
. . .

NPL Technical Report.

NPL Technical Report.

This manual provides a detailed and comprehensive description of a
new programming language, NPL. This new language is designed not
only for applications programming in the traditional commercial and
scientific fields, but also for programming in other applications areas.
At the same time, the language is so designed that different levels of
language facility can be selected for given clas ses of applications or for
given levels of programmer experience.

The NPL Technical Report is only intended to describe the language
and not to serve as a specification of the language for implementation by
a particular compiler.

December 1964

PREFACE

This manual constitutes a description of NPL. It is a technical report
of NPL, not a student text, nor a user's guide for a particular compiler
implementation of the language. Furthe r publications de scribing the language
are planned for a later date.

In general, this manual assumes a relatively high level of programITling
knowledge and experience on the part of the reader. Specifically, it aSSUITles
a thorough knowledge of modern prograITlITling concepts and techniques and
some knowledge of current high-level programming languages. Accordingly,
the manual is not intended for general distribution.

The "Introduction" chapter provides the reader with a review of the design
criteria of NPL and a discussion 'of the ITlore significant features of the
language; it also gives an indication of those parts of the ITlanual'that are of
interest to particular classes of users. The language description comprises
the succeeding twenty-seven chapters. Various kinds of reference inforITlation
have been organized into eight appendices, the last of which is concerned with
impleITlentation of NPL for the IBM SysteITl/360.

This description of NPL is based largely on reports issued by the SHARE
Advanced Language DevelopITlent COITlITlittee which included GUIDE representa­
tion. IBM wishes to express its deep appreciation to that cOITlmittee and to
acknowledge the efforts of its ITleITlbers.

This publication was prepared for production using an IBM computer tq,
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using it special print chain.

© 1964 by IBM World Trade Laboratories (Great Britain) Ltd.

PREFACE

CHAPTER 1: INTRODUCTION

Design Criteria

New Features
Program Structure •
TYPES OF DATA •
INPUT/OUTPUT
Nonsequential Facilities
Compile-Time Facilities

Suggestions for use of this Publication

CHAPTER 2: CHARACTER SET AND IDENTIFIERS e

Language Character Set •

Data Character Set

Identifiers

CHAPTER 3: DATA TYPES AND REPRESENTATION.

Data Types
Arithmetic Data
Character String Data
Bit String Data •
Statement Label Data

Constants
Real Arithmetic Constants
The Precision of Real Arithmetic Constants
Imaginary Arithmetic Constants
Bit String Constants
Character String Constants
Statement Label Constants •

Scalar Variables

CHAPTER 4: DATA AGGREGATES

Arrays
Subscripted Names
Cross Sections of Arrays
Constructed Arrays

Structures
Arrays of Structures
Qualified Names
Subscripted Qualified Names

CHAPTER 5: ELEMENTARY LANGUAGE STRUCTURE •

Delimiters
Operators
Brackets
Separators and other Delimiters

e.

CONTENTS

11

11

12
12
13
15
17
18

21

22

22

23

23

24

24
24
25
25
25

25
25
26
26
27
27
27

27

28

28
28
28
29

29
29
30
31

33

33
33
34
34

Keywords

Blanks

Comments

CHAPTER 6: FUNCTION REFERENCES AND EXPRESSIONS

Function References

Scalar Expressions
Bit String Operations
Concatenation Operations
Arithmetic Operations
Comparison Operations
Type Conversion •
Evaluation of Expressions

Array Expressions

Structure Expressions

Structure Expressions BY NAME

CHAPTER 7: PROGRAM STRUCTURES

Statements and Statement Format
Simple Statements
Compound Statements •

Labels
Initial Values for Label Arrays

Groups

Blocks
The PROCEDURE Statement
The ENTRY statement •
The BEGIN Statement

Programs and Procedures

Declarations

Sequence of Control

Procedure and Block Termination
The END Statement
Multiple Closure

CHAPTER 8: STORAGE CLASSES AND ALLOCATION OF DATA

The STATIC Storage Class

THE AUTOMATIC STORAGE CLASS

The CONTROLLED Storage Class
The ALLOCATE Statement
The FREE Statement

CHAPTER 9: CHARACTERISTICS OF PROCEDURES

34

34

35

36

36

36
37
37
38
40
41
41

42

43

44

46

46
46
46

46
47

. 47

48
49
50
51

51

51

54

55
55
56

57

57

57

58
58
59

60

Subroutine Procedures

Functions • • • • • • • • • • •
Function procedures • • • • • • •
Built-in Functions

The ENTRY Attribute

Abnormality of Procedures
The ABNORMAL Attribute
The NORMAL Attribute
The USES and SETS Attributes

60

60
60
60

61

62
63
64
64

CHAPTER 10: FORMAL PARAMETERS, ADJUSTABLE DIMENSIONS, AND LENGTH 65

Arguments Passed by Name • • 66

Arguments Passed by Value

Default Parameter Attributes •

Adjustable Dimensions and Length •

Parameters, Dimensions and Length • • • • •
Name Parameters, Adjustable Lengths and Dimension Bounds
Value' Parameters, Adjustable Lengths and Dimension Bounds

Allocation of Name Parameters

CHAPTER 11: THE ASSIGNMENT STATEMENT.

Scalar Assignment
Pseudo Variables
String Assignment •

Array Assignment

Simple Structure Assignment

Statement Label Assignment •

CHAPTER 12: THE SAVE AND RESTORE STATEMENTS

The SAVE Statement •

The RESTORE statement

CHAPTER 13: CONTROL STATEMENTS ••

The GO TO Statement

The IF Compound Statement

The DO Statement and Iteration of a DO Group

The CALL Statement •

The RETURN Statement • • •

The DISPLAY Statement

66

67

67

67
67
67

68

69

69
69
70

71

72

72

73

73

73

75

75

75

76

78

79

79

The WAIT Statement

The STOP Statement •

The EXIT Statement

The DELAY Statement

The FETCH Statement ."
The DELETE Statement

CHAPTER 14: ERROR CONTROL AND DEBUG STATEMENTS

The On Compound Statement

The Revert Statement •

The Signal Statement •

CHAPTER 15: ATTRIBUTES •

Attribute Classes

Data Attributes
Arithmetic Attributes
Bit String Attributes
Character String Attributes
Label Variable Attributes •
The Dimension Attribute

The ABNORMAL, NORMAL, and SECONDARY Attributes
ABNORMAL.

NORMAL
SECONDARY

Entry Name Attributes
The Generic Attribute •
The Builtin Attribute •

Scope Attributes •

Storage Class Attributes •

The "Defined Attribute
Scalar Defining
Array Defining
Mixed Defining

The INITIAL Attribute

Symbol Table Attributes

Parameter Attributes •

The LIKE Attribute •

File Description Attributes
Dynamic Control Attributes
ACCESS Attribute
The Zero Attribute

80

81

81

81

81

82

83

83

84

84

85

85

85
85
86
86
86
86

87
87
87
87

87
88
88

89

'. 89

89
90
90
91

92

93

93

93

94
96
96
97

CHAPTER 16: THE DECLARE STATEMENT

Name Declaration

Declarations and Factoring of Attributes •

The Declare Statement

Structures • • • • • • • •
Structure Description by Level Number •
Structures and the Dimension Attribute
Data Attributes and Structures
Scope Attributes and Structures • • • •
storage Class Attributes •••••••
Structures and the Defined Attribute

Prologues

CHAPTER 17: IMPLICIT AND DEFAULT FACILITIES

The Implicit Statement •

Implicit and Default Attributes
IMPLICIT ATTRIBUTES • •
Default Attributes

The Sequence Statement

CHAPTER 18: ASYCHRONOUS OPERATION OF TASKS ••

Task relationships •

The Task Option

Data Allocation across Tasks

Termination of Tasks' •

Stacking of Task Identifiers

CHAPTER 19: PROGRAM MODIFICATION.

Macro Variables

Macro Procedures • • • • •
The Operation of Macro Procedures •

Macro Expressions

Compile-time Statements • • • • •
The Macro DECLARE Statement •
The Compile-time Assignment Statement •
The Compile-Time NULL Statement • •
The Compile-time IF Statement • • •
The Compile-time GO TO Statement

Compile-time Activity

CHAPTER 20: INTRODUCTION TO I/O FACILITIES • •

CHAPTER 21: OPENING AND CLOSING FILES

.

98

98

98

98

99
99
99

100
100
100
100

100

•• 102

102

103
103
103

104

106

106

106

107

107

107

109

109

109
110

110

110
110
111
111
111
111

••• 112

115

116

The OPEN and CLOSE Statements

CHAPTER 22: DATA SPECIFICATION •

Modes of Data Transmission • •
Format Directed Transmission
List Directed Transmission
Data Directed Transmission

Format and List Directed Data Lists

Format Lists • • • • • • •
The FORMAT Statement

Modes of Data Specification ••••••
Data Specification for Format Directed Transmission •
Data Specification for List Directed Transmission
Data Specification for Data Directed Transmission

CHAPTER 23: DATA TRANSMISSION

The READ and WRITE Statements

The GET and PUT Statements
The GET Statement • •
The PUT Statement • • • •

CHAPTER 24: POSITIONING STATEMENTS •

The POSITION Statement • •

The REPOSITION Statement •

The TAB Statement

Interrecord Positioning •••••
The SKIP Statement ••••
The SPACE Statement • •
THE GROUP STATEMENT • •
The SEGMENT Statement •

CHAPTER 25: REPORT GENERATION

The PAGE Statement •

The LAYOUT Statement •

. .

CHAPTER 26: ASYNCHRONOUS LOCATION OF DATA

The SEARCH Statement

CHAPTER 27: THE SORT STATEMENT

APPENDIX 1: BUILT-IN FUNCTIONS

Arithmetic Generic Functions •

Float Arithmetic Generic Functions • •

String Generic Functions

116

118

118
118
118
118

• • 119

119
120

120
120
120
121

123

123

126
126
127

128

128

128

128

129
• • 129

129
• • 129

• 130

131

131

132

134

• • 134

• • 136

138

. 138

140

i4i

Built-in Functions for Manipulation of Arrays

Array Built-in Functions • •

Condition Built-in Functions ••

Other Built-in Functions • •

APPENDIX 2: PICTURE SPECIFICATIONS ••

Numeric Field Data and the PICTURE description •
Picture Characteristics • • • • • • • • • •
General Form of Picture Specifications
Digit, Point and Subfield Delimiting Characters •
Zero Suppression Characters • • • •
Drifting Editing Symbols •••••••
Sterling Pictures • • • • • • • • • • • • • • • • • •
Picture Specifications and Precision •••• • •
Picture Specifications and Size • •
Repetition of Picture Characters

Pictures for Character Strings •

APPENDIX 3: NPL STATEMENTS • • •

APPENDIX 4: PERMISSIBLE KEY-WORD ABBREVIATIONS •

APPENDIX 5: ON CONDITION •

Computational Conditions •

Input/Output Conditions

Program Checkout Conditions

The CONDITION Condition

The FINISH and ERROR Conditions

143

144

144

144

• •• 146

• •• 146
.. • • • 146

147
• • 148

148
149
152
153
154

• 154

154

• 155

• 156

157

• 157

158

• • • '158

159

159

APPENDIX 6: FORMAT ITEMS • 160

Data Format Items ••••
Fixed Point Format Items
Floating Point format Items • • • • •
Complex Format Items • • • •

Arithmetic Format Specification by PICTURE
Bit String Format Items • • •
Character String Format Items •
General Format Specification • • • • • • • • •

Spacing Format Items •

Further Control Format Items
Remote Format Specification

APPENDIX 7: LIST AND DATA DIRECTED OUTPUT

List Directed Output
Coded Arithmetic Data •
Numeric Field Data
Character String Data

. . .

160
• 160

• • • • 161
162
162
162
163
163

164

165
165

166

166
•• 166

167
167

Bit String Data
List Directed Output Format •

Data. Directed Output •

APPENDIX 8: NPL FOR SYSTEM/360 •

Character Sets

Length of Identifiers

Representation of Data •

Array Bounds

\
\

167
167

167

169

169

170

170

171

CHAPTER 1: INTRODUCTION

A modern data processing system should serve as a comprehensive tool
for the solution of today's data processing problems. In addition, it
should provide a broad base for meeting the future needs of the ever
increaSing spectrum of applications. Whereas, in the past, data
processing equipment was often designed specifically for either scienti­
fic or for business requirements, today's equipment should lend itself
equally well to both business and scientific applications and to newer
areas, such as real time processing.

Similarly, a modern operating system should offer comprehensive
programming support for the efficient solution of traditional computing
problems in many fields and, at the same time, should provide an
up-to-date environment for newer techniques, such as asynchronous
program execution and shared data processing facilities.

An advanced programming language is a critical element of a modern
data processing system. This idea provided the basic motivation for the
design and development of NPL, a new programming language. NPL is
designed to serve the needs of an unusually large group of programmers,
including scientific, business, real time, and systems programmers. The
language is so organized that each programmer, no matter how extensive
his experience, finds facilities at his own level. The NPL programmer
can write programs simply, without concern for arbitrary restrictions;
he can devote his energy to the problem and its analysis, rather than to
its programming.

This chapter consists of three sections. The first section describes
the design criteria or philosophical bases of NPL. The second section
discusses some of the significant features of the language, with special
emphasis on those advanced features that are critically important for a
new programming language. The third section discusses the organization
of the remainder of this publication and attempts to assist the reader
in his study of NPL.

DESIGN CRITERIA

In order to better understand NPL and to appreciate some of its
characteristics, it is helpful to know the basic rules that governed its
design. Following is an explanation of six such bases.

Freedom of expression: If a particular combination of symbols had a
useful meaning, that meaning was errlbodied in the language. Invalidity
was a last resort. This will help to insure uniformity between
different NPL compilers.

Full access to machine and operating system facilities: The NPL
programmer will rarely, if ever, need to resort to assembly language
coding. No facility was discarded because it belonged more properly to
assembly or control languages.

Modularity: NPL has been designed so that many of its features can be
ignored by the programmer without fear of adverse effects. Thus,
manuals can be constructed of subsets of the language for different
applications and different levels of complexity. These need not mention
the unused facilities. To accomplish this end, every attribute of a
variable, every option~ ~g ~r~~~lcation was given a default
interQretation, and this was chosen to be the one most- likely to De
required by tne--programmer who does not know that alternatives exist.

Chapter 1: Introduction 11

\:>

PB
:D

Relative machine independence: Although NPL allows the programmer to
. take full advantage of the powerful facilities of System/360, it is
essentially a machine-independent language. Parameters which would
reflect the characteristics of a particular machine were not allowed to
intrude into the language. Thus, for example, the programmer specifies
the precision of an arithmetic variable in digits rather than by
"single" or "double" precision: input/output is specified in a device­
independent manner.

Catering to the novice: Although the general specification is there for
power and growth, the frequently used special case is specifiable
redundantly in an explicit way. This approach allows the compiler to
maX1m1ze efficiency for the commonly-used case, and, again, permits the
novice to learn only the notation which is most natural to him.

A programming language, not an algorithmic language: Programming
languages are most often written on coding sheets, punched at key
punches or terminals, and listed on printers. While the specification
of a publication language is considered essential, the first and most
important goal of syntax design has been to make the listings as
readable, and to make the writing and punching as error-free, as
possible. A free-field format has been chosen to help meet these goals.

NEW FEATURES

A large part of NPL is, of course, based on earlier programming
languages. On the other hand, several concepts not manifested in
previous higher-level languages are reflected in NPL. Also, certain
ideas have been extended or modified so as to take on broader
significance. The following paragraphs describe some of the salient
features to be found in the new language.

PROGRAM STRUCTURE

In most high level programming languages the basic element that
denotes a certain action to be executed is called a statement; the
collection of all the statements required to achieve solution to the
problem at hand is called a program. Generally, it has proved necessary
or desirable to introduce into programs a structure which is more
complex than that of a single statement. The motivations for such
structuring are:

1.

2.

.3.

4.

to delimit a procedure which may then be invoked from several
different places with different arguments;
to delineate the scope of applicability or uniqueness of a name so
that names may be non-unique within a progranl and yet well-defined
locally;
to group a set of statements for control purposes so that they are
treated syntactically as a single statement;
to specify the duration of allocation of storage for variables.

In NPL, four syntactically different methods are used to accomplish
the four functions mentioned above.

Blocks

In specifying a block to delimit scope of names but not to be called
out-of-line it is inefficient to be prepared to store register contents
and return locations. Therefore, PROCEDURE END are used for the
first and second purposes and BEGIN ••• END for the second purpose. The
procedure may be thought of as a block with the additional properties of
argument handling and return mechanisms.

12

Groups

The grouping of a set of statements for control purposes requires a
much simpler and more common structure than one in which the scope of
names is delimited. Therefore, in NPL, DO •••. END are used for the
third purpose. The DO statement also takes on the naturally related
function of loop control.

Storage Allocation

Unlike the first three purposes discussed above, storage allocation
frequently requires dynamic rather than static structure. In fact, the
allocation structure may not even be well nested. Therefore, in NPL, an
artificial correspondence between scope of names and storage allocation
is rejected in favor of a scheme which allows the programmer to specify
for a variable the appropriate treatment in each of the two categories.

A varj abl e may be EXTERNAy or INTERNAL._<lepgIJ£!!..I'!.9: on whether i ts ~
~Q~~S not known to other btQC~. Its allocation may be STATIC,
AUTOMATIC, or CONTROLLED. An AUTOMATIC allocation takes place upon
entry to a block, storage being freed or unallocated upon exit from the
block. A STATIC allocation is one made once for the entire execution of
the program.

If a variable is declared to be CONTROLLED, allocation (or freeing)
of storage takes place when and only when an explicit ALLOCATE (or FREE)
statement is encountered during program execution. To meet the need for
flexibility, a built-in procedure ALLOCATION (a rill returns the value 1
(True) if and only if allocated storage exists fOr arg.

In keeping with the philosophy of simplicity of expression for
straight-forward applications, the default allocation attribute for
EXTERNAL data is STATIC while the default for INTERNAL is AU'IDMATIC.

Storage allocation, whether automatic or controlled, causes previous
storage allocated for the given variable to be stacked. Similarly,
freeing results in the previous allocation being unstacked.

Procedures

NPL procedures may have multiple entry points. Thus, the initializa­
tion part Of a procedure may be invoked the first time and the usual
entry called thereafter. The parameters of the two entries need not
agree.

Normal return of control from a procedure to the invoking procedure
is specified by a RETURN statement, which may specify return with a
function ·value.

TYPES OF DATA

In NPL, a variable is described in a DECLARE statement. In order to
improve dOCUmentation and because of the number of attributes specifia­
ble, all of the attributes of a variable are listed together rather than
including the variable name in the list for each attribute. Common
attributes may be factored, however, to reduce the amount of text.

For every category of attrib~te there is a default which is the one
most frequently used by the nov~ce programmer. The programmer may
therefore choose to ignore the existence of a facility without concern
for the related attributes and their meaning. As an example, the
programmer would not normally need to declare a storage class attribute
for an item since, by default, allocation is static for ExrrERNAL
variables and automatic for INTERNAL variables.

Chapter 1: Introduction 13

Data are basically of two types, string and numeric. String data may
be either CHARACTER string or BIT string and may be declared to be of
fixed or varying length. Numeric data may be of two radices, binary and
decimal; two 'scales, fixed and float; and two modes, real and complex.
The size of numeric data, in bits if binary or digits if decimal, is
specifiable directly, as is the location of a binary or decimal point.
such data is stored internally in a standard encoded representation.

If the programmer wishes he may specify a nonstandard representation
by means of a picture, thereby attaching numeric significance to a
string. Picture specifications apply to input/output formatting as
well. This facility allows the programmer to specify conveniently zero
suppression , inse~tion of blanks and other special characters, and
general editing.

Conversion

In keeping with the freedom of expression concept, mixed expressions
are allowed in NFL. Thus, in

DECLARE F FIXED, G FLOAT, H CHARACTER (10) ;
H = F + G;

F will be converted to floating, the floating addition will
performed, and the result will be converted to a character string
length ten and assigned to H.

Aggregates

be
of

Aggregates of data are defined in NFL as arrays or structures.
Structures are defined by a level number notation, and their elements
are represented by qualified names.

DECLARE 1 RECORD1,
2 NAME,

3 LAST CHARACTER (14) ,
3 FIRST CHARACTER (6) ,

2 ADDRESS,
3 STREET CHARACTER (20) ,
3 CITY CHARACTER (12) ,
3 STATE CHARACTER (8) ,

2 AGE CHARACTER (2) ;

defines a structure containing name, address, and age information, the
name and address portions being further structured. The qualified name,

RECORD1.ADDRESS.STATE

represents the fifth elementary item in the structure.

Array elements are- represented in the conventional manner, by
subscripting. For example, the statement

DECLARE Q(3,S);

defines Q to be a 3xS array. Q(2,3) represents the element in the
second row, third column.

The concept of cross sections of arrays is introduced in NFL as a
logical extension of the subscripting notation. If Q is defined as
above, Q (2,*) denotes the second row of the matrix while Q (*,1) refers
to the first column, the * indicating that the corresponding subscript
is to vary between its defined bounds. Q(*,*) is therefore equivalent
to Q, meaning the entire array.

14

To many programmers, the word "variable" has always meant a single
item which may assume one value at a time. Yet, in matrix algebra, an
entire matrix may be treated as a variable. For example, one value of a
matrix might be the identity matrix, another value the zero matrix,
another value a matrix consisting of aIlS's, etc. In this concept, if
anyone element of the matrix changes its value, the entire matrix has
changed its value.

In NPL, arrays and structures are treated as variables in their own
right. Arrays (or structures) may be used as operands of an expression.
The expression is then an array (or structure) expression and returns an
array (or structure) result.

Additionally, if several structures have elements with identical
names, operations may be specified on these structures to be applied
only to these corresponding elements. For example, if in addition to
RECORD 1 defined above, there is the further declaration

DECLARE 1 RECORD2,
2 ADDRESS,

3 STATE CHARACTER(S),
3 CITY CHARACTER (12) ,
3 STREET CHARACTER (20) ,

2 OCCUPATION CHARACTER (10) ,
2 NAME,

3 FIRST CHARACTER (6) ,
3 LAST CHARACTER (14) ;

then the assignment statement

RECORD2 = RECORD1, BY NAME;

would cause the values of the elements of NAME and ADDRESS in RECORD1 to
be rearranged and assigned to the corresponding elements of RECORD2.
AGE and OCCUPATION do not participate in the operation.

All operations performed on arrays are performed on an element by
element basis. Therefore, all arrays in an array expression must be of
identical bounds.

Built-in functions are provided in NPL to assist the compiler in
producing efficient in-line code and/or in selecting the appropriate
member of a family of functions available.

Several built-in functions help to provide a string handling capabil­
ity. BIT and CHAR allow arithmetic data to be treated as a string.
SUBSTR (strinq,~,~,) refers to the ~ bits (or characters) of string
beginning with the m'th bit (or character). INDEX(a, b) finds the first

. occurrence of the string b in the string a. UNSPEC (ite~ is a bit
string whose value is the internal representation of item.

When the elements of a structure are all character strings or all bit
strings the structure may be treated as a string by use of the STRING
built-in fUnction. Unedited transfers of collections of data may be
accomplished in this manner.

INPUT/OUTPUT

One of the most successful fulfillments of the design criteria for
NPL is its broad input/output facility_ Here, in a machine independent
manner, the programmer may control input/output activity to whatever
degree he requires, invoking normal transmission and conversion simply,
and utilizing the full capability of the language, in a consistent
manner, to meet more sophisticated needs.

Chapter 1: Introduction 15

The programmer who uses the standard input and output formats and
media may cause data-directed transmission without resorting to format
or file descriptions.

List-directed transmission assumes a one-to-one correspondence
between data names and data elements and permits specification of data
element delimiters other than the standard.

Format-directed input/output is accomplished in a conventional way by
giving a list of data names and a corresponding format specification
list. The format list may appear in the READ or WRITE statement or in a
remote FORMAT statement.

The most general form of input/output specification is the CALL
option which invokes a programmer's procedure as part of the
input/output process. This option allows the full NPL language facili­
ties to be used in describing the transmissions. The procedure assumes
a record or logical grouping of data has been read (in the case of
input) or is to be written (in the case of output) • Whereas READ and
WRITE statements generally involve an entire record, by means of GET and
PUT 'statements within the invoked procedure one may secure or dispose of
portions of a record. Thus the programmer might use a GET statement to
transmit the value of a key and then by testing that value determine
what list and/or format should apply in getting the next portion of the
record, or whether to process the remainder of the record at all.

A wide variety of options may be specified in a READ or WRITE
statement. For example, one may specify by means of the PRINT option
that data transmitted in the corresponding READ statement also be
written on the standard output file.

By means of the KEY option one may specify that a specific record is
to be transmitted or that a programmer-supplied selection procedure is
to be invoked to locate the next record to be transmitted. In this
manner, a sequence may be imposed on what otherwise would be a random
file, or the implied sequence of a sequential file may be overridden.
Thus a user may define and refer to files chained in random storage or
files which are indexed by a dictionary.

The SEARCH statement enables one to access a record from a random
file based either ona logical key address or on the content of the
record. The user may specify the beginning and end of the search and
may specify'the action to be taken on successful completion of the
search.

The programmer may specify in an OPEN or CLOSE statement that a file
be opened or closed and positioned at a specific point. If no explicit
OPEN is given, the file is opened when the first READ or WRITE statement
is encountered_

Useful report generation facilities are available to the programmer
in the form of statements which enable him to describe a printed page
(with heading, footing, sub-total lines, pagination, etc.). Other
statements permit setting tab positions and margins on a line, restoring
a page, and skipping to a specified line.

The full conversion facilities of input/output are available to the
user for internal data transmission. Internal transmission is accom­
plished by specifying a string name instead of a file name in the READ
or WRITE statement. Scattering and gathering of collections of data may
be accomplished in this manner.

READ, WRITE, OPEN, CLOSE, and SEARCH may all be invoked asynchronously
by means of the TASK option as discussed in the following section.

16

NONSEQUENTIAL FACILITIES

This section and the next describe facilities that are available for
use in more advanced programs.

When writing programs for a multiprocessor data processing system, or
for a single processor system with either overlapped input/output
facility or real time processing requirements, it is necessary to be
able to specify concurrent execution of portions of a program. This is
a critically important and relatively new requirement that has received
great attention in the design of NPL. Programmers normally describe
concurrent execution as either asynchronous operations or as interrupts.
NPL allows both, or any mix of the two, so that programs can be
approached in the way which seems most natural and leads to most
efficient cod~.

Asynchronous Operations

In languages that can describe only sequential algorithms, it is
possible to confuse two different concepts:

1. The program, which is a collection of procedures loaded into
storage as needed.

2. The execution of one, or many programs, or of part of a program, to
perform some task upon some data.

In NPL, this confusion is not possible. The collection of procedures
is called a program, and that which has a job to do, a task. Sequential
languages describe a single task executing a single program.

Suppose P is an NPL program, consisting of procedures Pl, P2, ••• ,
PN. A task A wishes to execute P, starting, say, at P1. If there is a
place in Pl when concurrent execution of the part of P beginning at P2
is possible, the programmer writes,

CALL P2 @!:gj, arg2, •••), TASK (B);

This statement, identical to a sequential call except for the TASK
option, causes the creation of a second task, called B, which will begin
its execution at procedure P2 simultaneously with A's execution of the
rest of its job.

It is possible to specify the relative priority of B with respect to
A, as a second argument to the task option.

B can communicate with A by the explicit arguments listed at the call
or through shared storage.

Often both P1 and P2 will invoke P3. In this case, P3 must be able
to be executed simultaneously by two tasks. This requirement is called
re-entrance and is a declarable attribute of NPL procedures. It imposes
several restrictions on the object code. The code must not modify its
own instructions (i.e., it must be read-only). It must also refer to
all data areas indirectly through the task which is in control. The
property is extremely useful in such programs as message processors and
central control programs of a multi-terminal system.

Once task A has created B, it proceeds with its own execution. It
may come to a point where no further execution is possible until B has
been completed. The NPL programmer writes,

WAIT (B);

This causes execution of task A to be suspended until task B is
completed. By writing the statement DELAY (n), the programmer will
cause the current task to go into wait status for n milliseconds before
resuming execution.

Chapter 1: Introduction 17

It may be that A would like to discover whether B is complete or not,
but is not willing to give up control. The programmer then can use the
built-in procedure COMPLETE (B), which has the value 1 (True) if, and
only if, B is completed.

A task may be terminated either by returning up past the main
procedure for that task, with a RETURN statement, or by the explicit
EXIT statement. An entire family of tasks may be terminated by the
execution of the STOP statement in any member of the family.

Interrupt Operations

Whereas asynchronous operations involve one task asking for the
initiation of another task, and later verifying its completion, inter­
rupt operations involve the establishment of what code should be
executed when, later, some event occurs.

There is an executable statement in NPL which is powerful.
written:

ON condition action;

For example,

ON OVERFLOW '{ = YMAX;

It is

enables an asynchronous interrupt of the task which executes it when the
specified condition occurs (regardless of what procedure the task is
executing) so that the specified action may be taken. This action
consists of a group of any NPL statements optionally preceded by the

. word SNAP, indicating the writing of machine status information for
later inspection. The statements may contain a GO TO out of the group,
which implies that control will never return to the point of interrupt.

The conditions fall into three categories:

DEBUGGING AIDS: These are programmed interrupts which can check whether
subscripts are out of range, can document every possible change of value
of a set of variables, and trace every execution of a set of statements,
e.g.,

ON SUBSCRIPT RANGE SNAP COUNT = COUNT + 1;

UNUSUAL CONDITIONS: The programmer may override the system action on
most machine interrupts, such as overflow, underflow, end-of-file,
transmission error, or many system interrupts such as conversion error,
and fixed-point overflow. There are built-in fUnctions in NPL to help
detect the cause of error and correct it.

CONCURRENT EXECUTION: The enabled condition may be a programmer-defined
name. He can simulate a machine interrupt by executing the statement
SIGNAL, at which time control is interrupted exactly as if the machine
interrupt had occurred.

ON statements have as scope the block in which they appear. They may
be stacked (for each condition) in push-down fashion as blocks and
procedUres are invoked, and unstacked on returns. In the same block,
conditions may be overridden, or unstacked (by the REVERT statement) •

COMPILE-TIME FACILITIES

A programmer describes an algorithm for the solution of his problem.
The description may be processed by several programs (such as preproces­
sor, compiler, loader) and finally executed in its machine language

18

version. A subset of the information present in the description is used
by each of these programs. Previous languages have addressed themselves
almost entirely to the last phase, the execution. What attention is
given to the other phases consists almost entirely of statements about
the nature of the data.

And yet, as compilers become more sophisticated and preprocessors
more efficient, much processing is performed before execution time.
Common subexpressions are found and evaluated only once; constant
expressions are evaluated at compile time; statements which will never
be executed are not compiled at all. But this task is difficult and
limited without the active cooperation of the programmer. Allowing him
to help not only leads to efficient code, but results in more natural
problem-oriented languages which are compatible dialects of the base
language, and provides for compile-time editing of large general-purpose
programs for special applications.

The compile-time facilities in NPL can be categorized as follows:

Hints and Commands to the Compiler

The NPL programmer may include in his program information which will
aid the compiler to compile more quickly or to produce more efficient
code, documentation, and diagnostics.

He can impart special information relevant only to some compilers by
the open-ended attribute OPTIONS (attribute 1, attribute 2, •••). He
can describe some characteristics of another procedure which is to be
invoked. These characteristics may include the exact nature of each
argument, what data it will use (via USES attribute), what data it will
change (via SETS attribute), whether it has side effects or will
sometimes produce different results with the same set of arguments (via
ABNORMAL attribute). He can specify, via ABNORMAL attribute, that a
variable is subject to change from outside, in a multiprocessing
environment or due to asynchronous interrupt. He can suggest, via
SECONDARY attribute, that if high-speed storage is unavailable, this
table or procedUre should be stored in secondary addressable storage.
He can declare the set of statement labels to which a GO TO can transfer
(by a list appended to the LABEL attribute) •

Compile-Time Statements

Most programming languages are written explicitly on one level only,
as statements to the computer to perform certain operations on the data.
As stated above, any higher level assertions that are present must be
ferreted out by an intelligent compiler. NPL not only commands the
computer to operate on the data but also commands the compiler to
operate on the program. This operation on the program determines the
statements to be constructed and compiled. Compile-time statements are
ordinary NPL statements distinguished by being immediately preceded by a
~. A set of compile-time statements operates on the program to
determine which source statements will be compiled. The following kinds
of statements are allowed:

DECLARATIONS: Variables and procedures may be declared in compile-time
declarations. These are called macro variables and macro procedures
(see below) •

ASSIGNMENTS: Macro variables may be assigned new values during compila­
tion by execution of compile-time assignment statements.

CONDITIONAL COMPILATION: The compile-time statement IF macro Boolean
expression THEN group causes the group of statements after the THEN to
be compiled only if the macro expression is True.

Chapter 1: Introduction 19

TRANSFER OF CONTROL: All compile-time statements may have labels. The
compile-time statement,

GO TO label;

causes compilation to proceed starting from the compile-time label
specified. For example, to generate a series of similar statements,

" DECLARE I FIXED INITIAL (0), LABEL CHARACTER (2);
"L:I=I+1;
"LABEL=' L' II Ii
LABEL: X (I) =Y (I) +1;
%IF I<4.THEN % GO TO Li

will compile the following NPL statements:

L1:X (1) =Y (1) +1;
L2: X (2) =Y (2) + 2 ;
L3:X (3) =Y (3) +3;

Macro Variables and Procedures

In order to aid the compile-time facility described above, to
facilitate program modification, and, most important, to allow for a
reasonably efficient, easy-to-specify development of the language into
many different problem-oriented dialects, a macro facility has been
included in NPL, as follows:

MACRO VARIABLES: A variable may be decla.red in a compile-time declara­
tion statement. It may be given an initial value there; it may have
values assigned to it by compile-time assignment statements. Whenever a
compile-time statement which contains it is executed, its current value
is used. Whenever a base language statement is being compiled, all
appearances of any macro variable in this statement result in the
current value of the variable being substituted for each occurrence.
For example,

"DECLARE X FIXED INITIAL (3),
Y CHARACTER (10) VARYING INITIAL ('JOE+2');
L: Q=Y+Xi

Compilation of statement L will first produce, as the statement to be
compiled:

L: Q=JOE+2+3;

Subsequent optimization could·compile:

L: Q=JOE+5;

MACRO PROCEDURES: A procedure may be declared in a compile-time
declaration statement. It may, or may not, require an argument list.
Whenever a base language statement which contains a reference to this
procedure is encountered by the compiler, the procedure is first invoked
and its returned value substituted for its appearance. Note that since
all data to the compiler are character strings, all macro procedures
must have character string values.

Thus one can introduce special purpose statements and make them
appear to be part of the NPL language.

20

SUGGESTIONS FOR USE OF THIS PUBLICATION

This publication is a language definition, intended to be used
primarily as a reference manual. It has not been designed as a tutorial
document. In this section an attempt is made to guide the user
according to his programming experience and application requirements.

Basic components of the language of interest to every reader, no
matter what his level of experience or area of interest, are found in
Chapter 2 in its entirety; Chapter 3 in its entirety; Chapter 5 in its
entirety; Chapter 6, "Function References· through "Array Expressions";
Chapter 7, ·Statements" through "The Procedure Stateme'nt," and "Programs
and Procedures" through "Procedure and Block Termination"; Chapter 9,
"Subroutine Procedures" and "Functions·; Chapter 11, "Scalar
Assignment"; Chapter 12 in its entirety; Chapter 13, "The GO TO
Statement" through "The RETURN Statement"; Chapter 15, "Attribute
Classes" through "Label variable Attributes," "Scope Attributes," "The
INITIAL Attribute,n and "Symbol Table Attributes"; Chapter 16, "Name
Declaration" through "The DECLARE Statement"; Chapter 20 in its
entirety; Chapter 22, "List Directed Transmission" et seq.; Chapter 23,
"The READ and WRITE Statements n; Chapter 25 in its entirety; and
Appendices 7 and 8.

The commercial or business program will frequently involve facilities
such as the definition and use of structures and the use of picture
specifications for editing and numeric computation. The pertinent
sections are Chapter 4, "Structures"; Chapter 6, "Structure Expressions"
and "Structure Expressions BY NAME"; Chapter 11, "Simple Structure
Assignment" and "BY NAME Structure Assignment"; Chapter 15, "The LIKE
Attribute"; Chapter 16, "Structures"; and Appendix 6. These facilities
may be less useful in sientific programs.

On the other hand, other NPL features are vital to the solution of
purely scientific problems. These are concerned primarily with arrays
and mathematical functions, discussed in Chapter 4, "Arrays"; Chapter 6,
"Structure Expressions"; Chapter 11, "Array Assignment"; Chapter 15,
"The Dimension Attribute"; and Appendix 1.

The more advanced programmer, whether scientifically or cornmercially
oriented, will be interested in the subject of storage allocation and
related subjects. His attention is drawn to Chapter 7, liThe ENTRY
Statement" and "The BEGIN Statement"; Chapter 8 in its entirety; Chapter
9, "The ENTRY Attribute" through "Abnormality of Procedures"; Chapter 10
in its entirety; Chapter 11, "Statement Label Assignment"; Chapter 14,
"The ON Compound Statement"; Chapter 15 in its entirety; Chapter 22 in
its entirety; Chapter 23 "The GET and PUT Statements"; and Appendix 5.

The remaining sections provide additional topics of interest, such as
program modification and asynchronous operation.

Chapter 1: Introduction 21

CHAPTER 2: CHARACTER SET AND IDENTIFIERS

The NPL language uses a basic character set of 60
the elements of the language (names, constants, etc.)
from these characters. However, data in an NPL
restricted to the basic character set, but can be any
pattern (legal card-column punch combination) permitted
implementation.

characters. All
are con:structed

program is not
character or bit
by a particular

A specific use of some of the basic characters is in identifiers,
which are names, statement labels, keywords, etc., that appear in an NPL
program.

LANGUAGE CHARACTER SET

The NPL language is constructed from the following basic characters:
alphabetic characters, digits, and special characters.

The alphabetic characters are the 26 characters of the alphabet, A
through Z, and, in addition, three characters that are defined to be,
and are treated as, alphabetic characters. These additional characters
and the graphics by which they are represented in this manual are given
in the following list.

Currency symbol
Commercial At sign
Number sign

Graphic

$
@

'#

Digits are either decimal or binary. Decimal digits are the digits 0
through 9. A bit (binary digit) is either a 0 or a 1.

The names of the special characters used. in the language and the
graphics by which they are represented in this manual are given in the
following list.

22

Name Graphic

• Blank
-Equal or ASSignment symbol =
·Plus +
·Minus
Asterisk or Multiply symbol *

-Slash or Divide symbol /
"Left Parenthesis (
·Right Parenthesis)
Comma
Decimal Point or Period
Quote
Percent symbol %
Semicolon
Colon
Not symbol ,
And symbol &
Or symbol I

• Greater Than symbol >
-Less Than symbol <
Break Character
Question Mark ?

DATA CHARACTER SET

Characters permitted in data are defined for each particular implem­
entation.

IDl=:NTIFtERS

An identifier is a string of alphabetic characters, digits, and break
characters with the initial character always alphabetic. Any number of
break characters are allowed wi thin an identifier; howeve.r , consecutive
break characters are not permitted. Also, a break character cannot be
the final character of an identifier.

Identifiers in the language are used for scalar variable names, array
names, structure names, statement labels, entry names, file names,
keywords, task identifiers, condition names, headings for ext~ernal
names, macro variable names, and macro function names.

Examples:

A
$L32
X@ 52
RATE_OF_PAY

#32 45
BCD32 0
XR20A
0)531

Chapter 2: Character Set and Identifiers 23

CHAPTER 3: DATA TYPES AND REPRES.ENTATION

Information that is operated on by an NPL object program during
execution is called data. Each data item has a well determined type and
representation as described in the following paragraphs.

DATA TYPES

The permitted data types are: arithmetic, character string, bit
string, and label.

ARITHMETIC DATA

Arithmetic data is represented either as a numeric field or in coded
form. A numeric field is a string of characters which is given a
numeric interpretation using the PICTURE attribute. The picture may
include editing characters, such as currency symbols or commas, which
are ignored during arithmetic computation. The absence of the PICTURE
attribute specifies that arithmetic data is of the coded form.

Arithmetic data has the characteristics radix, scale, mode, and
prec1s10n. These characteristics are implicitly specified for numeric
fields in the PICTURE attribute. They may be explicitly declared for
arithmetic data of coded form.

Radix

The permitted radices are decimal and binary.

Scale

The permitted scales are fixed point and floating point. Fixed-paint
data consists of rational numbers for which the number of decimal or
binary digits and the position of the decimal or binary point may be
specified. Floating-paint data consists of rational numbers considered
in the form of a fraction and an exponent; the number of significant
digits may be specified.

Mode

Arithmetic data may be operated on in two modes, real and complex.

Precision

The precision of fixed-point data involves two quantities

1. the total number of decimal or binary digits to be maintained (w).
2. the scale factor for the data (d); If d is omitted, it is assumed

to be zero. The scale factor may be negative; its magnitude need
not be less than (w). If r is the radix of the data, then the
scale factor, d, effectively multiplies the w-digit integer data by
r**-d. For example, decimal data of precision (5,2) will represent
numbers less than 1,000 and at least 0.01 in magnitude.

The preceding values are specified as either (w,d) or (w).

The precision of floating-point data is the number of significant
binary or decimal digits to be maintained. This value is specified as
(w) •

24

CHARACTER STRING DATA

Character string data consists of strings of characters. A character
string may be of fixed or variable length.

BIT STRING DATA

Bit string data consists of strings of b~ts. A bit string may be of
fixed or variable length. In the former case, the actual length may be
specified; in the latter case, the maximum length may be specified.

STATEMENT LABEL DATA

Statement label data consists of statement labels (see "Labels" in
Chapter 7) •

CONSTANTS

A constant is a data item that cannot take on different values during
the execution of a program. The types of constants permitted in NPL are
described in the following paragraphs.

REAL ARITHMETIC CONSTANTS

Arithmetic constants are of radix binary or decimal.
use a decimal representation.

Decimal Fixed-Point Constants

Both radices

A decimal fixed-point constant is represented by one or more decimal
digits with an optional decimal point.

Examples:

72.192
.308
255

Binary Fixed-Point Constants

A binary fixed-point constant is represented by a decimal fixed-point
constant followed by the letter B.

Examples:

127B
3.24B
.001B

Sterling Fixed-Point Constants

Sterling quantities may be specified and will be interpreted as
decimal fixed-point pence. A sterling quantity consists of the follow­
ing concatenated fields:

Chapter 3: Data Types and Representation 25

a pounds field that is a decimal integer
a period
a shillings field that is a decimal integer less than 20
a period
a pence field that is one o~ more decimal digits with an optional

decimal point. The integral part must be less than 12.
an L

Examples:

101.13.8L
1.10.0L
O.O.2.5L

Decimal Floating-Point Constants

A decimal floating-point constant is represented by one or more
decimal digits with an optional decimal point, followed by the letter E,
followed by an optionally signed decimal exponent.

Examples:

12.E23
317.5E-16
O.1E+03
O.42E+73

Binary Floating-Point Constants

A binary floating-point constant is represented by a decimal
floating-point constant followed by the letter B.

Examples:

27E+3B
• 123E-45B

THE PRECISION OF REAL ARITHMETIC CONSTANTS

Real decimal fixed-point constants have apparent precision (p,g)
where q significant digits are specified after the decimal point, and
(p-q) before the decimal point.

Real binary fixed-point constants have apparent precision
(p*3.32,q*3.32) where p and q are as defined above. The ceiling of
these products is used. (The ceiling of a number is the smallest
integer greater than the number.)

Real decimal floating-point constants have apparent precision (p)
where p significant digits are specified before the E.

Real binary floating-point constants have apparent precision (p*3.32)
with p defined as above. The ceiling of the product is used.

Implementations may specify an assumed minimum precision for con­
stants which are involved in expression evaluation, and apply the
minimum precision to a constant if its apparent precision is less.

IMAGINARY ARITHMETIC CONSTANTS

An imaginary constant represents a complex value whose real part is
zero, and whose imaginary part is the value specified.

26

An imaginary constant is represented by a real constant, other than a
sterling constant, followed by the letter I. The language does not
define complex constants with nonzero real parts but provides the
facility to specify such data through expressions, e.g., 10.1+9.21.

Examples:

271
3.9681::101

BIT STRING CONSTANTS

A bit string constant is one or more binary digits enclosed in quotes
followed by the letter B. The constant may optionally be preceded by a
decimal integer constant in parentheses to specify replication.

Examples:

'01011'B
(10) '1' B

The latter is exactly equivalent to

'1111111111'B

CHARACTER STRING CONSTANTS

A character string constant is one or more characters enclosed in
quotes. A quote mark used in a character string constant is represented
by two immediately adjacent quote marks. The constant may optionally be
preceded by a decimal integer constant in parentheses to s~ecify
replication.

Examples:

'$123.45'
'INBUSLAB'
'IT' • S'
(3) • TOM'

The latter is exactly equivalent to

'TOMTOMTOM'

STATEMENT LABEL CONSTANTS

A statement label constant is an identifier which appears in the
program as a statement label (see "Labels" in Chapter 7).

SCALAR VARIABLES

A scalar variable may take on values over one and only one data type,
and, in the case of type arithmetic, only one radix, scale, mode and
precision. If its range is not restricted, it may assume values over
the entire set of data of that type.

A scalar variable is represented in the language by a name that is an
identifier, a qualified name, a subscripted name, or a subscripted
qualified name.

Chapter 3: Data Types and Representation 27

CHAPTER 4: DATA AGGREGATES

A data aggregate is a variable which may take on a set of data as a
value. In NFL, this type of variable is either an array variable or a
structure variable.

ARRAYS

An array is an ordered collection of data, all of which must be of
the same type. Arithmetic data in an array must be of the same radix,
scale, mode and precision, and, where applicable, the same picture.
String data must have the same length (if fixed) or maximum length (if
variable) •

An array name is declared as an identifier with the dimension
attribute (see MThe Dimension Attribute" in Chapter 15). 1his specifies
the number of dimensions of the array, and the upper and lower bounds of
each dimension.

Reference to an array in the language is by an array name, which may
be an identifier, a qualified name, a subscripted name, or a subscripted
qualified name.

SUBSCRIPTED NAMES

General Form:

array name (subscript 1 ,... , subscript n)

An element of an array is referenced in the language
name which is an array name followed by a list of
subscripts are separated by commas and the list
parentheses. A subscript ~s an expression which
converted to integer before use (see Chapter 6).
subscripts must be equal to the number of dimensions
the value of a specified subscript rr~st fall within the
for that dimension of the array.

Examples:

A (3)
FIELD (S,C)
PRODUCT (SCOPE * UNIT + VALUE, PERIOD)
AL P HA (1 , 2 , 3 , 4)

CROSS SECTIONS OF A"RRAYS

by a subscripted
subscripts. The
is enclosed in
is evaluated and

The number of
of the array and
bounds declared

A cross section of an array is represented in the language by an
array name, followed by a list of subscripts and asterisks, separated by
commas, and enclosed in parentheses. 'rhe number of items in the list
must be equal to the number of dimensions of the array. If the nth list
position is occupied by an asterisk, the cross section of the array
includes elements covered by varying the nth subscript between its
bounds. The dimensionality of the cross section is equal to the number
of asterisks in the subscript list. If all subscript Ix>si tions are
occupied by asterisks, this is equivalent to a reference to the entire
array. Subsequently, this document will use the word "array" to include
cross sections of arrays.

28

Examples:

A (*, J)
B (X, *, Y, *)

If MATRIX is the array
123
456
789

2
MATRIX(*, 2) is the vector 5

8

CONSTRUCTED ARRAYS

Scalars or arrays of the same dimensionality may be collected in a
form that is considered to be an array by the following notation:

ARRAY (A 1 ,A2 , •••• ,An) All A are array expressions of dimensionality m
with the same bounds. The function value is an
array of dimensionality m+l with bounds (l:n) for
the first dimension, and the bounds of the A for
the next rn dimensions. The A will be converted
to the highest type, radix, scale, mode, and
precision of the arguments.

STRUCTURES

A structure is an hierarchical collection of scalars, arrays, and
structures. These need not be of the same type and characteristics.

Structures may contain structures. The outermost structure is the
major structure; contained structures are minor structures. A major
structure is at level 1. Items contained in structures at level n are
at levels greater than n.

Example:

has form

1 A,2 B,2 C,3 D(2),3 E,2 F

A rB
IC r D (1)
I I D (2)
I lE
IF

ARRAYS OF STRUCTURES

A structure may be given a dimension attribute; it is then an array
of structures. All contained items are arrays as a result of the
structure having a dimension attribute.

Examples:

1 CARDIN (3) , 2 NAME, 2 WAGES, 3 NORMAL, 3 OVERTIME

The decimal integers before the identifiers specify the level. The
name CARDIN represents a on~dimensional structure of bounds 1 to 3.
Each element of the structure contains the variable NAME and the minor
structure WAGES. WAGES contains the variables NORMAL and OVERTIME.

Chapter 4: Data Aggregates 29

Because CARDIN is dimensioned, NAME, NORMAL and OVERTIME are arrays, and
their elements are referred to by subscripted names.

The form of the data is illustrated as follows:

CARDIN (1) r NAME (1)
I WAGES (1) rNORMAL (1)
L LOVERT IME (1)

CARDIN (2) r NAME (2)
rNO~L (2) I WAGES (2)

L lOVERTIME (2)
CARDIN (3) r NAME (3)

I WAGES (3) rNORMAL (3)
L LOVERTIME (3)

1 X, 2 y., 2 Z (2), 3 P (2: 3,2), 3 Q, 2 R

X is an undimensioned major structure
Y. is a scalar variable
Z is a dimensioned structure containing P and Q
P is an array
Q is an array
R is a scalar variable

The form of the data is

rY.
I rP (1,2,1)
I IP (1,2,2)
IZ (1) Ip (1,3,1)
I IP (1,3,2)

X I LQ (1)

I r P (2,2, 1)
I IP (2,2,2)
IZ (2) IP (2,3, 1)
I IP (2,3,2)
I lQ (2)
LR

QUALIFIED NAMES

At any point within a program, an identifier usually has only one use
specified by the programmer; however, an identifier may have more than
one use if all uses represent elements of structures. The separate uses
are then referred to by qualified names, which are a sequence of
containing structure names in order of increasing level, followed by the
ambiguous identifier. The items are separated by periods; blanks may be
placed as desired around the periods. ,The sequence need not include all
the containing structures, but it must include sufficient items to
resolve any ambiguity.

The qualified name, once composed, is itself a name. Subsequently in
this language document, when the terms scalar variable name, array name,
or structure name are used, they should also be taken to include
qualified names.

Examples:

30

A program may contain the structures

1 CARDIN, 2 PARTNO, 2 DESCRIPTION, 2 PRICE and
1 CARDOUT, 2' PARTNO, 2 DESCRIPTION, 2 PRICE

Elements are then referred to by qualified names such as

CARDIN.PARTNO
CARDOUT.PARTNO
CARDIN.PRICE

A program may contain the structure

1 MARRIAGE, 2 MAN, 3 NAME, 3 DATE, 2 WOMAN, 3 NAME, 3 DATB

Elements are then referred to by qualified names such as

MAN. NAME or MARRIAGE.MAN.NAME
WOMAN. NAME or MARRIAGE. WOMAN. NAME

If the same program also contained the structure

1 BIRTH, 2 WOMAN, 3 NAME, 3 DATE, 2 COMPLEXION

Elements must then be referred to by qualified names such as

MAN. NAME or MARRIAGE.MAN.NAME
MARRIAGE. WOMAN. NAME
BIRTH.NAME or BIRTH. WOMAN. NAME
COMPLEXION

and the minor structures by

MARRIAGE. WOMAN
BIRTH. WOMAN

SUBSCRIPTED QUALIFIED NAMES

General Form:

major structure name (subscript list) minor structure name
(subscript list) ••• array name (subscript list)

The elerrents of an array contained in a structure and requiring name
qualification for identification are referred to by subscripted quali­
fied names. A subscripted qualified name is a sequence of names and
subscripted names separated by periods. The names represent the
structures containing the array, followed by the array name. The
structure names must be in order of increasing level. The subscript
list following each name refers to the dimensions associated with that
name (as specified in the structure description). If no dimensions are
associated with a particular name in the list, the subscript list and
its containing parentheses may be omitted.

As long as the order of the subscripts remains unchanged, subscripts
may be moved to the right and attached to names at a deeper level.

Provided that the total number of subscripts is the same as the total
dimensionality of the array and that no ambiguity of identification may
occur, structure names may be omitted. Ambiguity of names cannot be
resolved by subscripting.

Examples:

A is an array of structures with the following description

1 A (1 0, 12), 2 B (5), 3 C (7) ,3D

Chapter 4: Data Aggregates 31

The following subscripted qualified names refer to the same element
of C:

(a) A (I,J). B (K). C (L) (f) A.B (I). C (J,K,L)

(b) A (I) • B (J, K). C (L) (g) A.B.C(I,J,K,~

(c) A (I>.. B (J). C (R, L) (h) A(I,J). B.C(K,~

(~ A.B(I,J,K). C(~ (i) A(I). B.C(J,R,L)

(e) A.B (I,J). C (K, L)

If s, but not A, is necessary for unique identification of this use
of C, any of forms (d), (e), (f) or (g) may be used with theA. absent.
If A, but not B, is necessary for unique identification of C, forms (g),
(h) , or (i) with B. omitted may be used. If neither A nor B is
necessary for unique identification of C, form (g) with A.B. omitted
may be used.

32

CHAPTER 5: ELEMENTARY LANGUAGE STRUCTURE

The basis for the elementary language structure of NPL is the basic
character set described in Chapter 2. Single characters from the set,
or strings of characters formed from the set, have specific properties
or uses when they appear in an NPL program. In addition, certain items
within the elementary language structure can have more than one use
within the same program; but the different uses are recognized by
context.

DELIMITERS

Delimiters used by the language fall into three classes, operators,
brackets, and separators.

OPERATORS

Operators used by the language are divided into four types, arithmet­
ic operators, comparison operators, bit string operators, and string
operators.

.The arithmetic operators are

+ denoting addition
denoting subtraction or negation

* denoting multiplication
/ denoting division

** denoting exponentiation

The comparison operators are

> denoting greater than
>== denoting greater than or equal to
= denoting equal to
,= denoting not equal to
<= denoting less than or equal to
< denoting less than

The bit string operators are

, denoting not
& denoting and
I denoting or

The following table defines the bit string operators:

X 'l'B I 'liB I 'O'B I 'O'B
Y 'l'B) 'O'B I "'B I 'O'B

,x
X&Y
X)Y

'O'B I 'o'a
'l'B I 'O'B
'l'B I 'l'S

'l'B I 'l'B
'O'B I 'O'B
'l'B I 'O'B

Where bit string operands are of length greater than 1, the
operations are performed bit by bit from left to right. Where operands
are of different lengths, the shorter is extended on the right with
zeros.

Chapter 5: Elementary Language Structure 33

The string operator is

II denoting concatenation

BRACKETS

Brackets used by the language are

(left parenthesis
) right parenthesis

Parentheses are used in expressions and to enclose lists.

SEPARATORS AND OTHER DELIMITERS

Separators and other delimiters are

comma
semicolon

= assignment symbol
colon

blank
quote
break character
period

The comma is used for separating elements of lists.
The semicolon is used for terminating statements.
The assignment symbol is used in the assignment statement.
Quotes are used for enclosing string constants.
The break character is used in identifiers.
The colon is used in dimension specifications and to follow labels.
The period is used for separating items in qualified names, and as a
decimal or binary point in constants.

KEYWORDS

A keyword is an identifier that has a special meaning. Keywords are
not reserved words. They are classified as follows.

Statement Identifiers: A statement identifier is used to identify the
nature of a statement. Some statement identifiers consist o.f more than
one identifier, separated by blanks.

Attributes: Attributes specify identifier characteristics.

Separating Keywords: The separating keywords are THEN, ELSE, BY, TO,
WHILE.

Built-in Function Names: A built-in function name is the name of an
algorithm provided by the language and accessible to the programmer.

Options: An option is a specification which may be used by the
programmer to influence the execution of a statement.

Conditions: A condition is used in the ON, SIGNAL, and REVERT
statements. The programmer may specify special action on occurrence of
the condition.

BLANKS

A word is an identifier, a constant, a picture specification (see
"Arithmetic Attributes" in Chapter 1~, or a sequence specification (see
"The SEQUENCE Statement" in Chapter 11). Blanks are not allowed .in
words. In those cases in the language where two words lie adjacent, not

'----

34

se-arated an ator an assi nment si a arenthesis, a colon, a
comma, or a semic,9lon, a blan loS required to separa ;.heJtl. One or

-more M"'Btifn"ks may appear-freeTy-t:fetween wO'rds and adTacent' delimiters.
Blanks are not permitted within composite operators.like ** or >=.

CALLA
9.6E+2
AB+BC
A TO B BY C

COMMENTS

General Form:

is not equivalent to CALL A
is not equivalent to 9.6E +2
is equivalent to AB + BC
is not equivalent to ATOBBYC

/* character string */

A comment may appear anywhere that a blank is permitted. A comment
may be replaced by a blank without changing the meaning of the program.
The character string must not contain the characters */ in that
sequence.

Example:

LABEL:/* THE BLOCK OF CODING BETWEEN BEGIN-END IS USED FOR COSH
CALCULATIONS */

BEGIN;

END;

Chapter 5: Elementary Language Structure 35

CHAPTER 6: FUNCTION REFERENCES AND EXPRESSIONS

Expressions are of three types: scalar,
expressions are evaluated, the type of the
the expression; i.e., the evaluation of
scalar result, etc.. However, an array
evaluated on an element-by-element basis.

array, or structure. When
value returned is the type of
a scalar expression returns a
or structure expression is

An . expression can consist of a single operand, e.g., a function
reference, or a constant, or multiple operands connected by operators,
e.g., A+B/C or AI lB. Operands in an expression need not have identical
data attributes. If the characteristics of the operands are different,
the necessary conversion is performed before evaluation.

FUNCTION REFERENCES

General Form:

function name (argument 1 , ••• , argument n)

A function refe.rence appearing in a program calls upon an algorithm
to provide a value. In the ~anguag€, the value of a fUnction is
represented by the function name followed by an optional list of
arguments separated by commas. If arguments are not needed, the
enclosing parentheses are omitted. (See Chapter 9 for a full discussion
of functions.)

An argument may be a scalar expression, an array expression, a
structure expression, a statement label designator, an entry name, an
entry parameter, a file name, or a file parameter.

Examples of Function References:

SIN (X)
MAX (A,B,C)
PROFITCALCULATION (INFLATIONRATE,LOSS)

SCALAR EXPRESSIONS

Scalar expressions are expressions which return a scalar value. The
type of the expression is the type of the scalar value. A scalar
expression is evaluated by performing a sequence of operations, where an
operation involves an operator and one or two operands. If one operand
is involved, the operator is a prefix operator; otherwise, the operator
is an infix operator.

Note: In this manual, the word 'expression' means 'scalar expression'
unless explicitly qualified.

An operator has an associated type as follows:

** * , & I
>= >

II

/ +

,= = < <=

operators of type arithmetic
operators of type bit string
comparison operators of context dependent
type
string operator of context dependent type

Before the performance of every operation, the operands a.re converted
to the type of the operator. In the case of the context dependent
operators, the conversion is a function of the type of the operands (see
nArithmetic Operations n in Chapter 6) •

36

The type of the value resulting from an arithmetic or a bit string
operation is the type of the operation.

The type of the value resulting from a comparison operation is a bit
string of length 1.

The type of the value resulting from a concatenation operation is a
bit or character string.

The sequence in which the operations specified in a scalar expression
are performed is described in nType Conversion B in Chapter 6.

A scalar expression is

a constant
a scalar variable
a function reference
an expression enclosed in parentheses
any of the above preceded by a prefix operator
any two expressions connected by an infix operator

A scalar expression may not include statement label designators (see
"Array Expressions R in this chapter) •

BIT STRING OPERATIONS

General Forms:

, operand
operand & operand
operand I operand

These general forms specify the operations "not", RandA, ·or",
respectively. The operands will be converted to type bit string before
the operation is performed. The result will be of type bit. If the
operands are of different lengths after conversion, the shorter is
extended on the right with zeros to the length of the longer. The
length of the result will be this extended length.

As an illustration of bit string operations, if Q, P, and R are bit
strings whose values are, respectively, '010111'B, '111111'B and '101'B,
then

,Q yields '101000'B
R&P yields '101000'B

QI,R yields '010111'B
,QI,R&P yields '111000'B

CONCATENATION OPERATIONS

General Form:

operand I I operand

If the operands are both of type bit string, no conversion is
performed and the result will also be of type bit. In all other cases,
the operands are converted where necessary to type character string
before the concatenation is performed. The result will be of type
character.

Chapter 6: Function References and Expressions 37

As an illustration of concatenation,
above, and if Wand X are character
respectively, 'AB,VV' and '?/PZ', then

QI IR yields '010111101'B
RIIRIIQ yields '101101010111'B

WIIX yields 'AB,VV?/PZ'
XIIW yields '?/PZAB,VV'

ARITHMETIC OPERATIONS

General Forms:

+ operand
- operand
operand **
operand *
operand /
operand +
operand

operand
operand
operand
operand
operand

if Q and R are the same as
strings whose values are,

These general forms specify the prefix operations, affirmation and
negation, and the infix operations exponentiation, multiplication,
division, addition and subtraction, respectively. Arithmetic operations
require operands of type arithmetic. Thus, if necessary, the operands
are converted to type arithmetic before the operation is performed.

Mixed Characteristics

The radix, scale, mode, or precision of the operands of an arithmetic
infix operation may differ. When these characteristics are mixed,
conversion is performed.

Consider an operation x op y, where x and yare operands, and op is
an arithmetic operator. Let the result of the operation be z. Let the
precision of x be (p,q) or (p). Let the precision of y be (r,s) or (r).

The rules for the conversion of operands and the characteristics of
the results are as follows:

RADIX: If either operand is a constant, the radix of the constant is
converted at compile time to the radix of the variable. If the two
operands are both constants or both variables, and the radicef; differ,
the binary operand is converted to decimal. The result is decimal.

SCALE: If either operand is a constant, the scale of the constant is
converted at compile time to the scale of the variable. If the scales
of the operands differ and the operation is not exponentiation, the
fixed-point operand will be converted to floating point. The result
will be floating point. If the operation is exponentiation, and the
second operand (y) is a positive integer, the operation will be treated
as repeated multiplication. The scale of the.result will be the scale
of the first operand (x). If the operation is exponentiation, and the
second operand is not a positive integer, then the result will be
floating point and will be found by an approximation method; the
precision of the approximation method will be the precision of the first
operand.

MODE: If either operand is complex, neither operand will be. converted.
The result will be complex.

PRECISION: This conversion depends on the scale of the operands, as
follows:

38

Floating Point: Precision is defined for floating-point numbers as the
number of digits carried in the representation of the fraction. The
prec~s10n of a floating-paint result will be the greater of the
precisions of the two operands.

Fixed Point: The rules for fixed-point arithmetic use a symbol, N, which
represents the length of the largest number in the implementation.

If the scale of the result (z) is FIXED, then the precision (m,n) of the
result is related to the values t and u·as follows: .

Addition and Subtraction:
t = max (p - q, r - s) + u + 1
u = max (g,s)

Multiplication:
t = P + r
u = q + s

Division:
t = max (p,r)
u = q - s

Exponentiation:

If Y is a positive integer constant
t = p* value (y)
u = q* value (y)

However, if (p*value(y» > N or y is not a positive integer
constant, conversion to FLOAT occurs.

The relation among t, u, m, and n is defined as follows:

If t ~ N, then m = t, n = u

If t ~ N, then m = t, n = u
If t > N, then m = N, n = u

The latter case implies that truncation is performed on the left.

The conversion from floating point to fixed point will occur only
when a destination precision is known. The destination precision will
define the conversion precision.

Arithmetic Mode Conversion

If a complex value is converted to a real value, the result is the
magnitude of the complex value; i.e., the square root of the sum of the
squares of the real and imaginary parts.

If a real value is converted to a complex value, the result is a
complex value that has the real value as the real part and zero as the
imaginary part.

Integer Conversion

Where conversion to integer is specified, as in the evaluation of
subscript expressions, the conversion will be to coded FIXED BINARY
(x,O) , where x will be implementation defined.

Chapter 6: Function References and Expressions 39

Arithmetic Radix and Scale Conversion

The following table defines the precision resulting from radix and
scale conversion. CEIL is a built-in function described in Appendix 1.

r---,
I Before Conversion I

r--,
1 After I Binary I Decimal I Binary I Decimal
I 1 Fixed (p, q) 1 Fixed (p, q) I Float (p) 1 Float (p)
1--
1 Binary 1 (p,q) 1 (CEIL(p*3.32),\ I
1 Fixed I \ CEIL (q*3. 32» 1 I
1--
1 Decimal 1 (CEIL (p/3. 32) , 1 (p, q) I 1
1 Fi~{ed ICEIL(q/3.32» 1 I 1
1--
1 Binary 1 (p) 1 (CEIL (p*3. 32» 1 (p) I (CEIL (p*3. 32))
1 Float I 1 1 1
1--
1 Decimal 1 (CEIL (p/3. 32» 1 (p) 1 (CEIL (p/3. 32)) 1 (p)
1 Float 1 I 1 1 l ___ J

COMPARISON OPERATIONS

General Form:

oEerand >= oEerand
oEerand > oEerand
oEerand ,= oEerand
oEerand = oEerand
oEerand <== oEerand
oEerand < oEerand

The operation of comparison may be performed in three ways:

1. algebraic, implying comparison of signed numeric values.

2. character, implying left to right, pair by pair comparison of
characters according to a collating sequence. If the operands are
of different length, the shorter is extended with characters which
compare low with all other characters. See -The SEQUENCE
Statement" in Chapter 17 for details of collating sequence specifi­
cation.

3. bit, implying left to right comparison of binary digits. If the
strings are of different lengths, the shorter is extended on the
right with zeros.

The result of a comparison is a bit string .of length 1 that has the
yalue ',IB if the relation is true and 'O'B if it is false •

. -. :--.' .:" ::-: .. ~.:-.-.. , -, ": .. _- --.:- : -~ ..• _-: .. '-: "::", ~-,---"--...-"'-' -- .-~-.. . .':-.". , " •..... ":";-:::-,'" 0""'"'-:' --:;,. -. ¥'::.-~ ~ .. :~'.: -:: :.:' ~ " .. _._-:-__ :---."~. ::: "' ~ :.-. '-~-... :':-'-:~''''-':-", '~,'~~'~:--:-:-- '-:.1'

If the operands of a comparison are of different types, the operand
of lower type is converted to the higher type. The priority of type~ is
arithmetic, character string, bit string. As a result of converS10n,
both the operands will then be arithmetic, bit string or character
string. Algebraic, bit, or character comparison, respectively, will
then be performed.

40

TYPE CONVERSION

Bit String to Character String

The bit 1 becomes the character 1, and the bit 0 the character O.
The length is unchanged.

Character String to Bit String

The characters 1 and 0 become the bits 1 and O. The conversion is
illegal if the character string contains characters other than 0 and 1.

Character String to Arithmetic

The character string is interpreted
directed input; i.e., the contents
constant, with optional sign prefixed,
The value is converted directly to an
scale, mode, and precision that the
would have been converted to if it had

Bit String to Arithmetic

according to the rules of list
of the string must be a valid

with optional surrounding blanks.
operand with the same radix,

constant designated by the string
appeared.

The bit string is interpreted as an unsigned binary integer, and
converted to BINARY FIXED precision (S,O), where S will be implementa­
tion defined.

Arithmetic to Character String

CODED ARITHMETIC AND RADIX BINARY NUMERIC FIELDS: The arithmetic value
is converted to a character string according to the rules of list
directed output specified in Appendix 7.

NUMERIC FIELDS OF RADIX DECIMAL: The numeric field is interpreted as a
character string (see Appendix 2) •

Arithmetic to Bit String

CODED ARITHMETIC AND RADIX DECIMAL NUMERIC FIELDS: The magnitude of the
arithmetic value is converted to BINARY FIXED precision (p,O), where p
is related to the precision before conversion as follows ~ith ceilings
of expressions used) :

BINARY FIXED (r, s)
BINARY FLOAT (r)
DECIMAL FIXED (r,s)
DECIMAL FLOAT (r)

p = (r - s)
p = (r)
p = (r - s) * 3.32
P = r * 3.32

The sign is dropped and the resulting binary fixed value is
interpreted as a bit string of length p.

NUMERIC FIELDS OF RADIX BINARY: The numeric field is interpreted as a
bit string.

EVALUATION OF EXPRESSIONS

An expression may be enclosed in parentheses to force it to be
considered as a single operand. The parenthesized expression is
evaluated before the operation of which it is an operand is performed.
If both operands of an operator are expressions, the left expression
will be evaluated first. Thus parentheses modify the rules specifying
the normal order of operations.

Chapter 6: Function References and.Expressions 41

The priority of operations is

** prefix + prefix­
* /
infix + infix-
>= > ,= < <=
1
&

I
II

highest

lowest

Subject to the rules associated with parentheses, operations within
an expression are performed conceptually in order of decreasing
priority. Thus, an exponentiation is effectively performed before an
addition, and the latter before a string operation. The rules relating
to abnormal functions and abnormal data should be noted (see
"Abnormality of Procedures" in Chapter 9). If an interrupt resulting
from an enabled ON condition (see Chapter 14) occurs while an expression
is being evaluated, then the stage reached in the evaluation before the
interrupt is undefined.

If an expression involves operations of the same priority, then,
subject to the effect of parentheses, the operations **, prefix +, and -
are performed from right to left and all others are performed from left
to right.

Although operators * and + are associative, low order rounding errors
will depend on the order of evaluation of an expression. Thus (A + B +
C) is not necessarily equivalent to (A + C + B) •

ARRAY EXPRESSIONS

The operands of an array expression are arrays or a mixture of
scalars and arrays. The expression is then an array expression and
returns an array result. All operations performed on arrays are
performed on an element by element basis. Thus, all arrays appearing in
any array expression must be of identical bounds. It is important to
note that array expressions are not always expressions of conventional
matrix algebra.

The result of the operation of a prefix operator or a built-in
function upon an array ~s an array of identical bounds, each element of
which is the result of the operator having operated on the corresponding
element of the original array.

The appearance of a function reference (other than a built-in
function) will imply a scalar operand. Thus, if A is an array, PROCCA)
is a scalar function with an array argument.

Example:

5 3 -9
If A is the array 1 -2 7

6 3 -4

-5 -3 9
then -A is the array -1 2 -7

-6 -3 4

Th~ result of an operation in which a scalar and an array are
connected by an infix operator is an array, of identical bounds to the
original, each element of which is the result of the operation performed
on the scalar and the corresponding element of the original array_

42

ExamEle:

If A is the array 5 10 8
12 11 3

then 3*A is the array 15 30 24
36 33 9

The result of an operation in which two arrays of identical bounds
are connected by an infix operator is an array of identical bounds to
both original arrays, each element of which is the result of the
operation performed on the corresponding elements of the two original
arrays by the infix operator.

ExamEle:

If A is the array 2 4
3 6
1 7
4 8

and if B is the array 1 5
7 8
3 4
6 3

then A+B is the array 3 9
10 14
4 11

10 11

and A*B is the array 2 20
21 48

3 28
24 24

STRUCTURE EXPRESSIONS

The operands of a structure expression are structures or a combina­
tion of structures and scalars. A structure expression yields a
structure result. Array operands are not allowed in structure expres­
sions. Note that the term 'expression', as used in this specification,
does not include array expressions.

All operations performed on structures are performed on an element by
element basis. Thus all structures appearing in a structure expression
must have identical structuring. This implies that the structures must
have the same number of contained scalars and arrays. The positioning
of the scalars and arrays within the structure must be the same, and
arrays similarly positioned must have identical dimensions and bounds.
The data types need not be the same.

When an operation has one structure and one scalar operand, it is
interpreted as many operations, one for each scalar element in the
structure. Each suboperation involves a structure element and the
scalar operand.

A structure expression may be thought of as a shorthand for the same
form of the expression applied to each elementary item of the structure.

Chapter 6: Function References and Expressions 43

For example, consider the following structures:

1 A
I 0

2 PART1 3 PART 1
4 Q1 5 Q1
4 P1 5 ALPHA
4 W 5 P1

2 PART 2 3 PART 2
3 Q2 5 ALPHA
3 P2 5 Q2
3 Z (3) 5 Z (3)

Then the expression A-2*B is a shorthand for the following expressions:

A.Q1-2*B.Q1
A.P1-2*B.PART1.ALPHA
A.W-2*B.P1
A.Q2-2*B.PART2.ALPHA
A.P2-2*B.Q2
A.Z-2*B.Z

Note that the last expression is an array expression.

The value of a structure expression is a structure of identical
structuring to the structure operands. The characteristics of the
various elements are defined by the rules of scalar expression evalua­
tion applied to each subexpression.

STRUCTURE EXPRESSIONS BY NAME

A structure expression by name may be formulated according to the
rules for scalar expressions, but with all the operands either struc­
tures or scalars. The expression must have the appendage: , BY NAME. A
structure expression by name may be used only as the right hand side of
an assignment statement (see "BY NAME Structure Assignment" in Chapter
11). The evaluation of a structure expression by name involves the
following steps:

44

Take each structure operand, and extract the names of all contained
scalars and arrays.

Qualify these names by all the minor structure names which contain
them, up to but not including the structure names specified in the
structure expression by name.

The above processes will have generated n sets of qualified names,
each set being associated with one of the n structure operands.
Select a subset of these qualified names, such that it is a subset
of all the n sets. Let this subset contain m names.

Construct m subexpressions, and associate one of the In names of the
subset with each. The subexpression is identical in form to the
original structure expression, except that where a structure name
operand appeared, it is replaced by the qualified name associated
with the subexpression, further qualified by the structure name
which it replaces. Where the original expression involved a
scalar, each subexpression also has the scalar.

The resulting subexpressions must be legal scalar or array expres­
sions. At the termination of the above processes, the operands
should all be unique names. Each subexpression is then evaluated
to give a scalar or array value. The characteristics of the
results are defined by the rules of scalar expression evaluation.

The result returned by a structure expression by name is a set of
array or scalar values each having associated with it a qualified
name, being the qualified name associated with the subexpression
which gave as result the value.

If A and B are the sample structures described
Expressions·, then the structure expression A-2*B,
shorthand for the following expressions:

A. PART 1.Q 1-2*B.PART 1.Q 1
A.PART1.Pl-2*B.PART1.Pl
A.PART2.Q2-2*B.PART1.Q2
A.PART2.Z-2*B.PART2.Z

Note that the last expression is an array expression.

Furthermore, the structure expression

B.PART1/B.PART2, BY NAME
is equivalent to the expression

B.PART1.ALPHA/B.PART2.ALPHA

in
BY

·Structure
NAME is a

Chapter 6: Function References and Expressions 45

CHAPTER 7: PROGRAM STRUCTURES

In NPL, the basic element of the language is a statement. The set of
statements that is required to solve a particular problem constitutes a
program. However, within the framework of an NPL program, a structure
more complex than a single statement is used. Sets of statements are
grouped to provide flexibility and control.

A set of statements called a group is delimited by DO ••• END and is
used for control purposes. Other sets of statements called blocks are
delimited by BEGIN ••• END or PROCEDURE ••• END. A begin block is activated
in line and limits the scope of names; a procedure block or procedure is
activated remotely and has the additional facilities of argument
handling and return mechanisms.

STATEMENTS AND STATEMENT FORMAT

Statements are of two types simple statements and compound
statements. The permitted statements are listed in Appendix 3.

SIMPLE STATEMENTS

General Form:

statement identifier statement body ;

The statement identifier is either a keyword or null.

The statement body is defined for each individual statement.

Where both the statement identifier and the statement body are null,
the statement is a null statement. Where the statement identifier alone
is null, the statement is an assignment statement.

COMPOUND STATEMENTS

A compound statement is a statement which may contain other state­
ments. Also, compound statements can be nested. The stat"ements
contained in a compound statement are in the form of a group or begin
block. Compound statements are not terminated by a semicolon. The
final character of a compound statement is the semicolon of the last
contained statement.

The two compound statements of the language are the IF compound
statement (see Chapter 13) and the ON compound statement (see Chapter
14) •

LABELS

Statements may be labeled to perrni t reference to them. Labeling is
achieved hr preceding a statement identifier by one or mo.re labels.
Each label ~s followed by a colon. Blanks may be placed as desired
around the colon.

46

Example:

START: COMMENCE: BEGIN: A=B;

Multiple labels preceding a statement are synonyms and may be used
interchangeably when referencing the statement. Labels appearing before
PROCEDURE and ENTRY statements are entry names. All other labels are
statement labels.

An entry name is used for identifying main or secondary entry points
to a procedure (see "Blocks" in this chapter). An entry name preceding
a PROCEDURE statement is called a procedure name.

Statement labels appearing before DECLARE, IMPLICIT, and SEQUENCE
statements are ignored. Any reference to them is an error.

INITIAL VALUES FOR LABEL ARRAYS

If a label array is declared in a block ~ee "Blocks· in this
chapter), then any statement (other than PROCEDURE or ENTRY) within that
block may be preceded by a subscripted reference to the label array.
The subscripts are optionally signed decimal integer constants.

The effect of preceding a statement with a subscripted reference is
as follows: An INITIAL attribute (see Chapter 1S) is constructed for the
label array and added to the declaration. A label constant is
constructed for the statement carrying the subscripted reference. This
label constant is appropriately placed, with respect to the specified
subscripts, in the INITIAL attribute. 'The subscripted reference preced­
ing the statement is deleted.

It is not permitted to specify both the INITIAL attribute and the
preceding form of initialization for a label array.

Example:

A: Z(3): X=4;

Z (2) Y=1 ;

GO TO Z (I)

GROUPS

General Forms:

label 1 : label m DO statement
item 1
item 2

item n
END; or END label;

label 1 : ••• label m : statement

The statement is any NPL statement other than DO, PROCEDURE, BEGIN,
DECLARE, IMPLICIT, FORMAT, SEQUENCE, or any compile-time statement.

Chapter 7: Program Structures 47

The items may be a group, a block, or any statement.

The statement labels preceding the statement are optional. In the
first form, one label may optionally be specified in the END statement.

The DO statement may specify iteration of the group (see discussion
of DO in Chapter 13).

BLOCKS

General Form

label 1 label m block heading statement
item 1
item 2

item n
END; or END label

The heading statement may be

a PROCEDURE statement; the block is then a procedure block or
procedure.

a BEGIN statement; the block is then a begin block.

The items in the general form may be a block, a group, or any
statement.

A begin block is activated by normal sequential program flow. A
procedure is activated remotely by CALL statements (see Chapter 13),
function re.ferences and I/O statements.

The PROCEDURE statement must be preceded by one or more labels.
These labels are entry names which are used for referencing the primary
entry point of the procedure. The labels preceding a BEGIN statement
are optional.

Every procedure must logically end with either a RETURN, STOP, EXIT,
or END statement, and physically with an END statement.

The inclusive text between the block heading statement and the
keyword END, with the reservation explained below, is said to .be
contained in the block. A part of the text is called internal to a
block B if it is contained in B, but not in any other block contained in
B.

Labels preceding PROCEDURE and BEGIN statements internal to a block
B, and ENTRY statements internal to a procedure block contained in B,
are considered to be internal to the block B. The name of an external
procedure and the names of all secondary entry points are said to be
external.

Blocks may be nested, but partial overlap is not permitted.

Example:

A: PROCEDURE (X,Y);
Y=Y-F (Y) -R (Y) ;
IF Y>10 THEN BEGIN;

Y=SIN (X);
X=X+l;

D=E+D;

CALL C (X, Y) ;
END;

,
I
I
I
J

F: PROCEDURE (Q); ,
P=Z*Q; I
SAVE (H); I
G: BEGIN; , I

X=l; II

,

Y=2; III
Z=3; I I I
END G; J II

RESTORE (H); I I
END F; J I

END A; J

TH~ PROCEDURE STATEMENT

General Form:

entry name 1 entry name n : PROCEDURE
(formal parameter list) attribute 1 ••• attribute m;

A PROCEDURE statement

heads a procedure.
defines the primary entry point to the procedure.
specifies the formal parameters for the primary entry point.
defines any special attributes of the procedure.
specifies the attributes of the value that will be returned if the

procedure is invoked at the primary entry point.

The formal parameter list specifies the formal parameters of the
entry point. The parameters are names and are separated by commas.
When the procedure is invoked, a relationship is established between the
arguments of the invocation and the parameter list. (Full details of
this relationship are given in Chapter 10.) If the entry point requires
no parameters, the parameter list and the enclosing parentheses are
omitted.

The attributes are any of the following, separated by blanks where
necessary_

OPTIONS (list)

The list is a list of implementation defined option~ separated by
commas. The list may include options such as the following:

MAIN
REENTRANT
SECONDARY

The OPTIONS attribute may be specified only for an external
procedure.

RECURSIVE

This attribute specifies that this procedure may be invoked

Chapter 7: Pro~ram Structures 49

recursively. It does not apply to contained procedures which, if
recursive, must also have the attribute.

FIXEDOVERFLOW
SUBSCRIPTRANGE
SIZE
MODULO

These options are related to the ON conditions with the same
identifiers. They specify that the occurrence of the condition
within the procedure should be signalled.

Data Attributes

Any of the data attributes , separated where necessary by blanks.

The data attributes specify the characteristics of the value returned
by the procedure, when invoked as a function at the primary entry point.
The value specified in the RETURN statement (see Chapter 13) will be
converted to the characteristics specified.

If insufficient data attributes are specified at the entry point, the
default rules of Chapter 17 will be applied, as determined by the name
of the entry point.

If a procedure has multiple labels and no data attributes, there is
potential ambiguity of the characteristics of the value to be returned.
To avoid this ambiguity, succeeding labels are interpreted as if they
were ENTRY names for successive ENTRY statements. For example,

A: I: PROCEDURE;
is equivalent to

A: PROCEDURE;
I: ENTRY;

If ·a RETURN (expression) is executed and no data attributes are
specified, default rules will be applied to the label used in the
invocation.

Example.

CLARET: PROCEDURE (AZURE, MAGENTA) RECURSIVE FLOAT;

THE ENTRY STATEMENT

General Form:

en try name 1 :
attribute

entry name n : ENTRY (formal parameter list)
1 ••• attribute m;

The ENTRY statement specifies a secondary entry point to a procedure.
The formal parameter list and the data attributes are formulated under
the rules described for the PR<Y.:EDURE statement. There need not be any
correlation between lists at primary and secondary entry points (see
"Parameters, Dimensions and Length" in Chapter 10).

If a procedure has mUltiple labels and no data attributes, there is
potential ambiguity of the characteristics of the value to be returned.
To avoid this ambiguity, succeeding labels are interpreted as if they
were ENTRY names for successive ENTRY statements~ For example,

A: I: ENTRY;
is equivalent to

A: ENTRY;
I: ENTRY;

If a RETURN (expression) is executed and no data attributes are
specified, default rules will be applied to the label used in the
invocation.

50

For example, in the following illustration, CALCS is the name of the
secondary entry point of procedure CALC4.

CALC4: PROCEDURE (X, Y, ERROR, Z) FLOAT(S)
ALPHA = SQRT (X**2-Y**~ - ERROR;
GO TO MEETING;

CALCS: ENTRY (X, Y, Z) FLOAT (7) ;
ALPHA = 2.SE-10 * SQRT(X-Y+1);

MEETING: IF ALPHA> SQRT(ALPHA + 2) THEN Z = Xi
ELSE Z = Yi
RETURN (ALPHA *X + Y - Z ** -5) i
END CALC4 ;

The ENTRY statement must be internal to the procedure block for which
it defines a secondary entry point. It may not be internal to any block
contained in this procedure. It may not be within a DO group which
specifies iteration, nor in a DO group which is the unit of an ON
statement.

THE BEGIN STATEMENT

General Form:

label 1 : label n BEGIN

The labels are optional.

A BEGIN statement specifies the start of a begin block which is
activated by normal sequential program flow.

PROGRAMS AND PROCEDURES

A program is a set of independent external procedures. Each external
procedure 1S a complete nest of blocks. All blocks nested within an
external procedure are internal.

DECLARATIONS

An identifier or qualified name may have more than one use in a
program. Different uses are established by declarations, and references
to different uses are distinguished by the rules of scope.

Declaration in a DECLARE Statement

.The DECLARE statement is provided to enable the explici t specifica­
tion of attributes of identifiers. Identifiers thus declared are said
to be declared within the block to which the DECLARE statement is
internal.

In the following example, X and V are declared in block B.

B: BEGIN;
DECLARE (X,~ FLOAT(S);
X = ALPHA - 4 + BETA ** 2;
DELTA = X ** 2 - V ** 2 + SQRT (X - V + 1);
END Bi

Declaration in a Formal Parameter List

A name appearing in a formal parameter list is said to have been
declared within the block to which the list is internal. The declara­
tion of the same name with the same use in a formal parameter list and

Chapter 7: Program Structures S1

in a DECLARE statement internal to the same block constitutes a single
declaration. In the following example, A, I, and Ware declared in
block SINK.

SINK: PROCEDURE (A, I, W) ;
DECLARE W BIT (4) ;

END SINK;

Label Declarations

A statement label is said to have been declared in the block to which
the associated statement is internal.

A label appearing before a PROCEDURE, BEGIN, or ENTRY statement is
said to have been declared in the immediately containing block.
However, if this latter block is the external procedure, the declaration
is said to be internal to thi's external procedure, and is an external
declaration.

In the following example, the first occurence of LOOP is said to be a
declaration of the statement label in block P; the second occurence of
LOOP is said to be a declaration of the statement label in the nested
begin block. The name Q is a declaration in block P.

P:

LOOP:

Q:
LOOP:

PROCEDURE;

DO I = 1 TO N;

BEGIN;
DO J = 0 TO I;

END LOOP;
END Q;

END LOOP;
END P;

Implicit Declarations

An identifier which is referenced in a procedure, but which is not
explicitly declared, is assumed to have an implicit declaration in the
containing external procedure. In addition, such identifiers which can
be recognized from the context as file names, entry names, or task
identifiers are assumed to be external.

In the following example TEMP1 and TEMP2 are said to be implicitly
declared in block Z.

52

Z: PROCEDURE (PARAM1,PARAM2) COMPLEX;
TEMP1=ABS(PARAM1-PARAM2) ;
TEMP2=ABS(PARAM1+PARAM2) ;
IF TEMP1=TEMP2 THEN RETURN (0);

RETURN (COMPLEX (MAX (TEMP1,TEMP2) **2,MIN(TEMP1,TEMP2) **2»
END Z;

In the next example TEMP 1 and TEMP2 are said to be implicitly
declared in block ZZ.

ZZ: PROCEDURE (ZA,ZB);
TEMP1=ABS(ZA*2+ZB**2) ;

ZBZ: BEGIN;
TEMP2=(TEMP1+ZB} **-2
IF TEMP2>TEMP1 RETURN ~EMP~
END ZBZ;
RETURN (TEMP 1)
END ZZ;

Scope of Declarations

The scope of a declaration is the block to which the declaration is
internal, but excluding those contained blocks to which a redeclaration
of the same name is internal. Distinct declarations of the same name
may be linked by means of external declarations. This is achieved
either explicitly by use of the attribute EXTERNAL, or implicitly as
described above. ~ee ·Scope Attributes· in Chapter 15 for details of
'headed' E~TERNAL.) The scope of an external declaration is the
collected scopes of all declarations of the same name for which the name
is declared as EXTERNAL, as described above.

Identifiers linked by external declarations must have the same
attributes. It is an error to declare explicitly or implicitly an
identifier as EXTERNAL with one set of attributes, and elsewhere in the
same program to declare the same identifier as EXTERNAL with conflicting
attributes. The external attribute may be used to obtain noncontinuous
scopes (i.e. with holes) within an external procedure. A name or
identifier use is said to be known or accessible within its scope.
Identifiers which are not external are internal.

Examples:

A: PROCEDURE;
DECLARE X FLOAT;

B: PROCEDURE (Y) ;
DECLARE Y BIT (6) ;
SAVE (X) ;

C: BEGIN;
DECLARE
DECLARE

Y: RETURN;
END C;

END B;

A
X

D: PROCEDURE;
DECLARE X FILE;
Y = B (Y);

END Di
END A;

CHARACTER (10)
FIXED;

The following table illustrates the scope of each identifier appear­
ing in the above example.

Chapter 7: Program Structures 53

Identifier Use Scope (in terms of blocks)

A external entry name
X floating-point variable
B internal entry name
Y bit string
C internal entry name
A character string
Y statement label
X fixed-point variable
D internal entry name
X file name
Y floating-point variable

A,B,D
A,B
A,B,C,D
B
B,C
C
C
C
A,B,D,C
D
D,A

Since file names and entry names are automatically EXTERNAL, the
scope of the file name X and the entry name A may also include
procedures in other external procedures of the program.

The following example illustrates interaction of
qualification. All qualified names in the procedure
that the reference to CARDOUT.RATE.NORMAL is legal,
qualifying identifiers CARDOUT and RATE have been
internal procedure SICKPAY.

PAYROLL: PROCEDURE;

scope and name
are unique. Note
even though the
redeclared in the

DECLARE 1 CARDIN, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;
DECLARE 1 CARDOUT, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;

CARDOUT.RATE = CARDIN.RATE;
CALL SICKPAY (CARDI~

SICKPAY: PROCEDURE (CAR~;
DECLARE 1 CARD, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;
DECLARE 1 CARDOUT, 2 NAME, 2 SICKRATE, 3 NORMAL, 3

UNINSURED;
WAGES = CARD.NORMAL*HOURS;
SICKRATE.NORMAL = CARDOUT.RATE.NORMAL;

END SICKPAY;

END PAYROLL;

SEQUENCE OF CONTROL

Within a program, control normally passes sequentially from one
statement to the next. However, sequential operation is modified by the
following statements:

54

The GO TO statement
The CALL statement
The RETURN statement
The END statement
The PROCEDURE statement
The SIGNAL statement
The STOP statement
The EXIT statement

Chapter 13
Chapter 13
Chapter 13
Chapter 7
Chapter 7
Chapter 14
Chapter 13
Chapter 13

A GO TO statement transfers control to the specified statement label.

A CALL statement passes control to the specified entry point.

A RETURN statement returns control from a procedure to the invoking
procedure.

An END statement logically terminating a procedure acts as a RETURN
statement.

A PROCEDURE statement heads a procedure. Procedures may be consid­
ered as independent blocks, and placed anywhere within an external
procedure consistent with desired identifier scopes. However, a proce­
dure may be invoked only by a CALL statement or a function reference.
Thus control passes around a nested procedure, from the statement before
a PROCEDURE statement to the statement after the appropriate END
statement.

A SIGNAL statement causes control to pass to the group specified
within the associated ON statement.

The STOP and EXIT statements cause control to leave a program.

A function reference causes control to pass to the function procedure
having the specified name.

The occurrence of a condition specified in an ON compound statement
causes control to pass to the unit contained in the statement.

The flow of control through "the IF and ON compound statements and
through a DO group is not necessarily sequential (see Chapters 13 and
14) •

In an appropriate environment, the asynchronous execution of several
operations may involve transfer of control under the influence of
external occurrences.

Example:

A: PROCEDURE;
B: X = Y + Zi
C: CALL Di
E: W = p* Q;

D: PROCEDURE;
G: S = T/Pi
H: RETURNi
I: END Di

J: U = V *. Wi
K: GO TO Li

L: ENDi

Control passes in the following order

A,B,C,D,G,H,E,J,K,L.

PROCEDURE AND BLOCK TERMINATION

THE END STATEMENT

General Forms:

END;
END label

Chapter 7: Program Structures 55

The END statement is used for terminating blocks and groups. The
statement may optionally specify one of the labels declared before the
heading statement of the group or block. If control passes to an END
statement, it is treated as a RETURN statement (see Chapter 13).

MULTIPLE CLOSURE

When more than one block or group is terminated at the same point, it
is unnecessary to provide multiple END statements. It is sufficient to
supply one END statement that specifies the label of the outermost block
to be te"rminated. The label specified must be known in the block which
immediately contains the outermost block Or group to be terminated.

An END statement causing multiple closure is equivalent to a sequence
of END. statements, equal in number to the number of groups or blocks
being closed. If this statement is labeled, the label is on the last
END statement in this equivalent sequence.

ExamEle.

A : PROCEDURE; ,
I

B BEGIN; , I
I

A PROCEDURE; , I
I I
I
I
I

C DO; , I
II
II
II
II
II

END B; JJ

END A;

56

CHAPTER 8: STORAGE CLASSES AND ALLOCATION OF DATA

Storage allocation involves the association of storage with a
particular variable. Storage must have been allocated for a variable
before any reference is made to that variable. In choosing the class of
storage to be associated with a given variable, the programmer has three
alternatives:

1. He may specify that storage is to be allocated at the start of
execution of the program and never released during execution. This
is the static storage class.

2. He may specify that, during execution, storage is to be automati­
cally allocated upon entry to a procedure and automatically freed
upon return. This is the automatic storage class.

3. He may retain full control over the allocation and freeing of
storage. This is the controlled storage class.

All variables must have a storage class. The storage class may be
explicitly declared, using the storage class attributes STATIC, AUTOMA­
TIC, and CONTROLLED; it may be given by default (see "Default Attribute"
in Chapter 17) or it may be deduced from usage (for name parameters, see
Chapter 10; for defined items see "DEFINED Attribute" in Chapter 15).

In addition, the qualifying scope attributes INTERNAL and EXTERNAL
may be declared for STATIC and CONTROLLED data. If unspecified, the
default scope is INTERNAL. AUTOMATIC data can only have the scope
INTERNAL; AUTOMATIC EXTERNAL is not pernlitted. The qualifying scope
attributes are described in Chapter 7.

THE STATIC STORAGE CLASS

Static storage is allocated at the start of execution and is not
released until completion of program execution. STATIC variables may
have internal or external scope.

Variables declared with adjustable size or dimensions (see
"Allocation of Name Parameters" in Chapter 10) may not have the STATIC
attribute. However, STATIC arguments can be passed by name as formal
parameters with adjustable size or Idirnensions.

If a procedure involving static storage is invoked from within or as
a separate task, then the static storage is common to all invocations.
(See Chapter 18).

THE AUTOMATIC STORAGE CLASS

Automatic storage is allocated on each entry to the block to which
its declaration is internal. This storage-is released on leaving the
block. If the block is a procedure which is invoked recursively, the
previously allocated storage is pushed down on entry and popped up on
return. AUTOMATIC variables have internal scope.

Label variables must be automatic; they may not be declared STATIC or
CONTROLLED.

The following procedure illustrates the use of static and automatic
storage.

Chapter 8: Storage Classes and Allecation of Data 57

P: PROCEDURE (X,Y):
DECLARE I STATIC INITIAL (0) ,X(10) ,TEMP (10)
1=1+1;
TEMP=X**3/Y**2:
DO J = 1 TO 10:
IF (ABS(ABS(TEMP(J»-l) <= .3E-5) THEN RETURN (1) END:
RETURN (SUM(TEMP**2»:
END P;

In this example the variable named I is of the static storage class
(and, effectively, keeps count of how many times the procedure is
invoked); TEMP is by default of the automatic storage class.

THE CONTROLLEt STORAGE CLASS

The allocation and freeing of storage for variables declared as
CONTROLLED are specified by the programmer by means of the statements
ALLOCATE and FREE. CONTROLLED variables may have either internal or
external scope.

If in the course of e~ecuting a statement any controlled data
referenced by the statement 1.S allocated or freed (by an abnormal
function, for instance), then the effect is undefined.

THE ALLOCATE STATEMENT

General Form:

ALLOCATE allocation declaration 1, ••• , allocation declaration n;

An allocation declaration is of the form:

identifier attribute 1 ••• attribute n

The identifier is an unqualified unsubscripted variable name. The
variable must be of the controlled storage class. Attribute 1 may be a
dimension attribute. Attribute i may be null or one of the attributes
INITIAL, CHARACTER, or BIT. For a full discussion of attributes see
Chapter 15.

A dimension or data attribute given in an allocation declaration must
also be given in the corresponding declaration in a DECLARE statement.
The number of dimensions in the dimension attribute must be the same in
both declarations. If different upper or lower bounds or lengths are
specified, those given in the allocation declaration override. The
asterisk notation may be given in the DECLARE statement.

If any part of a structure is to be specified in this way, the entire
major structure with all level numbers and identifiers must be included
in the specification in the ALLOCATE statement. Only the attributes
allowed in the ALLOCATE statement and which are desired to override
those in the DECLARE statement may be specified. The form of the
structure declaration is the same as that in the DECLARE statement (see
Chapter 15) •

A formal parameter passed by name may be specified in an ALLOCATE
statement if the associated argument was of controlled storage class and
not contained in a structure (see "Arguments Passed by Name" and
n AOllocation of Name Parameters" in Chapter 10).

The evaluations implied by the ALLOCATE statement are subject to the
same rules as the evaluations involved in prologue activity (see
nPrologues n in Chapter 16).

58

THE FREE STATEMENT

General Form:

FREE identifier I ••• I identifier n;

The identifier is an unqualified unsubscripted variable name. The
variable must be of the controlled storage class.

The statement causes the storage most recently allocated for the
variable to be freed. The next most recent allocation is popped up, and
subsequent references to the identifier will reference that allocation.

In the case of asynchronous operation (see Chapter 18) the concept of
most recent allocation is interpreted in the context of dynamically
embracing tasks. Controlled storage allocated in a task after it has
attached another task cannot be freed by the attached task.

If a specified identifier currently has no allocated storage, no
action is taken.

The following example illustrates the use of controlled storage.

SUPER:PROCEDUREi
DECLARE X(~ CONTROLLED, Y(M) AUTOMATIC;
READ LIST (M,Y) i
ALLOCATE Xi
X=M*Y;
CALL COMPUTE1i
Y=Xi
WRITE LIST (X)
FREE Xi
CALL COMPUTE2;
END SUPER;

Chapter 8: Storage Classes and Allocation of Data 59

CHAPTER 9: CHARACTERISTICS OF PROCEDURES

A procedure is invoked by specifying the name of an entry point at
which the execution of the procedure is to begin, together with a list
of arguments which correspond to the list of formal parameters at that
entry point. A procedure may be referenced by any procedure to which
its name is known; however, an internal procedure may be referenced only
if the immediately containing block is active.

Procedures may be either subroutine procedures or functions.

SUBROUTINE PROCEDURES

Subroutine procedures are programmer specified. They define an
algorithm which may perform operations on the data known to the
procedure. Subroutines may be invoked from CALL statements and from
within I/O statements. Any arguments of the invocation are made
available to the procedure. Values may be returned to the invoking
procedure using arguments passed by name (see Chapter 10).

FUNCTIONS

Functions are invoked by function references which may include an
argument list. These arguments are made available to the function,
which returns a value.

Functions are of two types, function procedures and built-in func­
tions.

FUNCTION PROCEDURES

A function is specified by writing a procedure. The name of the
function is then an entry name of the procedure. Details of how a value
is returned by a function procedure and rules relating to the type and
precision of the value are specified in "The RETURN Statement" in
Chapter 13.

BUILT-IN FUNCTIONS

Built-in functions
subclass of generic
listed in Appendix 1.

are provided by
functions. The

the language and contain a
built-in functions provided are

A generic function is a family of functions. A reference to a
generic function causes the selection of a particular member of the
family. The member chosen depends on -the arguments provided.

The characteristics of the value returned by a generic function
ref,erence depend on the member of the family chosen.

Built-in functions other than generic functions have only a single
member. Where necessary, the arguments provided are converted to the
appropriate characteristics before the function is invoked. The charac­
teristics of the value returned are invariant.

60

Built-in function names have the same scope rules as normal external
identifiers. If undeclared built-in function names are referenced, they
have implicit external declarations in the external procedure. If a
built-in function name has been declared with another use in a block,
then the built-in function is made accessible in contained blocks by
declaring it with the attribute BUILTIN.

THE ENTRY ATTRIBUTE

General Forms:

:!:NTRY
SNTRY (parameter attribute list 1,

parameter ~ttribute list n)

The ENTRY attribute may be declared in a procedure for entry names
referred to in that procedure. The first form is used to specify that
the identifier being defined is an entry name. An entry name must be
declared with the ENTRY attribute unless a reference is made in a CALL
statement or in a function reference with arguments.

In the second form, each parameter attribute list is a succession of
attributes describing the corresponding formal parameters of the entry
point. Permissible attributes are those allowed for formal parameters
(see Chapter 10). The attributes are separated by blanks. The number

of parameter attribute lists must agree with the number of formal
parameters required by the entry point. If a parameter attribute list
is null, its place must be kept by a comma.

The second form of the ENTRY attribute need not be used unless the
formal parameters of the entry are to be described. An ENTRY attribute
of the first form specifies nothing about the number or nature of the
parameters.

The dimension attribute may be specified for array parameters (see
-The Dimension Attribute" in Chapter 15.) It must, however, be the
first attribute specified. If expressions are included, they will be
evaluated on entry to the declaring block. The * notation (see
aparameters Dimensions and Length- in Chapter 10) may be used.

If the argument is to be a structure, the structuring may be
specified by a structure description using level numbers (see
aStructures n in Chapter 16). This description does not involve identi­
fiers, the level number being immediately followed by the attribute
list. The first item in the structure description must be specified as
being at level one. However, when argument checking is performed,
importance will only be attached to relative levels; thus, it is not
necessary for the argument to be a major structure so long as the
structuring is the same. For instance, P is a proper argument to A in
the following example.

DECLARE 1 0, 2 P, 3 Q, 4 R, 4 S, 3 T, 4 U,
A ENTRY (1, 5, 6, 6, 4, 5);

CALL A (P) ;

If the argument is to be an entry name, an ENTRY attribute may be
specified for the argument. Consider, for example, passing a function
without arguments as an argument to a procedure. If one wants to pass
the entry name RANDOM as the second argument to a procedure named DETER,
one declares

DETER ENTRY (BIT (6) , ENTRY FLOAT)

and then invokes DETER:

Chapter 9: Characteristics of Procedures 61

CALL DETER (MASK, RANDOM)

The entry name RANDOM will be the second ar9ument sent to DETER~

In the above example, if the declaration had been

DETER ENTRY (BIT (6) , FLOAT)

then the function RANDOM would be invoked and its value sent as the
(floating point) second argument to DETER.

If no attributes are given for a particular formal parameter, no
assumptions are made about it. otherwise, attributes required for full
definition of a parameter but not specified in the ENTRY attribute, are
deduced from default rules given in "Implicit and Default Attributes" in
Chapter 17. The effect of the ENTRY attribute is described in Chapter
10. Expressions occuring in ENTRY attributes are evaluated on entering
the block to which the ENTRY attribute is internal.

The use of NAME or VALUE attributes does not necessarily describe the
way the corresponding formal parameter will be used in the invoked
procedure, but describes the way the argument is presented. If neither
a NAME nor a SETS attribute appears, the programmer should assume that a
dummy argument may be created. If SETS appears, NAME is assumed. NAME,
however, does not imply SETS. If NANE, VALUE and SETS do not appear, no
uniform choice is made between NAME and VALUE: the choice will be made
at each invocation according to the actual argument presented.

The following example illustrates the use of the ENTRY attribute:

Q: PROCEDURE;
DECLARE A ENTRY FIXED (4) ,

B FLOAT ENTRY (FLOAT, BIT),
C ENTRY (FIXED (7) , FLOAT (7) , FIXED (7» ,
D FLOAT ENTRY (FIXED),
M FIXED INITIAL (0) STATIC, (X,~ EXTERNAL;

M = M + 1 ;
X = A * (1 + D (M)) ;
CALL C~*.3, B, Y);
IF Y > 100 THEN X = X+A;
END Q;

In this example, A is a function procedure with no arguments and
hence must be declared with the ENTRY attribute. The only reference to
B is as an argument, and hence B must be similarly declared. C has been
declared in order to effect conversion of the arguments. D has been
declared to facilitate documentation.

ABNORMALITY OF PROCEDURES

Abnormality is a property of both external and internal procedures.
Blocks invoking procedures which are abnormal must declare those names
with the ABNORMAL, USES, or SETS attributes. This enables program
optimization to be performed.

it

62

An external procedure is abnormal if it, or any procedures invoked by

access, modify, allocate, or free external data;
modify, allocate, or free their arguments;
return inconsistent function values for identical argument values;
maintain any kind of history;
perform I/O operations; or
return control from the procedure by means of a GO TO statement.

An internal procedure is abnormal under the conditions listed for
external procedures; it is also abnormal if it, or any procedures called
by it, access, modify, allocate, or free variables declared in an outer
block.

In the absence of ABNORMAL, NORMAL, USES, or SETS attributes, entry
names invoked as functions are assumed to be normal and all other entry
names are assumed to be abnormal.

If an expression contains a reference to an abnormal variable (see
-The ABNORMAL, NORMAL and SECONDARY Attributes" in Chapter 15) , or to an
abnormal function that may alter another operand in the expression, then
the order in which data is accessed within the expression becomes
significant. (See "Evaluation of Expressions· in Chapter 6 for the
hierarchy .in which operations are performed.) This order is defined as
follows:

Consider an infix operator op with operands a, b of the form a op b
in a scalar expression. Then either a, b or both may be a
subscripted name, a function reference, or a subexpression of the
form c op d. In the following discussion, the term 'elements' will
denote the expressions that must be evaluated, such as subexpres­
sions, arguments, and subscripts, and the functions that must be
invoked before op can be applied.

If a is an unsubscripted name or a constant, and b is neither an
unsubscripted name nor a constant, then a will not be accessed
until all the elements of b have been accessed.

In all other cases, all elements of a are accessed before any
elements of b are accessed.

Subscript lists are evaluated and accessed left to right, and
immediately before accessing the subscripted variable.

Function argument lists are evaluated and accessed left to right,
immediately before accessing (or invoking) the function.

The order of assignment in multiple assignment is left to right.

Array expressions are evaluated by performing a complete scalar
evaluation of the expression in turn, for each position of the
array in row major order. The result of the evaluation for an
earlier position will not be altered by an evaluation of a later
position. (See -Array Expressions- in Chapter 6) •

Structure expressions are evaluated by performing a complete scalar
evaluation of the expression for each eligible field in the order
in which the fields of the target structure were declared. The
result of the evaluation for an earlier position will not be
altered by an evaluation of a later position. .

THE ABNORMAL ATTRIBUTE

Abnormal procedures, invoked as functions, must be declared in the
invoking block with one or more of the attributes, ABNORMAL, USES, and
SETS.

ABNORMAL used alone specifies complete abnormality. ABNORMAL used in
combination with USES or SETS specifies that the function maihtains a
history, performs I/O, returns inconsistent function values, or contains
an abnormal return. It is unnecessary to specify ABNORMAL for the
built-in functions TIME and DATE.

Chapter 9: Characteristics of Procedures 63

The ABNORMAL attribute may also be specified for data (see Chapter
15) • In particular, data which is changed by executing an ON unit is
abnormal.

THE NORMAL ATTRIBUTE

This attribute specifies that the entry name is for a procedure which
is not abnormal. The attribute may be used to override a factored or
implicit ABNORMAL attribute.

THE USES AND SETS ATTRIBUTES

General Forms:

USES
SETS

item 1 ,
item 1 ,

, item n)
, item n)

The USES and SETS attributes may be declared in the invoking block
for any entry name. If either is declared, complete information must be
given about the abnormality of the specified entry name arising from
data manipulation.

64

The items may be

a decimal integer n, specifying the nlth argument
invocation.

an external identifier known to the invoking block.

of the

an asterisk that implies all external identifiers known to the'
invoking block.

The appearance of an item in the SETS list specifies

that the procedure, or other procedures invoked by it, reassign
that item.

that neither the procedure, nor procedures invoked by it, access
that item other than to reaSSign it unless it is also specified in
a USES attribute.

The appearance of an item in a USES list specifies

that the procedure, or other procedures invoked by it, access that
item.

that neither the procedure nor procedures invoked by it reassign
that item unless it is also specified in a SETS attribute .•

CHAPTER 10: FORMAL PARAMETERS, ADJUSTABLE DIMENSIONS, AND LENGTH

When a procedure is invoked, a relationship is established between
the arguments of the invocation and the formal parameters of the entry.
Permissible arguments are listed in "FUnction References" in Chapter 6.
An explicit ENTRY attribute may be specified for an invoked ent'ry name
(see "The ENTRY Attribute" in Chapter 9). This specifies the attributes

of parameters of the entry. When a procedure is invoked, the data
attributes of arguments passed must match those of the associated formal
parameters. If the specified argument has different data attributes
from the parameter, a dummy arqument, with the value of the given
argument, will be constructed, and converted to the characteristics of
the parameter. The dummy argument is then passed to the entry. If the
conversion is impossible, the program is in error (e.g. filename to
bit) • If no ENTRY attribute is specified, it is assumed that the
attributes of the arguments given match those of the associated formal
parameters.

If an argument is a label variable, a dummy argument having the
current value of the label variable or array will be constructed and
passed to the entry. If expressions involving operators or constants
are specified as arguments, a dummy argument having the current value of
the expression (or constant) is constructed and passed to the entry.

If the argument is a statement label constant, this value is
qualified by an identification of the current invocation of the block
containing the label and by the current task, before the invocation is
performed and the value assigned to the parameter.

If a subscripted item is an argument, then the subscript is evaluated
before the invocation. The specified element is then passed as the
argument. Subsequent changes in the subscript during the execution of
the invoked procedure do not influence the associated parameter. If a
parameter is a scalar, the associated argwnent must also be a scalar.

If an argument is an array expression, the associated formal
parameter must be declared as an array with identical dimensions and
bounds to the argument (see "Parameters, Dimensions, and Length" in
Chapter 10).

If an argument is a structure expression, the associated formal
parameter must be declared as a structure with identical structuring.

Note that a scalar is a valid array or structure expression. Thus, a
scalar argument may be passed to an array or structure parameter.
However, it must be known before the invocation that the scalar
constitutes an array or structure expression. Thus an explicit ENTRY
attribute specifying this information must be declared for the entry
name in the invoking procedure. An appropriate dummy array or structure
will then be constructed and passed to the entry.

Formal parameters must be declared in the invoked procedure. They
may not be· declared in outer containing blocks. If no explicit
declaration is given, an implicit declaration is assumed, internal to
the invoked procedure, with default attributes. (See Chapter 17).

Chapter 10: Formal Parameters, Adjustable Dimensions, and Length 65

ARGUMENTS PASSED BY NAME

If a formal parameter has the attribute NAME: the associated argument
is said to be passed by name. This means that during execution of the
invoked procedure the formal parameter name is made synonymous with the
name of the argument passed, and all references to the former are
treated as references to the latter. Note, however, that where a dummy
argument has been constructed as described previously, the parameter is
synonymous with the dummy rather than with the actual argument.

If the argument is CONTROLLED, the name parameter is made synonymous
with the most recent generation of the argument at the point of
invocation, and this synonym normally remains fixed until the invoked
procedure returns control to the caller. But if the name parameter also
has the attribute CONTROLLED, then the parameter is always synonymous
with the most recent generation at the point of reference, which may be
different from the generation existing at the point of invocation. In
this case, the invoked procedure may also ALLOCATE and FREE the name
parameter (see "Allocation of Name Parameters" in Chapter 10).

NAME formal parameters may not be declared with the storage class
attributes STATIC or AUTOMATIC, with the scope attributes, or with the
DEFINED attribute.

This relationship between argument and name parameter is not esta­
blished unless the invoked procedure is entered at an entry point where
the parameter declared NAME appears in the formal parameter list. If
the procedure is entered at an entry point where the parameter is not in
the parameter list, it is inaccessible in the invoked procedure.

A farmal parameter by name may be an unsubscripted unqualified
variable name (including a label variable name), a file parameter, or an
entry parameter.

A file parameter may be used within a procedure wherever a file name
may be used; an entry parameter may be used wherever an entry name may
be used.

If a farmal parameter by name is a fixed-length string variable, the
actual argument must be a fixed-length string. If the parameter is a
variable-length string, the argument must also be one.

ARGUMENTS PASSED BY VALUE

If a farmal parameter has the attribute VALUE, the associated
argument is said to. be passed by value. This means that when" the
procedure is invoked, the value of the argument is assigned to. the
associated parameter.

Value parameters may be scalar, array, or structure names. The
parameters have explicit or implicit storage class and scope attributes
which need not be the same as those of the correspanding argument.

Value parameters rnay only be CONTROLLED if storage has been allocated
far them befare the pracedure is invaked. This implies that either of
the following cases exist:

66

The parameter is CONTROLLED EXTERNAL
invaked procedure. Storage may then
invacation by other pracedures.

and is declared so. in the
be allocated before the

The' parameter is CONTROLLED INTERNAL, and the procedure has an
alternative entry point where the value parameter is not in the
parameter list. The first invocatian of the pracedure can be

through this entry point and the CONTROLLED INTERNAL storage
allocated. Subsequent invocations may use the other entry point
where the value parameter is in the parameter list.

If a formal parameter by value
actual argument may be either
string.

DEFAULT PARAMETER ATTRIBUTES

is a variable-length string, the
a fixed-length or a variable-length

Formal parameters to be passed by value may be explicitly declared
using the attribute VALUE. Formal parameters not declared NAME or VALUE
are given the default attribute NAME.

ADJUSTABLE DIMENSIONS AND LENGTH

AUTOMATIC and CONTROLLED arrays and strings may be declared with
adjustable dimensions and lengths, i.e. with expressions involving
variables and function references as bounds or lengths. When storage is
allocated for the array or string, these expressions are evaluated and
converted to integer; thus, at this point, the variables in the
expressions must have had storage allocated for them and must have been
assigned a value. Full details of how such expressions may be
formulated are given in the section he~ded nprologues" in Chapter 16.

PARAMETERS, DIMENSIONS AND LENGTH

In general, the dimensions, bounds, and sizes of arguments must be
the same as those of the corresponding formal parameter. (For the
exception, see nAllocation of Name Parameters" in this chapter. This
correspondence may be achieved by

declaring the values for the parameters as constants. This method
of specification must be used for STATIC VALUE parameters.

specifying the length by an asterisk, or each and every dimension
bound by an asterisk to indicate that the length or bounds are the
same as those of the argument passed. Asterisk notation may not be
used for STATIC VALUE parameters; if the asterisk notation is used
for a CONTROLLED VALUE parameter, the ALLOCATE statement must
specify the length or bounds.

declaring the bounds or length as any expression which, when
evaluated, will give the appropriate value, i.e., adjustable bounds
or lengths (see above) •

NAME PARAMETERS, ADJUSTABLE LENGTHS AND DIMENSION BOUNDS

The expressions specified for dimension bounds or length must be
formulated according to the rules stated under nprologues· in Chapter
16.

- VALUE PARAMETERS, ADJUSTABLE LENGTHS AND DIMENSION BOUNDS

The only difference between value parameters and variables that are
not parameters is that the associated argument value is copied at entry
points if the parameter is in the parameter list. Thus, storage is
allocated for value parameters in exactly the same way as for other
variables of the same storage class. The rules for adjustable dimen­
sions and length of value parameters are exactly as described under
uDefault Parameter Attributes" in this chapter.

Chapter 10: Formal Parameters, Adjustable Dimensions, and Length 67

Storage is allocated for AUTOMATIC VALUE parameters on every entry to
a procedure, whether the parameter is in the parameter list of the entry
or not. Thus, if adjustable dimensions or length are specified for an
AUTOMATIC VALUE array or string, the constituent expressions must be
able to be evaluated at all entry points, i.e., not contain a name
parameter which only appears in a subset of the parameter lists.

Value parameters may have the INITIAL attribute (see Chapter 15) •
Where both initial value assignment and argument copying should take
place at the same point, the latter overrides tht:- former.

ALLOCATION OF NAME PARAMETERS

Variables passed by name may be allocated and freed in an invoked
procedure if the original argument was declared CONTROLLED, and the name
parameter also has the attribute CONTROLLED.

If the variable is a string or an array, the length or dimension
bounds must be declared in the invoked procedure. Either the asterisk
notation may be used, or explicit bounds or length given.

If the asterisk notation is used, it means

If storage has already been a~Locatea [or ~ne argument, then in
invoked procedure the formal parameter will be assumed to have
length or bounds that were specified when the storage
allocated. Further allocations of the data will use these
values.

the
the
was

same

If no storage has been allocated for the argument, then the program
is in error. Bounds or lengths must be declared in the invoked
procedure if the argument was passed unallocated.

If dimensions or length are explicitly specified in the invoked
procedure, the following rules apply:

If storage has already been allocated for the argument, then on
entry to the invoked procedure the expressions specifying the
parameter bounds or length are evaluated and must give values the
same as those of the argument. If the parameter is subsequently
re-allocated, these expressions will again be evaluated to give new
bounds or length .for the new allocation.

If no storage has been allocated for the argument, then no
requirements are made at the point of entry to the invoked
procedure on the value of the expressions specified for bounds or
length of the parameter. These expressions will only be evaluated
at a subsequent point of allocation.

The initial value attribute may be specified in 'the invoked procedure
for a name parameter which is allocated in that procedure.

68

CHAPTER 11: THE ASSIGNMENT STATEMENT

The assignment statement is used for evaluation of expressions and
assignment of values to scalars, arrays, and structures.

SCALAR ASSIGNMENT

General Form:

variable 1, ••• , variable n = scalar expression, option list;

The items on the left of the equal sign may be a scalar variable
name, or a pseudo variable (see below). These items may be of type
arithmetic, bit, or· character. The statement causes the following
action:

Expressions on the left, in subscripts or pseudo variables, are
evaluated from left to right.

The scalar expression is evaluated.

The value of the expression on the right is assigned to the scalars
on the left. The value is converted, if necessary, to the
characteristics of the variable on the left according to the rules
stated under ·Scalar Expressions" in Chapter 6.

One or more options may appear to the right of the scalar expression.
The list items are separated by commas. The permitted options are:

FIXED OVERFLOW
SUBSCRIPTRANGE
SIZE
MODULO

The first three options are related to ON conditions which have the same
identifiers. They specify that the occurrence of the condition should
be signalled when it occurs during execution of the statement, but
excluding execution of any functions invoked by the statement. The
treatment of the occurrence of the condition in such functions is
determined by the function procedures themselves. In the absence of the
option, the occurrence of the condition will not be signalled, unless
the absence of the option is overruled by the presence of a procedure
attribute with the same identifier.

The MODULO option specifies that replacement will be performed
ignoring any SIZE error conditions.

PSEUDO VARIABLES

The following are permitted:

COMPLEX (a, b)

REAL (c)

a and b are real arithmetic variables which need not
have the same characteristics. On assignment, the
real part of the expression on the right is assigned
to a, the imaginary part to b.

c is a complex variable. On assignment, the real value
of the expression is assigned to the real part of c.

Chapter 11: The Assignment Statement 69

IMAG (c)

SUBSTR (s , i, k)

UNSPEC (V)

ONCHAR

ONFIELD

c is a comolex variable. On assianment. the real value
of the expression is assigned toJthe i~ginary part of
c.

s is a string. On assignment, the expression is
assigned to the substring of s from the ith character.
or bit, k characters or bits long. If k'is omitted,
the expression will be assigned from the ith characteL
or bit to the end of the, string (see Appendi>: 1) ..

v is a scalar variable. The expression on the right is
converted to a bit string and assigned to v without
conversion.

The expression on the right is converted to a
character string of length 1. On assignment, the
character which caused an I/O conversion error inter­
rupt is replaced by the value assigned. This pseudo
variable is only defined while such an interrupt is
being processed.

The expression on the right is converted to a
character string. On assignment, the field that was
being processed when an I/O interrupt occurred is

All pseudo variables are also built-in functions (see Appendix 1).

STRING ASSIGNMENT

When strings are assigned, the assignment is performed from left to
right starting with the leftmost positions.

Assignment to Fixed-Length Strings

If the expression value is longer than the string on thE left, the
value is truncated. If it is shorter, it is extended on the right with
zeros or blanks (bit or character) •

Assignment to Variable-Length Strings

If the expression value is
string on the left, the value is
string is the maximum length.

longer than the maximum length of the
truncated. The new length 01 the

If the expression value is shorter than the maximum length of the
string on the left, the value is assigned; and the new length oj the
string is' the length of the value ..

If the destination is the SUBSTR pseudo variable with a variable
length string argument, the assignment is performed to this substring ..

If the expression value is shorter than the substring, the rest of
the substring is filled with blanks or zeros precisely as if the
specified substring were in an assignment statement. If the expression
value is longer than the substring, it will be truncated as if it were
in an assignment statement. If no substring length is specified,
truncation is only performed when the left hand string part before the
substring and the assigned value exceed the maximum length for the
argument.

70

To illustrate string assignment, suppose that:

A is a fixed-length string whose value is 'XZ/BQ'.
B is a variable-length string of maximum length 8 whose value is

'HAFY'.
C is a fixed-length strir.g of length 3.
D is a variable length string of maximum length 5.

Then:
If C=Ai the value of C will be 'XZ/'.
If C='A'; the value of C will be 'A'.
If D=B; the value of 0 will be 'MAFY'.
If D=SUBSTR (A, 2, 3) II SUBSTR (A, 2,3); the value of D will be

'Z/BZ/'.
If SUBSTR(A,2,4)=B; the value of A will be 'XMAFY'.
If SUBSTR(A,4)=B; the value of A will be ·XZ/MA'.
If SUBSTR(B,2) =SUBSTR (A,2) ; the value of B will be 'MZ/BQ'.
If SUBSTR (B,2,2) =SUBSTR (A. 3) ; the value of B will be 'M/BY'.

ARRAY ASSIGNMENT

General Form:

array 1 , ... , array n = array expression

The items on the left of the equal sign may be an array variable name
or a pseudo array.

All the arrays on the left, and the array expression must have the
same number of dimensions and identical dimension bounds. The action
caused by the statement is identical to that described for scalar
assignment, except array values are used and assigned on an element by
element basis.

The permitted pseudo arrays have a syntax the same as the permitted
pseudo variables, except that the first argument must be an array of
appropriate dimensions and bounds. The meaning, taken on an element by
element basis, is the same.

To illustrate array assignment, suppose that:

A is the array

and B is the array

Then, if A= (A+B) •• 2-A <1,1) ;

A will have the value

2 4
3 6
1 7
4 8

1 5
7 8
3 4
6 3

7 79
98 194
14 119
98 119

Chapter 11: The ASSignment Statement 71

SIMPLE STRUCTURE ASSIGNMENT

General Form:

structure name = structure expression, options ;

The options that can be used on scalar assignment may also be used on
structure assignments. There is an option, BY NAME, that is permitted
only on a structure assignment. In the absence of the BY NAME option,
the structure on the left must have identical structuring to the
expression on the right. The action caused is identical to that
described for scalar assignment, except that structure values are used
and result in element by element assignment of corresponding elements.

If the BY NAME option is used, the structure assignment statement
causes the following action:

Subscript expressions on the left are evaluated.

The structure expression BY NAME is evaluated. (See "Structure
Expressions BY NAME" in Chapter 6). This gives a set of array
and/or scalar values, each with an associated qualified name.

All names of elementary scalars and arrays of the structure on the
left are qualified with all appropriately containing minor struc­
ture names up to but not including the name specified in the by
name assignment statement. This results in a set of qualified
names.

Pairs of identical qualified names from the two lists are selected.

Values from the right are assigned to iterns on the left for the
pairs of identical qualified names. These assignments must be
legal, e.g., arrays may not be assigned to arrays of different
dimensions or bounds.

In by name structure assignment, it is unnecessary for the structur­
ing of all participating structures to be identical. Names defined on
structures appearing in by name assignment take no part in the name
pairing.

STATEMENT LABEL ASSIGNMENT

General Form:

label variable 1 , ••• , label variable n =
statement label designator, options;

The above form of the assignment statement causes the assignment of
the value of the statement label designator on the right to the label
variables on the left. The options that may be used are the same as
those for scalar assignment.

When a statement label is assigned to a label variable, the value is
qualified by an identification of the current invocation of the block
containing the label and by the current task (see Chapter 18).

The qualification information is used when a GO TO specifies the
label variable in order to make the identified invocation current and to
check that control does not cross task boundaries.

72

CHAPTER 12: THE SAVE AND RESTORE STATEMENTS

The SAVE and RESTORE statements provide means for holding data by
name in auxiliary storage.

THE SAVE STATEMENT

General Forms:

SAVE (item 1
SAVE (item 1,

, ••• , item n) ;
,item n) (expression) ;

The items may be variable names, subscripted names, qualified names,
or subscripted qualified names.

The first form of the statement is exactly equivalent to the series
of simple SAVE statements

SAVE (item 1);

SAVE (item n) ;

The second form is equivalent to

temp = expression;
SAVE (item 1),' (temp) ;

SAVE (item n), (temp);

A simple SAVE statement causes the data encompassed by the specified
name to be placed in auxiliary storage. This data is identified by the
data name qualified by the allocation of data and details of the current
task (see Chapter 18.)

If no expression is specified, and items of the same name and
allocation are repeatedly stored, the values are stacked. If an
expression is specified, only one value for a given name (qualified) and
given expression value will be saved at anyone time, and subsequent
execution of a SAVE statement with matching identification will cause
the previously saved value to be overridden.

THE RESTORE STATEMENT

General Forms:

RESTORE (item 1
RESTORE (item 1,

, ••• , item n)
, i tern n) (expression)

The permitted items, and the breakdown of the statements into simple
RESTORE statements is the same as that described for the SAVE statement.
The name specified in a simple RESTORE statement is qualified as
described for the SAVE statement. This identification specifies a value
previously saved; this value is assigned to the associated scalar,
array, or structure.

Chapter 12: The Save and Restore Statements 73

Once a value has been restored, it may not be restored again. Thus
if the same item has been repeatedly saved with no qualifying
expression, the action of restoring the data causes the top item of the
stacked information to be deleted. Therefore the stacked information is
treated in a first in last out manner.

A value may be saved in one external procedure and restored in
another if the data name is EXTERNAL and if the SAVE and RESTORE
statements refer to the same allocation of the data name.

Data saved Cannot be restored in part. Thus, if an array is saved,
an element cannot be restored; if a structure is saved, an array element
cannot be restored, etc.

74

CHAPTER 13: CONTROL STATEMENTS

THE GO TO STATEMENT

General Form:

GO TO statement label designator ;

The GO TO statement transfers control to the statement specified by
the statement label designator. The designator may be a statement label
Or a scalar label variable. For example, the designator may be a
subscripted label variable, giving the effect of a multiway switch. A
GO TO may not pass control from outside a DO group to a statement
inside, if the DO group specifies iteration.

A GO TO from one block to another has the effect of terminating all
blocks dynamically descendant from the block implied by the destination.
Conditions are reinstated and automatic variables freed in the same way
as if the blocks terminated normally. When this form of termination is
used to terminate a procedure that was invoked as a function, the
evaluation of the expression that contained the corresponding fUnction
reference will be discontinued and control transferred to the designated
label.

Control may not be passed to an inactive block.

A GO TO may not terminate a procedure invoked by a CALL from a
statement allowing the CALL option.

The following example serves to illustrate some uses of statement
label constants and variables in GO TO statements:

TSET:

TERROR:
HIGHT:
FINET:

LOWT:

PROCEDURE (TO, TF, TBAR, ERROR);
DECLARE ERROR LABEL VALUE, (R,X,W,V) EXTERNAL,
SWITCH (5) LABEL INITIAL (TERROR, HIGHT, FINET, LOWT,

TERROR)
ON SUBSCRIPTRANGE GO TO TERROR;
IF (TBAR>TO) & (TBAR<TF) 'rHEN TEMP=TBARI 2;
GO TO SWITCH (ROUND (2*SIN{TEMP) *COS(TEMP) +TO»;
X,W,V=O; GO TO ERROR;
IF V>W THEN GO TO TERROR; RETURN (TF);
TEMP=TBAR-TO;
RETURN (TEMP/(R**3+X**2+~ +2*COS(TEMP) *SIN(TE~~);
IF V<W THEN GO TO TERROR; RETURN (TO);
END TSET;

THE IF COMPOUND STATEMENT

General Forms:

IF expression THEN unit

IF expression THEN unit 1 ELSE unit 2

The unit appearing in the general forms may be a group or a begin
block.

In the first form, the scalar expression is evaluated and, if
necessary, converted to a bit string. If any bit in the resulting
string has a value '1', the unit is executed; and control passes to the

Chapter 13: Control Statements 75

next statement following the IF compound statement. If all bits have
the value '0', the unit is not executed; and control passes to the next
statement.

In the second form, the expression is similarly evaluated. If any
bit is "', unit' is executed; and control passes to the next statement
following the IF compound statement. If all bits have the value '0',
unit 2 is executed and control passes to the next statement.

The units may contain statements which specify transfer of control,
and so override these normal sequencing rules.

The IF compound statement is not i·tself terminated with a semicolon.
The last character is the semicolon of the last contained statement.

'IF' compound statements may be nested and an ELSE clause is always
associated with the innermost preceding IF. Null ELSE clauses may be
required to specify the desired effect.

Examples:

IF QUEUE = EMPTY THEN CALL COMPILE;
ELSE GO TO MULTIPROCESS;

A: IF X > Y THEN
IF Z = W THEN
C:;D ;
IF W > P THEN Y = 1 ;
ELSE Y = 2;
IF P = Q THEN X = 3;
END C;

\E SE;
ELSE X = 4;

J Z = 5

THE DO STATEMENT AND ITERATION OF A DO GROUP

General Forms:

DO;
DO WHILE expression;
DO variable = specification list ;

or DO pseudo variable = specification list

The DO statement delimits the start of a DO group (see "Groups" in
Chapter 7), and, in the first general form, performs this function
alone. The DO statement, however, may also specify iteration of the
group which it heads.

The iteration specified by the second general form is defined by the
following expansion:

76

LABEL:

NEXT :

DO WHILE expression:
statement 1;

statement n;
END;
statement;

is exactly equivalent to

LABEL: IF, (expression) THEN GO TO NEXT;
statement 1;

NEXT

statement n;
GO TO LABEL;
statement;

The third general form specifies controlled iteration. The variable
is a subscripted or unsubscripted scalar variable. The specification
list is a list of specifications separated by commas.

In general each specification involves three expressions, giving t~e
starting value of the scalar, the increment to be added to the value of
the scalar after each iteration of the loop, and the terminating value
of the scalar. Iteration is terminated as soon as the value of the
scalar passes its terminating value. The iteration ·for the next
specification is then begun. When the last specification is complete,
control passes to the statement following the DO group.

Each specification may be one of the following forms:

expression 1 TO expression 2 BY expression 3
or expression 1 BY expression 3 TO expression 2

expression TO expression 2

expression BY expression 3

expression 1

or any of the specifications followed by

WHILE expression 4

The second form is the same as the first, with the 'BY' expression
understood to be the integer 1.

The third form is the same as the first, with expression 2 infinite.

The fourth form is the same as the first, with all three expressions
equal to the specified expression, and implies a single execution of the
group with the control variable having the value of the expression.

The fifth form specifies that before each associated execution of the
g:oup expression 4 will be evaluated, and, if necessary, converted to
g1ve a bit string value. If any bit in the resulting string has a value
'1', the iterations continue uninterrupted. If all bits have value '0',
the iterations associated with the current specification are terminated.

All the expressions specified must lead to legal statements in the
language, when they are substituted in the following expansion:

Chapter 13: Control Statements 77

LABEL:

NEXT:

DO variable = expression 1 TO
expression 2 BY expression 3
WHILE expression 4;
statement 1;

statement ni
END;
statement;

is exactly equivalent to

LABEL:
LABEL1 :

NEXT:

variable = expression 1;
IF (expression2 - variable)
• SIGN (expression 3) < 0
THEN GO TO NEXT;
IF, (expression 4) THEN GO TO NEXT;
statement 1;

statement n;
variable = variable + expression 3;
GO TO LABELl;
statement;

LABELl and NEXT are introduced statement labels. If more than one
specification had been given, NEXT would refer to the initialization for
the next specification. If the WHILE clause is omitted, the IF compound
statement involving expression 4 is replaced by a null statement.

Some examples of DO statements are:

DO INDEX=CTR WHILE A<B, 5 TO 10 WHILE A=B, 100;
DO I=J TO K BY I, 1+1 TO N BY 1;

THE CALL STATEMENT

General Forms:

CALL entry name (argument list) , task option ;
CALL (expression) (argument list) , task option

The first form causes the invocation of the specified entry name by
activating the containing procedure and passing control to the entry
point.

On execution of the second form of the CALL statement, the scalar
expression is evaluated and, if necessary, converted to a character
string. This string specifies a program name which must have been
specified previously in a FETCH statement, and must not have been
specified subsequently in a DELETE statement. The specified program is
invoked and the listed arguments are passed. No conversion is performed
for the arguments; those specified must have characteristics that match
the associated formal parameters. The arguments passed cannot be entry
names or built-in function names.

The argument list is a list of arguments separated by commas.
Permissible arguments are specified under "Function references" in
Chapter 6. A relationship is established on entry between the items in
the argument list and the formal parameters specified at the entry point
to the invoked procedure (see Chapter 10). If the entry point does not
specify any formal parameters, the argument list and its enclosing
brackets must be omitted from the CALL statement.

78

The TASK option may be specified if the environment allows and it is
desired that the invoked procedure be executed asynchronously with the
invoking procedure (see. -Data Allocation Across Tasks" in Chapter 18).
If the option is omitted, the preceding comma is omitted.

Examples:

CALL CRITICAL_PATH (A,B*C,D);

AEIPROFIT: CALL SCRIP_ISSUE (BULLS, BEARS, BUTTERFLIES);

CALL TRANSMIT('LAB',TIME),TASK (QTAB);

CALL RANDOM_GENERATE;

CALL ('PROCTL ');.

CALL (A I I B) (C, D, E) ;

THE RETURN STATEMENT

General Forms:

RETURN;
RETURN expression

The RETURN statement causes termination of execution of the contain­
ing procedure, and returns control to the invoking procedure.

The first form terminates all but function procedures and returns
control to the first executable statement logically following the
statement which invoked the procedure. This is the only form which may
be used to terminate a procedure invoked with the TASK option.

The second form must be used to terminate a procedure invoked as a
function procedure. The value returned by the function is the value of
the expression specified in the RETURN. If the entry point at which the
procedure was invoked specified data attributes, the value of the
expression is converted to these characteristics before it is returned.

THE DISPLAY STATEMENT

General Form:

DISPLAY (scalar expression) ;
DISPLAY (scalar expression), task option;
DISPLAY (scalar expression) (character variable) ;
DISPLAY (scalar expression) (character variable) ,task option;

The statement causes the evaluation of the expression and, where
necessary, its conversion to a character string. This string is
displayed to the operator as a message. The task option specifies
asynchronous operation (see Chapter 18).

The third and fourth forms specify a character string which will
receive a message from the operator. The third form will cause the
program to wait until the operator's message has been received; other
forms do not cause the program to wait.

Chapter 13: Control Statements 79

THE WAIT STATEMENT

General Forms:

WAIT (wait specification ' • •••• wait specification n);
WAIT (wai t specification 1, ••• , wait specification n) (scalar

expression) ;

A wait specification has one of these two forms

task identifier

task identifier (scalar expressio~

In either form of the wait specification, the task identifier must
reference a task which has been attached by the task executing the WAIT
statement. In the second form, the scalar expression is evaluated on
execution of the WAIT statement and converted, where necessary. to give
an integer p.

Each attachment of a task with a given identifier causes an entry to
be made in an attachment list for that identifier. The first entry in
the attachment list indicates the oldest attachment of the task, and the
last entry in the list indicates its newest attachment. A wait
specification causes interrogation of the status of the attachment list
relevant to the specified task identifier.

with a wait specification of the first form, the attachment list for
the specified identifier is scanned from the oldest to the newest entry,
as many times as is necessary, until one attachment of the identifier
task is found to have completed. This entry is then marked so that it
will not be considered by further wait specifications (of the first
form) for that identifier, and the wait specification is said to be
satisfied. If the tasks indicated by the attachment list have all
completed and have all been marked by earlier wait specifications, or if
the attachment list is null, the wait specifica"tion is also said to be
satisfied.

With a wait specification of the second form. only the pith entry
(~ne o~aest entry is numbered 1) of the attachment list for the

specified identifier is considered. When the task which it indicates is
found to have completed, regardless of Whether earlier wait specifica­
tions of either form may have interrogated the same entry, the wait
specification is said to be satisfied. If the attachment list contains
fewer than p entries, or if p is zero or negative, the wait specifica­
tion is also said to be satisfied.

When a WAIT statement of the first form is encountered, the program
flow is suspended untii each of its wait specifications has been
satisfied; program flow then passes to the statement following the WAIT
statement. When a WAIT statement of the second form is encountered, the
expression is evaluated to give an integer m. The program flow is
suspended until any m of the n wait specifications have been satisfied.
If m is zero or negative, program flow continues. If m is greater than
n, all wait specifications will be satisfied before program flow
continues.

The following is a simple illustration of the use of the WAIT
statement:

80

CRANK: PROCEDURE;
DECLARE (N, M, A(N, M), B(N, M» AUTOMATIC;
READ LIST (N,M,A,B) , TASK (TAU)
DECLARE (KAPPA, BETA) EXT~RNAL;

TEMP1=SIN(KAPPA) .*3;
TEMP2=COS(BETA-') ;
TEMP3= (TEMP '-TEMP2) /' OO+MOD (MAX (TEMP2, TEMP1) ,3);
WAIT (TAU) ;
A=TEMP3*A; B=TEMP3*B;
WRITE DATA (A, B);
END CRANK;

THE STOP STATEMENT

General Form:

STOP;

The STOP statement causes immediate termination of a program.

THE EXIT STATEMENT

General Form:

EXIT;

The EXIT statement causes termination of the task that contains the
statement and all tasks attached by this task. (See Chapter 18.)

THE DELAY STATEMENT

General Form:

DELAY (scalar expression) ;

The execution of the DELAY statement causes evaluation of the
expression and conversion to an integer n, followed by suspension of
execution of the controlling task for n milliseconds. Execution will
continue immediately after n milliseconds only if the controlling task
is of sufficiently high priority to cause selection of this task in
preference to all other ready tasks.

Example:

PROO': DELAY (1000);

THE FETCH STATEMENT

General Form:

FETCH (scalar expression), task option;

On execution of the FETCH statement, the scalar expression is
evaluated and, where necessary, converted to a character string. This
string specifies a program name. The specified program is fetched and
made accessible. It is assumed that the program was inaccessible before
the FETCH.

Chapter 13: Control Statements 81

After execution of the FETCH, the program may be invoked by a form of
the CALL statement, which is discussed earlier in this chapter.

Data declared EXTERNAL, task identifiers, and file names are not
shared between programs made accessible by a FETCH statement.

Initial values for STATIC data in a program will be established at
the time of fetching.

Example:

FETCH ('PROCTL');

THE DELETE STATEMENT

General Form:

DELETE (scalar expression)

On execution of the DELETE statement, the scalar expression is
evaluated and, where necessary, converted to a character string. This
string specifies a program name which must appear in a previously
executed FETCH statement.

The statement causes the specified program to be made inaccessible.
After execution of a DELETE statement, the program name may not be
specified in a CALL statement before the execution of a subsequent
FETCH.

Deletion of a program includes deletion of its STATIC data areas and
of all storage allocated by it. Care should be taken not to delete an
active program.

Example:

DELETE (, PROCTL .) ;

82

CHAPTER 14: ERROR CONTROL AND DEBUG STATEMENTS

When an interrupt occurs during program execution, standard system
action is taken; however, NPL provides the facility to override this
system action on most machine and system interrupts. A programmer can
specify the particular action to be taken when an interrupt occurs and
can record the status of the program at the point of interrupt. In
addition, a programmer can initiate programmed interrupts and can
simulate machine interrupts to facilitate debugging.

THE ON COMPOUND STATEMENT

General Form:

ON condition SNAP unit
ON condition SYSTE~

SNAP may be omitted. The unit may be a group or a begin block.

Execution of an ON statement enables a condition. The occurrence of
an enabled condition is called an interrupt. The permitted conditions
are listed in Appendix 5. In the case of FIXEDOVERFLOW, SUBSCRIPTRANGE,
and SIZE, the occurrence of the condition will only signal the
condition, if signalling is specified. (See the "PROCEDURE Statement n

IN Chapter 7 and "Scalar Assignment" in Chapter 11.) For other
conditions, the occurence always results in signalling. When the signal
occurs, the action specified by the enabling statement is performed.

In no way other than activation from such an interrupt may flow of
program control be transferred to statements within the ON unit.

In the first form, if SNAP has been specified and an interrupt
occurs, then information relevant to the status of the program at the
time of interrupt is listed on a debugging file. Control is then passed
to the first statement of the unit.

In the second form, when an interrupt occurs, standard system action
for the condition is performed as described in Appendix 5.

Subject to restrictions specified for particular conditions, enabling
carries down into descendant blocks (i.e., blocks activated as a result
of normal sequencing through or invocations from the block containing
the enabling ON statemen~ •

If a condition is enabled in a block where the same condition has
been previously enabled by an ON statement executed during the same
activation of the block, the first enabling is overridden.

If a condition is enabled in a block where the same condition has
been previously enabled by an ON statement executed in a dynamically
embracing block, the former enabling is stacked and replaced by the
latter. Upon termination of execution of a block, all conditions are
enabled as they were in the dynamically embracing block.

When an interrupt occurs in a descendant block, control is passed to
the unit in the enabling ON statement. Descendant blocks are temporari­
ly suspended. The ON unit is executed as if it were called as a
procedure block at the time of interupt; this concept, in particular,
determines the generations of data available in the ON unit and the
effect of further ON statements within the ON unit. Controlled data
which has subsequently been freed is inaccessible.

Chapter 14: Error Control and Debug Statements 83

When execution of the unit is completed normally, control returns
the point following interrupt, the enVirOn1"'iient that existed befoz:e
interrupt being re-established.

to

If transfer of control out of the unit is specified, all descendant
blocks are synthetically released (e.g., appropriate storage is
released) before the transfer takes place.

At the start of execution of a program all conditions are enabled for
system action. ON conditions enabled when a task is attached (see
Chapter 18) never carryover to the attached task. At the start of
execution of a new task, all conditions are enabled for system action.

THE REVERT STATEMENT

General Form:

REVERT condition;

The condition is as described for the ON statement (see Appendix 5) •

Execution of this statement causes the named condition to be enabled
as it was in the closest dynamically embracing block.

Examples:

REVERT OVERFLOW;
REVERT ENDFILE (MASTER);

THE SIGNAL STATEMENT

General Form:

SIGNAL condition;

The condition is as described for the ON statement.

Execution of this statement simulates the raising of the condition,
i.e., causes the action specified by the currently enabled ON (for this
condition) to be performed.

Examples:

84

SIGNAL OVERFLOW;
SIGNAL ENDFILE (MASTER FIL~
SIGNAL CONDITION (X) ; -

CHAPTER 15: ATTRIBUTES

Attributes are
in an NPL program.
of the identifier
are characteristics
the mode attribute.

characteristics that are associated with identifiers
However, while some attributes are characteristics
itself, e.g., the scope attribute; other attributes

of the item that the identifier represents, e.g.,

ATTRIBUTE CLASSES

Data attributes
Dimension attributes
ABNORMAL, NORMAL, and SECONDARY attributes
Entry name attributes
Scope attributes
Storage class attributes
DEFINED attribute
INITIAL attribute
Symbol table attributes
Parameter attributes
Structure attributes
File attributes

DATA ATTRIBUTES

ARITHMETIC ATTRIBUTES

Arithmetic data may be declared to have the following attributes.
(See also ALabels· in Chapter 7.)

Radix: Arithmetic data may be declared to have the attribute BINARY or
the attribute DECIMAL. If radix is unspecified, the default attribute
depends on the first letter in the name; if I-N, BINARY is assumed;
otherwise DECIMAL is assumed.

Scale: Arithmetic data may be declared to have the attribute FIXED or
the attribute FLOAT. If scale is unspecified, the default attribute
depends on the first letter of the name; if I-N, FIXED is assumed;
otherwise FLOAT is assumed.

Mode: Arithmetic data may be declared to have the attribute REAL or the
attribute COMPLEX. If mode is unspecified REAL is assumed.

Precision Appendage: The precision of arithmetic data may be declared
(~ or (w,d), where wand d are decimal integer constants. The first

form (w) is used for data of scale FLOAT and specifies that at least w
decimal or binary digits of significance are to be maintained. Both
forms may be used for data of scale FIXED. If d is omitted, it is
assumed to be zero. w gives the total. number of decimal or binary
digits to be maintained and d the scale factor for the data. The
precision appendage immediately follows a scale, radix, or mode attri­
bute; it may not appear alone or separated from one of these attributes.
If precision is unspecified, an implementation-defined default is
assumed.

Nwneric Field Representation: Arithmetic data to be represented as a
numeric field is declared with the picture attribute, which has the
form,

Chapter 15: Attributes 85

PICTURE (picture specification)

The picture attribute describes the format of the associated numeric
field. The picture specification is a series of picture characters (see
Appendix 2). Assignment of a value to numeric field causes the value to
be edited to the appropriate format.

The picture describing a numeric field defines the radix, scale,
mode, and precision of the associated arithmetic data.

BIT STRING ATTRIBUTES

Bit string data may be declared to have either or both of the
following attributes.

BIT (length)
VARYING

The length specifies the actual length of fixed-length strings and
the maximum length of variable-length strings. The length may be an
expression or *. The latter may be declared only for a nrune or value
formal parameter, specifying that the length is the same as that of the
corresponding argument, or for NAME CONTROLLED formal parameters or
CONTROLLED data, specifying that the length is to be taken from the last
allocation. The length of strings declared STATIC must be a decimal
integer constant.

If the length is an expression, it will be evaluated and converted to
an integer at the point of allocation, or on entry to the declaring
block for name parameters. See "Prologues" in Chapter 16 for rules
relating to the formulation of these expressions.

CHARACTER STRING ATTRIBUTES

Character string data can have one or more of the attributes.

CHARACTER (length)
VARYING
PICTURE (picture specification)

LABEL VARIABLE ATTRIBUTES

A label variable must be declared to have one of the following
attributes.

LABEL
LABEL (statememt label constant 1, ••• , statement label constant n)

The attribute specifies that the associated identifier is a label
variable. The optional bracketed list gives a list of statement label
constants known at the point of the LABEL declaration. It specifies
that during the execution of the program the value of the label variable
will always be one of the listed constants. This information is given
to aid the optimization that can be done on the program.

THE DIMENSION ATTRIBUTE

The dimension and bounds of an array are declared using the
attribute,

pst bounds, ••• , nth bounds)

86

The bounds may be either all asterisks or all of the following form.

expression
or expression 1: expression 2

The asterisk notation may be used for CONTROLLED variables, NAME
parameters, and AUTOMATIC VALUE parameters.

The expressions are evaluated and converted to integer (see "Integer
ConversionM in Chapter 6) when storage is allocated for the array {or
when linkage is established for name parameters}. The first form'gives
the upper bound, the lower bound being assumed to be 1. The second form
specifies both lower and upper bounds in that order. The lower boung
must be algebraically 1,.~,ss,_than the upper boun~" 'l'he dimension

"attribute'must always iinmediately follow the array identifier in an
array declaration. The bounds of arrays declared STATIC must be decimal
integer constants. See ·Prologues" in Chapter 16 for the rules relating
to expressions used in the dimension attribute.

The dimension attribute, if present, must always appear as the first
attribute in a name declaration (see "Name Declaration" in Chapter 16).
Hence, the dimension attribute must either follow the array name; or, if
factored, the dimension attribute must follow the right parentheses.

THE ABNORMAL, NORMAL, AND SECONDARY ATTRIBUTES

ABNORMAL

The ABNORMAL attribute may be declared for any variable. It
specifies that the data may be unpredictably altered during the
execution of the program (e.g., by asynchronous operation or the
execution of an ON unit as described under "The ON Compound Statement"
in Chapter 14) and that every time ABNORMAL data is referenced its
associated storage must be accessed for its current value.

NORMAL

The NORMAL attribute may be used to override a factored or implicit
ABNORMAL attribute.

SECONDARY

This attribute specifies that where possible and necessary, less than
I),ormally efficient storage may be allocated for the variable. The
attribute may be declared only for major structure names and variables
not contained in structures or arrays.

ENTRY NAME ATTRIBUTES

An entry may be declared to have any of the attributes,
ENTRY, ABNORMAL, NORMAL, SETS, USES, GENERIC, and BUILTIN. (The first five
attributes have been discussed under • The ENTRY Attribute" and
"Abnormality of Procedures· in Chapter 9.) An entry name may be
declared with any of the data attributes in this Chapter. These
attributes specify the char.acteristics of the value returned when the
entry name is invoked as a function. If the data attributes are not
specified, default or implicit characteristics (see Chapter 17) will be
assumed for the value returned.

The SETS, USES, GENERIC, and BUILTIN attributes all imply ENTRY.

Chapter 15: Attributes 87

THE GENERIC ATTRIBUTE

The programmer may define a family of entry names using the
attribute,

GENERIC (entry name declaration 1, ••• , entry name declaration n)

Each entry name declaration corresponds to one member of the family.
All the entry name declarations must have an ENTRY attribute. They may
optionally have ABNORMAL and data attributes. They may not have the
GENERIC attribute. These ENTRY attributes must specify attributes for
every parameter of the associated entry name. Attributes unspecified
but required for full definition will be deduced from default rules (see
Chapter 17).

When a generic entry name is referenced, the attributes of the
arguments specified must match exactly the list in the ENTRY attribute
of one and only one member of the family. The reference will be
interpreted as a reference to this member.

The choice of entry name may be based on the number of arguments in
the reference to the name.

Generic entry names (as opposed to references) may be specified as
arguments if the invoked entry name is declared with the ENTRY attribute
(explicit or implicit for internal procedures). This ENTRY attribute

must specify that the appropriate parameter is an entry name and specify
by means of a further ENTRY attribute the attributes of all its
parameters. This enables a choice to be made of which family member is
to be passed.

When arrays are involved the choice is based only on the dimensional­
ity of the array, not on extents. When strings are involved, the
lengths do not participate.

Example:

DECLARE BESSEL GENERIC (FXBESS ENTRY (FIXED) FIXED,
FLBESS ENTRY (FLOAT) FLOAT,
XLBESS ENTRY (FLOAT) FIXED),

X ENTRY (FLOAT, FIXED ENTRY (FLOAT» ;
Y = Y + BESSEL(Y) ;
CALL X(Y, BESSEL);

The assignment statement results in the invocation of the procedure
FLBESS. The CALL statement results in the function name XLBESS being
passed as an argument to procedure x.

THE BUILTIN ATTRIBUTE

BUILTIN

This attribute specifies that references to the associated identifier
within the scope of this declaration be taken as references to the
built-in function of the same name.

This attribute is used when it is desired to reference a built-in
function in a block, but the block is contained in another block where
the built-in function name has been declared to have another use.

88

SCOPE ATTRIBUTES

INTERNAL
EXTERNAL or EXTERNAL (identifier)

The second form of the EXTERNAL attribute specifies that the scope 0.1

the declared identifier is to be limited to the union of the scopes of
declarations of the same identifier with the same specified heading.
For a full discussion of scope, see the section headed "Declarations· in
Chapter 7.

STORAGE CLASS ATTRIBUTES

AUTOMATIC
STATIC
CONTROLLED

For a full discussion of storage class, see Chapter 8.

These attributes may not be specified for entry names and file names,
or with the DEFINED attribute. The first two attributes may not be
specified for NAME parameters. The last two attributes may not be
specified for label variables.

THE DEFINED ATTRIBUTE

DEFINED base identifier position option

The DEFINED attribute may be declared for scalar, array, and
structure identifiers. It specifies that the defined item should occupy
the same storage as the base.

In general, the characteristics of the defined item must be the same
as those of the base. However, a certain amount of mixed defining is
allowed within the following two classes:

1.

2.

The
a.
b.
c.
d.
The
a.
b.
c.
d.

bit class, comprised of
numeric fields of radix binary
fixed-length bit strings
arrays of either (a) or (b)
structures of either or both of
character class, comprised of
numeric fields of radix decimal
fixed-length character strings
arrays of either ~) or (~
structures of either or both of

(a) and (b)

(a) and (b)

Coded arithmetic data may be defined only on coded arithmetic data of
the same radix, scale, mode and precision. Label data may be defined
only on label data. The base may be a variable length string; the
defined item may never be.

The defined item must always be specified as a subset ~ncluding the
full set) of the base.

Expressions specified in base subscript lists are evaluated when the
defined item is referenced, not declared. Use of a defined item in an
argument list is interpreted as a reference.

Data declared with the DEFINED attribute may not have any of the
following attributes:

storage class

Chapter 15: Attributes 89

scope
NAME
INITIAL
VARYING
SYMBOL

In addition r if a defined variable is declared with the ABNORMAL or
SECONDARY attribute r and these attributes conflict with the respective
attributes of the baser this contributes an error.

The base identifier must always be known within the block where the
defined identifier is declared and may not have been declared with the
DEFINED attribute.

If the attributes of the defined data involve expressions (other than
in a defining subscript list; see "Subscripted Array Defining" in
Chapter 15), these expressions are evaluated on entry to the declaring
block, regardless of the storage class of the base. The base, however,
is always taken as the generation existant (current generation) at each
reference to the defined variable.

SCALAR DEFINING

Both defined item and base are scalars.
specifying a scalar element of an array.
an element of a structure or an array.

The base may be subscripted,
The defined scalar may not be

The permitted forms are:

Defined Item

Coded arithmetic'

Label

Binary numeric field
or bit string

Decimal numeric field

Base

Coded arithmetic of same radix, scale,
mode r and precision.

Label

Binary numeric field or bit string

Decimal numeric field or character string

Where the base is a string, the POSITION option of the form

POSITION '(decimal integer constant)

may be declared. It specifies an offset (n) from the start of the base
where the defined item commences. If omitted, POSITION(1) is implied.

ARRAY DEFINING

Both defined item and base are arrays. The defined item must have a
dimension specification, and may not be an element of a structure. The
permitted forms are the same as for scalar defining. In array defining,
there is a relation between each element of the defined array and a
corresponding element of the base.

The POSITION option may be given when the base is an array of
strings. It specifies that each element of the defined array commences
at the nth bit or character of the corresponding element of the base
array.

Two classes of array defining are permitted': simple array defining and
subscripted array defining.

90

Simple Array Defining

The base must be an unsubscripted array name having the same number
of dimensions as the defined array_ The dimension bounds of the defined
array must be a subset of the bounds of the base array. A subsequent
subscripted reference to the defined array is interpreted as a reference
to the base array with identical subscripts.

A subsequent unsubscripted reference to the defined array is inter­
preted as a reference· to the declared subset of the base array specified
by the dimension bounds.

Subscripted Array Defining

The base nlust be an unsubscripted array name followed by a defining
subscript list. The base need not have the same number of dimensions as
the defined array.

The defining subscript list defines the relation between the elements
of the defined array and the base array. It must have as many
subscripts as the base array has dimensions. The defining subscripts
may be any expressions, including dummy variables of the form

iSUB

where i is a decimal integer constant in the range 1 to n; n is the
dimensionality of the defined array. The subscript expressions must be
of the form

where a is any scalar expression involving variables known within the
block containing the DEFINED declaration. The integer value of the
expression will be used. If any a is zero, that iSUB may be omitted.
The iSUB's must appear in the order shown above.

A subsequent subscripted reference to the defined array is interpret­
ed as follows:

Each iSUB in the defining subscript is replaced by the integer
value of the ith subscript given fo~ the defined array. Before
replacement, the subscript is conceptually enclosed in parentheses.

The reference to the defined array elements is interpreted as a
reference to the base array element specified by the generated
subscript.

A subsequent unsubscripted reference to the defined array is inter­
preted as a reference to the array defined by the mapping.

If a defined array name is specified as an argument to an invoked
procedure, the expressions in the defining subscript list are evaluated
before the invocation. The invoked procedure can still reassign values
to elements of the defined array by a name parameter; but the relation
between the defined array elements and the base elements is frozen on
entry.

MIXED DEFINING

Major structures, and arrays not contained in structures, having
elements all of the same class as described under ftThe Defined
Attribute" in this chapter may be defined on scalar strings of the same
class and on structures having elements all of the same class.

Chapter 15: Attributes 91

Scalar strings may be defined on, i.e., have as a base

major structures

minor structures not contained in dimension structures

structure elements with the base being specified as a subscripted
structure name

unsubscripted arrays not contained in dimensioned structures

All the elements must be of the same class as the defined string.

When the base is a scalar string, the POSITION option may be
specified to indicate that the defined array or structure is offset from
the start of the string. It may not be specified with mixed defining
when the base is an array or structure.

Defining subscript lists may not be used with mixed defining.

Some examples of defining are illustrated below:

DECLARE A(M,N), AT(N,M) DEFINED A (2SUB,1SUB) ,
D DEFINED A (I, I) , B (0: M*N-l) ,
BROWN(M,~ DEFINED B(- (M+l) + 1SUB + M*2SUB);

DECLARE 1 P, 2 Q CHARACTER (1~, 2 R CHARACTER (100),
PSTRING1 CHARACTER(110) DEFINED P;
LIST CHARACTER (40) ,
ALIST CHARACTER (10) DEFINED LIST,
BLIST CHARACTER (20) DEFINED LIST POSITION (20) ,
CLIST CHARACTER (10) DEFINED LIST POSITION (10) ;

THE INITIAL ATTRIBUTE

INITIAL (item1, ••• ,item n)
INITIAL CALL entry name (argument list)

In the following discussion, the term constant denotes either a
constant or a complex expression of the form

real constant + imagl.nary constant
or real constant - imaginary constant

The INITIAL attribute specifies either constant values to be assigned
to data when storage is allocated to it, or a procedure to be invoked to
perform initialization at allocation. In the second form, the entry
name and the arguments passed must satisfy the conditions stated in
"Prologues" in Chapter 16. The second form must not be used to
initialize static data. The INITIAL attribute is specified in the
external procedure which will allocate storage for the data. For
example, CONTROLLED data initial values must be specified in each
procedure which will allocate the data.

The first form lists constant values. Only one is required for a
scalar; more may be given for an array. In the latter case the
constants specified are assigned to successive elements of the array in
row maJor order (final subscript varying most rapidly). If too many
values are specified, excess ones are ignored. If insufficient are
supplied the remainder of the array is not initialized. The items in
the list may be an asterisk (~ indicating no initialization for that
element, an optionally signed constant, or a replication.

A replication has one of the following forms:

(replication factor) optionally signed constant

92

(replication factor) (item 1, ••• , item n)
(replication factor) *

The items in the second form are as defined above, i.e., replication may
be nested.

The replication factor may be any expression that satisfies the rules
stated in ·Prologues" in chapter 16. When storage is allocated, the
expression is evaluated to give an integer specifying the number of
repetitions. Replication factors for STATIC data however, must be
constants. (See "Labels" in Chapter 7 for an alternative method of
specifying initial values for label arrays.) Thus (10) (7) '1'B indicates
ten seven-bit constants and (6) 'A' indicates one six-character constant
'AAAAAA' •

The INITIAL attribute may not be given for

entry names
file names
DEFINED data
structures Formal parameters passed by value.

Some examples of the INITIAL attribute are illustrated below:

DECLARE A(10,10) INITIAL ({20) 0, (20) ((3) 5,10»,
IDTY (N, N) INITIAL {1, (N-l) ((N) 0,1)) ,
SWITCH INITIAL('l'B),
NINES CHARACTER (N) INITIAL ((N) '9 ') ,
STIR (*) INITIAL CALL STIRRER EXTERNAL CONTROLLED;

SYMBOL TABLE ATTRIBUTES

SYMBOL
SYMBOL (identifier)
NOSYMBOL

The first form specifies that the declared identifier, which does not
require name qualification for unique identification, should appear in
the symbol table.

The second form, used when the declared identifier requires name
qualification for unique identification, specifies that the identifier
appearing in the parentheses should appear in the symbol table as a
synonym for the qualified name. A variable whose name or synonym
appears in the symbol table may have its values transmitted under
data-directed input.

The third form specifies that the declared identifier should not .
appear in the symbol table.

PARAMETER ATTRIBUTES

NAME
VALUE

For a full discussion of parameters see Chapter 10.

THE LIKE ATTRIEUTE

LIKE structure name

Chapter 15: Attributes 93

The structure name may be qualified or unqualified but not subscript-
ed. It mllst be known to the .block containing the LIKE attribute. The
structure named may not itself be declared with the LIKE attribute.

The LIKE attribute specifies that the identifier having the attribute
should be taken to have a structure description identical to that
declared for the named structure.

If the structure description of the named structure has been
declared, and if a direct application of the description to the
structure declared LIKE would cause an incorrect discontinuity in level
numbers, then the level numbers will be modified by a constant
subtrahend before application.

For example,

DECLARE 1 A,
2 FIELD 1 ,

3 DTL1 PICTURE ($ZZ.99) ,
3 DTL2 CHARACTER (10) ,

2 FIELD2 BIT (SO) ,
X,
2 FIELD 1 ,

3 SUBFLDl LIKE A.FIELD1,
3 TABLE (3) ,

2 FIELD2 LIKE A.FIELD1;

is equivalent to

DECLARE 1 A,
2 FIELD 1 ,

3 DTL1 PICTURE ($ZZ.99) ,
3 DTL2 CHARACTER (10) ,

2 FIELD2 BIT (50) ,
1 X, 2 FIELD 1 ,

3 SUBFLD1,
4 DTL1 PICTURE ($ZZ.99) ,
4 DTL2 CHARACTER (10) ,

3 TABLE (3) ,
2 FIELD2,

3 DTL1 PICTURE ($ZZ.99) ,
3 DTL2 CHARACTER (10) ;

Also, in the following example,

DECLARE 1 A EXTERNAL, 2 (B,C,D) , 1 E LIKE A;

is equivalent to writing

DECLARE 1 A EXTERNAL, 2 (B,C,D) , 1 E EXTERNAL, 2 (B,C,D) ;

FILE DESCRIPTION ATTRIBUTES

File Type Attributes

The following attributes are used to describe data files (see Chapter
21) •

File Attribute

An identifier which refers to a file has the attribute FILE.

94

Standard Attributes

The attribute
name to be a
respectively.

is written STANDIN or STANDOUT and declares this file
synonym for the standard input or output file,

Specific Medium Attribute

This attribute is written

MEDIUM (option list)

The options will be implementation defined" and will be used to
indicate the nature of the input/output media that are used for files at
execution time.

Usage Attribute

This attribute is written

USAGE (option list)

The options will be implentation defined and will be used to indicate
the desired destination, such as punched cards or printed page, for the
data of output files at execution time.

parity Attribute

This attribute is written

USAGE (option list)

The options will be implementation defined and will be used to
indicate the parity of data recording on files at execution time.

Storage Equivalence Attribute

This attribute is written

POOL (f i Ie name)

The file name is the name of another file which may share, with the
file currently being described, the storage necessary for transmission
of data to and from external media. It is the responsibility of the
programmer to avoid confusion of usage.

BLOCK Attribute

This attribute is written

BLOCK (x,y,z)

where: x is VARIABLE, FIXED, or SPECIAL
y is a decimal integer constant indicating the maximum length in

characters of the block. (See Chapter 20.) .
z is a decimal integer constant indicating the blocking factor

i.e., the number of records per block.

This attribute enables the programmer to specify blocking details.

GROUP Attribute

This attribute is written

GROOP (n)

Chapter 15: Attributes 95

where n is the number of records per group.

DYNAMIC CONTROL ATTRIBUTES

The following attributes may be given in the file description or they
may appear in OPEN, or CLOSE statements, in which case the file
description is overridden.

Disposition Attributes

These attributes specify the final disposition of data. They are
written

DISCARD
KEEP
STAY

For a description of these attributes, see "The OPEN and CLOSE
Statements" in Chapter 21

Function Attribute

This attribute indicates the function of a file, and is written

INPUT
OUTPUT
INOUT

The attribute specifies that the function is input, output, or is to
be used for direct access replacement for both input and output.

ACCESS ATTRIBUTE

The ACCESS attribute specifies both the file organisation and the
manner of accessing that file. This attribute is written

ACCESS (x)

where x may be one of the following:

SEQUENTIAL
DIRECT
INDEXSEQUENTIAL
INDEXDIRECT
COMMUNICATIONS

Tne terms define the manner in which the "next record" is accessed as
tollows!

96

SEQUENTIAL The next record is determined by the current
physical position within the file.

DIRECT The next record is determined by precomputing
its position within the file.

INDEXSEQUENTIAL The next record is determined by the current
logical position within an ordered index which
reflects physical positions within the file.

INDEXDIRECT The next record is determined through an index
which reflects physical positions within the file.

COMMUNICATIONS The next record is determined by installation­
defined teleprocessing conventions.

The KEY option of various input/output statements is implemented for
a given file according to the access method of that file. The KEY value
for DIRECT access must be specified as a decimal integer constant; while
for INDEXDIRECT, the value Is converted to a character string, if
necessary. SEQUENTIAL record is determined by a pre-established
sequence. However, the KEY option may be specified for a file organized
for INDEXSEQUENTIAL access in order to specify where the "sequential"
accessing within the index is to begin.

THE ZERO ATTRIBUTE

ZERO

This attribute specifies that trailing blank characters in data input
fields are to be treated as numeric zeros. It has no effect on output.
Examples:

DECLARE INPUT FILE INPUT BLOCK (FIXED,200,5);
DECLARE BINARY OUTPUT FILE ODDi
DECLARE CUP FILE STANDIN CARD;

Chapter 15: Attributes 97

CHAPTER 16: THE DECLARE STATEMENT

NAME DECLARATION

General Form:

level number identifier attribute 1 ••• attribute n

The identifier is the name of the item. The level number is a
decimal integer and must be used when the identifier is a structure or
is contained in a structure (see "Structures" in this Chapter) •

DECLARATIONS AND FACTORING OF ATTRIBUTES

General Form:

name declaration 1 , ••• , name declaration n

level number (declaration 1 , ••• , declaration n)
attribute 1 attributt n

A declaration is a list of name declarations separated by commas ..

From this list, attributes common to several name declarations can be
factored. This is achieved by enclosing the subset of name declarations
in parentheses and following it by the list of factored attributes,
separated by blanks. Factoring may be nested to any desired level.

If a factored attribute is in conflict with an attribute specified in
the region of factoring then the inner attribute overrides the factored
attribute. Attributes on the same factoring level may not be in
conflict with one another. If a factored attribute cannot legally be
applied to a name declaration in the region of factoring, then it is not
taken to apply to that name declaration.

A level number may be factored before a parenthesized list of
declarations. If the name declarations in the region of factoring have
level numbers, these override the factored number.

Examples:

JOE FLOAT, JIM FIXED '(3,5), JACK BIT (10)
lA,2(B,3 C CHARACTER (5), 3 D BINARY, E) STATIC

THE DECLARE STATEMENT

General Form:

DECLARE declaration list ;

The DECLARE statement is a nonexecutable statement used for the
specification of attributes of identifiers and names. All the attri­
butes given for a particular name must be declared together in one
DECLARE statement. Specification of contradictory or additional attri­
butes for a particular name in more than one name declaration or DECLARE
statement in the same procedure is illegal.

Attributes of external identifiers, declared in separate blocks and
external procedures, must not conflict or supply explicit information
that was not explicit or implicit in other declarations.

98

STRUCTURES

STRUCTURE DESCRIPTION BY LEVEL NUMBER

A major structure is a structure not contained in a structure and at
level one. All other structures are minor structures. All elements
contained in a structure at level n are at a level greater than n. They
need not be at level n + 1.

Structuring is specified by following the declaration of the struc­
ture identifier by declarations for the contained items. The structure
identifier and the identifiers of all contained items must be preceded
by a level number.

If a minor structure is at level n, the minor structure contains all
items with level numbers greater than n declared before the next item
with a level number not greater than n. A major structure description
is terminated by

the next item being at levell,
the next item having no level number,
the end of a decla.ration list.

STRUCTURES AND THE DIMENSION ATTRIBUTE

A dimension attribute (see RThe Dimension AttributeR in Chapter 15.)
may be given for a structure name. The structure is then an array of
structures and all contained items are arrays or arrays of structures.
Contained scalar items must be referenced by subscripted names. Con­
tained structure elements must be referenced by subscripted qualified
names; cross sections of contained arrays must be referenced by using
the asterisk notation. (See RCross Sections of Arrays" in Chapter 4.)

Example:

1 A (2), 2 B, 2 C (2) , 3 E (2), 3 F

has the form

A (1) r B (1)
1 C(1,1) rE (1,1 ,1)
I IE (1, 1,2)
I IF(l,l)
I C (1, 2) rE (1 ,2, 1)
1 IE(1,2,2)
I IF (1,2)
L

A (2) r B (2)
I C (2, 1) rE (2, 1, 1)
1 IE (2,1,2)
I LF (2,1)
I C (2,2) rE (2,2, 1)
I IE (2,2,2)
I LF (2,2)
L

It should be noted that if the dimension attribute is factored .from a
structure declaration, then it applies to each level in the structure.

Example:

DECLARE (1 A,2 B,2 C) (2);

Chapter 16: The Declare Statement 99

has the form

A (1) rB (1, 1)
J
In 11 ?\

..., \ ' , "'1

A (2) rB (2,1)
I
lB(2,2)

rC (1, 1, 1)
lC(1,1,2)
_f"' 11 ') 1 \
r-'"'&""
lC (1,2,2)
rC (2, 1, 1)
lC(2,1,2)
rC (2,2, 1)
LC (2,2,2)

DATA ATTRIBUTES AND STRUCTURES

Structure names may not be given data attributes. Data attributes
factored from regions containing structure declarations are not taken to
apply to the structures.

SCOPE ATTRIBUTES AND STRUCTURES

Major structure names may be declared EXTERNAL. Items contained in
structures may not be declared EXTERNAL, and if INTERNAL is unspecified
are assumed to be INTERNAL.

STORAGE CLASS ATTRIBUTES

All items in a structure must be of the same storage class.

A major structure name may be given a storage class which will be
assumed to apply to all elements of the structure. If a structure is
controlled, only the major structure may be allocated and freed not the
elements (see nThe CONTROLLED Storage Classn in Chapter 8).

STRUCTURES AND THE DEFINED ATTRIBUTE

For a full discussion on the use of the DEFINED attribute see The
DEFINED Attribute in Chapter 15.

PROLOGUES

On entering a block, certain actions are performed, e.g., allocation
of storage for automatic variables. The initiation of a block is known
as a prologue.

On entry to the prologue, the following items are available for
computation:

(a) variables declared outside the block: and known wi thin it.

(b) variables declared STATIC and known within the block.

(c) formal parameters passed to the block by name.

(d) variables defined on items belonging
provided that all. items involved in any
belong to (a), (b), (c) or (d)

to (a),
defining

(b), or (c)
subscripts

The prologue makes available for computation all the other variables
known within the block:

(e) formal parameters passed by value to the block

100

(f) automatic variables declared in the block

(g) variables defined on items belonging to
defining subscripts which depend on items of

(e) or
(e), (f)

(f) with
or (g)

In making these items available, the prologue may need to evaluate
expressions defining lengths, bounds, replication factors, and initial
values.

The evaluations necessary to make an item available may reference
other items being made available. In such circumstances, the items
referenced must not require for their allocation reference to the first
item, either directly or by reference to another item that does; e.g.,
the following statement is illegal

DECLARE «A(M) INITIAL (3,2, 1) , M INITIAL(A(l»)AUTOMATIC;

The following restrictions
effect of the prologue does not
expressions are evaluated.

are imposed
depend on

to
the

ensure that the total
order in which the

The evaluations must not invoke abnormal functions, except in the
caSe of evaluations for initializing. These latter must be
abnormal only because they set the variable being initialized.
The sequence in which the evaluations reference any abnormal data
is not defined.

Function 'calls within the evaluations must not reference items
being made available by the prologue.

Chapter 16: The Declare Statement 101

CHAPTER 17: IMPLICIT AND DEFAULT FACILITIES

As discussed in the previous chapter, when attributes are declared in
a DECLARE statement, they are associated with a particular identif ie.r.
However, other methods exist in the language for this association of
attributes with identifiers. For example, in an IMPLICIT statement,
attributes are declared but they are associated with a specified set of
identifiers. In addition, when attributes are not declared .for an
identifier, they are assumed from default rules.

THE IMPLICIT STATEMENT

General Form:

IMPLICIT implicit declaration 1 , ••• , implicit declaration n ;

The format of the IMPLICIT statement is identical to that of the
DECLARE statement except that identifiers are replaced by letters or
"letter ranges" and that level numbers are not permitted. A "letter
range" is of the form

letter 1 - letter 2

A letter range is a shorthand representation of all the letters,
letter 1 through letter 2 separated by commas and enclosed in parenthes­
es. Letter 1 must appear earlier in the alphabet (or extended alphabet)
than letter 2 (see Appendix 8).

If the dimension attribute is specified, it must immediately follow a
letter or letter range; it may not be factored, and it must specify
constant bounds. As in the DECLARE statement, attributes which are
factored are overridden by conflicting attributes factored or unfactored
at deeper levels. Attributes on the same factoring level must not be in
conflict with one another.

The IMPLICIT statement specifies that all undeclared or partially
declared identifiers commencing with a letter appearing in the IMPLIcrr
statement have the attributes associated with the letter as specified in
the implicit declaration. A partially declared identifier is an
identifier that has been declared with insufficient attributes for it to
be fully defined. In this case, explicitly declared attributes override
conflicting implicit ones.

The scope of an IMPLICIT statement is an external procedure. Any
given letter may thus appear only once in an external procedure in
IMPLICIT statements.

The IMPLICIT statement may not involve any identifiers other than
keywords. Thus the attributes DEFINED and LIKE are not permitted
because their use involves the appearance of variable names.

Example:

102

IMPLICIT C BINARY COMPLEX, (B-G EXTERNAL, U-W STATIC,
I EXTERNAL, J) INITIAL{O) ;

IMPLICIT P-R CHARACTER (20) INITIAL (20) ,S-U(100,100)EXTERNAL;

IMPLICIT AND DEFAULT ATTRIBUTES

It is unnecessary for all or any of the attributes of identifiers to
be explicitly declared. The following process is performed for asso­
ciating attributes with identifiers.

IMPLICIT ATTRIBUTES

Explicitly declared identifiers are classified by analyzing DECLARE
statements (see "Declarations and Factoring of Attributes" in this
Chapter) and statement labels (see nLabelsn in Chapter 7) using the
rules of scope to distinguish between different uses of the same name
(see "Declarations" in Chapter 7) The contextual usage of identifiers is

then examined.

Identifiers occuring where only a file name is allowed are classified
as file names, viz.,

File option (READ, WRITE, SPACE, GROUP, SKIP, PAGE, LAYOUT, SEARCH,
SORT)

File specification (OPEN, CLOS~
Giving option (SORT)
Pool option (DECLARE)
File conditions (ON, REVERT)

Identifiers occuring in statements of the form CALL identifier, with
or without an argument list, are clasnified as external entry names;
however, if the occurrence of the entry name lies within the scope of
the same identifier used to label a PROCEDURE or ENTRY statement, the
identifier is classified as an internal entry name. Identifiers
appearing in CALL options are similarly treated.

Identifiers occurring where only task identifiers are allowed (TASK
option, WAIT statement, COMPLETB built-in function) are classified as
task identifiers.

Only the foregoing contextual usages are examined. Contextual usages
of an identifier must be consistent with each other and with the
explicit declaration, if any, within the same scope. (Note: For
identifiers with no explicit declaration, the scope is the entire
external procedure.)

Default attributes, as modified by IMPLICIT statements, are then
given to all identifiers. However, those identifiers which have already
been classified as specified in the preceding paragraphs, are not given
default attributes which would conflict with that classification.

Finally, if an identifier appears in an expression with an immediate­
ly following parenthesized list, and that identifier has no dimension
attribute, it is further classified as an entry name. The classifica­
tion as an external or an internal entry name is made in the same manner
as for identifiers occurring in the CALL statement. This classification
by usage as a function reference must not conflict with the attributes
already attached to the identifier as specified in preceding paragraphs.

DEFAULT ATTRIBUTES

Data Type: If none of the attributes, CHARACTER, BIT, or LABEL, is
specified, then arithmetic data type is assumed.

Arithmetic Variables: If the radix, scale, or mode, are not specified,
the default attributes depend on the first letter of the identifier. If
I through N, FIXED REAL BINARY is assumed; otherwise, FLOAT REAL DECIMAL

Chapter 17: Implicit and Default Facilities 103

is assumed. If any, but not all of radix, scale, Or mode, are supplied,
the omitted attributes are assumed according to the following table:

.---------------------------------------, 1 Specified 1 Assumed 1
1--------------+------------------------1
1 1 Radix 1 Scale 1 Mode 1
1--------------+------------------------1
1 BINARY 1 1 FLOAT 1 REAL 1
1 DECIMAL 1 I FLOAT 1 REAL I
1 FIXED 1 DECIMAL 1 1 REAL I
1 FLOAT 1 DECIMAL I 1 REAL 1
I REAL 1 DECIMAL I FLOAT I I
I COMPLEX I DECIMAL I FLOAT I I
I BINARY FIXED 1 1 1 REAL I L _______________________________________ J

The preceding table also implies the other combinations that may be
specified.

If precision is not specified, an implementation-defined default
precision will be assumed.

Entry Names:

If an external entry name appears as a function reference, the
entry is assumed to be NORMAL; otherwise, the entry is assumed to be
ABNORMAL. External entry labels invoked in CALL statements and internal
entry labels (however they are invoked) are assumed to be ABNORMAL.

File Name: The EXTERNAL attribute is assumed.

Scope: If the scope is unspecified for variable names, INTERNAL is
assumed.

Storage Class Attributes: If EXTERNAL scope is declared and the storage
class is unspecified, STATIC IS assumed. If INTERNAL scope is declared
and the storage class is unspecified, or if neither storage class nor
scope is specified, AUTOMATIC is assumed.

Label Variables: The range of a label variable is assumed to be all
statement labels known within the scope of the variable.

Parameter Attributes: Formal parameters without parameter attributes are
assumed to be NAME, unless of type label, in which case VALUE is
assumed.

Symbol Table Attributes: If no symbol table attribute is specified,
NOSYMBOL is assumed.

THE SEQUENCE STATEMENT

General Form:

SEQUENCE decimal integer (character constant) ;

The SEQUENCE statement is a nonexecutable statement. Only one may
appear in each external procedure

The decimal integer constant specifies the number of characters in
the character constant. Any character may appear· only once in the
string. The characters may be any permitted data character (whether or
not it has an associated graphic) •

104

The statement specifies the collating sequence, in ascending order,
for the external procedure. When character string comparison is
performed during subsequent execution of the external procedure, the
specified collating sequence will be used. Characters not specified in
the string compare high with those specified. The result of comparing
two unspecified characters is undefined. If a SEQUENCE statement is not
given, an implementation defined collating sequence is used.

Chapter 17: Implicit and Default Facilities 105

CHAPTER 18: ASYCHRONOUS OPERATION OF TASKS

The language allows specification of asynchronous operation of tasks.
The specification is expressed by means of the TASK option that is
applied to a CALL, FETCH, DISPLAY, and certain input/ output operations.

Synchronization of asynchronous operations may be effected with the
WAIT statement.

The main purpose of asynchronous operation is to share
resources among various tasks which may be performed
within a program. The actual sharing, or scheduling, of
is accomplished by the operating system within the bounds
specifications in the program.

TASK RELATIONSHIPS

the computer
asynchronously
the resources
allowed by the

Task relationships may be illustrated by a time chart. Assume that a
horizontal increment in the figure below represents a unit of time, and
that a single horizontal line represents a task. A vertical line
connecting two tasks indicates that the attaching task (lower line) is
initiating the attached task (upper line) at that point in time. This
initiating of a task is accomplished when either of the following occur:

A procedure is invoked by a CALL with a TASK option. In this case,
the execution of the invoked procedure, together with the execution
of all procedures it invokes, etc., comprise the attached task.
The CALL is a member of the attaching task.

A DISPLAY, FETCH or input/output statement with a TASK option
attached is executed.

C
r­

B I
r--J ---

A I r---___ J ____ J ___ _

D

THE TASK OPTION

General Forms:

TASK
TASK

task identifier , priority
task identifier)

The TASK option specifies that the operation to which it is appended
is to be invoked asynchronously and attached as a task. This task is
identified by the specified task identifier which may later be specified
in a WAIT statement or as an argument of the COMPLETE built-in function.

106

An optional priority may be included. As part of the task option,
the priority is specified by any scalar expression which is evaluated
and converted to an integer (positive or negative) when the statement
carrying the TASK option is executed. The integer indicates a priority
relative to the attaching task. If the priority is omitted, zero
(relative to the attaching task) is assumed.

If, during program execution, the control system is required to pass
control to one of several tasks, the decision will be reached on the
basis of their priorities. If the priority is omitted, a system
standard priority will be provided.

DATA ALLOCATION ACROSS TASKS

The rules of scope of identifiers hold across task boundaries. It is
therefore the responsibility of the programmer, by use of the WAIT
statement, to avoid freeing storage allocated in the attaching task and
accessed in the attached task.

An attached task has almost the same access to the attaching task's
data as it would have if it were executed synchronously; that is, when
it is attached all allocations of controlled variables known to the
attaching task are passed to the attached task. However, subsequent
allocations in the attached task are known only within the attached task
and its subsequent descendants; SUbsequent allocations in the attaching
task are known only within the attaching task and its subsequent
descendants. Thus, the stack of allocations for a controlled variable
splits into separate stacks, with a common part preceding task initia­
tion and separate parts after task initiation. A task may only free
storage which it allocated. All storage allocated within a task is
destroyed when that task is completed.

The statements in the preceding paragraph apply as well to alloca­
tions of CONTROLLED NAME parameters.

TERMINATION OF TASKS

A task is terminated in one of the four following ways:

1. The execution of an EXIT statement at any time within the task.

2. The execution of a RETURN statement in the "top" procedure of a
task, i.e., a procedure that has been invoked asynchronously.

3. The execution of an END statement that terminates the "top"
procedure of a task.

4. The execution of a STOP statement in any task of the program.

STACKING OF TASK IDENTIFIERS

When a task is attached, the task identifier is recorded in a list of
active tasks within the attaching task. This list contains the
identifiers of all active tasks which have been attached by the task but
have not yet been recognised as complete by a WAIT statement (see
Chapter 13) • When a task is recursively attached, the list element is a
stack which operates on a last-in-first-out basis.

The list of task identifiers is only known to the task which
generated the list. The list is not copied into the storage of attached
tasks which initially have null lists. Thus, there can be no reference
by one task to a task that was attached by some other task. A task

Chapter 18: Asychronous Operation of Tasks 107

cannot wait on, or test with the COMPLETE built-in function, any task
other than its own immediate descendants.

108

CHAPTER 19: PROGRAM MODIFICATION

Program parameterization, modification and augmentation may be
achieved using macro variables and procedures. Conditional and itera­
tive program generation can be specified using compile-time statenents.

MACRO VARIABLES

Macro variables are represented in the language by identifiers which
must be declared in a macro DEClARE statement. A macro variable can
only be declared either FIXED or CHARACTER.

FIXED specifies an integer variable with an implementation-defined
precision.

CHARACTER specifies a character string. For a fixed-length string,
an explicit length must be declared. For a variable-length string, the
attribute VARYING must be declared; but no length specification is
allowed. An implementation defined maximum length will be assumed.

Macro variables may be given an INITIAL attribute.
specified must be of the same type as the macro variable,
decimal integer constant or character constant.

The constant
i.e., either a

The appearance of a macro variable in the source program causes the
replacement of the variable by its current ·value-. In the case of
character variables, this is the contents of the string (with no
enclosing quote marks). In the case of fixed macro variables, the value
is a character representation of the decimal integer.

MACRO PROCEDURES

Macro procedures are represented in the language by macro entry names
that are invoked by macrO function references. A macro procedure is
programmer defined by an external procedure that has the option MACRO
specified in the PROCEDURE statement.

All formal parameters of a macro procedure must be declared CHARACTER
VARYING with a maximum size. A macro procedure must be a function
procedure and logically end with the statement

RETURN (expression)

The value returned by a macro procedure will always be a variable­
length character string. The option MACRO in the PROCEDURE statement
implies the procedure attributes CHARACTER VARYING with an
implementation defined maximum length.

Macro procedures may not perform input/output operations (including
SAVE and RESTORE) , or use the ON statement. They may not invoke
procedures which use these operations. Otherwise macro procedures may
use the full facilities of the language.

Macro procedures must be declared with the attribute ENTRY in a macro
DECLARE statement in the invoking procedure. It is assumed for such
procedures that the value returned is a variable-length character
string. In addition, when a macro procedure requires no arguments, the
attribute NOARGS must be declared.

Chapter 19: Program Modification 109

THE OPERATION OF MACRO PROCEDURES

The appearance of a macro function reference in the source program
causes the macro procedure to be invoked. The procedure returns a
character string result. This character" string then replaces the
function reference in the source text (with no enclosing quote marks) •

Macro procedure invocations may have as arguments any expressions.
These expressJ..ons may contain macro variables and macro function
references. The replacement associated with these items will, as
described previously, be performed before the macro procedure is
invoked. The resulting expressions will then be conceptually enclosed
in quote marks and passed as variable-length character string arguments
to the macro procedure. The arguments to a macro procedure are
delimited by the parentheses and commas of the argument list, so may
include non-significant blanks.

MACRO EXPRESSIONS

Macro expressions may have as operands

character string constants
decimal integer constants
macro variables

Macro expressions may take one of the following forms:

(a) operand
(b) ±operand
(c) operand arith operator operand
(d) ±operand arith operator operand
(e) operand II operand ••• operand II operand

The operands of forms (a) and Ce) may be any of the permitted
operands. The operand of forms (b), ec), and (d) must be decimal
integer constants or fixed macro variables. Expressions of form (e) may
involve conversion from type integer to type character. The conversJ..on
is performed according to list-directed transmission rules (see Appendix
7). The arithmetic operator in forms (c) and (d) may be + - / * .

Macro expressions are subdivided into fixed and character
expressions. Macro expressions involving macro variables which have not
been assigned a value are in "error.

COMPILE-TIME STATEMENTS

THE MACRO DECLARE STATEMENT

General Form:

% DECLARE macro declaration list ;

The macro declaration list is a normal declaration list, except that
only the attributes described in this section may be used, i.e., FIXED,
CHARACTER, VARYING, size, INITIAL, ENTRY, NOARGS, and only one level of
attribute factoring is allowed •.

Only one macro DECLARE statement is allowed in an external procedure.
The DECLARE statement must immediately follow the PROCEDURE statement.
All macro variables and procedures referenced in an external procedure
must be explicitly declared.

110

The scope of a macro identifier is the entire external procedure.
Macro identifiers cannot be overridden byredeclarations. All appearan­
ces of the identifier (outside character constants and comments) are
taken as referring to macro identifiers.

THE COMPILE-TIME ASSIGNMENT STATEMENT

General Form:

% label : macro variable = macro expression

The label is optional.

The statement causes the value of the macro expression to be assigned
to the macro variable. If the expression is of type fixed, the variable
on the left may be either of type fixed or character. If the expression
is of type character, the variable on the left must also be of type
character unless the value of the expression is a string which contains
a decimal integer constant. In this latter case, the variable may be of
type fixed.

All conversions implied in assignment are performed according to list
directed transmission rules (see Appendix 7)_

THE COMPILE-TIME NULL STATEMENT

General Form:

" Label:

Compile-time control may be passed to compile-time null statements.

THE COMPILE-TIME IF STATEMENT

General Form:

" label : IF macro expression comparison operator macro expression
THEN unit ELSE unit

The label is optional. A unit is a begin block or a group.

The statement causes conditional selection of source program text.
If the macro relation has a true value, the first unit is selected and
the second rejected, if false, the second unit is selected. The ELSE
clause may be omitted, in which case a false result merely causes the
rejection of the first unit.

The subsequent text selected is that following the IF statement.
Each unit may be a compile-time statement or a unit containing
compile-time statements and noncompile-time statements.

THE COMPILE-TIME GO TO STATEMENT

General Form:

" label : GO TO label ;

The first label is optional and the second label must precede a
compile-time statement.

Chapter 19: Program Modification 111

Contro'! is transferred to the compile-time statement carrying the
label appearing in the GO TO statement. The action associated with the
compile-time statement is performed; and unless the statement specifies
another transfer, the source text following it is selected.

COMPILE-TIME ACTIVITY

In general, the source text need not be syntactically correct prior
to the execution of compile-time statements and macro variable and
function replacement. However, the PROCEDURE statement heading the
external procedure must commence with the key word PROCEDURE and be
properly terminated with a semicolon. This statement must not contain
improperly formed comments or character string constants. This does not
prejudice the legal appearance of comments before the PROCEDURE state­
ment.

The macro DECLARE statement following the PROCEDURE statement must be
syntactically correct. Further requirements on the syntax of the source
text are explained by describing the process involved. Three classes of
text will be referred to in the following exposition:

1. source text, which is that presented by the programmer,
2. generated text, which is that introduced by replacement of ,macro

variable names and function references, and
3. program text, which is the result of macro and compile-time

activity.

Program text must be a syntactically and logically correct external
procedure.

The first compile-time action performed is the construction of a list
of macro variable names and function names. The list is ordered
according to appearance in the macro DECLARE statement. If initial
values are specified, they are associated with the list item.

The source text, including the PROCEDURE statement, but excluding the
macro DECLARE statement, is scanned from left to right, top to bottom.
The scan looks for

comments
string constants
macro identifiers
compile-time statements

A comment is recognized as a string contained by /* and */. A string
constant is recognized asa string delimited by quotes and contained by
blanks or special characters other than quotes. The constant may
contain double quotes. An identifier is recognized as a valid identifi­
er delimited by blanks or special characters other than quotes.

A compile time statement is recognized by the occurrence of

" THEN "
ELSE "

In the latter two cases, the program text preceding the THEN or ELSE
must be, up to this point, a valid IF statement (compile-time or
otherwise) • However, these requirements may have been generated by
prior macro replacement.

When the scan reaches the ", the text following the " must constitute
a syntactically correct compile-time statement. This text may be prior
generated text, source text, or a combination of the two. Note that a

112

syntactically correct compile-time IF statement, at this point, imposes
no restrictions on the text constituting the units following THEN and
ELSE, unless they are themselves single compile-time statements.

Source and generated text passed over by the scan are added to the
program text. When the scan locates an identifier, other than in a
compile-time statement, it is compared with the list of macro identifi­
ers, sequentially from the top. If no ~atch is found, the scan passes
over the identifier. If a match is found, the following action occurs:

1. If the identifier is a macro variable name, the current value of
the variable is taken as generated text. This generated text is
then scanned according to 3. The macro variable must have been
assigned a value (by the INITIAL attribute or by compile-time
assignment) •

2. If the identifier is a macro function name, the function is
invoked. The argument list, if present, is scanned and any macro
replacement is performed. The arguments are passed to the macro
procedure. The value returned by the function constitutes generat­
ed text. This text is scanned according to 3. If the function
requires an argument list, the leading parenthesis must be present
in the text being scanned when the function name is recognized. On
completion of macro replacemement within the argument list, the
text must be a valid invocation of the function.

3. The generated text is scanned normally, except that macro variable
names and function references are not replaced. On completion of
the scan of a given portion of generated text, the scan returns to
the source text at the point following the variable or function
reference which caused the generation.

When the scan locates comments or character constants, it passes over
them without any analysis.

When the scan locates a compile-time statement carrying a label, a
record is made of the position of this label in the source text so that
subsequent compile-time transfers of control to this label may be
performed.

When the scan locates a compile-time null statement, the scan
continues from the point logically following that statement.

the macro
the macro

and is
the text

When the scan locates a compile time assignment statement,
expression is evaluated, and its value associated with
variable in the list. This value replaces any previous value
used for subsequent reference. The scan continues with
following the compile-time statement.

When the scan locates a compile-time IF statement, the macro relation
is evaluated. If a true value is obtained, the scan continues following
the THEN. When the scan reaches the semicolon terminating the unit
following the THEN, the preceding program text must constitute a
syntactically correct unit. If there is an ELSE clause, this is skipped
by the scan; no source text is moved to program text. However to
achieve this skip, the unit following the ELSE must be partially
scanned. This partial scan generates pseudo program text by skipping
compile-time statements and comments, recognizing string constants, and
performing macro variable and fUnction reference replacement. This
pseudo program text must constitute a valid unit because it is analyzed
to identify the end of the unit. The pseudo text is discarded on
recognition of the end of the unit. If this is generated text, and
further generated text follows it, then the normal scan continues with
this generated text. Otherwise, the normal scan continues at the point
in the source text following either the macro variable or fUnction
reference which generated the END; or following the END; itself in the
source text. If the macro relation returns a false value, the unit

Chapter 19: Program Modification 113

following the THEN is skipped. This skip is achieved by a partial scan
as described above. If no ELSE clause is present, the normal scan
continues with the source text following the THEN clause. If an ELSE
clause appears, the keyword ELSE must appear in the source text. The
scan continues normally with the source text following the ELSE.

When the scan locates a compile-time GO TO statement, a transfer is
made to the statement carrying the specified label. If this is a
forward skip, a partial scan, as described above, is performed to locate
the label. The pseudo program text resulting from this scan must be
syntactically correct. If a backward skip is specified, no scanning
activity takes place. The action associated with the compile-time
statement transferred to is performed; and if this involves no further
transfer, the normal scan continues with the source text following the
statement. Compile time activity is completed when the scan·reaches the
end of the source text. The program te.xt at this point consti tutes the
external procedure.

114

CHAPTER 20: INTRODUCTION TO I/O FACILITIES

Processing of data may be considered to consist of three operations:
acquisition of data, data manipulation, and disposition of data results.
This section deals with the first and the final operations, con~only
termed input/output activity.

All input/output activity is transacted with named collections of
data called files. The name of a file is a file name. Files may be
subdivided into smaller collections of data called records.
Furthermore, records may be ordered within a file so that the data
conceptually constitute a single stream upon which the record structure
has been superimposed. Records in such ordered files may be collected
into groups. Records are variously defined according to the medium on
which a file resides and the ultimate source or destination of its
contents.

The natural record or group structure of all or part of a data file
may be inappropriate to some applications. For such applications,
significant divisions of data may be indicated by arbitrary symbols,
called segment delimiters, into segments. A record or group boundary
within a segment may be disregarded entirely. Record or group boundar­
ies may be made significant and insignificant by turns within one data
file.

Chapter 20: Introduction to I/O Facilities 115

CHAPTER 21: OPENING AND CLOSING FILES

Before data can be transmitted between internal storage and a file,
certain preparations must be made, such as checking for and ensuring the
availability of the data medium, and allocation of appropiate program­
ming support and storage areas. These preparations are called "openingn
the file. Similarly, when usage of a file is completed, it must be
"closed," in order to permit release of the facilities allocated for
"opening," and to cause proper disposition of the file. The programmer
may accomplish these two actions by writing the statements OPEN and
CLOSE. If he elects to do this, many of the attributes of the file may
be specified dynamically at execution of these statements. He may,
however, omit either statement. In this case the file is opened during
the first READ or WRITE statement which references it, and is closed at
the completion of the program.

THE OPEN AND CLOSE STATEMENTS

General Forms:

OPEN file group 1 , •••
CLOSE file group 1 , •••

, file group n , task option ;
file group n , task option

A file group may be either of the following:

file specification
(file specification 1, , file specification m attribute 1 ••••

••• attribute n

A file specification is:

file name attribute 1 ••• attribute n

File groups and specifications are separated b¥ commas. File
attributes are separated by blanks. The TASK option 1S described in
Chapter 18. It specifies that the opening or closing activity be
performed asynchronously. It may be omitted with the preceding comma.

116

The following file attributes may be given in the OPEN statement:

INPUT, OUTPUT, or INOUT

This specifies the direction of data transmission that will be
permitted for the file. INOUT may be given for direct access
files, stating that both INPUT and OUTPUT is permitted. If this
attribute is not specified in the OPEN statement, and has not been
declared for the file, then no assumption is made at the time of
execution of the OPEN. If the file is subsequently READ then it
will be assumed to be INPUT, and OUTPUT if it is specified in a
WRITE. References to the file in PAGE and LAYOUT statements before
INPUT or OUTPUT is established force no assumptions. References to
the file in GROUP, SPACE, SKIP, or SEGMENT statements before INPUT
or OUTPUT is established force the default assumption INPUT. It
should be noted that INPUT files cannot be written on and OUTPUT
files cannot be read.

TITLE (expression)

A file name may be associated with more than one set of data. The

choice of the desired set may be delayed until the OPEN statement
is executed. At this point the expression in the TITLE option is
evaluated, converted to a character string, and used to identify
the data set. If the TITLE option is omitted, the file name is
taken as the data set name.

STAY

This attribute specifies that the file be commenced at the current
logical position of the associated external device, rather than at
its logical beginning.

ACTIVITY (expression)

The expression is evaluated and converted to an integer specifying
the relative activity of the file in implementation defined units.

The following attributes may be given in the CLOSE statement:

DISCARD

This attribute indicates that the specified data files are to be
removed from the operating system and will not be required again.
The external media, the buffer areas, and support routines may all
be re-allocated.

KEEP

This attribute indicates that the operating system may re-allocate
support programs and buffer areas for the specified data files, but
that the actual data media of the file should remain available for
later use.

STAY

This attribute indicates that the data media should remain logical­
ly positioned wherever it is when it is closed. Normally the data
file is repositioned to its logical beginning.

The following attribute may be used on either the OPEN or CLOSE
statement:

IDENT

The IDENT attribute has four forms.

IDENT (data list) (format· list)
IDENT (output list)
IDENT entry name (argument list)
IDENT

Used on the OPEN for an output file, the IDENT attribute specifies
a label to be placed on the external medium. For an input file it
provides information for label checking.

Used on the CLOSE, it provides the same function for trailer
labels.

The first form provides an explicit label record. The second form
provides arguments for a system label construction or checking
procedure. The third form causes the invocation of a.procedure
which may construct or check the label. This procedure is
responsible for performing its own reading and writing. The fourth
form specifies that the file has, or is to have, no label. This is
also assumed if this attribute is unspecified.

Chapter 21: Opening and Closing Files 117

CHAPTER 22: DATA SPECIFICATION

Normally, data is transmitted between the external medium and storage
as a record. The record may be thought of as a continuous string of
characters or bits, with the string subdivided into contiguous subst­
rings called fields. A field may be empty or contain one and only one
datum, called an item. Following one or more contiguous fields, there
may be a mark which defines the preceding fields to be a segment.

The number of fields in a record, the size of those fields, the
nature of the datum in each field, and the segment marks, if any, is
called the format of the record. The order of items is specified by a
list of elements. On input, the elements are variables or pseudo
variables to which are assigned the values of the corresponding items of
data. On output, the elements are expressions whose values are given to
the corresponding items of output data. As data is transmitted, a field
pointer moves across the record in synchronism with the processing of
the list elements. The positioning of the pointer is governed by format
specifications given for the record. The list element and the format
may be specified in the record or may be specified in a list of elements
and a format specification in the program.

MODES OF DATA TRANSMISSION

There are three types of data transmission: format directed transmis­
sion, list directed transmission, and data directed transmission.

FORMAT DIRECTED TRANSMISSION

INPUT: The form of the data on the external media is defined by a format
list. The program storage areas that the data is to be assigned to is
specified by a data list.

OUTPUT: The data values to be transmitted are defined by a data list.
The form that the data is to have on the external medium is defined by a
format list.

LIST DIRECTED TRANSMISSION

INPUT: The data on the external
constants. The program storage areas
assigned is specified by a data list.

medium is
to which

in
the

the form of valid
data is to be

OUTPUT: The data values to be transmitted are specified by a data list.
The form of the data on the external medium is a function of the data
value (see Appendix 7) •

DATA DIRECTED TRANSMISSION

INPUT: The data on the external medium is in the form of valid constants
and also includes information defining the program storage areas that
the data is to be assigned to.

OUTPUT: The data values to be transmitted are specified by a data list.
The data on the external medium has the form of valid constants and also
includes the name of the data being transmitted (see Appendix 7) •

118

FORMAT AND LIST DIRECTED DATA LISTS

General Form:

element 1 , , element n)

On input, the elements may be
structure name, a pseudo variable or
specification of such elements.

a scalar name, an array name, a
pseudo array, or a repetitive

On output·, the elements may be
expression, a structure expression,
involving any of these elements.

a scalar expression, an array
or a repetitive specification

A repetitive specification has the following form:

(element 1, ••• ,element n item = specification list)

The item may be a variable or pseudo variable. The elements are as
described above for the appropriate mode of transmission. The specifi­
cation list is as described in "The DO Statement ••• - in Chapter 13.

The repetitive specification designates that the element list is to
be repeated according to the specification list. The control variable
is set to the initial value, and the elements transmitted. The control
variable is then modified and the elements again transmitted. This
process is repeated until the specification list is exhausted and the
iterations complete. Repetitive specifications may be nested to any
depth. A repetitive specification involving m elements repeated n times
is equivalent to n * m elements.

For example the list element

((A (I,J) 1=1 TO 2) J=3 TO 4)

will provide elements of the array A in the order

A(1,3), A(2,3), A(1,4), A(2,4).

If a list element is of mode complex, the real part is
first. If a list element is an array name, the elements of
are transndtted in row major order. If a list element is
name, the elements of the structure are transmitted in
specified by the structure declaration. If an input
assigned in a list, its new value will be used in all later
within the list.

FORMAT LISTS

General Form:

format element 1 , ••• , format element n)

transmitted
the array

a structure
the order

variable is
references

The format elements may be a format item, a format item preceded by a
replication factor, or a list of format elements separated by commas,
enclosed in parentheses and preceded by a replication factor.

Permissible format items are listed in Appendix 6.

A replicatiori factor is either a decimal integer constant, or an
expression enclosed in parentheses. The replication factor is evaluated
and converted to an integer (n) every time the following element is
used. It specifies that the format element is to be used repeatedly n
times. A zero replication factor specifies that the following item or

Chapter 22: Data Specification 119

list is to be skipped and not used. A negative replication factor will
be considered zero.

THE FORMAT STATEMENT

General Form:

label 1: label m: FORMAT format list;

The FORMAT statement specifies a format list. It must carry a
statement label. The statement label may be used in a remote format
specification (see Appendix 6) to specify that the list should be used
at that point. The remote fonnat specification and the FORMAT statement
must be internal to the same block.

MODES OF DATA SPECIFICATION

DATA SPECIFICATION FOR FORMAT DIRECTED TRANSMISSION

General Form:

data list format list

The data items to be transmitted are specified by the data list.

Format items are subdivided into two classes, data format items and
control format items (see Appendix 6). A format item involving n-fold
repetition is equivalent to n sequential format items.

A repetitive specification involving m-fold repetition of p scalar
data items is equivalent to 1TI * P data items. An array or a structure
in a data list is equivalent to q data items, where q is the number of
scalar elements of the array or structure. The first scalar data list
item is associated with the first data format item, the second scalar
item, with the second data format item, etc. Suppose the format list
effectively contains j data format items, and the data list effectively
contains k scalar items. Then, if j < k, after j scalar data items have
been transmitted the format list is reused, the (j+1)th scalar item
being associated with the first data format item, etc. This reuse will
be performed as many times as required. If j > k, redundant data format
items are ignored.

The actions associated with the control format items encountered in
the format list during transmission are performed at the appropriate
point. The specified transmission is complete when the last data list
item has been processed using the corresponding data format item.
Subsequent format items are ignored.

Examples

The first of the following examples is a format directed input
specification and the second an output specification.

(NAME, DATE, SALARY) (A (COLA_COLB) , X(2}, A (6) , F(M+2,2»
(. RESULT (. I I I I I .) =', A (I) 1= 1 TO 20) (A, F (8,3))

DATA SPECIFICATION FOR LIST DIRECTED TRANSMISSION

General Form:

LIST (data list) (scalar expression)

120

Input

The data on the medium is a list of constants. Where the list item
is an array name and the data a scalar constant, the constant is
assigned to the first element of the array, the following constant to
the second element (row major order); etc. A character constant
containing a real value is valid as a constant. Thus '2.6' is a valid
constant. .

Complex data items require two constants, the first a real constant;
the second, imaginary. Sterling constants are not allowed in complex
data.

A structure name in the data list represents a list of the contained
scalar variables and arrays in the order specified in the structure
description.

A scalar expression, enclosed in parentheses, may optionally follow
the list directed data list. If the expression is not present, data
items on the external medium must be separated by a comma or a blank.
If present, the expression will be evaluated and converted, if
necessary, to a character string; the resultant character string will be
recognized as the separator of data items on the external medium.

Output

The values of the scalar variables in the data list are converted to
a character representation of the value (as described in Appendix 7) and
transmitted to the external medium.

A scalar expression, enclosed in parentheses, may optionally follow
the list directed data list. If the expression is not present, a blank
will be used to separate data items to be transmitted. If present, the
expression will be evaluated and converted, if necessary, to a character
string; the resultant character string will be used to seperate data
items to be transmitted.

Examples

The first two examples are list directed input specifications and the
latter are output specifications.

LIST(CARD.RATE, DYNAMIC FLOW)
LIST (THICKNESS (DISTANCE)

DISTANCE=1 TO 100~
LIST (P,Z,M,R)
LIST (A*B/C, (X+Y) **2) (', ')

DATA SPECIFICATION FOR DATA DIRECTED TRANSMISSION

General Forms:

DATA
DATA (element 1, ••• ,element n)

The first form specifies data directed input. The second form may be
used to specify either input or output.

Input

The data on the external medium is in
assignments, separated by commas, and terminated
assignment is of the form:

the
by

form of a list of
a semicolon. An

Chapter 22: Data Specification 121

scalar variable name = constant

The scalar variable may be a subscripted name with decimal integer
constant subscripts. DEFINED variables may not be used.

If the first form of specification (with no list) is used, the names
on the external medium may be any unqualified name known at the point of
transmission and declared with the attribu,te SYMBOL.

If the second form is used, the elements of the list may be
unsubscripted scalar, array or structure names. The names on the
external media must appear in the list; . however they need not be in the
same order and the list may include redundant names. If the list
includes an array name, subscripted references to that array may appear
on the external medium. The list may include qualified names; qualified
names of identical form may then appear on the external medium.
Subscripted qualified names may have interleaved subscripts in the data
list, but not on the external medium.

Output

The second general form must be used. 'rhe list elements may be a
scalar, structure or array name, or a repetitive specification involving
only these elements, or fUrther repetitive specifications.

The data specified in the list will be transmitted in the .form of
scalar ,assignments. Array names in the list are interpreted as a list
of the contained subscripted elements. Thus array values as described
above are not generated by data directed output.

Qualified names appearing in data directed output lists will be
transmitted with the same qualification, but with subscripts following
rather than interleaved. Structure names in the list are interpreted as
a list of the contained scalar elements.

122

CHAPTER 23: DATA TRANSMISSION

The READ and WRITE statements cause, as required, the transmission of
data from external media to storage, or from storage to external media,
respectively. Each READ or WRITE statement normally processes one
record, and only one record, completely. However, the programmer may
process part of one record, or several records, with one READ or WRITE
statement, if he so specifies. Also, he may process a segment of a file
without reference to records.

The READ and WRITE statements may also be used for internal editing
and moving of strings. If the name of a string variable, or an element
of a string array, is specified in place of a file name in the
statements, then the READ causes transmission from the string to the
data list, and the write from the data list to the string.

THE READ AND WRITE STATEMENTS

General Form:

READ option list ;
WRITE option list ;

The option list consists of one or more of the options described
below. Except for the data specification and CALL options, anyone
option may not appear more than once. Commas are used to separate the
options in a list.

FILE (filename) or FILE (filename 1, ••• , filename n)

This option specifies the name of the file from which the data is
to be acquired. If neither the FILE nor the STRING option is
specified, the standard system input file is assumed for READ, and
the standard output file for WRITE. In the WRITE a list of file
names may be given, specifying simultaneous writing on more than
one file. It is illegal to specify a file name in a READ or WRITE
statement if that file is in the stack of current files.

STRING (name)

This option gives the name of the string either from which the data
is to be acquired (READ), or to which the data is to be transmitted
(WRITE) • Only the data specification options may appear with the
string option.

Data Specification

This option is described under "Modes of Data Specification" in
Chapter 22. Only forms permitted for input may be given in the
READ statement and forms permitted for output in the WRITE
statement. Either a data specification or the CALL option must be
always specified. This option may appear as many times as
required, and all modes of transmission may be arbitrarily speci­
fied together. They may appear with the CALL option. The
transmissions associated with each data specification and edit
procedure are performed in the order that the options appear.

HOLD

Chapter 23: Data Transmission 123

124

This option causes the record pointer position to be "remembered"
on completion, so that the next READ or WRITE will begin its data
scan at the point where the prior operation ceased scanning. If
HOLD is not specified and the record is of fixed length, the
remaining part of the record is padded on output or skipped on
input.

CROSS

The CROSS option can be specified using either of two forms,
CROSS
CROSS (expression)

In the second form, the value of the expression is converted to an
integer before use. The normal READ or WRITE operation will
operate upon a single record and produce an error conditio~ if the
data specification causes the record boundary to be crossed. The
CROSS option permits data acquisition to proceed through any number
of records (optionally limited by the integer value of the
expression) in order to satisfy the data requirements specified.
The MARGIN qualifications for the data file, if 'present, are still
valid while in the CROSS mode {see "The LAYOUT Statement" in
Chapter 2S} •

PRINT

This option may only be used on the READ statement. It specifies
that data transmitted will, at the same time as the read, be
written in the same format on the standard output file.

SEGMENT (expression)

The expression is converted, if necessary, to a character string.
This string serves as a segment delimiting mark, This option
permits the data input stream to be synchronized not at the record
boundary, but at the mark. Upon satisfying the data requirements
for the READ operation, the record is further scanned for the
specified mark, such that the next READ of the file will proceed
from the mark. All prior unused data is lost to the program.
Should the mark be encountered while transmitting data, transmis­
sion ends. At completion of record construction for the WRITE
operation (through one or possibly more records), the specified
mark is added to the last record. Emission of the record is not
thereby implied. Subsequent data is appended to this record until
the maximum record length is met. The SEGMENT option implies both
the HOLD and the CROSS options.

ITEM (scalar variable name)

This option specifies that a count of the scalar items transmitted
for the READ or WRITE operation is to be kept and assigned to the
scalar variable.

KEY (express ion)

This option is used when direct access to a particular .record is
required. The expression is converted to integer, if it is of
arithmetic or bit string type, or to character, if it is of type
character string. The expression is evaluated whenever a new
record transmission is required during execution of the data
specifications for a READ or WRITE statement. The value of the
expression provides a 'key' to the record. This selects the record
to be read. On output, the key is appended to the data record to
be transmitted. A key which is identical to an existent key causef
overwriting of that record.

CALL entry name (argument list)

This option causes the invocation of the specified procedure, which
may perform further action on the file using GET or PUT statements
(discussed later in this chapter) or positioning statements (see

Chapter 24).

TASK

This option specifies that the operations associated with the READ
or WRITE statements (including invocation of a procedure specified
by the CALL option) be performed asynchronously with the procedure
containing the statement (see "The TASK Option U in Chapter 18).

ZERO

This option specifies that trailing blanks in numeric data input
fields are to be treated as zeros.

FROM (f ilename)

This option specifies that the last record read from the named file
is to be written on the output file. If the last record was read
using a KEY, the key must not be respecified, as the old key is
used.

Examples:

READ FILE (INVENTOR~

(A (20), F (5,2)) ;
(ITEM. NAME, ITEM. COST)

The file named INVENTORY is read for one record. The first 20
characters of the record are placed into the character string variable
ITEM. NAME, the next 5 are converted from fixed decimal external format
to the internal form of the variable, ITEM. COST. A subsequent READ of
the data file will be synchronized to the next record boundary.

READ FILE (TABLES) (TABLE. POOL) . (F (5» , KEY (Q);

The file named TABLES is read for the record identified by the character
string Q (the record key). This record is composed of 5-digit
fixed-point integers. The record is converted to internal integer
representation and each item is assigned to the array TABLE. POOL.

READ FILE (FI LEZ), (AB) (A (10)), SEGMENT (• * .), ITEM (NAMETOT)

The file FILEZ is read for alphabetic data items, each 10 characters in
length, which are assigned to the character string array AB. Assignment
ceases when either the complete array is satisfied or the SEGMENT mark,
the asterisk, is encountered (in the former case, the input data stream
is subsequently synchronized to the next occurrence of the segment
terminator). The number of 10 character items assigned may then be
checked by inspection of the scalar variable NAMETOT.

tlRITE FILE (INVENTOR~, (ITEM. NAME, ITEM. COST) (A (20) ,F (5,2))

T'his is similar to the first example. The WRITE causes the construction
~i a ~5 character record.

"r-lRITE FILE (TABLES), (TABLE. POOL) (F (5)) , KEY (Q);

This is similar to the second example. A record is constructed from the
contents of the TABLE.POOL array, and a key, the value of the variable
Q, is appended. Should the key be identical to an existent key within
the data file, the WRITE causes replacement of that keyed record.

Chapter 23: Data Transmission 125

WRITE FILE (FILEZ), (' FINAL DATA' ,X, Y) (A), F (3,2), E (5,2» ;

Three data items are transmitted to FILEZ (assuming X and Yare scalar
variables). The first is the character string of length 10, FINAL DATA,
then the fixed-point form of the value of X, then the floating-point
form of the value of Y.

WRITE DATA (X,Y,Z);

The values of the three variables X, Y and Z are transmitted to the
standard output file in the data-directed format. If X is floating­
point value 3.1141593, Y is fixed-point value 347, and Z is character
string value bbMATH, then the output data stream would appear as

X = 3.1141593, Y = 347, Z =' MATH'

and would be in a form suitable for data directed input.

THE GET AND PUT STATEMENTS

The GET and PUT statements have meaning in a procedure invoked by the
CALL option in a READ or WRITE statement (or a procedure invoked by such
a procedure, etc.).

When a procedure is invoked by the CALL option in a READ or WRITE
statement, the file(s} specified in that statement become the "current"
file(s). At the completion of the READ or WRITE statement, such file (S)
are no longer the "current" file (S). This concept o.f "current" files
permits the execution of GET, PUT, PAGE, LAYOUT, and various positioning
statements in which no file is specified. When there is a current file
immediately prior to a READ or WRITE statement, that file becomes
current again at the completion of the READ or WRITE statement. Thus
the current file is chosen from the top of a stack. A GET or PUT
executed when there is no file in the stack is in error and will cause
job termination.

THE GET STATEMENT

General Form:

GET options;

This statement causes data to be fetched from the current .file,
converted from external data form, and assigned to variables as
specified. The options are separated by commas and are:

Data Specification

This option is identical to the forms specified in the READ
statement. One or more data specifications may be given.

KEY (express ion)

This option is identical to the form specified in the READ
statement. The expression will be evaluated every time a new
record is required. This option is necessary only on a direct
access (keyed) file, and then only if the GET statement may cross
record boundaries.

As data is fetched from the file, a "pointer" moves across the
records as demanded by the data specifications. This pointer may be
repositioned within the record (see the POSITION statement) •

126

THE PUT STATEMENT

General Form:

PUT options;

The options are as stated for the GET statement, except that the data
specifications are identical to the forms specified in the WRITE
statement.

This statement causes data to be fetched from variables as specified,
and moved to the record being constructed for the current file. As in
the GET statement, a pointer moves across the record as it is being
formed. The pointer may be repositioned by the POSITION statement. The
character count of the record is dependant upon the rightmost sweep of
the pointer, if the records of the file are defined as variable length.
If fixed length, the size is predetermined.

Chapter 23: Data Transmission 127

CHAPTER 24: POSITIONING STATEMENTS

Positioning within and between records or segments may be
accomplished with the POSITION, TAB, SKIP, SPACE, GROUP, and SEGMENT
statements. The first two of these are for positioning within records
only, and apply only to current files. The remainder are interrecord,
intergroup, or intersegment and may apply either to the current file or
to an explicitly designated file.

THE POSITION STATEMENT

General Form:

POSITION (format list)

The format list is as described under -Format Lists- in Chapter 22.
This statement manipulates the pointer mentioned under the GET and PUT
statements. When the POSITION statement is executed, the pointer is
first reset to the beginning of the current record. The format list
elements are then used to determine the movement of the pointer as if
there were associated data list elements corresponding to the format
items. Since no data list exists, all format items must have an
explicit or implicit width (precision) specification.

The following format items are not allowed in the POSITION format
list: GROUP, SEGMENT, SKIP, SPACE, and Remote formats.

If the POSITION statement moves the pointer across parts of an output
record which have no information edited into them, the record is assumed
to be initially blank.

THE REPOSITION STATEMENT

General Form:

REPOSITION;

The execution of this statement resets the pointer to the position
immediately before the data item causing an error condition. The
statement may appear only in ON units as described in Chapter 14.

THE TAB STATEMENT

General Forms:

TAB;
. TAB (scalar expression) ;

when the statement is executed and
omitted, TAB (1) is implied. The
aligned on the nth TAB of the record
in Chapter 25). The intervening

The expression is evaluated
converted to an integer n. If
statement causes the pointer to be
or line (see -The LAYOUT Statement"
data will be skipped.

128

INTERRECORD POSITIONING

The following statements allow positioning between records, groups,
or segments. In each of these statements, the options may be null, o.r
may be either or both of the following, separated by commas:

FILE (f ile name)

This option specifies that the action is to be taken on the
indicated file. If this opt1on is not used, the action is taken on
the current file.

KEY (expression)

This option specifies that the expression is to be evaluated to
form a key for each access of 3. new record. If this option is not
present, the records are dccessed sequentially.

THE SKIP STATEMENT

General Forms:

SKIP options;
SKIP (expression), options;

The value of the expression is converted to an integer (n) when the
statement is executed. When used with print files, lines and pages are
considered, otherwise records and groups. On input, the statement
causes a skip to the nth record of the group. If the current record is
greater than n it causes a skip to the nth record of the next g.roup. On
output, the statement causes the creation of sufficient empty records to
cause alignment on the record as above.

If the expression is omitted, SKIP (1) is implied.

THE SPACE STATEMENT

General Forms:

SPACE options;
SPACE (scalar expression , options;

Execution of the SPACE statement causes evaluation of the
and conversion of the result to an integer, n. The
determines the line or record spacing. Absence of the
implies SPACE (1).

THE GROUP STATEMENT

General Forms:

GROUP options;
GROUP (expressiom, options;

expression
value of n
expression

The expression is converted to an integer {~ when the statement is
executed. If omitted, GROUP (1) is assumed.

This statement causes the group currently being processed to be
released from the program. A group is defined as the records delimited
by group terminators. Input records are effectively skipped through
until a group-terminator is encountered, with synchronization occurring
at the next group, or, if n is the value of the expression, at the nth

Chapter 24: Positioning Statements 129

subsequent group. Output records are terminated with a group delimiter
and released. "Empty· records are supplied if the data file is defined
to have a fixed number of records per group.

THE SEGMENT STATEMENT

General Forms:

SEGMENT options;
SEGMENT (expression), options;

The expression is evaluated and converted to
statement is executed. If omitted, SEGMENT
statement causes the buffer pointer to be
following the nth segment delimiter after the
SEGMENT in Chapter 23.)

an integer (n) when the
(1) is assumed. The
positioned at the point
current position (see

On input, sufficient records are Skipped to effect this positioning,
if necessary. On output, empty segments are constructed, if necessary,
as in the SPACE and GROUP statements. SEGMENT positioning need not,
however, cross record boundaries.

130

CHAPTER 25: REPORT GENERATION

The PAGE and LAYOUT statements are provided to facilitate preparation
of files for printing and to describe the format of print files so that
they may be subsequently READ. The statements may, however, be used for
any non-print file. Groups and records will then be considered in place
of pages and lines. The statements refer explicitly, or in the case of
a procedure invoked by the CALL option in a READ or WRITE statement,
implicitly, to a particular file and each applies to that file until
overridden by another statement of the same type. Until such statements
are encountered, system standards are assumed to apply.

The execution of a PAGE or LAYOUT statement for a file destroys all
options established by previously executed PAGE or LAYOUT statements for
the same file.

THE PAGE STATEMENT

General Form:

PAGE option list ;

The statement specifies the pagination of a file (or files).
Execution of the PAGE statement causes a skip to the start of the next
page or group, dummy records or blank lines being generated on output
files. The specified options are then established.

The options are separated by commas.
below.

FILE (file name 1, ••• , file name n)

Permitted options are listed

This option specifies the files to be operated on. If the option
is omitted in a procedure invoked by the CALL option in a READ or
WRITE statement, the files specified in the invoking procedure are
used. If the option is omitted elsewhere, the standard output file
is assumed.

NUMBER (expression)

The value of the expression is converted to integer when the PAGE
statement is executed. This option specifies that the pages or
groups are (on input) or are to be (on output) numbered on the
right of the heading, starting at the number which is the value of
the expression. If the NUMBER option is not specified, no
numbering will be expected on input or generated on output.

HEAD (expression)

The expression is evaluated and, if necessary, converted to type
character string. This character string is used either as the page
title, left adjusted, or as the first record of each group.

FOOT (expression)

The expression is evaluated and, if necessary, converted to a
character string. This is used either as a line at the foot of
each page (left adjusted), or as the last record of each group
(left adjusted) •

Chapter 25: Report Generation 131

SI ZE (expression)

The value of the expression is converted to integer when the PAGE
statement is executed. The value of the expression specifies the
number of lines per page, or records per group, including heading,
footing and blank lines or records. If this option is unspecified,
system standards apply.

SPACE (expression)

The value of the expression is converted to integer when the PAGE
statement is executed. The value specifies the line or record
spacing. Thus, if two is specified, one blank line or empty record
will automatically be generated on output or skipped on input
between each line or record explicitly specified. Absence of this
option implies SPACE (1).

AT (expression 1) (expression 2)
AT (expression 1) CALL entry name (arqument list)

Expression 1 is evaluated and converted to an integer n when the
PAGE statement is executed. Subsequently when the nth record or
line of each group or page is reached:

a) In the first form, the character string resulting from
evaluating expression 2 eat the time the PAGE was executed is
understood to appear (on input) or will be output.

b) In the second form, the arguments are evaluated and the entry
name invoked. The scope of the arguments is that of the block
containing the PAGE statement. Since the arguments are evalu­
ated at each call, the block containing the PAGE must still be
active at each call.

THE LAYOUT STATEMENT

General Form:

LAYOUT option list ;

The statement specifies the horizontal layout of data' on input and
output. Execution of the LAYOUT statement causes the establishment of
the specified options. The options are separated by commas. Permitted
options are listed below:

132

FILE (file name 1,..... file name n)

This option specifies the files to be operated on. If the option
is omitted in a procedure invoked by the CALL option in a READ or
WRITE statement, the files specified in the invoking procedure are
used. If the option is omitted elsewhere, the standard output file
is ,assumed.

MARGIN (expression 1, expression 2)

The values of both expressions are converted to integer when the
LAYOUT statement is executed. These values are interpreted as the
positions of the left and right margins of the record and line,
respectively. On input, data before the left margin or after the
right margin is ignored. On output, the first data item of a
record or line is aligned on the left margin, with blanks before,
and data is not placed beyond the right margin (blanks inserted if
fixed-length record) •

TAB (expression 1, ••• , expression n)

The expressions are converted to integers when the LAYOUT statement
is executed. The values are used to indicate positions from the
left end of the line or record. During list and data directed
output, successive items are aligned on successive free tabs.
During format directed transmission, alignment on a tab can be
achieved by use of the TAB format item. In other cases, alignment
on a tab can be achieved by using the TAB statement.

Chapter 25: Report Generation 133

CHAPTER 26: ASYNCHRONOUS LOCATION·OF DATA

Facilities to acquire, manipulate, and dispose of data in a random
order are available through the SEARCH statement. This statement is
useful when data manipulation from one or more data· file may be
performed in any order. Operations upon the files may be synchronized
in various ways by means of the WAIT statement.

Use of the SEARCH statement causes a specific record to be requested
from a data file. A number of search requests may be issued by the
program before any requested record is located, thereby establishing a
queue of data requests, anyone of which may be satisfied momentarily.
When a particular record is located, its proce·ssing may proceed while
other records are being located to satisfy outstanding requests.
Alternatively, processing of any record can be delayed until all
requested records have been located.

THE SEARCH STATEMENT

General Form:

SEARCH option list ;

The options permitted in the option list are listed below. The
options are separated by commas.

134

FI LE (f ile name)

This specifies the file to be scanned. This information must
always be provided in the SEARCH statement.

KEY (expression)

This option causes the record having the specified key to be
located. (See the discussion of the KEY option under "The READ and
WRITE Statements" in Chapter 23.)

CONTENT Data Specification

The data specification is of the form used for format directed
transmission. This option permits unkeyed records to be found by
analysis of record content. The data format indicates the areas
within the record which are to be checked for comparison with the
values of the items in the data list.

If the KEY option is specified also, the keyed record is first
found. The search by content then commences at this point. If the
KEY option is not specified the search commences at the current
pOSition in the file, advances to the end of the file, and then
wraps around to the beginning, etc.

LIMIT (expression)

This option may be specified with either the CONTENT option, or
both the KEY and the CONTENT option. The expression is evaluated
to give an integer n. In the first case it limits the search by
content to the n records following and including the record where
·the file is currently positioned. In the second case it limits the
search by content to the n records following and including the
keyed record.

CALL entry name (argument list)

This option causes the specified procedure to be invoked on finding
the requested record. Within the procedure will be a READ or WRITE
statem~nt for actual transmission of the data located. The
expressions in the argument list will be evaluated before the
search is commenced.

Task Option

This option specifies that the SEARCH, and any procedures invoked
by it, should be performed asynchronously with the procedure
containing the SEARCH (see "The TASK Option" in Chapter 18).

Examples of the SEARCH Statement

SEARCH FILE (FILEAAA) , KEY ('JOE') , CALL PAYCHECK;

This example causes FlLEAAA to be searched for the record keyed by
the characters JOE, location of which will cause the PAYCHECK procedure
to be invoked.

SEARCH FILE (FILEAAA) , CONTENT ('JOE') (X (20),
A (10», CALL HIRE;

This example causes FILEAAA to be searched for a record whose first
20 characters are ignored, but whose next 10 characters are the three
characters JOE and 7 blanks, the finding of which will cause invocation
of the procedure HIRE. Note that the record so located might not be
unique, and further SEARCH requests on this file may be used to locate
the remaining records with JOE in the 21st through 23rd character
positions.

SEARCH FILE (FILEAAA) , KEY (NAME (I»,
CALL ALPHA, TASK (A);

SEARCH FILE (FILEBBB) , KEY (NAME (I»,
CALL BETA, TASK (B);

SEARCH FILE (FILECC) , KEY (NAME (I)),
CALL GAMMA, TASK (C)

This example shows a series of SEARCH statements being used to set up
three completely asynchronous program flows, data acquisition, manipula­
tion, and possible disposition being performed for each data file in an
optimal time sequence.

Chapter 26: Asynchronous Location of Data 135

CHAPTER 21: THE SORT STATEMENT

General Form:

SORT option list ;

The SORT statement specifies that the records on the specified file
are to be sorted. The sorting is performed on fields which are
specified in the statement. The sorting may be in ascending (UP) order
or descending (DOW~ order.

The size of the records to be sorted must either be specified in the
BLOCK attribute for the file name or be implied by a record description.
The size may be variable, in which case the BLOCK attribute must be
declared with a maximum size.

136

The options are separated by commas. The following are permitted:

FILE (file name 1, •••• , file name n)
This specifies the files to be sorted. If more than one file name
is specified, a merge is also performed.

RECORD (format list)

The format list is as described under BFormat ListsB in Chapter 22.
This option describes either the format of the whole record or
merely an initial portion of the record. In the latter case the
BLOCK attribute must be declared for the file name giving the
actual, or maximum if variable, length of the record. The format
list defines -fields" on the record. The nth format item describes
the nth field. If a format item has a replication factor of m,
this constitutes m fields. Of the -additional B format items
specified in Appendix 6 only POSITION is permitted. This item does
not constitute a field.

sort specification 1 , ... , sort specification n

Each sort specification may have one of the forms:

UP (int~er 1, ... , integer n)
DOWN (integer 1, ... , integer n)

The integers are decimal integer constants and specify the fields,
with respect to the record specification, to be sorted. UP
specifies an ascending sort, DOWN a descending sort. The fields
are taken from left to right from the sort' specification list. The
file is sorted on the left-most specified field first, then the
next field, and so on. The sort comparisons are performed using
the character collating sequence for character string fields, bit
comparison for bit string fields, and algebraic comparison for
arithmetic fields (see "Arithmetic Operations· in Chapter 6) •

GIVING (file name)

This option is used to specify the file on which the sorted output
is to be written. If omitted, the standard output file is used.

If stated and unique from the standard output file, and unique from
any of the files to be sorted, the file must not be currently open.
The system will open it for output, produce the sorted file, and
close it. If stated, and identical to one of the files to be

sorted, then after reading the file, the system will close it, open
it for output, produce the sorted file, and close it.

TASK

This option permits asynchronous execution of the SEARCH statement.
See RThe TASK Option" in Chapter 18.

Chapter 27: The SORT Statement 137

APPENDIX 1: BUILT-IN FUNCTIONS

ARITHMETIC GENERIC FUNCTIONS

The generic functions listed in this section return a value of type
arithmetic. The arguments may, unless otherwise specified, be any
expressions. If nonarithmetic they will be converted to type arithmetic
before the function is invoked according to the rules stated under
·Scalar Expressions" in Chapter 6. Where reference is made to an
argument, it should be taken to mean the converted argument when a
nonarithmetic argument has been specified. The magnitude of a complex
number is the positive square root of the sum of the squares of the real
and imaginary parts.

ABS

" MAX

Arguments and Function Value.

Arguments: One is permitted.
Function value = absolute value of argument, i.e. positive value of

real argument, positive magnitude of complex. Radix, scale,
mode, and precision are those of argument.

~ Arguments: Two or more are permitted.

~MIN

MOD

Function value = value of maximum argument, converted to highest
characteristics of all arguments specified. The magnitude of
complex numbers is used for comparison.

Arguments: Two or more are permitted.
Function value = value of minimum argument, converted to highest

characteristics of all arguments specified. The magnitude of
complex numbers is used for comparison.

Arguments: Two are permitted, x and y.
Function value = x-FLOOR (x/y) *y. The rules of expression evalua­

tion give characteristics of result. If the value obtained by
this formula is negative the absolute value of the modulus y is
added to give a positive result.

SIGN
Arguments: One is permitted.
Funct~on value = integer 1 if argument> 0: = 0 if argument = 0: =

-1 if argument < O.

""_ FIXED
Arguments: Three are permitted. The second and third are optional

decimal integers specifying the number of digits after the
decimal or binary point. If omitted the second argument assumes
a value specified by each implementation, the third assumes
zero.

Function value = first argument converted to scale FIXED with
precision as specified but radix and mode unchanged.

FLOAT

138

Arguments: T,wo are permitted. The second is an optional decimal
integer specifying the precision of the result. If omitted a
value specified by each implementation will be assumed.

Function value = first argument converted to scale FLOAT with
precision as specified but radix and mode unchanged.

FLOOR
Arguments: One is permitted, x. If complex specified it will be

converted to real.
Function value = largest integer not exceeding x. Radix, scale,

mode, and precision are that of converted argument.

'''--! CEIL
Arguments: One is permitted, x. If complex specified it will be

converted to real.
Function value = smallest integer not exceeded by x. Radix, scale,

mode, and precision are that of converted argument.

'''-. TRUNC
Arguments: One is permitted, x. If complex specified it will be

converted to real.
Function value = FLOOR(~ if x ~ 0, = CEIL (x) if x < O. Radix,

scale, ,mode, and precision are that of converted argument.

BINARY
Arguments: Three are permitted. The second and third are optional

decimal integers specifying the binary precision of the result.
If scale FIXED all three are required, if scale FLOAT the third
is not required.

Function value = first argument converted to radix binary with scale
and mode unchanged. If unspecified the precision is that of the
first argument (see "Scalar Expressions A in Chapter ~ •

DECIMAL
Arguments: Three are permitted. The second and third are optional

decimal integers specifying the decimal preC1S10n of the result.
If scale FIXED all three are required, if scale FLOAT the third
is not required.

FUnction value = first argument converted to radix decimal with
scale and mode unchanged. If unspecified the precision is that
of the first argument (see ·Scalar Expressions· in Chapter 6).

PRECISION

ADD

Arguments: Three are permitted. The second and third are decimal
integers specifying the precision of the result. If scale FIXED
all three are required, if scale FLOAT the third is not
required.

FUnction value = first argument converted to specified precision.
Radix, scale, and mode are unchanged.

Arguments: Four are permitted. The third and fourth are decimal
integer constants specifying the precision of the result. If
the scale of the result is FIXED , all four are required; if the
scale is FLOAT, the fourth is not required.

Function values = the sum of the first and second arguments. Radix
and scale of the result are the higher of those of the first two
arguments. Precision is as specified.

MULTIPLY
Arguments: Four are permitted. The third and fourth are decimal

integer constants specifying the precision of the result. If
the scale of the result is FIXED, all four are required; if the
scale is FLOAT, the fourth is not required.

Function value = the product of the first and second arguments.

DIVIDE

Radix and scale of the result are the higher of those of the
first two arguments. Precision is as specified.

Arguments: Four are permitted. The third and fourth are decimal
integer constants specifying the precision of the result. If

Appendix 1: Built-in Funtions 139

the scale of the result is FIXED, all four are required; if the
scale is FLOAT, the fourth is not required.

Function value = the result of dividing the first argument by the
second. Radix and scale of the result are the higher of those
of the first two arguments. Precision is as specified.

COMPLEX

REAL

I MAG

Arguments: TWo are permitted. The first is
second is the imaginary part.

Function value = complex number formed
Radix, scale, and precision of result is
the arguments.

Arguments: One is permitted, complex value.

the real part, the

from the two arguments.
the higher of those of

FUnction value = real part of argument. Radix, scale, and precision
are unchanged.

Arguments: One is permitted, complex value.
Function value = imaginary part of argument. Radix, scale, mode,

and precision are unchanged.

CONJG
Arguments: One is permitted, complex value.
Function value = conjugate of the argument. Radix, scale, mode, and

precision are unchanged.

FLOAT ARITHMETIC GENERIC FUNCTIONS

The following generic functions may have as arguments any expression.
This expression will be converted to floating point before the function
is invoked. The result will be of scale float with the precision and
radix of the converted argument.

140

Function Reference

EXP (x)
LOG (x)
LOG 10 (x)
LOG 2 (x)
ATAND (x)
ATAN (x)
TANO (x) degree argument
TAN (x) radian argument
SIND (x) degree argument
SIN (x) radian argument
COSO (x) degree argument
COS (x) radian argument
TANH (x) radian argument
ERF (x)

SQRT (x)
ERFC (x)
COSH (x) radian argument
SINH (x) radian argument
ATANH (X)
ATAN (x,y)

Function Value

e:t
log (x)
10g1D (x)
log2 (x)
arctan (x) in degrees.
arctan (x) in radians.
tan (X)
tan (x)
sin (x)
sin (X)
cos (x)
cos (x)
tanh (x)
Two divided by square root of pi,

multiplied by the integral
from 0 to x ofEXP (-t2) with
respect to t.

The positive square root of x.
1 - ERF (x)
cosh (x)
sinh (x)
arctanh (x)
arctan (x/y). The arguments are

converted to the highest
characteristics of the pa~r.

STRING GENERIC FUNCTIONS

The generic functions listed in this section may be used for manipula­
tion of strings. The arguments specified as strings may be any
expression. If the argument is arithmetic it will be converted to bit
string (if radix binary) or character string ~f radix decimal) before
the function is invoked.

BIT

Arguments and Function Value

Arguments: Two are permitted. The second is an optional decimal
integer specifying size of result.

Function value = first argument converted to type bit string. If
the size is unspecified the size of the result will be a
function of the first argument characteristics ~ee "Scalar
Expressions" in Chapter 6).

CHAR
Arguments: Two are permitted. The second is an optional decimal

integer specifying size of result.
Function value = first argument converted to type character string.

If the size is unspecified, the size of the result will be a
fUnction of the first argument characteristics (see nScalar
Expressions n in Chapter 6) •

SUBSTR
Argu~ents: Three are permitted. The first is a string, the second

1S any expression having value i when converted to integer, the
third is optionally any expression having value j when converted
to integer.

Function value = substring of first argument from ith character or
bit, j characters or bits long. Let first argument have length
k. If j < 1 the substring is null. If i < 1 the substring
length becomes j'=i+j-1 and i becomes i'=1. The values i and j,
or i' and jl if i < 1, are used to determine whether (i+j-l) >
k. If g~eater, the substring length j'=k-i+l. Finally, if i >
k the substring is null.

INDEX
Arguments: Two are permitted. If both arguments are bit strings no

conversion occurs, otherwise conversion to character string is
performed.

Function value = decimal integer with implementation defined preci­
sion giving:
(a) The index of the first element of the first argument such

that starting at this element the second argument appears as
a substring.

(b) Zero, if no such index satisfying (a) exists, or if either
of the arguments are of zero length.

LENGTH

HIGH

LOW

Arguments: One is permitted, a string.
Function value = decimal integer of implementation defined precision

giving current length of argument.

Arguments: One is permitted, a decimal integer constant.
FUnction value = character string of the length specified and

composed of the highest characters of the data character set.

Arguments: One is permitted, a decimal integer constant.
Function value = character string of the length specified and

composed of the lowest characters of the data character set.

Appendix 1: Built-in Funtions 141

REPEAT
Arguments: Two are permitted. The first is a string and the second

a decimal integer constant n.
Function value = string argument concatenated with itself n times.

UNSPEC
Arguments: One is permitted.
Function value = bit string which is the internal coded representa­

tion of the argument. The length is an implementation defined
function of the argument characteristics.

BFn1n2n3n~ where each term n is either 0 or 1.

142

Arguments: Two are permitted, bit strings X and Y.
Function value = bit string Z where if X and Yare of different

lengths the shorter is extended with zeros, and Z is of the
longer length. The following table relates the jth bit of Z to
the jth bits of X and Y.

r------------------,
1 Xj 1 Yj 1 Zj 1
1-----+-----+------1
I 0 I' 0 1 n 1 1
1----+---+----1
1 0 1 1 1 n 2 1
1----+-----+----1
I 1 I 0 1 n 3 I
1-----+-----+------1
1 1 I 1 I n~ 1 L _________________ J

~--:

BUILT-IN FUNCTIONS FOR MANIPULATION OF ARR YS

The following built-in functions have array expression arguments and
return scalar values. In the following functions X is any array
expression unless otherwise specified.

Function
Reference

SUM (X)

PROD (X)

ALL (X)

ANY (X)

POLY (X, Y)

LBOUND ex, S)

HBOUND (X, S)

DIM (X, S)

(~

Function Value

A scalar value equal to the sum of all the elements of X.
Precision, scale, mode and radix that of argument ele­
ments. (The argument is converted to arithmetic before
the function is invoked.)

As above but product.

The argument is converted to bit string. The result is a
bit string of the length (or max length if variable) of
the elements of X. The ith bit of the result is 1 if the
ith bits of all the elements of X are 1. Otherwise O.

As above, ith bit of result 1 if any of the ith bits of
elements of X are 1. If all 0, then result bit O.

X (M N) and Y (P Q) are vectors. Result is

N-M r N-M ,
2 I X (M+J) * 11 Y (P+I) I
J=Ol I=J J

>
If (P - Q) < (M - ~ then Y(I) = yep) when I < (P - Q).
This definition permits a scalar as second argument, when
both P and Q are taken as 1. The characteristics of the
result are the higher of the arguments after conversion
to arithmetic.

S is a scalar expression which is converted to an integer
n. The function value is an integer giving the current
lower bound of the nth dimension of X.

As above but higher bound.

S is as above. The function value is an integer giving
the current extent of the nth dimension of X.

i SCAN. (A, I, 'operator')
A is any array expression; I is a decimal integer
constant. The third argument may be any operator in
quotes. The function value is defined by the value of
TEMP on exit from the following loop:

TEMP
DO J
TEMP
END;

=
=
=

A (*, •••• ,*, LBOUND (A, I) ,*, •••• ,*)
LBOUND (A, I) + 1 TO HBOUND (A,I);
TEMP opera tor A (* , •••• , * , J, *, •••• , *) ;

Appendix 1: Built-in Funtions 143

TEMP has dimensions N-1 where A has N. The bounds of
TEMP are the first (I - 1) and the last (N I) of A.
TEMP has the radix, scale, mode and precision of A if
arithmetic, and the length of elements of A if string.

ARRAY BUILT-IN FUNCTIONS

All the built-in functions listed unde.r "Arithmetic Generic Functions"
and "String Generic Functions" in this appendix may have array expres­
sions as main argument. They yield an array of the same dimensions and
bounds as the argument, the function being performed on each element.
The rules are the same as those for the scalar functions.

CONDITION BUILT-IN FUNCTIONS

The following built-in functions (with no arguments) are available to
allow investigation of interrupts arising from enabled ON conditions.
They may only be referenced in ON units.

Function Reference Function Value

ONPOINT

ONLOC

ONFIELD

ONCHAR

ONCODE

An integer, being the value of the I/O buffer pointer when
the I/O condition arose.

A character string of variable length, being the name of the
procedure in which the condition arose.

A character string of variable length, being the contents of
the field being processed when the I/O condition arose.

A character string of length 1, being the character which
caused an I/O conversion error.

An integer whose value is dependant. on a
Each of the following error categories
contiguous code values:

I/O errors
Conversion errors
Control program errors

detected error.
has a set of

OTHER BUILT-IN FUNCTIONS

Function Reference Function Value

DATE

TIME

Character string of length six of the form YYMMDD, where YY
is year, MM is month DO is day.

Character string of length nine of the form HHMMSSTTT, where
SH is hours, MM is minutes, SS is seconds, TTT is millisec­
onds.

ALLOCATION (X)

144

X is a CONTROLLED major structure or unsubscripted array or
scalar variable not in a structure. The function value is
'l'B if storage has been allocated for X and 'O'B if not.

POINT (Filename)
The value of this function is a decimal integer precision
(Y) where Y is implementation defined. It speci f ies the
current position of the pointer relative to the start of the
current logical record for the named file.

COMPLETE (Task Identifier)
The task identifier refers to the task most recently
attached by the task containing the COMPLETE function
reference, but not waited on. If the task specified has
been completed, or is unknown (i.e. because it has never
been attached, or has already been successfully waited on)
the function value is ','B. otherwise it is 'O'B.

ROUND rexpression, Decimal Integer Constant)
The expression may be scalar array, or structure. The
function value is the expression value rounded on the n'th
digit after the point where n is the value of the integer.
(Binary digits if radix binary, decimal if radix decimal).

Nonarithmetic elements of the expression argument are unmo­
dified. Floating point rounding is a bias removal rather
than systematic rounding. Radix, scale, mode and precision
of value that of argument. For FIXED point, digits after
the rounded digit are set to zero.

STRING (Structure Name)
The argument must be a structure composed either of all bit
strings and numeric fields of radix binary, or character
strings and numeric fields of radix decimal. The function
value is a string, being the concatenation of all the
structure elements.

Appendix 1: Built-in Funtions 145

APPENDIX 2: PICTURE SPECIFICATIONS

Picture specifications are used to define the format of external
numeric data and internal numeric fields, and to define the format of
e'xternal and internal character string data. This appendix describes
the composition of picture specifications for numeric and character
data, and defines the meaning of each character which may be used within
a picture specification.

NUMERIC FIELD DATA AND THE PICTURE DESCRIPTION

The format of numeric fields is described by a picture specification:
A picture specification is a string of picture characters enclosed in
quote marks. These characters define the position of digits within the
field, digit positions involving zero suppression, sign positions,
editing characters, conditional editing characters, drifting editing
characters, decimal or binary point positions, the start of exponent
subfields, the start of imaginary part subfields, and representation of
?terling fields.

PICTURE CHARACTERISTICS

Numeric fields have the characteristics radix, scale, and mode.

REAL BINARY FIXED fields may only use the picture characters S 1 2 3
and V.

REAL BINARY FLOAT fields may only contain the picture characters S 1
2 3 V and K.

REAL DECIMAL FIXED fields may contain any picture characters except E
K W 1 2 or 3.

REAL DECIMAL FLOAT fields may contain any picture characters except W
1 2 or 3.

COMPLEX fields are constructed of two REAL fields of the same radix
separated by the picture character W. The scale of the field is the
scale of higher priority of the real and imaginary parts.

Real numeric fields contain subfields. A FIXED field
subfield, aFLOAT field has two subfields, the "fraction" part
exponent.

has one
and the

The two subfields of a REAL FLOAT field are separated by either of
the picture characters E-orK. The former specifies that the character
E be included in the field, the latter that no E is to appear in the
field but that the exponent subfield be assumed to start after this
position. Only one E or K may appear in each REAL FLOAT picture.

Decimal and binary points are represented in the picture by V.
Exactly one V must appear in each REAL picture.

Decimal digit positions in picture specifications are represented by
the picture character 9, binary digit positions by 1 2 or 3.

146

GENERAL FORM OF PICTURE SPECIFICATIONS

The general forms of picture specifications for numeric fields of
various characteristics are as follows:

Real Binary Fixed

11 1V11

22

33

2V22

3V33

2

3

One sign character S may precede the first 1 of the first form of the
binary fixed picture. In this position the field will contain a binary
1 if the value 1S negative or 0 if zero or positive. The picture
involving 2's specifies a binary value in 2's complement notation, and
that involving 3's a value in 1's complement notation. The sign
character S may not appear in these fields. REAL binary fixed pictures
may not mix the characters 1, 2 and 3.

Real Binary Float

11 1V11 1K11 1

22 2V22 2K22 2

33 3V33 3K33 3

The first form specifies normal binary notation. A sign character S
may precede the first 1 and immediately follow the K. The sign will
represent, respectively the sign of the fraction part, and the sign of
the exponent. The second two forms specify 2's and 1's complement
notation for the subfields. The sign character S may not appear in
these fields.. Real binary float pictures may not mix the characters 1,
2, and 3.

Real Decimal Fixed

99 9V99 ••• 9

The V or may be omitted. A V will then be assumed to appear
following the last digit. Sign, editing, and zero suppression picture
characters may be included. These are described below.

Real Decimal Float

99 ••• 9 (V or .) 99 ••• 9 (E or K) 99 ••• 9

Sign and editing picture characters may be included. These are
described below. A sign character will be taken to refer to the sign of
the subfield in which the character appears (except CR or DB).

Complex

real picture W real picture

Only one W may appear in a picture. The two real pictures must
specify fields of the same radix. The real pictures may not specify
sterling fields.

Appendix 2: Picture Specifications 147

DIGIT, POINT AND SUBFIELD DELIMITING CHARACTERS

r , 1 9 1 Specifies that the associated field position will contain 1
1 1 any decimal digit. 1
1----+---1
1 1 1 Specifies that the associated field position contains a 1
1 1 binary digit. This character may not appear in a REAL 1
I I picture with either 2 or 3. 1

1----+---I
I 2 1 Specifies that the associated field position contains a 1
1 1 binary digit, being part of a binary value in 2's comple- 1
I 1 ment notation. This character may not appear in a 1
1 1 REAL picture with either 1, 3 or 5. 1
1----+---1 1 3 1 Specifies that the associated field position contains a binary 1
1 1 digit, being part of a binary value in l's complement 1
1 1 notation. This character may not appear in a REAL picture 1
1 I with either 1, 2 or 5. 1
1---+---1
I V I Specifies that a decimal or binary point should be assumed to 1
1 I appear at this point in the associated field. It does not 1
1 1 specify a character in the field. 1
1----+---1
1 K 1 Specifies that the exponent subfield should be assumed to 1
1 I follow the point in the field associated with the K. I
1 I It does not specify a character in the field. I

1---+---1
I E I Specifies that the associated field position will contain the 1
1 I letter E, indicating the start of the exponent subfield. 1
1----+---1
1 W I Specifies that the imaginary field of the complex value 1
I' I should be assumed to follow the point associated with the w. 1 1 1 It does not specify a character in the field. 1 L ___ ------------___ J

ZERO SUPPRESSION CHARACTERS

A leading zero in a numeric subfield is a zero to the left of any of
the digits 1 to 9 in the subfield. The leftmost of these latter digits
and all digits in the subfield following it, are significant digits
(including any zeros). Picture characters are provided for zero

suppression, leading zero suppression , and the replacement of these
zeros by blanks or asterisks.

148

Zero suppression characters are not permitted in floating point
pictures.

r--,
1 Z I Specifies a conditional digit position. If the associated
I I field position involves a leading zero it will be represented
I I in the field by a blank, otherwise the 9i9it will appear.
I I The character may not appear to the right of 9 T I R
I I or a drifting string in a subfield. It may not appear
1 I with * in a subfield.
1---+--
I * I Specifies a conditional digit position. If the associated
I I field position involves a leading zero it will be represented
1 1 in the field by *, otherwise the digits will appear.
liThe character may not appear to the right of 9 T I R or a
1 1 drifting string in a subfield. It may not appear with Z in a
1 1 subfield.
1----+---
I y 1 Specifies a conditional digit position. If the associated
1 1 field position involves a zero (leading or otherwise) it will
I I be represented in the field by a blank, if it involves a
1 I digit other than zero that digit will appear. L ___ J

DRIFTING EDITING SYMBOLS

The picture characters S + - or $ may be static or drifting. The
former use specifies that there is a field position where the sign,
blank, or $ always appears. The latter use specifies that leading zeros
are suppressed and the suppressed positions contain blanks. In addition
the rightmost suppressed position associated with the picture character
will contain the sign, $ or blank (see + and -) •

A drifting character is specified by multiple use of that character
in a picture subfield. Thus if a subfield contains one $ it is
interpreted as static, if more than one, as drifting.

Drifting characters must appear in strings. A string is a sequence
of the same drifting character, optionally containing interspersed
characters V./, B. Picture characters / , • B following the last
drifting symbol of the string are considered part of the string, however
a following V terminates the string and is not part of it. A subfield
may only contain one drifting string. The picture characters * and Z
may not appear to the right of a drifting string in a subfield.

The field position associated with the characters /, • B appearing
in a drifting string will contain

/ comma, or point blank if a significant digit has appeared to the
left.

the drifting symbol, if the next position to the right contains the
leftmost significant digit of the subfield.

blank, if the leftmost significant digit of the subfield is more
than one position to the right.

If a drifting string contains the drifting character n times, then
the string is associated with n - 1 conditional digit positions. The
field position aSSOciated with the leftmost drifting character may only
contain the drifting character blank, never a digit. If a drifting
string is specified for a subfield the other potentially drifting

Appendix 2: Picture Specificatiops 149

characters may only appear once to the left of the string in the
subfield i.e. the other characters represent a static $ Or sign.

If a drifting string contains a V, then all digit positions of the
subfield following the point or V must also be part of the dri.fting
string.

If one of the characters Z or • follows the V in a subfield, then all
digit positions in the subfield following the point must be Z or *.

In the case where all digit positions after the V contain suppression
characters, suppression will only occur where all the fraction digits
are zero. The resulting field will then be all blanks or .'s. If there
are any significant fraction digits they will all appear unsuppressed.

Drifting Characters.

r--1
1 $ 1 If this character appears more than once in a subfield it is
I I a drifting character, otherwise it is a static character. The
1 1 static character specifies that the character $ be placed in
lithe associated field posi tion. The static character must ap-.
1 1 pear either to the left of all digit positions in a subfield,
1 1 or to the right of all digit positions in a subfield. See
1 1 details above for the drifting use of the character.
1---+--
1 s 1 Specifies the sign character + if field value ~O, otherwise -.
liThe character may be drifting or static. The details are
1 1 identical to $.
1---+--
1 + I Specifies the sign character + if field value ~O, otherwise
I I blank. The character may be drifting or static. The details
I I are identical to $
1---+---
I - 1 Specifies the sign character - if field value <0, otherwise
I 1 blank. The character may be drifting or static. The details
I I are identical to $.
L-______________ . _____________________________ -----------------------_J
Editing Character

r--,
I B 1 Specifies that a blank appears in the I
I I associated field position. 1 L _____________________________ · _______________________________________ J

150

Conditional Editing Characters

r--,
1 If the subfields in which the comma appears involves
1 no zero suppression that character specifies that a ,
1 will appear in the associated field position. If zero
1 suppression is involved the comma will only appear if
I there is an unsuppressed digit to the left of the comma

posi'tion in the 'subfield. If there is no such unsuppressed
digit the associated field position will contain a
character which depends on the first picture character
preceding the comma.
(a) The preceding character is *. The field position

will contain a *.
(b) The preceding character is a drifting $ S + or -

the action taken will be identical to that which
would have occurred if the picture specification
had contained the drifting character in place of
the comma.

(c) If the preceding picture character is anything
other than the above, the field position associated
with the comma will contain a blank.

1----+---
1 / 1 Exactly as , but /
1----+---
1 • 1 Exactly as , but • L __ J

Sign Characters

It is possible for digit characters in numeric fields also to contain
a sign. This is called overpunching. The picture characters which are
provided to specify this ar T, I, and R:
r--,
1 T 1 specifies that the associated field position will contain I
1 1 a digit overpunched with the sign of the containing 1
1 1 subfield. I
1----+--1
I I I specifies that the associated field position will contain 1
1 1 a digit over-punched with + if the containing subfield is 1
1 1 ~ 0; otherwise the digit with no overpunching_ 1
1----+---I 1 R 1 specifies that the associated field position will contain 1
I 1 a digit overpunched with - if the containing subfield 1
I I is < 0; otherwise the digit with no overpunching. I L ____________ ~ ___ J

The two-character picture items CR and DB may be used to reflect the
sign of REAL numeric fields.

r--,
1 CRI specifies that the associated field positions will contain thel
1 1 letters CR if the containing REAL field value (as opposed to 1
1 1 containing subfield) is < O. Otherwise the positions will I
I 1 contain two blanks. I
liThe characters CR may only appear to the right of all I
1 1 digit positions of a REAL field.)
1----+---1
lOBI As CR, but if the value is>=O 1 l __ ' _________________ ~ ____ J

Appendix 2: Picture Specifications 151

STERLING PICTURES

Picture specifications may describe numeric fields which represent
sterling values in pounds, shillings, and pence. Such specifications
must always commence with G indicating the start of a sterling field.
Sterling fields are REAL FIXED DECIMAL and when involved in arithmetic
operations will be converted to a value representing fixed point pence.
The picture characters 1 2 3 K E X AW may not be used in sterling
picture specifications.

The following additional characters are provided for use in sterling
pictures.

r--,
I 8 1 specifies the position of a shilling digit in BSI single
1 I character representation.
1----+--
I 1 1 specifies the position of a pence digit in BSI single
I I character representation.
1---+---
1 6 I specifies the position of a pence digit in IBM single
I 1 character representation.
1---+---
I G 1 specifies the start of a sterling picture. It does not
I I specify a character in the numeric field.
1---+---I H I specifies that the associated field position contains the
I I shilling character S
1----+---
I D J specifies that the associated field position contains the
I I pence character D L-___ J

The general form of a sterling picture is

editing characters 1 pounds field
separator 1 shillings field separator 2
pence field editing characters 2

Editing characters 1 may be one or more of the characters $ + - S.

The pounds field may contain characters Z Y * 9 T I R, $ + - S. The
first three specify zero suppression. The last four must be drifting
characters specified more than once according to the rules described
before. The comma may be used as a break character.

Separator 1 may be one or more of the characters / • B V.

The shillings field may be:

99 yy ZZ

Y9 8

Z9 Zy

The 9's may be replaced by T, I or R.

Zero suppression associated with the picture character Z only occurs
if the whole of the field to the left of this character (including the
pounds field) is zero and has also been suppressed.

152

Separator 2 may be one or more of the characters / • B V H.

The pence field may commence with

99

Y9

Z9

YY

Zy

zz

7

6

optionally followed by. or V (specifying the decimal point position)
and any number of 9's, Z's, or yes. Any of the 9's may be replaced by T

99 YY ZZ

Y9 7

Z9 Zy 6

optionally followed by. or V (specifying the decimal point position)
and any number of 9's, Z's, or yes. Any of the 9's may be replaced by T

B • D CR DB

PICTURE SPECIFICATIONS AND PRECISION

The following picture characters represent actual or conditional
digit positions (hereafter in this section called digit positions) :

1 2 3 9 Z * Y Drifting $ and Sand + and - T I R

The precision of a REAL FIXED numeric field is (m, nr where m is the
total number of digit positions in the field, and n the number of digit
positions following the. or v.

The preciSion of a REAL FLOAT field is {~ where p is the total
number of digit positions before the E or K.

The preCision of a COMPLEX field is determined as follows. Obtain
the precisions of the real and imaginary parts that would be obtained
from converting them to the nigher scale of the two. If this scale is
float the precision of the complex value is the greater of these two
precisions. If the scale is fixed and the precision of the parts are
(s,t) and (u, v) then the precision of the complex value is:

max (S-t, u-v) + max (t,V) , max (t,V)

Decimal fixed point pictures may have a scaling factor. This may be
achieved by placing:

F (optionally signed integer)

at the extreme right hand of the picturesubfield. This specifies that
the decimal point should be assumed to be q (where q is the integer
value) places to the right (or left if negative) of the position assumed
in absence of the scaling factor. The precision of the numeric field is
then:

(m,n-q) if (n-q)~O and g > 0
(m-q-n,O) if (n-q) < q and g > 0
(m,n-q) if (n-g) ~ m and q < 0
(n-q,n-q) if {n-q»m and q <0

Appendix 2: Picture Specifications 153

These prec1s1ons may not exceed the implementation defined limits
imposed on DECIMAL FIXED values.

PICTURE SPECIFICATIONS AND SIZE

'Under certain circumstances numeric fields are interpreted as
strings. Then the following picture characters are taken to represent
string positions, and the string size is the number of these characters
which appear in the picture specification.

1 239 • E Z * Y $ S + - B , / T I R C 8 7 6 H D

REPETITION OF PICTURE CHARACTERS

Repetition of
decimal integer
character.

a character
constant n

PICTURES FOR CHARACTER STRINGS

may be achieved by preceding it by a
in parentheses. The result is n of

A form of picture may be given for character strings.

r--,
I A 1 The associated field position may contain any letter I
1----+---I
I X 1 The associated field position may contain any character 1 L-___ J

Editing characters are provided as follows:

r--, I , I when a value is assigned to the string a , will be 1
1 1 inserted. 1
I----+----------------~--1
1 • I as above. but • I
1----+---1
I / 1 as above. but / I
1----+--1
I B I as above. but MblankM 1 L __ J

When' a string is referenced, and that string has had editing
characters as described above inserted, the value includes these editing
characters.

Pictures for character strings must always contain at least one X or
A. A character picture as an input format item specifies that the
external data is in the form defined by the picture. A conversion error
will be raised if it is not. No insertion or removal of editing
characters will be performed. A character picture as an output format
causes' insertion of the editing characters and checking for X and A.

154

APPENDIX 3: NPL STATEMENTS

This appendix list all statements of the New Programming Language.
The chapter number for the principal discussion of each statement is
shown in parentheses.

Non-Executable Statements

Compile Time Statements (19)
DECLARE (16)
FORMAT (22)
IMPLICIT (17)
SEQUENCE (17)

Executable Statements;

Null (7)
Assignment (11)
CALL (13)
DISPLAY (13)
END (7)
DO (13)
GO TO (13)
IF Compound (13)
ON Compound (14)
RESTORE (1 2)
RETURN (13)
REVERT (14)
SAVE (12)
SIGNAL (14)
WAIT (13)
EXIT (13)
ALLOCATE (8)
FREE (8)
ENTRY (7)
PROCEDURE 0)
BEGIN (7)
STOP {13)
OPEN (21)
CLOSE (21)
READ (23)
WRITE {23)
GET ~24)

.,?UT \24)
POSITION ~24)

REPOSITION ;24)
SPACE i24)
GROUP (24)
SKIP (24)
TAB (24)
PAGE (25)
LAYOUT (25)
SEARCH (26)
SORT (27)
DELAY (13)
FETCH (13)
DELETE (13)

Appendix 3: NPL Statements 155

APPENDIX 4: PERMISSIBLE KEY-WORD ABBREVIATIONS

Abbreviations are provided for certain keywo.rds. The abbreviations
themselves are keywords and will be recognized as synonomous in every
respect with the full keywords. The abbreviated keywords are shown to
the right of the full keywords in the following list.

156

PROCEDURE
DECLARE
DECIMAL
BINARY
COMPLEX
COMPLETE
CHARACTER
VARYING
POSITION
INITIAL
INTERNAL
EXTERNAL
AUTOMATIC
CONTROLLED
DEFINED
ABNORMAL
PRECISION
OVERFLOW
UNDERFLOW
FIXEDOVERFLOW
SUBSCRIPTRANGE
ZERODIVIDE
CONVERSION

PROC
DCL
DEC
BIN
CPLX
CPLT
CHAR
VAR
POS
INIT
INT
EXT
AUTO
CTL
DEF
ABNL
PREC
OFL
UFL
FOFL
SUBRG
ZnIV
CONV

APPENDIX 5: ON CONDITION

The condition names which may be used in ON ~tatements are listed and
described in this appendix. For each condition name, the description
consists of an identification of the event or events which nraise" the
condition, such that the action specified by an ON statement with that
condition name would be executed. The description also includes, if
~pplicable, the ·system ~ctiona which would be taken if the condition
were raised in the absence of d programmer supplied ON statement
referencing that condition. If the dominating action were that of the
~tatement ON condition SYSTEM; the system action would be taken.

The ON conditions fall logically into five groups. The first
includes those associated with data handling, expression evaluation, and
computation. The second group consists of the conditions relevant to
input/output activity. The third group includes ON conditions used for
proqram checkout; there are no systeln actions for these conditions. The
fourth group consists of the one condition CONDITION (identifier), which
the programmer may employ to introduce conditions of his own naming.
The fifth group includes the conditions FINISH and ERROR; these two
conditions may affect the system action for other conditions.

COMPUTATIONAL CONDITIONS

OVERFLOW
This condition is caused by floating point overflow.
will be set to the maximum value before executing the
ON block. The system action is to comment and
execution.

The result
specified
terminate

UNDERFLOW
This condition is caused by floating point underflow. The result
will be set to the smallest non-zero floating point number in the
machine's representation, before executing the specified ON
block. The system action is to cOlrument, set the result to zero,
and continue.

ZERODIVIDE
This condition is caused by an attempt to divide by zero. The
result will be set to the maximum value before executing the
specified ON block. The system action is to comment and
terIninate execution.

FIXEDOVERFLOW

SIZE

This condition is caused by fixed point overflow as the result of
a calculation in a procedure in which this condition is
mentioned. The result will be set to the maximum value before
executing the specified ON block. The system action is to
comment and terminate execution.

This condition is caused by assignment to a datum whose field
definition is not large enough to accomodate the value being
assigned. The value will be truncated and assigned. The system
action is to comment and terminate execution.

Appendix 5: ON Condition 157

INPUT/OUTPUT CONDITIONS

CONVERSION (filename)
This condition is caused by an illegal character -in the input
data from a specified file. The system action is to comment and
terminate execution.

TRANSMIT (filename)
This condition is caused by a transmission error on the specified
file. The system action is to comment and retry. and if
unsuccessful after the standard number of retries. to comment and
terminate execution.

LIST (f ilename)
This condition is caused by an unrecognisable identifier on data
directed input. The system action is to comment and terminate
execution.

SEARCH (f i lename)
This condition is caused by the inability to find the requested
keyed record from the specified file. The system action is to
comment and terminate execution.

FIELDOVERFLOW (filename)
This condition is caused by an output item which is too large for
the output field width specified. If numeric. the leading zeros
are ignored. The system action is to comment and terminate
execution.

ENDRECORD (filename)
This condition is caused by an illegal attempt to read past a
record delimiter from the specified file. The system action is
to comment and terminate execution.

ENDGROUP (filename)
This condition is caused by an
delimiter from the specified file.
comment and terminate execution.

attempt to read past a group
The system action is to

ENDFILE (filename)
This condition is caused by an
delimiter from the specified file.
comment and terminate execution.

attempt to read past a file
The system action is to

UNDEFINEDFILE (filename)
This condition is raised when
available. The system action
execution.

the specified
is to comment

file
and

is not
terminate

PROGRAM CHECKOUT CONDITIONS

SUBSCRIPTRANGE
This condition is caused by an attempt to use a subscript outside
its specified bounds in a procedure in which this condition is
mentioned.

(identifier 1, ••• , identifier n)

158

In the identifier list. each identifier is either a statement
label, data (an unsubscripted variable, array, or structure
name), or an entry label. The identifiers in the. list are
separated by commas. Each name is, in effect, enabled indepen­
dantlYi hence a subsequent enable of a subset of the list

overrides the subset, but not the remainder, of the list. The
action for the three types of identifier is as follows:

For statement label identifiers the condition is raised prior to
the execution of the statement carrying the labels.

For data identifiers the condition is raised whenever a value
has, or may have, been assigned to any generation of any part of
the listed data internal to a block in which the condition is
mentioned. Possible assignment is assumed to occur when the data
item is passed as a name argument (without dummy argument
construction); when the data item is (internal), or may be
(external), known to an invoked procedure; or when a data
directed read is executed and the data item is either in the list
or declared SYMBOL.

For entry label identifiers the condition is raised prior to the
invocation of any of the entry labels by the procedure in which
this condition is mentioned.

In each of the three cases the appropriate identifier will be
listed on a debugging output file when the condition is raised.

THE CONDITION CONDITION

CONDITION (identifier)
The identifier is specified by the programmer, and is external.
The condition is raised by the execution of a SIGNAL statement
with the same condition.

THE FINISH AND ERROR CONDITIONS

FINISH

ERROR

This condition is raised after normal system action by completion
of the program by any means. The system action is to comment and
return control to the system.

This condition is raised after normal system
condition which causes the prograIII to abort. The
is to comment and terminate execution.

action by any
system action

Appendix 5: ON Condition 159

APPENDIX 6: FORMAT ITEMS

Format items are involved in format directed data transmission (see
Chapter 22). There are two types of format items: data format items and
control format items.

Data format items specify the form of data on an external medium.
Under format directed transmission each scalar data item is associated
with one format item. Control format items specify control over records
and groups being read or constructed.

Data format items may describe data representation in two modes,
external and internal. The former is designed to be more readable and
uses character representation. The latter is a binary representation
and 1S primarily used for compact intermediate storage. Arithmetic
internal format items other than P specify 'coded' internal form.

External format items use the following quantities:

w, being the length if the field in characters used by the external
representation (including signs, decimal points, and E's when
present) •

d, being the number of positions after the decimal or binary point.

s, being the number of significant digits (binary or decimal) to
appear.

The above quantities may be specified by any expression. When the
format item is used the expression is evaluated and converted to an
integer. Internal format items may specify precision and length. This
is given in exactly the same way as the precision attribute. The radix
of the precision is that of the format item, or where this is
indeterminate, that of the associated List item. If size or prec1s1on
is omitted it is assumed to be that of the associated list item,
converted where necessary to the characteristics specified by the format
item. The type, radix, scale, mode and precision of a list item may
differ from its associated format item. Where this occurs conversion
will be perfonned.

On input the external data will be converted to the characteristics
of the list item. Rules for the conversion are given under "Scalar
Expressions· in Chapter 6.

DATA FORMAT ITEMS

This section describes the format items relating to arithmetic data,
bit string data, character string data, and data of external form.
In the 'External Form' of arithmetic data, decimal digits are represent­
ed by the characters 0 through 9.

FIXED POINT FORMAT ITEMS

Two external forms are provided for fixed point format items:

F (w,d)

F (w)

160

On input, the external data is the character representation of
decimal fixed point number anywhere in afield of length w. If the
point is omitted from the data and d is specified, the point is assumed
to be before the last d digits. I'f the pOint is omitted and d
unspecified, it is taken as zero. If both d and the point are specified
the latter overrides the former. '

On output, the external data is a decimal fixed point number right
adjusted in field of width w. If d is specified, a point is inserted
before the last d digits and the value appropriately positioned.
Trailing zeros are supplied if necessary. Truncation, if required, may
be performed on right or left. If d is omitted, and the decimal fixed
point precision of the associated list element is (p, ~ , then p digits
are placed right adjusted in the field. No point is inserted. Leading
zeros are suppressed. If p is greater than w, truncation is performed
on the left. If the data is less than zero a minus sign is inserted
before the first significant digit.

Four internal forms are provided for fixed point format items. The
first two are used for decimal data, and the second two for binary data:

I~'" (Precis ion)

IF

IFB (Precision)

IFB

FLOATING POINT FORMAT ITEMS

Two external forms are provided for floating point format items:

E (w ,d, s)

E (W, d)

On input, the data is an optionally signed character representation
of a decimal floating point nmuber anywhere within field of width w.
The form is thus:

± Integer or fixed number E ± Decimal Integer

Both signs may be omitted. If the second sign is present the E may
be omitted. The point may be omitted and will be assumed to be before
the d'th fraction digit. If the point is specified it overrides the
implied point indicated by the value of d. Both E and the exponent may
be omitted. A zero exponent will be assumed.

On output the external form will be:

- or blank s-d digits.d digits E ± exponents

The exponent will ·be a decimal integer of P digits, where P will be
defined for a particular implementation. The exponent will be adjusted
so that the leading digit of the characteristic is non zero.

If the above form does not fill the field of width w, it will be
right adjusted and blanks inserted on the left. If s is omitted it will
be taken as equal to d. (S + p + 3) for non negative values and (S + P
+ 4) for negative values must not exceed w.

Appendix 6: Format Items 161

Four internal forms are provided for floating point format items.
The first two are used for decimal dat:}, and the second two for binary
data:

IE (Precision)

IE

IEB (Precision)

IEB

COMPLEX FORMAT ITEMS

Two external forms are provided for complex format items:

C (Real Format Spec, Real Format Spec)

CeReal Format Spec)

On input the external data is the real and imaginary parts of the
complex number in adjacent fields described by the two contained format
specifications. If the second specification is omitted it is assumed to
be the same as the first.

On output, the form of the real and imaginary parts is specified by
enclosed real format items.

One internal form is provided for complex format items:

IC (Internal Real Format Item)

The internal real format item specifies the form of both real and
imaginary parts.

ARITHMETIC FORMAT SPECIFICATION BY PICTURE

The external form of arithmetic data may be described by a numeric
PICTURE. The format item involving such a description is

P 'picture specification'

For details associated with the picture specification see Appendix 2.
The internal form of numeric field representation of arithmetic data is
equivalent to the external form. The P format item may describe data to
be transmitted without editing from the external medium to an internal
form. Subsequent arithmetic operations on such data may, however,
require editing.

BIT STRING FORMAT ITEMS

Two external forms are provided for bit string format items:

A (W)

A

A format specification describes the external representation of a bit
string using characters 0 and 1. If w is omitted, it is taken to be the
length of the associated list element.

162

On input, the external data is a character representation of bit
string anywhere within the field of width w.

On output the character representation of bit string is left adjusted
in field of width w. Truncation, if necessary is performed on the
right. Blanks are used for padding.

Two internal forms are provided for ·bit string format items:

B (Length)

B

Length is the length of the string in bits. If omitted it is taken
as the current length of the associated bit string list element. The
external representation is the coded form for a bit string. If S bits
are encoded in one character, the width of the external field is:

TRUNC«Length-1)/S) +1.

On input the coded string is interpreted as a bit string and
truncated if necessary to the specification length.

On output the
(SIZE-1)-*W+S and
character string.

string is extended
the external form

CHARACTER STRING FORMAT ITEMS

with zeros to length TRUNC
is this string interpreted as a

Three external forms are provided for character string format items:

A (W)

A

P (Character String Picture Specification)

The external representation is a string of w characters. On output,
truncation, if necessary, is performed on the right. If the associated
list element is too short it is extended on the right with blanks. If
wis omitted it is taken as the current length of the associated list
element. If the picture form is used w is implied. Checking and
editing will be performed.

The above format items may be used to describe data to be transmitted
in internal form.

GENERAL FORMAT SPECIFICATION

A "General" format item may be used to specify an external form of
data.

Three external forms are provided for general format specification:

G (w, d, s)

G (w, d)

G (w)

The type of the external character representation of the data is
assumed to be that of the associated list element. Coded bit string
external representation may not be described by a general format item.

Appendix 6: .Format Items 163

In the case of strings the effect of the general format item is
identical to A (w),d and s, if specified, are ignored.

On input, in the case of type arithmetic, the scale of the external
character representation is deduced. The effect of the general format
item is then identical to F (w), F (w, d) for fixed point numbers and E
(w, d, s) for floating point numbers.

On output, in the case of type arithmetic, the data is analysed in
the light of the specified field width w.

If the data may be represented without loss of accuracy as a
point number the external form is that specified by F (w), or F
if d is specified. If the data cannot be suitably represented by
format item, it is necessary that d be specified in the general
item.

The effect will then be identical to

E (w,d) Or E (w,d,s)

if s is specified.

A format item of the form

IG

fixed
(w, d)
an F

format

specifies that the format of the data on the external media is to be
identical to its internal form.

SPACING FORMAT ITEMS

For external data, the following format item may be used:

x (w)

On input, the format item specifies that the next w characters of the
external data are to be ignored.

On output, the format specifies that w characters of blanks are to be
inserted into the external data.

164

FURTHER CONTROL FORMAT ITEMS

The following may also be used as format items. Their effect is
identical to the statements of the same name, described in Chapter 24.

SPACE (expression)

SPACE

SKIP (expression)

SKIP

GROUP (expression)

GROUP

POSITION (format list)

TAB

TAB (expression)

Only the POSITION item of the above, may be used in FORMAT lists
intended for internal string editing.

REMOTE FORMAT SPECIFICATION

If it is desired to locate format items remotely from a format list,
the following form may be used:

R (Statement Label Designator)

The above format item specifies that the statement label is attached
to a FORMAT statement (see wThe FORMAT Statement W in Chapter 22). The
statement includes a list of format items which .should be taken to
replace the remote format item. The remote format specification and the
FORMAT statement must be internal to the same procedure.

Appendix 6: Format Items 165

APPENDIX 7: LIST AND DATA DIRECTED OUTPUT

LIST DIRECTED OUTPUT

Data may be output under list direction without specific format
instruction. The field length on the external medium is a function of
the precision or length of the data and the value of the data.

CODED ARITHMETIC DATA

The external form will be a valid decimal constant.

Coded Real Fixed Decimal (P,Q) Data

The values s,t,u are involved in the field width leading zero
suppression will be performed on the first (p-q-l) digits of the value.
Let this cause the suppression of s zeros. If q is non zero an explicit
decimal point will appear on the external medium; t is then 1. If q is
zero no point will appear and t is zero. q digits will always appear
after the decimal point.

If the data value is less than zero a minus sign will be placed
before the first digit in the field; u is then 1. Otherwise no sign
will appear, and u is zero. The field width will be (p-s+t+u).

Coded Real Fixed Binary (R,S) Data

The data will be converted to FIXED DECIMAL and output as above.

Coded Real Float Decimal (P)

The data is converted according to rules for F(W,D) where, if P is
the declared precision of the item, W = P+2 and D=P-3. If this
conversion causes either a digit overflow into the sign position or a
significant zero digit in the position immediately to the right of the
decimal point,. then the data item is converted according to the rules
for E(W,D,S) where, if P is the declared precision of the item,
W=p+6,D=P-3, and S=P. Otherwiswe, field of four blank characters is
appended to the right, such that the total field width is w+4; the
effect is similar to that of the pair of format items F(W,D}, X(4).

Coded Real Binary Float (R)

The data will be converted to DECIMAL FLOAT and output as above.

Coded Complex Data

The external representation is the same as two immediately adjacent
REAL fields, being the real and imaginary parts of the data. However, a
sign will always precede the imaginary part; it will be + if imaginary
part 0, - otherwise. The imaginary part will be immediately followed by
the letter I.

The field width will be the sum of the widths of the subfields for
the real and imaginary parts (as described above) + 2 if imaginary part
0, or + 1 otherwise.

166

NUMERIC FIELD DATA

Numeric Fields of Radix Decimal

The format and field length of the external form will be that
specified by the picture.

Numeric Fields of Radix Binary

The format and field length of the external form will be that
specified by the picture. The binary digits 0 and 1 will be represented
by the characters 0 and 1.

CHARACTER STRING DATA

The contents of the character string are output.
are supplied. Contained quotes are unmodified.
where p is the current length of the string.

BIT STRING DATA

No enclosing quotes
The field width is p

The format of the data on the external medium is that of a bit string
constant, i.e. the value will be enclosed in quotes and followed by the
letter B. The field width will be (p + 3), where p is the current
length of the string.

LIST DIRECTED OUTPUT FORMAT

List directed output items are tabbed, i.e. aligned in vertical
columns. This tabbing will be implementation defined. System tabbing
may be overridden by a TAB option on a LAYOUT statement for the
appropriate file.

Each item of list directed data specification except the last will be
immediately followed by the separating character. If the data is to be
re-read under list direction care should be taken to avoid including
character data or numeric fields in the output, and to avoid ambiguity
resulting from choice of separating or terminating characters.

Data items will be output on successive free tab position. An item
may span several tabs. Items will not span page lines or cards etc.

DATA DIRECTED OUTPUT

The form of each scalar data directed output item is:

~ = value

The name is as specified in the data directed output list, with
subscript expressions evaluated and replaced by integer constants, and
interleaved subscripts moved to the right. The value is as defined for
list directed output, except for the case of character data where the
string is enclosed in quotes and contained quotes represented as two
quote characters.

Items output under data direction are tabbed as described above for
list directed output. The separating character will always be a blank.

If an array name is an item in a item in a data directed output list,
it is interpreted as r list of the subscripted elements of the array in
row major order. Thus if the array has n elements, n subscripted items
will be output.

Appendix 7: List and Data Directed Output 167

Data directed output is suitable for data directed input only if it
includes no numeric fields of radix binary, or numeric fields of radix
decimal which do not have the form of valid arithmetic constants.

168

APPENDIX 8: NPL FOR SYSTEM/360

For implementation of NPL for IBM System/360 Data Processing Systems,
certain language features will be limited to a definite size, length, or
order. Many of these features are identified in earlier sections of
this publication as ones which -will be implementation defined.- Others
arise from practical requirements in the translation of NPL programs to
machine-sensible and machine-executable form.

CHARACTER SETS

Either of two character sets will be used for writing NPL source
programs. They differ as to syntactic character set, one allowing the
use of 60 characters and the other the use of 48 characters. They are
identical as to data character set and collating sequence.

Syntactic Character Set : 60 Characters

The 60 characters making up this set are described in -Language
Character Set- in Chapter 2.

Syntactic Character Set : 48 Characters

The 48 characters making up this set are identical to those of the 60
character set, with restrictions and changes as described in following
paragraphs.

The following characters are not used

Percent %
Colon :
Not ,
Or I
And &
Greater than >
Less than <
Break character
Semicolon ;
Number sign #
Commercial at iil
Question mark ?

The following operators as used in the 60 character set are replaced
in the 48 character set by alphabetic operators as indicated :

60 Character Set 48 Character Set
> GT
>= GE
,= NE
<= LE
< LT , NOT
I OR
& AND
II CAT

In each case, one or more blanks must immediately precede the alphabetic
operator if the preceding character·would otherwise be alphanumeric, and

Appendix 8: NPL for System/360 169

one or more blanks must immediately follow if the following character
would otherwise be alphanumeric. Thus, to indicate the comparison of
the variables A6 and BQ2Y for inequality, one would wri.te A6 NE BQ2Y,
but not A6NEBQ2Y, A6 NEBQ2Y, or A6NE BQ2Y. As the equals symbol is
usable, however, the comparison of these two variables for equality may
be written A6=BQ2Y.

The word NOT is wreservedw in the 48 character set; that is, it must
not be used as a programmer-specified identifier.

The break character, commercial at sign, and number sign are not
used, and consequently may not be employed in identifiers.

The following three characters are replaced as indicated:

60 Character Set 48 Character Set

, .
//

The two periods which replace the colon must be immediately followed by
a blank if the otherwise following character is itself a period.

Data Character Set

Any character which will result in a unique pattern of the eight
binary digits making up a byte of IBM System/360 storage is a valid
character in the data character set, and may be used in source programs
to construct character string constants& comments, and SEQUENCE state­
ment character strings.

Collating Sequence

In the execution of NPL programs, comparisons of character data will
observe the collating ~equence resulting from the representations of
involved characters ~n bytes of System/360 storage. I The SEQUENCE
statement may appear in source programs, but will be ignored.

For "letter ranges· in the IMPLICIT statement, the sequencing is, low
to high, currency symbol, number sign, commercial at sign, and the
twenty-six letters A to Z. The number sign and the commercial at sign
are not used in the 48-character syntactic character set.

LENGTH OF IDENTIFIERS

Most identifiers which a programmer constructs in writing an NPL
program must be composed of not more than 31 characters.

Certain
characters.

identifiers,
They are:

however,

• All EXTERNAL data identifiers

must

• External PROCEDURE and ENTRY labels.
• File names.

be composed of not more than 7

• Task identifiers as used in the TASK option, the WAIT statement, and
the COMPLETE built-in function.

REPRESENTATION OF DATA

The following paragraphs specify the representation of data in
System/360 storage, and state the various permitted precisions and
lengths of such data.

170

FIXED BINARY data are represented in binary fixed poin~ form, with
maximum precision of 31 binary digits. The default prec1sion is 15,0.
The minimum precision which will be assumed for binary fixed point
constants, when involved in expression evaluation, is 15.

FIXED DECIMAL data are represented in packed decimal form, with
maximum precision of 15 decimal digits. The default precision is 5,0 •
. The m1n1mum prec1s10n which will be assumed for decimal fixed point
constants; when involved in expression evaluation, is 5.

FLOAT BINARY data are represented in hexadecimal floating point form
(see -IBM System/360 Principles of Operation-, Form A22-6821). Maximum
precision is 53 binary digits. If the specified precision is equal to
or less than 21, short floating point form is used. If the specified
prec~s~on is 22 or more, long floating point form is used. The default
prec1s1on is 21. The minimum precision which will be assumed for binary
floating point constants, when involved in expression evaluation, is 21.

FLOAT DECIMAL data are represented in hexadecimal floating point
form. The maximum precision is 16 decimal digits. If the specified
precision is equal to or less than 6, short floating point form is used.
If the specified precision is 7 or more, long floating point form is
used. The default precision is 6. The minimum precision which will be
assumed for decimal floating point constants, when involved in expres­
sion evaluation, is 6.

CHARACTER data are represented with one byte per character. The
maximum length for CHARACTER data of specified or VARYING length is
32,767 characters. The default length is 1 character.

BIT data are represented with one binary digit per bit. The maximum
length for BIT data of specified or VARYING length is 32,767 bits. The
default length is 1 bit.

In evaluation of expressions involving FIXED data, the maximum field
width for internal results (which is termed N under -Arithmetic
Operations· in Chapter 6) is 31 for BINARY data and 15 for DECIMAL data.

The default prec1s10n for FIXED macro variables is 31,0. The default
length for CHARACTER VARYING macro variables will be later specified.

ARRAY BOUNDS

Arrays are limited, for each dimension, to a lower bound of -32,768
and to an upper bound of 32,767.

171

International Business Machines Corporation
Data Systems Division
Development Laboratory
Poughkeepsie, New York Printed in U. S. A. 320-0908

