Form
File

Systems Reference Library

IBM System/360
PL/I Subset Reference Manual

This publication provides the rules for writing PL/I
Subset programs that are to be compiled using the PL/I
D-level compiler under the IBM System/360 Disk and Tape
Operating Systems. It is not a reference to the entire
PL/I Subset 1language, but only to those features
implemented by the Second Version of the D-level
compiler.

No. (C28-8202-0
No. S360-29

PREFACE

This publication is planned for use as a
reference book by the PL/I Subset program-
mer. It is not intended to be a tutorial
publication, but is designed for the reader
who already has a knowledge of the language
and requires a source of reference mater-
ial.

It is divided into two parts. Part I
contains discussions of the concepts of the
language. Part II contains detailed rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete des-
cription of any implementation environment.
In general, it contains information needed
in writing a program; it does not contain
all of the information required to execute
a program.

The following features are described as
they are implemented in the Second Version
of +the D-Compiler; they are implemented
differently in the First Version:

1. Arithmetic-to-Bit-String conversion:
The First Version uses the internal
representation of the arithmetic
value; the Second Version takes the

absolute value. This will have a
different effect only for negative
values.

2. FIXEDOVERFLOW Condition: For the First
Version, the result of this condition
is truncation on the left and the
standard system action is to comment
and continue. For the Second Version,
the result is undefined and the stand-
ard system action 1is to comment and
raise the ERROR condition.

3. SKIP Option of PUT: A specification of
SKIP(0) under the First Version causes
the previously-transmitted 1line of
characters to be replaced by the new

Firsi: Edition

line; the new 1line being the one
actually printed. Under the Second
Version, such a specification causes
overprinting of the previously-
transmitted 1line by +the new 1line;
thus, for example, underscoring is
possible.

REQUISITE PUBLICATION

For information
linkage edit, and
reader should be familiar with the
ing publication:

necessary to compile,
execute a program, the
follow-

IBM System/360 Disk and Tape Operating
Systems: PL/I Programmer's Guide, Form
C24-9005.

RECOMMENDED PUBLICATIONS

The following publications contain other
information that might be valuable to the
PL/I programmer or to a programmer who 1is
learning PL/I:

A PL/I Primer, Form C28-680¢&

A Guide to PL/I for Commercial Program-
mers, Form C20-1651

A Guide to PL/I for FORTRAN Users,
Cc20-1637

Form

The following publication contains a

complete description of the PL/I Subset
language:
PL/I Subset Lanquage Specifications,

Form C28-6809

Spec:.fications contained herein are subject tc change from time to time.

Any such change
News.etters.

Address comments concerning the contents of the
Corporation,
York, New York 10020.

® International Business Machines Corporaticr 1967.

will be reported in subsequent revisions or Technical

publication to IBM
Programming Publications, 1271 Avenue of the Americas, New

CONTENTS

INTRODUCTION ¢ & & o o o o o o o o o o o o o o o o o s o o s o « s o o o « o o o o o o 5

PART I: CONCEPTS OF PL/T. v v o o o o o o ¢ o o o o o o o o s o o o « o o o« o o o o . 7

Table Of CONtENtS o« « v ¢« v & o o o o o« o o o o o o o o o o« o o o o o o o o o o 9

PART II: RULES AND SYNTACTIC DESCRIPTIONS . & & v o o o o o o o o o o o o o o« o o o« o« 123

Table OF CONLENES « o o o ¢ o 125

INDEX: &« o o o o o o o o o o o o o o o o o o o s o o o o o o o o o e s o o o o o o« o« 219

ILLUSTRATIONS

FIGURES

Figure 2-1. Examples of the Use of

BlankS. o & ¢« ¢ ¢ ¢ ¢ o o o « o « « =«
Figure 7-1. Scopes of Data
Declarations.

Figure 7-2. Scopes of Entry and Label
Declarations. . « « ¢« ¢« ¢« ¢« « ¢« o « .
Figure 8-1. General Format for
Repetitive Specifications
Figure 13-1. A PL/I Program
Figure D-1. Pictured Character-String
Examples. . « « ¢« ¢ ¢ ¢ ¢ 4 @ ¢ & . .
Figure D-2. Pictured Numeric
Character Examples.
Figure D-3. Examples of Zero

SuppPression .« ¢ ¢« 4 . 4 e . e e . . o
Figure D-4. Examples of Insertion
Characters. « . . « e .

Figure D-5. Examples of Drifting
Picture Characters. . « « ¢ ¢« « o & «

TABLES

Table 2-1. Some Functions of Special
Characters. « « ¢ ¢ o o o o o o o o =
Table 4-1. Target Types for
Expression Operands . . « « « « « . =«
Table 4-2. Precision for Arithmetic
CONVErSiONS « « « « o « o o o o o « =
Table 4-3. Lengths of Bit-String
Targets « ¢ « o« ¢« o o« ¢ o o o o o « o
Table U4-4. Circumstances that Can
cause {onversion. « « « « o o« & « o
Table F-1. Precision for Arithmetic
CONVErSiONS « « o v o « o o o o « o «

. 18

. 67

. 68

. 85
.119

.136

.138

.139

.141

.143

.154

Figure D-6. Examples of CR, DB, T, I,
and R Picture Characters. . .
Figure D-7. Examples of Floating-Point
Picture Specifications.
Figure D-8. Examples of Sterling
Picture Specifications.
Figure F-1. Examples of Conversion
From Arithmetic to Bit-String
Figure G-1. Mathematical Built-in
Functions . « « ¢ @ ¢« ¢ o« o @« o o o @
Figure I-1. Permissible Items for

o e e =

Overlay Defining. . . « . .« « & « «

Figure I-2. Device Types an
Corresponding Specifications.
Figure I-3. Device Types Associated
to SYSIPT, SYSLST, and SYSPCH
Figure J-1. Assignment Statement
TYPES ©v v v @ @ v o o o o o o sa-9e o« »
Figure J-2. General Format of DO
Statement 0 . . 0. .

Table F-2. Lengths of Converted Bit
Strings (Coded Arithmetic to
Bit-String) . . . ¢ ¢ ¢ ¢ @ ¢ ¢ o . .

Table F-~3. Ceilings for Values
Multiplied and Divided by 3.32. . . .

Table F-4. Attributes of Result in
Addition and Subtraction Operations .

Table F-5. Attributes of Result in
Multiplication Operations

Table F-6. Attributes of Result in
Division Operations

Table F-7. Attributes of Result in
Exponentiation Operations

.143
lan
-145
-.154
.170
.184
.186
.187
.194

.199

.155
.155
.156
.156
157

157

The PL/I Subset Language was designed
for use in a data processing system of
limited capacity. The subset is self-
contained; i.e., the programmer c¢an learn

and use it without referring to the parent
PL/1I language. While many of the more
sophisticated features of PL/I, such as
asynchronous operations and compile-time
facilities are not included in the PL/I
subset, much of the programming power of
PL/I has been retained.

Two of the basic characteristics of PL/I
that have been carried over into the PL/I
subset (hereinafter simply called PL/I) are
its block structure and 1its machine
independence. They reduce the need to
rewrite complete programs if either the
machine environment or the application
environment changes.

A PL/X program is composed of blocks of
statements called procedure blocks (or
procedures) and begin blocks, each of which
defines a region of the program. A single
program may consist of one procedure or of
several procedures and begin blocks. Eith-
er a procedure block or a begin block can
contain other blocks; a begin block must be
contained in a procedure block. Each
external procedure, that 1is, a procedure
that is not contained in another procedure,
is compiled separately. The same external
procedure might be used in a number of
different programs. Consequently, a neces-
sary change made in that one block effec-
tively makes the change in all programs
that use it.

PL/I is much less machine dependent than
most commonly used programming languages.
In the interest of efficiency, however,
certain features are provided that allow
machine dependence for those cases in which
complete independence would be too costly.

USE_OF_THIS PUBLICATION

This publication is designed as a ref-
erence Dbook for the PL/I programmer. Its
two-part format allows a presentation of
the material in such a way that references
can be found quickly, in as much or as
little detail as the user needs.

pPart I, "Concepts of PL/I,™ is composed
of discussions and exanlples that explain
the different features of the language and
their interrelationships. To reduce the

INTRODUCTION

need for cross references and to allow each
chapter to stand alone as a complete ref-
erence to its subject, some information is
repeated from one chapter to another. Part
I can, nevertheless, be read sequentially
in its entirety.

Part II, "Rules and Syntactic Descrip-
tions," provides a dquick reference to
specific information. It includes less

information about interrelationships, but
it is organized so that a particular ques-
tion can be answered quickly. Part II is
organized purely from a reference point of

view; it is not intended for sequential
reading.
For example, a programmer would read

Chapter 5 in Part I, "Statement Classifica-
tion," for information about the interac-
tions of different statements in a program;
but he would look in Section J of Part II,
"Statements," to find all the rules for the
use of a specific statement, its effect,
options allowed, and the format in which it
is written.

In the same manner, he would read Chap-
ter 4 in Part I, "Expressions," for a
discussion of the concepts of data conver-
sion, but he would use Section F of Part
II, "Data cConversion," to determine the
exact results of a particular type of
conversion.

An explanation of
used in this publication to
ments of PL/I 1is contained
Section A, "Syntax Notation."

the syntax language
describe ele-
in Part II,

IMPLEMENTATION CONSIDERATIONS

This publication reflects current fea-
tures of the D-Compiler. Cconsequently,
some features that are in the PL/I subset

language are not described in this publica-
tion. One example 1is the list-directed
input/output facility of the language;
another is the INITIAL attribute.

Some language features that have been
implemented with limitations are described
in this book in the light of the limita-
tions. Wherever a description here differs
from the description of the same feature in
PL/I Subset Language Specifications, Form
C28-6809, it is not to be construed as a
respecification of the language, but merely
a description of the implementation.

Introduction 5

that this book does
language specifications.
For example, the keyword BASED has been
added to the language as the attribute
specification for based variables, replac-
ing the attribute specification CONTROLLED
{pointer-variable).

Note, however,
reflect current

No attempt is made, however, to provide
complete implementation information; this
publication is designed for use in conjunc-
tion with IBM System/360 Disk and Tape

Operating Systems PL/I Programmer's Guide,
Form C24-9005. Discussion of implementa-
tion is limited to those features that are
required for a full explanation of the
language. For example, a complete discus-
sion of the ENVIRONMENT attribute is essen-
tial to an explanation of record-oriented
input and output file organization.

Implementation features identified by
the phrase "for System/360 implementa-
tions..." apply to all implementations of
PL/I (subset or full set) for IBM
System/360 computers. Features identified
by the phrase "for the D-Compiler..."
apply specifically to the IBM D-level com-
piler (for PL/I subset) under the IBM
System/360 Disk and Tape Operating Systems.

A separate publication, IBM System/360
PL/I Reference Manual, Form C28-8201, pro-
vides the same type of inmplementation
information as it applies to the F-level
compiler (for the PL/I full set) used under
the IBM System/360 Operating System.

PART I: CONCEPTS OF PL/I

Introduction

CHAPTER 1: BASIC CHARACTERISTICS OF

PL/Le W o v o o o o o o o o o o =
Machine Independence
Program Structure.
Data Types and Data Description. .
Default Assumptions.
Storage Allocation
EXPresSionS. « « o « o o « o o o
Data Collections
Input and Output

Interrupt Activities

CHAPTER 2: PROGRAM ELEMENTS. . . .

Character Sets « « & o ¢ o « o o« =«
60-Character Set. . . .« « « « .
48-Character Set. . . . « « « .
Using the Character set

Identifiers. « « « « « « o« =«
The Use of Blanks.
Comments .+ « ¢« ¢« ¢ ¢ o o o o

Basic Program Structure.
Simple and Compound Statements.
Statement Prefixes
Groups and Blocks

CHAPTER 3: DATA ELEMENTS
Data TYPeS v ¢ o o« o o o o o o o« =

Problem Data . « « ¢« « & o o o o «
Arithmetic Data . . . «
Decimal Fixed-Point Data . .
Sterling Fixed-Point Data. .
Binary Fixed-Point Data. . .
Decimal Floating-Point Data.
Binary Floating-Point Data .
Numeric Character Data . . .
String Data « « « « o « « o o .
Character-string Data. . . .
Bit-String Data.

Program Control Data
Label Data. « . + . ¢« « « « & .
Pointer Data. « « « « & « « o .

Data Organization.
AXrayS. « « o o o o o o o o o

13
13
13
13
13
14
14
14
15

15

27
27
28

28
28

CONTENTS

Expressions as Subscripts. . . .
Structures. . . . < < < ¢ o e o . .
Qualified NameS. « « « o« & « « =
Arrays of Structures.

Other Attributes « e e e .
The ALIGNED and PACKED

Attributes. . . . « e e o s .

The DEFINED Attrlbute. « o & e e

CHAPTER U4: EXPRESSIONS . . « « « « «
Use of Expressions . . « « « + « « « .

Data Conversion in Operational
Expressions e s e e e o e
Bit-string to Character String .
Character-String to Bit-String .
Character-String to Arithmetic .
Arithmetic to Character-String .
Bit-String to Coded Arithmetic .
Bit String to Numeric Character.
Coded Arithmetic to Bit-String .
Numeric Character to Bit String.
Numeric Character to
Character-String.
Arithmetic Base and Scale
CONVersioN. « « « « o o « o « &
Conversion by Assignment

Expression Operations.
Arithmetic Operations
Data Conversion in Arithmetic
Operations. + .« « « .
Results of Arithmetic Operations
Bit-String Operations
Comparison Operations
Concatenation Operations.
Combinations of Operations.
Priority of Operators.

Array EXpressionS. « « « « o o « o« « =
Prefix Operators and Arrays
Infix Operators and ArrayS.

Array and Element Operations . .

Array and Array Operations . . .

Data Conversion in Array
EXPresSsSions .« .« « « o o « o o

Structure Expressions.
Prefix Operators and Structures . .
Infix Operators and Structures. . .

Structure and Element Operations
Structure and Structure
Operations. « . « « « .

Operands of Expressions.
Function Reference Operands

Concepts of Data Conversion.

Target Attributes for Type Conversion.

29

31
31

31

31
32

33

33

43

uy
4y

45

46

Bit-to-Character and

Character-to-Bit
Coded Arithmetic To Bit-String. .
Bit-String to Coded Arithmetic. .

Target Attributes for Arithmetic

Expression Operands
Precision and Length of
Expression Operand Targets. .
Precision for Arithmetic
Conversions .« . . .« « .« .« o .
Lengths of Character-String
Targets« « « « ¢ o .
Lengths of Bit-String Targets.
Conversion of the Value of an
EXpression. « « « o« « « & « .

Conversion Operations. . . .« « . . .

The CONVERSION, SIZE, OVERFLOW, and
FIXZIDOVERFLOW Conditions.
CHAPTER 5: STATEMENT CLASSIFICATION,

Classes of Statements.
Descriptive Statements.
The DECLARE Statement. . . .
Other Descriptive Statements
Input/Output Statements . . .
RECORD I/O Transfer Statement
STREAM I/0 Transfer Statements

Input/Output Control Statemen:s.

The DISPLAY Statement. . . .
Data Movement and Computational
Statements 4« . . .
The Assignment Statement . .
The STRING Option.
Control Statements.
The GO TO Statement.
The IF Statement
The DO Statement
Noniterative DO Statements .
The CALL, RETURN, and END
Statements. o . .
The STOP Statement
Exception Control Statements. .
The ON Statement
The REVERT Statement
The SIGNAL Statement
Program Structure Statements. . .
The PROCEDURE Statement. . . .
The ENTRY Statement.
The BEGIN Statement.
The DO Statement

CHAPTER 6: BLCOCKS, FLOW OF CONTROL,
AND STORAGE ALLOCATION. . . « o« « .

Blocks e e e e e e a
Procedure Blocks. e e e = o o o
Begin Blocks. o o e

Internal and External Blocks . .

Activation and Termination of Blocks

Activation. . .« ¢ + ¢« 4« 4 4 w0 . .
Termination « « « & . .
Begin Block Termination. . . .

Procedure Termination.
Program Termination.

10

46
46
46
46
47
47

48
48

48

48

49

Storage Allocation.
Static Storage . . . <«
Automatic Storage.
Based Storage.+ .+ . . .

Prologues and Epilogues.
Prologues. . « « « « o « o &
Epilogues. 4 ¢« 4 4 o

CHAPTER 7: RECOGNITION OF NAMES.

Explicit Declarations.
Scope of an Explicit Declaration.

Contextual Declarations.
Scope of a Contextual Declaration

Implicit Declaration . . « . « . . .
Examples of Declarations
Application of Default Attributes. .
The INTERNAL and EXTERNAL Attributes

Multiple Declarations and Ambiguous
References.

CHAPTER 8: INPUT AND OUTPUT.

Types of Data Transmission
Files. . « ¢ v o o v o @ 4w e u e .
File Attributes
The FILE Attribute

Alternative and Additive
Attributes.
Alternative Attributes .

The STREAM and RECORD Attrlbutes

The INPUT, OUTPUT, and UPDATE
Attributes.
The SEQUENTIAL and DIRECT

Attributes.

The BUFFERED and UNBUPFERED

Attributes. . . « 0 e 0 e e
Additive Attrlbutes. W e e e .
The PRINT Attribute.
The BACKWARDS Attribute. . . .
The KEYED Attribute.
The ENVIRONMENT Attribute. . .

Opening and Closing Files
The OPEN Statement , .
Implicit Opening . . « o e .

Merging of Attrlbutes .

Associating Data Sets with Files

The CLOSE Statement.
Page Layout For Print Files . . .
Standard Files.

Environmental Considerations for Data
SetS. ¢ v 4 4 v 4 e e e e e e e e .
Device Independence of Input and
Output Statements.
The ENVIRONMENT Attribute. . .
Record Format.
Data Set Organization.
Device Allocation.
Length of Keys

e o o e @« o o a

62
62
63
63
63
OU
64

65
66

66
66

67

70
71
71
Tz
Tz
72
1z

73

Other Data Set Handling Options.
Data Transmission. « « + « « « « o « &

Stream-Oriented Transmission «
Edit-Directed Transmission . . .
Edit-Directed Data Specification. .
Data LiStS « o o o o o o « o o «
Repetitive Specification
Transmission of Data-List
Elements. « « ¢ ¢ o o ¢ « o o &
Format LiStsS . « & o« ¢ ¢ o « o =
Stream-Oriented Data Transmission
Statements .« .« ¢ ¢ ¢ ¢ ¢ ¢ 6 o o e

Record-Oriented Transmission
Record-Oriented Data Transmission
Statements . . ¢ « . .
Options of Record- Orlented
Transmission Statements
Record-Oriented Transmission
Statement Formats . . . « e .
Summary of Record—Orlented
TransmisSsSion. « « « « o o o o &

CHAPTER 9: EDITING AND STRING
HANDLING ¢« o« ¢ ¢ o o o o o o o o o @

Editing by Assignment. . . s e e .
Altering the Length of Strlng Data.
Other Forms of Assignment

Input and Output Operations .
The STRING Option in GET and PUT
Statements. . . ¢ <
The Picture Specification
Character-sString Picture
Specifications
Numeric Character Picture
Specifications
Velues of Numeric Character
Variables « « « « «
Editing Numeric Character
DAatd « o ¢ o o o o ¢ o o o o
Using Numeric Character Data.
Character-String and Bit-String
Built-In Functions

CHAPTER 10: SUBROUTINES AND FUNCTIONS.

Arguments and Parameters

. 86
. 86

. 90
. 90

. 92

. 94
. 94
. 94
. 95

. 95
. 96

. 96

. 97

.101

.101

SUubroutinesS. o« « o « o © o & o o o o =

Functions. . . « « =« «a 2 o & o s
Attributes of Value Returned by
Function. . . « -«
Built-In Functions . . . « « « =«

The Entry Attribute.
Entry Names as Arguments

Relationship of Arguments and

ParameterS. o« o« o« o « o o o s e+ o o =
Dummy Arguments . « <« « « ¢ + o o o
Argument and Parameter Types. . . .

CHAPTER 11: EXCEPTIONAL CONDITION
HANDLING AND PROGRAM CHECKOUT

Enabled Conditions and Established

Action. . . . e o e a o e e & o
Condltlon Preflxes e e e e e e .
Scope of the Condition Prefix. .
The ON Statement « . .
Scope of the ON Statement. . . .
The REVERT Statement =
The SIGNAL Statement

CHAPTER 12: BASED VARIABLES AND
POINTER VARIABLES « « « o« o ¢ o « « &

Pointer Variables. . . « +« « & « « .« .

Based Variables. « « ¢ « ¢« ¢ ¢« « & o« =
Pointer Specification
Values of Pointer Variables

READ and SET « & 2 « o o o « o =
LOCATE and SET e e e e
Assignment of Pointer Value. .
Assignment of the ADDR Functlon
Value e e e e e e .
Declaration of P01nter Variables. .
Pointer Variable Restrictions . . .

The Use of Based Storage and Pointers.
Variable-Length Parameter Lists . .

Pointer Manipulation

CHAPTER 13: A PL/I PROGRAM

.102
.102

-104
.105

.106
.107

.108
.108
.108

111

.111
111
111
112
.113
.113
.114

.115
.115
.115
.115
.116
.116
.116
.116
.116
.116
117

117
.117

.118

.119

11

The modularity of PL/I, the ease with
which different combinations of language
features can be used to meet different
needs, is one of the most important charac-
teristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

MACHINE INDEPENDENCE

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used program-

ming Janguages. The methods used to
achieve this show in the form of restric-
tions in the language. The most obvious

example is that data with different charac-
teristics cannot in general share the same
storage; to equate a floating-point number
with a certain number of alphabetic charac-
ters would involve assumptions about the
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as UNSPEC, RECORD
input/output, and the use of pointers do
permit a degree of machine dependence.

PROGRAM STRUCTURE

A PL/1I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as the main
program or as a subroutine. Procedures may
use other procedures, and these procedures
or subroutines may either be compiled sep-
arately or may be nested within the calling
procedure and compiled with it. Each pro-
cedure may contain declarations that define
names and control allocation of storage.

The rules defining the use of proce-
dures, communication between procedures,
the meaning of names, and allocation of
storage are fundamental to the proper
understanding of PL/I at any level but the
most elementary. These rules give the

Chapter 1:

CHAPTER 1: BASIC CHARACTERISTICS OF PL/I

programmer considerable control over the
degree of interaction between subroutines.
They permit flexible communication and
storage allocation, at the same time allow-
ing the definition of names and allocation
of storage for private use within a proce-

dure.

By giving the programmer freedom to
determine the degree to which a subroutine
can be generalized, PL/I makes it possible

to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.
DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications

for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels and
pointers (or addresses). Arithmetic data
may be represented in a variety of ways; it

can be binary or decimal, fixed-point or
floating-point, and its precision may be
specified.

PL/1 provides features to perform arith-
metic operations, operations for compari-
sons, logical manipulation of bit strings,
and operations and functions for assem-
bling, scanning, and subdividing character
strings.

The compiler must be able to determine,
for every name used in a program, the

complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a

DECLARE statement, the compiler may deter-

mine all or some of the attributes by
context, or the attributes may be assumed
by default.
DEFAULT ASSUMPTIONS

An important feature of PL/I is its
default philosophy. If all the attributes

associated with a name, or all the options
permitted in a statement, are not specified

Basic Characteristics of PL/I 13

by the programmer, attributes or
may be assigned by the compiler. This
defzult action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
levels of the language for which the pro-
grammer need not know all possible alterna-
tives, or even that alternatives exist.

options

€ince defaults are based on assumptions
about the intent of the programmer, errors
or omissions may be overlooked, and incor-
rect. attributes may be assigned by default.
To reduce the chance of this, the D-
Compiler optionally provides an attribute
listing, which can be used to check the
names in the program and the attributes
asscciated with them.

STORAGE ALLOCATION

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembly
language programmer to handle for himself;
yet it 1is automatically provided in PL/I.
There are three different storage c¢lasses:
AUTOMATIC, STATIC, and BASED. In general,
the default storage class in PL/I is
AUTOMATIC. This class of storage is allo-
cated whenever the block in which the
variables are declared is activated. AUTO-
MATIC storage is freed and is available for
re-use whenever control leaves the block in
which the storage is allocated.

Storage may also be STATIC, in which
case, it is allocated when the program is
loaded, or it may be BASED, in which case,
the address associated with a variable can
be controlled by the programmer.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or pro-
gramming economy that he needs for each
application. The cost of a particular
facility will depend upon the implementa-
tion, but it will usually be true zhat the
more dynamic the storage allocation, the
greater the overhead in execution time.

EXPRESSIONS

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of elemen-
tary algebra. For example:

14

A+ B *C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places some
restrictions on the kinds of data that can
be used in an expression. For example, A
could be a binary floating-point number, B
a decimal fixed-point number, and C a bit
string, but none could be a character
string.

When permissable mixed expressions are
specified, the operands will be converted

so that the operation can ke evaluated
meaningfully. Note, however, that the
rules for conversion must be considered

carefully; converted data may not have the
same value as the original. And, of
course, any conversion requires additional
compiler-generated coding, which increases
execution time.

The results of the evaluaticn of expres-
sions are assigned to variables by means of
the assignment statement. An example of an
assignment statement is:

X=A+ B ¥ C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

DATA COLLECTIONS

PL/I permits the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are col-
lections of data elements, all of the same
type, collected into lists or tables of one
or more dimensions. Structures are hierar-
chical collections of data, not necessarily
all of the same type. Each level of the
hierarchy may contain other structures of
deeper levels. The deepest levels of the
hierarchy represent elementary data items
or arrays.

Arrays cannot contain structures, but.
structures can contain arrays. Operations
can be specified for arrays, structures, or
parts of arrays or structures. For exam-
ple:

A =B + C;

In this assignment statement, A, B, and C

could be arrays or structures.

INPUT_ AND OUTPUT

Facilities for input and output allow
the user to choose between factors such as
simplicity, machine independence, and effi-
ciency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to inter-
nal form and assigned to variables speci-
fied in a list. Similarly, on output, data
items are converted one by one to external
character form and are added to a concep-
tually continuous stream of characters.

For printing, the output stream may be

considered to be divided into 1lines and
pages. An output stream file may be
declared to be a print file with a certain

line size and page size. The programmer
has facilities to detect the end of a page
and to specify the beginning of a line or a
page. These facilities may be used in
subroutines that can be developed into a
report generating system suitable for a
particular installation or application.
Record input/output is machine depen-
dent., It deals with collections of data,
called records, and transmits these a
record at a time without any data conver-
sion; the external representation is an

Chapter 1:

exact copy of the internal representation.
Because the aggregate 1is treated as a
whole, and because no conversion is per-

formed, this form of input/output is poten-
tially more efficient than stream-oriented
input/output, although the actual efficien-
cy of each class will, of course, depend on
the implementation.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item 1is transmitted separately
and is examined to determine if data con-
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

INTERRUPT ACTIVITIES

Modern computing systems provide facili-
ties for interrupting the execution of a
program whenever an exceptional condition
arises. Further, they allow the program to
deal with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify, by means
of a condition prefix, whether certain
interrupts will or will not occur if the
condition should arise. And, by use of an
ON statement, he can specify the action to
be taken when an interrupt does occur.

Basic Characteristics of PL/I 15

CHAPTER 2: PROGRAM ELEMENTS

There are few restrictions in the format
of PL/I statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in +the next column or position after the
previous statement, or any number oI blanks
may intervene. The D-Compiler requires
that the first column of every card in the
source program be blank; columns 73 thrcugh
80 of these cards are ignored and can
contain any information.

CHARACTER SETS

One of two character sets may be used to
write a source program; either a
60-character set or a U48-character set.
For a given external procedure, the chcice
between the two sets 1is optional. In
prac:tice, this choice will depend upon the
available equipment.

60~-CHARACTER SET

The 60-character set 1is composed of
digi=ts, special characters, and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol (%), the
number sign (#), and the commercial "at"
sign (@), which precede the 26 letters of
the English alphabet in the IBM System/360

collating sequence in Extended Binary-
Coded-Decimal Interchange Code (EBCDIC).
For use with languages other than Ilnglish,

the =three alphabetic characters can be used
to cause printing of letters that are not
included in the standard English alphabet.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.
characters,

There are 21 special They

are as follows:

16

Name
Blank
Equal or assignment =
symbol

Plus sign +

Minus sign

Asterisk or multiply *
symbol

Slash or divide symbol

Left parenthesis

Right parenthesis

Comma

Point oxr period .
Single quotation mark '
or apostrophe
Percent symbol
Semicolon

Colon

"Not" symbol

"And" symbol

"Oor" symbol

"Greater than" symbol
"Less than" symbol

Break charactert

Question mark

Charac:er

e we N8R ~ -~ N\

AV—am-

W]

Special characters are combined to
create other symbols. For example, <=
means "less than or equal to,"” = means
"not equal to." The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

An alphameric character i3 either an
alphabetic character or a digit, but not a
special character.

Note: The question mark, at present, has
no specific use in the language, even
though it 1is included in the /s0-character
set. The percent symbol has no meaning in
the PL/I subset, although it does have
meaning in the fullset.

48-CHARACTER SET

The U48-character set is composed of 438
characters of the 60-character set. In all
but five <cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the semicolon (;) is not

1iThe break character 1is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

included in the W48-character set, but a

comma followed by a point (,.), with no
blanks intervening, can be wused to rep-
resent it. The five characters that are
not duplicated are the commercial "at"

sign, the number sign, the break character,
the question mark, and the percent symbol.

The restrictions and changes for this
character set are described in Part II,
Section B, "Character Sets with EBCDIC and
Card-Punch Codes."

USING THE CHARACTER SET

2411 the elements that make up a PL/IL
program are constructed from the PL/I char-
acter sets. There are two exceptions:
character-string constants and comments may
contain any character permitted by a parti-
cular machine configuration.

Certain characters perform specific
functions 1in a PL/I program. For example,
many characters perform as operators.

There are
arithmetic,
string.

four types of operators:
comparison, bit-string, and

The arithmetic operators are:

+ denoting addition or prefix plus
- denoting subtraction or prefix
minus

* denoting multiplication
/ denoting division
*+ denoting exponentiation

The comparison operators are:

> denoting “greater than"
4> denoting "not greater than"
= denoting "greater than or
equal to"
denoting "equal to"
denoting "not equal to"
denoting "less than or equal to"
denoting "less than"
denoting "not less than"

AN

- A A=

The bit-string operators are:
1 denoting "not"

& denoting "and"
| denoting "or"

The string operator is:
|| denoting concatenation

Table 2-1 shows some of the functions of
other special characters:

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In

creating a name or label, a programmer must
observe the syntactic rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of up to 31 alphamer-
ic and break characters, not contained in a
comment oOr constant, and preceded and fol-
lowed by a blank or some other delimiter;
the initial character of the string must be
alphabetic.

Language keywords also are identifiers.
A keyword is an identifier that, when wused
in proper context, has a specific meaning
to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For
example, READ, DECIMAL, and ENDFILE are
keywords. A complete list of keywords and
their use is contained in Part II, Section
C, "Keywords."

Note: Most PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.
(Those keywords that are reserved are given
in Chapter 7,"Recognition of Names.")

Chapter 2: Program Elements 17

Table 2-1. Some Functions of Special Characters

S e~ ———————— e 1
| Nare Character Use !
| comma R Separates elements of a list |
! E
| period . Indicates decimal point or binary point; connects elements of |
| a qualified name I
| I
| semicolon H Terminates statements |
[!
| assignment = Indicates assignment of values? |
| symbol |
I !
| colon : Connects prefixes to statements |
! |
| blank Separates elements of a statement |
| I
| single ' Encloses string constants and picture specifications |
| quotation !
| mark !
|]
| parentheses) Enclose _.ists; specify information associated with variousl
| keywords; in conjunction with operators and operands, delimitl
| portions of a computational expression |
pommermm = —- - -- - 1
|*The character = can be used as an equal sign and as an assignment symbol. |
b _ ——— - - _ —_——

characters
some iden-

No identifier can exceed 31
in length. For the D-Compiler,
tifiers, as discussed in later chapters,
cannot exceed six characters in length;
this 1limitation is placed upon certain
names, called external names, that may be
referred to by the operating system or by
more than one separately compilec proce-
dure.

Examples of identifiers that cculd be

used for names or labels:
A
FILE2
LOOP_3

RATE OF PAY

#32
fm—m——— e
|AB+BC is equivalenz to
I
| TABLE (10) is equivalent to

|
| FIRST, SECOND

|
|ATOB is
R

Figure 2-1.

is equivalent: to

not equivalent to

Examples of the Use of Blanks

18

The Use of Blanks

Blanks
PL/I program.

may be used freely throughout a
They may or may not surround

operators and most other delimiters. In
general, any number of blanks may appear
wherever one blank is allowed, such as

between words in a statement.

One or more blanks must be wused to
separate identifiers and constants that are
not separated by some other delimiter or by

a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, =) can-
not contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. See

Figure 2-1 for examples.

T T T T T a

TABLE (10) |
FIRST, SECOND |

A TO B |

comments

Comments are
are allowed in a

permitted wherever blanks
program, except within

data items, such as a character-string
constant. A comment is treated as a blank
and can therefore be used in place of a

required separating blank. Comments do not
otherwise affect execution of a program;
they are used only for documentation pur-
poses. Comments may be punched into the
same cards as statements, either inserted
between statements or in the middle of
them.

The general format of a comment is:
/* character-string */

The character pair /% indicates the
beginning of a comment. The same character
pair reversed, */, indicates its end. No
blanks or other characters can separate the
two characters of either pair; the slash
and the asterisk must be immediately adja-
cent. The comment itself may contain any
characters except the */ combination, which

would be interpreted as terminating the
comment.
Example:
/¥ THIS WHOLE SENTENCE COULD BE

INSERTED AS A COMMENT */
Any characters permitted for a particu-

lar machine configuration may be wused in
comments.

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple state-
ments: keyword, assignment, and null, each
of which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:
GOTO LOOP_3; (GOTO is a keyword; a blank
between GO and TO is optional.
The statement body is LOOP_3;)
A =B + C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement 1is terminated by
this semicolon. Examples of the two com-
pound statements are:

1. IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;
This example can also be written as
follows:

IF A>B
THEN A=B+C;
ELSE GO TO LOOP_3;

2. ON UNDERFLOW GO TO UNFIX;
3. ON UNDERFLOW;
In example 3, the contained statement is
the null statement represented by a semico-
lon only; it indicates that no action is to

be taken when an UNDERFLOW interrupt
occurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and

is connected to the statement by a colon.
Most statements may have one or more
labels. If more +than one is specified,
they may be used interchangeably to refer
to that statement. PROCEDURE and ENTRY
statements must have one and only one
label.

Chapter 2: Program Elements 19

A condition prefix specifies whether or
not program interrupts are to result from
the occurrence of the named conditions.
Ccondition names are language keyworxrds, each
of which represents an exceptional condi-
tion that might arise during execution of a
program. Examples are OVERFLOW and SIZE.
The OVERFLOW condition arises when the
exponent of a floating-point number exceeds
the maximum allowed (representing a maximum
value of about 1075). The SIZE condition

arises when a value 1is assigned to a
variable with loss of high-order digits or
bits.

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. If NO i3 used,
there can be no intervening blank between
the NO and the condition name.

A condition prefix consists of & list of
one or more condition names, separated by
commas and enclosed in parentheses. Cnly
one condition prefix may be attached to a
statement, and the parenthesized list must
be followed by a colon. A condition prefix
precedes the entire statement, including
any possible label prefixes for the state-
ment.

Example:
(S1ZE,NOOVERFLOW) : COMPUTE:A = B * C ** D;

The condition prefix indicates that an
interrupt is tc occur if the SIZE condition
arises during execution of the assignment
statement, but that no interrupt is to
occur if the OVERFLOW condition arises.
Note that the condition prefix precedes the
label prefix CCMPUTE.

Since intervening blanks between a pre-
fix and its associated Statement are
ignored, it 1is often convenient to puach
the condition prefix into a separate card
that precedes the card into which the

20

statement is punched. Thus, after debug-
ging, the prefix can be easily removed.
For example:

(SIZE,NOOVERFLOW) :
COMPUTE: A = B * C ** D;

condition prefixes are discussed in
Chapter 11, "Exceptional Condition Handling
and Program Checkout."

GROUPS AND BLOCKS

A group 1is a sequence of statements
headed by a DO statement and terminated by
a corresponding END statement. It is wused
for control purposes. A group also may be
called a DO-group.

A block is a sequence of statements that
defines an area of a program. It is wused
to delimit the scope of a name and for
control purposes. A program may consist of
one or more blocks. Every statement must
appear within a block. There are two kinds

of blocks: beqgin_ blocks and procedure
blocks. A begin block is delimited by a

BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block must be invoked by execution of a
statement in another block. The first
procedure in a program to be executed
(sometimes called the main or initial
procedure) 1is invoked automatically by the
operating system. For System/360 implemen-
tations, this first procedure must be iden-
tified by specifying OPTIONS (MAIN) in the
PROCEDURE statement.

Data is generally defined as a represen-
tation of information or of value.

In PL/I, reference +to a data item,
arithmetic or string, 1is made by using
either a variable or a constant (the terms

are not exactly the
mathematical usage).

same as 1in general

value that may change during execution of a
program.

A constant (which is not a symbolic

name) has a value that cannot change.

The following statement has both vari-
ables and constants:

AREA = RADIUS**2%3,1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement 1is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be wused in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2%*PTI;

In this
constant.

statement, only the digit 2 is a

In preparing a PL/I program, the pro-
grammer must be familiar with the types of
data that are permitted, the ways in which
data «¢an be organized, and the methods by
which data can be referred to. The follow-
ing paragraphs discuss these features.

DATA TYPES

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
be processed by a program. It consists of
the arithmetic and string data types.

CHAPTER 3: DATA ELEMENTS

Program control data is used by the pro-
grammer to control the execution of his
program. Statement labels and pointers are
the types of program control data.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called attri-
butes, must be known, certain keywords and

expressions may be used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe

each data type are discussed briefly in
this chapter. A complete discussion of
each attribute appears in Part II, Section
I, "Attributes."

PROBLEM DATA

The types of problem data are arithmetic

and string.

ARITHMETIC DATA

An item of arithmetic data is one with a

numeric value. Arithmetic data items have
the characteristics of base, scale, and
precision. The characteristics of data

items represented by an arithmetic variable
are specified by attributes declared for
the name, or assumed by default.

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
decimal fixed-point data item is a number
in which the position of the decimal point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A binary fixed-point data item
cannot, in general, contain a binary point;
a binary point is -assumed to Dbe at the
right of the rightmost digit in the item.
(The D-Compiler does not allow the specifi-
cation of a scale factor for fixed-point

Chapter 3: Data Elements 21

pinary items; however, certain mathematical
operations involving fixed-point binary
operands maintain an actual binary point --
e.g., fixed-point binary division -- so
that fractional binary digits can occur in
the result of such an operation. These
exceptions are discussed in Chapter 4,
"Expressions.")

data item is & number
tollowed by an optionally signed integer
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appe&rs.

A floating-point

is the number of digits the data item can
contéin, in the case of fixed-point, or the
pinimum numbexr of significant digits
(excluding the exponent) to be mairtained,
in the case of floating-point. For decimal
fixec-point data items, precision can also
specify the assumed pcsition of the decimal
point, relative to the rightmost 3igit of
the number.

Base and scale of arithmetic variables
are specified by keywords; precision is
specified by parenthesized decimal integer
constants.

Whenever a data item is assigned to a
fixed-point variable, the precision
declared for that variable is maintained.
The assigned item is aligned on the decimal
or assumed binary point of the variable.
Leading zeros are inserted if the assigned
decimal or binary item contains fewer inte-
ger digits than declared; trailing =zeros
are inserted if
contains fewer
declared. A SIZE error may
assigned item contains too many integer
digits; truncation on the right may occur
if it contains too many fractional digits.
Note that since the value represented by a
binary fixed-point variable can have no
fractional digits, any fractional digits
contained in a binary fixed-point item
assigned to such a wvariable are always
truncated; thus, a binary fixed-point vari-
able always represents an integer value.

fractional digits than
occur if the

{n the following sections, the arithmet-
ic data types discussed are decimal fixed-
point, sterling fixed-point, binary fixed-
point, decimal floating-point, and binary
floating-point.

Decimal Fixed-Point Data

A decimal fixed-point constant consists
of one or more decimal digits with an
optional decimal point. If no decimal

22

point appears, the point is assumed to be
immediately to the right of the rightmost
digit. In most uses, a sign may opticnally
precede a decimal fixed-point constant.

Examples of decimal fixed-point con-

stants as written in a program &are:
3.1416
455.3
732
003
5280
.0012
declaring

The keyword attributes for

decimal fixed-point variables are DECIMAL
and FIXED. Precision 1is stated by two
unsigned decimal integer constants,

separated by a comma and enclosed in paren-
theses. The first specifies the total
number of digits; the second, the scale
factor, specifies the number of digits to
the right of the decimal point. If the
variable is to represent integers, the
scale factor and its preceding comma can be
omitted. The attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FIXED.

Following are examples of declarations
of decimal fixed-point wvariables:

DECLARE A FIXED DECIMAL (5,4);
DECLARE B FIXED (6,0) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that 1is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed-
point and aligned on the decimal point.
The second DECLARE statement specifies that
B 1is to represent integers of no more than
6 digits. Note that the comma and the zero
are unnecessary; it could have been
specified B FIXED (6) DECIMAL.

The maximum number of decimal digits
allowed for System/360 implementations is
15. Default precision, assumed when qao
specification is made, is (5,0). The
internal coded arithmetic form of decimal
fixed-point data is packed decimal. Packed
decimal is stored two digits to the byte,
with a sign indication in the rightmost
four bits of the rightmost byte. Conse-
guently, a decimal fixed-point data item is
always stored as an odd number of digits,
even though the declaration of the variable

may specify the number of digits (p) as an
even number. Any such extra digit is in
the high-order position, and it parti-
cipates in any operations performed upon
the data item, such as 1in a comparison
operation. (Note that any arithmetic over-
flow into such an extra high-order digit
position can be detected only if the SIZE
condition is enabled.)

Sterling Fixed-Point Data

PL/I has a facility for handling con-
stants stated in terms of sterling currency
value. The data may be written in a
program with pounds, shillings, and pence
fields, each separated by a period. Such
data is converted and maintained internally
as a decimal fixed-point number represent-

ing the equivalent in pence. A sterling
data constant ends with the letter L,
representing the pounds symbol. All three

fields (pounds, shillings, and pence) must
be present in a sterling constant. Note
that the pence field is one or more decimal
digits with an optional decimal point (the
integral part must be less than 12 and must
contain at least one digit)--see the third
example below.

Examples of sterling fixed-point con-
stants as written in a program are:

101.13.8L

1.10.0L

0.0.2.5L

2.4.6L
The third example represents twopence-
halfpenny. The last example represents two
pounds, four shillings, and six pence. It
is converted and stored internally as 534
(pence) .

There are no keyword attributes for
declaring sterling variables, but a vari-
able can be declared with a sterling
picture, or sterling values may be

expressed in pence as decimal fixed-point
data. The precision of a sterling constant
is the precision of its value expressed in
pence.

Binary Fixed-Point Data

A binary fixed-point constant consists
of one or more binary digits, followed

immediately by the letter B, with no inter-
vening blank. It cannot contain a binary
point; a point is always assumed to follow
the rightmost binary digit. In most uses,
a sign may optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B
11111B
101B

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by a decimal
integer, enclosed in parentheses, to rep-
resent the maximum number of binary digits
that the variable can contain. A binary
fixed-point variable always represents an
integer. The attributes can appear in any
order, but the precision specification must
follow either BINARY or FIXED.

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20);

variable that
data items as

FACTOR is declared to be a
can represent arithmetic
large as 20 binary digits.

The maximum number of binary digits
allowed for System/360 implementations is
31. The default precision for the D-
Compiler is (15). The internal coded
arithmetic form of binary fixed-point data
is a fixed-point binary full word. A full
word is 31 bits plus a sign bit. Any
binary fixed-point data item is always
stored as 31 digits, even though the dec-
laration of the variable may specify fewer
digits. The declared number of digits are
considered to be in the 1low-order posi-
tions, but the extra high-order digits
participate in any operations performed
upon the data item. (Note that any arith-
metic overflow into such extra high-order
digit positions can be detected only if the
SIZE condition is enabled.)

An identifier for which no declaration
is made is assumed to be a binary fixed-
point variable, with default precision, if
its first letter is any of the letters I
through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an

Chapter 3: Data Elements 23

optionally signed decimal integer exponent
that specifies a power of ten. The first
field of digits may contain a decimal
point. The entire constant may be preceded
by a plus or minus sign. Examples of
decimal floating-point constants as written
in a program are:

15E-23

15E23

4E-3

48333E65

438E0

3141593E-6

.003141593E3

The last two
vaiua.

examples represent the same

Tne keyword attributes for d=aclaring
decimal floating-point variables are DECI-
MAL and FLOAT. Precision is stated by a
decimal integer constant enclosed in paren-
theses. It specifies the minimum number of
significant digits to be maintained. If an
item assigned to a variable has a field
width larger than the declared precision of
the wvariable, truncation may occur on the

righz. The least significant digi= is the
firs< that is lost. Attributes may appear
in any order, but the precision specifi-

cation must tollow DECIMAL or FLOAT.

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT _YEARS
is to represent decimal floating-po.nt data
itens with an accuracy of at least five
sign_ficant digits.

The maximum precision allowed for deci-
mal floating-point data items for
system/360 implementations is (16); the
exponent cannot exceed two digits. A value
range of approximately 10-78 to 107% can be
expressed by a decimal floating—-point data
item., Default precision 1is (6). The
internal coded arithmetic form of decimal
tlecating-point data is normalized hexadeci-
mal floating-pcint, with the point assumed
to the left of the first hexadecimal digit.
If the declared precision is less than or
«qual to (6), short floating-point form is
used; if the declared precision is greater
than (6), long floating-point form is used.

Ar. identifier for which no declaration

is made 1s assumed to Dbe a decimal
floating-point variable if its first letter

24

is any of the letters A through H, O
through Z, or one of the alphaketic exten-
ders, $, #, 2.

Binary Floating-Point Data

A binary floating-point constant con-
sists of a field of binary digits followed
by the letter E, followed by an optionally
signed decimal integer exponent followed by
the letter B. The exponent is a string of
decimal digits and specifies an integral
power of two. The field of binary digits
may contain a binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B
101.101E2B

11101E-28B

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision 1is expressed as a
decimal integer constant, <enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but

the precision specification must follow
either BINARY or FLOAT. Following is an
example of declaration of a binary

floating-point variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point: data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default precisiocn
is (21). The exponent cannot exceed three
decimal digits. A value range of approxi-
mately 2-260 to 2252 can be expressed by a
binary floating-point data item. The
internal coded arithmetic form of binary
floating-point data is normalized hexadeci-
mal floating-point. If the declared preci-
sion is less than or equal to (21), short
floating-point form is used; if the
declared precision 1is greater than (21),
long floating-point form is used.

Numeric Character Data

A numeric character data item (also
known as a numeric field data item) is the
value of a variable that has been declared

with the PICTURE attribute and a numeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification des-
cribes a string of characters to which only
data that has an arithmetic value is to be
assigned. A numeric picture specification
cannot contain the picture character X,
which is used only for non-numeric pic-
tures. The basic form of a numeric picture
specification is one or more occurrences of
the picture character 9 and an optional
occurrence of the picture character Vv, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single gquotation marks. For
example:

*999VI9"

This numeric picture specification des~-
cribes a data item consisting of up to five
decimal digits in character form, with a
decimal point assumed to precede the right-
most two digits.

Repetition factors may be used in numer-
ic picture specifications. A repetition
factor 1is a decimal integer constant,
enclosed in parentheses, that indicates the
number of repetitions of the immediately
following picture character. For example,
the following picture specification would
result in the same description as the
example shown above:

F(3)IV(2)9"

The format for declaring a numeric char-
acter variable is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:
DECLARE PRICE PICTURE '999V99";

This specifies that any value assigned to
PRICE is to be maintained as a string of
five decimal digits, with an assumed deci-
mal point preceding the rightmost two
digits. Data assigned to PRICE will be
aligned on the assumed point in the same
way that point alignment is maintained for
fixed-point decimal data.

The numeric picture specification can
specify all of the arithmetic attributes of

data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be represent-
ed by picture characters.

It is important to note that, although
numeric character data has arithmetic
attributes, it 1s not stored in coded
arithmetic form. In System/360 implementa-
tions, numeric character data is stored in
zoned decimal format; before it can be used
in arithmetic computations, it must be
converted either to packed decimal or to
hexadecimal floating-point format. Such
conversions are done automatically, but
they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be spec-
ified for insertion into a numeric charac-
ter data item, and such characters are
actually stored within the data item. Con-
sequently, when the data item is assigned
to a character string, the editing charac-
ters are included in the assignment. <,
however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.
(Note that character-string data cannot be
assigned to numeric character variables.)

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER(6),
VALUE FIXED DECIMAL(6,2);

PRICE = 12.28;

COST = '$12.28*;

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.} are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE

and COST can be considered identical. If
they were assigned +to character strings,
which were then printed, they would look
exactly the same. They do not, however,

always function the same. For example:

Chapter 3: Data Elements 25

VALUE = PRICE;

COST = PRICE;

VALUE = COST;

PRICE = COST;
tfter the first two assignment state-
ments are executed, the value of VALUE
would be 001228 (with an assumed decimal

poir.t before the last two digits) and the
value of COST would be '$12.28'. In the
assignment of PRICE to VALUE, the currency
symbol and the decimal point are considered

to be editing characters, and they are not

part of the assignment; the arithmetic
value of PRICE is converted to internal
coded arithmetic form. In the assignment
of PRICE to COST, however, the assignment

is to a character string, and the editing
characters of a numeric picture specifi-
cation always participate in such an
assignment.

The third and fourth assignment state-
ments are invalid. The wvalue of COST
cannot be assigned to VALUE because a
character string cannot be converted to
coded arithmetic. The value of COST cannot
be assigned to PRICE because a character
string cannot be converted to numeric char-
acter.

Cther editing characters, including zero

suppression characters, drifting charac-
ters, and insertion characters, can be uased
in numeric picture specifications. For

complete discussions of picture characters,
see Part II, Section D, "Picture Specifi-
cation Characters"™ and the discussion of
the PICTURE attribute in Part 11, Section
I, "Attributes."

STRING DATA

sequence of

that is
The length
characters

2 string is a contiguous
characters (or binary digits)
treated as a single data item.
of the string is the number of
(or binary digits) it contains.

There are two types of strings: charac-
ter strings and bit strings.

Character-String Data

A character string can include any
digit, letter, or special character recog-
nized as a character by the particular

26

machine configuration. Any blank included
in a character string is considered an
integral character of the data item and is
included in the count of length. A comment
that 1is inserted within a character string
will not be recognized as a comment. The
comment, as well as the comment delimiters
(/¥ and */), will be considered to be part
of the character-string data.

Character-string constants, when written
in a program, must be enclosed in single
quotation marks. If a single quotation
mark is a character in a string, it must be
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of charac-
ters between the enclosing quotation marks.

If two single quotation marks are used
within the string to represent a single
qguotation mark, they are counted as a

single character.
Examples of character-string constants
are:

*LOGARITHM TABLE'
*PAGE 5°

* SHAKESPEARE''S ***'HAMLET"*'"’
"AC438-19"

(2) *WALLA

The third example actually indicates
SHAKESPEARE'S "HAMLET" with a length of 24.
In the 1last example, the parenthesized
number is a repetition factor which indi-
cates repetition of the characters that
follow. This example specifies the actual
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant,
enclosed in parentheses.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length 1is declared by a decimal integer
constant, enclosed in parentheses, which
specifies the number of characters in the
string. The length specification must fol-
low the keyword CHARACTER. For example:

DECLARE NAME CHARACTER(15);

This DECLARE statement specifies that the
identifier NAME is to represent character-
string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the
right with blanks to a length of 15. 1If a
longer string were assigned, it would be
truncated on the right. (Note: If such
truncation occurs, no interrupt will result

as it might for truncation of arithmetic
data; there 1is no ON-condition in PL/I to
deal with string truncation.)

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
occupies one pyte of storage. The maximum
length allowed by the D-Compiler for wvari-
ables declared with the CHARACTER attribute
is 255, The maximum length allowed for a
character-string constant after application
of repetition factors is also 255. The
minimum length in either case is one.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE ‘'character-picture-specification'
The character picture specification is a

string composed entirely of the picture
specification character X. The string of X

picture characters must Dbe enclosed in
single quotation marks. The character X
specifies that any character may appear in

the corresponding position in the field.

For example:
DECLARE PART_NO PICTURE 'XXXXXXXXXX';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
any ten characters.

factors are used in picture
specifications differently from the way
they are used in string constants. They
must be placed inside the guotation marks.
The repetition factor specifies repetition
of the immediately following picture char-
acter. For example, the above picture
specification could be written:

Repetition

(10)X

The maximum length allowed for a picture
specification is the same as that allowead
for character-string constants, as dis-
cussed above.

Bit-String Data

A bit-string constant is written in a
program as a series of Dbinary digits
enclosed in single quotation marks and
followed immediately by the letter B.
Examples of Dbit-string constants as

written in a program are:

'1'B
'11111010110001'B
(64)'0'B

The parenthesized number in the last exam-
ple 1is a repetition factor which specifies
that the following series of digits is to
be repeated the specified number of times.
The repetition factor must be an wunsigned
decimal integer constant enclosed in paren-
theses. The example shown would result in
a string of 64 binary zeros.

declared with
Length is spec-

A bit-string variable is
the BIT keyword attribute.
ified by a decimal integer constant,
enclosed 1in parentheses, to specify the
number of binary digits in the string. The
letter B is not included in the 1length
specification since it is not an actual
part of the string. The 1length specifi-
cation must follow the keyword BIT. Fol-
lowing is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (6u);

Like character strings, bit strings are

assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost

digits are truncated; if shorter, padding,
on the right, is with zeros.

With System/360 implementations, bit
strings are stored eight bits to a byte,
and each string is aligned on a byte

boundary. The maximum length allowed for a
bit-string variable with the D-Compiler is
6u. The maximum length allowed for a
bit-string constant after application of
repetition factors is also 64. The minimum
length in either case is one.

PROGRAM CONTROL DATA

The types of program control data are
label and pointer.

LABEL DATA

Label data is a type of program control
data. A label data item is a label con-
stant or the value of a label variable.

A label constant is an identifier writ-
ten as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

Chapter 3: Data Elements 27

ABCDE: DISTANCE = RATE*TIME;
In this example, ABCDE is the statement
label. The statement can be executed eith-
er py normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

A5 used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable 1is an identifier
that refers to statement-label constants.
Consider the following example:

LBL A: statement;

-

statement;

LBL B:

LBL_X = LBL_A;

GO TO LBL_X;

LBL A and LBL_B are statement-label con-
stants because they are prefixed to state-
ments. LBL_X 1is a statement-lakel vari-
able. By assigning LBL_A to LBIL_X, the
statement GO TO LBL_X causes a transfer to
the LBL_A statement. Elsewhere, the pro-
gram may contain a statement assigning
LBL B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBL_B. This value of LBL X is retained
unti. another value is assigned to it.

A statement-label wvariable nust be
declared with the LABEL attribute, as fol-
lows:

DECLARE LBL_X LABEL;

POINTER DATA

Pointer data is a type of
trol data. A vpointer data
value of a pointer variable; it
written as a constant.

program con-—
item is the
cannot Dbe

A pointer variable 1is the name of a
pointer and is used in connection with
variables of the based storage class. The
value of a pointer variable is, in effect,
an address of data in storage.

The keyword attribute for
pointer variables is POINTER.

declaring
For informa-

28

tion on the use of pointer variables, see
Chapter 8, "Input and Output,"™ and Chapter
12, "Based Variables and Pointer
Variables."

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A wvariable that represents a
single element is an element_variable (also
called a scalar variable). A variable that
represents a collection of data elements is

either an array variable or a structure
variable.
Any type of data -- arithmetic, string,

label, or pointer -- can be collected into

arrays Or structures.

ARRAYS

Data elements having the same charac-
teristics, that is, of the same data type
and of the same precision or length, may be
grouped together to form an array. An
array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative positicn
within the array.

consider the following two declarations:
DECLARE LIST (8) FIXED DECIMAL (3);
DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to

be a one-dimensional array of eight ele-
ments, each of which is a fixed-point
decimal item of three digits. In the

second example, TABLE is declared to be a
two-dimensional array, also of eight fixed-
point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute speci-
fication. It must follow the array name,
with or without an intervening blank. It
specifies the number of dimensions of the
array and the bound, or extent, of each
dimension. Since only one bound specifi-
cation appears for LIST, it 1is a one-
dimensional array. Two bound specifi-
cations, separated by a comma, are listed
for TABLE; consequently, it is declared to
be a two-dimensional array.

The bound of a dimension is the end of
that dimension; the beginning of a
dimension is always assumed to be 1. The
extent of a dimension is the number of

integers between, and including, 1 and the
specified end. Thus, the terms bound and
extent, while conceptually different, have

the same value in the PL/I subset. For
example, the one dimension of LIST has a
bound of 8, and hence, its extent is 8.
The two dimensions of TABLE have bounds of
4 and 2; the extents are also 4 and 2.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (4) 30
LIST (5) 630
LIST (6) 150
LIST (7) 310
LIST (8) 70
Each of the numbers following the name
LIST is a subscript. A parenthesized sub-
script following an array name, with or

without an intervening blank, specifies the
relative position of a data item within the
array. A subscripted name, such as
LIST(4), refers to a single element and is
an element variable. The entire array can
be referred to by the unsubscripted name of

the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and the

dimension attribute specification. The
latter, which appears in a declaration,
specifies the dimensionality and the number
of elements in an array. Subscripts are
used in other references to identify speci-
fic elements within the array.

Assume that the same data were
to TABLE, which is declared as a two-
dimensional array. TABLE can be illus-
trated as a matrix of four rows and two
columns, as follows:

assigned

TABLE(m, n) (m,1) (m, 2)
(1,n) 20 5
(2,n) 10 30
(3,n) 630 150
(4,n) 310 70

An element of TABLE is referred to by a

subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TAEBLE (2,1) would specify the

first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to 1illustrate
TABLE 1is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the rightmost
subscript varying most rapidly. For exam—
ple, assignment to TABLE would be to
TABLE(1,1), TABLE(1,2), TABLE(2,1),
TABLE(2,2) and so forth.

Arrays are not limited to two dimen-
sions. The PL/I D-Compiler allows a maxi-
mum of three dimensions to be declared for
an array. In a reference to an element of
any array, a Subscripted name must contain
as many subscripts as there are dimensions
in the array.

Examples of arrays in this section have
shown arrays of arithmetic data. Other
data types may be collected into arrays.

String arrays, either character or bit, are
valid, as are arrays of statement 1labels
and arrays of pointers.

Expressions as Subscripts

The subscripts of a subscripted name
need not be constants. Any expression that
yields a wvalid arithmetic wvalue can be
used. If the evaluation of such an expres-
sion does not yield an integer value, the
fractional portion is ignored. For
System/360 implementations, the integer
value is converted, if necessary, to a
fixed-point binary number of precision
(15,0), since subscripts are maintained
internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, ., and K.

Note that although a subscript can be an
expression, each bound of a dimension

Chapter 3: Data Elements 29

attribute declaration must be an unsigned
decimal integer constant. Also note that
the value of a subscript must lie within
the extent of the corresponding dimension;
otherwise, it is an error.

STRUCTURES

tata items that need not have identical
characteristics, but that possess & logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Urlike an
array, however, each element of a structure
also has a name.

2 structure is a hierarchical collection
of names. At the bottom of the hierarchy
is & collection of elements, each ¢f which
represents a single data item or an array.
At the top of the hierarchy is the struc-
ture name, which represents the entire
collection of elements. For example, the
following is a collection of element vari-
ables that might be wused to compute a
weekly payroll:

LAST NAME
FIRST_NAME
REGULAR_HOURS
OVERTIME HOURS
REGULAR _RATE
OVERTIME RATE

variables could be collected into
single <structure
refer to the

These
a structure and given a
name, PAYROLL, which would
entire collection.

PAYROLL
LAST NAME REGULAR _HOURS REGULAR_RATE
FIRST NAME OVERTIME HOURS OVERTIME RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
'or example:

GET EDIT (PAYROLL) (format-list);

This input statement could cause data to
be assigned to each of the element vari-
ables of the structure PAYROLL.

It otten is convenient to subdiwvide the
entire collection into smaller logical col-
lections. In the above examples, LAST_NAME
and FIRST _NAME might make a logical subcol-
lection, as might REGULAR_HOURS and
OVERTIME HOUR3, as well as REGULAR_RATE and

30

OVERTIME RATE. 1In a structure, such sub-

collections also are given names.

PAYROLL
NAME HOURS RATE
FIRST REGULAR REGULAR
LAST OVERTIME OVERTIME
Note that the hierarchy of names can be

considered to have different levels. At
the first 1level is the major structure
name; at a deeper level are the minor
structure names; and at the deepest level
are the elementary names. An elementary
name in a structure can represent an array,
in which case it is not an element vari-
able, but an array variable.

The organization of a structure is spec-
ified in a DECLARE statement through the
use of level numbers. A major structure
name must be declared with the level number
1. Minor structures and elementary names
must be declared with level numbers arith-
metically greater than 1; they must be
decimal integer constants. A blank must
separate the level number and its associat-
ed name.

For example, the items o¢f a
payroll could be declared as follows:

weekly

DECLARE 1 PAYROLL,

2 NAME,
3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

Note: In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names.
The pattern of indention in this example is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure

containing the minor structures NAME,
HOURS, and RATE. Zach mincr structure
contains two elementary names. A program-

mer can refer to the entire structure by
the name PAYROLL, or he <can refer to
portions of the structure by referring to
the minor structure names. He can refer to
an element of the structure by referring to
an elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeperxr

levels need not be the immediately succeed-
ing integers. They are used merely to
specify the relative level of a name. A
minor structure at level n contains all the
names with level numbers greater than n
that lie between that minor structure name
and the next name with a level number less
than or equal to n. A major structure
description 1is terminated by the declara-
tion of another item with a level number 1
(i.e., another major structure), by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement. PAYROLL might have been
declared as follows:

DECLARE 1 PAYROLL, 4 NAME,
2 HOURS, 6 REGULAR,
2 RATE, 3 REGULAR,

5 LAST, 5 FIRST,
5 OVERTIME,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous dec-
laration.

Level numbers are specified with struc-

ture names only in DECLARE statements. In
references to the structure or its ele-
ments, no level numbers are used. Only
structures can be declared with level num-

bers; a 1level number cannot be declared
with any other identifier.

pualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambigquity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to eithexr name would
be ambiguous without some qualification to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A qualified name
is an elementary name or a minor structure
name that is made unique by gqualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and OVER-
TIME could be made unique through use of
the qualified names HOURS.REGULAR, HOURS.
OVERTIME, RATE.REGULAR, and RATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may or
may not appear surrounding the period.
Qualification is 1in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS .REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK. HOURS. REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

structures are not supported
simulation of

Arrays of
by the D-Compiler; however,
arrays of structures 1is possible. The
publication IBM System/360 Disk and Tape
Operating Systems, PL/I Programmer's Guide,
Form C24-9005, offers some techniques for
this simulation.

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DECIMAL are discussed
briefly in the preceding sections of this
chapter. Other attributes that are not
peculiar to one data type may also be
applicable. A complete discussion of these

attributes is contained in Part II, Section
I, "Attributes."™ Some that are especially
applicable tc a discussion of data type and
data organization are ALIGNED, PACKED, and
DEFINED.

The ALIGNED and PACKED Attributes

The ALIGNED and PACKED attributes are
used to specify the arrangement in storage
of string or numeric character elements
within structures or arrays. 1f the PACKED
attribute is specified for an array or a
structure, all character string and numeric
character elements must, whenever possible,
be stored in adjacent character positions.
Bit strings cannot be packed; hence, an
array or structure containing bit-string
elements cannot have the PACKED attribute.
Thus, an array or structure containing bit
strings must explicitly be given the
ALIGNED attribute.

Chapter 3: Data Elements 31

If the ALIGNED attribute is
for an array or a structure, each bit
string, character string, or numeric char-
acter element must be aligned on & particu-
lar storage boundary, if that alignment is
more efficient for program execution.

specified

Packed aggregates can be useful for
overlay defining. (See the discussicon of
the DEFINED attribute immediately follcwing
this section.) Aligned aggregates make it
possible for the implementation to speed up
the execution of the program, but at some
cost in data storage. Since Systemn/360 has
character-handling instructions, <here is
no need to align character strings. Furth-
ermore, alignment of character stirings or
numeric character fields prohibits the use
of overlay defining and the STRING built-in
function for themn.

Arrays are assumed to have the ALIGNED
attribute and structures are assumed to
have the PACKED attribute, unless fthey are
declared otherwise.

The DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to refer to the same storage area as that
assigned to other data. For exampile:

DECLARE LIST (100,100),
LIST A (100,100) DEFINED LIST;

32

In the above declaration, LIST is a 100 by
100 two-dimensional array. LIST A is an
identical array defined on LIST. The
result is that a reference to an element in
LIST A 1is the same as a reference to the
corresponding element in LIST. Thus, a
change to an element 1in LIST_A will be
reflected in the corresponding element of
LIST, and vice versa. This type of defin-
ing is called correspondence defining.

Another type of defining is called over-
lay defining. This type of defining speci-
fies that the defined item (the item having
the DEFINED attribute; e.g., LIST A above)
is to refer to all or part of the storage
occupied by the base identifier (the iden-
tifier following the keyword DEFINED; e.g.,
LIST above). For example:

2 Q CHARACTER (25),
2 R CHARACTER (50),
PSTRING1 CHARACTER (60)
DEFINED P;

DECLARE 1 P,

In this example, PSTRING1l is a character
string of 1length 60 defined on the packed
structure P (P has the PACKED attribute by
default). Since P is packed, the first
character in Q through the 1last character
in R can be considered as one string of 75
characters in length. PSTRINGL refers to
the first 60 characters of that string,
that is, the 25 characters of effectively
concatenated with the first 395 characters
of R. Note that if P were not packed, the
contents of PSTRING1 could not be guaran-
teed.

An expression is a representation of a
value. A single constant or a variable is

an expression. Combinations of constants
and/oxr variables, along with operators
and/or parentheses, are expressions. An

expression that contains operators is an
cperational expression. The constants and
variables of an operational expression are
called gperands.

Examples of expressions are:

27
LOSS
A+B

(50TY-QTY) *SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, Or a
structure expression. An element expres-
sion 1is one that represents an element
value. An array expression is one that
represents an array value. A structure
expression is one that represents a struc-
ture value.

Array variables and structure variables
cannot appear in the same expression. Ele-
ment variables and constants, however, can
appear in either array expressions or
structure expressions. An elementary name
within a structure or a subscripted name
that specifies a single element of an array
is an element expression.

Note:

If an elementary name of a structure
is given the dimension attribute, that
elementary name is an array variable and
can appear only in array expressions.

In the
variables have attributes declared as
lows:

examples below, assume that the
fol-

DECLARE A(10,10) BINARY FIXED (31),

B(10,10» BINARY FIXED (31),
%L RATE, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
1 COST, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

CHAPTER 4: EXPRESSIONS

Examples of element expressions are:
C * D
A(3,2) + B(4,8)

RATE . PRIMARY - COST . PRIMARY

A(4,4) * C

RATE . SECONDARY / 4

A(4,6) * COST . SECONDARY

All of these expressions are element
expressions because each operand is an
element variable or constant (even though

some may be elements of arrays or elementa-
ry names of structures); hence, each
expression represents an element value.
Examples of array expressions are:
A+ B
A ¥ C - D
B / 10B
All of these expressions are array expres-
sions because at least one operand of each
is an array variable; hence, each expres-
sion represents an array value. Note that
the third example contains the binary
fixed-point constant 10B.
Examples of structure expressions are:
RATE * COST
RATE / 2
Both of these expressions are structure
expressions because at least one operand of

each is a structure variable; hence, each
expression represents a structure value.

USE OF EXPRESSIONS

Expressions that are single constants or
single variables may appear freely through-
out a program. However, the syntax of many
PL/I statements allows the appearance of
operational expressions, so long as evalua-
tion of the expression yields a valid
value.

descriptions used in this
unqualified term

In syntactic
publication, the

Chapter 4: Expressions 33

"expression” refers to an element expres-
sion, an array expression, or a structure
expression. For cases in which the kind of
expression is restricted, the type of re-
striction 1is noted; for example, the term
"element-expression" in a syntactic cdes-
cription indicates that neither an array
expression nor a sStructure expression is
valid.

Note: Although operational expressions can
appear in a number of different PL/I state-
ment:s, their most common occurrences are in
assignment statements of the form:

A =B + C:

The assignment statement has no PL/I key-
word. The assignment symbol (=) indicates
that the value of the expression on the
right (B + CC) 1is +to be assigneld to the
variable on the left (A). For purposes of
ililustration in this chapter, some 2xamples
of expressions are shown in assignment
statements.

DATA CONVERSION IN OPERATIONAL EXPRuSSIONS

An operational expression consists of
one oOr more single operations. A single
operation is either a prefix operation (an
operator preceding a single operani) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type, as
specified Dby the attributes of a variable
or the notation used in writing a constant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
rules for conversion of different data
types are discussed in the following para-
graphs and in a later section of this
chapter, "Concepts of Data Conversion."
Detailed rules for specific cases, includ-
ing rules for computing precision or length
of converted items, can be found in Part
I, Section F, "Data Conversion."

Data conversion is confined to conver-
sion of problem data. Program control
data, such as statement labels ani poin-

ters, is never converted from one type to

another.

34

Bit-string to Character-String

The bit 1 becomes the character 1; and
the bit 0 becomes the character 0.

Character-sString to Bit-String

The character string should contain the
characters 1 and 0 only, in which case the
character 1 Dbecomes the bit 1, and the
character 0 becomes the bit 0. The CONVER-
SION condition is raised by an attempt to
convert any character other than 1 or 0 to
a bit.

Character—-String to Arithmetic

Character-string data cannot be convert-
ed to coded arithmetic or numeric character
type. Any attempt to do so is an error.

Arithmetic to Character-String

Coded arithmetic data cannot be convert-

ed to character string type. Any attempt
to do so is an error. However, numeric
character data can be converted to charac-

The numeric character field is
interpreted as a character string having
the same characters. The 1length of the
string 1is the same as the length specified
in the PICTURE attribute for the numeric
character field.

ter string.

Bit-String to Coded Arithmetic

A bit string is interpreted as an
unsigned binary integer and is converted to
fixed-point binary of positive value. The
base and scale are further converted, if
necessary.

Bit String to Numeric Character

The bit string 1is first converted to
coded arithmetic and then to nuneric char-
acter.

Coded Arithmetic to Bit-String

The absolute value is converted, if
necessary, to a fixed-point binary integer.
Ignoring the plus sign, the integer is then
interpreted as a bit string. The length of
the bit string is dependent upon the preci-
sion of the original unconverted arithmetic
data item.

Numeric Character to Bit String

The numeric character value is converted
to coded arithmetic and then to bit string
as above.

Numeric Character to Character-String

See "Arithmetic to
above.

Character-String"

Arithmetic Base and Scale Conversion

The precision of the result of an arith-
metic base or scale conversion is dependent
upon the precision of the original arith-
metic data item. The rules are 1listed in
Part II, Section F, "Data Conversion."

ctonversion by Assignment

In addition to conversion performed as
the result of an operation in the evalua-
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attributes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part 1II,
Section ', "Data Conversion."

EXPRESSION_ OPERATIONS

An operational expression can specify
one or more single operations. The class
of operation is dependent upon the class of
operator specified for the operation.

four classes
bit-string,

There are
arithmetic,
concatenation.

of operations --
comparison, and

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ = %/ k%

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A

or -A) or as infix operators (associated
with and between two operands, such as A +
B or A - B). All other arithmetic opera-

tors can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For exam-
ple, in the expression A * -B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
the negative wvalue of B.

More than one prefix operator can pre-
cede and be associated with a single varia-
ble. More than one positive prefix opera-
tor will have no cumulative effect, but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the wvalue, restoring it to
the original arithmetic value rep-
resented by A.

---A Three minus signs reverse the sign of
the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic opera-
tion may differ in type, base, precision,
and scale. When they differ, conversion
takes place according to rules 1listed
below. Certain other rules -- as stated

Chapter 4: Expressions 35

below -- may apply in cases of exponentia-
tion.
TYPE: Numeric character field operands

{digits recorded in character form) and
bit-string operands are converted to inter-
nal coded arithmetic type. The result of
an arithmetic operation is always in coded
arithmetic form. Note that type conversion
is the only conversion that can take place
in an arithmetic prefix operation.

_____ If the bases of the two operands
differ, the decimal operand is converted to
binary.

PRECISION: If only precisions
type conversion is necessary.

differ, no

SCALE: If the scales of the two operands
differ, the fixed-point operand is convert-
ed to floating-point scale. The exception
to this rule is in the case of exponentia-
tion when the first operand is of floating-
point scale and the second operand (the
exponent of the operation) is fixed-point
with a scale factor of zero, that 1is, a
fixed-point integer constant or a variable
with precision (p,0). In such a case, no
conversion 1is necessary, but the result
will be floating-point.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,0).

2. The first operand 1is converted to
floating-point unless the exponent is
an unsigned fixed-point integer con-
stant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maxi-
mum number of digits allowed for the
implementation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of con-
version in exponentiation are included
in the section "Concepts of Data
Conversion" in this chapter.

Results of Arithmetic Operations

The "result™ of an arithmetic operation,
as used in the following text, may refer to
an intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any

36

result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent opsration or if
it is assigned to a variable.

After required conversions have taken
place, the arithmetic operation is per-
formed. If maximum precision is exceeded

and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fixed-
point data, however, high-order digits may
sometimes be lost when scale factors are
such that point alignment does not allow
for the declared number of digits.

The base, scale, and precision of the
result depend wupon the operands and the
operator involved.

For prefix operations, the result has
the same base, scale, and precision as the
converted operand. Note that the result of
-3, where A 1is a bit string, is an
arithmetic result, since A must first be
converted to coded arithmetic form before
the operation can be performed.

For infix operations,
upon the scale of the
following ways:

the result depends
operands in the

FLOATING POINT: If the converted operands
of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base of the result is the
common base of the operands. The precision
of the result is the greater of the preci-
sions of the two operands.

FIXED POINT: If the converted operands of
an infix operation are of fixed-point
scale, the result is of fixed-point scale,
and the base of the result is the common
base of the operands. The precision of a
fixed-point result depends upon operands,
according to the rules listed below.

In the formulas for computing precision,
the symbols used are as follows:

P represents the +total number of
digits of the result

q represents the scale factor of
the result

Pa represents the total number of

digits of the first operand

Jda represents the scale factor of
the first operand

Pa represents the total number of
digits of the second operand

da represents the scale factor of

the second operand

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
plus the number of fractional digits of the
operand having the greater number of frac-
tional digits. The total number of posi-
tions cannot exceed the maximum number of
digits allowed (15 decimal digits, 31
binary digits). The scale factor of the
result 1is equal to the larger scale factor
of the two operands.

Formulas:

p = 1 + maximum (py - qa1, P2 - g2)
+ maximum (qi, gz2)

q = maximum (qi, g2)
Example:

12354.2385 + 222.11111
A B C D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the number of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci-
sion of the result would be (11,5).

MULTIPLICATION:
in the result is
number of digits

The total number of digits
equal to one plus the

in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen-
tation (15 decimal, 31 binary). The scale
factor of the result is the sum of the
scale factors of the two operands.

Formulas:
P=ps *tpzt 1
qd = g1 * 92
Example:

345.432 * 22.45
A B C D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C, and D. The
scale factor of the result would be the sum
of the number of digits in B and D.
Precision of the result would be (11,5).

DIVISION: The total number of digits in
the quotient 1is equal to the maximum
allowed by the implementation (15 decimal,

31 binary).
tient is

The scale factor of the quo-
dependent upon the number of

integer digits of the dividend (A in the
example below), and the number of fraction-
al digits of the divisor (D in the example
below). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D.

Formulas:

p = 15 decimal, 31 binary

g = 15 (or 31) - ({py - gi)+ gz)

Example:

432.432 / 2
A B C D

The total number of digits in the quotient
would be 15 (the maximum number allowed).
The scale factor would be 15 minus the sum
of 3 (A, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor). Preci-
sion of the quotient would be (15,12).

Note that any change in the number of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even if all additional digits
are zeros. Also note from the above formu-
las that the result of a fixed-point divi-
sion can have a scale factor greater than
zero even though the operands might have a
scale factor of zero (or no scale factor,
in the «case where the operands are fixed-
point binary variables).

Examples:

oou32.432 7 2

432.432 7 2.0000
Precision of the quotient of the first
example would be (15,10); scale factor is
equal to 15-(5+0). Precision of the

quotient of the second example would be
(15,8); scale factor is equal to 15-(3+4).

Caution: In the use of fixed-point divi-
sion operations, care should be taken that
declared precision of variables and appar-
ent precision of constants will not give a
result with a scale factor that can force
the result of subsequent operations to
exceed the maximum number of digits allowed
by the implementation.

EXPONENTIATION: If the second operand (the
exponent) is an unsigned nonzero fixed-
point constant of precision (p,0), the

total number of positions in the result is
equal to one less than the product of a
number that is one greater than the number
of digits in the first operand multiplied
by the value of the second operand (the

Chapter 4: Expressions 37

exponent). The scale factor of the result
i1s equal to the product of the scale factor
of the first operand multiplied by the
value of the second operand (the expornent).

Note: In +the exponentiation operation
x**y, some special cases are defined as
follows:

1. If x=0 and y>0, the result is 0.

2. If x=0 and y<0, the ERROR condition is
raised.

3. If x#0 and y=0, the result i3 1.
4, If x<0 and y is not fixed-point with
precision (p,0), the ERROR condition

is raised.

{As pointed out under "Data Convarsion in
Arithmetic Operations,” if the exponent is

not an unsigned fixed-point irteger
constant, or if the total number of cigits
of the result would exceed 15 decimal

digits or 31 binary digits, the first
operand 1is converted to floating-point
scale, and the rules for floating-point
exponentiation apply.)

Formulas:
p = ((py + 1)*(value-of-expoaent))- 1
q = g1 *(value-of-exponent)

LExample:
32 ** 5

The total number of digits in the result
would be 14. This is arrived at by multi-
plying a number equal to one plus the
nunber of digits in the first operand (1+2)
by the value of the exponent and subtract-
ingy one. The scale factor of the result
would be zero (0 * 5, scale factor of the
first operand multiplied by the value of
the exponent).

BIT-5TRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

+ & |

The first operator, the "not" symbol, can
be wused as a prefix operator only. The
second and third operators, the "and" sym-
bol and the "or" symbol, can oe used as
infix operators only. The operators have
the same function as in Boolean algebra.

38

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal 1length, the shorter is extended on
the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the length
of the operands (the two operands, after
conversion, always are the same length).

Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not"
operator is bit reversal; +that 1is, the
result of 41 is 0; the result of 0 is 1.

The result of an "and" operation is 1 only
if both corresponding bits are 1; in all
other cases, the result is 0. The result

of an "or" operation is 1 if either or both
of the corresponding bits are 1; in all
other cases, the result is 0. The follow-
ing table illustrates the result for each
bit position for each of the operators:

| B T TT T T T h
| A& | B |{ A | 1B | AB | A[B |
t -+ - s p———- - 2|
| | | | | | I
| 1 |1 it 0 | 0 | 1 1
= - -t
I | i [I | |
| 1 | O I o | 1 | 0 1
pe————- == - - fom—e o 4
| | I | [I |
(Y | 1 I 0 Y |
t————— - - - b= 4= 1
| | I I [| |
Y o 1 1 | 1 I 0 1 0 |
L ——1 1L R L 4 3

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and -he value of
operand C is '110'B, then

1 A yields '101000'B
7 C yields '001'B

C & B yields '110000'B
A| B yields '111111'B
cC | B yields *111111'B
Al GO yields '011111'B
2((;0) | (yB)) yields '110111'B

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators:

< *|< <= = 1= >= > 1>
These operators specify "less than," "not
less than," "less than or equal to," "equal
to," "not equal to," "greater than or equal
to," "greater than,"™ and "not greater
than."
There are four types of comparisons:

1. Algebraic, which involves the compari-

son of signed arithmetic values in
internal coded arithmetic form. If
operands differ in base, scale, or

precision, they are converted accord-
ing to the rules for arithmetic opera-
tions. Numeric character data is con-
verted to coded arithmetic before com~
parison.

2. Character, which involves left-to-
right, character-by-character compar-
isons of characters according to the
collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

for which only the operators

= and 4= are allowed. Both operands
must be valid pointer expressions,
since there 1is no type conversion of

program control data.

If the operands of a comparison (other
than pointer) are of different types, the
operand of the lower type is converted to
the type of the operand of the higher type.
The priority of types is (1) internal coded
arithmetic (highest), (2) character string,
(3) bit string. (Character strings cannot
be compared with arithmetic data.)

If operands of a character-string com-
parison, after conversion, are of different
lengths, the shorter operand is extended on
the right with blanks. I1f operands of a
bit-string comparison are of different
lengths, the shorter is extended on the
right with zeros.

The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '"0'B if the relationship is not true.

The most common occurrences of compari-
son operations are in the IF statement, of
the following format:

IF A =B
THEN action-if-true
ELSE action-if-false

The evaluation of the expression A = B
yields either '1'B or '0'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is execut-
ed.

Comparison operations need not be limit-
ed to IF statements, however. The follow-
ing assignment statement could be valiad:

X = A < B;
In this example, the value '1'BE would be

assigned to X if A is less than B; other-
wise, the value '0°'B would be assigned. 1In

the same way, the following assignment
statement could be valid:

X = A= B;
The first symbol (=) is the assignment

symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be '1'B; if A is not equal to B, the
value of X will be '0'B.

Only the comparison operations of
"equal™ and "not equal"™ are valid for
comparisons of pointer variable operands.
Comparison operations with labels 1is not
allowed.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

It signifies that the operands are to be
joined in such a way that the last charac-
ter or bit of the operand to the left will
immediately precede the first character or
bit of the operand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conversion to string type since concatena-
tion can be performed only upon strings,
either character strings or bit strings.
If both operands are character strings or
if both operands are bit strings, no con-
version takes place. Otherwise both oper-
ands are converted to character strings.

The results of concatenation
are as follows:

operations

Chapter 4: Expressions 39

Bit _string: a bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character string: a character string whose
length is equal to the sum of the lengths

of the two character-string operands.

For example, if A has the attributes and
value of the constant '010111°'B, B of the
constant '101'B, C of the constan: 'XY,Z2',
and D of the constant 'AA/BB', then
'010111101'B

Al |B yields

Al |A]|B yields '010111010111101'B

cl|p yields 'XY,ZAA/BB"
Dl ic yields 'AA/BBXY,Z"
B||D yields '101AA/BB'

Note that, in the 1last example, the bit
string '101'B is converted to the character
string '101*' Dbefore the concatenaticn is
performed. The result 1is a <character
string consisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of
compbined within the same operational ex-
pression. Any combination can »e used.
For example, the expression shown in the
following assignment statement is wvalid:

operations can be

RESULT = A + B < C & D || E;

within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the opera-
tion is performed.

tach operation

Assume that the wariables above

are declared as follows:

given

DECLARE RESULT CHARACTER(7),
A FIXED DECIMAL(1),
B FIXED BINARY (3),
¢ BIT(2),
D BIT(4),
I CHARACTER(3);

e The decimal value of A would be con-
verted to binary base.

e The binary addition would be p=rformed,
adding A and B.

e The binary result would be compared
with the converted binary value of C.

40

e The bit-string result of the comparison
would be extended to the length of the
bit string D, and the "and" operation
would be performed.

e The result of the "and" operation, a
bit string of length 4, would be con-
verted to a character string and conca-
tenated with the character-string E,
giving a length of 7.

¢ The character-string result would be
assigned to RESULT without conversion.

Note: The order of evaluation of an ex-
pression depends upon the priority of the
operators appearing in the expression. In
the above example, the priority of opera-
tion is such that evaluation proceeds from
left to right.

Priority of Operators

In the evaluation of expressions, prior-
ity of the operators is as follows:

* prefix+ prefix- 1 (highest)
* / |
infix+ infix- |
< '|< <= = 1= >= > '|> I

& |

| \Y

] (lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator has the
highest priority. Each succeeding exponen-
tiation or prefix operator to the left has
the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order of priority
of those operators is from left to right.

Note that the order of evalaation of the
expression in the assignment statement:

RESULT = A + B < C & D || E;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
as follows:

(a) + (B)
(A + B) <(C)
(A + B <C) & (D)

(A + B<C &D || (E)

The order of evaluation of an expression
(and, consequently, the result) can be
changed through the use of parentheses.
The above expression, for example, might be
written as follows:

A+ (B<C) &§ (D || E)

The order of evaluation of this expres-
sion would yield a bit string, the result
of the "and" operation.

In such an expression, those expressions
enclosed in parentheses are evaluated
first, to be reduced to a single value,

before they are considered in relation to
surrounding operators. Within the lan-
guage, however, no rules specify which of

two parenthesized expressions, such as
those in the above example, would be evalu-
ated first.

converted to

The wvalue of C would be

fixed-point binary, and the comparison
would be made, yielding a bit string of
length one (RESULT_1). The wvalue of D

would Dbe converted to a character string
and concatenated with E (RESULT_2).

At this point, the expression would have
been reduced to:

A + RESULT_1 & RESULT_2

Since the infix + has a higher priority
than the & operator, the addition would be
performed first, yielding RESULT_3, and the
expression would be:

RESULT 3 & RESULT_2

The two operands would be converted to bit
strings, and the "and" operation would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example (assuming that A, B, C, etc. have
been redefined):

A+ (BC) & (D | E *% F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the "or" operation. It
does nct specify the order of the operation

in relation to the evaluation of the other
operand (A + (B<C)).

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example under "Combinations of
Operations," the concatenation operator is
the operator of the final infix operation.
In the second example (because of the use
of parentheses), the operator of the final
infix operation is the "and" operator, and
the evaluation would yield a different
value.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A+ B ** 3 §C*D-E

In this case, the "and" operator indicates
that the final operation will be:

(A + B ** 3) § (C * D - E)
Subexpressions can be analyzed in the
same way. The two operands of the expres-—

sion can be defined as follows:

A + (B #* 3)

(C * D) - E

ARRAY EXPRESSIONS

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators -- both prefix
and infix -- element variables, and con-
stants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-by-
element basis in row-major order (that is
with the rightmost subscript varying most
rapidly). Therefore all arrays referred to
in an array expression must be of identical
bounds.

Note: Array expressions other than addition
and subtraction are not expressions of
conventional matrix algebra.

Chapter 4: Expressions 41

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an e&rray of
idertical bounds, each element of which is
the result of the operation having been
performed upon each element of the original

array. For example:
If A is the array 5 2 -9
1 -z 7
6 3 -4
then -A is the array -5 -3 9
-1 2 -7
-6 -3 i

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the other operand.

Array and Element Operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds
identical to the original array, each ele-
ment of which is the result of the opera-
tion performed upon the corresponding ele-
ment of the original array and the single
elemsnt. For example:

If A is the array 5 10 3]

12 11 K1

then A*3 is the array 15 30 24

0

36 33

The element of an array-element opera-
tion can be an element of the same array.
For example, the expression A*A(2,3) wculd
give the same result in the case of the
array A above, since the value of 4(2,3) is
3.

Consider the following assignmen=t state-
ment :

42

A=A * A(1,2);

Again, using the above values for A, the
newly assigned value of A would be:

50 100 800

1200 1100 300
Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first +two elements of A. Since

the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent opera-
tions. The first two elements are multi-
plied by 10, the original value of A(l,2);
all other elements are multiplied by 100,
the new value of A(l1,2).

Array and Array Operations

If two arrays are connected by an infix
operator, the two arrays must have the same
number of dimensions and identical bounds.
The result is an array with bounds identi-
cal to those of the original arrays; the
operation is performed upon the correspond-
ing elements of the two original arrays.

Examples of array infix expressions are:

If A is the array 2 4 3
6 1 7

4 8 2

and if B is the array 1 5 7
8 3 4

6 3 1

then A+B is the array 3 9 10
14 4 11

10 11 3

and A*B is the array 2 20 21
48 3 28
24 24 2

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single arith-
metic operations. The rules for combining
operations and for data conversion of oper-

ands are the same as those for element
operations.
STRUCTURE EXPRESSIONS

A structure expression is a single

structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

All operations performed on structures
are performed on an element-by-element
basis. All structure operands appearing in
a structure expression must have identical
structuring.

identical structuring means that the
structures must have the same minor struc-
turing and the same number of contained
elements and arrays and that the position-
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in
corresponding positions must have identical
bounds. Names do not have to be the same.
Data types of corresponding elements do not
have to be the same, so long as valid
conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of the
original structure.

Note: Since structures may contain elements
of many different data types, a prefix
operation in a structure expression would
be meaningless unless the operation can be
validly performed upon every element rep-
resented by the structure variable, which
is either a major structure name or a minor
structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a struc-
ture variable as one operand may have an
element or another structure as the other
operand.

Structure and Element Operations

When an operation has one structure and
one element operand, it is the same as a
series of operations, one for each element
in the structure. Each sub-operation
involves a structure element and the single
element.

Consider the following structure:

1A
2 B
3
3
3
2 F
3
3
3

=HoO

HIZ O

If X is an element variable, then A * X

is equivalent to:

A.C * X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X
Structure operands in a structure ex-

pression need not be major structure names.
A minor structure name, at any level, is a
structure variable. Thus, the following
are structure expressions:

A.B & '1010'B

F * 32

Structure and Structure Operations

When an
operands, it 1is the
element operations, one for
ponding pair of elements. For example, if
A is the structure shown in the previous
example and if M is the following struc-
ture:

operation has two structure
same as a series of
each corres-

Chapter u4: Expressions 43

1M
2 N
30
3P
30
2 R
3 s
37T
3 U
then A || M is equivalent to:
A.C |] M.O
A.D || M.P
AE |} M.Q
A.G || M.s
AH || M.T
A.I || M.U

As stated above, structure operands in a
structure expression need not be major
structure names. A minor structure name,
at any 1level, 1is a structure variable.
Thus, the following is a structure expres-
sion:

M.N & M.R

OPERANDS OF EXPRESSIONS

An operand of an expression c¢an be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a

computation, as shown in the following
assignment statement:

A = B * SQRT(C);
In this example, the expression SQRTI(C)
represents a value that is equal to the
square root of the value of C. Such an

expression is called a function_ ruzference.

FUNZTION REFERENCE OPERANDS

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of coding written to perform specific
computations upon the data represented by
the 1list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the ccding that
would compute the square root of 16 and

44

with the
state-

replace the function reference
value 4. 1In effect, the assignment
ment would become:

The coding represented
the function reference is
tion.
built-in functions. Built-in functions,
which provide a number of different opera-
tions, are a part of the PL/I language. A
complete discussion of each appears in Part
II, Section G, "Built-In Functions and
Pseudo-Variables." 1In addition, a program-
mer may write functions for other purposes
(as described in Chapter 10, "Subroutines
and Functions"), and the names of those
functions can be used in function referen-
ces.

by the name in
called a

The use of a function reference is not
limited to operands of operational expres-
sions. A function reference is, in itselt,
an expression and can be used wherever an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the 1left of
an assignment statement.

There are, however, two built-in func-
tions that can be used as pseudo-variables.
A pseudo-variable is a built-in function
name that is wused 1in a receiving field.
Consider the following example:

DECLARE A CHARACTER(10),
B CHARACTER(30) ;

SUBSTR(A,6,5) = SUBSTR(B,20,5);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and as a pseudo-
variable.

The SUBSTR built-in function extracts a
substring of specified length from the
named string. As a pseudo-—-variable, it
indicates the location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with the
20th character of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be replaced by the
20th through the 24th characters of B. The

first five characters of A remain
unchanged, as do all of the characters of
B.

The two built-in functions that can be

used as pseudo-variables (SUBSTR and
UNSPEC) are discussed in Part II, Section
G, "Built-In Functions and Pseudo-

Variables." No programmer-written function
can be used as a pseudo-variable,

CONCEPTS OF DATA CONVERSION

Data conversion is the transformation of
the representation of a value from one form
to another. Although there are some
restrictions upon the use of the available
forms of data representation and upon the
mixing of different representations within
an expression, the programmer still has a
great deal of freedom in this area.

Programmers who wish to make use of this
freedom must understand that mixed expres-
sions imply conversions. If conversions
take place at execution time, they will
slow down the execution, sometimes signifi-
cantly. Unless care is taken, conversions
can result in loss of precision and can
cause unexpected results.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion
are listed in Part 1II, Section F, "Data
Conversion."” Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
processes of the conversion.

The subject of conversion can be consid-
erel in two parts, first, determining the
target attributes, and, second, the conver-
sion operation with known source and target
attributes. This section deals with deter-
mining target attributes. Rules for con-
version operations are given in Part 1I1I,
Section F, "Data Conversion." Within each
section, here and in Part II, arithmetic
conversion and type conversion are consid-
ered separately.

conversion is the

which the converted
value is assigned. 1In the case of a direct
assignment, such as A = B, in which conver-
sion must take place, the variable to the
left of the assignment symbol (in this
case, A) 1is the target. Consider the
following example, however:

The target of a

receiving field to

DECLARE A PICTURE '$9999v.99°,
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A =B+ C;

During the evaluation of the expression B +
C and during the assignment of that result,
there are four different targets, as fol-
lows:

1. The compiler-created
which the converted binary
of B is assigned

temporary to
equivalent

2. The compiler-created temporary to
which the binary result of the addi-
tion is assigned

3. The temporary to which the converted
decimal fixed-point equivalent of the
binary result is assigned

4. A, the final destination of the
result, to which the converted numeric
character equivalent of the decimal
fixed-point representation of the
value is assigned

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary

before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the con-
verted representation of B). The attri-

butes of the third target are determined in
part from the source (the second target)
and in part from the attributes of the
eventual target (A). (The only attribute
determined from the eventual target is
DECIMAL, since a binary arithmetic rep-
resentation must be converted to decimal
representation before it can be converted
to a numeric character.) The attributes of
the fourth target (A) are known from the
DECLARE statement.

Thus, when an expression 1is evaluated,
the target attributes wusually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some implemen-
tation restrictions (for example, maximum
precision) and conventions exist. After an
expression is evaluated, the result may be
further converted. 1In this case, the tar-
get attributes usually are independent of
the source. Since the process of determin-
ing target attributes is different for
expression operands and for the results of
expression evaluation, the two cases are
dealt with separately.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, *'1'B, "9,

Chapter 4: Expressions 45

1B, or 1E0. Constants may be converted at
compile time or at execution time, but in
either case, the rules are the same.

Table 4-1. Target Types for Ex¥pression
Operands
[T —— e —— 1
|6perator |Target Type |
pomm - —- -y
|+ - * / **|coded arithmetic |
| | |
1€ | 1 |bit string |
| I |
il jcharacter string {(unless both|
| |]operands are bit strings)]
> <	arithmetic, unless both oper-
>= <=	ands are strings then charac-
= 4=	ter string unless both oper-
1> 1<]ands are bit strings then bit
	string (Pointers can be com-—
	pared only by using = and ,=;
	both operands must be pointers
	since no conversion can be
	performed.) i
1 - PR	

TARGET ATTRIBUTES FOR TYPE CONVERSION

When an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. 3Some
of these assumptions can be based on the
operator, as shown in Table 4-1. Note that
numeric character data can always be con-
verted to coded arithmetic and vice versa.

BIT-TO-CHARACTER AND CHARACTER-TO-EIT

In the conversion of bit to character,
and character to bit, the 1length of the
target (in bits or characters) is the same
as the length of the source (in bits or
characters).

CODED ARITHMETIC TO BIT-STRING

In the conversion of coded aritnmetic to
bit-string data, 1length of the targetft is
deduced from the precision of the source.
Algorithms for determining the length of
the target are given below under the head-
ing "Lengths of Bit-String Targets."

46

BIT-STRING TO CODED ARITHMETIC

The attributes of the target are the
attributes that would have been given to
the target if a fixed-point binary integer
of maximum precision (31) had appeared in
place of the bit string.

When converting to fixed-point in
System/360 implementations, this operation
is performed by first converting the string
to a maximum precision integer (BINARY
(31)). This integer is then converted to
the target attributes.

Target Attributes for Arithmetic Expression
Operands

Except for exponentiation, the target
attributes for arithmetic ccnversion are
assumed as follows:

DECI-
base

BINARY unless both operands are
MAL, in which case no
conversion is performed

FLOAT unless both operands are FIXED,
in which case no scale conver-

sion is performed

precision unless base or scale conversion

of source is performed (see Table 4-2,
"Precision for Arithmetic
Conversion")

In the case of exponentiation, the base
and precision are determined as for other
operations. The target scale of the first

operand is always FLOAT unless the first
operand source 1is FIXED and the second
operand (the exponent) 1is an unsigned

fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for System/360
implementations, 31, if binary, or 15, if
decimal). The target scale of the second
operand is FLOAT unless it is an integer
constant or a fixed-point variable of pre-
cision (p,0).

In the examples of exponentiation shown
below, the variables are those named in the
following DECLARE statement:

DECLARE A FIXED DECIMAL(2),
FIXED DECIMAL(3,2),
FLOAT DECIMAL(4),
FLOAT DECIMAL(7),
FIXED DECIMAL(8),
FIXED DECIMAL(15);

HEHOOW

Note: If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,

by default, zero; the precision is (p,0).

D ** C No conversion necessary. Both
operands are floating-point.

No conversion necessary. Sec-
ond operand is unsigned fixed-
point integer constant, and the
result will not exceed 15
digits.

No conversion necessary. First
operand is floating-point; sec-
ond is fixed-point with preci-
sion (p,0).

No conversion necessary. First
operand is floating-point; sec-
ond is fixed-point with preci-
sion (p,0).

First operand is converted to
flocating-point because second
operand is not unsigned fixed-
point integer constant. Second
operand is not converted
because it has precision (p,0).

Second operand is converted to
floating-point because it does
not have precision (p,0). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2).

Note: All of these examples, except D#**B,
would be the same if they had been declared
binary rather than decimal, except that the
maximum number of binary digits allowed is
31. 1In the case of D**B, B, being binary,
could not be declared with a scale factor;
hence, if B has a precision of (3), no
conversion is necessary.

Precision and Length of Expression Operand
Targets

The following rules apply to all calcu-
lations of precision and length:

1. Precision and 1length specifications
are always integers. If any of the
calculations given below produces a

nonintegral value, the next largest
integer 1is taken as the resulting
precision.

The following illustrates how preci-
sion would be computed in a conversion

from DECIMAL FIXED (8,3) to BINARY
FIXED:
1 + 8 % 3.32 = 27.56 resulting number

of digits (p) is
28.

3 % 3.32 9.96 resulting scale

factor (qg) is 10.

Note that a scale factor is maintained
in conversions to fixed-point binary.
However, if the converted result were
assigned to a fixed-point binary vari-
able, the fractional binary digits
would be truncated since a fixed-point
binary variable can have no scale
factor declared for it (and hence has
an assumed scale factor of =zero).
Also note that the scale factor can
sometimes be negative (e.g., the
BINARY and DECIMAL built-in
functions). In such cases, the abso-
lute (positive) value is used to take
the next largest integer.

2. There is an implementation-defined

maximurm for the precision of each
arithmetic representation. If any
calculation yields a value greater

than the implementation-defined limit,
then the implementation limit is wused
instead. In System/360 implementa-
tions these limits are:

FIXED DECIMAL -- 15 digits
FIXED BINARY -- 31 digits
FLOAT DECIMAL -- 16 digits
FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these 1limits
will usually come into effect only for
conversions from fixed-point decimal
to fixed-point binary.

For the D-Compiler, the scale factor
for fixed-point decimal variables must
lie within 0 and 15, inclusive. The
scale factor for binary fixed-point
variables cannot be specified and is
always assumed to be zero.

Precision for Arithmetic Conversions

Table 4-2 gives the target precision for
an operand if base or scale conversion
occurs.

The target precision of one operand of
an expression is not affected by the preci-
sion of the other operand. This can have a

Chapter 4: Expressions 47

Table 4-2. Precision for Arithmetic Conversions

O e
l

Source Attributes |

DrcimaL FIxED i 1 DECIMAL FLOAT
:DECIMAL FIXED (p,q) { BINARY FIXED
}DECIMAL FIXED (p,q) : BINARY FLOAT
:DEC1MAL FLOAT (p) : BINARY FLOAT
!BINARY FIXED(p,q) } BINARY FLOAT
=BINARY FIXED (p,q) : DECIMAL FLOAT
| BINARY FIXED (p,q) = DECIMAL FIXED
iBINARY FLOAT (p) i DECIMAL FLOAT

significant effect on accuracy, particular-
ly if one of the operands is a constant.

Lengths of Character-String Tarqgets

If the source 1is a numeric character
data item or a bit string and the target is
a character string, the length of the
target 1is the same as the lengthk of the
source.

Lengths of Bit-String Targets

When converting arithmetic operands to
bit string, the arithmetic source is con-
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Table 4-3.

Note that p-q represents the number of
binary or decimal digits to the left of the
point. For the D-compiler, the target
length must lie within 1 and 31, inclusive.

Table 4-3. Lengths of Bit-String Targets

[Source Attributes Target Length|
| DECIMAL FIXED (p,q) (p—q) *3.32 |
:DECIMAL FLOAT (p) p*3.32 :
iBINARY FIXED(p,q) P-q I
{BINARY FLOAT (p) P j

43

1+p*3.32,9%3.32
p*3.32

p*3.32

p/3.32

i
|
!
|
I
I
|
I
p |
!
|
!
1+p/3.32,9/3.32 |

[

I

4

_______ e —————

Conversion of the Value of an Expression

The result of a completely evaluated
expression may require further conversion.
The circumstances in which this can cccur,
and the target attributes for each situa-
tion, are given 1in Figure 4-4., In addi-
tion, certain built-in functions cause con-
version. Any subscript reference is con-
verted to binary integer.

CONVERSION OPERATIONS

As in the <case of determining target
attributes, conversion operations may also
be considered in two stages: type conver-
sion and arithmetic conversion. For exam-
ple, when a numeric character source is
converted to a coded arithmetic target, the
string is first converted tc an arithmetic
form whose attributes are determined by the

constant expressed by the FPICTURE specifi-
cation. This intermediate result is then
converted (if necessary) to the attributes

of the target. These two stages may not be
separated in an actual implementation, but
for the purpose of description it is con-
venient to consider them separately.

There are nine cases of type conversion:

e Numeric character to character-string
e Numeric character to coded arithmetic
e Coded arithmetic to numeric character
e Coded arithmetic to bit-string

e Bit-string to coded arithmetic

Table 4-4.

Circumstances that Can Cause Conversion

|Cause Target Attributes
|Assignment Attributes of variable to the left of the assignment symbol
| RETURN (expression) Attributes specified in PROCEDURE or ENTRY statement
| The following may cause conversion to character string:
|
| Statement Option String Length

DISPLAY Source, 80-character maximum

RECORD IO KEYFROM Key length specified in ENVIRONMENT attribute

KEY Key length specified in ENVIRONMENT attribute (or

eight characters in the case of REGIONAL(1))

for the D-Compiler, is given below:

Option/Attribute
PAGESIZE

I/0 SKIP

LINE

® Character-string to bit-string
e Bit-string to character-string
e Numeric character to bit-string
e Bit-string to numeric character

For specific rules for each of the cases

of type conversion and for arithmetic con-
version, sSee Part II, Section F, "Data
conversion."
THE CONVERSION, SIZE, OVERFLOW, AND
FIXEDOVERFLOW CONDITIONS

When data is converted from one rep-

resentation to another, the CONVERSION or

SIZE conditions may be raised. The OVER-
FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arith-

metic operation exceeds the implementation-
defined limit. When an operand is convert-
ed from one representation to another, if
the value of the result will not fit in the
declared precision for the new representa-
tion, the SIZE condition is raised.

The SIZE condition is raised when signi-
ficant digits are lost from the left-hand
side of an arithmetic value. This can

|
|
I
|
|
|
l.
| The following may cause conversion to a binary integer whose precision, as defined
|
I
I
|
|
I
|
|
L

Precision
8

e e e e e e e e e —— —— . e e —— e e e e e 0

occur during conversion within an expres-
sion, or upon assigning the result of an
expression. It is not raised in conversion
to character string or bit string even if
the value is truncated. It is raised on
conversion to E or F format in edit-
directed transmission if the field width
specified will mnot hold the value of the
list item. The SIZE condition is normally
disabled, so an interrupt will occur only
if the condition is raised within the scope
of a SIZE prefix.

The CONVERSICN condition is raised when
the source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string that is
being converted to bit contains any charac-
ter other than 0 and 1. The CONVERSION
condition is normally enabled, so when the
condition 1is raised, an interrupt will
occur. it can be disabled by a NOCONVER-
SION prefix, in which case an interrupt
will not occur when the condition is
raised.

Note that the OVERFLOW and FIXEDOVERFLOW
conditions are raised when an implementa-
tion maximum is exceeded, while the SIZE

condition is raised when a declared preci-
sion is exceeded. Note also that the
OVERFLOW condition can be raised for a

conversion only when the scale factor spec-
ified in an F-format item is too large.

Chapter U4: Expressions 49

CHAFTER 5: STATEMENT CLASSIFICATIODN

classifies statements
acccrding to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

This chapter

A detailed description of each statement
is not included in this chapter but may be
found in Part II, Section J, "Statements."

CLASSES OF STATEMENTS

Statements can be grouped into the fol-

lowing six classes:
Descriptive
Input/Output
Data Movement and Computational
Control
Exception Control
Program Structure
The names of the classes have been chosen

for descriptive purposes only; they have no
fundamental significance in the language.

Some statements are included in more than
one class, since they can have more than
one function.
DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.

Each data item, except a constant, is
referred to in the program by a name. The
PL/I language requires that the properties
(or attributes) of data items referred to

must be known at the time the program is
compiled. There is an exception +to this
rule: for certain files, the 1INPUT or

OUTPUT attribute can be specifiec in an
OPEN statement and, therefore, car be det-
ermined during the execution of the pro-
gram.

50

The DECLARE Statement

The DECLARE statement is the principal
means of specifying the attributes of a
name. Defaults are applied to any name for
which a complete set of attributes has not
been specified.

DECLARE statements are always needed for
fixed-point decimal and floating-point
binary variables, character- and bit-string

variables, filenames, pointer variables,
label wvariables, arrays and structures,
data with the STATIC or BASED attribute,

all data with the PICTURE attribute and, in
general, data with the EXTERNAL attribute.
A RETURNS attribute declaration must be
made for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(15) if
the first letter of the name is I through
N; otherwise, DECIMAL FLOAT (6). (The
default precisions are those defined for
System/360 implementations.)

DECLARE statements may also be an impor-

tant part of the documentation of a pro-
gram; consequently, programmers may make
liberal use of declarations, even when
default attributes apply or when a contex-
tual declaration 1is possible. Because
there are no restrictions on the number of
DECLARE statements, different DECLARE

statements can be used for different groups
of names. This can make modification easi-
er and the interpretation of diagnostics
clearer.

Other Descriptive Statements

As a rule, file description attributes
must be specified in a DECLARE statement.
However, +the OPEN statement allows the

INPUT or OUTPUT attribute, as well as the
page size, to Dbe specified for certain
files. Therefore, the OPEN statement can
be classified as a descriptive statement.
The FORMAT statement may be thought of as
describing the layout of data on an exter~
nal medium, such as on a page or on &n
input card.

INPUT/OUTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements that affect such
transfers may be considered input/output
control statements.

In the following 1list, the statements
that cause a transfer of data are grouped
into two subclasses, RECORD I/0 and STREAM
I/0:

RECORD I/O Transfer Statements
READ
WRITE
REWRITE
LOCATE
STREAM I/O Transfer Statements
GET
PUT
I/0 Control Statements
OPEN
CLOSE

An allied
these statements,

statement, discussed with
is the DISPLAY statement.
There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with col-
lections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the
record on the external medium is an exact
copy of the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis-
sion may be used for processing keypunched
data and for producing readable output,
where editing is required. Since files for
which stream transmission is used tend to
be smaller, the larger processing overhead
can be ignored.

RECORD I/0 Transfer Statements

records
makes
The

READ statement transmits
directly into working storage or
records available for processing.
WRITE statement creates new records, trans-
ferring collections of data to the output
device. The LOCATE statement also creates
new records, but it acts by making buffer
space available in which the record may be
built. The REWRITE statement alters exist-
ing records in an UPDATE file.

The

STREAM I/0 Transfer Statements

STREAM transmission files are sequential
files that can be processed only with the
GET and PUT statements. Record boundaries
generally are ignored; data is considered
to be a stream of individual data items,
either coming from (GET) or going to (PUT)
the external medium.

The GET and PUT statements transmit a
list of items in the edit-directed mode.
In this mode, the data is recorded exter-
nally as a string of characters to be
treated character by character according to
a format list.

GET and PUT statements can also

internal data movement, - by
specifying the STRING option and omitting
the FILE option. Although the facility may
be used in association with READ and WRITE
statements for moving data to and from a
buffer, it is not actually a part of the
input/output operation. GET and PUT state-
ments with the STRING option are discussed
in the section "Data Movement and Computa-
tional Statements," in this chapter
(Chapter 9" Editing and String Handling"
also touches upon this area).

Note: The
be used for

Input/Output Control Statements

The OPEN statement associates a file
name with a data set and prepares the data
set for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written for a STREAM transmission file.
Execution of a GET or PUT statement that
specifies the name of an unopened file will
result in an automatic opening of the file
before the dJdata transmission takes place.
However, an OPEN statement can be used to
save time by opening such a file before it
is first required for use. The page size
for a file with the PRINT attribute can be

Chapter 5: Statement Classification 51

specified only in an OPEN statement. An
OPEN statement must always be specified for
a RECORD transmission file.

statement dissociates a data
set from a file. Aall files are closed at
the termination of a program, sc a CLOSE
statement is not always required.

The CLOSE

The DISPLAY Statement

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely to suspend execution until the
operator acknowledges the message.

DATA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option also can be used for
internal data movement. The PUT statement
can, in addition, specify computations to
be made.

The Assignment Statement

The assignment statement, which has no
keyword, 1is identified by the assignment

symbol (=). It generally takes one of +two
forms:

A = B;

A =B + C;

The first form can be used purely for
internal data movement. The value of <=he
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies computations to be
made, as well as data movement.

52

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or struc-
ture value. Thus, the assignment statement
can be used to move aggregates of data, as
well as single items.

The STRING Option

If the STRING option appears in a GET or
PUT statement in place of a FILE option,
execution of the statement will result only
in internal data movement; neither input
nor output is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. Consider the follow-
ing example:

GET STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(0),A(17));

This statement specifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the STRING option
specifies the reverse operaticn, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(1),A(17));

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be concaten-
ated, in that order, and assigned to the
string variable NAME.

Computations to be performed can be
specified in a PUT statement by including
operational expressions in the data 1list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) EDIT
(A ¥ 3,B + C)
(F(15), F(15));

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of B and C. Note that while arithmetic
to character-string and character-string to
arithmetic conversions are not allowed in
the PL/I subset, they can be effectively
achieved by the GET STRING and PUT STRING
operations, respectively; however, it
should also be noted that this can be quite
inefficient because of the high overhead in
execution time and storage that is
required.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera-
tional expressions can appear in PUT state-
ments that specify output to a file. 1In
either case, however, such expressions must

be element expressions; they cannot involve
arrays or structures.

CONTROL STATEMENTS

Statements in a PL/I program, in gener-
al, are executed sequentially unless the
flow of control is modified by the occur-
rence of an interrupt or the execution of
one of the following control statements:

GO TO
IF

DO
CALL
RETURN
END

STOP

The GC TO Statement

The GO TO statement is most frequently
used as an unconditional branch. If the
destination of the GO TO is specified by a
label wvariable, it may then be used as a
switch by assigning label constants, as
values, to the label variable.

If +the 1label variable is subscripted,
the switch may be controlled by varying the
subscript. Usually, however, simple con-
trol statements are the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or as a single word, GOTO.

The IF Statement

The IF statement provides the most com-
mon conditional branch and is usually used
with a simple comparison expression follow-
ing the word IF. For example:

IF A =B
THEN action-if-true

ELSE action-if-false

If the comparison 1is true, the THEN
clause (the "action to be taken") is exe-
cuted. After execution of the THEN clause,
control branches around the ELSE clause
(the "alternate action"), and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause 1is executed. control then
continues normally.

The IF statement might be as follows:

IF A =B
THEN C = D;
ELSE C = E;
If A 1is equal to B, the value of D is

assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either

or unconditional. If the THEN
GO TO statement, for

conditional
clause contains a

example, there is no need to specify an
ELSE clause. cConsider the following exam-
ple:

IFA=2B

THEN GO TO LABEL_1;
next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL_1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF state-
ment.

Chapter 5: Statement Classification 53

Note: If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next state-
ment will be executed whether or not the

THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can, however, be a 1logical expression
with more than one operator. For example:

IFA=B§&C=D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

IF A=B &§ C=0D
THEN GO TO R;
B =8B+ 1;

IF A =3B
THEN IF C = D
THEN GO TO R;
3 =B+ 1;

IF A .= B
THEN GO TO
[F C =D
THEN GO TO S;
GO TO R;
S: B =B + 1;

4]

The DO Statement

The most common use of the DO statement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable 1is incremented
each time through the loop. Such a group
might take the form:

DO I =1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 1C. The
effect of the DO and END statements would
be the same as the following:

54

I 0;
A: I I+ 1;
IF I > 10 THEN GO TO B;

GO TO A;
B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one incrementation beyond
the specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remained equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I =1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one successive iteration
specification can be included in a single
DO statement. Consider each of the follow-
ing DO statements:

DO I =1 TO 10, 13 TO 15;

DO I

1]

1 TO 10, WHILE (A = B);

The first statement specifies that the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times.
After the first ten executions have been
completed, execution is to continue so long
as A 1is equal to B. Note that in both
statements, a comma is used to separate the
two specifications. This indicates that a
succeeding specification is to be consid-
ered only after the preceding specification
has been satisfied.

The control variable of a DO statement
can be wused as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a table
or array. For example:

DC I =1 TO 10;
A(I)=I;
END;

In this example, each element of A is set
to 1, 2,...,10, respectively.

The increment in the iteration specifi-
cation is assumed to be one unless some
other value is stated, as follows:

DO I = 2 TO 10 BY 2;
This specifies that the 1loop 1is to Dbe

executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify
repeated execution of the statements of a
DO-group. A simple DO statement, in con-
junction with a DO-group can be used as
follows:

DO;

END;

The usie of the simple DO statement in this
manner merely indicates that the DO-group
is to be treated 1logically as a single
statement. It can be used +to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement.

The CALL, RETURN, and END Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subrout.ine. control is returned to the
activating, or invoking, procedure when a
RETURN statement is executed in the subrou-
tine or when execution of the END statement
terminates the subroutine.

The RETURN statement with a parenthe-
sized expression is used in a function
procedure to return a value to a function
reference. This form can be used only to
return from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,
either of which returns control +to the
operating system.

The STOP Statement

The STOP statement causes abnormal ter-
mination of a program.

EXCEPTION CCNTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of con-
trol whenever they are executed. Another
way in which the sequence of execution can
be altered is by the occurrence of a
program interrupt caused by the raising of
an exceptional condition.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an expect-

ed action, such as an end of file, that
occurs at an unpredictable time. A
detailed discussion of the handling of

these conditions appears in Chapter 11,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements

are the ON statement, the REVERT statement,
and the SIGNAL statement.

The ON Statement

The ON statement is
action to be taken when any subsequent
occurrence of a specified condition causes
a program interrupt. ON statements may
specify particular action for any of a
number of different conditions. For all of
these conditions, a standard system action
is specified as a part of PL/I, and if no
ON statement is in force at the time an
interrupt occurs, the standard system
action will take place. For most condi-
tions, the standard system action is to
print a message and terminate execution.

used to specify

The ON statement takes the form:
ON condition-name {SYSTEM; |on-unit}
The "condition name" is one of the keywords

listed in Part 1II, Section H, "ON Condi-
tions." The "on-unit" specifies a

Chapter 5: Statement Classification 55

programmer-defined action to be taken when

that condition arises and an interrupt
occurs; it can only be a null statement or
a GO TO statement. The keyword SYSTEM

(accompanied by the semicolon) is used in
place of an on-unit to specify that the
standard system action is to be taken if an
interrupt occurs. For example:

ON OVERFLOW;

This statement has a null statement as its
on-unit. It specifies that when an inter-
rupt occurs as a result of an OVERFLOW
condition being raised, the interrupt is to

be ignored and execution is to continue
from the point at which the interrupt
occurred. If an ON statement for OVERFLOW

were not in force and the condition arose,
the standard system action for that condi-
tion would be taken.

The effect of an ON statemeant, the
estaolishment of the on-unit or SYSTEM, can
be changed within a block (1) by execution
of another ON statement naming the same

condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, oxr (2) by the

execation of a REVERT statement naming that
condition. The action in effecz at the
time another block is activated is passed
to the activated Dblock and remains in
effect in that activated block and in other
blocks activated by it, unless anozher ON
statement for the same condition is execut-
ed. When control returns to an activating
block, actions are re-established as they
exisrted.

The REVERT_Statement

The REVERT statement is used to cancel
the effect of all ON statements ifor the

same condition that have been executed in
the block in which the REVERT statement
appears.

T'he RBVERT statement, which must specify
the condition name, re-establishes action
tor that condition as it was in the acti-
vating block at the time the current block
was invoked.

The SIGNAL Statement

statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the action established by execu-
tion of an ON statement. For example:

rhe SIGNAL

56

SIGNAL OVERFLOW;

This statement would simulate the occur-
rence of an overflow interrupt and would
cause execution of the action established
for the OVERFLOW condition. If an action
has not been established, standard system
action is taken.

PROGRAM STRUCTURE STATEMENTS

The program structure statements are
those statements used to delimit sections
of a program into blocks and groups .
These statements are the PROCEDURE state-
ment, the END statement, the ENTRY state-—
ment, +the BEGIN statement, and the DO

statement . The concept of blocks and
groups 1is fundamental to a proper under-
standing of PL/I and is dealt with in
detail in Chapters 6, 7, and 10.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. 1t may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which data of this
class is declared.

The PROCEDURE Statement

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to pe
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

at least one
statement.

Every program must have
PROCEDURE statement and one END
A program may consist of a number cf
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These
internal procedures may contain declara-
tions that are treated (unless otherwise
specified) as 1local definitions of names.
Such definitions are not known outside
their own block, and the names cannot be
referred to in the containing procedure.
The automatic storage associated with these
names 1is allocated upon entry to the block
in which such a nawme is defined, and it is
freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. A
procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the proce-
dure 1is called a function procedure. A
function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression.

Communication between two procedures is
by means of arquments passed from an invok-
ing procedure to the invoked procedure, by
a value returned from an invoked procedure,
and by names known within both procedures.
A procedure may therefore operate upon
different data when it 1is invoked from
different points. A value is returned from
a function procedure to a function ref-
erence by means of the RETURN statement.

The ENTRY Statement

I'he ENTRY statement is used to provide
an alternate entry point to the procedure
in which it appears and, possibly, an
alternate parameter list to which arguments

can be passed, corresponding to that entry
point.
Note: The ENTRY statement specifies an

entry to the procedure in which it appears;

_________ proce-
dures that are invoked from the procedure
in which the ENTRY attribute specification
appears.

The BEGIN Statement

Local definitions of names can also be
made within begin blocks, which are delim-
ited by a BEGIN statement and an associated
END statement. Eegin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. It is
useful for delimiting a section of a pro-
gram in which some automatic storage is to
be allocated.

Each begin block must be nested within a
procedure or anotiher begin block.

The DO Statement

Another kind of program structure is
provided by the DO-group, which is delimit-
ed by a DO statement and an associated END
statement. A DO-group does not have any
effect upon the allocation of storage or
the meaning of names. A LO-group specifies
that the statements contained within it are

to be considered as an entity for the
purpose of flow of control.
A DO statement may specify repeated

execution of a sequence of statements until
a criterion is satisfied, or it may indi-
cate within an IF statement that a group ot
statements is to be taken together as the
whole of +the THEN clause or of the ELSE
clause.

Chapter 5: Statement Classification 57

CHAPTER_6:

BLOCKS, FLOW OF CONTROL, AND STORAGE ALLOCATION

This section discusses how statements
can be organized into blocks to form a PL/I
progrram, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements.

BLOCKS

A& block 1is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared with-
in the block and limits the allocation of
variables. There are two kinds of blocks:
procedure blocks and begin blocks.

PROCEDURE BLOCKS

L procedure block, simply called a pro-
cedure, 1is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

label: PROCEDURE;

END [labell;

All procedures must be named because the
procedure name is the primary point of
entry tnrough which control can ke trans-
ferred to a procedure. A PROCEDURE state-
ment must have one and only one label. An
example of a procedure follows:

READIN: PROCEDURE;
statement-1
statement-2

statement-n
END READIN;

in general, control is transferred to a
procedure through a reference to the name
of the procedure. Thus, the procedure in
the apove example would be given control by
a reference to its name READIN.

A PL/I procgram consists of one or more

such procedures, each of which may contain
other procedures and/or begin blocks.

58

BEGIN BLOCKS

A Dbegin block 1is a set of statewments
headed by a BEGIN statement and ended by an
END statement, as follows:

[label:]J...BEGIN;

END (labell;

Unlike a procedure block, a label is
optional for a pbegin block. 1If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify +the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.) An exam-
ple of a pegin block follows:

B: CONTRL: BEGIN;
statement-1
statement-2

statement—n
END;

Unlike procedures, begin blocks general-
ly are not given control through special
references to them. The normal sequence of
control governing ordinary statement execu-

tion also governs the execution of begin
blocks. Control passes into a begin block
sequentialily, following execution of the

preceding statement.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are dis-
cussed in this chapter and in Chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BELOCKS

Any block can contain one or more
blocks. That is, a procedure, as well as a
begin block, can contain other procedures
and begin blocks. However, there can be no
overlapping of blocks; a block that con-
tains another block must totally encompass
that block.

A procedure block that is contained
within another block is called an internal

__________ A procedure block that is not
contained within another block is called an
external procedure. There must always be
at 1least one external procedure in a PL/I
program. (Note: With System/360 implemen-
tations, each external procedure is com-
piled separately.)

are always internal; they
contained within another

Begin blocks
must always be
block.

Internal procedure and begin blocks can
also Dbe referred to as nested blocks.
Nested blocks may have blocks nested within

them, and so on. The maximum level of
nesting permitted by the D-Compiler is
three, with the external procedure consid-
ered at level one. (The outermost biock
always must be an external procedure.)

Consider the following example:

o PROCEDURE;
statement-al
statement-a2
statement-a3
B BEGIN;

statement-bl

statement-bp2
statement-b3

END;
statement-al
statement-a5
C: PROCEDURE;

statement~cl

statement-c2

D: BEGIN

statement-dal
statement-d2
statement~-d3
statement-d4
END;

END;
statement-aé
statement-a7
END;

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that 1is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D. This example contains three levels of
nesting. A is at the first level, B and C
are at the second level, and D is at the
third level.

The END statement always closes
(i.e., ends) that unclosed block headed by
the BEGIN or PROCEDURE statement or an
unclosed DO-group headed by the DO state-

Note:

ment that physically precedes, and appears
closest. to the END statement. If a label
follows END, it must be the label of the

Chapter 6: Blocks,

nearest preceding DO, BEGIN, or PrROCEDURE
statement for which there is no correspond-
ing END.

ACTIVATION AND TERMINATION OF BLOCKS

ACTIVATION

Although the begin block and the proce-
dure have a physical resemblance and play
the same role in the allocation and freeing
of storage, as well as in delimiting the
scope of names, they differ in the way they
are activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow, and, in general, can appear
wherever a single statement can appear.
For a procedure, however, normal sejuential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry name (defined below) in one of
the following contexts:

1. After the CALL
statement

keyword CALL 1in a

2. BAs a function reference (see Chapter
10, "Subroutines and Functions" for
details)

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

CALL entry-name;
The material, however, is relevant to the

other form as well.

An entry name is defined as either of

the following:

1. The label of a PROCEDURE statement

2. The 1label of an ENTRY statement

appearing within a procedure

The first of these is called the primary
entry point to a procedure; the second is

known as a secondary entry point to a
procedure. (Note that for the D-Compiler
an entry name of an external procedure

cannot exceed six characters.) The follow-
ing is an example of a procedure containing
secondary entry points:

Flow of Control, and Storage Allocation 59

A: PROCEDURE;
statement-1
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

RETR: ENTRY;
statement-6
statement-7
statement-8
END;

In this example, A is the primary entry
point to the procedure, while ERRT and RETR
specify secondary entry points.

When a procedure reference is executed,
the procedure containing the sgecitied
entry point is activated and is said to be
invoked; control is transferred to the
specified entry point. The point at which
the procedure reference appears is called
the point of invocation and the clock in
which the reference is made is <called <he
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution vegins with
the first executable statement in the
invoked procedure. However, when i proce-
dure is invoked at a secondary entry point,
execution begins with the first executable
statement following the ENTRY statement
that defines that secondary entry point.
Therefore, if all of the numbered state-
ments in the last example are executable,
the statement CALL A would invoke procedure
A at its primary entry point, and execution
woulcd begin with statement-1; the statement
CALL ERRT would invcke procedure B2 at the
secorndary entry point ERRT, and execution
would begin with statement-3; the statement
CALL RETR would invoke procedure & at its
other secondary entry point, and execution
woulcl begin with statement-6. Ncte that
any ENTRY statements encountered during
seguential flow are never executed; control
flows around the ENTRY statement a:s though
the statement were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always irvoke an
internal procedure that is contained in
some other procedure. Those interral pro-
cedures that are at the first level of
nesting relative to a containing procedure
can always be invoked by that cortaining
procedure, or by each other. For example:

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

60

statement-al

statement-a2

B: PROCEDURE;

statement-bl
statement-b2
END B;

END A;
statement-4
statement-5
C: PROCEDURE;

statement-cl

statement-c2

END;
statement-6
statement-7
END;

In this example, PRMAIN can invoke pro-
cedures A and C, but not B; procedure A can
invoke procedures B and C; procedure B can
invoke procedure C; and procedure C can
invoke procedure A, but not B. Note that
recursion is not permitted; that is, a
procedure cannot be invoked while it is
active. dence, a procedure cannot invoke
itself.

The foregoing discussion on the activa-
tion of blocks presupposes that a program
has been activated in the first place. A
program becomes active only when the oper-
ating system invokes the initial procedure.
For System/360 implementations, this proce-
dure, also called the main procedure, must
be an external procedure whose PROCEDURE
statement has been specified with the
OPTIONS (MAIN) designation, as shown in the
following example:

CONTRL: PROCEDURE OPTICNS (MAIN);
CALL A;
CALL B;
CALL C;
END;

In this
procedure and it invokes
in the program.

example, CONTRL is the initial
other procedures

The following 1is a summary of what has
been stated, or at least implied, about the
activation of blocks:

* A program becomes active when the ini-
tial procedure is activated by the
operating system.

e Except for the 1initial procedure,
external and internal procedures con-
tained in a program are activated only
when they are invoked by a procedure
reference.

» A procedure cannot be invoked while it
is active.

¢ Begin blocks are activated through nor-
mal sequential flow.

e The initial procedure remains active
for the duration of the program.
* All activated blocks remain active

until they are terminated (see below).

TERMINATION

In general, a procedure block is termi-
nated when control passes back to the
invoking block or to some other active

block. Similarly, a begin block is termi-
nated when control passes to another active

block. There are a number of ways by which
such transfers of control can be accom-
plished, and their interpretations differ

according to the type of block being termi-
nated.

Begin Block Termination

A begin block is terminated when any of
the following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves sequentially to the statement
physically following the END.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that begin

block) transfers control to a
not contained within the block.

point

3. A STOP statement is executed (thereby
terminating execution).

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B 1is con-
tained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B effec-
tively terminates both A and B. This case
is illustrated below:

Chapter 6:

Blocks,

PROCEDURE OPTIONS (MAIN);
statement-1
statement-2
statement-3
A: BEGIN;
statement-al
statement-az
B: BEGIN;
statement-bl
statement-b2
GO TO LAB;
statement-b3
END;
statement-a3
END; .
statement-4
statement-5
statement-6
statement-7
END;

FRST:

LAB:

After FRST
statements are
block A is activated.
ments 1in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither a
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

is invoked, the first three
executed and then begin
The first two state-

Procedure Termination

A procedure is terminated when one of
the following occurs:

1. Control reaches a RETURN statement

within the procedure. The execution

of a RETURN statement causes control
to be returned to the point of invoca-
tion in the invoking procedure. I1f
the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation 1is a function reference,
execution of the statement containing
the reference will be resumed.

the END statement of

2. Control reaches

the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement

within the procedure (or any block
activated from within that procedure)
transfers control to a point not con-
tained within the procedure.

4. A STOP statement is executed (thereby
terminating execution).

Flow of Control, and Storage Allocation 61

Items 1, 2, and 3 are normal procedure
terrinations; item 4 is an abnormal proce-
dure termination.

As with a ©begin block, the type of
termination described in item 3 can some-
times result in the termination of several
procedures and/or begin blocks. Specifi-
cally, if the transfer point specified by
the GO TO statement is contained in a block
that did not directly activate the block
being terminated, all intervening tlocks in
the activation sequence are terminated.
consider the following example:

A: PROCEDURE OPTICNS(MAIN) ;
statement-1
statement-2
B: BEGIN;
statement-bl
statement-p2
CALL C;
statement-b3
END;
statement-3
statement-4
C: PROCEDURE
statement-cl
statement-c2
statement-c3
D: BEGIN;
statement-dl
statement-dz
GO TO LAB;
statement-d3
END;
statement-cd
END;
statement-5
statement-6
statement-7
END;

LAE:

In the above example, A activates B,
which activates C, which activates D. In
D, the statement GO TO LAB transfers con-
trol to statement-6 in A. Since this
statement 1is not contained in D, C, or B ,
all three blocks are terminated; A remains

active. Thus, the transfer of control out
of D results in the termination of inter-
vening blocks B and C as well as the

termination of block D.

Program_TIermination

A program is terminated when either of

the following occurs:

1. A OSTOP statement is executed anywhere
within the program. This 1is called
abnormal program termination, which,
for the D-Compiler, effectively
results in an immediate transfer of
control to the final END statement in
the main procedure.

62

2. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is called normal pro-
gram termination.

3. A null on-unit is executed for the
ERROR condition or the standard system
action for the ERROR condition is
taken. The standard system action for
this condition results in a return of
control to the operating system con-
trol program.

STORAGE ALLOCATION

Storage allocation 1is the process of
associating an area of storage with a
variable so that the data item(s) to be

represented by the variable may be recorded
internally. When storage has been asso-

ciated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place statically,

that is, before the execution of the pro-
gram, or dynamically, during execution. A
variable that is allocated statically
remains allocated for the duration of the
program. A variable +that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or by pointerx
manipulation.

The manner in which storage is allocated
for a variable is determined by the storage

class of that variable. There are three
storage classes: static, automatic, and
based. Each storage class is specified by

its corresponding storage class attribute:
STATIC, AUTOMATIC, and BASED, respectively.
The last two define dynamic storage alloca-
tion.

Storage class attributes may be declared
explicitly for element, array, and majoxr
structure variables. If a variable 1is an
array or a major structure variable, the
storage class declared for that variable
applies to all of the elements in the array
or structure.

All variables that have not been expli-
citly declared with a storage class attri-
bute are assumed to have the AUTOMATIC
attribute, with one exception: any variable

that has the EXTERNAL attribute is assumed
to have the STATIC attribute.
Static Storage

211 wvariables that have the STATIC

attribute are allocated storage before the

execution of the program begins and they

remain allocated for the duration of the
program. For example:
CNTRL: PROCEDURE OPTIONS (MAIN);

DECLARE (X,Y,%) FIXED (5,0)
STATIC EXTERNAL;

X=1; Y=1; 2=1;

CALL OUTP;

CALL NEXT;

CALL REVERS;

END;

OUTP: PROCEDURE;
DECLARE X FIXED (5,0)
STATIC BEXTERNAL;

PUT EDIT ('OUTP INVOCATION#', X)
(A7), F(6));

X=X+1;

END;

Before execution of a program begins,
all static variables are allocated. Thus,
in the above example, X, ¥, and Z are
allocated before the initial procedure

CNTRL 1is invoked by the operating system.
When CNTRL is invoked, it sets X, Y, and 2
to 1. (X 1is the same variable in both
CNTRL and OUTP because it has been declared
EXTERNAL in both.) Therefore, the first
time that procedure OUTP is invoked, X has
the value 1 and execution of the PUT
statement causes this value to be written
into the stream (along with an identifying
character string). Before OUTP is termi-
nated, the value of X is increased oy 1 by
the assignment statement. If oUTP is

invoked a second time, and if the value of
X is not changed elsewhere in the program,
X has the value 2. Now when the PUT

statement is executed for the second time,
the new value of X is transmitted, etc.
Thus, the static variable X 1is wused to
record the number of times that OUTP is
invoked.

Note that even though OUTF could be
activated and terminated several times, X,
being static, retains a value throughout
the program. The EXTERNAL attribute is
given to X only to allow X to ke dinitial-
ized in the main procedure (CNTRL).

Chapter 6:

Automatic Storage

A variable that has the AUTOMATIC attri-
bute is allocated storage upon activation
of the block in which that variable is
declared. The variable remains allocated
as long as the block remains active; it is
freed when the block is terminated. Once a
variable is freed, its value is lost.

Based Storage

A variable that has the BASED attribute
is known as a based variable. Storage for
a based variable is, in effect, allocated
by the programmer through the use of a READ
or LOCATE statement with a SET option.
This initializes the pointer variable asso-

ciated with the based variable in such a
way that the description of the based
variable applies to the storage area

"pointed to" by the pointer variable. The
pointer variable can be initialized in
other ways (e.g., by the ADDR built-in
function) so that the description of the
based variable can overlay storage that has
been allocated for other variables.

The pointer variable can be manipulated
so that the description of the based varia-
ble applies to different storage areas.
That 1is, the value of the pointer variable
can be changed so that the storage area
associated with the old pointer value is no
longer described by the based variable; the
description of the based variable now
applies to the storage area associated with
the new pointer value. A complete discus-
sion of this topic is given in Chapter 12,
"Based Variables and Pointer Variables."

PROLOGUES AND EPILOGUES

Each time a block is activated, certain
activities must be performed before control
can reach the first executable statement in
the block. This set of activities 1is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before contrel can be transferred
out of the block; this set of activities is
called an epilogue.

Prologues and epilogues are the

responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the

programmer in improving the performance of
his program.

Blocks, Flow of Control, and Storage Allocation 63

pPrologques

B prologue is a compiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activation of a block. 1In general, activi-
tieg performed by a prologue are as tfol-
lows:

¢ Allocation of automatic

variables.

storage for

» Establishment of the inheritance of

on-units.
e aAllocation of storage for dunmy argu-

ments that may be passed from the
block.

6

Epilogues

An epilogue is a compiler-written rou-
tine logically appended to the end of a
block and executed as the finali step in the
termination of a block. In general, the
activities performed by an epilogue are as
follows:

the on-unit envi-
block was

¢ Re-establishment of
ronment existing before the
activated.

¢ Release of storage for all automatic
variables allocated in the block.

A PL/I program consists of a collection
of identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either key-
words Or names with a meaning specified by
the programmer. The PL/I language is con-
structed so that the compiler can usually
determine from context whether or not an
identifier is a keyword, so there are very
few reserved words that must not be used
for programmer-defined names (see note
below). Any identifier may be used as a&
name; the only restriction is that at any
point in a program a name can have one and
only one meaning. For example, the same
name cannot be used for both a file and a
floating-point variable.

_____ The 48-character set operation iden-—
tifiers &T, GE, NE, LE, LT, NG, NL, NOT,
OR, AND, and CAT are fully reserved when
the U48-character set 1is being used; when
such is the case, these identifiers cannot
be declared in any way. The puilt-in
function identifiers TIME, DATE, and NULL
are partially reserved and cannot be impli-
citly declared. No other keywords are
reserved. (Although the PL/I Subset Lan-
Juage partially reserves the identifiers
SYSIN and SYSPRINT, the D-Compiler does
not. However, some care should be taken if
the programmer associates these identifiers
witn the standard system files defined for
the D-Compiler. This is covered in detail
under "Standard Files" in Chapter 8.)

It is not necessary, however, for a name

to have the same meaning throughout a
program. A name declared within a Dblock
has a meaning only within that block.

Outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different object.
This enables programmers to specify local
definitions and, hence, to wWwrite procedures
or begin blocks without knowing all the
names being used by other programmers writ-
ing other parts of the program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a particu-
lar meaning applies to. 1In PL/I a name is
given attributes and a meaning by a dec-
laration (not necessarily explicit). The
part of the program for which the meaning
applies is called the scope of the declara-
tion of +that name. In most cases, the
scope of a name is determined entirely by
the position at which the name is declared
within the program (or assumed to be

CHAPTER 7: RECOGNITION OF NAMES

declared if the declaration is not

explicit).

In order to understand the rules for the
scope of a name, it is necessary to under-
stand the terms "contained in" and
"internal to."

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained _in that Dblock.
Note, however, that the label of the
BEGIN or PROCEDURE statement heading
the block, as well as the label of any

ENTRY statement that applies to the
block, are not contained in that
block. Nested blocks are contained in

the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block nest-
ed within it, is said to be internal
to that block. Note that entry names
of a procedure (or the 1labels of a
BEGIN statement, if the block is a
begin block) are not contained in that
block. Consequently, they are inter-
nal to the containing block. Entry
names of an external procedure are
treated by the D-Compiler as if they
were internal to the external proce-
dure, but declared with the EXTERNAL
attribute.

In addition to these terms, the differ-
ent types of declaration are important.
The three different types -- explicit dec-
laration, contextual declaration, and
implicit declaration -- are discussed in
the following sections.

EXPLICIT DECLARATIONS

A name is explicitly declared if it

appears:
1. In a DECLARE statement
2. In a parameter list
3. As a statement label

4. As the label of a PROCEDURE or ENTRY

statement

Chapter 7: Recognition of Names 65

I'he appearance of a name in a parameter
list: is the same as if a DECLARE statement
for that name appeared immediately follow-
ing the PROCEDURE statement in which the
parameter list occurs (though the same name
may also appear in a DECLARE statement
internal to the same block).

The appearance of a name as the label of
either an internal PROCEDURE or an internal
ENTRY statement is the same as if it were
declared in a DECLARE statement immediately
preceding the PROCEDURE statement for the
procedure to which it refers. The labels
of the PROCEDURE and ENI'RY statements of an
external procedure are treated by the D-
Compiler as 1if they appeared in a DECLARE
statement with the EXTERNAL attribute in
the external procedure.

rhe appearance of a statement label
prefix constitutes an explicit declaration
equivalent to the declaration of a variable
in a DECLARE statement internal to the same
block as the statement to which it applies.

SCOPE OF AN EXPLICIT DECLARATION

r'he scope of an explicit declaration of
a name is that Dblock to waich the
declaration is internal, but excluding all
contained blocks to which another explicit
declaration of the same identifier is
internal.

For example:

B B' C

Jrg
o
>

P: PROCEDURE;
DECLARE A, B;

Q: PROCEDURE;
DECLARE B, C;

END;

END; J - - -

Ifhe brackets to the right indicate the
scope of the names. B and B' indicate the
two distinct uses of the name B.

When an identifier appears in a context
where only an entry name can apgpear, its
attriputes can be determined without expli-
cit declaration of that identifier. Such
an identifier 1s said to be contextually

66

declared as an entry name only if it does
not lie within the scope of an explicit
declaration for that same identifier.
Entry names are the only identifiers that
can be so declared.

An identifier that has not been expli-

citly declared will be recognized and con-
textually declared as an entry name in
either of the following cases:

1. If the identifier immediately follows

the keyword CALL in a CALL statement.

2. If the identifier is immediately fol-
lowed by a parenthesized 1list in a
context where an expression is expect-
ed; i.e., if the identifier appears as
the function name in a function ref-
erence with arguments.

A contextually declared entry name is
given the EXTERNAL attribute by default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately follow-

procedure in which the name appears.

Note that a contextual declaration has
the same effect as if the name were
declared in the external procedure, even
when the statement that causes the context-
ual declaration is internal to a block
(called B, for example) that is contained
in the external porcedure. Consequently,
the name is known throughout the entire
external procedure, except for any blocks
in which the name is explicitly declared.
It is as if block B has inherited the

declaration from the containing external
procedure.

Since a contextual declaration cannot
exist within the scope of an explic:z

declaration, it is impossible for the con-
text of an identifier to add to the attri-
butes established for that identifier in an
explicit declaration. Thus, a parameter,
since it 1is explicitly declared by its
appearance in a PROCEDURE or ENTRY state-
ment, can never be contextually declared as
an entry name. A complementary explicit
declaration of the ENTRY attripute must be
given for the parameter in its containing
procedure if the parameter is to be used as
an entry name within that procedure. This
rule is illustrated by the example below.

I'he following is invalid:

P: PROCEDURE (FNAM) ;
CALL FNAM;

END;

FNAM appears in the parameter list of the
PROCEDURE statement and is therefore expli-
citly declared. Since no further explicit
declarations are given for FNAN, it is
given the attributes DECIMAL FLOAT by
default, and hence must be an arithmetic
variable. Therefore, the appearance of
FNAM in the CALL statement is in error
because FNAM 1is not an entry name and it
canndt be contextually declared as an entry
name. The example could be corrected by
adding a DECLARE statement as follows:

P: PROCEDURE (FNAM) ;
DECLARE FNAM ENTRY;

CALL FNAM;

END;
Now the CALL statement is valid because of

the complementary explicit declaration of
FNAM with the ENTRY attribute.

IMPLICIT DECLARATION

1f a name appears in a program and is
not explicitly or contextually declared, it
is said to implicitly declared. The scope
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the first

PROCEDURE statement of the external proce-
dure in which the name is used.

An implicit declaration causes default
attributes to be applied, depending upon
the first letter of the name. If the name
begins with any of the letters I through N
it is given the attributes FIXED BINARY
(15). If the name begins with any other
letter including one of the alphabetic
extenders §, #, or @, it 1is given the
attributes FLOAT DECIMAL (6). (The default
precisions are those defined for System/360
implementations.)

The identifiers TiME, DATE, and NULL
cannot be implicitly declared; each is
always assumed to refer to the correspond-

ing built-in function, unless, of course,
it has been explicitly declared otherwise.

EXAMPLES OF DECLARATIONS

of data declarations are illus-

The brackets to the
block structure, the
brackets to the right show the scope of
each declaration of a name. In the
diagram, the scopes of the two declarations
of @ and R are shown as Q and Q' and R and
R'.

Scopes
trated in Figure 7-1.
left indicate the

P is declared in the block A and known
throughout A since it is not redeclared.

0 is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R 1is declared in block C, but a ref-

erence to R is also made in block B. The
reference to R in block B results in an

|

| PROCEDURE;

| DECLARE P, Q;

| B: PROCEDURE;

| DECLARE Q;

| R = @;

| C: BEGIN;

i DECLARE R;
| DO I =1 TO 10;
| END;

| END ;

| END ;

| D: PROCEDURE;

| DECLARE S;

| END ;

I - - END ;

Figure 7-1. Scopes of Data Declarations

Chapter 7: Recognition of Names 67

s
|

| 8 A: PROCEDURE OPTIONS (MAIN);
| Lli: P = Q;

| ~ B: PROCEDURE;

| L2: CALL C;

| C: PROCEDURE;

| Li: X = Y;

| CALL E;

| END ;

| GO TO Li;

| L END ;

| _ D: PROCEDURE;

i .

i .

| .

| - END ;

| CALL B;

| L END ;

|

| ~ E: PROCEDURE;

i .

i .

| .

| END ;
O

Figure 7-2.

implicit declaration of R in A,the external
procedure. Two separate names with differ-
ent scopes exist, therefore. The scope of
the explicitly declared R is C; =he scope
of the implicitly declared R is all c¢f a
except block C.

L is referred +to 1in block C. This
results in an implicit declaration in the
external procedure A. As a resalt, this
declaration applies to all of A, including
the contained procedures B, C and D.

5 1s declared within procedure U and is
known only within D.

scopes of entry name and statement label
declarations are illustrated in Figure 7-2.
The example shows two external procedures.
The names of these procedures, A and E, are
assumed to be explicitly declared with the
EXTERNAL attribute within the procedures to
which they apply. 1In addition, E 1is con-
textually declared in A as an eXTERNAL
entry name by its appearance in the CALL
statement in block C. The contextual dec-
laration of E applies throughout block A
and dis 1linked to the explicit declaration
of E that applies throughout block k. The
scope of the name E is all of block A and
all of block E. The scope of the name A is
only all of the block A, and not E. Since
recursion 1is not permitted, A could not be
called from within E and hence A 1is not
known within E.

with
Two

Statements
separate

Ir'he label L1 appears
internal to A and to C.

68

L1 L1 L2 A

Scopes of Entry and Label Declarations

declarations are therefore established; the
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement
in block B is executed, control is trans-
ferred to L1 in block A, and block B is
terminated.

D and B are explicitly declared in block
A and can be referred to anywhere within A;
but since they are INTERNAL, they cannot be
referred to in block E (unless passed as an
argument to E).

C is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 1is declared in B and can be referred
to in Dblock B, including C, which is
contained in B, but not from outside B.

APPLICATION OF DEFAULT ATTRIBUTES

The attributes associated with a name
comprise those explicitly, contextually, or
implicitly declared, as well as those
assumed by default. The default for each
attribute is given in Part 11, Section I,
"Attripbutes.”

THE INTERNAL AND_EXTERNAL_ATTRIBUTES

The scope of a name with the INIERNAL
attribute 1is the same as the scope of its
declaration. Any other explicit declara-
tion of that name refers to a new object
with a different, non-overlapping scope.

A name with the EXTERNAL attribute may
be declared more than once in the same
program, either in different external pro-

cedures or within blocks contained in
external procedures. Each declaration of
the name establishes a scope. These dec-

larations are linked together and, within a
program, all declarations of the same iden-
tifier with the EXTERNAL attribute refer to
the same name. The scope of the name is
the sum of the scopes of all the declara-
tions of that name within the program.

Since these declarations all refer to
the same thing, they must result 1in the
same set of attributes. It may be impossi-
ble for the compiler to check this, parti-
cularly if the names are declared in dif-
ferent procedures, so care should be taken
to ensure that different declarations of
the same name with the EXTERNAL attribute
do have wmatching attributes. The attribute
listing, which is available as optional
output from the D-Compiler, helps to check
the use of names.

The D-Compiler restricts a name with the
EXTERNAL attribute to six characters or
less. This includes names that are EXTER-
NAL by default, such as file names and
entry names of external procedures.

_______ The following example illustrates
the points discussed in this chapter:

A: PROCEDURE OPTIONS (MAIN);
DECLARE S CHARACTER(10);
CALL SET(23168);
kE: GET EDIT ...;
B: BEGIN;
DECLARE (X,Y) DECIMAL;
SET EDIT(X,Y,N)...;
CALL C(X,Y);
C: PROCEDURE(P,Q);
DECLARE S BINARY EXTERNAL;

GET EDIT(I)...;
IF... THEN GO TO B;
CALL D(I);
CALL OUT(E);

B: END C;

D: PROCEDURE(N) ;
PUT EDIT(N,S)...;

END D;
END B;
GO TO E;
END A;

OUT: PROCEDURE(R) ;
DECLARE R LABEL,
S BINARY EXTERNAL,
Z DECIMAL FIXED,
(M,L) STATIC
INTERNAL;

GO TO R;
SET: ENTRY(Z);
X=Z;
RETURN;
END OUT;

A is an external procedure name; its
scope is all of block A, plus ‘any other
blocks where A is declared (explicitly or
contextually) as external.

S is explicitly declared in block A and
block C. The character-string declaration
applies to all of block A except block C;
the binary declaration applies only within
block C. Notice that although D is called
from within block C, the reference to S in
the PUT statement in D is to the character
string S, and not to the S declared in
block C.

N appears as a parameter in block D, but
it is also used outside the block. Its
appearance as a parameter establishes an
explicit declaration of N within D, the

reference outside D causes an implicit
declaration of N in block A. These two
uses of the name N refer to different

objects, although in this case the
have the same data attributes.

objects

X and Y are known throughout B and could
be referred to in blocks C or D within B,
but not in that part of A outside B. The X
used within the entry point SET is an
implicit declaration of X within OUT and is
not known outside OUT.

P and (are parameters; their appearance
in the parameter 1list 1is sufficient to
constitute an explicit declaration.

I is not explicitly declared in the
external procedure A; it is implicitly
declared and is therefore known throughout
A, even though it appears only within block

C.

Chapter 7: Recognition of Names 69

Within external procedure A, OUT and SET
are contextually declared as enzry names,
since they follow the keyword CALL. They
are therefore considered to be declared in
a, and are given the EXTERNAL attribute by
default.

- T’he second external procedure in the
example has two entrxy names, SET and OUT.
fhese are considered to be explicitly

declared with the EXTERNAL attrinute. The
twd entry names SET and OUT are therefore
known throughout the two external proce-
dures.

lhe label B appears twice in :he exam-
ple, once as the label of a begin block,
which is an explicit declaration of B as a
lanpel in A. It is redeclared as a label
within block C by its appearance as a
pr2fix to the END statement. The reference
to B in the GO TO statement within block C
refers to the label of the END statement
within Dblock C. Outside blocs C, any
reference to B would be to the laonel of the
begin block.

Note that C and D can be called from any
point within B, but not from that part of A
outside B, nor from another external proce-
dure. Similarly, since E is knowa through-
out A, transfers to E may be made from any
point within A. Transfers out of a nested
block are therefore possible, but, in gen-
eral, transfers into such a blocxk are not.

An exception to the above rule is shown
in the external procedure OUl, where the
lavel E from block A 1is passed &s an
arjument to the 1label parameter R. The
statement GO TO R causes control to pass to
the label E, even though E 1is declared
within &, and not known within OUT (this
topic is fully discussed in Chapter 10,
"Subroutines and Functions").

The wvariables M and L are declared
within the block OUT to be STATIC, so each
value is preserved petween calls to OUT.

In order to make the $ in OUI the same
a5 the S in C, they have both beean declared
with the attribute EXTERNAL.

MULTI1PLE DECLARATIONS AND AMEIGUQJS
REFERENCES

Two or more declarations of the same
identifier internal to the same block con-

10

stitute a multiple declaration, wunless at
least one of the identifiers is declared
within a structure in such a way that name
qualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as different
names with the EXTERNAL attribute consti-
tute a multiple declaration.

Multiple declarations are in error.

A name need have only enough gualifica-
tion to make the name unique. Reference to
a name is always taken to apply to the
identifier declared in the innermost block
containing the reference. An

ification to make the name unique.

The following
multiple declarations and
erences:

examples illustrate both
ambiguous ref-

DECLARE 1 A, 2 C, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2 B, 2 B, 2 C, 3 D, 2 D;
In this example, B has been multiply
declared. A.D refers to the second D,
since A.D is a complete qualification of

only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 C, 2 D, 3 ¢C;
In this example, A.C is ambiguous because
neither C 1is completely gqualified by this
reference.

DECLARE 1 A, 2 A, 3 A;

first A,
and A.A.A

In this example, A refers to the
A.A refers to +the second A,
refers to the third A.

DECLARE X;
DECLARE 1 ¥, 2 X,

3Z, 3 A
2%Y¥, 32, 31

. o~

In this example, X refers to the first
DECLARE statement, A reference to Y.Z is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first 2.

PL/I provides input and output state-
ments that enable data to be transmitted
between the internal and external storage
devices of a computer. A collection of
data external to a program is called a data
set. Transmission of data from a data set
to a program is called input, and transmis-
sion of data from a program to a data set
is called output.

stored
media,

on a variety of
such as punched

Data sets are
external storage

cards, reels of magnetic tape, and magnetic
disks. Despite tneir variety, external
storage media have many common charac-

teristics that permit standard methods of
collecting, storing, and transmitting data.
For convenience, thus, the general term
volume is wused to refer to a wunit of
external storage, such as a reel of magnet-
ic tape or a disk pack, without regard to

its specific physical composition.

items within a data set are
distinct physical groupings
called blocks. These blocks allow the data
set to be transmitted and processed in
portions rather than as a unit. For proc-
essing purposes, each block consists of one
or more logical subdivisions called
________ each of which can contain one or
more data items.

I'he data
arrangecd in

)

A block is also called a physical

is physically transmitted to and from a
volume. To avoid confusion between a phy-
sical record and its logical subdivisions,
the logical subdivisions are called logical
records.

When a block contains two or more
records, the records are said to be
blocked. Blocked records often permit more

compact and efficient use of storaygye. Con-
sider how data is stored on magnetic tape:
the data between two successive interrecord
gaps 1is one block, or physical record. If
several logical records are contained with-
in one block, the number of interblock gaps
is reduced, and much more data can be
stored on a full 1length of tape. For
examnple, on a tape of density 800
characters/inch with an interrecord gap of
0.6 inches, a card image of 80 characters
would take up 0.1 inches. If the records

CHAPTER_8: INPUT_ AND OUTPUT

were unblocked, each record would require
0.1 inches, plus 0.6 inches for the inter-
record gap, making a total of 0.7 inches.
100 records would therefore take up 70
inches of tape. If the recorxds were
blocked, however, at, say, 10 records to a
block, each block of 10 records would take
up 1 inch, plus 0.6 inches for the gap,
making a total of 1.6 inches. Thus, 100
records would now take up only 16 inches of
tape; this is less than 25 percent of the
amount needed for unblocked records.

Most data processing applications are
concerned with logical records rather than
physical reccrds. Therefore, the input and
output statements of PL/I generally refer
to logical records; this allows the pro-
grammer to concentrate on the data to be
processed, without being directly concerned
about its physical organization in external
storage.

TYPES OF DATA TRANSMISSION

Two different types of data transmission
can be wused by a PL/I program, stream-
oriented transmission and record-oriented
transmission.

In stream-oriented transmission, the
data 1in the data set is considered to be a
continuous stream of data items in charac-
ter form. Consequently, characters in the
input stream are interpreted and converted
where necessary to the specified internal
form; on output, data items in internal
form are converted where necessary to char-
acter form and added to the output stream.
The GET and PUT statements are the data
transmission statements used in stream-
oriented transmission. Variables, to which
input data items are assigned, and
expressions from which output data items
are transmitted, are generally specified in
a data list with each GET or PUT statement.

Although data in the data set exists in
record format, in stream transmission such
organization 1is ignored within the program
and the data is treated as though it
actually were a continuous stream of indi-
vidual data items.

Chapter 8: Input and Output 71

In record-oriented transmission, data in
the data set is considered to be a collec-

tior. of discrete logical records, recorded
in any format acceptable to the computer.
No data conversion is performed during

record transmission; on input it is trans-
mitted exactly as it is recorded in the
data set; on output it 1is transmitted
exactly as it is recorded internally.

The READ, REWRITE, and WRITE statements
cause a single logical record to be trans-
mitted to or from a data variable or, in
the case of READ with the SET opticn, to an
intermediate, addressable buffer. The
LOCRTE statement allocates an area 1in a
pufter to which data for a record can be
assigned.

Note that although records may be
blocked, in which case the physical record
actually is transmitted to or from the data
set as an entity, each data transmission
statement in record 1/0 is concerned with a
logical record. Blocked records are
unblocked automatically.

The following discussion of files and
file attributes should be of perticular
interest to a programmer using record-
oriented transmission. File hardling is
simpler when using stream-oriented
transmission, and, as can be noted, fewer
attributes are applicable to stream files.

FILES

To allow a source program to ceal pri-
marily with the logical aspects of data
rather than with its physical organization
in a data set, PL/1L employs a symbolic
representation of a data set called a file.
This symbolic representation determines now
input and output sStatements access and
process the associated data set. Unlike a
data set, however, a file has significance
only witnin the source programn and does not
exist as a physical entity external to the
program.

PL/I requires a file name to be declared
for a file and allows the characteristics
of a file to Dbe described with Kkeywords
calied file attributes, which are specitied
for the file naine.

T2

FILE ATTRIBUTES

The following lists show file attributes
that are applicable to each type of data
transmission:

Record Transmission Stream Transmission

FILE FILE
RECORD STREAM
INPUT INPUT
OUTPUT OUTFUT
UPDATE PRINT
ENVIRONMENT ENVIRONMENT
SEQUENTIAL

DIRECT

BUFFERED

UNBUFFERED

KEYED

BACKWARDS

A detailed description cf esch of these
attributes appears in Part 11, Section I,
"Attributes."” The discussions below give a
brief description of each attribute and
show how attributes are declared for a
file.

The FILE Attribute

The FILE attribute indicates that the
associated identifier is & file name. For
example, the identifier MASTER is declared

to be
ment:

a file name in the following state-

DECLARE MASTER FILE...;

The FILE attripute must be explicitly
declared for every file name and file name
parameter, and it must always be the first
attribute declared in a file declaration.

Alternative and Additive Attributes

The attributes associated with the FILE
attribute fall into two categories: alter-
native attributes and additive attributes.
An alternative attribute 1is one that is
chosen from a group of attributes. If no
explicit declaration is given for one of
the alternative attributes in a group and
if one of the alternatives is required, a
default attribute is assumed in most cases.

An additive_ attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute. The
additive attribute KEYED can be implied by
the DIRECT attribute. The ENVIRONMENT
attribute must always be declared explicit-
ly for every file. BAn additive attribute
can never be applied by default.

Alternative Attributes

PL/1I provides four groups of alternative
file attributes. Each group is discussed

individually. Following is a list of the
groups and the default for each:

Group Alternative Default
Type Attributes_ Attribute
Usage STREAM | RECORD STREAM
Function INPUT|OUTPUT|UPDATE no default
Access SEQUENTIAL | DIRECT SEQUENTIAL
Buffering BUFFERED|UNBUFFERED BUFFERED

Note: No default is applied for the func-
tion attributes; one must always be speci-
fied. In the case of an UNBUFFERED file,
INPUT oxr OUTPUT can appear in the OPEN
statement rather than in a DECLARE state-
ment. The scope of a file name must always
be EXTERNAL. A file name can be explicitly
declared to have this attribute; otherwise
it is supplied automatically.

The STREAM and RECORD_Attributes

The STREAM and RECORD attributes des-
cribe the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a data set
associated with a file to be treated as a
continuous stream of data items recorded
only in character form.

The RECORD attribute causes a data set

associated with a file to be treated as a
sequence of logical records, each record
consisting of one or more data items

recorded in any internal form acceptable to
the implementation.

DECLARE MAST¥YR FILE RECORD...,
DETAIL FILE STREAM...;

The INPUT, OUTPUT, and UPDATE Attriputes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to be
created, and hence are to be written only.
The UPDATE attribute describes a file that
is to be used for both input and -output; it
allows records to be inserted into an

existing file and other records already in
that file to be altered.

DECLARE
DETAIL FILE INPUT...,
REPORT FILE OUTPUT...,
MASTER FILE UPDATE...;

The SEQUENTIAL and DIRECT_Attributes

The access attributes apply only to a
file with the RECORD attribute and describe
how the records in the file are to be
accessed.

The SEQUENTIAL attribute normally speci-
fies that successive records in the file
are to be accessed on the basis of their
successive physical positions, such as they
are on magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined by a
key; therefore, the DIRECT attribute
implies the KEYED attribute. The associat-
ed data set must bpbe 1in a direct-access
volume.

The BUFFERLED and UNBUFFERED Attributes

The buffering attributes apply only to a
file that has the SEQUENTIAL and RECORD
attributes. The BUFFERED attribute indi-
cates that logical records transmitted to
and from a file must pass through an
intermediate internal-storage area. The
size of a buffer usually corresponds to the
size of the blocks (physical records) in
the data set associated with the file (a
discussion of block size and buffer alloca-
tion appears in this chapter in
"ENVIRONMENT Attribute"). The use of buf-
fers may help speed up processing by allow-
ing an overlap of transmission and comput-
ing time. It further allows the automatic
blocking and unblocking of records.

The UNBUFFERED attribute indicates that
a logical record in a data set 1is not to
pass through a buffer but will be transmit-
ted directly to and from the internal
storage associated with a variable. The
logical records and physical records are
the same size in a data set that is
associated with an UNBUFFERED file.

Note: 1In the D-Compiler, +the UNBUFFERED
attribute always specifies that a record is

Chapter 8: Input and Output 73

not to pass through any buffer or inter-
mediate storage area. So-called "hidden
buffers"” are never used.

Additive Attributes

The additive attributes are:
PRINT
BACKWARDS
KEYED

ENVIRONMENT (option-1list)

The PRINT Attribute

The PRINT attripbute applies only to
files with the STREAM and OUTPUIL attri-
butes. It indicates that the Zile is
eventually to be printed, that is, =he data

associated with the file is to appear on

printed pages, although it may first be
written on some other medium. The PRINT
attribute specifies that the associated

record 1s to be created with the initial
byte reserved for a printer control charac-
ter.,

The BACKWARDS Attribute

The BACKWARDS attribute indicates that a
file is to be accessed 1in reverse order,
beginning with the last logical record and
proceeding through the file until the first
logical record is accessed. The BACKWARDS
attribute applies only to RECORD files with
the SEQUENTIAL and INPUT attributes and
only to data sets on magnetic tape.

The KEYED Attribute

The KEYED attribute indicates that each
record in the file has a key and can be
accessed using one of the key options (LEY
or KgYFROM) of data transmission state-
ments. Note that the REYED attribute does
not necessarily indicate that the actual
keys exist or are to be written in the data
set. The STREAM and PRINT attributes can-
not be applied to a file that has thg KEYED

attribute. The use of keys is discussed in
deteil in "“Environmental Considerations
tor Data Sets" and "Record-Oriented

I'ransmission" in this chapter.

74

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization

of the data set associated with a file.
These characteristics are indicated in a
parenthesized option 1list in the ENVIRON-

MENT attribute specification and are depen-
dent upon the implementation. The option
list for the D-Compiler is discussed in
"Environmental considerations for Data
Sets."

Note: As stated earlier in this chapter,
each file must be explicitly declared; the
FILE attribute and the ENVIRONMENT attri-
bute must appear in every file declaration.

OPENING AND CLOSING FILES

Before the data associated with a file
can be transmitted bpy input or output
statements, certain file preparation activ-
ities must occur, such as checking for the
availability of external storage media,
positioning the medium, and allocating
appropriate programming support. Such
activity is known as opening a file. Also,
when processing is completed, tne file must
be closed. Closing a file involves releas-
ing the facilities that were established
during the opening of tne file.

The PL/1 Subset provides two statements,
OPEN and CLOSE, to perform these functions.
All files with the RECORD attribute must be
explicitly opened Dbefore use. However,
with STREAM files, explicit opening is
optional. If an OPEN statement is not
executed for a STREAM file, the file is
opened automatically when the first GE1 or
PUT 1is executed; in this case, automatic
file preparation is exactly the same as if
an explicit OPEN had been executed before
the GET or PUT. All files, both STREAM and
RECORD, not closed before completion of a
program will be closed automatically upon
completion of the program.

The tollowing discussions show the
effect of OPEN and CLOSE statements.

The OPEN Statement

Execution of an OPEN statement causes
one or more files to be opened explicitly.
The OPEN statement has the following basic
format:

OPEN FILE(file-name)
[,FILE(file-name)

{option-1ist]
[option—-1listll...;

The option 1list of the OPEN statement can
include INPUT or OUTPUT provided the file
has the UNBUFFERED attribute. These attri-
butes, when included as options in the OPEN
statement, are merged with those stated in
a DECLARE statement. The same attripute
should not be 1listed in both an OPEN
statement and a DECLARE statement for the
same file, and, of course, there can be no
conflict. The other option that can appear
in the OPEN statement 1is the PAGESIZE
option, used to specify layout of a print
page. This is discussed later in this
chapter.

'he OPEN statement is executed by
library routines that are loaded dynamical-
ly at the time the OPEN statement is
executed. Consequently, execution time can
be reduced if more than one file is speci-
fied in the same OPEN statement, since the
routines need be loaded only once, regard-
less of the number of files beinyg opened.

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and output statements listed
below in "Implicit Opening" are executed
for the same file.

Implicit Opening

An implicit opening of a file occurs
only when a GET or PUT statement is execut-
ed without the prior execution of an OPEN
statement for that file. The effect of an
implicit opening is the same as if an OPEN
statement for the file had been executed
before the GET or PUT statement. All files
implicitly opened by a GET statement must
be declared explicitly as INPUT, and all
files implicitly opened by a PUI' must be
declared explicitly as OUTPUT.

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged as a result of
explicit file opening. For example, a
conflict exists when a file is given the

BACKWARDS attribute in a DECLARE statement
and then 1is given the OUTPUT attribute in
an OPEN statement. Since the attributes
BACKWARDS and OUTPUT are in conflict, an
error message will be generated during
compilation of the program.

Associating Data Sets with Files

With the D-Compiler, a file name is
associated with a data set by wusing the
MEDIUM option in the PL/I Subset ENVIRON-
MENT attribute and, if necessary, the ASSGN
statement from the DOS/TOS Job Control
Language. This method of associating data
sets and file names is described 1later in
this chapter in the discussion of the
MEDIUM option under the heading "The ENVI-
RONMENT Attribute."

The CLOSE Statement

The Dbasic forin of the CLOSE statement

CLOSE FILE (file-name)
[,FILE(file-name)]l...;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also disso-
ciates from the file an INPUT or OUTPUT
attribute established for it by an explicit
opening. If desired, a new INPUT or OUTPUT
attribute may be specified for the file
name in a subsequent OPEN statement. How-
ever, all attributes explicitly given to
the file name in a DECLARE statement remain
in effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
may save execution time.

Note: Closing an already closed file or
opening an already opened file has no
effect.

PAGE LAYOUT FOR PRINT FILES

The overall layout of a page in a file
that has the PRINT attribute is controlled
by means of the PAGESIZE option of the OPEN
statement. For example:

DECLARE REPORT FILE OUTPUT PRINT
ENVIRONMENT (option-list);

OPEN FILE (REPORT) PAGESIZE(55);
PAGESIZE (55)

The specification indicates

that each page should contain a maximum of
55 lines. An attempt to write on a page
after 55 1lines have already been written

(or skipped) will raise the ENDPAGE condi-
tion. The standard system action for the
ENDPAGE condition is to skip to a new page,

Chapter 8: Input and Output 75

but the programmer can establish his own
action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page. Consider the
following example:

ON ENDPAGE (REPORT) GO TO ¥OOT;

FOOT: PUT FILE(REPORT) SKIP EDIT
(FOOTING) (2);
PUT FILE(REPORT) PAGE;

N =N+ 1;
PUT FILE(REPORT) EDIT ('PAGE ',N)
(A,F(3));

PUT FILE(REPORT) SKIP (3);
GO TO NEXT;

Assume that REPORT has been opened with
PAGESIZE(55), as snown in the previous
example. When an attempt is made to write

on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and -he GO TO
FOOT statement will be executed. The first
PUT statement specifies that a line 1is to
be skipped, and the value of FOOTING, a
character string, is to be printed on 1line
57 (when ENDPAGE arises, the current line
is always PAGESIZE+1). The second PUT
statement causes a skip to the next page
and the ENDPAGE counter is automatically
reset for the new page. The page number is

incremented, and the character string
‘PAGE ' and the new page number N are
printed. Note that a blank is included as

part of the character string tc separate
the word from the page number. The F(3)
format item allows the page number to go as
high as 999. The final PUT statement
causies three lines to be skipped, so that
the next printing will be on line 4. The
GO TO NEXT statement transfers control to
the statement labeled NEXT.

The maximum number of characters to be
printed on each line (i.e., the line size)
is equal to the fixed length record size
specified in the ENVIRONMENT attribute for

the file (see the ENVIRONMENT attrioute
later in this chapter). An attempt to
write more than the maximum number of

characters specified without skipping to a
new line or page will cause the excess
characters to be placed on tne next line.

The PAGESIZE option can be specified
only for a file with the PRINT attripute
and it can be specified only in the OPEN
statement.

76

Further details of writing in PRINT
files appear later in this chepter in "Data
Transmission.™

STANDARD FILES

Two standard system files are provided
that can be wused by any PL/I Subset pro-
gram. These files are referred to in the
PL/I Subset by specifying a GET or PUT with
neither the FILE nor the STRING option.
For example:

GET EDIT...;
PUT EDIT...;

For the above GET, the DOS/TOS system input
device SYSIPT is referred to; fox the above
puT, the DOS/TOS system output device
SYSLST is referred to. When these standard
DOS/TOS input/output devices are referred
to as shown above by specifying neither the
FILE nor STRING option in a GET or PUT, no
explicit file declaration need be given.
The association of the files with SYSIPT
and SYSLST is automatic. Indeed, if files
are explicitly declared and associated with
SYSIPT or SYSLST (using the MEDIUM option
of the ENVIRONMENT attribute), certain
rules must be observed when referring to
the files +to ensure that items are trans-
mitted to or from the outpuat or input
stream in the proper order. These will be
discussed later.

With the PL/I
identifiers SYSIN

DOS/TOS D-Compiler, the

and SYSPRINT are in no
way reserved words. They are never reccg-
nized as special identifiers in any way.
Therefore, they can be declared just as any
other legal PL/I identifiers according to
the normal rules for declarations. Howev-
er, in the PL/I language, these identifiers

are usually thought of as the standard
input/output files. If the programrmer
desires to explicitly declare them as file

names or otherwise, he should be aware of

certain implications as discussed below.
Note, however, that of the two identifiers
SYSIN and SYSPRINT, only SYSIN can be

declared as a file name because file names,
being external, cannot exceed six charac-
ters in length; any attempt tc declare the
eight-character identifier SYSPRINT as a
file name would result in an error.

For example, if one wishes to set up an
ENDFILE on-unit for the standard input
device, he must explicitly declare a file
name and associate it with SYSIPT in the
normal manner using the MEDIUM option in
the ENVIRONMENT attribute. The identifier
SYSIN seems a logical choice for this file
name. Once SYSIN has been so declared with
the proper attributes, then one may use

either GET FILE (SYSIN) EDIT... or GET
EDIT... without the FILE or STRING option
to refer to the standard input device
SYSIPT. However, within any given program

in which SYSIN has been explicitly declared
and associated with SYSIPT, one should
either consistently include the FILE
(SYSIN) option or consistently omit the
FILE (SYSIN) option in all GET statements.
This is because one buffer will be set up
for the explicitly declared SYSIN file, and
another buffer will be set up for use with
GET statements with no FILE option. Thus,
although both GET statements would refer to
the DOS/TOS standard input file SYSIPT,
intermixed GET EDIT... and GET FILE
(SYSIN) EDIT... statements would refer
first to one buffer and then the other, and
data items would not necessarily be trans-
mitted in the same order in which they
originally appeared in the input stream
from SYSIPT.

Compatibility Note: In the 0S/360 PL/I
F-level compiler, a GET or PUT without a
FILE or STRING option is exactly equivalent
to GET FILE (SYSIN)... or PUT FILE
(SYSPRINT).... Thus, if SYSIN and SYSPRINT
are declared as variables other than file
variables, the F-level compiler does not
allow a GET or PUT without a FILE or STRING
option. However, in the DOS/TOS D-level
compiler, one may declare SYSIN or SYSPRINT
as non-file variables and still use GET and
PUT with no FILE or STRING option to refer
to the standard DOS/TOS input/output devi-
ces SYSIPT and SYSLST. Therefore, a good
programming practice is to use SYSIN only
as a file name referring to the standard
input device and to avoid the use of
SYSPRINT entirely.

ENVIRONMENTAL CONSIDERATIONS FOR DATA SETS

The PL/I compiled program produced by
the D-Compiler is designed to be executed
under control of DOS/TOS. It provides data
management facilities that control the
organization, location, storage, and
retrieval of data sets. The PL/I program
calls upon these facilities when it is
being executed. The following discussions
describe the relationship between the input
and output statements of a PL/I program and
the various data set organizations support-
ed by the data management facilities of
DOS/TOS.

DEVICE INDEPENDENCE OF INPUT AND OUTPUT
STATEMENTS

The input and output statements of Z
PL/I Subset program are concerned with th
logical organization of a data set and not

with its physical characteristics. Some of
the detailed information ultimately
required by a PL/I program to process a
data set -- information such as
input/output unit number and recording den-
sity -- need not be stated until the PL/I
program is ready to Dbe executed. Other

information such as input/output device
type and buffering technique is isolated in
the ENVIRONMENT attribute. Device indepen-
dence of this type allows changes in this
information possibly without requiring
changes to the PL/I program itself or at
most by making changes only in the ENVIRON-
MENT attribute. The required information
about specific input/output devices is sup-
plied through +the MEDIUM option of the
ENVIRONMENT attribute. By changing this
option, different input/output devices may
be specified for a file. Therefore, a PL/I
program can be designed without specific
knowledge of the input/output devices that
will be used when the program is executed.
This information can then be added to the
ENVIRONMENT attribute at a compilation just
prior to execution.

‘The_ ENVIRONMENT Attribute

The ENVIRONMENT attribute provides
information about the physical organization
of the data set associated with a file.
This information allows the compiler to

determine the method of accessing the data
set.
For the D-Compiler, the ENVIRONMENT

attribute has the following general form:
ENVIRONMENT (option-list)

where "option 1list" is:

(maxblocksize) CONSECUTIVE
F(blocksizel, recordsizel) REGIONAL(1)
U (maxblocksize) REGIONAL(3)

MEDIUM (logical-device-name,
physical-device-type)

(LEAVE] ([BUFFERS(n)] [NOLABEL] ([VERIFY]

[KEYLENGTH (decimal-integer-constant)]

For ease of discussion, the options of
the ENVIRONMENT attribute are divided into
five groups: record format, data set organ-
ization, device allocation, length of keys
associated with data sets, plus a group of
other options to facilitate handling of

Chapter 8: Input and Output 77

data sets. The record format -- either V,
F, or U -- must be specified. One of the
data set organizations may be sipecified
(CONSECUTIVE is applied by default if none
is specified). The MEDIUM specification
must. always appear. All other options may
or may not be given depending on the data
set configuration and use. Examples of
complete file declarations can be found in
Chapter 13, "A PL/I Program."

Record Format

Logical records can appear in one of

three formats: fixed-length (F-format),
variable-length (V-format), or urdefined-
length (U-format). These formats provide

flexibility in the design of data sets and
allow the programmer to take advantage of
the fixed-length and variable-length

features of specific input/output devices.

IThe block size and record size are
specified in number of bytes. For F-format

records, if the record size is not speci-
fied in the ENVIRONMENT attribute, the
records are assumed to be unblocked. Block
size must be specified. Record size can be
specified for F-format records only.
Blocking and unblocking are handled auto-

matically.

With F-format records, unblocking is
dependent upon the stated record size. The
block size must be evenly divisible by the
record size.

With V-format records, unblocking is
dependent upon information at the beginning
of each block and at the beginning of each
logical record. Four bytes are used at the
beginning of each block to specify block
length, and another four bytes are used at
the beginning of each record to specify
length of that record. Although insertion
of this length information is done automat-
ically by the system when the data set is
created, the programmer must inciude the
number of length-specifying bytes in deter-
mining his block size specification. When
V-format data sets are created, records are
always blocked if their lengths allow two
or more to be placed into a block smaller
than or egual to the maximum that is
specified.

With U-format records, each block con-
sists of only one record. The blocks
(records) are of varying lengths. No sys-—
tem control bytes appear anywhere within
the block. All processing of records is
the responsibility of the programmer. If a
length specification is included in the

record, the programmer must insert it him-
self, and he must retrxieve the information
himself.

78

Data Set Organization

The organization of a data set deter-
mines how data is recorded in a data set
volume and, once recorded, how data is
subsequently retrieved so that it can be
transmitted to the prograni. Logical
records are stored in and retrieved from a
data set, in either STREAM or RECORD
SEQUENTIAL transmissiocn, on the basis of
successive physical positions or, in DIRECT
RECORD transmission, on the basis of the
values of keys specified in data transmis-
sion statements. These storage and retrie-
val methods provide PL/I with two general
data set organizations: CONSECUTIVE and
REGIONAL. CONSECUTIVE organization is
assumed by default.

Each of the different data set organiza-
tions 1is explained in the discussions
below.

CONSECUTIVE DATA SET ORGANIZATION: In a
data set with CONSECUTIVE crganization, the
logical records are organized solely on the

basis of their successive physical posi-
tions, such as they appear on magnetic
tape. Such a data set does not use keys to

determine the position of each record.
Records are retrieved only in sequential
order; therefore, the associated file must
have the SEQUENTIAL attribute (or be a
STREAM file). Records may be P-format,
V-format, or U-format. The last two for-
mats (V and U) may be used only for RECORD
input/output and only with tape and direct
access units.

Input/output devices permitted for CON-
SECUTIVE data sets include magnetic tape
units, card readers and punches, direct-
access storage units, and printers.

Later discussions will show that both
stream-oriented and record-oriented trans-
mission statements can process data sets
with CONSECUTIVE organizations. However ,
stream-oriented statements are restricted
to this type of organization; record-
oriented statements are not.

After a CONSECUTIVE data set is created,
it may be opened only as an INPUT or UPDATE
file. Reading of such a data set may be
either forwards or backwards if the data
set is recorded on magnetic tape. To read
the data set backwards, the associated file
must be declared with the BACKWARDS
attribute. If a data set is first read or
written forwards and then read oackwards in
the same program, the LEAVE option in the
ENVIRONMENT attribute must be specified to
prevent the normal rewind when the file is
closed or when volume switching occurs with
a multi-volume data set. V-format records
cannot be read backwards.

Note the difference between the CONSECU-
TIVE option of the ENVIRONMENT attribute
and the SEQUENTIAL attribute. CONSECUTIVE
specifies the physical organization of a
data set; SEQUENTIAL specifies how a file
is to be processed. However, in the PL/I
Subset, a data set with CONSECUTIVE organi-
zation must_be associated with a SEQUENTIAL

file, and a data set with REGIONAL organi-
zation must be associated with a DIRECT
file.

REGIONAL DATA SET ORGANIZATION: REGIONAL

organization of a data set provides control
of the physical placement of records in the
data set. This type of control allows the
programmer to optimize the record access
time required by a particular application.
Such optimization is not available with the
CONSECUTIVE organization, in which succes-
sive records are written in strict physical
sequence and which does not take advantage
of the timing characteristics of direct-
access storage devices. The input/output
devices allowed for REGIONAL data sets are
restricted to direct-access storage
devices.

Record Keys: The REGIONAL data set organi-
zation allow the use of keys to identify
specific records. There are two kinds of
keys, recorded keys and source keys. A
recorded key is a character string that
actually appears in the data set, along
with the record, as a positive identifi-
cation of that record. It cannot exceed
255 bytes in length. A source key is a
character string (or expression) that
appears in a record-oriented data transmis-
sion statement to identify the record to
which the statement refers.

The way keys are specified and used
differs between the two different kinds of
REGIONAL organization. For data sets that
contain recorded keys, the source key must
exactly match the recorded key in order to
positively identify a record.

keys are wused in a
program to access or create a data set
(using the KEY or KEYFROM option), the
KEYED attribute must be specified for the
file. In addition, for data sets that
contain recorded keys, the KEYLENGTH option
in the ENVIRONMENT attribute of the asso-
ciated file must be used to specify the
actual length, in bytes, of the recorded
key.

Wwhenever source

A data set with REGIONAL organization is
divided into relative regions, each of
which is identified by a region number and

each o0of which may contain one or more
records. The regions are numbered in suc-
cession, beginning with zero, and a record

is accessed by specifying its region number
in the source key of a record-oriented

transmission statement. Two kinds of reg-
ional specifications are wused, relative
record and relative track. A relative

record specification refers to a region of
the data set by specifying the number of a

particular record, relative to the first
record in the data set, which is number
zero. A relative track specification
refers to a region of the data set by

specifying the number of a particular track
relative to the first track of the data
set, which is track zero. A relative track
or relative record specification always
refers wuniquely to one region in a data
set.

There are two types of REGIONAL organi-
zation, one of which, REGIONAL(3), permits
recorded keys to appear physically in the
data set with the logical records. Howev-
er, these recorded keys are never embedded
within a record, When REGIONAL records are
accessed by record-oriented statements, the

source keys, specified in the statements,
represent a region number and may also
represent a recorded key.

Direct access of REGIONAL data sets

employs the region number, specified in the
source key, for direct access of the
region. Once the region has been accessed,
a sequential search may or may not be
performed for a record that contains a
recorded key identical to the source Kkey.
A search is performed only for REGIONAL(3),
and this search extends only throughout the
region (relative track) specified by the
source key.

Sequential processing of REGIONAL data
sets 1is not allowed. All REGIONAL data
sets must be associated with file names
that have the DIRECT attribute.

Each of the REGIONAL types is described
in the following discussions.

REGIONAL(1) Organization: A data set with
REGIONAL(1l) organization contains unblocked
F-format records that do not have recorded
keys. Each region in the data set contains
only one logical record; therefore, each
region number represents the position of
one logical record within the data set.
The relative position of the first record
is zero.

Since there are no recorded keys to be
used .for comparison, only a region number,
which serves as the sole identification of
a particular logical record, is meaningful
in a source key. The character-string
value of the source key must represent an
unsigned decimal integer that does not
exceed 16777215. Only the characters 0
through 9 are recognized in the source key
(leading blanks of a character-string
source Kkey are not interpreted as zeros).

Chapter 8: Input and Output 79

Thus, any source key expression must always
result in a character string of length 8
containing only the digit characters 0
through 9. One good way of doing this is
to declare all source Kkeys as numeric
character variables by wusing the PICTURE
'(8)9' attribute.

REGIONAL(3) Organization: A data set with
REGIONAL(3) organization contains unblocked
F-format records that have recorded keys.
Unlike REGIONAL(1) organization, each
region in the data set corresponds to a
track on the direct-access storage device,

and therefore may contain more than one
logical record.

The recorded key associated with each
logical record is a character string,

recorded in the data set and immediately
preceding the record. The recorded key
always includes the regional number as its
rightmost eight characters. The source key
(specified as a constant or some other
expression) consists of a character-string
value. It may be thought of as having two
logical parts, the region specification and
the specification of a character-string key
to uniquely identify the record within the
region.

The actual source key to be used is
generated by evaluating the source key
expression and converting it to a cnaracter
string. The source key expression (which,
of course, may simply be a single variable)
must always result in a character string
whose length precisely equals the value of
the KEYLENGTH specification in the SNVIEON-
MENT attribute.

charactexr:s of the
region specifi-
region number.

The rightmost
source key make up the
_______ which states the
(Gnly the characters 0 through 9 are
allowed; blanks are not interpreted as
zeros.) A substring beginning at =the left
of the source key and containing eight less
than the number of characters speciiied in
the KEYLENGTH option is the
string key specification. To - 3
record, the entire source key must exactly
match the recorded key of the record, since
both the region specification and the
character-string key specification are
included in the recorded key. Nore that
this means that the KEYLENGTH specification
must always be 9 or greater; 8 for the
region specification plus at 1least 1 for
the character-string key specification.

eight

Zonsider the following source key exam-—
ple (b represents a blank):

KEY (* JOHNDLDOEbbb00003251")
The rightmost eight characters make up the

reqion specification, the relative number

80

of the track. (Note that leading zeros
appear, since leading blanks are not treat-
ed as zero and would cause an error.) The
associated file declaration should have the
ENVIRONMENT option KEYLENGTH (19). Any
other KEYLENGTH specification would cause
the above source key expression to be
padded with blanks or truncated on the
right, and therefore +the proper region,
track 3251, would not be accessed,

In retrieving a record with the above
KEY specification, the search will start at
the beginning of track number 3251, and it
will continue wuntil the first record is
found in that track having the recorded key
of JOHNbDOEbbb00003251. If no record is
found in track 3251 having this key, the
KEY condition is raised.

If the above KEY option were used with
an output operation, the record would be
written in the first available space on

track 3251. If no space were available on
that track, the KEY condition would be
raised.

The regional specification for
REGIONAL(3) data sets cannot exceed
16777215.

Comparison of REGIONAL Types: Records in a
REGIONAL data set are either "actual,"
representing valid data, or "dummy," rep-
resenting wusable areas prepared when the
data set is created. Only F-format records
are allowed for REGIONAL files. Dummy
records are identical in REGIONAL(1l) and
REGIONAL(3) data sets.

Before a file can be opened to create a
REGIONAL data set, the entire wvolume to be
used must be initialized wusing the DOS
Clear Disk wutility program. This program
creates dummy records, each of which con-
tains a string filled with user-defined
characters and resets the capacity record
RO to reflect +that all tracks are empty.
For REGIONAL(3), this resetting of RO
insures that the dummy records will not be
retrieved as actual data records. (For
details, see the publication IBM System/360

Disk _and Tape Operating Systems, Utility
Program Specifications, Form C24-3465.)
Once the format of the volume has been

established using this utility program, the
file can then be opened and the REGIONAL
data set created. The file must, of
course, have the DIRECT attr:ibute, since
SEQUENTIAL is not allowed with REGIONAL
data sets.

For retrieving records, a file associat-
ed with a REGIONAL data set can have either
INPUT or UPDATE attributes. It must have
the DIRECT attribute.

wWhen a REGIONAL data set 1is associated
with a file that has the UPDATE attribute,
records can be retrieved, added, and
replaced according to the following conven-
tions:

1. Retrieval
REGIONAL(1): all records, whether
dummy or actual, can be
retrieved.
REGIONAL(3): Dummy records cannot be
retrieved.

2. Addition

Addition involves the
replacement of existing
records, whether dunmy
or actual (no error
condition is raised in
either case).

REGIONAL(1):

REGIONAL(3): Addition involves the
placement of the record
into the specified

region.

3. Replacement
REGIONAL(1): The specified record,
whether dummy or
actual, is rewritten.
REGIONAL(3): A record with the spec-
ified key must exist.
The record is rewrit-
ten.

Device Allocation

The MEDIUM option of the ENVIRONMENT
attribute and, if necessary, the ASSGN
statement of the DOS/TOS Job Control Lan-
guage are used to associate data sets with
file names. The format of the MEDIUM
option is:

MEDIUM (logical-device-name,
physical-device-type)

The logical device name is the name asso-
ciated with the file that is known +to the
system. The physical device type defines
the type of input/output device (for exam-
ple, card reader, disk) which the file
requires.

The logical device name is of the form
SYSxxx, where xxx can be IPT (system input
device), LST (system output device used for
listing), PCH (system output device wused
for punching cards), or 000 through 222
(programmer—-defined logical units). The

physical device type is a four-digit number
giving the device number of the
input/output device to be used. For exam-
ple, for the IBM 2400 Magnetic Tape Unit,
the number is 2400; for the IBM 2311 Disk
Unit, the number is 2311.

The logical device name 1is assigned
before program execution to a specific
physical input/output unit available to the
system. This assignment may be accom-
plished in one of two ways. Certain stand-

ard logical device names are automatically
associated with specific physical
input/output wunits in any given DOS/TOS

system configuration. (Since the automatic
association of logical device names with
physical input/output units is tailored to
fit the needs of a particular installation,
and therefore may differ from system to
system, one should check the association of
logical device names with physical
input/output units for the DOS or TOS
system he is using.) If the logical device
name is not one of those automatically
associated with a physical input/output
unit or if the automatic association is to
be changed, the job control language ASSGN
statement is used to effect the assignment.
0f course, the physical device type of the
MEDIUM option must correspond to the physi-
cal input/output unit type assigned to the
file either automatically or by using the
ASSGN statement. For example, if the phy-
sical device type indicates magnetic tape,
the file must be assigned to a magnetic
tape unit.

Consider the following example:

DECLARE MASTER FILE RECORD INPUT
SEQUENTIAL ENVIRONMENT
(...MEDIUM(SYS006,2400)...);

In the above declaration, the file MASTER
is assigned the logical device name SYS006
in the MEDIUM option of the ENVIRONMENT
attribute. Also using the MEDIUM option,
the physical device type for file MASTER is
declared to be an IBM 2400 Magnetic Tape

Unit.

If the DOS or TOS system in which the
above file declaration 1is used automat-
ically associates the name SYS5006 with a

unit, no further
Otherwise, the

suitable magnetic tape
assignment is necessary.

ASSGN statement from DOS/TOS job control
language must be used to assign a system
file to a magnetic tape wunit. The job
control program used with the execution

module must contain the statement partially
shown below:

// ASSGN SYS006, ...

Chapter 8: Input and Output 81

This statement associates the logical
device name S5YS006 with a ohysical
input/output unit which must, of ccurse, be
a magnetic tape. The specific tape unit to
be used follows the SYS006 on the ASSGN
statement. (For the complete format of the
A55GN statement, see the publication, IBM
System/360 Disk and Tape Operating Systems,

(reels) when a data set is closed or when a

reel 1is switched while accescsing a multi-
volume data set. The LEAVE option 1is
normally employed when a data set is

alternatively opened for reading or writing
forwards and reading backwards.

Buffer Allocation: A buffer is an internal

PL/1_Programmer's Guide, Form C24-9005.

All files in the PL/I Subset must be
explicitly declared with a MEDIUM option in
the ENVIRONMENT attribute, and the 1logical
device name must be assigned to a physical
input/output unit either automatically by
the system or by wusing the DOS/TOS Job
Control Language. Failure to declare the
MEDIUM option properly will produce a com-
pller error message; failure to assign the
file properly to a physical input/output
unit will result in cancellation of the job
at the first attempt to open the file.

Length of Keys

Kaeys are specified in READ, WRITE, or
REWRITE statements for DIRECT files which
are associated with REGIONAL data sets.
For REGIONAL(1), the key specifies the
region number, which is the logical record

number of the record to be accessed within
the data set. Thus, the key is sinply an
8-digit number, in character-string form,

which identifies the logical record. The
lengtth of the key for REGIONAL(1) data sets
is always assumed to be 8. No KEYLENGTH
option is ever specified for a REGIONAL(1)
file.

"or REGIONAL(3) data sets, the key spe-
cifies, in character-string form, an
8-dicgit number that identifies the region
(relative track) where the record is to be
located, preceded by a character string to
unigquely identify the record within the
regicn. The length of keys for REGIONAL(3)
tiles must pe specified using the KEYLENGTH
opticn of the ENVIRONMENT attribute and is
equal to 8 (for the 8-digit region number)
plus the number of characters in the char-
acter string that identifies the record.
Thus, the KEYLENGTH specification must be 9
or greater since there must be eight
characters in the region specification and
at least one more character for the record
ideatification.

Other Data_Set dandling Options

Data Set Positioning: The LEAVE option in
the ENVIRONMENT attribute prevents the nor-—
mal rewinding of magnetic-tape volunmes

program-storage area that 1is used for
intermediate storage of data transmitted to
and from a data set. Allocating two buf-
fers for a data set permits input and
output activity to occur concurrently with
internal processing.

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number (n) of buf-
fers to Dbe allocated for a data set. In
the D-Compiler, n may be 1 or 2. The
BUFFERS(n) option may not be used with
UNBUFFERED files. If the BUFFERS{(n) option
is not specified, the number of buffers is
assumed to be one.

Unlabeled Tapes: It may be:
read or write a magnetic tape
which has no label or vperhaps a non-
standard label. The NOLABEL op:ion is used
in the ENVIRONMENT attribute to indicate
that no label processing is to be done for

Processing
desired to

the file. On output, a tape mark is
automatically written as the first record
on the tape. On 1input, a tape mark is

expected as the first record on the
e-vices

tape.

The VERIFY Option: It may be desired, at
the time a record is written, to check that
the record is written correctly. The
VERIFY option in the ENVIRONMENT attribute
causes a read check to be performed after
every write operation. This option is
allowed only with files that are associated
with direct-access storage devices.

DATA TRANSMISSION

As discussed earlier in this chapter,
PL/I provides two types of data transmis-
sion, stream-oriented and record-criented.

With stream-oriented transmission, a
data set is considered to be a continuocus
stream of data items 1in character form;
internal bit-string representations and the
internal formats of coded arithmetic data
do not appear 1in the stream. Data items
are assigned from the stream to program
variables or from program variables (or
expressions) into the stream, with
appropriate conversion from or to character

form. Stream-oriented transmission state-
ments ignore the boundaries between
records.

With record-oriented transmission, a
data set is treated as a collection of
logical records, each of which consists of

The data items can
internal or exter-

one or more data items.
have any representation,
nal, that is acceptable to the computer,
and there is no data conversion. Each
logical record is transmitted as a unit to
or from either a program variable or a
buffer.

Stream transmission uses only two input
and output statements, GET and PUT, which
get the next series of data items from the
stream or put a specified set of data items
into the stream. In record transmission,
the corresponding statements are READ and
WRITE, which read a logical record from the

data set or write a specified 1logical
record into the data set. Other record-
transmission statements are RLWRITE and
LOCATE.

1t is possible for the same data set to
be processed at different times for either
stream transmission or record transmission;
however, the data set would have to be in
character form acceptable for stream
transmission.

One of the attributes, STREAM oxr RECORD,
specified for the file associated with a
data set determines which transmission
method is applicable to the file at the
time it is declared.

STREAM-ORIENTED TRANSMISSION

In the PL/I Subset language, there are
two modes of stream transmission: list-
directed and edit-directed. However, since
edit-directed 1is the only mode of stream
input/cutput presently implemented by the
D-compiler, 1list-directed will not be
explained here or mentioned elsewhere in
this publication. For a complete discus-
sion of 1list-directed input/output, see
"PL/1I Subset Lanquage Specifications, Form
C28-6809.

Edit-directed transmission uses the GET
and PUT statements for input and output.
These statements, in general, require the
following information:

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to be
assigned.

2. A 1list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This 1list
is called a data_list. On output, the

data 1list also can include constants
and other expressions.

3. The format of each data item 1in the

stream.

If the file name is not specified, one
of the standard files is assumed.

Edit-Directed Transmission

Edit-directed transmission permits the
user to specify the variables to which data
is to be assigned or to specify data to be
transmitted. Edit-directed transmission
allows a programmer to specify the format
for each item on the external medium.

Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned is specified by
a data list. Format items in a format list
in the GET statement specify the number of
characters to be assigned to each variable
and describe characteristics of the data
(for example, the assumed 1location of a
decimal point).

Input:

Output: The data values to be transmitted
are defined by a data 1list. The format
that the data is to have in the stream is
defined by a format list.

EDIT-DIRECTED DATA SPECIFICATION

General format for an edit-directed data
specification, either for input or output
is as follows:

EDIT (data-list) (format-list)
[(data-1list) (format-list)]l...

1. The data list, which must be enclosed
in parentheses, contains one or more
variables that are to receive values
on input Oor one or more expressions

whose vqlues are to be transmitted on
output. Data lists are discussed in
more detail in "Data Lists" below.

The format list, which also must be
enclosed in parentheses, contains one
or more format items. There are three
types of format items: data format
items, which describe data in the
stream; control format items, which
describe page, line, and spacing oper-
ations; and remote format items, which
specify the label of a separate state-
ment that contains the format list to
be used. Format 1lists and format

Chapter 8: Input and Output 83

84

items are discussed in more cetail in
"Format Lists;" below.

For input, ‘data in the stream is
considered to be a continuous string
of characters not separated into indi-
vidual data items. The nunber of
characters for each data item is spec-
ified by a format item in the format
list. The characters are treated
according to the associated format
item.

For output, the value of each item in
the data 1list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

For either input or output, the first
data format item 1is associated with
the first item in the data 1list, the

second data format item with the sec-
ond item in the data 1ist, and so
forth. If a format 1list contains
fewer format items than there are
items in the asscciated data 1list, the
format 1ist is re-used; if there are
excessive format items, they are
ignored. Suppose a format 1list con-
tains five data format items and its
associated data list specifies ten
items to be transmitted. Then the
sixth item in the data 1list wwill be
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list specifies
only tive items. Then the sixth
through the tenth format items will be
ignored.

An array or structure variable 1ian a
list 1is equivalent to n data items in
the data list, where n is the number
of element items in the array or
structure, each of which will be asso-
ciated with a separate use of a data
format item.

1f a data list item is associated with
a control format item, that control
action is executed, and the data list
item 1s paired with the next format
item.

The specified transmission is complete
when the last item in the data 1list
has been processed using its corres-
conding format item. Subsequent for-
mat ditems, including control format
items, are ignored.

8. On output, each data item occupies
precisely the field length specified
by its corresponding format item in
the format 1list. Thus, arithmetic
data items should usually be associat-
ed with format items that provide more
characters than really necessary to
contain the data item, so ithat leading
blanks in each data item will separate
it from other data items.

Examples:
SALARY)

GET EDIT (NAME, DATA,

(a (20), X(2), A(6), F(6,2));
PUT EDIT ('INVENTORY="'| }INUM,INVCODE))
(A, F(5));
The first example specifies that the

first 20 characters in the stream are to be
treated as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to be considered as an
optionally signed decimal fixed-point con-
stant and assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' 1is to be
concatenated with the value cf character
string INUM and placed in the stream in a
field whose width is the 1length of the
resultant string. Then the value of
INVCODE is to pe treated as an optionally
signed decimal fixed-point integer constant
and placed in the stream right-adjusted in

a field with a width of five characters
(leading characters may be blanks). Note
that operational expressions and constants
can appear in output data lists only.
Data Lists

Edit~directed data specifications
require a data 1list to specify the data

items to be transmitted.
General format:
(data-1ist)
where data list is defined as:
element [,element]...
Syntax rules:
The nature of the elements depends upon

whether the data list is used for input or
for output. The rules are as follows:

on input, a data-list element for
edit-directed transmission can be one
of the following: an element, array,
or structure variable, a pseudo-

variable that does not represent a
structure or an array, Or a repetitive
specification (similar to a repetitive
specification of a DO-group) involving
any of these elements.

On output, a data-list element tfor
edit-directed data specifications can

be one of the following: an element
expression, an array variaole, a
structure variable, or a repetitive

specification involving any of these

elenents.

The elements of a data list must pe of
arithmetic or string data type.

As shown in the general format, a data
list must always be enclosed in paren-
theses.

Repetitive Specification

The

general format of a repetitive

specification is shown in figure 8-1.

Syntax rules:

| (element [,element]...DO

| -

Figure 8-1.

1.

A "specification" has the following format:

An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

The expressions in the specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the specifi-
cation is an element expression.

b. In the specification, expression-1
represents the starting value of
the control variable.
Expression-3 represents the incre-
ment to be added to the control

variable after each repetition of
data-list elements in the repeti-
tive specification. Expression-2
represents the terminating value
of the control variable.
gxpression-4 represents a second
condition to control the number of
repetitions. The exact meaning of
the specification is identical to
that of a DO statement with the
same specification. When the last
specification is completed, con-
trol passes to the next element in
the data list.

Each repetitive specification must be
enclosed in parentheses as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data 1list must have one set of
parentheses and the repetitive speci-
fication must have a separate set.

As Figure 8-1 shows, the "speci-
fication" portion of a repetitive
specification can be repeated a number
of times, as in the following form:

PO I=1TO 4, 6 TO 10

Repetitive specifications can be nest-
ed; that is, an element in a repeti-
tive specification can itself be a
repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the

beginning of the entire repetitive
specification).
When DO portions are nested, the

rightmost DO is at the outer level of

nesting. For example, consider the
following statement:
GET EDIT (((A(1,J) DO I = 1 TO 2)

DO J = 3 TO 4)) (format-list);

variable

TO expression-2 [BY expression-31]

expression-1

BY expression-3 [TO. expression-21]

specificationl,

specificationl...)

[WHILE (expression-4)]

General Format for Repetitive Specifications

Chapter 8: Input and Output 85

liote the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list; the
next is that required by the outer
repetitive specification. The third
set of parentheses is that required by
the inner repetitive specification.
1'his statement is equivalent to the
ffollowing nested DO-groups:

DO J = 3 TO 4;
DO I = 1 TO 2;
GwT EDIC (A (I,J))
(format-list);
END;

END;

1t gives values to the elements of the
array A in the following order:

A(1,3), A(2,3), A(1,4), A(2,4)
MNote: Although the DO keyword is used
in the repetitive specification, a
corresponding END statement is not
allowed.

Transmission of Data-List Elements

If a data-list element 1is an array
variable, the elements of the array are
transmitted in row-major order, that is,
with the rightmost subscript of the array
varying most frequently.

It a data-list element is a structure
variable, the elements of the structure are
transmitted in the order specified in the
structure declaration.

ror example, if a declaration is:

DECLARE 1 A, 2 B(10), 2 ¢(10);

and it X is a file, then the statement:
PUT FILE (X) EDIT (A) (format-list);

would result in the output peing ordered as
follows:

2.B(1) A.B(2) A.B(3)....A.B(10)
£.C(1) A.C(2) A.C(3)....A.C(10).

1f, within a data list used in ar. inpat
statement for edit-directed transmiscsion, a
variable is assigned a value, this new

value 1s used if the variable appears in a
later reference in the data lisct. For
example:

GET EDIT (N, (£(1) Do 1=1 To N), J,

SUBSTR (NAM=z, J,3)) (format-1ist);
when this statement is executed, deta is
transmitted and assigned in the following
order

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive speci-
fication in the order
X(1),x(2),...X(N), with the new value
of N used to specify the number of
items to be assigned.

3. A new value is assigned to (.
4. A substring of length 3 is essigned to

the string variable NAME, bpeginning at
the Jth character.

Format Lists

Each edit-directed data
requires its own format list.

specification

General format:
(format-1list)

where format list is defirned as:

item , item

n item , N item e

n (format-list))|, n (format-list)
Syntax rules:

1. Each "iten" represents a format item
as described below.

2. The letter n represents an iteration
factor, which must be ar unsigned
decimal integer constant. A Dplank
must separate the constant and the
following format item. The iteration
factor specifies that the associated
format item or format list is to be
used n successive times. The asso-
ciated format item is that item or

list of items immediately tc the right
of tne iteration factor.
General rule:

There are three types ct ftormat
items: data format items, control format
items, and the remote format item. Data
format items specify the external forms
that data fields are to take. Control
format items specify, for PRINT files, the
page, line, column, and spacing cperations.
The spacing format item can alsc be used
with non-PRINT files, either input or out-
put. The remote format item allcws format
items to be specified in a separate FORMAT
statement elsewhere in the block.

Detailed discussions of the various
types of format items appear in Part 1II,
Section E, "Edit-Directed Format Items."
The following discussions show hnow the
format items are used in edit-directed data
specifications.

Data Format ltems

On input, each data format item speci-
fies the number of characters to be asso-
ciated with the data item and how to
interpret the external data. The data item
is assigned to the associated variable
named in the data 1list, with necessary
conversion to conform to the attributes of
the variable. On output, the value of the
associated element in the data 1list is
converted to the character representation
specified by the format item and is insert-
ed into the data stream.

There are four data format
items: fixed-point (F), floating-point
(E), character-string (A), and bit (B).

They are specified as follows:

F (wl,dal,plD)

E (w,d[,sl)

A [(w)]
B [(w)]
In this 1list, the letter w represents a

decimal integer constant that specifies the
number of characters in the field. The
letter d specifies the number of digits to
the right of a decimal point.

A third specification (p) is allowed in
the F format item; it is a scaling factor.
& third specification (s) is allowed in the
E format item to specify the number of
digits that must be maintained in the first

subfield of the floating-point number.
These specifications are discussed in
detail in Part 1z, Section E,

"Edit-Directed Format Items."
Note: Fixed-point binary and floating-
point binary data items must always be
represented 1in the input stream with their
values expressed in decimal digits. The F
and E format items then are used to access
them, and the values will be converted to
binary representation upon assignment. On
output, binary items are converted to
decimal values and the associated F or E
format items must state the field width in
terms of the converted decimal number.

The following examples illustrate the
use of format items:

GET FILE (INFILE) EDIT (ITEM) (A(20));
This statement causes the next 20
characters in the file called INFILE
to bpe assigned to ITEM, which must be
a character-string variable. If it is
not a character-string variable, an
error results.

Note: If the data 1list and format
list were used for output, the length
of a string item need not be specified
in the format item if the field width
is to be the same as the length of the
string, that is, if no blanks are to
follow the string or if no truncation
is to occur.

PUT FILE (MASKFL) EDIT (MASK) (B);
Assume MASK has the attributes BIT
(25); then the above statement writes
the value of MASK in the file called
MASKFL as a string of 25 characters
consisting of 0's and 1°'s. A field
width specification can be given in
the B format item. It must be steted
for input. Note that MASK must be a
bit-string variable; if it is not, an
error results.
PUT EDIT (TOTAL) (F(6,2));

Assume TOTAL has the attributes FIXED
(4,2); then the above statement speci-
fies that the value of TOTAL is to be
converted to the character representa-
tion of a fixed-point numper and writ-
ten into the standard output file. A
decimal point is to be inserted before
the last two numeric characters, and
the number will be right-adjusted in a

field of six characters. Leading
zeros will be changed to blanks, and,
if necessary, a minus sign will be

placed to the left of the first numer-
ic character. If a decimal point or a
minus sign appears, either will cause
one less leading blank to appear.
consequently, the F(6,2) specification
will always allow all digits, the
point, and a possible sign to appear.
GET FILE(A) EDIT (ESTIMATE) (E(10,6));
This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes
of ESTIMATE and assigned to this vari-
able.

GET EDIT (NAME, TOTAL) (A(5),F(4,0));

Chapter 8: Input and Output 87

When this statement is executed, the
standard input file is assumed. The
tirst five characters are assigned to
NAME. The next four characters must
be arithmetic characters with possible
leading and/or trailing blanks, and
they are assigned to TOTAL.

Control Format Items

Control format items consist of two
types: the spacing format item (X) and the
printing format items (COLUMN, LINE, PAGE,
and SKIP). The spacing format itex speci-
fies relative spacing in the data stream.
The printing format items can be used only
with PRINT files and, consequently, can
appear only in PUT statements. All Dbut
PAGE generally include decimal integer con-
stants. LINE, PAGE, and SKIP also can
appear separately as options in the PUT
statement. When they appear as options 1in
a PUT, expressions can be used in place of
the decimal integer constants.

The following examples 1llustrate the
use of the control format items:

t. GET EDIT (NUMBER, REBATE)
(A(5), X(5), A(5));

This statement treats the next 15
characters from the standard input
file in the following way: the first
five characters are assigned to NUM-
EER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. PUT FILE(OUT) EDIT (PART, COUNI)

(a(u), X(2), F(5));
This statement places in the file
named OUT four characters that 1rep-
resent the wvalue of PART, then two
blank characters, and finally five

characters that represent the integer
value of COUNT'.

3. The following examples show thz use of
the printing format items in <combina-
tion with one other.

PUT EDIT ('QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19));

PUT EDIT (ACCT#, BOUGHT, SOLD,
PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),
F(7,2), COLUMN(30),
F(7,2), COLUMN(45),
F(7,2), COLUMN(60),
F(7,2));

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to

88

be written on line twc of a new page
in the standard system output file.
The second statement specifies that

two lines are to be skipped (that is,
"skip to the +third follcwing 1line")
and the wvalue of ACCTH# 1is to be

written, beginning at the first char-
acter of the fifth line; the value of
BOUGHT, beginning at character posi-
tion 14; the value of SOLD, beginning
at character position 30; the, value of
PAYMENT, beginning at character posi-
tion U45; and the value cf BALANCE at
character position 60.

Note: Control format items are executed at
the time they are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have
no effect.

Remote Format Item

The remcte format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the 1label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT state-
ment specifying the remote format item must
be 1internal to the same block. The FORMAT
statement contains the remotely situated
format items. This facility permits the
choice of different format specifications
at execution time, as illustrated by the
following example:

DECLARE SWITCH LABEL;
GET FILE(IN) EDIT(CODE) (F(1));
IF CODE = 1
THEN SWITCH =L1;
ELSE SWITCH =L2;
GET FILE(IN) EDIT (W,X,Y,2)
(R(SWITCH)) ;
L1l: FORMAT (4 F(8,3));
L2: FORMAT (4 E{(12,6));

declared to be a 1label
variable; the second GET statement can be
made to operate with either of the two
FORMAT statements. Another advantage of
the remote format item is that it allows
many GET/PUT statements to share the same
format.

SWITCH has been

STREAM-ORIENTED DATA TRANSMISSION
STATEMENTS

The following provides a summary of the
STREAM data transmission statements, along

with their options, according to file
attributes (the statements are discussed
individually in detail in Part II, Section

J, "Statements").

STREAM INPUT:

GET [FILE (file-name)]
data-specification;

STREAM OUTPUT:

PUT [FILE (file-name)]l
aata-specification;

STREAM OUTPUT PRINT:

PUT [FILE (file-name)]
PAGE [LINE(expression)]
SKIP [(expression)]
LINE (expression)

[data-specificationl];

Note: The "data specification"™ can be
omitted for STREAM OUTPUT PRINT files only

if one of the control options appears.

In all of the above, the data specifi-
cation has the following form:

EDIT (data-list)
[(data-1list)

(format-list)
(format-l1list)]..
Format lists may use any of the follow-
ing format items:

L,B,E,F,R,X which may be used with
any STREAM file

PAGE which may be used
SKIP [(w)] only with STREAM
LINE (w) OUTPUT PRINT files
COLUMN (w)

RECORD-ORIENTED TRANSMISSION

Data sets that contain discrete records
or which are to be created as collections
of discrete records may be manipulated with
record-oriented operation statements.
These statements are READ, WRITE, REWRITE,
and LOCATE. A general description of these
statements is contained in this chapter;
they are described completely in Part 1II,
Section J, "Statements." Each record
obtained from a data set or dispatched to a
data set is defined in terms of the data
attributes of a variable (usually a
structure). For input operations, the
record is obtained from the data set and
assigned, without conversion, to the varia-
ble. For output operations, the data is
transmitted without conversion into the
data set.

The variables involved in record trans-
mission must be unsubscripted, of 1level 1
(element variables and array variables are

of level 1 by default), and may be of any
storage class. The variables cannot be
parameters or defined variables. They may
be 1label or pointer variables, but such
data may lose its validity in transmission.

With RECORD transmission, it is possible
to operate upon the record in a buffer if
the file has the BUFFERED attribute. Oper-
ation within the buffer can be accomplished
through the use of a based variable, which
describes the data attributes of the
record, and a pointer variable, which can
be set to different values to identify the
location of the based variable within the
buffer. A based variable and its associat-
ed pointer variable are declared with the
BASED storage class attribute in the fol-
lowing form:

BASED (pointer-variable)

The pointer variable itself cannot have the
BASED storage class attribute; the default
is AUTOMATIC. The pointer variable may be
given either INTERNAL or EXTERNAL scope
attribute, with default being INTERNAL; but
the- scope of the based variable is always
INTERNAL. The pointer variable must be
explicitly declared with the POINTER attri-
bute.

consider the following declarations:

DECLARE REC_ID POINTER;
DECLARE 1 MASTER_RECORD BASED
(REC_ID),
2 IDENTIFICATION CHARACTER(10),
2 NAME CHARACTER (30),
Z ADDRESS,
3 STREET CHARACTER(15),
3 CITY CHARACTER(15),
3 STATE CHARACTER(15),
3 2IP CHARACTER(5);

The name MASTER_RECORD is a based varia-
ble that can be used to describe a record
located in a buffer. Fields of the record
must conform to the attributes declared for
MASTER_RECORD. REC_ID is a pointer varia-
ble that identifies the position of
MASTER_RECORD within the buffer. The poin-
ter variable is declared explicitly.

If any attributes other than AUTOMATIC
are to be declared for a pointer variable,
they must be explicitly declared. For
example, the following declaration speci-
fies the STATIC and EXTERNAL attributes for
the pointer variable REC_ID:

DECLARE REC_ID POINTER STATIC

EXTERNAL;
For inputs/output operations specifying
based variables, the pointer value is set
by the SET option in the READ or LOCATE

statements.

Chapter 8: Input and Output 89

RECORD-ORIENTED DATA TRANSMISSION
STATEMENTS

There are three statements that actually
cause transmission of records to or from
external storage. They are REALD, WKITE,
and REWRITE. A fourth statement, LOCATE,

causes storage to be allocated in a buffex
for subsequent transmission. The attri-
butes of the file determine which state-

ments can be used.

T"he READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set to the
program, either directly to a variable or
to a buffer. In the <case of blocked
records, the READ statement causes a logi-
cal record to be transferred from a buffer
to the variable; or if the SET option is
used, it causes the value of a pointer to
be set to point to the logical record in a
buffer. For blocked records, consequently,
every READ statement may not cause physical
input.

The WKRITE statement can be used with any
OUTPUT file, and with DIRECT UPDATE, but
not with SEQUENTIAL UPDATE. It causes a
record to be transmitted from the program

to the data set. For unblocked records,
the transmission may be directly from a
variable or from a Dbuffer. For Dblocked

records, the WRITE statement causesi a logi-
cal record to be placed into & buffer.
Only when the blocking of the record is
complete is there actual physical output.

The REWRITE statement causes a record to
be replaced in an UPDATE file. For SEQUEN-
TIAL UPDATE files, +the REWRITE sitatement
specifies that the last record read from
the file is to be rewritten; consequently a

record must be read before it can be
rewritten. For DIRECT UPDATE files, the
REWRITE statement must specify a key; con-

sequently, any record can be rewritten
whether or not it has first been read.

The LOCATE statement specifies that a
based variable be allocated in ar. output
buffer for the specified file ard that a
pointer pbe set to identify the 1location.
Both a based variable and a pointer varia-
ble must be specified in the LOCATE state-
ment.. The based variable is usec, in the
case of variable length records, tco deter-
mine the length of the record. The LOCATE
statement never specifies immediate data
transmission; the contents of the buffer
are undefined. Values must be assigned to
the based variable. The record will not be
written until the next WRITE, LCCATE, or
CLOSE statement is executed for the same
file. In the case of blocked recorxds, a
subsequent LOCATE statement may only cause
a4 pointer to be set to identify a location

90G

immediately following the previous record

in the buffer.

Options of Record-Oriented Transmission
Statements

Options that are allowed for record-
oriented data transmission statements
differ according to the attributes of the
associated file and the purpose of the
statement. A list of all of the allowed
combinations for each type of file is given
later in this chapter.

Each option consists of a keyword fol-
lowed by a value, which is a file name, a
variable, or an expression. This value
always must be enclosed in parentheses. 1In
any statement, the FILE option must appear
first.

The FILE Option

The FILE option (also called the FILE
specification) must appear in every record-
oriented statement. It specifies the name
of the file upon which the operation is to
take place. It consists of the keyword
FILE followed by the file name enclosed in
parentheses. An example of the FILE option
is shown in each of the statements in this
section.

The INTO Option

The INTO option can be usec in the READ
statement for any type of INPUT or UPDATE

file. The INTO option specifies a variable
to which the 1logical record is to be
assigned. The form is the same whether or
not the record passes through an

intermediate buffer. The variable can be a

based variable.
READ FILE (DETAIL) INTO (RECORD_1);

that the next sequential
be assigned to the variable

This specifies
record is to
RECORD_1.

The SET Option

The SET option can be used in the KEAD
statement for SECUENTIAL BUFFERED INPUT ox
UPDATE files. It must appear in every
LOCATE statement. The SET option specifies
a pointer variable that is to point to the
logical record in a buffer.

READ FILE (MASTER) SET (REC_IDENT) ;

LOCATE PAY_REC FILE (PAYROLL)

SET (P);

The first example specifies that the
next record from the file MASTER is to be
read and that the pointer wvariable
REC_IDENT is to be set to point to that

location in the buffer. If the logical
record is part of a blocked record, and is
not the first record in the block, the
actual result of the statement will be
merely to set the value of the pointer.
The value of REC_IDENT must be associated
with @& based variable, so that the fields
of the record can be accessed.

The second example specifies that the
based wvariable PAY REC is to be allocated
in a buffer and that its location is to be
assigned to the pointer variable P, which

must have Dbeen declared with the Dbased
variable PAY_REC. The LOCATE statement
must always specify a based variable. Fol-

lowing allocation of the based variable,
values must be assigned to it. The record
is written when the next WRITE, LOCATE, or
CLOSE statement is executed for the file
PAYROLL. If the record PAY _REC is part of
a blocked record, the next LOCATE statement
may only allocate the next logical record
in the same block.

The FROM Option

The FROM option must be used in the
WRITE statement for any OUTPUT file and for
a DIRECT UPDATE file. It alsoc can be wused
in the REWRITE statement for any UPDATE
file. The FROM option specifies the varia-
ble from which the record is to be written.

WRITE FILE (MASTER) FROM (MAS_REC) ;

REWRITE FILE (MASTER) FROM (MAS_REC) ;

Both statements specify that the value of
the variable MAS_REC is to be written into
the file MASTER. In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file.

The REWRITE statement specifies that
MAS_REC 1is to replace the last record read
from a SEQUENTIAL UPDATE file.

The KEY Option

The KEY option applies only to files
associated with data sets of REGIONAL
organization. It must be used in the READ
statement for DIRECT files with the INPUT
or UPDATE attribute. The KEY option also
must be used in the REWRITE statement for
DIRECT UPDATE files. Any file for which
the KEY option is used must also have the
KEYED attribute.

The KEY option consists of the keyword
KEY followed by a parenthesized expression,

which is a source key that identifies a
particular record. The expression must
represent a character string of eight
digits for REGIONAL (1) and of 1length

specified by KEYLENGTH for REGIONAL(3).

Following is a summary of what the
character string is and what it represents
for each of the data set organizations to
which it is applicable:

REGIONAL (1) A string of eight digits
that specify the relative
record number of the
desired record.

REGIONAL (3) A

string of characters,

the rightmost eight of
which must consist of
digits. These rightmost

eight characters specify a
relative track that is the
region to be searched.
The record to be accessed
is identified by a record-
ed key that exactly match-

es the source key which
has been converted to a
character string of the

length specified by KEY-
LENGTH. This string
always includes the right-
most eight characters,
which identify the region.
nust

The expression in the KEY option

result in a valid key.

READ FILE (MASTER) INTO (MAS_REC) KEY
('00003253")

READ FILE (FILEX) INTO (ORDER_REC) KEY
(NAME | | AREA#) ;

The first statement specifies that record
number 3253 in the REGIONAL (1) data set
associated with the file MASTER 1is to be
read and assigned to the variable MAS_REC.

statement, which would be
appropriate for a REGIONAL (3) data set,
specifies that a record is to be read from
the file FILEX into the variable ORDER_REC.
The record is to be found in a region

The second

Chapter 8: Input and Output 91

identified by the wvalue of AREA#; +the
specific record 1is to be reccgnized by a
recorded key of length specified Dby KEY-
LENG1IH that matches the character string
specified by the expression in the KEY

option. Note that the variable ARZAH¥ must
represent a character-string ot eight
daigits.

The KEYFROM Option

Ihe KEYFROM option wust be specitied in
a WRITE statement used to write a xEGIONAL
data set. It cannot be used with CONSECU-
TIVe data set organization. Theretore, it
can appear in a WRITE statement only tor a
DIRECT OUTPUT or DIRECT UPDATE tile. Any
file for which the KEYFROM opticn is speci-
tied must have the KEYED attribute.

The KEYFROM option specifies the loca-
tion, within the data set, where the record
is to be written. For REGICNAL(1) data
sets, it specifies only the region number.
for KEGIONAL(3) data sets, it specifies a
character string to be written as a record-
ed xey (in which the rightmost eighw char-
acters represent the region number). It is
written with the keyword KEYFROM followed
by a parenthesized expression. The expres-
sion can be a constant, a variabkle, or any
other expression that can be converted to a
character string. For REGIONAL(3), the
KEYLENGTH option of the ENVIRONMENT attri-
bute must specify the length of the record-
ed key to be written.

WRITE FILE (PAYROLL) FROM (PAY REC)
KEYFROM (NAME| | TRACK_NO) ;

The above statement, which could be
appropriate for a REGIONAL (3) data set,
specifies that the value of PAY REC is to
be written as tine next sequential record in
the specified region of PAYROLL. The value
of PRACK_NO specifies the region in which
the record is +to be written. The source
key is to be a concatenation of the wvalue
of NAME and the value of TRACK_NO, and is
to pe written as the recorded key.

Record-Oriented Transmission sStatement
Formats

This section provides a summary ©>f the
allowed RECORD transmission statements,
along with their options, according to file
attributes.

92

SEQUENTIAL BUFFERED INPUT:

READ FILE (file-name)
INTO (variable);

READ FILE (file-name)
SET (pointer-variable);

SEQUENTIAL BUFFERED OUTPUT:

WRITE FILE (file-name)
FROM (variable);

LOCATE variable FILE (file-name)
SET (pointer-variable);

SEQUENTIAL BUFFERED UPDATE:

READ FILE (file-name)
INTO (variable);

READ FILE (file-name)
SET (pointer-variable);

REWRITE FILE (file-name);
REWRITE FILE (file-name)

FROM (variable);

SEQUENTIAL UNBUFFERED INPUT:

READ FILE (file-name)
INTO (variable);

SEQUENTIAL UNBUFFERED OUTPUT:

WRITE FILE (file-name)
FROM (variable);

SEQUENTIAL UNBUFFERED UPDATE:

READ FILE (file-name)
INTO (variable);

REWRITE FILE (file-name)
FROM (variable);

DIRECT INPUT:

READ FILE (file-name)
INTO (variable)
KEY (expression);

DIRECT OUTPUT:

WRITE FILE (file-name)
FROM (variable)
KEYFROM (expression);

DIRECT UPDATE:

READ FILE (file-name)

REWRITE FILE

INTO (variable)
KEY (expression);

(file~name)
FROM (variable)
KEY (expression);

WRITE FILE (file-name)

FROM (variable)
KEYFROM (expression);

Summary of Record-Oriented Transmission

The following points cover the salient

environmental factors in the use of RECORD
transmission:

1.

A SEQUENTIAL
accessing, creation, or

file specifies that the
modification

of the data set records is performed
in a particular order,that is, fromn
the first record of the data set to

the last record of the data set (or
from the 1last to the first if the
BACKWARDS attribute has been
specified).

A DIRECT file specifies that the
accessing, creation, or modification
of the data set records may be per-
forwed in random order. The particu-
lar record of the data set to be
operated upon is identified by a spec-
ified key.

A data set that is accessed, created,
or modified in the SEQUENTIAL access
method may not have recorded keys.

Existing records of a data set in a
SEQUENTIAL UPDATE file can be modified
and rewritten, but the number of
records cannot be increased. Opera-
tion with a DIRECT UPDATE file, howev-
er, may specify that records are to be
added to the data set, through use of

the WRITE statement. An existing
record in an UPDATE file can be
replaced through wuse of a REWRITE
statement.

If the READ INTO option is wused 1in

referring to a SEQUENTIAL BUFFERED
UPDATE file and the next REWRITE
statement does not make use of a FROM
option, the record in the data set is
replaced from the buffer and not from
the variable that had been specified
in the INTO option of the READ state-
ment. The FROM option in a REWRITE
statement must specifically name the
variable into which the data has been

read if that data is to be rewritten.

A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
statement may be wused with OUTPUT

files, and DIRECT UPDATE files, but a
REWRITE statement may be used with
UPDATE files only. Moreover, for

DIRECT files, a REWRITE statement uses
the KEY option to identify the exist-
ing record to be replaced; a WRITE
statement uses the KEYFROM option,
which not only specifies where the
record 1is to Dbe written in the data
set, but also specifies, except for
REGIONAL (1), an identifying key to be
recorded in the data set.

Chapter 8: Input and Output 93

CHAPTER 9: EDITING AND_ STRING HANDLING

The data manipulation performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string handling and editing features.
These features are specified by data attri-
butes, statement options, built-in func-
tions, and pseudo-variables.

The following discussions give general

descriptions of each feature, along with
illustrative examples.

EDITING BY ASSIGNMENT

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value on the right side of the assignment
symbol to conform to the attributes of the
receiving variable. Because the assigned
value 1is made to conform to the attributes
of the receiving field, the precision or
length of the assigned value may be
altered. Such alteration can involve the
addition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data conver-
sion are discussed in Chapter L,
"Expressions," and in Part II, Section F,
"Data Conversion."

ALTERING THE LENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if neces-
s52ary, is truncated or extended on the right
to conform to the declared length of the
receiving strang. For example, assume
SUBJECT has the attributes CHARACIER (10),
indicating a character string of ten char-
acters. CZonsider the following statement:

SUBJECT="'TRANSFORMATIONS' ;

The 1length of the string on the right is
fifteen characters; therefore, five charac-

ters will be truncated from the right end
of the string when it is assigned to
SUBJECT. This is equivalent tc executing:

SUBJECT="'TRANSFORMA" ;

If the assigned string is shorter than
the length declared for the receiving

94

string variable, the
extended on the right either with blank
characters, in the case of a character-
string variable, or with zero bits, in the
case of a bit-string variable. Assume
SUBJECT still has the attributes CHARACTER
(10). Then the following two statements
assign equivalent values to SUBJECT:

assigned string is

SUBJECT="PHYSICS";
SUBJECT="PHYSICSbbb';
The letter b indicates a blank character.
Let CODE be a bit-string variable with
the attributes BIT(10). Then the following

two statements assign equivalent values to
CODE:

CODE='110011"'B;
CODE="'1100110000"B;

Note, however, that the following
statements do not assign equivalent values
to SUBJECT if it has the attributes CHARAC-
TER (10):

SUBJECT="110011"B;

SUBJECT="1100110000"B;
When the first statement is executed, the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT="110011bbbb";

The second of the two statements
rejuires only a conversion from bit-string
to character-string type and is eguivalent
to:

SUBJECT="1100110000";

OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,

PL/I provides other ways of assigning
values to variables. Among these are two
methods that involve input and output

statements, one 1in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

Input and Output Operations

Although the assignment statement is
concerned with the transmission of data
between storage locations internal to a

computer, input and output operations can
also be treated as related forms of assign-
ment in which transmission occurs between
the internal and external storage facili-
ties of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it 1is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing
functions that are applied when data items
are read or written. These editing func-
tions are similar to those provided by the
assignment statement, except that any data
conversion always involves character type,
conversion from character type on input,
and conversion to character type on output.

The STRING Option in GET_and PUT_Statements

The STRING option in GET and PUT state-

ments allows the statements to be wused to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In GE?T

and PUT statements, the FILE option, speci-
fied by FILE (file-name), is replaced by
the STRING option, as shown in the follow-
ing formats:

GET STRING (character-string-variable)
data-specification;

PUT STRING (character-string-variable)
data-specification;

The GET statement specifies that data items

to be assigned to variables in the data
list are to be obtained from the specified
character-string variable. The PUT state-

ment specifies that data items of the data
list are to be assigned to the specified
character-string variable. The "data
specification” is the same as described for
input and output. In general, it takes the
following form:

EDIT (data-list) (format-list)

The STRING option is wused with edit-
directed transmission, which considers the
input stream to be a continuous string of
characters. This option permits data

Chapter 9:

gathering or scattering operations to be
performed with a single statement, and it
allows stream-oriented processing of char-
acter strings that are transmitted by
record-oriented statements.

consider the following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(a(12), a(7, F(8));

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12 charac-
ter positions of the string mnamed RECORD,
and that the character-string value of PAY#
is to be assigned to the next seven charac-
ter positions of RECORD. The value of
HOURS is then to be multiplied by the value
of RATE, and the product is to be handled
like F-format output and assigned to the
next eight character positions of RECORD.

Frequently, it 1is necessary to read
records of different formats, each of which
gives an indication of its format within
the record by the value of a data item.
The STRING option provides an easy way to
handle such records; for example:

READ FILE (INPTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F(1));
IF CODE =1 THEN GO TO OTHER_TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

(x(1), 3 F(10,4));

The READ statement reads a record from the
input file INPTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE under the control of
F-format input. The code 1is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X,Y¥, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with

a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file

OUTPRT is eventually to be printed.

Editing and String Handling 95

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(x(1), A(12), X(10),
A(7), X(10), F(8));

WRITE FILE (OUTPRT) FROM (RECORD);

The X(1) in the format 1list of the PUT
statement specifies that the first charac-
ter assigned to the character-string varia-
ble RECORD 1is to be a single blank. Fol-
lowing that, the values of the wvariables
NAME and PAY# and of the expression
HOURS*RATE are assigned. The format list
specifies that ten blank characters are to
be inserted between NAME and PAY# and
between PAY# and the expression value. The
WRITE statement is used to write the record
into the file OUTPRT.

THE PICTURE SPECIFICATION

Ihe editing capabilities associated with
data assignment, namely, conversion to a
specified data type with accompanying trun-
cation and/or padding, can be extended by
use of the picture specification. A pic-
ture specification consists of a sequence
ot character codes (picture characters)
that specify editing operations tc be per-
formed on numeric character values. (2
detailed discussion of each picture charac-
ter, together with examples of its use,
appears in Part II, Section D, "Picture
Specification Characters." The following
discussions are concerned with general
principles that govern the wuse of the
picture specification.)

A& picture specification can be used to
describe ordinary character-string data, or
it can be used to describe numeric charac-
ter data, which is data that represents a
numeric value.

[N picture specification is always
enclosed in quotation marks and 1is used
with a PICTURE attribute in a DECLARE

statement:
DECLARE CODE PICTURE '"XXXXX';

DECLARE PAYMT PICTURE '$999v.99';

Character-string Picture Specifications

L character-string picture specification
describes a character string; the number of
picture characters in the specification
determines the length of the string (only
the X picture character can be wused in a
character-string picture specification).

96

For example, the PICTURE attribute in the
first DECLARE statement above describes
CODE as a character string of length five
and is equivalent to the attribute CHARAC-
TER (5). The picture character X also
specifies that any character recognized by
the computer can occur in the corresponding
position of the character string.

Any value assigned to CODE will be
converted, if necessary and possible, to a
character string and will be truncated or
extended on the right as required, to mreet
the five-character length of CODE. Consid-
er the following examples:

CODE="A2B9C8"';
CODE="U4F";

In the first assignment, one character is
truncated from the right end of the
assigned character string. In the second
assignment, three blank characters are
appended to the right end of the assigned
character string.

Numeric Character Picture Specifications

In addition to the picture character 9,
numeric character specifications can con-
tain other picture characters that are used
to edit numeric character data. (The pic-
ture character X cannot appear in a numeric
character picture specification.) The gen-
eral functions performed by these addition-
al picture characters are described in
"Editing Numeric Character Data" below.

Assignment to character-string variables
is always from left to right; padding and
truncation are on the right. 2assignment to
a numeric character wvariable, however,
depends upon the 1location of an assumed
decimal point (specified by the picture

character V). Values assigned to numeric
character variables are always point
aligned.

Values of Numeric Character Variables

The wvalue of a numeric character varia-
ble can be interpreted in two ways, either
as an arithmetic value or as a character-
string value.

For a numeric character variable
described with a picture specification that
contains only one or more occurrences of
the character 9, +the arithmetic value is
the value expressed by the character
string, that is, a decimal integer.

if, however, editing characters are
included in the picture specification, the
arithmetic value and the character-string
value generally would be different. Edit-
ing characters are actually stored inter-
nally in the specified positions of the
data item. The editing characters then are
considered to be part of the character-
string value of the variable. The editing
characters are not, however, a part of the
variable's arithmetic value, which involves
only decimal digits, the assumed location
of a decimal point, and a sign (if one is
present).

If the wvalue of a numeric character
variable is assigned to another numeric
character variable or to a coded arithmetic

variable, only the arithmetic value is
assigned. In the assignment to a coded
arithmetic variable (or in the appearance
of a numeric character variable in an
arithmetic expression operation),
conversion to coded arithmetic is per-
formed.

If the wvalue of a numeric character
variable is assigned to a character-string

variable, no actual conversion 1is neces-
sary, and any specified editing characters
are included in the assignment.

character-string variable
CHARACTER attribute)

An ordinary
(specified with the

can be defined on a numeric character
variable, wusing the DEFINED attribute
specification. Any reference to the

character-string variable is a reference to
the character-string value of the numeric
character variable. For example:

DECLARE A PICTURE '$999Vv.99"',
B CHARACTER(7) DEFINED A,
C DECIMAL FIXED (5,2);

A

128.76;
C = 4;

After the constant is assigned to A, its
arithmetic wvalue is 128.76. This is the
value that is assigned to C (after conver-
sion to internal coded arithmetic). The
character-string value of A, however, is
$128.76; if it were assigned to a
character-string variable with a length of

7 or greater, this is the value that would
be assigned. The same value, $128.76, is
the value of B, since a character string

character variable
value of

defined on a numeric
represents the character-string
the numeric character variable.

No arithmetic variable (except another
numeric character variable) can be defined
on a numeric character variable without
causing an error.

Chapter 9:

Editing Numeric Character Data

Because the picture specification of a
numeric character field cannot contain the
character X, the value of a numeric charac-
ter data item can always be given a numeric
interpretation. Consider the following
declaration:

DECLARE COUNT PICTURE '99999°';

Although COUNT is a string of five charac-
ters, it can only contain numeric digits;
therefore, it is a numeric character varia-
ble whose value can be interpreted as a
five-digit wunsigned fixed-point decimal
integer. Unless specified otherwise (with
the picture character V), a decimal point
is always assumed to be at the right end of
a numeric character data item. For exam-
ple, let COUNT, as declared above, appear
in the following assignment statement:

COUNT=123.45;

When the assignment is performed, the
decimal point of the constant is aligned on
the assumed point declared for the numeric
character variable, and the two rightmost
digits are truncated. Two zero digits are
then appended on the left end. The effect
of the above assignment therefore, is equi-
valent to the following statement:

COUNT=00123;

The picture character V allows an
assumed decimal point to be specified any-
where in a numeric data item, and not just
at the right end:

DECLARE TOTAL PICIURE '999V99';

Here the value of TOTAL is interpreted as a
string of five characters representing a
five-digit unsigned fixed-point decimal
number with two fractional places. The
decimal point of a value assigned to TOTAL
will be aligned between the third and
fourth digits as specified by the picture
character V. Consequently, the following
two assignment sStatements are equivalent:

TOTAL=123;
TOTAL=123.00;
contains only

Note, however, that TOTAL

five characters. The picture character V
does not specify an actual character posi-
tion in the numeric character field; it is

used only to align decimal points. And if
TOTAL were converted to a character string
and then printed, no decimal point would
appear in the printed field; its character-
string value does not include a decimal
point.

Editing and String Handling 97

A decimal point picture character(.)
can appear in a numeric picture
specification. It merely indicates that a
poiat is to be included in the character
representation of the value. Therefore,
the decimal point is part of its character-
string string value. The decimal point
picture character does not cause decimal
poiat alignment during assignment. since it
is not a part of the variable's arithmetic
value. Only the character \Y causes
alignment of decimal points. For =xample:
DECLARE SUM PICTURE '999V.99°';

$UM 1is a numeric character variable rep-
resenting numbers of five digits with a
decimal point assumed between the third and
fourth digits. The actual point specified
by the decimal point insertion character is
not a part of the arithmetic value; it is,

however, part of its character-string
value. (The decimal point picture charac-
ter can appear on either side of the
character V. See Part I1II, Section D,
"Picture Specification Characters.") The

following two statements

value to SUM:

assign the same

SUM=123;
50M=123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the dec-
laration:

following

DECLARE RATE PICTURE '9V99.99"';
L2t RATE be used as follows:
RATE=7.62;

When this statement is executed, decimal
point alignment occurs on the character V
and not on the decimal point picture char-
acter that appears in the picture specifi-
cation for RATE. If RATE were converted to
a character string and then printed, it
would appear as 762.00, but its arithmetic
value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal point picture character can appear
more than once; this allows digit groups
within the numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in the numeric
notations of some European countries.

Eecause a decimal point picture charac-
ter causes a period character to be insert-
ed into the character-string value of a
numeric character data item, it is called
an insertion character. PL/I provides two

98

other insertion characters: comma (,) and
blank(B), which are used in the same way as
the decimal point picture character except
that a comma or blank is inserted into the
character string. Consider the following
statements:

DECLARE RESULT PICTURE '9.999.999,v99";
RESULT=1234567;
The character-string value of RESULT would
be '1.234.567,00'. Note that decimal point

alignment occurs before the +two rightmost
digit positions as specified by the charac-

ter V. If RESULT were assigned to a coded
arithmetic field, the value of the data
converted to arithmetic would be
1234567.00.

Besides supplying inserxtion characters,
PL/I also provides replacement characters
that allow zeros in specified positions to
be replaced by blanks or asterisks. One
such picture character is the character 2,
which is used to replace leading (leftmost)
zeros with blanks:

DECLARE TALLY PICTURE ‘ZZZ9°*;
TALLY=0012;

The character-string wvaliue of TALLY is
eguivalent to the character-string constant

'bbl2*' (where the letter b indicates a
blank character).
Other picture characters control the

appearance of signs and the currency symbol
($) in specified positions of the numeric
character data items. For example, a dol-
lar sign can be appended to the left of a
numeric character item, as indicated in the
following statements:

DECLARE PRICE PICTURE *'$99V.99'";
PRICE=12.45;

The character-string wvalue of PRICE is
equivalant to the character-string constant

*$12.45'., Its arithmetic wvalue, however,
would be 1245 with precision of (4,2), or
12.45.

The picture specification can also spec-
ify floating-point and British sterling
formats. These formats are discussed in
Part II, Section D, "Picture Specification
Characters."

Using Numeric Character Data

One purpose of a numeric character pic-
ture specification is to edit data that is

to be printed. For example, in a payroll
application, the digits representing an
employee's salary might be 0017250. These
digits would be much more meaningful on a
paycheck in an edited form, such as
$*¥%172.50; the asterisks would also dis-
courage an attempt to alter the amount.
This could be done, for example, with the
specification "$**%%*9_,99°",

PL/I, however, does not restrict the use
of numeric character data to output purpos-
es. Numeric character variables can be
used wherever arithmetic expressions are
permitted. Consider the following example:

DECLARE RESULT PICTURE 'XXXXXX',
COST PICTURE '$9V.99';
CcoST=7.15;

RESULT=COST;

arithmetic value of
When COST is assigned

In this example, the
COST would be 7.15.

to RESULT, however, the insertion charac-
ters ($ and .) appear as part of the
character string, and the value of RESULT

is '$7.15b'. The only differences between

the numeric character data and the
character-string data is that the
character-string value is 1left adjusted

(hence the blank at the right end) and the
insertion characters are actually a part of
the data, while with a numeric character
variable, data is point aligned and inser-
tion characters, though actually present,
are not considered to be a part of the
arithmetic value.

If specified in an arithmetic expres-
sion, the wvalue of a numeric character data
item 1is converted to coded arithmetic.
Note, however, that this conversion will
always require the compiler to insert extra
coding. Note also, that any editing char-
acters in the picture specification will be
lost in the conversion. Consider the fol-
lowing example:

DECLARE RESULT FIXED DECIMAL(3,2),
COST PICTURE '$9V.99°';

c0osT=1.10;
RESULT=2*COST;

The character-string value of COST is
$1.10. The editing characters ($ and .)
are present in the item. However, when the
expression 2* COST is evaluated, the arith-
metic value of COST is converted to coded
arithmetic. When the wvalue of the expres-
sion is assigned to RESULT, the value of
RESULT will be 2.20 (i.e., 220 with preci-
sion (3,2)).

Chapter 9:

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTIONS

PL/1 provides a number of built-in func-
tions, two of which also can be used as
pseudo-variables, to add power to the
string-handling facilities of the language.

Following are brief descriptions of these
functions (more detailed descriptions
appear in Part II, Section G, "Built-In

Functions and Pseudo-variables").

The STRING built-in function specifies
that the elements of a PACKED structure are
to be concatenated into a single character
string. All elements must be either char-
acter strings or numeric character fields.

The BIT built-in function specifies that
a data item is to be converted to a bit
string. The built-in function allows a
programmer to specify the 1length of the
converted string, overriding the length
that would result from the standard rules
of data conversion.

The CHAR built-in function is exactly
the same as the BIT built-in function,
except that the conversion is to a charac-
ter string of a specified length.

The SUBSTR built-in function, whiech can
also serve as a pseudo-variable in a
receiving field, allows a specific subst-
ring to be extracted from (or assigned to,
in the case of a pseudo-variable) a speci-
fied string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first occur-
rence of a specified substring, which can
be a single character or bit. The value
returned is the 1location of the first
character or bit of the substring, relative
to the beginning of the string. The value
is expressed as a binary integer. If the
substring does not occur in the specified
string, the value returned is zero.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
System/360 implementations, the character
is hexadecimal FF.

The LOW built~in function provides a
string of a specified length that consists
of repeated occurrences of the lowest char-
acter in the collating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT built-in function permits a
string to be formed from repeated occurren-

Editing and String Handling 99

ces of a specified substring. It is used

to create string patterns.
I'he BOOL built-in function allows one of

16 different Boolean operations to be
applied to two specified bit strings.

160

The UNSPEC built-in function, which can
also be used as a pseudo-variable, speci-
fies that the internal coded representation
of a value is to be regarded as a bit
string with no conversion.

ARGUMENTS AND PARAMETERS

Data can be made known to an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked procedure. This extension of scope
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There 1is yet another way in which data
can be made known to an invoked procedure,
and that is to specify the names as arqu-
_____ statement.
Each argument in the list is an expression,
a file name, a statement label constant or
variable, or an entry name that is to be

Since arguments are passed to it, the
invoked procedure must have some way of
accepting them. This is done by the expli-
cit declaration of one or more parameters
in a list in the PROCEDURE or ENTRY state-
ment that is the entry point at which the
procedure is invoked. A parameter 1is a
name used within the invoked procedure to
represent another name (or expression) that
is passed to the procedure as an argument.
Each parameter in the parameter 1list of the
invoked procedure has a corresponding argu-
ment in the argument list of the invoking
statement. This correspondence is taken
from left~to-right; the first argument cor-
responds to the first parameter, the second
argument corresponds to the second paramet-
er, and so forth. In general, any ref-
erence to a parameter within the invoked
procedure 1is treated as a reference to the
corresponding argument. The number of
arguments and parameters must be the same.

The example below illustrates how param—
eters and arguments may be used:

PRMAIN: PROCEDURE;
DECLARE NAME CHARACTER (20),
ITEM BIT(5);

CALL OUTSUB (NAME, ITEM);

END;

CHAPTER 10: SUBROUTINES AND FUNCTIONS

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),
B BIT(5);

PUT EDIT(A,B) (A(20),B(5));

END;
In procedure PRMAIN, NAME is declared as
a character string, and ITEM as a bit
string. The CALL statement in PRMAIN

invokes the procedure called OUTSUB, and
the parenthesized 1list included in this
procedure reference contains the two argu-
ments being passed to OUTSUB. The PROCE-
DURE statement defining OUTSUB declares two
parameters, A and B. When OUTSUB is
invoked, NAME is associated with A and ITEM
is associated with B. Each reference to A
in OUTSUB 1is treated as a reference to
NAME, and each reference to B is treated as
a reference to ITEM. Therefore, the PUT
statement causes the values of NAME and
ITEM to be written into the standard system
output file.

Note that the passing of arguments usu-
ally involves the passing of names and not
merely the values represented by these
names. (In general, the name that is
passed is usually the address of the
value.) As a result, storage allocated for
a variable before it 1is passed as an
argument is not duplicated when the proce-
dure is invoked. Any change of value
specified for a parameter actually is a
change in the value of the argument. Such
changes are 1in effect when control is
returned to the invoking block.

A parameter can be thought of as indi-
rectly representing the value that is
directly represented by an argument. Thus,

since both the argument and the parameter
represent the same value, the attributes of
a parameter and its corresponding argument
must agree. For example, an error exists
if a parameter has the attribute FILE and
its corresponding argument has the attri-

bute FLOAT.

A name is explicitly declared to be a
parameter by its appearance in the paramet-
er 1list of a PROCEDURE or ENTRY statement.
However, its attributes, unless defaults
apply, must be explicitly stated within
that procedure in a DECLARE statement.

Chapter 10: Subroutines and Functions 101

The parameters specified in an ENTRY
statement must also have been specified
either in the PROCEDURE statement for the
containing procedure, or in a DECLARE
statement within that procedure.

Parameters, therefore, provide the means
for generalizing procedures so that data
whose names may not be known within such
prccedures can, nevertheless, be operated
upcn. There are two types of generalized
procedures that can be written in PL/I:
subroutine procedures (called simply,
subroutines) and function crocedures

(functions).

SUEBROUTINES

A subroutine is a procedure that usually
recuires arguments to be passed tc it in an
invoking CALL statement. It can be either
an external or internal procedure. A ref-
erence to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference is as follows:

CALL entry-namel (argument({,argumentl...)];

Whenever a subroutine is invoked, the
arqguments of the invoking statement are
associated with the parameters of the entry
point, and control is then passed to that
ent.ry point. The subroutine is thus acti-
vated, and execution begins.

of a subroutine, con-
£rol normally is returned to +the invoking
block. A subroutine can be terminated
normally in any of the following ways:

Upon termination

1. Control reaches the final END state-
ment of the subroutine. Execution of
this statement causes control to be
returned to the first executable
statement logically follcowing the
statement that invoked the subroutine.
This 1is considered to be a normal
return.

2. Control reaches a RETURN statement in
the subroutine. This causes the same
normal return caused by the END state-
ment.

3. Control reaches a GO TO statement that
transfers control out of the subrou-
tine. The GO TO statement may specify
a label in a containing block, which
must be known within the subroutine,
or it may specify a parameter that has
been associated with a label argument
passed to the subroutine. Although
this is considered to be normal termi-
nation of the subroutine, it is not

102

normal return of control, as effected

by an END or RETURN statement.

A STOP statement encountered in a sub-
routine abnormally terminates execution of
that subroutine and of the entire program
associated with the procedure that invoked
it.

The following example illustrates how a
subroutine interacts with the procedure
that invokes it:

A: PROCEDURE;
DECLARE RATE FIXED(10,3),
TIME FIXED(5,2),
DISTANCE FIXED(15,5),
MASTER FILE...;

-

CALL READCM (RATE, TIME, DISTANCE,
MASTER) ;

END;

READCM: PROCEDURE (W,X,Y,Z);
DECLARE W FIXED(10,3),X FIXED(5,2),
Y FIXED(15,5), 2 FILE...;

GET FILE (Z) EDIT (W,X,Y) {(F(10,3),
F(5,2),F(15,5));

Y=W*X;
IF Y > 0 THEN RETURN;
ELSE PUT EDIT('ERROR READCM')
(A(12));
END;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

A function is a procedure that usually
requires arguments to be passed to it when
it is invoked. Unlike a subroutine, which
is invoked by a CALL statement, a function
is invoked by the appearance of the func-
tion name (and associated arguments) in an
expression. Such an appearance is called a
function reference. Like a subroutine, a
function can operate upon the arguments

passed to it and upon other known data.
But wunlike a subroutine, a function is
written to compute a single value which is
returned, with control, to the point of
invocation, the function reference. This
single wvalue can be an arithmetic, string,
picture, or pointer value. An example of a
function reference 1is contained in the
following procedure:

MAINP: PROCEDURE;

X=Y**3+SPROD(A,B,C);

-

END;
In the above procedure, the assignment
statement

X=Y**3+SPROD(A,B,C);
contains a reference to a function called

SPROD. The parenthesized 1list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IF.U>V+W
THEN RETURN (0);
ELSE RETURN (U*V*W) ;

END;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and parameter.
Hence, the attributes are consistent, and
the association of the arguments with the
parameters produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement asso-
ciated with the ELSE clause is executed.
In either case, the executed statement is a
RETURN statement.

Chapter 10:

The RETURN statement is the usual way by
which a function is terminated and control
is returned to the invoking procedure. Its
use in a function differs somewhat from its
use in a subroutine; in a function, not
only does it return control but it also
returns a value to the point of invocation.
The general form of the RETURN statement,
when it is used in a function, 1is as
follows:

RETURN (element-expression);

The expression must be present and must
represent a single value; i.e., it cannot
be an array or structure expression. It is
this value that is returned to the invoking
procedure at the point of invocation.
Thus, for the above example, SPROD returns
either 0 or the value represented by U*V*W,
along with control to the invoking expres-
sion in MAINP. The returned value then
effectively replaces the function ref-
erence, and evaluation of the invoking
expression continues.

A function can also be terminated by
execution of a GO TO statement. If this
method is used, evaluation of the expres-
sion that invoked the function will not be
completed, and control will go to the
designated statement. As in a subroutine,
the transfer point specified in a GO TO

statement may be a parameter that has been
associated with a 1label argument. For
example, assume that MAINP and SPROD have

been defined as follows:

MAINP: PROCEDURE;

X=Y**3+SPROD(A,B,C,LAB1);

LAB1: CALL ERRT;

END;

SPROD: PROCEDURE (U,V,W,Z);
DECLARE Z LABEL;

IF U > V + W
THEN GO TO Z;
ELSE RETURN (U*V*W);

END;

Subroutines and Functions 103

In MAINP, LABl is explicitly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LAEl is
associated with parameter 2. Since the
attributes o0f A must agree with those of
LABlL, 2 is declared to have tae LABEL

attribute. When the IF statement in SPROD
i3 =xecuted, a test 1is made. If U 1is
gyreater than V + W, the THEN clause is

executed, control returns to MAINP at the
statement labeled LABlL, and evaluation of
the expression that invoked SPROD is dis-
continued. If U is not greater than V + W,
the ELSE clause is executed and a return to
MAINP is made in the normal fashion. Addi-
tional information about the use of label
arguments and label parameters is contained
in the section "Relationship of Arguments
and Parameters™ in this chapter.

Note: In some instances, a function may be
30 defined that it does not require argu-
ments. In such cases, the appearance of

the function name within an expression will
be recognized as a function reference only
if the function name has been declared as
an entry name elsewhere in the block. See
"The ENTRY Attribute" in this chapter for
additional information.

I'he attributes of the value returned by
a function may be declared in two ways:

L. They may be declared by default
according to the first letter of the
function name.

2. They may be explicitly declared fol-
lowing the parameter 1list in the func-
tion PROCEDURE (or ENTRY) statement.

Regardless of which method is used, the
data attributes for a secondary entry
point, including any default attributes,
nust be identical with those established
tfor the primary entry point. In other
words, the attributes specified in an ENTRY
statement (explicitly or by default) must
in no way conflict with those specified in
the PROCEDURE statement of the c¢ontaining
procedure.

Note that the value of the expression in
the RETURN statement is converted within
the function, wherever necessary, to con-
form to the attributes specified by one of
the two methods above.

In the previous examples of MAINP and

5PROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, these attributes

104

must be determined from the first letter of
its name, S. The attributes of the

returned value are therefore FLOAT
DECIMAL(6). Since these are the attributes
that the returned value 1is expected to

have, no conflict exists.

Note: Unless the invoking procedure pro-

vides the compiler with information to the
contrary, the attributes of the value
returned by a function to the invoking

procedure are always determined from the
first letter of the function name.

The way in which attribiates can be
declared for the returned +walue in the
PROCEDURE or ENTRY statement is illustrated
in the following example. Assume that the
PROCEDURE statement for SPROD has been
specified as follows:

SPROD: PROCEDURE (U,V,W,Z) FIXED BINARY;
With this declaration, the value returned
by SPROD will have the attributes FIXED and
BINARY. However, since these attributes
differ from those that would be determined
from the first letter of the function name,
this difference must be stated in the
invoking procedure to avoid a possible
error. The PL/1 programmer communicates
this information to the compiler by speci-
fying the RETURNS attribute in the invoking
procedure.

The RETURNS attribute is specified in a
DECLARE statement for a function entry name
within the procedure invoking that func-
tion. It specifies the attributes of the

value returned by that function. Unless
default attributes for the entry name
apply, any invocation of a function must

appear within the scope of a RETURNS attri-
bute declaration for the entry name. For
an internal function, the RETURN attribute
can be specified only in a DECLARE state-
ment that is internal to the same block as
the function procedure. If the RETURNS
attribute is declared for an internal func-
tion, the INTERNAL attribute must be speci-
fied in the same declaration.

The general format of the RETURNS attri-
bute is as follows:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from the named entry point is to be treated
as though it had the attributes given in
the attripbute list. The word treated is
used because no conversion is performed in
an invoking block upon any value returned
to it. Therefore, if the attributes of the
returned value do not agree with those in
the attribute list of the RETURNS attri-
bute, an error will probably result.

Thus, in order to specify to the compil-
er that «c¢oding for MAINP is to handle the
FIXED BINARY value being returned by SPROD,
the following declaration must be given
within MAINP:

DECLARE SPROD RETURNS (FIXED BINARY);

It is important to note some of the
things that are implied in the above dis-
cussion. Principally, it should be remem-
bered that during compilation of the invok-
ing block, there is no way for the compiler
to check a function procedure to determine
the attributes of the value it returns. In
the absence of explicit information in a
RETURNS attribute specification, the com-
piler can only assume that the attributes
will be consistent with the attributes
implied by the first letter of the function
name. This is true even if the function
procedure 1is contained in the invoking
procedure. If the returned value does not
have the attributes that the invoking pro-
cedure 1is prepared to receive, no conver-
sion can be performed. The RETURNS attri-

bute must be declared for a function that
returns any value with attributes not con-
sistent with default attributes for the
function name.
Built-In Functions

Similar to function procedures that a
programmer can define for himself is a

comprehensive set of pre-defined functions
called bpuilt-in_functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful func-
tions related to language facilities, such
as functions for manipulating strings and
arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in func-
tions can return array values, whereas a
programmer-defined function can return only
an element value.

Note: Some built-in functions actually are
compiled as in-line code rather than as
procedure invocations. All are referred to
in a PL/I source program, however, by
function references, whether or not they
result in an actual procedure invocation.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for any
built-in function name. The use of the

name in a function reference is recognized

without need for any further identifi-
cation; attributes of values returned by
built-in functions are known by the compil-
er.

But since built-in function names are
PL/I keywords, they are not reserved; the
same identifiers can be used as programmer-

defined names (exceptions are TIME, DATE,
and NULL; they cannot be implicitly
declared). Consequently, ambiguity might
occur if a built-in function (or

pseudo-variable) reference were to be used
in a block that is contained in another
block in which the same identifier is
declared for some other purpose. To avoid
this ambiguity, the BUILTIN attribute can
be declared for a built-in function name in

any block that has inherited, from a
containing block, some other declaration of
the identifier. Consider the following
example.
A: PROCEDURE;
B: BEGIN;
DECLARE SQRT FLOAT BINARY;
C: BEGIN;
DECLARE SQRT BUILTIN;
END;
END;
END;
Assume that in external procedure A,

SQRT is neither explicitly nor contextually
declared for some other use. Consequently,
any reference to SQRT would refer to the
built-in function of +that name. In B,
however, SQRT is declared to be a floating-
point binary variable, and it cannot be
used in any other way. Finally, in C, SQRT
is declared with the BUILTIN attribute so

that any reference to SQRT will be
recognized as a reference to the built-in
function and not +to the floating-point

binary variable declared in B.

A programmer can even use a built-in
function name as the entry name of a
programmer-written function and, in the

same program, use both the built-in func-

Chapter 10: Subroutines and Functions 105

tion and the programmer-written function.
This can be accomplished by use of the
BUILTIN attribute and the ENTRY attribute.
(The ENTRY attribute, which is used in a
DECLARE statement to specify that the asso-
ciated identifier is an entry name, is
discussed 1in a later section of this chap-
ter.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

SCRT: PROCEDURE (PARAM) FIXED (6,2);
DECLARE PARAM FIXED (12);

END;

A: PROCEDURE;
DECLARE SQRT ENTRY RETURNS
(FIXED(6,2)),Y FIXED(12);

X = SéRT(Y);

-

B: BEGIN;
DECLARE SQRT BUILTIN;

7z = SéRT (P);

END;
END;

The use of SQRT as the label of the
first PROCEDURE statement 1is an explicit
declaration of the identifier as an entry
name. Since, in this case, SQRTI is not the
builw-in function, +the entry name must be
explicitly declared in A (and the RETURNS
attribute is specified because the attri-
butes of the returned value are not appar-
ent in the function name). The function
reference in the assignment statement in A
thus refers to the programmer-written SQRT
function. In the begin block, the iden-
tifier SQRT 1s declared with the BUILTIN
attribute. Consequently, the function ref-
erence in the assignment statement. in B
refers to the built-in SQRT function.

Iff a programmer-written function using
the name of a built-in function is exter-
nal, any procedure containing a reference

to that function name must also contain an

106

entry declaration of that name; otherwise a
reference to the identifier would be a
reference to the built-in function. 1In the
above example, if B were not contained in
A, there would be no need to specify the
BUILTIN attribute; so long as the identifi-
er SQRT is not known as some other name,
the identifier would refer to the built-in
function.

If a programmer-written function using
the name of a built-in function is inter-
nal, any reference to the identifier would
be a reference to the programmer-written
function as long as its name is known in
the block in which the reference is made.
No entry name attributes would have to be
specified if attributes to the returned
value could be inferred from the entry
name.

THE ENTRY ATTRIBUTE

As mentioned earlier, the ENTRY attri-
bute is used to indicate that the associat-
ed identifier is an entry mname. Such an
indication is necessary if an identifier is
not otherwise recognizable as an entry
name, that is, if it is not explicitly or
contextually declared to be an entry name
in one of the following ways:

1. By appearing as a label of a PROCEDURE
or ENTRY statement (explicit).

2. By appearing immediately following the
keyword CALL (contextual).

3. By appearing as the function name in a
function reference that contains an
argument list (contextual).

Therefore, 1if a reference is made to an
entry name in the block in which it does
not appear in one of these three ways, the
identifier must be given the ENTRY attri-
bute explicitly, or by implication (see
"Note™ below), in a DECLARE statement with-
in that block. For example, assume that
the following has been specified:

A: PROCEDURE;

PUT EDIT (RANDOM) (E(10,5));

END;

Assume also that A is an external proce-
dure and RANDOM is an external function
that requires no arguments and returns a
random number. As the procedure is shown

above, RANDOM is not recognizable within A
as an entry name, and the result of the PUT
statement, therefore, is undefined. In

order for RANDOM to be recognized within 2
as an entry name, it must be declared to
have the ENTRY attribute. For example:

A: PROCEDURE;
DECLARE RANDOM ENTRY;

PUT EDIT (RANDOM) (E(10,5));

-
-

END;
Now, RANDOM is recognized as an entry
name, and the appearance of RANDOM in the
PUT statement cannot be interpreted as
anything but a function reference. There-
fore, the PUT statement results in the
output transmission of the random number
returned by RANDOM.

Note:

ly declared by implication.

The ENTRY attribute can be explicit-
Any identifier

that is explicitly declared to have the
RETURNS attribute, 1is given the ENTRY
attribute by implication. Thus, RETURNS

implies ENTRY.

Entry Names as Arguments

An argument of a function or subroutine
reference can itself be an entry name.
Wwhen this is the case, one of the following
pertains:

1. If the entry name argument, call it
FUNC, is specified with an argument
list of its own, it is recognized as a
function reference; FUNC 1is invoked,
and the value returned by FUNC effec-
tively replaces the appearance of FUNC
and its argument list in the contain-
ing argument list.

2. If the entry name argument appears
without an argument list, but within
an operational expression or within

parentheses, then it is taken to be a
function reference with no arguments.
For example, the statement:

CALL A((B));

where B is known as an entry name,
passes, as the argument to A, the
value returned by the function proce-

dure B.

3. If the entry name
without an argument list

argument appears
and neither

within an operational expression nor
within parentheses, the entry name
itself is always passed to the func-
tion or subroutine being invoked. In
such cases, the entry name is never
interpreted as a function reference,
even if it is the name of a function
that does not require arguments. For
example, the statement:

CALL A(B);

when B 1is known as an entry name,
passes the entry name B as an argument
to A.

Consider the following example:
CALLP: PROCEDURE;
DECLARE RREAD ENTRY;

GET EDIT (R,S) (2 F(10,5));

CALL SUBR (RREAD, ASQRT(R),
S, LABl);

LABl: CALL ERRT(S);

.
-

END;
SUBR: PROCEDURE (NAME, X, Y, TRANPT);
DECLARE NAME ENTRY, TRANPT
LABEL;
IF X > Y THEN CALL NAME(Y);
ELSE GO TO TRANPT;
END;
In this example, assume that CALLP,
SUBR, ASQRT, and RREAD are external proce-

dures. In CALLP, RREAD is explicitly
declared to have the ENTRY attribute and
SUBR is contextually declared to have the
ENTRY attribute. Four arguments are speci-
fied in the CALL SUBR statement. These are
interpreted as follows:

1. The first argument, RREAD, 1is recog-
nized as an entry name (because of the
ENTRY attribute declaration). Since
it does not have an argument list of
its own, and since it does not appear
in an operational expression or within
parentheses, the entry name itself is
passed at invocation.

Chapter 10: Subroutines and Functions 107

2. The second argument, ASQRT(R}, is rec-
ognized as a function reference
because of the arqument list accom-
panying the entry name. ASQRT 1is
invoked and the value returned by
ASQRT is assigned to a dummy argument

(see "Dummy Arguments®™), which effec-
tively replaces the reference to
ASQRT. When SUBR is invoked, the

dummy argument is passed to it.

3. The third arqgument, S, is simply a
decimal floating-point element varia-
ble which is passed as it is.

i, The fourth argument, LAB1, is a
statement-label constant. Being a
constant, a dummy argument must be

created for it. When SUBR is invoked,
the dummy argument is passed.

In SUBR, four parameters are explicitly
declared in the PROCEDURE statemert. If no
further explicit declarations were given
for these parameters, arithmetic default
attributes would be supplied for each.
rherefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attribute, and since TRANPT must
represent a statement label, it is expli-
citly declared with the LABEL attribute. X
and Y are arithmetic, so the defaults are
allowed to apply.

Note that the appearance of NAME in the
CALL statement does not constitute a
contextual declaration of NAME as an entry
name. Such a contextual declaration exists
only if no explicit declaration applies,
but, in this case, one does apply since the
appearance of NAME in the parameter 1list
constitutes an explicit declaration of NAME
as a parameter. If attributes of a param-
eter are not explicitly declared in a
complementary DECLARE statement, arithmetic
defaults apply. Consequently, NAME must be
explicitly declared to have the ENTRY
attribute; otherwise, it would be assumed
to be a binary fixed-point variable, and
its wuse in the CALL statement would result
in an error.

RELATIONSHIP OF ARGUMENTS AND PARAMETEES

function or subroutine is
invoked, a relationship is established
betwseen the arguments of the invoking
statement or expression and the parameters
of the invoked entry point. This relation-
shipo is dependent upon whether or not dummy
argaments are created.

Ahen a

108

DUMMY ARGUMENTS

In the introductory discussion of argu-
ments and parameters it is pointed out that
the name of argument and not its value is
passed to a subroutine or function. Howev-
er, there are times when an argument has no
name. A constant, for example, has no
name; nor does an operational expression.
But the mechanism that associates arguments
with parameters cannot handle such values
directly. Therefore, the compiler must
provide storage for such values and assign
an internal name for each. These internal
names are called dummy arguments. They are
not accessible to the PL/I prcgrammer, but
he should be aware of their existence
because any change to a parameter will be
reflected only in the value of the dummy
argument and not in the value of the
original arqument from which it was con-
structed.

A dummy argument is always created for

any of the following cases:
1. If an argument is a constant

2. If an argument is an
involving operators

expression
3. If an argument is itself a function
reference containing arguments.

4. If an argument is an
parentheses.

expression in

In all other cases, the argument name is
passed directly. The parameter becomnes
identical with the passed argument; thus,
changes to the value of a paraneter will be
reflected in the wvalue of the original
argument only if a dummy argument is not
passed.

ARGUMENT AND PARAMETER TYPES

In general, an argument and its corres-
ponding parameter may be of any data organ-
ization and type. For example, an argument
may be a pointer provided that the corres-
ponding parameter is also a pointer; it may
be a bit string, provided that the corres-
ponding parameter is a bit string, and so
on. However, not all parameter/argument
relationships are so clear-cut. Some need
further definition and clarification. Such
cases are given below.

If a parameter 1is an elenment i.e., a
variable that is neither a structure nor an

array, the argument must be an element
expression. If the argument is a sub-
scripted variable, the subscripts are

evaluated before the subroutine or function
is invoked and the name of the specified
element is passed.

If a parameter is an
must be an array name.

array, the argument
The data attributes

of the argument must agree with those of
the parameter. The bounds of the array
argument must agree with the bounds of the

array parameter.

If a the
argument must be a
relative structuring of the
the parameter must be the same; the level
numbers need not be identical. The data
attributes of the elements of the structure
argument must match those of the corres-
ponding elements of the parameter.

parameter 1is a structure
structure name. The
argument and

If a parameter is an element label
_________ the argument must be either an
element-label variable or a label constant.
If the argument is a label constant, a

dummy argument is constructed.

If the parameter is an array _label
_________ the argument must be an array

label variable with identical bounds.

If a parameter is entr
argument must be an entry name.
of a built-in function cannot be passed.
(However, built-in function references c¢an
appear in argument lists because the value
of the function reference and not the
function name is passed.)

If a parameter is a file _name the
argument must be a file name. In general,
the attributes of the file name argument
must match those of the file name paramet-
er. However, for the D-Compiler, in some
cases, a match is not required. This 1is
true only for the BACKWARDS attribute and
the following options of the ENVIRONMENT
attribute:

BUFFERS (n)
LEAVE
NOLABEL
VERIFY
MEDIUM

In the case of the MEDIUM option,
logical device name can be different;
physical device type must be the same.

only the
the

When a file name argument does not match
its corresponding parameter in any of the
above cases, the argument prevails and the
nonmnatching ENVIRONMENT options or BACK-
WARDS attribute of the parameter are over-
ridden. In all other cases, a match is
always reguired and it is an error if any
attributes do not match. Consider the
following example:

A: PROCEDURE OPTIONS(MAIN);
DECLARE X FILE RECORD INPUT
BACKWARDS ENVIRONMENT
(F(80) MEDIUM(SYS001,2400)
BUFFERS (1) LEAVE),
Y FILE RECORD INPUT
ENVIRONMENT (F(80)
MEDIUM(SYS002,2400)
BUFFERS(2)) ;

CALL B(X);

CALL B(Y);

B: PROCEDURE(2);
DECLARE Z FILE RECORD INPUT
ENVIRONMENT (F(80)
MEDIUM(SYS000,2400));

OPEN FILE (2);

END B;

END A;

In this example, X has the BACKWARDS attri-
bute but its corresponding parameter does

not. Since this is one of the cases given
above, a match is not required and 32
effectively is given the BACKWARDS attri-

bute the first time B is invoked. Similar-
ly, the 1logical device name SYS001, the
BUFFERS(1) specification, and the LEAVE
option in the ENVIRONMENT attribute for X
prevail over those given or assumed for 2.
The OPEN statement therefore results in the
opening of Z, with all of the attributes of
X.

The second time that B is invoked, the
action is the same, except that Z now
corresponds to Y and, therefore, the attri-
butes of Y prevail. Thus, for this invoca-

tion Z does not have the BACKWARDS attri-
bute, its logical device name is SY¥S002,
BUFFERS(2) applies, and LEAVE does not
apply.

If a parameter 1is an element_ _pointer

variable, the argument must be an element
pointer variable or an element pointer
expression.

If a parameter is a pointer_array, the
argument must be a pointer array with
identical bounds.

Chapter 10: Subroutines and Functions 109

A parameter has no storage class and
therefore cannot be declared with any stor-
age class attribute. All arguments must be
either STATIC or AUTOMATIC; they cannot be
BASED.

If a parameter is an array or a string,
the bounds of the array or the 1length of
the string must be specified in the same
way that they must be specified for non-
parameters; i.e., as decimal integer

110

constants.
bounds and lengths for the
arguments.

They must be the same as the
corresponding

Note that the base, scale, and precision
of an arithmetic constant passed as an
argument must be the same as that of its
corresponding parameter. Similarly, the
length of a string constant passed as an
argument must be the same as that of its
corresponding parameter.

CHAPTER 11: EXCEPTIONAL CONDITION HANDLING AND_PROGRAM CHECKOUT

Wwhen a PL/I program is executed, a large
nunber cof exceptional conditions are moni-
tored by the system and their occurrences
are autcmatically detected whenever they
arise. These exceptional conditions may be
errors, such as overflow or an input/output
transmission error, or they may be condi-
tions that are expected but infrequent,
such as the end of a file or the end of a
page when output is being printed.

tbach of the conditions for which a test
may be made has been given a name, and
these names are used by the programmer to
control the handling of exceptional condi-
tions. The list of condition names is part
of the PL/I language. For keyword names
and descriptions of each of the conditions,
see Part II, Section H, "ON Conditions."

ENABLED CONDITIONS AND ESTABLISHED ACTION

A condition that is being monitored, and
the occurrence of which will cause an
interrupt, is said to be enabled. Any
action specified to take place when an
occurrence of the condition causes an

interrupt, is said to be established.

Most conditions are checked for automat-
ically, and when they occur, the system
will take control and perform some standard
action specified for the condition. These
conditions are enabled by default, and the

standard system action is established for
them.
The most common system action is to

raise the ERROR condition. This provides a
common condition that may be used to check
for a number of different types of errors,

rather than checking each error type indi-
vidually. Standard system action for the
ERROR condition is to terminate the pro-
gram.

The programmer may specify whether or
not some conditions are to be enabled, that
is, are to be checked for so that they will
cause an interrupt when they arise. If a
condition is disabled, an occurrence of the
condition will not cause an interrupt.

conditions and the
always enabled and

all input/output
ERROR condition are
cannot be disabled. All of the computa-
tional conditions may be enabled or disa-
bled. The SIZE condition must be explicit-

Chapter 11:

ly enabled if it is to cause an interrupt;
all other conditions are enabled by default
and must be explicitly disabled if they are
not to cause an interrupt when they occur.

Condition Prefixes

Enabling and disabling can be specified
for certain conditions by a condition pre-
fix. A condition prefix is a list of one
or more condition names, enclosed in paren-
theses and separated by commas, and con-
nected tc a statement (or a statement
label) by a colon. The prefix always
precedes the statement and any statement
labels. A condition name in a prefix 1list
indicates that the corresponding condition
is enabled within the scope of the prefix.
Some condition names can be preceded by the
word NO, without a separating blank or
connector, to indicate that the correspond-
ing condition is disabled.

Scope of the Condition Prefix

The scope of the prefix, that is, the
part of the program throughout which it
applies, is usually the statement to which
the prefix 1is attached. The prefix does
not apply to any functions or subroutines
that may be invoked in the execution of the
statement.

A condition prefix to an IF statement
applies only to the evaluation of the
expression following the IF; it does not

apply to the statements in the THEN or ELSE
clauses, although these may themselves have

prefixes. Similarly, a prefix to the ON
statement has no effect on the associated
on-unit. A condition prefix to a DO state-

ment applies only to the evaluation of any
expressions in the DO statement itself and
not to any other statement in the DO-group.

Condition prefixes to the PROCEDURE
statement and the BEGIN statement are spe-
cial (though commonly used) cases. A con-
dition prefix attached to a PROCEDURE or
BEGIN statement applies to all the state-
ments up to and including the corresponding
END statement. This includes other PROCE-
DURE or BEGIN statements nested within that
block. It does not apply to any procedures

Exceptional Ccondition Handling and Program Checkout 1i1

lying outside that Dblock, which may be
invoked during execution of the program.

T'he enabling or disabling of a condition
may be redefined within a block by attach-
ing a prefix to statements within the
block, including PROCEDURE and BEGIN state-
ments (thus redefining the enabling or
disabling of the condition within nested
blocks). Such a redefinition applies only
to the execution of the statement to which
the prefix is attached. In the case of a
nested PROCEDURE or BEGIN statement, it
applies only to the block the statement
defines, as well as any blocks contained
within that block. When control passes out
of the scope of the redefining prefix, the
redefinition no longer applies. A condi-
tion prefix can be attached to any state-
ment. except a DECLARE or ENTRY statement.

Consider the following example:

(SIZE): A: PROCEDURE;

(NOSIZE): B: BEGIN;

END A;
In this example, the condition prefix

SIZE enables that condition for procedure A
and specifies that if a SIZE error occurs
during any calculation in A, an interrupt
is to take place. Ordinarily, the scope of
the SIZE prefix would include begin block
B; however, the NOSIZE prefix on the BEGIN

statement disables SIZE within B and pre-
cludes any interrupt for a SIZE erxror
therein.
The ON Statement

A system action exists for every condi-

tion, and if an interrupt occurs, the
system action will be performed unless the
programmer has specified an alternate
action in an ON statement for that condi-
tion. The purpose of the ON statement is
to establish the action to be taken when an
interrupt results from an exceptioaal con-
dition that has been enabled, either by
default or by a condition prefix.

Note: The action specified in an ON state-
ment will not be executed during any por-
tion of a program throughout waich the
condition has been disabled.

112

The form of the ON statement is:

ON condition-name {SYSTEM; |on-unit}

(see Part II, Section J, "Statements" for a

full description).

The keyword SYSTEM followed by a semico-
lon specifies standard system action whene-
ver an interrupt occurs. It re—establishes
standard system action for a ccndition for
which some other action has been esta-
blished. The on-unit is used by the pro-
grammer to specify an alternate action to
be taken whenever an interrupt occurs. An
on-unit must be either a null statement or
a GO TO statement; it cannot be labeled.

A null statement on-unit effectively
ignores the interrupt and, in general,
returns control to the point 1logically

following the point at which the interrupt
occurred. Thus, the effect of a null
on-unit is to say "When an interrupt occurs
as a result of this condition, do nothing
except continue."

Use of the null on-unit is not the same
as disabling a condition, for two reasons:
first, a null on-unit can be specified for
any condition (except ENDFILE, KEY, and
CONVERSION), but not all conditions can be
disabled; and, second, disabling a condi-
tion, if possible, may save time by avoid-
ing any checking for this condition. If a
null on-unit is specified, the system must

still check for the occurrence of the
condition, transfer control to the on-unit
whenever an interrupt occurs, and then,

after doing nothing, return from the on-

unit.

Note: The specific point to which control
returns from a null on-unit varies for
different conditions. In most cases, it
returns to the point that immediately
follows the action in which the condition
arose. Section H, "ON-Conditions" gives
the point of return for all conditions for
which a null on-unit can be specified. The
return from a null on-unit is called a
normal return.

If an on-unit is a GO TO statement, then
when an interrupt occurs, control is trans-
ferred to the label specified in the GO TO
statement. Linkage to the point at which
the interrupt occurred is thus lost and a
normal return cannot occur.

Scope_of the ON_Statement

of an ON statement asso-
ciates an action specification with the
named condition. Once this association is
established, it remains until it is over-
ridden or until termination of the block in
which the ON statement is executed.

The execution

An established interrupt action passes
from a block to any block it activates, and
the action remains in force for all subse-
guently activated blocks unless it is over-
ridden by the execution of another ON
statement for the same condition. If it is
overridden, the new action remains in force
only until that block is terminated. When
control returns to the activating block,
all established interrupt actions that
existed at that point are re-established.
This makes it impossible for a subroutine
to alter the interrupt acticn established
for the block that invoked the subroutine.

If more than one ON statement for the
same condition appears in the same block,
each subseguently executed ON statement
permanently overrides the previously esta-
blished condition. No re-establishment is

possible, except through execution of
another ON statement with an identical
action specification (or re-execution,

through some transfer of control, of an

overridden ON statement).

A: PROCEDURE;
ON CONVERSION GO TO AERR;
ON ZERODIVIDE GO TO BERR;

CaLL B;

END A;

(NOOVERFLOW) : B: PROCEDURE;
DECLARE % BIT(1),
X CHARACTER(1);

ON CONVERSION GO TO CERR;

(NOCONVERSION): Z = X;

RETURN;

END B;
The ON statements in procedure A esta-
blish the actions to be taken for the

Chapter 11:

CONVERSION and ZERODIVIDE errors occurring
within A. (Note that CONVERSION and ZERO-
DIVIDE are enabled by default and therefore
do not require condition prefixes to enable
them.) These action specifications carry
over into procedure B, because it 1is
invoked by A, and remain in force until the
ON statement in B 1is executed. This ON

statement establishes a new action for the
CONVERSION condition, which new action
remains in force for the remainder of B.
When control returns to A, the action

specification for CONVERSION within A is
re-established (the action specification
for ZERODIVIDE, not having been changed in
B, does not need to be re-established).
Note that the scope of the ON statement
within B does not include the assignment
statement since the NOCONVERSION prefix
disables the CONVERSION condition for that
statement. Thus, a CONVERSION error occur-
ring during execution of the assignment
statement does not cause an interrupt.

If a CONVERSION error occurs before the
ON statement in B is executed, the action
established in A is taken; that is, control
is transferred to AERR. Similarly, a ZERO-
DIVIDE error occurring anywhere within B
results in a transfer to BERR.

The OVERFLOW condition is enabled by
default and, since there is no ON statement
for OVERFLOW within A, an OVERFLOW error
within A causes the standard system action
for OVERFLOW to be taken. However, within
B, no action is taken for an OVERFLOW error
because a DNOOVERFLOW condition prefix has
been attached to the PROCEDURE statement
for B, and, as a result, OVERFLOW is
disabled in B. When control returns to A,
OVERFLOW is enabled once again.

The REVERT Statement

The REVERT statement is used to cancel
the effect of one or more previously exe-
cuted ON statements. It can affect only ON
statements that are internal to the block
in which the REVERT statement occurs and
which have been executed in the same invo-
cation of that block. The effect of the
REVERT statement is to cancel the effect of
any ON statement for the named condition
that has been executed in the same block in
which the REVERT statement is executed. It
then re—-establishes the action that was in
force at the time of activation of that
block.

A REVERT statement that is executed in a
block in which no action has been esta-

Exceptional Condition Handling and Program Checkout 113

blished for the named condition is treated
as a null statement.

(SIZE): A: PROCEDURE;
ON SIZE GO TO AERR;

CALL B;

END A;

(SIZE): B: PROCEDURE;
ON SIZE GO TO BERR;

ON SIZE GO TO CERR;

-

REVERT SIZE;

RETURN;
END B;

In this example, if a SIZE error occurs
in procedure B after the execution of the
first ON statement in B but before the
execution of the second ON statement, an
interrupt occurs and control is transferred
to BERR; if a SIZE error occurs in B after
the execution of the second ON statement

114

but before the execution of the REVERT
statement, an interrupt occurs and control
is transferred to CERR; if a SIZE error

occurs in B after +the execution of the
REVERT statement, an interrupt occurs and
control is transferred to AERR. Thus, the
REVERT statement re-establishes the action
specification for SIZE as it existed at the
point of invocation of B (that is, as it
existed in A when the CALL B statement was
executed).

The SIGNAL Statement

The programmer may simulate the occur-
rence of an ON condition by means of the
SIGNAL statement. An interrupt will occur
unless the named condition 1is disabled.
This statement has the form:

SIGNAL condition-name;
The SIGNAL statement causes execution of
the interrupt action currently established
for the specified condition. The principal
use of this statement is in program check-

ing, to test the action of an cn-unit, and
to determine that the correct action is

associated with the condition. If the
signalled condition is not enabled, the
SIGNAL statement is treated as a null

statement.

CHAPTER 12: BASED VARIABLES AND POINTER VARIABLES
For each identifier wused in a PL/I BASED VARIABLES
program, the compiler must be able to

determine the attributes associated with
the name in order to generate correct code.
For example:

A =B + C;
If A, B, and C are floating-point varia-
bles, then floating-point instructions will

be compiled;
fixed-point

if they are fixed-point,
instructions will be compiled.

In addition to determining the type of
operation, the compiler must also be able
to determine the address of each operand.
In some cases, the compiler must generate
code that will determine the address when
the program is executed. The storage class
of a wvariable determines the way in which
the address is obtained. There are three
distinct cases:

offset from a
determined when

1. sStatic storage. The
fixed origin can be
the program is loaded.

2. Automatic_storage. The origin and the
offset of the address are determined
upon entry to the block.

With each of the other
address used
referred to is
Indeed, one
of wusing a

3. Based storage.
classes of storage, the
when an element 1is
determined by the system.
of the main advantages
language such as PL/I 1is that the
programmer need not concern himself
with addresses and address computa-
tion. However, in keeping with the
general design of PL/I, the facility
is available for the programmer to
exercise direct control over address-
es.

It is this third class,
and address manipulation
chapter is concerned.

based storage,
with which this

POINTER VARIABLES

A special type of variable, the pointer
variable, 1is wused to specify addresses in
PL/I. While a pointer variable may not, in
some implementations, actually contain an
address, it 1is used to locate data in
storage; consequently, it may be thought of
as an address.

Chapter 12:

A based variable is a
data that can be applied to different
locations in storage, depending upon the
value of the associated pointer variable.

description of

Using based storage, the programmer can
(1)explicitly specify the address to be

used when accessing a variable, and
(2)locate the storage area of a variable to
be transmitted by RECORD-oriented
input/output.

When a based variable is declared, it

must be associated with a pointer that has
been explicitly declared. The form of the
declaration is:

identifier BASED (pointer-variable)
For example:
DECLARE P POINTER;
DECLARE A BASED (P);
Whenever a reference is made to A, the
address must be derived using the value of

a pointer variable. The pointer variable
used 1is the one that appears in the dec-

laration of the based variable, in this
case, P. For example:

A=A+ 1;
In this statement, the pointer wused to
determine the address of A will, in both

cases, be P.

So 1long as an associated pointer varia-
ble has a valid value, any reference to the
based variable is treated as if it had been
allocated in the location identified by the
pointer variable.

POINTER SPECIFICATION

A pointer variable must be associated
with the based variable in the DECLARE
statement that names the based variable.
The pointer variable specified must be one
that is explicitly declared elsewhere with
the POINTER attribute.

Based Variables and Pointer Variables 115

A restriction imposed by the D-Compiler
is that the pointer name used in the
declaration of a based variable must be an
unsubscripted, unqualified element varia-
oble.

Arrays of pointers are allowed, and
pointers can be elements of structures, but
those pointers cannot be associated with a
based variable in a declaration.

VALUES OF POINTER VARIABLES

3efore a reference can be made to a
based variable, a value must be given to
the pointer with which it is associated.
This can be done in any of four different

ways: with the SET option of a READ or
LOCATE statement; by assignment of the
value of another pointer; or by assignment

of the value returned by the ADDR built-in

function.

READ and SET

The READ statement with a SLET option
causes a record to be read into a Dbuffer
and the specified pointer variable to be
set to point to the buffer. A Dbased
variable, declared with the same pointer,
can then be used to refer to the fields of
the record.

A based variable used to describe a
record in a buffer has the effect of being
overlaid on the buffer. The result of a
reference to an element of the based varia-
ble is the same as if the record had been
read directly into the structure described.

LOZATr and SET

The LOCATE statement, which always must
have a SET option, allocates storage for a
based variable 1in an output buffer. The
action is similar to that of the READ and
SET, in that the based variable is, in
effect, overlaid on the buffer. In this
case, however, the description is used to
move data intc the output buffer in loca-
tions relative to the descriptions of the
elements of the based variable.

116

Assignment of Pointer Value

The value of a pointer variable may be
assigned to another pointer wariable in a
simple assignment statement. Assume that Q
and P are pointer variables and that P has
a valid pointer value.

Q = P;

This statement specifies that Q is to be
set to point to the same location that P
points to. Reference to a based variable
using either P or Q as the associated
pointer is a reference to the same location
in storage. Note that a pointer variable
can be assigned a pointer value also by a
reference to a programmer-—-defined function
that returns a pointer value. Thus, in the
above example, P could be a programmer-
defined function that returns a pointer
value.

Assignment of the ADDR Function Value

The value returned to an ADDR built-in
function reference is a valid pointer wvalue
that specifies the location of a data
variable named as the argument of the
function reference. For example:

P = ADDR(A);

Execution of this assignment statement will
give the pointer variable P a value so that
it points to the location of the data
variable A. The value of an ADDR function
reference can be assigned to a pointer
variable only.

The argument of the ADDR function
reference can be a variable that represents
an element, an array, an element of an
array, a major structure, a minor struc-
ture, or an element of a structure. The
argument may be a based variable or a
nonbased variable.

Since the ADDR function can be used to
set a pointer to point to a nonbased
variable, this facility allows the use of a
based variable to refer to the value of a
nonbased variable.

DECLARATION OF POINTER VARIABLES

A pointer variable must be explicitly
declared with the POINTER attribute in a
DECLARE statement. Arrays of pointers can

be declared, or an elementary name of a
structure can be declared to be a pointer
variable. By default, a pointer variable
is given the AUTOMATIC storage class attri-
bute, but STATIC may be declared for it. A
pointer variable cannot have the BASED
attribute. Following are examples of poin-
ter declarations:

DECLARE A POINTER,
1 ELEMENT,
2 P POINTER,
2 C CHARACTER (10),
X(10) POINTER STATIC;

Note: A pointer array variable must be
subscripted to indicate a single element
when it is used in a SET option.

POINTER VARIABLE RESTRICTIONS

Because a pointer is very closely relat-
ed to an address, its value is strongly
dependent wupon the implementation in which
it is used. In order to reduce implementa-
tion dependence, some restrictions are made
on the use of pointer variables.

1. Pointer variables may not be operands
of any operations except the compari-
son operations specified by the opera-
tors = and ;=.

2. Assignment of a pointer variable value
may be made only to another pointer
variable.

3. Pointer variables cannot be used for
STREAM input and output. When used in
RECORD input and output, a pointer
value written as output cannot be
assumed to locate the same data if it
is read back in.

THE_USE_OF_BASED_STORAGE _AND_POINTERS

The based storage and pointer handling
facilities provided by the D-Compiler are
primarily intended to permit the processing
of records in input and output pbuffers.
This can result in a significant saving of
storage, particularly when many different
record types exist in the same file.

Many different declarations of based
variables can be associated with the same
pointer. The effect of this is that once

the pointer has been given a value, say by
a READ statement with a SET option, then
any of the record descriptions associated

Chapter 12:

with the pointer may be used to refer to
the record in the buffer. For example:

DECLARE P POINTER;
DECLARE 1 ISSUE BASED (P),
2 CODE CHARACTER(1),
2 PART_NO PICTURE '9999999°,
2 QTY PICTURE '9999°',
2 DEPT PICTURE '99°',
2 JOB_NO PICTURE '9999°',
1 RECEIPT BASED (P),
2 CODE CHARACTER(1),
2 PART_NO PICTURE '9999999°,
2 QTY PICTURE '9999°,
2 SUPPLIER PICTURE ®99999°';
READ FILE (TRANS) SET (P);
IF ISSUE.CODE = 'R' THEN GO TO RL1;
IF SUPPLIER >1000 THEN GO TO INHS1;

In this example, the two record descrip-
tions ISSUE and RECEIPT are associated with
the same pointer. Once P has been given a
value by execution of a READ statement with
a SET option, either of the two records can
be referred to. The records do not require
working storage, since the pointer refers
to a position within the buffer.

The records can also contain variables
other than character strings and numeric
character fields. Any number of records
can be associated with the same pointer.
When the pointer is given a value, all of
the records will refer to the same storage
and will effectively be overlaid. Such
overlaying of record descriptions can be
machine dependent and should be used with
care.

VARIABLE-LENGTH PARAMETER LISTS

In PL/I, a programmer-written procedure
can have only a fixed number of parameters,
all of which must be specified. Arguments
are associated with parameters by passing
addresses (which may be addresses of dummy
arguments) . By passing an array of poin-
ters as a single argument, it is possible
to simulate a variable-length parameter

list, since some of the array elements may
be null.
The following procedure checks if a

value lies between two limits. Either the
upper limit or the 1lower limit may be
specified. The procedure has two paramet-
ers, a value that is to be checked and an
array of two pointers. The first pointer
specifies the wupper limit, the second the
lower limit. If either limit is not to be
checked, the associated pointer is null
when passed (see "Pointer Manipulation"
below for a discussion of the NULL built-in
function). The procedure returns the value

Based Variables and Pointer Variables 117

*1'B (or true) if the value lies between
the limits, or the value '0'B if it Ccloes
not.

LIMIT:
DECLARE

PROCEDURE (X,P) BIT(1);
P(2) POINTER,
(P1,P2) POINTER,
TOP BASED (P1),
BOTTOM BASED (P2);
IF P(1) ;= NULL
THEN DO;
P1 = P(1);
IF X >= TOP
THEN RETURN('0'B);
END;
IF P(2) 1=NULL
THEN DO;
P2 = P(2);
IF X <= BOTTOM
THEN RETURN('0'B);
END;
RETURN('1'B);
END LIMIT;
A procedure that invokes LIMIT might con-
tain:

DECLARE LIMIT RETURNS B1r(1),
Q(2) POINTER;

Q(1) = ADDR(HIGH);

Q(2) = NULL;

IF LIMIT (Y,Q) THEN DO;

Note that since a pointer in a based
variable declaration cannot be subscripted,
it is necessary to define two other pointer
variables that are used to refer to the
limits TOP and BOTTOM.

Since the procedure LIMIT cdoes not
return a fixed-point binary value of preci-
sion 15 (as would otherwise be implied by
its initial letter), it must be declared
with the RETURNS attribute in the invoking
procedure.

In the invoking procedure, values are
assigned to Q(1) and Q(2) using the built-
in functions ADDR and NULL. The procedure
LIMIT is then invoked by the function
reference in the IF statement.

POINTER MANIPULATION

IT'wo important built-in functions are
provided by PL/I which can be used in

118

They are
the NULL

manipulating pointer variables.
the ADDR built-in function and
built-in function.

The first of these, the ADDR built-in
function, has already been discussed
briefly. It requires one argument, the

name of a variable, and it returns a value
that points to the variable. It can be
used to find the address of an element

variable, an array variable, an element of
an array, a major structure, a minor struc-
ture, or an element of a structure.

The ADDR function returns a value that
identifies the address of a nonbased or
based variable argument.

When using the ADDR function with arrays
and structures, it 1is important to note
that the ADDR of the first element of an
array or structure is the same as the ADDR
of the array or structure itself.

For example, given the following dec-
larations:

DECLARE P POINTER;

DECLARE B(10,10) BASED (P),
A(10,10);

ADDR(A(1,1)) is the same as ADDR(A) and,
with the following assignment:

P = ADDR(A);
B(1,1) will refer to the first element of
A.

It 1is entirely up to the programmer to
ensure that such references do access mean-
ingful storage locations, which must have
been allocated in some other way and whose
attributes are correct. It is well worth
emphasizing that the power provided by the
facility can be offset by extreme implemen-
tation dependence unless it is wused care-
fully.

The second built-in function for pointer
manipulation is the NULL function. The
NULL function requires no arguments in a
function reference. It returns a pointer
value which is null; that is, a wvalue that
does not refer to a valid address.

CHAPTER_13: A PL/I_PROGRAM

e 1
|C72A3: PROCEDURE OPTIONS (MAIN); 01 |
| DECLARE PAGE_NO FIXED DECIMAL, 02 |
| 1 CARDIN, 03 |
| 2 ACCNT_NO PICTURE '(8)9°', ou |
| 2 NAME CHARACTER (25), 05 I
I 2 ADDRESS CHARACTER (25), 06 1
I 2 PAYMENT PICTURE '$$$$9V.99', 07 |
| 2 REST CHARACTER (14), 08 [
I 1 B, 09 i
| 2 BALANCE PICTURE '$$5$$9V.9R", 10 I
I 2 REST1 CHARACTER (71), 11 |
| WRKA CHARACTER (8) DEFINED CARDIN, 12 |
| WRKB CHARACTER (9) DEFINED B, 13 |
| PAYMNT FILE INPUT RECORD ENVIRONMENT 14 i
i (CONSECUTIVE F(80) MEDIUM(SYS003,2540)), 15 |
I ACCNTS FILE UPDATE RECORD DIRECT KEYED 16 |
| ENVIRONMENT (REGIONAL(1) F(80) 17 |
| MEDIUM(SYS001,2311)), 18 |
i EXCP FILE STREAM OUTPUT PRINT 19 |
i ENVIRONMENT (MEDIUM(SYS002,1403) F(133)); 20 |
| OPEN FILE (PAYMNT), FILE (ACCNTS); 21 |
| ON ENDFILE (PAYMNT) GO TO EOF; 22 [
| /% SET UP PAGE CONTROL */ 23 |
| ON ENDPAGE (EXCP) GO TO NEW_PAGE; 24 I
| /% SET UP HEADINGS AND THEN PRINT HEADINGS FOR FIRST PAGE */ 25 |
| PAGE_NO = 0; 26 i
|NEW_PAGE: PAGE_NO = PAGE_NO + 1; 27 |
| PUT FILE (EXCP) PAGE LINE(3) EDIT ('PAGE ', PAGE_NO) 28 I
] (X(10), A(5), F(5)); 29 i
I PUT FILE (EXCP) LINE(5) EDIT ('NO PAYMENT RECEIVED FROM') 30 i
I (X(30), A(24)); 31 i
| PUT FILE (EXCP) LINE(10) 32 i
| EDIT ('ACCOUNT NO', °'NAME', 'ADDRESS', 'BALANCE DUE') 33 i
] (COLUMN(5), A(11), COLUMN(16), A(5), 34 |
| COLUMN(41), A(7), COLUMN(66), A(11)); 35 i
| /% TEST TO SEE IF NEW_PAGE ENTERED ON INTERRUPT */ 36 I
i IF PAGE NO = 1 THEN GO TO NEWCARD; 37 1
| ELSE GO TO Z%; 38 |
| /% MAIN UPDATE LOOP */ 39 i
|NEWCARD: READ FILE (PAYMNT) INTO (CARDIN); 40 I
| READ FILE (ACCNTS) INTO (B) KEY(ACCNT_NO); 41 |
i IF PAYMENT = 0 THEN 42 |
| IF BALANCE<= 0 THEN GO TO NEWCARD; 43 i
| ELSE 4y |
| ZZ: PUT FILE (EXCP) SKIP EDIT 45 |
| (WRKA , NAME, ADDRESS , WRKB) 46 |
I (COLUMN(5), A(8), 47 |
| COLUMN(16), A(25), 48 i
| COLUMN(41), A(25), 49 I
| COLUMN(66), A(9)); 50 |
I ELSE DO; 51 1
| BALANCE=BALANCE-PAYMENT; 52 |
| REWRITE FILE(ACCNTS) FROM(B) KEY(ACCNT_NO) ; 53 i
i END; 54]
| GO TO NEWCARD; 55 |
| EOF: CLOSE FILE(PAYMNT), FILE(ACCNTS), FILE(EXCP); 56 |
|END C72A3; 57 |
| PO, —_—— 4

Figure 13-1. A PL/I Program

Chapter 13: A PL/I Program 119

#igure 13-1 is an example of a complete
Pi./I program. Note, however, tha= it 1is
intanded merely to illustrate how certain

features of PL/I can be used; it 1is not
intended that the program be used to solve
a problem.

This example illustrates the use of PL/I
for some common oOperations. The program
reads a card and tests to see whether a
paywment has been made. If one has, the
amnoant of the payment is subtracted from

the balance in the account, which 1is in
anocher file. If a payment has not been
made, and if there is a balance due, the

person's name, address, account nunber, and
balance are printed.

The pattern of indention illustrates the
free format allowed by PL/I. The D-
Compiler regquires that the first column of
every card in the source program be blank;
columns 73 through 80 of these cards are
ignored and can contain any information (in
this example, card sequence numbers appear
in columns 79 and 80). So long as these
margin restrictions are ffollowed,
statements can begin and end at any place.
Statements can be continued from card to
card without any continuation notation, as
are the DECLARE statement and the PUT
statements in this example. Constants can
be continued from card to card provided
that the last character in the first card
iz in column 72 and the first character in
the next card is in column 2.

The PROCEDURE statement in card 1 names
the procedure; the MAIN option 1is an
implementation-defined option that

specifies the 1initial procedure of the
program {(which may consist of more than one
external procedure).

The DECLARE statement in carxds Z through
20 declares the attributes for the iden-
tifiers used in the procedure.

PAGE_NO in card 2 is given the attri-
butes FIXED and DECIMAL. Note that since
nc precision is specified, PAGE NO is givep
the default precision, which is (5,0).

The structure declaration in cards 3
through 8 describes the input record CAR-
DIN. This record has an account number in
the first 8 columns (note that this account
number is also the key that will be used to
tind the account in the accounts file), a
name in columns 9 through 33, an acdress in
the next 25 columns, and a three- to
six-digit quantity with a leadirg dollar
sign and an embedded decimal point in the
next 8 columns (the quantity is
right-adjusted). The remainder of the
record does not contain any infcrmation.
REST', which is associated with this part of
the record, is declared so that the remain-

120

der of the &0 columns will be accounted

for.

Cards 9, 10, and 11 declare a structure
that describes the records that are read
from the accounts file (ACCNTS) and that
contain the balance due for each amount.
Each record has the balance due (BALANCE)
in columns 1 through 9. The remaining 71
columns are not used but are accounted for
by REST1. Each record in the file is
identified by a key, which is +the account
nuwmber. Note that the R picture character
in the declaration of BALANCE provides for
the storing of a minus sign should the
contents of BALANCE become negative.

In cards 12 and 13, WRKA and WRKB are

declared as character strings defined on
the first eight character positions of
CARDIN (and, hence, effectively, ACCNT_NO)

and the first nine character positions of B
(and, hence, effectively, BALANCE), respec-
tively. This is done because the value of
a character string that has been defined on
a numeric character variable is always the
character-string value of that variable.
This eliminates the need to assign the
numeric character variable to & character-
string variable in order to print the
character-string value of the numeric char-
acter variable.

Cards 14 and 15 contain a declaration of
PAYMNT as a buffered, record-oriented input
file. This file has fixed-length records
of 1length 80 and is to be read from the
logical device SYS003 which is attached to
an IBM 2540 Card Reader. The organization
of the data set that is associated with the
file is CONSECUTIVE, which means that the
(n+1)th record of the file is located after
the nth record of that file.

Cards 16, 17, and 18 contain a
declaration of the accounts file, ACCNTS.
This file is a direct-access update file
that has a key associated with each record.
REGIONAL(1l) specifies that a key is used to

refer to a record by its relative location
with respect to the first record in the
file. The file contains fixed-length

records of length 80. The lcgical device
name for the file is SYS001 and the physi-
cal device type is 2311 (that is, an IBM
2311 Disk Storage Drive).

Cards 19 and 20 contain a declaration of
the file EXCP, which 1is to be wused to
record those accounts for which a balance
is due but no payment has been made. It is
an output print file. Its logical device
name is SYS002 and its physical device type
is 1403, an IBM 1403 Printer.

The first executable statement in the
program is the OPEN statement in card 21.
This statement opens the files PAYMNT and

ACCNTS. EXCP is implicitly opened by the
first PUT statement, which is in card 28.

Card 22 contains an ON statement that
establishes the action to be taken when the
last payment card has been read.

The ON ENDPAGE statement in card 24
establishes an action for any ENDPAGE
interrupt occurring for the file EXCP.
Note that this action (that is, GO TO
NEW_PAGE) 1is taken only when an ENDPAGE

interrupt for the file occurs; the execu-
tion of the ON statement merely establishes
the action.

The assignment statement in card 26
initializes PAGE_NO to zero. The assign-
ment statement in card 27 increments

PAGE_NO by 1 in order to update the page
number for the print file and also to
ensure that the test in cards 37 and 38

will produce the desired result.

The statements in cards 28
print the page headings.
statement (cards 28 and 29)
page and then spaces two lines. The page
headings are then printed on the third
line. The interaction of the data list and
the format list proceeds as follows:

through 35
The first PUT
starts a new

Space ten columns; assign the constant
'PAGE' to a five-character field; con-
vert the value in PAGE_NO to an integer
and place it, right-adjusted, into a
five-character field.

The second PUT statement (cards 30 and
31) prints the general heading NO PAYMENT
RECEIVED FROM on the fifth 1line of the

page.

The third PUT statement (cards 32
through 35) prints the column headings. 1In

this statement, the COLUMN format item is
used to position the fields, so that the
first heading starts in column 5, the

second heading in column 16, the third
heading in column 41, and the fourth head-
ing in column 66.

Cards 37 and 38 contain an IF statement
that tests to see if the NEW_PAGE routine
was entered from an interrupt or from the
normal seguence of program execution. If
PAGE _NO is 1, then the NEW_PAGE routine has
been entered normally. In all other cases,
the routine has been entered because of an
interrupt and the only possible point at
which this interrupt could have occurred is
the PUT statement labeled ZZ (see card u5).
Any such interrupt would occur before the
data 1list could be transmitted so a trans-

fer of control back to that PUT statement
(after printing headings for the new page)
results in the printing of the data that
was to have been transmitted when ENDPAGE
was raised.

The main loop of the program starts with
the statement labeled NEWCARD in card 40.
This READ statement specifies that a record
from the file PAYMNT is to be read into the
structure CARDIN.

The next READ statement (card #41) uses
the value of ACCNT_NO (obtained by the
preceding READ statement) as the key iden-
tifying the record to be read into the
structure B.

The IF statement in card 42 tests to see
whether a payment has been made. If none
has been made, the THEN clause (which
contains another IF statement in card 43)
is executed. This IF statement checks to
see whether the account balance is less
than or equal to zero; if the payment is

zero and the account balance is less than
or equal to zero, a new card is read. if
the payment 1is equal to zero, but the

account balance is greater than zero, the
PUT statement in line 45 prints the infor-

mation for the delinguent account. The
format 1list in this statement wuses the
COLUMN format item to 1line up the data

under the headings described in the
NEW_PAGE routine (cards 27 through 37).
The SKIP option in the PUT statement (card
45) insures that a new line is started each
time the PUT statement is executed.

If the payment is not equal to zero, the
DO-group of the ELSE clause starting in
card 51 is executed. The assignment state-
ment in this group subtracts the payment
from the balance in order to form a new
balance. The next statement (card 53)
rewrites the record into the file ACCNTS,
using the value of ACCNT_NO as the key.

Note that the record is rewritten only if
the value of BALANCE has been changed.
Note also that the REWRITE statement is

used to rewrite the record; a WRITE state-
ment would attempt to create a new record
with the same key, and this is an error.
Control then returns to NEWC2ZRD.

Card 56 contains a CLOSE statement that
is executed only as a result of the action
taken for an ENDFILE interrupt for the file
PAYMNT. All files are <closed and the
program is terminated by the END statement
in card 57.

Chapter 13: A PL/I Program 121

PART II: RULES AND SYNTACTIC DESCRIPTIONS

123

SECTION A: SYNTAX NOTATION. . .
SECTION B:
AND CARD-PUNCH CODES.
60-Character Set.
48-Character Set.
SECTION C: KEYWORDS
SECTION [): PICTURE SPECIFICATION
CHARACTERS. &« « o o o o o« o o =«

Picture Characters For
Character-String Data

Picture Characters For Numeric
Character Specifications. . . .

Digit and Decimal Point Specifiers

Zero Suppression Characters .
Insertion Characters.
Signs and Currency Symbol . .
Credit, Debit, And Overpunched
SigNSe o o ¢ ¢« ¢ e 4 e . e .
Exponent Specifiers
Sterling Pictures

SECTION E: EDIT-DIRECTED
ITEMS. v o ¢ o o o o o o o « =

Data Format Items.
Printing Format Items.
Spacing Format Item.
Remote Format Item
Use of Format Items.

Alphabetic List of Format Items.
The A Format Item.
The B Format Item.
The COLUMN Format Item . .
The E Format Item.
The F Format Item.
The LINE Format Item . . .
The PAGE Format Item . . .
The R Format Item. . . «
The SKIP Format Item . . .
The X Format Item.

SECTION F: DATA CONVERSION . . .
Arithmetic Conversion
Floating-Point Conversion.
Precision Conversion . . .

Base Conversion.

Data Type Conversion.
Coded Arithmetic to Numeric
Character e e e
Numeric Character to Coded
Arithmetic.

FORMAT

.

CHARACTER SETS WITH EBCDIC

.129

131
-131
.132

.133

.136

.136

-136
.137
.138
.139
.140

L1482
142
.14y

146
146
.146
146
.147
147

147
147
147
.148
.148
.149
.150
.150
.150
.150
.151

.152
.152
.152
.152
.153
.153

.153

.153

SECTION G:
PSEUDO-VARIABLES. . « « ¢« « « o« « « o

CONTENTS

Numeric Character to
Character-String.
Character-String to Bit- Str1ng .
Bit-String to Character-String .
Coded Arithmetic to Bit-String .
Bit-String to Coded Arithmetic .
Numeric Character to Bit-String.
Bit-String to Numeric Character.

Table of Ceiling Values
Tables for Results of Arithmetic
Operations . .

BUILT-IN FUNCTIONS AND

Computational Built-in Functions . . .
String Handling Built-in Functions.

BIT String Built-in Function . .
BOOL String Built-in Function. .
CHAR String Built-in Function. .
HIGH String Built-in Function. .
INDEX String Built-in Function .
LOW String Built-in Function . .
REPEAT String Built-in Function.
SUBSTR String Built-in Function.
UNSPEC String Built-in Function.

Arithmetic Built-In Functions . . .

ABS Arithmetic Built-in Function
BINARY Arithmetic Built-in

Function. . . . e e e e s e =
CEIL Arithmetic Bullt -in
Function. e e e e e
DECIMAL Arithmetic Bullt—ln
Function. . . « . . . e o o
FIXED Arithmetic Built- in
Function. e e« . .
FLOAT Arithmetic Bu11t-1n
Function. e e .
FLOOR Azlthmetlc Bullt in
Function.« . “« o o o o

MAX Arithmetic Bullt*ln Function
MIN Arithmetic Built-in Function
MOD Arithmetic Built-in Function
PRECISION Arithmetic Built-in

Function. . « . ¢ ¢ ¢ ¢« « o ¢
ROUND Arithmetic Built-in

Function. « e e .
SIGN Arithmetic Bullt—ln
Function. . . e o o @

TRUNC Azlthmetlc Bullt in
Function. . . «¢ ¢ ¢ o o o o« o« &

Mathematical Built-in Functions . .

ATAN Mathematical Built-in

Function. e .
ATAND Mdthematlcal Bullt -in
Function. . « « « . . . o e .
ATANH Mathematical Built-in
Function. . .+ « « « e o o
COS Matheuwatical Bullt—ln
Function. « o .

COSD Mathematical Bu:th-ll'l
Function. . . <« . +« ¢ ¢« &+ & o+ .

.153
.153
.153
.154
.155
.155
.155
.155

.155

.158
.158
.158
.158
.159
-160
.160
.160
.160
.161
.161
.162
.162
-162
.163
.163
.163
.163
.163
164
.164
164
.164
.165
.165
.165

.165
.166

.166
-166
.167
-167

.167

125

COSH Mathematical Built-in
Function.
ERF Mathematical Built-in
Function. . . e e e e .
ERFC Mafhematlual Built-in
Function.
EXP Mathematical Built-in
Function. .« .« « < .« .« < . .
LOG Mathematical Built-in
Function.
LOG10 Mathematical Bu1lt in
Function. . .
LOG2 Mathematlual Bu1lt—1n
Function. . =
SIN Mathematlcal Bu1lt in
function. . . . « . .
SIND Mathematlual Bullt in
Function. . . - . . .
SINHA Mathematltal BUllt in
Function.
SQRT Mathematlhal Bullt—ln
Function. . P . .
TAN Mathematlcal Built-in
Function. . . - e e e s
TAND Mathematlval Built-in
Function.
TANH Mathematloal Bu1lt in
Function. . « « « o « o o &
Ssummary of Mathematical
functions . . + <« « « . . .
Array Manipulation Built-in
FunctionS. .« « « « « « « a « «

ALL Array Manipulation Funct:
ANY Array Manipulation Funct:

Lon.
on.

PROD Array Manipulation Function
SUM Array Manipulation Funct:ion.

Miscellaneous Built-in Functions . . .

ADDR Built-in Function
DATE Built-in Function
NULL Built-in Function
STRING Built-in Function
TIME Built-in Function

Pseudo-Variables « « . . . « .

SUBSTR Pseudo-variable
UNSPEC Pseudo-variable

SECTION H: ON-CONDITIONS

Introduction . « ¢ ¢ 4 ¢« ¢ ¢ 4 o o «

Sect

tion Organization . . .« « « « « + &

Computational Conditions

CONVERSION Condition
FIXEDOVERFLOW Condition. . .
OVERFLOW Condition

SIZE Condition .
UNDERFLOW Condition.
ZERODIVIDE Condition

The
The
The
The
The
The

Input/Output Conditions.

126

ENDFILE Condition.
ENDPAGE Condition.
KEY Condition.
RECORD Condition
TRANSMIT Condition

The
The
The
The
The

-167
.167
.167
.167
.168
-168
.168
.168
.168
-.168
.168
.168
.169
-169
.169
.169
.169
.169
171
171
.171
171
171
2171
2172
172
172
172
<172
.173
-173
.173
174
174
174
175
.175
.175
175
.176
176
.176
.176

177
.177

System Action Condition.
The ERROR Condition. . . .
SECTION I: ATTRIBUTES.

Specification Of Attributes. . .
Factoring of Attributes. .

Data Attributes.
Problem Data. . .« . . . « . .
Program Control Data.

Entry Name Attributes.

File Description Attributes. . .

Scope Attributes

Storage Class Attributes

Alphabetic List of Attributes. .

ALIGNED and PACKED (Array and

Structure Attributes) . .
AUTOMATIC, STATIC,

(Storage Class Attributes)
BACKWARDS (File Description
Attribute).

and BASED

-

BASED (Storage Class Attxlbute).
BINARY and DECIMAL (Arithmetic

Data Attributes).
BIT and CHARACTER (String
Attributes)
BUFFERED and UNBUFFERED
Description Attributes) .

(File

BUILTIN (Entry Attribute). . . .
CHARACTER (String Attribute) . .
DECIMAL (Arxithmetic Data
Attribute). s e e .
DEFINED (Data Attrlbute) s e e .
Correspondence Defining.
Overlay Defining
Dimension (Array Attribute). . .
DIRECT and SEQUENTIAL (File
Description Attributes)
ENTRY Attribute.
ENVIRONMENT (File Description
Attribute). . . « e s e
EXTERNAL and INTLRNAL (Scope
Attributes)
FILE Attribute« .
FIXED and FLOAT (Arlthmetlc Data
Attributes)

.

FLOAT (Arithmetic Data

Attribute).
INPUT, OUTPUT, and UPDATL (File
Description Attributes)

INTERNAL (Scope Attribute) . . .
KEYED (File Description
Attribute). - e .
LABEL (Program Control Ddta
Attribute). v e e .
Length (String Attrlbute), - . .
OUTPUT (File Description
Attribute). . . . « e 4 e e e
PACKED (Array and Stxucture
Attribute). . . . “ e e e
PICTURE (Data Attrlbute) . e e .

<177
-177

.178

.178
.178

.178
.178
-179
.179
.179
.179
.180
.180
.180
.180

.181
.181

.181
.182
.182
.182
.183
.183
.183
.183
.183
.183

.184
.184

.185

.187
.187

.187
.188

.188
.188

.188

-188
.188

.188

.189
-189

POINTER (Program Control Data The DO Statement199

Actribute). ¢ . . 191 The END Statement.201
Precision (Arithmetic Data The ENTRY Statement.201
Attribute). 191 The FORMAT Statement201
PRINT (File Description The GET Statement. . . «202
Attribute). 192 The GO TO Statement.203
RECORD and STREAM (Fil The IF Statement203
Description Attributes)192 The LOCATE Statement204
RETURNS (Entry Name Attribute) . .193 The Null Statement204
SEQUENTIAL (File Description The ON Statement . . « « « « « . 204
Attribute). < . . .193 The OPEN Statement205
STATIC (Storage Class Attribute) .193 The PROCEDURE Statement.206
STREAM (File Description The PUT Statement. . «207
Attribute). ¢193 The READ Statement208
UPDATE (File Description The RETURN Statement208
Attribute). 193 The REVERT Statement209
The REWRITE Statement.209

SECTION J: STATEMENTS. . . « « « « « - 194 The SIGNAL Statement , .210
The Assignment Statement194 The STOP Statement210
The BEGIN Statement.197 The WRITE Statement. « 210

The CALL Statement197
The CLOSE Statement.197 SECTION K: DEFINITIONS OF TERMS211
The DECLARE Statement.197
The DISPLAY Statement.198 SECTION L: UPWARD COMPATIBILITY.217

127

Throughout this publication, wherever a
PL/I statement -- or some other combination
of elements -- is discussed, the manner of
writing that statement or phrase is illus-
trated with a uniform system of notation.

This notation is not a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction
-- of any programming language. It pro-
vides a brief but precise explanation of
the general patterns that the language

permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order

in which the elements may (or must) appear,
the punctuation that is required, and the
options that are allowed.

The following rules explain the use of
this notation for any programming language;

only the examples apply specifically to
PL/I:
1. A notation variable is the name of a

general class of elements in the pro-
gramming language. A notation varia-
ble must consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

b. A combination of lower-case and
upper-case letters. There must be
one portion all in lower-case let-
ters and one portion all in upper-
case letters, and the two portions
must be separated by a hyphen.

All such variables used are defined in
the manual either syntactically, using
this notation, or are defined
semantically.

Examples:

a. digit. This denotes the occur-
rence of a digit, which may be 0
through 9 inclusive.

b. file-name. This denotes the
occurrence of the notation varia-
ble named file name. An explana-
tion of file name is given else-
where in the publication.

c. DO-statement. This denotes the
occurrence of a DO statement. the
upper-case letters are used to
indicate a language keyword.

2.

SECTION A: SYNTAX NOTATION

A notation constant denotes the liter-
al occurrence of the characters rep-
resented. A notation constant con-
sists either of all capital letters or
of a special character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the nota-

tion variable "identifier," which is
defined elsewhere, followed by the
literal occurrence of the word FIXED

followed by the literal occurrence of
the semicolon (;).

unit," which is
defined

The term "syntactic
used in subsequent rules, is
as one of the following:
a. a single notation variable or
notation constant, or

b. any collection of notatiom varia-
bles, notation constants, syntax-
language symbols, and keywords
surrounded by braces or brackets.

Braces {} are used to denote grouping
of more than one element into a syn-
tactic unit.

Example:

FIXED
identifier
FLOAT

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates
that the variable "identifier" must be
followed by the literal occurrence of
either the word FIXED or the word
FLOAT.

The vertical stroke | indicates that a
choice is to be made.

Example:

identifier {FIXED|FLOAT}
This has exactly the same meaning as
the above example. Both methods are

used in this publication to display
alternatives.

Section A: Syntax Notation 129

Square brackets |
Anything enclosed in
appear one time or may not

] denote options.
brackets may
appear at

all. Brackets can serve the addition-
al purpose of delimiting a syntactic
unit.

Example:

FILE(file-name) [KEY(expression)]

This denotes the literal occurrence of
the word FILE followed by the notation
variable "file-name" enclosed in
parentheses and optionally followed by
the literal occurrence of the word KEY
with its notation variable
"expression®” enclosed in parentheses.
If, in rule 4, the two alternatives
also were optional, the vertical
stacking would be within brackets, and
there would be no need for braces.

Three dots ... denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

Example:
[digit] ...

The variable "digit" may or may not
occur since it is surrounded by brack-
ets. If it does occur, it may be
repeated one or more times.

Underlining is used to denote an ele-
ment in the language being described
when there is conflict between this
element and one in the syntax lan-
guage.

Example:
operand {&|}} operand

This denotes that the two occurrences
of the variable “operand" are sepa-
rated by either an "and"™ (&) or an
"or" (|). The notation constant | is
underlined in order to distinguish the
"or" symbol in the PL/I language from
the "or" symbols in the syntax lan-
guage.

SECTION B: CHARACTER SETS WITH EBCDIC AND CARD-PUNCH CODES

60-CHARACTER SET Character Card-Punch 8-Bit_Code
L 11-3 1101 0011
M 11-4 1101 0100
N 11-5 1101 0101
Character Card-Punch 8-Bit_Code 0] 11-6 1101 0110
blank no punches 0100 0000 P 11-7 1101 0111
. 12-8-3 0100 1011 Q 11-8 1101 1000
< 12-8-4 0100 1100 R 11-9 1101 1001
(12-8-5 0100 1101 S 0-2 1110 0010
+ 12-8-6 0100 1110 T 0-3 1110 0011
| 12-8-7 0100 1111 U 0-4 1110 0100
& 12 0101 0000 \Y 0-5 1110 0101
5 11-8-3 0101 1011 W 0-6 1110 0110
* 11-8-4 0101 1100 X 0-7 1110 0111
) 11-8-5 0101 1101 Y 0-8 1110 1000
H 11-8-6 0101 1110 Z 0-9 1110 1001
1 11-8-7 0101 1i11 0 0 1111 0000
- 11 0110 0000 1 1 1111 0001
/ 0-1 0110 0001 2 2 1111 0010
. 0-8-3 0110 1011 3 3 1111 0011
% 0-8-4 0110 1100 b4 4 1111 0100
_ 0-8-5 0110 1101 5 5 1111 0101
> 0-8-6 0110 1110 6 6 1111 0110
? 0-8-7 0110 1111 7 7 1111 0111
: 8-2 0111 1010 8 8 1111 1000
8-3 0111 1011 9 9 1111 1001
» 8-4 0111 1100
' 8~5 0111 1101
= 8-6 0111 1110
A 12-1 1100 0001 Composite
B 12-2 1100 0010 Symbols Card_Punch
z 12-3 1100 0011 <= 12-8-4, 8-6
D 12-4 1160 0100 | 12-8-7, 12-8-7
E 12-5 1100 0101 ** 11-8-4, 11-8-4
F 12-6 1100 0110 1< 11-8-7, 12-8-4
G 12-7 1100 0111 1> 11-8-7, 0-8-6
H 12-8 1100 1000 1= 11-8-7, 8-6
I 12-9 1100 1001 = 0-8-6, 8-6
J 11-1 1101 0001 /* 0-1, 11-8-4
K 11-2 1101 0010 */ 11-8-4,0-1

Section B: Character Sets With EBCDIC and Card-Punch Codes 131

48-CHARACTER SET

Character

blank

132

N ™ %0+~

R UNDQEDoCOm P

=

WNPRPORKXIQCCOCH DO VO Z

Card-Punch 8-Bit_ Code
no punches 0100 9000
12-8-3 0100 1011
12-8-5 0100 1101
12-8-6 0100 1110
11-8-3 0101 1011
11-8-4 0101 1100
11-8-5 0101 1101
11 0110 0000
0-1 0110 0001
0-8-3 0110 1011
8-5 0111 1101
8-6 0111 1110
12-1 1100 0001
12-2 1100 0010
12-3 1100 0011
12-4 1100 0100
12-5 1100 0101
12-6 1100 0110
12-7 1100 0111
12-8 1100 1000
12-9 1100 1001
11-1 1101 90001
11-2 1101 0010
11-3 1101 0011
11-4 1101 0100
11-5 1101 0101
11-6 1101 0110
11-7 1101 0111
11-8 1101 1000
11-9 1101 1001
0-2 1110 0010
0-3 1110 0011
0-4 1110 0100
0-5 1110 0101
0-6 1110 0110
0-7 1110 0111
0-8 1110 1000
0-9 1110 1001
0 1111 0000
1 1111 0001
2 1111 0010
3 1111 0011

m
5
6
7
8
9

Compo

LE
CAT
* ¥
NL
NG
NE
'R
AND
GE
GT
LT
NOT
OR
/¥
*/

Note:

follo

1.

cter Card-Punch 8-Bit Code
4 1111 0100
5 1111 0101
6 1111 0110
7 1111 0111
8 1111 1000
9 1111 1001
60-Character
site Set
1s card Punch Equivalent
12-8-3, 12-8-3 :
11--3, 12-5 =
12-3, 12-1, 0-3 i
11-8-4, 11-8-4 **
11-5, 11-3 1<
11-5, 12-7 1>
11-5, 12-5 1=
0-8-3, 12-8-3 H
12-1, 11-5, 12-4 &
12-7, 12-5 >=
12-7, 0-3 <
11--3, 0-3 >
ii-5, 11-6, 0-3 1
11-6, 11-9 |
0-1, 11-8-4 /%
11~-8-4, 0-1 */
when using the U48-character set, the
wing rules should be observed:

The two periods that replace the colon
must be immediately preceded by a
blank if the preceding character is a
period.

The two slashes that replace the per-
cent symbol must be immediately
preceded by a blank if the preceding
character is an asterisk, or immedi-
ately followed by a blank if the
following character is an asterisk.

The sequence "comma pericd" represents
a semicolon except when it occurs in a
comment or character string, or when
it is immediately followed by a digit.

ADDR(x)
ALIGNED
ALL(x)

ANY (x)
ATAN(x[,y]1)
ATAND (x[,y])
ATANH (x)
AUTOMATIC
BACKWWARDS

BASED (pointer-variable)

BEGIN

BINARY
BINARY(x[,pl,ql])
BIT(length)
BIT(valuel,sizel)
BOOL(X,y,wW)
BUFFERED

BUILTIN

BY

CALL

CEIL(x)
CHAR(valuel,sizel)
CHARACTER (length)
CLOSE

COLUMN (w)
CONVERSION

COS(x)

COSD(x)

COSH (x)

DATE

DECIMAL
DECIMAL(x([,pl,ql1])
DECLARE

DEFINED

DIRECT

DISPLAY

DO

EDIT

ELSE

END

ENDFILE

ENDPAGE

ENTRY
ENVIRONMENT
ERF(x)

ERFC (x)

ERROR

EXP(x)

EXTERNAL

FILE

FILE (file-name)
FIXED
FIXED(x[,pl,qll)
FIXEDOVERFLOW
FLOAT

FLOAT (x[,pl)
FLOOR (x)

FORMAT (format-1list)
FROM

GET

GO T0,GOTO

HIGH (1)

Use of Keyword
built-in function
built-in function
attribute
built-in function
built-in function
built-in function
built-in function
built-in function
attribute
attribute
attribute
statement
attribute
built-in function
attribute
built-in function
built-in function
attribute
attribute

clause of DO statement

statement
built-in function
built-in function
attribute
statement

format item
condition
built-in function
built-in function
built-in function
built-in function
attribute
built-in function
statement
attribute
attribute
statement
statement

SECTION C:_ _KEYWORDS

STREAM I1I/0 transmission mode

clause of IF statement

statement
condition
condition

attribute or statement

attribute
built-in function
built-in function
condition
built-in function
attribute
attribute
option of GET and
attribute
built-in function
condition
attribute
built-in function
built-in function
statement

pUT,

specification of RECORD I/0 statement

option of REWRITE or WRITE statement

statement
statement
puilt-function

Section C: Keywords 133

IF

INDEX (string,confiqg)
INPUT
INTERNAL
INTO(variable)
KEY (file-name)
KEY (x)

KEYED
KEYFROM (x)
LABEL

LINE (W)

LOCATE

LOG (x)

LOG2 (x)

LOG10 (x)

LOW (1)

MAIN

MAX (arguments)
MIN (arguments)
MOD (X4 ,X5)
NOCONVERSION
NOFIXEDOVERFLOW
NOCVERFLOW
NOSIZE
NOUNDERFLOW
NOZERODIVIDE
NULL

ON

ONSYSLOG

OPEN
OPTIONS(list)
ouTPUT
OVERFLOW
PACKED

PAGE
PAGESIZE (w)
PICTURE
POINTER
PRECISION(x,pl,gl)
PRINT
PROCEDURE

PROD (x)

POT

READ

RECORD

RECORD (file-name)
REPEAT (string, 1)
REPLY (c)
RETURN
RETURNS
REVERT
REWRITE

ROUND (x,n)
SEQUENTIAL
SET

SIGN(x)

SIGNAL

SIN(X)

SIND(x)
SINH(x)

SIZE

SKIP[(x)]
SQRT(X)

STATIC

STOP

STREAM

134

Use of Keyword

statement

built—-in function

attribute,option of the OPEN statement
attribute

option of RLEAD statement

condition

option of READ and REWRITE statement
attribute

option of WRITE and LOCATE statement
attribute

format i1tem, option of PUT statement
statement

built—-in function

built-in function

built—-in Zunction

built-in function

option of PROCEDURE statement
built-in function

built-in function

built-in function

condition prefix identifier, disables
condition prefix identifier, disables
condition prefix identifier, disables
condition prefix identifier, disables
condition prefix identifier, disables
condition prefix identifier, disables
built-in function

statement

opticn of PROCEDURE statement
statement

opticn of PROCEDURE statement
attribute, option of the OPEN statemen
condition

attribute

format item, option of PUT statement
opticn of the OPEN statement
attribute

attribute

built-in function

attribute

statement

built-in function

statement

statement

attribute

condition

built-in function

option of DISPLAY statement

statement

attribute

statement

statement

built-in function

attribute

option of READ and LOCATE statements
built-in function

statement

built-in function

built-in function

built-in function

condition

format item, option of PUT statement
built-in function

attribute

statement

attribute

CONVERSION

FIXEDOVERFLOW

OVERFLOW
SIZE
UNDERFLOW
ZERODIVIDE

t

STRING (x}

STRING (string-name)
SUBSTR(string, i, j)
SUM(x)

SYSTEM

TAN(x)

TAND (%)

TANH (x)

THEN

TIME

TO

TRANSMIT

TRUNC (x)
UNBUFFERED
UNDERFLOW

UNSPEC (x)

UPDATE

WHILE

WRITE

ZERODIVIDE

Use of Keyword

built-in function

option of GET and PUT statements
built-in function, pseudo-variable
built-in function

action specification of the ON statement
built~-in function

built-in function

built-in function

clause of IF statement

built-in function

clause of DO statement

condition

built-in function

attribute

condition

built-in function, pseudo-variable
attribute

clause of DO statement

statement

condition

Section C:

Keywords

135

SECTION D: PICTURE SPECIFICATION CHARACTERS

specification characters appear
in a PICTURE attribute. They are used to
describe the attributes of the associated
data item. A discussion of the concepts of
picture specifications appears in Part I,
Chapter 9, "Editing and String Handling."

ricture

A picture specification always describes
a cnaracter representation that is either a
character-string data item oOr a numeric
character data item. A character-string
item is one that can consist of

Figures in this section illustrate how
different picture specifications affect the
representation of values when assigned to a
pictured variable. Each figure shows the
original value of the data, the attributes
of the variable from which it is assigned,
the picture specification, and the
character-string value of the numeric char-
acter or pictured character-string varia-
ble.

alpnabetic characters, decimal digits, and PICTURE CHARACTERS FOR CHARACTER-STRING
other special characters. A numeric char- DATA

actar pictured_item is one in which the

data itself can consist only of decimal

digits, a decimal point and, optionally, a Only the X picture characte:r can be used
plus or minus sign. Other characters gen- to specify character-string items. It spe-
erally associated with arithmetic data, cifies that the associated position within
sucn as currency symbols, can alsc be the item can contain any character whose
specified. However, these characters are internal bit configuration can be recog-
aot a part of the arithmetic valuae of the nized by the computer in use. No charac-
numa2ric character variable, although the ters can be specified for insertion into a
characters are stored with the digits and picture character-string item.

are considered to be part of the character-
string value of the variable.

Arithmetic data assigned to a numeric
character variable is converted to numeric
character representation. Editing, such as
zerd suppression and the insertion of cther
characters, can be specified for a numeric
character data item. Editing <—annot be
specified for pictured character-string
data.
declared

Jata assigned to a variable

with a numeric picture specification must
pe internal coded arithmetic data (bit
strings and numeric character Jdata are
converted to internal coded arithmetic
before they are assigned to a numeric
character variable).

e P T
] source | Source Data |

| Attributes | (in constant form) |
prmmmmm e cmmmee oo e t----
| CHARACZTER(S) i '9B/2L"

1 | |

| CHARACTER(5) i f9B/2L"

I | |

| CHARACTER(5) | '9B/2L"Y |
S T Lo _

| *A variable declared with a character-string picture

| string value only.

Figure D-1.

136

Pictured Character-String Examples

Figure D-1 gives examples of character-
string picture specifications. In the
figure, the letter b indicates a blank
character. Note that assignments are left-
adjusted, and any necessary padding with
blanks is on the right.

PICTURE_CHARACTERS FOR_NUMERIC CHARACTER

SPECIFICATIONS

Numeric
numeric values;

character data must represent
therefore, the associated
picture specification cannot contain the
character X. The picture characters for
numeric character data can specify detailed
editing of the data.

———————————————————— e |
Picture | Character-String |
Specification | Value?l]
-- e oo 1
XXXXX | 9B/ 2L |

| |

XXX | 9B/ |

f |

XXXXXXX | 9B/2Lbb |
_____ i i e e o i e
specification has a character-|

A numeric character variable can be
considered to have two different kinds of
value, depending wupon its use. They are
(1) its arithmetic wvalue and (2) its
character-string value.

The arithmetic value 1is the value
expressed by the decimal digits of the data
item, the assumed . location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
arithmetic or bit-string expression opera-
tion or in an assignment to a variable with
either the FIXED, FLOAT, or BIT attribute.
In such cases, the arithmetic value of the
numeric character variable is converted to

internal coded arithmetic representation.
The arithmetic value is also used in an
assignment to another numeric character

variable.

The character-string value is the value
expressed by the decimal digits of the data
item, as well as all of the editing and
insertion characters appearing in the pic-
ture specification. T'he character-string
value does not, however, include the
assumed location of a decimal point, as
specified by the picture character V. The
character-string value of a numeric charac-
ter variable is used whenever the variable
appears in a character-string expression
operation or in an assignment to a
character-string variable, or whenever a
reference 1is made to a character-string
variable that is defined on the numeric
character variable.

The picture characters for numeric char-
acter specifications may be grouped into
the following categories:

e Digit and Decimal Point Specifiers

s Zero Suppression Characters

e Insertion Characters

e Numeric Signs and Currency Symbol

e Credit, Debit, and Overpunched Signs

¢ Exponent Specifiers

¢ Sterling Pictures

The picture characters in these groups
can be used in various combinations. These
combinations depend on the type of data
being described by the specification. A
discussion of these types and how they can
be described follows.

A numeric character picture specifi-
cation can describe either decimal or

sterling data. Decimal numeric character
values can be in fixed-point or floating-

Section D:

numeric character picture
specification for a fixed-point value con-
tains only one field and this field can
consist of +two subfields: an integer sub-
field describing the digits to the left of
the decimal point in the fixed-point value,
and a fractional subfield describing the
digits to the right of the decimal point.

point. The

The numeric character picture specifi-
cation for a floating-point value consists
of two fields: a mantissa field and an
exponent field. The mantissa field des-
cribes a fixed-point value, which when
multiplied by 10 raised to the value des-
cribed by the exponent field gives the
actual value represented by the floating-

point notation; the mantissa field is
specified in the same way that a fixed-
point field is specified. The exponent
field describes a signed or unsigned

integer power of ten.

The sterling picture specification can
contain up to three fields: a pounds field,
a shillings field, and a pence field; the
pence field can have two subfields. Sterl-
ing pictures are discussed separately at
the end of this section.

A major requirement of the picture
specification for numeric character data is
that each field must contain at 1least one

picture character that specifies a digit
position. This picture character, however,
need not be the digit character 9. Other

picture characters, such as the zero
suppression characters (Z or *), also spec-
ify digit positions. At least one of these
characters must be used to define a numeric
character specification. It cannot contain
the picture character X.

DIGIT AND DECIMAL POINT SPECIFIERS

The picture characters 9 and V are used
in the simplest form of numeric character

specifications that represent fixed-point
decimal values.
9 specifies that the associated field

position is to contain a decimal digit.
V specifies that a decimal point is
assumed at this position in the asso-
ciated data item. However, it does not
specify that an actual decimal point is
to be inserted. The integer and frac-
tional parts of the assigned value are
aligned on the V character; therefore,
an assigned value may be truncated or
extended with zero digits at either end.

Note that if significant digits are
truncated on the 1left, the result is
undefined and a SIZE interrupt will

Picture Specification Characters 137

ettt i B B e ity 1
1 Source | Source Data | Picture | Character-String

| Attributes | (in constant form) | Specification | Valuel
prmmmm o mm o fom o fom oo rm o :
{ FIXED(5) | 12345 | 99999 | 12345 |
| I I | !
| FIXED(5) | 12345 | 99999V | 12345

| | | | |
{ FIXED(5) | 12345 | 999v99 | 345002

| | I I |
| FIXED(5) | 12345 | V99999 | 00000=

| | | | |
| FIXED(7) | 1234567 | 99999 | 345672

		I	
FIXED(3)	123	99999	00123
I	I		
FIXED(5,2)] 123.45	999v99	12345	

I | | | |
| FIXED(7,2) | 12345.67 | 9v9 | 562 |
I | | | |
| FIXED(5,2) | 123.45 | 99999 | 00123
b N S e 1 — 4
|*The arithmetic value is the value expressed by the digits and the actual or assumed]|
| location of the V in the specification. |
|2In this case, PL/I does not define the result since significant digits have been|
| truncated on the 1left; the result shown, however, is that given for System/360|

| implementations.

Figure D-2.

osccur, 1if SIZE is enabled. If no V
character appears in the picture speci-
fication of a fixed-point decimal value
(or in the mantissa field of a picture
specification of a floating-point deci-

mal value), a V is assumed at the right
end of the field specificatior.. This
can cause the assigned value to be

truncated, if necessary, to an integer.
The V character cannot appear more than
once in a picture specification. The V
is considered to be a subfield delimiter
in the picture specification; that is,
the portion preceding the V and the
pcrtion following it (if any) are each a
subfield of the specification.
Figure D-2 gives examples of numeric
character specifications.

ZERD SUPPRESSION CHARACTERS

The zero suppression picture characters
specify conditional digit positions in the
character-string value and may cause lead-
ing zeros to be replaced by asterisks or
blanks. Leading zeros are those (1) that
occur in the leftmost digit posit.ons of
fixed-point numbers or in the Ileftmost
digit positions of the two parts of
floating-point numbers, (2) that are to the
left of the assumed position of a decimal

138

J

Pictured Numeric Character Examples

point, and (3) that are not preceded by any
of the digits 1 through 9. The leftmost
nonzero digit in a number and all digits,

zeros or not, to the right of it represent
significant digits. Note that a floating-
point number can also have a leading zero

in the exponent field.

Z specifies a conditional digit position
and causes a leading zero in the
associated data position to be replaced
by a blank character. When the asso-
ciated data position does not contain a
leading zero, the digit in the position
is not replaced by a blank character.
The picture character Z cannot appear in
the same subfield as the picture charac-
ter *, nor can it appear to the right of
a drifting picture character or any of
the picture characters 9, T, I, or R in
a field.

* gpecifies a conditional digit position
and is used the way the picture char-
acter Z is used, except that leading
zeros are replaced by asterisks. The
picture character * cannot appear with
the picture character 2 in the same
subfield, nor can it appear to the right
of a drifting picture character or any
of the picture characters 9, T, I, or R
in a field.

| B T T 1
| Source | Source Data | Picture | Character-String
|Attributes | (in constant form) | Specification | Value? |
oo oo — s -1
| FIXED(5) { 12345 | 272299 | 12345 |
| | | | I
FIXED (5)	00100	22299	bb100
FIXED (%)	00000 i 227299	bbb00	
		[
FIXED (5)	00100	22227	bb100
i			
FIXED (5)	00000	Z7.22%	bbbbb]
FIXED (5, 2)	123.45	227299 i bb123	
] I I		
FIXED (5, 2)	001.23	Z27ZZV99	bb123
			[
FIXED (%) i 12345	2Z22V99	345002	
FIXED (%)	00000	ZZZVZZ	bbbbb
FIXED (5)	00100	ok Kk	*%100
FIXED(5)	00000	*ok ok k	* ok ok
		I	
FIXED(5,2)	000.01	*AK	**%01
____________________ U (S i —_— _ 8			
*The arithmetic value is the value expressed by the digits and the actual or assumed			
location of the V in the specification.			
2In this case, PL/I does not define the result since significant digits have been			
truncated on the 1left; the result shown, however, is that given for System/360			
implementations.			
L e e e —_— 3
Figure D-3. Examples of Zero Suppression

Note: If one of the picture characters Z INSERTION CHARACTERS

or * appears to the right of the picture

character V, then all fractional digit

positions in the specification, as well as The picture characters comma (,), point

all integer digit positions must employ the
Z or * picture character, respectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value will be suppressed only
if all positions in the fractional part
contain zeros and all integer positions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part will be

replaced by blanks or asterisks if the
fractional part contains any significant
digit.

Figure D-3 gives examples of the use of

zerd suppression characters. In the fig-
ure, the letter b indicates a blank charac-
ter.

Section D:

(.), and blank (B) are insertion charac-
ters; they cause the specified character to
be inserted into the associated position of
the numeric character data. They do not
indicate digit positions, but are inserted
between digits. Each does, however,
actually represent a character position in
the character-string value, whether or not
the character is suppressed. The comma and
point are conditional insertion characters;
within a string of zero suppression charac-
ters, they, too, may be suppressed. The
blank (B) is an unconditional insertion
character; it specifies that a blank is to
appear in the associated position.

Note: 1Imnsertion characters are applicable
only to the character-string value. They
specify nothing about the arithmetic value
of the data item.

causes a comma to be inserted into the
associated position of the numeric char-
acter data when no zero suppression
occurs. If zero suppression does occur,

Picture Specification Characters 139

the comma is
unsuppressed digit

inserted only when an
appears to the left

of the comma position, or when a V
appears immediately to the left of it
and the fractional part contains any

significant digits. In all other cases
where zero suppression occurs, one of
three possible characters is insierted in
place of the comma. The choice of
character to replace the comma depends
upon the first picture character that
both precedes the comma position and
gpecifies a digit position:

e If this character
asterisk, the comma
assigned an asterisk.

position is an
position is

o If this character positicn is a
drifting sign or a drifting currency
symbol (discussed later), the drift-
ing string is assumed to include the

comma position, and the action taken
is the same as that for drifting
characters.

e If this character position is not an
asterisk or a drifting character, the

comma position is assigned a blank
character.
is used the same way the comma picture

character is used, except that a point
(.) is assigned to the associated posi-
tion. This character never causes point
alignment in the picture specifications
of a fixed-point decimal number and is
not a part of the arithmetic value of
the data item. That function is served
sdolely by the picture character V.
Unless the V actually appears, it is
assumed to be to the right of the
rightmost digit position in the field,
and point alignment is handled accord-
ingly, even if the point insertion char-
acter appears elsewhere.

B specifies that a blank character be
inserted into the associated position of
the character-string value of the numer-
ic character field.

The point (or the comma) can be used in
conjunction with the V to cause insertion
of the point (or comma) in the position
that delimits the end of the integer por-
tion and the beginning of the fractional
porti.on of a fixed-point (or
floating-point) number, as might be desired
in printing, since the V does not cause
printing of a point. In this case, the

point: must immediately precede or immedi-
ately follow the V. If the point precedes
the V, it will be inserted only if a
significant digit appears to the left of

the V, even if all fractional digits are
significant. If the point immediately fol-
lows the VvV, it will be suppressed if all

140

digits to the right of the
pressed, but it will appear if
any fractional digits (along
intervening zeros).

V are sup-
there are
with any

The insertion characters E, comma, and
point must be preceded by a digit position
in the same field.

Figure D-4 gives examples cof the use of
insertion characters. In the figure, the
letter b indicates a blank character.

SIGNS AND CURRENCY SYMBOL

The picture characters S, +, and -
specify signs in numeric character data.
The picture character $§ specifies a curren-
cy symbol in the character-string value of
numeric character data.

These picture characters may be used in
either a static ox a drifting manner. A
drifting character is similar to a zero
suppression character in that it can cause
zero suppression. However, a single drift-
ing character is always inserted (unless
the entire field is suppressed) in the
position specified by the end of the drift-
ing string or in the position immediately
to the left of the first significant digit.

The static use of these characters spe-
cifies that a sign, a currency symbol, or a
blank always appears in the associated
position. The drifting use specifies that
leading zeros are to be suppressed. In
this case, the rightmost suppressed posi-
tion associated with the picture character
will contain a sign, a blank, or a currency
symbol.

A drifting character is specified by
multiple use of that character in a picture
field. Thus, if a field contains one
currency symbol, it is interpreted as sta-
tic; if it contains more than one, it is
interpreted as drifting. The drifting
character must be specified in each digit
position through which it may drift.

Drifting characters
strings. A string is a sequence of the
same drifting character, optionally con-
taining a V and one of the insertion
characters comma, point, or B. Any of the
insertion characters comma, point, or B
following the last drifting symbol of the
string is considered part of the drifting
string. However, a following V terminates
the drifting string and is not part of it.
A field of a picture specification can
contain only one drifting string. A drift-
ing string cannot be preceded by a digit
position, insertion characters, or a V. If

must appear in

| source 1 source pata |
| Attributes 1 (in constant form) |
r-—-EE;ED(U)— | 1238 T_m_-
{ FIXED(6,2) : 1234.56 :

: FIXED (4,2) = 12.34 :

! FIXED(4,2) { 00.03 I

! FIXED(4,2) { 00.03 =

: FIXED(4,2) : 12.34 }

: FIXED(4,2) ; 00.00 :

} FIXED(4,2) { 67.89 1

= FIXED(7,2) I 12345.67 :

{ FIXED(7,2) { 00123.45 :

l FIXED(9,2) { 1234567.89 =

: FIXED(6) } 123456 :

: FIXED(6) { 001234 :

= FIXED(6) = 000000 {

: FIXED(6) = 000000 :

: FIXED(6) = 123456 1

{ FIXED(3) : 123 {
[e Lo

|*The arithmetic value is the value expressed

| location of the V in the specification.
b -

Figure D-U4. Examples of Insertion Characters
a drifting string exists in a field, zero
suppression character (Z or #*) must not

appear in the same field.

The position in the data associated with
the characters comma, point, and B appear-
ing in a string of drifting characters will
contain one of the following:

e Comma, point, or blank if a significant
digit has appeared to the left

e The drifting symbol, if the next posi-
tion to the right contains the leftmost
significant digit of the field

e Blank, if the leftmost
digit of the field
position to the right

significant
is more than one

If a drifting string contains the drift-
ing character n times, then the string is

Section D:

Picture T Character-String i
Specification | Value? |
Tiees T VY)
9,999vV.99 % 1,234.56 I
77.VZZ = 12.34 :
2% .VZ% : bbb03 :
Z7V.2% } bb.03 :
27ZV.22 : 12.34 {
Z22V.%2 : bbbbb :
9,999,999.v99 = 0,000,067.89 {
*%,999V.99 ‘ 12,345.67 :
*%,999V.99 % *¥%123.45 :
9.999.999V, 99 ‘ 1.234.567,89 :
99.999.9 : 12.345.6 {
2%,2%2,%% : bbb12, 34 }
2%,2%,7% { bbbbbbbb {
LI LI 1 : *k ok ok dok {
99B99B99 l 12b34b56 :
9BB9BB9 i 1bb2bb3 j
by the-a;gitﬁ and the actuaI or assumedi
J

associated with n-1 conditional digit posi-
tions. The position associated with the
leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field, the other potentially drifting
characters c¢an appear only once in the
field, i.e., the other character represents
a static sign or currency symbol.

Only one type of sign character can
appear in each field. An S, +, or - used
as a static character can appear to the

left of all digits in the mantissa and
exponent fields of a floating-point speci-
fication and either to the right or left of
all digits positions of a fixed-point
specification.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the

Picture Specification Characters 141

subfield following the V must also be part
of the drifting string that comma2nces the
second subfield.

In the case in which all digit positions
after the V contain drifting characters,
suppresion in the subfield will o<cur only
if all of the integer and fractional digits
are zero. The resulting edited data item
will then be all blanks. If there are any
significant fractional digits, the entire
fractional portion will appear unsup-
pressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
tthe left of all digit positions in a
field of a specification or to the right
of all digit positions in a specifi-
cation. See details above for the
drifting use of the character.

S specifies the plus sign character (+) if
the data wvalue is 20, otherwise it
specifies the minus sign character (-).
The character may be drifting or static.
The rules are identical to those for the
currency symbol.

+ specifies the plus sign character (+) if
the data value is = 0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are iden-
tical to those for the currency symbol.

- specifies the minus sign character (-)
if +the data wvalue 1is <0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are iden-
tical to those for the currency symbol.

Figure D-5 gives examples of the use of
drifting picture characters. In the €£ig-
ure, the letter b indicates a blank charac-
ter.

CREDIT, DEBIT, AND OVERPUNCHED SIGNS

pairs CR (credit) and DB
(debit) specify the signs of fixed-point
numeric character data items and usually
appear in business report forms.

The character

Any of the picture characters T, I, or R

specifies an overpunched sign in the asso-
ciated digit position of a fixed-point
numeric character data item. An over-

punched sign is a 12-punch (for plus) or an

142

(for minus) punched into the same
column as a digit. It indicates the sign
of the arithmetic data item. Only one
overpunched sign can appear in a specifi-
cation for a fixed-point number. The over-
punch character can appear only in the last
digit position within a field.

11-punch

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR 1is wused
except that the 1letters DB appear in
the associated positions.

T specifies that the associated position,
on input, will contain a digit over-
punched with the sign of the data. It
also specifies that, an overpunch is to
be indicated in the character-string
value.

I specifies that the associated position,
on input, will contain a digit over-
punched with + if the value is 20;
otherwise, it will contain the digit
with no overpunching. It also speci-
fies that an overpunch is to be indi-
cated in the character-string value if
the data value is 20.

R specifies that the associated position,
on input, will contain & digit over-
punched with - if the value 1is <0;
otherwise, it will contain the digit
with no overpunching. It also speci-
fies that an overpunch is to be indi-
cated in the character-string value if
the data value is <0. '

Note: The picture characters CR, DB, T,
I, and R cannot be used with any other sign
characters in the same field.

Figure D-6 gives examples of the CR, DB,
and overpunch characters. In the figure,
the letter b indicates a blank character.

EXPONENT SPECIFIERS

The picture characters K and E delimit
the exponent field of a numeric character
specification that describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric charac-
ter floating-point picture specification.
The picture characters K and E cannot
appear in the same specification.

{ ——————— Source T ;;;;;;_5;;;——_ | Picture } Character-String }
| Attributes | (in constant form) | Specification | Valuet |
e P [— PP i
: FIXED(5,2) : 001.23 I $222V.99 } $bbl.23 :
} FIXED(5,2) = 000.00 I $222ZV.22 { bbbbbbb ’
: FIXED(5,2) I 123.45 { $559V.99 { $123.45 ’
{ FIXED(5,2) l 001.23 = $659v.99 { bb$1.23 }
} FIXED(5,2) { 012.00 : 99% : 12$:
} FIXED(2) I 12 = $6%,999 ! bbb$012 l
: FIXED (4) : 1234 } $55,999 = b$1, 234

: FIXED(5,2) } 123.45 : S999V.99 ! +123.45

: FIXED(5,2) = -123.45 : S999V.99 ‘ -123.45 =
: FIXED(5,2) = -123.45 { +999V.99 : b123.45 }
! FIXED(5,2) : 123.45 : -999v. 99 l b123.45 %
: FIXED(5,2) { 123.45 { 999V.99s l 123.45+ :
{ FIXED(5,2) } 001.23 : +++B+V.99 : bbb+1.23 l
: FIXED(5,2) } 001.23 I ---9v.99 , bbb1l. 23 !
} FIXED(5,2) : -001.23 } SSS9V.99 } bb-1.23 :
___________________ U i 4

|*The arithmetic value is the value expressed by the digits and the actual or assumed|
| location of the V in the specification. |

b —————————— - —— R

Figure D-5. Examples of Drifting Picture Characters

——=="= mTmeT T T === T - T 1
| Source | Source Data | Picture | Character-String |
| Attributes | (in constant form) | Specification | Valuet

— $- - oo :
: FIXED (3) l -123 : $Z.99CR = $1.23CR {
= FIXED(4,2) 1 12.34 1 $Z22V.99CR : $12,34bb }
: FIXED (4,2) : -12.34 { $2ZV.99DB : $12.34DB l
: FIXED (4,2) : 12.34 { $22V.99DB : $12.34bb {
FIXED (4)	1021	9991	102a
FIXED (4)	-1021	Z99R	1023
I	I	I	
FIXED (4)	1021	299T	102a
l._______,__ ——— L — PO O {

|*The arithmetic value is the value expressed by the digits and the actual or assumed|
| location of the V in the specification. |
[A, J

Figure D-6. Examples of CR, DB, T, I, and R Picture Characters

Section D: Picture Specification Characters 143

[CrmTTT T m s T T
| Source | Source Data

| Attributes | (in constant form) |
prmmmm o oo R +
| FLOAT (5) | .12345E06 |
| I |
| FLOAT (5) | .12345E-06 |
I | I
| FLOAT (5) | .12345E+06 |
I | |
| FLOAT (5) i -123.45E+12 |
FLOAT (5)	001.23E-01
FLOAT (5)	001.23E+04
[I	
FLOAT (5)	001.23E+04
I	I
FLOAT (5)	001.23E+04
O e L

{*The arithmetic value is the value expressed by the digits and the

| location of the V in the specification.

Figure D-7.

that the exponent field
to the right of the associated
It does not specify a char-
numeric character data

K specifies
appears
position.
acter 1in the
item.

E specifies that the associated position
contains the letter E, which indicates
the start of the exponent field.

The value of the exponent is adjusted in
the character-string value so that the
firstt significant digit of the first field
(the mantissa) appears 1in the position
associated with the first digit specifier
of the specification (even if it is a zero
suppression character).

Iigure D-7 gives examples of the use of
exponent delimiters. In the figure, the
letter b indicates a blank character.

STERLING PICTURES

The following picture characters are
used in picture specifications for sterling
data:

8 specifies the position of a <chilling
cdligit in BSI single-character represen-

tation. Ten shillings is represented
by a 12-punch (&) and eleven through
r.ineteen shillings are represented by

the characters A through I, resgective-
1ly.

7 specifies the position of a pence digit

144

Picture T Character—String_-m}
Specification | Value |
Tulsesssmss | .izsussos |
V.99999ES99 ! < 12345E-06 :
V.99999KSsS99 : .12345+06 }
S999V.99ES99 = -123.45E+12 i
$559.VIIESS9 : +123.00Eb-3 ;
Z7ZZV.99KsS99 : 123.00+02 %
SZ99V.99ES99 : +123.00E+02 :
SSSSV.99E-99 : +123.00Eb02 i
_____________________ L-——;;;;al or assumed}
e

Examples of Floating-Foint Picture Specifications

in BSI single-character representation.
Tenpence is represented by a 12-punch
(¢) and elevenpence is represented by
an 1i-punch (-).

6 specifies the position of a pence digit
in IBM single-character representation.
Tenpence is represented by an 1l-punch
(-) and elevenpence is represented by a
12-punch (§).

P specifies that the associated position
contains the pence character D.

G specifies the start of a sterling pic-
ture. It does not specify a character
in the numeric character data item.

H specifies that the associated position
contains the shilling character S.

M specifies the start of a field. It
does not specify a character in the
numeric character data item.

Sterling data items are considered to be
fixed-point decimal data items. When
involved in arithmetic operations, they are
converted to a value representing fixed-
point pence. Sterling pictures have the
general form:

PICTURE

'G [editing-character-1] ...

M pounds-field

M [separator-11 ...
shillings-fielad

M [separator-2]1 ...
pence-field

[editing-character-2] ..."

"Editing character 1" can be one or more
of the following static picture characters:

$ + - s
The "pounds field" can contain the
following picture characters:
Z %9 , 8%+ -8
The last four characters ($ + - S) must
be drifting characters. The comma can be

used as an insertion character.

"Separator 1" can be one or more of the
following picture characters:

/ . B
The "shillings field"™ can be:
{99 |

2% | 9|8}

The picture character Z can occur only
if the entire field to the left of this

character (including the pounds field) has
no digit position other than Z.

"Separator 2" can be one or more of the
picture characters:

/ . BH

The "pence field" takes the form:

The final 9 can be replaced by
the following:

one of

T I R
"Editing character 2" can be
1. a $ and/or a P,

or

2. a $ and/or a b,
B characters, or

mixed with one or more

3. one of CR DB + -~ S in combination with
either of the above configurations.

The pounds, shillings, and pence fields
must each contain at least one digit posi-
tion.

Zero suppression in sterling pictures is
performed on the total specification, not
separately on each of the fields. Separa-
tor characters slash(/), point(.), B, and H
are never suppressed. For a single sterl-
ing specification, there can be a maximum
of one sign. This sign can be specified by
"editing character 1," by T, I, or R in the
pence field, by "editing character 2", or
by a drifting string in the pounds field.

-) Figure D-8 gives examples of the use of
99 v v sterling picture specifications.
Z9 V. [9...1 22 V. (z...1]
7 .V .V
6
[T L et L T———- - T
| Source | Souxrce Data | Picture | Character-String
| Attributes | (stated in pence) | Specification | Valuel |
pommm o G - R i pmmm e .
| FIXED (4) | 0534] GMZI9M.8M.99V.9CR] b2.4.06.0bb |
| | | I I
| FIXED(4) | 0019 | GMZZM.Z2ZM.Z72P | bb.bl1.07D |
S A S L —— 4

|*The arithmetic value of a numeric character variable declared with a sterling picture]|

| specification is

its value expressed as a valid sterling fixed-point constant, whichj|

| for arithmetic operations is always converted to its value expressed in pence. |

Figure D-8.

Section D:

Examples of Sterling Picture Specifications

Picture Specification Characters 145

SECTION E: EDIT-DIRECTED FORMAT ITEMS

This section describes each of the edit-
directed format items that can appear in
the format list of a GET or PUT statement.

There are four categories of tormat
items: data format items, printing format
items, the spacing format item, and the

remote format item.

In this section, the four categcries are
discussed separately and the format items
are listed under each category. The
remainder of the section contains detailed
discussions of each cf the format items,
with the discussions appearing in alphabet-
ic crder.

DATA_FORMAT ITEMS

A data format item describes the exter-
nal format of a single data item.

'or input, the data in the stream is
considered to ope a continucus string of
characters; all blanks are treated as char-
acters in the stream, as are quotation
marks. Each data format item in a GET
statement specifies the number of cnarac-
ters to be obtained from the stream and
describes the way those characters are to
be interpreted. Strings should not be
enclosed in gquotation marks, nor should the
letter B be used to identify bit strings.

For output, the data in the stream takes
the form specified by the forma: 1list.
Each data format item in a PUT s:atement
specifies the width of a field intc which
the associated data item in character form
is to be placed and describes the format
that the wvalue is to take. Enclosing
quotation marks are not inserted, nor is
the letter B to identify bit strings.

Leading blanks are not inserxrted automat-
ically to separate data items in the output
stream. String data is left-adjusted in
the field whose width is specified. Arith-
metic data 1is right-adjusted. Leading
blanks will not appear in the stream unless
the specified field width allows for them.
Truncation, due to inadequate field-width
specification is on the left for arithmetic
items, on the right for string items.

Note that the value of binary deta both
on input and output is always represented
in decimal form for edit-directed transmis-
sion.

146

Following is a 1list of data format

items:

Fixed-point
format item

F(specification)

Floating-point
format item

E(specification)

Bit-string
format item

B(specification)

Character-string
format item

A(specification)

PRINTING FORMAT ITEMS

The printing format items apply only to
output and only to files with the PRINT
attribute. They specify formatting of the
printed page.

Following is
items:

a list of printing format

Paging format PAGE

item
Line skipping SKIP[(specification)]
format item
Line position LINE(specification)
format item
Column position COLUMN(specification)
format item

A printing format item has no effect
unless it 1is encountered before the data
list is exhausted.

The PAGE, SKIP, and LINE format items
have the same effect as the corresponding
options of the PUT statement, except that
the format items are executed only when
they are encountered in the format 1list,
while the options of the PUT statement are
executed before any data is transmitted.

SPACING FORMAT ITEM

The spacing format item specifies rela-
tive horizontal spacing. Oon input, it
specifies a number of characters in the
stream to be skipped over and ignored.

On output, it specifies a number of
blanks to be inserted into the stream.

The spacing format item is:
X(specification)
The spacing format item has no effect

unless it 1is encountered before the data
list is exhausted.

REMOTE FORMAT ITEM

The remote format item specifies the
label of a FORMAT statement that contains a
format list which is to be taken to replace
the remote format item.

The remote format item is:
R(statement-label-designator)
The "statement label designator" is a label

constant or an unsubscripted element label
variable.

USE OF_ FORMAT ITEMS

The "specification" that is listed above
for all but the PAGE and remote format

items can contain one or more expressions.
Such expressions must be decimal integer
constants.
ALPHABETIC LIST OF FORMAT ITEMS
The A Format Item

The A format item is:

A [(field-width)]
The character-string format item des-

representation of a
It must be used only

cribes the external
string of characters.
for character strings. Character strings
cannot be transmitted by any other format
item. No conversion is performed.

General rules:

1. The "field width" (sometimes expressed
as w) must be a decimal integer con-
stant, unsigned and greater than zero,
but less than 256. It specifies the
number of character positions in the
data stream that contain (or will
contain) the string.

Section E:

2. On input, the specified number of
characters is obtained from the data
stream and assigned to the associated
element in the data list. The field
width is always required on input. If
quotation marks appear in the stream,
they are treated as characters in the
string.

3. On output, the field width need not be
specified; in this case, the length of
the associated string is used, and the
data item completely fills the field.
Enclosing quotation marks are never
inserted.

The B Format Item

The B format item is:
B [(field-width)]l

The bit-string format item describes the
external representation of a bit string.
Each bit is represented by the character 0
or 1. This format item can be used only
for bit strings; bit strings cannot be

transmitted by any other format item.
General rules:

1. The "field width" (sometimes expressed
as w) must be an unsigned decimal
integer constant greater than zero and
less than 65. It specifies the number
of data-stream character positions
that contain (or will contain) the bit
string.

2. On input, the character representation
of the bit string may occur anywhere
within the specified field. Blanks,
which may appear before and after the
bit string in the field are ignored.
The field width is always regquired on
input. Any character other than 0 or
1 (including embedded blanks, quota-
tion marks, or the letter B) will
raise the CONVERSION condition.

3. On output, the character representa-
tion of the bit string is left-
adjusted in the specified field, and
necessary truncation or extension with
blanks occurs on the right. No
gquotation marks are inserted, nor is

the identifying letter B. If the
field width is not specified, the
declared 1length of the associated

string is wused, and the data item

completely fills the field.

Edit-Directed Format Items 147

The COLUMN Format Item

The COLUMN format item is:
COLUMN (character-position)

The column position format item controls
the spacing of a data item to a specified
character position within the line. It can
be used only with a PRINT file and, conse-

quently, it <can appear only in a PUT
statement.
General rules:

1. The “"character position"™ (sometimes

expressed as W) must be a decimal
integer constant greater than zero and
less than 256.

2. Blank characters are placed into the
data stream so that the next field
will begin at the specified character
position of the current line. If data
has already been placed into tae spec-
ified character position or beyond,
the current 1line is completel, and a
new line is started. Blank characters
are then inserted into the dats stream
s0 that the next field will begin at
the specified character position of
the new line.

3. If the specified character position
lies beyond the rightmost character
position of the current line (i.e., if
W is greater than the line size), then
the character position is assumed to
be one.

4. The COLUMN format item has no effect

unless it is encountered before the
data list is exhausted.

The E Format Item

The E format item is:

F(field-width,number~-of-fractional-digits
[,number-of-significant—-digits])

The floating-point format item describes
the external representation of decimal
arithmetic data in floating-point format.

General rules:

1. The "field width," "number cof frac-
tional digits," and "number of signi-
ficant digits"™ (sometimes referred to
as w, d, and s, respectively) must be
unsigned decimal integer constants.
The field width must be less than 33.

148

"Field width" specifies the total num-
ber of characters in the field.

"Number of fractional digits" speci-

fies the number of digits to appeaxr
following the decimal point in the
mantissa.

"Number of significant digits"™ speci-

fies the number of digits that must
appear in the mantissa.

On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-point or fixed-point constant

located anywhere within the specified
field. If the data item is a fixed-
point number, an exponent of zero is
assumed.

The external form of the number is:

[1]mantissa[[E]{+|-}} eXponeng]

El+]-1]
The mantissa must be a decimal fixed-
point constant.
a. The number can appear anywhere

within the specified field; blanks
may appear before and after the
number in the field. If the
entire field is blank, the CONVER-
SION condition is raised. When no
decimal point appears, the number
of fractional digits (d) specifies
the number of character positions
in that part of the mantissa to
the right of the assumed decimal
point. If a decimal point actual-
ly does appear in the data, it
overrides the number of the frac-
tional digits specification.

The value expressed by "field
width" includes trailing blanks,
the exponent position, the posi-
tion for the optional plus or
minus sign, and the position for
the optional 1letter E and the
position for the optioral decimal
point in the mantissa.

b. The exponent is a decimal integer
constant that cannct exceed three

digits. Whenever the exponent and
preceding sign or letter E are
omitted, a zZerc exponent is
assumed.

c. The sign of the mantissa must
always be accounted for in the
field width, even if it is posi-

tive and is
blank.

represented by a

On output, the internal data is con-
verted to floating-point, and the
external data item in the specified
field has the following general form:

[-1{s-d digits}.{d digits}
E{+|-}exponent

a. The exponent is a two-digit deci-
mal integer constant, which may be
two zeros. The exponent is auto-
matically adjusted so that the
leading digit of the mantissa is
nonzexo (provided that the mantis-
sa is not zero, of course).

b. If the above form of the number
does not fill the specified field
on output, the number is right-
adjusted and extended on tne left
with blanks. If the number of
signifticant digits is not
specified, it 1is taken to be 1
plus the number of fractional
digits. For the D-compiler, the
field width for negative or non-
negative values of the data item
must be greater than or equal to 6
plus the number of significant
digits (although the sign of a
positive value is not written, it
must be accounted for). However,
if the number of fractional digits
is zero, the decimal point is not
written, and the above figure for
the field width is reduced by 1.

The F Format Item

The ¥ format item is:

F(field-width(,number-of-fractional-digits

The fixed-point format
the external representation of a

[,scaling-factorll)

item describes
decimal

arithmetic data item in fixed-point format.

General rules:

1.

The "field width," "number of
fractional digits," and "scaling
factor" (sometimes expressed as w, 4,
and p, respectively) must be decimal
integer constants. Only p can be
signed; the others must be unsigned; w
must be less than 33 and must account
for the sign, even if it is blank.)

On input, the data item in the data
stream is the character representation
of an optionally signed decimal fixed-
point constant located anywhere within
the specified field. Blanks may
appear before and after the number in

Section E:

the field. If the entire field is
blank, it is interpreted as zero.

The number
not specified,

of fractional digits, if
is assumed to be zero.

If no scaling factor is specified and
no decimal point appears in the field,
the number of fractional digits speci-
fies the number of digits in the field
to the right of the assumed decimal
point. If a decimal point actually
does appear in the data, it overrides
the specification for the number of
fractional digits.

If a scaling factor is specified, it
effectively multiplies the value of
the data item in the data stream by 10
raised to the wvalue of the scaling
factor (i.e., p). Thus, if p 1is
positive, the number is treated as
though the decimal point appeared p
places to the right of its given
position. If p is negative, the num-
ber is treated as though the decimal
point appeared p places to the left of
its given position. The given posi-
tion of the decimal point is that
indicated either by an actual point,
if it appears, or by the specification
for the number of fractional digits,
in the absence of an actual point.

On output, the internal data is con-
verted, if necessary, to fixed-point,
and the external data is the character
representation of a decimal fixed-
point number, right-adjusted in the
specified field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
decimal point appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both the
integer and fractional portions of the
number are written and a decimal point
is inserted before the rightmost 4
digits. Trailing zeros are supplied
when the actual number of fractional
digits is less than d (the value 4
must be 1less than the field width).
Suppression of leading zeros 1is
applied to all digit positions to the
left of the decimal point.

The value of the scaling factor effec-
tively multiplies the value of the
associated element in the data list by
10 raised to the power of p, before it

is edited into its external character
representation. When the number of
fractional digits is zero, only the

integer portion of the number is used.

Edit-Directed Format Items 149

For all options on output, if the
value of the fixed-point number is
less than zero, a minus sign is pre-

fixed to the external character
resentation; if it 1is greater than
zero, a blank appears. Therefore, for
all values of the fixed-point number,
the field width specification must
include a count of both the 3ign and
possibly the decimal point (since the
decimal point will not appear if there
are no tractional digits).

rep-

If the field width is such that signi-
ficant digits or the sign is lost, the
SIZE condition is raised.

The LINE Format Item

T'he LINE format item is:
LINE (line-number)

The line position format item soecifies
the particular 1line on a page of a PRINT
file upon which the next data item is to be
printed.

General rules:

1. The "line number" (sometimes expressed
as W) must be an wunsigned decimal
integer constant less than 25¢€.

2. The LINE format item specifies that
blank lines are to be inserted so that
the next line will be the specified
line of the current page.

3. If the specified line has already been
passed on the current page, cx if the
specified line is beyond the limit set
by default or by the PAGESIZE option
of the OPEN statement, the ENDPAGE
condition is raised.

4., If "line number" is equal to zero, it
is assumed to be one.

The LINE format item has no effect
unless it is encountered before the
data list is exhausted.

Ut

The PAGE Format Item

I're PAGE format item is:
PAGE
I'ne paging format item specifies that a

new page is to be established.

150

General rules:

1. The establishment of a new page
implies that the next printing is to
be on line one.

2. The PAGE format item has no effect

unless it is encountered before the
data list is exhausted.

The R Format Item

The R format item is:
R (statement-label-designator)

The remote format item allows format
items in a FORMAT statement to replace the
remote format item.

General rules:

1. The "statement label designator™ is a
label constant or an element label
variable that has as its value the
statement label of a FORMAT statement.
The FORMAT statement includes a format
list that is taken to replace the
format item. The "statement 1label
designator"™ cannot be subscripted.

2. The R format item and the specified
FORMAT statement must be internal to
the same block.

3. A FORMAT statement cannot contain an R
format item.

The SKIP Format Item

The SKIP format item is:
SKIP[(relative-position-of-next-line)]

The line skipping format item specifies
that a new 1line 1is to be defined as the
current line.

General rules:

1. The "relative position of next line"
(sometimes expressed as w) must be an
unsigned decimal integer constant
between 0 and 3 inclusive. If it is
omitted, 1 is assumed.

2. The new 1line is the specified number
of lines beyond the present line.

3. If w is greater than or equal to
w-1 blank lines will be inserted.

one,

4. If the value of the relative position The spacing format item controls the
is wzero, the effect is that of a relative spacing of data items in the data
carriage return without line spacing. stream. It is not limited to PRINT files.
Characters previously written will be
overprinted by the new characters.

For example, underscoring can be done. General rules:
5. If the SKIP format item is not speci-
fied at the end of a line, then SKIP 1. The "field width" (sometimes expressed
(1) is assumed, that is, single spac- as w) must be an unsigned decimal
ing. integer constant less than 256. It
specifies the number of blanks before
6. If the specified line lies beyond the the next field of the data stream,
limit set by default or by the PAGE- relative to the current position in
SIZE option of the OPEN statement, the the stream.

ENDPAGE condition is raised.
2. On input, the specified number of

7. The SKIP format item has no effect characters 1is spaced over in the data
unless it 1is encountered before the stream and not transmitted to the
data list is exhausted. program,

3. On output, the specified number of

The X Format Item blank characters are inserted into the
stream.
T'he X format item is: 4. The spacing format item has no effect
unless it 1is encountered before the
X (field-width) data list is exhausted.

Section E: Edit-Directed Format Items 151

SECTION F: DATA CONVERSION

"his section lists the rules for arith-
anetic conversion and for conversicn of data
types. Each type conversion is listed
under a separate heading. In addition to
the text, seven tables appear:

» Table F-1 states the rules for comput-
ing the precision of the result of an
arithmetic conversion.

» lable F-2 1is a table that can be used
to find the length of the result of an
arithmetic to bit-string conversion.

e l'able F-3 can be used to find the
ceiling (CEIL) of any value between 1
and 15 when that value is multiplied by
3.32 or it can be used to find the
ceiling (CEIL) of any value between 1
and 56 when that value is divided by
3.32.

« Tables F-4 through F-7 illustrate con-
version in aritnmetic expressicn opera-

tions, and they give attributes of the
results based upon the operator speci-
fied and the attributes of the two

operands.

ARITHMETIC CONVERSION

The rules for arithmetic conversion
specify the way in which a value is trans-
tormed from one arithmetic representation
to another. It can be that as a result of
the transformation the value will change.
For example, the number .2, which can be
exactly represented as a decimas fixed-
point number, cannot be exactly represented
in binary. The magnitude of such changes
in value depends upon the precisions of the
taryet and source. In expression
evaluation, the precision of the target is
derived from the precision of the source.
In order to estimate and to understand the
errors that can occur, the precision rules
nust be understood; and since thz rules
also leave some latitude for the implemen-
tation, it is helpful to have some knowl-
edge of the way in which conversions are
implemented.

152

Floating—-Point Conversion

In System/360 implementations, both
decimal and binary floating-point numbers
are maintained in the internal hexadecimal
form used in System/360. If the specified
precision is more than 6 decimal digits, or
21 Dbinary digits, the number is maintained
in long floating-point form (14 hexadecimal
digits with a hexadecimal exponent). If
the precision is 6 decimal digits or less,
or 21 binary digits or less, the number is
maintained in short floating-point form (6
hexadecimal digits and a hexadecimal
exponent) .

No actual conversions between binary and
decimal are performed on floating-point
data. The only precision changes are from
long to short, which is done by truncation,
and from short to long, which is done by
extending with zeros. The declared preci-
sion of floating-point data and the base,
however, do affect the calculation of tar-
get attributes, as well as the attributes
of intermediate forms that are determined
from the source.

Precision Conversion

Precision conversion occurs if the spec-
ified target precision is different from
the source precision. In particular, there
always is a precision change when the
source and target are of different bases.
It is also possible that there is an actual
change in precision when converting from
floating-point to fixed-point, because of
the way in which floating-point numbers are
represented. Precision changes are per-
formed by truncation or by padding with
zeros. Floating-point numbers are convert-
ed from short precision to long precision
by extending with zeros on the right, and
from long precision to short precision by
truncation on the right.

Fixed-point numbers maintain decimal or
binary point alignment and may be truncated
on the 1left or right, or extended with
zeros on the 1left or right. Since the
binary point of a fixed-point obinary vari-
able is always assumed to be after the
rightmost binary digit, fixed-point binary
values assigned to such variables will
never result in extension on the right; of
course, extension can occur on the 1left,
but only truncation can occur on the right.

No indication is given of loss of signi-
ficant digits on the right. Loss of digits
on the left can be checked for if the SIZE
condition is enabled. In System/360
implementations, binary fixed-point numbers
are stored in words of 31 Dbits, whatever
the declared width. Decimal numbers are
always stored as an odd number of digits,
since they are maintained in System/360
packed decimal format, with the rightmost
four bits of the rightmost byte expressing
the sign.

Base_Conversion

Changes in base will usually affect only
the value of noninteger fixed-point num-
bers. Some decimal fractions cannot be
expressed exactly in Dbinary, and some
errors will then occur due to truncation.
Some binary fractions will also require
more decimal digits for exact representa-
tion than are automatically generated by
the conversion rules, and this may also
cause errors resulting from truncation.

Since the range of binary fixed-point
numbers is smaller than the range of deci-
mal fixed-point numbers, it is possible for
significant digits to be lost on the left
in conversion from decimal to binary. This
will raise the SIZE condition, but an
interrupt will not occur unless the condi-
tion is explicitly enabled by a SIZE pre-
fix.

The natural notation for constants is
decimal and, therefore, most constants are
written in decimal. The precision of a
constant is derived from the way in which
it 1is written. Care should therefore be
taken when writing noninteger constants
that will be converted to fixed-point
binary.

DATA TYPE CONVERSION

Coded arithmetic data cannot be convert-
ed to character string and vice versa.
Character string data cannot be converted
to numeric character.

Coded Arithmetic to Numeric_cCharacter

Coded arithmetic data being converted to
numeric character is converted, if neces-
sary, to a decimal value whose scale and
precision are determined by the PICTURE
attribute of the numeric character item.

Numeric Character to Coded Arithmetic

Numeric character data being converted
to coded arithmetic is first interpreted as
a decimal item of scale and precision as
specified by the corresponding PICTURE
attribute. This item is then converted to
the base, scale, and precision of the coded
arithmetic target.

Numeric Character to Character-String

character data items are inter-
preted as character strings. 7The length of
the character string is the same as the
length of the numeric character data item
as described by its corresponding PICTURE
attribute (i.e., the same as the length of
the character-string value of the numeric
character data).

Numeric

Character—-String to Bit-String

The character 1 1in the source string
becomes the bit 1 in the target string.
The character 0 in the source string be-
comes the bit 0 in the target string. Any
character other than 0 and 1 in the source
string will raise the CONVERSION condition.

If the source string is longer than the
target, excess characters on the right are
ignored (so that excess characters other
than 0 or 1 will not raise the CONVERSION
condition). If the target is 1longer than
the source, the target is padded on the
right with zeros.

Bit-String to Character-String

The bit 0 becomes the character 0, and
the bit 1 becomes the character 1. The
generated character string, which has the
same length as the source bit string, is
assigned to the target.

If the source bit string is shorter than
the target character string, the remainder
of the target is padded with blanks. Exam-
ples are shown below.

Source Value Result
"1011'B CHARACTER (4) *1011"
'10101°'B CHARACTER(10) '10101bbbbb"'
'0001'B CHARACTER (1) 0"

Section F: Data Conversion 153

Table F-1. Precision for Arithmetic Conversions
e ittt B It To———————= -———- - |
| Source Attributes | Target Attributes | Target Precision]
e —— fom oo o e e - -
| DECIMAL FIXED (p,q)] DECIMAL FLOAT | p [
I i | |
{ DECIMAL FIXED (p,q) | BINARY FIXED | 1 +p *3.32, g * 3.32 (see note 3)
	I	
DECIMAL FIXED (p,q)	BINARY FLOAT	p * 3.32
I		
DECIMAL FLOAT (p)	BINARY FLOAT	p * 3.32
	I I	
BINARY FIXED (p,q)	BINARY FLOAT i p	
BINARY FIXED (p,q)	DECIMAL FIXED	1 + prs3.32, q/3.32 (see note 4)]
		I
BINARY FIXED (p,q)	DECIMAL FLOAT	p/3.32 [
! I I		
BINARY FLOAT (p)	DECIMAL FLOAT	p/3.32
fmmm e L 1_ ———————]		
Notes:		
1. In the cases of p*3.32 and p/3.32, the CEIL of the result is taken; the value		
taken is an integer that is egqual to or greater than the result.		
I [
2. Target precision never can exceed the implementation-defined maximums, which are]		
15 for FIXED DECIMAL, 31 for FIXED BINARY, 16 for FLOAT DECIMAL, and		
i 53 for FLOAT BINARY.		
3. When g is negative, the following formula applies:		
(MIN(CEIL(p*3.32)+1,31),CEIL(ABS(q)*3.32)*SIGN(g))		
4. When g is negative, the follcwing formula applies:		
(CEIL(pr/3.32)+1,CEIL(ABS(q)3.32*%SIGN{(qg))		
e S _— - _— 4
Coded Arithmetic to Bit-String
The CONVERSION condition cennot be B R . B
The absolute arithmetic value is first

raised on conversion from bit to character;
however, a character string created by
conversion from a bit string car. cause a
conversion error when reconverted if blanks
are inserted.

converted to a binary integer, whose preci-

sion 1is the same as the length of the
bit-string target as given in Table F-2.
This integer, without a sign, 1is then

treated as a bit string. This intermediate
string is then assigned to the target.
Some examples are shown in Figure F-1.

A somcee T T sonzee | Tnteimediate | mazget | H
| Attributes | Value | String | Attributes ! Result j
b= rixEn sImART(10) 1 15 1 ooowsoriiz | Bit(ior 1 0000001111 i
: FIXED BINARY(1) : 1 { 1 : BIT(1) : 1 :
{ FIXED DECIMAL(1) } 1 : 0001 = BIT(1) 1 0 :
: FIXED BINARY(3) : -3 { 011 } BIT(3) = 011 :
; FIXED DECIMAL(2,1) f 1.1 } 0001 } BIT(4) : 0001 :
; FLOAT BINARY(4) : 1.25 : 0001 : BIT(5) = 00010 }
| I e et o o B A e —— e) . _ d

Figure F-1. Examples of

Conversion From Arithmetic to Bit-String

Bit-String to Coded Arithmetic

The bit string 1is interpreted as an
unsigned binary integer with an
implementation-defined maximum precision.
For the D-Compiler, this is 31 bits. If
the string 1is shorter than 31 bits, zeros
are inserted on the left. The result of a
bit-string to arithmetic conversion is
always positive. Note that padding is on
the left, not on the right.

Numeric Character to Bit-String

The numeric character field 1is first
converted to coded arithmetic and then to
bit string, according to the above rules.

Bit-String to Numeric Character

The bit string is first converted to
coded arithmetic and then to numeric char-
acter, according to the above rules.

Table F-2. Lengths of Converted Bit
Strings (Coded Arithmetic to

Bit-String)

ouros Ariribetes 1 targer Lemgin]
| oBeTMAL FIRED (me@) | (5 - @ * 3.37
:DECIMAL FLOAT (p) : p * 3.32
=BINARY FIXED (p,q) } P-q

:BINARY FLOAT (p) i p

|Note: In the cases of p*3.32 and

| (p-g)*3.32, the CEIL of the result
|is taken. Also, for the D-Compiler,
| the target length must lie within
|1 and 31, inclusive.

TABLE OF CEILING VALUES

Table F-3 is intended to aid the pro-
grammer in computing the ceiling values
used to determine precisions and lengths in
conversions. It gives the ceiling for the
result of a multiplication by 3.32 of any
value between 1 and 15 as well as the
ceiling for the result of a division by
3.32 of any value between 1 and 56.

Table F-3. Ceilings for Values Multiplied
and Divided by 3.32

r T - T T - a
| x | CEIL(x%¥3.32)| y | CEIL(y/3.32)|
p-———- rmmmm e S oo 1
| 1 | 4 | 1-3 | 1 |
| 2 | 7 | 4-6 | 2 |
1 3 | 10 | 7-9 | 3 |
| 4 | 14 | 10-13 | 4]
I 5 | 17 | 14-16 | 5 |
| 6 | 20 | 17-19 | 6 i
7	24	20-23	7
8	27	24-26	8
9	30	27-29	9
10	3y	30-33	10
11	37	34-36	11
12	40	37-39	12
13	uy	40-u43	13

| 14 | 47 | uu-46 | 14 i
| 15 | 50 | u7-49 | 15

| | | 50-53 | 16 |
| [| 54-56 | 17 |
. i_ i N 1

TABLES FOR RESULTS OF ARITHMETIC OPERATIONS

Tables F-4 through F-7 give the attri-
butes of the results of arithmetic opera-
tions, Dbased on the operator specified and
the attributes of the two operands. In
these tables the target precisions can
never exceed the implementation-defined
maximums, which are 15 for FIXED DECIMAL,
31 for FIXED BINARY, 16 for FLOAT DECIMAL,
and 53 for FLOAT BINARY.

Section F: Data Conversion 155

Table F-4.

Attributes of Result in Addition and Subtraction Operations

| DECTMAL FIXED(pi,q1)|DEtIMAL FLOAT(pl)lBINARY FIXED(p, ,qs)

IBINARY FLOAT (p4)

I
r-y-————-- ettt B +-- 4
| S| DECIMAL|DECIMAL FIXED(p,q) |DECIMAL FLOAT(p) |BINARY FIXED(p,q) |BINARY FLOAT(p) |
|e|FIXED |p=1+MAX(p;-qi,pP2-92)|P=MAX(py,p2) | p=1+MAX (p3-qs,r-S) |p=MAX(p,3,r) |
iel(p2,9a2)| +MAX(q4,q2) | | +MAX (g4 ,S) | where |
1ol [9=MAX(q1,92) I |gq=MAX(qs,S) | r=pa2*3.32 I
inj | | | where | |
4] | i | r=1+p,*3.32 | |
| | n | s=qa¥3.32 u |
L ommmm oo $omm- + i
P	DECIMAL	DECIMAL FLOAT (p)	DECIMAL FLOAT(p)	BINARY FLOAT(p)	BINARY FLOAT(p)
e	FLOAT	p=MAX(pi,p2)	p=MAX(p.,p2)	p=MAX(p,y,r)	p=MAX (py,r)
ri(p2)			where	where	
EYl			r=p2%3.32	r=p2*3.32	
L e frmm e e e $oa- {					
d	BINARY	BINARY FIXED(p,q)	BINARY FLOAT(p)	BINARY FIXED(p,q)	BINARY FLOAT(p)
lFIXED	p=1 "MAX(I‘S,p2"q2)	p=MAX(r,, pQ) Ip=1+MAX(pl‘q1,p2—q2)	p=MAX(pJ_,pa) '		
I 1p2sg2)	+MAX (s, qa)	where	+MAX (q1,92)	[
I [4=MAX (s ,q3)	r=p;*3.32	q=MAX (q1,q2) [
o	where [[l			
[r=l+p,*3.32		[
	s=q1%3.32				
i —— e frmrrmmm e R B ——— 1					
	BINARY	BINARY FLOAT(p)	BINARY FLOAT(p)	BINARY FLOAT (p)	BINARY FLOAT(p)
	FLOAT	p=MAX(r,ps>)	p=MAX(r,ps)	p=MAX(p3 ,pP2)	p=MAX (p4,P2)
I	(p2)	where	where		
o	r=pi*3.32	x=py*3.32			
R N, e U, —_——— e 4					
lable F-5. Attributes of Result in Multiplication Operations					
T e T e - - - 1					
5 First Operand					
T —— e e .					
DECIMAL FIXED(p1,q1)	DE0LMAL FLOAT(pl)IBINARY FIXED(pj1,qs)	BINARY FLOAT(p,)			
r=p--———--= R —— B R 4					
	DECIMAL	DECIMAL FIXED(p,q)	DECIMAL FLOAT(p)	BINARY FIXED(p,q)	BINARY FLOAT(p)
2	FIXED	p=paitpatl	p=MAX(p,,p2)	p=patr+l	p=MAX (pa, ¥)
lel (p2,92) [3=91+92		q=qs+s	where		
o}			where	r=p2%3.32	
In		I	r=1+p,*3.32		
fdi [s=qa*3.32			
I fommm oo e Fommams T T 4					
{O	DECIMAL	DECIMAL FLOAT (p)	DECLIMAL FLOAT(p)	BINARY FLOAT(p)	BINARY FLOAT (p) i
p	FLOAT	p=MAX(pi,p2)	p=MAX(pa,p2)	p=MAX(ps,r)	p=MAX (04 ,1)
le] (p2)			where	where	
Ir}			r=p2*3.32	r=pa*3.32 n	
Y e e B T {					
n{BINARY	BINARY FIXED(p q)	EINARY FLOAT(p)	BINARY FIXED(p,q)	BINARY FLOAT(p)	
{d	FIXED	p=r+p,+l	p=M&X(x,p3)	p=patpatl	p=MAX (p1,p2)
1 (p2,92)	g=s+g,	where	9=qa+q2		
{1	where	r=pp*3.32]	
1	r=1l+p,*3.32]		l		
b I s=qy.*3.32					
[Formm e i e +---= 1					
IBLNARY	BINARY FLOAT(p)	BINARY fLOAT(p)	BINARY FLOAT (p)	BINARY FLOAT(p)	
{FLOAT	p=MAX(r,ps2)	p=MaX(xr,p2)	p=MAX(ps,p2)	p=MAX (D4, p2)	
1(23)	where where				
P | r=pi*3.32 | repa*3.32 | | |
Ledo e Lo e S,]

Table F-6. Attributes of Result in Division Operations
[T T e e e e e e e 1
| First Operand |
e S R 4
| DECIMAL FIXED(pl,qi)IDECIMAL FLOAT(pl)lBINARY FIXED(p,;,q;:) |BINARY FLOAT(p,) |
I e Fomm to—
| S| DECIMAL|DECIMAL FIXED(p,q) | DECIMAL FLOAT(p) |BINARY FIXED(p,q) | BINARY FLOAT(p) |
le| FIXED |p=15 | p=MAX(p1,p2) |p=31 | p=MAX(p,,X) |
Icl (pa,42) |g=15-({(p1-qa) +qa) | 19=31-((py—-gs) +s) |where I
lo]] | | where | r=p*3.32 |
o] I | | s=92*3.32 | I
s R e B —— e R — 1
| |DECIMAL|DECIMAL FLOAT (p) | DECIMAL FLOAT(p) |BINARY FLOAT(p) | BINARY FLOAT(p) |
|O|FLOAT |p=MAX(p,,p2) | p=MAX(p4,p2) | p=MAX(ps,T) | p=MAX(p4s,x) |
lel (p2) | | | where | where |
jel | | | r=p,*3.32 | r=p2*3.32 |
[L= DO R ettty ey - 1
|a| BINARY |BINARY FIXED(p) | BINARY FLOAT (p) | BINARY FIXED(p,q) | BINARY FLOAT(p) |
|n|FIXED |p=31 | p=MAX(x,p2) | p=31 | p=MAX(ps,p2) |
[d] (pasq2) |9=31-((r-s) +43) | where 19=31-((py~q1) +q2) I I
(| | where | r=p.*¥3.32 | | |
i | r=l+p;*3.32 | | | I
I | s$=q1*3.32 | | [|
I —— e R pommmmmmmmm oo pommmm oo ommmmmm oo :
| |BINARY |BINARY FLOAT(p) | BINARY FLOAT(p) |BINARY FLOAT(p) |BINARY FLOAT(p) |
| |FLOAT |p=MAX(r,pz) | p=MAX(x,pz) | p=MAX(p,4,p2) | p=MBAX (p4,p2)]
| |(p2) | where | where | | |
I | r=pi*3.32 | r=p;*3.32 | | |
T S N ——1 —_— 1
Table F-7. Attributes of Result in Exponentiation Operations
fr—————mm———m e I I It 1
| | Second Operand | |
|First Operand | (Exponent) | Target Attributes of Result |
____________________ —_ - _— - S — |
Case (1) |FIXED DECIMAL(p,.,d,.) |Unsigned integer | FIXED DECIMAL(p,q) [provided p<15] |
| |constant with value n| p=(py+1) *n-1 |
I | | g9=qgsi*n I
Case (2)|FIXED BINARY(p;,qs) |Unsigned integer | FIXED BINARY(p,q) [provided p<31] |
| | constant with value nj p=(py+1) *n-1 |
} | i 9=gi*n I
___ - _—— — 4
Case (3)|FIXED DECIMAL(p,,dq,)|FIXED DECIMAL(p,,q2) |FLOAT DECIMAL(p) [unless case (1) |
|ox |ox] above is applicablel)]
| FLOAT DECIMAL(p,)} | FLOAT DECIMAL(pz | p=MAX(p;,p2)
____________________________ $—- _— U
Case (4)|FIXED BINARY(p,,qs) |FIXED DECIMAL(pz,qz) | FLOAT BINARY (p) [unless case ({(2)
|ox jox | above is applicablel|
| FLOAT BINARY (p;) | FLOAT DECIMAL(p3) i p=MAX (p; ,CEIL(3.32%p,)) |
___ } —_ |
Case (5)|FIXED DECIMAL(p,,q,) |FIXED BINARY(p.,q2) |[FLOAT BINARY(p) [unless case (1) |
|or |ox | above is applicablel |
| FLOAT DECIMAL(p,) | FLOAT BINARY (p2) | p=MAX(CEIL(3.32%p,),pz2) |
P !
Case (6) |FIXED BINARY(pi,q,) |FIXED BINARY(p.,q.) |FLOAT BINARY(p) [unless case (2) |
|or |ox | above is applicablel |
|FLOAT BINARY (py) IFLOAT BINARY (ps) I p=MAX(p,,p2) |
__ L —_——— - — ¥

Section F:

Data Conversion 157

SECTION G:

BUILT-IN FUNCTIONS AND PSEUDO-~VARIABLES

a1l of the built-in functions and
pseudo-variables that are available to the
PL/I programmer are given in this section.
The general organization of this section is
as follows:

1. Computational Built-in Functions

a. String-handling built-in functions

b. Arithmetic built-in functions

¢. Mathematical built-in functions

d. Array manipulation built-in func-
tions
2. Miscellaneous Built-in Functioas

3. Pseudo-Variables

I'he computational built-in functions, as
shown above, provide string bhandling,
arithmetic operations (absolute value,
truncation, etc.), mathematical operations
(trigonometric functions, square root,
etc.), and array manipulation functions.
The computational built-in functions are:

BIT LOW
BOOL REPEAT
CHAR SUBSTR
HIGH UNSPEC
INDEX

Arithmetic:
ABS MAX
BINARY MIN
CEIL MOD
DECIMAL PRECISION
FIXED ROUND
+ LOAT SIGN
FLOOR TRUNC

Mathematical:
ATAN LOG10
ATAND LOG2
ATANH SIN
cos SIND
05D SINA
COSH SQRT
ERF TAN
ERFC TAND
EXP TANH
LOG

158

Array Manipulation:

ALL
ANY
PROD
SUM

The miscellaneous built-in functions
perform various duties; for example, one
function provides the current cdate, another
provides the time. The miscellaneous
built-in functions are:

ADDR
DATE
NULL
STRING
TIME

The section on pseudo-variables gives a
short discussion for each of the two PL/L
pseudo-variables SUBSTR and UNSPEC. A more
complete description can be had by consult-
ing the discussion of the corresponding
built-in function.

All of the built-in functions and
pseudo-variables are presented in alphabet-
ical order under their proper headings.

COMPUTATIONAL BUILT-IN FUNCTIONS

STRING HANDLING BUILT-IN FUNCTIONS

The functions described in this section
may be wused for manipulating strings.
Unless otherwise specified, element expres-
sions or array names can be used as argu-
ments. When an argument is an array name,
the value returned by the built-in function
is an array of the same dimension and
bounds as the argument (the function having
been performed for each element of the
array argument).

BIT String Built—in Function

Definition: BIT converts a given value to
a bit string and returns the result to the
point of invocation. This function allows
the programmer to control the size of the
result of a bit-string conversion.

Reference: BIT (expressionl(,sizel)

The argument "expression" rep-
quantity to be converted to a

Arguments:
resents the

bit string; this argument can be a bit-
string, character-string, or arithmetic
element expression or array hname. The

argument "size," when specified, must be a
decimal integer constant giving the length
of the result. If "size" is not specified,
it is determined according to the type
conversion rules given in Section F, "Data
Conversion." If "expression" is an array
name, "size" applies to each element.
Result: The value returned by this func-
tion is "expression" converted to a bit
string. The 1length of this bit string is
determined by "size," as described above.

BOOL String Built-in Function

Definition:
whose bit
given boolean operation on two

strings.

BOOL produces a bit string
representation is a result of a
given bit

Reference:

BOOL (x,y,wW)

Arguments: Arguments "x" and "y" represent
the two bit strings upon which the boolean
operation specified by "w" is to be per-
formed; these arguments can be bit-string,
character-string, or arithmetic element
expressions or array names. If "x" and "y"
are not bit strings, they are converted to
bit strings. If "x" and "y" differ in
length, the shorter string is extended with
zeros on the right to match the 1length of
the longer string.

the boolean

Argument "w" represents

operation; this argument can be a bit-
string, character-string, or arithmetic
element expression or array name. It is

converted to a bit string of length 4 and
is defined as n; n, ns n,, where each n is
either 0 or 1. There are 16 possible bit

combinations and thus 16 possible boolean
operations. As for "x" and "y," "w" is
converted to a bit string (of 1length 4)

before the
sary.

function is invoked, if neces-

If more than one argument is an array,
the arrays must have identical bounds.

Result: The value returned by this func-
tion is a bit string, 2z, whose length 1is
equal to the longer of "x" and "y." Each
bit of 2z 1is determined by the boolean
operation on the corresponding bits of "x"
and "y" as follows: the ith bit of z is set
to the value of n;, np, nz, or n,, depend-

ing on the combination of the ith bits of
"x" and "y" as shown in the boolean table
below:

Section G:

rm-——===TT T L I L2 1
| xi | yi ! |
pommmm e rmmmmm e Hmmmm oo 1
| | N |
| 0 | 0 I ns |
p--—- == L 1
| | X l
| 0 | 1 Il na |
prmmmmmmm e rmmm oo oo e]
| | N |
| 1 | 0 Il ns |
pommm oo rmmmm oo e 1
| | ¥ |
| 1 | 1 i o, |
| L PR T S F]

Example: 1In the following assignment
statement, assume that U and ID have been
declared as bit strings, XXX is the string
'011'B, YYY is the string '110'B, and the
boolean operator is '0110'B:

U=ID| |BOOL (XXX, YYY, '0110'B);

Further, assume that 2 represents the value
returned to the point at which BOOL is
invoked (that is, Z is a bit string of
length 3 that is to be concatenated with
ID), then the boolean table for this invo-
cation of BOOL can be defined as:

i I il i
| XXXi | Yyyi Il zi |
T T T 1
| 0 I o o

p--- . - i
| 1 I |
| 0 i1 11 |
T [1
| 1 | o TR |
pommmm + s & 1
| | i |
| 1 |1 I o |
L B N Ll —_— 4

which is interpreted as follows:

Whenever the ith bits of XXX and YYY
are 0 and 0, respectively, the ith bit
of 2 is 0; whenever the ith bits of
XXX and YYY are 0 and 1, respectively,
the ith bit of 2 is 1, and so on.

Thus, since the first bits of XXX and YYY
are 0 and 1, respectively, the first bit of
Z is 1; since the second bits of XXX and
YYY are 1 and 1, respectively, the second
bit of Z is 0; and since the third bits of
XXX and YYY are 1 and 0, respectively, the
third bit of Z is 1. Therefore, the value
returned to the point of invocation is the
bit string '101'B.

Built-In Functions and Pseudo-Variables 159

CHAR_String Built-in_ Function

Definition:

CHAR converts a givern value to
a character string and returns the result
to the point of invocation. This function
allows the programmer to control the size
of the result of a character-string coaver-
sion.
Reference: CHAR (expressionl, sizel)
Arquments:
resents the

The argument "expression" rep-

quantity to be converted to a
character string; this argument can pe a
bit-string, character-string, or numeric
character element expression or array name.
The argument "size," when specified, must
be a decimal 1integer constant giving the
length of the result. If "size"™ 1is not
specified, it 1is determined according to

the type conversion rules given in Section
F, "Data Conversion." If "expression" is
an array name, "size" refers to each ele-

ment of the array.

result: The value returned by this func-
tion is "expression" converted to a charac-
ter string. The length of this character
string is determined by "size," as des-
cribed above.

HIGH String Built-in Function

Definition: HIGH forms a character string
of a given length from the highest charac-
ter in the collating sequence; that is,

each character in the constructed string is

the highest character in the collating
sequence (see Section B).

keference: HIGd (i)

Argument: The argument, "i," mus be an

unsigned decimal integer constant speci-
ftying the length of the string that 1is to
be formed. For System/360 implementations,
this character is stored as hexadecimal FF.
Result: The value returned by this func-
tion is a character string of 1length
each character in the string is the highest
character in the collating sequence.

"i";

INDEX String Built-im Function

INDEX searches a specified
specified bit or character
string configuration. If the configuration
is ftound, the starting 1location of that
configuration within the string is returned
to the point of invocation.

Definition:
string for a

160

Reference: 1INDEX (string, config)

must be speci-

"string," rep-
searched; the

represents the

Arquments: Two arguments
fied. The first argument,
resents the string to be
second argument, "config,"

bit or character string configuration for
which "string" is to be searched. These
arguments must be bit-string, character-

string, binary coded arithmetic, or numeric
character element expressicns or array
names. If neither argument is a bit
string, or if only one argument is a bit
string, both arguments are converted to
character strings, if possible. If both
arguments are bit strings, no conversion is
performed. Note that binary coded arith-
metic arguments are converted to bit-string
and numeric character arguments are con-
verted to character-string before the above
conversions are performed.

If both arguments are arrays, the arrays
must have identical bounds.
Result: The value returned by this func-
tion is a binary integer of default preci-
sion (15). This binary integer is either:
1. The 1location (i.e., the character or
bit position) in "string" at which
"config" has been found. If more than
one "config" exists in "string," the
location of the first one found (in a
left-to-right sense) will be returned.
2, The wvalue 0, if "config"™ does not
exist within "string."
Exampl If ASTRING is a character string
containing:

'912NAMEA, 1, FIRST,2,SECOND"
then the statement:

I = INDEX(ASTRING,'1,°');

will return a binary value of ten to the
point of invocation. This binary value
represents the location of the confiqu-

ration '1,' within ASTRING.
the statement had been:

However, if

I = INDEX(ASTRING,'1"');

then a binary value of two would pe
returned +to the point of invocation. This
value is the location of the first '1°

appearing within ASTRING.

LOW String Built-in Function

Definition: LOW forms a character string
of specified length from the lowest charac-

ter in the collating seguence; i.e., each
character of the formed string will be the
lowest character in the collating segquence
(see section B).

Reference: LOW (i)

must be an
speci-
being

s n
i,
constant

string

Argument: The
unsigned decimal
fying the 1length
formed.

argument,
integer
of the

Result: The value returned by this func-
tion is a character string of length
each character in the string is the lowest
character in the collating sequence. For
System/360 implementations, this character

is stored as hexadecimal 00.

L] i L ;:

REPEAT String Built-in Function

Definition: REPEAT takes a given string
value and forms a new string consisting of
the given string value concatenated with
itself a specified number of times.
Reference: REPEAT (string,i)

Arquments: The argument "string" rep-
resents a character or bit string from
which the new string will be formed; this

argument. can be a binary coded arithmetic,
bit-string, character-string, or numeric
character element expression Or array name.
1f an argument other than a bit or charac-
ter string is specified, it 1is converted,
before the function is invoked, to a bit or
character string.
The argument "i"™ must be a decimal
integer constant. It represents the number
of times that "string" is to be concatenat-
ed with itself; "i" must be greater than
zero.
Result: The value returned by this func-
tion is "string" concatenated with itself
"i" times. In other words, the returned
value will be a string containing i+l
occurrences of the value "string."

Example: If BSTR is a bit string contain-
ing '101'B, the statement

A = REPEAT(BSTR,6);

will cause the following value to be
returned to the point of invocation:

'101101101101101101101"'B

Section G:

SUBSTR String Built—-in Function

Definition: SUBSTR extracts a substring of
user-defined length from a given string and
returns the substring to the point of
invocation. (SUBSTR can also be used as a

pseudo-variable.)

Reference:

SUBSTR (string,i,j)

Arquments: The argument "string" rep-
resents the string from which a substring
will be extracted; this argument can be a
binary coded arithmetic, bit-string,
character-string, or numeric character ele-
ment expression or array name. If "string"
is not a bit or character string, it is
converted, before the function is invoked,
to a bit or character string. Argument "i"
represents the starting point of the subst-
ring and "j" represents the length of the
substring. Argument "i" must be an element
expression (it can be an array name but
only if "string"™ is an array) that can be
converted to an integer; "3j" must be a
decimal integer constant. If "i" is an
array, it must have the same bounds as
"string."

Assuming that the length of "string" is
k, arguments "i" and "j" must satisfy the

following conditions:

1. j must be less than or equal to k and
greater than or equal to 1.

2. 1 must be less than or equal to k and
greater than or equal to 1.

3. The value of i + j - 1 must be less
than or equal to k.

Thus, the substring, as specified by "i"
and "j" must 1lie within "string." Note
that condition 1 is checked by the compil-
er; conditions 2 and 3 are never checked.

Resu value returned by this func-
tion is that substring beginning at the ith
character or bit of the first argument and
extending "j" characters or bits.

Result: The

Example: If AAA is a character string of
length 30, the statement:

ITEM = SUBSTR(AAA, 7, 14);

will cause a l1ll4-character substring to be
extracted from AAA, starting at the seventh
character of AAA. The extracted string is
then returned to the point of invocation,
after which it is assigned to ITEM
(assuming ITEM is a character-string
variable).

Built~In Functions and Pseudo-Variables 161

_____________ UNSPEC returns a bit string
thaz is the internal coded representation
of a given value. (UNSPEC can also be used
as a pseudo-variable.)

Reference: UNSPEC (x)

Arqument: The argument, "x," may be an
arithmetic, character-string, or pointer
value (element expressions or array names
only) whose internal coded representation
is to be found; "xX" cannot be a bit string.
Result: The value returned by this func-
tion is the internal coded representation
of "x." This representation is in bit-
str:ing form. The length of this string

depends upon the attributes of "x," and is
defined for System/360 implementations as
follows:

1. If "x" 1is FIXED BINARY of precision
{p,q), the length is 32.

2. If "x"™ if FIXED DECIMAL of precision
(p,3), the 1length is defined as
8*FLOOR ((p+2)/2).

3, If "x" is FLOAT BINARY of precision p,
the length is

a. 32,
21.

if p is less than or equal to

b. 64, if p is greater than Zz1.

u. I1f "x" is FLOAT DECIMAL of
p, the length is

precision

a. 32,
6.

if p is less than or equal to

b. 64, if p is greater than or egual

to 7.

5. If "x" is a character-string of length
n, Or a numeric character item whose
character-string value is of length n,
the length is 8#%n; for the D-Compiler,
n must not be greater than 8.

6. If "x" is a pointer, the length is 32,
however, the value of pointer is
represented by the rightmost 24 Dbits.

ARITHMETIC BUILT-IN FUNCTIONS

all wvalues returned by the arithmetic
built-in functions are in coded arithmetic
form. The arguments of these functions
should also be in that form. If an argu-
ment is not coded arithmetic, then, before

162

the function is invoked, it is converted to
coded arithmetic according to the rules
stated in Section F, "Data Conversion."
Note, therefore, that in the function des-
criptions below, a reference to an argument
always means the converted argument, if
conversion was necessary.

In some function descriptions, the
phrase "converted to the highest
characteristics™ 1s used; this means that
the rules for mixed characteristics,as
stated in the section "Data Conversion in
Arithmetic Operations™ in Part I, Chapter
4, "Expressions," are followed.

In general, an argument of an arithmetic
built~-in function may be an element expres-
sion or an array name. If an argument is
an array name, the value returned by the
built-in function is an array of the same

dimension and bounds as the argument (the
function having been performed once for
each element of the array). Thus, for

example, if an array argument is passed to
the absolute value function ABS, the
returned value is an array, each element of
which is the absolute value of the corres-
ponding element in the argument array.

Unless it is specifically stated other-
wise, the base, scale, and precision of the
returned value are determined according to
the rules for the conversion of expression
operands as given in Section P, "Data
Conversion."

In many of these built-in functions, the

symbol N is used. This symbol represents
the maximum precision that a value may
have. It is defined, for System/360

implementations, as follows:
N is 15 for FIXED DECIMAL values
16 for FLOAT DECIMAL values
31 for FIXED BINARY values

53 for FLOAT BINARY values

ABS Arithmetic Built-in Functicn

Definition: ABS finds the absolute value
given quantity and returns it to the
point of invocation.

Reference: ABS (x)

Argument: The quantity whose absolute
value is to be found is given by "x."

Result: The value returned by this func-
tion is the absolute value of "x." The
base, scale, and precision are the same as
those of "x."

BINARY Arithmetic Built-in Function

Definition: BINARY converts a given value

to binary base and returns the converted
value to the point of invocation. This
function allows the programmer to control

the precision of the result of a binary

conversion.
Reference: BINARY (x[,pl,qll)

Arguments: The first argument, "x," rep-
resents the value to be converted to binary
base. Arguments "p" and "q," when speci-
fied, must be decimal integer constants
giving the precision of the binary result;
"q" may be signed. The precision of a
fixed-point result is (p,q); the precision
of a floating-point result is (p). If both
"p" and "gq" are omitted, the precision of
the result is determined according to the
rules given for base conversion in Section
F, "Data Conversion." Note that "g" must
be omitted for floating-point arguments.
Result: The value returned by this func-
is the binary equivalent of "x." The
scale of this value is the same as that of
"x." The precision is given by "p" and
nq. "

CEIL Arithmetic Built-in Function

Definition: CEIL determines the smallest
integer that is greater than or equal to a
given value and returns that integer to the
point of invocation.

Reference: CEIL (x)

The argument is "x."

Result: The value returned by this func-
tion is the smallest integer that is great-
er than or egual to "x." The base, scale,
and precision are the same as those of "x,"
with one exception: if "x" is a fixed-point
value of precision (p,q), the precision of
the result is defined as:

(MIN(N,MAX (p—-g+1,1)),0)

DECIMAL Arithmetic Built-in Function

Definition:

DECIMAL converts a given value
to decimal base and returns the converted
value to the point of invocation. This
function allows the programmer to control
the precision of the result of a decimal
conversion.

Section G:

Reference: DECIMAL (x[,pl,qll)

Arguments: The first argument, "x," rep-

resents the value to be converted to deci-
mal base. Arguments "p" and "g," when
specified, must be decimal integer con-

stants giving the precision of the decimal
result; "q" may be signed. The precision
of a fixed-point result 1is (p,q); the

precision of a floating-point result is
(p). If both "p" and "q" are omitted,
however, the precision of the result is
determined according to the rules given for
base conversion in Section F, "Data Conver-
sion." Note that "gq" must be omitted for
floating-point arguments.

Result: The value returned by this func-
tion is the decimal equivalent of the
argument "x"; its precision is given by "p"
and "q."

FIXED Arithmetic Built-in Function

Definition: FIXED converts a given value
to fixed-point scale and returns the con-
verted value to the point of invocation.
This function allows the programmer to
control the precision of the result of a
fixed-point conversion.

Reference: FIXED (x[,pl,qll)

Arqument: The first argument, "x," rep-
resents the value to be converted to fixed-
point scale. Arguments "p" and "gq," when
specified, must be decimal integer
constants ("q" can be signed) giving the
precision of the result, (p,a). For
System/360 implementations, if "p" and "q"
are omitted, "p" is assumed to be 15 for
binary "x" and 5 for decimal "x"; "gq" is
assumed to be 0.

Resu The value returned by this func-

tion is the fixed-point equivalent of the
argument "x"; its precision is (p,q).

FLOAT Arithmetic Built-in Function

Definition: FLOAT converts a given value
to floating-point scale and returns the
converted value to the point of invocation.
This function allows the programmer to
control the precision of the result of a
floating-point conversion.

Reference: FLOAT (xI[,pl)
Arquments: The first argument, “x," rep-

to be converted to
The second argument,

resents the value
floating-point scale.

Built-In Functions and Pseudo-Variables 163

"p."” when specified, must be d1ecimal
integer constant giving the preci:‘:on of
the result. For System/360 implementa-
tions, if "p" is omitted, it is assumed to
be 21 for binary "x" and 6 for decimal "x."

Result: The

tion is the
"x"; its precision is

value returned by this func-
floating-point equivalent of

llp. L]

FLOOR Arithmetic Built-in Function

Definition: FLOOR determines the largest

integer that does not exceed a given value

and returns that integer to the point of
invccation.

Reference: FLOOR (x)

Argument: The argument is "x."

Result: The value returned by this func-
tion 1is the largest integer that does not

exceed "x." The base, scale, and precision
of this value are the same as those of "x,"
with one exception: if "x" is a fixed-point
value of precision (p,q), the precision of
the result is:

(MIN(N,MAX(p-q+1,1)),0)

MAX Arithmetic Built-in Function

Definition: MAX extracts the highest-
valued expression from a given set of two
or more expressions and returns that value

to the point of invocation.

Reference: MAX (Xi, Xa,..-,Xn)

Arguments: TwO oOr more arguments must be
given.

Result: The value returned by MAX 1is the

value of the maximum-valued argument. The
returned value is converted to conform to

the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point values and have
precisions:

(P1,912) s (P2+92)4---+ (Pn,qn)

then the precision of the result: 1is as

follows:

(MIN(N,MAX(P1~Qays--sPn-QOn)+
MAX(qu---'qn)),MAX(qll---qn))

le4

MIN Arithmetic Built-in Function

Definition: MIN extracts the lowest-valued
expression from a given set of two or more
expressions and returns that value to the
point of invocation.

Reference: MIN (X3, X24+«+s%Xn)

Arquments: Two oOr more arguments must be
given.

Result: The value returned by MIN is the

value of the lowest-valued argument. The
returned value is converted to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point values and have
precisions

(P1+91)+ (P2,92)s+«+,(Pnegn)

then the precision of the result is as

follows:

(MIN(N,MAX(pP31—d4ses+¢sPn—dn)t
MA.X(ql, .. -qn)),MAX(quc . ._'qn))

MOD Arithmetic Built-in Function

Definition: MOD extracts the remainder
resulting from the division of one gquantity
by another and returns it to the point of
invocation.
Reference: MOD (x4, X3)

Arquments: Two arguments must be given.
Before the function is invoked, the base
and scale of each argument are converted
according to the rules for the conversion
of expression operands, as given in Section
F, "Data Conversion."

Result: The value returned by MOD is the
positive remainder resulting from the divi-
sion of "x4" Dby "x," to yield an integer
quotient. If the result is in floating-
point scale, its precision is the higher of
the precisions of the arguments (i.e.,
p=MAX(p,,pz2)); if the result is in fixed-
point scale, its precision is defined as
follows:

(MIN(N,pa-qo+MAX(g:,92)) ,MAX(g,,92))
where:

(p1,91) and (p,,gz) are the precisions
of "x;" and "x,," respectively.

The base and scale of the result are
those of the converted arguments.

PREZISION Arithmetic Built-in Function

Definition: PRECISION converts a given

value to a specified precision and returns

the converted value to the point of
invocation.

Reference: PRECISION (x,pl,ql)

Argquments: The first argument, "Xx," rep-

resents the value to be converted to the
specified precision. Arguments "p" and "q"
("q" is optional and may be signed) are
decimal integer constants specifying the
precision of the result. If "x" 1is a
fixed-point value, "p" and "q" must be
specified; if "x" 1is a floating-point
value, only "p" must be specified.

Result: The value returned by this func-
tion is the value of "x" converted to the
specified precision. The base and scale of
the returned value are the same as those of
w x . "

ROUND Arithmetic Built-in_Function

i ROUND rounds a given value at
specified digit and returns the rounded
value to the point of invocation.

Definition:
a

Reference: ROUND (expression,n)

Arquments: The first argument,
"expression," must be coded arithmetic or
numeric character. It is an element

expression or array name representing the
value (cr values, in the case of an array)
to be rounded; the second argument, "n," is
an unsigned decimal integer constant speci-
fying the digit at which the value of
"expression"” is to be rounded.

Result: If Texpression" 1is fixed-point,

ROUND returns the value of "expression"
rounded at the nth digit to the right of
the decimal (or binary) point. The base

and scale of the result are the same as the
base and scale of "expression;" the preci-
sion of the result is:

(MIN(p+1) ,N),q)

If T"expression" is a floating-point
expression, the second argument is ignored,
and the rightmost bit in the internal
floating-point representation of the
expression value is set to 1 if it is 0; if
the rightmost bit 1is 1, the value of the
expression is unchanged. The base, scale,
and precision of the returned value are
those of the value of "expression."

Section G:

Note that the rounding of a negative
quantity results in the rounding of the
absolute value of that quantity.

______ If X is a fixed-point decimal
variable of precision (7,5) containing the
value 36.24976, and Y and Z are fixed-point
decimal variables of precision (6,4), then
after the execution of the following state-
ments,

Y=ROUND(X, 3) ;
Z=ROUND (X, 4) ;

the value of Y is 36.2500 and the value of
Z is 36.2498.

SIGN Arithmetic Built-in Function

Definition: SIGN determines whether a
value is positive, negative, or zero, and
it returns an indication to the point of
invocation.

Reference: SIGN (x)

Argument: The argument is "x."

Result: This function returns a fixed-
point Dbinary value of default precision
(15) according to the following rules:

1. If "x" is greater than 0, the returned
value is 1.

2. If "x" is equal to zero, the returned

value is 0.

3. If "x" is less than zero, the returned
value is -1.

TRUNC Arithmetic Built-in Function

Definition: TRUNC truncates a given value
to an integer as follows: first, it
determines whether a given value is posi-
tive, negative, or equal to zero. If the
value is negative, TRUNC returns the smal-
lest integer that is greater than that
value; if the value is positive or equal to
zero, TRUNC returns the largest integer
that does not exceed that value.

Reference: TRUNC (x)

Arqument: The argument is "x."

Result: If "x" is 1less than zero, the
value returned by TRUNC is CEIL(x). If "x"
is greater than or equal to zero, the value
returned by TRUNC is FLOOR(x). In either
case, the base and scale of the result are

Built-In Functions and Pseudo-Variables 165

those of "x." If "x" 1is
floating-point, the precision remains the
same. If "x" is a fixed-point value of
precision (p,q), the precision of the
result is:

the same as

(MIN(N,MAX (p-q+1,1)),0)

MATHEMATICAL BUILT-IN FUNCTIONS

811 arguments to the mathematical built-
in functions should be in coded arithmetic
form and in floating-point scale. Any
argument that does not conform to this rule
is converted to coded arithmetic and
floating-point before the function is
invoked, according to the rules stated in
Section F, "Data Conversion." Note, there-
fore, that in the function descriptions
below, a reference to an arqumert always
meanrs the converted argument, if conversion
Wwas necessary.

In general, an argument to a mathemati-
cal built-in function may be ar. element
expression or an array name. If an argu-
ment. is an array name the value returned by
the built-in function is an array of the
same dimension and bounds as the argument
(the function having been performed once
for each element of the array). Thus, for
example, an array argument passed to the
cosine function COS results in ar. array,

eachi element of which is the cosine of the
corresponding element in the argument
arrsy.

211 of the mathematical built-in func-
tions return coded arithmetic floating-
point values. The base and precision of
these values are always the same as those

of the arguments.
Figure G-1 at the end of this section

provides a quick reference to the
mathematical built-in functions.

ATAN Mathematical Built-in Functior.

Definition: ATAN finds the arctangent of a
given value and returns the result
expressed in radians, to the ©point of
invccation.

Reference:

ATAN (x[,y1)

Arguments: The argument "x" must always be
specified; the argument "y" is cptional.
If "y" is omitted, "x" represents the value
whose arctangent is to pbe found.

166

If "y" is specified, then the value
whose arctangent is to be found is taken to
be the expression x/y. In this case, both
"x" and "y" may not be equal to 0 at the
same time.

Result: When "x" alone is specified, the
value returned by ATAN is the arctangent of
"x," expressed in radians, where:

-pi/2<ATAN(x)<pi/2

If both "x" and "y"
possible values returned by
are defined as follows:

are specified, the
this function

i. For y>0 and any x, the value is

arctangent (x/y) in radiars.
value is

2. If x>0 and y=0, the (pi/2)

radians.

3. If x20 and y<0, the value is (pi+
arctangent (x/y)) radians.

4. If x<0 and y=0, the value is
radians.

(-pirs2)

5. If x<0 and y<0, the value is
arctangent (x/y)) radians.

(—pi+

ATAND Mathematical Built-in Function

Definition: ATAND finds the arctangent of

a given value and returns the result,
expressed in degrees, to the point of
invocation.

Reference: ATAND (x[,yl)

Arqu - If y is omitted, "x" represents
the value whose arctangent is to be found.
If "y" is specified, the value whose arc-
tangent is to Dbe found is represented by
the expression x/y; in this case, both "x"
and "y" cannot be equal to C at the same
time.
Result: If "y" is
returned by this
arctangent of "x,"
where:

specified, the value
function is simply the
expressed in degrees,

-90<ATAND (x)<90

If y is specified, the value returned by
this function is ATAN (x,y), except that
the value is expressed in degrees and not
in radians (see "ATAN Mathematical Built-in
Function"™ in this section); that is, the
returned value is defined as:

ATAND(x,y) = (180/pi)*ATAN(x,y)

ATANH Mathematical Built-in Function

Definition: ATANH finds the inverse hyper-
bolic tangent of a given value and returns
the result to the point of invocation.
Reference: ATANH (x)

Argument: The value whose inverse hyper-
bolic tangent is to be found is represented
by "x." The absolute value of "x" must not
be greater than or equal to 1; that is, it
is an error if ABS(x)21.

Result: The value
tion is the inverse hyperbolic

"x".

returned by this func-
tangent of

COS Mathematical Built-in Function

Definition: COS finds the cosine of a
given value, which is expressed in radians,
and returns the result to the point of
invocation.
Reference: COS (x)

value whose cosine is to be
must be

Argument: The
found is given by "x"; this value
expressed in radians.

Result: The value returned by this func-
tion is the cosine of "x."

COSD Mathematical Built-in Function

Definition: COSD finds the cosine of a
given value, which is expressed in degrees,
and returns the result to the point of
invocation.

Reference: COSD (x)

_________ The value whose cosine is to be
found is given by "x"; this value must be
expressed in degrees.

Result: The value returned by this func-
tion is the cosine of "x."

COSH Mathematical Built-in Function
Definition: COSH f£finds the hyperbolic

cosine of a given value and returns the
result to the point of invocation.

Reference: COSH (x)

Section G:

Arqument: The value whose

cosine is to be found is given by

hyperbolic

'lx.'l

Result: The value returned by this func-

tion is the hyperbolic cosine of "x."

ERF Mathematical Built-in Function

the error function
returns it to the

Definition: ERF finds
of a given value and

point of invocation.

ERF (x)

which the error
represented by

Argument: The value for
function is to be found is
llx. "

Result: The value returned by this func-
tion is defined as follows:

X
_ 2 -t2
ERF (X)— \/—T’—.— / e dt

o

ERFC Mathematical Built-in Function

Definition: ERFC finds the complement of
the Error Function (ERF) for a given value
and returns the result to the point of
invocation.

Reference: ERFC (x)
Argument: The
the value whose error
is to be found.

argument, "x," represents
function complement

sult: value returned by this func-
tion is defined as follows:

Result: The

ERFC(x) = 1-ERF(X)

EXP Mathematical Built-in Function

Definition: EXP raises e (the base of the
natural logarithm system) to a given power

and returns the result to the point of

invocation.
Reference: EXP (x)
Argument: The argument, "x," specifies the

power to which e is to be raised.

Result: The value returned by this func-
tion is e raised to the power of "x."

Built-In Functions and Pseudo-Variables 167

LOG Mathematical Built-in Function

Definition: LOG finds the natural 1logar-
(i.e., base e) of a given value and

returns it to the point of invocation.

Reference: LOG (x)

________ The argument, "x," is the value
whose natural logarithm is to be found; it
must not be less than or equal to 0.

func-

Result: The value returned by this

tion is the natural logarithm of "x."

LOG10 Mathematical Built-in Function

Definition: LOG10 finds the common logar-
ithm (i.e., base 10) of a given value and
returns it to the point of invocation.
Reference: LOG10 (x)

Argument: The argument, "x," represents
the value whose common logarithm is to be
found; this value must not be less than or
equal to 0.

func-

Result: The value returned by this

tion is the common logarithm of "x."

LOG2 Mathematical Built-in Function

Definition: ©LOG2 finds the binary (i.e.,
base 2) logarithm of a given value and
returns it to the point of invocation.

Reference: LOG2 (x)

Argument: The argument, "x," is the value
whose binary logarithm is to be found; it
must not be less than or equal to 0.

Result: The wvalue returned to this func-

tion is the binary logarithm of "x."

SIN Mathematical Built-in_Function

Definition: SIN finds the sine of a given
value, which is expressed in radians, and

returns it to the point of invocation.

Reference: SIN (x)
Arqument: The argument, "x," is thes value
whose sine 1s to be found; it must be

expressed in radians.

168

Result: The value returned by this func-

tion is the sine of "x."

SIND Mathematical Built-in Function

Definition: SIND finds the sine of a given
value, which 1is expressed in degrees, and
returns the result to the point of invoca-
tion.

Reference: SIND (x)

Argument: The
whose sine is to be
expressed in degrees.

argument, "x," is the value
found; "x" must be

Result: The value returned by this func-

tion is the sine of "x."

SINH Mathematical Built—-in Function

Definition: SINH finds the hyperbolic sine
of a given value and returns the result to
the point of invocation.

Reference: SINH (x)

Arqument: The argument, "x," is the value
whose hyperbolic sine is to be found.

Resu The value returned by this func-

tion is the hyperbolic sine of "x."

SORT Mathematical Built—-in Function

£ tion: SQRT finds the square root of
a given value and returns it to the point
of invocation.

Reference: SQRT (x)

argument, "x," is the wvalue
must

Argument: The
whose square root is to be found; it
not be less than 0.

Result: The value returned by this func-
tion is the positive square root of "x."

TAN Mathematical Built-in Function

Definition: TAN finds the tangent of a
given value, which is expressed in radians,
and returns it to the point of invocation.

Reference: TAN (x)

Argument: The argument, "X," represents
the value whose tangent is to be found; "x"
must be expressed in radians.

Result: The value returned by this func-
tion is the tangent of "x."

TAND Mathematical Built-in_ Function

Definition: TAND finds the tangent of a
given value, which is expressed in degrees,
and returns the result +to the point of
invocation.

Reference: TAND (x)

Arqument: The argument, "x," represents
the value whose tangent is to be found; "x"
must be expressed in degrees.

Result: The value returned by this func-
tion is the tangent of "x."

TANH Mathematical Built-in Function

on TANH finds the hyperbolic tan-
gent of a given value and returns the
result to the point of invocation.

Definition:

Reference: TANH (x)

Arqument: The argument, "x," represents
the value whose hyperbolic tangent is to be
found.

func-

Result: The value returned by this

tion is the hyperbolic tangent of "x."

Summary of Mathematical Functions

Figure G-1 summarizes the mathematical
built-in functions. In using it, the read-
er should be aware of the following:

1. Aall arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded arith-
metic and floating-point.

2., The value returned by each function is
always in floating-point.

3. The error conditions are those defined
by the PL/I Language. Additional
error conditions detected by the D-
Compiler can be found in the
publication IBM__System/360 Disk _and
Tape Operating Systems, PL/I

Programmer's Guide, Form C24-9005.

Section G:

ARRAY MANIPULATION BUILT-IN FUNCTIONS

The built-in functions described here
may be used for the manipulation of arrays.
All of these functions require array name
arguments and return single element values.
Note that since these functions return
element values, a function reference to any
of them is considered an element expres-
sion.

ALL Array Manipulation Function

Definition: ALL tests all bits of a given
bit-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element bit-
string indicates whether or not the corres-
ponding bits of given array elements are

all ones.

Reference: ALL (x)

argument, "x," is an array
If the elements are not
they are converted to bit

Argument: The
of bit strings.
bit strings,

strings.

Result: The value returned by this func-
tion is a bit string whose length is equal
to the length of an element in "x" (all
elements in "x" must have the same length,
of course), and whose bit values are deter-
mined by the following rule:

If the ith bits of all of the ele-
ments in "x" are 1, then the ith bit
of the result is 1; otherwise, the
ith bit of the result is 0.

ANY Array Manipulation Function

Definition: ANY tests the bits of a given
bit-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element bit-
string indicates whether or not at least
one of the corresponding bits of the given

array elements is set to 1.

Reference: ANY (x)

Arqument: The argument, "x," is an array
of bit strings. If the elements are not
bit strings, they are converted to bit
strings.

Built-In Functions and Pseudo-Variables 169

Result: The value returne

d by this func- If the ith bit of any element in "x"

tion is a bit string whose length is eqgual is 1, then the ith bit of the result
to the length of an element in "x" (all is otherwise, the ith bit of the
elements in "x" must have the same length, result is 0.

ot course), and whose bit va
mined by the following rule:

lues are deter-

--------------------------- L T 1
| Function Reference] value Returned | Erroxr Conditions |
__ 4 - ———
A — S — i S—
| ATAN (x) larctan(x) in radians | - |
| |- (pi/2) <ATAN(x) <(pi/2) | |
———————————————————————————— oo + e
|ATAN(x,y) | see function |error if |
| description x=0 and y=0

! P H Y '
___ T - ===]
| ATAND (x) |arctan(x) in degrees |]
| | -90<ATAND (x) <90 | - |
---------------------------- rmmm oo - + |
|ATAND(x%,y) |see function |errxor if |
| |description |x=0 and y=0 |
prmmm oo m oo e e T e 1
| ATANH (x) | tanh=* (x) |error if ABS(x)21 |
——————————————————————————— T } - ——mmm e
| COs (x) | cosine (x) | - |
|x in radians | | |
———————————————————————————— oo e + et e
| CosD (x) jcosine(x) | -]
|x in degrees | | |
_____________________________ |
| COsH(x) | cosh (x) | - |
o ommme sgm-mmmm-mm— e e 1

. 2 N -2 -

:EKF(X) }__;F / et 4e = =
t + ° 4 i
__ } —_

| ERFZ(x) |1 - ERf(x) | - |
_____________________________ e e]
| EXP (x) | eX] |
e e 4— - SO 4
| LOG (%) |log, () error if x<0 |

e

e o —_— $— —— - SR — |
| LOG10 (x) |10310 (X) |exrror if x=<0 |
________________________________ o + — S|
| LOG2(x) | log, (x) |error if x<0 |
b O o 9
| SIN(x) | sine (x | - |
|x in radians | | |
_____________________________ S _—— ———— ¥
| SIND (x) |sine(x | - |
|x in degrees | | |
————————————————————————————— T S
| SINH (%) | sinh(x | - |
—————————————————————————————— T --- ommmees — S
| SORT (x) | V- |error if x<0 |
—————————————————————————————— T |
| TAN {(x) | tangent (x)] - |
|x in radians [| |
----------------------------- e e
| TAND (%) | tangent: (x) | - |
|x in degrees | | |
—————————————————————————————— T T — 4
| TANH (x) | tanh (x)) - |
e e e U S, —_ 1

Figure G-1. Mathematical Bu

170

ilt-in Functions

PROD_Array Manipulation Function

Definition: PROD finds the product of all
of the elements of a given array and
returns that product to the point of invo-
cation.

Reference: PROD (x)

Arqument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it 1is not, each element is
converted to coded arithmetic and floating-

point before being multiplied with the
previous product.

Result: The value returned by this
function is the product of all of the
elements in "x." The scale of the result

is floating-point, while the base and pre-
cision are those of the converted elements
of "x."

SUM Array Manipulation Function

sum of all of
returns

Definition: SUM finds the
the elements of a given array and
that sum to the point of invocation.

Reference: SUM (x)

Argument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and floating-
point before being summed with the previous
total.
Result: The value returned by this
function is the sum of all of the elements
in "x." The scale of the result is
floating-point, while the base and preci-
sion are those of the converted elements of
the argument.

MISCELLANEOUS BUILT-~-IN FUNCTIONS

The functions described in this section
have 1little in common with each other and
with the other categories of built-in func-
tions. Some require arguments and others
do not. Those that do not require argu-
ments will be so identified.

ADDR Built-in Function

Definition: ADDR finds +the 1location at

which a given variable has been allocated

Section G:

and returns a pointer value to the point of
invocation. This pointer value identifies
the location at which the variable has been
allocated.

Reference: BADDR (x)

Argument: The argument, "x," is the vari-
able whose location is to be found. It can
be an element variable, an array, a struc-
ture, an element of an array, or an element
of a structure. It can be of any data type

and storage class.

Result: ADDR returns a pointer value iden-
tifying the location at which "x" has been
allocated. If "x" 1is a parameter, the
returned value identifies the corresponding
argument (dummy or otherwise). If "x" is a
based variable, the returned value is det-
ermined from the pointer variable declared
with "x"; if this pointer variable contains
no value, the value returned by ADDR is
undefined.

DATE Built-in Function

Definition: DATE returns the current date
to the point of invocation.

Reference: DATE
Arguments: None

Result: The value
tion is a character string of length

in the form yymmdd, where:

returned by this func-
six,
yy is the current year

mm is the current month

dd is the current day

Example: If the current date is February

29, 1968, execution of the statement
X=DATE;

will cause the character string '680229' to
be returned to the point of invocation.

NULL Built-in Function

Definition: NULL returns a null pointer
value to the point of invocation.

Reference: NULL

Arguments: None

Built~-In Functions and Pseudo-Variables 171

Result: The value returned by this func-
tion is a null pointer value. For the

D-Compiler, a null pointer is an invalid

address that can be used as a unique
indicator.

STRING Built-in Function

Definition: STRING forms a character

string from a given structure having the
PACKED attribute and returns that string to
the point of invocation.

Reference: STRING (strname)

Argqument: The argument, "strname," must be
the name of a structure having the PACKED
attribute. This structure must be composed
of character strings and/or numeric charac-
ter data only.

Result: The value returned by this func-
tion is a character string resulting from
the concatenation of all of the elements in
"strname."

IFIME _Built-in_ Function

Definition: TIME returns the current time

to the point of invocation.

Reference: TIME
Arguments: None
Result: The value returned by this func-

is a character string of length nine,
in the form hhmmssttt, where:

hh is the current hour of the day
mm is the number of minutes

ss is the number of seconds

ttt is the number of milliseconds in
machine-dependent increments.

________ If the current time is 4 P.M., 23
minutes, 19 seconds, and 80 milliseconds, a
reference to the TIME function will return
the character string '162319080' to the
point of invocation.

172

PSEUDO-VARIABLES

In general, pseudo-variables are certain
built-in functions that can appear wherever
other variables can appear to receive
values. In short, they are built-in func-
tions used as receiving fields. A pseudo-
variable can appear on the 1left of the
equal sign in an assignment statement or it
can appear in the data 1list of a GET
statement. It cannot appear elsewhere.

There are only two pseudo-variables,
SUBSTR and UNSPEC. Since they have built-
in function counterparts, only a short

description of each pseudo-variable is

given here; the corresponding built-in
function should be consulted for the
details.

SUBSTR Pseudo-variable

Reference: SUBSTR (string,i,j)

Description: The value being assigned to
SUBSTR is assigned to the substring of
"string," as defined for the built-in func-
tion SUBSTR (with one exception: for the
SUBSTR pseudo-variable "string" must be an
element variable). The remainder of
"string" remains unchanged.

UNSPEC Pseudo-variable

Reference: UNSPEC (V)

The letter "v" represents an
of arithmetic, character
string, or pointer type; it cannot be a
bit-string variable. The value being
assigned to UNSPEC is evaluated, converted
to a bit string (the length of which 1is a
function of the attributes of "v" -- see
the UNSPEC built-in function), and then
assigned to "v," without conversion to the
type of "v."

Description:
element variable

INTRODUCTION

The ON-conditions are those exceptional
conditions that can be specified in PL/I by
means of an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interrupt. The inter-
rupt, in turn, will result in the execution
of the current action specification for
that condition. If an ON statement for

that condition is not in effect, the cur-
rent action specification is the standard
system action for that condition. If an ON

statement for that condition is in effect,
the current action specification is either
SYSTEM, in which case the standard system
action for that condition is taken, or an
on-unit, in which case the programmer has
supplied his own action to be taken for
that condition (i.e., either a null state-
ment or a GO TO statement).

If a condition is not enabled (i.e., if
it is disabled), and the condition occurs,
an interrupt will not take place, and
errors may result.

Some conditions are always enabled
unless they have been explicitly disabled
by condition prefixes; another (i.e., SIZE)
is always disabled unless it has been
explicitly enabled by a condition prefix;
and still others are always enabled and
cannot be disabled.

Those conditions that are always enabled
unless they have been explicitly disabled
by condition prefixes are:

CONVERSION
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

Each of the above conditions can be disa-
bled by a condition prefix specifying the
condition name preceded by NO without
intervening blanks. Thus, one of the fol-
lowing names 1in a condition prefix will
disable the respective condition:

NOCONVERSION
NOFIXEDOVERFLOW
NOOVERFLOW
NOUNDERFLOW
NOZERODIVIDE

SECTION H: ON-CONDITIONS

Such a condition prefix renders the corres-
ponding condition disabled throughout the
scope of the prefix; the condition remains
enabled outside this scope (see Part I,
Chapter 11, "Exceptional Condition Handling
and Program Checkout" for a discussion of
the scope of condition prefixes).

conversely, the condition that is always
disabled unless it has been enabled by a
condition prefix 1is SIZE. The appearance
of this condition in a condition prefix
renders the condition enabled throughout
the scope of the prefix; the condition
remains disabled outside this scope.
Further, a condition prefix specifying
NOSIZE will disable the SIZE condition
throughout the scope of that prefix.

enabled
of the

All other conditions are always
and remain so for the duration
program. These conditions are:

ENDFILE
ENDPAGE
ERROR
KEY
RECORD
TRANSMIT

SECTION ORGANIZATION

This section presents each condition in
its logical grouping, and in alphabetical
order within that grouping. In general,
the following information is given for each
condition:

1. General format -- given only when it

consists of more than the condition
name.
2. Description -- a discussion of the

condition, including the circumstances

under which the condition can be
raised. Note that an enabled condi-
tion can always be raised by a SIGNAL

statement; this fact is not included

in the descriptions.

3. Result -- the result of the operation
that caused the condition to occur.
This applies when the condition is
disabled as well as when it is ena-

bled. In some cases, the result is
not defined; that 4is, it cannot be
predicted. This 1is stated wherever
applicable.

Section H: ON-Conditions 173

4. standard system action -- the action
taken by the system when an interrupt
occurs and the programmer has not
specified an on-unit to handle that
interrupt.

5. Status - an indication of the
enabled/disabled status of the condi-

tion at the start of the program, and
how the condition may be disabled (if
possible) or enabled.

6. Normal return -- the point to which
control is returned as a result of a

null statement on-unit. A GO TO
statement on-unit is an abnormal on-
unit termination. Note that if a

condition has been raised by the
SIGNAL statement, the normal return is
always to the statement immediately
following SIGNAL. Also note that the
conditions ENDFILE, KEY, and CONVER-
SION cannot have null statement on-
units associated with then and,
therefore, a normal return can never
be made for these conditions.

The conditions are grouped as follows:

1. Computational conditions -- those con-
ditions associated with data handling,
expression evaluation, and <computa-
tion. They are:

CONVERSION
FIXEDOVERFLOW
OVERFLOW

SIZE
UNDERFLOW
ZERODIVIDE

2. Input/output conditions -- those con-
ditions associated with data transmis-
sion. They are:

ENDFILE
ENDPAGE
KEY
RECORD
TRANSMIT

3. System action condition -- the condi-
tion (i.e., ERROR) that provides
facilities to extend the standard sys-
tem action that 1is taken after the
occurrence of a condition.

COMPUTATIONAL CONDITIONS

The TONVERSION condition

CONVERSION condition
illegal conversion is
data. This

Description: The

occurs whenever an
attempted on character-string

174

attempt may be made internally or during an
input/output operation. For example, the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string or when
characters that cannot be interpreted as
arithmetic are encountered during a STREAM
transmission operation for an arithmetic
variable.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for the first illegal character.
When such a character 1is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled) and the
current action specification for the condi-
tion is executed.

Result: When CONVERSION occurs, the con-
tents of the entire result field are unde-
fined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: CONVERSION is enabled throughout
the program, except within the iscope of a
condition prefix specifying NOCONVERSION.

Normal Return: A null on-unit cannot be
specified for this condition.

The FIXEDOVERFLOW Condition

Description: The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds N.
For System/360 implementations, N is 15 for
decimal fixed-point values and 31 for
binary fixed-point values.

Result: The result of the invalid fixed-
point operation is undefined.

Standard System Action: 1In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: FIXEDOVERFLOW is enabled through-
out the program, except within the scope of

a condition prefix specifying DNOFIXEDOVER~-
FLOW.
Normal Return: If a null on-unit is

specified for this conditiorn, control
returns to the point immediately following
the point of interrupt.

The OVERFLOW Condition

The OVERFLOW condition occurs
floating-point

when the magnitude of a

number exceeds the permitted maximum. (For
system/360 implementations, the magnitude
of a floating-point number or intermediate

result must not be greater than approxi-
mately 1075 or 2252))

Result: The value of such an
floating-point number is undefined.

illegal

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: OVERFLOW is enabled throughout the
program, except within the scope of a

condition prefix specifying NOOVERFLOW.

Normal Return: If a null on-unit is speci-
fied for this condition, control returns to
the point immediately following the point
of interrupt.

The SIZE Condition

Description: The SIZE condition occurs
only when high-order (i.e., leftmost) non-
zero binary or decimal digits are 1lost in
an assignment operation (i.e., assignment

to a variable or an intermediate result) or

in an input/output operation. This loss
may result from a conversion involving
different data types, different bases,

different scales, or different precisions.

The SIZE condition differs from the
FIXEDOVERFLOW condition in an important
sense, i.e., FIXEDOVERFLOW occurs when the
size of a calculated fixed-point value
exceeds N (the maximum allowed), whereas
SIZE is raised when the size of the value
being assigned to a data item exceeds the
declared (or default) size of the data
item. SIZE can be raised on assignment of
a value regardless of whether or not
FIXEDOVERFLOW was raised in the calculation
of that value.

contents of the data item
wrong-sized value are unde-

Result: The

receiving the
fined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying

STIE.

Normal Return: If a null on-unit is speci-
fied for this condition, control returns to
the point immediately following the point
of interrupt.

The UNDERFLOW Condition

Description: The UNDERFLOW condition
occurs when the magnitude of a floating-
point number is smaller than the permitted

minimum. (For System/360 implementations,
the magnitude of a floating-point value may

not be less than approximately 10-78 or
2—-260)

UNDERFLOW does not occur when equal
numbers are subtracted (often called

significance error).

Note that for the D-Compiler, the
expression X#**(-Y) (where ¥>0) is evaluated
by taking the reciprocal of X**Y; hence,
the OVERFLOW condition may be raised
instead of the UNDERFLOW condition.

Result: The
is set to 0.

invalid floating-point value

Standard System Action: 1In the absence of
an on-unit, the system prints a message and
continues execution from the point.at which
the interrupt occurred.

Status: UNDERFLOW is enabled throughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: If a null on-unit is speci-
fied for this condition, control returns to
the point immediately following the point
of interrupt.

The_ ZERODIVIDE cCondition

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zZero. This condition is raised for fixed-
point and floating-point division.
Result: The result of a division by zero
is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

null on-unit is
condition, control

Return: If a
this

Normal
specified for

Section H: ON-Conditions 175

returns to the point immediately
the point of interrupt.

following

INPUT/OUTPUT _CONDITIONS

I'ne input/output conditions are always
enabled and cannot appear in condition
prefixes; they can be specified only in ON,
SIGNAL, and REVERT statements.

The INDFILE Condition

General Format: ENDFILE (file-name»
Description: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the
file delimiter of the file named in the GET
or READ statement.

After ENDFILE has been raised, the file
should be closed.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: The ENDFILE condition is

enab.ed; it cannot be disabled.

always

Normal Return: A null on-unit cannot be
specified for this condition.

The «NDPAGE Condition

General Format: ENDPAGE (file-name)

The "file name" must be the name of a

file having the PRINT attribute.

Description: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a mnew 1line beyond the
limit specified for the current page. This
limit can be specified by the PAGESIZE
option in an OPEN statement. If PAGESIZE
has not been specified, an installation-
defined system limit applies. The attempt
to exceed the limit may be made during data
transmission (including any format items
specified in the PUT statement), by the
LINE option, or by the SKIP option.
ENDPLGE is raised only once per page.

Wwhen ENDPAGE is raised, the current line
number is one greater than that specified
by the PAGESIZE option (or the default) so
that it is possible to continue writing on
the same page.

176

After ENDPAGE has been
page can be started in
following ways:

raised, a new
either of the

1. Execution of a PAGE option or a PAGE

format item.

2. Execution of a LINE option or a LINE
format item specifying a line number
less than or equal to the current line
nunmber.

When either of these occurs, a new page
is started in the same way that it is when
a PAGE option is executed, i.e., ENDPAGE is
not raised and the current line is set to

1. If a new page 1is not started, the
current line number may increase indefin-
itely.

If ENDPAGE is raised during data trans-
mission, then, on return from a null on-
unit, the data is written on the current
line. If ENDPAGE results from a LINE or
SKIP option, then, on return from a null
on-unit, the action specified by LINE or
SKIP is ignored.

Standard System Action: In the absence of
an on-unit, the system starts a new page.

Status: ENDPAGE is always enabled; it
cannot be disabled.

Normal Return: Upon the execution of a
null on-unit for this condition, execution

of the PUT statement continues in the

manner described above.

The KEY Condition

General Format: KEY (file-name)

condition can be
keyed
of the

Description: The KEY
raised only during operations on
records. It 1is raised in any
following cases:

1. The keyed record cannot be found for a
READ or REWRITE statement.

2. An attempt is made to add & duplicate
key by a WRITE or LOCATE statement.

3. The key has
rectly.

not been specified cor-

4. No space is available to add the keyed
record.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: KEY is it cannot

be disabled.

always enabled;

Normal Return: A null on-unit cannot be

specified for this condition.

The RECORD Condition

General Format: RECORD (file-name)

condition can be
REWRITE,
raised by

Description: The RECORD
raised only during a READ, WRITE,
or LOCATE operation. It is
either of the following:

1. The size of the record is greater than
the size of the variable.
than

2. The size of the recoxrd is less

the size of the variable.

If the size of the record is greater
than the size of the variable, the excess
data in the record is lost on input and is
unpredictable on output. If the size of
the record is 1less than the size of the
variable, the excess data in the variable
is not transmitted on output and is unalt-
ered on input.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: RECORD is always enabled; it can-
not be disabled.

Normal Return: Upon execution of a null
on-unit, execution continues with the

statement immediately following the one for
which RECORD occurred.

The TRANSMIT Condition

General Format: TRANSMIT (file-name)

The TRANSMIT condition can be
any input/output operation.

raised during

It is raised by a permanent transmission
error and, as a result, any data transmit-
ted is potentially incorrect. During
input, the condition 1is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission
of the potentially incorrect data item or
record has been attempted.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: TRANSMIT is always enabled; it

cannot be disabled.

Normal Return: Upon execution of a null
on-unit, processing continues with the next
data item for STREAM input/output, or the
next statement for RECORD input/output.

SYSTEM ACTIOM CONDITION

The ERROR Condition

Description: The ERROR condition is raised
under the following circumstances:

1. As a result of the standard system
action for an ON-condition for which
that action is to "print an error
message and raise the ERROR condition"

2. As a result of an error (for which
there is no ON-condition) occurring
during program execution

Standard System Action: In the absence of
an on-unit, the D-Compiler prints a message
and returns control to the operating system
control program.

Status: ERROR is always enabled; it cannot

be disabled.

Normal Return: Upon execution of a null
on-unit, control is returned to the operat-
ing system control program.

Section H: ON-Conditions 177

SECTION I: ATTRIBUTES

A name appearing in a PL/I program may
have one of many different meanings. it
may, for example, be a variable referring
to arithmetic data items; it may be a file
name; it may be a variable referring to a
character string, or it may be a statement
iabel or a variable referring to a state-
ment label.

Properties, or characteristics, of the
values a name represents (for example,
arithmetic characteristics of data items
represented by an arithmetic wvariable) and
other properties of the name itself (such
as scope, storage class, etc.) together
make up the set of attributes that can be
associated with a name.

The attributes enable the compiler to
assign a unique meaning to the identifier
specified in a DECLARE statement. For
example, if the variable is an arithmetic
data variable, the base, scale, and preci-
sion attributes must be associated with the
name. Associated attributes are those
specified in a DECLARE statement or assumed
by default.

This section discusses the different
attributes. The attributes are grouped by
function and then detailed discussions f{ol-
low, in alphabetic order, showing the
rules, defaults, and format for each attri-
bute.

SPECIFICATION OF ATTRIBUTES

Attributes specified in a DECLARE state-
ment are separated by blanks. Excaept for
the dimension, length, FILE, and precision
attribute specifications, they may appear
in any order. The dimension attribute
specification must immediately follow the
array name; the length and precision attri-
bute specifications must follow one of
their associated attributes; the FILE
attribute must appear first in the declara-
tion of a file name. A comma must follow
the last attribute specification for a
particular name (or the name itself, if no
attributes are specified with it), unless
it is the last name in the DECLARE state-
ment, in which case the semicolon is used.

178

Factoring of Attributes

Except for the dimension and file des-
cription attributes, any attributes common
to several names can be factored in a
declaration to eliminate repeated specifi-
cation of the same attribute for many
identifiers. Factoring is achieved by
enclosing the names in parentheses, and
following this by the set of attributes

which apply. All factored attributes must
apply to all of the names. No factored
attribute can be overridden for any of the

names, but any name within the list may be
given other attributes so long as there is
no conflict with the factored attributes.
For the D-Compiler, factoring can be nested
to a level of eight. See the fourth
example below for an illustration of such
nesting.

Names within the parenthesized list are
separated by commas.

Note: Structure level numbers can also be

factored, but a factored level number must

precede the parenthesized list.
Examples:
DECLARE (A,B,C,D) BINARY FIXED (31);

DECLARE (E DECIMAL(6,5),
F CHARACTER(10)) STATIC;

DECLARE 1A, 2(B,C,D) BINARY FIXED
(15, ...;
DECLARE ((A,B) FIXED (10), C FLOAT

(5)) EXTERNAL;

DATA_ATTRIBUTES

PROBLEM DATA

Attributes for problem data are used to
describe arithmetic and string wvariables.
Arithmetic variables have attributes that
specify the base, scale, and precision of
the data items. String variables have
attributes that specify whether the vari-
able represents character strings or bit
strings and that specify the length to be
maintained. The arithmetic data attributes
are:

BINARY|DECIMAL

FIXED|FLOAT

(precision)

PICTURE
The string data attributes are:
BIT| CHARACTER

(length)

PICTURE

Other attributes can also be declared
for data variables. The DEFINED attribute
specifies that the data item is to occupy
the same storage area as that assigned to
other data. The storage class and scope
attributes also apply to data.

I'hree other attributes apply only to
data aggregates. For array variables, the
dimension attribute specifies the number of
dimensions and the bounds of an array. The
ALIGNED and PACKED attributes specify the
arrangement in storage of string or numeric
character data elements within data aggre-
gates.

PROGRAM CONTROL DATA

Attributes for program control data
specify that the associated name is to be
used by the programmer to control the
execution of his program. The program
control attributes are LABEL and POINTER.

ENTRY NAME ATTRIBUTES

The entry name attributes identify the
name being declared as an entry name and
describe features of that entry point. For
example, the attribute BUILTIN specifies
that the reference to the associated name
within the scope of the declaration is
interpreted as a reference to the built-in
function or pseudo-variable of the same
name. The entry name attributes are:

ENTRY
RETURNS

BUILTIN

FILE DESCRIPTION ATTRIBUTES

The file description attributes esta-
blish an identifier as a file name and
describe characteristics for that file,
e.g., how the data of the file is to be
transmitted, whether records of a file are
to be buffered. If the same file name is
declared in more than one external proce-
dure, the declarations must not conflict.
Except for a file name parameter, a file

name must always have the EXTERNAL attri-
bute, either explicitly or by default; file
name parameters cannot have a scope attri-

bute.
The file description attributes are:
FILE
STREAM| RECORD
INPUT |OUTPUT | UPDATE
PRINT
SEQUENTIAL|DIRECT
BUFFERELD | UNBUFFERED
BACKWARDS
ENVIRONMENT (option-1list)

KEYED

SCOPE ATTRIBUTES

The scope attributes specify whether or
not a name may be known in another external
procedure. The scope attributes are EXTER-
NAL and INTERNAL. For a discussion of the
scope of names, see Part I, Chapter 7,
"Recognition of Names."

All external declarations for the same
identifier in a program are linked as
declarations of the same name. The scope

of this name is the union of the scopes of
all the external declarations for this
identifier.

In all of the external declarations for
the same identifier, the attributes
declared must be consistent, since the
declarations all involve a single name.
For example, it would be an error if the
identifier ID were declared as an EXTERNAL
file name in one procedure and as an
EXTERNAL entry name in another procedure in
the same program.

Section I: Attributes 179

The INTERNAL attribute
the declared name cannot be known in any
other block except those contained in the
block in which the declaration is mnade. It
cannot be specified for a file name.

specifies that

The same identifier may be declared with
the INTERNAL attribute in more than one
block without regard to whether the attri-
butes given in one block are c¢onsistent
with the attributes given in another block,
since the compiler regards such declara-
tioas as referring to different names.

SIORAGE CLASS_ ATTRIBUTES

The storage class attributes are used to
specify the type of storage for a data

variable. The storage class attributes
are:

STATIC

AUTOMATIC

BASED (pointer-variable)

ALPHABETIC LIST OF ATTRIBUTES

F'ollowing are detailed descriptions of
the attributes, listed in alphabetic order.
Alternative attributes are ciscussed
together, with the discussion listed in the
alphabetic location of the attribute whose
namne is the lowest in alphabetic crder. A
cross-reference to the combined discussion
appears wherever an alternative appears in
the alphabetic listing.

ALIGNED and PACKED (Array and_Structure
Attributes)

Ihe ALIGNED and PACKED attributes speci-
fy the arrangement in storage of string or
numeric character data elements within data
aggregates. Either attribute may be speci-
fied for the name of a major structure or
the name of an array that is not itself
part of a structure.

PACKED specifies that each character
string or numeric character field element
is to be packed in storage contiguous with
the character string or numeric character
elements that surround it. If all the data
elements of the aggregates are character
string or numeric character items of the

180

same type, there should be no unused stor-
age between two adjacent elements. In
other cases, some unused space may appear,

but storage is to be conserved when possi-
ble. The PACKED attribute permits overlay
defining.

ALIGNED allows the compiler to choose
the alignment for each string data element
within the aggregate to suit +the environ-
ment. For System/360 implementations, the
alignment is on byte boundaries. Two adja-
cent string or numeric character elements
of an homogeneous aggregate with the
ALIGNED attribute may not necessarily occu-
py contiguous storage, if a more efficient
program is possible.

Note: The ALIGNED and PACKED attributes
have no effect when the data itself
requires full-word or double-word align-
ment.

General format:
ALIGNED | PACKED
General rules:

STRING
PACKED

1. Arguments to be passed to the
built-in function must be
structures.

2. The PACKED attribute canrot be speci-
fied for aggregates containing bit
strings.

3. PACKED must be specified for data

aggregates used in overlay defining.

Assumptions:
1. The default for major structures is
PACKED.
2. The default for arrays that are not

part of structures is ALIGNED.

AUTOMATIC, STATIC, and BASED (Storage Class
Attributes)

The storage class attributes are used to
specify the type of storage allocation to
be used for data variables.

AUTOMATIC specifies that storage is to
be allocated upon each entry to the block
to which the storage declaration is inter-
nal. The storage 1is released upon exit
from the block.

STATIC specifies that storage is to be
allocated when the program is loaded and is
not to be released until program execution
has been completed.

The BASED (pointer-variable) attribute
specifies a variable that is a description
of data that can be applied to different
locations in storage.

General format:
STATIC]AUTOMATIC]BASED(pOinter—Variable)
General rules:

1. AUTOMATIC and BASED variables can have
INTERNAL scope only. STATIC variables
may have either INTERNAL or EXTERNAL
scope.

2. Storage class attributes cannot be
specified for entry names, file names,
members of structures, DEFINED data
items, or parameters.

3. For a structure variable, a storage
class attribute can be given only for
the major structure name. The attri-
bute then applies to all elements of
the structure.

4. The following rules govern the use of
based variables:

a. The pointer variable must be
explicitly declared with the POIN-
TER attribute. The pointer vari-
able must be an unsubscripted ele-
ment variable and must not be an
element of a structure; it cannot
have the BASED attribute.

reference is made to a based
variable, the data attributes
assumed are those of the Dbased
variable, while the associated
pointer variable identifies the
location of data.

b. When

c. A based variable may be used to
identify and describe existing
data or to obtain storage in a
buffer by use of the LOCATE state-

ment.

d. The attribute EXTERNAL cannot
appear with a based variable dec-
laration, but a based variable can
be wused with an EXTERNAL pointer
variable.

Assumptions:
1. If no storage class attribute is spec-

ified and the scope is INTERNAL, AUTO-
MATIC is assumed.

2. If no storage class attribute is spec-
ified and the scope is EXTERNAL, STA-
TIC is assumed.

3. If neither the storage class nor the

scope attribute is specified, AUTOMAT-
IC is assumed.

BACKWARDS (File Description Attribute)

The BACKWARDS attribute specifies that
the records of a SEQUENTIAL INPUT file on
magnetic tape are to be accessed in reverse
order, i.e., from the last record to the
first record.

General format:
BACKWARDS
General rules:
1. The BACKWARDS attribute

RECORD files only; thus, it
with the STREAM attribute.

applies to
conflicts

2. The BACKWARDS attribute

tape files only.

applies to

3. The BACKWARDS attribute cannot be
specified for variable length records.

BASED (Storace Class Attribute)

See AUTOMATIC.

BINARY and DECIMAL (Arithmetic Data
Attributes)

The BINARY and DECIMAL attributes speci-
fy the base of the data items represented
by the arithmetic variable as either binary
or decimal.

General format:
BINARY|DECIMAL
General rule:

The BINARY or DECIMAL attribute cannot
be specified with the PICTURE attribute.

Assumptions:
Undeclared identifiers (or identifiers
declared only with one or more of the

Section I: Attributes 181

dimension, PACKED, ALIGNED, storage class,
and scope attributes) are assumed to be
arithmetic variables with assigned attri-
butes depending upon the initial letter.
For identifiers beginning with any letter I
through N, the default attributes are FIXED
BINARY (15). For identifiers beginning
with any other alphabetic character the
default attributes are FLOAT DECIMAL (6).
If FIXED or FLOAT is declared, then DECIMAL
is assumed. If DECIMAL or BINARY is
declared, FLOAT is assumed. The default
precisions are those defined for System/360
implementations.

Example:
DECLARE A BINARY, B DECIMAL;

IThe defaults for A are FLOAT(21); the

defaults for B are FLOAT(6).

BIT_and CHARACTER (String Attributes)

The BIT and CHARACTER attributes are
used to specify string variables. The BIT
attribute specifies a bit string. The
CHARACTER attribute specifies a character
string. The length attribute for the
string must also be specified.

General format:

"BIT
(length)
. CHARACTER

General rules:

1. The 1length attribute specifies the
length of the declared strinag. It
must be a decimal integer constant,
unsigned and greater than =zero. The
maximum length specification is 255
for character strings and 64 for bit
strings.

2. The 1length attribute must immediately
follow the CHARACTER or BIT attribute

at the same factoring level with or
without intervening blanks.

3. The BIT and CHARACTER attributes can-
not be specified with the PICTURE
attribute.

4, The PICTURE attribute can be used
instead of CHARACTER to declare a
character-string variable (see the
PICTURE attribute).

5. All of the string attributes mnust be

declared explicitly unless the PICTURE
attribute 1is used. There are no
defaults for string data.

182

6. Bit strings cannot appear in aggre-
gates having the PACKED attribute.

BUFFERED and UNBUFFERED (File Description
Attributes)

The BUFFERED attribute specifies that
during transmission to and from external
storage each record of a SEQUENTIAL RECORD
file must pass through intermediate storage
buffers that can be addressed through the
use of based variables.

The UNBUFFERED attribute specifies that
such records do not pass through buffers.
No hidden buffers are used by the D-
Compiler for UNBUFFERED files.

General format:
BUFFERED | UNBUFFERED
General rules:

1. The BUFFERED and UNBUFFERED attributes
can be specified for SEQUENTIAL RECORD
files only; thus, a file with the
STREAM or DIRECT attribute cannot have
one of these attributes.

2. The UNBUFFERED attribute must not be
specified for variable length or
blocked records.

3. The UNBUFFERED attribute can be speci-
fied only for files associated with
magnetic tape or direct access devi-
ces.

Assumption:

Default is BUFFERED.

BUILTIN (Entry Attribute)

The BUILTIN attribute specifies that any
reference to the associated name within the
scope of the declaration is o be inter-
preted as a reference +to the built-in
function or pseudo-variable of the same
name.

General format:
BUILTIN
General rules:

1. BUILTIN is used to refer to a built-in
function or pseudo-variable in a block

that is contained in another block in
which the same identifier has been
declared to have another meaning.

2. If the BUILTIN attribute is declared
for an entry name, the entry name can
have no other attributes.

3. The BUILTIN attribute cannot be

declared for parameters.

CHARACTER (String Attribute)

See BIT.

DECIMAL (Arithmetic Data Attribute)

See EBINARY.

DEFINED (Data Attribute)

The DEFINED attribute specifies that the
variable being declared 1is to represent
part or all of the same storage as that
assigned to other data. The DEFINED attri-
bute can be declared for element, array, or
major structure variables.

General format:
DEFINED base-identifier

The "base identifier" is the variable whose
storage is also to be represented by the
variable being declared.

Rules for defining:

1. The storage class and scope attributes
cannot be specified for the defined
item. it should be noted that
although the base can have the EXTER-
NAL attribute, the defined item always
has the INTERNAL attribute and cannot
be declared with any scope attribute.
If the base is external, its name will
be known in all blocks in which it is
declared external, but the name of the
defined item will not. However, the
value of the defined item will be
changed if the value of the base item
is changed in any block.

2. The base identifier
known within the block
defined item is declared.
identifier cannot have the

must always be
in which the
The base
DEFINED

attribute, it cannot be a based vari-
able, and it cannot be a parameter.

3. The base identifier cannot be a minor
structure or an element of a struc-
ture.

There are two types of defining, corres-
pondence defining and overlay defining. If
both the defined item and base identifier
are arrays with the same number of dimen-
sions, correspondence defining is in
effect. 1In all other cases, overlay defin-
ing is in effect.

Correspondence Defining

Correspondence defining means that a
reference to an element of the defined item
is interpreted as a reference to the cor-
responding element of the base identifier.

Corresponding arrays must have the same
number of dimensions and bounds. The ele-
ments of the base identifier and the ele-
ments of the defined item must have the
same description.

Overlay Defining

Overlay defining means that the defined

item is to occupy part or all of the
storage allocated to the base. 1In this
way, changes to the value of either vari-

able may be reflected in the value of the
other. Overlay defining is permitted
between the items shown in Figure I-1:

Rule for overlay defining:

The extent of the defined item must not
be 1larger than the extent of the base.
Extent is calculated by summing the lengths
of the parts of the data, including all
individual elements of arrays.

Dimension (Array Attribute)

The dimension attribute
number of dimensions of an array
bound of each dimension.

specifies the
and the

General format:

(boundl[, bound, boundll)

Section I: Attributes 183

. —_—
| Defined Item |

Base Identifier |

|A coded arithmetic
|element variable

[|
|An element label

| variable

|

|An element pointer
| variable

|

|A character class?
| variable

|A structure

e —— — o

1The character class consists of:

]
|
| a. Numeric character data
| b. Character strings
|
|

c. Packed structures consisting of items a, b, and 4
d. Packed arrays consisting of items a and b

b e —~————

—4
|An unsubscripted coded arithmetic element variable of the same |
| base, scale, and precision |

|

|An unsubscripted element label variable |
|

. . l

An unsubscripted element pointer variable |
|

|

Character class?® data |
%

|An identical structure whose makeup is such that matching pairs |
jof items from the structure are valid examples for overlay de- |
| £ining of coded arithmetic, label, and pointer element vari- }
|ables. The elements can also be strings or numeric character |
|data items of matching lengths. |
o e e e e e e e e e o o e e e e e o o o __ll
|

|

|

|

|

|

.......]

Figure’I—l.

General rules:

L. The number of bounds specifies the
number of dimensions in the array. As
shown by the general format, the maxi-
mum number of dimensions allowed by
the D-Compiler is three.

2. Each bound must be an unsigned decimal
integer constant greater than zero.
This number specifies the upper bound
of the corresponding dimension. The
lower bound is always assumed to be 1.
Therefore, this number also specifies
the extent of the corresponding dimen-
sion. For example, if a bound is 8,
the extent of that dimension is 1,
2,...,8.

3. The dimension attribute must immedi-
ately follow the array name. Inter-
vening blanks are optional. It cannot
be factored.

DIRECT and SEQUENTIAL (File Description
Attributes)

The DIRECT and SEQUENTIAL attributes
specify the manner in which the records of
a RECORD file are to be accessed. SEQUEN-
T'IAL specifies that the records are to be
accessed according to their logical
sequence in the data set. DIRECT specifies

184

Permissible Items for Overlay Defining

that the records of the file are to be
accessed by use of a key. Each record of a
direct file must, therefore, have a key
associated with it.

Note that SEQUENTIAL and DIRECT specify
only the current usage of the file; they do
not specify physical properties of the data
set associated with the file.

General format:
SEQUENTIAL|DIRECT
General rules:

1. DIRECT files must also have the KEYED
attribute which is implied by DIRECT.
SEQUENTIAL files must not have the
KEYED attribute.

2. The DIRECT

cannot be specified
attribute.

and SEQUENTIAL attributes
with the STREAM

Assumption:

Default is SEQUENTIAL for RECORD files.

ENTRY Attribute

The ENTRY attribute specifies that the
identifier being declared is an entry name.

General format:
ENTRY
General rules:

1. The ENTRY attribute must be specified
for any entry name that 1is declared
elsewhere and not known within the
block if any reference is made to that
entry name (such as in an argument
list) unless, within the block:

a. The entry
statement or a function
with an argqument list, either of
which constitutes a contextual
declaration of the ENTRY attri-
bute, or

name appears in a CALL
reference

b. The entry name is declared to have
one of the attributes BUILTIN or
RETURNS, the latter of which
implies ENTRY. The ENTRY attri-
bute cannot be specified for a
name that is given the BUILTIN
attribute.

2. The ENTRY attribute must be explicitly
declared or implied for an entry name
that is a parameter.

3. The ENTRY attribute can be declared
for an INTERNAL entry name only within

the block to which the name is inter-
nal. Internal procedures declared
with an ENTRY attribute must also be

given the INTERNAL attribute in the

same declaration.
Assumptions:

The ENTRY attribute can be assumed eith-
er contextually or by implication, as des-
cribed in Rule 1. The appearance of a name
as a label of either a PROCEDURE statement
or an ENTRY statement constitutes an expli-
cit declaration of that identifier as an
entry name.

ENVIRONMENT (File Pescription Attribute)

The ENVIRONMENT attribute is an
implementation-defined attribute that
specifies various file characteristics that
are not part of the PL/I language.

General format:
ENVIRONMENT (option-1list)
The

for each implementation of PL/I.
D-level compiler, it is as follows:

option-list is defined individually
For the

CONSECUTIVE
REGIONAL ({1]3})
{F (blocksize [,recordsizel)}

V (maxblocksize)
U (maxblocksize)

[BUFFERS (n)]

MEDIUM(logical-device-name,
physical-device-type)

[LEAVE] ([NOLABEL] (VERIFY]

[KEYLENGTH (decimal-integer-constant)]

General rules:

1.

2.

Each file declaration must have an
associated ENVIRONMENT attribute.

The options must be separated by one
or more blanks.

The CONSECUTIVE option implies that
the (n+l)th record of the file is
located after the nth record of that
file. An example of an I/0 device for
which the CONSECUTIVE option is manda-
tory is a card reader or a printer.
If neither the CONSECUTIVE or the
REGIONAL option is specified, the CON-
SECUTIVE option is assigned by
default.

The REGIONAL option implies that the
physical location of a record on a
storage medium is specified by a key.
The key is specified by the programmer
and constitutes the only way to access

the record. The REGIONAL option is
permitted only for direct access
files.

REGIONAL(1) is used for files where

records are referred to by their rela-
tive location with respect to the
first record in the file. The rela-
tive record number is specified in the
KEY or KEYFROM options.

REGIONAL (3) 1is used for files where
the records are referred to by the
location of the track containing this
record relative to the first track in
the file and a key associated with the
record. Both the key and the relative
track number (which is a part of the
key) are specified in the options KEY
or KEYFROM.

The F, V, and U options are used to
describe physical records. F speci-
fies fixed length records, V specifies
variable length records and U speci-
fies records of undefined length.

Fixed-length records require a block
size specification. The record size
specification is optional. Both block
size and record size are specified by

Section I: Attributes 185

186

means of unsigned decimal integer con-

stants. The gquotient of block size
divided by record size must be an
integer. Fixed-length blocked records

are constructed if both block size and
record size are specified. I'ne block-
ing factor is the block size divided
by the record size. If only the block
size is specified, the record size is
assumed to be equal to the block size,
and the file 1is considered to be
unblocked.

If fixed-length blocked records are to
be transferred by a READ SET or LOCATE

statement, the record size must be
divisible by 8.
When wusing the V option, the record

size for records to be transferred by
means of READ SET or LOCATE statements
must yield a remainder of U4 after
division by 8.

The BUFFERS(n) option, where n must be

1 or 2, is used to specify the number
of buffers to be used. The BUFFERS
option may be used for STREAM files

even though neither the BUFFEREL nor
the UNBUFFERED attributes are permit-
ted since STREAM files have hidden
buffers. The BUFFERS option may also
be used for BUFFERED RECORD files.
The UNBUFFERED attribute precludes the

use of the BUFFERS option. The
default is BUFFERS(1).
The MEDIUM option is used to specify

the 1logical unit name and the device
type for the file being declared.
form

The logical device name has +*he

SYSxxx, where xxx may be:

a. IPT - System input device

b. LST - System output device used
for listing

c. PCH - System output device (card
punch)

d. 000 through 222 - Logical units

SYS000 through SYS2u44

The device-type specification contains
the number of the device to be wused.
For instance, if the IBM 1442N1 Card
Read/Punch is to be used, the option
would be written as 14u42. Figure I-2
shows how the individual device types
are specified.

The
may be assigned to the

device types listed in Figure I-2
lecgical unit

8.

10.

11.

| Devi
| Typ

[card
| Read
| and

| Punc

|Prin

| Magn
| Tap
| Dri

|Disk
| Dri
L

Figur

names SYSIPT, SYSLST, and SYSPCH as

shown in Figure I-3.

The LEAVE option is wused to
that no rewind operation is to be
performed at file open or close time.
It should be given for files that have
the BACKWARDS attribute to ensure pro-
per positioning of the file.

specify

The NOLABEL option is used to specify
that no file labels are to be proc-
essed for a magnetic tape file.

If the NOLABEL option is specified for

output files, a tape mark is automat-
ically written as the first record on
the tape. Non-standard labels and
additional user labels are not proc-
essed.

The VERIFY option is used to specify

that a read-check is to Dbe performed
after every write operation. This
option is permitted only with direct-
access devices.

The KEYLENGTH option is used to
specify the length of the key for
input and output operations. This
option is permitted only with the

option REGIONAL (3).
length is 9.

The minimum key-

Note: The key 1length must not be

included in the record length.

T T - -0
ce | |Device~Type |
e | Number | Specification|
- ---- 1

| IBM 2540 (reader) | 2540 |

| IBM 2540 (punch) | 2540 |
| IBM 1442N1 | 1442 |
ers |IBM 1442N2 | 1442 |
| IBM 2520B1] 2520 |
hes |IBM 2520B2 | 2520 |
| IBM 2520B3 | 2520 |
| IBM 2501 | 2501 |
_______________________ ¥ S |
| IBM 1403 | 1403 |
ters|IBM 1404 i 1404 |
|IBM 1443 I 1443 |
| IBM 1445 | 1445 |
———f— — I —————
etic|IBM 2400 (9-track)| 2400 1
e | IBM 2400 (7-track) | 2400]
ves | | |
——————————————————————— o
| IBM 2311 | 2311 |
ves | | I
S L J
e I-2. Device Types and Corresponding

Specifications

[ro—————=—————— T - 1
| Logical Unit | |
| Name | Device Type |
prmmm oo Y 1
] | IBM 2540 (reader) i
	IBM 1442N1
	IBM 2501
SYSIPT	IBM 2520B1
	IBM 2400 (7- oxr 9-track)
F-=—————————- R 1	
	IBM 1403
	IBM 1404
SYSLST	IBM 1443
	IBM 2400 (7- or 9-track)
I I I	
prmmmmmmmm oo pommmm oo	
	IBM 2540 {(punch)
	IBM 1442N1
I	IBM 1442N2
	IBM 2520B1 I
SYSPCH	IBM 2520B2 [
	IBM 2520B3
	IBM 2400 (7- or 9-track)
b A e J
Figure I-3. Device Types Associated to
SYSIPT, SYSLST, and SYSPCH

Assumptions:

CONSECUTIVE data set organization is
assumed unless stated otherwise. Tape
reels are rewound unless the LEAVE option

is specified. If the BUFFERS(n) option is
not specified, one buffer is allocated.

EXITERNAL and INTERNAL (Scope Attributes)

The EXTERNAL and INTERNAL attributes
specify the scope of a name. INTERNAL
specifies that the name can be known only
in the declaring block and its contained
blocks. EXTERNAL specifies that the name
may be known in other blocks containing an

external declaration of the same name.
General format:

EXTERNAL| INTERNAL
General rules:

i. All file names must be external. They

cannot be declared as internal.

2. All external names are restricted by
the D-Compiler to a maximum length of
six characters.

Assumptions:

INTERNAL is assumed for entry names of
internal procedures and for variables with

any storage class. EXTERNAL is assumed for

file names and entry names of external
procedures.
FILE Attribute

The FILE attribute specifies that the

identifier being declared is a file name.
General format:
FILE

General rule:

The FILE attribute must Dbe explicitly
declared for each file name and file name
parameter. It must be the first attribute

in a file declaration.

FIXED and FLOAT (Arithmetic Data
Attributes)

The FIXED and FLOAT attributes specify
the scale of the arithmetic variable being
declared. FIXED specifies that the vari-
able is to represent fixed-point data
items. FLOAT specifies that the variable
is to represent floating-point data items.

General format:
FIXED|FLOAT
General rule:

The FIXED and FLOAT attribures cannot be
specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimension, PACKED, ALIGNED, storage class,
and scope attributes) are assumed to be
arithmetic variables with assigned attri-

butes depending upon the initial letter.
For identifiers beginning with any letter I
through N, the default attributes are FIXED
BINARY (15). For identifiers beginning
with any other alphabetic character, the
default attributes are FLOAT DECIMAL (6).
If BINARY or DECIMAL is specified, FLOAT is
assumed. If FIXED or FLOAT is specified,
DECIMAL is assumed. The default precisions
are those defined for System/360 implemen-
tations.

Section I: Attributes 187

FLOAT (Arithmetic Data_ Attribute)

3ee FIXED.

INPJT, OUTPUT, and UPDATE (File Description
Attributes)

The INPUT, OUTPUT, and UPDATE attributes

indicate the function of the file. INPUT
specifies that data is to be transmitted
from the data set to the program. OUTPUT

specifies that data is to be transmitted
from the program to the data set, nct an
existing data set, but a newly created one.
UPDATE specifies that the data can be
transmitted in either direction; that is,
the file is both an input and an output
file.

General format:
INPUT |OUTPUT | UPDATE
General rules:

1. A file with the INPUT attribute cannot
have the PRINT attribute.

2. A file with the OUTPUT attribute can-
not have the BACKWARDS attribute.

3. A file with the UPDATE attribute can-
not have the STREAM, BACKWARDS, or
PRINT attributes. A declaration of
UPDATE for a SEQUENTIAL file indicates
the update-in-place mode. 10 access
such a file, the sequence o¢f state-
ments must be READ, then REWRITE.

above attributes must be
unless the file
with the PRINT

case, OUTPUT is

4., One of the
given for each file
has been declared
attribute, in which
implied.

5. These attributes must be specified in
the DECLARE statement except in the
case of an UNBUFFERED file, in which
case, INPUT or OUTPUT can be specified
in the OPEN statement.

Assumption:

The PRINT attribute implies OUTIPUT.

INTERNAL (Scope_ Attribute)

See EXTERNAL.

188

KEYED (File Description Attribute)

The KEYED attribute specifies that each
record in the file has a key associated
with it, and that the statement options KEY
and/or KEYFROM may be used to access
records in the file.

General format:
KEYED
General rules:

1. A XEYED file
tially.

cannot be read sequen-

2. The KEYED attribute can Dbe
for DIRECT files only.

specified

Assumption:

The DIRECT attribute implies KEYED.

LABEL (Program Control Data Attribute)

The LABEL attribute specifiies that the
jdentifier being declared is a label vari-
able and is to have statement labels as
values.

General format:
LABEL
General rules:
1. The variable can have as values any of

the statement labels known within the
scope of the variable.

2. If the variable 1is a parameter, its
value can be any statement. label vari-
able or constant passed as an argu-
ment.

3. An entry name cannot be a value of a

label variable.

Length (String Attribute)

See BIT.

OUTPUT (File Description Attribute)

See INPUT.

PACKED (Array and Structure Attribute)

See ALIGNED.

PICTURE (Data Attribute)

The PICTURE attribute is used to define
the internal and external formats of
character-string and numeric character data
and to specify the editing of data. Numer-
ic character data is data having an arith-
netic value but stored internally in char-
acter form. Numeric charcter data must be
converted to coded arithmetic before arith-
metic operations can be performed.

The picture characters are described in
Section D, "Picture Specification Charac-
ters."

General format:
PICTURE
"'character-picture-specification'
{'numeric—picture—specificationﬂ }

A "picture specification,™ either character
or numeric, is composed of a string of
picture characters enclosed in single quo-
tation marks (as shown in the format). An
individual picture character may be preced-
ed by a repetition factor, which is an
unsigned decimal integer constant greater
than zero, n, enclosed in parentheses, to
indicate repetition of the character n
times. Picture characters in a specifi-
cation are considered to be grouped into
fields, some of which contain subfields.

General rules:

1. The "character picture specification®
is used to describe a character-string
data item. Only the picture character
X «can be used. It indicates that the
associated position in the data item
can contain any character. At least
one X must be specified. A character
picture specification is a single
field with no contained subfields.

Example:
DECLARE ORDER# PICTURE '(13)X';

This declaration specifies that values
of ORDER# are to be character strings
of length 13. For example, the char-
acter string "GF342-63-0024' would fit
this description.

Editing and suppression characters are
not allowed in character picture
specifications. Each picture specifi-
cation character must represent an
actual character in the data item.

The "numeric picture specification"” is
used to describe a character item that
represents an arithmetic wvalue or a
character-string value, depending on
its use. A numeric picture specifi-
cation c¢an consist of one or more
fields, some of which can be divided
into subfields. A single field is
used to describe a fixed-point number
or the mantissa of a floating-point
number. Either may be divided into
two subfields, one describing the
integer portion, the other describing
the fractional portion. For floating-
point numbers, a second field is
required to describe the exponent; it
cannot be divided into subfields.
Four basic picture characters can be
used in a numeric picture specifi-
cation:

9 indicating any decimal digit

v indicating the assumed location of
a decimal point. It does not
specify an actual character in the
character-string value of the data
item. It indicates the end of a
subfield of a picture specifi-
cation.

K indicating, for floating-point
data items, that the exponent
should be assumed to begin at the
position associated with the pic-
ture character following the K.
It does not specify an actual
character in the character-string
value of the data item. The K
delimits the two fields of the
specification.

E indicating, for floating-point
data items, that the associated
position will contain the letter E
to indicate the beginning of the
exponent. The E also delimits the
two fields.

In addition to these characters, zero
suppression characters, editing char-
acters, and sign characters may be
included in a numeric picture specifi-
cation to indicate editing. Editing
characters are not a part of the
arithmetic value of a numeric charac-
ter data item, but they are a part of
its cha ~acter-string value. Each
numeric picture specification must
include at least one digit specifier.
Repetition factors are allowed in
numeric picture specifications.

Section I: Attributes 189

3.

190

A numeric character data item can have
only a decimal base. Its scale and
precision are specified by the picture
characters. The PICTURE attribute
cannot be specified in ccmbination
with base, scale, or precision afttri-
butes.

The following paragraphs indicate the
combinations of picture characters for
different arithmetic data formats.

a. Decimal fixed-point items are des-
cribed in the following general
form:

PICTURE '[91...[V]1[9]..."

Sign, editing, and zero suppres-
sion picture characters can be
included in a fixed-point specifi-
cation. The V may not appear more
than once 1in a specification,
although it may be used in combi-
nation with the decimal point (.)
or comma (,) editing characters,
which cause insertion of a period
or comma. If no V 1is included,
the decimal point is assumed to be
to the right of the rightmost
digit. Only one sign indication
can be included in the field. The
specification must include at
least one digit position.

Example:
DECLARE A PICTURE '999V99";

This specification describes
numeric character items of five
digits, two of which are assumed
to be fractional digits.

b. Decimal floating-point items are
described by the following general
form:

PICTURE "(91...[V]([9]...{E|K}9I[9]"

Both the first field and the
exponent field must each contain
at least one Jigit position. The
exponent field can contain no more
than two digits, since System/360
implementations allow only two

digits in the exponent field of a

decimal floating-point number. If

arithmetic data items are to be
assigned to the described vari-

able, the exponent field mnust con-
tain both of the allowed digit
specification characters, or the

second digit of the exponent field
will be lost and the SI4ZE condi-
tion will be raised.

and zero suppres-

Sign, editing,

6.

sion picture characters can be
included in a floating-point
specification. One sign indica-

tion is allowed for each field.
Only one V is allowed, and it can
appear in the first field only.
As with fixed-point specifi-
cations, the V may appear in com-
bination with the decimal point

editing character (as .V or V.).
X, T, I, R, CR, DB, and sterling
picture characters are not
allowed.

The precision of a numeric character

variable is dependent upon the number
of digit positions, actual and condi-
tional. Digit positions can be speci-
fied by the following characters:

9 which is an actual digit character

Z which are conditional digit char-
acters specifying zero suppression

I which are digit characters
fying an overpunch

speci-

el

wr

w

which are conditional digit drift-
ing characters

Each but the first conditional digit
drifting character in a drifting
string specifies a digit position. A
conditional digit drifting character
used alone does not specify a digit

position. Precision of a fixed-point
variable is (p,q), where p 1is the
number of digit positions in the pic-

ture specification and g is the number
of digit positions following V. Pre-
cision of a floating-point variable is
(p), where p is the number of digit
positions preceding the E or K. Indi-
cated static editing characters or
insertion characters do not parti-
cipate 1in the specification of preci-
sion, but they must be counted in the
number of characters if the data item
is assigned internally to a character
string.

A variable representing sterling data
items can be specified by wusing a
numeric picture specification that
consists of three fields, one each for
pounds, shillings, and pence. The

pence field can be divided into two
subfields. Data so described is
stored in character format as three
contiguous numbers corresponding to
each of the three fields. If any
arithmetic operations are specified
for the variable, its value is con-
verted to coded fixed-point decimal
representing the value in pence.
Sterling picture specifications have
the following form:

FICTURE

'G [editing-character-1il...

M pounds-field

M [separator-1]...
shillings-field

M [separator-21...
pence-field

[editing-character-2]..."

Picture specifications characters,
editing characters, and separators
thatt can be wused in any of these
fields are discussed in Section D,
"Picture Specification Characters."”

The precision (p,q) of a sterling data
item is defined as follows:

g = number of fractional digits in
the pence field.

P =3 + g+ the number of digit

positions, actual and condi-
tional, in the pounds field.

POINTER_ ({(Program_Control Data Attribute)

The POINTER attribute specifies that the
identifier being declared is a pointer
variable and can be used to identify data
existing in any storage class.

Seneral format:
POINTER
General rules:

1. The POINTER attribute can be given to
an identifier only via a DECLARE
statement. Thus, a pointer variable
must. be explicitly declared with the
POINTER attribute.

2. The value of a pointer variable can be
established in two ways:

a. by pointer assignment.

b. by the SET clause in a READ or

LOCATE statement.

3. Pointer data cannot appear as an oper-
and in an arithmetic expression, nor

can conversions be performed between
pointer data and other data types.

4. The only operators that can be applied
directly to pointer data are the com-
parison operators = and q=.

5. Pointer data cannot be read or written
via STREAM transmission.

6. A pointer variable cannot have the
BASED attribute. Therefore, a pointer
variable cannot be an element of a
structure having the BASED attribute.

Precision (Arithmetic Data Attribute)

The precision attribute is used to spec-
ify the minimum number of significant
digits to be maintained for the values of
variables, and to specify, for fixed-point
decimal variables, the scale factor (the
assumed position of +the decimal point).
The precision attribute applies to both
binary and decimal data.

General format:

(number-of-digits [,scale-factorl)
The "number of digits" and "scale factor"
are unsigned decimal 1integer constants.
The "number of digits"™ cannot be zero. The
precision attribute specification is often
represented, for brevity, as (p,q), where p
represents the "number of digits" and g
represents the "scale factor."”

General rules:
attribute must immedi-

1. The precision

ately follow, with or without inter-
vening blanks, the scale (FIXED or
FLOAT), or base (DECIMAL or BINARY)

attribute at the same factoring level.

2. The “"number of digits™ specifies the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. No point is
actually present; its 1location is
assumed.

3. The "scale-factor™ is a decimal inte-
ger constant that states the number of
digits to the 1right of the decimal
point. It can be wused only with
decimal fixed-point variables. A
binary fixed-point variable may rep-
resent only integer numbers and there-
fore always has an assumed scale fac-
tor of zero.

Section I: Attributes 191

4. When the scale factor is not specitied
for decimal fixed-point data, it is
assumed to be zero; that is, the
variable is to represent integers.

5. The scale factor can be larxger than
the number of digits. Sach a scale
factor always specifies a fraction,
with the decimal point assumed to be
located the specified number of digit
places to the left of the rightmost
actual digit. Intervening zeros are
assumed, but they are not stored; only
the specified number of digits are
actually stored.

6. The precision attribute cannot be
specified in combination with the PIC-
TURE attribute.

7. The maximum number of digits allowed
for System/360 implementations 1is 15

for decimal fixed-point data, 31 for
binary fixed-point data, 16 for deci-
mal floating-point data, and 53 for

binary floating-point data. For the
D-Compiler the scale factor cannot be
greater than 15.

Assumptions:

The defaults for the D-Compiler are as
follows:

(5,0) for DECIMAL FIXED
(15) for BINARY FIXED
(6) for DECIMAL FLOAT

(21) for BINARY FLOAT

PRINT (File Description Attribute)

The PRINT attribute specifies that the
data of the file is wultimately to be
printed. The PAGE, LINE, and SKIP options
of the PUT statement and the PAGESIZE

option of the OPEN statement can be used
only with files having the PRINT attribute.
These options are described in Section J,
"Statements".
General format:

PRINT
General rules:

1. The PRINT attribute implies the OUTPUT
and STREAM attributes.

2. The PRINT attribute causes the initial
data byte within each record to be

192

reserved for ASA printer control char-
acters. Any length specification of
the record must be 1 plus the length

of the print line to account for this
control character. These control
characters are set by the PAGE, SKIP,

or LINE format items or options.

Assumption:

Iif no FILE or STRING specification
appears in a PUT statement, the standard
output file is assumed.

RECORD and STREAM (File Description
Attributes)

The RECORD and STREAM attributes specify
the kind of data transmission to be used
for the file. STREAM indicates that the
data of +the file 1is considered to be a
continuous stream of data items, in charac-
ter form, to be assigned from the stream to
variables, or from expressions into the
stream. RECORD indicates that the file
consists of a collection of physically
separate records, each of which consists of
one or more data items in any form. Each
record is transmitted as an entity directly
to or from a variable or directly to or
from a buffer.

General format:

RECORD | STREAM
General rules:

with the STREAM attribute can
CLOSE,

1. A file
be specified only in the OPEN,
GET, and PUT statements.

2. A file with the RECORD attribute can

be specified only in the OPEN, CLOSE,
READ, WRITE, REWRITE, and LOCATE
statements.

3. A file with the STREAM attribute can-
not have any of the following attri-
butes: UPDATE, DIRECT, SEQUENTIAL,
BACKWARDS, BUFFERED, UNBUFFERED, and
KEYED.

4., A file with the RECORD attribute can-

not have the PRINT attribute.

Assumptions:

Default is STREAM.

RETURNS (Entry Name Attribute)

The RETURNS attribute may be specified
in a DECLARE statement for an entry name
that is used in a function reference within
the scope of the declaration. It is used
to describe the attributes of the function
value returned when that entry name is
invoked as a function.

General format:
RETURNS (attribute...)
It is used in the following manner:

DECLARE entry-name [ENTRY]
RETURNS (attribute...);

General rules:

1. The RETURNS attribute implies the
ENTRY attribute, and, hence, ENTRY can
be omitted.

2. The attributes in the parenthesized
list following the keyword RETURNS are
separated by blanks. They must agree
with the attributes specified (or
assumed by default) in the PROCEDURE
or ENTRY statement to which the entry
name is prefixed. If the attributes
of the actual value returned do not
agree with those declared with the
RETURNS attribute, no conversion will
be performed.

3. Only arithmetic, string, PICTURE, or
POINTER attributes can be specified.

4. Internal procedures declared with a
RETURNS attribute must also be given
the INTERNAL attribute in the same
declaration. For an internal func-
tion, the RETURNS attribute can be

specified only in a DECLARE statement
that is internal to the same block as
the function procedure.

5. Unless default attributes for the
entry name apply, any invocation of a
function must appear within the scope
of a RETURNS attribute declaration for
the entry name.

Assumptions:

If the RETURNS attribute is not speci-
fied within the scope of a function ref-
erence, the defaults assumed for the
returned value are FIXED BINARY (15) if the
entry name begins with any of the letters I
through N; otherwise, the defaults are
FLOAT DECIMAL (6). Default precisions are
those defined for System/360 implementa-
tions.

SEQUENTIAL (File Description Attribute)

See DIRECT.

STATIC (Storage Class Attribute)

See AUTOMATIC.

STREAM (File Description Attribute)

See RECORD.

UPDATE (File Description Attribute)

See INPUT.

Section I: Attributes 193

SECTION J: STATEMENTS

the PL/I state-
Most state-
following

rhis section presents
ments in alphabetical order.
ments are accompanied by the
information:

1. Function -- a short description of the
meaning and use of the statement

2. General format -- the of the

statement

syntax

3. Syntax rules -- rules of syntax that
are not reflected in the general for-
mat

4. General rules -- rules governing the
use of the statement and its meaning
in a PL/I program

|Type 1. Element Assignment

element-variable

pseudo-variable

-

= element-expression;

The Assignment Statement

Function:

The assignment statement evaluates
expressions and assigns values to elements,
arrays, Or structures.

General formats:

The assignment statement has five gener-
al format types. They are as shown in
Figure J-1.

Syntax rules:
1. In Type 1, the variable in the receiv-

ing field (i.e., to the 1left of the
equal sign) must represent a single

a. element-pointer-variable = element-pointer-expression;

b. pointer-array =

|

|

|

|

|

|Type 2. Array Assignment

|

} array-expression

] array-variable =

} element-expression
|

|Type_3. _Structure_ Assignment

|

] structure-expression
| structure-variable =

| element-expression
|

|Iype_ 4. Statement Label Assignment (2 forms)

I ~

| label~constant
| a. element-label-variable =

| element-label-variable
’ ~

| label-constant

] b. label-array ={ element-laktel-variable

| label-array

|

|Iype_ 5. Pointer Assignment (2 fcrms)

|

|

|

|

|

|

pointer-array

Figure J-1. Assignment Statement Types

194

element-pointer-expression

e

e i e oo e e s . — — — —— — —— —. — —— — T— ——— —— ——{— —— ——— — t— —— —— — s ok

element whose data type is arithmetic

or string.

In Type 2, the variable in the receiv-
ing field must represent an array of
arithmetic or string elements.

If an element expression appears to
the right of the equal sign, the value
of the expression is assigned to each
element of the array in the receiving
fieid.

If an array expression appears to the
right of the equal sign, all of the
arrays 1in the receiving field and all
array operands in the expression must
have the same number of dimensions and
identical bounds.

In Type 3, the variable in the receiv-
ing field must represent a structure
and each element of the structure must
be an arithmetic or string element.
(Pointer and label elements are also
allowed, but these are special cases;
see general rule 3.)

If an element expression appears to
the right of the egual sign, the value
of the expression is assigned to every
element of the structure in the
receiving field.

If a structure expression appears to
the right of the equal sign, then, the
relative structuring of all structures
on both sides must be the same.

In Type 4, item b, if a label constant
or an element label variable appears
on the right, then the constant or the
value of the wvariable is assigned to
every element in the label array in
the receiving field.

If a label array appears on the right,
then the number of dimensions and the
bound of each dimension of that array
must be identical to those of the
label array in the receiving field.

In Type 5, an "element pointer
expression" is either an element poin-
ter variable or a function reference
that returns an element pointer value.

In Type 5, item b, 1if an element
pointer expression appears to the
right of the equal sign, the value of

the expression is
element of the
receiving field.

assigned to every
pointer array in the

aAlso item b, if a pointer array
appears to the right, the number of
dimensions and the bound of each

dimension of that array must be ident-

ical to those of the pointer array in
the receiving field.

General rules:

1.

The assignment statement is evaluated

as follows:

a. For Types 1, 4, and 5, any expres-
sions that appear in the receiving
field, either in subscripts or in
pseudo-variables, are evaluated
froem left to right. The expres-
sion on the right of the equal
sign is evaluated and its value is
assigned to the variable in the
receiving field.

b. For Types 2 and 3, the assignment
statement is treated as a sequence
of element assignment statements
involving corresponding elements
of the arrays or structures con-
cerned. For arrays, the elements
are assigned in row-major order;
for structures, the elements are
assigned in the order in which
they were declared.

Note that the result of the evalu-
ation for a later position in an
array or structure may be affected
by the evaluation and assignment
to an earlier position (see Exam-
ple 1 below).

the value of the
the right is con-
verted to the characteristics of
the variable in the receiving
field according to the rules given
in Section F, "Data Conversion."

c. When necessary,
expression on

When a variable in the receiving field
is a string or the UNSPEC pseudo-
variable, the expression on the right
is evaluated as in general rule 1, and

the assignment is performed from left
to right, starting with the leftmost
bit or character position. The

following may also apply:

a. If the value of the expression is
longer than the string, the value
is truncated on the right to match
the length of string.

b. If the value of the expression is
shorter than the string, the value
is extended on the right with
zeros for bit strings and with
blanks for character strings.

If a pointer or label variable is an
element of a structure appearing in a
receiving field, it is assigned a
value Jjust 1like any other element in
the structure. However, no conversion

Section J: Statements 195

is performed and, therefore, the value
assigned to such a pointer ox label
variable must be another pcinter or
label variable.

4, Label array and pointer array assign-
ment as shown in Types 4 and 5,
respectively, follow the rules given

for array
1.

assignment in general rule

T'he following example illustrates
assignment:

array

Given the array A 2)
3 6
1 7
4 8
and the array B 1 5
7 8
3 L
6 3

Consider the assignment statement:
A = (A+B)**2-A(1,1);

after execution, A has the value:

7 T4

93 189

9 114

93 114
Note that the new value for a(i,1),
whicn is 7, 1is used in evaluating the

expression for all other elements.

Example 2:

The following example illustrates string
assignment:

Given:

A 1is a string whose value is 'XZ/BQ'.
3 is a string whose value is 'MAFY'.

C is a string of length 3.

D is a string of length 5.

Then in the statement:

A, the value of C is "XZ/'.

'X', the value of C is 'Xbb'.

B, the value of D is 'MAFYD'.
SUBSTR (A,2,3) | |SUBSTR (A,2,3),
the value of D is ‘'Z/BZ/"'.

o

conNnn

SUBSTR (A,2,4) = B, the value of A 1is
' XMAFY'.

SUBSTR (B,2,2) = 'R', the value of B
is 'MRbY'.

196

Example 3:

The following example (where A, B, and C
are element variables) illustrates element
assignment:

A=A+SIN(B) + C**2;

The following examples illustrate struc-
ture assignment:

a. DECLARE 1 X, 2 Y,
1A, 2B,

2 2,
2 C,

2 R,
2 D,

3 s,
3 E,

3 P,
3 Q;

X =X * A;

The assignment statement is equivalent
to the following statements:

X.Y = X.Y * A.B;
X.% = X.Z * A.C;
X.S = X.S * A.E;
X.P = X.P * A.Q;

b. DECLARE 1 A, 2B, 2C, 3D, 3 E;
A=A+ A.B;

The assignment statement is equivalent
to the following:

A.B
A.C

A.B + A.B;
A.C + A.B;

nwn

The last statement is equivalent to:

A.D + A.B;
A.E + A.B;

?’:D‘
[l
nu

The following example illustrates state-
ment label assignment:

DECLARE P LABEL;
P = A;
GO TO P;

A: X = Y**2;

This set of statements causes control to
transfer to A when the GO TO P statement is
executed.

Example 6:

The following example illustrates con-
version of data defined by a picture des-
cription assigned to floating-point data,
and vice versa:

DECLARE A FLOAT, B PICTURE '999Vv99°;

A = B; (B is converted from fixed-
point to floating-point.)

B = A; (A is converted from floating-
point to fixed-point.)

The BEGIN Statement

Function:

The BEGIN statement heads and identifies
a begin block.

General format:
BEGIN;
General rules:

statement is used in
conjunction with an END statement to
delimit a begin block. A complete
discussion of begin blocks can be
found in Part 1, Chapter 6, "Blocks,
Flow of Control, and Storage Alloca-
tion."

1. A BEGIN

2. A RETURN statement cannot appear with-
in a begin block.

The CALL_ Statement

Function:

The CALL statement invokes a procedure
and causes control to be transferred to the
specified entry point of that procedure.

General format:

CALL entry-name
[(argument[,argumentl...)];

Syntax rules:

1. The entry name represents an entry
point of the procedure that is being
invoked.

2. An argument can be any expression
except a based variable, a built-in
function name, an operational struc-

ture expression, or an operational
array expression. Examples of valid
arguments include minor structure

names, label variables, entry names,
pointer expressions, string constants,
array names, and file names. Note,

however, that if the attributes of an
argument are not consistent with those
of its corresponding parameter, no
conversion is performed and an error
will probably result.

General rule:

See Part 1, Chapter 10, "Subroutines and
Functions" for detailed descriptions of the
interaction of arguments with the paramet-
ers that represent these arguments in the
invoked procedure.

The CLOSE Statement

Function:

The CLOSE statement dissociates the
named file from the data set with which it
was associated by a previous opening. It
also dissociates from the specified file,
either INPUT or OUTPUT and PAGESIZE, if
specified in the opening of that file.
However, all attributes explicitly speci-
fied for that file in a DECLARE statement
remain in effect.

General format:

CLOSE FILE(file-name)
[,FILE(file-name)]}... ;

General rules:

1. The "file name"™ in the FILE(file-name)
specification indicates the file to be
closed. Since more than one such
specification can be given in a CLOSE
statement, more than one file can be
closed by one CLOSE statement.

2. A closed file can be reopened.

3. Closing an unopened file, or a pre-
viously closed file, has no effect.

4, If a file is not closed by a CLOSE
statement, it is automatically closed
at the completion of the program in

which it was opened.

The DECLARE Statement

Function:

The DECLARE statement is the principal
method for explicitly declaring attributes
of names.

Section J: Statements 197

General format:

DECLARE

[levell identifier [attributel...
{,{level]l] identifier [attributel...l...;

Syntax rules:

1.

"Level" is a nonzero unsignecd decimal
integer constant. It can appear only
in structure declarations; the major
structure must have the level 1. A
blank space must separate a level
number from the identifier following
it.

In general, attributes must immediate-
ly follow the identifier to which they
apply (as shown in the general
format). However, attributes common
to several name declarations can be
factored to eliminate repeated speci-
fication of the same attribute for
many identifiers. Factoring is
achieved by enclosing the involved
declarations (non-common attributes
included) in parentheses and following
this by the set of common attributes.
In the case of a factored level num-
ber, the level number must precede the
parenthesized list (a blank 1is not
required between the factcred level
number and the left parenthesis).

Dimension and file descripticn attri-
butes cannot be factored. Factoring
can be nested up to a level cf eight.

For examples of factoring, see
"Factoring of Attributes"™ in Section
I, "Attributes."

General rules:

1.

198

A major structure identifier oxr an
identifier not contained within a
structure can be specified in only one
DECLARE statement within a garticular
block. All attributes given explicit-
ly for that identifier must be
declared together in that DECLARE
statement. {Note, however, that cer-
tain identifiers having the FILE
attribute may be given the INPUT or
OUTPUT attribute in an OPEN statement
as well. See "The OPEN Statement"™ in
this section and in Part I, Chapter 8,
"Input and Output," for further infor-

mation.)

Attributes of external nanes, in sep-
arate blocks and compilations, must be
consistent.

Labels may be prefixed to DECLARE
statements (however, such labels are
treated as comments and, hence, have
no meaning). Condition prefixes can-

not be attached to a DECLARE state-

ment.

File names must be explicitly
declared, and the first attribute in a
file declaration must be FILE.

The DISPLAY Statement

Function:

The DISPLAY statement causes a message
to be displayed to the machine operator.
An option allows the machine operator to
reply.

General format:

DISPLAY (element-expression)
[REPLY (character-string-element-variablie)];

Syntax rule:

The "character-string element variable"

cannot be a pseudo-variable.

General rules:

1.

Execution of the DISPLAY statement
causes the element expression to be
evaluated, and, where necessary, con-
verted to a character string. This
character string is the message to be
displayed to the machine operator.

For the D-compiler, it can be no
than 80 characters long.

more

If the REPLY option is specified, the
machine operator will respond with a
message that is to be assigned to the
character-string element variable
specified in the opticn. The D-
Compiler does not restrict the length
of the reply; however, the character
string variable, like any other
character string, cannct exceed 255
characters.

If the REPLY option is not specified,
execution continues uninterrupted
after the execution of the DISPLAY
statement.

If the REPLY option is specified,
execution of the program is suspended
until the operator's 1reply has been
completed.

sttt 1
|Type 1. DoO; |
| I
|Type_2. DO WHILE (element-expression); |
I I
|Type_3. DO variable =specification [,specificationl...; |
I |
| where "specification" has the following form: |
| |
| TO expression2 [BY expression3] |
| expressionl [WHILE (expressiont)]]
| BY expression3 [(TO expression2] |
S U _— P

Figure J-2. General Format of DO Statement

The DO_Statement
Function:

The DO statement heads a DO-Group and
can also be used to specify repetitive
execution of the statements within the
group.

General formats:

The three format types for the DO state-
ment are shown in Figure J-2.

Syntax rules:

1. In all three types, the DO statement
is used in conjunction with the END
statement to delimit a DO-group. Only
Type 1 does not provide for the itera-
tive execution of the statements with-
in the group.

2. In Type 3, the "variable™ must rep-
resent a single element; it cannot be
subscripted. Arithmetic variables are
generally used, but 1label, pointer,
and string variables are allowed, pro-
vided that the expansions given in the
general rules below result in valid
PL/I programs. Note, however, that if
"variable" 1is neither arithmetic nocr
bit string "expression2"™ and "expres-
sion3" must be omitted.

3. Each expression in a specification
must be an element expression.

4. If "BY expression3" is omitted from a
"specification,"” and if "TO expres-
sion2" is included, T"expression3" is

assumed to be 1.

5. If "TO expression2" is omitted from a
"specification,"” iterative execution
continues until it is terminated by
the WHILE clause or by some statement
within the group.

If both "TO expression2" and "BY
expression3" are omitted from a speci-
fication it implies a single execution

of the group, with the control
"variable" having the value of
"expressionl.”™ This is true even if

"WHILE expression#4" is included.

General rules:

1.

The

In Type 1, the DO statement only
delimits the start of a DO-group; it
does not provide for iterative execu-
tion.

In Type 2, the DO statement delimits
the start of a DO-group and provides
for iterative execution as defined by
the following:

LABEL: DO WHILE (expression);
statement-1
statement-n
END;
statement
/*STATEMENT FOLLOWING THE DO
GROUP*/

NEXT:

above is exactly equivalent to the

following expansion:

LABEL: IF (expression) THEN;
ELSE GO TO NEXT;
statement-1

statement-n

GO TO LABEL;

statement

/*STATEMENT FOLLOWING
THE DO GROUP*/

NEXT:

In Type 3, the DO statement delimits
the start of a DO-group and provides
for controlled iterative execution as
defined by the following:

Section J: Statements 199

T'he

LABEL: DO variable=expressionl
TO expression2 BY expression3
WHILE (expression#d);

statement-1

statement-m

LABEL1: END;
NEXT: statement
above 1is exactly equivalent. to the

following expansion:

are

In the above expansion el, e2,

LABEL: el=expressionl;
e2=expression2;
e3=expression3;
v=el;
LABEL2:IF (e3>=0)&(v>e2) | (e3<0) & (v<el)
THEN GO TO NEXT;
IF (expressionl4) THEN;
ELSE GO TO NEXT;
3tatement-1

statement-m
LABELl:v=v+e3;

G0 TO LABEL2;
NEXT: statement
and e3
compiler-created work areas having the

attributes of "expressionl," "expression2,"

and

"expression3," respectively; v is

synonymous with "variable."

200

a. The above expansion only shows the
result of one "specification." If

the DO statement contains more
than one "specification," the
statement 1labeled NEXT is the
first statement in the expansion

for the next "specification."™ The
second expansion is analogous to
the first expansion in every res-
pect. Thus, if a second "specifi-
cation" appeared in the DO state-
ment the second expansion would
look like this:

NEXT: eS5=expression5;

v=e5;

IF... THEN GO TO NEXT1;

IF (expression8) THEN;
ELSE GO TO NEXT1;

statement-1

LABEL3:

statement-m
v=v+eT;

GO TO LABEL3;
statement

LABELY4:

NEXT1:

‘control "variable";

Note that statements 1 through m
are not actually duplicated in the
program.

b. If the WHILE clause is omitted,
the'3 IF statement immediately
preceding statement--1 in the

expansion is omitted.

c. If "TO expression2" is omitted,
the statement e2=expression2 and
the IF statement identified by

LABELZ2 are omitted.

d. If both "TO expression2™ and
"BY expression3" are omitted, all
statements involving e2 and e3, as
well as the statement GO TO LABEL2
are omitted.

The WHILE clause in
specifies that before each iteration
of statement execution, the associated
element expression is evaluated, and,
if necessary, converted to a bit
string. If any bit in the resulting
string is 1, the statements of the
DO-group are executed. If all bits
are 0, then, for Type 2, execution of
the DO-group is terminated, while for
Type 3, only the execution associated
with the “"specification" containing
the WHILE clause is terminated; itera-
tive execution for the next "specifi-
cation," if one exists, then begins.

Types 2 and 3

In a "specification," "expressionl"
represents the initial value of the
"expression3" rep-
resents the increment to be added to
the control variable after each execu-
tion of the statements in the group;
"expression2" represents the terminat-
ing value of the control "variable."”
Execution of the statements in a DO
group terminates for a "specification"
as soon as the value of the control
"variable" is outside the range
defined by "expressionl®™ and "expres-
sion2." When execution for the last
"specification" is terminated, control
passes to the statement following the
DO-group.

Control may transfer into a DO-group
from ocutside the DO-group only if the
DO-group is delimited by the DO state-
ment in Type 1; that is, only if
iterative execution is not. specified.
Consequently, iterative DO-groups can-—
not contain ENTRY statements.

The END Statement

Function:

The END statement terminates blocks and

groups.

General format:

END [statement-label-constant];

General rules:

1.

The END statement always terminates
that group or block headed by the
nearest preceding DO, BEGIN, or PROCE-
DURE statement for which there is no
corresponding END statement. Thus, if
a statement label constant follows
END, it must be the label of such a
DO, BEGIN, or PROCEDURE statement.
Note that if END corresponds to a DO
or BEGIN statement to which more than
one label has been attached, the label
following END must be the label
immediately preceding the keyword DO
or BEGIN.

an END statement
treated as a

If control reaches
for a procedure, it is
RETURN statement.

The ENTRY Statement

Function:

The ENTRY

statement specifies a secon-

dary entry point of a procedure.

General format:

ENTRY [(parameter
[attributel...;

entry-name:
[,parameterl...)]}

Syntax rules:

1.

The only attributes that may be speci-
fied with an ENTRY statement are the

arithmetic, string, PICTURE, and
POINTER attributes. The attributes
specified determine the charac-

teristics of the value returned by the
procedure when it 1is invoked as a
function at this entry point.

A condition prefix cannot be specified
for an ENTRY statement.

The ENTRY statement must have one and
only one entry name appended to it.

No more than 12 parameters can appear

1.

in an ENTRY statement (the sum total
of all of the parameters in any one
procedure cannot exceed 12).

General rules:

The relationship established between
the parameters of a secondary entry
point and the arguments passed to that
entry point is similar to that esta-
blished for primary entry point param-

eters and arguments. See Part I,
Chapter 10, "Subroutines and
Functions" for a complete discussion

of this subject.

As stated in syntax rule 1, the attri-
butes specified with an ENTRY state-
ment determine the characteristics of
the value returned by the procedure
when it is invoked as a function at
this entry point. The value being
returned by the procedure (i.e., the
value of the expression in a RETURN
statement) is converted, if necessary,
to correspond to the specified attri-
butes. If the attributes are not
specified at the entry point, default
attributes are applied, according to
the first letter of the entry name
used to invoke the entry point. The
data attributes of a secondary entry

point (default or otherwise) must be
exactly the same as those of the
primary entry point if the procedure

is used as a function procedure.

The ENTRY statement must be internal
to the procedure for which it defines
a secondary entry point. It may not
be internal to any block contained in
this procedure; nor may it be within a
DO group that specifies iterative exe-
cution. -

The parameters of a secondary entry
point must be explicitly declared
elsewhere in the block (i.e., either
in the parameter list of the PROCEDURE
statement or in a DECLARE statement,
or both).

For the D-Compiler, the maximum length
of an external name 1is six. There-
fore, the entry name of an ENTRY
statement internal to an external pro-
cedure cannot be longer than six.

The FORMAT Statement

Function:

The FORMAT statement specifies a format
list that

can be wused by edit-directed

Section J: Statements 201

transmission statements to control the for-
mat of the data being transmitted.

General format:

label:

[label:]... FORMAT (format-list);

Syntax rules:

1.

The "format 1list" must be specified
according to the rules governing for-
mat 1list specifications with edit-

directed transmission as described in
pPart I, Chapter 8, "Input and Output.®”

At least one "label" must be cspecified
for a FORMAT statement. In general,
one of the labels (or a label variable
having the value of one of the labels)
is the statement label designator
specified in a remote format item.

General rules:

1.

A GET or PUT statement may irclude a
remote format item, R, in the format
list of an edit-directed data specifi-
cation. That portion of the format
list represented by R must be supplied
by a FORMAT statement identified by
the statement label specified with K.
An R format item cannot appear in the
format list of a FORMAT statement.

The remote format item and the FORMAT
statement must be internal to the same
block.

If a condition prefix is associated
with a FORMAT statement, it must be
identical to the condition prefix
associated with the GET or PUT state-
ment referring to that FORMAT state-
ment.

The GET_Statement

Function:

The
sion

GET statement is a STREAM transmis-
statement that can be used ir. either

of the following ways:

1.

202

It can cause the assignment of data

from an external source (that is, from
a data set) to one or more internal
receiving fields (that is, to one or

more variables).

It can cause the assignment of data
from an internal source (that is, from
a character-string variable) to one or
more internal receiving fields (that
is, to one or more variables).

General format:

GET [FILE(file—name)

STRING (character-string-variable)

data-specification;

Syntax rules:

1.

des-
"Input

The "data specification" is as
cribed in Part I, Chapter 8,
and Output."”

The "data specification"™ must follow
the FILE or STRING cpticn, if either
option is specified.

The "character string variable" refers
to the character string that is to
provide the values to be assigned to
the variables in the "data specifi-
cation."

The "file name" is the name of a file
that has been associated (by an impli-
cit or explicit opening) with the data
set that will provide the values to be
assigned to the variables in the "data
specification."” It must have the
STREAM and INPUT attributes.

If neither the FILE
option appears, the
input file is assumed.

noxr the STRING
standard system

General rules:

1.

If the FILE option refers to an un-
opened file, the file is cpened impli-
citly.

If the STRING option has been speci-
fied, the internal GET operation
always begins at the beginning of the
specified string. If the number of
characters in this string is less than
the total number of characters
required by the variables in the "data
specification,™ the ERROR condition is
raised. Note that the variables 1in
the "data specification"™ do not have
to be character strings; the internal
assignment 1is the same as the trans-
mission from the stream to internal
storage, the only difference being
that the "character string variable"
is considered to be the input stream.

The GO _TO Statement

Function:

The GO TO statement causes control to be

transferred to the statement identified by
the specified label.

General

format:
GO TO label-constant;
GOTO

element-label-variable;

General rules:

1.

variable" is
of the label

If an "element label
specified, the value
variable determines the statement to
which control is transferred. Since
the 1label variable may have different
values at each execution of the GO TO
statement, control may not always pass
to the same statement.

A 30 TO statement cannot pass control
to an inactive block.

statement cannot transfer
outside a DO group to a
statement inside the DO group if the
DO-group specifies iterative execu-
tion, unless the GO TO terminates a
procedure invoked from within the DO-
group or unless the GO TO 1is an
on-unit given control from within the
DO-group.

A GO TO
control from

If a GO TO statement transfers control
from within a block to a point not
contained within that block, the block
is terminated. Also, if the transfer
point is contained in a block that did
not directly activate the block being
terminated all intervening blocks in
the activation sequence are also
terminated (see Part I, Chapter 6,
"Blocks, Flow of Control, and Storage
Allocation®™ for examples and details).
When one or more blocks are terminated
by a GO TO statement, conditions are
reinstated and automatic variables are
freed just as if the blocks had termi-
nated in the usual fashion.

When a GO TO statement transfers con-
trol out of a procedure that has been
invoked as a function, the evaluation
of the expression that contained the
corresponding function reference is
discontinued.

If the GO TO statement is an on-unit,
the specified 1label must be unsub-
scripted.

The IF Statement

Function:

The IF statement tests the
specified
of execution according to

value of a
expression and controls the flow
the result of

that test.

General format:

IF element-expression THEN unit-1
[ELSE unit-2]

Syntax rules:

1.

3.

Each unit is either a single statement

(except DO, END, PROCEDURE, BEGIN,
DECLARE, FORMAT, or ENTRY), a DO-
group, or a begin block.

The IF statement itself is not
terminated by a semicolon; however,
each "unit" specified must be termi-

nated by a semicolon.

Each "unit"™ may be labeled and may
have a condition prefix.

General rules:

1.

The element expression 1is evaluated
and, if necessary, converted to a bit
string. When the ELSE clause (that

is, ELSE and its following "unit") is
specified, the following occurs:

If any bit in the string is 1,
"unit-1" is executed, and control
then passes to the statement fol-
lowing the IF statement. If all
bits in the string have the value
0, "unit-1" is skipped and "unit-2"
is executed, after which control
passes to the next statement.

When the ELSE clause is not specified,
the following occurs:

If any bit in the string is 1,
"unit-1" is executed, and control
then passes to the statement fol-
lowing the IF statement. If all
bits are 0, "unit-1" is not execut-
ed and control passes to the next
statement.

contain statements
transfer of control
hence, the normal
IF statement may be

Each "unit" may
that specify a
(e.qg., GO TO);
sequence of the
overridden.

IF statements may be nested; that is,

either "unit," or both, may itself be
an IF statement. Since each ELSE
Section J: Statements 203

clause is always associated with the
innermost unmatched IF in fhe same
block or DO-group, an ELSE with a null
statement may be required to specify a
desired sequence of control.

3. A condition prefix to the IF statement

itself applies to "element expression”
only.

The LOCATE Statement

Function:

The LOCATE statement is a RECORD trans-
mission statement that can be used only for
output files having the BUFFERED a+ttribute.
It allocates storage for a based variable
in an output buffer to allow the creation
of a record for that based variable. The
record is created by assigning wvalues to
the based variable within the buffer. The
record 1is not transmitted to the external

medium until immediately before the next
WRITE, LOCATE, or CLOSE statement (or
implicit close operation) is executed for

the specified file.
Gencral format:

LOCATE based-variable FILE(file-name)
SET(pointer-variable);

Syntax rules:
i. The FILE and SET

appear 1in the
general format.

specifications must
order shown in the

2. The based variable must be an unsub-
scripted based variable that is not a
minor structure or an element cf a

structure.
3. The pointer variable must De a sub-
scripted or unsubscripted element

pointer variable.

4. The file name is the name of a file
that has been associated (by opening)
with the data set that will eventually
receive the record. The file must
have the SEQUENTIAL, OUTPUT, and BUF-
FERED attributes.

Gen=2ral rules:

1. The based variable is
variable-length records, to Iletermine
the 1length of the record. when the
LOCATE statement 1is executed, the
pointer variable in the SET specifi-
cation is set to identify the location
in the Dbuffer at which tne Dbased
variable is to be allocated.

used, for

204

2. The record identified by the based
variable is written out of the buffer,
and into the output file, immediately
before the next WRITE, LOCATE, or
CLOSE operation (implicit or explicit)
for that file. For blocked recorxds,
the record is not written until the
whole block is completed. Note that
the length of the record identified by
the based variable musi: be evenly
divisible by 8, for fixed-length
records, and must yield a remainder of
4 after division by 8, for variable-
length records.

3. The FILE specification must refer to a
previously opened file.

The Null Statement

Function:

The null statement causes no action and
does not modify sequential statement
execution.

General format:

[label:l...;

The ON Statement

Function:

The ON statement specifie:s what action
is to be taken (programmer-defined or
standard system action) when an interrupt
results from the occurrence of the speci-
fied exceptional condition.

General format:

ON condition{SYSTEM; |on-unit}
Syntax rules:

1. The condition may be

described in
tions."

any of those
Section H "ON-Condi-

2. The "on-unit" represents a programmer-
defined action to be taken when an
interrupt results from the occurrence
of the specified "condition.™ It can
be either a single unlabeled GO TO orx
null statement.

3. Since the "on-unit" itself requires a
semicolon, no semicolon is shown for
the "on-unit" in the general format.

However, the word SYSTEM must be
followed by a semicolon.

General rules:

1.

The ON statement determines how to
handle an interrupt that has occurred
for the specified condition. Whether
the interrupt is handled in a standard
system fashion or by a programmer-
supplied method is determined by the
action specification in the ON
statement, as follows:

a. If the action specification is
SYSTEM, the standard system action
is taken. The standard system
action 1is not the same for every
condition, although for most con-
ditions the system simply prints a
message and raises the ERROR
condition. Section H,
"ON-Conditions" gives the standard

system action for each condition.
(Note that the standard system
action is always taken if an
interrupt occurs and no ON state-
ment for the condition is in
effect.)

b. If the action specification is an
"on-unit," the programmer has sup-
plied his own interrupt-handling
action, namely, the action defined
by the statement in the on-unit
itself. The on-unit is not exe-
cuted when the ON statement is
executed; it is executed only when
an interrupt results from the
occurrence of the specified
condition (or if the interrupt
results from the condition being
raised by a SIGNAL statement).

The action specification (i.e.,
"on~unit" or SYSTEM) established by
executing an ON statement in a given
block remains in effect throughout
that block and throughout all blocks
in any activation sequence initiated
by that block, unless it is overridden
by the execution of another ON state-
ment. or a REVERT statement, as fol-
lows:

a. If a later ON statement specifies
the same condition as a prior ON
statement and this later ON state-
ment is executed in a block that
lies within the activation
sequence initiated by the block
containing the prior ON statement,
the action specification of the
prior ON statement is temporarily
suspended, or stacked. It can be
restored either by the execution
of a REVERT statement, or by the

termination of the block contain-
ing the later ON statement.

b. If the later ON statement and the
prior ON statement are internal to
the same invocation of the same
block, the effect of the prior ON
statement is completely nullified.

The label of a GO TO statement on-unit
must be known within the block in
which the ON statement for that on-
unit is executed. (Remember that an
ON statement is executed as it is
encountered in statement flow;
whereas, the action specification for
that ON statement 1is executed only
when the associated interrupt occurs.)

The file name of an input/output
condition must be known within the
procedure or begin block to which the
ON statement specifying the condition
is internal.

A condition raised during execution
results in an interrupt if and only if
the condition is enabled at the point

where it is raised.

a. The SIZE condition is disabled by
default. All other conditions are
enabled by default.

b. The enabling and disabling of
OVERFLOW, FIXEDOVERFLOW, UNDER-
FLOW, ZERODIVIDE, CONVERSION, and
SIZE, can be controlled by
condition prefixes.

The OPEN Statement

attributes for the file,
of attributes has not been declared for the
file being opened.

Function:

The OPEN statement opens a file by
associating a filename with a data set. It
also can complete the specification of

if a complete set

General format.:

OPEN FILE(file-name) options-group
[,FILE(file-name) options-groupl...;

where "options-group" is as follows:

[INPUT|OUTPUT]
[PAGESIZE (element-expression)]

Section J: Statements 205

Syntax rules:

1.

The INPUT or OUTPUT option can be
specified in an OPEN statement only
for an UNBUFFERED file. If it is not
specified in the OPEN statement, then
the corresponding INPUT or OuUTPUT
attribute must have been specified in
the DECLARE statement for the file.
INPUT or OUTPUT cannot be specified in
both the OPEN and DECLARE statements.

The FILE specification must appear
first.
The "file name" is the name of the

file that 1is to be associated with a
data set. Several files can te opened
by one OPEN statement.

General rules:

1.

The

The opening of an already open file
does not affect the file. In such
cases, any expressions in the "options

group" are evaluated, but they are not
used.

The PAGESIZE option can be specified
only for a file having the STREAM and
PRINT attributes. The element expres-
sion is evaluated and converted to an

integer, which represents the maximum
number of 1lines to a page. This
integer must be greater than zero and

less than 256. During subsequent
transmission to the PRINT file, a new
page may be started by use of the PAGE
format item or by an option in the PUT
statement. For the D-Comgiler, if
PAGESIZE is not specified, the default
is defined by the installation-
specified system limit.

When a PRINT file is
page is started.

opened, a new

PROCEDURE Statement

Function:

ing

The

PROCEDURE statement has the follow-
functions:

It heads a procedure.

It defines the primary entry ooint to
the procedure.

It specifies the parameters, if any,
for the primary entry point.

It may specify certain special charac-

teristics that a procedure can have.

e It
value that is returned by the procedure
when it is invoked as a function at its
primary entry point.

specifies the attributes of the

General format:

where,

PROCEDUREI (parameter
[,parameterl...)]

entry-name:

[OPTIONS (option-1list)]
[data-attributes];

for the D-Compiler, "option list" is

defined as:

MAIN([,ONSYSLOG]

Syntax rules:

1.

The "data attributes"™ represent the
attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry point.
Only arithmetic, string, FICTURE, and
POINTER attributes are allowed.
OPTIONS 1is a special procedure speci-
fication. It and the "data
attributes®™ may appear in any order
and are separated by blanks. OPTIONS
can and must be specified for only one
external procedure in the program.

One and only one entry name must
appear on a PROCEDURE statement.
The sum total of different parameters

that can be specified for one proce-
dure (including any specified in ENTRY
statements) cannot exceed 12.

General rules:

1.

When the procedure is invoked, a rela-
tionship is established between the
arguments passed to the procedure and
the parameters that represent those
arguments in the invoked procedure.
This topic is discussed in Part I,
Chapter 10, "Subroutines and Func-
tions."

The OPTIONS specification can be used
only for an external procedure. The
MAIN option specifies that this proce-
dure is the initial procedure and will
be invoked by the operating system as
the first step in the execution of the
program. The ONSYSLOG option speci-
fies that all output resulting from
actions derived from ON conditions
will go on the system log. No other
options are permitted. If both are
specified, MAIN must appear first.
The procedure declared with the
OPTIONS attribute remains active for

the duration of the program and hence
cannot be called by other procedures.

For the D-Compiler, one and only one
external procedure must have the
OPTIONS (MAIN) designation.

The "data attributes" specify the

attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry point.
The value specified in the RETURN
statement of the invoked procedure is
converted to conform with these attri-
butes before it is returned to the
invoking procedure.

If "data attributes"™ are not speci-
fied, default attributes are supplied.
In such a case, the name of the entry
point (the entry mname by which the
procedure has been invoked) is used to
determine the default base, scale, and
precision.

The entry name of an external proce-
dure is an external name and as such
is restricted by the D-Compiler to a
maximum length of six.

The PUT Statement

Function:

The
sion statement that can be used in

PUT statement is a STREAM transmis-
either

of the following ways:

1.

It can cause the values in one or more
internal storage locations to be
transmitted to a data set on an exter-
nal medium. Related to this, it can
control the format of a PRINT file.

It can cause the values in one or more

internal storage locations to be
assigned to an internal receiving
field (represented by a character-
string variable).

General format:

PUT |FILE (file-name)
STRING (character-string-variable)

PAGE([LINE (element-expression)]
SKIP[(element-expression)]
LINE (element-expression)

[data-specification];

Syntax rules:

1.

If neither the FILE nor STRING option
appears, the standard system output
file is assumed.

The FILE option specifies transmission
to a data set on an external medium.
The file name in this option is the
name of the file that has been
associated (by implicit or explicit
opening) with the data set that is to
receive the values. This file must
have the OUTPUT and STREAM attributes.

The STRING option specifies transmis-
sion from internal storage locations
(represented by variables or expres-
sions in the "data specification") to
a character string (represented by the
"character string variable"). The
"character string variable"™ cannot be
a pseudo-variable.

The
described in Part I,
and Output."”

"data-specification" option is as
Chapter 8, "Input

If the FILE or STRING option appears,
it must be the first option. If the
data-specification appears, it must be
the last option. A minimum of either
the PAGE, LINE, SKIP, or "data
specification"” must appear.

General rules:

1.

If the FILE option is specified, and
the "file name" refers to an unopened
file, the file is opened implicitly.

If the STRING option is specified, the
PUT operation begins assigning values
to the beginning of the string (that
is, at the left most character
position), after appropriate conver-
sions have been performed. Blanks and
delimiters are inserted as usual. If
the string 1is not 1long enough to
accomodate the data, the ERROR
condition is raised. Note that the
variables in the "data specification"
do not have to be character strings;
the internal assignment is the same as
the transmission from internal storage
to the stream, the only difference
being that the "character-string
variable" is considered to be the
output sitream.

The options PAGE, SKIP, and LINE can
be given only for PRINT files. If
specified, they take effect before the
transmission of the values defined by
the "data specification" takes place.
If PAGE and LINE are specified in the
same PUT statement, PAGE takes effect
before LINE.

The PAGE option causes a new current
page to be defined within the data
set. I1f a "data specification" is
present, the transmission of values
occurs after the definition of the new

Section J: Statements 207

page. A new current page implies line
1.

5. The SKIP option causes a new current
line to be defined for the data set.
The "element expression,™ if present,
is converted to an integer, «# which
must be greater than or equal to 0 and
less than or equal to 3. 1If w is
greater than zero, w-1 blank lines are
created, and the new current line is w
plus the line value for the old cur-
rent line. If w is equal to zero, the
effect 1is that of a carriage return,
with the current line remaining c¢on-
stant; characters previously written
will be overprinted. If "element
expression"” is not present, w is
assumed to be 1. If less than w lines
remain on the current page (where the
number of lines on the current page is
determined by the PAGESIZE option of
the OPEN statement or by default), the
ENDPAGE condition is raised.

6. The LINE option causes a new current
line to Dbe defined for the data set.
The "element expression" is converted
to an integer w. The new current line
is set equal to w, and blank lines are
inserted Dbetween the old current line
and the new current line. However, if
w is less than or equal to the old
current 1line, or if w exceeds the
number of lines on the current page
(see the PAGESIZE option description
in the OPEN statement), the ENDPAGE

condition 1is raised. If w is less
than or egual to zero, it 1is assumed
to be 1.

Function:

Ihe READ statement is a RECORD transmis-
sion statement that transmits a record from
an INPUT or UPDATE file to a variable in
internal storage.

General format:
READ FILE(file-name)
INTO (variable) ‘l
SET (pointer—variable){
[KEY (element—express;cn)];
Syntax rules:
1. The FILE specification must appear
first. INTO or SET must be specified.

208

2. The "file name" is the name of the
file from which the record is to be
read. This file must have the RECORD
attribute and must also have either
the INPUT or UPDATE attributes.

3. The variable of the INTO option is the
variable into which the record is to
be read. It must be an unsubscripted
variable not contained in a structure.
It cannot be a label variable or a
parameter and it cannot have the
DEFINED attribute.

General rules:

1. The file appearing in the FILE speci-
fication must have been opened pre-
viously.

2. The KEY option must appear if the file
has the DIRECT attribute. The
"element expression" is the key that
determines which record will be read.
(see Part I, Chapter 8, "Input and
Output" for a discussion of keys.)
The KEY option cannot appear for a
SEQUENTIAL file.

3. The SET option cannot be specified for
files having the UNBUFFERED or DIRECT
attributes. This option specifies
that the record is to be read into a
buffer and the "pointer variable" is
to be set to point to the location of
that record within the buffer. The
description of the record is deter-
mined by a based variable associated
with that pointer variable. The value
of the pointer variable is valid until
the next READ statement is executed or
until the file is closed.

The RETURN Statement

Function:

The RETURN statement terminates execu-
tion of the procedure to which the RETURN
statement 1is internal, and returns control
to the invoking procedure. It may also
return a value to the invoking procedure.

General format:
RETURN [(element-expressicn)l;
General rules:
1. If the "element expression"™ 1is not
specified, the RETURN statement can
only terminate a procedure that has

not been invoked as a function. When
such a statement is executed, control

is returned to the invoking procedure
at the point logically following the
point of invocation. If a RETURN
statement is executed in the initial
procedure, program execution is termi-
nated.

2. If the "element expression" is speci-
fied, the procedure terminated by this
statement must be a function proce-
dure. When such a statement is exe-
cuted, control 1is returned to the
invoking procedure at the point of
invocation; the value returned to this
point is the wvalue of the "element
expression.” If this value does not
conform to the explicit or default
attributes specified for the procedure
being terminated, the value is con-
verted to these attributes before it
is actually returned.

3. The RETURN statement cannot

within a begin block.

appear

The REVERT_ Statement

Function:

The REVERT statement nullifies the
effect of the current action specification
for the specified condition only if the

current action specification is the result
of an ON statement executed within the same
invocation of the block in which the REVERT
statement 1is executed. When this is true,
the action specification that was in effect
for the specified condition when the block
containing the REVERT statement was invoked
is re—-established and once again takes
effect.

General format:
REVERT condition;
Syntax rule:

The "condition" is des-

cribed in Section H,

any of those
"ON-Conditions."

General rule:

The execution of a REVERT statement has
the effect described above only if (1) an
ON statement, specifying the same condition
and internal to the same block, was execut-
ed after the block was activated and (2)
the execution of no other similar REVERT
statement has intervened. If either of
these two conditions is not met, the REVERT
statement is treated as a null statement.

The REWRITE Statement

Function:

The REWRITE statement can be used only
for wupdate files. It replaces an existing
record in a data set.

General format:

REWRITE FILE (file-name) [FROM(variable)
[KEY (element-expression)ll];

Syntax rules:

1. The FILE specification must appear
first. KEY cannot be specified with-
out FROM.

2. The "file name" is the name of the

file containing the record to be rew-
ritten. The file must have the UPDATE
attribute.

3. The "variable" in the FROM option
represents the record that will
replace the existing record in the
specified file. It must be an unsub-

scripted variable; it cannot be con-
tained in a structure; it cannot be a
parameter; and it cannot have the
DEFINED attribute.

General rules:

in the
been

1. The file whose name
FILE specification
opened previously.

appears
must have

2. The KEY option must appear if the file
has the DIRECT attribute; it cannot
appear otherwise. The element-
expression is converted to a character
string. This character string is the
source key that determines which
record is to be rewritten.

3. The FROM option must be specified for
UPDATE files having either the DIRECT
attribute or both the SEQUENTIAL and
UNBUFFERED attributes.

4. The FROM option can be omitted only
for update files having the SEQUENTIAL
and BUFFERED attributes. When this is
the case, the record rewritten is the
record in the Dbuffer. Hence, this
record must be the last record that
was read and it should have been read
by a READ statement with a SET option.
(The record will be updated by whatev-
er assignments were made to it in the
buffer.) If it was read by a READ
with an INTO option, the record would
be rewritten unchanged.

Section J: Statements 209

The SIGNAL Statement

Function:

Ihe SIGNAL statement simulates the occu-
rence of an interrupt. It may be used to
test the current action specification for
the associated condition.

General format:
SIGNAL condition;
Syntex rule:

The "condition" is any one cf those
described in Section H, "ON-Conditicns."

General rules:

1. When a SIGNAL statement 1is executed,
it is as if the specified condition
has actually occurred. Seguential
execution is interrupted and control
is transferred to the current on-unit
for the specified condition. If the
on-unit is a null statement, control
normally returns to the statement
immediately following the SIGNAL
statement.

2. If the specified condition 1is disa-
bled, no interrupt occurs, and the
SIGNAL statement becomes equivalent to
a null statement.

3. If there is no current on-unit for the
specified condition, then the standard
system action for the c¢cndition is
performed.

The STOP Statement

Function:

The STOP statement causes immediate ter-—
mination of the program in which it is
executed.

General format:

STOP;

210

The WRITE Statement

Function:
The WRITE statement is a RECORD trans-
mission statement that transfers a record

from a variable in internal storage to an
OUTPUT or UPDATE file.

General format:

WRITE FILE (file-name) FROM (variable)
[KEYFROM (element~expression)];

Syntax rules:

1. The FILE
first.

specification must appear

2. The "file name" specifies the file in
which the record is to be written.
This file must be a RECORD file that
has either the OUTPUT attribute or the
DIRECT and UPDATE attributes.

3. The ™"variable"™ in the FROM specifi-
cation contains the record to be writ-
ten. It must be an unsubscripted
variable; it cannot be contained in a
structure; it cannot be a parameter;
and it cannot have the DEFINED attri-
bute.

4. The KEYFROM option must be specified
for DIRECT files; it cannot be speci-
fied otherwise.

General rules:

1. The file must have been

viously.

opened pre-

2. If the KEYFROM option is specified,
the "element expression" is the source
key that specifies the relative loca-

tion in the data set where the record
when it 1is written. (Seez Part I,
Chapter ‘8, "Input and Output" for a

discussion of source keys.)

This section provides definitions for
most of the terms used in this publication.

access: the act that encompasses the ref-

erence to and retrieval of data.

action specification: in an ON statement,
the on-unit or single keyword SYSTEM, eith-
er of which specifies the action to be
taken whenever an interrupt results from
the raising of the named condition.

activation: institution of execution of a
A procedure block is activated when
it is invoked at any of its entry points; a
begin block is activated when it is encoun-

tered in normal sequential flow.

_______ the state in which a block is said
to be after activation and before termina-
tion.

active:

additive attributes: file attributes for
which there are no defaults and which, if
reguired, must always be stated explicitly.

address: a specific storage 1location at

which a data item can be stored.

allocated variable: a variable with which
storage has been associated.
allocation: the association of storage

with a variable.

alphabetic character: any of the charac-
ters A through Z and the alphabetic exten-
ders #, $, and a.

alphameric character:
acter or a digit.

an alphabetic char-

alternative attributes: file attributes
that may be chosen from groups of two or
more alternatives. If none is specified, a
default is assumed.

argument: an expression, file name, state-
ment label constant or variable, or entry
name passed to an invoked procedure as part
of the procedure reference. It cannot be a
built-in function name or a based variable.

arithmetic_conversion: the transformation
of a wvalue from one arithmetic representa-
tion to another arithmetic representation.

arithmetic data: data that has the charac-
teristics of Dbase, scale, and precision.
it includes coded arithmetic data and
numeric character data.

SECTION K: DEFINITIONS OF TERMS

arithmetic operators: any of the prefix
operators, + and -, or the infix operators,
+, -, *, /, and **,

a named, ordered collection of data
elements, all of which have identical
attributes. An array has dimensions, and
elements that are identified by subscripts.

array:

giving a value to a variable.

attribute: a descriptive property asso-
ciated with a name or expression to des-
cribe a characteristic of a data item or a
file that the name may represent.

automatic storage: storage that is allo-
cated at the activation of a block and
released at the termination of that block.

base: the number system in terms of which
an arithmetic value is represented. In

PL/I, the base is binary or decimal.

based_variable: a variable declared to
have the BASED (pointer-variable) attribute
specification. The pointer variable asso-
ciates the description with an allocation
of storage.

begin block: a collection of statements
headed by a BEGIN statement and ended by an
END statement that delimits the scope of
names and is activated by normal seguential

statement flow. It controls the allocation

and freeing of automatic storage declared
in that block.

binary: the number system based on the
value 2.

bit: a binary digit, either 0 or 1

a string of one or more bits.

bit string:

bit-string operators: any of the operators
1 (not), &(and), and | (ox).

block: a begin block or a procedure block.
bound: the upper limit of an array dimen-
sion. The lower limit is always assumed to
be 1.

buffer: an intermediate area, wused in
input/output operations, into which a

record is read during input and from which

a record is written during output.
built-in function: one of the PL/I-defined
functions.

Section K: Definitions of Terms 211

call: the invocation of

means of the CALL statement.

a subroutine by

character string: A string composed of one
or more characters from the data character

set.

coded arithmetic data: arithmetic: data
whose characteristics are given by the
base, scale, and precision attributes. The
types for System/360 are packed decimal,
binary full words, and hexadecimal

floating-point.
comment: a string of characters, used for
documentation, which is preceded by /* and
terminated by */ and which is treated as a
blank.

comparison operators: the
:1::=>=>1}

operators < <

compile time: the +time during which a
source program is translated into an object
module.

compiler: a translator that converts a

source program into an object module.

compound statement: a statement that con-
tains other statements. IF and ON are the
only compound statements.

concatenation: the operation that connects
two strings in the order indicated thus
forming one string whose length is equal to
the sum of the lengths of the two strings.
It is specified by the operator ||.

condition name: a language keyword that
represents an exceptional condition that

might. arise during execution of a program.

condition prefix: a parenthesized list of
one or more condition names prefixeZ to a
statement by a colon. It determines wheth-
er cr not the program is to be interrupted
if one of the specified conditions occurs

within the scope of the prefix. Ccndition
names within the list are separated by
Commas.

constant: an arithmetic or striag data
item that does not have a name; a statement
label.
contained_in: all of the text of a block
except the entry names of that block. (A
label of a BEGIN statement is not contained
in the begin block defined by that state-
ment.)

contextual declaration: the association of
attributes with an identifier according to
the context in which the identifier
appears. Only entry names can be contex-
tually declared.

212

conversion: the transformation of a value
from one representation to another.

data: representation of information or of
value.
data character set: all of those charac-

ters whose bit configuration is
by the computer in use.

recognized

data _item: a single unit of data; it is

synonymous with "element."
data_list: a list of expressions used in a
STREAM input/output specification that rep-
resent storage areas to which data items
are to be assigned during input, and from
which data items are to be written, during
output. (On input, the list may contain
only variables.)

data set: a collection of data external to
the program.

data specification: the portion of an
edit-directed data transmission statement
that specifies the mode of t(transmission
(EDIT) and includes the data list and the
format 1list.

decimal: based on the

value 10.

the number system

declaration: the association of attributes
an identifier explicitly, contextual-

ly, or implicitly.

the alternative assumed when an
been declzred to have
attributes.

default:

identifier has not
one of two or more alternative

delimiter: any wvalid special character or
combination of special characters used to
separate identifiers and constants, or

statements from one another.

dimensionality: +the number of bound speci-
fications associated with an array. It
cannot be greater than three.

disabl the state in which the occur-
rence of a particular condition will not
result in a program interrupt.

DO-group: a sequence of statements headed
by a DO statement and closed by its corres-
ponding END statement.

dummy argument: a compiler—assigned vari-
able for an argument that has no
programmer-assigned name.

edit-directed transmission: STREAM trans-
mission; both a data list and a format list
are specified.

a single data item as opposed to
data items, such as a

element:
a collection of

structure or an array. (Sometimes called a

"scalar item.")

element variable: a variable that can rep-
resent only a single value at any one point
in time.

enabled: that state in which the occur-
rence of a particular condition will result
in a program interrupt.

label of a

entry__name: a PROCEDURE or

ENTRY statement.

entry point: a point in a procedure at
which it may be invoked by reference to the
entry name. (See primary entry point and
secondary_entry point.)

epilogue: those processes which occur at

the termination of a block.

exceptional condition: an occurrence,
which can cause a program interrupt, of an
unexpected situation, such as an overflow
error, or an occurrence of an expected
situation, such as an end of file, that
occurs at an unpredictable time.

explicit declaration: the assignment of
attributes to an identifier by means of the
DECLARE statement, the appearance of the
identifier as a label, or the appearance of
the identifier in a parameter list.

exponent (of floating—-point constant): a
decimal integer constant specifying the
power to which the base of the floating-

point number is to be raised.

___________ the representation of a value;
examples are variables and constants
appearing alone or in combination with
operators, and function references. The
term "expression" refers to an element
expression, an array expression, or a
structure expression.

external declaration: an explicit or con-
textual declaration of the EXTERNAL attri-
bute for an identifier. Such an identifier
is known in all other blocks for which such
a_declaration_exists.

external name: an identifier which has the
EXTERNAL attribute.

external procedure: a procedure that is
not contained in any other procedure.

field (in_ the data stream): that portion
of the data stream whose width, in number
of characters, is defined by a single data
or spacing format item.

field (of a picture specification): a
character-string picture specification or a
portion (or all) of a numeric character

picture specification. If more than one
field appears in a single specification,
they are divided by the K or E exponent
character for floating-point data or the M
field-separator for sterling data. Only
one field can appear in a fixed-point
specification.

file: a symbolic representation, within a
program, of a data set.

fil T a symbolic name used within a
program to refer to a data set.

format item: a specification used in edit-
directed transmission to describe the
representation of a data item in the stream
or to control the format of a printed page.

format list: a list of format items
required for an edit-directed data specifi-
cation.

functio a procedure that is invoked by
the appearance of one of its entry names in
a function reference.

function _reference: the appearance of an
entry name in an expression, usually in
conjunction with an argument list.

group: a DO group.

identifier: a string of alphameric and
break characters, not contained in a com-
ment or constant, preceded and followed by
a delimiter and whose initial character is
alphabetic.

implicit declaration: association of
attributes with an identifier wused as a
variable without having been explicitly or

contextually declared; default attributes
apply, depending upon the initial letter of
the identifier.

inactive block: a procedure or begin block
that has not been activated or that has
been terminated.

infix operator: an operator that defines
an operation between two operands.

initial procedure: an external procedure
whose PROCEDURE statement has the OPTIONS
(MAIN) attribute. Every PL/I program must
have an initial procedure. It is invoked
automatically as the first step in the
execution of a program.

input/output: the transfer of data between
an external medium and internal storage.

internal block: a block that is contained

within another block.

internal name: an identifier that has the
INTERNAL attribute.

Section K: Definitions of Terms 213

internal procedure: a procedure that is

contained in another block.

internal to: all of the text contained in
a block except that text contained in
another block. Thus the text of an inter-
nal block (except for its entry nanes) is
not internal to the containing block.
Note: An entry name of a block is not

contained in that block.

_________ the suspension of normal pro-
gram activities as the result of the occur-
rence of an enabled condition.

invoke: to activate a procedure at one of
its entry points.

invoxed procedure: a procedure tnat has
been activated at one of its entry points.

invoxging block: a block containing a
statement that activates another block.

iteration factor: an expression that spe-
cifies the number of times a given format
item or list of format items is to be wused
in succession in a format list.

key: see source_key and recorded key.

keyword: an identifier that is part of the
language and which, when used in the proper

context, has a specific meaning to the
compiler.
knowin: a term that is used to indicate the

scope of an identifierx. For example, an
identifier is always known in the block in
which it has been declared.

label constant: statement
label.

synonymous with

label prefix: an unparenthesized identifi-
er prefixed to a statement by a colon.

leading zeros: =zeros that have no signifi-
cance in the value of an arithmetic number;
all zeros to the left of the first signifi-
cant digit (1 through 9) of a number.

level number: an unsigned decimal integer
constant specifying the hierachy of a name
in a structure. It appears to the left of
the name and is separated from iz by a
blank.

maidr structure: a Structure whose name is
declared with level numbex 1.

a structure whose name is
a level number greater than

minor structure:
declared with
1.

multiple declaration: two or more declara-
tions of the same identifier internal to
the same block without different qualifica-

214

tions, or two or more EXTERNAL Jdeclarations

of the same identifier as different names
within a single program.
name: an identifier that has been
declared.
nesting:

1. the occurrence of a block within

another block.
2. the occurrence of a group within

another group.

3. the occurrence of an IF statement in a
THEN clause or an ELSE clause.

4. the occurrence of a function reference
as an argument of another function
reference.

data: arithmetic data
picture that is stored in
character form. It has both an arithmetic
value and a character-string value. The
picture must not contain an X picture
specification character.

numeric character
described by a

on-unit: the action to Dbe executed upon
the occurrence of the ON-condition named in

the containing ON statement.

operator: a symbol specifying an operation
to be performed. See arithmetic operators,
bit-string operators, comparison operators,
and concatenation.

_____ specification in a statement
that may be wused by the programmer to
influence the execution of the statement.

option: a

packed decimal: the
representation of a
data item.

System/350 internal
fixed-point decimal

aram a name in an inwvoked
that 1is wused to represent an
passed to that procedure.

procedure
argument

picture: a character-by-characrter specifi-
cation describing the composition and
attributes of numeric character and
character-string data. It allows editing.

point of invocation: the point in the
invoking block at which the procedure ref-
erence to the invoked procedure appears.

that iden-—
when refer-

pointer variable: a variable
tifies the storage to be used
ring to a based variable.

precision: the value range of an arithmet-
ic variable expressed as the total number
of digits allowed and, for fixed-point

variables, the assumed 1location of the

decimal (or binary) point.

______ a label or a parenthesized 1list of
condition names connected by a colon to the
beginning of a statement.

prefix__operator: an operator that pre-
cedes, and 1is associated with, a single
operand. The prefix operators are 4 + -.

primary entry point: the entry point named
in the PROCEDURE statement.

problem data: string or arithmetic data

that is processed by a PL/I program.

procedure: a block of statements, headed
by a PROCEDURE statement and ended by an
END statement, that defines a program
region and delimits the scope of names and

that is activated by a reference to its

name. It controls allocation and freeing
of automatic storage declared in that
block.

procedure_reference: a function or subrou-

tine reference.

program: a set of one or more external
procedures, one of which must have the
OPTIONS (MAIN) attripute in its PROCEDURE
statement.

program control data: data used in a PL/I
program to affect the execution of the
program, Label data and pointer data are

the types of program control data.

________ those processes that occur at

the activation of a block.

pseudo-variable: one of the built-in func-

tion names that can be used as a receiving
field. Only SUBSTR and UNSPEC can be so
used.

qualified name: a seguence of names of

structure members connected by periods, to
uniguely identify a component of a struc-
ture.

which a

receiving field: any field to

value may be assigned.

record: the unit of transmission in a

RECORD input or output operation.

recorded key: a character string recorded
in a direct-access volume to identify the
data record that immediately follows.

repetition factor: a parenthesized
unsigned decimal integer constant preceding
a string configuration as a shorthand rep-
resentation of a string constant. The
repetition factor specifies the number of
occurrences that make up the actual con-
stant. In picture specifications, the
repetition factor specifies repetition of a
single picture character.

repetitive specification: an element of a
data 1list that specifies controlled itera-
tion to transmit a 1list of data items,
generally used in conjunction with arrays.

returned value: the value returned by a

function procedure to the point of invoca-
tion.
scale: fixed- or floating-point represen-

tation of an arithmetic value.

scope (of a condition prefix):
of a program throughout which a
prefix applies.

the range
condition

scope (of a name): the range of a program

throughout which a name has a particular
interpretation.
secondary _entry _point: an entry point

defined by a label of an ENTRY statement
within a procedure.

source_key: a character string or a numer-
ic character data item referred to in a
RECORD transmission statement that iden-
tifies a particular record within a direct-
access data set. The source key 1is a
string to be compared with, or written as,
a recorded key to positively identify the
record.

source _program: the program that serves as
input to the compiler.

standard file: a file assumed by the
compiler in the absence of a FILE or STRING
option in a GET or PUT statement.

statement: a basic element of a PL/I
program that is used to delimit a portion
of a program, to describe data used in the
program, or to specify action to be taken.
edure

statement label: an identifying name pre-

fixed to any statement other than a PROCE-
DURE or ENTRY statement.
statement label variable: a variable

declared with the LABEL attribute and thus

able to assume as 1its value a statement
label.
static__storage: storage that is allocated

before execution of the program begins and
that remains allocated for the duration of
the program.

stream: data being transferred from or to
an external medium represented as a con-

tinuous string of data items in character
form.
string: a connected sequence of characters
or bits that is treated as a single data
item.

Section K: Definitions of Terms 215

structure: a hierarchical set of names
refers to an aggregate of data items
that may have different attributes.
subfield: the integer description portion
or the fraction description portion cf a
pictare specification field that describes
a noninteger fixed-point data item. The
subfields are divided by the picture char-
acter V.

subroutine: a procedure that is invoked by
a CALL statement. A subroutine cannot
return a value to the invoking block, but
it can alter the value of variables that
are known within the invoking block.

subscript: an element expression speci-

fying a 1location within a dimension of an
array.

216

termination: cessation of execution of a
block, and the return of control to the
activating block by means of a RETURN or
END statement, or the transfer of control
to the activating block or some other
active block by means of a GO TO statement.
A return of control to the operating system
via a RETURN or END statement in the
initial procedure or a STOP statement in
any block results in the termination of the
program. See epilogue.

variable: a name that represents data.
Its attributes remain constant, but it can
represent different values at: different
times. Variables fall into three categor-
ies: element, array, and structure varia-
bles. Variables may be subscripted and/cor
qualified.

The
compatible with the PL/I F-Compiler,

DOS/TOS PL/I D-Compiler is upwardly
which

operates under the IBM System/360 Operating

System.
written for
same
under the F-Compiler.
compilers
incompatibilities
of the D-Compiler
cation
that is described in
System/360 PL/I

In general,
the D-Compiler

a PL/I source program
produces the
when compiled and executed
However, since the
still evolving, some upward
exist between the version
described in this publi-
version of the F-Compiler
the publication IBM
Reference Manual, Form

results

are

and the

c28-

are

1.

8201. These upward incompatibilities
discussed in the list below.

Pointers, based variables, and the
STRING, ADDR, and NULL built-in func-
tions are not implemented by the F-
Compiler.

Some error conditions defined by the
PL/I language are not checked by the
D-Compiler but they are checked by the
F-Compiler. For example, the D-
compiler does not check for transfers
into an iterative DO-group; hence, the
programmer will get unpredictable
results at object-time. However, the
F-Compiler does check for this error
condition and will provide a diag-
nostic should it arise.

If &a SIZE error occurs during output
controlled by an F or E format item,
the wvalue that caused the error is
transmitted as a field of asterisks by
the D-Compiler, whereas the F-Compiler
transmits the truncated value. (This
is so whether or not SIZE is enabled.)

If the magnitude of a value transmit-
ted as output under control of the F
format item is 1less than one, or if
the mantissa of a value transmitted
under E format is zero, the F-Compiler
places a leading zero before the deci-
mal point; the D-Compiler does not.
For example, a value transmitted by

the D-Compiler as -.500, would be
transmitted by the F-Compiler as
-0.500.

Under the D-Compiler, the first POT
st.atement referring to a PRINT file
results in a new page; under the
F-Compiler, it does not. Therefore,

for consistent output, it is suggested
that the PAGE option be used in the
first PUT statement referring to the
standard system output file.

10.

11.

SECTION L: UPWARD COMPATIBILITY

The F-Compiler gives warning diag-
nostics for, and effectively ignores,
any ENVIRONMENT attribute options

valid for the D-Compiler but not valid
for the F-Compiler. Such options must
be specified in DD statements for the
F-Compiler.

The keywords SYSIN and SYSPRINT have
no meaning under the D-Compiler. How-
ever, they do have meaning under the
F-Compiler, so care should be taken in
using them. "Standard Files" in Part
I, Chapter 8 of this publication con-

tains a complete discussion of this
subject.
When running a D-level program under

the F-Compiler, keywords that are not
implemented in the D-Compiler, e.g.,
REAL, COMPLEX, PT, may cause problems.
For example, if REAL 1is an external
procedure 1in a D-level program, the
name of that procedure should be
changed before the program is run
under the F-Compiler. Otherwise, a
function reference to REAL will be
taken as a reference to the built-in
function of that name.

Bit-string to arithmetic conversion in

the D-Compiler always vresults in a
value whose attributes are FIXED
BINARY(31). However, the F-Compiler
follows the rules specified in the
publication IBM System/360 PL/I Ref-
erence Manual, Form ©$628-8201, and,
therefore, will sometimes convert to

FIXED BINARY(15).

Under the D-Compiler, the order of
evaluation of TO and BY expressions in

the DO statement proceeds by first
evaluating "expression2" and then
evaluating "expression3," while the
F-Compiler evaluates the expressions
in the sequence in which they are
specified. Different results can

occur only if during evaluation of one
of these expressions a function is
called and this function changes vari-
ables that are wused in the other
expression.

Under the F-Compiler, the character
value of a numeric character data item
when all digit positions (integer and
fractional) have been suppressed, will
contain a drifting character in the
rightmost digit position, if all digit
position in the field have employed
that drifting character. Under the

Section L: Upward Compatability 217

D-Compiler, this drifting character reply in the REPLY option of the
does not appear; the character value DISPLAY statement cannot exceed 72
consists entirely of blanks. characters; for the D-Compiler, this
length is not restricted.
12. For the F-Compiler, the length of the

218

(If more than one page number is given, the primary discussion is listed first.)

A format item 147,87
abnormal termination
of on-unit 174
of procedure 61,62
of program 62
ABS built-in function 162
access file attributes
defaults for 73
action specification
nullification of 209
on-unit 204,205
SYSTEM 204,205
activation of blocks
active block 60
addition operation 37
attributes of the result of 155
additive file attributes 74,72
ADDR built-in function 171,118
aggregates 14
arrays 28
arrays of structures 31
structures 30
algebraic comparison 39
ALIGNED attribute 180,31
ALIL built-in function 169
allocation
dynamic 62
of buffers 82
of devices 81
of storage 62,14
static 62
alphabetic characters 16
alphabetic extenders 16,67
alphameric characters 16
alternative file attributes
ambiguous references 70,31
'and' operation 38
*and' symbol 38
ANY built-in function 222
argument list 101,107,197
arguments 101,185,197
array 109
constants as 110
default attributes for 101
dummy 108
entry name
expressions as
file name 109

59-61

73,72

107,109
108,109

function references as 107,109
in CALL statement 197
in function reference 102,103

label 109,102,103
of arithmetic built-in functions

of mathematical built-in functions
of string built-in functions 158

parentheses used with 107,108
pointer 109
string 108,110
structure 109

arguments and parameters
relationship of 108
types of 108-110

112,113,173,205

162

166

INDEX

arithmetic built-in functions 162,158
arguments of 162
values returned by 162
arithmetic conversion 152,35,46
base in 153,36,46
precision in 152,36 ,47,154
scale in 36,152
target attributes in 46,154

arithmetic data 21-26
attributes for 178
comparison of 39
defaults for 182,187,188

arithmetic operations 35
conversion in 35,36
results of 32,155-157
truncation in 36

arithmetic operators 17

arithmetic to bit-string conversion

154,155
length of result of 155
examples of 154

35,

arithmetic to character-string conversion

34
by STRING option 53

arithmetic value of numeric character data

96,137,189

array 27,14,109,183,184
dimensions of 183,28
of structures 31

array arguments 109

array assignment 194,195

array bounds 29,183,184

array expressions 41
in array assignment 195
data conversion in 43
operands of 41
with element operands 42
with infix operators 42
with prefix operators 42

array manipulation built-in functions

169,158
values returned by 169
array operations
results of 41,42
array parameters 109
ASA printer control setting 192
assignment
array 194,195
bit-string 195,94
by assignment statement
conversion by 35,94
element 194,195
label 194,195
pointer 194,116,117
structure 194,195
assignment statement
evaluation of 195

194,52,94

194,14,34,35,52, 94

for computation and assignment 52
for conversion and editing 35,52,94
for internal data movement 52,95

types of 194

ASSGN job control statement 81,82

Index

219

asterisk picture character (%) 128
asterisks
in E format output 217
in F format output 217
ATAN built-in function 166
ATAND built-in function 166
ATANH built-in function 167
attributes 178,13,50
{also see individual attriputes)
additive 4,72
alphabetic listing of 180
alternative 73,72
tuffering 73
contextual declaration of 66
default 13,68
also see default
entry name 106,57,104
explicit declaration of 65,197
factoring of 178,198
file 72
implicit declaration of 67
in DECLARE statement 197
in ENTRY statement 201
in PROCEDURE statement 206
listing of 14,69
of result in arithmetic operatioas
155-157,36,37

of source in conversions 45,153,154
of target in conversions 46,153,154
scope 69

specification of 178
storage class 62
AUTOMATIC attribute 180,62,63
automatic storage 63,14,62

B format item 147,87
B picture character 140
BACKWARDS attribute 181,74,109
base 21,35

aztributes for 181

binary 23,24

decimal 22,23

in arithmetic conversion 153,36,46

in exponentiation 46,157
o arithmetic data 181,21
of arithmetic targets 4é

o%f numeric character data 189,225,137

base conversion 153,35,36,u46
base identifier of DEFINED attribute
32
based
storage 63,115,181
variables 115,63,89,181
BASED attribute 181,63,89,115
begin block 58,13,197
END statement for 209,51
termination of 61
BEGIN statement 197,57
condition prefix to 112
BINARY attribute 181,23,24,179
binary base 21,23,24,181
BINARY built-in function 163
binary data
fixed-point 23
floating-point 24
binary full word 23
binary logarithm 168
BIT attribute 182,27,179

220

BIT built-in function 158,99
bit class data 184
bit-string comparison 39
bit-string data 27
assignment of 195,94
attributes for 182,27

constants 27

comparison of 39
concatenation of 40
conversion of 153-155, 46

variables 27,182
bit-string format item (B) 147,87
bit-string operations 38
bit-string operators 38,17
bit-string target 46,48,153,154,155
bit-string to arithmetic conversion
4eé

bit-string to character-string conversion

153,34,46
blank picture character (B) 140,98
blanks 18,30

extension with U4

in keys 79,80

in numeric character data L40
in picture specifications 140
in structure declarations 30

use of i8
block size 77,78,185,186
block structure 13,58
blocking of records 71,78,185,186
blocks 58,13,20
activation of 59
begin 58,13,20,197
invocation of 60
nested 59
procedure 58,13,20
record 71,78
termination of 61
BOOL built-in function 159,100
boolean operation 159,38,100
bounds 29,183,184
of array parameters 109
branch
(also see GO TO statement)
conditional 53
unconditional 53
BSI picture characters 144
BSI shilling characters 144
BUFFERED attribute 182,73,179
buffering attributes 73,182
buffers 73,82,89,182,204
allocation of 82
hidden 74
BUFFERS option 186,82
built-in functions 158,444,105
arithmetic 162,158
array manipulation 169,158
as arguments 109
computational 158
mathematical 166,158
miscellaneous 171,158
string-handling 158,99
values returned by 105
BY clause 199,85
BUILTIN attribute 182,105,106

CALL statement 197,55,59,102,185
capacity record 80

card punch codes
for 48-character set 132
for 60-character set 131

CEIL built-in function 163,155
ceiling values 155
CHAR built-in function 160,99

CHARACTER attribute 182,26,178
character class data 184
character-string comparison 39
character sets 131,16
character-string data 26
as keys 79,80
assignment of 195,94
attributes for 182,26,178
comparison of 39
concatenation of 4o
constants 26,94
conversion of 153,46,48

defined on numeric character data 97,

119,120
picture specification for
136
variables 26,182
character-string format item (A) 147,87
character-string key specification 80
character-string targets 153,46,u8
length of 48
character-string to arithmetic conversion
34
by STRING option 53
character-string to bit-string conversion
153,34

189,27,96,

character-string value of numeric character

data 96 ,97,137,189
characters
alphabetic 16
alphameric 16
special 16,18
classes
of statements 50
of storage 62,114,180
clauses
BY 199,85
ELSE 203,53
THEN 203,53,54
TO 199,85
WHILE 199,85
CLOSE statement 197,52,75
closing of files 74-75,52,97
multiple 197,75
coded arithmetic data
conversion to numeric character 153
compared with numeric character data
25
internal form of
collating sequence

21-23

highest character in 160,99
lowest character in 161,99
collections of data 28-31,14

arrays 28

arrays of structures 31

structures 30
COLUMN format item
comma picture character (,)
commas in declarations 178
comments 9

delimiter 9
common logarithm 168

188,48,119
139-140,98

comparison
of arithmetic data 39
of bit-string data 39
of character-string data 39
of pointer data 39
operations 35
priority of types in 35
result of 35
operators 35,17
compatibility, upward
composite symbols
in u48-character set 132
in 60-character set 131
compound statements 19
computational built-in functions 158
arithmetic 162
array manipulation 169
mathematical 166
string handling 158
computational conditions 174
concatenation
of bit-string data 40
of character-string data 40
operations 39-40
operands of 39
result of 39-40
concepts of data conversion 45
condition name 173-174,15,55,111
use of NO with 173,111
condition prefix 111,15,173
effect on nested blocks 112
scope of 111,173
conditional branch 53
conditional digit position 138,190
conditional insertion characters 139
conditions 173,11,55,111
(also see individual conditions)
computational 174
disabled 173,111,205
enabled 173,111,205
exceptional 111,11
input/output 174
raised in conversions 49
system action 177
CONSECUTIVE organization 78,185
devices permitted for 78
CONSECUTIVE option 185,78
compared with SEQUENTIAL attribute
constants 21
arithmetic 22
attributes of 21
bit-string 27
character—-string 26

217,77

label 27
sterling 23
contained in 65

contextual declaration of entry names
66-67,59,106

scope of 66
control
flow of 59,53

return of
from a procedure 61,102,103
from an on-unit 112,174
control format items 88
examples of 88
control statements 53
for input/output 51

Index

78

221

control variable in DO statement
conversion

CONVERSION condition

200,54
45,14,34,152

152,34,46
base in 153,36,46
precision in 152,36,47
scale in 152,36,46
target attributes in

arithmetic

46,153,154

assignment statement for 94,34

base 153,36,46

bit-string to character-string 153,34,

94

bit-string to coded arithmetic 155, 34
bit-string to numeric character 155,34
character-string to bit-string 153,34
coded arithmetic to bit-string 154,35

coded arithmetic to numeric character
153

conditions raised in 48
in arithmetic operations

in array expressions 41
in bit-string operations 38

35-36,155-157

in comparison operations 39
in exponentiation operations 37-38,
46-47,157

intermediate results in 45

numeric character to coded arithmetic
153

numeric character to

numeric character to
153,35
type

bit-string 155, 35
character-string

153,334,046
174,49

for character-string to bit-string 153

in B format input 147
in E format input 148
in stream input 174

correspondence defining 183,32

COS built-in function 167

COSD built-in function 167

COSH built-in function 167

CR picture characters 142

credit picture characters (CR) 142

140,98
currency symbol picture character ()

data

attributes of 178,65
also see attributes
arithmetic 21
comparison of 39
conversion of 152,46
bit-string 27
comparison of 39
concatenation of 40
conversion of 153-155,46
operations with 38
character-string 26
comparison of 39
concatenation of 40
conversion of 153-155,46
collections of 28-31,14
conversion of 45,14,34,152
editing of 94
format jitems 146,86-88
examples of 88
label 27

movement of 51,52

pointer 28,115
comparison of
problem 21
program control
string 26
types of 21,13
data 1list 8U-86
element of 85
data set 71
association with
organization of
CONSECUTIVE
default for
REGIONAL(1)
REGIONAL(3)
positioning of
data specification
data transmission

39

27

file 75
78

78,185
78,185
79,91,185
80,81,185
82
91,93,110
71

(also see input/output)

DATE built-in function
DB picture characters

171
142

deactivation (see termination)

debit picture characters (DB)
packed 22

decimal,
DECIMAL attribute
decimal base 21

DECIMAL built-in function

decimal data
fixed-point
floating-point

22,

142
181,22,178,183
163

181
23-24,181

decimal point picture character (V)

137-138,97,98

compared with point picture character

140,98
declarations 65
contextual 66
scope of 66
explicit 65
scope of 66
implicit 67
scope of 67
multiple 70
scope of 69
DECLARE statement
attributes in

condition prefix to
default rules for

default 13,68

attributes assumed by
conditions disabled by
conditions enabled by
for arithmetic data

197,21,50,65,178

178,50,197

112
50

178,13,68
173,111,205
173,111,205
182,187

for file attributes 73
for attributes of value returned by

function 104

rules based on first letter of

identifier

67,182,187

rules for DECLARE statement 50

DEFINED attribute

defined item

defining
correspondence
overlay

183,32,97,119

183,32

183,32
183,332,119

descriptive statements 50

device independence
devices 186,187

digit specifier picture characters

190

77

137,

digits 16
dimension 28,183
bounds of 29,183
extent of 29,183
maximum number of 29,183
dimension attribute 183,29
DIRECT attribute 184,73,80
direct-access storage devices 79
disabled conditions 173,111,205
compared to null on-unit 112
DISPLAY statement 198,52
division operation 37
attributes of the result of 157
fixed-point 37
remainder of 164
division operator 35
DO, keyword in repetitive specification
85
DO statement 199,20,54,57
condition prefix to 111
iterative 111
types of 199
noniterative 54
DO-group 57,20,54,59,199
transfer of control into 203
drifting picture characters 140,143
drifting string 140
dummy arguments 108
dumnmy records 80
dynamic storage allocation 62,14

E format item 148,87
E picture character 144,190
EBCDIC codes
for 48-character set 131
for 60-character set 132
EDIT keyword 83
edit-directed transmission 83-89
data specification for 83
format items for 146,86-88
FORMAT statement for 201
editing 94,52,136,189
by assignment 94,52
by PICTURE attribute 96,136,189
conversion and 52
of numeric character. data 136
element
and array operations 42
and structure operations 43
assignment 194,195
expression 33
in array assignment 195
in IF statement 54,203
in RETURN statement 208
of a data list 85
of a structure 30
operations 42
variable 28
ELSE clause 203,53,54
enabled condition 173,111,205
END statement 201,20,55,59
for begin block termination 61
for procedure termination 61,102
ENDFILE condition 176,112,119
ENDPAGE condition 176,76,119,208
ENTRY attribute 184,59,66,106-108
contextual declaration of 66,184
compared with ENTRY statement 57

implied by RETURNS 107,185
entry name 59,66,106,184
arguments 107,109
attributes for 179
contextual declaration of 66
explicit declaration of 106,184
in CALL statement 197
parameters 109,108
entry point
primary 59,60,206
secondary 59,60,201
ENTRY statement 201,57,1006
compared with ENTRY statement 57
condition prefix to 112
label of 59,106
parameters of 201
ENVIRONMENT attribute 185,74,77,109,179
options of 185,77
epilogues 63-64
ERF built-in function 167
ERFC built-in function 167
ERROR condition 177,38,62,173,174
raised by GET statement 202
raised by PUT statement 207
results in program termination 62
established action 112,113
exception control statements 55,50
exceptional conditions 111,15,173
EXP built-in function 167
explicit declaration 65,106,197
by DECLARE statement 197
scope of 66
explicit opening 74,205
exponent
in picture specification 142,137,189
of exponentiation operation 37
of floating-point data 24
exponent field 142,137
exponent specifier picture characters 142
exponentiation operations 37-38,46
attributes of result of 157
base in 46
conversion in 37
precision in 38,46
scale in 46
expressions 33,14
array 41,33
operands of 41
as subscripts 29
attributes of result of 36,39,40
element 33
evaluation of 40
function reference operands 4y
in RETURN statement 103
operands of L4y
operational 33
structure 43,33
operands of 43
use of parentheses in 41
extenders, alphabetic 16,67
extent
in overlay defining 183
of a dimension 29,183
EXTERNAL attribute 187,69
external declaration 179
external name 69,18
length of 69,18
external procedure 59,69

Index 223

external storage 71

F format item 149,87

F-format (fixed-length) records 77-7¢,185
factor
iteration 86
repetition 26
factoring of attributes 178,197
nesting in 178
field
in a picture specification 137,189

width 146

file 72
association with data set 75,51,197,
205
attributes for 72,179
closing of 75,52,197
name of
see file name
opening oﬁ 74,511,205
standard 76
FILE attribute 187,72,179

file declarations
examples of 119
file name 72,187
arguments 109
length of 76
parameters 109
FILE option 90
of GET statement 202
of PUT statement 207
FILE specification 90
of READ statement 208
ot REWRITE statement 209
of WRITE statement 210
FIXED attribute 187,22,23
FIXED built-in function 163
fixed-length records (F-format)
fixed-point data 22,23
assignment of 22
attributes for 22,223,187
binary 23
constants
conversion of
decimal 22
division operations with 37
picture specification for 190,137
sterling 23
wvariables 22,23
fixed-point format item (F)
fixed-point scale 21
FIXEDOVERFLOW condition 174,49
FLOAT attribute 188,23, 24
FLOAT built-in function 163
floating-point data 23,24
attributes of 23,24,187
binary 24
constants
conversion of
cdecimal 23
long form of 152,24
picture specification for
short form of 152,24
variables 23,24
floating-point format item (E)
floating-point scale 21
FLOOR built-in function 164
flow of control 59,53

77-78,185

22,23
152,154

149,87

23,24
152,154

190,137

148,87

224

format, record 77-78
format items 146,86-88
alphabetic list of 147
control 88
data 146,87
printing 146
remote 147
spacing 146
summary of 89
format list 86,146
in FORMAT statement 201
FORMAT statement 201,50,88,147,150
fractional digits
in E format item 148
in F format item 149
fractional subfields 137
free format 16,120
FROM option 91,209
FROM specification 210
compared with SIZE condition 175
full word, binary 23
function 102,44,105,158
arguments of 103,104
built-in 158,44,105
invocation of 102
name of 104
termination of 103
value returned by 103-104,208
without arguments 104
function reference 102,44,66
function value
(see function, value returned by)
function file attributes 73

G sterling picture character 144
GET statement 202,51,52,71,83,89,95,146
as input/output statement 51
for internal data movement 52
with standard input file 76
with STRING option 95,52
GO TO statement 203,53
for begin block termination 61
for procedure termination 62,102
as on-unit 112
label variable in 53,203
H sterling picture character 144
hidden buffers 74
hierarchy of names 30
HIGH built-in function 160,9¢
high-order digits, loss of 3é

I picture character 142
IBM pence characters 144
jidentical structuring, meaning of 43
identifiers 17,65
length of 17
reserved 65
IF statement 203,19,53
condition prefix to 111
element expression in 203,54
nested 54,203
implementation information 5
implication, file attributes derived by
72
implicit declaration 67
scope of 67

implicit opening 75,202,207

implied attributes 72,107
inactive block 60,103
independence
device 77
machine 13,5
INDEX built-in function
infix operation 35
result of 36
infix operator 35
in array expressions 42
in structure expressions 43
initial procedure 60,206
(also see main procedure)
input 71,15
standard system file for 76
INPUT attribute 188,73,109,179
INPUT option 205-206,75
input/output
conditions 176,111,174,205
record-oriented 89-93,15,72,95
statements for 20
stream-oriented 83-89,71,95
conversion in 110
edit~-directed 83-89,51
statements for 89,51
statements
(see individual statements)
insertion picture characters
98
integer subfield 137
intermediate string 154
internal

160,99

139-140,97,

coded arithmetic form 22,23,24
data movement 52,95
procedure 59

INTERNAL attribute 187,69

internal to 65

interrupt 111,15,173,204
established action for 112,204,205
simulation of 210,56

INTC option 90,208

invocation
CALL statement for 197,59,102
procedure 59

invoked procedure 60
return of control from 61-62

iteration factor of format list 86
iterative execution 54
(also see repetitive execution)

job control language, ASSGN statement of
81,82

K picture character 144,190
KEY condition 176,80,174
KEY option 91,79,80

in READ statement 208,91

in REWRITE statement 209,91
KEYED attribute 188,74,79,91,92
KEYFROM option 92,210
KEYLENGTH option 186,77,80,82,91
keys 79,74,82,91,176,188

length of 82,49

recorded 79

source 79
keyword statement 19
keywords 17

alphabetic list of 133

label
argument 109,102,103,104,108
assignment 194-195
constants 27
data 27-28
parameters 109,108
prefix 19,27
statement label
variable 188,28
LABEL attribute 188,28,108
layout of pages for PRINT file
leading blanks in stream 146
leading zeros 138
in keys 80
LEAVE option
length
in arithmetic to bit-string conversion
155,48
maximum for strings 27
minimum for strings 27
of bit-string targets
of character-string targets
of external names 69,18
of file names 76
of identifiers 18
of keys 82,49
of record blocks 78,71
of recorded keys 79,82
of string parameters 110
of strings 27
length attribute 182,27,188
level number 30-31
factoring of 178
for structure parameters 109
in DECLARE statement 198
LINE format item 150,88,176
LINE option 207,88,176
line position format item
(see LINE format item)
line skipping format item
(see SKIP format item)
LOCATE statement 204,51,90,92,116
LOG built-in function 168
logarithms 168
logical records 71,78
LOG10 built-in function 168
LOG2 builtin function 168
long floating-point form
LOW built-in function

28,66

75-76

186,82

48,153,154,155
48,153

152,24
160,99

M sterling picture character a4
machine independence 14,5
magnetic tape 71
MAIN option 206,60
main procedure 60,206
major structure name 30
mantissa
in E format item 1u8
in picture specification 137
mathematical built-in functions
arguments of 166
error conditions for
summary of 169-170
values returned by 166
MAX built-in function 164
maximum length
of bit-string data 27
of character-string data 27

166,158

169-170

Index 225

of jidentifiers 18

of keys 82

of picture specification 27
maximum number of binary digits
maximum number of decimal digits
maximum precisions 47,154,155
MEDIUM option 186,75,77,81
merging of attributes 75
MIN built-in function 164
minor structure name 30
minus sign picture character (-) 142

23,24
22,24

miscellaneous built-in functions 171,158
MOD built-in function 164

modes of transmission 51,71

modalarity 13

multiple closing of files 75,197
multiple declarations 70

multiple opening of files 74-75,205

multiplication 37
attributes of the result of 156

names 65,13,18
attributes for 178,13,65
condition names 111,20,173
entry names 59,66
external names 69,18

file names 72

hierarchy of 30

major structure names 30
minor structure names 30
procedure names 58

qualification of 31,70
qualified names 31,70
scope of 65,69,179

structure names 30
subscripted names 29
unique names 70,31
natural logarithm 168
nested blocks 59
fransfer into 70
nested IF statements 54
nested repetitive specifications 85
nesting
effect of condition prefix with 112
of blocks 59
of factored attributes 178
NO with condtion names 173,20,111
NOCONVERSION 173,113
NOFIXEDOVERFLOW 173,113
noniterative DO statements 55
NOLABEL option 186,82
NOOVERFLOW 173
nornal return 174
nornal termination
of on-unit 174
of procedure 61-62
of program 62
nornalized hexadecimal floating-point 24
NOSIZE 173
"not." operaticon 38
"not" symbol 38
NOUNDERFLOW 173
NOZERODIVIDE 173
NULL built-in function
null ELSE clause 203
null on-unit 112,174
compared with disabled conditior. 112
null statement 204,19

171,118

226

as on-unit 112,174

numeric character data 25,96,136,189
arithmetic value of 96,137
character-string value of 96,137
conversion to character-string 153

conversion to coded arithmetic 153,99
editing of 97
form of 25
picture characters for 136
picture specification for 189,25,96,
136
examples of 137-145
signs in 140
numeric character variables
arithmetic value of 96,137
assignment to 96
character-string value of 96,137

point alignment in 98,140

ON statement
condition prefix to
purpose of 55,112
scope of 113

ON-conditions 173,111, 204
examples of use of 113,114

204,19,55,112,173
111,19,173

on-unit 112,55,56,174,204,205
GO TO statement as 112,174
null statement as 112,174

return of control from 174,112
ONSYSLOG option 206
OPEN statement 205,50,74,75,109,119
as a descriptive statement 50
as an input/output control statement
51
options of 205,75
opening files 74,511,205
explicit openings 74
implicit openings 75
multiple openings 74
operands Ly
element
array expressions with 42
structure expressions with 43
function reference 4y

of array expressions L2
of bit-string operations 38
of comparison operations 39

of concatenation operations 39
of expressions 4y
of structure expressions L3
operational expressions 33,3
data conversion in 34
operations
arithmetic 35
results of 36
truncation in 36
array 41,33
bit-string 38
conversion in 38
combinations of 40
comparison 38
concatenation 38
operands of 39
results of 40
element 33
four classes of 35
infix 35
prefix 35

structure 43,33
operators
arithmetic 35,17
bit-string 38,17
comparison 39,17
concatenation 39,17
infix 35
array expressions with 42
structure expressions with 43
prefix 35
array expressions with 42
structure expressions with 43
priority of 40
string 17
options, see individual options
OPTIONS (MAIN) specification 60,206
"or" operation 38
"or" symbol 38
order of evaluation of expressions 40
organization of data sets 78
output 71,15
(also see input/output)
OUTPUT attribute 188,73,179
output files 92,90
standard system output file 76
OUTPUT cption 205,75
OVERFLOW condition 175,49
overlay defining 183,32,97,119
PACKED attribute for 32
overpunched sign characters 142

P sterling picture character 144
PACKED attribute 180,31,32,189
packed decimal format 22
PAGE format item 150,88
page layout 76-77
PAGE option 207,88
PAGESIZE option 206,75,150,176
default for 206,176
paging format item (PAGE) 150,88
parameter lists 101,201, 206
parameters 191,201,206
array 109
attributes of 101,104,108,109
bounds and lengths of 109,110
default attributes for 108
element 108
entry name 109
explicit declaration of 101
file name 109
label 109
of primary entry point 206
of secondary entry point 201
pointer 109
storage allocation for 110
string 108,110
structure 109
parentheses
use with arguments 107,108
use with expressions 41
pence character specifier (P) 144
pence digit specifiers (7 and 8) 14y
pence field 145,138
physical record 71
PICTURE attribute 189,27,96,136
picture characters 136,189
for character-string data 136,189
for numeric character data 136,190

picture specification 189,136
for character-string data 189,136
for editing 97
for numeric character data 190,136
PL/I program example 119
plus sign picture character (+) 142
point alignment in numeric character data
140,98

point insertion picture character (.) 140
compared with V picture character 140,
98

point of invocation 60
POINTER attribute 191, 28,89,115
pointer data 28,115
assignment of 116,118,195,196
comparison of 39,118
input/output of 117
manipulation of 118
pointer variable 89
attributes of 191,89
declaration of 89,115,182
in BASED attribute 182,89,115
setting of 116
value of 116
with LOCATE statement 204,90,116
with READ statement 208,116
positioning of data sets 82
pounds field 145
precision 22,23,24
attribute 191,178
and length specifications 47
conversion of 152,36
default 192,22,23,24
evaluation in conversions 152
in arithmetic conversion 4e,47
in exponentiation 37,46
maximum 47,154,155
of numeric character data 190
of source 46
of sterling data 191
of subscripts 29
of target 47
PRECISION built-in function 165
prefix list 111,20
prefix operations 35
results of 36
prefix operators 35
array expressions with 42
structure expressions with 43
prefixes 20
condition 111,20
label 27,20
primary entry point 59,206
parameters of 206
PRINT attribute 192,51,74,75
options and statements used with 192
PRINT files 192,75,88,89
column positioning of 148,88,207
format items for 89
line positioning of 150,88,207
paging of 150,88,176,207
printing format items 146,88

priority
of operators 40
of types in comparison operations 39

problem data 21
attributes for 179
procedure 58,13,56

Index 227

communication between procedure: 101,
57

IND statement for
2xternal 59
function 102,57
initial 60
internal 59
invocation of
main 60,206
nesting of procedures 59
s3ubroutine 102

procedure block, see procedure

procedure name 58

procedure reference 60

PROCEDURE statement 206,56,58,101
condition prefix to 112
label of 58

procedure termination 61

PROD built-in function 171

program blocks 58

program control data 27
attributes for 179

program interrupt 111,15,55

program structure statements 56

program termination 62

prologues 63-64

pseudo-variables 172,44,99

PUT statement 207,51,71,76,8%,95,176
ENDPAGE condition raised by 176,207
for internal data movement 52
with standard output file 76
with STRING option 52,95

qualified names 31,70

quotation marks in the stream 147

201,59

60,57,102,197

R format item 150,88,201
R p:cture character 142
READ statement 208,51,72,90,92,119
purpose of 51
with SET option 116
receiving field 172,44
in assignment statement 194
RECORD attribute 192,73,179
record blocks 71,78
RECORD condition 177
record format 78
options 185

record size 78,71,185
logical 78,185,186
physical 78,185,186

RECORD condition raised by 177
record-oriented transmission 89,51,72,95
attributes for 72

characteristics of 51,72
conversion in 95
statements 90,51

format 92-93

options of 90-92

summary of 90

summary of 93
recorded keys 7%,80,81,82,91,188

length of 79,82
records 71,15

addition of 90,93

blocked 71,72

capacity 80

cluramy 80,81

F-format 78,185,186

format of 77,185
logical 71,78
physical 71,78

relative 79

replacement of 90,81,93
retrieval of 90,93
U-format 78,185,186
unblocked 71

V-format 78,185,186

references
ambiguous 70
function 102,44,59

procedure 59
subroutine 102
region specification 80
REGIONAL data set organization 79-81,91,
185
devices for 79,186
direct access of 79
no sequential access of 79

REGIONAL (1) data set organization 79-80,
81,185
REGIONAL(3) data set organizat:ion 80,81,

185
search for key 80
regions 79
relative record 79
relative structuring 109
relative track 79
relative track number 80
remote format item (R) 150,888,202
REPEAT built-in function 161,99
repetition factor 26
in bit-string constants 7
in character-string constants 26
in character-string picture specifica-
tions 27
in numeric character picture specif-
ications 25
repetitive execution 199,54
repetitive specification
in data lists 85
in DO-groups 199, 86
nested 85,86
REPLY option 198,52
reserved identifiers
results
attributes of 46
of arithmetic operations 36
of array operations 41
of bit-string operations 8
of comparison operations z9
of concatenation operations
of structure operations 43
return of control
from a function 103
from an invoked procedure
from an on-unit 174,112
from a subroutine 102
RETURN statement 208,103
expression in 103,49,208,209
for function termination 103
for subroutine termination 102
returned value 209,103,104
attributes of 104,193,201,206
conversion of 104,49
default attributes for 201,206
of arithmetic built-in function 162

65,17

39-40

62,63

of array manipulation built-in function
169
of mathematical built-in function 166
of string-handling built-in function
158
RETURNS attribute
REVERT statement
REWRITE statement
119
ROUND built-in function 165
row-major order 29,86

193,104
209,56,113
209,51,90,91,92,93,94,

S picture character 142
scalar expression 33
scalar variable 28
scale 21
conversion of
fixed-point 21
floating-point 21
in arithmetic conversion
in exponentiation 38,47
of a numeric character data item 190,
24
of arithmetic targets
scale factor
in arithmetic conversions 154
in precision attribute 191,192
negative 47
scaling factor in F format item
scope 69
attributes for
of a condition prefix
of a declaration 65
contextual 66
explicit 66
implicit 67
of a name 65-70
of an ON statement 113
secondary entry point 59,201
parameters of 201
semicolon, function of 18
SEQUENTIAL attribute 184,73,92,193
compared with CONSECUTIVE option 78
SET option 90
with LOCATE statement 204,116
with READ statement 208,116
shilling digit specifier (8) 144
shillings field 145
short floating-point form
sign, determination of 165
SIGN built-in function 165
sign picture characters 140-142,190
drifting use of 140
static use of 140
SIGNAL statement 210,56,114
significant digits
in E format item 148
loss of 153
(also see SIZE condition)
simple statement 19
simulation of an interrupt
SIN built-in function 168
SIND built-in function 168
SINH built-in function 168
SIZE condition 175,20,22,49,114,137,190
compared with FIXEDOVERFLOW condition
175
in base conversion 153

35,36

36,46

46,36

148,87

187,69,179
111,173

152,24

210,56,114

in E format output 217
in F format output 150,217
in precision conversion 153
SKIP format item 150,88,176
SKIP option 208,88,89,176
slash picture character 145
source data item 45
precision of 46,152,154
source keys 79,80
spacing format item (X)
special characters 16
functions of 18
specification in DO statement 199
SQORT built-in function 168
standard files 76-77,83
GET statement with 202
PUT statement with 207
system input 76,202
system output 76,207
standard system action 112,56,174
statement label constants 27
statement label designator 150,202
statement label variable 188, 28
statement labels 19
declaration of 66
statements 193,50
(also see individual statements)
classes of 50
compound 19
keyword 19
null 19
simple 19
static allocation 62-63
STATIC attribute 180,62,63,193
static picture characters 140
static storage class 62
static variables 62
sterling fixed-point data 23
constants 23
variables 23,191
precision of 191
sterling picture specifications
191
examples of 145
STOP statement 210,55,61,102
storage
allocation of, see storage allocation
classes of, see storage classes
external 71
storage allocation 62,114,180
attributes for 180
dynamic 62,14
for parameters 110
static 62,14
storage classes
attributes for
automatic 63,14
based 63,114,115
static 63,14
storage devices
stream 71,146
STREAM attribute 192,72,73,89,193
stream-oriented transmission 83-89,15,51,
71,82,95
attributes ior 72
characteristics of
conversion in 95
statements 51

151,88

144-145,

62,14
180,62

78,79

51,95

Index 229

summary of 88-89
uses for 51,95
string arguments 108,110
string assignment 94,195,196

string data 26
attributes for 179
length of 26,27,182

string-handling built-in functions 153
arguments of 158

string length 26,27,182

string operator 17

STRING option 52,95
in GET statement 202,52,95
in PUT statement 207,52,95

to effect arithmetic to character-string

conversion 53
to effect character-string to arithmetic
conversion 53

string parameters 108,110
string to arithmetic conversion 34
by STRING option 53
structure, block 58,13,56
structure arguments 109
structure assignment 194,195
structure declarations 30,178
use of blanks in 30
structure expressions
evaluation of 43
in structure assignment
infix operators with 43
operands of 43
prefix operators with 43
with an element operand u3
structure names
major 30
minor 30
structure operations 43
structure parameters 109
structure variables 30
structures, arrays of 31
structuring
identical 43
relative 109
subfield delimiter 137
subfields in a picture specification
189,190
subroutine 102,57
abnormal termination of 119
invocation of 197,102
normal return from 102
normal termination of 102
subroutine reference 102
subscripted names 29
subscripts 29
conversion of 48
in arguments 108,109
internal form of 29
precision of 29
SUBSTR built-in function 161,44,99,196
SUBSTR pseudo-variable 172,44,99
in assignment statement 196
substring, extraction of 161,99
subtraction 37
«attributes of the result of 156
S5UM built-in function 171
syntactic unit 129
syntax notation 129
SYSIN 76

43,33

194,1¢5

137,

230

SYSIPT 76

SYSLST 76

SYSPRINT 76

system action 111

system action condition

SYSTEM action specification
173

177,174
205,56,112,

T picture character 142
TAN built-in function 168
TAND built-in function 168
TANH built-in function 169
target attributes 46,152,153
as derived from operators 46
determination of 45,46
for type conversion 46
in arithmetic conversion 46,152
in bit to character conversion
in character to bit conversion
targets 46
base of arithmetic targets 46,152
length of bit-string targets 48,155
length of character-string targets 48
precision of arithmetic targets 47,152
scale of arithmetic targets 46,152
temporary, in conversions 45

46,153
46,153

termination 61-62
abnormal 61,62
normal 61,62

of begin block 61
of function 103
of on-unit 112
of program 62
of subroutine 102
THEN clause 203,53,54
TIME built-in function 172
TO clause 199,54,85
track number, relative 80
tracks, relative 79
transfer of control by GO TO statement
203,53
also see control
TRANSMIT condition 177
TRUNC built-in function 165

truncation 36,146,165
in arithmetic operations 36
in string assignment 94
type 32,46
type conversion 46,332,153
bit-string to character-string 34,46,
153
bit-string to coded arithmetic 34,46,
153
bit-string to numeric character 34,155
character-string to bit-string 34,46,
153
coded arithmetic to bit-string 35,46,
154
coded arithmetic to numeric character
153
numeric character to bit-string 35,155

numeric character to character-string
34,153
numeric character to coded arithmetic
36,153
target attributes for 46
types of comparison 39

U-format records
unblocked records
unblocking 71
UNBUFFEERED attribute 182,73,82,92,179
unconditional branch 53
unconditional insertion character 139
undefined format records, see U-format
records

UNDERFLOW condition 175
UNSPEC built-in function 162,99
UNSPEC pseudo-variable 172

in assignment statement 195
UPDATE attribute 188,73,90,92,93,179,
upward compatibility 217,77
usage file attributes, defaults for 7
use of expressions 33
use of parentheses

in argument lists

in expressions 41

78,185
71,78

107,108

V picture character 137-138,97,98
compared with point character (.)
98
V-format records 78,185
variable-length records,
records
variables 21
array 28
automatic 63
based 115,28
control 54
element 28

see V-format

label 28

pointer 28,115
pseudo-variables 172,44
scalar 28

193

3

140,

statement-label 28
static 62-63
structure 30
varying-length records (see V-format
records)

VERIFY option 187,82
volume 71
WHILE clause 199,54, 85

WRITE statement
purpose of 51

X format item 151,88
X picture character 136,27,96,189
Z picture character 138,98,190
zero suppression 138

examples of 139

in F format output 149

in numeric character data

in sterling pictures 145

picture characters for 138
ZERODIVIDE condition 175
zeros, extension with 9y

138,98

48-character set
card punch codes for
EBCDIC codes for 132

132,16-17,65
132

210,51,90,91,92,93,121

6 sterling picture character 144
60~character set 131,16
card punch codes for 131
EBCDIC codes for 131
7 sterling picture character 144
8 sterling picture character 144
9 sterling picture character 137,25,96,

97,189,190

Index

231

C28-8202~0

BN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232

