
Systems Reference Library

IBM System/3S0 Operating System

PL/I Language Specifications

This manual is a description of the full
facilities of PL/I to be implemented under the
System/360 Operating System. However. the reader
should not assume that all facilities will be
available at initial release. Manuals for speci­
fic System/360 implementations will be released
later.

Another publication will be issued specifying a
subset of the facilities of the language described
in this manual. This subset is planned for
implementation under the System/360 Disk and
Operating System.

File No. S360-29
Form C28-6571-3

I ,

PREFACE

This publication is a reference manual
for the entire PL/I Language. All of the
features to be implemented under the
System/360 Operating System are described
herein.

However, this manual does not approach
PL/I from a tutorial point of view. There
are other IBM publications that perform
this function. These publications and
their intended audience are as follows:

1.

2.

A PL/I Primer, student Text, Form
C28-6808, is intended for the novice
programmer who has little or' no knowl­
edge of data processing, as well as
for the experienced programmer who
wants to learn PL/I.

A Guide to PL/I for FORTRAN Users,
student Text, Form C20-1637, is

MAJOR REVISION (JULY, 1966)

This publication, Form C28-6571-3, obsoletes
the previous edition, Form C28-6571-2. New tex­
tual information and significant changes are iden­
tified by vertical lines to the left of the added
and changed text.

Among the additions and significant changes are
(1) the complete respecification of compile-time
facilities (Chapter 9), (2) the new attributes
REDUCIBLE and IRREDUCIBLE, and (3) the new data
type called cell (and its corresponding CELL
attribute).

Because Chapter 9 has been completely
rewritten, vertical bars have not been used to
indicate changes; this chapter should be re-read
in its entirety.

3.

directed toward the programmer who has
a working knowledge of FORTRAN.

A Guide to PL/I for Coremerical Pro­
grammers, Student Text, Form C20-1651,
is intended for the programmer who has
experience in commercial applications.
Comparisons between PL/I and COBOL
(COmmon Business Oriented Language)
are included in this guide.

Introductory information about PL/I may
also be found in the Student Text, An
Introduction to PL/I, Form C20-1632.

A familiarity with the contents of A
PL/I Primer is recorrmended for the users of
this reference manual.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It may
be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation., Programming Systems Publications, Department
D39" 1271 Avenue of the Americas. New York, N. Y., 10020.

© 1965 by International Business Machines Corporation

INTRODUCTION 9

Goals of the Language. • 9

Basic Characteristics of PL/I. • 10
SALIENT FEATURES. • • • 10

Block Structure. • • • • • • .. •
Description of Data.

• 10
• 10
~ 10 Storage Allocation.

Data Conversion. • • 10
• • 10 Data Organization. • •

Input/Output • • • •
Multi-Task Operations.
Compile-Time Facilities.

• • • • • 11

List Processing •••••

Syntax Notation in This Manual •

CHAPTER 1. PROGRAM ELEMENTS •

Basic Language Structure • •
Language Character Sets •

60-Character Set

o 11
• 11
• 11

• 11

• 14

• 14
• 14

14
48-Character Set •

Delimiters. • •
• • • • • • 15

• • • • • 15
Operators. • • • • 15

• • • • • • 15 Arithmetic Operators •
Comparison operators
Bit-String Operators • •

• 15
• 15

String Operator •••• • 15
15

Delimiters. • 15
Parentheses. • • • •
Separators and Other

Data Character Set. • • 16
Collating Sequence. • • • • • • • .. • 16
Identifiers • • • • • • • • • • • 16

Length of Identifiers.
Keywords. • • • • • • • • • • • •

Statement Identifiers.
Attributes • • • • • •
Separating Keywords ••
Built-in Function Narres ••

• 16
• • 16
• • 17

• 17
• 17
• 17

Options. • • • • • • • • • 17
17 conditions ... • • • •

The USe Of Blanks . • • •
Comments. • • • •

Basic Program Structure.

· 17
• 17

• • 18
Simple Statements • • • • • • • 18
Compound Statements • • • • • • • 18
Prefixes. • . • • • • • • 18

Label Prefixes • • •• • • • • 18
Condition Prefixes . • 18

Groups. • • • • • • • • 19
Blocks. • • • • • • • • • 19
Use of the END statement. •
Programs. • • .• • • • • •

CHAPTER 2: DATA ELEMENTS .

DATA Organization. • • •

21
21

• • 22

• 22

Scalar Items. • • e •

Constants. • • •
Scalar Variables •

Data Aggregates •

CONTENTS

• 22
• 22

• • 22
• • • 22

• • 22
• • 23

Arrays _ • • • .. •
Structures • • • •
Arrays of Structures • .. • • • • • 23

Naming ~ ~ • • • • •
Simple Names. • •
Subscripted Narres •

Cross Secticns of Arrays •
Qualified Names • ••• •
Subscripted Qualified Names •

24
• • • .. 24

• .. 24
.. 24

• • • .. 24
• • 25

Data Types • • • • 26
Problem Data. 26

Arithmetic Data. • • • • .. 26
Real Arithrretic Constants. • • ... 26
Imaginary Arithmetic Constants 27
Arithmetic Variables .. • • • • 28
String Data. • • 28
Character-String Data. • • • .. 28
Bit-String Data. 28
String Variables 28

Program-Control Data. 28
Label Data • • • • • • • • 28
Statement-Lacel Constants. • • • ..
Statement-Label Variables.
Task Data. • • • • •
Event Data. • • • • •
Pointer Data • .. • • •
Pointer Qualification.
Area Data.
Cell Data. • • . • • •

CHAPTER 3: DATA MANIPULATION •

28
29
29
29
29
29
30
30

31

Expressions.. • • • • • • • • .. 31
Scalar Expressions. . • • • • • • • • 31

Arithmetic Oferations • • • 31
Mixed Characteristics. • . • 31
~esults of Arithmetic Operations .. 31
Arithmetic Conversions • • • 32
Bit-String Oferations. • • • 33
Comparison Oferations. •• •• 33
Concatenation Operations ••• 34
Type Conversion. • • • • • 34
Bit String to Character String • • 34
Character String to Bit String • • 34
Character String to Arithmetic • • 34
Eit String to Arithmetic • •• 34
Arithmetic to Character String • • 34
Arithmetic to Eit String 35

Array Expressions • .. • • • • • • 35
Prefix Operators and Arrays. .. • • 35
Infix Operators and Arrays • 35
Scalar - Array Operations. • • • • 35
Array - Array Operations • • • 35

Array Expressions Involving
Structures. • • • • • • •

structure Expressions •

EVALUATION OF EXPRESSIONS. •
Order of the Evaluation of
Expressions. • • • • •

CHAPTER 4: DATA DESCRIPTION ••

Attributes •

Declarations
Explicit Declarations •

The DECLARE Statement. •
Factoring of Attributes.
Multiple Declarations and

Ambiguous References.
Label Prefixes • • • •
Parameters • • • • •

contextual Declarations
Implicit Declarations ••
Scope of Declarations • • •

.. 36
• • 36

• 36

• 37

• 38

• 38

• • • 38
• 38

• • • 39
39

• • 39
40

• 40
• 40
• 41
• 41

Scope of External Naroes. •
Basic Rule on Use of Names

• • • • 41

The Attributes • • • • •
Data Attributes • • •

Arithmetic Data. •
Base Attributes. •
Scale Attributes •
Mode Attributes ••

• • 43

• 43
• • 43

• • • • .. • 43
43

• 44
• 44

Precision Attribute. • • • • •
Default Conditions for

• • 44

Arithmetic Data •••
The PICTURE Attribute.
String Attributes. • •
The LABEL Attribute.
The TASK Attribute • •
The EVENT Attribute. • • • •

The DIMENSION Attribute •

• • 45
45

• .. 47
• 48

• • 48
• • .. 48

• 49
The SECONDARY Attribute ••••
The ABNORMAL and NORMAL Attributes.

• 49
• 50

Default for Abnormality of Data. • 50
The REDUCIBLE and IRRECUCIBLE
Attributes • • • • • • • • •

Default for Irreducibility of
Procedures ••••••••

The USES and SETS Attributes. •
Entry Name Attributes • • •

The ENTRY Attribute. • •
The GENERIC Attribute.
The BUILTIN Attribute.
The RETURNS Attribute.

Scope Attributes. • • • •
Storage Class ~ttributes.

• 50

• 50
• • • 50

• 51
• 52
• 52
.. 53
• 53
• 54
• 54

The ALIGNED and PACKED Attributes •
The DEFINED Attribute • • •

• 55
• 56

Correspondence Defining. •
Overlay Defining • •
Order of Evaluation.
Examples of Defining •

The CELL Attribute. •
The INITIAL Attribute • •
The LIKE Attribute. • • • • • ..
File Description Attributes •

• 56
• • 57

• 58
58

• • 58
• .. 59

• 61
• 61

The FILE Attricute • • • •
The File Usage Attributes.
The Function Attricutes. •

• • 61
• • 62
• • 62

62 The PRINT Attribute. • •
The Access Attricutes. •
The Buffering Attributes •
The BACKwARDS Attribute.

• • • 62

The EXCLUSIVE Attribute.
The ENVIRON~ENT Attribute.
The KEYED Attricute. . •

List Processing Attricutes ••
The AREA Attricute • • •
The POINTER Attricute. •

Assignment Of Attributes To
Identifiers •••••••••••

Afplication of Default
Attributes •••

• • 63
• 63

· • 63
· • 63
· • 63
· .. 63

63
• • 64

• • 65

• 65

structure Declarations and Attributes. • 66
Level Number. • • • • .. 66
structures and the Dimension
Attribute. • • • • • .. • • •

STRUCTURES AND DATA ATTRIBUTES. •
STRUCTURES AND SCCPE ATTRIBUTES ..
STRUCTURES AND STCRAGE CLASS

ATTRIBUTES • • • • • • • • • • .

• .. 67
• • 67.
• .. 67

• • 67

CHAPTER 5: PROCEDURES, FUNCTICNS, AND
SUBROUTINES • • • • • • 68

Formal Parameters ••

Procedure References

Function References and Function
Procedures. • • • • • .

Generic Functions • •
Built-in Functions.

Subroutine References and Subroutine
Procedures. • • • • • • • • • • • •

• • 68

• • 68

• .. 69
69

• 69

• • 70

The Arguments in a Procedure Reference • 71
The Use of the ENTRY Attribute. • 72
Passing Arguments to the Entry
Point. • • • • • • • • • • • • .. 72

The Special Procedure Attribute
RECURSIVE • • • • • • • • • • • .. 73

CHAPTER 6: DYNAMIC PROGRAM STRUCTURE •• 74

Program Control. • • • • • 74

Activation and Termination of Blocks • • 74
Dynarr.ic Descendance • • .. 74
Dynamic Encomfassing. • • • 75

Allocation of Data and Storage Classes .. 75
Definitions and Rules .. • • .. • 75
Storage Classes • • • . • • • • 75

The Static Storage Class 0 • • • • 75
The Automatic Storage Class. • • • 75
The Controlled storage Class .. • • 76

Asynchronous Operations And Tasks. • • • 77

Synchronous and Asynchronous
operations • • • • • • .

Synchronizing Two Asynchronous
Operations • • • • •

Task and Events • • • • • .. •
The creation of Tasks •
Termination of Tasks.
Allocation of Data in Tasks •

Interrupt Operations • •
Purpose of the Condition Prefix
Scope of the Condition Prefix _ ~
Use of the ON Statement • • •
System Interrupt Action • • •
Use of the REVERT Statement •
Programmer-Defined ON-Conditions"
Facilities for Program Checkout •

CHAPTER 7. INPUT/OUTPUT

File Opening And File Attributes •
Expl£~it Opening • • •
Implicit Opening • • •
Merging of Attributes.

• 17

• • 17
• 78

• • 78
• 78

• • 79

• 79
• 79

79
• • 80

• 80
• 82

e .. 82
• • 83

• 84

• 84
• 84
• 84
• 85

Data Stream Transmission • • • •
List-Directed Transmission. • • • •
Data-Directed Transmission. •
Edit-Directed Transmission ••

• 85
• 86

86
• 86

Data Stream Data Specifications.
Data Lists. • • . • • . • • • •

Repetitive Specification • •
Transmission of Data-List

Elements. • • .. • • • • • •

• • 86
• 86
• 86

• 87
List-Directed Data specification. 88

List-Directed Input Format • • • • 88
List-Directed Output Format. • • • 89

Data-Directed Data Specification. • • 90
Data-Directed Data in the Stream • 91
Length of Data-Directed Data
Fields. • • • • • • • • • • • • • 92

EDIT-DIRECTED DATA SPECIFICATION. • • 92
Format Lists. • • • • • • 93

Data Format Items. • • 93
Control Format Items • • 96
Spacing Format Item. • . 96
Printing Format Items. • 96
Remote Format Item • • • • • • • e 96

Data Stream Transmission Statements • 96

Record Transmission. • • • • • • • • • • 97
Record Transmission Statements. • • • 98
RECORD Transmission Operations. • 99

Standard Files • • • • • • 100

CHAPTER 8: STATEMENTS. • .101

Relationship Of Statements ••••••• 101
Classification. • • • • • .101

Assignment Statement. • •• 101
Control Statements •••••••• 101
Data Declaration Statement •• 101
Error Control and Debug

Statements. • • • • • • • .101

Input/Output Statements. .. • ~101

File Preparaticn Staterrents 101
Record Status Statements ••••• 101
Data specification Staterrents ••• 101
Data Transmission Statements ••• 101
Program Structure Statements ••• 102
Storage Allocation Staterrents ••• 102

Sequence of Control. • .102

Pseudo-Variables •
Alphabetic List of Statements

The ALLOCATE Statement • •
The Assignment Statement
The BEGIN Statement.
The CALL Statement. • •
The CLOSE Statement. .. •
The DECLARE Statement. •
The DELAY Statement. •
The DELETE Statement • • •
The DISPLAY Statement. •
The DO Statement • • •
The END Statement ••
The ENTRY Statement. • .. •
The EXIT Statement
The FORMAT Statement. •
The FREE Statement. •
The GET Statement. • • •
The GO TO Statement.
The IF Staterr.ent • • •

• .103
• .103
• .103

• •• 106
• .110
• .110

· •• 111
· .112
• .112
• .112
• .113
• .113
• .115

.116
• .116
• .116
• .117
• .118

• •• 118
• •• 119

The LOCATE Statement •
The Null Staterrent • •
The ON Statement • • •
The OPEN Statement ..

· ••••• 120
• ••••• 120

The PROCEDURE Statement. •
The PUT statement. .. •

.120
• .123

.124
• .125

The READ Statement = =
The RETURN Statement •
The REVERT Statement ..

e " 126
• 127

• .128
The
The
The
The
The
The

REWRITE Statement,. • '" 129
• .129
• .130

SIGNAL Statement •
STOP Statement • '" •
UNLOCK Statement • • • •• 130

WAIT Statement
WRITE Statement. •

• .130
• .131

CHAPTER 9: COMPILE-TIME FACILITIES ••• 132

Introduction '. •

The Processor. •
Processor Input and Output. •
The Processor Scan. • • • •

Rescanning and Replacement •

Compile-Time Statements, Groups, And
Procedures. • • • • • •

The DECLARE Statement • • • •
The Assignment Statement. • '"
The ACTIVATE And DEACTIVATE

.132

• .132
• .132
• .132

.133

• .134
• .134
• .135

Statements • • • • ..
The GO TO Statement •
The NULL Staterrent.

• .136
•••• 136

The IF Statement. • • • • •
The DO group. • • • •
The INCLUDE Statement • .. • • .. •
The Compile-Tirre Procedure.

• .. 137
• .137

.137
• .131
• .138

The Compile-Time Built-In Function
SUBSTR. • • • ••• .139

CHAPTER 10: SPECIAL TOPICS. .140

Relationship of Arguments and
Parameters ••••••••••••••• 140

Evaluation of Argument Subscripts •• 140
Use of Dummy Arguments •••••••• 140
Use of the Entry Attribute •••••• 140
Correspondence Of Parameters And

Arguments. • '. • • • • .. • • • • • .141
Allocation of Parameters ••••••• 142

Parameters, Bounds and Length ••• 142
Asterisk Notation for Bounds or

Length •••••••••••••• 142
Expressions as Bounds or LengthQ .143

Data Known To Invocations Of Recursive
Procedures. • • • •

Prologues. •

Data Allocation Across Tasks
Allocation of Task and Event

Names • .. • • • • • •

.143

.144

.144

.144

"'he Abnormality and Irreducibility • •• ..LIof'J

List Processing. • • • • • • •
Basic Concepts. • • • • • •
Additional Considerations • • • • •

Structures Used as Based
Variables • • • . • • •

Pointer Value - Based Variable
Relations • • • • • • • •

Data Chaining Precautions.

.145

.145

.148

.148

.148

.149

APPENDIX 1: BUILT-IN FUNCTIONS. • • 150

Arithmetic Generic Functions • • • .150

Float Arithmetic Generic Functions .•• 152

String Generic Functions .• 153

Generic Functions For Manipulation Of
Arrays ••• _ 154

Array And Structure Euilt-In Functions .155

Condition Built-In Functions • .155

List Processing Built-In Functions ••• 155

Other Built-In Functions .• 156

APPENDIX 2: PICTURE SPECIFICATION
TABLES. • ,. • • • • • • • • • • • • • .157

Digit Point and Subfield Delimiting
Characters. • • • • • • .157

Zero suppression Characters. • .157

Drifting Editing Syrr.tols • • • .157
Drifting Characters .158
Editing Character. • ••••• 158
Conditional Editing Characters •••• 158
Sign Characters ••••• _ • • .159
Scaling Factor Specification. • .159

Sterling Pictures. • • • • • . • • .159
Pictures for Character Strings 159

APPENDIX 3: ON-CONDITIONS ••

Classification of Conditions •
Computational Conditions.
Input/Output Conditions •
Program Checkout Conditions
List Processing Conditions.
Programmer-Named Conditions •
System Action Conditions •••

APPENDIX 4: PERMISSIELE KEYWORD
ABBREVIATIONS • • • . . • •

APPENDIX 5: THE 48-CHARACTER SET ..

.160

• •• 160
.160

• .161
• .. 162
• .164
• .164
• .164

.165

.166

APPENDIX 6: ANNOTATED EXAMPLES •••.• 167

INDEX. • .171

Table 1. Arithmetic Base and Scale
Conversion. • • • • • • • _ • • • • • • 33

Table 2. Scope and Use of Names in
Example 1, for "Scope of External
Names" ••••••••• _ • • • • 42

Figure 1. General Format for
Repetitive Specification ••• _ • 87

FIGURES

Figure 2. List-directed Input
Conversion. • • • • • • • • • • • 89

Figure 3. Example of Data-Directed
Transmission, both Input and Output • • 92

Figure 4. General Fermat for the DO
Statement •••• _ ••••• _ •••• 114

GOALS OF THE LANGUAGE

Throughout the relatively brief history
of electronic data processing, certain com­
puters have been identified with a particu­
lar field of activity, either commercial or
scientific.

Programmers have generally specialized
in one field or the other. High-level
languages, of course, have emphasized this
divergence, going in one direction for
commercial programming and in another
direction for scientific programming.

Until recently, this difference present­
ed few problems. Each language was ade­
quate for its use; the commercial program­
mer dealt with relatively few computations
performed upon great amounts of data; the
scientific programmer performed complex
calculations using small amounts of data •

. 'll'
NOw, however, the '~ituation is changing.

Business and industry have discovered new
uses for the computer, and the commercial
programmer finds himself concerned with
more involved computations in statistical
forecasting and in linear programming for
operations research.

In science and engineering, the program­
mer needs a language to simplify the pre­
paration of reports, to sort and edit
technical data; he finds more need for
input and output operations. The engineer
specifically wants the ability to handle
data at the bit level for applications such
as circuit analysis.

Today's new computing systems have been
designed to cope with all of these comput­
ing problems,. They handle commercial and
scientific programs with equal ease, with
new power and new speed; they provide
facilities for such new techniques as
shared data processing, asynchronous pro­
gram execution~ and real-time processing.

None of the traditional high-level lan­
guages, however, can be used with efficien­
cy across the entire range of ability of
these new computers.

That is the reason for PL/I, a multipur­
pose programming language for use not only
by commercial and scientific programmers
but by the real-time programmer and the
systems programmer as well. It is a lan­
guage designed for efficiency, a language
that enables the programmer to use virtual­
ly all the power of his computer.

INTRODUCTION

PL/I is organized so that any program­
mer, no matter how extensive his experi­
ence, can use it easily at his own level.

This manual, because it is a reference
manual of the entire language, shows the
range and power ot PL/I. its ability to
handle the most complex computing problems.

Actually, however, PL/I need be no more
complex than the program for which it is
used.

One of the primary aims in the design of
the language was modularity, that is, pro­
viding different levels of the language for
different applications and different
degrees of complexity. A programmer using
one level need not even know about the
unused facilities.

Although PL/I is relatively machine
independent, this modularity might be com­
pared to a completely equipped data proc­
essing center. A novice programmer would
use only a small part of the system; he can
ignore the rest of the equipment. More
complex programs, of course, would require
more equipment. Some programs would use
certain modules of equipment; other pro­
grams, other modules. Ra~ely, if ever,
would a program require use of all the
facilities.

In PL/I, every attribute -- or descrip­
tion of a variable, every option, and
every specification has been given a
"default" interpretation. Wherever the
language provides for one or more alterna­
tives, a "default" interpretation or
assumption -- is made by the compiler if no
choice is stated by the programmer. And in
each case, the assumption that was chosen
in the design of the language is the one
most likely to be required by the program­
mer who need not know that alternatives
exist.

The "modularity" and the
aspects are the bases upon which
plicity of PL/I has been built.
also part of its power.

"default"
the sim­

They are

Introduction 9

BASIC CHARACTERISTICS OF PL/I

The overall aim in the design of the
language was to give the programmer freedom
in handling his computing system.

Freedom of expression: If a particular
combination of symbols has a useful mean­
ing" that meaning is allowed,. Al though
actual statements in the language must be
written using a specified character set,
data may be composed of any character
allowed by the configuration of the indivi­
dual computer. PL/I is written in a free­
field format; the programmer is free to
design his own format for listings.

Full access to machine and operating system
facilities: the PL/I programmer rarely, if
ever, will need to resort to assembly
language coding.

SALIENT FEATURES

Part of the language is, of course.
based on earlier programming languages.
certain aspects are expansions of ideas
used previously. Other portions are
exclusively a part of PL/I. The following
paragraphs briefly describe some of these
features. All of them are discussed more
fully within the text.

Block Structure

The statements of a PL/I program are
organized into program sections called
"blocks." A program may be made up of one
block or many blocks. Blocks may be separ­
ate from one another, with no common state­
ments, or they may be nested, one within
another.

Blocks provide two important logical
functions: (1) they define the scope of
applicability of data variables and other
kinds of names, so that the same name may
be used for different purposes in different
blocks without ambiguity, and (2) they
allow storage for data variables to be
assigned only during execution of the block
and freed for other uses at the termination
of the block.

Certain blocks, called "procedure"
blocks, may be invoked (i.e., called into
execution) remotely from different places
in the program, and they provide means to
handle arguments and to return values.

10

Description of Data

In the language. data is described as
having certain characteristics called
attributes. For example, numeric data
would have a BINARY attribute or a DECIMAL
attribute; string data would be either
CHARACTER string or BIT string.

Storage Allocation

The computer storage for any data varia­
ble in a PL/I program may be assigned
statically, for the entire execution of the
program, or dynamically,. during execution ..

Two classes of dynamic storage are avai­
lable to the PL/I programmer. automatic and
controlled. When a variable has the con­
trolled storage attribute, the programmer
may allocate or free storage for that
variable at any time he wishes4 Storage
for a variable having the automatic storage
attribute is allocated upon entry to the
block and freed upon exit.

Data Conversion

In keeping with the freedom of PL/I,
mixed expressions are allowed. In the
following example, F is declared to be a
fixed-point number, G a floating-point num­
ber~ and H a character string that is ten
characters in length.

DECLARE F FIXED, G FLOAT, H CHARACTER
(10) ;

H = F + G;

In the evaluation of the second state­
ment of the above example, F will be
converted to a floating-point value,
floating-point addition will be performed,
and the result will be converted to a
character string of ten characters and
assigned as a value to H.

Data Organization

Data variables can be grouped into eith­
er arrays or structures. An array is
composed of elements of the same charac­
teristics. A structure is a collection of
variables and arrays. not necessarily alike
in characteristics. Structures may also
contain other structures. Individual items
of an array are referred to by subscripted
names; individual items of a structure are
referred to by names that may sometimes
have to be qualified to avoid ambiguity.

In PL/l i• arrays and structures are
treated as variables in their own right.
Either of them may be used as the operand
of an expression.. The expression is then
an array expression or a structure expres­
sion, and it returns an array or structure
result.

Input/Output

The modularity of PL/I is particularly
apparent in the input/output facilities.
Wi th PL/I" a programmer may control
input/output activity to whatever degree he
requires. He may handle normal transmis­
sion and conversion simply, or he may use
the full capability of the language for
control of more complex problems of input
and output.

Multi-Task operations

In PL/L, a collection of procedures is
called a program; the execution of a pro­
gram (or many programs or a part of a
program) to perform a particular job is
called a task.

PL/I provides facilities for handling
two or more tasks concurrently. This
facility, of course, is extremely important
in the use of any computer system with
multiprocessing capabilities. It also is
valuable for a single processor system with
facilities for real-time operations.

During execution of a procedure, the
executing task might specify that a subor­
dinate task begin execution upon certain
data (i.e., the executing task invokes
another tas~); the new task, called an
attached task, might also invoke another
task. All tasks then proceed concurrently
and, in effect, simultaneously.

The multi-task facilities of PL/I allow
a subordinate task to communicate with its
originating. or attaching, task through
arguments, and through data allocated in
the attaching task. The originating task
also may, at any time, test to see if a
subordinate task is completed and may, if
necessary, delay its own execution to wait
for the completion.

Compile-Time Facilities

Most programming languages are written
on one level only, as statements to the

computer to perform certain operations
using the supplied data. PL/I not only
directs the computer to operate upon the
data, but with a macro facility, it directs
the compiler to operate upon the program
itself.

The programmer can include in his pro­
gram information that will aid the compiler
to produce more efficient code, documenta­
tion, and diagnostics.

List Processing

PL/I provides facilities for list proc­
essing. These facilities are unusually
flexible in that the introduction of poin­
ter and based variables enables the pro­
grammer to combine arrays, structures" and
scalars into a single list.

A complete enumeration of PL/I list
processing facilities may be found under
the heading "List Processing" in the Index
(also see nList Processing" in Chapter 10).

SYNTAX NOTATION IN THIS MANUAL

Throughout this manual. wherever a PL/I
statement or some other combination of
elements -- is discussed, the manner of
writing that statement or phrase is illus­
trated with a uniform system of notation.

This notation is not a part of PL/I; it
~o a standardized notation that may be used
to describe the syntax -- or construction

of any programming language. It pro­
vides a brief but precise explanation of
the general patterns that the language
permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order
in which the elements may (or must) appear,
punctuation that is required, and options
that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
PL/I:

1. A notation variable is the name of a
general class of elements in the pro­
gramming language. A notation varia­
ble must consist of:

a. Lower-case letters, decimal

b.

digits, and hyphens and must begin
with a letter.

A combination ,...s;
V.L lower-case and

Introduction 11

upper-case letters. There must be
one portion in all lower-case let­
ters and one portion in all upper­
case letters, and the two portions
must be separated by a hyphen.

All such variables used are
defined in the manual either formally.,
using this notation, or are defined in
prose.

Examples:

a. digit. This denotes the occur­
rence of a digit, which may be 0
through 9 inclusive.

b. filename. This denotes the occur­
rence of the notation variable
named filename. An explanation
of filename is given elsewhere in
the manual.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used for
emphasis.

2. A nq1:-~tion 90p,~1:ant denotes the liter­
al occurrence of the characters rep­
resented. A notation constant con­
sists either of all capital letters or
of a special character.

Example:

DECLARE identifier FIXEDi

This denotes the literal occurrence
of the word DECLARE followed by the
variable "identifier," which is
defined elsewhere, followed by the
literal occurrence of the word
FIXED followed by the literal
occurrence of the semicolon (:).

3. The term "syntactical unit," which is
used in subsequent rules, is defined
as one of the following:

a. a single variable or constant. or

b. any collection of variables, con­
stants, syntax-language symbols,
and reserved words surrounded by
braces or brackets.

4. Braces { } are used to denote group­
ing.

12

Example:

1
FIXED!

identifier
FLOAT

The vertical stacking of syntacti-

cal units indicates that a choice
is to be made. The above example
indicates that the variable
"identifier" must be followed by
the literal occurrence of either
the word FIXED or the word FLOAT.

5. The vertical stroke I indicates that a
choice is to be made.

Example:

identifier {FIXEDtFLOAT}

This has exactly the same meaning
as the above example. Both methods
are used in this manual to display
alternatives.

6. Square brackets [] denote options.
Anything enclosed in brackets may
appear one time or may not appear at
all.

Example:
CHARACTER (length) [VARYING]

This denotes the literal occurrence
of the word CHARACTER followed by
the variable "length" enclosed in
parentheses and optionally followed
by the literal occurrence of the
word VARYING. If, in rule 4, the
two alternatives also were option­
al, the vertical stacking would be
within brackets, and there would be
no need for braces.

7. Three dots ••• denote the occurrence
of the immediately preceding syntacti­
cal unit one or more times in succes­
sion.

Example:
[digit]

The variable. "digit," mayor may
not occur since it is surrounded by
brackets.. If it does occur" it may
be repeated one or more times.

8.. Underlining is used to denote an ele­
ment in the language being described
when there is conflict between this
element and one in the syntax lan­
guage .•

Example:

operand {&Ill operand

This denotes that the variables
"operand" are separated by either
an "and" (&) or an "or" (I>. The
constant I is underlined in order
to distinguish the "or" symbol in

Lll~ PL/I language from the ·or R

symbols in the syntax language.

9. min max. The combination of these two
words with associated numeric values
specifies the minimum and maximum num­
ber of times a syntactical unit may
occur. When min is used without max"
the implied max is infinity. When max
is used without min, the implied min
is zero.

Examples:

a. min 2 max 6 {digiti letter}

This denotes that either "digit"
or "letter" intermixed in any com­
bination must occur at least two
times, but no more than six.

b. mln 5 {digiti letter}

The variables "digit" or "letter"
intermixed in any combination must
occur at least five times, but
there is no limit on the number of
times over five that they may
occur.

c. max 3 label

The variable "label" may not occur
more than three times in succes­
sion. It may not be present at
all, or it may occur one, two, or
three times ..

Introduction 13

CHAPTER 1. PROGRAM ELEMENTS

BASIC LANGUAGE STRUCTURE

PL/I allows the programmer to write the
statements of his program in a free-field
format. A statement, which is a string of
characters, is always terminated by the
special character~ semicolon. A program
which is, in turn, a sequence of state­
ments, can thus be regarded simply as a
single string of characters, with no spe­
cial internal grouping. Hence, a PL/I
program can be physically represented and
transmitted to a computer in a natural way
by means of almost any input medium,
including a typewriter at a remote termi­
nal.

Input conventions, depending upon the
machine configuration or the compiler, can,
of course, be set up so that the program
string may be presented to the computer
through the familiar medium of fixed-length
records, e.g., punched cards. This can be
accomplished by using certain predetermined
fields of the records for the program
string, and other fields for arbitrary
purposes,.

LANGUAGE CHARACTER SETS

One of two character sets may be used to
write a source program: either a
60-character set or a 48-character set. No
assumptions are made in the language about
external or internal codes for the
characters. For a given program, the
choice between the two sets is optional.
(In practice, this choice will depend upon
the available equipment.)

60-Character Set

The 60-character set is composed of
digits, special characters, and English
language alphabetic characters.

There are 29 alphabetic characters, let­
ters A through Z and three additional
characters that are defined as and treated
as alphabetic characters. These characters
and the graphics by which they are rep­
resented are as follows:

14

Currency symbol
Commercial At-sign
Number sign

There are ten digits.
are the digits 0 through 9.
(bit) is either a 0 or a 1.

$
Q)

#:

Decimal digits
A binary digit

An alphameric character is either an
alphabetic character or a digit.

There are 21 special characters. The
names and graphics by which they are rep­
resented are:

Graphic

Blank

Equal or Assignment symbol

Plus +

Minus

Asterisk or Multiply symbol *
Slash or Divide symbol /

Left Parenthesis

Right Parenthesis

Comma

Decimal Point or Period

Quotation mark

Percent symbol

Semicolon

Colon

Not symbol

And symbol

Or symbol

Greater Than symbol

Less Than symbol

Break character
(used as shown)

Question mark

%

,
&

>

<

?

t-~ote that the quotation mark used in
PL/I is the single quotation mark (also
known as an apostrophe or prime).

Two consecutive special characters may
be used to create operators" e. g. " >="
denoting "greater than or equal to"i II·,
denoting concatenation.

48-Character set

The characters making up the
48-character set are identical to those of
the 60-character set, with restrictions and
changes as described in Appendix 5.

DELIMITERS

certain characters are used as
delimiters and fall into three classes:

operators
parentheses
separators and other delimiters

Operators

Operators used by the language
divided into four types:

arithmetic operators
comparison operators
D1t-string operators
string operators

Arithmetic Operators

The arithmetic operators are:

are

+ denoting addition or prefix plus

*
/

denoting subtraction or prefix
minus

denoting multiplication

denoting division

** denoting exponentiation

Comparison operators

The comparison operators are:

> denoting greater than

,> denoting not greater than

>= denoting greater than or equal
to

denoting equal to

,= denoting not equal to

<= denoting less than or equal to

< denoting less than

,< denoting not less than

Bit-string Operators

The bit-string operators are:

1
&

I

denoting not
denoting and
denoting or

string Operator

The string operator is:

I I denoting concatenation

Parentheses

Parentheses are used in expressions, for
enclosing lists, and fer specifying infor­
mation associated with various keywords.

(
)

left parenthesis
right parenthesis

separators and Other Delimiters

comma

semicolon

assignment
symbol

colon

blank

quotation
mark

Graphic

separates elements of a
list

terminates statements

used in assignroent
statement and DO
statement

follows labels and con­
dition prefixes; also
used with dimension
specifications

used as a separator

encloses string con­
stants and picture
specifications

Chapter 1: Program Elements 15

Graphic

period

percent %

pOinter ->
qualification
symbol

DATA CHARACTER SET

separates items in
qualified names; used
as a decimal or
binary point in con­
stants

precedes macro state­
ment

qualifies a reference
to a based variable

Although the language character set is a
fixed set defined for the language, the
data character set has not been limited.
Data may be represented by characters from
the language set plus any other characters
permitted by the particular machine con­
figuration.

Any character that will result in a
unique bit pattern is a valid character in
the data character set, and may be used in
source programs to construct character­
string constants and comments.

COLLATING SEQUENCE

In the execution of PL/I programs,
comparisons of character data will observe
the collating sequence resulting from the
representations of involved characters in
bytes of System/360 storage, in extended
binary coded decimal interchange code
(EBCDIC).

IDENTIFIERS

An identifier is a string of alphameric
and break characters, not contained, in a
comment or constant, preceded and followed
by a delimiter; the initial character must
always be alphabetic.

Identifiers in the language are used for
the following:

scalar variable names

array names

structure names

statement labels

16

entry names

file names

keywords

condition names

Examples:

VARA

BCD320

FILE42

XR20A

STARTA

RATE OF PAY

#32_45

$L32

AB12#

Length of Identifiers

Identifiers that a programmer constructs
in writing a PL/I program ,must be composed
of not more than 31 characters.

KEYWORDS

A keyword is an identifier which is a
part of the language. Keywords are not
reserved words. They may be classified as
follows:

statement identifiers

attributes

separating keywords

built-in function names

options

conditions

statement Identifiers

A statement identifier is a sequence of
one or more keywords used to define the
function of a statement (see "Simple
Statements").

Examples:

GO TO
DECLARE
READ

Attributes

Attributes are keywords that specify the
characteristics of data, procedures, and
other elements of the language,.

Example:

FLOAT
RECURSIVE
SEQUENTIAL

Separating Keywords

The five separating key~ords are used to
separate parts of the IF and DO statements.
They are THEN, ELSE, BY, TO, WHILE.

Built-in Function Names

A built-in function name is a keyword
that is the name of an algorithm provided
by the language and accessible to the
programmer (see "Function References and
Function Procedures" in Chapter 5).

Examples:

DATE
EXP

Ootions

An option is a specification that may be
used by the programmer to influence the
execution of a statement.

Examples:

TASK
BY NAME

Conditions

A condition is a keyword used in the ON,
SIGNAL, and REVERT statements, and as a
prefix to other statements (see
"Prefixes"). The programmer may specify
special action on occurrence of the condi­
tion (see "Interrupt Operations").

Examples:

OVERFLOW
ZERODIVIDE

THE USE OF BLANKS

Identifiers, constants, picture specifi­
cations, composite operators (e.g., ,=),
and the class of dummy variables iSUB (see
"The DEFINED Attritute" in Chapter 4) may
not contain blanks. Blanks are permitted
within a character-string constant.

Identifiers, constants, or picture
specifications may not be immediately adja­
cent. They must be separated by an opera­
tor, assignment symbol (i.e., =), parenthe­
sis, colon, semicolon, comma, period,
blank, or comment. Moreover, additional
intervening blanks or comments are always
permitted. Blanks are optional between
keywords of a statement identifier (e.g.,
GO TO), and between a level number and its
following identifier (see "Structures" in
Chapter 2).

Examples:

CALLA is not equivalent to CALL A

A TO B BY C is not equivalent to ATOBBYC

AB+BC is equivalent to AB + BC

COMMENTS

General format:

/* character-string */

Comments are normally used for documenta­
tion and do not participate in the execu­
tion of a program. A comment may be used
wherever a blank is permitted (except in a
character-string constant). The character
string in a comment must not contain the
character combination *1 in that sequence.

Chapter 1: Program Elements 17

Example:

LABEL: /* THE BLOCK OF CODING BETWEEN
BEGIN-END IS USED FOR PAYROLL CALCULA­
TIONS */

BEGIN;

END;

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements.

Statements are grouped into larger
program-elements, the group and the block.
There are two types of statements: SImPle
and compound.

SIMPLE STATEMENTS

A simple statement is defined as:

[[statement-identifier]
statement-body] ;

The "statement identifier," if it appears,
is a keyword, characterizing the kind of
statement. If it does not appear, and the
statement body does appear, then the state­
ment is an assignment statement. If only
the semicolon appears, the statement is
called a null statement.

Examples:

DO I = J TO (DO is the keyword)
10;

A B + C; (assignment statement)

(null statement)

COMPOUND STATEMENTS

A compound statement is a statement that
contains other program-elements. There are
two of them:

The IF compound statement

The ON compound statement

The final contained statement of a com­
pound statement is a simple statement and
thus has a terminal semicolon. Hence, the
compound statement will automatically be
terminated by this semicolon.

18

Examples:

IF A=B THEN GO TO Sl; ELSE A=C;

ON OVERFLOW GO TO OVFIXi

Each PL/I statement is described in the
alphabetic list of statements in Chapter 8.

PREFIXES

There are two types of prefixes: label
prefixes and condition prefixes.

Label Prefixes

Statements may
reference to them.
the following form:

be labeled to permit
A labeled statement has

identifier: [identifier:] ••• statement

The one or more "identifiers" are
called labels and may be used inter­
changeably to refer to that statement.

Labels appearing before PROCEDURE and
ENTRY statements are special cases and are
known as entry names (see "Procedure
References"). All other labels are called
statement labels.

A label appearing before a statement is
said to be declared, by virtue of its
appearance as-a-Iabel.

Statement labels appearing before
DECLARE are ignored.

Condition Prefixes

whether or
result upon
condition.
use of the
"Interrupt

A condition prefix specifies
not a program interrupt will
the occurrence of the specified
(For information regarding the
condition prefix see the section
Operations" in Chapter 6.)

One or more condition prefixes may be
attached to a statement.

Each condition prefix is followed by a
colon to separate it from the rest of the
statement or from other prefixes; condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement.

A condition prefix is a list of condi­
tion names" separated by commas and
enclosed in parentheses6 Thus, a statement
with a set of prefixes has the following
general form:

{(condition-name [,condition­
name] •••):} ••• [label:] •••
statement

The condition names are chosen from the
following fixed set:

UNDERFLOW
OVERFLOW
ZERODIVIDE
FIXEDOVERFLOW
CONVERSION
SIZE
SUBSCRIPTRANGE
CHECK (identifier-list)

Note: CHECK (identifier list) may be used
as a prefix only with the PROCEDURE and
BEGIN statements.

The meanings of these conditions are
explained in "The ON Statement,," in Chapter
8 ..

Any of these condition
preceded by the word NO.
there can be no intervening
NO and the condition. For
VERSION can be specified
list.

GROUPS

names may be
If NO is used w
blank between

example, NOCON­
in the prefix

A group is a collection of one or more
statements and is used for control purpos­
es.

A group bas one of two forms. The first
form, called a DO-group, is:

[label:] ,. DO-statement
program-element-1
program-element-2

END [label]:

The label following END is one of the
labels of the DO statement (see "Use of the
END Statement" in this chapter).

The DO statement is called the heading
statement of the DO-group, and may specify
iteration. Each program element represents
one or more statements.

The second form of a group is simply a
single statement, as follows:

[label:] ••• statement

The "statement" is any statement except DO.
END, PROCEDURE, BEGIN, DECLARE" FORMAT ..
ENTRYw or any compile-time statement ..

Example of the first form:

ALPHA: DO:
A=B*Ci

IF A < 0 THEN DO: B=l: C=Oi END:

END ALPHA:

In the example above, any of the single
statements except the DO and END state­
ments -- is an example of the second form
of a group ..

BLOCKS

A block is a collection of statements
that defines the program region -- or scope
-- throughout which an identifier is esta­
blished as a name. It also is used for
control purposes.

There are two kinds of blocks, begin
blocks and procedure blocks.

A begin block bas the general form:

[label:] ••• BEGIN-statement
program-element-1
program-element-2

END [label]:

The label following END is one of the
labels of the BEGIN statement (see "Use of
the END statement" in this chapter).

A procedure block w or procedure w has the
general form:

label: [label:] PROCEDURE-statement
program-element-1
program-element-2

END [label]:

The label following END is one of the
labels of the PROCEDURE statement (see "Use
of the END Statement" in this chapter).

The EEGIN statement and the PROCEDURE
statement in the above forms are called
heading statements.

Chapter 1: Program Elements 19

While the labels of the BEGIN statement
are optional, the PROCEDURE statement must
have at least one label.

Although the begin block and the proce­
dure have a physical resemblance and play
the same role in delimiting scope of names
(see "Scope of Declarations," in Chapter 4)
and defining allocation and freeing of
storage (see "Allocation of Data and Stor­
age Classes," in Chapter 6), they differ in
an important functional sense. A begin
block, like a single statement, is activat­
ed by normal sequential flow, and it can
appear wherever a single statement can
appear. A procedure can only be activated
remotely by CALL statements, by statements
in which a CALL option appears. or by
function references. When a program con­
taining a procedure is executed, control
passes around the procedure, from the
statement before the PROCEDURE statement to
the statement after the END statement of
the procedure.

Since a procedure can be activated only
by a reference to it, every procedure must
have a name. The label required for the
heading statement of a procedure serves as
the procedure name. More than one label
provides more than one procedure name.

The procedure name gives a means of
activating the procedure at its primary
entry point. Secondary entry points can
also be defined for a procedure by use of
the ENTRY statement. The labels preceding
all ENTRY statements in a given procedure
and the heading statement of the procedure
are collectively called entry names for the
procedure.

As the above definition of block
implies, any block A can include another
block B, but partial overlap is not possi­
ble; block B must be completely included in
block A. Such nesting may be specified to
any depth.

A procedure that is not included in any
other block is called an external proce­
dure. A procedure included in some other
block is called an internal procedure.

Every begin block must be included in
some other block. Hence, the only external
blocks are external procedures.

All of the text of a begin block except
the labels preceding the heading statement
of the block is said to be contained in the
block.

All of the text of a procedure except
the entry names of the procedure is said to
be contained in the procedure.

20

That part of the text of a block B that
is contained in block B, but not contained
in any other block contained in B, is said
to be internal to block B.

The entry names of an external procedure
are not internal to any procedure and are
called external names.

The notion of internal to is
the definition of scope (see
Declarations" in Chapter 4).

Example:

A: PROCEDURE;
statement 1
B: BEGIN;

statement 2
statement 3
END B;

statement 4
C: PROCEDURE;

statement 5
X: ENTRY;

D: BEGIN;
statement
statement
END D;

statement 8
END C;

statement 9
END Ai

]

1 l
j j

vital in
"Scope of

In this example, statements 1 through 9 are
labeled or unlabeled simple statements.

As the brackets on the right indicate,
block A contains block B and block C, and
block C contains block D.

Block A is an external procedure. The
procedure name is A, which is an external
name, and the only entry name for the
procedure.

X is an entry name corresponding to a
secondary entry point for procedure C.

Blocks Band D are begin blocks.

Block C is an internal procedure.

The text internal to block A consists of

PROCEDURE;
statement 1
B:
statement 4
C:
X:
statement 9
END Ai

The text internal to block B consists of

BEGIN;
statement 2
statement 3
END B;

The text internal to block C consists of

PROCEDURE;
statement 5
ENTRY;
D:
statement 8
END C:

The text internal to block D consists of

BEGIN;
statement 6
statement 7
END D;

USE OF THE END STATEMENT

As the examples above imply, the END
statement has the form:

END [label];

an1 is used to terminate a group or a
block~

If the optional label following END is
not used, the END statement terminates that
unterminated group or block headed by the
DO, BEGIN, or PROCEDURE statement that
physically precedes, and appears closest
to, the END statement.

If, however, a label (e.g., L) is used
following END, the statement terminates
that unclosed group or block headed by the
DO. BEGIN, or PROCEDURE statement with the
1~2~1 __ ~ that physically precedes, and
appears closest to, the END statement. Any
groups or blocks headed by DO, BEGIN, or
PROCEDURE statements contained in the ter­
minated block L are also automatically
terminated by the END statement END L.
This feature eliminates the necessity of
writing the intermediate END statements to
terminate the contained blocks and groups.

The statement labeled L, which heads the
group or block terminated by the END state­
ment END L, is internal to a certain block

in the program (see "Blocks." for a defini­
tion of internal to). The terminating
statement END L, together with its own
possible statement-labels, is also consid­
ered to be internal to the same block. (If
the statement labeled L is a BEGIN or
PROCEDURE statement, this block is, of
course, the block L.)

The END statement may itself be labeled,
and a reference to this label can be made
from any part of the program where the
label is known. (For a definition of
known, see "Basic Rule on Use of Names" in
Chapter 4).

Example:

A: PROCEDURE; A: PROCEDURE;

B: BEGIN; B: BEGIN;

A: PROCEDURE; A: PROCEDURE;

C: DO; C: DO;

X: END B; END;
END A; END;

X: END B;
END A;

In the example on the left above, the
statement X:END B terminates the DO group,
~ne internal procedure A, and Lue block B.
The statement END A terminates the external
procedure A.

The example on the right is equivalent
to the example on the l~ft.

The statement X:END B is internal to
block B.

PROGRAMS

A program is composed of one or more
external procedures. Thus, by definition,
a program is a set of procedure blocks,
each of which is completely nested, and
separate from the others.

Chapt2r 1: Program Elements 21

CHAPTER 2: DATA ELEMENTS

Information that is operated on in a
PL/I object program during execution is
called data. Each data item has a definite
type and representation.

The aim of this chapter is to present a
discussion of (1) the various organizations
that data may have, (2) the methods by
which data can be referred to, and (3) the
types of data allowed.

DATA ORGANIZATION

Data may be organized as scalar items
(i.e •• single data items) or aggregates of
data items (i.e., arrays and structures).

SCALAR ITEMS

A data item may be either a constant or
the value of a scalar variable. Constants
and scalar variables are called scalar
i!;;~!!!~·

A constant is a data item that denotes
itself~-r:e:-" its representation is both
its name and its value; thus.. it cannot
change during the execution of a program.
Each constant has a type, as described
below. A ~igned constant is an arithmetic
constant preceded by one of the prefix
operators + or Wherever the word
"constant" appears alone, and refers to an
arithmetic constant, it is to be assumed to
refer to an ~gsigne~ £Qg2tant.

A scalar variable, like a constant,
denotes a data-~tem. This data item is
called the value of the scalar variable.
Unlike a constant, however, a variable may
take on more than one value during the
execution of a program. The set of values
that a variable may take on is the ~ang~ of
the variable. The range of a variable is
always restricted to one data type (and, if
the type is arithmetic, to one base, scale,

22

mode, and precision - see "Arithmetic Data"
in this chapter). If there are no further
restrictions declared for the range y the
variable may assume values over the entire
set of data of that type.

Reference is made to a scalar variable
by a name, which may be a simple name, a
subscripted name. a qualified name" or a
subscripted qualified name (see "Naming" in
this chapter).

DATA AGGREGATES

In PL/I,.. variable data items may be
grouped into arrays or structures. Rules
for this grouping are given below. (For
the method of referring to an array or
structure or a particular item of an array
or structure.. see "Naming" in this
chapter.)

Arrays

An array is an n-dimensional, ordered
collection of elements, all of which have
identical data declaration. (If arithmet­
ic, all of the elements of the array must
have the same base .. scale, mode .. and preci­
sion or the same picture. If character­
string or bit-string, all of the elements
must have the same actual length. if fixed
length, or the same maximum length., if
varying length.) The number of dimensions
of an array, and the upper and lower bounds
of each dimension, are specified by the use
of the dimension attribute.

Example:
DECLARE A(3,4);

This statement
with 2 dimensions:
The matrix given
array A.

A(l,l)
A(2,1)
A(3,1)

A(1,2)
A{2,2)
A(3,2)

defines A as an array
3 rows and 4 columns.
below illustrates the

A(1,3)
A(2,3)
A(3,3)

A(1,4)
A(2,4)
A(3.,4)

The elements of an array may be
structures (see "Arrays of Structures").

structures --------

A structure is a hierarchical collection
of scalar variables, arrays" and struc­
tures. These need not be of the same data
type nor have the same attributes.

structures may contain structures. The
outermost structure is the major structure"
and contained structures are minor struc­
tures. A major structure must be at level
one. Contained structures must always have
a level number numerically greater than the
structure in which they are contained.
Identifiers preceded by level numbers but
having no components are not considered to
be structures. The level number may be
followed by one or more blanks.
(Additional information on structures can
be found in the section nStructure Declara­
tions and Attributes n in Chapter 4.)

Examples:

1. DECLARE 1 PAYROLL, 2 NAME, 2 HOURS, 3
REGULAR, 3 OVERTIME, 2 RATE;

takes the form:

1 PAYROLL
2 NAME
2HOURS

3REGULAR
30VERTIME

2RATE

In the above example PAYROLL is defined
as the major structure containing the sca­
lar variables NAME and RATE and the struc­
ture tlVUK~. The structure HOURS contains
the scalar variables REGULAR and OVERTIME.

2. DECLARE 1 A, 2 B, 2 C, 3 D (2), 3 E, 2
F;

This takes the form:

A
B
C

F

D{l)
D(2)
E

The decimal integers before the iden­
tifiers specify the levels; the decimal
integer in parentheses specifies the bounds
of the one-dimensional array. A is defined
as the major structure and contains the
minor structure C and the scalar variables
Band F. C contains D, a one-dimensional
array with two scalar variables, and the
scalar variable E.

3. DECLARE 1 A, 3 B, 2 Ci

This takes the form:

A
B
C

Note that Band C are at the same
level although their level numbers
differ.

Arrays of Structures

An array of structures is formed by
giving the dimension attribute to a struc­
ture.

Examples:

1. DECLARE 1 CARDIN (3) " 2 NAME, 2 WAGES,
3 NORMAL, 3 OVERTIME;

2.

The decimal integers before the iden­
tifiers specify the level. The name.
CARDIN, represents an array of struc­
tures. Because CARDIN has a dimension
specified, NAME, NORMAL, and OVERTIME
are arrays, and their elements are
referred to by subscripted names.

The form of the data is as follows:

CARDIN (1) NAME (1)
WAGES (1) NORMAL (1)

OVERTIME (1)

CARDIN (2) NAME (2)
WAGES (2) NORMAL (2)

OVERTIME (2)

CARDIN (3) NAME (3)
WAGES (3) NORMAL (3)

OVERTIME (3)

DECLARE 1 X, 2 Y, 2 Z (2) , 3 P (2,2).
3 Q, 2 Ri

X is an undimensioned major structure
containing scalar variables, arrays,
and a structure.

Y is a scalar variable
Z is an array of structures
P is a three-dimensional array
Q is a one-dimensional array
R is a scalar variable

Chapter 2: Data Elements 23

The form of the data is as follows:

y

[!

(1,1,1)
(1,1,2)

Z (1) (1,2,1)
(1,2,2)
(1)

X

Z (2) [I (2,1,1)
(2,1,2)
(2,2,1)
(2,2,2)
(2)

R

This section describes the rules for
referring to a particular data item, groups
of items, arrays, and structures. The
permitted types of data names are simple,
qualified, subscripted, and subscripted
qualified.

SIMPLE NAMES

A ~!~El~ __ g~~~ is an identifier (see
"Identifiers," in Chapter 1) that refers to
a scalar, an array, or a structure.

SUBSCRIPTED NAMES

A 2~Q~£~iQlgg __ g~~g is used to refer to
an element of an array. It is a simple
name that has been declared to be the name
of an array followed by a list of sub­
scripts. The subscripts are separated by
commas and are enclosed in parentheses. A
subscript is an expression that is evaluat­
ed and converted to an integer before use
(see "Evaluation of Expressions," in Chap­
ter 3). The number of subscripts must be
equal to the number of dimensions of the
array, and the value of a specified sub­
script must fall within the bounds declared
for that dimension of the array.

24

A subscripted name takes the form:

identifier (subscript subscript] ...)
Examples:

A (3)
FIELD (B,C)
PRODUCT (SCOPE * UNIT + VALUE, PERIOD)
ALPHA (1,2,3,4)

Cross Sections of Arrays

The concept of cross sections is a
logical extension of the subscripting nota­
tion. A cross section of an array is
referred to by the array name, followed by
a list of subscripts, at least one of which
is an asterisk. The subscripts are sepa­
rated by commas, and the entire list is
enclosed in parentheses. The number of
items in the list must be equal to the
number of dimensions of the array. If the
array is of dimensionality n, then an
asterisk may appear in k ~ n positions. If
the jth list position is occupied by an
asterisk, the cross section of the array
includes elements covered by varying the
jth subscript between its bounds. The
dimensionality of the cross section is
equal to the number of asterisks, k, in the
subscript list. If all subscript positions
are occupied by asterisks, then this ref­
erence to the cross section is equivalent
to a reference to the entire array.

A cross section may be used anywhere
that the name of an array of dimensionality
k is required. Subsequent references to
the word "array" in this document should
therefore be taken to include cross sec­
tions of arrays.

Examples:

1. A (3,*) denotes the third row of the
array A.

2. B (*, *, 2) is a two-dimensional cross
section and denotes the second plane
of the array B.

3. If MATRIX is the array:
1 2 3
4 5 6
7 8 9
MATRIX (*, 2) is the vector:

2
5
8

QUALIFIED NAMES

A simple name usually refers uniquely to
a scalar variable, an array, or a struc­
ture. However" it is possible for a name
to refer to more than one variable, array,
or structure if the identically named items
are themselves parts of different struc­
tures. In order to avoid any ambiguity in
referring to these similarly named items,
it is necessary to create a unique name;
this is done by forming a gualified name.
This means that the name common to more
than one item is preceded by the name of

the structure in which ~~ ~s contained.
This, in turn. can be preceded by the name
of its containing structure, and so on,
until the qualified name refers uniquely to
the required item. The section "Multiple
Declarations and Ambiguous References" in
Chapter 4, contains further information on
this subject.

Thus, the qualified name is a sequence
of names specified left to right in order
of increasing level numbers; the names are
separated by periods, and blanks may be
placed as desired around the periods. The
sequence of names need not include all of
the containing structures, but it must
include sufficient names to resolve any
ambiguity.

The qualified name, once composed, is
itself a name. Subsequently, in this pub­
lication. when the terms scalar variable
name, array name, or structure name are
used they should also be taken to include
qualified names.

A qualified name takes the form:

identifier {. identifier} •••

Examples:

1. A program may contain the structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRIP­
TION., 2 PRICE;

DECLARE 1 CARDOUT" 2 PART NO" 2 DES­
CRIPTION, 2 PRICE;

Elements are then referred to as:

CARDIN.PARTNO
CARDOUT.PARTNO
CARDIN. PRICE

2. A program may contain the structure:

DECLARE 1 MARRIAGE, 2 MAN, 3 NAME, 3
DATE!, 2 WOMAN, 3 NAME, 3 DATE i

Elements are then referred to as:

MAN. NAME
or MARRIAGE.MAN.NAME

WOMAN. NAME
or MARRIAGE. WOMAN. NAME

3. If the same program also contains the
structure:

DECLARE 1 BIRTH, 2 WOMAN, 3 NAME,
3 DATE, 2 ADDRESS;

Elements are then referred to as:

MAN. NAME
or MARRIAGE.MAN.NAME

MARRIAGE. WOMAN. NAME

BIRTH. NAME
or BIRTH.WOMAN.NAME

ADDRESS

and the minor structures referred to
as:

MARRIAGE. WOMAN

BIRTH. WOMAN

SUBSCRIPTED QUALIFIED NAMES

The elements of an array contained in a
structure and requiring name qualification
for identification are referred to by sub-
2£EiE~~~alified names. A subscripted
qualified name is a sequence of names and
subscripted names separated by periods.
The order of names is as given for any
qualified name. The subscript list follow­
ing each name refers to the dimensions
associated with the name if the name is
declared to be the name of an array in the
structure description.

As long as the order of the subscripts
remains unchanged, subscripts may be moved
to the right or left and attached to names
at a lower or higher level, respectively.
Unless all of the subscripts are moved to
the lowest or highest level" the qualified
name is said to have interleaved sub­
scripts .•

Provided that sufficient structure names
are used to make the name unique, as
described for qualified names, and that the
total number of subscripts is the same as
the total dimensionality of the array,
unsubscripted structure names may be omit­
ted in references. Ambiguity of names,
however, cannot be resolved by subscript­
ing. A subscripted qualified name takes
the general form:

identifier [(subscript [, subscript] ... ,.)]

{. identifier [(subscript [. sub­
script] ••.)] } •••

If any subscripts are given in a ref­
erence to a qualified name, all those
subscripts which apply to dimensions of
containing structures must be given.

A subscripted qualified name must have
at least one subscript.

Example 1:

A is an array of structures with the
following description:

Chapter 2: Data Elements 25

DECLARE 1 A (10 1,12), 2 B (5), 3 c (7) "
3 D;

The follo~ing subscripted qualified
names refer to the same element, ~hich is
the seventh element of C contained in the
fifth element of B contained in tenth row
and t~elfth column of A:

(1) A (10,12) B (5) C (7)
(2) A (10) . B (12,5) '. C (7)
(3) A (10) B (12) C (5,7)
(4) A • B (10,,12,5) .. C (7)
(5) A • B (10,12) . C (5,7)
(6) A • B (10) . C (12,5,7)
(7) A .. B • C (10,,12,,5,,7)
(8) A (10,,12) .. B .. C (5,7)
(9) A (10) Ie B • C (12,5,7)
(10) A (10.12,5,7) . B • C

If structure B, but not structure A, is
necessary for unique identification of this
use of C, any of forms (4), (5). (6) I or
(7) may be used ~ithout including the A.

If structure A, but not B, is necessary
for identification of C, forms (7), (8),
(9), or (10) may be used without including
the B.,

Except for forms (7) and (10), all of
the qualified names in the above example
have interleaved subscripts.

Example 2:

If FIELD is the array of structures:

DECLARE 1 FIELD(3},
2 STATUS,
2 VALUE;

then FIELD(*).STATUS is the vector:

FIELD(l}.STATUS
FIELD(2}.STATUS
FIELD(3}.STATUS

The types of data allowed by PL/I can be
categorized as QfQQ!~~ __ g~i~ and Qfogram=
£Q!!ifQl_g§!i~·

PROBLEM DATA

Problem data is any data that
classified as type arithmetic or
string.

26

can be
type

Arithmetic Data

An arithmetic data item is one that has
a numeric value with characteristics of
base, scale, mode, and prec1s1on. The data
item may be represented either as a numeric
field or in a coded form" that is" in an
internal representation that is implementa­
tion dependent. A numeric field is a
string of characters that is given a numer­
ic interpretation by means of the PICTURE
attribute (see Chapter 4). The base,
scale~ and precision are all specified in
the picture of the numeric field,. A data
item in coded form does not have a PICTURE
attribute;--bu~as its characteristics
given by the attributes specifying base"
scale, mode, and precision,.

Base (decimal or binary), scale
(fixed-point or floating-point), and
precision have reference to internal rep­
resentation of the data described and to
the internal arithmetic that is to be used.

BASE: Arithmetic data may be specified as
having either decimal or binary ba~~.

SCALE: Arithmetic data may be specified as
having either fixed-point or floating-point
scale. Fixed-point data items are rational
numbers for which the number of decimal or
binary digits is specified; the position of
the decimal or binary point may also be
specified by a scale factor. Floating­
point data items are rational numbers in
the form of a fractional part and an
exponent part.

MOQ~l Arithmetic data may be operated on
in either the real or complex mode. In the
complex mode, a data item is considered to
consist of a number pair, the first member
of the pair representing the real part of
the complex number and the second, the
imaginary part.

rg~~!§ION: The Qreci~io~ of fixed-point
data (w,d) is specified by giving the total
number of binary or decimal digits, w, to
be maintained and a scale factor, d~ The
prec1s10n of floating-point data is
specified by giving the effective number,
~, of binary or decimal digits to be
maintained in the fractional part (for an
implementation, the actual number of digits
maintained internally may be greater than
~).. Note that ~ must be greater than zero.

Real Arithmetic Constants

A real arithmetic constant is either
binarY-or decImal.-------------

DECIMAL FIXED-POINT CONSTANTS: A decimal
fixed-point constant is represented by--one
or more decimal digits with an optional

decimal point. If a decimal point is not
specified" the constant is a decimal inte­
gg~~Q!!stant.

Examples:

72.192
.308
255.
158

A
1.....! ____ _

U.!.!!<1LY BINp.:::,.:'"(c.;;;Y_~F~-:~S:==?{=E:;:;D_-..;;;P"""O~I~i .. ~:'~l---:-...;;C;..;;;·O;..;;;i~.;..;;_S;;.,;':~I·A;..;;;_~~'~..;;;;T..;;;;S~;
fixed-eoint constant is represented by one
or more binary digits with an optional
binary point followed by the letter B,.

Examples:

11011B
11.1101B
.001B

STERLING FIXED-POINT CONSTANTS: Sterling
quantities may be specified and will be
interpreted as decimal fixed-point pence,.
A ~te~!ing fixed-point constant consists of
the following concatenated fields:

a pounds field that is a decimal
integer

a decimal pOint
a shillings field that is a decimal

integer less than 20
a decimal point
a pence field that is one or more

decimal digits w1tn an optional
decimal point (the integral part
must be less than 12.)

an L

Examples:

101.13.8L
1.10.0L
0,.0.2.5L

Q~£IMAL FLOATING-POINT CONSTANTS: A deci­
mal floatinq-point constant is represented
by- one or more decimal digits with an
optional decimal point, followed by the
letter E, followed by an optionally signed
exponent. The exponent is a string of
decimal digits specifying an integral power
of ten.

Examples:

12 .. E23
317.5E-16
0.lE+3
.42E+73
32E-5

BINARY FLOATING-POINT CONSTANTS: A binary
~!Qat!~~Q!~~~~~nt is represented by
one or more binary digits with an optional
binary point~ followed by the letter E.
followed by an optionally signed exponent.

followed by the letter B. The exponent is
a string of decimal digits specifying an
integral power of two.

Examples:

1.1011E3B
.. 11011E-27B

For pu~poses of expression evaluation. an
apparent precision is defined for real
arithmetic constants.

Real fixed-point constants have
apparent precision (w,d) where w is
total number of digits in the constant
d is the number of digits specified to
right of the decimal point.

an
the
and
the

The precision of a sterling-constant is
equivalent to the precision of its corres­
ponding value in fixed-point pence. This
va~ue is determined as follows: multiply
the value of the pounds field by 240; add
the product of 12 and the value of the
shi,llings field; add the value of the pence
field. The precision of the result (with
leading zeros removed) is the precision of
the corresponding sterling constant.

The precision of a floating-point con­
stant is (p) where 12 is the number of
digits of the constant left of the E.

Examples:

3.14 has precision (3,2)
0.012E5 has precision (4)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

Imaginary Arithmetic Constants

An imaginary constant represents a com­
plex value of which the real part is zero
and the imaginary part is the value speci­
fied.

It is represented by a real arithmetic
constant, other than a sterling constant,
fOLlowed by the letter I. PL/I does not
define complex constants with non-zero real
parts, but provides the facility to specify
such data through an expression, e.g.,
10.1+9.2I.

Examples:

271
3.968E10I

~h~ntpr 2: Data Elements 27

Arithmetic Variables

Arithmetic variables are names of arith­
metic data items. These names have been
given the characteristics (i.e.,
attributes) of base, scale, mode, and pre­
cision (see Chapter 4).

String data can be classified as
£he£~£i~£=2i£igg or git-2tring. The length
of a string data item is equivalent to the
number of characters (for a charac­
ter-string) or the number of binary digits
(for a bit-string) in the item. A string
data item of length zero' is known as the
!!!!l!_st£i!!g·

Character-String Data

Character-string data consists of a
string of zero or more characters in the
data character set (see "Data Character
Set," in Chapter 1). The string may be
fixed or varying in length. The actual
number of characters must be specified if
it is of fixed length, and the maximum
length must be specified if it is of
varying length.

CHARACTER-STRING CONSTANTS: A character­
~tr:I!ig=-constant is-zero-or more characters
in the data character set enclosed in
quotation marks. If it is desired to
represent a quotation mark, it must appear
as two immediately adjacent quotation
marks. The constant may optionally be
preceded by a decimal-integer constant in
parentheses to specify repetition. If the
constant specifying repetition is zerow the
result is the null string.

In a string replication factor~ blanks
may optionally surround the decimal integer
constant, or they may separate the right
parentheses and leading quote .•

A character string constant may contain
a string of characters which syntactically
constitute a comment; however, these
characters are treated as part of the
string value rather than as a comment.

28

Examples:

'$ 123.45'
',JOHN JONES r
'IT"S'
(3)'TOM'

The latter is exactly equivalent to

'TOMTOMTOM'

Bit-String Data

Bit-string data consists of a string of
zero or more binary digits (0 and 1). The
string may be fixed or varying in length.
The actual length of the field must be
specified if it is of fixed length, and the
maximum length must be specified if it is
of varying length.

BIT-STRING CONSTANTS: A bit-string con­
stant is zero or more binary digits
enclosed in quotation marks, followed by
the letter B. The constant may optionally
be preceded by a decimal-integer constant
in parentheses, to specify repetition. If
the constant specifying repetition is zero,
the result is the null string.

Examples:

'0100'B
(10)'1 I B

The latter is exactly equivalent to

'llllllll11'B

String variables

String variables are
data items. These names
the characteristics of
Chapter 4).

PROGRAM-CONTROL DATA

names of string
have been given
string data (see

Program-control data is any data that
can be classified as type label. task,
event, pointer, area, or cell.

Label Data

Statement-label data is used only in
connection with statement labels. State­
ment label data may be constants or varia­
bles, and the variables may be elements of
structures or arrays.

Statement-Label Constants

A statement-label constant is an iden­
tifier that appears in the program as a
statement label. It permits references to
be made to statements.

Example:

ROUTINE1: IF X > 5 THEN GO TO EXIT;

GO TO ROUTINE1;

EXIT: RETURN;

ROUTINE1 is a statement-label constant.
EXIT is also a statement-label.

statement-Label Variables

A statement-label variable is a varlaDLe
that has as values statement-label con­
stants. These variables can be grouped
into arrays or structures.

Example:

DECLARE X LABEL;
X POSROUTINEi

POSROUTINE:

X NEGROUTINE;
GO TO X;

NEGROUTINE:

The label variable X may have the value
of either POSROUTINE or NEGROUTINE, both
labels in the procedure. In the above
example, GO TO X transfers control to
NEGROUTINE.

A statement-label constant or a scalar
label variable is called a statement-label
~~iqn.etor.

A task variable is the name of a task
(see "Asynchronous Operations and Tasks" in
Chapter 6. and "The TASK Attribute" in
Chapter 4). A task variable may be an
element of an array or of a structure. The
priority associated with a task variable
may be assigned in the CALL statement, or
in an assignment statement via the PRIORITY
pseudo-variable (see Chapter 8).

Event Data

An event variable is the name of an
event (see "Asynchronous Operations and
Tasks" in Chapter 6, and "The EVENT
Attribute" in Chapter 4). An event varia-
ble may be an element of an array or of a
structure.

An event variable has an associated
completion status. This status is denoted
by ~O=~ Ior ~not completed" and '1'B for
"completed." If the event variable has
been associated with a given task via the
use of the EVENT option in a CALL statement
(see Chapter 8), the completion status of
the event variable will reflect the comple­
tion status of the task itself. The com­
pletion status of an event variable may
also be set explicitly by the execution of
an assignment statement using the EVENT
pseudo-variable (see Chapter 8).

Pointer Data

A pointer variable is the name of a
pOinter (see "The CONTROLLED Attribute" and
"The POINTER Attribute" in Chapter 4, and
"The Pointer Qualifier" in this chapter).
It is used only in connection with list
processing and RECORD transmission. A
pointer variable may be an element of a
structure or of an array.

Pointer Qualification

Pointer qualification is used to iden­
tlIY a generation of a based variable.
This generation may also be identified by
the pOinter variable declared with the
based variable (see "The CONTROLLED
Attribute" in Chapter 4 and "The ALLOCATE
statement" in Chapter 8).

Format:

{scalar-pointer-variableIADDR(variable)}->
[{scalar-pointer-variablel

ADDR(variable)}->] ••• based-variable

Note: See the ADDR built-in function for a
discussion of ADDR.

General rules:

1. Pointer qualification is used to
replace the pointer which was declared
with the based variable.

2. More than one pointer qualifier may be
specified in a reference. In this
case, they are read left to right and
define a chain of pointers qualifying
the reference.

Chapter 2: Data Elements 29

Examples:
P -> VALUE
P -> G -> VALUE

An area data item is the name of an area
of storage. Such an area may be used for
collecting and referring to based data
items (see "The ALLOCATE Statement" in
Chapter 8L,

A cell is a unit of storage that may
contain-any number of alternative declara­
tions. However, only one declaration can
be active at anyone time.

cells are organized in the same way that
structures are organized; the name of the
cell must be at a higher level than its
alternatives. For example, the following
statement specifies that the storage allo-

30

cated for the cell named ALPHA may contain
either of the two alternatives, ALTl (a bit
string) or ALT2 (a structure), but not both
at the same time.

DECLARE 1 ALPHA CELL.
2 ALTl BIT (60),
2 ALT2,

3 BETA FLOAT,
3 GAMMA FIXED;

A cell provides storage equivalence and
not data equivalence.. In other words,
since only one alternative can be active at
one time, the value of that alternative
cannot be retrieved by a reference to
another alternative. The assignment of a
value to an alternative deactivates the
previously active alternative and in effect
strips it of its value.

Thus, the value of an alternative can
only be retrieved by a reference to that
alternative. The cell name may be used to
qualify the reference but a reference to
the cell name alone will retrieve no value.

See "The CELL Attribute" in Chapter 4
for rules regarding cell usage.

An expression is an algorithm used for
computing a value. Expressions are of the
three types: scalar, array, and structllre~
depending upon the types of the operands
involved. The type of the result is also
the same as that of the operands. An array
(or structure) expression is simply an
array (or structure) evaluated by expansion
of the expression into a collection of
scalar expressions (see "Array Expressions"
and "Structure Expressions n

). Syntactical­
ly, a scalar expression consists of a
constant" a scalar variable, a function
reference, a scalar expression enclosed in
parentheses~ a scalar expression preceded
by a prefix operator, or two scalar expres­
sions connected by an infix operator.
Operands in a scalar expression need not
have the same data attributes. If they
differ, conversion will be performed before
the operation.

SCALAR EXPRESSIONS

A scalar expression returns a scalar
value. The type of the value is the type
of the expression. The type of the expres­
sion is dependent upon the class of opera­
tors -- arithmetic, comparison, bit string"
and concatenation (see "Operators").
Statement label designators, area varia­
bles, task variables, and event variables
are not allowed in scalar expressions
except as function arguments. Only the
comparison operators and ,= may appear
with pointer data.

If A and B are expressions, then the
operators + and - used in expressions of
the form +A or -A, are called prefix
operators. When these operators are used
in expressions of the form A+B or A-B they
are called infix operators.

An arithmetic expression of any complex­
ity is composed of a set of elementary
arithmetic operations.

An elementary arithmetic operation has
the following general format:

CHAPTER 3: DATA ~_~IPULATION

{{+\-} operand} \ {operand
{+\ - I * I / I **} operand}

The general format specifies the prefix
operations of plus and minus and the infix
operations 'of addition, subtraction, multi­
plication, division, and exponentiation.
Operations are performed only with coded
arithmetic data.. If necessary., the data
will be converted to coded arithmetic type
before the operation is performed.

Mixed Characteristics

The two operands of an arithmetic opera­
tion may differ in form, base, scale, mode,
and prec1s1on. When they differ, conver~
sion takes place according to the following
rules:

FORM: Numeric field operands of arithmetic
operations will be converted to coded form.
The result of an arithmetic operation is
always in coded form.

BASE: If bases differ, the decimal operand
is converted to binary.

SCALE: If the scales of the operands
differ, the fixed-point operand will be
converted to floating-point, except in the
case of exponentiation in which the first
operand is floating-point and the second is
fixed-point with precision (p,O). In the
latter case, the second operand ~s not
converted.

MODE: If the modes differ, the real oper­
and is converted to complex mode (by
acq:uiring an imaginary part of zero with
the same base, scale, and precision as the
real part). However, when the operation is
exponentiation and the second operand is
fixed-point with precision (p,O), then the
second operand is not converted.

PRECISION: If precisions differ, no con­
version is done.

Results of Arithmetic Operations

After the conversions specified above
have taken place, the arithmetic operation
is performed. Any necessary truncations
will be made towards zero, regardless of
the base or scale of the operands.

The base, scale, mode, and precision of
the result depend on the operands and the
operator in the following ways:

Chapter 3: Data Manipulation 31

1. Prefix operations: The prefix opera­
tions of plus and minus yield a result
having the base, scale, mode, and
precision of the operand.

2. Floating-point: If the operands of
an infix operation are floating-point
the result is floating-point, and the
base and mode of the result are the
common base and mode of the operands.
The precision of the result is the
greater of the precisions of the two
operands.

3. rixe~-point: If the first operand of
an infix operation is fixed, and if
the operation is not exponentiation,
the result is fixed, and the base and
mode of the result are the common base
and mode of the operands. If the
operation is exponentiation, the sec­
ond operand is converted to floating
point if its scale factor is not zero;
and the first operand is converted to
floating-point unless the second oper­
and is an unsigned integer constant
meeting the conditions of item d
below; in these cases, the rules for
floating-point apply_

32

The precision of a fixed-point
result depends on the operation and
the precisions of the operands,
according to rules given below. The
following symbols are used:

N the length of the largest number
in the implementation

m the total number of positions in
the result

n the scale factor of the result
p the total number of positions in

operand one
q the scale factor of operand one
r the total number of positions in

operand two
s the scale factor of operand two
y value of operand two, if it is an

unsigned integer constant

a. Addition and subtraction:

b.

c.

d.

m min(N.max(p-q.r-s)+max(q,s)+l)
n max(q.s)

Multiplication:

m = min(N.p+r+l)
n q+s

Division:

m N
n N-p+q-s

Exponentiation:
'operand is an

if the second
unSigned non-zero

real fixed-point constant of
cis ion (r,O),

m Cp+l) *y - 1
n q *y

pre-

If m>N, however, or y is not an
unsigned non-zero real fixed-point
constant of precision (r,O), the
first operand is converted to
floating-point and rules for
floating-point exponentiation
apply.

e. The above rules hold for both real
and complex mode.

Note: Some special cases of exponentiation
are defined as follows:

a. If Xl.=O and X2>0, the result is o.

b. If X1.=O and X2:$0, the ERROR condi-
tion is raised.

c. If Xl. *,0 and X2=0, the result is 1.

d. If X.1<O and X2 is not fixed-point
with precision (p,O), the ERROR
condition is raised.

a. If Z.1=O and Z2 has its real part
>0 and its imaginary part equal to
0, the result is o.

b. If Z1.=O and the real part of Z2 is
not greater than 0 or the imag­
inary part of Z2 is not equal to
0, the ERROR condition is raised.

Arithmetic Conversions

1,. Arithmetic Mode Conversion

If a complex value is converted to
a real value, the result is the real
part of the complex value.

If a real value is converted to a
complex value., the result is a complex
value that has the real value as the
real part and zero as the imaginary
part.

2. Integer conversion

If conversion to integer is speci­
fied, as in the evaluation of sub­
script expressions, the conversion
will be to fixed-point binary (x.O).
Here x is the total number of posi­
tions in the field and depends upon
the implementation.. The scale factor

Table 1~ Arithmetic Base and Scale Conversion

Before Conversion
r------------------T--------------------T----------------T---------------,

After I Binary Fixed I Decimal I Binary I Decimal I
I (p"q) I Fixed(p.q) I Float(p) I Float(p) I

r--------+------------------+--------------------+----------------+---------------~
I Binary I (p, q) I (MIN (CEIL (p*3. 32) I I I
I Fixed I I +1,N) ,CEIL(ABS(q) I I I
I I I *3.32)*SIGN(q» I I I
~--------+------------------+--------------------+----------------+---------------i
I Decimal I (CEIL(p/3.32)+1. I (Pwq) I I I
i Fixed i CEIL{ABS(q)/3.32) i I
I I *SIGN (q» I I I I
~--------+------------------+--------------------+----------------+---------------i
I Binary I (p) I (MIN (CEIL I (p) I (MIN (CEIL I
I Float I I (p*3.32),N» I I (p*3.32),N»\
~--------+------------------+--------------------+----------------+---------------i
I Decimal I (CEIL(p/3.32» I (p) I (CEIL(p/3.32» I (p) I
I Floa t I I I I I L ________ ~ __________________ i ____________________ i ________________ ~ _______________ J

is zero. Trunca ti on, if necessary. The result is of varying length if either
will be toward zero. operand is of varying length or is a

reference to the SUBSTR built-in function.
3. Arithmetic Base and Scale Conversion

Table 1 defines the precision
resulting from base and scale conver­
sion. CEIL refers to the ceiling of
the expression. (The "ceiling" of a
number is the smallest integer equal
to or greater than the number.)

Conversion from floating-point scale to
fixed-point scale will occur only when a
destination precision is known. as in an
assignment to a fixed-point variable. If
the destination precision is incapable of
holding the floating point value. trunca­
tion on both left and right will occur, and
the SIZE error condition will be raised
(unless disabled) if significant order
digits are lost.

Bit-String Operations

Bit-string operations have the following
general forms:

, operand
operand & operand
operand I operand

The prefix operation "not" and the infix
operations "and" and "or" are specified
above. The operands will be converted to
bit-string type before the operation is
performed. The result will be of bit­
string type. If the operands are of
different lengths after conversion. the
shorter is extended on the right with zeros
to the length of the longer. The length of
the result will be of this extended length.

Otherwise, the result is of fixed length.

The operations are performed on a bit­
by-bit basis. As a result of the
operations, each bit position has the value
defined in the following table:

r-----T-----T-----T-----T-----T-----'
I I I 1 I A I A I
I I I not I not I and I or l
I A I B I A I BIB I B l
~-----+-----+-----+-----+-----+-----~
111110101 1 I 1]
~-----+-----+-----+-----+-----+-----~
111 0 1 0 1 1 1 0 III
~~~~~~+-~~~~+-----+-----+-----+-----~ 
I 0 I 1 I 1 I 0 I 0 111 
~-----+-----+-----+-----+-----+-----i 
101011111 0 I 0 l L _____ ~ _____ ~ _____ ~ _____ ~ _____ ~ _____ J 

Examples: 

If field A is '010111'B, field B is 
'111111'B, and field C is '101'B, then 

, A yields '101000'B 
C & B yields '101000'B 

A I , C yields '010111'B 
1 (~CI,B) yields '101111'B 

For a discussion of how these expres­
sions are evaluated, see "Evaluation of 
Expressions,," in this chapter. 

Comparison Operations 

comparison operations have the general 
form: 

Chapter 3: Data Manipulation 33 



operand {<I,<I<=I=I,=I>=I>I,>l operand 

There are three types of comparisons: 

1. Algebraic. which involves the compari­
son of signed numeric values in coded 
arithmetic form. Conversion of numer­
ic fields will be performed. 

2. Character, which involves left-to­
right. pair-by-pair comparisons of 
characters according to a collating 
sequence. If the operands are of 
different length, the shorter is 
extended to the right with blanks. 

3.. Bi t" which involves the left-to-right 
comparison of binary digits. If the 
strings are of different lengths~ the 
shorter is extended on the right with 
zeros. 

The result of a comparison is a bit 
string of length one; the value is 'l'B if 
the relationship is true or ~O'B if it is 
false. 

If'the operands of a comparison are of 
different types, the operand of the lower 
type is converted to the operand of the 
higher type. The priority of types is (1) 
arithmetic (highest), (2) character string. 
(3) .bit string. 

As a result of the conversion., both 
operands will then be arithmetic or charac­
ter string, and algebraic or character 
comparison will be performed. 

Only the operations = and ,= are defined 
when either operand is complex. 

Only the operators = and ,= may be used 
with pointer variables. In this case., each 
operand must be either a pointer variable 
or a function that defines a pointer value. 

Concatenation operations have the fol­
lowing general form: 

operandi 'operand 

If both operands are of bit-string type, 
no conversion is performed, and the result 
is of bit type. In all other cases, the 
operands are converted where necessary to 
character-string type before the concatena­
tion is performed, and the result is of 
character type. The length of the result 
is the sum of the lengths of the two 
operands. 

34 

Examples: 

If A is '010111'B. B is '101'B~ C is 
, Xy" Z' and 0 is 'AA/BB'. then 

AIIB yields '010111101-B 
AIIAI IB yields '010111010111101'B 

C I I D yields 'XY" ZAA/BB' 
otic yields 'AA/BBXY,Z' 

Type Conversion 

Bit String to Character String 

The bit 1 becomes the character 1" and 
the. bit 0, the character 0.. The length is 
unchanged. The null bit string becomes the 
null character string. 

Character String to Bit String 

The characters 1 and 0 become the bits 1 
and O. The conversion is illegal if the 
character string contains characters other 
than 0 and 1. The null character string 
becomes the null bit string. 

Character String to Arithmetic 

The string for conversion must contain 
one of the following: 

1. [+1-] arithmetic-constant 

2. [+1-] real constant {+I-l imaginary­
constant 

The optionally signed constant or 
complex expression may be surrounded by an 
arbitrary number of blanks~ 

The arithmetic value of the constant is 
converted to the base" scale, mode, and 
precision that a REAL FIXED DECIMAL value 
of default precision would have been con­
verted to if this had appeared in place of 
the character string value. A null string 
gives the value zero,. 

Bit String to Arithmetic 

The bit string is interpreted as an 
unsigned binary integer., and converted to 
fixed -point binary, precision (S,' 0) " where 
S depends upon the implementation.. The 
null string is converted to the value zero. 

Arithmetic to Character String 

The arithmetic value is converted to a 
character string according to the rules of 



list-directed output specified in Chapter 
1. See Appendix 1 also. 

Arithmetic to Bit String 

The arithmetic value is converted to 
real then to fixed-point binarYr prec1s10n 
(P'r 0) rr where p is related to the precision 
before conversion as follows (with ceilings 
of expressions used): 

BINARy FIXED (r.si p 
BINARY FLOAT (r) p 
DECIMAL FIXED (rrs) p 

- min(N,rnax(r-s,O» 
= min{N,.r) 

min(N,max(CEIL 
( (r-s) * 3. 32 ) " 0 ) ) 

DECIMAL FLOAT (r) p = min(N~CEIL(r*3.32» 
The resulting binary fixed-point value 

is interpreted as a bit string of length p .• 

The result of a conversion to fixed­
point binary with precision (0,,0) is 
implementation-defined. 

ARRAY EXPRESSIONS 

An array expression is an expression 
consisting of array operands in possible 
combination with scalars and/or structures. 
Note that if a structure appears in an 
array expressionrr the array operands must 
be arrays of structures. 

An array expression returns an array 
result. That iS r all operations performed 
on arrays are performed on an element-by­
element basis. Therefore, all arrays 
referred to in an array expression must be 
of identical bounds. 

~ot~~ Array expressions are not always 
expressions of conventional matrix algebra. 

The appearance of a function reference 
(other than a built-in function) will imply 
a scalar result. For example, if A is an 
array., CALC (A) may be a scalar function 
with an array argument. 

The built-in functions listed under 
"Arithmetic Generic Functions,· "Float 
Arithmetic Generic Functions," and "String 
Generic Functions.,· in Appendix 1 may part­
icipate in array expressions with array 
results. An array may be substituted for 
any of the arguments of these functions 
except those arguments which are required 
to ,be integer constants, or those which 
must be converted to integers. 

Prefix Operators and Arrays 

The result of the operation of a prefix 
operator or a built-in function upon an 
array is an array of identical bounds" each 
element of which is the result of the 
operation having been performed upon each 
of the corresponding elements of the origi­
nal array. 

Example: 

If A is the array 5 3 -9 
1 -2 1 
6 3 -4 

then -A is the array -5 -3 9 
-1 2 -1 
-6 -3 4 

Infix Operators and Arrays 

Scalar - Array Operations 

The result of an operation in which a 
scalar and an array are connected by an 
infix operator is an array of bounds ident­
ical to the original, each element of which 
is the result of the operation performed 
uPQn the scalar and upon each of the 
corresponding elements of the original 
array .. 

Example: 

If A is the array 5 10 
12 11 

8 
3 

then 3*A is the array 15 30 24 
36 33 9 

Array - Array Operations 

The result of an operation in which two 
arrays of identical bounds are connected by 
an infix operator is an array of bounds 
identical to the original arrays. each 
element of which is the result of the 
operation performed upon the corresponding 
elements of the two original arrays by the 
infix operator. 

Example: 

If A is the array 

and if B is the array 

2 
3 
1 
4 

1 
7 
3 
6 

4 
6 
7 
8 

5 
8 
4 
3 

Chapter 3: Data Manipulation 35 



then A + B is the array 3 
10 

4 
10 

9 
14 
11 
11 

A*B is the array 2 20 
21 48 

3 28 
24 24 

and MAX (A+B,A*B) is the array 

3 20 
21 48 

4 28 
24 24 

Array Expressions Involving structures 

If an array expression contains struc­
ture operands, then all array operands in 
the expression must be arrays of structures 
and all involved structures must have the 
same structuring. 

Example: 

In the following declaration, A is an 
array of structures and C is a structure. 

DECLARE 1A(10) " 2B" 20, 
1C,,2H,2I; 

Then the expression A+C is a valid 
expression that will result in the struc­
ture C being added to each structure in the 
array A. The above expression is equival­
ent to the following: 

A(l).B + C.H 
A(l).D + C.I 
A(2).B + C.H 

A(10).D + e.I 

STRUCTURE EXPRESSIONS 

The operands of a structure expression 
are structures" or a combination of struc­
tures and scalars. A structure expression 
returns a structure result. Array operands 
are not allowed in structure expressions. 

All operations performed on structures 
are performed on an element-by-element 
basis. Thus, all structures appearing in a 
structure expression must have identical 
structuring. This means that the structure 
must have the same number of contained 
scalars and arrays. The positioning of the 
scalars and arrays within the structure 
must be the same, and arrays similarly 

36 

positioned 
and bounds. 
same. 

must have identical dimensions 
The data types need not be the 

When an operation has one structure and 
one scalar operand, it is interpreted as 
many operations, one for each scalar ele­
ment in the structure. Each sub-operation 
involves a structure element and the scalar 
operand. 

A structure expression is a shorthand 
method of applying an expression to each 
item of a structure. 

Note: A scalar expression is a valid form 
of a structure expression. 

Example: 

If there are two structures: 

1 A 1 B 
2 PART1 2 PART1 

3 SUBPART1 3 SUBPART1 
3 SUBPART2 3 ALPHA 
3 SUBPART3 3 SUBPART2 

2 PART2 2 PART 2 
3 SUBPART4 3 ALPHA 
3 BETA 3 SUBPART4 
3 SUBPART 5 (3) 3 SUBPART 5 (3) 

Then the expression A-2*B is shorthand for 
the following expressions: 

A SUBPART1 - 2*B SUBPART1 
A SUBPART2 - 2*B PART1 • ALPHA 
A SUBPART3 - 2*B SUBPART2 
A SUBPART4 - 2*B PART2 • ALPHA 
A • BETA - 2*B • SUBPART 4 
A • SUBPARTS - 2*B • SUBPARTS 

Note that the last expression is an array 
expression. 

EVALUATION OF EXPRESSIONS 

In the evaluation of an expression, the 
priority of operations is as follows: 

,. **. prefix +~ prefix - highest 

*, / 1 infix +" infix -
f=' >. ,>, ,=. <. ,<" <=. = 

II lowest 

Operations within an expression are per­
formed in the order of decreasing' priority. 
For example. in the expression A+B**3, 
exponentiation is performed before addi­
tion. If an expression involves operations 
of the same priority. the operations " **, 



prefix +, and prefix - are performed from 
right to left and all other operations are 
performed from left to right. 

If an expression is enclosed in paren­
theses, it is treated as a single operand. 
The parenthesized expression is evaluated 
before its associated operation is per­
formed. For example, in the expression 
(A+B**3)/(C*DI IE), A will be added to B**3. 
C*D will be concatenated with E, and then 
the first of these results will be divided 
by the second. 

Thus, parentheses modify the 
rules of priority. 

normal 

The operators + and * are commutative" 
but not associative" as low-order rounding 
errors will depend on the order of evalua­
tion of an expression. Thus, A+B+C is not 
necessarily equal to A+(B+C). 

The rules relating to abnormal functions 
and abnormal data should be noted (see 
"Abnormali ty and Irreducibility,." in Chap­
ter 10). 

ORDER OF THE EVALUATION OF EXPRESSIONS 

The operands of an expression are not 
accessed in a specific order. A program 
must not depend on a specific order of 
access for its successful operation. 

Array expressions are evaluated by per­
forming, in turn, a complete scalar evalua­
tion of the expression for each position of 
t:.ne array. Tne evaluations proceed in 
row-major order (final subscript varying 
most rapidly). The result of an evaluation 
for an earlier position can alter the 
values of scalar elements for the evalua­
tion of a later position (see Example 1, 
for "The Assignment Statement," in Chapter 
8>' 

Structure expressions are evaluated by 
performing a complete scalar evaluation of 
the expression for each eligible field, in 
the order in which the fields in the 
structures are declared. The results of an 
evaluation for an earlier position can 
alter the result for the evaluation of a 
later position. 

Chapter 3: Data Manipulation 37 



CHAPTER 4: DATA DESCRIPTION 

An identifier appearing in a PL/I pro­
gram may refer to one of many classes of 
objects. It may. for example, represent a 
variable referring to a complex number 
expressed in fixed-point form with decimal 
base; it may refer to a file; it may 
represent a variable referring to a charac­
ter string; it may represent a statement 
label or represent a variable referring to 
a statement label; it may be a variable 
referring to a pointer or area, etc. 

Those properties that characterize the 
object represented by the identifier, and 
other properties of the identifier itself 
(such as scope, storage class, etc.), 
together make up the set of attributes 
which can be associated with an identifier. 

There are a number of classes of attri­
butes. These classes and the attributes in 
each class are described further on in this 
chapter. 

When an identifier is used in a given 
context in a program, attributes from cer­
tain of these attribute-classes must be 
known in order to assign a unique meaning 
to the identifier. For example, if an 
identifier is used as a data variable, the 
data type must be known; if the data type 
is arithmetic, the base, scale, mode. and 
precision must be known. 

Examples of Attributes: 

CHARACTER (SO}--Association of this attri­
bute with an identifier defines the 
identifier as representing a variable 
referring to a string 50 characters in 
length. 

FLOAT--Association of this attribute with 
an identifier defines the identifier 
as representing a variable referring 
to arithmetic data, where the data is 
represented internally in floating­
point form. 

EXTERNAL--Association of this attribute 
with an identifier defines the 
identifier as a name with a certain 
special scope. 

38 

DECLARATIONS 

A given identifier is established as a 
name, which holds throughout a certain 
scope in the program (see "scope of 
Declarations" in this chapter), and a set 
of attributes may be associated with the 
identifier by means of a declaration. 

If a declaration is internal to a cer­
tain block. then the declared identifier is 
said to be declared in that block. 

In a given program, an identifier may 
represent more than one name. In this 
case, each different name represented by 
the identifier is said to be a different 
use of the identifier. For example, an 
identifier may represent an arithmetic 
variable in one part of a program and an 
entry name in another part. These two 
parts, of course, cannot overlap. 

Each different use of the identifier is 
established by a different declaration. 
References to different uses are distingu­
ished by the rules of scope (see "Scope of 
Declarations"). 

Declarations may be explicit, contex­
tual, or implicit. 

EXPLICIT DECLARATIONS 

Explicit declarations are made through 
use of the DECLARE statement, label prefix­
es, and specification in a formal parameter 
list; by this means, an identifier can be 
established as a name and can be given a 
certain set (possibly empty) of attributes. 

Only one DECLARE statement can be used 
to establish a given use of a given iden­
tifier. However, complementary sets of 
explicit declarations are permitted: 

a. One explicit declaration of an entry 
name as a statement prefix may be 
combined with an explicit declaration 
in a DECLARE statement. 

b. One or more explicit declarations in 
parameter lists may be combined with 
an explicit declaration in a DECLARE 
statement. 

All declarations of a complementary set 
must be internal to the same block. 



The DECL~~E statement 

Function: 

The DECLARE statement 
executable statement used 
specification of attributes 
names. 

General Format: 

is a 
for 

of 

DECLARE [levelj name [attribute] 
[, [level] name [attribute] , ••• ] 

Syntax rules: 

non­
the 

simple 

' ... , 

1,. Any number of identifiers may be 
declared as names in one DECLARE 
statement and must be separated by 
commas. 

2. Attributes must follow 
which they refer. 
above format does not 
of attributes, which 
explained later). 

the names to 
(Note that the 
show factoring 
is allowable as 

3. "Level" is a non-zero decimal integer 
constant. If it is not specified, 
level 1 is assumed. A blank space is 
not required to separate a level num­
ber from the name following it. 

General Rules: 

1. All of the attributes given explicitly 
for a particular name must be declared 
together in one DECLARE statement. 
(Note that for FILE, certain attri­
butes may be specified in an OPEN 
statement. See Chapter 7, "File Open~ 
ing and File Attributes.") 

2,. Attributes of EXTERNAL names, declared 
in separate blocks and compilations, 
must not conflict or supply explicit 
information that was not explicit or 
implicit in other declarations. 

Example: 

DECLARE JOE FLOAT, JIM FIXED (5,3), 
JACK BIT (10); 

JOE is declared to be a floating-point 
scalar variable, JIM a five-position, 
fixed-point scalar variable with three 
places to the right of the decimal, and 
JACK a scalar variable of ten bits. 

~~£tQrirr9-of Attributes 

Attributes common to several name dec­
larations can be factored to eliminate 

repeated specification of the same attri­
bute for many identifiers. This factoring 
is achieved by enclosing the name declara­
tions in parentheses., and following this by 
the set of attributes which are to apply. 
In the case of a factored level number, the 
level number precedes the parenthesized 
list of name declarations. 

1. 

Examples: 

DECLARE ({A FIXED, B FLOAT) STATIC" 
C CONTROLLED) EXTERNAL; 

This declaration is equivalent to the 
following: 

DECLARE A FIXED STATIC EXTERNAL, 
B FLOAT STATIC EXTERNAL" 
C CONTROLLED EXTERNAL; 

2,. DECLARE lA AUTOMATIC,2(B FIXED, 
FLOAT, D CHAR(10»; 

This declaration is equivalent 
following: 

DECLARE 1 A AUTOMATIC, 
2 B FIXED, 
2 C FLOAT, 
2 D CHAR(10); 

Multiple Declarations and Ambiguous 
References 

to 

C 

the 

Two or more declarations of the same 
identifier, to the same block, 
constitute a multiple declaration of that 
identifier only if they have identical 
qualification (including the case of two or 
more declarations of an identifier at level 
1, i.e.~ scalars or major structures). 
Multiple declarations are in error. 

Reference to a qualified name is always 
taken to apply to the identifier (for which 
the reference is valid) declared in the 
innermost block containing the reference. 
Within this block, the reference is unam­
biguous if either of the following is true: 

1. The reference gives a valid qualifica­
tion for one and only one declaration 
of the identifier. 

2. The reference represents the complete 
qualification of only one declaration 
of the identifier. The reference is 
then taken to apply to this identifi­
er. 

Otherwise, the reference is ambiguous and 
~n error. 

Chapter 4: Data Description 39 



Examples: 

1. DECLARE lA, 2C, 2D, 3E; 
BEGIN; 
DECLARE lA, 2B, 3C, 3E: 
A.C=D.E; 

A.C refers to C in the inner block. 
D .• E refers to E in the outer block. 

2. DECLARE lA, 2B, 2B, 2 c., 3D, 2D; 
B has been multiply declared. 
A.D refers to the second D~ since A.D 

is a complete qualification of only 
the second D; the first D would 
have to be referred to as A.C.D. 

3. DECLARE lA, 2B, 3C, 2D, 3C: 
A,. C is ambiguous because neither C is 

completely qualified by this ref­
erence. 

4. DECLARE lA., 2A, 3A; 
A refers to the first A. 

A.A refers to the second A. 
A.A.A refers to the third A. 

5. DECLARE X: DECLARE iY .. 2X, 3Z. 3A, 2Y, 
3Z, 3A: 

X refers to the first DECLARE 
Y.Z is ambiguous 

Y.Y.Z refers to the second Z 
Y.X.Z refers to the first Z 

Label Prefixes 

A label acting as a prefix to a PROCE­
DURE or ENTRY statement explicitly declares 
the identifier as ENTRY,. If the PROCEDURE 
or ENTRY statement applies to the outermost 
procedure of a compilation. the attribute 
EXTERNAL is given. If all other cases" the 
attribute INTERNAL is given and the dec­
laration is said to be internal to the 
block containing the procedure. 

A label acting as a prefix to any other 
statement is an explicit declaration of the 
identifier as a statement label constant. 
The declaration is said to be internal to 
the block containing the statement. 

The appearance of an identifier in a 
parameter list of a PROCEDURE or ENTRY 
statement is an explicit declaration of the 
identifier as a parameter. 

40 

CONTEXTUAL DECLARATIONS 

The syntax of PL/I allows identifiers 
appearing in certain contexts to be recog-
nized without an explicit declaration. The 
various cases are described below. 

1. An identifier may occur in a context 
where only a file name may appear. In 
some of these cases, the identifier is 
said to be declared as a file name 
(see "File Opening and File 
Attributes" in Chapter 7). 

Example: 

GET FILE (INFILE) DATA; 

Here, INFILE is declared contex­
tually with the attribute FILE. 

2. An identifier may occur in a context 
where only a task (or event) name (see 
"The CALL statement" in Chapter 8 and 
"Asynchronous Operations and Tasks" in 
Chapter 6) may appear. In some of 
these cases, the identifier is said to 
be declared as a task (or event) name 
(see "Appiication of Default 
Attributes"). 

Example: 

WAIT (EVENT2): 

Here, EVENT2 is declared contex­
tually as an event identifier. 

3. An identifier may occur in a context 
where only a programmer-specified con­
dition name (see Appendix 3) may 
appear. In this case, the identifier 
is said to be declared as a condition 
name, with the attribute EXTERNAL. 

Example: 

ON CONDITION (TEST1) GO TO CHECK: 

Here" TESTl is declared contextual­
ly as a condition name. 

4. An identifier may appear within a 
statement in a context where only an 
entry name may appear. That is, an 
identifier is contextually declared as 
an entry name if it appears as a label 
to a PROCEDURE or ENTRY statement or 
if it appears following the keyword 
CALL or as the function name in a 
function reference whose argument list 
is non-empty. If the occurrence of 
the identifier does not lie within the 
scope of the same identifier used to 
label a PROCEDURE or ENTRY statement, 
the identifier is given a default 
attribute of EXTERNAL. 



Example: SCOPE OF DECLARATIONS 

CALL EXPRI: 

5. An identifier may appear in a context 
in which only a pointer name may be 
used. In this case, the identifier is 
contextually declared to be a pointer. 

Example: 

DECLARE A(lO,lO) CONTROLLED (P)i 

ALLOCATE A SET (P); 
P -> A(l,l) = P -> A{S,S); 

The variable P is declared contex­
tually as a pointer in each of the 
above statements. 

6. An identifier may appear in a context 
where only an area name may be used. 
In this case~ the identifier is con­
textually declared to be an area. 

Example: 
ALLOCATE A IN (TREE) SET(P); 

In this example TREE is contextually 
declared to be an area. 

Note: Arithmetic or string attributes of 
constants are determined contextually~ 

IMPLICIT DECLARATIONS 

An identifier may be used in a block 
without being explicitly declared or con­
textually declared. In this case the iden­
tifier is said to be implicitly declared in 
the containing external procedure. As will 
be seen in the discussion of scope, this 
implicit declaration will then apply to the 
entire external procedure block except for 
any contained blocks where the identifier 
might be explicitly re-declared. 

Example: 

B1: PROCEDURE (Zl,Z2); 
TEMP1=ABS (Zl**2+Z2**2): 
02: BEGIN; 

TEMP2= 1/(TEMP1+Z2)**2i 
IF TEMP2>TEMPl THEN RETURN 

(TEMP2): 
END B2; 
RETURN (TEMP1); 
END B1: 

In this example, TEMP1 and TEMP2 are 
both implicitly declared in block Bl. 

When a declaration of an identifier is 
made in a program, there is a certain 
well-defined region of the program over 
which this declaration is applicable. This 
region is called the scope of the declara­
tion or the scope of the name established 
by the declaration. 

The scope of a declaration of an iden­
tifier is defined as that block B to which 
the declaration is internal, but excluding 
from block B all contained blocks to which 
another declaration of the same identifier 
is internal. 

This definition of scope can be applied 
to all identifier declarations except the 
declaration of entry names of external 
procedures (see "Declarations," in this 
chapter)~ The appearance of an identifier 
as the entrI name of an external procedure 
is regarded as an explicit declaration of 
the identifier as an entry name with the 
EXTERNAL attribute. The scope of such a 
declaration is defined to be the entire 
external procedure, excluding all contained 
blocks to which another declaration of the 
same identifier is internal. 

Scope of External Names 

In general, distinct declarations of the 
same identifier imply distinct names with 
distinct non-overlapping scopes. It is 
possible. however, to establish the same 
name for distinct declarations of the same 
identifier by means of the EXTERNAL attri­
bute. The EXTERNAL attribute is defined as 
fo!llows: 

An explicit or contextual declaration of 
an identifier that declares the iden­
tifier as EXTERNAL is called an external 
declaration for the identifier. All 
external declarations for the same iden­
tifier in a program will be linked and 
considered as establishing the same 
name.. The scope of this name will be 
the union of the scopes of all the 
external declarations for this identifi­
er. 

In all of the external declarations for 
the same identifier, the attributes 
declared must be consistent, since the 
declarations all involve a single name. 
For example, it would be an error if the 
identifier ID were used as an EXTERNAL file 
name in some READ statement in a programw 
and in the same program to declare ID as 
EXTERNAL ENTRY .. 

Chapter 4: Data Description 41 



The EXTERNAL attribute can be used to 
communicate between different external pro­
cedures or to obtain non-continuous scopes 
for a name within an external procedure~ 

An external name is a name that has the 
scope attribute EXTERNAL. If a name is not 
external. it is said to be an internal name 
and has the scope attribute INTERNAL. 

The following examples illustrate scope 
of declarations. The numbers on the left 
are for reference only. and are not part of 
the procedure. See Table 2 for an explana­
tion of the scope and use of each name. 

Example 1: 

1 A: PROCEDURE; 
2 DECLARE (X,Z) FLOAT; 

3 B: PROCEDURE (Y); 

4 
5 
6 

7 

8 
9 
10 

DECLARE Y BIT (6); 
C: BEGIN; 

DECLARE (A,X) FIXED; 

Y: RETURN; 
END C; 

END B; 
D: PROCEDURE; 

DECLARE X FILE; 
Y = Z; 

END D; 
END A; 

Since entry names of external procedures 
and file names have the attribute EXTERNAL. 
the scope of the entry name A and of the 
file name X above may include parts of 
other external procedures of the program. 

Table 2,. scope and Use of Names in Example 1, for "Scope of External Names" 
r----------------------------------------------------------------------------, 

I 
g~f~!:~nc~Line Name Use ScoEe (by block namesi I 

I 
1 A external entry name all of A except C 

2 X floating-point variable all of A except C and D 

2 Z floating-point variable all of A 

3 B internal entry name all of A 

4 Y bit string all of B except C 

5 C statement label all of B 

6 A fixed-point variable all of C 

6 X fixed-point variable all of C 

7 Y statement label all of C 

8 D internal entry name all of A 

9 X file name all of D 

I 10 Y floating-point variable all of A except B 
I L ___________________________________________________________________________ _ 

42 



Example 2: 

A: PROCEDURE; 
1 DECLARE X EXTERNAL: 

B: PROCEDURE: 
2 DECLARE X FIXED: 

3 
C: BEGIN; 

DECLARE X EXTERNAL; 

END C; 
END B; 

END A; 
D: PROCEDURE; 

4 DECLARE X FIXED; 

5 
E: PROCEDURE; 

DECLARE X EXTERNAL; 

END Ei 
END 0; 

In example 2, there are five declara- I 
tions for the identifier X. 

Declaration 2 declares X as a fixed­
point variable name; its scope is all of 
block B except block C. 

Declaration 4 declares X as another 
fixed-point variable UC:UIlC, distinct from 
that of declaration 2; its scope is all of 
block 0 except block E. 

Declarations 1,3,5 all establish X as a 
single name; its scope is all of the 
program except the scopes of declarations 2 
and 4. 

A name is said to be known only within 
its scope. This definition suggests a 
basic -- and almost self-evident -- rule on 
the use of names: 

~!! __ ~QQearances of an identifier which 
are intended to reEresent a give~name 
!Q __ ~ __ E£QgEam must lie within the scoE~ 
Qf_!:ha~_Q~!!!~. 

There are many implications to the above 
rule. One of the most important is the 
limitation of transfer of control by the 

statement GO TO A, where A is a statement 
label .. 

The statement GO TO A" internal to a 
block B, can cause a transfer of control to 
another statement internal to block B or to 
a statement in a block containing B, and to 
no other statement. In particular, it 
cannot transfer control to any point within 
a block contained in B. 

THE ATTRIBUTES 

Attributes are used to give 
characteristics to their associated iden­
tifiers. The attributes of the language 
are divided into the following classes: 

Data attributes 
Dimension attribute 
SECONDARY attribute 
REDUCIBLE and IRREDUCIBLE attributes 
ABNORMAL and NORMAL attributes 
USES and SETS attributes 
Entry name attributes 
Scope attributes 
Storage Class attributes 
ALIGNED and PACKED attributes 
DEFINED attribute 
CELL attribute 
INITIAL attribute 
Structure attributes 
LIKE attribute 
File description attributes 
List processing attributes 

DATA ATTRIBUTES 

Arithmetic Data 

Variables are declared to be of arith­
metic type if they are given any of the 
~ttributes base, scale, mode, or numeric 
picture. 

Base Attributes 

Function: 
The base attribute specifies that the 

data is in binary or decimal form. 

General format: 

BINARY I DECIMAL 

General rules: 

These attributes may not be specified 
in combination with the PICTURE attri­
bute. 

Chapter 4: Data Description 43 



Default: 

See "Default Conditions for Arithmetic 
Data" in this chapter. 

Examples: 

DECLARE A DECIMAL, B BINARY; 

Scale Attributes 

Function: 

The scale attribute specifies that the 
data is in fixed-point or floating-point 
form·. 

General format: 

FIXED I FLOAT 

General rules: 

These 
combination with 
bute .. 

Default: 

may not be given in 
the PICTURE attri-

See "Default Conditions for Arithmetic 
Data." 

Examples: 

DECLARE A FIXED, B FLOAT; 

Mode Attributes 

Function: 

The mode attribute specifies that the 
mode of the data is real or complex. 

General format: 

REALI COMPLEX 

General rules: 

The COMPLEX attribute may be given in 
combination with the PICTURE attri­
bute, to specify a complex numeric 
field. 

Default: 

see "Default Conditions fOl: A.tilhmetie 
Data." 

Example: 

DECLARE A COMPLEX, B REAL; 

44 

Precision Attribute 

Function: 

The precision attribute specifies the 
number of significant binary or decimal 
digits to be maintained for both fixed­
point and floating-point data, as well as 
the scale of the data. 

General format: 

(number-of-digi ts [" scale-factor] ) 

General rules: 

1. The precision attribute must 
immediately follow a scale, base, or 
mode attribute at the same factoring 
level. 

2. "Number-of-digits" is a positive deci­
mal integer constant specifying the 
number of binary or decimal digits to 
be maintained and is used with both 
fixed-point and floating-point data. 

3. The "scale-factor" is an optionally 
signed decimal integer constant that 
defines the position of the point with 
respect to an integer data item of the 
specified number of digits. The scale 
factor is used only with fixed-point 
data. 

4. When the scale is fixed and no scale 
factor is given, it is assumed to be 
zero. 

5. 

6. 

7. 

The scale factor may be negative, and 
it may be larger than the number of 
digits. 

The scale factor effectively multi­
plies the integer data by the base 
raised to the power of the scale 
factor with the sign reversed,. For 
example, decimal data of precl.sl.on 
(5,2) represents numbers from .01 to 
999 .. 99 or zero in magnitude: decimal 
data of precision (5.-2) represents 
numbers from 100 to 9999900 or zero in 
magnitude. 

This attribute may 
combination with the 
bute. 

Examples: 

not be given in 
PICTURE attri-

DECLARE A FLOAT (3), B REAL (10) 
FLOAT" X FIXED ( 5, 2) ; 

The following table shows the meaning of 
the scaling for fixed-point variables: 



r---===~~--T-------T----------T--------l 

1 19t~ger 1 Scale IPrecision IValue 1 
I I I I I 
I 00123 1 FIXED I (5,2) 11 • 23 1 
I 00123 1 FIXED I (5, -2) 112300 I 
1 123 1 FIXED I (3,4) 1·0123 I 
I 123 I FIXED 1 (3, -4) 11 230000 I l __________ ~ _______ ~ __________ ~ ________ J 

Default Conditions for Arithmetic Data 

If the base, scale, and mode are not 
specified, the ar1tnmet1c default attri­
butes are dependent upon the first letter 
of the name. If the first letter of the 
name is I through N, FIXED REAL BINARY is 
assumed; otherwise, FLOAT REAL DECIMAL is 
assumed. 

If arithmetic data attributes are partly 
specified, the rema1n1ng attributes are 
assumed as follows: 

Base: DECIMAL 
Scale: FLOAT 
Mode: REAL 

If prec~s~on is not specified, the 
assumed prec1s1on is that which is defined 
for the particular implementation of the 
language that is being used., where the 
definition depends on the scale and base. 

The PICTURE Attribute 

Function: 

The PICTURE attribute is used to define 
the internal and external forll~ts of n~~er­
ic and character-string data fields and to 
specify the editing of data. This discus­
sion is limited to the use of the PICTURE 
attribute with numeric data. The use of 
the PICTURE attribute with character-string 
data is described in "String Attributes." 
The picture characters are described in 
Appendix 2. 

General format: 

PICTURE 'numeric-picture-specifica­
tions' 

General rules: 

1. PICTURE may not be specified in combi­
nation with the base, scale. or preci­
sion attributes. 

Numeric fields have mode, base. 
scale, and precision; these are speci­
fied by the picture characters used in 
describing the field, and by the use 
of the mode attribute if COMPLEX,. 
Note the exception that sterling pic-

tures are treated as a separate cate­
gory, although they are real fixed­
point decimal fields. 

2. A "picture specification" is composed 
of a string of picture characters. It 
must be enclosed in quotation marks. 
Individual picture characters may be 
preceded by an iteration factor, which 
is a decimal integer constant, n, 
enclosed in parentheses, to indicaIe 
repetition of the character n times. 
If ~~ is zero, the character is 
omitted. This iteration factor speci­
fication may not follow the picture 
character F .. 

3,. Numeric picture specifications must 
include at least one digit position. 

4. The following paragraphs indicate the 
combination of picture characters that 
show mode, scale, base, and precision. 
In this discussion, a fixed-point 
field has one field. and a floating­
point field has two subfields. 

a. 

b .. 

Real binary fixed-point fields 
take the following general forms: 

PICTURE I [S] [1] ••• [V] 
[1] ••• [F([+I-] integer) ]' 

PICTURE '[2] ••• [V][2] ••• [F([+I-J 
integer)]' 

PICTURE • [3] ••• [V] [3] .... [F ( [+ 1- J 
integer)]' 

Only one V, representing a point, 
may be present in a picture 
specification, but it may be in 
any position. When a sign charac­
ter (S> is specified: the field 
will contain a binary 1, if the 
value is negative, or a zero, if 
the value is positive. 

Real binary floating-point fields 
take the following general forms: 

PICTURE' [S][l] ••• 
K[S]l[l] ••• ' 

PICTURE ; [2] ••• 
K2[2] .... ' 

PICTURE '[3] ••• 
K3[3] .... ' 

[V] [1] 

[V] [2] ••• 

[V] [3] .... 

The mantissa and exponent must 
each contain at least one digit 
position. The sign character 
allowed to the right of the K in 
the first form represents the sign 
of the exponent .. 

c. Real decimal fixed-point fields 
take the following general form: 

PICTURE' [9] ••• [V] [9] ••• 
[F([+!-] integer)]' 

Chapter 4: Data Description 45 



46 

Sign. editing. and zero­
suppression picture characters, as 
explained in Appendix 2, may be 
included (only one sign character 
per subfield is allowed> '. The V 
may not appear more that once in a 
picture specification. If no V is 
given. the decimal point will be 
assumed to appear to the right of 
the last digit. No attempt has 
been made to show the use of all 
valid picture characters in the 
general format above. These are 
explained in Appendix 2,. 

d. Real decimal floating-point fields 
take the following general form: 

PICTURE ·[9] .... [V] [9] ••• {E I K} 

9 ... '. ' 

The mantissa and exponent must 
each contain at least one digit 
position. Sign, editing, and 
zero-suppression picture charac­
ters may be included. Sign char­
acters refer to the subfield in 
which they appear" except a CR or 
a DB,. which refers to the first 
subfield. Only one sign character 
per subfield is allowed. 

e. Complex fields may contain those 
picture characters that are vali~ 
for real fields as described 
above. They take the general 
form: 

real-picture 

The "real-picture" represents both 
portions of the complex number. 
The attribute COMPLEX must also be 
specified. The real-picture may 
not specify a sterling field. 

f. sterling fields are considered to 
be real fixed-point decimal 
fields. When involved in arith­
metic operations. they will be 
converted to a value representing 
fixed-point pence. Sterling pic­
tures have the general form: 

PICTURE 
'G[editing-character-l] ••• 
M pounds-field 
M [separator-l] ••• 

shillings-field 
M [separator-2] ••• 

pence-field 
[editing-character-2] ••• ' 

"Editing character 1" may be one 
or more of the following static 
picture characters: 

$ + - S 

The "pounds field" may contain the 
following picture characters: 

Z Y * 9 T I R • $ + - S 

The last four characters (i.e." $ 
+ - S> must be drifting charac­
ters. The comma may be used as a 
break character .. 

"Separator 1" may be one or more 
of the following picture charac­
ters: 

/.. B 

The "shillings field" may be: 

{99I YY IZ ZIY9I Z9IZYIS} 

The nines may be replaced by T, I, 
or R. 

"Separator 2" may be one or more 
of the picture characters: 

/.. B H 

The "pence field" takes the form: 

{99IYYIZZIY917IZ9IZYI6} [VIV·I·V] 
[9IZIY} ••• 

Any of the nines may be replaced 
by one of the following: 

T I R 

"Editing character 2" may be one 
or more of the static picture 
characters $ + - S and one or more 
of B P CR DB. 

The pounds, shillings, and pence 
subfields must each contain at 
least one digit position. 

Zero suppression in sterling pic­
tures is performed on the total 
field, not separately on each of 
the pounds., shillings., and pence 
subfields. In sterling pictures, 
the subfield separator characters 
/. Band H are never suppressed. 

5. The precision of picture specifi­
cations is described below. In this 
discussion, the following picture 
characters, actual and conditional, 
are defined as digit positions: 

1 2 3 9 Z * Y T I R 
and the drifting 

$ S + -

The precision of a fixed~point 
numeric field is (m,n>, where m 1.S the 
total number of digit positions in the 



field and n is the number of diait 
positions -following the V. If - a 
drifting string contains n drifting 
characters. this specifies n-1 digit 
positions. For sterling pictures, m 
is 3 + the number of digits in the 
'pounds field + the number of fraction­
al digits in the pence field. 

The precision of a floating-point 
field is (p). where E is the total 
number of digit positions before the E 
or K. 

Decimal or binary fixed-point pic­
tures may have a scaling factor. This 
may be achieved by placing the follow­
ing at the extreme right of the pic­
ture subfield: 

F ([+I-l integer) 

with the "integer" value represented 
by g. this specifies that the decimal 
or binary point should be assumed to 
be g places to the right (or left, if 
negative) of the position assumed in 
the absence of the scaling factor. 
The prec1s10n of the numeric field is 
then (m,n-g). 

These precisions may not exceed the 
limits for decimal or binary fixed­
point values, as defined for the 
particular implementation of PL/I. 

6. Only one sign position is permitted in 
a PICTURE subfield. This may be spec­
ified by a static sign picture charac­
ter or by a drifting string for a sign 
character .. 

Function: 

The string attributes specify string 
data to be either in bit-string form or in 
character-string form with a specified 
length. The form of character-string data 
may also be specified. 

General format: 

\ BIT 1 
i t(length) 
( CHARACTER) 

[VARYING] 

PICTURE 'character-picture­
specifications' 

General rules: 

1. BIT specifies bit-string data. CHARAC­
TER specifies character-string data, 

and PICTURE specifies character-string 
data in picture form. 

2. The "length" attribute specifies the 
actual length of fixed-length strings 
and the maximum length of varying­
length strings., in which case the 
attribute VARYING is given. If 
VARYING is specified" then either BIT 
or. CHARACTER must also be specified. 
The attribute VARYING may appear prior 
to the BIT Or CP~J\CTER attribute in a 
string attribute specification; that 
is. it may appear anywhere in the 
declaration of a string. VARYING may 
be factored .. 

3. The length specification may be an 
expression or an asterisk. It must 
immediately follow a CHARACTER or BIT 
attribute at the same factoring level. 

4. If the length specification is an 
expression. it will be converted to an 
integer at the point of allQcation or 
upon entry to the declaring block for 
parameters. 

5. An asterisk may be used when the 
length is to be taken from a previous 
allocation for parameters or nonbased 
CONTROLLED variables or if it is to be 
specified in a subsequent ALLOCATE 
statement for nonbased CONTROLLED 
variables. 

6. The length of strings declared STATIC 
must be a decimal integer constant. 

7. Since PICTURE is an attribute that 
also may apply to arithmetic data. a 
separate explanation is in the section 
entitled "The PICTURE Attribute. ft 

Additional picture characters are pro­
vided when the PICTURE attribute is 
used to declare character-string data. 
These may be found in Appendix 2. 

8. BIT, CHARACTER., or VARYING may not be 
specified if PICTURE is specified. 

Example: 

DECLARE A BIT (10), B CHAP~CTER (5), C 
PICTURE 'XAA9AA'. D BIT{*)VARYING; 

A is a field of ten bits; B is a field 
of five characters; C is a field of charac­
ters~ letters, and a decimal digit; and D 
is a field of bits with a maximum length to 
be taken from a previous allocation or to 
be specified in a subsequent ALLOCATE 
statement a 

Chapter 4: Data Description 47 



Function: 

The LABEL attribute specifies that the 
associated variable will have statement 
labels as values. To aid optimization of 
the object program, it may also specify the 
values a label variable may have during 
execution of the program. 

General format: 

LABEL [(statement-Iabel-constant 
[, statement-label-constant] ••• )] 

General rules: 

1. If the variable is a parameter, the 
value can also be any statement label 
that could be passed as an argument, 
or any value permitted for any label 
variable that may be specified as an 
argument. 

2. If a list of statement-label constants 
is specified, the variable may have as 
values only members of the list. The , _1.-_' ____ .L... __ ...... _ 

.J.QJJt:.J. ~Ull~ LeUl Lb 

known in the 
declaration. 

in 
block 

the list must be 
containing the 

3. An entry name cannot be a value of a 
label variable. 

4. A subscripted label that is an element 
of a label array may appear as a 
statement prefix but may not appear in 
an END statement after the keyword 
END. 

Example: 

DECLARE START LABEL (LABELL, LABEL2., 
LABEL3); 

The TASK Attribute 

Function: 

The TASK attribute specifies that the 
associated identifier is used as a task 
name (see "Asynchronous Operations and 
Tasks," in Chapter 6, the general rules 
under "The CALL Statement," in Chapter 8, 
and "Task Data" in Chapter 2). 

General format: 

TASK 

General rules: 

1. An identifier may be explicitly 

48 

declared with the TASK attribute in a 
DECLARE statement. It may be contex­
tually declared by its appearance in a 
TASK option appended to a CALL state­
ment (see Chapter 8). 

2. Task names may also have the following 
attributes: 

Dimension attribute 
Scope attribute (the default is 

INTERNAL) 
Storage class attribute (the 

default is AUTOMATIC) 
DEFINED attribute (task names may 

only be defined on other task 
names) 

ABNORMAL attribute (all task names 
are ABNORMAL) 

SECONDARY attribute 

3. A task name can appear in a TASK 
option (see "The CALL Statement," in 
Chapter 8), as the argument in the 
PRIORITY built-in function, or in the 
PRIORITY pseudo-variable. Task names 
also may be passed as procedure param­
eters. 

The EVENT Attribute 

Function: 

The EVENT attribute specifies that the 
associated identifier is used as an event 
name (see "Asynchronous Operations and 
Tasks," in Chapter 6, the general rules 
under "The CALL statement," in Chapter 8, 
and "Event Data" in Chapter 2). 

General format: 

EVENT 

General rules: 

1. An identifier may be explicitly 
declared with the EVENT attribute in a 
DECLARE statement. It may be contex­
tually declared by its appearance in 
an EVENT option appended to a CALL 
statement, in a WAIT statement, in a 
DISPLAY statement, or in various 
input/output statements (see Chapter 
8). 

2. Event names may also have the follow­
ing attributes: 

Dimension attribute 
Scope attribute (the default is 

INTERNAL) 
Storage class attribute (the 

default is AUTOMATIC) 
DEFINED attribute (event names may 



3. 

only be defined on 
names) 

ABNORMAL attribute (all 
are ABNORMAL) 

SECONDARY attribute 

_.a..k __ .............. ,..._ ..... 
V\...llC:.L. c:Vc:u .... 

event names 

An event name can appear in an EVENT 
option., a WAIT statement (see Chapter 
8), or as the argument in the EVENT 
built-in function or in the EVENT 
pseudo-variable. Event names also may 
be passed as procedure parameters. 

THE DIMENSION ATTRIBUTE 

Function: 

The dimension attribute defines the 
bounds of an array. 

General format: 

(bound [, bound] ••• ) 

where "bound" is 
{[lower-bound :]upper-bound}l* 

Syntax rule: 

Lower bound and upper bound are scalar 
expressions. 

General rules: 

1. The number of "bounds" specifies the 
number of dimensions in an array. 

2. Bounds that are expressions are evalu­
ated and converted to integer data 
when storage is allocated for the 
array or when linkage is established 
for parameters .• 

3. The bounds are indicated as follows: 

a. If only the upper bound is given, 
the lower bound is assumed to be 
one .. 

b. When the actual bounds for each 
dimension are to be taken from a 
previous allocation for that iden­
tifier or are to be specified in a 
subsequent ALLOCATE statement for 
nonbased variables, an asterisk 
must be used to represent each of 
the dimension bounds. Thus. 
asterisks may be used only for 
parameters and CONTROLLED varia­
bles. 

c. The lower bound must be less than 
or equal to the upper bound. 

4. The bounds of arrays declared static 

5. 

6. 

must be optionally signed decimal 
integer constants. 

If an attribute list contains a dimen­
sion attribute~ that attribute must 
come first in the list. 

If any bound of a dimension attribute 
in a structure declaration is an 
asterisk., then all dimension bounds 
for the major structure and for all 
other structure elements must also be 
asterisks. 

7. The asterisk notation may not be used 
for based variables. 

Examples: 

1. DECLARE TABLEA(5,8), TABL~B(-5:5,10); 

TABLEA is a two-dimensional array with 
5 rows and 8 columns (subscripts 
1 to 5 and 1 to 8). TABLEB is a 
two-dimensional array with 11 
rows and 10 columns (subscripts 
-5. -4, -3, -2, -1, 0, 1,2,,3, 
4. 5 for the rows and 1 through 
10 for the columns). 

2. DECLARE MATRIX (*,*); 

MATRIX is a two-dimensional array. 
The bounds are to be taken from a 
previous allocation for MATRIX or 
are to be subsequently specified 
in an ALLOCATE statement. 

THE SECONDARY ATTRIBUTE 

Function: 

The SECONDARY attribute is used to spec­
ify that certain data normally does not 
require efficient storage. 

General format: 

SECONDARY 

General rules: 

1. This attribute may be declared only 
for major structures, arrays, and 
variables not contained in structures 
or arrays, i.e., for variables at 
level 1 .• 

2. The attribute specifies that where 
possible and necessary, less than nor­
mally efficient storage may be allo­
cated to the variable. 

Chapter 4: Data Description 49 



THE ABNORMAL AND NORMAL ATTRIBUTES 

Function: 

The ABNORMAL and NORMAL attributes are 
used to specify data as being either normal 
or abnormal. 

General format: 

ABNORMAL I NORMAL 

General rules: 

1. The ABNORMAL attribute may be declared 
for any variable. 

2. The ABNORMAL attribute specifies that 
a variable may be altered or otherwise 
accessed at an unpredictable time dur­
ing the execution of a program. This 
situation might occur. for example, 
during the execution of an ON-unit as 
described in "The ON Statement," in 
Chapter 8 .. 

3. Every time ABNORMAL data is referred 
to, its associated storage contains 
its current value. 

Default for Abnormality of Data 

Variables are assumed to be NORMAL, 
except structures containing ABNORMAL ele­
ments: such structures may not be declared 
NORMAL. 

THE REDUCIBLE AND IRREDUCIBLE ATTRIBUTES 

Function: 

The REDUCIBLE and IRREDUCIBLE attributes 
are used to specify entry names as being 
either reducible or irreducible. The IRRE­
DUCIBLE attribute specifies that invoca­
tions of the specified entry may not not be 
reduced to a smaller number of invocations. 

General format: 

REDUCIBLE I IRREDUCIBLE 

General rules: 

1. Reducibility is a property of both 
external and internal procedures. 
Blocks invoking procedures that are 
irreducible must be within the scope 
of an IRREDUCIBLE, USES, or SETS dec­
laration for the invoked entry name. 
However, the invocation of an irredu­
cible procedure does not make the 
invoking procedure itself irreducible. 
These attributes enable program optim­
ization to be performed. 

50 

2. An external procedure is irreducible 
if it or any procedures invoked by it: 

a. Access, modify, allocate or free 
external data. 

b. Modify, allocate" or free their 
arguments. 

c. Return 
values 
values. 

inconsistent 
for the same 

function 
argument 

d. Maintain any kind of history. 

e. Perform input/output operations. 

f. Return control from the procedure 
by means of a GO TO statement. 

3.. An internal procedure is irreducible: 

a. Under any of the conditions listed 
above for external procedures. 

b. If it, or any procedures called by 
it, access, mOdify., allocate, or 
free variables declared in an 
outer block. 

4. Irreducible external procedures 
invoked as functions must be declared 
with at least one of the attributes, 
IRREDUCIBLE, USES, or SETS. The scope 
of this declaration must include the 
invoking block. 

5. IRREDUCIBLE used alone specifies that 
all possible types of irreducibility 
should be assumed. It is unnecessary 
to specify IRREDUCIBLE for the built­
in functions, TIME and DATE. 

6. The REDUCIBLE attribute specifies that 
the entry name is for a procedure that 
is not irreducible. 

Default for Irreducibility of Procedures 

If an external entry name appears only 
as a function reference, the entry name is 
assumed to have the REDUCIBLE attribute. 
En~ry names of all internal procedu~es and 
entry names of external procedures lnvoked 
in CALL statements are assumed to have the 
IRREDUCIBLE attribute. 

THE USES AND SETS ATTRIBUTES 

Function: 

The USES and SETS attributes are used to 
specify, for an entry name, the nature of 
its irreducibility due to data 
manipulation. 



General format: 

USES (item[#iteml ••• ) 
SETS (item[,itemJ ••• ) 

General rules: 

1. The items of the list following a USES 
or SETS attribute may be as follows: 

a. A decimal integer g, specifying 
the nth argument of any invocation 
of the procedure at the declared 
entry name .• 

b. An unsubscripted data name known 
to both the block containing the 
declaration and the invoked proce­
dure .• 

c. An asterisk indicating all iden­
tifiers described in b. 

2. An item in the USES list specifies the 
following: 

a. 

c. 

That the invoked procedure or pro­
cedures invoked by it access that 
item. 

That neither the invoked procedure 
nor procedures invoked by it reas­
sign that item unless it is also 
specified in a SETS attribute. 

That neither the invoked procedure 
nor procedures invoked by it 
access any other data known to the 
block, except data designated by 
explicit arguments in either a 
CALL statement, a statement with a 
CALL option, or a function ref­
erence. 

3. An item in the SETS list specifies the 
following: 

a. That the invoked procedure or pro­
cedures invoked by it reassign, 
allocate, or free that item. 

b. That neither the invoked procedure 
nor procedures invoked by it 
access that item other than to 
reassign, allocate, or free it, 
unless it is also specified in a 
USES attribute, or it is an argu­
ment. 

c. That neither the invoked procedure 
nor procedures invoked by it reas­
sign, allocate, or free any other 
data known in the block. 

4. The USES and SETS attributes may be 
declared for any entry name used to 
invoke a procedure. The scope of this 
declaration must include the invoking 
block. If the ENTRY attribute is not 
declared, ENTRY is implied. If either 
USES or SETS is declared in the invok­
ing procedure, complete information 
must be given about the data that is 
used and/or set by the invoked proce­
dure. 

5. If an item in a USES or SETS list, as 
described in 1b above is defined on a 
base (see "The DEFINED Attribute") and 
if the base and any other items 
defined on it are known both to the 
invoking and invoked blocks, the base 
and the other items must also be 
specified in the list. 

6. A structure or array name appearing in 
a USES or SETS list implies that the 
names of all items contained in the 
structure or array also are on the 
list. It does not imply that items 
defined on elements of the structure 
are in the list; these must be 
declared as in rule 5, above. 

7. If the USES or SETS attribute is 
specified and the invoked procedure is 
irreducible in any other way! the 
IRREDUCIBLE attribute must still be 
specified (unless it is given by 
default). If the USES or SETS attri­
bute is specified and the invoked 
procedure is not otherwise irreduci­
ble, the IRREDUCIBLE attribute should 
not be specified. 

ENTRY NAME ATTRIBUTES 

An identifier may be declared to be an 
entry name by giving it the ENTRY attri­
bute. It may be declared to have any of 
the attributes SETS, USES, BUILTIN, and 
RETURNS. These attributes all imply ENTRY 
and thus ENTRY need not be specified. The 
entry name also may have the attributes 
IRREDUCIBLE or REDUCIBLE. 

An explicit declaration of an internal 
entry name and the procedure block having 
the entry name must both be internal to the 
same block. 

An identifier may be declared as rep­
resenting a family of entry names, by using 
the GENERIC attribute. 

Chapter 4: Data Description 51 



Function: 

The ENTRY attribute is used to declare, 
within a procedure, entry names that are 
referred to in that procedure. 

General format: 

ENTRY [ (parameter-attribute-list 
[,parameter-attribute-listl ••• )l 

General rules: 

1. When ENTRY is used, it specifies that 
the identifier being declared is an 
entry name. An entry name must be 
declared with the ENTRY attribute 
unless the entry label is known in the 
same block, or unless a reference is 
made to the entry name in a CALL 
statement or in a function reference 
with arguments, or if it is declared 
to have any of the attributes SETS, 
USES, GENERIC, BUILTIN, and RETURNS. 
INTERNAL entries may only be declared 
in the block to which the procedure is 
internal. ENTRY without a parameter 
attribute list specifies nothing about 
the number or nature of the paramet­
ers. 

2. When ENTRY is used with parameter 
attribute lists, each parameter attri­
bute list is a succession of attri­
butes describing a parameter of the 
entry point. Permitted attributes are 
those allowed for parameters. 

3. The number of parameter attribute 
lists must be the same as the number 
of parameters required by the entry 
point. If a parameter attribute list 
is null, its place must be kept by a 
comma. 

4. Parameter attribute lists are not nec­
essary if the parameters of the entry 
name are not to be described. 

5. The dimension attribute may be speci­
fied for array parameters. It must be 
the first attribute specified for the 
parameter. 

6. The structuring for a structure param­
eter is specified by a structure des­
cription using level numbers without 
identifiers, the level number being 
immediately followed by the list of 
attributes for that level of the 
structure. The first item in the 
description of the structure parameter 
must be at level one. 

7. Expressions occurring in ENTRY attri-

52 

butes for length or dimension bounds 
are evaluated upon entering the block 
to which the declaration of the ENTRY 
attribute is internal. If an argument 
position specifies an entry with no 
data attributes, no default data 
attributes are provided. 

Default: 

If no attributes or level numbers are 
given for a parameter, no assumptions are 
made about it. When any attributes are 
specified, the remaining required attri­
butes are deduced according to the default 
rules given in "Assignment of Attributes to 
Identifiers." Note that if the partially 
specified attributes imply data elements 
without specifying the type, arithmetic 
REAL FLOAT DECIMAL is assumed. 

The GENERIC Attribute 

Function: 

The GENERIC attribute is used to define 
a name as a family of entry names, each of 
which is referred to by the name being 
declared. When the generic name is 
referred to, the proper entry name is 
selected, based upon the arguments speci­
fied for the generic name in the procedure 
reference. 

General format: 

GENERIC (entry-name-declaration 
[,entry-name-declarationl ••• ) 

General rules: 

1. No other attributes may be specified 
for the name being given the GENERIC 
attribute. 

2. Each "entry name declaration" follow­
ing the GENERIC attribute corresponds 
to one member of the family, and has 
the form: 

entry-name attribute-list 

3. Each entry name declaration must have 
the ENTRY attribute. It may optional­
ly have IRREDUCIBLE, REDUCIBLE, USES, 
SETS, and RETURNS attributes. No 
entry name declaration may have the 
GENERIC attribute. 

4. Each entry name declaration must spec­
ify attributes or level numbers for 
every parameter of the associated 
entry name. Attributes unspecified 
but required for full definition will 
be deduced from default rules. 



5. When a generic name is referred to~ 
the attributes of the arguments must 
match exactly the list following the 
entry name declaration of one and only 
one member of the family. The ref­
erence is then interpreted as a ref­
erence to that member. Thus, the 
selection of a particular entry name 
is ba~ed upon the arguments of the 
reference to the generic name. 

6. The selection of a particular entry 
name is first based on the number of 
arguments in the reference to the 
name. The following attributes are 
then considered in choice of generic 
members: 

If 

Base 
Scale 
Mode 
Precision 
PICTURE 
LABEL (but not range list) 
Dimensionality (but not bounds) 
CHARACTER (but not length) 
BIT (but not length) 
VARYING 
TASK 
EVENT 
POINTER 
AREA 
ENTRY (but not parameter descrip­

tion or other attributes of entry 
names) 

FILE (but no other FILE attributes) 
structuring, including only the 

attributes listed above for the 
structure members. 

precision is specified __ ?y :~~~: 
(*), then the precision is llot L.QAtll 

into account in the matching process .• 

7. Generic entry names (as opposed to 
references) may be specified as argu­
ments to non-generic procedures if the 
invoked entry name is declared with 
the ENTRY attribute (explicit or 
implicit for internal procedures). 
This ENTRY attribute must specify that 
the appropriate parameter is an entry 
name and specify by means of a further 
ENTRY attribute the attributes of all 
its parameters. This enables a choice 
to be made of which family member is 
to be passed. 

Example: 

DECLARE 
CALCULATE GENERIC (FIXCALC ENTRY (FIXED), 
FLTCALC ENTRY (FLOAT», Y FLOAT 
INITIAL (50); 
X=Y + CALCULATE (Y); 

The assignment statement results in the 
invocation of the procedure FLTCALC, since 

the argument Y matches the entry attribute 
of the FLTCALC member of the family. 

The BUILTIN Attribute 

Function: 

The BUILTIN attribute specifies that the 
reference to the associated identifier 
within the scope of Lne declaraLlon is 
interpreted as a reference to the built-in 
function or pseudo-variable of the same 
name. 

General format: 

BUILTIN 

General rules: 

1. BUILTIN is used to refer to a built-in 
function or pseudo-variable in a block 
that is contained in another block in 
which this name has been declared to 
have another use. 

2. If the BUILTIN attribute is declared 
for an entry name, the entry name may 
have no other attributes. 

3. The BUILTIN attribute may not be 
declared for formal parameters. 

For a list of built-in functions see 
Appendix 1. 

".,1..._ 
..lUI;:: 

Function: 

'J\.L..1..._.! l- ..... ..L._ 
fiL.L.LJ...lJUL.1;:: 

The RETURNS attribute is specified with 
an explicitly declared entry name in order 
to define the data attributes of the value 
to be returned by that entry. 

General Format: 

RETURNS [(attribute ••• )] 

General Rule: 

The attributes specify the data charac­
teriStlCS of the value returned by the 
entry when it is invoked as a function. If 
data attributes are not specified, defaults 
will be applied (see "Assignment of Attri­
butes to Identifiers" in this chapter). 
Only string, arithmetic, and pointer attri­
butes may be specified. Note that the 
attributes of the value returned by the 
function should agree with the attributes 
specified with RETURNS: if they do not 

Chapter 4: Data Description 53 



agree, it is an error since no conversion 
will be performed. 

SCOPE ATTRIBUTES 

Function: 

The scope attributes are used to specify 
the scopes in which declared identifiers 
are known. 

General format: 

{ INTERNAL} 
EXTERNAL 

For a full discussion of the 
and EXTERNAL attributes, see 
Declarations". 

INTERNAL 
"scope of 

4. AUTOMATIC variables may have INTERNAL 
scope only. STATIC and CONTROLLED 
variables may have INTERNAL or EXTER­
NAL scope. 

5. Storage class attributes may not be 
specified for entry names, file names, 
members of structures, or DEFINED 
data. 

6.. STATIC and AUTOMATIC attributes may 
not be specified for parameters. 

7 .. 

8 .. 

Variables declared with 
lengths and dimensions 
the STATIC attribute. 

adjustable 
may not have 

If a procedure involving static stor­
age is invoked from within or as a 
separate task, the static storage is 
common to all invocations. 

Default: 9. If, during execution of a statement, 
controlled data is allocated or freed 
(by an irreducible function, for 
example), any reference in the state­
ment to that data produces an unde­
fined result. 

If the scope is unspecified for variable I 
names, INTERNAL is assumed. 

STORAGE CLASS ATTRIBUTES 10. Storage class attributes may only be 
given for variables at level 1. The 
storage class applies to all elements 
of a structure or array of structures. 
If a structure is controlled, only the 
major structure, and not the elements, 
may be allocated and freed. 

Function: 

Storage class attributes are used to 
allocate and/or describe a particular class 
of storage to variables. 

General format: 

STATIC I AUTOMATIC I CONTROLLED I CONTROLLED 
(pointer-variable) 

General rules: 

1. STATIC specifies that storage is allo­
cated at the start of execution of the 
program and is not released until 
program execution has been completed. 

2. AUTOMATIC specifies that storage is 
allocated on each entry to· the block 
to which the storage declaration is 
internal. The storage is released on 
leaving the block. If the block is a 
procedure that is invoked recursively, 
the previously allocated storage is 
"pushed down" on entry, and the latest 
allocation of storage is "popped up" 
on termination. (For a discussion of 
"pushed down" and "popped up" storage, 
see "Allocation of Data and Storaqe 
Classes" in Chapter 6.) 

3. CONTROLLED specifies that full control 
will be maintained over the allocation 
and freeing of storage by means of the 
statements ALLOCATE and FREE. 

54 

11. The CONTROLLED (pointer-variable) 
attribute is used in connection with 
list processing and RECORD transmis­
sion. The variable declared with this 
form of the attribute is called a 
based variable. The following rules 
govern the use of pointer and based 
variables with the CONTROLLED 
(pointer-variable) attribute. 

a. The pointer variable may be given 
additional attributes, but such 
attributes must be declared separ­
ately. If additional attributes 
are not declared, the default 
attribute AUTOMATIC applies. 

b. When reference is made to a based 
variable, the data attributes 
assumed are those of the based 
variable, while the associated 
pointer variable identifies the 
generation of data. If the ref­
erence is to a component of a 
based structure, a second, tem­
porary pointer variable is created 
to determine the location of the 
component in relation to the 
beginning of the structure (that 
is, the offset of the component 
within the structure). 



1. 

~ Array dimensions and string 
lengths declared with the based 
variable are evaluated dynamically 
with each reference to the based 
variable. Therefore, the asterisk 
notation for dimensions and 
lengths is not permitted. A ref­
erence to a component of a based 
structure causes evaluation of 
sufficient elements of the struc­
ture to determine the position of 
the component. 

d. A based variable may be used to 
identify and describe data exist­
ing in any storage class, or to 
obtain storage (via the ALLOCATE 
statement) which has the charac­
teristics of the based variable. 

e. The scope of a based variable is 
internal to the block in which it 
is declared; therefore, the attri­
bute EXTERNAL may not appear with 
a based variable declaration. 

f. The attribute VARYING may not be 
specified for a based variable. 

g. The INITIAL attribute may be spec­
ified for based variables. The 
values are assigned only upon 
explicit allocation of the based 
variable in an ALLOCATE statement. 

h. Based variables may not be speci­
fied in the CHECK condition. 

i. When a based variable incorporat­
ing arrays or character strings is 
an argument for a procedure invo­
cation, its dimensions and/or 
lengths are evaluated and then 
fixed for the duration of the 
invocation. 

Default: 

If storage 
the scope 
assumed .• 

class is unspecified and 
is EXTERNAL, STATIC is 

2. If storage class is unspecified and 
the scope is INTERNAL, AUTOMATIC is 
assumed. 

3. If neither storage class nor scope is 
specified, AUTOMATIC is assumed. 

Examples: 

1. EXAMPLE: PROCEDURE; 
DECLARE A STATIC INITIAL 

(O), B CONTROLLED. C(10); 
ALLOCATE Bi 
A = A + 1; 

FREE B; 
PUT LIST(A}; 
END EXAMPLE; 

The variable A is of the static stor­
age class and is used to count the 
number of times the procedure is 
invoked. The variable B is of the 
controlled storage class, and storage 
is allocated and freed by use of the 
ALLOCATE and FREE statements. The 
variable C is of the automatic storage 
class by default. 

2. DECLARE VALUE CONTROLLED (P); 

The variable VALUE is a based variable 
in which the pointer P is used to 
locate the generation of VALUE when 
reference is made to it. The scope of 
VALUE is internal, and the pointer 
variable P is of the automatic storage 
class by default. 

3. DECLARE STRINGS (I,J) CHARACTER (K) 

CONTROLLED ( Q) , 

Q STATIC EXTERNAL; 

The variable STRINGS is an array of 
character strings based upon the poin­
ter Q. The values of I and J will be 
evaluated dynamically at each ref­
erence to STRINGS to determine the 
dimensions of STRINGS, and the value K 
will be dynamically evaluated to 
determine the length of each element. 
The pointer variable Q will appear in 
static external storage. 

THE ALIGNED AND PACKED ATTRIBUTES 

Function: 

The ALIGNED and PACKED attributes are 
used to specify in storage the arrangement 
of string or numeric field data elements 
within data aggregates. 

General format: 

ALIGNED I PACKED 

Chapter 4: Data Description 55 



General rules: 

1. These attributes may be specified for 
the following: 

2. 

3. 

4. 

1. 

2. 

a. Names of major structures. 

b. Names of arrays that are not them­
selves part of a structure. 

PACKED specifies that each string or 
numeric field element is packed in 
storage contiguous with the string or 
numeric field elements that surround 
it. There should be no unused storage 
between two adjacent elements, provid­
ed all data elements of the aggregates 
are string or numeric field variables 
of the same type. In other cases, 
some unused space may appear but stor­
age is to be conserved when possible. 

ALIGNED specifies that each string 
data element within the aggregate may 
start at a storage boundary to be 
defined individually for each implem­
entation of PL/I. This implies that 
two adjacent string or numerical field 
elements of a homogeneous aggregate 
may not necessarily occupy contiguous 
storage, if a more efficient program 
is possible. 

Arguments to the STRING generic func- I 
tion must be PACKED structures. 

Default: 

The default for major structures is 
PACKED. 

The default for arrays that are not I 
part of structures is ALIGNED. 

Examples: 

DECLARE 
1 A (10) PACKED, 2 B BIT 
(200), 2 C BIT (500), 2 D BIT 
(300), E (10,15) ALIGNED BIT (15); 

All elements of A, an array of struc­
tures, will occupy a continuous area of 
storage. Each element of the array E will 
start at a storage boundary defined for 
that implementation of PL/I. There may be 
unused storage between the elements of the 
latter array. 

THE DEFINED ATTRIBUTE 

Function: 

The DEFINED attribute specifies 
scalar, array, or structure data 

56 

that 
is to 

occupy the same storage area as that 
assigned to other data. 

General format: 

DEFINED base-identifier 
list] 

Rules for defining: 

[subscript 

1. The INITIAL, the storage class, and 
the scope attributes must not be spec­
ified for the defined item. The VARY­
ING attribute must not be specified 
for either the defined item or the 
base identifier. It should be noted 
that although the base may have the 
EXTERNAL attribute, the defined item 
always has the INTERNAL attribute. If 
the base is declared external, its 
name will be known in all blocks in 
which it is declared external, but the 
name of the defined item will not. 
However" the value of the defined item 
will be changed if the value of the 
base item is changed in an external 
block. 

2. The base identifier must always be 
known within the block where the 
defined item has been declared; the 
base identifier must not have the 
DEFINED attribute, nor may it be a 
based variable. 

There are two types of defining, corres­
pondence defining and overlay defining. 

If iSUB variables are involved, or if 
both the defined item and base identifier 
are arrays with the same number of dimen­
sions and the POSITION attribute is not 
specified, correspondence defining is in 
effect. In all other cases, overlay defin­
ing is in effect. 

In correspondence defining, the elements 
of the base identifier and the elements of 
the defined item must have the same des­
cription. 

Correspondence Defining 

When correspondence defining has been 
specified, a reference to an element of the 
defined item is interpreted as a reference 
to the corresponding element of the base 
identifier. A reference to the defined 
array is interpreted as a reference to the 
aggregate of all of the base elements that 
correspond to some element of the defined 
array. Note that the base array must not 
be ~ cross section of a larger aggregate. 



If there is no subscript list following 
the base identifier, then the correspon­
dence is direct. In such a case, the 
arrays must have the same number of dimen­
sions, and a reference to an element of the 
defined item would be interpreted as a 
reference to an element of the base with 
the same subscripts. 

If a subscript list follows the base 
identifier, each subscript may be an 
expression and each expression may contain 
references to the dummy variables indicated 
by iSUB. 

In the dummy variable iSUB, i is a 
decimal integer constant in the range 1 to 
~, where ~ is the dimension of the defined 
item. 

At least one reference to iSUB must 
appear in the subscript list. An array 
defined by using iSUB variables in the 
subscript list cannot be passed as an 
argument .. 

The base element corresponding to a 
defined element is obtained by replacing 
each iSUB in the subscript list by the 
integer value of the ith subscript of the 
defined element. 

Reference may not be made to any element 
of the defined item that does not have a 
corresponding element in the base identifi-
er .. 

Overlay defining specifies that the 
defined item is to occupy part or all of 
the storage allocated to the base. In this 
way, changes to the value of either varia­
ble may be reflected in the value of the 
other. Overlay defining is permitted 
between the following: 

1. 

2,. 

3. 

4. 

A scalar coded 
arithmetic 
variable 

A scalar label 
variable 

Base Identifier 

A subscripted or un­
subscripted coded 
arithmetic scalar of 
the same base, scale, 
mode, and precision 

A subscripted or un­
subscripted scalar 
label variable 

A scalar point- A subscripted or un-
er variable subscripted scalar 

pointer variable 

An area 
variable 

A scalar area 
variable 

6. 

7. 

A scalar event 
variable 

A scalar task 
variable 

A bit class 
variable 

A subscripted or un­
subscripted scalar 
event variable 

A subscripted or un­
subscripted scalar 
task variable 

Bit class data that 
is not a cross section 
either of an array or 
of an array within an 
array of structures 

Note: The bit class consists of: 

8. 

a. Numeric binary fields 

b. Fixed-length bit strings 

c. Packed structures consisting of 
items ~, ~, and Q 

d. Packed arrays consisting of items 
~, 2, and ~ 

A character 
class variable 

Character class data 
that is not a cross 
section either of an 
array or of an array 
within an array of 
structures 

Note: The character class consists of: 

9. 

a. Numeric picture fields 

b. Fixed-length character strings 

c. Packed structures consisting of 
items ~. ~, and ~ 

d. Packed arrays consisting of items 
~. ~, and ~ 

A structure An identical structure 
whose makeup is such 
that matching pairs of 
items from the struc­
tures are valid ex­
amples for overlay de­
fining of the types 
described in items 1 
through 6 above 

Rules for overlay defining: 

1. In items 7 and 8 above, the POSITION 
attribute may be specified for the 
defined item. If POSITION is speci­
fied, the DEFINED attribute must also 
be specified. POSITION need not 
necessarily follow the appearance of 
DEFINED; it may precede it in the same 
declaration, if so desired. The gen­
eral format of the POSITION attribute 
is as follows; 

Chapter 4: Data Description 57 



POSITION (decimal-integer-constant) 

This specifies the position~ in rela­
tion to the start of the base, at 
which the defined item is to begin. 
If this attribute is omitted, POSITION 
(1) is assumed; i,.e,., the defined item 
is to begin at the first position of 
the base. 

2. In items 7 and 8 above, the extent of 
the defined item must not be larger 
than the extent of the base. Extent 
is calculated by summing the lengths 
of the parts of the data, including 
all individual elements of arrays, 
and, in the case of the defined item, 
adding n-1 (where ~ is the position in 
relation to the start of the base). 

~rder of Evaluation 

Evaluation proceeds as follows: 

1. Expressions specified in all attri­
butes of the defined item (other than 
the DEFINED attribute) are evaluated 
on entry to the declaring block. 

2. Subscripts of the base identifier are 
evaluated when a reference to the 
defined item is made. 

3. Data defined on a CONTROLLED base 
normally refers to the most recent 
generation of base data. However" if 
a defined item appears as an argument 
to an invoked procedure, and the base 
is reallocated, the value of the argu­
ment will be based on the generation 
current at the time of invocation. 

1. DECLARE A(20,20)~ B(10) 
A(2*lSUB, 2*lSUB); 

DEFINED 

In the first example, B is a vector 
consisting of every even element in the 
diagonal of matrix A. In other words, 
B(l) corresponds to A(2,2), B(2) corres­
ponds to A(4,4), etc. 

2. DECLARE 1 P, 2 Q CHARACTER (10), 

58 

2 R CHARACTER (100), 
PSTRING1 CHARACTER (110) 
DEFINED P; 

3. DECLARE LIST CHARACTER (40), 
ALIST CHARACTER (10) DEFINED 
LIST, 
BLIST CHARACTER (20) DEFINED 
LIST POSITION (21), 
CLIST CHARACTER (10) DEFINED 
LIST POSITION (11); 

In the third example, ALIST corresponds 
to the first ten characters of LIST, 
BLIST corresponds to the twenty-first 
through fortieth characters of LIST, and 
CLIST corresponds to the eleventh 
through twentieth characters of LIST. 

THE CELL ATTRIBUTE 

Function: 

The CELL attribute establishes the asso­
ciated identifier as a cell and specifies 
that each alternative declaration in the 
alternative list will occupy the same stor­
age as the other alternative declarations 
in the list. It differs from the DEFINED 
attribute in that it provides storage equi­
valence (i.e., different data declarations 
occupying the same storage) " whereas the 
DEFINED attribute provides data equivalence 
(i.e., different ways of referring to the 
same data). 

General format: 

CELL alternative-list 

Syntax rules: 

1. The alternative list should contain at 
least two data declarations. 

2. Each alternative declaration must be 
preceded by a level number, which must 
be numerically greater than the level 
number of the cell identifier. 

3. The cell identifier may be given other 
attributes. These attributes may be 
specified either before or after the 
keyword CELL but not after the alter­
native list. The only other attri­
butes that a cell identifier may have 
are as follows: 

a. The dimension attribute 
b. ABNORMAL or NORMAL 
c. Any of the storage class attri­

butes 
d. EXTERNAL or INTERNAL 
e. SECONDARY 

Note that c~ d f and ~ may be given 
only for a-cell at level 1. 



General rules: 

1. Each alternative may have any of the 
attributes that a structure component 
may have. 

2. Each alternative is qualified by the 
name of the cell to which it belOllgS 
and may be referred to as such. 

3. Any dimension that a cell identifier I 

has been given is inherited by the 
alternatives of that cell. 

4. Only one alternative may be active at 
one time. In other words, at anyone 
point in time, only one alternative of 
a cell can contain a value. An 
assignment to one alternative effec­
tively deactivates the previously 
active alternative. 

5. Only one alternative of a cell may 
have the INITIAL attribute. 

6. A cell identifier itself may appear 
only in DECLARE, ALLOCATE, and FREE 
statements, as well as in the context 
of arguments and parameters. 

Examples: 

1. DECLARE 1 AAA, 
2 BBB CELL, 

3 U POINTER, 
3 V FLOAT (12), 
3 W CELL, 

4 XX CHARACTER 
4 YY BIT (100), 

2 CCC CHARACTER (5), 
2 DOD (20) CELL, 

3 EE BIT (5), 
3 FF CHARACTER (1); 

( 'HI' 
\.~v I 'f 

The above example describes a struc­
ture A whose components are as fol­
lows: 

a. BBB, a cell whose alternatives are 
the pointer variable U, the 
floating-point variable V, and 
another cell, W. The cell W, in I 

turn, contains two alternatives: 
the character string XX and the 
bit string YY. 

b. CCC, a character string. 
c. DOD, an array of 20 elements, each 

of which is a cell having two 
alternatives: bit string EE and 
character string FF. Note that 
DDD(10).EE and EE(10) are referen­
ces to the same alternative; name­
ly, the bit string alternative for 
the tenth cell in DOD. 

2.. DECLARE 1 A CELL CONTROLLED" 
2 B FLOAT (8,,3), 
2 C FIXED (10); 

ALLOCATE Ai 

FREE Ai 

In this example. A is a cell whose 
storage is allocated and freed by the 
use of the ALLOCATE and FREE state­
ments. During the time that A remains 
allocated, its alternatives~ Band C, 
are available for use. 

THE INITIAL ATTRIBUTE 

Function: 

The INITIAL attribute either specifies 
constant values to be assigned to data when 
storage is allocated to it~ or it speci­
fies, through the CALL option, a procedure 
to be invoked to perform initialization at 
allocation. 

General format: 

1. INITIAL (item [, item] ••• ) 

2. INITIAL CALL entry-name 
[argument-list] 

1. 

2. 

") 
...l. 

4. 

Rules for form 1: 

In this 
"constant" 
ing: 

discussion, the term 
denotes one of the follow-

[+1-] arithmetic-constant 
character-string-constant 
bit-string-constant 
[+\-] real-constant {+j-} imaginary­

constant 

Only one constant value may be 
specified for a scalar; more may be 
given for an array. 

Constant values specified for an array 
are assigned to successive elements of 
the array in row-major order (final 
subscript varying most rapidly). 

If too many constant values are speci­
fied for an array, excess ones are 
ignored; if not enough are specified, 
the remainder of the array is not 
initialized. 

Chapter 4: Data Description 59 



5. Each item in the list may be a con­
stant, an asterisk denoting no ini­
tialization for a particular element, 
or an iteration specification. 

6. The iteration specification has one of 
the following general forms: 

7. 

8. 

9. 

(iteration-factor) constant 

(iteration-factor) (item [, item] ••• ) 

(iteration-factor) * 
The "iteration factor" may be any 
expression that satisfies the rules 
stated in the section on "Prologues" 
in Chapter 10. When storage is allo­
cated, the expression is evaluated to 
give an integer that specifies the 
number of repetitions. 

Only unsigned decimal 
stants are permissible 
factors for STATIC data. 

integer con­
as iteration 

A negative or zero iteration factor 
yields no initialization. 

10. Iterations may be nested. 

11. Label constants given as initial 
values for label variables must be 
known within the block in which the 
label variable declarations occur. 

12. An alternate method of initialization 
is available for elements of arrays of 
non-STATIC statement label variables: 

An element of a label array can 
appear as a statement prefix, pro­
vided that all subscripts are 
optionally signed decimal integer 
constants. (Such a statement prefix 
may not be pointer qualified.) The 
effect of this appearance is the 
initialization of that array element 
to a constructed label constant for 
the statement carrying the sub­
scripted reference. This statement 
must be internal to the block con­
taining the declaration of the 
array. Only one form of initializa­
tion may be used for a given label 
array. (See the sixth example at 
the end of this section for an 
illustration.) 

13. The INITIAL attribute may not be given 
for the following: 

60 

entry names 
file names 
DEFINED data 
structures 
parameters 
TASK data 

EVENT data 
AREA data 

Notes: The INITIAL attribute may be 
given for base elements of structures. 
General rule 13 also applies to form 
2. 

14. If only one parenthesized scalar 
expresslon precedes a string initial 
value, it is interpreted as a replica­
tion factor for the string. If two 
appear, the first is taken to be an 
initialization iteration factor, the 
second# a string replication factor. 
For example: 

«2)'A') is equivalent to ('AA') 
«2)(1)'A') is equivalent to 

('AI,'A') 

Rules for form 2: 

1. The entry name and arguments passed 
must satisfy the conditions stated in 
"Prologues." 

2. This form may not be used to initial­
ize STATIC data. 

Examples: 

1. DECLARE SWITCH BIT(l) INITIAL ('liB); 

2. DECLARE MAXVALUE INITIAL (99), 
MINVALUE INITIAL (-99); 

3. DECLARE A (100,10) INITIAL «920)0, 
(20)«3)5,9»; 

4. 

5. 

6 .. 

DECLARE TABLE (20,20) INITIAL CALL 
INITIALIZE <X,Y); 

DECLARE PTS(5) POINTER INITIAL 
«5)NULL); 

DECLARE Z(3) LABEL; 

Z(l): IF X>Y THEN GO TO EXIT; 

Z(2): A=A + B + C * D; 

Z(3}: A=A + 10; 

GO TO Z(I}; 

EXIT: RETURN; 



The third examole results in the 
following: each of the first 920 ele­
ments of A is set to 0, the next 80 
elements consist of 20 repetitions of 
the sequence 5,5,5,9. 

In the fourth example, INITIALIZE 
is the name of a procedure that sets 
the inl tla.l values of elements Ul 

TABLE.. X and Yare arguments passed 
to INITIALIZE. 

In ~ne last example. transfer is 
made to a particular element of the 
array Z by giving I a value of 1, 2, 
or 3. 

THE LIKE ATTRIBUTE 

Function: 

The LIKE attribute 
name being declared 
structuring as the 
attribute LIKE. 

General format: 

specifies that 
is given the 
name following 

LIKE structure-name 

General rules: 

the 
same 
the 

1,. The "structure name" may be unquali­
fied or qualified, but it may not be 
subscripted. 

2. The structure must known to the 
block containing the LIKE attribute. 

3. Neither the structure name nor any of 
its substructures can be declared with 
the LIKE attribute. 

4. The LIKE attribute specifies that the 
name being declared is a structure 
with a substructure having elements 
with attributes and names identical to 
the names and attributes of the ele­
ments of the named structure. Con­
tained dimension and length attributes 
are recomputed. Attributes of the 
structure name itself do not carry 
over, only its elements enter into 
this process. 

5. If the structure description of the 
named structure has been declared, and 
if a direct application of the des­
cription to the structure being 
declared LIKE would cause an incorrect 
discontinuity in level numbers, then 
the level numbers will be modified by 
a constant before application. 

6. 

1. 

The number that immediately follows 
the member that has the LIKE attribute 
must be a level-number that is equal 
to or less than that of the member 
that has the LIKE attribute. 

Examples: 

T"-T:",....T 7\ T"')T":'I -1 "l'\ (1 ('\, 
LJL\....l.Jnru:, .1. l":l. \.1. V J , 

2 FIELD1, 
3 DTLl PIC'$ZZ.99', 
3 DTL2 CHAR (10), 

2 FIELD2 BIT (50), 
1 X, 

2 FIELD1, 
3 SUBFLDl (20) LIKE A.FIELD1, 
3 TABLE (3), 

2 FIELD2 LIKE A • FIELD1; 

The above is equivalent to: 

DECLARE 1 A(10), 
2 FIELD1, 

3 DTLl PIC '$ZZ.99'. 
3 DTL2 CHAR (10), 

2 FIELD2 BIT (50), 
1 X, 

2 FIELD1, 
3 SUBFLDl (20), 

4 DTLl PIC '$ZZ.99', 
4 DTL2 CHAR (10), 

3 TABLE (3), 
2 FIELD2, 

3 DTLl PIC '$ZZ.99'. 
3 DTL2 CHAR (10); 

2. DECLARE 1 A EXTERNAL, 2(B,C,D). 1 E 
LIKE Ai 

The above is equivalent to : 

DECL~P~ 1 A EXTERNAL. 2(B i C i D)i 1 E; 
2(B,C,D)i 

FILE DESCRIPTION ATTRIBUTES 

File description attributes are used to 
describe data files. Declarations of the 
same file in more than one external proce­
dure must not conflict (for a complete 
discussion of data files and the default 
attributes, see Chapter 7). 

The FILE Attribute 

Function: 

The FILE attribute specifies that the 
associated identifier is a file name. 

General format: 

FILE 

Chapter 4: Data Description 61 



Note that the FILE attribute is implied by 
everyone of the file description attri­
butes described in this section and thus 
need not be specified in a context in which 
at least one of these attributes is given 
for a filename. However, if such a context 
contained only an INTERNAL or EXTERNAL 
attribute# FILE would have to be specified 
to establish the filename. 

Function: 

The file usage attributes specify the 
method of treatment of data in the file. 

General format: 

STREAM I RECORD 

Rules: 

1. A file with the STREAM attribute may 
be used only in the OPEN, CLOSE, GET. 
and PUT statements. A file with the 

2. 

RECORD attribute may be used only in 
the OPEN. CLOSE, READ, WRITE, REWRITE, 
LOCATE, DELETE, and UNLOCK statements. 

A file with the STREAM attribute can­
not have any of the following attri-
butes: RECORD, UPDATE, DIRECT, 
SEQUENTIAL, BACKW~~DS, BUFFERED. 
UNBUFFERED, EXCLUSIVE, KEYED. 

Function: 

The function attributes specify 
function of a file. 

the 

General format: 

INPUTIOUTPUTIUPDATE 

Rules: 

1. INPUT specifies that the data will be 
transmitted only from the data set to 
the program. A file with the INPUT 
attribute cannot have the attributes 
EXCLUSIVE or PRINT. 

2. OUTPUT specifies that the data will be 
transmitted only from the program to 
the data set. A file with the OUTPUT 
attribute cannot have the attributes 
EXCLUSIVE or BACKWARDS. 

3. UPDATE specifies that the file is to 

62 

be used for both input and output. A 
declaration of UPDATE for a file with 
SEQUENTIAL access denotes the update­
in-place mode. Such files must be 
accessed in the sequence READ, then 
REWRITE. A file with the UPDATE 
attribute cannot have the attributes 
STREAM" BACKWARDS, or PRINT. 

The PRINT Attribute 

Function: 

The PRINT attribute specifies that the 
ultimate disposition of the data is to be 
the printed page. Several special options 
are permitted on PUT statements that refer 
to files having the PRINT attribute. 

1. 

2. 

General format: 

PRINT 

Rules: 

A file 
implies 
butes. 

with 
the 

the PRINT attribute 
OUTPUT and STREAM attri-

This attribute cannot be specified for 
a RECORD file. 

The Access Attributes 

Function: 

The access attributes specify the manner 
in which the records within a RECORD file 
are accessed. 

General format: 

SEQUENTIAL I DIRECT 

Rules: 

1. If a file is DIRECT, each record 
transmission must specify a key. A 
record written with a particular key 
can be retrieved by reading with that 
value of key specified. Files with 
the DIRECT attribute must also have 
the KEYED attribute. 

2. SEQUENTIAL normally specifies that the 
next record to be accessed is deter­
mined by the physical organization of 
the data set. 



The Buffering Attributes 

Function: 

The buffering attributes apply to 
SEQUENTIAL RECORD files only. and specify 
whether or not the records must pass 
through intermediate storage during trans­
mission to and from the data set. If there 
is such buffering, the intermediate storage 
can be accessed bv associating it with a 
pointer variable" and using the Pointer to 
identify a based variable that describes 
the record in the buffer (see the discus­
sion of "RECORD Transmission" in Chapter 
7). 

General format: 

BUFFERED I UNBUFFERED 

General rule: 

A file with STREAM or DIRECT attributes 
cannot have a buffering attribute. 

The BACKWARDS Attribute 

Function: 

The BACKWARDS attribute specifies that a 
SEQUENTIAL INPUT file is to be accessed in 
reverse order. i.e., from the last member 
to the first member. 

General format: 

BACKWARDS 

Function: 

The EXCLUSIVE attribute specifies that a 
DIRECT UPDATE file will be used in such a 
way as to prevent one task reading. delet­
ing, or rewriting a record while another 
task is in the process of reading, delet­
ing, or rewriting that record (see "The 
READ Statement," in Chapter 8). 

General format: 

EXCLUSIVE 

The ENVIRONMENT Attribute 

Function: 

The ENVIRONMENT attribute is an 
implementation-defined attribute which 
specifies various characteristics of a file 
which are not a part of the PL/I language. 

General format: 

ENVIRONMENT (option-list) 

General rules: 

1. The option list will be defined indi­
vidually for each implementation of 
PL/I. 

2. The options must be separated by one 
or more blanks. 

The KEYED Attribute 

Function: 

The KEYED attribute specifies that each 
record in the file has a key associated 
with it. 

General format: 

KEYED (decimal-integer-constant) 

General rules: 

1. A KEYED file cannot have the attri­
butes STREAM or PRINT. 

2. The "decimal integer constant" gives 
the length of the key in characters. 

3. The KEYED attribute must be specified 
for every file containing keys, even 
if records are read sequentially. 

LIST PROCESSING ATTRIBUTES 

The AREA Atttibute 

Function: 

The AREA attribute is used to define an 
area of storage which may be used for 
collecting and referring to based data 
items. 

Chapter 4: Data Description 63 



General format: 

Option 1: 

AREA 

Option 2: 

AREA (d~, d 2 , ••• , dn ) 

(where each d represents a data declara­
tion without-identifiers) 

General rules: 

1. An area variable may be explicitly 
declared with the AREA attribute in a 
DECLARE statement. It may be declared 
contextually by its appearance in the 
IN clause of an ALLOCATE statement. A 
contextual declaration implies that 
Option 1 will be used. 

2. Option 1 specifies that an 
implementation-defined amount of 
storage will be allocated for the area 
variable. 

3. Option 2 provides programmer control 
of the amount of storage allocated for 
an area variable. The data declara­
tions in this option are dummy dec­
larations; their sole purpose is to 
specify the amount of storage to be 
allocated. It is not required or 
expected that the data variables 
actually allocated into the storage 
area will match the data declarations 
in number. order, or attributes. How­
ever, if the allocations do not con­
form to the attributes and their 
order, there may not be sufficient 
storage to contain all allocations. 

4. The individual data declarations in 
Option 2 are similar to parameter 
descriptions of an ENTRY attribute. 
Since they are dummy declarations, 
they may not specify identifiers. If 
dimensions are given in the declara­
tion, they must appear first. 

5. Area variables are not valid operands 
for any operators in the language. 
including assignment. Conversions to 
and from area variables are not 
defined. 

6. Area variables may not be transmitted 
in input/output operations. 

7. Area variables may not appear in the 
CHECK condition. 

8. Area variables may be elements of 
arrays and components of structures. 

64 

9. Entry points may not return a value of 
type area. 

Example 1: 

DECLARE TABLE_l AREA STATIC EXTERNAL; 

TABLE 1 is a static external area of 
implementation-defined size. 

Example 2: 

DECLARE TABLE 2 AUTOMATIC 
AREA «lOa) POINTER, (50) CHARACTER 
(30), 1(50}, 2 FIXED, 2 POINTER}; 

TABLE_2 is an automatic area that is 
large enough to contain an array of 
100 pointers, an array of 50 character 
strings of length 30, and an array of 
50 structures, each consisting of a 
fixed-point value followed by a poin­
ter. However, the area need not be 
used in this way (see Rule 4 above). 

The POINTER Attribute 

Function: 

The POINTER attribute specifies that the 
associated identifier may be used to iden­
tify data values existing in any storage 
class. 

General format: 

POINTER 

General rules: 

1. An identifier may be explicitly 
declared with the POINTER attribute in 
a DECLARE statement. It may be con­
textually declared by (a) its appear­
ance with a CONTROLLED attribute, (b) 
its appearance in the SET option of an 
ALLOCATE, READ, or LOCATE statement, 
or (c) its use as a pointer qualifier. 

2. The value of a pointer may be esta­
blished by (a) assignment, (b) the SET 
clause in an ALLOCATE, LOCATE, or READ 
statement, or (c) use of the INITIAL 
attribute. 

3. Pointer data may not be used directly 
as an operand in an arithmetic expres­
S1on, nor may conversions be performed 
between pointer data and uther data 
types. 

4. The only operators that may be applied 
directly to pointer data are the com­
parison operators = and ,=. 



5. pointer data may not be read or writ­
ten in STREAM input/output. 

6. Pointers may be initialized only to 
the NULL value or to the value of 
another pointer variable. 

7. Entry points may return a value the 
data type of which is pointer. 

Examples: 

1. DECLARE P POINTER STATIC; 
The pointer P is declared explicitly. 

2. DECLARE VALUES CONTROLLED (PT1); 
The pointer PT1 is declared contex­
tually. It will reside in the AUTO­
MATIC storage class by default. 

3. ALLOCATE VALUES SET (PT3); 
The data type of PT3 is pOinter by 
contextual declaration in the SET 
clause. 

ASSIGNMENT OF ATTRIBUTES TO IDENTIFIERS 

Identifiers can be given attributes 
explicitly through DECLARE statements, by 
occurrences in certain recognizable con­
texts, and by default rules for identifiers 
incompletely described by the programmer. 

within an external procedure, statement 
label constants, internal entry labels, 
parameters, and identifiers appearing in 
DECLARE statements are qualified by the 
respective blocks in which their declara­
tions <contextual or explicit} occur. Thus 
they serve as a means of redeclaring iden­
tifiers declared explicitly. contextually, 
or implicitly in containing blocks. For an 
identifier occurring as a parameter, the 
characteristic, "parameter," is combined 
with any explicitly declared attributes for 
the identifier. Default attributes are 
added as described below. An identifier 
occurring as an internal entry label is 
given the attributes INTERNAL ENTRY, which 
then are also combined with any declared 
attributes for that identifier, after which 
defaults are applied. 

The following 
through context, 
indicated ways: 

attributes, 
are recognized 

assigned 
in the 

1. ENTRY (subroutine): CALL statement or 
CALL option 

2. ENTRY (function): identifier followed 
by parenthesized list, in any context 
where an expression is expected. 

3. FILE: See "File Opening and File 

Attributes" in Chapter 7--in addition, 
by its appearance in an ON, REVERT, or 
SIGNAL statement associated with data 
transmission conditions. 

4. TASK: TASK option 

5. EVENT: EVENT option or WAIT statement 

6. (Programmer named condition): ON CON­
DITION, SIGNAL CONDITION, or REVERT 
CONDITION 

7. POINTER: CONTROLLED <pointer-variable) 
declaration, SET option, or pointer 
qualifier 

8. AREA: IN option 

Recognition of one of these attributes 
through context does not redeclare the 
identifier that is internal to the block in 
which the contextual reference appeared. 
If a reference lies within the scope of a 
declaration (explicit, implicit, or 
contextual) of the same identifier, the 
attributes given through the previous dec­
laration and applied defaults must match 
the attributes given through the contextual 
reference and applied defaults there. In 
such a case, the contextually declared 
identifier 1S taken to be the same name as 
that previously declared. Thus, the above 
contextually determined attributes cannot 
add to attributes given to the same iden­
tifier in a previous declaration. 

If an identifier found in one of the 
above contexts has not been previously 
declared in a containing block, then a 
declaration is made for it, internal to the 
containing external procedure: and the 
indicated attribute is given. Defaults are 
then added. 

If an identifier appears in a context 
that furnishes a contextual declaration of 
this identifier, and if the contextual 
reference occurs in the scope of a DECLARE 
statement declaring the identifier, then 
the context may not add any attributes that 
are not given explicitly or by default in 
the DECLARE statement. 

For example, the following is illegal: 

DECLARE F EXTERNAL; 
GET FILE(F) LIST(A); 

Application of Default Attributes 

Default assumptions are as follows, for 
the identifier classes indicated: 

ENTRY type: EXTERNAL is assumed. If 

Chapter 4: Data Description 65 



66 

the entry is EXTERNAL and is not 
a subroutine. then REDUCIBLE is 
assumed. Otherwise, IRREDUCIBLE 
is assumed. Scale, base, mode 
and precision defaults for the 
value returned are the same as 
for Arithmetic type given below. 

If a procedure has multiple entry 
names and no data attributes, there is 
potential ambiguity in the charac­
teristics of the value to be returned. 
In order to avoid this ambiguity, 
succeeding labels are interpreted as 
if they were entry names for succes­
sive ENTRY statements. For example, 
in the following, statement a is 
interpreted as if both statement band 
statement c had been written. 

a. A: B: ENTRY; 

b. A: ENTRY; 

c. B: ENTRY; 

FILE type: A summary of file default 
attributes appears in "File Open­
ing and File Attributes" in Chap­
ter 7. 

TASK type: ABNORMAL is assumed. 
Scope and storage class defaults 
are the same as for Arithmetic 
type given below. ALIGNED is 
assumed for arrays not in struc­
tUres. 

EVENT type: Defaults are the same as 
for TASK type. 

LABEL type: Range is assumed to be 
all labels which could be assigned 
to the variable. NORMAL is 
assumed. Scope and storage class 
defaults are the same as for 
Arithmetic type given below. 
ALIGNED is assumed for arrays not 
in structures. 

POINTER type: NORMAL is assumed. 
ALIGNED is assumed for arrays not 
in structures. Scope and storage 
class defaults are the same as 
those for arithmetic type given 
below. 

AREA type: NORMAL is assumed. ALIGNED 
is assumed for arrays not in 
structures. scope and storage 
class defaults are the same as 
those for arithmetic type given 
below. 

Condition type: EXTERNAL scope is 
assumed. 

String type: NORMAL is assumed. Scope 

and storage class defaults are the 
same as for Arithmetic type given 
below. ALIGNED is assumed for 
arrays not in structures. 

Major Structure type: PACKED is 
assumed. NORMAL is assumed. 
Scope and storage class defaults 
are the same as for Arithmetic 
type given below. 

Minor Structure type: NORMAL is 
assumed. INTERNAL is assumed. 

Elementary Structure Element type: 
NORMAL is assumed. INTERNAL is 
assumed. If Arithmetic type has 
been indicated, then scale, base, 
mode, and precision defaults are 
the same as for Arithmetic type 
given below. 

Arithmetic type: If none of scale, 
base, and mode has been given, 
then if the identifier starts with 
any of the letters I - N. FIXED 
BINARY REAL is assumed; otherwise 
FLOAT DECIMAL REAL is assumed. If 
at least one of these has been 
given, then the remaining defaults 
are FLOAT, DECIMAL and REAL. 
Default precision is implementa­
tion defined, dependent on scale 
and base. ALIGNED is assumed for 
arrays not in structures. NORMAL 
is assumed. INTERNAL is assumed. 
If no storage class is given, then 
AUTOMATIC is associated with 
INTERNAL and STATIC with EXTERNAL. 

STRUCTURE DECLARATIONS AND ATTRIBUTES 

This section is a summarization of data 
declarations and attributes as they apply 
specifically to structures. 

LEVEL NUMBER 

The outermost structure is a major 
structure, and all contained structures are 
minor structures. 

A structure is specified by declaring 
the major structure name and following it 
with the names of all contained elements. 
Each name is preceded by a level number. 
which is a non-zero decimal integer con­
stant. A major structure is always at 
level one and all elements contained in a 
structure (at level n) have a level number 
that is numerically greater than n, but 
they need not necessarily be at level- n+l. 



nor need they all have the same level 
number .. 

A minor structure at level n contains 
all following items declared -with level 
numbers greater than ~ up to but not 
including the next item with a level number 
less than or equal to ~,. A major structure 
description is terminated by the declara­
tion of another item at level one" by the 
declaration of an item having no level 
number~ or by the end of a DECLARE state­
ment. 

STRUCTURES AND THE DIMENSION ATTRIBUTE 

When a structure name is given the 
dimension attribute, it is an array of 
structures, and all contained items are 
arrays (see "Arrays of structures." in 
Chapter 2). Contained scalar items, con­
tained structure elements, and cross sec­
tions of contained arrays are referred to. 
respectively" by subscripted names. sub­
scripted qualified names, and the asterisk 
notation (see "Naming," in Chapter 2). 

STRUCTURES AND DATA ATTRIBUTES 

Structures and arrays of structures are 
not given data attributes. These can be 
given only to structure base elements. 

STRUCTURES AND SCOPE ATTRIBUTES 

Major structure names may be declared 
with the EXTERNAL attribute. Items con­
tained in structures may not be declared 
with the EXTERNAL attribute, and even if 
INTERNAL is unspecified, they are assumed 
to be INTERNAL. 

STRUCTURES AND STORAGE CLASS ATTRIBUTES 

All items in the same structure must be 
of the same storage class, since only the 
major structure may be given a storage­
class attribute. The storage class of the 
major structure applies to all elements of 
the structure. If a structure has either 
form of the CONTROLLED attribute, only the 
major structure, not its elements, may be 
allocated and freed. 

Chapter 4: Data Description 67 



£ffar~~R 5: PROCEDURES, FUNCTIONS, AND SUBROUTINES 

The PROCEDURE statement heading a given 
procedure and defining the primary entry 
point to the procedure may specify a list 
of formal parameters. (For syntax and 
details of the PROCEDURE statement, see 
Chapter 8.) 

One or more ENTRY statements may also be 
used in the procedure to define secondary 
entry points. Like the heading statement 
of the procedure, each of the ENTRY 
statements must have at least one label to 
serve as an entry name for that point, and 
each may specify a list of formal paramet­
ers. Formal parameter lists for different 
entry points to a procedure need not be the 
same. (For syntax and details see "The 
ENTRY Statement.") 

The formal parameters are identifiers 
and may appear in statements of the proce­
dure in the context of scalar variable 
names, array names, structure names, state­
ment label designators, entry names. file 
names, task names, event names, area names, 
pointer names, or cell names. 

The appearance of an identifier in a 
formal parameter list for a procedure con­
stitutes a declaration of the identifier as 
a parameter. This declaration can be com­
bined with an explicit declaration or con­
textual declarations in the procedure that 
will associate required attributes with the 
parameter. Required attributes not 
declared explicitly or contextually will be 
assigned by default. 

No declarations of the parameter can 
appear outside the procedure. (For further 
details about the restrictions on attri­
butes of parameters see "Arguments and 
Parameters," in Chapter 10.) 

Example: 

SBPRIM: 

SBSEC: 

PROCEDURE (X" Y, Z) i 
DECLARE (X, Yr, A, B) FIXED, Z 

FLOAT; 
A = X-l; B = Y+li 
GO TO COMMON; 
ENTRY (X, Z); 
A = X-2i B = X-3; 
COMMON: Z = A**2+A*B+B**2i 
END SBPRIMi 

In this example, the procedure may be 
entered at its primary entry point SBPRIM" 
where the formal parameter list is (X. Y, 

68 

Z), or at its secondary entry point SBSEC, 
where the formal parameter list is (X" Z) • 

PROCEDURE REFERENCES 

At any point in a program where an entry 
name for a given procedure is known, the 
procedure may be invoked by a procedure 
reference, which has the form: 

entry-name [(argument [ ,argument] ••• )] 

The number of arguments (possibly zero) 
in the procedure reference must be equal to 
the. number of formal parameters in the list 
for the entry point denoted by the entry 
name. 

The procedure invoked by the procedure 
reference may be an external or an internal 
procedure. If it is an internal procedure, 
the block to which the entry name is 
internal must be active at the time of 
invocation of the procedure (for a defini­
tion of "active," see "Activation and Ter­
mination of Blocks" in Chapter 6). 

When a procedure reference invokes a 
procedure, each argument specified in the 
reference is associated with its corres­
ponding formal parameter in the list for 
the denoted entry point, and control is 
passed to the procedure at the entry point. 
The conditions the arguments must satisfy" 
and the manner of association of each 
argument with its matching parameter are 
discussed in "The Arguments in a Procedure 
Reference." 

When a procedure becomes inactive, the 
association between arguments and paramet­
ers is terminated. 

There are two distinctly different uses 
for procedures, determined by one of two 
contexts in which a procedure reference may 
appear: 

1. A procedure reference may appear as an 
operand in an expression. (For a 
complete description of expression, 
see "Expressions," in Chapter 3). In 
this case, the reference is said to be 
a function reference, and the proce­
dure is invoked as a function proce­
dure, or simply a function. 

2. A procedure reference may appear fol­
lowing the keyword CALL, either in a 



CALL statement or in a statement using 
a CALL option. In this case, the 
reference is said to be a subroutine 
reference, and the procedure is 
invoked as a subroutine procedure., or 
simply a subroutine. 

(Ordinarily a given procedure will be 
used exclusively as a function procedure or 
exclusively as a subroutine procedure.) 

When a function reference appears in an 
expression, the function procedure is 
invoked. The procedure is then executed, 
using the arguments, if any, specified in 
the function reference. The result of this 
execution is the required value, which is 
passed with return of control back to the 
point of invocation. This returned value 
is then used, in place of the function 
reference, to evaluate the expression. 

The procedure invoked by a function 
reference normally will terminate execution 
with a statement of the form 
RETURN (expression), where expression is a 
scalar expression of arithmetic. character­
string~ bit-string~ or pointer type (see 
"The RETURN statement"). (A GO TO 
statement may also be used to terminate 
execution of a procedure invoked by a 
function reference.) It is the value of 
this expression that will be returned d~ 
the function value. The PROCEDURE or ENTRY 
statement at the invoked entry point may 
specify data attributes for the function 
value (see "The PROCEDURE statement" and 
"The ENTRY statement." in Chapter 8). Just 
prior to return, the-expression is evaluat­
ed. and, before being passed back, the 
value is converted, if necessary, to con­
form to these attributes~ or, if the attri­
butes are not specified, to the default 
attributes implied by the entry name. 

If the invoked function procedure is 
terminated by a GO TO statement, the evalu­
ation of the expression that invoked the 
function will not be completed and control 
will go to the designated statement. 

GENERIC FUNCTIONS 

A ~neric function is a family of func­
tions with a single name. A function 
reference to a generic function causes the 
selection of a certain member of the fami­
ly. depending upon the attributes of the 
arguments. The characteristics of the 
value returned depend upon the member that 
is selected. 

Generic functions may be built-in (see 
below) or specified by the programmer, who 
may, by means of the attribute GENERIC, 
define a name to be a generic function 
name. An entry name may be explicitly 
declared with the GENERIC attribute. The 
GENERIC attribute requires a list of all of 
the entry names of the family and the 
attributes of all of the arguments for each 
member (different members must have differ­
ent argument attribute patterns). Then any 
reference appearing in the scope of this 
declaration and usinq the declared qeneric 
name as an entry name will result-in the 
use of that member of the declared family 
that has the same argument attribute pat­
tern as the pattern in the argument list of 
the reference. For complete details see 
"Entry Name Attributes" in Chapter 4 .• 

Subroutine procedures may also be gener­
ic. The method of selecting a particular 
subroutine corresponds exactly to that of 
sel·ecting a particular function. 

BUILT-IN FUNCTIONS 

Besides function procedures written by 
the programmer, a function reference may 
invoke one of a comprehensive set of built­
in functions. 

The set of built-in functions is an 
intrinsic part of PL/I. It includes not 
only the commonly used arithmetic functions 
but also functions for manipulating strings 
and arrays, as well as other necessary or 
useful functions related to special 
facilities provided in the language. The 
complete list of these functions and their 
descriptions can be found in Appendix 1. 

A large number of the built-in functions 
are generic. The built-in generic func­
tions are of considerable convenience to 
the programmer. He may, for example., 
always use the same name EXP for the 
exponential function, regardless of whether 
the argument is of REAL or COMPLEX mode, 
regardless of the precision of the argu­
ment, etc., and automatically he will 
obtain that one of the EXP family that fits 
the requirements. 

Each built-in function., whether or not 
it is generic, has a specified number of 
arguments given. For some built-in func­
tions only a minimum is specified; addi­
tional arguments are optional. For others. 
a maximum is specified; only one argument 
is required .. 

Each of the built-in functions that are 
not generic has only a single member. When 
a reference is made to one of these func-

Chapter 5: Procedures, Functions, and Subroutines 69 



tions, any arguments whose attributes do 
not match the attributes required by that 
function are converted to the appropriate 
form before the function is invoked. The 
characteristics of the value returned are 
determined by the function,. 

Unlike programmer-specified functions. 
which always return a scalar value, there 
are many built-in functions that may return 
an array or structure value when array or 
structure expressions are used in certain 
of their argument positions. This facility 
is useful in array or structure expres­
sions. 

The fixed set of names for the built-in 
functions is part of the language of PL/I. 
However, the identifiers corresponding to 
these names are not reserved; any such 
identifier can be used by the programmer 
for other purposes. If the identifier is 
declared explicitly for some other use, any 
appearance of the identifier in the scope 
of this declaration will refer to that 
other use. The built-in function cannot, 
of course, be used in this scope. If the 
identifier appears, but not in the scope of 
a declaration establishing the identifier 
for another use, the identifier will be 
regarded as implicitly declared in the 
containing external procedure with the 
attribute BUILTIN, and this appearance will 
refer to the built-in function. 

If an identifier corresponding to a 
built-in function name is declared to have 
a use other than as the built-in function 
in some block, the built-in function can be 
used in contained blocks by declaring the 
identifier with the attribute BUILTIN. 

SUBROUTINE REFERENCES AND SUBROUTINE 
~EQ£~Q~~ 

When a procedure is invoked as a subrou­
tine by the execution of a CALL statement 
or a statement with a CALL option, the 
initial action is the same as if the 
procedure were invoked as a function: the 
arguments in the procedure reference, if 
any, are associated with the formal param­
eters and control is passed to the proce­
dure at the denoted entry point. (If the 
invocation involves a task option, the 
procedure will not necessarily be activated 
immediately; see "Asynchronous Operations 
and Tasks" in Chapter 6.> 

Unlike the function procedure, the sub­
routine procedure does not return an expli­
citly specified value to the point of 
invocation. The procedure may terminate in 
the following ways: 

70 

1. Control reaches a RETURN statement for 
the procedure. When executed" this 
statement returns control to the first 
executable statement logically follow­
ing the invoking statement, unless the 
invocation specified a task option or 
the procedure was invoked by a state­
ment with a CALL option. If a task 
option has been used, control is sim­
ply terminated for this task. If the 
procedure was invoked by a statement 
having a CALL option, control is 
returned to that statement at the 
point immediately following the CALL 
option .• 

2,. Control reaches an END statement for 
the procedure, which in this case is 
treated as a RETURN statement. The 
effect is as in case 1. 

3. Control reaches a GO TO statement in 
the procedure that transfers control 
out of the procedure. (This is not 
permitted if the procedure has been 
invoked by a statement with a CALL 
option or in a CALL statement with a 
task option.) In this case, control 
will go to the deSignated statement 
<see "The GO TO Statement"). The 
statement label designator of the GO 
TO statement may be a parameter of 
type LABEL, which is associated with a 
label argument passed from the invok­
ing procedure. 

4. Control reaches an EXIT or STOP state­
ment. 

Example of Function Reference: 

COMP: PROCEDURE; 

Sl: Pl0=QS*POLYS(RO, VALl); 

POLYS: PROCEDURE (C., X); 
RETURNCC+X*<1+X*C2+X*(3+X*C4 

+S*X}»»; 
END POLYS; 

END COMPi 

In this example, the external procedure 
COMP contains the function procedure POLYS, 
which is invoked when the expression 
QS*POLYS(RO, VALl) is being evaluated dur­
ing execution of the assignment statement 
labeled Sl. When POLYS is invoked, the 
arguments RO and VALl will be associated 
with the parameters C and X, respectively. 



The returned value for POLYS (RO. V~~l) 
will be the value of the expression: 

RO+VAL1*(1+VAL1*(2+VAL1*(3+VAL1*(4+S* 
VALl»)) 

Examples of Subroutine Reference: 

1. COMP: PROCEDURE; 

Si: CALL POLYS (RO, VALl); 
S2: Pl0 = QS*TEMP; 

POLYS: PROCEDURE (C, X); 
TEMP=C+X*(1+X*(2+X*(3+X* 
(4+S*X»» ; 
RETURN; 
END POLYS; 

END COMP; 

In the above example, the effect is the 
same as in the previous example using the 
function reference. The subroutine proce­
dure POLYS is invoked by the CALL statement 
labeled Sl. The arguments and parameters 
are associated as in the previous example, 
but herew the value of the expression (the 
same as in the previous example) is 
assigned within the subroutine to the vari­
able TEMP, which is used by the statement 
labeled S2, after the RETURN statement 
passes control back to that statement .. 
'~'nu~, cOfiuTlunication UI LIlt:! value is by 
means of the shared variable TEMP. which. 
of course, remains available for use fol­
lowing the execution of S2. 

In some cases the invoked and the invok­
ing procedure may be separated in such a 
way that sharing a name in the above simple 
manner is not possible (see nscope of 
Declarations"). Another more general meth­
od of communicating values from the invoked 
procedure, which may be applied in these 
cases, is illustrated in the following 
alternative example: 

2. COMP: PROCEDURE; 

Sl: CALL POLYS (RO, VALl, TEMP); 
S2: Pl0=QS*TEMP; 

POLYS: PROCEDURE (C,X,Z); 
Z=C+X*(1+X*(2+X*(3+X* 

(4",S*X»)}i 

RETURN: 
END POLYS; 

END COMP; 

Here., the invocation of POLYS by the 
CALL statement will associate the variaD~e 
TEMP with the parameter Z., and the action 
will be exactly as in the previous example: 
the parameter Z will effectively be 
replaced by the name TEMP in the assignment 
statement for Z. and TEMP will be assigned 
the value of the expression on the right­
hand side, with RO replacing C and VALl 
replacing X, before return to statement S2. 
In this case., the value has been 
communicated from the subroutine through a 
parameter. 

The above two examples illustrate how a 
single value obtained in a subroutine can 
pe communicated back to the invoking proce­
dure. The action of a subroutine will 
generally be more complex than this; many 
communicated variables may be involved, 
whether scalar, array. structure. or 
statement-label variables; input/output 
operations may be specified, etc. In con­
trast, the usual purpose of a function 
procedure is to return a scalar value. 

THE ARGUMENTS IN A PROCEDURE REFERENCE 

In general, the arguments in a procedure 
reference may be any of the following: 

1. Expressions 

2. Data elements 

3. Entry names <programmer-defined) 

4. Built-in Float Arithmetic Generic 
Function names (see Appendix 1) 

5. Filenames 

The attributes of each argument in a 
procedure reference must, in general, match 
the attributes of the corresponding param­
eter at the named entry point. (An excep­
tion in case of string arithmetic data 
arguments is described below.) 

For example, assume that the p.r-ocedure 
SUB in a program is defined by: 

SUB: PROCEDURE (X, Y, Z); 
DECULqE X FIXED, Y ENTRY, Z LABEL; 

END SUB; 

Chapter 5: Procedures, Functions, and Subroutines 71 



This implies that the formal parameter X 
is used as a fixed-point variable with 
certain default data attributes, Y is used 
as an entry name, and Z is a statement 
label variable in the body of the proce­
dure. Then if SUB is invoked in the 
program by the statement: 

CALL SUB (R*S, CALC, L5); 

it is then necessary that: 

1. The expression R*S have all the data 
attributes of the parameter X (unless 
SUB is described by an ENTRY attri­
bute; see below). 

2. CALC be an entry name. 

3. L5 be a statement-label designator. 

If an argument is an entry name with no 
argument list. the entry name (rather than 
the function value) is always passed, inde­
pendent of whether the entry name requires 
·parameters. 

Example: 

(FLOAT); 
L1: CALL SUB(RANDOM)i 
L2: CALL SUB1(Y*RANDOM)i 

In statement L1. the entry name RANDOM 
is passed. However, in statemeQt L2. the 
value of the function RANDOM is required. 
and this value. multiplied by Y. is passed. 

Note: This rule also applies for arguments 
to-built-in functions. 

THE USE OF THE ENTRY ATTRIBUTE 

An identifier is contextually declared 
to be an entry name in a block if it 

1. 

2 .• 

3. 

appears as a label to a 
ENTRY statement or 

appears in the block 
keyword CALL or 

appears as the function 
function reference that 
argument list,. 

PROCEDURE or 

following the 

name in a 
contains an 

If it is desired to use the identifier 
as an entry name in a block where it is not 
so declared, the identifier must be given 
the ENTRY attribute explicitly in a DECLARE 
statement for the block. 

As an illustration, in the above exam­
ple, the CALL statement: 

72 

I 

CALL SUB(R*S, CALC, L5); 

has the entry name CALC as its second 
argument. This appearance of CALC is not 
recognizable as an entry name by context. 
It must previously have been declared 
(either contextually, or explicitly in a 
DECLARE statement) to have the attribute 
ENTRY. 

A more general form of the ENTRY attri­
bute allows the programmer to enumerate the 
attributes of the parameters for the named 
entry point. 

As an illustration, in the above CALL 
statement example, the three parameters 
corresponding to the three arguments of the 
CALL statement might be described in the 
invoking procedure by the statement: 

DECLARE SUB ENTRY 
LABEL); 

(FIXED, 

This statement specifies that: 

1.. SUB is an entry name. 

ENTRY, 

2. The entry point SUB has three paramet­
ers. 

3. The first parameter 
attribute with certain 
attributes. 

has the 
default 

FIXED 
data 

4. The second .. parameter has the ENTRY 
attribute. 

5. The third parameter has the LABEL 
attribute. 

The number of parameters and the attri­
butes of each, as described in the ENTRY 
attribute specification. must always agree 
with the number of parameters and their 
attributes, as defined for the described 
entry point within the invoked procedure. 

One of the applications of the extended 
for.m of the ENTRY attribute is mentioned in 
the immediately following description. (A 
detailed discussion of the various uses for 
the ENTRY attribute, including the IRREDU­
CIBLE, USES, SETS, and GENERIC attributes, 
can be found in Chapter 4.) 

PASSING ARGUMENTS TO THE ENTRY POINT 

When a procedure is invoked at a given 
entry point by a procedure reference and 
each argument is associated with its cor­
responding formal parameter, the arguments 
are said to be passed to the entry point. 



The action involved in passing the argu­
ments generally will assume that the attri­
butes of each argument match the attributes 
of its corresponding formal parameter, as 
described above. However, if the argument 
is an expression whose attributes do not 
correspond to those declared for the param­
eter associated with that argument, the 
expression will be evaluated ana converted, 
before the argument is passed, to conform 
to the attributes described by the corres­
ponding member of the ENTRY attribute list. 

As an illustration, in the preceding 
example, the first argument in the CALL 
statement, which invokes the procedure SUB, 
is the expression R*S. Assume that R*S has 
the FLOAT attribute with certain default 
attributes. These do not match the attri­
butes of the first parameter at the entry 
point SUB. Then the ENTRY attribute must 
be used in the invoking procedure to speci­
fy the same attributes for the first param­
eter as specified in the invoked procedure 
SUB. (The preceding illustration shows one 
way of doing this.) Thus, on execution of 
the CALL statement. the expression R*S is 
evaluated, giving a floating-point result, 
which is then converted to a fixed-point 
value with the other required attributes, 
before being passed to the entry point SUB. 

(A detailed description of the action 
involved in passing arguments to the 
invoked entry point can be found in Chapter 
10.) 

In certain circumstances, the prepara­
tory action includes the construction of a 
dummy argument. For example, a dummy argu­
ment is constructed when the argument must 
be converted, as in the example of R*S just 
discussed, or when the argument is an 
expression involving constants or operators 
{R*S is again an example of this 
circumstance} .. 

In each of its appearances as a ref­
erence in the procedure, the formal param­
eter corresponding to the argument effec-

tively is replaced by the argument name. 
Thus, all appearances of the parameter 
during execution of the procedure are 
treated as appearances of the argument 
name. However, in the cases where a dummy 
argument is constructed, it is the dummy 
argument name that replaces the parameter. 
passing an argument does not always imply a 
true logical sUbstitution of the ctrgurnent_ 
name for the parameter in the procedure. 
However, in the important case where the 
argument is an arithmetic, string, or label 
variable having identical attributes with 
the corresponding parameter, a logical sub­
stitution does occur. Thus, parameters can 
be used to communicate values from the 
invoked procedure back to the invoking 
procedure. Example 2 of "Subroutine Ref­
erences," above, is an illustration of 
this .• 

In the above example, the appearance of 
CALC as the second argument when SUB is 
called does not imply that the identifier 
CALC is contextually declared as an entry 
name, even though the above ENTRY attribute 
for SUB has been given. 

THE SPECIAL PROCEDURE ATTRIBUTE RECURSIVE 

In the PROCEDURE statement for a given 
procedure, certain special attributes that 
characterize the procedure itself may be 
specified. (For a complete discussion of 
these attributes. see "The PROCEDURE State­
ment.") One of these, which has particular 
significance, is the attribute RECURSIVE. 
When a procedure of a program is re­
activated in a task while it is still 
active in the same task (see "Activation 
and Termination of Blocks"), the procedure 
is said to be used recursively. Any 
procedure used recursively during program 
execution must be specified with the RECUR­
SIVE attribute. (See "Data Known to Invo­
cations of Recursive Procedures" in Chapter 
10 for additional details.) 

Chapter 5: Procedures, Functions, and Subroutines 73 



£tl~~!~B 6: DYNAMIC PROGRAM STRUCTURE 

Every program, when it is being execut­
ed. has a control that determines the order 
of execution of the statements. For a 
discussion of their order see "Sequence of 
Control," in Chapter 8. 

Execution of the program is initiated by 
the operating system, which invokes the 
initial procedure. This initial procedure 
must be an external procedure that may be 
specified with an attribute in the options 
list of the OPTIONS attribute (see "The 
PROCEDURE Statement" in Chapter 8). This 
procedure cannot have CONTROLLED parameters 
(see "Storage Classes" in this chapter). 

ACTIVATION AND TERMINATION OF BLOCKS 

A begin block lS said to be activated 
when control passes through the BEGIN 
statement for the block. A procedure block 
is said to be activated when the procedure 
is invoked at-any one-of its entry pOints. 

During certain time intervals of the 
execution of a program, a block may be 
active. A block is active if it has been 
activated and is not yet terminated. 

There are a number of ways in which a 
block may be terminated. These are implied 
by the following rules: 

1. A begin block is terminated when con­
trol passes through the END statement 
for the block. 

2. A procedure block is terminated on 
execution of a RETURN statement or an 
END statement for the block. (The END 
statement implies a RETURN statement; 
see Chapter 8.) 

3. A block is terminated on execution of 
a GO TO statement contained in the 
block which transfers control to a 
pOint not contained in the block. 

4. The execution of a STOP statement 
causes termination of the major task. 

s~ The execution of an EXIT statement 
causes termination of the task con­
taining the statement and all tasks 
attached by this task. Thus, all 
blocks corresponding to these tasks 
are terminated. 

74 

6. When a block B is terminated, all of 
the dynamic descendants of B also are 
terminated. 

DYNAMIC DESCENDANCE 

If a block B is activated and control 
stays at points internal to B until B is 
terminated, no other blocks can be activat­
ed while B is active. (This discussion is 
not applicable to the multi-task, or asyn­
chronous, mode of operation, which implies 
more than a single control; see 
"Asynchronous Operations and Tasks.") 

However, another block" Bl" may be acti­
vated from a point internal to block B 
while B still rema1ns active. This is 
possible only in the following cases: 

1.. Bl is a procedure block immediately 
contained in B (the label of Bl is 
internal to B) and reached through a 
procedure reference. 

2. Bl is a begin block internal to Band 
reached through normal flow. 

3. Bl is a procedure block not contained 
in B and reached through a procedure 
reference. (Bl, in this case, may be 
identical to B, i.e.# a recursive 
call. However, it is to be regarded 
dynamically as a different block.) 

4. Bl is a begin block or a statement 
specified by an ON statement (see "The 
ON statement"), and reached through an 
interrupt. (For present purposes, 
even if Bl is a statement, it can be 
regarded as a block, and this case is 
dynamically similar to case 1 or case 
3 above .• ) 

In any of the above cases, while Bl is 
active, it 1S said to be an an immediate 
dynamic descendant of B. 

Block Bl may itself have an immediate 
dynamic descendant B2, etc., so that a 
chain of blocks (B, Bl, B2, ••• ) is creat­
ed, where, by definition, all of the blocks 
are active. In this chain, each of the 
blocks Bl, B2, etc., is said to be a 
dynamic descendant of B. 

It is important for the programmer to 
note that the termination of a g1ven block 
may automatically imply the termination of 



other blocks and that these blocks need not 
necessarily be contained in the given 
block; storage for all AUTOMATIC variables 
declared in these blocks will be released 
at the time of termination (see "Storage 
Classes"). 

DYNAMIC ENCOMPASSING 

Block A. gynamically encompasses block B. 
or block B is dynamically encompassed by 
block A" if B is a dynamic descendant of A. 

ALLOCATION OF DATA AND STORAGE CLASSES 

Because the internal storage of any 
computer is limited in size, the efficient 
use of this storage during the execution of 
a program is frequently a crucial consider­
ation. The simple static process of data 
allocation used by many compilers -- the 
assignment of a distinct storage region for 
each distinct variable used in the source 
program may be wasteful. Multiple use 
of a storage region for different data 
during program execution can reduce the 
total amount of storage required. 

Provisions are included in the language 
to give the programmer virtually any degree 
of control over the allocation of storage 
for the data variables in a program. On 
the other hand, the entire problem of 
allocation can be ignored completely by the 
programmer, if storage economization is of 
little significanCe in his situation, and a 
reasonably efficient use of storage usually 
will still be obtained automatically. 

DEFINITIONS AND RULES 

storage is said to be allocated for a 
variable when a certain region of storage 
is associated with the variable. Alloca­
tion for a given variable may take place 
e~~~!£~lly, before execution of the pro­
gram, or dynamically, during execution. 

storage may be allocated dynamically for 
a variable and subsequently released. 
Thus. this storage is freed for possible 
use in later allocations. If storage has 
been allocated for a variable and not 
subsequently released, the variable is said 
to be !!!-~!!-alloc~~~d sta!:~. 

When a variable appears in a statement 
of a source program, the appearance is 
called a reference if it corresponds either 

to the assignment of a value to the varia­
ble (e. g .• , an appearance on the left s~ae 
of an assignment statement) or to a use of 
the value of the variable (e.g.~ appearance 
in an expression to be evaluated). 

At any point where a variable appears as 
a reference, it must be in an allocated 
state. 

Note: An unallocated variable may appear 
as an argument to a procedure with a 
corresponding CONTROLLED oarameter. as an 
argument to the ALLOCATION fu~ction .. -or in 
an ALLOCATE statement. 

STORAGE CLASSES 

Every variable in a program must have a 
storage class, which specifies the manner 
of storage allocation. 

There are three storage classes. The 
storage class is specified by declaring the 
variable with one of the three storage 
class attributes STATIC, AUTOMATIC, or CON­
TROLLED (based or nonbased). ,The storage 
class may be declared explicitly or by 
default. 

The Static Storage Class 

Storage for a variable with attribute 
STATIC is allocated before execution of the 
program and is never released during execu­
tion. 

The scope attribute (see Chapter 4) of a 
STATIC variable may be INTERNAL or EXTER­
NAL. An EXTERNAL variable with unspecified 
storage class has, by default. the STATIC 
storage class attribute. 

The Automatic Storage Class 

If a variable has the attribute AUTOMAT­
IC, the status of the block containing this 
variable (see "Data Description") deter­
mines dynamic allocation for the variable. 
Whenever this block is activated during 
execution of a program, storage will be 
allocated for the variable, and the varia­
ble will remain in an allocated state until 
termination of the block. At the time of 
termination~ the storage will be released. 

Chapter 6: Dynamic Program structure 75 



time interval during which the 
in an allocated state will 
include the intervals when the 

Thus, the 
variable is 
necessarily 
variable is 
Declarations") .. 

known (see "Scope of 

Termination of a block by means of a GO 
TO statement may imply simultaneous termi­
nation of other blocks and, consequently, 
simultaneous release of storage for all 
AUTOMATIC variables declared in these 
blocks (see "The GO TO Statement"). 

If the block is a procedure and is 
called recursively (reactivated one or more 
times before return), previously allocated 
storage for the AUTOMATIC variable is 
"pushed down" on each entrance and "popped 
up" on each return to yield the proper 
generation of storage for the variable 
after each return, until the final return 
out of the procedure. 

~Qt~~ The terms "pushed down" and "popped 
up" refer to the notion of a E~sh-down 
stack. A push-down stack is a logical 
devIce s, similar in behavior to a physical 
stacking process. When an element is 
placed in S, it is conceptually placed on 
top of the elements already in s, which are 
"pushed down." At any time, if S is not 
empty, the top element -- the element most 
recently placed in S -- can be removed from 
S, and the remaining elements are "popped 
up." 

The scope attribute (see Chapter 4) of 
an AUTOMATIC variable must be INTERNAL. An 
INTERNAL variable with unspecified storage 
class has, by default, AUTOMATIC storage 
class attribute. 

The ALLOCATE statement (see Chapter 8) 
specifies one or more variables, each with 
certain optional attributes. Execution of 
the statement causeS the allocation of 
storage for the variable specified. 

The following four paragraphs apply only 
to nonbased controlled variables. 

If a variable has the attribute CON­
TROLLED, storage allocation must be expli­
citly specified for the variable by the 
ALLOCATE and FREE statements. 

The FREE statement specifies one or more 
variables, and execution of the statement 
causes the storage most recently allocated 
for the-variables to be released. 

76 

At some point in a program, it may not 
be known whether a variable X is in an 
allocated state. The built-in function 
ALLOCATION (see Appendix 1) is provided to 
test this state. The function reference 
ALLOCATION (X) will return the value 'liB 
if X is in an allocated state, and the 
value 'O-B if not. 

The scope attribute of a CONTROLLED 
variable may be INTERNAL or EXTERNAL. 

Example: 

A: PROCEDURE; 
DECLARE X STATIC; 

B: PROCEDURE; 
DECLARE Y (100) CONTROLLED, Z CHAR­

ACTER (1000); 

ALLOCATE Y; 

FREE Yi 

C: BEGIN; 
DECLARE Z (100); 

END C; 

RETURN; 

END Bi 

END A; 

Assume in the above example that the 
termination of procedure A occurs on the 
return implied by END A, the termination of 
procedure B occurs on the RETURN statement, 
and the termination of block C Occurs at 
END C. Then in this example: 

Storage for the static variable X is 
allocated before execution and is never 
released. 

The character-string variable Z is AUTO­
MATIC by default. Storage is allocated 
for this Z on entrance to procedure B 
and is released on execution of the 
RETURN statement. 



The array-variable Z is AUTOMATIC by 
default. Storage is allocated for this 
Z at the beginning of execution of block 
C and is released at END C. 

storage for the CONTROLLED variable Y is 
allocated on execution of the ALLOCATE 
statement and is released on execution 
of the FREE statement. After execution 
of the FREE statement, the variable Y 
presumably is not used, but the 
_ ....... ____ "- ___ ..... 4-,.......; 'nrr ,..,.~"...; ':=Jih.1 0 t'] "'=:'1""\ he. 11~aA 

\....1.J.Q...L a.\.... \""~.L. - v II.-.L. ..L.';'':j v u ...... ..;..~AJ __ '- ~ '""'~.'" ~"- \".&.....,'-'-"- .. 

since storage is not released for this 
variable until the termination of proce­
dure B. 

The allocation of 
discussed in "The 
(Chapter 8) and in 
<Chapter 10). 

based variables is 
ALLOCATE Statement" 

"List Processing" 

ASYNCHRONOUS OPERATIONS AND TASKS 

PL/I allows tasks to be created by the 
programmer and provides facilities for the 
following: 

1. Synchronizing tasks 

2. Testing whether or not a task is 
complete 

3. Changing the priority of tasks 

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS 

Unless the program specifies the crea­
tion of tasks, the execution of the state­
ments of the program will proceed serially 
in time, according to the sequence desig­
nated by the order of the statements and 
the control statements (see "sequence of 
Control" in Chapter 8). Such operation is 
said to be synchronous .• 

In addition to full facilities for con­
ventional synchronous processing, means are 
provided for performing operations asyn­
£hrQ!!ously. 

Some reasons for considering the use of 
asynchronous operations are: 

1.. 

2. 

The programmer may wish to make use of 
computer facilities which can operate 
simultaneously. e.g.. input/output 
channels, multiple central processing 
units. 

A program may be 
input/output units 
plete transmission 

written in which 
initiate or com­
at unpredictable 

times, e.g., disc operations, termi­
nals. 

The following two diagrams distinguish 
between synchronous and asynchronous opera­
tions. The first diagram depicts the seri­
al action of synchronous operations. and 
the second diaqram depicts the parallel 
action of asynchronous -operations~ (The 
circles represent statements.) 

---0--0---0----------------0---------
time--> 

r-o---o------- ••• 
I 
I 

rO------O----O--------••• 
I 
I 

o-o-o~-------o------o------o-----------
time--> 

In asynchronous operation, once a new 
line has been started, the statements on 
that line are executed in sequence. but 
independently of the statements on any 
other line. Statements on any two lines 
need not necessarily be executed simultane­
ously -- whether this occurs depends on the 
resources and state of the system. 

SYNCHRONIZING TWO ASYNCHRONOUS OPERATIONS 

In order that the result of an asynchro­
nous operation may be made available to 
other procedures. means are provided to 
synchronize two or more asynchronous opera­
tions .. 

The following diagram illustrates this: 

ABC D E F G 

0--0--0--0----------0--------0---0-- ... 
I 

time--> I 
I 

-------0--0-........ -0---0------0---------
L M N 0 P 

Wait 

Assume that before statement N can be 
executed. both M and E must have been 
executed. M therefore issues a WAIT state­
ment which will suspend operation on that 
line until E has completed. After N, the 
statements O. P, •••• are executed synchro­
nously, as are the statements F. G •••••• 

Chapter 6. Dynamic Program Structure 77 



TASK AND EVENTS 

In PLII, asynchronous operations result 
from the creation. by the programmer., of 
tasks. The synchronizing of operations is 
obtained by waiting on events. 

A task is an identifiable execution of a 
set or-instructions. A task is dynamic, 
and only exists during the execution of a 
program or part of a program. 

A task is not a set of instructions, but 
an execution of a set of instructions. The 
instructions themselves, as written by the 
programmer, may in fact be executed several 
times in different tasks. 

It is necessary for at least one task to 
exist when a PL/I program is executed. 
Thus when an external procedure is first 
entered, its execution is part of a task. 
This particular task is called the maj~r 
:t~§~; it is created by the operating envl.­
ronment and its creation does not necessar­
ily concern the PLII programmer.. If the 
programmer is concerned with only synchro­
nous operations, then the major task will 
be the program itself. 

In order to initiate asynchronous opera­
tions, the programmer has to create new 
tasks, as described below. All tasks 
created by the programmer are called sub­
:t~§ks. 

With each task, except the major task, 
it is possible to associate a task name. 
The task name may be used to refer to and 
set the priority of the task. 

A task may be suspended by the 
programmer until some point in the execu­
tion of another task has been reached. The 
specified point is known as an event and 
the record of its completion is contained 
in an event name. (See the EVENT built-in 
function and the EVENT pseudo-variable.) 

An event name may be associated with the 
completion of a task. It is necessary to 
specify such an event name if the program­
mer wishes to synchronize a point in one 
task with the completion of another task, 
by means of the WAIT statement. 

other event names may be defined by the 
programmer and used in WAIT statements. In 
this way, the programmer can synchronize a 
task with events other than the completion 
of another task. Event names may be set by 
referring to them in assignment statement 
by means of the EVENT pseudo-variable. 

78 

THE CREATION OF TASKS 

In PL/I tasks are created by writing: 

A TASK option 
An EVENT option 
A PRIORITY option 

or any combination of these options in a 
CALL statement (see "The CALL Statement" in 
Chapter 8). The called procedure will then 
be executed asynchronously with the calling 
procedure. The CALL statement itself is 
not part of the newly-created task. The 
execution of the calling procedure is known 
as the attaching task. The execution of 
the called procedure is known as the 
attached task .. 

The TASK option is given in order to 
name the task created by the CALL. This is 
necessary if the programmer wishes to exam­
ine or change the priority of the called 
procedure, since the PRIORITY function and 
pseudo-variable have a task name as an 
argument .. 

The EVENT option is given if the pro­
grammer wishes to issue a WAIT statement 
which will wait on the completion of the 
task created by the CALL. 

The task created by the CALL statement 
must be given a priority. This priority 
may be given in either of two ways: 

1. through the PRIORITY option in the 
CALL statement, or 

2.. by assignment to the PRIORITY pseudo­
variable prior to the execution of the 
CALL statement that creates the task. 

The term "task option" will be used in 
all later discussions to denote anyone of 
the three options TASK, EVENT, or PRIORITY, 
or any part of these options, or all three. 

TERMINATION OF TASKS 

A task may 
completed} in one 
ways: 

be 
of 

terminated (i.e., 
the four following 

1. Control for the task reaches an EXIT 
statement (see Chapter 8 for a 
discussion of each of the statements 
mentioned here). 

2. Control for any task reaches a STOP 
statement. 

3. Control for the task reaches a RETURN 
statement for the procedure invoked 
with a task option. 



4. control for the task 
statement for the 
with a task option. 

reaches an END 
procedure invoked 

~~LOCATION OF DATA IN TASKS 

The rules of scope and storage alloca­
tion hold across task boundaries. ~r stor­
age is allocated for a variable in the 
attaching task~ this allocation may apply 
to the attached task, so that the variable 
may appear as a reference in the attached 
task. It is the responsibility of the 
programmer to be certain that storage for 
such a variable is not released too early 
in the attaching task. (Normally, this is 
done by synchronizing by use of the WAIT 
statement.) 

(Further details concerning tasks as 
related to storage allocation and other 
special considerations can be found in 
Chapter 10; also see "The WAIT Statement" 
for additional information and examples,.) 

INTERRUPT OPERATIONS 

During the course of program execution 
anyone of a certain set of conditions may 
occur that can result in an interrupt. An 
interrupt operation causes the suspension 
of normal program activities~ in ULU~L to, 
perform a special action; after the special 
action, program activities mayor may not 
resume at the point where they were sus­
pended. The time point of an interrupt is, 
in general.. unpredictable .. 

For most conditions that can cause an 
interrupt, the special action to be taken 
may be specified by the programmer. To do 
this, he may specify the condition in an ON 
statement; therefore these conditions are 
known as the ON-conditions. A complete 
list and description of the ON-conditions 
can be found in Appendix 3. with two 
exceptions (see "Programmer Defined ON­
Conditions," in this chapter), each ON­
condition is named with a unique identifier 
suggestive of the condition (e.g., 
ZERODIVIDE names the condition obtaining 
whenever an attempt is made to divide by 
zero). This collection of names, like the 
built-in function names, is an intrinsic 
part of the language, but the names are not 
reserved; the programmer may use them for 
other purposes, so long as no ambiguity 
exists. 

PURPOSE OF THE CONDITION PREFIX 

In general, during the execution of a 
statement, an ON condition may be in either 
an enabled or disabled state. 

If a particular condition is enabled and 
an interrupt occurs during execution of the 
statement" the action specification for the 
condition is executed. This act~on speci­
fication may either be standard system 
aCL10n or it may have been specified by the 
programmer through the use of an ON state­
ment. 

If a particular condition is disabled 
during execution of a statement" it is 
assumed that the condition will not occur. 
The result is usually unpredictable for a 
statement in which a disabled condition 
occurs. However, in certain cases the 
results are defined (e.g.. the CHECK 
condition). 

By means of condition prefixes, the 
programmer can control the enabled/disabled 
status of the following ON conditions: 

CHECK 
CONVERSION 
FIXEDOVERFLOW 
OVERFLOW 

SIZE 
SUBSCRIPTRANGE 
UNDERFLOW 
ZERODIVIDE 

The appearance of any of the above 
keyWords in a prefix list causes the asso­
ciated condition to be enabled for the 
scope of the pref ix.. The appearance of any 
of the above preceded by a NO (with no 
separating blank) causes the associated 
condition to be disabled for the scope of 
the prefix. 

SCOPE OF THE CONDITION PREFIX 

The scope of the prefix depends upon the 
statement to which it is attached. 

If the statement is a PROCEDURE or BEGIN 
statement, the scope of the prefix is the 
block defined by this statement. including 
all nested blocks, except those blocks and 
statements for which the condition is re­
specified. The scope does not include 
procedures that lie outside the scope as 
defined above but which may be invoked by 
the execution of statements in this scope. 

If the statement is an IF statement or 
an ON statement, the scope of the prefix 
does not include the blocks or groups that 
are part of the statement. Any such block 
may also have an attached prefix, whose 
scope rules are implied by the other rules 
given here. 

Chapter 6. Dynamic Program Structure 79 



For any other statement. the scope of 
the prefix is that of the statement itself. 
including any expressions evaluated during 
the execution of the statement but not any 
procedure explicitly called by the 
statement. 

USE OF THE ON STATEMENT 

In order to define the action to be 
taken when an interrupt occurs# the pro­
grammer may write an ON statement, which 
has the general form: 

ON condition-specification 
specification 

action-

The "condition specification" either is 
an ON-condition name or denotes a 
programmer-defined condition, and the 
"action specification" is a single simple 
statement or begin block, optionally 
preceded by the keyword SNAP (see "The ON 
Statement" for complete syntax and 
details). If the single statement is nulL. 
control is given back to the point of 
interrupt. 

When an ON statement that is internal to 
a given block (for example, a block B) is 
executed, it causes a preparatory action 
with the following effect: 

If, during the execution of any state­
ment after the execution of the ON 
statement and before the termination 
of block B (including the execution of 
statements in all dynamic descendants 
of block B), the condition specified 
in the ON statement ever occurs and an 
interrupt results, the statement or 
begin block specified in the ON state­
ment will be executed as though it 
were invoked as a procedure block. 
(If SNAP also has been specified, a 
standard action providing program 
checkout information will precede this 
pseudo-invocation.) control normally 
will be returned to the activity fol­
lowing the one that was interrupted. 

When an ON statement specifying a given 
condition is executed, the action to be 
taken is established by the execution. The 
time interval during which this action 
specification is effective is defined above 
in the description of the effect of an ON 
statement. There are two qualifications to 
this description: 

i. If. after a given action is esta­
blished by execution of an ON state­
ment, and while this action specifi­
cation is still effective, another ON 
statement specifying the same condi-

80 

tion is executed, then this latter ON 
statement will take effect as des­
cribed above. so that its specified 
action will determine the interrupt 
action for the given condition. (The 
effect of the old ON statement is 
either temporarily suspended or com­
pletely nullified. depending upon 
whether or not the new ON statement is 
in a block dynamically descendant from 
the block to which the old ON state­
ment is internal; see "The ON 
Statement" and "The REVERT statement" 
for more details .• ) 

2. There are eight ON-conditions whose 
names (possibly preceded by the word 
"NO") may appear in a prefix to a 
statement. Even when one of these 
conditions appears in an ON statement, 
occurrence of the condition will not 
necessarily result in an interrupt. 
For an interrupt to occur, there are 
certain additional requirements. which 
are described in the following para­
graph. 

There are three of these eight ON­
conditions, SIZE, SUBSCRIPTRANGE. and 
CHECK (identifier list), for which an 
interrupt will not take place when the 
condition occurs unless the programmer 
specifically designates that the 
interrupt is to take place. He may 
enable this condition by explicitly 
specifying the condition in a prefix 
whose scope will cover the calculation 
where the condition may occur. If a 
calculation resulting in the occur­
rence of either of these conditions 
does not lie within the scope of such 
a prefix, no interrupts will occur. 
The other five of these eight special 
ON-conditions, namely OVERFLOW, UNDER­
FLOW, ZERODIVIDE, CONVERSION, and FIX­
EDOVERFLOW, are always enabled, but 
the programmer may specifically deSig­
nate that an interrupt is not to take 
place. An interrupt for any- one of 
these conditions will always take 
place when the condition occurs unless 
the occurrence is in a calculation 
lying within the scope of a prefix 
specifying NOOVERFLOW, NOUNDERFLOW, 
NOZERODIVIDE, NOCONVERSION, or NOFIXE­
DOVERFLOW, respectively. 

All other conditions" whose names cannot 
be used in a prefix, are always enabled. 

SYSTEM INTERRUPT ACTION 

Each of the ON-conditions has a standard 
action defined for it if an interrupt 
should occur. If there has been no pre-



vious execution of an ON statement (in 
which the programmer specifies the inter­
rupt action), any interrupt caused by the 
occurrence of the condition during program 
execution will result in a standard system 
action, which is dependent upon the nature 
of~he condition. If the programmer does 
not want the system action in the case 
where one of the:::;e conditions may occur and 
cause an interrupt, he must specify an 
alternative action for the condition 
through use of the ON statement. 

In some situations, the programmer may 
want to specify his own action for a given 
condition, to have it hold for part of the 
execution of the program, and then to have 
this specification nullified and allow the 
standard system action. In this case. he 
may use the special action-specification 
SYSTEM. as follows: 

ON condition-name SYSTEM; 

Example 1: 

A: PROCEDURE; 

ON OVERFLOW 
BEGIN; 
DECLARE NUMBOV STATIC 

INITIAL (0); 
NUMBOV=NUMBOV + 1; 
IF NUMBOV = 100 THEN GO 

TO OVERR; 
END; 

1'"\1\1 I'"\tn;>n"C'T rlf.T. 
V1.'t VVJ.,;".L"'\.J.:~vn, 

ON OVERFLOW SYSTEM; 

END A; 

In the above example, assume that the 
program consists only of procedure A, that 
the three ON statements are the only ON 
statements involving the OVERFLOW condi­
tion, that they are internal to procedure 
A, and that they are executed in their 
physical order. 

When program execution begins, the OVER­
FLOW condition is enabled by the system; 
any floating-point overflow condition that 
occurs before the first ON OVERFLOW state­
ment is executed will result in an inter­
rupt, with standard system action. Howev­
er. the execution of the first ON OVERFLOW 
statement establishes the action specified 
in the BEGIN block. (The n~~er of over-

flows is counted and if this number has not 
reached 100, the action is finished.) Any 
OVERFLOW interrupts will receive this 
action until the second ON OVERFLOW state­
ment is executed. The action specified 
here is a null statement; any subsequent 
OVERFLOW interrupts will effectively be 
ignored until control reaches the third ON 
OVERFLO~·1 statement. which reestablishes the 
standard system action. 

Example 2: 

(SIZE): A: PROCEDURE; 

ON SIZE GO TO AERR; 

CALL B; 

END A; 

(SIZE, NOOVERFLOW): B: PROCEDURE; 

ON SIZE GO TO BERR; 

RETURN; 
END B; 

In the above example., the prefix (SIZE) 
enables that condition for procedure A and 
specifies that if a SIZE error (see Appen­
dix 3) occurs durinq any calculation in 
procedure A, an interrupt-is to take place .. 
The prefix (SIZE, NOOVERFLOW) for procedure 
B specifies the same requirement with res­
pect to a SIZE error for procedure B; in 
addition, it specifies for procedure B that 
any interrupt that might be caused by an 
OVERFLOW condition is to be suppressed. 

After the beginning of execution of 
procedure A'I and before the execution of 
the first ON statement, any SIZE error will 
result in an interrupt with standard system 
action. After execution of this ON state­
ment, and before execution of the ON state­
ment in the invoked procedure B, any SIZE 
error will result in an interrupt with the 
action GO TO f...ERR.. After execution of the 
ON statement in procedure R, the action GO 
TO BERR becomes establiShed for the SIZE 
condition., but the effect of the previous 
ON statement is suspended only temporarily. 
After the RETURN statement in procedure B 
is executed, the effect of this previous ON 
statement is reinstated, so that SIZE 
errors occurring after this point again 
result in the action GO TO AERR. 

Chapter 6. Dynamic Program Structure 81 



If any floating-point overflow condition 
occurs during the execution of procedure A, 
an interrupt will result with the standard 
system action for the OVERFLOW condition. 
However, for any occurrence of an OVERFLOW 
condition during the execution of procedure 
B, the interrupt will be suppressed. 

Example 3: 

(NOOVERFLOW): A: PROCEDURE; 

(OVERFLOW):B: BEGIN; 

END B; 

END A; 

In the above example, interrupts will be 
suppressed for OVERFLOW conditions occur­
ring during execution of that part of 
procedure A that is not included in block 
B. OVERFLOW conditions occurring during 
execution of block B will result in an 
interrupt. 

USE OF THE REVERT STATEMENT 

The REVERT statement may be used, fol­
lowing an ON statement, to reinstate an 
action specification that existed in the 
immediate, dynamically encompassing block 
without having to return control to that 
block (see "The REVERT statement," in Chap­
ter 8 for format and rules). 

Example: 

(S-IZE) : A: PROCEDURE; 
ON SIZE GO TO AERR; 

CALL B; 

END A; 
(SIZE) : B: PROCEDURE; 

ON SIZE GO TO BERR; 

REVERT SIZE; 

END B; 

82 

In the above example, if a SIZE error 
occurs in procedure B after execution of 
the ON statement" an interrupt will take 
place with the resulting action GO TO BERR. 
After execution of the REVERT statement" 
the condition as specified by the ON state­
ment in procedure A is reinstated. Program 
control remains in procedure B. but any 
sumsequent SIZE error that occurs in proce­
dure B will cause an interrupt with the 
action GO TO AERR. 

PROGRAMMER-DEFINED ON-CONDITIONS 

There are two kinds of ON-conditions the 
programmer may construct: 

1.. An arbitrary identifier can be used to 
create a condition name by means of 
the keyword CONDITION used in the ON 
statement, as follows: 

ON CONDITION (identifier) action-
specification 

Such a statement contextually declares 
the "identifier" to be a condition­
name and the execution of the 
statement provides an action specifi­
cation. The condition can be caused 
to noccur" only by the execution of a 
SIGNAL statement (see "The SIGNAL 
Statement"). 

For example, if the 
statement is executed: 

ON CONDITION(KEY) block 

following 

and later the following statement is 
executed: 

SIGNAL CONDITION(KEY)i 

then the latter execution will (by 
definition of the SIGNAL statement) 
cause an interrupt, with the action 
defined by the block in the ON state­
ment. 

2. The CHECK (identifier list), where 
"identifier listn represents variables 
or labels declared in the program. can 
appear as the condition specification 
in the ON statement. Whenever one of 
the variables in the list is assigned 
a value, or one of the procedures or 
statements whose label appears in the 
list is executed and if the condition 
is enabled, the condition defined by 
this specification is regarded as 
occurring, and an interrupt will take 
place. (For a precise explanation of 
this kind of condition, see Appendix 
3, "ON Conditions.") 



FACILITIES FOR PROG~~~ CHECKOUT 

The programmer-specified condition des­
cribed above is a powerful tool for program 
checkout. As an example of its use. sup­
pose that a block contains the prefix 
(CHECK(A,SUB1"STS» and that the following 
statement is executed: 

ON CHECK (A, SUB1, STS) SYSTEM; 

In the example" A is a aata Var1aO.le. 
SUBl is a procedure name, and STS is a 
statement label. Then, whenever a value is 
assigned to A (or to any part of A. if A is 
an array or structure name), an interrupt 
occurs. and A is printed out on the stand­
ard output file (SYSPRINT) with its new 
value. If the statement labeled STS or the 

procedure SUBl is executed, the label is 
printed out. 

Another useful ON-condition is the con­
dition named SUBSCRIPTRANGE. Parts of the 
program can be designated by the program­
mer. using the keyword SUBSCRIPTRANGE in 
appropriate prefixes, to receive constant 
monitoring of subscript values. Whenever 
the value of some subscript in some array 
goes out of its designated range. an inter­
rupt will occur, and action. specified by a 
previously executed ON statement. may take 
place to correct the error. 

The SIGNAL statement also will be found 
useful for checkout. since it can be used 
to simulate the occurrence of any ON­
co~dition (see nThe SIGNAL Statementn). 

Chapter 6. Dynamic Program Structure 83 



CHAPTER 7. INPUT/OUTPUT 

A collection of data external to the 
program constitutes a data set. Input 
activity transmits data from a data set to 
a program. Output activity transmits data 
from a program to a data set. Input/output 
statements refer to a filename declared in 
the program. 

In STREAM input/output, the data set is 
regarded as a continuous stream of 
characters. The GET and PUT statements are 
used to transmit data values from and to 
the data set. Conversions may occur during 
transmission (see "Data Stream Transmis­
sion, n below). 

In RECORD input/output, the data set 
consists of discrete records. The READ and 
WRITE statements cause a single record to 
be transmitted from or to the data set. 
Transmission is direct, without any conver­
sion, either directly to data variables or 
to an intermediate, addressable buffer. 
When transmission is to or from data varia-
bles, the attributes of the variables 
should accurately describe the composition 
of the record. 

For annotated illustrations of 
input/output operations, see Examples 1 and 
2 in Appendix 6. 

FILE OPENING AND FILE ATTRIBUTES 

The file attributes are discussed in 
Chapter 44 This section describes how 
attributes are collected and become asso­
ciated with a file, as well as describing 
how a file is opened. 

The file attributes can be divided into 
two categories, alternative attributes and 
additive attributes. Alternative attri­
butes are those in which one of a group may 
be selected. If there is no explicit or 
implied declaration for one of the alterna­
tives, and if one of those alternatives is 
required, a default attribute is selected. 
Additive attributes are those that never 
are--applied by default and must always be 
stated explicitly, either in a file dec­
laration or in the OPEN statement (the one 
exception is that PRINT may be applied by 
default for the SYSPRINT file, see 
"Standard Files"). 

Following is a summary of the alterna­
tive attributes and their defaults: 

84 

Attributes 

STREAM I RECORD 
INPUT I OUTPUT I UPDATE 
SEQUENTIAL I DIRECT 
BUFFERED I UNBUFFERED 
INTERNAL I EXTERNAL 

Default 

STREAM 
INPUT 
SEQUENTIAL 
BUFFERED 
EXTERNAL 

Following is a list of the additive 
attributes: 

PRINT 
BACKWARDS 
EXCLUSIVE 
KEYED (decimal-integer-constant) 
ENVIRONMENT (option-list) 

OPENING A FILE 

The opening of a file is the means by 
which a filename is associated with a 
particular data set. The identity of the 
data set can be specified through the TITLE 
option of the OPEN statement; otherwise, 
th~ filename will specify the identity of 
the data set. A part of the opening 
process is the completion of the set of 
attributes that describe the composition of 
the data set and the method in which the 
individual records of the data set will be 
acaessed. A file can be opened either 
explicitly or implicitly. 

Explicit Opening 

A file is opened explicitly through 
execution of an OPEN statement that speci­
fies the filename. The OPEN statement may 
list any of the attributes given above 
except the ENVIRONMENT, INTERNAL. or EXTER­
NAL attributes. Attributes listed in an 
OPEN statement are merged with any attri­
butes listed in a file declaration for that 
filename. In an explicit opening" the OPEN 
statement must be executed prior to the 
execution of any of the statements listed 
below under "Implicit Opening" that refer 
to that filename. 

Implicit Opening 

An implicit opening of a file may occur 
if one of the statements listed below is 
executed prior to the execution of an OPEN 
statement specifying the same filename. 
The statement type is used to determine the 



usage and function attributes of the file. 
The effect of an implicit opening, caused 
by one of these statements. is as if the 
statement were preceded by an OPEN state­
ment specifying the attributes deduced from 
the statement type~ 

Following is a list of the statement 
identifiers and the ~tt~ibutes deduced from 
each: 

Statement Identifier Attributes Deduced 

GET 
PUT 
READ 
WRITE 
REWRITE 
LOCATE 

DELETE 

UNLOCK 

STREAM, INPUT 
STREAM, OUTPUT 
RECORD, INPUT 
RECORD, OUTPUT 
RECORD, UPDATE 
RECORD, OUTPUT, 

SEQUENTIAL, 
BUFFERED 

RECORD, DIRECT, 
UPDATE 

RECORD, DIRECT, 
UPDATE, 

EXCLUSIVE 

There must be no conflict between the 
attributes specified in a file declaration 
and the attributes merged--explicitly or 
implicitly--as the result of the file open­
ing. For example, the attributes INPUT and 
UPDATE are in conflict, as are the attri­
butes UPDATE and STREAM. 

After the attributes are merged, the 
attribute implications, listed below, are 
applied prior to the application of default 
attributes discussed earlier in this sec­
tion. Implied attributes can also cause a 
conflict. If a conflict in attributes 
exists after the application of default 
attributes. the UNDEFINEDFILE condition is 
raised,. 

Following is a list 
the other attributes 
after merging: 

of attributes and 
that each implies 

Me~ged Attribute Implied AttributeCs) 

UPDATE 
SEQUENTIAL 
DIRECT 
BUFFERED 

UNBUFFERED 

PRINT 
BACKWARDS 

RECORD 
RECORD 
RECORD, KEYED 
RECORD, 

SEQUENTIAL 
RECORD, 

SEQUENTIAL 
OUTPUT, STREAM 
RECORD, 

SEQUENTIAL, 
INPUT 

EXCLUSIVE 

KEYED 

RECORD" KEYED, 
DIRECT" 

UPDATE 
RECORD 

The following two examples illustrate 
attribute merging for an explicit opening 
and for an implicit opening: 

Explicit opening example 

DECLARE LISTING FILE STREAM; 

OPEN FILE (LISTING) PRINT; 

Attributes after merge due to exe­
cution of the OPEN statement are 
STREAM and PRINT. 

Attributes after implication are 
STREAM, PRINT, and OUTPUT. 

Attributes after default applica­
tion are STREAM, PRINT, OUTPUT, and 
EXTERNAL. 

Implicit opening example 

DECLARE MASTER FILE KEYED (10) 
INTERNAL; 

READ FILE (MASTER) INTO 
(Iv'..ASTER RECORD) 
KEYTO (MASTER_KEY); 

Attributes after merge due to the 
opening caused by execution of the 
READ statement are KEYED (10)" 
INTERNAL, RECORD" and INPUT. 

Attributes after implication are 
KEYED (10), INTERNAL, RECORD and 
INPUT. There are no additional 
attributes implied. 

Attributes after default applica­
tion are KEYED (10), INTERNAL. 
RECORD, INPUT, SEQUENTIAL, and BUF­
FERED. 

DATA STREAM TRANSMISSION 

There are three modes of STREAM trans­
mission: list-directed, data-directed, and 
edit-directed. All of these modes of 
transmission utilize data specifications as 
described in the next section. This sec­
tion discusses the general characteristics 
of the transmission modes. The details of 
these transmission modes are discussed 
later in the chapter. 

Chapter 7: Input/Output 85 



LIST-DIRECTED TRANSMISSION 

List-directed transmission permits the 
user to specify the storage area to which 
data is assigned or from which data is 
transmitted without specifying the format. 

!Qput~ The data in the stream is in the 
form of optionally signed valid constants 
or of expressions to represent complex 
constants. The program storage areas to 
which the data is to be assigned is speci­
fied by a data list. 

Q~~2~~~ The data values to be transmitted 
are specified by a data list. The form of 
the data placed in the stream is a function 
of the data value and precision .• 

DATA-DIRECTED TRANSMISSION 

Data-directed transmission permits the 
user to read or write self-identifying 
data .. 

!gp~~~ The data in the stream is in the 
form of optionally signed valid constants 
and includes information identifying the 
program storage areas to which the data is 
to be assigned. 

Qg~g~~ The data values to be transmitted 
are specified by a data list. The data 
placed in the stream has the form of 
constants and includes the name of the data 
being transmitted. 

EDIT-DIRECTED TRANSMISSION 

Edit-directed transmission permits the 
user to specify the storage area to which 
data is to be assigned or from which data 
is to be transmitted and the form of data 
fields in the stream. 

!~~~~ The form of the data in the stream 
is defined by a format list. The program 
storage areas to which the data is to be 
assigned is specified by a data list. 

Q~~P~~l The data values to be transmitted 
are defined by a data list. The form that 
the data is to have in the stream is 
defined by a format list. 

86 

DATA STREAM -DATA SPECIFICATIONS 

Data specifications are given in GET and 
PUT statements to identify the data to be 
transmitted. The data specifications cor­
respond to the modes of transmission. 

DATA LISTS 

List-directed. data-directed, and edit­
directed data specifications require a data 
list to specify the data items to be 
transmitted. 

General format: 

<element [, element] ••• ) 

Syntax rules: 

The nature of the elements depends upon 
whether the data list is used for input or 
for output. The rules for each are as 
follows: 

1. On input, each data-list element for 
edit-directed and list-directed data 
may be one of the following: a scalar 
name, an array name. a structure name. 
a pseudo-variable, a pseudo-array. a 
pseudo-structure, or a repetitive 
specification involving any of these 
elements. For a data-directed data 
specification, each data-list element 
may be an unsubscripted scalar. array 
or structure name. 

2. On output, each data-list element for 
edit-directed and list-directed data 
specifications may be one of the fol­
lowing: a scalar expression, an array 
expression, a structure expression, or 
a repetitive specification involving 
any of these elements.. For a data­
directed data specification. each 
data-list element may be a scalar, 
array, or structure name, or a repeti­
tive specification involving any of 
these elements. 

3. The elements of a data list must be of 
arithmetic or string data type. 

Repetitive Specification 

General format is shown in Figure 1,. 



r---------------------------------------------------------------------------------------i 
(element [, element] ••• DO 1 

variable I 
pseudo-variable 

= specification 
[w specification] ••• ) 

A specification has the following format: 

I 
I 
I 
I 
I 
I 
I 

r 
TO expression-2 [BY expression-3] 1 II 

expression-1 [WHILE (expression-4)] 
.... BY expression-3 [TO expression-2] .... ! L _______________________________________________________________________________________ J 

Figure 1. General Format for Repetitive Specif,ication. 

Syntax rules: 

1. Each element in the element list of 
the repetitive specification is des­
cribed for data-list elements above. 

2,. The expressions in the specification 
are described as follows: 

a. Each expression in the specifi­
cation is a scalar expression. 

b. In the specification~ expression 1 
represents the starting value of 
the control variable or pseudo­
variable. Expression 3 represents 
the increment to be added to the 
control variable after each 
repetition of data-list elements 
in the repetitive specification. 
Expression 2 represents the termi­
nating value of the control varia­
ble. The exact meaning of the 
specification is identical to that 
of a DO statement with the same 
specification. When the last 
specification is completed. con­
trol passes to the next element in 
the data list. 

3. Repetitive specification may be nested 
to a depth whose maximum is 
implementation-defined... That is, each 
element in the element list may be a 
repetitive specification. A 
repetitive specification involving ill 

elements repeated n times is equival­
ent to m*n elements. For example, 
consider the following statement: 

GET LIST «A(I,J) DO I = 1 TO 2) 
DO J = 3 TO 4); 

This is equivalent to: 

DO J = 3 TO 4; 
DO I = 1 TO 2; 
GET LIST (A(I,J»; 
END; 

END; 

It gives the elements of the array A in 
the following order: 

Note: The DO keyword is used in the repet­
itive specification to indicate iteration 
in a manner similar to a DO statement. A 
corresponding END statement is not 
required,. 

Transmission of Data-List Elements 

If a data-list element is of complex 
mode, the real part is transmitted before 
the imaginary part. 

If a data-list element is an array name. 
the elements of the array are transmitted 
in row-major order" that is, with the 
rightmost subscript of the array varying 
most frequently. 

If a data-list element is a structure 
name, the elements of the structure are 
transmitted in the order specified in the 
structure declaration. For example, if the 
structure declaration was: 

DECLARE 1A(10), 2B, 2C; 

then the statement 

PUT FILE (X) LIST (A); 

would result in the output being ordered as 
follows: 

A.B(l) A.C(l) A.B(2) A.C(2) A.B(3) 
A.C(3) •••• etc. 

If, however, the declaration had been: 

DECLARE lA, 2B(lO), 2C(10); 

then the same PUT statement would produce: 

A. B ( 1 ) A. B ( 2 ) 
A.C(l} A.c(2} A.C(3} 

A. B (3) 
A.C(lO}. 

A.B(10) 

Chapter 7: Input/Output 87 



If, within a data list used in an input 
statement, a variable is assigned a value, 
this new value is used in all later ref­
erences in the data list, and the format 
list, if present. 

Example: 

In the following statement. 
structure, XSTRING is a character 
and C is an array: 

B is a 
string., 

DECLARE A FLOAT, lB, 2P" 2E, 3F., 
XSTRING 
CHARACTER (6), C(lO) FIXED; 

The following data list" involving these 
data items" and the scalar variable A, may 
be used for input or output: 

(A,B, SUBSTR (XSTRING, 2), 
(C(I) DO I = 2 TO 7» 

The data-list elements are transmitted 
in the following order: 

A -The scalar variable is trans­
mitted. 

P,F-The elements of the structure 
B are transmitted. 

SUBSTR (XSTRING., 2) -The second through 
sixth characters of the string 
XSTRING are transmitted. 

C(2), C(3), ••• , C(7). 
fied elements of 
transmitted. 

The six speci­
the array are 

LIST-DIRECTED DATA SPECIFICATION 

General format: 

LIST data-list 

Syntax rules: 

The "data list" is described in the 
preceding discussion. 

When the data item is an array name and 
the data consists of constants, the first 
constant is assigned to the first element 
of the array" the following constant to the 
second element, etc. " in row-major order. 

A structure name in the data list rep­
resents a list of the contained scalar 
variables and arrays in the order specified 
in the structure description. 

88 

Data in the stream has one of the 
following general forms: 

[+1-] arithmetic-constant 
character-string-constant 
bit-string-constant 
[+I-lreal-constant{+I-}imaginary-constant 

Sterling constants may 
str.ing constant must be 
permitted forms listed 
and string repetition 
allowed. 

not be 
one of 
above. 
factors 

used. A 
the two 

Iteration 
are not 

Redundant blanks are permitted as in 
PL/I programs. However" no blanks may 
precede the central + or in complex 
expressions. 

Data items in the stream must be sepa­
rated either by a blank or by a comma. 
This separator may be surrounded by an 
arbitrary number of blanks. A null field 
in the stream is indicated either by the 
very first non-blank character in the 
stream being a comma., or by two adjacent 
commas separated by an arbitrary number of 
blanks. A null field specifies that the 
value of the associated item in the data 
list specification is to remain unchanged. 

The transmission of the list of con­
stants on input is terminated by expiration 
of the list or by the end-of-file condi­
tion. In the former case, positioning is 
always at the character following the first 
blank or comma following the data item. 
More than one blank can separate two data 
items" and a comma separator may be preced­
ed or followed by one or more blanks. In 
such cases, a subsequent list- or data­
directed GET will ignore intervening blanks 
and the comma (if present)., and will access 
ths; next data item. However" if an edit­
directed GET should follow, the first 
character accessed will be the character to 
which the file has been positioned (in 
other words, the next data item will begin 
with the first character following the 
blank or comma that separated it from the 
previous data item). 

If the data is a character-string con­
stant, the surrounding quotation marks are 
deleted and the enclosed characters inter­
preted as a character string. 

If the data is a bit-string constant, it 
is interpreted as a bit string. 

If the data is an arithmetic constant or 
complex expression, it is converted to 
coded arithmetic with the base, scale" 
mode., and precision implied by the con­
stant. 



r-----------------~--------------------T------------------------------------------------, i String Value i List item i Conversion I 
~-----=-----------+--------------------+------------------------------------------------~ 
I I I 
I Arithmetic Character to Arithmetic I 
I Character Character string Character string assignment 
I string Bit String Character to bit string 
I 
i 
I 
I 
I 

Bit string 
Arithmetic 
Character String 
Bit String 

Bit string to Aritfuuetic 
Bit string to Character string 
Bit string assignment 

i Arithmetic Arithmetic type conversion 
I Arithmetic Character string Arithmetic to Character string 
I Bit string Arithmetic to Bit string l _________________ L ____________________ ~ _______________________________________________ _ 

Figure 2. List-directed Input Conversion. 

The list item is then examined and the 
interpreted string value is assigned to it 
as shown in Figure 2. 

The type conversions are described in 
Chapter 3. 

List-Directed Output Format 

The values of the scalar variables in 
the data list are converted to a character 
representation of the data value, as des­
cribed below, and transmitted to the data 
stream. 

A blank is used to separate data items 
transmi tted,. 

The length of the data field placed in 
the data set is a function of the internal 
precision and value of the data item. 

CODED ARITHMETIC DATA: The external form 
o~code~-arithmetIc- data is a possibly 
signed valid decimal constant whose field 
width, ~, is a function of the internal 
precision declared for the data item and 
the value of the data item. In the discus­
sion below. the following symbols are used: 

1. The letter ~ represents the field 
width. which is defined as the length 
of the data field. 

2. The letter Q represents the number of 
positions in the external data field 
to the right of the decimal point. 

3. The letter 
number of 
data field. 

E represents the total 
significant digits in the 

4. The letter g represents the number of 
digits to the right of the decimal 
point. 

5. The letter ~ represents a scale factor 
as described for floating-point data. 

6. The letters yyy represent a scale 
factor for fixed-point data. The let­
ter K actually appears in the output 
stream to indicate the presence of a 
scaling factor. Its value is similar 
to the value of E in a floating-point 
number. 

7. The letter ~ represents any decimal 
digit. 

8. The symbol Q represents a blank posi­
tion in the output. 

There are five kinds of coded arithmetic 
data to consider: coded real fixed-point 
decimal data, coded real fixed-point binary 
data., coded real floating-point decimal 
data, coded real floating-point binary 
data, and coded complex data. 

Coded Real Fixed-Point Decimal Data: The 
data item is converted to precision (p,q), 
plus a possible scaling field. It is 
transmitted to a field of width ~. plus the 
scaling field if it is present. 

If g is greater than or equal to zero 
and less than or equal to p" then w = p+3. 
and d=q; for example: 

bbxxxx.xxxx 
bbbxxxxxxxx 

(p=8,q=4) 
(p=8,q=O) 

If g is less than zero or greater than 
E, then w = p+3+n, where n is the number of 
digits required to express g; for example: 

bxxxxxxxxF-yyy (p=8, q=100. yyy=-q) 

Zero suppression is performed to the 
left of the field, and if the value is less 
than zero, a minus sign will immediately 
precede the first significant digit. 

Chapter 7: Input/Output 89 



Coded Real Fixed-Point Binary Data: The 
data item is converted to fixed-point deci­
mal and is transmitted as coded real fixed­
point decimal data. 

Coded Real Floating-Point Decimal Data: 
The data item is converted according to the 
rules for floating-point format items, E(W. 
d, s). For E-conversion, w = p + 6, d = P 
- 1 and s = p. 

Coded Real Floating-Point Binary Data: The 
data item is converted to floating-point 
decimal with a precision (p) and 
transmitted as coded real floating-point 
decimal data. 

£Qg~g_£omple~Data: The data is externally 
represented as two immediately adjacent 
real data fields, the left hand field being 
the real part of the data and the right­
hand field being the imaginary part of the 
data. 

A sign always precedes the imaginary 
part. If the value of the imaginary part 
is greater than, or equal to, zero, the 
sign is plus; if the value of the imaginary 
part is less than zero, the sign is minus. 
The imaginary part is always followed by 
the letter I. The field width of the 
external representation is 2w + 1, where w 
is as defined above for fixed-point or 
floating-point output. 

NUMERIC FIELD DATA: The base of numeric 
field data is either decimal or binary. 

Numeric Decimal Data: The external format 
and field width of the numeric decimal data 
item is that described by the associated 
picture specification. 

Numeric Binary Data: The external format 
and field width of the numeric binary data 
item is that described by the associated 
picture specification. The binary digits 0 
and 1 are represented by the characters 0 
and 1. 

~~21~~ ___ Nu~eri~ ___ Data: The real and 
imaginary parts are output as above and the 
external representation is the concatena­
tion of the real and imaginary parts. The 
field width is 2w, where w is the number of 
bytes (or bits, if binary) allocated to the 
real part of the numeric data; no I is 
appended. 

CHARACTER-STRING DATA: The contents of the 
character-string are written out. If the 
file has the attribute PRINT, enclosing 
quotation marks are not supplied, and con~ 
tained quotation marks are unmodified. The 
field width is the current length of the 
string. If the file does not have the 
attribute PRINT, enclosing quotation marks 
are supplied, and contained quotation marks 

90 

are replaced by two quotation marks. 
field width is the current length of 
string plus the added quotation marks. 

The 
the 

BIT-STRING DATA: The format of the data on 
the external medium is that of a bit-string 
constant, that is, the value is enclosed in 
quotation marks and followed by the letter 
B.. The binary bits are represented by the 
characters 0 and 1. The field width is 
p+3, where E is the current length of the 
string" and the three additional positions 
are for the two quotation marks and the 
letter B. 

Examples of list-directed data specifi­
cations: 

1. LIST (CARD. RATE, DYNAMIC_FLOW) 

2. LIST ( (THICKNESS (DISTANCE) DO DIS-
TANCE = 1 TO 1000 » 

3. LIST (P. Z,M.,R) 

4. LIST (A"*B/C. (X+Y)**2) 

The specification in example 4 may only 
be used for output. 

DATA-DIRECTED DATA SPECIFICATION 

General format: 

Option 1 

DATA 

Option 2 

DATA data-list 

General rules: 

1. The data list is described in "Data 
Lists", in this chapter. It may not 
include formal parameters, based or 
defined variables. Names of structure 
elements need only have enough quali­
fication to resolve any ambiguity; 
full qualification is not required. 

2. Option 1 implies that all of the data 
items to be transmitted are known to 
the block containing the GET state­
ment. Option 1 may be used for data­
directed input only. 

3. Option 2 may be used for both data­
directed input and output,. 

4. Recognition of a semicolon in the 
stream on input causes transmission to 
cease. On output a semicolon is 
written into the stream after the last 
data item transmitted. 



Data-Directed Data in the stream 

The data in the stream associated with 
data-directed transmission is in the form 
of a list of scalar assignments having the 
following general format: 

1. 

2. 

scalar-variable = constant 
[{bl,} scalar-variable = constant] ••• ; 

General rules: 

The ·scalar variable" may be 
scripted name with decimal 
constant subscripts. 

a sub­
integer 

On input, the scalar assignments may 
be separated by either a blank (~ in 
the above format) or a comma. On 
output, the assignments are separated 
by blanks. 

3. The constant in the general format 
above has one of the forms as des­
cribed for list-directed transmission. 

General rules for data specifications of 
data-directed inpu~: 

1. If the data specification in option 1 
is used" the names in the stream may 
be any fully qualified name known at 
the point of transmission. 

2. If ootion 2 is used, each element of 
the data list must be an unsubscripted 
scalar, array. or structure name. The 
names in the stream must appear in the 
data list; however, the order of the 
names need not be the same and the 
Ud~d list may include names 
not appear in the stream. 

For example, consider the following 
data list, where A, B, C, and Dare 
names of scalar variables: 

DATA (B, A, c, D) 

This data list may be associated 
the following input data stream: 

A=2.5, B=.00476, D=125, Z='ABC'; 

with 

Note that C appears in the data list 
but not in the stream and that Z, not 
in the data list, will raise the NAME 
condition. 

3. If the data list in Option 2 includes 
the name of an array, subscripted 
references to that array may appear in 
the stream. The entire array need not 
appear. 

Let X be the name of a two dimen­
sional array declared as follows: 

4 .• 

DECLARE X (2~ 3); 

Consider the following data list and 
input data stream: 

Data List 
DATA (X) 

Input Data stream 
X(l,l) = 7.95, X(1,2) 
8085, X(1.3) = 73: 

Although the data list has only the 
name of the array" the associated 
input stream may contain values for 
individual elements of the array. 

If the data list includes the names of 
structure elements, then fully quali­
fied names of identical form must 
appear in the stream. Consider the 
following structures: 

DECLARE 1 CARDIN, 2 PART NO , 2 DESCRP, 
2 PRICE, 

1 CARDOUT, 2 PARTNO., 2 DESCRP, 
2 PRICE; 

If it is desired to read a value for 
CARDIN.PARTNO, then the data list and 
input data stream have the following 
forms: 

Data List Input Data Stream 
CARDIN.PARTNO 
737314; 

DATA (CARDIN.PARTNO) 

General rules for data-directed output: 

1. The elements of the data list may be a 
scalar name, an array name, a struc­
ture name, a repetitive specification 
involving any of these elements or 
further repetitive specifications. 
The data with names appearing in the 
data list is transmitted in the form 
of a list of scalar assignments sepa­
rated by blanks and terminated by a 
semicolon. 

2. Array names 
treated as a 
subscripted 
order. 

in the 
list of 

elements 

data 
the 
in 

list are 
contained 
row-major 

Let X be an array declared as follows: 

DECLARE X (2,4); 

Let X appear in a data list as fol­
lows: 

DATA (X) 

Then, on output, the output data 
stream is as follows: 

X(l,l)= 1 X(l,2)= 2 X(1,3)= 3 X(1,4)= 4 
X(2,1)= 5 X{2,2)= 6 X(2,3)= 7 X{2,4)= 8; 

3. Subscript expressions in a data name 

Chapter 7: Input/Output 91 



are evaluated and replaced by integer 
constants. 

4. Items that are part of a structure 
appearing in the data list are trans­
mitted with the full qualification, 
but subscripts follow the qualified 
names rather than being interleaved. 
If a data list is specified for a 
structure element transmitted under 
data-directed output as follows: 

DATA (Y(l,3).Q) 

then the associated data field in the 
output stream is as follows: 

Y.Q(l,3) 3.7S6; 

S. structure names in the data list are 
interpreted as a list of the contained 
scalar or array elements, and arrays 
are treated as above. 

I 6. 

Consider the following structure: 

lA, 2B, 2C, 3D 

If a data list for data-directed out­
put is as follows: 

DATA (A) 

then, if the values of Band D were 2 
and 17 respectively, the associated 
data fields in the output stream would 
be as follows: 

A.B= 2 A.C.D= 17; 

When p<q or q<O, data-directed output 
of FIXED data of precision (p., q) is 
not suitable for data-directed input. 

Length of Data-Directed Data Fields 

The length of the data field on the 
external medium is a function of the inter­
nal preclsl0n, the value of the data item 
being written, and the length of the data 
identifier and its associated subscript 
list. The field length for coded arithmet­
ic data, numeric field data, and bit-string 
data is the same as described for list­
directed output (see "Format of List­
Directed Output Fields"). 

For character-string data the contents 
of the character string are written out 
enclosed in quotation marks. Each 
quotation mark contained within the charac­
ter string is represented by two successive 
quotation marks. 

Example: 

Assume that A is declared as a one­
dimensional array of six elements; B is a 
one-dimensional array of seven elements. 
If it is desired to calculate values, the 
procedure in Figure 3 calculates and writes 
out values for A(I) = B(I+l) + B(I). 

EDIT-DIRECTED DATA SPECIFICATION 

General format: 

EDIT data-list format-list 
[data-list format-list] ••• 

General rules: 

1. The data list is described in 
Lists," the format list in 

"Data 
"Format 

Lists." This form of transmission can 
be used for sterling data. 

r---------------------------------------------------------------------------------------, 
AB: PROCEDURE; 

DECLARE A(6), B(7); 

GET FILE (X) DATA (B); 

DO I = 1 TO 6; 

A (I) = B (I+l) + B (I); 

END; 

PUT FILE (Y) DATA (A); 

END AB; 

Input Stream 

B(l)=l, B(2)=2, B(3)=3, 

B(4)=1, B(S)=2, B(6)=3, B(7)=4; 

output Stream 

A(l)= 3 A(2)= S A(3)= 4 A(4)= 3 

A(S)= S A(6)= 7; 

Figure 3. Example of Data-Directed Transmission, both Input and Output 

92 



3. 

On output, the value of each data item 
in the data list is converted to a 
format specified by the associated 
format item in the format list. The 
first scalar data item is associated 
with the first format item, the second 
scalar data item with the second 
format item, etc. Suppose the format 
list effectively contains i format 
items, and the data list effectively 
contains k data items. Then, if j<k 
after i scalar data items have been 
transmitted, the format list is re­
used, the (j+1)th scalar item being 
associated with the first format item, 
etc. This re-use is performed as many 
times as required. If j>k, excessive 
format items are ignored. 

An array or a structure in a data list 
is equivalent to n data items, where n 
is the number of -scalar elements in 
the array or structure. 

4. If a data list item is associated with 
a control format item. that control 
action is executed and the data list 
item is paired with the next format 
item. 

5. The specified transmission is complete 
when the last data item has been 
processed using its corresponding 
format item. subsequent format items, 
including control format items, are 
ignored .. 

Examples: 

The first of the following examples is 
an edit-directed input specification, and 
the second is an output specification. 

i. EDIT (NAME, DATE, SALARY) 
(A(COLA-COLB), X(2), A(6}, F(M +2,2» 

2. EDIT ('INVENTORY-' 
(A, F(5» 

II INUM,INVCODE) 

FORMAT LISTS 

The edit-directed data specification 
requires an associated format list. 

General format of a format list: 

I item 
n item 
n format-list ![ ' item ] 

' n item ••• ) 
• n format-list 

Syntax rules: 

1. Each "item" represents a format item 
as described below. 

2. The letter n represents an iteration 
factor, whIch is either an expression 
enclosed in parentheses, or a decimal 
integer constant. The iteration fac­
tor specifies that the associated for­
mat item is to be used n successive 
times. A zero or negative iteration 
factor specifies that the associated 
format 1. 1:. em loS Lo be skipped and not 
used (the data list item will be 
associated with the next format item). 
If an expression is used to represent 
the iteration factor, it is evaluated 
and converted to an integer once for 
each set of iterations. The associat­
ed format item is that item or list of 
items to the right of the iteration 
factor. 

General rule: 

There are 
data format 

two types 
items and 

of format items: 
control format 

items. Data format items specify the 
form of data fields in the stream. 
Control format items specify page., line, 
and spacing operations. 

Data Format Items 

Data format items describe data rep­
resentation in the data stream. 

The discussion of format items requires 
the following definitions: 

1. The letter ~ represents the length of 
the data field, in characters, used by 
the external representation (including 
signs, decimal points, blanks. and the 
letter E as used in the representation 
of constants). 

2. The letter 3 represents the number of 
positions after the decimal point. 

3. The letter s represents the number of 
significant digits to appear. 

4. The letter E represents a scale fac­
tor, which may be positive or nega­
tive. 

The quantities ~, 3, §, and E may be 
specified by an expression. When the for­
mat item is used, the expression is evalu­
ated and converted to an integer. If w~O 
in a format specification, then, on input, 
the associated data and format list items 
are skipped, unless it is a string, in 
which case the data value is taken as the 
null string. On output, the format list 
item is skipped if ~ is less than or equal 
to zero. The quantity d must be less than 
or equal to~, and § must be less than or 
equal to ~. 

Chapter 7: Input/Output 93 



On input, the data item in the external 
data field is converted to the charac­
teristics of the list item. Rules for the 
conversion are given in Chapter 3. 

There are six format items associated 
with data: fixed-point (F), floating-point 
(E), complex <C), picture specification 
(P), character string (A), and bit string 
(B). 

FIXED-POINT FORMAT ITEMS: 
data may be described 
format item. 

Decimal numeric 
by a fixed-point 

General format: 

Option 1 
F(w) 

option 2 
F(w,d) 

Option 3 
F(W, d. p) 

General rules: 

1. On input, the data item in the exter­
nal aata field is the character rep­
resentation of a decimal fixed-point 
number anywhere in a field of width ~. 

2. 

94 

In option 2, if no de~imal point 
appears in the number, it 1S assumed 
to appear immediately before the last 
d digits (trailing blanks are 
Ignored). If a decimal point does 
appear, it overrides the 9 specifi­
cation. Option 1 is treated as Option 
2, with 9 equal to zero. 

In Option 3, the scale factor 
effectively mUltiplies the external 
data value by 10 raised to the value 
of Q. If Q is positive, the number is 
treated as though the decimal point 
appeared Q places to the right of its 
given position. If Q is negative. the 
data is treated as though the decimal 
point appeared Q places to the left of 
its given position. The given posi­
tion of the decimal point is that 
indicated either by an actual point, 
if it is given. or by 9. in the 
absence of an actual point. 

On output.. the external data 
decimal fixed-point number, 
adjusted in a field of width w. 

is a 
right-

In Option 1, only the integer 
portion of the number is written; no 
decimal point appears. 

In Option 2, both the integer and 
fractional parts of the number are 
written. If 9 is greater than 0, a 

decimal po~nt is inserted before the 
last ~ digits, and the value is 
appropriately positioned. Trailing 
zeros are supplied if the number of 
fractional digits is less than Q 
(where 9 must be less than w). 

In Option 3, the scale factor 
effectively mUltiplies the internal 
data value by ten raised to the power 
of E, before it is edited into its 
external character representation. If 
Q is zero, only the integer portion of 
the number is considered. 

For all options~ if the value of 
the number is less than zero. a minus 
sign will be prefixed to the external 
character representation; if it is 
greater than or equal to zero. no sign 
will appear. Therefore, for negative 
values, ~ must encompass both sign and 
decimal point. 

FLOATING-POINT FORMAT ITEMS: Decimal 
numeric data may be described by a 
floating-point format item. 

General format: 

E(w. d[, s]) 

General rules: 

1. On input, the data item in the exter­
nal data field is an optionally signed 
character representation of a decimal 
floating-point number anywhere within 
a field of width ~. 

The external form of the number is 
as follows: 

[±] fixed-point-numberU[E] ±} exponent] UE [±] 

(a) If there is no decimal point in 
the data field, the decimal pOint 
is assumed to be before the last d 
digits of the fixed-point number: 

(b) 

If there is a decimal point in the 
data field, it overrides the deci­
mal point placement specified by 
d. Note that trailing blanks in 
the data field are ignored. 

The "exponent" is a decimal inte­
ger. If the exponent and the 
preceding E or sign are omitted, a 
zero exponent is assumed. 

2. un output, the data item in the data 
field has the following general form: 

[-] s-d digits.d digits E{±} exponent 

(a) The "exponent" is a decimal inte-



ger of n digits, where g is 
defined Individually for each 
implementation. The exponent is 
adjusted so that the leading digit 
of the fractional part is nonzero. 

(b) If the above form does not fill 
the field of width ~. it is right-
_ ..:J...: .... _.L-_~ __ rl ""'1 ~_\'r- "'=II""'~ ..; """"co.o,....+-.o.r:I 
au J UO:::> l-'Cu. Cl..1.J.u J.J~u.~~.n..v U..L '- ..L.~~~ '-~ "-"'-\"A. 

on the left. If s is omitted it 
is taken as equal to d + 1. The 
field width ~ must be greater than 
or equal 
negative 
negative 
However, 
point is 
equal to 

to S + n + 3 for non-
values, and s + n + 4 for 
values of the data item. 

if d is zero, the decimal 
not- written, and ~ is 
s+n+2. 

COMPLEX FORMAT ITEMS: Complex numeric data 
may be described by a complex format item. 

General format: 

C(real-format-item 
[, real-format-item]) 

General rules: 

1. Each 'real format item' is specified 
by F, E, or P formats. P can specify 
a numeric field only; it cannot 
specify a sterling or character field. 

2. On input., the external data is the 
real and imaginary parts of the com-
plex number in adjacent fields des-
cribed by the two contained format 
items .. If the second real format item 
is omitted, it is assumed to be the 
same as the first. 

3. On output, the form of the real and 
imaginary parts is specified by 
enclosed real format items,. If. the 
second is omitted., it is assumed to be 
the same as the first. 

PICTURE FORMAT ITEM: Numeric data may be 
described by a numeric picture using the P 
format item. The picture format item 
allows transmission of sterling data items. 

General format: 

P 'numeric-picture-specification' 

The "numeric 
described in "The 
Chapter 4 .. 

picture specification" is 
PICTURE Attribute," in 

On input, the picture specification des­
cribes the form of the data on the external 
medium and how it is to be interpreted 
numerically. The external representation 
of binary numeric fields uses the charac­
ters 0 and 1. 

On output, the value of the list item is 
edited to the form specified by the picture 
before it is transmitted. Binary numeric 
fields will have a character representation 
after transmission. 

BIT-STRING FORMAT ITEMS: The bit-string 
item describes the data field representa­
tion of a bit string using the characters 0 
and 1. 

- ... -- . Generai I:orma1:.: 

B (w) 

General rules: 

1. In the case of input, ~ is always 
required.. For output, if ~ is omit­
ted, it is taken to be the current 
length of the associated bit-string 
data-list element; ~ must be specified 
if conversion is to be performed. 

2. On input, the data field is a charac­
ter representation of bit string any­
where within the field of width ~. 

3. On output, the character representa­
tion of the bit string is left­
adjusted in the field of width w. 
Truncation, if necessary, is performed 
on the right. Blanks are used for 
padding. 

CHARACTER-STRING FORMAT ITEMS: Character 
data may be described by a character-string 
format item .. 

General format: 

(w) } 

'character-picture-specification' 

General rules: 

1. The "character picture specification" 
is described in "The String 
Attributes", in Chapter 4. 

2. The external representation 
string of ~ characters .. 

is a 

3.. On input., truncation, if necessary. is 
performed on the right. If the asso­
ciated list element is too short, it 
is extended on the right with blanks. 
If the picture form is used, ~ is 
implied. Checking is performed. 

4. On output, ~ can be omitted for string 
list items, in which case w is taken 
to be the current length- of that 
string.. On input" ~ is always 
required: 

Chapter 7: Input/Output 95 



Control Format Items 

There are two types of control format 
items" the spacing format item X and the 
printing format items. 

Spacing Format Item 

The spacing format item specifies rela­
tive horizontal spacing. 

1. 

2. 

3. 

General format: 

X (w) 

General rules: 

On input" the format item specifies 
that the next w characters of the 
stream are to be Ignored. 

On output, the format item 
that w blank characters 
inserted into the stream. 

specifies 
are to be 

If ~ is less than zero, it is taken as 
zero. 

Printing Format Items 

The printing format items can 
only with STREAM PRINT files. 
four of them. 

General format: 

PAGE 
SKIP [(w)] 
LINE (w) 
COLUMN (w) 

General rules: 

be used 
There are 

1. The PAGE" SKIP, and LINE format items 
operate in the same manner as the 
corresponding options with the PUT 
statement. 

2. The COLUMN (w) format item specifies 
that blank characters are to be 
inserted into the stream so that the 
next character will be the wth charac­
ter of the current line. If at least 
w characters already have been written 
on the current line, the current line 
is completed, a new line is started, 
and w-l blanks are inserted in it so 
that the new current line begins at 
the wth character. If w is greater 
than-LINESIZE as specified in the OPEN 
statement. or is less than 1, then ~ 
is assumed to be 1. 

Note that X and COLUMN specify, respec­
tively, relative horizontal spacing and 
absolute horizontal spacing. Similarly, 
SKIP and LINE specify relative vertical 

96 

positioning and absolute vertical position­
ing. The first line on any page is line 
number one. 

Remote Format Item 

If it is desired to locate format items 
remotely from a format list" the remote 
format item. R, may be used .. 

General format: 

R(statement-Iabel-designator) 

General rules: 

1. The nstatement label designator" is a 
label constant or a label variable 
that has as its value the statement 
label of a FORMAT statement. The 
FORMAT statement includes a format 
list that is taken to replace the 
format item. 

2. The R format item and the specified 
FORMAT statement must be internal to 
the same block. 

3. There can be no recursion. That is. a 
remote FORMAT statement may not con­
tain an R format item which names 
itself as a statement label designa­
tor. nor may it name another remote 
FORMAT statement that will lead to the 
naming of the original FORMAT state­
ment through a statement label desig­
nator. This is assured if the FORMAT 
statement referred to by a remote 
format item does not itself contain a 
further remote format item. 

4. Any conditions enabled for the GET or 
PUT statement must be correspondingly 
enabled for the remote FORMAT state­
ments utilized. 

5. If the GET or PUT statement is the 
single statement of an on-unit, it 
cannot contain a remote format item. 

DATA STREAM TRANSMISSION STATEMENTS 

This section provides a summary of the 
allowed STREAM transmission statements, 
along with their options, according to file 
attributes (the statements are discussed 
individually in Chapter 8; the OPEN and 
CLOSE statements, which may also be used in 
STREAM transmission, are discussed earlier 
in this chapter). 



GET 
[

FILE (filename) ] 

STRING (character-string-variable) 
data-specification (COpy]; 

~±B§~~OUTPU:I: 

PUT 
[

FILE (filename) ] 

STRING (character-string-variable) 
data-specification; 

STREAM OUTPUT PRINT: 

PUT [FILE (filename)] 
[data-specification] 

[

PAGE [LINE (expression)] ] 
SKIP [(expression)] 
LINE (expression) 

Note: The "data specification" can be 
o~itted UCl.1.y if one of the printing options 
appears. 

The data specification can have one of 
the following forms: 

LIST data-list 
DATA [data-list] 
EDIT data-list format-list 

[data-list format-list] ••• 

Data lists and format lists are dis­
cussed earlier in this chapter. Format 
lists may use any of the following format 
items: 

A,B,C"E"F,P"R"X 

PAGE, SKIP [(w)]" 
LINE (w), 
COLUMN (w) 

which may be used 
with any STREAM file 

which may be used 
only with STREAM 
OUTPUT PRINT files 

Data sets that contain discrete records 
or which are to be created as a collection 
of discrete records may be manipulated with 
record operation statements. The record 
operation statements are READ" WRITE, REW­
RITE, LOCATE, DELETE, and UNLOCK. A gener­
al description of these statements is con­
tained in this chapter, and they are des­
cribed completely in Chapter 8. The 
records obtained from data sets or dis­
patched to data sets are defined in terms 
of the data attributes of a variable. For 
input operations the record is obtained 
from the data set and placed intact into 
the variable. For output operations, the 
variable is transmitted intact into the 
data set. 

The variables involved in record trans­
mission must be unsubscripted, of level 1 
<scalar variables and array variables are 
of level 1 by default), and of the storage 
class, AUTOMATIC, STATIC or CONTROLLED. 
The variables may not be formal parameters 
or defined variables. In addition, they 
must not contain VARYING length strings. 
They way contain LABEL and POINTER varia­
bles" but such data may lose its validity 
in transmission. 

with RECORD transmission, it is possible 
to operate upon the record in a buffer if 
the file has the BUFFERED attribute. Oper­
ation within the buffer can be accomplished 
through the use of a based variable, which 
describes the data attributes of the 
record, and a pointer variable, which iden­
tifies the location of the record within 
the buffer. A based variable and its 
associated pointer variable are specified 
by the following form of the CONTROLLED 
storage class attribute specification: 

CONTROLLED (pointer-variable) 

The pointer variable, itself, may have any 
storage class attribute; however. the 
default is AUTOMATIC. The pointer variable 
also may be given either INTERNAL or EXTER­
NAL scope attribute, with default being 
INTERNAL; but the scope of the based varia­
ble is INTERNAL. The EXTERNAL attribute 
cannot be specified. 

Consider the following declaration: 

DECLARE 1 MASTER RECORD CONTROLLED 
(REC_IDENT) , 

2 IDENTIFICATION 
CHARACTER (10), 

2 NAME CHARACTER 
(30) , 

2 ADDRESS, 
3 STREET 

CHARACTER 
(15), 

3 CITY 
CHARACTER 

(15), 
3 STATE 

CHARACTER 
(15), 

3 ZIP 
CHARACTER 

(5); 

The name MASTER_RECORD is the based 
variable which can be used to describe a 
record in the buffer that conforms to the 
attributes declared for MASTER RECORD. 
REC_IDENT is a pointer variable that iden­
tifies the position of MASTER RECORD within 
the buffer. The pointer variable has the 
default storage attribute of AUTOMATIC. 
The based variable. of course, is explicit-

Chapter 7: Input/Output 97 



ly declared to have the CONTROLLED storage 
class attribute. 

If any attributes other than AUTOMATIC 
are to be declared for a pointer variable. 
they must be explicitly declared. For 
example, the following declaration speci­
fies the STATIC and EXTERNAL attributes for 
the pointer variable REC_IDENT: 

DECLARE REC IDENT POINTER STATIC 
EXTERNAL; 

Note: In this declaration, the POINTER 
attrIbute is declared explicitly. In the 
previous example, the POINTER attribute was 
declared contextually by the appearance of 
the pointer variable name in the CONTROLLED 
attribute specification. 

For input/output operations specifying 
based variables, the pointer value is set 
by the SET option in the READ or LOCATE 
statements. 

RECORD TRANSMISSION STATEMENTS 

This section provides a summary of the 
allowed RECORD transmission statements. 
along with their options, according to file 
attributes (the statements are discussed 
individually in Chapter 8; the OPEN .and 
CLOSE statements, which also may be used in 
RECORD transmission, are discussed earlier 
in this chapter). A general discussion of 
RECORD transmission follows this summary. 

98 

READ FILE (filename) 
INTO (variable) [KEYTO 

(character-string-variable)]; 

READ FILE (filename) 
SET (pointer-variable) 
[KEYTO 
(character-string-variable)]; 

READ FILE (filename) 
[IGNORE (expression)]: 

READ FILE (filename) 
INTO (variable) 
KEY (expression): 

READ FILE (filename) 
SET (pointer-variable) 
KEY (expression); 

SEQUENTIAL BUFFERED OUTPUT: 

WRITE FILE (filename) 
FROM (variable) 
[KEYFROM (expression)]; 

LOCATE variable FILE (filename) 
SET (pointer-variable) 
[KEYFROM (expression)]; 

SEQUENTIAL BUFFERED UPDATE: 

READ FILE (filename) 
INTO (variable) 
[KEYTO 
(character-string-variable)]; 

READ FILE (filename) 
SET (pointer-variable) 
[KEYTO 
(character-string-variable)]; 

REWRITE FILE (filename); 

REWRITE FILE (filename) 
FROM (variable); 

READ FILE (filename) 
[IGNORE(expression)]; 

READ FILE (filename) 
INTO (variable) 
KEY (expression); 

K~AV FILE (filename) 
SET (pointer-variable) 
KEY (expression); 

SEQUENTIAL UNBUFFERED INPUT: 

READ FILE (filename) 
INTO (variable) 
[KEYTO 
(character-string-variable)] 

[EVENT (event-variable)]; 

READ FILE (filename) 
[IGNORE (expression)] 
[EVENT (event-variable)]: 

READ FILE (filename) 
INTO (variable 
KEY (expression) 
[EVENT (event-variable)]: 

SEQUENTIAL UNBUFFERED OUTPUT: 

WRITE FILE (filename) 
FROM (variable) 
[KEYFROM (expression)] 
[EVENT (event-variable)]: 

SEQUENTIAL UNBUFFERED UPDATE: 

READ FILE (filename) 
INTO (variable) 
[KEYTO 
(character-string-variable)] 

[EVENT (event-variable)]: 

REWRITE FILE (filename) 
FROM (variable) 
[EVENT (event-variable)]: 



RE~~ FILE (filename) 
[IGNORE (expression)] 
[EVENT (event-variable)]; 

READ FILE (filename) 
INTO (variable) 
KEY (expression) 
[EVENT (event-variablej); 

DIRECT INPUT: 

READ FILE (filenamej 
INTO (variable) 
KEY (expression) 
[EVENT (event-variable)]; 

DIRECT OUTPUT: 

WRITE FILE (filename) 
FROM (variable) 
KEYFROM (expression) 
[EVENT (event-variable)]; 

READ FILE (filename) 
INTO (variable) 
KEY (expression) 
[EVENT (event-variable)]; 

REWRITE FILE (filename) 
FROM (variable) 
KEY (expression) 
[EVENT (event-variable)]; 

WRITE FILE (filename) 
FROM (variable) 
KEYFROM (expression) 
[EVENT (event-variable)]; 

DELETE FILE (filename) 
KEY (expression) 
[EVENT (event-variable)]; 

READ FILE (filename) 
INTO (variable) 
KEY (expression) [NOLOCK] 
[EVENT (event-variable)]; 

REWRITE FILE (filename) 
FROM (variable) 
KEY (expression) 
[EVENT (event-variable)]; 

WRITE FILE (filename) 
F'ROM (variable) 
KEYFROM (expression) 
[EVENT (event-variable)]; 

DELETE FILE (filename) 
KEY (expression) 
[EVENT (event-variable)]; 

UNLOCK FILE (filename) 
KEY (expressions); 

RECORD TRANSMISSION OPERATIONS 

The following points cover the salient 
environmental factors in the use of RECORD 
transmission: 

1. A SEQUENTIAL file specifies that the 
accessing., creation" Or modification 
of the data set records is performed 
in a particular order, that is., from 
the first record of the data set to 
the last record of the data set. 

2. A DIRECT file specifies that the 
accessing, creation, or modification 
of the data set records is performed 
by indicating which particular record 
of the data set is to be operated 
upon. 

3. A data set that is accessed, created. 
or modified in the SEQUENTIAL access 
method mayor may not be KEYED.. If it 
is KEYED, the keys may be ignored 
while accessing sequentially. or they 
may be extracted from the data set or 
placed into the data set by the KEYTO 
and KEYFROM options. It is possible 
to create a KEYED data set as a 
SEQUENTIAL OUTPUT file and later to 
access that data set as a DIRECT file. 

4. SEQUENTIAL INPUT and SEQUENTIAL UPDATE 
files may be positioned to a particu­
lar record within the data set by a 
READ operation that specifies the key 
of the desired record. Thereafter, 
successive READ statements without the 
KEY option will access the records 
sequentially. This kind of acceSSing 
may be used only if the data set 
contains keyed records and if the file 
has the KEYED attribute. 

5. Existing records of a data set in a 
SEQUENTIAL UPDATE file can be rewrit­
ten, modified, or ignored, but the 
number of records cannot be increased 
or decreased. Operation with a DIRECT 
UPDATE file, however, may specify that 
records are to be added to the data 
set, through use of the WRITE state­
ment, or deleted from the data set. 
through use of the DELETE statement. 
An existing record in an UPDATE file 
can be replaced through use of a 
REWRITE statement. 

6. If the READ INTO option is used in 
referring to a SEQUENTIAL BUFFERED 
UPDATE file and the next REWRITE 
statement does not make use of a FROM 
option, the record in the data set is 
replaced from the buffer and not from 
the variable that had been specified 
in the INTO option of the READ state­
ment. The FROM option in a REWRITE 

Chapter 7: Input/Output 99 



statement must specifically name the 
variable INTO which the data has been 
read if that data is to be rewritten. 

7. Operations upon a data set accessed 
sequentially may lead to erroneous 
results if the same data set or file 
is being referred to asynchronously in 
more than one task. The separate 
tasks might use different filenames. 
but if the different file openings 
identify the same data set, the tasks 
would refer to the same set of 
records. 

8. A data set being accessed directly is 
suitable for asynchronous operations 
because the reference to the data set 
does not imply any explicit ordering 
of the records and because the records 
are transmitted INTO and FROM varia­
bles that can be known only within the 
individual tasks. This is true wheth­
er the data set is identified by more 
than one file opening or is referred 
to through use of the same filename. 

9. 

100 

When a file has the 
EXCLUSIVE attributes, 

DIRECT UPDATE 
it is possible 

to protect individual records that are 
read from the data set. For an EXCLU­
SIVE file, any READ statement without 
a NOLOCK option automatically locks 
the record read. No other task oper­
ating upon the same file can access a 
locked record until it is unlocked by 
the locking task. Any task referring 
to a locked record will wait at that 
point until the record is unlocked. A 
record can be explicitly unlocked by 
the locking task through execution of 
a REWRITE, DELETE, UNLOCK, or CLOSE 
statement. Records are unlocked auto­
matically upon completion of the lock­
ing task. The EXCLUSIVE attribute 
applies only to the file and not to 
the data set. consequently, record 
protection is provided only if all 
tasks refer to the data set through 
use of the same filename; if they 

refer to the same data set using 
different filenames, the protection 
does not apply. In addition, the data 
set to which reference is made by more 
than one task through the same file­
name must be opened by the parent of 
all these tasks. 

10. A WRITE statement adds records to a 
data set, while a REWRITE statement 
replaces records. Thus, a WRITE 
statement may only be used with OUTPUT 
files, and a REWRITE statement may 
only be used with UPDATE files. 
Moreover, a WRITE statement uses the 
KEYFROM option to indicate the actual 
transference of the key from internal 
storage to the data set; the REWRITE 
statement uses the KEY option to iden­
tify the existent record to be 
replaced. 

STANDARD FILES 

There are two standard system files that 
U4C available for use by a PL/I program. 
The first is a standard system input file 
called SYSIN. The second is a standard 
system print file called SYSPRINT. The 
keywords GET and PUT without a file or 
string name are equivalent to: 

GET FILE(SYSIN) ••• ; 
PUT FILE(SYSPRINT) ••• ; 

The implicit reference to the 
files applies only in the GET 
statements. Any other reference to 
file must be stated explicitly. 

standard 
and PUT 
either 

The standard files may be given other 
file attributes explicitly or contextually, 
but unless SYSPRINT is explicitly declared 
by the programmer to have the INTERNAL 
scope attribute, the PRINT attribute is 
applied automatically. 



This section includes a description of 
each statement in the language. These 
descriptions are presented in alphabetic 
order. 

To sho~ the relationships among these 
statements~ they are also classified into 
logical groups .. 

RELATIONSHIP OF STATEMENTS 

CLASSIFICATION 

Statements may be classified into the 
follo~ing logical groups: assignment, con­
trol, data declaration, error control and 
debug, input/output, program structure, and 
storage allocation. 

The assignment statement is used to 
evaluate expressions and to assign values 
to scalars, arrays, and structures. 

Control Statements 

The control statements affect the normal 
sequential flow of control through a pro­
gram. The control statements are GO TO. 
IF, DO, CALL, RETURN, WAIT" STOP, EXIT. and 
DELAY. 

Data Declaration Statement 

The data declaration statement, DECLARE. 
specifies attributes for identifiers. This 
statement is described in Chapter 4. 

Error Control and Debug Statements 

When an interrupt occurs during program 
execution, standard operating system action 
is taken; however, the language provides 
the facility to override system action on 
these interrupts. By using the ON state-

CHAPTER 8: STATEMENTS 

ment, a programmer may specify the action 
to be taken when an interrupt occurs and 
can record the status of the program at the 
point of the interrupt. By using the 
SIGNAL statement, the programmer may ini­
tiate programmed interrupts and may simu­
late machine interrupts to facilitate 
debugging. 

Input/Output Statements 

The input/output statements may be clas­
sified as follows: file preparation, 
record status, data specification, and data 
transmission .. 

File Preparation Statements 

The OPEN statement associates a filename 
with a data set and completes the specifi­
cation of the attributes of the file, in 
preparation for input/output on a file. 
The CLOSE statement dissociates the file­
name from the data set and thereby releases 
the filename for use in connection with any 
other data set. 

Record Status Statements 

The DELETE statement deletes a record 
from an UPDATE file. The UNLOCK statement 
makes accessible a record which would 
otherwise be inaccessible as a result of 
the READ statement accessing from an EXCLU­
SIVE file. 

Data Specification Statements 

The format of data fields to be trans­
mitted may be specified by the FORMAT 
statement or in the GET or PUT data trans­
mission statements~ 

Data Transmission Statements 

The GET and PUT statements cause values 
to be transmitted between a data set and 
specified variables in the program. The 
READ and WRITE statements cause a single 
record to be transmitted between a data set 
and variables in the program.. The REWRITE 
statement specifies the updating of an 
existing record of the data set. The 
LOCATE statement permits a record to be 
created in the buffer storage and subse­
quently written. The DISPLAY statement 
causes messages to be transmitted between 
the program and the machine operator. 

Chapter 8: Statements 101 



~~Qgram Structure Statements 

The program structure statements are: 
PROCEDURE, BEGIN, END, DO, and ENTRY. The 
first three statements delimit the scope of 
declarations within a program. The ENTRY 
statement provides a secondary entry point 
for a procedure. 

~iQ~~ge Allocation Statements 

The storage allocation statements are 
ALLOCATE and FREE. These statements allo­
cate and free storage for variables. 

SEQUENCE OF CONTROL 

within a block, control normally passes 
sequentially from one statement to the 
next. If a DECLARE, FORMAT, or ENTRY is 
encountered, control passes to the next 
statement. If an internal PROCEDURE state­
llIt:::Ul:. is encountered., control passes to the 
statement following the end of the proce­
dure. Control passes to the statement 
following an IF statement when control 
reaches the end of the THEN-unit. Sequen­
tial operation is modified by the following 
statements: CALL, END, EXIT, GO TO, PROCE­
DURE, RETURN, SIGNAL, and STOP. 

A CALL statement passes control to the 
specified entry point. 

An END statement, logically terminating 
a procedure, acts as a RETURN statement. 
causing control to return to the invoking 
procedure. 

The EXIT statement causes control to 
leave a task: the STOP statement causes 
control to leave a program. 

A GO TO statement causes control to 
transfer to the specified statement label. 

A PROCEDURE statement heads a procedure. 
Procedures may be considered as independent 
blocks and are placed anywhere within an 

102 

external procedurew consistent with desired 
identifier scopes. However, a procedure 
may be invoked only by a CALL statement. a 
statement with a CALL option. or a function 
reference. Thus" control passes around a 
nested procedure" from the statement before 
a PROCEDURE statement to the statement 
after the appropriate END statement for the 
procedure. 

A RETURN statement returns control from 
a procedure to the invoking procedure. 

A SIGNAL statement specifying an enabled 
condition causes control to pass to the 
on-unit of the associated ON statement. If 
th~re is no associated ON statement. con­
trol is passed to the appropriate system 
routine. 

The following conditions may cause 
sequential operation to be modified: 

1. A function reference in any expression 
causes control to pass to the speci­
fied function procedure. 

2. The occurrence of an enabled condition 
specified in an ON statement causes 
control to pass to the associated 
ON-unit. If there is no ON statement, 
control is passed to the appropriate 
system routine. 

3. The flow of control through the IF and 
ON statements and through a DO group 
mayor may not be sequential. 

4. In an appropriate environment, the 
asynchronous execution of several 
operations may involve transfer of 
control under the influence of exter­
nal occurrences. 

The following example 
sequence of control: 

A: PROCEDURE: 
B: X = Y + Z; 
C: CALL D: 
E: W = P*Qi 

D: PROCEDURE: 
G: S = T/P; 
H: RETURN: 
I: END D; 

J: U = V**W; 
K: GO TO N; 

N: END; 

illustrates 

Control flows in the following order: A, 
B, C, D, G, H, E, J, K, N. 



PSEUDO-VARIABLES 

The following built-in functions (see 
Appendix 1 for a more complete description) 
may be used as pseudo-variables on the left 
side of an equal sign in an assignment 
statement" or a DO statement, or in a data 
list in a GET statement. In the defini­
tions below" the item in the data list of a 
GET statement may be considered to corres­
pond to the item on the left side of the 
equal sign in an assignment statement; the 
value being transmitted may be considered 
to correspond to the expression on the 
right side .. 

COMPLEX (ai, b) The letters a and b rep­
resent variables that need not have the 
same characteristics. During execution of 
an assignment statement, the real part of 
the expression on the right is assigned to 
a, the imaginary part to b. 

REAL (c) The letter c represents a 
complex variable. During execution of an 
assignment statement, the real value of the 
expression is assigned to the real part of 
c .. 

I MAG (c) The letter c represents a 
complex variable. During execution of an 
assignment statement, the real value of the 
expression is assigned to the imaginary 
part of c. 

ONSOURCE (Used in the on-unit of an ON 
CONVERSION statement) The expression on the 
right of the equal sign is evaluated., 
converted to a character string, and 
assigned to the string that caused the 
conversion error. The string will be pad­
ded with blanks, if necessary, to the 
length of the string that caused the error. 

ONCHAR (Used in the on-unit of an ON 
CONVERSION statement) The expression on the 
right of the equal sign is evaluated. 
converted to a character string of length 
one, and assigned to the character that 
caused the error. 

SUBSTR (s,i[,k]) The letter s represents 
a string. During execution of -an assign­
ment statement, the expression is assigned 
to the substring of s defined by the 
built-in function SUBSTR (see Appendix i). 
This substring is always treated as a fixed 
length string. 

EVENT (v) The letter v represents a sca­
lar or array event name. When used in an 
assignment statement, the expression on the 
right-hand side is evaluated and converted 
to a bit string of length 1. The value of 
this bit string is used in an assignment to 
the named event (see "Asynchronous Opera­
tions and Tasks" in Chapter 6). 

PRIORITY[(v)] The letter y represents a 
scalar or array task name. When used in an 
assignment statement. the expression on the 
right-hand side is evaluated and converted 
to FIXED (m.o) where m is 
implementation-defined. The priority of y. 
the named task. is adjusted to be n. 
relative to that of the task in which the 
assignment is performed., prior to that 
assignment. If y is not specified., this is 
the task in which the assignment statement 
is executed (see "Asynchronous Operations 
and Tasks" in Chapter 6). 

UNSPEC (v) The letter v represents a 
scalar variable of ar.ithmetic; stringw or 
pointer type.. The expression on the right 
is evaluated and converted to a bit string 
(whose length is an implementation defined 
function of the characteristics of v)., and 
assigned to v without conversion to the 
type of y. If-y is a string of varying 
length, its length after the assignment 
will be just large enough to hold the bit 
string. 

ALPHABETIC LIST OF STATEMENTS 

The ALLOCATE Statement 

Function: 

The ALLOCATE statement causes storage to 
be allocated for specified controlled data. 

General format: 

Option 1: 

ALLOCATE [level] identifier 
[dimension] [attribute] .... 
[, [level] identifier [dimension] 
[attribute] .... ] .... ; 

Option 2: 

ALLOCATE based-variable-identifier 
SET (pointer-variable) 
[IN (area-variable)] 
[, based-variable-identifier 
SET (pointer-variable) 
[IN (area-variable)]] .... ; 

Syntax rules: 

1. Based variables and nonbased 
controlled variables may both be spec­
ified as identifiers in the same ALLO­
CATE statement .. 

Syntax rules 2 through 6 apply only to 
Option 1: 

2. Each identifier must represent data of 

Chapter 8: Statements 103 



the controlled storage class or be an 
element of a controlled major struc­
ture. 

3. "Dimension" indicates a dimension 
attribute. "Attribute" indicates a 
BIT, CHARACTER, or INITIAL attribute. 
"Level" indicates a level number. 

4. A dimension attribute., if present, 
must specify the same number of dimen­
sions as that declared for the asso­
ciated identifier. 

5. The attribute BIT may appear only with 
a BIT identifier; CHARACTER may appear 
only with a CHARACTER identifier. 

6. A structure element name., other than 
the major structure name, may appear 
only if the relative structuring of 
the entire structure appears as in the 
DECLARE statement for that structure. 

Syntax rules 7 and 8 apply only to 
Option 2: 

7. The based variable appearing in the 
ALLOCATE statement may be a scalar 
variable, an array, or a major struc­
ture. When it is a major structure., 
only the major structure name is spec­
ified. 

8. The SET clause may appear preceding or 
following the IN clause. 

General Rules: 

Rules 1 through 6 apply only to Option 1: 

1. When Option 1 is used, an ALLOCATE 
statement for an identifier for which 
storage was allocated and not freed 
causes storage for the identifier to 
be "pushed down" or stacked. This 
pushing down creates a new generation 
of data for the identifier. When 
storage for this identifier is freed~ 
using the FREE statement, storage is 
"popped up" or removed from the stack. 

2. Bounds for arrays and lengths of 
strings are fixed at the execution of 
an ALLOCATE statement. 

104 

a. If a bound or length is explicitly 
specified in an ALLOCATE state­
ment. that bound or length over­
rides any bound or length given in 
the DECLARE statement. 

h. If a bound or length is specified 
by an asterisk in an ALLOCATE 
statement, that bound or length is 
taken from the most recent genera­
tion of data for the identifier in 
a previous allocation. In case no 

such generation exists, the bound 
or length is undefined. 

c. If a bound or length is not speci­
fied in an ALLOCATE statement, it 
must be specified in the DECLARE 
statement. The scope of this dec­
laration must include the ALLOCATE 
statement. The expression from 
the DECLARE statement is evaluated 
at the point of allocation. 

3. Upon allocation of an identifier, ini­
tial values are assigned to it if the 
identifier has an INITIAL attribute in 
either the ALLOCATE statement or 
DECLARE statement. Expressions or a 
CALL option in the INITIAL attribute 
are executed at the pOint of alloca­
tion. If an INITIAL attribute appears 
in both DECLARE and ALLOCATE state­
ments, only the INITIAL attribute in 
the ALLOCATE statement is used. If 
initialization involves reference to 
the variable being allocated, the ref­
erence will be to the new generation 
of the variable. 

4. To determine whether or not storage 
has been allocated for an identifier 
the built-in function ALLOCATION may 
be used. 

5. A parameter that is declared CON­
TROLLED may be specified in an ALLO­
CATE statement if the associated argu­
ment is given the CONTROLLED attribute 
and no dummy is created. <See 
ftRelationship of Arguments and Param­
eters,ft in Chapter 10). 

6. The evaluations implied by the ALLO­
CATE statement are subject to the same 
rules as the evaluations involved in 
prologue activity (see "Prologues," in 
Chapter 10). 

Rules 7 through 15 apply only to Option 2: 

7. When Option 2 is used, storage 
"pushed down" or stacked. 
case, reference may be made 
generation of a based variable 
a pointer varialtile. 

is not 
In this 
to any 
through 

8. A SET clause must appear with the 
based variable in the ALLOCATE state­
ment. This clause indicates the poin­
ter variable that is to receive the 
pointer value identifying the genera­
tion for which storage is to be allo­
cated. The SET clause need not name 
the pointer variable which was 
declared with the based variable .• 

9. If the IN clause appears in the ALLO­
CATE statement, storage will be allo­
cated in the area corresponding to the 



specified area variable for the gener­
ation of the based variable. If suf­
ficient storage does not exist within 
this area. the AREA condition will be 
raised. 

10. If the IN clause is omitted, space 
will be allocated in systems storage 
for the generation of the based varia­
ble. 

11. The amount of storage allocated for a 
based variable depends on its attri­
butes, and on its dimensions and 
length specifications if these are 
applicable at the time of allocation. 
These attributes are determined from 
the declaration of the based variable, 
and additional attributes may not be 
specified in the ALLOCATE statement. 
If the allocated variable is a struc­
ture whose elements are dimensioned 
variables or variable length strings. 
and the dimensions or lengths are 
themselves defined as elements in the 
structure" then the dimensions or 
lengths are taken from that previous 
generation of the structure defined by 
the pointer variable named in the 
DECLARE statement for that structure. 
In subsequent references to such allo­
cated variables, calculation of dimen­
sions or string lengths will be made 
by use of the generation identified by 
the declared pointer. Note, however. 
that the asterisk notation for bounds 
and length is not permitted for based 
variables {see "The CONTROLLED 
Attribute" in Chapter 4}. 

12. If the area variable is an a.LLClY, the 
subscripts must be specified with the 
area variable. 

13. A based variable transferred as an 
argument to a procedure may not appear 
in an ALLOCATE statement in the called 
procedure. 

14. The pointer value defined at the first 
allocation into an area variable is 
not necessarily equivalent to a poin­
ter value defined by the ADDR 
(area-variable) function. 

15. If the INITIAL attribute is specified 
in the declaration of the based varia­
ble, the initialization occurs after 
the allocation of the variable and 
after the pOinter variable has been 
assigned a value. 

Examples: 

1. The following examples illustrate the 
use of the ALLOCATE statement for a 
nonbased identifier: 

DECLARE A(Nl,N2) CONTROLLED; 

Nl, N2 = 10 i 
ALLOCATE A; The bounds are 10 and 

10 
ALLOCATE A The bounds are Kl and 

{Kl,K2)i K2 which override Nl 
and N2. 

Hi ;;:: Hi + 1; 
ALLOCATE A; The bounds are 11 and 

10. 
ALLOCATE A The bounds are 11 and , .... .... , . 1 '-1 \ ...... ,.-rli .J,.V. 

ALLOCATE A The bounds are Jl and 
(Jl, J2) ; J2. 

2. The following example illustrates the 
use of the ALLOCATE statement when the 
DECLARE statement contains asterisks 
for the length of a nonbased bit 
string B: 

DECLARE B BIT (*) VARYING CONTROLLED; 

ALLOCATE B 
BIT (*)i 

ALLOCATE Bi 

ALLOCATE B 
BIT (N); 

ALLOCATE B CHAR­
ACTER (4); 

ALLOCATE B 
BIT (8); 

Illegal; violates rule 
2b. 

Illegal; violates rule 
2b. 

The maximum length is 
N. 

Illegal; violates syn­
tax rule 5. 

The maximum length is 
8. 

3. The following example illustrates the 
use of the built-in function ALLOCA­
TION and of the INITIAL attribute for 
a nonbased identifier in an ALLOCATE 
statement: 

DECLARE A(N,N) 
«N*N}O)i 

CONTROLLED INITIJ.I.-L 

IF 1 ALLOCATION (A) THEN ALLOCATE A 
INITIAL (l,eN-l) ({N)O,l»; 

ALLOCATE A; 

4. The following example illustrates 
three uses of Option 2 of the ALLOCATE 
statement for based identifiers~ 

DECLARE VALUE CONTROLLED (P), 
RATES (I) CONTROLLED (Q), 
1 GROUP CONTROLLED (R), 

2 PTS (J) POINTER, 
2 VALUES (J) FIXED, 

TABLE AREA STATIC EXTERNAL, 
S POINTER; 

ALLOCATE VALUE SET (P); 
Allocates space in systems storage 
for a generation of the based vari-

Chapter 8: statements 105 



able VALUE, and sets the pointer 
variable P to identify the particu­
lar generation. 

b. ALLOCATE GROUP SET (R); 
Allocates space in systems storage 
for a generation of the structure 
GROUP, and sets the pointer varia­
ble R to identify the generation. 
The dimensions of each of the com­
ponents PTS and VALUE are deter­
mined by the value of J. 

c. ALLOCATE RATES SET(S) IN (TABLE); 
Allocates space in the storage area 
corresponding to the area variable 
TABLE for a generation of the array 
RATES. The pointer S is set to 
identify the point within TABLE at 
which RATES is allocated. 

The Assignment Statement 

Function: 

The assignment statement is used to 
evaluate expressions and to assign values 
to scalars, arrays, and structures. 

General format: 

Option 1. 

scalar­
variable 

pseudo­
variable 

Option 2. 

(Scalar Assignment) 

[

' sca!:~~able] .,.. =scalar-
, pseudo- expression; 

variable 

(Array Assignment) 

{ array } [ , array ] 
pseudo-array ,pseudo-array 

={array-eXpressi~n [,BY NAME];} 
scalar-express1 0n; 

option 3. (structure Assignment) 

{ structure }f, structure ] 
pseudo-structure ~pseudo-structure ••• 

=structure-expression [,BY NAME]; 

option 4. (statement Label Assignmenl) 

106 

scalar-Iabel-variable 
[,scalar-label-variableJ ••• = 

{
label-constant; } 
scalar-Iabel-variable; 

array-Iahel-variable [" array-Iabel-
variable] ••• = 

Option 5. 

{

label-constant; } 
scalar-Iabel-variable; 
array-Iabel-variable; 

(Pointer Assignment) 

pointer-variable 
[,pointer-variable] ••• = 

pointer-expression; 

array-painter-variable 
[,array-pointer-variable] .... = 

{
painter-expression } 
array-painter-variable ; 

syntax rules: 

1. In Option 1, each variable on the left 
of the equal sign may be of arithmet­
ic., bit, or character data type. 

2.. In Option 2" each array referred to on 
the left of the equal sign may be an 
array variable name or a pseudo-array. 
If the til NAME option is present, 
those arrays must be arrays of struc­
tures. A pseudo-array is a pseudo­
variable whose arguments are array 
variable names. (In the case of the 
pseudo-variable SUBSTR (s,i,k)" this 
requirement applies only to the 
argument ~; see W Pseudo-Variables.") 

All of the arrays on the left and 
the arrays in the array expression 
must have the same number of dimen­
sions and identical dimension bounds. 

If a scalar expression appears to 
the right of the equal sign, the value 
of this expression is assigned to 
every element of the array on the 
left. 

If the expression to the right of 
the equal sign contains structure 
operands, all arrays ~n the statement 
must be arrays of structures. If the 
BY NAME option is not used, the struc­
turing of the structure operands must 
be equivalent to the structuring of 
the structures in the arrays of struc­
tures. 

3. In Option 3, in the absence of the BY 
NAME option, the structure indicated 
on the left must have structuring 
identical to the structures indicated 
in the structure expression. Actual 
level numbers of the structures 
involved need not be the same; only 
the structuring described need be the 
same. 



General rules: 

le The assignment statement is evaluated 
as follows: 

Ll: 

a. In Options 1. 4. and 5, if any 
expressions appear on the left of 
the equal sign, either in sub­
scripts or in pseudo-variables. 
these expressions are evaluated 
exactly once from left to right. 
The expression on the right of the 
equal sign is evaluated. The 
value of the expression on the 
right of the equal sign is 
assigned to the variables on the 
left of the equal sign, from left 
to right. 

b. In Options 2 and 3, the assignment 
statement is treated as if it were 
a sequence of scalar assignment 
statements applied on an element­
by-element basis. See Rules 3 and 
4 below for a discussion of the 
evaluation of a structure or array 
assignment BY NAME. 

c. The definition of the order of 
assignment for a statement of the 
form 

Ll: A,B=expressioni 

(where A and B are arrays of 
dimensionality n) is as follows: 

DO 11 LBOUND (A,.l) TO HBOUND (A,.l) ; 
DO 12 LBOUND (A.2) TO HBOUND (A.2); 

DO In = LBOUND (A,n) TO HBOUND (A.n); 
ACll, I2 ••••• In). B(Il.12 ••••• In) = 

expression; 

Subscripts (11 •••• , In) are 
inserted for the appropriate 
arrays on the righthand side, thus 
yielding a sequence of scalar 
assignments. 

The result of the evaluation for a 
later position in an array or 
structure may be affected by the 
evaluation and assignment to an 
earlier position (see Example 1. 
below) .. 

d. When necessary, the expression 
value. or values, is converted to 
the characteristics of the varia­
ble on the left according to the 
rules in -Expressions., - in Chapter 
3, except when conversion of 
arithmetic base is involved (this 
is converted directly to the pre-

cis ion of the variable to the left 
of the equal sign). 

e. structure assignment. in the 
absence of the BY NAME option, is 
accomplished through the following 
process: 

Consider that each structure iden= 
tifier designates a structure hav­
ing n elements at the next level. 
The structure assignment statement 
is transformed into ~ statements, 
S1. S2' •••• Sn, with each state­
ment S{ involving the ith element 
of each structure (see example 4 
below) '. 

2. When a variable on the left is a bit 
or character string or the UNSPEC 
pseudo-variable. the expression is 
evaluated as above., and the assignment 
is performed from left to right, 
starting with the leftmost position. 

a. If the string has a fixed length 
and the value of the expression is 
longer than the string" the value 
is truncated at the right. 

b. If the string has a fixed length 
and the value of the expression is 
shorter than the string, the value 
is extended on the right with 
zeros for bit strings or with 
blanks for character strings. 

c. If the string has a varying length 
and the value of the expression is 
longer than the maximum length of 
the string., the value is truncat­
ed; the assigned string is of the 
maximum length. 

d. If the string has a varying length 
and the value of the expression is 
shorter than the maximum length of 
the string, the value is assigned; 
the new length of the string is 
the length of the value. 

e. If the variable on the left is the 
pseudo-variable SUBSTR with an 
argument that is a varying-length 
string., the assignment is per­
formed to this substring in prec­
isely the same way as it would be 
if the argument were of fixed 
length. where this fixed length is 
the length defined by the SUBSTR 
pseudo-variable. 

3. If the BY NAME option is used for 
arrays of structures in Option 2, the 
assignment statement is treated as a 
sequence of BY NAME structure assign­
ments applied on an element-by-element 
basis. 

Chapter 8: Statements 107 



4. If the BY NAME option is used in 
Option 3~ the assignment statement is 
evaluated as follows: 

108 

a. Every element at the next level of 
each structure is extracted. 

b. A subset of these elements is 
selected. This subset consists of 
those elements common to all of 
the structures. 

c .. A corresponding assignment state­
ment is constructed for each of 
the subset elements. The order of 
the constructed statements corres­
ponds to the order in which the 
elements appear in the leftmost 
structure,. The rules by which 
such statements are constructed 
are detailed in paragraphs g, ~w 
and f below. 

d. If all of the elements correspond­
ing to a subset element are struc­
tures or arrays of structures. an 
assignment statement is construct­
ed and the BY NAME option is 
appended to it. (Further state­
ments are generated from this con­
structed statement in accordance 
with the rules given in paragraphs 
4~ through 4f.) 

e. If none of the elements corres­
ponding to a subset element is a 
structure or an array of struc­
tures. an assignment statement is 
constructed but the BY NAME option 
is not appended to it. No further 
statements would be generated from 
this constructed statement. 

f. If the rules in paragraphs d and ~ 
above do not pertain, no statement 
is constructed. 

Example: 

1 

suppose that the following three 
structures have been declared. 

ONE 1 TWO 
2 PARTl 2 PARTl 

3 RED 3 RED 
3 WHITE 3 GREEN 
3 BLUE 3 WHITE 

2 PART 2 2 PART 2 
3 GREEN 3 BLUE 
3 YELLOW 3 YELLOW 
3 ORANGE(3) 3 ORANGE(3) 

2 PART3 
3 BLACK 
3 WHITE 

1 THREE 
3 PARTl 

5 BLACK 

5 WHITE 
5 RED 

3 PART2 

Note that 

5 YELLOW 
5 WHITE 
5 ORANGE(3) 
5 PURPLE 

the structures contain 
array names,. 

According 
paragraph 
extracted 

ONE.PARTl 
ONE.PART2 
ONE. PART 3 

to the rule stated in 
4~" 

are as 
the 

follows: 

TWO.PARTl 
TWO. PART 2 

THREE. PART 1 
THREE. PART 2 

elements 

As indicated by the rule given in 
paragraph 4Q, a subset of those 
elements common to all of the 
structures is then selected. This 
subset is 

PARTl 
PART 2 

If the following statement were 
being evaluated, 

ONE TWO-2*THREE, BY NAME; 

then the following statements 
would be constructed (see 4c and 
4g): 

ONE.PARTl 

ONE.PART2 

TWO.PARTl-2* 
THREE.PART1, BY NAME; 

TWO.PART2-2* 
THREE .. PART2, BY NAME; 

Further statements are generated 
in accordance with the rules in 
paragraphs 4~ through 4£ until the 
lowest level is reached. 

Note: In BY NAME structure assignment, it 
is unnecessary for the structuring of all 
participating structures to be identical. 
Names of variables that are defined on 
structures appearing in BY NAME assignment 
take no part in name matching (see "The 
DEFINED Attribute"). 

5. In Option 4, the value of the label 
constant or the label variable is 
qualified by an identification of the 
current invocation of the block con­
taining the label and by the current 
task. 

This qualification information is 
used when a GO TO statement specifies 



the label variable to make the iden­
tified invocation current and to check 
that control does not cross task boun­
daries. 

6. Pointer variables may be components of 
structures or arrays of structures" in 
which case they are assigned values by 
a statement as specified in Options 2 
and 3. However, no conversions are 
performed, and the value assigned to a 
pointer structure component must be a 
pointer variable. If the pOinter 
variables are array pOinter variables, 
the rules for array assignment given 
in Rule 1 apply. In any event, the 
pointer expression is limited to a 
scalar pointer variable or a function 
reference that returns a scalar poin­
ter value. 

Examples: 

1,. The following example illustrates 
array assignment (Option 2): 

Given the array A 

and the array B 

2 
3 
1 
4 

1 
7 
3 
6 

4 
6 
7 
8 

5 
8 
4 
3 

consider the assignment statement: 

A = (A+B)**2-A(1~1)i 

After execution, A has 
7 

93 
9 

93 

the value 
7U, 

189 
114 
114 

Note that the new value for AC1"1),, 
which is 7, is used in evaluating the 
expression for all other elements. 

2~ The following example illustrates 
string assignment: 

Given: 

A is a fixed-length string whose 
value is 'XZ/BQ'. 

B is a varying-length string of 
maximum length 8 whose value is 
'MAFY' .. 

C is a fixed-length string of 
length 3. 

D is a varying-length string of 
maximum length 5. 

Then in the statement: 

C=A" the value of C is i XZ/ i .. 

C='X', the value of C is 'Xbb'~ 
D=B, the value of D is 'MAFY'. 
D=SUBSTR(A,2,3) I ISUBSTR(A,2,3), 

the value of D is 'Z/BZ/'. 
SUBSTR(A,2-w4)=B, the value of A is 

'XMAFY' . 
SUBSTR(B,2,2)='R', the value of B 

is 'MRbY'. 
SUBSTR{B,2)='R'. the value of B is 

• MRbb' • 

3. The following examples illustrate sca­
lar assignment (Option i): 

a. A,B,C = A+SIN(B) + C**2i provided 
X has the characteristics of the 
expression, this is the same as 
X = A+SIN(B) + C**2i 

A X; 
B Xi 
C Xi 

b. COMPLEX (Ul, Vl) 
+ REAL (Q)i 

This is the same as 

COMPLEX <U, V) 

C=COMPLEX(U.V)+REAL(Q)i 
Ul=REAL (C) ; 
Vl=IMAG (C) ; 

4. The following examples illustrate 
structure assignment (Option 3): 

a.. DECLARE lX, 2Y, 2Z, 2R, 3S, 3P, 
lA: 2B: 2C, 2D~ 3E: 3Q; 

X = X*Ai 

The second statement is equivalent 
to the following statements: 

Y 
Z 
S 
P 

Y*B; 
Z*Ci 
S*E; 
P*Qi 

b. DECLARE lAw 2B, 2C, 3D" 3Ei 
A = A+Bi 

The second statement expands into 
the following: 

B B+B; 
C = C+B; 

The last statement expands into 
D D+Bi 
E = E+Bi 

5. The following example illustrates 
statement label assignment (Option 4)i 

DECLARE P LABEL; 
P = Ai 
GO TO Pi 

A: X Y**2i 

Chapter 8: statements 109 



This set of statements causes control 
to transfer to A when the GO TO P 
statement is executed. 

6. The example below illustrates assign­
ment to an array of structures 
(Options 2 and 3). 

In the following statement. A is an 
array of structures, and R is a struc­
ture: 

DECLARE lA (2.2). 2B, 2C" 20" 3E" 3F" 
lR. 3S~ 3T, 3U, 5V, 5W; 

The following is an array assignment 
statement: 

A=R; 

The above assignment statement 
equivalent to the following 
structure assignment statements: 

A(l,l)=R; 
A(1,2)=R; 
A(2,,1)=R; 
A(2,2)=R; 

is 
four 

~ne four ~~a~emen~s above are. in 
turn, equal to the following: 

A{l,l) • 
A(2,2). 

B, A{l, 2>'. B, 
B=S; 

A(2,1).B. 

A(l,l).C, A{1.2).C, A(2,1).C, A(2!2). 
C = T; 

A(l,l).E. A(1.2).E, A(2.1).E. A(2,2). 
E = V; 

A(l.l).F, A(1.2).F, A(2,,1).F, A{2,2).F 
W; 

(If R is ABNORMAL, 16 statements are 
actually generated.) 

7. The following example illustrates con­
version of data defined by a picture 
description assigned to floating-point 
data, and vice versa: 

DECLARE A FLOAT, B PICTURE '999V99'; 

A=B; (B is converted from fixed-point 
to floating-point.) 

B A; (A is converted from floating-
point to fixed-point.) 

8. The following example illustrates 
pointer assignments (Option 5): 

110 

DECLARE (P, Q(5), R, T(5) ) POINTER, 
VALUE FIXED STATIC, 

P=R; 

POINT ENTRY (FIXED) RETURNS 
(POINTER); 

R=ADOR (VALUE); 
Q(3)=NULL; 
T=Qi 
Q=ADOR (R); 
T(l)=POINT (VALUE); 

The BEGIN statement 

Function: 

The BEGIN statement is the heading 
statement of a begin block. 

General format: 

BEGIN; 

General rules: 

1. A BEGIN statement is used in 
tion with an END statement. 

conjunc-

2. See Chapter 1 for a discussion of 
blocks,. 

Examples: 

1. ON OVERFLOW BEGIN; 

END; 

2. (SIZE): PROCEDURE; 

(NOSIZE): A: BEGIN; 

END; 

END; 

The SIZE condition is enabled with the 
prefix to the PROCEDURE statement. This 
enabling is negated throughout the begin 
block with the prefix NOSIZE. On exit from 
the begin block, SIZE errors are again 
enabled because statements again are in the 
scope of the SIZE prefix. 

The CALL statement 

Function: 

The CALL statement invokes a procedure 
and causes control to be transferred to a 
specified entry point of the procedure. 



General format: 

CALL entry-name 

[(argument [~argument] ••• )] 

[TASK [(scalar-task-name)]] 
[EVENT (scalar-event-name)] 
[PRIORITY (expression)]; 

Syntax rules: 

1. The entry name represents the entry 
point of the procedure invoked. 

2. Each argument may be any of t~e fol­
lowing: any type of expressl.on, a 
statement label constant" a statement 
label variable, a statement label 
array. a label parameter. an entry 
name, an entry parameter" a file name, 
a file parameter" a task name" a task 
parameter" an event name, an event 
parameter. an area name, an area par­
ameter, a pointer name. a pointer 
expression, or a pointer parameter. 
Note that a pointer expression must be 
either a pointer variable or a pointer 
function reference. 

3. The TASK, EVENT, and PRIORITY options 
can appear in any order. They are 
separated from each other by blanks, 
and they are separated from the ini­
tial part of the CALL statement by a 
blank. 

4. The scalar event and task names may be 
subscripted references to event or 
task arrays. 

General rules: 

1. The TASK, EVENT, and PRIORITY options. 
when used alone or in any combination. 
specify that the invoked and invoking 
procedures are to be executed asyn­
chronously. Note that if either the 
EVENT option or the PRIORITY option, 
or both, are used without the TASK 
option, the created task will have no 
name (see "Asynchronous Operations and 
Tasks" in Chapter 6). 

2. When the TASK option is used., the task 
name, if given, is associated with the 
task created by the CALL. Reference 
to this name enables the priority of 
the task to be controlled at some 
other point by the use of the PRIORITY 
pseudo-variable and built-in function. 

3. When the EVENT option is used, the 
event name is associated with the 
completion of the task created by the 
CALL statement. Another task can then 
wait for completion of this created 
task by specifying the event name in a 

WAIT statement. The value of the 
completion status for the event name 
(i.e.. the value of EVENT (event 
name» is set to 'OIB on execution of 
the CALL statement and to I11B on 
completion of the created task. (see 
"Event Data" in Chapter 2 and "The 
WAIT Statement" in this chapter.) 

4. If the PRIORITY option is used, the 
expression in the above form is evalu­
ated when the CALL statement is exe­
cuted. The result of this evaluation 
is converted to FIXED (m.o) where m is 
implementation-defined. The priority 
of the named task is then made m 
relative to the task in which the CALL 
is executed. If the PRIORITY option 
is not specified, a priority must have 
been assigned at some earlier point 
through the PRIORITY pseudo-variable. 

5. See "Relationship of Arguments and 
Parameters" for a detailed description 
of the interaction of CALL arguments 
and invoked entry parameters,. 

Examples: 

1. CALL CRITICAL PATH (A.,B*C,D); 

CRITICAL PATH: 
GAMMA) ; 

PROCEDURE (ALPHA, BETA, 

END; 

2. CALL PAYROLL (NAME, DATE, HRRATE); 

3. CALL PRINT (A., B) TASK (T2) EVENT (ET2) 
PRIORITY (-2); 

The CLOSE statement 

Function: 

The CLOSE statement dissociates the 
named file from the data set with which it 
was associated by opening. It also disso­
ciates from the specified file, all of the 
attributes declared for it in the opening 
of that file (thus, if so desired, the file 
name may be respecified with new attributes 
in a subsequent OPEN statement). However, 
all declared attributes for that file 
(i.e., all attributes explicitly given in a 
DECLARE statement) remain in effect. 

General format: 

CLOSE options-group [,options-group] ••• ; 

Chapter 8: Statements 111 



Following is the format of "options 
group": 

FILE (filename) [IDENT(argument)] 

General rules: 

1. The options may appear in either order 
within an options group. 

2. The FILE (filename) option specifies 
which file is to be closed. It must 
appear once in each options group. 
Several files can be closed by one 
CLOSE statement. 

3. A closed file can be reopened. 

4. Closing an unopened file, or an 
already closed file, has no effect. 

5. The CLOSE statement cannot be used to 
close a file in a task different from 
the one that opened the file. 

6. If a file is not closed by a CLOSE 
statement, it is automatically closed 
at the completion of the task in which 
it was opened. 

7. A CLOSE statement unlocks all records 
previously locked in the task in which 
the CLOSE appears. 

8. The argument in the IDENT option is 
used as follows: 

IgE~~ __ files: The argument must be a char­
acter string variable that may be sub­
scripted. The data set is examined for an 
identifying user label, which is then 
assigned to the string. The label will be 
a trailer label, unless the file is a 
BACKWARDS file, in which case it will be a 
header label. If there is no label, a null 
string will be assigned to the character 
string variable. 

Q¥~e~~_fi!~~ The argument is an expres­
Slon; this is evaluated and converted to a 
character string, which is placed with the 
data set as a trailer label. 

gE£~~~_fi!es~ The argument must be a char­
acter string variable that may be sub­
scripted. The data set is examined for an 
identifying label, which is then assigned 
to the string. The label will be a trailer 
label. 

Examples: 

1. CLOSE FILE (MASTER); 

112 

The file" MASTER, is closed, 
facilities allocated to 
released. 

and the 
it are 

2. CLOSE FILE (TABLEA), FILE (TABLEB); 

The two files, TABLEA and TABLEB are 
closed in the same way as MASTER, in 
the preceding example. 

The DECLARE Statement 

See "The DECLARE Statement", in Chapter 
4, for a discussion of the DECLARE state­
ment. 

The DELAY statement 

Function: 

The DELAY statement causes execution of 
the controlling task to be suspended for a 
specified period of time. 

General format: 

DELAY (scalar-expression); 

General rule: 

Execution of the DELAY statement 
causes the scalar expression to be 
evaluated and converted to an integer 
n and execution to be suspended for n 
milliseconds. 

Execution resumes after n millisec­
onds only if the controlling task is 
of sufficiently high priority to be 
selected in preference to all other 
ready tasks. 

Example: 

DELAY (10); 

Execution of the controlling task 
is suspended for ten milliseconds. 

The DELETE statement 

Function: 

The DELETE statement deletes a record 
from a DIRECT UPDATE file. 

General format: 

DELETE option-list 

Following 
list": 

is the format of "option 



FILE (filename) KEY(exoression) 
[EVENT(event-variable)] 

General rules: 

1. The options may appear in any order. 

2. The FILE (filename) option specifies 
the UPDA1'E file; it must occur once. 

3. 

4. 

5. 

The KEY (expression) option specifies 
the key that identifies the record to 
be deleted. 
once. 

This option must occur 

If the EVENT(event variable) option is 
given" the execution will not wait for 
the deletion to be completed before 
continuing with subsequent statements. 
The event variable will be given the 
value 'O'B until the deletion is com­
plete, when it will be given the value 
'1' B. 

The DELETE statement unlocks a record 
only if that record had been locked in 
the same task in which the DELETE 
appears. 

6. The DELETE statement can cause impli­
cit opening of a file. 

Example: 

DELETE FILE(ALPHA) KEY (DKEY)i 

This statement causes the record iden­
tified by DKEY to be deleted from the data 
set associated with the file ALPHA. If the 
record was previously locked in the same 
task" it is unlocked. 

The DISPLAY Statement 

Function: 

The DISPLAY statement causes a message 
to be displayed to the machine operator. A 
response may be requested. 

General format: 

Option 1. 

DISPLAY (scalar-expression); 

1. 

Option 2. 

DISPLAY (scalar-expression) 
REPLY (character-variable) 
[EVENT (event-variable)]; 

General rules: 

Execution of the 
causes the scalar 

DISPLAY statement 
expression to be 

evaluated and, where necessary" con­
verted to a varying character string 
of implementation-defined maximum 
length. This character string is the 
message to be displayed. 

2.. In Option 2, the character variable 
receives a string that is a message to 
be supplied by the operator. 

3. In Option 2, if the EVENT option is 
not specified, execution of the pro­
gram is suspended until the operator's 
message is received. In option 1, 
execution continues uninterrupted. 

4. If the EVENT (event-variable) option 
is given, execution will not wait for 
the reply to be completed before con­
tinuing with subsequent statements. 
The event variable will be given the 
value 'O'B until the reply is 
received, when it will be given the 
value 'l'B .. 

Example: 

DISPLAY ('END OF JOB'); 

This statement causes the message. "END 
OF JOB" to be displayed. 

The DO Statement 

Function: 

The DO statement delimits the start of a 
DO group (see "Groups") and may specify 
iterative execution of the statements with­
in the group. 

Chapter 8: Statements 113 



r---------------------------------------------------------------------------------1 
option 1 

DO: 

Option 2. 

DO WHILE (scalar-expression): 

Option 3. 

1 
pseudo-variable! 

DO = specification [.specificationJ ••• : 
variable 

A specification has the following format: 

[

TO expression2 [ByeXp reSSiOn3]] 
expression 1 [WHILE (expression 4)] 

BY expression3 [TO expression2J _________________________________________________________________________________ J 

Figure 4. General Format for the DO Statement 

Syntax rules: 

1.. The "variable n in Option 3 is a sub­
scripted or unsubscripted scalar vari­
able. Label variables, string varia­
bles, and complex variables are 
allowed, provided the expansions given 
below result in valid PL/I programs. 

2. Each "expression" in the specification 
list is a scalar expression. 

3. If BY expression3 is omitted from the 
specification, expression3 is assumed 
to be one (1). 

4. If TO expression2 is omitted from the 
specification. the iteration is per­
formed indefinitely until terminated 
by the WHILE clause or by some other 
statement within the scope of the DO. 

5. If both TO expression2 and BY 
expression3 are omitted, this form of 
the specification implies a single 
execution of the DO group with the 
control variable having the value of 
expression 1. 

6. If the variable in Option 3 is a label 
variable, each specification must take 
the form: 

1 
label-variable ! 

[WHILE (expression4)] 
label-constant 

General rules: 

1. In Option 1, the DO statement delimits 
the start of a DO group. 

2. In Option 2, the DO statement delimits 

114 

the start of a DO group and specifies 
an iteration defined by the following: 

LABEL: DO WHILE (expression): 
statement 1 

statement n 
END: 

NEXT: statement 

The above is exactly equivalent to the 
following expansion: 

LABEL: IF (expression) THEN; ELSE GO TO 
NEXT: 
statement 1 

statement n 
GO TO LABEL; 

NEXT: statement 

3. In Option 3. the DO statement delimits 
the start of a DO group and specifies 
controlled iteration defined by the 
following: 

LABEL: DO variable = expressionl 
TO expression2 BY expression3 
WHILE (expression4): 

statement 1 

statement n 
LABEL1:END: 
NEXT: statement 

The above is exactly equivalent to the 
following expansion: 



LABEL:tl=sexpl; t2=sexp2; ••• ; tm=sexpm; 
el=expressionl; e2=expression2; 
e3=expression3; 
v=el-e3; 

LABELl: v=v+e3; IF (e3>=0)&(v>e2)I (e3<0)& 
(v<e2) 

THEN GO TO NEXT; 
IF (expression 4) THEN; ELSE GO TO NEXT; 

5tatement 1 

statement n 
GO TO LABELl; 

NEXT: statement 

In this expansion sexpl, ••• ,sexpm are 
the expressions which appear in subscripts 
of the control variable or pseudo-variable, 
followed by the second and third argument 
positions if the SUBSTR pseudo-variable is 
being used. The letter y denotes the 
control variable with all sexpi replaced by 
tie In the simplest cases, m=o and the 
first statement is el=expressionl. The 
variables tl, ' ••• , tm, are BINARY FIXED inte­
ger variables of default precision, insert­
ed by the compiler. The variables el, e2, 
and e3 have the characteristics of the 
corresponding expressions. 

a. If more than one specification is 
given. the statement labeled NEXT 
refers to the initialization for 
the next specification; for exam­
ple: 

NEXT: e5 expression 5; 

~Q~~~ Each specification 
statements in the DO group. 
bles are computed only once 

applies 
The ti 

per T'\r'\ 
VV 

to the 
varia-

group_ 

b. If the WHILE clause is omitted, 
the IF statement involving 
expression4 and the ELSE GO TO 
NEXT statement are deleted. 

c. If the TO clause is omitted. the 
IF statement and the assignment 
statement involving e2 are omit­
ted. 

d. If both the TO clause and the BY 
clause are omitted" all statements 
involving e2 and e3 are omitted as 
well as the statement "GO TO 
LABELl;". 

4. The WHILE clause in Options 2 and 3 
specifies that before each associated 
execution of the DO group, the expres­
sion is evaluated and, if necessary_ 
converted to give a bit-string value. 
If any bit in the resulting string has 
the value '1', the iteration continues 
uninterrupted. If all bits have the 
value '0', the iterations associated 

with the current specification are 
terminated. 

5. In the specification list. in Option 
3, expressionl represents the starting 
value of the control variable. 
Expression3 represents the increment 
to be added to the control variable 
after each iteration of the statements 
in the DO group. Expression2 rep­
resents the terminating value of the 
control variable. Iteration termi­
nates CI.~ ~uuu CI.~ the value of the 
control variable passes its terminat­
ing value. When the last specifi­
cation is completed, control passes to 
the statement following the DO group. 

6. 

7. 

1. 

2. 

3. 

Control may transfer into a DO group 
from outside the DO group only if the 
DO group is delimited by the DO state­
ment in Option 1; that is, iteration 
is not specified. 

The effect of allocating or 
the control variable within 
loop is undefined. 

Examples: 

freeing 
the DO 

DO INDEX 
WHILE (A 

Z WHILE (A>B) , 
B), 100; 

5 TO 10 

DO I = 1 TO 9,11 TO 20; 

DO WHILE (P); 

4. DO; 

5,. 

c. v. 

DO WHILE (TAX-DEDCT < ESTTAX * 4); 

DO o BY 1+11 V-.lflILE 
(X<10); 

The END Statement 

Function: 

The END statement terminates blocks and 
groups. 

General format: 

END [label]; 

General rules: 

1. If a label follows END, the END state­
ment terminates that group or block 
having that label. 

2.. If a label does not follow END" the 
END statement terminates that group or 
block headed by the nearest preceding 
DO, BEGIN, or PROCEDURE statement for 

Chapter 8: Statements 115 



which there is no other corresponding 
END statement. 

3. An END statement may be used to termi­
nate more than one group or block (see 
"Use of the END Statement." in Chapter 
1). 

4. If control reaches an END statement. 
terminating a procedure~ it is treated 
as a RETURN statement. 

5. If control reaches an END statement 
which terminates a BEGIN block that is 
an on-unit" control is returned to the 
point following the interrupt loca­
tion. 

6. If a label follows END" that label may 
not be an element of a label array. 

For examples, see "Use of the END State­
ment~" in Chapter i. 

The ENTRY Statement 

Function: 

The ENTRY statement specifies a secon­
dary entry point to a procedure. 

General format: 

entry-name: [entry-name:] ENTRY 
[(parameter [" parameter] ••• )] 
[data-attributes]; 

General rules: 

1. The parameters are names that specify 
the parameters of the entry point. 
When the entry is invoked. a relation­
ship is established between the argu­
ments of the invocation and the param­
eters of the invoked entry point (see 
"Relationship of Arguments and 
Parameters") .. 

2. The data attributes permitted with a 
PROCEDURE statement are the arithmet­
ic~ string. and painter attributes. 
The data attributes specify the char­
acteristics of the value returned by 
the procedure when invoked as a func­
tion at this entry point. (This rule 
applies to each entry name by which 
the entry point may be invoked.) The 
value specified in the RETURN state­
ment of the invoked entry is convert­
ed# if necessary, to have the speci­
fied data attribute. 

116 

If data attributes are not com­
pletely specified at the entry point. 
default attributes are applied, as 

determined by the name of the entry 
point. 

If an ENTRY statement has more than 
one label, each label is interpreted 
as if it were a single entry name for 
a separate ENTRY statement having the 
same parameter list and data attri­
butes. 

Consider the statement: 

A:I: ENTRY; 

This statement is equivalent to: 

A: ENTRY; 
I: ENTRY; 

The ENTRY statement must be inter­
nal to the procedure block for which 
it defines a secondary entry point. 
The ENTRY statement may not be inter­
nal to any block contained in this 
procedure; nor may it be within a DO 
group that specifies iteration. 

Example: 

NAP-~: PROCEDURE(N} CH~~CTER(15}; 
DECLARE TABLE(100) CHARACTER (15) 
EXTERNAL; 

INITIAL: ENTRY(N) CHARACTER(l): 
RETURN (TABLE{N»i 
END; 

The EXIT Statement 

Function: 

The EXIT statement causes immediate ter­
mination of the task that contains the 
statement and all tasks attached by this 
task (see "Asynchronous Operations and 
Tasks," in Chapter 6). If the EXIT state­
ment is executed in a major task, it is 
equivalent to a STOP statement (see this 
chapter). 

General format: 

EXIT; 

The FORMAT Statement 

Function: 

The FORMAT statement specifies a format 
list for use with data transmitted under 
edit direction. 

General format: 

label: [label:] ••• FORMAT format-list; 



Syntax rules: 

1. The "format list" is as described for 
use with an edit-directed data speci­
fication (see "Format Lists" in Chap­
ter 7). 

2. At least one "label" is required. It 
is the name a statement label 
appearing in a remote format item. 

General rules: 

1. A GET or PUT statement may include a 
remote format specification, R, in the 
format list of an edit-directed data 
specification. That portion of the 
format list covered by the R format 
item must be specified in a FORMAT 
statement with a corresponding state­
ment label. 

2. The remote format item and the FORMAT 
statement must be internal to the same 
block. 

Example: 

COMMON: FORMAT (A(5), F(5,2), X(3), 
F(10,O»; 

The FREE Statement 

Function: 

The FREE statement causes the storage 
allocated for specified based or nonbased 
controlled variables to be freed. For 
nonbased variables, the next most recent 
allocation is made available, and subse­
quent references to the identifier refer to 
that allocation. 

General formats: 

Option 1 

FREE identifier [,identifier] .... , 
Option 2 

FREE [pointer-variable->] 
based-variable-identifier 
[.[pointer-variable->J 
based-variable-identifier] ••• ; 

Syntax rule: 

Each identifier is a scalar. array. or 
major structure name of the controlled 
(based or nonbased) storage class. 

General rules: 

i. The freeing of nonbased and based 

controlled variables may be specified 
in the same FREE statement. 

2. Controlled storage allocated in a task 
cannot be freed by a descendant task. 

3. If a specified nonbased identifier has 
no allocated storage at the time the 
FREE statement is executed. it is an 
error. 

Rules 4 through 6 apply only to Option 2. 

4. If the based variable is not qualified 
by pointer qualification, the pointer 
declared with the based variable will 
be used to identify the generation of 
data occupying the portion of storage 
to be freed (see Chapter 2 for a 
discussion of pointer qualification). 

5. The amount of storage freed depends 
upon the attributes of the based vari­
able, including bounds and/or lengths 
at the time the storage is freed, if 
applicable. The user is responsible 
for determining that this amount coin­
cides with the amount allocated. If 
the variable had not been allocated, 
the results are unpredictable. 

6. Based variables appearing in ALLOCATE 
statements with the IN clause may not 
appear in FREE statements. In other 
words, allocations within storage 
areas defined by area variables may 
not be freed. 

Examples: 

1. FREE X,Y,Z; 

2. The following excerpt from a procedure 
illustrates the FREE statement in con­
junction with an ALLOCATE statement: 

DECLARE A(lOO) INITIAL ((lOO)O) 
CO~~ROLLED. C(100), X(100}; 

ALLOCATE A; 

C=A; 

FREE A; 

X=SIN(C**2 + X/Y); 

3. In the example below, it is assumed 
the declarations specified in Example 
4 of the ALLOCATE statement apply. 

Chapter 8: Statements 117 



FREE VALUE; 

Frees that portion of storage which is 
occupied by the generation of VALUE 
identified by pointer P. 

FREE T -> GROUP; 

Frees that portion of storage which is 
occupied by the generation of GROUP 
identified by pointer T. The value J 
is used to determine the dimensions of 
PTS and VALUES. 

The GET statement 

Function: 

The GET statement normally causes values 
from a data set to be assigned to variables 
specified in a data list. Alternatively. 
the values may corne from a character-string 
variable. 

General format: 

GET option-list 

Following 
list": 

is the format of "option 

FILE (filename) I STRING(character­
string-name) ] 

data-specification [COpy] 

General rules: 

1. If neither the FILE (filename) option 
nor the STRINGCcharacter-string-name) 
option appears, standard system input 
file SYSIN is assumed. 

2. One data specification must appear. 

3. The options may appear in any order. 

4. The filename refers to a file which 
has been associated, by opening, with 
the data set which is to provide the 
values. It must be a STREAM INPUT 
file. 

5. The character string name refers to 
the character string which is to pro­
vide the input data. Each GET opera­
tion using this option always begins 
at the beginning of the specified 
string. If the number of characters 
ln this string is less than the total 
number of characters specified by the 
data specification, the ERROR condi­
tion is raised. 

6. The data specification is as described 
in Chapter 7. 

118 

7. If the FILE(filename) option refers to 
an unopened file, the file is opened 
automatically; the effect is as if the 
GET statement were preceded by an OPEN 
statement referring to the file. 

8. The COPY option, which may only be 
used with the FILE (filename) option" 
specifies that the source data" as 
read, is to be written" without alter­
ation, on the standard system print 
file SYSPRINT. 

Examples: 

1. GET LIST (A, B" C) ; 

Specifies the list-directed transmis­
sion of the values to be assigned to 
A., Band C from the file SYSIN. 

2. GET FILE (BETA) EDIT (X~Y,Z) (A(5). 
F(5.2), A(10»; 

Specifies the edit-directed transmis­
sion of the values assigned to X. Y 
and Z from file BETA. 

The GO TO statement 

Function: 

The GO TO statement causes control to be 
transferred to the specified statement. 

1. 

General format: 

l
GO Tolllabel-constant; I 
GOTO scalar-label-variable; 

General rules: 

If a label variable is specified, the 
the effect of a 
value of the 

label of the 

GO TO statement has 
multi-way switch. The 
label variable is the 
statement to which control 
ferred. 

is trans-

Since the label variable may have 
different values at each execution of 
the GO TO statement, control may not 
always pass to the same statement. 
(Example 2 illustrates a GO TO state-
ment used as a multi-way switch.) 

2. A GO TO statement may not pass control 
to an inactive block (see "Activation 
and Termination of Blocks,· in Chapter 
6~ for a discussion of active and 
inactive blocks). 

A GO TO statement may not transfer 
control from outside a DO group to a 
statement inside the DO group if the 
DO group specifies iteration unless 
the GO TO terminates a procedure 
invoked from within the DO group. 



3. A GO TO statement that transfers con­
trol from one block (D) to a dynami­
cally encompassing block (A) has the 
effect of terminating block D" as well 
as all other blocks that are dynami­
cally descendant from block A. Condi­
tions are reinstated. and automatic 
variables are freed in the same way as 
.:.s:: .1,..._ h.'",..1r~ +-.o...,..."'; ........ ~ ..... ~A. 'l"\n ..... 1'n~""(7 
..L...L '-1..1-';;::; ....,.'-''''"''' .. ~.... "'""'"""' .. ,u~.a. ... ~ ..... ~'-A. ...... ....,.&.. &.t.I.~""''''''.I .• 

When a GO TO statement transfers con­
trol out of a procedure invoked as a 
function" the evaluation of the 
expression that contained the corres­
ponding function reference is discon­
tinued. and control is transferred to 
the specified statement,. 

4. A GO TO may not terminate any proce­
dure invoked during a prologue (see 
"Prologues" in Chapter 10) " or an 
ALLOCATE statement. 

5. A GO TO statement may not be used to 
transfer control from a task to its 
attaching task or to any of its des­
cendant tasks. 

Examples: 

1. GO TO A234; 

A234: 

2. The following example illustrates a GO 
TO statement that effectively is a 
multi-way switch. 

DECLARE L LABEL (Ll, L2) INITIAL 
(L2) ; 
GO TO MEET; 

Ll: X = Y - 1; 
L = L2; 
GO TO MEET; 

L2: Y = X -1; 
L = Ll; 

MEET: CALL FUDGE (X, Y, Z); 
IF Z = LIMIT THEN GO TO L; 

3. The following procedure illustrates 
use of the GO TO statement with a 
subscripted label variable to effect a 
multi-way switch: 

CALC: PROCEDURE (Nl, N2); 
DECLARE SWITCH(3) LABEL INITIAL 
(CALC1. CALC2, CALC3); 
I=MOD(Nl+N2,3)+1; 
GO TO SWITCH (I); 

CALC1: = =" 

RETURN; 
CALC2: ••• 

CALC3: ••• 

END CALC; 

The IF Statement 

Function: 

The IF statement causes program flow to 
depend on the value of an expression. 

General format: 

IF scalar-expression THEN unit-l [ELSE 
unit-21 

Syntax rules: 

1. Each "unit" is either a group or a 
begin block, either of which would be 
terminated by a semicolon. 

2. The IF statement is not itself termi­
nated by a semicolon. 

3. Each unit may be labeled. 

General rules: 

i. When the ELSE clause -- ELSE, and its 
following unit is not specified. 
the scalar expression is evaluated 
andw if necessary, converted to a bit 
string. If any bit in the resulting 
string has the value 1, the unit-l is 
executed, and control passes to the 
statement following the IF statement. 
If all bits have the value 0, the 
unit-l is not executed, and control 
passes to the next statement. When 
the ELSE clause is specified, the 
expression is similarly evaluated. If 
any bit is 1" unit-l is executed, and 
control passes to the statement fol­
lowing the IF statement. If all bits 
have the value 0, unit-2 is executed, 
and control passes to the next state­
ment. The units may contain state­
ments that specify transfer of control 
(see "Sequence of Control"), and so 
override these normal sequencing 
rules. 

2. IF statements may be nested, that is. 
either unit-lor unit-2, or both. may 
themselves be IF statements. Since 

Chapter 8: Statements 119 



1. 

2. 

each ELSE clause is always associated 
with the innermost preceding IF, an 
ELSE with a null statement may be 
required to specify a desired sequence 
of control. 

Examples: 

IF QUEUE EMPTY THEN CALL COMPILE; 
ELSE GO TO MULTIPROCESS; 

A: IF X > Y THEN 
IF Z W THEN 
IF W < P THEN Y 1; 
ELSE P Q; 
ELSE; 

ELSE X = 4; 
J: Z = 5; 

Function: 

The LOCATE Statement, which applies to 
BUFFERED OUTPUT files, allows a record to 
be created in buffer storage and subse-
qUently written (see 
Attributes". Chapter 4). 

General format: 

nThe Buffering 

LOCATE variable option-list ; 

Following 
list": 

is the format of "option 

FILE (filename) SET (pointer-variable) 
[KEYFROM(expression)] 

General rules: 

1. The options in the option list may 
appear in any order. 

2. The "variable" must be an unsubscript­
ed level 1 based variable and it 
cannot contain VARYING length strings. 

3. The 
the 

FILE(filename) 
file involved. 

appear. 

option specifies 
This option must 

4. The SETCpointer-variable) option spe­
cifies a subscripted or unsubscripted 
POINTER variable which is to be set to 
identify the variable in the buffer. 
This option must appear. 

5. If the KEYFROM(expression) option 
appears, the value of the expression 
is converted to a character string and 
included as the key of the record to 
be subsequently written. 

6. The based variable is allocated in a 

120 

buffer, and the POINTER variable in 
the SET option is set to identify it. 
The record identified is written into 
the output file immediately before the 
next WRITE, LOCATE, or CLOSE operation 
on the file, at which time the record 
is freed .. 

7. If the FILE(filename) option refers to 
an unopened file, the file is opened 
automatically; the effect is as if the 
LOCATE statement were preceded by an 
OPEN statement referring to the file. 

Example: 

LOCATE ALPHA SET CREC POINT) 
(BETA); 

FILE 

The based variable ALPHA is allocated 
in a buffer and the pointer variable 
REC_POINT is set to identify ALPHA in 
the buffer. Values may subsequently 
be assigned to ALPHA and the record 
will be written in the data set asso­
ciated with file BETA when a subse­
quent LOCATE or WRITE statement is 
executed for file BETA or if BETA is 
closed. 

The Null Statement 

Function: 

The null statement causes no action and 
does not modify sequential operation. 

General format: 

[label:] ••• ; 

Example: 

ON OVERFLOW; 

The on-unit (see "The ON Statement") is 
a null statement. 

The ON Statement 

Function: 

The ON statement specifies the action to 
be taken when an interrupt occurs for the 
named condition. For a discussion of 
"enable" and "interrupt," see "Interrupt 
"Operations" in Chapter 6. 



General format: 

ON condition [SNAP] on-unit 

ON condition [SNAPj SYSTEM; 

Syntax rules: 

1. The ~condition" may be anyone of 
those described in Appendix 3. 

2. The "on-unit" is an action specifi­
cation and it is either an unlabeled 
single simple statement (other than 
BEGIN" DO~ END., RETURN, FORMAT, PROCE­
DURE, or DECLARE) or an unlabeled 
begin block. Since the on-unit itself 
requires a semi-colon. no semi-colon 
appears in Option 1. 

3. The on-unit may not be a RETURN state­
ment, nor may a RETURN statement 
appear within the begin block. 

General rules: 

1. The standard action to be taken for 
all ON-conditions is established by 
the language.. When an interrupt takes 
place before an ON statement for that 
condition has been executed, standard 
system action is taken. This standard 
system action is described in Appendix 
3. The ON statement in Option 2 
specifies that standard system action 
is to be taken when an interrupt 
results from the occurrence of the 

2. 

3. 

4. 

The ON statement in Option 1 is a 
means for the programmer to specify 
action (other than standard system 
action), that is~ execution of the 
on-unit, to take place when an inter­
rupt occurs for the specified condi­
tion. The on-unit is treated as a 
procedure internal to the block in 
which it appears. 

If SNAP is specified, then 
given condition occurs, a 
trace is listed. 

when the 
calling 

Control can reach an on-unit only when 
an interrupt occurs for the condition 
associated with this on-unit in an ON 
statement. 

5. If an action specification is esta­
blished by an ON statement in a given 
block, it remains in effect throughout 
this block and throughout all dynamic 
descendants of this block (see 
"Activation and Termination of 

Blocks:" in Chapter 6~ for a discus­
sion of blocks and generations of 
blocks) .. 

If an action is specified more than 
once in a given block, the effect of 
the old (or prior) ON statement is 
either temporarily suspended or com­
pletely nullified by the new (or 
later) ON statement. as follows: 

a. If the new (or later) ON statement 
is in a block dynamically descend­
ed from the block containing tne 
old (or prior) ON statement, the 
effect of the old ON statement is 
temporarily suspended or stacked. 
The effect of the old ON statement 
is restored by execution of a 
REVERT statement or upon termina­
tion of the block containing the 
new ON statement. 

b. If the new (or later) ON statement 
and the old (or prior) ON state­
ment are internal to the same 
invocation of the same block, the 
effect of the old ON statement is 
completely nullified. 

6. If an action is specified by an ON 
statement in a particular task, the 
effect of this ON statement is inher­
ited by each attached task and by each 
task attached by the attached task, 
etc. (see "Asynchronous Operations 
and Tasks," in Chapter 6 , for a 
discussion of attached and attaching 
tasks). 

7. A condition raised during execution 
results in an interrupt if and only if 
~k_ _ __ ~~~~ __ ~ ____ k'_~ _~ .k ___ !_. 
l..llC ~UIH"".1.l...1.Ull.1.;:' ClIClJJ.1.CU ell.. l..llC iJU.1.11l.. 

where it is raised. 

a. 

b. 

c. 

The conditions OVERFLOW, FIXEDOV­
ERFLOW, UNDERFLOW, ZERODIVIDE, 
CONVERSION" the input/output con­
ditions. and the conditions CONDI­
TION. FINISH, and ERROR are ena­
bled by default. 

The conditions SIZE, SUBSCRIPT­
RANGE, and CHECK are disabled by 
default. 

The enabling status of OVERFLOW. 
FIXEDOVERFLOW, UNDERFLOW, ZERODI­
VIDE, CONVERSION. SIZE, SUBSCRIP­
TRANGE, and CHECK are controlled 
by the condition prefix (see 
"Prefixes" in Chapter 1). 

8. A single statement on-unit may not 
refer to a remote format specification 
through edit-directed transmission. 

9. The identifier list of a CHECK condi­
tion, the filename of an input/output 

Chapter 8: Statements 121 



condition. and the on-unit of an ON CaLL Q; 
statement belong to the scope of the 
procedure or begin block to which the 
ON statement is internal. 

The action specification esta­
blished by executing an ON statement 
in a given block remains in effect 
throughout this block and throughout 
all dynamic descendants of this block. 
unless overridden by the execution of 
another ON statement. Names in an 
on-unit do not belong to the scope of 
the dynamic environment at the point 
of execution of the on-unit, but rath­
er to the environment of the ON state­
ment. 

Examples: 

1. IOPR: PROCEDURE; 

Rl: GET FILE (FILEX) EDIT (A" B) 
(2F(7,3»; 

ON CONVERSION 
CONVQ = 9999; 

R2: GET FILE (FILEX) EDIT (X) 
(A(6»; 

END IOPR; 

Assume that program execution 
begins with procedure IOPR. 

If an illegal character is read 
from FILEX during the execution of 
statement Rl, the standard system 
action occurs. 

The ON statement specifies that the 
execution of the statement CONVQ 
9999 is to occur in the event that a 
conversion error causes an interrupt 
subsequent to execution of the ON 
statement. Thus, if a conversion 
error occurs during the transmission 
of X in statement R2, the normal 
sequence of control is interrupted, 
and the statement CONVQ 9999 is 
executed. 

2. ZCHK: PROCEDURE; 

Sl: ON OVERFLOW OVSWCH 1; 

122 

Q: PROCEDURE; 

S2: ON OVERFLOW OVSWCH = 2; 

S3: ON OVERFLOW SYSTEM; 

END Q; 
END ZCHK; 

Assume that program execution 
begins with procedure ZCHK. 

If an overflow occurs prior to 
execution of the Sl statement, an 
interrupt with standard system action 
occurs. If an overflow occurs subse­
quent to execution of the Sl state­
ment, an interrupt occurs, and the 
statement OVSWCH = 1 is executed. 

When procedure 
statement remains 
S2 statement is 
point~ the effect 
rarily suspended, 
effect. 

Q is invoked. the Sl 
in effect until the 
executed. At this 

of the Sl is tempo­
and the S2 goes into 

If an overflow occurs between S2 
and 83, an interrupt occurs. and the 
statement OV8WCH = 2 is executed,. 

When 83 is executed" it completely 
replaces 82 (Sl is still stacked). If 
an overflow occurs after 83 is execut­
ed and before the end of procedure Q. 
it causes the standard system action 
to take place. 

After control is returned from Q to 
ZCHK, S3 is completely replaced by Sl, 
whose effect is restored. Any over­
flows occurring from this point to the 
end of procedure ZCHK cause the state­
ment OVSWCH = 1 in Sl to be executed. 



3. SBCHK: PROCEDURE; 
DECLARE A(9); 

Bl: ~. cA(I) ••• ; 
ON SUBSCRIPTRANGE BEGIN; 

IF 1>9 THEN 
GO TO BIGER; 

ELSE GO TO 
LITLERi 

BIGER: ... , 

LITLER: ..... , 
END: 

(SUBSCRIPTRANGE): B2: ••• A(I) ••• i 
B3: ••• ; 

END SBCHKi 

Assume that procedure SBCHK is the 
only procedure in the program. 

At the beginning of execution" any 
occurrence of the condition SUBSCRIPT­
RANGE will not give an interrupt; it 
is not enabled, since the condition 
name does not appear in a prefix in 
the PROCEDURE statement. If in state­
ment Bl, the value of I is greater 
than 9 or less than 1" no interrupt 
action is taken. 

When the ON statement for the con­
dition SUBSCRIPTRANGE is executed~ any 
interrupt that results from a subse­
quent occurrence of the SUBSCRIPTRANGE 
condition will result in the action 
specified by the begin block in the ON 
statement. 

The prefix for statement B2 speci­
fies that the condition SUBSCRIPTRANGE 
is enabled and should cause an inter­
rupt if it occurs during the execution 
of statement B2. In this case, the 
begin block in the ON statement is 
executed. 

In the execution of B3 and subse­
quent statements, the occurrence of a 
subscript that is not within the spec­
ified range does not cause an inter­
rupt action to occur. 

For further examples, see "Interrupt 
Operations" in Chapter 6. 

The OPEN Statement 

Function: 

The OPEN statement associates a filename 
with a data set and completes the specifi­
cation of attributes for the file. 

General format: 

OPEN options-group [.options-group] ••• : 

Following is the format of "options 
group": 

FILECfilename) [IDENT(argument)] 
LTITLE(expressionjj 
[INPUT I OUTPUT I UPDATE] [STREAM I 
RECORD] [DIRECT I SEQUENTIAL] 
[BUFFERED I UNBUFFERED] [EXCLUSIVE] 
[KEYED{decimal-integer-constant)] 
[BACKWARDS] [PRINT] 
[LINESIZE (expression)] 
[PAGESIZE (expression)] 

General rules: 

1.. The INPUT., OUTPUT,. UPDATE, STREAM" 
RECORD. DIRECT, SEQUENTIAL. BUFFERED. 
UNBUFFERED, EXCLUSIVE., KEYED" BACK­
WARDS, and PRINT options specify 
attributes which augment the attri­
butes specified in the file declara­
tion; for rules governing which of 
these attributes can be applied 
together, see "File Description Attri­
butes," in Chapter 4, and "File Open­
ing and File Attributes," in Chapter 
7. 

2. The options may appear in any order 
within a group. 

3. The FILE (filename) option specifies 
which file is to be opened. The 
option must appear once in each 
options group. Several files can be 
opened by one OPEN statement. 

4. Opening an already open file does not 
affect the file if the second opening 
takes place in the same task or in an 
attached task. Expressions in the 
options groups are evaluated but not 
used. 

5. The "argument" in the IDENT option is 
used as follows: 

Input files: The argument must be a 
character-string variable and may be 
subscripted. The data set is examined 
for an identifying user label which is 
then assigned to the variable given as 
the argument. The label will be a 
header label unless the file is a 
BACKWARDS file, in which case it will 
be a trailer label. If there is no 
label, a null string will be assigned 
to the character string variable. 

output files: The argument is an 
expression; this is evaluated and con­
verted to a character string which is 

Chapter 8: Statements 123 



placed with the data set as a header 
labeL. 

QEdate files: The argument must be a 
character-string variable and may be 
subscripted. The data set is examined 
for an identifying label which is then 
assigned to the variable given as the 
argument. The label is a header 
label. 

6. If the TITLE (expression) option 
appears, the expression is converted 
to a character string which identifies 
the data set to be associated with the 
file. IOf the option does not appear, 
a character string identical to the 
filename is taken as the identifi­
cation. In the case of a parameter~ 
the identifier of the original argu­
ment passed to the parameter. rather 
than the identifier of the parameter 
itself, is used .. 

7. The LINESIZE option can be specified 
only for a STREAM PRINT file. The 
expression is evaluated., converted to 
an integer, and used as the length of 
a line during subsequent output ~o ~ne 
file. New lines may be started by use 
of the printing and control format 
items or PUT statement options, in 
which case the current line is filled 
to its full length with blanks. If a 
line becomes overfilled before action 
to start a new line is taken. charac­
ters spilling over are put onto the 
next line automatically. Default is 
implementation-defined. 

8. The PAGESIZE option can be specified 
only for a STREAM PRINT file. The 
expressi~n is converted to an integer 
and used as the number of lines on a 
page. During subsequent output to the 
file, new pages may be started by use 
of the PAGE format item or PUT state­
ment option. If a page becomes over­
filled before action to start a new 
page is given" the ENDPAGE condi tion 
is raised. Default is implementation 
defined .• 

Examples: 

1. OPEN FILE (ALPHA) " FILE (BETA) TITLE 
(. WORKFILE') ; 

The files ALPHA and BETA are opened. 
The data set associated with BETA is 
identified as WORKFILE., whereas ALPHA 
is associated with a data set named 
ALPHA. 

2. OPEN FILE (MASTER) UPDATE; 

The file MASTER is opened as an UPDATE 

124 

file. MASTER is taken as the name of 
the data set. 

The PROCEDURE Statement 

Function: 

The PROCEDURE statement has the follow­
ing functions: 

1. Heads a procedure 

2. Defines the primary entry point to a 
procedure 

3. Specifies the parameters for the pri­
mary entry point 

4. Defines any special attributes of the 
procedure 

5. Specifies the attributes of the value 
that is returned if the procedure is 
invoked as a function at the primary 
entry point 

General format: 

entry-name: ••• PROCEDURE 
[ (parameter [~ parameter] ••• )] 
[OPTIONS(option-list)] 
[RECURSIVE] [data-attributes]; 

Syntax rules: 

1. The data attributes and the OPTIONS 
and RECURSIVE attributes may appear in 
any order and are separated by blanks. 

2. The attributes in the OPTIONS list are 
separated by commas, where necessary. 

General rules: 

1. The "parameters" are names that speci­
fy the parameters of the entry point. 
When the procedure is invoked" a rela­
tionship is established between the 
arguments of the invocation and the 
parameters of the invoked entry point 
(see "Relationship of Arguments and 
Parameters,," in Chapter 10). 

2. The OPTIONS attribute specifies a list 
of options, separated by commas where 
necessary. The list depends upon 
implementation. The OPTIONS attribute 
may be specified only for an external 
procedure. If specified. it applies 
to all of the entry pOints that the 
procedure might have. 

3. The RECURSIVE attribute specifies that 
this procedure may be invoked recur­
sively. This attribute applies only 



to the procedure for which it is 
declared,- and as a result applies to 
all of the entry points for that 
procedure. 

4. The data attributes permitted with a 
PROCEDURE statement are the arithmet­
ic, string, and pOinter attributes. 
The data attributes specify the char­
acteristics of the value returned by 
the procedure when invoked as a func­
tion d~ the primary entry point. 
(This rule applies to each entry name 
by which the procedure may be invoked. 
i.e., each entry name appended to the 
PROCEDURE statement.) The value spec­
ified in the RETURN statement of the 
invoked procedure is converted to the 
specified data attributes,. 

If data attributes are not speci­
fied, or if an incomplete set of data 
attributes is given at the entry 
pOint, default attributes are sup­
plied. In the first case. the name of 
the entry point is used to determine 
the default base and scale. 

If a PROCEDURE statement has more 
than one entry name, the first name is 
interpreted as the only label on the 
statement: each subsequent entry name 
is interpreted as a separate ENTRY 
statement having an identical paramet­
er list and the same data attributes 
as specified in the PROCEDURE state­
ment. 

For example" the statement: 

A:I: PROCEDURE: 

is equivalent to: 

A: PROCEDURE: 
I: ENTRY; 

Example: 

B: PROCEDURE; 

C=A(X"Y}; 
END B: 

A: PROCEDURE (B,C) FIXED; 

RETURN (B*C + SIN (p» 
END A: 

If procedure A is invoked as a function, 
as it is in procedure B., then when control 
is returned to B" the expression <B*C + SIN 
(P)) is evaluated, converted to fixed 
point. and the value assigned to C in 
procedure B. 

The PUT Statement 

Function: 

The PUT statement normally causes values 
of specified variables to be assigned to 
data fields in a data set. Alternatively. 
the data may be assigned to a character 
string variable. 

General format: 

PUT option-list 

Following 
list": 

is the format of "option 

[FILE (filename) I 
STRING (character-string-name) 

[data-specification] [PAGE] 
[SKIP [(expression)]] 
[LINE (expression) ] 

General rules: 

1. If neither the FILE (filename) option 
nor the STRING (character string name) 
appears, the standard system print 
file SYSPRINT is assumed. 

2. The "filename" refers to a file that 
has been associated, by opening, with 
the data set that is to recelve the 
values. It must be a STREAM OUTPUT 
file. 

3. The "character-string name" refers to 
the character string variable or 
pseudo-variable that is to receive the 
values. Each PUT operation using this 
option always begins at the beginning 
of the specified string. 

After appropriate conversion, as 
for a non-PRINT file, the data speci­
fied by the data list is assigned to 
the string starting at the left-most 
character. Blanks and delimiters are 
inserted as usual. If the string is 
not long enough to accommodate the 
data, the ERROR condition is raised. 

4. The options may appear in any order. 
The three options PAGE, SKIP, and LINE 
may be given only for PRINT files, and 
they take effect before transmission 
of any values defined by the data 
specification, if given. Of the 
three, only PAGE and LINE may appear 
together in a PUT statement, in which 
case, the PAGE option is applied 
first. 

5. The PAGE option causes a new current 
page to be defined within the data 
set. If a data specification is pre-

Chapter 8: Statements 125 



sent, the transmission of values 
occurs after the definition of the new 
page. The page remains current until 
the execution of a PUT statement with 
the PAGE option, until a PAGE format 
item is encountered, or until an END­
PAGE interrupt results in the 
definition of a new page. A new 
current page implies line one. 

6. The SKIP option causes a new current 
line to be defined for the data set. 
The expression~ if present. is con­
verted to an integer~. If ~ is 
greater than zero. w-l blank lines are 
created, and the wth line" relative to 
the current line, becomes the new 
current line. If w is not greater 
than zero, the effect is that of a 
carriage return with the same current 
line; characters previously written 
may be overprinted. If the expression 
is not present, SKIP (1) is implied. 
If less than ~ lines remain on the 
current page as determined by the 
PAGESIZE option of the OPEN statement, 
the ENDPAGE condition is raised. 

7. The LINE option causes a new current 
line to be defined for the data set. 
The expression is converted to an 
integer w. The LINE option specifies 
that blank lines are to be inserted so 
that the next line will be the ~th 
line of the current page. If at least 
w lines have already been written on 
the current page or if ~ exceeds the 
limits set by the PAGESIZE option of 
the OPEN statement, the ENDPAGE condi­
tion is raised. If w is less than or 
eq~al to zero, it is assumed to be 1. 

8. If the FILECfilename) option refers to 
an unopened file, the file is opened 
automatically for output. The effect 
is as if the PUT statement were 
preceded immediately by an OPEN state­
ment referring to the file. 

Examples: 

1. PUT DATA (A,B,C); 

Specifies the data-directed transmis­
sion of the values A, Band C to the 
file SYSPRINT. 

2. PUT FILE (LIST) EDIT (X,Y,z> (A(10» 
PAGE; 

126 

Specifies that a new page is to be 
defined for the print file LIST. The 
values of X, Y and Z are placed 
starting in the first printing posi­
tion of the new page. Each of the 
values will use the A(10) format item. 

The READ Statement 

Function: 

The READ statement transfers a record 
from a RECORD INPUT or RECORD UPDATE file 
to a variable in internal storage. 

General format: 

READ option-list 

Following is the format of 
list": 

FILE (filename) 

[

INTO (variable) ] 
SET (pointer-variable) 
IGNORE (expression) 

[KEY (expression)] 

"option 

[KEYTO 
(character-string-variable)] 

[EVENT (event-variable)] 
[NOLOCK] 

General rules: 

1. The options may appear in any order. 

2. The FILE (filename) option specifies 
the file from which the record is to 
be read. This option must appear. If 
the file specified has not been 
opened, it is opened automatically. 
The effect is as if the READ statement 
were preceded by an OPEN statement 
referring to the file. 

3. The INTO(variable) option specifies an 
unsubscripted level 1 variable in 
internal storage into which the record 
is to be read. The variable cannot 
contain VARYING character strings. 

4. The KEY (expression) option must appear 
if the file is DIRECT. The expression 
is converted to a character string 
that determines which record is read. 

5. The KEYTO(character-string-variable) 
option may be given only if the file 
is SEQUENTIAL and keyed. It specifies 
that the key of the record is to be 
copied onto the string variable. 
KEYTO and KEY may not appear in the 
same READ statement. 

6. The EVENT (event-variable) option 
allows processing to continue while 
the record is being read or ignored. 
It may not be specified for SEQUENTIAL 
BUFFERED files. If the EVENT (event 
variable) option is given" the event 
variable will be given the value 'O'B 
until the execution is complete, when 
it will be given the value 'liB. 



7. Any READ statement referring to an 
EXCLUSIVE file will cause the record 
to be locked unless the NOLOCK option 
is specified. A locked record cannot 
be read" deleted, or rewritten by any 
other task until it is unlocked. Any 
attempt to read" delete, rewrite., or 
unlock a record locked by another task 
results in a wait. Subsequent unlock­
ing can be accomplished by the locking 
task through the execution of an 
UNLOCK" READ NOLOCK, REWRITE, or 
DELETE statement "LUc1L specifies the 
same key, by a CLOSE statement, or by 
completion of the task in which the 
record was locked. 

Note that a record is considered 
locked only for tasks other than the 
task that actually locks it; in other 
words, a locked record can always be 
read by the task that locked it and 
still remain locked as far as other 
tasks are concerned (unless, of 
course, the record has been explicitly 
unlocked by one of the above methods). 

8. The SET option specifies that the 
record is placed in a buffer, and a 
pointer variable is assigned its iden­
tification such that a based variable 
may be subsequently referred to via 
that pointer value. The pointer value 
is valid until the next READ or until 
the file is closed. 

9,. The IGNORE option may be specified for 
SEQUENTIAL INPUT and SEQUENTIAL UPDATE 
files. The expression in the IGNORE 
option is evaluated and converted to 
an integer. If the value. n., is 
greater than zero, n records are 
ignored; a subsequent READ statement 
for the file will access the (n+l)th 
record. A READ statement without an 
INTO, SET, or IGNORE option is equi­
valent to a READ with an IGNORE(l). 

10. A keyed file being accessed sequen­
tially may be positioned by issuing a 
READ statement with the KEY option. 
The specified key will be used to 
identify the record required. 
Thereafter., records may be read 
sequentially from that point by use of 
READ statements without the KEY 
option. This applies to INPUT and 
UPDATE files. 

For BUFFERED SEQUENTIAL files, two 
positioning statements can be used. 
with the following formats: 

READ FILE (filename) 
INTO (variable) 
KEY (expression); 

READ FILE (filename) 
SET (pointer-variable) 
KEY (expression); 

For UNBUFFERED SEQUENTIAL files, 
only the first form shown immediately 
above can be used., and it may be 
specified with the EVENT option. 

Examples: 

1. READ FILE (ALPHA) SET (REC_IDENT); 

The next record from the data set 
associated with ALPHA is made availa­
ble and the pointer variable REC IDENT 
is set to identify the record In the 
buffer. 

2. READ FILE (BETA) KEY (VALUE) INTO 
(WORK) ; 

The record identified by the key VALUE 
is transmitted from the data set asso­
ciated with BETA into the variable 
WORK. 

The RETURN Statement 

Function: 

The RETURN statement terminates execu­
tion of the procedure that contains the 
RETURN statement and returns control to the 
invQking procedure. It may also return a 
value,. . 

General format: 

Option 1. 

RETURN; 

Option 2. 

RETURN (expression); 

General rules: 

1. Only the RETURN statement in Option 1 
can be used to terminate procedures 
not invoked as function procedures; 
control is returned to the pOint logi­
cally following the invocation. 

Option 1 represents the only form 
of the RETURN statement that may be 
used to terminate a procedure invoked 
with the task option. If the task 
invocation involved an EVENT option 
(see "The CALL statement.," in this 
Chapter), then the execution of the 
RETURN statement will cause the com­
pletion status of the associated event 
name to be set to 'l'B. 

Chapter 8: Statements 127 



2. The RETURN statement in Option 2 is 
used to terminate a procedure invoked 
as a function procedure only. Control 
is returned to the point of invoca­
tion, and the value returned to the 
function reference is the value of the 
expression specified. 

If the entry point at which the 
procedure is invoked specifies data 
attributes, the value of the expres­
sion is converted to the implicit or 
explicit data attributes specified at 
the entry point, before it is 
returned. 

3. If control reaches an END statement 
corresponding to the end of a proce­
dure, this END statement is treated as 
a RETURN statement (of the Option 1 
form) for the procedure. 

Example: 

A: PROCEDURE <X,Y) FIXED; 
DECLARE (X,Y) FLOAT; 

RETURN (X**2.Y**2); 
END; 

B: PROCEDURE; 
DECLARE A ENTRY RETURNS (FIXED); 

R A(P,Q)i 

END; 

In the assignment statement (R= 
A(P,Q);), procedure B invokes procedure A 
as a function. Procedure B specifies that 
the scalar expression in the RETURN state­
ment is to be evaluated; since X and Yare 
floating-point variables and the PROCEDURE 
statement specifies that the value returned 
is to be fixed point, the value of the 
expression is converted to fixed point, and 
this value is returned to B. 

Function: 

A REVERT statement specifying a given 
ON-condition is used to nullify the effect 
of the most recent previously executed ON 
statement for that condition in the con­
taining block and to cause the action 
specification to be reestablished as it was 
in the immediate, dynamically encompassing 
block (see "Activation and Termination of 
Blocks," in Chapter 6). 

128 

General format: 

REVERT condition; 

Syntax rule: 

The "condition" is any ON-condition 
(see Appendix 3). 

General rules: 

The execution of a given REVERT state­
ment, specifying a given condition and 
internal to a given block, has the 
effect described above only if an ON 
statement, specifying the same condi­
tion and internal to the same block, 
was executed after the block was acti­
vated. If such an ON statement was 
executed, and if the execution of no 
other similar REVERT statement has 
intervened, then the execution of the 
given REVERT statement does have the 
effect described above. Otherwise, 
the REVERT statement is effectively 
treated as a null statement. Thus, a 
repeated REVERT statement results in 
no operation. 

Examples; 

A: PROCEDURE; 

ON1: ON ZERODIVIDE GO TO ERRSPECi 

CALL Bi 

B: PROCEDURE; 

ON2: ON ZERODIVIDE; 

REVERT ZERODIVIDE; 

END B; 

ON3: ON ZERODIVIDE SYSTEM; 

END A; 

Unless it is stated otherwise, the con­
dition ZERODIVIDE always is enabled. If 
division by zero occurs prior to execution 



of statement ON1, an interrupt with stand­
ard system action takes place. 

If division by zero occurs after execu­
tion of ONl and prior to execution of 
statement ON2, an interrupt takes place and 
control transfers to the statement GO TO 
ERRSPEC. 

If division by zero occurs after execu­
tion of ON2 and prior to the REVERT state­
ment, an interrupt takes place effectively 
with no action. 

When the REVERT statement is executed, 
the effect of the statement ON2 is nulli­
fied, and statement ONl again becomes 
effective. If division by zero occurs 
after execution of the REVERT statement and 
prior to the execution of statement ON3, an 
interrupt takes place, and control trans­
fers to the statement GO TO ERRSPEC. 

After the execution of 
division by zero causes 
action to take place. 

±he REWRITE Statement 

Function: 

statement ON3, 
standard system 

The REWRITE statement refers to an 
UPDATE file. The purpose of the statement 
is to replace an existing record in the 
data set. 

General format: 

Following 
listn : 

is the format of noption 

FILE (filename) [KEY(expression)] 
[FROM(variable) ) 
[EVENT (event-variable)] 

General rules: 

1. The options may appear in any order. 

2. The FILE (filename) option specifies 
the file involved. It must appear. 
If the file is not open, it is opened 
automatically. 

3. The KEY (expression) option must appear 
if the file 1S a DIRECT UPDATE file 
and it cannot appear otherwise. The 
expression is converted to a character 
string and determines which record is 
written. 

4. The FROM(variable) option may be given 
to specify an unsubscripted level 1 

variable which is to be used as the 
source for the record. The variable 
cannot contain VARYING character 
strings .. 

5. The EVENT (event-variable) option 
allows processing to continue while 
the record is being written. It may 

6. 

7. 

8 .. 

__ ..&- 1.-.._ r- ___ .;",::.;".ri: .,f=,,_ C"I:'IAT1"C'l\1fT1T7\T DT1't;1_ 
.1.1'-''- J.JC vp,,:::1,...,..L..L..L"::::u. .LV,L. 1....J.L.t\:!V.L.IJ.. • ..L...L~ LJV.L. 

FERED files. If the EVENT (event 
variable) option is given_ the event 
variable will be given the value 'OIB 
until the execution is complete, when 
it will be given the value'l I B. 

If the record rewritten is 
was locked in the same 
becomes unlocked. 

one 
task, 

The FROM (variable) option must 
specified for a DIRECT UPDATE 
SEQUENTIAL UNBUFFERED UPDATE file. 

that 
it 

be 
or 

If the last record was read by a READ 
statement with the INTO option, REW­
RITE without a FROM option has no 
effect on the record in the data set; 
but if the last record was read by a 
READ statement with the SET option, 
the record will be updated by whatever 
assignments were made. 

Example: 

REWRITE FILE (ALPHA); 

The last record read from the data set 
associated with file ALPHA is rewrit­
ten into the data set. 

The SIGNAL Statement 

Function: 

The SIGNAL statement simulates the 
occurrence of an interrupt (see nInterrupt 
Operations,n in Chapter 6, and nThe ON 
Statement"). It may be used to test the 
action specification of the current ON 
statement. 

General format: 

SIGNAL condition; 

Syntax rule: 

The condition may be anyone of those 
described in nON-Conditions," in 
Appendix 3. 

General rules: 

1. When a SIGNAL statement is executed, 
it is as if the specified condition 

Chapter 8: Statements 129 



had actually occurred. The sequence 
of control through the program is 
interrupted, and control is trans­
ferred to the current ON-unit for the 
specified condition. After execution 
of the ON-unit, control normally 
returns to the statement immediately 
following the SIGNAL statement. 

2. If an ON statement specifies the CON­
DITION condition, the condition can 
cause an interrupt only if a SIGNAL 
statement" specifying this condition" 
is given. 

3. If the condition specified in the 
SIGNAL statement is disabled, no 
interrupt occurs, and the statement is 
equivalent to a null statement. 

4. If the condition has no current ON­
unit, then the normal system action 
for the condition is performed. 

Examples: 

1. X: PROCEDURE; 

ON1: ON ENDFILE (DATIN) Y,Z 0; 

Sl: SIGNAL ENDFILE (DATIN); 

ON2: ON ENDFILE (DATIN) SYSTEM; 

S2: SIGNAL ENDFILE (DATIN); 

END X; 

The Sl statement causes an 
interrupt in the same way as if an 
attempt to read past a file delimiter 
had actually occurred. Control is 
transferred to the statement Y,Z 0 
in the ONl statement. 

When the S2 statement causes an 
interrupt, control is transferred to 
the ON2 statement, and standard system 
action is taken. 

2. ON CONDITION (TAX) TAXCT TAXCT+l: 

130 

SIGNAL CONDITION (TAX); 

The 
action 

ON statement establishes an 
for the programmer-specified 

condition TAX. This condition can 
occur only when a SIGNAL statement 
causes the condition to occur. 

The STOP Statement 

Function: 

The STOP statereent causes irr~ediate ter­
mination of the major task and all sub­
tasks (see "Asynchronous Operations and 
Tasks," in Chapter 6). 

General format: 

STOP; 

The UNLOCK Statement 

Function: 

The UNLOCK statement makes the specified 
locked record available for operations on 
+-h" ".." ...... ,....,.....-,,:3 
'-~.&c; .L,'C;'-VLU. 

General format: 

UNLOCK option-list; 

Following 
list": 

is the format of "option 

FILE (filename) KEY (expression) 

General rules: 

1. The options may appear in either 
order. 

2. The FILE(filename) option specifies 
the file inVOlved, which must have the 
attributes UPDATE, DIRECT, and 
EXCLUSIVE. If the file is not open, 
it is opened automatically. The 
FILE(filenaree} option must appear. 

3. In the KEY (expression) option, the 
"expression" is converted to a charac­
ter string and determines which record 
is unlocked. This option must appear. 

4. A record can be unlocked only by the 
task which locked it. 

The WAIT Statement 

Function: 

The WAIT statement suspends operations 
in the task where it appears until certain 
events have been COITFleted. 



General format: 

WAIT (event-name L, event-name] ••• ) 
[(scalar-expression)]; 

Syntax rule: 

The event name is as described in 
!l!Event Data" .:_ ""L.. __ .&- __ "") 

.1.11 ,-.UQ.l;I 1..<:::.1.. £. .• 

General rules: 

1. The execution of this statement causes 
the task in which it is executed to be 
suspended until, for some or all of 
the event names in the list above. the 
condition 

EVENT (event-name) = 'liB 

is satisfied. (See "Asynchronous 
Operations and Tasks," in Chapter 6~ 
"Event Data" in Chapter 2. 
"Pseudo-Variables.," in this chapter 'II 

and the description of the EVENT 
built-in function in Appendix 1.) 

2. If the optional expression does not 
appear, all the event names in the 
list must satisfy the above condition 
before the task issuing the WAIT 
statement can resume. 

3. If the optional expression appears. 
the expression is evaluated when the 
WAIT statement is executed and con­
verted to an integer. This integer 
specifies the number of events that 
must satisfy the above condition 
before the task issuing the WAIT 
statement can resume. If the value of 
the expression is zero or negative~ 
the WAIT statement is treated as a 
null statement. If the value of the 
expression is greater than the number. 
n, of event names in the 1 i st" the 
value is taken to be n. If the 
statement refers to an array event 
name, then each of the array elements 
contributes to the count. 

Example: 

PI: PROCEDURE; 

CALL P2 EVENT(EP2)i 

WAIT(EP2); 

END; 

The CALL statement i when executed: 

attaches a task whose completiQn sta­
tus is associated with the event name 
EP2. When the WAIT statement is 
encountered!, the execution of the task 
is suspended until the value of 
EVENT (EP2) is '1' B" i,. e., until the 
attached task is completed. 

The WRITE Statement 

Function: 

The WRITE statement transfers a record 
from a variable in internal storage to a 
RECORD OUTPUT or DIRECT RECORD UPDATE file. 

General format: 

WRITE option-list 

Following is the format of "option 
list": 

FILECfilename) FROM (variable) 
[KEYFROM(expression)] 
[EVENT(event-variable») 

General rules: 

1. The options may appear in any order. 

2. The FILE (filename) option" which must 

3. 

4. 

5. 

appear, specifies the file in 
the record is to be written. 
file is not open, it is opened 
matically. 

which 
If the 
auto-

The FROM(variable) option specifies an 
unsubscripted level 1 variable which 
is to be written. It must appear. 
The va~iable cannot contain VARYING 
character strings. 

The KEYFROM(expression) option is con­
verted to a character string and 
attached to the record as a key. 

The EVENT (event variable) option 
allows processing to continue while 
the record is being written. It may 
not be specified for SEQUENTIAL BUF­
FERED files. If the EVENT (event 
variable) option is given, the event 
variable will be given the value 'OIB 
until the execution is corr.plete. when 
it will be given the value ·l~B. 

Example: 

WRITE FILE (BETA) FROM (UPDATE) 
KEYFROM(UKEY); 

Specifies that the record UPDATE is 
written as the next record in the data 
set associated with file BETA. The 
key identifying the record in the data 
set is taken from UKEY. 

Chapter 8: Statements 131 



CHAPTER 9: COMPILE-TIME FACILITIES 

INTRODUCTION 

compile-time is generally defined as 
that time during which a user's source 
program is compiled, or translated, into an 
executable object program. Ordinarily~ 
changes to a source program may not be made 
at this time. 

However, with PL/I, the programmer is 
allowed to exercise some control over his 
source program at compile-time. This is 
made possible through a somewhat different 
approach to compile-time processing. 
Compile-time as defined in PL/I is a two­
stage process: 

1. The Processor Stage During this 
stage, the,processor scans the user's 
input for compile-time statements, 
i.e., statements that instruct the 
processor to modify the user's source 
program. These statements are not 
considered part of the source program. 
yet they appear in the input freely 
intermixed with the statements that 
constitute the source program. The 
modified source program (the output 
from this first stage) then serves as 
the input to the second stage. Note 
that if no modification is performed. 
input to the second stage is exactly 
the same as the source program that 
constituted the input to the first 
stage. 

2. The Compilation Stage -- During this 
stage, the compiler takes the output 
from the first stage and compiles it 
into an executable object program. 

This chapter is primarily concerned with 
the first stage; very little, if anything, 
will be said about the actual compilation 
of a program. Through the means described 
in this chapter, the processor can be used 
to perform many functions; among them are 
the following: 

1. Modification of a source program for 
the purpose of changing variable names 
or for notational convenience. 

2. Conditional compilation of sections of 
the source program. In other words, 
the user can dictate which sections of 
his program are to be compiled. 

3. Incorporation of strings of text into 
the source program, where the strings 
of text reside in a user or system 
library. 

132 

THE PROCESSOR 

PROCESSOR INPUT AND OUTPUT 

The processor interprets compile-time 
statements and acts upon the source program 
accordingly. Input to the processor 
consists of a character string, called the 
source text, which contains compile-time 
statements and source program text, freely 
intermixed. Compile-time statements are 
identified by a leading percent sign (%) 
and are executed upon being encountered by 
the processor (with the exception of 
compile-time procedures, which must be 
invoked in order to be executed). One or 
more blanks may separate the percent sign 
from the statement. 

The processor also checks the source 
program text, but only to insure that there 
are no unmatched comment or character-

........,.... __ ,................. r-.~.,.~ ....... "'" 1 

.t:-'~.L ...... ~u.... "":/J.lI.uV.J,. string delimiters. A 
appearing within a comment or a character 
string is considered solely as part of the 
comment or string, respectively. 

Output from the processor consists of a 
newly created character string, called the 
program text, which contains the modified 
source program text, and which serves as 
input to the compiler. This new text has 
been modified by the processor according to 
the compile-time statements encountered in 
the source text. 

THE PROCESSOR SCAN 

The processor begins to scan the charac­
ters of the source text in a sequential 
manner. If the source text does not con­
tain a compile-time statement. the proc­
essor places the scanned characters into 
the program text in the same order and form 
in which they were encountered. In other 
words, if there are no compile-time state­
ments, the program text is identical to the 
source text. 

When a compile-time statement is encoun­
tered during the scan, it is executed. 
This execution may cause the sequential 
scanning and placing of characters to be 
modified in either of the following ways: 

1. The executed compile-time statement 
may cause the processor to continue 



the scan from a different point in the 
source text. 

2. The executed compile-time statement 
may specify to the processor that upon 
the subsequent encounter of a speci­
fied identifier within the source pro­
gram, that identifier itself is not to 
be inserted into the program text 
being generated; rather, the currently 
assigned value of the identifier (that 
is, the value assigned by a compile­
time statement executed prior to this 
encounter) is to be placed into the 
program text (unless this value or 
part of it, in turn, can be replaced 
-- see "Rescanning and Replacement" 
below). Note that compile-time 
statements themselves are never 
inserted in the program text; rather# 
a blank is inserted in place of such 
compile-time statements. 

The processor scan is terminated when an 
attempt is made to scan beyond the last 
character in the source text. The result­
ing program text is a string representing 
the PL/I program to be compiled. 

Rescanning and Replacement 

When an activated variable or an acti­
vated procedure name is encountered in the 
source text (see "The DECLARE statement" 
and "The ACTIVATE and DEACTIVATE 
statements" for details about activating)T 
its value becomes a candidate for replace­
ment. This value is then rescanned to 
determine whether or not it, or-any part of 
it, can be replaced by another value. If 
it cannot be replaced, it is inserted into 
the program text; if it is replaced# the 
new value, in turn" is rescanned" etc. 
Thus, insertion of a value into program 
text takes place only after all possible 
replacements have been made. 

Example: 

If the source text contained the following 
statements: 

% DECLARE A CHARACTER. B FIXED; 
% A = IB + C'; 
% B = 2; 
X Ai 

then the following would be generated in 
the program text: 

X 2 + C ; 

In the above example, the first state­
ment is a compile-time DECLARE statement 
that establishes A and B as compile-time 

variables with the indicated attributes, 
and also serves to activate these varia­
bles. The second statement is a compile­
time assignment statement that assigns the 
character string IE + C' to A. The third 
statement is also a compile-tirre assignment 
statement, and assigns the value 2 to B. 
The fourth statement is a source program 
statement which assigns A to X. However, 
since A has been activated for replacement 
and has been assigned a value, namely, the 
string IB + C I

, the value of A is rescanned 
for possible further replacement action~ 
This res canning causes B to be replaced by 
the value 2. However, since 2 is not a 
compile-time variatleT it cannot be 
replaced, and the chain of replacements 
comes to an end. Thus, the source program 
statement X = Ai tecomes the program text 
statement X = 2 + C ; (note that a blank 
is appended to each end of the replacement 
value when it is written into the program 
text) • 

Compile-time variables, compile-time 
procedure references, constants, and opera­
tors can be included in the value to be 
assigned to a compile-time variable; 
compile-time staterr,ents cannot be included 
in such a value. Note, however. that if 
the user desires to generate operators such 
as ,= and /* into the program text. they 
must be generated as a complete entity. 
That is, one cannot, for exarrple, have a /A 
in the source program and expect a % A 
'*' statement to generate the comment deli­
miter 1* in the program text. The reason 
why this cannot te done is that all 
replacement values are placed into the 
program text with one blank appended to 
each end. Thus, the hypothetical case 
above would result in /b*b (where each b 
represents a blank) teing generated in the 
program text. 

Example: Compile-Time Loop Expansion 

A programmer may wish, at object-time, 
to execute the following loop: 

DO I 
Z(I) 
END; 

1 TO 10; 
X(I) + Y{I); 

The following program would accomplish 
the same thing, but without the execution­
time requireroents of incrementing and 
testing: 

% DECLARE I FIXED; 
% I = 1; 
% LAB:; 
Z(I) = XCI) + Y(I); 
% I = I + 1; 
% IF I<= 10 % THEN % GO TO LAB; 
% DEACTIVATE I; 

Chapter 9: Compile-Time Facilities 133 



The precise 
statements is 
"Compile-Time 
Procedures." 

effect of 
detailed in 
Statements, 

each of these 
the section 
Groups, and 

Briefly, the % prefixed to a statement 
indicates that the action specified by that 
statement is to be carried out at the time 
that it is encountered by the processor. 
The statement % 1=1 assigns the value 1 to 
the compile-time variable I and specifies 
that, unless the programmer indicates 
otherwise (note the later appearance of the 
% DEACTIVATE statement), subsequent occur­
rences of the identifier I in the source 
program will result in its replacement in 
the program text by the string Ill. The % 
LAB: statement is a compile-time null 
statement that is used as the transfer 
target for the % GO TO statement that 
appears later. 

The string 'Z(I) = XCI) + Y(I);I is a 
source program statement. Initially, the 
variable I was given the value 1; there­
fore, the first time that this string is 
scanned, the string IZ( 1 ) = X( 1 ) + 
Y( 1 );' will be inserted into the program 
text by the processor. I is then incre­
mented by 1 (% I = 1+1;), after which the 
compile-time IF statement instructs the 
processor to test the value of I. If I is 
not greater than 10, the scan is to resume 
at the compile-time statement labeled LAB; 
otherwise, the scan is to continue with the 
text immediately following the % GO TO 
statement. 

The % DEACTIVATE statement is interpret­
ed as follows: subsequent occurrences of 
the variable I in the source program are 
not to be replaced by the s~ring Ill' in 
the program text being formed (note that I 
has the value 11 at the time the % DEACTI­
VATE statement is encountered); instead 
each I will be left unmodified. 

As a result of the above compile-time 
activity, the following PL/I statements are 
generated into the program text: 

Z ( 1 
Z( 2 

X( 1 
X ( 2 

+ y( 1 ); 
+ Y( 2 ); 

Z ( 10 ) = X ( 10 ) + Y ( 10 ); 

The foregoing statements are the state­
ments that will actually be compiled into 
executable object code. 

134 

COMPILE-TIME STATEMENTS, GROUPS, AND 
PROCEDURES 

Note that wherever keywords are shown 
below, they may be abbreviated as shown in 
Appendix 4. Also, a corrroent appearing 
within a compile-time statement is never 
written into the program text. 

THE DECLARE STATEMENT 

Function: 

The DECLARE statement establishes an 
identifier as a compile-time variable or a 
compile-time procedure name. The appear­
ance of an identifier in a compile-time 
DECLARE statement activates that identifi­
er; that is, it indicates to the processor 
that this identifier may cause replacement 
action in the source program (see "The 
ACTIVATE and DEACTIVATE Statements" for 
more details). An identifier may cause 
such action if and only if it has first 
appeared in a compile-time DECLARE state­
ment; that is, any use of such an identifi­
er before its appearance in a compile-time 
DECLARE statement is an error. 

General forIPat: 

% [label:] ••• DECLARE identifier{CHARACTERI 
FIXEDIENTRY[([CHARACTERIFIXED] 
[,[CHARACTERIFIXED]] ••. )] 
RETURNS({CHARACTERIFIXED})} 
[,identifier{CHARACTERIFIXEDI 
ENTRY[([CHARACTERIFIXED] 
[, [CHARACTERIFIXED]] ••. )] 
RETURNS{{CHARACTERIFIXED})}] •.. ; 

Syntax rules: 

1. Commas must separate declarations of 
separate identifiers within a single 
%DECLARE statement. 

2. The syntax is the same as the syntax 
for declaring source program PL/I 
variables and entry names, but only 
the CHARACTER (with no length 
specification), FIXED, ENTRY, and 
RETURNS attributes are allowed. 

3. The attributes may be factored. 

General rules: 

1. No lenqth may be specified with the 
CHARACTER attribute. If CHARACTER is 
specified, it is assumed that the 
associated identifier represents a 
varying character string that has no 
maxirr,um length. 



2. A compile-time declaration is not 
known until it has been scanned by the 
processor. Any reference to a 
compile-time variable or compile-time 
procedure name encountered before the 
variable or procedure name has been 
declared is in error. 

3. The scope of all compile-time varia­
bles, compile-time procedure names, 
and labels of compile-time statements 
is the entire text scanned bv the 
processor., not inc I uding any compile­
time procedures that redeclare a 
compile-time identifier. The scope of 
a declaration in a compile-time proce­
dure is limited to that procedure. 

4. If a compile-time procedure is 
referred to in the source program, 
then a compile-time ENTRY declaration 
must have been given for it. If such 
an ENTRY does not account for any 
parameters, it is assumed that the 
compile-time procedure has none. If, 
however, parameters are accounted for 
in the ENTRY declaration, the proc­
essor will expect to find a parenthe­
sized list of arguments, separated by 
commas, in the procedure reference. 

Note that each source program argu­
ment to a compile-tiroe procedure is 
interpreted as a character string, and 
may not contain commas or right paren­
theses; the first right parenthesis 
encountered in such an argument list 
terminates the list. All left paren­
theses, except the first, are consid­
ered as part of the argument list. 
For example, the arqument list 
(A(B,C» would be interpreted as two 
arguments, namely, A(B and C. (Note 
also that these interpretations apply 
only to source program references to 
compile-time procedures; a compile­
time reference to a compile-time 
procedure is interpreted in the usual 
fashion.) 

When the source program invokes a 
compile-time procedure, each argument 
is scanned for possible replacement 
values. The actual invocation occurs 
after all replacement activity, if 
any, has been performed. 

All arguments in a compile-time 
procedure reference are converted to 
the type indicated by the correspond­
ing attribute in the ENTRY declaration 
for that procedure. If an argument 
does not have a corresponding attri­
bute in the ENTRY declaration, the 
argument will not be converted. (For 
an illustration of a source program 
reference to a compile-time procedure, 

see the example at the end of the 
section ~The Compile-Time Procedure.~) 

5. The value returned to the source pro­
gram by a compile-tiroe procedure is 
also scanned for replacement values. 
The type of the value returned must be 
the same as the type specified in the 
RETURNS attribute declaration for that 
procedure. 

THE ASSIGNMENT STATEMENT 

Function: 

The compile-tirre assignment statement is 
used to evaluate compile-time expressions 
and to assign the result to a compile-time 
variable. 

General format: 

% [label:) compile-time-variable 
compile-time-expression; 

Syntax rules: 

1. The operands of a compile-time expres­
sion may be cptionally signed decimal 
integer constants, bit string con­
stants, character-string constants, 
compile-time variables, compile-time 
procedure references,or references to 
the SUBSTR built-in function (with the 
restriction that the first argument 
must be a compile-time character­
string variable or character-string 
constant). No other data types or 
built-in functions are allowed. 

2. All PL/I operators, except 
exponentiation (**), are allowed in 
compile-time expressions. 

General rules: 

1. Compile-time expressions are evaluated 
according to the same rules as source 
program PL/I expressions, with a sin­
gle exception: for arithmetic opera­
tors, only decirral integer arithmetic 
of precision (N,O) is performed; that 
is, each operand of an arithmetic 
operation is considered to have a 
precision of (N,O) before the opera­
tion is performed, and the result of 
the operation will also have a preci­
sion of (N,O). Thus, the result of 
the assignment statement below is N + 
2 blanks and one zero. -

% DECLARE A CHARACTER; 

% A = 3/5; 

Chapter 9: Compile-Time Facilities 135 



When required, as in the case 
above, conversions from fixed point to 
character string, and vice versa, are 
carried out according to the rules 
followed for such conversions in PL/I 
source programs. 

2. When the value assigned to a compile­
time variable is a character string, 
said character string should not 
contain a compile-time statement nor 
should it contain unmatched comment or 
character-string delimiters. The rea­
son for this is that such values 
cannot be rescanned and will therefore 
be considered in error when, and if, a 
rescan is attempted. 

THE ACTIVATE AND DEACTIVATE STATEMENTS 

Function: 

The appearance of an identifier in an 
ACTIVATE statement makes it eligible for 
replacement when certain conditions are met 
(see General Rules below); such an appear­
ance is said to activate an identifier. 
The DEACTIVATE statement deactivates an 
identifier; that is, any subsequent appear­
ance of such an identifier in the source 
program causes no replacement action 
(unless, of course, the identifier is again 
activated); the identifier remains 
unchanged. 

General format: 

% [label:] {ACTIVATEIDEACTIVATE} iden-
tifier [,identifier] ••• , 

General rules: 

1. Both compile-time variables and 
compile-time procedure references may 
be activated or deactivated. 

2. When an identifier is deactivated, its 
appearance in the source program does 
not cause any replacement action; the 
identifier is placed unchanged into 
the program text. However, any value 
that the identifier may have had 
before it was deactivated remains in 
effect as far as compile-time state­
ments are concerned; deactivating an 
identifier only nullifies its ability 
to effect replacement. 

3. When an identifier is activated, the 
following conditions must be met in 
order for replacement to occur: 

a. 

136 

The identifier must 
within a comment or 
string. 

not appear 
a character 

b. The identifier must be immediately 
preceded and followed by a PL/I 
delimiter; i.e., it ITust appear in 
the context of a PL/I identifier. 

If both conditions are met, the 
replacement value for the compile-time 
variable or procedure reference is 
converted to a character string and 
then placed into the program text 
(assuming that the res can does not 
cause any further replacement). The 
surrounding quotes are not inserted; 
blanks are inserted immediately 
preceding and following the value. 

Note: The appearance of an identifier in a 
DECLARE staterr:ent serves to activate that 
identifier initially. Therefore, an iden­
tifier need be activated by an ACTIVATE 
statement only if it has been explicitly 
deactivated. 

Example: 

If the source text contains the fol­
lowing staterr:ents: 

% DECLARE I FIXED, T CHARACTER; 
% DEACTIVATE I; 
% I = 15; 
% T = 'A(I)'i 

S = I*T*3; 
% I = I + 5; 
% ACTIVATE Ii 
% DEACTIVATE T; 

R = I*T*2; 

then the program text generated by the 
above would be: 

S 
R 

1* A(I} *3; 
20 *T*2; 

THE GO TO STATEMENT 

Function: 

The compile-time GO TO statement causes 
the processor to resume its scan at the 
specified label. 

General forrr.at: 

% [label:] {GO TOIGOTO} label; 

General rule: 

The label that determines the point at 
which the scan will resume must be the 
label of a compile-time statement. 



THE NULL STATEMENT 

Function: 

The compile-time null statement is used 
to insert compile-time labels into the 
text; these labels are transfer targets for 
compile-time GO TO statements. 

General format: 

% [label: j ••• ; 

THE IF STATEMENT 

Function: 

The compile-time IF statement controls 
the flow of the processor's scan according 
to the value of a compile-time expression. 

General format: 

% [label:] IF compile-time-expression 
% THEN compile-time-group-l 
[% ELSE compile-time-group-2] 

Syntax rule: 

A compile-time group is any single exe­
cutable compile-time statement or a 
compile-time DO group (see below). 

General rule: 

The compile-time expresslon is evaluated 
and converted to a bit string. (If the 
conversion cannot be made, it is an error.) 
If any bit in the string has the value 1, 
compile-time group-l is executed and 
group-2, if present, is skipped. Other­
wise, group-l is skipped and group-2, if 
present, is executed. In either case, the 
scan resumes immediately following the IF 
statement, unless, of course, a compile­
time GO TO statement in one of the groups 
has caused the processor to resume its scan 
elsewhere. 

THE DO GROUP 

General format: 

% [label:] DO[i ml TO m2 [BY m3]]; 

% [label:] ••• END [label]; 

Syntax rule: 

The i represents a compile-time 
variable,- and ml, m2, and rr3 are compile­
time expressions. 

General rules: 

1. Transfer may not be made into an 
iterative DO group except via a return 
from a compile-time procedure invoked 
from within the group. 

2. The text of a DC group way consist of 
both compile-time statewents and 
source program statements. The exam­
ple called "Compile-Time LOOp 
Expansion" in the section "Rescanning 
and Replacement" can be expressed sim­
ply as follows: 

% DECLARE I FIXED; 
% DO I = 1 TC 10; 
Z(I) = XCI) + Y(I); 
% END; 
% DEACTIVATE Ii 

3. The semantics are the same as for 
source program DO groups. 

THE INCLUDE STATE~ENT 

Function: 

The INCLUDE statement is used to incor­
porate strings of external text into the 
program text being fermed. 

,., _____ ___ , c _ ~ __ .1.... _ 

~.:n=lleLa.l. .l.ULWC1L.; 

%[label:] .•. INCLUDE 

\

identifier-l [Cidentifier-2)] 

[identif ier-l] (identifier- 2) 

,[identifier-3 [(identifier-4)]] 

[identifier-3] (identifier-4) 

General rules: 

... , 

1. Each pair of identifiers is used in an 
implementation-defined manner to iden­
tify a data set. This data set may 
contain source program text and/or 
compile-time statements. 

2. The incorporated data sets are 
scanned, in sequence, in the same 
manner as the source text, i.e., 
replacements are made and compile-time 
statements are executed. Thus, they 
may contribute to the final program 
text. 

Chapter 9: Corrpile-Time Facilities 137 



3. A transfer of control from included 
text to a statement in the containing 
text is valid. but the reverse is in 
error. (Note that "transfer of 
control" should be taken in the sense 
of a GO TO statement only; a "transfer 
of control" in the sense of invoking a 
compile-time procedure is always per­
missible.) An analogous situation 
occurs with nested DO loops; an inner 
loop can transfer control to an outer 
containing loop but not vice versa. 

Examples: 

1. Assume that the data set named PAYRL 
contains the following structure dec­
laration: 

DECLARE 1 PAYROLL, 
2 NAME, 

3 LAST CHARACTER (30) VARYING, 
3 FIRST CHARACTER (15) VARYING, 
3 MIDDLE CHARACTER (3) VARYING, 

2 MAN_NO FIXED DECIMAL (6,0), 
2 HOURS, 

3 REGLR FIXED DECIMAL (8,2), 
3 OVRTIM FIXED DECIMAL (8,2), 

2 RATE, 
3 REGLAR FIXED DECIMAL (8,2), 
3 OVERTIME FIXED DECIMAL (8,2); 

then the following compile-time program 

% DECLARE PAYROLL CHARACTER; 
% PAYROLL = 'CUM_PAY'; 
% INCLUDE PAYRL; 
% DEACTIVATE PAYROLL; 
% INCLUDE PAYRL; 

would generate two identical structure des­
criptions ln the program text, tHe only 
difference being their names, CUM_PAY and 
PAYROLL. 

2. If the source text contained the fol­
lowing: 

138 

% DECLARE(FILENAME1,FILENAME2) 
CHARACTER; 
% FILENAMEl = 'MASTER'; 
% FILENAME2 = 'NEWFILE'; 
% INCLUDE DECLARATIONS; 

and if the data set named DECLARATIONS 
contained 

DECLARE 
FILENAMEl FILE RECORD INPUT 

DIRECT KEYED(5) , 
FILENAME2 FILE RECORD OUTPUT 

DIRECT KEYED(5): 

then the program text would contain 
the following statement: 

DECLARE 
MASTER FILE RECORD INPUT DIRECT 

KEYED(5). 
NEWFILE FILE RECORD OUTPUT DIRECT 

KEYED(5); 

Note that in this way a central 
library of file declarations can be 
used. with each user supplying his own 
names for the files being declared. 

THE COMPILE-TIME PROCEDURE 

A compile-time procedure is an internal 
procedure that can te executed only at the 
processor stage. Its syntax differs from 
an ordinary PL/I internal procedure in that 
its PROCEDURE and END statements must each 
have a leading percent symbol. 

General format: 

%label:[label:] ••• PRCCEDURE[Cidentifier 
[,identifier] ••• )] 
{CHARACTERIFIXED}; 

[label:] •.• RETURN(expression); 

% [label:] ••• END [label]; 

The foregoing format defines an internal 
function procedure that may be used at 
compile-time to corrpute a compile-time 
value. Each identifier is a parameter for 
the procedure, and the CHARACTER or FIXED 
attribute describes the value returned. 

In addition to the RETURN statement 
shown in the above format, the only state­
ments and groups that may be used within a 
compile-time procedure are: 

1. The null statement 
2. The DECLARE statement 
3. The assignment statement 
4. The GO TO staterrent 
5. The IF staterrent 
6. The DO group 

The syntax and meaning of these state­
ments and the DO group is exactly that 
described earlier in this chapter, the only 
exception being that the percent symbols 
must be omitted. 

A compile-time procedure can be invoked 
by a function reference in a compile-time 
statement, or, if the procedure has teen 
activated, by a reference to its name in 
the source program. A GO TO statement 
appearing within a compile-tirre procedure 
may not transfer control to a point outside 
that procedure. 



When the Compile-Time Processor encoun­
ters a compile-time procedure during normal 
scanning, it notes the procedure and skips 
to the text immediately following the % END 
statement for the procedure. 

The example that follows illustrates how 
compile-time procedures can be used. 

Example: Source Program Reference to a 
Compile-Time Procedure 

In the statements below, VALUE is a 
compile-time procedure that returns a 
value of the form arg1(arg2), where 
argl and arg2 represent the arguments 
that are passed to the procedure. 

The source text contains the follow­
ing: 

% DECLARE A CHARACTER, VALUE 
(CHARACTER, FIXED) 
(CHARACTER); 

DECLARE (Z(10),Q) FIXED; 
%A='Z'; 

ENTRY 
RETURNS 

% VALUE: PROCEDURE (ARG1, ARG2) CHARACTER; 
DECLARE ARG1 CHARACTER, 

ARG2 FIXED; 
RETURN (ARG 11 1 ' ( , I I ARG 2 I I ') , ) ; 

% E~u VALUE; 
Q 6 + VALUE (A,3); 

The last statement invokes the proce­
dure VALUE. However, before the argu­
ments are passed, A is replaced by its 
value, Z, and the character string 3 

is converted to FIXED. Thus~ the 
value returned by VALUE is the string 
Z(3). This value is then inserted 
into the program text in place of the 
procedure reference. The program text 
will therefore be as follows: 

DECLARE (Z(10)~Q) FIXED; 
Q :: 6 + Z(3); 

THE COMPILE-TIME EUILT-IN FUNCTION SUBSTR 

The built-in function SUBSTR is the only 
built-in function that can be invoked at 
compile-time. It can be invoked by a 
reference to its name in either a source 
program statement or a compile-time state­
ment. 

A source program reference to SUESTR 
will be executed at compile-time only if 
the name SUBSTR has teen explicitly acti­
vated by an ACTIVATE statement. For such a 
reference" the arguments are treated in the 
same way that arguments are treated in a 
source program reference to a compile-time 
procedure (see "The DECLARE Statement" in 
this chapter). 

A compile-time reference to SUBSTR will 
be executed regardless of whether or not 
SUBSTR has been activated (see "The Assign-
ment Statement" in this chapter addi-
tional information). 

Chapter 9: Compile-Time Facilities 139 



CHAPTER 10: SPECIAL TOPICS 

RELATIONSHIP OF ARGUMENTS AND PARAMETERS 

When a procedure is invoked, a relation­
ship is established between the arguments 
of the invoking statement and the paramet­
ers of the invoked entry point. 

A parameter may be a scalar, array~ or 
structure name (including a label variable 
name, a task name, an array name, or an 
event name) that is unqualified and unsub­
scripted, or it may be a file parameter or 
an entry par~meter. parameters must be 
level 1 identifiers, i.e •• they may not be 
members of structures. 

A file parameter may be used within a 
procedure wherever a file name may be used; 
an entry parameter may be used wherever an 
entry name may be used. 

A reference within a procedure to a 
parameter produces an undefined result if 
the entry point at which the procedure is 
invoked does not include that parameter in 
its parameter list. 

Parameters must be declared in the 
invoked procedure; they cannot be declared 
in outer containing blocks. If no explicit 
declaration is given, an implicit or con­
textual declaration is assumed, internal to 
the invoked procedure. 

Parameters cannot be declared with the 
storage class attributes STATIC, AUTOMATIC, 
or CONTROLLED <pointer variable) with scope 
attributes. or with the DEFINED attribute. 

A parameter may have the CONTROLLED 
storage class attribute. In this case, the 
associated argument must also have the 
CONTROLLED attribute with no dummy created 
for that argument. 

EVALUATION OF ARGUMENT SUBSCRIPTS 

When an argument is a subscripted varia­
ble, the subscripts are evaluated before 
invocation. The specified element is then 
passed as the argument. Subsequent changes 
in the subscript during the execution of 
the invoked procedure have no effect upon 
the corresponding parameter. 

140 

USE OF DUMMY ARGU~ENTS 

A constructed durrmy argument containing 
the argument value is passed to a procedure 
if the argument is one of the following: 

a constant, 
an entry name, 
an expression involving operators, 
an expression in parentheses, or 
an expression whose data attributes 

may disagree with the declared data 
attributes of the parameter. 

In all other cases the argument as it 
appears is passed. The parameter becomes 
identical with the passed argument; thus, 
changes to a pararreter will be reflected in 
the original argument only if a dummy is 
not passed. 

USE OF ~HE ENTRY ATTRIBUTE 

An ENTRY attribute may be specified for 
the invoked entry name; this ENTRY attri­
bute appears in a DECLARE statement whose 
scope inclUdes the invoking block. If an 
ENTRY attribute is not specified in the 
invoking procedure for the invoked entry 
name, the attributes of the arguments must 
agree with those of the corresponding par­
ameters of the invoked entry. 

If an ENTRY attribute without parameter 
attribute lists is s~ecified for an iden­
tifier, it indicates that the identifier is 
an entry name. In this case also. the 
argument and parameter attributes are 
assumed to agree. 

However" if an ENTRY attribute with 
parameter attribute lists is specified for 
the invoked entry name, then the attributes 
of the parameter of the invoked entry are 
assumed to be the same as those specified 
for it in the ENTRY attribute specifi­
cation. If an argument has data attributes 
that differ from the corresponding set of 
attributes defined in the ENTRY attribute 
specification (string lengths are consid­
ered to match only if they have the same 
decimal integer constant as length). then a 
dummy argument, with the value of the given 
argument. is constructed by converting the 
argument to the data attributes defined for 
the corresponding parameter in the ENTRY 
attribute specification. If conversion is 
impossible, then the program is in error 



(e.g., conversion of file name to bit). 
The dummy argument is then passed to the 
invoked entry. Dummy arguments have CON­
TROLLED storage class in the invoking pro­
cedure. They are allocated immediately 
before invocation of the procedure and 
freed upon return, unless the invocation 
has a task option, in which case they are 
freed upon exit from the invoking block. 

The asterisk notation may be used in the 
ENTRY attribute to specify that for varying 
length strings. or arrays of adjustable 
dimensions, the current argument bounds or 
length are to be assumed for the parameter. 

Example: 

A: PROCEDURE: 
DECLARE B ENTRY (FIXED, FLOAT), 

(C" D) FLOAT: 

CALL B(C,D); 

END A; 

B: PROCEDURE (p.Q>; 
DECLARE P FIXED, Q FLOAT; 

END B; 

The specification of the ENTRY attribute 
in procedure A indicates that B has two 
parameters. the first with attribute FIXED 
and the second with attribute FLOAT. How­
ever, the arguments C and D both have the 
FLOAT attribute. Since C is to be fixed­
point when it is passed to procedure B, a 
dummy argument is constructed by converting 
C from floating-point to fixed-point. This 
dummy argument is then passed to B. 

CORRESPONDENCE OF PARAMETERS AND ARGUMENTS 

If a parameter of an invoked entry is a 
scalar, the argument must be a scalar 
expression.. The data attributes of the 
argument must agree with the corresponding 
attributes of the parameter. 

If a parameter of an invoked entry is an 
array., the argument must be an array 
expression.. The argument may be a scalar 
expression so long as an ENTRY attribute is 
given for the invoked entry, specifying the 
dimension attribute for the relevant param­
eter. Asterisks may not be given in the 
dimension attribute if the argument is a 
scalar. In this case, a dummy array argu= 

ment will be constructed where the value of 
each element of the array is the value of 
the scalar expressioDe The data attributes 
of the argument must agree with those of 
the parameter. If the asterisk notation is 
not used to specify the dimensions of the 
parameter in the invoked procedure, the 
values of the bounds of the array argu~ent 
must agree with the values of the bounds 
specified for the parameter in the invoked 
procedure. 

If a parameter is a structure, the 
argument must be a structure expression. 
When a structure description is given for a 
parameter in an ENTRY attribute specifi­
cation, a scalar expression may be speci­
fied as the corresponding argument. A 
dummy structure argument will then be con­
structed where the value of each element of 
the structure is the value of the scalar 
expression. The data attritutes of the 
elements of the structure argument ~ust 

match those of the associated parameter as 
specified in the invoked procedure. The 
relative structuring of the argument and 
the parameter must be the sarre. although 
the level numbers need not be identical. 

If a parameter is a cell, the corres­
ponding argument must be a cell whose 
relative structuring is the same as that of 
the parameter, although the level numbers 
need not be identical. 

If a parameter is a scalar-label varia­
ble, the argument must be a scalar-label 
variable or constant. If a parameter is an 
array-label variatle. the argument must be 
an array-label variable. If an ENTRY 
attribute is given for the invoked entry in 
the invoking procedure, and if the 
appropriate parameter attribute list speci­
fies that the parameter is a label array, 
then the argument may also be a scalar­
label variable or constant; a dummy label 
array argument will be suitably 
constructed. A dummy argument is always 
constructed when the argument is a label 
constant. 

If the argument is a statement label 
constant. this statement label constant is 
qualified by an identification of the cur­
rent invocation of the block containing the 
label; this information is passed as a 
dummy argument to the invoked entry .• 

If a parameter is an entry parameter, 
the argument must be an entry name or entry 
parameter. When a parameter is specified 
as an entry parameter in the parameter 
description of an ENTRY attribute and is 
not given data attributes, no default data 
attributes are assumed. If it is necessary 
that the entry parameter have data attri­
butes, they may be specified in the param­
eter description and a check will be wade 

Chapter 10: Special Topics 141 



to insure that a correct argument is pro­
vided. 

If a parameter is a file parameter, the 
argument must be a file name or file 
parameter. It is not necessary for the 
file parameter and argument attributes to 
match, although on use of the file paramet­
er, the attributes of the argument must not 
cause any conflict with the merged attri­
butes as specified in Chapter 7. 

An argument passed to a parameter that 
is a fixed-length string variable or an 
array of fixed-length string elements must 
be of fixed length if no dummy argument is 
to be created. An argument passed to a 
parameter that is a varying-length string 
variable or an array of varying-length 
string elements must be of varying length 
if no dummy argument is to be created. 

Example: 

M1: PROCEDURE; 
DECLARE A(10), AA(10), AAA(10), 

N EXTERNAL; 

N=10; CALL SlCA,AA,AAA); 

END Ml; 

Sl: PROCEDURE CP,PP,PPP); 
DECLARE P(10),PPC*>,PPPCN), 

N EXTERNAL; 

END Sl; 

In the above example, P,PP, and PPP are 
parameters. Procedures M1 and Sl are both 
external procedures. P is declared with 
constant bounds; thus, the bounds of any 
argument associated with P must be 10. PP 
is declared with the asterisk notation; 
thus, anyone-dimensional argument of the 
same type may be associated with it. PPP 
is declared with an adjustable bound; thus, 
the bound of any argument associated with 
PPP must be equal to the value of N when Sl 
is activated. Note that a similar effect 
would result if Sl were internal to M1 and 
N were an internal variable declared in M1. 

ALLOCATION OF PARAMETERS 

A parameter that has no storage class 
may correspond to an argument of any stor­
age class; if more than one generation of 
the argument exists, however, the parameter 

142 

is synonymous only with the generation 
existing at the point of invocation. A 
nonbased CONTROLLED parameter~ however, 
always must be presented with a CONTROLLED 
argument; the argument must be an unsub­
scripted name of CONTROLLED data that is 
not an element of a structure. The param­
eter is synonymous with the entire alloca­
tion stack of the controlled variable. 
Thus each reference to the parameter is a 
reference to the current generation of the 
associated argument. A controlled paramet­
er may be allocated and/or freed in the 
invoked procedurew thus manipulating the 
allocation stack of the associated argu­
ment. 

Parameters, Bounds and Length 

If an argument is a string or an array., 
the length of the string or the bounds of 
the array must be declared in the invoked 
procedure by using the asterisk notation. 
by giving explicit bounds or length or by 
declaring the bounds or length as an 
expression that, when evaluated, gives the 
appropriate value. The expressions speci­
fied for the bounds or length must be 
formulated according to the rules stated in 
"Evaluation of Expressions," in Chapter 3. 

The number of dimensions and the bounds 
of the array argument or the length of the 
string argument must be the same as those 
of the corresponding parameters. However, 
the actual bounds or length may not be 
known at the tiroe the invoked procedure is 
written; the invoked procedure may assume 
either that storage has been allocated 
prior to the invocation or that storage 
will be allocated explicitly in the proce­
dure for those parameters declared CON­
TROLLED. 

Asterisk Notation for Bounds or Length 

The correspondence between argument and 
parameter in the invoked procedure can be 
achieved by specifying the length by an 
asterisk or by specifying each and every 
bound by an asterisk, thus indicating that 
the length or bounds are the same as those 
for the corresponding argument. 

If storage has been allocated for an 
argument. the corresponding parameter in 
the invoked procedure is assumed to have 
the same length or bounds as the argument. 
If the parameter is CONTROLLED, further 
allocations of the data will use these same 
bounds or length unless different length or 
bounds are specified in the ALLOCATE state­
ment. 



If storage has not been allocated for an . 
argument passed to a parameter declared 
with the asterisk notation~ explicit bounds 
or length must be declared in an ALLOCATE 
statement given before another reference to 
the parameter in the invoked procedure. 

Expressions as Bounds or Length 

If storage has been allocated for an 
arga~ent passed rO a parameter for which 
explicit bounds or length are specified~ 
then upon entry to the invoked procedure. 
any expressions are evaluated and must give 
values such that the bounds or length of 
the parameter are the same as the argument. 
If the parameter is CONTROLLED and is 
subsequently reallocated, these expressions 
are again evaluated to give new bounds or 
length for the new allocation, unless they 
are specified in the ALLOCATE statement. 

If storage has not been allocated for 
the argument, then, at the point of entry, 
no requirements are made on the value of 
the expressions specified for the corres­
ponding parameter bounds or length. These 
expressions are evaluated at a subsequent 
point of allocation, unless they are speci­
fied in the ALLOCATE statement. 

Example: 

M2: PROCEDURE; 
DECLARE A(10), AA(25) CONTROLLED; 

CALL S2(A,AA,10); 

END M2; 

S2: PROCEDURE (P,PP,N): 
DECLARE PP(*) CONTROLLED, peN), 

Qe2S), S(S); 

ALLOCATE PP(2S); 

PP Qi 

ALLOCATE PP(S); 

PP S; 

DATA KNOWN TO INVOCA'IIONS OF RECURSIVE 
PROCEDURES 

Each time a procedure is invoked recur­
sively, a new generation of every automatic 
variable is created. If the procedure 
contains an internal procedure, then. with­
in that internal procedure, the automatic 
data declared in the recursive procedure 
and kno~n in the internal procedure is of 
the same generation as the internal proce­
dure. The following examples illustrate 
the above discussion. 

Example 1: 

P: PROCEDURE(Q)RECURSIVE; 
DECLARE(Q,R)ENTRY,I STATIC INITIAL{O). 

M AUTOMATIC; 
1=1+1; M=I; 

LAB: IF 1<3 THEN CALL peR); 
ELSE CALL Q; RETURN; 

R: PROCEDURE; 
PUT DATA(M)i 
RETURN; 

END R; 
END Pi 

In the first generation of P, when the 
statement labelled LAB is executed, I is 
less than 3i therefore, P is invoked recur­
sively with the entry name R (that is, the 
first generation of internal procedure R) 
passed to it. In the second generation of 
P, M is equal to 2 while I is still less 
than 3. (Note that only the first genera­
tion of P initializes I to zero because I 
is in static storage.) Since I is less 
than 3, P is again invoked recursively, but 
this time with the second generation of the 
internal procedure R passed to it. In the 
third generation of P, I is equal to 3 and 
the third generation of M is equal to 3. 
Since I is not less than 3, ELSE CALL Q is 
executed. This execution invokes the pro­
cedure represented ty the parameter Q, 
namely, the second generation of internal 
procedure R. Within this generation of R. 
the only generation of M that can possibly 
be known is the second. Therefore. since 
the second generation of M has a value of 
2, the statement PUT DATA (M) causes 'M=2:' 
to be transmitted to the output stream. 

Example 2: 

P: PROCEDURE RECURSIVE; 
DECLARE I STATIC INITIAL(O), 

M AUTOMATIC; 
1=1+1; M=l; 
IF 1=1 THEN eN OVERFLOw PUT 

DATA eM); 
IF 1=3 THEN SIGNAL OVERFLOWi 

ELSE CALL Pi 
RETURN: 

END S2; I END Pi 

Chapter 10: Special Topics 143 



Since an ON-unit is treated as a proce­
dure internal to the block in which it 
appears, the generations of data known in 
the ON-unit are, as in the previous exam­
ple, those current at the time the ON 
statement for that unit is executed. In 
the above example, the ON statement is 
executed only for the first generation of 
P; therefore, the first generation of M is 
the only generation of M known within the 
ON-unit. Thus, after THEN SIGNAL OVERFLOW 
is executed, the ON-unit for that condition 
is executed and 'M=l;' is transmitted to 
the output stream. 

PROLOGUES 

On entering a block, certain initial 
actions are performed, e.g., allocation of 
storage for automatic variables. These 
initial actions constitute the prologue. 

On entry to the prologue, the following 
items are available for computation: 

1. Variables declared outside the block 
and known within it. 

2. Variables declared STATIC and known 
within the block. 

3. Arguments passed to the block. 

4. The most recent generations of con-
trolled variables known within the 
block. 

The prologue makes available for compu­
tation all the other variables known within 
the block as follows: 

5. Automatic variables declared in the 
block. 

6. Defined variables declared within the 
block. 

In making these items available. the 
prologue may need to evaluate expressions 
defining lengths, bounds, iteration fac­
tors, and initial values. Such expressions 
may depend on items of 1, 2, 3 or 4. They 
may also be dependent on items 5 and 6 
under the following circumstances: If an 
item is referred to in an expression and 
the allocation or initialization of a sec­
ond item depends on that expression, then 
that first item must in no way be dependent 
on the second item for its own allocation 
and initialization. Further, the first 
item must in no way be dependent on any 
other item that so depends on the second 
item. 

144 

Examfle: 

The following is illegal: 

DECLARE (A(M) INITIAL (1), 
M INITIAL (CA(I»3» AUTO; 

The evaluations IDUSt not invoke abnormal 
functions. The entry invoked with the 
INITIAL CALL attribute may be abnormal only 
in that it sets the data being initialized. 
The sequence in which the evaluations refer 
to any abnormal data is not defined. 

Function calls within the evaluations 
must not refer to items being made availa­
ble by the prologue. 

DATA ALLOCATION ACROSS TASKS 

The scope of an identifier declared in 
an attaching task may include the attached 
task. Thus, the WAIT statement should 
properly be used in the attaching task to 
avoid freeing storage allocated in the 
attaching task and used in the attached 
task. 

An attached task has almost the same 
access to the attaching task's data as it 
would have if it were executed synchronous­
ly; however. when it is attached, only the 
generations of CONTROLLED variables current 
at the time of attachment are passed to the 
attached task. Subsequent allocations in 
the attached task are known only within the 
attached task; subsequent allocations in 
the attaching task are known only within 
the attaching task. A task may only free 
storage that it has allocated. All storage 
allocated within a task is destroyed when 
that task is completed. 

Allocation of Task and Event Names 

Like variables, task naroes and event 
names have scope and storage class attri­
butes. Storage will be allocated for task 
and event names in the same manner as for 
variables (by virtue of either an explicit 
or contextual declaration). If a given 
task is active and there is a task or event 
name associated with the task, then storage 
must not be released for the name until the 
task is terminated. 



I ABNORMALITY AND IRREDUCIBILITY 

The ABNORMAL, NORMAL, IRREDUCIBLE, REDU­
CIBLE, USES, and SETS attributes are pro­
vided in PL/I to enable the compiler to 
generate optimized code. 

In the absence of any information. the 
following assumptions are made: 

1. All external function references are 
reducible, unless also specified 1n 
CALL statements. 

2. All other procedure references are 
irreducible. 

3. All variables are normal. 

A variable is said to be abnormal if its 
value may be altered or otherwise accessed 
without an explicit indication. Thus, for 
example, the appearance of a variable name 
on the left side of an assignment state­
ment, in the data list specification of a 
GET statement, or as an argument to an 
irreducible function or procedure (see 
below) indicates a predictable situation 
where the variable may change its value. 
However, when the variable is subject to 
change by the occurrence of an ON­
condition, or if it is subject to change in 
a procedure invoked with the TASK option 
(see "Asynchronous Operations and Tasks"), 
then there is no way to predict the point 
at which the change in value will occur or, 
in fact, if it will occur. 

Such possibilities cannot always be 
recognized contextually. Furthermore, if a 
portion of a source program contains sever­
al references to such a variable, the order 
in which the indicated operations are exe­
cuted becomes significant. (For example, 
if B is abnormal, the expression B + B is 
not necessarily equivalent to the expres­
sion 2 * B.) 

The implication is that the programmer 
expects the operation to be performed in a 
particular order. Such variables must 
therefore be declared ABNORMAL, to inhibit 
the optimization of such portions of a 
source program. 

A procedure may possess varying degrees 
of irreducibility. A procedure is said to 
be "definitively irreducible" if it, or any 
procedures invoked by it, accesses, modi­
fies, allocates, or frees external data or 
modifies, allocates, or frees arguments. 
In addition, an internal procedure is irre­
ducible if it. or any procedures invoked by 
it, accesses, modifies, allocates, or frees 
any variables known in the invoking block. 
Such procedures are only definitively irre­
ducible because the exact nature of their 

irreducibility is described by the USES and 
SETS attributes, thus inhibiting some, but 
not all, optimization in the neighborhood 
of a reference to the procedure (see "The 
USES and SETS Attributes" in Chapter 4). 

However, if a procedure is "completely 
irreducible," all optimization of succes­
sive references must be inhibited~ A pro­
cedure is completely irreducible if it, or 
any procedures invoked by it, does any of 
the following: 

1. Returns inconsistent function values 
for identical argument values. 

2. Maintains ~ny kind of a history. 

3. Performs input or output operations. 

4. Returns control from the procedure by 
means of a GO TO statement. 

The IRREDUCIBLE attribute (described in 
Chapter 4) is used to describe such a 
procedure. It may also, of course, be used 
to describe a procedure that is 
"definitively irreducible." 

When irreducibility is specified, the 
order of execution becomes significant. In 
particular, if an expression contains a 
reference to an irreducible function that 
may affect values in other parts of the 
expression, the value of the expression 
will. in general, depend upon the order in 
wnlcn data is accessed (see "Order of 
Evaluation of Expressions, .. in Chapter 3). 

If an IRREDUCIBLE procedure, referred to 
in a statement, allocates or frees con­
trolled data that has been referred to 
elsewhere in the same statement, then the 
effect of the statement is undefined. 

LIST PROCESSING 

BASIC CONCEPTS 

The purpose of this section is to devel­
op the basic concepts of PL/I list process­
ing, and to provide a simple illustration. 

The description of data in PL/I, whether 
implicit or explicit, provides information 
on how to operate upon the data. If the 
data--item is a structure or array, the 
description also specifies the relation 
among its corrponents. However, the des­
cription of a data item does not, as a 
rule, have any bearing upon its location in 
storage. The location of a given data item 
is determined internally at the time the 
data is allocated. At the same time, a 

Chapter 10: Special Topics 145 



device is established that may be thought 
of as a pOinter and that serves to identify 
the data item. Thereafter, when the data 
item is required for the execution of 
object code_ it is located by means of its 
associated pointer. In general, the poin­
ter is not under the control of the pro­
grammer, and it is not referred to in the 
source program.. 

In list processing" however" such poin­
ters do appear in the source program and 
can be manipulated to create and refer to 
lists of data. This is achieved by the use 
of the CONTROLLED storage class (see 
"storage Class Attributes" in Chapter 4) 
and the definition of the data type pointer 
(see "Pointer Data" in Chapter 2). For 
example, consider the following declara­
tion: 

DECLARE P POINTER, ALPHA FLOAT CON­
TROLLED (P); 

This declares that P is a pointer, and that 
ALPHA is a floating-point variable, the 
location of which will be identified by P 
when reference is made to ALPHA. The 
variable ALPHA represents a new form of 
controlled variable known as a based varia­
ble. Unlike the nonbased form of CON­
TROLLED., the allocation of based variables 
has nothing to do with the stacking of 
data. Instead, it provides a device for 
describing the structure of data. 

A based variable may be used in an 
extended form of the ALLOCATE statement to 
obtain dynamic, unstacked storage. 

Example: 

DECLARE ARRAY (lOa) CONTROLLED (PT) 
FIXED: 

ALLOCATE ARRAY SET (PT); 

It is assumed that (PT) has the attribute 
POINTER contextually by virtue of its posi­
tion in the DECLARE statement. The ALLO­
CATE statement will reserve enough storage 
to contain ARRAY, and will set the pointer 
variable PT to the location identification 
that was obtained for ARRAY. 

Sometimes it is convenient to allocate 
data items in some specific, labelled por­
tion of storage, rather than obtaining 
random system storage. This storage is 
provided by means of the AREA attribute, 
which permits the programmer to identify 
and reserve a block of contiguous storage. 

Example: 

DECLARE TABLE AREA STATIC EXTERNAL; 
ALLOCATE ARRAY IN (TABLE) SET (PT); 

This ALLOCATE statement operates like that 

146 

of the previous' example. except that allo­
cation is made into a particular block of 
storage named TABLE. The size of the 
storage block TABLE is, by default. 
implementation-defined; however. the 
programmer may override this default size 
specification by the use of dummy declara­
tions with the declaration of TABLE (see 
"The AREA Attribute" in Chapter 4). 

A based variable may be used to describe 
the structure of data that may exist in any 
storage class (STATIC., AUTOMATIC" or 
CONTROLLED). This is shown in the follow­
ing example. The example also illustrates 
the use of the built-in function, ADDR, 
which provides programmer control of the 
value of the pointer P. This function 
returns a value of type pointer which 
identifies the data argument. 

Example: 

DECLARE 

Ll: 
L1A: 

L2: 
L2A: 

L3: 
L3A: 

ALPHA 

BETA 
GAMMA 
OMEGA 

CONTROLLED (P) 
FLOAT, 

STATIC FLOAT, 
AUTOMATIC FLOAT, 
CONTROLLED EXTERNAL 

FLOAT; 

P=ADDR (BETA); 
ALPHA=ALPHA + 1; 

P=ADDR (GAMMA); 
ALPHA=ALPHA + 2; 

ALLOCATE OMEGA; 
P=ADDR (OMEGA); 
ALPHA=ALPHA + 3; 

In this example, the based variable ALPHA 
serves as the description of BETA when P is 
set to the ADDR function of BETA at state­
ment label Ll. It serves as the descrip­
tion of GAMMA at L2, and as the description 
of OMEGA at L3 (after OMEGA has been 
allocated in the previous statement). The 
scope of the based variable is internal to 
the block in which it is declared. Howev­
er, it may be used to identify external 
data when the associated pointer pOints to 
such data. 

List processing applications may entail 
the use of more than one pointer to iden­
tify a given data element. Under these 
circumstances, other pointers (either poin­
ters for other based variables or indepen­
dently declared pointers) may be used to 
refer to a based variable. The symbol -> 
<pointer qualifier) is used for this pur­
pose. 

Example: 

DECLARE 1 A CCNTROLLED (P), 
2 B CHARACTER (30), 
2 C PCINTER, 



2 D FIXED, 
Q POINTER; 
B = D; 

The statement B = D is equivalent to 
P->B P->D; 

A reference Tn r ;mnl;p~ -- -- --... s;;:----

Moreover, 

P->C; 

-) 

identify A" 
Q -> Buses Q to identify B. 
Q -> C -> D uses Q to identify 

the pointer C, which is 
then used to identify D. 

Note that the pointers P and Q serve to 
identify the structure A as well as all of 
its components. Note also that a reference 
made to a based variable without the use of 
pointer qualification is taken as a ref­
erence to that variable with an implied 
qualifier; the implied qualifier being the 
pointer variable declared for that based 
variable. 

The ability to "override" by means of a 
pointer value not declared with the based 
variable is valuable in exam1n1ng and 
manipulating a complex list structure; for 
example, when it is desirable to examine 
some elements before or after the current 
list element position. 

a "null" pOinter 
to identify the 

structure. This 
the NULL built-in 

In constructing a list, 
value is commonly used 
terminal entry in a list 
value is provided by 
function. 

with these basic definitions in mind, 
consider the following procedure: 

UNI_DIREC_CHAIN : PROCEDURE (ELEMPTR); 

/* THIS PROCEDURE BUILDS A 
UNI_DIRECTIONAL DOWNWARD CHAIN THRU 
THE ELEMENTS IDENTIFIED BY THE PAR­
AMETER ELEMPTR*/ 

DECLARE 1 ELEMENT CONTROLLED{ELEMPTR), 
2 P POINTER, 
2 VALUE FIXED (8,2), 

(HEAD, Q) POINTER INITIAL (NULL) 
STATIC EXTERNAL; 

P NULL; /* MAKE THIS ELEMENT THE NEW 
TAIL */ 

IF Q NULL /* IS THIS THE FIRST 
ELEMENT */ THEN HEAD, Q ADDR 
(ELEMENT); /* FIRST ELEMENT */ 

ELSE 
Q -> P, Q ADDR (ELEMENT); /* SUCCES-

SOR ELEMENT 
UNI_DIREC CHAIN; 

END 

Now consider the results of two invocations 
of the foregoing procedure. Arbitrary 
location identifiers have been assigned to 
the arguments. 

DECLARE 1 X STATIC INTERNAL~ 

2 Y POINTER" 

r--------------, 
X 500 I I 

~--------------~ 
I 98265 I L ______________ J 

The first executable statement" P = NULL 
makes this element the terminal element 
(tail). 

r--------------, 
X 500 I NULL I 

~--------------~ 
I 98265 I L ______________ J 

It is then determined that this is also the 
first element; hence. 

and 
HEAD = 500 
Q = 500 

DECLARE 1 A AUTOMATIC, 

2 B POINTER" 

2 C FIXED (8,2); 

r--------------, 
A 20000 I I 

~--------------~ 
I 16538 I l ______________ J 

First, A is made the new tail of the list: 

r--------------, 
A 200001 NULL I 

~--------------1 
I 16538 I l ______________ J 

Next" the pointer of the previous list 
entry (namely, X) is set to point to A; Q 
is also set to point to this entry. The 

Chapter 10: Special TOpics 147 



parameters X, A, and Q now have the values 
shown below. (Note that HEAD is 
unchanged.) 

r--------------, 
X 500 I 20000 I 

~--------------~ 
I 98265 I L ______________ J 

r--------------, 
A 200001 NULL I 

~--------------i 
I 16538 I L ______________ J 

Q = 20000 

Succeeding invocations would simply add new 
list elements. It should be noted that 
there is no movement of the members of the 
list. They remain in the storage class in 
which they were declared. When members of 
a list reside in dynamic storage, AUTOMATIC 
or CONTROLLED, care should be taken to 
ensure that the storage is not unintention­
ally freed (either by leaving a block or by 
use of the FREE statement); such action 
would break the chain (see "Additional 
Conditions" in this chapter)~ 

ADDITIONAL CONSIDERATIONS 

Structures Used as Based Variables 

When a structure appears as a based 
variable, it may be used to describe one or 
more structures in any storage class. In 
this case, each component of the based 
variable may be used to refer to the 
corresponding component of any of the other 
structures. (Two components are said to 
correspond if they occupy the same position 
relative to the beginnings of their respec­
tive structures. if the attributes of the 
two structures are the same, and if they 
have the same extents and lengths.) 

Example: 

DECLARE 

148 

1A 
2B 
2C 
2D 

1E 
2F 
2G 
2H 

11 
2J 
2K 
2L 

STATIC, 
FIXED, 
(10)FLOAT, 
BIT(8), 
AUTOMATIC" 
FIXED, 
(N}FLOAT, 
BIT(8), 
CONTROLLED (X)" 
FIXED, 
(10)FLOAT, 
BIT(8); 

In this example, J may be used to point 
either to B or to F; in the first case, the 
pointer X would pOint to A, and in the 
second, to E. L rray be used to refer to D, 
but it can refer to H only if the dimension 
of G matched that of K. 

A structure which is a based variable 
may contain self-defining array dimensions 
and string lengths. This is not true of 
any other class of variable. 

Example: 

DECLARE 1 GROUP CONTROLLED (P)" 
2 CHAIN POINTER, 
2 I FIXED. 
2 J FIXED, 
2 K FIXED, 
2 ARRAY (I"J) FLOAT, 
2 STRING CHARACTER (K); 

This declaration takes the following 
form: 

r----------, 
I CHAIN I 
~----------~ 
I I I 
~----------.. 
i J i 
~---------_t 
IK I 
~----------~ 
I I 
~----------~ 
I I ARRAY of dimensions I,J 
~----------~ 
I I 
~----------~ 
I I STRING of length K L __________ J 

Assume that a pointer variable Q is 
pointing to a particular generation of 
GROUP. Any reference to Q->ARRAY will use 
the values of I and J contained within that 
generation of GROUP identified by the pOin­
ter P declared with GROUP; i.e., P->I and 
P->J. Similarly, a reference to STRING 
will use the value of K contained within 
that generation of GROUP identified by the 
pointer P declared with GROUP: i.e., P->K. 

Pointer Value - Based Variable Relations 

The relation between an argument and a 
parameter (without conversion of arguments 
through parameter attributes) also applies 
to the relation between a pointer value and 
the associated based variable. That is, 
the value of a pointer may point to a 
scalar variable, an array, a structure, or 
a component of an array or structure. The 
data may then be referred to by means of 



the pointer value and based variable, pro­
vided the description of the based variable 
is compatible with that of the data iden­
tified by the pointer. 

Example: 

DECLARE ARRAY (10,10) STATIC EXTERNAL 
FIXED; 
VALUE CONTROLLED (P) FIXEn. 
1 GROUP AUTOMATIC, 

2 GROUP_l. 
~ "7\ L'lTV"CIT"\ 
..::J n £..i...ALJ..J: 

3 B CHARACTER (30), 
2 GROUP 2, 

3 C BIT (1), 
3 D FLOAT, 

1 DESCRIPTION CONTROLLED(Q), 
2 A FIXED, 
2 B CHARACTER (30), 

SWITCH BIT (1) CONTROLLED (R); 
P = ADDR (ARRAY (I,J»; 

Provides for use of the based variable 
VALUE in referring to the element of 
ARRAY at I, J. 

P = ADDR (GROUP_l.A)i 

Provides for the use of the based varia­
ble VALUE in referring to GROUP_l.A. 

Q = ADDR (GROUP_l); 

Provides for use of the based variable 
DESCRIPTION in referring to the minor 
structure GROUP_i. 

R = ADDR (GROUP_2.C); 

Provides for use of the based variable 
SWITCH in referring to GROUP_2.C. 

Data Chaininq Precautions 

It is possible, by means of chaining, to 
link data which exi"sts in different storage 
classes. In this case, care must be exer­
cised to ensure that data in AUTOMATIC or 
CONTROLLED storage is not freed--by return­
ing from the procedure in which the data 
was allocated, in the case of AUTOMATIC 
data, or by the execution of a FREE state­
ment, in the case of CONTROLLED data-­
without adjusting the chain. Otherwise, 
the linkage may be lost. 

STATIC AUTOMATIC CONTROLLED CONTROLLED 
~ ~ ~(P) 

r-----' r--'---, r-----' r-----' 
I I I I I I I I 
I A I I B I I C I I D I 
I I I I I I I I l _____ J l _____ J L _____ J L _____ J 

If the block ccntaining B is closed, the 
link between A and C is destroyed. 
Similarly, the freeing of C would destroy 
the link between Band D. The chain must, 
therefore, be adjusted before B or C is 
released. 

Chapter 10: Special Topics 149 



APPENDIX 1: BUILT-IN FUNCTIONS 

ARITHMETIC GENERIC FUNCTIONS 

The generic functions listed in this 
section return a value of type coded arith­
metic. The arguments may, unless otherwise 
specified, be any expressions. If neces­
sary they will be converted to type coded 
arithmetic before the function is invoked 
according to the rules stated under "Type 
Conversion." in Chapter 3. Also certain 
conversions of arithmetic characteristics 
will be performed before the function is 
invoked, where this is explicitly defined 
to be the case for particular functions 
below. Where conversion to highest charac­
teristics is specified, these are deter­
mined by the rules for mixed charac­
teristics, as explained in Chapter 3, 
applied to the arguments. Where reference 
is made to an argument, it should be taken 
to mean the ·converted argument when an 
argument that is not coded arithmetic has 
been specified. The magnitude of a complex 
number is the positive square root of the 
sum of the squares of the real and imag­
inary parts where this value has the base 
and scale of- the complex number and the 
mode REAL. 

Name 
ABS 

MAX 

MIN 

150 

Arguments and Function Value 

Arguments: One is given. 
Function value = absolute value of 

argument, i.e., positive value of 
real argument, positive magnitude 
of complex. The mode is REAL. 
Base, scale, and precision are 
those of the argument, unless the 
argument is fixed complex, in 
which case the precision is 
(MINCN,p+1),q) for an argument of 
precision (p,q). 

Arguments: Two or more are given. 
Complex arguments are not permit­
ted. 

Function value = value of maximum 
argument, converted to highest 
characteristics of all arguments 
specified. If the arguments are 
FIXED of precisions (P1,q1). 
(P2,q2), ••• , (Pn,qn). the 
resulting precision is 
(MIN(N,MAX(p1-q1.···'Pn-qn)+ 
MAX(Q1,···,Qn»,MAX(q1, ••• ,qn» 

Arguments: Two or more are given. 
complex arguments are not permit­
ted. 

MOD 

SIGN 

FIXED 

FLOAT 

Function value = value of minimum 
argument" converted to highest 
characteristics of all arguments 
specified. If the arguments are 
FIXED of precisions (P1' q1.)" 
(P2~q2)W ••• W (Pn~qn), the 
resulting precision is 
(MIN(N,MAX(p1-q1.···'Pn-qn) 
+MAX(q1, ••• ,qn»,MAX(q1. ••••• qn». 

Argurrents: two are given, x and 
y. Base and scale of the argu­
ments are converted to the higher 
characteristics of the pair. 
Complex arguments are not permit­
ted. 

Function value = positive remain­
der after division of x by y to 
yield -an integer quotient. The 
mode is REAL; base and scale are 
those of the converted arguments. 
Precision for FLOAT is the higher 
of the precisions of the argu­
ments, and for FIXED is defined 
as follows: 

Let the precision of x be 
(p,q) and the precision of y 
be (r,s). The resulting 
prec1s1on is (MIN(N.r-s+ 
MAX(q,s»,MAX(q,s». 

Arguments: One is given. Complex 
argurr.ents are not permitted. 

Function value = integer 1 if argu­
ment >0; = 0 if argurrent = 0; 
-1 if argument <0. The result is 
fixed binary with default preci­
sion. 

Arguments: Three are given~ The 
second and third are optional 
decimal integer constants (the 
third rray also be signed) speci­
fying the number of digits and 
the scale factor of the result. 
If omitted, the second argument 
assumes a value specified by each 
implementation, the third assumes 
zero. 

Function value first arguroent 
converted to fixed-point scale 
with prec1s10n as specified but 
base and mode unchanged. 

Arguments: Two are given. The sec­
ond is an optional decimal inte­
ger constant specifying the pre­
cision cf the result. If oroit-



FLOOR 

CEIL 

TRUNC 

BINARY 

DECI~..AL 

tedl. a value specified by each 
impiementation will be assumed. 

Function value = first argument 
converted to FLOAT scale with 
precision as specified but base 
and mode unchanged. 

'A 
n Arguments; One is given. x. 

complex argument is not permit­
ted. 

Function value = largest integer 
not exceeding x. Base. scale. 
and mode are those of the con­
verted argument. Precision of 
result for x FIXED (p,q) is 
(MIN (N, MAX (p-q+l .. l» rIO) • 

Arguments: One is given. x. A 
complex argument is not permit­
ted. 

Function value = smallest integer 
not exceeded by x. Base, scale" 
and mode are those of the con­
verted argument. Precision of 
result for x FIXED (p,q) is 
(MIN(N,MAX(p-q+l.l»,O). 

Arguments: One is given., 
complex argument is not 
ted. 

x. A 
permit-

Function value FLOOR (x) if x ~ 
0, = CEIL (x) if x < O. Base, 
scale and mode are those of the 
converted argument. Precision of 
result for x FIXED (p,q) is 
(MIN(N,MAX(p-q+l.l»,O). 

Arguments: Three are given. The 
second and third are optional 
decimal integer constants (the 
third may also be signed) speci­
fying the binary precision of the 
result. If the scale is FIXED, 
and the second argument is given. 
the third must also be given; if 
the scale is FLOAT, the third is 
not required. If both the second 
and third arguments are omitted, 
the precision of the result is as 
defined for base conversion in 
Chapter 3. 

Function value first argument 
converted to binary base with 
scale and mode unchanged. 

Arguments: Three are given. The 
second and third are optional 
decimal integer constants (the 
third may also be signed) speci­
fying the decirral precision of 
the result. If the scale is 
FIXED. and the second argument is 
given, the third must also be 

given~ if the scale is FLOAT. the 
third is not required. If both 
the second and third arguments 
are omitted. the precision of the 
result is as defined for base 
conversion in Chapter 3. 

Function value = first argument 
converted to decimal base with 

PRECISION 
Arguments: 

secane 
Three are given. The 

and third are decimal 

ADD 

MULTIPLY 

DIVIDE 

integer constants (the third may 
also be signed) specifying the 
precision of the result. If the 
scale is FIXED.. all three are 
required~ if the scale is FLOAT .. 
the third is not required. 

Function value = first argument 
converted to specified precision. 
Base, scale~ and mode are 
unchanged. 

Arguments: Four are given. The 
third and fourth are decimal 
integer constants (the fourth may 
also be signed) specifying the 
precision cf the result. If the 
scale of the result is FIXED. all 
four are required; if the scale 
is FLOAT~ the fourth is not 
required. The third argument may 
not exceed N. 

Function value = the sum of the 
first and second arguments. Ease 
and scale of the result are the 
higher of those of the first two 
arguments. Precision is as spec­
ified. 

Arguments: Four ale given. The 
third and fourth are decimal 
integer constants (the fourth may 
also be signed) specifying the 
prec1s10n of the result. If the 
scale of the result is FIXED. all 
four are required; if the scale 
is FLOAT, the fourth is not 
required. The third argument may 
not exceed N. 

Function value = the product of the 
first and second arguments. Ease 
and scale of the result are the 
higher of thcse of the first two 
arguments. Precision is as spec­
ified. 

Arguments: Four are given. The 
third and fourth are decimal 
integer constants (the fourth may 
also be Signed) specifying the 
prec1s10n of the result. If the 
scale of the result is FIXED, all 
four are required; if the scale 

Appendix 1 151 



COMPLEX 

REAL 

I MAG 

CONJG 

is FLOAT, the fourth is not 
required. The third argument may 
not exceed N. 

Function value 
dividing the 
the second. 
the result 
those of the 
Precision is 

the result of 
first argument by 

Base and scale of 
are the higher of 
first two arguments. 
as specified. 

Arguments: Two real arguments are 
glven. The first is the real 
part. the second is the imaginary 
part. 

Function value complex number 
formed from the two arguments. 
Base~ scale. and precision of 
result are the highest charac­
teristics of those of the argu­
ments. 

Arguments: One is given, complex 
value. 

Function value = real part of argu­
ment. Base* scale, and precision 
are unchanged. 

Arguments: One is given. complex 
value. 

Function value = imaginary part of 
argument.. Base. scale., and pre­
cision are unchanged .. 

Arguments: One is given. complex 
value. 

Function value conjugate of the 
argument. Base" scale, mode" and 
precision are unchanged. 

FLOAT ARITHMETIC GENERIC FUNCTIONS 

The following generic functions may have 
as arguments any expression. This expres­
sion will be converted to floating pOint 
before the function is invoked. The result 
will be of scale FLOAT with the precls10n 
and base of the converted argument. If the 
mode of the argument is COMPLEX. the mode 
of the result will be COMPLEX. The follow­
ing functions are defined only for REAL 
arguments: LOG2, LOG10, ATAND. TAND~ SIND, 
COSD, ERF, ERFC, and ATAN with two argu­
ments. 

152 

The following tatle specifies the mean­
ing of these functions for real arguments: 

Function Reference FUnction Value 

EXP (x) 
LOG (x) 
LOG1O (x) 

LOG2 (x) 
ATAND (x) 
ATAN (x) 

TAND (x) degree 
argument 

TAN (x) radian 
argUIrent 

SIND (x) degree 
argument 

SIN (x) radian 
argurrent 

COSD (x) degree 
argument 

COS (x) radian 
argument 

TANH (x) radian 
argument 

ERF (x) 

SQRT (x) 

ERFC (x) 
COSH (x) radian 

argument 
SINH (x) radian 

argument 
A'I'ANH (x) 

ex~ (x) 
In (x). Error if x::sO. 
10g10 (x). Error if 

x::SO. 
log2(x). Error if x::so. 
arctan (x) in degrees. 
arctan (x) in radians. 

ABS (arctan (x» <pi/2. 
tan (x) 

tan (x) 

sin (x) 

sin (x) 

cos (x) 

cos (x) 

tanh (x) 

Two divided by square 
root of ~~. IDulti­
~lied by the integral 
from 0 to x of EXP 
(-t2 ) with respect to 
t .. 

The positive square 
root of x. Error if 
x<o. 

1 - ERF (x) 
cosh (x) 

sinh (x) 

arctanh (x). Error if 
ABS (x) ~l •. 

A TAN (y,x) The arguments are converted to 
the highest characteristics 
of the pair. The value is: 

ATAND(y,x) 

arctan (y/x) 
pi/2 
error 
-pi/2 
pi+arctan(y/x) 
-pi+arctan(y/x) 

ifx>O 
if x=O. y>O 
if x=O. y=O 
if x=O. y<O 
if x<O. y~O 
if x<O. y<O 

ATAN(y.x) in degrees. i.e. 
(180/~i).ATAN(y.x9 

With complex mode many of these mathema­
tical functions are formally multiple­
valued. so the following table defines the 
principal values which are returned by the 
built-in functions. Here z = x+iy is the 
argument. and w = u+iv is the value. 



Function Reference Function Value 

EXP(z) 
LOG(z) 

ATAN(z) 

ATANH(z) 

SIN(z) 

COS(z) 

SQRT(z) 

COSH(z) 

SINH(z) 

exp(z) 
Log(z}. where -pi 

<v~pi. Error if z=O. 
(LOG«1+z}/(1-z»)/2. 

Error if z= +1 or -1. 
iATANH(iz). Error if 

z= +li Or -lie 
sin(z}=sin(x)cosh(y)+ 

icos(x)sinh(y) 
cos(z}=cos(x}coshCy)­

isin(x)sinhCy) 
z**(1/2). Either u>O. 

or u=O and v~O. 
coshez}=cosh(x}cos(y}+ 

isinh(x}sinCy} 
sinhCz}=sinh(x}cos(y}+ 

icosh(x}sin(y) 

STRING GENERIC FUNCTIONS 

The generic functions listed in this 
section may be used for ~anipulation of 
strings. The arguments specified as 
strings may be any expression. If the 
argument is arithmetic. it will be convert­
ed to bit string (if binary base) or 
character string (if decimal base) before 
the function is invoked. 

BIT 

CHAR 

SUBSTR 

Arguments and Function Value 

Arguments: Two are given. The sec­
ond is an optional decimal inte­
ger specifying the size of 
result. 

Function value first arg~~ent 
converted to type bit string. If 
the size is unspecified. the size 
of the result will be a function 
of the first argument charac­
teristics (see wType Conversion." 
in Chapter 3). 

Arguments: Two are given. The sec­
ond is an optional decimal inte­
ger specifying the length of 
result. 

Function value first argument 
converted to type character 
string. If the length is unspe­
cified, the length of the result 
will be a function of the first 
argument characteristics (see 
"Type Conversion. w in Chapter 3). 

Arguments: Three are given. The 
first is a string4 the second is 
any expression ha7ing the value i 
when converted to integer, the 
third is optionally any expres-

INDEX 

HIGH 

LOW 

REPEAT 

sion having the value j when 
converted to integer. 

~he function value is defined as 
follows: 
Let k be the length of the first 

argument. 
If i>k, the value is the null 

string. 
If i~k. the value ~~ that sub­

string teginning at the Mth 
character or bit of the first 
argument. and extending N char­
acters or bits. where M and N 
are defined by: 

M=max (i.,l) 
N=max (0, min ej+min 

(i~l)-l. k-M+l)}. if j is 
specified. 

N=k-M+1. if j is not speci­
fied. 

Arguments: 'Two are given. If both 
argurrents are bit strings. no 
conversion occurs. otherwise COn­
version to character string is 
perforrred. 

Function value = binary integer of 
default precision giving: 
a. The index of the first ele­

rrent of the first argument 
such that starting at this 
elerrent the second argurrent 
appears as a substring. 

b. Zero. if no such index satis­
fying (a) exists. or if eith­
er of the arguII1ents is of 
zero length. 

Arguments: One is given. a string. 
Function value = fixed binary inte­

ger of default precision giving 
current length of argument. 

Arguments: One is given" a decimal 
integer constant. 

Function value = character string 
of the length specified and com­
posed of the highest characters 
of the data character set. 

Arguments: One is given. a decimal 
integer constant. 

Function value = character string 
of the length specified and COm­
posed of the lowest characters of 
the data character set. 

Arguments: ~wo are given. The 
first is a string and the second 
is an optionally signed decimal 
integer constant n6 

Appendix 1 153 



UNSPEC 

BOOL 

Function value = string argument 
concatenated with itself B times. 
giving a total of n+l terms in 
the concatenation. If n is zero 
or negative, the result- is the 
argument itself. 

Arguments: One is given, a scalar 
arithmetic, string, or pointer 
variable. 

Function value = bit string which 
is the internal coded representa­
tion of the argument. The length 
is an implementation-defined 
function of the argument charac­
teristics. 

Arguments: Three are given, bit 
string X, Y, and W. W is con­
verted if necessary. to a bit 
string of length 4, n 1 n 2 n 3 n 4 • 

This string defines which of the 
16 possible boolean functions is 
desired, in the manner implied 
below. 

Function value = bit string Z where 
if X and Yare of different 
lengths, the shorter is extended 
with zeros, and Z is of the 
longer length. The following 
table relates the jth bit of Z to 
the jth bits of X and Y. 

r------T------T------, 
I Xj I Yj I Zj I 
~------+------+------~ 
I 0 I 0 I n 1 

I 

~------+------+------~ 
I 0 I 1 I n 2 

I 

~------+------+------~ 
I 1 I 0 I n 3 

I 

~------+------+------~ 
I 1 I 1 I n 4 

I L ______ i ______ i ______ J 

GENERIC FUNCTIONS FOR MANIPULATION OF 
ARRAYS 

. A generic function for array manipula­
tlon must have as its argument an array 
expression that has as its value an array 
of scalars. Arrays of structures are not 
permitted. 

The following generic functions have 
array expression arguments and return sca­
lar values. In the following functions x 
is any array expression unless otherwise 
specified. 

154 

Function 
Reference 

SUM (x) 

PROD (x) 
ALL (x) 

ANY (x) 

POLY Ca,x) 

aCm) + 
n-m 
~ 
j=l 

Function Value 

A scalar value equal to the 
sum of all the elements of 
~. Precision. mode and 
base are those of argument 
elements. Each element of 
the argument is converted 
to arithmetic FLOAT before 
being summed with the pre­
vious total. The result 
is always in floating­
point scale.) 

As above but product. 
Each element of the argument 

is converted to a bit 
string. The result is a 
scalar bit string whose 
length is equal to the 
length of the greatest 
element (in terms of 
length) of x. The ith bit 
of the result is i-if the 
ith bits of all of the 
elements of x exist and 
are 1; otherwise" the i th 
bit of the result is zero. 

The result is the same as 
for ALL (x) except that the 
ith bit of the result is 1 
If the ith bit of any 
element exists and is 1; 
otherwise, the ith bit of 
the result is zero. 

a(rr:n) and x(p:q) are vec­
tors. 

Result is 

j-l 
(a(m+j) * 1T x(p+i» 

i=o 

If q-p<n-m-l. then x(p+i) 
x(q) for p+i>q. 

If ro=n, then the result is 
a (m). 

A scalar second operand x is 
interpreted as a vector 
with one element. x(l). 
The function result is 
then 

n-m 
~ a hr+j) *x**j 
j=o 

The characteristics of the 
result are the higher of 
those of the arguments 
(after conversion to 
arithmetic type) except 
for scale, which is always 
FLOAT. 



LBOUND (x, s) 

HBOUND (x,s) 
DIM (x"s) 

~ is a scalar expression 
which is converted to a 
binary integer n, of 
default precision. The 
function value is an inte­
ger of default precision 
giving the current lower 
bound of the nth dimension 
of x. 

As abOve but higher bound. 
~ is as above. The function 

value is a binary integer 
n of default precision 
giving the current extent 
of the nth dimension of ~. 

NOTE: The functions LBOUND" 
HBOUND, and DIM are not 
defined if the argument ~ 
is unallocated, if it has 
less than n dimensions, or 
if n$O. -

ARRAY AND STRUCTURE BUILT-IN FUNCTIONS 

All of the built-in functions listed 
under "Arithmetic Generic Functions" and 
"String Generic Functions" in this appendix 
may have array or structure expressions as 
arguments, except where decimal integer 
constants are required. They yield an 
array or structure of the same dimension 
bounds or structuring as the argwTlent-~the 

function being performed on each element. 
The rules are the same as those for the 
scalar functions. 

CONDITION BUILT-IN FUNCTIONS 

The following built-in functions (with 
no arguments) are available to allow inves­
tigation of interrupts arising from enabled 
ON conditions .. 

Function 
Reference 

ONFILE 

ONLOC 

Function Value 

A character string of varying 
length with an implementa­
tion-defined maximum, being 
the name of the file for 
which the last input/output 
operation was performed. If 
there is no such file. the 
value returned is the null 
string. 

A character string of varying 
length with an implementation 
defined maximum length, being 
the entry point name of the 
immediate dynamically encom~ 

ONSOURCE 

ONCHAR 

ONKEY 

ONCODE 

DATAFIELD 

passing procedure in which 
the last interrupt arose. 

A character string of varying 
length" wi th an implementa­
tion defined maximum length. 
being the contents of the 
field being processed when 
the last conversion interrupt 
occurred. 

A character string of length 1. 
being the character which 
caused the last conversion 
interrupt. 

A character string of varying 
length, with an implementa­
tion defined maximum length. 
being the value of the key 
for the record whose trans­
mission caused the last 
interrupt. 

A binary integer of default 
precision whose value speci­
fies the last interrupt. The 
categories and code for each 
are im~lementation-defined. 

A character string of varying 
length" with an implementa­
tion defined maximum length. 
being the contents of the 
data field which gave rise to 
the last NAME condition 
interrupt. 

LIST PROCESSING BUIL~-IN FUNCTIONS 

The following functions are used in 
'connection with list processing to provide 
suitable values of type pointer. 

Function 
Reference 

ADDR (x) 

Function Value 

The function returns a value 
of type pointer. which 
serves to identify the 
data variable ~. The 
variable ~ may be a sca­
lar, an array. a struc­
ture~ an element of an 
array, or a component of a 
structure. If x is a for­
mal ~arameter~- the value 
is determined from the 
corres~onding argument. 
If x is a nonbased con­
trolled variable. the 
value is determined from 
the most recent generation 
(see "The ALLOCATE 
Statement" in Chapter 8); 
if x is unallocated. the 
value is NULL. If x is a 
l:ased variable, the value 
is determined from the 
~ointer variable declared 

Appendix 1 155 



NULL 

with it; if the pointer 
variable does not contain 
a value, the ADDR function 
value is not predictable. 

This function defines a null 
pointer value; hence, it 
does not identify any gen­
eration of data. Its 
value is implementation 
defined. 

OTHER BUILT-IN FUNCTIONS 

Function 
Reference Function Value 

DATE Character string of length six 
of the form YYMMDD, where YY 
is year, MM is month. DD is 
day. 

TIME Character string of length nine 
of the form HHMMSSTTT, where 
HH is hours, MM is minutes, 
SS is seconds, TTT is mil­
liseconds. 

ALLOCATION (x) 
~ is a nonbased CONTROLLED 

major structure or unsub­
scripted array or scalar 
variable not in a structure. 
The function value is 'liB if 
storage has been allocated 
for x and 'O'B if not. 

LINENO (filename) -
The value of this function is a 

binary fixed-point integer of 
default precision. It speci­
fies the current line number 
of the specified PRINT file. 

COUNT (filename) 
The value of this function is a 

binary fixed-point integer of 
default precision. It 
returns a value that is the 
number of scalar data items 
transmitted during the last 
GET or PUT operation on the 
specified file. 

ROUND (expression" 
decimal-integer-constant) 

156 

The expression may be a scalar~ 
array, or structure. The 
decimal integer constant 
(call it B) may be signed. 
If n is positive, the value 
returned by the function is 

the expression value rounded 
on the Bth digit to the right 
of the decimal point. If n 
is negative~ the value of the 
function is an integer 
resulting from rounding the 
expression value on the Bth 
digit to the ieft of the 
decimal point. (Binary 
digits if binary base. deci­
mal if decimal base.> If the 
expression is of string type, 
the function value is the 
string value unmodified. 
Floating point rounding is a 
bias removal rather than sys­
tematic rounding; the decimal 
point is assumed at the left. 
Base, scale, mode and preci­
sion of the value are those 
of argument. If the scale is 
FIXED with preclsl0n (p,q), 
the result is FIXED with pre­
cision (MIN (p+l, N) "qL, (Note 
that the rounding of a nega­
tive fixed-point quantity 
results in the rounding of 
the magnitude of that quanti­
ty. ) 

STRING (structure-name) 
The argument must be a packed 

structure composed either of 
all bit strings and numeric 
fields of binary base, or 
character strings and numeric 
field of decimal base. The 
function value is a string, 
being the concatenation of 
all the structure elements. 

EVENT (scalar-event-name) 
This function will return the 

value 'O'B OR 'lIB. depending 
on the current status of the 
referenced event name (see 
nAsynchronous Operations and 
Tasks~n in Chapter 6 and nThe 
WAIT Statement," in Chapter 
8) .. 

PRIORITY (scalar-task-name) 
This function will return the 

priority of the named task 
relative to the priority of 
the task in which the func­
tion is evaluated (see 
"Asynchronous Operations and 
Tasks," in Chapter 6 and nThe 
WAIT Statement," in Chapter 
8). 



DIGIT POINT AND SUBFIELD DELIMITING 
CHARACTERS 

9 Specifies that the associated field 
position will contain any decimal 
digit .. 

1 specifies that the associated field 
position contains a binary digit. 
This character may not appear in a 
picture with either 2 or 3. 

2 Specifies that the associated field 
position contains a binary digit. 
being part of a binary value in 2's 
complement notation. This character 
may not appear in a picture with 
either 1, 3, or s. 

3 Specifies that the associated field 
position contains a binary digit, 
being part of a binary value in l's 
complement notation. This character 
may not appear in a picture with 
either 1. 2, or S. 

V Specifies that a decimal or binary pOint 
should be assumed to appear at this 
point in the associated field. It 
does not specify a character in the 
field. 

K Specifies that the exponent subfield 
should be assumed to follow the point 
in the field associated with the K. 
It does not specify a character in the 
field. 

E Specifies that the associated field 
position W~ll contain the letter E. 
indicating the start of the exponent 
subfield. 

ZERO SUPPRESSION CHARACTERS 

A leading zero in a numeric subfield is 
a zero to the left of the actual occurrence 
of the digits 1 to 9 in the subfield. The 
leftmost of these latter digits and all 
digits in the subfield following it, are 
significant digits (including any zeros). 
Picture characters are provided for zero 
suppression, leading zero suppression., and 
the replacement of these zeros by blanks or 
asterisks. 

Z Specifies a conditional digit position. 
If the associated field position 
involves a leading zero it will be 
represented in the field by a blank, 
otherwise the digit will appear. The 
character may not appear to the right 
of 9 T I R or a drifting string in a 

APPENDIX 2: PICTURE SPECIFICATION TABLES 

subfield. It may not appear with * in 
a subfield. 

* Specifies a conditional digit position. 
If the associated field position 
involves a leading zero it will be 
represented in the field by *. other­
wise ~ne digits will appear. The 
character may net appear to the right 
of 9 T I R or drifting string in a 
subfield. It may not appear with Z in 
a subfield. 

Y Specifies a conditional digit position. 
If the associated field position 
involves a zero {leading or otherwise> 
it will be represented in the field by 
a blank, if it involves a digit other 
than zero that digit will appear. 

DRIFTING EDITING SYMEOLS 

The following picture characters may be 
static or drifting: 

I ~ ! sign characters 

$ currency symbol 

The static use of these characters spe­
cifies that there is a field position where 
a sign. a currency symbol, or a blank 
always appears. The drifting use specifies 
that leading zeros may be suppressed, and 
the suppressed positions may contain 
blanks. In this case, the rightmost sup­
pressed position associated with the pic­
ture character will contain a sign, a 
blank. or a dollar sign. 

A drifting character is 
multiple use of that character 
subfield. Thus, if a subfield 
dollar sign. it is interpreted 
if it contains more than one, 
The drifting character must be 
each position through which it 

specified by 
in a picture 
contains one 
as static; 

as drifting. 
specified in 
may drift. 

Drifting characters must appear in 
strings. A string is a sequence of the 
same drifting character, optionally con­
taining interspersed editing characters 
comma (,), point (. > " slash (/), or V or B. 
Picture characters slash. comma, point, and 
B following the last drifting symbol of the 
string are considered part of the string. 
However" a following V terrrinates the 
string and is net part of it. A subfield 

Appendix 2 157 



may only contain one drifting string. The 
picture characters * and Z may not appear 
to the right of a drifting string in a 
subfield. 

The field position associated with the 
character slash, comma, point, and B 
appearing in a drifting string will contain 
one of the following: 

1. Slash, comma, point, or blank if a 
significant digit has appeared to the 
left. 

2. The drifting symbol, jf the next posi­
tion to the right contains the left­
most significant digit of the sub­
field. 

3. Blank, if the leftmost significant 
digit of the subfield is more than one 
position to the right. 

If a drifting string contains the drift­
ing character n times, then the string is 
associated with n 1 conditional digit 
positions. The field position associated 
with the leftmost drifting character may 
only contain the drifting character or 
blank, never a digit. If a drifting string 
is specified for a subfield, the other 
potentially drifting characters may only 
appear once to the left of the string in 
the subfield, i.e., the other characters 
represent a static sign or dollar sign. 

If a drifting string contains a v, then 
all digit positions of the subfield follow­
ing the V must also be part of the drifting 
string. 

If one of the characters Z or * follows 
the V in a subfield, then all digit posi­
tions in the subfield following the V must 
be Z or asterisk <*>. 

In the case where all digit positions 
after the V contain suppression characters, 
suppression will only occur where all the 
fraction digits are zero. The resulting 
field will then be all blanks or asterisks. 
If there are any significant fraction 
digits they all will appear unsuppressed. 

DRIFTING CHARACTERS 

$ If this character appears more than once 
in a subfield it is a drifting charac­
ter, otherwise it is a static charac­
ter. The static character specifies 
that the character $ be placed in the 
associated field position. The static 
character must appear either to the 
left of all digit positions in a 

158 

subfield or to the right of all digit 
positions in a subfield. See details 
above for the drifting use of the 
character~ 

S Specifies the sign character + if the 
field value is ~o, otherwise The 
character may be drifting or static. 
The rules are identical to those for 
the dollar sign. 

+ Specifies the sign character + if the 
field value is ~ to 0, otherwise 
blank. The character may be drifting 
or static. The rules are identical to 
those fur the dollar sign. 

Specifies the sign character - if field 
value is <0, otherwise blank. The 
character may be drifting or static. 
The rules are identical to those for 
the dollar sign. 

EDITING CHARACTER 

B Specifies that a blank appear in the 
associated field position. 

CONDITIONAL EDITING CHARACTERS 

If the subfields in which the comma 
appears involve no zero suppression, 
that character specifies that a comma 
will appear in the associated field 
position. If zero suppression is 
involved the comma will appear only if 
there is an unsuppressed digit to the 
left of the comma position in the 
subfield. If there is no such unsup­
pressed digit, the associated field 
position will contain a character that 
depends on the first digit 
<conditional or otherwise) picture 
character preceding the comma. 

If the preceding character is an 
asterisk the field position will con­
tain an asterisk. 

If the preceding character is a drift­
ing sign or dollar sign the action 
taken will be identical to that which 
would have occurred if the picture 
specification had contained the drift­
ing character in place of the comma. 

If the preceding picture character is 
anything other than the above, the 
field position associated with the 
comma will contain a blank. 

/ Exactly as comma, but a slash will 
appear when indicated. 

Exactly as corema, but a pOint will 
appear when indicated. 



SIGN CHARACTERS 

Digit characters in numeric fields may 
contain an overpunched sign. The following 
picture characters are used to specify 
overpunching: 

T Specifies that the associated field 
position will contain a digit over­
punched with the sign of the contain­
ing subfield. 

I Specifies that the associated field 
position will contain a digit over­
punched with + if the containing 
subfield is ~ O~ otherwise it will 
contain the digit with no overpunch­
ing. 

R Specifies that the associated field 
position will contain a digit over­
punched with - if the containing sub­
field is < 0; otherwise it will con­
tain the digit with no overpunching. 

The above characters may not be used in 
conjunction with any other sign characters 
in the same subfield. 

The two character picture items CR and 
DB may be used to reflect the sign of REAL 
numeric fields. 

CR Specifies that the associated field 
positions will contain the letters CR 
if the containing field value is <0. 
Otherwise the positions will contain 
two blanks. The characters CR may 
appear only to the right of all digit 
positions of a field. 

DB As CR, except that a DB appears. 

SCALING FACTOR SPECIFICATION 

F Specifies that the optionally signed 
decimal integer enclosed in parenthe­
ses following the picture character F 
in the picture string is the scaling 
factor (see "The PICTURE Attribute," 
in Chapter 4). 

STERLTNG PICTURES 

The following additional characters are 
provided for use in sterling pictures. 

8 Specifies the position of a shilling 
digit. in BSI single-character rep­
resentation .. 

7 Specifies the position of a pence digit 
in BSI single-character represen­
tation. 

6 Specifies the position of a pence digit 
in IBM single-character representa­
tion. 

P Specifies that the associated field 
position contains the pence character 
D. 

G Specifies the start of a sterling pic­
ture. It does not specify a character 
in the numeric field. 

H Specifies that the associated field 
pOSition contains the shilling charac­
ter S. 

M Specifies the start of a subfield. It 
does not specify a character in the 
numeric field. 

PICTURES FOR CHARACTER STRINGS 

A form of picture may be given for 
character strings. The following are used 
to indicate the form: 

A The associated field position may con­
tain any alphabetic character or 
blank. 

X The associated field position may con­
tain any character. 

9 The associated field pOSition may con­
tain any decirral digit or blank. 

At least one X or A must appear in the 
picture. 

Appendix 2 159 



APPENDIX 3: ON-CONDITIONS 

The ON-conditions are those conditions 
that may be specified in the ON statement. 
These conditions are also specified in 
SIGNAL and REVERT statements. 

For each condition name, the description 
in this appendix includes the circumstances 
under which the condition occurs, the 
standard system action that would be taken 
in the absence of programmer-specified 
action, and, where applicable, the result. 
("Standard system action" does not refer to 
any operating system but to standard action 
prescribed for the language.) 

For the conditions OVERFLOW, UNDERFLOW, 
ZERODIVIDE, CONVERSION, or FIXEDOVERFLOW, 
an interrupt action will always take place 
on occurrence of the condition unless the 
occurrence is in a calculation lying within 
the scope of a prefix specifying NOOVER­
FLOW, NOUNDERFLOW, NOZERODIVIDE, NOCONVER­
SION, or NOFIXEDOVERFLOW. For the condi­
tions ~~~~, SUBSCRIPTRANGE, or CHECK 
(identifier list), an interrupt will not 
take place on occurrence of the condition 
unless the occurrence is in a calculation 
lying within the scope of a prefix speci­
fying the condition. (See "Prefixes," in 
Chapter 1). 

For any other condition. whose name may 
not be used in a prefix, an interrupt 
always will result from the occurrence of 
the condition. 

CLASSIFICATION OF CONDITIONS 

The ON-conditions are classified as fol­
lows: computational conditions, 
input/output conditions, program-checkout 
conditions, list processing conditions, 
programmer-named conditions, and system­
action conditions. 

The computational conditions are 
associated with data handling, expression 
evaluation, and computation. 

The input/output conditions are asso­
ciated with data transmission. 

The program-checkout conditions facili­
tate debugging of programs. 

The list processing conditions are asso­
ciated with area usage. 

160 

The programmer-named conditions permit 
the programmer to use conditions of his own 
naming. These conditions are raised only 
by a SIGNAL staterrent. 

The system-action conditions provide 
facilities to the programmer to extend the 
standard system action taken after the 
occurrence of a condition or at the comple­
tion of a progra~. 

COMPUTATIONAL CONDITIONS 

CONVERSION: This condition is raised 
whenever an illegal conversion is attempted 
on character string data, either internally 
or during input or output. The condition 
will be raised for such errors as charac­
ters other than 0 or 1 in conversion to bit 
string, characters not permitted in conver­
sion to numeric field, or illegal charac­
ters in conversion to arithmetic. The 
conversion is carried out character by 
character, and the condition is raised for 
each illegal conversion. This condition 
may also be raised when the length of an 
arithmetic subfield is limited by an 
implementation restriction. 

Result: Undefined. 

Standard System Action: Comwent and raise 
the ERROR condition. 

FIXEDOVERFLOW: This condition occurs dur­
ing fixed-point arithmetic operations if 
the results of these operations exceed N, 
the maximum field width as defined by the 
implementation. See SIZE for a related 
condition that occurs on assignment. 

Result: Truncation on the left to size N. 

Standard System Action: Comment and con­
tinue. 

OVERFLOW: This condition occurs when the 
exponent of a floating-point number exceeds 
the permitted maximum, as defined by the 
implementation. 

In some implementations, the condition 
may be detected by hardware interrUpt, in 
others by special coding. 

Result: Undefined. 

Standard System Action: Comroent and raise 
the ERROR condition. 



SIZE: This condition is raised by conver­
sions between data types. or between dif­
fering bases, scales, or precisions. The 
condition arises when a value is assigned 
to a data item or during input/output, with 
a loss of high-order bits or digits. 

The SIZE condition should be distingu-
ished from FIXEDOVERFLOW that 
arithmetic calculations. A value too large 
for the field to which it is assigned will 
raise a SIZE condition on assignment, 
regardless of whether there was a FIXEDOV­
ERFLOW in the calculation of the value. 
FIXEDOVERFLOW depends upon the size of 
fixed-point numbers allowed in the implem­
entation. SIZE depends upon the declared 
size of the item of data receiving a value. 

Result: The result is undefined. 

Standard System Action: comment and raise 
the ERROR condition. 

UNDERFLOW: This condition occurs when the 
exponent of a floating-point number is 
smaller than the permitted minimum, as 
defined by the implementation. 

The condition does not occur when equal 
numbers are subtracted (often call signifi­
cance error). 

In some implementations, the condition 
may be detected by hardware interrupt, in 
others by special coding. 

I Result: Zero .• 

Standard System Action: Comment and con­
tinue execution. 

ZERODIVIDE: This condition occurs on an 
attempt to divide by zero. The condition 
does not distinguish between fixed-point 
and floating-point division; either can 
cause it. 

In some implementations, the condition 
may be detected by hardware interrupt, in 
others by special coding. 

Result: Undefined. 

Standard System Action: Comment and raise 
the ERROR condition. 

INPUT/OUTPUT CONDITIONS 

The following conditions are always ena­
bled and cannot appear in prefix lists. 
The condition established refers to the 
file value, and not necessarily to all 
files having a common identifier (e.g., 
file pa.rameters)~ It is not possible to 

override a condition by a new setting in 
the same block, using a different identifi­
er to refer to it. 

ENDFILE (filename): 
raised during any 
and is caused by an 
file delimiter= It 
no more data on the 

This condition may be 
GET or READ operation, 

attempt to read past a 
indicates that there is 
file. 

The end-of-file status rerrains until the 
file is closed. Subseauent GET or READ 
statements will immediately raise the con­
dition. On return from the on-unit, proc­
essing will continue at the next statement. 

Standard System Action: Comment and raise 
the ERROR condition. 

ENDPAGE (filename): This condition is 
raised by a PUT statement when an, attempt 
is made to start a new line beyond the 
limit specified for the current page by the 
PAGESIZE option in an OPEN statement. The 
current line becomes one rrore than the 
expression specified with the PAGESIZE 
option. The condition can be raised by 
data transmission (with associated format 
items--if edit-directed transmission), the 
LINE option, or the SKIP option. It is 
raised only once ~er page. 

If raised by data transmission, then on 
return from the on-unit, the data is writ­
ten on the current line, which may have 
been changed by the cn-unit. If raised by 
LINE or SKIP, on return, the action speci­
fied by LINE or SKIP is ignored. 

Standard System Action: Start a new page. 

TRANSMIT (filename): This condition may be 
raised during any input/output operation, 
and is caused by a permanent transmission 
error on the specified file. In STREAM 
input, it is raised after assignment to 
each data item or record which ispoten­
tially of incorrect value because of the 
transmission error. On return from the 
on-unit, processing will continue as if no 
error has occurred. 

Standard ~em Action: Corrment and raise 
the ERROR condition. 

UNDEFINEDFILE (filename): This condition 
is raised on any OPEN statement if the 
na.med file cannot be opened. An attempt 
will have been made to open all other files 
referred to in the same OPEN statement. On 
return from the on-unit, processing will 
continue with the next statement. If this 
condition is raised for more than one file 
in the same OPEN statement, on-units will 
be executed according to the left-to-right 
order of appearance of the filenames in 
that OPEN statement. 

Appendix 3 161 



standard system Action: comment and raise 
the ERROR condition. 

NAME (filename): This condition may be 
raised on data-directed GET statements. It 
is caused by an unrecognizable identifier 
in the input or by an identifier not in the 
associated dat~ list. The condition is 
raised at the time the error occurs. On 
return from the on-unit, the execution of 
the GET statement is resumed with the next 
data field in the stream. 

By using the DATAFIELD built-in function 
in the ON unit, the programmer may access 
the data field which contained the incor­
rect name. 

standard System Action: Ignore the field 
and comment. 

KEY (filename): This condition may be 
raised by any keyed record operation. It 
is raised in the following cases: 

1. A READ for which the key is not found 

2. A WRITE or LOCATE for which the kpv 
---.1 

already exists 

3. A REWRITE for which the key is not 
found 

4. A DELETE for which the key is not 
found 

On return from the on-unit, no further 
action is attempted, and control passes to 
the next statement. 

Standard ~stem Action: Comment and raise 
the ERROR condition. 

RECORD (filename): This condition may be 
raised by any READ or REWRITE operation. 
It is raised when the record contains more 
or less data than the specified variable 
(i.e., the size of the variable differs 
from the actual record size). 

The ONCODE built-in function returns an 
indication of whether the record variable 
was less than or greater than the record in 
size. 

Before the on-unit is invoked, the fol­
lowing action takes place: 

1. If the 
record, 
1S lost. 

variable cannot contain the 
the excess data of the record 

2. If the variable is greater than the 
record in size, the excess data in the 
variable is not transmitted on output 
and is unaltered on input. 

162 

Standard System Action: Comment and raise 
the ERROR condition. 

PROGRAM CHECKOUT CCNDITIONS 

SUBSCRIPTRANGE: This condition occurs when 
a subscript is evaluated and found to lie 
outside its specified bounds. 

The condition does 
between values that are 
values that are too small. 

not distinguish 
too large and 

Note that if mere than one subscript is 
associated with an identifier, e.g., 
A(I,J,K), the occurrence of a SUBSCRIPT­
RANGE condition is signalled after each 
subscript has been checked. 

Result: Undefined. 

Standard s~tem Acticn: COIl'Irent and raise 
the ERROR condition. 

CHECK (identifier-list): A statement prefix 
specifying this condition rray only be 
applied to PROCEDURE or BEGIN statements. 

In the identifier list, each identifier 
is one of the following: 

a statement label constant 
an unsubscriFted variable name rep­

resenting a scalar, array, or 
structure 

an entry label 

~ote: The identifier list !ray not contain 
based variables, forrral parameters, or data 
having the DEFINED attribute. 

Each item in the list is, in effect, 
enabled independently. It follows, there­
fore, that each item in the list can also 
be disabled independently. In other words, 
a REVERT statement can be used to change 
the ON action for one or more items in the 
identifier list. 

If a structure identifier or an array of 
structures identifier appears in the iden­
tifier list of a CHECK prefix, such a 
prefix is equivalent to a CHECK prefix 
whose list contains, in the order in which 
they were declared, the base elements of 
that structure or array of structures. For 
cxarrfle, if r is defined Ly 

DECLARE 1P,2Q,2R,2S; 
then 

CHECK (P) 
is equivalent to 

CHECK (Q,R,S) 



Statement Label Constant: For a statement­
label constant, the condition is raised 
prior to the execution of the statement to 
which the label is prefixed. If the label 
is prefixed to a non-executable statement, 
no condition will be raised. 

variables: For identifiers representing 
variables, the condition is raised whenever 
the value of the variable, or any 
generation of any part of the variable, may 
have been changed by any statement within 
the scope of the prefix. 

The condition will be raised by the 
explicit reference to an identifier ID in 
the circumstances listed below, where ID 
is: 

an identifier in the list 
an identifier representing a structure 

or element contained by, or con­
taining, an identifier in the list 

The reference to ID may be subscripted 
or qualified. 

The condition will be raised for ID if: 

1. ID appears on the left hand side of an 
assignment statement. (This applies 
to assignment BY NAME even if the 
identifier mentioned does not appear 
in the final expansion of the state­
ment.) 

2. ID is set as a result of a pseudo­
array, pseudo-structure, or pseudo­
variable appearing on the left hand 
side of an assignment. 

3. ID appears as the control variable of 
a DO statement (or ID is set as a 
result of a pseudo-variable appearing 
as the control variable of a DO loop). 

q. ID appears in the data list of a GET 
statement. 

5. ID is altered by data-directed input. 

6. ID appears as the second arguwent of a 
DISPLAY statement. 

7. ID appears as a STRING option of a PUT 
statement. 

8e ID is passed as an argument to a 
programmer-defined procedure, no dummy 
is created, and the procedure 
terminates with a RETURN. 

9. ID appears in the SET option of an 
ALLOCATE, READ, or LOCATE statement. 

However, the condition is NOT raised 
under any of the following circumstances: 

1. If the value 
upon ID or uFon 
value in any 
above. 

of a variable defined 
part of ~u changes 

of the ~ays described 

2. If the value of a variable upon which 
ID is defined changes value. 

3. If a pararreter which represents ID 
changes value. 

4. If ID appears in a GO TO or RETURN 
statement or any staterrent which 
involves the execution of a GO TO or 
RETURN staterrent. 

Each condition is raised after the 
statement ~hich caused it to be raised has 
been executed. (Note that an IF statewent 
is considered terrrinated just prior to the 
execution of the THEN or ELSE clause, and 
an ON statement just prior to the ON-unit 
specification.) If the staterrent has a 
task option, the condition is raised when 
the attaching task regains control. If the 
statement is a DO statement, the condition 
is raised each tirre control proceeds 
sequentially to the statement following the 
DO statement. If the DO specifies itera­
tion, the condition is raised once for 
every iteration. 

No statement other than a DO stateme~~ 
can cause a condition to be raised wore 
than once for the sawe identifier. If a 
statement causes a CHECK condition to be 
raised for several identifiers, then the 
conditions will be raised in the left-to­
right order of aFpearanoe of the 
identifiers in the statement. 

Entry Labels: For an entry label, the 
condition is raised prior to each invoca­
tion of the entry label. The condition is 
raised only if the entry label is invoked 
by the name given in the ON list. 

Result: Continue. 
cuted normally. 

The staterrent is exe-

Standard S~!~m A~!i2~~ If the identifier 
is a statewent label or an entry narre, the 
identifier will be printed on a debugging 
file. Label variables, TASK, and EVENT 
names are treated in the sawe rranner. 

If the identifier represents data other 
than that mentioned above, the identifier 
and its new value will be printed en a 
debugging file in the forrrat of data­
directed output. 

Appendix 3 163 



LIST PROCESSING CONDITIONS 

The following condition 
enabled and may not appear in a 
prefix. 

is always 
condition 

AREA: This condition is raised when an 
attempt is made to allocate storage within 
an area defined by an area variable, and 
sufficient storage does not remain within 
the area. 

Standar~stem Action: The ERROR condi­
tion is raised. 

PROGRAMMER-NAMED CONDITIONS 

CONDITION (identifier): This condition is 
always enabled and may not appear in a 
condition prefix. The identifier is speci­
fied by the programmer, and is EXTERNAL. 
The condition is raised by the execution of 
a SIGNAL statement having the same iden­
tifier. 

Standar~tem Action: Comment and con­
tinue. 

164 

SYSTEM ACTION CONDITIONS 

The following ccnditions are always ena­
bled and may net appear in a condition 
prefix. 

FINISH: This condition is raised immedi­
ately before the reain procedure terminates 
by executing a STOP, RETURN, END, or EXIT 
statement. If an ON-unit for this condi­
tion is specified, it is executed as part 
of the task in which the interrupt takes 
place. Upon normal completion of the ON­
unit, the system terrrinates the ITajor task. 

Standard System __ Acti2n~ Terminate 
major task. 

the 

ERROR: This condition is raised when a 
major task is forced to terwinate because 
of some error situation. If an ON-unit is 
specified for this condition, then upon 
normal completien of this unit, the system 
raises the FINISH condition. 

Standard System Action: Raise the FINISH 
condition. 



Abbreviations are provided for certain 
keywords. The abbreviations themselves are 

will be recognized as 
synonomous in every respect with the full 
keywords. The abbreviated keywords are 
shown to the right of the full keywords in 
the following list. 

ABNORMAL ABNL 
AUTOMATIC AUTO 
BINARY BIN 
CHARACTER CHAR 
COMPLEX CPLX 
CONTROLLED CTL 
CONVERSION CONV 
DECI!v1AL DEC 
DECLARE DCL 
DEFINED DEF 
ENVIRONMENT ENV 
EXTERNAL EXT 
FIXEDOVERFLOW FOFL 
INITIAL INIT 
INTERNAL INT 
IRREDUCIBLE IRRED 
OVERFLOW OFL 
PICTURE PIC 
POINTER PTR 
POSITION POS 
PRECISION PREC 
PROCEDURE PROC 
REDUCIBLE RED 
SUBSCRIPTRANGE SUBRG 
UNDERFLOW UFL 
UNDEFINEDFILE UNDF 
VARYING VAR 
ZERODIVIDE ZDIV 

APPENDIX 4: PERMISSIBLE KEYWORD AEBREVIATIONS 

A~pendix 4 165 



APPENDIX 5: THE 48-CHARACTER SET 

The characters that make up the 
48-character set are the same as those that 
make up the 60-character set except for 
certain restrictions. 

The following 
included: 

Percent 

Colon 

Not 

Or 

And 

Greater Than 

Less Than 

Break character 

Semicolon 

Number sign 

characters are 

, 

& 

> 

< 

# 

Commercial At sign 

Question mark ? 

The following three characters are 
replaced as indicated: 

60-Character Set 48-Character Set ----------------
, . 

% II 

The two periods which replace the colon 
must be immediately preceded by a blank if 
the preceding character is a period. The 
two slashes that replace the percent symbol 
must be immediately preceded by a blank if 
the preceding character is an asterisk, or 
immediately followed by a blank if the 
following character is an asterisk. The 
sequence "comma period" represents a semi­
colon except when it occurs in a comment or 

166 

character string" or when it is immediately 
followed by a digit. 

The following character cowbinations, as 
us~d in the 60-character set, are replaced 
in the 48-character set by alphabetic equi­
valents as indicated: 

60-Character Set 48-Character Set 

> GT 

,> NG 

>= GE 

1= NE 

<= LE 

< LT 

,< ""T 
1~.1.J 

, NOT 

OR 

& AND 

II CAT 

-> PT 

The above words are "reserved" in the 
48-character set; that is, they must not be 
used as prograrrmer-sfecified identifiers. 

In each case, one or more blanks must 
immediately precede the alphabetic operator 
if the preceding character would otherwise 
be alphameric, and one or more blanks must 
immediately follow if the following charac­
ter would otherwise be alphameric. Thus. 
to indicate the corr.parison of the variables 
A6 and BQ2Y for inequality, one would write 
A6 NE EQ2Y, but not A6NEBQ2Y, A6 NEBQ2Y, or 
A6NE BQ2Y. As the equal symbol is usable, 
however, the comparison of these two varia­
bles for equality may be written A6=BQ2Y. 

The break character, commercial at-sign, 
and nurrber sign are not used and conse­
quently may not be errployed in identifiers. 



APPENDIX 6: ANNOTATED EXAMPLES 

1 UPDATE: PROCEDURE; 
2 DECLARE CHANGE FILE SEQUENTIAL 

UNBUFFERED RECORD, 
3 MASTER FILE INPUT BUFFERED 

5 
6 

7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

Ll: 
L2: 
L3 : 

/* 

KEYED (10), 

KEYED (10), 
·1 CHANGE_REC , 

2 CHANGE_KEY CHARACTER 
(lOi, 

2 CHANGE INFO CHARACTER 
(50) , -

MASTER KEY CHARACTER (10), 
MASTER-INFO CHARACTER (50) 

CONTROLLED (IN IDENT), 
REC TEMP CHARACTER (50), 
STATUS BIT(l) INITIAL('O'B); 

ON ENDFILE (CHANGE) BEGIN; 
IF STATUS = 'l'B 

THEN GO TO FINISH; 
STATUS = 'l'B; 
CHANGE KEY = HIGH (10); 
END; 

ON ENDFILE (MASTER) BEGIN; 
IF STATUS = 'l'B 

THEN GO TO FINISH; 

OPEN FILE (CHANGE) INPUT; 

STATUS = 11'B; 
MASTER_KEY = HIGH (10); 
END; 

READ FILE (CHANGE) INTO (CHANGE REC); 
READ FILE (MASTER) SET (IN_IDENT) KEYTO (MASTER_KEY); 

IF CHANGE KEY = MASTER KEY 
THEN DO; 

MASTER INFO = CHANGE INFO; 
WRITE FILE (NEW MASTER) FROM 

(MASTER_INFO) KEYFROM (MAS~ER_KEY); 
GO TO Ll; 
END; 

IF MASTER KEY<CHANGE KEY 
THEN DO; -

WRITE FILE (NEW_MASTER) FROM 
(MASTER_INFO) KEYFROM (MAS~ER_KEY); 

GO TO L2; 
END; 

MASTER KEY >CHANGE KEY*/ 
REC TEMP = CHANGE INFO; 
WRITE FILE (NEW MASTER) FROM 

(REC TEMP) KEYFROM (CHANGE KEY); 
41 READ FILE (CHANGE) INTO (CHANGE_REC); 
42 GO TO L3; 
43 FINISH: CLOSE FILE (CHANGE), FILE (MASTER), FILE (NEW_MAS~ER); 
44 STOP; 
45 END UPDATE; 

Exa~ple 1. An Update Procedure (line numbers are for reference only, 
and are not a part of the program). 

Appendix 6 167 



Example 1 is a simple update procedure 
to create a new master file from an exist­
ing master file, making changes to existing 
records and adding new records to the file .• 

In line 2, the identifier CHANGE is 
declared to be a filename associated with a 
sequentially organized data set. All of 
the attributes, except for the function 
attribute, are declared explicitly in the 
DECLARE statement. 

In line 3, MASTER is declared to have 
the INPUT, BUFFERED, and KEYED attributes; 
the key of each record is 10 characters in 
length. The RECORD and SEQUENTIAL attri­
butes can be assumed, because the BUFFERED 
attribute is explicitly declared. 

The RECORD and SEQUENTIAL attributes can 
be assumed for NEW MASTER (line 4) since 
BUFFERED is declared. No function attri­
bute can be assumed. 

The major structure CHANGE REC is 
declared in lines 5-7, with the elements 
CHANGE KEY and CHANGE INFO. The key of the 
update-record will be-read into CHANGE KEY, 
and the update information -into 
CHANGE INFO. 

MASTER KEY (line 8) 
string variable into 
records in MASTER 
comparison with keys 
CHANGE_REC .. 

is a character­
which the key from 
can be read for 

from records in 

MASTER_INFO (line 9) is a based variable 
that describes the record in a buffer. The 
CONTROLLED attribute specification contex­
tually declares the pointer variable 
IN_IDENT, which can be used to specify the 
position of the data in the buffer. 

REC TEMP (line 10) is used, during exe­
cution-of the program (lines 39 and 40), as 
a temporary area from which data can be 
written. 

STATUS (line 11) is a program switch 
that is initialized with the bit constant 
'0'. 

All of the files declared have the 
default scope attribute of EXTERNAL; all of 
the variables have the default scope attri­
bute of INTERNAL and, with the exception of 
MASTER INFO, the AUTOMATIC storage class 
attribute. 

In lines 12 through 23, ON ENDFILE 
statements establish on-units for the end­
of-file condition for CHANGE and MA~TER 
files. Their execution is discussed below. 

The OPEN statement (line 24) opens 
CHANGE file and explicitly adds the INPUT 
attribute to the filename CHANGE. 

168 

The READ staterrent (line 25) transfers 
the record from the CHANGE data set direct­
ly to the structure CHANGE_REC. There is 
no data conversion; the assuroption is that 
the first 10 characters of the record 
represent the key and the next 50 charac­
ters represent the update information. 

The READ statereent in line 26 first 
causes implicit opening of MASTER file. It 
then reads the record into a buffer and 
sets the pointer variable IN IDENT to point 
to the record in the buffer. In effect, 
MASTER INFO is allocated and assigned. 
Consequently. any reference to the based 
variable MASTER INFO is a reference to the 
record in the buffer. The READ statement 
also transfers the key of the record to the 
character-string-variable MASTER_KEY. 

The key of the record read from MASTER 
is compared with the key of the record read 
from CHANGE (line 27). If they are the 
same, indicating that the MASTER record is 
to be updated, the update information 
replaces the old record in the buffer (line 
29), and the updated record is written in 
the NEW_MASTER data set (line 30). 

The NEW MASTER file is not explicitly 
opened, but-the first execution of a WRITE 
statement that refers to NEW MASTER will 
cause implicit opening of the fIle and will 
contextually supply the OUTPUT function 
attribute to NEW_MASTER. The file opening 
could be caused by any of the WRITE state­
ments (lines 30, 35, 40), depending upon 
which is executed first. 

If the keys of the .two records agree, 
control is returned (line 31) to the first 
READ statement, and two new records are 
read. If the keys indicate that the update 
record does not refer to the current record 
in MASTER~ a test must be made to determine 
if the CHANGE record refers to a later 
MASTER record or if the CHANGE record 
actually must create a new record in the 
NEW MASTER data set. If MASTER KEY is less 
than CHANGE KEY (line 33), it indicates 
there is no change to be made to the 
current MASTER record, and it is written 
(line 35) from the buffer into NEW MASTER 
exactly as it was read from MASTER~ Con­
trol is then returned (line 36) to read a 
new record from the MASTER data set. 

If neither of the two IF statements 
(lines 27 and 33) is true, MASTER_KEY must 
be greater than CHANGE_KEY, which indicates 
that the CHANGE record is to be added to 
the data set in NEW MASTER. CHANGE INFO is 
assigned to REC_TEMP and the record is 
written in NEW_MASTER (line 40). 

After the new record is writtenw another 
record is read from the CHANGE data set, 



and control is transferred (line 42) back 
to the first IF statement. 

22) through use of the HIGH tuilt-in func­
tion which returns a character string (in 
this case, of length 10) of the highest 
characters in the collating sequence. When the first end-of-file condition is 

raised, the program switch STATUS is set in 
the on-unit (line 15 or 21), and the 
appropriate variable (CHANGE_KEY or 
MASTER_KEY) is changed so that it always 
wl11 compare high in subsequent l~ ~tate­
ments. This is accomplished (line 16 or 

When the second end-of-file condition is 
raised, the test of STATUS (line 13 or 19) 

1 LIST: 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 

25 
26 
27 

28 

29 
30 
31 
32 
33 

PUB: 

Example 

results in a transfer to FINISH (line 
and all files are explicitly closed. 

PROCEDURE (AUTHOR, NUMBER PUBS); 
DECLARE AUTHOR CHARACTER (30), 

PUBLICATIONS FILE DIRECT INTERNAL KEYED(30), 
LISTING FILE STREAM PRINT, 
FIRST TIME BIT (l)INITIAL ('O'B) STATIC, 
AUTHOR_PUBS (NUMBER_PUBS) AUTOMATIC CHARACTER (100); 

IF FIRST_TIME = 'O'B 
THEN DO; 

OPEN FILE (LISTING) LINESIZE (120) PAGESIZE (58); 
PUT FILE (LISTING) EDIT ('AUTHOR PUBLICATIONS') (COLUMN (5), A); 
PUT FILE (LISTING) LINE (2); 
FIRST_TIME = 'l'Bi 
END; 

ON ENDPAGE (LISTING) BEGIN; 
PUT FILE (LISTING) EDIT 
('CONTINUED ON NEXT PAGE', 
'AUTHOR PUBLICATICNS CONTINUED') 
(SKIP, A, PAGE, COLUMN (5), A); 
PUT FILE (LISTING) SKIP; 
END; 

IF AUTHOR = (30)" 
THEN DO; 

PUT FILE (LISTING) EDIT ('END OF AUTHOR INDEX') (SKIP (2), A); 
CLOSE FILE (PUBLICATIONS), FILE (LISTING); 
RETURN; 
END; 
PUT FILE (LISTING) EDIT (AUTHOR) 

(SKIP, COLUMN (10),A); 
IF NUMBER_PUBS>O 

THEN DO; 
READ FILE (PUBLICATIONS) KEY 

(AUTHOR) INTO (AUTHOR PUBS); 
PUT FILE (LISTING) EDIT (AUTHOR PUES) 

(R(PUB»; -
RETURN; 
END; 

PUT FILE (LISTING) EDIT ('NO PUBLICATIONS') (R(PUE»; 
FORMAT (SKIP,COLUMN(15),A); 
END LIST; 

II ., '\. 
~JI 

2. An Information Retrieval and Listing Procedure (line nUITbers are for 
reference only, and are not part of the program). 

Appendix 6 169 



Example 2 is a simple information 
retrieval and listing procedure. It 
extracts information from a file of PUBLI­
CATIONS, based upon requests indicated by 
the parameters AUTHOR and NUMBER_PUBS 
passed to the procedure when it is invoked. 
The information subsequently is printed in 
a LISTING file. 

The declaration of the parameter AUTHOR 
(line 2) indicates it is a character string 
of length 30. This parameter is used as a 
key for locating publication information in 
the PUBLICATIONS data set. Note that the 
parameter NUMBER_PUBS is implicitly 
declared with the FIXED, BINARY, and REAL 
attributes .• 

The PUBLICATIONS file is declared (line 
3) to be a DIRECT file, with 30-character 
keys that represent the authors' names,. 
The file is declared to have the INTERNAL 
scope attribute; the RECORD attribute is 
implied from the other attributes. The 
file LISTING is explicitly declared (line 
4) with the STREAM and PRINT attributes. 
with PRINT implying OUTPUT. 

FIRST_TIME is declared 
program switch used to 
actions in the procedure. 

(line 5) as a 
control initial 

AUTHOR PUBS (line 6) is a one­
dimensional character-string array into 
which the list of publications is read and 
from which the list is printed. Since it 
has the AUTOMATIC storage class attribute" 
it is allocated each time the procedure is 
invoked, with the number of elements 
depending upon the current value of 
NUMBER PUBS" which is the number of publi­
cations by the author named. 

The IF statement (line 7) tests the 
switch FIRST TIME to determine its value. 
The THEN clause (lines 8 through 13) will 
be executed only once, the first time the 
procedure is invoked. Since FIRST_TIME has 
the STATIC attribute, its setting will 
remain even after the procedure is termi­
nated at the end of each execution. 

The THEN clause includes the opening of 
the LISTING file (line 9), which sets the 
length of lines and the number of lines to 
be printed on each page of the listing. 
The initial heading is written (line 10). 
with an indentation of five characters; 
then the PUT statement (line 11) makes the 
current line become line two. Following 

170 

that. FIRST TIME is set (line 12) so that 
the THEN clause will be skipped in subse­
quent executions of the procedure. 

The ON ENDPAGE statement (line 14) must 
be executed each time the procedure is 
invoked to reestablish the on-unit (lines 
15 through 17). The on-unit provides for 
printing a footing" 'CONTINUED ON NEXT 
PAGE' at line 60 of the page (the ENDPAGE 
condition arises when the current line is 
at PAGESIZE + 1, and the SKIP format item 
provides another skip). Following printing 
of the footing, the PAGE format item causes 
creation of a new current page. and the 
heading 'AUTHOR PUBLICATIONS CONTINUED' is 
written with an indentation of five charac­
ters. The next PUT statement (line 16) 
causes skipping of another line. 

The IF AUTHOR = (30) I" statement (line 
18) is a test of a convention of the 
program: when the listing is complete. the 
invoking procedure calls LIST and passes an 
argument consisting of 30 blank characters 
to the parameter AUTHOR. At that point. 
the "END OF AUTHOR INDEX' character string 
is printed, after skipping two lines" and 
the PUBLICATIONS and LISTING files are 
closed (line 21). 

If there is a listing to be printed. the 
PUT statement (line 24) prints the name of 
the author with an indentation of 10 char­
acters. If there are publications to be 
listed (determined by the IF statement in 
line 25), the list cf publications is read 
from the PUBLICATIONS data set (line 27), 
using the author's name as a key. The data 
is read into the array AUTHOR_PUBS. 

The publications then are printed (line 
28) using the remote format item that 
refers to the FORMAT statement (line 32). 
The format items in the FORMAT statement 
specify that a line is to be skipped. and 
each publication (each elerr-ent of the 
array) is to be printed with an indentation 
of 15 characters. 

When printing is complete 6 control is 
returned to the invoking procedure (line 
29). 

If the author's name is to be written. 
but with no publications, the DO group is 
skipped, and 'NO PUBLICATIONS' is printed 
where the first publication would otherwise 
have been printed. 



INDEX 

(If mare than one page number is given, the primary discussion is listed first.) 

abbreviation of keywords .•.••••••••••• 166 
ABNORMAL attribute ••••..•••••••. 50,66,145 
abnormality .••...•... ~ .•••...•.•.•. 145,50 

jefaults for .•••..•..•...•••••••• 50,66 
access attributes •.••••.••••••.•••.•••• 62 
activation; 
see blocks, activation 

AcrIVArE compile-time statement .•.•••• 136 
additive file attributes ......•..•.••.. 84 
ADDR built-in function ••••••.••••••••. 155 
ALI3NED attribute ...••..••••••••••••••. 55 
ALLOCArE statement •.....••...•.••••••. 103 
allaca tion •..•......••••••••..•.•••• 75,10 
also see storage class attributes 

of parameters .....•...••••••..••••. 142 
in tasks .....•.••.••..•••••..••. 79,144 
test for •••.....•.••••••••••..• 156,104 

ALLOCATION built-in function ••..•• 156,104 
alternative file attributes ....•.•.•••. 84 
AREA attribute ....••••••••..•.•..•. 63,146 
AREA. condition ...•...•.••...•••.•• 164,105 
area data ..•...••....•...... 30,63,104,105 
arguments .......•...••..•••• 71,72,140,141 

dummy .•.••••.....•.•..•..••..••• 73,140 
evaluation of subscripts •••..••.•.. 140 
list ...••••••••••••••••.••.••..••••• 68 

arithmetic built-in functions •....••.. 150 
arithmetic data ........•••......••..•.. 26 

attributes •..••.•.•.••••.•••.....••. 43 
arithmetic operations ••••••.•..•••••••• 31 
array ...•.•..•...•.•.•••.•.••••••••. 22,10 

allocation ••.••••.••••••••••.•••• 54,55 
assignment ..•...•..•...•.•• 106,107,109 
bounds .......................•... 22,49 

also see asterisks 
cross section of .................... 24 
defining .••.••..•••••••.••••••••• 56,57 
dimensions ........•.•.•..•...••.. 22,49 
expressions; 

see expressions 
manipulation ..••.••••••••.....••. ~. 155 
of structures ........•....•......•.. 23 

assignment 
array ...................... 106,107,109 
compile-time •••••••••••.••...•••••. 135 
pointer .•••..•.••••••••••••..•• 106,109 
scalar ...•.•.•••..•..•••.•••.•••••• 106 
statement ••......••••••••••••.••... 106 

evaluation of .•••••••••••.•.••••• 107 
statement-label ................ 106,108 
string •...•.••..•.....•.•••...•.•.. 107 
structure ..•••.....•.••..•.•••. 106,108 

asterisks 
for bounds or length •••..•.. 142,49,104 
for cross sections of arrays ..•....• 24 
with based variables •••.•••.••. 55,104 
with INITIAL attribute ...••.•....•.. 60 
with USES or SETS attributes .•••.•.. 51 

asynchronous operations •••.•••...•••.•. 77 
attacned task ................... 78,11,145 
attaching task •••.••.••••••••••• 78,11,145 
attributes ......... . -. ......... 38,43,84,17 

also see individual attribute 
defaults for ••••••••••••••.••••••• 65,9 

also see individual attribute 
factoring of •••.•••••.••••.••••••••. 39 
with compile-time DECLARE statement 134 

AUTOMATIC attributes; 
see allocation, storage class attributes 

BACKWARDS attribute •.•••.••.••••• 63,62,84 
BACKWARDS option ••••••••••••••••••••.• 123 
base ••••.•••••••.••••••••••••••••••• 26,43 
based variable ••.•••.. 29,54,64,97,104,146 
begin block •••••.•.••..•••••••••••• 19,110 
BEGIN statement ••••••..•••••••••••• 110,19 
BINARY attribute; 
see scale 

BIT; 
see string attributes 

bit-string data •••••••••••••..•••••• 28,47 
bit-string operations ••••••••.••••••••• 33 
blanks 

use of .••••••..••••.••••••..•••••••• 17 
with qualified names •••••••••••••••• 25 
with structure level numbers •••••••• 23 
in picture specification ••..•••.•.. 157 

blocks •••••••••••••••••••••••.•••••• 19,10 
activation of ••••...•••.•••.•.•••••• 74 
begin ..••••••••••..••••••••••••••••• 19 
nested •••••••••••.•••••••••••••••••• 20 
procedure ••••••••••••••••••••••••••• 19 
termination of ••••.••••••••• 74,115,118 

bounds; 
see array 

overriding DECLARE statement ••••••• 104 
of parameters •••••••••••••••••••••• 142 

t:lTllO'lO''t;'D't;'T) -::.+-+- .... ; h,,+-a h-:t Q/l Q[:;, 
L.JVL L ..I...J.L\..J...IJ.J (A II....,. '-L ...... ~ ...... '-'- ••••••••••••••• v -' I'"''''' v-' 

BUFFERED option ••••••••••••••••••••••• 123 
buffering attributes ••••.•••••••••••••• 63 
BUILTIN attribute •••.•.••••••..•••.• 53,70 
built-in functions ••••••••••• 150,17,53,69 
BY and TO Clauses ••••.•••••.•••••••••• 114 
BY NAME option ••.•••••••••.••..••. 106,108 

CALL option •••••••••••••••• 59,20,65,68,69 
CALL statement .••••••••••••••.•••••••. 110 

for creating tasks •••.•.•••••••••••• 78 
CELL attribute ••••••••.••••••••••••• 58,30 
cell data ••••.••••••••••••••.••• 30,58,141 
CHARACTER; 

see string attributes 
character string 

data •.••••••••.•••••••••••.•••••• 28. 47 
pictures ••.••..••...•.•.•...•.•.••. 159 

also see string 
characters 

alphabetic •••.•••••••••••••••••••••. 14 
alphameric ••••••••••••••••.••••••••• 14 
data character set ..•.••••...•••••.• 16 
48-character set •.•.•••••..••••••••• 15 
language character set ••••.••••••••• 14 
60-character set ••••••••••••••••••.• 14 
special ._"" ......................... = 14 

Index 171 



CLOSE statement ..•...••••••...•.••.••• 111 
co~ed form of arithmetic data ••.•••. 26,31 
collating sequence ..•••.•.•......••.••• 16 
COLUMN format item ...•.•..•.••••.•••••• 96 
comment ...........••.•.••.•••..•••••••. 17 
comparison operations ...••..••••.••.•.. 33 
compile-time activity .............. 132,11 

ACTIVATE statement ..•••••••..•••••• 136 
assignment statement •.••.••••.••••• 135 
DEACTIVATE statement •••••••.•.••••• 136 
DECLARE statement .•••••.•••.••••... 134 
DO-group ..•..••..••.•••••.••..••••• 137 
30 TO statement ......•••.••.•••••.• 136 
IF statement ......•...•••..••.•••.• 137 
INCLUDE statement .••••••.•••.•••••• 137 
null statement ..•.•.•.•••.•...•.•.. 137 
procedure .••.....•••.••••••••••.••. 138 
processor ...•........•••..•••••.••• 132 
replacement ...........•..•••...••.• 133 
scanning ..••.•...••..•••.••••••••.. 133 
SUBSTR built-in function •••••••.•.• 139 
variables .•...•...•..•••••......... 134 

COMPLEX attribute; 
see mode 

complex numeric data ....•••••.••••.•••. 90 
COMPLEX pseudo-variable .••••••••••..•. 103 
compound statement ....••.•..••.•.•.•••. 18 
computational conditions ••..•....•..•• 160 
concatenation operations ••.••...••.•••. 34 
condition built-in functions ..•..•.••. 155 
condition prefixes ...•...••. 79,18,121,160 
conditions; 
see ON-conditions 

constants .•..•..•••..•••.•..•....••. 22,26 
bit-string •.......•••.•••••...•.•••. 28 
character-string ....••••.••.•••..••. 28 
fixed-point binary .................. 27 
fixed-point decimal ................. 26 
floating-point binary ............... 27 
floating-point decimal .............. 27 
imaginary ........••••••••••...•..••. 27 
real aritnmetic •..••••.••••.•••••... 27 
statement-label ..................... 28 
sterling ..••.•••..•••••..•.••.•••.•. 27 

contained in ••..••.••••.••••••••••.•••. 20 
contextual declarations ••••.••••••.•••• 40 
also see declarations 

control 
format items ..•...••.••..•.••••.•••• 96 
program ...•..••..•.••••••••••.•.•••. 74 
return of ••.•.•••.•.•••...••• 127,69,70 
sequence of ...•.•.••••••••••••.••.• 102 
statements •••••..••..•••..•..•••••. 101 

CONTROLLED attribute .••.••..•..•.•. 54,105 
also see storage 

conversion ...•...••••.•.•••.••••••.•••. 32 
arithmetic base and scale •••.•••••.. 33 
arithmetic mode .••..••••.••...•...•. 32 
integer .•••......••...••••....•••••• 32 
in expressions •..••••••.••••..•••••. 31 
type .•..........••.....•••....••••.. 34 
with RETURN statement .•....•..•••.. 128 

COpy option .•..........•••.•••••.•.••. 118 
correspon~ence defining .••..••.•.•.•.•. 56 
COUNT built-in function .....••..••••.• 156 
cross sections; 
see array 

172 

data 
aggregates ••••••••••••••...••••••••. 22 
area • • • • • • . • • • • • • . • • • • • • • . •• . • • • • •• 30 
arithmetic •.•.••••.•••.••••••••••.•• 26 
bit-string •••••••..••.•••.•••••.•.•• 28 
cell ...•••.•.•••••.•••••••.••••••••• 30 
character set ••••.•••..•••.••••••••• 16 
character-string •••••••••.•••••••••• 28 
coded arithmetic •..•••••••••••••• 26,31 
description ••.•••••• ~ ••••••••.•••.•• 38 
elements •••.••••.••••••••••••••••••. 22 
forma tit ems ••••••.•••••••..•••••.•• 93 
list •...••.••••••.••••••••.•.••••••• 86 
numeric ••.••••••••••••••••.•••••• 26,31 
pointer •..••••.••••••..•••••••••••• 29 
specification •••••••••.••.•••••••••. 86 

repetitive specification for •••••• 87 
statements •.••••••••••••.•••••••. 101 

statement-label ..................... 28 
transmission ••••.•••••••••..•••••••. 84 

statements •••••••.••••••••••••••• 101 
types ..•••.••••••.•••••••.•••.•••••. 26 

default for ••••.•••••••••••.••• 45,65 
data-directed transmission ••••••••••••• 86 

data specification for .••••••.•••••• 90 
input •••••••••••••.••••••••••••••••• 91 
length of field •••.••••••••••.•••••. 92 
output •.•..•.•.•••.•••••••..•••••.•. 91 

data set ••••••••••••••••••••••••••••••• 84 
DEACTIVATE compile-time statement •••.. 136 
DECIMAL attribute; 

see base 
declarations •..•••••••••.••••••••••••.• 38 

contextual •••.•••••••••••••••••••••• 40 
explicit ••••••••••••••••.••••••••••. 38 
external ••••••••.•.•••••••.••••••••• 41 
implicit ••••••••••••••••••.••••.•••• 41 
multiple •..••.•••••••••••..••••.•••• 39 
scope of •••••••••••••••.•.•••••••..• 41 

DECLARE statement ••••••••••••••••••••.• 38 
compile-time ••••.•.•••••••••••••••. 134 

default; 
see attributes 

DEFINED attribute ••...••..••••••••••••• 56 
defined item •.•••••••.••••••••••••••••• 56 
DELAY statement ••••••••••••••• '. • • • • • •• 112 
DELETE statement ••••••••••••••••••••.• 112 
delimiters ••••.•.•••••••.••••.••••••••• 15 
descendence of blocks ••••••••.••.•••.•• 74 
dimension attribute ••••••••••• '. • • • •• ••• 49 

with ALLOCA'TE statement •••••••••••• 104 
DIRECT attribute •••••••••••••.••••••••• 62 
DIRECT option .•••••••.••••••••••.••••• 123 
DISPLAY statement ••••••••••••••••••••• 113 
DO groups •••.••••••...••.••••.••••• 19,113 

compile-time ••••••.••.••••••••••••• 137 
DO statement •••••••••.•••••••••••••••• 113 

edit-directed transmission •••.•••••• 86,92 
format of ••••••••••••••••••••••••••• 93 

editing; 
see PICTURE attribute 

symbols ••••••.•••••••• '. • • • . • • • • • • .• 157 
drifting •••.••••••••••••.••••.••• 157 

ELSE clauses ••••.•.••.••••••••••••••.• 119 
nesting of ••••••.•.•••••••.••••.••• 119 

enable ••••••••••.•.••• '. • . . • • • . • • • • • • • •• 79 
encompassing blocks •••.•••.••.••••••••• 75 



END statement ..•.•••..•.••••••.•••.•.• 115 
use of ...•••..•..••..••...•••.•.•.•• 21 

ENDFILE condition •..•..•••..••••••••• 5 161 
ENDPAGE condition ••.•••.••••• a •••••••• 161 
ENTRY attribute ..•••••.••••••••••.••••• 52 

declaration of •.•••...•.•...•..•• 40,52 
use of •.•..•.•.••••.••••••••..•. 72,140 

entry name •......•...•...• 18,20,52,72,140 
aitributes .••••.....•.•.•.•......•.. 52 
default for .•••.•...•••..•••.••••••. 52 
passing arguments to .••••••••.•.•••• 72 
required for PROCEDURE statement ••• 124 

entry point 
primary ...•••.•.•.••••••.•.••••.•••. 20 
secondary .•..•••.••••.•...•••.•. 20,116 

ENTKY statement .............••...•.•.• 116 
ENVIRONMENT attribute ..••....•.•.••••.• 63 
ERROR condition .•..••....•••..••••... 164 
evaluation 

of argument subscripts •...•..••.... 140 
in array assignment ..••.......••••. 106 
of assignment statement ...•.....•.. 107 
of express ions .•..•......•..•.•••••. 36 

EVENT 
attribute .....•...•••••...•...•...•. 48 
built-in function .....•.......•.••• 156 
option •....•.... 78,111,113,126,129,131 
pseudo-variable ...•..•.••.....• 103,131 

event name ...•..........••...•....• 78,131 
EXCLUSIVE 

attribute .........•.••••.••...•.•.•. 63 
option •.......•..••••.•••••.••••••• 123 

EXIT statement .......•.•...••••..•. 116,74 
explicit declarations; 
see declarations 

exponentiation .....•...••.......••..••. 32 
expre:;>sions ••.•....•.•••.•...••..••..•. 31 

array ....•.••..••••...•....••.••.••. 35 
as bounds or length ..••..•...••.••• 143 
evaluation of .....•.••.••.••..••..•. 36 
scalar .........•......••.•.•..•.••.. 31 
structure .•...•.......••..••..•.•.•. 36 

extended values on assignment ••.•••••. 106 
EXTERNAL attribute .................. 54,41 
external declarations ...••...••..•.•... 41 
external names .....•.•........... 20,41,65 

scope of .••••••••••••.••.••••••••••• 41 
external procedure .......••......•.. 20,65 

factoring 
of attributes •......•.•..•....•.•••• 39 

file .......•.•....•..• ~ .•.••.•...•••••. 84 
attributes ••.........•.•.•.•..... 61,84 

merging of .•....••.••..•....••••.. 85 
closing ...•.....•.•.........•.•.•.. 111 
condition~ ••••.•..•.•.••.•....•.... 161 
na.mes ............................ 84, 61 
opening •...•..............•...•. 85,123 
preparation statements .•......•.••. 101 
specification ...•.......•.......•.•. 61 

FILE attribute ...............•...•..••• 61 
FILE option .. 112,113,118,120,123,125,126, 
...................•.•...••... 129,130,131 

filename ............................ 84,61 
FINISH condition . . . . . . . . . • • . . . . . • • • .• 164 
FIXED attribute; 
see scale 

fixed.-point; 

see constants, precision, variables 
FLOAT attribute; 
see scale 

floating-point; 
see constants, precision, variables 

form 
coded ••••••••••••••••••••••••••• 26,31 
numeric field ••••.•••••••••••••• 26,31 

format 
of data-directed output •••••••••• 91,92 
of list-directed I/O •••••••••••••••• 89 

format items •••••.•••••••••• ~ •••••••••• 93 
control •••..•••••••••••••.•••••••••• 96 
da ta ••.••••••.•••••••••••.•••••••••• 93 
remote ..•.••••.••.••••••••••••••••.• 96 

format list •••••••.•••••••••••••••••••. 93 
FORMAT statement •••••••••••••.•••••••• 116 

label required for •.•••.••.•••••••• 117 
48-character set .••••••••.••••••••• 166,15 
FREE statement ••.•••..•••••••••••••••• 117 
FROM option ••.••••••••.•..•••.•••• 129,131 
function ••.•••••••••.•••.•••.•.••••••••. 68 

built-in ••.••.•••.••••••••••• 53,69,150 
generic •••••••••••••••••••••••••• 52,69 
procedure ••••••••.•••••••••••••••••. 69 

termination of •.•.••••••••••••••. 127 
referen~e ••••••••.•••••••••••••••••• 69 

GENERIC attribute •••••.••••••••••••• 52,69 
generic functions ••••••••.•..•••.•••.•• 69 

arguments of the reference .••.••• 52,69 
GET statement ••••••••••••••••.•••••••• 118 
GO TO statement ••••••..•••.••••••••••• 118 

compile-time •..••••..••.••.•••••••. 136 
groups •...••.•••.•••••.•••••••••••••••. 19 

DO groups .•.•.•••••••.••••.••••• 19,113 
single statement ••••••••••.••••••••• 19 

heading statements ••.•••••••••••.•••••• 19 

IDENT option ....................... 112,123 
identifiers ............................ 16 

attributes of •••••••••••••.••••••••• 38 
length of •.•..•••...••.••••••••••.•. 16 
statement labels ••..••.••..••••••.•. 16 
keywords ••.••••••••.••••••••••••••.• 16 

IF statement ..•••.••...••••••.•••••••. 119 
compi le-t ime ....••••••..•..••••.•.. 137 

IGNORE option •••.•••.•••••••.••••••••. 126 
IMAG pseudo-variable .•••••••••••••••.• 103 
imaginary numbers ••••••••••••.••••••••. 27 
also see mode 

implicit declarations; 
see declarations 

INCLUDE compile-time statement •••••••• 137 
infix operators; 
see operators 

IN clause •••••..••••..••.•••••••••••.. 103 
INITIAL attribute ..•...•.•.•....•.•.•.. 59 

rules with ALLOCATE statement ...••. 104 
initial value for statement-label 

arrays ••••.•..•.•...•••••.•••••.•••. 60 
INPUT attribute .•••.•.••..••••••••.•... 62 
INPUT option •...••••..•••..••.••••••.• 123 
input/output •..•.••••.••••..•.••.•••... 84 

conditions .••••.•..•••.••..•••••••. 161 
statements ••••••.••••.••••.•••••••• 101 

INTERNAL attribute ••..••.•••••.•.••• 54.42 

Index 173 



internal name ........•....••.•..••••••. 42 
internal procedure ..•..•.•.•.•.•••.•••• 20 
internal to ....••.••.•..••...•..•..•••. 20 
interleaving .••.•........•...•...•••••. 25 
interrupt •••••..•.••.•.• 79,18,121,128,160 

s y stem ••.••..•.....•......•• 80 , 121 , 160 
INro option .•••••••..•••••••••...•.••. 126 
IRREDUCIBLE attribute •..••.•. 50,51,52,145 
irreducible procedures ...•.•..•..•• 50,145 
iteration .•.•••..•...••.•••.•••••••••• 114 

factor •...•...•...•••.•..•••..•.••.. 60 

KEY condition •...••...•.••••..•..••••• 162 
KEY option ......••••.•.••• 113,126,129,130 
KEYED attribute •••....••••..•••••••. 63,84 
KEYED option .•••••..•.••.••..••••••••• 123 
KEYFROM option ..•••.••.•.••• r ••••• 120,131 
KEyrO option ••...•...•...••••••..••••• 126 
keyword .•.•••.••••..•••••••..•.•••.•••. 16 

abbreviations of •.••.•••••••..•.••• 165 
separating ••••••.••••••••••••••••••• 17 

known .......•••..••.••...•••••..••••••• 43 

I abel ..••••..••..•...••.•••..••.••••••• 18 
also see statement label 

required for FORMAT statement .••••• 117 
LABEL attribute •••••..••.•••••.•••••..• 48 
label prefixes .•....•..•.•••..•.••••.•• 40 
length 

data-directed data fields ••••••••••• 92 
identifiers ......•....•.•••...•••••• 16 
list-directed data fields ••..•••• 88,89 
overriding DECLARE statement ••••••• 104 
parameters ..•.•...••.••.•.•••••••.• 142 
strings ...•••.....•.••..••••.••••••. 47 

level nucnbers ••.••••••.•••..••.••••• 23,66 
also see structures 

LIKE attribute •.•••••.••••••••.•••••••. 61 
LINE format item .••.•••••••••••.••••••• 96 
LINE option •.••....•••....••••..•..•.. 125 
LINESIZE option .••.••••••••.•••••••••• 123 
list-directed 

data specification •...••••.••••••••. 88 
input .•.•••••.•..•...••••....••.•••• 88 
length of field ••••••.....••.•••.••• 88 
output ..•.•.......•••.•••.•.••••.••• 89 
transmission .....•••..•••••••••.•••• 86 

list processing 
see also: ADDR, ALLOCATE statement, AREA 
attribute, AREA condition, area data, 
assignment statement, CONTROLLED, 
FREE statement, NULL, POINTER attribute, 
pOinter data, pOinter qualification 

LOCATE statement ••.••••••••••...••••.. 120 
locking of records •.••.•.••••.•••• 100,127 

EXCLUSIVE attribute .•••••••. 63,100,127 
NOLOCK option .•..••.••.•••••••• 127,100 
UNLOCK statement •••.•••.•.• 130,100,127 

moae .....•..•••.••..••.•••••.••••••• 26, 44 
multiple declarations •••••••••••••..••. 39 
multiple labels ..••..•.•.•...•. 18,116,124 

NAME condition •.•..••.......•...•.••• 162 
names ....•....••••.••.••...•..•• 16,24,41 

external ••••••••.••.•.•..••.•.•.•••. 42 
internal ..•...•...•••••......••••••. 42 
qualified .••...•.••.••.•••.••...•••• 24 

174 

scope of ••.•••••••..•••••••••••••••• 41 
simple •••••••.••••.••••••••••••••••• 24 
subscripted ••.•••••••••••••••••••••. 24 
subscripted qualified .•••••••••••••• 25 
use of .••••••••••.••••••••.•.•••••••• 43 

nesting 
of blocks ••••••••.•••••••••••.••• 20,74 
of ELSE clauses ••••••.••••••••••••. 119 

NOLOCK option •••••.••••••••••••••• 127,100 
nonbased variable ••••••••••••.••••• 54,146 
NORMAL attribute ••••••••••••••••••• 50,145 
NULL built-in function ••••••.•••••••. 156 
null statement ••••••••.•••••••••••• 18,120 

compile-time ••.••.•.••••••.•••••••. 137 
null string ••••••••••••••••••.••••••••• 28 
numeric field arithmetic data .•••••• 26,31 

ON statement •••••••••.•••••••••••••••• 120 
use of •••••••••••••••••••••.•••••••• 80 

ONCHAR pseudo-variable ••.••••••••••••• 103 
ON-conditions •••.••••••• 18,79,121,128,160 
also see ON statement 

built-in functions ••••••••••••••••• 155 
input/output •••••••.••••••••••••••• 161 
list processing ••••••••••••••••••• 164 
nullification of •••••••••••••••••••• 18 
prefixes used with ••••••••••••••• 18~79 
program checkout •••••••••••••••• 83,162 
programmer-defined •••••••••••••• 83,164 
with SIGNAL statement •••••••••••••• 129 

ONFILE built-in function •••••••••••••• 155 
ONKEY built-in function ••••••.•••••••• 155 
on-unit ••••••••••••••••••••••••••••••• 121 

cannot be RETURN statement ••••••••• 121 
OPEN statement ......................... 123 
operations 

ari thmetic ............................ 31 
array-array .......................... 35 
bit string •••••••••••••••••••••••••• 33 
comparison ........................ 33., 34 
concatenation ••••••••••••••••••••••• 34 
scalar-array •••••••••••••••••••••••• 35 

operators 
arithmetic •••••••••••••••••••••••••• 15 
bit string .••.•••••••••••••••••••••• 15 
comparison ........................... 15 
infix ••••••••••••••••••••••••••••••• 31 
prefix ............................... 31 
string .•••••••••••••••••••••••••••.• 15 

options •..••••.••••••••••••••.••••••••• 17 
also see individual options 

OPTIONS attribute ••••••••••••.•••••••• 124 
output; 
see input/output 

OUTPUT attribute ••••••••••••••••• 62,84,85 
OUTPUT option ••••••••••••••••.•••••••• 123 
overlay defining ••••••••••••••••••••••• 57 

PACKED attribute ••••••••••••••••••••••• 55 
PAGE format item .......................... 96 
PAGE option •••••••••••••••• '. • • • • • • • • .• 125 
PAGESIZE option ........................ 123 
parameters ••.•••••••••••••••••••••• 68,140 

allocation of •••••.•••..••••••••••• 142 
bounds and length .•••...••••••••••• 142 
controlled •••.••.••••••••.••••••••• 105 
explicit declaration of ••..••••••.•• 40 
with ENTRY statement ••..•.•••••••.• 116 



with PROCEDURE statement .•••.••.••• 124 
percent symbol; 

compile-time use of .~ •••••..••••••• 132 
PICTURE attribute •••••.•••••.•••••• 45,157 

with numeric data •••.••..•••.••••••• 45 
specification •.•.•.••••.••••••.•••• 157 
with string data •••••••••••.•••••••. 47 

picture format items ••••.••••••.••..••. 95 
picture specification tables ••..•••••. 157 
POINTER attribute .• • . . • . • • . . • • • • •. 64,146 
pointer data • • . • . . . • . . • . • • • • • •. 29,64,146 
pointer qualification symbol •••••••• 16,29 
POSITION attribute ..••••.••••.••••••.•. 58 
precision •••••.••••••••••••••••..••. 26,44 

in expressions .•..•.•..•••••..•.••.. 31 
of format items •...•••••••••••••.••• 93 
in picture specifications .•••••••••• 46 
of real arithmetic constants ••••.••• 27 

prefix 
condition •.••••..•••.•••. 79,18,121,160 
label .•••••.•.•••.••.•••••••••••• 18,40 

prefix operators; 
see operators 

PRINT attribute ••..•••••••..••.•.••• 62,84 
PRINT option •••..•••.••••••••.••••••.• 123 
PRIORITY 

built-in function ••••••••••••..•••. 156 
option •..••.•••.•...•••.•••••.•• 78,111 
pseudo-variable .•.••..••..•••••••.• 103 

problem data ••••..•....•.••.••••••••••. 26 
procedure .....•••..•...•.••.•... 68,19,124 

activation of ••••••••.•••••••••••••• 74 
compile-time •••••••••.••••••••• 138,135 
external .••.•••..••..•.•••••.••.•..• 20 
internal ..•••..•..••..••••••••••.••• 20 
invocation •.••.••......•••••. 68,69,111 
name •••..••.•••...••••••.•.••••.•••• 20 
parameters ••••••••••••••.•••.••. 68,140 
termination of •••••..••.• 70,74,115,127 

also see termination of blocks 
PROCEDURE statement ••.•.•••.••••••• 124,19 

compile-time ••..•.•••••.••••.•••••• 138 
program ........••...••.••••••••••••• 21,11 

control ..••...•.......•.•••••••. 74,101 
elements •••.....•.••..••.••...•••••. 14 
modification ..•......•....•...••... 132 
structure •••.••••••••••••••••••.• 17,74 

program-checkout conditions ..•..... 162,83 
program-control data .•..•••.••..••••••. 28 
prologues ...••.•....••.•••••••.....••• 144 
pseudo-array •...••..•.••••.••••••••••• 106 
pseudo-structure .•..•...••••••.••••••• 106 
pseudo-variables .••.••••••••••..••.••• 103 
PUT statement ••..•...••..•••.••.•••••• 125 

qualified names •.•.•.•.•••.•••••.••• 24,39 

READ statement ..••.••....•..•...••.•.• 126 
REAL attribute; 
see mode 

REAL pseudo-variable ••..•••.••..••.••• 103 
RECOH.D 

attribute .....•..••••••....... 60,84,85 
condi tion .....•...•...•.......•.••• 162 
option ....•...•.••.••.•.••..•••.••• 123 
transmission statements .•....••...•• 98 

RECURSIVE attribute ..•..••..••...•. 74,124 
recursive procedure •.•.•••••... 74,124,143 

REDUCIBLE attribute ••.••.•••• 50:51;52:145 
reducible procedures ••••.••••.••••• 50,145 
relationship of arguments and 

parameters ••••••••••••••.•••••••••• 140 
remote format specification •••••.•• 96,117 
replacement, compile-time •••.••••••••• 133 
return of control .•••••••••••.•• 69,74,127 
return of value ••••••••••••••••• 53,69,127 
RETURNS attribute •••••.•.•••••••••••••. 53 
RETURN statement .••••••••••••••• 127,69,74 

cannot be an on-unit ••••••••••••••• 121 
returned value 

characteristics of ••••••••• 116,124,128 
specifications ••••••••••••••••••••• 124 

REVERT statement •••••••••••••.•.••. 128,82 
use of •••••••••••••••••••••••••••••• 82 

REWRITE statement ••••••••••••••••••••• 129 
row-major order •••••••••••••••••• ~ ••••• 37 

scalar ••••••••••••••••••••••••••••••••• 22 
assignment ••.••••••••••••••••••••••• 106 
constant; 

see constants 
defining ••••••.••••••••••••••••••••• 57 
expression; 

see expressions 
variable 

see variables 
scale •••••••••••••••••••••••••••• 26,31,44 
scanning, compile-time •••••••••••••••• 133 
scope 

of declarations •••.••••••••••••••••• 41 
of names ••.••••••••••••••••••••••••• 41 
of condition prefixes ••••••••••••••• 79 

scope attributes •••••••••••••••••••• 41,54 
default for ••••••.••••••••••••••• 54,66 

SECONDARY attribute ••••••••••••••••••• ~ 49 
secondary entry point .••••••••••••• 20,116 
separators ••••••••••••••••••••••••••••• 15 
sequence 

collating ••••••••••••••••••••••••••• 16 
of control .•....•....•.•....•.•.... 102 

SEQUENTIAL attribute ••••••••••••• 62,84,85 
SSQUENTIAL option ••••••••••••.••.••••• 123 
SET clause •••••••••••••••••••••••••••. 103 
SET option •••••••••••••••••••••••••••• 126 
SETS attribute ••••••••.•••••••••••••••• 50 
sign picture characters ••••••.••.•• 159,47 
SIGNAL statement ................. 129,82.,83 

with programmer-defined 
ON-conditions •••••••••••••••••• 82,83 

60-character set ••••••••••••••••••••••• 14 
SKIP format item •••••••••••••••••• '. • • •• 96 
SKIP option ••.••.••••••••••••.•••••••• 125 
SNAP option •••••••••••••••••••••••••• 121 
specification ..••••••.••••••••••.••••• 114 
stack, push-down ••••••••••••••••••••••• 76 
standard files •••••••••••••••.•••••••• 100 

input (SYSIN) ••••..•••.•••.•••• 100,118 
print (SYSPRINT) ••••••.••.. 100,118,125 

statement label •.••••.•••••••. 16,18,40,48 
array •.•••••••.••••••••••••••• 28,48,60 

initial values for •••••.•••••••••. 60 
assignment ••••••••.••••••.••••••••• 106 
constant •••••••••••.•••••••••••••••• 28 
data •..••••.•••••••••.•••••••.•••••• 28 
deSignator •••••••••.••••••.••••••••• 29 
required for FO~~~T statement .~ __ ~. 117 

Index 175 



variable .....•.•••..••••.•••.••••... 28 
statements .•.••..•...•••••••.•••.•. 17,101 
also see individual statement 

alphabetic list of .•••.•..•.•.••••. 103 
classification •......••••....••..•. 101 
compile-time .•••.•••.••..•••..••••• 134 
compound •....•••••.••.•••••••••••••. 18 
heading ..••..•.•..•.•.•.••.••••••.•. 19 
identifiers •..•...••••••...••.•••••. 16 
input/output .•...••.•••.•••..•••••. 101 
relationship .....•.••••.•••.•.•••.. 101 
simple ••...••...••••••••.••••••.•.•. 18 

ST~TIC attribute; 
see storage class attributes 

sterling 
constants .•.•.•.•.•••.•.•..•.••. w • •• 27 
pictures ••••...•.••.••••.••••••• 46,159 

STOP statement •.•..•••..••••.•••.••..• 130 
storage; 
also see allocation 

ALLOCATE statement •••••••••.••• 103,146 
automatic ••••..•.•...••.•••.. 75,54,146 
controlled •..••...•.•.•.• 76,54,103,146 
FREE statement ••.•••••••.••••••.••• 117 
static ••..••..•••••.•.••..... 75,54,146 

storage class attributes .~ •••••.•••• 54,75 
default for .•••..••.••••.•••••••• 54,66 
restrictions •••••••..••••...••••..•• 54 
with structures •.•...•••••••..•••••• 67 

STREA['1 
attribute ~ •••.••.•...•••.•••.. 62,84,85 
option ••.••••.••••••.••••.••.•••..• 123 
transmission modes •.•.••.••••••••••• 85 

data-directed .•••..•.•••••.•••. 86,90 
edit-directed .••.•••••••.•••••. 86,92 
list-directed ••..••••.••••..•.•••• 86 

string 
assignment ••••...••••••••.•••••.••• 107 
attributes •••••..•••••••••••••••.••• 47 
built-in functions •••.•••••..•••... 153 
da ta ••••••••.••...••.•••.•••••••• 27, 28 

STRING option •••••..••••••.••••••• 118,125 
structure •.•.••••.•••••.••.•.•••••••••• 23 

assignment •••••.•••••••.••••••••••• 106 

176 

BY NAME; 
see BY NAME 

declarations and attributes •••••.• ~. 66 
with DEFINED attribute •••••.•••.•••• 57 
with LIKE attribute .••••••••.••••••• 61 
level numbers •••••••••••.••••••.. 23,66 
storage allocation .••••••••••••. 103,54 
with storage class attributes .•••••• 54 

subroutine ••...•.•••••• ' •••••••• '. • • • • • •• 68 
references .••.•••••.••••••.••••••••• 70 

subscripts •.•••.••••••••••••••••••••••• 24 
interleaved ••••••••••••••••••••••••• 25 

SUBSTR pseudo-variable •••.•••••••••••• 103 
SUBSTR built-in function •••••••••••••• 153 

compile-time use of .••••••••••••••• 139 
syntactical unit ••••••••••••••••••••••• 11 
syntax notation ••••••••••••.••••••••.•. 11 
SYSIN file ••••••••.••••••••••••••• 100,118 
SYSPRINT file •••••••••••••••.. 100,118,125 

task ••••••••••••••••••••••••••••• 11,29,77 
attached ••••••••••••••••••.•• 78,11,145 
attaching •••••••••••••••••••• 78,11,145 
rna j or ••••••••••••••••••••••••••••••. 77 
synchronization of •••••••••••••••••• 77 
termination of •••••••••••••••••••••. 78 

TASK attribute •••••••••••••••••••••••• 48 
task option •••••••••••••.•••••••••••••• 78 
TASK option •••••••••••••••••••••••• 78,111 
termination 

blocks ••••.•••••••••••••••.• 74,119,127 
function procedure •••••••.•••••• 69,127 
program •••••••••••••••••••••••••••• 130 
task ••.••••••.•••••••••••••••••••••• 78 

TITLE option ••••.••••••••••••••••••••• 123 
TO and By .••..•••.....••...••.••••••.. 114 
truncation on assignment •••••••••••••• 107 

UNBUFFERED attribute ••••••••••••• 63,84,85 
UNBUFFERED option ••••••••••••••••••••• 123 
UNLOCK statement •••••••••••••••••••••• 130 
UNSPEC pseudo-variable •••.•••.•••••••. 103 
UPDATE attribute ••••••••••••••••• 62,84,85 
UPDATE option ••••••••••••••••••••••••• 123 
USES attribute ••••••••••••••••••••••••. 50 

variables 
array ...... . ' . ...............•.... 22,49 
based •••••••••.••• 29,54,64,97,104,146 
scalar •••••••••••.••••••••.••••••••• 22 

range of •••••••..••••••••••••.•••• 22 
default for range •••.•••.••••••••. 66 

statement-label .......•............. 28 

WAIT statement ••••••••••.•••••••••••.• 130 
WHILE clause •••••.•••••••••••.••••••.• 114 
WRITE statement •••••.••••••••.•••••••• 131 

zero suppression ••••••••••••••••••• 159,46 



READER'S CO~J..I.Y..EN'IS 

Title: IBM System/360 Operating System 
PL/I Language Specifications 

Is the material: 

Easy to read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Written for your technical level? 

How did you use this publication? 

Yes No 

-----As an introduction to the subject 

Other-------------------------

Please check the items that describe your position: 

-----Custorner personnel ----Operator 
-----IBM personnel ----Programmer 
-----Manager ----Customer Engineer 
----~Systems Analyst ----Instructor 

Form: C28-6S71-3 

----~For additional 
knowledge 

-----Sales Representative 
-----Systems Engineer 
-----'I'rainee 
-----Other---------------

Please check specific criticisms, give page numbers, and explain below: 

-----Clarification on pages 
-----Addition on pages 
-----Deletion on pages 
-----Error on pages 

Explanation: 

If you wish a reply, be sure to include your name and address. 



fold 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES 

ATTENTION: PUBLICATIONS, DEPT. 039 

POSTAGE WILL BE PAID BY •.. 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 
NEW YORK, N.Y. 10020 

FIRST CLASS 
PERMIT NO. 33504 
NEW YORK, N.Y. 

fold 

...................................................................................................................... : 

fold 

® 

International Business Machines Corporation 
Data Processing Diyision 
112 East Post Road, White Plains, N.Y.106Ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 100171 
[ International] 

fold 

01 

() 
~ 
(10 

1 8;., 
::::! .. 
I' 

W 



C28-6571-3 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	replyA
	replyB
	xBack

