Applicatiun Prngram

System/360 Problem Language Analyzer (PLAN) (0S)

Operations Manual
Program Number 360A-CX-27X

This manual is intended to assist wusers in the
implementation and execution of PLAN jobs using
05/360. It includes specifications pertinent to
only the System/360 OS version of PLAN. Sections
of special interest pertain to debugging, diagnos-
tics, and abnormal termination. This manual
should be read before attempting any computer
operations.

GH20-0596-1

Second Edition (January 1970)

This edition is a major revision obsoleting H20-0596-0.

This edition applies to Version 1, Modification Level 1 of System/360 Problem Language Analyzer
(PLAN) (OS) (360A-CX-27X) and to all subsequent versions and modifications until otherwise
indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through 1BM branch offices.

A form has been provided at the back of this publication for readers’ comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,

112 East Post Road, White Plains, N. Y. 10601

© Copyright International Business Machines Corporation 1969, 1970

INTRODUCTION . . . « w « .
General « 4 . &
PLAN System Description .
PLAN System Requirements

e s .
* & e
o

Generating the Executable Programs .
Explanation of Compile and Link-Edit

Steps e o o o o =
Adding Phrases to the Dictionary
ADD PHRASE Step Explanation
Executing a PLAN Job
PLAN Job Step Explanation
OS PLAN Processing
JOB Statement . .
EXEC Statement . .
PARM Fields . . .
JOBLIB DD Statement
Required DD Statements
Optional DD Cards . .
Data Set Consideration . .
Sequential File Support
Dynamic File Support (O0S PLAN) .
Permanent File Support
Use of Formatted Data Sets . .

. .
- o
- e

-

s & o s §F

SYSTEM/360 OS PLAN SPECIFICATIONS
Rules for Writing Modules in
Other Than FORTRAN . . .
Language Examples
FORTRAN
COBOL .« ¢« « «
PL/I « « « o -
Assembly Language
PLAN Core Management .
PLAN BLANK COMMON Area
Program Area
0OS FREE STORAGE AREA
PLAN System Area . .
PLAN Initialization
Program Loader
Execution-Time Linkage
Use of the LINKPAC and RAM
Use of In-Core Directory .
Overlay Processing
Return Linkage+ .
Parameter Passing

o o o o
e s s 0 s

* e & 2 &
e s s & & s s 8 o 8 o ¢

m
[o%)

PLAN System Checkpoint .
User-Exit Programming .
IOCS Device Parameters .
Programming Restrictions
Permanent File SORT/MERGE
Estimating Storage Requirements

[
s o s o 2 N s s o

o i 8 8 & 0 0 s 0 s 0 &

4 & & § & & 5 6 8 & 3 & s s 0 2 @

¢ o o2 o &

s s o & & 8 o+ 2

@ ¢ & 8 o 8 & & & 8 s s+ & 0 8 s & B s 0 6 0+ s s

o 8 o § » s & s s i a o

6 ¢ 0 8 0 B 0 & 6 6 & 0 i B 6 9 8 s s 8 8 s s 0

s & 8 5 ¢ & B s s s

Languages

C 0 8 & 8 o 2 & o » 2

o ¢ s 8 o o s o @

© & o & 0 & 9 e s s s B s e

CONTENTS

Standard PLAN Commands .
ADD PHRASE
DELETE PHRASE . . .
ALTER PHRASE
PLAN JOB
SET LITERAL . . « &
LIST LITERALS . . « . «
Communication Array Dumps .
FILE DUMPS . . « ¢ o « o «
STATEMENT SAVE Commands .
Phrase Table Dump

s & e o
.
» o s a o

¢ e & & e 0

Error Listing
Page Length Definition .
Special Purpose OS Phrases

PROGRAM DEBUGGING AND ABEND DUMPS . .
PLAN TRACE Facility
ABEND DUumps .« « « « o .- .
Locating the BLANK COMMON Array .« .
Locating Modules in the Program Area
Table of Pointers in PLAN COMMON . .

PLAN SYSTEM DIAGNOSITC MESSAGES . .
PLAN Error Processing . . « « « . .
Specifying Error Processing Mode
Standard Error Processing
Post-Listing of Errors . .
User-Error Exit Processing
Phrase Diagnostics
Execution-Time Diagnostics
PSCAN Diagnostics . « . =«
OS Only Diagnostics . . .

PREPARATORY SYSTEMS PROCEDURES
Generating a PLAN System . . «

OPTIONAL MACHINE-READABLE MATERIAL . .

APPENDIX A: RUNNING THE SAMPLE PROBLEM
Explanation of Sample Problem

APPENDIX B: LISTING OF STANDARD PHRASE
FILE o ¢ o o ¢ o ¢ o 2 ¢ o o a s« o o @

APPENDIX C: MEMBER LISTING OF
PLAN.MODLIB . ¢ « ¢« © ¢ « o s o o o =

APPENDIX D: MEMBER LISTING OF
PLAN.SUBLIB =« ¢ 2 ¢ « o o o o o 2.0 o

APPENDIX E: MEMBER LISTING OF
PLAN.MACLIB . ¢ ¢ « « ¢ = « o = =« « =«

76

77

78

79

The Problem Language Analyzer (PLAN) under
0S/360 provides the user with an efficient
means of implementing and using problem—
oriented languages. This manual is
intended to assist users in the implementa-
tion and execution of PLAN jobs using
05/360.

This manual contains sections that provide
the user with the following:

1. Examples of PLAN job processing

2. Descriptions of the diagnostic messages
produced during execution of a PLAN job

3. Descriptions and explanations for the
preparation of programs to be executed
under PLAN that are written in lan-
guages other than FORTRAN

The user of this manual should be familiar
with the following publications:

Problem Language Analyzer (PLAN)
Description Manual (H20-0594)

Program

IBM Systen/360 Operating System: Job
Ccontrol Langquage (C28-6539)

IBM System/360 Operating System: Linkage
Editor (C28-6538))

IBM System/360 Operating System: FORTRAN

- executing one or more job steps.

INTRODUCTION

To the operating system, a JOB consists of
In order
to execute any job under 0S/360, the user
must first describe to the system the
required Jjob steps and the data sets to be
processed by those steps. He defines a job
to the operating system by using a JOB
statement. A job step is defined by using
an EXEC statement, and a data set is
defined by using a DD statement.

The PLAN system 1is similar to 0S/360 in
that it supervises the execution of other
problem program modules, and must have
available a description of its job require-
ments before it can execute a PLAN job.
The medium of communication with the PLAN
system is through PLAN phrases and
commands .

A PLAN phrase is a definition of a PLAN job
step. Each such definition normally con-
tains (1) a list of problem programs to be
executed, and (2) a list of input parame-
ters and/or constants. '

A PLAN command is a statement that causes

the PLAN system to invoke or execute a
certain phrase description.

PLAN SYSTEM DESCRIPTION

IV _Lanquaqge (C28-6515)

The user should also be familiar with one
of the following:

05/360 FORTRAN IV (E) Programmer's Guide
(C28-6603)

0S/360 FORTRAN IV (G) Programmer's Guide
(C28-6639)

0S/360 FORTRAN IV (H) Programmer's Guide
(C28-6602)

GENERAL

The IBM Operating System/360 consists of a
control program and processing programs.
The control program supervises the execu-
tion of all processing programs, such as
the PLAN system monitor. Therefore, to
execute a PLAN job, the user must first
communicate with the operating system and
the medium of communication between the
user and the operating system is JOB CON-
TROL language.

The PLAN system monitor has three main
elements: (1) the interpreter, (2) the
executor, and (3) the phrase dictionary.
Figure 1 is a logical schematic of the PLAN
system.

PLAN PLAN
INPUT | INTERPRETER
Y
PLAN
MONITOR
BLANK \ PROGRAM
COMMON LIST
Y
PROGRAM | _|PROBLEM PROGRAM
INPUT PROGRAM OUTPUT
Figure 1. PLAN system

INTRODUCTION 5

Input data is read by an interpreter.
Based on a PLAN job definition in the
phrase dictionary, a list of programs to be

executed and a blank common area are
prepared.

The executor then loads and executes the
programs named in the program list. When

the program list is exhausted, the executor
returns control to the interpreter and the
cycle repeats itself.

PLAN SYSTEM REQUIREMENTS

In order to execute a job, the PLAN system
must have available the facilities 1listed
below:

1. An input device from which PLAN com-
mands can be accepted

2. An output device through which PLAN may
communicate with the user

3. A phrase dictionary that contains the
PLAN job definitions

4. A library of executable programs

To provide these things to PLAN, the user
must execute a three-step process: (1)
generate the required programs for the job,
(2) define the job requirements by adding
phrases to the PLAN phrase dictionary, and
(3) execute the necessary PLAN commands to
run the job. Figure 2 is a 1logical sche-
matic of this process.

GENERATING THE EXECUTABLE PROGRAMS

In order to generate executable PLAN
modules, the user must process his FORTRAN
source code through two 0S job steps. The
first is the compile step in which an 08
FORTRAN compiler produces an object deck
from the source deck. The second 1is the
link-edit processing step which converts
the object module into an executable load
module. Sample 1 illustrates a job stream
to create an executable module named M0107.

STEP 1
FORTRAN | FORTRAN
SOURCE COMPILER
\ LOAD
FORTRAN | LINK MODULE
OBJECT EDITOR / LIBRARY
STEP 2

PLAN

Figure 2. Necessary steps for PLAN execution

6 INTRODUCTION

DD PHR: ... PHRASE
PHR: ... PLAN

DICTIONARY

PUNCHED
OUTPUT

PRINTED
OUTPUT

//FORTRAN JOB 84803,°*JOE E. JONES',MSGLEVEL=1 00010
//COMP EXEC PGM=IEJFAAAO,PARM='ADJUST, NAME=M0107° 00020
//SYSPRINT DD SYSOUT=A : 00030
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (2,1)) 00040
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYIl, (2,1)) 00050
//SYSLIN DD DSNAME=§LOADSET, UNIT=SYSSQ,SPACE=(400,(200,50)), X 00060
7/ DISP=(NEW,PASS) 00070
//SYSIN DD * 00080
COMMON I, (625), LS (15) , MA (255) , NMA (255) 00090

° 00100

. 00110

FORTRAN SOURCE STATEMENTS 00120

L 00130

L] 00140

END 00150

/% 00160
//LINK EXEC PGM=IEWL,PARM=(LIST,LET),COND=(4,LT,COMP) 00170
//SYSPRINT DD SYSOUT=A 00180
//SYSLMOD DD DSNAME=MYLIB,UNIT=2311,VOLUME=SER=MY2311,DISP=0LD 00190
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=OLD 00200
/7/ DD DSNAME=PLAN.SUBLIB,UNIT=2311,VOLUME=SER=PLANPK,DISP=0OLD 00210
//5YSUT1T DD UNIT=SYSDA,SPACE=(CYL, (2,1)) , 00220
//SYSLIN DD DSNAME=E§LOADSET,DISP=(OLD,DELETE) 00230
// DD * 00240
NAME MO0107(R) 00250
/* 00260

Sample 1. Job stream to create M0107

EXPLANATION OF COMPILE AND LINK-EDIT STEPS

Card 00010 is a valid job card.

Card 00020 is the execute card required to
execute the OS FORTRAN E compiler. The
program to be executed is IEJFAAAO. The
PARM operand indicates that the ADJUST
option is to be used and the NAME of the
output object: module is M0107.

Card 00030 is a DD card specifying the data
set for printed output from the compiler.

Cards 00040 and 00050 are DD cards specify-
ing wutility work data sets for the FORTRAN
E compiler.

Cards 00060 and 00070 are DD cards specify-
ing the data set to receive the output
object module.

Card 00080 is a DD card specifying the data
set that contains the source card input.
In this case, it is the input stream.

cards 00090 through 00150 are the FORTRAN
source cards.

card 00160 is an OS job-step delimiter.

At the completion of this job step, the
FORTRAN E compiler will have produced an
object deck on the data set named §LOADSET
and a program listing on the output device
named as the CLASS A WRITER.

an execute card for the
link-edit step. The program to be executed
is IEWL, the OS 1link-editor. The COND
field specifies that the link-edit step is
not to be run if the compile step fails.

Card 00170 is

Card 00180 is a DD card specifying a data
set for printed output from the
link-editor.

Card 00190 is the DD card specifying a
partitioned data set to receive the output
load module.

Cards 00200 and 00210 are DD cards specify-
ing the subroutine libraries to be used to
resolve subroutine calls in the source
program. SYS1.FORTLIB is the standard O0S
FORTRAN subroutine library, and PLAN.SUBLIB
contains the PLAN subroutines.

Card 0220 is a DD card specifying a utility
work data set for the link editor.

Cards 00230 and 00240 are DD cards specify-
ing the input data set for the link-editor.
(Note: This same data set was used for the
output of an object module in the compile
step.) The input data set is concatenated
with the input stream which contains 1link-
edit control cards.

Card 00250 is
specifying the
module.

the link-edit control card
name of the output load

INTRODUCTION 7

card 00260 is an OS job-step delimiter.

At the completion of this step, the data
set MYLIB will contain the executable load
module M0107.

The user should refer to the appropriate
FORTRAN programmer's guide for other
examples of usage of FORTRAN compilers and
link-edit facilities of the operating
system.

//PLANINIT JOB 84803, °'JOE E. JONES',MSGLEVEL=

//STEP EXEC PGM=DFJPLAN
//PLOUT100 DD SYSOUT=A

//PLANLIB DD
//PLSYSTAB DD

//PLINPOO1 DD #*

ADD PHRASE: PLAN JOB,PRO'M0107°,LEVEL 1,I(1) RUNTYPE O;

/%

DSNAME=PLAN.MODLIB, VOLUME=SER=PLANPK,UNIT=2311,DISP=OLD
DSNAME=PFILE,UNIT=2311, VOLUME=SER=MY2311,
/7/ DISP=(NEW, KEEP) , SPACE=(CYL, (5))

ADDING PHRASES TO THE DICTIONARY

PLAN job requirements are defined in the
PLAN phrase dictionary. This dictionary is
a data set on a direct access device.
Before executing any PLAN jobs, the user
must define this data set and add his
phrases to the dictionary. Sample 2 illus-
trates a Jjob stream to create the dic-
tionary data sets and to add a phrase.

00010
00020
00030
00040
00050
00060
00070
00080
00090

Sample 2. Job stream creating dictionary data sets and adding a phrase

ADD PHRASE STEP EXPLANATION

card 00010 is a valid job card.

Card 00020 is the execute card. The pro-
gram to be executed is DFJPLAN, the PLAN
system monitor.

Card 00030 is a DD card defining the PLAN
output device to be a SYSOUT writer class
A.

card 00040 is a DD card defining the PLAN
library PDS, which is a data set called
PLAN.MODLIB. PLAN obtains all executable
modules from this library.

cards 00050 and 00060 are the DD cards
defining the PLAN system dictionary data
set. The disposition of (NEW,KEEP) speci-
fies that the data set is to be formatted
by the PLAN system and retained for use in
subsequent PLAN executions.

//PLANJOB JOB 84803, 'JOE E. JONES',MSGLEVEL=1

//PLAN EXEC PGM=DFJPLAN, PARM='TRACE'

//PLSYSTAB DD DSNAME=PFILE,UNIT=2311,VOLUME=SER=MY2311,DISP=OLD
//PLANLIB DD DSNAME=PLAN.MODLIB,UNIT=2311,VOLUME=SER=PLANPK,DISP=0LD
7/ DD DSNAME=MYLIB,UNIT=2311,VOLUME=SER=MY2311,DISP=OLD

//PLOUT100 DD SYSOUT=A
//PLINPOO1 DD *

PLAN JOB,RUNTYPE = 3;
/%

Sample 3. Job execution

8 INTRODUCTION

Card 00070 is a DD card defining the PLAN
input stream.

Card 00080 is the ADD PHRASE card shown
adding the phrase PLAN JOB.

Card 00090 is the OS job-step delimiter.

At the conclusion of this job step, PLAN
will have created a phrase dictionary data
set with the name PFILE on a 2311 with the
serial number MY2311. The phrase PLAN JOB
will be added to this dictionary for use by
subsequent PLAN executions.

EXECUTING A PLAN JOB

After the user has generated the required
modules and entered his phrases into the
PLAN phrase dictionary he may execute his
PLAN job. Sample 3 illustrates ax\?ob
stream for job execution. \

00010
00020
00030
00040
00050
00060
00070
00080
00090

PLAN JOB STEP EXPLANATION
Card 00010 is a valid job card.

Card 00020 is the execute card for the PLAN
step. The program is DFJPLAN, the " PLAN
system monitor. The PARM 'TRACE' invokes
the PLAN tracing facility.

Card 00030 is the DD card defining the PLAN '

system phrase dictionary data sets. (Note:
This same data set was used when the phrase
PLAN JOB was added to the dictionary in
Sainple 2.) v

Cards 00040 and 00050 are the DD cards
defining the PLAN 1load module 1library.
(Note: MYLIB, which contains the user
module M0107, is concatenated to
PLAN.MODLIB which contains the PLAN system
load modules.)

Card 00060 is the DD card specifying a data
set for PLAN printed output.

Card 00070 is the DD card specifying a data
set for PLAN input.

Card 00080 is the PLAN command that invokes
PLAN JOB, which was added to the
dictionary.

Card 00090 is an OS job-step delimiter.

While executing this job step, the PLAN
system monitor searches the PLAN phrase
dictionary in the data set PFILE for the
phrase PLANJOB. Finding it initializes a
blank common area based on the input param-
eters in the PLAN command. Then the pro-
gram M0107 is loaded from the library MYLIB
and entered for execution.

INTRODUCTION 9

OS_PLAN_PROCESSING

To execute the PLAN system under 0S/360,
the user must prepare the necessary JCL
(Job Control Language) statements. These
are (1) a JOB statement, (2) an EXECUTE
statement, (3) DD statements, as required,
and (%) an OS standard delimiter. Figure 3
shows the PLAN DDNAME function and device

requirements.

L} v T
|DDNAME | FUNCTION {DEVICE
] t ¥
T bl L]
|PLSYSTAB|PLAN WORK AREA | *INTERMEDIATE
| {AND PHRASE | STORAGE
| | DICTIONARY i
L [} L
1) LR Ll
|PLANLIB |PDS CONTAINING |*INTERMEDIATE
| {LOAD MODULES | STORAGE
| [
[N L
1

| TO: BE EXECUTED
4L

L}
PLINPxxx|INITIAL PLAN

| *CARD READER

i o v oy e ek e — —— — c—— o ke — i c— o — iy w—— — . e c—— —— aa wk =

| *CARD PUNCH
i

L]

|

| | INPUT | *MAGNETIC

| | | TAPE

| I | *INTERMEDIATE

| I | STORAGE

L 'l L

L) L L

| PLOUTxxx | INITIAL PLAN | *PRINTER

| |oUTPUT | *CARD PUNCH

| | *MAGNETIC

| | TAPE

(| *INTERMEDIATE

| | STORAGE

b +

| PLMANFIL|MANAGED ARRAY |*INTERMEDIATE

| SAVE FILE | STORAGE

[1

¥ T

{PLCHKPT |CHECKPOINT | *INTERMEDIATE

| |FILE | STORAGE

- 1 {

| PLANDRVX | PLAN DYNAMIC | *INTERMEDIATE

| |DRIVE | STORAGE

b } +

|PLFSynnn|USER PERMANENT |+INTERMEDIATE

(|DATA SETS | STORAGE

[N L L

T L] L)

| PLSEQxxx | SEQUENTIAL | *CARD READER |
] |INPUT OR OUTPUT |*TAPE |
| | | *PRINTER |
| 1
I8 I |

Figure 3. PLAN DDNAME and device
requirements

JOB STATEMENT

A valid JOB card must be supplied. Instal-
lation standards where the Jjob is run

determine the required JOB card parameters.

10 0Os PLAN PROCESSING

EXEC STATEMENT

The name of the PLAN system monitor is
DFJPLAN; the operands of the PGM keyword
must be DFJPLAN.

PARM FIELDS

There are five valid operands of the PARM
keyword: PGAR, NFS, TRACE, NOLIST, and
PHRAS.

PGAR specifies the 1length of the PLAN
PROGRAM COMMON ar€a. It is coded as PGAR=
nnn, where nnn specifies the number of
contiguous 1024-byte blocks to be reserved.
If this operand is omitted, the size of the
PLAN PROGRAM COMMON area is 66 percent of
the region or partition.

NFS specifies the length of the nonmanaged
0Os free storage area. It is coded as
NFS=nnn, where nnn is the number of contig-
uous 1024-byte blocks to be reserved. If
this operand is omitted, the size of the
nonmanaged free storage area is zero.

TRACE specifies that the name and entry

point of all programs loaded and entered
or execution be listed on the PLAN output
device. (See "PLAN Trace Facility".)

NOLIST specifies that the normal 80-80 list
of the PLAN input stream be suppressed.

PHRAS specifies that all commands executed
by the PLAN system be listed on the PLAN
output device.

The following examples show valid uses of
the PARM keyword:

//STP EXEC PGM=DFJPLAN,PARM="TRACE'

//STP EXEC PGM=DFJPLAN,PARM='PGAR=60, X
7/ NFsS=20"

//STP EXEC PGM=DFJPLAN, PARM='TRACE, NOLIST'

JOBLIB DD STATEMENT

This is an optional DD statement. 0S/360
PLAN requires the following modules to be
available to begin execution: (1) DFJPLAN,
(2) DFJLODER, {3) DFJTRACE.

If these modules are not in SYS1.LINKLIB or
the LINKAC-RAM area, the user must provide
a suitable JOBLIB DD statement that
desc¢ribes a PDS that does contain them.

REQUIRED DD STATEMENTS

The DD statements listed below are required
for PLAN execution. If any are missing,
execution of PLAN is suppressed.

PLSYSTAB

This DD statement defines the PLAN PFILE
data set that contains the system tables
and the phrase dictionary.
tion is NEW, this file is formatted and the
phrase 'ADD PHRASE' is added to the dic-
tionary. The following examples show PLSY-
STAB DD statements:

//PLSYSTAB DD DSNAME=PFILE,UNIT=2311, X
// VOLUME=SER=MY2311,DISP=0OLD

//PLSYSTAB DD DSNAME=PFILEA,DISP=0OLD

//PLSYSTAB DD DSNAME=PFILEB,UNIT=2311, X
// VOLUME=SER=MY2311, X
/77 DISP=(NEW,KEEP), X
/77 SPACE=(CYL, (2))

The first example shows the use of a data
set named PFILE that already exists on a
2311, serial number MY2311l. This data set
is to be retained at the end of the PLAN
execution.

The second example shows the use of cata-
loged data sets named PFILEA.

The third example shows the creation of a
data set named PFILEB on a 2311, serial
number MY2311. Two cylinders on the pack
will be allocated, and the data set is to
be retained at the end of the PLAN execu-
tion. Since the disposition is NEW, the
file will be formatted by the PLAN system.
It is the user's responsibility to add the
standard PLAN commands to his dictionary.
(Note: For new data sets the allocation
must be at least 14 records. The maximum
required allocation is 268 records. The
block size for PLSYSTAB is 512.)

PLINPXXX

This DD statement defines a sequential PLAN
input data set to be read using the PLAN
unit record subroutines. The xxx is a
three-digit number equivalent to the NOD
parameter in the subroutine call parameter
list. The PLINPxxx DD statement will be
used as the initial PLAN input device.
Only one PLINPxxx DD card is allowed per
PLAN job step. The following examples show
PLINPxxx DD statements:

//PLINPOO1 DD *

//PLINP006 DD DSNAME=MYFILE,UNIT=2311, X
7/ VOLUME=SER=MY2311,DISP=0LD, X
Ve DCB=(RECFM=FB, LRECL=80, X
7/ BLKSIZE=400)

If the disposi-.

The first example shows the use of the
system input stream for PLAN input. The
records will be 80 characters unblocked.

The second example shows a data set named
MYFILE on _.a 2311, serial number MY2311,
that will be used to honor PLINP calls with
a NOD parameter of six. The records are 80
characters long and blocked five. (Note:
If a PLINPxxx DD card is not found, a user
ABEND code of 100 results.)

PLOUT XXX

This DD card defines the sequential PLAN
output file written wusing the PLAN unit
record subroutines. The xxx is a three-
digit number equivalent to the NOD parame-
ter in the subroutine call parameter list.
The PLOUTxxx DD statement will be used as
the 1initial output device. Only one
PLOUTxxx DD statement is allowed per PLAN
job step. The following examples show the
PLOUTxxx DD statements:

//PLOUT100 DD SYSOUT=A

//PLOUT103 DD DSNAME=MYFILE,UNIT=2311, X
7/ VOLUME=SER=MY2311, X
/77 SPACE=(CYL, (10,5), X
/7 DISP=(,KEEP) ,DCB=(RECFM=FBA, X
4 LRECIL=121,BLKSIZE=605)

//PLOUT107 DD UNIT=SYSCP

The first example shows the use of the
system output stream for PLAN output. The
record format assumed is 133 characters,
unblocked, with the first character of the
record used for carriage control. This
device will be used whenever a PLOUT call
is made with NOD variable = (100). The
PLAN subroutine PCCTL can be used for
carriage control.

The second example shows the use of a 2311
for PLAN output. The records are blocked
five, and the data set MYFILE is to be
retained at the end of the PLAN execution.

The +third example shows the use of a card
punch for PLAN output. The record size is
80 characters. (Note: 1If no PLOUTxxx DD
card is found, PLAN will ABEND with the
user code of 100.)

PLANLIB

This DD statement defines the PLAN library
PDS, and should contain the 1load modules
the user wishes to execute. In addition,
this 1library must contain the modules
DFJPSCAN, DFJRETN, and DFJPERRS, or PLAN
execution is suppressed.

The following example shows a PLANLIB DD
statement referring to a data set named

0S PLAN PROCESSING 11

PLAN.MODLIB that resides on a 2311,
number PLANPK:

serial
//PLANLIB DD DSNAME=PLAN.MODLIB,DISP=0LD, X
/77 VOLUME=SER=PLANPK, UNIT=2311

(Note: The PLANLIB DD statement may con-
tain concatenated data sets.)

OPTIONAL DD CARDS

The following DD statements are optional
and are used only if the job step requires
them.

PLMANFIL,

This DD statement defines a direct access
data set that will be used to save and
restore the managed COMMON array. PLAN
uses this data set whenever a level 2, 3,
or 4 command is processed, and the 1length

of the managed array is not zero. This
data set 1is required if the PLAN sort
facility is used. If this DD card is not

present and an attempt is made to either
read or write the managed array a phrase
abort condition occurs.

The following example shows the use of a
temporary data set that will reside on any
available direct access device. This data
set will exist only while the PLAN job step
is in execution.

//PLMANFIL DD UNIT=SYSDA,SPACE=(CYL, (2))
PLCHKPT

This DD statement defines a direct access
data set that will be used to contain PLAN
checkpoints. This data set is used by PLAN
when a CALL LCHEX is executed. Note that
in some cases the error routines (ERROR,
ERRAT, ERREX, ERRET) do use LCHEX. If this
data set 1is not present when a CALL LCHEX
is executed, a phrase abort condition
occurs.

The following example shows the use of a
2301 for checkpoint. The checkpoint file
will be written using 5000-byte records.

//PLCHKPT DD UNIT=2301,VOLUME=SER=MY2301, X

// SPACE=(CYL, (2)), X
/77 DCB= (BLKSIZE=5000).
PLANDRVx

This DD statement defines a direct access
data set that will be used for the PLAN
DYNAMIC files. The x is a single digit and
refers to drives 0 through 7. This DD card
is required if the user needs DYNAMIC PLAN
files. PLAN DYNAMIC drive 0 is required if
error message queueing is used. The fol-
lowing are examples of PLANDRVx DD

12 O0Ss PLAN PROCESSING

statements:

//PLANDRV0O DD DSNAME=PLANDRVA,UNIT=2311, X

Va4 VOLUME=SER=MY2311 ,DISP=0LD

//PLANDRV7 DD DSNAME=PLANDRVB,UNIT=2311, X
/77 VOLUME=SER=MY2311, X
V4 SPACE=(CYL, (10)) ,DISP=(,KEEP)
The first example shows the use of an

existing data set named PLANDRVA as DYNAMIC
drive O. This data set must previously
have been used as a PLAN DYNAMIC drive.

The second example shows the use of a data
set named PLANDRVB as PLAN DYNAMIC drive 7.
The data set will be formatted by the PLAN
system and will be retained after the PLAN
execution.

PLFSynnn

This DD statement defines the direct access
data set associated with GDATA, RDATA, and
WDATA call statements. Y is a single digit
equivalent to the NDR parameter in the
GDATA call. The nnn is a three-digit
number equivalent to the file number in
ID(1). This DD card is required if the
user needs RWDATA. type files. The follow-
ing examples show PLFSYnnn DD statements:

//PLFS0007 DD DSNAME=PERMFIL,UNIT=2311, X

4 VOLUME=SER=MY2311,DISP=0LD
//PLFS7043 DD DSNAME=NEWFILE,UNIT=2311, X
7/ VOLUME=SER=MY2311, ‘ X
7/ SPACE=(TRK, (20))8 X
// DCB=(BLKSIZE=1024)

The first example shows the use of an
existing data set named PERMFIL. This data

set will be accessed on the GDATA call when
ID(1) = 7 and NDR = 0.

The second example shows the use of a new
data set named NEWFILE. This data set will
be formatted with 1024-byte records. This
data set will be accessed on the GDATA call
when ID(1) = 43 and NDR = 7.

PLSEQXXX

This DD statement defines a sequential PLAN
input/output data set to be read or written
using the PLAN unit record subroutines.
The xxx is a three-digit number eguivalent
to the NOD parameter in the subroutine call
parameter list. The user may have as many
PLSEQxxx cards as required. The following

examples show PLSEQxxx DD statements:

//PLSEQ005 DD UNIT=(2400-2),LABEL=(,NL), X
77 VOLUME=SET=TAPE,DISP=OLD, X
Vo4 DSNAME=INPUT .MASTER, X
77 DCB=(TRTCH=ET,DEN=2, X
V4 LRECL=80, BLKSIZE=400, X
77 RECFM=FB)

//PLSEQ007 DD UNIT=SYSDA,SPACE=(CYL, (2)), X
4 DCB=(RECFM=F , BLKSIZE=512)

The first example shows the wuse of a
seven-track tape for program input. It

contains 80 character records with a block-
ing factor of five. Note the name INPUT.
MASTER indicates this data set is to be
used for input only. This data set will be

referenced when a CALL PLINP(5) is
executed.
The second example shows the use of direct

access for intermediate work files. This
data set could be used for both input and
output. It would be referenced by either a
CALL PLINP(7) or a CALL PLOUT(7).

OS PLAN PROCESSING 13

DATA SET CONSIDERATION

PLINPxxx/PLOUTxxx/PLSEQxXxX

The data sets defined by these DD state-
ments are used for sequential input and
output by the PLAN system as well as the
user modules. The xxx in the DD name is a
three-digit number equivalent to the NOD
parameter in CALL PLINP and in CALL PLOOT.
The PLAN system module DFJPSCAN, which
processes the PLAN commands, uses one of
these data sets. In DFJPSCAN, the PLINP
calls use a NOD parameter of (0) which
specifies the current PLAN input device.
The PLOUT calls use a NOD parameter of
(100) that specifies the current PLAN out-
put device. The user may vary these
devices during execution by using the PLAN
subroutine IOCS. The PLINPxxx DD statement
is used as the initial PLAN input device,
and PLOUTxxx is used as the initial output
device. The xxx suffix cannot be dupli-
cated on PLINP, PLOUT, or PLSEQ statements.

The default for PLINP and PLSEQ data sets
is 80-character unblocked records. This is
comparable to a DCB parameter of DCB=
(LRECL=80,RECFM=F, BUFNO=2) . The user may
specify, in his DD card, any valid BSAM DCB
parameter for input devices. This data set
may reside on a card reader, magnetic tape,
or direct access device.

The default for PLOUT data sets is 133
character unblocked records, with the first
character being used for standard ASA car-
riage control characters and the remaining
132 characters used as data. This is
equivalent to a DCB parameter of DCB=
(LRECL=133,RECFM=FA,BUFNO=2). The user may
specify any valid BSAM DCB parameter for an
output device. This data set may reside on
a printer, card punch, magnetic tape, or
direct access device. (Note: The BUFNO
parameter specifies the number of buffers
to use for reading or writing the data
sets.) The default value is two. The user
may conserve some core by specifying BUFNO
= 1. However, this will degrade perform-
ance. There is no significant performance
improvement in specifying a value greater
than two in the BUFNO subparameter. If
using a card reader or punch, and stacker
selection is used via the PCCTL subroutine,
BUFNO = 1 must be specified in the DCB
parameter.

If any data set named in a PLINP, PLOUT or
PLSEQ DD card resides on a tape or direct
access device, it may be used for both
input and output. The PLAN subroutine
*PENDF' allows the user to reverse the
status of a sequential data set. The PLAN
system normally opens data sets of this
type with a parameter of INOUT to allow

14 DATA SET

both reading and writing on the data set.
When using file-protected tapes, a special
situation occurs. The operating system
data management routines require that the
file-protect ring be present on any tape
that could be written on. To process a
file-protected tape, the user must specify
a DSNAME parameter of which the first five
litters must be INPUT. Example:

DSNAME=INPUT
DSNAME=INPUT.MASTER

When a DSNAME of this type is found, the
PLAN system will open this data set on the
tape for input only.

SEQUENTIAL FILE SUPPORT

The following steps outline the manner in
which certain special conditions are
handled on the 0S/360 version of the PLAN
I/0 subroutines (PLINP/PLOUT/PEOF/PCCTL).

Two subroutines are provided under OS PLAN
that allow specification of page length and
status switching (CLOSE) for PLINP/PLOUT
data sets.

CALL PPAGL(NOD,N) is a subroutine used to
specify the number of lines to be used as

the page length for those data sets con-
taining printed output. If N is 0, a
default of 60 is used. The maximum +value

of N is 32,767.

A call to PPAGL sets the current line count
to the page 1length specified. It also
forces the next carriage control operation
to be a skip to 1, unless overridden by an
intervening call to PCCTL.

CALL PENDF(NOD) is a. subroutine that may be
used to close a sequential data set. If a
data set is in output status, an EOF is
written after the last record. Both PLINP
and PLOUT data sets are repositioned to the
beginning of this data set.

1. Maximum record size for any input/
output record is 32,760 characters.

2. Records may be blocked within the
limits of the specified device. Trun-
cated records are accepted if the

character count is
logical record length.

a multiple of the
3. A PLINP/PLOUT call to an invalid device
(missing DD card) is ignored.

4. The DCB RECFM parameter must be F, FA,
FB, or FBA.

5. If the device is a printer, the DCB
RECFM parameter must be FA.

A

6. In order to effect carriage control,
that is, for PCCTL to be functional,
the DCB RECFM parameter must be FA or
¥FBA.

define PCCTL

7. The following items

functions:

a. If the device is a reader, PCCTL
will control stacker selection.
DCB=(RECFM=F, BUFNO=1) must be used.

b. If the device is a punch, RECFM must
be FA for PCCTL to control stacker
selection.

c. If RECFM is FA or FBA, PCCTL will
cause the correct ASA control
character to be inserted as the
first character of the record.

8. The following items are
for the PEOF routine.

specifications

a. Logical EOF is set when:

(1) A "UREND" is read by CALL PLINP.
The logical EOF will be reset by
the next CALL PLINP to the data
set.

(2) The line count is zero for out-
put data sets (CALL PLOUT) using
RECFM FA or FBA.

b. Physical EOF is set when:

(1) EOF is read by a CALL PLINP,

(2) a call PLINP is 1issued to a
device not capable of input,

(3) a CALL PLOUT is issued to a
device not capable of output,

(4) A CALL PLOUT is issued to a data

set in 1input status (A CALL
PLINP had previously been
issued).

(5) A CALL PLINP is issued to a data
set in output status (A CALL
PLOUT had previously been
issued).

9. The following specifications pertain to
the carriage tape simulation functions
on an output device (CALL PCCTL):

a. The maximum page
lines.

b. Default page length is 60 lines.

c. If RECFM is FA or FBA, a line count
is maintained and an automatic eject
(skip to carriage channel 1) is set
when the line count reaches zero.

d. The maintenance of the line count is
suspended when a PCCTL CALL is
issued for a skip to channels 2-12.

e. Maintenance of the 1line count is
resumed when a CALL PCCTL is issued
for a skip to channel 1.

length is 32,767

A PLAN utility program (DFJPLENG) allows
the user to set the page length to be used
on an output file that is to contain data
to be printed. This utility must be
invoked by the standard PLAN command.

SET PAGE LENGTH, WOD xxx, PGL yyyyy:

where xxx is a number up to three digits
equivalent to the NOD argument for the
subroutines PLINP and PLOUT, and yyyyy is a
number up to five digits to be used as the
page length for the specified NOD.

PLSYSTAB

This data set is the PLAN system phrase
dictionary and work data set. 1Its format
is fixed-length records of 512 characters.
PLSYSTAB must contain at least 14 records.
The maximum record requirement is 268 rec-
ords. If the data set defined in this card
has a disposition of OLD, it must have been
previously used for a PLAN phrase dic-
tionary. This data set must reside on a
direct access device.

PLMANFIL

This data set is used as a save area for
the managed COMMON array whenever the com-
mands being processed by PLAN are level 2,
3, or 4 and the length of the managed area
is not O. The size of this data set is
dependent on the number of command 1levels
the PLAN job is using and the length of the
managed array. This data set is also used
as working storage by the DYNAMIC file and
PERMANENT file sort facility. The size of
this file affects the performances of the
sort. The sort facility requires space for
at least one logical record; however, any
additional space will be used to optimize
the sort.

The default block size for this data set is
512 characters. The user may specify a DCB
BLKSIZE parameter of any value up to the
limits of the device on which the data set

resides. If disposition is NEW, this data
set is formatted by PLAN. If disposition
is OLD, this data set must have been

created by OSAM or BSAM. This data set
must reside on a direct access device.

PLCHKPT

This data set is used by PLAN to write and
read PLAN checkpoints. The size of this
data set is dependent on the size of the
programs being executed and the number of
levels of checkpoints to be taken by the
job.

The default block size for this data set is
512 characters. The user may specify a DCB
BLKSIZE paramater of any value up to the

limits of the device on which the data set
resides. If disposition is NEW, this data
set is formatted by PLAN. If disposition

is OLD, the data set must have been created
by QSAM or BSAM. This data set must reside
on a direct access device.

DATA SET 15

PLANDRVxX

The data sets defined by these DD state-
ments are PLAN DYNAMIC drives. The x is a
single digit number from 0 to 7 that
denotes the drive number. The size of the
data set depends on the number and size of
the DYNAMIC files that will be processed on
the DYNAMIC drive. These data sets have a
fixed format of 600-character records.
This may not be varied by the user. The
minimum size for these data sets is 20

records. These data sets must reside on a
direct access device. If disposition is
NEW, PLAN will format these data sets. If

disposition is OLD, these data sets must
have been used previously as a PLAN DYNAMIC
drive.

DYNAMIC FILE SUPPORT (OS PLAN)

The NALLO parameter provided with CALL FIND
is used to optimize space allocation. The
basic unit of allocation for an OS PLAN
file is 1350 FORTRAN words.

Each 1logical file can contain up to 147
discontiguous allocations. Thus, if normal
allocation is allowed as the file is writ-
ten, the maximum file size is restricted to
220,500 FORTRAN words. If the NALLO
parameter of the CALL FIND subroutine is
utilized, the maximum file size is 49,1%0,
350 FORTRAN words.

Each DYNAMIC drive may contain a maximum of
149 discontiguous free areas. This means
that in cases of extreme discontiguous
allocation, a file may be destroyed.

To approximate the physical space to be
allocated for the PLAN DYNAMIC drive, the
following formula may be used:

NT=((NW+1349) /1350%10*NF+10) /RT

where: NT = number of tracks
NW = average file length in words
NF = number of files
RT = number of 600-byte records
per track
PLFSynnn
The data sets defined by these DD state-

ments are those generated outside of PLAN
by BSAM or QSAM. They are processed with
the PLAN subroutines GDATA, RDATA, and
WDATA. They must reside on a direct access
device. Y in the DD name is a one-digit
number from 0 to 7 and is equivalent to the
NDR parameter in the GDATA call arguments.
The nnn is a three-digit number from 1 to
255 equivalent to the value in ID(1). If
disposition is OLD, the existing data set
specifications will. be used. If disposi-
tion is. NEW, the user may specify the

16 DATA SET

RECFM, LRECL, and the BLKSIZE DCB subpara-
meter. The default block size for these
data sets is 512 characters.

PERMANENT FILE SUPPORT

The 0S version of PLAN provides support for
files established outside of PLAN with the
following characteristics:

1. File contains fixed-length records.

2. File may be organized as a sequential
or direct access file.

3. No secondary allocation is provided.
4. Track overflow feature may not be used.
5. No keys are allowed.

6. There may be no control characters.

7. The file may contain no truncated
records.
The 1logical drive number (NDR) and the

logical file number (ID(1)) must be equiva-
lenced to the data -set name. The DDNAME
"PLFSynnn®™ will establish a name/number
equivalence between PLFSynnn and NDR/ID(1),
where y corresponds to NDR and may range
from 0-7, and nnn corresponds to ID(1) and
may range from 1-255.

JSE OF FORMATTED DATA SETS

The data sets named in the PLMANFIL,
PLFSynnn, PLCHKPT, PLANDRVx, and PLSYSTAB
DD statements must be formatted for
successful PLAN execution.

The format for PLSYSTAB and PLANDRVX is
fixed, and these data sets must be for-
matted by the PLAN initialization routine.
This is done when a DISP(NEW,XXXX) is found
in the DD statements. If DISP=NEW is
specified on either of these data sets and
the PLAN system issues the message DFJ999
*E¥ PLAN EXECUTION INHIBITED or the job
terminates abnormally before PLAN initiali-
zation is complete, these data sets may not
be formatted correctly for subsequent use
with a DISP=OLD parameter. In this situa-
tion the user should SCRATCH the data set
and rerun the job with DISP=NEW.

The formats for data sets named in the

PLMANFIL, PLCHKPT, and PLFSYnnn DD state-
ments are flexible. Any record size is
allowable up to the device 1limits. The

data sets will be formatted by the PLAN
initialization routine if DISP=NEW is sSpec-
ified. They may, however, be formatted by
any program using the BSAM or QSAM access
method.

Since data set formatting requires that the
entire data set be written, a significant
reduction in the time required for PLAN
initialization can be obtained by using
preformatted data sets (DISP=OLD) for these
DD names. -

DATA SET 17

SYSTEM/360 OS PLAN SPECIFICATIONS

RULES FOR WRITING MODULES IN LANGUAGES
OTHER THAN FORTRAN

Other languages may be used to generate
modules suitable for loading and execution
under the PLAN system provided they adhere
to the following conventions:

LINKAGE REGISTERS

REGISTER
NUMBER NAME FUNCTION
0 PARAMETER Return answer value for
Return function subroutines.
i3 SAVEAREA Address of the area in
Register the calling program
where the called pro-
gram may store the con-
tents of the general
registers.
14 RETURN The address in the
Register calling program to
which control is to be
returned after comple-
tion of the called
program.
15 ENTRY Address of the entry
Register point of the called
program. This register
may also be used by the
called routine to
return condition codes.
ki ARGUMENT Address of the argument
LIST Reg. 1list passed to the

called program.
No other general register may be wused to
pass any parameter to or from a called
program.

ARGUMENT LISTS

Each entry in an argument list must be four
bytes long and must be aligned on a full
word boundary. The first byte of each
entry should contain zero. The last three
bytes should contain the address of an
argument. The first byte of the last entry
in the argument list should have the high-
order bit set to '1°.

SAVE AREAS

Any module invoked as a LOCAL under PLAN is
presented with a standard 18 word save
area. If a module issues any loader sub-
routine calls, the contents of this save
area may be changed with the following
exceptions:

18 MODULE CONSTRUCTION

Word 4. The contents of GPR14 (RETURN)
on entry to the called program.

Word 7. The contents of GPR1 (address of
the argument list) on entry to the called
program.

Although the contents of the save area
presented to a LOCAL module may be changed,
the PLAN system ensures that, on return
from a LOCAL module, the registers are
restored correctly before returning to the
calling program.

BLANK COMMON DECLARATION

If a blank COMMON control section is pre-
sent in a program, it must be at least 640
32-bit words long.

For those languages that cannot generate a
blank COMMON control section, the name
PLANBCOM will be accepted as an alias for
blank COMMON. Modules that use this alias
may not have an actual control section
named PLANBCOM.

LANGUAGE EXAMPLES

The following examples illustrating the
rules defined previously show the same
problem written in FORTRAN, COBOL, PL/I,
and Assembly Language. The problem is to
determine the volume of a box given the
three dimensions. The dimensions, the
volume, and a title read from a card are to
be printed. If one or more of the dimen-
sions is missing, an error message is to be
printed.

The phrase used for this problem is:

ALTER PHRASE: SAMPLE LANGUAGE PROBLEM,
I(1)DIMENSION-,-,~-, (4) FORTRAN-#*
F*FORSAM', (5)COBOL-*F'COBSAM', (6)PLI-
F'PLISAM', (7)ASM-*F'ASMSAM';

The phrase puts the dimensions as integers
in the PLAN communication array positions
1, 2, and 3. These locations are initia-
lized to the value FALSE so that the
modules may ensure that all dimensions have
been specified. The logical variables FOR-

TRAN, COBOL, PLI, and ASM are used to
determine which of the modules are to be
used.

ALTER PHRASE: SAMPLE LANGUAGE PROBLEM,I(1)DIMENSION-,-,-,
(4) FORTRAN-#*F ' FORSAM", (5) COBOL~*F'COBSAM', (6) PLI-*F'PLISAM',
(7)ASMB-#F'ASMSAM' ;
PLAN JOB; LON;
SAM LAN PRO, DIM1,2,3,FORTRAN;

EEEEKREERRXEXE XX XX FORTRAN OK** ks kk ke ks s+ 4+ %4 +4DIMENSIONS 1 2 3
VOLUME 6

SAM LAN PRO, DIM 1,2,FORTRAN;

EREEEXE XXX %% **FORTRAN DIM(3) UNDEFINED#****#**%*%*DIMENSIONS 1 2 *UNDEF*

SAM LAN PRO, DIM 1,2,3 +COB;

AR R AR EERE KL KR ERCOBOYL, OK** sk kb ks k*x£x %%+ Xk*DIMENSIONS 1 2 3
VOLUME 6

SAM LAN PRO, DIM 1,,3,COB;

EREREFERE RN XX ¥3COBOL DIM (2) UNDEFINED****##*%%%%*DIMENSIONS 1 *UNDEF* 3

SAM LAN PRO, DIM 1,2,3,PLI;

R RERERERRRF R AR XXPL/] OK* Rk Rk kksikkkkk sk ++ %4 kDIMENSIONS 1 2 3
VOLUME 6

SAM LAN PRO, DIM(2)2,3,PLI;

kb rrkkeb k%% %x%PL/TI DIM (1) UNDEFINED***#%%*%#x#*DIMENSIONS *UNDEF#* 2 3

SAM LAN PRO,DIM1,2,3,ASMB;

ARk E AR R Rk EERE R AR KEASSMBLY LANG OK**#kskkkkskk k% x %k DIMENSIONS 1 2 3
VOLUME 6

SAM LAN PRO,DIM1, 2,ASMB;

Rk EREREE kR Rk FSASSEMBLY LANG DIM(3) UNDEFINED#*#*#**DIMENSIONS 1 2 *UNDEF*

SAM LAN PRO, DIM2,3,4,FORTRAN,COBOL,PLI,ASM;

khkkkEkbhkkhhbk ASGM skkkkkkksrtddrsEkkk 2k kkk*DIMENSIONS 2 3 4
VOLUME 24

AEREREEREARERAEARE DL/T *k bkt ke ks bk bkt 54424 XDIMENSIONS 2 3 4
VOLUME 24

skkkkkkkkrhkkiddt® COBOL **kkshsskrhshrhkshkkiassx*xDIMENSIONS 2 3 4
VOLUME 24

ek ekrtkkktts® FORTRAN **sskskskkkhsnkikkkktkkt* DIMENSIONS 2 3 4
VOLUME 24

FORTRAN error handling subroutines and allows PLAN

to intercept program check errors. PLAN

can then abort the phrase where required
The following FORTRAN module is written as rather than aborting the whole job step.

a subroutine. This eliminates the FORTRAN

MODULE CONSTRUCTION 19

SUBROUTINE FORSAE

INTEGER DIM (3)

DIMENSION HDGS (8)

COMMON L(625),LS(15) ,M(510)
EQUIVALENCE, (DIM(1),M(1))

DATA HDGS /'DIME', 'NS1IO','NS','VOLU',"'ME',"

L] '.*UND" ,"EF*'/

C READ HEADING FROM PLAN INPUT DEVICE

CALL PLINP (0)

C TRANSFER HEADING TO PLAN OUTPUT LINE

CALL PBFTR (0,100)

C MOVE ‘DIMENSIONS' TO PLAN OUTPUT LINE
CALL PAOUT (100,54,12,HDGS(1))
NERR = 0
DO 10 I=1,3
C CHECK DIMENSION
IF (NDEF(DIM(I))) 1,1,2
C MOVE '#JNDEF*' TO PLAN OUTPUT LINE,
C IF A DIMENSION IS NOT SPECIFIED
1 CALL PROUT (100,59+I%8,7,HDGS(7))
NERR = NERR + 1
GO TO 10
C MOVE DIMENSION TO PLAM OUTPUT LINE
2 CALL PIOUT (100,59+I%8,7,DIM(I))
10 CONTINUE
C PRINT THE LINE
CALL PLOUT (100)
C RETURN TO PLAN, IF ANY ERRORS HAVE BEEN FOUND
IF (NERR) 11,11,99
C PRINT THE VOLUME
11 CALL PAOUT (100,54,12,HDGS(4))

CALL PIOUT (100,67,7,DIM(1)*DIM(2)*DIM(3))

CALL PLOUT (100)

C RETURN TO PLAN
99 CALL LRET

GO TO 99

END
COBOL
The following COBOL module illustrates
three points which must be observed in
using this 1language. Examples of these

points are indicated in the module listing.

1. Locating PLAN COMMON. The module is
written as a subroutine with one para-
meter. PLAN will pass it to the
address of the switch words in COMMON.
An ENTRY card must be supplied to the
link editor with the name used in the
COBOL ENTRY statement (ENTRY COBSAME
for this example).

2. Parameters passed to PLAN subroutines.
Integer parameters must occupy a 32-bit
word, that is, PICTURE S9(9)
COMPUTATIONAL.

3. Function subroutines. Since COBOL does
not support function subroutines, they
must be CALLed with an additional para-
meter. This parameter will receive the
functional value. It is a 32-bit
integer for the function NDEF, and a

20 MODULE CONSTRUCTION

32-bit floating-point numbexr
(COMPUTATIONAL-1) for PEOF, PCOMP, and
PIOC. The absolute value returned by
the function may vary from one execu-
tion to the next. It will be negative,
zero, or positive, depending on the
condition being tested in the function.

Example: CALL 'PCOMP' USING A, B, N,
PVAIL.
PVAL is the extra parameter used for

returning the functional wvalue. It
will be negative if A is less than B,
zero if A is equal to B, and positive
if A is greater than B. These condi-
tions correspond to the statement num-
bers 1, 2, and 3 in the Program
Description Manual explanation of the
function. Note also that an array must
be in a contiguous core area. Example:

02 C OCCURS 10 TIMES
03 A COMPUTATIONAL-1.
03 D COMPUTATIONAL-1.

A cannot be used as an array to be passed
to PLAN.

IDENTIFICATION DIVISION.
PROG -ID. 'COBSAM'.
DATA DIVISION.

WORKING STORAGE SECTION.

01

FILLER COMPUTATIONAL.

02 NID PICTURE S9(9) VALUE 0.
02 NOD PICTURE S9(9) VALUE 100.
02 HDG-PP PICTURE S9(9) VALUE 54.
02 HDG-FW PICUTRE S9(9) VALUE 12.
02 DATA-PP PICTURE S9(9) VALUE 67.
02 DATA-FW PICTURE S9(9) VALUE 7.
02 I PICTURE S9(9) .

02 NERR PICTURE S9(9) .

02 VOLUME PICTURE sS9(9) .

02 J PICTURE S9(9) .

HDGS.

02 DIM-HDG PICTURE X(12) VALUE °'DIMENSIONS®.
02 VOL-HDG PICTURE X(12) VALUE ‘'VOLUME"'.
02 UND-HDG PICTURE X(08) VALUE '*UNDEF*'.

LINKAGE SECTION.

01

COMN COMPUTATIONAL.
02 LS OCCURS 15 TIMES PICTURE S9(9).
02 DIM PICTURE S9(9) OCCURS 3

PROCEDURE DIVISION.

@__*

ENTER LINKAGE.
ENTRY °'COBSAME' USING COMN.
ENTER COBOL.
NOTE READ HEADING FROM PLAN INPUT DEVICE.
ENTER LINKAGE.
CALL 'PLINP' USING NID.
ENTER COBOL.

NOTE TRANSFER HEADING TO PLAN OUTPUT LINE.
ENTER LINKAGE.
CALL 'PBFTR' USING NID, NOD.
ENTER COBOL.

NOTE MOVE °‘DIMENSIONS' TO PLAN OUTPUT LINE.
ENTER LINKAGE.
CALL 'PAOUT' USING NOD, HDG-PP, HDG-FW, DIM-HDG.
ENTER COBOL.
NOTE CHECK AND PRINT DIMENSIONS.
MOVE ZERO TO NERR.
PERFORM DIM-CHECK VARYING I FROM 1 BY 1 UNTIL
I IS GREATER THAN 3.

NOTE PRINT THE FIRST LINE.
ENTER LINKAGE.
CALL ‘'PLOUT' USING NOD.
ENTER COBOL.

NOTE GO TO RETURN TO PLAN, IF ANY DIMENSION
ERRORS HAVE BEEN DETECTED.
IF NERR IS GREATER THAN ZERO GO TO CALL-LRET.

NOTE PRINT THE VOLUME.
COMPUTE VOLUME = DIM (1) * DIM (2) * DIM (3).
ENTER LINKAGE.
CALL 'PAOUT' USING NOD, HDG-PP, HDG-FW, VOL-HDG.
ENTER COBOL.
SUBTRACT 24 FROM DATA-PP.
ENTER LINKAGE.
CALYL 'PIOUT' USING NOD, DATA-PP, DATA-FW, VOLUME.
ENTER COBOL.
ENTER LINKAGE.
CALL 'PLOUT' USING NOD.
ENTER COBOL.

NOTE RETURN TO PLAN.

TIMES.

MODULE CONSTRUCTION

21

CALT~LRET. .
ENTER LINKAGE.
ALY, 'TRET".
WHTER COROY,,

NOTE CHECK DTMENSTON.
PIM-CHECK SFCTION.
ENTER LINKAGE.

MODULE CONSTRUCTION

{\))—-—-—_n- CALL 'NDEF' USING DIM (T), .
R ENTER COBROI,.
2 J IS POSTTIVE GO TO NTM~-OFK
NOTE MOVE '#[NDEF#' T PTAN OUTPOT, TF A
DIMENSTON TS NOT SPECTEIED,
NDIM-ERR.
ENTER LINKAGE.
CALL 'PAOUT' USING NOD. DATA-PE_ DATA-FY, UND-HDG.
ENTER COBOIL.
ADD 1 TO NERR.
GO TO DTM~-UPDATE.
NOTE MOVFE DTMENSTON T D RN QDT |
NIM-OK.
ENTER LINKAGE.
CALT. "PIOUT' USTNG NON. NATA-DPL . DATR-EFE DTM {I).
ENTER COROL,.
NIM-UPDATE.
ADD 8 TO DATA-PP.
LT it strings, arrays, and structures
~anne a dope vector to be created.
This dope vector describes the data and
The following PL/I module illustrates +he specifies its location. PL/I passes
points which must be observed in using the address of the dope vector instead
PL/I. Examples of the first four points of the address of the data. In the
are indicated in the module listing. ~nse of character strings it is neces-
sary to declare a based variable whose
1. Environment. The outside procedure must pointer contains the address of the
have OPTIONS (MAIN) specified. This character string. In the example,
permits the module to properly initial- HDG_ARRAY is based on HDG_ADDR which
ize the pseudo register vector. Thig points to HBDGS. Then HDG_ARRAY(1) is
means that program checks are handled used as a perameter when DIM_HDG is
by the PL/I error routine which mav intended. WNote that in FORTRAN HDG_AR-
cause the job step to be aborted. oON RAY and HDG_ARRAY(1) are equivalent
statements may be used to abort the when used as a parameter; in PL/I they
phrase and return to PLAN, if desired. are not. The latter form must be used
Note that a program check in some PLAN when passing arrays to PLAN
subroutines may cause unpredictable subroutines.
results, since these sunbroutines use
the register (register 12) which PT./T
assumes is pointing to the psendo 2. Function Subroutinec. NDEF returns
register vector. The reqgister is, of FIXED BINARY (31). PE‘¥, PIOC, PCOMP
course, restored before veturning o return FLLOAT DECIMA, (6) or FLOAT
the PL/I module. BINARY {21) (32-bit floating-point
formj .
2. Parameters passed to PLAN subrountines.
Integer and floating-point parametexs The absolute value returned may vary
must be 32-bit words (FIXED BINARY from one execution to the next. It
(31), FLOAT DECIMAL. (6). nr PLOAT will be negative, =zero, or positive
BINARY (21)). They must be aligned onr depending on the condition being
a2 full word boundary. Character Aand +antad. that is,

IF NDEF

IF NDEF(ARG)<0 THEN ARG IS FALSE 5. Link—-editing. The PL/I module must be
IF NDEF (ARG)=0 THEN ARG IS TRUE fully link-edited to put the pseudo
(ARG)>0 THEN ARG IS REAL (Not register vector together properly and
TRUE or FALSE) determine its 1length which must be
known upon entry to the PL/I module.
These correspond to statement numbers Therefore, the PLAN 1loader 1link edit
1, 2, and 3 in the Program Description feature cannot be used for PL/I
Manual explanation of NDEF. LOCAL's.
Locating PLAN COMMON. The assembler
subroutine PLCOM may be used to set a 6. PL/I Multitasking. Only the following

pointer variable to point to the switch
words in PLAN COMMON. In the example
module, COMN is a structure based on
COMN_ADDR which is set by PLCOM.
contains the 15

array.

In the example,
words of the

PLAN subroutines are re-entrant:

COMN NDEF

switch words, LS, as PARGI, PARGO
32-bit integers, and the communication PBTST
PCOMP
PHTOE

only the first three PPACK, PUNPK, BREAK
communication array are STVAL, GTVAL
used to supply the dimensions of the TRUE, FALSE

box. They are in the form of 32-bit

integers.

PLISAM: PROCEDURE OPTIONS (MAIN):‘“———<:::>

DCL (PAOUT,

PIOUT) ENTRY (FIXED BINARY (31),

FIXED BINARY (31), FIXED BINARY (31));

DCL COMN BASED (COMN_ADDR),

DCL HDGS STATIC,

NNNNNENN -

FIXED BINARY (31r‘——<::>

LS (15) FIXED BINARY (31),
DIM (3) FIXED BINARY (31);

DIM_HDG CHAR (12) INITIAL ('DIMENSIONS'),
VOL_HDG CHAR (12) INITIAL ('VOLUME'),
UND_HDG CHAR (8) INITIAL ('*UNDEF*'),
NID FIXED BINARY (31) INITIAL (0),

NOD FIXED BINARY (31) INITIAL (100);

DCL HDG_ARRAY (8) BASED (HDG_ADDR) FIXED BINARY (31);

DCL NDEF RETURNS (FIXED BINARY(31));

/* LOCATE COMMON#/
CALL PLCOM (COMN_ADDR) ;

/%# READ HEADING AND TRANSFER TO PLAN OUTPUT LINE */

CALL PLINP (NID); CALL PBFTR (NID,NOD);

HDG_ADDR = ADDR (HDGS);

/% MOVE 'DIMENSIONS'
CALL PAOUT (NOD, 54,12,HDG_ARRAY(1)):;

TO PLAN OUTPUT LINE*/

/%
/*
/%
/%
/*
NERR=0;
DIM_CHECK: DO I=1 TO

/%
IF NDEF(DIM(I))

/%
/%

HDG_ARRAY(I) MUST BE USED INSTEAD OF DIM HDG */

SINCE PL/I DOES NOT PASS THE ADDRESS OF
CHARACTER STRINGS. INSTEAD,
ADDRESS OF A DOPE VECTOR WHICH DESCRIBES
THE LINE.

3;

CHECK THE DIMENSION */
> 0 THEN GO TO DIM OK;

MOVE '*UNDEF#' TO THE PLAN OUTPUT LINE,
IF THE DIMENSION IS UNDEFINED.

DIM_ERR: CALL PAOUT (NOD,S59+I#8,7,HDG_ARRAY(7));

NERR=NERR+1;

GO TO DIM_UPDATE;

IT PASSES THE

*/
x/
x/
*/

*/
*/

MODULE CONSTRUCTION

23

/* MOVE THE DIMENSION TO THE PLAN OUTPUT LINE */

DIM_OK: CALL PIOUT (NOD,59+I%8,7,DIM(I));
DIM_UPDATE:END;

/% PRINT THE FIRST LINE */
CALL PLOUT (NOD);

/7% GO TO RETURN TO PLAN, IF ANY OF THE */

/% DIMENSIONS ARE UNDEFINED */
IF NERR > 0 THEN GO TO CALL _LRET;

/7% PRINT THE VOLUME */
CALL PAOUT (NOD,54,12,HDG_ARRAY(U4));
CALL PIOUT (NOD,67,7,DIM(1)*DIM(2)*DIM(3));
CALL PLOUT (NOD);

/* RETURN TO PLAN */

CALL_LRET: CALL LRET;
END PLISAM;

CcoM
LDR DS 625F
LS DS 15F
PLCOM CSECT e

USING *,15 -

L 1,0(1)

MVC 0o(4,1),=A(LS)

BR 14

. END

ASSEMBLY LANGUAGE

The following 1listing illustrates methods
of interfacing to the PLAN system and
locating and using BLANK COMMON in assembly
language.

on entry to every module loaded by PLAN,
the GP registers are set as follows:

15 Entry point of the module

14 Return address in the PLAN 1loader
which will simulate a CALL LRET

13 Address of a standard 18 word save
area

12 Address of BLANK COMMON

1 Address of a parameter list. If the
module is not a PILAN LOCAL or no
parameters are passed by the calling

module, a standard parameter pointing
to the switch words is passed.

There are three methods of locating COMMON
in assembly language modules.

1. The address of a parameter list point-
ing to the switch words is passed in
GPR1.

2. The address of COMMON

GPR12.

is passed in

3. A COMMON control section COM operation
code may be declared in the assembly
which describes BLANK COMMON.

24 MODULE CONSTRUCTION

In cases 1 and 2 a DSECT may be described
and the registers used for direct addres-
sing. This is shown in the 1listing. In
case 3, adcons referencing the names
described in the COM control section mzy be
used to reference any or all the items in
COMMON. For example:

L REG12,=V(COMMON)
USING COMMON,REG12

L]

L

.

COM
COMMON DS 625F
LS DS 15
DIM1 DS F
DIM2 DS F
DIM3 DS F

The second point illustrated by the example
medule is the difference in linkage and
save area conventions. In the example
module, the registers are not saved nor is
a save area provided. This is allowable
since the save area passed by PLAN may be
used. The subroutine LRET will return
control to PLAN correctly. Modules written
using the standard OS conventions will
function correctly.

PRINT

ON, NOGEN

* ASSEMBLY LANGUAGE MODULE FOR PLAN SYSTEM

ASMSAM
DOCNTR
SUBSCRPT
LINPTR
DIMPTR
NERR

CSECT
EQU
EQU
EQU
EQU
EQU
LR
USING
USING

u

6

7

11,15
ASMSAM, 11
COMMON, 12

SET OUR BASE

* PLAN PASSES THE ADDRESS OF COMMON IN GPR12
* IT IS NOT NECESSARY TO SAVE REGISTERS OR ESTABLISH A SAVE AREA

CALL PLINP,F0,VL
CALL PBFTR, (FO,F100), VL
XR NERR, NERR
*# CHECK FOR PRESENCE OF ALL 3 FACTORS
1A DOCNTR, 3
XR SUBSCRIPT, SUBSCRIPT
1A LINPTR, 67
1A DIMPTR, DIML
DOLOOP ST LINPTR, LINPOS
1A DIMPTR, DIML (SUBSCRPT)
ST DIMPTR, NDEFARG
o1 NDEFARG, X'80"
LA 1, NDEFARG
CALL NDEF
ILTR 0,0
BH DIMOUT
CALL
BCT NERR,CONTINUE
DIMOUT TIA 1, DIMOUTL
CALL PIOUT
CONTINUE LA SUBSCRPT, 4 (0, SUBSCRPT)
1A LINPTR, 8 (0, LINPTR)
BCT DOCNTR,DOLOOP
CALL PLOUT,F100,VL
LTR NERR,NERR
BM RETURN
* CALCULATE VOLUME AND PRINT IT
M 0,1,DIM1
MR 0,0
M 0,0
ORG *-2
DC S (DIM3)
ST 1, VOLUME
CALL
CALL
CALL PLOUT,F100,VL
* RETURN TO PLAN
RETURN CALL LRET
FO DC F'0°*
F7 DpC F'7°
F12 DC F'12'
F54 DC F'54°
F67 DC F'67"'
F100 DpC F'100°
HDGS1 DC CL12'DIMENSIONS®
HDGSUY DC CL12'VOLUME"
HDGS7 pC CL7' *UNDEF*"*
*# VARIABLES
VOLUME DC ACO)
LINPOS DC A(0)
*+ PARAMETER LISTS
DIMOUTL DC A(F100)
DC A (LINPOS)
DC A(F7)

CALL PAOUT, (F100,F54,F12,HDGS1),VL PUT “"DIMENSION" IN LINE

READ A CARD
TRANSFER TO OUTPUT BUFFER

RESET ERROR INDICATOR

3 TIMES THRU

SET SUBSCRIPT TO 1
INITIALIZE POSITION POINTER
POINT AT ARG IN COMMON
SET LINE POSITION
LOCATE AND SET
ARGUMENT ADDRESS
INDICATE LAST ARG
POINT AT IT

AND TEST IT

CHECK ANSWER REG

BR IF ARG OK

PAOUT, (F100,LINPOS,F7,HDGS7),VL PRINT ‘UNDEF®

SET ERROR INDICATOR

POINT AT ARG LIST

AND OUTPUT FACTOR

STEP TO NEXT ARG

STEP LINE POSITION

TEST AND DECR LOOP COUNTER
PRINT LINE

ANY ERROR

BR IF YES

GET FIRST TWO FACTOR

ONE * TWO
* THREE

SET ANSWER

PAOUT, (F100,F54,F12,HDGSY) ,VL PUT *VOLUME' IN
pPIOUT, (F100,F67,F7,VOLUME),VL OUTPUT VALUE

PRINT LINE

MODULE CONSTRUCTION 25

NDEFARG DC A(0)
* DESCRIPTION OF COMMON AREA
COMMON DSECT

LOADER DS 625F
DS 15F
DIM1 DS 1F
DIM2 DS 1F
DIM3 DS 1F

END

PLAN CORE MANAGEMENT

Once the PLAN system is initiated it main-
tains control over the entire region or
partition.

The PLAN system divides a
five major areas:

partition into

1. PLAN BLANK COMMON

2. PLAN PROGRAM AREA

3. NON-MANAGED OS FREE STORAGE

4. MANAGED FREE STORAGE

5. PLAN SYSTEM AREA

The user should be aware of the function of
these areas and the manner in which PLAN
controls each.

Figure % illustrates the PLAN system allo-
cation of main storage within a partition
or region.

26 MODULE CONSTRUCTION

SWITCH WORDS

MANAGED ARRAY (1)
MANAGED ARRAY (2)
MANAGED ARRAY (3)

<TOP OF PARTITION

PLAN SYSTEM
AREA

MANAGED OS

FREE STORAGE
NONMANAGED OS
FREE STORAGE

T

PROGRAM
AREA

kkkkkkkEkkkkkkkEk

kkkkkkkkkkkkkkkk

PLAN
BLANK
COMMON

[S . S — —— —— —— ————_ T——— — {—". S— S — St — — oy m— —
b e i T — o — — — T — — — —— — — —— — — — ok ——— — — o o — v

o e e e s e e . e

Figure 4. Main storage allocation

PLAN BLANK COMMON AREA

PLAN BLANK COMMON always resides at the
beginning of the partition or region. It
is variable in length but must be at least
640 words long. PLAN BLANK COMMON is used
as a communication area by all program
modules loaded by the PLAN system.

When loading modules, the PLAN loader
deletes the BLANK COMMON control section
from +the module and relocates all program
references to BLANK COMMON to point to the
PLAN BLANK COMMON area. The first 2560
bytes (640 FORTRAN words) of this area are
reserved for PLAN system use and must not
be altered by any user program. Therefore,
the COMMON statement in every program must
specify a dummy array of 640 words to
ensure protection of this area. For
example:

COMMON L(640), J(10), K(20),...

Any alteration of that part of PLAN BLANK
COMMON reserved for PLAN system use will
probably cause abnormal termination of the
PLAN job step.

The length of the PLAN BLANK COMMON area
may be altered whenever a new module is
loaded into the program area. It will be

as long as required by any resident load
module but never shorter than the 1length
specified as a data variable in loader

Switch Word 9. (See Problem Lanquage Ana-
lyzer (PLAN) Program_ Description Manual
(H20-0594) for an exact description of the
PLAN Switch Words.) Regardless of the
requirements of currently resident modules
and the contents of Switch Word 9, the
length of PLAN COMMON may not be less than
640 words (2560 bytes).

PROGRAM AREA

The PLAN PROGRAM area is located above the
BLANK COMMON area. The BLANK COMMON area
and PROGRAM area are one contiguous core
area extending from the bottom of the
partition to some variable point in the
partition.

For a program to be loaded, core is allo-
cated from the top of the PROGRAM area
towards the BLANK COMMON area. This means
that as programs are loaded the end of the
PROGRAM area extends itself towards the top
of BLANK COMMON. The area between the top
of BLANK COMMON and the end of the PROGRAM
area is always considered available for
program loading and although addressable by
the user, the contents of this area is not
protected by the PLAN systemn.

OS FREE STORAGE AREA

0S/360 have the
request dynamic allocation and

Programs executed under
ability to

deallocation of core areas outside the
absolute program area. This facility is
provided in OS by use of the GETMAIN and

FREEMAIN macros. Programs
PLAN loader must have the
available to them. The free storage area
in a PLAN partition is wused tc honor
GETMAIN requests from problem programs.

loaded by the
same facility

There are two requirements in this area:

1. Requests for temporary space to be used
only by the requesting module

2. Requests for permanent space that can
be used to pass arrays, data sets,
etc., across load module boundaries

For this reason PLAN splits the free
storage area 1into two sections (1) the
managed area, and (2) the nonmanaged area.

These two areas are treated as individual
subpools of free storage and PLAN facili-
ties are provided to set the length of each
of these areas and dynamically switch
between using either of them.

The PLAN system maintains several pointers
concerned with the MANAGED FREE STORAGE
area. Whenever a program segment is
released, the PLAN system uses these poin-
ters to perform the following maintenance:

1. DELETE modules that the segment 1loaded
via the LOAD macro.

2. Close data sets that were left open by
the segment.

3. Use the FREEMAIN macro to release all
core obtained by the segment's use of
the GETMAIN macro.

Management of the core resources require
that supervisor state coding be used for
MVT to release subpools 251 and 252.

The subroutines DFJUMC and DFJUNC also
employ supervisor state code and all three
systems to optimize the blanking and
unblanking of the MANAGED AND NONMANAGED
FREE STORAGE area.

The supervisor state is entered through use
of an SIO appendage routine which alters
the current PSW for the PLAN job.

The user must be aware of the implications
of ‘the above maintenance procedures.
Programs that reside in lower-level
(higher-segments) that are called as LOCALs
may issue the GETMAIN macro only for tem-
porary use. Whenever a segment is
released, all areas in MANAGED FREE STORAGE
obtained by the GETMAIN macro are released.
This includes both the segment and all
modules or subroutines called as LOCALs by
the segment.

The NONMANAGED FREE STORAGE area is
declared by the NFS operand of the PARM
keyword in the EXEC job control card.

If a NONMANAGED FREE STORAGE area is
declared, it 1is the user's responsibility
to maintain this area.

Two subroutines are provided to allow the
user to control the area of 0S FREE STORAGE
that is used to honor GETMAIN requests.

CALL DFJUMC sets the system status so that

the managed area of OS FREE STORAGE is used
for GETMAINSs.

MODULE CONSTRUCTION 27

CALL DFJUNC sets the system status so that
the nonmanaged area of 0S FREE STORAGE is
used for GETMAINs.

PLAN SYSTEM AREA

This area of the partition is reserved at
initialization time for PLAN system use.
It contains the control blocks and arrays,
and PLAN system subprograms that will be
required for the entire execution of the
PLAN system.

PLAN INITTALIZATION

The following discusses the partition/
region initialization under PCP-MFT/MVT.
When PLAN is initially entered, the

partition/region is as shown below:

PCP-MFT MvT
e e " P ——
| TIOT | { | 2K sP252
| SAVE AREA |E | SAVE AREA |
— 1 e 1
| | |
{ | | | 2K spO
{ | b 1
| | | |
| | | |
--=--- ic l-=-=-=-- |
{		
———— ~——{B - iB		
PLAN		PLAN
MAINLINE		MAINLINE
I LY |a
N J b 3
LEGEND
N = E-B
M = B+N-C
The PLAN PROGRAM/COMMON area must be

defined contiguously. Therefore, the core
allocation for this area must be defined
first. This is accomplished by issuing a
GETMAIN macro for all of memory followed by
a FREEMAIN macro of all memory not required
for PLAN/COMMON.

Upon entry to PLAN, the issuance of a
GETMAIN VC for between 8 bytes and 16
million bytes will return the address B
(see preceding chart) and the length N.
The address C (end of program area) can be
calculated as 1024*L+A where L is the value
specified for the PGAR parameter in the
EXEC DFJPLAN control card. With the value
for C and M, a FREEMAIN macro is issued and
allocation of the program area is complete.

28 MODULE CONSTRUCTION

The PLAN system area is then created. The
required PLAN modules are loaded via the
LOAD MACRO. In PCP-MFT, these modules are
Joaded at the highest possible core
address. In MVT, a new 4K block of SP251
is created above and adjacent to the pro-
gram area. The data sets are opened next.
Access methods, I/0 areas, DCBS, etc., are
allocated from the top of free storage.
Additional allocations to SP252 may be
required for access methods on MVT.

If the NFS parameter has been specified, a
NONMANAGED free storage area is allocated
using a technique similar to that used to
allocate the PROGRAM/COMMON area. There-
fore, after PLAN initialization memory is
as shown in the following diagram:

PCP-MFT MVT
r 1 === -
| | | ACCESS
| TIOT | |[METHODS | 2K SP252
L 1
r L e
| SAVE AREA | | SAVE AREA|
L 1
v 1 FTTEemmmm
| PLAN MODULES | |I/0 AREA |2K SPO
L R A —
¥ 1
| ACCESS METHODS| | ACCESS |
|I70 AREAS iB |METHODS | 2K SPZ252
L I W
r 1
| | B|I/0 AREAS|2K SP0
[[p—m—e i
| | | |
| | | |
| | Al l
| I b
| | | PLAN |
| A |MODULES | 4K SP251
1 4 } ________ 4
r 1
| | |
| PROGRAM | | PROGRAM
| AREA | | AREA |nK SPO
f { b
| | |
| PLAN | | PLAN
|MAINLINE | |MAINLINE [12K SP251
1 4 | P ———]
=B-A

PROGRAM LOADER

Since the BLANK COMMON control section must
be deleted from all 1load modules and
references to this CSECT relocated to PLAN
COMMON, the PLAN system cannot use the
0S/360 FETCH facility. In effect, the PLAN
program loader. replaces the 0S/360 FETCH
facility.

The following restrictions apply to modules
that are loaded th the PLAN loader:

1. Use of XCTL is prohibited in PLAN
modules. The use of LINK is allowed.

Any program that is "linked™ to by a
module loaded by the PLAN loader may
use the XCTL, LINK or ATTACH macros but
may not use any PLAN subroutine that
includes a blank COMMON specification.
The linked-to program may also be in
overlay mode.

The “overlay structure"
ported in PLAN modules,
defined in 1.

is not sup-
except as

Load modules may not be in overlay or
scatter mode or contain TESTRAN symbol
cards.

Load modules must be marked as execut-
able by the link editor.

In addition to loading programs,

the PLAN

program loader provides the user with the
following capabilities:

1.

2.

Figure 5

Load time link editing

Access to the RAM, LINKPAC, and JOBPAC
areas without use of the LOAD macro

Automatic management of the program
area which eliminates the need for
using the LINK, LOAD and DELETE macros

Use of an in-core PDS directory for
frequently loaded modules to improve
loader performance

is a simplified logic diagram of

the PLAN program loader.

MODULE CONSTRUCTION 29

LDROO2

ENTER
PROGRAM

LDROOS

ISSUE

BLDL TO
LOCATE
MODULE

]

LDROO1

LDROO3

RELEASE
INACTIVE
MODULES

Figure 5.

LDROO06

READ 'ESD'
RECORD 4
CREATE ENT
TABLE

LDR0OO7

DELETE

CSECT

BLANK COMMON

LDROO8

LDRO11

LDRO13

RELOCATE
TO PT TO
PLAN COM

LDRO1Y4

RELOCATE
ADCON

ALTER LGTH
OF PLAN
BLANK COM

IF NECESSARY

LDR0O09

READ TEXT
RECORDS TO
PROG AREA

LDRO10

/

READ RLD

RECORDS

30 MODULE CONSTRUCTION

Program Loader

LDRO15

SEARCH ENT
TABLE, RAM
LINKPAC
AREA

ILDRO16

YES

NO

RESOLVE
ADCON TO
ENTRY PT

LDR018

RESOLVE
ADCON TO
PLAN LDR

LDRO19

The first step in loading a module is to
determine if it is already in the program
area. If it is, the program is entered
without any further processing. If the
module is not in the program area, inactive
modules currently in the program area are
released and the space occupied by them
reclaimed. This procedure is transparent
to the user and keeps the maximum amount of
space available for program loading.

The next step in the loading process is to
locate the load module in the PLAN 1library
data set. If an in-core directory is
available, it is searched for the module
name. If the name is not found, a BLDL
macro is issued to locate the load module.
After locating the 1load module the ESD
records (External-Entry Symbol Table) are
read. From these records, an entry-point
table is built for the module being loaded.
This table may be used to resolve BADCONS
when subsequent modules are loaded. Then
the BLANK COMMON CSECT is 1located and
deleted from the module and the length of
PLAN BLANK COMMON is altered if necessary.
The TXT records which contain the relocat-
able code for the module are then read into
the program area. The RLD records (Relo-
catable Adcon Dictionary) are read and the
adcons in the load modules are relocated.
If an adcon refers to BLANK COMMON it is
relocated to point to PLAN BLANK COMMON.
All ADCONS referencing points within the
load module are relocated. If an unre-
solved external reference (V-type ADCON) is
found, all entrypoint tables for modules
already in core, the JOBPAC area and final-
ly the LINKPAC or RAM area are searched.
If an equivalent entry point is found in
any of these, the external reference is
‘resolved to this entry point. This gives
direct access to the JOBPAC and LINKPAC
areas to FORTRAN programs without the need
for programming assembly language 1linkage
subroutines. If the external reference
cannot be resolved to an entry point in
core, it 1is resolved to point to the PLAN
loader in such a way that an execution time
reference to the ADCON causes the named
program to be loaded and entered as a PLAN
LOCAL.

EXECUTION-TIME LINKAGE EDITING

Because the PLAN loader has full control of
the region or partition, it can resolve
references between 1load modules that were
not link-edited together before execution.

While 1loading a module, all unresolved
ADCONS pointing to entries in in-core seg-
ments will be resolved. ADCONS that cannot
be resolved directly are resolved indirect-
ly through the PLAN 1loader, which will
treat a reference to an unresolved ADCON as
a CALL LOCAL.

Unresolved branch type (v) ADCONS that are
resolved to the PLAN loader are restricted
in that execution time references to the
ADCON must be direct for example:

L 15,=V(NAME)
BALR 14,15

Offset referencing as shown below will not
function correctly and will probably cause
termination of the PLAN JOB step. In other
words, IBCOM= cannot be called as a LOCAL.

L 15,=V(NAME)
BAL 14,N(0,15)

The two sets of coding shown below are
equivalent and correct. The V-CON for
SUBRTN in set 2 may be unresolved following
link-editing.

SET1
REAL#*4 NAME(2)/°SUBRTN'/

CALL LOCAL(2,NAME,ARG1,ARG2,ARG3)

CALL SUBRTN (ARG1, ARG2, ARG3)

END

USE OF THE LINKPAC AND RAM AREAS

A PLAN utility program (DFJLLIST), that
gives the PLAN system the capability of
referencing the LINKPAC or RAM area, is
provided. This utility must be invoked by
the PLAN command:

CREATE LOADER ENTRIES: (NAMEl,...);
where NAMEl,... is a load module name that
is to be loaded into the partition via the
LOAD macro and be made available as entry
points for the execution of any loader
call. This allows programs in the LINKPAC
or RAM areas to be objects of a CALL LOCAL.
The names specified in the LIST must be in
the JOBLIB PDS. To add this phrase to the
dictionary, the following PLAN command must
be executed:

ADD PHRASE:
'DFJLLIST';

CREATE LOADER ENTRIES, PRO

MODULE CONSTRUCTION 31

The maximum number of names in the list is
75. Use of this command destroys any
entries defined by previous use of the
command.

Programs that reference blank COMMON may
not be operands cf this command.

USE OF IN-CORE DIRECTORY

A PLAN utility program (DFJCRDIR) allows
the wuser to build an in-core PDS directory
of names of frequently 1loaded modules.
This utility must be invoked by the PLAN
command:

CREATE CORE DIRECTORY: (NAMEL, ...);
NAMEl,... 1is a load module name that is
placed in the in-core PDS directory to
decrease load time for those modules. The
names in the 1list must be entries in the
PLANLIB PDS.

Use of this command will replace the pre-
vious directory. The maximum number of
entries is 75 names.

This facility is added to the PLAN language
dictionary (PFILE) by executing the follow-
ing command:

ADD PHRASE: CREATE CORE DIRECTORY,
PROGRAM 'DFJCRDIR';

OVERLAY PROCESSING

Although the PLAN program loader does not
allow program modules to be in overlay
mode, the PLAN system provides a flexible
overlay processing capability.

In the simplest forms of processing,
programs may succeed one another in the
program area as their names are found in
the pop-up list. Many applications, howev-
er, require that functionally dependent
programs reside in core concurrently. This
implies that preplanning must go into deve-
loping a TREE STRUCTURE of overlays.

one of the principle features of the PLAN
system is that load modules sharing core do
not have to be 1link-edited together.
Because of this, overlay processing under
PLAN is possible without preplanning an
entire overlay tree structure, and in fact,

32 OVERLAY

the user may dynamically alter his tree
structure at execution time on the basis of
the amount of main storage and other system
resources available.

The PLAN subroutines LOCAL and LEX provide
the user with a means of constructing and
executing a tree structure of almost any
complexity.

The LOCAL subroutine function is similar to
the O0S LINK macro. If a copy of a module
is already available in the program area,
it is used. If a copy is not available, a
new program segment is loaded and is subor-
dinate to the caller.

The LEX subroutine performs a function
equivalent to the OS XCTL macro in that the
calling module may be overlayed by the
called module.

In order to use an overlay processing
technique under PLAN the user should be
familiar with the controls that the PLAN
system exercises over problem programs.

Several terms are defined below that are
used in describing PLAN program execution
control.

A SEGMENT is one or more modules brought
into the program area by a single program
load request. A segment 1is loaded only
when a request is made for a module that is
not in the program area. When parenthetic-
al grouping is used in the pop-up list, a
segment may consist of more than One
module; the first module named in the group
is considered the 1initial entrypoint. for
the segment. As each segment is loaded, it
is assigned a hierarchial 1level number.
The level used in the maintenance of the
program area.

A LOCAL is defined as any module or program
invoked by the PLAN LOCAL facility. This
facility is used whenever the LOCAL subrou-
tine is called or an unresolved external
ADCON is referenced in a problem program.

EXECUTION LEVEL is defined as the depth of
subprograms that have been executed (the
CALL LOCALs that have been executed without
associated returns).

The following defines how PLAN controls the
loading of segments and management of the
program area.

|

1
R |
Ow AP~
ot o e i e

[
(R)
————————Tr === -~ ————————T
|MODULE A| | |MODULE A| | |MODULE A| |
- .- - - - - - - - - - - l
| MODULE B| }—SEGMENT 1 |MODULE B| }--SEGMENT 1 |[MODULE B{ }-~SEGMENT 1
- - - - - - - - - - |
|MODULE C| | |MODULE C{ | |MODULE C| |
ot I
i | {MODULE D} | |MODULE D| |
| | |- = - =" | }-—SEGMENT 2 |- - - = | }-—SEGMENT 2
| i |MODULE E| | |MODULE E| |
i | e pm——t-d
| | | | | -
| | A | |MODULE F| }--SEGMENT 5
| | | | | =
| | | | pmm—i
| | | | | |
| | | | | |
l | | | | |
| I 3 | E—— 4 | I — 3
(B)) (D)
| SO - ———————— ————===—7
|MODULE A} | |MODULE A| | |MODULE A| |
- - - - - - - - - - -l
JMODULE B| }--SEGMENT 1 {MODULE B| }-~-SEGMENT 1 |MODULE B| }-—SEGMENT 1
- - - - - - - - - - - ||
|MODULE C| | |MODULE C| | {MODULE C| |
t ________ 41 t__.--_-_+_1 r_- ______ -4
|MODULE D| | - |{MODULE D| | |MODULE I| }——SEGMENT 2
|- - - - | }—SEGMENT 2 |- - - - | F-—SEGMENT 2 i p-4
|MODULE E| | |MODULE E| | b
| -4 | 4 : :
——— e f e =1
{MODULE G| }-—-SEGMENT 3 |MODULE H| }--SEGMENT 3 | |
-4 e +- | |
| | | | | |
| | | | | |
| | | | | |
| R 4 [4
(E) (F) (G)
Figure 6. Pop-up list
Assume that upon entry to the PLAN execu- defines that program A is to be entered and

tion monitor, the pop-up list is as shown executed.
in Figure 6A. The 1list defines three
program modules named A, B, and C that are
to be 1loaded as one logical segment and

OVERLAY 33

The program loader is called. Upon return
the program area appears as shown in Figure
6B.

Program A is entered. Execution level is
set to one. Program A issues a CALL LOCAL
transferring the names D and E in parenthe-
sis to the pop-up list.

Program D 1is not in core so the loader
inspects the program area to see if any
inactive program segments can be released.
All program segments assigned a level 1less
than or equal to the current execution
level must be retained when a CALL LOCAL is
issued. Segment one in the program area is
retained because execution level is one.

PLAN loads programs D and E as a
and assigns it a level of two. The program
area 1is as shown in Figure 6C. Program D
is entered and the execution 1level is
incremented because of the CALL LOCAL and
is now two.

now 1issues a CALL LOCAL to

Since E is already in core, a
program load is not required and E is
entered. The execution 1level is incre-
mented to three because of the CALL LOCAL.
Program E calls LOCAL to program C.

Program D
program E.

Program C is already in core in segment one
so it 1is entered. The execution level is
set to four.

Program C calls LOCAL to program F. F is
not 1in core so a segment must be loaded.
The loader determines if any program seg-
ments can be released. Execution level is
at four. Therefore, segment level one and
two must be retained. Program F is loaded
as a segment and assigned a level of five.
The program area is as shown in Figure 6D.
The level assigned to a segment on a CALL
LOCAL is always one higher than the current
execution level. This prevents releasing a
segment which may be active in the local
chain. In sequences of CALL LOCALs issued
requesting residual modules, the execution
level is incremented but no 1loading is
required. Adjacent segments are not neces-
sarily assigned sequential 1level numbers
(shown by the level assigned to program F}.

Program F is entered. The execution level
is set to five. F returns to C. The
execution level is decremented to four. C
returns to E. The execution level is set
to three. E returns to D. The execution
level is set to two.

Program D now issues a CALL LOCAL to G.
Program G 1is not in core. The loader
determines if any segments can be released.
Execution 1level is at two. Therefore, all
segments assigned a level higher than this

34 OVERLAY

segment

can be released.
five) is released.

Program F (in segment

Program G is loaded and assigned a level of
three. The program area appears as shown
in Fiqure 6E. Note that program G has
overlayed program F. The execution level
is set to three. G is entered. Program G
issues a CALL LEX to program H.

On a CALL LEX,
assigned a level

all segments that are
equal to or higher than
the current execution level must be
released. In this case, segment three
(contains the calling program) is released.

Program H is loaded and is assigned a level
equal to the current execution level. The
execution level remains the same because of
the CALL LEX. The program area is as shown
in Figure 6F. Program H returns to D. The
execution level is decremented to two.

Program D returns to A. The execution
level is set to one. Program A issues a
CALL LOCAL to program I. I is not in core
so the loader releases inactive segments.
Execution level is at one so segments two
and three can be released.

Program I is 1loaded and 1is assigned a
segment level of two. The program area is
as shown in Fiqure 6G. I 1is entered and
the execution level is set to two. Program
I issues a CALL LOCAL to program B.

Program B is in core in segment one and is
entered. The execution 1level is set to
three. B returns to I. The execution
level is set to two. I returns to A. The
execution level is set to one.

Program A now zeros the pop-up list and
returns. Since a return was executed from
execution level one and since the pop-up
list is zero, the PLAN system will initiate
processing of the next command.

The preceding description of the PLAN load-
er is not intended as a practical example
of using an overlay structure under PLAN.
The description does illustrate that the
LOCAL and LEX subroutines facilities pro-
vide the FORTRAN programmer with a dynamic
control of the program area.

The significant differences between the
LOCAL and LEX subroutines facilities and
the 0S LINK and XCTL macros are:

1. Communication between the caller and
the called modules may be through blank
COMMON as well as by parameter list.

2. Called programs may use subroutines or
modules in the calling segment without
passing external names as arguments.

3. Program modules used

recursively.

may be

4. A LOCAL may be cancelled by a higher
priority program by using LNRET.

The bank loading facility (parenthetical
grouping of names in the pop-up 1list)
allows the user to include, in any segment,
commonly used programs used as subprograms
by the structure developed below the seg-
ment. This conserves core and loading
time. This facility also allows the user
to optimize the use of the program area at
execution time based on its length.

The user is provided with special arguments
that, when encountered in the pop-up list,
indicate the 1limits of the functionally
dependent modules. The left parenthesis
indicates the start of a string of module
names for which the user desires coexistent
residence. The right parenthesis indicates
the end of the string. Figure 7 represents
the pop-up list containing a 1list of
programs. Programs M0716 through M0725 are
to be grouped in memory concurrently.

|
[MOT712]
|MO756 |
(
[MO716|
{MO796 |
IM0732|
|M0725{
)
|MO749 |
jo |

| IS |

Figure 7. Loader pop-up list

The systems programmer in determining the
scheduling control, that is, which modules
may coexist within the partition, must
recognize and/or account for the following
conditions:

1. If more modules are grouped (bounded in
the pop-up list with parentheses) than
can coexist, those modules that will
not fit are not loaded concurrently.

2. If space can be found, all parentheti-
cally grouped modules are loaded into
the partition with the entry to the
program named following the left
parenthesis.

3. Loading of a module results only if the

module does not already exist in
memory.
4. If the left/right parenthesis is

encountered when entering data into the
pop-up list without a corresponding

right/left parenthesis, the unmatched
parenthesis is ignored. Therefore,
parenthetically grouped programs must
be added to the pop-up 1list with a
single loader subroutine call.

5. If the left or right parenthesis is to
be inserted in the pop-up list, it must
be left-justified in two FORTRAN words

6. Program lists, verb lists, and check-
entry program lists include the paren-
thetical groupings in 1literal form.
Example:

«+.,PROGRAMS "M0713,
M0792), MO796",...

(M0726, MO733,

7. The combination of the parenthetical
program grouping and the use of command
input of program lists gives the user
the power to add segments (modules) to
his root structure at execution time.

8. If all programs indicated in the coex-
istent grouping cannot be loaded
because of insufficient partition size,
the right parenthesis is floated for-
ward in the pop-up 1list to include
those programs for which coexistent
loading was accomplished.

The original right parenthesis is
deleted and a right parenthesis is
regenerated in the pop-up 1list at a
position that indicates the last pro-
gram which was successfully loaded.

9. A call with a negative value of N is
required to interrogate the pop-up list
for successful loading of the coexist-
ent programs.

10. Parenthetical grouping is acceptable
but ignored on the 1130 version of
PLAN.

11. The left and right parentheses and all
programs associated with the indicated
coexistent grouping must be added to
the pop-up 1list with a single call to
the PLAN loader subroutines, or both
parentheses must be included in a
PHRASE-defined program list.

12. All program lists to be inserted into

or to be extracted from the pop-up list
must begin on a full-word boundary.

RETURN LINKAGE

The FORTRAN RETURN statement functions
exactly like the CALL LRET PLAN loader
call. Register 14 is used to cause a
return from the mainline (logic module) to
the PLAN loader. PLAN modules that contain
CALL LNRET or that are reentered at a

OVERLAY 35

primary entry may not exit via RETURN.
FORTRAN subroutines which modify variables
passed to them as arguments must use the
FORTRAN return statement.

CALL EXIT should be used to terminate a
module to assure that buffers have been
purged and data sets closed when FORTRAN
(non-PLAN) I/O is incorporated within a
module.

PARAMETER PASSING

If the arguments in a parameter list are
external names, the called program and
calling program must be compiled by the
same level FORTRAN compiler.

PLAN SYSTEM CHECKPOINT

The following reqgulations govern execution
and control of the checkpoint facility
within the 0S version of PLAN (CALL LCHEX):

1. Checkpoints can be reloaded only within
the limits of the phrase from which
they were written. This means that any
checkpoint that has not been reloaded
when the end of the phrase is encoun-
tered -- that is, when the pop-up list
is found to be empty -- 1is destroyed.
No warning message is issued.

2. 1If the checkpoint return (*) is.encoun-
tered while in local mode, the local
processing is terminated and the check-
point is reloaded.

3. Any input/output error while reading or
writing the checkpoint data set results
in a phrase abort and PLAN level error
recovery is initiated. This action is
also true when insufficient space is
available in the checkpoint data set.

4. The user may specify, in the DCB BLOCK-
SIZE parameter of the PLCHKPT DD card,
the record size (in bytes) to be used
when writing checkpoints. If no block-
size 1is specified, a blocksize of 512
is assumed.

5. There is no logical restriction on the
number or level of checkpoints that a
user may execute. A physical 1limit
based on the size of the checkpoint
data set may produce a real 1limit or
error condition as outlined in 2 above.

6. Checkpoint restarts are executed in a
reverse order from which they are writ-
ten, that is, last in-first out.

7. After a checkpoint is taken, the status

of all data sets, except system data
sets (those data sets processed by CALL

36 OVERLAY

PLINP, CALL PLOUT, CALL GDATA, and CALL

FIND), must not be altered until the
checkpoint is restarted. This is a
user responsibility and no check is

made by PLAN to prevent such an altera-
tion. If a data set status is altered
while a checkpoint is in effect, the
results are unpredictable.

8. COMMON is not protected between the
time that a checkpoint is taken and the
restart 1is loaded. It is the user
responsibility to save and reload those
parts of COMMON that might be destroyed
and that must be present for continued
execution of the checkpointed module.

9. Floating-point registers are not
restored when a checkpoint is
restarted.

USER-EXIT PROGRAMMING

The DFJPSCAN user-exit programs must be
written to expect the standard /360 FORTRAN
subroutine linkage conventions.

I0CS DEVICE PARAMETERS

Under System/360 OS PLAN, INPUT and LIST
correspond to units defined as DD names
defined in the JCL for the PLAN job. The
value specified for INPUT or LIST, corre-
sponds to the device specified as the PLAN
input device PLINPnnn in the job descrip-
tion deck. Unit nnn specified for LIST,
corresponds to the device specified as the
PLAN output device PLOUTnnn.

PROGRAMMING RESTRICTIONS

The following System/360 FORTRAN statement
should not be used because of its detri-
mental effect on the execution of PLAN.
Alternate facilities are 1listed for the
statement. To avoid overriding the PL2AN
processor or endangering another user's
job, should not be executed.

CALL DUMP This statement creates a pre-
mature end to the PLAN execu-
tion. Therefore, the CALL
PDUMP, followed by a CALL
LRET should be used.

PERMANENT FILE SORT/MERGE

CALL GSORT(ID) and CALL GMERG(ID,JD,KD)
provide the identical function for PER-
MANENT files as provided by CALL PSORT and
CALL PMERG do for DYNAMIC files.

ESTIMATING STORAGE REQUIREMENTS

In order to determine the size of the
partition or region required to run a PLAN
job, the user must know (1) the length of
the PROGRAM/COMMON area, (2) the amount of
storage required to honor GETMAINs, and (3)
the amount of storage required for the PLAN
system area.

The length of the PROGRAM/COMMON and OS
FREE STORAGE areas is largely determined by
the size of the program modules to be
loaded by the PLAN system and the amount of
storage obtained by GETMAINs in the problem
programs.

The PROGRAM/COMMON area must be at least
19,500 bytes long to accommodate the PLAN
module DFJPSCAN, (the system interpreter).
If the user employs DFJPSCAN user exits,
additional storage equal to the length of
the user-exit modules is required.

Once in execution, the PLAN system
GETMAINs in two areas as follows:

issues

1. The program loader requires 16 bytes
for every entry point in a module being
loaded and 16 bytes for every unre-
solved ADCON in the module.

2. The error processing subroutines
require 72 bytes for every call where a
checkpoint is required.

The PLAN system uses the FREEMAIN macro to
release all storage obtained when the
storage is no longer needed. A minimum
OS/FREE STORAGE area of 2048 bytes is
suggested.

The length of the PLAN system area varies,
depending on the PARM options selected in
the EXEC statement and the number of DD
cards defined. The table below shows the
PLAN system area storage requirements.

FUNCTION LENGTH IN BYTES
PLAN TABLES 552

PLAN SYSTEM MODULES

DFJLODER 3200
TRACE OPTIONS
DFJTRACE 424
DATA SET REQUIREMENTS
PLANLIB 264
PLINPXXx 136+ (# BUFFERS* (BLKSIZE+8U4))
PLOUTxxx 136+ (# BUFFERS* (BLKSIZE+84))
PLSEQxXX 136+ (# BUFFERS* (BLKSIZE+8U4))
PLMANFIL 128+ (# BUFFERS* (BLKSIZE+168))
PLCHKPT 128+ (# BUFFERS*(BLKSIZE+168))
PLFSynnn 128+ (# BUFFERS* (BLKSIZE+168))
PLSYSTAB 128+ (# BUFFERS*(680))
PLANDRVx 128+ (# BUFFERS* (768))
0S/360 ACCESS METHODS (ESTIMATE)
IGGO19AV 88
IGGO19BA 384
IGG019BB 104
IGGO019BC 248
IGG019CC 80
IGGO19CE 128
IGGO19CF 240
IGGO19CH 128
IGG019CI 136
IGG019CK 926
IGGO19CL 80
IGGO019KA 1360
IGGO19KE 288
IGG019KK 176
IGGO019KU 456
IGGO19LI 232

The access method subroutines and the PLAN
modules DFJLODER and DFJTRACE are reenter-
able, and may be placed in the RAM or
LINKPAC area.

If the user employs the PLAN utility
phrases CREATE CORE DIRECTORY or CREATE
LOADER ENTRIES, additional storage is
required in the PLAN system area.

For a core directory, the storage require-
ment is (8-36N), where N is the number of
names in the operand of the CREATE CORE
DIRECTORY phrase.

For a loader entry 1list, the storage
requirement is (8-(12N)+A), where N is the
number of names in the CREATE LOADER ENTRY
phrase, and A is +the amount of storage
required to 1load any of the named modules
into the partitions that are not in the RAM
or LINKPAC areas.

OVERLAY 37

STANDARD PLAN COMMANDS

This section discusses the statements dis-
tributed as a standard part of the PLAN
system. The only command that is a pro-
grammed portion of PLAN is ADD PHRASE. All
other commands must be added to the system
through use of ADD PHRASE. This section
provides a discussion of the facility pro-
vided by a set of these phrases that are
entered into the language definition dic-
tionary (PFILE or DFJPFIL) as a part of the
PLAN system generation. Spacing within the
phrase definitions may not accurately
represent that of distributed commands.

ADD PHRASE

This command is added to the 1language
definition dictionary when it is
initialized.

ADD PHRASE: ADD PHRAS, (1)0, LEVELO, I(-

13)1, PROGRAM 'DFJPHRAS®;

ADD PHRASE may be altered to list all added
phrases by adding DFJPIDMP to the program
list.

DELETE PHRASE
JELETE PHRASE provides the

remove commands from the
tion dictionary.

ability to
language defini-

38 STANDARD COMMANDS

ALTER
LEVELO,

PHRASE: DELETE PHRASE,
I(-13)1, PROGRAM'DFJPHRAS';

(1)-1,

DELETE PHRASE may be altered to 1list all
deleted commands by adding DFJPIDMP to the
program list.

ALTER PHRASE

ALTER PHRASE provides the ability to delete
an existing version of a phrase and replace
it with a new copy.

ADD PHRASE: ALTER PHRASE, I(1)-1,LEVELO,
I(-13)1,PROGRAM ‘'DFJPHRAS,DFJPHRAS';

ALTER PHRASE may be altered to list all
altered commands by adding DFJPIDMP to the
program list.

PLAN JOB

ALTER PHRASE: PLAN JOB, LEVEL 0, I(-1)
FILE, SAVED, TO, LISTS, LB, LC, LD, ERASE,
COMMON, MANAGED, NERM, DEVICE, I(1)SHORT-,
LONG-, STACK-, IMMEDIATE-, DRIVEO, ODFI-,
PFI-, (-11)UMOD, I(-13)FORMO, $0 FORM: (LONG)

2=FORM+1, FORM: (IMM)?=FORM+2 FORM: (DFI)?=
FORM+Y4, FORM: (PFI) ?=FORM+8, TO=TO+DRIVE
*2048;

L}] 1 L] L A 1]]
| PLAN JOB 1 1 | | DEFAULT| CHECKING| [
| FUNCTION | NAME | CAP | MODE |VALUES | RULES | EXPRESSIONS |
i L L i . [L L J
U 1 L}) L) T 1]
| SAVED STATEMENT FILE | FILE | (-1 | I | #*NOTE | | |
[L L 1 [l 1 L d
L 3 1] T L3 1 L) L) Ll
{ INITIAL SAVED STATEMENT | SAVED | (-2) | I | | | |
t { + 1 t + t {
| END SAVED STATEMENT | TO | ¢(<3) | 1 | 1 | =TO+DRI*2048 |
L [i 1 41 (] L d
1] 1 T Ll L) T 1 A
| DATA LIST A POINTER | LISTS | (-®) | I | | (i
5 t t t + { + i
| DATA LIST B POINTER | LB | (-5 | 1 | | | i
[L [L [l L L. |
L8)) T Ll v v 1
| DATA LIST C POINTER | LC | (-6) | I | | 1 (
I- - + + + t { t i
| DATA LIST D POINTER | D 1 <7 | 1 | | | |
1 1 L i 1 L L 1
L] 1) 1} L) v Ll T)
| ERASABLE COMMON POINTER | ERASE | (-8) | I l { | |
"R L L L L 'y J |
T 1] |] T T) 1
SIZE OF COMMON | coMMON | (-9) | I i | i |
' + 1 ¢ + t + '
SIZE OF MANAGED ARRAY | MANAGED | (-10) | I | | | i
4 41 1 L i L []
Ll | 1] L) 13 L) 1
| ERROR FILE QUEUE COUNT | NERM | (-11) | 1 { | | |
i L L i ' 1 L d
L v) L L) T L B
| DIAGNOSTIC DEVICE | DEVICE | (-12) | I | i | |
b 1 + b 1 + + {
| DIAGNOSTIC MODULE (#NOTE) | UMOD | (-1 | L1 | | | [
L L 1 i L i 1 1
L) 1) T 1 T T L) |
| DIAGNOSTIC FORMAT | FORM I (-13) | 1 10 | | :(LON)?=FORM#+1 | | |
| | | | | | | :(IMM)?=FORM+2 |
| 1 | | | | | :(DFI)2=FORM#4 |
| | i | | | | :(PFI)?=FORM+8 |
I 4 t : : + + {
| SHORT FORM INDICATOR | SHORT | (D | LOG |FALSE | | |
b $ t + + t + {
| LONG FORM INDICATOR | LONG | | LOG |FALSE | | |
L 1 L L [] L L 1
L} 1] T T Al T L 1
{ STACKED ERROR INDICATOR | STACK | (3) | LOG |FALSE | | [
L L L i L 1 iR)|
1] 1 T L T L)) 1
| IMMEDIATE ERROR IND. | IMM | (» | LOG |FALSE | | |
L L] 1 1 L L]
13 1 1] 1] 1) 1
| SAVED STATEMENT DRIVE | DRIVE | () | 1 10 1 I |
i L 'l [[[1 1
13 T 1) 1 L} 1 Ll
| DYNAMIC FILE ERROR IND. | DFI | (6) | LOG |FALSE | | [
b ¢ + + : { ; {
| PERMANENT FILE | | | | | | {
| ERROR INDICATOR | PFI | (7 | LOG |FALSE | | |
L 1 4 L & L L J
*NOTE: "UMOD" and "NERM" are mutually exclusive and may not be used together.
**NOTE: Default values are not provided because the 15 PLAN switch words are automatical-

ly reset as a result of the execution of any Level 0 command.

PLAN JOB provides initialization functions
for any PLAN run. This command, or one
that provides the functions of this com-
mand, should be the first command processed
when PLAN is invoked. The command meets
the requirement that a level 0 phrase be
the first phrase processed and sets the
parameters controlled by the system switch
words. System accounting functions may be
conveniently facilitated by adding the name
of an accounting module as a program list
to this command. A sample of the command
at execution time is:

PLAN JOB, MANAGED 200, ERASABLE 240,
COMMON 900, LISTS 30,60,200,209, SAVED 20
TO 30 FILE 3, DRIVE 2 SHORT, STACKED,

DEVICE 102;

The above example jillustrates:

1. The setting of the managed array to a
size of 200 PLAN words.
2. The establishing of the beginning of

erasable COMMON at CAP 240.

STANDARD COMMANDS 39

The following parameter discussions
table above)

The defining of the total size of
COMMON to 900 PLAN words.
The defining of four CAP indices

(30,60, 200,209) used in referencing a
maximum of four data lists.

The execution of statements 20 to 30 in
file 3, drive 2.

The designating of the short form of
diagnostic.

The specification of the indicator to
cause error stacking (STACKED).

The designation of the device upon
which error messages are to be printed
(DEVICE 102).

(see
give a breakdown of the PLAN

JOB options:

1.

40

SAVED STATEMENT FILE. This parameter
defines the DYNAMIC file number (1-255)
from which a saved statement is to b2
executed as the next statement. The
parameter will not be used if the next
PLAN command is to be read from the
standard PLAN input device.

INITIAL, SAVED STATEMENT. If the next
PLAN statement is to come from a saved
statement file, this parameter defines
the number of the first statement that
will be executed. If this parameter is
specified, the FILE, DRIVE, and TO
parameters should also be specified.

END SAVED STATEMENT. If saved PLAN
statements are to be executed next,
this parameter defines the highest-
numbered saved statement that will be
executed.

DATA LIST POINTER. This parameter is
used to define the CAP indices for up
to the maximum of four possible data
lists. These data lists may be
referenced by PSCAN for storing data,
by PARGO and PARGI for transmitting
data, and by user program modules.

LB. This parameter provides a direct
pointer to the second of the data lists
defined above.

IC. This parameter provides a direct
pointer to the third of the data 1lists
defined above.

LD. This parameter provides a direct
pointer to the fourth of the data lists
defined above.

ERASABLE COMMON. This parameter
defines the communication array sub-

STANDARD COMMANDS

10.

11.

12.

13.

1u.

15.

16.

script that is to be treated as the
beginning of erasable COMMON. Erasable
COMMON extends from the CAP position
identified to the end of the communica-
tion array. This parameter rast be set
to some positive value within the range
of the communication array in order for
many of the standard PLAN commands to

execute. This switch word is reset to
490 each time a 1level 0 command is
encountered.

SIZE OF COMMON. This parameter defines
the total size of COMMON (including
communication array, switch words, and
resident loader).

SIZE OF MANAGED ARRAY. This parameter
defines the number of PLAN words that
are to be managed according to the
level structure of the commands to be
processed. If this value is set to a
positive integer and statements have a
level assignment the managed array save
file must be present for the saving of
data.

ERROR FILE QUEUE COUNT. If error diag-
nostics are to be written onto logical
file 255 of logical drive 0 instead of
directly to an output device, then this
parameter will specify the maximum
number of messages that are to be
allowed on the file before the messages
are to be written to the diagnostic
device.

DIAGNOSTIC MODULE. This parameter is
used to specify the name of a user-
written module that is to process error
conditions rather than using the normal
system processing. Note that this
option precludes the error queue option
and is in lieu of writing the diagnos-
tics onto the diagnostic device.

DIAGNOSTIC DEVICE. If a diagnostic
module is not specified, this parameter
specifies the sequential file device
code upon which the diagnostics are to
be printed. This switch word is reset
to 100 each time a Level 0 command is
encountered.

DIAGNOSTIC FORMAT. This parameter
should not be referenced by a user. It
is set as a result of use of items 15,
16, 17, 18, 20 and 21.

SHORT. The word "SHORT" 1is specified
if the short-form option is desired.
Short-form diagnostics mean that the
phrase being processed when the error
is detected is not 1listed with the
error.

is used to set
indicator.

LONG. This parameter
the 1long-form diagnostic

17.

Long-form diagnostics include the
EBCDIC image of the phrase which caused
the error, along with the diagnostic
message.

STACK. This parameter sets the indica-
tor to cause error stacking. In this
mode of processing, errors are written
to the output device only when the
error module is scheduled by the PLAN
loader or when the stack overflows. If
the stack overflows, the checkpoint
facility must be used to allow schedul-
ing of the error module.

detected by the DYNAMIC FILE support
subroutines.

PERMANENT FILE ERROR INDICATOR. This
parameter determines the PLAN system
error procedures when an error is
detected by the PERMANENT FILE support
subroutines.

21.

SET LITERAL

SET LITERAL is the command used to define

18. IMMEDIATE. This parameter sets the standard literals for storage into a GDATA
indicator to cause diagnostics to be type file. The literals are maintained in
written to the output device one-by-one a manner that makes them accessible to the
as they are ’‘encountered. The check- subroutine PHIN.
point file and checkpoint programming
must be available to function in the SET LIT, NAME'PLITF®', NUMBERn, °'LITERAL',
IMMEDIATE mode. FILEj, DRIVEm;

19. SAVED STATEMENT DRIVE. This parameter ADD PHRASE: SET LITERAL, PROGRAM'DFJIP-
specifies the PLAN DYNAMIC Drive number DIAG', I(-8)M, I(M)FILE254, 1I(M+1l) NAMEO,
that will be used when the SAVE state- I (M+4)DRIVEO, I(M+5)NUMBER-*RA' UNDEFINED
ments are processed. LITERAL NUMBER', I(M+6)LITERALO, (M+1)TEST-

) *TA* UNDEFINED FILE NAME' :

20. DYNAMIC FILE ERROR INDICATOR. This (NAME>0) § (NAME<9) ;
parameter determines the PLAN system
error procedures when an error is

L] Bl Ll L) 1 R}) 1

| SET LITERAL | | | | DEFAULT| CHECKING| i

| FUNCTION | NAME | cAP | MODE |VALUES 5| RULES | EXPRESSIONS i

b t 4 + t $— + i

| ERASABLE COMMON | | | | | | i

| POINTER | ™ | -8 [S| | i |

L L 1 L 1 L [l |

T T 1) 1 T 1] A

| LITERAL FILE NUMBER | FILE I M | I {254 | | |

} + { + 1 i t i

| LITERAL FILE NAME | NAME | M#1 | I | o 1 | |

L 1 1 L L 1 L |

X T L)) L) T] 1

| LITERAL FILE { | [| | i |

| DRIVE | DRIVE | Met | I | O | | |

L [] 1 L L 1 L |

M v T 1 T T T i

| LITERAL NUMBER NUMBER | M#5 | I |FALSE | *RA | |

L [) 4 [} L J

1) b L) L v L)

| LITERAL TEXT LITERAL | M+6 | I | O | | |

t + { + t + 1

| TEST FILE NAME | TEST | M+1 | |FALSE | *TA | : (NAME>0) § |

| | | | | | | (NAME<9) I

[L L i & AL 1 L]

1. ERASABLE COMMON POINTER. This parame- 3. LITERAL FILE NAME. This parameter
ter points to the position within the defines the name of the GDATA file in
communication array defined as erasable which literal processing occurs. Note
COMMON. This parameter (switch word 8) that this parameter must be given.
is normally set with the PLAN JOB Otherwise, the check entry defined
command. under “test file name" will fail and

the phrase will not be executed.

2. LITERAL FILE NUMBER. This parameter 4. LITERAL FILE DRIVE. This parameter

defines a number to be used to process
the GDATA type literal file.

defines the PERMANENT drive on which
literal file is 1located. Failure to
provide this parameter results in the

STANDARD COMMANDS 41

assumption that the file is on

MANENT drive zero.

PER-

7. TEST FILE NAME. (See "Literal File

Name"™ above).

5. LITERAL NUMBER. This parameter defines

the identification number for the lit-

eral to be processed. Note that fail-

ure to supply a 1literal number will LIST LITERALS

result in a phrase abort error

diagnostic. LIST LITERALS is a command that produces a

listing of all 1literals maintained in a

6. LITERAL TEXT. This parameter provides specified literal file.

the literal text for the literal to be

added to the file. If this parameter ADD PHRASE: LIST LITERALS, LEVEL 1, PRO-

is not provided (literal length =zero), GRAM'DFJPLITL', I(1)254, NAME-*A'LITERAL

the existing literal of the same number FILE NAME NOT DEFINED', I(5)DRIVEQ, NOD100O,

is removed from the file. (35) "NUMBER LENGTH TEXT OF PLAN LITERAL";
r Ll L} T L] L Ll 1
| LIST LITERAL | | | | DEFAULT| CHECKING| |
| FUNCTION | NAME | cCAP { MODE |VALUES | RULES | EXPRESSIONS |
[L L 3 4 i L d
T 1 L) T L] 1 L) 1
| LITERAL FILE NUMBER | FILE | 1 | I 1254 | | |
L L i Il 1 i 1 d
T) 1) L T L) 1
| LITERAL FILE NAME | NAME 1 2 | I |{FALSE | #*A | |
t i + t + t + .|
| LITERAL FILE | | | { | | i
| DRIVE | DRIVE | S | I |0 i | |
} 1 + + t t t 1
| LITERAL OUTPUT DEVICE] NOD | 6 i I j100 | | |
L L L 1 L] L d

LITERAL FILE NUMBER. This parameter
defines a number to be used to process
the GDATA type literal file.

LITERAL FILE NAME. This parameter
defines the name of the GDATA file in
which literal processing occurs. Note
that this parameter must be given.
Otherwise, the check-entry defined
under "test file name®™ will fail and
the phrase will not be executed.

LITERAL FILE DRIVE. This parameter
defines the PERMANENT drive on which
literal file is located. Failure to
provide this parameter results in the
assumption that the file is on PER-
MANENT drive zero.

LITERAL OUTPUT DEVICE. This parameter
defines the output device that is to
be used to 1list the 1literals. The
standard parameter results in the use
of the current PLAN output device.

COMMUNICATION ARRAY DUMPS

DUMP COMMON is a command that produces a
hexadecimal printout of the communication
arraye. Identical print lines are
suppressed.

42 STANDARD COMMANDS

DUMP MANAGED is a command that produces a
hexadecimal printout of the managed portion
of the communication array. Identical
print lines are suppressed.

DUMP NONMANAGED is a command that produces
a hexadecimal printout of the nonmanaged
portion of the communication array. Iden-
tical print lines are suppressed.

DUMP SWITCHES is a command that produces a
hexadecimal printout of the PLAN switch
words.

Note carefully that these are blank-level
phrases. Any attempt to use them following
a PLAN phrase abort error will result in
the phrase being skipped.

ALTER PHRASE:
NNN-2, (M+11)A“SWITCHES",
NOD100, PROGRAM®'DFJPCDMP';

DUMP SWITCHES, I(-8)M, I(M)
"LENGTH", I(M+15).

ALTER PHRASE: DUMP COMMON, I(-8)M, I(M}

NNNO, °*MANAGED ARRAY', °‘NONMANAGED ARRAY®,
"SWITCHES", "LENGTH",
I(M+15)NOD100, PROGRAM®DFJPCDMP';

ALTER PHRASE: DUMP MANAGED, I(-8)M, I(M)
NNN1, * MANAGED ARRAY', *SWITCHES",
"LENGTH", I(M+15)NOD100, PROGRAM
* DFJPCDMP" ;

ALTER PHRASE: DUMP NONMANAGED, I(-8)M,
I(M)NNN-1, (M+6) B* NONMANAGED ARRAY',

*SWITCHES",
GRAM

"LENGTH",
*DFJPCDMP" ;

I(M+14)NOD100, PRO-

DUMP

FUNCTION NAME CAP

L) 1
|DEFAULT| CHECKING

MODE |VALUES | RULES EXPRESSIONS
[l

ERASABLE COMMON
DEFINITION

FUNCTION SWITCH
DUMP COMMON
DUMP SWITCHES
DUMP MANAGED
DUMP NONMANAGED

— e ate o c— ce wden — —

+ |
=N O

. OUTPUT DEVICE NOD M+15

o s e o S S —— e Sy = — b
S S Sy Sp—p——
Y e e s

e e o s oo s e e S s e o o 0]

e s el ceen came e g c—" athe ———
|
T A —— T
I e e e o e e i s s e e st e

1. ERASABLE COMMON DEFINITION. This para-
meter, a pointer to that portion of the
communication array to be used as eras-
able COMMON, is normally set by the

PLAN JOB command.

FUNCTION SWITCH. The appropriate value
within the word (0, -2, 1, -1) distin-
guishes between DUMP, DUMP SWITCHES,
DUMP MANAGED, and DUMP NONMANAGED func-
tions, respectively.

OUTPUT DEVICE. This parameter defines

the sequential device code to be used
for output.

FILE DUMPS

ALTER PHRASE: DUMP DYNAMIC, I(-8)M, I(M)

FILE255, I(M+2)STARTO, I(M+3)ENDO, I(M+4)
DRIVEO, (M#5)A"DRIVE FILE LENGTH", (M+12)
NAME' *I (M+15)NOD100, 1, PROGRAM

*DFJPFDMP’ ;

ALTER PHRASE:
FILE 255,
DRIVEO,
NAME® .
PROGRAM' DFJPFDMP" ;

DUMP PERMANENT, I(-8)M,

I(M+2) STARTO, I(M+3)ENDO,

(M+5)A"DRIVE FILE LENGTH",
' I(M+15)NOD100O,

I(M)
I(M+y)
(M+12)
0,

DUMP DYNAMIC is a command that produces a
hexadecimal printout of the PLAN DYNAMIC
file. Identical print lines are
suppressed.

DUMP PERMANENT is a command that produces a
hexadecimal printout of a PLAN PERMANENT
file. Identical print lines are
suppressed.

The 1limits of the dump are defined by the
START and END operands. If these are
omitted, the entire file is dumped.

Note carefully that these phrases are blank
level, and will ‘therefore be skipped if
PLAN level recovery is invoked as a result
of an error in a nonblank-level phrase.

STANDARD COMMANDS 43

L 1 Ll A | L T LE 1
| DUMP PERMANENT | 1 | | DEFAULT| CHECKING| |
| FUNCTION | NAME | CAP | MODE |VALUES | RULES | EXPRESSIONS [
b + + + : + t 1
| ERASABLE COMMON { | 1 | 1 | |
| INDEX | M | -8 | I] | | |
L 1 1 L (1 L 1
L) L) L)) Ll 1
| FILE NUMBER | FILE | M | I | 255 | |
L [l L L 1 i L
) 1 T T 1 T LB
| START OF DUMP | START | M+2 | I o 1 | |
L L 41 1 4 1 L
L) T 1 Ll L A T
| END OF DUMP | END | M+3 | I |0 | |
[L Al 4 L 1 L
L]) L 1 L) L) Ll
| DRIVE | DRIVE | M4 | I 10 | (|
L L 1 I 4 1 L 4
| T T T T T !
| FILE NAME | NAME | M#12 | LI | BLANK | | |
i L 1 [[[4 d
3 1 L})) T T 1
| OUTPUT DEVICE | NoD | M#15 | I (100 | | |
b ¢ t 4 ; + t -
| DUMP TYPE SWITCH | | M¢16 | I 0,1 | | |
L L L L [| L L J
1. ERASABLE COMMON INDEX. This index 6. FILE NAME. This parameter defines the
defines the location within the com- name of the file to be dumped.
munication array known as ERASABLE COM-
MON. The index is normally set by the 7. OUTPUT DEVICE. This parameter defines
PLAN JOB command. the sequential device code that will be
used for output.
2. FILE NUMBER. This parameter defines 8. DUMP TYPE SWITCH. This parameter deter-

the file number of the file that is to
be dumped.

START OF DUMP. This parameter defines
the number of the PLAN word within the
file at which the file dump is to
start.

END OF DUMP. This parameter defines
the number of the last PLAN word within
the file that is to be dumped. If the
parameter 1is not given (parameter is
set to zero), the full 1length of the
file will be dumped.

DRIVE. This parameter defines the PLAN
DYNAMIC or PERMANENT drive number on
which the file to be dumped is located.

mines whether a DYNAMIC or a PERMANENT
file is to be dumped.

STATEMENT SAVE COMMANDS

ALTER PHRASE: SAVE, I(-1)SW, -1, I(-8)M,
I(MFILE 0, I(M+1)DRI-1, $0 SW:(FIL>0)?=
FIL, SW(3):(DRI>-1) & (DRI<5)?=DRI*2048;

SAVE is a command to allow saving of the
PLAN statements that follow the SAVE com-
mand on a PLAN logical file. Each state-
ment to be saved must be prefixed with a

statement number. Saving of statements is
terminated by (1) a SEND command, (2) any
command that does not have a statement

number, or (3) another SAVE command.

T L] v 1 R} L] T 1
| SAVE | | | |DEFAULT| CHECKING| |
| FUNCTION | NAME | CAP | MODE |VALUES | RULES | EXPRESSIONS |
t t + t + + }

i | sw | -1 1 | | I

L 1 1 L L L 4

3 1 | L) 1 L] Ll

i | | -2 I T -1 I i |
L 1 AL 1 .l L i 4
r L) 1) T T Ll t
| ERASABLE COMMON POINTER | M | -8 T | | |
3 { + + + + { {
| DYNAMIC FILE | FILE | M | T (o | | 1
k t } % + t t i
| DYNAMIC DRIVE | DRIVE | M¢1 | I |-1 | *NOTE | |
L 1 L L L L L 3
*NOTE: $0SW:(FIL>0)?=FIL, SW(3):(DRI>-1) §(DRI<5) ?=DRI#+2048

44 STANDARD COMMANDS

1.

DYNAMIC FILE. This parameter defines
the number of the PLAN DYNAMIC file on
which the following statements are to
be saved. If the parameter is omitted,
the current file number in Switch Word
1 will be used.

DYNAMIC DRIVE. This parameter defines
the number of the DYNAMIC drive on
which the following PLAN statements are
to be saved. If this parameter is
omitted, the current value in Switch
Word 3 divided by 2048 will be used as
the DYNAMIC drive indicator.

ALTER PHRASE: SEND;

SEND is a command used to terminate
saving of a series of PLAN statements.

the

ALTER PHRASE: EXECUTE, I(-1)SW,0, I(-8)M,
I(M)FROMO, I(M+1)TO 0, I(M+2)FILE 0, I(M+3)
DRIVE-1, (M)F*TA®INVALID STATEMENT NUMBER
OR DRIVE; $0SW:(FIL>0)?=FIL, DRI:(DRIK0)?=
SW(3)/2048-.51:45, DRI:(DRI<KO0)?=0, $5FROq ((
DRI>-1) § (DRIL5)) ?=+, SW(3) : (TO>0) ?=DRI*
2048+TO!'=DRI*2048, SW(2) : (FRO>0) ?=FRO
FRO: (SW(2)>0);

L3 Bl A) Al \J Ll L)
| EXECUTE | i | | DEFAULT| CHECKING| |
| FUNCTION | NAME | cAP | MODE |VALUES | RULES | EXPRESSIONS |
b } } + i + t .|
i | SW | -1 | | | | |
L 1 i L L L 1 d
v 1 L3) Ll 1 1) 1
| | M | -8 R | | |
L 1 4L 4 L - L L |
LB L) 1) 1 T 1 LI h |
{ FIRST COMMAND TO EXECUTE | FROM | M | T | o0 | *NOTE 1 | |
L i i 1 L 1 L J
[)) 1 i) L] 1 1) 1
| LAST COMMAND EXECUTED { TO M2 | I | O | i |
[L L] i [} L J
L8 L} L)) L} 1 Ll a
| STATEMENT FILE NUMBER | FILE | M¢2 | I | O \ | |
B L L [L 1 [}
L) v 1 L) L] T 1
STATEMENT DRIVE NUMBER | M+3 | I 1 -1 | | | |
L L A1 [L L 4
L} T 1 T 1 L bl
PARAMETER CALCULATIONS | | | i | | *NOTE 2 i
L L 4 (1 L 1 J
*NOTE 1: *TA'INVALID STATEMENT NUMBER OF DRIVE'
*NOTE 2: $0SW: (FIL>0)?=FIL,
DRI: (DRI<0)?=SW(3)/2048-.51:%5,
DRI: (DRI<0)=0,
$5FRO: 4 ((DRI>-1) & (DRIK5)) 2=+,
SW(3) : (TO>0) 2=DRI#*2048+TO!=DRI*2048,
SW(2) : (FRO>0) ?=FRO,
FRO: (SW(2)>0)
1. ERASABLE COMMON POINTER. This param- to be executed. If this statement

eter defines the 1location within the
communication array of ERASABLE COMMON.
The pointer is normally set by the PLAN
JOB command.

DYNAMIC DRIVE. This parameter defines
the PLAN DYNAMIC drive number that is
to be used to process SAVED statements.
If this parameter is omitted, the cur-
rent drive specified by Switch Word 3
divided by 2048 will be used.

DYNAMIC FILE. This parameter defines
the PLAN DYNAMIC file number that is to
be used to process SAVED statements.
If this parameter is omitted, the cur-
rent save file specified by Switch Word
1 will be used.

FIRST SAVED. This parameter defines
the number of the first SAVED statement

cannot be located, an error message
(PSTSV-DFJ172) will be produced.

LAST SAVED. This parameter defines the
highest-numbered SAVED statement to be
executed. Execution continues from the
first SAVED statement identified
through continually higher-numbered
statements to the statement identified
with this parameter. If this parameter
is omitted, only the statement indi-

cated by Switch Word 2 will be
executed.
1
iSAVE, FILE 2, DRIVE 3; |
|6 A; |
19 B; |
{18 C; |
| SEND; i
[J

STANDARD COMMANDS 45

In the above example, when the SAVE command
is encountered, all the numbered statements
that follow (6, 9, 18) will be stored in
the PLAN DYNAMIC file 2 on drive 3. This
is known as explicit saving because the
statements are stored for execution at a

later time, and not executed now. (See
EXECUTE Command, discussed above) .
Implicit saving, is utilized where state-

ment storage and execution are accomplished
as the statements are read.

It is important to note that execution of
the SAVED statements will occur by state-
ment numeric sequence, not by position
within the input SAVE stream. For example,
if a statement number 15 was
statement 18 in the stream, it would still
be executed ahead of 18 if at a later time
an EXECUTE command was encountered utiliz-
ing the parameters FROM 9 and TO 18.

PHRASE TABLE DUMP

I(500) sYS-
I(503)LEVEL1L,

ALTER PHRASE: DUMP PHRASES,
TEM1130, I(501)NOD100,

LEVEL1, (200)"CHECKSUM", "PHRASE NAME",
"LEVEL TYPE-OBJECT", "ENTRY SIZE",
"VERB", "SUBSCRIPT NAME VALUE RANGE INDEX",

placed after

LIST",SUBSCRIPT, "LOCATION MODE FACTOR
EXPRESSION", (510)-*TP'CON DUM PHR
I(504)DRIO';

ADD PHRASE: CON DUMP PHRASES,
{(281) "INTERPRETIVE EXPRESSIONS", "VERB
PROGRAMS", END OF PHRASE TABLE DUMP",
PROGRAM'DFJPTDMP' , (505) "DFJPFILE",
(835)NAM "DFJPTDP1DFJPTDP2DFJIPTDP3DFJPTDPS
DFJPTDP6";

DUMP PHRASES is a command that produces a
tabulation of the phrases that exist within
PFILE.

CON DUMP PHRASES is a CONTINUTATION OF THE
DUMP PHRASES command and should not be
invoked by itself.

ALTER PHRASE: INPUT, I(-8)M,
LEVEL1, PROGRAM'DFJPIOCS';

I(M)NOD1,0,

ALTER PHRASE: OUTPUT,I(-8)M, (Mo,
I(M+1)NOD101, LEVEL1l, PROGRAM 'DFJPIOCS';

The module DFJPTDMP produces the phrase
dump. It requires XACES, XTRAC, XPRNT, and
XBIT, which are called as subroutines.
DFJPTDP1, DFJPTDP2, DFJPTDP3, DFJPTDP5, and
DFJPTDP6 are also required. They are are
loaded as PLAN system local modules on OS

"EXIT PROGRAM LIST", "SYMBOL EXIT FORMAT PLAN. These modules are special purpose
SCALE SUBSCRIPT EXPRESSION", "PROGRAM programs that have no wuse in any other
LIST", "TEST LOCATION ACTION", "LITERAL , environment.
L] 1 L] 1 T v T 1
| DUMP PHRASES ! | | | DEFAULT| CHECKING| |
| FUNCTION | NAME | CAP | MODE |VALUES | RULES | EXPRESSIONS |
i L i L L 3 1 d
L} LB T T L] LB L 1
| SYSTEM DESIGNATION | SYSTEM | 500 | I |360 | | |
t $ + + + + + i
| OUTPUT DEVICE | DEVICE | 501 | I]100 I | |
| t + 1 + t t
| PRINTOUT LEVEL | LEVEL | 503 | I |1 [|
L L L L 4L i 4
1. SYSTEM DESIGNATION. This parameter be produced. Each higher level incor-
defines the system for which the PFILE porates all items of the lower levels.
(PLAN language dictionary) is being
dumped. The phrase for the appropriate
system contains the necessary standard The items listed below represent informa-
value so that the user should never be tion that is produced at the various print-
required to specify this parameter. out levels. Figure 8 shows sample lines
from the dump. Enclosed items are explana-
2. OUTPUT DEVICE. This parameter defines tory notes about the sample output 1lines.
the sequential dJdevice code to be used It is strongly recommended that the reader
for output. make a deligent attempt to correlate the
phrases as defined in this section with the
3. PRINTOUT LEVEL. This parameter defines listing produced with the DUMP PHR, LEVEL
the complexity of the phrase listing to 6; command through use of Figure 8.
46 STANDARD COMMANDS

CHECKSUM

PHRASE NAME LIST LIT LEVEL 1 TYPE-OBJECT ENTRY SIZE 16 1%?3 0 o
0,1,2,3,| |VERB OR NO. OF ADDRESS OF PHRASE ENTRY
4, or b OBJECT RECORD/64 IN DUMP PRODUCED BY
DUMP PERMANENT
IF THESE INDICATORS
ARE NONZERO THEY
GIVE THE RECORD AND
DISPLACEMENT OF THE
NEXT PHRASE OF EQUAL
CHECKSUM
SUBSCRIPT NAME VALUE RANGE INDEX
-1 00000000 36 3
) . A x
32-BIT VALUES FROM
VALUE IMPLIED DO
SUBSCRIPT NAME VALUE RANGE INDEX
1 A 00018000
1 ? 00100000
A)
A(1), B(1) SYMBOLIC 32-BIT
etc. SUBSCRIPT, VALUE
SYMBOL EXIT FORMAT SCALE SUBSCRIPT EXPRESSION
M I -8
A 1 M
B R M+7
NOD I M+15
USER 1 i
DATA EXIT MODE SCALE CAP SYMBOLIC
NAME NO. FACTOR CAP
PROGRAM LIST
PHRAS
PHUDT
PHUDT
TEST LOCATION ACTION LITERAL, LIST, OR SUBSCRIPT
*R NuM B UNDEFINED LITERAL NUMBER
*R ABSOLUTE A
*T OR c
*F SYMBOLIC P
* b

Figure 8. Phrase table dump explanation

STANDARD COMMANDS

LEVEL ITEM LISTED

ERROR LISTING

0,1 Phrase name
Phrase level ALTER PHRASE: DUMP ERRORS, PRO'DFJPEDMP';
Type (object or verb)
Number of internal records (80-
bit on 1130, 64-bit on System/ DUMP ERRORS 1is a command that causes all
360) required for phrase diagnostics in the error queue file to be
PFILE ADDRESS of phrase entry listed on the PLAN diagnostic device.
Chained phrase indicator (0 0
means no chained phrase)
Checksum of phrase
2 Initialization (Default values)
Subscript PAGE LENGTH DEFINITION
Name
Value ALTER PHRASE: SET PAGE LENGTH, I(-8)M,
Range I(M)PGL60, I(M+1)NOD100, PROGRAM'DFJPLENG';
Index
3 Symbol Table
Symbol SET PAGE LENGTH is a blank-level command
User—-exit number that allows the user to specify the number
Format of printed lines per page on a sequential
Scale factor device that is to contain printed output.
Subscript
Subscript expression
4 Program lists
5 Check entries
Test
Location
Action
Literal, list, or subscript
6 Expressions
Data area
Formula area
1 Ll Ll ¥ L) Ll 1] 1
| SET PAGE LENGTH | | | | DEFAULT|{ CHECKING| |
| FUNCTION | NAME | CAP | MODE |VALUES | RULES | EXPRESSION |
b + 1 1 + : t {
| ERASABLE COMMON POINTER | M | (-8) | I | | | |
L L 4 i L 1 l '}
B L) L] LB 1 4 LB T 1
| PAGE LENGTH | PGL { (D) | I | 80 | i |
1 L L 4 L i 1]
] 1 R T 1 L} T 1
| OUTPUT DEVICE | NoD | (M#1) | I |100 | |]
[} L . 1 L 1 L L i |
1. PAGE LENGTH. This parameter defines the PLAN input. The output device is not
number of lines to be printed on a page changed.
before a logical EOF is generated and
an automatic eject (skip to 1) is ALTER PHRASE: OUTPUT, I(-8)M, I(M)AO, I(M+
effected. 1)NOD101, LEVEL1l, PROGRAM'DFJPIOCS';
OUTPUT is a command that may be used to

2. OUTPUT DEVICE. This parameter defines
the sequential device code with which
the PAGE LENGTH operand is +to be

associated.

ALTER PHRASE: INPUT, I(-8)M,
LEVEL 1, PROGRAM'DFJPIOCS';

I(M)NOD1,O0,

INPUT is a command that may be issued to
change the device that is assigned as the
standard PLAN input device.

1. NOD. This parameter defines the number
of the device that is to be used for

48 STANDARD COMMANDS

change the device that is assigned as the
standard PLAN output device.

1. NOD. This parameter defines the number
of the device that is to be used for
PLAN output. The input device is not
changed.

SPECIAL PURPOSE OS PHRASES

ALTER PHRASE: CREATE
PROGRAM'DFJLLIST' ;

LOADER ENTRIES,

CREATE LOADER ENTRIES is a command that
gives OS PLAN the capability of referencing
the RAM or LINKPAC areas.

The general format of this command is:

CREATE LOADER ENTRIES: (NAME1,);
where NAMEl,... 1is a load module name that
is to be loaded into the partition via the
LOAD macro and be made available as entry
points for the execution of any loader
call. This allows programs in the LINKPAC
or RAM areas to be objects of a CALL LOCAL.
The names specified in the LIST must be in
the JOBLIB PDS.

The maximum number of names in the list is
75. Use of this command destroys any
entries defined by previous use of the
command.

directory of

Programs that reference blank COMMON may
not be operands of this command.

ALTER PHRASE:
GRAM °‘DFJCRDIR';

CREATE CORE DIRECTORY, PRO-

CREATE CORE DIRECTORY is a command that
allows the wuser to build an in-core PDS
names of frequently loaded
modules.

CREATE CORE DIRECTORY: (NAME1,...);
NAMEl, ... is a 1load module name that is
placed in the in-core PDS directory to
decrease 1load time for those modules. The

names in the list must be entries in the
PLANLIB PDS.

Use of this command will replace the pre-

vious directory. The maximum number of
entries is 75 names.

STANDARD COMMANDS 49

PROGRAM DEBUGGING AND ABEND DUMPS

This section is intended to assist the
programmer in diagnosing unusual conditions
and/or program errors that may cause either
the PLAN system to terminate a phrase
execution or the operating system to ABEND.

PLAN TRACE FACILITY

If the PARM 'TRACE' is included in the EXEC
statement, the PLAN system will print on
the .output device a trace 1listing of all
modules that are entered for execution.
The printed line has the following format:

NAME=XXXXXXXX PCB=xxXxxx EP=xxxxxx EL=xXx
RL=xxXx

where:

NAME is the program name of the module
about to be entered.

PCB is an address pointing to the pro-
gram control block for the module
being loaded. ’

EP is the module entry point address.

EL is a number specifying the execution
level at which the module will be
executed.

RL is the segment number in which the

module was loaded.

The TRACE facility can be very helpful in
showing logical program problems because it
will produce a sequential listing of the
programs that were executed. If an ABEND
occurs, the name of the program last
printed is generally the module that caused
the termination.

ABEND DUMPS

Although the PLAN system attempts to pre-
vent ABENDS, there are certain errors that
PLAN cannot control. These errors will
cause abnormal termination of the JOB step.
In this event, the programmer will have to
use the ABEND dump provided by 0S in order
to determine the trouble.

To interpret
the following information is of
to the programmer:

an ABEND dump of a PLAN jcb,
importance

1. Start of BLANK COMMON
2. Start of the managed COMMON array
3. Start of the nonmanaged COMMON array

50 PROGRAM FAILURE

4. Total current length of BLANK COMMON

5. PLAN switch words

6. Location, entry points, and lengths of
programs currently resident in the PRO-
GRAM AREA

7. Origin of the OS FREE STORAGE areas

8. Name of the program currently in
execution

In interpreting an 0S/360 ABEND dump, the
user will find the following publication
very helpful:

IBM sSystem/360 Operating System Program-
mer's Guide to Debuggqing (C28-6670)

LOCATING THE BLANK COMMON ARRAY

The BLANK COMMON array always starts at the
beginning of the PLAN system partition. To
locate this array, the user should find the
address of +the DFJPLAN problem program
area. This will be found in the front
portion of the ABEND dump. This is the
starting core address of the PLAN system
monitor and the address of the BLANK COMMON
array. It is the reference point from
which all other elements in the PLAN parti-
tion can be located.

LLOCATING MODULES IN THE PROGRAM AREA

Figure 9 is a diagram of the use of the
program area by PLAN to load a program.

| ENTAB | ENTRY POINT TABLE
e i
1 |
| PROGRAM | PROGRAM TEXT
| |
| |
f-—————-—{ PROGRAM
{ PCB | CONTROL BLOCK
[J
Figure 9. Use of the program area to 1load

a program

Every program that is 1loaded by PLAN is
preceded by an ENTAB which contains a
listing of every CSECT name in the module
and its actual core address. The format of
an entry in this table is as follows:

BYTE

) 1

0-7 |CSECT NAME |
1 1

13 1

8-11 |CORE ADDRESS|
L N}

v]

12-15 |LAST ENT IND|
L]

The PCB (Program Control Block) appended to
the beginning of the program by the PLAN
loader performs the same function as a PRB
(Program Request Block) does for OS. It
contains information that PLAN requires to

maintain the program area. Its format is
as follows:
T 1
0-7 | MODULE NAME |
b—-r '
| SEG.} |
8-11 | # |ENTAB ADDR i
[l L J
[) 1
12-15 | LENGTH OF COMMON [
L y
1] 1
16-19 | MODULE ENTRY POINT |
L 4
] L]
20-24 | NEXT PCB ADDR |
L J

To locate any module in the program area,
the user should find the start of the PCB

chain, which is located at COMMON +14 hex
and trace through the PCB chain. The last
PCB has =zeroes in the chain address. The

address of the PCB for the current module
in execution is located at COMMON +24.

When processing LOCAL's, the PLAN system
saves the status of the calling program in

a LOCAL control block. 1Its format is as
follows:
BYTE T 1
0-63 | GPR SAVE AREA |
] STORED 14-13 |
L J
L B 1
64-67 | CALLERS PARM ADDRESS |
[l]
] 1
68-71 | CALLER PICA ELEMENT |
L J
¥ h |
72-75 | CALLERS PCB ADDRESS |
L]
Ll A
76-83 | MANAGED FREE |
| STORAGE POINTERS |
L J
1) 1
8u-87 | LOCAL CHAIN POINTER |
L 4
L} 1
88-93 i CURRENT EXECUTION LEVEL |
L]
L) 1
93-95 | FILLER |
i J

"To locate any LOCAL

save area, find the

start of the LCB chain at COMMON + 0i1C.

TABLE OF

LOCATION

COMMON

COMMON

COMMON

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON

+

+

+

POINTERS IN PLAN COMMON

150
oAl

160

168
198
19c
024

000

ITEM
Address of the PLAN system
area
Address of the managed OS

FREE STORAGE area
Address of the top of the
PROGRAM AREA and the start of

the nonmanaged 0s FREE
STORAGE area, if any

Address of the top of BLANK
COMMON

Address of current entry in
the program pop-up list
Address of the end of the
program pop-up list

Address of the PCB for the
module currently in execution
Name of the 1last program
loaded

Address of the 1last PCB
the PCB chain

PLAN Switch Words

Managed COMMON array
Current execution level
Address of the chain of LOCAL
save areas
Address of the
save area
Columns 76-80 of the
command processed

in

PLAN system

last

PROGRAM FAILURE 51

PLAN SYSTEM DIAGNOSITC MESSAGES

This section contains a discussion of the
control of diagnostic processing and 1lists

diagnostic messages generated by various
PLAN components through 1linkage to the
error processor module “DFJPERRS". The

format of PLAN system diagnostics is shown

below:

DFJ000 001-100 TEXT

101-200 TEXT

201-300 TEXT

301-400 TEXT

401-450 TEXT
CCCnnn *A* mmmmm SEQ=yyy ID=ccccc
PG=xxxxxxxx DIAGNOSTIC

The segments of the diagnostic message
underlined in the above example are vari-
able. Functions defined by the variable
data are:
TEXT This field of up to five lines
contains the current input
statement. It is printed only
if the long-form diagnostic is
requested. Character posi-
tions are printed to the left
of the text.

ccc This three-character field is
DFJ if the diagnostic is
generated by PLAN and *%* if
generated by the user.

nnn This three-digit number is the
error number assigned by the
call to the error routines as
calling parameter N1. In PLAN
error diagnostics, this number
is merely a diagnostic modifi-
er (index).

This character specifies the
action taken following genera-
tion of the literal.

1>

R indicates that execution
of the current command is
terminated. PLAN error
recovery is initiated.

C indicates that the follow-
ing generation of the
diagnostic, the execution
of the current command is
terminated.

E indicates that the current

execution of PLAN is
terminated.

52 DIAGNOSTICS

0 indicates a pause for
operator intervention.

This
(ECODE)

mmmm is a five-digit modifier
that provides addi-
tional information about the
error. This parameter is pro-
vided as N2 in the call tc the

PLAN error subroutines.

This field provides the state-
ment sequence of this PLAN
statement relative to the
beginning of the PLAN job
stack.

SEQ=yyy

ID=ccccc This five-character field pro-
vides the identification field
(cc. 76-80) of the last card
of the current PLAN statement.
PG=xxxxxxxx This field provides the name
of the program in execution at
the time the call to the error

routine is issued.

This field contains the liter-
al text of the diagnostic mes-
sage and is 1limited to 76
characters.

DIAGNOSTIC

PLAN ERROR PROCESSING

Since the PLAN system is a monitor which
supervises the execution of other problem
programs, it must have the ability to
detect abnormal conditions.

There are four types of errors the PLAN
system can detect and these are:

Phrase Definition Errors
command Errors

Execution Errors
User-Defined Errors

1. Phrase definition errors are detected
by the PLAN system module "DFJPHRAS"
when a phrase is being entered into the
PLAN language dictionary.

2. Command errors are detected by the PLAN
system module "DFJPSCAN" while proces-
sing commands.

3. Execution errors
PLAN system mainline while a
program is in execution.

are detected by the
problem

4. User-defined errors are the result of a
programmed call to one of the error

subroutines
ERRAT).

(ERROR, ERRET, ERREX,

Each type of error discussed is detected by
a different module and at a different point
in time. The technique used to produce a
diagnostic in this environment may be
described as follows: When an error is
detected by any component of @ the system,
the type of error is recorded and a genera-
lized diagnostic processing module is
called to produce the required error mes-
sage. The PLAN system module that produces
diagnostic messages is DFJPERRS.

The PLAN system offers the user several
options in processing errors. Several
terms are defined below that are used in
describing these options.

SHORT FORM. The diagnostic message is
produced without printing the phrase that
caused it.

LONG FORM. The phrase that caused the
diagnostic 1is printed with the diagnostic
message.

IMMEDIATE MODE. The error processing
module T"DFJPERRS" is invoked at the time
the error occurs, even if a checkpoint is
required.

STACKED MODE. A condensed version of the
error is recorded in the error message
stack which will be processed the next time
"DFJPERRS" is invoked by the system.

ERROR MSG STACK. An area
reserved exclusively for recording errors
in a condensed form. This gives the system
the ability to delay calling the diagnostic
processor "DFJPERRS" until the program area
is available.

on PFILE is

ERROR MSG QUEUE. DYNAMIC file 255 on PLAN
DYNAMIC drive 0 is reserved as a queue area
for diagnostic messages. This gives the
system the ability to post-list diagnostic
messages by writing the messages on the
file as they occur and then dumping the
file on command.

USER-ERROR EXIT. The PLAN system has the
ability to call a user-error processing
module in the cases where the mnormal PLAN
mode of diagnostic presentation 1is not
appropriate for the application.

SPECIFYING ERROR PROCESSING MODE

The mode of error processing by the PLAN
system 1is controlled by the PLAN Switch

Words 11, 12, and 13. These switch words
can be set by any PLAN command. The
standard error processing mode is as
follows:

1. Errors are stacked.

2. Error message format is short.

3. No error messages
post-listing.

are queued for

4. No user-error
will be called.

processing module

5. Messages are printed on the stand-
ard PLAN output device.

6. Errors detected by the PLAN DYNAMIC
file routines cause a phrase abort.

7. Errors detected by the PLAN PER-
MANENT file routines cause a phrase

abort.

Switch Words 11-13 are normally set by the
following operands of the PLAN JOB command:

1. NERM

2. DEVICE

3. UMOD

4. SHORT

5. LONG

6. STACK

7. IMM

8. DFI

9. PFI

NERM specifies the number of error messages
to be written on the error message queue
file before they are dumped on the error
message device.

DEVICE specifies the sequential file device
code (NOD argument for PLINP/PLOUT subrou-
tines) to which the diagnostic messages are
to be written.

UMOD specifies the EBCDIC name of a user-
error processing module to be called by the
error processor "DFJPERRS" when an error is
processed.

SHORT specifies that the SHORT form of the
diagnostic is to be wused when an error
message is produced.

LONG specifies that the LONG form of the
diagnostic message be used when an error
message is produced.

STACK specifies that the system is to
optimize error message processing by using
the error message stack in PFILE to record
messages until "DFJPERRS" can be called
without a checkpoint.

IMM specifies that "DFJPERRS" is
invoked at the time the error occurs.

to be

DFI specifies that a phrase abort condition

-is not to occur on certain error conditions

DIAGNOSTICS 53

detected by the

subroutines.

DYNAMIC file support

PFI specifies trat a phrase abort condition
is not to occur on certain error conditions
detected by the PERMANENT file support
subroutines.

If both SHORT and LONG are specified, the
LONG-form option is used. If both STACK
and IMM are specified, the IMMEDIATE option
is used.

Use of the operands PFI and DFI requires
the application program to process the
error conditions that would normally abort
the PLAN statement. If these operands are
specified and the required programming is
not present, unpredictable results can
occur. What generally takes place is the
following: When the error is detected, the
file control block is closed, and on the
next reference to the file, an error mes-
sage indicating an unopened file control
block 1is issued. This masks the real
reason for the error condition.

STANDARD ERROR PROCESSING

Normally, the PLAN system will process
errors at SHORT form and in a stacked mode.
The reason for using this technique is that
the size of the PLAN error processing
module is such that if the program area is
not free, a checkpoint is required to load
and execute DFJPERRS. Delaying the call to
DFJPERRS until the program area 1is free
eliminates the need for a checkpoint and so
improves performance. The error message
stack has a finite limit on the number of
messages it can contain, and in cases where
the stack overflows, a checkpoint is forced
and DFJPERRS empties the stack.

POST-LISTING OF ERRORS

Some applications may require that error
messages be suppressed until end of job.
An example of this is a compiler, such as
FORTRAN or COBOL, where the error messages
are 1listed at the end of the compilation,
The PLAN system provides this facility to
the user as a standard option. In order to
use this facility the PLAN system must have
available PLAN DYNAMIC drive 0. DYNAMIC
file 255 is used as an error message queue
file. To invoke this facility the user
must specify a value in system Switch Word
11.

The value in this switch word is used by
the error processor "DFJPERRS" to determine
the number of error messages to write on
the error message queue file (drive 0, file
255) before dumping the file on an output
device.

54 DIAGNOSTICS

The message records on this file are writ-
ten as 21-word or 124-character records.
The first word of the record is an integer
from -3 to +12, and is used as an argument
for the PCCTL subroutine to effect carriage
control for the data line that is contained
in words 1-24 (characters 4-123). The data
portion must be alphameric data in the A4
format. The data area of records produced
by DFJPERRS contains the PLAN system diag-
nostic message text. The user may write
records directly to this file from an
application program by using the PLAN sub
routine EWRIT.

The PLAN error message queue file is dumped
on the diagnostic device under the follow-
ing conditions:
1. The number of diagnostics messages
added to the queue file exceeds
NERM.
2. The subroutine ERLST is called.

3. The end of PLAN input (/%) is read
by DFJPSCAN.

4. A level 0 phrase is processed.

5. A level 1 phrase is processed.

USER-ERROR EXIT PROCESSING

If a user module name 1is specified in
system Switch Words 11 and 12, by specify-
ing UMOD'NAME', the PLAN error processor

DFJPERRS creates an arry DFJPERRS creates
an array in ‘erasable COMMON'* that
describes the error and then invokes the

named module through the PLAN 'LOCAL' faci-
lity. This array is in the following
format:

BYTE CONTENTS
0-7 Program name
nostic call

issuing diag-

8-11 Error number (N1 from error
subroutine call)
12-15 Error code (N2 from error
subroutine call)
16-20 ID from cc. 76-80

21 hexadecimal FF=system error,
O=user error
22 hexadecimal
O=continue
23 (unused)

FF=abort,

24-27 Sequence
28-31 Length of literal in
characters

32-107 Literal text
108-111 Character count of phrase
112-561 Phrase text

A program written as a user-error processor
may not use the following PLAN subroutines
ERROR, ERRAT, ERREX, ERRAT, ERLST, LREPT,

LCHEX, LREPT and PUSH. Any error detected
while a user-error processing module is in
control causes cessation of all ‘error
processing.

The UMOD and the NERM or DEVICE specifica-
tions are mutually exclusive. Therefore,
the automatic PLAN facility for post-
listing of errors is not available, if a
user-error processing module is used. The
same effect may be produced, however, by
using the subroutine EWRIT to create an
error message queue file. A dump of the
file may be forced by using the LIST
subroutines to place the name "DFJPEDMP"
into the pop-up 1list. This module will
force a dump of the error message queue
file and will also terminate the current
statement.

PHRASE DIAGNOSTICS

The following group of diagnostics is
generated from errors detected by DFJPHRAS
(the ADD PHRASE processor). ECODE (m) for
all diagnostics generated by DFJPHRAS is a
pointer to the position at which the error
condition was detected, except as otherwise
noted. Position one is the first character
of the command. The format of the descrip-
tions of the diagnostics is:

e DIAGNOSTIC NUMBER(n), ACTION CODE,
DIAGNOSTIC e
REASON

e 21 *C* PHRASE TO DELETE CANNOT BE FOUND e
A phrase that is to be deleted is not
currently in PFILE. This can result from
a DELETE PHRASE or an ALTER PHRASE. If
it results from an ALTER PHRASE, the ADD
PHRASE aspect of the command is not
suppressed.

e 22 *R* NO ROOM TO ADD PHRASE e
There is no contiguous vacant area in
PFILE large enough to allow the current
phrase to be added. PFILE must be reor-
ganized, reestablished, or expanded.

Usually, some space can be gained by
reorganizing the file without changing
its size. This is accomplished by delet-
ing the phrases and then re-adding them.

Additional space may be provided by
enlarging PFILE if it is currently small-
er than the maximum size. PPILE must be
at least 14 records and not more than 268
records in length. This will also
require that the phrases for the system
be re-added

e 23 *R* PHRASE ALREADY DEFINED e
An attempt to add a phrase that already
exists in PFILE has been made. If the

phrase to be added is a replacement for
the existing phrase, the existing phrase
must be deleted before the new phrase can
be added.

24 *R* INVALID FORMAT IN PROGRAM LIST e

A program 1list defined with +the ADD
(ALTER) PHRASE is found to contain inval-
id syntax. This can result from an
unrecognizable numeric or special
character.

25 *R* INVALID FORMAT IN USER-EXIT PRO-

GRAM LIST e

This error may result from:

a. A program name not starting with an
alphabetic character

b. More than three programs in the list

(Note that errors in the user-exit pro-
gram list may also be diagnosed as error
number 24.)

26 *R* KEYWORD ENTRY NOT TERMINATED BY
COMMA OR SEMICOLON e

A keyword (symbol table entry, PROGRAM,
VERB, EXIT, or LEVEL) has been collected,
but the keyword and associated data was
not terminated with a comma or semicolon.

27 *R* LEVEL NUMBER GREATER THAN 4 e
The number collected following the speci-
fication word LEVEL is greater than 4.

28 *R* NO SYMBOL DEFINED AFTER EXECUTION-
DEFINED SYMBOL SUBSCRIPT EXPRESSION e

A symbolic subscript expression requires
a symbol (name) to be defined. The
required symbol has not been found.

29 *R* CONSTANT SUBSCRIPT ZERO OR LESS
THAN —-15 e
A constant subscript has been encountered
that does not describe a valid location
in the system switch words or communica-
tion array.

30 *R* IMPLIED DO SUBSCRIPT NOT FOLLOWED
BY SINGLE-VALUED CONSTANT e

The value following an implied DO
subscript was not found to be a single-
valued constant, that is, numeric, +, or
-. This error can result from an implied
DO subscript followed by:

a. A literal default, that is, "ABC"
b. No default value

31 *R* SYMBOL SUBSCRIPT GREATER THAN 8176
OR 511 WITH P-VALUE e

A constant subscript that defines a sym—
bol exceeds the maximum allowable value
of 8176 without scale values (P values)
or 511 after scale values.

32 *R* EXECUTION-DEFINED SYMBOL FOLLOWED

BY IMPLIED SYMBOL e
A symbol that is implied follows a symbol

DIAGNOSTICS 55

associated with. a
defined) subscript.
implied symbol
subscript.

symbolic (execution-
There may not be an
after a symbolic

33 *R* PHRASE DEFINITION INVALID e

A phrase is not defined properly, that is
the phrase name is syntactically incor-
rect. This can be caused by:

a. Failure to end the phrase definition
with a comma.

b. Use of nonalphabetic characters within
the phrase definition.

34 *R* SUBSCRIPT FOR DATA VALUE GREATER
THAN 16,368 e

A communication array subscript greater
than 16,368 has been encountered.

35 #*R* INVALID CHARACTER o

The ECODE pointer indicates a character
that is invalid in a phrase definition.
This error can result from an error
within the phrase further to the left
that was undetectable at that phase of
the scan.

36 *R* BCD LEFT PARENTHESIS 1IN LOGICAL
EXPRESSION e

All characters in a 1logical expression
must be punched in the EBCDIC code.

37 *R* USER~-EXIT NUMBER GREATER THAN 3 e
User exits must be 1, 2, or 3.

38 *R* FORMULA NUMBER USED BEFORE FORMULA
BLOCK e

A conditional exit includes a formula
number, but a $n introducing the expres-
sion area has not been encountered.

39 *R* FORMULA NUMBER ZERO OR GREATER
THAN 1024 e

The valid range for formula numbers is
from 0 to 1024 in a phrase definition.

40 *R* UNDEFINED FORMULA NUMBER IN FORMU-
LA AREA e

A transfer type formula has been encoun-
tered that references a nonexistent for-
mula number. Ecode is set to the formula
number found to be in error.

41 #*R* MULTIPLE DEFINITION OF FORMULA
NUMBER IN FORMULA AREA e

More than one formula is identified with
the same number within this phrase.

42 *R* INVALID FORMAT IN FORMULA AREAR e
Formula numbers must be followed by:

a. Another formula number

b. Expression

C. Symbol

d. Semicolon

e. Comma

56 DIAGNOSTICS

43 *R* P-VALUE GREATER THAN 7 e
A scale factor greater than plus seven or

less than minus seven has been
encountered.
44 *R* KEYWORD 'PROGRAMS' NOT FOLLOWED BY

PROGRAM LIST e

A program specification has been proc-
essed, but a program 1list is missing.
This can result from the next significant
character not being a quotation mark.

45 *R* INVALID

EXPRESSICON o

A syntax error has been processed in a

relational expression. Possible reasons

for this error are:

a. Unbalanced parentheses

b. A semicolon invalid within (not at end
of) an expression

FORMAT IN RELATIONAL

46*R* PROGRAM NAME CONTAINS TOO MANY
CHARACTERS e
The maximum allowable length for a pro-

gram name is eight characters.

47 *R* SEMICOLON IN LITERAL OR EMPTY

LITERAL e

A semicolon is an invalid literal
character. This diagnostic may result
from failure to include the terminal

quotation mark of a literal. The phrase
terminating semicolon may then appear to
be within the 1literal. A zero-length
literal is invalid.

48 *R* INVALID FORMAT IN SYMBOLIC
SUBSCRIPT EXPRESSION e

The indicated position contains a
character that forms an invalid context
for a subscript (arithmetic) expression.

These conditions include:

a. Adjacent arithmetic operators

b. Unmatched parenthesis

c. Invalid characters

d. Expression does not end with comma

49 *R* USER EXITS NOT ALLOWED ON NEGATIVE
SUBSCRIPTS e

An attempt has been made to define a user
exit to store data in the switch area.

50 *R* INVALID FORMAT 1IN
ARITHMETIC EXPRESSION e
ECODE points to a character that may not
be contained in the context of a logical
or arithmetic expression. These condi-
tions include:

a. Adjacent arithmetic operators

b. Unmatched parenthesis

c. Invalid characters

d. Expression does not end with comma

LOGICAL OR

51 *R#* INVALID FORMAT IN SUBSCRIPT
EXPRESSION e
The indicated position contains a

character that forms an invalid context
for a subscript (arithmetic) expression.

These conditions include:

a. Adjacent arithmetic operators

b. Unmatched parenthesis

c. Invalid characters

d. Expressicn does not end with comma

52 *R* EXPRESSION SUBSCRIPT GREATER THAN
8176 OR 511 WITH P-VALUE e

The symbolic subscript that is associated
with a phrase-defined expression is
greater than 8176 (if a scale factor is
not defined) or greater than 511 (if a
scale factor is defined).

58 *R* NUMBER OUTSIDE ALLOWABLE FLOATING-
POINT RANGE e

A number has been given that cannot be
represented in the floating-point repre-
sentation of the PLAN system.

64 *R* PHRASE ENTRY TOO LARGE e

The total phrase size 1is greater than
1024 bytes and will not be added, or one
of the eight internal phrase tables is
longer than 512 bytes. ECODE is either
the total size of the phrase or the PFILE
internal table number that is too large.

65 *R* ILLEGAL SYMBOL - CANNOT BE 'E' e

A data name has been defined to be E. E
is not allowed because of syntactical
confusion with the exponential indicator
E.

66 *R* INVALID

SUBSCRIPT e

A syntactical error has been encountered.

Reasons for this diagnostic may be:

a. The increment (I3) is negative.

b. The limit (I;) is negative.

c. The limit divided by the increment is
not a whole number.

d. (1) or (I,) is
constant.

FORMAT IN IMPLIED DO

not a numeric

68 *R* LEG OF CONDITIONAL EXPRESSION NOT
EXPRESSION OR FORMULA NUMBER e

The TRUE action leg or FALSE action leg
of a conditional expression is not an
expression (example: ?=B*100) or a for-
mula number (example: ?255).

70 *R* CHECK-ENTRY SUBSCRIPT GREATER THAN
8176 =

The constant subscript that is associated
with a check entry is greater than 8176.

71 *R* INVALID
LITERAL e

A check entry must be
format when the
exercised:

FORMAT IN CHECK-ENTRY
in the following
literal option is

*A'LITERAL'
*C'LITERAL"
*RC (SUBSCRIPT)

The following condition may have been
detected:

a. LITERAL in improper format

b. Quotation marks unmatched

c. A subscript greater than 16,383

72 *R*
LIST e
An unequal number of 1left and right
parentheses have been found in a program
list.

UNBALANCED PARENTHESIS IN PROGRAM

80 *C#* UNREFERENCED FORMULA NUMBER IN
FORMULA AREA #**UPDATE NOT SUPPRESSED** e
The formula area has been found to con-
tain a formula number that is not
referenced in another expression. ECODE:
Formula number that is unreferenced.

EXECUTION-TIME DIAGNOSTICS

The

following errors are detected during

execution of logic modules operating within

the PLAN environment.
errors
subsequent level error recovery.

All 100 series
result in a PLAN "Phrase Abort" and
The for-

mat of the definitions for this section is:

NUMBER *ACTION CODE* DIAGNOSTIC e
PROGRAM INDICATED

ECODE MEANING

REASON FOR ERROR

101 *R* PROGRAM NAMED NOT IN PLAN
LIBRARY e

Program: Program name not found

ECODE: Unused.

Reason: The named program was not found

in the search of the PLAN
library PDS.
102 *R* INVALID COMMON DEFINITION

ENCOUNTERED e

Program: Program name.

ECODE: Unused.

Reason: The length of COMMON for the
named program is less than 640
FORTRAN (32-bit) words.

103 *R* PROGRAM TOO LARGE FOR AVAILABLE

MEMORY e

Program: Program name.

ECODE: Unused.

Reason: The size of the name program

exceeds the size of the avail-
able area for program loading.

104 *R* PROGRAM NAME IN INVALID FORMAT e

Program: ‘esessseee' (Unpredictable)
ECODE: Unused.
Reason: An invalid program name has

been found in the pop-up list.
105 #*R* PROGRAM FORMAT INVALID e

Program: Program name.
ECODE: Unused.

DIAGNOSTICS 57

No
D
fu
fi
in
re

58

Reason: The named program is in over-

lay, scatter mode or contains
TESTRAN symbol cards on 0s
PLAN.

110 *R* CHECKPOINT PROCESSING INVALID e

Program: Last program entered.
ECODE: Unused.
Reason: a. An * was encountered in the

pop-up list without a check-
point being in effect.

b. A checkpoint call when ei-
ther there is no checkpoint
file or insufficient room to
write the complete
checkpoint.

111 #*R¥ OVER 50 NAMES IN POP-UP LIST e

Program: Last program entered.
ECODE: Unused.
Reason: An attempt to place more than

50 names in the pop-up list has
been made.

112 #*R* LOCAL PROCESSING INVALID e

Program: Program issuing CALL LOCAL.

ECODE: Unused.

Reason: a. There is not room to load
The program called as a
LOCAL.

113 *R* LSAV OR LRLD PROCESSING INVALID e

Program: Program issuing loader call.

ECODE: Unused.

Reason: On System/360 all calls to LSAV
or LRLD are invalid.

te: In all 120-130 series diagnostics

(1) is set to a closed status. Any

rther attempt to read or write to the

le without reopening the file will result
a phrase abort, and PLAN level error
covery will be invoked.

120 *R* UNOPENED FILE CONTROL BLOCK ON
CALL READ/WRITE e

Program: Last program entered.
ECODE: File number.
Reason: ID(1) in the file control block

is in a closed status.

122 *R* INVALID DRIVE CODE OR FILE CON-
TROL BLOCK ON CALL FIND/RELES e

Program: Last entered.
ECODE: Unpredictable.
Reason: a. File number is zero.

b. Drive code 1is negative or

greater than 7.

123 *R* INVALID FILE CONTROL BLOCK OCN
CALL READ/WRITE e

Program: Last program entered.
ECODE: Unpredictable.
Reason: a. ID(1) has been altered.

b. The file specified by ID(1)
has been released because of

DIAGNOSTICS

an allocation request for a
higher-priority file.

c. The file specified by 1ID(1)
was automatically released
because a phrase of higher
priority than the file was
processed. This can apply
only to ID control blocks
that reside in COMMON
through phrase boundaries.

124 *R* INVALID
READ/WRITE e

KDIS/KOUNT ON CALL

Program: Last program entered.
ECODE: File number.
Reason: KDIS or KOUNT is negative or

KDIS+KOUNT exceeds maximum file
size.

125 *R* DYNAMIC DRIVE NOT MOUNTED e

Program: Last entered.
ECODE: File number.
Reason: A DYNAMIC drive required by a

CALL FIND/READ/WRITE/RELES is
not available to the system.

126 *R* INSUFFICIENT SPACE FOR ALLOCATION
ON CALL FIND/WRITE e

Program: Last entered.
ECODE: File number.
Reason: a. On a CALL FIND insufficient

space is available to satis-
fy the NALLO argument.

b. On a CALL WRITE insufficient
space is available for
secondary allocation.

130 *R* UNOPENED FILE CONTROL BLOCK ON
CALL RDATA/WDATA e

Program: Last program entered.
ECODE: File number.
Reason: ID(1) in the file control block

was not initialized.

132 #*R* INVALID DRIVE CODE OR FILE CON-
TROL BLOCK ON CALL GDATA e

Program: Last entered.
ECODE: Unpredictable.
Reason: a. File number is zero.

b. Drive code is
greater than 7.

c. File name 1is
librarye.

negative or

not in PLAN

133 *R* INVALID FILE CONTROL BLOCK ON
CALL RDATA/WDATA e

Program: Last program entered.
ECODE: Unpredictable.
Reason: ID(1) has been altered

134 *R* INVALID
RDATA/WDATA e

KDIS/KOUNT ON CALL

Program: Last program entered.
ECODE: File number.
Reason: KDIS or KOUNT is negative or

KDIS + KOUNT exceeds maximum
file size.

135 *R#* PERMANENT DRIVE NOT FOUND e

Program: Last program entered.

ECODE: File number.

Reason: The PERMANENT drive is not
defined on a PLFSYnn DD card.

140 +#*R* INVALID RECORD LENGTH ON CALL

PSORT/PMERG e

Program: DFJIPSRTA/DFJIPMERG

ECODE: File number.

Reason: Word 1 of the sort control list
is minus or greater than 512.

141 #*R#* INVALID SORT CONTROL FIELD COUNT

ON. CALL PSORT/PMERG e

Program: DFJPSRTA/DFJPMERG

ECODE: File number.

Reason: The number of sort fields is
specified as negative, zero, or
greater than 99 or extends
byeond the end of COMMON.

142 *R#* INVALID SORT CONTROL FIELD ON

CALL PSORT/PMERG e

Program: DFJPSRTA/DFJIPMERG

ECODE: File number.

Reason: a. Word 1 of the sort control
field is out of range (-6 to
+6).

b. Boundary alignment of dis-
placement is invalid for
type of sort.

c. The sort field extends
beyond the 1length of the
record.

d. The number of element speci-
fied is not a positive
integer.

143 *R* INSUFFICIENT FILE SPACE TO

EXECUTE PMERG FUNCTION e

Program: DFJPMERG

ECODE: Merge file number.

Reason: The required space for the out-
put file of the merge is not
available.

144 *R* INSUFFICIENT WORK AREA IN MANAGED
AREA FILE FOR PSORT FUNCTION e

Program: DFJPSRTA

ECODE: File number.

Reason: Self-explanatory

145 *R* MERGE FILE OUT OF SEQUENCE ON
CALL PMERG e

Program: DFJPMERG

ECODE: File number.

Reason: Self-explanatory.

146 *R* UNOPENED FILE CONTROL BLOCK ON
CALL PSORT/PMERG e

Program: Program calling PSORT/PMERG
ECODE: File number.

Reason: The file control block speci-

fied is found not to be proper-
ly opened.

147 *R* FILE TO SORT DOES NOT EXIST e

Program: DFJPSRTA

ECODE: File number.

Reason: Specified file cannot be found
on the drive specified in the
file control block.

150 *R* INVALID RECORD LENGTH ON CALL

GSORT/GMERG e

Program: DFJGSRTA/DFJGMERG

ECODE: Record length.

Reason: Word 3 of the sort control list
is minus or greater than 512.

151 *R* INVALID SORT CONTROL FIELD COUNT

ON CALL GSORT/GMERG e

Program: DFJGSRTA/DFJIGMERG

ECODE: Sort field count.

Reason: The number of sort fields is
specified as negative, zero, or
greater than 98.

152 *R# INVALID SORT CONTROL FIELD ON

CALL GSORT/GMERG e

Program: DFJGSRTA/DFJIGMERG

ECODE: Sort control field sequence.

Reason: a. Word 1 of tue sort control
field is out of range (-6 to
+6).

b. Boundary aligment of dis-

placement is invalid for
type of sort.

c. The sort field extends
beyond the 1length of the
record.

d. The number of elements spec-

ified is not a positive
integer.
153 *R* INSUFFICIENT FILE SPACE TO

EXECUTE GMERG FUNCTION e

Program: DFJGMERG

ECODE: Merge file number.

Reason: The required space for the
merged file is not available.

154 *R#* INSUFFICIENT WORK AREA IN MANAGED
AREA SAVE FILE FOR GSORT FUNCTION e
Program: DFJGSRTA

ECODE: File number.

Reason: Self-explanatory.

155 *R* MERGE FILE OUT OF SEQUENCE ON
GMERG e

Program: DFJGMERG

ECODE: File number.

Reason: Self-explanatory.

156 *R* UNOPENED FILE CONTROL BLOCK ON
CALL GSORT/GMERG e

Program: Program calling GSORG/GMERG.
ECODE: File number.

DIAGNOSTICS 59

Reason:

The file control block spec-
ified is found not to be prop-
erly opened.

171 *R+* INVALID SAVED STATEMENT EXECUTION

FILE »
Program:
ECODE:
Reason:

DFJPSTSV

File number.

The header of the indicated
file is found not to be wvalid
for a statement save file.

172 *R* STATEMENT TO EXECUTE NOT IN SAVE

FILE e
Program:
ECODE:

Reason:

DFJIPSTSV

The number of the statement to
be executed from the save file,
A statement has been indicated
for retrieval from the state-
ment save file but cannot be
found.

173 *R* PROGRAM ERROR IN SAVED STATEMENT
RETRIEVAL e

Program:
ECODE:

Reason:

DFJIPSTSV

The invalid value causing the
error.

The saved statement file has
been destroyed or:- overwritten.

180 *R* INVALID LITERAYL FILE e

Program:
ECODE:
Reason:

DFJPDIAG or DFJPLITL

The file number.

A file defined for literal
processing cannot properly be
opened by GDATA.

PSCAN DIAGNOSTICS

The following diagnostics are generated as
result of errors detected by PSCAN while
processing the phrases and language defini-

a

tion file (PFILE).

Format of the diag-

nostic descriptions is the same as that for
the ones in the preceding section.

201 *R* PHRASE SKIPPED e

ECODE:
Reason:

Action:

Unused.

DFIJPSCAN has caused the state-
ment to be bypassed because of
an error in a preceding command
upon which this command is
dependent.

The next command is processed.

210 *R* LEVEL 0 PHRASE NOT ENCOUNTERED e

ECODE:
Reason:

Action:

Cursor.

A level 0 phrase was not
encountered following the
invoking of PLAN.

Statements are skipped until a

level 0 phrase is encountered.

220 *R* LEVEL 1 PHRASE NOT ENCOUNTERED e

ECODE:
Reason:

Cursor.
The first recognizable command

60 DIAGNOSTICS

Action:

221 *R*
ECODE:
Reason:

Act.on:

222 *R#*
ECODE:

Reason:
Action:

223 *R#*
ECODE:

Reason:
Action:
224 *R*
ECODE:

Reason:
Action:
225 *R*
ECODE:

Reason:
Action:
226 *R*
ECODE:

Reason:
Action:
227 *R*
STREAM

ECODE:

Reason:

in a job stack depends logical-
ly on a statement that was not
found. The preceding
statement(s) may have resulted
in a code 221 diagnostic.
Statements are skipped until a
level 1 phrase is encountered.
recog-nized

UNDEFINED PHRASE e

Cursor.

The command cannot be recog-
nized in total or in part as a
phrase defined in the systems
dictionary. The statement scan
is abandoned.

The scan of this
terminated.

command is

STATEMENT OVER 450 CHARACTERS e

Cursor.

A semicolon may be mispunched
or missing.

Statement scan is terminated.

PLAN WORD FALSE e

A subscript indicating the par-

ticular communication array
location that was tested tor
not FALSE,. .

The tested location was found

to be FALSE.
Level error recovery and skip-
ping is initiated

PLAN WORD NOT REAL e

A subscript indicating the com-
munication array location that
was found to be TRUE or FALSE.
A word required to be real is
TRUE or FALSE.

Level error recovery and skip-
ping is initiated.

PLAN WORD NOT TRUE e

A subscript indicating the com-
munication array location that
was found to be FALSE or REAL.
A word required to be TRUE is
FALSE or REAL.

Level error recovery and skip-
ping is initiated.

PLAN WORD NOT FALSE e

A subscript representing the
communication array that is
found to be TRUE or REAL.

A word required to be FALSE is
found to be TRUE or REAL.

Level error recovery and skip-
ping is initiated.

UNDEFINED SYMBOL IN INPUT
A cursor pointing to the end of
the symbol in question.

A symbolic data name has been
misspelled, or a comma was

Action:

228 *R*
DEFINED
ECODE:

Reason:

Action:

229 *R*
DEFINED
ECODE:

Reason:

Action:

230 *R*
ECODE:

Reason:

Action:

231 *R*
ECODE:

Reason:

Action:

232 *R¥ EXECUTION-DEFINED

omitted after the command in a
statement. No symbol table
entry can be found for the word

in this statement or in any
statement upon which this
statement is dependent. Fai-

lure to terminate a command
with a semicolon results in the
next command being interpreted
as data for the command that
precedes it.

The command is not executed,
but the scan is completed.

UNDEFINED SYMBOL 1IN EXECUTION-
SYMBOL EXPRESSION e

The sequence number of the
expression in the phrase
definition.

A symbolic subscript expression
contains an undefined symbol.

The scan is completed and the
level error recovery is
initiated.
UNDEFINED SYMBOL IN PHRASE-
EXPRESSION e
The sequence number of the
expression in the phrase
definition.

A symbol used in a phrase-
defined expression is found to
be undefined.

The scan is completed and the
level error recovery is
initiated.

OVER 8 VERBS IN INPUT STATEMENT e

A pointer to the end of the
ninth verb.

A command may not contain more
than eight verb phrases and an
object phrase.

Statement scan is terminated.

DITTO WORD IN COMMON NOT ALPHA e

A pointer to the communication
array word that is to be sub-
stituted in a command for a
ditto mark.

Using the ditto character in a
command depends on the defini-
tion of the preceding command.
The word that is to be substi-
tuted is not alphabetic.

The scan is terminated and
level error recovery is
initiated.

SYMBOL

SUBSCRIPT NOT POSITIVE e

ECODE:

Reason:

The sequence of the subscript
expression within the phrase
definition.

Evaluation of a symbolic
subscript within the phrase
definition has yielded a nega-
tive or zero result indicating

JAction:

e 233

R EXECUTION-DEFINED

an invalid communication array
location.

The scan is completed and level
error recovery is initiated.

SYMBOL

SUBSCRIPT GREATER THAN 8176 OR 511 WITH

P-VALUE e
ECODE:

Reason:

Action:

e 234 *R*

A number
sequence of
subscript in
definition.
The symbolic subscript expres-
sion, when evaluated, is found
to be too large.

indicating the
the symbolic
the phrase

The scan 1is completed and the
level error recovery is
initiated.

INSUFFICIENT ROOM 1IN MANAGED

ARRAY SAVE FILE e

ECODE: Number of additional words
needed in PDATA file.

Reason: The file specified for saving
the managed communication array
is too small to allow saving of
the context of the current
managed array.

Action: The scan 1is completed and the
level error recovery is
initiated.

e 235 *R* MANAGED ARRAY DEFINITION TOO

LARGE e

ECODE: The number of words in excess
of the allowable size.

Reason: A communication array has been
specified that cannot be accom-
modated by the current
partition/machine size.

Action: The array is not saved or
restored by PLAN data manage-
ment, and the array is not
initialized to FALSE at level 1
phrase time.

e 236 *R¥ INITIALIZATION VALUE SUBSCRIPT

OUTSIDE OF COMMON e

ECODE: Value of subscript.

Reason: The CAP index for a default
value is outside the current
communication array. -

Action: The value is not stored.

e 237 *R* DATA PLACEMENT FROM INPUT STREAM

OUTSIDE OF COMMON e

ECODE:
Reason:

Action:

e 239 #*R* DATA

Input cursor.
The CAP index of an input value
is outside the current communi-
cation array specification.

The value is not written to the
communication array.

PLACEMENT

FROM PHRASE-

DEFINED EXPRESSION OUTSIDE OF COMMON e

ECODE:
Reason:

Expression number.
The CAP index for storage of
the results of an expression

DIAGNOSTICS 61

evaluation is outside the cur-
rent communication array
specification.

The value is not written to the
communication array.

Action:

240 *R* FIRST CHARACTER IN INPUT STREAM
AFTER PHRASE NOT COMMA, COLON, OR
SEMICOLON e

ECODE: A cursor to the unexpected
character.
Reason: The character required to

start/terminate data collection
was not encountered.

Action: The scan is completed and the
level error recovery is
initiated.

241 *R* UNRECOGNIZABLE CHARACTER IN INPUT
STREAM e

ECODE: A cursor to the unrecognizable
character.
Reason: A character cannot be interro-

gated in this context. It may
have resulted from an illegal
multipunch.

Action: The scan 1is completed and the
level error recovery is
initiated.

242 *R* SEMICOLON IN LITERAL OR EMPTY

LITERAL e

ECODE: A cursor pointing to the inval-
id semicolon.

Reason: Either the literal closure
character is missing or a semi-
colon is present within the
literal.

Action: The scan is completed and level
error recovery is initiated.

243 *R* NUMBER OUTSIDE ALLOWABLE

FLOATING-POINT RANGE e

ECODE: A cursor to the end of the
offending constant.

Reason: A number larger than can be
contained in a floating-point
number has been encountered.

Action: The scan is completed and level

error recovery is initiated.

244 *R* IMPLIED DO NOT FOLLOWED BY SINGLE
VALUED CONSTANT e

ECODE: A pointer to the position proc-
essed when the error was
detected.

Reason: A single 1logical or numeric
value does not follow an
implied DO definition.

Action: The scan is completed and level

error recovery is initiated.

245 *R* OVER 1000 EXPRESSION GO-TO'S

EXECUTED e

ECODE: A number indicating the
sequence of the expression
found to be in error or input
cursor.

62 DIAGNOSTICS

-Action:

Reason: Only 1000 formula GO-TO's are
allowed within any phrase.
This limit has been exceeded.

Action: The scan is completed and level

error recovery is initiated.

246 *R* CHECK-ENTRY SUBSCRIPT OUTSIDE QF
COMMON e

ECODE: Subscript value.

Action: The indicated communication
array location is not checked.
The CAP index requiring execu-
tion of a check is outside the
current communication array
specification.

Reason:

247 *R* DATA RETRIEVAL OUTSIDE OF COMMON
Program: PSCAN

ECODE: A cursor to the input stream
subscript.
Reason: An attempt has been made to

access data outside the current
communication array.

A 1.0 is supplied for arithmet-
ic calculations and 0.0 for
relational calculations. The
scan 1is completed and 1level
recovery is initiated.

248 *R* DATA RETRIEVAL OUTSIDE OF = COMMON
IN EXECUTION-DEFINED SYMBOL EXPRESSION e
ECODE: The expression number.

Reason: An attempt has been made to
access data outside the current
communication array.

A 1.0 is supplied for arithmet-
ic calculations and 0.0 for
relational calculations. The
scan is completed and 1level
recovery is initiated.

Action:

249 *R* DATA RETRIEVAL OUTSIDE OF COMMON
IN PHRASE-DEFINED EXPRESSION e

ECODE: The expression number.

Reason: An attempt has been made to
access data from a 1location
outside the current communica-
tion array specification.

Action: A 1.0 is supplied for arithmet-

ic calculations and 0.0 for
relational calculations. The
scan is completed and level
recovery is initiated.

255 *R* STATEMENT SAVE INVALID, PHRASE
PUSHED FROM CHECK-~ENTRY e

ECODE: CAP location being checked.

Reason: Implicit statement saving may
not be combined with check
entry pushed phrases.

Action: The statement is not saved; the
PLAN error recovery is
initiated, but the phrase is
pushed.

263 *R* INVALID FORMAT IN INPUT STREAM
EXPRESSION e

ECODE: A cursor to the offending

position,

Reason: An input stream expression is
found to contain improper syn-
tax. Reasons for this diag-
nostic may be:

a. Adjacent arithmetic oper-
ators

b. Operators following paren-
thesis

c. Parenthesis following oper-
ators-

d. Invalid characters
The scan is completed and level
error recovery is initiated.

Action:

264 *R* INVALID FORMAT - 1IN
DEFINED SYMBOL EXPRESSION e

EXECUTION-

ECODE: A number indicating the
sequence of the expression in
error.

Reason: A syntax error has been

detected in the symbolic sub-
script defined at ADD PHRASE
time. Reasons for this diag-
nostic may be:

a. Rdjacent arithmetic oper-
ators

b. Operators following paren-
thesis

c. Parenthesis following oper-
ators

d. Invalid characters
The scan is completed and level
error recovery is initiated.

Action:

265 *R* INVALID FORMAT IN PHRASE-DEFINED
EXPRESSION e

ECODE: A number indicating the
sequence of +the expression in
error.

Reason: A syntax error has been

detected 1in the phrase defini-
tion of an expression. Reasons
for this diagnostic may be:

a. Adjacent arithmetic oper-

ators

b. Operators following paren-
thesis

c. Parenthesis following oper-
ators

d. Invalid characters
The scan is completed and level
error recovery is initiated.

Action:

266 *R* BCD LEFT PARENTHESIS USED IN

INPUT STREAM LOGICAL EXPRESSION e

ECODE: A pointer to the erroneous
parenthesis.

Reason: All logical expressions must be
punched in EBCDIC code.
Action: The scan is completed and level

error recovery is initiated.

268 *R* BCD LEFT PARENTHESIS USED IN

PHRASE-DEFINED LOGICAL EXPRESSION e

ECODE: A number indicating the
sequence number of the expres-
sion in error.

Reason: Logical expressions must be
punched in EBCDIC code.
Action: The scan is completed and level

error recovery is initiated.

269 *R INPUT STREAM EXPRESSION TOO COM-
PLICATED TO BE ANALYZED e

ECODE: A pointer to the position at
which error was detected.

Reason: Too many levels of parenthesis
have been encountered.

Action: The scan is completed and level

error recovery is initiated.

270 *R* EXECUTION-DEFINED SYMBOL EXPRES-

SION TOO COMPLICATED TO BE ANALYZED e

ECODE: A number indicating the
sequence of the expression
found to be in error.

Reason: Too many levels of parenthesis
have been encountered.
Action: The scan is completed and level

error recovery is initiated.

271 *R* PHRASE-DEFINED EXPRESSION TOO

COMPLICATED TO BE ANALYZED e

ECODE: A number indicating the
sequence of the expression
found to be in error.

Reason: Too many levels of parenthesis
have been encountered.
Action: The scan is completed and level

error recovery is initiated.

272 #*R* INVALID FORMAT IN INPUT STREAM
LITERAL RELATIONAL EXPRESSION e

ECODE: A pointer to the character
processed when the error was
discovered.

Reason: A syntax error in an alphabetic
relational expression. This
diagnostic may result from
expressions of the nature:

a. 5="a"
b. A>"B"
c. B<"C"
Action: The scan is completed and level

error recovery is initiated.

274 *R* INVALID FORMAT IN PHRASE-DEFINED
LITERAL RELATIONAL EXPRESSION e
ECODE: A number indicating the
sequence of the expression
causing the error.
Reason: A syntax error in a phrase-
defined relational. This diag-
nostic may result from expres-
sions of the nature:
a. 5="A"
b. A>"B"
c. BK"C"
The scan is completed and level
error recovery is initiated.

Action:

275 *R* INVALID FORMAT 1IN INPUT STREAM

SUBSCRIPT EXPRESSION e

ECODE: A pointer to the character
processed when error was

DIAGNOSTICS 63

64

detected.

A syntax error in a symbolic

subscript or a subscript

expression evaluation yields a

negative result. Reasons for

this diagnostic may be:

a. Result of subscript expres-
sion is not positive.

b. A 1logical value was encoun-
tered during the evaluation

c. An Implied Do was encoun-
tered in the evaluation of a
subscript expression.

The scan is completed and level

error recovery is initiated.

Reason:

Action:

276 *R* INVALID FORMAT IN EXECUTION-
DEFINED SYMBOL SUBSCRIPT EXPRESSION e

ECODE: A pointer to the character
processed when the error was
detected.

Reason: A syntax error in symbol
expression.

Action: The scan is completed and level

error recovery is initiated.

277 *R* INVALID FORMAT IN PHRASE-DEFINED
SUBSCRIPT EXPRESSION e

ECODE: A number indicating the
sequence of the expression
found to be in error.

A syntax error.

The scan is completed and level
error recovery is initiated.

Reason:
Action:

278 *R* UNBALANCED PARENTHESES 1IN INPUT
STREAM EXPRESSION e

ECODE: A pointer to the position at
which the error was detected.

Reason: An unequal number of right and
left parentheses are found in
an expression.

Action: The scan is completed and level

error recovery is initiated.

279 *R* UNBALANCED PARENTHESES IN
EXECUTION-DEFINED SYMBOL EXPRESSION e

ECODE: A pointer to the position at
which the error was detected.

Reason: An unequal number of 1left and
right parentheses are found in
an expression.

Action: The scan is completed and level

error recovery 1is initiated.

280 *R* UNBALANCED PARENTHESES IN PHRASE-
DEFINED EXPRESSION e

ECODE: A number indicating the
sequence of the expression
found to be in error.

An unequal number of 1left and
right parentheses have been
found, or a right parenthesis
has been found with no preced-
ing matched left parenthesis.
The scan is completed and level
error recovery is initiated.

Reason:

Action:

DIAGNOSTICS

e 281 *R* INVALID FORMAT IN INPUT STREAM

CONDITIONAL EXPRESSION e

ECODE: A pointer to the position at

which the error was detected.

A syntax error. Reasons for

this diagnostic may be:

a ? or ! not followed by i,
=y i, 0r§

The scan is completed and level

error recovery is initiated.

Reason:

Action:

283 #*R#* INVALID FORMAT IN PHRASE-DEFINED

CONDITIONAL EXPRESSION e

ECODE: A number indicating the
sequence of the expression
found to be in error.

Reason: A syntax error. Reasons for

this diagnostic may be:

a ? or ! not followed

=, :, Or §
The scan is completed and level
error recovery is initiated.

by #,

Action:

284 *R* INVALID FORMAT

RELATIONAL EXPRESSION e

ECODE: A pointer to the position at
which the error was detected.

Reason: A snytax error. Reasons for

this diagnostic may be:

a. Unbalanced parenthesis

b. Invalid characters

The scan is completed and level

error revovery is initiated.

IN INPUT STREAM

Action:

286 *R* INVALID FORMAT IN PHRASE-DEFINED
RELATIONAL EXPRESSION e

ECODE: A number giving the sequence of
the expression found to be in
error.

Reason: A syntax error. Reasons for
this diagnostic may be:

a. Unbalanced parenthesis
b. Invalid characters
Action: The scan is completed and level

error recovery is initiated.

287 *R+* INVALID END TO AN INPUT STREAM
EXPRESSION e

ECODE: Input cursor.

Reason: An expression must end with a
semicolon or comma.

Action: The scan is completed and level
error recovery is initiated.

289 *R* INVALID END TO A PHRASE-DEFINED

EXPRESSION e

ECODE: Sequence number of the
sion in error.

Reason: An expression must end with a

semicolon or comma.

The scan is completed and level

error recovery is initiated.

expres-

Action:

290 *R* LOGICAL EOF ENCOUNTERED IN PSCAN
INPUT e
ECODE:

Reason:

Undefined.
A logical EOF has been set by a
PSCAN CALL PLINP operation.

Action: The scan is completed and level
error recovery is initiated.

290 *R Or C* *kkkkkkkxkkkkkkktkt o

ECODE: ' A pointer to the communication
array upon which an unsuccess-
ful test was made.

Reason: The text for this diagnostic is
normally user-defined text from
a phrase-defined check entry.
If the asterisks are provided,
an error has been detected in
the defined literal.

Action: The phrase is terminated.

OS_ ONLY DIAGNOSTICS

The following messages are generated from
the DD card edit performed by 0S/360 PLAN.
The message form is DDNAME, TEXT.

901 *E* XXXXXXXX NOT FOUND IN THE PLANLIB

PDS e

Program: PLAN

Reason: The named module could not be
loaded by the PLAN system. The
modules are DFJPERRS, DFJPSCAN,
or DFJRETN

Action: PLAN execution is inhibited.

902 *E* DDNAME, DOES NOT SPECIFY A DIRECT
ACCESS DEVICE e
Program: PLAN

Reason: The unit parameter of the spec-
ified DD card is incorrect.
Action: PLAN execution is inhibited.

903 *E* DDNAME, DATA SET DOES NOT EXIST e

Program: PLAN

Reason: The data set named in the DD
card does not exist on the
specified volume.

Action: PLAN execution is inhibited.

904 *E* DDNAME, INVALID BLKSIZE

SPECIFICATION e

Program: PLAN

Reason: The specified BLKSIZE parameter
is either too 1large for -the
unit specified or not a mul-
tiple of LRECL.

Action: PLAN execution is inhibited.

905 *E* DDNAME, INVALID DSCB
SPECIFICATIONS e
Program: PLAN
Reason: The data set named in the spec-
ified DD card:
a. Has a partitioned data set
format
b. Has RECFM other than F or FB
c. contains keys
d. was never closed
Action: PLAN execution is inhibited.

e 906 *E* DDNAME, INVALID SPACE
ALLOCATION e
Program: PLAN
Reason: The space parameter in the
named DD card does not specify
TRK or CYL allocations.
Action: PLAN execution is inhibited.

e 907 *E* DDNAME, I/0 ERROR WHILE
FORMATTING e
Program: PLAN
Reason: Input/Output error.
Action: PLAN execution is inhibited.

* 908 *E* DDNAME, IS AN INVALID PLAN DD
CARD e
Program: PLAN
Reason: The numeric specification on a
PLINPxxx, PLOUTxxx, PLANDRVX,
or PLFSxxxx DD card is invalid.
Action: PLAN execution is inhibited.

e 909 *E* DDNAME, DATA SET INITIALIZED

INCORRECTLY e

Program: PLAN

Reason: A PLANDRVx, PLSYSTAB, or PLNUM-
TAB was specified with DISP=
OLD, and is not formatted
correctly.

Action: PLAN execution is inhibited.

e 910 *E* DDNAME, INSUFFICIENT FILE SIZE e
Program: PLAN
Reason: PLSYSTAB or PLANDRVx is not
allocated sufficient space for
correct execution.
Action: PLAN excution is inhibited.

e 911 *E* DDNAME, NOT DEFINED IN A DD
CARD e
Program: PLAN
Reason: PLSYSTAB or PLANLIB DD cards
are missing.
Action: PLAN execution is inhibited.

The following messages are generated from
0S/360 PLAN during the initialization
phase.

e 922 *E* XXXXXXX PARAMETER OR OPERAND IS
INVALID e
Program: PLAN
Reason: The named parameter in the EXEC
control card is invalid.
Action: PLAN execution is inhibited.

*NOTE: This message is printed
on the system console device.

e 940 *R* DDNAME I/O ERROR e
Program: Current program in control.
Action: Phrase abort.

® 941 *R* XXXXXXXXXXXXXXXX e

Program: Current program in control.
Reason: A program interrupt has

DIAGNOSTICS 65

occurred in a problem program. * ABEND USER CODE 100 e

The diagnostic message is the Program: PLAN

program interrupt PSW. Reason: Missing or invalid PLINP/PLOUT
Action: PLAN level error recovery is DD card.

initiated. Action: PLAN execution is inhibited.

e ABEND USER CODE 101 e

e 942 *R* INSUFFICIENT PROGRAM AREA FOR Program: PLAN
PLAN FUNCTION e Reason: Unable to load one of the fol-
Program: PLAN lowing PLAN modules: DFJLODER,
Reason: The area allocated for the pro- DFJITRACE
gram area is too small. Action: PLAN execution is inhibited.

Action: Phrase abort.
s ABEND USER CODE 102 e

e 999 *E* PLAN EXECUTION INHIBITED e Program: PLAN
Program: PLAN Reason: No DD card supplied.
Reason: This action results if any of Action: PLAN execution is inhibited.
the error conditions listed
occur. ¢ ABEND USER CODE 103 e
Action: PLAN execution is inhibited. Program: PLAN
Reasomn: Insufficient core storage to
PLAN will ABEND during PLAN initialization initialize PLAN.

with the following user codes: Action: PLAN execution is inhibited.

66 DIAGNOSTICS

GENERATING A PLAN SYSTEM

To generate a PLAN system the user must
invoke the proper OS utility to 1load the
four data sets from the supplied tape. The
*IEHMOVE' wutility must be used' to move
PLAN.MODLIB and PLAN.SUBLIB (File sequence
3 and W4) to a direct access device. The
*IEBPTPCH' utility may be used to print or
punch the sample problem (File sequence 1)
and the standard phrases (File sequence 2).

The example below of Step 1 shows the use
of TIEHMOVE to 1load the +two data sets
(PLAN.MODLIB and PLAN.SUBLIB) from a mag-
netic tape (800 bpi) onto a 2311 disk
volume. The 2311 is assumed to have enough
space available to support the two data
sets.

The SYSUT1 DD statement defines the
device that is to contain the required
IEHMOVE work data sets.

STEP 1 Retrieving the Libraries
//MOVE JOB
//STEP EXEC
//SYSPRINT DD
//SYSUT1 DD

PGM=IEHMOVE
SYSOUT=A

84803, 'JOE E. JONES',MSGLEVEL=1

PREPARATORY SYSTEMS PROCEDURES

The DDB DD statement defines the receiv-
ing volume.

The TAPE DD statement defines the
volume.

source

The SYSIN DD statement defines the IEH-
MOVE control card input data set.

The MOVE_statements cause the IEHMOVE
program to move the unloaded data sets
onto the receiving volume. See publica-
tion 05/360 Utilities (C28-6586) for
further descriptions and examples of the
use of the IEHMOVE utility.

The user should prepare JCL similar to the
example shown but tailored to his individu-
al installation requirements and then run
the job step to move the data sets.

UNIT=2311, VOLUME=SER=XXXXXX,DISP=OLD

//DDB DD UNIT=2311,VOLUME=SER=NEWPAC,DISP=0LD
//TAPE DD UNIT=2400,VOLUME=SER=PDT, LABEL=(3,NL),DISP=(OLD,PASS), X
7/ DSNAME=TAPE, DCB= (RECFM=FB, LREC1=80,BLKSIZE=800)

//SYSIN DD *

COPY PDS=PLAN.MODLIB, TO=2311=NEWPAC, FROM=2400=(PDT, 3) , FROMDD=TAPE
COPY PDS=PLAN.SUBLIB, TO=2311=NEWPAC, FROM=2400=(PDT,4) , FROMDD=TAPE

/%

PREPARATORY PROCEDURES 67

After successful execution of the move step
the data set name PLAN.MODLIB should be
entered into the system catalog data set
(SYSCTLG). Below is a sample job stream to

do this:
//CATLG JOB 84803,'JOE E. JONES',MSGLEVEL=1
7/ EXEC PGM=IEHPROGM
7/ /DDA DD UNIT=2311,VOLUME=SER=111111,DISP=0OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
CATLG DSNAME=PLAN.MODLIB, VOL=2311=NEWPAC
/%

For those systems using MVT the PLAN module
IGG019WY 1is an EXCP appendage routine that
must be in SYS1.SVCLIB for successful PLAN
execution. The job stream listed below is
required to place this module into the SVC

library. It is assumed that PLAN.MODLIB is
catalogued.

//LINK JOB 84803, *JOE E.JONES', MSGLEVEL=1
//STEP EXEC PGM=IEWL,PARM='NCAL,LIST,RENT,LET'

//8YSUT1 DD
//SYSPRINT DD
//SYSLIB DD DSNAME=PLAN.MODLIB, DISP=0LD
//SYSMOD DD DSNAME=SYS1.SVCLIB, DISP=0LD
//SYSLIN DD *

SYSOUT=A

INCLUDE SYSLIB(IGGO19WY)
ENTRY IGGO19WY
NAME IGGO19WY(R)

/%

To add the standard PLAN commands to a PLAN
phrase dictionary the user must execute a
PLAN job. The standard PLAN commands are
contained in file sequence 2 on the distri-
bution tape. Below is a job stream to add
the commands to a phrase dictionary:

//ADDPHR JOB
//JOBLIB DD
//STEP EXEC

DSNAME=PLAN.MODLIB, DISP=OLD
PGM=DFJPLAN

UNIT=SYSDA,SPACE=(CYL, (1,1))

84803, 'JOE E. JONES' MSGLEVEL=1

//PLSYSTAB DD DSNAME=DFJPFIL,UNIT=2311,VOLUME=SER=NEWPAC, X
7/ DISP=(NEW,CATLG) , SPACE=(CYL, (5))
//PLOUT100 DD SYSOUT=A

//PLINP0OO1 DD

UNIT=2400, VOLUME=SER=PDT,DISP=(OLD,PASS) ,LABEL=(2,NL), X

7/ DSNAME=INPUT.PHRASES, DCB= (RECFM=F, LRECL=80 , BLKSIZE=80)

//PLANLIB DD
/*

DSNAME=PLAN.MODLIB, DISP=0OLD

The JOBLIB DD statement
library containing the
modules.

specifies the
PLAN system

The PLSYSTAB DD statement defines a data
set that will be a PLAN phrase dic-

tionary. The name DFJPFIL is used but
any other name is suitable. The DISP
parameter specifies CATLG. This is

68 PREPARATORY PROCEDURES

required for successful execution of the
sample problem.

The PLOUT100 DD statement specifies a
data set for printed output from the PLAN
system.

The PLINPOO1 DD statement defines the
input data set for the PLAN system. In

this case

distribution tape. commands into cards the following job

should be run:

The PLANLIB DD statement defines the

library PDS the PLAN system will use to
load and execute modules.

//PUNCH JOB
//STEP EXEC
//SYSPRINT DD
//SYSUT1 DD
/77

//SYSUT2 DD
//SYSIN DD

84803, *JOE E. JONES',MSGLEVEL=1

PBM=IEBPTPCH

SYSOUT=A

UNIT=2400, VOLUME=SER=PDT,DISP=(OLD,PASS) ,LABEL=(2,NL), X
DSNAME=INPUT.PHRASES, DCB= (RECFM=F, LRECL=80 ,BLKSIZE=80)

UNIT=SYSCP
*

PUNCH TYPORG=PS

/%

The user may now run the sample problem.
Refer to Appendix A in this manual.

PREPARATORY PROCEDURES

it is file number 2 on the If the user wishes to get the standard PLAN

step

69

OPTIONAL MACHINE-READABLE MATERIAL

This section provides an index to the
optional program package. The tape supp-
lied is an unlabeled tape containing two
data sets as listed below:

FILE SEQUENCE i

This data set, named PLAN.SRCLIB, is an
unloaded version of a PDS. It was
created by the 0S utility IEHMOVE and
contains the PLAN system source decks for
both the PLAN system routines and the
PLAN subroutine library. The direct
access space required for this data set
is approximately 650-1316 tracks. See
Appendices C and D for a 1listing and
description of the modules in this data
set. The characteristics of this Adata
set when moved to a direct access device
will be RECORD LENGTH=80, BLOCK SIZE=U400.

FILE SEQUENCE 2

This data set, named PLAN.MACLIB, is an

unloaded version of a PDS. It was
//MOVE JOB 84803, 'JOE E. JONES',MSGLEVEL=1
//STEP EXEC PGM=IEHMOVE

//SYSPRINT DD
//SYSUT1 DD

SYSOUT=A

created by the O0S utility IEHMOVE and
contains the macro definitions necessary
to assemble any PLAN system component:.

The direct access space required for this
data set is approximately 15-1316 tracks.
See Appendix E for a listing and descrip-
tion of the members in this data set.
The characteristics of this data set when
moved to a direct access device will be
RECORD LENGTH=80, BLOCK SIZE=3360.

The user must move the data sets PLAN.
SRCLIB and PLAN.MACLIB to direct access
devices using the O0S wutility IEHMOVE.
The following is an example of a job
stream to load these data sets to direct
access devices.

UNIT=2311, VOLUME=SER=XXXXXX,DISP=OLD

//DDB DD UNIT=2311, VOLUME=SER=NEWPAC,DISP=0OLD

//TAPE DD UNIT=2400, VOLUME=SER=PDT, LABEL=(,NL) ,DISP=(OLD,PASS), X
// DSNAME=TAPE, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)

//SYSIN DD *

COPY PDS=PLAN.SRCLIB, TO=2311=NEWPAC, FROM=2400=(PDT,1) , FROMDD=TAPE
COPY PDS=PLAN.MACLIB, TO=2311=NEWPAC, FROM=2400=(PDT, 2) , FROMDD=TAPE

/¥

The user may then print or punch any member
of these data sets or he may assemble any
module in the system using these data sets
directly. Below 1is a sample job stream
using these data sets directly. It is
assumed that PLAN.SRCLIB and PLAN.MACLIB
are catalogued data sets.

//ASMB JOB 84800,'JOE E. JONES',MSGLEVEL=1
//STEP EXEC PGM=IEUASM

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (2,1))
//SYSUT2 DD UNIT=SYSDA, SPACE=(CYL, (2,1))
//SYSUT3 DD UNIT=SYSDA, SPACE= (CYL, (2,1))
//SYSLIB DD DSNAME=SYS1 .MACLIB, DISP=0LD

/7 DD DSNAME=PLAN.MACLIB, DISP=0LD
//SYSPUNCH DD UNIT=SYSCP

//SYSIN DD DSNAME=PLAN.SRCLIB{(PLOUT) ,DISP=0LD
/%

70 PREPARATORY PROCEDURES

NOTE: The assembler requires that conca-
tenated Qata sets for SYSLIB have the same
attributes.

PREPARATORY PROCEDURES 71

APPENDIX A: RUNNING THE SAMPLE PROBLEM

The first file on the distribution tape
contains the PLAN commands to execute the
sample problem.

Before running the sample problem, insure
that the following items have been done:

1. Check the output from the PLAN system
MOVE step. There should be no errxor
messages.

//SAMPLE JOB
//JOBLIB DD

//STEP EXEC
//PLSYSTAB DD
//PLOUT100 DD
//PLINP001 DD

DSNAME=PLAN.MODLIB, DISP=0LD
PGM=DFJPLAN
DSNAME=DFJPFIL,DISP=OLD
SYSOUT=A

2. The standard PLAN phrases must be added
to the dictionary file.

To run the sample problem the user should
prepare the following JCL and run it as an
0OS job step. It is assumed that the data
sets PLAN.MODLIB and DFJPFIL are cataloged.

84803, 'JOE E. JONES',MSGLEVEL=1

UNIT=2“00,VOLUME=SER=PDT,DISP=(OLD,PASS),LABEL=(,NL), X

/7 DSNAME=INPUT.SAMPLE, DCB= (RECFM=F, LRECL=80, BLKSIZE=80)

//PLANLIB DD
/%

DSNAME=PLAN.MODLIB, DISP=0LD

EXPLANATION OF SAMPLE PROBLEM

‘‘he output of the sample problem as shown
in this manual reflects the results of a
PLAN system generation that includes
initialization of a 1language definition
dictionary file named DFJPFIL and the addi-
tion of the supplied standard phrases to
the dictionary.

Card SMP0Ol1 is a PLAN JOB command which sets
the 1length of the managed ' array to 510
words, specifies that an array beginning at
word 200 of the managed array may be used
for ERASABLE COMMON, and specifies that
long-form diagnostics are to be produced in
the event of an error.

This card accomplishes PLAN job initializa-
tion functions and satisfies the require-
ment that a level 0 command be the first
command processed.

Card SMP02 contains the PLAN command LON
and DUMP. The LON command is simply a
dummy level 1 command that satisfies the
requirement that a level 1 command immedi-
ately follow a level 0 command.

Note in the output 1listing (Figure 2),
cards SMP01 and SMP02 are listed 80-80.
The 0S PLAN system normally lists all input
commands. The DUMP command on card SMP(02,
which dumps the Switch Words, managed array
and nonmanaged array, produces the output
shown in Figure 3.

Noting the Switch Words the user can see
that they contain the following:

72 SAMPLE PROBLEM

SWITCH WORD DECIMAL HEX

8 200 c8

9 1150 478

10 © 510 1FE

12 100 64

13 1 1
These values were placed in the Switch

Words by the PLAN JOB command.

Card SMP03 is a DUMP PHRASES command which
prints out the contents of the PLAN phrase
dictionary. This card is listed in Figure
3. The output from this command is shown
in Figure 4.

Card SMPO4 is an ADD PHRASE command that
will add the phrase SAMPLE TEST. This
phrase shows an example of using a check
entry test to produce a diagnostic message.

Card SMP05 is the SAMPLE TEST command.
Cards SMPO4 and SMP05 are shown 1listed in
Figure 5.

Figure 6 shows the result of the SAMPLE
TEST command. A long-form diagnostic is
produced by the PLAN module DFJPSCAN and is
the 1literal that was specified in the
phrase SAMPLE TEST.

Card SMP06 is a DELETE PHRASE commanédt to
remove the phrase SAMPLE TEST from the
dictionary.

When the PLAN command interpreter DFJPSCAN
reads the end-of-file it returns control to
the 0S supervisor.

PLAN JOB,ERASABLE200,MANAGED510,LONG; SMP01
LON;DUMP COMMON; i SMP02
DUMP PHRASES,LEVEL1;) SMPO3
ADD PHRASE:SAMPLE TEST, (1) +*FC'PLAN SYSTEM IS OPERATIONAL',LEVEL1; SMPO4
SAMPLE TEST; SMPO05
DELETE PHRASE:SAMPLE TEST; SMPO06
Figure 1. Sample Problem Listing

PLAN JOB, ERASABLE200, MANAGED510,LONG; SMPO01
LON; DUMP COMMON; SMP02

Figure 2. Sample Problem Output - Step 2

SWITCHES
0000 0000 . 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 OOCS
0000 O47E 0000 O1FE 0000 0000 0000 0064 0000 0001 0000 0000 0000 0000
MANAGED ARRAY LENGTH 510

1 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF T7FFF FFFF 7FFF FFFF T7FFF FFFF 7FFF FFFF
193 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 0000 0000
201 0000 000D D#Cl D5C1 C7C5 C440 C1D9 D9C1 EB40O 4040 0000 0010 DS5D6 D5D4 C1DS5S cic?
209 Cc5C4 40C1 D9D9 C1lE8 E2E6 C9E3 C3C8 CSE2 D3C5 D5C7 E3C8 4040 0000 0064 7FFF FFFF
217 7FFF FFFF 7FFF FFFF 7FFF FFFF T7TFFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF
505 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF
NONMANAGED ARRAY LENGTH 0
DUMP PHRASES,LEVEL1; SMPO03
Figure 3. Sample Problem Output - Step 3
CHECKSUM 1 ‘

PHRASE NAME LIS LIT LEVEL 1 TYPE-OBJECT ENTRY SIZE 20 2110 0 0
CHECKSUM 3

PHRASE NAME OUT LEVEL 1 TYPE-OBJECT ENTRY SIZE 8 2346 0 0
CHECKSUM 11

PHRASE NAME DUM MAN LEVEL TYPE-OBJECT ENTRY SIZE 22 1920 0 0
CHECKSUM 19

PHRASE NAME DUM PER LEVEL TYPE-OBJECT ENTRY SIZE 28 1764 0 0
CHECKSUM 25 .

PHRASE NAME DUM DYN LEVEL TYPE~-OBJECT ENTRY SIZE 28 1820 0 0
CHECKSUM 32

PHRASE NAME DUM COM LEVEL TYPE-OBJECT ENTRY SIZE 22 1876 0 0
CHECKSUM 51

PHRASE NAME DUM ERR LEVEL TYPE-OBJECT ENTRY SIZE u 2380 0 0

SAMPLE PROBLEM 73

CHECKSUM 52

PHRASE NAME SET LIT LEVEL TYPE~-OBJECT ENTRY SIZE 18 2074 0
CHECKSUM 72

PHRASE NAME ALT PHR LEVEL TYPE--OBJECT ENTRY SIZE 6 1676 0
CHECKSUM 105

PHRASE NAME DUM PHR LEVEL TYPE--OBJECT ENTRY SIZE 65 2150 42

PHRASE NAME CRE COR DIR LEVEL TYPE-OBJECT ENTRY SIZE 4 2388 0
CHECKSUM 113

PHRASE NAME PLA JOB LEVEL TYPE--OBJECT ENTRY SIZE 31 1698 0
CHECKSUM 121

PHRASE NAME DUM NON LEVEL TYPE-OBJECT ENTRY SIZE 18 1964 0
CHECKSUM 149

PHRASE NAME ADD PHR LEVEL TYPE-OBJECT ENTRY SIZE 5 1666 0
CHECKSUM 155

PHRASE NAME CRE LOA ENT LEVEL TYPE-OBJECT ENTRY SIZE 4 2396 0
CHECKSUM 165

PHRASE NAME INP LEVEL TYPE-OBJECT ENTRY SIZE 7 2332 0
CHECKSUM 167

PHRASE NAME EXE LEVEL TYPE-OBJECT ENTRY SIZE 12 2050 0
CHECKSUM 168

PHRASE NAME DEL PHR LEVEL TYPE-OBJECT ENTRY SIZE 5 1688 0
CHECKSUM 177

PHRASE NAME DUM SWI LEVEL TYPE-OBJECT ENTRY SIZE 14 2000 0
CHECKSUM 205

PHRASE NAME LON LEVEL TYPE-OBJECT ENTRY SIZE 2 1760 0
CHECKSUM 228

PHRASE NAME CON DUM PHR LEVEL TYPE-OBJECT ENTRY SIZE 26 2280 0
CHECKSUM 231

PHRASE NAME SEN LEVEL TYPE~-OBJECT ENTRY SIZE 2 2046 0
CHECKSUM 239 _

PHRASE NAME SAV LEVEL TYPE-OBJECT ENTRY SIZE 9 2028 0
CHECKSUM 251

PHRASE NAME SET PAG LEN LEVEL TYPE-OBJECT ENTRY SIZE 92 2362 0
END OF PHRASE TABLE DUMP
Figure 4. Sample Problem Output - Step #
ADD PHRASE:SAMPLE TEST, (1) +#*FC'PLAN SYSTEM IS OPERATIONAL® ,LEVEL1; SMPOY
SAMPLE TEST; SMPO0O5

Figure 5.

Sample Problem Output - Step 5

74 SAMPLE PROBLEM

DFJ001 001-100 SAMPLE TEST;

DFJ299 C 00001 SEQ=002 ID=SMP0S PGM=DFJPSCAN PLAN SYSTEM IS OPERATIONAL
DELETE PHRASE:SAMPLE TEST; SMPO6

Figure 6. Sample Problem Output - Step 6

SAMPLE PROBLEM 75

APPENDIX B: LISTING OF STANDARD PHRASE FILE

ADD PHRASE: ALTER PHRASE,I(1)-1,I(-13)1,PRO‘'DFJPHRAS,DFJPHRAS',LEVELO; ALPH1
ALTER PHRASE: ALTER PHRASE,I(1)-1,I(-13)1,PRO'DFJPHRAS,DFJPHRAS',LEVELO; ALPH1
ALTER PHRASE: DELETE PHRASE,I(1)-1,I(-13)1,PRO'DFJPHRAS',LEVELO; DEPH1
ALTER PHRASE:PLAN JOB,LEVELO,I(-1)FILE,SAVED,TO,LISTS,LB,LC,LD,ERASE, PLJO1
COMMON, MANAGED, NERM, DEVICE, I (1) SHORT-, LONG-, STACK-, IMMEDIATE- ,DRIVEOQ, PLJO2
DFI-,PFI-, (-11)UMOD,I(-13)FORMO, PLJO3
$0FORM: (LONG) ?=FORM+1, FORM: (IMM) ?=FORM+2, FORM: (DFI) ?=FORM+4 ,FORM: (PFI) PLJOU4
2=FORM+8, TO=TO+DRIVE#*2048; PLJO5
ALTER PHRASE:LON,LEVEL1L; LONO1
ALTER PHRASE:DUMP PERMANENT,I(-8)M,I(M)FILE255,I(M+2)STARTO, I(M+3)ENDO, DUPM1
I(M+4)DRIVEO, (M+5)A’'DRIVE FILE LENGTH", (M+12) NAME" ' DUPM2
I(M+15)NOD100,0, PROGRAM' DFIJPFDMP’ ; DUPM3
ALTER PHRASE:DUMP DYNAMIC ,I(-8)M,I(M)FILE255,I(M+2)STARTO, I(M*3)ENDO DUPL1
I(M+4)DRIVEO, (NM+5)A"DRIVE FILE LENGTH", (M+12) NAME" v DUPL2
I(M+15)NOD100,1,PROGRAM'DFJPFDMP" ; DUPL3
ALTER PHRASE:DUMP COMMON,I (-8)M,TI (M)NNNO,"'MANAGED ARRAY', ' NONMANAGED ARRAY'DUMP1
¢ "SWITCHES","LENGTH", I (M+15)NOD100, PRO'DFIJPCDMP" ; DUMP2
ALTER PHRASE:DUMP MANAGED,I(-8)M,I(M)NNN-1,*MANAGED ARRAY', DUMM1
*NONMANAGED ARRAY', "SWITCHES","LENGTH",I(M+15)NOD100,PRO'DFJPCDMP"; DUMM2
ALTER PHRASE:DUMP NONMANAGED,I(-8)M,I (M)NNN1, (M+6)B"'NONMANAGED ARRAY', DUMN1
"SWITCHES", "LENGTH",I (M+15)NOD100, PRO'DFJPCDMP" ; DUMN2
ALTER PHRASE:DUMP SWITCHES,I(-8)M,I(M)NNN-2, (M+11)A"SWITCHES", DUMS1
"LENGTH", I (M+15)NOD100, PROGRAM' DFJPCDMP" ; DUMS2
ALTER PHRASE:SAVE,I(-1)SW,-1,I(-8)M,I(M)FILEO,I(M+1)DRI-1, SAVE1l
$0SW: (FIL>0) ?=FIL, SW(3): (DRI>-1)& (DRIK5) ?=DRI*2048; SAVE2
ALTER PHRASE:SEND; SEND1
ALTER PHRASE: EXECUTE, I(-1)Sw,0, I(-8)M, I(M)FROM 0, I(M+1)TO O, EXEC1
I(M+2)FILE 0, I(M+3)DRIVE -1, (M)F*TA'INVALID STATEMENT NUMBER OR DRIVE',EXEC2

$0 SW: (FIL>0)=FIL, DRI:(DRI<0)?=SW(3)/2028-.5 !:55, DRI:(DRI<O)?=0, EXEC3
$5 FRO:q ((DRI>-1) & (DRIK5)) ?=+, SW(3):(T0>0) ?=DRI*2048+TO !=DRI*2048, EXECY
SW(2): (FRO>0) ?=FRO, FRO: (SW(2)>0); EXEC5
ALTER PHRASE:SET LITERAL,PROG'DFJPDIAG',I(-8)M,I(M)FILE254,T(M+1)NAMEO, SETL1
I(M+4)DRIVEO,I (M+5) NUMBER-*RA'UNDEFINED LITERAL NUMBER®',I(M+6)LITERALO; SETL2
ALTER PHRASE:LIST LITERALS,LEVEL1l,PROGRAM'DFJPLITL',I(1)FILE254,NAME-*A LISL1
*LITERAL FILE NAME NOT DEFINED',I(5)DRIVEO,NOD100, (35) LISL2
"NUMBER LENGTH TEXT OF PLAN LITERAL"; LISL3
ALTER PHRASE:DUMP PHRASES, I(500)SYS360 ,I(501)NOD100,I(503)LEVEL]l,LEVEL1, DUPH1
(200) "CHECKSUM" , " PHRASE NAME", "LEVEL TYPE-OBJECT", DUPH2

"ENTRY SIZE","VERB","SUBSCRIPT NAME VALUE RANGE INDEX","EXIT PROGRAM DUPH3
LIST ","SYMBOL EXIT FORMAT SCALE SUBSCRIPT EXPRESSIODUPHu4
N*,"PROGRAM LIST","TEST LOCATION ACTION","LITERAL, LIST, OR SUBSCRIPT Y"DUPH5S
+"LOCATION MODE FACTOR EXPRESSION", (510)-#*TP*CON DUM PHR',I(504)DRIO; DUPH6
ALTER PHRASE:CONTINUE DUMP PHRASES, (281) "INTERPRETIVE EXPRESSIONS", CDPH1
"VERB PROGRAMS" ,"END OF PHRASE TABLE DUMP",PROGRAM'DFJPTDMP', CDPH2
(505) "DFJPFIL", (835)NAM"DFJPTDP1DFIPTDP2DFIPTDP3DFIPTDP5DFIPTDP6 " ; CDPH3
ALTER PHRAS: INPUT,I(-8)M,I(M)NOD1,0,LEVEL1l,PROGRAM'DFJPIOCS"; INPUL
ALTER PHRAS:OUTPUT,I(-8)M,I(M)AO,I(M+1)NOD101,LEVEL1l,PROGRAM'DFJPIOCS"; OUTP1
ALTER PHRAS:SET PAGE LENGTH,I(-8)M,I(M)PGL60,I(M+1)NOD100,PRO*'DFJPLENG'; SEPA1l
ALTER PHRAS:DUMP ERRORS, PROGRAM'DFJPEDMP* ; DUER1
ALTER PHRASE: CREATE CORE DIRECTORY, PROGRAM'DFJCRDIR®; CRCO1
ALTER PHRASE: CREATE LOADER ENTRIES, PROGRAM'DFJLLIST®; CRLO1

76 STANDARD COMMANDS

NAME

DFJCRDIR
DFJGMERG
DFJGSRTA
DFJGSRTB
DFJLLIST
DFJLODER
DFJPCDMP
DFJPDIAG
DFJPEDMP
DFJPERRS
DFJPFDMP
DFJPHRAS
DFJPIDMP
DFJPIOCS
DFJPLAN

DFJPLENG
DFJPLITL
DFJPMERG
DFJPSCAN
DFJPSRTA
DFJPSRTB
DFJPSTSV
DFJPTDMP
DFJPTDP1
DFJPTDP2
DFJPTDP3
DFJPTDPS
DFJPTDP6
DFJRETN

DFJTRACE
IGGO19WY

APPENDIX C:

MEMBER LISTING OF PLAN.MODLIB

LENGTH FUNCTION

1BF8 CORE DIRECTORY BUILD
1090 PERMANENT FILE MERGE
1108 PERMANENT FILE SORT
1108 PERMANENT FILE SORT
1c50 JOBPAC AREA BUILD

0CA8 PROGRAM LOADER, SIOCS, DIOCS
1D18 COMMUNICATION ARRAY DUMP
1F00 LITERAL FILE PROCESSOR
12B8 ERROR FILE DUMP

3A08 ERROR PROCESSOR

2D68 FILE DUMP UTILITY

4390 PHRASE PROCESSOR

18C0 PHRASE LIST

13c8 UTILITY MODULE

3000 MAINLINE EXECUTIVE
OFCO UTILITY MODULE

1B10 LITERAL FILE PROCESSOR
1AA0 DYNAMIC FILE MERGE
4318 COMMAND INTERPRETER
1B18 DYNAMIC FILE SORT

1B18 DYNAMIC FILE SORT

3270 STATEMENT SAVE

2ECO PHRASE TABLE DUMP

23F8 PHRASE TABLE DUMP

24F0 PHRASE TABLE DUMP

24F8 PHRASE TABLE DUMP

2730 PHRASE TABLE DUMP

2610 PHRASE TABLE DUMP

00E8 EOJ PROCESSOR

0180 TRACE FACILITY

0040 SIO APPENDAGE

PLAN.MODLIB 77

78 PLAN.SUBLIB

APPENDIX D: MEMBER LISTING OF PLAN.SUBLIB
NAME LENGTH FUNCTION

BREAK 0028 CHARACTER MANIPULATION
CIOEN 0080 INTERNAL CONTROL

CIOEP 0080 INTERNAL CONTROL
DFJCGET 0058 INTERNAL CONTROL
DFJDSLL 0110 INTERNAL CONTROL
DFJPEOUT *DFJPFOUT INTERNAL CONTROL
DFJPFIN 01CO INTERNAL CONTROL
DFJPFOUT 02A0 INTERNAL CONTROL
DFJPIIN 00cCO INTERNAL CONTROL
DFJPIOUT 00BS8 INTERNAL CONTROL

DFJUMC *DFJUNC FREE STORAGE CONTROL
DFJUNC o248 FREE STORAGE CONTROL
ERLST 0010 ERROR FILE DUMP

ERRAT *ERRET ERROR INTERFACE

ERRET 0178 ERROR INTERFACE

ERREX *ERRET ERROR INTERFACE

ERROR *ERRET ERROR INTERFACE

EUSER *NUSER USER EXIT

EWRIT 0188 ERROR FILE PROCESSING
FALSE *TRUE LOGICAL TEST

FIND BAS DYNAMIC FILE SUPPORT
FINDL *FIND DYNAMIC FILE SUPPORT
GDATA 00BO PERMANENT FILE SUPPORT
GDAT1 *GDATA PERMANENT FILE SUPPORT
GMERG 00ES8 PERMANENT FILE SUPPORT
GSORT 00Co PERMANENT FILE SUPPORT
GTVAL *STVAL ARRAY TRANSMISSION
GUSER *NUSER USER EXIT

INPUT 00A0 PHRASE PROCESSING

IOCS 0048 INPUT/OUTPUT CONTROL
IUSER *NUSER USER EXIT

LCHEX 00B8 LOADER INTERFACE

LEX 0018 LOADER INTERFACE

LIST 00B8 LOADER INTERFACE

LISTB 0050 LOADER INTERFACE

LNRET 0020 LOADER INTERFACE

LOCAL 0030 LOADER INTERFACE

LREPT 0010 LOADER INTERFACE

LRET 0010 LOADER INTERFACE

LRLD *LSAV LOADER INTERFACE

LSAV 0018 LOADER INTERFACE

NDEF 0038 LOGICAL TEST

NUSER 0108 USER EXIT

PAIN 0098 SEQUENTIAL FILE SUPPORT
PAOUT *PAIN SEQUENTIAL FILE SUPPORT
PARGI *PARGO ARRAY TRANSMISSION
PARGO 0078 ARRAY TRANSMISSION
PBFTR 0070 SEQUENTIAL FILE SUPPORT
PBTST 00BO BIT MANIPULATION

PBUSY 0008 SEQUENTIAL FILE SUPPORT
PCCTL 0060 SEQUENTIAL FILE SUPPORT
PCOMP 0050 LOGICAL TEST

PDBFA 0008 SEQUENTIAL FILE SUPPORT
PDBFB 0008 SEQUENTIAL FILE SUPPORT
PDBFC 0008 SEQUENTIAL FILE SUPPORT
PDBFD 0008 SEQUENTIAL FILE SUPPORT

NAME

PDBFE
PENDF
PEOF

PEOUT
PFIN

PFND1
PFOUT
PFSPC
PHIN

PHOUT
PHTOE
PIDMP
PIIN

PIOC

PIOUT
PLINP
PLOUT
PMERG
PPACK
PPAGL
PRED1
PREL1
PSBFA
PSBFB
PSBFC
PSBFD
PSBFE
PSORT
PUNPK
PUSH

PWRT1
RDATA
RDAT1
READ

RELES
STVAL
TRUE

WDATA
WDAT1
WRITE
XACES
XBIT

XPRNT
XTRAC

LENGTH

FUNCTION

0008
00EO
0050
0058
0058
*FIND
0058
00C8
02C8
08Cs8
0048
0118
0058
0040
0058
0020
0020
00ES8
0020
0038
*FIND
*FIND
0008
0008
0008
0008
0008
00CO
0020
0058
*FIND
0118
*RDATA
*FIND
*FIND
0058
0020
*RDATA
*RDATA
*FIND
01F8
00D8
0100
02F0

SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
DYNAMIC FILE SUPPORT
SEQUENTIAL FILE SUPPORT
DYNAMIC FILE SUPPORT
LITERAL PROCESSING
LITERAL PROCESSING
CHARACTER MANIPULATION
SPECIAL PSCAN SUBROUTIN
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
DYNAMIC FILE SUPPORT
CHARACTER MANIPULATION
SEQUENTIAL FILE SUPPORT
DYNAMIC FILE SUPPORT
DYNAMIC FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
SEQUENTIAL FILE SUPPORT
DYNAMIC FILE SUPPORT
CHARACTER MANIPULATION
PHRASE PROCESSING
DYNAMIC FILE SUPPORT
PERMANENT FILE SUPPORT
PERMANENT FILE SUPPORT
DYNAMIC FILE ' SUPPORT
DYNAMIC FILE SUPPORT
ARRAY TRANSMISSION
LOGICAL TEST

PERMANENT FILE SUPPORT
PERMANENT FILE SUPPORT
DYNAMIC FILE SUPPORT
PHRASE TABLE DUMP
PHRASE TABLE DUMP
PHRASE TABLE DUMP
PHRASE TABLE DUMP

NAME

APPENDIX E:

MEMBER .LISTING OF PLAN.MACLIB

TITLE GENERATION
LOADER DEFINITION MACRO
LOADER DEFINITION MACRO

CARDS FUNCTION
CENTR 16 ENTRY MACRO
DFJID 11
DPLAN 248
EPLAN 20
RPLAN 12

REGISTER EQUATE

PLAN.MACLIB 79

GH20-0596-1

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your 1mBM
system should be directed to your 1BM representative or the 1By branch office serving your
locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

I
L
I
BUSINESS REPLY MAIL
I
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES e——
]
ILL BE PAID BY
POSTAGE WIL L
]
IBM Corporation T
112 East Post Road R
White Plains, N. Y. 10601 ERE——
Attention: Technical Publications
fold fold

ssecessssenan

1-96S0-07HD 'V 'S ' Ul pajunld Tenuep suonerddQ (SO) NVId 09€/S

APPENDIX E:

MEMBER .LISTING OF PLAN.MACLIB

TITLE GENERATION
LOADER DEFINITION MACRO
LOADER DEFINITION MACRO

NAME CARDS FUNCTION
CENTR 16 ENTRY MACRO
DFJID 11

DPLAN 248

EPLAN 20

RPLAN 12

REGISTER EQUATE

PLAN.MACLIB 79

TBM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

1-96S0-0ZHD V'S’ Ul pajuLl] fenueiy suoliesadQ (SO) NYII 09¢€/S

