Systems Reference Library

IBM System/360 Operating System
PL/1 Language Specifications

This manual 1is a description of the full
facilities of PL/I to be implemented under the
System/360 Operating System. However, the reader
should not assume that all facilities will be
available at initial release. Manuals for speci-
fic Systen/360 implementations will be released
later.

Another publication will be issued specifying a
subset of the facilities of the language descriked
in this manual. This subset is planned for
impiementation under the System/360 Disk and Tape
Operating System.

File No. S360-29
Form C28-6571-3

as

1

PREFACE

is a reference manual
for the entire PL/I Language. All of the
features to be implemented under the
System/360 Operating System are described
herein.

This publication

However, this manual does not approach
PL/I from a tutorial point of view. There
are other IBM publications that perform
this function. These publications and
their intended audience are as follows:

i. A PL/I Primer, Student Text, Form
C28-6808, is intended for the novice
programmer who has little or no knowl-
edge of data processing, as well as
for the experienced programmer who
wants to learn PL/I.

2. A Guide to PL/I for FORTRAN Users,

directed toward the programmer who has
a working knowledge of FORTRAN.

3. A_Guide to PL/I__for Commerical Pro-
grammers, Student Text, Form C20-1651,
is intended for the programmer who has
experience in commercial applications.
Comparisons between PL/I and COBOL
(COmmon Business Oriented Language)
are included in this guide.

Introductory information about PL/I may
also be found in the Student Text, An
Introduction tc PL/I, Form C20-1632.

A familiarity with the contents of

A
PL/I Primer is recormended for the users of

Student Text, Form Cc20-1637, is

MAJOR REVISION (JULY, 1966)

This publication, Form C28-6571-3, obsoletes
the previous edition, Form C28-6571-2. New tex-—
tual information and significant changes are iden-
tified by vertical lines to the left of the added
and changed text.

Among the additions and significant changes are
(1) the complete respecification of compile-time
facilities (Chapter 9), (2) the new attributes
REDUCIBLE and IRREDUCIBLE, and (3) the new data
type called cell (and its corresponding CELL
attribute).

Because Chapter 9 has been completely
rewritten, vertical bars have not been used to
indicate changes; this chapter should be re~read
in its entirety.

this reference manual.

Copies of this and other IBM publications can be obtained through IBM Branch

Offices.

A form for readers' comments appears at the back of this publication.
comments

be mailed directly to IBM. Address any additional

It may
concerning this

publication to the IBM Corporation, Programming Systems Publications, Department

D39, 1271 Avenue of the Americas, New York, N. Y., 10020.

® 1965 by International Business Machines Corporation

INTRODUCTION o v o« « o = « o «
Goals of the Language.

Basic Characteristics of PL/I.
SALIENT FEATURES. . . . « .
Block Structure.
Description of Data. . .
Storage Allocation. . .
Data Conversion. . . « .
Data Organization. . . .
Input/Output « « « « . .
Multi-Task Operations. .
Compile-Time Facilities.
List Processing.

Syntax Notation in This Manual

CHAPTER 1. PROGRAM ELEMENTS .
Basic Language Structure . . .
Language Character Sets . .
60-Character Set
48-Character Set
Delimiters. . « .« « « <« <« .
OperatorsS. « « .« « « « =
Arithmetic Operators . .
Comparison Operators . .
Bit-String Operators . .
String Operator.
Parentheses.

Separators and Cther Delimiters.

Data Character Set.
Collating Sequence.
Identifiers - .
Length of Identlflers. .
Keywords. . . « e e e o =
Statement Identlflers. -
Attributes . . . « e .
Separatlng Keywords. .« .
Built-in Function Names.
Options.
Conditions « .« « « . . .
The Use Of Blanks
CommentSe o o« o o o & & o @

Basic Program Structure. . . .
Simple Statements
Compound Statements
Prefixes. ¢ ¢« ¢ 4« 4 ¢ o o .

Label Prefixes
Condition Prefixes . . .
GYXOUPS. « o « o o o o o o =
Blocks. . . - . o e
Use of the FND Statement .
Programs. . . . « o « « < .

CHAPTER 2: DATA ELEMENTS . . .

DATA Organization. . . . « . «

Scalar TtemS. « « « « 2 + =
ConstantS. « « « « « « .
Scalar Variakles

Data Aggregates
AYYAYS = « o o o o o o o
Structures -«
Arrays of Structures . .

Naming . - - w o o o & o « « =
Simple NameS. « o« « « = o «
Subscripted Names

Cross Secticns of Arrays
Qualified Names
Subscripted Qualified Names

Data TYEES « o « o « o o « o =
Proklem Data. « « o« o o « «
Arithmetic Data.

-

Real Arithretic Constants.
Imaginary Arithmetic Constants . . 27

Arithmetic Variakles . .
String Data. . . . o« .
Character-String Data. -
Bit-String Lata.
String Variakles
Program-Contrcl Data. . . .
Label Data

Statement-Lakel Constants.
Statement-Lakel Variables.

Task Data. « « « o « « =«
Event Data.
Pecinter Data « « « « « .
Pointer Qualification. .
Area Data. « « <« « o o
Cell Data. « « o o« « « «

CHAPTER 3: DATA MANIPULATION .

EXpressions. . . . <« . .« « = -
Scalar Expressicns. . . . «
Arithmetic Cperations .
Mixed Characteristics. .

CONTENTS

- - -a 26
- .« < 26
- « = 26
- « - 26

- . . 31
- .« - 31
. . . 31

Results of Arithmetic Operatlons - 31

Arithmetic Ccnversions .
Bit-String Cperations. .
Compariscn Cperations. .
Concatenation Cperations

« . . 32
- - <« 33
« « « 33
- -« - 34

Type Conversion. . . « . e
Bit String to Character String
Character String to Bit String
Character String to Arithmetic
Bit String tc Arithmetic . . .
Arithmetic to Character String
Arithmetic to Bit String . . .

Array EXpressicns

Prefix Operators and Arrays. .
Infix Operatcrs and Arrays . -
Scalar - Array Operations. . .
Array - Array Cperations . . .

Array Expressions Involving
Structures. . . < o . .
Structure Expressions . . «

EVALUATION OF EXPRESSIONS. « o o « o«
Order of the Evaluation of
EXPreSSiONSe « o « o o o o o « o

CHAPTER 4: DATA DESCRIPTICN. . « . « «
Attributes . . « ¢ 4 ¢ ¢ 4 e 4 e 4 e

Declarations « o o« o = o & « o o o o« @
Explicit Declarations
The DECLARE Statement.
Factoring of Attributes.
Multiple Declarations and
Ambiguous References.
Label Prefixes . . . « o« o « . .
Parameters . « <« ¢« o ¢ o o o o =
Contextual Declarations
Implicit Declarations . . . « « . .
Scope of Declarations
Scope of External Names.
Basic Rule on Use of Names . . .

The Attributes ¢ ¢ &« &« &« & « .
Data Attributes+ . . .
Arithmetic Data. +« « « « o « «
Base Attributes.
Scale Attributes
Mode Attributes.+
Precision Attribute.
Default Conditiocons for
Arithmetic Data « « « « o« o « =
The PICTURE Attribute.
String Attributes.
The LABEL Attribute. . «
The TASK Attribute
The EVENT Attribute.
The DIMENSION Attribute
The SECONDARY Attribute <
The ABNORMAL and NORMAL Attributes.
Default for Abnormality of Data.
The REDUCIBLE and IRRECUCIBLE
Attributes « ¢ ¢ 4 @ 4 4 4 e e o o
Default for Irreducibility of
ProcedUreS. « « « « o « « « o o
The USES and SETS Attributes. . . .
Entry Name Attributes
The ENTRY Attribute.
The GENERIC Attribute.
The BUILTIN Attribute.
The RETURNS Attribute.
Scope Attributes. . . e e e e e o
Storage Class Attrlbutes. .
The ALIGNED and PACKED Attrlbutes .
The DEFINED Attribute
Correspondence Defining.
Overlay Defining
Order of Evaluation.
Examples of Defining
The CELL Attribute. « . « o« « « « «
The INITIAL Attribute
The LIKE Attribute.
File Description Attributes

36
36

36

37

38

The FILE Attrikute
The File Usage Attributes. . . .
The Function Attrikutes.
The PRINT Attribute.
The Access Attrikutes.
The Buffering Attributes
The BACKWARDS Attrikbute.
The EXCLUSIVE Attribute.
The ENVIRONMENT Attribute. . . .
The KEYED Attrikute.
List Processing Attrikutes.
The AREA Attriktute
The POINTER Attrikute.
Assignment Of Attributes To
Identifiers. « e e e =
Arplication cf Default
Attributes.

Structure Declarations and Attrikbutes.
Level NUumber. « « ¢« ¢ o o o« o 2 o«
Structures and the Dimension

Attribute. . . . ¢ < . . . 4 . 4 .
STRUCTURES AND DATA ATTRIBUTES. . .
STRUCTURES AND SCCPE ATTRIRUTES . .
STRUCTURES AND STCRAGE CLASS

ATTRIBUTES .+« <« o « ¢ o o o o o« o

CHAPTER 5: PROCELURES, FUNCTICNS, AND
SUBROUTINES 2 & 2« 2 o = o « o = = o «

Formal ParametersS. « « o« o« « o« = « « =
Procedure References - o < o .

Functicn References and Function

ProcedUreS. =« 2 « o = « o = = « = «
Generic FUnNcticns . ¢« o« o o o o« o &«
Built-in Functicns. . . &« « « . « .

Subroutine References and Subrcutine
ProcedUreS. « « « « o « o« o = s o o «

The Arguments in a Prccedure Reference
The Use of the ENTRY Attribute. . .
Passing Argurments tc the Entry

POINte v o @ ¢ o o ¢ o o o o o o =«

The Special Procedure Attribute
RECURSIVE ¢ @ @ ¢ o o« o o o o o « = =

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE.

Program Control. ¢ o ¢ o o o o

Activation and Termination of BRlocks .
Dynarmic Descendance . . « . « « « .
Dynamic Encompassing. . . . « « . .

Allocation of Data and Storage Classes
Definitions and Rules
Storage Classes« e e

The Static Storage Class o o e
The Automatic Storage Class. . .
The Controlled Storage Class . .

Asynchronous Operations And Tasks. . .

65
65

66
66

67
67
67

67

68
68
68
69
69
69
70

71
72

72

73

Synchronous and Asynchronous
Operations « « « o o« ¢ o o o « o
Synchronizing Two Asynchronous
Operations « « « o« ¢ ¢ ¢ o « « « &
Task and Events . . . o ¢ o o« « « .
The Creation of Tasks . .«
Termination of Tasks. . . . « . . .
Allocation of Data in Tasks

Interrupt Operations . . « « « « - .« .
Purpose of the Condition Prefix . .

O ~AE
Scope of the Condition Prefix

Use of the ON Statement
System Interrupt Action
Use of the REVERT Statement
Programmer-Defined ON-Conditions. .
Facilities for Program Checkout . .

- = =

CHAPTER 7. INPUT/OUTPUT

File Opening And File Attributes . . .
Expli¢it Opening « « « = -« « .« &
Impiicit Opening . . . « « « . .
Merging of Attributes.

Data Stream Transmission « . « « « « .
List-Directed Transmission. . . .
Data-Directed Transmission.
Edit-Directed TransmissioN.

Data Stream Data Specifications. . . .
Data ListS. o« o =« o o o o o « o « =
Repetitive Specification
Transmission of Data-List
ElementSe « o o o o 4 o o o o o
List-Directed Data Specification. .
List-Directed Input Format . . .
List-Directed Output Format. . .
Data-Directed Data Specification. .
Data-Directed Data in the Stream
Length of Data-Directed Data
Fields. « e . e .« .
EDIT-DIRECTED DATA SPECIFICATION .
Format LiStSe. =« o« ¢ ¢ o o « o o o« &
Data Format Items.
Control Format ItemsS . « « « <« .
Spacing Format Item.
Printing Format Items.
Remote Format Item . . . « « . .
Data Stream Transmission Statements

Record TransmisSSiON. o o« o o o « « «
Record Transmission Statements. . .
RECORD Transmission Operations. . .

Standard FileS ¢ o« ¢ v « o « « o s o «
CHAPTER 8: STATEMENTS . . . « . « « .

Relationship Of Statements
Classification. . . . « « « .« « .
Assignment Statement
control Statements
Data Declaration Statement . . .

Error Control and Debug
Statements. . . < ¢ ¢ ¢ ¢ o . .

< 77
. 18
. 78

. 79

. 79
- 79
- 79
. 80

. 82
- 82
- 83

Input/Cutput Statements.
File Preparaticn Statements. .
Record Status Statements
Data Specification Staterents.
Data Transmission Statements .
Program Structure Statements .
Storage Allcocation Staterments.
Sequence of Control . . .

Pseudo-vVariableso .
Alphabetic List of Statements
The ALLOCATE Statement .

The Assignment Statement

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

The

R4 L

The
The
The
The
The
The
The
The

CHAPTER 9:

BEGIN Statement.
CALL Statement .
CLOSE Statement. .
DECLARE Statement
DELAY Statement.
DELETE Statement .
DISPLAY Statement
DO Statement . . .
END Statement. . .
ENTRY Statement. .
EXIT Statement .
FORMAT Statement
FREE Statement .
GET Statement. . .
GO TO Statement
IF Statement . . .
LOCATE Statement .
Null Statement . .
ON Statement . . .
OPEN Statement . .
PROCEDURE Statement
PUT Statement. . .
READ Statement . .
RETURN Statement .
REVERT Statement .
REWRITE Statement.
SIGNAL Statement .
STOP Statement . .
UNLOCK Statement .
WAIT Statement .
WRITE Statement. .

-

PR

o .

COMPILE-TIME FACILITIES .

Introduction « « . « « « . .

The ProcessSOr. . « = « =« « =
Processor Input and Output.
The Processor Scan. . . .

Rescanning and Replacement

-

Compile-Time Statements, Groups,
ProcedUresS. « « « « « = « o
The DECLARE Statement . .
The Assignment Statement.
The ACTIVATE And DEACTIVATE
Statements

The GO

TO Statement . . .

The NULL Statement. . . .

The IF
The DO

Statement.
gYOUPe « o « « -

The INCLUDE Statement o =
The Compile-Timre Procedure.

-101
-101
.101
.101
.101
<102
.102
.102

.103
.103
.103
.106
-110
.110
.111
«112
.112
.112
.113
.113
.115
.116
.116
.116
.117
-118
-.118
-119
.120
-120
-120
-123
.124
.125
-126
127
.128
.129
-129
.130
-130
.130
.131

.132
-132

.132
.132
.132
-.133

.134
.134
-135

.136
-136
-137
137
-137
-137
.138

The Compile-Time Built~In Function
SUBSTR. ¢ « o a o « o « o o « o o« o =

CHAPTER 10: SPECIAL TOPICS. . <« « «
Relationship of Arguments and
Parameters. . ¢« « « o o o o o = o « =
Evaluation of Argument Subscripts .
Use of Dummy ArgumentS. . « « « o
Use of the Entry Attribute.
Correspondence Of Parameters And
ArgumentS. .« « « ¢ o o ° o @ = o =
Allocation of Parameters. . . -« .« .
Parameters, Bounds and Length. .
Asterisk Notation for Bounds or
Length.e « ¢ <« ¢ ¢« ¢ ¢ ¢ « « o .
Expressions as Bounds or Length.

Data Known To Invocations Of Recursive
ProceduUreSe = « o o « « o o o a =« =+

PrologueS. « « o o o o = = « o o o o

Data Allocation Across Tasks « « « . .
Allocation of Task and Event
Names o e« o o o o & o o o o « o

List Processinge « o« o « o o o « o o «
Basic CoOnceptSe. « <« « ¢ « o 4 4 . .
Additional Considerations

Structures Used as Based
Variables -
Pointer Value - Based Varlable
Relations « « o« o o o o o o « =
Data Chaining Precautions. . . .

APPENDIX 1: BUILT-IN FUNCTICONS. . . .
Arithmetic Generic Functions
Float Arithmetic Generic Functions . .

String Generic Functions

-139

.140

.140
-140
.140
.140
.141
142
142

-142
-143

-143
.1lu44
.1uy

.lu4

-145
.145
.148
.148

.148
.149

.150
.150
.152

.153

Generic Functions For Manipulation Of
AYXYAYSe o o = o o o = o o o = o o o o

Array And Structure Built-In Functions
Conditicn Built-In Functions
List Processing Built-In Functions . .
Other Built-In Functions

APPENDIX 2: PICTURE SPECIFICATICN
TABLES: « « o o o s o o o o o =« o o

Digit Pcint and Sukfield Delimiting
Characters. « . <« ¢ ¢ ¢« o ¢ o o o « «

Zero Suppression Characters.

Drifting Editing Symkols
Drifting Characters . . « « « « « «
Editing Character . . « « « o« o« o «
conditional Editing Characters. . .
Sign Characters « « « « o o o o « &
Scaling Factor Specification. . . .

Sterling PictureS. « « « « « o « « . .
Pictures for Character Strings. . .

APPENDIX 3: ON-CONDITIONS. « « o « =« «

Classification of Conditions
Computational Ccnditions.
Input/Output Conditions
Program Checkout Conditions
List Processing Conditions.
Programmer-Named Conditions
System Action Conditions.

APPENDIX 4: PERMISSIELE KEYWORD
ABBREVIATIONS ¢ . & o & o o o o o = =

APPENDIX 5: THE 48-CHARACTER SET . . .
APPENDIX 6: ANNOTATED EXAMPLES. . . .

INDEXe o ¢ o o o o o o o s o a o o o =

-154
-155
-155
.155

156

-157

-157
-157

.157
.158
.158
.158
.159
.159

.159
-159

.160
.160
-160
.161
.162
<164
.164
.164
.165
.166
167

.171

Arithmetic Base and Scale
Conversion.
Scope and Use of Names in
Example 1, for "Scope of External
Figure 1. General Format for
Repetitive Specification.

FIGURES

Figure 2. List-directed Input

CONVErSiONe « o« « « o« « o = o « = « « « 89
Figure 3. Example of Data-Directed
Transmission, both Input and Cutput . . 92
Figure 4. General Fcrmat for the DO
Statement . . - . < ¢ . o s . = o - < 1184

GOALS OF THE LANGUAGE

Throughout the relatively brief history
of electronic data processing, certain com-
puters have been identified with a particu-
lar field of activity, either commercial or
scientific.

Programmers have generally specialized
in one field or the other. High-level
languages, of course, have emphasized this
divergence, going in one direction for
commercial programming and in another
direction for scientific programming.

Until recently, this difference present-
ed few problems. Each language was ade-
quate for its use; the commercial program-
mer dealt with relatively few computations
performed upon great amounts of data; the
scientific programmer performed complex
calculations using small amounts of data.

Now, however, the Bituation is changing.
Business and industry have discovered new

uses for the computer, and the commercial
programmer finds himself concerned with
more involved computations in statistical

forecasting and in linear programming for
operations research.

In science and engineering, the program-

mer needs a language to simplify the pre-
paration of reports, to sort and edit
technical data; he finds more need for
input and ocutput coperations. The engineer

specifically wants the ability to handle
data at the bit level for applications such
as circuit analysis.

Today's new computing systems have been
designed to cope with all of these comput-
ing problems. They handle commercial and
scientific programs with equal ease, with
new power and new speed; they provide
facilities for such new techniques as
shared data processing, asynchronous pro-
gram execution, and real-time processing.

None of the traditional high-level lan-
guages, however, can be used with efficien-
cy across the entire range of ability of
these new computers.

That is the reason for PL/I, a multipur-
pose programming language for use not only
by commercial and scientific programmers
but by the real-time programmer and the
systems programmer as well. It is a lan-
guage designed for efficiency, a language
that enables the programmer to use virtual-
ly all the power of his computer.

INTRODUCTION

PL/I is organized so that any program-
mer, no matter how extensive his experi-
ence, can use it easily at his own level.

This manual, because it is a reference

manual of the entire language, shows the
range and power of PL/I, it ability to

handle the most complex computing problems.

Actually, however, PL/I need be no more
complex than the program for which it is
used.

One of the primary aims in the design of
the language was modularity, that is, pro-
viding different levels of the language for
different applications and different
degrees of complexity. A programmer using
one level need not even know about the
unused facilities.

Although PL/I is relatively machine
independent, this modularity might be com-
pared to a completely equipped data proc-
essing center. A novice programmer would
use only a small part of the system; he can
ignore the rest of the equipment. More
complex programs, of course, would require

more equipment. Some programs would use
certain modules of equipment; other pro-
grams, other modules. Rarely, if ever,
would a program require use of all the

CiLiliTliltSe

In PL/I, every attribute -- or descrip-
tion -- of a variable, every option, and
every specification has been given a
"default"” interpretation. Wherever the
language provides for one or more alterna-
tives, a “default" interpretation -- or
assumption -- is made by the compiler if no
choice is stated by the programmer. And in
each case, the assumption that was chosen
in the design of the language is the one
most likely to be required by the program-
mer who need not know that alternatives
exist.

The "modularity"” and the "default"”
aspects are the bases upon which the sim-
plicity of PL/I has been built. They are
alsc part of its power.

Introduction 9

BASIC CHARACTERISTICS OF PL/I

The overall aim in the design of the
language was to give the programmer freedom
in handling his computing system.

Freedom of expression: If a particular
combination of symbols has a useful mean-
ing, that meaning is allowed. Although
actual statements in the language must be
written using a specified character set,
data may be composed of any character
allowed by the configuration of the indivi-
dual computer. PL/I is written in a free-
field format; the programmer is free to
design his own format for listings.

Full access to machine and operating system
facilities: the PL/I programmer rarely, if
ever, will need to resort to assembly
language coding.

SALIENT FEATURES

Part of the 1language 1is, of course,

based on earlier programming languages.
Certain aspects are expansions of ideas
used previously. Other portions are

exclusively a part of PL/I. The following
paragraphs briefly describe some of these
features. All of them are discussed more
fully within the text.

Block Structure

The statements of a PL/I program are
organized into program sections called
"blocks." A program may be made up of one
block or many blocks. Blocks may be separ-
ate from one another, with no common state-

ments, or they may be nested, omne within
another.

Blocks provide two important logical
functions: (1) they define the scope of

applicability of data variables and other
kinds of names, so that the same name may
be used for different purposes in different
blocks without ambiguity, and (2) they
allow storage for data variables to be
assigned only during execution of the block
and freed for other uses at the termination
of the block.

Certain blocks, called "procedure"
blocks, may be invoked (i.e., called into
execution) remotely from different places
in the program, and they provide means to
handle arguments and to return values.

10

Description of Data

In the 1language, data is described as

having certain characteristics called
attributes. For example, numeric data

would have a BINARY attribute or a DECIMAL
attribute; string data would be either
CHARACTER string or BIT string.

Storage Allocation

The computer storage for any data varia-
ble in a PL/I program may be assigned
statically, for the entire execution of the
program, or dynamically, during execution.

Two classes of dynamic storage are avai-
lable to the PL/I programmer, automatic and

controlled. When a variable has the con-
trolled storage attribute, the programmer
may allocate or free storage for that

variable at any time he wishes. Storage
for a variable having the automatic storage
attribute is allocated upon entry to the
block and freed upon exit.

Data Conversion

In keeping with the
mixed expressions are allowed. In the
following example, F 1is declared to be a
fixed-point number, G a floating-point num-
ber, and H a character string that is ten
characters in length.

freedom of PL/I,

DECLARE F FIXED, G FLOAT, H CHARACTER

(10);
H=F + G;
In the evaluation of the second state-
ment of the above example, F will be
converted to a floating-point wvalue,

floating-point addition will be performed,
and the result will be converted to a
character string of ten characters and
assigned as a value to H.

Data Organization

Data variables can be grouped into eith-
er arrays or structures. An array is
composed of elements of the same charac-
teristics. A structure is a collection of
variables and arrays, not necessarily alike
in characteristics. Structures may also
contain other structures. Individual items
of an array are referred to by subscripted
names; individual items of a structure are
referred to by names that may sometimes
have to be qualified to avoid ambiguity.

In PL/I, arrays and structures are
treated as variables in their own right.
Either of them may be used as the operand
of an expression. The expression is then
an array expression or a structure expres-
sion, and it returns an array or structure

result.

Input/Output

The modularity of PL/I is particularly
apparent in the input/output facilities.
With PL/I, a programmer may control
input/output activity to whatever degree he
requires. He may handle normal transmis-
sion and conversion simply, or he may use
the full capability of the language for
control of more complex problems of input
and output.

Multi-Task Operations

In PL/I, a collection of procedures is
called a program; the execution of a pro-
gram (or many programs or a part of a
program) to perform a particular Jjob is
called a task.

PL/I provides facilities for handling
two or more tasks concurrently. This
facility, of course, is extremely important
in the use of any computer system with
multiprocessing capabilities. It also is
valuable for a single processor system with
facilities for real-time operations.

During execution of a procedure, the
executing task might specify that a subor-
dinate task begin execution upon certain
data (i.e., the executing task invockes
another task); the new task, called an
attached task, might also invoke another
task. All tasks then proceed concurrently
and, in effect, simultaneously.

The multi-task facilities of PL/I allow
a subordinate task to communicate with its
originating, or attaching, task through
arguments, and through data allocated in
the attaching task. The originating task
also may, at any time, test to see if a
subordinate task is completed and may, if
necessary, delay its own execution to wait
for the completion.

Compile-Time Facilities

Most programming languages are written
on one level only, as statements to the

computer to perform certain operations
using the supplied data. PL/I not only
directs the computer to operate upon the
data, but with a macro facility, it directs
the compiler to operate upon the program
itself.

The programmer can include in his pro-
gram information that will aid the compiler
to produce more efficient code, documenta-
tion, and diagnostics.

List Processing

PL/I provides facilities for list proc-
essing. These facilities are wunusually
flexible in that the introduction of poin-
ter and based variables enables the pro-
grammer to combine arrays, structures, and
scalars into a single list.

A complete enumeration of PL/I 1list
processing facilities may be found under
the heading "List Processing” in the Index
{also see "List Processing®™ in Chapter 10).

SYNTAX NOTATION IN THIS MANUAL

Throughout this manual, wherever a PL/I
statement -- oOr some other combination of
elements -- is discussed, +the manner of
writing that statement or phrase is illus-
trated with a uniform system of notation.

This notation is not a part of PL/I; it
is a standardized notatiocn that may be used
to describe the syntax -- or construction
-- of any programming language. it pro-
vides a brief but precise explanation of

the general patterns that the language

permits. It does not describe the meaning
of the 1language elements, merely their
structure; that is, it indicates the order

in which the elements may (or must) appear,
punctuation that is required, and options
that are allowed.

The following rules explain the use of
this notation for any programming language;

only the examples apply specifically to
PL/1:
1. A notation variable is the name of a

general class of elements in the pro-
gramming language. A notation varia-
ble must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

lower-case and

Introduction 11

12

upper-case letters. There must be
one portion in all lower-case let-
ters and one portion in all upper-
case letters, and the two portions
must be separated by a hyphen.

All such variables used are
defined in the manual either formally,
using this notation, or are defined in
prose.

Examples:

a. digit. This denotes the occur-
rence of a digit, which may be 0
through 9 inclusive.

b. filename. This denotes the occur-
rence of the notation variable
named filename . An explanation
of filename is given elsewhere in
the manual.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used for
emphasis.

A notation constant denotes the liter-
al occurrence of the characters rep-
resented. A notation constant con-
sists either of all capital letters or
of a special character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence
of the word DECLARE followed by the
variable "identifier,"™ which is
defined elsewhere, followed by the
literal occurrence of the word
FIXED followed by the literal
occurrence of the semicolon (;).

The term "syntactical unit,"™ which is
used in subsequent rules, is defined
as one of the following:

a. a single variable or constant, or

b. any collection of variables, con-
stants, syntax-language symbols,
and reserved words surrounded by
braces or brackets.

Braces { } are used to denote group-
ing.

Example:

FIXED
identifier

FLOAT

The vertical stacking of syntacti-

5.

cal units indicates that a choice
is to be made. The above example
indicates that the variable
"identifier"™ must be followed by
the literal occurrence of either
the word FIXED or the word FLOAT.

The vertical stroke | indicates that a
choice is to be made.

Example:

identifier {FIXED{FLOAT}

This has exactly the same meaning
as the above example. Both methods
are used in this manual to display
alternatives.

denote options.
in brackets may
appear at

Square brackets [1]
Anything enclosed
appear one time or may not
all.

Example:

CHARACTER (length) [VARYING]

This denotes the literal occurrence
of the word CHARACTER followed by
the variable "length" enclosed in
parentheses and optionally followed
by the 1literal occurrence of the
word VARYING. If, in rule 4, the
two alternatives also were option-
al, the vertical stacking would be
within brackets, and there would be
no need for braces.

Three dots ... denote the occurrence
of the immediately preceding syntacti-
cal unit one or more times in succes-
sion.

Example:

(digit] ...

The variable, "digit," may or may
not occur since it is surrounded by
brackets. If it does occur, it may
be repeated one or more times.

Underlining is used to denote an ele-
ment 1in the language being described
when there is conflict between this
element and one in the syntax lan-
guage.

Example:

operand {&|]} operand

This denotes that the variables
"operand" are separated by either
an "and" (&) or an "or" (]). The
constant | 1is underlined in order
to distinguish the "or"™ symbol in

the PL/I language f£from the "or"

symbols in the syntax language.

min max. The combination of these two
words with associated numeric values
specifies the minimum and maximum num-
ber of times a syntactical unit may
occur. When min is used without max,
the implied max is infinity. When max
is used without min, the implied min
is zero.
Examples:

a. min 2 max 6 {digit]letter!?
This denotes that either "digit"
or "letter" intermixed in any com-
bination must occur at least two
times, but no more than six.

The variables "digit" or "letter"
intermixed in any combination must
occur at least five times, but
there is no limit on the number of
times over five that they may
occur.

max 3 label

The variable "label™ may not occur
more than three times in succes-
sion. It may not be present at
all, or it may occur one, two, or
three times.

Introduction 13

CHAPTER 1. PROGRAM ELEMENTS

BASIC LANGUAGE STRUCTURE

PL/I allows the programmer to write the
statements of his program in a free-field
format. A statement, which is a string of
characters, 1is always terminated by the
special character, semicolon. A program
which is, in turn, a sequence of state-
ments, can thus be regarded simply as a
single string of characters, with no spe-
cial internal grouping. Hence, a PL/I
program can be physically represented and
transmitted to a computer in a natural way
by means of almost any input medium,
including a typewriter at a remote termi-
nal.

Input conventions, depending upon the
machine configuration or the compiler, can,
of course, be set up so that the program
string may be presented to the computer
through the familiar medium of fixed-length
records, e.g., punched cards. This can be
accomplished by using certain predetermined

fields of the records for the program
string, and other fields for arbitrary
purposes.

LANGUAGE CHARACTER SETS

One of two character sets may be used to
write a source program: either a
60-character set or a U8-character set. No

assumptions are made in the language about
external or internal codes for the
characters. For a given program, the

choice between the two sets is optional.
(In practice, this choice will depend upon
the available equipment.)

60-Character Set

The 60-character set is
digits, special characters,
language alphabetic characters.

composed of
and English

There are 29 alphabetic characters, let-
ters A through 2z and three additional
characters that are defined as and treated
as alphabetic characters. These characters
and the graphics by which they are rep-
resented are as follows:

14

Currency symbol
Commercial At-sign
Number sign

* e W

Decimal digits
A binary digit

There are ten digits.
are the digits 0 through 9.
(bit) is either a 0 or a 1.

An alphameric character is either an

alphabetic character or a digit.

There are 21 special characters. The

names and graphics by which they are rep-
resented are:
Name Graphic
Blank

Equal or Assignment symbol =
Plus +
Minus -

Asterisk or Multiply symbol *

Slash or Divide symbol 7/
Left Parenthesis (
Right Parenthesis)
Comma v
Decimal Point or Period .
Quotation mark *
Percent symbol %
Semicolon :
colon :
Not symbol 1
And symbol &
Or symbol |
Greater Than symbol >
Less Than sywmbol <

Break_character
(used as shown)

~)

Question mark

.
Note that the guotation mark

PLAI is the single quotation mark
known as an apostrophe or primel.

used in
(also

Two consecutive special characters may

be used to create operators, e.g., >=,
denoting "greater than or equal to"; ||,
denoting concatenation.
48-Character_sSet

The characters making up the

48-character set are identical to those of
the 60-character set, with restrictions and
changes as described in Appendix 5.

DELIMITERS

Certain characters are used
delimiters and fall into three classes:

as

operators
parentheses
separators and other delimiters

Operators

Operators used by the 1language are

divided into four types:

arithmetic operators
comparison operators
bit-string operators
string operators

Arithmetic Operators

The arithmetic operators are:

+ denoting addition or prefix plus

- den9ting subtraction or prefix
minus

* denoting multiplication

/ denoting division

*% denoting exponentiation

Comparison Operators

The comparison operators are:

> denoting greater than

1> denoting not greater than

>= denoting greater than or equal
to

= denoting equal to

= denoting not equal to

<= denoting less than or equal to

< denoting less than

5 < denoting not less than

Bit-String Operators

The bit-string operatoxrs are:

1 denoting not
(3 denoting and
| denoting or

String Operator

The string operator is:

11 denoting concatenation

Parentheses

Parentheses are used in expressions, for
enclosing 1lists, and for specifying infor-

mation associated with various keywords.

(left parenthesis
) right parenthesis

Separators and Other Delimiters

Name Graphic Use

comma ’ separates elements of a
list

semicolon : terminates statements

assignment = used in assignment

symbol statement and DO
statement

colon : follows labels and con-
dition prefixes; also
used with dimension
specifications

blank used as a separator

quotation ' encloses string con-

mark stants and picture
specifications

Chapter 1: Program Elements 15

Name Graphic Use

period separates items in
qualified names; used
as a decimal or
binary point in con-
stants

percent % precedes macro state-
ment

pointer -> qualifies a reference

qualification to a based variable

symbol

DATA CHARACTER SET

Although the language character set is a
fixed set defined for +the language, the
data character set has not been limited.
Data may be represented by characters from
the language set plus any other characters

permitted by the particular machine con-
figuration.
Any character that will result in a

unique bit pattern is a valid character in
the data character set, and may be used in

source programs to construct character-
string constants and comments.
COLLATING SEQUENCE

In the execution of PL/I programs,

comparisons of character data will observe
the collating sequence resulting from the
representations of involved characters in
bytes of System/360 storage, in extended
binary coded decimal interchange code
(EBCDIC).

IDENTIFIERS

An identifier is a string of alphameric
and break characters, not contained in a
comment or constant, preceded and followed
by a delimiter; the initial character must
always be alphabetic.

Identifiers in the language are used for
the following:

scalar variable names
array names
structure names

statement labels

16

entry names

file names

keywords

condition names
Examples:

VARA

BCD320

FILE42

XR20A

STARTA

RATE_OF_PAY

#32_45

$L32

Xa_52

2531

AB12#

Length of Identifiers

Identifiers that a programmer constructs
in writing a PL/I program must be composed
of not more than 31 characters.

KEYWORDS

A keyword is an identifier which is a
part of +the language. Keywords are not
reserved words. They may be classified as
follows:

statement identifiers
attributes

separating keywords
built-in function names

options

conditions

Statement Identifiers

A statement identifier is a sequence of
one or more keywords used to define the
function of a statement (see "Simple
Statements").

Examples:

GO TO

DECLARE

SEToRa@)

READ

Attributes

Attributes are keywords that specify the
characteristics of data, procedures, and
other elements of the language.

Example:
FLOAT

RECURSIVE
SEQUENTIAL

Separating Keywords

The five separating keywords are used to
separate parts of the IF and DO statements.
They are THEN, ELSE, BY, TO, WHILE.

Built-in Function Names

A built-in function name is a keyword
that is the name of an algorithm provided
by the language and accessible to the
programmer (see "Function References and
Function Procedures®™ in Chapter 5).

Examples:

DATE
EXP

Options

An option is a specification that may be
used by the programmer to influence the
execution of a statement.

Examples:

TASK
BY NAME

A condition is a keyword used in the ON,

SIGNAL, and REVERT statements, and as a
prefix to other statements (see
"Prefixes"). The programmer may specify

special action on occurrence of the condi-

tion (see "Interrupt Operations").
Examples:

OVERFLOW
ZERODIVIDE

THE USE OF BLANKS

Identifiers, constants, picture specifi-
cations, composite operators (e.g., =),
and the class of dummy variables iSUB (see
"The DEFINED Attrikute"™ in Chapter 4) may
not contain blanks. Blanks are permitted
within a character-string constant.

Identifiers, constants, or picture
specifications may not be immediately adja-
cent. They must be separated by an opera-
tor, assignment symbol (i.e., =), parenthe-
sis, colon, semicolon, comma, period,
blank, or comment. Moreover, additional
intervening blanks or comments are always
permitted. Blanks are optional between
keywords of a statement identifier (e.qg.,
GO TO), and between a level number and its

following identifier (see "Structures" in
Chapter 2).

Examples:

CALLA is not equivalent to CALL A

A TO B BY C is not eguivalent to ATOBBYC

AB+BC is equivalent to AB + BC

COMMENTS

General format:
/% character-string */

Comments are normally used for documenta-
tion and do not participate in the execu-
tion of a program. A comment may be used
wherever a blank is permitted (except in a
character-string constant). The character
string in a comment must not contain the
character combination */ in that sequence.

Chapter 1: Program Elements 17

Example:

LABEL: /* THE BLOCK OF CODING BETWEEN
BEGIN-END IS USED FOR PAYROLL CALCULA-
TIONS */

BEGIN;

END;

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements.

Statements are grouped into 1larger
program-elements, the group and the block.
There are two types of statements: simple

and compound.

SIMPLE STATEMENTS

A simple statement is defined as:

[[statement-identifier]’
statement-bodyl ;

The "statement identifier," if it appears,
is a keyword , characterizing the kind of
statement. If it does not appear, and the
statement body does appear, then the state-
ment 1is an assignment statement. If only
the semicolon appears, the statement is
called a null statement.

Examples:

DOI =J TO
10;

(DO is the keyword)

A =B+ C; (assignment statement)

(null statement)

COMPOUND STATEMENTS

A compound statement is a statement that
contains other program-elements. There are
two of them:

The IF compound statement
The ON compound statement

The final contained statement of a com-
pound statement is a simple statement and
thus has a terminal semicolon. Hence, the
compound statement will automatically be
terminated by this semicolon.

18

Examples:
IF A=B THEN GO TO S1; ELSE A=C;
ON OVERFLOW GO TO OVFIX;

Each PL/I statement is described in the
alphabetic list of statements in Chapter 8.

PREFIXES

There are two types of prefixes: label
prefixes and condition prefixes.
Label Prefixes

Statements may be 1labeled to permit

reference to them. A labeled statement has

the following form:
identifier:[identifier:J]...statement

The one or more "identifiers" are
called labels and may be used inter-
changeably to refer to that statement.

Labels appearing before PROCEDURE and
ENTRY statements are special cases and are
known as entry names (see "Procedure
References"). All other labels are called
statement labels.

A label appearing before a statement is
said to be declared, by virtue of its
appearance as a label.

Statement labels
DECLARE are ignored.

appearing before

Condition Prefixes

A condition prefix specifies whether or
not a program interrupt will result upon
the occurrence of the specified condition.
(For information regarding the use of the
condition prefix see the section "Interrupt
Operations™ in Chapter 6.)

One or more condition
attached to a statement.

prefixes may be

Each condition prefix is followed by a
colon to separate it from the rest of the
statement or from other prefixes; condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement.

A condition prefix is a list of condi-
tion names, separated by comnas and
enclosed in parentheses. Thus, a statement
with a set of prefixes has the following
general form:

{ (condition-name [,condition-
namel...):}...[label:l...
statement

The condition names are chosen from the
following fixed set:

UNDERFLOW

OVERFLOW

ZERODIVIDE
FIXEDOVERFLOW
CONVERSION

SIZE

SUBSCRIPTRANGE

CHECK (identifier-list)

Note: CHECK (identifier list) may be used
as a prefix only with the PROCEDURE and
BEGIN statements.

The meanings of these conditions are
explained in "The ON Statement,™ in Chapter
8.

Any of these condition
preceded by the word NO.
there can be no intervening blank between
NO and the condition. For example, NOCON-
VERSION can be specified in the prefix

names may be
If NO is used,

list.
GROUPS
A group 1is a collection of one or more

statements and is used for control purpos-
es.

A group has one of two forms. The first
form, called a DO-group, is:

[label:] . . . DO-statement
program-element-1
program-element-2

END ([labell;

The 1label following END is one of the
labels of the DO statement (see "Use of the
END Statement™ in this chapter).

The DO statement is called the heading
statement of the DO-group, and may specify
iteration. Each program element represents
one or more statements.

The second form of a group is

simply a
single statement, as follows:

[label:]1 . . . statement

The "statement"™ is any statement except DO,
END, PROCEDURE, BEGIN, DECLARE, FORMAT,
ENTRY, or any compile-time statement.

Example of the first form:

ALPHA: DO;
A=B*C;

IF A < 0 THEN DO; B=1; C=0; END;
END ALPHA;

In the example above, any of the single
statements -- except the DO and END state-
ments -- is an example of the second form
of a group.

BLOCKS

A block is a collection of statements
that defines the program region -- or scope
-- throughout which an identifier is esta-
blished as a nane. It also is used for
control purposes.

There are two kinds of blocks,
blocks and procedure blocks.

begin

A begin block has the general form:

[label:]1 . . . BEGIN-statement
program-element-1
program-element-2

END [labell;

The label following END is one of the
labels of the BEGIN statement (see "Use of
the END Statement"™ in this chapter).

A procedure block, or procedure, has the
general form:

label: [label:]1 . . . PROCEDURE-statement
rrogram-element-1
program-element-2
END [lakell;

The 1label following END is one of the

labels of the PROCEDURE statement (see "Use
of the END Statement™ in this chapter).

The BEGIN statement and the PROCEDURE
statement in the above forms are called
heading statements.

Chapter 1: Program Elements 19

While the labels of the BEGIN statement
are optional, the PROCEDURE statement must
have at least one label.

Although the begin block and the proce-
dure have a physical resemblance and play
the same role in delimiting scope of names
(see "Scope of Declarations,"” in Chapter 4)
and defining allocation and freeing of
storage (see "Allocation of Data and Stor-
age Classes," in Chapter 6), they differ in
an important functional sense. A begin
block, like a single statement, is activat-
ed by normal sequential flow, and it can
appear Wwherever a single statement can
appear. A procedure can only be activated
remotely by CALL statements, by statements
in which a CALL option appears, or by
function references. When a program con-
taining a procedure is executed, control
passes around the procedure, from the
statement before the PROCEDURE statement to
the statement after the END statement of
the procedure.

Since a procedure can be activated only
by a reference to it, every procedure must
have a name. The label required for the
heading statement of a procedure serves as
the procedure name. More than one label
provides more than one procedure name.

The procedure name gives a means of
activating the procedure at its primary
entry point. Secondary _entry points can
also be defined for a procedure by use of
the ENTRY statement. The labels preceding
all ENTRY statements in a given procedure
and the heading statement of the procedure
are collectively called entry names for the
procedure.

As the above definition of block
implies, any block A can include another
block B, but partial overlap is not possi-
ble; block B must be completely included in
block A. Such nesting may be specified to
any depth.

A procedure that is not included in any
other block is called an external proce-
dure. A procedure included in some other
block is called an internal procedure.

Every begin block must be included in
some other block. Hence, the only external
blocks are external procedures.

All of the text of a begin block except
the labels preceding the heading statement
of the block is said to be contained in the
block.

All of the text of a procedure except

the entry names of the procedure is said to
be contained in the procedure.

20

That part of the text of a block B that
is contained in block B, but not contained
in any other block contained in B, is said
to be internal to block B.

The entry names of an external procedure
are not internal to any procedure and are
called external names.

vital in
"scope of

The notion of internal to is
the definition of scope (see
Declarations" in Chapter 4).

Example:

A: PROCEDURE; 7
statement 1
B: BEGIN;

statement 2

statement 3

END B;

statement 4

C: PROCEDURE;
statement 5

X: ENTRY;

D: BEGIN; I
statement 6
statement 7
END D;

statement 8

END C; _

statement 9
END A; J

In this example, statements 1 through 9 are
labeled or unlabeled simple statements.

As the brackets on the right indicate,
block A contains block B and block C, and
block C contains klock D.

Block A is an external procedure. The
procedure name 1is A, which is an external
name, and the only entry name for the
procedure.

X 1is an entry name corresponding to a
secondary entry point for procedure C.

Blocks B and D are begin blocks.
Block C is an internal procedure.
The text internal to block A consists of

PROCEDURE ;
statement 1
B:
statement 4
C:

X:
statement 9
END A;

BEGIN;
statement 2
statement 3
END B;

The text internal to block C consists of

PROCEDURE;
statement 5
ENTRY;

D:
statement 8
END C;

The text internal to block D consists of
BEGIN;
statement 6

statement 7
END D;

USE OF THE END STATEMENT

As the examples above
statement has the form:

imply, the END

END [labell;

and is used to terminate a group or a

If the optional label following END is
not used, the END statement terminates that
unterminated group or block headed by the
DO, BEGIN, or PROCEDURE statement that
physically precedes, and appears closest
to, the END statement.

1f, however, a label (e.g., L) is used
following END, the statement terminates
that unclosed group or block headed by the
DO, BEGIN, or PROCEDURE statement with_ the
label L that physically precedes, and
appears closest to, the END statement. Any
groups or blocks headed by DO, BEGIN, or
PROCEDURE statements contained in the ter-
minated block L are also automatically
terminated by the END statement END L.
This feature eliminates the necessity of
writing the intermediate END statements to
terminate the contained blocks and groups.

The statement labeled L, which heads the
group or block terminated by the END state-
ment END L, is internal to a certain block

ram (see "Blocks," for a defini-
nternal to). The terminating
statement END L, together with its own
possible statement-labels, is also consid-
ered to be internal to the same block. (If
the statement 1labeled L 1is a BEGIN or
PROCEDURE statement, this block 1is, of
course, the block L.)

The END statement may itself be labeled,
and a reference to this label can be made
from any part of the program where the
label 1s known. (For a definition of

known, see "Basic Rule on Use of Names" in

Chapter 4).

Example:
A: PROCEDURE; A: PROCEDURE;
B: BEGIN; B: BEGIN;
A: PROCEDURE; A: PROCEDURE;
C: DO; C: DO;
X: END B; END;
END A; END;
X: END B;
END A;
In the example on the left above, the

statement X:END B terminates the DO group,
the internal procedure A, and the block B.
The statement END A terminates the external
procedure A.

The example on the right 1is equivalent
to the example on the left.

The statement X:END B is internal to
block B.

PROGRAMS

A program is composed of one or more
external procedures. Thus, by definition,
a program is a set of procedure blocks,
each of which 1is completely nested, and
separate from the others.

Chapter 1: Program Elements 21

CHAPTER 2: DATA ELEMENTS

Information that is operated on in a
PL/I object program during execution is
called data. Each data item has a definite
type and representation.

The aim of this chapter is to present a
discussion of (1) the various organizations
that data may have, (2) the methods by
which data can be referred to, and (3) the
types of data allowed.

"DATA_ORGANIZATION

Data may be organized as scalar items
(i.e., single data items) or aggregates of
data items (i.e., arrays and structures).

SCALAR ITEMS

A data item may be either a constant or

the value of a scalar variable. Constants
and scalar variables are called scalar
items.

Constants

A constant is a data item that denotes
itself, i.e., 1its representation is both
its name and its wvalue; thus, it cannot
change during the execution of a program.
Each constant has a type, as described
below. A signed constant is an arithmetic
constant preceded by one of the prefix
operators + or -. Wherever the word
"constant™ appears alone, and refers to an
arithmetic constant, it is to be assumed to
refer to an unsigned constant.

Scalar Variables

A scalar yvariable, 1like a constant,
denotes a data item. This data item is
called the value of the scalar variable.

Unlike a constant, however, a variable may
take on more than one value during the
execution of a program. The set of values
that a variable may take on is the range of
the variable. The range of a variable is
always restricted to one data type (and, if
the type is arithmetic, to one base, scale,

22

mode, and precision - see "Arithmetic Data"
in this chapter). If there are no further
restrictions declared for the range, the
variable may assume values over the entire
set of data of that type.

Reference is made to a scalar variable
by a name, which may be a simple name, a
subscripted name, a qualified name, or a
subscripted qualified name (see "Naming" in
this chapter).

DATA AGGREGATES

In PL/I, variable data items
grouped into arrays or structures. Rules
for this grouping are given below. (For
the method of referring to an array or

structure or a particular item of an array

may be

or structure, see "Naming" in this
chapter.)
Arrays

An array is an n-dimensional, ordered

collection of elements, all of which have
identical data declaration. (If arithmet-
ic, all of the elements of the array must
have the same base, scale, mode, and preci-
sion or the same picture. If character-
string or bit-string, all of the elements
must have the same actual length, if fixed
length, or the same maximum length, if
varying length.) The number of dimensions
of an array, and the upper and lower bounds
of each dimension, are specified by the use
of the dimension attribute.

Example:
DECLARE A(3,4);

This statement defines A as an array
with 2 dimensions: 3 rows and 4 columns.
The matrix given below illustrates the
array A.

A(1,1) a(1,2) A(1,3) A(,4)
A(2,1) A(2,2) A(2,3) A((2,4)
A(3,1) A(3,2) A(3,3) a3,

The elements of an array may be
structures (see "Arrays of Structures").

A structure is a hierarchical collection
of scalar variables, arrays, and struc-
tures. These need not be of the same data
type nor have the same attributes.

Structures may contain structures. The
outermost structure is the major structure,
and contained structures are minor struc-
tures. A major structure must be at level
one. Contained structures must always have
a level number numerically greater than the
structure in which they are contained.
Identifiers preceded by level numbers but

having no components are not considered to
be structures. The 1level number may be
followed by one or more blanks.

(Additional information on structures can
be found in the section "Structure Declara-
tions and Attributes"™ in Chapter 4.)

Examples:

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3
REGULAR, 3 OVERTIME, 2 RATE;

takes the form:

1 PAYROLL

2NAME

2HOURS
3REGULAR
30VERTIME

2RATE

In the above example PAYROLL is defined
as the major structure containing the sca-
lar variables NAME and RATE and the struc-
ture HOURS. The structure HOURS contains
the scalar variables REGULAR and OVERTIME.

2. DECLARE 1 A, 2 B, 2 C,
F;

3D (2), 3E, 2

This takes the form:

a
B
C
D(1)
D(2)
E
F

The decimal integers before the iden-
tifiers specify the levels; the decimal
integer in parentheses specifies the bounds
of the one-dimensional array. A is defined
as the major structure and contains the
minor structure C and the scalar variables
B and F. C contains D, a one-dimensional
array with two scalar variables, and the
scalar variable E.

3. DECLARE 1 A, 3 B, 2 C;

This takes the form:

A
B
C
Note that B and C are at the same
level although their 1level numbers
differ.
Arrays of Structures
An array of structures is formed by
giving the dimension attribute to a struc-
ture.
Examples:
1. DECLARE 1 CARDIN(3), 2 NAME, 2 WAGES,
3 NORMAL, 3 OVERTIME;
The decimal integers before the iden-
tifiers specify the level. The name,
CARDIN, represents an array of struc-

Because CARDIN has a dimension
specified, NAME, NORMAL, and OVERTIME
are arrays, and their elements are
referred to by subscripted names.

tures.

The form of the data is as follows:

CARDIN (1) NAME (1)
WAGES (1) NORMAL (1)
OVERTIME (1)

CARDIN (2) NAME (2)
WAGES (2) NORMAL (2)
OVERTIME (2)

CARDIN (3) NAME (3)
WAGES (3) NORMAL (3)

OVERTIME (3)

2. DECLARE 1 X, 2 Y, 22 (2), 3P (2,2),

3 Q, 2 R;

X is an undimensioned major structure
containing scalar variables, arrays,
and a structure.

is a scalar variable

is an array of structures

is a three-dimensional array

is a one-dimensional array

is a scalar variable

00 YN

Chapter 2: Data Elements 23

The form of the data is as follows:

Y r—
P (1,1,1)
P (1,1,2)
Z (V]| P (1,2,
P (1,2,2)
. _Q (1)
P (2,1,1)
P (2,1,2)
Z (21 P (2,2,1)
P (2,2,2)
| 0 (2)
_ R
NAMING
This section describes the rules for

referring to a particular data item, groups
of items, arrays, and structures. The
permitted types of data names are simple,

gualified, subscripted, and subscripted
gualified.
SIMPLE NAMES

A simple_ _name 1is an identifier (see

"Identifiers,"™ in Chapter 1) that refers to
a scalar, an array, or a structure.

SUBSCRIPTED NAMES

A subscripted _name is used to refer to
an element of an array. It is a simple
name that has been declared to be the name
of an array followed by a 1list of sub-
scripts. The subscripts are separated by
commas and are enclosed in parentheses. a
subscript is an expression that is evaluat-
ed and converted to an integer before use
(see "Evaluation of Expressions,™ in Chap-
ter 3). The number of subscripts must be
equal to the number of dimensions of the
array, and the value of a specified sub-
script must fall within the bounds declared
for that dimension of the array.

A subscripted name takes the form:

identifier (subscript [, subscriptl

eee)
Examples:

A (3)

FIELD (B,C)

PRODUCT (SCOPE * UNIT + VALUE,
ALPHA (1,2,3,4)

PERIOD)

24

Cross Sections of Arrays

The concept of cross_ sections 1is a
logical extension of the subscripting nota-
tion. A cross section of an array is
referred to by the array name, followed by
a list of subscripts, at least one of which
is an asterisk. The subscripts are sepa-
rated by commas, and the entire list is
enclosed in parentheses. The number of
items in the 1list must be equal to the
number of dimensions of the array. If the
array is of dimensionality n, then an
asterisk may appear in k < n positions. If
the jth list position is occupied by an
asterisk, the cross section of the array
includes elements covered by varying the
jth subscript between its bounds. The
dimensionality of the cross section is
equal to the number of asterisks, k, in the
subscript list. If all subscript positions
are occupied by asterisks, then this ref-
erence to the cross section 1is eguivalent
to a reference to the entire array.

A cross section may be used anywhere
that the name of an array of dimensionality
k is required. Subsequent references to
the word "array"™ in this document should
therefore be taken to include cross sec-
tions of arrays.

Examples:

1. A (3,*) denotes the third row of the

array A.

2. B (%, *, 2) is a two-dimensional cross
section and denotes the second plane
of the array B.

3. If MATRIX is the array:

1 2 3

4 5 6

7 8 9

MATRIX (*, 2) is the vector:
2
5
8

QUALIFIED NAMES

A simple name usually refers uniquely to
a scalar variable, an array, or a struc-
ture. However, it is possible for a name
to refer to more than one variable, array,
or structure if the identically named items
are themselves parts of different struc-
tures. In order to avoid any ambiguity in
referring to these similarly named items,

it is necessary to create a unigque name;
this is done by forming a qualified name.
This means that the name common to more

than one item is preceded by the name of

the structure in which it is contained.
This, in turn, can be preceded by the name
of its containing structure, and so on,
until the gualified name refers uniguely to
the required item. The section "Multiple
Declarations and Ambiguous References" in
Chapter 4, contains further information on
this subject.

Thus, the qualified name is a sequence
of names specified left to right in order
of increasing level numbers; the names are
separated by periods, and blanks may be
placed as desired around the periods. The
sequence of names need not include all of
the containing structures, but it must
include sufficient names to resolve any

ambiguity.

once composed, is
pub-

The qualified name,
itself a name. Subsequently, in this

lication, when the terms scalar variable
name, array name, or structure name are
used they should also be taken to include

gqualified names.
A qualified name takes the form:
identifier {. identifier} ...
Examples:
1. A program may contain the structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRIP-

TICN, 2 PRICE;
DECLARE 1 CARDOUT, 2 PARTNO,
CRIPTION, 2 PRICE;

2 DEs-

Elements are then referred to as:
CARDIN. PARTNO
CARDOUT.PARTNO
CARDIN.PRICE

2. A program may contain the structure:

DECLARE 1 MARRIAGE, 2 MAN, 3 NAME, 3
DATE, 2 WOMAN, 3 NAME, 3 DATE;

Elements are then referred to as:

MAN. NAME
or MARRIAGE.MAN.NAME

WOMAN.NAME
or MARRIAGE.WOMAN.NAME

3. If the same program also contains the
structure:

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME,
3 DATE, 2 ADDRESS;

Elements are then referred to as:

MAN.NAME
or MARRIAGE.MAN.NAME

BIRTH.NAME
or BIRTH.WOMAN.NAME

ADDRESS
and the minor structures referred to
as:

MARRIAGE . WOMAN

BIRTH . WOMAN

SUBSCRIPTED QUALIFIED NAMES

The elements of an array contained in a
structure and requiring name qualification
for identification are referred to by sub-
scripted gqualified names. A subscripted
qualified name is a sequence of names and
subscripted names separated by periods.
The order of names is as given for any
qualified name. The subscript list follow-
ing each name refers to the dimensions
associated with the name if the name is
declared to be the name of an array in the
structure description.

As long as the order of +the subscripts
remains unchanged, subscripts may be moved
to the right or left and attached to names
at a lower or higher level, respectively.
Unless all of the subscripts are moved to
the lowest or highest level, the qualified
name is said to have interleaved sub-
scripts.

Provided that sufficient structure names
are used to make the name unique, as
described for qualified names, and that the
total number of subscripts is the same as
the total dimensionality of the array,
unsubscripted structure names may be omit-
ted in references. Ambiguity of names,
however, cannot be resolved by subscript-
ing. A subscripted qualified name takes
the general form:

identifier { (subscript [, subscriptl
eae)]
{. identifier [(subscript [, sub-
scriptl...)] }...

If any subscripts are given in a ref-
erence to a qualified name, all those
subscripts which apply to dimensions of

containing structures must be given.

A subscripted qualified name must have
at least one subscript.

Example 1:

A is an array of structures with the

following description:

Chapter 2: Data Elements 25

DECLARE 1 A (10,12), 2 B (5), 3 Cc (7,
3 D;
The following subscripted qualified

names refer to the same element, which is
the seventh element of C contained in the

fifth element of B contained in tenth row
and twelfth column of A:
(1) A (10,12) . B (5) . cC (7
(2) A (10) . B (12,5 . C (1)
(3) a (10) . B (12) . cC (5,7
() a . B (10,12,5)Y . C (7
(5 a. B (10,12 . cC (5,7
(6) a. B (10) . cC (12,5,7
(7)) A. B. C (10,12,5,7
(8) A (10,12) . B. C (5,7
(9) A (10) . B . cC (12,5,7

(100 a (10,12,5,7) . B . C

If structure B, but not structure A, is
necessary for unique identification of this
use of C, any of forms (4), (5), (6), or
(7) may be used without including the A.

If structure A, but not B, is necessary
for identification of ¢, forms (7), (8),
(9), or (10) may be used without including
the B..

Except for forms (7) and (10), all of
the qualified names in the above example
have interleaved subscripts.

Example 2:
If FIELD is the array of structures:

DECLARE 1 FIELD(3),
2 STATUS,
2 VALUE;

then FIELD(*).STATUS is the vector:

FIELD(1) .STATUS
FIELD(2).STATUS
FIELD(3).STATUS

DATA TYPES

AL LA R 2 S

The types of data allowed by PL/I can be
categorized as problem_ _data and program-—
control data.

PROBLEM DATA

that can be
arithmetic or type

Problem data is any data
classified as type
string.

26

Arithmetic Data

An arithmetic data item is one that has
a numeric value with characteristics of
base, scale, mode, and precision. The data
item may be represented either as a numeric
field or in a coded form, that is, in an
internal representation that is implementa-
tion dependent. A numeric_ field is a
string of characters that is given a numer-
ic interpretation by means of the PICTURE
attribute (see Chapter U4). The base,
scale, and precision are all specified in
the picture of the numeric field. A data
item in coded form does not have a PICTURE
attribute, but has its characteristics
given by the attributes specifying base,
scale, mode, and precision.

Base (decimal or binary), scale
(fixed-point or floating-point), and
precision have reference to internal rep-

resentation of the data described and to
the internal arithmetic that is to be used.

BASE: Arithmetic data may be specified as
having either decimal or binary base.

SCALE: Arithmetic data may be specified as
having either fixed-point or floating-point
scale. Fixed-point data items are rational
numbers for which the number of decimal or
binary digits is specified; the position of
the decimal or binary point may also be
specified by a scale factor. Floating-
point data items are rational numbers in
the form of a fractional part and an
exponent part.

MODE: Arithmetic data may be operated on
in either the real or complex mode. 1In the
complex mode, a data item is considered to
consist of a number pair, the first member
of the pair representing the real part of
the complex number and the second, the
imaginary part.

PRECISION: The

ision of fixed-point
data (w,d) is specified by giving the total
number of binary or decimal digits, w, to
be maintained and a scale factor, 4. The
precision of floating-point data is

specified by giving the effective number,
w, of binary or decimal digits to be
maintained in the fractional part (for an

implementation, the actual number of digits
maintained internally may be greater than
w). Note that w must be greater than zero.

Real Arithmetic Constants

A real arithmetic constant 1is either
binary or decimal.
DECIMAL FIXED-POINT CONSTANTS: A decimal

fixed-point constant is represented by one
or more decimal digits with an optional

decimal point. If a decimal point is not
specified, the constant is a decimal inte-
ger_constant.

Examples:

72.192
.308
255.
158
BINARY _ FIXED-POINT CONSTANTS:

»
[+

followed by the letter B. The exponent is
a string of decimal digits specifying an
integral power of two.

Examples:

1.1011E3B
«11011E-27B

DA T T AN faynl DOAT AN TMIMATM TN MARNIOMANIMO o
G LO AU L

R 5is FAUNL L OSDL A CUNDLANLO S

3

fixed-point constant is represented by one
or more binary digits with an optional
binary point followed by the letter B.

Examples:

11011B
11.1101B
.001B

STERLING FIXED-POINT CONSTANTS: Sterling
quantities may be specified and will be
interpreted as decimal fixed-point pence.
A sterling fixed-point constant consists of
the following concatenated fields:

a pounds field that is a decimal
integer

a decimal point

a shillings field that is a
integer less than 20

a decimal point

a pence field that is
decimal digits with
decimal point (the
must be less than 12.)

an L

decimal

one or more
an optional
integral part

Examples:

101.13.8L
1.10.0L
0.0.2.5L

DECIMAL FLOATING-POINT CONSTANTS: A deci-
mal floating-point constant is represented
by one or more decimal digits with an
optional decimal point, followed by the
letter E, followed by an optionaily signed
exponent. The exponent is a string of
decimal digits specifying an integral power
of ten.

Examples:

317.5E-16
0.1E+3
<42E+73
32E-5

BINARY FLOATING-POINT CONSTANTS: A binary
floating-point constant is represented by
one oOr more binary digits with an optional
binary point, followed by the letter E,
| followed by an optionally signed exponent,

For: purposes
apparent precision is
arithmetic constants.

of expression evaluation, an
defined for real

Real fixed-point constants have an
apparent precision (w,d) where w is the
total number of digits in the constant and
d is the number of digits specified to the
right of the decimal point.

The precision of a sterling-constant is
equivalent to the precision of its corres-
ponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add
the product of 12 and the value of the
shillings field; add the value of the pence
field. The precision of the result (with
leading zeros removed) is the precision of
the corresponding sterling constant.

The precision of a floating-point con-
stant is (p) where p 1is the number of
digits of the constant left of the E.

Examples:

3.14 has precision (3,2)
0.012E5 has precision (&)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

Imaginary Arithmetic Constants

An imaginary constant represents a com-
plex value of which the real part is zero
and the imaginary part is the value speci-
fied.

It 1is represented by a real arithmetic
constant, other than a sterling constant,
foXlowed by the letter I. PL/I does not
define complex constants with non-zero real
parts, but provides the facility to specify
such data through an expression, e.g.,
10.1+9.21I.

Examples:
271
3.968E10I

Chanter 2: Data Elements 27

Arithmetic Variables

Arithmetic variables are names of arith-
metic data items. These names have been
given the characteristics (i.e.,
attributes) of base, scale, mode, and pre-
cision (see Chapter 4).

String Data

String data can be classified as
character-string or bit-string. The length
of a string data item is equivalent to the
number of characters (for a charac-
ter-string) or the number of binary digits
{(for a Dbit-string) in the item. A string
data item of length zero is known as the
null string.

Character-String Data

Character-string data consists of a
string of =zero or more characters in the
data character set (see "Data Character
Set," in Chapter 1). The string may be
fixed or varying in length. The actual
number of characters must be specified if
it is of fixed 1length, and the maximum
length must be specified if it is of
varying length.

CHARACTER-STRING _CONSTANTS: A character-
string constant is zero or more characters
in the data character set enclosed in
quotation marks. If it is desired to
represent a quotation mark, it must appear
as two immediately adjacent quotation
marks. The constant may optionally be
preceded by a decimal-integer constant in
parentheses to specify repetition. If the
constant specifying repetition is zero, the
result is the null string.

In a string replication factor, blanks
may optionally surround the decimal integer
constant, or they may separate the right
parentheses and leading quote.

A character string constant may contain
a string of characters which syntactically
constitute a comment; however, these
characters are treated as part of the
string value rather than as a comment.

Examples:
*$ 123.45°
* JOHN JONES'
IIT! lsl
(3) *TOM?

The latter is exactly equivalent to

' TOMTOMTOM"

28

Bit-String Data

Bit-string data consists of a string of
zero or more binary digits (0 and 1). The
string may be fixed or varying in length.
The actual length of the field must be
specified if it is of fixed length, and the
maximum length must be specified if it is
of varying length.

BIT-STRING CONSTANTS: A bit-string con-
stant is =zero or more binary digits
enclosed in quotation marks, followed by

the letter B. The constant may optionally
be preceded by a decimal-integer constant
in parentheses, to specify repetition. If
the constant specifying repetition is zero,
the result is the null string.

Examples:

'0100'B
(10)'1'B

The latter is exactly equivalent to
11111111118
String Variables
names of string

have been given
string data (see

String variables are
data items. These names
the characteristics of
Chapter 44).

PROGRAM-CONTROL DATA

Program—-control data is
can be <classified as type
event, pointer, area, or cell.

any data that
label, task,

Label Data

Statement-label data is wused only in
connection with statement labels. State-
ment label data may be constants or varia-
bles, and the variables may be elements of
structures or arrays.

Statement-Label Constants

A statement-label constant is an iden-
tifier that appears in the program as a
statement label. It permits references to
be made to statements.

ROUTINEl: IF X > 5 THEN GO TO EXIT;

GO TO ROUTINEL;

EXIT: RETURN;

ROUTINE1 1is a statement-label constant.
EXIT is also a statement-label.

Statement-Label Variables

A statement-label variable is a variable
that has as values statement-label con-
stants. These variables can be grouped
into arrays or structures.

Example:

DECLARE X LABEL;
X = POSROUTINE;

POSROUTINE: -
X = NEGROUTINE;
GO TO X;
NEGROUTINE: .

The label variable X may have the value
of either POSROUTINE or NEGROUTINE, both

labels in the procedure. In the above
example, GO TO X transfers control to
NEGROUTINE.

A statement-label constant or a scalar
label variable is called a statement-label

designator.

Task Data

A task variable is the name of a task
(see "Asynchronous Operations and Tasks™ in
Chapter 6, and "The TASK Attribute" in
Chapter 4). A task variable may be an
element of an array or of a structure. The
priority associated with a task variable
may be assigned in the CALL statement, or
in an assignment statement via the PRIORITY
pseudo-variable (see Chapter 8).

An event variable is the name of an

event (see T"Asynchronous Operations and
Tasks™ in Chapter 6, and "The EVENT
Attribute™ in Chapter 4). An event varia-

ble may be an element of an array or of a
structure.

An event variable has an associated
completion status. This status is denoted
by f0°B for “not complieted” and '1'B for
"completed.™ If the event variable has
been associated with a given task via the
use of the EVENT option in a CALL statement
(see Chapter 8), the completion status of
the event variable will reflect the comple-
tion status of the task itself. The com-
pletion status of an event variable may
also be set explicitly by the execution of
an assignment statement using the EVENT
pseudo-variable (see Chapter 8).

Pointer Data

A pointer variable is the name of a
pointer (see "The CONTROLLED Attribute" and
"The POINTER Attribute" in Chapter 4, and

"The Pointer Qualifier™ in this chapter).
It is used only in connection with 1list
processing and RECORD transmission. A

pointer variable may be an element of a

structure or of an array.

Pointer Qualification

Pointer qualification is used to iden-
tify a generation of & based variable.

This generation may also be identified by
the pointer variable declared with the
based variable (see "The CONTROLLED
Attribute®™ in Chapter 4 and "The ALLOCATE
Statement" in Chapter 8).

Format:

{scalar-pointer-variable|ADDR(variable) }->
[{scalar-pointer-variable|
ADDR(variable)}->1...based-variable

Note: See the ADDR built-in function for a
discussion of ADDR.

General rules:

1. Pointer qualification is used to
replace the pointer which was declared
with the based variable.

2. More than one pointer qualifier may be
specified in a reference. In this
case, they are read left to right and
define a chain of pointers qualifying
the reference.

Chapter 2: Data Elements 29

Examples:
P -> VALUE
P -> G -> VALUE

Area Data

An area data item is the name of an area
of storage. Such an area may be used for
collecting and referring to based data
items (see "The ALLOCATE Statement™ in
Chapter 8).

cell Data

A cell is a unit of storage that may
contain any number of alternative declara-
tions. However, only one declaration can
be active at any one time.)

Cells are organized in the same way that
structures are organized; the name of the
cell must be at a higher level than its
alternatives. For example, the following
statement specifies that the storage allo-

30

cated for the cell named ALPHA may contain
either of the two alternatives, ALT1 (a bit
string) or ALT2 (a structure), but not both
at the same time.

DECLARE 1 ALPHA CELL,
2 ALT1 BIT (60),
2 ALTZ,
3 BETA FLOAT,
3 GAMMA FIXED;

A cell provides storage equivalence and
not data equivalence, In other words,
since only one alternative can be active at
one time, the value of that alternative
cannot be retrieved by a reference to
another alternative. The assignment of a
value to an alternative dJeactivates the
previously active alternative and in effect
strips it of its value.

Thus, the value of an alternative can
only be retrieved by a reference to that
alternative. The cell name may be used to

qualify the reference but a reference to
the cell name alone will retrieve no value.

See "The CELL Attribute®™ in Chapter 4
for rules regarding cell usage.

EXPRESSIONS

An expression is an algorithm used for
computing a value. Expressions are of the
three types: scalar, array, and structure,
depending upon the types of the operands
involved. The type of the result is also
the same as that of the operands. An array
{or structure) expression is simply an
array (or structure) evaluated by expansion
of the expression into a collection of
scalar expressions (see "Array Expressions"
and "Structure Expressions"). Syntactical-
ly, a scalar expression consists of a
constant, a scalar variable, a function
reference, a scalar expression enclosed in
parentheses, a scalar expression preceded
by a prefix operator, or two scalar expres-

sions connected by an infix operator.
Operands in a scalar expression need not
have the same data attributes. If they

differ, conversion will be performed before
the operation.

SCALAR EXPRESSIONS

A scalar expression returns a scalar
value. The type of the value is the type
of the expression. The type of the expres-
sion is dependent upon the class of opera-
tors -- arithmetic, comparison, bit string,
and concatenation (see "Operators").
Statement label designators, area varia-

bles, task variables, and event variables
are not allowed in scalar expressions
except as function arguments. Only the

comparison operators =
with pointer data.

and = may appear

If A and B are expressions, then the
operators + and - used in expressions of
the form +A or -A, are called prefix
operators. When these operators are used

in expressions of the form A+B or A-B they
are called infix operators.

Arithmetic Operations

An arithmetic expression of any complex-
ity is composed of a set of elementary
arithmetic operations.

An elementary arithmetic
the following general format:

operation has

CHAPTER 3: DATA MANIPULATION

{{+|-} operand} | {operand
{+{ - | *# | 7 | **} operand}

The general format specifies the prefix
operations of plus and minus and the infix
operations -of addition, subtraction, multi-
plication, division, and exponentiation.
Operations are performed only with coded
arithmetic data. If necessary, the data
will be converted to coded arithmetic type
before the operation is performed.

Mixed Characteristics

The two operands of an arithmetic opera-
tion may differ in form, base, scale, mode,
and precision. wWhen they differ, conver-
sion takes place according to the following
rules:

FORM: Numeric field operands of arithmetic
operations will be converted to coded form.
The result of an arithmetic operation is
always in coded form.

BASE: If bases differ, the decimal operand
is converted to binary.

SCALE: If the scales of the operands
differ, the fixed-point operand will be
converted to floating-point, except in the
case of exponentiation in which the first
operand is floating-point and the second is
fixed-point with precision (p,0). In the

latter case, the second operan is not
converted.
MODE: If +the modes differ, the real oper-

and is converted to complex mode (by
acquiring an imaginary part of =zero with
the same base, scale, and precision as the
real part). However, when the operation is
exponentiation and the second operand is
fixed-point with precision (p,0), then the
second operand is not converted.
PRECISION: If precisions differ, no con-
version is done.

Results of Arithmetic Operations

After the conversions specified above
have taken place, the arithmetic operation
is performed. Any necessary truncations
will be made towards =zero, regardless of
the base or scale of the operands.

The base, scale, mode, and precision of
the result depend on the operands and the
operator in the foliowing ways:

Chapter 3: Data Manipulation 31

32

‘having the base,

Prefix operations: The prefix opera-
tions of plus and minus yield a result
scale, mode, and
precision of the operand.

Floating—-point: If +the operands of
an infix operation are floating-point
the result is floating-point, and the
base and mode of the result are the
common base and mode of the operands.
The precision of the result is the
greater of the precisions of the two
operands.

Fixed-point: If the first operand of
an infix operation is fixed, and if
the operation is not exponentiation,
the result is fixed, and the base and
mode of the result are the common base
and mode of the operands. If the
operation is exponentiation, the sec-
ond operand is converted to floating
point if its scale factor is not zero;
and the first operand is converted to
floating-point unless the second oper-
and is an unsigned integer constant
meeting the conditions of item 4
below; in these cases, the rules for
floating-point apply.

of a fixed-point
on the operation and
the precisions of the operands,
according to rules given below. The
following symbols are used:

The precision
result depends

N the 1length of the largest number
in the implementation

m the total number of positions in
the result

the scale factor of the result

the total number of positions in
operand one

the scale factor of operand one

the total number of positions in
operand two

the scale factor of operand two

value of operand two, if it is an
unsigned integer constant

HNQ T3

o0

a. Addition and subtraction:

m
n

min(N, max(p~-g,r-s) +max (g, s) +1)
max(g,s)

b. Multiplication:

m
n

min(N, p+r+1)
gts

nu

c. Division:

N
N-p+g-s

m
n

d. Exponentiation: 1if the second
operand is an unsigned non-zero

Note:

real fixed-point constant of pre-
cision (r,0),

m = (p+l) *y - 1
n = q *y
If m>N, however, or y is not an

unsigned non-zero real fixed-point

constant of precision (r,0), the
first operand is converted to
floating-point and rules for
floating-point exponentiation

apply.

e. The above rules hold for both real
and complex mode.

Some special cases of exponentiation

are defined as follows:

1.

Real Mode, x4**x,:

a. If x;=0 and x,>0, the result is 0.
b. If x3=0 and x,<0, the ERROR condi-
tion is raised.
c. If x;#0 and x,=0, the result is 1.
d. If x3<0 and x, is not fixed-point

with precision (p,0), the ERROR
condition is raised.

Complex Mode, z,**z,

a. If z,=0 and z, has its real part
>0 and its imaginary part equal to
0, the result is 0.

b. If z,=0 and the real part of z, is
not greater than 0 or the imag-
inary part of z, is not egual to
0, the ERROR condition is raised.

Arithmetic Conversions

1.

Arithmetic Mode Conversion

If a complex value is converted to
a real value, the result is the real
part of the complex value.

If a real value is converted to a
complex value, the result is a complex
value that has the real value as the
real part and zero as the imaginary
part.

Integer conversion

If conversion to integer is speci-
fied, as in the evaluation of sub-
script expressions, the conversion
will be to fixed-point binary (x,0).
Here x is the total number of posi-
tions in the field and depends upon
the implementation. The scale factor

Table 1. Arithmetic Base and Scale Conversion

Before Conversion
r T T T 1
After | Binary Fixed | Decimal | Binary | Decimal]
i (peq) | Fixed(p,q) | Float(p} | Float(p)]
¢ t + ¥ 4 4
| Binary | (p,q) | (MIN(CEIL(p*3.32) |]]
| Fixed | | +1,N),CEIL(ABS(q) | I]
| | | *3.32)*SIGN(Q)) I | |
t 4 p— } 4 :
| Decimal| (CEIL(p/3.32)+1, | (p,q) |]]
| Fixed | CEIL(ABS{(g)}/3.32)j i ; ;
| | *SIGN (q)) | | | |
L L 4 1 1 d
r T 1 T T 1
| Binary | (p) | (MIN(CEIL | (p) | (MIN(CEIL]
| Float | | (p*3.32),N)) i | (p*3.32),N)) |
¢ ¢ $ } 1 |
| Decimal| (CEIL(p/3.32)) i (p) | (CEIL(p/3.32)) | (p)]
| Float | | | | |
L L 1 1 L J

is =zero. Truncation, if necessary, The result is of varying length if either

e
will be toward zero.
3. Arithmetic Base and Scale Conversion

Table 1 defines the precision
resulting from base and scale conver-
sion. CEIL refers to the ceiling of
the expression. (The "ceiling™ of a
number is the smallest integer egqual
to or greater than the number.)

Conversion from floating-point scale to
fixed-point scale will occur only when a
destination precision is known, as in an
assignment to a fixed-point variable. If
the destination precision is incapable of
holding the floating point value, trunca-
tion on both left and right will occur, and
the SIZE error condition will be raised
(unless disabled) if significant order
digits are lost.

Bit-String Operations

Bit-string operations have the following
general forms:

1 operand
operand § operand
operand | operand

The prefix operation "not®™ and the infix
operations "and" and "or" are specified
above. The operands will be converted to
bit-string type before the operation is
performed. The result will be of bit-
string type. If the operands are of
different lengths after conversion, the
shorter is extended on the right with zeros
to the length of the longer. The length of
the result will be of this extended length.

operand is of varying 1length or is a
reference to the SUBSTR built-in function.
Otherwise, the result is of fixed length.

The operations are performed on a bit-
by-bit basis. As a result of the
operations, each bit position has the value
defined in the following table:

v T T 1 T T 1
I | | | I a | A&]
|] | not | not | and | or }
| A} B | A | B | B | B |
pm $m 4 : t -1
I 2 | 1 { 0o [o | 1 | 1]
i 1 1 1 1 1 ¥ |
v T T T T T 1
; 1 l 0 1 0 1 1 l 0 1 1 !
i e 1 1 i [
o | | o | 0o | 1 |
t + + + t + 4
! o f o 1} 11 0 | 0]
L 4 4 4 L L J

Examples:

If field & is '010111'B, field B is

'111111'B, and field C is '101'B, then

4 A yields '101000'B
& B yields '101000'B
7 C yields '010111'B
1 (ﬁC|1B) yields '101111°'B

For a discussion of how these expres-

sions are evaluated, see "Evaluation of
Expressions, " in this chapter.

Comparison Operations

Comparison operations have the general

form:

Chapter 3: Data Manipulation 33

operand {<|4<|<={=]1=1>=|>|¢>} operand

There are three types of comparisons:

1. Algebraic, which involves the compari-
son of signed numeric values in coded
arithmetic form. Conversion of numer-
ic fields will be performed.

involves left~to-

2. Character, which

right, pair-by-pair comparisons of
characters according +to a collating
sequence. If the operands are of

different 1length, the shorter is
extended to the right with blanks.

3. Bit, which involves the left-to-right
comparison of binary digits. If the
strings are of different lengths, the
shorter is extended on the right with
zeros.

The result of a comparison is a bit
string of léngth one; the value is '1'B if
the relationship is true or *0'B if it is
false.

If the operands of a comparison are of
different types, the operand of the lower
type is converted to the operand of the
higher type. The priority of types is (1)
arithmetic (highest), (2) character string,
(3) bit string.

As a result of the conversion, both
operands will then be arithmetic or charac-
ter string, and algebraic or character
comparison will be performed.

Only the operations = and = are defined
when either operand is complex.

Only the operators = and = may be used
with pointer variables. In this case, each
operand must be either a pointer variable
or a function that defines a pointer value.

Concatenation Operations

Concatenation operations have the fol-
lowing general form:

operand| |operand

If both operands are of bit-string type,
no conversion is performed, and the result
is of bit type. In all other cases, the
operands are converted where necessary to
character-string type before the concatena-
tion is performed, and the result is of

character type. The length of the result
is the sum of the 1lengths of the two
operands.,

34

Examples:

If A is '010111'B, B is '101'B, C is
'XY,Z' and D is 'AA/BB', then

Al |B yields "010111101*B
A||A]|B yields '010111010111101"'B

C||D yields 'XY,ZAA/BB*

D{|jC yields 'AA/BBXY,Z*

Type Conversion

Bit String to Character String

The bit 1 becomes the character 1, and
the bit 0, the character 0. The length is
unchanged. The null bit string becomes the
null character string.

Character String to Bit String

The characters 1 and 0 become the bits 1
and 0. The conversion is illegal if the
character string contains characters other
than 0 and 1. The null character string
becomes the null bit string.

Character String to Arithmetic

The string for conversion must contain
one of the following:

1. [+]|-] arithmetic-constant

2. [+}-]1 real constant {+|-} imaginary-
constant
The optionally signed constant or

complex expression may be surrounded by an
arbitrary number of blanks.

The arithmetic value of the constant is
converted to the base, scale, mode, and
precision that a REAL FIXED DECIMAL value
of default precision would have been con-
verted to if this had appeared in place of
the character string value. A null string
gives the value zero.

Bit String to Arithmetic

The bit string is interpreted as an
unsigned binary integer, and converted to
fixed-point binary, precision (S,0), where
S depends upon the implementation. The
null string is converted to the value zero.

Arithmetic to Character String

The arithmetic value is converted +to a
character string according to the rules of

list-directed output specified in
7. See Appendix 1 also.

Chapter

Arithmetic to Bit String

The arithmetic value is converted to
real then to fixed-point binary, precision
(p,0), where p is related to the precision
before conversion as follows (with ceilings
of expressions used):

BINARY FIXED (r,s) p
BINARY FLOAT (r) p
DECIMAL FIXED (r,s) p

min{N,max{r-s,03)

min(N,x)

min(N,max (CEIL
((r-s)*3.32),0))

P = min(N,CEIL(r#*3.32))

nu

DECIMAL FLOAT (r)

The resulting binary fixed-point value
is interpreted as a bit string of length p.

conversion to fixed-
(0,0) is

The result of a
point binary with precision
implementation-defined.

ARRAY EXPRESSIONS

An array expression 1is an expression
consisting of array operands in possible
combination with scalars and/or structures.
Note that if a structure appears in an
array expression, the array operands must
be arrays of structures.

An array expression returns an array
result. That is, all operations performed
on arrays are performed on an element-by-
element Dbasis. Therefore, all arrays
referred to in an array expression must be
of identical bounds.

Note: Array expressions are not always
expressions of conventional matrix algebra.

The appearance of a function reference
(other than a built-in function) will imply
a scalar result. For example, if A is an
array, CALC(A) may be a scalar function
with an array argument.

The buiilt-in functions 1listed under
"Arithmetic Generic Functions,®™ "Float
Arithmetic Generic Functions," and "String

Generic Functions," in Appendix 1 may part-
icipate in array expressions with array
results. BAn array may be substituted for
any of the arguments of these functions
except those arguments which are required
to ‘be integer constants, or those which
must be converted to integers.

Prefix Operators and Arrays

The result of the operation of a prefix
operator or a built-in function upon an
array is an array of identical bounds, each
element of which is the result of the
operation having been performed upon each
of the corresponding elements of the origi-
nal array.

Example:
If A is the array 5 3 -9
i -2 7
6 3 -4
then -A is the array -5 -3 9
-1 2 =7
-6 -3 4

Infix Operators and Arrxays

Scalar - Array Operations

The result of an operation in which a
scalar and an array are connected by an
infix operator is an array of bounds ident-
ical to the original, each element of which
is the result of the operation performed

upen the scalar and upon each of the
corresponding elements of the original
arraya.
Example:
If A is the array 5 10 8
12 11 3

then 3*A is the array 15 30 24
36 33 9

Array - Array Operations

The result of an operation in which two
arrays of identical bounds are connected by
an infix operator is an array of bounds

jdentical to the original arrays, each
element of which is the result of the
operation performed upon the corresponding

elements of the two original arrays by the
infix operator.

Example:
If A is the array 2 4
3 6
1 7
4 8
and if B is the array 1 5
7 8
3 4
6 3

Chapter 3: Data Manipulation 35

then A + B is the array 3 9

10 14

4 11

10 11

B*B is the array 2 20
21 48

3 28

24 24

and MAX (A+B,A*B) is the array

3 20
21 48
4 28
24 24

Array Expressions Involving Structures

If an array expression contains struc-
ture operands, then all array operands in
the expression must be arrays of structures
and all involved structures must have the
same structuring.

Example:

In the following declaration, A is an
array of structures and C is a sStructure.

DECLARE 1A(10),2B, 2D,
1C,2H,2I;

Then the expression A+C is a valid
expression that will result in the struc-
ture C being added to each structure in the
array A. The above expression is equival-
ent to the following:

A(1).B + C.H
A(1).D + C.I
aA(2).B + C.H

A(10).D + C.I

STRUCTURE EXPRESSIONS

The operands of a structure expression
are structures, or a combination of struc-
tures and scalars. A structure expression
returns a structure result. Array operands
are not allowed in structure expressions.

All operations performed on structures
are performed on an element-by-element
basis. Thus, all structures appearing in a
structure expression must have identical
structuring. This means that the structure
must have the same number of contained
scalars and arrays. The positioning of the
scalars and arrays within the structure
must be the same, and arrays similarly

36

positioned must have identical dimensions
and bounds. The data types need not be the
same.

When an operation has one structure and
one scalar operand, it is interpreted as
many operations, one for each scalar ele-
ment in the structure. Each sub-operation
involves a structure element and the scalar
operand.

A structure expression is a shorthand
method of applying an expression to each
item of a structure.

Note: A scalar expression is a valid form
of a structure expression.

Example:

If there are two structures:

1A 1B
2 PART1 2 PART1
3 SUBPART1 3 SUBPART1
3 SUBPART2 3 ALPHA
3 SUBPART3 3 SUBPART2
2 PART2 2 PART2
3 SUBPARTY4 3 ALPHA
3 BETA 3 SUBPARTY

3 SUBPARTS (3) 3 SUBPARTS (3)

Then the expression A-2*B is shorthand for
the following expressions:

A . SUBPART1 - 2*%B . SUBPART1

A . SUBPART2 - 2%#B . PART1 . ALPHA

A . SUBPART3 - 2*%B . SUBPART2

A . SUBPART4 - 2*%B . PART2 . ALPHA

A . BETA - 2%#B . SUBPARTU

A . SUBPARTS - 2*%*B . SUBPARTS

Note that the last expression is an
expression.

array

EVALUATION OF EXPRESSIONS

In the evaluation of an expression, the
priority of operations is as follows:

4+ **, prefix +, prefix - highest
*x, /

infix +, infix -

>y Su 129 15 <h 1< <5, S

&

|

T lowest

Operations within an expression are per-
formed in the order of decreasing priority.
For example, in the expression A+B**3,
exponentiation is performed before addi-
tion. If an expression involves operations
of the same priority, the operations ,, #*,

prefix +, and prefix - are performed n
right to left and all other operations are
performed from left to right.

If an expression is enclosed in paren-
theses, it is treated as a single operand.
The parenthesized expression is evaluated
before its associated operation 1is per-
formed. For example, in the expression
(A+B**3)/(C*D| |E), A will be added to B**3,
C*D will Dbe concatenated with E, and then

the first of these results will be divided
by the second.
Thus, parentheses modify the normal

rules of priority.

The operators + and * are commutative,
but not associative, as low-order rounding
errors will depend on the order of evalua-
tion of an expression. Thus, A+B+C is not
necessarily equal to A+(B+C).

The rules relating to abnormal functions
and abnormal dJdata should be noted (see
"Abnormality and Irreducibility,”™ in Chap-
ter 10).

ORDER OF THE EVALUATION OF EXPRESSIONS

The operands of an expression are not
accessed in a specific order. A program
must not depend on a specific order of
access for its successful operation.

Array expressions are evaluated by per-
forming, in turn, a complete scalar evalua-
tion of the expression for each position of
the array. The evaluations proceed in
row-major order (final subscript varying
most rapidly). The result of an evaluation
for an earlier position can alter the
values of scalar elements for the evalua-
tion of a later position (see Example 1,
for "The Assignment Statement,"” in Chapter
8).

Structure expressions are evaluated by
performing a complete scalar evaluation of
the expression for each eligible field, in
the order in which the fields in the
structures are declared. The results of an
evaluation for an earlier position can
alter the result for the evaluation of a
later position.

Chapter 3: Data Manipulation 37

CHAPTER_U4: DATA DESCRIPTION

An identifier appearing in a PL/I pro-
gram may refer to one of many classes of

objects. It may, for example, represent a
variable referring to a complex number
expressed in fixed-point form with decimal
base; it may refer to a file; it may

represent a variable referring to a charac-
ter string; it may represent a statement
label or represent a variable referring to
a statement 1label; it may be a variable
referring to a pointer or area, etc.

Those properties that characterize the

object represented by the identifier, and
other properties of the identifier itself
(such as scope, storage class, etc.),

together make up the set of attributes
which can be associated with an identifier.

There are a number of classes of attri-
butes. These classes and the attributes in
each class are described further on in this
chapter.

When an identifier is used in a given
context in a program, attributes from cer-
tain of these attribute-classes must be
known in order to assign a unigque meaning
to the identifier. For example, if an
identifier is used as a data variable, the
data type must be known; if the data type
is arithmetic, the base, scale, mode, and
precision must be known.

Examples of Attributes:

CHARACTER (50)--Association of this attri-
bute with an identifier defines the
identifier as representing a variable

referring to a string 50 characters in
length.

FLOAT--Association of this attribute with
an identifier defines the identifier
as representing a variable referring
to arithmetic data, where the data is

represented internally in floating-
point form.
EXTERNAL--Association of this attribute

with an identifier defines the
identifier as a name with a certain
special scope.

38

DECLARATIONS

A given identifier is established as a
name, which holds throughout a certain
scope in the program (see "Scope of
Declarations" in this chapter), and a set
of attributes may be associated with the
identifier by means of a declaration.

If a declaration is internal to a cer-
tain block, then the declared identifier is
said to be declared in that block.

In a given program, an identifier may
represent more than one name. In this
case, each different name represented by
the identifier is said to be a different
use of the identifier. For example, an
identifier may represent an arithmetic
variable in one part of a program and an
entry name in another part. These two
parts, of course, cannot overlap.

Each different use of the identifier is
established by a different declaration.
References to different uses are distingu-
ished by the rules of scope (see "Scope of
Declarations"™).
contex-

Declarations may be explicit,

tual, or implicit.

EXPLICIT DECLARATIONS

Explicit declarations are made through
use of the DECLARE statement, label prefix-
es, and specification in a formal parameter
list; by this means, an identifier can be
established as a name and can be given a
certain set (possibly empty) of attributes.

Only one DECLARE statement can be used
to establish a given use of a given iden-
tifier. However, complementary sets of
explicit declarations are permitted:

a. One explicit declaration of an entry
name as a statement prefix may be
combined with an explicit declaration
in a DECLARE statement.

b. One or more explicit declarations in

parameter 1lists may be combined with
an explicit declaration in a DECLARE
statement.

All declarations of a complementary set
must be internal to the same block.

Function:

The DECLARE statement is a non-

executable statement used for the
specification of attributes of simple
names.

General Format:

DECLARE [levell name {attribute] ...
[, [levell name [attributel ...]1 ...:

Syntax rules:

1. Any number of identifiers may be
declared as names in one DECLARE
statement and must be separated by
commas.

2. Attributes must follow the
which they refer. {Note that the
above format does not show factoring
of attributes, which is allowable as
explained later).

names to

3. "Level" is a non-zero decimal integer
constant. If it 1is not specified,
level 1 is assumed. A blank space is
not required to separate a level num-
ber from the name following it.

General Rules:

1. All of the attributes given explicitly
for a particular name must be declared

together in one DECLARE statement.
(Note that for FILE, certain attri-
butes may be specified in an OPEN

statement. See Chapter 7, "File Open-
ing and File Attributes.™)

2. Attributes of EXTERNAL names, declared
in separate blocks and compilations,
must not conflict or supply explicit
information that was not explicit or
implicit in other declarations.

Example:

DECLARE JOE FLOAT, JIM FIXED (5,3),
JACK BIT (10);

JOE is declared to be a
scalar wvariable, JIM a five-position,
fixed-point scalar variable with three
places to the right of the decimal, and
JACK a scalar variable of ten bits.

floating-point

Factoring of Attributes

name dec-
eliminate

Attributes common to several
larations can be factored to

repeated specification of the same attri-
bute for many identifiers. This factoring
is achieved by enclosing the name declara-
tions in parentheses, and following this by
the set of attributes which are to apply.
In the case of a factored level number, the
level number precedes the parenthesized
list of name declarations.

Examples:

FIXED, B FLOAT) STATIC,

{A
CONTROLLED) EXTERNAL;

s

C

This declaration 1is
following:

equivalent to the

DECLARE A FIXED STATIC EXTERNAL,
B FLOAT STATIC EXTERNAL,
C CONTROLLED EXTERNAL;

2. DECLARE 1A AUTOMATIC,2(B FIXED, C
FLOAT, D CHAR(10)});

This declaration is
following:

equivalent to the

DECLARE 1 A AUTOMATIC,
2 B FIXED,
2 C FLOAT,
2 D CHAR(10);

Multiple Declarations and Ambiguous
References

of the same
h1nnk'

2100

declarations

tc the same

Two Or more
identifier, internal
constitute a multiple declaration of that
identifier only if they have identical
qualification (including the case of two or
more declarations of an identifier at level
1, i.e., scalars or major structures).
Multiple declarations are in error.

Reference to a qualified name is always
taken to apply to the identifier (for which
the reference is wvalid) declared in the
innermost block containing the reference.
Within this block, the reference is unam-
biguous if either of the following is true:

1. The reference gives a valid qualifica-
tion for one and only one declaration
of the identifier.

2. The reference represents the complete
qualification of only one declaration

of the identifier. The reference is
then taken to apply to this identifi-
er.

Otherwise, the

in erxrlre.

reference is ambiguous and

Chapter 4: Data Description 39

Examples:

1. DECLARE 1A, 2C, 2D, 3E;
BEGIN;
DECLARE 1A, 2B, 3C, 3E;
A.C=D.E;

A.C refers to C in the inner block.
D.E refers to E in the outer block.

2. DECLARE 1A, 2B, 2B, 2C, 3D, 2D;

B has been multiply declared.

A.D refers to the second D, since A.D
is a complete qualification of only
the second D; the first D would
have to be referred to as A.C.D.

3. DECLARE 1A, 2B, 3C, 2D, 3C;
A.C is ambiguous because neither C is
completely qualified by this ref-
erence.

4. DECLARE 1A, 2A, 3A;
A refers to the first Aa.
A.A refers to the second A.
A.A.A refers to the third A.
5. DECLARE X; DECLARE 1Y, 2X, 3%Z, 3A, 2Y,
3z, 3A;
X refers to the first DECLARE
Z 1is ambiguous
.Z refers to the second 2
.Z refers to the first Z

Label Prefixes

A label acting as a prefix to a PROCE-
DURE or ENTRY statement explicitly declares
the identifier as ENTRY. If the PROCEDURE
or ENTRY statement applies to the outermost
procedure of a compilation, the attribute
EXTERNAL is given. 1If all other cases, the
attribute INTERNAL is given and the dec-
laration is said to be internal to the
block containing the procedure.

A label acting as a prefix to any other
statement is an explicit declaration of the
identifier as a statement label constant.
The declaration is said to be internal to
the block containing the statement.

Parameters

The appearance of an identifier in a
parameter 1list of a PROCEDURE or ENTRY
statement is an explicit declaration of the
identifier as a parameter.

40

CONTEXTUAL DECLARATIONS

The syntax of PL/I

allows identifiers

appearing in certain contexts to be recog-

nized without an explicit declaration.

The

various cases are described below.

1.

An identifier may occur in a context
where only a file name may appear. In
some of these cases, the identifier is
said to be declared as a file name
(see "File Opening and File
Attributes" in Chapter 7).

Example:

GET FILE (INFILE) DATA;
Here, INFILE is declared contex-
tually with the attribute FILE.

An identifier may occur in a context
where only a task (or event) name (see
"The CALL Statement™ in Chapter 8 and
"Asynchronous Operations and Tasks" in
Chapter 6) may appear. In some of
these cases, the identifier is said to
be declared as a task (or event) name
(see "Application of Default
Attributes").

Example:

WAIT (EVENT2);

Here, EVENT2 1is declared
tually as an event identifier.

contex-

An identifier may occur in a context
where only a programmer-specified con-
dition name (see Appendix 3) may
appear. In this case, the identifier
is said to be declared as a condition
name, with the attribute EXTERNAL.

Example:

ON CONDITION (TEST1) GO TO CHECK;

Here, TEST1 is declared contextual-
ly as a condition name.

An identifier may appear within a
statement in a context where only an
entry name may appear. That 1is, an
identifier is contextually declared as
an entry name if it appears as a label
to a PROCEDURE or ENTRY statement or
if it appears following the keyword
CALL or as the function name in a
function reference whose argument list
is non-empty. If the occurrence of
the identifier does not lie within the
scope of the same identifier used to
label a PROCEDURE or ENTRY statement,
the identifier is given a default
attribute of EXTERNAL.

Example:

CALL EXPRI;

5. An identifier may appear in a context
in which only a pointer name may be
used. In this case, the identifier is
contextually declared to be a pointer.

Example:

DECLARE A(10,10) CONTROLLED (P);
ALLOCATE A SET (P);
P -> a(1,1) = P -> A(5,5);

The variable P is declared contex-
tually as a pointer in each of the
above statements.

6. An identifier may appear in a context
where only an area name may be used.
In this case, the identifier is con-
textually declared to be an area.

Example:
ALLOCATE A IN (TREE) SET(P);

In this example TREE is contextually
declared to be an area.

Note: Arithmetic or string attributes of
constants are determined contextually.

IMPLICIT DECLARATIONS

An identifier may be wused in a block
without being explicitly declared or con-
textually declared. 1In this case the iden-
tifier is said to be implicitly declared in
the containing external procedure. As will
be seen in the discussion of scope, this
implicit declaration will then apply to the
entire external procedure block except for
any contained blocks where the identifier
might be explicitly re-declared.

Example:

Bl: PROCEDURE (Z1,72);

TEMP1=ABS (Z1#*#*2+72%%2);

BZ: BEGIN;
TEMP2= 1/ (TEMP1+Z2)*%2;

IF TEMP2>TEMP1 THEN RETURN
(TEMP2) ;

END B2;

RETURN (TEMP1);

END B1;

In this example, TEMP1 and TEMP2 are
both implicitly declared in block Bl.

SCOPE OF DECLARATIONS

When a declaration of an identifier is
made in a program, there is a certain
well-defined region of the program over
which this declaration is applicable. This
region is called the scope of the declara-
tion or the scope of the name established
by the declaration.

The scope of a declaration of an iden-

ifier is defined as that blicck B to which
the declaration is internal, but excluding
from block B all contained blocks to which
another declaration of the same identifier

is internal.

SEI A

This definition of scope can be applied
to all identifier declarations except the
declaration of entry names of external
procedures (see "Declarations," in this
chapter). The appearance of an identifier
as the entry name of an external procedure
is regarded as an explicit declaration of

the identifier as an entry name with the
EXTERNAL attribute. The scope of such a
declaration is defined to be the entire

external procedure, excluding all contained
blocks to which another declaration of the
same identifier is internal.

Scope of External Names

In general, distinct declarations of the
same identifier imply distinct names with
distinct non-overlapping scopes. It 1is
possible, however, to establish the same
name for distinct declarations of the same
identifier by means of the EXTERNAL attri-
bute. The EXTERNAL attribute is defined as

follows:

An explicit or contextual declaration of
an identifier that declares the iden-
tifier as EXTERNAL is called an external
declaration__for the _identifier. All
external declarations for the same iden-
tifier in a program will be linked and
considered as establishing the same
name. The scope of this name will be
the wunion of the scopes of all the
external declarations for this identifi-
er.

In all of the external declarations for

the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.

For example, it would be an error if the
identifier ID were used as an EXTERNAL file
name in some READ statement in a program,
and in the same program to declare ID as
EXTERNAI. ENTRY.

Chapter 4: Data Description 41

The EXTERNAL attribute can be used to
communicate between different external pro-
cedures or to obtain non-continuous scopes
for a name within an external procedure.

An external name is a name that has the
scope attribute EXTERNAL. If a name is not
external, it is said to be an internal name

and has the scope attribute INTERNAL.

The following examples illustrate scope
of declarations. The numbers on the left
are for reference only, and are not part of
the procedure. See Table 2 for an explana-
tion of the scope and use of each name.

Example 1:
1 A: PROCEDURE;
2

DECLARE (X,Z) FLOAT;

PROCEDURE (Y);

4 DECLARE Y BIT (6);
5 C: BEGIN;
6 DECLARE (A,X) FIXED;
7 Y: RETURN;
END C;

END B;
8 D: PROCEDURE;
9 DECLARE X FILE;
10 Y = Z;

END D;

END A;

Since entry names of external procedures
and file names have the attribute EXTERNAL,
the scope of the entry name A and of the
file name X above may include parts of

3 B: other external procedures of the program.
Table 2. Scope and Use of Names in Example 1, for "Scope of External Names"

| I
i Reference Line Name Use Scope (by biock names} i
‘ 1 A external entry name all of A except C }
: 2 X floating-point variable all of A except C and D :
: 2 2 floating-point variable all of A :
} 3 B internal entry name all of A :
{ 4 Y bit string all of B except C :
: 5 C statement label all of B :
: 6 A fixed-point variable all of C ;
: 6 X fixed-point variable all of C I
} 7 Y statement label all of C I
} 8 D internal entry name all of A :
% 9 X file name all of D =
i 10 Y floating-point variable all of A except B 3
L J

42

A: PROCEDURE;
1 DECLARE X EXTERNAL;

B: PROCEDURE;
2 DECLARE X FIXED;

C: BEGIN;
3 DECLARE X EXTERNAL;

END C;
END B;
END A;
D: PROCEDURE;
4 DECLARE X FIXED;

-

E: PROCEDURE;
5 DECLARE X EXTERNAL;

END E;
END D;

In example 2,
tions for the identifier X.

Declaration 2 declares X as a fixed-
point variable name; its scope is all of
block B except block C.

X as another

. -
arin~d Fram
distinct from

Declaration 4 declares
fixed-point variable name,
that of declaration 2; its scope is all of
block D except block E.

Declarations 1,3,5 all establish X as a
single name; its scope is all of the
program except the scopes of declarations 2
and 4.

Basic Rule on Use of Names

A name is said to be known only within
its scope. This definition suggests a
basic -- and almost self-evident -- rule on
the use of names:

All appearances of an identifier which
are intended to represent a given name
in a program must lie within the scope
of that name.

There are many implications to the above
rule. One of the most important is the
limitation of +transfer of contrsol by the

there are five declara- |

statement GO TO A, where A is a
label.

statement

The statement GO TO A, internal to a
block B, can cause a transfer of control to
another statement internal to block B or to
a statement in a block containing B, and to
no other statement. In particular, it
cannot transfer control to any point within
a block contained in B.

THE _ATTRIBUTES

Attributes are used to give
characteristics to their associated iden-
tifiers. The attributes of the language
are divided into the following classes:

Data attributes

Dimension attribute

SECONDARY attribute

REDUCIBLE and IRREDUCIBLE attributes
ABNORMAL and NORMAL attributes
USES and SETS attributes
Entry name attributes

Scope attributes

Storage Class attributes
ALIGNED and PACKED attributes
DEFINED attribute

CELL attribute

INITIAL attribute

Structure attributes

LIKE attribute

File description attributes
List processing attributes

DATA ATTRIBUTES

Arithmetic Data

declared to be of arith-
any of the

Variables are
metic type if they are given

attributes base, scale, mode, or numeric
picture.
Base Attributes

Function:

The base attribute specifies that the

data is in binary or decimal form.
General format:
BINARY | DECIMAL
General rules:
These attributes may not be specified

in combination with the PICTURE attri-
bute.

Chapter 4: Data Description 43

Default:

See "Default Conditions for Arithmetic

Data" in this chapter.

Examples:

DECLARE A DECIMAL, B BINARY;

Scale Attributes

Function:

The scale
data 1is in
form.

attribute specifies that the
fixed-point or floating-point

General format:
FIXED|FLOAT

General rules:

These attributes may not be given in
combination with the PICTURE attri-
bute.

Default:

See "Default Conditions for Arithmetic
Data."™

Examples:
DECLARE A FIXED, B FLOAT;
Mode Attributes
Function:

The mode attribute specifies that the
mode of the data is real or complex.

General format:
REAL| COMPLEX

General rules:
The COMPLEX attribute may be given in
combination with the PICTURE attri-
bute, to specify a complex numeric
field.

Default:

See "Default Conditions for Arithmetic

Data."
Example:

DECLARE A COMPLEX, B REAL;

by

Precision Attribute
Function:

The precision attribute specifies the
number of significant binary or decimal
digits to be maintained for both fixed-
point and floating-point data, as well as
the scale of the data.

General format:

(number-of-digits[,scale-factorl)

General rules:

1. The precision attribute must
immediately follow a scale, base, or
mode attribute at the same factoring
level.

2. "Number-of-digits"™ is a positive deci-
mal integer constant specifying the
number of binary or decimal digits to
be maintained and 1is used with both
fixed-point and floating-point data.

3. The "scale-factor" is an optionally
signed decimal integer constant that
defines the position of the point with
respect to an integer data item of the
specified number of digits. The scale
factor is used only with fixed-point
data.

4. When the scale is fixed and no scale
factor is given, it is assumed to be
Zero.

5. The scale factor may be negative, and

it may be larger than the number of
digits.
6. The scale factor effectively multi-

plies the integer data
raised to the power
factor with the sign reversed. For
example, decimal data of precision
(5,2) represents numbers from .01 to
999,99 or zero in magnitude: decimal
data of precision (5,-2) represents
numbers from 100 to 9999900 or zero in

by the base
of the scale

magnitude.

7. This attribute may not be given in
combination with the PICTURE attri-
bute.

Examples:

DECLARE A FLOAT (3), B REAL (10)
FLOAT, X FIXED (5,2);

The following table shows the meaning of
the scaling for fixed-point variables:

T El] T 1
| Integer | Scale |Precision |Value |
! | | ! !
00123	FIXED	(5,2) 11.23	
00123	FIXED	(5,-2)	12300
123	FIXED	(3, 1.0123	
123	FIXED	(3,-4) 11230000	
L L L i R Jd

Default Conditions for Arithmetic Data

and mode are not
default attri-

If the
specified, the

base, scale,
arithmetic

butes are dependent upon the first letter
of the name. If the first 1letter of the
name is I through N, FIXED REAL BINARY is

assumed; otherwise, FLOAT REAL DECIMAL is
assumed.

If arithmetic data attributes are partly
specified, the remaining attributes are
assumed as follows:

Base: DECIMAL
Scale: FLOAT
Mode: REAL

If precision is not specified, the
assumed precision is that which is defined
for the particular implementation of the
language that is being wused, where the
definition depends on the scale and base.

The PICTURE Attribute

Function:

The PICTURE attribute is used to define
the internal and external formats of numer-
ic and character-string data fields and to
specify the editing of data. This discus-
sion is limited to the use of the PICTURE
attribute with numeric data. The use of
the PICTURE attribute with character-string
data is described in "String Attributes."
The picture characters are described in
Appendix 2.

General format:

PICTURE ‘numeric-picture-specifica-
tions'

General rules:

1. PICTURE may not be specified in combi-
nation with the base, scale, or preci-
sion attributes.

Numeric fields have mode, base,
scale, and precision; these are speci-
fied by the picture characters used in
describing the field, and by the use
of the mode attribute if COMPLEX.
Note the exception that sterling pic-

tures are treated as a separate cate-
gory, although they are real fixed-
point decimal fields.

A "picture specification™ is composed
of a string of picture characters. It
must be enclosed in gquotation marks.
Individual picture characters may be
preceded by an iteration factor, which
is a decimal integer constant, n,
enclosed in parentheses, to indicate
repetition of the character n times.
if n is the character is
omitted. This iteration factor speci-
fication may not follow the picture
character F.

zeroc, thie

Numeric picture specifications must
include at least one digit position.

The following paragraphs indicate the
combination of picture characters that
show mode, scale, base, and precision.
In this discussion, a fixed-point
field has one field, and a floating-
point field has two subfields.

a. Real binary fixed-point fields
take the following general forms:

PICTURE '([s]([1] ... (V]
{11 ... ({F{[+]-] integer) 1°'
PICTURE '[2]...[V1{2)...[F([+|-]
integer)]l"*
PICTURE *[31...[V1 (3)...[(F([+}|-]

integer) 1’
Only one V, representing a point,
may be present in a picture

specification, but it may be in
any position. When a sign charac-
ter (S) is specified, the field
will contain a binary 1, if the
value is negative, or a zero, if
the value is positive.

b. Real binary floating-point fields

take the following general forms:
PICTURE 'I[s1(1] ... [Vl (11 ...

RK[s11(11 ...°

PICTURE f{2%1... ivi
K2[27..."

PICTURE *I3]1... vl
K3(3l..."

{23]...
(31...

The mantissa and exponent must
each contain at 1least one digit
position. The sign character
allowed to the right of the K in
the first form represents the sign
of the exponent.

c. Real decimal fixed-point fields
take the following general form:

PICTURE '([91... [V] [9]...
[F([+]-1 integer)1'

Chapter 4: Data Description 45

46

Sign, editing, and Zero-
suppression picture characters, as
explained in Appendix 2, may be
included (only one sign character
per subfield is allowed). The V
may not appear more that once in a
picture specification. If no V is
given, the decimal point will be
assumed to appear to the right of
the last digit. No attempt has
been made to show the use of all
valid picture characters in the
general format above. These are
explained in Appendix 2.

Real decimal floating-point fields
take the following general form:

PICTURE '[9]... [VI[9]...{E|K}

9..."
The mantissa and exponent must
each contain at 1least one digit
position. Sign, editing, and

zero-suppression picture charac-
ters may be included. Sign char-
acters refer to the subfield in
which they appear, except a CR or
a DB, which refers to the first
subfield. Only one sign characterxr
per subfield is allowed.

Complex fields may contain those
picture characters that are valid

for real fields as described
above. They take the general
form:

real-picture

The "real-picture" represents both
portions of the complex number.
The attribute COMPLEX must also be
specified. The real-picture may
not specify a sterling field.

Sterling fields are considered to

be real fixed-point decimal
fields. When involved in arith-
metic operations, they will be

converted to a value representing
fixed-point pence. Sterling pic-
tures have the general form:

PICTURE

*Glediting-character-1]...

M pounds-field

M [separator-1]...
shillings-field

M [(separator-2]...
pence-field

[editing-character-2}..."

"Editing character 1" may be one
or more of the following static
picture characters:

§+-s

The “pounds field" may contain the
following picture characters:

ZY*9TIR, $+ -5
The last four characters (i.e., $
+ - 8) must be drifting charac-
ters. The comma may be used as a
break character.

"Separator 1" may be one or more

of the following picture charac-
ters:
/ . B

The "shillings field" may be:
199|YY|22|Y9|29|2Y|8}

The nines may be replaced by T, I,
or R.

"Separator 2" may be one or more
of the picture characters:

/ . BH

The "pence field" takes the form:

199 YY|22|Y9{7|29|2Y|6} (V]|V.]|.V]
[9|Z|¥}...

Any of the nines may be replaced
by one of the following:

TIR

"Editing character 2" may be one
or more of the static picture
characters $§ + - S and one or more
of B P CR DB.

The pounds, shillings, and pence
subfields must each contain at
least one digit position.

Zero suppression in sterling pic-
tures is performed on the total
field, not separately on each of
the pounds, shillings, and pence
subfields. 1In sterling pictures,
the subfield separator characters
/ . B and H are never suppressed.

The precision of picture specifi-
cations is described below. In this
discussion, the following picture
characters, actual and conditional,
are defined as digit positions:

12392Z*YTIR
and the drifting
$s + -

The precision of a fixed-point
numeric field is (m,n), where m is the
total number of digit positions in the

field and n is the number of digit

positions following the V. If a
drifting string contains n drifting
characters, this specifies n-1 digit

positions.
is 3 + the number of digits in the
pounds field + the number of fraction-
al digits in the pence field.

The precision of a floating-point
field is (p), where p is the total
number of digit positions before the E
or K.

Decimal or binary fixed-point pic-
tures may have a scaling factor. This
may be achieved by placing the follow-
ing at the extreme right of the pic-
ture subfield:

F ([+]|-] integex)

with +the "integer" value represented
by g, this specifies that the decimal
or binary point should be assumed to
be g places to the right (or left, if
negative) of the position assumed in
the absence of the scaling factor.
The precision of the numeric field is
then (m,n-g).

These precisions may not exceed the
limits for decimal or binary fixed-
point values, as defined for the
particular implementation of PL/I.

6. Only one sign position is permitted in
a PICTURE subfield. This may be spec-
ified by a static sign picture charac-
ter or by a drifting string for a sign
character.

String Attributes

Function:

The string attributes specify string

data to be either in bit-string form or in
character-string form with a specified
length. The form of character-string data

may also be specified.
General format:
‘ BIT
z }(length) {VARYING]
CHARACTER

PICTURE 'character-picture-
specifications"

General rules:

1. BIT specifies bit-string data, CHARAC-
TER specifies character-string data,

For sterling pictures, m |

and PICTURE specifies character-string
data in picture form.

2. The "length" attribute specifies the
actual 1length of fixed-length strings
and the maximum 1length of varying-
length strings, in which case the
attribute VARYING is given. If
VARYING is specified, then either BIT
or. CHARACTER must also be specified.
The attrlbute VARYING may appear prlor
toc the BIT or CHARACTER attribute in a
string attribute specification; that
is, it may appear anywhere in the
declaration of a string. VARYING may
be factored.

3. The 1length specification may be an
expression or an asterisk. It must
immediately follow a CHARACTER or BIT
attribute at the same factoring level.

t. If the length specification is an
expression, it will be converted to an
integer at the point of allocation or
upon entry to the declaring block for
parameters.

5. An asterisk may be used when the
length is to be taken from a previous
allocation for parameters or nonbased
CONTROLLED variables or if it is to be
specified in a subsequent ALLOCATE

statement for nonbased CONTROLLED
variables.
6. The ngth of strings declared STATIC

len
must be a decimal integer constant.

7. Since PICTURE is an attribute that
also may apply to arithmetic data, a
separate explanation is in the section
entitled "The PICTURE Attribute.”
Additional picture characters are pro-
vided when the PICTURE attribute is
used to declare character-string data.
These may be found in Appendix 2.

8. BIT, CHARACTER, or VARYING may not be
specified if PICTURE is specified.

Example:

DECLARE A BIT (10}, B CHARACTER (S5), C
PICTURE 'XAA9AA', D BIT(*)VARYING;

A is a field of ten bits; B is a field
of five characters; C is a field of charac-
ters, letters, and a decimal digit; and D
is a field of bits with a maximum length to
be taken from a previous allocation or to
be specified in a subsequent ALLOCATE
statement.

Chapter 4: Data Description u7

The LABEL Attribute

Function:

The LABEL attribute specifies that the
associated variable will have statement
labels as values. To aid optimization of
the object program, it may also specify the
values a label variable may have during
execution of the program.

General format:

LABEL [(statement-label-constant
[, statement-label-constantl...)]

General rules:

1. If the variable is a parameter, the
value can also be any statement label
that could be passed as an argument,
or any value permitted for any label
variable that may be specified as an
argument.

2. If a list of statement-label constants
is specified, the variable may have as
values only members of the list. The

label constants in the iist must be
known in the block containing the
declaration.

3. An entry name cannot be a value of a
label variable.

4. A subscripted label that is an element
of a label array may appear as a
statement prefix but may not appear in
an END statement after the keyword
END.

Example:

DECLARE START LABEL
LABEL3) ;

(LABEL1, LABEL2,

The TASK_Attribute

Function:

The TASK attribute
associated identifier is
name (see "Asynchronous Operations and
Tasks,™ in Chapter 6, the general rules
under "The CALL Statement,™ in Chapter 8,
and "Task Data" in Chapter 2).

specifies that the
used as a task

General format:
TASK
General rules:
1. An

identifier may be explicitly

48

declared with the TASK attribute in a
DECLARE statement. It may be contex-
tually declared by its appearance in a
TASK option appended to a CALL state-
ment (see Chapter 8).

2. Task names may also have the following
attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)

Storage class attribute (the
default is AUTOMATIC)

DEFINED attribute (task names may

only be defined on other task
names)

ABNORMAL attribute (all task names
are ABNORMAL)

SECONDARY attribute

3. A task name can appear in a TASK
option (see "The CALL Statement,"™ in
Chapter 8), as the argument in the
PRIORITY built-in function, or in the
PRIORITY pseudo-variable. Task names
also may be passed as procedure param-
eters.

The EVENT Attribute

Function:

The EVENT attribute specifies that the
associated identifier is used as an event
name (see "Asynchronous Operations and
Tasks," in Chapter 6, the general rules
under "The CALL Statement,"™ in Chapter 8,
and "Event Data" in Chapter 2).

General format:
EVENT
General rules:

1. An jidentifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be contex-
tually declared by its appearance in
an EVENT option appended to a CALL
statement, in a WAIT statement, in a
DISPLAY statement, or in various
input/output statements (see Chapter
8).

2., Event names may also have the follow-
ing attributes:

Dimension attribute

Scope attribute (the default is
INTERNAL)

Storage class attribute (the
default is AUTOMATIC)

DEFINED attribute (event names may

only be defined on other event
names)

ABNORMAL attribute (all event names
are ABNORMAL)

SECONDARY attribute

An event name can appear in an EVENT
option, a WAIT statement (see Chapter
8), or as the argument in +the EVENT
built-in function or in the EVENT
pseudo-variable. Event names also may
be passed as procedure parameters.

THE DIMENSION ATTRIBUTE

The

Function:

dimension attribute defines the

bounds of an array.

Lower bound and upper bound

General format:

(bound [, boundl ...)
where "bound" is

{[lower-bound :)upper-bound}|*

Syntax rule:

are scalar

expressions.

1.

2.

4.

General

rules:

The number of "bounds" specifies the
number of dimensions in an array.

Bounds that are expressions are evalu-
ated and converted to integer data
when storage is allocated for the
array or when linkage 1is established
for parameters.

The bounds are indicated as follows:

a. If only the upper bound is given,
the lower bound is assumed +to be
one.

b. When the actual bounds for each
dimension are to be taken from a
previous allocation for that iden-
tifier or are to be specified in a
subsequent ALLOCATE statement for
nonbased variables, an asterisk
must be used to represent each of
the dimension bounds. Thus,
asterisks may be used only for
parameters and CONTROLLED varia-
bles.

c. The lower bound must be less than
or equal to the upper bound.

The

bounds of arrays declared static

7.

1.

2.

must be optionally signed
integer constants.

If an attribute list contains a dimen-
sion attribute, that attribute must
come first in the list.

If any bound of a dimension attribute
in a structure declaration is an
asterisk, then all dimension bounds
for the major structure and for all
other structure elements must also be
asterisks.

The asterisk notation may not be used
for based variables.

Examples:

DECLARE TABLEA(5,8), TABLEB(-5:5,10);

TABLEA is a two-dimensional array with
5 rows and 8 columns (Subscripts
1 to 5 and 1 to 8). TABLEB is a
two-dimensional array with 11
rows and 10 columns (subscripts
-5, -4, -3, -2, -1, 0, 1, 2, 3,
4, 5 for the rows and 1 through
10 for the columns).

DECLARE MATRIX (¥*,%);

MATRIX is a two-dimensional array.
The bounds are to be taken from a
previous allocation for MATRIX or
are to be subsequently specified
in an ALLOCATE statement.

THE SECONDARY ATTRIBUTE

Function:

The SECONDARY attribute is used to spec-
ify that

certain data normally does not

require efficient storage.

1.

General format:

SECONDARY

General rules:

This attribute may be declared only
for major structures, arrays, and
variables not contained in structures
or arrays, i.e., for variables at
level 1.

The attribute
possible and necessary,
mally efficient storage may be
cated to the variabie.

specifies that where
less than nor-
allo-

Chapter 4: Data Description 49

THE ABNORMAL AND NORMAL ATTRIBUTES

Function:

The ABNORMAL and NORMAL attributes are
used to specify data as being either normal
or abnormal.

General format:
ABNORMAL | NORMAL
General rules:

1. The ABNORMAL attribute may be declared
for any variable.

2. The ABNORMAL attribute specifies that
a variable may be altered or otherwise
accessed at an unpredictable time dur-
ing the execution of a program. This
situation might occur, for example,
during the execution of an ON-unit as
described in "The ON Statement," in

Chapter 8.

3. Every time ABNORMAL data is referred
to, its associated storage contains
its current value.

Default for Abnormality of Data
Variables are assumed to be NORMAL,

except structures containing ABNORMAL ele-
ments; such structures may not be declared
NORMAL.

THE REDUCIBLE AND IRREDUCIBLE ATTRIBUTES

Function:

The REDUCIBLE and IRREDUCIBLE attributes
are used to specify entry names as being
either reducible or irreducible. The IRRE-
DUCIBLE attribute specifies that invoca-
tions of the specified entry may not not be
reduced to a smaller number of invocations.

General format:
REDUCIBLE | IRREDUCIBLE

General rules:

1. Reducibility is a property of both
external and internal procedures.
Blocks invoking procedures that are

irreducible must be within the scope
of an IRREDUCIBLE, USES, or SETS dec-
laration for the invoked entry name.
However, the invocation of an irredu-
cible procedure does not make the
invoking procedure itself irreducible.
These attributes enable program optim-
ization to be performed.

50

external procedure is irreducible
if it or any procedures invoked by it:

a. Access, modify, allocate or free
external data.

b. Modify, allocate, or free their
arguments.

c. Return inconsistent function
values for the same argument
values.

d. Maintain any kind of history.
e. Perform input/output operations.

f. Return control from the procedure
by means of a GO TO statement.

3. An internal procedure is irreducible:

a. Under any of the conditions listed
above for external procedures.

b. If it, or any procedures called by
it, access, modify, allocate, or
free variables declared in an
outer block.

4, Irreducible external procedures
invoked as functions must be declared
with at least one of the attributes,
IRREDUCIBLE, USES, or SETS. The scope
of this declaration must include the
invoking block.

5. IRREDUCIBLE used alone specifies that
all possible types of irreducibility
should be assumed. It is wunnecessary
to specify IRREDUCIBLE for the built-
in functions, TIME and DATE.

6. The REDUCIBLE attribute specifies that
the entry name is for a procedure that
is not irreducible.

Default for Irreducibility of Procedures

If an external entry name appears only
as a function reference, the entry name is
assumed to have the REDUCIBLE attribute.
Entry names of all internal procedures and
eritry names of external procedures invoked
in CALL statements are assumed to have the
IRREDUCIBLE attribute.

THE USES AND SETS ATTRIBUTES

Function:

The USES and SETS attributes are used to
specify, for an entry name, the nature of
its irreducibility due to data
manipulation.

i.

2.

General format:

USES {(iteml,item]...)}
SETS (iteml,iteml...)

General rules:

The items of the list following a USES
or SETS attribute may be as follows:

a. A decimal integer n, specifying
the nth argument of any invocation
of the procedure at the declared
entry name.

b. An unsubscripted data name known
to both the block containing the
declaration and the invoked proce-
dure.

c. An asterisk indicating all iden-
tifiers described in b.

An item in the USES list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it access that
item.

b. That neither the invoked procedure
nor procedures invoked by it reas-
sign that item unless it is also
specified in a SETS attribute.

c. That neither the invoked procedure
nor procedures invoked by it
access any other data known to the
block, except data designated by
explicit arguments in either a
CALL statement, a statement with a
CALL option, or a function ref-
erence.

An item in the SETS list specifies the
following:

a. That the invoked procedure or pro-
cedures invoked by it reassign,
allocate, or free that item.

b. That neither the invoked procedure

nor procedures invoked by it
access that item other than to
reassign, allocate, or free it,
unless it is also specified in a
USES attribute, or it is an argu-
ment.

c. That neither the invoked procedure
nor procedures invoked by it reas-
sign, allocate, or free any other
data known in the block.

4. The USEsSs and SETS attributes may be
declared for any entry name used to
invoke a procedure. The scope of this
declaration must include the invoking
block. If the ENTRY attribute is not
declared, ENTRY is implied. If either
USES or SETS is declared in the invok-
ing procedure, complete information
must be given about the data that is
used and/or set by the invoked proce-
dure.

5. If an item in a USES or SETS list, as
described in 1b above is defined on a
base (see "The DEFINED Attribute™) and
if the base and any other items
defined on it are known both to the
invoking and invoked blocks, the base
and the other items must also be
specified in the list.

6. A structure or array name appearing in
a USES or SETS list implies that the
names of all items contained in the
structure or array also are on the
list. It does not imply that items
defined on elements of the structure
are in the 1list; these must be
declared as in rule 5, above.

7. If the USES or SETS attribute is
specified and the invoked procedure is
irreducible in any other way, the
IRREDUCIBLE attribute must still be
specified (unless it 1is given by
default). If the USES or SETS attri-
bute is specified and the invoked
procedure is not otherwise irreduci-
ble, the IRREDUCIBLE attribute should
not be specified.

ENTRY NAME ATTRIBUTES

An 1identifier may be declared to be an
entry name by giving it the ENTRY attri-
bute. It may be declared to have any of
the attributes SETS, USES, BUILTIN, and
RETURNS. These attributes all imply ENTRY
and thus ENTRY need not be specified. The
entry name also may have the attributes
IRREDUCIBLE or REDUCIBLE.

An explicit declaration of an internal
entry name and the procedure block having
the entry name must both be internal to the
same block.

An identifier may be declared as rep-

resenting a family of entry names, by using
the GENERIC attribute.

Chapter 4: Data Description 51

The ENTRY Attribute

The
within a procedure, entry

Function:

ENTRY attribute is used to declare,
names that are

referred to in that procedure.

1.

52

General format:

ENTRY[(parameter-attribute-list
[,parameter-attribute-list}...)]

General rules:

When ENTRY is used, it specifies that
the identifier being declared is an
entry name. An entry name must be
declared with the ENTRY attribute
unless the entry label is known in the
same block, or unless a reference is
made to the entry name in a CALL
statement or in a function reference
with arguments, or if it is declared
to have any of the attributes SETS,
USES, GENERIC, BUILTIN, and RETURNS.
INTERNAL entries may only be declared
in the block to which the procedure is
internal. ENTRY without a parameter
attribute list specifies nothing about
the number or nature of the paramet-
ers.

When ENTRY is used with parameter
attribute lists, each parameter attri-
bute list is a succession of attri-
butes describing a parameter of the
entry point. Permitted attributes are
those allowed for parameters.

The number of parameter attribute
lists must be the same as the number
of parameters required by the entry

point. If a parameter attribute 1list
is null, its place must be kept by a
comma.

Parameter attribute lists are not nec-
essary if the parameters of the entry
name are not to be described.

The
fied for array parameters.
the first attribute specified for
parameter.

dimension attribute may be speci-
It must be
the

The structuring for a structure param-
eter is specified by a structure des-
cription using level numbers without
identifiers, the 1level number being
immediately followed by the 1list of
attributes for that level of the
structure. The first item in the
description of the structure parameter
must be at level one.

Expressions occurring in ENTRY attri-

butes for 1length or dimension bounds
are evaluated upon entering the block
to which the declaration of the ENTRY
attribute is internal. If an argument
position specifies an entry with no
data attributes, no default data
attributes are provided.

Default:

or level numbers are
assumptions are

If no attributes
given for a parameter, no
made about it. When any attributes are
specified, the remaining required attri-
butes are deduced according to the default
rules given in "Assignment of Attributes to
Identifiers.™ ©Note that if the partially
specified attributes imply data elements
without specifying the type, arithmetic
REAL FLOAT DECIMAL is assumed.

The GENERIC Attribute

Function:

The GENERIC attribute is used to define
a name as a family of entry names, each of
which 1is referred to by the name being

declared. When the generic name is
referred to, the proper entry name is
selected, based upon the arguments speci-

fied for the generic name in the
reference.

procedure

General format:

GENERIC (entry-name-declaration
[,entry-name-declarationl...)

General rules:

1. No other attributes may be specified
for the name being given the GENERIC
attribute.

2. Each T"entry name declaration" follow-

ing the GENERIC attribute corresponds
to one member of the family, and has
the form:

entry-name attribute-list

3. Each entry name declaration must have
the ENTRY attribute. It may optional-
ly have IRREDUCIBLE, REDUCIBLE, USES,
SETS, and RETURNS attributes. No
entry name declaration may have the
GENERIC attribute.

4. Each entry name declaration must spec-
ify attributes or level numbers for

every parameter of the associated
entry name. Attributes unspecified
but required for full definition will

be deduced from default rules.

5. When a generic name 1is referred to,
the attributes of the arguments must
match exactly the list following the
entry name declaration of one and only
one member of the family. The ref-
erence is then interpreted as a ref-
erence to that member. Thus, the
selection of a particular entry name
is based upon the arguments of the
reference to the generic name.

6. The selection of a particular entry
name is first based on the number of
arguments in the reference to the
name. The following attributes are
then considered in choice of generic
members:

Base

Scale

Mode

Precision

PICTUR

LABEL (but not range list)

Dimensionality (but not bounds)

CHARACTER (but not length)

BIT (but not length)

VARYING

TASK

EVENT

POINTER

AREA

ENTRY (but not parameter descrip-
tion or other attributes of entry
names)

FILE (but no other FILE attributes)

Structuring, including only the
attributes listed above for the
structure members.

If precision is specified by FLOAT
(¥}, then the precision is not taken

account in the matching process.

AT,

into

7. Generic entry names (as opposed to
references) may be specified as argu-
ments to non-generic procedures if the
invoked entry name is declared with
the ENTRY attribute (explicit or
implicit for internal procedures).
This ENTRY attribute must specify that
the appropriate parameter is an entry
name and specify by means of a further
ENTRY attribute the attributes of all
its parameters. This enables a choice
to be made of which family member is
to be passed.

Example:

DECLARE
CALCULATE GENERIC (FIXCALC ENTRY (FIXED),
FLTCALC ENTRY (FLOAT)), Y FLOAT
INITIAL (50);
X=Y + CALCULATE (Y);

The assignment statement results in the
inveocation of the procedure FLTCALC, since

{ specified

the argument Y matches the entry attribute
of the FLTCALC member of the fam

The BUILTIN Attribute

Function:

The BUILTIN attribute specifies that the
reference to the associated identifier
within the scope of the declaration is
interpreted as a reference to the built-in
function or pseudo-variable of the same
name.

General format:
BUILTIN
General rules:

1. BUILTIN is used to refer to a built-in
function or pseudo-variable in a block
that is contained in another block in
which this name has been declared to
have another use.

2. If the BUILTIN attribute 1is declared
for an entry name, the entry name may
have no other attributes.

3. The BUILTIN attribute may not be

declared for formal parameters.

functions see

For a list of Dbuilt-in

Appendix 1.

Function:

The RETURNS attribute is specified with
an explicitly declared entry name in order
to define the data attributes of the value
to be returned by that entry.

General Format:
RETURNS [(attribute ...)]
General Rule:

The attributes specify the data charac-
teristics of the value returned by the
entry when it is invoked as a function. If
data attributes are not specified, defaults
will be applied (see "Assignment of Attri-
butes to Identifiers"™ in this chapter).
Only string, arithmetic, and pointer attri-
butes may be specified. Note that the
attributes of the value returned by the
function should agree with the attributes
with RETURNS; if they dJdo not

Chapter U4: Data Description 53

agree, it is an error since no conversion

will be performed.
SCOPE ATTRIBUTES

Function:

The scope attributes are used to specify
the scopes in which declared identifiers
are known.

General format:

{ INTERNAL }
EXTERNAL

of the
see

INTERNAL
"Scope of

For a full discussion
and EXTERNAL attributes,
Declarations".

Default:

If the scope is unspecified for variable
names, INTERNAL is assumed.

STORAGE CLASS ATTRIBUTES

Function:

Storage class attributes are used to
allocate and/or describe a particular class
of storage to variables.

General format:

STATIC|AUTOMATIC| CONTROLLED | CONTROLLED
(pointer-variable)

General rules:

1. STATIC specifies that storage is allo-
cated at the start of execution of the
program and 1is not released until
program execution has been completed.

2. AUTOMATIC specifies that storage is
allocated on each entry to* the block
to which the storage declaration is
internal. The storage is released on
leaving the block. If the block is a
procedure that is invoked recursively,
the previously allocated storage is
"pushed down" on entry, and the latest
allocation of storage is "popped up"
on termination. (For a discussion of
"pushed down" and "popped up" storage,
see "Allocation of Data and Storage
Classes™ in Chapter 6.)

3. CONTROLLED specifies that full control
will be maintained over the allocation
and freeing of storage by means of the
statements ALLOCATE and FREE.

54

10.

11.

AUTOMATIC variables may have INTERNAL
scope only. STATIC and CONTROLLED
variables may have INTERNAL or EXTER-
NAL scope.

Storage class attributes may not be
specified for entry names, file names,
members of structures, or DEFINED
data.

STATIC and AUTOMATIC attributes
not be specified for parameters.

may

Variables declared with
lengths and dimensions
the STATIC attribute.

adjustable
may not have

If a procedure involving static stor-
age 1is invoked from within or as a
separate task, the static storage is
common to all invocations.

I1f, during execution of a statement,
controlled data is allocated or freed

(by an irreducible function, for
example), any reference in the state-
ment to that data produces an unde-

fined result.

Storage class attributes may only be
given for variables at level 1. The
storage class applies to all elements
of a structure or array of structures.
If a structure is controlled, only the
major structure, and not the elements,
may be allocated and freed.

The CONTROLLED (pointer-variable)
attribute is wused in connection with
list processing and RECORD transmis-
sion. The variable declared with this
form of the attribute is called a
based variable. The following rules
govern the use of pointer and based
variables with the CONTROLLED
(pointer-variable) attribute.

a. The pointer variable may be given
additional attributes, but such
attributes must be declared separ-
ately. If additional attributes
are not declared, the default
attribute AUTOMATIC applies.

b. When reference is made to a
variable, the data
assumed are those
variable, while
pointer variable
generation of data.
erence is to a component of a
based structure, a second, tem-
porary pointer variable is created
to determine the location of the
component in relation to the
beginning of the structure (that
is, the offset of the component
within the structure).

based

attributes
of the based
the associated
identifies the
If the ref-

1.

c. Array dimensions and string
lengths declared with the based
variable are evaluated dynamically
with each reference to the based
variable. Therefore, the asterisk
notation for dimensions and
lengths is not permitted. A ref-
erence to a component of a based
structure causes evaluation of
sufficient elements of the struc-
ture to determine the position of
the component.

d. A based variable may be used to
identify and describe data exist-
ing in any storage class, or to
obtain storage (via the ALLOCATE
statement) which has the charac-
teristics of the based variable.

e. The scope of a based variable is
internal +to the block in which it
is declared; therefore, the attri-
bute EXTERNAL may not appear with
a based variable declaration.

f. The attribute VARYING may not be
specified for a based variable.

g. The INITIAL attribute may be spec-
ified for based variables. The
values are assigned only upon
explicit allocation of the based
variable in an ALLOCATE statement.

h. Based variables may not be speci-~

fied in the CHECK condition.

i. When a based variable incorporat-
ing arrays or character strings is
an argument for a procedure invo-
cation, its dimensions and/or
lengths are evaluated and then
fixed for the duration of the
invocation.

Default:

If storage class 1is unspecified and
the scope 1is EXTERNAL, STATIC is
assumed.

If storage class is wunspecified and
the scope is INTERNAL, AUTOMATIC is
assumed.

If neither storage class nor scope is
specified, AUTOMATIC is assumed.

Examples:

1. EXAMPLE: PROCEDURE;
' DECLARE A STATIC INITIAL
(0), B CONTROLLED, C(10);
ALLOCATE B;
A=A+ 1;

FREE B;
PUT LIST(A):
END EXAMPLE;

The variable A jis of the static stor-
age class and is used to count the
number of times +the procedure is
invoked. The variable B is of the
controlled storage class, and storage
is allocated and freed by use of the
ALLOCATE and FREE statements. The
variable C is of the automatic storage
class by default.

2. DECLARE VALUE CONTROLLED (P);

The variable VALUE is a based variable
in which the pointer P is used to
locate the generation of VALUE when
reference is made to it. The scope of
VALUE is internal, and the pointer
variable P is of the automatic storage
class by default.

3. DECLARE STRINGS (I,J) CHARACTER (K)
CONTROLLED (Q),
Q STATIC EXTERNAL;

The variable STRINGS is an array of
character strings based upon the poin-
ter Q. The values of I and J will be
evaluated dynamically at each ref-
erence to STRINGS to determine the
dimensions of STRINGS, and the value X
will be dynamically evaluated to
determine the length of each element.
The pointer variable Q will appear in
static external storage.

THE ALIGNED AND PACKED ATTRIBUTES

Function:

The ALIGNED and PACKED attributes are
used to specify in storage the arrangement
of string or numeric field data elements
within data aggregates.

General format:

ALIGNED | PACKED

Chapter U4: Data Description 55

General rules:

1. These attributes may be specified for
the following:

a. Names of major structures.

b. Names of arrays that are not them-
selves part of a structure.

2. PACKED specifies that each string or
numeric field element is packed in
storage contiguous with the string or
numeric field elements that surround
it. There should be no unused storage
between two adjacent elements, provid-
ed all data elements of the aggregates
are string or numeric field variables
of the same type. In other cases,
some unused space may appear but stor-
age is to be conserved when possible.

3. ALIGNED specifies that each string
data element within the aggregate may
start at a storage boundary to be
defined individually for each implem-
entation of PL/I. This implies that
two adjacent string or numerical field
elements of a homogeneous aggregate
may not necessarily occupy contiguous
storage, if a more efficient program
is possible.

4. Arguments to the STRING generic func-
tion must be PACKED structures.

Default:
1. The default for major structures is
PACKED.
2. The default for arrays that are not

part of structures is ALIGNED.

Examples:
DECLARE
1 A (10) PACKED, 2 B BIT
(200), 2 c BIT (500), 2 D BIT

(300), E (10,15) ALIGNED BIT (15);

All elements of A, an array of struc-
tures, will occupy a continuous area of
storage. Each element of the array E will
start at a storage boundary defined for
that implementation of PL/I. There may be
unused storage between the elements of the
latter array.

THE DEFINED ATTRIBUTE

Function:
The DEFINED attribute specifies that
scalar, array, Or structure data is to

56

occupy the same storage area as that

assigned to other data.

General format:

base-identifier [subscript

list]

DEFINED

Rules for defining:

1. The INITIAL, the storage class, and
the scope attributes must not be spec-
ified for the defined item. The VARY-
ING attribute must not be specified
for either the defined item or the
base identifier. It should be noted
that although the base may have the
EXTERNAL attribute, the defined item
always has the INTERNAL attribute. If
the base is declared external, its
name will be known in all blocks in
which it is declared external, but the
name of the defined item will not.
However, the value of the defined item
will be changed if the value of the
base item is changed in an external
block.

2. The base identifier must always be
known within the block where the
defined item has been declared; the
base identifier must not have the
DEFINED attribute, nor may it be a
based variable.

There are two types of defining, corres-
pondence defining and overlay defining.

If 1isUB variables are involved, or if
both the defined item and base identifier
are arrays with the same number of dimen-
sions and the POSITION attribute is not
specified, correspondence defining is in
effect. In all other cases, overlay defin-
ing is in effect.

In correspondence defining, the elements
of the base identifier and the elements of
the defined item must have the same des-
cription.

Correspondence Defining

When correspondence defining has been
specified, a reference to an element of the
defined item is interpreted as a reference
to the corresponding element of the base
identifier. A reference to the defined
array is interpreted as a reference to the
aggregate of all of the base elements that
correspond to some element of the defined
array- Note that the base array must not
be a cross section of a larger aggregate.

If there is no subscript list
the base identifier, then the correspon-
dence is direct. In such a case, the
arrays must have the same number of dimen-
sions, and a reference to an element of the
defined item would be interpreted as a
reference to an element of the base with
the same subscripts.

following

If a subscript 1list follows the base
identifier, each subscript may be an
expression and each expression may contain
references to the dummy variables indicated
by 1SUB.

In the
decimal
n, where n is the dimension of the
item.

dummy variable isUB, i 1is a
integer constant in the range 1 to
defined

At least one reference to 1iSUB must
appear in the subscript 1list. An array
defined by wusing 1iSUB variables in the
subscript 1ist cannot be passed as an
argument.

The Dbase
defined element is
each iSUB in the
integer value of the ith subscript
defined element.

element corresponding to a
obtained by replacing
subscript 1list by the
of the

Reference may not be made to any element
of the defined item that does not have a
corresponding element in the base identifi-
er.

Overlay Defining

Overlay defining specifies that the
defined item is to occupy part or all of
the storage allocated to the base. 1In this
way, changes to the value of either varia-
ble may be reflected in the value of the
other. Overlay defining is permitted
between the following:

Defined Item Base Identifier

1. A scalar coded
arithmetic
variable

A subscripted or un-
subscripted coded
arithmetic scalar of
the same base, scale,
mode, and precision

2. A scalar label
variable

A subscripted or un-
subscripted scalar
label variable

3. A scalar point- A subscripted or un-
er variable subscripted scalar
pointer variable

A scalar area
variable

4, An area
variable

5. A scalar event
variable

A subscripted or un-
subscripted scalar
event variable

6. A scalar task
variable

A subscripted or un-
subscripted scalar
task variable

7. A bit class Bit class data that

variable is not a cross section
either of an array or
of an array within an
array of structures
Note: The bit class consists of:

a. Numeric binary fields
b. Fixed-length bit strings

c. Packed structures
items a, b, and 4

consisting of

d. Packed arrays consisting of items

a, b, and ¢

Character class data
that is not a cross
section either of an
array or of an array
within an array of
structures

8. A character
class variable

Note: The character class consists of:
a. Numeric picture fields
b. Fixed-length character strings

c. Packed structures
items a, b, and d

consisting of

d. Packed arrays consisting of items

a, b, and ¢

An identical structure
whose makeup is such
that matching pairs of
items from the struc-
tures are valid ex-
amples for overlay de-
fining of the types
described in items 1
through 6 above

9. A structure

Rules for overlay defining:

1. In items 7 and 8 above, the POSITION
attribute may be specified for the
defined item. If POSITION is speci-

fied, the DEFINED attribute must also
be specified. POSITION need not
necessarily follow the appearance of
DEFINED; it may precede it in the same
declaration, if so desired. The gen-
eral format of the POSITION attribute
is as follows:

Chapter 4: Data Description 57

POSITION (decimal-integer-constant)

This specifies the position, in rela-
tion to the start of the base, at
which the defined item is to begin.
If this attribute is omitted, POSITION
(1) is assumed; i.e., the defined item
is to begin at the first position of
the base.

2. In items 7 and 8 above, the extent of
the defined item must not be larger
than the extent of the base. Extent
is calculated by summing the lengths
of the parts of the data, including
all individual elements of arrays,
and, in the case of the defined item,
adding n-1 (where n is the position in
relation to the start of the base).

Order of Evaluation

Evaluation proceeds as folilows:

1. Expressions specified in all attri-
butes of the defined item (other than
the DEFINED attribute) are evaluated
on entry to the declaring block.

2. Subscripts of the base identifier are
evaluated when a reference to the
defined item is made.

3. Data defined on a CONTROLLED base

normally refers to the most recent

generation of base data. However, if

a defined item appears as an argument

to an invoked procedure, and the base

is reallocated, the value of the argu-

‘ment will Dbe based on the generation

current at the time of invocation.

Examples of Defining

1. DECLARE A(20,20), B(10) DEFINED

A(2*1SUB, 2%*1SUB);

In the first example, B 1is a vector
consisting of every even element in the
diagonal of matrix A. In other words,
B(1) corresponds to A(2,2), B(2) corres-
ponds to A(4,4), etc.

2. DECLARE 1 P, 2 Q CHARACTER (10),
2 R CHARACTER (100),
PSTRING1 CHARACTER
DEFINED P;

(110)

58

3. DECLARE LIST CHARACTER (40),
ALIST CHARACTER (10) DEFINED
LIST,
BLIST CHARACTER (20) DEFINED
LIST POSITION (21),
CLIST CHARACTER (10) DEFINED
LIST POSITION (11);

In the third example, ALIST corresponds
to the first ten characters of LIST,
BLIST corresponds to the twenty-first
through fortieth characters of LIST, and
CLIST corresponds to the eleventh
through twentieth characters of LIST.

THE CELL ATTRIBUTE

Function:

The CELL attribute establishes the asso-
ciated identifier as a cell and specifies
that each alternative declaration in the
alternative list will occupy the same stor-
age as the other alternative declarations
in the list. It differs from the DEFINED
attribute in that it provides storage equi-
valence (i.e., different data declarations
occupying the same storage), whereas the
DEFINED attribute provides data equivalence
(i.e., different ways of referring to the
same data).

General format:
CELL alternative-list
Syntax rules:

1. The alternative list should contain at
least two data declarations.

2. Each alternative declaration must be
preceded by a level number, which must
be numerically greater than the level
number of the cell identifier.

3. The cell identifier may be given other
attributes. These attributes may be
specified either before or after the
keyword CELL but not after the alter-
native 1list. The only other attri-
butes that a cell identifier may have
are as follows:

a. The dimension attribute

b. ABNORMAL or NORMAL

c. Any of the storage class attri-
butes

d. EXTERNAL or INTERNAL

€. SECONDARY

Note that ¢, d, and e may be
only for a cell at level 1.

given

General rules:

1. Each alternative may have any of the

attributes that a structure component
may have.
2. Each alternative is qualified by the

name of the celil to which it
and may be referred to as such.

belongs

3. Any dimension that a cell identif
has been given is inherited by
alternatives of that cell.

iexr
the

4. Only one alternative may be active at
one time. In other words, at any one
point in time, only one alternative of
a cell can contain a value. An
assignment to one alternative effec-
tively deactivates the previously
active alternative.

5. Only one alternative of a
have the INITIAL attribute.

cell may

6. A cell identifier itself may appear
only in DECLARE, ALLOCATE, and FREE
statements, as well as in the context
of arguments and parameters.

Examples:

1. DECLARE 1 AAA,
2 BBB CELL,
3 U POINTER,
3 V FLOAT (12),
3 W CELL,

] r ral AN
4 XX CHARACTER (20),

4 YY BIT (100),
2 CCC CHARACTER (5),
2 DDD (20) CELL,
3 EE BIT (5),
3 FF CHARACTER (1);

The above example describes a struc-
ture A whose components are as fol-
lows:

a. BBB, a cell whose alternatives are
the pointer variable U, the
floating-point variable V, and
another cell, W. The cell W, in
turn, contains two alternatives:
the character string XX and the
bit string YY.

b. C€CC, a character string.

c. DDD, an array of 20 elements, each
of which 1is a cell having two
alternatives: bit string EE and
character string FF. Note that
DDD(10).EE and EE(10) are referen-
ces to the same alternative; name-
ly, the bit string alternative for
the tenth cell in DDD.

2. DECLARE 1 A CELL CONTROLLED,
2 B FLOAT (8,3),
2 C FIXED (10);

ALLOCATE A;

FREE A;

In this example, A is a cell whose
storage is aliocated and freed by the
use of the ALLOCATE and FREE state-
ments. During the time that A remains
allocated, its alternatives, B and C,
are available for use.

THE INITIAL ATTRIBUTE

Function:

The INITIAL attribute either specifies
constant values to be assigned to data when
storage is allocated to it, or it speci-
fies, through the CALL option, a procedure
to be invoked to perform initialization at
allocation.

General format:
1. INITIAL (item [, iteml...)

2. INITIAL CALL entry-name
[argument-1list]

Rules for form 1:

1. 1In this discussion, the term
"constant™ denotes one of the follow-
ing:

[+]-] arithmetic-constant
character-string-constant
bit-string-constant
{(+|-] real-constant
constant

{+{-} imaginary-

2. Only one constant
specified for a
given for an array.

value may be
scalar; more may be

3. Constant values specified for an array
are assigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

4, If too many constant values are speci-

fied for an array, excess ones are
ignored; if not enough are specified,
the remainder of the array 1is not

initialized.

Chapter 4: Data Description 59

0
L]

r—l
(=]
.

11.

12.

13.

60

Each item in the 1list may be a con-
stant, an asterisk denoting no ini-
tialization for a particular element,
or an iteration specification.

The iteration specification has one of
the following general forms:

(iteration-factor) constant

(iteration-factor) (item [, item] ...)
(iteration-factor)#*

The "iteration factor" may be any
expression that satisfies the rules

stated in
in Chapter 10.

the section on "Prologues"
When storage is allo-
cated, the expression is evaluated to
give an integer that specifies the
number of repetitions.

Only unsigned decimal integer con-
stants are permissible as iteration
factors for STATIC data.

A negative or =zero iteration factor
yields no initialization.

Iterations may be nested.

Label constants given as initial
values for label variables must be
known within the Dblock in which the

label variable declarations occur.

An alternate method of initialization
is available for elements of arrays of
non-STATIC statement label variables:

An element of a

label array can
appear as a statement prefix, pro-
vided that all subscripts are
optionally signed decimal integer
constants. (Such a statement prefix
may not be pointer qualified.) The
effect of this appearance 1is the

initialization of that array element
to a constructed label constant for

the statement carrying the sub-
scripted reference. This statement
must be internal to the block con-
taining the declaration of the

Only one form of initializa-
tion may be used for a given label
array. (See the sixth example at
the end of this section for an
illustration.)

array.

The INITIAL attribute may not be given
for the following:

entry names
file names
DEFINED data
structures
parameters
TASK data

14,

1.

EVENT data
AREA data

Notes: The INITIAL attribute may be
given for base elements of structures.
General rule 13 also applies to form
2.

If only one parenthesized scalar
expression precedes a string initial
value, it is interpreted as a replica-
tion factor for the string. If two
appear, the first is taken to be an
initialization iteration factor, the
second, a string replication factor.
For example:

((2)'A') is equivalent to ('AA')
2y 'a" is eqguivalent to
(*A",'A")

Rules for form 2:

The entry name and argquments passed

must satisfy the conditions stated in

"Prologues."

This form may not be used to initial-

ize STATIC data.

Examples:

DECLARE SWITCH BIT(1) INITIAL ('1'B);

DECLARE MAXVALUE INITIAL (99),
MINVALUE INITIAL (-99);

DECLARE A (100,10) INITIAL ((920)0,
(20) ((3)5,9));

DECLARE TABLE (20,20) INITIAL CALL
INITIALIZE (X,Y);

DECLARE PTS(5) POINTER INITIAL
((5)NULL) ;

DECLARE Z(3) LABEL;

Z(1): IF X>Y THEN GO TO EXIT;

A=A + B + C *¥ D;

A=A + 10;

GO TO Z(I);

RETURN;

The third example results in the
following: each of the first 920 ele-
ments of A 1is set to 0, the next 80
elements consist of 20 repetitions of
the sequence 5,5,5,9.

In the
is the name of a procedure
the initial wvaiuwes of
TABLE. X and Y are arguments
to INITIALIZE.

fourth example, INITIALIZE

that sets
elements in
passed

In the 1last example, transfer is
made to a particular element of the
array Z by giving I a value of 1, 2,
or 3.

THE LIKE ATTRIBUTE

Function:

The LIKE attribute
name being declared is
structuring as the name
attribute LIKE.

specifies that the
given the same
following the

General format:

LIKE structure-name
General rules:

1. The "structure name®™ may be unquali-

fied or qualified, but it may not be
subscripted.
2. The structure must be known to the

block containing the LIKE attribute.

3. Neither the structure name nor any of
its substructures can be declared with
the LIKE attribute.

4. The LIKE attribute specifies that the
name being declared is a structure
with a substructure having elements
with attributes and names identical to
the names and attributes of the ele-
ments of the named structure. Con-
tained dimension and length attributes
are recomputed. Attributes of the
structure name itself do not carry
over, only its elements enter into
this process.

5. If the structure description of the
named structure has been declared, and
if a direct application of the des-
cription to the structure being
declared LIKE would cause an incorrect
discontinuity in level numbers, then
the level numbers will be modified by
a constant before application.

6. The number that immediately follows
the member that has the LIKE attribute
must be a level-number that is equal
to or less than that of the member
that has the LIKE attribute.

Examples:

CHAR (10),

1}
;

Iy
)

16
FIELD1
3 DTL1 PIC'$%2%.99°',
3 DTL2
FIBLD2

i
BIT (50},

2 FIELD1,
3 SUBFLD1 (20) LIKE A.FIELD1,
3 TABLE (3),
2 FIELD2 LIKE A . FIELD1;
The above is equivalent to:

DECLARE 1 A(10),
2 FIELD1,
3 DTL1 PIC *$27.99°,
3 DTL2 CHAR (10),
2 FIELD2 BIT (50),
1 X,
2 FIELD1,
3 SUBFLD1 (20),
4 DTL1 PIC '$2Z.99°',
4 DTL2 CHAR (10),
3 TABLE (3),
2 FIELD2,
3 DTL1 PIC '$27.99°,
3 DTL2 CHAR (10);

2. DECLARE 1 A EXTERNAL,
LIKE A;

2(B,C,D), 1 E

The above is equivalent to :

1 A EXTERNAL, 2(B,C,D), 1 E,

FILE DESCRIPTION ATTRIBUTES

File description attributes are used to
describe data files. Declarations of the
same file in more than one external proce-
dure must not conflict (for a complete
discussion of data files and the default
attributes, see Chapter 7).

The FILE Attribute

Function:

The FILE attribute specifies that the
associated identifier is a file name.

General format:

FILE

Chapter 4: Data Description 61

Note that the FILE attribute is implied by
every one of the file description attri-
butes described in this section and thus

need not be specified in a context in which
at least one of these attributes 1is given
for a filename. However, if such a context
contained only an INTERNAL or EXTERNAL
attribute, FILE would have to be specified
to establish the filename.

The File Usage Attributes

Function:

The file wusage attributes specify the
method of treatment of data in the file.

General format:
STREAM| RECORD
Rules:

1. A file with the STREAM attribute may
be used only in the OPEN, CLOSE, GET,
and PUT statements. A file with the
RECORD attribute may be used only in
the OPEN, CLOSE, READ, WRITE, REWRITE,
LOCATE, DELETE, and UNLOCK statements.

2. A file with the STREAM attribute can-
not have any of the following attri-
butes: RECORD, UPDATE, DIRECT,
SEQUENTTAL, BACKWARDS, BUFFERED,
UNBUFFERED, EXCLUSIVE, KEYED.

The Function Attributes

Function:

The function attributes
function of a file.

specify the

General format:
INPUT|OUTPUT | UPDATE
Rules:

1. INPUT specifies that the data will be
transmitted only from the data set to
the program. A file with the INPUT
attribute cannot have the attributes
EXCLUSIVE or PRINT.

2. OUTPUT specifies that the data will be

transmitted only from the program to
the data set. A file with the OUTPUT
attribute cannot have the attributes

EXCLUSIVE or BACKWARDS.

3. UPDATE specifies that the file is to

62

be used for both input and output. A
declaration of UPDATE for a file with
SEQUENTIAL access denotes the update-
in-place mode. Such files must be

accessed in the sequence READ, then
REWRITE. A file with the UPDATE
attribute cannot have the attributes

STREAM, BACKWARDS, or PRINT.

The PRINT Attribute

Function:

The PRINT attribute specifies that the
ultimate disposition of the data is to be
the printed page. Several special options

are permitted on PUT statements that refer
to files having the PRINT attribute.
General format:
PRINT
Rules:
1. A file with the PRINT attribute

implies the OUTPUT and STREAM attri-

butes.

2. This attribute cannot be specified for
a RECORD file.

The Access Attributes

Function:

The access attributes specify the manner
in which the records within a RECORD file
are accessed.

General format:
SEQUENTIAL|DIRECT
Rules:

1. If a file 1is DIRECT, each record
transmission must specify a key. A
record written with a particular key
can be retrieved by reading with that
value of key specified. Files with
the DIRECT attribute must also have
the KEYED attribute.

2. SEQUENTIAL normally specifies that the
next record to be accessed is deter-
mined by the physical organization of
the data set.

Function:

The buffering attributes apply to
SEQUENTIAL RECORD files only, and specify
whether or not the records must pass
through intermediate storage during trans-
mission to and from the data set. If there
is such buffering, the intermediate storage
can be accessed by associating it with a
pointer variable, and using the pointer to
identify a based variable that describes
the record in the buffer (see the discus-
sion of "RECORD Transmission" in Chapter
7.

General format:

BUFFERED | UNBUFFERED
General rule:

A file with STREAM or DIRECT attributes
cannot have a buffering attribute.

The BACKWARDS Attribute

Function:

The BACKWARDS attribute specifies that a
SEQUENTIAL INPUT file is to be accessed in
reverse order, i.e., from the 1last member
to the first member.

General format:

BACKWARDS

The EXCLUSIVE Attribute

Function:

The EXCLUSIVE attribute specifies that a
DIRECT UPDATE file will be used in such a
way as to prevent one task reading, delet-
ing, or rewriting a record while another
task is in the process of reading, delet-
ing, or rewriting that record (see "The
READ Statement," in Chapter 8).

General format:

EXCLUSIVE

The ENVIRONMENT Attribute

Function:
The ENVIRONMENT attribute is an
implementation-defined attribute which

specifies various characteristics of a file
which are not a part of the PL/I languag
General format:
ENVIRONMENT (option-list)
General rules:

1. The option list will be defined indi-

vidually for each implementation of
PL/I.
2. The options must be separated by one

or more blanks.

The KEYED Attribute

Function:

The KEYED attribute specifies that each
record in the file has a key associated
with it.

General format:

KEYED (decimal-integer-constant)

General rules:

1. A KEYED file cannot have the attri-

butes STREAM or PRINT.

2. The ™"decimal integer constant" gives
the length of the key in characters.

3. The KEYED attribute must be
for every file containing keys,
if records are read sequentially.

specified
even

LIST PROCESSING ATTRIBUTES

The AREA Attribute

Function:

The AREA attribute is used to define an

area of storage which may be used for
collecting and referring to based data
items.

Chapter 4: Data Description 63

64

General format:
Option 1:

AREA

Option 2:

AREA (d4, ds¢ ..., 4n)

(where each d represents a data declara-

tion without identifiers)
General rules:

An area variable may be explicitly
declared with the AREA attribute in a
DECLARE statement. It may be declared
contextually by its appearance in the
IN clause of an ALLOCATE statement. A
contextual declaration implies that
Option 1 will be used.

Option 1 specifies that an
implementation-defined amount of
storage will be allocated for the area
variable.

Option 2 provides programmer control
of the amount of storage allocated for
an area variable. The data declara-
tions in this option are dummy dec-
larations; their sole purpose 1is to
specify the amount of storage to be
allocated. It is not required or
expected that the data variables
actually allocated into the storage
area will match the data declarations
in number, order, or attributes. How-
ever, if the allocations do not con-
form to the attributes and their
order, there may not be sufficient
storage to contain all allocations.

The individual data declarations in
Option 2 are similar to parameter
descriptions of an ENTRY attribute.
Since they are dummy declarations,
they may not specify identifiers. If
dimensions are given in the declara-
tion, they must appear first.

Area variables are not valid operands
for any operators in the language,
including assignment. Conversions to
and from area variables are not
defined.

Area variables may not be transmitted
in input/output operations.

Area variables may not appear in the
CHECK condition.

Area variables may be elements of
arrays and components of structures.

9.

Entry points may not return a value of
type area.

Example 1:
DECLARE TABLE_1 AREA STATIC EXTERNAL;
TABLE_1 is a static external area of
implementation-defined size.

Example 2:

DECLARE TABLE_2 AUTOMATIC
AREA ((100) POINTER, (50) CHARACTER
(30), 1(50), 2 FIXED, 2 POINTER);

TABLE_2 1is an automatic area that is
large enough to contain an array of
100 pointers, an array of 50 character
strings of length 30, and an array of
50 structures, each consisting of a
fixed-point value followed by a poin-
ter. However, the area need not be
used in this way (see Rule 4 above).

The POINTER_Attribute

Function:

The POINTER attribute specifies that the

associated identifier may be used to iden-
tify data values existing in any storage
class.

1.

General format:

POINTER

General rules:

An identifier may be explicitly
declared with the POINTER attribute in
a DECLARE statement. It may be con-
textually declared by (a) its appear-
ance with a CONTROLLED attribute, (b)
its appearance in the SET option of an
ALLOCATE, READ, or LOCATE statement,
or {(c) its use as a pointer qualifier.

The value of a pointer may be esta-
blished by (a) assignment, (b) the SET
clause in an ALLOCATE, LOCATE, or READ
statement, or (c) use of the INITIAL
attribute.

Pointer data may not be used directly
as an operand in an arithmetic expres-
sion, nor may conversions be performed
between pointer data and other data
types.

The only operators that may be applied
directly to pointer data are the com-
parison operators = and 4=.

5. cinter ta may not be read or

er da writ-
ten in STREAM input/output.
6. DPointers may be initialized only to
the NULL value or to the value of
another pointer variabile.

7. Entry points may return a value the
data type of which is pointer.

Examples:

1. DECLARE P POINTER STATIC;
The pointer P is declared -explicitly.
2. DECLARE VALUES CONTROLLED (PT1);
The pointer PT1 1is declared contex-
tually. It will reside in the AUTO-
MATIC storage class by default.

3. ALLOCATE VALUES SET (PT3);

The data type of PT3 is pointer by
contextual declaration in the SET
clause.

ASSIGNMENT OF ATTRIBUTES TO IDENTIFIERS

Identifiers can be
explicitly through DECLARE statements, by
occurrences 1in certain recognizable con-
texts, and by default rules for identifiers
incompletely described by the programmer.

given attributes

Within an external procedure, statement
label constants, internal entry 1labels,
parameters, and 1identifiers appearing in
DECLARE statements are qualified by the
respective blocks in which their declara-
tions {contextual or explicit) occur. Thus
they serve as a means of redeclaring iden-
tifiers declared explicitly, contextually,
or implicitly in containing blocks. For an
identifier occurring as a parameter, the
characteristic, "parameter," is combined
with any explicitly declared attributes for
the identifier. Default attributes are
added as described below. An identifier
occurring as an internal entry label is
given the attributes INTERNAL ENTRY, which
then are also combined with any declared
attributes for that identifier, after which
defaults are applied.

The following attributes, assigned
through context, are recognized in the
indicated ways:

1. ENTRY (subroutine):
CALL option

CALL statement or

2. ENTRY (function): identifier followed
by parenthesized list, in any context
where an expression is expected.

"File and File

3. FILE: See Opening

Attributes" in Chapter 7--in addition,
by its appearance in an ON, REVERT, or
SIGNAL statement associated with data
transmission conditions.

4. TASK: TASK option

5. EVENT: EVENT option or WAIT statement

6. (Programmer named condition): ON CON-
DITION, SIGNAL CONDITION, or REVERT
CONDITION

7. POINTER: CONTROLLED (pointer-variable)
declaration, SET option, or pointer
qualifier

8. AREA: IN option

Recognition of one of these attributes
through context does not redeclare the
identifier that is internal to the block in
which the contextual reference appeared.
If a reference lies within the scope of a

declaration (explicit, implicit, or
contextual) of the same identifier, the
attributes given through the previous dec-

laration and applied defaults must match
the attributes given through the contextual
reference and applied defaults there. 1In
such a case, the contextually declared
identifier 1is taken to be the same name as
that previously declared. Thus, the above
contextually determined attributes cannot
add to attributes given to the same iden-
tifier in a previous declaration.

If an identifier found in one of the
above contexts has not been previously
declared in a containing block, then a
declaration is made for it, internal to the
procedure, and the
Defaults are

~Aant a3]
containing

indicated attribute is given.
then added.

cxXTeXr il

If an identifier appears in a context
that furnishes a contextual declaration of
this identifier, and if the contextual
reference occurs in the scope of a DECLARE
statement declaring the identifier, then
the context may not add any attributes that
are not given explicitly or by default in
the DECLARE statement.

For example, the following is illegal:

DECLARE F EXTERNAL;
GET FILE(F) LIST(R);

Application of Default Attributes

Default assumptions are as follows, for
the identifier classes indicated:

tr

NTRY type: EXTERNAL is assumed. If

Chapter 4: Data Description 65

66

the entry is EXTERNAL and is not
a subroutine, then REDUCIBLE is
assumed. Otherwise, IRREDUCIBLE
is assumed. Scale, base, mode
and precision defaults for the
value returned are the same as
for Arithmetic type given below.

If a procedure has multiple entry
names and no data attributes, there is
potential ambiguity in the charac-
teristics of the value to be returned.
In order to avoid this ambiguity,
succeeding labels are interpreted as
if they were entry names for succes-
sive ENTRY statements. For example,
in the following, statement a is
interpreted as if both statement b and
statement ¢ had been written.

a. A: B: ENTRY;
b. A: ENTRY;
c. B: ENTRY;

FILE type: A summary of file default
attributes appears in "File Open-
ing and File Attributes" in Chap-
ter 7.

TASK type: ABNORMAL is assumed.
Scope and storage class defaults
are the same as for Arithmetic
type given below. ALIGNED is
assumed for arrays not in struc-
tures.

EVENT type: Defaults are the same as
for TASK type.

LABEL type: Range is assumed to be
all labels which could be assigned
to the variable. NORMAL is
assumed. Scope and storage class
defaults are the same as for
Arithmetic type given below.
ALIGNED is assumed for arrays not
in structures.

POINTER type: NORMAL is assumed.
ALIGNED is assumed for arrays not
in structures. Scope and storage
class defaults are the same as
those for arithmetic type given
below.

AREA type: NORMAL is assumed. ALIGNED
is assumed for arrays not in
structures. Scope and storage
class defaults are the same as
those for arithmetic type given
below.

Condition type: EXTERNAL scope is
assumed.

String type: NORMAL is assumed. Scope

and storage class defaults are the
same as for Arithmetic type given
below. ALIGNED is assumed for
arrays not in structures,

Major Structure type: PACKED is
assumed. NORMAL is assumed.
Scope and storage class defaults
are the same as for Arithmetic
type given below.

Minor Structure type: NORMAL is
assumed. INTERNAL is assumed.

Elementary Structure Element type:
NORMAL is assumed. INTERNAL is
assumed. If Arithmetic type has
been indicated, then scale, base,
mode, and precision defaults are
the same as for Arithmetic type
given below.

Arithmetic +type: If none of scale,
base, and mode has been given,
then if the identifier starts with
any of the letters I - N, FIXED
BINARY REAL is assumed; otherwise
FLOAT DECIMAIL, REAL is assumed. If
at 1least one of these has been
given, then the remaining defaults
are FLOAT, DECIMAL and REAL.
Default precision is implementa-
tion defined, dependent on scale
and base. ALIGNED is assumed for
arrays not in structures. NORMAL
is assumed. INTERNAL is assumed.
If no storage class is given, then
AUTOMATIC is associated with
INTERNAL and STATIC with EXTERNAL.

STRUCTURE DECLARATIONS AND ATTRIBUTES

This section is a summarization of data
declarations and attributes as they apply
specifically to structures.

LEVEL NUMBER

The outermost structure is a major
structure, and all contained structures are
minor structures.

A structure is specified by declaring
the major structure name and following it
with the names of all contained elements.
Each name is preceded by a level number,
which is a non-zero decimal integer con-
stant. A major structure is always at
level one and all elements contained in a
structure (at level n) have a level number
that is numerically greater than n, but
they need not necessarily be at level n+1,

nor need they all have the same level

number.

A minor structure at level n contains
all following items declared with level
numbers greater than n up to but not
including the next item with a level number
less than or equal to n. A major structure
description is terminated by the declara-
tion of another item at level one, by the
declaration of an 1item having no level
or by the end of a DECLARE state-

number,

ment.
STRUCTURES AND THE DIMENSION ATTRIBUTE

When a structure name is
dimension attribute, it is an array of
structures, and all contained items are
arrays (see T"Arrays of Structures," in
Chapter 2). Contained scalar items, con-
tained structure elements, and cross sec-
tions of contained arrays are referred to,
respectively, by subscripted names, sub-
scripted qualified names, and the asterisk
notation (see "Naming," in Chapter 2).

given the

STRUCTURES AND DATA ATTRIBUTES

Structures and arrays of structures are
not given data attributes. These can be
given only to structure base elements.

STRUCTURES AND SCOPE ATTRIBUTES

Major structure names may be declared
with the EXTERNAL attribute. Items con-
tained in structures may not be declared
with the EXTERNAL attribute, and even if
INTERNAL is unspecified, they are assumed
to be INTERNAL.

STRUCTURES AND STORAGE CLASS ATTRIBUTES

All items in the same structure must be
of the same storage class, since only the
major structure may be given a storage-
class attribute. The storage class of the
major structure applies to all elements of
the structure. If a structure has either
form of the CONTROLLED attribute, only the
major structure, not its_elements, may be
allocated and freed.

Chapter 4: Data Description 67

CHAPTER_5:

PROCEDURES, FUNCTIONS, AND SUBROUTINES

FORMAL PARAMETERS

The PROCEDURE statement heading a given
procedure and defining the primary entry

Z), or at its secondary entry point SBSEC,
where the formal parameter list is (X, Z2Z).

PROCEDURE_REFERENCES

pcint to the procedure may specify a list
of formal parameters. (For syntax and
details of the PROCEDURE statement, see

Chapter 8.)

One or more ENTRY statements may also be
used in the procedure to define secondary
entry points. Like the heading statement
of the procedure, each of the ENTRY
statements must have at least one label to
serve as an entry name for that point, and
each may specify a list of formal paramet-
ers. Formal parameter lists for different
entry points to a procedure need not be the
same. (For syntax and details see "The
ENTRY Statement.")

are identifiers
y appear in statements of the proce-
dure in the context of scalar variable
names, array names, structure names, state-
ment label designators, entry names, file
names, task names, event names, area names,
pointer names, or cell names.

The formal parameters

and ma

The appearance of an identifier in a
formal parameter list for a procedure con-
stitutes a declaration of the identifier as
a parameter. This declaration can be com-
bined with an explicit declaration or con-
textual declarations in the procedure that
will associate required attributes with the
parameter. Required attributes not
declared explicitly or contextually will be
assigned by default.

No declarations of the parameter can
appear outside the procedure. (For further
details about the restrictions on attri-
butes of parameters see "Arguments and
Parameters," in Chapter 10.)

Example:
SBPRIM: PROCEDURE (X, Y, 2Z);
DECLARE (X, Y, A, B) FIXED, Z
FLOAT;
A= X~1; B = ¥Y+1;
GO TO COMMON;
SBSEC: ENTRY (X, Z);

A =X-2; B = X-3;
COMMON: 2 = A%*¥2+A%B+B*%2;
END SBPRIM;

In this example, the procedure may be

entered at its primary entry point SBPRIM,
where the formal parameter 1list is (X, Y,

68

At any point in a program where an entry
name for a given procedure is known, the
procedure may be invoked by a procedure
reference, which has the form:
entry-name [(argument [,argument] ...)]

The number of arguments (possibly zero)
in the procedure reference must be equal to
the number of formal parameters in the list

for the entry point denoted by the entry
name.

The procedure invoked by the procedure
reference may be an external or an internal
procedure. If it is an internal procedure,
the block to which the entry name is
internal must be active at the time of
invocation of the procedure (for a defini-
tion of "active," see "Activation and Ter-
mination of Blocks" in Chapter 6).

When a procedure reference invokes a
procedure, each argument specified in the
reference is associated with its corres-
ponding formal parameter in the list for
the denoted entry point, and control is
passed to the procedure at the entry point.
The conditions the arguments must satisfy,
and the manner of association of each
argument with its matching parameter are
discussed in "The Arguments in a Procedure
Reference.”

When a procedure becomes inactive, the
association between arguments and paramet-
ers is terminated.

There are two distinctly different uses
for procedures, determined by one of two
contexts in which a procedure reference may
appear:

1. A procedure reference may appear as an
operand in an expression. (For a
complete description of expression,
see "Expressions," in Chapter 3). 1In
this case, the reference is said to be
a function reference, and the proce-
dure 1is invoked as a function proce-
dure, or simply a function.

2. A procedure reference may appear fol-
lowing the keyword CALL, either in a

CALL statement or in a statement using
a CALL option. In this case, the
reference is said to be a subroutine
reference, and the procedure is
invoked as a subroutine procedure, oOr
simply a subroutine.

(Ordinarily a given procedure will be
used exclusively as a function procedure or

CilksSaives

exclusively as a subroutine procedure.)

When a function reference appears in an
expression, the function procedure is
invoked. The procedure is then executed,
using the arguments, if any, specified in
the function reference. The result of this
execution is the required value, which is
passed with return of control back to the
point of invocation. This returned value
is then used, in place of +the function
reference, to evaluate the expression.

The procedure invoked by a function
reference normally will terminate execution
with a statement of the form
RETURN (expression), where expression is a
scalar expression of arithmetic, character-
string, bit-string, or pointer type (see
"The RETURN Statement"). a GO TO
statement may also be used to terminate
execution of a procedure invoked by a
function reference.) It is the value of
this expression that wiil be returned as
the function value. The PROCEDURE or ENTRY
statement at the invoked entry point may
specify data attributes for the function
value (see "The PROCEDURE Statement"™ and
"The ENTRY Statement,"™ in Chapter 8). Just
prior to return, the expression is evaluat-
ed, and, before being passed back, the
value 1is converted, if necessary, to con-
form to these attributes, or, if the attri-
butes are not specified, to the default
attributes implied by the entry name.

If the invoked function procedure is
terminated by a GO TO statement, the evalu-
ation of the expression that invoked the
function will not be completed and control
will go to the designated statement.

GENERIC FUNCTIONS

A generic function is a family of func-
tions with a single name. A function
reference to a generic function causes the
selection of a certain member of the fami-
ly, depending upon the attributes of the
arguments. The characteristics of the
value returned depend upon the member that
is selected.

Generic functions may be built-in (see

below) or specified by the programmer, who
may, by means of the attribute GENERIC,
define a name to be a generic function
name. An entry name may be explicitly

declared with the GENERIC attribute. The
GENERIC attribute requires a list of all of
the entry names of the family and the
attributes of all of the arguments for each
member (different members must have differ-
ent argument attribute patterns). Then any
reference appearing in the scope of this

A 1 ~ 4 5 3
declaration and using the declared

name as an entry name will result in the
use of that member of the declared family
that has the same argument attribute pat-
tern as the pattern in the argument list of
the reference. For complete details see
"Entry Name Attributes" in Chapter u.

ganori
generic

Subroutine procedures may also be gener-
ic. The method of selecting a particular
subroutine corresponds exactly to that of
selecting a particular function.

BUILT-IN FUNCTIONS

Besides function procedures written by
the programmer, a function reference may
invoke one of a comprehensive set of built-

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also functions for manipulating strings
and arrays, as well as other necessary or
useful functions related to special
facilities provided in the language. The
complete 1list of these functions and their
descriptions can be found in Appendix 1.

A large number of the built-in functions
are generic. The built-in generic func-

tions are of considerable convenience to
the programmer. He may, for example,
always use the same name EXP for the

exponential function, regardless of whether
the argument is of REAL or COMPLEX mode,
regardless of the precision of the argu-
ment, etc., and automatically he will
obtain that one of the EXP family that fits
the requirements.

function, whether or not

specified number of
For some built-in func-
tions only a minimum is specified; addi-
tional arguments are optional. For others,
a maximum is specified; only one argument
is required.

Each built-in
it is generic, has a
arguments given.

Each of the built-in functions that are
not generic has only a single member. When
a reference 1is made to one of these func-

Chapter 5: Procedures, Functions, and Subroutines 69

tions, any arguments whose attributes do
not match the attributes required by that
function are converted to the appropriate
form before the function is invoked. The
characteristics of the value returned are
determined by the function.

Unlike programmer-specified functions,
which always return a scalar value, there
are many built-in functions that may return
an array or structure value when array or
structure expressions are used 1in certain
of their argument positions. This facility
is wuseful in array or structure expres-
sions.

The fixed set of names for the built-in
functions 1is part of the language of PL/I.
However, the identifiers corresponding to
these names are not reserved; any such
identifier can be used by the programmer
for other purposes. If the identifier is
declared explicitly for some other use, any
appearance of the identifier in the scope
of this declaration will refer +to that
other use. The built-in function cannot,
of course, be used in this scope. If the
identifier appears, but not in the scope of
a declaration establishing the identifier
for another use, the identifier will be
regarded as implicitly declared in the
containing external procedure with the
attribute BUILTIN, and this appearance will
refer to the built-in function.

If an identifier corresponding to a
built-in function name is declared to have
a use other than as the built-in function
in some block, the built-in function can be
used in contained blocks by declaring the
identifier with the attribute BUILTIN.

SUBROUTINE_REFERENCES AND SUBROUTINE
PROCEDURES

Aty

When a procedure is invoked as a subrou-
tine by the execution of a CALL statement
or a statement with a CALL option, the
initial action is the same as if the
procedure were invoked as a function: the
arguments 1in the procedure reference, if
any, are associated with the formal param-
eters and control is passed to the proce-
dure at the denoted entry point. (If the
invocation involves a task option, the
procedure will not necessarily be activated
immediately; see "Asynchronous Operations
and Tasks" in Chapter 6.)

Unlike the function procedure, the sub-
routine procedure does not return an expli-
citly specified value to the point of
invocation. The procedure may terminate in
the following ways:

70

1. Control reaches a RETURN statement for
the procedure. Wwhen executed, this
statement returns control to the first
executable statement logically follow-
ing the invoking statement, unless the
invocation specified a task option or
the procedure was invoked by a state-
ment with a CALL option. If a task
option has been used, control is sim-
ply terminated for this task. If the
procedure was invoked by a statement
having a CALL option, control is
returned to that statement at the
point immediately following the CALL
option.

2. Control reaches an END statement for
the procedure, which in this case is
treated as a RETURN statement. The
effect is as in case 1.

3. Control reaches a GO TO statement in
the procedure that transfers control
out of the procedure. (This is not
permitted if the procedure has been
invoked by a statement with a CALL
option or in a CALL statement with a
task option.) In this case, control
will go to the designated statement
(see "The GO TO Statement"). The
statement label designator of the GO
TO statement may be a parameter of
type LABEL, which is associated with a
label argument passed from the invok-
ing procedure.

4, cControl reaches an EXIT or STOP state-
ment.

Example of Function Reference:

COMP: PROCEDURE;

S1: P10=Q5*%POLY5(RO, VAL1);

POLY5: PROCEDURE (C, X);
RETURN(C+X* (1+X* (2+X* (3+X* (U
+5%X)))));
END POLYS;
END COMP;

In this example, the external procedure
COMP contains the function procedure POLYS,
which is invoked when the expression
O5*POLY5 (R0, VALl) is being evaluated dur-
ing execution of the assignment statement
labeled S1. When POLY5 1is invoked, the
arguments RO and VAL1 will be associated
with the parameters C and X, respectively.

The returned value for POLYS5 (RO, VAL1l)
will be the value of the expression:

RO+VAL1*(1+VAL1* (2+VAL1* (3+VAL1* (4+5%
VAL1))))

Examples of Subroutine Reference:

i. COMP: PROCEDURE;

si: CALL POLY5 (RO, VAL1);
S2: P10 = Q5*TEMP;

PROCEDURE (C, X);

POLYS:
TEMP=C+X* (1+X* (2+X* (3+X*
(4+5%X))));
RETURN;
END POLYS5;
END COMP;

In the above example, the effect is the
same as in the previous example using the
function reference. The subroutine proce-
dure POLY5 is invoked by the CALL statement
labeled sS1. The arguments and parameters
are associated as in the previous example,
but here, the value of the expression (the
same as in the previous example) is
assigned within the subroutine to the vari-

able TEMP, which is used by the statement
labeled 52, after the RETURN statement
passes control back to that statement.
Thus, communication of the value is by

means of the shared variable TEMP, which,
of course, remains available for use fol-
lowing the execution of S2. !

In some cases the invoked and the invok-
ing procedure may be separated in such a
way that sharing a name in the above simple
manner 1is not possible (see "Scope of
Declarations"). Another more general meth-
od of communicating values from the invoked
procedure, which may be applied in these
cases, is illustrated in the following
alternative example:

2. COMP: PROCEDURE;

S1: CALL POLY5 (RO, VAL1l, TEMP);
S2: P1l0=Q5*TEMP;

PROCEDURE (C,X,Z):
Z=C+X* (1+X* (2+X* (3+X*
{4+5%X))3));

POLY5:

RETURN;
END POLYS5;

END COMP;

Here, the invocation of POLYS by the
CALL statement will associate the variabie
TEMP with the parameter Z, and the action
will be exactly as in the previous example:
the parameter Z will effectively be
repiaced by the name TEMP in the assignment
statement for Z, and TEMP will be assigned
the value of the expression on the right-
hand side, with RO replacing C and VALl
replacing X, before return to statement S2.
In this case, the value has been
communicated from the subroutine through a
parameter.

The above two examples illustrate how a
single value obtained in a subroutine can
be communicated back to the invoking proce-
dure. The action of a subroutine will
generally be more complex than this; many
communicated variables may be involved,
whether scalar, array, structure, or
statement-label variables; input/output
operations may be specified, etc. 1In con-
trast, the wusual purpose of a function
procedure is to return a scalar value.

THE ARGUMENTS IN A PROCEDURE REFERENCE

In general, the arguments in a procedure
reference may be any of the following:

1. Expressions
2. Data elements
3. Entry names (programmer-defined)

4. Built-in Float Arithmetic
Function names (see Appendix 1)

Generic

5. Filenames

The attributes of each argument in a
procedure reference must, in general, match
the attributes of the corresponding param-
eter at the named entry point. (An excep-
tion in <case of string arithmetic data
arguments is described below.)

For example, assume that the
SUB in a program is defined by:

procedure

SUB: PROCEDURE (X, ¥, Z);

DECLARE X FIXED, Y ENTRY, Z LABEL;

Chapter 5: Procedures, Functions, and Subroutines 71

This implies that the formal parameter X
is used as a fixed-point variable with
certain default data attributes, Y is wused
as an entry name, and 2Z is a statement
label variable in the body of the proce-
dure. Then if SUB is invoked in the
program by the statement:

CALL SUB (R*S, CALC, L5);
it is then necessary that:

1. The expression R*S have all the data
attributes of the parameter X (unless
SUB is described by an ENTRY attri-
bute; see below).

2. CALC be an entry name.
3. L5 be a statement-label designator.

If an argument is an entry name with no
argument list, the entry name (rather than
the function value) is always passed, inde-
pendent of whether the entry name requires
‘parameters.

Example:

')
DECLARE RANDOM

(FLOAT) ;
L1l: CALL SUB(RANDOM) ;
L2: CALL SUB1(Y*RANDOM) ;

In statement L1, the entry name RANDOM
is passed. However, in statement L2, the
value of the function RANDOM is required,
and this value, multiplied by Y, is passed.
Note: This rule also applies for arguments
to built-in functions.

THE USE OF THE ENTRY ATTRIBUTE

An identifier is contextually declared
to be an entry name in a block if it
1. appears as a label to a PROCEDURE or
ENTRY statement or

2. appears 1in the block following the
keyword CALL or

3. appears as the function name in a
function reference that contains an
argument list.

If it is desired to use the identifier
as an entry name in a block where it is not
so declared, the identifier must be given
the ENTRY attribute explicitly in a DECLARE
statement for the block.
above

As an illustration, in the exam-

ple, the CALL statement:

72

CALL SUB(R*S, CALC, LS5);
has the entry name CALC as its second
argument. This appearance of CALC is not
recognizable as an entry name by context.
It must previously have been declared
(either contextually, or explicitly in a
DECLARE statement) to have the attribute
ENTRY.

A more general form of the ENTRY attri-
bute allows the programmer to enumerate the
attributes of the parameters for the named
entry point.

As an illustration, in the above CALL
statement example, the three parameters
corresponding to the three arguments of the

CALL statement might be described in the
invoking procedure by the statement:
DECLARE SUB ENTRY (FIXED, ENTRY,

LABEL) ;
This statement specifies that:
1. SUB is an entry name.

2. The entry point SUB has three paramet-
ers.
3. The

first parameter has the FIXED

attribute with certain default data
attributes.
4. The second _parameter has the ENTRY

attribute.
5. The third parameter has the LABEL
attribute.

The number of parameters and the attri-
butes of each, as described in the ENTRY
attribute specification, must always agree
with the number of parameters and their
attributes, as defined for the described
entry point within the invoked procedure.

One of the applications of the extended
form of the ENTRY attribute is mentioned in
the immediately following description. (A
detailed discussion of the various uses for
the ENTRY attribute, including the IRREDU-
CIBLE, USES, SETS, and GENERIC attributes,
can be found in Chapter 4.)

PASSING ARGUMENTS TO THE ENTRY POINT

When a procedure is invoked at a given
entry point by a procedure reference and
each argument is associated with its cor-
responding formal parameter, the arguments
are said to be passed to the entry point.

The action involved in passing the argu-
ments generally will assume that the attri-
butes of each argument match the attributes
of its corresponding formal parameter, as
described above. However, if the argument
is an expression whose attributes do not
correspond to those declared for the param-
eter associated with that argument, the
expression will be evaluated and converted,
before the argument is passed, to conform
to the attributes described by the corres-
ponding member of the ENTRY attribute list.

As an illustration, in the preceding
example, the first argument in the CALL
statement, which invokes the procedure SUB,
is the expression R*S. Assume that R#*S has
the FLOAT attribute with certain default
attributes. These do not match the attri-
butes of the first parameter at the entry
point SUB. Then the ENTRY attribute must
be used in the invoking procedure to speci-
fy the same attributes for the first param-
eter as specified in the invoked procedure
SUB. (The preceding illustration shows one
way of doing this.) Thus, on execution of
the CALL statement, the expression R*S 1is
evaluated, giving a floating-point result,
which is then converted to a fixed-point
value with the other required attributes,
before being passed to the entry point SUB.

(A detailed description of the action
involved in passing arguments to the
invoked entry point can be found in Chapter
10.)

In certain circumstances, the prepara-
tory action includes the construction of a
dummy argument. For example, a dummy argu-
ment 1is constructed when the argument must
be converted, as in the example of R*S just
discussed, or when the argument 1is an
expression involving constants or operators
(R*S is again an example of this
circumstance).

In each of its appearances as a ref-
erence in the procedure, the formal param-
eter corresponding to the argument effec-

tively is replaced by the argument name.

Thus, all appearances of the parameter
during execution of the procedure are
treated as appearances of the argument
name. However, in the cases where a dummy

argument is constructed, it is the dummy
argument name that replaces the parameter.
Passing an argument does not always imply a
substitution of the arqgument
name for the parameter in the procedure.
However, in the important case where the
argument is an arithmetic, string, or label
variable having identical attributes with
the corresponding parameter, a logical sub-
stitution does occur. Thus, parameters can

e am 1 3
true logical

be used to communicate values from the
invoked procedure back to the invoking
procedure. Example 2 of "Subroutine Ref-
erences,"™ above, is an illustration of
this.

In the above example, the appearance of
CALC as the second argument when SUB is
called does not imply that the identifier
CALC 1is contextually declared as an entry
name, even though the above ENTRY attribute
for SUBR has been given.

THE SPECIAL PROCEDURE ATTRIBUTE RECURSIVE

In the PROCEDURE statement for a given

procedure, certain special attributes that
characterize the procedure itself may be
specified. (For a complete discussion of

these attributes, see "The PROCEDURE State-
ment.") One of these, which has particular
significance, 1is the attribute RECURSIVE.

When a procedure of a program is re-
activated in a task while it is still
active in the same task (see "Activation

and Termination of Blocks"), the procedure
is said to be used recursively. Any
procedure used recursively during program
execution must be specified with the RECUR-
SIVE attribute. (See "Data Known to Invo-
cations of Recursive Procedures" in Chapter
10 for additional details.)

Chapter 5: Procedures, Functions, and Subrocutines 73

CHAPTER_6: _DYNAMIC PROGRAM STRUCTURE

PROGRAM CONTROL

Every program, when it is being execut-
ed, has a control that determines the order
of execution of the statements. For a
discussion of their order see "Sequence of
Control," in Chapter 8.

Execution of the program is initiated by
the operating system, which invokes the
initial procedure. This initial procedure
must be an external procedure that may be
specified with an attribute in the options
list of the OPTIONS attribute (see "The
PROCEDURE Statement®™ in Chapter 8). This
procedure cannot have CONTROLLED parameters
(see "Storage Classes" in this chapter).

ACTIVATION AND TERMINATION OF_ BLOCKS

A begin block 1is said to be activated
when control passes through the BEGIN

statement for the block. A procedure block
is said to be activated when the procedure

is invoked at any one of its entry points.

During certain time intervals of the
execution of a program, a block may be
active. A block is active if it has been
activated and is not yet terminated.

There are a number of ways in which a
block may be terminated. These are implied
by the following rules:

1. A begin block is terminated when con-
trol passes through the END statement
for the block.

block is terminated on
of a RETURN statement or an
(The END
statement;

2. A procedure
execution
END statement for the block.
statement implies a RETURN
see Chapter 8.)

3. A block is terminated on execution of
a GO TO statement contained in the
block which transfers control to a
point not contained in the block.

4. The execution of a STOP statement
causes termination of the major task.
5. The execution of an EXIT statement
causes termination of the task con-
taining the statement and all tasks
attached by this task. Thus, all
blocks corresponding to these tasks

are terminated.

T4

6. When a block B is terminated, all of
the dynamic descendants of B also are
terminated.

DYNAMIC DESCENDANCE

If a block B is activated and control
stays at points internal to B until B is
terminated, no other blocks can be activat-
ed while B is active. (This discussion is
not applicable to the multi-task, or asyn-
chronous, mode of operation, which implies
more than a single control; see
"Asynchronous Operations and Tasks.")

However, another block, Bl, may be acti-
vated from a point internal to block B
while B still remains active. This is
possible only in the following cases:

1. Bl is a procedure block immediately
contained in B (the 1label of Bl is
internal to B) and reached through a
procedure reference.

2. Bl is a begin block internal to B and
reached through normal flow.

3. Bl 1is a procedure block not contained
in B and reached through a procedure
reference. (Bl1, in this case, may be
identical to B, i.e., a recursive
call. However, it is to be regarded
dynamically as a different block.)

4., Bl is a begin block or a statement
specified by an ON statement (see "The
ON Statement"), and reached through an
interrupt. (For present purposes,
even 1if Bl is a statement, it can be
regarded as a block, and this case is
dynamically similar to case 1 or case
3 above.)

In any of the above cases, while Bl is
active, it is said to be an an immediate
dynamic descendant of B.

Block Bl may itself have an immediate
dynamic descendant B2, etc., so that a
chain of blocks (B, Bl, B2,...) 1is creat-
ed, where, by definition, all of the blocks
are active. In this chain, each of the
blocks Bl1, B2, etc., 1is said to be a
dynamic descendant of B.

It is important for the programmer to
note that the termination of a given block
may automatically imply the termination of

other blocks and that these blocks need not
necessarily be contained in the given
block; storage for all AUTOMATIC variables
declared in these blocks will be released
at the time of termination (see "Storage
Classes™).

DYNAMIC ENCOMPASSING

Block A dynamically encompasses block By
or block B is dynamically encompassed by
block A, if B is a dynamic descendant of A.

ALLOCATION OF DATA AND STORAGE CLASSES

Because the internal storage of any
computer is limited in size, the efficient
use of this storage during the execution of
a program is frequently a crucial consider-
ation. The simple static process of data
allocation used by many compilers -- the
assignment of a distinct storage region for
each distinct variable used in the source
program =-- may be wasteful. Multiple use
of a storage region for different data
during program execution can reduce the
total amount of storage required.

Provisions are included in the language
to give the programmer virtually any degree
of control over the allocation of storage
for the data variables in a program. on
the other hand, the entire problem of
allocation can be ignored completely by the
programmer, if storage economization is of
iittle significance in his situation, and a
reasonably efficient use of storage usually
will still be obtained automatically.

DEFINITIONS AND RULES

Storage is said to be allocated for a
variable when a certain region of storage
is associated with the variable. Alloca-
tion for a given variable may take place
statically, before execution of the pro-
gram, or dynamically, during execution.

Storage may be allocated dynamically for
a variable and subsequently released.
Thus, this storage is freed for possible
use 1in later allocations. If storage has
been allocated for a variable and not
subsequently released, the variable is said
to be in _an allocated state.

When a variable appears in a statement
of a source program, the appearance 1is
called a reference if it corresponds either

to the assignment of a value to the varia-
ble (e.g., an appearance on the 1left side
of an assignment statement) or to a use of
the value of the variable (e.g., appearance
in an expression to be evaluated).

At any point where a variable appears as
a_reference, it must be in an allocated

atadn
DU e
——

Note: An unallocated variable may appear
as an argument to a procedure with a
correspeonding CONTROLLED parameter, as an

argument to the ALLOCATION function, or in
an ALLOCATE statement.

STORAGE CLASSES

Every variable in a program must have a
storage class, which specifies the manner
of storage allocation.

There are three storage classes. The
storage class is specified by declaring the
variable with one of the three storage
class attributes STATIC, AUTOMATIC, or CON-

TROLLED (based or nonbased). .The storage
class may be declared explicitly or by
default.

The Static Storage Class

Storage for a variable with attribute
STATIC is allocated before execution of the
program and is never released during execu-
tion.

The scope attribute (see Chapter 4) of a
STATIC variable may be INTERNAL or EXTER-
NAL. An EXTERNAL variable with unspecified
storage class has, by default, the STATIC
storage class attribute.

The Automatic Storage Class

If a variable has the attribute AUTOMAT-
IC, the status of the block containing this
variable (see "Data Description") deter-
mines dynamic allocation for the variable.
Whenever this block is activated during
execution of a program, storage will be
allocated for the variable, and the varia-
ble will remain in an allocated state until
termination of the block. At the time of
termination, the storage will be released.

Chapter 6: Dynamic Program Structure 75

Thus, the time interval during which the
variable is in an allocated state will
necessarily include the intervals when the
variable is known (see "Scope of
Declarations").

Termination of a block by means of a GO
TO statement may imply simultaneous termi-
nation of other blocks and, consequently,
simultaneous release of storage for all

AUTOMATIC variables declared in these
blocks (see "The GO TO Statement").
If the Dblock 1is a procedure and is

called recursively (reactivated one or more
times before return), previously allocated
storage for the AUTOMATIC variable is
"pushed down" on each entrance and "popped

up" on each return to yield the proper
generation of storage for the variable
after each return, until the final return

out of the procedure.

Note: The terms "pushed down"™ and "popped
up" refer to the notion of a push-down
_____ A push-down stack 1is a logical
device S, similar in behavior to a physical
stacking process. When an element is
placed in S, it is conceptually placed on
top of the elements already in S, which are
"pushed down." At any time, if S is not
empty, the top element -- the element most
recently placed in S -- can be removed from
S, and the remaining elements are "popped
up- "

The scope attribute (see Chapter 4) of
an AUTOMATIC variable must be INTERNAL. An
INTERNAL variable with unspecified storage
class has, by default, AUTOMATIC storage
class attribute.

The Controlled Storage Class

The ALLOCATE statement (see Chapter 8)
specifies one or more variables, each with
certain optional attributes. Execution of
the statement causes the allocation of
storage for the variable specified.

The following four paragraphs apply only
to nonbased controlled variables.

If a variable has the attribute CON-
TROLLED, storage allocation must be expli-
citly specified for the variable by the
ALLOCATE and FREE statements.

The FREE statement specifies one or more
variables, and execution of the statement
causes the storage most recently allocated
for the ‘variables to be released.

76

At some point in a program, it may not
be known whether a variable X is in an
allocated state. The built-in function
ALLOCATION (see Appendix 1) is provided to
test this state. The function reference
ALLOCATION (X) will return the value '1'B

if X is in an allocated state, and the
value *0'B if not.
The scope attribute of a CONTROLLED

variable may be INTERNAL or EXTERNAL.
Example:

A: PROCEDURE;
DECLARE X STATIC;

-

B: PROCEDURE;
DECLARE Y (100) CONTROLLED, Z CHAR-
ACTER (1000);

-

ALLOCATE Y;

-

FREE Y;

C: BEGIN;
DECLARE Z (100);

END A;

Assume in the above example that the
termination of procedure A occurs on the
return implied by END A, the termination of
procedure B occurs on the RETURN statement,
and the termination of block C occurs at
END C. Then in this example:

Storage for the static variable X is
allocated before execution and is never
released.

The character-string variable Z is AUTO-
MATIC by default. Storage is allocated
for this Z on entrance to procedure B
and 1is released on execution of the
RETURN statement.

The array-variable Z is AUTOMATIC by
default. Storage is allocated for this
Z at the beginning of execution of block
C and is released at END C.

Storage for the CONTROLLED variable Y is

allocated on execution of +the ALLOCATE
statement and 1is released on execution
of the FREE statement. After execution
of the FREE statement, the variable Y
presumably is not used, but the
character-string variable Z can be used,
since storage is not released for this

variable until the termination of proce-
dure B.

The allocation of based variables is
discussed in "The ALLOCATE Statement"
(Chapter 8) and in "List Processing”
(Chapter 10).

ASYNCHRONOUS OPERATIONS AND TASKS

PL/I allows tasks to be created by the
programmer and provides facilities for the
following:

1. Synchronizing tasks
task is

2. Testing whether or not a
complete

3. Changing the priority of tasks

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Unless the program specifies the crea-
tion of tasks, the execution of the state-
ments of the program will proceed serially
in time, according to the sequence desig-
nated by the order of the statements and
the control statements (see "Sequence of
Control™ in Chapter 8). Such operation is
said to be synchronous.

In addition to full facilities for con-
ventional synchronous processing, means are
provided for performing operations asyn-

chronously.

Some reasons for considering the use of
asynchronous operations are:

1. The programmer may wish to make use of
computer facilities which can operate
simultaneously, €.g., input/output
channels, multiple central processing
units.

2. A program may be written in which
input/output units initiate or com-
plete transmission at unpredictable

times, e.g., disc termi-~

nals.

operations,

The following two diagrams distinguish
between synchronous and asynchronous opera-
tions. The first diagram depicts the seri-
al action of synchronous operations, and
the second diagram depicts the parallel
action of asynchronous operations. (The
circles represent statements.)

0—-0 o o
time—->
f—O=—==O——mmm— . ..
|
|
ro O o] coe
|
]
0-0-0i , o o o
time-->

In asynchronous operation, once a new
line has been started, the statements on

that line are executed in sequence, but
independently of the statements on any
other 1line. Statements on any two lines

need not necessarily be executed simultane-
ously -- whether this occurs depends on the
resources and state of the system.

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS

In order that the result of an asynchro-
nous operation may be made available to
other procedures, means are provided to
synchronize two or more asynchronous opera-
tions.

The following diagram illustrates this:

A B C D E F G
Q=—=0-—=0—~0 o O—=O=—u 0.
|
time~-> |
|
JRESSISEINENN o W o Y (o} O
L M N 0 P

Wait

Assume that before statement N can be
executed, both M and E must have been
executed. M therefore issues a WAIT state-
ment which will suspend operation on that
line wuntil E has completed. After N, the
statements 0, P,..., are executed synchro-
nously, as are the statements Fy Gyee.,-

Chapter 6. Dynamic Program Structure 77

TASK AND EVENTS

In PL/I, asynchronous operations result
from the creation, by the programmer, of
tasks. The synchronizing of operations is
obtained by waiting on events.

A task is an identifiable execution of a
set of instructions. A task is dynamic,
and only exists during the execution of a
program or part of a program.

A task is not a set of instructions, but
an execution of a set of instructions. The
instructions themselves, as written by the
programmer, may in fact be executed several
times in different tasks.

It is necessary for at least one task to
exist when a PL/I program is executed.
Thus when an external procedure is first
entered, 1its execution is part of a task.
This particular task is called the major
task; it is created by the operating envi-
ronment and its creation does not necessar-
ily concern the PL/I programmer. If the
programmer is concerned with only synchro-
nous operations, then the major task will
be the program itself.

In order to initiate asynchronous opera-
tions, the programmer has to create new
tasks, as described below. All tasks
created by the programmer are called sub-
tasks.

With each task, except the major task,
it is possible to associate a task name.
The task name may be used to refer to and
set the priority of the task.

A task may be
programmer until some point in the execu-
tion of another task has been reached. The
specified point is known as an event and
the record of its completion is contained
in an event name. (See the EVENT built-in
function and the EVENT pseudo-variable.)

suspended by the

An event name may be associated with the
completion of a task. It is necessary to
specify such an event name if the program-
mer wishes to synchronize a point in one
task with the completion of another task,
by means of the WAIT statement.

Other event names may be defined by the
programmer and used in WAIT statements. In
this way, the programmer can synchronize a
task with events other than the completion
of another task. Event names may be set by
referring to them in assignment statement
by means of the EVENT pseudo-variable.

78

THE CREATION OF TASKS

In PL/I tasks are created by writing:

A TASK option
An EVENT option
A PRIORITY option

or any combination of these options in a
CALL statement (see "The CALL Statement" in
Chapter 8). The called procedure will then
be executed asynchronously with the calling
procedure. The CALL statement itself is
not part of the newly-created task. The
execution of the calling procedure is known
as the attaching task. The execution of

the called procedure 1is known as the
attached task.
The TASK option is given in order to

name the task created by the CALL. This is
necessary if the programmer wishes to exam-
ine or change the priority of the called
procedure, since the PRIORITY function and
pseudo-variable have a task name as an
argument.

The EVENT option is given if the pro-
grammer wishes to 1issue a WAIT statement
which will wait on the completion of the
task created by the CALL.

The task created by the CALL statement
must be given a priority. This priority
may be given in either of two ways:

1. through the PRIORITY option in the

CALL statement, or

2. Dby assignment to the PRIORITY pseudo-
variable prior to the execution of the
CALL statement that creates the task.

The term "task option" will be used in
all later discussions to denote any one of
the three options TASK, EVENT, or PRIORITY,
or any part of these options, or all three.

TERMINATION OF TASKS

A task may be terminated (i.e.,
completed) in one of the four following
ways:

1. Control for the task reaches an EXIT
statement (see Chapter 8 for a
discussion of each of the statements
mentioned here).

2. Control for
statement.

any task reaches a STOP

3. Control for the task reaches a
statement for the
with a task option.

RETURN
procedure invoked

4, control for the task reaches an END
statement for the procedure invoked
with a task option.

ALLOCATION OF DATA IN TASKS

The rules of scope and storage alloca-
tion hold across task boundaries. If stor-
age is allocated for a variable in the
attaching task, this allocation may apply
to the attached task, so that the variable
may appear as a reference in the attached
task. It is the responsibility of the
programmer to be certain that storage for
such a variable is not released too early
in the attaching task. (Normally, this is
done by synchronizing by use of the WAIT
statement.)

(Further details concerning tasks as

related to storage allocation and other
special considerations can be found in
Chapter 10; also see "The WAIT Statement”

for additional information and examples.)

INTERRUPT OPERATIONS

During the course of program execution
any one of a certain set of conditions may
occur that can result in an interrupt. An
interrupt operation causes the suspension
of normal program activities, in order to
perform a special action; after the special
action, program activities may or may not
resume at the point where they were sus-
pended. The time point of an interrupt is,
in general, unpredictable.

For most conditions that can cause an
interrupt, the special action to be taken
may be specified by the programmer. To do
this, he may specify the condition in an ON
statement; therefore these conditions are
known as the ON-conditions. A complete
list and description of the ON-conditions

can be found in Appendix 3. With two
exceptions (see "Programmer Defined ON-
Conditions,"™ in this chapter), each ON-

condition is named with a unique identifier
suggestive of the condition (e.g.,
ZERODIVIDE names the condition obtaining
whenever an attempt is made to divide by
zero). This collection of names, like the
built-in function names, is an intrinsic
part of the language, but the names are not
reserved; the programmer may use them for
other purposes, so long as no ambiguity
exists.

PORPOSE OF THE CONDITION PREFIX

In general, during the execution of a
statement, an ON condition may be in either
an enabled or disabled state.

If a particular condition is enabled and
an interrupt occurs during execution of the
statement, the action specification for the
condition is executed. This action speci-
fication may either be standard system
action or it may have been specified by the
programmer through the use of an ON state-
ment.

If a particular condition is disabled
during execution of a statement, it is
assumed that the condition will not occur.
The result is usually unpredictable for a

statement in which a disabled condition
occurs. However, in certain cases the
results are defined (e.g., the CHECK

condition).

By means of condition prefixes, the
programmer can control the enabled/disabled
status of the following ON conditions:

CHECK SIZE
CONVERSION SUBSCRIPTRANGE
FIXEDOVERFLOW UNDERFLOW
OVERFLOW ZERODIVIDE

The appearance of any of the above
keywords in a prefix list causes the asso-
ciated condition to be enabled for the
scope of the prefix. The appearance of any
of the above preceded by a NO (with no
separating blank) causes the associated
condition to be disabled for the scope of

P N R P-F K Td
LIIT PITLIA.

SCOPE OF THE CONDITION PREFIX

The scope of the prefix depends upon the
statement to which it is attached.

If the statement is a PROCEDURE or BEGIN
statement, the scope of the prefix 1is the
block defined by this statement, including
all nested blocks, except those blocks and
statements for which the condition is re-

specified. The scope does not include
procedures that 1lie outside the scope as
defined above but which may be invoked by

the execution of statements in this scope.

If the statement is an IF statement or
an ON statement, the scope of the prefix
does not include the blocks or groups that
are part of the statement. Any such block
may also have an attached prefix, whose
scope rules are implied by the other rules
given here.

Chapter 6. Dynamic Program Structure 79

For any other statement, the scope of
the prefix is that of the statement itself,
including any expressions evaluated during
the execution of the statement but not any
procedure explicitly called by the
statement.

USE OF THE ON STATEMENT

define the action to be
interrupt occurs, the pro-
statement, which

In order to
taken when an
grammer may write an ON
has the general form:

ON condition-specification action-
specification

The "condition specification" either is
an ON-condition name or denotes a
programmer—-defined condition, and the
"action specification"™ is a single simple
statement or begin block, optionally
preceded by the keyword SNAP (see "The ON
Statement™ for complete syntax and

details). If the single statement is null,
control 1is given back to the point of
interrupt.

When an ON statement that is intermnal to
a given block (for example, a block B) is
executed, it causes a preparatory action
with the following effect:

If, during the execution of any state-
ment after the execution of the ON
statement and before the termination
of block B (including the execution of
statements in all dynamic descendants
of block B), the condition specified
in the ON statement ever occurs and an
interrupt results, the statement or
begin block specified in the ON state-
ment will be executed as though it
were invoked as a procedure block.
(If SNAP also has been specified, a
standard action providing program
checkout information will precede this
pseudo-invocation.) Control normally
will be returned to the activity fol-
lowing the one that was interrupted.

When an ON statement specifying a given
condition 1is executed, the action to be
taken is established by the execution. The
time interval during which this action
specification is effective is defined above
in the description of the effect of an ON
statement. There are two qualifications to
this description:

1. If, after a given action is esta-
blished by execution of an ON state-
ment, and while this action specifi-
cation is still effective, another ON
statement specifying the same condi-

80

tion 1is executed, then this latter ON
statement will take effect as des-
cribed above, so that its specified
action will determine the interrupt
action for the given condition. (The

effect of the o0ld ON statement is
either temporarily suspended or com-
pletely nullified, depending upon

whether or not the new ON statement is
in a block dynamically descendant from
the block to which the old ON state-
ment is internal; see "The ON
Statement™ and "The REVERT Statement"”
for more details.)

2. There are eight ON-conditions whose
names (possibly preceded by the word
"NO") may appear in a prefix to a
statement. Even when one of these
conditions appears in an ON statement,
occurrence of the condition will not
necessarily result in an interrupt.
For an interrupt to occur, there are
certain additional requirements, which
are described in the following para-
graph.

There are three of these eight ON-
conditions, SIZE, SUBSCRIPTRANGE, and
CHECK (identifier list), for which an
interrupt will not take place when the
condition occurs unless the programmer
specifically designates that the
interrupt 1is to take place. He may
enable this condition by explicitly
specifying the condition in a prefix
whose scope will cover the calculation
where the condition may occur. If a
calculation resulting in the occur-
rence of either of these conditions
does not lie within the scope of such
a prefix, no interrupts will occur.
The other five of these eight special
ON-conditions, namely OVERFLOW, UNDER-
FLOW, ZERODIVIDE, CONVERSION, and FIX-
EDOVERFLOW, are always enabled, but
the programmer may specifically desig-
nate that an interrupt is not to take
place. An interrupt for any one of
these conditions will always take
place when the condition occurs unless
the occurrence is 1in a calculation
lying within the scope of a prefix
specifying NOOVERFLOW, NOUNDERFLOW,
NOZERODIVIDE, NOCONVERSION, or NOFIXE-
DOVERFLOW, respectively.

All other conditions, whose names cannot
be used in a prefix, are always enabled.

SYSTEM INTERRUPT ACTION

Each of the ON-conditions has a standard
action defined for it if an interrupt
should occur. If there has been no pre-

vious execution of an ON statement (in
which the programmer specifies the inter-
rupt action), any interrupt caused by the
occurrence of the condition during program
execution will result in a standard system
action, which is dependent upon the nature
of the condition. If the programmer does
not want the system action in the case
where one of these conditions may occur and
cause an interrupt, he must specify an
alternative action for the condition
through use of the ON statement.

In some situations, the programmer may
want to specify his own action for a given
condition, to have it hold for part of the
execution of the program, and then to have
this specification nullified and allow the
standard system action. In this case, he
may use the special action-specification
SYSTEM, as follows:

ON condition-name SYSTEM;
Example 1:

A: PROCEDURE;

ON OVERFLOW

BEGIN;

DECLARE NUMBOV STATIC
INITIAL (0);

NUMBOV=NUMBOV + 1;

IF NUMBOV = 100 THEN GO
TO OVERR;

END;

ON OVERFLOW SYSTEM;

END A;

In the above example, assume that the
program consists only of procedure A, that
the three ON statements are the only ON
statements involving the OVERFLOW condi-
tion, that they are internal to procedure
A, and that they are executed in their
physical order.

When program execution begins, the OVER-
FLOW condition 1is enabled by the system;
any floating-point overflow condition that
occurs before the first ON OVERFLOW state-
ment is executed will result in an inter-
rupt, with standard system action. Howev-
er, the execution of the first ON OVERFLOW
statement establishes the action specified
in the BEGIN block. (The number of over-

flows is counted and if this number has not
reached 100, the action is finished.) BAny
OVERFLOW interrupts will receive this
action until the second ON OVERFLOW state-
ment is executed. The action specified
here is a null statement; any subsequent
OVERFLOW interrupts will effectively be
ignored until control reaches the third ON
OVERFLOW statement, which reestablishes the

LA~ a1 Cl

standard system action.
Example 2:

(SIZE): A: PROCEDURE;

-

ON SIZE GO TO AERR;

END A;

(SIZE, NOOVERFLOW): B:

PROCEDURE;

ON SIZE GO TO BERR;

RETURN;
END B;

In the above example, the prefix (SIZE)
enables that condition for procedure A and
specifies that if a SIZE error (see Appen-
dix 3) occurs during any calculation in
procedure A, an interrupt is to take place.
The prefix (SIZE, NOOVERFLOW) for procedure
B specifies the same requirement with res-
pect to a SIZE error for procedure B; in
addition, it specifies for procedure B that
any interrupt that might be caused by an
OVERFLOW condition is to be suppressed.

After the beginning of execution of
procedure A, and before the execution of
the first ON statement, any SIZE error will
result in an interrupt with standard system
action. After execution of this ON state-
ment, and before execution of the ON state-
ment in the invoked procedure B, any SIZE
error will result in an interrupt with the
action GO TO AERR. After execution of the
ON statement in procedure B, the action GO
TO BERR becomes established for the SIZE
condition, but the effect of the previous
ON statement is suspended only temporarily.
After the RETURN statement in procedure B
is executed, the effect of this previous ON
statement is reinstated, so that SIZE
errors occurring after this point again
result in the action GO TO AERR.

Chapter 6. Dynamic Program Structure 81

If any floating-point overflow condition
occurs during the execution of procedure A,
an interrupt will result with the standard
system action for the OVERFLOW condition.
However, for any occurrence of an OVERFLOW
condition during the execution of procedure
B, the interrupt will be suppressed.

Example 3:
(NOOVERFLOW): A: PROCEDURE;
(OVERFLOW) :B: BEéIN;
EN% B;
EN]:D A;

In the above example, interrupts will be

suppressed for OVERFLOW conditions occur-
ring during execution of that part of
procedure A that is not included in block

conditions

B. OVERFLOW
execution of block B
interrupt.

occurring during

resuit in an

USE OF THE REVERT STATEMENT

The REVERT
lowing an ON

statement may be used, fol-
statement, to reinstate an
action specification that existed in the
immediate, dynamically encompassing block
without having to return control to that
block (see "The REVERT Statement," in Chap-

ter 8 for format and rules).
Example:
(SIZE): A: PROCEDURE;
ON SIZE GO TO AERR;
CALL B;
END A;
(SIZE): B: PROCEDURE;

ON SIZE GO TO BERR;

-

REVERT SIZE;

END B;

82

In the above example, if a SIZE error
occurs 1in procedure B after execution of
the ON statement, an interrupt will take
place with the resulting action GO TO BERR.
After execution of the REVERT statement,
the condition as specified by the ON state-
ment in procedure A is reinstated. Program
control remains in procedure B, but any
sulisequent SIZE error that occurs in proce-
dure B will cause an interrupt with the
action GO TO AERR.

PROGRAMMER-DEFINED ON-CONDITIONS

There are two kinds of ON-conditions the
programmer may construct:

1. An arbitrary identifier can be used to
create a condition name by means of
the keyword CONDITION used in the ON
statement, as follows:

ON CONDITION(identifier) action-
specification

Such a statement contextually declares
the “identifier™ to be a condition-
name and the execution of the
statement provides an action specifi-
cation. The condition can be caused
to "occur" only by the execution of a

SIGNAL statement (see "The SIGNAL
Statement").
For example, if the following

statement is executed:
ON CONDITION(KEY) block

and later
executed:

the following statement is

SIGNAL CONDITION(KEY);
then the latter execution will (by
definition of the SIGNAL statement)
cause an interrupt, with the action
defined by the block in the ON state-
ment.

2. The CHECK (identifier 1list), where
"identifier list" represents variables
or labels declared in the program, can
appear as the condition specification
in the ON statement. Whenever one of
the variables in the list is assigned
a value, or one of the procedures or
statements whose label appears in the
list is executed and if the condition
is enabled, the condition defined by
this specification 1is regarded as
occurring, and an interrupt will take
place. (For a precise explanation of
this kind of condition, see Appendix
3, "ON Conditions.™)

The programmer-specified condition des-
cribed above is a powerful tool for program

checkout. As an example of its use, sup-
pose that a block contains the prefix
(CHECK(A,SUB1,ST5)) and that the following

statement is executed:

ON CHECK (A, SUB1l, STS5) SYSTEM;

In the example, A is a data variable,
SUB1 is a procedure name, and ST5 is a
statement label. Then, whenever a value is
assigned to A (or to any part of A, if A is
an array or structure name), an interrupt
occurs, and A is printed out on the stand-
ard output file (SYSPRINT) with its new
value., If the statement labeled ST5 or the

procedure SUBl1 is executed,
printed out.

the 1label is

Another useful ON-condition is the con-
dition named SUBSCRIPTRANGE. Parts of the
program can be designated by the program-
mer, using the keyword SUBSCRIPTRANGE in
appropriate prefixes, to receive constant
monitoring of subscript values. Whenever
the value of some subscript in some array
goas out of its designated range, an inter-
rupt will occur, and action, specified by a
previously executed ON statement, may take
place to correct the error.

The SIGNAL statement also will be found
useful for checkout, since it can be wused
to simulate the occurrence of any ON-
condition (see "The SIGNAL Statement").

Chapter 6. Dynamic Program Structure 83

CHAPTER_ 7. INPUT/OUTPUT

A collection of data external to the
program constitutes a data set. Input
activity transmits data from a data set to
a program. Output activity transmits data
from a program to a data set. Input/output
statements refer to a filename declared in
the program.

In STREAM input/output, the data set is
regarded as a continuous stream of
characters. The GET and PUT statements are
used to transmit data values from and to
the data set. Conversions may occur during
transmission (see "Data Stream Transmis-
sion,™ below).

In RECORD__input/ocutput, the data set
consists of discrete records. The READ and
WRITE statements cause a single record to
be transmitted from or to the data set.
Transmission is direct, without any conver-
sion, either directly to data variables or
to an intermediate, addressable buffer.

3 3 3 + ~ £ A4 S o
When transmission is to or from data varia

bles, the attributes of the variables
should accurately describe the composition
of the record.

For annotated illustrations of
input/output operations, see Examples 1 and
2 in Appendix 6.

FILE_OPENING AND FILE ATTRIBUTES

The file attributes are discussed in
Chapter 4. This section describes how
attributes are collected and become asso-

ciated with a file, as well as describing
how a file is opened.

The file attributes can be divided into
two categories, alternative attributes and
additive attributes. Alternative attri-
butes are those in which one of a group may
be selected. If there is no explicit or
implied declaration for one of the alterna-
tives, and if one of those alternatives is
required, a default attribute is selected.
Additive attributes are those that never
are applied by default and must always be
stated explicitly, either in a file dec-
laration or in the OPEN statement (the one
exception is that PRINT may be applied by
default for the SYSPRINT file, see
"Standard Files").

Following 1is a summary of the alterna-
tive attributes and their defaults:

84

Attributes Default
STREAM | RECORD STREAM
INPUT|OUTPUT|UPDATE INPUT
SEQUENTIAL|DIRECT SEQUENTIAL
BUFFERED| UNBUFFERED BUFFERED
INTERNAL]EXTERNAL EXTERNAL
Following is a 1list of the additive
attributes:

PRINT

BACKWARDS

EXCLUSIVE

KEYED (decimal-integer-constant)

ENVIRONMENT (option-list)
OPENING A FILE

The opening of a file is the means by

which a filename 1is associated with a
particular data set. The identity of the
data set can be specified through the TITLE
option of the OPEN statement; otherwise,
the filename will specify the identity of
the data set. A part of the opening
process 1is the completion of the set of
attributes that describe the composition of
the data set and the method in which the
individual records of the data set will be
accessed. A file can be opened either
explicitly or implicitly.

Explicit Opening

A file is opened explicitly through
execution of an OPEN statement that speci-
fies the filename. The OPEN statement may
list any of the attributes given above
except the ENVIRONMENT, INTERNAL, or EXTER-
NAL attributes. Attributes 1listed in an
OPEN statement are merged with any attri-
butes listed in a file declaration for that
filename. In an explicit opening, the OPEN
statement must be executed prior to the
execution of any of the statements 1listed
below under "Implicit Opening”™ that refer
to that filename.

Implicit Opening

An implicit opening of a file may occur
if one of the statements listed below is
executed prior to the execution of an OPEN
statement specifying the same filename.
The statement type is used to determine the

usage and function attributes of the file.
The effect of an implicit opening, caused
by one of these statements, is as 1if the
statement were preceded by an OPEN state-
ment specifying the attributes deduced from

the statement type:

Following is a 1list of the statement
identifiers and the attributes deduced from
each:

Statement Identifier Attributes Deduced
GET STREAM, INPUT
PUT STREAM, OUTPUT
READ RECORD, INPUT
WRITE RECORD, OUTPUT
REWRITE RECORD, UPDATE
LOCATE RECORD, OUTPUT,

SEQUENTIAL,
BUFFERED
DELETE RECORD, DIRECT,
UPDATE
UNLOCK RECORD, DIRECT,
UPDATE,
EXCLUSIVE

Merging of Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged--explicitly or

impiicitiy--as the result of the file open-
ing. For example, the attributes INPUT and
UPDATE are in conflict, as are +the attri-
butes UPDATE and STREAM.

After the attributes are merged, the
attribute implications, listed below, are
applied prior to the application of default
attributes discussed earlier in this sec-
tion. Implied attributes can also cause a

conflict. If a conflict in attributes
exists after the application of Jdefault
attributes, the UNDEFINEDFILE condition is
raised.

Following is a list of attributes and
the other attributes that each implies

after merging:

Merged Attribute Implied Attribute(s)

UPDATE RECORD
SEQUENTIAL RECORD
DIRECT RECORD, KEYED
BUFFERED RECORD,
SEQUENTIAL
UNBUFFERED RECORD,
SEQUENTIAL
PRINT OUTPUT, STREAM
BACKWARDS RECORD,
SEQUENTIAL,
INPUT

EXCLUSIVE RECORD, KEYED,
DIRECT,
UPDATE
KEYED RECORD

The following two examples illustrate
attribute merging for an explicit opening
and for an implicit opening:

Explicit opening example

DECLARE LISTING FILE STREAM;

-

OPEN FILE (LISTING) PRINT;

Attributes after merge due to exe-
cution of the OPEN statement are
STREAM and PRINT.

Attributes
STREAM, PRINT,

after implication are

and OUTPUT.

Attributes after
tion are STREAM,
EXTERNAL.

default applica-
PRINT, OUTPUT, and

Implicit opening example

MASTER FILE KEYED (10)

INTERNAL;

DECLARE

READ FILE (MASTER) INTO
{MASTER_RECCRD)
KEYTO (MASTER_KEY);

Attributes after merge due to the
opening caused by execution of the
READ statement are KEYED (10),
INTERNAL, RECORD, and INPUT.
Attributes after implication are
KEYED (10), INTERNAL, RECORD and
INPUT. There are no additional
attributes implied.

Attributes after default applica-
tion are KEYED (10), INTERNAL,
RECORD, INPUT, SEQUENTIAL, and RUF-
FERED.

DATA_ STREAM TRANSMISSION

There are three modes of STREAM trans-
mission: 1list-directed, data-directed, and
edit-directed. All of these modes of
transmission utilize data specifications as
described in the next section. This sec-
tion discusses the general characteristics
of the transmission modes. The details of
these transmission modes are discussed
later in the chapter.

Chapter 7: Input/Output 85

LIST~-DIRECTED TRANSMISSION

List-directed transmission permits the
user to specify the storage area to which
data 1is assigned or from which data is
transmitted without specifying the format.

Input: The data in the stream is in the
form of optionally signed valid constants
or of expressions to represent complex
constants. The program storage areas to
which the data is to be assigned is speci-
fied by a data list.

Output: The data values to be transmitted
are specified by a data list. The form of
the data placed in the stream is a function
of the data value and precision.

DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the
user to read or write self-identifying
data.

_____ The data in the stream is in the
form of optionally signed valid constants
and includes information identifying the
program storage areas to which the data is
to be assigned.

Output: The data values to be transmitted
are specified by a data list. The data
placed in the stream has the form of

constants and includes the name of the data
being transmitted.

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the
user to specify the storage area to which
data 1is to be assigned or from which data
is to be transmitted and the form of data
fields in the stream.

Input: The form of the data in the stream
is defined by a format list. The program
storage areas to which the data is to be
assigned is specified by a data list.

Output: The data values to be transmitted
are defined by a data list. The form that
the data is to have in the stream is
defined by a format list.

86

DATA STREAM DATA SPECIFICATIONS

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications cor-
respond to the modes of transmission.

DATA LISTS

List-directed, data-directed, and edit-
directed data specifications require a data
list to specify the data items to be
transmitted.

General format:
(element [, element] ...)
Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules for each are as
follows:

1. On input, each data-list element for
edit-directed and 1list-directed data
may be one of the following: a scalar
name, an array name, a structure name,
a pseudo-variable, a pseudo-array, a
pseudo-structure, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, each data-list element
may be an unsubscripted scalar, array
or structure name.

2. On output, each data-list element for
edit-directed and 1list-directed data
specifications may be one of the fol-
lowing: a scalar expression, an array
expression, a structure expression, or
a repetitive specification involving
any of these elements. For a data-
directed data specification, each
data-list element may be a scalar,
array, or structure name, Or a repeti-
tive specification involving any of
these elements.

3. The elements of a data list must be of
arithmetic or string data type.

Repetitive Specification

General format is shown in Figure 1.

o i s . e < o oo s o pm)

(element I,

expression-1 [

variable
elementl... DO

pseudo-variable

A specification has the following format:

TO expression-2

L BY

[BY expression—B]]

expression-3 [TO expressior

} = specification
([, specificationl...)

[WHILE (expression-4)]
-2

= T -

b e e e - s — — —— — —]

Figure 1.

Syntax rules:

Each element in the element 1list of
the repetitive specification is des-
cribed for data-list elements above.

The expressions in the
are described as follows:

specification

a. Each expression in the specifi-
cation is a scalar expression.

b. In the specification, expression 1
represents the starting value of
the control variable or pseudo-

variable. Expression 3 represents
the increment to be added to the
control variable after each

repetition of data-list elements
in the repetitive specification.
Expression 2 represents the termi-
nating value of the control varia-
ble. The exact meaning of the
specification is identical to that

of a DO statement with the same
specification. When the 1last
specification is completed, con-

trol passes to the next element in
the data list.

Repetitive specification may be nested
to a depth whose maximum is
implementation-defined. That is; each
element in the element list may be a
repetitive specification. A
repetitive specification involving m
elements repeated n times is equival-
ent to m*n elements. For example,
consider the following statement:

GET LIST ((A(I,J) DO I =1 TO 2)

DO J = 3 TO 4);

This is equivalent to:

DO J = 3 TO 4;
DO I =1 TO 2;
GET LIST (A(I,J));
END;

END;

General Format for Repetitive Specification.

It gives the elements of the array A in
the following order:

A(1,3), a(2,3), A(1,4), A(2,4)

Note: The DO keyword is used in the repet-
itive specification to indicate iteration

in a manner similar to a DO statement. A
corresponding END statement is not
required.

Transmission of Data-List Elements

If a data-list element is of complex
mode, the real part is transmitted before
the imaginary part.

If a data-list element is an array name,
the elements of the array are transmitted
in row-major order, that is, with the
rightmost subscript of the array varying
most frequently.

If a data-list element is a structure
name, the elements of the structure are
transmitted in the order specified in the
structure declaration. For example, if the
structure declaration was:

DECLARE 1A(10), 2B, 2C;
then the statement
PUT FILE (X) LIST (A);

would result in the output being ordered as
follows:

A.C(1) A.B(3)
etc.

A.B(1) A.B(2) A.C(2)

A.C(3)

If, however, the declaration had been:

DECLARE 1a, 2B(10), 2C(10);

then the same PUT statement would produce:

A.B(1) A.B(2) A.B(10)

A.C(1) A.Cc(2) A.C(3)

A.B(3)

ce oo

s esse

A.C(10).

Chapter 7: Input/Output 87

I1f, within a data list used in an input
statement, a variable is assigned a value,
this new value 1is used in all later ref-
erences in the data list, and the format

list, if present.
Example:
In the following statement, B is a

structure, XSTRING is a character

and C is an array:

string,

DECLARE A FLOAT, 1B, 2P, 2E, 3F,
XSTRING
CHARACTER (6), C(10) FIXED;

The following data 1list, involving these
data items, and the scalar variable A, may
be used for input or output:

(A,B, SUBSTR (XSTRING, 2),

(C(I) DO I =2 TO 7))
The data-list elements are transmitted
in the following order:

A -The scalar variable is trans-
mitted.

P,F-The elements of the
B are transmitted.

structure

SUBSTR (XSTRING, 2)-The second through

sixth characters of the string
XSTRING are transmitted.

c(2), C(3)yeu., C(7). The six speci-
fied elements of the array are

transmitted.
LIST-DIRECTED DATA SPECIFICATION

General format:
LIST data-1list
Syntax rules:
in the

The "data 1list"™ is described

preceding discussion.

List-Directed Input Format

When the data item is an array name and
the data consists of constants, the first
constant is assigned to the first element
of the array, the following constant to the
second element, etc., in row-major order.

A structure name in the data 1list rep-
resents a list of the contained scalar
variables and arrays in the order specified
in the structure description.

88

Data in the stream has one of the

following general forms:

[+|-] arithmetic-constant
character-string-constant
bit-string-constant
(+|{-1lreal-constant{+|-}imaginary-constant

Sterling constants may not be used. A
string constant must be one of the two
permitted forms 1listed above. Iteration

and string repetition factors are not

allowed.

Redundant blanks are permitted as in:

PL/1I programs. However, no blanks may
precede the central + or - in complex
expressions.

Data items in the stream must be sepa-

rated either by a blank or by a comma.
This separator may be surrounded by an
arbitrary number of blanks. A null field
in the stream is indicated either by the
very first non-blank character in the
stream being a comma, or by two adjacent
commas Separated by an arbitrary number of
blanks. A null field specifies that the
value of the associated item in the data
list specification is to remain unchanged.

The transmission of the 1list of con-
stants on input is terminated by expiration
of the list or by the end-of-file condi-
tion. In the former case, positioning is
always at the character following the first
blank or comma following the data item.
More than one blank can separate two data
items, and a comma separator may be preced-
ed or followed by one or more blanks. In
such cases, a subsequent 1list- or data-
directed GET will ignore intervening blanks
and the comma (if present), and will access
the next data item. However, if an edit-
directed GET should follow, the first
character accessed will be the character to
which the file has been positioned (in
other words, the next data item will begin
with the first character following the
blank or comma that separated it from the
previous data item).

If the data is a character-string con-
stant, the surrounding quotation marks are
deleted and the enclosed characters inter-
preted as a character string.

If the data is a bit-string constant, it
is interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it 1is converted to
coded arithmetic with the base, scale,
mode, and precision implied by the con-
stant.

T T T b]
i String Value | List item l Conversion |
b 1 t {
! . .) .	
	Arithmetic	Character to Arithmetic
Character i Character String	Character string assignment	
string	Bit String	Character to bit string]
I		
i i Arithmetic i Bit string to Arithmetic H		
Bit string	Character String	Bit string to Character string]
] Bit String	Bit string assignment	
i i Arithmetic i Arithmetic type conversion i		
Arithmetic	Character String	Arithmetic to Character string
	Bit string	Arithmetic to Bit string i
i L 1 J
Figure 2. List-directed Input Conversion.

item is then examined and the
it

The 1list
interpreted string value is assigned to
as shown in Figure 2.
are described in

The type conversions

Chapter 3.

List-Directed Output Format

The values of the scalar variables in
the data list are converted to a character
representation of the data value, as des-
cribed below, and transmitted to the data
streame.

A blank is used to separate data items
transmitted.

The length of the data field placed in
the data set is a function of the internal

precision and value of the data item.

CODED _ARITHMETIC DATA: The external form
of coded arithmetic data is a possibly
signed valid decimal constant whose field
width, w, is a function of the internal
precision declared for the data item and
the value of the data item. In the discus-
sion below, the following symbols are used:

1. The 1letter w represents the field
width, which is defined as the length

of the data field.

The letter d represents the number of
positions in the external data field
to the right of the decimal point.

The 1letter p represents the total
number of significant digits in the
data field.

The letter g represents the number of
digits to the <right of the decimal
pcint.

The letter s represents a scale factor
as described for floating-point data.

represent a scale

The letters yyy
factor for fixed-point data. The let-
ter F actually appears in the output
stream to indicate the presence of a
scaling factor. 1Its value is similar
to the value of E in a floating-point

number.

The letter x
digit.

represents any decimal

The symbol b represents a blank posi-
tion in the output.

There are five kinds of coded arithmetic
data to consider: coded real fixed-point
decimal data, coded real fixed-point binary

data, coded real floating-point decimal
data, coded real floating-point binary
data, and coded complex data.

coded Real Fixed-Point Decimal Data: The
data item is converted to precision (p,q),
plus a possible scaling field. It is

transmitted to a field of width w, plus the
scaling field if it is present.

greater than or equal to zero
p+3.

If g 1is
and less than or equal to p, then w
and d=q; for example:

bbxxxx.XxXxx (p=8,gq=1H)
bbbxxxxxxxx (p=8,g9=0)
If g 1is less than zerc or greater'than

p+3+n, where n is the number of

p, then w

digits required to express gq; for example:
bxxxxxxxxF-yyy (p=8, g=100, yyy=-9)
Zero suppression is performed to the

left of the field, and if the value is less

than zero, a minus sign will immediately
precede the first significant digit.

89

Chapter 7: Input/Output

Coded Real Fixed-Point Binary Data: The
data item is converted to fixed-point deci-
mal and is transmitted as coded real fixed-
point decimal data.

Coded Real Floating-Point Decimal Data:
The data item is converted according to the
rules for floating-point format items, E(w,
d, s). For E-conversion, w=p + 6, d = p
- 1 and s = p.

Coded_Real Floating-Point Binary Data: The
data item 1is converted to floating-point
decimal with a precision (p) and
transmitted as coded real floating-point
decimal data.

Coded Complex Data: The data is externally
represented as two immediately adjacent
real data fields, the left hand field being
the real part of the data and the right-
hand field being the imaginary part of the
data.

A sign always precedes
part. If the value of the imaginary part
is greater than, or equal to, zero, the
sign is plus; if the value of the imaginary
part is less than zero, the sign is minus.
The imaginary part is always followed by
the letter 1I. The field width of the
external representation is 2w + 1, where w
is as defined above for fixed-point or
floating-point output.

the imaginary

NUMERIC FIELD DATA: The base of numeric
field data is either decimal or binary.

Numeric Decimal Data: The external format
and field width of the numeric decimal data
item 1is that described by the associated
picture specification.

Numeric Binary Data: The external format
and field width of the numeric binary data
item is that described by the associated
picture specification. The binary digits 0

and 1 are represented by the characters 0
and 1.
Complex Numeric Data: The real and

imaginary parts are output as above and the
external representation is the concatena-
tion of the real and imaginary parts. The
field width is 2w, where w is the number of
bytes (or bits, if binary) allocated to the
real part of the numeric data; no I is
appended.

CHARACTER-STRING DATA: The contents of the
character string are written out. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and con-
tained quotation marks are unmodified. The
field width is the current length of the
string. If the file does not have the
attribute PRINT, enclosing gquotation marks
are supplied, and contained quotation marks

90

are replaced by two quotation marks. The
field width is the current 1length of the
string plus the added quotation marks.

BIT-STRING DATA: The format of the data on
the external medium is that of a bit-string
constant, that is, the value is enclosed in
quotation marks and followed by the letter
B. The binary bits are represented by the
characters 0 and 1. The field width is
pt3, where p is the current length of the

string, and the three additional positions
are for the two quotation marks and the
letter B.

Examples of list-directed data specifi-
cations:

1. LIST (CARD.RATE, DYNAMIC_FLOW)

2. LIST ((THICKNESS (DISTANCE)
TANCE = 1 TO 1000))

DO DIS-

3. LisTt (P,2,M,R)
4. LIST (A*B/C, (X+Y)*%*2)

The specification in example 4 may only
be used for output.

DATA-DIRECTED DATA SPECIFICATION

General format:
Option 1
DATA
Option 2
DATA data-list
General rules:

1. The data list is described in
Lists", in this chapter.
include formal parameters,
defined variables. Names of structure
elements need only have enough quali-

fication to resolve any ambiguity;
full gualification is not required.

"Data
It may not
based or

2. Option 1 implies that all of the data
items to be transmitted are Kknown to
the block containing the GET state-
ment. Option 1 may be used for data-
directed input only.

3. Option 2 may be used for both data-
directed input and output.

4. Recognition of a semicolon in the
stream on input causes transmission to
cease. On output a semicolon is
written into the stream after the last
data item transmitted.

Data-Directed Data in the Stream

The

data 1in the stream associated with

data-directed transmission is in the form

of

a list of scalar assignments having the

following general format:

1.

General rules for

scalar-variable = constant
[{b}|,} scalar-variable = constantl...;

General rules:

The “scalar variable™ may be a sub-
scripted name with decimal integer
constant subscripts.

On input, the scalar assignments may

be separated by either a blank (b in

the above format) or a comma. On
output, the assignments are separated
by blanks.

The constant in the general format
above has one of the forms as des-
cribed for list-directed transmission.

data specifications of

data-directed input:

1.

If the data specification in option 1
is used, the names in the stream may
be any fully qualified name known at
the point of transmission.

If option 2 is used, each element of
the data list must be an unsubscripted
scalar, array, Or structure name. The
names in the stream must appear in the

data 1list; however, the order of the
names need not be the same and the
data 1ist may include names that do

not appear in the stream.

For example, consider the
data 1list, where A, B, C,
names of scalar variables:

following
and D are

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:
A=2.5, B=.00476, D=125, Z='ABC';

Note that C appears in the data list
but not in the stream and that Z, not
in the data list, will raise the NAME
condition.

If the data 1list in Option 2 includes
the name of an array, subscripted
references to that array may appear in
the stream. The entire array need not
appear.

Let X be the name of a two dimen-
sional array declared as follows:

Data_List
DATA (CARDIN.PARTNO)

DECLARE X (2, 3);

Consider the following data list and
input data stream:

Data List Input Data Stream

DATA (X) X(1,1) = 7.95, X(1,2) =
8085, x(1,3) = 73;

Although the data 1list has only the

name of the array, the associated
input stream may contain values for
individual elements of the array.

If the data list includes the names of
structure elements, then fully quali-
fied names of identical form must
appear in the stream. Consider the
following structures:

DECLARE 1 CARDIN,
2 PRICE,

1 CARDOUT,

2 PRICE;

2 PARTNO, 2 DESCRP,

2 PARTNO, 2 DESCRP,

If it 1is desired to read a value for
CARDIN.PARTNO, then the data list and
input data stream have the following
forms:

Input Data Stream
CARDIN.PARTNO =
737314;

General rules for data-directed output:

1.

2
e

The elements of the data list may be a
scalar name, an array name, a struc-
ture name, a repetitive specification
involving any of these elements or
further repetitive specifications.
The data with names appearing in the
data list is transmitted in the form
of a list of scalar assignments sepa-
rated by blanks and terminated by a
semicolon.

Array names in the data 1list are
treated as a 1list of the contained
subscripted elements in row-major
order.

Let X be an array declared as follows:
DECLARE X (2,4);

Let X in a data list as fol-

lows:

appeax

DATA (X)

Then, on output, the

stream is as follows:

output data

X(1,1)=1 x(1,2)= 2 X(1,3)= 3 X(1,1)= 4
X(2,1)=5 X(2,2)= 6 X(2,3)= 7 X(2,4)= 8;

3

Subscript expressions in a data name

-

Chapter 7: Input/Output 91

are evaluated and replaced by integer
constants.

Length of Data-Directed Data Fields

The length of the data field on the

4. Items that are part of a structure external medium is a function of the inter-
appearing in the data list are trans- nal precision, the value of the data item
mitted with the full qualification, being written, and the length of the data
but subscripts follow the qualified identifier and its associated subscript
names rather than being interleaved. list. The field length for coded arithmet-
If a data 1list 1is specified for a ic data, numeric field data, and bit-string
structure element transmitted under data is the same as described for 1list-
data-directed output as follows: directed output (see "Format of List-

Directed Output Fields").

DATA (Y(1,3).0Q) For character-string data the contents
of the character string are written out
enclosed in quotation marks. Each

then the associated data field in the quotation mark contained within the charac-

output stream is as follows: ter string is represented by two successive
quotation marks.

Y.Q(1,3) = 3.756; Example:

Assume that A is declared as a one-

5. Structure names in the data 1list are dimensional array of six elements; B is a
interpreted as a list of the contained one-dimensional array of seven elements.
scalar or array elements, and arrays If it is desired to calculate values, the
are treated as above. procedure in Figure 3 calculates and writes

out values for A(I) = B(I+1l) + B(I).

Consider the following structure:

ia, 2B, 2¢, 3D

If a data list for data-directed out- EDIT-DIRECTED DATA SPECIFICATION

put is as follows:

DATA (A)

General format:

then, if the values of B and D were 2

and 17 respectively, the associated EDIT data-list format-1list

data fields in the output stream would [data-1ist format-list]...

be as follows:

General rules:

A.B= 2 A.C.D= 17;

1. The data list is described in "Data

6. When p<g or g<0, data-directed output Lists,"™ the format 1list in "Format
of FIXED data of precision (p,q) is Lists."™ This form of transmission can
not suitable for data-directed input. be used for sterling data.

r 1

| AB: PROCEDURE; |

| Input Stream |
| DECLARE A(6), B(7); |
| B(1)=1, B(2)=2, B(3)=3,]
| GET FILE (X) DATA (B); |
| B(4)=1, B(5)=2, B(6)=3, B(7)=4; |
I DO I =1 TO 6; I
| |
| A (I) =B (I+1) + B (I); |
| OQutput Stream |
| END; |
| A(1)= 3 A(2)= 5 A(3)= 4 A(1)= 3 |
| PUT FILE (Y) DATA (A); |
| aA(5)= 5 A(6)= 7; |
| END AB; |
L 1
Figure 3. Example of Data-Directed Transmission, both Input and Output

92

2. On output, the value of each data item
in the data list is converted to a
format specified by the associated
format item in the format list. The
first scalar data item is associated
with the first format item, the second
scalar data item with the second
format item, etc. Suppose the format
list effectively contains 3 format
items, and the data 1list effectively
contains k data items. Then, if j<k
after j scalar data items have been
transmitted, the format 1list is re-
used, the (j+1)th scalar item being
associated with the first format item,
etc. This re-use is performed as many
times as required. If j>k, excessive
format items are ignored.

3. An array Or a structure in a data list
is equivalent to n data items, where n
is the number of scalar elements in
the array or structure.

4, If a data list item is associated with
a control format item, that control
action is executed and the data 1list
item is paired with the next format
item.

5. The specified transmission is complete

when the 1last data item has been
processed using its corresponding
format item. Subsequent format items,
including control format items, are
ignored.

Examples:

The first of the following examples is
an edit-directed input specification, and
the second is an output specification.

1. EDIT (NAME, DATE, SALARY)
(A(COLA-COLB), X(2), A(6), F(M +2,2))
2. EDIT ('INVENTORY-' |} INUM,INVCODE)
(a, F(5))
FORMAT LISTS
The edit-directed data specification

regquires an associated format list.

General format of a format list:

item , item
(n item , D item cea)
n format-list . N format-list

Syntax rules:

1. Each "item"™ represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses, or a decimal
integer constant. The iteration fac-
tor specifies that the associated for-
mat item is to be used n successive
times. A zero or negative iteration

factor specifies that +the associated

format item is to be skipped and noct
used (the data 1list item will Dbe
associated with the next format item).

If an expression is used to represent

the iteration factor, it is evaluated

and converted to0 an integer once for
each set of iterations. The associat-

ed format item is that item or list of

items to the right of +the iteration
factor.

General rule:

There are two types of format items:

items and control format
items. Data format 1items specify the
form of data fields in +the stream.
Control format items specify page, line,
and spacing operations.

data format

Data Format Items

Data format items describe data rep-
resentation in the data stream.
The discussion of format items requires

the following definitions:

1. The letter w represents the length of
the data field, in characters, used by
the external representation (including
signs, decimal peints, blanks, and the
letter E as used in the representation
of constants).

2. The letter d represents the number of

positions after the decimal point.

3. The letter s represents the number of
significant digits to appear.

4. The letter p represents a scale fac-
tor, which may be positive or nega-
tive.

The quantities w, d, s, and p may be
specified by an expression. When the for-
mat item is used, the expression is evalu-
ated and converted toc an integer. If w<0
in a format specification, then, on input,
the associated data and format list items
are skipped, unless it is a string, in
which case the data value is taken as the
null string. On output, the format 1list
item is skipped if w is less than or equal
to zero. The quantity 4 must be less than
or equal to s, and s must be less than or
equal tc w.

Chapter 7: Input/Output 93

On input, the data item in the external
data field is converted to the charac-
teristics of the list item. Rules for the
conversion are given in Chapter 3.

There are six format items associated

with data: fixed-point (F), floating-point
(E), complex (C), picture specification
(P), character string (A), and bit string

(B).

FIXED-POINT FORMAT ITEMS: Decimal numeric
data may be described by a fixed-point
format item.

General format:

Option 1
F(w)

Option 2
F(w,d)

Option 3
F(w, 4, p)

General rules:

1. On input, the data item in the exter-
nal data fieid is the character rep-
resentation of a decimal fixed-point
number anywhere in a field of width w.

In option 2, if no decimal point
appears in the number, it is assumed
to appear immediately before the last

d digits (trailing blanks are
ignored). If a decimal point does
appear, it overrides the d specifi-

cation. Option 1 is treated as Option
2, with d equal to zero.

In Option 3, the scale factor
effectively multiplies the external
data value by 10 raised to the wvalue
of p. If p is positive, the number is
treated as though the decimal point
appeared p places to the right of its
given position. If p is negative, the
data 1is treated as though the decimal
point appeared p places to the left of

its given position. The given posi-
tion of the decimal point is that
indicated either by an actual point,
if it is given, or by d, 1in the

absence of an actual point.

2. On output, the external data is a

decimal fixed-point number, right-
adjusted in a field of width w.
In Option 1, only the integer

portion of the number is written; no
decimal point appears.

In Option 2, both the
fractional parts of the
written. If d is greater

integer and
number are
than 0, a

94

decimal point 1is inserted before the

last d digits, and the value is
appropriately positioned. Trailing
zeros are supplied if the number of
fractional digits is 1less than 4

(where d must be less than w).

In Option 3, the scale factor
effectively multiplies the internal
data value by ten raised to the power

of p, before it is edited into its
external character representation. If
d is zero, only the integer portion of
the number is considered.

For all options, if the value of
the number is less than zero, a minus
sign will be prefixed to the external
character representation; if it is
greater than or equal to zero, no sign
will appear. Therefore, for negative
values, w must encompass both sign and
decimal point.

FLOATING-POINT FORMAT ITEMS: Decimal

numeric data may be
floating-point format item.

described by a

General format:
E(w, 4l, sl)
General rules:

1. On input, the data item in the exter-
nal data field is an optionally signed
character representation of a decimal
floating-point number anywhere within
a field of width w.

The external form of the number is
as follows:

[E] %
{+] fixed-point-number] exponent
E [#]

(a) If there is no decimal point in
the data field, the decimal point
is assumed to be before the last 4
digits of the fixed-point number.
If there is a decimal point in the
data field, it overrides the deci-
mal point placement specified by
d. Note that trailing blanks in
the data field are ignored.

(b) The "exponent®™ is a decimal inte-
ger. If the exponent and the
preceding E or sign are omitted, a
zero exponent is assumed.

2. On output, the data item in the data
field has the following general form:

[-1 s~-d digits.d digits E{%*} exponent

(a) The "exponent" is a decimal inte-

ger of n digits, where n is
defined individually for each
implementation. The exponent is
adjusted so that the leading digit

of the fractional part is nonzero.

(b) If the above form does not fill
the field of width w, it is right-

R I B
auJuoted, and blanks are inserted

on the left. If s is omitted it
is taken as equal to 4 + 1. The
field width w must be greater than
or equal to s + n + 3 for non-
negative values, and s + n + 4 for
negative values of the data item.
However, if 4 is zero, the decimal
point is not written, and w is
equal to s+n+2.

COMPLEX FORMAT ITEMS: Complex numeric data
may be described by a complex format item.

General format:

C(real-format-item
[, real-format-iteml)

General rules:

1. Each 'real format item' is specified
by F, E, or P formats. P can specify
a numeric field only; it cannot

specify a sterling or character field.

2. On input, the external data is the
real and imaginary parts of the com-
plex number in adjacent fields des-
cribed by the +two contained format
items. If the second real format item

is omitted, it is assumed to be the
same as the first,

3. On output, the form of the real and
imaginary parts is specified by
enclosed real format items. If the
second is omitted, it is assumed to be
the same as the first.

PICTURE _FORMAT ITEM: Numeric data may be
described by a numeric picture using the P
format item. The picture format item
allows transmission of sterling data items.

General format:
P 'numeric-picture-specification’
The "numeric

described in "The
Chapter 4.

picture specification" is
PICTURE Attribute," in

On input, the picture specification des-
cribes the form of the data on the external
medium and how it is to be interpreted
numerically. The external representation
of binary numeric fields uses the charac-
ters 0 and 1.

On output, the wvalue of the list item is
edited to the form specified by the picture
before it is transmitted. Binary numeric
fields will have a character representation
after transmission.

BIT-STRING FORMAT ITEMS: The

item descrihes the data

4 wTiu WSSO

bit-string

ronror:nn{-:u—

tion of a bit string using the characters 0
and 1.

B (w)
General rules:

1. In the case of input, w is always
required. For output, if w is omit-
ted, it 1is taken to be the current
length of the associated bit-string
data-list element; w must be specified
if conversion is to be performed.

2. On input, the data field is a charac-
ter representation of bit string any-
where within the field of width w.

3. On output, the character representa-
tion of the bit string is left-
adjusted in the field of width w.
Truncation, if necessary, is performed
on the right. Blanks are used for
padding.

CHARACTER-STRING FORMAT ITEMS: Character
data may be described by a character-string
format item.

General format:

{A (W)
P 'character-picture-specification’

General rules:

1. The “character picture specification"
is described in "The String
Attributes®™, in Chapter 4.

2. The external representation is a
string of w characters.

3. On input, truncation, if necessary, is
performed on the right. If the asso-
ciated list element is too short, it
is extended on the rlght with blanks.
If the picture form is wused, w is
implied. Checking is performed.

4. On output, w can be omitted for string
list items, in which case w is taken
to be the current length of that
string. On input, w is always
required.

Chapter 7: Input/Output 95

Control Format Items

There are two types of control format
items, the spacing format item X and the
printing format items.

Spacing Format Item

The spacing format item specifies rela-
tive horizontal spacing.

General format:
X (w)
General rules:
1. On input, the format item

that the next w characters
stream are to be ignored.

specifies
of the

2. On output, the format item specifies
that w Dblank characters are to be
inserted into the stream.

3. If w is less than zero, it is taken as
zero.

Printing Format Items
The printing format items can be wused
only with STREAM PRINT files. There are
four of them.
General format:
PAGE
SKIP [(w)]
LINE (w)
COLUMN (w)

General rules:

1. The PAGE, SKIP, and LINE format items
operate 1in the same manner as the
corresponding options with the PUT
statement.

2. The COLUMN (w) format item specifies

that blank characters are to be
inserted into the stream so that the
next character will be the wth charac-
ter of the current line. If at least
w characters already have been written
on the current line, the current line
is completed, a new line is started,
and w-1 blanks are inserted in it so
that the new current line begins at
the wth character. If w 1is greater
than LINESIZE as specified in the OPEN
statement, or is less than 1, then w
is assumed to be 1.

Note that X and COLUMN specify, respec-
tively, relative horizontal spacing and
absolute horizontal spacing. Similarly,
SKIP and LINE specify relative vertical

96

positioning and absolute vertical position-
ing. The first line on any page is line
number one.

Remote Format Item

If it is desired to locate format items
remotely from a format 1list, the remote
format itemys R, may be used.

General format:
R(statement-label-designator)
General rules:

1. The "statement label designator" is a
label constant or a label variable
that has as its value the statement
label of a FORMAT statement. The
FORMAT statement includes a format
list that is taken to replace the
format item.

2. The R format item and the specified
FORMAT statement must be internal to
the same block.

3. There can be no recursion. That is, a
remote FORMAT statement may not con-
tain an R format item which names
itself as a statement label designa-
tor, nor may it name another remote
FORMAT statement that will lead to the
naming of the original FORMAT state-
ment through a statement label desig-
nator. This is assured if the FORMAT
statement referred to by a remote
format item does not itself contain a
further remote format item.

4. Any conditions enabled for the GET or
PUT statement must be correspondingly
enabled for the remote FORMAT state-
ments utilized.

5 If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

DATA STREAM TRANSMISSION STATEMENTS

This section provides a summary of the
allowed STREAM transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8; the OPEN and
CLOSE statements, which may also be used in
STREAM transmission, are discussed earlier
in this chapter).

FILE (filename)
GET

STRING (character-string-variable)
data-specification [(COPYI;

STREAM OUTPUT:

FILE (filename)
PUT

STRING (character-string-variable)
data-specification;

STREAM_OUTPUT PRINT:

PUT [FILE (filename)]
[data-specificationl]
PAGE [LINE (expression)]

[SKIP [(expression)]] H

LINE (expression)

Note: The "data specification" can be

omitted only if one of the printing options

appears.

The data specification can have one of
the following forms:

LIST data-list

DATA [data-list}

EDIT data-list format-1list
[data-list format-listl...

and format 1lists are dis-
this chapter. Format
may use any of the following format

Data lists
cussed earlier in
lists
items:

A,B,C,E,F,P,R,X which may be used
with any STREAM file

PAGE, SKIP [(w)1],
LINE (W),
COLUMN (w)

which may be used
only with STREAM
OUTPUT PRINT files

RECORD TRANSMISSION

Data sets that contain discrete records
or which are to be created as a collection
of discrete records may be manipulated with
record operation statements. The record
operation statements are READ, WRITE, REW-
RITE, LOCATE, DELETE, and UNLOCK. A gener-
al description of these statements is con-
tained in this chapter, and they are des-
cribed completely in Chapter 8. The
records obtained from data sets or dis-
patched to data sets are defined in terms

of the data attributes of a wvariable. For
input operations the record is obtained
from the data set and placed intact into

the variable.
variable is
data set.

For output operations, the
transmitted intact into the

The variables involved in record trans-
mission must be unsubscripted, of level 1
(scalar variables and array variables are
of level 1 by default), and of the storage
class, AUTOMATIC, STATIC or CONTROLLED.
The variables may not be formal parameters
or defined variables. In addition, they
must not contain VARYING 1length strings.
They may contain LABEL and POINTER varia-
bles, but such data may lose its wvalidity
in transmission.

With RECORD transmission, it is possible
to operate upon the record in a buffer if
the file has the BUFFERED attribute. Oper-
ation within the buffer can be accomplished
through the use of a based variable, which
describes the data attributes of the
record, and a pointer variable, which iden-
tifies the location of the record within
the Dbuffer. A based variable and its
associated pointer variable are specified
by the following form of the CONTROLLED
storage class attribute specification:

CONTROLLED (pointer-variable)

The pointer variable, itself, may have any
storage class attribute; however, the
default is AUTOMATIC. The pointer variable
also may be given either INTERNAL or EXTER-
NAL scope attribute, with default being
INTERNAL; but the scope of the based varia-
ble is INTERNAL. The EXTERNAL attribute
cannot be specified.

Consider the following declaration:

DECLARE 1 MASTER_RECORD CONTROLLED
(REC_IDENT),

IDENTIFICATION

CHARACTER (10),

2 NAME CHARACTER

N

(30),
2 ADDRESS,
3 STREET
CHARACTER
(15),
3 CITY
CHARACTER
(157,
3 STATE
CHARACTER
(15),
3 ZIp
CHARACTER

(5);

The name MASTER_RECORD is the based
variable which can be used to describe a
record in the buffer that conforms to the
attributes declared for MASTER_RECORD.
REC_IDENT is a pointer variable that iden-
tifies the position of MASTER_RECORD within
the buffer. The pointer variable has the
default storage attribute of AUTOMATIC.
The based variable, of course, is explicit-

Chapter 7: Input/Output 97

ly declared to have the CONTROLLED storage
class attribute.

If any attributes other than AUTOMATIC
are to be declared for a pointer wvariable,
they must be explicitly declared. For
example, the following declaration speci-
fies the STATIC and EXTERNAL attributes for
the pointer variable REC_IDENT:

DECLARE REC_IDENT POINTER STATIC
EXTERNAL;

Note: In this declaration, the POINTER
attribute is declared explicitly. In the
previous example, the POINTER attribute was
declared contextually by the appearance of
the pointer variable name in the CONTROLLED

attribute specification.

For input/output operations specifying
based variables, the pointer value is set
by the SET option in the READ or LOCATE
statements.

RECORD TRANSMISSION STATEMENTS

This section provides a summary of the
allowed RECORD transmission statements,
along with their options, according to file
attributes (the statements are discussed
individually in Chapter 8; the OPEN .and
CLOSE statements, which also may be used in
RECORD transmission, are discussed earlier
in this chapter). A general discussion of
RECORD transmission follows this summary.

SEQUENTIAL BUFFERED INPUT:

READ FILE (filename)
INTO (variable) [KEYTO
(character-string-variable)l;

READ FILE (filename)
SET (pointer-variable)
[KEYTO
(character-string-variable)];

READ FILE (filename)
[IGNORE (expression)];

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

SEQUENTIAL BUFFERED OQUTPUT:

WRITE FILE (filename)
FROM (variable)
[KEYFROM (expression)l];

98

LOCATE variable FILE (filename)
SET (pointer-variable)
[KEYFROM (expression)];

SEQUENTIAL BUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[RKEYTO
(character-string-variable)];

READ FILE (filename)
SET (pointer-variable)
[KEYTO
(character-string-variable)];

REWRITE FILE (filename);

REWRITE FILE (filename)
FROM (variable);

READ FILE (filename)
[IGNORE (expression)];

READ FILE (filename)
INTO (variable)
KEY (expression);

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

SEQUENTIAL UNBUFFERED INPUT:

READ FILE (filename)
INTO (variable)
[KEYTO
(character-string-variable)]
[EVENT (event-variable)];

READ FILE (filename)
[IGNORE (expression)]
[EVENT (event-variable)l;

READ FILE (filename)
INTO (variable
KEY (expression)
[EVENT (event-variable)];

SEQUENTIAL UNBUFFERED OUTPUT:

WRITE FILE (filename)
FROM (variable)
[KEYFROM (expression)]
[EVENT (event-variable)l;

SEQUENTIAL UNBUFFERED UPDATE:

READ FILE (filename)
INTO (variable)
[KEYTO
(character-string-variable)]
[EVENT (event-variable)l;

REWRITE FILE (filename)
FROM (variable)
[EVENT (event-variable)l;

READ FILE (filename)

[IGNORE (expression)]
[EVENT (event-variable)l

1

RECORD TRANSMISSION OPERATIONS

The following points cover the salient

environmental factors in the use of RECORD

READ FILE (filename) transmission:
INTO (variable)
KEY (expression) 1. A SEQUENTIAL file specifies that the

[EVENT (event-variable)]

b

DIRECT INPUT:

READ FILE (filename)
INTO (variable)
KEY (expression)
[EVENT (event-variable)l;

DIRECT_OUTPUT:

WRITE FILE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event~-variable)];

DIRECT UPDATE:

READ FILE (filename)
INTO (variable)
KEY (expression)
[EVENT (event-variable)l;

REWRITE FILE (filename)
FROM (variable)
KEY (expression)
[EVENT (event-variable)];

WRITE FILE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)l;

FILE (filename)
KEY (expression)
[EVENT (event-variable)l;

DIRECT UPDATE EXCLUSIVE:

READ FILE (filename)
INTO (variable)
KEY (expression) [NOLOCK]
[EVENT (event-variable)l];

REWRITE FILE (filename)
FROM (variable)
KEY (expression)
[EVENT (event-variable)l;

WRITE FILE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)l;

DELETE FILE (filename)
KEY (expression)
[EVENT (event-variable)l;

UNLOCK FILE (filename)

KEY {expressions);

accessing, creation, or modification
of the data set records is performed
in a particular order, that is, from
the first record of the data set to
the last record of the data set.

A DIRECT file specifies that the
accessing, creation, or modification
of the data set records is performed

by indicating which particular record
of the data set 1is to be operated
upon.

A data set that is accessed, created,
or modified in the SEQUENTIAL access
method may or may not be KEYED. If it
is KEYED, the keys may be ignored
while accessing sequentially, or they
may be extracted from the data set or

placed into the data set by the KEYTO
and KEYFROM options. It is possible
to create a KEYED data set as a

SEQUENTIAL OUTPUT file and later to
access that data set as a DIRECT file.

SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files may be positioned to a particu-
lar record within the data set by a
READ operation that specifies the key
of the desired record. Thereafter,
successive READ statements without the
KEY option will access the records
sequentially. This kind of accessing
may be used only the data set
contains keyed records and if the file
has the KEYED attribute.

s F
1L

Existing records of a data set in a
SEQUENTIAL UPDATE file can be rewrit-
ten, modified, or ignored, but the
number of records cannot be increased
or decreased. Operation with a DIRECT
UPDATE file, however, may specify that
records are to be added to the data
set, through use of the WRITE state-
ment, or deleted from the data set,
through use of the DELETE statement.
An existing record in an UPDATE file
can be replaced through use of a
REWRITE statement.

If the READ INTO option is used in
referring to a SEQUENTIAL BUFFERED
UPDATE file and the next REWRITE
statement does not make use of a FROM
option, the record in the data set is
replaced from the buffer and not from
the variable that had been specified
in the INTO option of the READ state-
ment. The FROM option a2 REWRITE

in
M opll in RI1IlE

Chapter 7: Input/Output 99

100

statement must specifically name the
variable INTO which the data has been

read if that data is to be rewritten.
Operations upon a data set accessed
sequentially may lead to erroneous

results if the same data set or file
is being referred to asynchronously in
more than one task. The separate
tasks might use different filenames,

but if the different file openings
identify the same data set, the tasks
would refer to the same set of
records.

A data set being accessed directly is
suitable for asynchronous operations
because the reference to the data set
does not imply any explicit ordering
of the records and because the records
are transmitted INTO and FROM varia-
bles that can be known only within the
individual tasks. This is true wheth-
er the data set is identified by more
than one file opening or is referred
to through use of the same filename.

Wwhen a file has the DIRECT UPDATE
EXCLUSIVE attributes, it is possible
tc protect individual records that are
read from the data set. For an EXCLU-
SIVE file, any READ statement without
a NOLOCK option automatically locks
the record read. No other task oper-
ating upon the same file can access a
locked record until it is unlocked by
the locking task. Any task referring
to a locked record will wait at that
point until the record is unlocked. A
record can be explicitly unlocked by
the locking task through execution of
a REWRITE, DELETE, UNLOCK, or CLOSE
statement. Records are unlocked auto-
matically upon completion of the lock-
ing task. The EXCLUSIVE attribute
applies only to the file and not to
the data set. Consequently, record
protection 1is provided only if all
tasks refer to the data set through
use of the same filename; 1if they

refer to the same data set using
different filenames, the protection
does not apply. In addition, the data
set to which reference is made by more
than one task through the same file-
name must be opened by the parent of
all these tasks.

10. A WRITE statement adds records to a
data set, while a REWRITE statement
replaces records. Thus, a WRITE
statement may only be used with OUTPUT
files, and a REWRITE statement may
only be used with UPDATE files.
Moreover, a WRITE statement uses the
KEYFROM option to indicate the actual
transference of the key from internal
storage to the data set; +the REWRITE
statement uses the KEY option to iden-
tify the existent record to be
replaced.

STANDARD FILES

There are two standard system files that
> available for wuse by a PL/I program.
The first is a standard system input file
called SYSIN. The second 1is a standard
system print file called SYSPRINT. The
keywords GET and PUT without a file or
string name are equivalent to:

arn
alc

GET FILE(SYSIN)...;
PUT FILE(SYSPRINT)...;

The implicit reference to the standard
files applies only in the GET and PUT
statements. Any other reference to either

file must be stated explicitly.

The standard files may be given other
file attributes explicitly or contextually,
but unless SYSPRINT is explicitly declared
by the programmer to have +the INTERNAL
scope attribute, the PRINT attribute is
applied automatically.

includes a description of
language. These
in alphabetic

This section
each statement in the
descriptions are presented
order.

To show the relationships among these

o A S . = .
statements, hey are also classified into

logical groups.

RELATIONSHIP_ OF STATEMENTS

CLASSIFICATION

Statements may be classified into the
following logical groups: assignment, con-
trol, data declaration, error control and
debug, input/output, program structure, and
storage allocation.

Assignment Statement

The assignment statement is wused to
evaluate expressions and to assign values
to scalars, arrays, and structures.

Control Statements

The control statements affect the normal
sequential flow of control through a pro-
gram. The control statements are GO TO,
IF, DO, CALL, RETURN, WAIT, STOP, EXIT, and
DELAY.

Data Declaration Statement

The data declaration statement, DECLARE,
specifies attributes for identifiers. This
statement is described in Chapter 4.

Error control and Debug Statements

When an interrupt occurs during program
execution, standard operating system action
is taken; however, the language provides
the facility to override system action on
these interrupts. By using the ON state-

CHAPTER 8: STATEMENTS

ment, a programmer may specify the action
to be taken when an interrupt occurs and
can record the status of the program at the
point of the interrupt. By wusing the
SIGNAL statement, the programmer may ini-

tiate programmed interrupts and may simu-
late machine interrupts to facilitate
debugging.

Input/Output Statements

The input/output statements may be clas-
sified as follows: file preparation,
record status, data specification, and data
transmission.

File Preparation Statements

The OPEN statement associates a filename
with a data set and completes the specifi-
cation of the attributes of the file, in
preparation for input/output on a file.
The CLOSE statement dissociates the file-
name from the data set and thereby releases
the filename for use in connection with any
other data set.

Record Status Statements

The DELETE statement deletes a record
from an UPDATE file. The UNLOCK statement
makes accessible a record which would
otherwise be inaccessible as a result of
the READ statement accessing from an EXCLU-
SIVE file.

Data Specification Statements

The format of data fields to be trans-
mitted may be specified by the FORMAT
statement or in the GET or PUT data trans-
mission statements.

Data Transmission Statements

The GET and PUT statements cause values
to be transmitted between a data set and
specified variables in the program. The
READ and WRITE statements cause a single
record to be transmitted between a data set
and variables in the program. The REWRITE
statement specifies the updating of an
existing record of the data set. The
LOCATE statement permits a record to be
created in the buffer storage and subse-
quently written. The DISPLAY statement
causes messages to be transmitted between
the program and the machine operator.

Chapter 8: Statements 101

Program_Structure Statements

The program structure statements are:
PROCEDURE, BEGIN, END, DO, and ENTRY. The
first three statements delimit the scope of
declarations within a program. The ENTRY
statement provides a secondary entry point
for a procedure.

Storage Allocation Statements

statements are
allo-

The storage allocation
ALLOCATE and FREE. These statements
cate and free storage for variables.

SEQUENCE OF CONTROL

Within a block, control normally passes
sequentially from one statement to the
next. If a DECLARE, FORMAT, or ENTRY is
encountered, control passes to the next
statement. If an internal PROCEDURE state-
ment 1is encountered, control passes to the
statement following the end of +the proce-
dure. Control passes to the statement
following an IF statement when control
reaches the end of the THEN-unit. Sequen-
tial operation is modified by the following
statements: CALL, END, EXIT, GO TO, PROCE-
DURE, RETURN, SIGNAL, and STOP.

A CALL statement passes control to the
specified entry point.

An END statement, logically terminating
a procedure, acts as a RETURN statement,
causing control to return to the invoking
procedure.

The EXIT statement causes control to
leave a task; the STOP statement causes
control to leave a program.

A GO TO statement causes control to
transfer to the specified statement label.

A PROCEDURE statement heads a procedure.
Procedures may be considered as independent
blocks and are placed anywhere within an

102

external procedure, consistent with desired
identifier scopes. However, a procedure
may be invoked only by a CALL statement, a
statement with a CALL option, or a function
reference. Thus, control passes around a
nested procedure, from the statement before
a PROCEDURE statement to the statement
after the appropriate END statement for the
procedure.

A RETURN statement returns control from
a procedure to the invoking procedure.

A SIGNAL statement specifying an enabled
condition causes control to pass to the
on-unit of the associated ON statement. If
there is no associated ON statement, con-
trol is passed to the appropriate system
routine.

The following conditions may
sequential operation to be modified:

cause

1. A function reference in any expression
causes control to pass to the speci-
fied function procedure.

2. The occurrence of an enabled condition

specified in an ON statement causes
control to pass to the associated
ON-unit. If there is no ON statement,

control 1is passed to the appropriate
system routine.

3. The flow of control through the IF and
ON statements and through a DO group
may or may not be sequential.

4., In an appropriate environment, the
asynchronous execution of several
operations may involve transfer of
control under the influence of exter-
nal occurrences.

The following illustrates
sequence of control:

example

A: PROCEDURE;

B: X =Y + Z;

C: CALL D;

E: W = P*Q;
D: PROCEDURE;
G: S = T/P;
H: RETURN;
I: END D;

J: U = V**W;

K: GO TO N;

N: END;

control flows in the following order: A,
B, ¢, D, G, H, E, J, K, N.

PSEUDO-VARIABLES

The following built-in functions (see
Appendix 1 for a more complete description)
may be used as pseudo-variables on the left
side of an equal sign in an assignment
statement, or a DO statement, or in a data
list in a GET statement. In the defini-
tions below, the item in the data list of a
GET statement may be considered to corres-
pond to the item on the left side of the
equal sign in an assignment statement; the
value being transmitted may be considered
to correspond to the expression on the
right side.

COMPLEX (a,b) The letters a and b rep-
resent variables that need not have the
same characteristics. During execution of
an assignment statement, the real part of
the expression on the right is assigned to
a, the imaginary part to b.

REAL (c) The 1letter c¢ represents a
complex variable. During execution of an
assignment statement, the real value of the
expression is assigned to the real part of
C.

IMAG (c) The letter ¢ represents a
complex variable. During execution of an
assignment statement, the real value of the
expression is assigned to the imaginary
part of c.

ONSOURCE (Used in the on-unit of an ON
CONVERSION statement) The expression on the
right of the equal sign is evaluated,
converted to a character string, and
assigned to the string that caused the
conversion error. The string will be pad-
ded with blanks, 1if necessary, to the
length of the string that caused the error.

ONCHAR (Used in the on-unit of an ON
CONVERSION statement) The expression on the
right of the equal sign is evaluated,
converted to a character string of length
one, and assigned to the character that
caused the error.

SUBSTR (s,il,k}) The letter s represents
a string. During execution of an assign-
ment statement, the expression is assigned
to the substring of s defined by the
built-in function SUBSTR (see Appendix 1).
This substring is always treated as a fixed
length string.

EVENT(v) The letter v represents a sca-
lar or array event name. When used in an
assignment statement, the expression on the
right-hand side is evaluated and converted
to a bit string of length 1. The value of
this bit string is used in an assignment to
the named event (see "Asynchronous Opera-
tions and Tasks"™ in Chapter 6).

PRICRITY{ (v} The letter v represents a
scalar or array task name. When used in an
assignment statement, the expression on the
right-hand side is evaluated and converted
to FIXED (m, 0) where m is
implementation-defined. The priority of v,
the named task, is adjusted to be n,
relative to that of the task in which the
assignment 1is performed, prior +to that
assignment. If v is not specified, this is
the task in which the assignment statement
is executed (see "Asynchronous Operations
and Tasks"™ in Chapter 6).

UNSPEC (v) The letter v represents a
scalar variable of arithmetic, string, or
pointer type. The expression on the right
is evaluated and converted to a bit string
(whose length is an implementation defined
function of the characteristics of v), and
assigned to v without conversion to the
type of v. If v is a string of varying
length, its 1length after the assignment
will be just large enough to hold the bit
string.

ALPHABETIC LIST OF STATEMENTS

The ALLOCATE Statement

Function:

The ALLOCATE statement causes storage to
be allocated for specified controlled data.

General format:
Option 1i:

ALLOCATE [levell identifier
[dimension] [attributel...
[,{level]l] identifier {dimension]
[attributel...]l...;

Option 2:

ALLOCATE based-variable-identifier
SET (pointer-variable)
[IN (area-variable)]
{, based-variable-identifier
SET (pointer-variable)
[IN (area-variable)ll...;

Syntax rules:

1. Based variables and nonbased
controlled variables may both be spec-
ified as identifiers in the same ALLO-
CATE statement.

Syntax rules

Option 1:

2 through 6 apply only to

2. Each identifier must represent data of

Chapter 8: Statements 103

the controlled storage class or be an
element of a controlled major struc-
ture.

indicates a dimension
attribute. "Attribute™ indicates a
BIT, CHARACTER, or INITIAL attribute.
"Level" indicates a level number.

"Dimension"™

A dimension attribute, 1if present,
must specify the same number of dimen-
sions as that declared for the asso-
ciated identifier.

The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier.

A structure element name, other than
the major structure name, may appear
only if the relative structuring of
the entire structure appears as in the

DECLARE statement for that structure.

Syntax rules 7 and 8 apply only to
Option 2:

7. The based variable appearing in the

ALLOCATE statement may be a scalar
variable, an array, or a major struc-
ture. When it is a major structure,
only the major structure name is spec-
ified.

The SET clause may appear preceding or
following the IN clause.

General Rules:

Rules 1 through 6 apply only to Option 1:

1.

104

When Option 1 1is wused, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
be "pushed down"™ or stacked. This
pushing down creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREE statement, storage is
"popped up" or removed from the stack.

Bounds for arrays and lengths of
strings are fixed at the execution of
an ALLOCATE statement.

a. If a bound or length is explicitly
specified in an ALLOCATE state-
ment, that bound or 1length over-
rides any bound or length given in
the DECLARE statement.

b. If a bound or length is specified
by an asterisk in an ALLOCATE
statement, that bound or length is
taken from the most recent genera-
tion of data for the identifier in
a previous allocation. In case no

such generation exists, the bound
or length is undefined.

c. If a bound or length is not speci-
fied in an ALLOCATE statement, it
must be specified in the DECLARE
statement. The scope of this dec-
laration must include the ALLOCATE
statement. The expression from
the DECLARE statement is evaluated
at the point of allocation.

Upon allocation of an identifier, ini-
tial values are assigned to it if the
identifier has an INITIAL attribute in
either the ALLOCATE statement or
DECLARE statement. Expressions or a
CALL option in the INITIAL attribute
are executed at the point of alloca-
tion. If an INITIAL attribute appears
in both DECLARE and ALLOCATE state-
ments, only the INITIAL attribute in
the ALLOCATE statement is used. If
initialization involves reference to
the variable being allocated, the ref-
erence will be to the new generation
of the variable.

To determine whether or not storage
has been allocated for an identifier
the built-in function ALLOCATION may
be used.

A parameter that is declared CON-
TROLLED may be specified in an ALLO-
CATE statement if the associated argu-
ment is given the CONTROLLED attribute
and no dummy is created. (see
"Relationship of Arguments and Param—
eters," in Chapter 10).

The evaluations implied by the ALLO-
CATE statement are subject to the same
rules as the evaluations involved in
prologue activity (see "Prologues," in
Chapter 10).

Rules 7 through 15 apply only to Option 2:

7.

When Option 2 is used, storage is not
"pushed down" or stacked. In this
case, reference may be made to any
generation of a based variable through
a pointer variable.

A SET clause must appear with the
based variable in the ALLOCATE state-
ment. This clause indicates the poin-
ter variable that is to receive the
pointer value identifying the genera-
tion for which storage is to be allo-
cated. The SET clause need not name
the pointer variable which was
declared with the based variable.

If the IN clause appears in the ALLO-
CATE statement, storage will be allo-
cated in the area corresponding to the

10.

-
H\
'

[y
[\
1]

13.

4.

15.

1.

specified area variable for the gener-
ation of the based variable. If suf-
ficient storage does not exist within
this area, the AREA condition will be
raised.

If the IN clause is omitted, space
will be allocated in systems storage
for the generation of the based varia-
ble.

The amount of storage allocated for a
based variable depends on its attri-

butes, and on its dimensions and
length specifications if these are
applicable at the time of allocation.

These attributes are determined <from
the declaration of the based variable,
and additional attributes may not be
specified in the ALLOCATE statement.
If the allocated variable is a struc-
ture whose elements are dimensioned
variables or variable length strings,
and the dimensions or lengths are
themselves defined as elements in the
structure, then the dimensions or
lengths are taken from that previous
generation of the structure defined by
the pointer variable named in the
DECLARE statement for that structure.
In subsequent references to such allo-
cated variables, calculation of dimen-
sions or string lengths will be made
by use of the generation identified by
the declared pointer. Note, however,
that the asterisk notation for bounds
and length is not permitted for based
variables (see "The CONTROLLED
Attribute" in Chapter 4).

If the area variable is an array, the
subscripts must be specified with the
area variable.

A based variable transferred as an
argument to a procedure may not appear
in an ALLOCATE statement in the called
procedure.

The pointer value defined at the first

allocation into an area variable is
not necessarily equivalent to a poin-
ter wvalue defined by the ADDR

(area~variable) function.

If the INITIAL attribute is specified
in the declaration of the based varia-
ble, the initialization occurs after
the allocation of the variable and
after the pointer variable has been
assigned a wvalue.

Examples:

The following examples illustrate the
use of the ALLOCATE statement for a
nonbased identifier:

DECLARE A(N1,N2) CONTROLLED;

Ni, N2 = 10;
ALLOCATE A; The bounds are 10 and
10
ALLOCATE A The bounds are K1 and
(K1,K2); K2 which override N1
and N2.
Ni = Ni + 1;
ALLOCATE A; The bounds are 11 and
10.
ALLOCATE A The bounds are 11 and
{(¥,%); i0.
ALLOCATE A The bounds are J1 and
(J1, J2); J2.

2.

DECLARE B BIT (#*)

The following example iliustrates the
use of the ALLOCATE statement when the
DECLARE statement contains asterisks
for the 1length of a nonbased bit
string B:

VARYING CONTROLLED;

ALLOCATE B Illegal; violates rule
BIT (*); 2b.
ALLOCATE B; Illegal; violates rule
2b.
ALLOCATE B The maximum length is
BIT (N); N.

ALLOCATE B CHAR-

Illegal; violates syn-

ACTER (4); tax rule 5.

ALLOCATE B The maximum length is

BIT (8); 8.

3. The following example illustrates the
use of the built-in function ALLOCA-
TION and of the INITIAL attribute for
a nonbased identifier in an ALLOCATE
statement:

DECLARE A(N,N CONTROLLED INITIAT
((N*N)O) ;

IF , ALLOCATION (A)
INITIAL (1,(N-1) ((N)O0,1));

THEN ALLOCATE A

ALLOCATE A;

The following example illustrates
three uses of Option 2 of the ALLOCATE
statement for based identifiers.

DECLARE VALUE CONTROLLED (P),
RATES (I) CONTROLLED (Q),
1 GROUP CONTROLLED (R),
2 PTS (J) POINTER,
2 VALUES (J) FIXED,
TABLE AREA STATIC EXTERNAL,
S POINTER;

ALLOCATE VALUE SET (P);
Allocates space in systems storage
for a generation of the based vari-

Chapter 8: Statements 105

able VALUE, and sets the pointer
variable P to identify the particu-
lar generation.

ALLOCATE GROUP SET (R);

Allocates space in systems storage
for a generation of the structure
GROUP, and sets the pointer varia-
ble R to identify the generation.
The dimensions of each of the com-
ponents PTS and VALUE are deter-
mined by the wvalue of J.

ALLOCATE RATES SET(S) IN (TABLE);
Allocates space in the storage area
corresponding to the area variable
TABLE for a generation of the array
RATES. The pointer S is set to
identify the point within TABLE at
which RATES is allocated.

The Assignment Statement

Function:

The assignment statement 1is wused to
evaluate expressions and to assign values
to scalars, arrays, and structures.

General format:

Option 1. (Scalar Assignment)

scalar-
variable

pseudo-
variable

. Scalar-
variable

« pseudo-
variable

-..=scalar-
expression;

Option 2.

{

Option 3.

Option 4.

(Array Assignment)
array (array

pseudo-array} [,pseudo-array]
=farray-expression [,BY NAME]
scalar-expression;

(structure Assignment)
structure }Estructure }
pseudo-structuref|, pseudo-structurel...

=structure-expression [,BY NAME];

(Statement Label Assignment)

}

scalar-label-variable
[,scalar-label-variablel...=
{label-constant;
scalar-label-variable;

106

Option 5.

array-label-variable [,array-label-
variablel...=
label-constant;

scalar-label-variable;

{array—label—variable; }

(Pointer Assignment)

pointer-variable
[,pointer-variablel...=
pointer-expression;

array-pointer-variable
[,array-pointer-variablel...=
pointer-expression }
{array—pointer-variable H
In Option 1, each variable on the left
of the equal sign may be of arithmet-
ic, bit, or character data type.

Syntax rules:

In Option 2, each array referred to on
the 1left of the equal sign may be an
array variable name or a pseudo-array.
If the BY NAME option 1is present,
those arrays must be arrays of struc-
tures. A pseudo-array is a pseudo-
variable whose arguments are array
variable names. (In the case of the
pseudo-variable SUBSTR (s,i,k), this
requirement applies only to the
argument s; see " Pseudo-Variables.")

All of the arrays on the 1left and
the arrays in the array expression
must have the same number of dimen-
sions and identical dimension bounds.

If a scalar expression appears to
the right of the equal sign, the value
of this expression 1is assigned to
every element of the array on the
left.

If the expression to the right of
the equal sign contains structure
operands, all arrays din the statement
must be arrays of structures. If the
BY NAME option is not used, the struc-
turing of the structure operands must
be equivalent to the structuring of
the structures in the arrays of struc-
tures.

In Option 3, in the absence of the BY
NAME option, the structure indicated
on the left must have structuring
identical to the structures indicated
in the structure expression. Actual
level numbers of the structures
involved need not be the same; only
the structuring described need be the
same.

Ll:

The assignment statement is evaluated
as follows:

a. In Options 1, 4, and 5, if any
expressions appear on the left of
the equal sign, either in sub-
scripts or in pseudo-variables,
these expressions are evaluated
exactly once from left to right.
The expression on the right of the

equal sign 1is evaluated. The
value of the expression on the
right of the equal sign is

assigned to the variables on the
left of the equal sign, from 1left
to right.

b. In Options 2 and 3, the assignment
statement is treated as if it were
a sequence of scalar assignment
statements applied on an element-
by-element basis. See Rules 3 and
4 below for a discussion of the
evaluation of a structure or array
assignment BY NAME.

c. The definition of the order of
assignment for a statement of the
form

Ll: A,B=expression;

(where A and B are arrays of
dimensionality n) is as follows:

DO I1
DO I2

LBOUND (A,1) TO HBOUND (A,1);
LBOUND (A,2) TO HBOUND (A,2);

DO In = LBOUND (A,n) TO HBOUND (A,n);
A(I1, I24e<.eIn), B(I1,I2;...,IN) =

expression;

Subscripts (I1,..., In) are
inserted for the appropriate
arrays on the righthand side, thus
yielding a sequence of scalar

assignments.

The result of the evaluation for a
later position in an array or
structure may be affected by the
evaluation and assignment to an

earlier position (see Example 1,
below).
d. When necessary, the expression

value, or values, is converted to
the characteristics of the varia-
ble on the left according to the
rules in "Expressions," in Chapter
3, except when conversion of
arithmetic base is involved (this
is converted directly to the pre-

3.

cision of the variable to the left
of the equal sign).

e. Structure assignment, in the
absence of the BY NAME option, is
accomplished through the following
process:

Consider that each structure iden-

tifier designates a structure hav-

ing n elements at the next level.

The structure assignment statement

is transformed intc n statements,

Si1s S24 eeeg Sne Wwith each state-
ment S involving the ith element
of each structure (see example 4
below).
When a variable on the left is a bit
or character string or the UNSPEC

pseudo-variable, the expression is
evaluated as above, and the assignment
is performed from left to right,
starting with the leftmost position.

a. If the string has a fixed 1length
and the value of the expression is
longer than the string, the value
is truncated at the right.

b. If the string has a fixed length
and the value of the expression is
shorter than the string, the value
is extended on the right with
zeros for bit strings or with
blanks for character strings.

c. If the string has a varying length
and the value of the expression is
longer than the maximum length of
the string, the value is truncat-
ed; the assigned string is of the

maximum length.

d. 1If the string has a varying length
and the value of the expression is
shorter than the maximum length of
the string, the value is assigned;
the new length of the string is
the length of the value.

e. If the variable on the left is the
pseudo-variable SUBSTR with an
argument that is a varying-length
string, the assignment is per-
formed to this substring in prec-
isely the same way as it would be
if the argument were of fixed
length, where this fixed length is
the length defined by the SUBSTR
pseudo-variable.

If the BY NAME option is used for
arrays of structures in Option 2, the
assignment statement is treated as a
sequence of BY NAME structure assign-
ments applied on an element-by-element
basis.

Chapter 8: Statements 107

108

If

the BY NAME option is wused in

Option 3, the assignment statement is
evaluated as follows:

A

b.

Ce

Every element at the next level of
each structure is extracted.

A subset of these elements is
selected. This subset consists of
those elements common to all of
the structures.

A corresponding assignment state-
ment is constructed for each of
the subset elements. The order of
the constructed statements corres-
ponds to the order in which the
elements appear in the 1leftmost
structure. The rules by which
such statements are constructed
are detailed in paragraphs d, e,
and £ below.

If all of the elements correspond-
ing to a subset element are struc-
tures or arrays of structures, an
assignment statement is construct-
ed and the BY NAME option is
appended to it. (Further state-
ments are generated from this con-
structed statement in accordance
with the rules given in paragraphs
4a through 4f.)

If none of the elements corres-
ponding to a subset element is a
structure or an array of struc-
tures, an assignment statement is
constructed but the BY NAME option
is not appended to it. No further
statements would be generated from
this constructed statement.

If the rules in paragraphs 4 and e
above do not pertain, no statement
is constructed.

Example:

Suppose that the following three

structures have been declared.

1 ONE 1 TWO
2 PART1 2 PART1
3 RED 3 RED
3 WHITE 3 GREEN
3 BLUE 3 WHITE
2 PART2 2 PART2
3 GREEN 3 BLUE
3 YELLOW 3 YELLOW
3 ORANGE(3) 3 ORANGE(3)
2 PART3
3 BLACK
3 WHITE
1 THREE
3 PART1
5 BLACK

Note:
is unnecessary for the structuring of

5 WHITE
5 RED
3 PART2
5 YELLOW
5 WHITE
5 ORANGE(3)
5 PURPLE

Note that the structures contain
array names.

stated in
elements

According to the rule
paragraph ba, the
extracted are as follows:

ONE. PART1
ONE.PART2
ONE.PART3

TWO.: PART1
TWO.PART2

THREE. PART1
THREE. PART2

As indicated by the rule given in
paragraph U4b, a subset of those
elements common to all of the
structures is then selected. This
subset is

PART1
PART2

If the following
being evaluated,

statement were

ONE = TWO-2*THREE, BY NAME;
then the following statements
would be constructed (see u4c and
4d):
ONE.PART1 = TWO.PART1-2%
THREE.PART1, BY NAME;
ONE.PART2 = TWO.PART2-2%
THREE. PART2, BY NAME;
Further statements are generated

in accordance with the rules in
paragraphs 4a through 4f until the
lowest level is reached.

In BY NAME structure assignment, it

all

participating structures +to be identical.
Names of variables that are defined on
structures appearing in BY NAME assignment

take no part in name

matching (see "The

DEFINED Attribute").

5.

In Option 4,
constant or
qualified by an identification of the
current invocation of the
taining the
task.

the value of the label
the 1label variable is

block con-

label and by the current

This qualification information is

used when a GO TO statement specifies

1.

the label wvariable toc make the iden-
tified invocation current and to check
that control does not cross task boun-

daries.

Pointer variables may be components of
structures or arrays of structures, in
which case they are assigned values by
a statement as specified in Options 2
and 3. However, no conversions are
performed, and the value assigned to a
pointer structure component must be a
pointer variable. If the pointer
variables are array pointer variables,
the rules for array assignment given
in Rule 1 apply. In any event, the
pointer expression 1is 1limited to a
scalar pointer variable or a function
reference that returns a scalar poin-
ter value.

Examples:

The following example illustrates
array assignment (Option 2):

Given the array A

EPRwWwN
NN FE

and the array B

AW
weEooum

Consider the assignment statement:
A = (A+B)*#%2-A(1,1);

After execution, A has the value
7 T4
93 189
9 114
93 114

Note that the new value for A(1,1),
which is 7, is used in evaluating the
expression for all other elements.

The following illustrates
string assignment:

example

Given:

A is a fixed-length
value is 'XZ/BQ'.

string whose

B is a varying-length string of
maximum length 8 whose value is
"MAFY'.

C is a fixed-length string of
length 3.

D is a varying-length string of

maximum length 5.
Then in the statement:

C=A, the value of C is XZ/%.

5.

C='X"', the value of C is 'Xbb'.
D=B, the value of D is "MAFY'.
D=SUBSTR (A, 2,3) | | SUBSTR(A,2,3),
the value of D is 'Z/BZ/'.
SUBSTR(A,2,4)=B, the value of A is

*XMAFY'.

SUBSTR(B,2,2)="R', the value of B
is "MRDbY'.

SUBSTR({B,2)="R', the value of B is
'MRbb'.

The following examples illustrate sca-
lar assignment (Option 1):

a. A,B,C = A+SIN(B) + C#*#*2; provided
X has the characteristics of the
expression, this is the same as
X = A+4SIN(B) + C#**2;

A= X;
B = X;
C = X;

b. COMPLEX (U1, V1) = COMPLEX (U, V)
+ REAL (Q);

This is the same as

C=COMPLEX (U, V) +REAL(Q) ;
U1=REAL(C);
V1=IMAG(C);

The following examples illustrate
structure assignment (Option 3):

a. DECLARE 1X, 2Y, 2Z, 2R, 3s, 3p,
1A, 2B, 2C, 2D, 3E, 30:
X = X*A;

The second statement is equivalent
to the following statements:

Y*B;
Z2¥C;
S*E;
P*Q;

Lo ON N
Wowonon

b. DECLARE 1A, 2B, 2C,
A = A+B;

3D, 3E;

The second statement expands into
the following:

B+B;

C+B;

Ow

The last statement expands into
D = D+B;
E E+B;

The following example illustrates
statement label assignment (Option 4);

DECLARE P LABEL;

P = A;
GO TO P;
A: X = Y%%2;

Chapter 8: Statements 109

110

This set of statements causes control
to transfer to A when the GO TO P
statement is executed.

The example below illustrates assign-
ment to an array of structures
(Options 2 and 3).

In the following statement, A is an
array of structures, and R is a struc-
ture:

DECLARE 1aA(2,2), 2B, 2¢, 2D, 3E, 3F,
1R, 3s, 3T, 3U, 5V, 5W;

The following is an array assignment

statement:

A=R;

The above assignment statement is

equivalent to the following four

structure assignment statements:

A(111)=R;

A(1,2)=R;

A(2,1)=R;

A(2,2)=R;

The four sStatements above are, in

turn, equal to the following:

a(1,1) . B, A(1,2).B, A(2,1).B,
A(2,2). B=S;

a(i,.c, A(L,2).c, A(2,1).Cc, A(2,2).
cC =17T;

aA(i,1).E, AQ,2).E, A(2,1).E, A(2,2).
E =V;

a(1,1).F, A(1,2).F, A(2,1).F, A(2,2).F
:w;

(If R is ABNORMAL, 16 statements
actually generated.)

are

The following example illustrates con-
version of data defined by a picture
description assigned to floating-point
data, and vice versa:

B PICTURE

DECLARE A FLOAT, *999Vv99';

A=B; (B is converted from fixed-point
to floating-point.)

B = A; (A is converted from floating-
point to fixed-point.)

The following example illustrates

pointer assignments (Option 5):

DECLARE (P, Q(5), R, T(5)) POINTER,
VALUE FIXED STATIC,
POINT ENTRY (FIXED) RETURNS
(POINTER) ;

:R:

R=ADDR (VALUE);
Q(3)=NULL;

T=Q;

Q=ADDR (R);
T(1)=POINT (VALUE);

The BEGIN Statement

The

Function:

BEGIN statement is the heading

statement of a begin block.

1.

2.

1.

2.

General format:

BEGIN;

General rules:

A BEGIN statement is used in conjunc-
tion with an END statement.
1 for

See Chapter a discussion of

blocks.

Examples:

ON OVERFLOW BEGIN;

END;

(SIZE): PROCEDURE;

(NOSIZE): A: BEGIN;

END;

END;

The SIZE condition is enabled with the
prefix

to the PROCEDURE statement. This

enabling is negated throughout the begin

block with the prefix NOSIZE.
the begin block,

On exit from

SIZE errors are again

enabled because statements again are in the
scope of the SIZE prefix.

The CALL Statement

The CALL statement invokes a
and causes

Function:

procedure
control to be transferred to a

specified entry point of the procedure.

1.

2.

1.

CALL entry-name

[(argument [,argument] . . .)1l

[TASK [(scalar-task-name)ll
[EVENT (scalar-event-name)]
[PRIORITY (expression)l;

Syntax rules:

The entry name represents the
point of the procedure invoked.

entry

Each argument may be any of the fol-
lowing: any type of expression, a
statement label constant, a statement

label variable, a statement label
array, a label parameter, an entry
name, an entry parameter, a file name,

a file parameter, a task name, a task
parameter, an event name, an event
parameter, an area name, an area par-
ameter, a pointer name, a pointer
expression, Or a pointer parameter.
Note that a pointer expression must be
either a pointer variable or a pointer
function reference.

The TASK, EVENT, and PRIORITY options
can appear in any order. They are
separated from each other by blanks,
and they are separated from the ini-
tial part of the CALL statement by a
blank.

The scalar event and task names may be
subscripted references to event or
task arrays.

General rules:

The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed asyn-
chronously. Note that if either the
EVENT option or the PRIORITY option,
or both, are used without the TASK
option, the created task will have no
name (see "Asynchronous Operations and
Tasks™ in Chapter 6).

When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of
the task to be controlled at some
other point by the use of the PRIORITY
pseudo-variable and built-in function.

When the EVENT option is used, the
event name is associated with the
completion of the task created by the

CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a

WAIT statement. The value of the
completion status for the event name
{(i.e., the value of EVENT (event
name)) is set to '0'B on execution of
the CALL statement and to '1'B on
completion of the created task. (see
"Event Data"™ in Chapter 2 and "The
WAIT Statement™ in this chapter.)

4. If the PRIORITY option is used, the
expression in the above form is evalu-
ated when the CALL statement is exe-
cuted. The result of this evaiuation
is converted to FIXED (m,0) where m is
implementation-defined. The priority
of the named task is then made m
relative to the task in which the CALL
is executed. If the PRIORITY option
is not specified, a priority must have
been assigned at some earlier point
through the PRIORITY pseudo-variable.

5. See "Relationship of Arguments and
Parameters"™ for a detailed description
of the interaction of CALL arguments
and invoked entry parameters.

Examples:

1. CALL CRITICAL_PATH (A,B*C,D);

-

CRITICAL_PATH: PROCEDURE (ALPHA,BETA,
GAMMA) ;

END;
2. CALL PAYROLL (NAME, DATE, HRRATE);

3. CALL PRINT (A,B) TASK (T2) EVENT (ET2)
PRIORITY (-2);

The CLOSE Statement

Function:

The CLOSE statement dissociates the
named file from the data set with which it
was associated by opening. It also disso-
ciates from the specified file, all of the
attributes declared for it in the opening
of that file (thus, if so desired, the file
name may be respecified with new attributes
in a subsequent OPEN statement). However,
all declared attributes for that file
(i.e., all attributes explicitly given in a
DECLARE statement) remain in effect.

General format:

CLOSE options-group [,options-groupl...;

Chapter 8: Statements 111

Following is the format of T"options
group":
FILE(filename) [IDENT(argument)]

General rules:

1. The options may appear in either order
within an options group.

2. The FILE(filename) option specifies
which file is to be closed. It must
appear once in each options group.
Several files can be closed by one
CLOSE statement.

3. A closed file can be reopened.

4., Closing an unopened file, or an
already closed file, has no effect.

5. The CLOSE statement cannot be used to
close a file in a task different from
the one that opened the file.

6. If a file 1is not closed by a CLOSE
statement, it is automatically closed
at the completion of the task in which
it was opened.

7. A CLOSE statement unlocks all records
previously locked in the task in which
the CLOSE appears.

8. The argument in the IDENT

used as follows:

option is

Input files: The argument must be a char-
acter string variable that may be sub-
scripted. The data set is examined for an
identifying user 1label, which 1is then
assigned to the string. The label will be
a trailer 1label, wunless the file is a
BACKWARDS file, in which case it will be a
header label. If there is no label, a null
string will be assigned to the character
string variable.

Output_files: The argument is an expres-
sion; this is evaluated and converted to a
character string, which is placed with the
data set as a trailer label.

Update files: The argument must be a char-
acter string variable that may be sub-
scripted. The data set is examined for an
identifying 1label, which is then assigned
to the string. The label will be a trailer
label.

Examples:
1. CLOSE FILE (MASTER);
The file, MASTER, is closed, and the

facilities allocated to it are
released.

112

2. CLOSE FILE (TABLEA), FILE (TABLEB);

The two
closed in the same way as
the preceding example.

files, TABLEA and TABLEB are
MASTER, in

The DECLARE Statement

See "The DECLARE Statement", in Chapter
4, for a discussion of the DECLARE state-
ment.

The DELAY Statement

Function:

The DELAY statement causes execution of
the controlling task to be suspended for a
specified period of time.

General format:
DELAY (scalar-expression);
General rule:

Execution of the DELAY statement
causes the scalar expression to be
evaluated and converted to an integer
n and execution to be suspended for n
milliseconds.

Execution resumes after n millisec-
onds only if the controlling task is
of sufficiently high priority to be
selected 1in preference to all other
ready tasks.

Example:

DELAY (10);

Execution of the controlling task
is suspended for ten milliseconds.

The DELETE Statement

Function:

The DELETE statement deletes a record
from a DIRECT UPDATE file.

General format:
DELETE option-list ;

Following is the format of

list":

"option

FILE(filename) KEY(expression)
[EVENT (event—-variable)]

General rules:
1. The options may appear in any order.

2. The FILE(filename) option specifies
the UPDATE file; it must occur once.

3. The KEY(expression) option specifies
the key that identifies the record to
be deleted. This option must occur
once.

4. If the EVENT(event variable) option is
given, the execution will not wait for
the deletion to be completed before
continuing with subsequent statements.
The event variable will be given the
value '0'B until the deletion is com-
plete, when it will be given the value
'1'B.

5. The DELETE statement unlocks a record
only if that record had been locked in
the same task in which the DELETE
appears.

6. The DELETE statement can cause impli-
cit opening of a file.

Example:
DELETE FILE(ALPHA) KEY (DKEY);
This statement causes the record iden-
tified by DKEY to be deleted from the data
set associated with the file ALPHA. If the

record was previously locked in the same
task, it is unlocked.

The DISPLAY Statement

Function:

The DISPLAY statement causes a message
to be displayed to the machine operator. A
response may be requested.

General format:

Option 1.

DISPLAY (scalar-expression);

Option 2.

DISPLAY (scalar-expression)
REPLY (character-variable)
[EVENT (event-variable)];

DISPLAY statement
to be

con-

1. Execution of the
causes the scalar expression
evaluated and, where necessary,
verted to a varying character string
of implementation-defined maximum
length, This character string is the
message to be displayed.

2. In Option 2, the character wvariable
receives a string that is a message to
be supplied by the operator.

3. In Option 2, if the EVENT option is
not specified, execution of the pro-
gram is suspended until the operator's
message 1is received. In option 1,
execution continues uninterrupted.

4, If the EVENT (event-variable) option
is given, execution will not wait for
the reply to be completed before con-
tinuing with subsequent statements.
The event variable will be given the
value '0'B until the reply is
received, when it will be given the
value '1'B.

Example:

DISPLAY ('END OF

r

OB');

This statement causes the message, "END

OF JOB" to be displayed.

The DO Statement

Function:

The DO statement delimits the start of a
DO group (see "Groups") and may specify
iterative execution of the statements with-
in the group.

Chapter 8: Statements 113

Option 1
DO;
Option 2.
DO WHILE (scalar-expression);
Option 3.

pseudo-variable
Do% = specification [,specificationl...;

variable
A specification has the following format:

TO expression2 [BY expression3]
expression 1 [WHILE (expression u4)]

BY expression3 [TO expression2]

[e o e o s e e s e . s S e e e, A, et s e et)
bt o i o T S —— — — e S— ————— — — — — — —— —

Figure 4. General Format for the DO Statement

Syntax rules: the start of a DO group and specifies
an iteration defined by the following:
1. The "variable™ in Option 3 is a sub-

scripted or unsubscripted scalar vari- LABEL: DO WHILE (expression);
able. Label variables, string varia- statement 1
bles, and complex variables are .
allowed, provided the expansions given .
below result in valid PL/I programs. .
statement n
2. Each "expression" in the specification END;
list is a scalar expression. NEXT: statement
3. If BY expression3 is omitted from the The above is exactly equivalent to the

specification, expression3 is assumed following expansion:
to be one (1).
LABEL: IF (expression) THEN; ELSE GO TO

4. If TO expression2? is omitted from the NEXT;
specification, the iteration is per- statement 1
formed indefinitely wuntil terminated -
by the WHILE clause or by some other .
statement within the scope of the DO. -

statement n

5. If both TO expression2 and BY GO TO LABEL;

expression3 are omitted, this form of NEXT: statement
the specification implies a single

execution of the DO group with the 3. In Option 3, the DO statement delimits

control variable having the value of the start of a DO group and specifies

expression 1. controlled iteration defined by the
following:

6. If the variable in Option 3 is a label
variable, each specification must take LABEL: DO variable = expressionl

the form: TO expression2 BY expression3
WHILE (expressioni);
label-variable statement 1
[WHILE (expressioni)] .
label-constant -
General rules: statement n
| LABEL1:END;

1. In Option 1, the DO statement delimits NEXT: statement
the start of a DO group.
The above 1is exactly equivalent to the
2. In Option 2, the DO statement delimits following expansion:

114

LABEL:tl=sexpl; t2=sexp2;...; tm=sexpm;
el=expressionl; e2=expression2;
e3=expression3;
v=el-e3;

LABELl: v=v+e3; IF (e3>=0)&(v>e2)|(e3<0)¢&

(v<e2)}
THEN GO TO NEXT;

IF (expression 4) THEN; ELSE GO TO NEXT;
statement 1
statement n
GO TO LABEL1l;

NEXT: statement

In this expansion sexpl,...,sexpm are
the expressions which appear in subscripts
of the control variable or pseudo-variable,
followed by the second and third argument
positions if the SUBSTR pseudo-variable is
being used. The letter v denotes the
control variable with all sexpi replaced by
ti. In the simplest cases, m=o0 and the
first statement 1is el=expressionl. The
variables tl1,...,tm, are BINARY FIXED inte-
ger variables of default precision, insert-
ed by the compiler. The variables el, e2,
and e3 have the characteristics of the
corresponding expressions.

a. If more than one specification is
given, the statement labeled NEXT
refers to the initialization for
the next specification; for exam-
ple:

NEXT: e5 = expression 5;

Note: Each specification applies to the
statements in the DO group. The ti varia-

hlas ave commuted only once DoT no o
D1LE€5 dare Computed Onay once per DO groupe.

b. If the WHILE clause is omitted,
the IF statement involving
expressiond4 and the ELSE GO TO

NEXT statement are deleted.

c. If the TO clause is omitted, the
IF statement and the assignment
statement involving e2 are omit-
ted.

d. If Dboth the TO clause and the BY
clause are omitted, all statements
involving e2 and e3 are omitted as

well as the statement "GO TO
LABEL1;".
4. The WHILE clause in Options 2 and 3

specifies that before each associated
execution of the DO group, the expres-
sion is evaluated and, if necessary,
converted to give a bit-string value.
If any bit in the resulting string has
the value '1', the iteration continues

uninterrupted. If all bits have the
value '0', the jiterations associate

with the
terminated.

current specification are

5. In the specification list, in Option
3, expressionl represents the starting
value of the control variable.
Expression3 represents the increment
to be added to the control variable
after each iteration of the statements
in the DO group. Expression2 rep-
resents the terminating value of the
control variable. Iteration termi-
nates as soon as the value of the
control variable passes its terminat-
ing value. When the 1last specifi-
cation is completed, control passes to
the statement following the DO group.

6. Control may transfer into a DO group
from outside the DO group only if the
DO group is delimited by the DO state-
ment in Option 1; that is, iteration
is not specified.

7. The effect of allocating or freeing
the control variable within the DO
loop is undefined.

Examples:

1. DO INDEX = Z WHILE (A>B), 5 TO 10

WHILE (A = B), 100;

2. DOI =1T0 9,11 TO 20;
3. DO WHILE (P);
4. DO;

5. DO WHILE (TAX-DEDCT < ESTTAX * U4);

& nnN OANMDT VIV V) = N nwv 1417 WUIOTT R
Ce peASs LUl iAo g L/ v f=p4 AT Waag
(X<10);
’

The_ END Statement

Function:

The END statement terminates blocks and
groups.

General format:
END [labell:
General rules:

1. If a label follows END, the END state-
ment terminates that group or block
having that label.

2. If a label does not follow END, the
END statement terminates that group or
block headed by the nearest preceding

DO, BEGIN, or PROCEDURE statement for
’ ’

Chapter 8: Statements 115

which there is no other corresponding
END statement.

3. An END statement may be used to termi-
nate more than one group or block (see
"Use of the END Statement," in Chapter
1.

4, If control reaches an END statement,
terminating a procedure, it is treated
as a RETURN statement.

5. If control reaches an END statement
which terminates a BEGIN block that is
an on-unit, control is returned to the
point following the interrupt loca-
tion.

6. If a label follows END, that label may
not be an element of a label array.

For examples, see "Use of the END State-
ment," in Chapter 1.

The ENTRY Statement

Function:

The ENTRY statement specifies a secon-
dary entry point to a procedure.

General format:
entry-name: [entry-name:] ... ENTRY

[(parameter [,parameterl...)]
[data-attributes];

General rules:

1. The parameters are names that specify
the parameters of the entry point.
When the entry is invoked, a relation-
ship 1is established between the argu-
ments of the invocation and the param-
eters of the invoked entry point (see
"Relationship of Arguments and
Parameters").

2. The data attributes permitted with a
PROCEDURE statement are the arithmet-
ic, string, and pointer attributes.
The data attributes specify the char-
acteristics of the value returned by
the procedure when invoked as a func-

tion at this entry point. (This rule
applies to each entry name by which
the entry point may be invoked.) The

value specified in the RETURN state-
ment of the invoked entry is convert-
ed, if necessary, to have the speci-
fied data attribute.

If data attributes are not com-

pletely specified at the entry point,
default attributes are applied, as

116

determined by the name of the entry
point.

If an ENTRY statement has more than
one label, each label is interpreted
as 1if it were a single entry name for
a separate ENTRY statement having the
same parameter 1list and data attri-
butes.

Consider the statement:
A:I: ENTRY;
This statement is equivalent to:

A: ENTRY;
I: ENTRY;

The ENTRY statement must be inter-
nal to the procedure block for which
it defines a secondary entry point.
The ENTRY statement may not be inter-
nal to any block contained in this
procedure; nor may it be within a DO
group that specifies iteration.

Example:

NAME «

NAME « PROCEDURE(N) CHARACTER{15):

LSAavVvLovvnolYyy . Laaniasd NLITJ

DECLARE TABLE(100) CHARACTER(15)
EXTERNAL;
INITIAL: ENTRY(N) CHARACTER(1);
RETURN (TABLE(N));
END;

The EXIT Statement

Function:

The EXIT statement causes immediate ter-
mination of the task that contains the
statement and all tasks attached by this
task (see "Asynchronous Operations and
Tasks," in Chapter 6). If the EXIT state-
ment 1is executed in a major task, it is
equivalent to a STOP statement (see this
chapter).

General format:

EXIT;

The FORMAT Statement

Function:

The FORMAT statement specifies a format
list for use with data transmitted under
edit direction.

General format:

label: [label:)...FORMAT format-list;

Syntax rules:

1. The "format list" is as described for
use with an edit-directed data speci-
fication (see "Format Lists"™ in Chap-
ter 7).

2. At least one "label" is required. It
is the name of a tatement label

appearing in a remote format item.

P=
STactTiuclic

General rules:

1. A GET or PUT statement may include a
remote format specification, R, in the
format 1list of an edit-directed data
specification. That portion of the
format 1list covered by the R format
item must be specified in a FORMAT
statement with a corresponding state-
ment label.

2. The remote format item and the FORMAT
statement must be internal to the same

block.
Example:
COMMON: FORMAT (A(5), F(5,2), X(3),
F(10,0));

The FREE Statement

Function:

The FREE statement causes the storage
allocated for specified based or nonbased
controlled variables to be freed. For
nonbased wvariables, the next most recent
allocation is made available, and subse-
quent references to the identifier refer to

that allocation.
General formats:
Option 1

FREE identifier [,identifier]

Option 2

FREE [pointer-variable->1]
based-variable-identifier
[, [pointer-variable->]
based-variable-identifierl...;

Syntax rule:

Each identifier is a scalar, array, or
major structure name of the controlled
(based or nonbased) storage class.

General rules:

1. The freeing of nonbased and based

controlled variables may be
in the same FREE statement.

specified

2. Controlled storage allocated in a task
cannot be freed by a descendant task.

3. 1If a specified nonbased identifier has
no allocated storage at the +time the
FREE statement is executed, it is an
error.

Rules U4 through 6 apply only to Option 2.

4. TIf the based variable is not qualified
by pointer qualification, the pointer
declared with the based variable will
be used to identify the generation of
data occupying the portion of storage
to be freed (see Chapter 2 for a
discussion of pointer qualification).

5. The amount of storage freed depends
upon the attributes of the based vari-
able, including bounds and/or lengths
at the time the storage is freed, if
applicable. The wuser is responsible
for determining that this amount coin-
cides with the amount allocated. If
the wvariable had not been allocated,
the results are unpredictable.

6. Based variables appearing in ALLOCATE
statements with the IN clause may not
appear in FREE statements. In other
words, allocations within storage
areas defined by area variables may
not be freed.

Examples:
1. FREE X,Y,%;
2. The following excerpt from a procedure
illustrates the FREE statement in con-

junction with an ALLOCATE statement:

DECLARE A(100) INITIAL ((100)0)
CONTROLLED, C(100), X(100);

ALLOCATE A;

FREE A;

X=SIN(C**2 + X/Y);

3. In the example below, it 1is assumed
the declarations specified in Example
4 of the ALLOCATE statement apply.

Chapter 8: Statements 117

FREE VALUE;

Frees that portion of storage which is
occupied by the generation of VALUE
identified by pointer P.

FREE T -> GROUP;

Frees that portion of storage which is
occupied by the generation of GROUP
identified by pointer T. The value J
is used to determine the dimensions of
PTS and VALUES.

The GET Statement

Function:

The GET statement normally causes values

from a data set to be assigned to variables

specified in

a data list. Alternatively,

the values may come from a character-string
variable.

General format:

list"™:

118

CTM Antinn-1ict+ .
GET option-list ;
Following is the format of T"option
[FILE(filename) | STRING(character-
string-name)]
data-specification [COPY}
General rules:
If neither the FILE(filename) option

nor the STRING(character-string-name)
option appears, standard system input
file SYSIN is assumed.

One data specification must appear.

The options may appear in any order.

to a file which
with

The filename refers
has been associated, by opening,

the data set which is to provide the
values. It must be a STREAM INPUT
file.

The character string name refers to
the character string which is to pro-
vide the input data. Each GET opera-
tion using this option always begins
at the beginning of the specified
string. If the number of characters

in this string is less than the total
number of characters specified by the
data specification, the ERROR condi-
tion is raised.

The data specification is as described
in Chapter 7.

If the FILE(filename) option refers to
an unopened file, the file is opened
automatically; the effect is as if the
GET statement were preceded by an OPEN
statement referring to the file.

The COPY option, which may only be
used with the FILE(filename) option,
specifies that the source data, as
read, is to be written, without alter-
ation, on the standard system print
file SYSPRINT.

Examples:

1.

+3
[0}

GET LIST (A,B,C);

Specifies the list-directed transmis-
sion of the values to be assigned to
A, B and C from the file SYSIN.

GET FILE (BETA)
F(5,2), A(10));

EDIT (X,Y¥Y,2) (A(5),

Specifies the edit-directed transmis-
sion of the values assigned to X, Y
and Z from file BETA.

Function:

The GO TO statement causes control to be
transferred to the specified statement.

General format:

GOTO

scalar-label-variable;

GO TO ; i label-constant;

General rules:

1.

If a label variable is specified, the
GO TO statement has the effect of a
multi-way switch. The value of the
label variable is the 1label of the
statement to which control is trans-
ferred.

Since the label variable may have
different values at each execution of
the GO TO statement, control may not
always pass to the same statement.
(Example 2 illustrates a GO TO state-
ment used as a multi-way switch.)

A GO TO statement may not pass control
to an inactive block (see "Activation
and Termination of Blocks," in Chapter
6, for a discussion of active and
inactive blocks).

A GO TO statement may not transfer
control from outside a DO group to a
statement inside the DO group if the
DO group specifies iteration unless
the GO TO terminates a procedure
invoked from within the DO group.

3. A GO TO statement that transfers con-
trol from one block (D) to a dynami-
cally encompassing block (A) has the
effect of terminating block D, as well
as all other blocks that are dynami-
cally descendant from block A. Condi-
tions are reinstated, and automatic
variables are freed in the same way as

i e L~ hlanka Formina+ad normaslle
e LY $ L - A AT D ok ML ikdA T eyt 4

When a GO TO statement transfers con-
trol out of a procedure invoked as a
function, the evaluation of the
expression that contained the corres-
ponding function reference is discon-
tinued, and control is transferred to

the specified statement.

4. A GO TO may not terminate any proce-
dure invoked during a prologue (see
"Prologues"™ in Chapter 10), or an
ALLOCATE statement.

5 A GO TO statement may not be used to
transfer control from a task to its
attaching task or to any of its des-
cendant tasks.

Examples:

1. GO TO A234;

-

A234: ...

2. The following example iliustrates a GO
TO statement that effectively is a
multi-way switch.

DECLARE L LABEL (L1, L2) INITIAL

(L2);

GO TO MEET;
Ll: X =Y - 1;

L = L2;

GO TO MEET;
L2: Y = X -1;

L = L1;

MEET: CALL FUDGE (X, Y, 2);
IF 2 = LIMIT THEN GO TO L;

3. The following procedure illustrates
use o©of the GO TO statement with a
subscripted label variable to effect a
multi-way switch:

CALC: PROCEDURE (N1, N2);
DECLARE SWITCH(3) LABEL INITIAL
(CALC1, CALC2, CALC3);
I=MOD(N1+N2,3)+1;
GO TO SWITCH (I);

CALC1l: ...

RETURN;
CALC2: ...

The IF Statement

Function:

The IF statement causes program flow to

depend on the value of an expression.

1.

2.

3.

1.

General format:

IF scalar-expression THEN unit-1 [ELSE
unit-21]

Syntax rules:

Each "unit" is either a group or a
begin block, either of which would be
terminated by a semicolon.

The 1IF statement is not itself termi-
nated by a semicolon.

Each unit may be labeled.

General rules:

When the ELSE clause -- ELSE, and its
following unit -- 1is not specified,
the scalar expression is evaluated
and, if necessary, converted to a bit
string. If any bit in the resulting
string has the value 1, the unit-1 is
executed, and control passes to the
statement following the IF statement.
If all bits have the wvalue 0, the
unit-1 is not executed, and control
passes to the next statement. When
the ELSE clause 1is specified, the
expression is similarly evaluated. If
any bit is 1, unit-1 is executed, and
control passes to the statement fol-
lowing the IF statement. If all bits
have the value 0, unit-2 is executed,
and control passes to the next state-
ment. The units may contain state-
ments that specify transfer of control
(see "Sequence of Control®"), and so
override these normal sequencing
rules.

IF statements may be nested, that is,

either unit-1 or unit-2, or both, may
themselves be IF statements. Since

Chapter 8: Statements 119

each ELSE clause is always associated
with the innermost preceding IF, an
ELSE with a null statement may be
required to specify a desired sequence
of control.

Examples:

1. IF QUEUE = EMPTY THEN CALL COMPILE;
ELSE GO TO MULTIPROCESS;

2. A: 1IF X > Y THEN
IF Z = W THEN
IF W < P THEN Y = 1;
ELSE P = Q;
ELSE;
ELSE X = 4;
J: Z = 5;

The LOCATE Statement

Function:

The LOCATE sStatement, which applies to
BUFFERED OUTPUT files, allows a record to
be created in buffer storage and subse-
guently written {see "The Buffering

Attributes", Chapter 4).
General format:

LOCATE variable option-list

Following is the format of

list"™:

"option
FILE(filename) SET(pointer-variable)
[KEYFROM(expression)]
General rules:

1. The options in the
appear in any order.

option 1list may

2. The "variable™ must be an unsubscript-
ed level 1 based variable and it
cannot contain VARYING length strings.

3. The FILE(filename) option specifies
the file involved. This option must
appear.

4. The SET(pointer-variable) option spe-
cifies a subscripted or unsubscripted
POINTER variable which is to be set to

identify the variable in the buffer.
This option must appear.

5. If the KEYFROM (expression) option
appears, the value of the expression

is converted to a character string and
included as the key of the record to
be subsequently written.

6. The based variable is allocated in a

120

buffer, and the POINTER variable in
the SET option is set to identify it.
The record identified is written into
the output file immediately before the
next WRITE, LOCATE, or CLOSE operation
on the file, at which time the record
is freed.

7. If the FILE(filename) option refers to
an unopened file, the file is opened
automatically; the effect is as if the
LOCATE statement were preceded by an
OPEN statement referring to the file.

Example:

LOCATE ALPHA SET FILE

(BETR) ;

(REC_POINT)

The based variable ALPHA is allocated
in a buffer and the pointer variable
REC_POINT is set to identify ALPHA in
the buffer. Values may subsequently
be assigned to ALPHA and the record
will be written in the data set asso-
ciated with file BETA when a subse-
quent LOCATE or WRITE statement is
executed for file BETA or if BETA is
closed.

The Null Statement

Function:

The null statement causes no action and
does not modify sequential operation.

General format:
[label:l...;
Example:

-

ON OVERFLOW;

The on-unit (see "The ON Statement") is

a null statement. .

The ON Statement

Function:

The ON statement specifies the action to
be taken when an interrupt occurs for the
named condition. For a discussion of
"enable" and "interrupt," see "Interrupt
"Operations" in Chapter 6.

Ge

Option _

Sy

Ge

1.

5.

neral format:

ON condition [SNAP] on-unit

2
ON condition [SNAP] SYSTEM
ntax rules:
The “condition® may be any one of

those described in Appendix 3.

The "on-unit" is an action specifi-
cation and it is either an unlabeled
single simple statement (other than
BEGIN, DO, END, RETURN, FORMAT, PROCE-
DURE, or DECLARE) or an unlabeled
begin block. Since the on-unit itself
requires a semi-colon, no semi-colon
appears in Option 1.

The on-unit may not be a RETURN state-
ment, nor may a RETURN statement
appear within the begin block.

neral rules:

The standard action to be taken for
all ON-conditions is established by
the language. When an interrupt takes
place before an ON statement for that
condition has been executed, standard
system action is taken. This standard
system action is described in Appendix
3. The ON statement in Option 2
specifies that standard system action
is to be taken when an interrupt
results from the occurrence of the
specified condition.

is a

The ON statement in Option 1

means for the programmer to specify
action (other than standard system
action), that is, execution of the

on-unit, to take place when an inter-
rupt occurs for the specified condi-
tion. The on-unit 1is treated as a
procedure internal to the block in

which it appears.

when the
calling

If SNAP is specified, then
given condition occurs, a
trace is listed.

control can reach an on-unit
an interrupt occurs for the
associated with this on-unit
statement.

only when
condition
in an ON

If an action specification is esta-
blished by an ON statement in a given
block, it remains in effect throughout
this block and throughout all dynamic
descendants of this block (see
"Activation and Termination of

Blocks," in Chapter 6, for a discus-

sion of blocks and generations of
blocks).

If an action is specified more than
once 1in a given block, the effect of

the old (or prior) ON statement is
either temporarily suspended or com-—
pletely nullified by the new (or
later) ON statement, as follows:

If the new (or later) ON statement
is in a block dynamically descend-
ed from the biock containing the
old (or prior) ON statement, the
effect of the o0ld ON statement is
temporarily suspended or stacked.
The effect of the o0ld ON statement
is restored by execution of a
REVERT statement or upon termina-
tion of the block containing the
new ON statement.

Ae

If the new (or later) ON statement
and the o0l1d (or prior) ON state-
ment are internal to the same
invocation of the same block, the
effect of the o0ld ON statement is
completely nullified.

If an action 1is specified by an ON
statement in a particular task, the
effect of this ON statement is inher-
ited by each attached task and by each
task attached by the attached task,

etc. (see "Asynchronous Operations
and Tasks,"™ in Chapter 6 , for a
discussion of attached and attaching
tasks).

A condition raised during execution
results in an interrupt if and only if

mmd

=1
Lllc \rollu_‘- L.LUII J.s CnGUJ.cd Gl— L—lle

where it is raised.

The conditions OVERFLOW, FIXEDOV-
ERFLOW, UNDERFLOW, ZERODIVIDE,
CONVERSION, the input/output con-
ditions, and the conditions CONDI-
TION, FINISH, and ERROR are ena-
bled by default.

d.

The conditions SIZE,
RANGE, and CHECK are
default.

SUBSCRIPT-
disabled by

The enabling status of OVERFLOW,
FIXEDOVERFLOW, UNDERFLOW, ZERODI-
VIDE, CONVERSION, SIZE, SUBSCRIP-
TRANGE, and CHECK are controlled
by the condition prefix (see
"prefixes" in Chapter 1).

A single statement on-unit may not
refer to a remote format specification
through edit-directed transmission.

The identifier 1list of a CHECK condi-
tion, the filename of an input/output

Chapter 8: Statements 121

condition, and the on-unit of an ON
statement belong to the scope of the
procedure or begin block to which the
ON statement is internal.

The action specification esta-
blished by executing an ON statement
in a given block remains in effect
throughout this block and throughout
all dynamic descendants of this block,
unless overridden by the execution of
another ON statement. Names in an
on-unit do not belong to the scope of
the dynamic environment at the point
of execution of the on-unit, but rath-
er to the environment of the ON state-
ment.

Examples:

1.

122

IOPR: PROCEDURE;

Rl: GET FILE (FILEX) EDIT(A,B)
(2F(7,3));
ON CONVERSION
CONVQ = 9999;

-

R2: GET FILE (FILEX) EDIT (X)
(A(6));
END IOPR;
Assume that program execution
begins with procedure IOPR.

If an illegal character is read
from FILEX during the execution of
statement R1, the standard system
action occurs.

The ON statement specifies that the
execution of the statement CONVQ =
9999 is to occur in the event that a
conversion error causes an interrupt
subsequent to execution of the ON
statement. Thus, if a conversion
error occurs during the transmission
of X in statement R2, the normal
sequence of control is interrupted,
and the statement CONVQ = 9999 is
executed.

ZCHK: PROCEDURE;

S1: ON OVERFLOW OVSWCH = 1;

CALL Q;

Q: PROCEDURE;

-

S2: ON OVERFLOW OVSWCH

=2;
S3: ON OVERFLOW SYSTEM;
END Q;
END ZCHK;
Assume that program execution

begins with procedure ZCHK.

If an overflow occurs prior to
execution of the S1 statement, an
interrupt with standard system action
OCCurs. If an overflow occurs subse-
quent to execution of the S1 state-
ment, an interrupt occurs, and the
statement OVSWCH = 1 is executed.

When procedure Q is invoked, the S1
statement remains in effect until the
S2 statement is executed. At this
point, the effect of the S1 is tempo-
rarily suspended, and the S2 goes into
effect.

If an overflow occurs between S2
and s3, an interrupt occurs, and the
statement OVSWCH = 2 is executed.

When S3 is executed, it completely
replaces S2 (S1 is still stacked). If
an overflow occurs after S3 is execut-
ed and before the end of procedure 9,
it causes the standard system action
to take place.

After control is returned from Q to
ZCHK, S3 is completely replaced by S1,
whose effect is restored. Any over-
flows occurring from this point to the
end of procedure ZCHK cause the state-
ment OVSWCH = 1 in S1 to be executed.

3. SBCHX: PROCEDURE;
DECLARE A(9);
Bl: . -« <A{I)e..;
ON SUBSCRIPTRANGE BEGIN;
IF I>9 THEN
GO TO BIGER;
ELSE GO TO
LITLER;

LITLER: ...;

END;
(SUBSCRIPTRANGE) : B2:...A(I}...;
B3teaas
END SBCHK;

Assume that procedure SBCHK is the
only procedure in the program.

At the beginning of execution, any
occurrence of the condition SUBSCRIPT-
RANGE will not give an interrupt; it
is not enabled, since the condition
name does not appear in a prefix in
the PROCEDURE statement. If in state-
ment B1l, the value of I is greater
than 9 or less than 1, no interrupt
action is taken.

When the ON statement for the con-
dition SUBSCRIPTRANGE is executed, any
interrupt that results from a subse-
quent occurrence of the SUBSCRIPTRANGE
condition will result in the action
specified by the begin block in the ON
statement.

The prefix for statement B2 speci-
fies that the condition SUBSCRIPTRANGE
is enabled and should cause an inter-
rupt if it occurs during the execution
of statement B2. In this case, the
begin block in the ON statement is
executed.

In the execution of B3 and subse-
quent statements, the occurrence of a
subscript that is not within the spec-
ified range does not cause an inter-
rupt action to occur.

For further examples, see "Interrupt
Operations™ in Chapter 6.

The OPEN Statement

Function:

The OPEN statement associates a filename
with a data set and completes the specifi-
cation of attributes for the file.

General format:

OPEN options-group [,options-groupl...;

Following is the format of "options

group":

1.

FILE(filename) [IDENT (argument)]
[INPUT | OUTPUT | UPDATE] [STREAM |
RECORD] [DIRECT | SEQUENTIAL]
[{BUFFERED | UNBUFFERED] [EXCLUSIVE]
{KEYED{decimal-integer—constant)]
[BACKWARDS] [PRINTI]

[LINESIZE (expression)]

[PAGESIZE (expression)]

General rules:

The INPUT, OUTPUT, UPDATE, STREAM,
RECORD, DIRECT, SEQUENTIAL, BUFFERED,
UNBUFFERED, EXCLUSIVE, KEYED, BACK-
WARDS, and PRINT options specify
attributes which augment the attri-
butes specified in the file declara-
tion; for rules governing which of
these attributes can be applied
together, see "File Description Attri-
butes,™ in Chapter 4, and “"File Open-
ing and File Attributes," in Chapter
7.

The options may appear in any order
within a group.

The FILE(filename) option specifies
which file is to be opened. The
option must appear once in each
options group. Several files can be
opened by one OPEN statement.

Opening an already open file dces not
affect the file if the second opening
takes place in the same task or in an
attached task. Expressions in the
options groups are evaluated but not

used.

The "argument" in the IDENT option is
used as follows:

Input files: The argument must be a
character-string variable and may be
subscripted. The data set is examined
for an identifying user label which is
then assigned to the variable given as
the argument. The label will be a
header label wunless the file is a
BACKWARDS file, in which case it will
be a trailer label. If there is no
label, a null string will be assigned
to the character string variable.

Output files: The argument is an
expression; this is evaluated and con-
verted to a character string which is

Chapter 8: Statements 123

| 1.

124

placed with the data set as a header

label.

Update files: The argument must be a
character-string variable and may be
subscripted. The data set is examined
for an identifying label which is then
assigned to the variable given as the
argument. The label is a header
label.

If the TITLE (expression) option
appears, the expression is converted
to a character string which identifies
the data set to be associated with the
file. If the option does not appear,
a character string identical to the
filename 1is taken as the identifi-
cation. In the case of a parameter,
the 1identifier of the original argu-
ment passed to the parameter, rather
than the identifier of the parameter
itself, is used.

The LINESIZE option can be specified
only for a STREAM PRINT file. The
expression is evaluated, converted to
an integer, and used as the length of

a line during subsequent output to the
file. New lines may be started by use
of the printing and control format
items or PUT statement options, in
which case the current line is filled
to 1its full length with blanks. 1If a
line becomes overfilled before action
to start a new line is taken, charac-
ters spilling over are put onto the
next line automatically. Default is
implementation-defined.

The PAGESIZE option can be specified
only for a STREAM PRINT file. The
expression is converted to an integer
and used as the number of lines on a
page. During subsequent output to the
file, new pages may be started by use
of the PAGE format item or PUT state-
ment option. If a page becomes over-
filled before action to start a new
page is given, the ENDPAGE condition
is raised. Default is implementation
defined.

Examples:

OPEN FILE (ALPHA), FILE (BETA)

('WORKFILE') ;

TITLE

The files ALPHA and BETA are opened.
The data set associated with BETA is

identified as WORKFILE, whereas ALPHA
is associated with a data set named
ALPHA.

OPEN FILE (MASTER) UPDATE;

The file MASTER is opened as an UPDATE

file. MASTER is taken as the name of
the data set.

The PROCEDURE Statement

The PROCEDURE statement has the

Function:

follow~

ing functions:

1.

1.

Heads a procedure

Defines
procedure

the primary entry point to a

Specifies the parameters for the pri-

mary entry point

Defines
procedure

any special attributes of the

Specifies the attributes of the value
that 1is returned if the procedure is
invoked as a function at the primary
entry point

General format:

entry-name: ...PROCEDURE
[(parameter [, parameterl...)]
[OPTIONS (option-1list)]
[RECURSIVE] [data-attributes];

Syntax rules:

The data attributes and the OPTIONS
and RECURSIVE attributes may appear in
any order and are separated by blanks.

The attributes in the OPTIONS list are
separated by commas, where necessary.

General rules:

The "parameters" are names that speci-
fy the parameters of the entry point.
When the procedure is invoked, a rela-
tionship is established between the
arguments of the invocation and the
parameters of the invoked entry point
(see "Relationship of Arguments and
Parameters, " in Chapter 10).

The OPTIONS attribute specifies a list

of options, separated by commas where
necessary. The 1list depends upon
implementation. The OPTIONS attribute

may be specified only for an external
procedure. If specified, it applies
to all of the entry points that the
procedure might have.

The RECURSIVE attribute specifies that
this procedure may be invoked recur-
sively. This attribute applies only

to the procedure for which it is
declared, and as a result applies to
all of the entry points for that
procedure.

4. The data attributes permitted with a
PROCEDURE statement are the arithmet-
ic, string, and pointer attributes.
The data attributes specify the char-
acteristics of the value returned by
the procedure when invoked as a func-
tion at the primary entry point.
(This rule applies to each entry name
by which the procedure may be invoked,
i.e., each entry name appended to the
PROCEDURE statement.) The value spec-—
ified in the RETURN statement of the
invoked procedure is converted to the
specified data attributes.

If data attributes are not speci-
fied, or if an incomplete set of data
attributes 1is given at the entry
point, default attributes are sup-
plied. 1In the first case, the name of
the entry point is used to determine
the default base and scale.

If a PROCEDURE statement has more
than one entry name, the first name is
interpreted as the only label on the
statement; each subsequent entry name
is interpreted as a separate ENTRY
statement having an identical paramet-
er list and the same data attributes
as specified in the PROCEDURE state-
ment.

For example, the statement:
A:I: PROCEDURE;
is equivalent to:

A: PROCEDURE;
I: ENTRY;

Example:

B: PROCEDURE;

C=A(X,Y);
END B;
A: PROCEDURE (B,C) FIXED;

RETURN (B*C + SIN (P))
END A;

If procedure A is invoked as a function,
as it is in procedure B, then when control
is returned to B, the expression (B¥C + SIN
(p)) is evaluated, converted to fixed
point, and the wvalue assigned to C in
procedure B,

The PUT Statement

of

Function:

The PUT statement normally causes values
specified variables to be assigned to

data fields in a data set. Alternatively,

+he

data may be assigned to a character

string variable.

General format:

PUT option-list ;

Following is the format of “option

list™:

1.

[FILE(filename)
STRING (character-string-name) 1]

[data-specification] [PAGE]
[SKIP [(expression)l}
[LINE (expression) 1

General rules:

If neither the FILE (filename) option
nor the STRING (character string name)
appears, the standard system print
file SYSPRINT is assumed.

The "filename" refers to a file that
has been associated, by opening, with
the data set that is to receive the
values. It must be a STREAM OUTPUT
file.

The "character-string name" refers to
the character string variable or
pseudo-variable that is to receive the
values. Each PUT operation using this
option always begins at the beginning
of the specified string.

After appropriate conversion, as
for a non-PRINT file, the data speci-
fied by the data list is assigned to
the string starting at the left-most
character. Blanks and delimiters are
inserted as wusual. If the string is
not long enough to accommodate the
data, the ERROR condition is raised.

The options may appear in any order.
The three options PAGE, SKIP, and LINE
may be given only for PRINT files, and
they take effect before transmission
of any values defined by the data
specification, if given. Of the
three, only PAGE and LINE may appear
together in a PUT statement, in which
case, the PAGE option is applied
first.

The PAGE option causes a new current

page to be defined within the data
set. If a data specification is pre-

Chapter 8: Statements 125

1.

126

sent, the transmission of values
occurs after the definition of the new
page. The page remains current until
the execution of a PUT statement with
the PAGE option, until a PAGE format
item is encountered, or until an END-
PAGE interrupt results in the
definition of a new page. A new
current page implies line one.

The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is con-
verted to an integer w. If w is
greater than zero, w-1 blank lines are
created, and the wth line, relative to
the current 1line, becomes the new
current line. If w 1is not greater
than =zero, the effect is that of a
carriage return with the same current
line; characters previously written
may be overprinted. If the expression
is not present, SKIP (1) is implied.
If 1less than w lines remain on the
current page as determined by the
PAGESIZE option of the OPEN statement,
the ENDPAGE condition is raised.

The LINE option causes a new current
line to be defined for the data set.
The expression is converted to an
integer w. The LINE option specifies
that blank lines are to be inserted so
that the next 1line will be the wth
line of the current page. If at least
w lines have already been written on
the current page or if w exceeds the
limits set by the PAGESIZE option of
the OPEN statement, the ENDPAGE condi-
tion 1is raised. If w is less than or
equal to zero, it is assumed to be 1.

If the FILE(filename) option refers to
an unopened file, the file is opened
automatically for output. The effect
is as if the ©PUT statement were
preceded immediately by an OPEN state-
ment referring to the file.

Examples:

PUT DATA (A,B,C);

Specifies the data-directed transmis-
sion of the values A, B and C to the
file SYSPRINT.

PUT FILE (A(10))
PAGE;

(LIST) EDIT (X,Y,Z)

Specifies that a new page is to be

defined for the print file LIST. The
values of X, Y and 2Z are placed
starting in the first printing posi-
tion of the new page. Each of the

values will use the A(10) format item.

The READ Statement

Function:

The READ statement transfers a record

from a RECORD INPUT or RECORD UPDATE file

to

a variable in internal storage.
General format:

READ option-list ;
the format of

Following is "option

list"™:

FILE (filename)
INTO (variable)
SET(pointer-variable)

IGNORE (expression)

[KEY (expression)]

[KEYTO
(character-string-variable)]
[EVENT (event-variable)]
[NOLOCK]

General rules:
options may appear in any order.

The FILE(filename) option specifies
the file from which the record is to
be read. This option must appear. If
the file specified has not been
opened, it is opened automatically.
The effect is as if the READ statement
were preceded by an OPEN statement
referring to the file.

The INTO(variable) option specifies an
unsubscripted 1level 1 variable in
internal storage into which the record
is to be read. The variable cannot
contain VARYING character strings.

The KEY(expression) option must appear
if the file is DIRECT. The expression
is converted to a character string
that determines which record is read.
The REYTO(character-string-variable)
option may be given only if the file
is SEQUENTIAL and keyed. It specifies
that the key of the record is to be
copied onto the string variable.
KEYTO and KEY may not appear in the
same READ statement.

The EVENT (event-variable) option
allows processing to continue while
the record is being read or ignored.
It may not be specified for SEQUENTIAL
BUFFERED files. If the EVENT (event
variable) option 1is given, the event
variable will be given the value '0'B
until the execution is complete, when
it will be given the value '1'B.

10.

Any READ statement referring to an
EXCLUSIVE file will cause the record
to be locked unless the NOLOCK option
is specified. A locked record cannot
be read, deleted, or rewritten by any
other task until it is unlocked. Any
attempt to read, delete, rewrite, or
unlock a record locked by another task
results in a wait. Subsequent uniock-
ing can be accomplished by the locking
task through the execution of an
UNLOCK, READ NOLOCK, REWRITE, or
DELETE statement that specifies the
same key, by a CLOSE statement, or by

completion of the task in which the
record was locked.
Note that a record is considered

locked only for tasks other than the
task that actually locks it; in other
words, a locked record can always be
read by the task that locked it and
still remain locked as far as other
tasks are concerned (unless, of
course, the record has been explicitly
unlocked by one of the above methods).

The SET option specifies that the
record is placed in a buffer, and a
pointer variable is assigned its iden-
tification such that a based wvariable
may be subsequently referred to via
that pointer value. The pointer value
is valid until the next READ or until
the file is closed.

The IGNORE option may be specified for
SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files. The expression in the IGNORE
option is evaluated and converted to
an integer. If the value, n, 1is
greater than =zero, n records are
ignored; a subsequent READ statement
for the file will access the (n+l)th
record. A READ statement without an
INTO, SET, or IGNORE option is equi-
valent to a READ with an IGNORE(1).

A keyed file being accessed sequen-
tially may be positioned by issuing a
READ statement with the KEY option.

The specified key will be wused to
identify the record required.
Thereafter, records may be read
sequentially from that point by use of
READ statements without the KEY
option. This applies to INPUT and

UPDATE files.

For BUFFERED SEQUENTIAL files, two
positioning statements can be used,
with the following formats:

READ FILE (filename)
INTO (variable)
KEY {expression);

1.

READ FILE (filename)
SET (pointer-variable)
KEY (expression);

For UNBUFFERED SEQUENTIAL files,
only the first form shown immediately
above can be wused, and it may be
specified with the EVENT option.

Examples:

READ FILE (ALPHA) SET (REC_IDENT);

The next record from the data set
associated with ALPHA is made availa-
ble and the pointer variable REC_IDENT
is set to identify the record in the
buffer.
READ FILE (VALUE)
(WORK) ;

(BETA) KEY INTO

The record identified by the key VALUE
is transmitted from the data set asso-
ciated with BETA into the variable
WORK.

The RETURN Statement

The RETURN statement terminates
tion

Function:

execu-

of the procedure that contains the

RETURN statement and returns control to the

invoking procedure.

It may also return a

value.

General format:

Option 1.

RETURN;

Option 2.

1.

RETURN (expression);

General rules:

Only the RETURN statement
can be used to terminate
not invoked as function procedures;
control is returned to the point logi-
cally following the invocation.

in Option 1
procedures

Option 1 represents the only form
of the RETURN statement that may be
used to terminate a procedure invoked

with the task option. If the task
invocation involved an EVENT option
(see "The CALL Statement," in this
Chapter), then the execution of the

RETURN statement will cause the com-
pletion status of the associated event
name to be set to '1'B.

Chapter 8: Statements 127

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure only. Control
is returned to the point of invoca-
tion, and the value returned to the
function reference is the value of the
expression specified.

If the entry point at which the
procedure 1is 1invoked specifies data
attributes, the value of the expres-
sion 1is converted to the implicit or
explicit data attributes specified at

the entry point, before it is
returned.
3. If control reaches an END statement

corresponding to the end of a proce-
dure, this END statement is treated as
a RETURN statement (of the Option 1
form) for the procedure.

Example:

A: PROCEDURE (X,Y) FIXED;
DECLARE (X,Y) FLOAT;

RETURN (X**2+Y*%2);
END;
B: PROCEDURE;
DECLARE A ENTRY RETURNS (FIXED);
R = A(P,Q);
END;

In the assignment statement (R=
A(P,Q);), procedure B invokes procedure A
as a function. Procedure B specifies that
the scalar expression in the RETURN state-

ment is to be evaluated; since X and Y are
floating-point variables and the PROCEDURE
statement specifies that the value returned
is to be fixed point, the wvalue of the
expression is converted to fixed point, and
this value is returned to B.

The REVERT Statement

Function:

A REVERT statement
ON-condition is used to nullify the

specifying a given
effect

of the most recent previously executed ON
statement for that condition in the con-
taining block and to cause the action

specification to be reestablished as it was
in the immediate, dynamically encompassing
block (see "Activation and Termination of
Blocks," in Chapter 6).

128

General format:
REVERT condition;
Syntax rule:
any ON-condition

The "condition" is
(see Appendix 3).

General rules:

The execution of a given REVERT state-
ment, specifying a given condition and
internal to a given block, has the
effect described above only if an ON
statement, specifying the same condi-
tion and internal to the same block,
was executed after the block was acti-
vated. If such an ON statement was
executed, and if the execution of no
other similar REVERT statement has
intervened, then the execution of the
given REVERT statement does have the
effect described above. Otherwise,
the REVERT statement is effectively
treated as a null statement. Thus, a
repeated REVERT statement results in
no operation.

A: PROCEDURE;

ON1: ON ZERODIVIDE GO TO ERRSPEC;

ON ZERODIVIDE;

REVERT ZERODIVIDE;

END B;

ON ZERODIVIDE SYSTEM;

ON3:
END A;
Unless it is stated otherwise, the con-

dition ZERODIVIDE always is enabled. 1If
division by zero occurs prior to execution

of statement ON1, an interrupt with stand-
ard system action takes place.

If division by zero occurs after execu-
tion of ON1 and prior to execution of
statement ON2, an interrupt takes place and
control transfers to the statement GO TO
ERRSPEC.

If division by zero occurs after execu-
tion of ON2 and prior to the REVERT state-
ment, an interrupt takes place effectively

- . —-— -~ P
with Nno actiohi.

When the REVERT statement is executed,
the effect of the statement ON2 is nulli-
fied, and statement ON1 again becomes
effective. If division by =zero occurs
after execution of the REVERT statement and
prior to the execution of statement ON3, an
interrupt takes place, and control trans-
fers to the statement GO TO ERRSPEC.

statement ON3,
standard system

After the execution of
division by zero causes
action to take place.

The REWRITE Statement

Function:

The REWRITE statement refers to an
UPDATE file. The purpose of the statement
is to replace an existing record in the
data set.

General format:

Following is the format of

list":

"option

FILE(filename) [KEY(expression)]
[FROM(variable)]
[EVENT (event-variable)l

General rules:
1. The options may appear in any order.
2. The FILE(filename)

the file involved.

If the file is not open, it is
automatically.

option specifies
It must appear.
opened

3. The KEY(expression) option must appear
if the file is a DIRECT UPDATE file
and it cannot appear otherwise. The
expression is converted to a character
string and determines which record is
written.

4. The FROM(variable) option may be given
to specify an unsubscripted 1level 1

variable which is to be used as the
source for the record. The variable
cannot contain VARYING character
strings.

5. The EVENT (event-variable) option
allows processing to continue while
the record is being written. It may

not be specified for SEQUENTIAL BUF-
FERED files. If +the EVENT (event
variable) option is given, the event
variable will be given the value *0'B
untii the execution is complete, when
it will be given the value'1'B.

6. If the record rewritten is one that
was locked 1in the same task, it

becomes unlocked.

7. The FROM(variable) option must be
specified for a DIRECT UPDATE or
SEQUENTIAL UNBUFFERED UPDATE file.

8. If +the last record was read by a READ

statement with the INTO option, REW-
RITE without a FROM option has no
effect on the record in the data set;

but if the last record was read by a
READ statement with the SET option,
the record will be updated by whatever
assignments were made.

Example:
REWRITE FILE (ALPHA);
The last record read from the data set

associated with file ALPHA is rewrit-
ten into the data set.

The SIGNAL Statement

Function:

The SIGNAL statement simulates the
occurrence of an interrupt (see "Interrupt
Operations,"™ in Chapter 6, and "The ON
Statement"). It may be used to test the
action specification of the current ON

statement.
General format:
SIGNAL condition;
Syntax rule:
The condition may be any one of those
described in "ON-Conditions, " in
Appendix 3.

General rules:

SIGNAL statement is executed,
specified condition

l. When a
it is as if the

Chapter 8: Statements 129

1.

130

had actually occurred.
of control through the program is
interrupted, and control is trans-
ferred to the current ON-unit for the
specified condition. After execution
of the ON-unit, control normally
returns to the statement immediately

following the SIGNAL statement.

The sequence

If an ON statement specifies the CON-
DITION condition, the condition can
cause an interrupt only if a SIGNAL
statement, specifying this condition,
is given.

If the condition specified in the
SIGNAL statement is disabled, no
interrupt occurs, and the statement is
equivalent to a null statement.

If the condition has no current ON-
unit, then the normal system action
for the condition is performed.

Examples:

X: PROCEDURE;
ON1: ON ENDFILE (DATIN) Y,Z = 0;

S1: SIGNAL ENDFILE (DATIN);
ON2: ON ENDFILE (DATIN) SYSTEM;

S2: SIGNAL ENDFILE (DATIN);

END X;

The S1 statement causes an
interrupt in the same way as if an
attempt to read past a file delimiter
had actually occurred. Control is
transferred to the statement ¥,Z2 = 0
in the ON1 statement.

When the S2 statement causes an
interrupt, control is transferred to
the ON2 statement, and standard system
action is taken.

ON CONDITION (TAX) TAXCT = TAXCT+1;
SIGNAL CONDITION (TAX);

The ON statement establishes an

action for the programmer-specified

condition TAX. This condition can
occur only when a SIGNAL statement
causes the condition to occur.

The_ STOP_Statement

Function:

The STOP statement causes immediate ter-
mination of the major task and all sub-
tasks (see "Asynchronous Operations and
Tasks,™ in Chapter 6).

General format:

STOP;

The UNLCCK Statement

Function:

The UNLOCK statement makes the specified

locked record available for operations on
+ha a
-

e ~-Yolox o
i1 L TUULUe

General format:

UNLOCK option-list;

Following is the format of “"option
list":
FILE(filename) KEY (expression)
General rules:

1. The options may appear in either
order.

2. The FILE(filename) option specifies
the file involved, which rust have the
attributes UPDATE, DIRECT, and
EXCLUSIVE. If the file is not open,
it is opened automatically. The

FILE(filename) cption must appear.

3. In the KEY(expression) option, the
"expression" is converted to a charac-
ter string and determines which record
is unlocked. This option must appear.

4. A record can be unlocked only by the
task which locked it.

The WAIT Statement

Function:

The WAIT statement suspends operations
in the task where it appears until certain
events have been ccrpleted.

PI

General format:

WAIT (event-name [,event-namel...)
[(scalar-expression})];

Syntax rule:

R -

The event name is as described in
*Event i

N de - ~ P
vaca 411 \.uay Lo =0
General rules:

The execution of this statement causes
the task in which it is executed to be
suspended until, for some or all of
the event names in the list above, the
condition

EVENT (event-name) = '1'B
is satisfied. (see "Asynchronous
Operations and Tasks," in Chapter 6,
"Event Data" in Chapter 2,

"pseudo-Variables," in this chapter .
and the description of the EVENT
built-in function in Appendix 1.)

If the optional expression does not
appear, all the event names in the
list must satisfy the above condition
before the task issuing the WAIT
statement can resume.

If the optional expression appears,
the expression is evaluated when the
WAIT statement is executed and con-
verted to an integer. This integer
specifies the number of events that
must satisfy the above condition
before the task 1issuing the WAIT
statement can resume. If the value of
the expression is zero or negative,
the WAIT statement is treated as a
null statement. If the value of the
expression is greater than the number,
n, of event names in the list, the
value is taken to be n. If the
statement refers to an array event
name, then each of the array elements
contributes to the count.

Example:

: PROCEDURE;

CALL P2 EVENT(EP2);

WAIT(EP2);

END;

The CALIL. statement, when executed,

attaches a task whose completion sta-
tus 1is associated with the event name
EP2. When the WAIT statement is
encountered, the execution of the task
is suspended until the value of
EVENT(EP2) is '1'B, i.e., until the
attached task is completed.

The WRITE Statement

Function:

The WRITE statement transfers a record

from a variable in internal storage toc a
RECORD OUTPUT or DIRECT RECORD UPDATE file.

General format:

WRITE option-list ;

Following is the format of "option

list":

FILE(filename) FROM(variable)
[KEYFROM (expression)]
[EVENT (event-variable)]

General rules:

The options may appear in any order.

The FILE(filename) option, which must
arpear, specifies the file in which
the record is to be written. If the
file is not open, it is opened auto-
matically.

The FROM(variable) option specifies an
unsubscripted 1level 1 variable which
is to be written. It mrust appear.
The variable cannot contain VARYING
character strings.

The KEYFROM(expression) option is con-
verted to a character string and
attached to the record as a key.

The EVENT (event variable) option
allows processing to continue while
the record is being written. It may
not be specified for SECQUENTIAL BUF-
FERED files. If the EVENT (event
variable) option is given, the event
variable will ke given the value '0'B
until the execution is corrlete, when
it will be given the value *1"B.

Example:

WRITE FILE(BETA) FRCM (UPDATE)
KEYFROM(UKEY) ;

Specifies that the record UPDATE is
written as the next record in the data
set associated with £file BETA. The
key identifying the record in the data
set is taken from UKEY.

Chapter 8: Statements 131

CHAPTER 9: COMPILE-TIME FACILITIES

INTRODUCTICON

Compile-time 1is generally defined as
that time during which a user's source
program is compiled, or translated, into an
executable object rprogram. Ordinarily,
changes to a source program may not be made
at this time.

However, with PL/I, the programmer is
allowed to exercise some control over his
source program at compile-time. This is
made possible through a somewhat different
approach to compile-time processing.
Compile~-time as defined in PL/I is a two-
stage process:

1. The Processor Stage -- During this
stage, the.processor scans the user's
input for compile-time statements,
i.e., statements that instruct the
processor to modify the user's source
program. These statements are not

ccnsidered part of the scurce program,
appear

yet they in the input freely
intermixed with the statements that
constitute the source program. The
modified source program (the output
from this first stage) then serves as
the input to the second stage. Note
that if no modification is performed,
input to the second stage 1is exactly
the same as the source program that

constituted the input to the first
stage.
2. The Compilation Stage -- During this

stage, the compiler takes the output
from the first stage and compiles it
into an executable object program.

This chapter is primarily concerned with
the first stage; very little, if anything,
will be said about the actual compilation
of a program. Through the means described
in this chapter, the processor can be used
to perform many functions; among them are
the following: :

1. Modification of a source program for
the purpose of changing variable names
or for notational convenience.

2. Conditional compilation of sections of
the source program. In other words,
the user can dictate which sections of
his program are tc be compiled.

3. Incorporation of strings of text into
the source program, where the strings
of text reside in a user or system
library.

132

THE PROCESSOR

PROCESSOR INPUT AND OUTPUT

The processor interprets compile-time
statements and acts upon the source program
accordingly. Input to the processor
consists of a character string, called the
source_text, which contains compile-time
statements and scurce program text, freely
intermixed. Compile-time statements are
identified by a leading percent sign (%)
and are executed upon being encountered by
the processor (with the exception of
compile-time procedures, which must be
invoked in order to be executed). One or
more blanks may separate the percent sign
from the statement.

The processor also checks the source
program text, but only to insure that there
are no unmatched comment oxr character-
string delimiters. A percent symbocl
appearing within a comment or a character
string is considered solely as part of the

comment or string, respectively.

Output from the processor consists of a
newly created character string, called the
program _text, which contains the modified
source program text, and which serves as
input to the corpiler. This new text has
been modified by the processor according to
the compile-time statements encountered in
the source text.

THE PROCESSOR SCAN

The processor begins to scan the charac-
ters of the source text in a sequential
manner. If the socurce text does not con-
tain a compile-time statement, the proc-
essor places the scanned characters into
the program text in the same order and form
in which they were encountered. In other
words, if there are no compile-time state-
ments, the prograr text is identical to the
source text.

When a compile-time statement is encoun-
tered during the scan, it is executed.
This execution may <cause the sequential
scanning and placing of characters to be
modified in either of the following ways:

1. The executed
may cause the

compile-time statement
processor to continue

the scan from a different point in the
source text.

2. The executed compile-time statement
may specify to the processor that upon
the subsequent encounter of a speci-
fied identifier within the source pro-
gram, that identifier itself is not to
be inserted into the program text
being generated; rather, the currently
assigned value of the identifier (that
is, the value assigned by a compile-
+time statement executed prior to
encounter) 1is to be placed into the
program text (unless this value or
part of it, in turn, can be replaced
-- see "Rescanning and Replacement"”
below). Note that compile-time
statements themselves are never
inserted in the program text; rather,
a blank is inserted in place of such
compile-time statements. :

The processor scan is terminated when an
attempt is made to scan beyond the last
character in the source text. The result-
ing program text is a string representing
the PL/I program to be compiled.

Rescanning and Replacement

When an activated variable or an acti-
vated procedure name is encountered in the
source text (see "The DECLARE Statement”
and "The ACTIVATE and DEACTIVATE
Statements™ for details about activating),
its value becomes a candidate for replace-
ment. This wvalue is then rescanned to
determine whether or not it, or any part of
it, can be replaced by another value. If
it cannot be replaced, it is inserted into
the program text; if it is replaced, the
new value, in turn, is rescanned, etc.
Thus, insertion of a value into program
text takes place only after all possible
replacements have been made.

Example:

If +the source text contained the following
statements:

DECLARE A CHARACTER, B FIXED;
A= "'B+C';
B = 2;

>4 2R R 29

then the following would be
the program text:

generated in

X= 2+ C;
In the above example, the first state-
ment is a compile-time DECLARE statement
that establishes A and B as compile-time

variables with the indicated attributes,
and also serves to activate these varia-
bles. The second statement is a compile-
time assignment statement that assigns the
character string 'B + C' to A. The third
statement is also a compile-time assignment
statement, and assigns the value 2 to B.
The fourth statement is a source program
statement which assigns A to X. However,
since A has been activated for replacewent
and has been assigned a value, namely, the
string 'B + C', the value of A is rescanned

ossi further replacement action.
This rescanning causes B to be replaced by
the value 2. However, since 2 is not a
compile-time variakle, it cannot be
replaced, and the chain of replacements
comes to an end. Thus, the socurce program
statement X = A; kecomes the program text
statement X = 2 + C ; (note that a blank
is appended to each end of the replacement
value when it is written into the program
text).

Compile-time variables, compile-time
procedure references, constants, and opera-
tors can be included in the value to be
assigned to a compile~time variable;
compile-time statements cannot be included
in such a value. Note, however, that if
the user desires tc generate operators such
as 7= and /* into the program text, they
must be generated as a complete entity.
That is, one cannct, for example, have a /A
in the source program and expect a % A =
**' statement to generate the comment deli-
miter /% 1in the program text. The reason
why this cannot ke done is +that all
replacement values are placed into the
program text with one blank appended to
each end. Thus, the hypothetical case
above would result in /b*b (where each b
represents a blank) keing generated in the
program text.

Example: Compile-Time Loop Expansion

A programmer may wish, at object-time,
to execute the following loop:

DO I =1 TO 10;
Z(I) = X(I) + Y(I);
END;

The following program would accomplish
the same thing, but without the execution-
time requirerents of incrementing and
testing:

% DECLARE I FIXED;

% I=1;

% LAB:;

Z(I) = X(I) + ¥Y(I);
% I =1+ 1;

% IF I<= 10 % THEN % GO TC L1AB;
% DEACTIVATE I;

Chapter 9: Compile-Time Facilities 133

effect of each of these
detailed in the section
Statements, Groups, and

The precise
statements is
"Compile-Time
Procedures."

Briefly, the ¥ prefixed to a statement
indicates that the action specified by that
statement is to be carried out at the time
that it 1is encountered by the processor.
The statement % I=1 assigns the value 1 to
the compile-time variable I and specifies
that, unless the programmer indicates
ctherwise (note the later appearance of the
% DEACTIVATE statement), subsequent occur-
rences of the identifier I in the source
program will result in its replacement in
the program text by the string *1'. The %
LAB: statement is a compile-time null
statement that is used as the transfer
target for the % GO TOC statement that
appears later.

The string 'Z(I) = X(I) + Y(I);' is a
source program statement. Initially, the
variable I was given the value 1; there-

fore, the first +time that this string is
scanned, the string '2(1) =X(1) +
Y(1);'" will be inserted into the program
text by the processor. I is then incre-
mented by 1 (% I = I+1;), after which the
compile-time IF statement instructs the
processor to test the value of I. If I is
not greater than 10, the scan is to resume
at the compile-time statement labeled LAB;

otherwise, the scan is to continue with the
text immediately following the % GO TO
statement.

The % DEACTIVATE statement is interpret-
ed as follows: subsequent occurrences of
the variable I in the source program are
not to be replaced by the string '11' in
the program text being formed (note that I
has the value 11 at the time the % DEACTI-
VATE statement 1is encountered); instead
each I will be left unmodified.

As a result of the above compile-time
activity, the following PL/I statements are
generated into the program text:

1 =
ZC2) =X(2) +¥(2);

2010) = X(10) + ¥(10);

The foregoing statements are the state-
ments that will actually be compiled into
executable object code.

134

COMPILE-TIME STATEMENTS, GROUPS, AND
PROCEDURES

Note that wherever keywords are shown
below, they may be abbreviated as shown in
Appendix 4. Also, a cormrent appearing
within a compile-time statement is never

written into the program text.

THE DECLARE STATEMENT

Function:

The DECLARE statement estaklishes an
identifier as a compile-time variable or a
compile-time procedure name. The appear-
ance of an identifier 1in a compile-time
DECLARE statement activates that identifi-
er; that is, it indicates to the processor
that this identifier may cause replacement
action in the source program (see "The
ACTIVATE and DEACTIVATE Statements" for
more details). An identifier may cause
such action if and only if it has first
appeared 1in a compile-time DECLARE state-
ment; that is, any use of such an identifi-
er before its appearance in a compile-time
DECLARE statement is an error.

General format:

% [label:)... DECLARE identifier{CHARACTER|
FIXED|ENTRY [([CHARACTER|FIXED]
[, [(CHARACTER|FIXED]]l...)]
RETURNS ({CHARACTER | FIXED})}
[,identifier {CHARACTER|FIXED)|
ENTRY [([CHARACTER | FIXED]}
[, [CHARACTER|FIXED]]...)]
RETURNS ({CHARACTER|FIXED})}]1...;

Syntax rules:

1. Commas must separate declarations of
separate identifiers within a single
%DECLARE statement.

2. The

syntax 1is the same as the syntax

for declaring source program PL/I
variables and entry names, but only
the CHARACTER (with no length

specification), FIXED, ENTRY, and
RETURNS attrikutes are allowed.

3. The attributes may be factored.
General rules:

1. No length may be specified with the
CHARACTER attribute. If CHARACTER is
specified, it 1is assumed that the
associated identifier represents a
varying character string that has no
maximum length.

2.

A compile-time declaration is not
known until it has been scanned by the
processor. Any reference to a
compile-time variable or compile-time
procedure name encountered before the
variable or procedure name has been
declared is in error.

The scope of all compile-time varia-
bles, compile-time procedure names,
and 1labels of compile-time statements

is the entire text scanned
processor, not including any compile-
time procedures that redeclare a
compile-time identifier. The scope of
a declaration in a compile-time proce-
dure is limited to that procedure.

her +ho
oy TiiT

If a compile-time procedure is
referred to in the source program,
then a compile-time ENTRY declaration
must have been given for it. If such
an ENTRY does not account for any
parameters, it 1is assumed that the
compile-time procedure has none. 1If,
however, parameters are accounted for
in the ENTRY declaration, the proc-
essor will expect to find a parenthe-
sized 1list of arguments, separated by
commas, in the procedure reference.

Note that each source program argu-
ment to a compile-time procedure is
interpreted as a character string, and
may not contain commas or right paren-
theses; the first right parenthesis
encountered in such an argument 1list
terminates the list. All left paren-
theses, except the first, are consid-
ered as part of the argument list.
For example, the argument list
(A(B,C)) would be interpreted as two
arguments, namely, A(B and C. (Note
also that these interpretations apply
only to source program references to
compile-time procedures; a compile-
time reference to a comrpile-time
procedure 1is interpreted in the usual
fashion.)

When the source program invokes a
compile~-time procedure, each argument
is scanned for possible replacement
values. The actual invocation occurs
after all replacement activity, if
any, has been performed.

All arguments in a compile-time
procedure reference are converted to
the type indicated by the correspond-
ing attribute in the ENTRY declaration
for that procedure. If an argument
does not have a corresponding attri-
bute in the ENTRY declaration, the
argument will not be converted. (For
an illustration of a source program
reference to a compile-time procedure,

see the example at the end of the
section "The Conpile-Time Procedure.™)

5. The value returned to the source pro-
gram by a compile-time procedure is
also scanned for replacement values.
The type of the value returned must be
the same as the type specified in the
RETURNS attribute declaration for that
procedure.

THE ASSIGNMENT STATEMENT

Function:

The compile-tire assignment statement is
used to evaluate compile-time expressions
and to assign the result to a compile-time
variable.

General format:

% [lakel:1l ... compile-time-variable =
compile-time-expression;

Syntax rules:

1. The operands of a compile-time expres-
siocn may be crticnally signed decimal
integer constants, bit string con-
stants, character-string constants,
compile-time wvariabkles, compile-time
procedure references,or references to
the SUBSTR built-in function (with the
restriction that the first argument
must be a compile-timre character-
string wvariable or character-string
constant). No other data types or
built-in functions are allowed.

2. All PL/I operators, except
exponentiation (*#*), are allowed in
compile-time expressions.

General rules:

1. Compile-time expressions are evaluated
according to the same rules as source
program PL/I expressions, with a sin-
gle exception: for arithmetic opera-
tors, only decimal integer arithmetic
of precisicn (N,0) is performed; that
is, each orerand of an arithmetic
operation 1is considered to have a
precision of (N,0) kefore the opera-
tion 1is perfcrmed, and the result of
the operation will also have a preci-
sion of (N,0). Thus, the result of
the assignment statement kelow is N +
2 klanks and ocne zero.

% DECLARE A CHARACTER;

% A = 3/5;

Chapter 9: Compile-Time Facilities 135

When required, as in the case
above, conversions from fixed point to
character string, and vice versa, are
carried out according to the rules
followed for such conversions in PL/I
source progranms.

2. When the value assigned to a compile-
time wvariable is a character string,
said character string should not
contain a compile-time statement nor
should it contain unmatched comment or
character-string delimiters. The rea-
son for this is that such values
cannot be rescanned and will therefore
be considered in error when, and if, a
rescan is attempted.

THE ACTIVATE AND DEACTIVATE STATEMENTS

Function:

The appearance of an identifier in an
ACTIVATE statement makes it eligible for
replacement when certain conditions are met
(see General Rules below); such an appear-
ance is said +to activate an identifier.
The DEACTIVATE statement deactivates an
identifier; that is, any subsequent appear-
ance of such an identifier in the source
program causes no replacement action
(unless, of course, the identifier is again
activated); the identifier remains
unchanged.

General format:

% [{label:1 ... {ACTIVATE |DEACTIVATE} iden-
tifier [,identifier]

.
aew

General rules:

1. Both compile-time variables and
compile-time procedure references may
be activated or deactivated.

2. When an identifier is deactivated, its
appearance in the source program does
not cause any replacement action; the
identifier is placed unchanged into
the program text. However, any value
that the identifier may have had
before it was deactivated remains in
effect as far as compile-time state-
ments are concerned; deactivating an
identifier only nullifies its ability
to effect replacement.

3. When an identifier is activated, the
following conditions must be met in
order for replacement to occur:

a. The identifier must not appear
within a comment or a character
string.

136

DECLARE

b. The identifier must ke immediately
preceded and followed by a PL/I
delimiter; i.e., it rust appear in
the context of a PL/I identifier.

If both conditions are met, the
replacement value for the ccompile-time
variable or procedure reference is
converted to0 a character string and
then placed into the program text
(assuming that +the rescan does not
cause any further replacement). The
surrounding quctes are not inserted;
blanks are inserted immediately
preceding and fcllowing the value.

Note: The appearance of an identifier in a

statement serves to activate that
identifier initially. Therefore, an iden-
tifier need be activated by an ACTIVATE
statement only if it has been explicitly

deactivated.
Example:

If the source text contains the fol-
lowing statements:

% DECLARE I FIXED, T CHARACTER;
% DEACTIVATE I;

% I = 15;
% T = 'a(1)*;
S = I*T#*3;

% I =1+ 5;

% ACTIVATE I;

% DEACTIVATE T;
R = I*T*2;

then the program text generated by the
akcve would ke:

S
R

I* A(I) *3;
20 *T*2;

THE GC TO STATEMENT

Function:

causes
its scan at the

The compile-time GO TO statement
the processor tc resume
specified label.

General format:
% [label:] ... {GO TO|GOTO} lakel;
General rule:
The label that determines the point at

which the scan will resume wust be the
label cof a compile-time statewent.

THE NULL STATEMENT

Function:
The compile-time null statement is used
to insert compile-time 1labels into the

text; these labels are transfer targets for
compile-time GO TO statements.

General format:

% (label:] ...;

THE IF STATEMENT

Function:

The compile-time IF statement controls
the flow of the processor's scan according
to the value of a compile-time expression.

General format:

% [label:] ... IF compile-time-expression
% THEN compile-time-group-1
[% ELSE compile-time-group-2]

Syntax rule:

A compile-time group is any single exe-
cutable compile-time statement or a
compile-time DO group (see below).

General rule:

The compile-time expression is evaluated
and converted to a bit string. (If the
conversion cannot be made, it is an error.)
If any bit in the string has the value 1,
compile-time group-1 is executed and
group-2, if present, is skipped. Other-
wise, group-1 1is skipped and group-2, if
present, is executed. In either case, the
scan resumes immediately following the IF
statement, unless, of course, a compile-
time GO TO statement in one of the groups
has caused the processor to resume its scan
elsewhere.

THE DO GROUP

General format:

% [label:1 ...

DO[i = ml TO m2 [BY m31]1;

% [(label:} ... END {[labell;

Syntax rule:

The i represents a compile-time
variable, and ml, m2, and r3 are compile-
time expressions.

General rules:

1. 7Transfer may not be made into an
iterative DC group except via a return
from a compile-time procedure invoked
from within the groug.

2. The text of a DC group way consist of
both compile-time statements and
source program statements. The exam-
ple called "Compile-Time Loop
Expansion®™ in the section "Rescanning
and Replacement" can be expressed sim-
ply as follows:

% DECLARE I FIXED;
% DO I = 1 TC 10;
Z(I) = X(I) + Y(I);
% END;
% DEACTIVATE I;
3. The semantics are the same as for
source progranm DO groups.

THE INCLUDE STATEMENT

Function:

The INCLUDE statement is used to incor-
porate strings of external text into the
program text being fcrmed.

%[label:] ... INCLUDE

identifier-1 [(identifier-2)]

[identifier-11 (identifier-2)

identifier-3 [(identifier-4)]

'[[identifier-n (identifier-u)]

General rules:

1. Each pair of identifiers is used in an
implementation-defined manner to iden-
tify a data set. This data set may

contain source program text and/or
compile-time statements.

2. The incorporated data sets are
scanned, in sequence, in the same
manner as the source text, i.e.,

replacements are made and compile-time
statements are executed. Thus, they
may contribute to the final program

text.

Chapter 9: Corpile-Time Facilities 137

3. A transfer of control from included
text to a statement in the containing
text is valid, but the reverse is in
error. (Note that "transfer of
control" should be taken in the sense
of a GO TO statement only; a "transfer
of control"™ in the sense of invoking a
compile-time procedure is always per-
missible.) An analogous situation
occurs with nested DO loops; an inner
loop can transfer control to an outer
containing loop but not vice versa.

Examples:

1. Assume that the data set named PAYRL
contains the following structure dec-
laration:

DECLARE 1 PAYROLL,
2 NAME,
3 LAST CHARACTER (30) VARYING,
3 FIRST CHARACTER (15) VARYING,
3 MIDDLE CHARACTER (3) VARYING,
2 MAN_NO FIXED DECIMAL (6,0),
2 HOURS,
3 REGLR FIXED DECIMAL (8,2),
3 OVRTIM FIXED DECIMAL (8,2),
2 RATE,
3 REGLAR FIXED DECIMAL (8,2),
3 OVERTIME FIXED DECIMAL (8,2);

then the following compile-time program

DECLARE PAYROLL CHARACTER;
PAYROLL = *CUM_PAY';
INCLUDE PAYRL;

DEACTIVATE PAYROLL;
INCLUDE PAYRL;

2% 29 22] R

would generate two identical structure des-

criptions in the program text, tlie only
difference being their names, CUM_PAY and
PAYROLL.

2. If the source text contained the fol-
lowing:

% DECLARE(FILENAME1, FILENAME2)
CHARACTER;
% FILENAME1l = "MASTER';
% FILENAME2 = 'NEWFILE';
% INCLUDE DECLARATIONS;

and if the data set named DECLARATIONS
contained

DECLARE
FILENAMEl1 FILE RECORD INPUT
DIRECT KEYED(5),
FILENAME2 FILE RECORD OUTPUT
DIRECT XEYED(5):;
then the program text would contain
the following statement:

DECLARE

MASTER FILE RECORD INPUT DIRECT

138

KEYED(5),
NEWFILE FILE RECORD OUTPUT DIRECT
KEYED(5) ;
Note that in this way a central
library of file declarations can be

used, with each user supplying his own
names for the files being declared.

THE COMPILE-TIME PROCEDURE

A compile-time procedure is an internal
procedure that can ke executed only at the
processor stage. Its syntax differs from
an ordinary PL/I internal procedure in that
its PROCEDURE and END statements must each
have a leading percent symbol.

General format:

%label: [label:]...PRCCEDURE[(identifier
{,identifierl...)]
{CHARACTER | FIXED} ;

[label:]...RETURN(expression) ;

% [label:]:.. END [lakell;

The foregoing format defines an internal
function procedure that may be used at
compile-time to corpute a compile-time
value. Each identifier is a parameter for
the procedure, and the CHARACTER or FIXED
attribute describes the value returned.

In addition to the RETURN statement
shown in the above format, the only state-
ments and groups that may be used within a
compile-time procedure are:

1. The null statement

2. The DECLARE statement

3. The assignment statement
4., The GO TO statement

5. The IF statement

6. The DO group

The syntax and meaning of these state-
ments and the DO grcup is exactly that
described earlier in this chapter, the only
exception being that the percent symkols
must be omitted.

A compile-time procedure can be invoked
by a function reference in a compile-time
statement, or, if the procedure has Lkeen
activated, by a reference to its name in
the source prograrm. A GO TO statement
appearing within a compile-time procedure
ray not transfer contrcl to a point outside
that procedure.

When the Compile-Time Processor encoun-
ters a compile-time procedure during normal
scanning, it notes the procedure and skips
to the text immediately following the % END
statement for the procedure.

The example that follows illustrates how
compile-time procedures can be used.
Example: Source Program Reference to a
Compile-Time Procedure

In the statements below, VALUE is a
compile-time procedure that returns a
value of the form argl(arg2), where

argl and arg2 represent the arguments
that are passed to the procedure.

The source text contains the follow-
ing:

% DECLARE A CHARACTER, VALUE ENTRY
(CHARACTER, FIXED) RETURNS
(CHARACTER) ;

DECLARE (z(10),Q) FIXED;

% A= "'2";
% VALUE: PROCEDURE (ARG1, ARG2) CHARACTER;
DECLARE ARG1 CHARACTER,
ARG2 FIXED;
RETURN (ARG1||'('||ARG2||")");
% END VALUE;
Q = 6 + VALUE (A,3);

The last statement invokes the proce-
dure VALUE. However, before the argu-
ments are passed, A is replaced by its
value, Z, and the character string 3

is converted to FIXED. Thus, the
value returned by VALUE is the string
Z(3). This value is then inserted
into the program text in place of the
procedure reference. The program text
will therefore ke as follows:

DECLARE (Z(10),C) FIXED;
Q=6+ 2Z(3);

THE_COMPILE-TIME EUILT-IN FUNCTION SUBSTR

The built-in function SUBSTR is the only
built-in function that can be invoked at
compile-time. It can be invoked by a
reference to its name in either a source

program statement or a compile-time state-
ment.

A source program reference to SUBSTR
will be executed at compile-time only if

the name SUBSTR has keen explicitly acti-
vated by an ACTIVATE statement. For such a
reference, the arguments are treated in the
same way that arguments are treated in a
source program reference to a compile-time
procedure (see "The DECLARE Statement" in
this chapter).

A compile-time reference to SUBSTR will
be executed regardless of whether or not
SUBSTR has been activated (see "The Assign-
ment Statement®™ in this chapter £or addi-

tional information).

Chapter 9: Compile-Time Facilities 139

CHAPTER 10: SPECIAL TOPICS

RELATIONSHIP OF ARGUMENTS AND PARAMETERS

When a procedure is invoked, a relation-
ship 1is established between the arguments
of the invoking statement and the paramet-
ers of the invoked entry point.

A parameter may be a scalar, array, oOr
structure name (including a label variable
name, a task name, an array name, Or an
event name) that is unqualified and unsub-
scripted, or it may be a file parameter or
an entry parameter. Parameters must be
level 1 identifiers, i.e., they may not be
members of structures.

A file parameter may be wused within a
procedure wherever a file name may be used;
an entry parameter may be used wherever an
entry name may be used.

A reference within a procedure to a
parameter produces an undefined result if
the entry point at which the procedure is
invoked does not include that parameter in
its parameter list.

Parameters must be declared in the
invoked procedure; they cannot be declared
in outer containing blocks. If no explicit
declaration 1is given, an implicit or con-
textual declaration is assumed, internal to
the invoked procedure.

Parameters cannot be declared with the
storage class attributes STATIC, AUTOMATIC,
or CONTROLLED (pointer variable) with scope
attributes, or with the DEFINED attribute.

the CONTROLLED
In this case, the
have the
created

A parameter may have
storage class attribute.
associated argument must also
CONTROLLED attribute with no dummy
for that argument.

EVALUATION OF ARGUMENT SUBSCRIPTS

When an argument is a subscripted varia-
ble, the subscripts are evaluated before
invocation. The specified element is then
passed as the argument. Subsequent changes
in the subscript during the execution of
the invoked procedure have no effect wupon
the corresponding parameter.

140

USE OF DUMMY ARGUMENTS

A constructed durmy argument containing
the argument value is passed to a procedure
if the argument is one of the following:

a constant,

an entry name,

an expression involving operators,

an expression in parentheses, or

an expression whose data attributes
may disagree with the declared data
attributes of the parareter.

In all other cases the argument as it
appears is passed. The parameter becomes
identical with the passed argument; thus,
changes to a parareter will be reflected in
the original argument only if a dummy is
not passed.

USE OF THE ENTRY ATTRIBUTE

An ENTRY attribute may be specified for
the invoked entry name; this ENTRY attri-
bute appears in a DECLARE statement whose
scope includes the invoking block. If an
ENTRY attribute is not specified in the
invoking procedure fcr the invoked entry
name, the attributes of the arguments must
agree with those cf the corresponding par-
ameters of the invoked entry.

If an ENTRY attribute without parameter
attribute lists is srecified for an iden-
tifier, it indicates that the identifier is
an entry name. In this case also, the
argument and parameter attributes are
assumed to agree.

However, if an ENTRY attribute with
parameter attribute lists is specified for
the invoked entry name, then the attributes
of the parameter of the invoked entry are
assumed to be the same as those specified
for it in the ENTRY attribute specifi-
cation. If an argument has data attributes
that differ from the corresponding set of
attributes defined in the ENTRY attribute
specification (string lengths are consid-
ered to match only if they have the same
decimal integer constant as length), then a
dummy argument, with the value of the given
argument, 1is constructed by converting the
argument to the data attributes defined for
the corresponding parameter in the ENTRY
attribute specification. If conversion is
impossible, then the program is in error

(e.g., conversion of file name to bit).
The dummy argument is then passed to the
invoked entry. Dumny arguments have CON-

TROLLED storage class in the invoking pro-

cedure. They are allocated immediately
before invocation of +the procedure and
freed upon return, unless the invocation

has a task option, in which case they are
freed upon exit from the invoking block.

The asterisk notation may be used in the
ENTRY attribute to specify that for varying
length strings, or arrays of adjustabie
dimensions, the current argument bounds or
length are to be assumed for the parameter.

Example:

A: PROCEDURE;
DECLARE B ENTRY (FIXED, FLOAT),
(C,D) FLOAT;

CALL B(C,D);

END A;

B: PROCEDURE (P,Q);
DECLARE P FIXED, QO FLOAT;

~.

END B

The specification of the ENTRY attribute
in procedure A indicates that B has two
parameters, the first with attribute FIXED
and the second with attribute FLOAT. How-
ever, the arguments C and D both have the
FLOAT attribute. Since C is to be fixed-
point when it is passed to procedure B, a
dummy argument is constructed by converting
C from floating-point to fixed-point. This
dummy argument is then passed to B.

CORRESPONDENCE OF PARAMETERS AND ARGUMENTS

If a parameter of an invoked entry is a
scalar, the argument must be a scalar
expression. The data attributes of the
argument must agree with the corresponding
attributes of the parameter.

If a parameter of an invoked entry is an
array, the argument must be an array
expression. The argument may be a scalar
expression so long as an ENTRY attribute is
given for the invoked entry, specifying the
dimension attribute for the relevant param—
eter. Asterisks may not be given in the
dimension attribute if the argument is a
scalar. 1In this case, a dummy array argu-

ment will be constructed where the value of
each element of the array is the value of
the scalar expressicn. The data attributes
of the argument must agree with those of
the parameter. 1If the asterisk notation is
not wused to specify the dimensions of the
parameter in the invoked rprccedure, the
values of the bounds of the array argument
must agree with the values of the bounds
specified for the parameter in the invoked
procedure.

If a parameter 1is a st
argument must be a structure expression.
When a structure description is given for a

parameter in an ENTRY attribute specifi-
cation, a scalar exprression rmay be speci-
fied as the corresponding argument. A

dummy structure argument will then be con-
structed where the value of each element of
the structure is the value of the scalar
expression. The data attrikutes of the
elements of the structure argument must
match those of the associated parameter as
specified in the invoked procedure. The
relative structuring of the argument and
the parameter must be the same, although
the level numbers need not be identical.

If a parameter 1is a cell, the corres-
ponding argument must be a cell whose
relative structuring is the samwe as that of
the parameter, although the level numrbers
need not be identical.

If a parameter is a scalar-label wvaria-
ble, the argument must be a scalar-label
variable or constant. If a parameter is an
array-label variakle, the argument must be
an array-label wvariable. If an ENTRY
attribute is given for the invoked entry in
the invoking procedure, and if the
appropriate parameter attribute list speci-
fies that the parameter is a label array,
then the argument may also be a scalar-
label variable or constant; a dummy label
array argument will be suitably
constructed. A dummy argument is always
constructed when the argument is a 1label
constant.

If the argument is a statement label
constant, this statement label constant is
qualified by an identification of the cur-
rent invocation of the block containing the
label; this information is passed as a
dummy argument to the invoked entry.

If a parameter 1is an entry parameter,
the argument must be an entry name or entry
parameter. When a parameter is specified
as an entry parameter 1in the parameter
description of an ENTRY attribute and is
not given data attributes, no default data
attributes are assumed. If it is necessary
that the entry parameter have data attri-
butes, they may ke specified in the param-
eter description and a check will be made

Chapter 10: Special Topics i41

to insure
vided.

that a correct argument is pro-

If a parameter is a file parameter, the
argument must be a file name or file
parameter. It is not necessary for the
file parameter and argument attributes to
match, although on use of the file paramet-
er, the attributes of the argument must not
cause any conflict with the merged attri-
butes as specified in Chapter 7.

An argument passed to a parameter that
is a fixed-length string variable or an
array of fixed-length string elements must
be of fixed length if no dummy argument is
to be created. An argument passed to a
parameter that is a varying-length string
variable or an array of varying-length
string elements must be of varying 1length
if no dummy argument is to be created.

Example:

M1: PROCEDURE;
DECLARE A(10), AA(10), AAA(10),
N EXTERNAL;

N=10; CALL S1(A,AA,AAR);

END M1;

S1: PROCEDURE (P,PP,PPP);
DECLARE P(10),PP(*),PPP(N),
N EXTERNAL;

END S1;

In the above example, P, PP, and PPP are
parameters. Procedures M1 and S1 are both
external procedures. P 1is declared with
constant bounds; thus, the bounds of any
argument associated with P must be 10. PP
is declared with the asterisk notation;
thus, any one-dimensiocnal argument of the
same type may be associated with it. PPP
is declared with an adjustable bound; thus,
the bound of any argument associated with
PPP must be equal to the value of N when S1
is activated. Note that a similar effect
would result if S1 were internal to M1 and
N were an internal variable declared in Ml.

ALLOCATION OF PARAMETERS

A parameter that has no storage class
may correspond to an argument of any stor-
age class; if more than one generation of
the argument exists, however, the parameter

142

is synonymous only with the generation

existing at the point of invocation. A
nonbased CONTROLLED parameter, however,
always must be presented with a CONTROLLED

argument; the argument must be an unsub-
scripted name of CONTROLLED data that is
not an element of a structure. The param-
eter is synonymous with the entire alloca-
tion stack of the controlled variakle.
Thus each reference to the parameter is a
reference to the current generation of the
associated argument. A controlled paramet-
er may be allocated and/or freed in the
invoked procedure, thus manipulating the
allocation stack of the associated argu-
ment.

Parameters, Bounds and Length

If an argument is a string or an array,
the length of the string or the bounds of
the array must be declared in the invoked
procedure by using the asterisk notation,
by giving explicit bounds or length or by
declaring the bounds or 1length as an
expression that, when evaluated, gives the
appropriate value. The expressions speci-
fied for the bounds or 1length must be
formulated according to the rules stated in
"Evaluation of Expressions," in Chapter 3.

The number of dimensions and the bounds
of the array argument or the length of the
string argument must ke the same as those
of the corresponding parameters. However,
the actual bounds or length may not be
known at the time the invoked procedure is
written; the invoked procedure may assume
either that storage has been allocated
prior to the invocation or that storage
will be allocated explicitly in the proce-
dure for those rparameters declared CON-
TROLLED.

Asterisk Notation for Bounds or Length

The correspondence between argument and
parameter in the invoked procedure can be
achieved by specifying the 1length by an
asterisk or by specifying each and every
bound by an asterisk, thus indicating that
the length or bounds are the same as those
for the corresponding argument.

If storage has been allocated for an
argument, the corresronding rparameter in
the invoked procedure is assumed to have
the same length or bounds as the argument.
If the parameter is CONTROLLED, further
allocations of the data will use these same
bounds or length unless different length or
bounds are specified in the AILCCATE state-
ment.

If storage has not been allccated for an
argument passed to a parameter declared
with the asterisk notation, explicit bounds
or length must be declared in an ALLOCATE
statement given before another reference to
the parameter in the invoked procedure.

Expressions as Bounds or Length

been allocated for an
umen a parameter for which
explicit bounds or length are specified,
then upon entry to the invoked procedure,
any expressions are evaluated and must give
values such that the bounds or 1length of
the parameter are the same as the argument.
If the parameter is CONTROLLED and is
subsequently reallocated, these expressions
are again evaluated to give new bounds or
length for the new allocation, unless they
are specified in the ALLOCATE statement.

If storage has
argument passed to

If storage has not been allocated for
the argument, then, at the point of entry,
no requirements are made on the value of
the expressions specified for the corres-
ponding parameter bounds or length. These
expressions are evaluated at a subsequent
point of allocation, unless they are speci-
fied in the ALLOCATE statement.

Example:

M2: PROCEDURE;
DECLARE A(10), AA(25) CONTROLLED;

CALL s2(aA,AA,10);

END M2;

S2: PROCEDURE (P,PP,N);
DECLARE PP(*) CONTROLLED, P(N),
Q(25), s(5);

ALLOCATE PP(25);

DATA KNOWN TQ_INVOCATIQONS OF RECURSIVE
PROCEDURES

¢

Each time a procedure is invoked recur-
sively, a new generation of every automatic
variable is created. If the procedure
contains an internal procedure, then, with-
in that internal procedure, the automatic
data declared in the recursive procedure
and known in the internal procedure is of
the same generaticn as the internal proce-
dure. The following examples illustrate
the above discussicn.

Example 1:

P: PROCEDURE (Q) RECURSIVE;
DECLARE(Q,R)ENTRY,I STATIC INITIAL(0),
M AUTOMATIC;
I=I+1; M=I;
LAB: IF I<3 THEN CALL P(R):;
ELSE CALL Q; RETURN;
R: PROCEDURE;
PUT DATA(M);
RETURN;
END R;
END P;

In the first generation of P, when the
statement labelled LAB is executed, I is
less than 3; therefore, P is invcked recur-
sively with the entry name R (that is, the
first generation of internal procedure R)
passed to it. 1In the second generation of
P, M is equal to 2 while I is still less
than 3. (Note that cnly the first genera-
tion of P initializes I to zero because I
is in static storage.) Since I is less
than 3, P is again invoked recursively, but
this time with the second generation of the
internal procedure R passed to it. 1In the
third generation cf P, I is equal to 3 and
the third generaticn of M is equal to 3.
Since I is not less than 3, ELSE CALL ¢ is
executed. This execution invokes the pro-
cedure represented Ly the parameter ¢,
namely, the second generation of internal
procedure R. Within this generation of R,
the only generation of M that can possibly
be known 1is the seccond. Therefore, since
the second generation of M has a wvalue of
2, the statement PUT DATA (M) causes 'M=2;°
to be transmitted to the output stream.

Examgple 2:
P: PROCEDURE RECURSIVE;

DECLARE I STATIC INITIAL(O),
M AUTOMATIC;

I=I+1; M=1;
IF I=1 THEN CN OVERFLOW PUT
DATA (M) ;

IF I=3 THEN SIGNAL OVERFICW;
ELSE CALL P;
RETURN;

Chapter 10: Special Topics 143

Since an ON-unit is treated as a proce-
dure internal to the block in which it
appears, the generations of data known in
the ON-unit are, as in the previous exam-
ple, those current at the time the ON
statement for that unit 1is executed. In
the above example, the ON statement is
executed only for the first generation of
P; therefore, the first generation of M is
the only generation of M known within the
ON-unit. Thus, after THEN SIGNAL OVERFLOW
is executed, the ON-unit for that condition
is executed and 'M=1;' is transmitted to
the output stream.

PROLOGUES

On entering a block, certain initial
actions are performed, e.g., allocation of
storage for automatic variables. These
initial actions constitute the prologque.

On entry to the prologue, the following
items are available for computation:
1. Variables declared outside the block
and known within it.

2. Variables declared STATIC
within the block.

and known

3. Arguments passed to the block.

4. The most recent generations of con-
trolled variables known within the
block.

The prologue makes available for compu-

tation all the other variables known within
the block as follows:
in the

5. Automatic variables declared

block.

6. Defined variables declared within the
block.

In making these items available, the
prologue may need to evaluate expressions
defining lengths, bounds, iteration fac-
tors, and initial values. Such expressions
may depend on items of 1, 2, 3 or 4. They
may also be dependent on items 5 and 6
under the following circumstances: If an
item is referred to in an expression and
the allocation or initialization of a sec-
ond item depends on that expression, then
that first item must in no way be dependent
on the second item for its own allocation
and initialization. Further, the first
item must in no way be dependent on any
other item that so depends on the second
item.

144

Example:

The following is illegal:

DECLARE (A(M) INITIAL (1),
M INITIAL ((A(I))3)) AUTO;

The evaluations must not invoke abnormal
functions. The entry invoked with the
INITIAL CALL attrikute may be abnormal only
in that it sets the data being initialized.
The sequence in which the evaluations refer
to any abnormal data is not defined.

Function calls within the evaluations
must not refer to items being made availa-
ble by the prologue.

DATA ALLOCATION ACROSS_ TASKS

The scope of an identifier decliared 1in
an attaching task may include the attached
task. Thus, the WAIT statement should
properly be wused in the attaching task to
avoid freeing storage allocated in the
attaching task and wused in the attached
task.

An attached task has almost the same
access to the attaching task's data as it
would have if it were executed synchronous-
ly:; however, when it is attached, only the
generations of CONTRCLLED variakles current
at the time of attachment are passed to the
attached task. Suksequent allocations in
the attached task are known only within the
attached task; subsequent allocations in
the attaching task are known only within
the attaching task. A task may only free
storage that it has allccated. BAll storage
allocated within a task is destroyed when
that task is completed.

Allocation of Task and Event Names

Like variables, task names and event
names have scope and storage class attri-
butes. Storage will ke allocated for task
and event names in the same manner as for
variables (by virtue of either an explicit
or contextual dJdeclaration). If a given
task is active and there is a task or event
name associated with the task, then storage
rmust not be released for the name until the
task is terminated.

ABNORMALITY AND IRREDUCIBILITY

The ABNORMAL, NORMAL, IRREDUCIBLE, REDU-
CIBLE, USES, and SETS attributes are pro-
vided in PL/I to enable the compiler to
generate optimized code.

In the absence of any information, the
following assumptions are made:

1. All external function references are
reducible, unless alsc specified in
CALL statements.

2. All other procedure references are
irreducible.

3. All variables are normal.

A variable is said to be abnormal if its
value may be altered or otherwise accessed
without an explicit indication. Thus, for
example, the appearance of a variable name
on the 1left side of an assignment state-
ment, in the data list specification of a
GET statement, or as an argument to an
irreducible function or procedure (see
below) indicates a predictable situation

where the variable may change its value.
However, when the variable is subject to
change by the occurrence of an ON-

condition, or if it is subject to change in
a procedure invoked with the TASK option
(see "Asynchronous Operations and Tasks"),
then there 1is no way to predict the point
at which the change in value will occur or,
in fact, if it will occur.

be
if a

Such possibilities
recognized contextually.

cannot always
Furthermore,

al references to such a variable, the order
in which the indicated operations are exe-
cuted becomes significant. (For example,
if B is abnormal, the expression B + B is
not necessarily equivalent to the expres-
sion 2 * B.)

The implication is that the programmer
expects the operation to be performed in a
particular order. Such variables must
therefore be declared ABNORMAL, to inhibit
the optimization of such portions of a
source program.

A procedure may possess varying degrees
of irreducibility. A procedure is said to
be "definitively irreducible" if it, or any
procedures invoked by it, accesses, modi-
fies, allocates, or frees external data or
modifies, allocates, or frees arguments.
In addition, an internal procedure is irre-
ducible if it, or any procedures invoked by
it, accesses, modifies, allocates, or frees
any variables known in the invoking block.
Such procedures are only definitively irre-
ducible because the exact nature of their

irreducibility is described by the USES and
SETS attributes, thus inhibiting some, but
not all, optimizaticn in the neighborhood
of a reference to the procedure (see "The
USES and SETS Attributes"™ in Chapter 4).

However, if a procedure is “completely
irreducible," all cptimization of succes-
sive references must bhe inhibited. A pro-
cedure 1is completely irreducikle if it, or
any procedures invcked by it, doces any of

the following:

1. Returns inccnsistent function values
for identical argument values.

2. Maintains any kind of a history.

3. Performs input cr output coperations.

4. Returns contrcl from the procedure by
means of a GC TC statement.

The IRREDUCIBLE attribute (described in
Chapter 4) is used tc describe such a
procedure. It may also, of course, be used
to describe a Frocedure that is
"definitively irreducible."

When irreducibility is sgpecified, the

order of execution becomes significant. 1In
particular, if an exgressicon contains a
reference to an irreducible function that
may affect wvalues in other parts of the
expression, the value of the expression
will, in general, depend upon the order in
which data is accessed ({(see "Ordexr of

Evaluation of Expressions, " in Chapter 3).
If an IRREDUCIBLE procedure, referred to
in a statement, allocates or frees con-
trolled data that has been referred to
elsewhere 1in the same statement, then the
effect of the statement is undefined.

LIST PROCESSING

BASIC CONCEPTS

The purpose of this section is to devel-
op the basic concepts of PL/I list process-
ing, and to provide a simple illustration.

The description of data in PL/I, whether
implicit or explicit, provides information
on how to operate upon the data. If the
data item is a structure or array, the
description also specifies the relation
among its comrponents. However, the des-
cription of a data item does not, as a
rule, have any bearing upon its location in
storage. The location of a given data item
is determined internally at the time the
data is allocated. At the same time, a

Chapter 10: Special Topics 145

device 1is established that may be thought
of as a pointer and that serves to identify
the data item. Thereafter, when the data
item is required for the execution of
object code, it is located by means of its
associated pointer. In general, the poin-
ter is not under the control of the pro-
grammer, and it is not referred to in the
source program.

In list processing, however, such poin-
ters do appear in the source program and
can be manipulated to create and refer to
lists of data. This is achieved by the use
of the CONTROLLED storage class (see
"Storage Class Attributes" in Chapter 4)
and the definition of the data type pointer
(see "Pointer Data"™ in Chapter 2). For
example, consider the following declara-
tion:

DECLARE P POINTER,
TROLLED (P);

ALPHA FLOAT CON-

This declares that P is a pointer, and that
ALPHA is a floating-point variable, the
location of which will be identified by P
when reference is made to ALPHA. The
variable ALPHA represents a new form of
controlled variable known as a based varia-
ble. Unlike the nonbased form of CON-
TROLLED, the allocation of based variables
has nothing to do with the stacking of
data. Instead, it provides a device for
describing the structure of data.

A based variable may be used in an
extended form of the ALLOCATE statement to
obtain dynamic, unstacked storage.

Example:

DECLARE ARRAY (100)
FIXED;

ALLOCATE ARRAY SET (PT);

CONTROLLED (PT)

It is assumed that (PT) has the attribute
POINTER contextually by virtue of its posi-
tion 1in the DECLARE statement. The ALLO-
CATE statement will reserve enough storage
to contain ARRAY, and will set the pointer
variable PT to the location identification
that was obtained for ARRAY.

is convenient to allocate
labelled por-

Sometimes it
data items in some specific,
tion of storage, rather than obtaining
random system storage. This storage 1is
provided by means of the AREA attribute,
which permits the programmer to identify
and reserve a block of contiguous storage.

Example:

DECLARE TABLE AREA STATIC EXTERNAL;
ALLOCATE ARRAY IN (TABLE) SET (PT);

This ALLOCATE statement operates like that

146

of the previous-exarple, except that allo-
cation is made into a particular block of
storage named TABLE. The size of the
storage block TABLE is, by default,
implementation-defined; however, the
programmer may override this default size
specification by the use of dummy declara-
tions with the declaration of TABLE (see
"The AREA Attribute"™ in Chapter 4).

A based variable may be used to describe
the structure of data that may exist in any
storage class (sTATIC, AUTOMATIC, or
CONTROLLED) . This is shown in the follow-
ing example. The example also illustrates
the use of the built-in function, ADDR,
which provides programmer control of the
value of the pointer P. This function
returns a value of type pointer which
identifies the data argument.

Example:
DECLARE ALPHA CONTROLLED (P)
FLOAT,
BETA STATIC FLOAT,
GAMMA AUTOMATIC FLOAT,
OMEGA CONTROLLED EXTERNAL
FLOAT;
Ll: P=ADDR (BETR) ;
L1A: ALPHA=ALPHA + 1;
L2: P=ADDR (GAMMA);
L2A: ALPHA=ALPHA + 2;
ALLOCATE OMEGA;
L3: P=ADDR (OMEGA);
L3A: ALPHA=ALPHA + 3;

In this example, the based variable ALPHA
serves as the description of BETA when P is
set to the ADDR function of BETA at - state-
ment label Ll1l. It serves as the descrip-
tion of GAMMA at L2, and as the description
of OMEGA at L3 (after OMEGA has been
allocated in the previous statement). The
scope of the based variabkle is internal to
the block in which it is declared. Howev-
er, it may be used to identify external
data when the associated pointer points to
such data.

List processing applications may entail
the use of more than one pointer to iden-
tify a given data element. Under these
circumstances, other pointers (either poin-
ters for other based variables or indepen-
dently declared pcinters) may be used to
refer to a based variable. The symbol ->
(pointer qualifier) is used for this pur-
pose.

Examgle:
DECLARE 1 A CCNTRCLLED (P),

2 B CHARACTER (30),
2 C PCINTER,

2 D FIXED,
Q POINTER;
B = D;

The statement B = D is equivalent to
P->B = P->D;

A reference t
Moreover,

[

Q -> B uses Q to identify B,
Q -> C -> D uses Q to identify
the pointer €, which is
then used to identify D.

Note that the pointers P and Q serve to
identify the structure A as well as all of
its components. Note also that a reference
made to a based variable without the use of
pointer qualification is taken as a ref-
erence to that variable with an implied
qualifier; the implied qualifier being the
pointer variable declared for that based
variable.

The ability to "override" by means of a
pointer value not declared with the based
variable is wvaluable in examining and
manipulating a complex list structure; for
example, when it is desirable to examine
some elements before or after the current
list element position.

In constructing a list, a "null" pointer
value is commonly used +to identify the
~terminal entry in a list structure. This
value is provided by the NULL built-in
function.

With these basic definitions in mind,
consider the following procedure:

UNI_DIREC_CHAIN : PROCEDURE (ELEMPTR);

/* THIS PROCEDURE BUILDS A
UNI_DIRECTIONAL DOWNWARD CHAIN THRU
THE ELEMENTS IDENTIFIED BY THE PAR-
AMETER ELEMPTR#*/

DECLARE 1 ELEMENT CONTROLLED(ELEMPTR),
2 P POINTER,
2 VALUE FIXED (8,2),
(HEAD, Q) POINTER INITIAL
STATIC EXTERNAL;

(NULL)

P = NULL; /* MAKE THIS ELEMENT THE NEW
TAIL */

IF Q = NULL /%
ELEMENT */ THEN HEAD, Q =
(ELEMENT); /* FIRST ELEMENT #*/

IS THIS THE FIRST
ADDR

ELSE
Q0 -> P, O = ADDR (ELEMENT); /* SUCCES-

SOR ELEMENT */ END
UNI_DIREC_CHAIN;

Now consider the results of two invocations
of the foregoing procedure. Arbitrary
location identifiers have been assigned to
the arguments.
DECLARE 1 X STATIC INTERNAL,
2 Y POINTER,

2 Z FIXED (8,2);

CALL UNI_DIREC_CHAIN (ADDR(X));

X 500

98265

o o oy s
b s s e o

The first executakle statement, P = NULL

makes this element the terminal element
(tail).
r 1
X 500 | NULL |
t -
| 98265 |
L J

It is then determined that this is also the
first element; hence,

HEAD = 500
and Q = 500

DECLARE 1 A AUTOMATIC,
2 B POINTER,

2 C FIXED (8,2);

CALL UNI_DIREC_CHAIN (ADDR(A));

T]
A 20000]
t -
| 16538 |
[d

First, A is made the new tail of the list:

r h}

A 20000 NULL |

k i

| 16538 |

L b
Next, the pointer of the previous 1list
entry (namely, X) is set to pecint to A; Q

is also set to point to this entry. The

Chapter 10: Srecial Topics 147

parameters X, A, and Q now have the wvalues

shown below. (Note that HEAD is
unchanged.)
r 1
X 500 | 20000 |
L 3
1) 1
| 98265 |
L J
] 1
A 20000] NULL |
L d
1) 1
| 16538 |
[1 i]
Q = 20000

Succeeding invocations would simply add new
list elements. It should be noted that
there is no movement of the members of the
list. They remain in the storage class in
which they were declared. When members of
a list reside in dynamic storage, AUTOMATIC
or CONTROLLED, care should be taken to
ensure that the storage is not unintention-
ally freed (either by leaving a block or by
use of the FREE statement); such action
would break the chain (see "Additional
Conditions™ in this chapter).

ADDITIONAL CONSIDERATIONS

Structures Used as Based Variables

structure appears as a based
it may be used to describe one or

When a
variable,

more structures in any storage class. In
this case, each component of the based
variable may be used to refer to the

corresponding component of any of the other
structures. (Two components are said to
correspond if they occupy the same position
relative to the beginnings of their respec-
tive structures, if the attributes of the
two structures are the same, and if they
have the same extents and lengths.)

Example:
DECLARE 1A STATIC,
2B FIXED,
2C (10)FLOAT,
2D BIT(8),
1E AUTOMATIC,
2F FIXED,

2G (N)FLOAT,
2H BIT(8),
11 CONTROLLED (X),

2J FIXED,
2K (10) FLOAT,
2L BIT(8);

iu8

In this example, J may be used to point
either to B or to F; in the first case, the
pointer X would point to A, and in the
second, to E. L may be used to refer to D,
but it can refer to H only if the dimension
of G matched that of XK.

A structure which is a based variable
may contain self-defining array dimensions
and string lengths. This is not true of
any other class of variakle.

Example:

DECLARE 1 GROUP CONTRCLLED (P),

2 CHAIN POINTER,
2 I FIXED,
2 J FIXED,
2 K FIXED,
2 ARRAY (I,J) FLOAT,
2 STRING CHARACTER (XK);
This declaraticn takes the following
form:
fo-————————— 1
|CHAIN |
—————————— 1
I |
S y
13
b= —
|K
i
| |
b 1
| |} ARRAY of dimensions I,J
p-—————— i
| i
p-——————— {
| | STRING of length K
e 1
Assume that a pointer variable (@ is
pointing to a particular generation of

GROUP. Any reference to Q->ARRAY will use
the values of I and J contained within that
generation of GROUP identified by the poin-
ter P declared with GROUP; i.e., P->I and
P->J. Similarly, a reference to STRING
will use the value of K contained within
that generation of GROUP identified by the
pointer P declared with GROUP; i.e., P->K.

Pointer Value - Based Variable Relations

The relation between an argument and a
parameter (without conversion of arguments
through parameter attributes) also applies
to the relation between a pointer value and
the associated based variable. That is,
the value of a pointer way point to a
scalar variable, an array, a structure, or
a component of an array or sStructure. The
data may then be referred to Ly means of

the pointer value and based variable, pro-
vided the description of the based variable
is compatible with that of the data iden-
tified by the pointer.

Example:

ARRAY (10,10) STATIC EXTERNAL
FIXED,
VALUE CONTROLLED (P) FIXED,
1 GROUP AUTOMATIC,
2 GROUP 1,

n TTVLN
B CiALig

3 B CHARACTER (30),
2 GROUP_2,

3 ¢ BIT (1),

3 D FLOAT,
1 DESCRIPTION CONTROLLED(Q),

2 A FIXED,

2 B CHARACTER (30),
SWITCH BIT (1) CONTROLLED (R);

P = ADDR (ARRAY (I,J));

DECLARE

use of the based variable
to the element of

Provides for
VALUE in referring
ARRAY at I, J.

P = ADDR (GROUP_1.R);

Provides for the use of the based varia-
ble VALUE in referring to GROUP_1.A.

Q = ADDR (GROUP_1);
Provides for wuse of the based variable

DESCRIPTION in referring to the minor
structure GROUP_1i.

R = ADDR (GROUP_2.C);

Provides for use of the based variable
SWITCH in referring to GRCUP_2.C.

Data Chaining Precautions

It is possible, ky means of chaining, to
link data which exists in different storage
classes. In this case, care must be exer-
cised to ensure that data in AUTOMATIC or
CONTROLLED storage is not freed--by return-
ing from the procedure in which the data
was allocated, in the case of AUTOMATIC
data, or by the execution of a FREE state-
ment, in the case of CONTRCLLED data--
without adjusting the chain. Otherwise,
the linkage may be lost.

STATIC AUTOMATIC CONTROLLED CONTROLLED

-
b
OARRURp——

If the block ccntaining B is closed, the

link between A and C is destroyed.
Similarly, the freeing of C would destroy
the link between B and D. The chain must,

therefore, be adjusted before B or C is

released.

Chapter 10: Special Topics 149

APPENDIX 1: BUILT-IN FUNCTIONS

ARITHMETIC GENERIC FUNCTIONS

The generic functions 1listed in this
section return a value of type coded arith-
metic. The arguments may, unless otherwise
specified, be any expressions. If neces-
sary they will be converted to type coded
arithmetic before the function is invoked

according to the rules stated under "Type
Conversion," in Chapter 3. Also certain
conversions of arithmetic characteristics

will be performed before the function is
invoked, where this is explicitly defined
to be the case for particular functions
below. Where conversion to highest charac-
teristics is specified, these are deter-
mined by the rules for mixed charac-
teristics, as explained in Chapter 3,
applied to the arguments. Where reference
is made to an argument, it should be taken
to mean the .converted argument when an
argument that is not coded arithmetic has
been specified. The magnitude of a complex
number 1is the positive square root of the
sum of the squares of the real and imag-
inary parts where this value has the base
and scale of the complex number and the
mode REAL.
Name Arquments and Function Value
ABS

Arguments: One is given.

Function value = absolute value of
argument, i.e., positive value of
real argument, positive magnitude
of complex. The mode is REAL.
Base, scale, and precision are
those of the argument, unless the
argument is fixed complex, in
which case the precision is
(MIN(N,p+1),q) for an argument of
precision (p,q).

Arguments: Two oOr more are given.
Complex arguments are not permit-
ted.

Function value = value of maximum
argument, converted to highest
characteristics of all arguments
specified. If the arguments are
FIXED of precisions (p;,qi).
(pona).---c (Pann)a the
resulting precision is
(MIN(N,MAX(pi-qi,...,pn-qn)+
MAX(qig.-.,qn)),MAx(q11-.-,qB))

MIN
Arguments: Two Or more are given.
Ccomplex arguments are not permit-
ted.

150

Function value = value of minimum
argument, converted to highest
characteristics of all arguments
specified. If the arguments are
FIXED of precisions (P1,91) s
(paqu)"'°v (pnmqn)v the
resulting precision is
(MIN(N,MAx(pl‘q1'.~.,pn‘qn)
+MAX(q1, .c-qqn))wMAX(q,_g---'qn)).

MOD

Argurrents: two are given, x and
y. Base and scale of the argu-
ments are converted to the higher
characteristics of the pair.
Complex arguments are not permit-
ted.

Function value = positive remain-
der after division of x by y to
yield an integer quotient. The
mode 1is REAL; base and scale are
those of the converted arguments.
Precision for FLOAT is the higher
of the precisions of the argqu-
ments, and for FIXED is defined
as follows:

Let the precision of x be
(p,q) and the precision of y
be (r,s). The resulting
precision is (MIN(N, r-s+
MAX(qg,s)) ,MAX(qg,s)).

SIGN

Arguments: Cne is given. Complex
argurents are not permitted.

Function value = integer 1 if argu-
ment >0; = 0 if argqument = 0; =
-1 if argument <0. The result is
fixed bLinary with default preci-
sion.

FIXED

Arguments: Three are
second and third are optional
decimal integer constants (the
third may also be signed) speci-
fying the number of digits and
the scale factor of the result.
If omitted, the seccnd argument
assumes a value specified by each
implermentation, the third assumes
zero.

Function value =
converted to fixed-point scale
with precision as specified but
base and mode unchanged.

given. The

first argument

FLOAT
Arguments: Two are given. The sec-~
ond is an optional decimal inte-
ger constant specifying the pre-
cision cf the result. If omit-

FLOOR

CEIL

TRUNC

BINARY

DECIMAL

ted, a value specified by each|

implementation will be assumed.

Function value = first argument
converted to FLOAT scale with
precision as specified but base
and mode unchanged.

Arguments: O©One 1is given, X . A
complex argument is not permit-
ted.

Function value = largest integer
not exceeding =x. Base, scale,
and mode are those of the con-
verted argument. Precision of
result for x FIXED (p,q) is
(MIN(N,MAX(p-q+1,1)),0).

Arguments: One is given, x. A
complex argument is not permit-
ted.

Function value = smallest integer
not exceeded by x. Base, scale,
and mode are those of the con-
verted argument. Precision of
result for x FIXED (p,q) is
(MIN(N,MAX(p-q+1,1)),0).

Arguments: One is given, x. A
complex argument is not permit-
ted.

Function value = FLOOR (x) if x 2
0, = CEIL (x) if x < 0. Base,
scale and mode are those of the
converted argument. Precision of
result for x FIXED (p,q) is
(MIN(N,MAX(p-q+1,1)),0).

ree are given. The
second and third are optional
decimal integer constants (the
third may also be signed) speci-
fying the binary precision of the
result. If the scale is FIXED,
and the second argument is given,
the third must also be given; if
the scale is FLCAT, the third is
not required. If both the second
and third arguments are omitted,
the precision of the result is as
defined for base conversion in
Chapter 3.

Function wvalue = first argument
converted to binary base with
scale and mode unchanged.

Arguments: Three are given. The
second and third are optional
decimal integer constants (the
third may also be signed) speci-
fying the deciral precision of
the result. If the scale is
FIXED, and the second argument is
given, the third must also be

given; if the scale is FLOAT, the
third is not required. If both
the second and third arguments
are omitted, the precision of the
result is as defined for base
conversion in Chapter 3.

Function value = first argument

converted to decimal base with
al

an~n=1aA nA mAadoe 1mnmahas
de unchanged.

=
SLAELT Qauua o

PRECISION

Arguments: Three are given. The
second ané third are decimal
integer constants (the third may
also be signed) specifying the
precisicn cf the result. If the
scale is FIXED, all three are
required; if the scale is FLOAT,
the third is not required.

Function value = first argument
converted to specified precision.
Base, scale, and mode are
unchanged.

Arguments: Four are given. The
third and fourth are decimal
integer constants (the fourth may
also be signed) specifying the
precisicn cf the result. If the
scale of the result is FIXED, all
four are required; if the scale
is FLCAT, the fourth 1is not
required. The third argument may
not exceed N.

Function value = the sum of the
first and second arguments. Base
and scale of the result are the
higher cf those of the first two
arguments. Precision is as srec-
ified.

MULTIPLY

Arguments: Four are given. The
third and fourth are decimal
integer constants (the fourth may
also be signed) specifying the
precisicn of the result. If the
scale of the result is FIXED, all
four are required; if the scale
is FLOAT, the fourth is not
required. The third argument may
not exceed N.

Function value = the product of the
first and second arguments. PBase
and scale of the result are the
higher cf thcse of the first two
arguments. Precision is as spec-

P R

Arguments: Four are given, The
third and fourth are decimal
integer constants (the fourth may
also be signed) specifying the
precision of the result. If the
scale of the result is FIXED, all
four are required; if the scale

Appendix 1 151

is FLOAT, the fourth is not

required. The third argument may
not exceed N.

Function value = the result of
dividing the first argument by
the second. Base and scale of
the result are the higher of

those of the first two arguments.
Precision is as specified.

COMPLEX
Arguments: Two real arguments are
given. The first is the real
part, the second is the imaginary
part.
Function value = complex number
formed from the two arguments.
Base, scale, and precision of
result are the highest charac-
teristics of those of the argu-
ments.
REAL

Arguments: One 1is
value.

Function value = real part of argu-

Base, scale, and precision

given, complex

IMAG

Arguments: One is given, complex
value.

Function value = imaginary part of
argument. Base, scale, and pre-
cision are unchanged.

CONJG

Arguments: One 1is given, complex
value.

Function value = conjugate of the
argument. Base, scale, mode, and

precision are unchanged.

FLOAT ARITHMETIC GENERIC FUNCTIONS

The following generic functions may have
as arguments any expression. This expres-
sion will be converted to floating point
before the function is invoked. The result
will be of scale FLOAT with the precision
and base of the converted argument. If the
mode of the argument is COMPLEX, the mode
of the result will be COMPLEX. The follow-
ing functions are defined only for REAL
arguments: LOG2, LOG10, ATAND, TAND, SIND,
CcosD, ERF, ERFC, and ATAN with two argu-
ments.

152

The following takle specifies the mean-
ing of these functions for real arguments:

Function Reference Function Value

EXP (x) exp (x)

LOG (x) In (x). Error if x<0.

LOG10 (x) logio (x). Error if
x<0.

LOG2 (x) log-{(x). Error if =x<0.

ATAND (x) arctan (x) in degrees.

ATAN (x) arctan (x) in radians.

ABS (arctan (x)) <pi/2.

TAND (x) degree tan (x)

argument

TAN (x) radian tan (x)

argurent

SIND (x) degree sin (x)

argument

SIN (x) radian sin (x)

argurment

COSD (x) degree cos (x)

argument

COS (x) radian cos (x)

argument

TANH (x) radian tanh (%)

argument

ERF (x) Two divided Ly square
root of pi, multi-
rlied by the integral
from 0 to x of EXP
(-t2) with respect to
t.

SORT (x) The positive square
root of x. Error if
x<0.

ERFC (x) 1 - ERF (x)

COSH (x) radian cosh (x)

argument

SINH (x) radian sinh (%)

argument

ATANH (%) arctanh (x). Error if
ARS (x)21.

ATAN(y,x) The arguments are converted to
the highest characteristics
of the pair. The value is:

arctan(y/x) ifx>0

pisz2 if x=0, y>0
error if x=0, y=0
-pirs2 if x=0, y<o0
pit+arctan(ysx) if x<0, y>0
-pit+arctan(y/x) if x<0, y<O

ATAND (y,x) ATAN(y,x) in degrees, i.e.
(180/pi) *ATAN(y, x)

With ccmplex mode many of these mathema-
tical functions are formally multiple-
valued, so the following table defines the
principal values which are returned by the
built-in functions. Here z = x+iy is the
argument, and w = u+iv is the value.

Function Reference Function Value

EXP(z) exp(z)

LOG(z) Log(z), where -pi
<v<pi. Error if z=0.

ATAN(z) (LoG((1+2)/(1-2))) /2.
Error if z= +1 or -1.

ATANH(z) iATANH(iz). Error if
z= +ii or -ii.

SIN(2) sin(z)=sin(x)cosh(y)+
jcos(x)sinh(y)

cos (2z) cos{z)=cos(x)cosh(y)-
isin{x)sinh{y)

SQRT(z) z*%¥(1/2). Either w0,
or u=0 and v=20.

COSH(z) cosh(z)=cosh(x)cos (y) +
isinh(x)sin(y)

SINH(2) sinh(z)=sinh(x)cos(y) +
icosh(x)sin(y)

STRING GENERIC FUNCTIONS

The generic functions 1listed in this
section may be used for manipulation of
strings. The arguments specified as
strings may be any expression. If the
argument is arithmetic, it will be convert-
ed to bit string (if binary base) or
character string (if decimal base) before
the function is invoked.

Name Arguments and Function Value

BIT
Arguments: Two are given. The sec-
ond is an optional decimal inte-
ger specifying the size of
result.
Function value = first argument
converted to type bit string. If
the size is unspecified, the size
of the result will be a function
of the first argument charac-
teristics (see "Type Conversion,"

in Chapter 3).

CHAR

Arguments: Two are given. The sec-
ond is an optional decimal inte-
ger specifying the length of
result.

Function value = first argument
converted to type character
string. If the length is unspe-
cified, the length of the result
will be a function of the first
argument characteristics (see
"Typeé Conversion," in Chapter 3).

SUBSTR
Arguments: Three are given. The
first is a string, the second is
any expression having the value i
when converted +to integer, the
third is opticnally any expres-

sion having the wvalue 3j when

converted to integer.

The function value is defined as
follows:
Let k be the length of the first
argument.
If i>k, the wvalue 1is the null
string.
If i<k, the value is that sub-
string Leginning at the Mth
character or bit of the first

argument, and extending N char-
acters or bits, where M and N
are defined by:

M=max (i,1)

N=max (o, min (j+min
(i,1)-1, k-M#1)), if j is
specified.

N=k-M+1l, if j is not
fied.

speci-

INDEX

Arguments: Two are given. If both
argurents are bit strings, no
conversion occurs, otherwise con-
version tC character string is
performed.

Function value = binary integer of
default precision giving:

a. The index of the first ele-
nment cf the first argument
such that starting at this
elerent the second argurment
aprpears as a substring.

b. Zero, if no such index satis-
fying (a) exists, or if eith-
er cf the arquments is of
zerc length.

Arguments: One is given, a string.

Function value = fixed binary inte-
ger of default precision giving
current length of argument.

HIGH
Arguments: One is given, a decimal
integer constant.
Function value = character string
of the length specified and com-
posed c¢f the highest characters

of the data character set.

LOW
Arguments: One is given, a decimal
integer constant.
Function value = character string
of the length specified and com-
posed of the lowest characters of

the data character set.

REPEAT
Arguments: Two are given. The
first is a string and the second
is an ortionally signed decimal
integer constant pn.

Appendix 1 153

Function value = string argument
concatenated with itself n times,
giving a total of n+l terms in
the concatenation. If n is zero
or negative, the result 1is the

argument itself.

UNSPEC

Arguments: One is given, a scalar
arithmetic, string, or pointer
variable.

Function value = bit string which
is the internal coded representa-
tion of the argument. The length
is an implementation-defined
function of the argument charac-
teristics.

BOOL

Arguments: Three are given, bit
string X, Y, and W. W is con-
verted if necessary, to a bit
string of 1length 4, nn2n3n%,
This string defines which of the
16 possible boolean functions is
desired, in the manner implied
below.

Function value = bit string Z where
if X and Y are of different
lengths, the shorter is extended
with zeros, and Z is of the
longer length. The following
table relates the jth bit of Z to
the jth bits of X and Y.

r T T"|
I X3 | ¥3 1 23 |
% $ t 4
| © | O | nt |
19 1 1 4
v { T 1
f o | 1 | n* |
k + 1 i
i1 | 0 | n3 |
t-————- t + 4
1 | 1 | n* |
L 1 L J

GENERIC FUNCTIONS FOR MANIPULATION OF
ARRAYS

A generic function for array manipula-
tion must have as its argument an array
expression that has as its value an array
of scalars. Arrays of structures are not

permitted.

The following generic functions have
array expression arguments and return sca-
lar values. 1In the following functions x
is any array expression unless otherwise
specified.

154

Function
Reference

SUM (x)

Function Value

A scalar value equal to the
sum of all the elements of
X. Precision, mode and
tase are those of argument
elements. Each element of
the argument is converted
to arithmetic FLOAT before
keing summed with the pre-
vious total. The result
is always in floating-
rpoint scale.)

As above but product.

Each element of the argument
is converted to a bit
string. The result is a
scalar bit string whose
length is equal to the
length of the greatest
element (in terms of
length) of x. The ith bit
of the result is 1 if the
ith bits of all of the
elements of x exist and
are 1; otherwise, the ith
kit of the result is zero.

The result 1is the same as

+= 1
for ALL{x) except that the

ith bit of the result is 1
if the ith bit of any
element exists and is 1;
ctherwise, the ith bit of
the result is zero.

a(r:n) and x(p:q) are vec-
tors.

Result is

PROD (x)
ALL (x)

ANY (x)

POLY (a,x)

n-m j-1
alm) + 2 (a(m+j) * TT x(p+i))
j=1 i=o

If g-p<n-m-1, then x(p+i) =
x(q) for p+i>q.

If m=n, then the result is

a(m).

A scalar second operand x is
interpreted as a vector
with one element, x(1).
The function result is
then

n-m
Y. almw+j) *x**j

J=o

The characteristics of the
result are the higher of
those of the arguments
(after conversion to
arithmetic tyge) except
for scale, which is always
FLOAT.

LBOUND (x,s) s 1is a scalar expression
which is converted to a
binary integer n, of
default precision. The
function value is an inte-
ger of default precision
giving the current lower
bound of the nth dimension
of x.

HBOUND (x,S) As above but higher bound.

DIM (x,s) s is as above. The function
value is a binary integer
n of default precision

giving the current extent
of the nth dimension of x.

NOTE: The functions LBOUND,
HBOUND, and DIM are not
defined if the argument x
is unallocated, if it has
less than n dimensions, or
if n<0.

ARRAY AND STRUCTURE BUILT-IN FUNCTIONS

All of the built-in functions 1listed
under "Arithmetic Generic Functions" and
"String Generic Functions" in this appendix
may have array or structure expressions as
arguments, except where decimal integer
constants are required. They yield an
array or structure of the same dimension
bounds or structuring as the argument--the
function being performed on each element.
The rules are the same as those for the
scalar functions.

CONDITION BUILT-IN FUNCTIONS

The following built-in functions (with
no arguments) are available to allow inves-
tigation of interrupts arising from enabled
ON conditions.

Function

Reference Function Value

ONFILE A character string of varying
length with an implementa-
tion-defined maximum, being
the name of the file for
which the 1last input/output
operation was performed. If
there is no such file, the
value returned is the null
string.

ONLOC A character string of varying
length with an implementation
defined maximum length, being
the entry point name of the
immediate dynamically encom-

passing procedure inm which
the last interrupt arose.
ONSOURCE A character string of varying
length, with an implementa-
tion defined maximum length,
being the contents of the
field being processed when
the last conversion interrupt

occurred.

ONCHAR A character string of length 1,
being the character which
caused +the 1last conversion
interrupt.

ONKEY A character string of varying
length, with an implementa-

tion defined maximum length,
being the value of the key
for the record whose trans-

mission caused the last
interrupt.

ONCODE A binary integer of default
precision whose value speci-

fies the last interrupt. The
categories and code for each
are implementation-defined.
DATAFIELD A character string of varying
length, with an implementa-
tion defined maximum length,

being the contents of the
data field which gave rise to
the last NAME condition
interrupt.

The following functions are used in

«connection with list processing to provide

suitable values of type pointer.

Function
Reference Function Value
ADDR (x) The function returns a value

of type pointer, which
serves to identify the
data variabkle x. The
variable x may be a sca-
lar, an array, a struc-
ture, an element of an
array, or a component of a
structure. If x is a for-
ral rparameter, the value
is determined from the
corresgonding argument.
If x 1is a nonbased con-
trolled variable, the
value 1is determined from
the most recent generation
(see "The ALLOCATE
Statement" in Chapter 8);
if x is unallocated, the
value is NULL. If x is a
kased variakle, the value
is determined from the
pointer variable declared

Appendix 1 155

NULL

with it; if the pointer
variable does not contain
a value, the ADDR function
value 1is not predictable.

This function defines a null
pointer value; hence, it
does not identify any gen-
eration of data. Its
value is implementation
defined.

OTHER BUILT-IN FUNCTIONS

Function

Reference Function Value

DATE Character string of length six

of the form YYMMDD, where YY
is year, MM is month, DD is
day.

TIME Character string of length nine

ALLOCATION (x)

X

of the form HHMMSSTTT, where
HH 1is hours, MM is minutes,
SS is seconds, TTT is mil-
liseconds.

is a nonbased CONTROLLED
major structure or unsub-
scripted array or scalarxr
variable not in a structure.
The function value is '1'B if
storage has been allocated
for x and '0'B if not.

LINENO (filename)
The value of this function is a

binary fixed-point .integer of
default precision. It speci-
fies the current line number
of the specified PRINT file.

COUNT (filename)
The value of this function is a

binary fixed-point integer of
default precision. It
returns a value that is the
number of scalar data items
transmitted during the last
GET or PUT operation on the
specified file.

ROUND (expression,
decimal-integer-constant)

The expression may be a scalar,

156

array, or structure. The
decimal integer constant
(call it n) may be signed.
If n is positive, the value
returned by the function is

the expression value rounded
on the nth digit to the right
of the decimal point. If n
is negative, the value of the
functicn is an integer
resulting from rounding the
expression value on the nth
digit to the 1left of the
decimal point. (Binary
digits if bkinary base, deci-
mal if decimal base.) If the
expression is of string type,
the function value 1is the
string value unmodified.
Floating point rounding is a
bias removal rather than sys-
tematic rounding; the decimal
point is assumed at the left.
Base, scale, mode and preci-
sion of the value are those
of argument. If the scale is
FIXED with precision (p,q),
the result is FIXED with pre-
cisicn (MIN(p+1,N}),q). (Note
that the rounding of a nega-
tive fixed-point quantity
results in the rounding of
the magnitude cf that quanti-
ty.)

STRING (structure-name)

The argument must be a packed

structure composed either of
all bit strings and numeric
fields of binary base, or
character strings and numeric
field of decimal base. The
function value is a string,
being the concatenation of
all the structure elements.

EVENT (scalar-event-name)

This function will return the

value '0'B OR '1'B, depending
on the current status of the
referenced event name (see
"Asynchronous OCperations and
Tasks,™ in Chapter 6 and "The
WAIT Statement,™ in Chapter
8).

PRIORITY (scalar-task-name)

This function will return the

priority of the mnamed task
relative to the priority of
the task in which the func~
tion is evaluated (see
"Asynchronous Operations and
Tasks,™ in Chapter 6 and "The
WAIT sStatement," in Chapter
8).

DIGIT POINT AND SUBFIELD DELIMITING
CHARACTERS

9 Specifies that the associated field
position will contain any decimal
digit.

1 Specifies that the associated field
position contains a binary digit.

This character may not appear in a
picture with either 2 or 3.

2 Specifies that the associated field
position contains a binary digit,
being part of a binary value in 2's
complement notation. This character
may not appear in a picture with
either 1, 3, or S.

3 Specifies that the
position contains a binary digit,
being part of a binary wvalue in 1°'s
complement notation. This character
may not appear in a picture with
either 1, 2, or S.

V Specifies that a decimal or binary point

associated field

should be assumed to appear at this
poeint in the associated field. It
does not specify a character in the
field.

K gSpecifies that the exponent subfield
should be assumed to follow the point
in the field associated with the K.
It does not specify a character in the
field.

E Specifies that the associated field
position will contain the letter E,
indicating the start of the exponent

subfield.

ZERO SUPPRESSION CHARACTERS

A leading zero in a numeric subfield is
a zero to the left of the actual occurrence
of the digits 1 to 9 in the subfield. The
leftmost of these 1latter digits and all
digits in the subfield following it, are
significant digits (including any zeros).
Picture characters are provided for zero
suppression, leading zero suppression, and
the replacement of these zeros by blanks or
asterisks.

Z sSpecifies a conditional digit position.
If the associated field position
involves a leading =zero it will be
represented in the field by a blank,
otherwise +the digit will appear. The
character may not appear to the right
of 9 T IR or a drifting string in a

APPENDIX 2: PICTURE SPECIFICATION TABLES

subfield.

a subfield.
*# gpecifies a conditional digi

If the associated field

involves a leading =zero

It may not appear with * in

position.
position
it will be

represented in the field by *, other-
wise +the digits will appear. The
character may nct appear to the right

of 9 T I R or drifting string in a
subfield. It may not appear with Z in
a subfield.

Y Specifies a conditicnal digit position.
If the associated field position
involves a zero (leading or otherwise)
it will be represented in the field by
a blank, if it involves a digit other
than zero that digit will appear.

DRIFTING EDITING SYMEOLS

The following picture characters may be
static or drifting:

Character Name

o

3+) sign characters

$ currency symkol
The static use of these characters spe-

cifies that there is a field position where

,,,,, encvy
curxency symbel, or a

The drifting use specifies
that 1leading =zercs may be suppressed, and
the suppressed positions way contain
blanks. 1In this case, the rightmost sup-
pressed position associated with the pic-
ture character will contain a sign, a
blank, or a dollar sign.

a sign, a

always appears.

A drifting character is specified by
multiple use of that character in a picture
subfield. Thus, if a subfield contains one
dollar sign, it is interpreted as static;
if it contains more than one, as drifting.
The drifting character must ke specified in
each position through which it may drift.

Drifting characters
strings. A string is a
same drifting character, opticnally con-
taining interspersed editing characters
comma (,), point (.), slash (/), or V or B.
Picture characters slash, comma, point, and
B following the last drifting symbol of the
string are considered part of the string.
However, a following V terminates the
string and 1is not part of it. A subfield

must appear in
sequence of the

Appendix 2 157

may only contain one drifting string. The

picture characters #* and Z may not appear
to the right of a drifting string in a
subfield.

The field position associated with the
character slash, comma, point, and B
appearing in a drifting string will contain
one of the following:

1. sSslash, comma, point, or blank if a
significant digit has appeared to the
left.

2. The drifting symbol,
tion to the right contains the

if the next posi-
left-

most significant digit of the sub-
field.
3. Blank, if the leftmost significant

digit of the subfield is more than one
position to the right.

If a drifting string contains the drift-
ing character n times, then the string is
associated with n - 1 conditional digit
positions. The field position associated
with the leftmost drifting character may
only contain the drifting character or
blank, never a digit. If a drifting string
is specified for a subfield, the other
potentially drifting characters may only
appear once to the left of the string in
the subfield, i.e., the other characters
represent a static sign or dollar sign.

If a drifting string contains a VvV, then
all digit positions of the subfield follow-
ing the V must alsoc be part of the drifting
string.

If one of the characters Z or * follows
the V in a subfield, then all digit posi-
tions in the subfield following the V must
be Z or asterisk (*).

In the case where all digit positions
after the V contain suppression characters,
suppression will only occur where all the
fraction digits are zero. The resulting
field will then be all blanks or asterisks.
If there are any significant fraction
digits they all will appear unsuppressed.

DRIFTING CHARACTERS

$§ 1If this character appears more than once
in a subfield it is a drifting charac-
ter, otherwise it is a static charac-
ter. The static character specifies
that the character § be placed in the
associated field position. The static
character must appear either to the
left of all digit positions in a

158

subfield or to the right of all digit

positions in a subfield. See details
above for the drifting use of the
character.

S Specifies the sign character + if the
field value is 20, otherwise -. The
character may ke drifting or static.
The rules are identical to those for
the dollar sign.

+ Specifies the sign character + if the
field wvalue 1is 2> to 0, otherwise
blank. The character may be drifting
or static. The rules are identical to
those for the decllar sign.

- Specifies the sign character - if field
value is <0, otherwise blank. The
character may be drifting or static.
The rules are identical to those for
the dollar sign.

EDITING CHARACTER

B Specifies that a blank appear in the
associated field position.

CONDITICNAL EDITING CHARACTERS

If the subfields in which the comma
appears involve no zero suppression,
that character specifies that a comma
will appear in the associated field
position. If zero suppression is
involved the comma will appear only if
there 1is an unsuppressed digit to the
left of the ccmma position in the
sukfield. If there is no such unsup-
pressed digit, the asseciated field
position will contain a character that
depends on the first digit
(conditional ocr otherwise) picture
character preceding the ccmma.

If the preceding character is an
asterisk the field position will con-
tain an asterisk.

If the preceding character is a drift-
ing sign or dollar sign the action
taken will be identical tc that which
would have occurred if the picture
specification had contained the drift-
ing character in place of the comma.

If the preceding ricture character is
anything other than the akove, the
field position associated with the
comma will ccntain a blank.

/ Exactly as comma, but a
appear when indicated.

. Exactly as comma, but a
arpear when indicated.

slash will

point will

SIGN CHARACTERS

Digit characters in numeric fields may
contain an overpunched sign. The following
picture characters are used to specify
overpunching:

T Specifies that the associated field
position will contain a digit over-
punched with the sign of the contain-
ing subfield.

I Specifies that the associated fieid
position will contain a digit over-
punched with + 1if +the containing
subfield is > 0; otherwise it will
contain the digit with no overpunch-
ing.

R Specifies that the associated field
position will contain a digit over-
punched with - if the containing sub-
field is < 0; otherwise it will con-
tain the digit with no overpunching.

The above characters may not be used in
conjunction with any other sign characters
in the same subfield.

The two character picture items CR and
DB may be used to reflect the sign of REAL
numeric fields.

CR Specifies that the associated field
positions will contain the letters CR
if the containing field value is <O0.
Otherwise the positions will contain
two blanks. The characters CR may
appear only to the right of all digit
positions of a field.

DB As CR, except that a DB appears.

SCALING FACTOR SPECIFICATION

F Specifies that the optionally signed
decimal integer enclosed in parenthe-
ses following the picture character F
in the picture string is the scaling
factor (see "The PICTURE Attribute,"
in Chapter u).

STERLING PICTURES

The following additional characters are
provided for use in sterling pictures.

8 sSpecifies the position of a shilling
digit. in BSI single-character rep-
resentation.

7 Specifies the position of a pence digit

in BSI single-character represen-
tation.

6 sSpecifies the position of a pence digit
in 1IBM single-character representa-
tion.

P Specifies that +the associated field
position contains the pence character

D.

G Specifies the start of a sterling pic-
ture. It does not specify a character
in the numeric field.

H Specifies that the associated field
position contains the shilling charac-
ter S.

M Specifies the
does not specify a
nureric field.

start of a sukfield. It
character in the

PICTURES FOR CHARACTER STRINGS

A form of picture
character strings. The

to indicate the form:

may ke given for

A The associated field position may con-
tain any alrhakbetic character or
blank.

X The associated field position may
tain any character.

9 The associated field position may con-
tain any deciral digit or klank.

con-

At least one X cr A must appear in the
picture.

Appendix 2 159

APPENDIX 3: ON-CONDITIONS

The ON-conditions are those conditions
that may be specified in the ON statement.
These conditions are also specified in
SIGNAL and REVERT statements.

For each condition name, the description
in this appendix includes the circumstances
under which the condition occurs, the
standard system action that would be taken
in the absence of programmer-specified
action, and, where applicable, the result.
("Standard system action" does not refer to
any operating system but to standard action
prescribed for the language.)

For the conditions OVERFLOW, UNDERFLOW,
ZERODIVIDE, CONVERSION, or FIXEDOVERFLOW,
an interrupt action will always take place
on occurrence of the condition unless the
occurrence is in a calculation lying within
the scope of a prefix specifying NOOVER-
FLOW, NOUNDERFLOW, NOZERCDIVIDE, NOCONVER-
SION, or NOFIXEDOVERFLOW. For the condi-
tions SIZE, SUBSCRIPTRANGE, or CHECK
(identifier 1list), an interrupt will not
take place on occurrence of the condition
unless the occurrence is in a calculation
lying within the scope of a prefix speci-
fying the condition. (See "Prefixes," in
Chapter 1).

For any other condition, whose name
not be used in a prefix,
always will result from the
the condition.

may
an interrupt
occurrence of

CLASSIFICATION OF CONDITIONS

The ON-conditions are classified as fol-

lows: computational conditions,
input/output conditions, program-checkout
conditions, list processing conditions,

programmer-named conditions, and

action conditions.

system-

The computational conditions are
associated with data handling, expression
evaluation, and computation.

The input/output conditions
ciated with data transmission.

are asso-

The program-checkout conditions facili-

tate debugging of programs.

The list processing conditions are asso-
ciated with area usage.

160

Result:

The programmer-named conditions permit
the programmer to use conditions of his own

naming. These conditions are raised only
by a SIGNAL staterent.
The system-action conditions provide

facilities to the programmer to extend the
standard system action taken after the
occurrence of a ccndition or at the comple-
tion of a prograr.

COMPUTATIONAL CONDITIONS

CONVERSION: This condition is raised
whenever an illegal conversion is attempted
on character string data, either internally
or during input cor ocutput. The condition
will be raised for such errors as charac-
ters other than 0 or 1 in conversion to bit
string, characters not permitted in conver-
sion to numeric field, or illegal charac-
ters in conversion to arithmetic. The
conversion 1s carried out character by
character, and the condition is raised for
each illegal conversicn. This condition
may also be raised when the 1length of an
arithmetic subfield is 1limited by an
implementation restriction.

Undefined.

Standard System Action: Comrent and raise

the ERROR condition.

FIXEDOVERFLOW: This condition occurs dur-
ing fixed-point arithmetic operations if
the results of these operations exceed N,
the maximum field width as defined by the
implementation. See SIZE for a related
condition that occurs on assignment.

Result: Truncation on the left to size N.
Standard System Action: Comment and con-
tinue.

OVERFLOW: This condition occurs when the

exponent of a floating-point number exceeds
the permitted maximum, as defined by the
implementation.

In some implementations, the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Undefined.

Standard System Action: Comment and raise

the ERROR conditicn.

This condition is raised by conver-
between data types, or between dif-
fering bases, scales, or precisions. The
condition arises when a value is assigned
to a data item or during input/output, with
a loss of high-order bkits or digits.

SIZE:
sions

The SIZE condition should be distingu-

Ty
ished from FIXEDOVERFLOW that occurs during

arithmetic calculations. A value too large
for the field to which it is assigned will
raise a SIZE condition on assignment,
regardliess of whether there was a FIXEDOV

ERFLOW in the calculaticn of the value.
FIXEDOVERFLOW depends upon the size of
fixed-point numbers allowed in the implem-
entation. SIZE depends upon the declared
size of the item of data receiving a value.

Result: The result is undefined.

Standard System Action: Comment and raise

the ERROR condition.

UNDERFLOW: This condition occurs when the
exponent of a floating-point number is
smaller than the permitted minimum, as
defined by the implementation.

The condition does not occur when equal
numbers are subtracted (often call signifi-
cance error).

In some implementations, the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Zero.

Standard System Action: Comment and con-
tinue execution.

ZERODIVIDE: This condition occurs on an

attempt to divide by zero. The condition
does not distinguish between fixed-point
and floating-point division; either can
cause it.

In some implementations, the condition
may be detected by hardware interrupt, in
others by special coding.

Result: Undefined.

Standard System Action: Comment and raise

the ERROR condition.

INPUT/OUTPUT CONDITICNS

The following conditions are always ena-
bled and cannot appear in prefix 1lists.
The condition establisned refers to the
file value, and not necessarily to all
files having a common identifier (e.g.,
file parameters). It is not possible to

override a condition by a new setting in
the same block, using a different identifi-
er to refer to it.

ENDFILE (filename): This condition may be
raised during any GET or READ operation,
and is caused by an attempt to read past a
file delimiter. It indicates that there is
no more data on the file.

The end-of-file status remains until the
file is <closed. Sukseguent GET or READ
statements will immediately raise the con-
dition. On return from the on-unit, proc-
essing will continue at the next statement.
raise

Standard System Action: Comrent and

the ERRCR condition.

(filenarme): This condition is
raised by a PUT statement when an attempt
is made to start a new 1line bLeyond the
limit specified for the current page by the
PAGESIZE option in an OPEN statement. The
current line becomes one wnore than the
expression specified with the PAGESIZE
option. The condition can bke raised by
data transmission (with associated format
items--if edit-directed transmission), the
LINE option, or the SKIP option. It is
raised only once per cage.

ENDPAGE

If raised by data transmission, then on
return from the on-unit, the data is writ-
ten on the current 1line, which may have
been changed by the cn-unit. If raised by
LINE oxr SKIP, on return, the action speci-
fied by LINE or SKIP is ignored.

Standard System Action: Start a new page.

TRANSMIT (filename): This condition may be
raised during any input/output operation,
and is caused by a permanent transmission
error con the srecified file. In STREAM
input, it is raised after assignment to
each data item cr record which is poten-
tially of incorrect value because of the
transmission errcr. On return from the
on-unit, processing will continue as if no
error has occurred.

Standard System Action: Comrmrent and raise

the ERROR condition.

This condition
is raised on any OPEN statement if the
named file cannot be orpened. An attempt
will have been made to copen all other files
referred to in the same OPEN statement. On
return from the on-unit, processing will
continue with the next statement. If this
condition is raised for more than one file
in the same OPEN statement, on-units will
be executed according to the left-to-right
order of appearance of the filenames in

UNDEFINEDFILE (filename):

| that OPEN staterent.

Appendix 3 161

Sstandard System Action: Comment and raise

the ERROR condition.

NAME (filename): This condition may be
raised on data-directed GET statements. It
is caused by an unrecognizable identifier
in the input or by an identifier not in the
associated data list. The condition is
raised at the time the error occurs. On
return from the on-unit, the execution of
the GET statement is resumed with the next
data field in the stream.

By using the DATAFIELD built-in function
in the ON unit, the programmer may access
the data field which contained the incor-
rect name.

Standard System Action: field

and comment.

Ignore the

KEY (filename): This condition may be
raised by any keyed record operation. It
is raised in the following cases:

1. A READ for which the key is not found

2. A WRITE or LOCATE for
already exists

which the key

3. A REWRITE for
found

which the key is not

4. A DELETE for
found

which the key is not

On return from the on-unit, no further
action is attempted, and control passes to
the next statement.
Standard System Action: Comment and raise
the ERROR condition.

RECORD (filename): This condition may be
raised by any READ or REWRITE operation.
It is raised when the record contains more
or less data than the specified variable
(i.e., the size of the variable differs
from the actual record size).

The ONCODE built-in function returns an
indication of whether the record variable
was less than or greater than the record in
size.

Before the on-unit is invoked, the fol-
lowing action takes place:

1. If the wvariable cannot contain the
record, the excess data of the record
is lost.

2. If the variable is greater than the
record in size, the excess data in the
variable 1is not transmitted on output
and is unaltered on input.

162

Standard System Action: Comment and raise

the ERROR condition.

PROGRAM CHECKOUT CCNDITIONS

SUBSCRIPTRANGE: This condition occurs when
a subscript is evaluvated and found to lie
outside its specified kounds.

The condition does not distinguish
between values that are too 1large and
values that are tco small.

Note that if mcre than one subscript is
associated with an identifier, e.qg.,
A(I,J3,K), the occurrence of a SUBSCRIPT-
RANGE condition 1is signalled after each
subscript has been checked.

Result: Undefined.

Standard System Acticn: Comment and raise

the ERROR conditicn.

CHECK (identifier-list): A statement prefix
specifying this condition wmway only be
applied to PROCEDURE or BEGIN statements.

In the identifier list, each identifier

is one of the following:

a statement lakel constant
an unsubscrirted wvariaktle
resenting a scalar,
structure
an entry lakel

name rep-
array, or

Note: The identifier list ray not contain
based variables, forwral parameters, or data
having the DEFINED attribute.

Each item in the 1list is, in effect,
enabled independently. It fcllows, there-
fore, that each item in the list can also
be disakled independently. 1In other words,
a REVERT statement can be used to change
the ON action for c¢ne or more items in the
identifier list.

If a structure identifier or an array of
structures identifier appears in the iden-
tifier list of a CHECK prefix, such a
prefix 1is equivalent to a CHECK prefix
whose list contains, in the order in which
they were declared, the base elements of
that structure or array of structures. For

DECLARE 1P, 2C, 2R, 2S;
then

CHECK (P)
is equivalent to

CHECK (Q,R,S)

Statement Label Constant: For a statement-
label constant, the condition 1is raised
prior to the execution of the statement to
which the label is prefixed. If the 1label
is prefixed to a non-executable statement,
no condition will be raised.

Variables: For identifiers representing
variables, the condition is raised whenever
the value of the variable, or any
generation of any part of the variable, may
have been changed by any statement within

the scope of the prefix.

The condition will be raised by the
explicit reference +to an identifier ID in
the circumstances listed Lelow, where 1ID
is:

an identifier in the list

an identifier representing a structure
or element contained by, or con-
taining, an identifier in the list

The reference to ID may be
or qualified.

subscripted

The condition will ke raised for ID if:

1. ID appears on the left hand side of an
assignment statement. (This applies
to assignment BY NAME even if the
identifier mentioned does nct appear
in the final expansion of the state-
ment.)

2. ID 1is set as a result of a pseudo-

array, pseudo-structure, or pseudo-

variable appearing on the left hand
side of an assignment.

3. ID appears as the control variable of
a DO statement (or ID 1is set as a
result of a pseudo-variable appearing
as the control variable of a DO loop).

list of a GET

4. ID appears in the data

statement.
5. ID is altered by data-directed input.
6. ID appears as the second argurment of a
DISPLAY statement.

7. ID appears as a STRING option of a PUT
statement.

8. ID 1is passed as an argument to a
programmer—-defined procedure, no dummy
is created, and the procedure
terminates with a RETURN.

the SET
or LOCATE

9. ID appears in
ALLOCATE, READ,

option of an
statement.

However, the condition is NOT raised
under any of the following circumstances:

1. If the wvalue of a variable defined
upon ID or ugpcn rart of ID changes
value in any of the ways described
akove.

2. If the value of a variable upon which
ID is defined changes value.

3. If a parameter which

changes value.

represents ID

4. 1If ID appears in a GO TC or RETURN
statement c¢xr any staterent which
involves the execution of a GO TC or
RETURN staterent.

Each conditicn is raised after the
statement which caused it to ke raised has
been executed. (Note that an IF statemwent
is considered terwinated just prior to the
executicn of the THEN or ELSE clause, and
an ON statement just prior to the ON-unit
specification.) If the staterment has a
task option, the condition is raised when
the attaching task regains ccntrol. If the
statement is a DC statement, the condition
is raised each timre control proceeds
sequentially toc the statement following the
DO statement. If the DC specifies itera-
tion, the conditicn 1is raised once for
every iteration.

No statement cother than a DC statemeni
can cause a ccnditicn to ke raised more
than once for the same identifier. If a
statement causes a CHECK condition to ke
raised for several identifiers, then the
conditicns will ke raised in the left-to-
right order of arrearance of the
identifiers in the statement.

Entry Labels: For an entry 1label, the
conditicn is raised prior to each invoca-
tion of the entry lakel. The ccndition is
raised only if the entry label is invoked
by the name given in the ON list.

Result: Continue. The statement is exe-

cuted normally.

Standard System Acticn: If the identifier

is a statement lakel cr an entry namre, the
identifier will be printed on a debugging
file. Label wvariakles, TASK, and EVENT
names are treated in the same manner.

If the identifier represents data other

than that menticned akove, the identifier
and its new value will be printed cn a
debugging file in the format of data-

directed ocutput.

Appendix 3 163

LIST PROCESSING CONDITIONS

The following
enabled and may not appear in a
prrefix.

condition is always
condition

AREA: This condition is .raised when an
attempt is made to allocate storage within
an area defined by an area variable, and
sufficient storage does not remain within
the area.

Standard System Action: The ERROR condi-

tion is raised.

PROGRAMMER-NAMED CONDITIONS

CONDITION (identifier): This condition is
always enabled and may not appear in a
condition prefix. The identifier is speci-
fied by the programmer, and is EXTERNAL.
The condition is raised by the execution of
a SIGNAL statement having the same iden-
tifier.

Standard System Action: Comment and

tinue.

con-

164

SYSTEM ACTION CONDITICNS

The following ccnditicns are always ena-

bled and may nct appear in a condition
prefix.
FINISH: This condition is raised immedi-

ately before the rmain procedure terminates
by executing a STCP, RETURN, END, or EXIT
statement. If an CN-unit for this condi-
tion is specified, it is executed as part
of the +task in which the interrupt takes
place. Upon normal completion of the CN-
unit, the system terminates the major task.

Standard System Action: Terminate the

major task.

ERROR: This condition 1is raised when a
major task is forced to terminate bLecause
of some error situation. If an ON-unit is
specified for this condition, then wupon
normal completicn of this unit, the systen
raises the FINISH condition.

Standard System Action: Raise the FINISH

condition.

AFPENDIX H4: PERMISSIBLE KEYWCRD ABEREVIATIONS

Abbreviations are provided for certain
keywords. The abbreviations themselves are

1Tr perrr 13 3
keywords and will be recognized as

synonomous in every respect with the full
keywords. The abbreviated keywords are
shown to the right of the full keywords in
the fellowing list.

ABNORMAL ABNL
AUTOMATIC AUTO
BINARY BIN
CHARACTER CHAR
COMPLEX CPLX
CONTROLLED CTL
CONVERSION CONV
DECIMAL DEC
DECLARE DCL
DEFINED DEF
ENVIRONMENT ENV
EXTERNAL EXT
FIXEDOVERFLOW FOFL
INITIAL INIT
INTERNAL INT
IRREDUCIBLE IRRED
OVERFLOW OFL
PICTURE PIC
POINTER PTR
POSITION POS
PRECISION PREC
PROCEDURE PROC
REDUCIBLE RED
SUBSCRIPTRANGE SUBRG
UNDERFLOW UFL
UNDEFINEDFILE UNDF
VARYING VAR
ZERODIVIDE ZDIV

Arpendix 165

APPENDIX 5: THE 48-CHARACTER_SET

The characters that make up the
48-character set are the same as those that
make up the 60-character set except for
certain restrictiomns.

The following characters are not

included:
Percent %
Colon :
Not 1
Or |
And &
Greater Than >
Less Than <

Break character -

Semicolon :
Number sign #
Commercial At sign a
Question mark ?

The following three

characters are
replaced as indicated:)

60-Character Set 48-Character Set

.
-
.

The two periods which replace the colon
must be immediately preceded by a blank if
the preceding character is a period. The
two slashes that replace the percent symbol
must be immediately preceded by a blank if
the preceding character is an asterisk, or
immediately followed by a blank if the
following character is an asterisk. The
sequence "comma period" represents a semi-
colon except when it occurs in a comment or

166

character string, cor when it is immediately
followed by a digit.

The following character comrbinations, as
used in the 60-character set, are replaced
in the 48-character set by alphabetic equi-
valents as indicated:

60-Character Set 48-Character Set

> GT
1> NG
>= GE
= NE
<= LE
< LT
1< NL
T NOT
| OR
& AND
11 CAT
-> PT

The above words are "reserved" in the
48-character set; that is, they must not be
used as programmer-sprecified identifiers.

In each case, one or more blanks must
immediately precede the alphabetic operator
if +the preceding character would otherwise
be alphameric, and one or more klanks must
immediately follow if the following charac-
ter would otherwise ke alphameric. Thus,
to indicate the comparison of the variakles
A6 and BQ2Y for inequality, one would write
A6 NE BC2Y, but nct A6NEBQ2Y, A6 NEBQ2Y, or
A6NE BQ2Y. As the equal symbol is usable,
however, the comparison of these two varia-
bles for equality may ke written A6=BQ2Y.

The break character, commercial at-sign,
and nurker sign are not used and conse-
quently may not be ermployed in identifiers.

APPENDIX 6: ANNOTATED EXAMPLES

1 UPDATE: PROCEDURE;

2 DECLARE CHANGE FILE SEQUENTIAL
UNBUFFERED RECORD,
3 MASTER FILE INPUT BUFFERED
KEYED (10),
4 NEW MASTER FILE BUFFERED
) KEYED (10),
5 1 CHANGE_REC,
6 2 CHANGE_KEY CHARACTER
{iQ},
7 2 CHANGE_INFO CHARACTER
(50),
8 MASTER_KEY CHARACTER (10),
9 MASTER_INFO CHARACTER (50)
CONTROLLED (IN_IDENT),
| 10 REC_TEMP CHARACTER (50),
11 STATUS BIT(1) INITIAL('0O'B);
12 ON ENDFILE (CHANGE) BEGIN;
13 IF STATUS = '1'B
14 THEN GO TO FINISH;
15 STATUS = "1'R:;
16 CHANGE_KEY = HIGH (10);
17 END;
18 ON ENDFILE (MASTER) BEGIN;
19 IF STATUS = '1'B
20 THEN GO TO FINISH;
21 STATUS = '1'B;
22 MASTER_KEY = HIGH (10);
23 END;
24 OPEN FILE (CHANGE) INPUT;
25 Ll: READ FILE (CHANGE) INTO (CHANGE_REC);
26 L2: READ FILE (MASTER) SET (IN_IDENT) KEYTO (MASTER_KEY);
27 L3: 1IF CHANGE_KEY = MASTER_KEY
28 THEN DO;
29 MASTER_INFO = CHANGE_INFO;
30 WRITE FILE (NEW_MASTER) FROM
(MASTER_INFO) KEYFROM (MASIER_KEY):
31 GO TO L1;
32 END;
33 IF MASTER_KEY<CHANGE_KEY
34 THEN DO;
35 WRITE FILE (NEW_MASTER) FRCM
(MASTER_INFO) KEYFROM (MASTER_KEY);
36 GO TO L2;
37 END;
38 /* MASTER_KEY>CHANGE_KEY*/
39 REC_TEMP = CHANGE_INFO;
40 WRITE FILE (NEW_MASTER) FROM
(REC_TEMP) KEYFROM (CHANGE_KEY);
43 READ FILE (CHANGE) INTO (CHANGE_REC);
u2 GO TO L3;
43 FINISH: CLOSE FILE (CHANGE), FILE (MASTER), FILE (NEW_MASTER):
uy STOP;
u5 END UPDATE;
Exarple 1. An Update Procedure (line numbers are for reference only,

and are not a part of the program).

Appendix 6 167

Example 1 1is a simple update procedure
to create a new master file from an exist-
ing master file, making changes to existing
records and adding new records to the file.

In 1line 2, the identifier CHANGE is
declared to be a filename associated with a
sequentially organized data set. All of
the attributes, except for the function
attribute, are declared explicitly in the
DECLARE statement.

In line 3, MASTER is declared to have
the INPUT, BUFFERED, and KEYED attributes;
the key of each record is 10 characters in
length. The RECORD and SEQUENTIAL attri-
butes can be assumed, because the BUFFERED
attribute is explicitly declared.

The RECORD and SEQUENTIAL attributes can
be assumed for NEW_MASTER (line 4) since
BUFFERED is declared. No function attri-
bute can be assumed.

The major structure CHANGE_REC is
declared in lines 5-7, with the elements
CHANGE_XEY and CHANGE_INFO. The key of the
update record will be read into CHANGE_KEY,

and the update information into
CHANGE_INFO.
MASTER_KEY (line 8) is a character-

string variable into which the key from
records in MASTER can be read for
comparison with keys from records in
CHANGE_REC.

MASTER_INFO (line 9) is a based variable
that describes the record in a buffer. The
CONTROLLED attribute specification contex-
tually declares the pointer variable
IN_IDENT, which can be used to specify the
position of the data in the buffer.

REC_TEMP (line 10) is used, during exe-
cution of the program (lines 39 and 40), as
a temporary area from which data can be
written.

STATUS (line 11) 1is a program switch
that is initialized with the bit constant
'0'.

All of the files declared have the
default scope attribute of EXTERNAL; all of
the variables have the default scope attri-
bute of INTERNAL and, with the exception of
MASTER_INFO, the AUTOMATIC storage class
attribute.

12 through 23, ON ENDFILE
statements establish on-units for the end-
of-file condition for CHANGE and MASTER
files. Their execution is discussed below.

In 1lines

The OPEN statement (line 24) opens
CHANGE file and explicitly adds the INPUT
attribute to the filename CHANGE.

168

The READ staterent (line 25) transfers
the record from the CHANGE data set direct-
ly to the structure CHANGE_REC. There is
no data conversion; the assumption is that
the first 10 characters of the record
represent the key and the next 50 charac-
ters represent the update information.

The READ statement in 1line 26 first
causes implicit opening of MASTER file. It
then reads the recocrd into a buffer and
sets the pointer variable IN_IDENT to point

to the record in the buffer. 1In effect,
MASTER_INFO is allocated and assigned.
consequently, any reference to the based

variable MASTER_INFO is a reference to the
record in the buffer. The READ statement
also transfers the key of the record to the
character-string-variable MASTER KEY.

The key of the record read from MASTER
is compared with the key of the record read
from CHANGE (line 27). If they are the
same, indicating that the MASTER record is
to be wupdated, the update information
replaces the old record in the buffer (line
29), and the updated record is written in
the NEW_MASTER data set (line 30).

The NEW_MASTER file is not explicitly
opened, Lkut the first execution of a WRITE
statement that refers +to NEW_MASTER will
cause implicit opening of the file and will
contextually supply the OUTPUT function
attribute +to NEW_MASTER. The file opening
could be caused by any of the WRITE state-
ments (lines 30, 35, 40), depending upon
which is executed first.

If the keys of the two records agree,
control is returned (line 31) to the first
READ statement, and two new records are
read. If the keys indicate that the update
record does not refer to the current record
in MASTER, a test must be made to determine

if the CHANGE record refers to a later
MASTER record or if the CHANGE record
actually must create a new record in the

NEW_MASTER data set. If MASTER_KEY is less
than CHANGE_KEY (line 33), it indicates
there is no change to be made to the
current MASTER record, and it is written
(line 35) from the buffer into NEW_MASTER
exactly as it was read from MASTER. Con-
trol is then returned (line 36) to read a

new record from the MASTER data set.

If neither of the two IF statements
(lines 27 and 33) is true, MASTER_KEY must
be greater than CHANGE_KEY, which indicates
that the CHANGE record is to be added to
the data set in NEW_MASTER. CHANGE_INFC is
assigned to REC_TEMP and the record is
written in NEW_MASTER (line 40).

After the new record is written, another
record is read from the CHANGE data set,

and control is transferred (line 42) back
to the first IF statement.

When the first end-cf-file condition is
raised, the program switch STATUS is set in

22) through use of the HIGH kuilt-in func-
tion which returns a character string (in
this case, of length 10) of +the highest
characters in the collating sequence.

the on-unit (line 15 or 21), and the
appropriate variable (CHANGE_KEY or When the second end-of-file condition is
MASTER_KEY) is changed so that it always raised, the test cf STATUS (line 13 or 19)
will compare high in subsegquent IF state- results in a transfer toc FINISH (line 43}
ments. This is accomplished (line 16 or and all files are explicitly closed.
1 LIST: PROCEDURE (AUTHOR, NUMBER_FPUBS) ;
2 DECLARE AUTHOR CHARACTER {30),
3 PUBLICATIONS FILE DIRECT INTERNAL KEYED(30),
4 LISTING FILE STREAM PRINT,
5 FIRST_TIME BIT (1)INITIAL ('0°'B) STATIC,
6 AUTHOR_PUBS (NUMBER_PUBS) AUTOMATIC CHARACTER (100);
7 IF FIRST_TIME = '0'B
8 THEN DO;
9 OPEN FILE (LISTING) LINESIZE (120) PAGESIZE (58);
10 PUT FILE (LISTING) EDIT ('AUTHOR PUBLICATICONS') (COLUMN (5), 3d);
11 PUT FILE (LISTING) LINE (2);
12 FIRST_TIME = '1'B;
13 END;
i4 ON ENDPAGE (LISTING) BEGIN;
15 PUT FILE (LISTING) EDIT
(*CONTINUED ON NEXT PAGE',
'AUTHOR PUBLICATICNS CONTINUED")
(SKIP, A, PAGE, COLUMN (5), A);
16 PUT FILE (LISTING) SKIP;
17 END;
18 IF AUTHOR = (30)*'"*
19 THEN DO;
20 PUT FILE (LISTING) EDIT ('END OF AUTHOR INDEX') (SKIP (2), A);
21 CLOSE FILE (PUBLICATIONS), FILE (LISTING);
22 RETURN;
23 END;
24 PUT FILE (LISTING) EDIT (AUTHOR)
(SKIP, COLUMN (10),R);
25 IF NUMBER_PUBS>0
26 THEN DC;
27 READ FILE (PUBLICATIONS) KEY
(AUTHOR) INTO (AUTHOR_PUBS);
28 PUT FILE (LISTING) EDIT (AUTHOR_PURS)
(R(PUB));
29 RETURN;
30 END;
31 PUT FILE (LISTING) EDIT ('NO PUBLICATIONS') (R(PUB));
32 PUB: FORMAT (SKIP,COLUMN(15),R);
33 END LIST;
Example 2. An Information Retrieval and Listing Procedure (line nurbers are for

reference only, and are not part of the program).

Appendix 6 169

Example 2 is a simple information
retrieval and listing procedure. It
extracts information from a file of PUBLI-
CATIONS, based upon requests indicated by
the parameters AUTHOR and NUMBER_PUBS
passed to the procedure when it is invoked.
The information subsequently is printed in
a LISTING file.

The declaration of the parameter AUTHOR
(line 2) indicates it is a character string
of length 30. This parameter is used as a
key for locating publication information in
the PUBLICATIONS data set. Note that the
parameter NUMBER_PUBS is implicitly
declared with the FIXED, BINARY, and REAL
attributes.

The PUBLICATIONS file is declared (line
3) to be a DIRECT file, with 30-character
keys that represent the authors' names.
The file 1is declared to have the INTERNAL
scope attribute; the RECORD attribute is
implied from the other attributes. The
file LISTING is explicitly declared (line
4) with the STREAM and PRINT attributes,
with PRINT implying OUTPUT.

(line 5) as a
control initial

FIRST_TIME is declared
program switch used to
actions in the procedure.

AUTHOR_PUBS (line 6) is a one-
dimensional character-string array into
which the list of publications is read and
from which the list is printed. Since it
has the AUTOMATIC storage class attribute,
it is allocated each time the procedure is
invoked, with the number of elements
depending upon the current value of
NUMBER_PUBS, which is the number of publi-
cations by the author named.

The IF statement (line 7) tests the
switch FIRST TIME to determine its value.
The THEN clause (lines 8 through 13) will
be executed only once, the first time the
procedure is invoked. Since FIRST _TIME has
the STATIC attribute, its setting will
remain even after the procedure is termi-
nated at the end of each execution.

The THEN clause includes the opening of
the LISTING file (line 9), which sets the
length of lines and the number of lines to
be printed on each page of the 1listing.
The initial heading is written (line 10),
with an 1indentation of five characters;
then the PUT statement (line 11) makes the
current line become 1line two. Following

170

is set (line 12) so that

that, FIRST_TIME
subse-

the THEN clause will be skipped in
quent executions of the procedure.

The ON ENDPAGE statement (line 14) must
be executed each time the rrocedure is
invoked to «reestablish the on-unit (lines
15 through 17). The on-unit provides for
printing a footing, 'CONTINUED ON NEXT
PAGE' at line 60 of the page (the ENDPAGE
condition arises when the current line is
at PAGESIZE + 1, and the SKIP format item
provides another skip). Following printing
of the footing, the PAGE format item causes
creation of a new current page, and the
heading 'AUTHOR PUBLICATIONS CONTINUED' is
written with an indentation of five charac-
ters. The next PUT statement (line 16)
causes skipping of another line.

The IF AUTHOR = (30) "' statement (line
18) is a test of a convention of the
program: when the listing is complete, the
invoking procedure calls LIST and passes an
argument consisting of 30 blank characters
to the parameter AUTHOR. At that point,
the "END OF AUTHOR INDEX' character string
is printed, after skipping two lines, and
the PUBLICATIONS and LISTING files are
closed (line 21).

If there is a listing to be printed, the
PUT statement (line 24) prints the name of
the author with an indentation of 10 char-
acters. If thexre are publications to be
listed (determined by the IF statement in

line 25), the 1list cf publications is read
from the PUBLICATICONS data set (line 27),
using the author's name as a key. The data

is read into the array AUTHOR_PUBS.

The gpublications then are printed (line

28) wusing the remote format item that
refers to the FCRMAT statement (line 32).
The format items in the FORMAT statement

specify that a line is to be skipped, and
each publication (each elerent of the
array) is to be printed with an indentation
of 15 characters.

When printing is
returned to the
29).

complete, control is
invoking procedure (line

If the author's name is to be written,
but with no puklications, the DO group is
skipped, and *NO PUBLICATIONS' 1is printed
where the first publication would otherwise
have been printed.

(If more than one page number is given, the primary discussion is listed first.)

abbreviation of keywords ceeeceees 166
ABNORMAL attribute00.... 50,66,145
abnormality ..ccccccccccscsccacsas .. 145,50

defaults fOrcieeecaes eesaacss 50,66
access attributesS ...iieeccecacecsass cees. 62
activation;

see pblocks, activation
ACTIVATE compile-time statement 136

additive file attributes 84
ADDR built-in function eesesss 155
ALIGNED attributecieeeeesseccsccaas 55
ALLOCATE statement cecens eeseses 103
allocation ...veeeeann cecceccsascanna 75,10
also see storage class attributes
of parameters P I 924
in tasks cesessasecascns .. 79,144
test forc0e0... teseecsceaassas 156,104
ALLOCATION built-in function 156,104
alternative file attributes 8U
AREA attribute ceescescacoaans 63,146
AREA condition ccceeececencase eese. 164,105
area data@ .ceeeecceocssn- ceseans 30,63,104,105
Arguments ..c.ececceccccccans ee. 71,72,140,141
QUMY @ e v eeeeneececccncaccanans .. 73,140
evaluation of subscrlpts ceeesesaess 140
list ceeee.. ceteocccncaanaans cecececess 608
arithmetic built-in functions 150
arithmetic data ..cee... ceseeanane ceeacas 26
attributes ...ccceecenan cececccnnns ce. 43
arithmetic operationsc.ceeceecann 31
AYTAY . eseseoscscecccccss teesscsssccnes 22,10
allocation ceessccccacccacns 54,55
assignment ...cececcoacs eeeo 106,107,109
bounds ...evereccancscannans cesees 22,49

also see asterisks

CroSS Section Of tieiiecccaacnns ceae. 24
defining .eveeeececns cescersescans 56,57

AimensSioNS .ciceeincaceccccanannaas 22,49
expressions;
see expressions

manipulation eeececsccnaens .. 155
Of Structuresceeeeascees ceaeea 23
assignment
AYTAY ecoeeecsccecsnncs eeeaase 106,107,109
compile~time ...ieieercerananna ee... 135
pointer csecasscseccses 106,109
scalar ceecstcessccsnacnce ceesas 106
Statement cesecscsssssesaes 106
evaluation ofcccieeennceaa.. 107
statement-labelc0c00000 . 106,108
String c.eeecnieiiiiann. ceeeecaean eeo 107
Structure ...cececeaces ceeenoena 106,108
asterisks
for bounds or length 142,449,104
for cross sections of arrays 24
With based variables 55,104
with INITIAL attributeeceeeeaeen. 60
with USES or SETS attributes 51
asynchronous operationseeeececes eeee 77
attacned task c.iceeccncecnaanaas 78,11,145

attaching task «..ceeeeeeeeceeass 78,111,145
attributes 2R L;'-l 8u 17

.................... SS T2y C

also see individual attribute
defaults fOr cieiececccaancnnsncncas
also see individual attribute
factoring of ceecamcsccensaans 39
with compile-time DECLARE statement 134
AUTOMATIC attributes;
see allocation, storage class attributes

65,9

BACKWARDS attributec.cccceaas 63,62,84
BACKWARDS OpPtiOn eeeeeecececenccannsaass 123
base ¢.ieciiaaen. T 26,43
based variable 29,54,64,97,104,1046
begin bloCKk weeeereieencinncnaas ... 19,110
BEGIN statementccceece.. eeeesss 110,19

BINARY attribute;
see scale

BIT;
see string attributes
bit-string data .ceeeececeans. ceeceeaeae 28,47

bit-string operationsc..cceeeceassss. 33
blanks
use of cescecns ceceen ceeeas 17
with qualified names ..c.ccceccccccss 25
with structure level numbers 23
in picture specification 157
DlOCKS ceveeeesccccancsscnccanensanses 19,10

activation ofccieacian.. ceceeea. 8
begin ceccanaaa cecsscansassesss 19
nested ...ceceen. ceecesccscsccncnseess 20
PYOCEAUYE ..ccceceascccccasacsacasaccnss 19

termination of 74,115,118

bounds;
see array

overriding DECLARE statement 104

Of pParameters ...ceceeccecacecaccaaas 142
BUFFERED attribute .(...cieceeee.s. 63,84,85
BUFFERED OptioOn eeeeeccseccccsccassases 123
buffering attributescccieecanannn. 63
BUILTIN attributecceceeceaa.. 53,70
built-in functions ..e¢eee..... 150,17,53,69

BY and TO ClausesS cescacccssennse 114
BY NAME option cesscscenen «.. 106,108
CALL OptiON eeceecccacessess 59,20,65,68,69
CALL statementceeececcccascs eeessss 110

for creating tasksS .cciecececncceacaaa 78
CELL attribute ...ccceecccen eessesess 028,30

cell data .cieececsccsercsecceaassas 30,58,1481
CHARACTER;

see string attributes

character string

[0 F- 8 o - N cecesasscccas 28,47
picturesc.. B, esessas 159
also see string
characters
alphabetiC cicieiectrecennccocananeaas 14
alphameriC cieeceencsaacanaaas ceesess 14

data character Setc.cecescsneacas 16
48-character Setccececcsaacscacs 15

language character set B
60-character set ..icceeecceaces P
special L...i.iiiiiiiiiicieaisccaaaaas 14

CLOSE statementc... P e
coded form of arithmetic data 26,31
collating SEJUENCE .ieeeevooocacens ceeees 16
COLUMN format itemccc.c.. cessaasees 96
COMMENT +veeoaccsnaconannss i
comparison operations eeceesess 33
compile-time activity ee.. 132,11
ACTIVATE statement ...cccececcieacens 136
assignment statement 135
DEACTIVATE statement ceacees 136
DECLARE statement e i 1.
DO-QYOUP eteveeecccccoconsseansassenss 137
30 TO statementiieieericecenacens 136
IF statement cesseens eeess 137
INCLUDE statement ceeecena eeee. 137
null statementcc..... esee. 137
procedure ceeeesacessnsecess 138
PrOCESSOY cevsecncaccasnnsa veeeaseeasas 132
replacement ceasessescssaccan 133
SCANNING cveeenseceensese eececsasseess 133
SUBSTR built-in function 139
variables st e ctiacccccencanaaas 134
COMPLEX attribute;
see mode
complex numeric data ceetenscecsssss 90
COMPLEX pseudo-variableceeeeecenn. 103
compound statement cecesessesa. 18
computational conditions 160
concatenation operations I
condition built-in functions 155
condition prefixes «. 79,18,121,160
conditions;
see ON-conditions
constants .seceee. ceeeseae ceccencanene 22,26
bit-string teceesscecennanes 28
character-string ...c.ceeeccecacencaas 28

fixed-point binary ..cecececenceeeaaas 27
fixed-point decimal ...cceeecevencass 26

floating-point biNAry eececececceace. 27
floating-point decimal ceeeess 27
imaginary eecececeeceaes cesesescsaccnas 27
real aritnmeticiceiciciicenacanan 27
statement-labelcccieciee.. 28
Sterling ceeeieeecncecannccen ceeanees 27

contained iN cecieeececsccsasssccansaaas 20
contextual declarationsS ..cececeesesecsas U0
also see declarations

control
format itemscc0000.. ceceneaascss 96
PIOgraM eeeeessesseas Y
return of ...cciccecana. eessess 127,69,70
sequence Of ...eieieiicecceceanneann 102
statements ceceecaacas vesee. 101

CONTROLLED attribute ...ceeececeen ... 54,105

also see storage

CONVErSiON tceeaccccccses ceecosccecanaans 32
arithmetic base and scaleicee.n 33
arithmetic mode ceeresssecesaans 32
integer c.eeeeee-s cecsseccacens ceeees 32
in expressions cecseensecaane 31
tYPE ceeeenccenns P 1
with RETURN statementcs.... 128

COPY Option .ceeeceeecens P I It -

correspondence definingc..... e.a. 56

COUNT built-in function esseeanss 156

cross sections;
see array

172

data

Aggregates c.eeeieccceacencccccan ceeees 22
=5 of <T- S cevscescascancsccns eesees 30
arithmeticC it.eiiieeeeeascsaacaaaascee 26
Dit=String eeeveeeeceoeas tecceccsasas 28
cell ...ieeecenen A 10
character Set ..iciiieeeeeccacccannaceas 16
character-string ceeccos ceee. 28
coded arithmetic ...cececccccanes . 26,31
desSCription c.ccececerossccccansasesas 38
elements .c.cceecvcccccncas tesecscsecee 22
format itemsS ..cceeecececccnccccnnecas 93
1iSt teieeescacccescsccsnacacnnanaas .. 86
NUMEriC eeceamaceaens cesscacsccasse 26,31
pointer
specificationeicecicacas ceacecss 86
repetitive specification for 87
statementsS ...eceseecccaccnscccass 101
statement-labelccccccccnacas ce. 28
transSmiSSiON ceeeeesccccccaccccasnnsas 84
statements ceeececcccase eesescesasas. 101
4 o =1 S cecessescscsnnanes 26
default fOor ...ccceeececasasnnaas U5,65
data-directed transmisSsSion ..«c.cecses-.. 86
data specification forceceee... 90

“ececceeman cecctecssescasses 29

input ..ceveeeanen cteecncctscenacanes 91
length Oof field .eeeeeciiecececananaas 92
output c.eeceecen cececssesscncrasneces 91
data set cecscnssancas ceeeasas B4

DEACTIVATE compile-time statement 136
DECIMAL attribute;
see base
declarationS .ccceaceceacacsancsssnsassass 38
contextual c.cecececsccccassssnssnsas U0

explicit ciceeeeeieanan cencsmusasanaa 38
external .c..cccececccccans tecesceccans 41
impliCit ceceeceeieceecaccaaaneaacanaaas U1
multiple «....... ceceseccnann P
SCOpe Of ceeevecann cesvea teseecacacas U1
DECLARE statementceeceeececcececcaaes 38
compile-timeccce.n. ceceecaaans 134
default;
see attributes
DEFINED attribute csesaas ceesss 56
defined itemcc0c0.en eecesmcaasesaes 56
DELAY statement ..cecccececescccecosssecaaas 112
DELETE statement ...ceccac.s cccacese eee 112
delimitersS ceeeeecanaces cececccsasea eee. 15

descendence Of DlOCKS ..ieeecnsensaceaee 74
dimension attributecceccecnacaca.. 49

with ALLOCATE statementceeec... 104
DIRECT attribute ceesecscsscnsea eees 62
DIRECT OPtiON .eceeceieceecoscoscanaasnas 123
DISPLAY statementccecececccccecas.s. 113
DO grOUDS seccesasessccssscasnsacanas 19,113

compile-timec.c.... ceeeeeeeass 137
DO statementc.ceicecacen cccecee eee. 113
edit-directed transmissione..... 86,92

format ofc.... ceseecccanca. 93
editing;

see PICTURE attribute
SYMDOL1S ceeeeeceeecceancecncncnncnas 157
drifting cceacvmse cevease «see. 157
ELSE ClauSeS «cceeiesenccacsccncanceasars 119
nesting Oof c.eieeeierieeencneccecnnaa.. 119
enablece... ceeccaanessaccsaccccsnans 79
encompassing bloCkS .iciecececreaccnnaes 75

END statement ...ceeeececeeee cessecnssssss 115
USe Of vteveeeeeosccancccncanca seeevenn 21
ENDFILE condition ceesanes vesessss 161
ENDPAGE conditiOn ceeececececeseassonessas 161
ENTRY attributeccccense cesesccnn 52
declaration of c.eieeceannen
use of cecase ceccccccssscess 12,140
entry name eeeseeees 18,20,52,72,1040
GtEribDULES seeeecesecccecnnccnccancnns 52
default for ...ceeesee teesssessssssses D2
passing arguments tO ...iieciiieinan. 72
required for PROCEDURE statement ... 124
entry point
PriMAYY eececesesccsccscasssccancanas 20

SECONAAYY cecevsscnscssanans ceee. 20,116
ENTRY statement D B Y
ENVIRONMENT attribute cecsssesss 63
ERROR condition .ciieeiecececcccnascacan 164
evaluation

of argument subscripts 140

in array assignmentcececeaces 106

of assignment statement 107

of expressionsceee.. ceceseccsas 36
EVENT

attribute 0000 cesecae ce e 48

built-in functionceceaa.. vesees 156

Option ...ceecen. 78, 111 113,126,129,131

pseudo-variable00 000... 103,131
event NAMe t.ceeeveaceans ceesercaann 78,131
EXCLUSIVE

Attribute ..i.iiiiiiiiteteeaannansaans 63

[0 o3 o 1o + S s I
EXIT statement cetecessese. 116,74
explicit declarations;

see declarations
exponentiation--cceerccacnccnccecoas 32
EXPressions ...eiiececeicciececeacieesan. 31

ALLAY eoeesocscecccssccccosansanssans 35

as bounds or length ec.eeceecensn ceaes 143

evaluation ofiieeeerincneccnnnn 36

SCAlAY cveeeeieccccancaaaccanacannana 31

structure ceeeeccsccasnetssnanscan 36
extended values on assignment 106
EXTERNAL attributecceceeeeenccas S4,41
external declarationsS ...cecececcecccecccas 41
external names teeas e eeee. 20,041,65

scope Of cceeiennnn ceecececccancoseanan 41
external procedure ceeccaaaa.s 20,65
factoring

of attributes cesecseccsacas .. 39
file (.iciiiiiieiiian. eteeceacaccaenan .. 84

AttributesS ciieeeecieaennccanaceana 61,84

merging 0f ...iiiieeieeeiiecntnnancns 85

CloSing cieveccccccanns Cesteescenann 111

conditions ceeeeecececnnacaccacannca 161

NAMES & eueessecscccasncanascnassans 84,61

oOpening ..eeeciececeass ceseecaaeas 85,123

preparation statements ...c.cieceacs 101

specification ...eeceeen. cececcaan ee.. 61
FILE attribute ...eicecereecscencasacannns 61
FILE option .. 112,113,118, 120 123,125,126,

.............................. 129 130 131
filename ...ciiiiriinteeeronncsenanns 8&,61
FINISH conditioncececececacaancan 164

FIXED attribute;
sea scale
fixed-point;

see constants, precision, variables

FLOAT attrlbute,

see scale

floating-point;

see constants, precision, variables

form
coded
numeric field

format
of data-directed output 91,92
of list-directed I/0 ccieececaaacanses 89

format itemsScccececccccanccnca eeees 93
CONEYOL et eeessassaccennscasnsnsanas IO
[£= 4 oF- csessssascsessssnaes 93
YOMOLE .ieicasccanccencsesanassananseans J6

format 1ist c.ceeccicnsenccccccceansances 93

FORMAT statement e.cceee.s g e
label required fOr ...ccceccscencs.. 117

48-character Set .eeecececccsesccsecas 166,15

ceccsccssesscccscssscananse 26,31

ceteceasesacsaceses 26,31

FREE statement ...cececceccencescnccanss 117
FROM Option cceeiececaceccccncannns 129,131
fUNCtioN .iieiieeeeeanecscsccscncnanannsa 68
built-in ceseccccnccaas 53,69,150
gEeNeriC ceeeecess cesccsscass eeasssa 922,69

ProCedUre .ceececccccsaccacscccnnasasnas 69
termination ofccceciicnnnna.. 127
reference R -1

GENERIC attribute ...ccieieececccaceas 52,69
generic functions ...c..iceceiceicacenenes 69
arguments of the reference 52,69
GET statementciceeeeecececnncaceas 118
GO TO statementecieveceecnsaoesess 118
compile-time ...ieceiiieiaciannn ee.. 136
groups «.... cresecceceans ceecsscescsenses 19
DO gIOUPS eeeeccccaccsassnsasassss 19,113
single statement c.e..ecccecccasscaces 19

heading statements c..ceeecececeas PR 19

IDENT OPtiOn c.ceevececcnsecnaseeas 112,123
identifierS veeeceecccccsecaccsacacnaans . 16
attributes oficceceececcacaasaas 38
length of ...

B I

statement labels ceeeen ceeenn 16
KeyWordS ceceeeeeeeececscscssncacensas 16
IF statementcccceo.en ceececeesas 119
compile-time ...iicieeieiieniiannaaann 137
IGNORE OPtion .ee-eeeea. ceeeceeenceaaes 126
IMAG pseudo-variable ...iciieccecacancne 103
iMaginary NUMDErS .eieecececsccesascaacns 27

also see mode
implicit declarations;
see declarations
INCLUDE compile-time statement 137
infix operators;
see operators
IN ClAaUSE ceeveccnscaasnassae eeeessaeeas 103
INITIAL aAttribute .c.eeeeeeecsccasscansas 59
rules with ALLOCATE statement 10u
initial value for statement-label
AYYAYS cececeese ceeeccanceans esccmcenn 60
INPUT attributeccene... cesseccasens 62
INPUT option cececeascanacacaaans 123
input/outputciiiiiiieeenn. P - L
conditiONS ceececaecanas cecesasseace. 161
statements ceeececccns eesescceacasass 101
INTERN attribute tiiiieieiecanan ee. DO, 042

internal name teeesececscesacasenas U2
internal procedure ceecanan cenecans 20
internal toe... ceeans ceeaens ceeaeas 20
interleaving .c.ceeseeeeceeanss certecenass 25
interrupt ...cc.ciceeea.. 79,18,121,128,160

SYSEEM ceveneeenencsaconannen 80,121,160
INTO OPtiON teeereceeeacnncscsancnsesas 126
IRREDUCIBLE attribute 50,51,52,145
irreducible procedures-.-. .. 50,145
iteration cecieeciececcceccaans B I 1)

factorccceen.n. ceecaccsaane eeeee. 60
KEY condition ...eeeeeeaes csecssesscess 162
KEY Option .c..cieeeceacaeans 113,126,129,130
KEYED attribute ceseaas ceecoan 63,84
KEYED Option .teeceeeecaneceans eececsass 123
KEYFROM OpPtion .ceeeceeeececeen eeeee 120,131
KEYTO Option .ciiceeeieeieeneneccanacans 126
Keyword ceeeeeieeeecinececncnncanccannes 16

abbreviations of csesanee eeeee 165

SEeParating .eeeeecceeccccaccccancaaeas 17
known csecencna ceacen [
label .iiieeerceceeaccacconnscscssaccnnasn 18

also see statement label
required for FORMAT statement 117

LABEL attribute eseseacessesas U8
label prefixes teesesenncasess UO
length
data-directed data fields ...ccee.. .. 92
identifiersc0000. P I
list-directed data fieldsc... 88,89

overriding DECLARE statement 104
parameters

Strings ceececeacaaes ceeseaann cereeas 47

level numbers cesscann cesee 23,66
also see structures

LIKE attribute ...e.eceee.e. B o
LINE format item .ceciceccccccenccaccass 96
LINE option ceesaan ceeeeeean ... 125
LINESIZE Option teeeecececcans ceesesas. 123
list-directed

data specificationccc0ecec.... 88

input .c.ceeeane ceceesecsenacnnens 88

length of field ceecnans veescens 88

output0... cseecenn eerececaass 89

LransSMiSSiON ¢.veeecscscesacnscesaess 86
list processing

see also: ADDR, ALLOCATE statement, AREA

attribute, AREA condition, area data,

assignment statement, CONTROLLED,

FREE statement, NULL, POINTER attribute,

pointer data, pointer qualification
LOCATE statement ...ceecececececccancesss. 120
locking of records ceeess. 100,127

EXCLUSIVE attribute 63,100,127

NOLOCK Option ceecececeeceeeass. 127,100

UNLOCK statement 130,100,127
[11TeTe (= ceesesaceecsseeaasas 26,044
multiple declarationsecceeececanann 39
multiple labels ...ceeeeeneenn .. 18,116,124
NAaME condition ..eeceevccaces cesesecess 162
NAMES 4 eusoeesc osssssascssacsccs .. 16,24,41

EXternal ..ccececccececctscccnsacns .. 42

internal cectnennanna ceocosaes L2

qualified .eoceeecann ceseacsaresarsan 24

174

SCOPE Of tieerveeecicacancaasancenaaa U1
SIMPle teeciiececereaasncncnaancncoes 24
subscriptedciciiiciiceetacneeas 20

subscripted qualifiedciacaecan. 25

use of ceeeceaescsccacacacansees 43
nesting

of blocks ceeees ceecsea-aas 20,74

Of ELSE ClauSeS .ececcecesscsansnanee 119
NOLOCK OptiOn ..iescececsseasssesesnss 127,100
nonbased variable ceenscaa . 54,146
NORMAL attribute ...c..ceeeeeececec.s 50,145
NULL built-in functionccccecaee.. 156
null statementcceececcecaseenaas 18,120

compile-time ...cciciicecnnccansanss 137
null String ceccececeieeeecerccenacsnanss 28
numeric field arithmetic data 26,31

ON statementcccicececacansaansass 120
USe Of teeveeaneancanaas cesnnseas «ee. 80
ONCHAR pseudo-variablecceveeeeeee. 103
ON-conditionsesee... 18,79,121,128,160
also see ON statement
built-in functions ..e.cecccesecee.s 155
input/output s.ceeiiieceeeccananeans 161
list processing

cevecccsessencaseas 16U

nullification of ceeecee eseceeces 18
prefixes used withcc.c.. esese 18,79
program checkoutccceeceee... 83,162
programmer-defined «ess 83,164

with SIGNAL statement .c.eeceecsecess 129
ONFILE built-in functionccceceee. 155
ONKEY built-in function ..cccecceeceeses 155
ON=UNIit cuiveescecencscccasanaccanansaes 121

cannot be RETURN statement ..e...... 121
OPEN statement ceeseccscssanesas 123
operations

arithmetic tceeeeeeccececasssannacsas 31

AYYAY~AYYAY ececsocecsasecsacssmanceanse 3D

bit String c..ccececcaceececcaaaansas 33

COMPAYiSON ceevececesaacenncannaee 33,34

concatenation .c.ceccecccccccenceasas 34

SCAlar—arYay ec.eeceecceacecssscsnacasness 35

operators
arithmetic .sevieeeecsnnccascenannaaaas 15
bit string ..c.eceeceaes ceceemnns eees 15

COMPATIiSON ceveerenccncacenccnccncsss 15
INFIX ceeecceecvencecocccccsaneascaaaas 31
PrefiX cceeeeevcecccencscoscsecesasas 31
string ccescsccacanaas cececesss 15
OPtiONS c.icceeerrnenenccncsonccancanneas 17
also see individual options
OPTIONS attribute meescccscceanee 12U
output;
see input/output
OUTPUT attributecccececessca. 62,84,85
OUTPUT OpPtiON ..iccsececeacessscsaaasess 123
overlay defining .c.ceec... cesemacacnces 57

PACKED attribute ..ccieieeicecececveccnaeas 55
PAGE format iteMm ..cecececsceccssacaseaes 96
PAGE option cecccaccecna esese.. 125
PAGESIZE option I 2
PArametersS secieeecassacncecncsaanas 68,140
allocation of ...eciiecieann.n ceeee. 142
bounds and lengthcccceacaaa.. 142
controlled .c..ciceeeienecccnnanase.. 105
explicit declaration of 40
with ENTRY statementecceeeeesn.. 116

with PROCEDURE statement 124
percent symbol;

compile-time use 0fi.nieeanaa... 132
PICTURE attribute ...ccececeseceaeaeaas 45,157

with numeric data cccccacececcaaceaes H5

specification .c..ieieiecececaccnneas. 157

with string data ceecseeceeas U7
picture format itemsceceeicccecae.. 95
picture specification tables 157
POINTER attributeicciccececann 64,146
pointer data .ceccceccacaaes eee-. 29,604,146
pointer gualification sympbol 16,29
POSITION attributeecieceecreieeea... 58

PrecCiSion ceeeeeecececeecaacccacnaanes 26,44
in expressions ceeeeacenas 31
of format itemS .e.ccesevcssacssscaas 93
in picture specifications 46
of real arithmetic constantso 27

prefix
condition ..cececccaccanns 79,18,121,160
13DEL tevererenccnnncannn ereeaaan 18,40

prefix operators;
see operators
PRINT attribute ...cceeceacaceacacsas 62,84

PRINT option ceseveceesennenesanas 123
PRIORITY
built-in functioneeeeeecceea.. 156
option ceeeececeaaaans cesesaceeaas 718,111
pseudo-variable 0 000, 103
problem data cecsssacccsccass 26
procedure certceaeanas 68,19,124
activation ofiiiiiiiiiiiiiianann 74
compile-time ceeeaen cee.-.. 138,135
external ...ceiiiieciiiiactencneanaaas 20
internal cetetecccesscencans 20
invoCcation ...ceeccenccaacs ... 68,69,111

NAME +ceecssccansasassscsnnssacsscssas 20
PATAMEterS c.eeececeseccceassacsss 068,140
termination of 70,74,115,127
also see termination of blocks
PROCEDURE statementcceeceesceess 124,19

compile—time ...civeeccencccnscancans 138
Program ...ec.ee.. ceecsescaasecncanaes 21,11
control ceieiiiieeiennn ceeasesess 14,101
elements .teeeeieirceneansaanens ceees. 18
modification e c
structure e...... cesscsesssassssess 17,74

program-checkout conditions 162,83
program-control data2ccccceeccceccoa. 28

Prologues ceveeeeeeceoes ceeecenenas oo 144
pseudo-array «.e... ceceececancsncannns .. 106
pseudo-structureccceceveccecca.. 106
pseudo-variablescccceecccann eeee.. 103

PUT statementcecieceneacenncancaas 125

gqualified nameseaece cesccesccess 24,39
READ statementccececnecncacncseanccns 126
REAL attribute;
see mode
REAL pseudo-variable ceeeeacaneaes 103
RECORD
attribute ceteeceseasenann 60,84,85
condition ceetsactacacsans ceaes 162
option ceceesases ceseseseesas 123
transmission statements¢.0.... 98
RECURSIVE attribute cesescaaaaa 74,124

recursive procedure 74,124,143

REDUCIBLE attribute 50,51,52,145

reducible procedures ceeeesessas 50,145
relationship of arguments and
PAYAMEteYrS .ecececnccansccces eeceeess 140

remote format specification 96,117
replacement, compile-tim€cecc.... 133

return of control eesses 69,74,127
return of value ..ccieeececeacaaas 53,699,127
RETURNS attribute ceeessvenssssnss D3

RETURN statementcceceeceec... 127,69,74
cannct be an on-unit ...cccesececes.. 121
returned value
characteristics of ¢ceceeee. 116,124,128
specifications ...cececccesnccccneass 124
REVERT statement ..cceececveccccasss 128,82
USE Of ceeeeeecceccscsaacnncancannscoa 82
REWRITE statement ..ceeceaceceacanssssss 129
FOW-MAJOY OYAEY .cceeeeccscacansssannanse 37

SCAlar s.iieeceriecccnacaccncanccnncnnosans 22
assignmentceeeieccenaneaaaaesa 106
constant;

see constants
defining ceeeeeceecsccnscncsnccnsnans D7
expression;
see expressions
variable
see variables
SCAle tieeevencasccsaccsnssansseas 26,311,044
scanning, compile-timeccveceeces. 133
scope
of declarationsS .c.eceecsececccaccenas U1
Of NAMeS ciieereeenceasnsnaannsanasnss U1
of condition prefixesS .ceeceeessceces. 79
scope attributesiccciiiieneaaa.. U41,54
default fOr ceeececacesccacancaeaas DU,66
SECONDARY attribuUte ...eeececccccsasesass U9

secondary entry pointcceecee... 20,116
SepPaArators .ceceviececeaces ceececcccsccssaas 15
sequence
c0l1lating c.eceeceaccacncasnss ceesasee 16
of control cessessencscanasceesa 102

SEQUENTIAL attributecc00.... 62,84,85
SEQUENTIAL Option eeeeeeececacceacasass 123

SET clauSe .eceeecccanacanas eecesescsass 103
SET OPtiON acecicececceseancecacccacsanse 126
SETS attributeccccu... - 1 ¢

sign picture characters 159,47
SIGNAL statementce.ceveeeesse 129,82,83
with programmer-defined
ON-CONditiONS seeecacscccascacea 82,83
60-character Set .eecceeecacccccaaanaans 14
SKIP format item .ceeececcecceccccncccaacs 96
SKIP Option e.ceeeeecececcecccanncaness 125
SNAP option
specification ciceeeceeeiiecncecenaaa.. 118
stack, push-GoWn ..ceciceeceeccccncaceceaas 716
standard fileS ...cececccscaceas eesesss 100
input (SYSIN) ceeeccoacccaaceass 100,118
print (SYSPRINT) 100,118,125
statement label0..0... 16,18,40,48

ceecctscceseccsaccsnceseas 121

AYLAY eeoecoceseacnnncance eeese. 28,U48,60

initial values fOr c.ceeeesccacacsas 60
asSSignmentececeiececcanccnccsass 106
constant ..ceecccccacacas ceccmccense -« 28
data c.ieeecenacan cesseccaacan eceanees 28
designator c.ecceceeccecancccencscsaas 29

required for FORMAT statement 117

Index 175

variable ceeesessessecsscccsess 28
statementsS .c..ccccencaaans cesseaesses 17,101
also see individual statement
alphabetic list of ...eiciveneeaas. 103
classification c.ieciacscenconacnnes 101
compile-timec0.0... ceeeeacess 134
compound «...... P I -
heading ..eeeeece.. eseessncencsenceas 19
identifiers c..iececcacccaacse ceaaceaas 16
input/outputc00c00.. ceeeseess 101
relationship ceeeeeeceseacesccsaeasa 101
simple N
STATIC attribute;
see storage class attributes
sterling
CONStanNtsS ceieeicecencanssncasonccoca 27
pictures cececsasesesascas 146,159
STOP statement ...ceceececoccncaocnasass 130
storage;
also see allocation
ALLOCATE statementceeveee.. 103,146
automatiC .ieeecacnscanceceaas 75,544,146
controlled ..c.iccieecncas . 76,54,103,146
FREE statement T b)
static ceeeeans ceeean ceeecanes 75,54,146
storage class attributes 54,75
default fOr ..cccieieercceanecnccees 54,66
restriCctionsS ..ceeeecescccancasccanans 54
with structures cessencccancsss 67
STREAM ,
attributeccc00can. ca... 62,84,85
OPLioN t..ierececcceacccanacccaaeaas 123
transmission MOJdEeS ..eeeccesccancsaes 85
data-directed aeeesees. 86,90
edit-directed ..c.iiceeccenacnass 86,92
list-directedveeececcenccncsss 86
string
assignmentc.cecieiceccccincanannan 107
attributes .c..c.ccciiiccanns ceeaasenns 47
built-in functions ...ceeececesessaa 153
data cececsencane cecssssacess 27,28
STRING Option ceieececeienceenceananan 118,125
 SEYUCLUYE tevicececoscasacncssssnccanccns 23
aSSignMment ...eececcecccacccanceacsaa 106
BY N&ME;
see BY NAME
declarations and attributes 66
with DEFINED attribute ..ceeceececease 57
with LIKE attributecccceeeeeea 61
level numberseccecccancaacnns 23,66
storage allocation 103,504
with storage class attributes 54

176

Subroutine ce...ceeceecececcsccccscacncas 68

Yeferencesceccececcccccncacenses 10
subscriptscc... ceececacens ceceaceea 24

interleaved .ce.eeececoceccaccaasnanans 25
SUBSTR pseudo-variable .ec.ceceeceeceas.s 103
SUBSTR built-in function 153

compile-time use Of .c.ceeeceanaesas 139
syntactical uUnit ..e.ceecececccccncacacsas 11
syntax NOtatioN eeceeeceececcsscassesces 11
SYSIN file .ticieeeecccaceannacaeaass 100,118
SYSPRINT file .ececeeecenaeaeas. 100,118,125

t3SK steeeececccnccasscccacannnnsas 11,29,77
attachedccceeeceeccenaaes 78,111,145
attaching .s..ceeiececcacaceeaas 78,11,145
MAJOY eeeeceecoccccscscacacnsscanceanea 17
synchronization of ..eceeeeccaceceaaas 77
termination ofcccccanana cececes 18

TASK attribute ..c.ciicsecaccccccccceass U8

task OPtiON weeeeecsececccsscscacacanees 78

TASK option ceecasncecceass. 718,111

termination
DlOCKS teeeceacacccnsnansneass 74,119,127
function procedure ceceea ... 69,127
PrOJTAM cceesocseoscsecsasscsceescess 130
£ASK ceceeccceccasccccssssnssannnacas /8

TITLE option cemeececcsnseaeas 123

TO and BY cueeiceescaccacsaccnssssanncacs 114

truncation on assignmentccccc... 107

UNBUFFERED attribute 63,84,85
UNBUFFERED OptiON cceeececcecasnacsaces 123
UNLOCK statementeeccecesaeacsaass 130
UNSPEC pseudo-variableccccueee. 103
UPDATE attribute ...c.cceeeecacees 62,84,85
UPDATE OPtiON cuiceeecececececcnsnannsaes 123
USES attribute ..cccccca.. - 1

variables
ALXYAY ceeevccscccnccnascnnnane eees 22,49
based 29,54,64,97,1048,146
SCAlAr teciececieeiitacsccsannnnaanas 22
range Of c.iieieeeiiacacacanccnanaeas 22
default fOr rangeccceecescsss. 66
statement-labelccccceccacscanas 28

WAIT statement ceecescsencsscessssass 130
WHILE ClaAUS€ .eeecseccscscscsnsncasnaaas 1104
WRITE statement .ceeeeeececececcaancseoeas 131

ZE€YO SUPPIESSIiON ceeeeececcocscecaeas 159,46

READER'S CCMMENTS

Title: IBM System/360 Operating System Form: C28-6571-3

PL/I Language Specifications

Is the material: Yes No

Easy to read? —_— _—
Well organized? J— —_—
Complete? —_— _—
Well illustrated? —_— _—
Accurate? — —

Written for your technical level? ——— _

How did you use this publication?

—_— As an introduction to the subject _—

Cther

Please check the items that describe your position:

—_——— Customer personnel ----Operator —_—
—_——— IBM personnel ————Programmer —_——
--—-——Manager —-——-Customer Engineer —_——
————— Systems Analyst ————Instructor

-For additional
knowledge

-Sales Representative
-Systems Engineer
-Trainee

Other -

Please check specific criticisms, give page numbers, and

————— Clarification on pages
————— Addition on pages
——-—-Deletion on pages
————— Error on pages

Explanation:

explain below:

If you wish a reply, be sure to include your name and address.

~avues 1mw

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

ATTENTION: PUBLICATIONS, DEPT. D39

'V'S'N 1 pajurg

TBHM

International Business Machines Corparation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM Waorld Trade Corporation
821 United Nations Plaza, New York, New York 16017
[International]

€-1499-822

C28-6571-3

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

V'SR Ul patuiy

€-1£69-82D

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	replyA
	replyB
	xBack

