6) ,c,d,e,f

You want to change the second appearance of A(e) to B(e). If you specify just A as
the sequence of characters to be changed, or even A(e), then just the first appear­
ance of that sequence in the statement would be changed, which is not what you
want. To ensure that the proper change is made, you must make certain that the
sequence of characters to be changed is unique, as in this subcommand:

change 145 ! ,a!, b

Once again the special delimiter is the exclamation pOint. The comma before the
A uniquely identifies the sequence to be changed. Thus, the sequence ",a" is
replaced by ",b". Note that if you wanted to change both appearances of A(e)
to B(e), you could specify:

change 145 !a!b!all

So much for the first method. The second method allows you to display a speci­
fied number of characters or display up to, but not including, a specified sequence
of characters. In each case, you type the remainder of the statement after the dis­
play. For example, assume that statement 230 in your program is 66 characters
long (statement number field excluded) and the last four characters are wrong.
This CHANGE subcommand

change 230 60

causes the first 60 characters of the statement to be displayed immediately. The
system does not return the print element to the next line. It waits for you to type
the remainder of the statement. When you have completed the statement, the
system replaces statement 230 with the updated statement.

Renumbering Statements

If you don't want to count characters, you can specify a sequence of characters,
up to which the statement is to be displayed. For example, if this erroneous state­
ment exists in your program

00165 get 'ab',a,b,c,d?e,f

this CHANGE subcommand

change 165 !?

results in the following display and reply:

00165 GET 'AF',A,B,C,D~

t
typed by user

The CHANGE subcommand has caused statement 165 to be displayed up to but not
including the "?". On the same line, you have typed the rest of the statement
correctly. The number of characters you type doesn't have to be the same as the
number of characters you're changing. It can be more or less; it doesn't matter,
since the undisplayed portion of the statement is considered deleted.

Note the use of the exclamation point in the subcommand. As in the first
method we discussed, a special delimiter is required whenever a sequence of
characters is speCified.

You can renumber all or part of your program by using the RENUM subcommand.
To renumber the entire program, you can simply specify

renum
and the system will renumber the program using the standard increment of 10.
You can specify your own number for the first statement of your program and
have the rest of the program renumbered accordingly. For example, if you want
the first statement of your program to have number 75, specify

renum 75

and the statements of your program will be numbered 75, 85, 95, etc. (again the
standard increment of 10 is assumed). If you wish to change the increment, you
must specify two numbers: a number for the first statement of your program and
an increment value (any integer from 1 to 99999). For example,

renum 15 5

gives the statements of your program the numbers 15, 20, 25, etc.
To renumber part of your program, you must specify three numbers: a new

number for the statement at which renumbering is to begin, an increment value,
and the actual statement at which renumbering is to start. For example,

renum 95 15 80

causes statement 80 to be renumbered as 95; all subsequent statements are renum­
bered accordingly, with an increment of 15. When you use this form of the RENUM

subcommand, the first number must never be less than or equal to the number of
the statement immediately preceding the statement at which renumbering is to
begin. For example, if your program is numbered 10, 20, 30, 40, 50, 60, 70, 80, etc.,

renum 75 5 80

is valid, but

renum 65 5 80

is not valid.

Errors and Corrections 65

Displaying Statements After you have performed many insertions, replacements, deletions, etc., you will
probably want to list your program to see what you have. You can obtain a partial
or complete listing of your program by using the LIST subcommand. To obtain a
complete listing, specify

list

For a partial listing, you must include statement numbers in the subcommand.
One statement number indicates that one statement is to be listed. For example,

list 130

displays statement 130. Two statement numbers specify a range of statements,
thus, the subcommand

list 110 180

displays statements 110 through 180.

You can cancel a listing while it is in progress by giving an attention interrup­
tion. To restart a listing once it has been stopped, you must specify a new LIST

subcommand.
Figure 12 illustrates how you can change, insert, replace, and delete statements

as you create a program typing your own statement numbers. We've included
two LIST subcommands in this example. The first shows how the program appears
after all the changes have been made. The second shows how the program looks
after it has been renumbered. Because we saved the program before leaving the
edit mode, the second listing of the program also represents the program as it is
retained in permanent storage. As you can see, each occurrence of the LIST sub­
command causes the system to display the program in statement-number se­
quence immediately after the subcommand was issued. All lower-case letters are
converted to upper case by the system and hence appear as upper case in the
listing.

Modifications in the Command Mode

Renaming Programs and

Data Files

66 Part I. Using TSO ITF:BASIC

In the command mode you cannot modify the actual contents of a program (as
you can in the edit mode), but you can change the name of a permanent program
or the name of a data file. You can also remove any programs or data files that
are currently being retained in permanent storage. And, you can list the names of
the programs and data files which are retained in permanent storage. This last
facility is useful if you have forgotten the names of any of your permanent pro­
grams or data files.

Programs and data files can be given new names in the command mode by using
the RENAME command. The format of the RENAME command is

RENAME old-name new-name
To change the name of an existing program named ABC to XYZ, simply specify

rename abc xyz

and henceforth, ABC will be known by the system as XYZ.

If <ABC' were the name of a data file and you wanted to change that name to
'XYZ', you would type the following RENAME command:

rename data(abc) data(xyz)

Notice that the file name (without the surrounding quotation marks) is enclosed
in parentheses and that it is directly preceded by the word DATA. Because data
files and programs are kept in different areas of permanent storage and because
(except for the surrounding quotation marks) file names and program names are

READY
edit abc basic new noscan
ITF INITIALIZATION PROCEEDING
INPUT termination of automatic statement
~g~io @l---------.. ·numbering(inputphase)
10 rem An example of program modification.
20 rem Not intended for execution.
30 input a
40 let b = 0
50 let b = a
60 let c = 2*b
70 print b,c
80 let z = sqr(b+c)
90 print I Z is', Z

64 let d = 3* C l-----"'"'i .. ~ insertions
67 let e = 4*d
70 print b, c ,d, e ------:l .. ~ replacement
100 let x = sqr (d + e)l
110 print 'x is', x __ -:l .. ~additions
120 end
change ¢c¢q¢alll-----~~change every occurrence of "c" to "q"
delete 401 .. deletion
list
00010 REM AN EXAMPLE OF PROGRAM MODIFICATION.
00020 REM NOT INTENDED FOR EXECUTION.
00030 INPUT A
00050 LET B = A
00060 LET Q = 2*B
00064 LET D = 3*Q
00067 LET E = 4*D
00070 PRINT B,Q,D,E
00080 LET Z = SQR(B+Q)
00090 PRINT 'Z IS', Z
00100 LET X = SQR (D + E)
00110 PRINT 'X IS', X
00120 END
IKJ525001 END OF DATA
renum
list
00010 REM AN EXAMPLE OF PROGRAM MODIFICATION.
00020 REM NOT INTENDED FOR EXECUTION.
00030 INPUT A
00040 LET B = A
00050 LET Q = 2*B
00060 LET D = 3*Q
00070 LET E = 4*D
00080 PRINT B,Q,D,E
00090 LET Z = SQR(B+Q)
00100 PRINT 'Z IS', Z
00110 LET X = SQR (D + E)
00120 PRINT 'X IS', X
00130 END
IKJ525001 END OF DATA
save
SAVED
end
READY

Figure 12. Example of Modifying a Program As It Is Being Created

Errors and Corrections 67

File Name Warning

Deleting a Program or Data File

68 Part I. Using TSO ITF:BASIC

sometimes identical, you must take care to differentiate between the two in the
RENAME command. Consequently, when renaming files, both old-name and new­
name must be preceded by the word DATA and the two file names (minus the
surrounding quotation marks) must be enclosed in parentheses. To further illus­
trate this point, let's look at another example. To change the name of a data
file known currently as 'INT' to 'TAX', specify the following:

rename data(int) data(tax)

A word of caution about file names before we continue. In the chapter "Creating
and Using Files" in Part I of this book, you learned that, although lTF recognizes
and retains only the first three characters of each file name, you may actually use
a longer name in GET and PUT statements (provided the first three characters of
each name are unique and that certain characters are not used). In the command
mode RENAME and DELETE commands, certain other restrictions also apply. They
are:
1. File names must not be enclosed in quotation marks-they must be enclosed

in parentheses and they must follow the word DATA.
2. File names must not be more than three characters in length (if you are using

a longer name in your GET and PUT statements, make certain that you use only
the first three characters when using RENAME and DELETE).

3. The first character of a file name must be alphabetic-the letters A through z
or one of the three alphabetic extenders ($, #, and @).

4. The other two characters of a file name (one or two more may be used) must
be alphameric-an alphabetic character or any digit (0-9).
Some examples of file names that can be used in the RENAME and DELETE com­

mands are:

VALID

A
AB
ABC
Al
Al2
A#l
@A

INVALID (x REPRESENTS A BLANK)

AxB
xAB
xxA
IA
A&B
%TF
FILE

Even though you cannot foresee the need to rename or delete a file when you
create it, the possibility always exists. Therefore, it is recommended that you fol­
low the restrictions given in rules 3 and 4 above when selecting the first three
characters of your file names. In this way, you will be able to use RENAME and
DELETE should the need ever arise.

In the command mode, the DELETE command can be used to delete one or more
programs or data files that are currently retained in permanent storage. In the
edit mode, DELETE has a different function which is described earlier in this chap­
ter under the heading "Program Modifications in the Edit Mode."

In the command mode, to delete a program named A VG, simply type the fol­
lowing:

delete avg

If you wish to delete more than one program, you must follow the command
DELETE with a list of the names of the programs to be deleted. The program names
must be separated from each other by a comma or by at least one blank, and the
entire list must be enclosed in parentheses. For example, to delete the three pro­
grams (PRG, INTEREST, and AMT), simply type either of the following:

delete (prg,interest,amt) or delete (prg interest amt)

Displaying Names of Permanent

Programs and Data Files

As in the RENAME command, deleting data files is slightly more complex.1 Once
again, the name of the file to be deleted (minus the surrounding quotation marks)
must be enclosed in parentheses, and it must be preceded by the word DATA. For
example, to delete a data file named 'QF', you would type

delete data(qf)

To delete more than one file in the same command, the word DATA must precede
each £He name (minus the surrounding quotation marks) and each file name
must be enclosed in parentheses. Each repetition of DATA(file-name) must be
separated from the next by a comma or by at least one blank and the entire list
(everything following the word DELETE) must be enclosed in another set of paren­
theses. So) the command to delete two files ('AI' and 'A2') would look like either
of the following:

delete (data(al) ,data(a2)) or delete (data(al) data (a2))

Files and programs can be specified in the same command in the following
manner:

delete (cost,data(mf) ,data(pf))

This command would cause the system to delete the program named COST as
well as the files named 'MF' and 'PF' from permanent storage.

When specifying more than one item in a DELETE command, make certain that
your parentheses are matched (i.e., every left parenthesis has a matching right
parenthesis). Unbalanced parentheses will cause the system to reject the com­
mand. If this occurs, you will receive an error message, and you will have to
re-enter the command correctly.

You may find that you don't remember the names of all the programs you've
saved or the names of the data files you've created. If this happens, you can use
the LISTCAT command (in the command mode) to display the names of the pro­
grams or data £Hes currently retained in permanent storage under your user
identification code.

To obtain a list of the names of all the programs you've saved, simply type

listcat

and, immediately following the command, the system will print the name of each
of the permanent programs saved under your user identification code. The name
of each program will be followed by a period and the word BASIC to indicate
that the program is an ITF:BASIC program. For example, the following list might
result from a LISTCAT command:

AVG.BASIC
COST.BASIC
DATA
INT.BASIC
T20.BASIC

Notice the appearance of the word DATA in the above list. DATA is the name of the
area in permanent storage where your data files are retained; files are considered
to be "members" of DATA. If you have not created any data files, the word DATA

will not appear in the list typed in response to LISTCAT.

1 See "File Name Warning" under the discussion "Renaming Programs and Data Files" earlier
in this chapter.

Errors and Corrections 69

Messages

System Cues

70 Part I. Using TSO ITF:BASIC

To display the names of your files, you must include the word MEMBERS in the
LISTCAT command, as follows:

listcat members

This command could result in the following list:

listcat members
DATA
-MEMBERS-

ONE
QF
TF

LOOKUP. BASIC
PRC.BASIC
TBL.BASIC
READY

As you can see, there are three files in DATA (ONE, QF, and TF). Also, notice that,
when the list or display of names is completed, the system types the system cue
READY on the next line to indicate that it has finished its list of names and is ready
for your next entry.

There are five types of messages that you can receive from the system:
• System cues!
• Prompting messages
• Informational messages
• Broadcast messages
• ITF error messages

System cues tell you when the system is ready to accept a new command or sub­
command. When the system is in the command mode and it is ready to accept
a new command, it prints READY. When the system is ready to accept a subcom­
mand, it prints the name of the command (or mode) that is in effect; that is, EDIT,

or TEST.

You've seen all of these already and there's nothing new that we can add here,
except this: in the command mode, you can sometimes save a little time by not
waiting for the system cue. For example, if you enter the DELETE and RENAME

commands and wait for the intervening READY message between the commands,
your listing might look like this:

READY
delete data(f04)
READY
rename data(in) data(f04)

If you enter these commands without waiting for the intervening READY message,
your listing would look like this:

READY
delete data (f04)
rename data(in) data(f04)
READY
READY

1 In some other TSO publications, the term "system cue" is sometimes known as "mode message."

Prompting Messages

Informational Messages

Broadcast Messages

There is a drawback to entering commands without waiting for the intervening
READY system cues. If you make a mistake in one of the commands, the system
sends you a message identifying your mistake and then it cancels the remaining
commands you have entered. After you correct the error, you have to re-enter
the other commands.

Unless you are certain that there are no mistakes in your lines you should wait
for the READY system cue before entering a new command.

A prompting message tells you that required information is missing or that infor­
mation you supplied was incorrectly specified. It then asks you to supply or
correct that information. For example, if you end the edit mode without having
saved anything, the system will prompt you with the following messages:

NOTHING SAVED
ENTER SAVE OR END

You should respond by entering the requested information-in this case, the SAVE

or END subcommand.
Sometimes the prompting message you receive will end with a plus sign (+).

The sign means that you can request another message that explains the initial
message more fully. If the second message also ends with a plus sign, you can
request a further message that will give you more detailed information, and so
on. The last available message will not end with a plus sign.

To request the next level of a message:
1. Type a question mark (?) in the first position of the line.
2. Give a CR.

You can enter question marks as long as the last message you have received
ends in a plus sign. If you enter a question mark when the message does not
end in a plus sign, you receive the following message:

NO INFORMATION AVAILABLE

If you give an attention interruption while a message is printing, the message
will be terminated at the point of the interruption and no further levels of the
message will be available.

An informational message tells you about the status of the system and your
terminal session. For example, it can tell you how much time your session took.
Informational messages do not require a response.

If an informational message ends with a plus sign (+), you can request an addi­
tional message by entering a question mark (?), as described for prompting
messages.

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast messages.
The system operator can send messages to all users of the system or to individual
users. For example, he may send the follOWing message to all users

DO NOT USE TERMINALS 03,04,14, AND 15 ON 6/30. THEY
ARE RESERVED FOR ACCOUNTING DEPARTMENT

You can send messages to other users or to the system operator, as you saw in
the discussion of the SEND command in an earlier chapter. You can suppress
certain types of messages. A complete discussion of this topic is contained in the
TSO Terminal User's Guide (see the preface).

Errors and Corrections 71

ITF Error Messages ITF error messages are numbered messages that identify errors in your usage of
ITF:BASIC statements, commands, and subcommands. They can appear only in
the ITF test mode, the edit mode, or the command mode. In general, the types
of errors they identify fall into three categories:
1. Syntax errors: errors in the structure of a statement, command, or subcommand

(i.e., erroneous punctuation, illegal operands, misspelled keywords, etc.).
2. Semantic errors: errors in the structure of your ITF:BASIC program (i.e., invalid

nesting, illegal comparison of data types, missing NEXT statements, etc.).
3. Execution errors: errors detected during the execution of an ITF:BASIC pro­

gram (Le., dividing by zero, improper subscript values, invalid branches, etc.).
Most of the ITF error messages exist in two levels of information. The £rst level

(short form) is generally a compact (about 20 characters or less) description of
your error. The second level (long form) gives a more explicit description of your
error. The existence of a second level is indicated when the first level ends with
a plus sign (+). Like prompting messages, the second level of an ITF error mes­
sage can be obtained by typing a question mark (?) at your terminal.

Each ITF error message is identified by a four-digit numberl preceding the
actual message text. For a program, the short form of each message will include
the number of the statement containing the error; the long form will not include
the line number (see the "Note" below for an exception). For example, message
636 might appear in the edit mode as follows:

0636 000000230 EXTRA FORS+

The long form of this message (obtained by typing a question mark) would look
like this:

0636 FOR NESTING EXCEEDS IMPLEMENTATION LIMIT (15)

Note: The LMSG option of the RUN and BASIC commands suppresses the short forms
of error messages so that only the long forms are displayed for a particular pro­
gram execution. When short forms of ITF error messages are suppressed, the long
forms will contain the statement numbers of the statements in error.

All of the ITF error messages are fully documented in message number se­
quence at the back of this book. Each message is shown in both forms and ex­
planations and corrective actions are provided.

Using the Test Mode To Debug Your Programs

Initiating the Test Mode

72 Part I. Using TSO ITF:BASIC

The ITF test mode permits you to closely follow and interact with the execution
of your ITF: BASIC programs to locate errors in structure and logic (commonly
called "debugging"). This test mode is available only with ITF and cannot be used
to debug any nOn-ITF programs that you may own.

You initiate the ITF test mode by specifying the word TEST in anyone of the
following:

1. The BASIC command, e.g., basic abc test
2. The RUN command, e.g., run xyz basic test
3. The RUN subcommand of EDIT, e.g., run test

Note that a program name is specified in each of the first two cases, but not in
the third. Program names are not specified in the edit mode RUN subcommand

1 Message numbers can be suppressed through the PROFILE command (see the TSO Terminal
User's Guide listed in the preface.

Terminating the Test Mode

Test Mode Subcommands

Starting and Resuming
Execution-GO Subcommand

because only the program being edited can be tested, and its name has already
been specified in the EDIT command.

The system indicates that the test mode has been initiated by typing the system
cue TEST at the beginning of the next line. You type your first test mode subcom­
mand on this line. Subsequent lines mayor may not be preceded by the word
TEST, depending on what you're doing.

You can explicitly terminate the ITF test mode the same way you can explicitly
terminate any mode; that is, by an END subcommand or by an attention interrup­
tion. If you don't do either, the mode will be automatically terminated when the
program being tested has run its course of execution. You can terminate the test
mode wherever you can type a subcommand in this mode.

After the test mode is terminated, control returns to the initiating mode; for
example, if the test mode was initiated from the edit mode, then control returns
to the edit mode. Upon this return, the status of the program is exactly the same
as it was when the test mode was initiated.

The subcommands of the ITF test mode are AT, OFF, GO, TRACE, NOTRACE, LIST,
HELP, and END. All but the last two are used for debugging your program. In addi­
tion to these subcommands, BASIC assignment statements can be entered, but
no other BASIC statements are allowed.

Briefly, the AT subcommand specifies points in your program at which execu­
tion will be automatically interrupted so that you can enter some subcommands
and/ or assignment statements. The OFF subcommand nullifies one or more of these
"breakpoints" in your program.

The GO subcommand must be used to start program execution. -When execution
has been interrupted (because a "breakpoint" was reached, for example), GO will
resume the execution from the point of interruption.

The TRACE subcommand causes selected variables, branch points, file names,
and intrinsic functions in your program to be monitored so that you will be noti­
fied of references to them during execution. The NOTRACE subcommand nullifies
this monitoring for one or more of the items being traced.

The LIST subcommand causes the values of one or more variables to be dis­
played immediately at your terminal so that you can inspect them and choose
your future course of action.

The assignment statement allows you to actually change the values of arith­
metic variables in your program and perhaps alter the flow of execution as a
result.

The END subcommand, as we mentioned earlier, terminates the mode. HELP
allows you to ask the system for information about the use of any of the ITF test
mode subcommands (use of HELP was discussed in the chapter "Getting Started").

Program execution in the test mode is not started until you give the GO sub­
command. RUN TEST and BASIC TEST merely initiate the test mode, they do not
result in any execution. The format of the GO subcommand is simply

GO
Before you type GO, you can enter any of the debugging subcommands described
in this section (except LIST). In fact, you will probably always use at least AT or
TRACE before you type GO for the first time.

Once execution has been started, it can be interrupted by any of the methods
described in "Interrupting Execution-AT and OFF Subcommands." To resume
execution after an interruption, just type GO and execution will take up from where
it stopped. During an interruption, you can enter any debugging subcommands
and/ or assignment statements.

Errors and Corrections 73

Interrupting Execution-AT and
OFF Subcommands

AHention Interruptions

SeHing Breakpoints

74 Part I. Using TSO ITF:BASIC

When debugging, it is desirable to be able to interrupt execution at a particular
point so you can see the results thus far. After inspecting the results, you should
be able to resume the execution from the point of interruption.

In the rTF test mode, there are two ways in which you can interrupt execution:
• by giving an attention interruption
• by setting "breakpoints"

If you interrupt execution by an attention interruption, the point at which exe­
cution will stop is not always predictable. You really can't guess where execution
may be at any particular moment unless your program is generating terminal
output, in which case, you can determine which statement is being executed by
the information that is being written at your terminal. By giving an attention
interruption during this output, you can be fairly certain that execution will be
interrupted at the statement immediately following the one that generated the
output, but you can't be absolutely certain.

If you have set breakpoints in your program you will always know exactly where
interruptions will occur. Breakpoints are set by specifying statement numbers
in the AT subcommand. When execution reaches a statement whose number has
been specified as a breakpoint, the system automatically interrupts execution and
notifies you of the statement number reached. The statement in that line is not
executed until you resume the execution. For example, the subcommand

at 70

sets a breakpOint at statement 70. When execution reaches statement 70, it will
be interrupted and the following will be printed at your terminal:

A00070

You can then type any test mode subcommands (including other AT subcommands)
and assignment statements. To resume execution, just type GO. A typical sequence
looks like this:

A00070at 230
A00070trace (x)
A00070go

Notice that the AOOO70 message is printed before each line you type until you
resume execution.

You can specify more than one statement number in an AT subcommand. For
example,

at 40,80,90,50,130

sets breakpOints at statements 40, 50, 80, 90, and 130.
To nullify a breakpoint, that is, to remove the designation of breakpoint from

a statement, you must use the OFF subcommand. For example,

off 80,130

nullifies the breakpOints previously set at statements 80 and 130. When execution
is subsequently resumed, it will not be interrupted at these statements. All other
breakpOints, however, remain in effect.

You needn't specify statement numbers in the OFF subcommand. If you specify
just

off

all breakpoints currently in effect will be nullified.

Monitoring Program Execution­
TRACE and NOTRACE
Subcommands

Consider this example:

READY
edit sub basic old
ITF INITIALIZATION PROCEEDING
EDIT
run test
TEST at 20,60,100
TEST trace (x,y,z)
TEST go

A000200ff 20
A00020go

A00060go 1

test mode execution; any terminal
• output being generated may appear
_________ here

A00100end
EDIT

In the above example, the user initiates the test mode for his program SUB

through the edit mode. In the test mode, he enters AT and TRACE subcommands
and then starts the execution of SUB by giving the GO subcommand. When the
breakpoint at statement 20 is reached, execution is interrupted. The user enters
an OFF subcommand to discontinue this breakpOint and then types GO to resume
the execution. When execution reaches statement 60, which is another breakpOint,
execution is interrupted again, and so on. At breakpoint 100, the user decides
that he's seen enough to determine the problem and returns to the edit mode to
make some changes to SUB.

Using the TRACE subcommand of the test mode, you can observe the flow of
execution in your program. For example, if a variable in your program is assuming
unexpected values, you can "trace" that variable and any other variables that
contribute to those values. That is, you can have the system display at your
terminal every value that each of these variables is assigned during execution,
immediately after each assignment.

In addition to variables, you can trace references to files, intrinsic functions,
and branch points (statement numbers referred to in a GOTO, GOSUB, IF ••• THEN/

GOTO). Each time a reference to a "traced" item is encountered during execution,
the system displays the name of that item and, in most cases, the number of the
statement in which the reference appears. When the traced item is a branch
pOint, only the number of that statement is displayed, indicating that it is the
next statement to be executed.

The following subcommand establishes traces for variables x and y and file
"AB#":

trace (x,y,"ab#")

As a result of this subcommand, every assignment to x and y and every reference
to the file named "AB#" will be noted at your terminal as it occurs.

If you want to trace every reference to a variable, branch point, file, and in­
trinsic function in your program, you should specify just

trace

Errors and Corrections 75

Listing Values-LIST
Subcommand

76 Part I. Using TSO ITF:BASIC

If you want to trace only branch pOints, you don't have to specify any statement
numbers; all you need is

trace (*)

Note that when you use the asterisk, you cannot specify anything else in that
TRACE subcommand. For example, if you want to trace all branch points and the
variables 19 and T4, the following two subcommands are needed:

trace (*)
trace (i9,t4)

The effect of the TRACE subcommand for each item that can be traced is as
follows:

• Variables: Every time a traced variable is assigned a value, that variable and
its value are displayed at your terminal along with the number of the state­
ment that performed the assignment. For example, this display

00030 N= -l.OOOOOE+OO

means that variable N has just been assigned a value of -1 in statement 30.
Notice that the value of N is given in the E-format (exponential format).

• Branch Points: Every time the statement bearing the traced statement number
is about to be executed, that number is displayed at your terminal. For ex­
ample, this display

00200

means that the statement bearing number 200 is about to be executed.
• File Names: Every time that the traced file name is referred to in a GET, PUT,

RESET, or CLOSE statement, you receive a message like this:

00080 INP FILE BEING REFERENCED

where 80 is the statement containing the reference and INP is the name of the
file being referred to.

• Intrinsic Functions: Every time a traced intrinsic function is referred to in the
program, a display of this type will be generated

00140 SQR B.I.F. BEING REFERENCED

which means that the SQR BASIC intrinsic function is now being used in state­
ment 140.

To discontinue a trace for an item, you use the NOTRACE subcommand. Like
TRACE, NOTRACE can be specified with a list of items, an asterisk, or nothing, as in
each of the following:

notrace (x,sqr)
notrace (*)
notrace

In the first case, the traces for X and SQR are discontinued; all other traces remain
in effect. In the second case, only the traces for branch points are discontinued. In
the third case, all traces are discontinued.

The LIST subcommand gives you an immediate display of the values of one or
more variables. If you specify LIST with one or more variables following it in
parentheses, then only those variables and their values will be displayed at your
terminal. If you specify LIST with nothing follOWing it, all variables and their values
will be displayed. For example, if A, X, and B$ exist in your program,

list (a,x,b$)

Changing Values of Arithmetic
Variables-A5signment

Statement

causes their values to be immediately displayed at your terminal. The display
could look like this:

A= +2.37562E+ 12
B$ = "FLOYD SMITH"
X= -8.70000E-02

Notice that the variables are not necessarily listed in the order in which they
appear in the LIST subcommand and that values for arithmetic variables are printed
in the E-format (exponential format) as they were in the TRACE subcommand.

However, if you specify just

list

then not only A, x, and B$ will be listed, but all other variables in your program
as well.

Note that the LIST subcommand has no meaning until execution has actually
started. In other words, don't use LIST before using GO for the first time.

The assignment statement is a powerful tool in the test mode, even though it is
limited to the following fonnat:

simple-arithmetic-variable = [+ I -] numeric-comtant
By using the assignment statement, you can effectively change your program
during execution. Such changes are temporary and disappear when the test mode
is tenninated, if not sooner (e.g., by execution of an assignment statement in your
program that resets the value of the variable).

Consider this situation: Your program contains a FOR/NEXT loop, the FOR state­
ment of which is defined as follows:

40 for i = 1 to 1000

You want to trace the variables used in the loop but you don't want to step
through all 1000 iterations. By placing a breakpOint at the statement immediately
following the FOR statement (assume it's numbered 50), you can change the value
of the loop control variable I to whatever you wish when the breakpoint is
reached. For example,

TEST at 50
TEST go
A00050i = 575
A00050go

The first time that the breakpoint is reached, you enter the assignment statement
to change the value of I from 1 to 575. You resume execution and then observe the
results for that iteration. The program then increments the value of I by 1 in
accordance with the specification in the FOR statement and then the breakpoint
is reached again. If you want to observe the iteration for I equal to 576, just type
GO. If you want to observe the iteration for a diHerent value of I, then type
another assignment statement and, resume execution. This process is repeated
until the value of I exceeds 1000, at which point the loop will tenninate.

Note that the placement of the breakpOint in the above example is important.
Had it been placed at statement 40 instead of statement 50, the assignment state­
ment would have been ineffective because the moment execution was resumed,
the FOR statement would have been executed and variable I would have been
immediately reset to 1.

Let's take another example. Assume that the program you're testing contains
this statement:

100 let x = 2.6

Errors and Corrections 77

78 Part I. Using TSO ITF:BASIC

You've observed that this value of x is causing wrong results and you want to try
some other values for x before you make a permanent change to the program.
By setting a breakpoint at statement 110 or following, you can change the value of
x to whatever you wish when the breakpoint is reached. For example,

TEST at 110
TEST go
AOOII0x = 3.5
AOOII0go

At the breakpoint, you've changed the value of x to 3.5 and then resumed execu­
tion so that you can observe the effects of this change on your program. If you're
satisfied with the results, you can then go back to the edit mode and make the
change permanent.

Note: You can use the assignment statement only during an interruption. You
cannot use it before you actually start execution.

Part II. The BASIC Language

BASIC Program Structure

Statement Numbers

BASIC Statements

Statement Lines

BASIC Programs

Every BASIC statement must have a statement number. The number can be up to
five digits in length (in the range 00001-99999). There can be no blanks between
the digits, but at least one blank must separate the statement number from the
BASIC statement it precedes.

BASIC statements are organized according to specific rules. An executable state­
ment specifies a program action (for example, LET x = 5), and a nonexecutable
statement provides information necessary for program execution (for example,
DATA 1,2.5,6E-7). Blanks may be inserted where desired to improve readability;
the system disregards them except in character constants, character strings, and
in image specifications for the PRINT USING statement.

A statement line is composed of a BASIC statement prefaced by a statement
number.

10 LET X = 2 *4 + 7 I Z

t~
Statement
Number

BASIC

Statement

A BASIC program is a group of statement lines arranged according to the following
general rules:
1. No statement line may occupy more than one print line.
2. A print line may contain only one statement.
3. Program statements will be retained in numerical sequence. They may, how­

ever, be entered in any order.
4. Executable and nonexecutable statements may be intermixed.

BASIC Program Structure 81

Elements of BASIC Statements

BASIC Character Set
A BASIC program is written using the characters listed below. Any terminal char­
acter not listed is a non-BASIC character and may appear only where specifically
noted.
1. Alphabetic characters (29 characters): A-Z in upper or lower case, and the

alphabetic extenders @, #, $.
2. Digits: 0,1,2,3,4,5,6,7,8,9.
3. Special characters (24 characters): The special characters supported by ITF:BASIC

and their representation on some of the terminals that can be used in the TSO
environment are given in Table 2.

Table 2. BASIC Special Characters and Their Representation on Some TSO Terminals 1

SPECIAL
CHARACTER

+

I
&
=

?
I
I

<
>
t

blank

2741 (#9812)
CORRESPONDENCE

+
o

I
&

?

±.
[
]

00

[=
]=
[]

blank

2741 (#9571)
PTTC/EBCD

+

I
&
=

?
I
I
<
>

<=
>=
<>

blank

TELETYPE
MODELS 33/35

+
o

I
&

?
I
I
<
>

tor 00

<=
>=
<>

blank

BASIC Short form (External Representation) 2

An integer format (I-format) is used to print integer values. Using the PRINT 3

statement (see "Program Statements"), up to seven decimal digits may be printed

1 If your terminal is not represented in this list, consult the TSO Terminals book (see the preface)
to determine how to represent any BASIC special characters that do not appear on your keyboard.

2 Because of the physical limitations of the computer, certain values cannot be precisely repre­
sented internally, (e.g., 1/3). Computations involving those values may result in a slight loss
of precision and, as a result, printed results may be inaccurate in the rightmost one or two
significant digits (i.e., in the least significant positions). To overcome this problem, try printing
fewer Significant digits (by using the Image and PRINT USING statements), or, if these least
significant digits are important, try using long-form arithmetic for your computations. You'll
probably find that a combination of the two gives the most satisfactory results.

3 The PRINT USING and Image statements (see "Program Statements") may be used to specify
more than the PRINT statement limit on the number of digits.

Elements of BASIC Statements 83

for integers whose absolute value is in the range 107-1 to O. Integer values having
more than seven decimal digits are printed using the E-format.

Floating-point numbers, written in what is called E-format (exponential format),
are used in the PRINT1 statement to print a value up to seven decimal digits in
length, with a sign and a decimal point, followed by the letter E, and a signed
characteristic (or exponent) for numbers whose absolute value is less than 10-1 or
greater than or equal to 107-1. Values having more than seven decimal digits are
rounded before they are printed. Rounding occurs as follows: if the eighth digit is
5 or greater, 1 is added to the seventh digit and the excess digits are truncated.

Decimal numbers, written in what is called F-format (fixed-decimal format),
are used in the PRINT1 statement to print a value up to seven decimal digits, with a
sign, and a decimal point, for numbers whose absolute value is not covered by
the ranges of 1- and E-formats given above. Decimal numbers having more than
seven decimal digits are rounded before they are printed. Rounding occurs as
follows: if the eighth digit is 5 or greater, 1 is added to the seventh digit and the
excess digits are truncated.

Short-form results are obtained when SPREC has been specified in the RUN com­
mand, the BASIC command, or the RUN subcommand, or when no option is specified.

BASIC Long Form (External Representation)

Identifiers

Numeric Constants

84 Part II. The BASIC Language

An integer format (I-format) is used in the PRINT1 statement to print an integer
value up to 15 decimal digits whose absolute value is in the range 1015-1 to O.
Integer values having more than 15 decimal digits are printed using the E-format.

Floating-point numbers, written in what is called E-format (exponential format),
are used in the PRINT1 statement to print a value up to eleven decimal digits in
length, with a sign and a decimal point followed by the letter E, and a signed
characteristic (or exponent) for numbers whose absolute value is less than 10- 1

or greater than or equal to 1015-1. Values having more than 11 decimal digits are
rounded before they are printed. Rounding occurs as follows: if the twelfth digit is
5 or greater, 1 is added to the eleventh digit and the excess digits are truncated.

Decimal numbers, written in what is called F-format (fixed-decimal format),
are used in the PRINT1 statement to print a value up to 15 decimal digits, with a
sign, and a decimal point for numbers whose absolute value is not covered by the
ranges of 1- or E-formats given above. Decimal numbers having more than 15
decimal digits are rounded before they are printed. Rounding occurs as follows:
if the sixteenth digit is 5 or greater, 1 is added to the fifteenth digit and the excess
digits are truncated.

Long-form results are obtained when LPREC is specified in the RUN command,
the BASIC command, or the RUN subcommand.

An identifier is a string of characters that represents a decimal number or a
character constant. There are five types of identifiers: numeric constants, internal
constants, character constants, variables, and function references.

A numeric constant is a string of characters whose value is a decimal number.
The defined value cannot be changed throughout program execution. The two
general forms of a numeric constant are:
1. Decimal fixed-point: one or more decimal digits with an optional decimal

point. If no decimal point appears, the point is assumed to be immediately to
the right of the rightmost digit. A sign may optionally precede a decimal
fixed-point constant.

1 The PRINT USING and Image statements (see "Program Statements") may be used to specify
more than the PRINT statement limit on the number of digits.

Internal Constants

Character Constants

Variables

Simple Variables

Array Variables

2. Decimal floating-point: a decimal fixed-point constant followed by the letter E,

followed by an optionally signed one- or two-digit decimal integer constant.
The entire constant may be preceded by a sign.
If the exponential notation is used, the value of the constant is equal to the

number to the left of the "E" multiplied by 10 to the power of the number to
the right of the "E."

The magnitude of a numeric constant must be less than 7.2xl0+75 and must be
greater than 5.4x10-79. If long-form arithmetic is specified, up to 15 significant
digits will be retained after conversion. If short-form arithmetic is specified, only
seven significant digits will be retained after conversion.

An internal constant is a string of characters that represents a constant whose
value is predefined by ITF:BASIC. The available internal constants and their values
are:

MEANING NAME VALUE (IN SHORT FORM) VALUE (IN LONG FORM)

e &E 2.718282 2.71828182845904

7(' &PI 3.141593 3.14159265358979

vl2 &SQR2 1.414214 1.41421356237309

A character constant is a character string enclosed by a pair of single or double
quotation marks. The general form of a character constant is:

'[c ...]'
"[c ...]"

where c is any character.
If a character string bounded by single quotes is to contain a single quote, two

consecutive single quotes must be given for the contained quote. Otherwise, the
system would recognize it as the end of a character string. The same is true
when a character string bounded by double quotes is to contain a double quote;
the contained double quote must appear twice.

All characters have significance within a character constant. The system treats
all character constants as 18 characters. A shorter character constant will be
padded on the right with blanks; a longer character constant will be truncated
on the right. A null character string (two adjacent quote marks) will be treated
as 18 blank characters. In PRINT and PRINT USING statements, character constants
can be longer or shorter than 18 characters (see "Program Statements").

A variable is a string of characters that represents a data item whose value is
aSSigned and/ or changed during program execution. There are two types of
variables: simple and array.

A simple arithmetic variable is named by a Single alphabetic character or an
alphabetic character followed by a digit. A simple arithmetic variable can only
be assigned a decimal number. The initial value of all simple arithmetic vari­
ables is zero. The absolute range (or magnitude) for arithmetic variables is
5.4 X 10- 79 to 7.2 X 10+75.

A simple character variable is named by an alphabetic character followed by
the dollar sign character, "$." A simple character variable can only be assigned a
character value. The initial value of all simple character variables is 18 blank
characters.

A BASIC array is an ordered set of data. An array variable represents an array.
An arithmetic array is named by a single alphabetic character. An arithmetic

array may have one or two dimensions and can only contain members whose value
is a decimal number. The initial value of all arithmetic array members is zero.

Elements of BASIC Statements 85

Array Declarations

Functions

Expressions and Operators

Character Expressions

Arithmetic Expressions
and Operators

86 Part II. The BASIC Language

A character array is named by an alphabetic character followed by the dollar
sign character, "$." A character array must have one dimension and can only con­
tain members whose values are character constants containing 18 characters. The
initial value of all character array members is 18 blank characters.

An array member is referred to by a subscripted array name. A subscript is an
arithmetic expression of which the truncated integer value must be greater than
zero. The general form of a subscripted array name is:

a(xl [,X2])

where a is an array name and Xl and X2 are expressions.
When referring to an array member, the number of subscripts must equal

the number of array dimensions. Also, the final reference value must be within the
bounds of the array. Arrays are processed row by row (i.e., using the row/column
concept of a two-dimensional array); members are processed in horizontal se­
quence rather than vertical sequence.

An array declaration states that an array with a specified name and dimensions
should be allocated to the user's program. Arrays may be defined explicitly (by
the DIM statement) or implicitly through usage.

An array is implicitly declared by the first reference to one of its members,
provided that the specified array has not been previously defined by a DIM state­
ment. The array is declared to have one dimension (10) when the member is
referred to by an array variable with one subscript, and two dimensions (10,10)
when the member is referred to by an array variable with two subscripts.

In general, a function is a named arithmetic expression which computes a single
value from another arithmetic expression called an argument. The argument of a
function is a parenthesized arithmetic expression which represents the numerical
value on which the operations specified by the definition of the function are to
be performed. Together, a function and its argument are called a function refer­
ence. For example, SIN(X) is a function reference which is evaluated as the sine
of the number of radians represented by the value of the variable named x.
Function references may be used anywhere in a BASIC expression that an arith­
metic variable, constant, or array reference may be used.

The two types of functions in BASIC are (1) intrinsic functions which are sup­
plied by the language (see section on "Intrinsic Functions") and (2) user-written
functions, which are defined by use of the DEF statement (see "Program State­
ments").

An expression is a representation of a value. A single constant, variable, array
member, or function reference is an expression. Constants, variables, and function
references may be combined with operators to form an expression. Three forms
of expressions are defined for BASIC: scalar, array, and relational. The result of the
evaluation of a scalar expression is a single value-a scalar. A scalar expression
may be either an arithmetic expression or a character expression. The result
of the evaluation of an array expression is a collection of values-an array. A
relational expression can be used only in the context of an IF statement and
results in a true or false value.

A character expression may be composed of a character variable, character array
member, or a character constant.

An arithmetic expression may be an arithmetic variable, arithmetic array member,
numeric constant, internal constant, or function reference, or a series of the above
separated by binary operators and parentheses.

Unary Operators

Priority of Arithmetic Operators

There are five binary operators, two unary operators, and the right and left
parentheses. The evaluation of an arithmetic expression is perfonned left to right
with the priority of various operators defining the order of evaluation. The priority
of operators will be defined later.

The five binary arithmetic operators are:

tor 00 exponentiation
° multiplication
I division
+ addition

subtraction

The two unary operators are + and -.
Special cases for the arithmetic operators and the resulting action are as follows:

Exponentiation: A ° °B or A tB is defined as A raised to the B power.1

1. If A=B=O, an error will occur.
2. If A=O and B<O, an error will occur.
3. If A <0 and B is not an integer, an error of a "negative number to a fractional

power" will occur.
4. If A#O and B=O, A ° °B or A tB is evaluated as 1.
5. If A=O and B>O, A ° °B or A tB is evaluated as O.
Multiplication and Addition: A °B and A+B, multiplication and addition, respec­
tively, are both commutative (Le., A °B=Bo A and A+B=B+A), but are not always
associative due to low-order rounding errors, i.e., A O(BOC) does not necessarily
give the same results as (A °B)OC.
Division: AlB is defined as A divided by B. If B=O, a "division by zero" error will
occur.
Subtraction: A-B is defined as A minus B. No special conditions exist.

The + and - signs may also be used as unary operators. Unary operators may
be used in only two situations, as follows:
1. Following a left parenthesis and preceding an arithmetic expression, or
2. As the leftmost character in an entire expression which is not preceded by an

operator.
For example:

-A+(-(BOO(-2))) is valid
A+-B or Boo-2 is invalid

The evaluation of an arithmetic expression is performed using the priority of
operators as follows:

OPERATORS

exponentia tion
unary + or­
multiplication and division
addition and subtraction

PRIORITY

highest

~
10west

Operations at the same level of priority are performed from left to right. The
normal priority can be modified by enclosing subexpressions within parentheses.
Subexpressions so modified will be evaluated beginning with the innermost set
of parentheses.

1 Exponentiation operations and some intrinsic function computations are performed by ITF

through proven mathematical approximations. Occasionally, results may be inaccurate in the
least significant positions because of the attendant limitations of the approximation methods.
To overcome this problem, try printing fewer significant digits (by using the Image and PRINT

USING statements), or, if these least significant digits are important, try using long-form arith­
metic. You'll probably find that a combination of the two gives the most satisfactory results.

Elements of BASIC Statements 87

Array Expressions

Relational Expressions

88 Part II. The BASIC Language

The priority of evaluation of function references is determined by the fact that
their arguments are enclosed within parentheses.

Any expression that requires computing a value that is not mathematically
defined or is imaginary will not be evaluated and will cause an execution error.

Array expressions are composed of operations which are performed on the entire
collection of members of an arithmetic array. Arithmetic array expressions consist
of unary or binary operands.

A unary array expression may have one of the following forms:

An array itself
ZER zero array function
CON unity array function
IDN identity matrix function
INV inverse matrix function
TRN transpose matrix function

A binary array expression may have one of the following forms:
A+B sum of two matrices
A - B difference of two matrices

product of two matrices
product of the scalar value s and the matrix A

Matrix multiplication, the inverse function, the transpose function, and the
identity function are restricted to two-dimensional arrays only.

Relational expressions are of the general form:

el relational-operator e2

A relational expression is either satisfied (true) or not satisfied (false). The
relational operators are binary; their representation on some of the terminals
supported by TSO are:

OPERATOR

2741 (#9571) 2741 (#9812) TELETYPE
DEFINITION PTIC/EBCD CORRESPONDENCE MODELS 33/35

equal to =

not equal to <> [] <>

greater than > >

less than < [<

greater than >=]= >=
or equal to

less than or <= [= <=
equal to

Two forms of relational expressions are allowed in BASIC, arithmetic and char­
acter. The expressions el and then e2 are evaluated and their values are compared
according to the definition of the relational operator used. The evaluation of the
entire relational expression results in the expression being either satisfied (i.e.,
the condition is "true") or not satisfied (i.e., the condition is "false"). The EBCDIC
(Extended Binary Coded Decimal Interchange Code) collating sequence is used
to determine whether character relational expressions are true or false. The
ITF:BASIC character set and the EBCDIC internal representation (in hexadecimal)
for each character are given in Appendix B.

Program Statements

CLOSE Statem'ent 1

Function

General Format

Rules

Example

DATA Statement 3

Function

General Format

Rule

This section gives the BASIC statements in alphabetical order, except for the MAT

statements, which are given in the chapter "Array Operations (MAT Statements)."
Most statements are accompanied by the following information:
1. Function: a short description of what the statement does.
2. General Format: the syntax of the statement.
3. Rules: rules governing the specification and use of the statement in a BASIC

program.
4. Example: an illustration of how the statement would look in a BASIC program.

The CLOSE statement causes the input or output files to be deactivated.

CLOSE file-reference [,file-reference J ...
where file-reference is a character constant.2 The character constant cannot be
a null character string (two adjacent quotation marks). The first three characters
cannot contain a period, a comma, or a semicolon. A blank cannot precede a
non-blank in the first three characters, nor can the first three characters be
all blank.

1. If a file is to be used first as an input file and then as an output file (or vice
versa) during program execution, it must be explicitly deactivated by the CLOSE

statement between input and output references.
2. If a file is not closed explicitly (by the CLOSE statement) at the end of the

program, it is automatically closed by the system.
3. If a specified £He is not active, its appearance in the CLOSE statement will be

ignored.

150 CLOSE 'QF', 'ABF'

The DATA statement is used to supply values for variables named in the READ

statement.

DATA constant [,constantJ ...
where constant is either a numeric, character, or internal constant.

Prior to program execution, a data table is constructed which contains the values
in the DATA statements in order of appearance. Also, a data table pointer is set
to refer to the first item in the data table. DATA statements may be placed any­
where in the program; they are placed in the data table in statement number
sequence.

1 See also GET, PUT, and RESET statements.

II To be acceptable to the DELETE and RENAME commands, the first three characters of a file
name must adhere to the following restrictions: the first character is required and must be
alphabetic; the other two characters are optional and, if specified, must be alphameric.

8 See also READ and RESTORE statements.

Program Statements 89

Examples

DEF Statement

Function

General Format

Rules

Examples

DIM Statement

Function

General Format

Rules

90 Part II. The BASIC Language

10 DATA
20 DATA

50, 35, 72
340, 17.32, 34E-51, 5E4

50 DATA 25, 'AB', 4.0

The DEF statement defines a user function that can be referred to anywhere in
the program in which it is contained.

DEF FNa(v) = arithmetic-expression
where a is an alphabetic character and v is a simple arithmetic variable known
as the "dummy variable."

1. The function will be evaluated during execution by substituting the value of
the argument used in the function reference for all appearances of the dummy
variable in the arithmetic expression.

2. The argument supplied in the function reference can be any valid arithmetic
expression.

3. A function may be defined anywhere in the program (before or after its use),
but must be defined only once.

4. A function can include any combination of other functions, even those defined
by other DEF statements. A recursive function reference (a function that refers
to itself or to a function that refers back to it) will give unpredictable results.

5. The dummy variable has meaning only in the DEF statement. Consequently,
it is possible to have a dummy variable with the same name as an arithmetic
variable used elsewhere in the program. The system recognizes each as a
unique identifier, and no conflict of names or values will result from this
duplicate usage.

70 DEF FNB (X) = 5*X*)~2 + 27*Y
80 DEF FNA(X) = FNB(X)+X**3

120 LET Z = 2
130 LET Y = 24
140 LET R = FNA(Z) +23

The DIM statement is used to explicitly define the dimensions of an array.

DIM al(dll [,d12J) [,a2(d21 [,d22J) ...
where ~ is the name of an array and dij is a positive integer specifying the
dimension bound.

1. An array name cannot appear in a DIM statement if it has already been im­
plicitly or explicitly declared.

2. Array dimensioning and referencing starts at 1. That is, an array having one
dimension (m) has m members and an array having two dimensions (m,n)
has m times n members.

3. Each bound must be less than 256.
4. Prior to usage in a MAT statement, an arithmetic array must have been im­

plicitly defined by usage or explicitly defined by a DIM statement. This means
that the statement number of the DIM statement, or that of the first appearance
of the subscripted array name, must be lower than that of the MAT satement.

Example

END Statement

Function

General Format

Rule

Example

FOR Statement 1

Function

General Format

Rules

5. Arithmetic arrays can be redimensioned in the following MAT statements (see
the chapter "Array Operations" in Part II):

MAT assignment with CON function
MAT assignment with IDN function
MAT assignment with ZER function
MAT GET

MAT INPUT

MAT READ

10 DIM Z(5),$(2,3),A(20,30)

The END statement indicates the logical end of a program, i.e., any statements
numerically following END are retained but are ignored during execution. END is
optional and, if omitted, is assumed to follow the highest-numbered statement
in the program.

END [character-string]

The optional character-string is merely a comment which has no effect on pro­
gram execution.

99 END

The FOR statement initiates a FOR/ NEXT loop; it causes repeated execution of the
statements that numerically follow, up to and including a matching NEXT state­
ment.

FOR V = Xl TO X2[STEP Xg]

where v is a simple arithmetic variable and Xi is an arithmetic expression.

1. FOR and NEXT statements must be paired and are matched when the same
simple arithmetic variable is specified for each of the two statements.

2. The simple arithmetic variable is the loop control variable and assumes values
within the bounds defined by the values of the expressions separated by the
TO keyword. The increment value is defined by the STEP option; if STEP is
omitted an increment of 1 is assumed.

3. For positive increments, a FOR/ NEXT loop is completed when the NEXT state­
ment is executed and the value of the loop control variable exceeds the value
defined by the second arithmetic expression. For negative increments, a FOR/

NEXT loop is completed when the NEXT statement is executed and the value of
the loop control variable is less than the value defined by the second arithmetic
expression. If the step is assigned a value which is contradictory to the incre­
ment direction implied by the bounds (e.g., FOR X=l TO 5 STEP -6 or FOR X=l

TO -20), the FOR/NEXT loop will not be performed and the control variable
will not be changed; it will retain the value it had before the FOR statement
was encountered.

4. The values of the expressions on the right side of the equal sign remain constant
throughout execution of the loop. Any change to the variables in these expres­
sions during the loop will not alter the original expression value. Thus, the loop
bounds and the increment value never change during the execution of a loop.

5. Throughout execution of the FOR/NEXT loop, the control variable is available
for computation. Upon exiting or completing the loop, the control variable will

1 See also NEXT statement.

Program Statements 91

Examples

GET Statement 1

Function

General Format

Rules

92 Part II. The BASIC Language

have the value it had at the final iteration, and control is passed to the first
logically executable statement following the NEXT statement.

6. If the value of the STEP is zero, the loop is performed an infinite number of
times or until the control variable (v) is set outside the range.

7. Nesting is permitted only if the internal FOR/NEXT loop is entirely within the
external FOR/NEXT loop (as shown in the example below). In ITF:BASIC,

FOR/ NEXT loops may be nested 15 levels deep (with the outermost FOR/ NEXT

loop considered to be the first level).
8. Transfer of control into or out of a FOR/ NEXT loop is allowable within the

constraints that a NEXT statement cannot be executed if its associated FOR

statement is inactive. A FOR statement is inactive if it has not been executed,
or if the FOR/ NEXT loop was previously completed.

20 FOR X = 1 TO 25 STEP 2

.
70 NEXT X

Example of nested loops:

CORRECT

r---FOR I

[

FORJ

NEXT J

I----NEXT I

INCORRECT

r----FOR X

FOR Y

a.--_-+- NEXT X

NEXT Y

The GET statement causes values to be read from the specified input file, begin­
ning at the current file position, and assigned to the variable references specified
in the GET statement.

GET file-reference, v[,v] ...
where file-reference is a character constant. 2 The character constant cannot be
a null character string (two adjacent quotation marks). The first three charac­
ters cannot contain a period, a comma, or a semicolon. A blank cannot precede
a non-blank in the first three characters, nor can the first three characters be all
blank. The v is either a simple variable or a subscripted reference to an array
(it cannot be an unsubscripted reference to an array).

1. The first appearance of a file reference is an implied declaration and causes
the file to be activated for input.

2. Each value read must be of the same type (arithmetic or character) as the
corresponding variable reference in the GET statement.

1 See also CLOSE and RESET statements.

2 To be acceptable to the DELETE and RENAME commands, the first three characters of a file
name must adhere to the following restrictions: the first character is required and must be
alphabetic; the other two characters are optional and, if specified, must be alphameric.

Examples

GOSUB Statement 1

Function

General Format

Rules

Examples

3. All arithmetic data is truncated or zero-padded on the right, if necessary, to
conform to the kind of arithmetic (long or short) specified for the program iii
which the values are assigned. ,

4. Subscripts in GET statements are evaluated as they occur. Thus, an assigned
variable in a GET statement may be used subsequently as a subscript in that
statement.

5. If a GET statement is executed with insufficient data in the input file, program
execution is terminated.

6. A file currently activated as an output file cannot be specified in a GET state~

ment. It must be deactivated by the CLOSE statement.

20 GET 'ITF', X,Y,Z,A(4) ,A(5)

.
60 GET 'AF', U,V,W

The GOSUB statement causes control to be transferred to the specified statement
number.

GOSUB statement-number

1. The GOSUB statement sets up a return path such that, when a RETURN statement
is executed, control is returned to the next logically executablestatemerit fol­
lowing the last GOSUB statement executed. Execution of a RETURN statement
also cancels this return linkage.

2. In ITF:BASIC, there my be no more than 56 active GOSUB statements in a pro­
gram. If this implementation limit is exceeded, execution of the program is
terminated. A GOSUB statement is considered to be active when it has been
executed and its associated RETURN statement has not been executed.

3. If the statement branched to is a nonexecutable statement (te., DATA, REM,

etc.), control is transferred to the first logically executable statement following
the specified statement.

Note: GOSUB statements may be used in any manner, but care should be taken, to
avoid defining recursive GOSUB loops (i.e., a GOSUB into an area of the program that
contains a GOSUB leading back to the first GOSUB). This could cause an lnflnite loop.

50 GOSJUB 100 60 -

· · ·
100 -]

140 RET~N .

1 See also RETURN statement.

80 GOSJUB 150
90 -

· · · 150 -

· GOSUB

· 300 RETURN

Program Statements 93

GOTO Statement

Function

General Format

Rules

Examples

IF Statement

Function

General Format

Rules

Examples

94 Part II. The BASIC Language

The GOTO statement causes control to be unconditionally transferred to a specific
statement (simple GOTO) or to be transferred to one of a set of statement num­
bers, depending on the value of an expression (computed GOTO).

1. Computed GOTO

GOTO Sd,S2, ... ,SnJ ON arithmetic-expression
where Si is a statement number.

2. Simple GOTO

GOTO statement-number

1. Computed GOTO:

This statement causes control to be transferred to the first, second, ... , nth state­
ment number if the truncated integer value of the expression is 1,2, ... ,n (re­
spectively) at the time of execution. If the truncated integer value is less than
1 or greater than n, control passes to the next logically executable statement.
If the statement branched to is a nonexecutable statement (i.e., DATA, REM,

etc.), control is passed to the first logically executable statement following the
specified statement.

2. Simple GOTO:

Only one statement number is allowed and control is unconditionally trans­
ferred to that statement. If the statement branched to is a nonexecutable state­
ment (i.e., DATA, REM, etc.), control is passed to the first logically executable
statement following the specified statement.

COMPUTED

40 GOTO 140,60,34,7,45 ON 3 + 4/X-Z

SIMPLE

30 GOTO 645
40 GOTO 29

The IF statement tests a relational expression, and if the relation is true, control
is transferred to the specified statement number; if the relation is false, the next
logically executable statement is executed.

IF Xl op X2 {THEN I GOTO } statement-number
where Xl and X2 are scalar expressions and op is a relational operator.

1. The scalar expressions must both be either arithmetic or character expressions.
2. A character constant containing less than 18 characters will be blank padded

to the right prior to the comparison; more than 18 characters will be truncated
to the right prior to the comparison.

3. A character constant containing no characters (two adjacent quotes) will be
interpreted as 18 blank characters.

4. Comparisons are made follOWing the EBCDIC (Extended Binary Coded Decimal
Interchange Code) collating sequence (see Appendix B).

5. If the statement branched to is a nonexecutable statement (i.e., DATA, REM,

etc.), control is transferred to the first logically executable statement following
the specified statement.

30 IF A(3) > X+2/Z THEN 85
40 IF Sl < > 37.22 GOTO 67
50 IF A+B < C THEN 80
60 IF R$ = A$ GOTO 120

Image Statement 1

Function

General Format

Rules

The Image statement is used in conjunction with the PRINT USING or MAT PRINT

USING statement; it specifies the format that the print line will have.

: [[c] ... Iformat] ...
where c can be any character except "#" and format is a character-, 1-, F-, or
E-format specification.

1. An Image statement that consists entirely of a colon (i.e., contains no format
specifications) is valid only when the PRINT USING or MAT PRINT USING statement
referring to it contains no expressions. Such a reference causes the system to
print a blank line. However, if the PRINT USING or MAT PRINT USING statement
referring to such an Image statement contains expressions, execution is ter­
minated because there are no format specifications for the values to be
printed.

2. The various fonnat specifications are:
a. Character-format-either the 1-, F-, or E-formats given below.
b. I-format (integer format)-an optional sign followed by one or more #

characters. If the value is negative and no sign is specified, the first #
character is assumed to represent the sign.

Example: [+1-]#[#] ...

c. F -format (fixed-decimal format)-an optional sign followed by either:
(1) No # characters, a decimal point, one or more # characters; or
(2) One or more # characters, a decimal point, no # characters; or
(3) One or more # characters, a decimal point, one or more # characters.

Example: [+1-] {[#] #[#] .. ·1 #(#] [#] ... }

Note that if the value is negative and no sign is specified, the first # char­
acter is assumed to represent the sign.

d. E-format (exponential fonnat)-either the 1- or F-formats (given above)
followed by four I characters or four 1 characters. If the value is negative
and no sign is specified, the first # character is assumed to represent the
sign.

Example:
lr-format I F-format I

3. The maximum number of # characters which can be specified for character-,
1-, F-, or E-fonnats is 80.

4. For arithmetic expressions, if more than seven # characters are given in the
format specification, and the program is executed using short precision (RUN,

RUN SPREC, BASIC, or BASIC SPREC), the printed expression value will fill the entire
format specification, but only the first 7 digits can be considered precise. The
printed value will be aligned on the decimal point (leading blanks and trailing
zeros will be supplied if necessary). Character expression values will be printed
left-adjusted. If the expression value is shorter than the specified format speci­
fication, blanks will be supplied on the right.

5. The following rules define the start of a format specification:
a. A # character is encountered and the preceding character is not a # char­

acter, decimal point, plus sign, or minus sign.
b. A plus or minus sign is encountered, which is followed by:

(1) A # character or
(2) A decimal point which is followed by a # character.

c. A decimal point is encountered, which is followed by a # character and:

1 See also PRINT USING statement.

Program Statements 95

Examples

INPUT Statement

Function

General Format

Rules

96 Part II. The BASIC Language

(1) The preceding character is not a # character, plus sign, or minus
sign; or

(2) The preceding character string is an F -format specification.

6. The follOwing rules define the end of a format specification that has been
started:
a. A # character is encountered and:

(1) The following character is not a # character; or
(2) The following character is not a decimal point; or
(3) The follOWing character is a decimal point and a decimal point has

already been encountered; or
(4) The following four consecutive characters are not I or I characters.

b. A decimal point is encountered and:
(1) The following character is not a. # character; or
(2) The following character is another decimal pOint; or
(3) The following four consecutive characters are not I or I characters.

c. Four consecutive I or I characters are encountered.

30 :THE ANSWER TO QUESTION # IS +###.####

70 :THE BALANCE FOR #########:/1= IS $#####.##

The INPUT statement allows the user to assign values to variables from the termi­
nal during execution. When INPUT is encountered, a question mark is printed out,
the typing element is moved to the right a few spaces, and execution is inter­
rupted. The values the user types at this time are assigned to the variables given
in the INPUT statement.

INPUT variable [,variable] ...
where variable is a simple variable or a subscripted array variable.

1. When an INPUT statement is encountered in a program, a question mark (?)
is printed at the terminal. Data in the form of numeric, character, or internal
constants (separated by commas) may then be entered from the terminal.

2. The variables specified assume the values of the data in order of entry; the
number of items entered must equal the number of variables in the INPUT

statement list. Numeric or internal constants must be entered for arithmetic
variables and character constants must be entered for character variables.
Subscripted references to arrays are allowed, but unsubscripted array refer­
ences are not. If the user enters the wrong number of constants or an invalid
constant, he will be prompted to re-enter the line (see rule 9, below). How­
ever, program execution will be terminated if the constants and variables
entered are of different types.

3. All arithmetic data is truncated or zero-padded on the right, if necessary, to
conform to the kind of arithmetic (long or short) specified for the program in
which the values are assigned.

4. Subscripts in INPUT statements are avaluated as they occur. Thus, if an assigned
variable in an INPUT statement is used subsequently as a subscript in that
statement the subscript will be evaluated with the new value.

5. Character constants must be bounded by quotation marks. Embedded blanks
are significant within a character constant.

Examples

LET Statement

Function

General Format

6. A character constant containing fewer than 18 characters will be padded on
the right with blanks; more than 18 characters will be truncated on the right.

7. A character constant containing no characters (null) will be interpreted as
18 blank characters.

8. When an INPUT statement is executed immediately after a PRINT or MAT PRINT

statement in which the final delimiter is a comma or a semicolon, the partially
completed print line is printed, the carriage is returned, and the question mark
generated by the INPUT statement is printed as the first character on the next
print line.

9. The following abbreviated messages are printed at the terminal when the user
makes an error entering the values for the variables specified in the INPUT

statement. In each case, the user is allowed to correct the error and re-enter
the entire data list on the same line that the message is printed.

MESSAGE TEXT

NG CON

NG DEL

NOITEM

MSNG '

TOOFEW

EXCESS

EXPLANATION

The magnitude of a numeric constant must be less
than 7.2 X 10+75 and must be greater than 5.4 X 10-79•

Check to see that your numeric constants are within
this range and that you have not forgotten the letter
«E" in the exponential format. Also, check the spelling
of any internal constant names in your data list.
Constants supplied in response to an INPUT statement
must be separated by commas.
You have typed a comma followed by a comma, or
you have issued a CR before entering your data.
You have supplied a character constant without en­
closing it in single or double quotes.
You have entered fewer constants than the number
of variables specified in the INPUT statement.
You have entered more constants than the number of
variables specified in the INPUT statement.

10 INPUT X, Y (X) , Z (R + 3) , C 1

90 RUN
? 25,15.5,4,
TOOFEW25,15.5,4,.35

10 INPUT A$,R

90 RUN
? 'YES, 20
MSNG "YES', 20

The LET statement evaluates an expression and assigns it to one or more variables.
The word LET is optional.

1. For multiple LET:

[LET] variab Ie [, variab le] ... = x
where variable is a simple variable or a subscripted array variable and x
is an expression.

Program Statements 97

Rules

Examples

NEXT Statement 1

Function

General Format

Rules

Examples

98 Part II. The BASIC Language

2. For simple LET:
[LET] variable = x

where variable is a simple variable or a subscripted array variable and x
is an expression.

1. The variables to the left of the equal sign assume the value of the expression
to the right. Subscripts in LET statements are evaluated as they occur. Thus, if
an assigned variable in a LET statement is used subsequently as a subscript
in that statement, the subscript will be evaluated with the new value.

2. If the expression is arithmetic, all variables to the left of the equal sign must
be arithmetic. If it is a character expression or a character constant, all vari­
ables to the left of the equal sign must be character variables. Subscripted
references to arrays are allowed, but unsubscripted array references are not.

3. A character constant containing fewer than 18 characters will be padded on
the right with blanks; more than 18 characters will be truncated on the right.

4. A character constant containing no characters (null) will be interpreted as
18 blank characters.

5. In the test mode, a simple assignment statement can be used once the user
has been given control. The form for the simple assignment statement in the
test mode is:
simple-arithmetic-variable = [+, -] numeric-constant

MULTIPLE LET
10 LET X(Y+3) ,Z, Y = 100.0967
20 X, Y(X) ,Z,$2 = - (X+3/E)
30 LET D$,R$,Xi = J$

SIMPLE LET
20 LET Al = Z (3) /Y (A + 4)
30 51 = 49 + Z (4)
40 A = 5
50 LET G$ = N$

The NEXT statement marks the phYSical end of a FORI NEXT loop.

NEXT simple-arithmetic-variable

1. This statement terminates a FOR loop. The variable must be the same as the
simple arithmetic variable specified in the associated FOR statement.

2. Upon exiting or completing the loop, control is passed to the first logically
executable statement following the NEXT statement.

MULTIPLE LoOPS

[

FOR I]

. NEXT I

[

FOR J]

NEXT J

1 See also FOR statement.

NESTED Loops

FOR I

[

FOR J

NEXT J

NEXT I

INCORRECT NESTING

FOR X

~~FOR Y

NEXT X

NEXT Y

PAUSE Statement

Function

General Format

Rules

Example

PRINT Statement

Function

General Format

Rules

The PAUSE statement causes program execution to halt and the following message
to be printed at the terminal.

PAUSE AT LINE n

where n is the five digit statement number of the PAUSE statement.

PAUSE [character-string]

l. The user may resume execution by pressing the carrier return key or by
entering any character string followed by a carrier return.

2. The optional character-string is a comment which does not affect execution. It
appears only when the program is listed.

3. When a PAUSE statement is executed immediately after a PRINT or MAT PRINT
statement, the message PAUSE AT LINE n is printed on the line below the last
line of output from the PRINT or MAT PRINT statement, even if the final delimiter
of that statement is a comma or a semicolon.

50 PAUSE

The PRINT statement causes the values of the specified arithmetic and character
expressions to be printed at the terminal. The format of a print line is to a large
extent controlled by the system; the user can control the density of a line, but
the format of the values is standard.

PRINT [e] ['c .. :[, I;]el ['c .. :] {, I;} [e]] ... ['c .. :1 ,I;]
where e is an arithmetic expression, a simple character variable, or a character
array variable; 'c .. : is a character constant; and the comma and semicolon are
delimiting characters.

1. Each data item in the PRINT statement (arithmetic expression or character
variable, character constant, or null) is converted to a specified output format
and printed at the terminal. The carriage is positioned as specified by the
delimiting character or by the data item following the data item being con­
sidered. A null delimiter consists of one or more blanks or no characters at all
(i.e., one data item directly follows another data item with no intervening space
or delimiter). A null delimiter may be used between two data items when one,
and only one, of the data items is a character constant.

2. Each line is constructed from two types of print zones: full or packed. Print
zones are defined relative to the carriage position at which a data item begins.
a. If the data item is an arithmetic expression, the size of the packed print

zone is determined by the size of the converted field (including the sign,
digits, decimal point, and exponent) as follows:

LENGTH OF CONVERTED
DATA ITEM

2-4 characters
5-7 characters
8-10 characters

11-13 characters
14-17 characters

LENGTH OF PACKED
PRINT ZONE
6 characters
9 characters

12 characters
15 characters
18 characters

EXAMPLE (X REPRESENTS
A BLANK)

xl73xx
xl73576xx
- 45. 63927xxx
xl. 735790E - 23xx
- 8922704093115663x

b. If the data item is a character variable or a subscripted character array
reference, the size of the packed print zone is 18 characters minus any
trailing blanks.

c. If the data item is a character constant, the size of the packed print zone
equals the length of the string enclosed by quotation marks.

Program Statements 99

Examples

100 Part II. The BASIC Language

3. Each arithmetic data item is converted to output format as follows:
a. Arithmetic expressions in short-form arithmetic:

(1) I-format (integer format) is used for integers whose absolute value
is in the range 107-1 to O. It consists of an optional sign followed by from
one to seven digits. Integer values having more than seven digits are printed
using the E-format.
(2) E-format (exponential format) is used for floating-point numbers
whose absolute value is less than 10-1 or greater than or equal to 107-l.
It consists of an optional sign, seven decimal digits, and a decimal point to
represent the mantissa, followed by the letter E, an optional sign, and one
or two decimal digits to represent the characteristic. Floating-point numbers
having more than seven decimal digits in the mantissa are rounded before
they are printed. Rounding occurs as follows: if the eighth digit is 5 or
greater, 1 is added to the seventh digit and the excess digits are truncated.
(3) F-format (fixed-decimal format) is used for numbers whose absolute
value is not covered by the ranges of the 1- and E-fonnats given above. It
consists of an optional sign, seven decimal digits, and a decimal point. Deci­
mal numbers having more than seven decimal digits are rounded as follows:
if the eighth digit is 5 or greater, 1 is added to the seventh digit and the
excess digits are truncated.

b. Arithmetic expressions in long-form arithmetic:
(1) I-format (integer format) is used for integers whose absolute value
is in the range 1015-1 to O. It consists of an optional sign followed by from
one to fifteen digits. Integer values having more than fifteen decimal digits
are printed using the E-format.
(2) E-format (exponential format) is used for Boating-point numbers whose
absolute value is less than 10- 1 or greater than or equal to 1015-l.
It consists of an optional sign, eleven decimal digits, and a decimal point
to represent the mantissa, followed by the letter E, an optional sign and one
or two decimal digits to represent the characteristic. Floating-point numbers
having more than eleven decimal digits in the mantissa are rounded before
they are printed. Rounding occurs as follows: if the twelfth digit is 5 or
greater, 1 is added to the eleventh digit and the excess digits are truncated.
(3) F-format (fixed-decima.l format) is used for numbers whose absolute
value is not covered by the ranges of the 1- and E-formats given above. It
consists of an optional sign, fifteen decimal digits, and a decimal point.
Decimal numbers having more than fifteen decimal digits are rounded
before they are printed. Rounding occurs as follows: if the sixteenth digit
is 5 or greater, 1 is added to the fifteenth digit and the excess digits are
truncated.

4. The movements of the carriage at the terminal before, during and after the
printing of expression values depend on both the type of expression being
printed and the delimiter follOWing it in the PRINT statement. Table 3 shows the
variety of carriage actions which are possible.

Some examples of arithmetic values and the way they are printed are as follows
(x represents a blank):

GIVEN

123
12345678
123.4
12345.678
12345.6745

PRINTED

x123
xl.234568E+ 07
x123.4000
x12345.68
x12345.67

Table 3. Carriage Positions in a PRINT Statement

DATA CARRIAGE POSITION CARRIAGE POSITION
TYPE DELIMITER FOR PRINTING AFTER PRINTING

Arithmetic Comma If the line contains sufficient space to accommo- The carriage will be moved past any remaining
Expression date the value, printing will begin at the current spaces in the full print zone. If the end of the

carriage position. If not, printing will start at the line is encountered, the carriage will be moved
beginning of the next line. to the beginning of the next line.

Semicolon " The carriage will be moved past any remaining
spaces in the packed print zone. If the end of the
line is encountered, the carriage will be moved to
the beginning of the next line.

Null (Not end " The carriage will be left at the print position
of statement) immediately following the data item.

Null (End of " The carriage will be moved to the beginning of
statement) the next line.

Simple Comma If at least 18 spaces remain on the line, printing The carriage will be moved past any remaining
Character will start at the current carriage position. If less spaces in the full print zone. If the end of the
Variable or than 18 spaces remain on the line, printing will line is encountered, the carriage will be moved
Subscripted start at the beginning of the next line. to the beginning of the next line.
Character
Array
Reference

Semicolon Printing will start at the current carriage position. The carriage will be moved past any remaining
If the end of the line is encountered before the spaces in the packed print zone. If the end of the
data item is exhausted, printing of the remaining line is encountered, the carriage will be moved to
characters will begin on the next line. the beginning of the next line .

Null (Not end .. The carriage will be left at the print position
of statement) immediately following the end of the data item.

Null (End of " The carriage will be moved to the beginning of
statement) the next line.

Character Comma If at least 18 spaces remain on the line, printing The carriage will be moved past any remaining
Constant will start at the current carriage position. If less spaces in the full print zone. If the end of the

than 18 spaces remain on the line, printing will line is encountered, the carriage will be moved to
start at the beginning of the next line. If the end the beginning of the next line.
of the line is encountered before the character
constant is exhausted, printing of the remaining
characters will begin on the next line.

Semicolon or Printing will start at the current carriage position. The carriage will be left at the print position
Null (Not end If the end of the line is encountered before the immediately following the constant.
of statement) character constant is exhausted, printing of the

remaining characters will begin on the next line.

Null (End of " The carriage will be moved to the beginning of
statement) the next line.

Null Comma No printing will occur. The carriage will be moved to the next full print
zone. If the end of the line is encountered, the
carriage will be moved to the beginning of the
next line.

Semicolon " The carriage will be moved three spaces. If the
end of the line is encountered, the carriage will
be moved to the beginning of the next line .

Null
.,

If the null data item is the first item on the list,
the carriage will be moved to the beginning of
the next line. Otherwise, no movement of the
carriage will occur.

Program Statements 10l

PRINT USING Statement 1

Function

General Format

Rules

102 Part II. The BASIC Language

Following are some examples of character values and the way they are printed:

STATEMENT

10 PRINT 'A','B'
20 PRINT 'A';' B '
30 LET A$ = 'B'
40 PRINT 'A'A$
50 PRINT A$'A',A$;A$
60 PRINT A$;' A '
70 LET A$ = ""
80 PRINT 'A' ;A$; , A '

PRINTED As
A~17blanks ~ B
AB

AB
BA~16blanks~BB
BA

AA

The PRINT USING statement is used in conjunction with an Image statement to
print values. PRINT USING specifies the statement number of the Image statement
to be used and the values to be printed; the Image statement specifies the format
that the print line will have.

PRINT USING statement-number [,scalar-reference] ...
where statement-number is the statement number of an Image statement and
scalar-reference is an arithmetic expression or a character expression.

1. If the statement number does not refer to an Image statement, execution is
terminated.

2. Image statements are nonexecutable and may be placed anywhere in a pro­
gram; they specify the format for single print lines. Character strings appear­
ing in an Image statement are printed exactly as they are entered. Format
specifications appearing in an Image statement specify character, integer, fixed­
point, or exponential format (see Image statement). Each scalar-reference is
edited (in order of appeara:nce'in the PRINT USING statement) into a correspond­
ing format specification (in order of appearance in the referenced Image state­
ment).

3. If the PRINT USING statement contains at least one scalar-reference and no
format specification appears in that referenced Image statement, an error
occurs. If the number of scalar references in the PRINT USING statement other­
wise exceeds the number of format specifications in the Image statement, a
carriage return occurs at the end of the Image statement and the Image state­
ment is reused for the remaining scalar references. If the number of scalar
references in the PRINT USING statement is less than the number of format
specifications in the Image statement, the line is terminated at the first unused
format specification.

4. The carriage is repositioned to a new line, if required, before printing the
edited line. The carriage is repositioned after printing is completed.

5. Each scalar-reference is converted to output format as follows:
a. The meaning of a scalar reference is extracted from the specified string and

edited into the line, replacing all elements in the format specification (in­
cluding sign, #, decimal point, and IIII or !! ! I). If an edited character
variable or subscripted character array reference is shorter than the format
specification, blank padding occurs on the right. If an edited character
variable or subscripted character array reference is longer than the format
specification, truncation occurs on the right. A character constant contain­
ing no characters results in blank padding of the entire format specification.

1 See also Image statement.

Examples

b. An arithmetic expression is converted in accordance with its format specifi­
cation as indicated in Table 4.

Table 4. Arithmetic Expression Conversions in a PRINT USING Statement

SIGN IN
FORMAT EXPRESSION

SPECIFICA TION VALUE ACTION

+ positive A plus sign is edited into the print line.

minus A minus sign is edited into the print line.

- positive A blank is edited into the print line.

minus A minus sign is edited into the print line.

none minus If the format specification is large enough, the number is
printed with a minus sign; otherwise, asterisks are edited into
the print line instead of the expression value.

c. An arithmetic expression value is converted according to the type of its for­
mat specification, as follows:

I-format: The value of the expression is rounded and converted to an integer
as follows: the first fractional digit is examined and if it is 5 or greater, 1 is
added to the integer portion. The fractional digits are then truncated.

F-format: The value of the expression is converted to a fixed-point number,
rounding the value or extending it with zeros in accordance with the format
specification. If the excess digits are fractional, rounding occurs as follows:
the first excess fractional digit is examined and if it is 5 or greater, 1 is added
to the preceding decimal place. The excess fractional digits are then trun­
cated. If all of the signiRcant digits of the value are excess relative to the
format specification, and if the first digit is not the first of the excess digits,
then asterisks are printed (see rule 5d below).

E-format: The value of the expression is converted to a floating-point num­
ber, rounding the value or extending it with zeros in accordance with the
format specification. If the excess digits are fractional, rounding occurs as
follows: the first excess fractional digit is examined and if it is 5 or greater,
1 is added to the preceding decimal place. The excess fractional digits are
then truncated.

d. If the length of the arithmetic expression value is less than or equal to the
length of the format specification, the expression value is edited, right­
justified, into the line. If the length of the expression value is greater than
the length of the format specification, asterisks are edited into the line
instead of the expression value.

30 PRINT USING 40, a,b
40 :RATE OF LOSS #### EQUALS

RATE OF LOSS 342 EQUALS

t
value
of A

####.## POUNDS

42.04 POUNDS

t
value
of B

Program Statements 103

PUT Statement 1

Function

General Format

Rules

Examples

READ Statement 3

Function

General Format

104 Part II. The BASIC Language

PRINTED FORM

FORMAT ARITHMETIC (X REPRESENTS

SPECIFICATION VALUE A BLANK)

123 123

12 x12

1.23 xxI
##.## 123 ***:*>:<:
##.## 1.23 xl.23
##.## 1.23456 xl.23
##.## .123 xO.12
##.## 12.345 12.35
###!! ! 123 123E+00
###!! t 12.3 123E- 01
###!! ! .1234 123E-03
##.## t ! ! 123 12.30E+Ol
##.## ! ! ! 1.23 xl.23E+ 00
##.## t ! ! .1234 12.34E-02

##.## ! ! ! 1234 12.34E+02

The PUT statement causes values to be placed in the specified file.

PUT file-reference,x[,x] ...
where file-reference is a character constant. 2 The character constant cannot be
a null character string (two adjacent quotation marks). The first three char­
acters cannot contain a period, a comma, or a semicolon. A blank cannot pre­
cede a non-blank in the first three characters, nor can the first three characters
be all blank. The x can be an arithmetic expression, or a character expression
(it cannot be an unsubscripted array reference).

1. The file created can be used in a GET statement in subsequent execution of
another program, or, if deactivated (see CLOSE statement), it can be used in a
subsequent GET statement in the same program.

2. The first appearance of a file name is an implied declaration and causes the
file to be activated.

3. If the size of the output file is exceeded, program execution is terminated.
4. A file currently activated as an input file cannot be specified in a PUT statement.

30 PUT 'AB]" ,Z3, 5):~X-7, A, C, F3, 9.005
40 PUT 'ABF', A, D$, F4, G$

The READ statement specifies variables which are assigned values supplied in
DATA statements.

READ variable-reference [, variab Ie-reference] ...
where variable-reference is a simple variable or a subscripted reference to an
array (it cannot be an unsubscripted array reference).

1 See also CLOSE and RESET statements.

2 To be acceptable to the DELETE and RENAME commands, the first three characters of a file name
must adhere to the following restrictions: the first character is required and must be alphabetic;
the other two characters are optional and, if specified, must be alphameric.

3 See also DATA and RESTORE statements.

Rules

Examples

REM Statement

Function

General Format

Example

RESET Statement 1

Function

General Format

Rule

Example

RESTORE Statement 3

Function

General Format

Rules

Example

1. The variable references specified are assigned successive values from the data
table beginning at the current position and the data table pointer is updated
accordingly. Subscripts in READ statements are evaluated as they occur. Thus,
as assigned variable reference in a READ statement may be used subsequently
as a subscript in that statement.

2. Arithmetic variables must correspond with arithmetic data and character vari­
ables must correspond with character constants.

3. All arithmetic data is truncated or zero-padded on the right, if necessary, to
conform to the kind of arithmetic (long or short) specified for the program in
which the values are assigned.

4. If a READ statement is executed with insufficient data in the data table, pro­
gram execution will be terminated.

5. If a READ statement is executed and no DATA statement exists, program execu­
tion will be terminated.

10 READ A,B,C
20 READ A(3) ,Z1,A9

The REM statement adds a comment to a program listing; in no way does it affect
program execution.

REM [character-string]

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT

The RESET statement causes the specified file(s) to be repositioned to the beginning.
A subsequent GET or PUT statement will refer to the first item in the file.

RESET file-reference [,file-reference] ...
where file-reference is a character constant.2 The character constant cannot be a
null character string (two adjacent quotation marks). The first three characters
cannot contain a period, a comma, or a semicolon. A blank cannot precede a
non-blank in the first three characters, nor can the first three characters be all
blank.

If a specified file is not active, its appearance in the RESET statement is ignored.

40 RESET 'ABF'

The RESTORE statement causes the data table pointer to be repositioned to the first
item in the data table, which corresponds to the first item in the first DATA state­
ment in the program. The next READ statement will begin reading at this item.

RESTORE [character-string]

1. The optional character-string is a comment which does not affect the execution
of the statement.

2. If no DATA statement(s) exist, the RESTORE statement has no effect on program
execution.

20 RESTORE

1 See also GET and PUT statements.

2 To be acceptable to the DELETE and RENAME commands, the first three characters of a file name
must adhere to the following restrictions: the first character is required and must be alphabetic;
the other two characters are optional and, if specified, must be alphameric.

8 See also DATA and READ statements.

Program Statements 105

RETURN Statement 1

Function

General Format

Rules

Example

STOP Statement

Function

General Format

Rule

Examples

106 Part II. The BASIC Language

The RETURN statement is used in conjunction with the GOSUB statement; it causes
control to be transferred back to the next logically executable statement follow­
ing the last active GOSUB statement.

RETURN [character-string]

1. More than one GOSUB statement may be executed before a RETURN statement
is executed, but when a RETURN statement is executed, there must be at least
one active GOSUB or program execution will be terminated.

2. The optional character-string is a comment which does not affect the execution
of the statement. It appears only in the program listing.

20
30
40
50

.
100 RETURN
150 GOSUB 170 J

[
i~g = __ -J_

200 RET~
The STOP statement terminates program execution.

STOP [character-string]

The optional character-string is a comment which does not affect execution. It
appears only when the program is listed.

30 STOP
80 STOP THIS IS THE END OF THE PROGRAM

1 See also GOSUB statement.

Array Operations (MAT Statements)

MAT Assignment (Simple)

Function

General Format

Rule

Example

This section presents the BASIC MAT statements in alphabetical order (with the
exception of the simple MAT assignment, which appears first). Most statements
and functions are accompanied by the following information:
1. Function: a short description of what the statement does.
2. General Format: the syntax of the statement.
3. Rules: rules governing the specification and use of the statement in a BASIC

program.
4. Example: an illustration of how the statement would look in a BASIC program.

Prior to usage in a MAT statement, an array must have been implicitly defined
by usage or explicitly defined by a DIM statement (see "Program Statements"). This
means that the statement number of the MAT statement must be higher than that
of the first usage of the subscripted array name (implicit declaration) or the DIM

statement (explicit declaration). Subsequently, an array may be redimensioned by
appending one or two subscripts (corresponding to the original number of dimen­
sions), enclosed in parentheses and separated by a comma, to the following MAT

statements:
MAT assignment with CON function
MAT assignment with IDN function
MAT assignment with ZER function
MAT GET
MAT INPUT
MAT READ

If redimensioning exceeds the original number of members or changes the
original number of dimensions, program execution is terminated. The currentIy­
defined dimensions are observed when executing a MAT statement.

This statement assigns the members of one array to another array.

MAT name-l = name-2
where name is the name of an array.

If arrays specified by name-l and name-2 do not have identical dimensions, pro­
gram execution is terminated.

DIM A(15),B(15)
MAT A = B

MAT Assignment (Additibn and Subtraction)

Function

General Format

Rule

This statement assigns the sum or difference of the members of two arrays to the
members of a third array.

MAT name-l = name-2 {+\-} name-3
where name is the name of an array.

If the specified arrays do not have identical dimensions, program execution is
terminated.

Array Operations (MAT Statements) 107

Examples DIM X(2,2) ,Y(2,2) ,Z(2,2)
MAT X = y + Z

Y Z

X= [: :] + [; :]

X is [a+e b+f]

c+g d+h

MAT X = Y - Z

Y Z

X= [: :] [;
X is [a -e b-f]

c-g d-h

MAT Assignment (CON Fundion)

Function This statement assigns the value one (1) to all members of the specified array.

General Format MAT name = CON [(Xl[X2])]
where x is an arithmetic expression and name is the name of an array.

Rule The arithmetic expressions (if present) specify redimensioning. They must be
valid subscripts. That is, their truncated integer values must be greater than zero.

Examples 20 DIM X(4,5)

30 MAT X = CON (3,3)

X is

60 DIM Y(3,3)

70 MAT Y = CON (4,2)

Yis 1 1

1 1

1 1

1 1

MAT Assignment (ION Function)

Function This statement causes the specified array to assume the form of an identity matrix.

108 Part II. The BASIC Language

General Format

Rules

Examples

MAT Assignment (Inversion)

Function

General Format

Rules

Example

MAT name = IDN[(Xt,X2)]

where x is an arithmetic expression and name is the name of a two-dimensional
array.

1. The array must be square (i.e., the values of Xt and X2 must be equal) or pro­
gram execution is terminated.

2. The arithmetic expressions (if present) specify redimensioning. They must
be valid subscripts. That is, their truncated integer values must be greater
than zero.

DIM X(5,5)
MAT X = IDN(4,4)

1 0 0 0

X is 0 1 0 0

0 0 1 0

0 0 0 1

MAT X = IDN(2,2)

X is

[: :J
This statement causes an array to be assigned the mathematical matrix inverse
of another array.

MAT name-l = INV (name-2)
where each name is the name of a two-dimensional array.

1. The array specified by name-l cannot be the same as the array specified by
name-2.

2. If the arrays are not square (each having two dimensions with identical bounds),
program execution is terminated.

3. For the square array A(m,m), the inverse of A (if it exists) is B(m,m) such that
A 0 B = BOA = I where I is an identity matrix.

Not every two-dimensional array has an inverse; the inverse of array A exists
if DET(A)#<>. If you use INV and the inverse does not exist, execution is termi­
nated. Therefore, it is a good practice to use the DET function (see section on
«Intrinsic Functions") to verify that an inverse exists before attempting to use
this statement.

4. The accuracy of the matrix inversion function cannot be predicted because it
is dependent on the characteristics of the input data and on the size of the
problem. The user must be aware of the limitations dictated by numerical
analysis considerations. It cannot be assumed that the results are accurate
simply because execution of the matrix inversion function is completed.

Consider the following statement where y is [:

MAT X = INV (Y)

Array Operations (MAT Statements) 109

The inverse of y is -:] and it is assigned to x. The multiplication of

x and y will thus give a two-by-two identity matrix. That is:

[1 1](t[2 -1]=[1 0]
1 2 -1 1 0 1

MAT Assignment (Multiplication)

Function This statement performs the mathematical matrix multiplication of two arrays
and assigns the product to a third.

General Format

Rules

Example

MAT name-l = name-2 (t name-3
where each name is the name of a two-dimensional array.

1. The array speci£ed by name-l cannot be the same as either array speci£ed by
name-2 or name-3.

2. The number of columns of the array speci£ed by name-2 must equal the num­
ber of rows of the array speci£ed by name-3. Also, the number of rows of the
array speci£ed by name-l must equal the number of rows of the array speci£ed
by name-2. The number of columns in the array speci£ed by name-l must
equal the number of columns in the array speci£ed by name-3. If any of these
is not the case, program execution is terminated.

Z is

MAT Z = X * y

x

[

AxE+BxG

CxE+DxG

y

AxF+BxH]

CxF+DxH

MAT Assignment (Scalar Multiplication)

Function

General Format

Rules

Example

This statement causes one array to be multiplied by an expression and then it
assigns the result to the corresponding members of a second array.

MAT name-l = (x) (t name-2
where x is an arithmetic expression and each name is the name of an array.

1. The expression is evaluated prior to any scalar multiplication.
2. If the arrays do not have identical dimensions, program execution is terminated.

MAT Z = (4) * X

4xA
Z=4x

[

A B

] Z is [
4 X B]

C D 4 xC 4x D

110 Part II. The BASIC Language

MAT Assignment (Transpose)

Function

General Format

Rules

Example

MAT Assignment (ZER Function)

Function

General Format

Rule

Example

MAT GET Statement 1

Function

This statement causes one array to be replaced by the matrix transpose of an­
other array.

MAT name-I = TRN (rwme-2)
where each rwme is the name of a two-dimensional array.

1. The array specified by name-I cannot be the same as the array specified by
name-2.

2. Both arrays must have two dimensions and the number of rows in the array
specified by name-I must equal the number of columns in the array specified
by name-2. Similarly, the number of rows in name-2 must equal the number
of columns in name-I. If any of these is not the case, program execution is
terminated.

MAT X = TRN (Y)

if Y is [cA
DB]

then X is [B
A

DC]

[D

A
BE C

F
] Similarly, if Y is

then X is

[A: D:]

This statement assigns the value zero (0) to all members of the specified array.

MAT name = ZER [(Xl[,X2])]
where name is the name of an array and x is an arithmetic expression.

The arithmetic expressions (if present) specify redimensioning. They must be
valid subscripts. That is, their truncated integer values must be greater than zero.

MAT X = ZER (3 ,3)

This statement allows arithmetic data to be read into the specific arrays without
referring to each member individually.

1 See also CLOSE and RESET statements.

Array Operations (MAT Statements) III

General Format

Rules

Example

MAT INPUT Statement

Function

General Format

Rules

112 Part II. The BASIC Language

MAT GET file-reference, n-l [(Xl[,XI/])] [,n-2[(xs[,x.d)]] ...
where file-reference is a character constant.1 The character constant cannot be
a null character string (two adjacent quotation marks). The first three characters
cannot contain a period, a comma, or a semicolon. A blank cannot precede a
non-blank in the first three characters, nor can the first three characters be all
blank. The n is the name of an array, and Xi is an arithmetic expression.

1. The members are read in row major order from the input file, beginning at the
current file position. Each member read must be arithmetic.

2. All arithmetic data is truncated or zero-padded on the right, if necessary, to
conform to the kind of arithmetic (long or short) specified for the program in
which the values are assigned.

3. If the input file is exhausted before a specified array is filled, program execution
is terminated.

4. The arithmetic expressions (if present) specify redimensioning. They must
be valid subscripts. That is, their truncated integer values must be greater
than zero.

5. A file is activated for input by the first execution of a MAT GET or GET state­
ment. A file is deactivated by the CLOSE statement, or at the end of execution
of a program.

6. A file currently activated as an output file cannot be specified in a MAT GET

statement. It must first be deactivated by the CLOSE statement.

50 MAT GET 'IF',A(lO) ,Z(2,4)

The MAT INPUT statement allows the user to assign values from the terminal
during execution to members of an arithmetic array without specifying each
array member individually. The MAT INPUT statement may also be used to re­
dimension arithmetic arrays. When MAT INPUT is encountered, a question mark
is printed at the terminal, the typing element is moved to the right a few spaces,
and execution is interrupted. The values the user types at this time are assigned,
row by row, to the arrays specified in the MAT INPUT statement.

MAT INPUT name-l [(Xl[,XI/])] [name-2 [(x3[,xd)]] ...
where name-l is the name of a one- or two-dimensional arithmetic array and
Xi is an arithmetic expression.

1. When a MAT INPUT statement is encountered in a program a '?' is printed at
the terminal. The user then enters the arithmetic values for the fIrst row of the
first array, followed by a carriage return. Data for each subsequent row of
that array is requested by the system with the printing of two question marks.
Data for the first row of subsequent arrays in that MAT INPUT statement is
requested by a single question mark (see example). The fInal entry for each
row of each array must be followed by a carriage return to signify end of row.
All data items entered must be separated by commas.

2. If a line is full and input data remains to be entered for the same row, the last
value entered on that line must be followed by a comma before the carriage
is returned to continue entering values for that row.

3. All data values entered must be arithmetic or the user is requested to re-enter
the values for that row.

4. If the number of values entered for a row does not equal the number of
members in the corresponding row of the array, the system will indicate (by

1 To be acceptable to the DELETE and RENAME commands, the first three characters of a file name
must adhere to the following restrictions: the first character is required and must be alphabetiC;
the other two characters are optional and, if specified, must be alphameric.

Examples

MAT PRINT Statement

Function

General Format

a message printed at the terminal) that something is wrong. The user can then
re-enter the data making the necessary corrections.

5. All arithmetic data is truncated or zero-padded on the right, if necessary, to
conform to the form of arithmetic (long or short) specified for the program in
which the values are assigned.

6. The arithmetic expressions (if present) specify redimensioning. They must be
valid subscripts. That is, their truncated integer values must be greater than
zero.

7. The following abbreviated messages are printed at the terminal when the
user makes an error entering the values for the arrays specified in the MAT

INPUT statement. In each case, the user is allowed to correct the error and
re-enter the entire data list on the same line that the message is printed.

MESSAGE TEXT

NG CON

NG DEL

NG TYP

NOITEM

TOOFEW

EXCESS

EXPLANATION

The magnitude of a numeric constant must be
less than 7.2 X 10+75 and must be greater than
5.4 X 10- 79• Check to see that your numeric
constants are within this range and that you have
not forgotten the letter "E" in the exponential
format. Also, check the spelling of any internal
constant names in your data list.
Constants supplied in response to the MAT INPUT

statement must be separated by commas.
Only numeric and internal constants are per­
mitted in the data list supplied for MAT INPUT

statements.
You have typed a comma followed by a comma,
or you have issued a CR before entering your data.
You have entered fewer constants for a row than
the number of members contained in a row of the
specified array.
You have entered more constants for a row than
the number of members contained in a row of the
specified array.

8. When a MAT INPUT statement is executed immediately after a PRINT or MAT

PRINT statement in which the final delimiter is a comma or a semicolon, the
partially completed print line is printed, the carriage is returned, and the ques­
tion mark generated by the MAT INPUT statement is printed as the first character
on the next print line.

10 DIM A (2,2) , B (5) , C (6,2)
20 MAT INPUT A,B,C(3,4)

? 1,2
?? 3,4
? 5,6,8,9
TOOFEW5,6,7,8,9
? 10,11,12;13
NG DELI0,11,12,13
?? 14,15,16,17
?? 18,19,20,21

This statement causes each member of the specified array(s) to be printed at the
terminal.

MAT PRINT arithmetic-array [{, I; } arithmetic-array] ... [, I;]
where arithmetic-array is a one- or two-dimensional arithmetic array and the
comma and semicolon are delimiting characters.

Array Operations (MAT Statements) 113

Rules

114 Part II. The BASIC Language

1. Each array in a MAT PRINT statement is printed in row major order (row by
row). The first row of each array begins at the start of a new line and is
separated from the preceding line by two blank lines. The remaining rows of
each array begin at the start of a new line and are separated from the preceding
line by a single blank line. After the final. or only array has been printed,
the carriage will be repositioned. One- or two-dimensional arithmetic arrays
may be printed.

2. Each array member is converted to a specified output format and printed. The
carriage is repositioned as specified by the delimiting character following
the array name. Each line is constructed from two types of print zones, full
or packed. Print zones are defined relative to the carriage position at which a
data item begins.
a. The size of the packed print zone is determined by the size of the converted

field (including the sign, digits, decimal pOint, and exponent) as follows:

LENGTH OF CONVERTED

DATA ITEM

2-4 characters
5-7 characters
8-10 characters

11-13 characters
14-17 characters

LENGTH OF PACKED

PRINT ZONE

6 characters
9 characters

12 characters
15 characters
18 characters

EXAMPLE (x REPRESENTS

A BLANK)

xl73xx
xl73576xx
- 45. 63927xxx
xl. 735790E - 23xx
- 8922704093115663x

b. Arithmetic expressions in short-form arithmetic are converted to output
format as follows:
(1) I-format (integer format) is used for integers whose absolute value is

in the range 107-1 to O. It consists of an optional sign followed by from
one to seven digits. Integer values having more than seven digits are
printed using the E-format.

(2) E-format (exponential format) is used for floating-point numbers whose
absolute value is less than 10-1 or greater than or equal to 107-1. It
consists of an optional sign, seven decimal digits, and a decimal point
to represent the mantissa, followed by the letter E, an optional sign, and
one or two decimal digits to represent the characteristic. Floating-point
numbers having more than seven decimal digits in the mantissa are
rounded before they are printed. Rounding occurs as follows: if the
eighth digit is 5 or greater, 1 is added to the seventh digit and the excess
digits are truncated.

(3) F-format (Rxed-decimal format) is used for numbers whose absolute
value is not covered by the ranges of the I- and E-formats given above.
It consists of an optional sign, seven decimal digits, and a decimal
point. Decimal numbers having more than seven decimal digits are
rounded as follows: if the eighth digit is 5 or greater, 1 is added to
the seventh digit, and the excess digits are truncated.

c. Arithmetic expressions in long-form arithmetic are converted to output
format as follows:
(1) I-format (integer format) is used for integers whose absolute value is

in the range 1015-1 to O. It consists of an optional sign followed by
from one to Rfteen digits. Integer values having more than fifteen
decimal digits are printed using the E-format.

(2) E-format (exponential format) is used for floating-point numbers whose
absolute value is less than 10- 1 or greater than or equal to 10Hi-1, It
consists of an optional sign, eleven decimal digits, and a decimal point
to represent the mantissa, followed by the letter E, an optional sign, and
one or two decimal digits to represent the characteristic. Floating-point

Example

MAT PRINT USING Statement 1

Function

General Format

numbers having more than eleven decimal digits in the mantissa are
rounded before they are printed. Rounding occurs as follows: if the
twelfth digit is 5 or greater, 1 is added to the eleventh digit and
the excess digits are truncated.

(3) F-format (fixed-decimal format) is used for numbers whose absolute
value is not covered by the ranges of the 1- and E-formats given above.
It consists of an optional sign, fifteen decimal digits, and a decimal
point. Decimal numbers having more than fifteen decimal digits are
rounded before they are printed. Rounding occurs as follows: if the
sixteenth digit is 5 or greater, 1 is added to the fifteenth digit and
the excess digits are truncated.

3. The converted array member will be printed at the terminal as follows:
a. If the line contains sufficient space to accommodate the value, printing will

start at the current carriage position.
b. If the line does not contain sufficient space to accommodate the value,

printing will begin at the start of the next line.
4. After the converted member has been printed, the carriage will be positioned

as specified by the delimiting character:
a. If the delimiter is a comma, the carriage will be moved past any remaining

spaces in the full print zone; if the end of the line is encountered, the
carriage will be moved to the beginning of the next line.

b. If the delimiter is a semicolon, the carriage will be moved past any remain­
ing spaces in the packed print zone. If the end of the line is encountered,
the carriage will be moved to the beginning of the next line.

c. If the final delimiter is a null, it will be treated as a comma.

In the following example, assume that there are 18 spaces from the beginning of
one print zone to the next.

10 DIM A(15), X(2,2)
20 MAT READ A
30 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
40 MAT X = CON
50 MAT PRINT A,X

1

8

15

2

9

1 1

1 1

3

10

4

11

5

12

6

13

7

14

The MAT PRINT USING statement and its associated Image statement allow the BASIC

user to have the values of all the members of a specified arithmetic array printed
at the terminal in a format of his own choosing, without having to specify each
array member individually.

MAT PRINT USING S, name-l [[,name-2] ... [name-n]]
where S is the number of the associated Image statement and name-i is the name
of an arithmetic array.

1 See also Image and PRINT USING statements.

Array Operations (MAT Statements) 115

Rules

Example

MAT PUT Statement 1

Function

General Format

116 Part II. The BASIC Language

1. Each array referred to in the MAT PRINT USING statement is printed by rows at
the terminal according to the format defined by the associated Image statement.
(See the PRINT USING and Image statements for information on format specifi­
cation.) When printed, the first row of each array begins at the start of a new
line and is separated from the preceding line by two blank lines. Each succeed­
ing array row begins at the start of a new line and is separated from the
preceding row by one blank line. After the last or only array has been printed,
the carriage is repositioned to the beginning of the next line.

2. Before being used in a MAT PRINT USING statement, an array must have been
previously defined, either implicitly through usage, or explicitly in a DIM

statement.
3. One- or two-dimensional arrays may be specified in a MAT PRINT USING

statement.

4. If the Image statement specified in the MAT PRINT USING statement does not
contain at least one format specification, an error condition results.

5. If the number of members in the array row exceeds the number of format
specifications in the associated Image statement, a carriage return occurs at the
end of the Image statement and the Image statement is reused to format
the remaining members of that row. In this case, if there are additional format
specifications in the associated Image statement after all the members of the
row have been printed, they are ignored and the first member of the next row
will be printed using the first format specification in the Image statement.

6. If the number of members in the array row is less than the number of format
specifications in the specified Image statement, the print line is terminated
when all the members of that row have been printed. Any additional format
specifications will be ignored and the first member of the next row will be
printed using the first format specification in the associated Image statement.

7. All values printed must be arithmetic.

10 DIM A(4,3)
20 : ### ##.## ##.##!!!!
30 MAT A = CON
40 MAT PRINT USING 20, A

1 1.00 1.00E+00

1 1.00 1. OOE + 00

1 1.00 1. OOE + 00

1 1 .00 1. OOE + 00

This statement causes the specified arithmetic arrays to be written on the output
file without referring to each member individually.

MAT PUT file-reference, name-l [,name-2] ...
where file-reference is a character constant.2 The character constant cannot be
a null character string (two adjacent quotation marks). The first three characters
cannot contain a period, a comma, or a semicolon. A blank cannot precede a

1 See also CLOSE and RESET statements.

2 To be acceptable to the DELETE and RENAME commands, the first three characters of a Ble name
must adhere to the following restrictions: the first character is required and must be alphabetic;
the other two characters are optional and, if specified, must be alphameric.

Rules

Example

MAT READ Statement 1

Function

General Format

Rules

Example

non-blank in the first three characters, nor can the first three characters be all
blank. Each name is the name of an array.

1. The members are written in row major order into the output file, beginning
at the current file position. Each member written must be arithmetic.

2. A file is activated for output by the first execution of a MAT PUT or PUT state­
ment. A file is deactivated by the CLOSE statement, or at the end of execution
of a program.

3. A file currently activated as an input file cannot be referenced by a MAT PUT

statement. It must first be deactivated by the CLOSE statement.
4. If the size of the output file is exceeded, program execution is terminated.

60 MAT PUT 'ITF',A,M,Q

This statement is used in conjunction with the DATA statement; it causes arith­
metic data to be read into the specified arrays without referring to each member
individually.

MAT READ name-l [(Xl [,X2])] [,name-2[X3 [,x,d)]] ...
where Xi is an arithmetic expression and each name is the name of an array.

l. Beginning at the current position of the data table pointer, the members are
read in row major order from the data table, and the pointer is updated
accordingly. If the data table is exhausted before a specified array is filled,
program execution is terminated. The data pointer may be reset by executing
the RESTORE statement.

2. The arithmetic expressions (if present) specify redimensioning. They must
be valid subscripts. That is, their truncated integer values must be greater
than zero.

3. Each member read must be arithmetic.
4. All arithmetic data is truncated or zero-padded on the right, if necessary, to

conform to the kind of arithmetic (long or short) specified for the program
in which the values are aSSigned.

5. If a MAT READ is executed and no DATA statement exists, program execution
is terminated.

10 DIM $(3,6) ,B(20) ,S(10)
70 MAT READ $(2,8) ,B(12),S

1 See also DATA and RESTORE statements.

Array Operations (MAT Statements) 117

Intrinsic Functions

In addition to the five arithmetic operations (i.e., addition, subtraction, multi­
plication, division, and exponentiation), BASIC supplies twenty-four familiar
mathematical functions, such as sine (SIN), cosine (cos), square root (SQR), and
natural logarithm (LOC). Table 5 lists these functions in alphabetical order.

The quantity in parentheses immediately following the name of the function
is an argument. An argument is merely an arithmetic expression representing a
value that the function is to act upon. All the ITF:BASIC intrinsic functions
require arithmetic expressions as arguments with the exception of DET, which re­
quires as its argument the name of a square arithmetic array.

Table 5. BASIC Intrinsic Functions

FUNCTION FINDS

ABS(x) Absolute value of x
ACS(x) Arccosine (in radians) of x
ASN(x) Arcsine (in radians) of x
ATN(x) Arctangent (in radians) of x
COS(x) Cosine of x radians
COT(x) Cotangent of x radians
CSC(x) Cosecan~ of x radians
DEG(x) Number of degrees in x radians
DET(x) Determinant of an arithmetic array x

EXP(x)
(x must be a square array)

Natural exponential of x
HCS(x) Hyperbolic cosine of x radians
HSN(x) Hyperbolic sine of x radians
HTN(x) Hyperbolic tangent of x radians
INT(x) Integer part of x
LGT (x) Logarithm of x to the base 10
LOG(x) Logarithm of x to the base e
LTW(x) Logarithm of x to the base 2
RAD(x) Number of radians in x degrees
RND[(x)] 1 Random number between 0 and 1
SEC (x) Secant of x radians
SGN(x) Sign of x (-1,0, or 1)
SIN(x) Sine of x radians
SQR (x) Square root of x
TAN(x) Tangent of x radians

1 Each time RND is called with an argument, the random number generator is initialized
to the value of that argument. Subsequent references to RND without using an argument
will cause the new number to be generated from the previous one. If RND is called
without an argument and there has been no previous initialization, the generator will
initialize itself.

Note: Exponentiation operations and some intrinsic function computations are
performed by ITF through proven mathematical approximations. Occasionally,
results may be inaccurate in the least significant positions because of the attendant
limitations of the approximation methods. To overcome this problem, try printing
fewer Significant digits (by using the Image and PRINT USING statements), or, if
these least significant digits are important, try using long-form arithmetic. You'll
probably find that a combination of the two gives the most satisfactory results.

Intrinsic Functions 119

Part III. Command Language

Command Language for T50 ITF:BA5IC

General Rules of Usage

Syntax of a Command

Positional Operands

Keyword Operands

Delimiters

Subcommands

This section presents the TSO ITF:BASIC commands and subcommands in alpha­
betical order. The description of each command or subcommand includes:

• Function: a short definition of what the command or subcommand does.
• General Format: the syntax of the command or subcommand.
• Rules: general rules governing the specification and use of the command or

subcommand.
• Abbreviations: acceptable abbreviations for the command or subcommand

and its operands.
Before the descriptions are presented, a summary of the rules for using commands
and subcommands is given. These rules should be interpreted with the syntax
conventions given in Appendix A in mind, since the command formats follow
those conventions.

A command consists of a command name followed, usually, by one or more
operands. A command name is typically a familiar English word, often a verb
that describes the function of the command. For instance, DELETE deletes a pro­
gram or a data file. Operands provide the specific information required for the
command to perform the requested operation. For example, DELETE requires at
least one operand to identify the item to be deleted.

Two types of operands are used with the commands: positional and keyword.
Positional operands follow the command name and precede, or are sometimes
associated with, keywords.

Postional operands are values that follow the command name in a prescribed
sequence. The value may be one or more names, symbols, or integers. These
operands are shown in lower-case letters.

Keywords are specific names or symbols that have a particular meaning to the
system. In general, you can include keywords in any order following the positional
operands. Keywords are shown in upper-case letters. You must enter them exactly
as shown or you can use an acceptable abbreviation. Not all keywords can be
abbreviated; those that can are noted in the description of the associated command
or subcommand. In general, keywords in commands entered in ITF'S test mode
cannot be abbreviated.

When you type a command, you should separate the command name from the
first operand by one or more blanks. You should separate operands by one or
more blanks or commas, as indicated in the command format.
Note: If an operand is parenthesized, you don't have to separate the left paren­
thesis from the preceding keyword or command name.

The work done by some of the commands is divided into individual operations.
Each operation is defined and requested by a subcommand. To make the full
range of individual operations available to you, you must enter the command
first. You can then enter one of its subcommands to specify the particular in-

Command Language for TSO ITF: BASIC 123

dividual operation you want performed. You can continue entering subcommands
until you enter the END subcommand. The commands and their sub commands are
shown in Tables 6 and 7. Acceptable abbreviations and a brief description of
function are also included in these tables.

The syntax of a subcommand is the same as that of a command and the pre­
vious discussions of operands and delimiters apply to subcommands as well as
commands.

How To Enter a Command or Subcommand

Continuations

124 Part III. Command Language

To enter a command, type the command name and any operands required and
then give a CR. You enter a subcommand and BASIC statements in the same way.
The discussions given in the chapter "Getting Started" (Part I) apply to all the
information that you may type.

Certain commands and subcommands can be continued over two or more
lines. Excluded are those subcommands that can be entered in the ITF test mode;
they must fit on one line.

If all of the operands of an eligible command or subcommand do not fit on one
line, follow this sequence:
1. Type a hyphen (-) after the last operand on the line.
2. Give a CR.

3. Continue entering operands on the next line. If they do not fit in the second
line, repeat from 1.

4. Give a CR.

Table 6. Commands and Their Subcommands, ITF Test Mode Excluded

COMMAND (ABBREVIATION) FUNCTION
SUBCOMMAND (ABBREVIATION)

BASIC Executes permanent
test mode.1

programs; enters ITF

CONVERT (CONV) Converts os ITF:BASIC programs to TSO
ITF:BASIC programs.

DELETE (D) Deletes BASIC programs and data files.

EDIT (E) Initiates the edit mode.
CHANGE (C) Corrects parts of statement.
DELETE (D) Deletes one or more statements.
END Ends the mode; returns to command mode.
HELP (H) Requests help about EDIT subcommands.
INPUT (I) Initiates input phase.
LIST (L) Displays one or more statements.
RENUM (REN) Renumbers programs.
RUN (R) Executes programs; enters ITF test mode.1

SAVE (S) Saves programs (makes a program

SCAN (SC)
permanent).
Turns syntax checking on or off.

HELP (H) Requests help about commands.

LISTCA T (LISTC) Displays names of your programs
files.

and data

LOGOFF Ends your terminal session.

LOGON Initiates your terminal session.

RENAME (REN) Renames programs or files.

RUN (R) Executes programs; enters the ITF test mode. l

SEND (SE) Sends messages to other users or operator.

See Table 7 for the ITF test mode subcommands.

AT Subcommand 1

Function

General Format

Rules

Abbreviations

BASIC Command

Function

General Format

Rules

Table 7. ITF Test Mode Subcommands

SUBCOMMAND 1 FUNCTION

AT Sets one or more breakpoints.

END Ends the mode; returns to the mode from which the ITF test
mode was initiated.2

GO Starts or resumes execution.

HELP Requests help about test mode subcommands.

LIST Displays values of variables.

NOTRACE Turns off traces.

OFF Turns off breakpoints.

TRACE Sets traces for one or more names.

1 None of the ITF test mode subcommands can be abbreviated.

2 The ITF test mode is initiated by specifying the TEST option in the BASIC command, the
RUN command, or the RUN subcommand of the edit mode.

The AT subcommand permits programmer intervention immediately before the
execution of a specified statement in the test mode.

AT statement-number [,statement-number] ...

1. The AT subcommand is used for debugging programs and can be used only in
the test mode.

2. Statement-number is the point at which execution is to be suspended and con­
trol transferred to the terminal. It is called a breakpoint.

3. Every time a breakpoint is reached, execution is suspended and you receive
control, until either the breakpoint is nullified by an OFF subcommand or exe­
cution of the program is completed.

4. Up to ten different breakpoints can be in effect at anyone time for the pro­
gram being executed.

5. If a statement number specified in an AT subcommand does not exist, the sys­
tem assumes that it does exist and establishes a breakpoint for it, even though
that breakpoint will never be reached. Such breakpoints are included in the
total count of breakpoints for your program.

6. Once given control at a breakpoint, you can enter any test mode subcommands
and/ or simple assignment statements of the form:

simple-arithmetic-variable = [+ 1-] numeric-constant
7. Execution is resumed from a breakpoint by the GO subcommand.

None.

BASIC is used to execute permanent ITF:BASIC programs in the command mode. It
can be used to initiate the ITF test mode.

BASIC program-name [TESTINOTEST] [LMsclsMSC] [LPREClsPREC]

1. Program-name is the name of the ITF:BASIC program to be executed or tested.
It must be the name of a permanent program (one that was saved in per­
manent storage).

1 See also OFF subcommand.

Command Language for TSO ITF:BASIC 125

Abbreviations

CHANGE Subcommand

Function 1

General Formats

Rules

126 Part III. Command Language

2. TEST specifies that the ITF test mode is to be initiated; NOTEST specifies that no
testing is to be performed. If neither is specified, NOTEST is assumed.

3. LMSG specifies that only the long forms of error messages are to be provided
for errors detected during execution. SMSG specifies that the short forms of the
error messages are to be provided. If you type a question mark after the last
short message has been printed, you will receive the expansion. If neither
operand is specified, LMSG is assumed.

4. LPREC specifies that calculations are to be performed using long-form arith­
metic (fifteen significant digits); SPREC specifies that calculations are to be per­
formed using short-form arithmetic (seven significant digits). If neither is
specified, SPREC is assumed.

None.

The CHANGE subcommand is used in the edit mode to modify a sequence of char­
acters in a statement or in a range of statements. You can type the actual change
in the CHANGE subcommand itself or you can display part of one or more state­
ments and then type the change at the end of each displayed statement.

I. Format for specified changes; no display:
CHANGE stmt-l [stmt-2] delim-stringl delim-string2 [delim[ALL]]

II. Format for changes through displays:
CHANGE stmt-l [stmt-2] {delim-stringlcount}

1. Rules for Format I are:
a. Stmt-l specifies the number of a statement that you want to change. When

used with stmt-2, it specifies the first statement of a range of statements.
b. Stmt-2 specifies the last statement of a range of statements that you want to

change.
c. Delim-stringl specifies a special delimiter immediately followed by the

sequence of characters that you want to change. The special delimiter can
be any printable character other than a number, blank, tab, comma, semi­
colon, parenthesis, or asterisk. Note that a standard delimiter (e.g., a blank)
between the special delimiter and the string will be treated as a character
in the string.

d. Delim-string2 specifies a special delimiter and the sequence of characters
that you want to replace stringl with. The special delimiter must be the
same one that precedes stringl.

e. ALL specifies that every occurrence of stringl within the specified statement
or range of statements will be replaced by string2. If ALL is not specified,
only the first occurrence of stringl will be replaced by string2. The special
delimiter that precedes ALL must be the same one used with stringl and
string2.

2. Rules for Format II are:
a. Stmt-l specifies the number of the statement that you want to change. The

system will display part or all of this statement according to the rest of
your specification. When used with stmt-2, it specifies the first statement of
a range of statements.

b. Stmt-2 specifies the last statement of a range of statements. The type of
display for this range depends on whether the de lim-string or count oper­
and is specified. If de lim-string is specified, the range is searched for the

1 Only a subset of the CHANGE subcommand is presented here. This subset has been selected for
its applicability to ITF usage. The full subcommand is presented in the TSO Command Lan­
guage Reference publication (see the preface).

Abbreviations

CONVERT Command

Function

General Format

first occurrence of string and the statement containing it is displayed at your
terminal. This display contains all characters in the statement up to but not
including string. If count is specified, every statement in the range is dis­
played partially or totally, according to the number of characters specified
by count.

c. Delim-string specifies a special character immediately followed by the se­
quence of characters you want to change. The special delimiter can be any
printable character other than a number, blank, tab, comma, semicolon,
parenthesis, or asterisk. Note that a standard delimiter (e.g., a blank) be­
tween delim and string will be treated as a character in string.

When this operand is specified for just one statement, that statement is
displayed up to but not including the occurrence of string in the statement.
You can then type the rest of the statement. When this operand is specified
for a range of statements, the first statement found to contain string in that
range is displayed up to but not including string. Again, you can then type
the rest of the statement.

d. Count specifies the number of characters to be displayed at your terminal,
starting at the beginning of each statement indicated. Thus, if one statement
is specified, count specifies how many characters of that statement are to
be displayed; if a range of statements is specified, count specifies how many
characters of each statement are to be displayed. You must complete a state­
ment in order for the system to display the next statement in the range.
The statement number associated with a statement must not be included in
the count.

e. Whenever a statement is partially displayed, that part of the statement that
is not displayed no longer exists; it has been deleted. What you type as the
rest of the statement replaces the deleted part of the statement.

The word CHANGE can be abbreviated as C; the word ALL can be abbreviated
as A.

The function of CONVERT is to make an os ITF:BASIC program acceptable to TSO ITF.

The use of CONVERT should concern only those users who are moving from as ITF

to TSO ITF and who wish to use their os ITF programs under TSO ITF.

CONVERT dsnamel IN(dsname2) [LRECL(rln)] [BLOCK(bln)] BASIC

where:
dsnamel
IN(dsname2)

LRECL

rZn

BLOCK

is the data set name of the as ITF program to be converted.
specifies the TSO ITF data set name to be given to the converted
program.

specifies the logical record length, rln, of the logical records in
dsname2. Each logical record will contain one line of the con­
verted program and each line will be padded with blanks to the
length given by rln. If a line exceeds the length given by r1n, it
is an error and the conversion will be discontinued. If LRECL is
omitted, LRECL(80) is assumed.

specifies the length of each logical record. It must be an integer
from 1 through 128. When specifying this value, be sure to allow
8 bytes for the statement number in each statement.

specifies the block (or physical record) size. It means that the
logical records in dsname2 are to be blocked into one or more
physical records, the size of which is given by bZn.

Command Language for TSO ITF: BASIC 127

Rules

Abbreviation

128 Part III. Command Language

bln is the physical record size. It must be an integer multiple of rln,
which means that if LRECL is omitted, bln must be an integral
multiple of 80.

BASIC must be specified to indicate that the os ITF program being con­
verted is written in BASIC.

1. IN, LRECL, BLOCK, and BASIC can be specified in any order. The only positional
requirement is that dsnamel follow CONVERT.

2. If LRECL is omitted, LRECL(80) is assumed, regardless of whether or not BLOCK

is specified.
3. In specifying a logical record length, you should specify a number large enough

to ensure that the longest statement in your program (plus the eight-byte
line number) will fit in a logical record. If it doesn't fit, the conversion will not
be performed. A logical record length of 128 will ensure that all statements fit.

4. Dsnamel is the name of your program as known to os ITF. Under os ITF your
programs are members of a partitioned data set (your private library). The
name of that partitioned data set is the same as your os ITF user identification
code. Thus, if you are known to os ITF as BOBA4, the partitioned data set of
which your programs are members is also named BOBA4.

Members of partitioned data sets are referred to by enclosing the name of
the member (i.e., the name under which you saved your program) in paren­
theses after the data set name. Thus, a program that BOBA4 saved under the
name SUB actually has the name BOBA4(SUB) as far as os ITF is concerned.

To convert BOBA4(SUB) to TSO ITF format, the CONVERT command would begin
as follows:

convert 'boba4(sub) , in •••

Notice that single quotation marks surround the data set name. The quotation
marks are required because the data set name does not conform to the TSO

data set naming conventions. If the quotation marks were not there, TSO would
append qualifiers to both ends of the name and the resulting name would be
wrong.

5. The partitioned data set referred to by dsnamel must be cataloged and known
to the operating system. Before you use the CONVERT command, consult your
installation maintenance personnel to ensure that this has been done.

6. Dsname2 is the name that you wish to give to the converted program. It
should be constructed according to the TSO data set naming conventions. If
it is not so constructed, be sure to enclose the name in single quotation marks
so that TSO will not append qualiRers to the name.

In most cases, you can probably specify the same program name that you
used under os ITF. The only time you shouldn't use the same name is when
you already own a program of that name under TSO ITF. For example, to com­
plete the CONVERT command begun in rule 4, SUB could be specified with IN

as follows:

convert 'boba4(sub) , in(sub) lrecl(128)

The name of the converted program, as you know it under TSO ITF, is SUB. If
this is a BASIC program and your user identification under TSO is BLUNN, the
full name, as TSO knows it, is:

BLUNN .SUB.BASIC

7. The statements of the converted program will have the same numbers as the
statements of the os ITF program.

The word CONVERT can be abbreviated as CONV.

DELETE Command (Also a Subcommand of EDIT)

Function

General Format 1

Rules

The function of DELETE depends on where it is used. In the command mode,
DELETE is used to delete one or more data sets (programs or data files that are
in permanent storage); in the edit mode, it deletes one or more statements from
the program being edited.

1. In the command mode:
DELETE {data-set I (data-set-list) }

2. In the edit mode:
DELETE statement-l [statement-2]

1. DELETE in the command mode:
a. Data-set is the name of the ITF: BASIC program or data file that you want to

delete. Data-set-list is used when you want to delete more than one program
and/ or data file. The data sets named in the list must be separated from each
other by one or more blanks or a comma and the entire list must be en­
closed in parentheses (as shown in the format).

b. When deleting a data file, you must observe the following:
1) In the DELETE command, file names cannot exceed three characters (if

your file name is three characters or less, there is no problem; if your
file name is longer, make certain that you use only the first three charac­
ters in the DELETE command). These three characters must conform to
the following TSO file naming conventions:
a) The first character is required and must be alphabetic-any letter

(A through z) or one of the three alphabetic extenders ($, #, and @).
b) The other two characters are optional; if specified, they must be

alphameric-any alphabetic character or any digit (0-9). If your file
name does not conform to these conventions, it cannot be used in the
DELETE command.

Note: Not all file names permitted by ITF are acceptable for use in the
DELETE and RENAME commands. For more information see Part I "Crcat­
ing and Using Files" under the heading "Naming Files."

2) The first three characters of the file name (minus the surrounding quota­
tion marks) must be enclosed in parentheses immediately following the
word DATA. For example,

delete data(in)

deletes the file named "IN" from permanent storage. The following exam­
ple illustrates how to specify more than one file name in data-set-list:

delete (cost,data(in) ,data(out))

This command deletes the program named COST and the two files named
"IN" and "OUT" from permanent storage.

2. DELETE in the edit mode:
a. Statement-l specifies the number of the statement that you want to delete

from the program being edited. When used with statement-2, it specifies
the first statement in a range of statements to be deleted.

b. Statement-2 specifies the last statement of a range of statements that you
want to delete. If both statenwnt-l and statel1wnt-2 are specified, all state­
ments between and including statement-l and statement-2 are deleted from
the program being edited.

1 Only a subset of DELETE in these modes is presented here. This subset has been selected for its
applicability to ITF usage. The full use of DELETE in these modes is given in the TSO Command
Language Reference publication (see the preface).

Command Language for TSO ITF; BASIC 129

Abbreviation

EDIT Command
Function

General Format 1

Rules

Abbreviations

END Subcommand

Function

General Format

Rules

Abbreviations

GO Subcommand

Function

General Format

Rules

Abbreviations

The word DELETE can be abbreviated as D.

The EDIT command initiates the edit mode, where you can create, update, exe­
cute, and save your ITF:BASIC programs.

EDIT program-name BASIC [OLD I NEW] [SCAN I NOSCAN]

l. Program-name is the name of your ITF:BASIC program. This operand must ap­
pear before all other operands.

2. BASIC specifies that the program is an ITF: BASIC program.
3. OLD specifies that the program already exists and that a copy of it is to be

retrieved for use in this mode. NEW specifies that the program is about to be
created. If neither OLD nor NEW is specified, OLD is assumed.

Automatic statement-numbering occurs when a program is new; it is as if
an INPUT subcommand were given immediately after the EDIT command.

4. SCAN specifies that syntax error notifications are to be given to you as those
errors are discovered. NOSCAN specifies that these notifications are to be sup­
pressed until you explicitly request them by a SCAN subcommand or until you
execute your program. If neither SCAN nor NOSCAN is specified, NOSCAN is
assumed.

The word EDIT can be abbreviated as E; OLD as 0; NEW as NE; SCAN as S; NOSCAN as
NOS.

END is a subcommand of the edit and test modes. It terminates the mode it is
used in.

END

1. END terminates the edit and test modes.
2. When the edit mode is terminated, control returns to the command mode.
3. When the test mode is terminated, control returns to the command mode or to
the edit mode, depending on which of these was used to initiate the test mode.

None.

The GO subcommand starts or resumes execution in the test mode.

GO

1. GO is a subcommand of the test mode.
2. The first occurrence of GO in the test mode starts the execution of the program

being tested. In all other cases, GO resumes execution when that execution has
been interrupted by (a) an attention interruption, or (b) a breakpoint estab­
lished by the AT subcommand.

None.

HELP Command and Subcommand

Function

130 Part III. Command Language

HELP gives you information about ITF or about the function, syntax, and operands
of commands and subcommands. This information is displayed at your terminal
in response to your request for help.

1 Only a subset of the EDIT command is presented here. This subset has been selected for its
applicability to ITF usage. A full discussion of the EDIT command is given in the TSO Command
Language Reference publication (see the preface).

General Format

Rules

Abbreviations

INPUT Subcommand

Function

General Format]

Rules

Abbreviation

[[

[FUNCTION] [SYNTAX] [OPERANDs[(keyword-list)]]]]
HELP name

ALL

1. HELP can be given in any mode. In the command mode, HELP can be used to
obtain information about commands or about ITF; in other modes, it can be
used to obtain information about any of the subcommands that can be used
in those modes.

2. If HELP is given in the command mode, name must be a command name or
ITF; if HELP is given in one of the other modes, name must be the name of a
subcommand of that mode.

3. If name is ITF, no other operands can be specified. In this case, HELP must be
given in the command mode and the resulting display will consist of a brief
description of the features of ITF.

4. If name is a command or subcommand name, it must precede all other oper­
ands. If no operands follow name, ALL is assumed.

5. If name is omitted, no other operands can be specified. In this case, HELP will
display a list of all available commands or subcommands (whichever applies)
and their functions. From this list, you can select the command or subcom­
mand most applicable to your needs.

6. FUNCTION specifies that you want information about the purpose and oper­
ation of the command or subcommand given by name.

7. SYNTAX specifies that you want information about the syntax required to use
name correctly.

8. OPERANDS [(keyword-list)] specifies that you want explanations of all or se­
lected operands of name. If keyword-list is omitted, all operands will be
described. If keyword-list is specified, only those keyword operands given in
the list will be described. The keywords in the list must be separated from
each other by commas or blanks.

9. ALL specifies that you want to see all of the information available about the
command or subcommand given by name. If name is a command that has
subcommands, the display will begin with a list of those subcommands.

10. FUNCTION and/ or SYNTAX and/ or OPERANDS can be specified in any order after
name. They must be omitted if ALL is specified.

In the edit and command modes, HELP can be abbreviated as H, FUNCTION as F,

SYNTAX as S, OPERANDS as 0, and ALL as A; no abbreviations are permitted in the
ITF test mode.

The INPUT subcommand initiates or resumes the input phase of the edit mode.

INPUT [statement-number [increment]]

1. Statement-number specifies the statement number to be used for the next
statement that you will add or insert into your program. Automatic statement
numbering will begin with this number.

2. Increment specifies the amount by which you want each succeeding statement
number to be increased. If this operand is omitted, it is assumed to be 10.

3. If no operands are specified, the next statement number is determined by
incrementing the highest existing statement number in your program by 10.

The word INPUT can be abbreviated as I.

1 Only a subset of the INPUT subcommand is given here. This subset has been selected for its
applicability to ITF usage. The full subcommand is presented in the TSO Command Language
Reference publication (see the preface).

Command Language for TSO ITF:BASIC 131

LIST Subcommand

Function

General Formats

Rules

Abbreviations

LlSTCAT Command

Function

General Format 2

Rules

Abbreviations

LOGOFF Command

Function

General Format

132 Part III. Command Language

The function of the LIST subcommand depends on where it is used. In the edit
mode, LIST displays one or more statements of your program at your terminal;
in the test mode, LIST displays the values of one or more variables.

1. In the edit mode: 1

LIST [stmt-l [stmt-2]]
2. In the test mode:

LIST [(variable-list)]

1. LIST in the edit mode:
a. Stmt-l specifies the number of the statement that you want displayed at

your terminal. When used with stmt-2 it specifies a range of statements to
be displayed.

b. Stmt-2 specifies the number of the last statement that you want displayed.
When you specify this operand, all statements from stmt-l through stmt-2
are displayed.

c. If no statement number is given, all statements in your program are dis­
played.

2. LIST in the test mode.
a. Variable-list specifies one or more variables whose values are to be dis­

played at your terminal. The list must be enclosed in parentheses and the
variables must be separated from each other by commas. The list must not
contain subscripted variables.

b. If variable-list is omitted, the values of all variables in the program are dis­
played.

The word LIST can be abbreviated as L in the edit mode; it cannot be abbreviated
in the test mode.

The LISTCAT command lists the names of all the ITF:BASIC programs, and data files
that belong to you.

LISTCAT [MEMBERS]

1. MEMBERS is the optional operand that must be specified if you want your list­
ing to include the names of the files you have in DATA, the storage area in which
your files are retained. If you omit MEMBERS, only the word DATA will be listed
for files; its "members" will not be listed.

2. Names of ITF: BASIC programs are listed in the following form:
name.BASIC

where name is the name under which the program was saved and BASIC iden­
tifies it as an ITF:BASIC program.

The word LlSTCAT can be abbreviated as LlSTC; MEMBERS as M.

The LOGOFF command terminates your terminal session.

LOGOFF

1 Only a subset of LIST in the edit mode is given here. This subset has been selected for its appli­
cability to ITF usage. The full discussion of this subcommand is given in the TSO Command
Language Reference publication (see the preface).

2 Only a subset of the LISTCAT command is given here. This subset has been selected for its
applicability to ITF usage. The full command is discussed in the TSO Command Language
Reference publication (see the preface) .

Rules

Abbreviati ons

LOGON Command

Function

General Format 1

Rules

Abbreviation

NOTRACE Subcommand 3

Function

General Format

Rules

Abbreviations

OFF Subcommand 4

Function

General Format

Rules

None.

None.

The LOGON command initiates your terminal session.

LOGON user-id [PRoc(p1'ocedure-name)]

1. User-id is the user identification (and, optionally, password) assigned to you
by your installation. You must specify this every time that you log on. If you
are required to supply a password and you omit it, TSO will prompt you for it.

2. PRoc(procedure-narne) specifies your log-on procedure. It is the installation­
supplied routine2 that defines what kind of work you do at the terminal and
what system resources you need to do that work. Your installation will give
you the procedure-name to use in this operand. For purposes of this manual,
we are assuming that this name is ITFB.

The word PROC can be abbreviated as P.

NOTRACE is a test mode subcommand; it nullifies traces established by the TRACE

subcommand.

NOTRACE [(identifier-list I ~)]

1. Identifier-list specifies one or more variables, intrinsic functions, branch point
statement numbers, and file names for which traces currently in effect are to
be terminated. The list of identifiers must be enclosed in parentheses and the
identifiers themselves must be separated from each other by commas. Traces
for identifiers not specified in the list remain in effect.

2. The asterisk specifies that all traces currently in effect for branch points are
to be terminated; all other traces remain in effect. The asterisk must be en­
closed in parentheses.

3. If neither option is specified, all traces in effect are terminated.

None.

The OFF subcommand turns off the breakpoints established by the AT subcom­
mand. It can be used only in the test mode.

OFF [statement-numbe1'[,statement-number]] ...

1. The OFF subcommand can be used only in the test mode.
2. Statement-number must be the same number that appears in a preceding AT

subcommand. Program execution will no longer be suspended when it reaches
this statement.

3. An OFF subcommand given when no AT subcommand is in effect is considered
an error condition.

1 This is a subset of the LOGON command, chosen for its applicability to ITF:BASIC usage. The
full command is given in the TSO Command Language Reference publication (see the preface).

2 It is assumed that installations will supply log-on procedures for their ITF:BASIC users. If this
is not so at your installation, consult both the TSO Terminal U seT's Guide (see the preface)
and the TSO ITF Installation Reference Material publication (Order Number SC28-6841) for
information on defining log-on procedures.

3 See also TRACE subcommand.

4 See also AT subcommand.

Command Language for TSO ITF:BASIC 133

Abbreviations

RENAME Command

Function

General Format 1

Rules

Abbreviation

RENUM Subcommand

Function

General Format

Rules

134 Part III. Command Language

4. An OFF subcommand with no statement numbers can be used to turn off the
breakpoints established by all preceding AT subcommands.

None.

RENAME is the command used to rename ITF:BASIC programs and data files that
are in permanent storage.

RENAME old-name new-name

1. Old-name is the name that you want to change; new-name is the name that
will replace old-name.

2. When renaming a data file, you must observe the following:
1) In the RENAME command, file names cannot exceed three characters (if

your £Ie name is three characters or less, there is no problem; if your file
name is longer, make certain that you use only the first three characters in
the RENAME command). These three characters must conform to the follow­
ing TSO file naming conventions:
a) The first character is required and must be alphabetic-any letter (A

through z) or one of the three alphabetic extenders ($, #, and @).
b) The other two characters are optional; if specified, they must be al/Jha­

merle-any alphabetic character or any digit (0-9). If your file name does
not conform to these conventions, it cannot be used in the REl\AME

command.
Note: Not all file names permitted by ITF are acceptable for use in the
DELETE and RENAME commands. For more information see Part I "Creating
and Using Files" under the heading "Naming Files."

2) The first three characters of the file name (minus the surrounding quota­
tion marks) must be enclosed in parentheses immediately following the
word DATA. For example,

rename data(inf) data(fla)

causes the file named INF to be renamed FLA.

The word RENAME can be abbreviated as BEN.

RENUM is the edit mode subcommand that renumbers part or all of the program
currently being edited.

RENUM [new-number [increment [old-nUlnber]]]

1. New-number specifies the first statement number to be assigned to the section
of the program being renumbered.

2. Increment specifies the amount by which each succeeding statement number
is to be incremented. If omitted, increment is assumed to be 10. You cannot use
this operand without new-number.

3. Old-number specifies the location at which numbering is to begin. If old­
number is omitted, renumbering will start at the beginning of the program.
When old-number is used, new-number must be greater than the number of the
statement that actually precedes old-number in the program. You cannot use
this operand without using the other two operands of RE~U:M.

1 This is a subset of RENAME, selected for its applicability to lTF:BASIC usage. The full command
is described in the TSO Command Language Reference publication (see the preface).

Abbreviation

4. If no operands are specified, the entire program is renumbered using the
standard increment of 10.

5. All references to statement numbers (e.g., GOTO, GOSUB, MAT PRINT USING, PRINT

USING, and IF ... THEN/GOTO) are automatically updated when an ITF:BASIC

program is renumbered. In this process, any blanks between the digits of the
statement number reference will be eliminated and the number will be
squeezed together. For example, assuming that the specified increment was
twenty, the statement

go to 5 1 ° will appear as go to 530

after renumbering and the statement

print usin g 8 0, x will appear as print usin g 100, x.

The word RENUM can be abbreviated as REN.

RUN Command (Also a Subcommand of EDIT)

Function

General Formats

Rules

RUN is used to execute ITF:BASIC programs and to initiate the ITF test mode for
program testing.

1. In the command mode:
RUN prog-name BASIC [TESTiNOTEST] [LMSGiSMSG] [LPRECisPREC]

2. In the edit mode:
RUN [TEST I NOTEST] [LMSG I SMSG] [LPREC I SPREC]

1. RUN in the command mode:
a. Prog-name is the name of the ITF:BASIC program to be executed or tested.

This program must be permanent-that is it must have been previously
saved in permanent storage.

b. BASIC specifies that the program is an ITF:BASIC program.
c. TEST specifies that the test mode is to be initiated; NOTEST specifies that no

testing is to be performed. If neither is specified, NOTEST is assumed.
d. LMSG specifies that only the long forms of error messages are to be provided

for errors detected during this execution. SMSG specifies that the short forms
of error messages are to be provided. If you type a question mark after the
last short message has been printed, you will receive the expansions. If
neither operand is specified, LMSG is assumed.

e. LPREC specifies that calculations are to be performed using long-form arith­
metic (fifteen significant digits); SPREC specifies that calculations are to be
performed using short-form arithmetic (seven significant digits). If neither is
specified, SPREC is assumed.

2. RUN in the edit mode:
a. The program to be executed or tested is the one currently being edited (Le.,

the one whose name is specified in the EDIT command).
b. TEST specifies that the test mode is to be initiated; NOTEST specifies that no

testing is to be performed. If neither is specified, NOTEST is assumed.
c. LMSG specifies that only the long forms of error messages are to be provided

for errors detected during this execution. SMSG specifies that the short forms
of the error messages are to be provided. If you type a question mark after
the last short message has been printed, you will receive the expansions of
those messages. If neither operand is specified, LMSG is assumed.

d. LPREC specifies that calculations are to be performed using long-form arith­
metic (fifteen significant digits); SPREC specifies that calculations are to be
performed using short-form arithmetic (seven significant digits). If neither is
specified, SPREe is assumed.

Command Language for TSO ITF:BASIC 135

Abbreviation

SAVE Subcommand

Function

General Format

Rules

Abbreviation

SCAN Subcommand

Function

General Format 1

Rules

Abbreviations

SEND Command

Function

General Format

Rules

136 Part III. Command Language

The word RUN can be abbreviated as R.

SAVE is a subcommand of the edit mode; it causes the edited program to be
permanently retained.

SAVE [name]

1. Name specifies the name under which the program is to be saved; if it is
omitted, the program is saved under the name used in the EDIT command.

2. If name is the name of an existing program, that program is replaced with the
one currently in the edit mode.

The word SAVE can be abbreviated as s.

SCAN is an edit mode subcommand; it is used to obtain syntax error notifications.

[

stmt-l [stmt-2] 1
SCAN ON

OFF

1. Stmt-l specifies that you want notification of syntax errors in the statement
having this number. When used with stmt-2, it specifies a range of statements.

2. Stmt-2 specifies that you want notification of all syntax errors between and
including stmt-l and stmt-2.

3. ON specifies you want to be immediately notified of syntax errors in lines that
you enter from this point on.

4. OFF specifies that immediate notifications of syntax errors are to be suppressed.
5. If no operands are specified, you will be notified of all syntax errors existing in

your program up to this point.
Note: If you have specified the SCAN operand in your EDIT command, you can later
specify SCAN OFF to suppress syntax error notifications. If you have specified the
NOSCAN operand in your EDIT command, you can later use the SCAN subcommand
to obtain notification of syntax errors in your program. In fact, even if you have
specified the SCAN operand in the EDIT command, you can later use the SCAN sub­
command to obtain notification of syntax errors that still exist in the program.
Essentially, with SCAN ON and SCAN OFF, you can tum notifications "on" or "off"
as you please.

The word SCAN can be abbreviated as SC; OFF as OF.

The SEND command is used to send messages to other terminal users or to the
system operator.

SEND 'text' [USER(ident-liYt) [NOW I LOGON]]

OPERA TOR [(integer)]

1. Text is the message to be transmitted. It must be enclosed in single quotation
marks as shown. The text must not exceed 115 characters, including blanks.

1 This is a subset of the SCAN subcommand, chosen for its applicability to ITF:BASIC usage. The
full subcommand is described in the TSO Command Language Reference publication (see
the preface).

Abbreviations

TRACE Subcommand 1

Function

General Format

Rules

2. USER(ide nt-list) specifies that the message is to go to the terminal users given by
ident-list, which contains one or more user identifications separated by commas
or blanks.

3. NOW specifies that you want the message to be sent immediately. If the recipient
is not logged on, you will be notified and the message will be deleted. LOGON

specifies that you want the message to be sent to the recipient now (if he is
currently logged on) or when he logs on (if he is not using the system at this
time). If neither option is specified, NOW is assumed.

4. OPERAToR(integer) specifies that the message is to go to the system operator
identified by integer. If integer is omitted, it is assumed to be 2.

5. If no options are specified after 'text', the message is sent to the console operator
at the central computer location.

The word SEND can be abbreviated as SE; USER as u; NOW as N; LOGON as L;

OPERATOR as O.

TRACE is a test mode subcommand; it monitors program execution by keeping
track of changes to variables and references to branch points, file names, and
intrinsic functions.

TRACE [(identifier-list I ~)]

1. Identifier-list specifies one or more variables, branch point statement numbers,
file names, and intrinsic function names for which "traces" are to be established.
The list must be enclosed in parentheses and the items within it must be
separated from each other by commas. Subscripted variables are not permitted
in the list.

2. The asterisk specifies that all branch paints are to be traced. No other items
can be specified in the subcommand when 4't is used. A separate TRACE sub­
command is required to trace other types of items, in this case. The asterisk
must be enclosed by parentheses, as the format shows.

3. If neither option is specified, all variables, branch pOints, file names, and
intrinsic functions are traced.

4. The display generated by a trace depends on the type of item being traced,
as follows:
a. Branch paints: the statement number is printed immediately before execu­

tion of the statement having that number.
b. Intrinsic function and file names: a reference to one of these is noted by a

message of this form:
nnnnn name type BEING REFERENCED

where nnnnn is the statement number of the reference, name is the item
beiug traced, and type is B.I.F. (BASIC intrinsic function) or FILE.

c. Variables: when the value of a traced variable changes, ITF displays the
variable, its new value (in E- or exponential format), and the number of
the statement in which the change took place.

5. Once TRACE is specified, it remains in effect for the items specified until either
execution of the program is complete, or until a NOTRACE subcommand negates
part or all of its function.

6. More than one TRACE subcommand can be issued while in the testing environ­
ment; the effect is cumulative (that is, once execution is restarted, the items
specified in all TRACE subcommands will be monitored as explained above).

1 See also NOTRACE subcommand.

Command Language for TSO ITF: BASIC 137

Abbreviations

138 Part III. Command Language

7. If a variable name is the same as that of a file (except for the quotation marks
surrounding the file name), a TRACE command for either will give unpredictable
results. For example:

TRACE ("A" ,A)

will result in either a trace of the file name or a trace of the variable A, but not
both. Similarly, TRACE(A), where a file named «A" and a variable named A exist,
is also unpredictable.

None.

Appendixes

Appendix A. Syntax Conventions

The syntax conventions used to illustrate the general forms in Parts II and III of
this document are:
a. Upper-case letters, digits, and special characters represent information that

must appear exactly as shown.
b. Lower-case letters represent information that must be supplied by the user.
c. Information contained within brackets [] represents an option that can be

omitted.
d. The appearance of braces { } indicates that a choice must be made between

the items contained in the braces.
e. The appearance of the vertical bar I indicates that a choice must be made

between the item to the left of the bar and the item to the right of the bar.
f. An ellipsis (a series of three periods) indicates that the preceding syntactical

unit may be used one or more times in succession.
g. A list whose length is variable is specified by the format: Xl,X2, ... ,Xn. This

format indicates that a variable number of items may be specified, but that at
least one is required (commas must separate the items).

h. The appearance of one or more items in sequence indicates that the items
(or their replacements) should also appear in the specified order.

Appendix A. Syntax Conventions 141

Appendix B. Collating Sequence of the ITF:BASIC Character Set

Note that both upper and lower case letters of the standard English alphabet
are represented internally by the EBCDIC bit configuration of the upper case
characters only.

CHARACTER

<
(
+
I
&
I
$

/

>
?

@

=1=

A,a
B,b
C,c
D,d
E,e
F,f
G,g
H,h
I,i
J,j
K,k
L,l
M,m

INTERNAL
HEXADECIMAL
REPRESENTATION

40
4B
4C
4D
4E
4F
50
5A
5B
5C
5D
5E
60
61
6B
6E
6F
7A
7B
7C
7D
7E
7F
8A
8C
AE
BE
Cl
C2
C3
C4
C5
C6
C7
C8
C9
Dl
D2
D3
D4

NAME
Blank
Period or decimal point
Less than sign
Left parenthesis
Plus sign
Logical "or" sign or vertical bar
Ampersand
Exclamation mark
Dollar sign
Asterisk or multiply symbol
Right parenthesis
Semicolon
Hyphen or minus sign
Slash or division symbol
Comma
Greater than sign
Question mark
Colon
Pound or number sign
Commercial "at" sign
Apostrophe or single quotation mark
Equal sign
Double quotation mark
Up-arrow or exponentiation sign
Less than or equal to sign
Greater than or equal to sign
Not equal sign

Appendix B. Collating Sequence of the ITF:BASIC Character Set 143

144 Appendixes

CHARACTER

N,n
0,0
P,p
Q,q
R,r
S,S
T,t
U,U
V,V
W,W
X,X
Y,y
Z,Z
o
1
2
3
4
5
6
7
8
9

INTERNAL

HEXADECIMAL

REPRESENTATION

D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
FO
Fl
F2
F3
F4
F5
F6
F7
F8
F9

Appendix C. Attention Interruption Summary

Table 8 summarizes the effect of attention interruptions given in the three modes
that pertain to ITF: BASIC.

Note: If the attention key at your terminal is being used for line deletions as well
as for attention interruptions, please interpret the table with the following in mind:

If your pressing of the attention key is interpreted as a line deletion operation,
you must press the attention key a second time to achieve an attention inter­
ruption. A line deletion occurs when you press the attention key after you
have begun typing a line (any line in any mode). The system does not respond
to a line deletion with a system cue (or a statement number, whichever the
case may be); it just waits for you to retype the line.

Table 8. Attention Interruption Summary

CONDITION WHEN
ATTENTION Is GIVEN

Input Phase

During Execution of
Program or
Subcommand

No Execution in
Effect

During Execution
of Program

No Execution in
Effect

During Execution
of Program or
Subcommand

No Execution in
Effect

NUMBER OF ATTENTIONS GIVEN

ONE Two

Phase is terminated. System types EDIT system Mode is terminated. System reverts to com-
cue. mand mode and types READY system cue.

Execution is terminated and system types EDIT Mode is terminated. System reverts to com-
system cue. mand mode and types READY system cue.

Mode is terminated. System reverts to command
mode and types READY system cue.

Execution is interrupted. It can be resumed by Mode is terminated. System reverts to the initiat­
a GO subcommand. System types TEST system ing mode (command or edit) and types appropri-
cue. ate system cue.

Mode is terminated. System reverts to initiating
mode (command or edit) and types appropriate
system cue.

Execution is terminated. System remains in
command mode and types READY system cue.

No effect. System remains in command mode
but does not type READY.

Appendix C. Attention Interruption Summary 145

Appendix D. File Usage Considerations

File Maintenance

Using Files Not in userid.DATA

As a TSO ITF user, you have your own permanent storage area for your ITF files.
Each file you create through ITF:BASIC is made a member of userid.DATA (where
use rid is your user identification code). The name of a particular member is the
same as the first three characters of the file name you specified in the PUT state­
ment that created it. To refer to a member of userid.DATA in a TSO command (e.g.,
DELETE and RENAME), you must always qualify the member name l by the word
DATA. For example, an ITF file named OUTFILE is known to TSO as DATA(OUT).

PUT statements always refer to members of userid.DATA. GET statements, how­
ever, can refer to files that are not members of this data set (more about this later).

In general, userid.DATA holds at least 20 files. Up to 40 additional files will fit,
depending on the size of each file.

If userid.DATA becomes full and there is no room for additional files, use the
DELETE command to delete the files that you no longer want. Note, however, that
the space used by the deleted files will not be available for re-use until
userid.DATA has been "compressed." The "compress" operation may be performed
on a regular basis by your installation (ask your system administrator about this).
If your installation has the TSO COPY utility (which is part of the separately­
orderable TSO Data Utilities program product), you can perform the "compress"
operation yourself by this sequence of commands:

READY
copy data tempdata
READY
delete data
READY
rename tempdata

The COpy command copies the contents of userid.DATA into a temporary data
set (TEMPDATA in our illustration). This copy operation automatically "compresses"
the members of the copied data set and frees up the space that had been taken by
"deleted" members. The DELETE command deletes userid.DATA and the RENAME

command renames TEMPDATA as the new, "compressed", userid.DATA.
It is a good practice to periodically do some "housekeeping" on userid.DATA (i.e.,

delete unwanted files). To do this, say, just before you log off for the day, issue a
LISTCAT MEMBERS command to examine the contents of userid.DATA, and then
issue a DELETE command to eliminate the unwanted files. After this, you can
perform the "compress" operation yourself (if you have the COpy utility at your
installation), as just shown.

Unlike PUT statements, GET statements in your ITF:BASIC programs can refer to files
that are not members of userid.DATA. For example, you may have a data file that

1 To be acceptable in TSO commands, the first three characters of the file name specified in your
GET and PUT statements must adhere to the follOWing restrictions: the first character is required
and must be alphabetic; the other two characters are optional and, if specified, must be
alphameric.

AppendiX D. File Usage Considerations 147

148 Appendixes

you created using something other than ITF: BASIC and you want to use this data
file as input to one of your ITF:BASIC programs. If the file meets the following
requirements, it can be used under ITF:BASIC:

1. It must be sequentially organized with fixed~length unblocked 120~character
records.

2. It must be cataloged and known to TSO.

3. It must be allocated in the session in which it is to be used.
To allocate such a file, use this form of the ALLOCATE command.1

ALLOCATE DATASET(dsname) FILE(file-name) OLD

For example, if the name of the data file that you want to use is MYDATA04 and
the new name that you want to associate with this data file is DT4, you would give
this ALLOCATE command in your terminal session:

allocate dataset ('mydata04') f11e(dt4) old

With this ALLOCATE command in effect, DT4 could be used as an input file in
ITF:BASIC statements throughout the session.

When choosing file-name in the ALLOCATE command, be sure that the name you
select doesn't match any of the names that you already have in userid.DATA. If
you inadvertently specify a matching name, all references to that name in ITF:BASIC

statements will be interpreted as references to the corresponding member of
userid.DATA and not to the intended data file.

1 The ALLOCATE command is described fully in the TSO Command Language Reference publi~
cation (see the preface) .

Appendix E. Differences Between OS ITF and TSO ITF

Terminological Differences

Visual Differences

Users migrating from os ITF to TSO ITF may find the transition smoother if they
understand the differences described below. This appendix does not compare
TSO'S extensive facilities with those of os ITF; a quick look at their command
languages will show the relative strengths of each system. The differences de­
scribed here fall into three categories:

• terminological (e.g., TSO "command mode" versus os ITF "control mode")

• visual (i.e., how they differ in their appearance at your terminal)

• functional (i.e., differences in equivalent facilities)

Listed below are those terms that differ between os ITF and TSO ITF. Those os ITF
terms that have no TSO ITF equivalent are so noted.

OS ITFTERM

"command"

"common library"

"control mode"

"private library"

"test submode"

"text collection"

EQUIVALENT TSO ITF TERM

"command" or "subcommand" (depending on
whether it is entered in the command mode
or in one of the other modes)

There is no equivalent facility in TSO and, there­
fore, no equivalent term.

"command mode"

"permanent storage" can be considered the equiv­
alent, although there is no private library facility
in TSO, per se.

"test mode"

"text" (ITF does not provide a text facility under
TSo-TSO provides it)

os ITF and TSO ITF look very much the same at your terminal. The only real
difference is in the appearance of system cues in the command (control) and edit
modes. Under os ITF, every line that you type in these modes is preceded by the
ITF-typed READY or EDIT system cue, whichever applies. Under TSO ITF, READY and
EDIT never appear on the line you are typing. When one appears, it is on a line by
itself. This difference is particularly evident when you are typing your own state­
ment numbers in the edit mode. Consider the following:

Appendix E. Differences Between OS rTF and TSO rTF 149

Functional Differences

150 Appendixes

OS ITF
READY
EDIT
EDIT
EDIT
EDIT
EDIT
READY

edit xyz basic
40 let x = I
53 let y = 2
58 goto 80
save
end
logoff

TSO ITF
READY
edit xyz basic old
ITF INITIALIZATION
EDIT
40 let x = 1
53 let y = 2
58 goto 80
save
SAVED
end
READY
logoff

scan
PROCEEDING

As you can see, os ITF always types EDIT at the beginning of each line when
you're editing an old program, but TSO doesn't.

A minor visual difference concerns error messages. Under os ITF, messages that
have no long form are preceded by three asterisks. Under TSO ITF, the absence of
a plus sign at the end of an error message indicates that the message has no further
levels of information; the appearance of a plus sign means that the message has
at least one more level of information, which can be obtained (as in os ITF) by
typing a question mark.

Equivalent facilities under os ITF and TSO ITF differ as follows:

• Program Storage: os ITF provides private libraries and a common library. TSO
does not assign libraries to its users .

• ITF Test Mode: Under TSO, ITF'S test mode can be entered through the com­
mand mode as well as the edit mode. Under os ITF, the test mode can be
entered through the edit mode only.

e MERGE Command: os ITF provides a MERGE command in the edit mode.
Under TSO, MERGE is part of a separately-orderable IBM Program Product
called TSO Data Utilities, which mayor may not be available at your installa­
tion.

• Text Facility: os ITF provides a text facility in the edit mode. Under TSO, ITF
has no text facility; it is a TSO feature.

• Execution of ITF:BASIC Programs: In addition to the program execution
facilities of the edit mode and the test mode (both of which os ITF has), TSO
allows ITF:BASIC programs to be executed in the command mode (via RUN and
BASIC commands) .

• Error Messages: TSO ITF allows you to suppress the short forms of ITF error
messages; os ITF does not.

• Syntax Checking in Edit Mode: Under os ITF, each statement is automatically
checked for syntactical correctness as it is entered. If an error is detected, the
statement is immediately discarded. Under TSO ITF, syntax checking is per­
formed as statements are being entered, but erroneous statements are not
discarded; they remain in the program until they are replaced or deleted.
Also, TSO ITF allows you to postpone syntax error messages until you ask
for them.

• EDIT Command Options: Because TSO has a wider scope than os ITF, TSo'S
EDIT command requires more information than os rTF's. Namely, under TSO,
you must specify NEW for new programs and you must specify SCAN if you
want syntax error messages to appear as syntax errors are detected.

• SEND Command: The as ITF SEND command is used to test the accuracy of
terminal transmission. The TSO SEND command is used to send messages to
other users; it is not used to test terminal transmission.

• RENUM Command: When a BASIC program is renumbered, statements con­
taining references to other statements (e.g., GOTO, GOSUB, PRI~T USING, MAT

PRINT USING, and IF .•. THEN/GOTO) are automatically updated. Under as ITF,

all the blanks contained in the statement as originally typed are eliminated
and the entire statement is squeezed together. Under TSO ITF, only the blanks
between the digits of the statement number reference are eliminated; the rest
of the statement remains as it was originally typed.

• Automatic Line-numbering: In as ITF, users must type their own statement
numbers for BASIC programs. TSO ITF gives the BASIC user the option of typing
his own statement numbers or of using the system-typed statement numbers
provided in the input phase of the edit mode.

• File Names in DELETE and RENAME Commands: The as ITF DELETE and
RENAME commands accept any file name that is acceptable in ITF:BASIC state­
ments. The TSO DELETE and RENAME commands will accept only the first three
characters of a file name used in ITF:BASIC statements. These three characters
must also adhere to the following TSO restrictions: the first character is
required and must be alphabetic; the other two characters are optional and,
if specified, must be alphameric.

Appendix E. Differences Between as ITF and TSO ITF 151

Glossary

ALPHABETIC CHARACTER

ALPHABETIC EXTENDER

ALPHAMERIC CHARACTER

ARGUMENT

ARITHMETIC ARRAY

ARITHMETIC DATA

ARITHMETIC EXPRESSION

ARITHMETIC OPERATORS

ARITHMETIC VARIABLE

ARRAY

ABBA Y DECLARATION

ARRAY EXPRESSION

ABRAY MEMBER

ARRAY VARIABLE

ASSIGNMENT

A'ITENTION INTERRUPTION

Any of the 26 letters (A through z) of the English alphabet and any of the follow­
ing special characters (called alphabetic extenders): #, @, and $.

Anyone of the following three special characters: #, @, and $.

Either a digit or an alphabetic character.

An arithmetic expression appearing in parentheses following a function name
(either a user-written function or an intrinsic function). The expression represents
the value that the function is to act upon.

A named table of arithmetic data items. An array may be implicitly declared
through usage or explicitly declared in a DIM statement. ITF: BASIC allows one- and
two-dimensional arrays.

Data with a decimal numeric value.

An arithmetic variable, arithmetic array member, internal constant, numeric con­
stant, function reference, or a series of the above separated by binary operators
and parentheses.

The symbols representing the operations which can be performed upon arithmetic
data. They are:

+
o

I
tor 00

addition or unary plus sign
subtraction or unary minus sign
multi plication
division
exponentiation

A single alphabetic character or an alphabetic character followed by a digit used
to represent an arithmetic data item whose value is assigned and/ or changed
during program execution.

A named list or table of data items, all of which are the same type-arithmetic
or character.

The specification of the name and dimensions of an array to be allocated to the
user's program. Arrays may be declared explicitly (by the DIM statement) or im­
plicitly through usage.

1. An expression representing an array value; i.e., an expression in which at least
one operand is an array.

2. An operation which is performed on the entire collection of members of an
arithmetic array.

A single data item in an array (as opposed to the entire array).

An alphabetic character (for arithmetic arrays) or an alphabetic character followed
by the dollar sign character ,$, (for character arrays) whose designation represents
an entire array.

The process of giving values to variables.

The interruption of execution caused by the pressing of the attention key.

Glossary 153

ATTENTION KEY

BINARY OPERATORS.

BOUND

BRANCH POINT

BREAKPOINT

BUlL T-IN FUNCTION

CARRIAGE RETURN

CARRIER RETURN (CR)

CHARACTER ARRAY

CHARACTER CONSTANT

CHARACTER-DELETION

CHARACTER

CHARACTER EXPRESSION

CHARACTER FORMAT

CHARACI'ER STRING

CHARACTER VARIABLE

CHARACTERISTIC

COMMAND

COMMAND MODE

154

The key on the terminal keyboard which, once depressed, causes interruption or
cancellation of the action in progress (e.g., program execution, program listing)
and returns control to you at the terminal.

The symbols which represent the operations which can be performed on two items
of arithmetic data. They are:

+

/
t or ~~

addition
subtraction
multiplication
division
exponentiation

The upper limit of an array dimension. The lower limit is always assumed to be 1.

A statement number referred to in a GOTO, GOSUB, or IF ..• THEN / GOTO statement.

The pOint at which program execution in the test mode is to be interrupted and
control returned to the terminal; established by the AT subcommand.

See intrinsic function.

See carrier return.

Ending a line by pressing the appropriate key(s) on your terminal.

A named table of character data items. An array may be implicitly declared
through usage or explicitly declared in a DIM statement. ITF: BASIC allows character
arrays of one dimension.

One or more characters from the BASIC character set enclosed by a pair of single
or double quotation marks.

A character within a line specifying that the immediately preceding character is
to be deleted from that line.

A character variable, character array member, or a character constant.

A format specification used in the Image statement when the item to be printed
is character data.

One or more characters that you can type at your terminal. Unlike the character
constant, the character string is not enclosed in quotation marks and can be used
only on those BASIC statements which permit a comment after the keyword (e.g.,
END, STOP, REM, RESET, etc.).

An alphabetic character followed by the dollar sign character ($) used to rep­
resent a character data item whose value is assigned and/ or changed during
program execution.

In the notation of a floating-point number, the four positions which include the
letter E, the sign, and the two integers forming the exponent (i.e., everything but
the mantissa).

Under TSO, a request from a terminal for the execution of a particular program
called a command processor. Any subsequent commands processed directly by
that command processor are called subcommands.

One of three modes of operation that apply to ITF:BASIC under TSO. In the com­
mand mode, program maintenance and system control functions are performed;
also, permanent programs can be executed or tested. This mode is identified by
the READY system cue.

COMMENT

COMPARISON OPERATORS

CONSTANT

DATA

DATA FILE

DATA TABLE

DATA TABLE POINTER

DEBUGGING

DEBUGGING SUBCOMMANDS

DECLARATION

DELIMITER

DIAGNOSTIC MESSAGE

DIAL-UP TERMINAL

DIGITS

DIMENSION

DUMMY VARIABLE

EDIT MODE

END-OF-FILE INDICATOR

A remark or note included in the body of a program by the programmer. It has
no effect on the execution of the program; it merely documents it. Comments are
written as a character string and may appear as a part of any program statement
that has no operands (e.g., REM, STOP, END, RESET, etc.).

See relational operators.

A data item whose value never changes. ITF: BASIC has three types of constants.
They are:
1. numeric-one or more digits whose value is a decimal number.
2. character-one or more characters enclosed in single or double quotation marks.
3. internal-the value of 7r, v2, and e.

A representation of a value. The kinds of data permitted in ITF:BASIC are arith­
metic and character.

See file.

A list of the values contained in the DATA statements of your program. DATA state­
ments are processed in statement number sequence (lowest to highest). The values
of each DATA statement are collected and placed in a single table in order of their
appearance (left to right).

An indicator that moves sequentially through the data table, pointing to each value
as it is assigned to a corresponding variable in a READ statement. Initially, the
indicator refers to the first item in the table. It can be repositioned to the beginning
of the table at any time by the RESTORE statement.

The process a programmer uses to detect and remove errors from his program.
It involves a study of the listing, analysis of the logic used, a check to see that the
input data is correct, etc.

The subcommands used in the test mode, which help you to track down logical
and semantic errors contained in your program. These subcommands are: TRACE,

NOTRACE, LIST, GO, AT, and OFF.

See explicit declaration and implicit declaration.

Any valid special character or combination of special characters used to define the
limits of identifiers, statement lines, or commands.

See error message.

A terminal connected to the computer by a telephone.

0,1,2,3,4,5,6,7,8,9.

The parenthesized number or numbers following the array name in a DIM state­
ment (for explicit declarations) or in its first use in the program (for implicit
declaration). It specifies how many members the array contains and how those
members are arranged.

The simple arithmetic variable enclosed in parentheses after the name of a user­
written function in a DEF statement. The function performs its defined calculation
on the arithmetic expression value substituted for the dummy variable when the
program is executed.

One of the three modes of operation that apply to ITF:BASIC under TSO. In the edit
mode, programs are created, updated, executed, and tested. The edit mode is
identified by the EDIT system cue, or by automatic statement numbering (if the
input phase is used).

A user-supplied unique value designating the last entry in a data file.

Glossary 155

ERROR MESSAGE

EXECUTION

EXECUTION ERROR

EXPLICIT DECLARATION

EXPONENT

EXPONENTIAL FORMAT

(E-FORMAT)

EXPONENTIATION

EXPRESSION

Fn.E

FILENAME

FIXED-DECIMAL FORMAT

(F-FORMAT)

FIXED-POINT CONSTANT

FLOATING-POINT CONSTANT

FLOATING-POINT DATA

FORMAT SPECIFICATION

FULL PRINT ZONE

FUNCI10N

FUNCTION REFERENCE

IDENTIFICATION CODE

IDENTIFIER

IMPLICIT DECLARATION

INPUT/OUTPUT

156

An indicator from the computer that an error has occurred.

The performance of instructions given to a computer.

An error discovered during execution of a BASIC program (i.e., dividing by zero,
assigning a variable a value which is outside the permitted range, etc.).

The use of a DIM statement to specify the dimensions of an array.

An integer constant specifying the power of ten by which the base of the decimal
floating-point number (mantissa) is to be multiplied.

1. A format specification used in the Image statement when the item to be printed
is a floating-point number.

2. A number written in the form of a mantissa and exponent.

Raising a value (m) to a power (n); i.e., multiplying m by itself n-l times.

A representation of a value, e.g., variables and constants appearing alone or in
combination with operators. Three forms of expressions are defined in ITF:BASIC:

scalar, array, and relational.

A named group of related data items which are retained in permanent storage.

The name associated with a file.

A format specification used in the Image statement when the item to be printed
is a fixed-pOint number.

One or more decimal digits with an optional decimal pOint and optionally pre­
ceded by a sign.

A decimal fixed-pOint constant followed by the letter E, followed by an optionally
signed one- or two-digit decimal integer constant. The entire constant may be
preceded by a sign.

Numbers written in the form of a mantissa and an exponent.

Character-, 1-, F-, or E-formats used in an Image statement to specify the printed
appearance of the values of character and arithmetic expressions.

Eighteen horizontal print positions. In a PRINT or MAT PRINT statement, a comma
is used to indicate that a full print zone should be used.

A named arithmetic expression that computes a single value from another arith­
metic expression. See a"/$o intrinsic function and user-written function.

The appearance of an intrinsic function name or a user-written function name in
an arithmetic expression.

A unique combination of one to seven alphameric characters which, when typed in
the LOGON command, allow you to use the system. The first character must be an
alphabetic character.

A string of characters that represents a decimal number or a character constant.
There are five types of identifiers in ITF:BASIC: numeric constants, internal con­
stants, character constants, variables, and function references.

The specification of the dimensions of an array by the first appearance of the
subscripted array name in the program (i.e., not explicitly specified in a DIM

statement).

The transfer of data between an external medium (i.e., the terminal typewriter or
a data file) and internal storage.

INPUT PHASE

INTEGER CONSTANT

INTEGER FORMAT (I-FORMAT)

INTERNAL CONSTANT

INTERRUPTION

INTRINSIC FUNCTION

ITERATIVE LOOP

LINE

LINE-DELETION

CHARACTER

LINE NUMBER

LOGOFF

LOGON

LONG-FORM ARITHMETIC

LONG PRECISION

LOOP

LOWERCASE

MANTISSA

MATRIX

MEMBER

MODE

NESTING

NULL CHARACTER STRING

A phase of edit mode operation in which the system supplies the statement num­
bers for your statements. Also called input mode in other TSO publications.

One or more decimal digits optionally preceded by a sign.

A format specification used in the Image statement when the item to be printed
is an integer.

System-supplied values for 7r, v'2,"and e which are invoked by typing the identifiers
&PI, &SQR, and &E.

The suspension of an activity by the system because of an error or a user request
(pressing the attention key, for example).

Any of the 24 functions supplied by ITF:BASIC (Le., SIN, COS, SQR, etc.).

A FOR/ NEXT loop, the statements of which are executed repeatedly until the value
of the control variable exceeds a predefined limit or until control is transferred
out of the loop.

A single line of one or more characters typed at the terminal and entered into the
system.

A character that causes deletion of itself and all preceding characters in a line of
terminal input.

See statement number.

The process of ending a terminal session.

The process of establishing a connection with the system; starting a terminal
session.

Precision whereby, externally, values printed with 1- and F-format have a maxi­
mum of 15 significant digits while values printed in the E-format have a maximum
of eleven significant digits in the mantissa.

See long-form arithmetic.

A sequence of instructions that are executed repeatedly until a terminating con­
dition prevails.

this is lower case-no capital letters.

In floating-point notation (exponential or E-format), the number that precedes
the E. The value represented is the product of the mantissa and the power of ten
specified by the exponent.

A two-dimensional arithmetic array that can be used in a MAT statement.

See array member.

A method of operation; there are three possible ~odes in which ITF:BASIC under
TSO can operate: command, edit, and test.

l. The occurrence of a FOR/NEXT loop within another FOR/NEXT loop.
2. The occurrence of a GOSUB statement when one or more GOSUB statements is

already active.
3. The use of more than one set of parentheses to indicate the order of evaluation

in a complex arithmetic expression.

Two adjacent single or double quotation marks that specify a character constant
of 18 blank characters.

Glossary 157

NULL DELIMITER

NUMERIC CONSTANT

OPERATOR

OUTPUT

PACKED PRINT ZONE

PERMANENT PROGRAM

PERMANENT STORAGE

PRECISION

PRINT ZONES

PROGRAM

PROGRAM NAME

PROGRAMMER-DEFINED

FUNCTION

REDIMENSIONING

RELATIONAL EXPRESSIONS

RELATIONAL OPERATORS

REMARK

RUN

SCALAR

SCAL<\'~ EXPRESSION

SCALAR REFERENCE

158

One or more blanks or no characters at all (i.e., one data item directly follows
another data item with no intervening space or delimiter). A null delimiter may
be used between two data items in a PRINT or MAT PRINT statement to specify
a packed print zone when one, and only one, of the data items is a character
constant.

A string of characters whose value is a decimal number. The defined value cannot
be changed during program execution. The two general forms of a numeric
constant are: decimal fixed-pOint and decimal floating-point.

A symbol specifying an operation to be performed. See also arithmetic operators,
binary operators, relational operators, and unary operators.

See input/ output.

Eighteen horizontal print positions or less, depending on the type of data (arith­
metic or character) being printed. The semicolon or null delimiter specify that a
packed print zone is to be used.

A program that has been placed in permanent storage through use of the SAVE

command.

The internal area in which your permanent programs and data files are saved.

The number of digits over which Significance can be expressed and maintained.

See full print zone and packed print zone.

A logically self-contained sequence of BASIC statements that can be executed by
the system to attain a specific result.

A string of one to eight characters by which you identify your program.

See user-written function.

The changing of the dimensions of an array. Redimensioning can occur in any of
the following MAT statements: MAT assignment with the CON, IDN, or ZER function,
MAT GET, MAT INPUT, and MAT READ. Redimensioning must not exceed the original
number of array members nor change the original number of dimensions.

A test of the relationship between two arithmetic expressions or two character
expressions which will have true or false results.

The operators used in relational expressions. They are:
equal to
not equal to
greater than
less than
greater than or equal to
less than or equal to

See comment.

The execution of a program.

=F

>
<

A single data item (as opposed to an array of items).

An arithmetic expression or a character expression.

A reference to a single data item.

SEMANTIC ERROR

SESSION

SHORT-FORM ARITHMETIC

SHORT PRECISION

SIGNIFICANT DIGIT

SIMPLE ARITHMETIC VARIABLE

SIMPLE CHARACfER VARIABLE

SIMPLE VARIABLES

SPECIAL CHARACTERS

STATEMENT LINE

STATEMENT NUMBER

SUBCOMMAND

SUBROUTINE

SUBSCRIPT

SYNTAX CHECKING

SYNTAX ERROR

SYSTEM CUE

SYSTEM -SUPPLIED CONSTANTS

TERMINAL

TEST MODE

UNARY OPERATORS

UPPER CASE

An error in the structure of your program (i.e., invalid loops, invalid GOTO, etc.)
discovered after a RUN subcommand, a RUN command, a BASIC command, or a GO

subcommand is given, but before execution actually begins.

The time spent at the terminal between logging on and logging off.

Precision whereby, externally, values printed with 1- and F-format have a maxi­
mum of seven significant digits while values printed with E-format have a
maximum of seven significant digits in the mantissa.

See short-form arithmetic.

The left-most non-zero digit.

A variable that can only be assigned a decimal number. It is named by a single
alphabetic character or an alphabetic character followed by a digit.

A variable that can only be assigned a character value. It is named by an alpha­
betic character followed by the dollar sign character, $.

See simple arithmetic variable and simple character variable.

Any characters on the keyboard which are not alphameric characters.

A BASIC statement prefaced by a statement number.

The number which prefaces a BASIC statement. It can be up to five digits in length
(in the range 00001 to 99999).

A request for a particular operation to be performed, the particular operation
falling within the scope of work requested by the command to which the sub­
command applies.

A program segment (sequence of statements) branched to by a GOSUB statement.
The last statement of a subroutine must be a RETURN statement which directs the
computer to return and execute the statement following the GOSUB.

Any valid arithmetic expression (whose truncated integer value is greater than
zero) used to refer to a particular member of an array.

A method the computer uses to automatically check each statement or command
you type to ensure that it contains correct spelling and punctuation. If the entry is
incorrect, the computer will automatically discard it and type out an error message.

An error in the format of a BASIC statement (i.e., invalid operator, etc.), a system
command, or a system subcommand.

A computer-printed reminder of the current mode of operation. It may be READY,

EDIT, or TEST.

See internal constants.

A device resembling a typewriter that is used to communicate with the system.

One of the three modes of operation that apply to ITF:BASIC under TSO. The test
mode, in which programs are debugged, can be entered through the com­
mand mode or edit mode. It is identified by the TEST system cue.

An operator that precedes, and thus is associated with, an arithmetic expression.
The unary operators are + (plus) and - (minus).

THIS IS UPPER CASE-ALL CAPITAL LETTERS.

Glossary 159

USER

USER-IDENTIFICATION CODE

USER-WRITTEN FUNCTION

VARIABLE

160

Anyone utilizing the services of a computing system; within the ITF:BASIC context,
anyone who uses a computing system from a terminal.

See identification code.

A function defined by the user in a DEF statement.

An identifier having a value that may change during execution of a program.

Error Messages

This section lists the diagnostic messages generated by ITF:BASIC. The
following information is included in the description of each message:

• Short -- the first level of the message; if it ends in a plus sign
(+), a second level exists and can be obtained by typing a "?" at
your terminal. Messages that do not end in a plus sign have no
second level.

• Long -- the message text generated in response to your "?".

• Explanation -- a detailed description of what caused the message.
In most instances, this will include the specific action you should
take to correct the error.

• Action -- your response to the message.

Note: For all messages that say "SYSTEM ERROR", you should note the
message number and contact your installation maintenance personnel.

Execution error messages <noted in this section by an asterisk) will
have the following format when displayed at the terminal:

message-number statement-number message-text

In addition to the diagnostic messages contained in this section,
ITF' :BASIC provides error recovery messages for incorrect data typed by
the user in response to the INPUT and MAT INPUT statements. These
messages, which are not preceded by a message number, are displayed at
the terminal in an abbreviated form and indicate the cause of the error.
In each case, the user is allowed to correct the error and re-enter the
entire data list on the same line that the message is printed. An
alphabetically arranged list of these messages and a brief explanation
of each message is given below:

Message Text:

NG CON

NG DEL

NG TYP

NOITEM

MSNG

Explanation:

The magnitude of a numeric constant must be less
than 7.2xl0+75 and must be greater than 5.4xl0-79
Check to see that your numeric constants are within
this range and that you have not forgotten the
letter "E" in the exponential format. Also, check
the spelling of any internal constant names in your
data list.

Constants supplied in response to an INPUT or MAT
INPUT statement must be separated by commas.

For MAT INPUT only: Only numeric and internal
constants are permitted in the data list supplied
for MAT INPUT statements.

You have typed a comma followed by a comma, or you
have issued a CR before entering your data.

For INPUT onlv: You have supplied a character
constant-wit~ut enclosing it in single or double
quotation marks.

Error Messages 161

TOOFEW

EXCESS

NUMBERED MESSAGES

1 Short:
Long:
Explanation:

Action:

2 Short:

Long:
Explanation:

Action:

3 Short:

Long:
Explanation:
Action:

4 Short:
Long:
Explanation:

Action:

5 Short:

Long:

Explanation:

162

For INPUT: You have entered fewer constants than
the number of variables specified in the INPUT
statement.

For MAT INPUT: You have entered fewer constants for
a row than the number of members contained in a row
of the specified array.

For INPUT: You have entered more constants than the
number of variables specified in the INPUT
statement.

For MAT INPUT: You have entered more constants for
a row than the number of members contained in a row
of the specified array.

COMMAND SYSTEM ERROR+
service-routine ERROR CODE nnnn
An error has occurred in the TSO routine named
service-routine.
Note the error code and contact your installation
maintenance personnel.

{UTILITY DATA SETIDATA SET dsname} NOT ALLOCATED,
TOO MANY DATA SETS+
USE FREE COMMAND TO FREE UNUSED DATA SETS
All of the data set allocations in your log-on
procedure have been used up.
Use the LISTALC command to display the names of the
data sets that have been allocated. Free one or
more of these data sets with the FREE command.
(FREE and LISTALC are described in the TSO Command
Language Reference publication.) If the problem
recurs often, contact your installation maintenance
personnel for additional allocations in your log-on
procedure.

DATA SET dsname NOT ALLOCATED, REQUIRED VOLUME NOT
MOUNTED+
VOLUME OR CVOL NOT ON SYSTEM AND CANNOT BE ACCESSED
A machine error may have occurred.
Contact your installation maintenance personnel.

DATA SET dsname NOT IN CATALOG
None.
The data set name, as you have entered it, cannot be
located in the catalog. You may have misspelled the
name or perhaps forgotten to save the data set after
creating it.
Check your spelling. Use the LISTCAT command to
check the contents of the catalog. If the data set
is not listed in the catalog but it exists, contact
your installation maintenance personnel.

DATA SET dsname WILL CREATE INVALID CATALOG
STRUCTURE+
A QUALIFIER CANNOT BE BOTH AN INDEX AND THE LAST
QUALIFIER OF A DATA SET NAME
You have used a descriptive qualifier that matches

Action:

6 Short:

LO!}g:

Explanation:
Action: ---

7 Short:

Long:
Explanation:

Action:

8 Short:

9

10

11

12

13

Long:
Explanation:
Action: ----

Short:
Long:
Explanation:
Action:

Short:
Logg:
~~E!anati2!:!:

Action: ---

Short:

Long:
Explanation:

Short:

Long:
Explanation:

Action:

Long:
Explanation:

one of your user-supplied names.
Use another name for your data set.

DATA SET dsname NOT ALLOCATED, SYSTEM OR
INSTALLATION ERROR+
CATALOG ERROR CODE 20
A catalog error has occurred.
Contact your installation maintenance personnel.

DATA SET dsname NOT ALLOCATED, SYSTEM OR
INSTALLATION ERROR+
CATALOG I/O ERROR
An error has occurred while attempting to catalog
the specified data set.
contact your installation maintenance personnel.

DATA SET dsname NOT ALLOCATED, SYSTEM OR
INSTALLATION ERROR+
DYNAMIC ALLOCATION ERROR CODE nnnn
A dynamic allocation error has occurred.
Make sure that you cause the second level (long
form) of this message to be produced so that the
error code is known. Then contact your installation
maintenance personnel.

DATA SET dsname NOT ALLOCATED, SHARED+
USE FREE COMMAND TO FREE THE DATA SET
Hone.
Free dsname with the FREE commend. The FREE command
is described in the TSO Command Language Reference
publication.

DATA SET dsname ALREADY IN USE, TRY LATER+
DATA SET IS ALLOCATED TO ANOTHER JOB OR USER
The requested data set is being used by someone
else.
Wait a few moments and try again. If this occurs
often, you might consider asking your installation
personnel to make a copy for your own exclusive use.

l
UTILITY DATA SET!
DATA SET dsname
FILE ddname
NO UNIT AVAILABLE

NOT ALLOCATED+

The system is unable to allocate the specified file
or data set.
Contact your installation maintenance personnel.

DATA SET dsname NOT ALLOCATED, REQUIRED VOLUME NOT
MOUNTED +
VOLUME NOT ON SYSTEM AND CANNOT BE ACCESSED
The volume specified for dsname has not been
mounted.
The correct volume must be mounted before TSO is
started for the day. Contact your installation
maintenance personnel. You will not be able to use
dsname in this session.

1
UTILITY DATA SET!
DATA SET dsname
FILE ddname

NOT ALLOCATED+

INVALID UNIT IN USER ATTRIBUTE DATA SET
The device type specified for your data set or file
is not supported by TSO. Your user attribute data

Error Messages 163

14 short:

Long:
Explanation:

Action: ---

15 Short:
Long:
Explanation:
Action:

16 Short: ---Long:
Explanation:

Action:

17 Short:
Long:
Explanation:
Action:

18 Short:

Long:
Explanation:

Action:

19 Short:

Long:
~anation:

Action:

20 Short:
Long:
Explanation:
Action:

21 Short:
Long:
Explan~tion:
~ction:

22 §.!!ort:
Long:
Explanation:
Action: ---

164

set needs changing.
contact your installation maintenance personnel.

DATA SET dsname NOT ALLOCATED, NOT ENOUGH SPACE ON
VOLUMES+
USE DELE'rE COMMAND TO DELETE UNUSED DATA SETS
All of the storage space that the installation has
allocated to TSO has been used.
Delete any data sets that you no longer need. If
storage is still not available after this, contact
your installation maintenance personnel for more
storage.

INVALID SYSOUT CLASS
None.
None.
Contact your installation maintenance personnel.

INVALID DATA SET NAME, dsname EXCEEDS 44 CHARACTEH.S
None.
A data set name cannot exceed 44 characters in
length (periods included). This excessive length
may have resulted from the system's appending of
your user identification and a descriptive qualifier
to the name you specified.
Use a shorter data set name.

FILE {JOBLIBISTEPLIB} INVALID
None.
None.
Contact your installation maintenance personnel.

DATA SET dsname NOT ON A DIRECT ACCESS DEVICE, NOT
SUPPORTED
None.
The data set specified is not on a direct access
device. TSO supports only direct access devices~
Have your installation transfer the data set to a
direct access device. You may wish to do so
yourself if you're familiar with the procedure~

DATA SET dsname RESIDES ON MULTIPLE VOLUMES, NOT
SUPPORTED
None.
A data set must reside on a single direct access
device.
Have your installation transfer the data set to a
single direct access. You may wish to do so
yourself if you're familiar with the procedure.

{DATA SET dsnamelFILE ddname} NOT FREED+
SUBALLOCATED DATA SET
None.
Contact your installation maintenance personnel.

{DATA SET dsnamelFILE ddname} NOT FREED+
GENERATION DATA GROUP
None.
Contact your installation maintenance personnel.

{DATA SET dsnamelFILE ddname} NOT FREED+
PASSED DATA SET
None.
Contact your installation maintenance personnel.

23 Short:
Long:
Explanation:

Action:

50 Short:
Long:
Explanation:

Action:

51 Short:
Long:
Explanation:
Action:

52 Short:
Long:
Explanation:

Action:

53 Short:
Long:
EXPlanation:
Action:

54 Short:

Long:
Explanation:

Action:

55 Short:
Long:
Explanation:

Action:

56 Short:
Long:

FILE ddname NOT ALLOCATED, IN USE
None.
The file given by ddname is already being used by
someone else.
continue with other work, if possible, and try to
use ddname again later.

DATA SET dsname NOT USABLE+
I/O SYNAD ERROR syste~error-information
The system-error-information identifies the type of
I/O error that occurred.
Make sure that you cause the second level (long
form) of the message to be displayed so that you can
determine the cause of the error. Contact your
installation maintenance personnel.

DATA SET dsname NOT USABLE+
CANNOT OPEN DATA SET
The system erred while trying to open dsname.
Retry. If this fails, contact your installation
maintenance personnel.

NOT ENOUGH MAIN STORAGE TO EXECUTE
None.
There is not enough main storage to execute your
program at this time.
Try to re-execute later. If this problem occurs
often, ask your installation maintenance personnel
for more space.

COMMAND SYSTEM ERROR+
PARSE ERROR CODE nnnn
An error has occurred within the TSO PARSE routine.
Make sure that you cause the second level of this
message (long form) to be produced and then contact
your installation maintenance personnel.

USER INPUT DATA SET dsname MUST BE PHYSICAL
SEQUENTIAL
None.
The data set associated with the file specified in
your GET statement does not have the physical
sequential organization. You may have allocated the
wrong data set or you may have specified the wrong
file name in your GET statement.
If you specified the wrong data set in your ALLOCATE
command, use the FREE command to free the data set
and then re-enter ALLOCATE for the proper data set.
If you specified the wrong file name in your GET
statement, change the GET statement accordingly.
(The FREE command is described in the TSO Command
Language Reference publication.)

DATA SET NOT A PARTITIONED DATA SET
None.
TSO ITF is trying to allocate the partitioned data
set userid.DATA to hold your ITF files. You have
given a non-partitioned data set this name and, as a
result, ITF cannot allocate it as a partitioned data
set.
Either rename or delete the data set that you've
named userid.DATA and then re-execute.

DATA SET dsname NOT USABLE+
DATA SET DOES NOT CONTAIN FIXED LENGTH RECORDS

Error Messages 165

Explanation: The data s~t associated with the file you have
specified in your GET statement does not contain
fixed-length records. You may have allocated the
wrong data set or you may have specified the wrong
file name in your GET statement.

Action: If you specified the wrong data set in your ALLOCATE
command, use the FREE command to free the data set
and then re-enter ALLOCATE for the correct data set.
If you specified the wrong file name in your GET
statement, change the GET statement accordingly.
(The FREE command is described in the TSO Command
Language Reference publication.)

57 Short: DATA SET dsname NOT USABLE+
Long:
Explanation:

Action:

58 Short:
Long:
Explanation:

Action:

59 Short:
Long:
Explanation:

Action:

61 Short:
Long:
Explanation:

Action:

62 Short:
Long:
Explanation:
Action:

166

DATA SET MUST HAVE RECORDS OF 120 CHARACTERS
The records in the data set associated with the file
specified in your GET statement are not 120
characters long. You may have allocated the wrong
data set or you may have specified the wrong file
name.
If you allocated the wrong data set, use the FREE
command to free the data set and then allocate the
correct data set. If you specified the wrong file
name in your GET statement, change the GET statement
accordingly. (The FREE command is described in the
TSO Command Language Reference publication.)

DATA SET dsname EMPTY
None.
The data set associated with the file named in your
GET statement is empty. You may have allocated the
wrong data set or you may have specified the wrong
file name.
If you allocated the wrong data set, use the FREE
command to free the data set and then allocate the
correct data set. If you used the wrong file name
in your GET statement, change the GET statement
accordingly. (The FREE command is described in the
TSO Command Language Reference publication.)

DATA SET dsname NOT USABLE+
DATA SET MAY BE USED ONLY FOR INPUT
The data set associated with the file named in your
PUT statement can be used only for input. Only
members of userid.DATA can be used in PUT
statements.
Change the file name in your PUT statement and then
re-execute.

RECORD EXCEEDS MAXIMUM OF 128 CHARACTERS
None.
Your ITF:PL/I or ITF:BASIC statement exceeds the ITF
maximum of 128 characters (including the 8
characters for the line number).
List the data set and see which statements are too
long. Then shorten the statements in error (e.g.,
if the problem is with an ITF:BASIC DATA statement,
spread the data over two or more DATA statements)

COMMAND SYSTEM ERROR+
UNABLE TO ISSUE STAE
An internal error has occurred.
Contact your installation maintenance personnel.

63 Short:
Long:
EX.Qlanation:

Action:

64 Short:
Long:
EX.Qlanation:

Action:

65 Short:
Long:
EX.Qlanation:

Action:

67 Short:
Long:
EX.Qlanation:

Action:

69 Short:
Long:
EX.Qlanation:

101 Short:
Long:
EX.Qlanation:

Action:

102 Short:
Long:
EX.Qlanation:

COMMAND SYSTEM ERROR+
NESTING LEVEL EXCEEDED
An internal error has occurred in the ITF
dispatcher.
Contact your installation maintenance personnel.

COMMAND SYSTEM ERROR+
NO MORE SAVE AREAS
An internal error has occurred in the ITF
dispatcher.
Contact your installation maintenance personnel.

COMMAND SYSTEM ERROR+
NESTING LEVEL IS 0
An internal error has occurred in the ITF
dispatcher.
Contact your installation maintenance personnel.

DATA SET dsname NOT USABLE+
ERROR OCCURRED WHILE ATTEMPTING TO UPDATE DIRECTORY
An internal error has occurred while the system was
trying to update the directory associated with
userid.DATA.
Retry. If the problem recurs, contact your
installation maintenance personnel.

INVALID LINE NUMBER ENCOUNTERED+
ITF DATA SET MUST CONTAIN VALID LINE NUMBERS
The data set that you are trying to use as an
ITF:BASIC or ITF:PL/I program contains either an
invalid line number or no line numbers at all. ITF
programs must have valid line numbers.
List the contents of the data set. Perhaps you
specified the wrong data set name.

INV CMD+
INVALID COMMAND
Check your spelling. Information on the use of
commands and subcommands is given in Part III. This
message may also arise because of a transmission
error; if you are certain that the line you typed is
correct, re-enter the line in the same form.
Re-enter the corrected command or subcommand.

INVALID TEST SUBCOMMAND
None.
You have made an error in your test mode subcommand.
If the error was (1) missing parentheses on the
identifier list for the LIST, TRACE, or NOTRACE
subcommands, (2) a space between NO and TRACE in the
NOTRACE subcommand, or (3) any other syntax error in
an END, GO, or LIST test mode subcommand, you must
re-enter the entire subcommand. If, however, you
have made a syntax error in an AT, OFF, TRACE, or
NOTRACE subcommand, that part of the subcommand
preceding the occurrence of the error is accepted;
the rest of the subcommand is rejected and this
message is printed at the terminal. For example:

A40,50;60
TRACE (A,X,ZZZZ,Y)

In the AT subcommand given above, 40 and 50 are
accepted and 60 is rejected because it follows an
invalid delimiter. In the TRACE subcommand given

Error Messages 167

Action:

103 Short:
Long:
Explanation:

Action:

116 Short:
Long:
Explanation:

Action:

117 Short:
Long:

Explanation:

Action:

118 Short:
Long:

Explanation:

Action:

119 Short:
Long:
Explanation:

Action:

125 Short:
Long:
Explanation:
Action:

168

above, A and X are accept~d but ZZZZ and Yare
rejected. In this case, ZZZZ is an invalid
identifier and Y follows the occurrence of the
error. You could enter another subcommand including
just that portion of the subcommand which was
rejected; however, it is recommended that you
re-enter the entire subcommand.
You may either (1) re-enter the entire subcommand,
or (2) enter another subcommand including just that
portion of the subcommand which was rejected (see
the explanation above).

INV CMD+
COMMAND INVALID IN xxxx MODE
Check to see that you have typed a statement number
before a statement entered in the edit mode. Also
make sure that you have typed the numeral "1" rather
than the lower-case letter "1" in statement numbers.
Rules governing the use of system commands and
subcommands are given in Part III.
Enter the correct command or subcommand.

PARENS EMPTY+
PARENTHESES MUST ENCLOSE AT LEAST ONE CHARACTER
A left parenthesis and its corresponding right
parenthesis must be separated by at least one
character.
Re-enter the corrected command or subcommand.

TOO MNY (+
TWO LEFT PARENTHESES FOUND WITHOUT INTERVENING RIGHT
PARENTHESIS
A right parenthesis has been omitted or a left
parenthesis appears where a right parenthesis was
intended. Every left parenthesis must have a
corresponding right parenthesis and vice versa.
Re-enter the command or subcommand inserting a right
parenthesis where needed.

) MSNG+
LEFT PARENTHESIS FOUND WITHOUT MATCHING RIGHT
PARENTHESIS
Every left parenthesis must have a corresponding
right parenthesis and vice versa.
Re-enter the command or subcommand inserting a right
parenthesis where needed.

WORD TOO LONG+
TOO MANY CONSECUTIVE CHARACTERS WITHOUT DELIMITER
The following commands and subcommands require
blanks as delimiters: CONVERT, DELETE (in the edit
mode), EDIT, LIST (in the edit mode), RENAME, RENUM,
and RUN. AT, LIST (in the test mode), NOTRACE, OFF,
and TRACE require commas as delimiters. The syntax
of each system command and subcommand is given in
Part III.
Re-enter the command or subcommand inserting a comma
or a blank where needed.

INV COMNT+
NO COMMENTS ARE ALLOWED ON ANY COMMANDS
None.
Delete the comment and re-enter the command or
subcommand.

127 Short:
Long:
Explanation:
Action:

139 Short:
Long:
Explanation:
Action:

142 Short:
Long:
Explanation:

Action:

146 Short:
Long:
E~lanation:
Action:

147 Short
Long:
E~lanation:
Action:

148 Short:
Long:
E~lanation:
Action:

149 Short:
Long:
E~lanation:
Action:

110 Short:
Long:
Explanation:

Action:

111 Short:
Long:
Explanation:

Action:

SYSTEM ERROR+
SYSTEM ABEND CODE nnn
An error has occurred within an ITF routine.
Be sure to obtain the second level (long form) of
the message. If the error occurred in the command
mode, re-enter the command. If the error occurred
in the edit mode, save the current program, end the
mode, and then re-enter the edit mode for that
program. This should re-establish the conditions
that existed prior to the occurrence of the error.
In any event, contact your installation maintenance
personnel.

INV KYWD+
CHAR60/CHAR48 NOT VALID FOR BASIC
CHAR60/CHAR48 are valid only for PL/I.
Re-enter the command omitting the invalid keyword.

PGM EMPTY+
PROGRAM IS EMPTY
You have deleted all the statements from your
program or you have saved a program which contains
no statements, and then issued a LIST or RENUM
subcommand. This messages is to inform you that the
program contains no statements; therefore, the
service you requested cannot be performed.
Add statements to your program and re-enter the
subcommand I or delete the program from permanent
storage by the DELETE command.

SYSTEM ERROR
None.
None.
contact your installation maintenance personnel.

SYSTEM ERROR
None.
None.
Contact your installation maintenance personnel.

SYSTEM ERROR
None.
None.
Contact your installation maintenance personnel.

SYSTEM ERROR
None.
None.
contact your installation maintenance personnel.
space.

INV SYNTAX+
ELEMENTS OF COMMAND INVALID OR IN IMPROPER SEQUENCE
syntax for system commands and subcommands and rules
for their usage are given in Part III.
Re-enter the corrected command or subcommand.

NO EXEC STMTS+
THIS PROGRAM CONTAINS NO EXECUTABLE STATEMENTS
You are typing to execute a program that contains
only comments or non-executable statements.
Insert the statements you need and re-execute the
program.

Error Messages 169

190 Short:
Long:
Explanation:

300 Short:
L0!!9.:
~lanation:

Action:

303 Short:
Long:
Explanation:

304 Short:
Long:
Explanation:

Action:

305 Short:
Long:
Explanation:

Action:

306 Short:

Long:
Explanation:

Action:

307 Short:
L0!!9:
Explanation:

170

PGM NOT EX+
A NULL PROGRAM CANNOT BE RUN
A null program (one that contains no statements) can
never be executed.
Re-enter the command or subcommand specifying the
name of a program that contains executable
statements.

CMD SYSTEM ERROR+
{PUTGETIPARSE} ERROR CODE nnnn
The system has erred in translating or executing
your command.
Re-enter the CONVERT command. If the problem
recurs, make note of the message number and error
code and contact your installation maintenance
personnel.

NO MEMBER SPECIFIED FOR PARTITIONED DATA SET dsname
None.
The dsname in your CONVERT command is a partitioned
data set. The required member name is missing. You
must always indicate which member of the partitioned
data set is involved. Perhaps you intended to
specify the name of some other data set and
misspelled it.
Re-enter the CONVERT command with either an
appropriate member name in parentheses after g~me
or a new dsname.

MEMBER member-name NOT IN DATA SET dsname
None.
No member in dsname has the name you have specified.
You may have misspelled the member name or the data
set name.
Re-enter the CONVERT command with the correct
name(s) •

ORGANIZATION OF DATA SET dsname NOT ACCEPTABLE+
ORGANIZATION MUST BE PARTITIONED OR SEQUENTIAL
Only the names of partitioned and sequential data
sets can be specified in the CONVERT command.
Perhaps you have specified the wrong dsname.
If dsname is correct, the associated data set must
be recreated with an acceptable data set
organization before the CONVERT command can be used
for it. If dsname is wrong, re-enter the CONVERT
command with the correct ~~.

MEMBER member-name SPECIFIED BUT dsname NOT
PARTITIONED
None.
The data set given by dsname is not a partitioned
data set and therefore has no members. You probably
are using the wrong ~sn~~~. (If you are trying to
convert one of your OS ITF collections to TSO ITF
form, you should be using your OS ITF user
identification code as the dsname.>
Re-enter the CONVERT command with the correct
dsnam~.

MEMBER member-name OF dsname ALREADY EXISTS+
DATA SET OR MEMBER MUST BE NEW
The name that your have specified for the data set
that will hold your converted program matches that
of an existing sequential data set or member of a

Action:

308 Short:
Long:
Explanation:

Action:

310 Short:
Long:
Explanation:

Action:

311 Short:
Long:
Explanation:

Action:

312 Short:
Long:
Explanation:

Action:

313 Short:
Long:
Explanation:

Action:

314 Shor!=. :
Long:
Explanation:

Action:

partitioned data set. The sequential data set or
member must not already exist.
Re-enter the CONVERT command with another name for
the data set or member.

NO CONVERT OUT FOR BASIC, ONLY CONVERT IN
None.
CONVERT OUT can be used only for ITF:PL/I programs.
Perhaps you mistakenly specified the name of an
ITF:BASIC program where you intended to specify that
of an ITF:PL/I program.
Re-enter the CONVERT command with the name of an
ITF:PL/I program, if this was your original
intention.

INVALID LRECL, nnn+
128 MAX LRECL FOR BASIC AND IPLI
The maximum logical record length allowed by ITF is
128. You have specified a value larger than this in
your LRECL option.
Re-enter the CONVERT command and specify a logical
record length of 128 or less.

DATA SET dsname NOT USABLE+
CANNOT OPEN DATA SET
An error occurred while the system was trying to
open dsname.
Re-enter the CONVERT command. If the problem
recurs, make note of the pertinent information
(message number and dsname) and then contact your
installation maintenance personnel.

INVALID LRECL, 0
None.
You have erroneously specified a logical record
length of 0 in the LRECL option. The value
specified in LRECL must be aninteger from 1 through
128 (for CONVERT IN) or from 1 through 100 (for
CONVERT OUT) ..
Re-enter the CONVERT command and specify a valid
logical record length in LRECL.

INVALID DATA SET NAME, dsname+
EXCEEDS 44 CHARACTERS
The data set name specified in your CONVERT command
is longer than 44 characters when fully qualified~
(Note that even though the name that you actually
specified may be less than 44 characters, it is long
enough so that the qualifiers appended by the system
cause the excessive length.) Qualified names are
discussed in the TSO Terminal User's Guide,
GC28-6763.
Re-enter the CONVERT command with a shorter data set
name.

INVALID BLOCK SIZE, nnn+
BLOCK NOT MULTIPLE OF LRECL
The block size specified in the CONVERT command must
be an integral multiple of the logical record length
specified in LRECL. If LRECL is omitted, the block
size must be an integral multiple of 80 (for CONVERT
IN) or an integer from 1 through 100 (for CONVERT
OUT) •
Re-enter the CONVERT command with a valid block
size.

Error Messages 171

315 Short:

Long:
Explanation:

Action:

316 Short:

Long:
Explanation:

Action:

319 Short:
Long:
Explanation:

Action:

320 Short:
Long:
Explanation:

Action:

321 Short:
Long:
Explanation:

Action:

350 Short:
Long:
Explanation:

Action:

351 Short:
Long:
Explanation:

172

IN OR OUT AND DATA SET2 MUST BE
SPECIFIED[, REENTER-l
None.
The CONVERT command must always include the IN or
OUT option. In turn, IN or OUT must always include
the name to be given to the converted program.
If "REENTER-" appears at the end of the message,
enter only the IN or OUT option with the required
data set name in parentheses. If "REENTER-" does
not appear, then you must re-enter the entire
CONVERT command to include the IN or OUT option.

GOFORT, IPLI, OR BASIC MUST BE
SPECIFIED[, REENTER-]
None.
You must always indicate the type of program being
converted. GOFORT, IPLI, and BASIC indicate code
and Go FORTRAN, ITF:PL/I, and ITF:BASIC,
respectively. (ITF users should ignore the GOFORT
reference.) BASIC is not allowed for CONVERT OUT
usage.
If "REENTER-" appears at the end of the message,
then enter Qnly IPLI or BASIC, whichever applies.
If "REENTER-" does not appear, you must re-enter the
entire CONVERT command to include IPLI or BASIC.

CHAR60/CHAR48 VALID ONLY FOR IPLI OUT
None.
CHAR60 and CHAR48 are ITF:PL/I options and they are
valid only for CONVERT OUT.
Re-enter the CONVERT command correctly.

INVALID BLOCK SIZE, 0
None.
You have erroneously specified a block size of 0 in
your CONVERT command. The block size must be an
integral multiple of the logical record length. If
no logical record length is specified, the block
size must be a multiple of 80 (for CONVERT IN) or an
integer from 1 through 100 (for CONVERT OUT).
Re-enter the CONVERT command and specify a valid
block size.

INVALID BLOCK SIZE, nnn+
BLOCK EXCEEDS MAX OF 100 FOR PACKED RECORDS
When LRECL is omitted for CONVERT OUT, the block
size specification (if given) must not exceed 100.
Re-enter the CONVERT command and specify a valid
block size.

INVALID BLOCK SIZE, nnn+
BLOCK SIZE EXCEEDS MAXIMUM
The block size that you have specified exceeds the
maximum permitted for the type of direct access
storage being used at your installation (e.g., for
2311 disk storage, the maximum block size is 3625).
Contact your installation maintenance personnel for
details about the type of direct access storage
being used.
Re-enter the CONVERT command with a valid block
size.

DATA SET dsname NOT USABLE+
CANNOT OPEN DATA SET
An error occurred while the system was trying to

Action:

353 Short:
Long:
Explanation:

Action:

354 Short:
Long:
Explanation:

Action:

355 Short:
Long:
~anation:

Action:

401 Short:
Long:

open dsname.
Re-enter the CONVERT command. If the problem
recurs, note the message number and dsname and
contact your installation maintenance personnel.

NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND
None.
There is currently not enough room in main storage
to perform the conversion. Specifically, room is
needed to hold the OS ITF collection being
converted. This may be a temporary problem caused
by the concurrent demands of other terminal users~
wait a few moments and then re-enter the CONVERT
command. You may keep trying, but if the problem
keeps recurring you should contact your installation
maintenance personnel.

DATA SET dsname EMPTY
None.
The data set named dsname contains no information.
You may have specified the wrong data set name in
your CONVERT command.
If the data set name was wrong, re-enter the CONVERT
command with the correct name.

INPUT SOURCE LRECL EXCEEDS SPECIFIED LRECL
None.
The logical record length of the program being
converted exceeds the logical record length
specified in the CONVERT IN command.
Re-enter the CONVERT command with a logical record
length that is at least as large as that of the
program being converted.

PROG TOO BIG+
TOO MANY STATEMENTS IN THIS COMPILATION FOR USER
AREA

Explanation: There is insufficient space in your current user
area to entirely contain this program.

Action: Either shorten your program or contact your
installation maintenance personnel to obtain more
space.

441 Short:
Long:
Exp!~nat.ion:
Action:

*464 Short:
Long:

Explanation:

Action:

481 Short.:
Long:
Explanation:
Action:

*494 Short:
Long:

SYSTEM ERROR
None.
None.
Contact your installation maintenance personnel.

INV NUM ARGS FOR B-IN FUNC+
ONLY ONE ARGUMENT IS ALLOWED FOR THIS BUILT-IN
FUNCTION
In ITF:BASIC all intrinsic functions require one
argument with the exception of RND for which the
argument is optional (see Part II under the heading
nIntrinsic Functions n).
Correct the statement and re-execute the program.

SYSTEM ERROR
None.
None.
Contact your installation maintenance personnel.

HYP-SINE, -COSINE Ixl > 114.613+
ABSOLUTE VALUE OF HYPERBOLIC SINE OR COSINE ARGUMENT
MUST BE LESS THAN OR EQUAL TO 114.613

Error Messages 173

Explanation: The absolute value of the argument you supplied to
the HSN or HCS intrinsic function exceeds 174.673.

Action: Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

*497 Short
Long:

Explanation:

Action:

531 Short:
Long:
Explanation:
Action:

*532 Short:
Long:

Explanation:

Action:

*533 Short:
Long:

Explanation:

Action:

*536 Short:
Long:

Explanation:

Action:

*547 Short:
Long:

Explanation:

Action:

601 Short:
Long:
Explanation:

Action:

602 Short:
Long:

174

INV ARG SQUARE ROOT+
SQUARE ROOT BUILT-IN FUNCTION DOES NOT ACCEPT
NEGATIVE ARGUMENTS
The value of the argument passed to the SQR
intrinsic function must not be less than zero.
Check the logic of your program, correct the
statementCs) in error, and re-execute the program.

SYSTEM ERROR
None.
None.
Contact your installation maintenance personnel.

EXP ARG TOO BIG+
BUILT-IN FUNCTION EXP RECEIVED ARGUMENT GREATER THAN
174.6
The value of the argument passed to the EXP
intrinsic function must be within the range -180. 2
to 174.6. If the argument's value is less than
-180.2, a zero result is returned.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

LOG ARG <= 0+
ARGUMENT TO LOGARITHM (BASE E, 2, OR 10) BUILT-IN
FUNCTION CANNOT BE LESS THAN OR EQUAL TO ZERO
The value of the argument passed to the LOG, LTW, or
LGT intrinsic functions must not be less than or
equal to zero.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

INV SIN/COS ARG+
ABSOLUTE VALUE OF ARGUMENT OF SIN OR COS BUILT-IN
FUNCTION MUST BE LESS THAN PI * 2 ** 50
The value of the argument you have passed to the SIN
or COS intrinsic function exceeds or equals ~ * 2
** 50.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

DIV BY ZERO+
DIVISION BY A FLOATING POINT NUMBER WITH ZERO
FRACTION WAS ATTEMPTED
Division by zero is not allowed in ITF. Check your
program logic, correct the necessary statementCs),
and re-execute the program.
Correct the error and re-execute the program.

IDENT AREA FULL+
INTERNAL AREA IN WHICH IDENTIFIERS ARE KEPT IS FULL
Your program contains too many identifiers for the
current size of the internal identifier area.
Either eliminate some of the identifiers in your
program and re-execute it, or contact your
installation maintenance personnel to obtain a
larger user area.

INV NUM CON+
INVALID NUMERIC CONSTANT

Explanation:

Action:

603 Short:
Long:
Explanation:

Action:

*604 Short:
Long:

Explanation:

Action:

605 Short
Long:
Explanation:
Action:

*606 Short:
Long:
Explanation:

Action:

*607 Short:
Long:

Explanation:

Action:

608 Short:
Long:

Explanation:

The magnitude of a numeric constant must be less
than 7.2xl0+ 75 and must be greater than 5.4xl0-79~
Either your numeric constant is outside this range,
or you have left out the letter "E" in the
exponential format.
If the error message appeared as you were creating
the program, correct the statement and continue.
If, however, the error message appeared after you
issued a RUN or BASIC command, or a RUN subcommand,
you must correct the statement and re-execute the
program.

SYNTAX ERR EXPR+
SYNTAX ERROR IN AN EXPRESSION
Either your expression is incomplete (you have
issued a carriage return before completing the
expression) or you have accidentally struck the
shift-key or the wrong character on the keyboard.
Also, check to see that parentheses (if present) are
matched and that you have used prefix operators
correctly.
Re-enter the corrected statement.

OPND ** INV+
IN X**Y, Y MUST BE AN INTEGER WHEN X IS LESS THAN
ZERO
ITF:BASIC does not permit you to raise a negative
number to a fractional power (which would be the
result of the exponentiation operation when X is
less than zero and Y is not an integer).
Correct the program and re-execute it.

NO SPACE+
WORKSPACE FULL
Your program is too large for the current workspace.
Either shorten your program or contact your
installation maintenance personnel to obtain more
space.

PREV REF ARRY+
ARRAY IN DIM STATEMENT ALREADY REFERENCED
An array name cannot appear in a DIM statement if it
has already been used in another statement (implicit
declaration) or if it has already been used in
another DIM statement (explicit declaration).
Correct the statement(s) in error and re-execute the
program.

NUM DIM INV+
ARRAY DID NOT HAVE THE SAME NUMBER OF DIMENSIONS
THROUGHOUT THE PROGRAM
Early in your program you implicitly or explicitly
declared an array to have a certain number of
dimensions, and later in your program you have
referred to that array using a different number of
dimensions than you originally stated.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

MSNG , OR ON+
IN COMPUTED GOTO, STATEMENT NUMBERS MUST BE FOLLOWED
BY A COMMA OR THE KEYWORD ON
The correct syntax of the computed GOTO is:

Error Messages 175

Action:

GOTO S1[,S2, ••• ,Sn] ON arithmetic-expression

where ~i is a statement number. Rules governing the
use of the computed GOTO are given in Part II under
the heading "Program Statements."
Re-enter the corrected statement.

609 Short: MSNG STMT NUM+
Long:

Explanation:

Action:

IN COMPUTED GOTO, EACH COMMA MUST BE FOLLOWED BY A
STATEMENT NUMBER
The correct syntax of the computed GOTO is:

GOTO S1[,S2, ••• Sn] ON arithmetic-expression

where ~~ is a statement number. Rules governing the
use of the computed GOTO are given in Part II under
the heading nprogram Statements. n

Re-enter the corrected statement.

610 Short: TOO MNY DIM+
Long:
Explanation:

Action:

ARRAYS MAY NOT HAVE MORE THAN TWO DIMENSIONS
In ITF:BASIC, arithmetic arrays must have one or two
dimensions.
Re-enter the statement correcting the number of
dimensions.

*611 Short: MSNG , +

*612

613

614

176

Long: THE ONLY VALID DELIMITER IN THIS STATEMENT IS A
COMMA.

Explanation: Perhaps you have made a typing error or you have
attempted to separate items by blanks where a comma
must be used. See Part II under the heading
nprogram Statements" to obtain the correct syntax of

Action:

Short:
Long:

Explanation:

Action:

Short:
Long:

Explanation:

Action:

Short:
Long:

Explanation:

the statement you are using.
Correct the statement(s) in error and re-execute the
program.

PREV DEF FUNC+
FUNCTION DEFINED IN DEF STATEMENT MAY NOT BE DEFINED
MORE THAN ONCE
A function may be defined anywhere in the program
(before or after its use), but must be defined only
once.
Correct the statement(s) in error and re-execute the
program.

INV FUNC NM+
A SINGLE ALPHABETIC CHARACTER MUST FOLLOW THE USER
FUNCTION FN
The name of the defined function must be a single
alphabetic character, preceded by the letters FN
(e.g., FNA, FNB, ••• ,FN@, FN#, FN$).
Re-enter the statement correcting the function name.

INV FUNC VAR+
THE DUMMY VARIABLE USED WITH THE USER FUNCTION FN
MUST BE A SIMPLE ARITHMETIC VARIABLE
In ITF:BASIC, simple arithmetic variables are
indicated by a single alphabetic character or by an
alphabetic character followed by a digit. The dummy
variable you have used is not a valid simple
arithmetic variable name.
Re-enter the statement using a valid dummy variable.

615 Short:
Long:

Explanation:

Action:

616 Short:
Long:
Explanation:

Action:

617 Short:
Long:
Explanation:

Action:

618 Short:
Long:
Explanation:

Action:

619 Short:
Long:
Explanation;

Action:

*620 Short:
Long:

MSNG = OR UNID STMT+
MISSING EQUAL SIGN IN ASSIGNMENT STATEMENT OR
UNIDENTIFIABLE STATEMENT TYPE
Check the spelling of statement keywords and check
for possible typing errors. The correct syntax of
ITF:BASIC statements is given in Part II under the
heading "Program Statements." This message is also
given when a carriage return is given before
completion of the statement.
Re-enter the corrected statement.

FUNC MSNG (+
FUNCTION NAME MUST BE FOLLOWED BY LEFT PARENTHESIS
In ITF:BASIC, all function names except RND must be
followed by a left parenthesis, an argument (an
arithmetic expression representing the value that
the function is to act upon), and a right
parenthesis.
Re-enter the corrected statement.

MSNG (+
LEFT PARENTHESIS MISSING FROM STATEMENT
Every right parenthesis must have a corresponding
left parenthesis and vice versa. Check to see that
the right parenthesis in your statement was intended
and is not just a typing error.
Re-enter the statement inserting a left parenthesis
where needed.

MSNG)+
RIGHT PARENTHESIS MISSING FROM STATEMENT
Every left parenthesis must have a corresponding
right parenthesis and vice versa. Check to see that
the left parenthesis in your statement was intended
and is not just a typing error.
Re-enter the statement inserting a right parenthesis
where needed.

NOT POS INT+
BOUNDS IN A DIM STATEMENT MUST BE POSITIVE INTEGERS
In ITF:BASIC, array bounds in a DIM statement must
be specified by positive integers that are within
the range 1-255. Zero, negative or fractional
numbers are not valid.
Re-enter the corrected statement.

NM NOT DCL+
NAMES USED IN MAT STATEMENTS MUST FIRST BE
IMPLICITLY OR EXPLICITLY DECLARED

Explanation: Prior to usage in a MAT statement, an array must
have been implicitly defined by usage in a non-MAT
statement or explicitly defined by a DIM statement.
This means that the statement number of the MAT
statement must be higher than that of the first
usage of the subscripted array name (implicit
declaration) or the DIM statement (explicit
declaration) •

Action: Correct the statement(s) in error and re-execute the
program.

*621 Shor"!::.:
Long:
Explanation:

MAT NOT CNF+
MATRICES MUST BE CONFORMABLE IN THIS STATEMENT
"Conformable" has different meanings according to
the matrix function or MAT statement being used. It
may mean that the two matrices must have identical

Error Messages 177

dimensions, or that the rows and columns of the
matrices must have a certain relationship. For
specific rules governing the use of MAT statements,
see Part II under the heading "Array Operations."
Correct the statement(s) in error and re-execute the
program.

622 Short: SAME MAT+
Long: NAMES ON THE LEFT AND RIGHT SIDES OF THE EQUAL SIGN

MUST REFER TO DIFFERENT MATRICES
Explanation: This error could occur in anyone of the following

forms of the MAT assignment statement: inversion
(INV), multiplication, and transpose (TRN). The
correct syntax of all MAT statements and rules
governing their use are given in Part II under the
heading "Array Operations."

Action: Re-enter the statement using different array names
on the left and right sides of the equal sign.

623 Short: INV STMT NUM+
Long:
Explanation:

*624 Short:
Long:
Explanation:

Action:

626 Short:
Long:
Explanation:

Action:

627 Short:
Long:
Explanation:

Action:

178

STATEMENT NUMBERS MUST CONSIST OF ONE TO FIVE DIGITS
Statement numbers must be from one to five digits in
length (within the range 00001 to 99999). Make
certain that you are typing the numeral "1" rather
than the lower-case letter "1" and that you have not
typed an extra comma (or other character) after a
statement number following THEN or GOTO in an IF
statement.
Re-enter the corrected statement.

INV FOR/NEXT BRANCH+
INVALID BRANCH INTO FOR/NEXT LOOP
Transfer of control into or out of a FOR/NEXT loop
is allowable within the constraints that a NEXT
statement cannot be executed if its associated FOR
statement is inactive. A FOR statement is inactive
if it has not been executed, or if the FOR/NEXT loop
was previously completed.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

THEN/GOTO MSNG+
IF STATEMENT MUST CONTAIN "THEN" OR "GOTO"
The correct syntax of the IF statement is:

IF X1 op X2 {THENIGOTO} statement-number

where ~1 and ~2 are scalar expressions and 2E is a
relational operator. Rules governing the use of the
IF statement are given in Part II under the heading
"Program Statements."
Re-enter the corrected statement.

TO MSNG+
FOR STATEMENT MUST CONTAIN KEYWORD "TO"
The correct syntax of the FOR statement is:

where y is a simple arithmetic variable and ~L is an
arithmetic expression. Rules governing the use of
the FOR statement are given in Part II under the
heading "Program Statements."
Re-enter the corrected statement.

628 Short:
Long:
Explanation:

Action:

629 Short:
Long:
Explanation:

Action:

630 Short:
Long:

Explanation:

Action:

631 Short:
Long:
Explanation:

Action:

632 Short:
Long:
Explanation:

Action:

633 Shor~:
Long:

MSNG STMT NUM+
STATEMENT NUMBER MISSING
You have omitted the statement number from one of
the following statements: MAT PRINT USING, PRINT
USING, GOTO, GOSUB, or IF ••• THEN/GOTO. If you are
not certain of the statement numbers, use LIST in
the edit mode to display your program.
Re-enter the statement inserting the desired
statement number.

NON ARITH EXPR+
EXPRESSIONS IN THIS STATEMENT MUST BE ARITHMETIC
Only arithmetic expressions are allowed to follow
the word ON in the computed GOTO statement. Correct
syntax for the GOTO statement and rules governing
its use are given in Part II under the heading
"Program Statements."
Re-enter the corrected statement.

EXPR DIFF TYPE+
BOTH EXPRESSIONS IN THIS STATEMENT MUST BE OF THE
SAME TYPE - BOTH CHARACTER OR BOTH ARITHMETIC
You have attempted to assign an arithmetic value to
a character variable (or vice versa) in a LET
statement, or you have tried to compare a character
expression to an arithmetic expression in an IF
statement. Rules governing the use of the IF and
LET statements are given in Part II under the
heading "Program Statements."
Re-enter the corrected statement.

EXTRA GOSUB+
TOO MANY ACTIVE GOSUBS
A GOSUB statement is considered to be active when it
has been executed and its associated RETURN
statement has not been executed. In ITF:BASIC,
there may be no more than 56 active GOSUB statements
in a program. Your program exceeds this
implementation limit.
Alter your program logic, eliminating excess GOSUB
statements, and then re-execute the program.

MSNG DEL+
MISSING DELII~TER
Perhaps you have made a typing error or you have
attempted to separate items by blanks where a comma
must be used. See Part II under the heading
"Program Statements" to obtain the correct syntax of
the statement you are using.
If this message appeared as you were creating the
program, correct the statement and continue. If,
however, the message appeared after you issued a RUN
or BASIC command, or a RUN subcommand, you must
correct the statement and re-execute the program.

NOM FOR/NEXT NOT =+
THE PROGRAM MUST CONTAIN THE SAME NUMBER OF FORS AND
NEXTS

Explanation: FOR and NEXT statements must be paired. Your
program contains an extra FOR or an extra NEXT
statement.

Action: Check the logic of your program. Correct the
statement(s) in error and re-execute the program.

Error Messages 179

*634 Short:
Long:

Explanation:

Action:

635 Short:
Long:

Explanation:

Action:

*636 Short:
Long
Explanation:

Action:

*637 Short:
Long:

Explanation:

Action:

638 Short:
Long:

Explanation:

Action:

639 Short
Long:
Expl~tio!!:

180

OPND RANGE ** INV+
IN X**Y, ERROR IF X < 0 AND Y < -2**31 OR Y >
2**31-1
ITF:BASIC does not permit you to raise a negative
number to a power which is outside the range -2**31
to 2**31-1.
Check the logic of your program. Correct the
statement(s) in error and re-execute the program.

NOT ARITH VAR+
FOR AND NEXT STATEMENTS MUST BE FOLLOWED BY A SIMPLE
ARITHMETIC VARIABLE
In ITF:BASIC, simple arithmetic variables are
indicated by a single alphabetic character or by an
alphabetic character followed by a digit. The
variable you have used in the FOR and/or NEXT
statement is not a valid simple arithmetic variable
name.
Re-enter the statement using a valid simple
arithmetic variable.

EXTRA FORS+
FOR NESTING EXCEEDS IMPLEMENTATION LIMIT (is)
In ITF:BASIC, FOR/NEXT loops may be nested 15 levels
deep (with the outermost FOR/NEXT loop considered to
be the first level).
Alter your program logic, eliminating the excess
nested FOR/NEXT loops, and re-execute the program.

NO FMT SPEC+
PRINT USING OPERAND REQUIRES FORMAT SPECIFICATION IN
IMAGE
Arithmetic and character expressions given in the
PRINT USING statement are printed according to
corresponding character-, 1-, F- or E-formats given
in the specified Image statement. Your Image
statement does not provide a format specification
for the expression to be printed. The correct
syntax of the PRINT USING and Image statements and
rules governing their use are given in Part II under
the heading nprogram Statements. n
Correct the statement(s) in error and re-execute the
program.

TOO MNY DIMS+
CHARACTER ARRAYS MAY NOT HAVE MORE THAN ONE
DIMENSION
In ITF:BASIC, a character array is limited to one
dimension (arithmetic arrays may have one or two
dimensions), and must contain only character data.
Re-enter the statement using only one dimension.

MSNG OR INV IDENT+
MISSING OR INVALID IDENTIFIER
This message occurs whenever you have done one of
the following:
1. forgotten to type an identifier -- e.g., LET

72
2. made a typing error -- e.g., LET X = &PT rather

than &PI
3. incorrectly named a variable -- e.g., LET AB =

72 rather than Ai, A2, ••• ,A9
Rules for naming variables and the correct names for
internal constants are given in Part I under the
heading nWriting a Programn and in Part II under the

Action:

640 Short:
Long:
Explanation:

Action:

*641 Short:
Long:

Explanation:

Action:

642 Short:
Long:
Explanation:

Action:

*643 Short:
Long:
Explanation:

Action:

644 Short:
Long:

Explanation:

Action:

*645 Short:
Long:

heading nElements of BASIC Statements. n
Re-enter the corrected statement.

EXTRA DEC PT+
TOO MANY DECIMAL POINTS IN NUMBER
In ITF:BASIC, only decimal fixed-point and decimal
floating-point numbers may contain a decimal point.
In both cases (F-format and E-format), the decimal
point is optional, but no more than one decimal
point can be specified.
If this message appeared when you were creating the
program, correct the statement and continue. If,
however, the message appeared after you issued a RUN
or BASIC command, or a RUN subcommand, you must
correct the statement and re-execute the program.

BIG TAN-COT+
TANGENT OR COTANGENT ARGUMENT EXCEEDS MAXIMUM
ALLOWED
You have supplied an argument to the TAN or COT
intrinsic function which has a value that
exceeds n *218 for short-form arithmetic or n *250

for long-form arithmetic.
Check the logic of your program, make the necessary
corrections, and re-execute the program.

INV CHAR CON+
INVALID CHARACTER CONSTANT
A character constant is one or more characters
enclosed by a pair of single or double quotation
marks. Check to see that your character constant is
enclosed in quotation marks. If your character
constant is to contain a quotation mark, make
certain you are following the rules given in Part II
under the heading "Elements of BASIC Statements. n
If the message appeared as you were creating the
program, correct the statement and continue. If,
however, the message appeared after you issued a RUN
or BASIC command, or a RUN subcommand, you must
correct the statement and re-execute the program.

UNDEF TAN/COT+
TANGENT OR COTANGENT APPROACHES INFINITY
This message is given when you ask for one of the
following:

TAN(90 0 ± n * 180 0)

COT(± n * 1800)

where n is an integer.
Check your program logic, correct the necessary
statement(s), and re-execute the program.

BLANK STMT+
BLANK STATEMENT OR NO OPERANDS FOLLOWING KEYWORD
THAT REQUIRES OPERANDS IS INVALID
In an ITF:BASIC program, a statement number with
only blanks following it is invalid. This message
is also given when you supply a statement keyword
without its required operands.
Re-enter the entire statement making the necessary
corrections.

EXTRA ,+
EXTRA COMMA IN STATEMENT

Error Messages 181

Explanation: You have forgotten to type an identifier, or you
have typed two consecutive commas.

Action: If this message appeared when you were creating the
program, correct the statement and continue. If,
however, the message appeared after you issued a RUN
or BASIC command, or a RUN subcommand, you must
correct the statement, and then re-execute the
program.

646 Short: MSNG , +
Long:
Explanation:

Action:

647 Short:
Long:
Explanation:

Action:

648 Short:
Long:
Explanation:

Action:

*649 Short:
Long:

Explanation:

Action:

650 Short:
Long:

Explanation:

Action:

651 Short:
Long:

182

COMMA MISSING FROM STATEMENT
Perhaps you have made a typing error or you have
attempted to separate items by blanks where a comma
must be used. See Part II under the heading
"Program Statements" to obtain the correct syntax of
the statement you are using.
Re-enter the corrected statement.

INV ARRY NM+
INVALID ARRAY NAME
In ITF:BASIC, arithmetic arrays are named by a
single alphabetic character (A,B, ••• ,Z,@,#,$);
character arrays are named by a single alphabetic
character followed by a dollar sign (A$,B$ •••• ,Z$,
0)$, #$, $$) •
Re-enter the statement using the correct array name.

SUBSC > LIM+
MAXIMUM ARRAY BOUND IS 255
Neither subscript in an array reference or in an
array declaration can exceed 255.
If the error message appeared as you were creating
the program, correct the statement and continue.
If, however, the error message appeared after you
issued a RUN or BASIC command, or a RUN subcommand,
you must check the logic of your program, correct
the statement(s) in error, and re-execute the
program.

ONLY DELIM AND CON+
THE ONLY ITEMS ACCEPTED IN THIS STATEMENT, OTHER
THAN DELIMITERS, ARE VALID CONSTANTS
Data supplied in DATA statements and data retrieved
from a file by means of the GET statement must be
numeric, internal, or character constants, separated
by commas. (Remember that character constants must
be enclosed in quotation marks.)
If this message appeared when you were creating the
program, correct the statement and continue. If,
however, the message appeared after you issued a RUN
or BASIC command, or a RUN subcommand, you must
correct the statement, and then re-execute the
program.

ONL~ DELIM AND VAR+
THE ONLY ITEMS ACCEPTED IN THIS STATEMENT, OTHER
THAN DELIMITERS, ARE VALID VARIABLES
In ITF:BASIC, input/output statements (READ, INPUT,
GET, PUT, and their MAT statement counterparts) must
contain a list of variables separated by commas.
Check for typing and spelling errors.
Re-enter the corrected statement.

MSNG FN+
"FN" MUST FOLLOW "DEF" IN THE DEFINE FUNCTION

STATEMENT
Explanation: The correct syntax of the OEF statement is:

Action:

OEF FNa(v} = arithmetic-expression

where ~ is an alphabetic character and y is a simple
arithmetic variable. Rules governing the use of the
DEF statement are given in Part II under the heading
"Program Statements."
Re-enter the corrected statement.

652 Short: INV STEP+
Long: SECOND EXPRESSION IN FOR STATEMENT MUST END THE

STATEMENT OR BE FOLLOWEO BY "STEP"
Explanation: The correct syntax of the FOR statement is:

Action:

653 Short:
Long:
Explanation:

Action:

654 Short:
Long:

Explanation:

Action:

655 Short:
Long:

Explanation:

Action:

656 Short:
Long:

FOR v = x~ TO X2 [STEP X3]

where y is a simple arithmetic variable and ~i is an
arithmetic expression. Rules governing the use of
the FOR statement are given in Part II under the
heading "Program statements."
Re-enter the corrected statement.

EXTRA CHAR+
EXTRA CHARACTERS AFTER LOGICAL END OF STATEMENT
This message appears if you have typed a comment as
part of a statement other than one of those
statements which allows a comment (i.e., END, PAUSE,
REM, RESTORE, RETURN, and STOP), or if you have
typed an extra comma at the end or a list.
Re-enter the corrected statement.

INV FUNC+
CON, ZER, ION, TRN, AND INV FUNCTIONS MAY ONLY BE
USED WITH MAT ASSIGNMENT STATEMENT
CON, ZER, ION, TRN, and INV are matrix functions.
Consequently, they can be used only in MAT
assignment statements. The syntax of the MAT
statements and rules governing their use are given
in Part II under the heading "Array Operations."
Re-enter the corrected statement.

INV ARRY NM+
THE ONLY VALID OPERANDS IN THIS MAT STATEMENT ARE
ARRAY NAMES
In ITF:BASIC, arithmetic arrays are named by a
single alphabetic character (A,B, ••• ,Z,m,#,$). Only
arithmetic arrays can be used in MAT statements;
character arrays cannot be used in MAT statements.
Check your statement for typing and spelling errors.
Correct syntax for MAT statements and rules
governing their use are given in PART II under the
heading "Array Operations."
Re-enter the corrected statement.

INV MAT SYNTAX+
SYNTAX OF RIGHT SIDE OF MAT SCALAR MULTIPLICATION
IS: PARENTHESIZED EXPRESSION, MULTIPLICATION SIGN,
AND MATRIX NAME

Explanation: The correct syntax of the MAT assignment (scalar
multiplication) is:

MAT name-l = (x) * name-2

Error Messages 183

Action:

657 Short:
Long:
Explanation:

Action:

*658 Short:
Long:

Explanation:

Action

659 Short:
Long:

Explanation:

Action:

*660 Short:
Long:

Explanation:

Action:

661 short:
Long:

EXPlanation:

184

where'~ is an arithmetic expression and each name is
the name of an array. Make certain that your
arithmetic expression precedes the multiplication
sign and that it is contained in parentheses. Rules
governing the use of this statement are given in
Part II under the heading "Array Operations."
Re-enter the corrected statement.

INV ;+
SEMI-COLON NOT VALID IN THIS CONTEXT
The semicolon can be used as a delimiter only in the
PRINT and MAT PRINT statements.
Re-enter the corrected statement.

NEXT VAR NOT = FOR VAR+
NEXT STATEMENT VARIABLE MUST MATCH THE PREVIOUS FOR
STATEMENT VARIABLE
FOR and NEXT statements must be paired and are
matched when the same simple arithmetic variable is
specified for each of the two statements. If you
are using nested FOR/NEXT loops, make certain you
are doing it correctly. Examples of correctly and
incorrectly nested FOR/NEXT loops are given in Part
II under the heading "Program Statements."
Correct the statement(s)in error and re-execute the
program.

NOT IMAGE+
STATEMENT (xxxxx) REFERENCED IN A PRINT USING
STATEMENT MUST BE AN IMAGE STATEMENT
The statement number you used in the PRINT USING
statement does not refer to an Image statement. If
you are not certain of the statement numbers, use
LIST in the edit mode to display your program. Then
use the correct statement number in the PRINT USING
statement. Or, if this is not the case, check for
typing errors. The correct syntax of the PRINT
USING and Image statements and rules governing their
use are given in Part II under the heading "Program
Statements."
Correct the statement(s) in error and re-execute the
program.

INV TYPE DATA+
THE DATA BEING ASSIGNED MUST BE THE SAME TYPE AS THE
VARIABLE RECEIVING THE DATA
In READ and DATA statements, and in INPUT statements
and their typed response, arithmetic variables must
correspond to arithmetic data and character
variables must correspond to character constants.
The same is true of variables and values assigned in
LET statements.
Correct the statement(s) ·in error and re-execute the
program, or, for response to INPUT statements, you
must re-execute in order to make your corrections.

UNDEF STMT NUM+
STATEMENT NUMBER (xxxxx) REFERENCED IN A STATEMENT
NOT DEFINED IN PROGRAM
This error is caused by an erroneous statement
number in one of the following statements: MAT
PRINT USING, PRINT USING, GOTO, GOSUB, or
IF ••• THEN/GOTO. If you are not certain of the
statement numbers, use LIST in the edit mode to
display your program. Also, check for possible

Action:

662 Short:
!Q!!g:
Explanation:

Action:

*663 Short:
Long:
Explanation:

Action:

*667 Short:
Long:

Explanation:

Action:

*668 Short:
Long:
EXPlanation:

Action:

669 Short:
Long:
Explanation:

Action:

typing errors. It is also possible that you have
forgotten to include the statement which the number
refers to.
Check the logic of your program, make the necessary
corrections, and re-execute the program.

UNDEF FN+
FUNCTION (FNx) USED IN A STATEMENT NEVER DEFINED
A user function must be defined in a DEF statement
(see Part II under the heading ·Program
Statements·). A function may be defined anywhere in
the program (before or after its use), but it must
be defined.
Check the logic of your program, make the necessary
corrections, and re-execute the program.

INV FILE USE+
FILES MAY NOT BE USED FOR BOTH INPUT AND OUTPUT
If a file is to be used first as an input file and
then as an output file (or vice versa) during
program execution, it must be explicitly deactivated
by the CLOSE statement between input and output
references. The correct syntax of the CLOSE
statement and rules governing its use are given in
Part II under the heading ·Program Statements.·
Check the logic of your program, make the necessary
corrections, and re-execute the program.

INV ASN/ACS ARG+
ARGUMENTS TO ARCSINE AND ARCOSINE MUST LIE BETWEEN
+1 AND -1
You have supplied an argument to the ASN or ACS
intrinsic function which has a value outside the
range +1 to -1.
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

MSNG DATA+
NOT ENOUGH DATA ITEMS FOR READ OR GET
This message is issued when (1) there is
insufficient data in the specified file to satisfy
the number of variables in the associated GET
statement, or (2) when you have supplied fewer
values in DATA statements than the number of
variables in the associated READ statement. You may
have intended to do this to end program execution
when the input data was exhausted. If this is the
case, continue in the edit mode. If, however, the
error was unintentional, you must supply more
values, or remove the excess variables in order to
execute successfully.
If the error was intentional, continue in the edit
mode. If the error was unintentional, correct the
statement(s) ·in error and re-execute the program.

INV FILE REF+
INVALID FILE NAME REFERENCE
In ITF:BASIC, a file name is a character constant of
any length, but it cannot be a null character string
(two adjacent quotation marks). The first three
characters of the file name cannot contain a period,
a comma, or a semicolon. A blank cannot precede a
nonblank in the first three characters nor can the
first three characters be all blank.
Re-enter the statement using a valid file name.

Error Messages 185

*670 Short:
Long:
Explanation:

Action:

671 Short:
Long:
Explanation:

Action:

672 Short:
Long:
Explanation:

Action:

*673 Short:
Long:

Explanation:

Action:

*674 Short:
Long:
Explanation:

Action:

*675 Short:
Long:

EXPlanation:

Action:

676 Short:
Long:
Explanation:

Action:

677 Short:
Long:

186

NO ACT GOSUB+
RETURN STATEMENT FOUND WITH NO ACTIVE GOSUB
Execution of a GOSUB statement must precede that of
its corresponding RETURN statement (that is, the
GOSUB statement must be made active before its
RETURN statement is executed). For rules governing
the use of GOSUB and RETURN statements, see Part II
under the heading ·Program Statements."
Check the logic of your program, correct the
statement(s) in error, and re-execute the program.

INV PRNT FLD+
INVALID PRINT FIELD IN PRINT STATEMENT
A print field may not begin with a right
parenthesis, an asterisk, a slash, a double
asterisk, or any relational operator.
Re-enter the corrected statement.

NON ARITH SUBSC+
SUBSCRIPT EXPRESSIONS MUST BE ARITHMETIC
Subscripts for character and arithmetic arrays must
be arithmetic expressions whose values are positive
and whose truncated integer portions are within the
range 1-255. The arithmetic expression may be an
arithmetic variable, a subscripted arithmetic array
reference, a numeric constant, a function reference,
or a combination of the above separated by binary
operators and parentheses.
Re-enter the statement using arithmetic expressions
as subscripts.

NON SQR MAT+
ARRAY USED WITH THE IDN FUNCTION, 'MUST BE A SQUARE
MATRIX (2 DIMENSIONS) .
The array which is to assume the form of the
identity matrix must be two-dimensional and the
values of the two bounds must be equal.
Check the logic of your program, correct the
necessary statement(s), and re-execute the program.

REDIM < 1+
THE REDIMENSIONING SPECIFIED A BOUND < 1
Zero and negative values are not valid subscripts in
ITF:BASIC. Subscripts must have positive integer
values.
Check the logic of your program, correct the
necessary statement(s), and re-execute the program.

REDIM > DIM+
THE REDIMENSIONING SPECIFIED MORE ELEMENTS THAN THE
ORIGINAL ARRAY HAD
An array may be redimensioned as long as the
original number of dimensions is not changed and the
total number of members is not exceeded.
Check the logic of your program, correct the
necessary statement(s), and re-execute the program.

CHAR ARRY INV+
A CHARACTER ARRAY MAY NOT BE USED IN THIS STATEMENT
In ITF:BASIC, character arrays may not be used in
any MAT statement.
Re-enter the corrected statement.

SIGNED OPND+
THE OPERANDS IN THIS STATEMENT MUST BE UNSIGNED

Explanation: You have placed a plus or minus sign in front of an
array name used as an operand in a MAT statement.
This is not permitted. The correct syntax of the
MAT statements and rules governing their use are
given in Part II under the heading "Array
Operations."

Action: Re-enter the corrected statement.

*678 Short:
Long:
Explanation:

Action:

*679 Short:
Long:

EXPlanation:

Action:

*680 Short:
Long:

Explanation:

Action:

*686 Short:
Long:

Explanation:

Action:

687 Short:
Long:
Explanation:

UNDEF SEC/CSC+
SECANT OR COSECANT APPROACHES INFINITY
This message is given when you ask for one of the
following:

SEC (900 ± n *180°)
CSC(± n *1800)

where n is an integer.
Check your program logic, correct the necessary
statement(s), and re-execute your program.

DIM < 2+
ARRAY IN MATRIX MULTIPLICATION MUST HAVE 2
DIMENSIONS
The correct syntax of the MAT assignment statement
performing matrix multiplication is:

MAT name-1 = name-2 * name-3

where each name is the name of a two-dimensional
array. Rules governing the use of this statement
are given in Part II under the heading "Array
Operations."
Correct the statement(s) in error and re-execute the
program.

MAT NOT CNF+
COLUMNS AND ROWS OF MATRICES MUST CONFORM TO RULES
FOR MATRIX MULTIPLICATION
The correct syntax of the MAT assignment statement
performing matrix multiplication and the rules
governing its use are given in Part II under the
heading "Array Operations."
Check the logic of your program, correct the
statement(s)in error, and re-execute the program.

NO INVERSE+
THE INVERSE DOES NOT EXIST FOR THIS MATRIX
(DETERMINANT = 0)
Not every two~dimensional array has an inverse; the
inverse of array A exists if DET(A) * O. It is a
good practice to use the DET function (see Part II
under the heading "Intrinsic Functions") to verify
that an inverse exists before attempting to use the
MAT assignment statement performing matrix
inversion.
Check the logic of your program, correct the
statement(s) ·in error, and re-enter the statement.

INV DET SYNTAX+
SYNTAX OF DET FUNCTION IS DET (LETTER)
The correct syntax of the DET function is:

DET (arithmetic-array-name)

Error Messages 187

Action:

188

The quantity in parentheses immediately following
the word DET is an argument. In this case, the
argument must be the name of a square arithmetic
array.
Re-enter the corrected statement.

Index

(blank)
as a special character 83

. (period) 83
< (less than)

as a relational operator 36, 88
as a special character 83
Correspondence equivalent 83

< > (less than or greater than)
as a relational operator 36, 88
as special characters 83
Correspondence equivalent 83

< = (less than or equal to)
as a relational operator 36, 88
as special characters 83
Correspondence equivalent 83

+ (plus sign)
as a binary arithmetic operator 87, 34
as a special character 83
as a unary arithmetic operator 87, 34
at end of message 71, 72
in array operations 107 -108, 44
in exponential format

as input 45
as output 84

I (vertical bar)
Correspondence equivalent 83
Teletype equivalent 83
(see also vertical bar)

& (ampersand) 83
&E internal constant 85, 29
&PI internal constant 85, 29
&sQR2 internal constant 85, 29

o (asterisk or multiply sign) (see asterisk)
00 (exponentiation sign)

as a binary arithmetic operator 87, 34
as special characters 83
Teletype equivalent 83

; (semicolon)
as a delimiter (see PRINT statement; MAT PRINT

statement)
as a special character 83

- (minus sign or hyphen)
as a binary arithmetic operator 87, 34
as a special character 83
as a unary arithmetic operator 87, 34
in array operations 107-108, 44
in exponential format

as input 45
as output 84

/ (slash or division sign)
as a binary arithmetic operator 87, 34
as a special character 83
mma)

a delimiter (see PRINT statement; MAT PRINT

statement)
~ial character 83
m)
tionaloperator 36, 88
)ial character 83
ndence equivalent 83

>= (greater than or equal to)
as a relational operator 36, 88
as special characters 83
Correspondence equivalent 83

?(question mark)
as a system request (see INPUT statement; MAT INPUT

statement)
as a user request 71, 72
as a special character 83

! (exclamation mark)
as a special character
as an equivalent for I
in Image statement

: (colon)

83
83

95, 102

as a special character 83
in an Image statement 38, 95

character (see Image statement)
((left parenthesis) 83
) (right parenthesis) 83
, (single quotation mark or apostrophe)

as a special character 83
used with character constants 29, 85
used with file names 49-50

= (equal sign)
as an assignment symbol (see LET statement)

A

as a relational operator 36, 88
as a special character 83

" (double quotation mark)
as a special character 83
used with character constants
used with file names 49-50

[(left bracket)
as an equivalent for <

] (right bracket)
as an equivalent for>

~ (less than or equal to)
as a relational operator
as a special character

~ (greater than or equal to)
as a relational operator
as a special character

± (plus or minus sign)
as an equivalent for I

t(up-arrow)

83,88

83,88

36, 88
83

36, 88
83

83

29,85

as a special character
as an equivalent for 00

83
87,34

abbreviated error messages 72, 161
abbreviations, of commands and subcommands 124
ABS intrinsic function 119
absolute value intrinsic function 119
absolute value of numbers 119
account number 16
accuracy of the matrix inversion function 109
ACS intrinsic function 119
activating files 52-53
active COSUB statements 93, 106
adding statements to end of program 62-63, 67

Index 189

addition
as a binary arithmetic operation 34, 87
in arrays 107 -108, 44
special cases 87

ALL operand
in CHANGE subcommand 63-64, 126

abbreviation 127
in HELP command 131

abbreviation 131
ALLOCATE command 148
alphabet, extended 18, 83
alphabetic characters 18, 83

definition of 153
alphabetic extenders 18, 83

definition of 153
alphameric character 18, 153
apostrophe (see quotation mark)
arccosine intrinsic function 119
arcsine intrinsic function 119
arctangent intrinsic function 119
argument

definition of 153
description of 35, 119
in intrinsic functions 119
in user-written functions 57

arithmetic
expressions and calculations 33-36
long-form 84,45-47
short-form 83-84,45-47

arithmetic arrays
assigning values to 42-43
declaration of 86,40-42

explicit 40, 86
(see alyo DIM statement)

implicit 40, 86
definition of 153
initial value of 42, 85
naming of 85, 40

arithmetic expressions
conversion for printing 103
definition of 153
description of 33, 86-88
evaluation of 34-35, 86
precision

in format specifications 95
loss of 47, 119

printing of
Image statement 95-96
MAT PRINT 113-115
MAT PRINT USING 115-116
PRINT 99-102
PRINT USING 102-104

arithmetic operators
(see also binary and unary operators)
definition of 153
priority of 87, 34-35
special cases of 87

arithmetic values
examples of printed format 100, 104

arithmetic variables 30, 85
definition of 153

array
arithmetic 85-86, 40-42
assigning values to an 42-43
bounds 41,86
character 86, 42
declarations of

explicit 86, 40-41
(see also DIM statement)

implicit 86, 40-41
definition of 153
dimension 40-42, 85-86
expression 153, 88

190

initial value of
arithmetic 85, 42
character 86, 42

member 40,85-86
definition of 153

multiplication 110, 44
one-dimensional 41
operations (see matrix operations)
redimensioning 44, 107
scalar multiplication llO, 44
square 109
two-dimensional 41-42
variables 85-86, 153

ASN intrinsic function 119
assigning values

to arrays
with a FOR/NEXT loop 43
with an INPUT statement 42-43
with MAT input/output statements

to variables
43-44

arithmetic 30-33
in test mode 77, 98

character 31
assignment 153
assignment statement (see LET statement; MAT aSSignment

statement)
asterisk ((»

as a binary arithmetic operator
as a unary arithmetic operator
in array operations 44, 110
in the NOTRACE subcommand
in the TRACE subcommand

asterisks edited into a print field
AT subcommand

description 74-75
reference information

"at" sign (see @)
A TN intrinsic function
attention interruption

definition of 153
summary table 145
to cancel execution

125

119
16-17

34,87
34,87

133, 76
137, 75-76

103

in command mode 27, 145
in edit mode 24, 145

to cancel listing 66
to end input phase 20, 145
to end mode

edit 24,145
test 73

to interrupt test mode execution 74
vs. line deletion 18, 145

attention key 154
(see also attention interruption)

ATTN key
for attention interruption 17
for line deletions 18

automatic statement numbering 20

B
backspace 18
BACKSPACE key 18
base 2 logarithm, function for
base 10 logarithm, function for
BASIC command

description 27,46-47

119
119

reference information 124, 125-126
BASIC language 9
B.I.F. 76, 137

(see also inh'insic functions)
binary array expressions 88
binary operators (see arithmetic operators)
blank

as a delimiter in commands 123
as a special character 83
counted as a character 18
eliminated after renumbering 135, 151

blank padding (see padding)
BLOCK option 127
bound

definition of 154
of a dimension 40, 86
of a loop 91

braces 141
brackets

as a syntax convention 141
as an equivalent for < and> 34, 87

branch (transfer of control)
(see also IF statement; GOSUB statement; GOTO statement)
into or out of a FOR/NEXT loop 92

branchpoint 154
(see also NOTRACE subcommand; TRACE subcommand)

BREAK key 17
(see also attention interruption)

breakpoint
definition of 154
placement of 77 -78
set by (see AT subcommand)
turned off by (see OFF subcommand)

broadcast messages 71
built-in functions (see intrinsic functions)

c
cancelling execution

in command mode 27, 145
in edit mode 24, 145

carriage position (see MAT PRINT statement; PRINT statement;
PRINT USING statement)

carrier return (CR)

definition of 154
to end input phase 20, 67
to resume execution after a PAUSE statement 99

CHANGE subcommand
abbreviations in 127
description 63-65
reference information 124, 126-127

character arrays
assigning values to 42
declaration of

explicit 86
(see also DIM statement)

implicit 86
definition of 154
initial value of 86, 42
naming of 86, 42
restrictions 42

character comparison 88, 94
collating sequence used for 143-144

character constant
as a file name or reference 92
as an expression 35-36, 86
definition of 154
description of 85, 29
length of 85, 36
null 36
use of 30, 37

character-deletion character
definition of 154
description of 18

character expressions
definition of 154
description of 35-36, 86
length of 36
in relational expressions 94, 88
printing of 99, 101-102

use of 35-36
character-format 154, 95
character position 17
character set 18-19
character string

(see also comment)
definition of 154
in MAT PRINT USING statements (see Image statement)
in PRINT USING statements 102

character values, example of printed format 102
character variables

definition of 154
description of 85, 30

characters
alphabetic 153, 83
alphameric 153, 18
digits 155, 83
for character deletions 18
for line deletions 18
maximum per entry 17
recognized by BASIC 83
special 159, 83

characteristic of a floating-point number) 154, 45
close, explicit (see CLOSE statement)
CLOSE statement

description 52-53
reference information 89

collating sequence 143-144
colon

as a special character
in Image statements

comma
as a delimiter

83
38, 95

in BASIC statements (see MAT INPUT statement; MAT PRINT

statement; INPUT statement; PRINT statement)
in commands 123

as a special character 83
command

as an entry
definition of
how to enter

17
154
124

name of 123
syntax of 123

command language
command mode

commands in

9, 123-138
25-27

BASIC 125-126, 27
CONVERT 127-128, 27
DELETE 129-130, 68-69
EDIT 130, 19-22
HELP 130-131, 25-26
LISTCAT 132, 69-70
LOGOFF 132-133, 16
LOGON 133, 15-16
RENAME 134,66-68
RUN 135-136, 27
SEND 136-137, 26

definition of 154
execution in 27
program modification in 66-70
system cue for 16

commands
reference information 123-138
requesting help about 25-26, 130-131
summary tables 124-125

comments or remarks
as program documentation 155
definition of 155
in program statements

END 91
PAUSE 99
REM 105
RESTORE 105

Index 191

RETURN 106
STOP 106

common library 149
common logarithm (base 10), function for 119
comparison operators (see relational operators)
compressing userid,DATA 147
computed GOTO 94
CON matrix function 108,44
conditional transfer 94

(see also computed GOTO)

constant 29, 84-85
definition of 155
types of

character 154, 85
internal 157, 85
numeric 158, 84

uses of 29, 37
contained quotation mark 85
continuation of lines 17, 124
control

conditional transfer of 94
return of from test mode 73
tracing transfer of 75-76
unconditional transfer of 94

control mode 149
control variable (see loop control variable)
conventions

syntax 141
typing (used in this book) 15

CONVERT command 124, 127-128
abbreviations in 128
use of 27

converted array member, printing of 115
converted data item, printing of 99-100
converted field 99
COpy utility 147
corrections (see program modification; typing en-ors)
Correspondence Keyboards 18

eqUivalence for BASIC characters 83, 88
cos intrinsic function 119
cosecant intrinsic function 119
cosine intrinsic function 119
COT intrinsic function 119
cotangent intrinsic function 119
CR (see carrier return)
creating a file 51-52
creating a program 20-22
csc intrinsic function 119
current file position 92

D

data 155
DATA

in LISTCAT displays 69-70
requirement for file names

(see also userid,DATA)
in DELETE command
in RENAME command

data file (see file)
data item

in an array (see member)

129, 68
134, 68

in a PRINT statement 99-101
data list

in a DATA statement 89-90
in a GET statement 89-90
in a MAT GET statement 111-112
in a MAT INPUT statement 112-113
in a MAT PUT statement 116-117
in an INPUT statement 96-97
in a PUT statement 104

DATA statement
description 31-32

192

reference information
data table

definition of
description of

data table pointer

155
89, 105

definition of 155
description of 89, 105

deactivating files 52-53

89-90

(see also CLOSE statement)
debugging 155, 72
debugging aids

subcommands 155, 73-78
diagnostic messages 161, 72
test mode 72-78

declarations, array
explicit 156, 40

153

(see also DIM statement)
implicit 156, 40

declaring array bounds
explicitly 86, 40

(see also DIM statement)
implicitly 86, 40

DEF statement
description 57
reference information 90

defining user-written functions
(see also DEF statement)

DEG intrinsic function 119

57

degrees, number of, intrinsic function
DELETE command/subcommand

abbreviation 130
description

in command mode 68-69
in edit mode 61

file name restriction in 129
recommendation for "housekeeping"
reference information 124, 129-130

deleting
characters 18
files 129-130, 68-69
lines or statements

119

147

via DELETE subcommand
via line-delete character

129-130,61
18

programs 129-130, 68-69
delimiter 155
delimiter, special 63-64, 126-127

(see also CHANGE subcommand)
descriptive statements

DEF 90, 57
DIM 90-91,40-42

DET intrinsic function 119, 109
determinant intrinsic function 119
diagnostic aids (see debugging aids)
diagnostic messages 161
dial-up terminal or mechanism 155
differences between os ITF and TSO ITF

digits 155
significance in, precision

DIM statement
description 40-42
reference information

dimension 155
90,40

46-47, 119

90-91

dimension bound
dimensions, array
displaying

85-86, 40-42

names in storage 69-70, 132

149-151

statements in programs 66, 132
values of variables in test mode 76-77, 132
via CHANGE subcommand 63-64, 126-127
via LIST command/subcommand 132
via LlSTCAT command 69-70, 132

division
as a binary arithmetic operation 34, 87

by zero 87
special cases of 87

documentation of programs (see comments or remarks; REM
statement)

dollar sign (see $)
dummy variable

definition of
description of

E
E. 45

155
57, 90

(see also E-format)
E-format (exponential format)

external long-form representation 84
external short-form representation 83-84
in the MAT PRINT statement 114-115
in the MAT PRINT USING statement (see Image statement)
in the PRINT statement 100
in the PRINT USING statement (see Image statement)
in the test mode 76, 137

e(natural exponential)
as an internal constant
as an intrinsic function

EBCDIC collating sequence
EDIT command

abbreviations 130
description 19-22
reference information

edit mode
creating a program in
definition of 155
execution in 23-24
initiation of 19
input phase of 20-21
program modification in
subcommands in

29, 85
119
143-144

124, 130

20-22

61-66

CHANGE 63-65, 126-127
DELETE 61, 129-130
END 24-25, 130
HELP 26, 130-131
INPUT 62-63, 131
LIST 66, 132
RENUM 65, 134-135
RUN 23, 135-136
SAVE 24, 136
SCAN 22-23, 136

syntax checking in 22-23
system cue for 21
termination of 24-25

EDIT system cue 21
elements

of an array (see member)
of BASIC statements 83-88

ellipsis 141
end of a format specification 96
end-of-file error, avoidance of 51
end-of-file indicator 51-52, 155
END statement 14, 91
END subcommand

for ending edit mode
for ending test mode
reference information

ending a loop 38-40

24-25
73
124-125, 130

(see also FOR statement; NEXT statement)
ending a mode 130
ending a program 14, 91
ending a session 16
ending a subroutine 57 -59

(see also GaSUB statement; RETURN statement)
ending lines 17-18
entry

character position of 17

continuation of 17
end of 17-18
maximum length of 17
of input values (see INPUT statement; MAT INPUT statement)

environment, testing (see test mode)
equal sign (see =)
error correction (see program modification; typing errors)
error messages

abbreviated (short form) 17, 161
definition of 156
detailed (long form) 17, 161
discussion of 17
examples of 17
list of 161
SCAN subcommand for 22-23, 136

error notification (see error messages)
error recognition (see error messages)
error recovery messages (INPUT, MAT INPUT)
errors

end-of-file, avoidance of 51-52, 155
execution 72
notification of (see error messages)
recognition of (see error messages)
semantic 72
syntax 72, 22-23

correction of in edit mode 21-23, 61-66

161-162

SCAN subcommand for determining 22-23, 136
system 161
types of 72
typing 17-18

executable statements 81
execution

cancellation of
in command mode 27
in edit mode 24

changes of sequence in (see IF statement; GOSUB statement;
GOTO statement)

definition of 156
in command mode 27
in edit mode 23-24
in test mode 73
errors 72
interruption of in test mode 74
of programs

in command mode 27
in edit mode 23-24
in test mode 73

tracing of 75-76
EXP intrinsic function 119
explicit declaration 156, 40-41

(see also DIM statement)
exponent 156,45-46
exponential format 156

(see also E-format)
exponential intrinsic function, natural 119
exponentiation

as a binary arithmetic operation 87, 34
definition of 156
special cases of 87

expressions
arithmetic 33-35, 86-88

conversion for printing 103
evaluation of 34-35, 86
precision

in format specifications 95
loss of 47, 119

printing of (see Image statement; MAT PRINT statement;
MAT PRINT USING statement; PRINT statement; PRINT USING
statement)

array 88, 153
character 35-36, 154

in relational expressions 94, 88
length of 36

Index 193

printing of 99, 101-102
use of 35-36

definition of 156
description of 33-36
order of evaluation of 34-35, 86

changed by parenthesization 34-35
priority of operators in 34-35, 87

relational 36
evaluation of 88, 143-144

Extended Binary-Coded-DeciIPal Interchange Code
extenders, alphabetic 83, 153
extents, array (see bounds)
external representation of numbers

long form 84,45-47
short form 83-84, 45-47

F
F-format (fixed-decimal format)

external representation 83-84
in MAT PRINT 114-115
in MAT PRINT USING (see Image)
in PRINT 100
in PRINT USING (see Image)

false relation 88, 36
file

activation of 52-53
creation of 51-52

(see also PUT statement; MAT PUT statement)
DATA qualifier name for 68-69

in LISTCAT displays 69-70
deactivation of 52-53

(see also CLOSE statement)
definition of 156
deletion of 68-69
input from (see GET statement; MAT GET statement)
listing names of 69-70
mair..tenance of 147-148
name of 49-51

DATA qualifier for 68-69
tracing of 75-76
TSO-ITF compatibility 49-51

143-144

putting values into (see PUT statement; MAT PUT statement)
renaming of 66-68
repositioning of 53
storage of 49-50
tracing references to
usage considerations

file name
(see also file)
definition of 156
length of 50-51
TSO-ITF compatibility of

75-76
147-148

49-51
fixed-decimal format 156

(see also F-format)
fIxed-point constant 156, 84
floating-point constant 156, 84
floating-point data 156, 45
FOR/NEXT loops

branching into or out of 92
initiation of 39-40,91-92
multiple 98
nesting, examples of 92, 98
physical end of 39-40, 98
use of 39-40, 43

FOR statement 91-92
increment specification 40
range specification 40
use of 39-40, 43

format of a print line (see Image statement; MAT PRINT state­
ment; MAT PRINT USING statement; PRINT statement; PRINT

USING statement)
format specification

194

156, 95-96

forms of error messages 72, 161
full print zone 156,37

in MAT PRINT 114
in PRINT 99

function
definition of 156
intrinsic 119, 157
nested 35
references 86
traCing references to 75-76
user-written 160, 57

function of commands, "help" about 25-26, 130-131
FUNCTION operand of HELP 25-26, 130-131

abbreviation 131
function reference 156, 86

(see also intrinsic functions; user-written functions)
functional differences, os ITF vs. TSO ITF 150-151

G
GET statement

description 50-55
reference information

glossary 153
GO subcommand

description 73, 75
reference information

GOSUB statement
active 93, 106
description 57-59

92-93

125, 130

reference information 93
GOTO keyword of IF statement 94,39
GOTO statement

description 38-39
reference information 94

"greater than" operator (see»
"greater than or equal to" operator (see >=)

H
HCS intrinsic function 119
HELP command/subcommand

abbreviations in 131
description 25-26
reference information 130-131, 124-125

"housekeeping" 147
HSN intrinsic function 119
HTN intrinsic function 119
hyperbolic cosine intrinsic function
hyperbolic sine intrinsic function
hyperbolic tangent intrinsic function

I-format (integer format)
in MAT PRINT 114

119
119

119

in MAT PRINT USING (see Image statement)
in PRINT 100
in PRINT USING (see Image statement)
long-form external representation 84
short-form external representation 83-84

identification code
definition of 156
use in CONVERT command 128
use in file usage and maintenance 147-148
use in logging on 15-16

identifier list
in NOTRACE subcommand 113
in TRACE subcommand 137 -138

identifiers 156, 84-86
constants 155, 84-85
function references 156, 86

intrinsic 157, 119
user-written 160,57

variables 160, 85-86

arra y 40-44, 85-86
simple 30, 85

identity matrix 108-109, 44
identity matrix function 108-109, 44
IDN matrix function 108-109,44
IF statement

description 39
reference information

image format specifications
Image statement

description 37 -38
reference information

implicit declaration
definition of 156

94
95

95-96

description of 40
incompatibilities between TSO and ITF file names
incorrect nesting, example of 92, 98

49-51

increment
of INPUT subcommand 131-132, 62-63
of RENUM subcommand 134-135, 65
value in loops 91-92, 39-40

infinite loop 38-39, 93
informational messages 71
initial value of

arrays 85-86, 42
variables 85, 30

IN operand of CONVERT command 127-128
input

definition of 156
file 52-55
for arrays 42
from terminal (see INPUT statement; MAT INPUT statement)

input mode (see input phase)
input phase

automatic initiation of 20-21
definition of 157
line deletion in 145, 20
subcommand for 131
syntax error during 21-22

INPUT statement
description 32-33
reference information
terminal response to
use in a loop 51-52

INPUT subcommand

96-97
96-97, 32-33

for adding statements to end of program
for inserting statements 62, 131
for replacing statements 62, 131
for resuming input phase 20, 131
increment in 62-63, 131
reference information 131, 124

inserting statements 62
INT intrinsic function 119
integer format (see I-format)
integer intrinsic function 119
Interactive Terminal FaCility (see ITF)

internal constants
definition of
description of

interruption

157
29,85

attention 16-17,153
by AT subcommand 74-75, 125
by breakpoint 74-75, 125
definition of 157
in edit mode 66, 145
in test mode 74, 145

interruption, attention 153
(see also interruption)
summary table 145
to end input phase 20, 145

intrinsic function
definition of
list of 119

157

62-63,131

tracing references to 75-76, 137-138
INV matrix function 109-110,44
inversion of matrices 109-110, 44
interative loop 157

(see also loop)
ITF (Interactive Terminal Facility) 9

conversion information 127 -128
error messages 72, 161
"help" information about 130-131
os vs. TSO 149-151

ITF:BASIC 9
(see also ITF)

ITF operand of HELP 130-131
ITF test mode (see test mode)

K
keyboard

BASIC special characters on 83
entries from 17-19
features 15

keyword operand 123
"help" information about 130-131

keys, special
ATTN 17-18
BACKSPACE 18
BREAK 17
LINE RESET 17
RETURN 16

L

language 9
large and small numbers 45-47
left parenthesis (see parentheses)
left bracket (see brackets)
length

of character constants 36
of file names 50
of format specifications 95
of keyboard entries 17
of messages

indicating errors 72, 161
you send 26, 136-137

of records in CONVERT command 127 -128
"less than" operator (see <)
"less than or equal to" operator (see < =)
LET statement

description 31-32
reference information 97 -98

letters, use of upper- and lower-case 15
LGT intrinsic function 119
library, os ITF 149
limits, array (see bounds; dimensions)
line 157

(see also statement; entry)
line-deletion character

compared to attention interruption key 145, 18
definition of 157
use of 18

line numbers (see statement numbers)
LINE RESET key 17
lines, statement 81
LIST subcommand

abbreviation 132
in edit mode 66
in test mode 76-77
reference information 132, 124-125

LISTCAT command
abbreviation 132
description 69-70
reference information 132, 124

Index 195

listing or display
cancellation of 66
of permanent storage contents 69-70, 132
of program contents 66, 132
of values of variables 76-77, 132

LMSG operand 72
of BASIC command 125-126
of RUN command/subcommand

LOG intrinsic function 119
logarithmic intrinsic functions

to the base e (LOG) 119
to the base 2 (LTW) 119
to the base 10 (LGT) 119

log off 157
(see also LOGOFF command)

log on 157
(see also LOGON command)

logical end of a program 14, 91
logical records in CONVERT command
LOGOFF command

description 16

135-136

127-128

reference information
LOGON command

132-133, 124

description 15-16
reference information 133, 124

LOGON operand of SEND command
log-on procedure 16, 133
long form of error message
long-form arithmetic

definition of 157
external representation of
in MAT PRINT 114-115
in PRINT 100

72, 161

84

specification for (LPREC) 45-47
in BASIC command 125-126
in RUN command/subcommand

use of 45-47

136-137,26

135-136

long precision (see long-form arithmetic)
loop

bounds of 91
debugging of 77
definition of 157
FOR and NEXT 39-40, 43
infinite 38, 93
multiple 98
nested 92, 98
with GET and LET

with INPUT and ?
with READ and DATA

loop control variable
loop range specification
lower-case letters

54-55
51-52

43,58
91-92

40, 91-92

as a convention in this publication
as a syntax convention 141
definition of 157
in listing or displaying programs

LPREC operand
of BASIC command 125-126
of RUN command/subcommand
use of 45-47

LRECL operand of CONVERT command
LTW intrinsic function 119

M
magnitude

of a numeric constant 85
of a variable 85

maintenance, file 147
mantissa

definition of 157

15

66

135-136

127-128

size allowed in MAT PRINT 114-115

196

size allowed in PRINT

margin setting 17
MAT assignment statements

addition and subtraction
CON (unity) function
ION (identity) function
INV (inversion) function
multiplication 110, 44

100

107-111, 44
107,44

108,44
108-109,44

109-110,44

scalar multiplication 110, 44
simple 107, 44
TRN (transpose) function 111, 44
ZER (zero) function 111, 44

MAT GET statement 111-112
MAT INPUT statement 112-113
MAT PRINT statement 113-114
MAT PRINT USING statement 115-116
MAT PUT statement 116-117
MAT READ statement 117
MAT statements (array operations)

description 43-44
reference information 107-117

matrix 157
matrix addition and subtraction 107, 44
matrix assignment, simple 107,44
matrix functions

identity (ION) 108-109,44
inversion (INv) 109-110, 44
transpose (TRN) 111, 44
unity (CON) 108, 44
zero (ZER) 111, 44

matrix multiplication llO, 44
matrix scalar multiplication 110, 44
member (of an array) 157
member (of DATA) 69-70, 147
MEMBERS operand of LISTCAT 132, 69-70
MERGE command, os ITF 150
messages

broadcast 71
command for sending 136-137,26
informational 71
ITF error 72, 161
levels of 72, 161
list of 161
mode (see system cue)
numbers of 72
prompting 71
recovery (see INPUT statement; MAT INPUT statement)
types of 70

minus sign (see -)
mode

definition of 157
message (see system cue)
types of

command 25-27,66-70
edit 19-25, 61-66
test 72-78, 27

usage 19-27
Model 33 Teletype BASIC character equivalents 83
Model 35 Teletype BASIC character equivalents 83
modification of programs

in the command mode 66-70
in the edit mode 61-66

monitoring program execution 75-76
multiple LET 30-31, 97-98
multiple loops 98
multiplication

as an arithmetic operation 34,87
in arrays 44, 88

matrix llO, 88
scalar, matrix 1l0, 88

rounding errors 87
special cases 87

multiply symbol (see asterisk)

N
names

of arrays 85-86
of commands and subcommands 124-125
of files 49-51, 68-69

TSO-ITF compatibility considerations
of functions

intrinsic 119
user-written 57

of internal constants
of programs 158

in EDIT command
in SAVE subcommand

of variables 30, 85
named tables (see array)
natural exponential

21,85

19-20
24

internal constant 29, 85
intrinsic function 119

49-51

natural logarithm, intrinsic function for 119
nested loops 92
nesting

definition of 157
FOR and NEXT statements 92, 98
function references 35
GOSUB and RETURN statements 93
parenthesized expressions 35
subroutines 93

NEXT statement
description 39-40
reference information 98

NEW operand of EDIT command 130
new programs

creating 20-22
saving 24

nonexecutable statements 81
NOSCAN operand of EDIT command 130
"not equal to" operator (see < >)
NOTEST operand

of BASIC command 125-126
of RUN command/subcommand 135-136

notification, syntax error (see error messages; SCAN subcom-
mand)

NOW operand of SEND command 136-137
null character constant (see null character string)
null character string 157
null delimiter 158

in MAT PRINT 113
in PRINT 99-102

null line 20
nullifying breakpoints (see OFF subcommand)
nullifying traces (see TRACE subcommand)
number of degrees intrinsic function 119
number of radians intrinsic function 119
number sign (see Image statement; special characters)
numbering statements (see statement; statement numbers)
number(s)

finding absolute value of 119
large 45-47
random 119
small 45-47
statement 81, 9

numeric constant
definition 158
description 84-85, 29

numerical analysis considerations 109

o
OFF operand of SCAN subcommand 136
OFF subcommand

description 74
reference information 133-134

OLD operand of EDIT command 130

old program 19
ON operand of SCAN subcommand 136
one-dimensional array 41, 85-86
operands of commands

keyword 123
positional 123

OPERANDS operand of HELP command/subcommand
operation

matrix (array) 107 -117
terminal 15-17

operator 158
arithmetic 34, 86-87
relational 36, 88

"or" sign
as a special character 83
as a syntax convention 141
in an Image format specification 95

OSITF
compared to TSO ITF 149-151
conversion information 127-128

output (see input)
output file, use of 51-55

p

packed print zone
in MAT PRINT

158,37
114

in PRINT 99
padding

with blanks
with zeros

parentheses

95, 102
95,103

as special characters
in expressions 35
in functions 119,57

83

130-131

in lists (see CONVERT command; LIST subcommand; NOTRACE
subcommand; TRACE subcommand)

in subscripts 86
partitioned data set in CONVERT command
password 15

128

PAUSE statement 99
percent symbol (see %)
period 83
permanent storage

for files 49, 147
displaying names of items in 69-70, 132

phYSical organization of a file 148, 127-128
phYSical records in CONVERT command 127 -128
pi internal constant 85, 29
"plus or minus" character (see ±)
plus sign

as a special character 83
as an operator 87, 34
at end of message 71, 72
in exponential format 45, 84

position, character 17
pound sign (see Image statement; special characters)
precision

(see also long-form arithmetic; short-form arithmetic)
definition of 158
loss of 47, 119

prefix operators (see unary operators)
print line 37
print pOSition 37, 101

(see also Image statement; MAT PRINT statement; MAT PRINT
USING statement; PRINT statement; PRINT USING statement)

PRINT statement
description of 36-88
reference information

PRINT USING statement
description of 37 -38

99-102

reference information 102-104
print zones 158

Index 197

full 37, 156
packed 37, 158

printing of arithmetic expression values
carriage position table for PRINT 101
conversion table for PRINT USING 103
examples 100, 102-104
in MAT PRINT 113-115
in MAT PRINT USING 115-116

(see also Image statement)
in PRINT 99-102
in PRINT USING 102-104

(see also Image statement)
loss of precision 47, 119

printing of character expression values
examples 102
in PRINT 99-102
in PRINT USING 102-104

(see also Image statement)
printing results 36-38
priority of operators 87 -88, 34
private library, os ITF 149
problem solving 9
PROC operand in LOGON command
procedure

log-on 16, 133
terminal operating

PROFILE command
program

BASIC 81

15-17
18

conversion of 127-128
creation of 20-22
debugging of 72-78
definition of 158
deletion of 68-69, 129-130

133

documentation of (see comments or remarks)
editing (see program modification)
execution of

in command mode 27
in edit mode 23-24
in test mode 73

name of 158, 19-20
modification of 61-70
renaming of 66-68, 134
requirements of 81
saving of 24, 136
structure of 81
termination of 14, 91
testing of 72-78
updating contents of (see program modification)

program input 31
(see also DATA statement; READ statement)

program modification
in the command mode 66-70
in the edit mode 61-66

program name 158, 19-20
program product 9
program statements 89-106

(see also MAT statements)
program testing 72-78
programmer-defined function (see user-written function)
programmer-written function (see user-written function)
programming langu2.ge 9
prompting messages 71
PTTC/EBCD keyboard 15, 83
PUT statement

description 49-55
reference information 104

Q

qualified names
of files 147
of programs 19, 128

198

question mark
as a special character 83
as a system request (see INPUT statement; MAT INPUT state­

ment)
as a user request 71-72, 161

quotation marks
contained 85
double 83
restriction 85
single 83
use with character constants 29,85
use with file names

in ITF 49-51
in TSO 66-68, 49-51

quoted string of characters (see character constant; character
string; file name)

R
radians, number of, intrinsic function 119
RAD intrinsic function 119
random number intrinsic function 119
range specification 40, 91-92
READ statement

description 31-33
reference information 104-105

READY system cue 16
recognition of errors (see error messages)
record length

for CONVERT command 127-128
for files 148

recovery messages (see INPUT statement; MAT INPUT statement)
recursive GOSUB loops 93
redimensioning 158, 107
references

array (see array)
function 86
file (see file name)

relational expressions 36, 88
relational operators 158

various character representations of 36, 88
REM statement 105
remarks (see comments)
remote terminal (see terminal)
RENAME command

abbreviation 134
description 66-68
file name restriction in 68
reference information 134

renaming 66-68,134
RENUM subcommand

abbreviation 135
description 65
os ITF vs. TSO ITF 151
reference information 134-135

renumbering statements 65
repeated execution (see loops)
replacing statements 62
repositioning files 53
RESET statement

description 53
reference information 105

resuming execution, test mode 73
RESTORE statement

description 32
reference information 105

RETURN key 16
return linkage 93

(see also GOSUB statement)
return of control, test mode 73
RETURN statement

description 57 -58
reference information 106

right parenthesis (see parentheses)
RND intrinsic function 119
rounding

errors 87
of long-form values
of short-form values

run 158
(see also execution)

84
83-84

RUN command/subcommand
description

in command mode 27
in edit mode 23-24

reference information 135-136
test mode, initiated by 72-73

5
SAVE subcommand

description 24
reference information 136

saving
files 49, 147
programs 24, 136

scalar 158
expression 158, 86
reference 158, 86

SCAN operand of EDIT command
compared to SCAN subcommand

SCAN subcommand
description 23
reference information 136

130,22-23
136

vs. SCAN/NOSCAN operands of EDIT command
scientific notation 45

(see also E-format)
SEC intrinsic function
secant intrinsic function

119
119

semantic error 159, 72
semicolon .

136

as a delimiter (see MAT PRINT statement; PRINT statement)
as a special character 83

SEND command
abbreviations in
description 26

137

as rTF vs. TSO rTF 151
reference information 136-137

sending messages 26, 136-137
sequence, change in execution (see branch)
sequential organization of files 148
session

definition 159
ending of 16, 132-133
example of mode use during a 20-21
starting of 15-16, 133

set, character 18-19
SGN intrinsic function
short-form arithmetic

definition 159

119

external representation 83-84
in Image format specification 95
in MAT PRINT statement 114-115
in PRINT statement 100
loss of precision, using 47
specification for (SPREC) 45-47

in BASIC command 125-126
in RUN command/subcommand

use of 45-47
short form of error message 72, 161

135-136

short precision (see short-form arithmetic)
sign in format specification 103
sign intrinsic function 119
Significant digits

definition 159
in E-format 84

loss of 47, 119
simple arithmetic variable 159, 85
simple assignment statement 77 -78, 97-98
simple character variable 159, 85
simple GOTO statement 94, 38-39
simple LET statement 97-98, 31-32
simple variables 159, 85
simulated attention key 17
SIN intrinsic function 119
sine intrinsic function 119
size

of files 51-52
of print field for converted data item

slash
99

as a binary arithmetic operator
as a special character 80

small numbers 45-47
SMSG operand 72

of BASIC command 125-126
of RUN command/subcommand

special characters 159, 83
special delimiter 63-64, 126-127
splitting lines on entries 17, 124
SPREC operand 45-47

of BASIC command 125-126
of RUN command/subcommand

SQR intrinsic function 119
square arrays 109
square-root intrinsic function 119

87, 34

135-136

135-136

square root of 2 internal constant 29, 85
standard increment

for INPUT subcommand
for input phase 20
for RENUM subcommand

start of a format specification
start of terminal operation
statement lines 159, 81
statement number sequence
statement numbers

definition 159
os ITF vs. TSO lTF 151

131

134-135
95-96

15-16

9,81

system-supplied 20-21, 124
user-supplied 20-21, 67

statements (see program statements; MAT statements)
statements, BASIC 81
status word (see system cue)
STEP keyword of FOR statement
STOP statement 106
storage, permanent 158
subcommands

definition 159
entry information 124
"help" information about
of edit mode 124

discussion 22-26, 61-66
of test mode 125, 73-78
summary tables 124-125

subroutine 159, 57-59

40,91-92

25-26, 130-131

(see also GOSUB statement; RETURN statement)
subroutine nesting, example of 93
subscript 159, 40-41
subscripted array name 86
subtraction

as a binary arithmetic operation
in arrays 107-108
special cases 87

suppression of short messages
(see also LMSG operand)

syntactical unit 141
syntax checking

definition 159
in edit mode 22-23
as ITF vs. TSO ITF 150

72

34, 87

Index 199

syntax conventions 141
syntax errors 159, 72

controlling messages for 22-23
effect on input phase 21-22

syntax notation (see syntax conventions)
syntax of commands 123-124

"help" information about 26, 130-131
SYNTAX operand of HELP command/subcommand

26
System/360 Operating System 9
system command (see command)
system cue 159

EDIT (edit mode) 21
READY (command mode) 16
TEST (test mode) 73

system errors 161
system operator, messages for 26, 136-137
system-supplied constants (see internal constants)

T
119

119
TAN intrinsic function
tangent intrinsic function
Teletype terminals

attention interruption key 17
equivalents for BASIC characters on

terminal
connection of
definition of
dial-up 155

15-16
159

entries from 17-19
equivalents for BASIC characters on
operation of 15-17
TSO supported 15

terminal-oriented input 33

83

83

(see also INPUT statement; MAT INPUT statement)
terminal session 16
terminal user (see user)
termination

due to end-of-file 51
of edit mode 24-25
of test mode 73
statement for (STOP) 106
subcommand for (END) 130

terminology, os ITF vs. TSO ITF 149
test mode

aSSignment statement in 77-78
definition of 159
execution in 73-74
initiation of 72
interrupting execution in 74
os ITF vs. TSO ITF 149-150
sub commands in 73, 125

AT 74-75, 125
END 73, 130
GO 73, 130
HELP 73, 130-131
LIST 76-77, 132
NOTRACE 75-76, 133
OFF 74-75, 133-134
TRACE 75-76, 137-138

system cue for 73
termination of 73
tracing execution in 75-76
use of attention key in 73

TEST operand 72
of BASIC command 125-126
of RUN command/subcommand 135-136

test submode, as 149-150
TEST system cue 73
testing environment (see test mode)
text collection, os 149
text handling 15

200

130-131,

OS ITF vs. TSO ITF 150
THEN keyword of IF statement 39, 94
time-sharing 9
Time Sharing Option 9
TO keyword of FOR statement 39-40, 91-92
trace (see TRACE subcommand)
TRACE subcommand

description 75-76
reference information 137-138

transfer of control
(see also GOSUB statement; GOTO statement; IF statement)
into or out of a FOR/NEXT loop 92

transpose matrix function Ill, 44
true relation 88, 36
truncation

of character constants 36
of excess digits 84

TSO 9
TSO ITF: BASIC 9

compared to os ITF: BASIC

conversion information
TSO terminals 15

149-151
127-128

two-dimensional array 41-42
typing conventions 17-19
typing errors, correction of 17-18

u
unary array expressions 88
unary operators'

definition of 159
description of 87

unconditional transfer (see simple GOTO statement)
unity matrix function 88, 44
updating program contents (see program modification)
upper-case letters

as a convention in this publication 15
as a syntax convention 141
definition of 159
in program listings or displays 69-70

user 160
user-defined function 57, 90
user identification code

definition of (identification code) 156
use of 15-16, 133

user library (see private library, os ITF)

USER operand of SEND command 136-137,26
user-written function 160

defining a 90
using a 57

userid (see user identification code)
userid.DATA 147-148
using files 54-55
using the terminal 15-17

v
values

as input for arrays 42-43
as input for files 51-52
assignment of

using DATA and READ statements 31-32
using INPUT statement 33
using LET statement 30-31
using MAT INPUT statement 112-113

aSSignment to variables 30-33
values of variables displayed in the test mode 76-77
variable 160

array
arithmetic 85-86, 40-42
character 86,42

simple 85, 30-31

vertical bar
as a special character 83
as a syntax convention 141
in Image format specifications

visual differences, os ITF vs. TSO ITF

z
ZER matrix function 111,44
zero-divide 87

95,102
149-150

zero-filled (see padding)
zero matrix function Ill, 44

1052 Printer-Keyboard 17
2741 terminals

attention interruption key 17
entries from 17-19
equivalents for BASIC characters on 83

9571 feature (see PTTC/EBCD keyboard)
9812 feature (see Correspondence keyboards)

Index 201

READER'S COMMENTS

TITLE: IBM System/360 OS (TSO) ORDER NO. SC28-6840-0
ITF: BASIC
Terminal User's Guide

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC28-6840-0

fold fold

· (.) · = ·
. e:-
• 0
• ::s .aq

· -• 5-
~

••••••••••••••••••••••••••••••• '1' ••••••••••••••••••••..••.•.••.•••••••••••••.••••••••••••••••••.•••••••••.•••••••••••••

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POST AGE WILL BE PAID BY ...

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

... ~ .. :
fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

fold

en

t
~
-I
Cf)

o

-I
'T1

to »
Cf)

("")

-I
C
G')

Cf)
(')
I\,)
co
en
co
~
o
6

	001
	002
	003
	004
	005
	006
	007
	008
	009
	011
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	049
	050
	051
	052
	053
	054
	055
	057
	058
	059
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	081
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	119
	121
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	141
	143
	144
	145
	147
	148
	149
	150
	151
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	replyA
	replyB

