
Systems Reference Library

IBM System/360 Operating System

PL/I (F) Version 5

Planning Guide

This publication is a planning aid only. It is
intended for use prior to the availability of the
fifth version of the PL/I (F) Compiler and is to
be replaced by reference documentation wnen that
compiler b(~comes available.

Used in conjunction with the publication IBM
System/360 PL/I Reference Manual, Form C28-8201,
this publication enables the user to write PL/I
programs that are to be compiled using the fifth
version of the Ii' Compiler under the IBM System/360
Operating System.

File No. S360-29
Form C33-0002-0 OS

PREFACE

This publication is intended for use
as a planning aid by systems analysts and
programmE~rs who will be using the fifth
version of the F Compiler when it becomes
availablE!. It is designed for the reader
who already has a knowledge of the language
and who requires an additional source of
reference for planning purposes.

The book contains four sections related
to the four major areas of improvement
in the compiler: Section 1 describes
functional additions (and therefore
contains most of the language changes and
additions: implemented by the new version
of the compiler); Section 2 describes
improvements in performance and
optimization; Section 3 details
improvements in the use of storage: Section
4 describes other improvements in the
usability of the compiler. Additional
information, including compatibility with
previous versions of the compiler, and
system requirements, is given in Appendixes
A and B: and Appendix C provides an
alphabetical list of changed language
features related to topics covered in the
text.

REQUISITE PUBLICATIONS

To make full use of this publication,
the reader must have the following:

IBM System/360 PL/I Reference Manual,
Form C28-8201.

For additional information necessary
to compile, link-edit, and execute a
program, the reader should refer to the
following publication:

IBM System/360 Operating System: PL/I (F)
Programmer's Guide, Form C28-6594.

RECOMMENDED PUBLICATIONS

The following publications contain
other information that will be valuable
to users intending to take advantage of
the teleprocessing support implemented
by the fifth version of the compiler:

IBM System/360 Operatin<t System: QTAM
Message Processing Serv1ces, Form C30-
2003

IBM System/360 Operating System: QTAM
Message Control Program, Form C30-2005

r--,
IFirst Edition (March 1969)
I
IThis edition applies to Version 5 of the PL/I (F) Compiler
Iwhich operates under IBM System/360 Operating System until
lotherwise indicated in new editions or technical
I NewslettelC's. Changes are periodically made to the
Ispecifications herein; before using this publication in
Iconnection with the operating of IBM systems (or
I equipment) , refer to the latest SRL Newsletter, Form
IN20-0360, for the editions that are applicable and current. L ___ - ____ _

This publication was prepared for production using an IBM
computer t.O update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print chain.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.

Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your
locality.

~ Copyright International Business Machines Corporation 1969

1. FUNCTIONAL ADDITIONS

Teleprocessing Support '. • • •
Introduction • • • • ~ • • • •
Language Additions • •

'rhe TRANSIENT Attribute •
'rhe PENDING Condition • •

Ne~1'1 ENVIRONMENT Options (G and R)
Special Requirements • • • • • • •

QTAM Message Control Program
Termination of Teleprocessing

System • • • • • • • • •
Reactivation of Teleprocessing

System • • • • • • • • • •
Programming Example

string-handling Additions •
The TRANSLATE Built-in Function
The VERIFY String Built-in Function

Optimization Extensions •
Introduction • • • • •
Language Additions • •

The ORDER Option • • • •
The REORDER Option

Adoption of Halfword Binary Facilities
Effect on Storage • •
Effect on Data Interchange •
Compatibility ••• ~ ••
Relaxation of REFER Option
Restriction • • • • • • • •

2 • PERF01~MANCE IMPROVEMENTS l'~ND

CONTENTS

5 Shared Library • • • • • • • • • • • • • 15

5
5
5
5
6
6
7
7

7

7
8

9
9

• 10

• • 10
• • 10

• 11
• • 11
• • 11

• 12
• 12
• 12

12

• • 12

4. USABILITY IMPROVEMENTS • • 22

New ENVIRONMENT Options •• ••••• 22
Track Overflow (TRKOFL) • • • 22
Asynchronous Operations Limit
(NCP) • • • • • • • • • • 22

Improved Abnormal Termination (STAE
Feature) • • • • • • • • • • • 22

Multitasking Improvements • 22

Additions to List of Acceptable
Abbreviations • • • • • • • • • • • • • 22

APPENDIX A: COMPATIBILITY WITH PREVIOUS
VERSIONS • • 23

New Library Modules and Halfword Binary
Adoption • • • • • • • •• • 23

Effect of New Library Modules and
Recommended Action • • • • • 23

Effect of Halfword Binary and
Recommended Action • • 23

Mandatory RETURNS Keyword on PROCEDURE,
ENTRY, and %PROCEDURE Statements •••• 24

Removal of ABNORMAL, NORMAL, USES, and
SETS Attributes • • • • • • • • • 24

OPTIMIZATION • • • • • • • • • 13

Introduction

Loop and Subscript Optimization •
Loop Control Mechanism ••••
Loop Control Variables •
Array Expressions • • • • • •
Subscript Lists

Additional In-line Conversions

Improved Code for Assignments • •

Improved Register Usage • • • •

Correction to Implementation of INDEX
• • 13 Built-in Function • • • • • • • • • 24

• • 13
13
13

APPENDIX B:

Publications

REQUIRE'f\1ENT S • • • 25

• • 25
• • 13

• 14 Supporting Program for Teleprocessing • • 25

• • 14 Machine Requirements
Compilation

• • • • • • • • 25

14 Execution....

• • 14 Operating System Requirements •
Compilation

• • • 25
• • 25

• • • 25
25

Improved Code for Mathematical Built-in Execution • • • • • • • • • • • 25
Functions •••• • • • • • • • • • 14

APPENDIX C: ADDITIONS AND CHANGES TO
3. IMPROVEMENTS IN USE OF STORAGE ••• 15 LANGUAGE IMPLEMENTED •••••••• 27

Halfword Binary Facilities • • 15 INDEX •• • 29

FIGURES

Figure 1. rreleprocessing Programming Example , 8

TABLES

Table 1. SHARED LIBRARY FEATURE - MODULE GROUPS SELECTED BY OPTIONS
IN SYSGEN PL1LIB MACRO . . · · 16

Table 2. Housekeeping Package . . · · · · · · 17
Table 3. Conversion Package D 18
Table 4. STRING Function Package · · · · · · · · e 19
Table 5. ARRAY Function Package · · · · · · · · .. 19
Table 6. Arithmetic Function Package . · .. 19
Table 7. Mathematical Function Package · · 20
Table 8. STREAM I/O Package · 0 21
Table 9. RECORD I/O Package · e 21
Table 10. compiler data sets · · · · .. 26

Functional additions for the fifth
version of the F Compiler consist of the
following: teleprocessing support by means
of TRANSIENT files; two Ilew st:ring built­
in functions (TRANSLATE and VERIFY); two
new optimization options, ORDER and
REORDER; and the adoptioIl of System/360
halfword binary facilities for fixed
binary variables of precision less than
16.

TELEPROCESSING SUPPORT

This subsection describes t~he new
teleprocessing features of PL/I (i.e.,
the TRANSIENT file attribute and the
PENDING condition) together with the
associated teleprocessing format options
of the ENVIRONMENT attribute. A simple
programming example is given at the end
of the subsection to illustrate the inter­
relationship of the new features.

INTRODUCTION

The TRANSIENT attribute and an
associated ON-condition, PENDING, have
been introduced into the language to allow
teleprocessing applications programs to
be written in PL/I. The fifth version
of the F Compiler provides a communicating
link between PL/I message processing
programs using these feat.ures and the
QTAIvl (Queued Telecommunications Access
Method) facilities of the operating system.

The user must provide a QTAM message
control program (MCP) suitable! for the
particular installation; QTAM macros can
be used for this purpose. The message
control program handles messages
originating from and destined for a number
of remote terminals, each of which is
identified by a terminal name carried
with the message. These messages are
transmi tted to and from t.he PL/I message
processing program via queues in main
storage. (These queues are su.pported by
corresponding intermediat.e queues in a
disk data set. The PL/I program has
access only to the main storage queues,
by means of a single intermediate buffer
for each file .•) The exact message format
depends on the MCP, but each message will
carry the terminal name with it. A message
may be a complete unit, or may consist

1. FUNCTIONAL ADDITIONS

of a number of records so that it can be
split up for processing; the ENVIRONMENT
attribute is used to inform the compiler
of the message format. The PL/I programmer
must have this message format information
to enable him to write the message
processing program.

The PL/I features are simply an
extension of the existing record-oriented
input/output facilities of the language.
The "data set" associated with each
TRANSIENT file is'in fact an input or
output message queue set up by the MCP.
A READ statement for the file will take
the next message (or the next record from
the current message) from the associated
queue, assign the data part to the variable
named in the INTO option (or set a pointer
to point to the data in the buffer), and
save the terminal name by assigning it
to the variable named in the KEYTO option.
{The PENDING condition is raised if the
input queue is empty when the READ
statement is executed.> A WRITE or LOCATE
statement will transmit the processed
message or record to the output queue,
using the element expression specified
in the KEYFROM option to identify the
destination terminal.

LANGUAGE ADDITIONS

The teleprocessing extension to the
language comprises the TRANSIENT attribute,
which is an alternative to DIRECT and
SEQUENTIAL, and the PENDING condition.
Some of the rules for input/output
statements are altered to accommodate the
TRANSIENT attribute. In addition, the
fifth version of the compiler requires
a teleprocessing format option to be
specified in the ENVIRONMENT attribute.

The TRANSIENT Attribute

The TRANSIENT attribute indicates that
the contents of the data set associated
with the file are re-established each
time the data set is accessed. In effect,
this means that records can be continually
added to the data set by one program
during the execution of another program
that continually removes records from the
data set. Thus the data set can be
considered to be a continuous queue through

Functional Additions 5

which ~he records pass in transit between
the message control program and the message
procsssing program.

The data Bet associated with a TRANSIENT
file differs from those associated with
DIRECT and SEQUENTIAL files in that its
contents ar~ dynamic; reading a record
removes it from the data set. Such a data
set can npv·?r be created or accessed by
a DIRECT or SEQUENTIAL file.

The use of TRANSIENT files is almost
totally dependent on the implementation;
for this reason, a list of rules for the
use of TRANSIENT with the F Compiler is
given celow the general format.

General format:

DIRECTISEQUENTIALITRANSIENT

The following rules apply specifically
to the us~ of TRANSIENT with the F
Compiler:

1. The TRANSIENT attribute can be specified
only for RECORD KEYED BUFFERED files
with either the INPUT or the OUTPUT
at.tribute.

2. The ENVIRONMENT attribute with one of
the two tE~leprocessing format options
(G and R) must be declared for TRANSIENT
files.

3. Input can be specified only by a READ
statemE:nt with the KEYTO option and
ei ther thE! INTO option or the SET
option.

4. Output can be specified only by a WRITE
statement or a LOCATE statement, either
of which must have the KEYFROM option.

5. The EVENT option is not permitted,
since TRANSIENT files are always
BUFFERED.

6. The "data set" associated with a
TRANSIENT file is in fact a queue of
messages maintained automatically in
main storage by a separate message
control program using the QTAM (Queued
Telecommunications Access Method)
facilities of the operating system.
The queue is always accessed
sequentially.

7. The name or title of a TRANSIENT INPUT
file must be the name of a recognized
queue set up by the message control
program. For TRANSIENT OUTPUT files,
any name can be declared, since the
file is re-associated for each output
operation with a queue determined by
the terminal name.

6

8. The element expression specified in
the KEYFROM option must have as its
value a recognized terminal
identification.

Th~ PENDING Condition

General Format: PENDING (file-name)

Description: Except when signaled, the
PENDING condition can be raised only
during execution of a READ statement for
a TRANSIENT file. It is raised when an
attempt is made to read a record that is
temporarily unavailable (i.e., for the
F Compiler, when the message queue
associated with the file contains no
messages at the time the READ statement
is executed).

standard System Action: In the absence
of an on-unit, the action is as described
for normal return.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
returns to the point of interrupt {unless
the condition was signaled}, where
execution is suspended until an appropriate
record becomes available. If the condition
was signaled, execution continues with
the statement immediately following the
SIGNAL statement that caused the interrupt.

Note: The value of the ONKEY built-in
function when the PENDING condition
is raised is a null string.

NEW ENVIRONMENT OPTIONS (G AND R)

Two new options of the ENVIRONMENT
attribute are associated with the
teleprocessing extension. These are:

G(maximum-message-size)

R(maximum-record-size)

One of these options must be specified
for TRANSIENT files: they cannot be
specified for DIRECT, SEQUENTIAL, or
STREAM files; and they cannot appear in
conjunction with any other option of the
ENVIRONMENT attribute.

The maximum message size and maximum
record size are specified by decimal
integer constants.

G(rnaximum-message-size) specifies that
execution of an input/output statement

will result in the movement of a complete
message to or from the message queue.

R(maximum-record-size) specifies that
execution of an input/output statement
will result in the movement of one record
of a message to or from the message queue.

For both G and R formats, a buffer is
always used, and its length will depend
on the value of the specified decimal
integer constant. The value -that must
be specified will depend on the message
format as set up by the separate message
control program. The PL/I programmer
must have details of the message format
in order to write a message processing
program. In general, the messages and
records are treated as if th~~y were v­
format records.

SPECIAL REQUIREMENTS

Execution of a program using TRANSIENT
files will require that t.he user's
generated system contains QTAM modules,
and that a QTAM MCP (Message Control
Program) is provided by the user.

QTAM M.::ssage Control Prog-ram

A QTAM message control program is
required t:o direct incoming and outgoing
messages to and from the main storage
queues via a message data set on disk
storage. Simple QTAM MCP macros are
available to ~id the user in generating
the message control program.

Terminatiqn of the Teleprocessing System

In order to terminate the message
control program, and thus the
teleprocessing system~ it is necessary
to write an assembly language message
processing program that will perform the
following functions:

1. Make sure that all of -the other
processing programs in the system have
either closed their QTAM data sets or
that they are about to do so. One
method could be to send to all the
input queues a message which could be
recognized by the processinq programs
as a message asking them to close the
data sets.

2. Issue a QTAM CLOSEMC macro-instruction
to terminate the entire system. (This
macro-instruction passes control to
QTAM termination routines.) It is not
possible to issue this macro in PL/I
processing programs, since it causes
the execution of a program to be delayed
until all other users of the QTAM data
sets have closed them.

3. Return.

The action of the Q~AM termination
routines when given control by CLOSEMC
is as follows:

1. The message control program will
continue to receive the message
currently being transmitted, but it
will poll no further terminals after
this transmission is complete.

2. As each terminal stops transmitting
messages, the MCP will start sending
messages waiting in the output queues.
As the incoming traffic declines to
nothing, the outgoing traffic continues
until a.ll outstanding messages have
been sent.

3. Once the traffic has ceased, a check
is made to ensure that all the QTAM
data sets opened in the various message
processing programs have been closed.

4. Finally, the entire system is terminated
by closing all its lines and queue
data sets.

Reactivation of the Teleprocessing System

The system is reactivated by executing
the message control program in the normal
way. All the processing programs could
be started as required. Any messages
that were still in the input queues when
the system was terminated will still be
available to the processing programs.
Further information can be found in the
publications IBM System/360 Operating
system: QTAM Message Processing Services,
Form C30-2003, and IBM System/360 Operating
System : QTAM Message Control Program,
Form C30-200S.

PROGRAMMING EXAMPLE

The programming example in Figure 1
is designed to illustrate that the PL/I
teleprocessing extension is a simple
extension of the existing record-oriented

Functional Additions 7

/* AN INQUIRY HANDLING PROGRAM */

1 CLOCK: PROCEDURE OPTIONS (MAIN);
2 DECLARE (IN,OUT) FILE TRANSIENT KEYED ENV (G(50»;
3 DECLARE (INPUT_MESSAGE, TERMINAL) CHAR (50) VARYING:

/* SET UP PENDING ON UNIT */
4 ON PENDING (IN) DISPLAY ('CLOCK ROUTINE WAITING FOR WORK');

5 GET_MESSAGE: READ FILE (IN) INTO (INPUT_MESSAGE) KEYTO (TERMINAL);

/* IS IT END OF SESSION ? */

6 IF INDEX(INPUT_MESSAGE,'END') ,= 0
7 THEN RETURN:

/* VALIDATE INPUT */

8 IF VERIFY (INPUT_MESSAGE, 'TO ') ,= 0
9 THEN CALL ERROR(INPUT_MESSAGE,TERMINAL):

/* NOW DETERMINE WHETHER TIME OR DATE
IS REQUIRED */

10 I~ INDEX(INPUT_MESSAGE,'T') ,= 0
11 THEN CALL TIME ROUTINE(TERMIN~L);
12 ELSE CALL DATE=ROUTINE(TERMINAL) ;
13 GO TO GET_MESSAGE;

/* SUBROUTINE TO RETURN RESPONSE */

14 TIME ROUTINE: PROCEDURE (TERM):
15 DECLARE (MSG,TERM) CHAR (50) VARYING:

/* INVOKE PL/I BUILT IN FUNCTION TIME */

16 MSG = TIME;
17 GO TO WRITE MESSAGE:
18 DATE_ROUTINE: ENTRY (TERM):

/* INVOKE PL/I BUILT IN FUNCTION DATE */

19 MSG = DATE;
20 WRITE_MESSAGE: WRITE FILE (OUT) ;FROM (MSG) KEYFROM (TERM);
21 END TI~~_ROUTINE:

/* ERROR SUBROUTINE */

22 ERROR: PROCEDURE (MSG,TERM):
23 DECLARE (MSG,TERM) CHAR (50) VARYING;
24 DECLARE REPLY CHAR (23) INITIAL

('YOUR MESSAGE IS INVALID');

/* THIS ROUTINE LOGS THE ERROR AT THE SYSTEM
CONSOLE AND INFORMS THE TERMINAL USER OF
THE ERROR */

25 DISPLAY ('BAD MESSAGE .,' IIMSGII ,., FROM TERMINAL 'IITERM):
26 WRITE FILE (OUT) FROM (REPLY) KEYFROM (TERM):
27 GO TO GET MESSAGE;
28 END ERROR; -

29 END CLOCK:

Figure 1. Teleprocessing Programming Example

8

transmission facilities w rather than to
represent a typical user's message
processing program.

The p:rogram in the examplE~ handles two
types of message. The format. of the
messages is a single character, '0' or
'T' surrounded by blanks. The '0'
character causes the date to be returned
to the inquiring terminal, and 'T' causes
the time to be returned. Any other
character is an error. Note that the DD
statements for the file!:; IN a.nd OUT would
be DD DUMl>1Y statements.

In the example, each inquiry is fully
serviced before control returns to
GET MESSAGE to obtain the next message.
Response could be greatly improved in an
lVlVT system by use of the multitasking
facilities of PL/I. If the routines
DATE ROUTINE, TIME ROUTINE, and ERROR
werp-invoked as subtasks of CLOCK, control
would return to GET MESSAGE as soon as
the appropriate handling routine had been
invoked, ra~her than after it had finished.

STRING-HANDLING ADDITIONS

Two new string built-in fUIlctions are
implemented. These are the TRANSLATE and
VERIFY built-in functions.

TRANSLATE returns a translation of a
given string to the point of reference
according to a translation table defined
by two other strings. One exa.mple of its
use is to enable items specified in
character sets other than EBCDIC to be
read in, translated into internal notation,
and processed by the PL/I application
program. netranslation into character
sets other than EBCDIC can be performed
on output.

The VERIFY function verifies that each
character or bit in a given source string
is represented in a given verification
string; in other words, it tests the
validity of each character or bit according
to user-specified criteria.

~he TRANSLATE String Built-in Function

Definition: TRANSLATE rei:urns the
translated' value of a specified string
to the point of invocation,. The
translation is performed in accordance
with a translation table supplied in the
form of two arguments to the function.

Reference: TRANSLATE(s,r[,p)

Arguments: The argument usn represents
the sourcp string, i.e., the string that
supplies t,he value to be translated.
Arguments Urn and "pO represent the
replacement and position strings
respectively; these strings correspond
to each other to provide the translation
table. If "pO is not specified, an
implementation-defined character string
is provided; for the F Compiler, this
string consists of the 256 possible EBCDIC
characters arranged in ascending order
(i.e., from hexadecimal 00 through FF).

If any argument is arithmetic, it is
converted to string (a character string
if the arqument is DECIMAL, or a bit
string if-the argument is BINARY). If,
after any arithmetic-to-string conversion
has been performed, all arguments are bit
strings, no further conversion takes
place; otherwise, bit-string arguments
are convert9d to character strings. If
urn is shorter than Up," it is padded on
the right (with blanks or zeros, depending
on the string type) to the length of "p."

Result: The value returned by this
function is a string identical in length
and value to the source string Os," except
that if any character/bit position of "s"
contains a character or bit that has been
specified for replacement (by inclusion
of that value in the position string Up"),
that value will be replaced by the
corresponding value from the replacem~nt
string "r." The correspondence is by
position: character/bit positions 1,2,3,
••• n of "p" correspond respectively to
character/bit positions 1,2,3, ••• n of
"r."

Example:

DECLARE (S,T) CHAR(10),
(P,R) CHAR(3);

p=' , • $' ;
R=' • , D' ;

A: GET DATA(S);
T=TRANSLATE(S,R,P);
PUT DATA (T) ;
GO TO A;

The above sequence reads in data from
SYSIN, translates commas to periods,
periods to commas, and dollar signs to
the character 'D', and writes out the
result on SYSPRINT. Thus, if the string
8='$12,345.50' were read in, the string
T='D12.345,50' would be written out.
(For the F compiler, precisely the same
result could be achieved by omitting P
altogether and making R consist of the

Functional Additions 9

EBCDIC sequence except for the replacement
of the comma, period, and dollar-sign
characters by the period, comma, and '0'
characters respectively.)

Note: Use of this function will in many
--cases rt::;sult in the in-line use of the

TR machine instruction ..

The VERIFY String Built-in Function

Definition: VERIFY examines two given
strings to verify that each character or
bit in the first string is represented
in the second string, returning a fixed
binary val~e of 0 if this is the case;
otherwise, the value returned is the index
of the first character (in the first
string) that is not represented in the
second string ..

Reference: VERIFY(expr-1,expr-2)

Arguments: The arguments "expr-l" and
"expr-2" represent the source and
verification strings respectively. If
either argument is arithmetic, it is
converted to string (a character string
if the argument is DECIMAL, or a bit
string if the argument is BINARY). If,
after any arithmetic-to-string conversion
has been performed, both arguments are
bit strings, no further conversion takes
place; oth'erwise, the bit-string argument
is converted to a character string.

Result: The value returned by this
function is a fixed binary integer of
default precision «15,0) for the F
Compiler), determined as follows:

Each character or bit, c, of the source
string is examined to see if it is
represented anywhere in the verification
string, i.e., to determine if

INDEX(expr-2,c),=0

The characters or bits of the source
string are examined from left to right.
If an examined character or bit is not
represented in the verification string,
the index of that character or bit in the
source string is returned. If each
character or bit in the source string is
represented in the verification string,
the returned value is zero.

Example: Assume that B is a character
string of length 48, containing the 48
characters permitted in the 48-character
set. The expression

VERIFY (A, B)

10

will then return a value of zero for any
value of A that consists solely of
characters from the 48-character set, but
will index the first character in a value
of A that does not conform to the 48
character set (e.g., if A = 'P GT X', the
returned value is zero; if A = 'p > X',
the returned value is 3).

Not.e: Use of this function will in many
--cases result in the in-line use of the

TRT machine instruction.

OPTIMIZATION EXTENSIONS

The NORMAL, ABNORMAL, USES, and SETS
attributes have been removed from the
PL/I language, and these keywords will
no longer be accepted by the F Compiler.
<Previous versions of the compiler accepted
the keywords without acting on them. For
details of the effect on compatibility,
see Appendix A of this publication.) Two
new options <ORDER and REORDER) for
PROCEDURE and BEGIN statements have been
added, and are implemented in the fifth
version of the compiler. This subsection
describes these options in terms of the
PL/I language, since they stipulate the
rules that any compiler must observe
during optimization. The way in which
the F compiler ensures that these rules
are observed is discussed in section 2,
"Performance Improvements and
Optimization." The REDUCIBLE and
IRREDUCIBLE attributes are retained in
the language, and the F Compiler will
continue to accept them without taking
action.

INTRODUCTION

Strictly speaking, the order in which
the statements of a PL/I source program
are to be executed is specified by the
order in which they appear in the source
program, even if the code could be
reordered so as to produce the same result
more efficiently. The order of execution
is normally sequential except where
modified by a control statement such as
GO TO.

The programmer can vary the degree of
language stringency imposed on the compiler
by using the ORDER and REORDER options
on the PROCEDURE and BEGIN statements.
REORDER specifies a partial relaxation
of the rules to allow the compiler more
freedom in optimization. Whj~ther the F

Compiler takes advantage of this relaxation
(described in more detail below) depends
on other factors than the option specified.
Firstly, it will not try to optimize code
unless it: is obviously safe to do so;
secondly, optimization of object code
generally ffi:ans an increase in compilation
time, and so provision is made for the
user to prevent the compiler from
introduci.ng the necessary extra phases.
These two factors are discussed in more
detail in Section 2, "Performance
Improvements and Optimization."

LANGUAGE ADDITIONS

The syntax of the PROCEDURE and BEGIN
statements is changed to allow the
inclusion of the keyword ORDER or. the
keyword REORDER. The general format of
the PROCEDURE statement will be as follows:

entry-name: [entry-name:] •••
PROCEDURE [(parameter [, parameter] •••)]
[OPTIONS (option-list)]
[RECURSIVE] [RETURNS (attribute •••)]
[ORDERIREORDER];

A similar cnange is made to the general
format of the BEGIN statement., (The
inclusion of the RETURNS keyword in the
PROCEDURE statement is another language
change and is discussed in Appendix A,
"Co~patibility with Previous Versions").

ORDER and REORDER specify, for
optimization purposes, the degree of
language stringency to be observed during
compilation of the block. The strict
rules require that the source program
should be compiled so as to be executed
in the order specified by the sequence
of the statements in the source program,
even if the code could be reordered so
as to produce the same rE;!sul t more
efficiently. The relaxation allowed by
REORDER is such that if computational or
system action interrupts occur during
execution of the block, the result is not
necessarily the same as it would be under
the strict rules.

The selected option applies to all
nested blocks unless overridden; if neither
option is specified, the option that
applies to the containing block will be
assumed,. If the block is an E!xternal
procedure, it will be assumed to have the
ORDER option unless REORDER is explicitly
specified ..

The ORDER Option

The ORDER option specifies that the
normal language rules are not to be
relaxed; i.e., any optimization must be
such that the execution of a block always
produces a result that is in accordance
with the strict definition of PL/I. This
means that the values of variables set
by execution of all statements prior to
computational or system action interrupts
are guaranteed in an on-unit entered as
a result of the interrupt, or anywhere
in the program afterwards. Note that th~
strict definition now allows the compiler
to optimize common expressions (see note
below), where safely possible, by
evaluating them once only and saving the
resul~, rather than re-evaluating for
each reference. Consequently, object
programs produced by the fifth version
of the compiler may differ from those
produced by the fourth version in respect
of the number of computational or system
action conditions raised during execution.

Note: A common expression is an expression
----that occurs more than once in a program

but is obviously intended to result
in the same value each time that it
is evaluated, i.e., if a later
expression is identical to an earlier
expression, with no intervening
modification to any operand, the
expressions are said to be common.

The REORDER Option

The REORDER option specifies that
execution of the block must produce a
result that is in accordance with the
strict definition of PL/I unless a
computational or system action interrupt
occurs during execution of the block; the
result is then allowed to deviate as
follows:

1. After a computational or system action
interrupt has occurred during execution
of the block, the values of variables
modified, allocated, or freed in the
block are guaranteed only after normal
return from an on-unit or when accessej
by the ONCHAR and ONSOURCE condition
built-in functions.

2 .• The values of variables modified,
allocated, or freed in an on-unit for
a computational or system action
condition (or in a block activated by
such an on-unit) are not guaranteed
on return from the on-unit into the
block, except for values modified by

Functional Additions 11

the ONCHAR and ONSOURCE pseudo
variables.

A program is in error if a computational
or syst~m action interrupt occurs during
the execution of the block and this
interrupt is followed by a reference to
a variable whose value is not guaranteed
in such circumstances.

ADOPTION OF HALFWORD BINARY FACILITIES

With previous versions of the compiler,
fixed binary variables of any prec1s1on
were always mapped as full words (requiring
four bytes of storage). The fifth version
of tht:= compiler will map fixed binary
variables of precision less than 16 as
halfwords <requiring only two bytes of
storage), and will uSe System/360 halfwor-i
instructions to process them. Note that
variables of default precision will be
mapped as halfwords. This subsection
describes the effect of this change on
storage, data interchange, and
compatibili·ty.

The change does not apply to fixed
binary constants or fixed binary
intermediate targets (i.e., compiler
created temporaries for holding
intermediate results of operations).
These will continue to occupy fullwords.

The total amount of main storage and
~xternal storage required at execution
time by fixl~d binary variables of precision
less than Hi will be halved; this includes
storage for arrays and elements of
structures.

12

Effect on Data Interchange

communication between PL/I and other
languages is improved: the feature permits
easier data interchange between programs
written in PL/I and those written in COBOL
and FORTRAN. (Use of the COBOL option in
the ENVIRONMENT atrribute allows data
interchange 'Iii th COBOL programs; use of
the UNALIGNED attribute in conjunction
with VS- or VBS-format records allows
data interchange with FORTRAN programs.)

Compatibility

This change will affect compatibility
with programs written for previous version3
of the compiler only in relation to the
following:

1. Rxternal fixed binary variables

2. Fixed binary arguments and parameters

3. Variabl~s defined on external fixed
binary variables

4. Fix~d binary variables used in record­
oriented transmission

5. Based fixed binary variables.

Full details of circumstances in which
such incompatibilities could arise and
methods of avoijing them are given in
Appendix A of this publication.

Relaxation of REFER Option Restriction

The restriction on the two variables
in the REFER option of the BASED attribute
has been eased to permit fixed binary
integer variables of the same precision
as each other. This will allow the user
the choice of either continuing to use
fullword binary or using halfword binary
for the controlling fields in self-defining
structures.

I.I.-.JTRODUC'I'ION

This section gives details of the
improvements that can be expected in the
execution speed of object p'rograms produced
by the fifth version of the F compiler
compared with the speed of those produced
by. the fourt,h version. The' degr4~e of
obJect program optimization attempted by
the compiler depends on the PL/I block
options ORDER and REORDER, and on the
compiler option OPT. The descriptions
of the specific areas of improvement that
follow this introduction indicate the
block and compiler options that should
be specified in order to obtain the
benefits of each feature; they also include
estimates of the local performance
improvement in each case.

Where it is indicated that optimization
will be effected for both ORDER and
REORD.t:R, it is probable that specification
of REORDER will result in the grE~ater
degree of optimization. however, even
where REO~ER is stated to be necessary
for a partlcular type of optimization to
occur, there will usually be somE~

optimization when ORDER is specified.
Fo:: the fifth version of the F Compiler,

the optlon OPT can be specified with one
o:E three values:

OPT=O requests fast compila1tion and,
as a secondary considE:!ration,
reduction of the storage space
required by the object program
at the expense of execution time.

OPT=l requests fast compilation and,
as a secondary consideration,
reduction of object program
execution time a't the expense
of storage space.

OPT=2 requests reduction of object
program execution time at the
expense of compilation time.

Note that the new optimization phases of
the compiler will be invoked only when
OPT=2 is specified. The resultant
degradat,ion in compilation time has
been estimated to be not greater than
22 perc~nt when 88K bytes of storage
are avallable for the compilation.

The per:formance improvement figures
~iven below are average local improvements;
this data is not necessarily representative

2. PERFORMANCE IMPROVEMENTS AND OPTIMIZATION

of all programs and is given for guidance
only.

It is not possible to quote a specific
overall percentage improvement figure since
individual programs will vary considerably.
Estimates indicate an execution speed improve­
ment ratio in the range 1:1 to 2.6:1.

LOOP ill~D SUBSCRIPT OPTIMIZATION

LOOP CON'I'ROL MECHANISM

The mechanism of loop control will be
simplified wherever possible. In particular,
BXLE or BXH machine instructions will be
generated rather than the present five­
instruction sequence.

Block option: ORDER/REORDER

Optimization level: OPT=2

Local performance improvement: between
2 to 1 and 3 to 1.

LOOP CONTROL VARIABLES

The use of control variables as
subscripts will be optimized.

Block option: REORDER

Optimization level: OPT=2'

Local performance improvement: between
2 to 1 and n to 1 for addressing code,
where n = number of times the control
variable appears in subscript expressions.

ARRAY EXPRESSIONS

A combination of the techniques used
for optimization of loop control mechanisms
and control variables will be employed.

Block option: ORDER/REORDER

Optimization level: OPT=2

Performance Improvements and Optimization 13

Local performance improvement: between
2 to 1 and n to 1, where n = number of
arrays in thE~ expression.

SUBSCRIPT LISTS

Identical expressions that will
represent the same value will be replaced
by temporary variables to which the value
will be assi9ned. Expressions whose
values will not change will be moved out
of loops.

Block option: REORDER

Optimization level: OPT=2

Local performance improvement: n to 1,
where n = nUDwer of common subscript
expressions.

ADDITIONAL IN-LINE CONVERSIONS

In addition to those data conversions
. for which in--line code is generated by
the third and fourth versions of the F
Compiler, in--line code will be generated
for certain cases of conversion between
the followin9 data types:

Numeric character to FIXED BINARY

FIXED BINPffiY to numeric character

Numeric character to FIXED DECIMAL

FIXED DECI~AL to numeric character

In-line code will be generated for
these conversions where the picture
specification comprises a string of 9s
and includes an implied decimal point
(e.g., '99V9'). The picture specification
may also include editing characters
preceding the 9s (e.g., '$$$999V99'), or
embedded periods (e.g., '99.99V9.9').

Block option: ORDER/REORDER

optimization level: OPT=O, OPT=1, or OPT=2

Local performance improvement: beween 5
to 1 and 11 to 1.

IMPROVED CODE FOR ASSIGNMENTS

Optimized code that does not use
temporary storage will be produced in the

14

following cases when FIXEDOVERFLOW and
SIZE are disabled or cannot be raised,
and when the operands are of suitable
scale and precision:

1. Simple fixed-decimal assignments (for
example, A = A + constant; X = A + Bi
X = A * B + Ci).

2. Simple expressions and assignments
that involve only character-string
variables and character-string constants
(for example, X = AIIB;).

3. Assignments between temporary variables
such as occur in some subroutine or
function references.

Block option: ORDER/REORDER

Optimization level: OPT=O, OPT=1, or OPT=2

Local performance improvement: between
2 to 1 and 3 to 1.

IMPROVED REGISTER USAGE

Improvements in the register-allocation
stage of the compiler can result in better
use of registers during execution of the
obj~ct program, thereby eliminating some
intermediate store and load instructions.

Block option: ORDER/REORDER

Optimization level: OPT=2

Local performance improvement: 1.25 to
1 when applicable.

IMPROVED CODE FOR MATHEMATICAL BUILT-IN
FUNCTIONS

The mathematical built-in functions
have been recoded to use new algorithms
and to exploit recent changes in the
floating-point hardware.

Block option: ORDER/REORDER

Qptimization level: OPT=O, OPT=1, or OPT=2

Performance improvement: increased
accuracy of results of many mathematical
built-in functions, and shorter execution
time for some functions.

In general the fifth version of the
PL/I(F) Compiler will not create programs
differing significantly in their use of
core storage from those created by the
fourth version. There are however two
areas where considerable gains can be
made through using the fifth version.
These items are the adoption af halfword
binary storage and the creation of a
single PL/I library that can be used
concurrently by PL/I programs executed
in an MVT environment. As use of both of
these items is highly program dependent,
a general statement cannot be made on the
overall impact on the use of storage.

HALFWORD BINARY FACILITIES

The halfword binary facilities are
already descibed in section 1 under the
heading "Adoption of Halfword Binary
Facilities."

SHARED LIBRARY

This feature permits the selective
building of a 'shareable' PL/I Library
by means of the PL1LIB system Generation
macro-instruction. This library can then
be made resident in the LINKPACK area of
the Operating system/360 CMVT option only)
at the time of Initial Program Load (IPL).
The library can then be access4~d from one

3. IMPROVEl-"..ENTS IN USE OF STORAGE

or more regions concurrently through a
communications routine link-edited with
the user program. PL/I Library routines
not built into the 'shareable' library
will be automatically link-edited into
the user's load module. Execution of a
load module requiring the shared library
will proceed normally even if the shared
library was not made resident at IPL-time.
In this case the shared library will be
loaded dynamically at the start of
execution into the user region or partition
on MVT or MFT, or into the user program
area in PCP.

Table 1 shows the 35 groups that a
user can select for inclusion in his
resident PL/I library, and the System
Generation options required to obtain
them. The 35 groups make up 8 "packages"
covering Housekeeping functions,
Conversions, String Functions, Array
Functions, Arithmetic Functions (ADD,
MIN, MULTIPLY, etc.), Mathematical
Functions (SIN, COS, SQRT, etc.), STREAM
Input/Ou'tput, and RECORD Input/Output.

The breakdown of the PL/I Library into
groups by modules within package is given
in Tables 2 through 9. It should be noted
that some modules appear in several groups
within a package; selection of these
groups will cause the inclusion of only
a single copy of anyone module. Group
1 (the non-shareable modules) is the only
group that spans more than a single
package.. In addition, each PL/I library
module appears in only one package.

Improvements in Use of Storage 15

Table 1. Shared Library Feature - Module Groups Selected by Options in SYSGEN PL1LIB Macro

Approx.
Group Size of PL1LIB SYSGEN Options

No. Main Functions of the Group Group to Select Group

1 NCln-shared modules 5500 Modules not sharable
2 Multi-tasking storage management 7100 MODES=TASK STORG=BASIC
3 Non-tasking storage rna nagement 5100 MODES=NOTK STORG=BASIC
4 Error handler (ON-unit s) 1300 STORG=ERR
5 List processing and st ructure mapping 2700 ' S'PORG=LISTP
6 Basic conversion packa ge 3900 MODES=REAL CONVS=BASIC
7 Edit conversions 4300 CONVS=EDIT
8 Complex conversions 4400 MODES=CMPX CONVS=BASIC
9 Bit string conversions 2700 CONVS=BIT

10 Character string conve rsions 3900 CONVS=CHAR
'1 Picture conversions 7900 CONVS=PICT
12 Sterling conversions 4400 CONVS=STERL
13 Optimization=1 special conversions 5000 CONVS=OPT1
14 Bit string functions 3200 STRGS=BIT
15 Character string funct ions 1800 STRGS=CHAR
16 'STRING' b-i-f and PV 2700 STRGS=STR
17 Real non-interleaved a rrays 2000 MODES=REAL ARRAY=BASIC
18 Real interleaved array s 2500 MODES=REAL ARRAY=LEAF
19 Cctmplex non-interleave d arrays 2500 MODES=CMPX ARRAY=BASIC
20 Complex interleaved ar rays 3200 MODES=CMPX ARRAY=LEAF
21 Re!al arithmetic operat ors 1800 MODES=REAL MATHS=BASIC
22 Complex arithmetic ope rators 4300 MODES=CMPX MATHS=BASIC
23 Real short arithmetic functions 2700 MODES=REAL MATHS=SHORT
24 Real long arithmetic f unctions 3800 MODES=REAL MATHS=LONG
25 Complex short arithmet ic functions 4800 MODES=CMPX MATHS=SHORT
26 Complex long arithmeti c functions 5500 MODES=CMPX MATHS=LONG
27 Non-tasking data-direc ted I/O 5100 MODES=NOTK STRIO=DATA
28 Non-tasking list-direc ted I/O 5200 MODES=NOTK STRIO=LIST
29 Non-tasking edit-direc ted I/O 3100 MODES=NOTK STRIO=EDIT
30 Multi-tasking data-dir ected I/O 5300 MODES=TASK STRIO=DATA
31 Multi-tasking list-dir ected I/O 5300 MODES=TASK STRIO=LIST
32 Multi-tasking edit-dir ected I/O 3200 MODES=TASK STRIO=EDIT
33 Non-tasking record I/O 1700 MODES=NOTK RECIO=BASIC
34 Multi-tasking record I /0 2400 MODES=TASK RECIO=BASIC
35 Non-tasking record I/O wait 1100 MODES=NOTK RECIO=WAIT
36 Multi-tasking record I /0 wait 1300 MODES=TASK RECIO=WAIT

Notes: 1. The group sizes given above are rounded up to the nearest 100 bytes.
2. The non-shared modules (Group 1) comprise those modules from the

Housekeeping, String Function, and STREAM I/O Packages which cannot
reside in the shared library.

16
•

3. When several groups from the same package are selected, the size of
the resulting group is not necessarily the sum of the individual
group sizes.

Table 2. Housekeeping Package

Group Number
Module Description

1 2 3 4 5

IHETCV Control Variable X
IHETEA Event Variable X
IHETER ON Field X
IHETEV COMPLETION X
IHETPB PRIORITY X
IHETPR PRIORITY X
IHETSA Storage Manag.t X
IHETSE FINISH X
IHETSS FINISH X
IHESAP Storage Manag.t X
IHEOSS FINISH X
IHEOSE EXIT X
IHECKP Checkpoint X
IHEDSP Display X
HIE DUM Dump X X
IHESRT Sort X
IHEERR Error X X
IHECFA ONLOC X
IHECFB ONCODE X
IHECNT ONLINE X

) CHAR
IHESRC ONSOURCE) DATA X

)FILE
IHESRD ONKEY X
IHELSP List Processing X
IHESTR Structure Mapping X
IHEBEG Terminal Error X
IHECFC Mod 91 interrupts X
IHEM91 Mod 91 errors X
IHEMAI Main X
IHEMSI No Timer X
IHEMST No TIME X
IHEMSW WAIT I/O Event X
IHEOSD Date X X
IHEOSI Delay X
II-IEOST Time X X
IHE PTT COPY Tasking X
IHEPRT COpy No-tasking X
IHE RES Restart X
IHESIZ Length PRV X X

Improvements in Use of Storage 17

Table 3.

Module

IHEDIA
IHEDIB
IHEDID
IHEDIE
IHEDIL
IHEDIM
IHEDOA
IHEDOB
IHEDOD
IHEDOE
IHEDOM
IHEDMA
IHEDNB
IHEDBN
IHEDCN
IHEDNC
IHEKCA
IHE KCB
IHE KCD
IHE UPA
IHE UPB
IHEVCA
IHEVCS
IHEVFA
IHE VFB
IHEVFC
IHEVFD
IHEVFE
IHE VKB
IHEVKC
IHEVKF
IHEVKG
IHE VPA
IHE VPB
IHEVPC
IHEVPD
IHEVPE
IHE VPF
IHEVPG
IHEVPH
IHEVSA
IHE VSB
IHEVSC
IHEVSD
IHEVSE
IHEVSF
IHEVQA
IHEVQB
IHEVQC

18

Conversion Package

Description

F format director
E to Internal
B to Internal
Picture to Internal
A/B error
C to Internal
Internal to F/E
Internal to A
Internal to B
Internal to Picture
Internal to C
Conversion director
Arithmetic to Bit
Bit to Arithmetic
Bit to Character
Arith to Character
Valid Dec. Picture
Valid Sterling Picture
Valid Char. Picture
Address Real Complex
Address Imag. Complex
Arith. attributes
Complex to Internal
Binary to Decimal
Float to Fixed
Float to Float
Fixed to Float
Float to Float
Decimal to Packed
Sterling to Packed
Packed to Fixed
Packed to Sterling
Decimal to Binary
Decimal to F
Packed to E
Packed to Decimal
E/F to Packed
De~cimal to Packed
Fixed to Float
Bit to Float
Varying Bit
Varying Bit/Character
Varying Character
Varying Bit/Character
Character to Picture
Bi.t to Picture
Float to Fixed
Decimal to Arithmetic
Arith to E/F/Char.

6 7

X X
X
X
X
X
X

X X
X
X
X
X

X X

X
X
X
X
X

X
X
X
X
X
X

Group Number

8 9 10 11 12 13

:x:
X

X
X X

X

X X

X X X X X
X
X

X
X X

X X
X

X
X
X X
X
X
X X
X X

X X

X
X

X
X

X X
X X
X X
X X
X X
X X

X
X
X
X X

X
X X

X
X X

X
X
X

Table 4. STRING Function Package

Group Number
Module Description

1 14 15 16

IHEBSA And X
IHEBSO Or X
IHEBSN Not X
IHE BSC Compare X
IHEBSM Assign X
IHEBSK Concat, REPE.A.T X
IHEBSD Compare X
IHEBSS Compare, SUBSTR X
HIEBSI INDEX X
IHEBSF BOOL X
HIEBSV VERIFY X
IHE BST TRANSLATE X
!lIE CSK REPEAT X
HIECSC Compare X
IHECSM Assign, Fill HIGH/lC.OW X
IHECSS SUBSTR X
IHECSI INDEX X
IHESTG STRING BIF X
IHESTP STRING PV X
IHECSV VERIFY X
IHECST TRANSLATE X

Table 5. ARRAY Function Package Table 6. Arithmetic Function Package

Group Number Group Number
Module Description

17 18 19 20
Module Description 21 22

IHE JXS Indexer X X X X IHE XIB X**N X
IHEJXI Indexer X X IHE XID X**N X
HIE NL1 ALL ANY X X X X IHEAPD X**N X
IHE NL2 ALL ANY X X IHEXIS X**N X
IHESSF SUM X' IHEXXS Shift X
IHFSMF SUM X IHEXIL X**Y X
IHESSG SUM X X IHEXXL X**Y X
IEESMG SUM X X IHEMZU X*Y X/Y X
IHESSH SUM X X IHE XIU X**N X
IHESMH SUM X X IHEMZV X*Y X/Y X
IHEPSF PROD X IHEXIV X**N X
IHEPDF PROD X IHEMZW X*Y X
IHEPSS PROD X IHEDZW X/Y X
IHEPDS PROD X IHEXIW X**N X
IHEPSL PROD X IHEXXW X**Y X
IHEPDL PROD X IHEMZZ X*Y X
IHEYGF POLY X X IHEDZZ X/Y X
IHEYGS POLY X X IHEXIZ X**N X
IIIEYGL POLY X X IHEXXZ X**Y X
IHESSX SUM X IHEMXB MAX MIN X
IHESMX SUM X IHEMXD MAX MIN X
IHEPSX PROD X IHEADD ADD X
IHEPDX PROD X IHEMXS MAX MIN X
IHEPSW PROD X IHEMXL MAX MIN X
IHEPDW PROD X IHEMPU MULTIPLY X
IHEPSZ PROD X IHEDVU DIVIDE X
IHEPDZ PROD X IHEADV ADD X
IHEYGX POLY X X IHEMPV MULTIPLY X
IHEYGW POLY X X IHEDVV DIVIDE X
IHEYGZ POLY X X

Improvements in Use of storage 19

Table 7. Mathematical Function Package

Group Number
Module Description

23 24 25 26

IHE SQS SQRT X X
IHEEXS EXP X X
IHELNS LOG X X
IHE SNS SIN COS X X
IHETNS TAN X X
IHEATS ATAN X X
IHESHS SINH COSH X X
IHETHS T}\NH X X
IHEHTS ATANH X X
IHEEFS ERF X X
IHESQL SQRT X X
IHEEXL EXP X X
IHELNL LOG X X
IHE SNL SIN COS X X
IHETNL TAN X X
IHEATL A'l~AN X X
IHESHL SINH COSH X X
IHETHL TANH X X
IHEHTL A'l?ANH X X
IHEEFL ERF X X
IHESQW SQRT X
IHEEXW EXP X
IHELNW LOG X
IHESNW SIN COS SINH COSH X
IHETNW Tl~N TANH X
IHEATW A'l.'AN ATANH X
IHESQZ SQRT X
IHEEXZ EXP X
IHELNZ LOG X
IHESNZ SIN COS SINH COSH X
IHETNZ TIm TANH X
IHEATZ ATAN ATANH X
IHEABU ABS X
IHEABV AHS X
IHEABW ABS X
IHEABZ ABS X

20

Table 8. STREAM I/O Package

Module Description
Group Number

1 27 28 29 30 31 32

IHEDDI Read Data X X
IHEDDO Write/Convert Data X
IHEDDJ Array address X X
IHEDDP Array subscript X X
IHEDDT Write Data Tasking X
IHE IBT Tasking PUT X X X
IHE lOA GET X X X X X X
IHE lOB Non-tasking PUT X X X
IHE IOC GET string X
IHE IOD Datafield handler X X
IHE IOF Logical records X X X X X X
IHEIOP Page/Skip/Line X X X X X X
IHEIOX Skip/Column X X
IHELDI Read List X X
IHELDO Write/Convert List X X
IHETAB Page/Line default X X X X

Table 9. RECORD I/O Package

Group Number

Module Description 33 34 35 36

IHEION I/O transmitter route X
IHEOSW Wait I/O EVENT X
IHEOCL OPEN/CLOSE X
IHEINT I/O transmitter route X
IHETSW Wait I/O EVENT X
IHEOCT OPEN/CLOSE X

Improvements in Use of Storage 21

4. USABILITY IMPROVEMENTS

Certain improvements have been made
to the compiler that increase its
convenience to the user. This section
describes these improvements, which
comprise the following:

• Two addit.ions (NCP and TRKOFL) to the
option list of the ENVIRONMENT attribute

• Interception of Operating System ABEND
occurrences by means of the STAB feature

• Improvements to the multitasking
implement.ation

• Implementation of additions to the
list of a.cceptable abbreviations of
PL/I keywords

NEW ENVIRONtJlENT OPTIONS

In addition to the teleprocessing
format options, G and R, described in
Section 1, there are two further additions
to the option list of the ENVIR,ONMENT
attribute, NCP and TRKOFL. Each can
alternatively be specified in the DD
statement.

Track Overflow (TRKOFL)

The track overflow option specifies
that records transmitted to a direct
access storage device can be written on
overflow tra.cks if necessary. It is
specified as follows:

TRKOFL

This option is equivalent to the
specification of "Tn in the RECFM
subparameter of the DCB parameter of the
DD statement .•

Asynchronous Operations Limit (NCP)

The asynchronous operations limit
specifies the number of incomplete
input/output operations with the EVENT
option that are allowed to exist for the
file at one time. The specification is
as follows:

NCP(decimal-integer-constant)

22

The decimal integer constant must have
a value in the range 1 through 99;
otherwise, 1 is assumed and an error
message is issued. This option is
equivalent to the NCP subparameter of the
DCB parameter of the DD statement.

IMPROVED ABNORMAL TERMINATION <STAE FEATURE)

With previous versions of the compiler,
an abnormal termination of a PL/I program
resulted in an Operating System ABEND;
this meant that the PL/I program was not
cleanly terminated. The fifth version
of the compiler will use the STAE feature
to intercept abnormal termination and
provide a cleaner program termination.

MULTITASKING IMPROVE~£NTS

A problem encountered with multitasking
as implemented by the fourth version of
the compiler was preventing two or more
tasks trow concurrently executing code
that modified control blocks and chains
(i.e., "soft" code). The fifth version
prevents this loss of control by executing
"soft" code within the master control
task. This improvement is particularly
important to Multiprocessing System users.

This change is transparent to the PL/I
programmer, but will require that object
modules for PL/I multitasking programs
compiled by the fourth version be link­
edited with the fifth version library.

ADDITIONS TO THE LIST OF ACCEPTABLE
ABBREVIATIONS

The following abbreviations for file
attribute keywords will be accepted by
the fifth version:

Keyword

BUFFERED
EXCLUSIVE
SEQUENTIAL
UNBUFFERED

Abbreviation

BUF
EXCL
SEQL
UNBUF

~END~~. COMPATIBILITY WITH PREVIOUS VERSIONS

Owing 'to the changes and improvements
in PL/I and the five versions of the
compiler and library, certain unavoidable
incompatibilities have arisen between
library modules of the differEmt versions
and releases. These changes are detailed
in the PL/I(F) Programmers Guide; however,
two general rules can be stated:

1. compiled code from any release of the
compiler must always be executed using
a library of the same or a later
releaseo

2. Library modules of different releases
can be mixed only in the following
circumstances:

a. All link-edited library modules
must belong to the same release.

b. All dynamically linked or loaded
library modules must belong to
the same release, and must be of
at least as late a release as
the link-edited library modules.

NEW LIBRARY MODULES AND HALFWORD
BINARY ADOPTION

The implementation of teleprocessing
support, improved mathematical built-in
functions, multitasking improvements, and
halfword binary has made a considerable
impact on the PL/I library. The changes
in the fifth version fall into two major
groups -- those due to halfword binary
adoption, and those due t,o the other
factors.

EFFECT OF NEW LIBRARY MODULES AND
RECOMMENDED ACTION

Most of the changes to the PL/I library
have been made so as to be transparent
to the user. Action need be taken only
in the following two cases:

1. Programs link-edited with first or
second version libraries will not run
with fifth version dynamic library
moc1uleE'... Any users of programs link­
edited with first or second version
libraries will need to link-edit their
program object modules with the fifth
version library before attempting to

execute the programs in a fifth version
system.

2. Users of fourth version multitasking
features will need to link-edit their
program object modules with the fifth
version library before attempting to
execute the programs in a fifth version
system.

EFFECT OF HALFWORD BINARY AND
RECOMNENDED ACTION

In the first through fourth versions
of thePL/I (F) Compiler, all fixed binary
variables occupy a fullword (4 bytes).
In the fifth version, fixed binary
variables of precision less than 16 occupy
a halfword (2 bytes). This change will
affect users who have explicitly declared
fixed binary variables with precision of
less t.han 16 or who have allowed variables
to acquire fixed binary default precision.

The change to halfword binary can only
impact users of the following features:

1. External fixed binary variables

2. Fixed binary arguments and parameters

3. Variables defined on external fixed
binary variables

4. Fixed binary variables used in record­
oriented transmission

5. Based fixed binary variables

To aid the users of the above features
to determine if program changes are
necessary, the various combinations of
cases are given below:

1,. Previous version load module (link
edited program and library) with fifth
version dynamic library:

Changes are not required.

2. Previous version program object
module(s) with fifth version library:

Changes are not required.

3.. Previous version program object
module(s) with fifth version program
object modules(s) and library:

Compatibility with Previous Versions 23

Errors will occur if the fifth version
modules communicate with previous
version rr:odules by use of the above
features.

The problems can be avoided if the
user either:

a. Recompiles the previous version
procedures, unless case 4 or 5
applies .•

b.Declares all halfword binary
variables in the features above
with precision greater than 15
before compiling the fifth version
procedures.

4. Previous version source program(s)
compiled with fifth version:

Changes are not required unless the
user has violated any of the existing
PL/I language rules applying to
argument/parameter matching, use of
pointers, base matching for defined
items, or record descriptions containing
halfword binary itmes.

5. Fifth version program (load module)
with previous version data sets:

Errors will occur if the data set
records contain halfword binary items.

The problem can be avoided by declaring
all the halfword binary items in the
structures used for input from the
previous version data sets with
precision greater than 15, before
compiling the procedures with the fifth
version.

6. Previous version program with fifth
version data sets:

Errors will occur if the data set
records contain halfword binary items.

The problem can be avoided if the user
either:

a. Recompiles the program with the
fifth version.

b. Ensures that all fixed binary
variables used in RECORD output
structures are declared with
precision greater than 15.

M~NDATORY RETURNS KEYWORD ON PROCEDUR~
ENTRY, AND %PROCEDURE STATEMENTS

The RETURNS keyword is now mandatory
in PROCEDURE, %PROCEDURE, and ENTRY

24

statements of function procedures when
the function value attributes are
explicitly specified. If omitted it will
be diagnosed as an error and will be
assumed to be present. In the first release
of the fifth version the error will be
of severity level "Warning"; in subsequent
maintenance releases, the severity level
of the diagnostic will be raised to
"Error. "

Example:

Before fifth version:

P: PROC (A) FIXED BINARY;

Required for fifth version:

P:PROC(A) RETURNS(FIXED BINARY);

REMOVAL OF ABNORMAL, NORMAL, USES,
AND SETS ATTRIBUTES

The attributes ABNORMAL, NORMAL, USES,
and SETS have been removed from the PL/I
Language. Any appearance of these
attributes in programs is now invalid and
will be diagnosed as an error and ignored.
Prior to the fifth version they were
recognized but not utilized.

The severity level of the diagnostic
message in the first release of the fifth
version of the compiler will be "Warning."
In subsequent maintenance releases of the
fifth version the severity level will be
raised to "Error."

CORRECTION TO THE IMPLEMENTATION OF
INDEX BUILT-IN FUNCTION

The INDEX built-in function is now
correctly implemented as described in the
PL/I Reference Manual. The only
incompatibility that can arise is when
the fUnction has been incorrectly used
in compilations prior to fifth version.
The case in which error would occur is
if one or both of the arguments were fixed
binary variables or expressions. Prior
to the fifth version these would have
been converted directly to CHARACTER; in
the fifth version, they are now correctly
converted to BIT and then, if necessary,
to CHARACTER.

PUBLICATIONS

Details of all the fifth ve,rsion
features described in this planning guide
will be provided in revisions of the
following publications, available with
the fifth version:

IBM Systern/360 PL/I Reference Manual,
Form C28-8201

IB~stem/360 Operating Syst€~m: PL/I (F)
Programmer's Guide, Form C28-6594

IBM System/360 operating system: PL/I
Subroutine Library computational
Subroutines , Form C28-6590

SUPPORTING PROGRANS FOR TELEPROCESSING

The following are required for the
execution of a program that USE~S TRANSIENT
files:

1. A generated operating system that
includes the QTAM modules.

2. A QTAM message control program to
direct the incoming and outgoing
messages to and from main st.orage
message queues via a disk data set.
Simple QTAM macro instructions are
available for use in generating this
program. A QTAM message processing
program to terminate the QT1\'M message
control program is also required.

The following publications contain
relevant information:

IBM System/360 Operating System: QTAM
Message Processing Services, Form C30-
2003

IBM System/360 Operating System: QTAM
Message Control Program, Form C30-2005

APPENDIX B: REQUIREMENTS

MACHINE REQUIREMENTS

COMPILATION

The m1n1mum requirement for the F
compiler is a 64K System/360 machine.
The compiler itself requires at least 44K
bytes of main storage. The machine must
include the floating-point and decimal
instruction sets; it must also include
the timer feature if the time taken for
compilation is to be listed.

Direct-access storage space is required
in the systems residence device, and the
compiler data sets require devices as
listed in Table 10.

EXECUTION

The main storage requirements of the
object program are a function of the PL/I
facilities used.

The machine on which the object program
is executed must include the floating
point and decimal instruction sets; it
must also include the timer feature if
the TIME built-in function or the DELAY
statement is to be used.

OPERATING SYSTEM REQUIREMENTS

COMPILATION

The compiler is designed to operate
under System/360 Operating System with
a minimal control program. Use of
input/output access methods is restricted
to BSAM and QSAM. Option 6A (Time) is
required if the time taken for compilation
is to be listed.

EXECUTION

The object program must be executed
under System/360 Operating System.
Advantage can be taken of the shared
library feature only with Option 4(MVT)i

Requirements 25

however, a program compiled and link
edited for execution with a shared library
can still be executed under PCP or MFT.

Option 6A (Time) is required if the
TI~~ built-in function or the DELAY
statement is to be used.

All object programs require the presence
of the BSAM and QSAM modules in the
generated operating system; a program

Users who wish to reassemble modules
of the PL/I Subroutine Library require

that uses INDEXED or REGIONAL data set
organization requires the ISAM or BDAM
modules, respectively.

an assembler program with pseudo-register
support (for example, the System/360 F­
Level Assembler).

Table 10. Compiler Data Sets

Name

SYSIN

SYSPRINT

SYSLIN

SYSPUNCH

SYSUT1

SYSUT3

SYSLIB

26

Function

System input.

System printer

system linkage­
editor input

System card punch

Spill

Preprocessor
or translated
48-character
set output

Preprocessor
%INCLUDE

Permissible devices

DASD, magnetic tape, card
reader, paper-tape reader

DASD, magnetic tape,
printer

DASD, magnetic tape

DASD, magnetic tape,
card punch

DASD

DASD, magnetic tape

DASD, magnetic tape

When required

Always

Always

When LOAD option
specified

When DECK or MACDECK
option specified

When space required
by compiler exceeds
main storage
allocated for
compilation

When preprocessor
or 48-character
set used

Only when %INCLUDE
is used

APPENDIX C: ADDITIONS AND CHANGES TO LANGUAGE IMPLEMENTED

The following is a complet,e list of language changes implemented
by the fifth version of the F Compiler, together with the topics in
this publication that give de:tails of the changes.

ADDITIONS

Feature

ORDER option

PENDING condition

REORDER option

TRANSIENT attribute

TRANSLATE built-in function

VERIFY built-in function

CHANGES

Changed Feature

%PROCEDURE statement

ABNORMAL attribute

BASED attribute

BEGIN statement

BUFFERED attribute

ENTRY attribute

ENTRY statement

ENVIRONMENT attribute

EXCLUSIVE attribute

FIXED BINARY variables

INDEX built-in function

KEYED attribute

LOCATE st:atement

NORMAL at:tribute

Associated Topic

Optimization extensions

Teleprocessing support

Optimization extensions

Teleprocessing support

String-handling additions

String-handling additions

Associated Topic

Mandatory RETURNS keyword

Removal from language

(See REFER option, below)

Optimization extensions

Teleprocessing support
Additions to list of abbreviations

Removal of USES and SETS attributes

Mandatory RETURNS keyword

Teleprocessing support
Usability improvements

Additions to list of abbreviations

Adoption of halfword binary facilities

correction to implementation (see
Appendix A)

Teleprocessing support

Teleprocessing support

Removal from language

Additions and Changes to Language Implemented 27

Changed Feature

ONKEY built-in function

PROCEDURE statement

READ statement

REFER option

SEQUENTIAL attribute

SETS attribute

UNBUFFERED attribute

USES attribute

WRITE statement

28

Associated Topic

Teleprocessing support (see PENDING
condition>

Optimization extensions;
Mandatory RETURNS keyword

Teleprocessing support

Adoption of halfword binary facilities

Additions to list of abbreviations

Removal from language

Additions to list of abbreviations

Removal from language

Teleprocessing support

%PROCEDURE statement
RETURNS option 24

ABNORMAL attribute 24
Abnormal termination 22
Abbreviations

additions to list 22
Array expressions 13
Assignments

improved code for 14
Asynchronous operations limit (NCP) 22
Attributes

ABNORMAL 24
NORMAL 24
SETS 24
TRANSIENT 5
USES 24

Binary halfword facilities 12,15
compatibility 12.23
effect on data interchange 12
effect on storage 12
REFER option 12

Built-in functions
INDEX 24
mathematical 14
TRANSLATE 9
VERIFY 10

Compatibility with previous versions 23
halfword binary facilities 23
INDEX built-in function 24
new library modules 23
removal of ABNORMAL, NORMru~, USES

and SETS attributes 24
RETURNS option 24

Compilation
requirements for 25

ENTRY statement
RETURNS option 24

ENVIRONMENT attribute
new options 6,22

G 6
NCP 22
R 6
TRKOFL 22

Execution
requirements for 25

Functional additions 5
adoption of halfword binary

facil:L ties 12
compatibility 12
effect on data interchange 12
effect on storage 12
REFER option 12

optimization extensions 10
language additions 11

string-handling additions 9
teleprocessing support 5

language additions 5

new ENVIRONMENT options 6
programming example 8
special requirements 7

G option 6

Halfword binary facilities 12,15
compatibility 12,23
effect on data interchange 12
effect on storage 12
REFER option 12

INDEX built-in function
correction to implementation 24

In-line conversions 14

Language additions
optimization 11
ORDER option 11
PENDING condition 6
REORDER option 11
teleprocessing support 5
TRANSIENT attribute 5
TRANSLATE built-in function 9
VERIFY built-in function 10

Library modules 16-21,23
Loop and subscript optimization 13

Machine requirements 25
Message control program 7
Multitasking improvements 22

NCP 22
NORMAL attribute 24

ON-condition
PENDING 6

OPT=n compiler option 13
Optimization 13

OPT=n compiler option 13
Optimization extensions 10

ORDER option 11
REORDER option 11

ORDER option 11

PENDING condition 6
Performance improvements 13

array expressions 13
improved code for aSSignments 14
in-line conversions 14
list of improvements 13
loop and subscript optimization 13
loop control mechanism 13
loop control variables 13
mathematical built-in functions 14
subscript lists 14
use of registers 14

PROCEDURE statement
RETURNS option 24

Publications required 25

QTAM message control program 7,25

Index 29

R option 6
Reactivation of teleprocessing system 7
REFE;R option

relaxation of restriction 12
Registers

improved use of 14
REORDER option 11
Requirements 25

machine requirements 25
Operating System requirements 25
teleprocessing support 25

RETURNS option 24

SETS attribute 24
Shared library 15
STAE feature 22
storage use

halfword binary facilities 15
improvements 15
shared library 15

String-handling additions 9
Subscript lists 14
System requirements 25

30

Teleprocessing support 5
new ENVIRONMENT options 6
PENDING condition 6
programming example 8
QTAM message control program 7,25
reactivating the system 7
special requirements 7,25
terminating the system 7
TRANSIENT attribute 5

Termination of teleprocessing system 7
Transient attribute 5
TRANSLATE built-in function 9
TRKOFL (Track overflow) 22

Usability improvements 22
abbreviations 22
improved abnormal termination 22
multitasking 22
new ENVIRONMENT options 22

NCP 22
TRKOFL 22

USES attribute 24

VERIFY built-in functicn 10

HEADER'S COMMENT FORM
IBM System/360 Operating System
PL/I (F) Version 5
Planning Guide

How did you use this publication?

As a reference source D

As a class-room text D

As a self-study text 0

Based on your own experience, rate this publication:

Form C33-0002-0

As a reference source-oVery Good D Good D Fair D Poor D Very Poor D

As a text-Very Good[J GoodD FairD PoorD Very PoorD

What is your occupation?

We would appreciate your specific comments; please give page and line references where appropriate. If
you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage necessary if mailed in U.S.A.

C33-0002-0

YOUR COMl\1ENTS PLEASE

This SRL bulletin is one of a series which serves as reference sources for systems analysts, programmers
and operators of IBM systems. Your answers to the questions on the back of this form, together with your
comments, will help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and suggestions become
the property of IBM.

Please note: requests for copies of publications and for assistance in utilizing your IBM system should be
directed to your IB~1 representative or to the IBM sales office serving your locality.

fold fold ... ~

[

BUSINESS REPLY MAIL

_N_O_P_O_STAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

POSTAGE WILL BE PAID BY ...

IBM CORPORATION

112 EAST POST ROAD,
WHITE PLAINS, N.Y. 10601.

FIRST CLASS
PERMIT NO. 1359

WHITE PLAINS, N.Y.

•• # •• :

fold

International Business Machinss Corporation
Data Processing Division
112 Ea~!lt Post Road, White Plains, N.Y.IOSOI
[USAOnlyj

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tionall

fold

C33-0002-0

International BU!iiness Machines Corporation
Data Processing Division
112 East Post Roa.d, White Plains, N.Y.I0601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International J

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	replyA
	replyB
	xBack

