
Systems Reference Library

IBM System/360

PL/I Subset Reference Manual

Form No. C28-8202-0
File No. S360-29

This publication provides the rules for writing PL/I
Subset programs that are to be compiled using 1:he PL/I
D-Ievel compiler under the IBM System/360 Disk and Tape
Operating Systems. It is not a reference to the entire
PL/I subset language, but only to those features
implemented by the Second Version of the D-Ievel
compiler.

This publication is planned for use as a
reference book by the PL/I Subset program­
mer. It is not intended to be a tutorial
publication" but is designed for the reader
who already has a knowledge of the language
and requires a source of reference mater­
ial.

It is divided into two parts. Part I
contains discussions of the concepts of the
language. Part II contains dE!tailed rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete des­
cription of any implementation environml?nt.
In generaL, it contains informatio:n nel?ded
in ~~i ti!!9: a program; it does not con1tain
all of the information required to execute
a program.

The following features are described as
they are implemented in the Second version
of the D-compiler; they are implemented
differently in the First Version:

1.. ~Eithme:!::i~=to-B! t-~trin9._ co~version:
The First Version uses the internal
representation of the ar.i thml?tic
value; the Second Version takes the
absolute value. This will havl? a
different effect only for negative
values.

2. FIXEDOVERFLOW Condition: For the First
Version~ the result of this condition
is truncation on the left and the
standard system action is to comnent
and continue. For the Second Version,
the result is undefined and tbe stand­
ard system action is to comment and
raise the ERROR conditionu

3.. ~~!.~~Q:!::ion of PUT: A specification of
SKIP(O) under the First Version causes
the previously-transmitted line of
characters to be replaced by the new

Firs1: Edition

line; the new line being the onl=
actually printed. Under the Second
Version. such a specification causes
overprinting of the previously­
transmitted line by the new linl=;
thus, for example, underscoring is
possible.

REQUISITE PUBLICATION

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiar \'d th the follmv­
ing publication:

IBM System/360 Disk and Tape oQerat.i!}g
Systems: PL/I Programmer's Guide" Form
C24-9005.

RECOMMENDED PUBLICATIONS

The following publications contain other
information that might bE! valuable to the
PL/I programmer or to a programmer who is
learning PL/I:

A PL/I Primer~ Form C28-680B

A Guide to PL/I for Con~ercial Program­
mers, Form C20-1651

A Guide to PL/I for FOR'I'RAN Users, Form
C20-1637

The following publication
complete description of t~he
language:

contains a
PL/I Subset

PL/I Subset Language ~!cification§.,
Form C28-6809

Spec~fications contained herein are subject tc change from time to time.
Any such change will be reported in subsequent revisions or Technical
News:.etters.

Address comments concerning the contents of the publication to 113'1
Corporation, Programming publications, 1271 }lvenue of the Americas, New
York, New York 10020.

C International Business Machines Corporaticr 1967.

INTRODUCTION

PART I: CONCEPTS OF PL/I.

Table of Contents

PART II: RULES AND SYNTACTIC DESCRIPTIONS

Table of Contents

INDEX.

CONTENTS

5

7

9

723

725

279

ILLUSTRATIONS

FIGURES

Figure 2-1. Examples of the Use of
Blanks. •••

Figure 7-1. Scopes of Data
Declarations. . • . • • . •

Figure 7-2. Scopes of Entry and Label
Declarations. . • • • • • • . • •

Figure 8-1. General Format for
Repetitive Specifications • • . •

Figure 13-1. A PL/I Program ...
Figure 0-1. Pictured Character-String

Examples. • • • • . • . • . •
Figure 0-2. Pictured Numeric
2haracter Examples. • . • .

Figure D-3. Examples of Zero

· 18

· 67

· 68

· 85
.119

.136

.138

Suppression. • • . • 139
Figure 0-4. Examples of Insertion
Characters ••.•..•........ 141

Figure 0-5. Examples of Drifting
Picture Characters. •

TABIJES

Table 2-1. Some Functions of Special
Characters. . • • . •. . •...

Table 4-1. Target Types for
Expression Operands

Table 4-2. Precision for Arithmetic
Conversions . . • . • . • • • . •

Table 4-3. Lengths of Bit-String
Targets • . . • . . • . • . .

Table 4-4. Circumstances that Can
Cause Conversion.. • . • . . • .

rable F-l. Precision for Arithmetic
Conversions • . • .

.143

· 18

· 46

· 48

· 48

· 49

.154

Figure 0-6. Examples of CR, DB, T, I~
and R Picture Characters ... q •••• 143

Figure D-7. Examples of Floating-Point
Picture Specifications. • • . . • • • .144

Figure D-8. Examples of st~erling
Picture Specifications. . • • . • .145

Figure F-l. Examples of Conversion
From Arithmetic to Bit-String q •••• 154

Figure G-l. Mathematical Built-in
Functions • • • • • • • • .170

Figure I-i. Permissible Items for
Overlay Defining. • • • .184

Figure 1-2. Device Types and
Corresponding Specifications. ' • .186

Figure 1-3. Device Types }l.ssociated
to SYSIPT, SYSLST, and SYSPCH • • .187

Figure J-l. Assignment StatemE~nt
Types . . . • . . • . • . . • . .194

Figure J-2. General Format of DO
statement • • . • • .199

Table F-2. Lengths of Converted Bit
Strings <Coded Arithmetic to
Bit-String) . . • • • . •155

Table F-3. Ceilings for ValueB
Multiplied and Divided by 3. 3:~. ..155

Table F-4. Attributes of Result in
Addition and Subtraction Operations •• 156

Table F-5. Attributes of Result in
Multiplication Operations. •. . .156

Table F-6. Attributes of Result in
Division Operations . •157

Table F-7. Attributes of Result in
Exponentiation Operations • • . .157

The J[)L/I Subset Language was designed
for use in a data processing system of
limited capacity. The subset is self­
contained; i.e., the programmer can learn
and use it without referring to the parent
PL/I language. While many of the more
sophisticated features of PL/I, such as
asynchronous operations and compile-time
facilities are not included in the PL/I
subslet, much of the programming power of
PL/I has been retained.

Tl"O oj: the basic characteristics of PL/I
that have been carried over into the PL/I
subs4et (hereinafter simply called PL/I) are
its block structure and its machine
independenc4e. They reduce the need to
rewrite complete programs if either the
machine environment or the application
environment changes.

A PL/I program is composed of blocks of
statements called procedure blocks (or
procedures) and begin blocks, each of which
defines a region of the program. A Single
program may consist of one procedure or of
several procedures and begin blocks. Eith­
er a procedure block or a begin block can
contain other blocks; a begin block must be
contained in a procedure block. Each
external procedure, that is, a procedure
that is not contained in another procedure,
is compiled separately. The same external
procedure might be used in a number of
different programs. Consequently, a neces­
sary change made in that one block effec­
ti vely makE~s the change in all programs
that use it.

PIJI is much less machine dependent than
most commonly used programming languages.
In the interest of efficiency, however,
certain features are provided that allow
machine dependence for those cases in which
complete independence would be too costly.

This publication is designed as a ref­
erence book for the PL/I programmer,. Its
two-part :format allows a presentation of
the material in such a way that references
can be found quickly, in as much or as
little detail as the user needs.

Part I. "Concepts of PL/I," is composed
of discussions and exautples that explain
the different features of the language and
their interrelationships. To reduce the

INTRODUCTION

need for cross references and to allow each
chapter to stand alone as a complet:e ref­
erence to its subject. some information is
repeated from one chapter to another. Part
I can, nevertheless, be read sequentially
in its entirety.

Part II, "Rules and Syntactic Descrip­
tions," provides a quick reference to
specific information. It includes less
information about interrelationships, but
it is organized so that a particular ques­
tion can be answered quickly. Part II is
organized purely from a reference point of
view; it is not intended for sequential
reading.

For example, a programmer would read
Chapter 5 in Part I, "Statement Classifica­
tion," for information about the interac­
tions of different statements in a program;
but he would look in Section J of Part II,
"Statements," to find all the rules for the
use of a specific statement, its effect,
options allowed, and the format in which it
is written.

In the same manner" he would read Chap­
ter 4 in Part I, "Expressions," for a
discussion of the concepts of data conver­
sion, but he would use Section F of Part
II, "Data Conversion." to determine the
exact results of a particular type of
conversion.

An explanation of the syntax language
used in this publication to describe ele­
ments of PL/I is contained in Part II,
Section A, "Syntax Notation."

IMPLEMENTATION CONSIDERATIONS

This publication reflects current fea­
tures of the D-Compiler. Consequently,
some features that are in the PL/I subset
language are not described in this publica­
tion. One example is the list-directed
input/output facility of the language;
another is the INITIAL attribute.

Some language features that have been
implemented with limitations are described
in this book in the light of the limita­
tions. Wherever a description here differs
from the description of the same feature in
PL/I subset Language Specifications, Form
C28-6809, it is not to be construed as a
respecification of the language, but merely
a description of the implementation.

Introduction S

Note r however, that this book does
reflect current language specifications.
For example r the keyword BASED has been
added to the language as the attribute
specification for based variables. replac­
ing the attribute specification CONTROLLED
(pointer-variable).

No attempt is made r howeveI r to provide
complete implementation inforrna':.ion; this
publication is designed for use in conjunc-
tion wi th !.~1'1_~~!:~m/l§.LJ2!~~ ___ ~nd __ Tap~
QI2.~~~!:i~ __ §.ystems PL/I Programme£~~~!ider
Form C24-900S. Discussion of implementa­
tion is limited to those features that are
required for a full explanation of the
language. For example r a comple"t.e discus­
sion of the ENVIRONMENT attribute is essen­
tial to an explanation of record-oriented
input and output file organization.

Implementation features identified by
the phrase "for systen/360 implementa­
tions •.. " apply to all implementations of
PL/I <subset or full set) for IBM
System/360 computers. Features identified
by the phrase "for the D-compiler ••• "
apply specifically to the IBM D-Ievel com­
piler (for PL/I subset) under the IBM
System/360 Disk and Tape Operating Systems.

A separate publication r IBM System/~60
PL/I Reference Manual, Form C28-8201, pJ[~o­

vides the same type of implementation
information as it applies to the F-Ievel
compiler (for the PL/I full set) used under
the IBM System/360 Operating System.

PART I: CONCEPTS OF PL/I

Introduction 7

CHA.PTER 1: BASIC CHARACTERISTICS OF
PL/I. • • • • • 13

Machine Independence • • • 13

Program structure. •

Data Types and Data Descripti6n.

Default Assumptions.

Storage A.llocation •

Expressions. • •

Data Collections •

Input and Output

Interrupt A.ctivities • .

CHA.PTER 2: PROGRAM ELEMENTS.

Character Sets • • •
60-Character Set.
48-Character set.
Using the Character set •

Identifiers ••••••••
The Use of Blanks. • ••.
Comments • • . . •

Basic Program Structure. • • • • •
Simple and Compound Statements.

Statement Prefixes • • • • • • .
3roups and Blocks . • • • • • •

CHA.PTER 3: DATA ELEMENTS •

Data Types

Problem Qata •
Arithmetic Data .

Decimal Fixed-Point Data •
sterling Fixed-Point Data. •
Binary Fixed-Point Data. . •
Decimal Floating-point Data.
Binary Floating-Point Data •
Numeric Character Data

String Data • • • •
Character-string Data.
Bit-String Data .•

Program Control Data
Label Data. • •
Pointer Data •••

Data Organization. •
Arrays. • . • • •

· 13

· 13

· 13

· 14

· 14

· 14

• 15

• 15

• 16

• 16
• 16
• 16

17
· 17
• 18
· 19

· 19
19

· 19
· 20

• 2:1

• 21

· 21
• 21
• 22
· 23
• 23
• 23
• 24
· 25
· 26
• 26
• 27

• 27
· 27
• 28

• 28
• 28

Expressions as Subscripts. •
structures. • • • • •

Qualified Names ••
Arrays of Structures.

Other Attributes • • • •
The ALIGNED and PACKED
Attributes. • • • • •

The DE1PINED Attribute.

CHAPTER 4: EXPRESSIONS •

Use of Expressions

Data Conversion in Operational

CONTENTS

• 29
• 30

· • 31
· 31

· . 31

· . 31
· • 32

33

• • 33

Expressions • • • • • • • • • . . • • · 34
Bit-String to Character-String .
Character-String to Bit-String •
Character-String to Arithmetic .
Arithmetic to Character-string .
Bit-String to Coded Arithmetic •
Bit St:r-ing to Numeric Character.
Coded Arithmetic to Bit-string .
Numeric Character to Bit String.
Numeric Character to
Character-String. •

Arithmetic Base and Scale
Conversion. • . . • • •

Conversion by Assignment

Expression Operations. • • • • .
Arithmeti,c Operations

Data Conversion in Arithmetic
Operations ••.••.•.••

R~sults of Arithmetic Operations
Bit-String operations • • • • • •

• 34
• 34
• 34
· 34
• 34
• 34
· 35

35

35

35
35

35
35

35
36
38
39 Comparison Operations . • •

Concatenation operations. •
Combinations of Operations.

• • 39

Priority of Operators.

Array Expressions •••..•
Prefix Operators and Arrays
Infix Operators and Arrays.

Array and Element operations
Array and Array Operations •
Data Conversion in Array

• • • 40
40

· . 41
· 42
• 42
• 42
· 42

Expressions •• • • . 43

Structure Expressions •. · 43
• • 43

43
43

Prefix Operators and Structures •
Infix Operators and structures. •

Structure and Element Operations •
Structure and Structure
Operations ••••••• 43

Operands of Expressions. . • •
Function Reference Operands •

Concepts of Data Conversion. •

· 44
• 44

45

Target Attributes for Type Conversion. • 46

9

Bit-to-Character and
Character-to-Bit . . • • • . •

Coded Arithmetic To Bit-string.
Bit-String to Coded Arithmetic.

Target A.ttributes for Arithmetic
Expression Operands

Precision and Length of
Expression Operand Targets.

Precision for Arithmetic
Conversions • • . • . . • •

Lengths of Character-String
Targets . . . • • • • . . .

Lengths of Bit-String Targets.
Conversion of the Value of an

Expression. . •.

· 46
· 46
· 46

· 46

· 47

· 47

· 48
48

• 48

Conversion Operations .. · 48

The CONVERSION, SIZE, OVERFLOW, and
FIXZDOVERFLOW Conditions ..•.•.•• 49

CHAPTER 5: STATEMENT CLASSIFICArION ... 50

Classes of Statements •.••
Descriptive Statements •••

The DECLARE Statement. •

• 50
· 50
• 50

Other Descriptive Statements . . · 50
[nput/Output statements • • • •

RECORD I/O Transfer Staternent~:J; •
STREAM I/O Transfer Statements •
Input/Output Control Statemen~s.
The DISPLAY statement. . . .

· 51
· 51
· 51
· 51
• 52

Data Movement and computational
statements • • . • • • • • • •

The Assignment Statement
The STRING Option. • •

Control Statements •••
The GO TO Statement.
The IF Statement • •
The DO Statement • • •
Noniterative DO Statements •
The CALL~ RETURN, and END
Statements. • • • . . • .

The STOP Statement • • • . •
E}cception Control rita tements.

The ON Statement • •
The REVERT Statement . • . •
The SIGNAL Sta tE~ment . • .. • .

Program Structure statements.
The PROCEDURE Statement. •
The ENTRY Statement ••.
The BEGIN Statement ••
The DO Statement •

• 52
· 52
· 52
• 53
• 53
• 53
• 54
• 55

55
• 55

55
55

• • 56
• • 56

56
• • 56

57
• 57

• • 57

CH~PTER 6: BLOCKS, FLOW OF CONTROL,
~ND STORAGE ALLOCATION. • • 58

Blocks • • .
Procedure Blocks.
Begin Blocks. • •
Internal and External Blocks. •

58
• • 58
• . 58

• 58

~cti va tion and Termination of Block~; •
A.cti vation. • • • • • •

• 59
· 59
• 61

10

rermination • • • • • •
Begin Block Termination.
Procedure Termination. • • • •
Program Termination. • • .

· 61
61

· 62

storage Allocation. . • • 62
Static Storage • .
Automatic Storage.
Based Storage. • • •

• • • 62
• • • 63

.• • • • 6:3

Prologues and Epilogues.
Prologues. . • . •
Epilogues ••.••

63
• 61~

• 64

CHAPTER 7: RECOGNITION OP NAMES ••• 65

Explicit Declarations. • . •••
Scope of an Explicit Declaration.

• • 6~)
66

contextual Declarations. . • • . . • • • 66
Scope of a Contextual Declaration • . 66

Implicit Declaration • • • • 67

Examples of Declarations • • 67

Application of Default Attribut,~s. • • • 68

The INTERNAL and EXTERNAL A.!ttribut:es . • 69

Multiple Declarations and Ambiguous
References. • . • • • 10

CHAPTER 8: INPUT AND OUTPUT. . . 11

Types of Data Transmission

Files •.•••..••••
File Attributes • • •

The FILE Attribute
Alternative and Additive

• 71

• 7;'.

• • 7 '2
• 72

Attributes. • • • • .. • ., . 72
Alternative Attributes • 73
The STREAM and RECORD Attl:-ibutes • 73
The INPUT, OUTPUT, and UPDATE
Attributes.." · • 73

The SEQUENTIAL and DIRECT
Attributes. • •• " · 73

The BUFFERED and UNBUIi'FERED
Attributes. • • . . • • 73

Additive Attributes. . • . • 74
The PRINT Attribute. .. • • • 74
The BACKWARDS Attribu1:e. . • 74
The KEYED A-ttribute. .. • • 74
The ENVIRONMENT Attribute. 74

Opening and Closing Files • • 74
The OPEN Statement •• f' 74
Impl ic it Opening • • . • • 75
Merging of Attributes. • 75
Associ'ating Data Sets with Files • 75
The CLOSE Statement. . • . • 75

Page Layout For Print Files . • • 75
Standard Files .••••.•.•••• 76

Environmental Considerations for Data
Sets. • . • • • . • • • • 77

Device Independence of Input and
Output Statements. • • • • . • • • • 77

The ENVIRONMENT Attribute. • 77
Record Format. • . • • . • • • • • 78
Data Set Organization. • • 78
Device Allocation. . • • • • • 81
Length of Keys • • • • • 82

Other Data set Handling Options. • 82

Data Transmission. •

stream-Oriented Transmission 83
Edit-Directed Transmission • • • • 83

Edit-Directed Data Specification. • • 83
Data Lists • • • • • • • • • • • • 84
Repetitive specification • • • • • 85
Transmission of Data-List

Elements. • • • • • • • • • . 86
Format Lists • • • • • • • • • 86

Stream-Oriented Data Transmission
statements • •

Record-Oriented Transmission
Record-Oriented Data Transmission
Statements • • • • • • • • • •

Options of Record-Oriented
Transmission statements •

Record-Oriented Transmission
statement Formats • • • • •

Summary of Record-Oriented
T:r-ansmission.

CHAPTER 9: EDITING AND STRING
HlI.NDLING •

• 88

• 89

• 90

• 90

• 92

· 93

• 91~

Ejiting by Assignment. • • 94
Altering the Length of String Data. • 94
Other Forms of Assignment • • • 94

Input and Output Operations. • 95
The STRING Option in GET and PUT

Statements. • • • • •••
The Picture Specification • • •

Character-String Picture
specif ica tions • • • • • •

• 9~)
• 96

• 96
Numeric Character Picture

specifications • • • • • . • • • 96
Values of Numeric Character
Variables • • • • • • • • • • • • 96

Editing Numeric Character
Data • • • • • • • . • • • • 91

Using Numeric Character Data. • 98
Character-string and Bit-String
Built-In Functions • • . • • • • • • 99

CHAPTER 10: SUBROUTINES AND FUNCTIONS •• 101

Arguments and Parameters ••..•••. 101

subroutines. ..

Functions. • • • • •
Attribu1tes of Value Returned
Function. • • • •

Built-In Functions •

The Entry Attribute. • •
Entry Names as Arguments •

Relationship of Arguments and
Parameters. • • • • • • • • • •

Dummy Arguments • • • • • • • •
Argument and Parameter Types. •

CHAPTER 11: EXCEPTIONAL CONDITION

.102

.102
by

.104

.105

.106

.107

.108

.108

.108

HANDLING AND PROGRAM CHECKOUT ••••• 111

Enabled Conditions and Established
Action. • • • • • • • • • •

Condition Prefixes • • • • • • •
Scope of the Condition Prefix. •

.111
• 111
.111
.112 The ON Statement • • •

Scope of the ON Statement.
The REVERT Statement •
The SIGNAL Statement • • • •

CHAPTER 12: BASED VARIABLES AND
POINTER VARIABLES • •

Pointer Variables .•

· .113
• .113

.114

.•• 115

· .115

Based Variables. • • .115
Pointer Specification ••• 115
Values of Pointer Variables. • .116

READ and SET • • • • • • • . .116
LOCATE and SET. • • • • • .116
Assignment of Pointer Value ••.• 116
Assignment of the ADDR Function

Value ••••••••••••.• 116
Declaration of Pointer Variables ••• 116
Pointer Variable Restrictions •••• 117

The Use of Based storage and Pointers •. 117
Variable-Length Parameter Lists • • .117

Pointer Manipulation • • • • .118

CHAPTER 13: J~ PL/I PROGRAM • • .119

, 7

The modularity of PL/I, the ease with
which different combinations of languag1e
feat.ures can be used to meet differen-t
needs~ is one of the most important charac­
teristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

No language can be completely machin4e
indE~pendent, but PL/I is much less machin4e
depE~ndent than most commonly used program-­
minq languages. The methods used to
achieve this show in the form of restric­
tions in the language,. The most obvious
example is that data with different charac­
teristics cannot in general share the same
storage; to equate a floating-point number
wi th a certain number of alphabetic charac-­
ters would involve assumptions about thle
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency~
certain features such as UNSPEC" RECORD
input/output, and the use of pointers do
permit a degree of machine dependence.

~gQ~~RAM __ ,STf,{UCTURE

1\ PL/I program consists of one or more
blocks of statements called procedures. A
procedUl~e may be thought of as the main
program or as a subroutine. Procedures may
use other procedures, and these procedures
or subrout:ines may either be compiled sep­
arately or may be nested within the callin9
procedure and compiled with it. Each pro­
cedure may contain declarations that define
nam4:!S and control allocation of storage,.

The rules defining the use of proce­
dures, communication between procedures"
the meaning of names, and allocation of
storage are fundamental to the proper
und4erstand:ing of PL/I at any level but the
most elementary. These rules give the

CHAPTER 1: BASIC CHARACTERISTICS OF PL/I

programmer considerable control over the
degree of int~eraction between subroutines,.
They permit flexible communication and
storage allocation l, at the same time allow­
ing the definition of names and allocation
of storage for private use within a proce­
dure.

By givingr the programmer freedom to
determine thE! degree to which a subroutine
can be generalized, PL/I makes it possible
to write procedures which can freely be
used in other environments" while still
allowing intE~raction in procedures where
interaction is desirable.

DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types t~hat can be represented and
manipulated. PL/I deals with arithmetic
data" string data (bit and character> " and
program cont~rol data" such as labels and
pointers (or addresses>. Arithmetic data
may be represented in a variety of ways; it
can be binary or decimal# fixed-point or
floating-point~ and its precision may be
specified.

PL/I provides features to perform arith­
metic operat:ions, operations for compari­
s.ons" logical manipulation of bit strings,
and operations and functions for assem­
bling~ scanningJ and subdividing character
strings.

The compiler must be able to determine,
for every name used in a program, the
complete set: of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statE~ment, the compiler may deter­
mine all or some of the attributes by
context, or t:he attributes may be assumed
by default.

DEFAULT ASSUMPTIONS

An import:ant feature of PL/I is its
default philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement, are not specified

Chapter 1: Basic Characteristics of PL/I 13

by t~he programmer, attributes or options
may be assigned by the compiler. This
defa.ult action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second#
it makes it possible to teach and use
levE~ls of the language for which t.he pro­
grammer need not know all possible alterna­
tives, or even that alternatives eKist.

Eince defaults are based on aSEumptions
abot:.t the intent of the programmer, errors
or omissions may be overlooked, and incor­
rect attributes may be assigned by defa~lt.
To reduce the chance of this, the D­
Compiler optionally provides an a·ttri:oute
list.ing, which can be used to check the
namE'S in the program and the at·tribut~s
asscciated with them.

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembly
language programmer to handle for himsl~lf;
yet it is automatically provided in PL/I.
There are three different storage classes:
AUTOMATIC, STATIC, and BASED. In geneJ~al,
the default storage class in PL/I is
AUTOMATIC. This class of storage is allo­
cated whenever the block in which the
variables are declared is activated. AUTO­
MATIC storage is freed and is available for
re-use whenever control leaves the block in
which the storage is allocated.

Storage may also be STA'I'IC, in which
case# it is allocated when the program is
loaded, or it may be BASED, in which case,
the address associated with a variable can
be controlled by the programmer.

The existence of several storage classes
enables the programmer to dete:rmine for
himself the speed# storage space, or pro­
gramming economy that he needs for each
application. The cost of a particular
facility will depend upon thE' implementa­
tion, but it will usually be true that the
more dynamic the storage allocaition, the
greater the overhead in execution time.

Calculations in PL/I are specified by
expressions,. An expression has a meaning
in PL/I that is similar to that of elemen­
tary algebra. For example:

14

A + B * C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places some
restrictions on the kinds of data that can
be used in an expression. For example I A
could be a binary floating-point number, B
a decimal fixed-point numbE~r, and C a bit
string" but none could be a character
string.

When permissable mixed expIessions are
specif ied" the operands wrill be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
same value as the original. And# of
course, any conversion requires addition.al
compiler-generated coding, which increases
execution time.

The results of the evaluaticn of expres­
sions are assigned to variables by means of
the assignment statement,. An Example of an
assignment statement is:

x = A + B * C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ frOom the attributl2s
of the result of the expression, con~ersion
will again be performed.

DATA COLLECTIONS

PL/I permits the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are col­
lections of data elements# all of the same
type., col~ected into lists or tables of one
or more dimensions,. Structures are hierar­
chical collections ofdata# not necessarily
all of the same type. Each level of the
hierarchy may contain other structures of
deeper levels. The deepest levels of the
hierarchy represent elementary data items
or arrays.

Arrays cannot. contain structures" but·
structures can contain arrays. Operations
can be specified for arrays, structures, or
parts of arrays or structures. For exam­
ple:

A B + C;

In this assignment statemen·t" A" B"
could be arrays or structur,es.

and C

Facilities for input and output allow
the user to choose between factors such as
simplicity, machine independence, and effi­
ciency. There are two broad classes of
input/olltput in PL/I: stream-oriented and
record-oriented.

Strea.m-oriented input/output is almost
completely machine independent. On input.,
data items are selected one by one from
what is assumed to be a continuous stream
of cha:racters that are converted to inter­
nal form and assigned to variables speci­
fied in a list. Similarly. on output, data
items are converted one by one to external
character form and are added to a concep­
tually continuous stream of characters.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a certain
line size and page size. The programme!r
has facilities to detect the end of a page
and to specify the beginning of a line or a
page. These facilities may be used in
subroutines that can be developed into a
report generating system suitable for a
particular installation or application.

Record input/output is machine depen­
dent. It deals with collections of data.
called records. and transmits these a
record at a time without any data conver­
sion; the external representation is an

exact copy of the internal representation.
Because the aggregate is treated as a
whole, and because no conversion is per­
formed, this form of input/output is poten­
tially more efficient than stream-oriented
input/output, although the actual efficien­
cy of each class will, of course, depend on
the implementation.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con­
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

INTERRUPT AC'rIVITIES

Modern computing systems provide facili­
ties for inberrupting the execution of a
program whenever an exceptional condition
arises. Further, they allow the program to
deal with the exceptional condition and to
return to the point at which the interrupt
occurred,.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the p:rogrammer to specify, by means
of a condition prefix. whether certain
interrupts will or will not occur if the
condition should arise.. And, by use of an
ON statement, he can specify the action to
be taken when an interrupt does occur.

Chapter 1: Basic Characteristics of PL/I 15

'rhere are few restrictions in the format
of PL/I statements. Consequently, programs
can be wri ttE:n without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statE!ment is
terminated by a semicolon, the format is
completely free. Each statement may bE~gin
in ~he next column or position after the
previous statement.q OJ(any number 0:: blanks
may intervene. The D-Compiler requires
that the first column of every card in the
source program be blank; columns 73 through
80 of these cards are ignored dnd can
contain any information.

One of two character sets may be used to
write a source program; either a
60-character set or a 48-character set.
For a given external procedure, the chcice
betwt=en the t:wo sets is optional. In
prac-:ice, this choice will depend llpon the
available equipment.

60·- CHARACTER SET

The 60-character set is composed of
digi~s, special characters, and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#)1, and the corrunercial "at"
sign (@), which precede the 26 letters of
the Eng lish alphabet in the IBM Sy::;tem/360
collating sequence in Extended Binary­
Coded-Decimal Interchange Code (EBCDIC).
For use with languages other than English,
thE' -:hree alphabetic characters can be used
to cause printing of letters that are not
included in the standard English alphabet.

There are ten digits. The
digits are the digits 0 through
binary digit is either a 0 or a 1.

There are 21 special characters.
are as follows:

16

decimal
9. A

They

Name
Blank
Equal or assignment

symbol
Plus sign
Minus sign
Asterisk or mUltiply

symbol
Slash or divide symbol
Left parenthesis
Right parenthesis
Comma
Point or period
Single quotation mark
or apostrophe

Percent symbol
Semicolon
Colon
"Not" symbol
" And" symbol
"Or" symbol
"Greater than" symbol
"Less than" symbol
Break character1
Question mark

+

*
/
(
)

%

,
&

I
>
<

?

Special characters are combined t;o
create other symbols. For I:?xample, <=:
means "less than or equal to,~ ,- means
"not equal to." '1'he combination ** denote::;
exponentiation (X**2 means X 2). Blanks arE~
not permitted in such compo!3ite symbols.

An alphameric characte,r i:3 either an
alphabetic character or a digit, but not a
special character.

Note: The question mark, at present, ha::::;
no spec if ic use in the lanquage, eVE!n
though it is included in -the 60-charactE!I.­
set. The percent symbol has no meaning in
the PL/I subset, although it does have
meaning in the fullset.

48-CHARACTER SET

The 48-character set is composed of 48
characters of the 60-character set. In all
but five cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the semicolon (;> is not

1The break character is the same as the
typewr~ter underline character. It can be
used with a name, such as GROSS PAY, to
improve readability. -

included in the 48-character set, but a
comma followed by a point (,.), with no
blanks intervening, can be used to rep­
resent it. The five characters that are
not duplicated are the commercial "at"
sign, the number sign, the break character,
the question mark, and the percent symbol.

The restrictions and changes for this
character set are described in Part II,
Section B, "Character Sets with EBCDIC and
Card-Punch Codes."

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I char­
acter sets. There are two exceptions:
character-string constants and comments rr~y
contain any character permitted by a parti­
cular machine configuration.

Certain characters perform specific
functions in a PL/I program. For example,
many characters perform as operators.

There are
arithmEtic,
string.

four types of operators:
comparison, bit-string, and

The ar :i.:.:!:J:!!!!~i i c operators are:

+ denoting addition or prefix plus
denoting subtraction or prefix

minus

* denoting mUltiplication
/ denoting division

** denoting exponentiation

The ~2!~Ei§.on operators are:

> denoting "greater than"
,> denoting "not greater than"
>=:: denoting "greater than or

equal to"
denoting "equal to" , ::: denoting "not equal to"

<------ denoting "less than or equal to"
< denoting "less than"
,< denoting "not less than"

The bii-si:ring operators are:

, denoting "not"
& denoting "and"
I denoting "or"

The strin~I operator is:
I' denoting concatenation

Table 2-1 shows some of the functions of
other special characters:

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
observe the syntactic rules for creating an
identifier.

An identifier is a single alphabetic
character-or-a-5tring of up to 31 alphamer­
ic and break characters, not contained in a
comment or constant, and preceded and fol­
lowed by a blank or some other delimiter;
the initial character of the string must be
alphabetic.

Language keywords also are identifiers.
A keyword is an identifier that, when used
in proper context, has a specific meaning
to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For
example, READ" DECIMAL" and ENDFILE are
keywords. A complete list of keywords and
their use is contained in Part II, section
C, "Keywords ,. "

Note: Mosi: PL/I keywords are not reserved
words.. They are recognized as keywords by
the compile]~ only when they appear in their
proper contE~xt. In other contexts they may
be used as programmer-defined identifiers.
(Those keywords that are reserved are given
in Chapter 7,,"Recognition of Names.")

Chapter 2: Program Elements 17

Table 2-1. Some Functions of Special Characters
r---~-------------1

I ~~~~ Char~~ter Q~~ I
I co.nma separates elements of a list I
I i
I period Indicates decimal point or binary point; connects elements ofl
I a qualified name I
I I
I semicolon TerminatE~:3 stcltements I
I I
I assignment Indicates assignmen·t of values 1 I
I symbol I
I I
I colon Connects prefixes to statements I
I I
I blank Separate!:; elements of a statement I
I I
I :single Encloses !3tring constants and picture specifica1:ions I
I qaotation I
I mark l
I l
I paJ:-entheses () Enclose ~_ists; specify information associated with various I
I keywords~ in conjunction with operators and operands, delimitl
I portions of a computational expression I
~---~ ----------i
1 1 The character = can be used as an equal sign and as an assignment symbol. I
l _______________ . __ . ___________ . _______________ J

No identif ier can E~xceed 31 characters
in length. For the D-Compiler A' some iden­
tifiers, as discussed in late):- chapters,
cannot exceed six characters in length;
this limitation is placed upon certain
names~ called external names, that. may be
referred to by the opE~ra ting sy~,tem or by
more than one separately compiled proce­
dure.

Examples of identifiers that cDuld be
used for names or labels:

A

FILE2

LOOP 3

RATE OF PAY

#32

The Use of Blanks

Blanks may
PL/I program.
operators and
general, any
wherever one
between words

be used freely th~oughout a
They mayor may not surround

most other delimiters. In
number of blanks may appear

blank is allowed, such as
in a statement~.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However~ identifiers" constants
(except character-string constants) and
composite operators (for example~ ,=) can­
not contain blanks.

Other cases that require or permi-t
blanks are noted in the text where the
feature of the language is discussed. See
Figure 2-1 for examples.

r---,
I AB+BC is equivalen-:. to AB + BC I
I I
I TABLE (10) is equivalen1: to TABLE (10) I
I II
I FIRST, SECOND is equivalent to FIRST# SECOND ~

I II
IA1'OB is not equivalent to A TO B II L ______________________ . __________________________ . ____________________________ . ___ . __________ .J

Figure 2-1. Examples of the Use of Blanks

18

Commc:mts are permitted wherever blanks
are allowed in a program, except within
data items~ such as a character-string
constan't:. A comment is treated as a blank
and can therefore be used in place of a
required separating blank. comments do not
otherwise affect execution of a program:
they are used only for documentation pur­
poses. comments may be punched into the
same cards as statements~ either inserted
between statements or in the middle of
them.

The qeneral format of a comment is:

/* character-string

The character pair /* indicates the
beginning of a comment. The same charact€~r
pair reversed~ */~ indicates its end. No
blanks or other characters can separate the
two characters of either pair: the slash
and the asterisk must be immediately adja­
cent. The comment itself may contain any
characters except the */ combination" which
would be interpreted as terminating the
comment.

Example:

/* ,]~HIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Any characters permitted for a particu­
lar machine configuration may be used in
comment.s.

~A..~!.~--E~RO~RAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
arE~ two types of statements: simple and
compound. These statements make up larg,er
program elements called groups and blocks.

SIlv1.PLE AND COMPOUND STATEMENTS

There are three types of simple state­
ments: keyword, assignment, and null, each
of which contains a statement body that is
terminated by a semicolon.

A ~~~Y~Q!:9_~!:atement has a keyword to
indicate the function of the statement; the
statemc:mt body is the remainder of the
statem~:~nt.

The assignment
assignment symbol
keyword .•

statement contains the
(=) and does not have a

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:

GOTO LOOP_3; (GOTO is a keyword; a blank
between GO and TO is optional.
The statement body is LOOP_3;)

A = B + C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement.. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence.,
the compound statement is terminated by
this semicolon. Examples of the two com­
pound statements are:

1.. IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;

2 .•

3.

This example can also be written as
follows:

IF A>B
THEN A=B+C;
ELSE GO TO LOOP 3; -

ON UNDERFLOW GO TO UNFIX;

ON UNDERFLOW;

In example 3. the contained statement is
the null statement represented by a semico­
lon onty; it, indicates that no action is to
be taken when an UNDERFLOW interrupt
occurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
pOint in thE:! program.. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Most statements may have one or more
labels. If more than one is specified.
they may be used interchangeably to refer
to that s1:atement. PROCEDURE and ENTRY
statements must have one and only one
label..

Chapter 2: Program Elements 19

A ~Q!!~i!:.i2~Q!:efi~ specifies whether or
not program interrupts are to result from
the occurrence of the named conditions.
condition names are language keywords, each
of which represents an exceptional condi­
tion that might arise during execution of a
program. Examples are OVERFLOW and SIZE.
The OVERFLOW condition arises when the
exponent of a floating-point number excE~eds
the maximum allowed (representing a maximum
value of about 1075). The SIZE c:mdit:ion
arises when a value is assigned to a
variable with loss of high-order digits or
bits.

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. If NO is used#
there can be no intervening blank between
the NO and the condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. Only
one condition prefix may be attached to a
statement, and the parenthesized list must
be followed by a colon. A condition prefix
precedes the entire statement, including
any possible label prefixes for the state­
ment ..

Example:

(SI ZE, NOOVERFI .. OW) : COMPUTE: A = B * C * * D i

The condition prefix indicates that an
interrupt is to occur if the SIZE condition
arises durinq execution of the assignment
statement, but that no interrupt is to
occur if the OVERFI,OW condi 1:ion arises.
Note that the condition prefix prec~des the
label prefix COMPUTE.

Si.nce intervening blanks between a
fix and its associated statement
ignored, it is often convenient to
the condition prefix into a separate
that precedes the card into which

20

p.L"e­
are

pU::1ch
card

-the

statement is punched.. Thus, after debu<}­
ging, the prefix can be easily removed.
For example:

(SIZE,NOOVERFLOW):

COMPUTE: A = B * C ** Di

Condition prefixes are discussed in
Chapter 11, "Exceptional Condition Handling
and Program Checkout."

GROUPS AND BLOCKS

A group is a sequence of statement:s
headed by a DO statement and terminated by
a corresponding END statement. It is used
for control purposes. A group also may be
called a DO-group.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for
control purposes.. A program may consist of
one or more blocks. Every sta1:ement must
appear within a block. Thel:-e are two kinds
of blocks: begin blocks and procedure
Qlocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be containE~d vii thin some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block must be invoked by E~xecution of a
statement in another block. The first
procedure in a program to be executed
(sometimes called the main or initial
procedure) is invoked auton;atically by the
operating system. For System/360 implemen­
tations, this first procedure must be iden­
tified by specifying OPTIONS (MAIN) in the
PROCEDURE statement.

Data is generally defined as a represen­
tat:ion of information or of value.

In PLI'I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
val ue t:ha1: may change during execution of a
program.

A constant (which is not a symbolic
name) tlas-a-value that cannot change .•

The following statement has both vari­
ables and constants:

AREA = RADIUS**2*3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
th4~ computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus., the above statement could
be wri1::ten as:

PI = 3.1416;

AREA = RADIUS**2*PI;

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program., the pro­
grammer must be familiar with the types of
data that are permitted, the ways in which
data can be organized, and the methods by
which data can be referred to. The follow­
ing paragraphs discuss these features.

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
~!QQ!.~!n data is used to represent values to
be! procE!ssed by a program.. It consists of
the arithmetic and string data types.

CHAPTER 3: DATA ELEMENTS

Program control data is used by the pro­
grammer to control the execution of his
program. Statement labels and pOinters are
the types of program control data.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name ..
Since these characteristics, called attri­
butes, must be known, certain keywords and
expressions may be used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe
each data type are discussed briefly in
this chapter. A complete discussion of
each attribute appears in Part II, Section
I, "Attribut:es."

PROBLEM DATl~

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale, and
precision. The characteristics of data
items represented by an arithmetic variable
are specified by attributes declared for
the name., OJr assumed by default.

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
decimal fixed-point data item is a number
in which the position of the decimal point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A binary fixed-point data item
cannot., in .general., contain a binary point;
a binary point is assumed to be at the
right of ·the rightmost digit in the item.
(The D-compiler does not allow the specifi­
cation of a scale factor for fixed-point

Chapter 3: Data Elements 21

binary items; however. certain mathE~matical
operations involving fixed-point binary
operands maintain an actual binary point
e.g., fixed-point binary division -- so
that fractional binary digits can occur in
the result of such an operation. These
exceptions arE' discussed in Chapter 4,
".Expressions ...)

l\ floating-point data i tern is c. number
tollowed by an optionally signed inte';Jer
exponent. The exponent specifiE~s the
assumed position of the decimal or binary
point, relative to the position in which it
appee~rs .

The EF~~!~iQ~ of an arithmetic data item
is the number of diqits the data item can
conte in, in the case of fixed-point, or the
minimum number of siqnificant digits
(excluding the exponent) to be mai~tained,
in tt.e case of floating-point. For decimal
fixe~-point data items, precision can also
specify the assumed position of the decimal
point, relative to the rightmost jigit of
the number.

Base and scale of arithmetic variables
are specified by keywords; precision is
specified by parenthesized decimal inteqer
constants.

Whenever a data item is assigned to a
fixed-point variable, the prE:?cision
declared for that variable is maintained.
The assigned item is aligned on the decimal
or assumed binary point of the variable.
Leading zeros are inserted if the assigned
Q~f.!.!!lal_Q~Qi~~f.Y item contains fewer ini:e­
ger digits than declared; trailinq zel~OS
are inserted if an assigned geci!!!?l it:em
contains fewer fractional digits than
declared. A SIZE error may occur if the
assigned item contains too many integer
diqits; truncation on the right may occur
if it contains too many fractional digits.
Note that since the value represente:i by a
binary fixed-point variable can have no
fractional digits, any fractional digits
contained in a binary fixed-point item
assigned to such a variable are always
truncated; thus 1 a binary fixed-point vari­
able always represents an integer value.

[n the following sections, the ar i thmE~t­
ic data types discussl2d are decimal fixE'd­
point, sterling fixed-point, binary fixed­
point, decimal floating-point, and binary
floating-point.

A ~:1e~~l!!~!._!.ixed-E2i~1t constant
of one or more decimal digits
optional decimal point. If no

22

consists
'vi th an
decimal

point appears, the point is assumed to be
immediately to the right of thE~ rightmost
digit. In most uses, a sign may optionally
precede a decimal fixed-point constant.

Examples of decimal fixed-point con­
stants as wr i t ten in a program e,re:

1.1416

455.3

732

003

5280

.0012

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
unsigned decimal integer constants,
separated by a comma and enclosed in paren·­
theses. The first specifies the total
number of digits; the second, the scale
factor, specifies the number of digits to
the right of the decimal point. If the
variable is to represent integers, the
scale factor and its preceding comma can be
omitted. The attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FIXED.

Following are examples of declarations
of decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4):

DECLARE B FIXED (6,0) DECIM~L;

The first DECLARE statement specifies thai:
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed­
point anQ aligned on the decimal point.
'rhe second DECLARE statement specifies that:
B is to represent integers of no more than
6 digits. Note that the comma and the zero
are unnecessary; it could have been
specif ied B FIXED (6) DECIMAl ••

The maximum number of de·cimal digits
allowed for System/360 implementations is
15. Default precision, assumed when no
specification is made, is (5~O). The
i.nternal coded arithmetic form of decimal
fixed-point data is packed decimal.. Packed
decimal is stored two digits to the byte,
~lIfith a sign indicat.ion in thE~ rightmost.
four bits of the rightmost by1:e. Conse­
quently, a decimal fixed-point data item is
always stored as an odd number of digits,
even though the declaration of the variable-

may specify the number of digits (p) as an
even number. Any such extra digit is in
the high-order position# and it parti­
cipates in any operations performed upon
the data item. such as in a comparison
operation. (Note that any arithmetic over­
flow into such an extra high-order digit
position can be detected only if the SIZE
condition is enabled.)

PL/I has a facility for handling con­
stants stated in terms of sterling currency
value. The data may be written in a
proqram with pounds, shillings, and pence
fields, each separated by a period. Such
data is converted and maintained internally
as a decimal fixed-point number represent­
ing the equivalent in pence. A sterling
data constant ends with the letter L#
representing the pounds symbol. All three
fields (pounds# shillings# and pence) must
be present in a sterling constant. Note
tha"t the:! pence field is one or more decimal
digits with an optional decimal point (the
integral part must be less than 12 and must
contain at least one digit}--see the third
example below.

Examples of sterling fixed-point con­
stants as written in a program are:

101.13.8L

1.10.0L

0.O.2.SL

2.!~~.6L

The third example represents twopence'­
halfpenny. The last example represents t'IN'O
pounds# four shillings, and six pence. It
is converted and stored internally as 534
(pence).

There are no keyword attributes for
declaring sterling variables, but a vari­
able can be declared with a sterling
picture I' or sterling values may be
expressed in pence as decimal fixed-point
data. The precision of a sterling constant
is the precision of its value expressed in
pence .•

~ binary fixed-point constant consists
of one or more binary digits, followed

immediately by the letter B, with no inter­
vening blank~ It cannot contain a binary
point; a point is always assumed to follow
the rightmost: binary digit. In most uses,
a sign may optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B

lllllB

101B

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by a decimal
integer, enclosed in parentheses, to rep­
resent the I~ximum number of binary digits
that the variable can contain. A binary
fixed-point variable always represents an
integer. The attributes can appear in any
order# but the precision specification must
follow eitheJ::" BINARY or FIXED.

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20);

FACTOR is declared to be a
can represent arithmetic
large as 20 binary digits.

variable that
data items as

The maximum number of binary digits
allowed for System/360 implementations is
31. The default precision for the D­
Compiler is (15). The internal coded
arithmetic form of binary fixed-point data
is a fixed-point binary full word. A full
word is 31 bits plus a sign bit. Any
binary fixed-point data item is always
stored a.s 31 digits, even though the dec­
laration of the variable may specify fewer
dig its. Thle dec lared n umbe r of dig i ts ar e
considered to be in the low-order posi­
tions, but the extra high-order digits
participate in any operations performed
upon the da"ta item. (Note that any arith­
metic overflow into such extra high-order
digit positions can be detected only if the
SIZE condition is enabled.)

An identifier for which no declaratIon
is made is assumed to be a binary fixed­
point variable, with default precision, if
its first letter is any of the letters I
through N.

Decimal Floa,tinq-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an

Chapter 3: Data Elements 23

optionally signed decimal integer exponent
that specifies a power of ten. The first
field of digits may contain a decimal
point. The entire constant may be preceded
by a plus or minus sign. Examples of
decimal floating-point constants as written
in a program are:

15E-23

15E23

4E-3

48333£65

438EO

3141593E-6

.003141593E3

The last two examples represent the !:;ame
ValU'2.

T~e keyword attributes for d~claring

dE~cilTIal floating-point variables are DECI­
MAL a.nd FLOAT. Precision is stated by a
decimal integer constant enclosed il paren­
Lht:~ses. It sppcif ies the minimum Il1mber of
significant diqits to be maintained. If an
i tf~m assigned to a variable ha!:; afield
wid·th larger than the declared precision. of
the variable. truncation may occur on the
riqh~. The least significant digi~ is the
firs~ that is lost. Attributes may appear
in any order" but the precision ::>pecifi­
ca'Lion must tallow DECIMAL or FLOAT.

following if; an example of decLaration
of a. decimal floating--point variable:

DECLARE LIGHT YEARS DECIHAL FLOAT(5);

This stdtement~ specifies that LIGHT YEARS
i~3 to represent~ decimal f loatinq-po .. nt data
it.",·m~3 with an accuracy of at lec!:;t five
Hign~ficant digits.

The maximum precision allowt::-d for deci­
mal f loatinq-·point data i terrl~; for
~iystem/3bO implementations is (1(); the
exponent cannot. exceed two digits. A value
ranq{~ of approximately 10- 78 to 1 0 7 ~; can be
expressed by a decimal f loatinq--point data
i t.E"m. , Default precision is (6) . The
internal coded arithmetic form of decimal
(lcdi:ing-point data is normalizt::-d hexadeci­
fIlal floating-point. with the point assumed
+:'0 the left of the first hexadecimal digit.
If t.he declared precision is less than or
f'~qlJaJ. to (6). short floating-point form is
nsed; if the declared precision is greater
than (6), long floating-point form is used.

l\r. identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first. letter

)4

is any of the letters A through H. 0
through Z, or one of the alphabetic exten­
ders., $, #, @.

Binary Floating-Point Data

A binary floating-point constant con­
sists of a field of binary digits followed
by the letter E, followed by an optionally
Signed decimal integer exponent followed by
the letter B. The exponent is a string of
decimal digits and specifies an integral
power of two. The field of binary digits
may contain a binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B

101.101E2B

11101E-28B

The keyword attributes fOT declaring
binary floating-point variables are BINAHY
and FLOAT. Precision is expressed as a
decimal integer constan"t, ·::!nclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT. Following is an
example of declaration of a binary
floating-point variable:

DECLARE S BINARY FLOAT (16);

This specifies that t~he identifier S is t.o
represent binary floating-poini: data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for Systern/360
implementations is (53); default precision
is (21). The exponent cannot exceed three
decimal digits. A value range of approxi­
mately 2_ 260 to 2 252 can be expressed by a
binary floating-point data item.. The
internal coded arithmetic form of binary
floating-point data is normalized hexadeci­
mal floating-point. If the declared preci­
sion is less than or equal to (21), short
floating-point form is used; if the
declared precision is greater than (21),
long floating-point form is used.

A numeric character data item (also
known as a numeric field data item) is the
value of a variable that has been declared
with the PICTURE attribute and a numeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification des­
cribes a string of characters to which only
data that has an arithmetic value is to be
assigned. A numeric picture specification
cannot contain the picture character X,
which is used only for non-numeric pic­
tures. The basic form of a numeric picture
specification is one or more occurrences of
the picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single quotation marks. For
example:

'999V99'

This nwneric picture specification des­
cribes a data item consisting of up to five
decimal digits in character form, with a
decimal point assumed to precede the right­
most. two digits.

Hepet:i tion factors may be used in numer-­
ic picture specifications. A repetition
factor is a decimal integer constant,
enclosed in parentheses, that indicates the
number of repetitions of the immediately
following picture character. For example,
the following picture specification would
result in the same description as the
example shown above:

, (])9V(2)9'

The format for declaring a numeric char-­
acter variable is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:

DECLARE PRICE PICTURE '999V99';

This specifies that any value assigned to
PRICE is to be maintained as a string of
f i VE~ decimal dig its r with an assumed deci-­
mal point preceding the rightmost two
digits. Data assigned to PRICE will be
aligned on the assumed point in the same
way that: point alignment is maintained for
fixed-point decimal data.

The numeric picture specification can
specify all of the arithmetic attributes of

data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be represent­
ed by picture characters.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. In System/360 implementa­
tions, numeric character data is stored in
zoned decimal format; before it can be used
in arithmetic computations, it must be
converted eit;her to packed decimal or to
hexadecimal floating-point format. Such
conversions arE done automatically, but
they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be spec­
ified for insertion into a numeric charac­
ter data item, and such characters are
actually stored within the data item. Con­
sequently, when the data item is assigned
to a character string, the editing charac­
ters are included in the assignment. 1£,
however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.
(Note that character-string data cannot be
assigned to numeric character variables.)

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6) ,
VALUE FIXED DECIMAL(6,2);

PRICE = 12.28;

COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE
and COST can be considered identical. If
they were assigned to character strings,
which were then printed, they would look
exactly the same.. They do not, however,
always function the same. For example:

Chapter 3: Data Elements 25

VALUE = PRICE;

COST = PRICE;

VALUE COST;

PRICE COST;

/l,fter the first two assiqnment state­
ments are executed, the value of VALUE
would be 001228 (with an assumed decimal
poiLt before the last two digits) and the
value of COST would be '$12.28'. In the
assignment of PRICE to VALUE, the currency
symbol an:l the decimal pOint are considered
to be editing characters, and they are not
part of the assignment; the arithmetic
value of PRICE is converted to internal
coded arithmetic form. In the assignment
of PRICE to COST, however, the assign:nent
is to a character string, and the editing
characters of a numeric picture specifi­
cation always participate in such an
assignment.

The third and fourth assignment state­
ments are invalid. The value of COST
cannot be assigned to VALUE bE'causie a
character string cannot be converted to
coded arithmetic. The value of COST cannot
be assigned to PRICE because a character
string cannot be converted to numeric c~ar­
act.er.

Other editing characters, incluiing zero
suppression characters, drifting charac­
ters, and insertion characters, can be ~sed
in numeric picture specifications. For
complete discussions of picture characters,
see Part II, Section D, "Picture Specifi­
cation Characters" and the discussion of
the PICTURE attribute in Part II, Section
Iw "Attributes."

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of charaC1:ers
(or binary digits) it contains.

There are two types of strings: charac­
ter strings and bit strings.

A character string can include any
digit, letter, or special character recog­
nized as a character by the particular

26

machine configuration. Any blank included
in a character string is considered an
integral character of the data item and is
included in the count of length,. A comment
that is inserted within a character string
will not be recognized as a comment. The
comment" as well as the comment delimiters
(/* and */), will be considered to be part
of the character-string dat:a ..

Character-string constants,. when written
in a program, must be enclo~ied in single
quotation marks. If a single quotation
mark is a character in a string~ it must be
written as two single quot:ation marks with
no intervening blank. The length of a
character string is the number of charac­
ters between the enclosing quot:ation marks.
If two single quotation marks are used
within the string to represent a single
quotation mark" they are counted as a
single character.

Examples of character--string constants
are:

'LOGARITHM TABLE'

'PAGE 5'

, SHAKESPEARE' 's "" H1\,MLE'l' " " " ,

'AC438-19'

(2)'WALLA '

The third example actually indicates
SHAKESPEARE'S "HAMLET" with a length of 24.
In the last example, the parenthesized
number is a repetition factol: which indi­
cates repetition of the cha:racters that
follow. ThiS example specifies the actual
constant 'WALLA WALLA' (thE~ blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant.
enclosed in parentheses.

The keyword attribute for declaring a
character-string variable is CHARAC'l'ER.
Length is declared by a decimal integer
constant, enclosed in parentheses, which
specifies the number of characters in the
string. The length specification must fol­
low the keyword CHARACTER. For example:

DECLARE NAME CHARACTER(15);

This DECLARE statement specifies that the
identifier NAME is to represent character­
string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the
right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (~ote: If such
truncation occurs, no interrupt will result

as it might for truncation of arithmetic
data; there is no ON-condition in PL/I to
deal wit~.h string truncation.)

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
occupies one oyte of storage. The maximum
length allowed by the D-Compiler for vari­
ables declared with the CHARACTER attribute
is 255. The maximum length allowed for a
character-string constant after application
of repetition factors is also 255. The
minimum length in either case is one.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE 'character-picture-specification'

The character picture specification is a
string composed entirely of the picture
specification character X. The string of X
picture characters must be enclosed in
single quotation marks. The character X
specifies that any character may appear in
the corresponding position in the field.
For example:

DECLARE PART_NO PICTURE 'XXXXXXXXXX';

This DI!:CLARE statement specifies that the
identifier PART NO will represent
character-string da~a items consisting of
any ten characters.

Repetition factors are used in picture
specifications differently from the way
they a.J:-e used in string constants. ThE!y
must be placed inside the quotation marks.
The repetition factor specifies repetition
of the immediately following picture char­
acter. For example, the above picture
specification could be written:

, (lO)X'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as dis­
cussed above.

A bit-string constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

Examples of bit-string constants as
written in a program are:

'l'B

'111ll010ll000l'B

(64)' 0'13

The parenthesized number in the last exam­
ple is a repetition factor which specifies
that the following series of digits is to
be repeated the specified number of times.
The repetition factor must be an unsigned
decimal integer constant enclosed in paren­
theses. The example shown would result in
a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length is spec­
ified by a decimal integer constant,
enclosed in parentheses, to specify the
number of binary digits in the string. The
letter B is not included in the length
specification since it is not an actual
part of the string. The length specifi­
cation must follow the keyword BIT. Fol­
lowing is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter# padding,
on the right, is with zeros.

With System/360 implementations, bit
strings are stored eight bits to a byte,
and each string is aligned on a byte
boundary. The maximum length allowed for a
bit-string variable with the D-Compiler is
64. The maximum length allowed for a
bit-string constant after application of
repetition factors is also 64. The minimum
length in either case is one.

PROGRAM CONTROL DATA

The types of program control data are
label and pointer.

LABEL DATA

Label data is a type of program control
data. A label data item is a label con­
stant or the value of a label variable.

A label constant is an identifier writ­
ten as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

Chapter 3: Data Elements 27

ABCDE: DISTANCE = RATE*TIME;

In this example, ABCDE is the statement
label. The statement can be executed eith­
er ny normal sequential execui:ion of
instJ::-uctions or by transferring coni:rol to
this statement from some other poini: in the
prog:::-am by means of a GO TO statem€'nt.

A:> used above, ABCDE can be classified
further as a statement:-Iabel const.ant,. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

LBL A: ~;tatement;

LBL B: ~;tatement;

LBL X

GO TO LBL X;

LBL 1~ and LBL B arE~ statement-laI)el con­
stants because ~hey are prefixed to state­
ments. LBL X is a statement--latel vari­
able" By assigning LBL_A to LBL __ X, the
statement GO '1'0 LBL X causes a transfer to
the LBL_A statement. Elsewhere, the pro­
gram may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL X would be the same as a reference to
LBL B. This value of LBL X is retained
unti: another value is assigned to it.

A statement~-label variable rr.ust be
declared with the LABEL attribute, as fol­
lows::

DECLARE LBL X LABEL;

POIW~ER DATA

Pointer data is a type of program con­
trol data. A pointer data item is the
value of a pointer variable; it cannot be
written as a constant.

A pointer variable is the name of a
poini:er and is used in connection with
variables of t.he basE~d storage cla~;s. The
value of a pointer variable is, in effect,
an address of data in storage.

The keyword attribute for declaring
pointer variables is POINTER. For informa-

28

tion on the use of pointer variables. see
Chapter 8, n Input and Output:, n and Chapter
12, "Based Variables and Pointer
Variables."

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element: variable (also
called a scalar variable). A variable that
represents a collection of data elements is
either an array variable or a structur.§.
~~riable.

Any type of data -- arithmetic, string,
label, or pointer -- can be collected into
arrays or structures.

ARRAYS

Data elements having the same charac­
teristics. that is, of the same data type
and of the same precision o]~ length, may be
grouped together to form an array. An
array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array its~Lf is given
a name. An individual item of an array is
referred to by giving its relative positiOon
within the array.

consider the following t'lllO dE~clarations:

DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared tOo
be a one-dimensional array of eight ele­
ments, each of which 1S a fixed-point
decimal item of three digits. In the
second example, TABLE is declarE~d to be a
two-dimensional a.rray, also of Edght fixed­
point decimal elements.

The parenthesized numbE~r or numbers
following the array name in a DECLARE
statement is the ~imensio~~tribute speci­
fication. It must follow the array name,
with or without an interveninsr blank. It
specif ies the number of dim€msions of ·the
array and the bound, or extent, of each
dimension. Since only one bound specifi­
cation appears for LIST, it is a one­
dimensional array. Two bound specifi­
cations, separated by a corruna, are listed
for TABLE; consequently, it is declared to
be a two-dimensional array.

The bound of a dimension is the end of
that: dImension; the beginning of a
dimension is always assumed to be 1. Thl=
extent of a dimension is the number of
intE~ger~i between, and including, 1 and the
specified Emd. Thus, the terms bound and
extent, while conceptually different"; have
the-same value in the PL/I subset.. For
example, i:he one dimension of LIST has a
bound of 8 II and hence, its extent is 8 .•
The two dimensions of TABLE have bounds of
4 and 2; the extents are also 4 and 2.

~:'he bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data.
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

LIST (2)

LIST (3)

Element
2-0--

5

10

LIST (4) 30

LIST (5) 630

LIST (6) 150

LIST (7) 310

LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized sub­
script following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. A subscripted name, such as
LIST(4)~ refers to a single element and is
an element variable. The entire array can
be referred to by the unsubscripted name of
the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and th1e
dimension attribute specification. The
latter. which appears in a declaration.
specifies the dimensionality and the number
of elements in an array. Subscripts are
used in other references to identify speci­
fic elements within the array ..

l\ssume that the same data were assigned
to TABIJlE, which is declared as a two-­
dimE~nsional array. TABLE can be illus-­
trat.ed as a matrix of four rows and two
columns. as follows:

TABLE(m,n) (mLll ~
(l,n) 20 5

(2, n) 10 30

(3, n) 630 150

(4,n) 310 70

An element. of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the rightmost
subscript varying most rapidly. For exam­
ple, assignment to TABLE would be to
TABLE(l,l), TABLE(1,2), TABLE(2,1),
TABLE(2,2) and so forth.

Arrays a:r"e not limited to two dimen­
sions. The PL/I D-compiler allows a maxi­
mum of three dimensions to be declared for
an array. In a reference to an element of
any array, a subscripted name must contain
as many subscripts as there are dimensions
in the array.

Examples of arrays in this section have
shown arrays of arithmetic data.. Other
data types may be collected into arrays.
string arrays, either character or bit, are
valid, as are arrays of statement labels
and arrays of pointers.

Expressions as Subscri2!:.§.

The subscripts of a subscripted name
need not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an expres­
sion does not yield an integer value, the
fractional portion is ignored. For
System/360 implementations, the integer
value is converted. if necessary, to a
fixed-point binary number of precision
(15,0), since subscripts are maintained
internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, ~, and K.

Note that although a subscript can be an
expression, each bound of a dimension

Chapter 3: Data Elements 29

attribute declaration must be an unsigned
decimal integer constant. Also note that
the value of a subscript must lie within
the extent of the corresponding dimension;
otherwise, it is an error.

STlnJCTURES

Data items that need not have identical
characteristics, but that possess Cl logical
rE:lc~tionship to one another, can be grouped
into aggregates called structm:-es.

r.ike an array, the entire structu.re is
given a name that can be used to refer to
the entire collect.ion of data. Unlike an
array, however, each element of a structure
also has a name.

p, .§.!:!:.~~!:.~r.~ is a hierarchical collection
ot: names. At the bottom of t.he hierarchy
is c. collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is thE st.r:-uc­
ture name, which represents the entire
collection of element.s. For example, the
following is a collection of elem~nt vari­
ables that might be used to comput·2 a
weekly payroll:

LAST NAME
FIRST NAME
REGULAR HOURS
OVERTlME_.HOURS
REGULAR RATE
OVERTIME RATE

'these variables could be collected into
a structure and given a single Etructure
namE', PAYROLL, which would refEr:- to thE~
entire collection.

PAYROLL

LAST NA£I.:lE REGULAR HOURS REGULAR RATE

FIRST NAME OVERTIME HOURS OVERT IME __ RATE

Any reference to PAYROLL would be a
reference to all of the element v3riables.
F'or example:

GET EDIT (PAYROLL) (format-list);

This input statement could caus'e data to
be assigned to each of the element vari­
ables of the structure PAYROLL.

It otten is convenient to subdivide the
~ntire collection into smaller logical col­
lc·ctions. In the above examples, LAST_NAME
and FIRST_NAME might make a logical subcol­
l.ection, as might REGULAF'._HOUH.S and
OVERTIME HOURS, as well as REGULAR RATE and

OVERTIME RATE. In a struct:ure. such sub­
collecti~ns also are given names.

NAME

FIRST
LAST

PAYROLL

HOURS

REGULAR
OVERTIME

HATE

HEGULAR
OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the major structure
name; at a deeper level are the minor
structure names; and at the deepest level
are the elementary names. An elementary
name in a structure can represE~nt an array.
in which case it is not an element vari­
able, but an array variable.

The organization of a st~ruct~ure is spec­
ified in a DECLAH.E statemEmt through the
use of level numbers. J\ ma:ior structure
name must be declared with the level number
1. Minor structures and E~lemEmtary names
must be declared with level numbers arith­
metically greater than 1; tbey must be
decimal integer constants;. A blank must
separate the level number and its associat­
ed name.

For example, the items
payroll could be declared as

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 HATE,
3 REGULAR,
3 OVERTIME;

of a weekly
follows:

Note: In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names.
The pattern of indention in this example is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures N~8,
HOURS, and RATE. Zach miner structu:re
contains two elementary names. A program­
mer can refer to the entire structure by
the name PAYROLL, or he can refer 1to
portions of the structure by referring to
the minor structure names. He can refer to
an element of the structure by referring to
an elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper

levels need not be the immediately succeed­
ing integers. They are used merely to
specify the relative level of a name. A
minor structure at level n contains all the
names w'i ttl level numbers greater than !!
that lie between that minor structure name
and the next name with a level number less
than or equal to~. A major structure
description is terminated by the declara­
tion of another item with a level number 1
(i.e., another major structure), by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement. PAYROLL might have been
declared as follows:

DECI.ARE 1 PAYROLL, 4 NAME, 5 LAST, 5 FIRST.,
:2 HOURS, 6 REGULAR, 5 OVERTIME,
2 RATE, 3 REGULAR, 3 OVERTIME;

This declaration would result in exactly
the sarr~ structuring as the previous dec­
laration.

Level numbers are specified with struc­
ture names only in DECLARE statements. In
references to the structure or its ele­
ments, no level numbers are used. Only
structures can be declared with level num­
bers; a level number cannot be declared
with any other identifier.

A minor structure or a structure element
can be referred to by the minor structure
namE~ OI' the elementary name alone if therE::
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
be ambig'uous without some qualification to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A SU:!alified nam~
is an elementary name or a minor structure
namE~ tha.t is made unique by qualifying it.
with one or more names at a higher level.
In t:he PAYROLL example, REGULAR and OVER-­
TIME could be made unique through use of
the qualified names HOURS.REGULAR# HOURS.
OVERTIME, RATE. REGULAR, and RATE. OVERTIME,.

The different names of a qualified name
are connected by periods. Blanks mayor
may not~ appear surrounding the period ..
Qualification is in the order of levels;
that: is, the name at the highest level musit
appear first# with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL. HOURS. REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK. HOURS. REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL. LAST is a valid reference to the
name PAYROLL. NAME. LAST.

ARRAYS OF STRUCTURES

Arrays of structures are not supported
by the D-Compiler; however, simulation of
arrays of structures is possible. The
publication IBM System/360 Disk and Tape
Operating Systems, PL/I Programmer's Guide,
Form C24-9005, offers some techniques for
this simulation.

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DECIMAL are discussed
briefly in the preceding sections of this
chapter. Other attributes that are not
peculiar to one data type may also be
applicable. A complete discussion of these
attributes is contained in Part II, Section
I, "Attributes." Some that are especially
applicable to a discussion of data type and
data organization are ALIGNED, PACKED, and
DEFINED ..

The ALIGNED and PACKED Attributes

The ALIGNED and PACKED attributes are
used to specify the arrangement in storage
of string or numeric character elements
wi thin struct.ures or arr-ays. If the PACKED
attribute is specified for an array or a
structure, all character string and numeric
character elEments must, whenever possible,
be stored in adjacent character positions.
Bit strings cannot be packed; hence, an
array or structure containing bit-string
elements cannot have the PACKED attribute.
Thus, an array or structure containing bit
strings must explicitly be given the
ALIGNED attribute.

Chapter 3: Data Elements 31

If the ALIGNED attribute is :3peci f ied
for an array or a structure, each bit
string, character string, or numeric char­
acter element must be aligned on a particu­
lar storage boundary, if that aliqnment is
mo:r(? efficient: for program execution.

Packed aggregates can be useful for
overlay defining. (See the discussion of
the DEFINED at:tributE? immediately ::ollcwing
this section.) Aligned aggregates make it
pos:3ible for t:he implementation to speed up
the execution of the program, bu"t. at some
cas·t. in data storage.. Since Systew/360 has
character-handling instructions, ~herE is
no need to align character strin9:3. Furth­
ermore, alignment of character strings or
numl'::ric character fields prohibi t.:3 the use
ot overlay defining and the STRING built-in
function for t~hem.

l\.rrays are assumed to have thE~ ALIGNED
at.tl::-ibute and structures are a.~3sumed to
hav(~ the PACKED attribute, unless t.hey are
declared otherwise.

~he DEFINED attribute specifies that the
named data element, structure, or array is
to refer to the same storage area as that
dss~gned to other data. For examp~e:

DECLARE LIST (100,100),
LIST A 1[100,100) DEFINED LIST;

In the above declaration., LIs'r is a 100 by
100 two-dimensional array. LIST A is an
identical array defined on LIST. The
result is that a reference to an element in
LIST A is the same as a reference to the
corresponding element in LIST. Thus, a
change to an element in LIST_A will be
reflected in the corresponding element of
LIST, and vice versa. This type of defin­
ing is called correspondence d.:?fining.

Another type of defining is called OVE~r­
lay defining. This type 0:E defining speci­
fies that the defined item (the item having
the DEFINED attribute; e.g., LIST A above)
is to refer to all or pa~[t of the storage
occupied by the base identifief (the iden­
tifier following the keywolcd DEFINED; e.9.,
LIST above). For example:

DECLARE 1 P, 2 Q CHARACTER (25),
2 R CHARACTEH (50),

PSTRINGl CHARACTEH (60)
DEFINED J?;

In this example, PSTRINGl is a charact~E~r
string of length 60 defined on the packed
structure P (P has the PAC1<ED attribute by
default>. Since P is packed, the first
character in Q through the la::;;t charact.er
in R can be considered as one string of 75
characters in length. PSTRINGl refers to
the first 60 characters of that string,
that is, the 25 characters of Q effective~ly
concat ena ted with the first. 3~) characte~rs

of R. Note that if P were no~ packed, the
contents of PSTRINGl could not be guara.n­
teed.

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
and/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
2~;~~!i~~~~_:!._ex2~~~si2.!!. The constants and
variables of an operational expression are
called ~~~2g~~~!!~~.

Examples of expressions are:

27

LOSS

A+b

(SQTY-QTY)*SPRICE

Any expression can be classified as an
§:le!!!gnt_._~~E~~ssio!! (also called a scalar
expression), an ~!:.raY_~~Qre~~i2!!, or a
~!~~:!~tu~~~~~E!:.essio!!. An element expres­
sion is one that represents an element
value. An array expression is one that
represents an array value. A structure
expression is one that represents a struc­
ture value,.

Array variables and structure variables
cannot appear in the same expression. Ele­
ment variables and constants, however, can
appear in either array expressions or
structure expressions. An elementary name
within a structure or a subscripted name
that specifies a single element of an array
is an element expression.

Note: If an elementary name of a structure
I;--~iven the dimension attribute, that
elementary name is an array variable and
can appear only in array expressions.

In t:he examples below, assume that th,e
variables have attributes declared as fol­
lows:

DECLARE A(10,10) BINARY FIXED (31),
B(10,10) BINARY FIXED (31),
1 RA']'E, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
1 COST, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (lS);

CHAPTER 4: EXPRESSIONS

Examples of element expressions are:

C * D

A(3,2) + B(4,8)

RATE . PRIMARY - COST . PRIMARY

A(4,4) * C

RATE . SECONDARY / 4

A(4,6) * COST ,. SECONDARY

All of these expressions are element
expressions because each operand is an
element variable or constant (even though
some may be elements of arrays or elementa­
ry names of structures); hence, each
expression represents an element value.

Examples of array expressions are:

A + B

A * C - D

B / lOB

All of these expressions are array expres­
sions because at least one operand of each
is an array variable: hence, each expres­
sion represents an array value. Note that
the third example contains the binary
fixed-point constant lOB.

Examples of structure expressions are:

RATE * COST

RATE / 2

Both of these expressions are structure
expressions because at least one operand of
each is a structure variable: hence, each
expression represents a structure value.

USE OF EXPRESSIONS

Expressions that are single constants or
single variables may appear freely through­
out a program. However, the syntax of many
PL/I statements allows the appearance of
operational expressions, so long as evalua­
tion of the expression yields a valid
value .•

In syntactic
publication,

descriptions used in this
the unqualified term

Chapter 4: Expressions 33

"exp~ession" refers to an element expres­
sion, an array expression, or a structure
expcession. For case:3 in which the kind of
expression is restricted, the type of re­
striction is noted; for example, the term
"element-expression" in a syntactic des­
crip,tion indicates that neither ·;tn array
expression nor a structure expres:3ion is
valid.

t!Q.!:~;" Although operational expressions can
appear in a number of different PL/[state­
ments, their most common occurrences are in
assiqnment statements of the form:

A := B + C;:

'l'h(? assignment statement has no PI~/I key­
word. The assignment symbol (=) i~dicates
that the value of the expression on the
right (E + C) is to be assignej to the
variable on the left (A). For purp~ses of
illustration in this chapter, some examples
of ,expressions are shown in as :;ignrnent
st,at·ements.

An operational expression consists of
one or more single operations. A single
operation is either a 2f:efi~erai:.bon (an
operator preceding a single operanj) or an
infiK oE~ra!:io.!! (an operator bet\l1een two
operands). The two operands of any infix
operation, when the operation is pecformed.
usually must be of the same data 'type, as
specified by the attributes of a variable
or the notation used in writing a c~nstant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary., to a common representat:ion
befoce the operation is performed. General
rules for conversion of different data
types are discussed in the following para­
graphs and in a later section ~f this
chapter, "Concepts of Data Conversion."
Detailed rules for specific cases. includ­
ing cules for computing precision oc length
of converted items, can be found in Part
II f Section F, "Data Conversion."

Data conversion is confined to conver­
sion of problem data. Program control
data, such as statement labels anl poin­
ters, is never converted from one type to
another.

34

Bit-string to Character-String

The bit 1 becomes the character 1; and
the bit 0 becomes the character o.

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the bit 1, and the
character 0 becomes the bit o. The CONVER­
SION condition is raised by an attempt 1:0
convert any character other than 1 or 0 to
a bit.

Character-String to Aritllinetic

Character-string data cannot be converi:-­
ed to coded arithmetic or numeric character
type.. Any attempt to do so is an error.

Arithmetic to Characj:.er-String

Coded arithmetic data cannot be convert­
ed to character string type. A.ny attempt.
to do so is an error. However. numeric
character data can be converted to charac­
ter string. The numeric character field is
interpreted as a character string having
the same characters. The length of the
string is the same as the length specified
in the PICTURE attribute for the numeric
character field.

Bit-string to Coded Arithmetic

A bit string is interpreted as an
unsigned binary integer and is converted to
fixed-point binary of positive value. The
base and scale are further converted~ if
necessary.

The bit string is first converted to
coded arithmetic and then to nu::neric chal:-­
aeter.

~Qg~~~~~~.thmetic to Bit-String

The absolute value is converted, if
necessary, to a fixed-point binary integer.
Ignoring the plus sign, the integer is then
interpreted as a bit string. The length of
the bit string is dependent upon the preci­
sion of 1:~he original unconverted arithmetic
data item.

~!!mg:~i£~~~haracter to Bit String

The numeric character value is converted
to coded arithmetic and then to bit string
as above,.

See WArithmetic to
above.

Character-String"

The precision of the result of an arith­
metic base or scale conversion is dependent
upon the precision of the original arith­
metic data item. The rules are listed in
Part II, Section F, "Data Conversion."

In addition to conversion performed as
the result of an operation in the evalua­
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attributes differ from the
attributes of the item aSSigned. The rules
for such conversion are generally the same
as those discussed above and in Part II,
section P, "Data Conversion."

An operational expression can specify
one or more single operations. The class
of operation is dependent upon the class of
operator specified for the operation.

There are four classes
arithmetic, bit-string,
conca tenation.,

ARITHMETIC OPERATIONS

of operations -­
comparison, and

An arithme1:ic operation is one that is
specified by combining operands with one of
the following operators:

+ * / **
The plus sign and the minus sign can appear
either as prefix operators <associated with
and preceding a single operand, such as +A
or -A} or as infix operators (associated
with and betllieen two operands, such as A +
B or A - B) '. All other arithmetic opera­
tors can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For exam­
ple, in the expression A * -B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
the negative "alue of B.

More than one prefix operator can pre­
cede and be associated with a single varia­
ble. More than one positive prefix opera­
tor will have no cumulative effect, but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value, restoring it to
the original arithmetic value rep­
resented by A.

---A Three minus signs reverse the sign of
the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic opera­
tion may differ in type, base, precision,
and scale. When they differ, conversion
takes place according to rules listed
below. Certain other rules -- as stated

Chapter 4: Expressions 35

below -- may apply in cases of exponentia­
t: ion.

I!~~~ Numeric character field operands
(digits recorded in character form) and
bit-string operands are converted to inter­
nal coded arithmetic type. The result of
an arithmetic operation is always in coded
acithmetic form. Note that type c::mversion
is the only conversion that can take place
in an arithmetic prefix operation ..

BASE: If the bases of the two operands
differ, the decimal operand is conV'ertE~d to
binary.

!C_g~£!SIQ~~ If only precisions differ, no
type conversion is necessary.

§£~~~~ If the scales of the two operands
differ, the fixed-point operand is convert­
(~d to f loatin9-point sca Ie. The exception
to this rule is in the case of exponentia­
tion when the first .operand is of float:ing­
point scale and the second opeJ:-and (the
exponent of the operation) is fiKed-point
with a scale factor of zero, that is, a
fixed-point integer constant or a variable
with precision (p,O). In such a case, no
conversion is necessary, but the result
will be floating-point.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both ooerands are converted to
floating:point if the exponent has a
precision other than (p,O).

2. The first operand is converted to
floating-point unless the exponent is
an unsigned fixed-point integer con­
stant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fiKed-point
exponentiation would exceed the maxi­
mum number of digits allowed for the
implementation (for Syste~(360, 15
decimal digits or 31 binary digits).
Further details and examples of con­
version in exponentiation are included
in the section "Concepts of Data
Conversion" in this chapter.

g~sults of Ar!thmetic Operations

The "result" of an arithmetic operation,
as used in the following text. may refer to
an intermediate result if the operation is
only one of several operations specified in
d single operational expression. Any

36

result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

After required conversions have taken
place, the arithmetic operation is pE~r­
formed. If maximum precision is exceeded
and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fixed­
pOint data, however, high--ord,er digits may
sometimes be lost when scale factors are
such that point alignment does not allow
for the declared number of digits.

The base, scale, and precision of the
result depend upon the opecands and the
operator involved.

For prefix operations, the result has
the same base, scale, and pre=ision as the
converted operand. Note that the result of
-A, where A is a bit string, is an
arithmetic result, since A must first be
converted to coded arithmetic form before
the operation can be performed.

For infix operations, the result depends
upon the scale of the operands in the
following ways:

FLOATING POINT: If the conve:cted operands
of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base of the result is the
common base of the operands. 'rhe precision
of the result is the greater of the preci­
sions of the two operands.

FIXED POINT: If the converted operands of
an infix operation are of fixed-point
scale, the result is of fi]{ed-~?oint scale,
and the base of the result is the common
base of the operands. The precision of a
fixed-point result depends upon operands,
according to the rules listed below.

In the formulas for computi::1g precision,
the symbols used are as follows:

p represents the -total number of
digits of the result

q represents the scale factor of
the result

P1. represents the -total number of
digits of the first operand

q1. represents the scale factor of
the first operand

P2 represents the -total number of
digits of the :second operand

q2 represents the scale factor of
the second operand

ADDITION .A.ND SUBTRACTION: The total number
ofdIgIts--In-theresult Is equal to 1 plus
the number of integer digits of t-he operand
having the greater number of integer digits
plus the number of fractional digits of the
operand having the greater number of frac­
tional digits. The total number of posi­
tions cannot exceed the maximum number of
digits allowed (15 decimal digits, 31
binary digits). The scale factor of the
result is equal to the larger scale factor
of the two operands.

Formulas:

p = 1 + maximum (P1 - q1, P2 - q2)
+ maximum (q1, q2)

q = maximum (q1, q2)

Example:

12354.2385 + 222.11111
B C D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the number of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci­
sion of the result would be (11,5).

~:Q!=,!:!PLI£;~~IQ~.!.. The total number of digits
in the result is equal to one plus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen­
tation (15 decimal, 31 binary). The scale
factor of the result is the sum of the
scale factors of the two operands.

Formulas:

P P1 + P2 + 1

Example:

34':i.432 * 22.45
ABC D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C, and D. The
scale factor of the result would be the sum
of the number of digits in Band D.
Precision of the result would be (11,5).

DIVISION: The total number of digits in
the--qu0tient is equal to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the quo­
tient is dependent upon the number of

integer digits of the dividend (A in the
example below), and the number of fraction­
al digits of -the divisor (D in the example
below). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D.

Formulas:

P 15 decimal, 31 binary

Example:

432.432 / 2
ABC D

The total numb42r of digits in the quotient
would be 15 (the maximum number allowed).
The scale factor would be 15 minus the sum
of 3 CA, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor). Preci­
sion of the quotient would be (15,12).

Note that any change in the number of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, ~ven if all additional digits
are zeros. Also note from the above formu­
las that the Jresult of a fixed-point divi­
sion can have a scale factor greater than
zero even though the operands might have a
scale factor of zero (or no scale factor,
in the case ,,,here the operands are fixed­
point binary variables).

Examples:

00432.432 / 2

432.432 / 2.0000

Precision of the quotient of the first
example would be (15,10); scale factor is
equal to 15-(5+0). Precision of the
quotient of the second example would be
(15,8); scale factor is equal to 15-(3+4).

Caution: In the use of fixed-point divi­
sion operations, care should be taken that
declared precision of variables and appar­
ent precision of constants will not give a
result with a scale factor that can force
the result of subsequent operations to
exceed the maximum number of digits allowed
by the implementation.

EXPONENTIATION:: If the second operand (the
exponent) is ~n unsigned nonzero fixed­
point constant of precision (p,O), the
total number of positions in the result is
equal to one less than the product of a
number that is one greater than the number
of digits in the first operand multiplied
by the value of the second operand (the

Chapter 4: Expressions 37

exponent). The scale factor of the result
is equal to the product of the sc~le factor
of the first. opera.nd multiplied by the
value of the second operand (the exponent).

!:!Q!::~'!' In
x**y, some
follows:

the exponentiation operation
special cases are iefined as

1. If x=O d.nd y>O, the result is o.

2. If x=O dnd y::;O, thE:: ERROR cO:1dition is
raised.

3. If x:to and y=O, the result i3 1.

4. If x<O and y is not fixed-point with
precision (p,O), the ERROR condition
is raisE'~d.

(As pointed out under "Data Conversion in
Arithmetic Operations~" if the exponent is
not an unsigned fixed-point i~teger
constant, or if the total number af digits
of the result would exceed 15 decimal
di~its or 31 binary digits, the first
operand is converted to floating-point
sc~le, and the rules for floating-point
exponentiation apply.)

Formulas:

P «P1 + l)*(value-of-expo~ent»- 1

q q1 *(value-of-exponent)

Example:

32 ** 5

The total number of digits in t3e result
would be 14. This is arrived at by multi­
plying a number equal to one plus the
nunber of diqits in the firs"t oper.-and (1+2)
by the value of the exponent and subtract­
ing one. The scale factor of the result
would be zero (0 * 5, scale factor of the
first operand multiplied by the value of
the exponent).

Ulr-STRING OPERATIONS

A bit-string operation is one that is
::;pecified by combining operands v,.i.th one of
the following operators:

,
The first op~~rator, the "not" symbol, can
be used as a prefix operator only. The
se~ond and third operators, the Wand" sym­
bol and the "or" symbol, can oe used as
infix operators only. The operators have
the same function as in Boolean algebra.

38

Operands of a bit-string operation are,
if necessary., converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal leng"th, the shorter is extended on
the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the length
of the operands (the two operands~ after
conversion, always are the same length).

Bit-string operations are performed on a
bit-by-bit basis. The e:Efec·t of the "not 11

operator is bit reversal; that is, the
result of ,1 is 0; the :result of ,0 is 1.
The result of an "and" opt:=ration is 1 only
if both corresponding bits are 1; in all
other cases~ the result is o. The result
of an "or" operation is 1 if either or both
of the corresponding bits are 1; in all
other cases, the result is O. The follow­
ing table illustrates the result for each
bit position for each of the operators:

r------T------TT-----T---------r-------T------,
I A I B I I , A I , 13 I A&B I A I B I
~------+------++-----+-------+------+-----~
I I II I I I I
I 1 I 1 II 0 I I) I 1 I 1. I
~------+------++-----+-------+------+-----~
I I II I I I I
I 1 I 0 II 0 I 1 I 0 I 1. I
~------+------++-----+--------+------+------~
I I II I I I I
I 0 I 1 II 1 I I) I 0 I 1. I
~------+------++-----+-------+------+-----~
I I II I I I I
I 0 I 0 II 1 I 1 I 0 I (I I l ______ .J. ______ .J..J. _____ .J. _________ l ______ J. ___ . __ J

More than one bit-string operation can
be combinE::d in a single expression t.hat
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111' B, and -:he value of
operand C is '110'B, then

, A yields '101000'B

, C yields 'OOl'B

C & B yields '110000'B

A B yields '111111'B

C B yields '111111'B

A (, C) yields '011111'B

,«,C>I(,B» yields '110111'B

COMP,I\RISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators:

< '1< <= 1 = >= > 1 >

These operators specify "less than," "not
less than," "less than or equal to," "equal
to," "not equal to," "greater than or equal
to," "gx"eater than, II and II not greater
than. II

There are four types of comparisons:

1. ~lg!~~!2!:~if., which involves the compari­
son of signed arithmetic values in
internal coded arithmetic form. If
operands differ in base, scale, or
precision, they are converted accord­
ing to the rules for arithmetic opera­
tions. Numeric character data is con­
verted to coded arithmetic before com­
parison.

2. Character, which involves left-to­
rigirlt~--character-by-character compar­
isons of characters according to the
collating sequence.

3. Bit., which
bIt"'by-bi,t
digits.

involves left-to-right,
comparison of binary

4. Pointer, for which only the operators
---:~~n:d- 1 = are allowed. Both operands
mus't: be valid pointer expressions,
since there is no type conversion of
program control data.

If thE~ operands of a comparison (other'
than pointer) are of different types, the
operand of the lower type is converted to
the type of the operand of the higher type.
The priority of types is (l) internal coded
arithmetic (highest), (2) character string,
(3) bit string. (Character strings cannot
be compared with arithmetic data.)

If operands of a character-string com­
parison, after conversion, are of different
lengths, the shorter operand is extended on
the right with blanks. If operands of a
bit-string comparison are of different~
lengths# the shorter is extended on the
right with zeros.

The result of a comparison operation
always is a bit string of length one; the
value is 'l'B if the relationship is true,
or 'O'B if the relationship is not true.

The most, common occurrences of compari-·
son operations are in the IF statement, of
the following format:

IF A = B

ThEN action-if-true

ELSE action-if-false

The evaluation of the expression A B
yields either 'l'B or 'O'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is execut­
ed.

Comparison operations need not be limit­
ed to IF statements, however. The follow­
ing assignment statement could be valid:

x = A < 13;

In this example, the value 'l'B would be
assigned to X if A is less than B; other­
wise, the value 'O'B would be assigned. In
the same way, the following assignment
statement could be valid:

X = A = H;

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be 'l'B; if A is not equal to B, the
value of X will be 'O'B.

Only the comparison operations of
II equal" and "not equal" are valid for
comparlsons of pointer variable operands.
Comparison op2rations with labels is not
allowed.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

II

It signifies that the operands are to be
joined in such a way that the last charac­
ter or bit of the operand to the left will
immediately precede the first character or
bit of the operand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conversion to string type since concatena­
tion can be performed only upon strings,
either character strings or bit strings.
If both operands are character strings or
it both operands are bit strings, no con­
version takes place. otherwise both oper­
ands are converted to character strings.

The results of concatenation operations
are as follows:

Chapter 4: Expressions 39

g,J~ ___ stri!!g~ a bit string whose length is
equal to the ~;um of t.he lengths of the two
bit-string operands.

Cha~:-acter string: a characte.r string w'hose
l'~;n;Jth-is-equal to the sum of thl~ lengths
of -:.he two character--string operands.

For example, if A has the attributes and
value of the constant '010111'B, II of the
con:3tant '101' B, C of the constan-:. 'XY, Z' ,
and D of the constant. 'AA/BB', thE~;1

AIIB yields '010111101'B

AIIAIIB yields '010111010111101'B

CIID yields ' XY, ZAA/BB'

DIIC yields ., AWBBXY, Z'

811D yields '101AA/BB'

Note that, in the last example, the bit
~i I:.ring '101' B is converted to the characte:r:­
string '101' before the concatE~nation is
p(~r:Eormed. The result is a character:­
string consisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational ex­
pression. Any combination can ,:)e Ulsed.
For example, the expression sh~~n in the
foLlowing assignment statement is valid:

RESULT = A + B < C & D I I E;

E;acil operation wi thin the expre::;sion is
evaluated according to the rule~; for that
ki nel of operation, with neces~;dry data
conversions taking place before t:he opera­
tion is performed.

i\ssume that: the variables giv'~n abOve
are declared as follows:

40

DECLARE RESULT CHARACTER(7),
11,. FIXED DECIMAL (1) ,
B FIXED BINARY (3),
C BIT(2),
D B1'[, (4) ,
E CHA.RACTER (3) ;

• The decimal value of A would be con­
verted to binary base.

• The binary addition would be p'~rformed,
adding A and B.

• The binary result would be compared
with the converted binary value of C.

• The bit-string result of the comparison
would be extended to 'the .Length of t:he
bit string D, and the "and" operation
would be performed.

• The result of the "and" operation, a
bit string of length 4, wO':lld be con­
verted to a character string and conca­
tenated with the character-string E,
giving a length of 7.

• The character-string :cesul t would t)e
assigned to RESULT without conversion.

~Qtel. The order of eval ua·tion of an E~X­
pression depends upon the priority of the
operators appearing in the expression. In
the above example, the priority of opera­
tion is such that evaluation pt-oceeds from
left to right.

In the evaluation of expres:sions, prior­
ity of the operators is as follows:

** prefix+ prefix­
* /
infix+ infix-
< 1< <= = 1= >= > 1>

&

I
II

, (highest)
I
I
I
I
V

(lowest)

If two or more operators o:E the highe~;t
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, ·the rightmost
exponentiation or prefix operator has the
highest priority. Each succeeding exponEm­
tiation or prefix operato:c to the left has
the next highest priority.

For all other operators, if two or more
operators of the same p:ciori ty appear in
the same expression, the order of priority
of those operators is from left to right.

Note that the order of .~val·:lation of t:he
expression in the assignment s·tatement:

RESULT = A + B < C & D I I E;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
as follows:

(A) + (B)

(A + B) «C)

(A + B <C) & (D)

(A + B <C & D) I I (E)

The order of evaluation of an expression
(and, consequently, the result) can be
changed through the use of parentheses.
The above expression, for example, might be
written as follows:

A + (B < C) & (D II E)

The order of evaluation of this expres­
sion would yield a bit string, the resul"t
of the Wand" operation.

In such an expression, those expressions
enclosed in parentheses are evaluated
first, to be reduced to a single value,
before they are considered in relation to
surroundin9 operators.. Wi thin the lan­
guage, however, no rules specify which of
two parenthesized expressions, such as
those in the above example, would be evalu­
ated fiJ:"st.

The value of C would be converted to
fixed-point binary, and the comparison
would be made, yielding a bit string of
length one (RESULT 1). The value of D
would be converted to a character string
and concatenated with E (RESULT_2).

At this point, the expression would have
been reduced to:

Since the infix + has a higher priority
than the & operator, the addition would be
performed first, yielding RESULT 3, and the
expression would be:

The two operands would be converted to bit
strings~ and the "and" operation would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sUb-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example (assuming that A, B, C, etc. have
beE~n redefined):

A + (B<C) & (D I E ** F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the "or" operation. It
does not specify the order of the operation

in relation to the evaluation of the other
operand (A + (B<C».

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example under "Combinations of
Operations," the concatenation operator is
the operator of the final infix operation.
In the second example (because of the use
of parentheses), the operator of the final
infix operation is the "and" operator, and
the evaluation would yield a different
value.

In general, unless parentheses are
within the expression, the operator
lowest priority determines the operands
the final operation. For example:

A + B ** 3 & C * D - E

used
of
of

In this case, the "and" operator indicates
that the fina.l operation will be:

(A + B ** 3) & (C * D - E)

Subexpressions can be analyzed in the
same way. The two operands of the expres­
sion can be defined as follows:

A + (B ** 3)

(C * D) - E

ARRAY EXPRESiSIONS

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators -- both prefix
and infix element variables, and con­
stants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-by­
element basis in row-major order (that is
with the rightmost subscript varying most
rapidly). Therefore all arrays referred to
in an array expression must be of identical
bounds.

~21~ Array expressions other than addition
and subtraction are not expressions of
conventional matrix algebra.

Chapter 4: Expressions 41

PREF'IX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of
ider..tical bounds, each element of which is
the result of the operation having been
performed upon each element of the original
ar!:a.y. E'or example:

If A is the array 5 :3 -9

1 -L. '1

6) -,~

then -A is the array -5 -3 '3

-1 2 -7

-6 -3 l-l

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the other operand.

The result of an operation in which an
element and an array are connected by an
infix operator 1S an array with bounds
identical to the original array, each ele­
ment of which is the result of the opera­
tion performed upon the corresponding ele­
ment of the original array and the single
element. For example:

If A is the array

then A*3 1" <,
.~ the array

5 10 fl

12 11

15 30

36 33

The element of an array-element opera­
tion can be an elemf:=nt of the sam(:~ array.
For example, the expression A*A(2,31 would
give the same resu1 t in the ca::;e of the
array A above, since the value of A(2,3) is
3.

consider the follo\>ling assignrnen-::. state­
ment:

42

A A * A(1,2);

Again, using the above values for A, the
newly assigned value of A \oi70uld be:

50 100 800

1200 1100 300

Note that the original value for A(1~2),
which is 10, is used in thE~ eVcLluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, thE~ new value
of A(1,2) is used for all subsequent opera­
tions. The first two eIE~ment.s are multi­
plied by 10, the original value of A(I,2);
all other elements are multiplied by 100,
the new value of A(1,2).

Array and Array Operations

If two arrays are connected by an infix
operator, the two arrays must have the same
number of dimensions and identical bounds.
The result is an array with bounds identi­
cal to those of the original arrays; the
operation is performed upon the correspond­
ing elements of the two original arrays.

Examples of array infix expressions are:

If A is the array 2 4 3

6 1 7

4 8 2

and if B is the array 1 5 7

3

6 3 1

then A+B is the array 3 9 10

14 4 11

10 11 3

and A*B is the array 2 20 21

48 3 28

24 24 2

The examples in this discussion of array
expressions have shown only single arith­
metic operations. The rules for combining
operations and for data conversion of oper­
ands are the same as those for element
operations.

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

All operations performed on structures
are peJ:-formed on an element-by-element
basis. All structure operands appearing in
a structure expression must have identical
structuring.

Identical structuring means that the
structures must have the same minor struc­
turing and the same number of contained
elements and arrays and that the position­
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in
corresponding positions must have identical
bounds. Names do not have to be the same.
Data types of correspond.ing elements do not
have to be the same, so long as valid
conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of thE~
original structure.

Note: Since structures may contain elements
~l--~any different data types, a prefix
operation in a structure expression would
be meaningless unless the operation can be
validly performed upon ~very element rep-­
resE~nted by the structure variable, which
is either a major structure name or a minor
structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a struc­
ture variable as one operand may have an
element or another structure as the other
operand.

Structure and Element Operations

When an operation has one structure and
one element operand, it is the same as a
series of operations, one for each element
in the structure. Each sub-operation
involves a structure element and the single
element.

Consider the following structure:

1 A
2 B

3 C
3 D
3 E

2 F
3 G
3 H
3 I

If X is an element variable, then A * X
is equivalent to:

A.C * X
A.D * X
A.E '" X
A.G * X
A.H '" X
A.I '" X

Structure operands in a structure ex­
pression need not be major structure names.
A minor structure name, at any level, is a
structure variable. Thus, the following
are structure expressions:

A.B & 'lOlO'B

F * 32

Structure and Structure Operations

When an operation has two structure
operands, it is the same as a series of
element operations, one for each corres­
ponding pair of elements. For example, if
A is the structure shown in the prevlous
example and if M is the following struc­
ture:

Chapter 4: Expressions 43

1 M
2 N

3 0
3 P
3 Q

2 R
3 S
3 T
3 U

then A II M is equivalent 1:0 :

A.C II M.O
A.D II ~l. P
A.E II tIl.Q
A.G II M.S
A.H II M.T
A. I II M.U

~s stated above, structure operands in a
:::-;tructure expression need not be major
structure names. A minor structure name,
at any level, is a structure variable.
Thus, the following is a structure expres­
sion:

M.N & M.R

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT(C);

In this example, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
(~xpression is called a f~!!~tion_!~§:ferE~nce.

FUN2TION REFERENCE OPERANDS

A function reference consists of a name
and, usually, a parenthesized li!5t of one
or more variables, constants, or other
expressions. The name is the name of a
block of coding written to perform specific
computations upon the data represented by
the list and to substitute the computed
value in place of the function reference.

Assume, in the above examph::, that C has
the value 16. The function reference
SQRTeC) causes execution of the ceding that
wou1d compute the square root of 16 and

44

replace the function reference with the
value 4. In effect, the assignment state­
ment would become:

A = B * 4;

The coding represented by the name in
the function reference is called a !u~~=
tion. The function SQRT is one of the PL/I
built-in functions. Built-in functions,
which provide a number of different opera­
tions, are a part of the PL/I language. A
complete discussion of each appears in Part
II, section G, "Built-In Functions and
Pseudo-Variables." In addition, a progr,:un­
mer may write functions for other purposes
(as described in Chapter 10, "Subroutines
and Functions"), and the names of those
functions can be used in function referen­
ces.

The use of a function reference is not
limited to operands of operational expres­
sions. A function reference is, in itself,
an expression and can be used wherever an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the left of
an assignment statement.

There are, however, bwo built-in func­
tions that can be used as :eseu;jo-variabIE~l...!..
A pseudo-variable is a built-in function
name that is used in a receiving field.
Consider the following example:

DECLARE A CHARACTERel0),
B CHARACTER (30) ;

SUBSTRCA,6,S) = SUBSTRCB,20,S);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and as a pseudo­
variable.

The SUBSTR
substring of
named string.
indicates the
string, that is

buil t- in function extrac·ts: a
specif ied lengl:'.h from t.he

As a pseudo--variable, it
location, within a namE-d
the receiving field.

In the above example, a substring five
characters in length, beginning with the
20th character of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be l~eplaced by the
20th through the 24th characte]~s of B. T'he
first five characters of A remain
unchanged, as do all of "the characters of
B.

The two built-in functions that can be
used as pseudo-variables (SUBSTR and
UNSPEC) are discussed in Part II, section
G, "Built-In Functions and Pseudo-

VariablE~s. III No programmer-written function
can be used as a pseudo-variable.

Data conversion is the transformation of
the representation of a value from one form
to an01:her. Al though there are somle
restrictions upon the use of the available
forms of data representation and upon the
mixing of different representations within
an E~xprE~ssion, the programmer still has a
great deal of freedom in this area.

l?rogl~ammers who wish to make use of this
freedom must understand that mixed expres·­
sions imply conversions. If converSl.ons
take place at execution time, they will
SlOlIl7 do\m the execution, sometimes signifi·­
cantly. Unless care is taken, conversions
can result in loss of precision and can
cause unexpected results.

This section is concerned primarily with
the concepts of conversion operations.
specific rules for each kind of conversion
are listed in Part II, Section F, "Data
Conversion." Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
processes of the conversion.

The subject of conversion can be consid­
ered in two parts, first, determining the
target attributes, and, second, the conver­
sion operation with known source and target
attributes. This section deals with deter­
mining target attributes. Rules for con­
version operations are given in Part II,
Section F, "Data Conversion." within each
section, here and in Part II, arithmetic
conversion and type conversion are consid­
ered separately.

The !:~£g~!: of a conversion is the
receiving field to which the converted
value is aSSigned. In the case of a direct
assignment, such as A = B, in which conver­
sion must take place, the variable to the
lef·t of ·the assignment symbol (in this
case, A) is the target. Consider the
follo~ing example, however:

DECLARE

A::: B + C;

A PICTURE '$9999V.99',
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

During the evaluation of the expression B +
C and during the aSSignment of that result,
there are four different targets, as fol­
low,s:

1.

2.

.3.

4.

The compiler-created temporary to
which the converted binary equivalent
of B is assigned

The compiler-created temporary to
which the binary result of the addi­
tion is aSSigned

The temporary to which the converted
decimal fixed-point equivalent of the
binary result is assigned

A# the final destination
result# to which the converted
charactE!r egui valent of the
fixed-point representation
value is assigned

of the
numeric
decimal

of the

The attribut:es of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation) • 'I'he attributes of the
second target are determined from the
attributes of the source (C and the con­
verted representation of B). The attri­
butes of the third target are determined in
part from thE! source (the second target)
and in part: from the attributes of the
eventual target (A). (The only attribute
determined from the eventual target is
DECIMAL, since a binary arithmetic rep­
resentation must be converted to decimal
representation before it can be converted
to a numeric character.) The attributes of
the fourth target (A) are known from the
DECLARE statement.

Thus, when an expression is evaluated,
the target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some implemen­
tation restrictions (for example, maximum
precision) and conventions exist. After an
expression is evaluated, the result may be
further converted. In this case, the tar­
get attributes usually are independent of
the source. since the process of determin­
ing target attributes is different for
expression operands and for the results of
expression E~valuation, the two cases are
dealt with separately.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, 'l'B, '1',

Chapter 4: Expressions 45

113., or lEO. constants may be converted at
compile time or at execution time, but in
either case, the rules are the same.

Table 4-1. Target Types for Expression
Operands

r-----------T-- -------.---------------.---- ---,
I Operator ITarget Type I
~----------+------------------------------i
+ - * / ** coded arithmetic

&

III

> <
>= <=

,=
1> 1 <

, bit string

character string i(unlE!ss both
operands are bit strings)

ari thmetic, unless bot.h opeI.­
ands are strings then charac­
ter string unless both oper­
ands are bit strings then bit
string (Pointers can be com-
pared only by using = and 1=;
both operands must be point,ers

Isince no conversion can bel
Iperformed.) I l __________ L ______________________________ J

when an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. Some
of these assumptions can be based on the
operator, as shown in Table 4-1. ~ote that
numeric character data can always be con­
verted to coded arithmetic and ViCE versa.

BIT-TO-CHARACTER AND CHARACTER-TO-EIT

In the conversion of bit to character,
and character to bit, the length of the
target (in bits or characters) is the same
as the length of the source (in bits or
char acters) •

CODED ARITHr-lliTIC TO BIT-STIUNG

In the conversion of coded arit~metic to
bit-string data, length of the target is
deduced from the precision of the source.
Algorithms for determining the length of
the target are given below under the head­
ing "Lengths of Bit-String Targets."

46

BIT-STRING TO CODED ARITHMETIC

The at tr ibutes of thE! ta.rget are the
attributes that would have beE!n given to
the target if a fixed-point binary integer
of maximum precision (31) had appeared in
place of the bit string.

When converting to fixed-point in
System/360 implementations., tbis operation
is performed by first converting the string
to a maximum precision intE!ger (BINARY
(31». This integer is then converted to
the target attributes.

'l'arget Attributes for Arithmetic Expression
QEerands

Except for exponentiation~ the target
attributes for arithmetic conversion a:re
assumed as follows:

BINARY

FLOAT

precision
of source

unless both operands are DECI­
MAL, in which. case no base
conversion is performed

unless both operands are FIXED,
in which case no scale conver­
sion is performed

unless base or scale conversion
is performed (seE Table 4-:2,
"Precision for Arithmetic
Conversion")

In the case of exponentiation, the base
and precision are determined as for other
operations. The target scale of the first
operand is always FLOAT unless the first
operand source is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for System/360
implementations, 31, if binary, or 15, if
decimal) • The targe·t scale of the second
operand is FLOAT unless it is an integE~r
constant or a fixed-point variable of pre­
cision (p,O).

In the examples of exponentiation shmin
below, the variables are those named in the
following DECLARE statement:

DECLARE A FIXED DECIMAL(2),
B FIXED DECIMAL{3,2),
C FLOAT DECIMAL(4),
D FLOAT DECIMAL (7) ,
E FIXED DECIMAL{S),
F FIXED DEClMAL(15);

~Q~~~ If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,
by default, zero; the precision is (p,O).

o ~~* C

A ~~* 4

o ** 5

o ** A

E ** A

o ** B

No conversion necessary. Both
operands are floating-point.

No conversion necessary. Sec­
ond operand is unsigned fixed­
point integer constant, and the
result will not exceed 15
digits.

No conversion necessary. First
operand is floating-point; sec­
ond is fixed-point with preci­
sion <p,O).

No conversion necessary. First
operand is floating-point; sec­
ond is fixed-point with preci­
sion <p,O).

First operand is converted to
floating-point because second
operand is not unsigned fixed­
point integer constant. Second
operand is not converted
because it has precision (p,O).

Second operand is converted to
floating-point because it does
not have precision (p,O). Even
if B had an integer value with
a fractional part of zero, it
still would be converted~ since
its declared precision is
(3,2).

No·te: J~.ll of these examples, except D**B,
~;~r~ be the same if they had been declared
binary rather than decimal, except that the
maximum number of binary digits allowed is
31. In the case of D**B, B, being binary,
could not be declared with a scale factor;
hence, if B has a precision of (3), no
conversion is necessary.

~~:g~i~;L2!!_~!!g_b~!!gth of Exgessi2!L.QperanQ
~~:~g~t.!~~

The following rules apply to all calcu­
lations of precision and length:

1. Precision and length specifications
are always integers. If any of the
calculations given below produces a
nonintegral value, the next largest
integer is taken as the resulting
precision.

The following illustrates how preci­
sion would be computed in a conversion

from DECIMAL FIXED (8,3) to BINARY
FIXED:

1 + 8 '" 3.32 27.56 resulting number
of digits (p) is
28.

3 '" 3.32 9.96 resulting scale
factor (q) is 10.

Note that a scale factor is maintained
in conversions to fixed-point binary.
However, if the converted result were
assigned to a fixed-point binary vari­
able, the fractional binary digits
would be truncated since a fixed-point
binary variable can have no scale
factor declared for it (and hence has
an assumed scale factor of zero).
Also note that the scale factor can
sometimes be negative (e.g., the
BINARY and DECIMAL built-in
functions). In such cases, the abso­
lute (positive) value is used to take
the next largest integer.

2. There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined limit,
then the implementation limit is used
instead. In System/360 implementa­
tions these limits are:

FIXED DECIMAL -- 15 digits

FIXED BINARY -- 31 digits

FLONI DECIMAL -- 16 digits

FL01\T BINARY -- 53 digits

Because of the particular values for
these implementations, these limits
will usually come into effect only for
conversions from fixed-point decimal
to f iXE~d-point binary.

For the D-compiler, the scale factor
for fixed-point decimal variables must
lie within a and 15, inclusive. The
scale factor for binary fixed-point
variables cannot be specified and is
always assumed to be zero.

Precision for Arithmetic Conversions

Table 4-2 gives the target precision for
an operand if base or scale conversion
occurs.

The target precision of one operand of
an expression is not affected by the preCi­
sion of the other operand. This can have a

Chapter 4: Expressions 47

Table 4-2. Precision for Arithmetic Conversions
r----------------------T----------------------------T------------------------------------,
ISource Attributes I Target Attributes I Target Precision I
~----------------------+----------------------------+-----------------------------------~
I DECIMAL FIXED (p, q) I DECIMAL FLO.~~T P I
I I I
I DECIMAL FIXED(p,q) I BINARY FIXED 1+p*3.32,q*3.32 I
I I I
I DECIMAL FIXED(p,q) I BINARY FLOAT p*3.32 I
I I !
I DECIMAL FLOAT (p) I BINARY FLOAT p*3. 32 I
I I I
IBINARY FIXED(p,q) I BINARY FLOAT P i
I I I
IBINl\RY FIXED(p,g) I DECH-'lAI. FLOAT p/3.32 I
I I I
I BINI\RY FIXED (p,q) I DECIMAL FIXED 1+p/3. 32,q/3. 3L~ I
I I I
IBINll.RY FLOAT(p) I DECIMAL FLOAT p/3.32 I l ______________________ L ____________ . ________________ L ___________________________________ J

significant effect on accuracy, particular­
ly if one of the operands is a constant.

If the source is a numeric character
data item or a bit string and the target is
a c~aracter string, the length of the
target is the same as the lengtt of the
source.

wt.en converting arithmetic operands to
bi t string, the arit.hmetic source is con­
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Table 4-3.

Note that p-q represents the number of
binary or decimal digi ts to the left of -the
point. For the D-compiler 8 the target
length must lie within 1 and 31, inclusive.

Table 4-3. Lengths of Bit-string Targets
r---- -----------------.---~---------- .-------,
I §.9.~~_~~_~!:!:!:.iQ~!:g§. Tal:g§.!:_.f!eng:th I
IDECIMAL FIXED(p,q) (p-q>*3.32 I
I I
IDECIMAL FLOAT(p) p*3.32 I
I I
IBINll.RY FIXED(p,q> p-q I
I I
IBINARY FLOAT(p) P I l ___ J

48

Conversion of the Value of c~n Expres~ion

The result of a completely evaluated
expression may require further conversion.
The circumstances in which thi!:; can cccur,
and the target attributes for each situa­
tion, are given in Figure 4-4. In addi­
tion, certain built-in functions cause con­
version. Any subscript reference is con­
verted to binary integer.

As in the case of determining target
attributes, conversion operations may also
be considered in two stages: type conver­
sion and arithmetic conversion. For exam­
ple, when a numeric character source is
converted to a coded arithmetic target, the
string is first converted to an arithmetic
form whose attributes are deterndned by the
constant expressed by the PICTURE specifi­
cation. This intermediate result is then
converted (if necessary) to thE~ attributes
of the target. These two stages may not be
separated in an actual implement.ation, but
for the purpose of description it is con­
venient to consider them separately.

There are nine cases of type conversion:

• Numeric character to character-string

• Numeric character to coded arithmetic

• Coded arithmetic to numE~ric character

• Coded arithmetic to bit-string

• Bit-string to coded arithmetic

Table 4-4. Circumstances that Can Cause Conversion
r---,
I The following may cause conversion to any target attributes: I
I I
I ~§.~!~~ !~~.~i_~ii~iQutl§:§. I
I A.ssignmen1: Att~ibutes of variable to the lE~ft of the assignment symbol I
I I
IRETURN (expression) Attributes specified in PROCEDURE or ENTRY statement I
~---i
I The following may cause conversion to character string: I
I I
I §'~~§.i~!]~~!!~~ Opti2!! §'i£i!!Sl~~nqth I
I DISPLhY Source, 80-character maximum I
I I
I RECORD I/O KEYFROM Key length specified in ENVIRONMEN'l' attribute I
I I
I KEY Key length specified in ENVIRONMENT attribute (or I
I eight characters in the case of REGIONAL(l» I
~---i
I The following may cause conversion to a binary integer whose precision, as defined I
I for the D-Compiler, is given below: I
I I
I §'!:§.i~E~~~!!:~ Q2iion~~ii~ib~i~ Precision I
I OPEN PAGESI ZE 8 I
I I
I I/O SKIP 8 I
I I
I LINE 8 I L ___ J

• Character-string to bit-string

• Bit-string to character-string

• Numeric character to bit-string

• Bit-string to numeric character

For specific rules for each of the cases
of type conversion and for arithmetic con­
version, see Part II, Section F, "Data
conversion."

When data is converted from one rep­
resentation to another, the CONVERSION or
SIZE conaitions may be raised. The OVER­
FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arith­
metic operation exceeds the implementation­
defined limit. When an operand is convert­
ed from one representation to another, if
the value of the result will not fit in the
declared precision for the new representa­
tion, the SIZE condition is raised.

The SIZE condition is raised when signi­
ficant digits are lost from the left-hand
side of an arithmetic value. This can

occur during conversion within an expres­
sion, or upon assigning the result of an
expression. It is not raised in conversion
to character string or bit string even if
the value is truncated. It is raised on
conversion to E or F format in edit­
directed transmission if the field width
specified will not hold the value of the
list item. The SIZE condition is normally
disabled, so an interrupt will occur only
if the condition is raised within the scope
of a SIZE prefix.

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion bEing
performed. For example, CONVERSION would
be raised if a character string that is
being converted to bit contains any charac­
ter other than a and 1. The CONVERSION
condition is normally enabled, so when the
condition is raised, an interrupt will
occur. It can be disabled by a NOCONVE~­
SION prefix, in which case an interrupt
will not occur when the condition is
raised.

Note that the OVERFLOW and FIXEDOVERFLOW
conditions are raised when an implementa­
tion maximum is exceeded, while the SIZE
condition is raised when a declared preci­
sio!! is exceeded. Note also that the
OVEHFLOW condition can be raised for a
conversion only when the scale factor spec­
ified in an F-format item is too large.

Chapter 4: Expressions 49

This chapter classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may be
found in Part II, Section J, "Statements."

statements can be grouped into ~he fol­
lowing six classes:

Descriptive

Input/Output

Data Movement and Computational

Control

Exception Control

Program Structure

The names of the classes have been chosen
for descriptive purposes only: they have no
fundamental significance in the language.
Some statements are included in rn~re than
one class, since they can have more than
one function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except a const~dnt, is
referred to in the program by a nan~. The
PL/I language requi.rE~s that the properties
(or attributes) of data items referred to
must be known at the time the prograrr. is
compiled. There is an exception 1:0 this
rule: for certain files, the INPUT or
OUTPUT attribut~e can be specifiec. in an
OPEN statement and, therefore, ca~ be det­
ermined during the eXE~cution of t.he pro­
gram ..

50

The DECLARE statement

The DECLARE statement is t.he principal
means of specifying the attributes of a
name. Defaults are applied to any name for
which a complete set of at.tributes has not
been specified.

DECLARE statements are always needed for
fixed-point decimal and floating-point
binary variables, character- and bit-string
variables, filenames, pointer variables,
label variables, arrays and structures,
data with the STATIC or BASED attribute,
all data with the PICTURE attribute and N in
general, data with the EXTERNAL attribute.
A RETURNS attribute declaration must be
made for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(15) if
the first letter of the name is I through
N; otherwise, DECILVlAL FLOAT (6) • (The
default precisions are those defined for
system/360 implementations.)

DECLARE statements may also be an impojc­
tant part of the documentation of a pro­
gram: consequently, programmers may make
liberal use of declarations, even when
default attributes apply or when a contex­
tual declaration is possible. Because
there are no restrictions on the number of
DECLARE statements" different DECLN~E
statements can be used for different groups
of names. This can make modification easi­
er and the interpretation of diagnostics
clearer.

As a rule, file descriptio::1 attributes
must be specif ied in a DECIJlARE statement~.

Ho~ever, the OPEN statement allows the
INPUT or OUTPUT attribute, as w,=ll as the
page size, to be specified for certain
files. Therefore, the OPEN statement can
be classified as a descripti VI~ statement ..
The FORMAT statement may be thO'lght of a.s
describing the layout of data on an exter·­
nal medium, such as on a page or on an
input card.

INPUT/OUTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medi urn. OthE~r
input/output statements that affect such
transfers may be considered input/output
control statements.

In the following list, the statements
that cause a transfer of data are grouped
int:o t'irlO subclasses, RECORD I/O and STRE]~
I/O:

RECORD I/O Transfer statements

READ

WRITE

REWRITE

LOCATE

S'I'REAM I/O Transfer Statements

GET

PUT

I/O Control Statements

OPEN

CLOSE

hn allied statement, discussed with
thE~se statements, is the DISPLAY statemen-t.

There are two important differenc.es
beitween STREAM transmission and RECORD
transmission. In STREAM transmission, each
data it.em is treated individually, whereas
RECORD transmission is concerned with col­
lections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the
record on the external medium is an exact
copy of the record as it exists in internal
storage, with no editing or conversion
pe:rformed.

hs a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis­
sion may be used for processing keypunched
data and for producing readable output"
where editing is required. Since files for
which stream transmission is used tend to
be smaller, the larger processing overhead
can be ignored.

RECORD I/O T~ansfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The
WRITE statement creates new records, trans­
ferring collections of data to the output
device. The LOCATE statement also creates
new records~ but it acts by making buffer
space available in which the record may be
built. The REWRITE statement alters exist­
ing records in an UPDATE file.

STREAM I/O Transfer Statements

STRE~l transmission files are sequential
files that can be processed only with the
GET and PUT statements. Record boundaries
generally are ignored; data is considered
to be a stream of individual data items,
either coming from (GET) or going to (PUT)
the external medium.

The GET and PUT statements transmit a
list of items in the edit-directed mode.
In this mode, the data is recorded exter­
nally as a string of characters to be
treated character by character according to
a format list.

Note: The GET and PUT statements can also be used for internal data movement, by
specifying the STRING option and omitting
the FILE option. Although the facility may
be used in a.ssociation with READ and WRITE
statements for moving data to and from a
buffer~ it is not actually a part of the
input/output operation. GET and PUT state­
ments with the STRING option are discussed
in the section "Data Movement and Computa­
tional Statements," in this chapter
(Chapter 9" Editing and String Handling"
also touches upon this area).

Input/Output: Control statements

The OPEN statement associates a file
name with a data set and prepares the data
set for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written for a STREAM transmission file.
Execution of a GET or PUT statement that
specifies the name of an unopened file will
result in an automatic opening of the file
before the data transmission takes place.
However, an OPEN statement can be used to
save time by opening such a file before it
is first required for use. The page size
for a file with the PRINT attribute can be

Chapter 5: Statement Classification 51

specified only in an OPEN statemE~nt. An
OPEN statement must always be specified for
a RECORD transmission file.

The CLOSE statemf?nt dissoc.iate~) a data
set from a file. All files are closed at
the termination of a program, so a CLOSE
statement is not always required.

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, w'ith the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely to suspend execution until the
operator acknowledges the message.

DATA. MOVEMENT l\ND COMPUTATIONAL STA,]~EMENTS

Internal da.ta movement invol VE!S the
assi9nment of t.he value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
sta.tement. The GET and PUT statements with
the STRING option also can be used for
internal data movement~. The PUT statement
can, in addition, specify computat.ions to
be made.

The assignment stat.ement, which has no
keyword, is identified by the assignment
symbol (=). It generally takes one of two
forms:

A Bi

A B + C;

The first form can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. ~rhe
second form specifies computations to be
made, as well as data movement.

52

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant) , t:he assignment
statement can also be used for conversion
and editing ..

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or struc­
ture value. Thus, the assiqnment statement
can be used to move aggregaies of data, as
well as single items.

The STRING Option

If the STRING option appears in a GET or
PUT statement in place of a E'ILE option"
execution of the statement will result only
in internal data movement; neither input
no:[" output is involved.

Assume that NAME is at st.ring of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. Consider the follow­
ing example:

GET STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(12),A(1),A(17»;

This statement specifies tha.t the first 12
characters of NAME are to be assigned to
FIRST, the next character t,o ~lIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the STRING option
specifies the reverse operaticn, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST, MIDDLE, LAST)
(A(12),A(1),A(17»;

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be concaten·­
ated, in that order, and assigned to the
string variable NAME.

Computations to be performed can be
specified in a PUT statement by including
operational expressions in the data list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic::
data and BUFFER represents a character
string:

PUT STRING (BUFFER) EDIT
(A * 3,B + C)
(F(lS), i'(lS»;

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the~ value of the
sum of Band C. Note that while arithmetic
to character-string and character-string to
arithmetic conversions are not allowed in
the PL/I subset, they can be effectively
achieved by the GET STRING and PUT STRING
operations~ respectively; however, it
should also be noted that this can be quite
inefficient because of the high overhead in
execution time and storage that is
required.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera­
tional expressions can appear in PUT state­
ments that specify output t~o a file. In
either case~ however, such expressions must
be element expressions; they cannot involve
arrays or structures.

CONTROl:' STATEMENTS

Statements in a PL/I program, in gener­
al, are executed sequentially unless the
flow of control is modified by the occur­
rence of an interrupt or the execution of
one of the following control statements:

GO 'I'O

Ilf

DO

Cj!\LI.

RETURN

END

strop

The~ GO TO statement is most frequen1:ly
used as an unconditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be used as a
switch by assigning label constants, as
values~ to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying t.he
subscript. Usually, however, simple con­
trol statements are the most efficient.

ThE! keyword of the GO TO statement may
bE~ written either as two words separated by
a blank or as a single word J GOTO.

The IF Sta tE~ment

The IF statement provides the most com­
mon conditional branch and is usually used
with a simple comparison expression follow­
ing the word IF. For example:

IF A = B

THEN action-if-true

ELSE action-if-false

If the comparison is true, the THEN
clause (the "action to be taken") is exe­
cuted. After execution of the THEN clause,
control branches around the ELSE clause
(the "alternate action"), and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then
continues normally.

The IF statement might be as follows:

IF A = B

THEN C D;

ELSE C E;

If A is equal to B, the value of D is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to c.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either
conditional or unconditional. If the THEN
clause contains a GO TO statement, for
example, there is no need to specify an
ELSE clause. consider the following exam­
ple:

IF A = B

THBN GO TO LABEL_1;

next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to L,ABEL 1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF state­
ment.

Chapter 5: Statement Classification 53

~Q~~! If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the nex i:. sta'te­
ment will be executed whether or not the
THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can# however, be a logical expression
with more than one operator. For example:

IF A = B & C = D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

s:

IF A = B & C = D
THEN GO TO R;

B = B + 1;

IF A = B
THEN IF C = D

THEN
a = B + 1;

IF A ,= B
THEN GO TO S;

IF C ,= D
THEN GO TO S;

GO TO R;
13 = B + 1;

GO TO R;

Thl~ most common use of the DO st atement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable is incremented
each time through the loop. such a group
might take the form:

DO I = 1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO s'tai:ement and
an associated END statement. In thi~i case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through lC. The
effect: of the DO and END statements would
be the same as the following:

54

I = 0;
A: I = I + 1;

IF I > 10 THEN GO TO B;

GO TO A;
B: next statement

Note that the increment is made before the
control variable is tested and that~ in
general" control goes to the statement,
following the group only when the value of
the control variable exceeds the limit set:
in the DO statement. ~a'- reference is
made to a control variable afber the last:
iteration is completed, the value of the
variable will be one increm,enta'tion beyond
the specified limit.

The DO statement can also be used with
'the WHILE option and no con.trol variable.
as follows:

DO WHILE (A = B)i

'rhis statement, heading a group, causes the~
group to be executed repeatedly so long as
the value of A remained equal to the value~
of B.

The WHILE option can be combined with a
control variable of the form:

DO I = 1 TO 10 WHILE (A = B);

This statement specifies t,~o tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. .An
additional test then is made to see that A
is equal to B. Only if both con(li tions are'
satisfied will the statements of the group
be executed.

More than one succes~3ive iteration
specification can be included in a single
DO statement,. Consider each of t:he follow­
ing DO statements:

DO I 1 TO 10, 13 TO 15;

DO I 1 TO 10, WHILE (A = El;

The first statement specifies t:hat the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times.
After the first ten executions have been
completed, execution is to continue so long
as A is equal to B. Note that in both
statements, a comma is used t~o separate the
two specifications. This indicat,es that a
succeeding specification is to be consid­
ered only after the preceding spE'cification
has been satisfied.

The control variable of a DO statement
can be used as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a table
or array. For example:

DO I = 1 TO 10;
A(I)=Ii
END;

In this example, each element of A is set
to 1, 2, ••• ,10, respectively.

The increment in the iteration specifi­
cation is assumed to be one unless some
other ~alue is stated, as follows:

DO I = 2 TO 10 BY 2:

This specifies
executE~d five
equal t.o 2, 4,

that the loop is to be
times, with the value of I

6, 8, and 10.

~2!~i!=~!:~!=! ve DO statements

The DO statement need not specify
repeated execution of the statements of a
DO-group. A simple DO statement, in con­
junction with a DO-group can be used as
follows::

DO;

END;

ThE~ use of the simple DO statement in this
manner merely indicates that the DO-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statemEmt.

A subroutine may be invoked by a CALL
statemEmt that names an entry point of the
subrou·tine. Control is returned to the
act.ivat:ing, or invoking, procedure when a
RETURN statement is executed in the subrou­
tine or when execution of the END statement
terminates the subroutine.

The RETURN statement with a parenthe­
si:~ed E~'xpression is used in a function
procedure to return a value to a function
reference. This form can be used only to
return from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,
either of which returns control to the
operating system.

The STOP Statement

The STOP statement causes abnormal ter­
mination of a program.

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of con­
trol whenev€·r they are executed. Another
way in which the sequence of execution can
be altered is by the occurrence of a
program interrupt caused by the raising of
an exceptional condition.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an expect­
ed action, such as an end of file, that
occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in Chapter 11,
"Exceptional Condition Handling and Program
Checkout."

The thrE~e exception control statements
are the ON E:tatement, the REVERT statement,
and the SIGNAL statement.

The ON Stat€!ment

The ON E;tatement is used to specify
action to be taken when any subsequent
occurrence of a specified condition causes
a program interrupt. ON statements may
specify particular action for any of a
number of different conditions. For all of
these conditions, a standard system action
is specified as a part of PL/I, and if no
ON statement is in force at the time an
interrupt occurs, the standard system
action will take place. For most condi­
tions, the standard system action i~ to
print a message and terminate execution.

The ON st:atement takes the form:

ON condition-name {SYSTEM; lon-unit}

The "condition name" is one of the keywords
listed in Part II, Section H# "ON Condi­
tions." The "on-unit" specifies a

Chapter 5: Statement Classification 55

programmer-defined action to be: taken lJlhen
that condition arises and an :Lnten~upt
occurs; it can only be a null statement or
a GO TO statement. The keyword SYSTEM
(accompanied by the semicolon) is used in
place of an on-unit to specify that the
standard system action is to be taken if an
interrupt occurs. For example:

ON OVERFLOW;

This statement has a null statement as its
on-unit. It specifies that when an inter­
rupt occurs as a result of an OVERFLOW
condition being raised, the interrupt is to
be ignored and execution is to continue
from the point at which the interrupt
occurred. If an ON statement for OVERFLOW
~ere not in force and the condition arose,
the standard system action for that condi­
tion would be taken.

The effect of an ON statement, the
estaolishment of the on-unit or SYSrEM, can
be changed within a block (1) by execution
of another ON statement naming the same
conjition with either another on~unit or
the word SYSTEM, which re-est:a.blishes
standard system action, or (2) by the
exec~tion of a REVERT statement nan~ng that
conjition. The action in effec~ at the
time another block is activated is passed
to ·the acti va ted block and remains in
effect in that activatej block and in other
blocks activated by it, unless ano~her ON
statement for the same condition is execut­
ed. When control returns to an actlvating
block, actions are reo-established dS they
exis1:.ed.

rhe REVERT statement is used to cancel
the effect of all ON statements for the
same condition that have oeen executed in
the block in which the REVERT statement
df?pears.

rhe R~VERl' ~;tatement, which must specify
the condition name, re-establisheu action
tor that condition as it was in the acti­
vating block at the t:ime the currEnt block
was j_nvoked.

rhe SIGNAL stat:ement simulaLes the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the action established by execu­
tion of an ON statement. For example:

56

SIGNAL OVERFLOW;

This statement would simulate the occur­
rence of an overflow interrupt and would
cause execution of the action established
for the OVERFLOW condition. If an action
has not been established, standard system
action is taken.

PROGRAM STRUCTURE STATEMENTS

The program structure statements are
those statements used to delimit sections
of a program into blocks anj groups
These statements are the PROCEDURE state­
ment, the END statement, the ENTRY state­
ment, the BEGIN statement, and the DO
statement. The concept of blocks and
groups is fundamental to a proper under­
standing of PL/I and is dealt with in
detail in Chapters 6, 7, and 10.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which data of this
class is declared.

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement. f
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at whlch the name
is known.

Every program must have at least one
PROCEDURB statement and one END statement.
A program may consist of a number of
separately wri tten procedurt~s linked
together. A procedure may also contain
other procedures nested within it. These
internal proceJu:res may contain declara­
tions that are treated (unless otherwise
specified) as local definitions of names.
Such definitions are not known outside
their own block, and the names cannot be
referred to in the containing procedure.
The automatic storage associated with these
names is allocated upon ent;ry t:o the block
in which such a. name is defined, and it is
freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. A
procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the proce­
dure is called a function procedure. A
function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression.

2ommunication between two procedures is
by means of arguments passed from an invok­
ing procedure to the invoked procedure, by
a value returned from an invoked procedure,
and by names known within both procedures.
A procedure may therefore operate upon
different data when it is invoked from
different points. A value is returned from
a function procedure to a function ref­
erence by means of the ~ETURN statement.

rhe ENTRY statement is used to provide
an alternate entry point to the procedure
in which it appears and, possibly, an
alternate parameter list to which arguments
can be passed, corresponding to that entry
point.

~Q!;:~: 'I'he ENTRY ~:t:~:t:~!!.l~!!:t: specifies an
en t.ry to t.he procedure in which it appears;
the ENTRY attribute specifies other proce­
dures tha~--~~~-I~voked from the procedure
in which the ENTRY attribute specification
appears.

Local definitions of names can also be
made within begin blocks, which are delim­
ited by a BEGIN statement and an associated
END statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. It is
useful for delimiting a section of a pro­
gram in which some automatic storage is to
be allocated.

Each begin block must be nested within a
procedure or another begin block.

Another kind of program structure is
provided by the DO-group, which is delimit­
ed by a DO statement and an associated END
statement. A DO-group does not have any
effect upon the allocation of storage or
the meaning of names. A DO-group specifies
that the statements contained within it are
to be considered as an entity for the
purpose of flow of control.

A DO statement may specify repeated
execution of a sequence of statements until
a criterion is satisfied, or it may indi­
cate within an IF statement that a group ot
statements is to be taken together as the
whole of the THEN clause or of the ELSE
clause.

Chapter 5: Statement Classification 57

This section discusses how statements
can be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may bE~ allocated for data
within a block of statements.

~ block is a delimited sequ~nce of
statements that constitutes a section of a
program. It localizes names declared with­
in the block and limits the allocation of
variables. There are two kinds of blocks:
procedure blocks and begin blocks.

Pt{02EDUJ:{E BL02KS

BEGIN BLOCKS

A begin block is a set of statelnent.S
headed by a BEGIN statement and ended by an
END statement, as follows:

[label:l •.. BEGIN;

END [label 1 ;;

Unlike a procedure block, a label is
optional for a oegin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without referE~nce ·to the name
of that block, although control can be
transferred to a labE~led BEGIN s·tatement by
execution of a GO TO statement.) An exam­
ple of a Degin block follows:

B: CONTRL: BEGIN;
sta"tement-l

ri procedure block, simply callEd a pro- stat:ement-2
cedure, is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

stai:ement-n
label: PROCEDURE; END;

END [label];

~J.I prOCedUI"eS must: be named because the
procedure name is the primary foint of
entry through which control can be trans­
ferrE~d to a procedure. A PROCEDURE state­
ment must have one and only one label. An
exaLnple of a procedure follows:

READIN: PROCEDURE;
st.atement-l
sta tement:-2

":itatement.-n
END READINi

in general, control is transferred to a
procedure through a reference to Lhe name
of the procedure. rhus, the PJ~ocedure in
the anove example would be given control by
d reference to its name READIN.

~ PL/I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

58

Unlike procedures, begin blocks general­
ly are not given control i:hrough special
references to them. The nonual sequence of
control governing ordinary statE~ment execu­
tion also governs the execution of beqin
blocks. Control passes into a t)egin block
sequentially, following execut:ion oithe
preceding statement.

Begin blocks a.r:-e not essential to thE:
construction of a PL/I program~ However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advant:age~; are d.is­
cussed in this chapter and in Chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any Dlock can contain one or more
blocks. That is, a procedure, as well as a
begin block, can contain other procedures
and begin blocks. However, there can be no
overlapping of blocks; a block that con­
tains another block must totally encompass
that block.

~ procedure block that is contained
witnin another block is called an internal
Q~Q~~~~~~. ~ procedure block tha~-r;-~;~
contained ~ithin another block is called an
~~~~~~~!_Q~Q~~~~~~. There must always be 
at least one external procedure in a PL/I 
program. (Note: with System/360 implemen­
tations, each external procedure is com­
piled separately.) 

Begin blocks 
must alwa~"s be 
block. 

are always internal; they 
contained within another 

Internal procedure and begin blocks can 
also be referred to as nested blocks. 
Nested blocks may have block;-~e;~ed-wI~hIn 
them, and so on. The maximum level of 
nesting permitted by the a-Compiler is 
th~ee, with the external procedure consid­
ered at level one. (The outermost b~ock 

always must be an external procedure.) 
Consider the following example: 

~: PROCEDURE; 
statement-al 
statement-a2 
statement-a3 
B: BEGIN; 

statement-bl 
statement-b2 
statement-b3 
END; 

statement-a4 
statement-a5 
C: PROCEDURE; 

statement-cl 
statement-c2 
0: BEGIN 

statement-dl 
statement-d2 
statement-d3 
statement-d4 
END; 

END; 
statement-a6 
statement-a? 
END; 

In the above example, procedure block A 
is an external procedure because it is not 
contained in any other block. Block B is a 
begin block that is contained in A; it 
contains no other blocks. Block C is an 
internal procedure; it contains begin block 
D. rhis example contains three levels of 
nesting. A is at the first level, Band C 
are at the second level, and D is at the 
third JLevel. 

Note: The END statement always closes 
7r~e~, ends) that unclosed block headed by 
the BEGIN or PROCEDURE statement or an 
unclosed DO-group headed by the DO state­
ment that physically precedes, and appears 
closest. ·to the END statement. If a label 
follows END, it must be the label of the 

nearest preceding DO, BEGIN, or P~OCEDUKE 
statement for which there is no correspond­
ing END. 

ACTIVATION 

Although the begin block and the proce­
dure have a physical resemblance and play 
the same role in the allocation and freeing 
of storage, as well as in delimiting the 
scope of names, they differ in the way they 
are activated and executed. A begin block, 
like a single statement, is activated and 
executed in the course of normal sequential 
program flow, and, in general, can appear 
wherever a single statement can appear. 
For a procedure, however, normal sequential 
program flow passes around the procedure, 
from the statement before the PROCBDURE 
statement to the statement after the END 
statement of that procedure. The only way 
in which a procedure can be activated is by 
a p'~Qcedur~~i§.renc§.. 

A procedure reference is the appearance 
of an ~ntr1~ name (defined below) in one of 
the following contexts: 

1. After the keyword CALL in a CALL 
staternEmt 

2. As a function reference (see Chapter 
10, "Subroutines and Functions" for 
details) 

This chapter uses exarrlples of the first 
of these; that is, with the procedure 
reference of the form: 

CALL entry-name; 

The material, however, is relevant to the 
other form as well. 

An §.!!.t~y __ !!!!!!!§. is defined as either of 
the following: 

1. The label of a PROCEDU~E statement 

2. The label of an ENTRY statement 
appearing within a procedure 

The first: of these is called the 2.~i!!!ary 
§'~~~Y-_Qoint: to a procedure; the second is 
known as a ~§'£Q!!da~ __ ~!!.t~Y __ PQi!!.t to a 
procedure. (Note that for the D-Compiler 
an entry name of an external procedure 
cannot exceed six characters.) The follow­
ing is an example of a procedure containing 
secondary entry pOints: 

Chapter 6: Blocks, Flow of Control, and Storage Allocation 59 



1\.: PROCEDURE; 
statement-i 
statement-2 

ERRT: ENTRY; 
statement-3 
statement-4 
statement-5 

RE'I'R: ENTRY; 
statement-6 
statement-7 
statement-8 
END; 

In this example, A is the primary entry 
pOint to the procedure, while ERRr and RETR 
specify secondary entry points. 

When a procedure reference is e~ecuted, 
the procedure containing the s~ecified 
entry point is activated and is said to be 
invoked; control is transferred to the 
speci"fTed entry point. The poi.nt dt which 
the procedure reference appears is called 
the ~Q.!'~!: __ Q.f __ !'~~Q.~~tiQ~ and t;he clock in 
which the reference is made is called ~he 

iQYQ.~:!.!!g __ Q!Q~~. An invoking block :remains 
active even though control is tra~sferred 

from it to the bloCK it invokes. 

Whenever a procedure is invokej at its 
prinary entry point, execution uegins with 
the first executable statement in ~he 
invoked procedure. However, when ~ proce­
dure is invoked at a secondary E~ntry point, 
execution begins with the first eXEcutable 
statement following the ENTRY statement 
that defines that secondary entry point. 
rherefore, if all of the numberej state­
ment::; in the last example are executable, 
the statement CALL A would invoke procedure 
A at its primary entry point, and eKecution 
woul~ begin with statement-I; the statement 
CALL ERRr would invoke procedure ~ at the 
secondary entry point ERRT, and execution 
would begin with statE~ment-3; the statem(mt 
CALL RETR would invoke procedure ~ at its 
other secondary entry point, and eKecution 
would begin with statement-6. Ncte t~at 
any ENTRY statements encountered during 
sequential flow are never executed; control 
flows around the ENTRY statement a~ though 
the statement were a comment. 

~ny procedure, whether external or 
inter-nal, can always invoke an E'xte:nlal 
procedure, but it cannot always icvoke an 
internal procedure that is contained in 
some other procedure. Those intercal pro­
cedures that are at the first: IE·vel of 
nesting relative to a containing procedure 
can cLlways be invoked by that coctaining 
procedure, or by each other. For e:x:ampl'2: 

60 

PKMAIN: PROCEDURE; 
sta tE!ment-i 
statement-2 
sta tE!ment- 3 
A: PROCEDURE; 

statement-ai 
statement-a2 
B: PROCEDURE; 

statement-bi 
statement-b2 
END Bi 

END A; 
statement-4 
statement-5 
c: PROCEDURE; 

statement-cl 
statement-c2 
END; 

statement-6 
statement-7 
END; 

In this example, PRMAIN can invoke pro'­
cedures A and C, but not B; procedure A can 
invoke procedures Band C; procedure B can 
invoke procedure C; and procedure c can 
invoke procedure A, but not B. Note tha·t 
recursion is not permitted; that is, a 
procedure cannot be invoked while it is 
active. clence, a procedure cannot invoke 
itself. 

The foregoing discussion on the activa­
tion of blocks presupposes that a program 
has been activated in the first place. A 
program becomes active only when the oper­
ating system invokes the !.!!!!ial procedure. 
For System/360 implementations, this proce­
dure, also called the !!!~i!! procedure, mus·t 
be an external procedure whose PROCEDURE 
statement has been specified with the 
OPTIONS (MAIN) designation, as shown in t.h1e 
following example: 

CONTRL: PROCEDURE OPTIONS(MAIN); 
CALL A; 
CALL Bi 
CALL C; 
END; 

In this example, CONTRL is the initial 
procedure and it invokes other procedures 
in the program. 

The following is a summary of what has 
been stated, or at least implied, about the 
activation of blocks: 

• A program becomes active whEn the 
tial procedure is activated by 
operating system. 

ini­
t.:.he 

• Except for the initial procedure, 
external and internal procedures con­
tained in a program are activated only 
when they are invoked by a procedure 
reference. 

• A procedure cannot be invoked while it 
is active. 

• Begin blocks are activat.ed t.hrough nor­
mal sequential flow. 



• The initial procedure remains active 
for the duration of the program. 

• P.o.ll activated blocks remain active 
until they are terminated (see below). 

TERMINA'rION 

In general, a procedure block is termi­
nated when control passes back to the 
invokinq block or to some other active 
block. Similarly, a begin block is termi­
nated when control passes to another active 
block. There are a number of ways ny which 
such transfers of control can be accom­
plished, and their interpretations differ 
according to the type of block being termi­
nated. 

P.o. begin block is terminated when any of 
the following occurs: 

1. Control reaches the END statement for 
the block. When this occurs, control 
moves sequentially to the statement 
physically following the END. 

2. The execution of a GO TO statement 
within the begin block (or any block 
activated from within that begin 
block) transfers control to a point 
not contained within the block. 

3. P.o. STOP statement is executed (thereby 
terminating execution). 

P... GO TO statement of the type described 
in item 2 can also cause the termination of 
other blocks as follows: 

If the transfer point is contained in a 
block that did not directly activate the 
block being terminated, all intervening 
blocks in the activation sequence are 
terminated. 

For example, if begin block B is con­
tained 1n begin block A, then a GO TO 
statement in B that transfers control to a 
point contained in neither A nor B effec­
tively terminates both A and B. This case 
is illustrated below: 

FRST: PROCEDURE OPTIONS(MAIN); 
st.atement-l 
st.a tement- 2 
st.atement-3 
A:: BEGIN; 

statement-al 
statement-a2 
B: BEGIN; 

statement-bl 
statement-b2 
GO TO LAB; 
statement-b3 
END; 

statement-a3 
END; 

s1:a tement- 4 
si:a tement- 5 

LAB: si:atement-6 
si:atement-7 
END; 

After .f·RST is invoked, the first three 
statements are executed and then begin 
block A is activated. The first two state­
ments in A are executed and then begin 
block B is activated (A remaining active). 
When the GO TO statement in B is executed, 
control passes to statement-6 in FRST. 
Since statement-6 is contained in neither A 
nor a, both A and B are terminated. Thus, 
the transfer of control out of begin block 
B results in the termination of intervening 
block A as well as termination of block B. 

A procedure is terminated when one of 
the following occurs: 

1. Control .reaches a RETURN statement 
within the procedure. The execution 
of a RETURN statement causes control 
to be returned to the point of invoca­
tion in the invoking procedure. If 
the point of invocation is a CALL 
statement, execution in the invoking 
procedure resumes with the statement 
following the CALL. If the point of 
invocation is a function reference, 
execution of the statement containing 
the reference will be resumed. 

2. Control reaches the END statement of 
the procedure. Effectively, this is 
equivalent to the execution of a 
RETURN statement. 

3. The execution of a GO TO statement 
within the procedure (or any block 
activated from within that procedure) 
transfers control to a point not con­
tained within the procedure. 

4. A S'l'OP statement is executed (thereby 
terminating execution). 

Chapter 6: Blocks, Flow of Control, and Storage Allocation 61 



Items 1, 2, and 3 are normal ~rocedure 
ter~inations; item 4 is an abnormal proce­
durE termination. 

~s with a begin block, the type of 
termination described in item 3 can some­
timEs result in the termination of several 
procedures and/or begin blocks. Specifi­
callYJ if the transfer point s~ecified by 
the GO TO statement is contained in a block 
that did not directly activate tne block 
being terminated, all intervening blocks in 
the activation sequence are terminated. 
consider the following example: 

~: PROCEDURE OPTIONS(MAIN); 
statement-i 
statement-2 
B: BEGIN; 

statement-bi 
statement-b2 
CALL C; 
statement-b3 
END; 

statement-3 
statement-4 
C: PROCEDURE 

statement-ci 
statement-c2 
statement-c3 
0: BEGIN; 

statement-di 
~3ta tement -d2 
GO TO LAB; 
statement-d3 
I~ND; 

statement-c4 
END; 

statement-S 
IJA.E: statement-6 

statement-7 
END; 

In the above example, A activates B, 
which activates C, which activates D. In 
0, the statement GO TO LAB transfers con­
trol to statement-6 in A. since ~his 
statement is not contained in 0, c, or B , 
all three blocks are terminated; A remains 
active. Thus, the transfer of control out 
of 0 results in the termination of in~er­
vening blocks Band C as well as the 
termination of block D. 

A. program is terminated when ei ·ther of 
the following occurs: 

1. A STOP statement is executed anywhere 
within the program. This is called 
abnormal program termination, which, 
for the D-Compiler, effectively 
results in an immediate tr3nsfer of 
control to the final END statement in 
the main procedure. 

2. Control reaches a RETURN statement or 
the final END statement in the main 
procedure. This is called normal pro­
gram termination. 

3. A null on-unit is executed for the 
ERROR condition or the standard system 
action for the ERROR condition is 
taken. The standard system action for 
this condition results in a return of 
control to the operating system con­
trol program. 

STORAGE ALLOCATION 

Storage allocation is the process of 
associating an area of storage with a 
variable so that the data item(s) to be 
represented by the variable may be recorded 
internally. When storage has been asso­
ciated with a variable, the variable is 
said to be allocated. Allocation for a 
given variable- may·-take place §.:!::~ti~allz, 
that is, before the execution of the pro­
gram, or ~!!~mically, during execution. A 
variable that is allocated statically 
remains allocated for the duration of the 
program. A variable that is allocated 
dynamically will relinquish its storage 
either upon the termination of the block 
containing that variable or by pointer 
manipulation. 

The manner in which storage is allocab~d 
for a variable is determined by the storag0 
class of that variable. There are three 
storage classes: static, automatic, and 
based. Each storage class is specified by 
its corresponding storage class attribute: 
STATIC, AUTOMATIC, and BASED, respectively. 
The last two define dynamic storage alloca­
tion. 

Storage class attributes may be declared 
explicitly for element, array, and major 
structure variables. If a variable is an 
array or a major structure variable, the 
storage class declared for that variable 
applies to all of the elements in the array 
or structure. 

All variables that have not been expli­
citly declared with a storage class attri­
bute are assumed to have the AUTOMATIC 
attribute, with one exception: any variable 
that has the EXTERNAL attribute is assumed 
to have the STATIC attribute. 

All variables that have the STATIC 
attribute are allocated storage before the 



execution of the program begins and they 
remain allocated for the duration of the 
program. For example: 

2NTRL: PROCEDURE OPTIONS (MAIN); 
DE2LARE (X,Y,Z) FIXED (5,0) 

STATIC EXTERNAL; 
},.:=1; Y=l; Z=l; 
CALL OUTP; 
C2\LL. NEXT; 
C2\.LL. REVERS; 
END; 

OUTP: PROCEDURE; 
DECLARE X FIXED (5,0) 

STA.TIC EXTEH.NAL; 

pur EDIT ('OUTP INVOCATION#', X) 
i(A(17), F(6»i 

X=X+1; 
END; 

Before execution of a program begins, 
all static variables are allocated. Thus, 
in the above example, X, Y, and Z are 
allocated before the initial procedure 
CNTRL is invoked by the operating system. 
When CNTRL is invoked, it sets X, Y, and Z 
to 1. (X is the same variable in both 
CNTRL and OUTP because it has been declared 
EXTERNAL in both.) Therefore, the first 
time that procedure OUTP is invoked, X has 
the value 1 and execution of the PUT 
statement causes this value to be written 
into the stream (along with an identifying 
character string). Before OUTP is termi­
nated, the value of X is increased oy 1 by 
the assignment statement. If OUTP is 
invoked a second time, and if the value of 
X is not changed elsewhere in the program, 
X has the value 2. Now when the PUT 
statement is executed for the second time, 
the new value of X is transmitted, etc. 
rhus, the static variable X is used to 
record the number of times that OUTP is 
invoked. 

Note that even though OUTP could be 
activated and terminated several times, X, 
being static, retains a value throughout 
the program. The EXTERNAL attribute is 
given to X only to allow X to be initial­
izej in the main procedure (eNTRL). 

A variable that has the AUTOMATIC attri­
bute is allocated storage upon activation 
of the block in which that variable is 
declared. The variable remains allocated 
as long as the block remains active; it is 
freed when the block is terminated. Once a 
variable is freed, its value is lost. 

A variable that has the BASED attribute 
is known as a based variable. Storage for 
a based variable is, in effect, allocated 
by the programmer through the use of a kEAD 
or LOCATE stat.ement with a SET option. 
This initializes the pointer variable asso­
ciated with the based variable in such a 
way that the description of the based 
variable applies to the storage area 
"pointed to" by the pointer variable. The 
pointer variable can be initialized in 
other ways (e.g., by the ADDR built-in 
function) so that the description of the 
based variable can overlay storage that has 
been allocated for other variables. 

The pointer variable can be manipulated 
so that the description of the based varia­
ble applies to different storage areas. 
That is, the value of the pointer variable 
can be changed so that the storage area 
associated with the old pointer value is no 
longer described by the based variable; the 
description of the based variable now 
applies to the storage area associated with 
the new pointer value. A complete discus­
sion of this topic is given in Chapter 12, 
"Based Variables and Pointer Variables." 

Each time a block is activated, certain 
activities must be performed before control 
can reach the first executable statement in 
the block. This set of activities is 
called a I2!:2!~29.:9:~. Similarly, when a block 
is terminated, certain activities must be 
performed before control can be transferred 
out of the block; this set of activities is 
called an ~i12g~~. 

Prologues and epilogues are the 
responsibility of the compiler and not of 
the progranmer. They are discussed here 
because knowledge of them may assist the 
programmer in improving the performance of 
his program. 

Chapter 6: Blocks, li'low of Control, and Storage Allocation 63 



"P. prologue is a compile.r-wri tten routine 
logically appended to the beginning of a 
block and executed as the first step in the 
activation of a block. In general, activi­
ties performed by a prologue are as fol­
lc)w~j : 

64 

• A..llocation of storage for automatic 
variables. 

• Establishment of the inheritance of 
on-units. 

.. t\llocation 
ments tha.t 
block. 

of storage for dunmy argu­
may be passed from the 

An epilogue is a compiler--written rou­
tine logically appended to the end of a 
block and executed as the fina~ step in the 
termination of a block. In general, the 
activities performed by an epilogue are as 
follows: 

• Re-establishment of t.he on-unit envi­
ronment existing beforE~ th(; block was 
activated. 

• Release of storage for all automa~ic 
variables allocated in the block. 



p~ PL/I program consists of a collection 
of identifiers, constants, and special 
characters used as operators or delimiters. 
Identifiers themselves may be either key­
words or names with a meaning specified by 
the programmer. The PL/I language is con-­
structed so that the compiler can usually 
det.;:~rmin.e from context whether or not an 
identifier is a keyword, so there are very 
few reserved words that must not be used 
for programmer-defined names (see note 
below). ~ny identifier ma~ be used as a 
name; the only restriction is that at any 
point in a program a name can have one and 
only on£ meaning. For example, the same 
name cannot be used for both a file and a 
fl03ting-point variable. 

~Q~~! The 48-character set operation iden­
tifiers 3T, GE, NE, LE, LT, NG, NL, NOT, 
OR, ~ND, and CAT are fully reserved when 
the 48-character set is being used; when 
such is the case, these identifiers cannot 
be declared in any way. The Duilt-in 
function identifiers TIME, DATE, and NULL 
are partially reserved and cannot be impli­
citly declared. No other keywords are 
reserved. (Although the PL/I Subset Lan­
guage partially reserves the identifiers 
SYSIN and SYSPRINT, the D-compiler does 
not. However, some care should be taken if 
the programmer associates these identifiers 
witn the standard system files defined for 
the D-Compiler. This is covered in detail 
under "Standard Files" in Chapter 8.) 

It is not necessary, however, for a name 
to have the same meaning throughout a 
program. A name declared within a block 
has a meaning only wi thin t.hat block. 
Outside the block it is unknown unless the 
same name has also been declared in the 
outer block. In this case, the name in the 
outer block refers to a different object. 
This enables programmers to specify local 
definitions and, hence, to ~rite procedures 
or begin blocks without knowing all the 
names being used by other programmers writ­
ing other parts of the program. 

since it is possible for a name to have 
mo~e than one meaning, it is important to 
define which part of the program a particu­
lar meaning applies to. In PL/I a name is 
given attributes and a meaning by a dec­
laration (not necessarily explicit). The 
part of the program for which the meaning 
applies is called the ~~Q2~_Qf_~h~_~~~1~~~= 
tion of that name. In most cases, the 
~~~~e of a name is determined entirely by 
the position at which the name is declared
within the program (or assumed to b€~

declared if
explicit) .

the declaration is not

In order to understand the rules for the
scope of a name, it is necessary to
stand the terms "contained in"
"internal to."

under­
and

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be ~Qnt~i~§Q __ i~ that block.
Note, however, that the label of the
BEGIN or PROCEDURE statement heading
the block, as well as the label of any
ENTRY statement that applies to the
block, are not contained in that
block. Nested-blocks are contained in
the block in which they appear.

Text that is contained in a block, but
not contained in any other block nest­
ed within it, is said to be i~~~~~~l
to that block. Note that entry names
of a procedure (or the labels of a
BEGIN statement, if the block is a
begin block) are not contained in that
block. Consequently, they are inter­
nal to the containing block. Entry
names of an external procedure are
treated by the D-Compiler as if they
were internal to the external proce­
dure, but declared with the EXTERN~L
attribute.

In addition to these terms, the differ­
ent types ot declaration are important.
The three different types -- ~~Qli~i~ dec­
laration, contextual declaration, and
i~21i~i~ decIaration- are discussed in
the following sections.

~ name is explicitly declared if it
appears:

1. In a DECI .. ARE statement

2. In a parameter list

3. As a statement label

4. As the label of a PROCEDURE or ENTRY
statemen"t

Chapter 7: Recognition of Names 65

rhe appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately follow­
ing the PROCEDURE statement in which the
parameter list occurs (though the same name
may also appE·ar in a DECLARE statement
internal to the same block).

~he appearance of a name as the label of
either an internal PROCEDURE or an internal
ENrRY statement is the same as if it were
declared in a DECLARE statement inooediately
preceding the PROCEDURE statement for the
procedure to which it refers. The labels
of I:.he PROCEDURE and ENrRY statements of an
external procedure are treated by the D­
COITIpiler as if they appeared in ii DECLARE
sta'sement with the EXTERNAL attribute in
the external procedure.

rhe appearance of a statement label
prefix constitutes an explicit declaration
equivalent to the declaration of a variable
in d. DECLARE statement internal to the same
block as the statement to which it applies.

SCOPE OF AN EXPLICIT DECLARATION

the scope of an explicit declaration of
a name is that block to w~ich the
declaration is internal, but excluding all
contained blocks to which another explicit
:iec lara tion of the same idenl: if ier is
internal.

For example:

P Q A B B' C

P: PROCEDURE;

DECLARE A, B;

Q: PROCEDURE;

DECLARE B, C;

END;

END;

rhe brackets to the right indicate the
scope of the names. Band B' indicate the
t~o distinct uses of the name B.

~hen an identifier appears in a context
~here only an entry name can appear, its
attrioutes can be determined without expli­
cit declaration of that identifier. Such
an identifier is saij to be contextually

66

declared as an entry name only if it does
not lie within the scope of an explicit
declaration for that same identifier.
Entry names are the only identifiers that
can be so declared.

An identif ier t.hat has no1: been expli­
citly declared will be recognized and con­
textually declared as an entry name in
either of the following cases:

1. I f the identif ier immedia1:ely follows
the keyword CALL in a CAI. .. L statement.

2. If the identifier is immediately fol­
lowed by a parenthesized list in a
context where an expression is expect­
ed; ~.e., if the identifier appears as
the function name in a. function .r-ef­
erence with arguments.

A contextually declarl=d entry name is
given the EXTERNAL attribu"te b:{ default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immedia.tely follow­
ing the PROCEDURE statement of the external
procedure in which t:he nam'e ap?ears -:---.-----

Note that a contextual declaration has
the same effect as if the name were
declared in the ext~~!!~!:. procedure, even
when the statement that causes the context­
ual declaration is internal to a block
(called B, for example) that is contained
in the external porcedure. Consequently,
the name is known throughout the entire
external procedure, except for any blocks
in which the name is explicitly declared.
It is as if block B has inherited the
declaration from the containing external
procedure.

since a contextual declaration cannot
exist within the scope of an expliclt
declaration, it is impossible for the con­
text of an identifier to add to the attrl­
butes established for that identifier in an
explicit declaration. Thus, a parameter,
since it is explicitly declared by its
appearance in a PHOCEDURE or £NTRY state­
ment, can never be contextually declared dS

an entry name. A complementary expliclt
declaration of the ENTRY attribute must be
given for the parameter in its containing
procedure if the parameter is to be used as
an entry name within that procedure. Thls
rule is illustrated by the example below.

lhe following is invalid:

P: PROCEDURE (F'NAM);
C]I,.LL FNAMi

END;

FNAM appears in the parameter list of the
PROCEDURE statement and is therefore expli­
citly declared. Since no further explicit
jeclarat~ons are given for FNAM, it is
given the attributes DECIMAL FLOAT by
jefault, dnd hence must be an arithmetic
variable. Therefore, the appearance of
FN~M in the CALL statement 18 1n error
bec3use FNAM is not an entry name and it
cannot be contextually jeclared as an entry
name. The example could be corrected by
adding a DECLARE statement as follows:

P: PROCEDURE (FNA~1);

DECLARE FNAM ENTRY;

CALL FNAM;

ENDi

Now the CALL statement is valid because of
the complementary explicit declaration of
FNAM with the ENTRY attribute.

If a name appears in a program and is
not explicitly or contextually declared, it
is said to implicitly declared. The scope
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the first

PROCEDURE statement of the external proce­
dure in which the name is used.

An implicit declaration causes default
attributes to be applied, depending upon
the first letter of the name. If the name
begins with any of the letters I through N
it is given the attributes FIXED BIN]l,.RY
(15). If the name begins with any other
letter including one of the alphabetic
extenders $, #, or @, it is given the
attributes FL,OAT DECIMAL (6). (The default
precisions are those defined for System/360
implementations.)

The identifiers TIME, DATE, and NULL
cannot be implicitly declared; each is
always assumed to refer to the correspond­
ing built-in function, unless, of course,
it has been explicitly declared otherwise.

Scopes of data declarations are illus­
trated in Figure 7-1. The brackets to the
left indicate the block structure, the
brackets to the right show the scope of
each declaration of a name. In the
diagram, the scopes of the two declarations
of Q and R are shown as Q and Q' and Rand
R' •

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a ref­
erence to R is also made in block B. The
reference to R in block B results in an

r---,
A:

[

PROCEDURE;
DECLARE P, Q;
B: PROCEDURE;

DECLARE Qi
R = Q;
C: BEGIN;

DECLARE Ri
DO I = 1 TO
ENDi
END i

P Q Q' R R' S I

]

10;

END] D: PROCEDURE;]

I END ~~~L~RE S;]
L ___ ----_____________________________ _

Figure 7-1. Scopes of Data Declarations

Chapter 7: Recognition of Names 67

r---,
I Ll Ll' L2 ABC D E

I
I
I

[

A:

[

PROCEDURE OPTIONS CMAIN);
1.1 :
1:1:

D:

P = Q;
PROCEDURE;
L2: CALL C;
C: PROCEDUt{E;

Ll:: X = Y;
Cl\LL Ei
END

GO TO J ... l;
END ;
PROCEDURE;

END
CALL B:
gND :

]
]

[

E: PROCEDURE;]

! END ,
l. ______________ . _________________ . ____ . ___ ._J

Fiqllre 7-2. Scopes of Entry and I.abel D€:clarations

inplicit declaration of R in A,the external
procedure. Two separate names with differ­
ent scopes exist, therefore. The Gcope of
the explicitly declared R is c: ~he scope
of che implicitly declared R is all of A
~~~I~~!:: block C. 

1 is referred to in block C. This 
results in an implicit declaration in the 
external procedure A. As a result, this 
declaration applies to all of A, including 
the contained procedures B, C and ~. 

~ is declared within procedure 0 and is 
kno~n only within D. 

icopes of entry name and statement label 
Jeclarations are illustrated in F1gure 7-2. 
The example shows two external pr~cedures. 
The names of these procedures, A and E, are 
assumed to be explicitly declared with the 
EXTERNAL attribute within the procedures to 
which th~y apply. In addition, E is con­
textually declared in A as an ~XTERNAL 
entry narr·e by its appearance in tne CALL 
statement in block C. The contextual dec­
laration of E applies throughout block A 
and is linked to the explicit declaration 
of ~ that applies throughout block E. The 
scope of the name E is all of block A and 
all of block E. The scope of the name A is 
only all of the block A, and not E. Since 
recursion is no~ permitted, A could not be 
called from within E anj hence A is not 
known within .E. 

rhe label Ll appears 
internal to ~ and to C. 

68 

with statements 
Two separate 

declarations are therefore esta.blished; t~he 
first applies to all of block 'A except 
block C, the second applies to block C 
only. Therefore, when thl? GO TO statememt 
in block B is executed, control is trans­
f erred to Ll in block i\, and block B is 
terminated. 

D and B are explicitly declared in block 
A and can be referred to anywhere within A; 
but since they are INTERNA.L, t:hey cannot be 
referred to in block E (unless passed as an 
argument to E). 

C is explicitly declared in B and can be 
referred to from within B, but not from 
outside B. 

L2 is declared in B and can be referred 
to in block B, including c, which is 
contained in B, but not from outside B. 

The attributes associated with a name 
comprise those explicitly, contextually, or 
implicitly declared, as well as those 
assumed by default. The default for each 
attribute is given in Part II, Section I, 
"Attributes." 



rhe scope of a name with the INrERNAL 
attribute is the same as the scope of its 
declaration. Any other explicit declara­
tion of that name refers to a ne~ object 
with a different, non-overlapping scope. 

A nam~ with the eXTERNAL attribute may 
be declared more than once in the same 
program, either in difierent external pro­
cedures or within blocks contained in 
external procedures. Each declaration of 
the name establishes a scope. These dec­
larations are linked together and, within a 
program, all declarations of the same iden­
tifier with the EXTERNAL attribute refer to 
the same name. The scope of the name is 
the sum of the scopes of all the declara­
tions of that name within the program. 

Since these declarations all refer to 
the same thing, they must result in the 
same set of attributes. It may be impossi­
ble for the compiler to check this, parti­
cularly if the names are declared in dif­
ferent procedures, so care should be taken 
to ensure that different declarations of 
the same name with the EXTERNAL attribute 
do tlave matching attributes. The attribute 
listing, which is available as optional 
output from the D-compiler, helps to check 
the use of names. 

The D-Compiler restricts a name with the 
ExrERNAL attribute to six characters or 
less. Ihis includes names that are EXTER­
N~L by default, such as file names and 
entry names of external procedures. 

~!~~el~! The following example illustrates 
the points discussed in this chapter: 

A: PROCEUURE OPTIONS (MAIN); 
DECLARE S CHARACTER(10); 
C1\.LL SET (23168) ; 

~: Gg'l' EDIT ... ; 
B" BE3IN; 

DECLARE (X,Y) DECIMAL; 
JET EDIT(X,Y,N) ... ; 
CALL C(X,Y); 
C: PROCEDURE(P,Q); 

DECLARE S BINARY EXTE~NALi 

GET EDIT(l) .•. ; 
IF ... THEN GO TO Bi 
CALL 0 (I) ; 

CALL OUrr (E) ; 

B: l!;ND C; 
D: PROCEDURE(N); 

PUT EDIT(N,S) ... ; 
END D; 

END B; 
GO TO E; 
END Ai 

OUT: PROCEDURE(R); 
DECLrARE R LABEL, 

GO TO Ri 

S BINARY EXTERNAL, 
Z DECIMAL FIXED, 
(M,L) STATIC, 
INTERNAL; 

SET: EN'l'RY (Z); 

X=Z; 
RETURN; 
END OUTi 

A is an external procedure name; its 
scope is all of block A, plus "any other 
blocks where A is declared (explicitly or 
contextually) as external. 

S is explicitly declared in block A and 
block C. The character-string declaration 
applies to all of block A except block C; 
the binary declaration applies only within 
block C. Notice that although D is called 
from within block c, the reference to S in 
the PUT statement in D is to the character 
string S, and not to the S declared in 
block C. 

N appears as a pararheter i.n block D, but 
it is also used outside the block. Its 
appearance as a parameter establishes an 
explicit declaration of N within D, the 
reference outside D causes an implicit 
declaration of N in block A. These two 
uses of the name N refer to different 
objects, although in this case the objects 
have the same data attributes. 

X and Yare known throughout B and could 
be referred to in blocks C or D within B, 
but not in that part of A outside B. The X 
used within the entry point SET is an 
implicit declaration of X within OUT and is 
not known outside OUT. 

P and Q are parameters; their appearance 
in the parameter list is sufficient to 
constitute an explicit declaration. 

I is not explicitly declared in the 
external procedure A; it is implicitly 
declared and is therefore known throughout 
A, even though it appears only within block 
C. 

chapter 7: Recognition of Names 69 



wi thin ext:ernal proced.ure "A, OUT ,and SET 
are contextually declared as en~ri names, 
since they follow the keyword CJ'.J:..L. They 
axe therefore considered to be dl?clared in 
~, and are given the EXTERNAL attribute by 
de:Eault. 

,rhe second external procedure in the 
exanple has two entry names, SET and OUT. 
rhese are considered to be ,O!xplicitly 
jeclared with the EXTERNAL attri0ute. The 
two entry names SET and OUT are therefore 
knoiNn throuqhout the two exter]al proce­
du:res. 

Ihe label B appears twice in:he exam­
pl,::, once as the label of a be'jin block, 
which is an explicit declaration of B as a 
la;:>el in A" I t is redeclared d.S a label 
within block C by its appeara~ce as a 
prefix to the END statement. The reference 
to B in the GO TO statement within block C 
refers to the label of the END statement 
within block C. Outside bloc;{ C, any 
reference to B would be to the la~el of the 
beqin block. 

Note that C and D can be called from any 
point within B, but not from that part of A 
outside B, nor from another exter~al proce­
clure. Similarly, since E is knovu through­
out ~, transfers to E may be made from any 
point within A. Transfers out of a nested 
block are therefore possible, but, in gen­
eral, transfers into such a bloCI( arE' not. 

~n exception to the above rule is shown 
In the extErnal procedure our, where the 
la oel E from block A is pas~)ed a.s an 
dr~ument to the label parameter R. The 
statement GO TO R causes control La pass to 
the label E, even though E is declared 
within A, and not known within OUT (this 
topic is fully discussed in ch~pter 10, 
"Suuroutines and Functions"). 

The variables M and L are declared 
within the block OUT to be STATIC, so each 
value is preserved oetween calls to OUT. 

In order to make the S in our the same 
dS the S in c, they have both been declared 
with the attribute EXTERNAL. 

~:1Q ~Il~~~_Q~~l~~g~!:IQ ~~_~fiQ_~g!~QS2 ~~ 
l~~ [~g~fi~~§' 

Two or more declarations of the same 
identifier internal to the same block con-

70 

stitute a multiple declar<!tiQ!!, unless at 
least one of the identifiers is declared 
within a structure in such a 'riay that name 
qualification can be used to make the names 
unique. 

Two or more declarations anywhere in a 
program of the same identifie:r as diffeI:ent 
names with the EX'I'ERNAL attribute consti­
tute a multiple declaration. 

Multiple declarations are in error. 

"A name need have only enough qualifica­
tion to make the name unique. Reference to 
a name is always taken -to apply to the 
identifier declared in the innermost block 
containing the reference. An ambi~E!2.~~ 
reference is a name with insu:Eficient qU2J.l­
Iilcatl0n to make the name unique. 

The following examples illustrate both 
multiple declarations and ambiguous ref­
erences: 

DECLARE 1 A., 2 C, 2 D, 3 £; 
BEGIN; 
DECLARE 1 A, 2 B, 3 C, 3 E; 
A.C = D.E; 

In this example, A.C refers to = 
inner block; D.E refers to E in the 
block. 

in the 
outer 

DECLARf.; 1 A, 2 B, 2 B, 2 C, 3 D, :2 D; 

In this example, B has been multiply 
declared. A.D refers to the second D, 
since A.D is a complete qualification of 
only the second D; the tirst D would have 
to be referred to as A.C.D. 

DECLARE 1 A, 2 B, 3 C, 2 ), 3 Ci 

In this example, A. C is ambi'j uous because 
neither C is completely qualif ied by -this 
reference. 

DECLARE 1 A, 2 A, 3 A; 

In this example, A refers to the 
A.A refers to the second A, 
refers to the third A. 

DECLARE X; 
DECLARE 1 Y, 2 X, 3 Z, 3 A, 

:2 Y, 3 Z, 3 Ai 

first A, 
and A .. A.A 

In this example, X refers to the first 
DECLARE statement. A reference to Y.Z is 
ambiguous; Y.Y.Z refers to the second Zj 
and Y.X.Z refers to the first z. 



PL/I provides input and output state­
ments that enable data to be transmitted 
between the internal and external storage 
devices of a computer. A collection of 
data external to a program is called a g~i~ 
set. Transmission of data from a data set 
to a program is called i~~~~, and transmis­
sion of data from a program to a data set 
is called Q~i~~~. 

Data sets are stored on a variety of 
external storage media, such as punched 
cards, reels of magnetic tape, and magnetic 
disks. Despite tneir variety, external 
storage media have many common charac­
teristics that permit standard methods of 
collecting, storing, and transmitting data. 
For convenience, thus, the general term 
volu~e is used to refer to a unit of 
~if~i~al storage, such as a reel of magnet­
ic tape or a disk pack, without regard to 
its specific physical composition. 

rhe data items within a data set are 
arranged in distinct physical groupings 
called blocks. These blocks allow the data 
set to -"-b;;--transmitted and processed in 
portions rather than as a unit. For proc­
essing purposes, each block consists of one 
or more logical subdivisions called 
~~~~~g~, each of which can contain one or 
more data items.

Ii block is also called a QhY2!.~~;~
~~~Q~~L because it is the unit of data that 
is physically transmitted to and from a 
volume. To avoid confusion between a phy­
sical record and its logical subdivisions, 
the logical subdivisions are called !Qg!.~~! 
~~~:~~g§.. 

When a block contains two or more
records r the records are said to be
~lQ~~~g. Blocked records often permit more
compact and efficient use of storage. Con­
sider how data is stored on magnetic tape:
the data between two successive interrecord
gaps is one block, or physical record. If
several logical records are contained with­
in one block, the number of interblock gaps
is reduced, and much more data can be
stored on a full length of tape. For
exanple. on a tape of density 800
characters/inch with an interrecord gap of
0.6 inches, a card image of 80 characters
would take up 0.1 inches. If the records

were unblocked, each record would require
0.1 inches, plus 0.6 inches for the inter­
record gap, making a total of 0.7 inches.
100 records would therefore take up 70
inches of tape. If the records were
blocked, however, at, say, 10 records to a
block, each block of 10 records would take
up 1 inch, plus 0.6 inches for the gap,
making a total of 1.6 inches. Thus, 100
records would now take up only 16 inches of
tape; this is less than 25 percent of the
amount needed for unblocked records.

Most data processing applications are
concerned with logical records rather than
physical records. Therefore, the input and
output statements of PL/I generally refer
to logical records; this allows the pro­
grammer to concentrate on the data to be
processed, without being directly concerned
about its physical organization in external
storage.

TYPES OF DATP. TRANSMISSION

Two different types of data transmission
can be used by a PL/I program, stream­
oriented transmission and record-oriented
transmission.

In strea!!!=orient~g __ :t!:~~~!!!i2~i2.~L the
data in the data set is considered to be a
continuous stream of data items in charac­
ter form. Consequently~ characters in the
input stream are interpreted and converted
where necessary to the specified internal
form; on output, data items in internal
form are converted where necessary to char­
a.cter form and added to the output stream.
The GET and PUT statements are the data
transmission statements used in stream­
oriented transmission. Variables~ to which
input data items are assigned, and
expressions from which outpQt data items
are transmitted, are generally specified in
a data list with each GET or PUT statement.

Although data in the data set exists in
record format:, in stream transmission such
organization is ignored within the program
and the data is treated as though it
actually were a continuous stream of indi­
vidual data items.

Chapter 8: Input and Output 71

I n f~~Qf:~=Qf:i~!!!~~:_ tr ~!!§'!!.li§.~~iQ!:! L da ta in
the data set is considered to be a collec­
tio~ of discrete logical records, recorded
in any format acceptable to the compu~er.
No data conversion is performej during
record transmission; on input it is trans­
mitted exactly as it is recorde~ in the
data set; on output it is transmitted
exactly as it is recorded internally.

l'he READ, REWRITE, and WRITE statements
cause a single logical record to bE trans­
mitted to or from a data variable or, in
the case of READ with the SE'I option, to an
i ntE'rmedia te, addrE:~ssable buffer. The
LOClI.l'E statement allocates an area in a
buffer to which data for a record can be
assigned.

Note
blocked,
actually
set as
stat.ement
logical
unblocked

that although records may be
in which case the physical. record
is transmitted to or from the data
an entity, each data transmission
in record 1/0 is concerned with a
record. Blocked records are
automatically.

'l'he following discussion of files and
file attributes should be of particular
interest to a programmer using record­
orit:::nted transmission. File harlulin'9 is
simpler when using stream-oriented
transmission, and, as can be noted, fewer
ctttributes are applicable to stream files.

To allow a source program to eleal pri­
lltarily with the log lcal aspects of data
rat.her than w'ith its physical orgctnization
in a data set, PL/I employs a symbolic
representation of a data set called a iil~.
Thi~; symbolic represE~ntation deterllunes now
input and output. ~;tatements access and
pr ocess the as.socia ted da ta sei:~. Unlike a
data set, however, a file has significance
onl)' wi tnin the source prograru and does n01~

exi~;t as a tobysical entity extEc:rnal to the
[lLolf rarn .

!JL/I requires a fil~_!:!~!!!§: to be declared
fCJr a file and allows the charact:eristics
of a file to be de~;cribE.d wi th keyword~3

Cd lL ed f~!~_~!::!!:i!2~!~~L which are ~;pecil ied
f DJ[U1E. file name.

7::.

FILE ATTRIBUTES

The following lists show file attributes
that are applicable to each type of data
transmission:

Record Transmission
FILE
RECORD
INPUT
OUTPU'l'
UPDATE
ENVIRONMENT
SEQUENTIAL
DIRECT
BUFFEr<.ED
UNBUFFERED
KEYED
BACKWARDS

stream Transmission
FILE
STREAM
I NPU'].'
OUTPUT
PRIl\T
ENVIRONMENT

A detailed description of each of these
attributes appears in Part II, Section I,
nAttributes. n The discussions below give a
brief description of each at.tribute and
show how attributes are declared for a
file.

The FILE attribute indicates that the
associated identifier is a file name. For
example, the identifier MASTBR is declared
to be a file name in the following state­
ment:

DECLARE MASTER FILE •.. ;

The FILE attrioute must be explicitly
declared for every file name and file name
parameter, and it must always be the first
attribute declared in a file declaration.

The attributes associated with the FILE
attribute fall into two categories: alter­
native attributes and additive attributes ..
An alternative attribute is one that is
chosen froma groupat-attributes. If no
explicit declaration is given for one of
the alternative attributes in d group and
if Olle of the alternatives i~; required, a
default attribute is assumed in most cases.

An additive attribute is one that must
be stated--expITcitly--or is implied by
another explicitly stated attribute. The
additive attribute KEYED can t)e implied by
the DIRECT attribute. The ENVIRONfvlENT
attribute lliUSt always be declared explicit­
ly for every file. An additive attribute
can never be applied by default __

PL/I provides four groups of alternative
file attributes. Each group is discussed
individually. Following is a list of the
groups and the default for each:

Group Alternative Default
Iy'Q§' Attributes ~:!:::!::~i~~!:§
Usage STREAM-T-RECORD STREAM

Function INPUTIOUTPUT\UPDATE no default

Access SEQUENTIAl .. I DIRECT SEQUENTIAL

Buffering BUFFERED I UNBUFFEKED BUFFERED

Note: No default is applied for the func­
fI~~-attributes; one must always be speci­
fied. In the case of an UNBUFFERED file,
INPUT or OUTPUT can appear in the OPEN
statement rather than in a DECLARE state­
menLo The scope of a file name must always
be EXTERNAL. A file name can be explicitly
declared to have this attribute; otherwise
it is supplied automatically.

The STREAM and RECORD attributes des­
cribe the type of data tran~mission
(stream-oriented or record-oriented> to be
used in input and output operations for the
file.

The STREAM attribute causes a data set
associated with a file to be treated as a
continuous stream of data items recorded
only in character form.

The ~ECORD attribute causes
assDciated with a file to be
sequence of logical records,
consisting of one or more
recDrded in any internal form
the implementation.

a data Stet
treated as a
each record
data items

acceptable ·to

DECLARE MAST.l~R FILE RECORD ••• ,
DETAIL FILE STREAM ..• ;

The function attrioutes determine the
direction ot data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to be
created, and hence are to be written only.
The UPDATE attribute describes a file that
is to be used for both input and-output; it
allows records to be inserted into an

existing file and other records already in
that file to be altered.

DECLARE
DETAIL FILE INPUT ... ,
RBPORT FILE OUTPUT ... ,
l lASTj~R FILE UPDATE ... ;

The access attributes apply only to a
file with the RECORD attribute and describe
how the records in the file are to be
accessed.

'rhe SEQUENTIAL attribute normally speci­
fies that successive records in the file
are to be accessed on the basis of their
successive physical positions, such as they
are on magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined by a
key; therefore, the DIRECT attribute
implies the KEYED attribute. The associat­
ed data set must be in a direct-access
volume.

The buffering attributes apply only to a
file that ba.s the SEQUENTIAL and RECORD
attributes. The BUFFERED attribute indi­
cates that logical records transmitted to
and from a file must pass through an
intermediate internal-storage area. The
size of a buffer usually corresponds to the
size of the blocks (physical records) in
the data set associated with the file (a
discussion of block size and buffer alloca­
tion appears in this chapter in
nENVIRONMEN,]~ Attribute" > . The use of buf­
fers may help speed up processing by allow­
ing an overlap of transmission and comput­
ing time. It further allows the automatic
blocking and unblocking of records.

The UNBUFFERED attribute indicates that
a logical record in a data set is not to
pa.ss through a buffer but will be transmit­
ted directly to and from the internal
storage associated with a variable. The
logical records and physical records are
the same size in a data set that is
associated with an UNBUFFERED file.

Note: In jthe D-Compiler, the UNBUFFERED
at.tribute always specifies that a record is

Chapter 8: Input and Output 73

not to pass through any
mediate storage area.
buffers" are never used.

buffer or inter­
So-called "hidden

The additive attributes are:

PRINT

BACKWARDS

KEYED

~NVIRONMENT (option-list)

TiJ.E::: PRIN1' attribute applies only to
file:3 with the STREAM and OUTP(ll' attri­
butes. It indicates that the ~ile is
even~ua~ly to be printed, that is, ~he data
ass~ciated with the file is to appear on
printed pages, although it may flrst be
wri-tt:.en on some other medium. The PRINT
attrlbute specifies that the associated
record is to be created with the initial
byte reserved for a printer control charac­
ter.

The BACKWARDS attribute indicateE, that a
file is to be accessed in reverse order,
beginning with the last logical record and
proceeding through the file until t~e first
logical record is accessed. The B~CKWAdDS
attribute applies only to RECORD files with
the SEQUENTIAL and INPUT attributes and
only to data sets on magnetic tape.

The KEYED attribute indicates that. each
record in the file has a key and can be
accessed using one of the key options (hEY
or K~YFROM) of data transmission state­
ment.s. Note that the KEYED attribu1:'E~ does
not necessarily indicate that the actual
key,:; exist or are to he written in Lbe data
set. The STREAM and Pt{INT attributes can­
not be applied to a file that has th:~ KEYED
attribute. The use of keys is discussed in
detdil in "Environmental Considerations
tor Data Sets" and "Record-Oriented
rransmission" in this chapter.

74

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
These characteristics are indicated in a
parenthesized option list in the ENVIRON­
MENT attribute specification and are deI:en­
dent upon the implementation. The option
list for the D-Compiler is discussed in
"Environmental Considera tions for Dat:.a
Sets."

Note: As stated earlier in this chapter.
each file must be explicitly declared; the
FILE attribute and the ENVIRON:~NT attri-­
bute must appear in every file declaration.

OPENING AND CLOSING FILES

Before the data associated with a file
can be transmitted ny input or output
statements, certain file prE=paration activ­
ities must occur, such as checking for the
availability of external storage media,
positioning the medium, and allocating
appropriate programming support. Such
activity is known as openin9 a file. Also,
when processing is completed, tne file must
be closed. Closing a file involves releas­
ing the facilities that were established
during the opening of tne file.

The PL/I Subset provides two statements,
OPEN and CLOSE, to perform t:.hesE~ functions.
All files with the RECORD at~tri.bute must be
explicitly opened before use. However,
with STREAM files, explicit opening is
optional. If an OPEN sta.temEnt is not
executed for a STREAM file, the file is
opened automatically when the first GET or
PUT is executed; in this case~ automatic
file preparation is exactly the same as if
an explicit OPEN had been executed before
the GET or PUT. All files, both STREAM a.nd
RECORD, not closed before completion of a
program will be closed automatically upon
completion of the program.

The following discussions show the
effect of OPEN and CLOSE statements.

Execution of an OPEN statem:::mt caus,e~;

one or more files to be opened ,explicitly.
The OPEN statement has th.e follo 1Ning basic
format:

OPEN f'ILE(file-name) [option-list]
[,l,lILE(file-name) [op-tion°·list]] •.. ;

rh~ option list of the OPEN statement can
include INPUT or OUTPUT provided the file
has the UNBUFFERED attribute. These attri­
butes, when included as options in the OPEN
utaLement, are merged with those stated in
a DECL~RE statement. The same attriDute
should not be listed in both an OPEN
statement and a DECLARE statement for the
same file, and, of course, there can be no
conflict. The other option that can appear
in the OPEN statement is LhE PAGESIZE
option, us~d to s~ecify layout of a print
page. This is discussed later in this
chapter.

rhe OPEN statement is executed by
library routines that are loaded dynamical­
ly at the time the OPEN statement is
executed. Consequently, execution time can
be reduced if more than one file is speci­
fied in the same OPEN statement, since the
routines need be loaded only once, regard­
less of the number of files beiny opened.

~or a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and out~ut statements listed
below in "Implicit Opening" are executed
tor the same file.

An implicit opening of a file occurs
only when a GET or PUT statement is execut­
ed without the prior execution of an OPEN
statement for that file. The effect of an
implicit opening is the same as if an OPEN
staLement for the file had been executed
before the GET or PUT statement. All files
implicitly opened by a GET statement must
be declared explicitly as INPUT, and all
files irr~licitly opened by a pur must be
declared explicitly as OUTPUT.

rhere must be no conflict between the
attributes specified in a file declaration
and the attributes merged as a result of
explicit file opening. For example, a
conflicL exists when a file is given the
B~CKW~RDS attribute in a DECLARE statemen-t
and then is given the OUTPUT attribute in
an OPEN statement. Since the attributes
B~2~WARDS and OUTPUT are in conflict, an
error message will be generated during
compilation of the program.

With the D-Compiler, a tile name is
associated with a data set by using the
MEDIUM option in the PL/I Subset ENVIRON­
MENT attribute and, if necessary, the ASSGN
statement from the DOS/TOS Job Control
Language. This method of associating data
sets and file names is described later in
this chapter in the discussion of the
MEDIUM option under the heading "The ENVI­
RONMENT Attribute."

The basic form of the CLOSE statement
is:

CLOSB FILE (file-name)
[,FILE(file-name)] ... ;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also disso­
ciates from the file an INPUT or OUTPU~
attribute established for it by an explicit
opening. If desired, a new INPUT or OUTPUT
attribute may be specified for the file
name in a subsequent OPEN statement. How­
ever, all attributes explicitly given to
the file name in a DECLARE statement remain
in effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
may save execution time.

~Q~~: Closing an already closed
opening an already opened file
effect.

PAGE LAYOUT FOR PRINT FILES

file
has

or
no

The overall layout of a page in a file
that has the PRINT attribute is controlled
by means of the PAGESIZE option of the OPEN
statement. For example:

DECLARE REPORT FILE OUTPUT PRINT
ENVIRONMENT (option-list);

OPEN FILE (REPORT) PAGESIZE(55);

The specification PAGESIZE(55) indicates
that each page should contain a maximum of
55 lines. An attempt to write on a page
after 55 lines have already been written
(or skipped) will raise the ENDPAGE condi­
tion. The standard system action for the
ENDPAGE condition is to skip to a new page,

Chapter 8: Input and Output 75

but: the programmer can establish nis own
action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. consequently, printing can
be con'tinued beyond the specifieJ PAGJ8SIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be ~ritten at
the bottom of each page. Consider the
following example:

ON ENDPAGE (REPORT) GO TO~-OOT;

FOOT: PUT FILE(REPORT) SKIP EDIT
(FOOTING) (A);

PUT FILE(REPORT) PAGE;
N :: N + 1;
PUT FILE(REPORT) EDIT ('PA3E ',N)

(A,F(3» ;
PUT FILE(REPORT) SKIP (3)~

GO TO NEXT;

Assame that REPORT has been opened with
P~GESIZE(55), as Shown in the previous
exa~ple. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and ~he GO TO
FOOT statement will be executed. The first
PUT statement specifies that a line is to
be skipped, and the valae of FOOTING, a
character string, is to be printed on line
57 (when ENDPAGE arises, the current line
is always PAGESIZE+l). The second PUT
statement causes a skip to the next page
and the ENDPAGE counter is automatically
reset for the new page. The page number is
incremented, and the character string
• PAGE , and the new page number N are
printed. Note that a blank is included as
part of the character string tc separate
the word from the page number. l'he F(3)
format item allows the page number to go as
high as 999. ']'he final pur ~;tatement
causes three lines to be skipped, so that
the next printing will be on line 4. ThE?
GO TO NEXT statement transfers control to
the statement labeled NEXT.

The maximum number of charactE'rs to be
printed on each line (i.e., the li~e size)
is equal to the fixed length record size
specified in the ENVIRONMENT attribute for
the file (see the ENVIRONMENT' a·ttri:::mte
later in this chapter). An attempt to
write more than the maximum number of
characters specified without skipping to a
new line or page will Cduse the excess
characters to be placed on tne next line.

The PAGESIZE option can be speciJ:ied
only for a file with the PRINT attrioute
and it can be specified only in -the OPEN
st.a tement.

76

Further details of writing in PRINT
files appear later in this cho.pter in "Data
Transmission."

STANDARD FILES

Two standard system files are provided
that can be used by any PL/I Subset pro­
gram. These files are referred to in the
PL/I Subset by specifying a GET or PUT with
neither the FILE nor the STRING opt.ion.
For example:

GET EDIT ... ;
PUT EDIT ... ;

For the above GET, the DOS/TOS system input
device SYSIPT is referred to: for the above
PUT, the DOS/TOS system output device
SYSLST is referred to. When these standard
DOS/TOS input/output devices are referred
to as shown above by specifying neither the
FILE nor STRING option in a GET or PUT, no
explicit file declaration neej be given.
The association of the files with SYSIPT
and SYSLST is automatic. Indeed, if files
are explicitly declared and associated with
SYSIPT or SYSLST (using the MEDIUM option
of the ENVIRONMENT attribu·te> , certain
rules must be observed when :referring t.O
the files to ensure that items are trans­
mitted to or from the outp~lt or input
stream in the propE~r ordelr. 'rhese will tJe
discussed later.

with the PL/I DOS/TOS D-Compiler, t.he
identifiers SYSIN and SYSPRINT are in no
way reserved words. They are never recog­
nized as special identifiers in any way.
Therefore, the.y can be declared just as any
other legal PL/I identif iel~s according to
the normal rules for declarations. Howev­
er, in the PL/I language, t:hese identif iers
are usually thought of as t:he standard
input/output files. If the prograrrmer
desires to explicitly declare them as file
names or otherwise, he should be aware of
certain implications as discussed below.
Note, however, that of the two identifiers
SYSIN and SYSPRINT, only S)~IN can be
declared as a file name because file names,
being external, cannot exceed six charac­
ters in length; any attempt to declare the
eight-character identifier SY~~RINT as a
file name would result in an error.

For example, if one wishes to set up an
ENDFILE on-unit for the standard input
device, he must explicitly declare a file
name and associate it with SYSIPT in the
normal manner using the MEDIUM option in
the ENVIRONMENT attribute. The identifier
SYSIN seems a logical choice for this file
name. Once SYSIN has been so declared with
the proper attributes, then one may use

ei ther GET FILE (SYSIN) EDIT. • • o_r GET
EDIT ••• without the FILE or STRING option
to refer to the standard input device
SYSIPT. However, within any g1ven program
in ~hich SYSIN has been explicitly declared
and associated with SYSIPT, one should
either consistently include the FILE
(SYSIN) option or consistently omit the
FILE (SYSIN) option in all GET statements.
This is because one buffer ~ill be set up
for the explicitly declared SYSIN file, and
another buffer will be set up for use with
GET statements with no FILE option. Thus,
although both GET statements would refer to
the DOS/TOS standard input file SYSIPT,
intermixed GET EDIT... and GET FILE
(SYSIN) EDIT... statements would refer
first to one buffer and then the other, and
data. i terns would not necessarily be trans'­
mitted in the same order in which they
originally appeared in the input stream
from SYSIPT.

£Q.~I~~ti!~1!!!Y __ ~Q.!~!" In the OS/360 PL/I
F-Ievel compiler, a GET or PUl' without a
FILj~ or STRING option is exact!y equivalent
to GET FILE (SYSIN}... or PUT FILE
(SYSPRINT) •••• Thus, if SYSIN and SYSPRINT
are declared as variables other than file
variabIE:!s, the F-Ievel compiler does not
allow a GET or PUT without a FILE or STRING
option. However# in the DOS/TOS D-Ievel
compiler, lOne may declare SYSIN or SYSPRINT
as non-file variables and still use GET and
PUT wit.h no FILE or STRING option to refer
to the standard DOS/TOS input/output devi­
ces SYSIPT and SYSLST. Therefore, a good
programming practice is to use SYSIN only
as a file name referring to the standard
input device and to avoid the use of
SYSPRINT entirely.

The PL'/I compiled program produced by
the D-Compiler is designed to be executed
under control of DOS/TOS. It provides data
management facilities that control the
organization, location, storage, and
retrieval of data sets. The PL/I progralm
calls upon these facilities when it is
being e~lCecuted. The following discussions
describf~ the relationship between the input
and. output. statements of a PL/I program and
the' various data set organizations support~­
ed by the data management facilities of
DOS/TOS.

DEVICE INDEPENDENCE OF INPUT AND OUTPUl'
STATEMENTS

The input and output statements of ~
PL/I Subset program are concerned with the
logical organization of a data set and not
with its physical characteristics. Some of
the detailed information ultimately
required by al PL/I program to process a
data set information such as
input/output unit number and recording den­
sity -- need not be stated until the PL/I
program is ready to be executed. Other
information such as input/output device
type and buffering technique is isolated in
the ENVIRONMENT attribute. Device indepen::.
de~ of this type allows changes in this
information possibly without requiring
changes to the PL/I program itself or at
most by making changes only in the ENVIRON­
MENT attribute. The required information
about specific input/output devices is sup­
plied through the MEDIUM option of the
ENVIRONMEN1; attribute. By changing this
option, diffE~rent input/output devices may
be specified for a file. Therefore, a PL/I
program can be deSigned without specific
knowledge of the input/output devices that
will be used when the program is executed.
This informa1:ion can then be added to the
ENVIRONMENT attribute at a compilation just
prior to execution.

The ENVIRONM1~NT Attribute

The ENVIRONMENT attribute provides
information about the physical organization
of the data set associated with a file.
This informat.ion allows the compiler to
determine the method of accessing the data
set.

For the D-Compiler" the ENVIRONMENT
attribute has the following general form:

ENVIRONI~ENT (option-list)

where "option list" is:

{
V (maxblock:size) ~ [CONSECUTIV~
F(blocksize[, recordsize]) REGIONAL(l}
U (maxblock:size) REGIONAL (3)

MEDIUM (logical-device-name,
physic.al-device-type)

[LEAVE] [BUFFERS (n)] [NOLABEL] [VERIF'Y]
[KEYLENGTH(decimal-integer-constant}]

For ease of discussion, the options of
the ENVIRONMENT attribute are divided into
five groups: record format" data set organ­
ization, device allocation, length of keys
associated ~ith data sets, plus a group of
other options to facilitate handling of

Chapter 8: Input and Output 77

data sets. The record format -- either V,
F, or U -- must be specified. One of the
data set organizations may be specified
(CONSECUTIVE is applied by default if none
is specified). The MEDIUM specification
must~ always appear. All other options may
or may not be given depending on the data
set configuration and use. Examples of
complete file declarations can be found in
Chapter 13, "A PL/I Program. 1It

Logical records can appear in one of
thrE~e formats: fixed-length (F-format) ,
variable-length (V-format), or ur..defined­
length (U-format). These formats provide
flexibility in the design of data sets and
allow the programmer to take advantage of
the fixed-length and variable-length
features of specific input/output devices.

Ihe block size and record size are
specified in number of bytes. For F-format
records, if the record size is not speci­
fied in the ENVIRONMENT attribute w the
records are assumed to be unblocked. Block
size must be specified. Record size can be
specified for F-format records only.
Blocking and unblocking are handl,ecl auto­
matically.

with F-format records, unblocking is
dependent upon the stated record size. The
block size must be evenly divisible by the
record size.

With V-format records, unblocking is
dependent upon information at the beginning
of each block and at the beginning of each
logical record. Four bytes are used at the
beginning of each block to specify block
length, and another four bytes are used at
the beginning of each record to specify
length of that record. Although insertion
of this length information is done 2l.utomat­
ically by the system when the dat21. set is
created, the programmer must inc:ude the
number of length-specifying bytes ~n deter­
mining his block s~ze specification. When
V-for-mat d-ata sets ar,e created, rec::>rds are
always blocked if their lengths allow two
or more to be placed into a block smaller
than or equal to -the maximum that is
specified.

With U-format records, each block con­
sists of only one record. The blocks
(records) are of varying lengths. No ~;ys­

tern control bytes appear anywherE! wi t_hin
the block. All processing of re.:!ords is
the :responsibility of the programmE-c. If a
length specification is included in the
record, the programmer must insert~ it bim­
self, and he must retrieve the information
himself.

78

Da~a set Organization

The organization of a data set deter­
mines how data is recorded in a data set
volume and, once recorded, how data is
subsequently retrieved so that it can be
transmitted to the program.. Logical
records are stored in and retrieved from a
data set, in either S'I'REAN or RECORD
SEQUENTIAL transmission, on the basis of
successive physical positions or" in DIRECT
RECORD transmission, on the basis of the
values of keys specified in data transmis­
sion statements. These storage and retrie­
val methods provide PL/I with two general
data set organizations: CON~:ECUTIVE and
REGIONAL. CONSECUTIVE organization is
assumed by default.

Each of the different data set organiza­
tions is explained in the discussions
below.

CONSECUTIVE DATA SET ORGANIZATION: In a
data set with CONSECUTIVE 6rganization, the
logical records are organized solely on the
basis of their successive physical posi­
tions# such as they appear on magnetic
tape. such a data set does not use keys ·to
determine the position of each record.
Records are retrieved only in sequential
order; therefore, the associated file must
have the SEQUENTIAL attribute (or be a
STREAM file). Records may be F-format,
V-format., or U-format. The las-t two fOJr­
mats ev and U) may be used only for RECORD
input/output and only with tape and direct
access units.

Input/output devices permitted for CON­
SECUTIVE data sets include magnetic tape
units, card readers and punches, direct­
access storage units, and printers.

Later discussions will show that bot.h
stream-oriented and record-oriented trans­
mission statements can process data sets
with CONSECUTIVE organizations. Howevel:-"
stream-oriented statements are restricted
to this type of organization; record­
oriented statements are not.

After a CONSECUTIVE data set is created,
it may be opened only as an INPUT or UPDA~~E
file. Reading of such a data set may be
either forwards or backwards if the data
set is recorded on magnetic tape. To read
the data set backwards, the associated file
must be declared with the BACKWARDS
attribute. If a data set is first read or
written forwards and then read ~ackwards in
the same program, the LEAVE option in the
ENVIRONMENT attribute must be specified t~o
prevent the normal rewind when -the file is
closed or when volume switching occurs wit~h
a multi-volume data set. V-fo:rmat recon1S
cannot be read backwards.

Note the difference between the CONSECU­
TIVE option of the ENVIRONMENT attribute
and thE~ SEQUENTIAL attribute. CONSECUTIVE
specifies the physical organization of a
data set; SEQUENTIAL specifies how a file
is to be processed. However, in the PL/I
Subset, a data set with CONSECUTIVE organi­
zation [[Lus't be associated with a SEQUENTIAL
fill~, ~;~nd'-a-data set with REGIONAL organi­
zation !~~!!~!:._~~ associated with a DIREC'T
file.

REGIONAL. DATA SET ORGAN I ZATION: REGIONAL
orgiinizi;:fi;on-of-a:-da ta set-provides control
of 'the physical placement of records in the
data set. This type of control allows the
pr09rammer to optimize the record access
time required by a particular application.
Such optimization is not available with the
CONSECUTIV,t; organization, in which succes­
sive records are written in strict physical
sequence and which does not take advantage
of the timing characteristics of direct­
access storage devices. The input/output
devices allowed for REGIONAL data sets are
restricted to direct-access storage
devices.

g~~~~g_!~;~y~.!. The REGIONAL data set organi­
zation allow the use of keys to identify
specific records. There are two kinds of
keys, recorded keys and source keys. A
~~~~~g§:~~_~~y is a character string that 
actually appears in the data set, along 
with the record, as a positive identifi­
cation of that record. It cannot exceed 
255 bybE~s in length. A §'Q!!Ece __ ~~i is a 
character string (or expression) that 
appears in a record-oriented data transmis­
sion statement to identify the record to 
which the statement refers. 

The way keys are specified and used 
differs between the two different kinds of 
REGIONAL organization. For data sets that 
contain recorded keys, the source key must 
exactly match the recordea key in order to 
positively identify a record. 

whenever source keys are used in a 
program to access or create a data set 
(using the KEY or KEYFROM option), the 
KEYED attribute must be specified for the 
file. In addition, for data sets that 
contain recorded keys, the KEYLENGTH option 
in the gNVIRONMENT attribute of the asso­
ciated file must be used to specify the 
actual length, in bytes, of the recorded 
key. 

A data set with REGIONAL organization is 
divided into relative regions, each of 
which is identified by a region number and 
each of which may contain one or more 
records. The regions are numbered in suc­
cession, beginning with zero, and a record 
is accessed by specifying its region number 
in the source key of a record-oriented 

transmission statement. Two kinds of reg­
ional specifications are used, relative 
record and relative track. A relative 
EecorQ specification refers to a regionof 
the data set~ by specifying the number of a 
particular record, relative to the first 
record in the data set J which is number 
zero. A relative track specification 
refers to a region of the data set by 
specifying the number of a particular track 
relative to the first track of the data 
set, which is track zero. A relative track 
or relative record specification always 
refers uniquely to one region in a data 
set. 

There are two types of REGIONAL organi­
zation, one of which, REGIONAL~3)# permits 
recorded keys 'to appear physically 1n the 
data set with the logical records. Howev­
er J these recorded keys are never embedded 
within a record. When REGIONAL records are 
accessed by record-oriented ~tatements, the 
source keysv specified in the statements, 
represent a region number and may also 
represent a recorded key. 

Direct access of REGIONAL data sets 
employs the J::-egion number, specified in the 
source key. for direct access of the 
region. Once the region has been accessed, 
a sequential search mayor may not be 
performed for a record that contains a 
recorded key identical to the source key. 
A search is performed only for REGIONAL (3) , 
and this search extends only throughout the 
region <relative track) specified by the 
source key. 

Sequential processing of REGIONAL data 
sets is no·t allowed. All REGIONAL data 
sets must be associated with file names 
that have the DIRECT attribute. 

Each of ·the REGIONAL types is descr ibed 
in the following discussions. 

REGIONAL(l) Organization: A data set with 
REGIONAL (1) organization contains unblocked 
F-format records that do not have recorded 
keys. Each region in the data set contains 
only one logical record; therefore, each 
region numb,er represents the position of 
one logical record within the data set. 
The relative position of the first record 
is zero. 

Since the.re are no recorded keys to be 
used .for comparison, only a region number, 
which serves as the sole identification of 
a particular logical record, is meaningful 
in a source key. The character-string 
value of the source key must represent an 
unsigned decimal integer that does not 
exceed 16777215. Only the characters 0 
through 9 are recognized in the source key 
(leading blanks of a character-string 
source key are not interpreted as zeros). 

Chapter 8: Input and Output 79 



rhus, any source key expression must al\t/ays 
result in a character string of length 8 
containing only the digit characters 0 
thr~ugh 9. One good way of doing this is 
to declare all source keys as numeric 
character variables by using the PICTURE 
'(8)9' attribute. 

g~~!Q~?~Jd.ll __ Q:f:9.~!!i~~tio!!.£ A data set ~l1ith 
REGIONAL(3) organization contains unblocked 
F-format records that have recorded keys. 
Unlike REGIONAL (1) organization, each 
region in the data set corresponds to a 
track on the direct-access storage device, 
and therefore may contain ITlOre t:han one 
logical record. 

The recorded key associated with each 
logical record is a character string, 
recorded in the data set and i~rrediately 
preceding the record. The recorjed key 
always includes the regional number as its 
rightmost eight characters. The source key 
(specified as a constant or some ot.her 
expression) consists of a character-string 
value. It may be thought of as having two 
logical parts, the region specification and 
the specification of a character-string key 
to uniquely identify the record within the 
regi~n. 

The actual source key to be used is 
generated by evaluating the source key 
expression and converting it to a cnaracter 
string. The source key expression (which, 
of course, may simply be a single v,;triable) 
must always result in a character string 
whose length precisely equals the v,;tlue of 
the KEYLENGTH specification in the .~NVIRON­
MENT attribute .. 

Tne rightmost eight character:3 of the 
soun::e key make up the f.~9.iQ!! ___ :?~§.s.~fi= 
cation, which states the region number. 
(Onli- the characte:rs 0 through 9 are 
allo'fled; blanks are not interpr'~ted as 
zero:3.) A substring beginning at ·:.he left 
of the source key and containing ei9ht less 
than the number of characters speciiied in 
the KEYLENGTH option is the f.t~~~.!":~f.:t~~= 
§'!:f.i!!g_~~Y_§'2~~~ifif.~!:Jo!!. 'Io reLcievE a 
rec~rd, the entire source key must exactly 
match the recorded key of the record, since 
both the region specification and the 
character-string key specificaLLon are 
included in the recorded key. No~e that 
this means that the KEYLENGTH speciiication 
must always be 9 or greater; 8 for the 
region specification plus at l,east. 1 for 
the character-string key specificaLLon. 

::::onsider the following source key exam­
ple (b represents a blank): 

KEY('JOHNbDOEbbb00003251') 

The J::-ightmost eight characters rnakE~ up the 
region specification.. the relativE: number 

80 

of the track. (Note that leading zer(~~ 
appear, since leading blanks are not treat­
ed as zero and would cause an error.) The 
associated file declaration should have the 
ENVIRONMENT option KEYLENGTH (19). fu1Y 
other KEYLENG'l'H specif ication would cause 
the above source key expression to be 
padded with blanks or truncated on the 
right., and therefore the proper region., 
track 3251, would not be accessed. 

In retrieving a record with the above 
KEY specification, the search will start at 
the beginning of track number 3251, and it 
will continue until the first record is 
found in that track having the ~ecorded key 
of JOHNbDOEbbb00003251. If no record is 
found in track 3251 having this key~ the 
KEY condition is raised. 

If the above KEY option were used with 
an output operation, the record would be 
written i!!_!:h~_-.!irsL_~.Y~i:!.able s2ace on 
track 3251. If no space were available on 
that track, the KEY condi tio:n would be 
raised. 

'rhe reg ional 
REGIONAL (3) data 
16777215. 

specification for 
sets can:not exceE~d 

~2!!!Qar ison of REGIONAL TYI2~:~.!.. J~ecords in a 
REGIONAL data set are eithe:r "actual, n 

representing valid data, or "dummy," rep­
resenting usable areas p:cepa:red when the 
data set is created. Only :r-fo:rmat records 
are allowed for REGIONAL files. Dummy 
records are identical in REGIONAL(l) and 
REGIONAL(3) data sets. 

Before a file can be opened -to create a 
REGIONAL data set, the entire volume to be 
used must be initialized using the DOS 
Clear Disk utility program. 'rhis program 
creates dummy records, each of which con-' 
tains a string filled with user-defined 
characters and resets the capacity record 
RO to reflect that all tJCack~3 are emptli'. 
For REGIONAL (3) , this reseti:ing of I1~O 

insures that the dununy recoJCds '''ill not be 
retrieved as actual data records. (For 
details, see the publication IBI~ System!:36~Q 
Qisk~!!SL Ta2~ __ QE~ra ting_2J~§~~ __ Util.i t:l': 
f~29.ram~~cification~, Form C24-3465.) 
Once the format of the volume has been 
established using this utility program, the 
file can then be opened and the REGIONAL 
data set created. The file must, of 
course, have the DIRECT attrlbute, sinc~ 
SEQUENTIAL is not allowed wi 1:h REGIONAL 
data sets. 

For retrieving records, a file associat­
ed with a REGIONAL data set can have either 
INPUT or UPDATE attributes. It must have 
the DIRECT attribute. 



when 
with a 
records 
replaced 
tions: 

a REGIONAL data set is associated 
file that has the UPDATE attribute, 

can be retrieved, added, and 
according to the following conven-

REGIONAL(l): All records, whether 
dummy or actual, can be 
retrieved. 

REGIONAL(3): Dummy records cannot be 
retrieved. 

RgGIONAL(l): Addition involves the 
replacement of existing 
records, whether dummy 
or actual (no error 
condition is raised in 
either case). 

REGIONAL(3): Addition involves the 
placement of the record 
into the specified 
region. 

REGIONAL(l): The specified record, 
whether dummy or 
actual, is rewritten. 

REGIONAL(3): A record with the spec­
ified key must exist. 
The record is rewrit­
ten. 

The MEDIUM option of the ENVIRONMENT 
attribute and, if necessary~ the ASSGN 
statement of the DOS/TOS Job Control Lan­
guage are used to associate data sets with 
file names. The format of the MEDIUM 
op·tion is: 

Ml::DIUM (logical-device-name, 
physical-device-type) 

The !.(;~9.i~~!. __ ~evi~~_na!!!~ is t.he name asso­
ciated with the file that is known to the 
system" The :ehY§.ical de.Yice..;...!:Y2~ defines 
the type of input/output device (for exam­
ple, card reader, disk) which the file 
requirE~s. 

The logical device name is of the form 
SYSxxx a where xxx can be !~! (system input 
device), 1§! (system output device used for 
listinq), PC!:!, (system output device used 
for punching cards), or QQQ through ~~~ 
(programmer-defined logical units). 'I'he 

physical device type is a four-digit number 
giving the device number of the 
input/output device to be used. For exam­
ple, for the IBM 2400 Magnetic Tape Unit, 
the number is 2400; for the IBM 2311 Disk 
Unit, the number is 2311. 

The logical device name is assigned 
before program execution to a specific 
l2.!!Y§.ical inl2.~lt/output unit available to the 
system. This assignment may be accom­
plished in one of two ways. Certain stand­
ard logical device names are automatically 
associated with specific physical 
input/output units in any given DOS/TOS 
system configuration. (Since the automatic 
association of logical device names with 
physical input/output units is tailored to 
fit the needs of a particular installation, 
and therefore may differ from system to 
system, one should check the association of 
logical device names with physical 
input/output units for the DOS or TOS 
system he is using.) If the logical device 
name is not one of those automatically 
associated with a physical input/output 
unit or if the automatic association is to 
be changed, the job control language ASSGN 
statement is used to effect the assignment. 
Of course, the physical device type of the 
MEDIUM option must correspond to the physi­
cal input/output unit type assigned to the 
file either automatically or by using the 
ASSGN statement. For example, if the phy­
sical device type indicates magnetic tape, 
the file must be assigned to a magnetic 
tape unit. 

consider the following example: 

DECLARE MASTER FILE RECORD INPUT 
SEQUENTIAL ENVIRONMENT 
( •• . MEDIUM(SYS006,2400)... ); 

In the above declaration, the file MAST.t:R 
is assigned the logical device name SYS006 
in the MEDIUM option of the ENVIRONMENT 
attribute. Also using the MEDIUM option, 
the physical device type for file MASTER is 
declared to be an IBM 2400 IVlagnetic Tape 
Unit. 

If the DOS or TOS system in which the 
above file declaration is used automat­
ically associates the name SYS006 with a 
suitable nagnetic tape unit, no further 
assignment is necessary. Otherwise, the 
ASSGN stat(::!ment from DOS/TOS job control 
language must be used to assign a system 
file to a magnetic tape unit. The job 
control program used with the execution 
module must contain the statement partially 
shown below: 

// ASSGN SYS006, ... 

Chapter 8: Input and Output 81 



Ttli::; statement associates 1:he log ical 
device name SYS006 with a physical 
input/output unit which must, of cc,urse f be 
a magnetic tape. The specific tape unit to 
be used follows the SYS006 on the A:3SGN 
statement. (For the complete format of the 
ASSGN statement, see the publication, IBM 
~y§~ ~l!!L~ §'Q._Q.!.§. ~_§!'~~!_~§!'E§._Q2§.!::~!:!.gg._ :~Y§.i~~ms ~ 
E~~!_~!::Qg!::~!.!}!.!}§r~§,_~~'!Q§" Form C24-'9005. 

All files in the PL/I Subset must be 
explicitly declared with a MEDIUM option in 
the ENVIRONMENT attribute, and the log~Lcal 
device name must be assigned to a physical 
input/output unit either automatically by 
the system or by using the DOS/TOS Job 
control Language. Failure to declare the 
MEDIUM option properly will produce a com­
piler error message; failure to assign the 
file properly to a physical input/output 
unit will result in cancellation of the job 
at the first attempt to open the file. 

K,C!ys are spf~cified in READ, WE.lTE, or 
REWfUTE statements for DIRECT fi11O's which 
are associated with HEGIONAL dat.d sets. 
For t{EGIONAL (1.) , the key sp,ecif:L es the 
reqion number, which is the logical record 
number of the record to be accessed within 
the data set. Thus, the key is sioply an 
H-diqit number, in character-string form, 
which identifies the logical record. The 
lenqi:h of the key for REGIONl~L CLl data sets 
is always as::;umed t:o be 8. No Kl~YLENGTH 
option is ever specified for a REGIONAL(l) 
file. 

Far REGIONAL(3) data sets, the key spe­
ci fies, in charact~er-string form, an 
a-digit number that identifies the region 
(relative track) where the record is to be 
locat.ed, preceded by a charactel~ string to 
uniquely identify the record within the 
region. The length of keys for REGIONAL(3) 
files must oe specifie:d using the KEYLENGTH 
opticn of the ENVIRONMENT attribute and is 
equal to 8 (for the 8-digit region number) 
plus the number of characters in the char­
dcter string that identifies the record. 
Thus, th~ KEYLENGTH specification mJst be 9 
or greater since there must be eiyht 
characters in the region specification and 
at least one more character for the record 
ident.if ication. 

Q~!::i!_~§.!: .. _f~~.!!:.!~2.!}!.g3.£ 'rhe LEAVE opt: ion in 
the ENVIRONtJI..ENT attribllte [Jr-events t~he nor­
mal r-ewinding of ma,}netic-tape volumes 

82 

(reels) when a data set is closed or when a 
reel is switched while accessing a multi­
volume data set. The LEAVE option is 
normally employed when a data set is 
alternatively opened for reading or writing 
forwards and reading backwards. 

~~!.!.er AllocatioT!':" A buffer is an internal 
program-storage area that is used for 
intermediate storage of data transmitted to 
and from a data set. Allocating two buf­
fers for a data set permits input and 
output activity to occur concurrently with 
internal processing. 

The option BUFFERS(n) in thE: ENVIRONMENT 
attribute specifies the number (n) of buf­
fers to be allocated for a da.ta set. In 
the D-Compiler,!! may be 1 or 2 ~ ThE~ 
BUFFERSCn) option may nol be used WiUl 
UNBUFFERED files. If the BUFFE.RS(n) optioIl 
is not specified, the numbeL of buffers is 
assumed to be one. 

f!::ocessig9 __ UnlaQeled ~~'§":2.':" It may b€~ 
desired to read or write a magnetic tape 
which has no label or perhaps a non­
standard label. The NOLABEL op~ion is used 
in the ENVIRONMENT attribute to indicdt.E~ 
that no label processing is to be done for 
the file. On output, a tape mark iE 
automatically written as the first record 
on the tape. On input, a i:ape mark is 
expected as the first record on the tape. 
e-vices 

~!!~~ERI~~_Qption: It may be desired, at 
the time a record is written, to check that 
the record is written corrE~ctly. 'rhe 
VERIFY option in the ENVI RONIV.tE N,]' attribute 
causes a read check to be performed after 
every write operation. This option is 
allowed only with files t.hat~ arE: associated 
with direct-access storage devices. 

As discussed earlier in this chapter, 
PL/I provides two types of data transmis­
sion, stream-oriented and record-oriented. 

With stream-oriented transmission, a 
data set is considered to be a continuous 
stream of data items in character form; 
internal bit-string representations and the 
internal formats of coded arithmetic data. 
do not appear in the stream. Data items 
are aSSigned from the stream to program 
variables or from program va Liables (01: 

expressions) into the stream, with 
appropriate conversion from or to character 
form. stream-oriented transmission state­
ments i:1nore the boundarie:::; between 
Lecords. 



With record-oriented transmission, a 
data seit is--treated--as - a collection of 
logical records, each of which consists of 
one or more data items. The data items can 
have any representation, internal or exter­
nal, that is acceptable to the computer, 
and there is no data conversion. Each 
logical record is transmitted as a unit to 
or from either a program variable or a 
buffer. 

stream transmission uses only two input 
and output statements, GET and PUT, which 
get the next series of data items from the 
stream or put a specified set of data items 
into the stream. In record transmission, 
the corresponding statements are READ and 
WRITE, which read a logical record from the 
data set or write a specified logical 
record into the data set. other record­
transmission statements are RhWRITE and 
LOCA.TE. 

It i.s possible for the same data set ito 
be processed at different times for ei th«=r 
stream transmission or record transmission; 
hOlJl1ever, t.he data set would have to be in 
character form acceptable for stream 
transmission. 

One of the attributes, STREAt-l or RECORD, 
specified for the file associated with a 
data set determines which transmission 
met.hod is applicable to the file at the 
time it is declared. 

In the PL/I Subset language, there are 
two modes of stream transmission: list­
directed and edit-directed. However, sInce 
edIt=-d:Crected--Is--theonly mode of stream 
input/output presently implemented by the 
D-compiler, list-directed will not be 
explained here or mentioned elsewhere in 
this publication. For a complete discus­
sion of list-directed input/output, see 
~~:~~!._~~~~~§.~!:_~ang~~g~~c if i~iiQ!!§', Form 
C28-6809. 

Edit-directed transmission uses the GET 
and PUT statements for input and output. 
These statements# in general J require the 
following information: 

1. The name of the file associated with 
title data set from which data is to be 
obtained or to which data is to be 
assigned. 

2. A list of program variables to which 
data items are to be assigned during 
input or from which data items are to 
be obtained during output. This list 
is called a ~ata li§.i. On output, t~he 

data list also can include constants 
and other expressions. 

3. The format of each data item in the 
stream. 

If the file name is not specified, one 
of the standard files is assumed. 

Edit-Directed Transmission 

Edit-directed transmission permits the 
user to specify the variables to which data 
is to be assigned or to specify data to be 
transmitted. Edit-directed transmission 
allows a programmer to specify the format 
for each item on the external medium. 

l!!Qut: Dat.a in the stream is a continuous 
string of characters; different data items 
are not separated. The variables to which 
the data is to be assigned is specified by 
a data list. Format items in a format list 
in the GET statement specify the number of 
characters to be assigned to each variable 
and describe characteristics of the data 
(for eXamplE!, the assumed location of a 
decimal point). 

Qutput.!.- 'l'he data values to be transmitted 
are defined by a data list. The format 
that the data is to have in the stream is 
defined by a format list. 

EDIT-DIRECTED DATA SPECIFICATION 

General format for an edit-directed data 
specification, either for input or output 
is as follml1S: 

EDIT (data-list) (format-list) 
[(data-list) (format-list)] ... 

1. The data list" which must be enclosed 
in parentheses# contains one or more 
variables that are to receive values 
on input or one or more expressions 
whose values are to be transmitted on 
output. bata lists are discussed in 
more detail in "Data Lists" below. 
The format list, whicih also must be 
enclosed in parentheses, contains on€ 
or morl: format items. There are three 
types of format items: data format 
items, which describe data in the 
stream; control format items, which 
describe page# line, and spacing oper­
ations; and remote format items, which 
specify the label of a separate state­
ment that contains the format list to 
be used. Format lists and format 

Chapter 8: Input and Output 83 



items are discussed in more c;etail in 
"Forma~ Lists;~ below. 

2. For input, data in the stream is 
considered to be a continuo\;,~) string 
of charact.ers noi: separated into indi­
vidual data items. The nunber of 
characters for each data item is spec­
ified by a format item in the format 
list. The characters are treat~d 
according to the associat~d format 
item. 

3. For output, the value of each item in 
the data list is converted to a format 
specified by the associated format 
item and placed in the stream in a 
field whose wiath also is speci.fied by 
the format item. 

4. For either input or output,. thE: fir:st 
data format item is associat.ed with 
the first item in the data list, the 
second data format item with the S'2C­

and item in the data list, and so 
forth. If a format li~;t contains 
fewer format items than th~re are 
items in the associated data list, the 
format list is re-used; if there are 
excessive format items, they are 
ignored. Suppose a format list con­
tains five data format items and its 
associated data list specifies ten 
items to be transmitted. Then ~he 
sixth item in the data list ~ill be 
associated with the first data format 
item, and so forth. Suppose a format 
list contains ten da~a format items 
dnd its associated data list s}ecifies 
only five items. Then the sixth 
through the tenth format i t.ems \lI7ill be 
ignored. 

5. 

6. 

An array or: structure variable i.o. a 
list is equivalent to n data items in 
the data list, where ~ is the number 
of elemen·t items in the a:cray or 
structure, each of which will be a5~)0-

ciated with a separate use of a data 
format item. 

If a data list item is associated with 
a control format item, that control 
action is executed, and the data list 
i tern is paired with the next: format 
item. 

7. rhe specified transmission is complete 
~hen the last item in the dat~ list 
has been processed using its corres­
t-Jonding fOJ:::-mat it,em. Subsequent tor­
na t items J, i!}~ludi!!5L._~2~:t:f2J~ __ f2fI.!§:t: 
ii~!Q§', are ignored. 

84 

8. On output, each data item occupies 
precisely the field length specified 
by its corresponding forma·t item i.n 
the format list. Thus, arithmetic 
data items should usually be associat.­
ed with format i.tems that pr:ovide more 
characters than really necessary t.o 
contain the data item, so i:hat leading 
blanks in each data item will separate 
it from other data items. 

Examples: 

GE'I' EDIT (NAME, DATA, SALAHY) 
(A (20), X(2), A(6), Ft:6,2»; 

PUT EDIT (' INVENTORY=' I I INUM, INVCODE) ) 
(A,F(S» ; 

The first example specifiE!s that the 
first 20 characters in the stream are to be 
treated as a character string and assigned 
to NAME; the next two characters are to be 
skipped; the next six are to be assigned to 
DATA in character format; and the next six 
characters are to be considE~red as an 
optionally signed decimal fixed-point con­
stant and assigned to SALARY. 

The second example specifies that the 
character string 'INVENTO:RY=' is to be 
concatenated with the value of character 
string INUM and placed in the stream in a 
field whose width is thE· lEngth of the 
resultant string. Then the value of 
INVCODE is to De treated as an optionally 
signed decimal fixed-point integer constant 
and placed in the stream right-adjusted in 
a field with a width of five characters 
(leading characters may be blanks). Note 
that operational expressions and constants 
can appear in output data lists only. 

Edit-directed data specifications 
require a data list to specify the data 
items to be transmitted. 

General format: 

(data-list) 

where data list is defined as: 

element [,element] ... 

Syntax rules: 

The nature of the elements depends upon 
whether tl1e data list is used for input OJ:" 

for output. The rules are as follows: 



1. On !~2~~' a data-list element for 
edit-directed transmission can be one 
of the following: an element, array, 
or structure variable, a pseudo­
variable that does not represent a 
structure or an array, or a repetitive 
specification (similar to a repetitive 
specification of a DO-group) involving 
any of these elements. 

2. On Q~~2~~, a data-list element tor 
edit-directed data specifications can 
be one of the following: an element 
expression, an array variaDle, a 
structure variable, or a repetitive 
specification involving any of these 
elenients. 

3. The elements of a data list must De of 
a~ithmetic or string data type. 

4. As shown in the general format, a data 
list. must always be enclosed in paren­
theses. 

Repetitive Specification 

The general format of a repetitive 
specification is shown in Figure 8-1. 

SY'ntax rules: 

1. An element in the element list of the 
repetitive specification can be any of 
those allowed as data-list elements as 
list~ed above. 

2. The expressions in the specification, 
which are the same as those in a DO 
statement, are described as follows: 

a. Each expression in the specifi­
cation is an element expression. 

b. In the specification, expression-1 
represents the starting value of 
the control variable. 
Expression-3 represents the incre­
ment to be added to the control 

variable after each repetition of 
data-list elements in the repeti­
tive specification. Expression-2 
represents the terminating value 
of the control variable. 
~xpression-4 represents a second 
condition to control the number of 
repetitions. The ~xact meaning of 
the specification is identical to 
that of a DO statement with the 
same specification. When the last 
specification is completed, con­
trol passes to the next element in 
the data list. 

3. Each repetitive specification must be 
enclosed in parentheses as shown in 
the general format. Note that if a 
repetitive specification is the only 
elemen·t in a data list, two sets of 
outer parentheses are required, since 
the data list must have one set of 
parentheses and the repetitive speci­
fication must have a separate set. 

4. As Figure 8-1 shows, the "speci­
fication" portion of a repetitive 
specification can be repeated a number 
of times, as in the following form: 

DO I = 1 TO 4, 6 TO 10 

Repetitive specifications can be nest­
ed; that is, an element in a repeti­
tive specification can itself be a 
repetitive specification. Each DO 
portion must be delimited on the right 
with a right parenthesis (with its 
matching left parenthesis added to the 
beginning of the entire repetitive 
specification). 

When DO portions are nested, the 
rightmost DO is at the outer level of 
nesting. For example, consider the 
follow~ng statement: 

GET EDIT «(ACI,J) DO I = 1 TO 2) 
DO J = 3 TO 4» (format-list); 

r---------------------------------------------------------------------------------------, 
I 
I (element [,elementl •.• DO variable = specification[, specification] •.• ) 
I 
I 
I~ "specification" has the following format: 
I 
I 
I 
1 [TO expression-2 [BY expreSSion-3]] 

lexpression-1 [WHILE (expression-4)] 
I BY expression-3 [TQ expression-2] L _______________________________________________________________________________________ J 

Figure 8-1. General Format for Repetitive Specifications 

Chapter 8: Input and Output 85 



Note the three set~s of parenthe~ies, in 
addition to the set used to delimit 
the subscript. The outermost set is 
t:he set required by the data li!:it; the 
next is that required by thE~ outer 
repetitive specification. The third 
::iet of parentheses istha t l:-equired by 
t~he inner repetitive specification. 
This statement is equi valent t~o the 
following nested DO-groups: 

00 J = 3 TO 4; 
DO I = 1 TO 2; 
G~T EDIT (A (IfJ» 
(forrnat-list~) ; 
END; 

END; 

It gives values to the elements of the 
drray A in the following order: 

A(1,3), A(2,3), A(1,4), A(2,4) 

~~Qi~~ Al though the DO keyword is used 
in the repetitive specification, a 
corresponding .t;ND statement is not 
allowed. 

Transmission of Data-List Elements 

It a data-list element is an array 
variable, the elements of the arrC1Y are 
transmitted in row-major order, that is, 
wi ttl t.he rightmost sub~icript of the array 
varying most frequentl}l'. 

U a data-list element is a structure 
variable, the elements of the st):-uct ure are 
transillitted in the ordE~r specified in the 
:.=;truct~ure declaration. 

For example, if a declaration is: 

DECLAt<.E 1 A, 2 S(10), 2 c(10); 

and if X is a file, then the statement: 

l::'UT FILE (X) EDIT (A) (format-list); 

would result in the out.put oeing ordE~red as 
follov.rs: 

~ •• B(l) A.B(2) A.B(3) •••• A.B(lO) 
{ .• c ( 1 ) A. C ( 2 ) A • C ( 3 ) • • • • A. C ( 1 0) • 

t f, wi thin a data list used in arl inpClt 
:cjta tement for edit -Jirected traIl~)mis~.ion, a 
variable is a~3siqned a value, this rl.<2W 

value is used if tne variable appear's in a 
later reference in the data list. For 
exampl.e: 

eEl' EDIT 
~:3UBSTR 

(N, L~ (J ) DO I =-1 TO N), IJ, 
(NALV1C::;, J, 3» (forrnat-l ist); 

when t.his statement is executed, dcta is 
transmitted and assigned in the followL19 
order 

86 

1. A new value is assigned to NG 

2. Elements are assigned to the array X 
as specified in the repetit.ive speci­
fication in the order 
X(1),X(2), ••• X(N), with the new value 
of N used to specify the number of 
items to be assigned. 

3. A ne~ value is assigned to CG 

4. A substring of length 3 is assigned to 
the string variable NAME, beginning at 
the Jth character. 

Each edit-directed data spE!cification 
requires its own format list. 

General format: 

(format-list) 

where format list is defined as: 

{

item }[' 
n item , 

n (format-list) , 

item ] 

: ~:::mat-list) 
Syntax rules: 

1. Each "item" represents a format item 
as described below. 

2. The letter Q represents an iteration 
factOr, which must be a~ unsigned 
decimal integer constant. A olank 
must separate the constant and the 
following format item. The iterat1ion 
factor specifies that the associated 
format item or format list is to be 
used n successive times. The asso­
ciated-format item is that item or 
list of items immediately tc the right 
of tne iteration factor. 

General rule: 

There are three types cf format 
items: data format items, control format 
items, and the remote format item. Data 
format items specify the external forms 
that data fields are to take. control 
format items specify, for PRINT files, the 
page, line, column, and spacing cperations. 
The spacing format item can alsc be used 
with non-PRINT files, either input or out­
put. The remote format item allcws format 
items to be specified in a separate FORMAT 
statement elsewhere in the block. 



Detailed discussions of the various 
types of format items appear in Part II, 
Section E, "Edit-Directed Format Items." 
The following discussions show now thE~ 
format items are used in ed1t-directed data 
specifications. 

Data Format Items 

8n input, each data format item speci­
fies the number of characters to be asso­
ciated with the data item and how to 
interpret the external data. The data item 
is assigned to the associated variable 
named in the data list, with necessary 
conversion to conform to the attributes of 
the variable. On output, the value of the 
associated element in the data ~ist is 
converted to the character representation 
specified by the format item and is insert­
ed into the data stream. 

There are four data format 
items: fixed-point (F), floating-point 
(E), character-string (A), and bit (B). 
They are specified as follows: 

F (wLd[,p]]) 

E (w,d[,s]) 

l\ [(w)] 

B i[(w)] 

In this list, the letter ~ represents a 
decimal integer constant that specifies the 
number of characters in the field. The 
let"ter d specifies the number of digits to 
the right of a decimal point. 

A third specification (E) is allowed in 
the F format item; it is a scaling factor. 
A third specification (~) is allowed in the 
E format item to specify the number of 
digits that must be maintained in the first 
subfield of the floating-point number. 
These specifications are discussed in 
detail in Part II, Section E, 
"Edit-Directed Format Items." 

Note: Fixed-point binary and floating­
point binary data items must always be 
represented in the input stream with their 
values expressed in decimal digits. The F 
dnd E format items then are used to access 
them, and the values will be converted to 
binary representation upon assignment. On 
output, binary items are converted to 
decimal values and the associated F or E 
format items must state the field width in 
terms of the converted decimal number. 

The following examples illustrate the 
USE: of for"mat items: 

1. GET FILE (INFILE) EDIT (ITEM) (A(20»; 

This statement causes the next 20 
characters in the file called INFILE 
to be assigned to ITEM, which must be 
a character-string variable. If it is 
not a character-string variable, an 
error results. 

~2te~ If the data list and format 
list were used for output, the length 
of a string item need not be specified 
in the format item if the field width 
is to be the same as the length of the 
string, that is, if no blanks are to 
follow the string or if no truncation 
is to occur. 

2. PUT FILE (MASKFL) EDIT (MASK) (B); 

3. 

Assume MASK has the attributes BIT 
(25); then the above statement writes 
the value of MASK in the file called 
MASKFL as a string of 25 characters 
consisting of a's and l's. A field 
width specification can be given in 
the B format item. It must be stated 
for input. Note that MASK must be a 
bit-string variable; if it is not, an 
error rE:S ul ts • 

PUT EDI,]' (TOTAL) (F(6,2»; 

Assume TOTAL has the attributes FIXED 
(4,2); t~hen the abOve statement speci­
f ies that the value of 'I'orrAL is to be 
converted to the character representa­
tion of a fixed-point numoer and writ­
ten in"to the standard output file. A 
decimal point is to be inserted before 
the las"t two numeric characters, and 
the number will be right-adjusted in a 
field of six characters. Leading 
zeros will be changed to blanks, and, 
if necessary, a minus sign will be 
placed to the left of the first numer­
ic character. If a decimal point or a 
minus sign appears, either will cause 
one less leading blank to appear. 
Consequently, the F(6,2) specification 
will always allow all digits, the 
point, and a possible sign to appear. 

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6»; 

This statement obtains the next ten 
characb2rs from the rile called A and 
interprets them as a floating-point 
decimal number. A decimal point is 
assumed before the rightmost six 
digits of the mantissa. An actual 
point within the data can override 
this assumption. The value of the 
number is converted to the attributes 
of ESTII~TE and assigned to this vari­
able. 

5. GET EDI'r (NAME, TOTAL) (A (5) , F' (4, 0) ) ; 

Chapter 8: Input and Output 87 



When this statement is executed, the 
standard input file is as~umed. The 
first five characters are as~;igned to 
NAHE. The next four charactE~rs must 
be arithmetic characters with possible 
leading and/or trailing blanks, and 
they are assigned to TOTAL. 

Control Format Items 

:ontrol format items consist of two 
typE::~s: the spacing format item (X) and the 
prir;.ting format items (COLUMN, LI[,;:.E!., PAGE, 
and SKIP). The spacing format itex speci­
fies relative spacing in the data stream. 
The printing format items can be used only 
with PRINT files and, consequently, can 
appEar only in PUT statements. All but 
PAGE generally include decimal integer con­
stants. LINE, PAGE, and SKIP also can 
apPEar separately as options in the PUT 
statement. When they appear as oftions in 
d PUT, expressions can be used in ~lace of 
the decimal integer constants. 

The following examples illustrate the 
use of the control format items: 

1. GET EDIT (NUMBER, REBATE) 
Ud5), XeS), A(5»; 

This statement treats t.be next 15 
characters from the standard input 
file in the following way: the first 
five characters are assigned to NUM­
BEk, the next five charac~ers are 
spaced over and ignored, and the 
remaining five characters are assigned 
to REBATE. 

2. PUT FILE(OUT) EDIT (PART, COUNr) 
(A(4), X(2), F(S»; 

This statement places in the file 
named OUT four characters that rep­
resent the value of PART, then two 
blank characters, and finally five 
characters that represent the integer 
value of COUNT. 

J. The following examples show th2 use of 
the printing format items in ::ombina­
tion with one other. 

8H 

PUT EDIT ('QUARTERLY STATEHENT') 
(PAGE, LINE(2), A(19»; 

PUT EDIT (ACCT#, BOUGHT, SOLD, 
PAYMENT, BALANCE) 

(SKIP(3), A(6), COLUMN(4) , 
F (7,:2>, COLUMN (30) , 
F(7,2), COLUMN(4S), 
F (7 , .2), COLUMN (60) , 
FC7,2»; 

The first PUT statement specifies that 
the heading QUARTERLY STATEMENT is to 

be written on line two of a new page 
in the standard system output file. 
The second statement spE~cifies that 
two lines are to bE' s.kipped (that is, 
"skip to the third following line") 
and the value of 1\,CCT:j:j is to be 
written, beginning at the first char­
acter of the fifth line; the value of 
BOUGHT, beginning at character posi­
tion 14; the value of SOLD" beginning 
at character position 30; the,value of 
PAYMENT, beginning at charaoter posi­
tion 45; and the value cf BALANCE at 
character position 60. 

Note: Control format items are executed at 
the-time they are encountered in the format 
list. Any control format list that appears 
after the data list is exhausted will have 
no effect. 

Remote Format Item 

The remote format item (R) specifies the 
label of a FORMAT statement (or a label 
variable whose value is the label of a 
FORMAT statement) located elsewhere; the 
FORMAT statement and the GET or PU'!' stab=­
ment specifying the remote format item must 
be internal to the same block. The FORMA'r 
statement contains the remotely situated 
format items. This facility permits the 
choice of different format specifications 
at execution time, as illustrated by the 
following example: 

DECLARE SWITCH LABEL; 
GET FILE(IN) EDIT (CODE) (F(l»; 
IF CODE = 1 

THEN SWI,!'CH =Ll; 
ELSE SWITCH =L2; 

GET FILE(IN) EDIT (WJX,Y,Z) 
(R(SWITCH»; 

Ll: FORMAT (4 F(8,3»; 
L2: FORMAT (4 E(12,6»; 

SWITCH has been declared to be a label 
variable; the second GET stat,ement can be 
made to operate with eith,er of the tv10 
FORMAT statements. Anoth,er advantage of 
the remote format item is that it allo~Ts 
many GET/PUT statements to share the same 
format. 

STREAM-ORIENTED DATA TRANSMISSION 
STATEMENTS 

The following provides a summary of thE~ 
STREAM data transmission s 1tatements, alonG 
with their options, according to file 
attributes (the statements are discussE!d 
individually in detail in Part II, Section 
J, "Statements"). 



GET [FILE (file-name)] 
data-specification; 

PUT [FILE (file-name)] 
aata-specification; 

~~gg_~~_Q~X£!:~!t!~_~RI !i~~ 

PUT [FILE (file-name)] 

U
PAGE [LINE(expreSSion)]] 
SKIP [(expression)] 
LINE (expression) 

[data-specification]; 

~Qi~~ The "data specification" can be 
omitted for STREAM OUTPUT PRINT files only 
if one of the control options appears. 

In all of the above, the data specifi­
cation bas the following form: 

EDI'T (data-list) 
[(data-list) 

(format-list) 
(format-list)] •. 

Format lists may use any of the follow-­
ing format items: 

A..,B,E,F,R,X 

Pl~GE 

SKIP [(w)] 
LINE (w) 
COLUMN (w) 

which may be used with 
any S'I'REAM file 

which may be used 
only with STRE~M 
OUTPUT PRINT files 

Data sets that contain discrete records 
or which are to be created as collections 
of discl:'ete records may be manipulated with 
record-oriented operation statements. 
These st.atements are READ, WRITE, REWRITE, 
and LOCATE. ~ general description of these 
statements is contained in this chapter; 
they are described completely in Part II, 
Section J, "statements." Each record 
obtained from a data set or dispatched to a 
data set is defined in terms of the data 
attribu1tes of a variable (usually a 
structuJr~e) . For input operations, the 
record is obtained from the data set and 
assigned, without conversion, to the varia­
ble. For output operations, the data is 
transmitted without conversion into the 
data se·t. 

The variables involved in record trans­
mission must be unsubscripted, of level 1 
(element variables and array vaiiables are 

of level 1 by default), and may be of any 
storage class. The variables cannot be 
parameters or defined variables. They may 
be label or pointer variables, but such 
data may lose its validity in transmission. 

with RECORD transmission, it is possible 
to operate upon the record in a buffer if 
the file has the BUFFERED attribute. Oper­
ation within the buffer can be accomplished 
through the use of a based variable, which 
describes the data attributes of the 
record, and a E2inte~_~9:ri9:bl~, which can 
be set to different values to identify the 
location of the based variable within the 
buffer. A based variable and its associat­
ed pointer variable are declared with the 
BASED storage class attribute in the fol­
lowing form: 

BASED (pointer-variable) 

The pointer variable itself cannot have the 
BASED storage class attribute; the default 
is AUTOMATIC. The pointer variable may be 
given either INThRNAL or EXTERNAL scope 
attribute, with default being INTERNAL; but 
the scope of the based variable is always 
INTERNAL. The pOinter variable must be 
explicitly declared with the POINTER attri­
bute. 

consider the following declarations: 

DECLARE REC ID POIN'l'ER; 
DECLARE 1 MASTER_RECORD BAS£D 

(REC ID), 
.:;:: IDENTIFICATION CHARACTER(10), 
~: NAME CHARACTER (30) , 
.:;:: ADDRESS, 

3 STREET CHARACTER(lS), 
3 CITY CHARACTER(lS), 
3 STATE CHARACTER(lS), 
3 ZIP CHARACTER(S); 

The name ~lASTER RECORD is a based varia­
ble that can be used to describe a record 
located in a buffer. Fields of the record 
must conform to the attributes declared for 
MASTER_RECORD. REC_ID is a pOinter varia­
ble that identifies the position of 
MASTER_RECORD within the buffer. The pOin­
ter variable is declared explicitly. 

If any attributes other than AUTOMATIC 
are to be declared for a pointer variable, 
they must be explicitly declared. For 
example, the following declaration speci­
fies the STA~i['IC and EX'llERNAL attributes for 
the pointer variable REC_ID: 

DECLARE REC_ID POINTER STATIC 
EXTERNf...L; 

For input/output operations specifying 
based variables, the pointer value is set 
by the SET option 'in the READ or LOCATE 
statements. 

Chapter 8: Input and Output 89 



RECORD-ORIENTED DATA TRANSMISSION 
STATEMENTS 

There are three statements that actually 
caWje transmission of records to or from 
extE~rnal storage. They are HEAL'., WI<ITE ~ 
and REWRITE. A fourth statement~ LOCA'lE, 
causes storage to be allocated in a buffer 
[or subsequent transmission. The attri­
butes of the file determine IlIThich state­
ments can be used. 

':~he READ statement can be used with any 
INPUT or UPDA'I'E file. It caus.,=s a record 
to be transmitted from the data set to the 
program, either directly to a variable or 
to a buffer. In the case of blocked 
rec~rds, the READ statement causes a logi­
cal record to be transferred from a buffer 
to t:he variable; or if the SET option is 
uSE~d, it causes the value of a pointer to 
be set to point to the logical record in a 
buffer. For blocked records, consequently, 
every READ statement may not cause physical 
input. 

The WRITE statement can be used with any 
OUTPUT file, and with DIRECT UPDATE, but 
not with SEQUENTIAL UPDATE. It causes a 
record to be transmitted from the program 
to the data set. For unblocked records, 
the transmission may be diJ::-ectly from a 
variable or from a buffer. For blocked 
rec::)rds, the W·RITE statement cause~i a logi-­
cal record to be placed into a buffer. 
Only when the blocking of the record is 
complete is there act.ual physical output. 

The R~WRITE statement causes a record to 
be replaced in an UPDATE file. FOl' SEQUEN­
TIAl. UPDATE files, the REWRITE ~;tate:llent 

specifies that the last record read from 
the file is to be rewritten; consequently a 
record must be read before it can be 
rewI"itten. For DIRECT UPDATE files, the 
REWRITE statement must specify a key; con­
sequently, any record can be rewritten 
whet.her or not it has first beEm rE!ad. 

rl'he LOCATE statement specifiE~s that a 
based variable be allocated in aL output 
buffer for the specified file aLd that a 
poiLter be set to identify the location. 
Both a based variable and a point~r varia­
ble must be specified in the LOCATE state­
ment. The based variable is uset, in the 
caSE~ of variable length records, to de-ter­
minE: the length of the record. The LOCATE 
stat.ement never specifies immedia·te data 
transmission; the contents of the buffer 
are undefined. Values must be assigned to 
the based variable. The record will not be 
wri tten until the next WRITE, L,:::CATE, or 
CLOSE stdtement is executed for tne same 
filE. In the case of blocked records, a 
subsequent LOCATE statement may only cause 
d ~ointer to be set to identify a location 

90 

immediately following the previous record 
in the buffer. 

Q2tions of Record-Oriented __ ,!:!:ansmission 
State!!}ents 

Options that are allowed for record­
oriented data transmission statements 
differ according to the att:ributes of the 
associated file and the purpose of the 
statement. A list of all of the allowed 
combinations for each type of file is given 
later in this chapter. 

Each option consists of a keyword fol­
lowed by a value, which is a file name, a 
variable, or an expression. This value 
always must be enclosed in parentheses. In 
any statement, the FILE option must appear 
first. 

The FILE Option 

The FILE option (also called the FILE 
specification) must appear in every record­
orien-ted statement. It spE!cifies the name 
of the file upon which thE! operation is to 
take place. It consists of the keyword 
FILE followed by the file name enclosed in 
parentheses. An example of the FILE option 
is shown in each of the statemE~ts in this 
section. 

The INTO Option 

The INTO option can be usee, l.n the READ 
statement for any type of INPUT or UPDATE 
file. The INTO option specifiEs a variable 
to which the logical record is to be 
assigned. The form is the same whether or 
not the record passes through an 
intermediate buffer. The variable can be a 
based variable. 

READ FILE (DETAIL) IN'I'O (RECORD 1); 

This specifies 
record is to 
RECORD 1. 

The SET Option 

that the next sequential 
be assigned to the variable 

The SET option can be used in the READ 
statement for SEQUENTIAL BUFFERED I NPU'l' or 
UPDATE files. It must appear in eveJ::-Y 
LOCATE statement. The SET option specifies 
a pointer variable that is to point to the 
logical record in a buffer. 



H.E:AD FILE (MASTER) SET (REC_IDENT); 

LOChTE PAY REC FILE (PAYROLL) 
SET (P); 

The first example specifies that the 
next record from the file MASTER is to be 
read and that the pointer variable 
REe IDENT is to be set to point to that 
location in the buffer. If the logical 
record is part of a blocked record, and is 
not the first record in the block, the 
actual result of the stat8ment will be 
merely to set the value of the pointer. 
The value of REC IDENT must be associated 
with a based viriable, so that the fields 
of the record can be accessed. 

The second example specifies that the 
based variable PAY REC is to be allocated 
in a buffer and that-its location is to be 
assigned to the pointer variable P, which 
must have been declared with the based 
variable PAY REC. The LOCATE statement 
must always s~ecify a based variable. Fol­
lowing allocation of the based variable, 
values must be assigned to it. The record 
is written when the next WRITE, LOCATE, or 
2LOSE statement is executed for the file 
PAYROLL. If the record PAY_REC is part of 
a blocked record, the next LOCATE statement 
may only allocate the next logical record 
in the same block. 

The FROM Option 

The FROM option must be used in t.he 
WRITE statement for any OUTPUT file and for 
a DIRECT UPDATE file. It also can De used 
in the REWRITE statement for any UPDATE 
file. The FROM option specifies the varia­
ble from which the record is to be written. 

WRITE FILE (MASTER) FROM (tllAS_REC); 

H.EWRITE FILE (MASTER) FROM (MAS_REC)i 

Both statements specify that the value of 
the variable MAS RBC is to be written into 
the file MASTER. -In the case of the WRITE 
statement, it specifies a new record in a 
SEQUENTIAL OUTPUT file. 

The REWRITE statement specifies that 
MAS REC is to replace the last record read 
from a SEQUENTIAL UPDATE file. 

The KEY Option 

The KEY option applies only to files 
associated with data sets of REGIONAL 
organization. It must be used in the READ 
statement tor DIRECT files with the INPUT 
or UPDA'I'E a·ttr ibute. The KEY option also 
must be used in the REWRITE statement for 
DIRECT UPDATE files. Any file for which 
the KEY option is used must also have the 
KEYED attribute. 

The KEY option consists of the keyword 
KEY followed by a parenthesized expression, 
which is a source key that identifies a 
particular record. The expression must 
represent a character string of eight 
digits for REGIONAL (1) and of length 
specified by KEYLENGTH for REGIONAL(3). 

Followinq- is a summary of what the 
character string is and what it represents 
for each of the data set organizations to 
which it is applicable: 

REGIONAL (1) A string of eight digits 
that specify the relative 
record number of the 
desired record. 

REGIONAL (3) A string of characters, 
the rightmost eight of 
which must consist of 
digits. These rightmost 
eight characters specify a 
relative track that is the 
region to be searched. 
The record to be accessed 
is identified by a record­
ed key that exactly match­
es the source key which 
has been converted to a 
character string of the 
length specified by KEY­
LENGTH. This string 
always includes the right­
most eight characters, 
which identify the region. 

The expression in the KEY option must 
result in a valid key. 

READ :~ILE (MASTER) INTO (MAS_REC) KEY 
('00003253') 

READ FILE (FILEX) INTO (ORDER_REC) KEY 
(NNI.1E I I AREA#) i 

The first s·tatement specifies that record 
number 3253 in the REGIONAL (1) data set 
associa ted 'Ni th the file IV'lASTER is to be 
read and assigned to the variable MAS_REC. 

The second statement, which would be 
appropriate for a REGIONAL (3) data set, 
specifies that a record is to be read from 
the file FILEX into the variable ORDER REC. 
The record is to be found in a region 

Chapter 8: Input and Output 91 



identified by the value of AkE~#; the 
:;)pecific record is to be recognized by a 
rec~rded key of length specified by KEY­
LENG1H that matches the character strlng 
specifi€d by the expression in the KEY 
option. Note that the variable AR~A# must 
represent a character-string 01 eight 
diqits. 

The KEYFROM Option 

the KEYFROM option H\ust be specitied in 
~RITE statement used to write a KEGIONAL 

data set. It cannot be used with CONSECU­
TIV~ data set organization. Therefore, it 
can appear in a WRIT~ statement only tor a 
DIRECT OUTPUT or DIRECT UPDATE, ti-Le. lilly 
file for which the KEYFROM option is speci­
fied must have the KEYED attribute. 

rhe KEYFROM option specifies the loca­
tion, within the data set, where the record 
is to be written. For REGIGNAL(l) data 
sets, it specifies only the region number. 
For kEGIONAL(3) data sets, it s~ecifies a 
character strinq to be written as a record­
ed Key (in which the ri9htn~st eight char­
acters represent the region number). It is 
written with the keyword KEYFROM followed 
by a parenthesized expression. The expres­
sion can be a constant, a variable, or any 
other expression that can be converted to a 
character string. For REGIONAL (:3) , t~he 

KEYLENGTH option of the ENVIRONMENT attri­
bute must specify the length of the record­
ed key to be written. 

WElTE FILE (PAYROLL) FROM (PA.Y REC) 
KEYFROM (NAME I I TRACK _NO) ; 

The above statement, which could be 
appropriate for a REGIONAL (3) data set, 
specifies that the value of PAY_REC is to 
be written as tne next sequential record in 
the specified region of PAYROLL. The value 
of rRACK __ NO specifies the region in which 
the record is to be written. The source 
key is to be a concatenation of the value 
of NA.~l:C: and the value of TRACK NO t' and is 
to oe written as the recorded ke~. 

~~~Qf.9.::. Or i~!l t e~~f.~!!~!!!i s s i 2Q_§~~~~!!!~~ ~~ 
r~Q!:r!!~!:~

This section provides a summary :>f t.he
allowed RECORD transmission statements,
along with their options, according to file
attributes.

92

RhAD FILE (file-name)
INTO (variable);

READ FILE (file-name)
SET (pointer-variable);

WRITE FILE (file-name)
FROM (variable);

LOCATE variable FILE (file-name)
SET (pointer-variable);

READ FILE (file-namE:=)
INTO (variable);

READ FILE (file-name)
SET (pointer-variable);

REWRITE FILE (file-name);

REWRITE FILE (file-name)
FROM (variable);

READ FILE (file-name)
INTO (variable);

§.E;QQENTIAL UNBUFFERED _OUTPU!,.!.

WRITE FILE (file-name)
FROM (variable);

§.E;QUENTIAL UNBUFFERED J:!~Q~TE . .!.

READ FILE (file-name)
INTO (variable);

REWRITE FILE (file-name)
FROM (variable);

DIRECT INPUT:

READ FILL (file-name)
INTO (variable)
KEY (expression);

WRITE FILE (file-name)
FROM (variable)
KEYFROM (expression);

Q!R~£~9PD~!~~

READ FILE (file-name)
IN'I'O (variable)
KEY (expression);

REWRITE FILE (file-name)
FROM (variable)
KEY (expression);

WRITE FILE (file-name)
FROM (variable)
KEYFROM (expression);

rhe following pOints cover the salient
environmental factors in the use of RECORD
transmission:

1. A SEQUENTIAL file specifies that the
accessing, creation, or modification
of the data set records is performed
in a particular order, that is, from
the first record of the data set to
the last record of the data set (or
from the last to the first if the
BACKWARDS attribute has been
spj:~cified) •

2. A DIRECT file specifies that the
accessing, creation, or modification
of the data set records may be ~er­
formed in random order. The particu­
lar record of the data set to be
operated upon is identified by a spec­
ified key.

3. A data set that is accessed, created,
or modified in the SEQUENTIAL access
met:hod may not have recorded keys.

4. Existing records of a data set in a
SEQUENTIAL UPDA'l'E file can be modified
and rewritten, but the number of
records cannot be increased. Opera­
tion wi"th a DIRECT UPDATE file, howev­
er, may specify that records are to be
added to the data set, through use of
the WRITE statement. An existing
record in an UPDATE file can be
replaced through use of a REWRITE
statement.

5. If the READ INTO option is used in
referring to a SEQUENTIAL BUFFERED
UPDATE file and the next REWRITE
statement does not make use of a FROM
option, the record in the data set is
replaced from the buffer and not from
the variable that had been specified
in the INTO option of the READ state­
ment. The FROJ.v1 option in a REWRITE
statement must specifically name the
variabl12 into which the data has been
read if that data is to be rewritten.

6. A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. ThUS, a WRITE
statement may be used with OUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with
UPDATE files only. Moreover, for
DIRECT files, a REWRITE statement uses
the KEY option to identify the exist­
ing record to be replaced; a WRITE
statement uses the KEYFROM option,
which not only specifies where the
record is to be written in the data
set, but also specifies, except for
REGIONru~ (1), an identifying key to be
recorded in the data set.

Chapter 8: Input and Output 93

The data manipulation performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string handling and editing features.
These features are specified by data attri­
butes, statement options, built--in func­
tions, and pseudo-variables.

The following discussions give general
descriptions of each feature, along with
illustrative examples.

The most fundamental form of editing
performed by tne assignment statement
involves converting the data type of the
value on the right side of the assignment
symbol to conform to the attributes of the
receiving variable. Because the assigned
value is made to conform to the ai:tributes
of the receiving field, the precision or
length of the assigned value may be
altered. Such alteration can involve the
addition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data conver­
sion are discussed in Chapter 4,
"Expressions," and in Part II, Section F,
"Data Conversion."

IiIJrERING THE LENGTH OF STRING DATA

When a value is assigned to a string
v~riible, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if neces­
sary, is truncated or extended on the right
t~ c~nform to the declared length of the
t"C:'[;e i ving strlng. for example, assume
SOSJE2T has the attributes CHAR~2~ER (10),
iniicating a character string of ten char­
acters. :onsider the follo~ing statement:

SUBJE2r='rR~NSF8RM~TIONS':

rhe length of the string on the right is
fifteen characters; therefore, five charac­
ters will be truncated from the right end
of the string when it is aSSigned to
SUBJECT. This is equivalent tc executing:

~JUBJECT==' TRIiNSFORMA' ;

If the assigned string is shorter than
the length declared for the receiving

94

string variable~ the aSSigned string is
extended on the right either with blank
characters, in the case of a character­
string variable, or with zero bits~ in the
case of a bit-string variable. Assume
SUBJECT still has the attributes CHARACTE:R
(10) . Then the following two statement.s
assign equivalent values to SUBJECT:

SUBJECT='PHYSICS'i

SUBJECT='PHYSICSbbb'i

The letter Q indicates a blank character.

Let CODE be a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values ito
CODE:

CODE='110011'B;

CODE='1100110000'Bi

Note~ however, that the following
statements do not assign equivalent values
to SUBJECT if it has the attributes CHARAC­
TER (10):

SUBJECT= '110011" B;

SUBJECT='1100110000'B;

When the first statement is executed" the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather t6an zero bits. This statement is
equivalent to:

SUBJECT='110011bbbb'i

The second of the two statements
re~uires only a conversion from bit-string
to character-string type and is e~uivaleJ1.t
to:

SUBJECT='l100110000'i

OTHER FORMS 8F ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are bIT 0

methods that involve input and output
statements, one in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

~lthough the assignment statement is
concerned with the transmission of data
between storage locations internal to a
computer, input and output operations can
also be treated as related forms of assign­
ment in which transmission occurs between
the internal and external storage facili­
ties of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read.

stream-oriented operations, on the other
hand, do provide a variety of editing
functions that are applied when data items
are read or written. These editing func­
tions are similar to those provided by the
assignment statement, except that any data
convers:Lon always involves character type,
conversion from character type on input,
and conversion to character type on output.

The STRING option in GET and PUT state­
ments allows the statements to be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In GET
and PUT statements, the FILE option, speci­
fied by FILE (file-name), is replaced by
the STRING option, as shown in the follow­
ing formats:

GET STRING (character-string-variable)
data-specification;

PUT STRING Ccharacter-string-variable)
data-specification;

The GET statement specifies that data items
to be assigned to variables in the data
list are to be obtained from the specified
character-string variable. The PUT state­
ment specifies that data items of the data
list are to be assigned to the specified
character-string variable. The "data
specification" is the same as described for
input and output. In general, it takes the
following form:

EDIT (data-list) (format-list)

The STRING option is used with edit­
directed transmission, which considers the
input stream to be a continuous string of
characters. This option permits data

gathering or scattering operations to be
performed with a single statement, and it
allows stream-oriented processing of char­
acter strings that are transmitted by
record-oriented statements.

consider the following statement:

PUT STRING (RECORD) EDIT
(NAMK, PAY#, HOURS*RATE)
(A(12)" A(7), FCS»;

This statement specifies that the
character-stl::-ing value of NAME is to be
assigned to the first (leftmost) 12 charac­
ter positions of the string named RECORD,
and that the character-string value of PAY#
is to be assigned to the next seven charac­
ter positions of RECORD. The value of
HOURS is then to be multiplied by the value
of RATE, and the product is to be handled
like F-format output and assigned to the
next eight character positions of RECORD.

Frequently~ it is necessary to read
records of different formats, each of which
gives an indication of its format within
the record by the value of a data item.
The STRING option provides an easy way to
handle such records; for example:

READ FII.E (INPTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F(l»;
IF CODE ,=1 THEN GO TO OTHER TYPE;
GET STRING (TEMP) EDIT (X,YfZ)

(X(l), 3 F(10,4»;

The READ stat:ement reads a record from the
input file INPTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE under the control of
F-format input. The code is tested to
determine thE! fo.rmat of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X~Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GE'1' statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following example J assume that the file
OUTPRT is eVE~ntually to be printed.

Chapter 9: Editing and String Handling 95

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
<X(i), A(12), X(iO),
A(7), X(10), F(8»;

WRITE FILE (OUTPRT) FROM (RECORD);

The X(i) in the format list of the PUT
statement specifies that the first charac­
ter assiqned to the character-string varia­
ble RECORD is to be a single blank. Fol­
lowing that, the values of the variables
NAME and PAY# and of the expression
HOURS*RATE are assigned. The format list
specifies that ten blank characters are to
be inserted between NAME and J?AY# and
between PAY# and the expression value. The
WRIIE statement is used to write the record
into the file OUTPRT.

THE PICTURE SPECIFICATION

Ihe editing capabilities associated with
dat.a assignment, namely, conversion to a
specified data type with accompanying trun­
ca.tion and/or padding, can bE~ extended by
use of the picture specification. A pic­
turE: specification consists of a sequence
of character codes (picture characters)
that specify editing operations tc be per­
formed on numeric character values. (A
detailed discussion of each picture charac­
ter, together with examples of its use,
app0ars in Part II, Section D, "Picture
Specification characters." The following
discussions are concerned with general
principles that govern the use of the
picture specification.)

~ picture specification can be used to
describe ordinary character-string data, or
it can be used to describe numeric charac­
ter data, which is data that represents a
numeric value.

~ picture specification is always
enclosed in quotation marks and is llsed
with a PICTURE att.ribute in a DECLARE
st.dt~ement:

DECLARE CODE PICTURE 'XXXXX';

DECLARE PAYMT PICTURE '$999V. 51 9' ;

h character-strin'J picture specification
describes a characteI: string; the number of
pict:ure characters in the specification
determines the length of the striI'lg (only
the X picture character can be used in a
ch.a]~acter-string picture specification) .

96

For example, the PICTURE attribute in the
first DECLARE statement above describE~s
CODE as a character string of length five
and is equivalent. to the attribute CHARAC­
TER (5). The picture character X also
specifies that any character recognized by
the computer can occur in the corresponding
position of the character string.

Any value assigned to CODE will be
converted, if necessary and possible, to d

character string and will be truncated or
extended on the right as required, to meet
the five-character length of CODE. Consid­
er the following examples:

CODE=' A2B9C8 ' ;

CODE=' 4F' ;

In the first assignment, one character is
truncated from the right end of the
assigned character string. In the second
assignment, three blank characters a:re
appended to the right end of the assigned
character string.

In addition to the picture character 9,
numeric character specifications can con­
tain other picture characters that are used
to edit numeric character data. (The pic­
ture character X cannot appear in a numeric
character picture specification.) The gen­
eral functions performed by thE'se addition­
al picture characters are described in
"Editing Numeric Character Data" below.

Assignment to character-string variables
is always from left to right; padding and
truncation are on the right. Assignment to
a numeric character variable, however,
depends upon the location of an assumed
decimal point <specified by the picture
character V). Values assigned to numeric
character variables are always point
aligned.

The value of a numeric character varia­
ble can be interpreted in two ways, either
as an arithmetic value or as a character­
string value.

For a numeric character variable
described with a picture specification that
contains only one or more occurrences of
the character 9, the arithmE~tic value is
the value expressed by the character
string, that is., a decimal intE~ger.

If, however, editing characters are
included in the picture specification, the
arithmetic value and the character-string
value generally would be different. Edit­
ing characters are actually stored inter­
nally in the specified positions of the
data item. The editing characters then are
considered to be part of the character­
string value of the variable. The editing
characters are not, however, a part of the
variable"s arithmetic value, which involves
only decimal digits, the assumed location
of a decimal point, and a sign (if one is
present) ..

If the value of a numeric character
variable is assigned to another numeric
character variable or to a coded arithmetic
variable, only the arithmetic value is
assigned. In the assignment to a coded
arithmetic variable (or in the appearance
of a numeric character variable in an
arithmetic expression operation),
conversion to coded arithmetic is per­
formed.

If the value of a numeric character
variable is assigned to a character-string
variable, no actual conversion is neces­
sary, and any specified editing characters
are included in the assignment.

An ordinary character-string variable
(specifiIE~d with the CHARACTER. attribute)
can be defined on a numeric character
variable, using the DEFINED attribute
specification. Any reference to the
character-string variable is a reference to
the character-string value of the numeric
character variable. For example:

DECI~ARE A PICTURE' $999V. 99',
B CHARACTER(7) DEFINED A,
C DECIMAL FIXED (5,2);

A 128.76;

C A;

After the constant is assigned to A, its
arithmetic value is 128.76. This is the
value that is assigned to C (after conver­
sion to internal coded arithmetic). The
character-string value of A, however, is
$128.76; if it were assigned to a
character-string variable with a length of
7 or greater, this is the value that would
be assiqned. The same value, $128.76, is
the value of B, since a character string
defined on a numeric character variable
represents the character-string value of
the numeric character variable.

No arithmetic variable (except another
numeric character variable) can be defined
on a numeric character variable without
causing an error.

Because the picture specification of a
numeric character field cannot contain the
character X~ the value of a numeric charac­
ter data item can always be given a numeric
interpretation. Consider the following
declaration:

DECLARE COUNT PICTURE '99999';

Although COUN~r is a string of five charac­
ters, it can only contain numeric digits;
therefore, it is a numeric character varia­
ble whose value can be interpreted as a
five-digit unsigned fixed-point decimal
integer. Unless specified otherwise (with
the picture character V), a decimal point
is always assumed to be at the right end of
a numeric character data item. For exam­
ple, let COUNT, as declared above, appear
in the following assignment statement:

COUNT=123.45;

When the assignment is performed, the
decimal point of the constant is aligned on
the assumed point declared for the numeric
character vaJriable, and the two rightmost
digits are truncated. Two zero digits are
then appended on the left end. The effect
of the above assignment therefore, is equi­
valent to the following statement:

COUNT=00123;

The picture character V allows an
assumed decimal point to be specified any­
where in a numeric data item, and not just
at the right E~nd:

DECLARE ~l'OTAL PIC1'URE '999V99';

Here the value of TOTAL is interpreted as a
string of five characters representing a
five-digit unsigned fixed-point decimal
number with two fractional places. The
decimal point of a value assigned to TOTAL
will be aligned between the third and
fourth digits as specified by the picture
character V. Consequently, the following
two assignment statements are equivalent:

TOTAL=123;

TOTAL=123.00;

Note, however, that TOTAL contains only
five characters. The picture character V
does not specify an actual character posi­
tion in the numeric character field; it is
used only to align decimal points. And if
TOTAL were converted to a character string
and then printed, no decimal point would
appear in the printed field; its character­
string value does not include a decimal
point.

Chapter 9: Editing and String handling 97

A decimal point picture character(.)
can appear in a numeric picture
specification. It merely indicates that a
poi~t is to be included in the character
rep~esentation of the value. Therefore,
the decimal point is part of its character­
string strinq valu!::. The decimal point
picture character does not cause decimal
~~i3t alignment during ~~~ignment since it
is ~ot a part of the variable's arithmetic
value. Only the character V causes
ali ::Jnment of decimal points. For '~xample:

DECLARE SUM PICTURE '999V.99 1
;

SUM is a numeric character variable rep­
resenting numbers of five digits with a
decimal point assumed between the third and
fou~th digits. The actual point specified
by the decimal point insertion character is
not a part of the arithmetic value; it is,
however~ part of its character-string
value. (The decimal point pictUl~e charac­
ter can appear on either side of the
cha~acter v. See Part II, Section D,
"Picture SpeCification characters.") The
following two statements assign the same
value to SUrvi:

SUM=123;

SUM=123.00;

In the first statement, two zero digits are
added to the right of the digits :23.

Note the effect of the following dec­
laration:

DECLARE RATE PICTURE '9V99.99 1
;

Let RATE be used as follows:

RATE=7.62;

When this statement is executed, decimal
point alignment occurs on the character V
and not on the decimal point piCi:.ure char­
acter that appears in the picture specifi­
cation for RA'rE. If RATE were convertE~d to
a character string and then printed, it
would appear as 762.00, but its arithmetic
value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal point picture character can appear
more than once; this allows digit groups
within the numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in the numeric
notations of some European countries.

Eecause a decimal point picture charac­
ter causes a period character to be insert­
ed into the character-string value of a
numeric character data item, it is called
an insertion character. PL/I provides two

98

other insertion characters: comma (,,) amd
blank(B)~ which are used in the same way as
the decimal point picture character excE~pt
that a comma or blank is inse:rted into t~he
character string. ConsideJr the following
statements:

DECLARE RESULT PICTURE • 9.999.999" V99' ;

RESULT=1234567;

The character-string valul:: of RESULT would
be '1.234.567,00'. Note that d.ecimal point
alignment occurs before the t1~0 rightmost
digit pOSitions as specified ~{ the charac­
ter V. I:f RESULT were assignt::d to a coded
arithmetic field" the value of the dalta
converted to arithmetic would be
1234567.00.

Besides supplying insertion characters~
PL/I also provides replacement characters
that allow zeros in specified ;?ositions t~o
be replaced by blanks or asterisks. One
such picture character is the character Z~
which is used to replace leading (leftmost)
zeros with blanks:

DECLARE TALLY PICTURE 'ZZZ9'i

TALLY=0012;

The character-string value of TALLY is
equivalent to the character-string constant
'bb12' (where the letter b indicates a
blank character>. -

Other picture characters control the
appearance of signs and the cucrency symbol
($) in specified positions of the numel~ic
character data items. For example, a dol­
lar sign can be appended to the left of a
numeric character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '$99V.99';

PRICE=12.45;

The character-string value of PRICE is
equivalant to the character-st~ing consta.nt
'$12.45'. Its arithmetic valae~ however,
would be 1245 with precision of (4 J 2), or
12.45.

The picture specification can also spec­
ify floating-point and British sterling
formats. These formats are discussed in
Part II, Section DJ "Picture Specification
Characters."

.Q.sin~ Numeric Character Da.ta

One purpose of a numeric character pic­
ture specification is to edit data that is

to be printed. For example, in a payroll
application, the digits representing an
employee's salary might be 0017250. These
digits would be much more meaningful on a
paycheck in an edited form, such as
$**172.50; the asterisks would also dis­
courage an attempt to alter the amount.
This could be done, for example, with the
specification '$****9.99'.

PL/I, however, does not restrict the use
of numeric character data to output purpos­
es. NUITlI:~ric character variables can be
used wherever arithmetic expressions are
permitted. Consider the following example:

DEC][.ARE RESULT PICTURE 'XXXXXX',
COST PICTURE '$9V.99';
COST=7.15;
RESULT=COST;

In this example, the arithmetic value of
COST would be 7.15. When COST is assigned
to RESUL~['" however, the insertion charac­
ters ($ and.) appear as part of the
character string, and the value of RESULT
is '$7.15b'. The only differences between
the numeric character data and the
character-string data is that the
character-string value is left adjusted
(hence the blank at the right end) and the
insertion characters are actually a part of
the data" while with a numeric character
variable. data is point aligned and inser­
tion characters, though actually present,
are not considered to be a part of the
arithmetic value.

If specified in an arithmetic expres­
sion, the value of a numeric character data
item is converted to coded arithmetic.
Note, however, that this conversion will
always require the compiler to insert extra
coding. Note alsoJ that any editing char­
acters in the picture specification will be
lost in the conversion. Consider the fol­
lowing example:

DECLARE RESULT FIXED DECIMAL (3,,2),
COST PICTURE '$9V.99';

COS~P=1.10 ;

RESULT=2*COST;

rhe character-string value of COST is
$1.10. The editing characters ($ and .)
are present in the item. However, when the
expression 2* COST is evaluated, the arith­
metic value of COST is converted to coded
arithmetic. When the value of the expres­
sion is assigned to RESULT, the value of
RESULT will be 2.20 (i.e." 220 with preci­
sion (3,2».

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTIONS

PL/I provides a number of built-in func­
tions# two of which also can be used as
pseudo-variables~ to add power to the
string-handling facilities of the language.
Following are brief descriptions of these
functions (more detailed descriptions
appear in Part II# Section G~ "Built-In
Functions and pseudo-variables").

The STRING built-in function specifies
that the elements of a PACKED structure are
to be concatenated into a single character
string. All elements must be either char­
acter strings or numeric character fields.

The BIT built-in function specifies that
a data item is to be converted to a bit
string. The built-in function allows a
programmer to specify the length of the
converted string, overriding the length
that would result from the standard rules
of data conve]~sion.

The CHAR built-in function is exactly
the same as the BIT built-in function,
except that the conversion is to a charac­
ter string of a specified length.

The SUBSTR built-in function, which can
also serve as a pseudo-variable in a
receiving field, allows a specific subst­
ring to be extracted from (or assigned to~
in the case of a pseudo-variable) a speci­
fied string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first occur­
rence of a specified substring, which can
be a Single character or bit. The value
returned is the location of the first
character or bit of the substring J relative
to the beginning of the string. The value
is expressed as a binary integer. If the
substring does not occur in the specified
string, the value returned is zero.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
System/360 implementations,; the character
is hexadecimal FF.

The LOW built-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest char­
acter in the collating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT built-in function permits a
string to be formed from repeated occurren-

Chapter 9: Editing and String Handling 99

ces of a specified substring. It is used
to create stri.ng patt~erns.

rhe BOOL built-in function allows one of
16 different Boolean operations to be
applied to two specified bit strinss.

100

The UNSPEC built-in function, which can
also be used as a pseudo-variable~ speci­
fies that the internal code~d representation
of a value is to be rega.rded as a bit
string with no conversion.

Data can be made known to an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked procedure. This extension of scope
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There is yet another way in which data
can be made known to an invoked procedure,
and that is to specify the names as ~~~=
m§g~~ in a list in the invoking statement.
Each argument in the list is an expression,
a file name, a statement label constant or
variable, or an entry name that is to be
e~~~§~ to the invoked procedure.

Since arguments are passed to it, the
inv~ked procedure must have some way of
accepting them. This is done by the expli­
cit declaration of one or more Q~~~~§~§~~
in a list in the PROCEDURE or ENTRY state­
ment that is the entry point at which the
procedure is invoked. A parameter is a
name used within the invoked procedure to
represent another name (or expression) that
is passed to the procedure as an argument.
Each paran1eter in the parameter list of the
invoked procedure has a corresponding argu­
nent in the argument list of the invoking
statement. This correspondence is taken
fr~n left-to-right; the first argument cor­
responds to the first parameter, the second
argument corresponds to the second paramet­
er~ and so forth. In general, any ref­
erence to a parameter within the invoked
procedure is treated as a reference to the
corresponjing argument. The number of
arguments and parameters must be the same.

The example below illustrates how param­
eters and arguments may be used:

PRMAIN: PROCEDURE;

END;

DECLARE NAME CHARACTER (20),
ITEM BIT(S);

CALL OUTSUB (NAME, ITEM);

CHAPTER 10: SUBROUTINES AND FUNCTIONS

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),

B BIT(S);

PUT EDIT(A,B)(A(20),B(S»;

END;

In procedun:~ PRMAIN, NAME is declared as
a character string, and ITEM as a bit
string. The CALL statement in PRMAIN
invokes the procedure called OUTSUB, and
the parenthesized list included in this
procedure reference contains the two argu­
ments being passed to OUTSUB. The PROCE­
DURE statement defining OUT SUB declares two
parameters, A and B. When OUTSUB is
invoked, NAME is associated with A and ITEM
is associated with B. Each reference to A
in OUTSUB is treated as a reference to
NAME, and each reference to B is treated as
a reference to ITEM. Therefore, the PUT
statement causes the values of NAME and
ITEM to be written into the standard system
output file.

Note that the passing of arguments usu­
ally involves the passing of names and not
merely the values represented by these
names. (In general~ the name that is
passed is usually the address of the
value.) As a result, storage allocated for
a variable before it is passed as an
argument is not duplicated when the proce­
dure is invoked. Any change of value
specified for a parameter actually is a
change in the value of the argument. Such
changes are in effect when control is
returned to the invoking block.

A parameter can be thought of as indi­
rectly representing the value that is
directly represented by an argument. Thus~
since both the argument and the parameter
represent the same value, the attributes of
a parameter and its corresponding argument
must agree. For example, an error exists
if a parameter has the attribute FILE and
its corresponding argument has the attri­
bute FLOAT.

A name is explicitly declared to be a
parameter by it~s appearance in the paramet­
er list of a PROCEDURE or ENTRY statement.
However~ its attributes, unless defaults
apply~ must be explicitly stated within
that procedure in a DECLARE statement.

Chapter 10: Subroutines and Functions 101

fhe parameters specified in
statement must also have been
either in the PROCEDURE statement
containing procedure, or in a
statement within that procedure.

an ENTRY
specified
for the

DECLARE

Parameters, therefore, provide the means
for generalizing procedures so that data
whose names may not be known within such
procedures can~ nevertheless, be operated
upon. There are two types of generalized
procedures that can be written in PL/I:
subroutine procedures (called simply"
~~~~Q~~ig~~) and function procedures 
( f~~g~~i9.g~) • 

~ subroutine is a procedure that usually 
requires arguments to be passed to it in an 
invoking CALL statement. It can be either 
an external or internal procedure. A ref­
erence to such a procedure is known as a 
~~~!~~Q~tig~_~~.f~~~!:!£~. The gE~nera,l format 
of a subroutine reference is as follows:

CAJJL entry-name [(argument [, argument] •..)] ;

Whenever a subroutine is invoked, the
arquments of the invoking statE~ment are
aSBociated with the parameters of the entry
point, and cont.roJ. is then passE!d to that
ent:ry point. The subroutine is thus acti­
vat:ed" and execut:ion begins.

Upon termination of a subroutine, con­
trol normally is returned to the invoking
block. A subroutine can be 1:erminated
normally in any of the following ways:

1.. Control reaches the final END state­
ment of the subroutine. EXE~cution of
this statement causes control to be
returned to ·the firs·t executable
statement logically following the
statement that invoked the subroutine.
This is considered to be a normal
return.

2. Control reaches a RETURN statement in
the subroutine. This causes the same
normal return caused by the END state­
ment.

3. Control reaches a GO TO statement that
transfers control out of the subrou­
tine. The GO TO statement may specify
a label in a containing block, which
must be known within the subroutine,
or it may specify a parameter that has
been associated with a labe,l argument
passed to the subroutine. Although
this is considered to be normal termi­
nation of the subroutine, it is not

102

normal return of control" as effec1:E!d
by an END or RETURN statement.

A STOP statement encountered in a sub­
routine abnormally terminates execution of
that subroutine and of the entire program
associated with the procedure that invoked
it.

The following example illustrates hml1 a
subroutine interacts with the procedure
that invokes it:

A: PROCEDURE;
DECLARE RATE FIXED (10" 3) ,

TIME FIXED(S,2)~
DISTANCE FIXED(lS,S),
MASTER FILE .•• ;

CALL READCM (RA'fE, TIM.E, DISTANCE,
MASTER) ;

END;

READCM: PROCEDURE (W,X,Y~Z);
DECLARE W FIXED(10,3),X FIXED(S,2)u

Y FIXED(lS,S), Z FILE ..• ;

GET FILE (Z) EDIT (W"X" Y) (F(lO" 3) a

F(S,2),F(lS,S»;

Y=W*Xi
IF Y > ° THEN RETURN;

END;

ELSE PUT EDI'l' (• EHROR READCM')
(A(12»;

fhe argumen"ts RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and z. Con:::;equently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MhSTER.

A function is a procedure that usually
requires arguments to be passed to it when
it is invoked. Unlike a subroutine, which
is invoked by a CALL sta1:ement, a function
is invoked by the appearance of the func­
tion name (and associated ar~Juments) in an
express ion. Such an appearance is callE~d a
function reference. Like a Bubroutine, a
function -can-operate upon the arguments

passed to it and upon other known data.
But unlike a subroutine, a function is
written to compute a single value which is
returned, with control, to the point of
invocation, the function reference. This
single value can be an arithmetic, string.
picture# or pointer value. An example of a
function reference is contained in the
following procedure:

MAINP: PROCEDURE;

X=Y**3+SPROD(A,B,C>;

END;

In the above procedure, the assignment
stat.emen1t

X=Y**3+SPROD(A,B,C>;

contains a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U#V,W>;

END;

IF .. U>V+W
THEN RETURN (0);
ELSE RETURN (U*V*W>;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are:
applied to each argument and parameter.
Hence# the attributes are consistent, and
the association of the arguments with the
parameters produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W# the
statement associated with the THEN clause
is executed; otherwise, the statement asso­
ciated with the ELSE clause is executed.
In either case# the executed statement is a
RErURN statement.

The RETURN statement is the usual way by
which a function is terminated and control
is returned to the invoking procedure. Its
use in a function differs somewhat from its
use in a subroutine; in a function, not
only does it return control but it also
returns a value to the point of invocation.
The general form of the RETURN statement,
when it is used in a function, is as
follows:

RETURN (element-expression);

The expression must be present and must
represent a single value; i.e.# it cannot
be an array or structure expression. It is
this value that is returned to the invoking
procedure at the point of invocation.
Thus, for the above example, SPROD returns
either 0 or the value represented by u*v*W,
along with control to the invoking expres­
sion in MAINP. The returned value then
effectively replaces the function ref­
erence, and evaluation of the invoking
expression continues.

A function can also be terminated by
execution of a GO TO statement. If this
method is used, evaluation of the expres­
sion that invoked the function will not be
completed, and control will go to the
designated statement. As in a subroutine,
the transfer point specified in a GO ro
statement may be a parameter that has been
associated with a label argument. For
example, assume that. MAINP and SPROD have
been defined as follows:

MAINP: PROCEDURE;

X=Y**3+SPROD(A,B,C#LAB1);

L.AB1: CALL ERRT;

END;

SPROD: PROCEDURE (U, V, W" Z> ;
DECLARE Z LABEL;

IF U > V + W
THEN GO TO Z;
ELSE RETURN (U*V*W);

END;

Chapter 10: Subroutines and Functions 103

In MAINP, LABI is explicitly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
~tatement. When SPROD is invoked, LABl is
ass~ciated with parameter Z. Since the
attributes of A must agree with those of
L~Bl, Z is declared to have t~e LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. [f U is
greater than V + W, the THEN clause is
exe8uted, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is dis­
c~ntinued. If U is not greater than V + W,
the ELSE clause is executed and a return to
MAINP is made in the normal fashion. ~ddi­
tional information about the use of label
arguments and label parameters is contained
in the section ~Relationship of ~rguments
anj Parameters" in this chapter.

~Q~~: In some instances, a function may be
~o defined that it does not require argu­
ments. In such cases, the appearance of
the function name within an expression will
be recognized as a function reference only
if the function name has been declared as
an entry name elsewhere in the block. See
"rhe ENTHY Attribute" in this ch~pter for
additional information.

rhe attributes of the value returned by
a function may be declared in two ways:

1. They ~~y be declared by
according to the first letter
function name.

default
of the

2. They may be explicitly declared fol­
lowing the parameter list in the func­
tion PROCEDURE (or ENTRY) statement.

Regardless of which method is used, the
data attributes for a secondary entry
p~int, including any default attributes,
nust be identical with those e~~tablished

f~r the primary entry point. In other
w:Jrds, the attributes specified in an ENTRY
statement (explicitly or by default) must
in no way conflict with those specified in
the P~OCEDURE statement of the containing
pr-ocedure.

Note that the value of the expression in
the RETURN statement is converted within
the function, wherever necessary, to con­
E~rn to the attributes specified by one of
the two methods above.

In th~ previous examples of MAINP and
~) PROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, these attributes

104

must be determined from the first letter of
its name, s. The atitriblltes of t~he
returned value are therefore F:LOAT
DECIMAL (6) . since these are the attribut~es
that the returned value is expected to
have, no conflict exists.

Note: Unless the invoking procedure pro­
vides the compiler with information to t~he
contrary, the attributes of the value
returned by a function -to -the invoking
procedure are always de-termined from t:he
first letter of the function na.me.

The way in which at-trib-.ltes can be
declared for the returnl~d value in tJ1e
PROCEDURE or ENTRY statement i:::; illustrat~ed
in the following example. Assume that t:he
PROCEDURE statement for SPROD has been
specified as follows:

SPROD: PROCEDURE (U, V, W, Z) J'IXED BINARY;

with this declaration l the value returned
by SPROD will have the att:cibutes FIXED and
BINARY. However, since these attributes
differ from those that would be determined
from the first letter of the function name,
this difference must be stated in t:he
invoking procedure to avoid a possible
error. The PL/I programmer communicates
this information to the compil '2r by speci­
fying the RETURNS attribute in the invoking
procedure.

The RETURNS attribute is specified in a
DECLARE statement for a function entry name
within the procedure invoking that func­
tion. It specifies the attributes of the
value returned by that function. Unless
default attributes for the entry name
apply, any invocation of a Eunction must
appear within the scope of a RETURNS attri­
bute declaration for the entry name. For
ari internal function, the RETURN attribute
can be specified only in a DECLARE state­
ment that is internal to the same block as
the function procedure. If the RETURNS
attribute is declared for an internal func­
tion, the INTERNAL attribute must be speci­
fied in the same declaration.

The general format of the RETURNS attl~i­
bute is as follows:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from the named entry point is to be ~£~~:e~
as though it had the attributes given in
the attribute list. The word treated is
used because no conversion is performed in
an invoking block upon any value returned
to it. Therefore, if the attributes of the
returned value do not agree with those in
the attribute list of the RErURNS attri­
bute, an error will probably result~

Thus, in order to specify to the compil­
er that coding for MAINP is to handle the
FIXED BINARY value being returned by SPROD,
the following declaration must be given
wi thi n l<lAI NP :

DECLARE SPROO RETURNS (FIXED BINARY);

It is important to note some of the
things that are implied in the above dis­
cussion. Principally, it should be remem­
bered that during compilation of the invok­
ing block, there is no way for the compiler
to check a fUnction procedure to determine
the attributes of the value it returns. In
the absence of explicit information in a
RETURNS attribute specification, the com­
piler can only assume that the attributes
will be consistent with the attributes
implied by the first letter of the function
name. This is true even if the function
procedure is contained in the invoking
procedure. If the returned value does not
have the attributes that the invoking pro­
cedure is prepared to receive, no conver­
sion can be performed. The RETURNS attri­
bute must be declared for a function that
returns any value with attributes not con­
sistent with default attributes for the
function name.

similar to function procedures that a
programmer can define for himself is a
comprehensive set of pre-defined functions
c a 11 e d 1~~!!i!.t:=!.!!_f!!!!~t:!.2!!§'.

The set of built-in fUnctions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful func­
tions related to language facilities~ such
as functions for manipulating strings and
arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in func­
tions can return array values, whereas a
programmer-defined function can return only
an element value.

~Qt~: Some built-in functions actually are
compiled as in-line code rather than as
procedure invocations. All are referred to
in a PL/I source program, however, by
function references, whether or not they
result in an actual procedure invocation.

Neither the ENTRY attribute nor the
RErURNS attribute can be specified for any
built-in function name. The use of the
name in a function reference is recognized

without need for any further identifi­
cation; attributes of values returned by
built-in functions are known by the compil­
er.

But since built-in function names are
PL/I keywords, they are not reserved; the
same identifiers can be used as programmer­
defined names (exceptions are TIME, DATE,
and NULL; they cannot be implicitly
declared). Consequently, ambiguity might
occur if a built-in function (or
pseudo-variable) reference were to be used
in a block that is contained in another
block in which the same identifier is
declared for some other purpose. To avoid
this ambiguity, the BUILTIN attribute can
be declared for a built-in function name in
any block that has inherited, from a
containing block, some other declaration of
the identifier. Consider the following
example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINA~Y;

C: BEGIN;
DECLARE SQRT BUILTIN;

END;

END;

END;

Assume that in external procedure A#
SQRT is neither explicitly nor contextually
declared for some other use. Consequently,
any reference to SQRT would refer to the
built-in function of that name. In B,
however# SQRT is declared to be a floating­
point binary variable, and it cannot be
used in any other way. Finally, in c, SQRT
is declared with the BUILTIN attribute so
that any reference to SQRT will be
recognized as a reference to the built-in
function and not to the floating-point
binary variable declared in B.

A programmer can even use a built-in
function name as the entry name of a
programmer-written function and, in the
same program, use both the built-in func-

Chapter 10: Subroutines and Functions 105

tion and the programmer-wri ttE~n function.
This can be accomplished by use of the
BUILTIN attribute and the ENTRY attribute.
(The ENTRY attribute, which is used in a
DECLARE statement to specify that the asso­
ciated identifier is an entry name, is
discussed in a later section of this chap­
ter.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

SCRT: PROCEDURE (PARAM) FIXED (6,2);
DECLARE PARAM FIXED (12);

END;

A.: PROCEDUREi
DECLARE SQRT ENTRY RETURNS

(FIXED(6,2»,Y FIXED(12)i

X SQR'r (Y) ;

B: BEGIN;
DECLARE SQRT BUIL3~INi

z SQRT (P);

END;

END;

The use of SQRT as the label of the
firs~c. PROCEDURE statement is an I~xplici t
declaration of the identifier as an entry
name. Since, in this case, SQRr is not the
buil ;:-in function, the entry namE~ must be
explicitly declared in A (and the RETURNS
attribute is specified because the attri­
butes of the returned value are not appar­
ent in the function name). The function
reference in the assiqnment statement in A
thus refers to the programmer-wri tt:en SQRT
function. In the begin block, the iden­
tifier SQRT is declared with the BUILTIN
attribute. Consequently, the function ref­
erence in the assignment statement in B
refers to the built-in SQRT function.

If a programmer-written function using
the name of a built-in function is ~~~§!'.=
Q~!, any procedure containing a reference
to that function name must also contain an

106

entry declaration of that name; otherwise a
reference to the identifier would be a
reference to the built-in fUnction. In the
above example, if B were not contained in
A, there would be no need to specify the
BUILTIN attribute; so long as the identifi­
er SQRT is not known as some other name~
the identifier would refer to the built-in
function.

If a programmer-written function using
the name of a built-in function is inter­
~~~, any reference to the identifier would 
be a reference to the programmer-written 
function as long as its name is known in 
the block in which the reference is made. 
No entry name attributes would have to be 
specified if attributes to the returnE~d 
value could be inferred from the entry 
name. 

THE ENTRY ATTRIBUTE 

As mentioned earlier"the :ENTRY attri­
bute is used to indicate that the associat­
ed identifier is an entry name. such an 
indication is necessary if an identifier is 
not otherwise recognizable as an entry 
name, that is# if it is not explicitly or 
contextually declared to be an entry name 
in one of the following ways: 

1. By appearing as a label of a PROCEDURE 
or ENTRY statement (explicit). 

2. By appearing immediately following the 
keyword CALL (contextual). 

3. By appearing as the function name in a 
function reference that contains an 
argument list (contextual)" 

Therefore~ if a reference is made to an 
entry name i~ the block in which it does 
not appear 1.n one of these thrE~e ways"the 
identifier must be given the ENTRY attri­
bute explicitly, or by implication (see 
"Note" below) " in a DECLARE sta·t:ement wi·th­
in that block. For example, assume that 
the following has been specified: 

A: PROCEDURE: 

PUT EDIT (RANDOM) (E(lO,S»; 

END; 

Assume also that A is an extE~rnal proce­
dure and RANDOM is an external function 
that requires no arguments and returns a 
random number. As the procedu.re is shown 



ab~ve, R~NDOM is not recognizable within A 
as an entry name, and the result of the PUT 
statement, therefore~ is undefined. In 
order for RANDOM to be recognized within A 
as an entry name, it must be declared to 
have the ENTRY attribute. For example: 

A: PROCEDURE; 
DECLARE RANDOM ENTRY; 

PUT EDIT (RANDOM) (E(10,5»; 

END; 

Now~ RANDOM is recognized as an entry 
name, and the appearance of RANDOM in the 
pur statement cannot be interpreted as 
anything but a function reference. rhere­
forE~, th,e PUT statement results in thE~ 
output transmission of the random number 
returned by RANDOM. 

~~~~~ The ENTRY attribute can be explicit­
ly declared by implication. Any identifier
that is explicitly declared to have the
RETURNS attribute~ is given the ENTRY
attribute by implication. Thus~ RETURNS
implies ENTRY.

~n argument of a function or subroutine
reference can itself be an entry name.
When this is the case, one of the following
pert.ains:

1. If the ~ntry name argument, call it
FUNC, 1S specified with an argument
list of its own, it is recognized as a
function reference; FUNC is invoked,
and the value returned by FUNC effec­
tively replaces the appearance of FUNe
and !~~ argument list in the contain­
ing argument list.

2. If the entry name argument appears
without an argument list, but within
an operational expression or within
parentheses, then it is taken to be a
function reference with no arguments.
For example, the statement:

CAI .. L A((B» ;

where B is known as an entry name,
passes, as the argument to A, the
value returned by the function proce­
dUJr~e B.

3. If the entry name argument appears
without an argument list and neither

within an operational expression nor
within parentheses~ the entry name
itself is always passed to the func­
tion or subroutine being invoked. In
such cases, the entry name is never
interpre·ted as a function reference,
even if it is the name of a function
that does not require arguments. For
example, the statement:

CALL ,1\.(B);

when B is known as an entry name~
passes the entry name B as an argument
to A.

Consider the following example:

CALLP: PROCEDURE;
DECLARE RREAD ENTRY;

GET EDIT (R.,S) (2 F'(10,5»;

CALL SUBR (RREAD, ASQRT(R),
S, LAB1);

LAB1: CALL ERRT(S);

END;

SUBR: PROCEDURE (NAME, X" Y, TRANPT);
DECLARE NAME ENTRY" TRANPT

LABEL;

END;

IF X > Y THEN CALL NAME(Y);
ELSE GO TO TRANPT;

In this example, assume that CALLP"
SUBR, ASQRT" and RREAD are external proce­
dures. In CALLP" RREAD is explicitly
declared to have the ENTRY attribute and
SUBR is contextually declared to have the
ENTRY attribute. Four arguments are speci­
fied in the CALL SUBR statement. These are
interpreted as follows:

1. The first argument, RREAD, is recog­
nized as an entry name (because of the
ENTRY attribute declaration). Since
it does not have an argument list of
its owr~ and since it does not appear
in an operational expression or within
parentheses, the entry name itself is
passed at invocation.

Chapter 10: Subroutines and Functions 107

.2" The second argument, ASQRT (RJ, is rec­
ognized as a function reference
because of the argument list accom­
panying the entry name. ASQRT is
invoked and the value returned by
ASQRT is assigned to a dummy argument
(see "Dummy Arguments"), which effec­
tively replaces the reference to
ASQRT. When SUBR is invoked, the
dummy argument is passed to it.

3. The third argument, S" i::; simply a
decimal floating-point element varia­
ble which is passed as it is.

4. The fourth argument, LAB!, is a
statement-label constant. Being a
constant, a dummy argument. must be
created for it. When SUBR is invoked,
the dummy argument is passed.

In SUBR, four parameters are ~xplicitly
declared in the PROCEDURE stateme~t. If no
further explicit declarations were given
for these parameters, arithmetic default
att.ributes would be supplied for f~ach.

rherefore, since NAME must represent an
ent.ry name H it is explicitly declared with
thE! ENTRY attribute, an:] since TR~NPI' must
represent a statement label, it is expli­
citly declared with the LABEL attribute. X
and Yare arithmetic, so the defaults are
all~wed to apply.

~~te that the appearance of NAME in the
CALL statement does not consti tut.e a
contextual declaration of NAME as an entry
name. Such a contextual declaration exists
only if no explicit declaration applies#
out, in this case, one does apply since the
appearance of NA~E in the parameter list
constitutes an explicit declaration of NAME
as a parameter. If attributes of a param­
eter are not explicitly declared in a
c~mplementary DECLARE statement, arithmetic
defaults apply. Consequently, NAME must be
explicitly declared to have the ENTRY
attribute; otherwise, it would be assumed
to be a binary fixed-point variable, and
its use in the CALL statement would result
in an error.

~hen a function or subro~tine is
inv~ked, a relationship is established
bet~een the arguments of the invoking
statement or expression and the parameters
of the invoked entry point. This relation­
shi9 is dependent upon whether or not dummy
arg~ments are created.

108

DUMMY ARGUMENTS

In the introductory discussion of argu­
ments and parameters it is pOinted out that
the name of argument and not its value is
passed to a subroutine or function. Howev­
er, there are times when an argument has no
name. A constant, for example, has no
name; nor does an operational expression.
But the mechanism that associates arguments
with parameters cannot handle such values
directly. Therefore, the compiler must
provide storage for such values and assign
an internal name for each. 'l'hese internal
names are called dummY.3!!:.g.~!!!en:ts. They are
not accessible to the PL/I programmer, but
he should be aware of their existence
because any change to a parameter will be
reflected only in the v'al u€ of the dummy
argument and not in the value of -the
original argument from which it was con­
structed.

A dummy argument is al w'ays created :for
any of the following cases~

1.. If an argument is a constant

2. If an argument is
involving operators

an expression

3. If an argument is itself a function
reference containing arguments.

4. If an argument is an expression in
parentheses.

In all other cases, the argument name is
passed directly. The parameter becomes
identical with the passed argument;; thus"
changes to the value of a para~eter will be
reflected in the value of the original
argument only if a dummy argu:nent is not
passed.

ARGUMENT AND PARAMETER TYPES

In general, an argument and its corres­
ponding parameter may be of any data organ­
ization and type. For example, an argument
may be a pOinter provided that the corres­
ponding parameter is also a pointer; it may
be a bit string, provided that the corres­
ponding parameter is a bit string, and so
on. However, not all param(~ter/argume!nt
relationships are so clear-cut. Some need
further definition and clarification. such
cases are given below.

If a parameter is an ~!~![le!!~, i. e., a
variable that is neither a structure nor an
array, the argument must be an element
express ion. If the argumen1: is a sub­
scripted variable, the subscripts are

evaluated before the subroutine or function
is invoked and the name of the specifie~d
element is passed.

If a parameter is an !~~!y~ the argument
must be an array name. The data attributes
of the argument must agree with those of
the parameter. The bounds of the array
argument must agree with the bounds of the
array pa.rameter.

If a parameter is a structure, the
argument must be a struc£~~~-~i;~. The
relative structuring of the argument and
the parameter must be the same i the leve~l
numbers need not be identical. rhe data
attribut.es of the elements of the structu:r:'e
argument must match those of the corres­
ponding elements of the parameter.

If a parameter is an ~!~!!!~!!£ __ !!!2§;!
Y!;:.!'!Q!~~, the argument must be either a.n
element-label variable or a label constant.
If the argument is a label constant, a
dummy argument is constructed.

If the parameter is an !~~!~ __ !!Q!!
!!~!'!Q!~, the argument must be an array
label variable with identical bounds.

If a parameter is an ~!!:!:~~_!!!m~, the
argument. must be an entry name. The name
of a built-in function cannot be passed.
(However, built-in function references can
appear in. argument lists because the value
of the function reference and not the
function name is passed.)

If a parameter is a file name~ the
argument. must be a file name :---I~--g~neral"
the attributes of the file name argument
must match those of the file name paramet­
er. However~ for the D-Compiler, in some
cases, a match is not required. This is
true only' for the BACKWARDS attribute and
the following options of the ENVIRONMENT
a ttribut.€:

BUF'FE:RS (n)
LE,\VE:
NOI.ABEL
VERIFY
MEDIUM

In the case of the MEDIUM option, only the
logical device name can be different; the
physical device type must be the same.

When a file name argument does not match
its corresponding parameter in any of the
abo,ve case~s, the argument prevails and the
nonnatching ENVIRONMENT options or BACK­
~ARDS attribute of the parameter are over­
ridden. In all other cases, a match is
al~ays required and it is an error if any
attributes do not match. Consider the
following example:

A: PROC1~DURE OPTIONS (MAIN) ;
DECLARE X FILE RECORD INPUT

BACKWARDS ENVIRONMENT
(F(80)MEDIUM(SYS001~2400)
BUFFERS (1) LEAVE),

Y FILE RECORD INPUT
ENVIRONMENT (F(SO)
MEDIUM(SYS002~2400)
BUFFERS(2»i

CALL B(X);

CALL B(Y);

B: PROCEDURE(Z)i
D:e:CLARE Z FILE RECORD INPUT

ENVIRONMENT (F(80)
MEDIUM(SYSOOO" 2400» i

OPEN FILE (Z);

END Bi

END ,/\;

In this example" X has the BACKWARDS attri­
bute but its corresponding parameter does
not. Since this is one of the cases given
above, a m,atch is not required and Z
effectively is given the BACKWARDS attri­
bute the f ir:st time B is invoked. Similar­
ly, the logical device name SYS001~ the
BUFFERS (1) specification. and the LEAVE
option in' ·the ENVIRONMENT attribute for X
prevail over those given or assumed for Z.
The OPEN statement therefore results in the
opening of Z~ with all of the attributes of
X.

The second time that B is invoked~ the
action is the same, except that Z now
corresponds to Y and~ therefore~ the attri­
butes of Y p:revail. Thus, for this invoca­
tion Z does not have the BACKWARDS attri­
bute~ its logical device name is SYS002~
BUFFERS (2) applies" and LEAVE does not
apply.

If a parameter is an element pointer
variabl~, the argument must be an element
pointer variable or an element pointer
expression.

If a parameter is a 122.!!!teL!rray, the
argument must be a pointer array with
identical bounds.

Chapter 10: Subroutines and Functions 109

,\ parameter has no storage class and
therefore cannot be declared with any stor­
age class attribute. All arguments must be
either STArIC or ~UTOMATIC; they cannot be
BASED.

If a parameter is an array or a string,
the bounds of the array or the length of
the string must be specified in the same
way that they must be specified for non­
parameters; i.e., as decimal integer

110

constants. They
bounds and lengths
arguments.

must
for

be the same as the
the corresponding

Note that the baseJ scale, and precision
of an arithmetic constant passed as an
argument must be the same as 'that of its
corresponding parameter. Similarly, the
length of a string constant passed as an
argument must be the same af, that of its
corresponding parameter.

When a PL/I program is executed, a large
number of exceptional conditions are moni­
tored by the system and their occurrences
are automatically detected whenever they
arise. These exceptional conditions may be
errors, such as overflow or an input/output
transmission error, or they may be condi­
tions that are expected but infrequent"
such as the end of a file or the end of a
page when output is being printed.

Each of the conditions for which a test
may be made has been given a name, and
these names are used by the programmer to
control the handling of exceptional condi­
tions. rhe list of condition names is part
of the PL/I language. For keyword names
and descriptions of each of the conditions,
see Part II, Section H, "ON Conditions."

~ condition that is being monitored, and
the occurrence of which will cause an
interrupt, is said to be ~g~~!~~. Any
action specified to take place when an
occurrence of the condition causes an
intt~rrupt" is said to be ~~~~~!i~h~g.

Most conditions are checked for automat­
ically, and when they occur, the system
will take control and perform some standard
action specified for the condition. These
conditions are enabled by default, and the
standard system action is established for
theln.

rhe most common system action is to
raise the ERROR condition. This provides a
common condition that may be used to check
for a number of different types of errors,
rather than checking each error type indi­
vidually. Standard system action for the
ERRDR condition is to terminate the pro­
gram.

The programmer may specify whether or
not some conditions are to be enabled, that
is, are to be checked for so that they will
cause an interrupt when they arise. If a
condition is disabled l an occurrence of the
condition will not cause an interrupt.

1\11
ERRDR
cannot
tional
bled.

input/output conditions and the
condition are always enabled and

be disabled. All of the computa­
conditions may be enabled or disa­
rhe SIZE condition must be explicit-

ly enabled if it is to cause an interrupt;
all other conditions are enabled by default
and must be explicitly disabled if they are
not to cause an interrupt when they occur.

Enabling and disabling can be specified
for certain conditions by a condition pre­
fix. A condition prefix is a list of one
or more condition names, enclosed in paren­
theses and separated by commas, and con­
nected to a statement (or a statement
label) by a colon. The prefix always
precedes the statement and any statement
labels. A condition name in a prefix list
indicates that the corresponding condition
is enabled within the scope of the prefix.
Some condition names can be preceded by the
word NO, without a separating blank or
connector, to indicate that the correspond­
ing condition is disabled.

The scope of the pref ix" that is, the
part of thE~ program throughout which it
applies, is usually the statement to which
the prefix is attached. The prefix does
not apply to any functions or subroutines
that may be invoked in the execution of the
statement.

A condition prefix to an IF statement
applies only to the evaluation of the
expression following the IF; it does not
apply to the statements in the THEN or ELSE
clauses~ although these may themselves have
prefixes. Similarly~ a prefix to the ON
statement has no effect on the associated
on-unit. A condition prefix to a DO state­
ment applies only to the evaluation of any
expressions in the DO statement itself and
!!Q~ to any oi:her statement in the DO-group.

Condition prefixes to the PROCEDURE
statement and the BEGIN statement are spe­
cial (though commonly used) cases. A con­
dition prefix attached to a PROCEDURE or
BEGIN statement applies to all the state­
ments up to and including the corresponding
END statement. This includes other PROCE­
DURE or BEGIN statements nested within that
block. It does not apply to any procedures

Chapter 11: Exceptional Condition Handling and Program Checkout 111

lying outside that block, which may be
inv~ked during execution of the program.

The enabling or disabling of a condition
may be redefined within a block by attach­
ing a prefix: to statemen·ts wi t~hin the
block, including PROCEDURE and BEGIN state­
ments (thus redefining the enabling or
disabling of the condition within nested
blocks). Such a redefinition applj.es only
to the execution of the statement to which
the prefix is attached. In the case of a
nested PROCEDURE or BEGIN statement, it
applies only to the block the statement
defines, as well as a~y blocks contained
within that block. When control passes out
af the scope of the redefining prefix, the
redefinition no longer applies. ~ condi­
tion prefix can be attached to any state­
ment. except a DECLARE or ENTRY statemen·t.

20nsider the following example:

(SIZE): A: PROCEDURE;

(NOSIZE): B: BEGIN;

END B;

END A;

In this example, the condition prefix
SIZE enables that condition for procedure A
and specifies that if a SIZE error occurs
during any calculation in A, an interrupt
is to take place. Ordinarily, the scope of
the SIZE prefix would include begin block
B; however, the NOSIZE prefix on the BEGIN
statement disables SIZE ~ithin B and pre­
cludes any interrupt for a SIZE error
therein.

~ system action exists for every condi­
tion, and if an interrupt OCCllrs, the
system action will be performed unless the
pro3rammer has specified an alternate
action in an ON statement for that condi­
tion. The purpose of the ON statenent is
to establish the action to be taken when an
interrupt results from an exceptioaal con­
dition that has been enabled, either by
default or by a condition prefix.

Nate: The action specified in an ON state­
~~~~-will not be executed during any por­
tion of a program throughout which the 
condition has been disabled. 

112 

The form of the ON statement. is: 

ON condition-name {SYSTEM; lon-unit} 

(see Part II, Section J, "statements" for a 
full description). 

The keyword SYSTEM followed l~ a semico­
lon specifies standard system action whene­
ver an interrupt occurs. It re-establishes 
standard system action for a ccndition for 
which some other action has been esta­
blished. 'I'he on-uni:!:: is used by the pro­
grammer to specify an alternate action to 
be taken whenever an interrupt occurs. ,1Ul 
on-unit must be either a null statement or 
a GO TO statement; it cannot be labeled. 

A null statement on-unit effectively 
ignores the interrupt and, in general, 
returns control to the point logically 
following the point at which the interrupt 
occurred. Thus~ the effect of a null 
on-unit is to say "When an interrupt occUJrs 
as a result of this condition, do nothing 
except continue." 

Use of the null on-unit is not the same 
as disabling a condition, for two reasons: 
first, a null on-unit can be specified for 
any condition (except ENDFILE, KEY, and 
CONVERSION), but not all conditions can be 
disabled; and, second, disabling a condi­
tion, if possible# may save time by avoid­
ing any checking for this condition. If a 
null on-unit is specified, the system must 
strll check for the occurrence of the 
condition, transfer control to the on-unit 
whenever an interrupt occurs, and then, 
after doing nothing" return from the on­
unit. 

~Q.:!::g: The specific point to which control 
returns from a null on-unit varies for 
different conditions. In most cases, it 
returns to the point that immediately 
follows the action in which the condition 
arose. section H, "ON-Condi·tions" gives 
the point of return for all conditions for 
which a null on-unit can be specified. The 
return from a null on-unit is called a 
normal return. 

If an on-unit is a GO TO statement, then 
when an interrupt occurs, control is trans­
ferred to the label specified in the GO 'l~O 
statement. Linkage to the point at which 
the interrupt occurred is thus lost and a 
normal return cannot occur. 



The execution of an ON statement asso­
ciates an action specification with the 
named condition. Once this association is 
established, it remains until it is over­
ridden or until termination of the block in 
which the ON statement is executed. 

~n established interrupt action passes 
frDn a b~ock to any block it activates, and 
the action remains in force for all subse­
quently activated blocks unless it is over­
ridden by the execution of another ON 
stat:ement for the same condition. If it is 
overridden,. the new action remains in forcE~ 
onl~r unt.il that block is terminated. When 
control returns to the activating block, 
all established interrupt actions that 
existed at that point are re-established. 
This makes it impossible for a subroutine 
to alter the interrupt action esfablished 
for the block that invoked the subroutine. 

If more than one ON statement for thE~ 

same condition appears in the same block4 

each subsequently executed ON statement 
permanently overrides the previously esta­
blished condition. No re-establishment is 
possible, except through execution of 
anDther ON statement with an identical 
action specification (or re-execution, 
through some transfer of control~ of an 
overridden ON statement). 

A.: PROCEDURE; 
ON CONVERSION GO TO A.ERR; 
ON ZERODIVIDE GO TO BERR; 

CA.L:L B; 

END A.i 

(NOOVERFLOW): B: PROCEDUREi 
DECLARE Z BIT(l), 

X CHARA.CTER(l)i 

ON CONVERSION GO TO CERRi 

(NOCONVERSION): Z Xi 

The ON 
blish the 

RETURN; 
END B; 

statements in procedure A esta­
actions to be taken for the 

CONVERSION and ZERODIVIDE errors occurring 
within A. (Note that CONVERSION and ZERO­
DIVIDE are enabled by default and therefore 
do not require condition prefixes to enable 
them.) These action specifications carry 
over into procedure B, because it is 
invoked by A, and remain in force until the 
ON statement in B is executed. This ON 
statement establishes a new action for the 
CONVERSION condition, which new action 
remains in force for the remainder of B. 
When control returns to AI the action 
specification for CONVERSION within A. is 
re-established (the action specification 
for ZERODIVIDE, not having been changed in 
B, does not need to be re-established). 

Note that the scope of the ON statement 
within B does not include the assignment 
statement since the NOCONVERSION prefix 
disables the CONVERSION condition for that 
statement. Thus, a CONVERSION error occur­
ring during execution of the assignment 
statement does not cause an interrupt. 

If a CONVERSION error occurs before the 
ON statement in B is executed, the action 
established in A is taken; that iS I control 
is transferred to AERR. Similarly, a ZERO­
DIVIDE error occurring anywhere within B 
results in a transfer to BERR. 

The OVERFLOW condition is enabled by 
default and, since there is no ON statement 
for OVERFLOW within A, an OVERFLOW error 
within A causes the standard system acti6n 
for OVERFLOW to be taken. However, within 
B, no action is taken for an OVERFLOW error 
because a NOOVERFLOW condition prefix has 
been attached to the PROCEDURE statement 
for B, and, as a result, OVERFLOW is 
disabled in B. When control returns to A., 
OVERFLOW is enabled once again. 

The REVERT S!:a tement 

The REVERT statement is used to cancel 
the effect of one or more previously exe­
cuted ON sta1:ements. It can affect only ON 
statements that are internal to the block 
in which the REVERT statement occurs and 
which have been executed in the same invo­
cation of that block. The effect of the 
REVERT statement is to cancel the effect of 
any ON stat.ement for the named condition 
that has been executed in the same block in 
which the REVERT statement is executed. It 
then re-establishes the action that was in 
force at the time of activation of that 
block. 

A REVERT statement that is executed in a 
block in which no action has been esta-

Chapter 11: Exceptional Condition Handling and Program Checkout 113 



blished for the named condition is treated 
as a null statement. 

(SIZE): A: PROCEDUREi 
ON SIZE GO TO AEIm; 

CALI.. B; 

END Ai 

(SIZE): B: PROCEDUREi 
ON SIZE GO TO BERRi 

ON SIZE GO TO CERR; 

REVERT SIZE; 

RETURN; 
END B; 

In this example, if a SIZE error occurs 
in procedure B after the execution of the 
first ON statement in B but before the 
execution of the second ON statement, an 
interrupt occurs and control is transferred 
t~ BERR; if a SIZE error occurs in B after 
the execution of the second ON statement 

114 

but before the execution of the REVERT 
statement, an interrupt occurs and control 
is transferred to CERR; if a SIZE error 
occurs in B after the execution of the 
REVERT statement, an interrupt occurs and 
control is transferred to AERH. Thus, t.he 
REVERT statement re-establishes the action 
specification for SIZE as it existed at the 
point of invocation of B (that is, as it 
existed in A ~hen the CALL B statement was 
executed). 

The SIGNAL Statement 

The programmer may simulat~e the occur­
rence of an ON condition by means of the 
SIGNAL statement. An intE!rrupt will occur 
unless the named condition is disabled. 
This statement has the form: 

SIGNAL condition-name; 

The SIGNAL statement causes execution of 
the interrupt action currently establishted 
for the specified condition. 'rhe principal 
use of this statement is in program check­
ing, to test the action of an on-unit, and 
to determine that the correct action is 
associated with the condition. If the 
signalled condition is not enabled, the 
SIGNAL statement is treated as a null 
statement. 



F~r each identifier used in a PL/I 
program, the compiler must be able to 
determine the attributes associated with 
the name in order to generate correct code. 
For example: 

A = B + C; 

If ~, Bf and C are floating-point varia­
bles, then floating-point instructions will 
be compiled; if they are fixed-point, 
fixed-point instructions will be compiled. 

In addition to determining the type of 
operation, the compiler must also be able 
to determine the address of each operand. 
In some cases, the compiler must generate 
code that ~ill determine the address when 
the program is executed. The storage class 
of a variable determines the way in which 
the address is obtained. There are three 
dis'tinct. cases: 

1. §!=~~:!=;h~ __ §'!=QEi!~§ • The of f set 
fixed origin can be determined 
the program is loaded. 

from a 
when 

2. ~~~::Q~i!!=;h£_§'!=QE!!g§. The origin and the 
offset of the address are determined 
upon entry to the block. 

3. ~i!:~~§~_~!=QEi!~§. With each of the other 
classes of storage, the address used 
when an element is referred to is 
determined by the system. Indeed, one 
of the main advantages of using a 
language such as PL/I is that the 
programmer need not concern himself 
with addresses and address computa­
tion. However, in keeping with the 
general design of PL/I, the facility 
is available for the programmer to 
exercise direct control over address­
es., 

It is this third class, 
and address manipulation 
chapter is concerned. 

based storage, 
with which this 

A special type of variable, the pointer 
variable, is used to specify addresses in 
PL/I. While a pointer variable may not, in 
som.e implementations, actually contain an 
address, it is used to locate data in 
storage;; consequently" it may be thought of 
as an ad.dress. 

A based variable is a description of 
data that can be applied to different 
locations in storage, depending upon the 
value of the associated pointer variable. 

Using based storage, the programmer can 
(l)explicitly specify the address to be 
used when accessing a variable, and 
(2)10cate the storage area of a variable to 
be transmitted by RECORD-oriented 
input/output. 

When a based variable is declared, it 
must be associated with a pointer that has 
been explicitly declared. The form of the 
declaration is~ 

identifier BASED (pointer-variable) 

For example: 

DECI.AHE P POINTER; 

DECLARE A BASED (P); 

Whenever a reference is made to 
address must be derived using the 
a pointer variable. The pointer 
used is the one that appears in 
laration of the based variable, 
case, P. For example: 

A = A + 1; 

In this statement. the 
determine the address of A 
cases, be P. 

pointer 
will, 

A, the 
value of 
variable 
the dec­
in this 

used to 
in both 

So long as an associated pointer varia­
ble has a valid value, any reference to the 
based variable is treated as if it had been 
allocated in the location identified by the 
pointer variable. 

POINTER SPECIFICATION 

A pointer variable must be associated 
with the based variable in the DECLARE 
statement that names the based variable. 
The pointer variable specified must be one 
that is explicitly declared elsewhere with 
the POINTER attribute. 

Chapter 12: Based Variables and Pointer Variables 115 



~ restriction imposed by the D-Compiler 
is that the pointer name used in the 
declaration of a based variable must be an 
unsubscripted 6 unqualified element varia­
ble. 

~rrays of pointers are allowed, and 
pointers can be elements of structures, but 
those pointers cannot be associated with a 
based variable in a declaration. 

V~LUES OF POINTER VARIABLES 

3efore a reference can be made to a 
bas~d variabl€~, a value must be qi ven to 
the pointer with which it is associated. 
This can be done in any of four different 
ways: with the SET option of a READ or 
LOC~TE statement; by assignment of the 
value of anot:her painter; or by a!3signment 
of 'the value returned by the ADDR built-in 
function. 

The READ statement with a SEr option 
causes a record to be read into a buffer 
and the specified pointer variable to be 
set to point to the buffer. ~ based 
variable, declared with the same pointer f 

can then be used to refer to the fields of 
the record. 

~ based variable used to describe a 
record in a buffer has the effect of being 
ovel::-Iaid on the buffer. Thl2 r€~mlt of a 
reference to an element of the based varia­
ble is the same as if the record had been 
read directly into the structure described. 

~he LOCATE statement, which always must 
have a SET option, allocates storage for a 
based variable in an out~ut buffer. The 
action is similar to that of the READ and 
SEr, in that. the based variable is, in 
effect, overlaid on the buffer. In thiS 
case, however, the description is used to 
mOVE~ data into the output buffer in loca­
tions relative to the descriptions of the 
elements of the based variable. 

116 

~§.§.i9.nment of Pointer Val u~~ 

The value of a pointer variable may be 
assigned to another pointer variable in a 
simple assignment statement. Assume that Q 
and P are pointer variables and. that P has 
a valid pointer value. 

Q = Pi 

This statement specifies that Q is to be 
set to point to the same Ioca"c.ion that P 
points to. Reference to a based variable 
using either P or Q as th4:: associat.ed 
pointer is a reference to t.he Harne locati.on 
1.n storage. Note that a pointer variable 
can be assigned a pointer value also by a 
reference to a programmer·-defined functi.on 
that returns a pointer value. Thus, in the 
above example, P could bE:! a programme!r­
defined function that returns a point.er 
value. 

The value returned 
function reference is 
that specifies the 
variable named as 
function reference. 

P = ADDR(A); 

to an ADDR built-in 
a valid pointer value 
location of a data 

the argument of the 
For example: 

Execution of this assignment si:atement will 
give the pointer variable P a value so that 
it points to the location of the data 
variable A.. The value of an ADDR function 
reference can be assigned 1:0 a pointer 
variable only. 

The argument of the ADDR fUnction 
reference can be a variable that represents 
an element, an array, an element of an 
array, a major structure, a minor struc­
ture, or an element of a structure. The 
argument may be a based variable or a 
nonbased variable. 

Since the ADDR function can be used to 
set a pointer to point to a nonbased 
variable, this facility allows the use of a 
based variable to refer to the ya!.~~ of a 
nonbased variable. 

DECLARATION OF POINTER VARIABLES 

A pointer variable must be explicitly 
declared with the POINTER attribute in a 
DECLARE statement. Arrays of pointers can 



be declared, or an elementary name of a 
structure can be declared to be a pointer 
variable. By default~ a pointer variable 
is given the AUTOMATIC storage class attri­
bute, but STATIC may be declared for it. A 
pointer variable cannot have the BASED 
att.ribute.. Following are examples of poin­
ter declarations: 

DECLARE A POINTER, 
1 ELEMENT, 

2 P POINTER, 
2 C CHARACTER (10), 

X(lO) POINTER STATIC; 

~Q~~~ A pointer array variable must be 
subscripted to indicate a single element 
when it is used in a SET option. 

POINTER VARIABLE RESTRICTIONS 

Because a pointer is very closely relat­
ed to an address, its value is strongly 
:iependE:!nt upon the implementation in which 
it is used. In order to reduce implementa­
tion dependence, some restrictions are made 
on the use of pointer variables. 

1. Pointer variables may not be operands 
of any operations except the compari­
son operations specified by the opera­
tors = and 1=. 

2.. Assiqnment of a pointer variable value 
may be made only to another point4~r 
variable. 

3. Pointer variables cannot be used for 
STREAM input and output. When used in 
RECORD input and output, a point4~r 
valm~ written as output cannot be 
assumed to locate the same data if it 
is read back in. 

The based storage and pointer handling 
facilities provided by the D-Compiler are 
primarily intended to permit the processing 
of records in input and output buffers. 
This can result in a significant saving of 
storagE:!, particularly when many different 
record types exist in the same file. 

Many different declarations of based 
variables can be associated with the same 
pointer. The effect of this is that once 
the pointer has been given a value, say by 
a READ statement with a SET option, then 
any of the record descriptions associated 

with the pointer may be used to refer to 
the record in the buffer. For example: 

DECLARE P POINTER; 
DECLARE 1 ISSUE BASED (P), 

2 CODE CHARACTER(l), 
2 PART NO PICTURE '9999999', 
2 QTY PICTURE '9999', 
2 DEPT PICTURE '99', 
2 JOB_NO PICTURE '9999', 

1 RECEIPT BASED (P), 
2 CODE CHARACTER(l), 
2 PART_NO PIC'l'URE '9999999', 
2 QTY PICTURE '9999', 
2 SUPPLIER PICTURE '99999'; 

READ FILE (TRANS) SET (P); 
IF ISSUE.CODE = 'R' THEN GO TO RL1; 
IF SUPPLIER >1000 THEN GO TO INHS1; 

In this example, the two record descrip­
tions ISSUE and RECEIPT are associated with 
the same pointer. Once P has been given a 
value by execution of a READ statement with 
a SE'r option, either of the two records can 
be referred to. The records do not require 
working storage, since the pointer refers 
to a position within the buffer. 

The records can also contain variables 
other than character strings and numeric 
character fields. Any number of records 
can be associated with the same pointer. 
When the pointer is given a value, all of 
the records will refer to the same storage 
and will effectively be overlaid. Such 
overlaying of record descriptions can be 
machine dependent and should be used with 
care. 

VARIABLE-LENGTH PARAMETER LISTS 

In PL/I, a programmer-written procedure 
can have only a fixed number of parameters, 
all of which must be specified. Arguments 
are associated with parameters by passing 
addresses (which may be addresses of dummy 
arguments). By passing an array of poin­
ters as a single argument, it is possible 
to simulate a variable-length parameter 
list, since some of the array elements may 
be nUll .• 

The following procedure checks if a 
value lies between two limits. Either the 
upper limit. or the lower limit may be 
specified. The procedure has two paramet­
ers# a value that is to be checked and an 
array of two pointers. The first pointer 
specifies the upper limit# the second the 
lower limit. If either limit is not to be 
checked, the associated painter is null 
when passed (see "Pointer Manipulation" 
below for a discussion of the NULL built-in 
function). The procedure returns the value 

Chapter 12: Based Variables and Pointer Variables 117 



'1'8 (or true) if the value lies between 
the limits. or the value 'O'B if it does 
not. 

LIMIr: PROCEDURE (X,P) BIT(l); 
DECLARE P(2) POINTER, 

(Pl,P2) POINTER, 
'l'OP BASED (Pl), 
BOTTOM BASED (P2); 

IF pel) ,= NULL 
THEN DO; 

Pl pel); 
IF X >= TOP 

THEN RETURN('O'B); 
END; 

IF P(2) ,=NULL 
THEN DO; 

P2 P(2); 
IF X <= BOTTOM 

THEN RETURN('~'B); 
END; 

RETURN('l'B); 
END LIMIT; 

A [?["ocedure that invokes LIMIT miqht con­
tain: 

DECLARE LIMIT RETURNS BIr(l), 
Q(2) POIN'l'ER; 

Q(l) = ADDR(HIGH); 
Q (2) = NUL:L; 
IF LIMIT (Y,Q) THEN DO; 

N:>te that since a pointer in a. based 
vari3ble declaration cannot be subscripted, 
it is necessary to define two other pOinter 
variables that are used to refeI to the 
limits TOP and BOTTOM. 

Since the procedure LIMIT does not 
return a fixed-point binary value of preci­
sion 15 (as would otherwise be imr~ied by 
its initial letter), it must be declared 
with the RETURNS attribute in the invoking 
[?roc,edure. 

In the invoking procedure, values are 
assigned to Q(l) and Q(2) using the built­
in Eunctions ADDR and NULL. The p::-ocedure 
LIMIr is then invoked by the function 
reference in the IF statement. 

rll'lO important 
provided by PL/I 

118 

built-in 
which can 

functiDns 
be Ilsed 

are 
in 

manipulating pointer variable::;. 
the ADDR built-in function and 
built-in function. 

They are 
the NUl.L 

The first of these, the ru)OR built-in 
function" has <;tlready been discussE~d 
briefly. It requlres one argument, the 
name of a variable" and it returns a value 
that points to the variable. It can be 
used to find the address of an element 
variable, an array variable. an element of 
an array, a major structure" a minor struc­
ture, or an element of a stJCuctllre. 

The ADDR function returns a value that 
identifies the address of a nonbased or 
based variable argument. 

When using the ADDR funct.ion with arraY's 
and structures t it is important to note 
that the ADDR of the first element of an 
array or structure is the same as the ADDR 
of the array or structure itself. 

For example, given the foLlowing dec­
larations: 

DECLARE P POINTER; 

DECLARE B(10,10) BASED {P), 
A(10,10); 

ADDR(A(1#1» is the same as lillDR(A) and, 
with the following assignment: 

P = ADDR(A); 

B(1.1) will refer to the first element of 
A. 

It is entirely up to the programmer to 
ensure that such references do access mean­
ingful storage locations, which must have 
been allocated in some other way and whose 
attributes are correct. It is well worth 
emphasizing that the power pro'vided by the 
facility can be offset by extreme implemen­
tation dependence unless it is used care­
fully. 

The second built-in function for pointer 
manipulation is the NULL flllction. The 
NULL function requires no argwlents in a 
function reference. It rE~turns a pointer 
value which is null; that is, a value that 
does not refer to a valid address. 



CHAPTER 13: A PL/ I PROGRAM 

r---------------------------------------------------------------------------------------, 
C72A3: PROCEDURE OPTIONS (MAIN); 

DECLARE PAGE_NO FIXED DECIMAL, 
1 CARDIN, 

2 ACCNT_NO PICTURE '(8)9'~ 

2 NAME CHARACTER (25), 
2 ADDRESS CHARACTER (25), 
2 PAYMENT PICTURE '$$$$9V .. 99', 
2 REST CHARACTER (14), 

1 B, 
2 BALANCE PICTURE '$$$$$9V.9R', 
2 RESTl CHARACTER (71), 

WRKA CHARACTER (8) DEFINED CJ\.RDIN, 
WRKB CHARACTER (9) DEFINED B, 
PAYMNT FILE INPUT RECORD ENVIRONMENT 

(CONSECUTIVE F(80) MEDIUM(SYS003,2540», 
ACCNTS FILE UPDATE RECORD DIRECT KEYED 

ENVIRONMENT (REGIONAL (1) F(80) 
MEDIUM(SYS001 , 2311» I 

EXCP FILE STREAM OUTPUT PRINT 
ENVIRONMENT (MEDIUM(SYS002,1403) F(133»; 

OPEN FILE (PAYMNT) I FILE (ACCNTS);; 
ON ENDFILE (PAYMNT) GO TO EOF; 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

/* SET UP PAGE CONTROL */ 
22 
23 

ON ENDPAGE (EXCP) GO TO NEW PAGE; 
/* SE:T UP HEADINGS AND THEN PRINT-HEADINGS FOR FIRST PAGE */ 

PAGE_NO = 0; 
NEW PAGE: PAGE NO = PAGE NO + 1; 

- PUT FILE (EXCP) PAGE LINE(3) EDIT ('PAGE " PAGE NO) 
(X(10), A(5), i(5»; 

PUT FILE (EXCP) LINE(5) EDIT ('NO PAYMENT RECEIVED FROM') 
(X(30), A(24»; 

PUT FILE (EXCP) LINE(10) 
EDIT (' ACCOUNT NO', • NAME' I '1IDDRESS " 'BALANCE 

(COLUMN(5), A(11), COLUMN(16) , A(5)# 
COLUMN(41), A(7), COLUMN(66), A(ll»); 

/* TE;ST TO SEE IF NEW PAGE ENTERED ON INTERRUPT */ 
II!' PAGE_NO = 1 THEN GO TO NEWCARD;; 

ELSE GO TO ZZ; 
/* MIUN UPDATE LOOP */ 

NEWCARD: READ FILE (PAYMNT) INTO (CARDIN); 
READ FILE (ACCNTS) INTO (B) KEY(ACCNT NO); 
IF PAYMENT = 0 THEN -

IF BALANCE<= 0 THEN GO TO NEWCARD; 
ELSE 

DUE' ) 

24 
25 
26 
27 
28 
29 
~O 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

ZZ: PUT FILE (EXCP) SKIP EDIT 45 
(WRKA,NAME,~illDRESS,WRKB) 46 
(COLUMN(5), A(8), 47 
COLUMN(16) r A(25), 48 
COLUMN(41), A(25)~ 49 
COLUMN(66), A(9»; 50 

ELSE DO; 51 
BALANCE=BALANCl~-PAYMENT; 52 
REWRITE FILE (ACCNTS) FROM (B) KE:Y (ACCNT_NO) ; 53 
END; 54 

GO TO NEWCARD; 55 
EOF: CLOSE FILE(PAYMNT), FILE(ACCNTS), FILE(EXCP); 56 

END C72A3; 57 L ______________________________________________________________________________________ _ 

Figure 13-1. A PL/I Program 

Chapter 13: A PL/I Program 119 



!igure 13-1 is an example of a complete 
PL/[ program. Note, however, tha~ it is 
in t'c::nded merely to illustrate how certain 
f~atures of PL/I can be used; it is not 
inb2nded that the program be used to solve 
d problem. 

This example illustrates th,e m:;I~ of PL/I 
foe some common operations. ThE~ program 
reads a card and tests to see ~ojhether a 
pclyrnent has been mad.e. If one has, the 
r;LllO'lnt of the payment is subtra.cted from 
the balance in the account, 'Nhich is in 
ano~her file. If a payment has not been 
made, and if there is a balance due, the 
per:30n's name, address, account number, and 
balance are printed. 

~rhe pattern of indention il.lustI:ates the 
free format allowed by PL/I. rhe D­
Co:npiler requires that the fi:r-st column of 
eveJ:-y card in the source program be blank; 
columns 73 t.hrough 80 of these cards are 
ign:)red and can contain any information (in 
thL5 example, card sequence numbers appear 
in columns 79 and 80). So long as these 
marqin restrictions are followed, 
statements can begin and end at any place. 
Statements can be continued from card to 
card without any continuation notation, as 
are the DECLARE statement and the PUT 
statements in this example. constants can 
be continued from card to card provided 
that the last character in the first card 
is in column 72 and the first character in 
the next card. is in column 2. 

The PROCEDURE statement in card 
the procedure; the MAIN option 
implementation-defined option 
specifies the initial procedure 
program (which may consist of more 
external procedure). 

1 names 
is an 

that 
of the 

than one 

The DECLARE statement in cards 2 through 
20 declares the attributes for the ijen­
tifiers used in the procedure. 

PA.GE NO in card 2 is given the attri­
butes FIXED and DECIMAL. Note that since 
no precision is specified, PAGE_NO is given 
the default precision, which is (5,0). 

The structure declaration in cards 3 
through 8 describes the input record CAR­
DIN. This record has an account number in 
the first 8 columns (note that this account 
number is also the key that will be used to 
find the account in the accounts file), a 
name in columns 9 through 33, an a~dress in 
the next 25 columns, and a three- to 
six-digit quantity with a leadi~g dollar 
sigrl and an embedded decimal point in the 
next 8 columns (the quantity is 
right-adjusted). The remainder of the 
record does not contain any infcrmation. 
RESI', which is associated with this part of 
the record, is declared so that: thE remain-

120 

der of the 80 columns will be accounted 
for. 

Cards 9, 10, and 11 declare a structure 
that describes the records 1:hat are read 
from the accounts file (ACCN'1'~3) and ,that 
contain the balance due for each amount. 
Each record has the balancE~ due (BALANCE) 
in columns 1 through 9. The remaining 71 
columns are not used but al~e accounted for 
by REST1. Each record in the file is 
identified by a key, which is the account 
number. Note that the R picture character 
in the declaration of BALANCE provides for 
the storing of a minus sign should the 
contents of BALANCE become negative. 

In cards 12 and 13, WRK1\. and WRKB are 
declared as character strings defined on 
the first eigh't charactE~r I)ositions of 
CARDIN (and, hence, effect:ively, ACCNT NO) 
and the first nine character positions ;:;f B 
(and, hence, effectively, BALANCE)~ respec­
ti vely. This is done because t~he value of 
a character string that has been defined on 
a numeric character variable is always the 
character-string value of that variable. 
This eliminates the need to assign the 
numeric character variable to a character­
string variable in order to print the 
character-string value of t~he numeric char­
acter variable. 

Cards 14 and 15 contain a declaration of 
PAYMNT as a buffered, record-orient~d input 
file. This file has fixed-length records 
of length 80 and is to be read from the 
logical device SYS003 which is attached to 
an IBM 2540 Card Reader. The organization 
of the data set that is associated with the 
file is CONSECUTIVE, which means that the 
(n+1)th record of the file is located after 
t~e ~th record of that file. 

Cards 16, 17, and 18 contain a 
declaration of the accounts file, ACCNTS. 
This file is a direct-access update file 
that has a key associated with each record. 
REGIONAL (1) specifies that a 'kEy is used ,to 
refer to a record by its relative location 
with respect to the first record in the 
file. The file contains fixed-length 
records of length 80. The lcgical device 
name for the file is SYS001 and the physi­
cal device type is 2311 (that is~ an IBM 
2311 Disk storage Drive). 

Cards 19 and 20 contain a declaration of 
the file EXCP, which is to be used to 
record those accounts for which a balance 
is due but no payment has been made. It. is 
an output print file. Its logical device 
name is SYS002 and its physical device type 
is 1403, an IBM 1403 Printer. 

The first executable statement in the 
program is the OPEN statement in card 21. 
This statement opens the files PAYMNT and 



~CCNrs. EXCP is implicitly opened by the 
first PUT statement l which is in card 28. 

Card 22 contains an ON statement that 
establishes the action to be taken when the 
last payment card has been read. 

rhe ON ENDPAGE statement in card 24 
establishes an action for any ENDPAGE 
interrupt occurring for the file EXCP. 
Note that this action (that is# GO TO 
NE~ P~GE) is taken only when an ENDPAGE 
interrupt for the file occurs; the execu­
tion of t:he ON statement merely establishes 
the action. 

The assignment statement in card 26 
initializes PAGE_NO to zero. The assign­
ment statement in card 27 increments 
P~GE NO by 1 in order to update the page 
numb~r for the print file and also to 
ensure that the test in cards 37 and 38 
will produce the desired result. 

The statements in cards 28 through 35 
print the page headings. The first PUT 
statement (cards 28 and 29) starts a new 
page and then spaces two lines. The page 
headings are then printed on the third 
line. The interaction of the data list and 
the format list proceeds as follows: 

Space ten columns; assign the constant 
'P~GE' to a five-character field; con­
vert the value in P~GE_NO to an integer 
and place it, right-adjusted, into a 
five-character field. 

rhe second PUT statement (cards 30 and 
31) prints the general heading NO P~YMEN'I' 
RECEIVED FROM on the fifth line of the 
page. 

The third PUT statement (cards 32 
through 35) prints the column headings. In 
this statement, the COLUMN format item is 
used to position the fields, so that the 
first heading starts in column 5, the 
second heading in column 16, the third 
heading in column 411 and the fourth head­
ing in column 66. 

:ards 37 and 38 contain an IF statement 
that tests to see if the NEW PAGE routinE 
was entered from an interrupt ~r from the 
normal sequence of program execution. If 
P~GE NO is 1, then the NEW PAGE routine has 
been-entered normally. In-all other cases, 
the routine has been entered because of an 
interrupt and the only possible point at 
which this interrupt could have occurred is 
the PUT statement labeled ZZ (see card 45). 
~ny such interrupt would occur before the 
data list could be transmitted so a trans-

fer of control back to that PUT statement 
(after printing headings for the new page) 
results in the printing of the data that 
was to have been transmitted when ENDPAGE 
was raised. 

The main loop of the program starts with 
the statement labeled NEWCARD in card 40. 
This READ sta1:ement specifies that a record 
from the file PAYMNT is to be read into the 
structure CARDIN. 

The next READ statement (card 41) uses 
the value of ~CCNT_NO (obtained by the 
preceding READ statement) as the key iden­
tifying the record to be read into the 
structure B. 

The IF statement in card 42 tests to see 
whether a payment has been made. If none 
has been made, the THEN clause (which 
contains another IF statement in card 43) 
is executed. This IF statement checks to 
see whether the account balance is less 
than or equal to zero; if the payment is 
zero and the account balance is less than 
or equal to zero, a new card is read. If 
the payment is equal to zero, but the 
account balance is greater than zero, the 
PUT statement in line 45 prints the infor­
mation for the delinquent account. The 
format list in this statement uses the 
COLUMN format item to line up the data 
under the headings described in the 
NEW_P~GE routine (cards 27 through 37). 
The SKIP option in the PUT statement (card 
45) insures that a new line is started each 
time the PUT statement is executed. 

If the payment is not equal to zero, the 
DO-group of the ELSE clause starting in 
card 51 is executed. The assignment state­
ment in this group subtracts the payment 
from the balance in order to form a new 
balance. The next statement (card 53) 
rewrites the record into the file ~CCNTS, 
using the value of ACCNT_NO as the key. 
Note that the record is rewritten only if 
the value of BALANCE has been changed. 
Note also that the REWRITE statement is 
used to rewrite the record; a WRITE state­
ment would attempt to create a new record 
with the same key, and this is an error. 
Control then returns to NEWCARD. 

Card 56 contains a CLOSE statement that 
is executed only as a result of the action 
taken for an ENDFILE interrupt for the file 
PAYMNT. All files are closed and the 
program is terminated by the END statement 
in card 57. 

Chapter 13: A PL/I Program 121 





PART II: RULES AND SYNTACTIC DESCRIPTIONS 

723 





SECTION J~,: SYNTA.X NOTATION. • • • • • .129 

SECTION B: CHARACTER SETS WITH EBCDIC 
AND CA.RD-PUNCH CODES. • • • • • • .131 

60-Character Set. • ••••. 131 
4B-Character Set. • ••••• 132 

SECTION C: KEYWORDS .133 

SEcrION D: PICTURE SPECIFICATION 
CHA.RA.CTE:RS. • •• .• • • • • . • .136 

Picture Characters For 
Character-string Data . • • • .136 

Picture Characters For Numeric 
Character Specifications ••••••• 

Digit and Decimal Point Specifiers. 
Zero Suppression Characters • • • • 
Insert.ion Characters. • • • • • 
Signs and Currency Symbol • • • • • 
Credit, Debit J A.nd overpunched 

.136 

.137 

.138 

.139 
• 140 

Signs. • • • • • • • .142 
Exponent Specifiers .•••••••• 142 
sterling Pictures • • • • • .144 

SEcrION E: EDIT-DIRECTED FORMAT 
ITEMS. .146 

Data Format Items •• .146 

Printing Format Items •• .146 

Spacing Format Item. .146 

Re~ote Format Item • .147 

Use of Format Items. .147 

A.lphabeticList of Format Items. • .147 
The A Format Item. •. • •••• 147 
ThE:~ B Format Item. • • . .147 
The COLUMN Format Item .148 
The E Format Item. • • .148 
ThE:~ F Format Item. • • .149 
ThE:~ LINE Format Item. .150 
The PAGE Format Item .150 
The R Format Item. • • .150 
The SKIP Format Item. .150 
The X Format Item. • • .151 

SECTION F: OA.TA CONVERSION • 
Arithmetic Conversion • • 

Floating-Point Conversion. 
Precision Conversion • 

· .152 
.152 

• .152 
.152 

Base Conversion. • • • • • .153 
Data Type Conversion. • • • • • • • .153 

Coded Arithmetic to Numeric 
Character • • • • • 

Numeric Character to Coded 
Al:· i thmetic • . • e • 

• .153 

• .153 

CONTENTS 

Numeric Character to 
Character-String ••••••••• 153 

Character-String to Bit-String •• 153 
Bit-String to Character-String •• 153 
Coded ~~ithmetic to Bit-String •• 154 
Bit-String to Coded Arithmetic •. 155 
Numeric Character to Bit-String •• 155 
Bit-String to Numeric Character •• 155 

Table of CEdling Values • • • • • • .155 
Tables for Results of Arithmetic 
Operations • • • 

SECTION G: BUILT-IN FUNCTIONS AND 
PSEUDO-VARIABLES. • • • . • • • 

• .155 

•• 158 

Com~utational Built-in Functions. .158 
String Handling Built-in Functions •• 158 

BIT String Built-in Function ••• 158 
BOOL String Built-in Function ••• 159 
CHAR String Built-in Function •.. 160 
HIGH string Built-in Function ••• 160 
INDEX String Built-in Function •• 160 
LOW String Built-in Function ••• 160 
REPEAT ~jtring Buil t- in Function. .161 
SUBSTR string Built-in Function •• 161 
UNSPEC string Built-in Function. .162 

A.rithmetic Built-In Functions •••• 162 
ABS Arit:hmetic Built-in Function .162 
BINARY Arithmetic Built-in 
Function. • • • • • • •• • .163 

CEIL Arithmetic Built-in 
Function. • • . . • ••.. 163 

DECIMAL Arithmetic Built-in 
Function ••••••••••..• 163 

FIXED Arithmetic Built-in 
Function. • • • . • • •• • .163 

FLOAT Al~i thmetic Buil t- in 
Function. • • . . • • • • • .163 

FLOOR ~~ithmetic Built-in 
Function. • • • • • • • • . .164 

MAX Arit:hmetic Built-in Function .164 
MIN Arit:hmetic Built-in Function .164 
MOD Arit:hmetic Built-in Function .164 
PRECISION Arithmetic Built-in 
Function. • • • • • • • . .165 

ROUND Arithmetic Built-in 
Function. • • • . • • • .165 

SIGN Arithmetic Built-in 
Function ••••••••••••• 165 

TRUNC ~~ithmetic Built-in 
Function. • • • . • • • • • .165 

Mathematical Built-in Functions ••• 166 
AT AN Mathematical Built-in 

Function •.••..•••••.. 166 
ATAND Mathematical Built-in 
Function ••..•..•••..• 166 

ATANH Mathematical Built-in 
Function .•••••••••••• 167 

COS Math~"~tical Built-in 
Function. • • • • • • • • • .167 

COSD Mathematical Built-in 
Function. • • • • • • • • • .167 

725 



:OSH Mathematical Built-in 
Function. . . • • • . • . . 

ERF Mathematical Built-in 
Function. . • • . . . • . . 

ERFC Mathematical Built-in 
Function. • . • . • . . . . 

EXP Mathematical Built-in 
Function. . • . • • • . . . 

LOG Mathematical Built-in 
Function. . . . • . • • . . 

LaSlO Mathematical Built-in 
.function. .. • • . . • . . . 

LOG2 Mathematical Built-in 
Function. • . . . • . . . 

SIN Mathematical Built-in 
Function. • • • • • . . . . 

SIND Mathematical Built-in 
Function. .. . . • • . . . . 

SINrl Mathematical Built-in 

.167 

.167 

.167 

.167 

.168 

.168 

.168 

.168 

.168 

Function. .. • . . . . . . .168 
SQRr Mathematical Built-in 

Function. .. • . . • . . . .168 
TAN Mathematical Built-in 
Function. . . • . . . . . .168 

rAND Mathematical Built-in 
Function. • . . . . . . . . .169 

TANH Mathematical Built-in 
Function. • . . . . . . . .169 

Summary of Mathematical 
Functions . . • . • . . . .169 

~rray Manipul~tion Built-in 
Functions. . . . • . . . .169 

ALL Array Manipulation Function .• 169 
ANY Array Manipulation Funct~on .. 169 
PROD Array Manipulation F'unci:ion .171 
SUM Array M~nipulation Funct~on .. 171 

Miscellaneous Built-in Functions 
ADDR Built-in Function 
DATE Built-in Function • 
NULL Built-in Function . 
STRING Built-in Function 
TIME Built-in Function 

.171 

.171 

.171 

.171 
.•. 172 

.172 

Pseudo-Variables • . . . • . .172 
SUBSTR Pseudo-variable . . . . . .172 
UNSPEC Pseudo-variable . . .172 

SECTION H: ON-CONDITIONS 

Intl::-oduction . . • . 

section Organization 

computational Conditions . . . . . 
The CONVERSION Condition . 
The FIXEDOVERFLOW Condition. 
rhe OVERFLOW Condition . 
The SIZE Condition • . . • 
rhe UNDERFLOW Condition. 
rhe ZERODIVIDE Condition . 

Input/Output Conditions. • . 

126 

The ENDFILE Condition. 
The ENDPAGE Condition. 
The KEY Condition. • . 
The RECORD Condition . 
The TRANSMIT Condition . 

.173 

. .173 

.173 

.174 

.174 

.174 

.175 

.175 

.175 

.175 

.176 

.176 

.176 

.176 

.177 

.177 

System Action Condition. • • 
The ERROR Condition. • 

SECTION I: ATTRIBUTES ••• 

specification Of Attributes. • • • • 
Factoring of Attributes. 

Data Attributes. • 
Problem Data. . 
Program Control Data • 

Entry Name Attributes. . 

File Description Attxibutes. 

Scope Attributes 

Storage Class Attributes 

• .1.77 
• .1.77 

• .1.78 

• .1.78 
• .1.78 

.1.78 

.178 

.1.79 

• .179 

• .179 

.179 

.180 

Alphabetic List of Attributes. . .180 
ALIGNED and PACKED (}~rray and 
Structure Attributes) • . . .180 

AU'rONATIC, STATIC, and BJ~SED 
(Storage Class AttributE~s). • . .180 

BACKWARDS (File Description 
Attribute). • . • • • . •• .181 

BASED (Storage Class Attribute) •• 181 
BINARY and DECIMAL (l~ri tlunetic 

Data Attributes). • . • • • .181 
BIT and CHARACTER (St:rinq 
Attributes) . • . • • •. ,.182 

BUFFERED and UNBUFFERED (File 
Description Attribut:es) . • .182 

BUILTIN (Entry Attribute} ..•.. 182 
CHARACTER (String Att:ribute) • • .183 
DECIMAL (Arithmetic Data 
Attribute). • . • . • . • • .183 

DEFINED (Data Attribute) .. 183 
correspondence Defining. .183 
Overlay Defining .••• ' .•••. 183 
Dimension (Array Attribut:e). • • .183 
DIRECT and SEQUENTIAL (File 
Description Attributes) . . .184 

ENTRY Attribute. • • • . '. • .184 
ENVIRONMENT (File Description 
Attribute) .•.••••..••. 185 

EXTERNAL and INTERNAL. (Scope 
Attributes) ••.•••••••. 187 

FILE Attribute. • . • • .. • .187 
FIXED and FLOAT (Ari t:hmet:ic Data 
Attributes) • . . • • • .187 

FLOAT (Arithmetic Data 
Attribute). • • . . • .188 

INPUT, OUTPUT, and UPDATI; (File 
Description Attribut:es).. • .188 

INTERNAL (Scope Attribute) • .188 
KEYED (File Description 
Attribute). . • . • • • .188 

LABEL (Program Control Data 
Attribute). . • • . • • .. • .188 

Length (String Attribute). . .. 188 
OUTPUT (File Description 
Attribute). • • • . • • • .188 

PACKBD (Array and Structure 
Attribute). • . • . •• •• ~189 

PICTURE (Data Attribute) ••••• 189 



POINTER (Program Control Data 
Attribute). • • • • • • • • .191 

Precision (Arithmetic Data 
Attribute). • • • • • • .191 

PRINT (File Description 
Attribute). • • • • • • • • .192 

RECORD and STREAM (File 
DE~scription Attributes) .192 

RErURNS (Entry Name Attribute) •. 193 
SEQUENTIAL (File Description 
Attribute) ••.••••••••. 193 

STi\TIC (Storage Class Attribute) .193 
STREAM (File Description 
Attribute). • • • • • • .193 

UPDATE (File Description 
Attribute). • .193 

SECTION J: STATEMENTS .• 
The Assignment Statement • . 
The BEGIN Statement •• 
The CALL Statement • • 
The CLOSE Statement •. 
The DECLARE Statement. 
The DISPLAY Statement. 

.194 

.194 

.197 
• .197 

.197 

.197 

.198 

The DO statement •••.••••• 199 
The END Statement. . • • • • • • • 201 
The ENTRY statement ••.••••• 201 
The FORI~AT statement • • • • • • .201 
The GET statement ••••••••• 202 
The GO TO Statement .••.•••• 203 
The IF statement. • • .203 
The LOCATE Statement ••••••. 204 
The Null Statement .••••• 204 
The ON statement • . • • • • • • .204 
The OPEN Statement. • • .205 
The PROCEDURE Statement. • . .206 
The PUT Statement ••••••••• 207 
The REru) Statement ••.••••• 208 
The RETURN Statement. .208 
The REVl~RT Statement • • • • • • .209 
The REWRITE Statement. • .209 
The SIGNAL Statement. • .210 
The STOP Statement •••••••• 210 
The WRrrE Statement. • • •• 210 

SECTION K: DEFINITIONS OF TERMS • .211 

SECTION L: UPliJARD COMPATIBILITY.. .217 

127 





Throughout this publication, wherever a 
PL/I statement -- or some other combination 
of elements -- is discussed, the manner of 
writing that statement or phrase is illus­
trat:ed w'ith a uniform system of notation. 

This notation is ~Q~ a part of PL/I; it 
is a standardized notation that may be used 
to describe the syntax -- or construction 

of any programming language. It pro­
vides a brief but precise explanation of 
the general patterns that the language 
permits. It does not describe the mg~~i~g 
of the language elements, merely their 
structure; that is, it indicates the order 
in-;ilTch"-the elements may (or must) appear, 
the punctuation that is required, and the 
options that are allowed. 

The following rules explain the use of 
this notation for any programming language; 
only the examples apply specifically to 
PL/I: 

1. ~ notation variable is the name of a 
genE;raI-class-of-elements in the pro­
gramming language. A notation varia­
ble must consist of: 

a. Lower-case letters l decimal 
digits, and hyphens and must begin 
with a letter. 

b. ~ combination of lower-case and 
upper-case letters. There must be 
one portion all in lower-case let­
ters and one portion all in upper­
case letters I and the two portions 
must be separated by a hyphen. 

All such variables used are defined in 
the manual either syntactically, using 
this notation, or are defined 
semantically. 

Examples: 

a. digit. This denotes the occur­
rence of a digit, which may be 0 
through 9 inclusive. 

b. file-name. This denotes the 

c. 

occurrence of the notation varia­
ble named file name. An explana­
tion of file name is given else­
where in the publication. 

DO-statement. This denotes 
occurrence of a DO statement. 
upper-case letters are used 
indicate a language keyword. 

the 
the 
to 

2. A notation constant denotes the liter­
al occurrence of the characters rep­
resented. A notation constant con­
sists either of all capital letters or 
of a special character. 

Example: 

DECLARE identifier FIXED; 

This denotes the literal occurrence of 
the word DECLARE followed by the nota­
tion variable "identifier l " which is 
defined elsewhere, followed by the 
literal occurrence of the word FIXED 
followed by the literal occurrence of 
the semicolon (;). 

3. The term "syntactic unit," which is 
used in subsequent rules, is defined 
as one of the following: 

a. 

b. 

a single notation variable or 
notation constant l or 

any collection of notatiorr varia­
bles, notation constants, syntax­
language symbols, and keywords 
surrounded by braces or brackets. 

4. Braces {} are used to denote grouping 
of more than one element into a syn­
tactic unit. 

Example: 

identifier (FIXED) 
FLOAT 

The vertical stacking of syntactic 
units indicates that a choice is to be 
made. The above example indicates 
that the variable "identifier" must be 
followed by the literal occurrence of 
either the word FIXED or the word 
FLOAT. 

5. The vertical stroke I indicates that a 
choice is to be made. 

Example: 

identifier {FIXEDIFLOAT} 

This has exactly the same meaning as 
the above example. Both methods are 
used in this publication to display 
alternatives. 

Section A: Syntax Notation 129 



6. Square brackets ] denote options. 
Anything enclosed in brack.ets may 
appear one time or may no1: appear at 
all. Brackets can serve the addition­
al purpose of delimiting a Eyntactic 
unit. 

E.xample: 

FILE (file-name) [KEY(expression)] 

This denotes the literal occurrence of 
the word FILE followed by the notation 
variable "file-name" enclosed in 
parentheses and optionally followed by 
the literal occurrence of the word KEY 
with its notation variable 
"expression" enclosed in parentheses. 
If, in rule 4, the two alternatives 
also were optional, the vertical 
stacking would be within brackets, and 
there would be no need for braces. 

1. Three dots ... denote the occurrence 
of the immediately preceding ~;yntactic 
unit one or more times in succession. 

130 

Example: 

[digit] 

The variable "digit" mayor may not 
occur since it is surrounded by brack­
ets. If it does occur', it may be 
repea ted one or more t.ime:::.. 

8. Underlining is used to denote an ele­
ment in the language being described 
when there is conflict between this 
element and one in the syntax lan­
guage. 

Example: 

operand {&Il} operand 

This denotes that the two occurrences 
of the variable "operand" are sepa­
rated by either an "and" (&) or an 
"or" (I). The notation constant I is 
underlined in order to distinguish the 
"or" symbol in the PLI'I language from 
the "or" symbols in thE~ syntax lan­
guage. 



60-2HARA.CTER SET £!!~~act~!. ~~~Eg - Pun£f! 8-Bit_£QS!g 
L 11-3 1101 0011 
M 11-4 1101 0100 
N 11-5 1101 0101 

Character Card-Punch ~=~~£_£Qg~ 0 11-6 1101 0110 --5Iiink-··' no-punches 0100 0000 P 11-7 1101 0111 
12-8-3 0100 1011 Q 11-8 1101 1000 

< 12-8-4 0100 1100 R 11-9 1101 1001 
( 12-8-5 0100 1101 S 0-2 1110 0010 
+ 12-8-6 0100 1110 T 0-3 1110 0011 
I 12-8-7 0100 1111 U 0-4 1110 0100 
,& 12 0101 0000 V 0-5 1110 0101 
:$ 11-8-3 0101 1011 W 0-6 1110 0110 ,. 11-8-4 0101 1100 X 0-7 1110 0111 

11-8-5 0101 1101 y 0-8 1110 1000 
11-8-6 0101 1110 Z 0-9 1110 1001 

'. 
11-8-7 0101 1111 0 0 1111 0000 
11 0110 0000 1 1. 1111 0001 

/ 0-1 0110 0001 2 r) 
~. 1111 0010 

0-8-3 0110 1011 3 3 1111 0011 
" 

% 0-8-4 0110 1100 4 ~: 1111 0100 
0-8-5 0110 1101 5 c--, 1111 0101 

:> 0-8-6 0110 1110 6 6 1111 0110 
-? 0-8-7 0110 1111 7 7 1111 0111 

8-2 0111 1010 8 8 1111 1000 
1~ 8-3 0111 1011 9 9 1111 1001 
ill 8-4 0111 1100 

8-5 0111 1101 
8-6 0111 1110 

I~ 12-1 1100 0001 Composite 
13 12-2 1100 0010 §.y!!!Q2!.~ £~ES!_!:~!!£f! 
'- 12-3 1100 0011 <= 12-8-4, 8-6 
D 12-4 1100 0100 II 12-8-7, 12-8-7 
E; 12-5 1100 0101 ** 11-8-4, 11-8-4 
]Eo' 12-6 1100 0110 ,< 11-8-7" 12-8-4 
I~ 12-7 1100 0111 ,> 11-8-7, 0-8-6 \:::1 

Ii 12-8 1100 1000 ,= 11-8-7, 8-6 
I 12-9 1100 1001 >= 0--8-6, 8-6 
;J 11-1 1101 0001 /* 0-1" 11-8-4 
K 11-2 1101 0010 */ 11-8-4,0-1 

Section B: Character Sets With EBCDIC and Card-Punch Codes 131 



48-CHARACTER SET 

132 

+ 
$ 

* 

/ 

A 
B 

H 
I 
J 
K 
L 

N 
o 
p 

Q 
R 
S 
r 
U 
V 
W 
X 
Y 
Z 
o 
1 
2 
3 

fi!~.9:::. PU!!£!! 
no punches 
12-8-3 
12-8-5 
12-8-6 
11-8-3 
11-8-4 
11-8-5 
11 
0-1 
0-8-3 
8-5 
8-6 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 
0-2: 
0-3 
0-4 
0-5, 
0-6 
0-7 
0-8 
0-9 
o 
1 
2 
3 

§.::.~t~ _~2g~~ 
0100 0000 
0100 1011 
0100 1101 
0100 1110 
0101 1011 
0101 1100 
0101 1101 
0110 0000 
0110 0001 
0110 1011 
0111 1101 
0111 1110 
1100 0001 
1100 0010 
1100 0011 
1100 0100 
1100 0101 
1100 0110 
1100 0111 
1100 1000 
1100 1001 
1101 0001 
1101 0010 
1101 0011 
1101 0100 
1101 0101 
1101 0110 
1101 0111 
1101 1000 
1101 1001 
1110 0010 
1110 0011 
1110 0100 
1110 0101 
1110 0110 
1110 0111 
1110 1000 
1110 1001 
1111 0000 
1111 0001 
1111 0010 
:ILl11 0011 

£!!i!;:i!£!:er 
4 
5 
6 
7 
8 
9 

Composite 
§~!!!QQ1§. 

LE 
CAT 

** NL 
NG 
NE 
, . 
AND 
GE 
GT 
LT 
NOT 
OR 
/* 
*1 

Card-Punch 4--------
5 
6 
7 
8 
9 

Card Punch 
12-8-3, 12-8-3 
11--3, 12-5 
12-3, 12-1, 0-3 
11-8-4, 11-8-4 
11-5" 11-3 
11-5, 12-7 
11-5, 12-5 
0-8-3, 12-8-3 
12-1, 11-5, 12-4 
12-7, 12-5 
12-7, 0-3 
11-3, 0-3 
11-5, 11-6, 0-3 
11-6, 11-9 
0-1" 11-8-4 
11-8-4, 0-1 

!!-BiL~QQ~ 
1111 0100 
1111 0101 
1111 0110 
1111 0111 
11.11 1000 
1111 1001 

60-Character 
set 
Eguiva!~n·~ 

<= 
II 
** 
,< 
1> 
,= 
; 
& 
>= 
< 
> 
1 

I 
1* 
*/ 

~Qtel. when using the 48-character set, 'the 
following rules should be observed: 

1. The two periods that replace the colon 
must be immediately preceded by a 
blank if the preceding character is a 
period. 

2. rhe two slashes that replace the per­
cent symbol must be immediately 
preceded by a blank if the preceding 
character is an asterisk, or immedi­
ately followed by a blank if the 
following character is an asterisk. 

3. The sequence "comma period" represents 
a semicolon except when it occurs in a 
comment or character string, or when 
it is immediately followed by a digit. 



!5~y~I~~s1 
ABS(x) 
ADDR (x) 
ALIGNBD 
ALL (x) 
ANY (x) 
ArAN(x[,y]) 
ArAND(x["y]) 
ArANH(x) 
AUrOI~ATIC 

BACKliVARDS 
BASED (pointer-variable) 
BEGIN 
BINz\RY 
BINARY(x[~p[#q]]) 
BIr(length) 
Blr(value[#size]) 
BOOL (x, Y I' w) 
BUFFERED 
BUILrIN 
BY 
CALL 
CEIL(x) 
CHAR(value[,size]) 
CHAR~CTER(length) 

CLOSE 
COLOlvlN (w} 
CONVERSION 
COS(x) 
COSD (x) 
COSH(x) 
DArE 
DECIIv1AL 
DECIMAL(x[~p[,q]]) 

DECL1\RE 
DEFINED 
DIRECT 
DISPll.AY 
DO 
EDII' 
ELSE 
END 
ENDFILE 
END PAGE 
ENrRY 
ENVIRONMENT 
ERF(x) 
ERFC (x) 
ERROR 
EXP (~d 
EXTERNAL 
FILE 
F'ILE (file-name) 
FIXED 
FIXED(x[,p[,q]]) 
FIXEDOVEHFLOW 
FLOAT 
FLOAT (x [, p]) 
FLOOR(x) 
FORMaT(format-list) 
FROM 
GEr 
GO ro, GO]~O 
HIGHi(i) 

Q§'~_Q!._!5.~Y~Q~~ 
built-in function 
built-in function 
attribute 
built-in function 
built-in function 
built-in function 
built-in function 
built-in function 
attribute 
attribute 
attribute 
statement 
attribute 
built-in function 
attribute 
built-in function 
built-in function 
attribute 
attribute 
clause of DO statement 
statement 
built-in function 
built-in function 
attribute 
statement 
format item 
condition 
built-in function 
built-in function 
built-in function 
built-in function 
attribute 
built-in function 
statement 
attribute 
attribute 
statement 
statement 
STREAM I/O transmission mode 
clause of IF statement 
statement 
condition 
condition 
attribute or statement 
attribute 
built-in function 
built-in function 
condition 
built-in function 
attribute 
attribute 
option of GEr and PUT, specification of RECORD I/O statement 
attribute 
built-in function 
condition 
attribute 
built-in function 
built-in function 
statement 
option of REWRITE or WRITE statement 
statement 
statement 
built-function 

Section C: Keywords 133 



!S~Y~Q.~Q 
IF 
INDEX(string,config) 
INPUT 
INrERNAL 
INrO(variable) 
KEyefile-name) 
KEY (x) 
KEYED 
KEYFROM(x) 
LABEL 
LINE (w) 

[.OCATE 
LOG (x) 
LOG2 (x) 

[.OGiO (x) 

LO'Vdi) 
MAIN 
~IAX (arguments) 
MI!."O (arguments) 
MOD(x1.,x2 ) 

NOCONVERSION 
NOF'IXEDOVERFLOW 
NOOVERFLOW 
NOSIZE 
NOUfNDERFLOW 
NOZERODIVIDE 
NULL 
ON 
OW::YSLOG 
OPEN 
OPI'IONS(list) 
OU'I'PUT 
OVE:RFLOW 
PACKED 
PAGE 
PAGESIZE(w) 
PICTURE 
POINTER 
PRECISION(x,p[,g]) 
PRINT 
PROCEDURE 
PROD(x) 
PUT 
RE~.D 

REC:)RD 
RECORD(file-name) 
REPEAT(string,i) 
REPLY(cl 
RE,]'URN 
RE,]~URNS 

REVERT 
REV1RITE 
ROUND(x,n) 
SEQUENTIAL 
SE], 
SIGN(x) 
~)lGNAL 

SIN(x) 
SIND(x) 
SINH(x) 
SI~~E 

SKIP [ (x) ] 

SQHT(x) 
ST1~TIC 

~3TOP 

STREAM 

13L~ 

~~~~_(~ f_!S~~~~Q~Q 
statement
buil~-in function
attributevoption of the OPEN statement
attribute
option of RhAD statement
condition
option of READ and REWRITE statement
attribute
option of WRITE and LOCATE statement
attribute
format ltem, option of PUT statement
stat,ement
built-in function
built-in function
built-in ~unction
built-in function
option of PROCEDURE statement
built-in function
built-in function
built-in function
condition prefix identifier, disables CONVERSION
condition prefix identifier, disables FIXEDOVERFLOW
condition prefix identifier, disables OVERFLOW
condition prefix identifier, disables SIZE
condition prefix identifier, disables UNDERFLOW
condition prefix identifier, disables ZERODIVIDE
built-in function
statement
option of PROCEDURE statement
statement
option of PROChDURE statement
attribute, option of the OPEN statement
condition
attribute
format item, option of PUT statement
option of the OPEN statement
attribute
attribute
built-in function
attribute
statE-ment
built-in functiOn
statE:ment
state·ment
attribute
condition
builto-in function
option of DISPI.AY statement
statement
a.ttribute
statE!ment
statement
buil t.- in function
a.ttribute
option of READ and LOCATE statements
built.-in function
statement
built.-in function
buil t~- in function
built-in function
condition
format item, option of PUT statement
built-in function
attribute
statE~ment

attribute


~~~~'Q.;:~ 
STRING (X)I 

STRING (string-name 
SUBSTR(string~i~j) 
SUM (x) 
SYSTEM 
rl\N(x) 
Tl\ND (x) 
rl\NH(x) 
rHEN 
rIME 
ro 
rRl\NSMIT 
TRUNC(x) 
UNBUFFERgD 
UNDERFLmoi 
UNSPEC(x) 
UPDATE 
WHIL,E 
WRIrE 
ZERODIVIDE 

!:!~~_Q.!._ Ke~worQ: 
built-in funct.ion 
option of GET and PUT statemen·,ts 
built-in function" pseudo-varia.ble 
built-in function 
action specification of the ON statement 
built-in function 
built-in function 
built-in function 
clause of IF statement 
built-in function 
clause of DO statement 
condition 
built-in function 
attribute 
condition 
built-in function~ pseudo-variable 
attribute 
clause of DO statement 
statement 
condition 

section C: Keywords 135 



?icture specification characters appear 
in a PICTURE attribute. They are used to 
describe the attributes of the associated 
data item. A discussion of the concepts of 
picture specifications appears in Part I, 
Cha~ter 9# "Editing and String Handling." 

;. picture specification always describes 
a c~aracter representation that is either a 
character-string dat.a item or d. numeric 
character data item. A ~.h§!.~~~!:!~~:.~!:~i!!9. 
ei~~~~~~ __ i~~m is one that can consist of 
alp~abetic characters, decimal digits, and 
other special characters. A !!~rn~~i~_£h~~= 
~~~~~_Qi~~~~~~_i~~m is one in which the 
data itself can consist only of decimal
di~its, a decimal point and, optionally, a
plu3 or minus sign. other charac~ers gen­
erally associated with arithmetic data,
SUC1 as currency symbols, can also be
spe~ified. However, these characters are
nat a part of the arithmetic valJe of the
num2ric character variable, although the
characters are stored with the digits and
are considerej to be part of the character­
string value of the variable.

~rithmetic data assigned to a numeric
clla racter variable is converted t:o numeric
character representation. Editing, such as
zer) suppression and the insertion of other
characters, can be specified for a numeric
character data item. Edi ting ,::annot be
spe~ified for pictured character-string
dat::l.

Jata assigned to a variable declared
with a numeric picture specification must
be internal coded arithmetic d~ta (bit
strings and numeric character data are
converted to internal coded arithmetic
bef~re they are assigned to a numeric
character variable).

Figures in this section illustrate how
different picture specifications affect t.he
representation of values when assigned to a
pictured variable. Each figure shows the
original value of the data, the attribut.es
of the variable from which it :Ls assigned,
the picture specifica1:ion " and t.he
character-string value of the numeric char­
acter or pictured character-si::ring varia­
ble.

Only the X picture characte::- can be used
to specify character-strinq items. It spe­
cifies that the associated position within
the item can contain any cha:cacter whose
internal bit configuration can be recog­
nized by the computer in use. No charac­
ters can be specified for insl=rtion into a
picture character-string item.

Figure D-l gives examples of character­
string picture specificat.ion:::;. In t:he
figure, the letter !2 indicates a blank
character. Note that assignments are left­
adjusted, and any necessary padding wit.h
blanks is on the right.

~!.~rQB§_~!!~g~~~§Es !:QE_~'H!!1l~g!£ __ ~!.!~B~£!§B
§.~§~I~!~~~!Q~~

Numeric character data m~st represent
numeric values; therefore, the associat~ed
picture specification cannot contain the
character X. The picture characters for
numeric character data can specify detailed
editing of the data.

r------------------T--------------------T------------------------T----------------------l
I ~ource I Source Data I Picture I Cha:cact'2r-String I
! Attributes I (in constant [orm) I Specification I Value1 I
~------------------+--------------------+------------------------+----------------------~
I 2HARACTER(S) I '9B/2L' I XXXXX I 9B/2L I
I I I I I
! CHARACTER (5) I f 9B/2L" I xxx I 9B/ I
I I I I I
I CHARACTER (5) I • 9B/2L" I XXXXXXX I 9B/2Lbb I
~------------------L--------------------L-------------___________ ~ ______________________ ~
ILA variable declared with a chara~ter-string picture specification has a character-I
I string value only. I L ___ J

Figure D-1. Pictured Character-St~ing Examples

136

A. nu.meric character variable can be
considered to have two ::1ifferent kin::ls of
value, depen::ling upon its use. rhey arE~

(1) it.s arithmetic value and (2) its
char-acter-string value.

The arithmetic value is the value
expressed by the decimal digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
arithmetic or bit-string expression opera­
tion or in an assignment to a variable with
either t:he FIXED, FLOAT, or BIT attribute.
In such cases, the arithmetic value of the
nUffiE=ric character variable is converted to
internal coded arithmetic representation.
The arithmetic value is also used in an
assignment to another numeric character
variable.

The character-string value is the value
exp:LessE:d by the decimal digits of the data
ite~, as well as all of the editing and
insertion characters appearing in the pic­
ture specification. rhe character-string
value does not, however, include the
assumed location of a decimal point~ as
specified by the picture character V. The
character-string value of a numeric charac­
ter variable is used whenever the variable
appears in a character-string expression
operation or in an assignment to a
character-string variable, or whenever a
reference is made to a character-string
variable that is defined on the numeric
character variable.

The picture characters for numeric char­
acter specifications may be grouped into
the following categories:

• Digit and Decimal Point Specifiers

• Zero suppression Characters

• Insertion Characters

• Numeric Signs and Currency Symbol

• Credit, Debit, and Overpunched Signs

• Exponent Specifiers

• sterling Pictures

The picture characters in these groups
can be used in various combinations. These
combinations depend on the type of data
being described by the specification. A
discussion of these types and how they can
be described follows.

A numeric character picture specifi­
cation can describe either decimal or
sterling data. Decimal numeric charactE=r
values can be in fixed-point or floating-

point. The numeric character picture
specification for a fixed-point value con­
tains only one field and this field can
consist of two subfields: an integer sub­
field describing the digits to the left of
the decimal point in the fixed-point value,
and a fractional subfield describing the
digits to the right of the decimal point.

The numeric character picture specifi­
cation for a floating-point value consists
of two fields: a mantissa field and an
exponent field. The mantissa field des­
cribes a fixed-point value# which when
multiplied by 10 raised to the value des­
cribed by the exponent field gives the
actual value represented by the floating­
point notation: the mantissa field is
specified in the same way that a fixed­
point field is specified. The exponent
field describes a signed or unsigned
integer power of ten.

rhe sterling picture specification can
contain up to three fields: a pounds field,
a shillings field, and a pence field; the
pence field can have two subfields. Sterl­
ing pictures are discussed separately at
the end of this section.

A major requirement of the picture
specification for numeric character data is
that each field must contain at least one
picture character that specifies a digit
position. This picture character, however #
need not be the digit character 9. Other
picture characters, such as the zero
suppression characters (Z or *), also spec­
ify digit positions. At least one of these
characters must be used to define a numeric
character specification. It cannot contain
the picture character X.

DIGIT AND DECIMAL POINT SPECIFIERS

The picture characters 9 and V are used
in the simplest form of numeric character
specifications that represent fixed-point
decimal values.

9 specifies that the associated
position is to contain a decimal

field
digit.

v specifies that a decimal point is
assumed at this position in the asso­
ciated data item. However, it does not
specify that an actual decimal point is
to be inserted. The integer and frac­
tional parts of the assigned value are
aligned on the V character; therefore#
an assigned value may be truncated or
extended with zero digits at either end.
Note that if significant digits are
truncated on the left# the result is
undefined and a SIZE interrupt will

Section D: Picture Specification Characters 137

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Val~e1 I
.------------------+--------------------+------------------------+----------------------i
I FIXED(5) 12345 99999 123~5

I
I FIXED(5) 12345 99999V 123~5

I
I FIXED(5) 12345 999V99 3451)0 2

I
I FIXED(5) 12345 V99999 00000 2

I
I FIXED(7) 1234567 99999 34567 2

I
I FIXED (3) 123 99999 00123
I
I FIXED(5,2J! 123.45 999V99 123lJ5
I
I FIXED(7,2) 12345.67 9V9 56 2

I
I FIXED(5,2) 123.45 99999 00123
• ____________________ .1. ____________ . ____ . ______ .1. ______________________ . __ .1. ___________________ . ___ . __ ~

11 rhe arithmetic value is the value expressed by the digits and the actual or assumed I
I location of t:he V in the specification. I
12 In this case, PL/I does not definE! the result since significant digits have beenJ
I truncated on the left; the rE!sult shown, however, is that given for System/360J
I i(nplementations. I l _______________ . __ . ____ . ___________ J

Figure 0-2. Pictured Numeric Character Examples

occur, if SIZE is enabled. If no V
character appears in the picture speci­
fication of a fixed-point decimal value
(or in the mantissa field of a picture
specification of a floating-point deci­
~al value), a V is assumed a1: thE~ riq-ht
end of the field specificatior,. This
can cause the assigned value to be
truncated, if necessary, to an integer.
rhe V character cannot appear more than
once in a picture specification. The V
is considered to be a subfield delimiter
in the picture specification; that is~

the portion preceding the V and the
portion following it (if any) are each a
subfield of the specification.

Figure D-2 gives examples of numeric
character specifications.

ZERO SUPPRESSION CHARACTERS

rhe zero suppression picturE characters
specify conditional digit positions in the
character-string value and may cause lead­
ing zeros to be replaced by asterisks or
blanks. Leading zeros are those il) that
occur in the leftmost digit posit~ons of
fixed-point numbers or in the ~leftmost
digit positions of the two parts of
floating-paint numbers, (2) that are to the
left of the assumed position of a iecirna1

138

point~ and (3) that are not preceded by any
of the digits 1 through 9. The leftmost
nonzero digit in a number and all digits,
zeros or not, to the right of it represent
significant digits. Note that a f1oating­
point number can also have a leading zero
in the exponent field.

Z specifies a conditional digit position
and causes a leading zero in the
associated data position to be replaced
by a blank character. When the asso­
ciated data position does not contain a
leading zero, the digit in the position
is not replaced by a blank character.
The picture character Z cannot appear in
the same subfield as the picture charac­
ter *~ nor can it appear to the right of
a drifting picture character or any of
the picture characters 9~ T~ I~ or R in
a field.

* specifies a conditional digit. position
and is used the way the picture char­
acter Z is used, except that leading
z eros are replaced by asteTisks. ThE!
picture character ,. canno·t appear with
the picture character Z in the same
subfield, nor can it appear to the right
of a drifting picture character or any
of the picture characters 9, r# I, or R
in a field.

r------------------r--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I~ttributes I (in constant form) 1 specification I Value1 I
.------------------+--------------------+------------------------+----------------------i

FIXED (~) 12345 ZZZ99 12345 I
I

FIXED(S) 00100 ZZZ99 bb100 I
I

FIXED (~D 00000 ZZZ99 bbbOO I
I

FIXED(5) 00100 ZZZZZ bbl00

FIXED (~» 00000 ZZZZZ bbbbb

FIXED (~)., 2) 123.45 ZZZ99 bb123

FIXED(5,2) 001.23 ZZZV99 bb123

FIXED(!j,) 12345 ZZZV99 34500 2

FIXED (!)I) 00000 ZZZVZZ bbbbb

FIXED (!j,) 00100 ***** **100

FIXED(5) 00000 ***** *****

FIXED(5 J 2) 000.01 ***v** ***01
.------------------~--------------------~------------------------~----------------------i
11 rhe arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. 1
12 In this case~ PL/I does not define the result since significant digits have beenl
I truncated on the left; the result shown, however" is that given for System/360 I
I implementations. I L ___ J

Figure D-3. Examples of Zero Suppression

~Q~~! If one of the picture characters Z
or * appears to the right of the picture
character v# then all fractional digit
positions in the specification, as well as
all integer digit positions must employ the
Z or * picture character, respectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value will be suppressed only
if all positions in the fractional part
contain zeros and all integer positions
have been suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part will be
replaced by blanks or asterisks if the
fractional part contains any significant
dig·it.

Figure D-3 gives examples of the use of
zero suppression characters. In the fig­
ure, t~e letter ~ indicates a blank charac­
ter.

INSERTION CHARACTERS

The pictu:r-e characters comma (,) " pOint
(.), and blank (B) are insertion charac­
ters; they cause the specified character to
be inserted into the associated position of
the numeric character data. They do not
indicate rligit positions, but are inserted
between digits. Each does# however,
actually represent a character position in
the character-string value, whether or not
the character is suppressed. The comma and
point are conditional insertion characters;
within a string of zero suppression charac­
ters, they, too, may be suppressed. The
blank (B) is an unconditional insertion
character; it specifies that a blank is to
appear in the associated position.

~Q~~: Insertion characters are applicable
only to the character-string value. They
specify nothing about the arithmetic value
of the data item.

causes a comma to be inserted into the
associated position of the numeric char­
acter data when no zero suppression
occurs. If zero suppression does occur,

section D: Picture Specification Characters 139

the comma is inserted only when an
unsuppressed digit appears to the left
of the comma position, or when a V
appears immediately to the left of it
and the fractional part contains any
significant digit~s. In all other cases
~'here zero suppression occurs, one of
three possible characters is inserted in
place of the comma. ThE~ choice of
character to replace the comma depends
upon the first picture character that
both precedes thE~ comma posi t.ion and
specifies a digit position:

• If this character position is an
asterisk, thE comma posi ·tion is
assigned an asterisk.

• If this character positicn is a
drifting sign or a drifting currency
symbol (discussed later), the drift­
ing string is assumed to include the
comma position, and the action taken
is the same as that for drifting
characters.

• If this character position is not an
asterisk or a drifting character, the
comma position is assigned a blank
character.

is used the same way the comma pict:ure
character is used, except that a point
(.) is assigned to the associated posi­
tion. This character never causes point
alignment in the picture specifications
of a fixed-point decimal number and is
n~t a part of the arithmetic valu~ of
the data item. That function is served
s~lely by the picture character V.
u~less the V actually appear3, it is
a3sumed to be to the right of the
rightmost digit position in the field,
and point alignment is handled accord­
ingly, even if the point insertion char­
acter appears elsewhere.

B spec if ies t_ha t a blank charcll:ter be
inserted into the associated position of
the character-string value of thl~ numer­
ic character field.

rhe paint (or the comma) can be used in
conjunction with the V to cause insertion
e>f the point (or comma) in the position
that delimits the end of the inteqer por­
tie>n and the bE~ginnin9 of the f:ractional
portion of a fixed-point (or
floating-point) number, as might be desired
in printing, since the V does not cause
prin1:ing of a point. In this ca~;e, the
point must immediately precede or immedi­
ately follow the V. If the point precedes
the V, it will be inserted Q!}~:Y if a
Significant digit appears to the left of
the V, even if all fractional digits are
significant. If the point immediatE~ly fol­
le>ws the V. it will be suppressed if all

140

digits to the right of the
pressed, but it will appear if
~!!Y fractional digits (alon9
intervening zeros).

V are sup­
there are
with any

The insertion characters B, comma, and
point must be preceded by a digit position
in the same field.

Figure D-4 gives examples of the use of
insertion characters. In the figure, the
letter b indicates a blank character.

SIGNS AND CURRENCY SYMBOL

The picture characters S, +, and
specify signs in numeric character data.
The picture character $ specifies a curren­
cy symbol in the character-string value of
numeric character data.

These picture characters may be used in
either a static or a drifting manner. A
9.:fifti!!5L~!!~ra~te!: is similar to a zexo
suppression character in that it can cause
zero suppression. However, a single drift­
ing character is always inserted (unless
the entire field is suppressed) in the
position specified by the end of the drift­
ing string or in the position immediately
to the left of the first Significant digit.

The static use of these characters spe­
cifies that a sign, a currency symbol, or a
blank alw~~ appears in the associatE~d
position. The drifting use specifies that
leading zeros are to be :supp:cessed. In
this case, the rightmost suppressed posi­
tion associated with the picture character
will contain a sign, a blank, or a currency
symbol.

A. drifting character is specified by
multiple use of that charac,ter in a picture
field. Thus, if a field contains one
currency symbol, it is interpreted as sta­
tic; if it contains more than one, it is
interpreted as drifting. Th~~ drifting
character must be specifiE=d in each digit
position through which it may dl:-ift.

Drifting characters must appear in
strings. A string is a sE~quence of the
same drifting character, opL.onally con­
taining a V and one of the insertion
characters con~a, point, or B. A.ny of the
insertion characters comma k point, or E
following the last drifting symbol of ·the
string is considered part of the drifting
string. However, a following V terminates
the drifting string and is not part of it.
A field of a picture specification can
contain only one drifting st:rinsr.. A. drift­
ing string cannot be preceded by a digit
position, insertion characters, or a V. If

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
~------------------+--------------------+------------------------+----------------------i

FIXED(4) 1234 9,999 1,234

FIXED(6,2) 1234.56 9,999V.99 1,234.56

FIXF.D(4,2) 12.34 zz.vzz 12.34

FIXF.;O(4,2) 00.03 zz.vzz bbb03

FIXEID{4,2) 00.03 ZZV.ZZ bb.03

FIXEID{4,2) 12.34 zzv.zz 12.34

FIXED(4,2) 00.00 zzv.zz bbbbb

FIXE:D(4,2) 67.89 9,999,999.V99 0,000,067.89

FIXE:D(7,2) 12345.67 **,999V.99 12,345.67

FIXE:D (7, 2) 00123.45 **, 999V. 99 ***123.45

FIXE:D (9" 2) 1234567.89 9.999.999V,99 1.234.567,89

FIXE;D(6) 123456 99.999.9 12.345.6

FIXE:D (6) 001234 zz" zz" ZZ bbb12,34

FIXE:D (6) 000000 ZZ" ZZ, ZZ bbbbbbbb

FIXE:D (6) 000000 **, **" ** ********

FIXED(6) 123456 99B99B99 12b34b56

FIXED <:3) 123 9BB9BB9 1bb2bb3
~------------------~--------------------~------------------------~----------------------i
11 rhe arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I L ___ J

Figure 0-4. Examples of Insertion Characters

a drifting string exists in a field, zero
suppress10n character (Z or *) must not
appear in the same field.

rhe position in the data associated with
the ch(~racters comma, point, and B appear­
ing in a string of drifting characters will
contain one of the following:

• comma, point, or blank if a significant
digit has appeared to the left

• The drifting symbol, if the next posi­
tion to the right contains the leftmost
significant digit of the field

• Blank, if the leftmost significant
digit of the field is more than one
position to the right

If a drifting string contains the drift­
ing character ~ times, then the string is

associated with ~-1 conditional digit posi­
tions. The position associated with the
leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field# the other potentially drifting
characters can appear only once in the
field~ i.e., the other character represents
a static sign or currency symbol.

Only one type of sign character can
appear in each field. An S# +. or - used
as a static character can appear to the
left of all digits in the mantissa and
exponent fields of a floating-point speci­
fication and either to the right or left of
all digits positions of a fixed-point
specification.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the

section D: Picture Specification Characters 141

subEield following the V must also be part
of the drifting string that commences the
second subfield.

In the case in which all digit positions
after the V contain drifting characters,
suppresion in the subfield will (~cur only
if all of the integer and fractional digits
are zero. The resulting edited ~~ta item
will then be all blanks. If therl:~ are any
significant fractional jigits, the entire
fractional portion will appear unsup­
pre!3sed.

$ specifies the CU1::-rency symbol. If this
character appears more than one(?, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
Btatic character must appear (:i ther to
t:he left of all digit positions in a
field of a specification or to the right
of all digit positions in a specifi­
cation. See details above for the
drifting use of the character.

S

+

specifies the plus sign character (+) if
the data value is ~O, otherwise it
specifies the minus sign character (-).
rhe character may be drifting or static.
The rules are identical to those for the
currency symbol.

specifies the plus
the data value is
specifies a blank.
drifting or static.
tical to those for

sign character (+) if
~ 0, otherwise it
The character may be

The rules are ijen­
the currency symbol.

specifies the minus sign character (-)
if the data value is <OJ otherwise it
specifies a blank. The character may be
drifting or static. The rules are iden­
t.ical to those for the currency sym,bol.

Figure D- 5 gives examples of the uSle of
drifting picture characters. In the fig­
ure, the letter b indicates a blank charac­
ter.

CREDIT, DEBIT, AND OVERPUNCHED SIGNS

Ihe character pairs CR (credit) and DB
(debit) specify the signs of fixed-point
numeric character data items and usually
appear in business report forms.

Any of the picture characters r, I, or R
specifies an overpunched sign in the asso­
ciated digit position of a fixed-point
numeric character data item. An over­
punched sign is a i2-punch (for plus) or an

142

ii-punch (for minus> punched into the same
column as a digit. It ind:icatj~s the sign
of the arithmetic data item. Only one
overpunched sign can appear in a specifi­
cation for a fixed-point numbe:r. The OVE!r­
punch character can appear only in the last
digit position within a field.

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The charac'bers CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in
the associated positions.

T specifies that the associa1:ed position"
on input, will contain a digit over­
punched with the sign of 1:he data. It
also specifies that, an oVE~rpunch is to
be indicated in the character-string
value.

I

R

specifies that the associa'ted position,
on input, will contain a digit aver­
punched with + if the value is ~O;
otherwise, it will contain the digit
with no overpunching. It also speci­
fies that an overpunch is to be indi­
cated in the character-'string value if
the data value is ~O.

specifies that the associated position~
on input, will contain a digit over­
punched with - if the vcd ue is <0 ;
otherwise, it will contain the digit
with no overpunching. It also speci­
fies that an overpunch iE; to be indi­
cated in the character-string value if
the data value is <0.

Note: The picture characters CR, DB. T J

I, and R cannot be used with any other sign
characters in the same field.

Figure D-6 gives examples of the CR, DB,
and overpunch characters. In the figure,
the letter ~ indicates a blank character.

EXPONENT SPECIFIERS

The picture characters K and E delimit
the exponent field of a numeric character
specification that describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric charac­
ter floating-point picture specification.
The picture characters K and E cannot
appear in the same specification.

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
~------------------+--------------------+------------------------+----------------------~

FIXED(5~2) 123.45 $999V.99 $123.45

FIXED(5,2) 001.23 $ZZZV.99 $bb1.23

FIXED(5,2) 000.00 $ZZZV.ZZ bbbbbbb

FIXED(5,2) 123.45 $$$9V.99 $123.45

FIXED(5,2) 001.23 $$$9V.99 bb$1.23

FIXED (5" 2) 012.00 99$ 12$

FIXED(2) 12 $$$,999 bbb$012

FIXED(4) 1234 $$$,999 b$1,234

FIKED(5,2) 123.45 S999V.99 +123.45

FIXED(5,2) -123.45 S999V.99 -123.45

FIXED (5,2) -123.45 +999V.99 b123.45

FIXED(5,2) 123.45 -999V.99 b123.45

FIXED(5,2) 123.45 999V.99S 123.45+

FIXED(5,2) 001.23 +++B+V.99 bbb+1.23

FIXED(5,2) 001.23 ---9V.99 bbb1.23

FIXED(5,2) -001.23 SSS9V.99 bb-1.23
~------------------~--------------------~------------------------~----------------------~
11 I'he a:rit~hmetic value is the value expre8sed by the digits and the actual or assumed I
I location of the V in the specification. I L ___ J

Figure D-5. Examples of Drifting Picture Characters

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-string I
I At.tributes I (in constant form) I Specification I Value1 I
~------------------+--------------------+------------------------+----------------------~

FIXED(3) -123 $Z.99CR $1.23CR

FIXE[)(4,2)

FIXEO(4,2)

FIXE[) (4,,2)

FIXE[)(4)

FIXE[)(4)

12.34

-12.34

12.34

1021

-1021

$ZZV.99CR

$ZZV.99DB

$ZZV.99DB

9991

Z99R

$12,34bb

$12.3408

$12.34bb

102A

102J

FIXE[) (4) 1021 999T 102A __________________ ~ ____________________ ~ ________________________ L ______________________ ~

11 The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I L ___ J

Fi~Jure D-6. Examples of CR, DB, T., I, and R Picture Chara.cters

Section D: Picture Specification Characters 143

r------------------T--------------------T------------------------T----------------------,
I Source I Source Dat~ I Picture I Character-String I
I A.ttributes I (in constant L>rm) I Specification I Val~le1 I
~------------------+--------------------+------------------------+----------------------~

FLOAr(5) I .12345E06 V.99999E99 .1234~)E06 I
I I

F'LOAT (5) I .12345E-06 V. 99999ES99 .1234~iE-06 I
I I

FLOAT(5) I .12345£+06 V.99999KS99 .12345+06 I
I l

FLOAT(5) I -123.45E+1.2: S999V.99ES99 -123.J~5E+12 I
I I

FLOAT(5) I 001.23E-01 SSS9.V99ESS9 +123.00Eb-3 I
I I

FLOAT (5) I 001.23E+01l, ZZZV. 99KS99 123.00+02 I
I I

FLOA.T (5) I 001.23E+01l SZ99V. 99ES99 +123. 00E+02 I
I !

I F'LOAr(5) I 001.23E+04, SSSSV.99E-99 +123.00Eb02 I
~-._,--_---------------.1.------------.----,------.1.-------------------------.1.----------------------,--,1
11 rhe arithmetic value is the value expressed by the digits and the actual or assumed I
I iDeation of t:he V in the specif ica tion. !
l_._. ________________________________ . ____ . __ ..,J

Figure D-7. Examples of Floating-Pc}int Picture Specifications

K

E

specifies that the exponent field
appears to the right of the as~>ociated
position. It does not specify a char­
acter in the numeric charac'l:er data
item.

specifies t~hat thE~ associab::d position
contains t~he lett:er E, which indicates
1:he start of the E~xponent field.

rhe value of the exponent is adjusted in
the character-'string value so that the
firs1: significant diqit of the fir~;t field
(the mantissa) appears in the position
ass8ciated with the first digit specifier
~f the specification (even if it is a zero
suppression character).

Figure D-7 gives E~xamples of the use of
exp::>nent delimiters. In the figure, the
lettE~r b indicates a blank character.

STERLING PICTURES

'I?he following picture charactE:rs are
used in picture specifications for sterling
dat2t:

8

7

144

specifies the position of a shilling
digit in BSI single-character represen­
t.ation. Ten shillings is represen·ted
by a 12-punch (&) and eleven through
Lineteen shillings are represented by
the characters A through I, res~ective-
1 y.

specifies the position of a pen=e digit

6

P

G

H

M

in BSI single-character representation.
Tenpence is represented by a 12-punch
(&) and elevenpence is represented by
an Il-punch (-).

specifies the position of a pence digit
in IBM single-character representation.
Tenpence is represented by an Il-punch
(-) and elevenpence is represented by a
12-pUIlCh (&).

specifies that the associated position
contains the pence character D.

specifies the start of a sterling pic­
ture. It does not specify a character
in the numeric character data item.

specifies that the associated position
contains the shilling character S.

specifies the start of a field.
does not specify a character in
numeric character data item.

It
the

sterling data items are considered to be
fixed-point decimal data i tE:ms. When
involved in arithmetic operations, they are
converted to a value representing fixed­
point pence. Sterling pictures have the
general form:

PICTURE
'G [editing-character-l]
M pounds-field
M [separator-l] •••

shillings-field
M [separator-21 ...

pence'-field
[editing-character-2]

"Editing character 1" can be one or more
of the following static picture characters:

$ + s

rhe ~pounds field" can contain the
following picture characters:

z * 9 , $ + - S

The last four characters ($ +
be drifting characters. The comma
used as an insertion character.

S) must.
can be

"separator 1" can be one or more of the
following picture characters:

/ B

rhe "shillings field" can be:

{99 I ZZ I Z9IS}

The picture character Z can occur only
if the entire field to the left of this
character (including the pounds field) has
no digit position other than Z.

"Separator 2" can be one or more of the
picture characters:

/ . B H

The final 9 can be replaced by one of
the following::

T I R

"Editing character 2" can be

1. a $ and/or a P# or

2. a $ and/or a P, mixed with one or more
B charac·ters, or

3. one of CR DB + - S in combination with
either of the above configurations.

The pounds, shillings, and pence fields
must each contain at least one digit posi­
tion.

Zero suppression in sterling pictures is
performed on the total specification, not
separately on each of the fields. Separa­
tor characters slash(/), point(.). B, and H
are never suppressed. For a single sterl­
ing specification, there can be a maximum
of one sign. This sign can be specified by
"editing character 1," by T, I, or R in the
pence field. by "editing character 2", or
by a drifting string in the pounds field.

Figure D-8 gives examples of the use of
sterling picture specifications.

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (stated in pence) I Specification I Value 1 I
~------------------t--------------------t------------------------t----------------------i
I FIXED(4) I 0534 I GMZ9M.SM.99V.9CR I b2.4.06.0bb I
I I I I I
I FIXED(4) I 0019 I GMZZM.ZZM.ZZP I bb.b1.07D I
~------_-----------~--------------------~-------------___________ L ______________________ ~

11 rhe arithmetic value of a numeric character variable declared with a sterling picture I
I specification is its value expressed as a valid sterling fixed-point constant, which I
I for arithmetic operations is always converted to its value expressed in pence. I L ___ J

Figure D-S. Examples of Sterling Picture specifications

Section D: Picture Specification Characters 145

rhis section describes each of t~he edit­
directed format i tE~ms that can appea.r in
the format list of a GEr or pur statement.

rhere are four categorles 01
iteols: data format it~ems, printing
it crns, the spacing f orrnat i tern,
r.emDte format item.

tormat
format

and the

In this section, the four categc,ries are
discussed separately and the format items
are listed under each categor~. The
remainder of the section contains detailed
discussions of each of the format items,
with the discussions appearing in alphabet­
ic ::::rder.

~ data format item describes the exter­
nal f~rmat of a single data item.

i'or input, ·the data in the s1:.ream is
c~n3idered to De a continuous string of
characters; all blanks are treated as char­
acters in the stream, as are quotation
marks. Each data format item in a GE'l'
statement specifies the number of cnarac­
t.ers to be obtained from the si:r:eam and
describes the way those characters are to
be interpreted. Strings should not be
encl::>sed in quotation mark::;, nor shOUld the
le~ter B be used to identify bit strings.

f')r output, the da-ta in the strE!a.m takes
the form specified by the forma·:. list.
Each data format item in a PUT s~atement
specif ies the lliidth of afield int~() wh.ich
the associated data item in charac~er form
is to be placed and describes thE! format
that the value is to take. E:nclosing
quotation marks are not inserbed, nor is
the letter B to identify bit string~).

Leading blanks are not inserted automat­
icaLL y to separate da i:a items in the output
stream. String data is left--adjusted in
the field whose ~idth is specified. ~rith­
netic data is right-adjusted. Leading
blanks will not appear in the stream unless
the specified field width allows for them.
rruneation, due to inadequate field-width
specification is on the left for ari.thmetic
items, on the right for string item~;.

N:::lte that the value of binal~y dc.ta both
on input and output is always represented
in decimal form for edit-directE~d transmis­
sion.

146

Following is a list of data format
items:

Fixed-point
format item

Floating-point
format item

Bit-string
format item

Character-string
format item

F (specificat.ion)

E(specification)

B(specification)

A(specification)

'rhe printing format items apply only 1:0
output and only to files with the PRINT
attribute. They specify formatting of the
printed page.

Following is a list of printing format.
items:

Paging format PAGE
item

Line skipping SKIP[(specification)]
format item

Line position LINE(specification)
format item

Column position
format item

COLUMN(specification)

~ printing format item has no effect
unless it is encountered before the data
list is exhausted.

rhe PAGE, SKIP, and LINE format items
have the same effect as the corresponding
options of the PUT statement:, E!XCept that
the format items are eXE:cutE!d only when
they are encountered in the format list#
while the options of the PUT st:atement are
executed before any data is transmitted.

SPACING FORMAT ITEM

The spacing format item specifies rela­
tive horizontal spacing. On input, it
specifies a number of characters in th.e
stream to be skipped over and ignored.

Dn output" it specifies a number of
blanks to be inserted into the stream.

The spacing format item is:

X(specification)

The spacing format item has no effect
unless it is encountered before the data
list is exhausted.

rhe x:emote format item specifies the
label of a FORMAT statement that contains a
format list which is to be taken to replace
the remote format item.

rhe remote format item is:

R(statement-label-designator)

The "statement label designator" is a label
constant or an unsubscripted element label
variablle.

rhe "specification" that is listed above
for all but the PAGE and remote format
items can contain one or more expressions.
Such expressions must be decimal integer
constanits.

rhe A format item is:

A [(field-width)]

rhe character-string format item des­
cribes the eKternal representation of a
string of characters. It must be used only
for character strings. Character strings
cannot be transmitted by any other format
item. No conversion is performed.

General rules:

1. The "field width" (sometimes expressed
as w) must be a decimal integer con­
stan~, unsigned and greater than zero,
but less than 256. It specifies the
number of character positions in the
data stream that contain (or will
contain) the string.

2. On input, the specified number of
characters is obtained from the data
stream and assigned to the associated
element in the data list. The field
width is always required on input. If
quotation marks appear in the stream,
they are treated as characters in the
string.

3. On output, the field width need not be
specified; in this case, the length of
the associated string is used, and the
data it:em completely fills the field.
Enclosing quotation marks are never
inserted.

The B format item is:

B [(field-width)]

The bit-string format item describes the
external representation of a bit string.
Each bit is :r-epresented by the cha~~£!:~~ 0
or 1. This format item can be used only
for bit strings; bit strings cannot be
transmitted by any other format item.

General rules:

1. The "field width" (sometimes expressed
as w) must be an unsigned decimal
integer constant greater than zero and
less than 65. It specifies the number
of data-stream character positions
that contain (or will contain) the bit
string.

2. On input, the character representation
of the bit string may occur anywhere
within the specified field. Blanks~
which may appear before and after the
bit string in the field are ignored.
The field width is always required on
input. Any character other than 0 or
1 (including embedded blanks, quota­
tion marks~ or the letter B) will
raise the CONVERSION condition.

3. On output, the character representa­
tion of the bit string 1S left­
adjusted in the specified field~ and
necessary truncation or extension with
blanks occurs on the right. No
quotation marks are inserted, nor is
the identifying letter B. If the
field width is not specified, the
declared length of the associated
string is used, and the data item
complet.ely fills the field.

Section E: Edit-Directed Format Items 147

rhe COLUMN format item is:

COLUMN (character-position)

Ihe column position format item controls
the spacing of a data item to a specified
character position within the line. It can
be used only with a PRINT file and, conse­
quently, it can appear only in a PUT
statement.

General rules:

1. The "character position" (sometimes
expressed as ~) must be a decimal
integer constant greater than zero and
less than 256.

2. Blank characters are placed into the
data stream so that the next field
~ill begin at the specified character
position of the current line. If data
has already been placed into tle spec­
ified character position or beyond,
the current line is complete}, and a
new line is started. Blank cha.racters
are then inserted into the daLi strearrl
so that the next field will b':'!gin at
the specified character position of
the new line.

3. If the specified character position
lies beyond the rightmost character
position of the current line (~.e., if
w is greater than the line si2.t:), then
the character pO~3ition is aS~llmed to
be one.

4. The COLUMN format item ba.s r..O effect
unless it is encountered bef ~)re the
data list is exhausted.

rhe E format item is:

F(field-width,number-of-fractionaJ.-digits
[,fiumber-of-significant-diqits])

rhe floating-point format item dE~scribes
the external representation of deciDal
arithmetic data in floating-point fClrmat.

General rules:

1.

148

The "f ield widt.h, " "number clf f rac­
tional digits," and "number of sig~i­
ficant digits" (sometimes refErred to
as w, d, and S, respectively) ITust be
unsIgn~d decImal integer constants.
rhe field width must be less than .33.

"Field width" specifies the total num­
ber of characters in the field.

"Number of fractional digits" speci­
fies the number of digits to appear
following the decimal point in the
mantissa.

"Number of significant digits" speci­
fies the number of digit.s that must
appear in the mantissa.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-point or fixed-point constant
located anywhere within the specified
field. If the data item is a fixed­
point number, an exponent of zero is
assumed.

The external form of the n·J.mber is:

[±] mantissa~ (E] {+ I-}) exponent]
~ E[+I-]

The mantissa must be a decimal fixeCl­
pOint constant.

a. The number can appear anywhez'e
within the specified field; blanks
may appear before and after the
number in the field.. If the
entire field is blank, the CONVER­
SION condition is]:-aisE~d. When no
decimal point appears jl the numbe~r
of fractional digi1:S (el) specifie·s
the number of charactej~ pOSitions
in that part of the mantissa to
the right of the assumed decimal
point. If a decimal point actual­
ly does appear in 1:he data, it
overrides the number of the frac­
tional digits specification.

The value expressed by "field
width" includes trailing blanks,
the exponent pOSition, the posi­
tion for the optional plus or
minus sign, and the position for
the optional letter E and the
position for the optional decimal
point in the mantissa.

b. The exponent is a decimal integer
constant that cannot exceed three
digits. Whenever t.he E'xponent and
preceding sign or letter E are
omitted, a zero exponent is
assumed.

c. The sign of the mantissa must
always be accounted for in the
field width, even if it is pOSi­
tive and is represented by a
blank.

3. On output, the internal data is con­
verted to floating-point, and the
external data item in the specified
field has the following general form:

[-J{s-d digits}.{d digits}
E{+I-}exponent

a. The exponent is a two-digit deci­
mal integer constant, which may be
two zeros. The exponent is auto­
matically adjusted so that the
leading digit of the mantissa is
nonzero (provided that the mantis­
sa is not zero, of course).

b. If the above form of the number
does not fill the specified field
on output, tne number is right­
adjusted and extended on the left
with blanks. If the number of
significant digits is not
specified, it is taken to be 1
plus the number of fractional
digits. For the D-compiler, the
field width for negative or non­
negative values of the data item
must be greater than or equal to 6
plus the number of significant
digits (although the sign of a
positive value is not written, it
must be accounted for). However,
if the number of fractional digits
is zero, the decimal point is not
written, and the above figure for
the field width is reduced by 1.

rhe F format item is:

F(field-width[,number-of-fractional-digits
[,scaling-factor]])

rhe fixed-point format item describes
the external representation of a decimal
arithmetic data item in fixed-point format.

General rules:

1. The "field width 7 " "number of
fractional digits," and "scaling
factor" (sometimes expressed as w, d,
and 12, respectively) must be decimiil
integer constants. Only 12 can be
signed; the others must be unsigned; ~
must be less than 33 and must account
for the sign, even if it is blank.)

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal fixed­
point constant located anywhere within
the specified field. Blanks may
appear before and after the number in

the field. If the entire field is
blank, it is interpreted as zero.

The number of fractional digits, if
not specified, is assumed to be zero.

If no scaling factor is specified and
no decimal point appears in the field,
the number of fractional digits speci­
fies the number of digits in the field
to the right of the assumed decimal
point. If a decimal point actually
does appear in the data, it overrides
the specification for the number of
fractional digits.

If a scaling factor is specified, it
effectively multiplies the value of
the data item in the data stream by 10
raised to the value of the scaling
factor (i.e., E.). Thus., if E. is
positive, the number is treated as
though the decimal point appeared E
places to the right of its given
position. If E. is negative, the num­
ber is treated as though the decimal
point appeared E places to the left of
its given position. The given posi­
tion of the decimal point is that
indicated either by an actual point,
if it appears, or by the specification
for the number of fractional digits,
in the absence of an actual point.

3. On output~ the internal data is con­
verted, if necessary, to fixed-point,
and the external data is the character
representation of a decimal fixed­
point number, right-adjusted in the
specified field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
decimal point appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both the
integer and fractional portions of the
number are written and a decimal point
is inserted before the rightmost ~
digits. Trailing zeros are supplied
when the actual number of fractional
digits is less than ~ (the value ~
must be less than the field width).
Suppression of leading zeros is
applied to all digit positions to the
left of the decimal point.

The value of the scaling factor effec­
tively multiplies the value of the
associated element in the data list by
10 raised to the power of E, before it
is edited into its external character
representation. When the number of
fractional digits is zero, only the
integer portion of the number is used.

Section E: Edit-Directed Format Items 149

For all options on output, if the
value of the fixed-point number is
less than zero, a mlnus sign is pre­
fixed to the external character rep­
resentation; if it is greater than
zero, a blank appears. Therefore, for
all values of the fixed-point number,
the field width specification must
include a count of both the sign and
possibly the decimal point (since the
decimal point will not appear if there
are no fractional digits).

If the fi,eld width is such that si9ni­
ficant digits or the sign is lost, the
SIZE condition is raised.

rhe LINE format item is:

LINE (line-number)

rhe line position format item s?ecifies
the particular line on a page of a PRINT
file upon which the next data item is to be
prin·ted.

Gene:ral rules:

L The "line number" (sometimes e:<pres sed
as~) must be an unsigned decimal
integer constant less than 256.

2. The LINE forma1: item speciLLes that
blank lines are to be inserted so that
the next line will be the ~;pecified
line of the current page.

3.. If the specified line has already been
passed on the current page J C~ if the
specified line is beyond the limit set
by default or by the PAGESIZE option
of the OPEN statement, the ENDPAGE
condition is raised.

4 Q If" line number" is equal t.O zero, it
is assumed to be one.

5.. rhe LINE format~ item has no effect
unless it is encountered before the
data list is exhausted.

rte PA3E format item is:

PA.GE

rhe paging format item specifies that a
new page is to be established.

150

General rules:

1. The establishment of a new page
implies that the next printing is to
be on line one.

2. The PAGE format item
unless it is encountered
data list is exhausted.

The R format item is:

bas no effect
before tlhe

R (statement-label-designator)

The remote format item allows format
items in a FORMAT statement to replace the
remote format item.

General rules:

1. The "statement label designator" is a
label cons'tant or an el'ement labE!l
variable that has as its value the
statement label of a FORMA'r statement_.
The FORMAT statement includes a format
list that is taken to replace the
format item. The "statl=ment label
deSignator" cannot be subscripted.

2. The R format item
FORMAT statement
the same block.

and the specifiE!d
must be internal to

3. A. FORMAT statement cannot contain an R
format item.

The SKIP format item is:

SKIP ((relati ve-posi tion-of--next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The "relative position of next line"
(sometimes expressed as ~) must be an
unsigned decimal integE!r constant
between 0 and 3 inclusive. If it is
omitted, 1 is assumed.

2. The new line is the specified number
of lines beyond the present line.

3. If w is greater than or equal to one,
w-1-blank lines will be inserted.

4. If the value of the relative position
is zero, the effect is that of a
carriage return without line spacing.
Characters previously written will be
overprinted by the new characters.
For example, underscoring can be done.

5. If the SKIP format item is not speci­
fied at the end of a line, then SKIP
(1) is assumed, that is, single spac­
ing"

6. If the specified line lies beyond the
limit set by default or by the PAGE­
SIZE option of the OPEN statement, the
ENDPAGE condition is raised.

7 .• The SKIP format item has no effect
unless it is encountered before the
data list is exhausted.

rhe X format item is:

X (field-width)

rhe spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules::

1. The "field width" (sometimes expressed
as ~) must be an unsigned decimal
integer constant less than 256. It
specifies the number of blanks before
the next field of the data stream l

relative to the current position in
the stream.

2. On inpu·t,
characte:rs
stream and
program.

the specified number of
is spaced over in the data
not transmitted to the

3. On output# the specified number of
blank characters are inserted into the
stream.

4. The spacing format item has no effect
unless it is encountered before the
data list is exhausted.

section E: Edit-Directed Format Items 151

rhis section lists the rules for arith­
.net:Lc conversion and for conve:rsion of data
t.ypt=s. Each type conversion iB listed
under a separate heading. In addition to
the text, seven tables appear:

• Table F-l states the rules for comput­
ing the precision of the result of an
arithmetic conversion.

• Table ~-2 is a table that can be used
to find the length of the result of an
arithmetic to bit-string conversion.

• Table F-3 can be used to find the
ceiling <CEIL) of any value between 1
and 15 when that value is multiplied by
3.32 or it can be used to find the
ceiling (CEIL) of any value between 1
and 56 when that value is divided by
3.32.

• rabIes F-4 through F-7 illustrate con­
version in arithmetic expressicn opera­
tions, dnd they give attributes of the
results based upon the operator speci­
fied and the attributes of the two
operands.

~RlrHMETIC CONVERSION

The rules for arithmetic conversion
specify the way in which a value is trans­
formed from one arithmetic representation
t~ another. It can be that as a result of
the transformation the value will change.
]:<'0[" example, the number .2, which can be
exactly represented as a decimaL fixed­
point number, cannot be exactly represented
in binary. rhe magnitUde of such changes
in value depends upon the precisions of the
taryet and source. In expression
evaluation, the precision of the tacget is
deri ved from the precision of th€~ source.
In order to estimate and to underst~nd the
err~rs that can occur, the precisi~n rules
Dust be understood; and since tha rules
also leave some latitude for the i,nplemen­
tati::)n, it is helpful to have some knowl­
edge of the way in which conversions are
implemented.

152

Floating-Point Conversion

In System/360 implementations, both
decimal and binary floating-point numbers
are maintained in the internal hexadecimal
form used in System/360. l:f the specified
precision is more than 6 decimal digits, or
21 binary digits, the number is maintained
in long floating-point form (14 hexadecimal
digits with a hexadecimal exponent). If
the precision is 6 decimal digits or less,
or 21 binary digits or less, the number is
maintained in short floating-point form (6
hexadecimal digits and a hexadecimal
exponent) .

No actual conversions between binary and
decimal are performed on floating-point
data. The only precision changes are from
long to short, which is done by truncation,
and from short to long, which is done by
extending with zeros. The declared preci­
sion of floating-point data and the base,
however, do affect the calculation of tar­
get attributes, as well as the attributes
of intermediate fo.rms that are determinled
from the source.

Precision conversion occurs if the spec­
ified target precision is different from
the source precision. In particular, there
always is a precision change when the
source and target are of different bases.
It is also possible that there is an actual
change in preC1Slon when converting from
floating-point to fixed-point, because of
the way in which floating-point numbers are
represented. Precision changes are per­
formed by truncation or by padding with
zeros. Floating-point numbers are convert­
ed from short precision to long precision
by extending with zeros on the right, and
from long precision to short precision by
truncation on the right.

Fixed-point numbers maintain decimal or
binary paint alignment and may De truncated
on the left or right, or extended with
zeros on the left or right. Since the
binary point of a fixed-point ~inary vari­
able is always assumed to be after the
rightmost binary digit, fixed-point binary
values assigned to such variables will
never result in extension on the right; of
course, extension can occur on the lef~.
but only truncation can occur on the right~.

No indication is given of loss of signi­
ficant digits on the right. Loss of digits
on the left can be checked for if the SIZE
condition is enabled. In System/360
implementations# binary fixed-point numners
are stored in ~ords of 31 bits# ~hatever
the declared width. Decimal numbers are
always stored as an odd number of digits,
since they are maintained in system/360
packed decimal format, with the rightmost
four bits of the rightmost byte expressing
the sign.

Changes in base will usually affect only
the value of noninteger fixed-point num­
bers. Some decimal fractions cannot be
expressed exactly in binary, and some
err8rs w~ll then occur jue to truncation.
Some binary fractions will also require
m~re decimal digits for exact representa­
tion than are automatically generated by
the conv,ersion rules, and this may also
cause errors resulting from truncation.

Since the range of binary fixed-point
numbers is smaller than the range of deci­
mal fixed-point numbers, it is possible for
significant digits to be lost on the left
in conversion from decimal to binary. This
will raise the SIZE condition, but an
interrupt ~ill not occur unless the condi­
tion is explicitly enabled by a SIZE pre­
fix.,

The natural notation for constants is
decimal and, therefore, most constants are
written in decimal. The precision of a
constant is derived from the way in which
it is written. Care should therefore be
taken when ~riting noninteger constants
that will be converted to fixed-point
bina.ry.

DATA TYPE CONVERSION

Coded arithmetic data cannot be convert­
ed to character string and vice versa.
Character string data cannot be converted
to numeric character.

Coded arithmetic data being converted to
numeric character is converted, if neces­
sary, to a decimal value whose scale and
precision are determined by the PICTURE
attcibute of the numeric character item.

Numeric character data being converted
to coded arithmetic is first interpreted as
a decimal item of scale and precision as
specified by the corresponding PICTURE
attribute. This item is then converted to
the base, scale, and precision of the coded
arithmetic target.

Numeric character data items are inter­
preted as character strings. The length of
the character string is the same as the
length of the numeric character data item
as described by its corresponding PICTURE
attribute (i.e., the same as the length of
the character-string value of the numeric
character data).

Character-String to Bit-String

The character 1 in the source string
becomes the bit 1 in the target string.
The character 0 in the source string be­
comes the bit 0 in the target string. Any
character other than 0 and 1 in the source
string will raise the CONVERSION condition.

If the source string is longer than the
target, excess characters on the right are
ignored (so that excess characters other
than 0 or 1 will not raise the CONVERSION
condition). If the target is longer than
the source, the target is padded on the
right with zeros.

The bit 0 becomes the character 0, and
the bit 1 becomes the character 1. The
generated character string, which has the
same length as the source bit string, is
assigned to the target.

If the source bit string is shorter than
the target character string, the remainder
of the target is padded with blanks. Exam­
ples are shown below.

Source
'lOll'B
'10101'B

'OOOl'B

Value
C:HARACTER (4)

CHARACTER (10)

CHARACTER(l)

gesult:
'lOll'

'10101bbbbb'

'0 '

Section F: Data Conversion 153

Table F-1. Precision for Arithmetic Conversions
r-----------------------T---------------------T---1
I Source Attributes I Target ~ttributes I Target Precision I
~-----------------------+---------------------+---i
I DECIMAL FIXED (p#q) DECIK~L FLOAT P
!
i DECIMAL FIXED (p,q) BINAR~ FIXED 1 +p *3.12, q * 3.32 (see note 3)
I
I DECIMAL FIXED (p,q) BINAH~ FLOAT P * 3.32
I
I DE2'IMAL FLOl~T (p) BINAR~ FLOAT P * 3.32
I
I BINARY FIXED (p,q) BINAH{ FLOAT P
I
I BINARY FIXED (p,q) DECIHAL FIXED 1 + p/3.32# q/3.32 (s~~e note 4)
I
I BINARY FIXE;() (p, q) DECIf'o1AL FLOAT p/3. 32
I
I BINARY FLOAT (p) DEClt-li\L FLOAT p/3.32
.----------------------- ---------------------~---i
Notes:
-l~-In the cases of p*3.32 and p/].32" the CEIL of the result is taken; the value

taken is an integer that is e'Iual to or greater than the result.

2. Target precision never can eKceed the implementation-defined maximums, ~l1hich are
15 for FIXED DECIMAL, 31 for ji"IXED BINARY, 16 for FLOAT DECIMAL, and
53 for FI .. OAT BINARY.

3. When g is negative, the following formula applies:
(MIN(CEIL(p*3.32)+1#31),CEIL(ABS(q)*3.32)*SIGN(q»

4~ When g is negative, the following formula applies:
(CEIL(p/3.32)+1,CEIL(ABS(q)/3.32*SIGN(q» l ______________ . _________________ . __ . ____ .. ___________ J

rhe CONVERSION condition cannot be
raised on conversion from bit ~o character;
however, a charact€!r string crE~ated by
conversion from a bit string ca~ cause a
conversion error when reconverted if blanks
are inserted.

Coded Arithmetic to Bit-St!~i!!g

The absolute arithmetic value is first
converted to a binary integer, whose preci­
sion is the same as the length of the
bit-string target as given in Table F-2.
This integer, without a sign~ is then
treated as a bit string. This intermediate
string is then assigned to the target.
Some examples are shown in Figl~e F-1.

r----·----------·-------·--T----------T-·-------------T--------------T---------·----'----------'-l
I Source I Source I Intermediate I Target I I
I Attributes I Value I String I Attributes I Result I
.----------------------+---------+--------------+--------------+------------------------i
I FIXED BINARY(10) I 15 I 0000001111 BIT(10) 0000001111 I
I I I I
I FIXED BINARY(l) I 1 I 1 BIT(l) 1 I
I I I I
I FIXED DECIMAL(l) I 1 I 0001 BIT(l) 0 I
I I I I
I FIXED BINARY(3) I -3 I 011 BIT(3) 011 I
I I I I
I FIXED DECIMAL(2,1) I 1.1 I 0001 BIT(4) 0001 I
I i I I
I FLOAT BINARY(4) I 1.25 I 0001 BIT(5) 00010 I L ______________________ ~ _________ ~ __ J

Figure F-l. Examples of Conversion From Arithmetic to Bit-String

154

rhe bit string is interpreted as an
unsigned binary integer with an
implementation-defined maximum precision.
For the D-Compiler, this is 31 bits. If
the string is shorter than 31 bits, zeros
are inserted on the left. The result of a
bit-string to arithmetic conversion is
always positive. Note that padding is on
the left~ not on the right.

The numeric character field is first
converted to coded arithmetic and then to
bit string, according to the above rules.

rhe bit string is first converted to
coded arithmetic and then to numeric char­
acter, according to the above rules.

rable F-2. Lengths of Converted Bit
Strings (Coded Arithmetic to
Bit-String)

r-----------------------T-----------------l
ISource httributes I Target Length I
~-----------------------+-----------------~
IDE2IMAL FIXED (Plq) I (p - q) * 3.321
I I I
IDE2IMAL FLOAT (p) I p * 3.32 I
I I I
I BINARY FIXED (p, q) I p - q I
I I I
IBINARY FLOAT (p) I p I
~-----------------------L-----------------~
I~Q~~: In the cases of p*3.32 and I
I (p-q)*3.32, the CEIL of the result I
lis taken. Also, for the D-Compiler, I
Ithe target length must lie within I
11 and 31, inclusive. I l ___ J

TABLE OF CEILING VALUES

Table F-3 is intended to aid the pro­
grammer in computing the ceiling values
used to determine precisions and lengths in
conversions. It gives the ceiling for the
result of a multiplication by 3.32 of any
value between 1 and 15 as well as the
ceiling for the result of a division by
3.32 of any value between 1 and 56.

Table F-3. Ceilings for Values Multiplied
and Divided by 3.32

r-----T-------------T-------T-------------,
I x I CEIL(x*3.32) I y I CEIL(y/3.32) I
~-----+-------------+-------+-------------i

1 4 1-3 1
2 7 4-6 2
3 10 7-9 3
4 14 10-13 4
5 17 14-16 5
6 20 17-19 6
7 24 20-23 7
8 27 24-26 8
9 30 27-29 9

10 34 30-33 10
11 37 34-36 11
12 40 37-39 12
13 44 40-43 13
14 47 44-46 14
15 50 47-49 15

50-53 16
54-56 17 l _____ L ____________ _

TABLES FOR RESULTS OF ARITHMETIC OPERATIONS

Tables F-4 through F-7 give the attri­
butes of the results of arithmetic opera­
tions# based on the operator specified and
the attributes of the two operands. In
these tables the target prec1s1ons can
never exceed the implementation-defined
maximums, which are 15 for FIXED DECIMAL,
31 for FIAED BINARY, 16 for FLOAT DECIMAL,
and 53 for F]~OAT BINARY.

section F: Data Conversion 155

Fable F-4. Attributes of Result in Addition and Subtraction Operations

r---,
! First Operand I

.--------------------T-----------------T--------------------T-----------------i
iDECIMAL FIXED(p.t.,q3.) I DECIMAL FLOATCp.t.) I BINARY FIXED(p.t.,q.1.) IBINARY FLOATCp.1) I

r-T-------t--------------------t-----------------t--------------------t-----------------i
ISIDECIMALIDECIMAL FIXED(p,q) IDECIMAL FLOAT(p) IBINARY FIXED(p"q) IBINARY FLOAT(p) I
I e I FIXED I p=l +MAX (P.t. -q.t., P2-q2) I p=I"1AX (P:L, P2) I p=l +MAX CPt. -ql., r-s) I p=MAX (p.1., r) I
lei (f?2,Q2) I +MAX(q.1.,q2) I I +MAX(q.1.,S) I where I
101 Iq=MAX(q.t.,q2) I I q=MAX(q.1."s) I r=P2*3.32 I
Inl I I I where I I
I d I I I I r= 1 + P 2 * 3 • 32 I I
I I I I I s=q2*3.32 I I
IO~-------+--------------------+-----------------t--------------------t-----------------i
IplDECIMALIDECIMAL FLOAF(p) IDECIMAL FLOAT(p) IBINARY FLOATCp) IBINARY FLOATCp) I
lelFLOAT Ip=MAX(p.1.,P2> Ip=IV1AX(p:l,P2) Ip=MAXCp.1.,r) Ip=MAX(p.1.,r) I
I r'! (P2) I I I where I where I
lal I I I r=P2*3.32 I r=P2*3.32 I
In.-------t--------------------+-----------------t--------------------t-----------------i
IdlBINARY IBIN.?\RY FIXED(p,q) IBINARY FLOAT(p) IBINARY FIXEDCp,q) IBINARY FLOAT(p) I
I IFIXED Ip=1~MAX(r-s,p2-q2) Ip=II'JAX(r"P2) Ip=1+MAX(p.1.-q.1.'P2-q2) Ip=MAXCp.1.,P2) I
I I Cp2,Q2) I tMAX(s,q2) I where I +MAX(q.1.,q2) I I
I I Iq=MAX(s,q2) I r:=p.t.*3 .. 32 Iq=MAX(q.t.,q2) I I
I I I where I I I I
J I I r~1+p1*3.32 I I I I
I I I s;=q.t.*3.32 I I I I
I ~-------+--------------------t-----------------t--------------------t-----------------i
I IBINARY IBINARY FLOAT(p) IBINA.RY FLOAT(p) IBINARY FLOATCp) IBINARY FLOAT(p) I
I I FLOAT Ip=MAX(r,P2) Ip=t1/\.X(r,P2) Ip=MAXCp.1.·,P2) Ip=MAXCp.1.,P2) I
I I (P2) I whe:ce I where I I I
I I I r:=p.t.*3.32 I JC==P1*3.32 I I I
l_~ _______ L ____________________ L _________________ L ____________________ L _________________ J

rable F-S. Attributes of Result in Multiplication Operations

r---,
I First Operand !
.--------------------T-----------------T--------------------T-----------------i
IDECIMAL FIXED(p.t.,q1> I DECIMAL FLOAT (P.t.) I BINARY FIXED(p.1.,q.1.) IBINARY FLOAT(p.1.) I

r-T-------t--------------------t-----------------t--------------------t-----------------i
ISIDECIMALID~CIMAL FIXED(p,q) IDECIMAL FLOAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
I t~ I FIXED I P=P:l +P2 + 1 I p=rll~X (Pl., P2) I P=P.t. + r+l I p=MAX (p.1.;' r) I
lei (P2,q2) 1~=q1+q2 I Iq=q.1.+ s I where I

o I I I I where I r-=P2 *3.32 I
nl I I I r=1+P2*3.32 I I
dl I I I s=Q2*3.32 I I
~-------t--------------------t-----------------+--------------------t-----------------~

OIDECIMALIDECIMAL FLOATCp) IDECIMl\L FLOAT(p) IBINARY FLOAT(p) IBINARY FLOAT(p) I
plFLOAT Ip=MAX(P1,P2) Ip=M~~Cp1,P2) Ip=MAX(p.t.,r) Ip=MAX(p.1.,r) I
e I (P;a> I I I where I wh·ere I
rl I I I r=P4*3.32 I r=P2*3.32 I
a~-------+--------------------+-----------------t--------------------t-----------------i
n!BINARY IBINARY FIXEDCp,q) IBIN~RY FLOAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
dlFIXED Ip=r+P2+1 Ip=M~X(r,p2) Ip=p.1.+P2+ 1 Ip=MAX(p.1.,P2) I

I (?2,q2) Iq=S+Q2 Iwhece IQ=q1+q2 I I
I I where I r==p.1*3.32 I I I
I I r:=1+p~*3.32 I I I I
I I s~=q.t. * 3.32 I I I I
~-------+--------------------t-----------------t--------------------t-----------------i
jB1NARY IBINARY FLOAT(p) IBIN~kY FLOAT(p) IBINARY FLOATCp) IBINARY FLOAT(p) I
jFLOAT Ip=MAXCr,P2) Ip=~~\X(r,p2) Ip=MAX(p.t.,P2) I p=IYlAX(P.1.,P2) I
j (?2) I where I whE~re I I I
1 I r==p.t. * 3. 3:2 I r =: P.t. *::' • 32 I I I

l_~ _______ L ____________________ L ___ , ______________ L ____________________ L _________________ J

lSb

Table F-6. Attributes of Result in Division Operations
r--,
I First Operand I
~--------------------T-----------------T---------------------T-----------------~
IDECIMAL FIXED(P1,Q1) I DECIMAL FLOAT (P1) \ BINARY FIXED(P1,q1) IBINARY FLOAT(P1) \

r-T-------t--------------------t-----------------t--------------------t-----------------~
SIDECIMALIDECIMAL FIXED(p,q) IDECIMAL FLOAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
elFIXED Ip=15 Ip=MAX(P1,P2) \p=31 Ip=MAX(P1,r) I
CI(P2,Q2) Iq=15-«p1-q1)+q2) I Iq=31-«p1-q1)+s) I where I
01 1 I I where I r=P2*3.32 I
nl I 1 1 s=q2*3,.32 1 I
d~-------t--------------------t-----------------t--------------------t-----------------~
IDECII~1ALIDECIMAL FLOAr(p) IDECIMAL FLOAT{p) IBINMY Fl:'OAT(p) IBINARY FLOAT{p) I

01 FLOA'r I p=MAX (P1, P2) I p=MAX (P1, P2) 1 p=MAX (P1'" r) I p=MAX (P1, r) I
pi (P2) I I 1 where I where I
el I I I r=P2*3,.32 I r=P2*3.32 I
r~-------t--------------------t-----------------t--------------------t-----------------~
alBINAiRY IBINARY FIXED{p) IBINARY FLOAT(p) IBINARY FlxED(p,q) IBINARY FLOAT{p) I
nlFIXED Ip=31 Ip=MAX(r~p2) Ip=31 Ip=MAX{P1JP2) I
dl (P2JQ2) Ig=31-«r-s)+Q2) I where Iq=31-«p1-q1)+q2) I I

1 I where I r=P1*3.32 I 1 1
I 1 r=1+P1 *3.32 1 1 1 I
I 1 s=gl.*3.32 I 1 1 1
~-------t--------------------t-----------------t--------------------t-----------------~
IBINARY IBINARY FLOAT{p) IBINA.RY FLOAT(p) IBINARY FI.OAT(p) IBINARY FLOAT(p) 1
1 FLOAT Ip=MAX{r,P2) Ip=MAX{r,P2) Ip=MAX(P1"P2) Ip=MAX(P1,P2) 1
1 (P2) 1 where 1 where I 1 1
I 1 r=P1*3.32 1 r=P1*3.32 I 1 I l_L _______ L ____________________ L _________________ L ____ ________________ L _________________ J

Table F-7. Attributes of Result in Exponentiation Operations
r--------------------T---------------------T------------------------------------,
1 I Second Operand 1 I
IFirst Operand 1 (Exponent) ITarget Attributes of Result I
~--------------------t---------------------t------------------------------------~

Case (1) IFIXED DECIMAL(P1,q1) I Unsigned int.eger IFIXED DECIMAL(p,q) [provided p~15] I
I Iconstant with value nl p=(p1+1)*n-l I
1 I 1 q=q1*n I
~--------------------t---------------------t------------------------------------~

Case (21IFIXED BINARY(P1,q1) IUnsigned integer IFIXED BINARY(p,q) [provided p~31] I
1 Iconstant with value nl P={P1+1)*n-l I
I I I q=q1*n I
~--------------------t---------------------+------------------------------------~

Case (3) \FIXED DECIMAL(P1,Q1) I FIXED DECIMll,L(P2·,g2) IFLOA'l' DECIMAL(p) [unless case (1) I
lor lor I above is applicable] I
IF'LOAT DECIMAL(P1) JI'~LOAT DECIMPI.L{P2) I P=MAX(P1,P;a) I
~--------------------+---------------------+------------------------------------i

Case (4) IF'IxED BINARY(P1,q1) IFIXED DECIMP,L(P;a,q;a) IFLOAT BINARY(p) [unless case (2) I
lor lor I above is applicable] 1
IF'LOAT BINARY(P1) IFLOAr DECIMll~L(P;a) I p=MAX(p1,CEIL(3.32*p2» I
~--------------------+---------------------+------------------------------------~

Case (5) IFIXED DECIMAL(P1,q1) 1:r'IXED BINARY(P;a,Q2) IFLOAT BINARY(p) [unless case (1) I
lor lor I above is applicable] I
IF'LOAT DECIMAL(P1) IFLOAT BINARY(P;a) I p=MAX(CEIL(3.32*P1),P;a) I
~--------------------+---------------------+------------------------------------i

Case (6) IE'IXED BINARY(P1,Q1) IFIXED BINARY(P;a,Q;a) IFLOAT BINARY(p) [unless case (2) 1
lor lor I above is applicable] I
IFLOAT BINARY{P1) IFLOAT BINARY(P;a) 1 P=MAX(P1,P;a) I l ____________________ L _____________________ L ____________________________________ J

Section F: Data Conversion 157

hil of the built-in functions and
pseudo-variables that are available to the
PL/I programmer are given in this section.
The general organization of this section is
as follows:

ll .. 2omputational Built-in Functions

d. String-handling built--in functions

b. Arithmetic built-in functions

c. Mathematical built-in functions

d. Array manipulation built-in func­
tions

2. Miscellaneous Built-in Functions

3. Pseudo-Variables

rhe ~Q~Q~~~tiQ~~!_~~i!t=iQ_f~Q~tiQ~~, as
shown above, provide string handling,
drit.hmetic operations <absolute value,
truncation, etc.), mathematical operations
(trigonometric functions, square root,
etc.), and array manipulation f~nctions.
rhe computational built-in functions are:

l~) 8

BIT
BOOL
CHAR
HIGH
INDEX.

"'BS
BINARY
CEIL
DECIMAL
.FIXED
FLOAT
f'LOOH.

ArAN
ATAND
ATANH
COS
COSO
COSH
ERF
E:RFC
EXP
LOG

LOW
REPEAT
SUBSTR
UNSPEC

MAX
MIN
MOD
PRECISION
ROUND
SIGN
TRUNC

LOG10
LOG2
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

~~ray Manipulation:

ALL
ANY
PROD
SUM

The
perform
function
provides
built-in

miscellaneous built-in functions
various duties; --forexample;-one
provides the currEmt date" another

the time. The miscellaneous
functions are:

ADDR
DATE
NULL
STRING
TIME

The section on Q~~~QQ=Y~:fiaf)J.e~ gives a
short discussion for each of the two PL.lI
pseudo-variables SUBSTR and UNE,PEC. A more
complete description can be had by conSUlt­
ing the discussion of the corresponding
built-in function.

All of the built-in functions and
pseudo-variables are presented in alphabet­
ical order under their proper headings.

STRING HANDLING BUIL'r-IN FUNCTIONS

rhe functions described in this section
may be used for manipulating strings.
Unless otherwise specified, element expres­
sions or array names can be used as argu­
ments. When an argument is an array namt2,

the value returned by the built-in function
is an array of the same dimension and
bounds as the argument (the function having
been performed for each element of the
array argument).

Definition: BIT converts a given value to
a---EIt' strIng and returns the result to the
point of invocation. This function allows
the programmer to control the size of the
result of a bit-string conversion.

E~K~~ence.!. BIT' (expression [, size])

~~g~~~~~~~ The argument "expression" rep­
resents the quantity to be converted to a
bit string; this argument can be a bit­
string, character-string, or arithmetic
element expression or array name. The
argument "size," when specified, must be a
decimal integer constant giving the length
of the result. If "size" is not specified,
it is determined according to the type
conversion rules given in section F, "Data
Conversion." If "expression" is an array
name, "size" applies to each element.

~§~~!~~ The value returned by this func­
tion is ~expression" converted to a bit
string. The length of this bit string is
determined by "size~" as described above.

Definition: BOOL produces a bit string
~~;~~--EI£- representation is a result of a
given boolean operation on two given bit
strings.

g§f~~~~~~~ BOOL (x,y,w)

~~g~~~~~~~ Arguments "x" and nyu represent
the two bit strings upon which the boolean
operation specified by "w" is to be per­
formed; these arguments can be bit-string#
character-string, or arithmetic element
expressions or array names. If "x" and "y"
are not bit strings, they are converted to
bit strings. If "x" and "y" differ in
length~ the shorter string is extended with
zeros on the right to match the length of
the longer string.

~rgument "w" represents the boolean
operation; this argument can be a bit-·
string, character-string, or arithmetic
element expression or array name. It is
converted to a bit string of length 4 and
is defined as n1 n2 n3 n~, where each ~ is
either 0 or 1. There are 16 possible bit
combinations and thus 16 possible boolean
operations. As for "x" and "y~" "w" is
converted to a bit string (of length 4)
bef~re the function is invoked, if neces­
sary'.

If mOjre than one argument is an array,
the arrays must have identical bounds.

Result: The value returned by this func­
£i;n~-is a bit string, z, whose length is
equa.l to the longer of "x" and "y." Each
bit of z is determined by the boolean
operatio~ on the corresponding bits of "x"
and nyu as follows: the !th bit of ~ is set
to the value of n1, n2' n3~ or n~, depend­
ing on the combination of the ith bits of
"x" and nyu as shown in the booiean table
below:

r-------------T-------------TT------------,
I xi I yi I I zi I
~-------------+-------------++------------i
I I II I
I 0 I 0 II n1 I
~-------------+-------------++------------i
I I II I
I 0 I 1 II n2 I
~-------------+-------------++------------i
I I II I
I 1 I 0 II n3 I
~-------------+-------------++------------~
I I II I
I 1 I 1 II n~ I l _____________ ~ _____________ ~~ ____________ J

~~~~Ql~~ In the following assignment 
statement, assume that U and 10 have been 
declared as bit strings, XXX is the string 
'011'B, YYY is the string '110'B, and the 
boolean operator is '0110'B: 

U=IOIIBOOL (XXX# YYY, '0110'B); 

Further, assume that Z represents the value 
returned to the point at which BOOL is 
invoked (that is# Z is a bit string of 
length 3 that is to be concatenated with 
10), then the boolean table for this invo­
cation of BOOL can be defined as: 

r-------------T-------------TT------------, 
I I II I 
I XXxi I YYYi I I zi I 
~-------------+-------------++------------~ 
I I II I 
I 0 I 0 II 0 I 
~-------------+-------------++------------~ 
I I II I 
I 0 I 1 II 1 I 
~-------------+-------------++------------~ 
I I II I 
I 1 I 0 II 1 I 
~-------------+-------------++------------~ 
I I II I 
I 1 I 1 II 0 I l _____________ ~ _____________ ~~ ____________ J 

which is interpreted as follows: 

Whenever the ith bits of XXX and YYY 
are 0 and 0, respectively, the !th bit 
of Z is 0; whenever the ith bits of 
xxx and YYY are 0 and 1, respectively., 
the !th bit of Z is 1, and so on. 

Thus, since the first bits of XXX and YYY 
are 0 and 1# respectively, the first bit of 
Z is 1; since the second bits of xxx and 
YYY are 1 and 1, respectively# the second 
bit of Z is 0; and since the third bits of 
XXX and YYY are 1 and 0, respectively, the 
third bit of Z is 1. Therefore# the value 
returned to the point of invocation is the 
bit string '101'B. 

section G: Built-In Functions and Pseudo-Variables 159 



f2§t!!:!!:t.!Q!:!'!' CHAR converts a qiven value to 
a character string and returnst.he result 
to the point of invocation. This function 
all:)ws the programmer to control the size 
of the result of a character-stri~g conver­
f:;iDn. 

~~t~~~!:!~~.!. CHAR (expressionl, size]) 

~~g~~~!:!:t.~.!. The argument "expression" rep­
~esents the quantity to be converted to a 
character string; this argument can De a 
bit-string, character-string, or numeric 
character element expression or array name. 
The argument "size," when specified, must 
be a decimal integer constant giving the 
length of the result. If "size" is not 
specified, it is determined according to 
the type conversion rules given in Section 
F, "Data Conversion." If "expression" is 
an array name, "size" refers to each ele­
ment of the array. 

!~~§,~l!:..!. The value returned by this func­
tion is "expression" converted to a charac­
ter string. The length of this character 
string is determined by "size," as des­
cribed above. 

Definition: HIGH forms a char'acter s1:ring 
;~--~-~I~~~ length from the highest charac­
ter in the collating sequence; that is, 
each character in the constructed string is 
the highest character in the collating 
sequence (see Section B). 

~~~~~~!:!:t.~ The argument, Hi," must be an 
unsigned decimal integer constant speci­
tying the length of the string that is to
be formed. For system/360 implementations,
this character is stored as hexade~imal FF.

R~~~!!:..!. The value returned by this func­
tion is a character string of length "in;
each character in th,e string is the hi9hest
character in the collating sequence.

~~~fi!:!!!:.iQ!:!'!' INDEX searches a !3pecified 
strir.g for a. specified bit or characte:r 
string configuration. If the configuration 
is found, the starting location of that 
conEiguration within the string is ret~rned 
to the point of invocation. 

160 

Ref~£ence.!.. INDEX (string, config) 

Arg!:!~~!!ts~_ Two arguments must be speci­
fied. The first argument# "string," rep­
resents the string to be searched" the 
second argument, "config~" represents the 
bit or character string configuration for 
which "string" is to be searched. These 
arguments must be bit-string, character­
string, binary coded arithmetic, or numeric 
character element expressions or array 
names. If neither argument is a bit 
string, or if only one argument is a bit 
string~ both arguments are converted to 
character strings, if possible. If both 
arguments are bit strings, no conversion is 
performed. Note that binary coded arith­
metic arguments are converted to bit-string 
and numeric character arguments are con­
verted to character-string before the above 
conversions are performed. 

If both arguments are arrays, the arrays 
must have identical bounds. 

g~~~lt: The value returned by this func­
tion is a binary integer of default preci­
sion (15). This binary integer is either: 

1. The location (i.e., the character or 
bit position) in "string" at which 
"config" has been found. If more than 
one "config" exists in nstring~" the 
location of the first one found (in a 
left-to-right sense) will be returned. 

2. The value 0, if "config" does not 
exist within "string." 

~~amI2.!.e: If AS'I'RING is a character string 
containing: 

'912NAMEA,1,FIRST,2,SECOND' 

tpen the statement: 

I = INDEX(ASTRING,'l,'); 

will return a binary value 
point of invocation. This 
represents the location of 
ration '1,' within ASTRING. 
the statement had been: 

of ten to t:he 
binary value 
the configu­
However, if 

I = INDEX{ASTRING,'l'); 

then a binary value of two would 
returned to the point of invocation. 
value is the location of the first 
appearing within ASTRING. 

be 
This 
'1' 

Definition: LOW forms a character string 
of-specifIed length from the lowest charac-



ter in the collating sequence; i.e., each 
character of the formed string will be the 
lowest character in the collating sequence 
(seE' sec·tion B). 

~~g~~~~~~ The argument, Hi," must be an 
unsigned decimal integer constant speci­
fying the length of the string being 
f:)r:ned. 

g~~~~t~ The value returned by this func­
tion is a character string of length Hi"; 
each character in the string is the lowest 
character in the collating sequence. For 
Syst:em/360 implementations, this character 
is stored as hexadecimal 00. 

Definition: REPEAT takes a given string 
~~r~~--~~~-forms a new string consisting of 
the given string value concatenated with 
i tSE~lf a specified number of times. 

~~g~!~~~!:~~ The argument "string" rep-­
resents a character or bit string from 
which the new string will be formed; this 
argument can be a binary coded arithmetic, 
bit-string, character-string, or numeric 
character element expression or array name. 
If an argument other than a bit or charac­
ter string is specified, it is converted, 
befDre the function is invoked, to a bit or 
character string. 

The argument "in must be a decimal 
integer constant. It represents the number 
of times that "string" is to be concatenat­
ed with itself; "in must be greater than 
zer:). 

g~~~~t~ The value returned by this func­
tion is "string" concatenated with itself 
"in times. In other words, the returned 
value will be a string containing i~! 
occurrences of the value "string." 

~~~~~!~~ If BSTR is a bit string contain­
ing '101'B~ the statement

A = REPEAT(BSTR,6);

will cause the following value to be
returned to the point of invocation:

'101101101101101101101'B

§Q~§~R String Built-in Function

Definition: SUBSTR extracts a substring of
user~defI~ed length from a given string and
returns the substring to the point of
invocation. (SUBSTR can also be used as a
pseudo-variable.)

E~f~~~~~~~ SUBSTR (string,i,j)

~~g~~~~ts~ The argument "string" rep­
resents the string from which a substring
will be extracted; this argument can be a
binary coded arithmetic, bit-string,
character-string, or numeric character ele­
ment expression or array name. If "string"
is not a bit or character string, it is
converted# before the function is invoked,
to a bit or character string. Argument Hi"
represents the starting point of the subst­
ring and "j" represents the length of the
substring. Argument "in must be an element
expression (it can be an array name but
only if "string" is an array) that can be
converted to an integer; "j" must be a
decimal integer constant. If "in is an
array, it must have the same bounds as
"string."

Assuming that the length of "string" is
~, arguments "in and "j" must satisfy the
following conditions:

1. j must be less than or equal to k and
greater than or equal to 1.

2. i must be less than or equal to k and
greater than or equal to 1.

3. The value of i + j - 1 must be less
than or equal to k.

Thus# the substring# as specified by "in
and "j" must lie within "string." Note
that condition 1 is checked by the compil­
er; conditions 2 and 3 are never checked.

Result: The value returned by this func­
tIo~ is that substring beginning at the ith
character or bit of the first argument and
extending "jW characters or bits.

~~~~2!~1. If AAA is a character string of 
length 30, the statement: 

ITEM = SUBSTR(AAA., 7, 14); 

will cause a 14-character substring to be 
extracted from AAA, starting at the seventh 
character of MA. The extracted string is 
then returned to the point of invocation, 
after which it is assigned to ITEM 
(assuming ITEM is a character-string 
variable). 

section G: Built-In Functions and Pseudo-Variables 161 



Definition: UNSPEC returns a bit string 
t::tla::--Is-the internal coded reprE~:3entation 
of a given value. (UNSPEC can also be used 
as a pseudo-variable.) 

~:r9.!:![!!~!l!:.~ rhp argument, "x, " may be an 
arithmetic, character-string, or pointer 
value (element expressions or array names 
only) whose internal coded representation 
is to be found; "x" cannot be a bit string. 

B~~!!!~~ I'he value returned by this func­
ti::>n is the internal coded n=pre'~)entation 
of "x." This representation iB in bit­
str ng form. The length of this string 
dep nds upon the attributes of "x," and is 
def ned for system/360 implementat:ions as 
fol ows: 

" • If "x" is FIXED BINAl{Y of precision 
(p,q>, the length is 32. 

3. 

LL 

If "x" if FIXED DECIMAL 
(p,~), the length is 
8*FLOOR «p+2}/2). 

of precision 
defined as 

If "x" is FLOAI' BINARY of precision p, 
the length is 

d. 32, 
21. 

b. 64, 

If "x" 
e, the 

d. 32, 
6. 

b. 64" 
to 

if e is less than or equal to 

if e is greater than 21. 

is FLOAT DECIMAL of precision 
length i eo 

~, 

if E i eo 
~, less than or equal to 

if Q is greater than or equal 
7. 

5. If "x" is a character-string of length 
n, or a numeric character i t.em whose 
~haracter-string value is of length !l, 
the length is 8*n; for thE~ D-Compiler" 
~ must not be greater than 8. 

6. If "x" is a pointer, the lengt,h is 32, 
however, the value of pointer is 
represented by the rightmost 24 bits. 

ARITHMETIC BUILT-IN FUNCTIONS 

~ll values returned by the arithmetic 
built-in functions are in coded arithmetic 
for~. The arguments of these functions 
should also be in that form. If an argu­
ment is not coded arithmetic, then, before 

162 

the function is invoked, i 1: is converted to 
coded arithmetic according to the rules 
stated in Section F, "Data Conversion." 
Note, therefore, that in the function des­
criptions below" a reference to an argume~nt 
always means the converted argument~ if 
conversion was necessary. 

In some function descriptions, the 
phrase "converted to the highest 
characteristics" is usedj: th:cs means 'that 
the rules for mixed characteristics" as 
stated in the section "Data Conversion in 
Arithmetic Operations" in Part I, Chapter 
4, "Expressions," are followed. 

In general, an argument of an arithmetic 
built-in function may be an element expres­
sion or an array name. If an argument is 
an array name, the value rei:urned by the 
built-in function is an array of the same 
dimension and bounds as the argument (the 
function having been performed once for 
each element of the array), Thus, for 
example, if an array argument is passed to 
the absolute value function ABS~ the 
returned value is an array~ each element of 
which is the absolute value of the corres­
ponding element in the argument array. 

Unless it is specifically stated other­
wise, the base, scale, and precision of the 
returned value are determined according to 
the rules for the conversion of expression 
operands as given in Section F~ "Data 
Conversion." 

In many of these built-in ftmctions, the 
symbol ~ is used. This symbol represents 
the maximum precision that a value may 
have. It is defined, for System/360 
implementations, as follows: 

N is 15 for FIXED DECIlV1AL values 

16 for FLOAT DECIMAL values 

31 for FIXED BINARY values 

53 for FLOAT BINA,RY values 

ABS Arithmetic Built-in Fun:ctiol'!. 

Definition: ABS finds the absolute value 
of--a--given quantity and returns it to the 
point of invocation. 

~~g!!ment.!... The quantity whose absolU1te 
value is to be found is given by "x." 

gesult: The value returned by this func­
tion is the absolute value of nx." The 
base~ scale, and precision are the same as 
those of "x." 



Definition: BINARY converts a given value 
to-binary-base and returns the converted 
value to the point of invocation. This 
function allo~s the programmer to control 
the precision of the result of a binary 
conversion. 

g~f§:f.~!l~~~.!. BI NARY (x [" p [ ,q] ] ) 

~f.9.~!!!en!::~~.!. The first argument, "x," rep-­
resents the value to be converted to binary 
base. Arguments "p" and "q," when speci­
fied, must be decimal integer constants 
giving the precision of the binary result; 
"g" may be signed. The precision of a 
fixed-point result is (Plq); the precision 
of a floating-point result is (p). If both 
Up" and "g" are omittedl the precision of 
the result is determined according to the 
rules given for base conversion in Section 
F, "Data Conversion." Note that "q" must 
be omitted for floating-point arguments. 

Result: The value returned by this func­
tIo~--rs the binary equivalent of "x." The 
scale of this value is the same as that of 
"x." The precision is given by Up" and 
"g." 

Definition: CEIL determines the smallest 
r~t~~~~--t~at is greater than or equal to a 
given value and returns that integer to the 
point of invocation. 

~f.9.~!!!~!l~.!. The argument is "x." 

g~§~l~.!. The value returned by this func­
tion is the smallest integer that is great­
er than or equal to "x." The base, scale l 

and precision are the same as those of "x, I" 
with one exception: if "x" is a fixed-point 
value of precision (p,q), the precision of 
the result is defined as: 

Definition: DECIMAL converts a given value 
to---d~cImaI base and returns the converted 
value to the point of invocation. 'l'his 
function allo~s the programmer to control 
the precision of the result of a decimal 
conv-Ersion. 

Reference: DgCIMAL (x [" p [" q] ] ) 

Arguments: The first argument~ "x,," rep­
resents the v,alue to be converted to deci­
mal base. ,A..rguments Up" and "g,," when 
specified, must be decimal integer con­
stants giving the precision of the decimal 
result; "q" may be signed. The precision 
of a fixed-point result is (p,g); the 
precision of a floating-point result is 
(p). If both "p" and "q" are omitted" 
however, the precision of the result is 
determined according to the rules given for 
base conversion in Section F" "Data Conver­
sion." Note that "q" must be omitted for 
floating-point arguments. 

Result: The value returned by this func­
tion is the decimal equivalent of the 
argument "x"; its precision is given by "p" 
and "q." 

Q~finition~ FIXED converts a given value 
to fixed-point scale and returns the con­
verted value to the point of invocation. 
This function allows the programmer to 
control the precision of the result of a 
fixed-point conversion. 

Reference: FIXED (x["p['1q]]) 

~f.g!!men!::.!. The first argument, "x," rep­
resents the value to be converted to fixed­
point scale. Arguments "p" and "g" " when 
specified, must be decimal integer 
constants ("g" can be signed) giving the 
preciSion of the result, (p"g). For 
System/360 implementations, if "p" and "q" 
are omitted" "p" is assumed to be 15 for 
binary "x" and 5 for decimal "x"; "q" is 
assumed to bE: o. 

Result: The value returned by this func­
trenis the fixed-point equivalent of the 
argument "x"; its precision is (p"g). 

Definition: FLOAT converts a given value 
to--floating--point scale and returns the 
converted value to the pOint of invocation. 
This function allows the programmer to 
control the precision of the result of a 
floating-point conversion. 

B~ference: FLOAT (x[,p]) 

Arguments: 'The first argument, "x, " rep­
resents the value to be converted to 
floating-point scale. The second argument" 

section G: Built-In Functions and Pseudo-Variables 163 



"p~~ when specified, must be decimal 
integer constant giving the pr~cit 'on of 
the result. For System/360 implLmenta­
tions, if "p" is omitted, it is assumed to 
be 21 for binary "x" and 6 for decimal "x." 

B§§~l~~ The value returned by this func­
tion is the floating-point equivalent of 
"x"; its precision is "p." 

Definition: FLOOR determines the largest 
I~£~~~i-£fi~t does not exceed a given value 
and returns that integer to the point of 
invGcation. 

~~9.~:~~!!':!:.~ The argument is "x. II' 

Result: The value returned by this func­
£I~;--Is the largest integer that does not 
exceed "x." The base, scale, and frecision 
of this value are the same as those of Wx ," 
with one exception: if "x" is a fixed-point 
value of precision (p,q>, the precision of 
the result is: 

(MIN(N,MAX(p-q+1,1»,O) 

Definition: MAX extracts the highest­
v~rued--expression from a given St:!t of two 
or more expressions and returns that value 
to the point of invocation. 

~!:g:~~~!!.i§.!. Two or more arguments musf: be 
given. 

B§§~l~.!. rhe value returned by MAX is the 
value of the maximum-valued argumt=nt. The 
returned value is converted to conform to 
the highest characteristics of all the 
arguments that were specified. If the 
arguments are fixed-point values and have 
precisions: 

then the precision of the result is as 
follows: 

164 

(MIN(N,MAX(p1-Q1,···,Pn-qn)+ 
MAX(Q1,·.· ,qn» ,MAXCq.1.' •.. qn» 

Definition: MIN extracts the lowest-valued 
expression from a given SE!t of two or more 
express10ns and returns that value to the 
paint of invocation. 

~9:!!ments~ Two or more arguments must be 
given. 

B~§ult~ The value returned by MIN is the 
value of the lowest-valued argument. The 
returned value is converted to conform to 
the highest characteristics of all the 
arguments that were specified. If the 
arguments are fixed-point values and have 
precisions 

then the precision of the result is as 
follows: 

(MIN(N,MAX(p1-q1,···,Pn-qn)+ 
MAX (q1, .•• qn) ) , MAX ( q1 , •.• " gn) > 

MOD Arithmetic Built-in Function 

Definition: MOD extracts the remainder 
resulting from the division of one quanti1ty 
by another and returns it to the point of 
invocation. 

~!:9..uments: Two arguments must be given. 
Before the function 1S invoked, the base 
and scale of each argument are converted 
ac-cording to the rules for the conversion 
of expression operands~ as given in section 
F, "Data Conversion." 

E~§.!!lt~ The value returned by MOD is the 
positive remainder resulting from the divi­
sion of "X1" by "X2" to yield an integer 
quotient. If the result is in floating­
point scale, its precision is the higher of 
the precisions of the arguments (i.e", 
p=MAX(p1~p2»; if the result is in fixed­
point scale, its precision is defined as 
follows: 

where: 

(P1,Q1) and (P2.q2) are the precisions 
of "X1" and "X2," respectively. 

The base and scale of the result are 
those of the converted arguments. 



Definition: PRECISION converts a given 
~~r~~--E~-i specified precision and returns 
the converted value to the point of 
invocation. 

Bgf~~g~£g! PRECISION (x,p[,q]) 

~~~~mg~~~! The first argument, "x," rep­
resents the value to be converted to the
specified precision. Arguments Up" and "q'"
("q'" is optional and may be signed) ar'~
decimal integer constants specifying the
precision of the result. If "x" is a
fixed-point value, Up" and Dq" must be
specified; if "x" is a floating-point
value, only "pH must be specified.

gg~~!~! The value returned by this func­
tion is the value of "x" converted to the
specified precision. The base and scale of
the returned value are the same as those of
"x. '"

Qgf!~i~!Q~~ ROUND rounds a given value at
a specified digit and returns the rounded
value to the point of invocation.

ggf~~~g~~:g! ROUND (expression., n)

~~!!f!!g~!:~! The first argument jp

"expression," must be coded arithmetic or
numeric character. It is an element
expression or array name representing the
value (or values, in the case of an array)
to be rounded; the second argument, Un," is
an unsigned decimal integer constant speci­
fying the digit at which the value of
"expression" is to be rounded.

B~~~!~! If "expression" is fixed-point,
ROUND returns the value of "expression"
rounded at the ~th digit to the right of
the decimal (or binary) point. The base
and scale of the result are the same as the
base and scale of "expression;" the preci­
sion of the result is:

(MIN(p+l),N),q)

If "expression" is a floating-point
expression. the second argument is ignored,
and the rightmost bit in the internal
floating-point representation of the
expression value is set to 1 if it is 0; if
the rightmost bit is 1, the value of the
expression is unchanged. The base~ scale,
and precision of the returned value are
those of the value of "expression."

Note that the rounding of a negative
quantity results in the rounding of the
absolute value of that quantity.

~~~~Ql~: If X is a fixed-point decimal 
variable of precision (7,5) containing the 
value 36.24916, and Y and Z are fixed-point 
decimal variables of precision (6,4), then 
after the execution of the following state­
ments, 

Y=ROUND(X,3); 
Z=ROUND (X., 4) ; 

the value of Y is 36.2500 and the value of 
Z is 36.2498. 

Qgfinition! SIGN determines whether a 
value is positive, negative~ or zero, and 
it returns an indication to the pOint of 
invocation. 

~~gument: The argument is "x." 

Result: This function returns a fixed­
poin~binary value of default precision 
(15) according to the following rules: 

1. If "x" is greater than 0, the returned 
value is 1. 

2. If "x" is equal to zero, the returned 
value is o. 

3. If "x" is less than zero~ the returned 
value is -1. 

Definition: TRUNC truncates a given value 
to---an---Integer as follows: first, it 
determines whether a given value is posi­
tive, negative, or equal to zero. If the 
value is negative, TRUNC returns the smal­
lest integer that is greater than that 
value; if the value is positive or equal to 
zero, TRUNC returns the largest integer 
that does not exceed that value. 

Reference: TRUNC (x) 

~~gument~ The argument is "x." 

g~~!!!.!:..!.. If "x" is less than zero" the 
value returned by TRUNC is CEIL(x}. If "x" 
is greater than or equal to zero~ the value 
returned by TRUNC is FLOOR(x). In either 
case, the base and scale of the result are 

section G: Built-In Functions and Pseudo-Variables 165 



the same as those of "x." If "x" is 
floating-paint, the precision remains the 
same. If "x" is a fixed-point value of 
precision (p,q), the precision of the 
result is: 

(MIN(N,MAX(p-q+l~1»,O) 

M~THEMATICAL BUILT-IN FUNCTIONS 

A.II arguments to t.he mathematical built­
in functions should be in coded arithmetic 
form and in floating-point scal.e. Any 
argument that does not conform to this rule 
is converted to coded arithmetic and 
floating-point before the function is 
invDked, according to the rules stated in 
section F~ "Data Conversion." Note, there­
fore, that in the function descriptions 
below, a reference to an argume~t always 
mear.s the converted argument, if conversion 
was necessary. 

In general, an argument to a mathemati­
cal built-in function may be ar:. element 
expression or an array name. If an argu­
ment is an array name the value returned by 
the built-in function is an array of the 
same dimension and bounds as the argument 
(the function having been performed once 
for each element of the array). rhus, for 
exarnple, an array argument passE~d to the 
cosine fUnction COS results in ar:. array, 
each element of which is the cosirle of the 
corresponding element in the argument 
arra.y. 

~ll of the mathematical built-in func­
tions return coded arithmetic floating­
point values. The base and precision of 
these values are always the same as those 
of the arguments. 

Figure 8-1 at the end of this 
provides a quick reference 
Dattematical built-in functions. 

sec·tion 
to the 

Definition: ATAN finds the arctangent of a 
gIvE~n--value and ret urns the resul t 
expressed in radians, to the point of 
iovDcation. 

~!::9:~~f!!~!!t~.!.. The argument "x" must a.lwaY:3 be 
specified; the argument nyu is cptional. 
If "y" is omitted, "x" represents the value 
whose arctangent is to be found. 

166 

If nyu is specified, then the value 
whose arctangent is to be found is taken to 
be the expression x/yo In this case# both 
"x" and "y" may not be equal to 0 at the 
same time. 

Result: When "x" alone is spE!cified, the 
value returned by ATAN is t;he arctangent of 
"x," expressed in radians, where: 

-pi/2<ATAN(x) <pi/2 

If both "x" and nyu are specified# the 
possible values returned by tbis function 
are defined as follows: 

1. For y>O and any x,, the value is 
arctangent (x/y) in radiar.,s. 

2. If x>O and y=O, the value is <pi/2) 
radians. 

3. If x20 and y<O, the value is (pi+ 
arctangent (x/y» radians. 

4. If x<O and y=O, the value is (-pi/2) 
radians. 

5. If x<O and y<O, the value is (-pi+ 
arctangent (x/y» radians. 

Q~finition.!... ATAND finds the arctangent of 
a given value and returns the result, 
expressed in degrees, to ti::e point of 
invocation. 

B~f~~~~~~.!.. ATAND (x[,y]) 

~~g!:!.mentsl: If y.. is omitted, "x" represents 
the value whose arctangent is to be found. 
If "yO is specified~ the value whose arc­
tangent is to be found is represented by 
the expression x/y; in this ca~e, both "x" 
and nyu cannot be equal to 0 at the same 
time. 

g~sult.!.. If nyu is 
returned by this 
arctangent of "x," 
where: 

-90<ATANO(x)<90 

specified, the value 
function is simply the 
expressed in degrees, 

If Y is specified, the value returned by 
this function is A'I'AN (x, y), except tha t 
the value is expressed in degrees and not 
in radians (see "ATAN l<'lathematical Built-in 
Function" in this section); that is, the 
returned value is defined as: 

ATAND(x~y) = (180/pi)*ATA~(x,y) 



~§t:!:'Q.!'~~~~QQ.,!" ATANH finds the inverse hyper­
bolic tangent of a given value and returns 
the result to the point of invocation. 

~~~~~~Q.~! The value whose inverse hyper­
bolic tangent is to be found is represented
by "x." The absolute value of "x" must not
be greater than or equal to 1; that is, it
is an error if ABS(x)~l.

Result: The value returned by this func­
£I;~-I~ the inverse hyperbolic tangent of
"x".

~~t~Q.!'~;~~QQ.!" cos finds the cosine of a
given value, which is expressed in radians,
and returns the result to the point of
invocation.

~~~~~~Q.t! The value whose cosine is to be 
found is given by "x"; this value must be 
expressed in radians. 

B~~~!~! The value returned by this func­
tion is the cosine of "x." 

Definition: COSO finds the cosine of a 
~I~~~-~~I~~, which is expressed in degrees~ 
and returns the result to the point of 
invocation. 

~~~~~~Q.1! The value whose cosine is to be 
found is given by "x"; this value must be
expressed in degrees.

Result: The value returned by this func­
Er~~-r~ the cosine of "x."

Definition: COSH finds the hyperbolic
~;~r~~--;f- a given value and returns the
result to the point of invocation.

~~9.!!ment: The value whose hyperbolic
cosine is to be found is given by "x."

~~sult: The value returned by this func­
tion is the hyperbolic cosine of "x."

Definition: ERF finds
ofa-gI~en-value and
point of invocation.

the error function
returns it to the

~~gument: The value for
function is to be found is

which the error
represented by

"x."

g~~~lt! The value returned by this func­
tion is defined as follows:

2 f x
e

_ t3
ERF(x)= ~ dt

o

Q~finitiog! ERFC finds the complement of
the Error Function (ERF) for a given value
and returns the result to the point of
invocation.

~E9.l!ment : The argument" "x, "
the value whose error function
is to be found.

represents
complement

Result: The value returned by this func­
tio~i~ defined as follows:

ERFC(x) = 1-ERF(x)

Definition: EXP raises e (the base of the
~aturalIogarithm system) to a given power
and returns the result to the point of
invocation.

Arqument: The argument" "x,," specifies the
power to which e is to be raised.

g~sult! The value returned by this func­
tion is ~ raised to the power of "x."

Section G: Built-In Functions and Pseudo-Variables 167

Definition: LOG finds the natural logar­
I~~~--7I~~~, base e) of a given value and
returns it to the poInt of invocation.

~~g~m~~~! The argument~ "x," is the value
whose natural logarithm is to be found; it
must not be less than or equal to O.

~~~~~~! The value returned by this func­
tion is the natural logarithm of "x." 

Q~f!~i~iQ~! LOG10 finds the common logar­
ithn (i.e." base 10) of a given va.lue and 
returns it to the point of invocation. 

~~g~m~~~! The argument, "x," represents 
the value whose common logarithm i~3 to be 
found; this value must not be less than or 
equal to O. 

g~~~~~! The value returned by this func­
tion is the common logarithm of "xu" 

Definition: LOG2 finds the binary (i.e., 
5~~~-~f-I~~arithm of a given value and 
returns it to the point of invocation. 

~f9~ID~~~! The argument, "x," is the value 
whose binary logarithm is to be found; it 
must not be less than or equal to O. 

~~~~1~! The value returned to this func­
tion is the binary logarithm of "x."

Definition: SIN finds the sine of a given
~~I~~~--;~Ich is expressed in radi~ns, and
returns it to the point of invocati~n.

~rg~~~~~! The argument,
whose sine is to be
expressed in radians.

168

"x," is
found;

the value
i 1: must~ be

Result: The value returned by this func­
tion is the sine of "x."

SIND Mathematical Built-in £:unc~io!!

Definition: SIND finds the sine of a given
valu~;-whIch is expressed in degrees" and
returns the result to the point of invoca­
tion.

Argument: The argument" "x," is the value
whose sine is to be found; ·x" must be
expressed in degrees.

Result: The value returned by this func­
tIoniS" the sine of "x."

SINH Mathematical Built-in Function

Q~!.i!!ition! SINH finds the hyperbolic sine
of a given value and returns the result to
the point of invocation.

~!:.g!!!!!~!!t: The argument., "x,," is the value
whose hyperbolic sine is to be found~

g~§.~lt: The value returned by this func­
tion is the hyperbolic sine of "x."

~QRr Mathematical Built-in Function

Definition: SQRT finds the square root of
a~ivenvalue and returns it to the point
of invocation.

~!:.g~ment: The argument" "x," is the vallIe
whose squa:re root is to be found; it [[lust
not be less than O.

g~~!!lt!. The value returned by this func­
tion is the positive square root of "x."

Deii!!itio!!!. TAN finds the tangent of a
given value, which is expressed in radians,
and returns it to the point of invocation.


~~~~m~~~l The argument, "x," represents 
the value whose tangent is to be found; "x" 
must be expressed in radians. 

Result: The value returned by this func­
fI;~-I~ the tangent of "x." 

Definition: TAND finds the tangent of a 
given-v;3~Iue, tlhich is expressed in degrees, 
and returns the result to the point of 
invocation. 

~~~~~~~~l The argument, "x," represents 
the value whose tangent is to be found; "x"
must be expressed in degrees.

Result: The value returned by this func­
fI;n-I~ the tangent of "x."

Definition: TANH finds the hyperbolic tan­
~e~£-~l--~- given value and returns the
result to the pOint of invocation.

~~[~m~g~l The argument, "x#" represents
the value whose hyperbolic tangent is to be
found.

Result: The value returned by this func­
£i~n-I~ the hyperbolic tangent of "x."

Figulre G-l summarizes the mathematica.l
built-in functions. In using it, the read­
er should be aware of the following:

1. ~ll arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded arith­
metic and floating-point.

2. The value returned by each function is
always in floating-point.

3. The error conditions are those defined
by the PL/I Language. Additional
error conditions detected by the D­
compiler can be found in the
publication !.~~ __ ~:i~:!::~!!!!:l2.Q. __ Q!'~~ __ ~~Q
~~!:Q~. ____ QQ~~~!:.i!!SL-__ ~Y~!:.~!!!~L _____ ~~~!.
~~;~Q~E.~!!!!!!~~l§.~iQ~, Form C24-9005.

ARRAY MANIPUI.ATION BUILT- IN FUNCTIONS

The built-in functions described here
may be used for the manipulation of arrays.
All of these functions require array name
arguments and return single element values.
Note that since these functions return
element values, a function reference to any
of them is considered an element expres­
sion.

Definition: ALL tests all bits of a given
bIt:=string-array and returns the result, in
the form of an element bit-string, to the
pOint of invocation. The element bit­
string indicates whether or not the corres­
ponding bits of given array elements are
all ones.

~~9.um~!!.t: The argument, "x," is an array
of bit strings. If the elements are not
bit strings, they are converted to bit
strings.

g~~~!.t~ 'I'he value returned by this func­
tion 1S a bit string whose length is equal
to the length of an element in "x" (all
elements in "x" must have the same length,
of course), and whose bit values are deter­
mined by the following rule:

If the ith bits of all of the ele­
ments In "x" are 1" then the ith bit
of the result is 1; otherwise, the
ith bit of the result is o.

ANY Array Ma.nipulation Function

Definition: ANY tests the bits of a given
bIt-string-a.rray and returns the result, in
the form of an element bit-string, to the
pOint of invocation. The element bit­
string indicates whether or not at least
one of the corresponding bits of the given
array elements is set to 1.

Argument: ']~he argument, "x," is an array
of bit strings. If the elements are not
bit strings, they are converted to bit
strings.

Section G: Built-In Functions and Pseudo-Variables 169

B~~!~!.:!:..!.. The value returned by this func­
tion is a bit string whose length is equal
to the length of an element in "x" (all
elenents in "x" must have the same length~

of course)~ and whose bit values are deter­
mined by the following rule:

If the ith bit of any element in "x"
is 1, then the ith bit of the result
is 1; otherwiie~ the !th bit of the
result is O.

r---------------------------T----------------------------T------------------------------,
IFunction Reference IValue Returned IError Conditions 1
~---------------------------+----------------------------t------------------------------i
~---------------------------+----------------------------t------------------------------i
IArAN(x) !arctan(x) in radians 1 1
I 1- (pi/.2) <ATi\N(x) «pi/2) I I
~---------------------------+----------------------------t------------------------------i
I ArAN (x, y) I SE~e function 1 error if 1
I I description Ix=O and y=O 1
~---------------------------+----------------------------t------------------------------i
I ArAND (x) 1 aI-ctan (x) in degrees I 1
I 1-90<AI'AND be:) <90 1 I
~---------------------------+----------------------------t------------------------------i
I ArAND (x, y) I see function I error if I
I I description Ix=O and y=O I
~---------------------------+----------------------------t------------------------------i
IArANH(x) Itanh-~(x) lerror if ABS(x)~l I
~---------------------------+----------------------------t------------------------------i
120S(x) Icosine(x) I I
I~ in radians II!
~---------------------------+----------------------------t------------------------------i
ICOSD(x) Icosine(x) I I
I~ in degrees I I I
~---------------------------+----------------------------t------------------------------i
ICOSH(x) Icosh(x) I I
~------------------------------t------- .X~--·----- ------------+---------------·----·------------i
IERF(x) 13_ (_1:2 - I - I
I IVi 0) e dt 1 I
1----------------------.-------+-------------.. -------------------t---------------·----·------------i
IERFC(x) 11 - ERF(x) I I
~----------------------.-------+------.,-----------------------+--------------------·-----------·i
I EXP (x) I e x I I
~----.-----------------.-------+------.. -----------------------+--------------------·-----------·i
ILOG(x) Iloge(xJ lerror if xSO I
1--,-,-,-------------------------+------.. --------,--------------+-------------------------------,--·i
IL03:l0(x) Ilo9'l.o (x) lerror if xsO I
1----,-.------------------.-------+------,.-,---------------------t--------------------------------·i
ILOG2(x) Il09'2(xJ lerror if xSO I
~-----------------------------+-------------------------------+---------------------------------·i
I SIN (x) I sine (}:) I !
I~ in radians I I I
1-------------------------------+-------------------------------t----------------------·-----------~
I SIND (x) I sine (x) 1 I
I~ in degrees I I I
1----------------------------+----------------------------+------------------------------~
ISINH(x) Isinh(x) I - I
1----------------------------+----------------------------t------------------------------~
I SQRT (x) I vx I error if x<o I
1----------------------------+----------------------------t------------------------------i
IT~N{x) Itangentex) I I
I~ in radians I I I
I----------------------------t----------------------------+------------------------------~
Ir~NOex) Itangent(x) I I
I ~ in degrees I I I
~------------------------------+------------------------------+----------------.---------------~
Ir~NH(x) Itanh(x) I I L ___________________________ L ______ ~ _____________________ L ______________________________ J

Figure G-l. t-1athematical Built--in Functions

170

Q§f!~i~iQ~! PROD finds the product of all
of the elements of a given array and
returns that product to the point of invo­
cation.

~~g~~r!!§~!:.i. The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and floating­
point before being multiplied with the
previous product.

~~~~l~i. The value returned by this 
function is the product of all of the 
elenents in "x." The scale of the result 
is floating-point~ while the base and pre­
cision are those of the converted elements 
of "x." 

Q§fi~i~iQ~i. SUM finds the sum of all of 
the elements of a given array and returns 
that sum to the point of invocation. 

~~g~r!!~~~i. The argument, "x~" should be an 
array of coded arithmetic floating-point 
elements. If it is not, each element is 
converted to coded arithmetic and floatingi­
point bE:;fore being surruned with the previoUls 
total. 

Result: The value returned by this 
~~~~fr;n is the sum of all of the elements 
in "x.n The scale of the result is
floating-point~ while the base and preci­
sion are those of the converted elements of
the argument.

rhe functions described in this section
have little in common with each other and
with the other categories of built-in func­
tions. Some require arguments and othel:-s
do not. Those that do not require argu­
ments will be so identified.

Definition: ~DDR finds the location at
~~I~~--~--~iven variable has been allocated

and returns a pointer value to the point of
invocation. This pointer value identifies
the location at whiCh the variable has been
allocated.

~;:'9.~!!!~nti. The argument, "x," is the vari­
able whose location is to be found. It can
be an element variable, an array, a struc­
ture, an element of an array, or an element
of a structure. It can be of any data type
and storage class.

Result: ADDH returns a pointer value iden­
tIfyIng the location at which "x" has been
allocated. If "x" is a parameter~ the
returned value identifies the corresponding
argument (dummy or otherwise). If "x" is a
based variable, the returned value is det­
ermined from the pointer variable declared
with "x"; if this pointe~ variable contains
no value, the value returned by ADDR is
undefined.

Definition: DATE returns the current date
f; the point of invocation.

~;:.~ments: None

Result: The value returned by this func­
tIonis a character string of length six,
in the form :~~mmd9:" where:

yy is the current year

!!!!!! is the current month

dd is the current day

~~~!!!e!~i. If the current date is February 
29" 1968, execution of the statement 

X=DATEi 

will cause the character string '680229' to 
be returned to the point of invocation. 

Definition: NULL returns a null pointer 
value to file' point of invocation. 

~~guments: None 

Section G: Built-In Funct.ions and Pseudo-Variables 171 



g~~!~.!.~~ The value returned by this func­
tion is a null pointer value. For the 
D-C:>mpiler, a null pointer is an invalid 
address that can be used as a unique 
indicator. 

Definition: STRING forms a character 
~~~f~~--¥~;m a given structure having the 
P~2KED attribute and returns that string to
the point of invocation.

~§:~~~~g!!.~~~ STRING (strname)

~~~~~g!!.1! The argument, "strname," must be 
the name of a structure having the PACKED 
attribute. This structure must be composed 
of character strings and/or numeric chalrac­
ter data only. 

B§§.~.!.!;;~ The value returned by this func­
tion is a character string resulting from 
the concatenation of all of the elements in 
·'strname. " 

Definition: TIME returns the current time 
~;-~~~-~;I~t of invbcation. 

g~~~l!;;~ The value returned by this func­
tion 15 a character string of leng~h nine, 
in the form hh~m~~1!;;!;;f where: 

hh is the current hour of the day 

!!!~ is the number of minutes 

ss is the number of seconds 

!;;!;;!;; is the number of milliseconds in 
machine-dependent incremen.1:s. 

~~!!!!~.!.§! If the current time is 4 P.M., 23 
ninutes, 19 seconds, anj 80 milliseconds, a 
refe]~ence to t.he TIME function will return 
the character string '1623190130' to the 
point of invocation. 

172 

PSEUDO-VARIABLES 

In general~ pseudo-variables are certain 
built-in functions that can appear wherever 
other variables can appear to receive 
values. In short" they are buil t- in func­
tions used as receiving fields. ~ pseudo­
variable can appear on the left of the 
equal sign in an assignment statement or it 
can appear in the data list. of a GET 
statement. It cannot appear elsewhere. 

There are only two pseudo-variables, 
SUBSTR and UNSPEC. Since they have built­
in function counterparts, only a sho:r-t 
description of each pseudo-variable is 
given here; the corresponding built-in 
function should be consulted for the 
details. 

g~f~~ence~ SUBSTR (string,i,j) 

Q§~~~ipti2!!~ The value being :lssigned t:o 
SUBSTR is assigned to the substring of 
"string," as defined for the built-in func­
tion SUBSTR (with one exception: for the 
SUBSTR pseudo-variable "string~ must be an 
element variable). The remainder of 
"string" remains unchanged. 

g§fg~§!!ce~ UNSPEC (v) 

Q§scri£!:.ion: The letter "v" represents an 
element variable of arithmetic, charactE:r 
string, or pointer type; it: cannot be a 
bit-string variable. The value being 
assigned to UN SPEC is evaluated, converted 
to a bit string (the length of which is a 
function of the attributE~s of "v" -- see 
the UNSPEC built-in function), and then 
assigned to" v,," without conversion to ·the 
type of "v." 



rhe ON-conditions are those exceptional 
conditions that can be specified in PL/I by 
means of an ON statement. If a condition 
is enablej~ the occurrence of the condition 
will result in an interrupt. The inter­
rupt J in turn, will result in the execution 
of the current action specification for 
that condition. If an ON statement for 
that conjition is not in effect, the cur­
rent action specification is the standard 
system action for that condition. If an ON 
statement for that conjition is in effect# 
the current action specification is either 
SYSrEM# in which case the standard system 
action for that condition is taken, or an 
on-unit, in which case the programmer nas 
supplied his own action to be taken for 
that condition (i.e., either a null state­
ment or a GO ro statement). 

If a condition is not enabled (i.e., if 
it is disabled), and the condition occurs, 
an interrupt will not take placeJ and 
errors may result. 

Some conditions are always enabled 
unless they have been explicitly disabled 
by condition prefixes; another (i.e.# SIZE) 
is always disabled unless it has been 
explicitly enabled by a condition prefix; 
and still others are always enabled and 
cannot be disabled. 

rhose conditions that are always enabled 
unless they have been explicitly disabled 
by condition prefix~s are: 

CONVERSION 
FIXEDOVERFLOW 
OV1!:RFLOW 
UNDER.FLOW 
ZERODIVIDE 

Each of the above conditions can be disa­
bled by a condition prefix specifying the 
condition name preceded by NO without 
intervening blanks. Thus, one of the fol­
lo~ing names in a condition prefix will 
disable the respective condition: 

NOCONVERSION 
NOFIXEDOVERFLOW 
NOOVERFLOW 
NO UNDERFLOW 
NOZERODIVIDE 

Such a condition prefix renders the corres­
ponding condition disabled throughout the 
scope of the prefix; the condition remains 
enabled outside this scope (see Part I, 
Chapter 11, "Exceptional Condition Handling 
and Program Checkout II for a discussion of 
the scope of condition prefixes). 

Conversel~'., the condition that is always 
disabled unless it has been enabled by a 
condition prefix is SIZE. The appearance 
of this condition in a condition prefix 
renders the condition enabled throughout 
the scope of the prefix; the condition 
remains disabled outside this scope. 
Further, a condition prefix specifying 
NOSIZE will disable the SIZE condition 
throughout the scope of that prefix. 

All other conditions are always 
and remain so for the duration 
program. These conditions are: 

enabled 
of the 

ENDFILE 
ENDPAGE 
ERROR 
KEY 
RECORD 
TRANSMIT 

rhis section presents each condition in 
its logical grouping# and in alphabetical 
order within that grouping. In general, 
the followin9 information is given for each 
condition: 

1. General. format 
consists of more 
name. 

given only when it 
than the condition 

2. Q~scr.!Qt.!on a discussion of the 
condition, including the circumstances 
under which the condition can be 
raised. Note that an enabled condi­
tion can always be raised by a SIGNAL 
statement; this fact is not included 
in the descriptions. 

3.. Resul:!: -- the result of the operation 
that caused the condition to occur. 
This applies when the condition is 
disabled as well as when it is ena­
bled. In some cases" the result is 
not defined; that is, it cannot be 
predicted. This is stated wherever 
applicable. 

Section H: ON-Conditions 173 



4. ~!:~!}~~~~_§.y§.~~~_actiQ!! -- the ac,t.ion 
taken by the system when an interrupt 
occurs and the programmer has not 
specified an on-unit to handle that 
interrupt. 

5. ~!:~.!:.~§. an indicat~ion of the 
enabled/disabled status of the condi­
tion at the start of the program, and 
how the condition may be disabled (if 
possible) or enabled. 

6. ~Q!:~~!: __ ~~t.~!:!! the point to which 
control is returned as a result of a 
null statement on-unit. A GO TO 
statement on-unit is an abnormal on­
unit termination. Note that if a 
condition has been raised by the 
SIGNAL statement, the normal return is 
always to the statement immediat:ely 
following SIGNAL. Also note that the 
conditions ENDFILE, KEY, and CONVER­
SION cannot have null statement on­
units associated with then and~ 
therefore, a normal return can never 
be made for these conditions. 

The ~onditions are grouped as follo~s: 

1. ~Q!!!Q~!:~!:i2!}~!:_~Q;r!di!:!'Q!!'§ -- those con­
ditions associated with data handling, 
expression evaluation, and computa­
tion. They are: 

CONVERSION 
FIXEDOVERFLOW 
OVERFLOW 
SIZE 
UNDERFLOW 
ZERODIVIDE 

2. !.!}I2.'!:!!:.~Q~!:.I2.~!:. __ ~Q!:!di!:.!'Q!!'§ -- those con­
ditions associated with data transmis­
sion. They are: 

ENDFILE 
ENDPAGE 
KEY 
RECORD 
TRANSMI,]~ 

3. §.Y~!:.~!!!_i!£!:iQ!}_£Q!ldi tiQ!} -- thE: condi­
tion (i. e. , ERROR) tha-t provides 
facilities to extend the standard sys­
tem action that is taken after the 
occurrence of a condition. 

Descrietion: The CONVERSION condition 
;~~~~~ -;fi~~ever an illegal conversion is 
attempted on character-string data. This 

174 

attempt may be made internally or during an 
input/output operation. For example, the 
condition occurs when a character oth.~r 
than 0 or 1 exists in a character string 
being converted to a bit string or when 
characters that cannot be interpreted as 
arithmetic are encountered during a STREAM 
transmission operation for an arithmetic 
variable. 

All conversions of character-string data 
are carried out character-by-character in a 
left-to-right sequence and the condition 
occurs for the first illegal character. 
When such a character is encountered" an 
interrupt occurs (provided" of course, that 
CONVERSION has not been disabled) and the 
current action specification for the condi­
tion is executed. 

gg§.!!ltl. When CONVERSION occurs, the con­
tents of the entire result field are unde­
fined. 

~!:.~!ldard §.y§.:!:.g!!!-~ctionl. In the absence of 
an on-unit, the system prints a message and 
raises the ERROR condition. 

§!:~!:~§'l. CONVERSION is enabled throughout 
the program, except within the scope of a 
condition prefix specifying NOCONVERSION. 

Normal Return: A null on-unit cannot be 
specifIed-forthis condition. 

The FIXEDOVERFLOW Condition 

De§.£!:iption: The FIXEDOVERFLml condition 
occurs when the length of the result of a 
fixed-point arithmetic operation exceeds ~~. 
For System/360 implementations, N is 15 for 
decimal fixed-point valuE~s and 31 for 
binary fixed-point values. 

Result: The result of the invalid fixed­
point-operation is undefined. 

~!:~!l~~rd _~~!:g~~£ti.Q!!l. In the absence of 
an on-unit, the system prints a message and 
raises the ERROR condition. 

~!:~!::.us: FIXEDOVERFLOW is enabled through­
out the program, except wi thin t~he scope of 
a condition prefix specifying NOFIXEDOVER­
FLOW. 

Normal Return: If a null on-unit is 
specI¥Iedfor- this condition., control 
returns to the point immediately following 
the point of interrupt. 



Q§§~~!Q~!QQi The OVERFLOW condition occurs 
when the magnitude of a floating-point 
number exceeds the permitted maximum. (For 
system/360 implementations, the magnitude 
of a floating-point number or intermediate 
result must not be greater than approxi­
mately 1075 or 2252.> 

Result: The value of such an illegal 
~i;i£I~g-point number is undefined. 

§.~~~S!~~~~~_e.y:~~~~_~£~iQ!!'!" In the absence of 
an ~n-unitJ the system prints a message and 
raises the ERROR condition. 

e.~~~~~i OVERFLOW is enabled throughout the 
~rogram, except within the scope of a 
condition prefix specifying NOOVERFLOW. 

Normal Return: If a null on-unit is speci­
fr~~-l~~-£firi-conditionJ control returns to 
the ~oint immediately following the point 
of inte:t~rupt. 

Q~§£~!Qt!Q!!i The SIZE condition occurs 
only when high-order (i.e., leftmost) non­
zero binary or decimal digits are lost in 
an assignment operation (i. e. I' assignment 
to a variable or an intermediate result) or 
in an input/output operation. rhis loss 
may result from a conversion involving 
different data types, different bases J 

different scales J or different precisions. 

The SIZE condition differs from the 
FIXEDOVERFLOW condition in an important 
sense, i.e.~ FIXEDOVERFLOW occurs when the 
size of a calculated fixed-point value 
exceeds N (the maximum allowed), whereas 
SIZE is r~ised when the size of the value 
being assigned to a data item exceeds the 
declared (or default) size of the data 
item. SIZE can be raised on assignment of 
a value regardless of whether or not 
FIXEDOVERFLOW was raised in the calculation 
of that value. 

R~~!!;h~!.. The 
receiving the 
fined. 

contents of the data item 
wrong-sized value are unde-

§.~§!'!:!S!~!~S!_§.Y~~~!!L~ct!Q!!'!" In the absence of 
an on-unit" the system prints a message and 
raises the ERROR condition. 

e.~!~~~l SIZE is disabled within the scope 
of a NOSIZE condition prefix and elsewhere 
throughout the program, except within the 
scope of a condition prefix specifying 
SIZE. 

Normal Return: If a null on-unit is speci­
fIed for -thi~~-condition, control returns to 
the point immediately following the point 
of interrupt. 

Q~~£~ieiiQg!. The UNDERFLOW condition 
occurs when the magnitude of a floating­
point number is smaller than the permitted 
minimum. (J."or System/360 implementations, 
the magnitUde of a floating-point value may 
not be less than approximately 10-78 or 
2_260. ) 

UNDERFLOW does not occur when 
numbers are subtracted (often 
significance error). 

equal 
called 

Note that for the 
expression X**(-Y) (where 
by taking the reciprocal 
the OVERFLOIN condition 
instead of the UNDERFLOW 

D-Compiler, the 
Y>O) is evaluated 
of X**Y; hence, 
may be raised 

condition. 

Result: The invalid floating-point value 
Ii set -to O. 

§.~~!!dar~~~m Action!. In the absence of 
an on-unit, the system prints a message and 
continues execution from the point.at which 
the interrupt occurred. 

§.:tat!!s: UNDERFLOW is enabled throughout 
the programJ except within the scope of a 
condition prefix specifying NOUNDERFLOW. 

Normal Return: If a null on-unit is speci­
fIed for-this-condition" control returns to 
the point immediately following the point 
of interrupt. 

The ZERODIVIDE Condition 

Qg~~iEtion: The ZERODIVIDE condition 
occurs when an attempt is ma'de to divide by 
zero. This condition is raised for fixed­
point and floating-point division. 

Result: The result of a division 
Is undefined. 

by zero 

standard System Action: In the absence of 
an on-unit J the system prints a message and 
raises the ERROR condition. 

st~tus: ZERODIVIDE is enabled throughout 
the prograrr~ except within the scope of a 
condition prefix specifying NOZERODIVIDE. 

Normal Ret.urn: 
specified ·for 

If 
this 

a null on-unit is 
condition, control 

section H: ON-Conditions 175 



returns to the point immediately 
the point of interrupt. 

r~e input/output conditions are always 
enabled and cannot appear in condit.ion 
prefixes; they can be specified only in ON, 
SIGNAL~ and REVERT statements. 

Q~§.~!~ip.!:.iQ.!!'!" The ENDFILE condition can be 
raised during a GET or READ opera t.:i..on; it 
is caused by an at1:empt to read past the 
file delimiter of the file named in the GET 
or READ statement. 

After ENDFILE has been raised, the file 
should be closed. 

§.~~!l~!~~~ __ ~y§.t~!!!_~~!:.iQ!!'!" In thl? ab~)ence of 
an ::>n-unit, thE~ system prints a ITleSE;age and 
raises the ERROR condition. 

~t~t~§..!.. The ENDFILE condition is always 
enab~ed; it cannot be disabled. 

~Q~!!!~! __ R~!:.~~!!.!.. A null on-unit cannot be 
specified for this condition. 

The "file na.me" must be the name of a 
file having the PRINT attribute. 

Q~§.~riQ!:.iQ.!!'!" The ENDPAGE condition is 
raised when a PUT st:atement result.s in an 
attempt to start a new line beyond the 
limit specified for the current page. This 
limi t; can be specified oy l:he PAGESIZE 
option in an OPEN stat:ement. If PAGESIZE 
has not been specified, an installati::m­
defined system limit applies. The attempt 
t::> exceed the limit may be made during data 
transmission (including any format items 
specified in the PUT statement:), by the 
LINE option. or by the SKIP option. 
ENDPP.GE is raised only once per pagE::. 

When ENDPASE is raised, the current line 
numbE~r is one greatE~r than that specif ied 
by the PA3ESIZE option (or the default) so 
that it is possible to continue writing on 
the E.ame page. 

176 

After ENDPAGE has been 
page can be started in 
following ways: 

raised" a 
either of 

nE!W 
the 

1. Execution of a PAGE opt.ion or a PAGE 
format item. 

2. Execution of a LINE option or a LINE 
format item specifying a line number 
less than or equal to the current line 
number. 

When either of these occurs d a new page 
is started in the same way 1:hat it is WhE!n 
a PAGE option is executed, i.e. p ENDPAGE is 
not raised and the current line is set to 
1. If a new page is not si:arted" the 
current line number may increase indefin­
itely. 

If ENDPAGE is raised during data trans­
mission. then, on return from a null on­
unit" the data is written on 1:he current 
line. If ENDPAGE results from a LINE or 
SKIP option, then, on return from a null 
on-unit, the action specified by LINE or 
SKIP is ignored. 

~t~!!9~rd-.§.~tem Acti2!!.l In the absence of 
an on-unit# the system starts a new page. 

Status: ENDPAGE is always enabled; 
cannot be disabled. 

it 

Normal Return: Upon the execution of a 
nulI-on-unIt-for ·this condi t:ion, execution 
of the PUT statement continues in the 
manner described above. 

General Format: KEY (file-name) 

Q~scri2tion: The KEY condition can be 
raised only during operations on keyed 
records. It is raised in any of the 
following cases: 

1. The keyed record cannot be found for a 
READ or REWRITE statemEmt. 

2. An at tempt is made to add a. duplicate 
key by a WRITE or LOCATE statement. 

3. The key has not been specified cor­
rectly. 

4. No space is available t.o add the keyed 
record. 

~!:.~!!9~rd ~~tem Action: In the absence of 
an on-unit, the system prints a message and 
raises the ERROR condition. 



Status: KEY is always enabled; it cannot 
be-(§Tsabl ed. 

Normal Rleturn: A null on-unit cannot bE~ 
specTiie;j-for-this condition. 

Q~§£f!Q:t:!Q!!l The RECORD condition can b.~ 
raised only during a READ~ WRITE, REWRITE~ 
or LOCATE operation. It is raised by 
either of the following: 

1. The size of the record is greater than 
the size of the variable. 

2. The size of the record is less than 
the size of the variable. 

If the size of the record is greater 
than the size of the variable, the excess 
data in the record is lost on input and is 
unpredictable on output. If the size of 
the record is less than the size of the 
variable, the excess data in the variable 
is not transmitted on output and is unalt­
ered on input. 

~t~~S!~f~~l_~y§t~m_~9.t!Q!!l. In the absence of 
an on-unit~ the system prints a message and 
raises the ERROR condition. 

status: RECORD is always enabled; it can­
~o~-6e-disabled. 

~Qf~~!_l~~~t~f!!l Upon execution of a null 
on-unit~ execution continues with the 
statement immediately following the one for 
which RECORD occurred. 

Q~~,9.f!e.t!Q~!!l The TRANSMIT condition can be 
raised during any input/output operation. 

It is raised by a permanent transmission 
error and~ as a result, any data transmit­
ted is potentially incorrect. During 
input~ the condition is raised after 
assignment of the potentially incorrect 
data item or record. During output" the 
condition is raised after the transmission 
of the potentially incorrect data item or 
record has been attempted. 

Standard System Action: In the absence of 
an on-unit, the system prints a message and 
raises the ERROR condition. 

Status: TRANSMIT is always enabled; it 
cannot be disabled. 

Normal Retur~~ Upon execution of a null 
on-unit, processing continues with the next 
data item for STREAM input/output" or the 
next statement for RECORD input/output. 

SYSTEM ACTION CONDITION 

The ERROR Condition 

Description: The ERROR condition is raised 
under the following circumstances: 

1. As a result of the standard system 
action for an ON-condition for which 
that action is to "print an error 
message and raise the ERROR condition" 

2. As a result of an error (for which 
there is no ON-condition) occurring 
during program execution 

Standard ~!3tem Action: In the absence of 
an on-un~t, the D-compiler prints a message 
and returns control to the operating system 
control program. 

Status: ERROR is always enabled; it cannot 
bedIsabled. 

~Qf!!!~l Retur:!ll. Upon execution of a null 
on-unit" control is returned to the operat­
ing system control program. 

Section H: ON-Conditions 171 



A name appearing in a PL/I program may 
have one of many different meanings. It 
may, for example, be a variable referring 
t:) arithmetic data items; it may bt~ a file 
name; it may be a variable refer=ing to a 
character string, or it may be a statement 
label or a variable referring to a state­
men 1: label. 

Properties, or characteristics, of the 
values a name represents (for example u 

arithmetic characteristics of data items 
represented by an arithmetic variable) and 
other properties of the name itself (such 
as scope~ storage class, etc.) together 
make up the set of attributes that can be 
assDciated with a name. 

l'he attributes E!nable the cornpile.t:" to 
assign a unique meaning to the identifier 
specified in a DECLARE statement. For 
example, if the variable is an arithmetic 
data variable, the base, scale, and preci­
sion attributes must be associated with the 
name. ~ssociated attributes are those 
specified in a DECL~RE statement or assumed 
by default. 

rhis section discusses the different 
attributes. The attributes are grouped by 
function and then detailed discussions fol­
low, in alphabetic order, showing the 
rules~ defaults~ and format for each attri­
bute. 

~ttributes specified in a DECL~RE state­
ment are separated by blanks. Except for 
the dimension. length, FILE, and precision 
attribute specifications, they may appear 
in any order. The dimension a-ttribute 
specification must immediately follow the 
array name; the length and precision attri­
bute specifications must follow one of 
their associated attributes; the FILE 
attribute must appear first in the declara­
tion of a file name. A comma must. follow 
the last attribute specification for a 
particular namE~ (or the name itself e if no 
attributes are specified with it)r unless 
it is the last name in the DECLARE state­
ment,. in which case the semicolon is used. 

178 

Except for the dimension and file des­
cription attributes, any attributes common 
to several names can be factored in a 
declaration to eliminate repeated specifi­
cation of the same attribute for many 
identifiers. Factoring is achieved by 
enclosing the names in parentheses, and 
following this by the set of attributes 
which apply. All factored at·tributes must 
apply to all of the names. No factored 
attribute can be overridden for any of the 
names. but any name within the list may be 
given other attributes so long as there is 
no conflict with the factored attributes. 
For the D-Compiler. factoring can be nested 
to a level of eight. See the fourth 
example below for an illustration of such 
nesting. 

Names within the parenthesized list are 
separated by commas. 

Note: Structure level numbers can also be 
factored" but a factored level number must 
precede the parenthesized list. 

Examples: 

DECLARE (A.B,C~D) BINARY FIXED (31); 

DECLARE (E DECIMAL ( 6,,5) " 
F CHARACTER(10» ST~TIC; 

DECLARE lA, 2(B,C,D) BIN~RY FIXgD 
e 15) " 

DECLARE «A,B) FIXED (10)" C FLQ}~T 
(5» EXTERNAL; 

PROBLEM DATA 

Attributes for problem data are used t.o 
describe arithmetic and string variables. 
Arithmetic variables have attributes that 
specify the base" scale, and PJ~ecision of 
the data items. String variables have 
attributes that specify whe1:her the vari­
able represents character strings or bit 
strings and that specify thE~ length to be 
maintained. The arithmetic data attributes 
are: 



BINAHYIDECIMAL 

FIXED I F'LOAT 

(precision) 

PICTURE 

rhe string data attributes are: 

BITICHARACTER 

PIC'I'URE 

Other attributes can also be declared 
for data variables. The DEFINED attribute 
specifies that the data item is to occupy 
the same storage area as that assigned to 
other data. The storage class and scope 
attributes also apply to data. 

rhree other attributes apply only to 
data aggregates. For array variables, the 
dimEmsion attribute specifies the number of 
dimensions and the bounds of an array. The 
ALIGNED and PACKED attributes specify the 
arrangement in storage of string or numeric 
character data elements within data aggre­
gates. 

PROGRAM CONTROL DATA 

Attributes for program control data 
specify that the associated name is to be 
used by the programmer to control the 
execution of his program. The program 
control attributes are LABEL and POINTER. 

The entry name attributes identify the 
name being declared as an entry name and 
describe features of that entry point. For 
example, the attribute BUILTIN specifies 
that the reference to the associated name 
within the scope of the declaration is 
interpreted as a reference to the built-in 
function or pseudo-variable of the same 
name. 'rhe entry name attributes are: 

ENTRY 

RE'rURNS 

BUJ[LTIN 

The file description attributes esta­
blish an identifier as a file name and 
describe characteristics for that file, 
e.g., how the data of the file is to be 
transmitted, whether records of a file are 
to be buffered. If the same file name is 
declared in more than one external proce­
dure~ the declarations must not conflict. 
Except for a file name parameter, a file 
name must always have the EXTERNAL attri­
bute~ either explicitly or by default; file 
name parameters cannot have a scope attri­
bute. 

The file description attributes are: 

FILE 

STREAM I RECORD 

INPUTIOUTPUTIUPDATE 

PRINT 

SEQUENTIAL I DIRECT 

BUFFERED I UNBUFFERED 

BACKWARDS 

ENVIRON£'.IIENT (option-list) 

KEYED 

SCOPE ATTRIBUTES 

The scope attributes specify whether or 
not a name may be known in another external 
procedure. The scope attributes are EXTER­
NAL and INTERNAL. For a discussion of the 
scope of names, see Part I, Chapter 7~ 
"Recognition of Names." 

All external declarations for the same 
identifier in a program are linked as 
declarations of the same name. The scope 
of this name is the union of the scopes of 
all the external declarations for this 
identifier. 

In all of the external declarations for 
the same identifier, the attributes 
declared must be consistent, since the 
declarations all involve a single name. 
For example, it would be an error if the 
identifier 1D were declared as an EXTERNAL 
file name in one procedure and as an 
EXTERNAL ent:ry name in another procedure in 
the same program. 

section I: Attributes 179 



rhe INTERNAL attribute specifies that 
the declared name cannot be known in any 
other block except those contained in the 
block in which the declaration is nade. It 
cannot be specified for a file name. 

rhe same identifier may be decl~red with 
the INTERNAL attribute in more than one 
blo8k without regard to whether t~e attri­
tllltes given in one block are consi::::tent 
with the attributes given in another block, 
sin~e the compiler regards such declara­
t.i01S as referring to different names. 

The storage class attribute:;:; are used to 
specify the type of storage for a data 
variable. The storage class attributes 
are:: 

STATIC 

AUTOMATIC 

BASED <pointer-variable) 

Following are deta.iled descript.ions of 
the attributes, listed in alphabetic order. 
Alternative attributes are ~iscu3sed 
tJgE!ther, with the discussion listed in the 
dlphabetic location of the attribute whose 
nd~e is the lowest in alphabetic Grder. A 
cross-reference to the combined discussion 
appE~ars wherever an alternative a(;.'pear!3 in 
the alphabetic listing. 

Ihe ALIGNED and PACKED attributes speci­
fy the arrangement in storage of string or 
numeric character data elements wiUlin data 
agJregates. Either attribute may be speci­
fied for the name of a major structure or 
the name of an array that is no~ itself 
part of a structure. 

PACKED specifies that each character 
string or numeric character field element 
is to be packed in storage contigl1:>Us \01i th 
the character string or numeric character 
elements that surround it. If all the data 
elenents of the aggregates are character 
string or numeric character items of the 

180 

same type, there should he no unused stor­
age between two adjacent elements. In 
other cases~ some unused space may appear~ 
but storage is to be conserved when possi­
ble. The PACKED attribut'e pe:rmits overlay 
defining. 

ALIGNED allows the compile:r to choose 
the alignment for each string data elemEmt 
within the aggregate to suit -the environ­
ment. For System/360 implementations, t~he 

alignment is on byte boundaries. Two adja­
cent string or numeric charac~er elements 
of an homogeneous aggregate with the 
ALIGNED attribute may not necel>sarily occu­
py contiguous storage, if a more efficiE~nt 
program is possible. 

Note: The have- no 
requires 
mente 

ALIGNED and 
effect when 
full-word or 

General format: 

ALIGNED I PACKED 

General rules: 

Pl\.CKED attributes 
the data itself 
double-word align-

1. Arguments to be passed to 
built-in function must 
structures. 

the 
be 

STRING 
PACKED 

2. The PACKED attribute canr:,ot be speci­
fied for aggregates containing bit 
strings. 

3. PACKED must be specified for data 
aggregates used in overlay defining. 

Assumptions: 

1. The default for major structures is 
PACKED. 

2. The default for arrays that are not 
part of structures is ALIGNED. 

The storage class attributes are used to 
specify the type of storage allocation to 
be used for data variables. 

AUTOMATIC specifies that storage is t:o 
be allocated upon each entry to the block 
to which the storage declaration is inter­
nal. The storage is released upon exit 
from the block. 



STATIC specifies that storage is to be 
allocated when the program is loaded and is 
not to be released until program execution 
has been completed. 

rhe BASED (pointer-variable) attribute 
specifies a variable that is a description 
of data that can be applied to different 
locations in storage. 

GenE~ral format: 

STATICIAUTOMATICIBASED(pointer-variable) 

General :["u1es: 

1. AU~OMATIC and BASED variables can have 
INTERNAL scope only. STATIC variables 
may have either INTERNAL or EXTERNAL 
scope" 

2. storage class attributes cannot be 
specified for entry names 6 file names. 
members of structures, DEFINED data 
items, or parameters. 

3. For a structure variable, a storage 
class attribute can be given only for 
the major structure name. The attri·­
bute then applies to all elements of 
thE~ structure. 

4. The following rules govern the use of 
based variables: 

a. The pointer variable must be 
explicitly declared with the POIN­
TER attribute. The pointer vari­
able must be an unsubscripted ele·­
ment variable and must not be an 
element of a structure; it cannot 
have the BASED attribute. 

b. When reference is made to a based 
variable6 the data attributes 
assumed are those of the based 
variable# while the associated 
pointer variable identifies the 
location of data. 

c. A based variable may be used to 
identify and describe existing 
data or to obtain storage in a 
buffer by use of the LOCATE state­
ment. 

d. The attribute EXTERNAL cannot 
appear with a based variable dec­
laration6 but a based variable can 
be used with an EXTERNAL pOinter 
variable. 

Assumptions: 

1. If no storage class attribute is spec­
ified and the scope is INTERNAL~ AUTO­
MATIC is assumed. 

2. If no storage class attribute is spec­
ified and the scope is EXTERNAL, STA­
TIC is assumed. 

3. If neither the storage class nor the 
scope attribute is specified~ AUTOMAT­
IC is assumed. 

The BACKWARDS attribute specifies that 
the records of a SEQUENTIAL INPUT file on 
magnetic tape are to be accessed in reverse 
order# i.e., from the last record to the 
first record. 

General format: 

BACKWARDS 

General rules: 

1.. The BACKWARDS attribute applies to 
RECORD files only; thus, it conflicts 
with the, STREAM attribute. 

2. The BACKWARDS attribute applies to 
tape files only. 

3. The BACKWARDS attribute cannot be 
specified for variable length records. 

See AUTOM1\.TIC. 

BINARY and DECIMAL (Arithmetic Data 
~~tr ibute~l. -----------------.---

The BINARY and DECIMAL attributes speci­
fy the base of the data items represented 
by the arithmetic variable as either binary 
or decimal. 

General format: 

BINARY I DECIMAL 

General rule: 

The BINARY or DECIMAL attribute cannot 
be specified with the PICTURE attribute. 

Assumptions: 

Undeclared identifiers 
declared only with one 

(or identifiers 
or more of the 

Section I: Attributes 181 



dimension, PACKED 1 ALIGNED# storage class, 
and scope at.tributE~s) are a.ssu.med to be 
ari1:hmetic variables with assigned attri­
butes depending upon the initial letter. 
For identifiers beginning with any letter I 
thr8ugh N, the default attributes are FIXED 
BINhRY (15). For identifiers beginning 
with any other alphabetic character the 
defaul t attributes are FLOAT DECIHAL (6)., 
If E'IXED or FLOAT is declared, then DECIMAL 
is assumed. If DECIMAL or BINARY is 
declared, FLOAT is assumed. Th€~ default 
precisions are those defined for System/360 
implementations. 

Exarnple: 

DECLARE A BINARY, B DECIM1~Li 

Ihe defaults for A are FLOAT(21); the 
defaults for Bare FLOAT(6). 

The BIT and CHARACTER attributes are 
used to specify string variables. The BIT 
attribute specifies a bit string. The 
CHARACTER attribute specifies a character 
string. The length attribute for the 
string must also be specified. 

General format: 

{
OBIT ) 

. CHARACTER 
(length) 

General rules: 

1. The length attribute specifies the 
length of the declared stri~g. It 
must be a decimal integer constclnt., 
unsigned and greater than zero. The 
maximum length specification is 255 
for character strings and 64 for bit 
strings. 

2. The length attribute must imm,~diat.ely 
follow the CHARACTER or BIT attribute 
at the same factoring level with or 
without intervening blanks. 

3. The BIT and CHARACTER attribub~s can­
not be specified with the PICTURE 
attributeo 

4. The PICTURE attribute can be used 
instead of CHARACTER to declare a 
character-string variable (Bee the 
PICTURE attribute). 

5. All of the string attributes must be 
declared explicitly unless the PICTURE 
attribute is used. There are no 
defaults for string data. 

182 

6. Bit strings cannot appE~ar in aggre­
gates having the PACK.ED at:tribute. 

BUFFERED and UNBUFFERED (File Description 
~tt~Ib!!te§)_ -------------

The BUFFERED attribute specifies that 
during transmission to a.nd from external 
storage each record of a SEQUENTIAL RECORD 
file must pass through intermediate storage 
buffers that can be addressed through the 
use of based variables. 

The UNBUFFERED attribute, specifies that 
such records do not pass through buffers. 
No hidden buffers are used by the D­
compiler for UNBUFFERED files. 

General format: 

BUFFERED I UNBUFFERED 

General rules: 

1. The BUFFERED and UNBUFFERED attributes 
can be specified for SEQUENTIAL RECORD 
files onlYi thus~ a file with the 
STREAM or DIREc'r attribute cannot ha'le 
one of these attributes. 

2. The UNBUFFERED attribute must not be 
specified for variable length or 
blocked records~ 

3. The UNBUFFERED attribute can be speci­
fied only for files associated wit:h 
magnetic tape or direct access devi­
ces. 

Assumption: 

Default is BUFFERED. 

The BUILTIN attribute specifies that any 
reference to the associated nam~~ within the 
scope of the declaration is i:O be inter­
preted as a reference to the built-in 
function or pseudo-variable of the same 
name. 

General format: 

BUILTIN 

General rules: 

1. BUILTIN is used to refE~r to a built-in 
function or pseudo-variable in a block 



that is contained in another block in 
which the same identifier has been 
declared to have another meaning. 

2. If the BUILTIN attribute is declared 
for an entry name, the entry name can 
have no other attributes. 

3. The BUILTIN attribute 
declared for parameters. 

See BIT. 

See BIN}\.RY. 

cannot be 

rhe DEFINED attribute specifies that the 
variable being declared is to represent 
part or all of the same storage as that 
assigned to other data. The DEFINED attri­
bute can be declared for element, array, or 
major structure variables. 

GenE~ral format: 

DEFINED base-identifier 

rhe "base identifier" is the variable whose 
storage is also to be represented by the 
variable being declared. 

Rules for defining: 

1. The storage class and scope attributes 
cannot be specified for the defined 
item. It should be noted that 
although the base can have the EXTER­
NA.l., attribute" the defined item always 
has the INTERNAL attribute and cannot 
be declared with any scope attribute. 
If the base is external, its name will 
be known in all blocks in which it is 
declared external, but the name of the 
defined item will not. However, the 
value of the defined item will be 
changed if the value of the base item 
is changed in any block. 

2.. ThE:~ base identifier must always be 
known within the block in which the 
defined item is declared. The base 
identifier cannot have the DEFINED 

attribute~ it cannot be a based vari­
able, and it cannot be a pa·rameter. 

3. The base identifier cannot be a minor 
structure or an element of a struc­
ture. 

There are two types of defining~ corres­
pondence defining and overlay defining. If 
both the defined item and base identifier 
are arrays with the same number of dimen­
sions~ correspondence definin~ is in 
effect.. In all other cases" Qve!:!.~y_Q.~fin= 
!~g is in effect. 

~Qrr~spondence Defining 

Correspondence defining means that a 
reference to an element of the defined item 
is interpreted as a reference to the cor­
responding element of the base identifier. 

Corresponding arrays must have the 
number of dimensions and bounds. The 
ments of the base identifier and the 
ments of the defined item must have 
same description. 

Overlay Defining 

same 
ele­
ele-
the 

Overlay defining means that the defined 
item is to occupy part or all of the 
storage allocated to the base. In this 
way~ changes to the value of either vari­
able may be reflected in the value of the 
other. OVE~rlay defining is permitted 
between the items shown in Figure 1-1: 

Rule for overlay defining: 

The extent~ of the defined item must not 
be larger t~han the extent of the base. 
Extent is calculated by summing the lengths 
of the parts of the data~ including all 
individual elements of arrays. 

The dimension attribute 
number of dimensions of an 
bound of each dimension. 

General format: 

(bound L •. bound [, bound] ] ) 

specifies the 
array and the 

Section I: A.ttributes 183 



r--·-----------.---------T------.-----·---------------------------.-----------------.--------.--.-, 
I Defined Item I Base Identifier I 
~-.-.-----------.----------+------.--------------------------------------------------.------------t 
IA coded arithmetic An unsubscripted coded arithmetic element variable of the Same 
lelement variable base, scale, and precision 
I 
IAn element label 
I variable 
I 
IAn element pointer 
I variable 
I 
IA character class1 

I variable 
I 
IA. structure 
I 
I 
I 

An unsubscripted element label variable 

An unsubscripted element pointer variable 

Character class1 data 

An identical structure whose makeup is such that matching pairs 
of items from the structure are valid examples for overlay de­
fining of coded arithmetic" label, and pointer element vari­
ables. The elements can also be strings or numeri.c character 

I data items of matching lengths. 
t---·-------------------.L------------·--------------------------------------.----.------------t 
11rhe character class consists of: I 
I I 
I d. Numeric character data I 
I b. Character strings I 
I c. Packed structures consisting of items ~, ~, and ~ I 
I d. Packed arrays consisting of items ~ and ~ I l __________________________________ . _____________________________________________________ J 

Figure I-i. Permissible Items for Overlay Defining 

3enE~ral rules: 

1. rhe number of bounds specifies the 
number of dimensions in the array. As 
shown by the general format, the maxi­
mum number of dimensions allowed by 
the D-Compiler is three. 

2. Each bound must be an unsigned decimal 
integer constant greater than zero. 
This number specifies the upper bound 
of the corresponding dimension. The 
lower bound is always assumed to be 1. 
Therefore, this number also specifies 
the extent of the correspondincj dimen­
sion. For example, if a bound is B, 
the extent of that dimension is 1, 
2, ••• ,8. 

3. The dimension attribute must immedi­
ately follow the array name. Inter­
vening blanks are optional. It cannot 
be factored. 

rhe DIRECT and SEQUENTIAL attributes 
specify the manner in which the records of 
a RECORD file are to be accessedn SEQUEN­
rIA.L specifies that the records are to be 
accessed according to their logical 
sequence in the data set. DIRECT specifies 

lB4 

that the records of the file are to be 
accessed by use of a key. Each record of a 
direct file must~ therefore, have a key 
associated with it. 

Note that SEQUENTIAL and DIRECT specify 
Qgly the current usage of the file; they do 
not specify physical properties of the data 
set associated with the file. 

General format: 

SEQUENTIAL I DIRECT 

General rules: 

1. DIRECT files must also have the KEYED 
attribute which is implied by DIREC~r. 
SEQUENTIAL files must not have the 
KEYED attribute. 

2. The DIRECT and SEQUENTIAL attributes 
cannot be specified with the STREl\M 
attribute. 

Assumption: 

Default is SEQUENTIAL for RECORD files. 

ENTRY Attribute 

The ENTRY attribute specifies that the 
identifier being declared is an entry namE~. 



General format: 

ENTRY 

General :r:ules: 

1. The ENTRY attribute must be specified 
for any entry name that is declared 
else~here and not known within the 
block if any reference is made to that 
entry name (such as in an argument 
list) unless# within the block: 

a. The entry name appears in a CALL, 
statement or a function reference 
with an argument list, either of 
which constitutes a contextual 
declaration of the ENTRY attri­
bute" or 

b. The entry name is declared to have 
one of the attributes BUILTIN or 
RETURNS J the latter of which 
implies ENTRY. The ENTRY attri­
bute £~ggQ~ be specified for a 
name that is given the BUILTIN 
attribute. 

2. The ENTRY attribute must be explicitly 
declared or implied for an entry name 
that is a parameter. 

3. The ENTRY attribute can be declared 
for an INTERNAL entry name only within 
the block to which the name is inter­
nal. Internal procedures declared 
with an ENTRY attribute must also be 
given the INTERNAL attribute in the 
same declaration. 

A.ssumptions: 

rhe ENTRY attribute can be assumed eith­
er contextually or by implication, as des­
cribed in Rule 1. The appearance of a name 
as a label of either a PROCEDURE statement 
or an ENTRY statement constitutes an expli­
cit declaration of that identifier as an 
entry name. 

The ENVIRONMENT attribute is an 
implementation-defined attribute that 
specifies various file characteristics that 
are not part of the PL/I language. 

Gene~ral format: 

ENVIRONMENT (option-list) 

rhe option-list is defined individually 
for each implementation of PL/I. For the 
D-Ievel compiler# it is as follows: 

rCONSECUTIVE ] 
LREGIONAL ({ 11 3}) 

{ 
F (blocksize [, recordsize] ») 
V (maxblocksize) 
U (maxblocksize) 

[BUFFERS (n)] 
MEDIUM(logical-device-name, 

physical-device-type) 
[LEAVE] [NOLABEL] [VERIFY] 
[KEYLENGTH (decimal-integer-constant)] 

General rules: 

1. Each file declaration must have an 
associated ENVIRONMENT attribute. 

2. The options must be separated by one 
or more blanks. 

3. The CONSECUTIVE option implies that 
the (n+1)th record of the file is 
located after the nth record of that 
file. An example of an I/O device for 
which the CONSECUTIVE option is manda­
tory is a card reader or a printer. 
If neither the CONSECUTIVE or the 
REGIONAL option is specifiedJ the CON­
SECUTIVE option is assigned by 
default. 

4. The REGIONAL option implies that the 
physical location of a record on a 
storage medium is specified by a key. 
rhe key is specified by the programmer 
and cons·titutes the only way to access 
the record. The REGIONAL option is 
permitted only for direct access 
files. 

REGIONAL(l) is used for files where 
records are referred to by their rela­
tive location with respect to the 
first record in the file. The rela­
tive record number is specified in the 
KEY or KBYFROM options. 

REGIONAL (3) is used for files where 
the records are referred to by the 
location of the track containing this 
record rlelative to the first track in 
the file and a key associated with the 
record. Both the key and the relative 
track number (which is a part of the 
key) are specified in the options KEY 
or KEYFROM. 

5. The F# V, and U options are used to 
describe physical records. F speci­
fies fixed length records J V specifies 
variable length records and U speci­
fies records of undefined length. 

Fixed-length records require a block 
size specification. The record size 
specification is optional. Both block 
size and record size are specified by 

section I: Attributes 185 



means of unsign,ed decimal int:eger con­
stants. The quotient of block size 
di vided by record size mus t bE~ an 
integer. Fixed-length blocked records 
are constructed if both block sizE~ and 
record size are specified. rhe block­
ing factor is the block size divided 
by the record size. If only the block 
size is specified~ the record size is 
assumed to be equal to the block size, 
and the file is considered to be 
unblocked. 

If fixed-length blocked records are to 
be transferred by a READ SET or LOCATE 
statement" the record size must. be 
divisible by 8. 

When using the V option, the record 
size for records to be transferred by 
means of READ SET or LOCATE statements 
must yield a remainder of 4 after 
division by 8. 

6. The BUFFERS(n) option, where g must be 
1 or 2, is used to specify the number 
of buffers to be used. The BUFFERS 
option may be used for STREAM files 
even though neither the BUFFERED nor 
the UNBUFFERED attributes are permit­
ted since STREAM files helve hidden 
buffers. The BUFFERS option may also 
be used for BUFFERED RECORD files. 
The UNBUFFERED attribute precludes the 
use of the BUFFERS option. The 
default is BUFFERS(l). 

1. The MEDIUM option is used to specify 
the logical unit name and t~he device 
type for the file being declared. 

186 

The logical device name has ":he form 
SYSxxx, where xxx may be: 

a. IPT - System input device 

b. LST System output device used 
for listing 

c. PCH -. System output device (card 
punch) 

d. 000 through 222 - Logical units 
SYSOOO through SYS244 

The device-type specification contains 
the number of the device to be used. 
For instance, if the IBM 1442Nl Card 
Read/Punch is to be used, the option 
would be written as 1442. Figure 1-2 
shows how the individual device types 
are specified. 

The device types listed in Figure 1-2 
may be assigned to the logical unit 

names SYSIPT" SYSLS'r, and SYSPCH as 
shown in Figure 1-3. 

8. The LEAVE option is used to specify 
that no rewind operation is to be 
performed at file open or close time. 
It should be given for files that have 
the BACKWARDS attribu"te to ensure pro­
per positioning of the file. 

9,. The NOLABEL option is uS'2d to specify 
that no file labels are to be proc­
essed for a magnetic tape file. 

If the NOLABEL option is specified for 
outpU"t files" a tape mark is automat­
ically written as the first record on 
the tape. Non-standard labels and 
additional user labels arl2 not proc­
essed. 

10. The VERIFY option is uSI:d to specify 
that a read-check is to be performed 
after every write operation. This 
option is permitted only with direct­
access devices. 

11. The KEYLENGTH option is used to 
specify the length of the key for 
input and output opera"cions. 'rhis 
option is permitted only with t~he 

option REGIONAL (3) . The minimum key-
length is 9. 

Note: The key leng1th must not be 
Included in the record length. 

r--------T-------------------T---'----------"-, 
I Device I I DI~vice-Type I 
I Type I Number I Specification I 
~--------+------------------+-------------i 
I I IBM 2540 (reader) I 2540 I 
I IIBM 2540 (punch) I 2540 I 
I Card I IBM 1442N1 I 1442 I 
IReaders IIBM 1442N2 I 1442 I 
I and I IBM 2520B1 I 2520 I 
Ipunches IIB~ 2520B2 I 2520 I 
I IIBM 2520B3 I 2520 I 
I I IBM 2501 I 2501 I 
~--------+-------------------+---·-----"-----·-i 
I IIBt-l 1403 I 1403 I 
IPrinterslIBM 1404 I 1404 I 
I I IBM 1443 I 1443 I 
I I IBM 1445 I 1445 I 
~--------+-------------------+---·----------·-i 
IMagneticlIBM 2400 C9-track) I 2400 I 
I Tape IIBM 2400 (7-track) I 2400 I 
I Drives I I I 
~--------+------------------+-------------i 
I Disk I IBM 2311 I 2311 I 
I Drives I I I L ________ J. ___________________ J. ______________ J 

Figure 1-2. Device Types and Corresponding 
Specifications 



r--------------T--------------------------, 
I Logical Unit I I 
I Name I Device rype I 
~--------------+--------------------------~ 
I I IBM 2540 (reader) I 
I I IBM 1442N1 I 
I I IBM 2501 I 
I SYSIPT I IBM 2520B1 I 
I I IBM 2400 (7- or 9-track) I 
I I I 
~--------------+--------------------------~ 
I I IBM 1403 I 
I I IBM 1404 I 
I SYSLST I IBM 1443 I 
I I IBM 2400 (7- or 9-track) I 
I I I 
~--------------+--------------------------~ 
I I IBM 2540 (punch) I 
I I IBM 1442Nl I 
I I IBM 1442N2 I 
I I IBM 2520B1 I 
I SYSPCH I IBM 2520B2 I 
I I IBM 2520B3 I 
I I IBM 2400 (7- or 9-track) , 
I I I l ______________ ~ __________________________ J 

Figure 1--3. Device Types Associated to 
SYSIPT, SYSLST, and SYSPCH 

Assumptions: 

CONSECUTIVE data set organization is 
assumed unless stated otherwise. Tape 
reels are rewound unless the LEAVE option 
is specified. If the BUFFERS(n) option is 
not specified l one buffer is allocated. 

rhe EXTERNAL and INTERNAL attributes 
specify the scope of a name. INTERNAL 
specifies that the name can be known only 
in the declaring block and its contained 
blocks. EXTERNAL specifies that the name 
may be known in other blocks containing an 
external declaration of the samE~ name. 

General format: 

EXTERNAL I INTERNAL 

General rules: 

1. All file names must be external. They 
cannot be declared as internal. 

2. All external names are restricted by 
the D-Compiler to a maximum length of 
six characters. 

Assumptions: 

INTERNAL is assumed for entry names of 
internal procedures and for variables with 

any storage class. EXTERNAL is assumed for 
file names and entry names of external 
procedures. 

The FILE attribute specifies that the 
identifier being declared is a file name. 

General format: 

FILE 

General rule: 

The FILE attribute must be explicitly 
declared for each file name and file name 
parameter. It must be the first attribute 
in a file declaration. 

FIXED and FLO.AT (Arithmetic Data 
~ttE.ibutes2.. 

The FIXED and FLOAT attributes specify 
the scale of the arithmetic variable being 
declared. FIXED specifies that the vari­
able is to represent fixed-point data 
items. FLOAT specifies that the variable 
is to represent floating-point data items. 

General format: 

FIXED I FLOAT 

General rule: 

The FIXED and FLOAT attribures cannot be 
specified with the PICTURE attribute. 

Assumptions: 

Undeclared identifiers (or identifiers 
declared only with one or more of the 
dimenSion, P~2KEDI ALIGNED, storage class, 
and scope attributes) are assumed to be 
arithmetic variables with assigned attri­
butes depending upon the initial letter. 
For identifiers beginning with any letter I 
through N, the default attributes are FIXED 
BINARY (15). For identifiers beginning 
with any other alphabetic character l the 
default attributes are FLOAT DECIMAL (6). 
If BINAAY or DECIMAL is specified" FLOAT is 
assumed. If FIXED or FLOAT is specified l 

DECIMAL is assumed. The default precisions 
are those defined for System/360 implemen­
tations. 

section I: Attributes 187 



See FIXED. 

The INPUT, OUTPUT" and UPDA'TE olttributes 
indicate the function of the file. INPUT 
specifies that data is to be transmitted 
from the data set to the program. OUTPUT 
specifies that data is to be transmitted 
from the program to the data set, not an 
existing data set. but a newly created one. 
UPD~TE specifies that the data can be 
transmitted in either direction~ that is, 
the file is both an input and an output 
filf~. 

Genf=ral format:: 

INPUTI OUTPUT I UPDATE 

General rules: 

1. A file with the INPUT attribu~e cannot 
have the PRINT attribute. 

:2. A file with the OUTPUT a·ttribute can­
not have the BACKWARDS attribute. 

3~ A file with the UPDATE at·tribute can­
not have the STREAM, BACKWARDS, or 
PRINT attributes. A declaration of 
UPDATE for a SEQUENTIAL file J_ndicates 
the update-in-place mode. To access 
such a file, the sequence of state­
ments must be READ, then REWRITE. 

4. One of the above attributes must be 
gi ven for each file unless i:he file 
has been declared with the PRINT 
attribute, in which case, OUTPUT is 
implied. 

5 ~ These att.ributes must be specified in 
the DECLARE statement except in the 
case of an UNBUFFERED file, in which 
case, INPUT or OUTPUT can be specified 
in the OPEN statement. 

Assumption: 

rhe PRINT attribute implies OUTPUT. 

~)ee EXTERNAL. 

188 

KEYED (File Description Attribute) 

The KEYED attribute specifies that each 
record in the file has a key associat~ed 
with it~ and that the statemen~ options KEY 
and/or KEYFROM may be used to access 
records in the file. 

General format: 

KEYED 

General rules: 

1. A KEYED file cannot be read sequen­
tially. 

2. The KEYED attribute can be specified 
for DIRECT files only. 

Assumption: 

The DIRECT attribute implieB KEYED. 

LABEL (Program Control Dat~_At1:ribu~~1 

The LABEL a·ttribute specifies that the 
identifier being declared is a label vari­
able and is to have statement labels as 
values. 

General format: 

LABEL 

General rules: 

1. The variable can have as ,mlues any of 
the statement labels known within the 
scope of the variable. 

2. If the variable is a parameter, its 
value can be any statement label vari­
able or constant passed as an argu­
ment. 

3. An entry name cannot be a value of a 
label variable. 

See BIT. 

See INPUT. 



See A][.IGNED. 

rhe PICTURE attribute is used to define 
the internal and external formats of 
character-string and numeric character data 
and to specify the editing of data. Numer­
ic character data is data having an arith­
netic value but stored internally in char­
acter form. Numeric charcter data must be 
converted to coded arithmetic before arith­
metic operations can be performed. 

rhe picture characters are described in 
Section D, "Picture Specification Charac­
ters." 

General format: 

PIC~['URE 

{

p'Character-Picture-specification,) 

~'numeric-picture-specification' 

~ "picture specification," either character 
or numeric J is composed of a string of 
picture characters enclosed in single quo­
tation marks (as shown in the format). An 
individual picture character may be preced­
ed by a repetition factor J which is an 
unsigned decimal integer constant greater 
than zero, ~, enclosed in parentheses, to 
indicate repetition of the character ~ 
times. Picture characters in a specifi­
cation are considered to be grouped into 
f!g~~~, some of which contain ~~~f!gl~~. 

General rules: 

1. The "character picture specification" 
is used to describe a character-string 
data item. Only the picture character 
X can be used. It indicates that the 
associated position in the data item 
can contain any character. At least 
one X must be specified. A character 
picture specification is a single 
field with no contained subfields. 

Example: 

DECLARE ORDER# PICTURE '(13)X ' ; 

This declaration specifies that values 
of ORDER# are to be character strings 
of length 13. For example, the char­
acter string "GF342-63-0024' would fit 
this description. 

Editing and suppression characters are 
not allowed in character picture 
specifications. Each picture specifi­
cation character must represent an 
actual character in the data item. 

2. The "numeric picture specification" is 
used to describe a character item that 
represents an arithmetic value or a 
character-string value, depending on 
its use. A numeric picture specifi­
cation can consist of one or more 
fields, some of which can be divided 
into subfields. A single field is 
used to describe a fixed-point number 
or the mantissa of a floating-point 
number. Either may be divided into 
two subfields, one describing the 
integer portion, the other describing 
the fractional portion. For floating­
point numbers, a second field is 
required to describe the exponent: it 
cannot be divided into subfields. 
Four basic picture characters can be 
used in a numeric picture specifi­
cation: 

9 indicating any decimal digit 

v 

K 

indicating the assumed location of 
a decimal point. It does not 
specify an actual character in the 
character-string value of the data 
item. It indicates the end of a 
subfield of a picture specifi­
cation. 

indicating, for floating-point 
data items, that the exponent 
should be assumed to begin at the 
position associated with the pic­
ture character following the K. 
It does not specify an actual 
character in the character-string 
value of the data item. The K 
delimits the two fields of the 
specification. 

E indicating, for floating-point 
data items~ that the associated 
position will contain the letter E 
to indicate the beginning of the 
exponent. The E also delimits the 
two 1:ields. 

In addition to these characters J zero 
suppression characters~ editing char­
acters~ and sign characters may be 
included in a numeric picture specifi­
cation to indicate editing. Editing 
characters are not a part of the 
arithmetic value of a numeric charac­
ter data itemJ but they are a part of 
its cha-~cter-string value. Each 
numeric picture specification must 
include at least one digit specifier. 
Repetition factors are allowed in 
numeric picture specifications. 

section I: Attributes 189 



3. A. numeric character data i terri can have 
only a decimal base. Its scale and 
precision are specified by the picture 
characters. The PICTURE attribute 
cannot be specified in c~mbination 
with base, scale, or precision attri­
butes. 

4. The following paragraphs indicate the 
combinations of picture characters for 
different arithmetic data formatsg 

190 

a. Decimal fixed-point items are des­
cribed in the followiTIg general 
form: 

PICTURE '[9] ••• [V] [9]. ' .• • 

Sign, editing, and zero suppres­
sion picture characters can be 
included in a fixed-point specifi­
cation. The V may not appear more 
than once in a specification, 
although it may be used in combi­
nation with the decimal point. (.) 
or c~mma (,) editing characters, 
which cause insertion of a period 
or comma. If no V is included, 
the decimal point is assumed to be 
to the right of the rightmost 
digit. Only one sign indication 
can be included in the field. The 
specification must include at 
least one digit position. 

Exam9le: 

D8CLA.RE A PICTURE '999V99'; 

This specification describes 
numeric character items of five 
digits, two of which are assumed 
to be fractional digits. 

b. Decimal floating-point items are 
described by the following general 
form: 

PICTURE • (9] ••• [V] [9] ••• uq K}9 [9]' 

Both the first field and the 
exponent field must each contain 
at least one digit position. The 
exponent field can conta~n no more 
than two digits, since ~:;ystem/360 

implementations allow only two 
digits in the exponent field of a 
decimal floating-point nunber. If 
arithmetic data items are to be 
assigned to the described vari­
able, the eKponent field Dust con­
tain both of the allowed digit 
specification characters, or the 
second digit of the exponent field 
will be lost and the SIZ8 condi­
tion will be raised. 

Sign, editing, and zero suppres-

5. 

sian picture characters can be 
included in a floating-point 
specification. One sign indica­
tion is allowed for each field. 
Only one V is allowed~ and it can 
appear in the first field only. 
As with fixed-point specifi­
cations~ the V may appear in com­
bination with the decimal point 
editing character (as.V or V.). 
X, T, I. R. CR# DB. and sterling 
picture characters are not 
allowed. 

The precision of a numeric character 
variable is dependent upon the number 
of digit positions, actual and condi­
tional. Digit positions can be speci­
fied by the following characters: 

9 which is an actual digit character 

which are conditional digit char­
acters specifying zero suppression 

which are digit characters 
fying an overpunch 

speci-

which are conditional digit drift­
ing characters 

Each but the first conditional digit 
drif-ting character in a drifting 
string specifies a digit position. A 
conditional digit drifting character 
used alone does not specify a digit 
position. Precision of a fixed-point 
variable is (p,q), where E is the 
number of digit positions in the pic­
ture specification and g is the nu~)er 
of digit positions following V. Pre­
cision of a floating-point variable is 
(p), where E is the nu~ber of digit 
positions preceding the E or K. Indi­
cated static editing characters or 
insertion characters do not parti­
cipate in the specification of preci­
sion, but they must be counted in the 
number of characters if the data item 
is assigned internally to a character 
string. 

6. A variable representing sterling data 
items can be specified by using a 
numeric picture specification that 
consists of three fields# one each for 
pounds, shillings, and pence. The 



pence field can be divided into two 
subfields. Data so described is 
stored in character format as three 
contiguous numbers corresponding to 
each of the three fields. If any 
arithmetic operations are specified 
for the variable, its value is con­
verted to coded fixed-point decimal 
representing the value in pence. 
sterling picture specifications have 
the following form: 

PICTURE 
'G [editing-character-l] ..• 
iYl pounds-field 
M [separator-1] ••. 

shillings-field 
M [separator-2] •.• 

pence-field 
[editing-character-2] ..• • 

Picture specifications characters, 
editing characters# and separators 
that can be used in any of these 
fields are discussed in section D, 
"Picture Specification Characters." 
The precision (p,q> of a sterling data 
item is defined as follows: 

q number of fractional digits in 
the [lence field. 

p 3 + q + the number of digit 
positions, actual and condi­
tional l in the pounds field. 

The POINTER attribute specifies that the 
identifier being declared is a pointer 
variable and can be used to identify data 
existing in any storage class. 

General format: 

POINTER 

Gene:r-al l:ules: 

1. The POINTER attribute can be given to 
an identifier only via a DECLARE 
statement. Thus# a pointer variable 
must be explicitly declared with the 
POINTER attribute. 

2. The value of a pointer variable can be 
established in two ways: 

a. by pointer assignment. 

b. by the SET clause in a READ or 
LOCATE statement. 

3. Pointer data cannot appear as an oper­
and in an arithmetic expression, nor 

can conversions be performed between 
pointer data and other data types. 

4. The only operators that can be applied 
directly to pointer data are the com­
parison operators = and ,=. 

5. Pointer data cannot be read or written 
via STRE1~ transmission. 

6. A pointer variable cannot have the 
BASED attribute. Therefore# a pointer 
variable cannot be an element of a 
structure having the BASED attribute. 

rhe preci~i?n attribute is used to spec­
ify the ml.nl.mum number of significant 
digits to be maintained for the values of 
variables, and to specify, for fixed-point 
decimal variahles, the scale factor (the 
assumed position of the decimal point). 
The precision attribute applies to both 
binary and decimal data. 

General format:: 

(number-of-digits [,scale-factor]) 

The "number of digits" and "scale factor" 
are unsigned decimal integer constants. 
The "number of digits" cannot be zero. The 
precision att:ribute specification is often 
represented l for brevity, as (p,q>, where e 
represents the "number of digits" and g 
represents the "scale factor." 

General rules:: 

1.. The precision attribute must immedi­
ately follow, with or without inter­
vening hlanks# the scale (FIXED or 
FLOAT>, or base (DECIMAL or BINARY) 
attributE~ at the same factoring level. 

2. The "number of digits" specifies the 
number of digits to be maintained for 
data items assigned to the variable. 
The scalE~ factor specifies the number 
of fractional digits. No point is 
actually present; its location is 
assumed. 

3. The "scale-factor" is a decimal inte­
ger constant that states the number of 
digits t:o the right of the decimal 
point. It can be used only with 
decimal fixed-point variables. A 
binary fixed-point variable may rep­
resent only integer numbers and there­
fore always has an assumed scale fac­
tor of ZE~ro. 

section I: Attributes 191 



4. When the scale factor is not specified 
for decimal fixed-point data, it is 
assumed to be zero; that is, the 
variable is to represent integers. 

5. The scale factor can be larger than 
the number of digits. Such a scale 
factor always specifies a fraction, 
with the decimal point assumed to be 
located the specified number of digit 
places to the left of the rightmost 
actual digit. Intervening zeros are 
assumed, but they are not stored; only 
the specified number of digits are 
actually stored. 

6. The precision attribute cannot be 
specified in combination with the PIC­
TURE attribute. 

1. The maximum number of digits allowed 
for System/360 implementations is 15 
for decimal fixed-point data, 31 for 
binary fixed-point data, 16 for deci­
mal floating-point data, and 53 for 
binary floating-point data. For the 
D-compiler the scale factor cannot be 
greater than 15. 

Assumptions: 

The defaults for the D-Compiler are as 
follows: 

(5,0) for DECIMAL FIXED 

(15) for BINARY FIXED 

(6) for DECIMAL FLOAT 

(21) for BINARY FLOAT 

rhe PRINT attribute specifies that the 
data of the file is ultimately to be 
printed. The PAGE, LINE, and SKIP options 
of the PUT statement and the PAGESIZE 
option of the OPEN statement ca~ be used 
only with files having the PRINT attribute. 
These options are described in Se<::tion J, 
"statements". 

General forma1:: 

PRINT 

GE~neral rules:: 

1. The PRINT attribute implies the OUTPUT 
and STREAM attributes. 

2. The PRINT attribute causes the initial 
data byte within each record to be 

192 

reserved for ASA printer control char­
acters. Any length specification of 
the record must be 1 plus the length 
of the print line to account for this 
control character. These control 
characters are set by the PAGE, SKIP~ 

or LINE format items or options. 

Assumption: 

If no FILE or STRING 
appears in a PUT statement, 
output file is assumed. 

specification 
t.he standa.rd 

The RECORD and STREAM attributes specify 
the kind of data transmission to be used 
for the file. STREAM indicates that t:he 
data of the file is considered to be a 
continuous stream of data items, in charac­
ter form, to be assigned from the stream to 
variables, or from expressions into the 
stream. RECORD indicates that the file 
consists of a collection of physically 
separate records, each of which consists of 
one or more data items in any form. Each 
record is transmitted as an entity directly 
to or from a variable or directly to or 
from a buffer. 

General format: 

RECORD I STREAM 

General rules: 

1. A file with the STREAM attribute can 
be specif ied only in -the OPEN, CLOSE., 
GET, and PUT statements. 

2. A file with the RECORD attribute can 
be specified only in -the OPEN, CLOSE., 
READ, WRITE, REWRITE., and LOC1~TE 
statements. 

3. A file with the STREAM a-ttribute can­
not have any of the following attri­
butes: UPDATE, DIRECT, SEQUENTI]~L, 

BACKWARDS, BUFFERED, UNBUFFERED, and 
KEYED. 

4. A file with the RECORD at-tribute can­
not have the PRINT atitribllte. 

Assumptions: 

Default is STREAM. 



The RETURNS attribute may be specified 
in a DECLARE statement for an entry name 
that is used in a function reference within 
the scope of the declaration. It is used 
to describe the attributes of the function 
value returned when that entry name is 
invoked as a function. 

GenE~ral format: 

RETURNS (attribute .•• ) 

It is used in the following manner: 

DECLARE entry-name [ENTRY] 
RETURNS (attribute •.• ); 

GenE~ral rules: 

1. The RETURNS attribute implies the 
ENTRY attribute, and, hence, ENTRY can 
be omitted. 

2. The attributes in the parenthesized 
list following the keyword RETURNS are 
separated by blanks. They must agree 
with the attributes specified {or 
assumed by default> in the PROCEDURE 
or ENTRY statement to which the entry 
naml2 is prefixed. If the attributes 
of the actual value returned do not 
agree with those declared with the 
RETURNS attribute, no conversion will 
be performed. 

3. Only, arithmetic" string, PICTURE, or 
POINTER attributes can be specified. 

4. Internal procedures declared with a 
RETURNS attribute must also be given 
the INTERNAL attribute in the same 
declaration. For an internal func­
tion~ the RETURNS attribute can be 

specifie~d only in a DECLARE statement 
that is internal to the same block as 
the function procedure. 

5. Unless default attributes for the 
entry na.me apply" any invocation of a 
function must appear within the scope 
of a RETURNS attribute declaration for 
the entIY name. 

Assumptions: 

If the RETURNS attribute is not speci­
fied within the scope of a function ref­
erence, the~ defaults assumed for the 
returned value are FIXED BINARY (is) if the 
entry name be:gins with any of the letters I 
through N; otherwise, the defaults are 
FLOAT DECIM~L (6). Default precisions are 
those defined for System/360 implementa­
tions. 

§~QUENTIAL (~i~~Des£~!2tion Attribute) 

See DIREc'r. 

~~ATI~ (Stor~ge Class Attribute> 

See AUTOMA,T I C • 

See RECORD. 

See INPUT. 

section I: Attributes 193 



rhis section presents the Phil state­
ments in alphabetical order. Most state­
ments are accompanied by the following 
inf:>rmation: 

1. Function -- a short descripti:>n of the 
meaning and use of the statement 

2. General format -- the syntax of the 
statement 

3. Syntax rules rules of syntax that 
are not reflected in the general for­
mat 

4. General rules -- rules governing the 
use of the statement and its meaning 
in a PL/I program 

The Assignment Statement 

Function: 

The assignment statement evaluates 
expressions and assigns values to elements# 
arrays# or structures. 

General formats: 

The assignment statement has fi ve genE~r­
al format types. They are as shown in 
Figure J-1. 

Syntax rules: 

1. In Type 1, the variable in the receiv­
ing field (i.e.# to the left of the 
equal sign) must represent a single 

r---------------------------------------------------------------------------------------, 
I 

:1 (~~y::~~::~:~:~::::~:~i}gn!!!~!!!: 
element-expression; 

I pseudo-variable 
I .. 
I ~~f2~_~~ __ ~~~~~y_~~~!.9.!!!!!~!!!:: 

I {a.rray-exPJ::-ession } 
I array-variable = 
: E!lemf2nt-expression 

~ 'r.yf2~_l~ __ §.t:~~~tu~~_~~§.!.9.!!!!!~!!t 
~ 
l 
I 
! 
I 

structure-variable 
= {structure.-expre~sion} 

element-expresslon 

I ry f2~_~.!. __ §.t:~t:~!!!~!!t:_ !!~Q~l_~§.§.i9.!!!!!'s !!!:_l~f_fQ~!!l§'2.. 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.. 
{

label-constant } 
a. element-label-variable =, 

element-label-variable 

{

label-c:onst:nt } 
b. label-array = element:-label-variable 

label-array 

I ~:~:Q~_~.!. __ ~Q!!!t~~_~§.§.!.9.!!!!!~!!!:._~~~_f~~;~!!!§.L 
I 
I a. element-pointer-variable = element-pointer-expression; 

: element-pOintier-eXPreSSion} 
I b. pOinter-array = ; 
I pointer-array L _______________________________________________________________________________________ J 

Figure J-1. Assignment Statement rypes 

194 



element whose data type is arithmetic 
or string. 

2. In Type 2# the variable in the receiv­
ing field must represent an array of 
arithmetic or string elements. 

If an element expression appears to 
the right of the equal sign, the value 
of the expression is assigned to each 
element of the array in the receiving 
field. 

If an array expression appears to the 
right of the equal sign, all of the 
arrays in the receiving field and all 
array operands in the expression must 
have the same number of dimensions and 
identical bounds. 

3. In rype 3# the variable in the receiv­
ing field must represent a structure 
and each element of the structure must 
be an arithmetic or string element. 
(Pointer and label elements are also 
allowed, but these are special cases; 
see general rule 3.> 

If an element expression appears to 
the right of the equal sign, the value 
of the expression is assigned to every 
element of the structure in the 
receiving field. 

If a structure expression appears to 
the right of the equal sign, then, the 
relative structuring of all structures 
on both sides must be the same. 

4. In Type 4, item b# if a label constant 
or' an element label variable appears 
on the rightJ then the constant or the 
value of the variable is assigned to 
every element in the label array in 
the receiving field. 

If a label array appears on the rightJ 
then the number of dimensions and the 
bound of each dimension of that array 
must be identical to those of the 
label array in the receiving field. 

5. In Type 5, an "element poinb~r 
expression" is either an element poin­
te:r variable or a function reference 
that returns an element pointer value. 

In Type 5~ item ~J if an element 
pOinter expression appears to the 
right of the equal sign, the value of 
the expression is assigned to every 
element of the pointer array in the 
re~cei ving field. 

hlso item b, if a pointer array 
appears to th~ right, the number of 
dimensions and the bound of each 
dimension of that array must be iden1t-

ical to those of the pOinter array in 
the receiving field. 

General rules: 

1. The assignment statement is evaluated 
as follows: 

a. For Types 1, 4, and 5, any expres­
sions that appear in the receiving 
field, either in subscripts or in 
pseudo-variables, are evaluated 
from left to right. The expres­
sion on the right of the equal 
sign is evaluated and its value is 
assigned to the variable in the 
receiving field. 

b. For Types 2 and 3, the assignment 
statement is treated as a sequence 
of element assignment statements 
involving corresponding elements 
of the arrays or structures con­
cerned. For arrays, the elements 
are assigned in row-major order; 
for structures. the elements are 
assigned in the order in which 
they were declared. 

Note that the result of the evalu­
ation for a later position in an 
array or structure may be affected 
by the evaluation and assignment 
to an earlier position (see Exam­
ple: 1 below>. 

c. Whe:n necessary., the value of the 
expression on the right is con­
verted to the characteristics of 
the variable in the receiving 
field according to the rules given 
in Section F, "Data Conversion." 

2. When a variable in the receiving field 
is a string or the UNSPEC pseudo­
variableJ the expression on the right 
is evaluated as in general rule 1, and 
the assignment is performed from left 
to right, starting with the leftmost 
bit or character position. The 
following may also apply: 

a. If the value of the expression is 
longer than the string# the value 
is truncated on the right to match 
the length of string. 

b. If the value of the expression is 
shorter than the string~ the value 
is extended on the right with 
zeros for bit strings and with 
blanks for character strings. 

3. If a pointer or label variable is an 
element of a structure appearing in a 
receiving fieldJ it is assigned a 
value just like any other element in 
the structure. However, no conversion 

Section J: Statements 195 



4,. 

is performed and", therefore" the value 
assigned to such a pointer or label 
variable must be another pOinter or 
label variable. 

Label array and pointer array assign­
ment as shown in Types 4 and 5# 
respectively, follow the :rule'~i given 
for array assignment in general rule 
1. 

'rhe following example illust:catE'~i array 
assiqnment: 

Given the array A 2 
3 
1 
4 

4 
6 
7 
8 

and 1::.he array B 1 
7 
3 
6 

5 
8 
4 
3 

Consider the assignment statement: 

After execution, A has the value: 

7 
93 

9 
93 

74 
189 
114 
114 

Note that the new value for A(1,1), 
whic~ is 7, is used in evaluat.Lng the 
expression for all other elements. 

The following example illustrate3 string 
assi3nment: 

GiveJ.: 

A is a string whose value is ·XZ/BQ'. 
B is a string whose value is I ~AFY·. 

C is a string of length 3. 
D is a string of length 5. 

Then in the statement: 

196 

C 
D 
D 

A, the value of C is ·XZ/". 
'X', the value of C is 'Xbb'. 
B~ the value of D is 'MAFYo'. 
SUBSTR (A,2,3)IISUBSTR (A,2,3), 
the value of D is 'Z/BZ/'. 

SUBSTR (A,2,4) = B, the value ~f A is 
'XfVlAFY' . 

SUBSTR (B,2,2) = 'R', the value of B 
is 'MRbY'. 

The following example (where A" B" and C 
are element variables) ill ustra1:es element 
assignment: 

A=A+SIN(B) + C**2i 

The following examples illus1::cate struc­
ture assignment: 

a. DECLARE 1 X, 2 Y" 2 Z,' 2 R" 3 S, 3 P, 
1 A~ 2 B, 2 C, 2 DB 3 E# 3 Qi 

X = X * Ai 

The assignment statement is equivalent. 
to the following statements: 

X.Y X.Y * A. Bi 
X.Z X. Z * A,Ci 
X.S X.S * A.E; 
X.P X.P * A.Qi 

b. DECLARE 1 A" 2 B, 2 c,' 3 0,/ 3 Ei 

A = A + A.Bi 

The assignment statement i::; equivalent 
to the following: 

A.B A.B + A.Bi 
A.C A.C + A.Bi 

The last statement is ~2quivalent to: 

A.D 
A.E 

A.D + A.B; 
A.E + A.Bi 

The following example ill ust:rates statE~­
ment label assignment: 

DECLARE P ,LABEL; 
P = Ai 
GO TO Pi 

A: X Y**2i 

This set of statements causes control to 
transfer to A when the GO TO P statement 15 
executed. 

The following example illustrates con­
version of data defined by a picture des­
cription assigned to floating-point data, 
and vice versa: 



DECL~R8 ~ FLO~T, B PICTURE '999V99'; 

~ = B; (B is converted from fixed­
point to floating-point.) 

B ~; (~ is converted from floating­
point to fixed-point.) 

I"unct:ion: 

rhe BEGIN statement heads and identifies 
a begin block. 

General format: 

BEGIN; 

General ['ules: 

1. ~ BECaN statement is used in 
conjiunction with an END statement to 
delimit, a begin block. ~ complete 
discussion of begin blocks can be 
found in Part 1" Chapter 6, -Blocks, 
Flo~r of Control, and storage Alloca-
tion." 

2. A RETURN statement cannot appear with­
in a begin block. 

)~unc1:ion : 

rhe C~LL statement invokes a procedure 
and causes control to be transferred to the 
specified entry point of that procedure. 

C,eneral format: 

C~LL entry-name 
I: (argument [, argument] ••• )] ; 

:3yntax rules: 

1. The entry 
point of 
invoked. 

name represents an entry 
the procedure that is being 

2. An argument can be any expression 
except a based variable, a built-in 
function name, an operational struc­
ture expression, or an operational 
array expression. Examples of valid 
arguments include minor structure 
namE~~S" label variables, entry names" 
pointer expressions, string constants~ 
array names, and file names. Note~ 

however, that if the attributes of an 
argument are not consistent with those 
of its corresponding parameter, no 
conversion is performed and an error 
will probably result. 

General rule: 

See Part 1" Chapter 10, n Subroutines and 
Functions" for detailed descriptions of the 
interaction of arguments with the paramet­
ers that represent these arguments in the 
invoked procedure. 

The CLOSE Statement 

Function: 

The CLOSE statement dissociates the 
named file from the data set with whiCh it 
was associated by a previous opening. It 
also dissociates from the specified file~ 
either INPUT or OUTPUT and PAGESIZE, if 
specified in the opening of that file. 
However, all attributes explicitly speCi­
fied for that file in a DECLARE statement 
remain in effE!ct. 

General format:: 

CLOSE FII,E(file-name) 
[,FILE(file-name)] •.. 

General rules: 

1. The -filE! name" in the FILE(file-name) 
specification indicates the file to be 
closed. Since more than one such 
specification can be given in a CLOSE 
statement:, more than one file can be 
closed by one CLOSE statement. 

2. A closed file can be reopened. 

3. ClOSing an unopened file~ or a pre­
viously closed file~ has no effect. 

4. If a file is not closed by a CLOSE 
statement:, it is automatically closed 
at the completion of the program in 
which it was opened. 

The DECLARE St:atement 

Function: 

The DECLARE statement is the principal 
method for explicitly declaring attributes 
of names. 

section J: Statements 197 



General format: 

DECLARE 
[level] identifier [attribute] ..• 
[J[level] identifier [attribute] ••• ] •.• ; 

Syntax rules: 

1. "Level" is a nonzero unsigned decimal 
integer constant. It can appear only 
in structure declarations; t.he major 
structure must have the level 1. A 
blank space must separate a level 
number from the identifier following 
it. 

2. In general~ attributes must immediate­
ly follow the identifier to which they 
apply (as shown in the general 
format). However J attributes common 
to several name declarations can be 
factored to eliminate repeated speci­
fication of the same attribute for 
many identifiers. Factoring is 
achieved by enclosing the involved 
declarations (non-common a·ttributes 
included) in parentheses and following 
this by the set of common a t .. tributes. 
In the case of a factored level num­
ber, the level number must pr"eced,= the 
parenthesized list (a blank. is not 
required between the factored level 
number and the left parenthesis). 
Dimension and file description attri­
butes cannot be factored. Factoring 
can be nested up to a level of eight. 
For examples of factoring 4 see 
"Factoring of Attributes" in Section 
I, "Attributes." 

General rules: 

1. A major structure identifier or an 
identifier not contained ~ithin a 
structure can be specified in only one 
DECLARE statement within a ~articular 
block. All attributes given explicit­
ly for that identifier must be 
declared together in that DECLARE 
statement. (Note~ however, that cer­
tain identifiers having the FILE 
attribute may be given the INPUT or 
OUTPUT attribute in an OPEN statement 
as well. See "The OPEN Statement" in 
this section and in Part I, Chapter 8, 
"Input and Output J " for further infor­
mation. ) 

2. Attributes of external names, in sep­
arate blocks and compilations 4 must be 
consistent. 

3. Labels may be prefixed to DECLARE 
statements (however, such labels are 
treated as comments anel, h,ence, have 
no meaning). Condition prefixes can-

198 

not be attached to a DECLARE state­
ment. 

4. File names must be explicitly 
declared" and the first attribute in a 
file declaration must be FILE. 

Function: 

The DISPLAY statement: causes a message 
to be displayed to the machine operator. 
An option allows the machine operator to 
reply. 

General format: 

DISPLAY (element-expression) 
[REPLY(character-string-element-variable)]; 

Syntax rule: 

The "character-string element variable" 
cannot be a pseudo-variable. 

General rules: 

1. Execution of the DISPLAY statement 
causes the element expression to be 
evaluated, and" where nE!cessary. con­
verted to a character string. This 
character string is the message to be 
displayed to the machine operator. 

For the D-compiler" it can be no more 
than 80 characters long. 

2. If the REPLY option is specified, the 
machine operator will respond with a 
message that is to be assigned to the 
character-string element variable 
specified in the option. The 0-
compiler does not restrict the length 
of the reply; however~ the character 
string variable, like any other 
character stringJ cannot exceed 255 
characters. 

3. If the REPLY option is not specified J 

execution continues uninterrup·ted 
after the execution of the DISP:LAY 
statement. 

4. If the REPLY option is specifiedJ 

execution of the program is suspended 
until the operator's reply has been 
completed. 



r---------------------------------------------------------------------------------------, 
I!~Q~_!.. DO; 
I 
I!~Q~_~. DO WHILE (element-expression); 
I 
I!~Q~_~. DO variable =specification [~specification] ••. ; 
I 
I ~here "specification" has the following form: 

I [TO expression2 [BY expreSSion3]] 
I expression1 [WHILECexpression4)] 
I BY expression3 [TO expression2] L ______________________________________________________________________________________ _ 

Figure ,][-2. General Format of DO Statement 

Function: 

rhe DO statement heads a DO-Group and 
can also be used to specify repetitive 
execution of the statements within the 
group. 

General formats: 

The three format types for the DO state­
ment are shown in Figure J-2. 

Syntax l:ules: 

1. In all three types~ the DO statement 
is used in conjunction with the END 
statement to delimit a DO-group. Only 
Type 1 does not provide for the itera­
tive ~~xecution of the statements with­
in the group. 

2. In Type 3, the "variable" must rep­
resent a single element; it cannot be 
subscripted. Arithme.tic variables are 
generally used~ but label, pointer, 
and string variables are allowed~ pro­
vided that the expansions given in the 
general rules belo~ result in valid 
PL/I programs. Note# however# that if 
"variable" is neither arithmetic nor 
bit string "expression2" and "expres­
sion3" must be omitted. 

3. Each expression in a specification 
must be an element expression. 

4. If "BY expression3" is omitted from a 
"specification~" and if pro expres­
sion2" is included, "expression3" is 
assumed to be 1. 

5. If "TO expression2" is omitted from a 
"specification~" iterative execution 
continues until it is terminated by 
the WHILE clause or by some statement 
within the group. 

6. If bo,th "TO expression2" and "BY 
expression3" are omitted from a speci­
fication it implies a single execution 
of the group~ with the control 
"variable" having the value of 
"expression1." This is true even if 
"WHILE expression4" is included. 

General rules: 

1. In Typ~:! 1" the DO statement only 
delimits the start of a DO-group; it 
does not provide for iterative execu­
tion. 

2. In Type 2# the DO statement d~limits 
the start of a DO-group and provides 
for iterative execution as defined by 
the following: 

LABEL: DO WHILE (expression); 
si:atement-l 

si:atement-n 
END; 

NEXT: st:a tement 
/*STATEMENT FOLLOWING THE DO 

GROUP*/ 

The above is exactly equivalent to the 
following expansion: 

LABEL: IF (expression) THEN; 
ELSE GO TO NEXT; 

st:atement-l 

st.atement-n 
GO TO LABEL; 

NEXT: st.atement 
/$STATEMENT FOLLOWING 

THE DO GROUP*/ 

3. In Type 3" the DO statement delimits 
the sta.rt of a DO-group and provides 
for cont.rolled i terati ve execution as 
defined by the following: 

Section J: Statements 199 



L~BEL: DO variable=expressionl 
TO expression2 BY exp~ession3 
WHILE (expression4); 

statement-l 

statemeni::-m 
[.~BELl : END; 
NEXT: statement 

rhe above is exact.ly equivalent: to the 
following expansion: 

L~BEL: el=expressionl; 
e2=expression2; 
e3=expression3; 
v=el; 

LABEL2:IF (e3>=0)&(v>e2) I (e3<0)&(v<e2) 
THEN GO TO NEXT; 

IF (expression4) THEN; 
ELSE GO TO NEXT; 

3tatement-l 

statement-·m 
L~BEL1:v=v+e3; 

GO TO L~BEL2; 
NEXT: statement 

In the above expansion el, e2, and e3 
are compiler-created work areas having the 
attributes of "expression14 " "expression2," 
and "expression3," respectively; y is 
synonymous with "variable." 

200 

a. The above expansl:on only shows the 
result of one "specification." If 
the DO statement contains more 
than one "specification," the 
statement labeled NEXT is the 
first statE~ment in the expansion 
for the next "speCification." The 
second expansion is analogous to 
the first expansion in every res­
pect. Thus, if a second ~specifi­
cation" appeared in the DO state­
ment the second expansj.on would 
look like this: 

NEXT: 

L~BEL3: 

LABEL4: 

NEXT1: 

e5=expression5; 

v=:e5; 
IF ••. THEN GO TO NEXT1; 
IF (expression8) rHEN; 

ELSE GO TO NEXrl; 
st.atement-l 

st.atement-m 
v=:v+e7 ; 
GO TO LABEL3; 
st.atement 

Note that statements 1 through m 
are not actually duplicated in the 
program. 

b. If the WHILE clause is omitted~ 
the') IF statemE~nt immediate~ly 
preceding statement--l in t.he 
expansion is omit1:ed. 

c. If "TO expression2" is omitted~ 
the statement e2:=expression2 a.nd 
the IF statemen1: identified by 
LABEL2 are omitted. 

d. If both "TO expression2" and 
"BY expression3" are omitted" a.ll 
statements involving E~2 and e3 f as 
well as the statement GO TO LABE,L2 
are omitted. 

4. The WHILE clause in Types 2 and. 3 
specifies that before each iteration 
of statement execution., the associated 
element expression is evaluated, and" 
if necessary" convE~rted to a bit 
string. If any bit in the resulting 
string is 1, the statements of t.he 
DO-group are executed.. If all bits 
are 0, then, for Type 2, execution of 
the DO-group is terminated, while for 
Type 3~ only the execution associated 
with the "specificat:ion" containing 
the WHILE clause is terminated; itera­
tive execution for the next "specifi­
cation#" if one exists~ then begins. 

5. In a "specification"." "expressionl" 
represents the initial value of the 
-control "variable"; "expression3" rep­
resents the increment to be added to 
the control variable after each execu­
tion of the statements in the grou.p; 
"expression2" represents the terminat­
ing value of the control "variable·." 
Execution of the statemen1:s in a DO 
group terminates for a "specification" 
as soon as the val ue of the con·trol 
"variable" is outside the range 
defined by "expressionl" and "expres­
sion2." When execution for the last 
"specification" is terminated, control 
passes to the statement following the 
DO-group. 

6. Control may transfel~ int:o a DO-group 
from outside the DO-group only if the 
DO-group is delimited by t:he DO state­
ment in Type 1; that is# only if 
iterative execution is not: specified. 
Consequently, iterative DO-groups can­
not contain ENTRY statements. 



Function: 

The ~ND statement terminates blocks and 
groups. 

General format: 

END [statement-Iabel-constant]; 

General rules: 

1. 

2 .. 

The END statement always terminates 
that group or block headed by the 
nearest preceding DO~ BEGIN~ or PROCE­
DURE statement for which there is no 
corresponding END statement. rhus, if 
a statement label constant follows 
END# it must be the label of such a 
DO# BEGIN, or PROCEDURE statement. 
Note that if END corresponds to a DO 
or BEGIN statement to which more than 
one label has been attached, the lapel 
following END must be the label 
immediately preceding the keyword DO 
or BEGIN. 

If control reaches 
for a procedure# it is 
RETURN ~tatement. 

an END statemen1: 
treated as a 

Function: 

rhe ENTRY statement specifies a secon­
dary entry point of a procedure. 

General format: 

entry-name: ENTRY[(parameter 
[Jparameter] .•• )] [attribute] ••. ; 

Synt:ax J:'ulE~s: 

1. The only attributes that may be speci­
fie!d with an ENTRY statement are thE~ 
arithmetic# string# PICTURE, and 
POINTER attributes. The ,attributes 
spe!cified determine the charac-­
teristics of the value returned by the 
procedure when it is invoked as a 
function at this entry point. 

2. A condition prefix cannot be specified 
for an ENTRY statement. 

3. The! ENTRY statement must have one and 
only one entry name appended to it. 

4. No more than 12 parameters can appeaJ::-

in an ENTRY statement (the sum total 
of all of the parameters in anyone 
procedure cannot exceed 12). 

General rules: 

1. The relationship established between 
the parameters of a secondary entry 
point and the arguments passed to that 
entry point is similar to that esta­
blished for primary entry point param­
eters and arguments. See Part 1# 
Chapter 10# "Subroutines and 
Functions" for a complete discussion 
of this subject. 

2. As stated in syntax rule 1, the attri­
butes specified with an ENTRY state­
ment determine the characteristics of 
the value returned by the procedure 
when it is invoked as a function at 
this entry point. The value being 
returned by the procedure (i.e.# the 
value of the expression in a RETURN 
statement) is converted, if necessary, 
to correspond to the specified attri­
butes. If the attributes are not 
specified at the entry point# default 
attributes are applied, according to 
the first letter of the entry name 
used to invoke the entry point. The 
data attributes of a secondary entry 
point (default or otherwise) must be 
exactly the same as those of the 
primary entry point if the procedure 
is used as a function procedure. 

3. The ENTRY statement must be internal 
to the procedure for which it defines 
a secondary entry point. It may not 
be internal to any block contained in 
this procedure; nor may it be within a 
DO group that specifies iterative exe­
cution. 

4. The parameters of a secondary entry 
point must be explicitly declared 
elsewhere in the block (i.e.# either 
in the parameter list of the PROCEDURE 
statement or in a DECLARE statement" 
or both). 

5. For the D-Compiler, the maximum length 
of an external name is six. There­
fore~ the entry name of an ENTRY 
statement internal to an external pro­
cedure cannot be longer than six. 

Function: 

The FORMA.T statement specifies a format 
list that can be used by edit-directed 

Section J: Statements 201 



transmission statements to control the for­
mat of the data being transmitted. 

General format: 

label: [label:] •.. FORMAT (forma.t-list); 

Synt:ax rules: 

1. The "format list" must be epecified 
according to the rules governing for­
mat list specifications with edit­
directed transmission as described in 
Part I, Chapter 8, "Input and output." 

2. At least one "label" must be epecified 
for a FORMAT statement. In general, 
one of the labels (or a label variable 
having the value of one of thE~ labels) 
is the statement label designator 
specified in a I'emote format item. 

General rules: 

1. A GET or PUT sta.tement may ir.cludie a 
remote format item., R, in tbe format 
list of an edit-directed data specifi­
cation. That portion of the format 
list represented by R must be supplied 
by a FORMAT statement identified by 
the statement label specified ~ith R. 
An R format item cannot appear in the 
format list of a. FORttlAT st:aternent. 

2. The remote format i tern and thE~ FORHAT 
statement must be internal to the same 
block. 

3. If a condition prefix is aesociated 
with a FORMAT statement, it must be 
identical to the condition prefix 
associated with the GET or Pl1r state­
ment referring to that FORMAT state­
ment. 

fo'unction: 

rhe GET statement. is a STREAM t.ranslIlis­
sian statement that can be used i~ either 
of the following ways: 

1. It can cause the assignment. of data 
from an external source (that is, from 
a data set) to one or more internal 
receiving fields (that is, t.O one or 
more variables). 

2. It can cause the assignment of data 
from an internal source (that is~ from 
a character-string variable) t.o one or 
more internal receiving fields (that 
is. to one or more variables). 

202 

General format: 

GET 
[

FILE (f ile-name) -, 
STRING(character-string-variable~ 

data-specification; 

Syntax rules: 

1. The "data specification" is as des­
cribed in Part I. Chapter 8, "Input 
and Output." 

2. The "data specification" must follow 
the FILE or STRING option" if either 
option is specified. 

3. The "character string variable" refers 
to the character string that is ·to 
provide the values to be assigned to 
the variables in the "data specifi­
cation." 

4. The "file name" is the name of a file 
that has been associated (by an impli­
cit or explicit opening) with the data 
set that will provide the values to be 
assigned to the variables in the "data 
specification." It must have the 
STREAM and INPUT attributes. 

5. If neither the FILE 
option appears, the 
input file is assumed. 

General rules: 

nor the STRING 
standard syst,em 

1. If the FILE option refers to an un­
opened file, the file is cpened impli­
citly. 

2. If the STRING option haE been speci­
fied, the internal GET operation 
always begins at the beginning of the 
specified string. If the number of 
characters in this st:r'ing is less than 
the total number of characters 
required by the variables in the "da·ta 
specification," the ERROR condition is 
raised. Note that the variables in 
the "data specification" do not have 
to be character string's; the internal 
assignment is the same as the trans­
mission from the stream to internal 
storage, the only difference being 
that the "character string variable" 
is considered to be the input stream. 



Function:: 

The GO TO statement causes control to be 
transferred. to the statement identified by 
the specified label. 

General format: 

{GO rO}{label-constant; } 

~~OTO element-label-variable; 

General I:-ules: 

1. If an "element label variable" is 
specified, the value of the label 
variable determines the statement to 
which control is transferred. Since 
the label variable may have different 
values at each execution of the GO TO 
stat:ement" control may not always pass 
to t:he same statement. 

2. A GO TO statement cannot pass control 
to an inactive block. 

3. A GO TO statement cannot transfer 
control from outside a DO group to a 
statement inside the DO group if the 
DO-group specifies iterative execu­
tio[~ unless the GO TO terminates a 
procedure invoked from within the DO­
group or unless the GO TO is an 
on-unit given control from ~ithin the 
DO-qroup. 

4. If a GO TO statement transfers control 
from within a block to a point not 
contained within that block, the block 
is terminated. Also, if the transfer 
point is contained in a block that did 
not directly activate the block being 
terminated all intervening blocks in 
the activation sequence are also 
terminated (see Part I, Chapter 6~ 
"Blocks, Flow of control, and Storage 
Allocation" for examples and details). 
When one or more blocks are terminated 
by a GO TO statement, conditions are 
reinstated and automatic variables are 
freed just as if the blocks had termi­
nated in the usual fashion. 

5. When a GO TO statement transfers con-
trol out of a procedure that has been 
invoked as a function, the evaluation 
of t.he expression that contained the 
corresponding function reference is 
diseon'tinued. 

6. If t,he GO TO statement is an on-unit" 
the specified label must be unsub-
script,ed. 

The IF Statement 

Function: 

The IF statement tests the value of a 
specified expression and controls the flow 
of execution according to the result of 
that test. 

General format: 

IF element-expression THEN unit-i 
[ELSE unit-2] 

Syntax rules: 

i. Each uni,t is either a single statement 
(except DO" END" PROCEDURE" BEGIR, 
DECLARE, FORMAT, or ENTRY) " a 00-
group~ or a begin block. 

2. The IF statement itself is not 
terminated by a semicolon; however~ 
each "unit" specified must be termi­
nated by a semicolon. 

3. Each "unit" may be labeled and may 
have a condition prefix. 

General rules: 

i. The element expression is evaluated 
and~ if necessary, converted to a bit 
string. When the ELSE clause (that 
is~ ELSE and its following "unit") is 
specified~ the following occurs: 

2. 

If any bit in the string is i, 
"unit-in is executed, and control 
then passes to the statement fol­
lowing the IF statement. If all 
bits in the string have the value 
O~ "unit-in is skipped and "unit-2" 
is e}{ecuted" after which control 
passes to the next statement. 

When the ELSE clause is not specified# 
the following occurs: 

If any bit in the string is i# 
"unit-in is executed, and control 
then passes to the statement fol­
lowing the IF statement. If all 
bits are 0, "unit-in is not execut­
ed and control passes to the next 
statem,ent. 

Each "unit" may contain statements 
that specify a transfer of control 
(e. g. , GO TO); hence, the normal 
sequence of the IF statement may be 
overr iddEm. 

IF statements may be nested; that is, 
either "unit," or both, may itself be 
an IF statement. Since each ELSE 

Section J: Statements 203 



clause is always associated with the 
innermost unmatchej IF in the same 
block or DO-group, an ELSE with a null 
statement may bE~ required to specify a 
desired sequence of control. 

3. A condition prefix to the IF statement 
itself applies to "element expression" 
only. 

Function: 

:rhe LOCATB statement is a RECORD trans­
mission statement that can be used only for 
output files having the BUFFERED attribute. 
It allocates storage for a based variable 
in an output buffer to allow the creation 
of a record for that based variable. The 
record is created by assigning values to 
the based variable within the buffer. The 
rec:)rd is not transmitted to the external 
medium until immediately before the next 
~RrrE., LOCATE" or CLOSE statertlt?nt (or 
implicit close operation) is eXE!cuted for 
the specified file. 

General format:: 

LOCATE based-variable FILE(file-name) 
SET(pointer-variable); 

Syn"cax rules: 

1. The FILE and SET 
appear in the 
general format. 

specifications 
order shown in 

must 
the 

2. The based variable must be an unsub­
scripted--baseej"-variable that~ is not a 
minor structure or an elemE!nt of a 
structure. 

3. The ~Qi!!~~!".. __ y~~riaQ!g must De a sub­
scripted or unsubscripted element 
pOinter variable. 

The file name is the name of a file 
that--~as-5een associated (by opening) 
with the data set that will eventually 
receive the record. The file must 
have the SEQUENTIAL~ OUTPUT~ and BUF­
FERED attributes. 

General rules:: 

t. The based variable is used, for 
variable-length records, to ietermine 
the length of the record. ~hen the 
LOCATE statement is executed# the 
pointer variable in the SET specifi­
cation is set to ijentify the location 
in the buffer at which tne based 
variable is to be allocated. 

204 

2. The record identified by the based 
variable is written out of the buffer~ 
and into the output file p immediately 
before the next WRITE, LOCATE, or 
CLOSE operation (implicit or explicit) 
for that file. For blocked records .• 
the record is not written until the 
whole block is completed. Note that 
the length of the record identified by 
the based variable must be evenly 
divisible by 8, for fixed-length 
records# and must yield a remainder of 
4 after division by 8, for variable­
length records. 

3. The FILE specification must refer to a 
previously opened file. 

The Null Statement 

Function: 

The null statement caUSE~S no action and 
does not modify sequential staternE!nt 
execution. 

General format: 

[label: ] .•• ; 

The ON Statement 

Function: 

The ON statement specifie:3 what action 
is to be taken (programmer-defined or 
standard system action) whl?n a.n interrupt 
results from the occurrence of the speci­
fied exceptional condition. 

General format: 

ON condition{SYSTEM;lon-wlit} 

Syntax rules: 

1. The condition 
described in 
tions." 

may ble 
section 

any 
H 

of those 
"ON-Condi-

2. The "on-unit" represents a programmer­
defined action to be taken when an 
interrupt results from the occurrence 
of the specified "condition." It can 
be either a single unlabeled GO TO or 
null statement. 

3. Since the "on-unit" itself requires a 
semicolon, no semicolon is shown for 
the "on-unit" in th'e general format. 



However, the word SYSTEM must be 
followed by a semicolon. 

General rules: 

1. The ON statement determines how to 
handle an interrupt that has occurred 
for the specified condition. Whether 
the interrupt is handled in a standard 
system fashion or by a programmer­
supplied method is determined by the 
action specification in the ON 
statement~ as follows: 

a. If the action specification is 
SYSTEM~ the standard system action 
is taken. The standard system 
action is not the same for every 
condition~ although for most con­
ditions the system simply prints a 
message and raises the ERROR 
condition. Section H, 
"ON-Conditions" gives the standard 
system action for each condition. 
(Note that the standard system 
action is always taken if an 
interrupt occurs and no ON state­
mep~ for the condition is in 
effect.) 

b. If the action specification is an 
"on-unit," the programmer has sup­
plied his own interrupt-handling 
action, namely, the action defined 
by the statement in the on-unit 
itself. The on-unit is not exe­
cuted when the ON statement is 
executed; it is executed only when 
an interrupt results from the 
occurrence of the specified 
condition (or if the interrupt 
results from the condition being 
raised by a SIGNAL statement). 

2. The action specification (i.e., 
"on-unit" or SYSTEM) established by 
executing an ON statement in a given 
block remains in effect throughout 
that block and throughout all blocks 
in any activation sequence initiated 
by that block, unless it is overridden 
by the execution of another ON state­
ment or a REVERT statement, as fol­
lows: 

a. If a later ON statement specifies 
the same condition as a prior ON 
statement and this later ON state­
ment is executed in a block that 
lies within the activation 
sequence initiated by the block 
containing the prior ON statement~ 
the action specification of the 
prior ON statement is temporarily 
suspended~ or stacked. It can be 
restored either by the execution 
of a REVERT statement, or by the 

termination of the block contain­
ing the later ON statement. 

b. If the later ON statement and the 
prior ON statement are internal to 
the same invocation of the same 
block, the effect of the prior ON 
stabement is completely nullified. 

3. The label of a GO TO statement on-unit 
must be known within the block in 
which the ON statement for that on­
unit is executed. (Remember that an 
ON statement is executed as it is 
encountered in statement flow; 
whereas# the action specification for 
that ON statement is executed only 
when the associated interrupt occurs.) 

4. The file name of an input/output 
condition must be known within the 
procedure or begin block to which the 
ON statement specifying the condition 
is internal. 

5. A condition raised during execution 
results in an interrupt if and only if 
the condition is !g~~!~~ at the point 
where it is raised. 

a. The SIZE condition is disabled by 
default. All other conditions are 
enabled by default. 

b. The enabling and disabling of 
OVER]~LOW, FIXEDOVERFLOW, UNDER­
FLOW, ZERODIVIDE, CONVERSION, and 
SIZE, can be controlled by 
condition prefixes. 

Function: 

The OPEN statement 2Q!g~ a file by 
associating a filename with a data set. It 
also can complete the specification of 
attributes for the file, if a complete set 
of attributes has not been declared for the 
file being opened. 

General format:: 

OPEN FILE(file-name) options-group 
[~FILE(file-name) options-group] ••. ; 

where "options-group" is as follows: 

[INPUTIOUTPUT] 
[PAGESIZE~ (element-expression) ] 

Section J: Statements 205 



Syntax rules: 

1. The INPUT or OUTPUT option can be 
specified in an OPEN statement only 
for an UNBUFFERED file. If it is not 
specified in the OPEN statement# then 
the corresponding INPUT or OUTPUT 
attribute must have been specified in 
the DECLARE statement for the file. 
INPUT or OUTPUT cannot be specified in 
both the OPEN and DECLARE statements. 

2. The FILE specification must appear 
first. 

3. The "file name" is the name of the 
file that is to be associated with a 
data set. Several files can be opened 
by one OPEN statement. 

General rules: 

1. The opening of an alread~r open file 
does not affect the file. In such 
cases J any expressions in the "options 
group" are evaluated, but the}' are not 
used. 

2. The PAGESIZE option can be specified 
only for a filE~ having the STREAM and 
PRINT attributes. The elE?ment; expres­
sion is evaluated and converted to an 
integer" which represents the maxiulum 
number of linE~s to a page.rhis 
integer must be greater than zero and 
le~>s than 256. Durinq subsequent 
transmission to the PRINT filE!, a new 
page may be started by use of the PAGE 
format it.em or by an option in the PUT 
statement. For the D-Compiler, if 
PAGESIZE is not specified, the default 
is defined by the installation­
specified system limit. 

3. When a PRINT file 
page is started. 

Function: 

is opened" a new 

The PROCEDURE sta.tement has thl~ follow­
ing functions: 

• It heads a procedure. 

• It defines the primary entry ?oint to 
the procedure. 

• It specifies the parameters, if any, 
for the primary entry point. 

• It may specify certain special charac­
teristics that a procedure can have. 

206 

• It specifies the attributes of the 
value that is returned by the procedure 
when it is invoked as a function at it.s 
primary entry point. 

General format: 

entry-name: PROCEDURE[(parameter 
[,parameter] .•• )] 

[OPTIONS(option-list)] 

[data-attributes]; 

where" for the D-Compiler, "option list" is 
defined as: 

MAIN [, ONSYSLOG] 

Syntax rules: 

1. The" data attributes" rE~present the 
attributes of the value returned by 
the procedure when it is invoked as a 
function at its primary entry point. 
Only arithmetic# string, PICTURE, and 
POINTER attributes are allowed. 

2. OPTIONS is a special procedure speci­
fication. It and the "data 
attributes" may appE~ar in any order 
and are separated by blanks. OPTIONS 
can and must be specified for only one 
external procedure in the program. 

3. One and only one entry name must 
appear on a PROCEDURE stat:ement. 

4. The sum total of different parameters 
that can be specified for one proce­
dure (including any specified in ENT'RY 
statements) cannot exceed 12. 

General rules: 

1. When the procedure is invoked# a rela­
tionship is established between the 
arguments passed to i:he procedure and 
the parameters that repJ:::-esent those 
arguments in the invoked procedure. 
This topic is discussed in Part I, 
Chapter 10, "Subrout.ines and Func­
tions." 

2. The OPTIONS specification can be used 
only for an external procedure. ']~he 
MAIN option specifies tha-c. this proc:p­
dure is the initial p:rocedure and will 
be invoked by the operating system as 
the first step in the execution of t~he 
program. The ONSYS:LOG option spec:i­
fies that all output resulting from 
actions derived from ON conditions 
will go on the system log. No other 
options are permitted. If both are 
specified, lw"lAIN mus·t af?pear first~. 
The procedure declared with the 
OPTIONS attribute remains active for 



the duration of the program and hence 
cannot be called by other procedures. 
For the D-Compiler, one and only one 
external procedure must have the 
OP~['IONS (MAIN) designation. 

3. The "data attributes" specify the 
att.ributes of the value returned by 
the procedure when it is invoked as a 
function at its primary entry point. 
The value specified in the RETURN 
statement of the invoked procedure is 
converted to conform with these attri­
butes before it is returned to the 
invoking procedure. 

If "data attributes" are not speci­
fied, default attributes are supplied. 
In such a case, the name of the entry 
point (the entry name by which the 
procedure has been invoked) is used to 
determine the default base, scale, and 
precision. 

4. The entry name of an external proce­
dure is an external name and as such 
is restricted by the D-compiler to a 
maximum length of six. 

Function: 

The PUT statement is a STREAM transmis­
sion statement that can be used in either 
of the following ways: 

1. It can cause the values in one or more 
internal storage locations to be 
transmitted to a data set on an exter­
nal medium. Related to this, it can 
control the format of a PRINT file. 

2. It can cause the values in one or more 
internal storage locations to be 
assigned to an internal receiving 
field (represented by a character­
string variable). 

GenE~ral format: 

pu:r IFIl.,E (file-name) 1 
~TRING (character-string-variableU 

~
AGE[LINE(element-expreSSiOn)]J 

SKIP[(element-expression)] 
LINE (element-expression) 

[data-specification]; 

Synt.ax l~ules: 

1. If neither the FILE nor STRING option 
appears, the standard system output 
file is assumed. 

2. The FILE option specifies transmission 
to a data set on an external medium. 
The file name in this option is the 
name of the file that has been 
associated (by implicit or explicit 
opening) with the data set that is to 
receive the values. This file must 
have thE~ OUTPUT and STREAM attributes. 

3. The STRING option specifies transmis­
sion from internal storage locations 
(represented by variables or expres­
sions in the "data specification") to 
a character string (represented by the 
"charact:er string variable") • The 
"character string variable" cannot be 
a pseudo-variable. 

4. The "data-specification" option is as 
described in Part I~ Chapter 8# "Input 
and Output." 

5. If the FILE or STRING option appears~ 
it must: be the first option. If the 
data-specification appears, it must be 
the last: option. A minimum of either 
the PAGE" LINE" SKIP, or "data 
specification" must appear. 

General rules: 

i. If the FILE option is specified# and 
the "file name" refers to an unopened 
file, the file is opened implicitly. 

2. If the STRING option is specified, the 
PUT opE!ration begins assigning values 
to the beginning of the string (that 
is, at the left most character 
position), after appropriate conver­
sions have been performed. Blanks and 
delimiters are inserted as usual. If 
the string is not long enough to 
accomodate the data~ the ERROR 
condition is raised. Note that the 
variables in the "data specification" 
do not have to be character strings; 
the internal assignment is the same as 
the transmission from internal storage 
to the streamJ the only difference 
being that the "character-string 
variable" is considered to be the 
output stream. 

3. The opt;ions PAGE, SKIP, and LINE can 
be given only for PRINT files. If 
specified, they take effect before the 
transmission of the values defined by 
the "data specification" takes place. 
If PAGE: and LINE are specified in the 
same PU'l' statement, PAGE takes effect 
before I,INE. 

4. The PAGE option causes a new current 
page to be defined within the data 
set. If a "data specification" is 
present" the transmission of values 
occurs after the definition of the new 

section J: Statements 207 



page. A new current page implies line 
1. 

5. The SKIP option causes a new current 
line to be defined for the data set. 
The "element expression," if present# 
is converted to an integer, w which 
must be greater than or equal ~o 0 and 
less than or equal to 3. If w is 
greater than zero, w-1 blank lines are 
created# and the new current line is w 
plus the line value for the old cur= 
rent line. If w is equal to zero, the 
effect is that of a carriage re'turn, 
with the current line remainlng con­
stant; characters previously written 
will be overprinted. If "element 
expression" is not present, ~ is 
assumed to be 1. If less than w lines 
remain on the current page (where the 
number of lines on the current page is 
determined by the PAGESIZE option of 
the OPEN statement or by default), the 
ENDPAGE condition is raised. 

6. The LINE option causes a new current 
line to be defined for the data set. 
The "element expression" is converted 
to an integer~. The new current line 
is set equal to w, and blank lines are 
inserted betwee~ the old current line 
and the new current line. However r if 
~ is less than or equal to the old 
current line, or if ~ exceeds the 
number of lines on the current page 
(see the PAGESIZE option description 
in the OPEN statement), the END PAGE 
condition is raised. If w is less 
than or equal to zero, it is assumed 
to be 1. 

Function: 

Ihe READ statement is a RECORD transmis­
sion statement that transmits a record fron. 
an INPUT or UPDATE file to a va~iable in 
internal storage. 

General format: 

READ FILE(file-name) 

{

INTO (variable) "t 
SET (POinter-variable~( 
[KEY (element-expressicn)]; 

Synt.ax rules: 

t. The FILE specification must appear 
first. INTO or SET must be specified. 

208 

2. The "file name" is the name 
file from which the record is 
read. This file must have the 
attribute and must also :h.ave 
the INPUT or UPDATE at'tributes. 

of the 
to be 
RECORD 
either 

3. The variable of the IN'ro option is the 
variable into which the record is to 
be read. It must be an uasubscripted 
variable not contained in a structure. 
It cannot be a label variable or a 
parameter and it cannot have the 
DEFINED attribute. 

General rules: 

1. The file appearing in the FILE speci­
fication must have been opened pre­
viously. 

2. The KEY option must appear if the file 
has the DIRECT attribute. The 
"element expression" is the key that 
determines which record will be read. 
(See Part I, Chapter 8# "Input and 
Output" for a discussion of keys.) 
The KEY option cannot appear for a 
SEQUENTIAL file. 

3. The SET option cannot be specified for 
files having the UNBUFFERED or DIRECT 
attributes. This option specifies 
that the record is to be read into a 
buffer and the "pointer variable" is 
to be set to point to the location of 
that record within the buffer. The 
description of the record is deter­
mined by a based variable associated 
with that pOinter variable. The value 
of the pointer variable is valid until 
the next READ statement is executed or 
until the file is closed. 

The RETURN Statement 

Function: 

The RETURN statement terminates execu­
tion of the procedure to which the RETURN 
statement is internal# and returns control 
to the invoking procedure. It may also 
return a value to the invoking procedure. 

General format: 

RETURN [(element-expressicn)]; 

General rules: 

1. If the "element expression" is not 
specified, the RETURN statement can 
only terminate a procedure that has 
not been invoked as a function. When 
such a statement is executed, cont.col 



is returned to the invoking procedure 
at the point logically following the 
point of invocation. If a RETURN 
statement is executed in the initial 
procedure, program execution is termi­
naic.ed. 

2. If the "element expression" is speci­
fied, the procedure terminated by this 
statement must be a function proce­
dure. When such a statement is exe­
cuted# control is returned to the 
invoking procedure at the point of 
invocation; the value returned to this 
point~ is the value of the "element 
expression." If this value does not 
conform to the explicit or default 
attributes specified for the procedure 
being terminated, the value is con­
verted to these attributes before it 
is actually returned. 

3. The RETURN statement cannot appear 
within a begin block. 

Function: 

rhe REVERT statement nullifies the 
effect of the current action specification 
for the specified condition only if the 
current action specification is the result 
of an ON statement executed within the same 
invocation of the block in which the REVBRT 
statement is executed. When this is true# 
the action specification that was in effect 
for the specified condition when the block 
containing the REVERT statement was invoked 
is re-established and once again takes 
effect .. 

General format: 

REVERT condition; 

Syntax rule: 

rhe "condition" is any of those des­
cribed in section H~ "ON-Conditions." 

General rule: 

rhe execution of a REVERT statement has 
the effect described above only if (1) an 
ON statement, specifying the same condition 
and internal to the same block, was execut­
ed after the block was activated and (2) 
the eXE~cution of no other similar REVERT 
statement has intervened. If either of 
these t.wo conCiitions is not met, the REVERT 
statement is treated as a null stat~ment. 

The REWRITE ~statement 

Function: 

The REWRI'rE statement can be used only 
for update files. It replaces an existing 
record in a data set. 

General format: 

REWRITE FILE (file-name) [FROM(variable) 
[KEY (element-expression)]]; 

Syntax rules: 

1. The FILE specification must appear 
first. KEY cannot be specified with­
out FROM. 

2. The "file name" is the name of the 
file containing the record to be rew­
ritten. The file must have the UPDATE 
attribute. 

3. The "variable" in the FROM option 
represents the record that will 
replace the existing record in the 
specified file. It must be an unsub­
scripted variable; it cannot be con­
tained in a structure; it cannot be a 
parameter; and it cannot have the 
DEFINED attribute. 

General rulE!s: 

1. The file whose name 
FILE specification 
opened previously. 

appears in the 
must have been 

2. The KEY option must appear if the file 
has the DIRECT attribute; it cannot 
appear otherwise. The element­
expression is converted to a character 
string. This character string is the 
source key that determines which 
record is to be rewritten. 

3. The FROM option must be specified for 
UPDATE files having either the DIRECT 
attribute or both the SEQUENTIAL and 
UNBUFFERED attributes. 

4. The FROM option can be omitted only 
for update files having the SEQUENTIAL 
and BUJ~FERED attributes. When this is 
the case, the record rewritten is the 
record in the buffer. Hence, this 
record must be the last record that 
was read and it should have been read 
by a Rl~AD statement with a SET option. 
(The rlecord will be updated by whatev­
er assignments were made to it in the 
buffer.) If it was read by a READ 
with an INTO option# the record would 
be rewritten unchanged. 

section J: Statements 209 



Funct~ion : 

rhe SIGNAL statement simulatE?s the occu­
rence of an interrupt. It may be used to 
test the current action specificati.on for 
the associated condition. 

General format: 

SIGNAL condition; 

Syntc.x rule: 

The "condition" is anyone cf those 
described in Section H, "ON-Conditicns." 

General rules: 

1. When a SIGNAL statement is executed, 
it is as if the specified condition 
has actually occurred. sequential 
execution is interrupted and control 
is transferred to the current on-unit 
for the specified condition. If the 
on-unit is a null statement# control 
normally returns to the statement 
immediately following t.he SIGNAL 
statement. 

2. If the specified condition is disa­
bled. no interrupt occurs, and the 
SIGNAL statement becomes equivalent to 
a null statement. 

3. If there is no current on-unit for the 
specified condition, then the standard 
system action for the condition is 
performed. 

Function: 

'rhe STOP statement causes immediate tE~r­
mination of the program in which it is 
executed. 

General format: 

STOP; 

210 

Function: 

The WRITE statement is a RECORD trans­
mission statement that transfers a record 
from a variable in internal storage to an 
OUTPUT or UPDATE file. 

General format: 

WRITE FILE (file-name) FROM (variable) 
[KEYFROM(element-expression)]; 

Syntax rules: 

1. The FILE specification must appear 
first. 

2. The "file name" specifies the file in 
which the record is to be written. 
This file must be a RECORD file that. 
has either the OUTPUT attribute or the 
DIRECT and UPDATE attributes. 

3. The "variable" in the FROM specifi­
cation contains the record to be writ-­
ten. It must be an unsub~cripted 

variable; it cannot be contained in a 
structure; it cannot be a parameter; 
and it cannot have the DEFINED attri­
bute. 

4. The KEYFROM option must be specified 
for DIRECT files; it cannot be speci­
fied otherwise. 

General rules: 

1. The file must have been opened pre­
viously. 

2. If the KEYFROM option is specified~ 
the "element expression" is the source 
key that specifies the relative loca­
tion in the data set where the record 
when it is written. (See Part I, 
Chapter "8" "Input and OU"tput" for a 
discussion of source keys.) 



rhis section provides definitions for 
m~st of the terms used in this publication. 

access: the act that encompasses the ref­
~i~~~~-to and retrieval of data. 

~~£!.~!!._:~~12~~~f!.~~£~Q!!-=- in an ON statement" 
the on-unit or single keyword SYSTEM" ei th­
er of which sp~cifies the action to be 
taken whenever an interrupt results from 
the raising of the named condition. 

activation: institution of execution of a 
5r~~~~--i-~rocedure block is activated when 
it is invoked at any of its entry points; a 
begin block is activated when it is encoun­
tered in normal sequential flow. 

active: the state in which a block is said 
E~-5~-ifter activation and before termina­
tion. 

~~g:!.!:!.y~~ ___ ~!:!:~!'Q!!£~§,-=- file attributes for 
which there are no defaults and which~ if 
reguired~ must always be stated explicitly. 

address: a specific storage location at 
;~I~~-;-data item can be stored. 

all~cated variable: a variable with which 
stc;iage:-~as-been-associated. 

all~cation: the association of 
;iT~-a-·viriable • 

storaqe 

~!.Q!:!~Q§~£~~~ __ ~!!~~~~£~~.!.. any of the charac­
ters ~ through Z and the alphabetic exten­
ders #, $, and @. 

~!.E~!!~~~~~i~~ __ ~!!~~~~£~~.!.. an alphabetic char­
acter or a digit. 

alternative attributes: file attributes 
thiit-m~ly-i;e-chosen-from -groups of two or 
m~re alternatives. If none is specified. a 
default is assumed. 

~~~l!:!~~~!:!::.!.. an expression, file name, state­
ment label constant or variable, or entry
name passed to an invoked procedure as part
of the procedure reference. It cannot be a
built-in function name or a based variable.

arithmetic conversion: the transformation
;f--i-~:;irue-from-one-ari thmetic representa­
tion to another arithmetic representation.

arithmetic data: data that has the charac­
t~r[strcs--of--Ease, scale, and precision.
It includes coded arithmetic data and
numeric character data.

2!~CTION K: DEFINITIONS OF TERMS

arithmetic~)erators: any of the prefix
operators, + and -. or the infix operators~
+, -, *, I, and **.

~EE~Y..!.. a named, ordered collection of data
elements. all of which have identical
attributes. An array has dimensions, and
elements tha~t are identified by subscripts.

~§.§.!.g!!~£.!.. giving a value to a variable.

attribute: a descriptive property asso­
ciated with a name or expression to des­
cribe a characteristic of a data item or a
file that the name may represent.

autQmatic storage: storage that is allo­
cated at the activation of a block and
released at the termination of that block.

Q~~~.!.. the number system in terms of which
an arithmetic value is represented. In
PL/I" the base is binary or decimal.

based variable: a variable declared to
hive the-SASED-(pointer-variable) attribute
specification. The pOinter variable asso­
ciates the description with an allocation
of storage.

Q~~n bloc~.!.. a collection of statements
headed by a BEGIN statement and ended by an
END stateme'nt that delimits the scope of
names and is activated by normal sequential
statement flow. It controls the allocation
and freeing of automatic storage declared
in that block.

Q~!!~Err thE! number system based on the
value 2.

bi£-=- a binary digit, either 0 or 1

bit string:: a string of one or more bits.

Qi£=§.tring~~Q~E~ior~l. any of the operators
1 (not>, & (and), and I (or).

QQ!:!!!d:
sion.
be 1.

a begin block or a procedure block.

the upper limit of an array dimen­
The lower limit is always assumed to

Qufferl. an intermediate area., used in
input/output: operations, into which a
record is read during input and from which
a record is written during output.

built-in function: one of the PL/I-defined
functions.

section K: Definitions of Terms 211

~~!!..!. the invocation of a subrolltin€~ by
means of the CALL statement.

~h~~~~~~~_~~~!~g.!. A string composei of one
or more characters from the data character
set.

codej arithmetic data: arithmeti: data
whose--characteristic;s--are given by the
base, scale, and precision attzibutes. The
type,s for System/360 are packed decimal,
binary full words, and hex,:ldecimal
floating-point ..

~Q~r.!!~~!l!:..!. a string of characters, Ul):ed for
documentation, which is preceded by /* and
terninated by */ and which is treat~ed as a
blank.

~:'2~f2~!~!~Q!l __ Qe~~~.!:.Q~~~~ the opera t.ors 1 < <
<= 1:: = >= > , >

~:'2f!!e;l!~ __ ~!!.!!~.!. the t.ime during vvhich a
source program is translated in·to an object
m::>d1.l1e.

£Q.~!2.;I:..!..~!:..!. a t.ranslat:or tnat converts a
source program into an object module.

~Q.!!f2S!~!lQ._~~~~~!!!~!l!:.l a statemen1: that con­
tains other statements. IF and ON are the
only compound statements.

~Q!!£~~~~!!~~!Q!:!l the operation that connects
tw::> ~;trings in the orjer indicated thus
forming one string whose length is equal to
the sum of the lengths of the t.wo ~;trings.
It is specified by the operator I I.

£QQ:!t.!:.!Q!:!_!:!~!!!~l a language kE~yword that
represents an exceptional conditi,on that
might arise during execution of a program.

£Q.r!.;!t~!Q.!l __ !2.~~fi~l a parenthesized list of
one or more condition names prefixe:5: to a
statement by a colon. It determines wheth­
er 2r not the program is to be interrupted
if one of the specified conditions occurs
within the scope of the prefix. C:ndition
nanes within the list are separ3ted by
commas.

constant: an arithmetic or stri1g data
item-that does not have a name; a statem(;nt
label.

contained in: all of the text of a block
~ic~~t--th~--entry names of that block. (A
label of a BE::iIN statement is not contained
in the begin block defined by that state­
ment.)

contextual declaration: the association of
att~I5~tes--wlt~-a~-I~entifier according to
the context in which the identifier
appears. Only entry names can be contex­
tually declared.

212

conversion: the transformation of a value
from one representation to another.

data: representation of information or of
value.

data character set: all of t::lose charac-­
terswhose -bit configuration is recogniz€~d
by the computer in use.

data item: a single unit of data; it is
synonymous-with "element."

data list: a list of expressions used in a
STREAM input/output specification that rep­
resent storage areas to which data items
are to be assigned during input# and from
which data items are to be writ~en~ during
output. (On input, the list may contain
only variables.)

~~!:.~~~~.:... a collection of data external t.o
the program.

Q~~~seecification: the por1::ion of an
edit-directed data transmission statement
that specifies the mode of ·transmission
(EDIT) and includes the data list and the
format list.

decimal: the number system based on ·the
valuelO.

declaration: the association of attributes
wIth--an Identifier explicit~ly, contextual­
ly, or implicitly.

default: the alternative assumed when an
Identifier has not been elecle,red to have
one of two or more alternative attributes.

delimiter: any valid special character or
combination of special characters used to
separate identifiers and constants# or
st~tements from one another.

<.!i!.!!~!l~io!l~li:9:.:... 1:he number of bound speci­
fications associated with an array. It
cannot be greater than threE.

disabled: the state in which the occur­
rence of a particular condition will no·t
result in a program interrupt.

QQ::.9.!:.oue.:... a sequence of statements headed
by a DO statement and closed by its corres­
ponding END statement.

9.~!!!~L_~!:.9.um~!!t: a compiler-assigned vari-­
able for an argument that has no
progra~ner-assigned name.

edit-directed transmission: STREAM trans­
mIssion;5oth-a~ata list-and a format lisit
are specified.

element: a single data item as Dpposed to
a---collection of data items, such as a

structure or an array.
"scalar item.")

(sometimes called a

element variable: a variable that can rep­
resent-(;~nly-a-single value at anyone point
in ·time ..

~~~~1g~~ that state in which the occur­
rence of a particular condition will result 
in a program interrupt. 

g~t~Y __ ~~m~l a label of a PROCEDURE or 
ENrRY s1:~atement. 

~~!::~Y_Q~~~!.!!!:.l a point in a procedure at 
which it may be invoked by reference to the 
entry name. (See Q;:!.m~IT_g!!t!:'Y_QQ!.!!t and 
§~2Q!!~~~Y_~!!t!:'Y_QQ!'!!!:.·) 

~Q!.lQg~~l those processes which occur at 
the termination of a block. 

~~2~~t!'Q!!~1 ____ 2Q!!~!'~!'Q!!l an occurrence, 
which can cause a program interrupt, of an 
unex:pect~ed situation, such as an overflow 
error~ or an occurrence of an expected 
situation, such as an end of file, that 
occurs at an unpredictable time. 

~~Q1!.2!.i __ ~g~1~!:.~t!'Q!!l the assignment of 
attributes to an identifier by means of the 
DECLARE statement, the appearance of the 
identifier as a label, or the appearance of 
the identifier in a parameter list. 

~~QQ~g~:~:_iQf __ flQ~t!'!!~Q!.!!t_~Q!!~~~!!t2.l a 
decimal integer constant specifying the 
power to which the base of the floating­
point number is to be raised. 

~~Q!:.g~~j:.Q!!l the representation of a value; 
examples are variables and constants 
appearing alone or in combination with 
operators, and function references. The 
term "expression" refers to an element 
expression~ an array expressionJ or a 
structure expression. 

~~t~!:.naJ~_S!§:21~;:at!'Q!!!' an explicit or con­
textual declaration of the EXTERNAL attri­
bute for an identifier. Such an identifier 
is known in all other blocks for which such 
~_~~21~!~§!t!'Q!!_~~!.~t~· ---------------

external name: an identifier which has the 
ii~i~~~~-aftrIbute. 

~~t~;:!!~~~_E;:Q2g~!!;:§:!. a procedure that is 
not contained in any other procedure. 

f!.~1~ __ {!.!!. __ ~h~_~~t~_str§:~!!!2..!.. that portion 
of the data stream whose width" in numb€~r 
of characters~ is defined by a single data 
or spacing format item. 

!.!.~.1~ ___ ~Q~. __ ~ __ Q!.2t!!;:§: __ ~Q§:2if!'~~~!'Q!!2..!.. a 
character-string picture specification or a 
portion (or all) of a numeric charact€~r 

picture specification. If more than one 
field appears in a single specification, 
they are divided by the K or E exponent 
character for floating-point data or the M 
field-separator for sterling data. Only 
one field can appear in a fixed-point 
specification. 

fil§:!. a symbolic representation J within a 
program, of a data set. 

file name: a symbolic name used within a 
program to refer to a data set. 

format item: a specification used in edit­
directed -tJ:-ansmission to describe the 
representation of a data item in the stream 
or to control the format of a printed page. 

format list: a list of format items 
requIred-for--an edit-directed data specifi­
cation. 

f~!!£tiQn: a procedure that is invoked by 
the appearance of one of its entry names in 
a function reference. 

function reference: the appearance of an 
entry-nameiil an --expression, usually in 
conjunction with an argument list. 

g!:.ouQ.!.. a DO group. 

identifier: a string of alphameric and 
break characters~ not contained in a com­
ment or constant, preceded and followed by 
a delimiter and whose initial character is 
alphabetic. 

imQl!.cit __ ~iecl~!:~tio!!.!.. association of 
attributes with an identifier used as a 
variable without having been explicitly or 
contextually declared; default attributes 
apply# depending upon the initial letter of 
the identifier. 

inactive block: a procedure or begin block 
that has not been activated or that has 
been terminated. 

i!!f!'~QQ§:ratqr.!.. an operator that defines 
an operation between two operands. 

initial Qrogedure: an external procedure 
whose PROCEDURE statement has the OPTIONS 
(MAIN) attribute. Every PL/I program must 
have an initial procedure. It is invoked 
automatically as the first step in the 
execution of a program. 

input/outQut: the transfer of data between 
an external medium and internal storage. 

internal block: a block that is contained 
wIthIn-anoth'er-block. 

internal name: an identifier that has the 
INTERNAL attribute. 

Section K: Definitions of Terms 213 



i!!~~~!l!!!._Q.~Q~~~~~~.~ a procedure that is 
contained in another block. 

internal to: all of the text cont~ined in 
a--t;lock--except tha·t text contained in 
another block. Thus the text of an inter­
nal block (except for its entry nanes) is 
gQ~ internal to the containing block. 
~Q~~~ An entry name of a block is not 
~QQ~~i!l~~_iQ that block. 

iQ~~~~~Q.t! the suspension of norm~l pro­
gram activities as the result of the occur­
rence of an enabled condition. 

i!!~~~~! to activate a procedure at one of 
its entry points. 

if!:Y~~~~_p'~Q~~~!~~~:'" a procedure t::J.at. has 
been activated at one of its entry points. 

i~~~~iQg ___ ~!Q~~! a block containing a 
stat<ement that activates another block. 

it~~~~tiQQ_~!!~t~~~! an expression tha.t E;pe­
cifies the number of times a given format 
iten or list of format items is to oe used 
in succession in a format list. 

~~Y~Q~~! an identifier that is par~ of the 
lang'J.age and which, when used in th'~ proper 
context, has a specific meaning to the 
compiler. 

~!!Q~J:!! a term that is used to indicate the 
scop':= of an identifier. For example, an 
identifier is always known in the block in 
which it has been declared. 

!!!~~l_~Q!!~t!!!!t~ synonymous with s~atement 
label. 

!'~J~~l_Q.~~~i~! an unparenthesized identifi­
er prefixed to a statt:=ment by a colon. 

!~~S!tQg_~~~Q~! zeros that have no ::>ignifi­
canc,:= in the value of an arithmetic number; 
all :~eros to the left of the first ::>igni f i­
cant digit (1 t:hrough 9) of a numbe::·. 

!.~:Y~l __ Q~!!!Q~~! an unsigned decimal integer 
cons~ant specifying the hierachy of a name 
in a structure. It appears to the left of 
the name and is separated from j .. :. by a 
blank. 

maior structure: a structure whose name is 
declilre(i-i,;Ith-Ievel number 1. 

mino::- structurE~: a structure WhOSE~ namE is 
decLlred--i,;Ith---a lev!:!l number 9rea;:er than 
1. 

ID~!.~iQ!.~_~~~!.~~~tiQ!!:'" two or more declara­
tions of the same identifier inte~nal to 
the same block without different qUdlifica-

214 

tions" or two or more EXTERNAL declarations 
of the same identifier as different names 
within a single program. 

name: an 
declared. 

identifier that has beE~n 

1. the occurrence 
another block. 

of a block within 

2. the occurrence of a group 
another group. 

within 

3. the occurrence of an IF statement in a 
THEN clause or an ELSE clause. 

4. the occurrence of a function reference 
as an argument of anot::1er function 
reference. 

numeric character data: ari thmetic dat:a 
descrlbed-by-a--picture that is stored in 
character form. It has both an arithmetic 
value and a character-string value. The 
picture must not contain an X picture 
specification character. 

Q!!::.~!!it: the action to be executed upon 
the occurrence of the ON-condition named in 
the containing ON statement. 

QQer!!torl. a symbol specifying an operation 
to be performed. See ari!Jl!!!eti.~-2E~~~to;:~~:, 
bit-string operators" CO!!!E.!!;~isol:LQQ~ratQr~~., 
and concatenation. 

Ql2~iQ!!l. a specification in a statement 
that may be used by the programmer to 
influence the execution of -the :3tatement. 

E!!~~~~ __ deci!!!!!!l. the 
representation of a 
data item~ 

Systt~m/360 

fixed-point 

Q.!!!:.!!!!!eter: a name in an invoked 
that is used to represent an 
passed to that procedure. 

internal 
decimal 

procedUI:e 
argument 

Qi~ture: a character-by-charac'c.er specifi­
cation describing the composition and 
attributes of numeric cha:racter and 
character-string data. It al101"rs editingr. 

Qoint of invocation: the point in the 
invoking block at which the procedure ref­
erence to the invoked procedure appears. 

PQi!!ter __ ~~!:.iablel. a variable that iden­
tifies the storage to be used when refer­
ring to a based variable. 

Q!:.~~i~iQ!!l. the value range of an arithmet.­
ic variable expressed as ithe 't.otal nUmbE!r 
of digits allowed and, for fixed-point 
variables, the assumed location of the 
decimal (or binary) point. 



Q~~fi~~ a label or a parenthesized list of 
cDndition names connected by a colon to the 
beginning of a statement. 

Q~~fi~ __ Qe~~~~Q~i an operator that pre­
cedes# and is associated with, a single 
operand. The prefix operators are, + -. 

Q~im~~y_~g~~Y_QQig~i the entry point named 
in the PROCEDURE statement. 

Q~Q~1~m_~~~~i string or arithmetic data 
that is processed by a PL/I program. 

e~Q~~~!!£~i a block of statements" heade,d 
by a PROCEDURE statement and ended by an 
END statement~ that defines a program 
region and delimits the scope of names and 
that is activated by a reference to its 
name. It controls allocation and freeing 
Df automatic storage declared in that 
block. 

Q!:Q~~~!!~~~_.~~!.~~~g£~i a function or subroUl­
tine reference. 

Q~Q~~~m! a set of one or 
procedures, one of which 
OprIONS(M~IN) attrioute in 
statement. 

more 
must 
its 

external 
have the 

PROCEDURE 

Q~Q:9.~~m. __ ~Q!!~~Q!._~~t.~~ data used in a PLI'I 
pro~ram to affect the execution of the 
program. Label data and pointer data are 
the types of program control data. 

QrQ!.Qg!!~~ those processes that occur at 
the activation of a block. 

Q§~!!~Q=Y~~i~~!.~~ one of the built-in func­
tion names that can be used as a receiving 
field. Only SUBSTR and UNSPEC can be so 
used. 

9.!!~!.i!.!,~~~_._!!~m~i a sequence of names of 
structu.:['e members connected by periods, t:o 
uni.quely identify a component of a struc­
ture. 

~~~:.~i~!.I!g_._!.!.~!.~i any field to which a 
value may be assigned.

record: the unit of transmission in a
i~E5i5-input_or output operation.

~~~~Q~~~~~_~~Yi a character string recordE~d 
in a direct-access volume to identify the 
dat:a record that immediately follows. 

~~E~~~!'!:!'Q!! _____ !.~£t.QE~ a parenthesizE~d 
unsigned decimal integer constant preceding 
a string configuration as a shorthand rep­
resentation of a string constant. The 
repetition factor specifies the number of 
OCCUrrE!nCeS that make up the actual con­
stant. In picture specifications~ the 
repetition factor specifies repetition of a 
single picture character. 

E~~titive specification: an element of a 
data list that specifies controlled itera­
tion to transmit a list of data items, 
generally used in conjunction with arrays. 

returned value: the value returned by a 
function--pr()cedure to the point of invoca­
tion. 

scale: fixed- or floating-point represen­
tation of an arithmetic value. 

~£Qe.§--.i2f_~!_ co!!gi tiQ!!_.QE.§!.i~.L!. 
of a program throughout which a 
prefix appli-=s. 

the range 
condition 

~£QQ~ (of~. name): the range of a program 
throughout which a name has a particular 
interpretation. 

~~garY_~I!~EY--EQint: an entry point 
defined by a label of an ENTRY statement 
within a procedure. 

~Qurce_key~ a character string or a numer­
ic character data item referred to in a 
RECORD transmission statement that iden­
tifies a particular record within a direct­
access data set. The source key is a 
string to be compared with" or written as, 
a recorded key to positively identify the 
record. 

source-E!Qg;am~ the program that serves as 
input to the compiler. 

standard file: a file assumed by the 
compiler in the absence of a FILE or STRING 
option in a GET or PUT statement. 

statement: a basic element of a PL/I 
program that is used to delimit a portion 
of a program" to describe data used in the 
program# or to specify action to be taken. 
edure 

statement label: an identifying name pre­
fixed to any statement other than a PROCE­
DURE or ENTRY statement. 

statement label variable: a variable 
declared with the LABEL attribute and thus 
able to assume as its value a statement 
label. 

static storage: storage that is allocated 
before execution of the program begins and 
that remains allocated for the duration of 
the program. 

stream: data being transferred from or to 
an external medium represented as a con­
tinuous string of data items in character 
form. 

~t.ring: 
or bits 
item. 

a connected sequence of characters 
that is treated as a single data 

section K: Definitions of Terms 215 



~t~~~t~~~l a hierarchical set of names 
that refers to an aggregate of da~a items 
that may have different attributes. 

~~Q:t!:'~!'Ql the integeJ( jescription portion 
or the fraction description portion of a 
pict'.lre specification field that df?scribes 
a noninteger fixed-point data item. The 
subfields are divided by the picture char­
acteT v. 

~~Q~~~~tin~l a procedure that is inv'oked by 
a 2ALL statement. A subroutine cannot 
return a value to the invoking block, but 
it can alter the value of variables that 
are known within the invoking block. 

~~~~~~~Qtl an element expression speci­
fying a location within a dimension of an
array.

216

termination: cessation of ~=xeclltion of a
block" and the return of control to the
activating block by means of a RETURN or
END statement~ or the transfer of control
to the activating block or some other
active block by means of a GO TO statement,.
A return of control to the operating system
via a RETURN or END statement in the
ini tial procedure or a STOP si:atement i.n
any block results in the termina'tion of the
program. See ~Eiloque.

variable: a name that represents data.
Its-attributes remain constant, but it can
represent different values at different
times. Variables fall into three categor­
ies: element" array, and structure varia­
bles. Variables may be subscripted and/or
qualified.

The DOS/TOS PL/I D-Compiler is up~ardly
compatible with the PL/I F-Compiler J which
operates under the IBM Systeml360 Operatin9
System. In general, a PL/I source program
written for the D-Compiler produces the
same results when compiled and executed
under the F-Compiler. However, since the
compilel:s are still evolving, some upward
inc~mpatibilities exist between the version
of the D-compiler described in this publi­
cation and the version of the F-Compiler
tha't is described in the publication IB~

~~~~~~L;~~~Q. __ ~!:!!:.!. __ g~!. er~!1£~ __ ~~!!!!~!, Form 
228-8201. These upward incompatibilities 
are discussed in the list below. 

1. Pointers~ based variables, and the 
STRING~ ADDR~ and NULL built-in func­
tions are not implemented by the F-
2ompiler. 

2. Some error conditions defined by the 
PL/I language are not checked by the 
D-compiler but they are checked by the 
F-Compiler. For example, the D­
Compiler does not check for transfers 
into an iterative DO-group; hence, the 
programmer will get unpredictable 
results at object-time. However J the 
F-Compiler does check for this error 
condition and will provide a diag­
nostic should it arise. 

3. If a SIZE error occurs during output 
controlled by an F or E format item~ 
th€ value that caused the error is 
transmitted as a field of asterisks by 
the D-Compiler, whereas the F-Compiler 
transmits the truncated value. (This 
is so whether or not SIZE is enabled.) 

4. If the magnitude of a value transmit­
ted as output under control of the F 
format item is less than one, or if 
the mantissa of a value transmitted 
under E format is zeroJ the F-Compiler 
places a leading zero before the deci­
mal point; the D-compiler does not. 
For I~xample, a value transmitted by 
the D-compiler as -.500, ~ould be 
transmitted by the F-Compiler as 
-0.500. 

5. Under the D-Compiler~ the first PUT 
statement referring to a PRINT file 
results in a ne~ page; under the 
F-Compiler, it does not. Therefore, 
for consistent outputJ it is suggested 
that the PAGE option be used in the 
first PUT statement referring- to the 
standard system output file. 

6. The F-CoR,piler gives warning diag­
nostics for, and effectively ignores, 
any ENVIRONMENT attribute options 
valid for the D-Compiler but not valid 
for the F-Compiler. Such options must 
be specified in DD statements for the 
F-Compiler. 

7. The keywords SYSIN and SYSPRINT have 
no meaning under the D-Compiler. Ho~­
ever, they do have meaning under the 
F-Compiler~ so care should be taken in 
using them. "Standard Files" in Part 
I, Chapter 8 of this publication con­
tains a complete discussion of this 
sUbject .. 

8. When running a D-level program under 
the F-Compiler~ keywords that are not 
implemented in the D-Compiler~ e.g., 
REAL, COMPLEX, PT, may cause problems. 
For example, if REAL is an external 
procedure in a D-level program, the 
name of that procedure should be 
changed before the program is run 
under the F-Compiler. Otherwise, a 
function reference to REAL will be 
taken as a reference to the built-in 
function of that name. 

9. Bit-string to arithmetic conversion in 
the D-Compiler always results in a 
value whose attributes are FIXED 
BINARY (31) . However., the F-Compiler 
follows the rules specified in the 
publication IBM __ ~y~~~~~360_PL~f-g~f~ 
erence Manual, Form C28-8201~ and~ 
thereforeJ will sometimes convert to 
FIXED BINARY(lS). 

10. Under the D-Compiler, the order of 
evaluation of TO and BY expressions in 
the DO statement proceeds by first 
evaluating "expression2" and then 
evaluating nexpression3~" while the 
F-Compiler evaluates the expressions 
in the sequence in which they are 
specified. Different results can 
occur only if during evaluation of one 
of these expressions a function is 
called and this function changes vari­
ables that are used in the other 
expression. 

11. Under the F-Compiler~ the character 
value of a numeric character data item 
when all digit pOSitions (integer and 
fractional) have been suppressedJ will 
contain a drifting character in the 
rightmost digit position, if all digit 
position in the field have employed 
that drifting character. Under the 

Section L: Upward Compatability 217 



D-Compiler, this drifting character 
does not appear; the character value 
consists entirely of blanks. 

12. For the F-Compiler, the length of the 

218 

reply in the REPLY option of the 
DISPLAY statement cannot exceed 72 
characters; for the D-Compiler, this 
length is not restricted. 



(If more than one page number is given, the primary discussion is listed first.) 

A format item 147,87 
abnormal t.ermination 

of on-unit 174 
of procedure 61,62 
of p:!:'ogram 62 

ABE: built-in function 
access file attributes 

defaults for 73 

162 

act~i'On specification 
nullification of 
on-unit 204,205 
SYST'EM 204,205 

112,113,173,205 
209 

activat~on of blocks 
active block 60 
addition operation 37 

59-61 

attributes of the result of 
additive file attributes 74,72 
ADDR built-in function 171,118 
aggregates 14 

arrays 28 
arrays of structures 
structures 30 

31 

a1gebraic comparison 39 
ALIGNED attribute 180,31 
ALL built-in function 169 
allocat.ion 

dynamic 62 
of buffers 82 
of devices 81 
of storage 62,14 
stat~ic 62 

155 

alphabetic characters 16 
alphabetic extenders 16,67 
alphameric characters 16 
alternative file attributes 73,72 
ambiguous references 70,31 
'and' operation 38 
'and' symbol 38 
ANY built-in function 222 
arqument list 101,107,197 
arquments 101,185,197 

array 109 
constants as 110 
default attributes for 101 
dummy 108 
entry name 107,109 
expressions as 108,109 
filE~ name 109 
function references as 107,109 
in CALL statement 197 
in function reference 102,103 
label 109,102,103 
of arithmetic built-in functions 
of mathematical built-in functions 
of string built-in functions 158 
parE:~ntheses used with 107,108 
pointe:!:' 109 
string 108,110 
structure 109 

arguments and parameters 
relationship of 108 
types of 108-110 

162 
166 

arithmetic built-in functions 162,158 
arguments of 162 
values returned by 

arithmetic conversion 
162 
152,35,46 

base in 153,36,46 
precision in 152,36,47,154 
scale in 36,152 
target attributes in 

arithmetic data 21-26 
attributes for 178 
comparison of 39 

46,154 

defaults for 182,187,188 
arithmetic operations 35 

conversion in 35,36 
results of 32,155-157 
truncation in 36 

arithmetic operators 17 
arithmetic to bit-string conversion 

154,155 
length of result of 
examples of 154 

155 

35, 

arithmetic to character-string conversion 
34 

by STRING option 53 
arithmetic value of numeric character data 

96,137,189 
array 27,14,109,183,184 

dimensions of 183,28 
of structures 31 

array arguments 109 
array assignment 194,195 
array bounds 29,183,184 
array expressions 41 

in array assignment 
data conversion in 
operands of 41 

195 
43 

with element operands 
with infix operators 
with prefix operators 

42 
42 

42 
array manipulation built-in functions 

169,158 
values rE~turned by 

array operat.ions 
results of 41,42 

array parameters 109 

169 

ASA printer control setting 
assignment 

array 194,195 
bit-string 195,94 
by assignment statement 
conversion by 35,94 
element 194,195 
label 194,195 
pointer 194,116,117 
structure 194,195 

192 

194,52,94 

assignment statement 
evaluation of 195 

194,14,34,35,52,94 

for computation and assignment 52 
for conversion and editing 35,52,94 
for internal data movement 52,95 
types of 194 

ASSGN job control statement 81,82 

Index 219 



astE~risk picture char"acter (:+:) 

asterisks 
in E format output 
in F format output 

A'rAN built-in function 
ATAND built-in function 
ATANH built-in function 
attributes 178,13,50 

217 
217 
166 

166 
167 

(also see individual attriDutes) 
additive 74,72 
alphabetic listing of 
alternative 73,72 

180 

tuffering 73 
contextual declaration of 
default 13,68 
also see default 

66 

138 

entry name 106,57,104 
explicit declaration of 
factoring of 178,198 
file 72 

65,197 

implicit declaration of 67 
in DECLARE statement 197 
in ENTRY statement 201 
in PROCEDURE statement 
listing of 14,69 

206 

of result in arithmetic operatioLls 
155-157,36,37 

of source in conversions 
of target in conversions 
scope 69 
specification of 
storage class 62 

178 

4 5 , 1 ~)3 , 15 Lj 

4 6 , 1 ~) 3 , 15 Lj. 

AUTo.~TIC attribute 
automatic storage 

180,62,63 
63,14,62 

B format item 147,87 
B ~icture character 140 
BAC:Kl~ARDS attribute 181,74,109 
base 21,35 

d~tributes tor 181 
binary 23,24 
decimal 2 ~~, 23 
in arithmetic convE~rsion 1'53,3{),46 
in exponentiation 46,157 
0:: arithmetic data 181,21 
of arithmetic targets 46 
of numeric character data 189, ~~5, 137 

base conversion 153,35,36,46 
base identifier of DEFINED attributE~ 183, 

32 
based 

storage 63,115,181 
variables 115,63,89,181 

BASED attribute' 181,63,89,115 
begin block 58,13,197 

KND statement for 209,51 
termination of 61 

BEGIN statement 197,57 
condition prefix to 112 

BINAHY attribute 181,23,24,179 
binary base 21,23,24,181 
BINAHY built-in function 163 
binary data 

fixed-point 23 
floating-point 24 

binary full word 23 
binary logarithm 168 
BIT attribute 182.27,179 

220 

BIT built-in function 
bit class data 184 

158,99 

bit-string comparison 39 
bit-string data 27 

assignment of 195,94 
attributes for 182,27 
constants 27 
comparison of 39 
concatenation of 40 
conversion of 153-155,46 
variables 27,182 

bit-string format item (B) 147,87 
bit-string operations 38 
bit-string operators 38,17 
bit-string target 46,48,153,154,155 
bit-string to arithmetic conversion 155~ 

46 
bit-string to character-string conversion 
153,34,46 

blank picture character (B) 140,98 
blanks 18,30 

extension with 94 
in keys 79,80 
in numeric character data 140 
in picture specifications 140 
in structure declarations 30 
use of 18 

block size 77,78,185,186 
block structure 13,58 
blocking of records 71,78,185,186 
blocks 58,13,20 

activation of 59 
begin 58,13,20,197 
invocation of 60 
nested 59 
procedure 58,13,20 
record 71,78 
termination of 61 

BaaL built-in function 159,100 
boolean operation 159,38,100 
bounds 29,183,184 

of array parameters 109 
branch 

(also see GO TO statement) 
conditional 53 
unconditional 53 

BSI picture characters 144 
BSI shilling characters 144 
BUFFERED attribute 182,73,179 
buffering attributes 73,182 
buffers 73,82,89,182,204 

allocation of 82 
hidden 74 

BUFFERS option 186,82 
built-in functions 158,44,105 

arithmetic 162,158 
array manipulation 169,158 
as arguments 109 
computational 158 
mathematical 166,158 
miscellaneous 171,158 
string-handling 158,99 
values returned by 105 

BY clause 199,85 
BUILTIN attribute 182,105,106 

CALL statement 197,55,59,102,185 
capacity record 80 



card punch codes 
for 48-character set 
for 60-character set 

CEIL built-in function 
ceiling values 155 

132 
131 

163,155 

CHAR built-in function 160,99 
CHARACTE.R attribute 182,26,178 
charactE~:r class data 184 
character-string comparison 39 
charactE~:r sets 131,16 
character-string data 26 

as kE~Ys 79,80 
assigrnment of 
attributes for 
compalrison of 
concatenation of 

195,94 
182,26,178 

39 
40 

constants 26,94 
conversion of 153,46,48 
defined on numeric character 

119,120 
data 97, 

picture specification for 
136 

189,27,96, 

variables 26,182 
character-string format item (A> 
character-string key specification 

147,87 
80 

character-string targets 153,46,48 
lengt:h of 48 

character-string to arithmetic conversion 
34 

by STRING option 53 
character-string to bit-string conversion 

153,34 
character-string value of numeric character 
data 96,97,137,189 

characters 
alpha.betic 16 
alphame:r-ic 16 
special 16,18 

classes 
of statements 50 
of st~orage 62,14,180 

clauses 
BY 199,85 
ELSE 203,53 
THEN 203,53,54 
TO 199,85 
WHILE 199,85 

CLOSE st:atement 197,52,75 
closing of files 74-75,52,97 

multiple 197,75 
coded arithmetic data 

convlersion to numeric character 153 
compared with numeric character data 

25 
internal form of 21-23 

collating sequence 
highest character in 160,99 
lowest character in 161,99 

collections of data 28-31,14 
arrays 28 
arrays of structures 31 
structures 30 

COLUMN format item 188,48,119 
comma picture character (,> 1.39-140,98 
commas in declarations 178 
comments 9 

delimiter 9 
common logarithm 168 

comparison 
of arithmetic data 39 
of bit-string data 39 
of character-string data 39 
of pointer data 39 
operations 35 

priority of types in 35 
result of 35 

operators 35,17 
compatibility, upward 217,77 
composite symbols 

in 48-character set 132 
in 60-character set 131 

compound statements 19 
computational built-in functions 158 

arithmetic 162 
array manipulation 169 
mathematical 166 
string handling 158 

computational conditions 174 
concatenation 

of bit-string data 40 
of character-string data 40 
operations 39-40 

operands of 39 
result of 39-40 

concepts of data conversion 45 
condition name 173-174,15,55,111 

use of NO with 173,111 
condition prefix 111,15,173 

effect on nested blocks 112 
scope of 111,173 

conditional branch 53 
conditional digit position 138,190 
conditional insertion characters 139 
conditions 173,11,55,111 

(also see individual conditions> 
computational 174 
disabled 173,111,205 
enabled 173,111,205 
exceptional 111,11 
input/output 174 
raised in conversions 
system action 177 

49 

CONSECUTIVE organization 78,185 
devices permitted for 78 

CONSECUTIVE option 185,78 
compared \"ith SEQUENTIAL attribute 

constants 21 
22 arithmetic 

attributes of 
bit-strinq 27 
character·-string 
label 27 
sterling 

contained in 
23 

65 

21 

26 

contextual declaration of entry names 
66-67,59,106 

scope of 66 
control 

flow of 59,53 
return of 

61,102,103 
112,174 

from a procedure 
from an on-unit 

control format items 
examples of 88 

control statements 

88 

for input/output 
53 

51 

78 

Index 221 



control variable in DO statement 200, ~)4 
conversion 45,14,34,152 

arithmetic 152,34,46 
base in 153,36,46 
precision in 152,36,47 
scale in 152,36,46 
tarqet attributes in 46,153 g 154 

assign~ent statement for 94,34 
base 153,36,46 
bit-string to character-string 153,34, 

94 
bit-string to coded arithmetic 155,34 
bit-string to numeric character 155,34 
character-string to bit-string 153,34 
coded arithmetic to bit-string 154,,35 
coded arithmetic to numeric character 

153 
conditions raised in 48 
in arithmetic operations 35-36 u 155-157 
in array expressions 41 
in bit-string operations 38 
in comparison operations 39 
in exponentiation operations 37-38, 
46-47,157 

intermediate results in 45 
numeric character to coded arithmetic 

153 
numeric character to bit-string 15~), 35 
numeric character to character-!3trinq 

153,35 
type 153,34,46 

CONVERSION condition 174,49 
for character-string to bit-string 153 
in B format input 147 
in E format input 148 
in stream input 174 

correspondence defining 183,32 
COS built-in function 167 
COSD built-in function 167 
COSH built-in function 167 
CR picture characters 142 
credit picture characters (CR) 142 
140,98 

currency symbol picture character () 

data 

222 

attributes of 178,65 
also see attributes 

arithmetic 21 
comparison of 
conversion of 

bit-string 27 
comparison of 
concatenation 

39 
152,46 

39 
of 40 

153-155,46 
38 

conversion of 
operations with 

character-string 
comparison of 
concatenation 
conversion of 

collections of 
conversion of 
editing of 94 

26 
39 

of 40 
153-155,46 

28-31,14 
45,14,34,152 

format items 146,86-88 
examples of 88 

label 27 
movement of 51,52 

pointer 28,115 
comparison of 39 

problem 21 
program control 27 
string 26 
types of 21,13 

data list 84-86 
element of 85 

data set 71 
association with file 
organization of 78 

CONSECUTIVE 78,185 
default for 78,185 

75 

REGIONAL (1) 79,91,185 
REGIONAL(3) 80,81,185 

positioning of 82 
data specification 91,93,110 
data transmission 71 

(also see input/output) 
DATE built-in function 171 
DB picture characters 142 
deactivation (see termination> 
debit picture characters (DB) 
decimal, packed 22 

142 

DECIMAL attribute 181,22,178,183 
decimal base 21 
DECIMAL built-in function 
decimal data 

163 

fixed-point 22,181 
floating-point 23-24,181 

decimal point picture character (V> 
137-138,97,98 

compared with point picture character 
140,98 

declarations 65 
66 

66 
contextual 

scope of 
explicit 65 

scope of 66 
implicit 67 

scope of 67 
multiple 70 
scope of 69 

DECLARE statement 197,21,50,65,178 
attributes in 178,50,197 
condition prefix to 112 
default rules for 50 

default 13,68 
attributes assumed by 178,13,68 
conditions disabled by 173,111,205 
conditions enabled by 173,111,205 
for arithmetic data 182,187 
for file attributes 73 
for attributes of value returned by 
function 104 

rules based on first letter of 
identifier 67,182,187 

rules for DECLARE statement 50 
DEFINED attribute 183,32,97,119 
defined item 183,32 
defining 

correspondence 183,32 
overlay 183,32,119 

descriptive statements 50 
device independence 77 
devices 186,187 
digit specifier picture characters 137, 

190 



digits 16 
dimension 28,183 

bounds of 29,183 
extent of 29,183 
maximum number of 29,183 

dimension attribute 183,29 
DIRECT attribute 184,73,80 
direct-access storage devices 79 
disabled conditions 173,111,205 

compared to null on-unit 112 
DISPLAY statement 198,52 
division operation 37 

attributes of the result of 157 
fixed'-point 37 
remainder of 164 

division operator 35 
DO, keyword in repetitive specification 

85 
DO statement 199,20,54,57 

condition prefix to 111 
i.tera·ti ve 111 
t.ypes of 199 
noniterative 54 

DO-group 57,20,54,59,199 
transfer of control into 

drifting picture characters 
drifting string 140 

203 
140,143 

dummy arguments 108 
dummy re,co:rds 80 
dynamic storage allocation 62,14 

E format item 148,87 
E picture character 144,190 
EBCDIC codE~s 

for 48-character set 
for 60-character set 

ED I']:' key'wol~d 83 

131 
132 

edit-directed transmission 83-89 
data specification for 83 
format items for 146,86-88 
Ii'ORMJl.T statement for 201 

editing 94,52,136,189 
by assignment 94,52 
by PICTURE attribute 
conversion and 52 

96,136,189 

of numel:-ic character. data 136 
element 

and array operations 42 
and structure operations 43 
assignment 194,195 
exprE~ssion 33 

in array assignment 195 
in IF statement 54,203 
in RETURN statement 208 
of a data list 85 
of a structure 30 

operations 42 
variable 28 

ELSE clause 203,53,54 
enabled condition 173,111,205 
END stat.ement 201,20,55,59 

for begin block termination 61 
for procedure termination 61,102 

ENDFlLE' condition 176,112,119 
END PAGE condition 176,76,119,208 
ENTRY a1:~tribute 184,59,66,106-108 

contextual declaration of 66,184 
compared with ENTRY statement 57 

implied by RETURNS 107,185 
entry name 59,66,106,184 

arguments 107,109 
attributes for 179 
contextual declaration of 66 
explicit declaration of 106,184 
in CALL statement 197 
parameters 109,108 

entry point 
primary '59,60,206 
secondary 59,60,201 

ENTRY statement 201,57,106 
compared with ENTRY statement 57 
condition prefix to 112 
label of 59,106 
parameters of 201 

ENVIRONMEN'I' a'ttribute 185,74,77,109,179 
options of 185,77 

epilogues 63-64 
ERF built-in function 167 
ERFC built-in function 167 
ERROR condition 177,38,62,173,174 

raised by GET statement 202 
raised by PUT statement 207 
results in program termination 62 

established action 112,113 
exception control statements 55,50 
exceptional conditions 111,15,173 
EXP built-in function 167 
explicit declaration 65,106,197 

by DECLARE statement 197 
scope of 66 

explicit opening 74,205 
exponent 

in picture specification 142,137,189 
of exponentiation operation 37 
of floating-point data 24 

exponent field 142,137 
exponent specifier picture characters 142 
exponentiation operations 37-38,46 

attributes of result of 157 
base in 46 
conversion in 
precision in 
scale in 46 

37 
38,46 

expressions 33,14 
array 41,33 

operands of 41 
29 as subscripts 

attributes of result of 
element 33 

36,39,40 

evaluation of 40 
function reference operands 
in RETURN statement 103 
operands of 44 
operational 33 
structure 43,33 

operands of 43 
use of parentheses in 41 

extenders, alphabetic 16,67 
extent 

in overlay defining 183 
of a dimension 29,183 

EXTERNAL attribute 187,69 
external declaration 179 
external name 69,18 

length of 69,18 
external procedure 59,69 

44 

Index 223 



external storage 71 

F format item 149,87 
F-format (fixed-length) records 
factor 

iteration 86 
r-epetition 26 

factoring of attributes 
::1esting in 178 

field 

178,197 

77-78,185 

in a picture specification 137,189 
'Ilidth 146 

fil,e 72 
association with data set 75,~)1,197, 

205 
attributes for 72,179 
closing of 75,52,197 
name of 

see file name 
opening of 74,51,205 
standard '76 

FILE attribute 187,72,179 
file declarations 

examples of 119 
file name 72,187 

arguments 109 
length of 76 
parameters 109 

FILE option 90 
of GET statement 202 
of PUT statement 207 

FILE specification 90 
of READ statement 208 
of REWRITE statemt~nt 209 
of WRITE statement 210 

FIXED attribut~e 187,22,23 
FIXED built-in function 163 
fixed-length records (F-format) 
fixed-point data 22,23 

assignment of 22 
attributes for 22,23,187 
binary 23 
constants 22,23 
conversion of 1~)2, 154 
decimal 22 

77-78,185 

division operations with 
picture spE~cificat:ion for 
sterling 23 

37 
190,137 

variables 22,23 
149,87 fixed-point format item (F) 

fixed-point scale 21 
FIXEDOVERFLOW condition 174, Ll9 

FL01~T attribute 188,23,24 
FL01\.T buil t- in function 163 
floating-point data 23,24 

attributes of 23,24,187 
binary 24 
constants 23,24 
conversion of 152,154 
decimal 23 
long form of 152,24 
picture specificat.ion for 
short form of 152,24 
variables 23,24 

floating-point format. item (E) 
floating-point scale 21 
FLOOR built-in function 
flow of control 59,53 

224 

164 

190,137 

148,87 

format, record 77-78 
format items 146,86-88 

alphabetic list of 147 
control 88 
data 146,87 
printing 146 
remote 147 
spacing 146 
summary of 89 

format list 86,146 
in FORMAT statement 201 

FORMAT statement 201,50,B8,lW7,150 
fractional digits 

in E format item 
in F format item 

fractional subfields 
free format 16,120 
FROM option 91,209 

148 
149 

137 

FROM specification 210 
compared with SIZE condition 

full word, binary 23 
function 102 1 44,105,158 

arguments of 103,104 
built-in 158,44,105 
invocation of 102 
name of 104 
termination of 
value returned by 
without arguments 

function reference 
function value 

103 
103--104 f 208 
104 

102,41.,~,66 

(see function, value returned by) 
function file attributes 73 

G sterling picture character 144 

175 

GET statement 202,51,52,71,83,89,95,146 
as input/output statement 51 
for internal data movement 52 
with standard input file 76 
with STRING option 95,52 

GO TO statement 203,53 
for begin block termination 
for procedure termination 

61 
62,102 

as on-unit 112 
label variable in 53,203 

H sterling picture character 144 
hidden buffers 74 
hierarchy of names 30 
HIGH built-in function 160,99 
high-order digits, loss of 36 

I picture character 
IBM pence characters 

142 
144 

identical structuring, meaning of 
identifiers 17,65 

length of 17 
reserved 65 

IF statement 203,19,53 
condition prefix to 
element expression in 
nested 54,203 

111 
203,54 

implementation information 5 

43 

implication, file attributes derived by 
72 

implicit declaration 67 
scope of 67 

implicit opening 75,202,207 



implied att.ributes 72,107 
inactive block 60,103 
independ4:mce 

device 77 
machine 13,5 

INDEX built-in function 160,99 
infix operation 35 

result~ of 36 
infix operator 35 

in array expressions 42 
in structure expressions 43 

initial procedure 60,206 
(also see main procedure) 

input 71,15 
standard system file for 76 

INPUT at·tribute 188,73,109,179 
INPUT option 205-206,75 
input/output 

conditions 176,111,174,205 
record-oriented 89-93,15,72,95 

statements for 90 
stream-oriented 83-89,71,95 

conversion in 110 
edit-directed 83-89,51 
statements for 89,51 

statements 
(see individual statements) 

insertion picture characters 139-140,97, 
98 

integer subfield 
intermediate string 
internal 

137 
154 

coded arithmetic form 
data movement 52,95 

22,23,24 

procedure 59 
INTERNAL at.tr ibute 
internal to 65 

187,69 

interrupt. 111,15,173,204 
established action for 
simulation of 210,56 

INTO option 90,208 

112,204,205 

invocation 
CALL statement for 
procedure 59 

invoked procedure 60 

197,59,102 

return of control from 61-62 
iteration factor of format list 
iterative execution 54 

(also see repetitive execution) 

86 

job control language, ASSGN statement of 
81,82 

K picture character 144,190 
KEY cond~tion 176,80,174 
KEY option 91,79,80 

in READ statement 208,91 
in RE:'WRITE statement 209,91 

KEYED attribute 188,74,79,91,92 
KEYFROM option 92,210 
KEYLENG'I'H option 186,77,80,82,91 
keys 79,74,82,91,176,188 

length of 82,49 
recorded 79 
source 79 

keyword statement 19 
key~l1Ord~; 1 7 

alphabetic list of 133 

label 
109,102,103,104,108 

194-195 
argument 
assignment 
constants 
data 27-28 

27 

parameters 109,108 
prefix 19,27 
statement label 28,66 
variable 188,28 

LABEL attribut.e 188,28,108 
layout of pages for PRINT file 75-76 
leading blankB in stream 146 
leading zeros 138 

in keys 130 
LEAVE option 186,82 
length 

in arithme1:ic to bit-string conversio.n 
155,48 

maximum for strings 27 
minimum fo:r strings 27 
of bit-string targets 48,153,154,155 
of character-string targets 48,153 
of external names 69,18 
of file names 76 
of identifiers 18 
of keys ;82,49 
of record blocks 78,71 
of recorded keys 79,82 
of string parameters 110 
of strings 27 

length attribute 182,27,188 
level number 30-31 

factoring of 178 
for structure parameters 109 
in DECLARE statement 198 

LINE format item 150,88,176 
LINE option 207,88,176 
line position format item 
(see LINE format item) 
line skipping format item 

(see SKIP format item) 
LOCATE statement 204,51,90,92,116 
LOG built-in function 168 
logarithms 168 
logical records 71,78 
LOG10 built-in function 168 
LOG2 builtin function 168 
long floating-point form 152,24 
LOW built-in function 160,99 

M sterling picture character 144 
machine independence 14,5 
magnetic tape 71 
MAIN option 206,60 
main procedure 60,206 
major structure name 30 
mantissa 

in E format item 148 
in picture specification 137 

mathematical built-in functions 166,158 
arguments of 166 
error conditions for 169-170 
summary of 169-170 
values returned by 166 

MAX built-in function 164 
maximum length 

of bit-string data 27 
of character-string data 27 

Index 225 



of identifiers 
of keys 132 

:18 

of picture specification 27 
maximum number of binary digits 
maximum number of decimal digits 
maximum precisions 47,154,155 
MEDIUM option 186,75,77,81 
merging of attributes 75 

23,2~ 
22,24 

MIN built-in function 164 
minor structure name 30 
minus sign picture character (-) 
miscellaneous built-in functions 
MOD built-in function 164 
modes of transmission 51,71 
modularity 13 

75,197 

142 
171,158 

multiple closing of files 
multiple declarations 70 
mul"tiple opening of files 
multiplication 37 

74-75,205 

a.ttributes of the result of 

names 65,13~18 

a.ttributes for 178,13,65 
condition names 111,20,173 
entry names 59,66 
external names 69,18 
file names 72 
hierarchy of 30 
major structure names 30 
minor structure names 30 
procedure names 58 
qualification of 31,70 
qualified names 31,70 
scope of 65,69,179 
!3tructure names 30 
subscripted names 29 
unique namE~S 70 j' 31 

natural logarithm 168 
nested blocks 59 

transfer into 70 
nested IF statements 54 

156 

nested repetitive specifications 85 
nes1:ing 

effect of condition prefix with 112 
of blocks 59 
of factored attributes 178 

NO \"ith condtion names 173,20,111 
NOCONVERSION 173,113 
NOFIXEDOVERFLOW 173,113 
non iterative DO statements 55 
NOL}\.BEL option 186, 82 
NOO\TERFLOW 173 
noraal return 174 
narnal termination 

of on-unit 174 
of procedure 61-62 
of program 62 

nornalized hexadecimal floating-point 24 
NOSIZE 173 
"not" operation 38 
"not" symbol 38 
NOUNDERFLOW 173 
NOZBRODIVIDE 173 
NULL built-in function 171,118 
null ELSE clause 203 
n u1 J. on - un it 11 2 , 1 1 4 

compared with disabled conditioL 112 
null statement 204,19 

226 

as on-unit 112,174 
numeric character data 25,96,136,189 

arithmetic value of 96,137 
character-string value of 96,137 
conversion to character-string 153 
conversion to coded ari t:hme1:ic 153,919 
editing of 97 
form of 25 
picture characters for 
picture specification for 

136 
examples of 137-145 
signs in 140" 

136 
189,25,96, 

numeric character variables 
arithmetic value of 96,137 
assignment to 96 
character-string value of 96,137 
point alignment in 98 p 140 

ON statement 204,19,55,112,173 
condition prefix to 111,19,173 
purpose of 55,112 
scope of 113 

ON-conditions 173,111,204 
examples of use of 113,114 

on-unit 112,55,56,174,204,205 
GO TO statement as 112, 17 L~ 
null statement as 112,174 
return of control from 174,112 

ONSYSLOG option 206 
OPEN statement 205,50,74,75,109,119 

as a descriptive statement 50 
as an input/output control ~;tatement 

51 
options of 205,75 

opening files 74,51,205 
explicit openings 74 
implicit openings 75 
multiple openings 74 

operands 44 
element 

array expressions with 42 
structure expression!:; wi t~h 

function reference 44 
of array expressions 42 
of bit-string operations 38 
of comparison operations 39 
of concatenation operations 
of expressions 44 
of structure expressions 43 

operational expressions 33,34 
data conversion in 34 

operations 
arithmetic 35 

results of 36 
truncation in 36 

array 41,33 
bit-string 38 

conversion in 
combinations of 
comparison 38 
concatenation 

operands of 
results of 

element 33 
four classes of 
infix 35 
prefix 35 

38 
40 

38 
39 

40 

35 

43 

39 



structure 43,33 
operators 

arithmetic 35,17 
bit-string 38,17 
comparison 39,17 
concatenation 39,17 
infix 35 

array expressions with 42 
st.:ructure expressions with 43 

prefix 35 
array expressions with 42 
structure expressions with 43 

prio:r:ity of 40 
string 17 

options, see individual options 
OPTIONS (iMAIN) specification 60,206 
"or'" ope:rat:ion 38 
"or'" sym.bol 38 
order of evaluation of expressions 40 
organization of data sets 78 
output 71,15 

(also see input/output) 
OUTPUT attribute 188,73,179 
output files 92,90 

standard system output file 76 
OUTPUT option 205,75 
OVERFLOViI condition 1 75,49 
overlay defining 183,32,97,119 

PACKED attribute for 32 
overpunched sign characters 142 

P sterling picture character 144 
PACKED attribute 180,31,32,189 
packed decimal format 22 
PAGE format: item 150,88 
page la~out 76-77 
PAGE option 207,88 
PAGESIZE option 206,75,150,176 

default for 206,176 
paging format item (PAGE) 150,88 
parameter lists 101,201,206 
parametE!:rs 191,201,206 

array' 109 
attr£butes of 101,104,108,109 
bounds and lengths of 109,110 
default attributes for 108 
element 108 
entry' name 109 
explicit declaration of 
file name 109 
label 109 
of pr'imary entry point 
of secondary entry point 
point.er 109 
storage allocation for 
string 108,110 
structul~e 109 

parEmtheses 

101 

206 
201 

110 

use with arguments 107,108 
41 use with expressions 

pence character specifier 
pence digit specifiers (7 
pence field 145,138 
physical record 71 

(P) 144 
and 8) 144 

PICTURE attribute 189,27,96,136 
picture characters 136,189 

for character-string data 
for numE~ric character data 

136,189 
136,190 

picture specification 189,136 
for character-string data 189,136 
for editing 97 
for numeric character data 190,136 

PL/I program example 119 
plus sign picture character (+) 142 
point alignment in numeric character data 

140,98 
point insertion picture character (.) 140 

compared with V picture character 140, 
98 

point of invocation 60 
POINTER attribute 191,28,89,115 
pointer data 28,115 

assignment of 116,118,195,196 
comparison of 39,118 
input/output of 117 
manipulation of 118 

pointer variable 89 
attributes of 191,89 
declaration of 89,115,182 
in BASED attribute 182,89,115 
setting of 116 
value of 116 
with LOCATE statement 204,90,116 
with READ statement 208,116 

positioning of data sets 82 
pounds field 145 
precision 22,23,24 

attribute 191,178 
and length specifications 47 
conversion of 152,36 
default 192,22,23,24 
evaluation in conversions 152 
in arithmetic conver~ion 46,47 
in exponentiation 37,46 
maximum 47,154,155 
of numeric character data 190 
of source 46 
of sterling data 191 
of subscripts 29 
of target 47 

PRECISION built-in function 165 
prefix list 111,20 
prefix operations 35 

results of 36 
prefix operators 35 

array expressions with 42 
structure expressions with 43 

prefixes 20 
condition 111,20 
label 27,20 

primary entry point 59,206 
parameters of 206 

PRINT attribute 192,51,74,75 
options and statements used with 192 

PRINT files 192,75,88,89 
column positioning of 148,88,207 
format items for 89 
line positioning of 150,88,207 
paging of 150,88,176,207 

printing format items 146,88 
priority 

of operators 40 
of types in comparison operations 39 

problem data 21 
attributes for 179 

procedure 58,13,56 

Index 227 



communicatlon bet,,,een proCedUrE!::; 
57 

3ND statement for 
'external 59 
function 102,57 
initial 60 
internal 59 

201,59 

invocation of 60,57,102,197 
main 60,206 
:1esting of procedures 59 
:3ubroutine 102 

procedure block, see procedure 
procedure name 58 
procedure reference 60 
PROCEDURE stat:ement 206,56,58,101 

condition prefix t.o 112 
label of 58 

61 
171 

procedure termination 
PROD built-in function 
proqram blocks 58 
program control data 27 

attributes for 179 
proqram interrupt 111,15,55 
proqram struct:ure statements 
program termination 62 
prologues 63-64 
pseudo-variables 172,44,99 

56 

101, 

PUT statement 207,51,71,76,89,95,176 
ENDPAGE condition raised by 1.76,207 
for internal data movement 52 
,.lith standard output file 76 
with STRING option 52,95 

qualified names 31,70 
quoi:ation marks in the stream 

R format item 150,B8,201 
R p~cture character 142 

147 

READ statement. 208,51,72,90,92,119 
purpose of 51 
\d th SET option 116 

receiving field 172,44 
in assignment statement 194 

RECORD attribute 192,73,179 
record blocks 71,78 
RECORD condition 177 
record forma·t 78 

options 185 
record size 78,71,185 

logical 78,185,186 
physical 78,185,186 
HECORD condition raised by 177 

record-oriented transmission 89,51,72,95 
attributes for 72 
characteristics of 51,72 
conversion in 95 
statements 90,51 

format 92-93 
options of 90-92 
summary of 90 

~; ummary of 93 
reccirded keys 79,80,81,82,91,188 

length of 79,82 
records 71,15 

228 

addition of 90,93 
blocked 71,72 
capacity 80 
dummy 80,81 
.E'-format 78,185,186 

format of 77,185 
logical 71,78 
physical 71,78 
relative 79 
replacement of 90,81,93 
retrieval of 90,93 
U-format 78,185,186 
unblocked 71 
V-format 78,185,186 

references 
ambiguous 70 
function 102,44,59 
procedure 59 
subroutine 102 

region specification 80 
REGIONAL data set organization 

185 
79-81,91, 

devices for 79,186 
direct access of 79 
no sequential access of 79 

REGIONAL (1) data set organizat~.on 
81,185 

REGIONAL (3) data set organizatj.on 
185 

search for key 
regions 79 
relative record 79 

80 

relative structuring 
relative track 79 

109 

relative track number 
remote format item (R) 
REPEAT built-in function 
repetition factor 26 

80 
150,80,202 

161,99 

in bit-string constants 27 

79-80, 

80,81, 

in character-string constant:s 26 
in character-string picture specifica­
tions 27 

in numeric character pic:turE~ specif­
ications 25 

repetitive execution 199,54 
repetitive specification 

in data lists 85 
in DO-groups 199,86 
nested 85,86 

REPLY option 198,52 
reserved identifiers 
results 

attributes of 46 

65,17 

of arithmetic operations 
of array operations 41 
of bit-string operations 
of comparison operations 

~,8 

39 
of concatenation operations 
of structure operations 43 

39-40 

return of control 
from a function 103 
from an invoked procedure 
from an on-unit 174,112 
from a subroutine 102 

62,63 

RETURN statement 208,103 
expression in 103,49,208,209 
for function termination 103 
for subroutine termination 102 

returned value 209,103,104 
attributes of 104,193,201,206 
conversion of 104,49 
default attributes for 201,206 
of arithmetic built-in function 162 



of an:-ay manipulation built-in function 
169 

of mathematical built-in function 166 
of string-handling built-in function 

158 
193,104 RETURNS attribute 

REVERT statement 
REWRITE statement 

209,56,113 
209,51,90,91,92,93,94, 

119 
ROUND built-in function 165 
row-major order 29,86 

S picture character 
scalar eKpression 
scalar va.riable 
scale 21 

28 

142 
33 

conversion of 35,36 
fixed--point 21 
floating-point 21 
in arith.metic conversion 36,46 
in exponentiation 38,47 
of a numeric character data item 

24 
of arith.metic targets 46,36 

scale factor 
in arithmetic conversions 154 

191,192 in precision attribute 
negative 47 

190, 

scaling factor in F format item 
scope 69 

148,87 

attributes for 187,69,179 
of a condition prefix 111,173 
of a declaration 65 

contE~xtual 66 
explicit 66 
implicit 67 

of a name 65-70 
113 
59,201 

of an ON statement 
secondary entry point 

parameters of 201 
semicolon, function of 18 
SEQUENTIAL attribute 184,73,92,193 

compaJred with CONSECUTIVE option 
SET option 90 

with LOCATE statement 204,116 
vdth H.EAD statement 208,116 

shilling digit specifier (8) 144 
shillings field 145 
short floating-point form 152,24 
sign, determination of 165 
SIGN built-in function 165 
sign picture characters 140-142,190 

drifting use of 140 
static use of 140 

SIGNAL statement 210,56,114 
significant digits 

in E format item 
loss of 153 

148 

(also see SIZE condition) 

78 

simple statement 19 
simulation of an interrupt 
SIN built-in function 168 
SIND built-in function 168 

210,56,114 

SINH built-in function 168 
SIZE condition 175,20,22,49,114,137,190 

compared with FIXEDOVERFLOW condition 
175 

in base conversion 153 

in E format output 217 
in F format output 150,217 
in precision conversion 153 

SKIP format item 150,88,176 
SKIP option 208,88,89,176 
slash picture character 145 
source data item 45 

precision of 46,152,154 
source keys 79,80 
spacing format item (X) 151,88 
special characters 16 

functions of 18 
specification in DO statement 199 
SQRT built-in function 168 
standard files 76-77,83 

GET statement with 202 
PUT statement with 207 
system input 76,202 
system output 76,207 

standard system action 112,56,174 
statement label constants 27 
statement lahel designator 150,202 
statement label variable 188,28 
statement labels 19 

declaration of 66 
statements 193,50 

(also see individual statements) 
classes of 50 
compound 19 
keyword 19 
null 19 
simple 19 

static allocation 62-63 
STATIC attribute 180,62,63,193 
static picture characters 140 
static storage class 62 
static variables 62 
sterling fixed-point data 23 

constants 23 
variables 23,191 

precision of 191 
sterling picture specifications 144-145, 

191 
examples of 

STOP statement 
storage 

145 
210,55,61,102 

allocation of, see storage allocation 
classes of, see storage classes 
external 71 

storage allocation 
attributes for 
dynamic 62,14 
for parameters 
static 62,14 

62,14,180 
180 

110 

storage classes 62,14 
attributes for 180,62 
automatic 63,14 
based 63,14,115 
static 63,14 

storage devices 
stream 71,146 

78,79 

STREAM attribute 192,72,73,89,193 
stream-oriented transmission 83-89,15,51, 

71,82,95 
attributes ..lor 72 
characteristics of 
conversion in 95 
statements 51 

51,95 

Index 229 



summary of 88-89 
uses for 51,95 

st:ring arguments 108,110 
string assignment 94,195,196 
string data 26 

attributes for 179 
length of 26,27,182 

string-handling built-in functions 153 
arguments of 158 

string length 26,27,182 
string operator 17 
STRING option 52,95 

in GET statement 202,52,95 
in PUT statement 207,52,95 
to effect arithmetic to charactEr-string 
conversion 53 

to effect character-string to arithmetic 
conversion 53 

string para'meters 108,110 
string to arithmetic conversion 34 

by STRING option 53 
structure, block 58,13,56 
structure arguments 109 
structure assignment 194,195 
structure declarations 30,170 

use of blanks in 30 
structure expressions 

evaluation of 43 
43,33 

in structure assignment 
infix operators with 43 
operands of 43 

194,195 

prefix operators with 
with an element operand 

43 
43 

st:ructure names 
major 30 
minor 30 

structure operations 
structure parameters 
structure variables 
structures, arrays of 
structuring 

43 
109 

30 
31 

identical 43 
relative 109 

subfield delimiter 137 
subfields in a picture specification 
189,190 

subroutine 102,57 
abnormal te'rmina tion of 
invocation of 197,102 
normal return from 102 

119 

normal termination of 102 
subroutine reference 102 
subscripted names 29 
sub~icripts 29 

conversion of 48 
in arguments 108,109 
internal form of 29 
precision of 29 

137, 

SUBSTR built-in function 161 v 44,99,196 
SUBSTR pseudo-variable 172,44,99 

in assignment statement 196 
substring, extraction of 161,99 
sub1:raction 37 

~ttributes of the result of 156 
SUM built-in function 171 
syn1:actic unit 129 
syntax notation 129 
SYSIN 76 

230 

SYSIPT 
SYSLST 
SYSPRINT 

76 
76 

76 
system action 111 
system action condition 177,174 
SYSTEM action specification ~05,56,112, 

173 

T picture character 142 
TAN built-in function 168 
TAND built-in function 168 
TANH built-in function 169 
target attributes 46,152,153 

as derived from operators 46 
determination of 45,46 
for type conversion 46 
in arithmetic conversion 46,152 
in bit to character conversion 46,153 
in character to bit conversion 46,153 

targets 46 
base of arithmetic targets 46,152 
length of bit-string targeb3 48,155 
length of character-string targets 48 
precision of arithmetic targets 476152 
scale of arithmetic targets 46,152 

temporary, in conversions 45 
termination 61-62 

abnormal 61v62 
normal 61,62 
of begin block 61 
of function 103 
of on-unit 112 
of program 62 
of subroutine 102 

THEN clause 203,53,54 
TIME built-in function 172 
TO clause 199,54,85 
track number, relative 80 
tracks, relative 79 
transfer of control by GO TO statement 

203,53 
also see control 

TRANSMIT condition 177 
TRUNe built-in function 165 
truncation 36,146,165 

in arithmetic operation~i 36 
in string assignment 94 

type 32,46 
type conversion 46,32,153 

bit-string to character-string 34,46, 
153 

bit-string to coded arit~hmet.ic 
153 

bit-string to numeric character 
character-string to bit-string 

153 
coded arithmetic to bit-string 

154 

34,46, 

34,155 
34,46, 

35,46, 

coded arithmetic to numE!ric character 
153 

numeric character to bi t~-st:('ing 35,155 
numeric character to charact.er-string 

34,153 
numeric character to coded arithmetic 

36,153 
target attributes for 46 

types of comparison 39 



U-format~ rE~cords 
unblocke~d records 
unblocking 71 

78,185 
71,78 

UNBUFFERED attribute 182,73,82,92,179 
unconditional branch 53 
uncondi t~ional insertion character 139 
undefined format records, see U-format 
records 

UNDERFLOW condition 175 
UNSPEC built-in function 162,99 
UNSPEC pseudo-variable 172 

in assignment statement 195 
UPDATE attribute 188,73,90,92,93,179,193 
upward compatibility 217,77 
usage file attributes, defaults for 
use of expressions 33 
use of parentheses 

in a:r9ument lists 
in expressions 41 

107,108 

V picture character 137-138,97,98 
compared with point character (.) 

98 
V-format records 78,185 
variable··-lemgth records, see V-format 
records 

variables 21 
array 28 
automatic 63 
based 115,28 
control 54 
E~lement 28 
label 28 
point'E~r 28,115 
pseudo-variables 
scalar 28 

172,44 

73 

140" 

statement-label 28 
static 62-63 
structure 30 

varying-length records (see V-format 
records) 

VERIFY option 187,82 
volume 71 

WHILE clause 199,54,85 
WRITE statement 210,51,90,91,92,93,121 

purpose of 51 

x format item 151,88 
X picture character 136,27,96,189 

Z picture character 138,98,190 
zero suppression 138 

examples of 139 
in F format output 149 
in numeric character data 138,98 
in sterling pictures 145 
picture characters for 138 

ZERODIVIDE condition 175 
zeros, extension with 94 

48-character set 132,16-17,65 
card punch codes for 132 
EBCDIC codes for 132 

6 sterling picture character 
60-character set 131,16 

card punch codes for 131 
EBCDIC codes for 131 

7 sterling picture character 
8 sterling picture character 
9 sterling picture character 
97,189,190 

144 

144 
144 
137,25,96, 

Index 231 



C2E:-8202-0 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Phlins, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, NElwYork, New'York 1[1017 
r Intll!rnationalj 

"I:l 
1-1 
1-" ::l 
rt 
(!) 
~L 

1-" ::, 
c:: 

(') 
to...) 
(lO 

II 
CO 
to...) 
c::> 
to...) 

II 
c:> 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232

