File Number $360-29 ?
Order No. GC24-9005-6 Dus
DOS Release 25 . 1135

o e

Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
PL/I Programmer's Guide

This publication complements the Systems Reference
Library publication IBM_System/360, PL/I_Subset
Reference Manual, Order No. GC28-8202. Its purpose is
to aid the programmer and to familiarize him with the
techniques of PL/I programming. This publication
therefore provides all information that is not part of
the PL/I Subset Reference Manuzl but required by the
programmer to write programs in the PL/I Subset lan-
guage and to have them compiled and executed in the
DOS/TOS environment.

The main topics covered in this publication are:
e The DOS/TOS environment
e PL/I data file organization

¢ Storage requirements of PL/I programs and program
elements

* The overlay facility
e Listings produced for PL/I programs
* Restrictions to the PL/I Subset language

In some instances, the programmer may desire
detailed additional information on topics not directly
connected with PL/I. A list of all pertinent Systems

Reference Library publications is provided in the
' Introduction section of this publication.

|

5

SUMMARY OF CHANGES

The DOS system now provides for the
support of private core-image libraries.
m a DOS system supporting the batched-
ob foreground and private core-image
ibraries, the compiler and the linkage
ditor may execute in a foreground or in
‘the background partition.

A description of errors that may arise

due to multiple secondary entry points

or due to multiple CSECT names has been
added.

This is a major revision of GC24-9005-5.

Changes to the text and to the illustrations as well as

When processing INDEXED files, the KEY
condition may arise in a number of cases.
It is described how the programmer may
identify specific situations at execution
time.

A brief description of hardware stops
caused by severe programming errors has
been included.

Also added was an appendix containing

programming examples together with ex-
planations.

additions are

indicated by a vertical line to the left of the change or addition.

This edition applies to change level 3-9 of the DOS PL/I compiler (DCS

release 25) and change level 2-3 of the TOS PL/I compiler

(TOS release

14) and to all subsequent 1levels until otherwise indicated in new

editions or Technical Newsletters.

Changes are continually made to the information herein;

before using

this publication in connection with the operation of IBM systems,

consult the latest IBM System/360 SRL Newsletter,
for the editions that are applicable and current.

Oorder No. GN20-0360,

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo~offset printing were obtained from an IBM 1403

printer using a special print chain.

Requests for copies of IBM publication should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication, If the form has been removed, comments may be addressed to
IBM Laboratories, Programming Publications, 7030 Boeblingen/Germany,

P. 0. Box 210.

© Copyright International Business Machines Corporation 1967, 1968,

1969, 1970, 1971

INTRODUCTION . v o « e o = o o o = =« «

RUNNING PROGRAMS UNDER DOS/TOS CONTROL
The Disk and Tape Operating Systems .
The Job Control Program . « « « « .
Job Control Statements . . .
Compilation Under DOS/TOS Control
The Linkage EJitor Program . « « « =
Linkage Editor Control Statements .-
Including Object Modules into the
Object Program .
Sample Compilation « « « « « o « « «

s @ @ e ®© e ®o = e =

CATALOGING . . « « o @ ° e e e e < @
Cataloging into the Core-Image Likrary .
Cataloging into the Relocatable Library
Library Maintenance RUNS « . « « « « .
Special Considerations on TOS

DATA FILES « « ¢ o o o o o o o« o 2 s o
File Organization Schemes
Consecutive Files ¢« ¢ « o .
Regional Files . ¢ o« o o « o o o o «
Indexed FileS < o « o « o o o o o «
Disk Organization . . « « 2 « o o« « «
RecOYd TYPES o o o« « o o « o« o o o = =
Input/0utput ProcCessing .« « « « « « «

FILE LABELS . . - « e o = =

Processing of Flle Lahels by PL/I . .

Job Control Statements

Multi-File Volumes and Backwards Flles

Link-Editing And Labeled Files
Cataloging of Label Information . .

Program - Label Communication

Assignment of System Files to Disk . .

LINKAGE CONVENTIONS « ¢ o <« o o o « o

Register Conventions . .

Callingd +« o « o« o o o =

SaVing ¢ « ¢ < o s e o .

Returning .« o« o « o « o o « = =« =

Correlation Between PL/I

MOAULES o o o« ¢ @ « o = o o o o = '« =

Checkpoint and Restart o« . « « « o « «

GENERAL PROGRAMMING INFORMATION . . .
Statement Format . « « « « ¢ « «
Program Segmentation . . .
Program Expansion
CONVersions . « « « o o «
Use of UNSPEC
Computations With 0verlay o o
Blocking « « o « ¢ o o o o o
Simulation of P-Format Items -
Simulation of Arrays of Structures .
Use of the DEFINED Attribute
Use of Based Variables with Structures
Redefinition of Attributes
Use of the 48-Character Set
Size OVerfloWw . o« o o o s o o o « «

s o a o
L]

* s 0
& 2 & 5 & ;5 @
s & 5 & 4 s 3 o

LY T

& & & g

Contents

Use of the DISPLAY Statement with the
REPLY Option . . . « o = s e m e o
Precision of Dec1mal Datad o« « o « « «
Changing the Tab Control Table
Improvement of Do-Loops« .

Rounding on Output with E and F Format
ItemS & 4 o« o o « o = o« o « e e e .
Handling Blank Numeric Flelds « e s

Use of List-Directed and Edit- Dlrected
Data Transmission . « « o « « « = « «
Use of Pictures With Stream-oriented

Data TranSmisSSion e« « o o « o « o =« =
PICTURE Specifications . . . « . e
ENDPAGE With Multiple-Line PUT « . .

PROGRAM-CHECKCUT FACILITIES . .
Exhibit Changed . <« + « « <« . .
Tracing <« « o « o« = o = = « =
The DYNDUMP Routine <« .
Locating Execution-Time Errors .

.
[

s & 2 & @
e 8 &
»

DATA STORAGE REQUIREMENTS
Data DesSCriptOrS o« o o « = o « « «
Data Items . « « . « “ e e e e e
Coded Arithmetic Data .« e
Numeric (Picture-Specified) Data
String DAat@ « o« o « o o o = o o
Label DAt@ o« o « « o =« s « a « s « =
Pointer Variables . . . e o s o e
Data Storage Depending on Storage Class
Storage of External Data < « « « « « «
Use of Constants in the Source Text .

a s 2 2 0
L]

DATA STORAGE MAPPING . . < « e e o =
Storage Mapping -- Element Data « o =
Storage Mapping =- AYXayS « =+ « « « =
Storage Mapping -- Structures

SUBROUTINE STCRAGE REQUIREMENTS . . «
conversion Subroutines ¢ o «
Built-In Functions,

Pseudo-Variables, and Other Implied
Subroutine Calls « o o « « = « o « < =
Subroutines Called by I/O Statements .

I/0 STORAGE REQUIREMENTS
File Declarations . « « « « o o o« &
Buffers . « ¢« ¢« ¢ o 2 = « o « o =
DTF Table . « « o «
DTF Appendage . .
I0CS Logic Module
Examples . « < . .
System Units . . «
SYSPRINT . « « «
SYSIN . . &« & «

L]
.
L]
L]
.
.
.

s & 0 2 s &
s & 8 ¥ 8
.

L Y
3 L]

[} L[]
. L]
I T T Y B R)

PROGRAM OVERHEAD . .
Static Storage Area
Dynamic Storage Area
Block Prologue . . .
PL/I Control Routine

s 4 8 & &
.
[
s & & s s
.
.
.
.
L]

4 & 8 0.3

¢ o 9 4 0 3

s 0 b 0

SOURCE TEXT AND OBJECT PROGRAM . .
Problem Analysis Example . .
File Description
Data Assumptions
Other Assumptions
Storage Requirements . . « o« « a =

s s & 9
.
.

[)
.

OVERLAY =« o o o o o « o a « a a o o =
Rules for Using Overlay
Overlay Example . . e e e e .
Processing of Overlays b, Lhe Linkage

AL & A
LOGQLTCOY o « & « o @ » o « o o o - e e

PL/1I Procedures Contained in the
Relocatable Library . « « « « « . « .

PROGRAM LISTINGS o o« o =« « o o
Source Program Listing .
Symbol Table Listing . .

Cross-Reference Listing
Qffset Tabhle T1q+1na -

External Symbhol T 1
Block Table Listing .

Okject Code Listing . .
Statement Offset Listing «
Compile-Time Diagnostic Messages .
Object-Time Diagnostic Messages . . .

s e o & a2 o
{mbs
* s B o s e o
Ne]
. »
» 3 4 i % s & o
. 'Y & » . L] . .
¢ 8 B i & a2 &
& a2 4 9 e a2 8 @

APPENDIX A. CONVERSION SUGBROUTINES .
APPENDIX B. POSSIBLE COMBINATIONS OF
DATA CONVERSIONS o« o o o o o« o 2 2 o =
APPENDIX C. BUILT-IN FUNCTIONS, PSEUDO
VARIABLES, AND OTHER IMPLIED
SUBROUTINE CALLS « « o o o« o s o o o« =

¢ 8 4 &

& a3 0 g 8 g &

96

APPENDIX D. I/O SUBROUTINES . . .

APPENDIX E. FILE LABEL FORMATS . .
APPENDIX F. CCMPILE-TIME DIAGNGSTIC
MESSAGES « ¢ o « o o © o « a2 o « «
APPENDIX G. OBJECT-TIME DIAGNOSTIC
MESSAGES « ¢ « « o« o = o o o « « o
List of Message Codes . <« « « «

APPENDIX H.

CN-CONDITION CHE

ENT FCRMAT AR

APPENDIX I.

APPENDIX J. DEFAULT ATTRIBUTES OF

-100

.102

.130
.130

n
o

124
a3

e = e

FILE ATTRIBUTES AND OPTIONS 135

CODED ARITHMETIC VARIABLES . . « » - - 136
APPENDIX K. RESTRICTIONS TO THE PL/1

SUBSET LANGUAGE . . - - - = = = = = = =137
APPENDIX L. PROGRAMMING EXAMPLES . . . 143
Conversion of Numbers in Character Form
Into Binary Numbers .« « <« « « « « o« 143
Storing and Retrieving Statlstlcal Data 145
Creating and Retrieving a REGIONAL(1)

Fil€ @ v o 4 ¢ o o o a2 o o o o a « =« o 2147
Creating and Updating a Seguential Disk
File . o o « o « o o o s« s = s =« « =+ « 2150
The DO WHILE Statement « « « « « « « « 154
Using the Console for Communications . .154
INDEX + o « o o« o« o« = « = o « = « « « =156

This publication complements the Systems
Reference Library publication IBM System/
360, PL/I Subset Reference Manual, Order
No. GC28-8202 (hereafter referred to as the
Subset Reference Manual). It provides all
information that is not part of the lan-
guage specifications but required by the
programmer to write programs in the PL/I
Subset language and to have them compiled
and executed in the DOS/TOS environment.

This publication is divided into four
logical parts:

Part I - provides all information regard-
ing the DOS/TOS environment, PL/
I data file organization includ-
ing the ENVIRONMENT attribute,
linkage between PL/I and
Assembler modules, and PL/I pro-
gramming in the DOS/TOS
environment.

Part 1II

provides all information regard-
ing storage requirements of pro-
grams written in the Pi/I Subset
language, and a description of
the overlay facility.

Part III describes all listings and diag-
nostic messages produced for PL/
I programs running under DOS/TOS

control.

Part IV - Appendix. Some of the individu-
al appendixes provide informa-
tion taken out of the corres-
ponding sections to improve the
readability, e.g., a list of all
available I/0O subroutines. The
remaining appendixes furnish
additional reference information
the PL/I programmer might find
useful.

The last section of the Appendix lists
the implementation-dependent restrictions
to the PL/I Subset language as it is
described in the Subset Reference Manual.
The individual restrictions are listed in
alphabetical order.

To free the programmer of the necessity
of referring to other publications for
additional information, this publication is
made as self-supporting as possible by dup-
licating some of the information given
elsewhere. However, should this publica-
tion not give all the details the programm-
er needs for solving his problem, these
details can be found in the pertinent SRL
publication.

Introduction

A list of all SRL publications the pro-
grammer may have to refer to is given
below:

IBM System/360 Disk Operating Systenm,
System Programmer's Guide,
Order No. GC24-5073

IBM System/360 Operating System, PL/I
Library Computational Subroutines,
Order No. GC28-6590

IBM System/360 Principles of Operation,
order No. GA22-6821

IBM System/360 Disk and Tape Operating Sys-
tems, Concepts and Facilities,
Order No. GC24-5030

IBM System/360 Disk and Tape Operating Sys-
tems, Utility Program Specifications,
Order No. GC24-3465

IBM System/360 Disk Operating System, Sys-
tem Control and System Service Programs,
Order No. GC24-5036

IBM System/360 Tape Operating System, Sys-
tem Control and System Service Programs,
order No. GC24-3431

IBM System/360 Disk Operating System,
Supervisor and Input/Output Macros,
Oorder No. GC2u4-5037

IBM System/360 Tape Operating System,
Supervisor and Input/Output Macros,
Order No. GC24-3u432

IBM System/360 Disk Operating System, Data
Management Concepts, Order No. GC24-3427

IBM System/360 Tape Operating System, Data
Management Concepts, Order No. GC24-3430

IBM System/360 Disk Operating System, PL/I
DASD Macros, Order No. GC24-5059

Minimum Requirements for Compilation

1. 16,384 (16K) bytes of core storage on
one of the compatible models of System/
360 (not Model 20, 44). The compiler
itself requires 10K. More than 10K are
required if SYSIPT, SYSLST, and/or SYS-
PCH are DASD files. This is a system
generation option.

Either one IBM 2311 Disk Storage
Drive or one IBM 2314 or 2319
Direct Access Storage Facility or

2. a.

Introduction 5

b. four IBM Magnetic Tape Drives of
the series 2400, 2420, or 3420. A
7-track tape may be used for SYSRE-
S. The use of a 9-track tape for
SYSRES will improve the perfor-
mance. The data conversion feature
is required for 7-track drives.

One additional tape drive is

Ao Al £ 431 A A
chu.a.;cu oY Tompiie—and 9o

operatlon.

3. One card read/punch or one card reader
and one card punch.

4., One printer.

5. One IBM 1052 Printer-Keyboard (required
for operator-to-system communication).

6. The optional supervisor feature Program
Iinterrupt (PC).
Note: Either one or both of the units

listed under items 3 and 4 may be replaced
by one additicnal magnetic tape drive per
replaced unit.

The speed of compilation is greatly
reduced if (1) the source program contains
more than 80 programmer-defined identi-
fiers, and (2) a 16K system is used to com-
pile a program greater than 16K.

For determination of the required work-
file space refer to Workfile Requirements
in Appendix G of IBM System/360 Disk
Operating System, System Generation and
Maintenance, Order Noc. GC24-5033.

Minimum Requirements for Execution

The execution~-time requirements depend on
the reguirements of the system and the
object program.

additional machine features required for
arithmetic, compare, and conversion are
listed in Figure 1.

Note: At EXEC time all IJKSnn transients
must be available in the core-image
library.

Maximum Configuration Supported

The following units and features are
supported:

1. 2all of the units and features

for bOﬂpilatlou. il
....... F~ P Ry - | aQ
LOUL [

O

4
[«
T
i
Q
H
f
Cb

2. 21l of the following devices:

IBM 2540%*

IBM 1403

IBM 3211

IBM 1404 (for continuous forms only)
IBM 1442N1

IBM 1442N2

IBM 1443

IBM 2501

IBM 2520B1

IBM 2520B2

IBM 2520B3

IBM 1445

IBM 2321

*The Punch/Read Feed (PRF) special fea-
ture is not implemented by PL/I.

3. Additional main storage up to 16 mill-
ion bytes.

r X - T T T T T T T 1
Comparison Of/With	Coded			Numeric			
Arithmetic With/And	Fixed	Fixed	Coded	Fixed,	Numeric		
Convert To	Decimal	Binary	Float	Sterling	Float	Bit	Char.
L 1 L iR 4 1 4 L ¥							
r L) T T T T T T 1							
From		I I					
b , —	[[
Coded fixed decimal	D	Db,F2	D,F	D	D,F	D	NP
L 1 1 iR 4 L 1 4 4							
r . . T T T 1 T 1 T 1							
Fixed binary { b,F2	X	F	D,F2	D,F	X	NP	
L i A iy 4 4 4 L 4 J							
LB) T T 1l T LB T T							
coded float { D,F	F	F	Dp,F	D,F	F	wp	
L 1 1 L1 1 L L L J							
r . . T T T T T T T 1							
Numeric fixed and	D	D,F2	D,F	D	D,F	D	X2
sterling		i		I			
[4 4 " 4 -4 L 1 -—
I N T T T T T T T

| Numeric float { D,F | D,F | D,F | D,F | D,F | D,F | x* |
b-—- ¥ e % } } + {
|Bit | D | X | F | D | D,F | X I X |
[R - [] L R 4 iR iR 4]
LB T T T T T T T 1
|Character | NP | NP | NP | NP1 | NP2 | X 1 X |
lf 1 L L iR L 4 4 4
|[D - Decimal feature required. |
|F - Floating-point feature required. Conversion only. |
| NP ~ Not permitted. |
|X - No special features required. |
r - i
|* - Conversion only. |
|2 - Floating-point feature only if scale factor not equal to zero. |
L d

Figure 1. Additional Machine Feature for Arithmetic, Comparison, or Conversion

Introduction

7

Running Programs Under DOS/TOS Control

This section describes the compilation and
execution of PL/I programs under control of

+he Digk and Tape Onerating Svctoms., Tha

WETLAaTalzy Sy + 12l

pertinent termlnology, control statements,
and tnelr formats are discussed when

Basic Terminology

It is convenient to refer to each stage of

program development by a particular name,

because just the term proqgram would be too
nA FharafAaran

T e
general and, therefore, confusing.

In program development, the programmer
writes sets of source statements that may
form a complete program or part thereof. A
card deck containing one external procedure
written in the PL/I Subset language is
referred to as a source module. A source
module. is the unit that is processed-during
a compilation. The compilation results in
one or two object modules. The first
object module is produced by the PL/I com-
piler for all of the file declarations, if
any, contained in the source module. The
second object module is produced for the
scurce module. Object modules can be
iocaded by the DOS/TOS Linkage Editor pro-
gram and then executed. An object module
consists of standard ESD (External Symboi
Dictionary), TXT (Text), RLD (Relocation
Dictionary) cards, and one END card.

To start the execution of a PL/TI pro-
gram, control must be transferred from the
Disk or Tape Operating System to the object
prcgram. The external procedure to which
control is transferred from the Job Control
program must have the option MAIN.

Some parts of the object program may not
be required in storage throughout its

execution. External procedures that are
never active simultaneously may use the

- FIp NN Mo~k
Same sTsrage area Tl save ol.O.Lcudc. Bach

part of the program that is in storage only
for a fraction of the execution time is
referred to as an overlay. Using the MAIN
procedure as an overlay 1s not permitted.
Each overlay as well as that part of the
program that resides in storage throughout
the execution of the object program is
referred to as a phase. A phase consists
of one or more external procedures. For
detailed information refer to the sections

Fatt vy | oo e e

uveriay and The Linkage Editor Programe.

Some standard procedures such as PL/I
built-in functions or conversion subrou-
tines have been incorporated into the relo-
catable library as library subroutines.
Only the code required for calling these
subroutines is compiled into the object
module. The library subroutines themselves
are incorporated into the appropriate
phases by the autolink feature of the DOS/
TOS Linkage Editor program.

Extra code is required to allow some
housekeeping during the execution of a PL/I
program. This code, which is referred to
as overhead, may either be generated in-
iine in an object module or incorporated
due to an explicit library subroutine call.

The relationship between the user's PL/I
mainline program, the PL/I control program,
and the DOS/TOS system is shown in Figure
2.

Note: The PL/I control program is a set of
library routines in the relocatable library
which are included into object programs at

linkage-edit time and perform certain con-

trol functions at execution time.

SUPERVISCR

Intercepts Program Checks, Passes
Control to PL/I Interrupt Handler

PL/I PL/I
MAINLINE CONTROL PROGRAM
Initialization (Prologue) . o Initialization Routine
> ® GO TO Routine
GO TO Extemal Nome (Return is to External Name)
> ° OPEN/CLOSE Routines
OPEN/CLOSE -t (Call $ Transients)
L4 SIGNAL Routine Handles -
— READ, WRITE, etc. Exceptional Conditions and
Issues Messages
END. (MAIN), STOP . L] STOP Routine Calls $ -
Transient for Automatic
Closing of Files and EQJ
® Interrupt Hondler Usually -
Calls $ Transient
___________________ (Retum is Conditional)
Miscellaneous Subroutines
—- Swchas: v 1\ -/ --T-T=/-T7—==- 7]
L 1/O Transmitters b v $ Transient A
Conversion. Routines T > ranstent Area <
Built-in Functions (May Call $38 Transients)

Figure 2. PL/I Program Structure

Running Programs Under DOS/TOS Control 9

Ob1iject-Time o.urage Layout

The layout of main storage during execution
of a PL/I program is shown in Figure 3.

Lower Storage Hardware Area

)
AS

L Supervisor Tronsient Areas

3%
A

DTF-Appendages
DTFs and Buffers

- PL/I User Progrom Procedures

2%
W

e
!

LIOCS Modules

DTF for SYSPRINT

Logic Module for SYSPRINT

PL/! Control Program

PL/I Library Subroutines

{
i

Overlay Progrem Area (Optional) >

L 1

DSAs
{Aliocated only During Bxecution}

¢ the Supervisor program,

¢ the Job Control program, and

e the Initial Program Loader (IPL).

system and to
execution of
programs withi

The system service programs consist of
the Linkage Editor and the Librarian.
These programs are used to bring compiled
source programs into an executable format
and to maintain the libraries.

Figure 4 shows a schematic representa-
tion of the Disk and Tape Operating
Systems.

To make full use of DOS/TOS, the user

should be familiar with (1) the functions
of the individual system components and (2)
the interaction of these components. Users
of the overlay feature should be thoroughly
familiar with the DOS/TCS Linkage Editor
program. Users of the label-processing
facilities should be familiar with DOS/TOS
data management concepts. This section
briefly discusses those parts of the DOS/
TOS that are of interest to users of the
PL/I Subset language.

Upper Storage

Figure 3. Object-Time Storage Layout

The Disk And Tape Operating Systems

The Disk and Tape Operating Systems (DOS/
TOS) are a group of processing programs
with the control and service programs
required to maintain continuous operation.
They are self-contained systems and require
a minimum of operator intervention.

The processing programs consist of lan-
guage translators and service programs.
The group of processing programs can be
expanded by adding user-written problem
programs.

The system control program -- the frame
work of DOS/TOS -- consists of three
components:

10

Disk/Tape Operating Systems
System Control System Service Processing
Programs Programs Programs
Longuage
Translators.
Initial [Assembler Wl
Progrom Linka |
ge Cobol {
Loader Editor d Fort |
Program : oriran |
| P :
| |
LA A
Supervisor
Service Programs
M Ager]
= Sort/Merge :
| Utilities |
Job Librarian [J}| ~— """~
Control
Program User-Written
Programs

Figure 4. Schematic Representation of the

Disk and Tape Operating Systems

System Control Programs

The Supervisor handles all hardware inter-
rupts, causes I/0 operations to be per-
formed, and contains a fetch routine for
fetching program phases from the core-image
library. The Supervisor resides in storage
throughout the execution of all IBM-
supplied and user-written programs.

The Job Control program provides job-to-
job transition within DOS/TOS. It performs
its functions between job steps and does
not reside in storage while a problem pro-
gram is being executed.

The IPL is of no interest to the PL/I
programmec.

System Service Programs

The Linkage Editor links all relocatable
object modules that are produced by the
language translators, i.e., it assigns
absolute addresses and resolves cross-
references between different object modules
(external symbols). The output of the Lin-
kage Editor can be either immediately
executed or incorporated into the core-
image library.

The Librarian is a group of programs
used for maintaining the libraries and pro-
viding printed and/or punched output from
these libraries.

The libraries are:

the system core-image library

the system relocatable library

the system source statement library
private core-image libraries
private relocatable libraries
private source-statement libraries

The core-image library contains object-
program phases already processed by the
Linkage Editor. These programs are ready
for execution under control of the Supervi-
sor. The core-image library contains, for
instance, the system control and service
programs themselves and the PL/I compiler.

A DOS system generation option provides
for the support of private core-image
libraries on the same type of direct access
device as the system residence volume. A
private core-image library has the same
format and function as the system core-
image library on the system residence
volume. When searching for a program to be
loaded, the system loader searches the
private core-image library first, if
assigned, and then the system core-image
library.

The relocatable library contains object
modules produced by the language transla-
tors. Object modules may be preceded by
Linkage Editor control statements. The
individual modules contained in the relo-
catable library are used as input to the
Linkage Editor. Most of the built<in func-
tions of PL/I as well as service routines
required for the execution of PL/I object
programs are contained in the relocatable
library.

The source statement library is not used

by the PL/I compiler or during object pro-
gram execution.

Multiprogramming

DOS and TOS permit the switching of proces-
sing between one or two foreground programs
and one background program, in which case
all programs reside in storage simul-
taneously. This method increases the total
throughput since some program may use the
CPU while another program is waiting for
input/output. If more than one program
requires the CPU, the foreground-l1 program
has the highest and the background program
the lowest priority. The program(s) of
lower priority are dormant until the
program(s) of higher priority start(s)
waiting for a completion of input/output.

The storage areas - referred to as par-
programs are defined at system generation
time and may be changed by the operator
between job steps.

In a DOS system which supports the
batched-job foreground (MPS=BJF) and priv-
ate core-image library options, the Linkage
Editor can execute in either foreground
partition (as well as the backgrocund parti-
tion) provided a minimum of 10K of storage
is assigned to the partition. When execut-
ing in a foreground partition, a private
core-image library must be assigned.

In a DOS multiprogramming environment
described above, the DOS PL/I compiler can
be executed in any partition in the follow-
ing manner:

1. At system generation time, link edit
the PL/I compiler in the background
partition and place it in the system
core-image library.

2. Link edit the PL/I compiler in any
desired foreground partition and place
it in a private core-image library
assigned to that partition.

3. When executing the PL/I compiler in a

foreground partition, assign the appro-
priate private core-image library.

Running Programs Under DOS/TOS Control 11

Logical
Device Device Referred to
Address
SYSRDR input device from which Job Controi statements are read. Not used by PL/i compiler or object programs.
SYSIPT Input device from which the input for the PL/1 compiler is read. Can also be referred to by SYSIN.
SYSIN Input device combining the functions of SYSRDR and SYSIPT.
SYSLST Output device used by the PL/1 compiler. The device used is the same as the PL/1 standard output device for listing
(SYSPRINT). (For PL/| object-time messages refer to PROCEDURE Statement in Appendix H.)
SYSPCH Card punching device used by the PL/I compiler when a punched card object deck is specified.
SYSOUT Output device combining the functions of SYSLST and SYSPCH. Cannot be assigned by an ASSGN statement.
SYSLNK Input/output device used by the Linkage Editor and the PL/I compiler when compiling and subsequent link-editing
is specified.
A private core-image library. If such a library is assigned, the output rrom the Linkage. Editor is placed here
SYSCLB either permanently or temporarily. If such a library is not assigned, output from the Linkage Editor goes to the
system core-image librury.
Console typewriter used for listing messages issued to the m.afu- by .I‘ "!./ compiler and the object program.
SYSLOG SYSLOG is also used when a DISPLAY statement cppears in the |./ ram (For PL/! object-time messages refer
to PROCEDURE Statement in Appendix J.)
Logical device addresses available to the programmer (programmer logical units as opposed to the remaining units,
which are also referred to as system logical units).SY. , an 3 are used as work file addresses by
SYS000 the language processors and the Linkage Editor. They may be used as work file oroutput file oddresses, but the user
to must protect his input files from being destroyed by the compiler or Linkage Editor in the case of a compile-and-
SYS222 execute or link-and-execute job. For this purpose, he should use the DISPLAY statement with the REPLY option and
instruct the- operator-to-mount-the-input file immediately before opening the file at execution time if o sufficient
number of /O units is not available.
Figure 5. Logical Device Addresses Used by the PL/I Programmer

DOS programs compiled by the DOS PL/I
compiler can be executed in a foreground
partition, provided the supervisor was
generated with the option MPS=BJF and a
minimum of 10K of storage is assigned to
the partition. PL/I object programs may
only be executed in batched-job mode.

Under TOS, the PL/I compiler and the
Linkage Editor exclusively work in the bac-
kground partition. TOS programs compiled
by the PL/I compiler cannot run as fore-
ground programs.

I/0 _Device Assignment

The I/0 devices used during compilation and
execution are referred to by logical device
addresses instead of by their physical
device addresses. Thus, the user may dis-
regard the physical device assignments of
the system configuration he uses. Moreov-
er, if a number of different system confi-
gurations is used, recompilation of a
source program is required only if the
device types (1442, 2540, etc.) change.
The logical device addresses the PL/I pro-
grammer should know are listed in Figure 5.

cgical device addresses

to physical devices

12

1. when building the system,
2. by the operator, or

3. by means of the ASSGN statement (see
the section The ASSGN Statement).

If multi-programming is included in the
supervisor, independent sets of logical
device addresses are provided for the back-
ground area and both foreground areas.

The Job Control Program

The Job Control program permits processing
of batched jobs in background mode. A icb
is the execution of a problem and consists
of one or more job_steps. A job step is a
single compilation of an external proce-

dure, a Linkage Editor run, a Librarian

run, or the execution of an object program.

JOB CONTROL STATEMENTS

The execution of the Job Control program is
initiated by Job Control statements read
from SYSRDR. The general format of Job
Control statements is as fcllows:

1. Name
Job Control statements are identified
by two slashes (//) in columns 1 and 2.
The second slash must be followed by

one or more blanks. Exceptions are:

a. The end-of-job statement contains
/& in columns 1 and 2.

b. The end-of-data-file statement con-
tains /% in columns 1 and 2.

c. The comments statement contains *
in column 1 and a blank in column
2.

2. Operation
The entry in the operation field of a
Job Control statement describes the
type of operation to be performed. It

must be followed by one or more blanks.

3. QOperand
The operand may be blank or consist of
one or more entries separated by com-
mas. Interspersed blanks are not per-
mitted. The last entry must be fol-
lowed by one or more blanks unless its
last character is in column 71.

k. Comments
Comments are permitted anywhere after
the trailing blank of the operand
field.

The ASSGN Statement

The ASSGN statement is used to assign a
logical device address to a physical
device. The format of the ASSGN statement
is as follows:

s X'ss!*
/7 ASSGN SYSxxx,device-address
,ALT

in Figure 5 (with the exception of SYSOUT,
which cannot be assigned by means of ASSGN
statements). The system permits programmer
logical units in the range from SYS000 to
5YS222. The number of units actually per-
mitted per partition in a specific instal-
lation is defined at system generation time
and normally less than 223. SYS000 to SYS-
004 are the minimum provided by the system.

The following restrictions should be
observed when re-assigning some of the log-
jcal units:

1. SYSRDR, SYSIPT, SYSIN, SYSLST, and SYS-
PCH cannot be assigned to 2311 or 2314
DASD extents by ASSGN statements. 1In
case they are assigned to a 2311 or
2314 DASD extent either at system

generation time or by the operator, a
special version of the PL/I compiler
that needs a minimum of 12K of storage
for execution must have been cataloged
at system generation time.

2. SYSLNK must be assigned to the same
device type as SYSRES for DOS and to a
magnetic tape drive for TOS. Any re-
assignments must be made before issuing
an OPTION statement that contains the
LINK or CATAL option.

3. SYSLOG should be assigned to a 1052
console typewriter. Assignment to a
printer is possible but degrades the
system functions and prevents the use
of the DISPLAY statement with the REPLY
option.

4. SYSCLB cannot be temporarily assigned
(// in columns 1 and 2). The permanent
assignment format must be used (ASSGN
in columns 1 through 5).

5. SYS001 to SYS003 must be assigned to
the same device type (either magnetic
tape drives, 2319, 2311, or 2314 DASD
extents) for the entiré duration of a
compilation.

Device-address permits three formats:

X'cuu' where ¢ is the channel number and uu
the unit number in hexadecimal
notation.

UAa Unassign. The job is canceled if a
file attached to this logical unit
is referred to by one of the I/0
statements OPEN, CLOSE, GET, PUT,
READ, WRITE, or REWRITE.

IGN Indicates the logical unit to be
unassigned and that all program
references to the logical device are
to be ignored. All I/O commands
issued to the file are ignored. The
IGN option is not valid for SYSRDR,
SYSIPT, and SYSIN. For PL/I files,
the IGN-bit will be checked. 2and if
the IGN-bit is on, no OPEN-bit will
be set.

X'ss' is the device specification. It is
used for specifying mode settings for 7-
track and dual-density 9-track tapes. If
X*ss' is not specified, the system assumes
X'90"' for 7-track tapes and X'C0' for 9-
track tapes. The possible specifications
for X'ss' are listed in Figure 6.

Note: When creating a 7-track tape file,
the data-conversion feature must be off.

Running Programs Under DOS/TOS Control 13

Job-name is a user-defined name of 1 to 8

r T L) L) T 1

| | Bytes | | Trans- | | characters.

| | per | | late | Convert |

| ss | inch | Parity | Feature | Feature |

F——-—+% + + + | Note: The JOB statement cancels all pre-

| 10| 200 | odd | off | on | viously issued OPTION and ASSGN statements.

| 201 200 | even | off | off

| 28] 200 | even | on | off |

1301 200 | odd | off | off |

| 38 { 200 | od4 | on | off | The LISTIO Statement

| 50 { 556 | cdd i off | on {

i 60 | 556 | even | off | off | The LISTIO statement is used to obtain a

| 68 | 556 | even | on] off | listing of the I/0 assignments. The format

| 70 | 556 | odd | off | off | of this statement is

| 78 | 556 | odd | on | off |

] 90 | 800 | odd | off | on | /7 LISTIO

} A0 | 800 | even | off | off |

| a8 | 800 | even | on] off | with one of the operands listed in Figure

{ BO| 800 | odd | off | off | 7. The llstlng is produced on SYSLST. The

{ B8 | 60 | od i on i off | listing varies according to the operand.

{ €0 | 800 | single-density 9-track i For magnetic tape units, physical units are

| CO | 1600 | dual-demsity 9-track | listed with current device specification.

| c8 | 800 | dual-density 9-track |

L L 1 4 r T 1
|Operand|Causes the Listing of |

Figure 6. Possible Specifications for t + 4

X'ss' in the ASSGN Statement | SYS | the physical units assigned to |

| |all system logical units. |

ALT indicates an alternate magnetic tape - + 2]

unit that is used if the capacity of the | PROG |the physical units assigned to |

original unit is reached. The characteris- | |all background programmer logical]|

tics of the original and the alternate unit | |units. |

must be the same. Multiple alternates may b + 4

be assigned to one logical unit. |ALL |the physical units assigned to |
| |all logical units. |

Note: 2ll device assignments made with 3 $ i

ASSGN statements are reset between_jobs to | SYSxxx |the physical units assigned to |

the configuration specified at system | |{the specified logical unit.

generation time pilus any modifications that i + §

may have been made by the operator. (See |UNITS |the logical units assigned to all]

the section The JOB_Statement.) | |physical units. |
t + -1
| DOWN |all physical units specified as |

The EXEC Statement | |inoperative. !
IR 4 J
g T K

The execution of a job step is initiated by |ua |all physical units not currently |

the statement: | |assigned to a logical unit. |
b= $ 1

// EXEC name |X*cuu*' |the logical units assigned to thej|
[| specified physical unit. |

Name is the name of the first phase of the L 1 J

program to be fetched from the core-image

library and to be executed. Therefore, Figure 7. Operands of LISTIO Statement and

execution of a PL/I compilation would be
initiated by the statement

/7 EXEC PL/I

The name must be omitted if a program
linked in the previous job step of the same
job is to be executed immediately after the
link operation.

The JOB_ Statement

Each job begins with the statement:

// JOB job-name

14

Corresponding Actions

The MTC Statement

The MTC statement is used to control opera-
tions on logical units assigned to magnetic
tapes. The format of the MTC statement is

// MTC op-code, SYSxxx[,nnl

For further details refer to the section
Multi-File Volumes and Backwards Files.

The_ OPTION_ Statement

The OPTION statement is used to specify
options for the compilation of PL/I source
programs. Its format is

// OPTION optioni{,option2}....

If this statement is omitted, a set of
standard options defined at system genera-
tion time will apply. If more than one
OPTION statement is issued in one job, all
further OPTION statements change only those
options that are respecified. All other
options will remain unchanged.

All options specified in the OPTION sta-
tement are canceled when a new JOB state-

ment is read.
Statement.)

(See the section The JOB

The options LINK and CATAL are canceled

1. if severe or disastrous errors have
been detected during a PL/I
compilation.

2. after a new EXEC statement has been
executed.

The options that may be used by the PL/I
programmer are listed in Figure 8.

Option Function

LOG Causes all Job Control statements fo be listed on SYSLST.

NOLOG Suppresses the LOG option.

DUMP Causes the contents of core storage and registers to be listed on SYSLST in case of on abnormal termination of the job.

NODUMP Suppresses the DUMP option.

LINK Causes the compiled PL/| program fo be 'wriﬂ'en on SYSLNK for !ofer processing by the Linkage Editor. This option, if
used, must precede all other Linkage Editor control statements, if any.
Suppresses the LINK option. The LINK option is also suppressed if a serious or disastrous error is detected during

NOLINK compilation of a PL/I source program or if an EXEC statement with a blank operand field is read.
Causes the LINK option to be set. In addition, it causes the cataloging of a phase or program into the core-image

CATAL library ofter either a /& or a // EXEC MAINT statement has been read.

DECK Causes the PL/| compiler to punch an object deck if no disastrous compile~time error hos been detected.

NODECK Suppresses the DECK option.

LIST Causes the PL/I compiler to list the source program on SYSLST.

NOLIST Suppresses the LIST option.

LISTX Causes the PL/1 compiler to list the object program on SYSLST.

NOLISTX Suppresses the LISTX option.

SYM Causes the PL/| to list the symbol table, the block table, the offset table, and the external symbol table on SYSLST.

NOSYM Suppresses the SYM option.

ERRS Causes the PL/I compiler to list all detected errors on SYSLST.

NOERRS Suppresses the ERRS option.

XREF Causes the PL/'I compiler to write a cross-reference listing on SYSLST.

NOXREF Suppresses the XREF option.

45C Informs the PL/1 compiler that source programs are written in the 48-character set in EBCDIC notation. (No provision
has been made for BCDIC and ASCII character sets.)

60C Informs the PL/1 compiler that source programs are written in 60-character set in EBCDIC notation.

MINSYS Causes the Linkage Editor to produce minimum-size modules for later runs on systems with a background program

(TOS only) area smaller than 24K, when link-editing on systems with a larger background program area.

Figure 8. Operands Used in the OPTION Statement

Running Programs Under DOS/TOS Control 15

The_PAUSE Statement

The PAUSE statement can be used to stop
batched-mode processing in order to save
output files produced by a previously
executed program. Its format is

// PRAUSE conments

The comments are printed on SYSLOG (pro-
vided SYSLOG has been assigned) to indicate
the action to be taken by the operator.

The RESET_ Statement

The RESET statement resets I/0 assignments
to the standard assignments. The standard
assignments are those specified at system
generation time plus any modifications made
by the operator by means of an ASSGN com-
mand (as opposed to using an ASSGN control
statement) without the TEMP option. The
format of the RESET statement is:

// RESET

with one of the operands SYS, PROG, ALL,
SY¥Sxxx. The meaning of the individual
operands is described below.

SYS resets all system logical units to
their standard assignments.

PROG resets all programmer logical units to
their standard assignments.

ALL resets all programmer and system logic-
al units to their standard assignments.

S¥Sxxx resets the specified logical unit to
i1ts standard assignment.

The UPSI Statement

This statement (User Program Switch Indica-
tors) allows the user to set program
switches that can be tested much the same
as sense switches or lights used on other
machines. The UPSI statement has the fol-
lowing format:

// UPSI nnnnnnnn

The operand consists of one to eight
characters of 0, 1, or X. Positions con-
taining 0 are set to 0. Positions contain-
ing 1 are set to 1. Positions containing X
remain unchanged. Unspecified rightmost
positions are assumed to be X.

Job Control clears the UPSI byte to
zeros before reading control statements for
‘each job. When Job Control reads the UPSI
statement, it sets or ignores the bits of
the UPSI byte in the communication region.
Left to right in the UPSI statement, the
digits correspond to bits 0 through 7 in
the UPSI byte. Any combination of the

16

eight bits may be tested by problem pro-
grams at execution time.

The DOS PL/I compiler checks bit 0 of
the UPSI byte; the other bits are ingored.

If bit 0 is on (1) during compilation,
Librarian and Linkage Editor statements are
produced to permit to compile and catalog
in one job step into the relocatable
library. Bit 0 should be off (0) if cata-
loging into the relocatable library is not
desired. For further details on cataloging
refer to the section Cataloging into the
Relocatable Library.

The End-of<Data-File Statement

The end-of-data-~file statement {(/* in
columns 1 and 2) serves as a delimiter for
the input read from SYSIPT. Therefore,
PL/I programs must be terminated by an end-
of-data-file statement. This statement is
also recognized on the programmer logical
units that are assigned to a card reader.
This causes the ENDFILE condition to be
raised for a PL/I input file.

The End-of-Jok Statement

The end-of-job statement (/& in columns 1
and 2) indicates that a job has been com-
pleted. If this statement is omitted, the
Job Control program may skip the next job
stacked on SYSRDR and/or SYSIPT. If SYSRDR
and SYSIPT are different units, the end-of-
job statement must appear on both.

The Comments Statement

A special comments statement (* in column 1
and blank in column 2, followed by the
desired comments) is available for longer
messages. The comments are printed on SYS-
LOG, but no halt is caused by this
statement.

File Label Job Control Statements

For all Job Control statements referring to
disk and tape file labels see the section
File Labels.

The PROCESS Statement

The PROCESS statement allows the programmer
to specify compile-time options. More than
one card may be used per external
procedure.

General format:

PROCESS option [,option]...
or

+ PROCESS option [,option]...

General rules:

1.

The cards have to precede the PL/I
source program. They must, however,
follow the // EXEC PL/I statement.

The card has to start either with an

asterisk or with a plus sign in column

one, followed by one or more blanks.

If the plus sign is used it is treated

as an asterisk. The option list may
not extend beyond column 71.

The options in the PROCESS statement
override job-control options or any

other options encountered in previous

PROCESS statements.

STMT, NOSTMT

STMT causes statement numbers to
be printed with object time
diagnostics.

NOSTMT suppresses the STMT cption.

The default is NOSTMT.

Note: In a program consisting of
several external procedures, STMT
must always have been specified for
the first external procedure that
is stored on SYSLNK if the object-
time diagnostic messages for any of
the external procedures of the pro-

The options that can appear in the

operand field of a PROCESS card are:

1.

Options supported by Job Control:

DECK NOSYM
NODECK ERRS
LIST NOERRS
NOLIST XREF
LISTX NOXREF
NOLISTX 48C
SYM 60C

A description of the above options is
given in Figure 8 in the section The
Job Control Program.

Options not supported by Job Control:

a. OPT, NOOPT
OPT causes the optimization of
compiled code.
NOOPT suppresses the OPT option.

The default is OPT.

Optimization implies the deletion
of as much code as the compiler can
diagnose as redundant.

If the option OPT is used, sequen-
tial assignment statements for the
same variable (e.g., A=1l; B=X; A=3;
are optimized by deletion of the
first assignment to A because there
is no reference to A between the
two assignments to A.

If the contents of 'A' were
required between the two assign-
ments (e.g., were used as control
values in the event of an interrupt
such as SIZE, CONVERSION, etc.) the
assignment statement would have to
be labeled because labeling a sta-
tement resets the internal optimi-
zation control.

gram are to include the numbers of
the source statements causing

errors. If, for example,

STMT is

specified only for the second
external procedure stored on SYS-

LNK, statement numbers are

printed for this procedure.
STMT must also have been

addition,

not
In

specified for the first external

procedure.

c¢. LISTC, NOLISTO

LISTO

causes the statement num-

bers to be listed and the
offset of the first byte
used after these statements

to be printed.

NOLISTO suppresses the LISTO

option.
The default is NOLISTO.

Note:

LISTO overrides LISTX,

i.e.,

if LISTO and LISTX are specified,
the LISTX option is ignored.

COMPILATICN UNDER DOS/TOS CCNTROL

If a single PL/I source module is to be
compiled under DOS/TOS control, the card

sequence should be as follows:

// JOB
// OPTION
// EXEC

job-name
PL/I

PL/I source module

LI Y

/¥

DECK, LIST,NOSYM, 60C see note 1

/& see note 2

Note 1: This statement causes the
compiler to punch an object module
PCH and to list the source program
LST. The listing of source module
is suppressed. The source program
ten in the 60-character set. LOG,

PL/I

on SYS-

on SYS-

symbols

is writ-
DUMP,

Running Programs Under DOS/TOS Control 17

LISTX, and ERRS are assumed to have been
established as standard options at system
generation time.

Note 2: Another /& card must be read from
SYSIPT if SYSRDR and SYSIPT do not refer to
the same input device.

v 1
| Deck on SYSRDR i
r

, 1
i7/7 3J0OB MYJGOB H
|7/ OPTION DECK,48C i
|7/ ASSGN SYSIPT,X'271',X"'50" |
1 * PLEASE MOUNT REEL 4711 ON UNIT 271 |
|// PAUSE PROCEED 1
|7/ EXEC PL/I |
|7/ EXEC PL/I i
|// EXEC PL/I |
1758 !
b , :
| Records on SYSIPT |
N 4
L 3 1
| First PL/I source module |
| 7% I
| Second PL/I source module |
|7* |
| Third PL/I source moduie i
17* |
176 |
L]
Figure 9. Coding for a Job Consisting of

three PL/I Compilations

ASSGN statements to change the assign-
ment of logical device addresses for this
job may be placed anywhere between the JOB
and the EXEC statement. Assignments for
SYSLNK must not be changed after OPTION
LINK has been specified.

Figure 9 shows the coding for a job con-
sisting of three PL/I compilations. SYSRDR
and SYSIPT are assumed to refer to dif-
ferent input devices. SYSIPT is assumed to
be a 7-track tape drive.

Since a job step comprises only one
single compilation, an EXEC statement as
well as a /¥ statement is required for the
compilation of each source module (external
procedure).

Main_storage requirements for compilation:

files on disk:

10K plus supervisor area required
for the compiler version used

In the background partition, with system
files on disk:

12K plus supervisor area required
for the compiler version used

files on disk:

18

10K plus foreground save area reguired
for the compiler versicn used

In the foreground partiticon, with system
files on disk:

12K plus foreground save area required
for the compiler version used

The Linkage Editor Program

The Linkage Editor program relocates the
object modules produced by the PL/I compil-
er into an absolute object program.

Modules retrieved from the relccatable
library may be incorporated into the object
program during the Linkage Editor run.
Programs written in Assembler language and
assembled by means of the DOS/TOS Assemkler
may also be incurporated. For details on
the communication with programs written in
Assembler language refer to the section
Linkage Conventions. The object program
produced by the Linkage Editor may either
be executed by using the EXEC statement
with a blank operand or be incnrporated

- o = .
into the core-image library.

If a Linkage Editor run is desired, the
first Linkage Editor control statement and
the first EXEC statement must be preceded
by an OPTION statement with either the LINK
or the CATAL option.

In a TOS or DOS non-multiprogramming
system, the Linkage Editor can run in the
background partition only. In a DOS multi-
programming system which also supports the
private core-image library option, the Lin-
kage Editor can run in either foreground
partition (as well as the background) pro-
vided a minimum of 10K of main storage and
a private core-image library is assigned.

LINKAGE EDITOR CONTROL STATEMENTS

The execution of the Linkage Editor program
is initiated by Linkage Editor control sta-
tements read from SYSRDR. The general for-
mat of Linkage Editor control statements is
similar to that of the Job Control state-
ments, except that Linkage Editor comtrol
statements have a blank in column 1 instead
of // in columns 1 and 2.

The Linkage Editor program uses the fol-
lowing four control statements:

e the PHASE statement,
e +the INCLUDE statement,
e the ENTRY statement, and

¢ the ACTION statement.

The exact format of these statements is
given in those parts of this section where
their application is described.

The ACTION Statement

This is an optional statement for directing
the Linkage Editor. If ACTION statements
are issued to the Linkage Editor, they must
precede all other input to the Linkage Edi-
tor on SYSLNK. This can be ensured by
placing the ACTION statement(s) immediately
after the OPTION statement with the operand
LINK or CATAL. The format of the ACTION
statement is:

ACTION operand

The following operands are of interest
to the PL/I user:

BG The program is link-edited to
F1 execute in the specified
F2 partition. The start address of

the appropriate partition is
assumed to be the end of the
Supervisor (for background) or the
address of the specified fore-
ground partition allocated at link
edit time. Only one of these
operands may be specified for one
link-edit step. Use cf these
operands allows the program to be
link-edited to execute in a parti-
tion other than the one in which
the link-edit function is taking
place.

In the absence of these operands
the program is link-edited to
execute in the partition in which
link-editing is taking place.
(These operands are not available

in TOS).

NOMAP Suppresses listing of the Linkage
Editor storage map on SYSLST.
Diagnostics are written on SYSLOG.

CANCEL The job is canceled if any error

is detected during link-editing.

More than one ACTION statement may be
issued for one link-editing step.

The PHASE Statement

If the program consists of more than one
‘phase or if the program is to be cataloged,
each phase to be link-edited must be pre-
ceded by a PHASE statement of the following
format:

PHASE phase-name,origin

characters, the first of which must be
alphabetic but should not be a § sign. In

case of multi-phase programs, the phase-
name must be longer than four characters
and the first four characters must be
identical for all phase names of that pro-
gram. Different programs must differ in
the first four characters of their phase
name({s) in order to avoid incorrect storage
allocation. (See the section Processing of
Overlays by the Linkage Editor.)

begin address of this specific phase. 2n
asterisk may be used as an origin specifi-
cation to indicate that this phase is to
follow either

the previous phase or the Supervisor at
the next double-word boundary (for back-
ground programs) or the start of the
partition (for foreground programs).

This simple format of the PHASE state-
ment covers all normal aprlications in the
background partition. For the format of
the phase origin in overlay structures
refer to the section Qverlay.

Three methods are available for link-
editing foreground programs:

1. Using the statement ACTION Fn. In this
case, the same set of PHASE statements
may be used as for background programs.

2. Using the operand format F+address of
the PHASE statement for the origin of
the first (or only) phase.
address is the absolute address of the
foreground area in which the link-
edited program is to be executed. It
may be specified by a hexadecimal numb-
er of four to six digits (X*hhhhhh') or
by a decimal number of five to eight
digits (dddddddd) or in the form nnnnk,
where nnnn is two to four digits and K
equals 1024. For example, an origin
may be specified as F+X'8000' or F+
32768 or F+32K.

3. Executing the link-edit function in the
desired foreground partition. In this
case, the same set of PHASE statements
may be used as for background prograns.

For each method, a foreground save area
is created at the specified address. The
(first) phase starts at the first double-
word boundary following this save area.

The space allocated to a foreground program
by the Linkage Editor plus sufficient space
following the end of the program for dynam-
ic allocation of PL/I automatic stocrage
must be allocated at execution time to the
appropriate foreground partition.

Programs compiled by the PL/I compiler

and PL/I library routines are not
self-relocating.

Running Programs Under DCS/TOS Control 19

Note: The autolink feature of the Linkage
Editor is required to include routines from
the relocatable library that are to be
linked with the object modules compiled by
the PL/I compilier. Therefore, the option
NOAUTO of the PHASE or ACTION statement
must never be used.

DING OBJECT MODULES INTO THE OBJECT
A AL

The appropriate object modules can be inco-
rporated into the object program by:

e compilation,
e including object card decks,

[incl ‘1ﬁ1ng ocbiect modules from the re

ERALON NI NS 4§} LT A - (011

catable library, or
¢ using the autolink feature.
Compilation

To have the source module compiled and the
output written on SYSLNK, the card sequence
must be as follows:

// EXEC PL/I

PL/1I source module

/¥

If SYSRDR and SYSIPT refer to different
input devices, the PL/I source module and
tne /* card must be read from SYSIPT.

Processing by the Linkage Editor and
execution is suppressed in case severe oOr
disastrous programming errors are detected
during compilation.

Source modules written in Assembler lan-
guage may be added in the same manner by
using the statement // EXEC ASSEMBLY for
calling the Assembler. For details on the
communication with programs written in
Assembler language refer to the section
Linkage Conventions.

Inciuding Obiject Card Decks

To include one or more object card decks
into the object program, the required con-
trol cards as well as the sequence in which
they must be read from SYSIPT or SYSRDR,
respectively, are shown in Figure 10.

Note: The INCLUDE card, when used for this
application, must have the following
format:
INCLUDE preceded and followed by blanks
only

20

r== T 1
| Cards | Read from |
¢ po-mm- |
i INCLUDE | SYSRDR |
| .o l l
| ..o one or more ob-| SYSIPT |
| cae ject modules ! |
| | |
|7% | sYysIDPT !
L L 4

Figure 10. Including Object Card Decks

Including Object Modules from the
Relocatable Library

An INCLUDE statement must be read from SYS-
RDR for each module to be incorporated into

the object program from the relocatable
library. When used for this application,
the INCLUDE statement must have the format

INCLUDE module-name

Using the Autolink Feature

If some references to external names remain
unresolved after all modules have been read
in from SYSLNK, SYSIPT, and/or from the
relocatable library, the autolink feature
of the Linkage Editor searches the relocat-
able library for module names identical to
the unresolved names and includes the
corresponding modules into the object
program.

Private Relocatable Library under DOS

Cataloging and including of relocatable
modules may be performed by means of a
private relocatable library. For DOS, the
private relocatable library resides on an
extra 1316 disk pack. The 2311 disk drive
on which this pack is mounted has the log-
jcal device address SYSRLB.

For including modules, the DOS Linkage
Editor first searches the pack assigned tc
SYSRLB and, if the requested module is not
found there or if SYSRLB is not assigned,
it searches the relocatable library on the
system residence pack.

If SYSRLB is assigned, relocatable
modules are cataloged intc the private
relocatable library. Otherwise, they are
cataloged into the system residence pack.

For creating private relocatable
libraries refer to the SRL publicat-on IBM
System/360, Disk Operating System, System
Control and System Service Programs, Order
No. GC24-5036.

For private relocatable libraries under
TOS see Special Considerations on TOS.

The ENTRY Statement

The card input to the Linkage Editor may be
delimited by an ENTRY statement of the fol-
lowing format:

ENTRY ([namel

Name is the external name of the entry
point used. The entry point must ke a pri-
mary or secondary entry of the external
procedure that has the option MAIN. If the
primary entry point of the MAIN procedure
is used, the name may be omitted.

If no ENTRY statement is issued, ENTRY
with a blank operand is assumed.

Note: If modules written in Assembler lan-
guage are to be incorporated into the
object program, the Assembler END statement
should have a blank operand field in order
to avoid ‘confusion of entry points.

For each file specified in the source pro-
gram, the compiler generates a separate DTF
table which includes the names of the I/0
modules to be called.

Sometimes different I/0 modules have
identical secondary entry names. For
example, if a program uses ISAM files and
- ADDBUFF is specified for one of these files
and INDEXAREA for another, then the secon-
dary entry point IJHAARZZ occurs in modules
IJHAARCZ and IJHAARZP, which are provided
for these two files.. In a case like this,
the linkage editor error message 21431
(Content of statement in error) is
generated during link-editing. Inspite of
this error message, the program may execute
correctly.

There is no way of determining kefore-
hand whether or not a program with linkage
error message 21431 will execute correctly.
To make sure that the correct module is
linked to the program, the following should
be done: :

Message 21431 gives the multiple entry name
in print positions 64 through 71 and the
name of the module that was linked to the
program in print positions 39 through #6.
The linkage editor output listing repeats,
in the LABEL column, the multiple secondary
entry name and also lists the name of the
other module in which this entry name
occurs.

In a new linkage-editor run, now, a
supersetted I/0 module must be specified
for inclusion in the program. This super-
setted module will contain the individual
modules whose inclusion caused the error

message 21431 to be generated.The name of
the supersetted module is found as follows:

Assume that two ISAM files have been
specified, one with the ENVIRONMENT attri-
bute ADDBUFF and another with the ENVIRON-
MENT attribute INDEXAREA. In this examrle,
the linkage editor generates message 21431
with the multiple secondary name IJHAARZZ
printed in positions 64 through 71 and the
name of the I/0 module in which this secon-
dary entry name occurs (IJHAARZP, which is
provided for an ISAM file with the ADDBUFF
option) printed in positions 39 through u6.

In the linkage editor output listing,
the secondary entry name IJHAARZZ appears
in the column LABEL under the associated
CSECT name (IJHAARCZ, the name of the
module which is provided for an ISAM file
with the INDEXAREA option).

Figure 11 below shows how to build the
name of a supersetted I/0 module; this name
should then be specified in an INCLUDE card
and inserted before // EXEC LNKEDT
statement:

INCLUDE IJHAARCP
// EXEC LNKEDT

Name of

Name of
1/O module supersetted
included. /O module
ADDBUF
specified 1JHAARZP
INDEXAREA IJHAAREZ 1JHAARCP
specified ——— j

Where the characters of the module names are identical, these
characters are used in the same positions of the name for the
supersetied module.

Where the characters of the module names differ, the lowest
character is used in the corresponding position of the name for
the supersetted module.

Figure 11. Building the Name of a Super-

setted I/0 Module

Errors Due to Multiple CSECT Names

Different user-written or PL/I modules to
be linked to a program by the linkage edi-
tor may have identical CSECT names, as
shown in Figure 12.

Running Programs Under DOS/TOS Control 21

L'!:cdu!e names in relocatable iibmryj

m ~=—] CSECT names |- 3
ENTRX: used in core=
. image library
ENTRY : where progrom ENTRY:
P — is Sfofed m———
ENTRU:
ENTRZ:
// J0o / JOB
PROCA: Sowime sona
PROCA: .
PROCB:
/% .
// EXEC LNKEDT /%
/8 // EXEC LNKEDT
/&
Figure 12, Multiple CSECT Names

The modules shown in Figure 12 may have
completely different code, or the code of
the two modules may be identical to a cer-
tain point, with one of the modules having
one or more additional entry points (as in
Figure 12).

A linkage-edit time, now, the linkage
editor fetches the required module from the
relocatable area, where the modules are
stored under different names, and checks
whether the corresponding CSECT name is
already on SYSLNK. 1If the CSECT name is
already contained in SYSLNK the second
module with the identical CSECT name (but
the different module name) is not linked.
If a request to any additional entry (ENTRV
or ENTRZ) exists, an error message is
issued, but link-editing is continued. At
execution time, an error will result.

To avoid errors due to multiple CSECT
names, the modules required must be
included in the appropriate external proce-
dure by means of an INCLUDE statement as
shown in Figure 12.

22

SAMPLE COMPILATION

The example shown in Figure 13 illustrates
a combination of all three possibilities to
build an object program. Four -modules pilius
the appropriate library subroutines are to
be combined into an object program, which
is to be executed upon completion of the
compilation. The example is based an the
following assumptions:
1. Cne nm
2. Two modules (P1, P2) have been pre-
viously compiled and punched.

3. One module (R) is contained in the
relocatable library.

4., A listing of the source program and the
symbol table is reguired for module Al

5. A is the entry point to be used.

6. The job is being executed in the back-
ground partition.

Note: The numbers at the left in Figure 13
are for reference purposes only; they are
not part of the coding.

¥ T 1
| 1 |// JOB NO1234 , I
2	// OPTION LINK,SYM,LIST
3	PHASE EXAMPLE, *
4	/7 EXEC PL/I
	A: PROCEDURE OPTIONS (MAIN);
i 3	. i
: r . I	
] END /*A%/; I	
[%	
6	INCLUDE
[I	
	. deck P1
l i l	
[
	. deck P2
.	
[7+
7	INCLUDE R
8	ENTRY
9	#7/ EXEC LNKEDT
10	7/ EXEC
I -	
	. data
[-
11	/* [
12	78
L 1 d
Figure 13. Sample Compilation

Explanation

1 Furnishes the Communication Region of
the Supervisor with the name of the job.

2 Specifies the compiler options SYM and
LIST and enables the PL/I compiler and
Job Control to write or copy the output
on SYSLNK for later processing by the
Linkage Editor.

3 The PHASE statement precedes all modules
to be processed by the Linkage Editor.
The asterisk indicates that the program
is to be loaded immediately following
the Supervisor.

4 Ccalls the PL/I compiler.

5 PL/I source program. A (the name of the
MAIN procedure) is the primary entry
point.

6 Causes the subsequent modules P1 and P2
to be copied onto SYSLNK.

7 This statement is copied onto SYSLNK.
When encountered by the Linkage Editor,
the module R is fetched from the relo-
catable library and incorporated.

8 Delimits the input to the Linkage Edi-
tor. The blank operand causes the pri-
mary entry point A to be entered by Job
Control at execution time.

9 calls the Linkage Editor to produce the
object program. The names of all
modules called by A, P1, P2, and R must
be names of modules contained in the
relocatable library. These modules are
automatically incorporated by the auto-
link feature of the Linkage Editor.

10 causes Job Control to fetch the execut-
able object program and transfers con-
trol to A for execution.

11 The end-of-data-file statement delimits
the input data. If the file name is
explicitly declared, this statement may
be tested by means of an ON ENDFILE
statement.

12 End-of-job statement. 1In case of an
abnormal termination of the job, Job
Control skips all input up to this
statement.

Assumed that all input to be read from
SYSIPT has been loaded onto a 7-track tape
reel and that SYSIPT is assigned to the
tape drive whose physical address is 281,
the input from SYSRDR and SYSIPT for the
akbove example is as shown in Figure 14.

r 1 -
| 1 Cards read from SYSRDR }
I}
| |7/ JOB NO1234 f
11317/ ASSGN SYSIPT,X'281*,X'90" i
| |// OPTION LINK,SYM,LIST [
i PHASE EXAMPLE, * |
| |// EXEC PL/I |
I INCLUDE |
| INCLUDE R |
[ENTRY I
| |7/ EXEC LNKEDT |
{ 1// EXEC i
|14]/¢& |
L L J
Figure 14. Control Cards and Input Units
for Deck Shown in Figure 13
(Part 1 of 2)
Explanation

13 SYSIPT is assigned to a 7-track tape
drive. (The assignment differs from the
installation standard.)

14 /& must appear on both SYSRDR and
SYSIPT.

Cards read from SYSIPT

A: PROCEDURE OPTIONS (MAIN);

e

END /*A*/;

deck P1

«.. deck P2

... data

bt e e s s e e . e e —— ——— — e i o)

T
I
t
I
|
I
I
I
I
| s
I
|
|
|
|
|
|
N

Control Cards and Input Units
for Deck Shown in Figure 13
(Part 2 of 2)

Figure 14.

To execute the same job in a foreground
partition with a private core-image library
on a disk unit whose physical address is
191, the statement

ASSGN SYSCLB,X'191°
must follow the JOB card. In this case,

the program is link-edited to be loaded at
the start of the foreground partition.

Running Programs Under DOS/TOS Control 23

Cataloging

Cataloging of frequently used program
phases or object modules into one of the
DOS/TQS libraries arpai—1v reduces the time

required for card readlng and/or Linkage
Editor processing. Object modules may be
cataloged into the relocatable iibrary.

Executable programs already processed by
the Linkage Editor may be cataloged into

the system or, if assigned, a private core-

image library.

_The name of a phase or module must be

If phases or

taloged, any module or phase
T

y contained in the respective libr

and having the same name is automatically
deleted. This necessitates some naming
conventions for each installation in order
to prevent a user from deleting programs
that are either part of the system or cata-
loged into the library by other programmers
using the same instailation. Core-image

o o Mo
=] LT Cava

xz

library phase names starting with $ as well

as relocatable library module names start-
ing with IJ are names of system programs.
For this reason, the user should be very
careful when cataloging phases or modules
the names of which start with the above
characters.

The Library routine that handles cata-
loging and deleting is called by the Job

Control statement // EXEC MAINT.

Cataloging Into The Core-Image Library

If a program is to be cataloged into the

core-image library, the statement //. OPTION

with the CATAL option must be given prior
to Linkage Editor processing, i.e., this

statement must precede the first PHASE card

of the program to be cataloged in case of
compile-and-1link runs. Upon successful

completion of Linkage Editor processing the

program is then automatically cataloged
when an // EXEC LNKEDT and /& card is read.
(Note that no // EXEC statement without
name must precede the // EXEC LNKEDT or /&
statement in this job.)
control statements are required.

If a private core-image library is
assigned, the program is cataloged into
that library rather than into the system
core-image library.

Note:
with the same four characters as the pro-

gram to be cataloged (see the publication
IBM System/360 Disk Operating System, Sys-

24

noctive library

No further catalog

An error mway occur if a phase exists
in the core-image library whose name starts

tem Control and System Service Programs,
Order No. GC2u4-5036).

Programs or phases that are no longer
required in the core-image librdry may ke
P P B - 2 am ;e TIT TIM Al
deleted by using the DELETIC statement, the
two possible formats of which are as
follows:

DELETC phasell,phase2]...
DELETC prgl.ALL[,prg2.ALL]...

The £
single pha
oo or‘

etc

2

STLy

phase to be del ted
used to delete entire programs. Slnce the
first four characters of all phase names of
any program are identical, the entire pro-
gram is deleted if these four characters
are specified. prgl, prg2, etc., must
therefore be exactly four characters long.

d to delete

s nhagel
S paases,

nha~-
raa

T
h speci name of cne

Cataloging Into The Relocatable Library

Each card deck to be cataloged into the
relocatable library must be preceded by the
control statement

AR TR T D .1 P
CATALR moduie-namel,Vemi

The module specified by the operand
module-name is then incorporated into the
relocatable library. Cataloging stops when
the END card of the module has been cata-
loged. The module may be preceded but not
followed by Linkage Editor control
statements.

v.m specifies the change level at which
the module is to be cataloged. v may be
any decimal number from 0 through 127. m
may be any decimal number from 0 through
255. A change level of 0.0 is assumed if
this operand is omitted.

Compilation of a PL/I source module may
result in two object modules. (The first
one will be referred to as file module and
the second one as procedure module in this
section.) The file module is produced for
all of the file declarations (except file
name parameters) contained in the source
module. The procedure module is produced
for the source module itself. Note that
each individual object module requires a
separate CATALR statement for cataloging.
The file module may be cataloged under any
of the file names.

The DOS PL/I compiler facilitates cata-
loging into the relocatable library by
optionally producing control statements on
SYSPCH. If bit 0 of the UPSI byte (see the
section The UPSI_Statement) is on during
compilation, the following output is
generated on SYSPCH depending on whether or
not a file module is generated with the
external procedure:

with file module without file module

CATALR Fname
file module
CATALR name
INCLUDE Fname
procedure module

CATALR name
prncedure module

name is the primary entry point of the
external procedure. Fname means that the
name of the external procedure, immediately
preceded by the character F, is used as the
name of the file module. The INCLUDE sta-
tement is generated to have the file module
automatically included with the procedure
module.

There is no automatic catalog feature
for compile-and-catalog into. the relocat-
able library. However, if a sufficient
rumber .of tape drives is available; it is
recommended to assign SYSPCH to a magnetic
tape drive -and to reassign the same drive
to SYSIPT for the catalog step, thus eli-
minating unnecessary card handling.

The following example shows what control
statements are required for compile-and-
catalog into the relocatable library:

// JOB COMPILE AND CATALOG
* INTO THE RELOCATABLE LIBRARY
// OPTION SY¥YM,LISTX,DECK

1 // UPSI 1
2 // ASSGN SYSPCH,X'182*
2 // MTC REW, SYSPCH
// EXEC PL/T
“ne PL/I source progdgram
s ces
3 // MTC WTM, SYSPCH
3 // MTC REW, SYSPCH
3 // RESET SYSPCH
4 // ASSGN SYSIPT,X'182°
5 // EXEC MAINT
/8
Explanation

1. This statement causes the DOS PL/I com-
piler to generate control statements
that precede the object module(s).

2. Assigns magnetic tape unit 182 to SYS-
PCH and positions the tape at the load
point.

3. Closes and repositions SYSPCH. (Do not
use the /7 CLOSE statement since this
statement unloads the tape, thus caus-
ing unnecessary operator action).

4, The compiler output is now assigned to
SYSIPT.

5. The Librarian is called. The CATALR
statements cause cataloging into the
relocatable library.

Note: The control statements are generated
only on SYSPCH, not on SYSLNK. Thus,
compile-and-catalog into the relocatable
library does not preclude the LINK and
CATAL options in the same job.

The DELETR statement may be used to
delete either single modules or entire pro-
grams contained in the relccatable library.
All modules whose names start with the same
3-character combination are considered to
be part of the same program. The two poss-
ible formats of the control statement are

DELETR module-namell,module-name2]l...
DELETR prgl.ALL[,prg2.ALL}...

The operands prgl, prg2, etc., must con-
sist of exactly 3 characters.

Library Maintenance Runs

Cataloging and deleting for all libraries
can be done in one single job step. In the
following example, the program LNCT is
deleted from the core-image library and the
modules BCDFIR and BCDSEC are cataloged in
the same job step. BCDSEC is preceded by a
PHASE statement that is to be cataloged
with the module.

// JOB CATALOG TWO DECKS,
* SECOND WITH PHASE CARD
// EXEC MAINT

DELETC LNCT.ALL

CATALR BCDFIR

..+ deck BCDFIR
CATALR BCDSEC
PHASE BCDPR2, *
* THIS STATEMENT IS ALSO CATALOGED
eee deck BCDSEC
/* END OF MAINT. DECK
/&

The input deck must be followed by an
end-of-data-file statement if another job
step within the same job follows the main-
tenance run. The Librarian control state-
ments and input decks to be cataloged are

Cataloging 25

read from SYSIPT. {(In TOS, Librarian con-
trxol statements are read from SYSRDR.)

Example for Cataloging a Foreground Program

Two methods are available for cataloging a
foreground program:

1. 1If the program is compiled and link-
edited in the background, the following
job stream can be used:

/7 JOB CATALFG
// OPTION CATAL
1 ACTION F2
2 PHASE FGPXYZ,*
/7 EXEC PL/I
L]
PL/I source deck
[]
/%
3 // BASSGN SYSRLB,X"192"
/7 EXEC LNKEDT
/&

The ACTION statement (1) causes the
Linkage Editor to allocate storage for
the program in the storage presently
allocated to the foreground-two parti-
tion. The PHASE statement {(2) gives
the program the name FGPXYZ. The
second operand (*) specifies that the
program is to start n bytes behind the
location assigned at link-edit time as
the start address of the foreground-two
partition (n is the length of a fore-
ground save area required by the sys-
tem). The program to be cataloged is
compiled in the same job. The ASSGN
statement (3) assigns SYSRLB so that
the Linkage Editor can obtain modules
to be included by the AUTOLINK feature
from a private relocatable library.

2. If the program is compiled and link-
edited in the foreground, two changes
are made to the above job stream:

a. The ACTION statement is removed
because the program will be link-
edited to execute in the foreground
partition in which the link-edit
function is taking place.

ASSGN SYSCLB,X'191"

is added to assign a private core-
image library. The program will be
cataloged in the private core-image
library.

26

Special Considerations on TOS

If TOS is used, phases in the core-image
and modules in the relocatable library are
not stored at random locations but in
alphameric order. Therefore, all phases
and/or modules to be cataloged must alsoc be
in alphameric order. Maintenance reguests
for the core-image and the relocatable
library may be given in the same job step
but must not be intermixed. Note that a
maintenance run under TOS control causes
copying of the full system onto a new
volume that will be located on SYS002.
SYS001 must be assigned tc a tape drive for
intermediate use in this case.

The TOS compiler does not generate
CATALR statements. However, the user may
prepare his own CATALR statements and put
them into the job stream on SYSRDR follow-
ing // EXEC MAINT. (In TCS, Librarian con-
trol statements are read from SYSRDR
instead of from SYSIPT.) The file module
should be given a name equal to one of the
file names to avoid the use of an INCLUDE

[P

statement for inciuding the file module.

Users needing a large number of relocat~
able modules should use a private relocat-—
able library. Using a private relocatable

library yields the following advantages:

1. Only the relocatable library is copied
during updating.

2. The performance of INCLUDE and AUTOLINK
is considerably faster during proces-
sing by the Linkage Editor.

During Linkage Editor processing and
library maintenance, the private relocat-
able library resides on an additional mag-
netic tape unit assigned to SYSRLB. A
private relocatable library is produced by
preceding the first CATALR or DELETR state-
ment by the special Librarian statement
NEWVOL. (The tape reel on SYS002 to accom-
modate the newly created relocatable
library must be initialized with a standard
volume label.)

If a private relocatable library is to
be used on TCS, it must contain all modules
to be included from the relocatable library
because SYSRLB and the relocatable library
on the system's resident library are never
searched both.

Terminology

A file is a set of data stored on an
external storage medium. Its purpose is
either one or a combinaticn of the

following:

* To provide the program with the required
input.

¢ To store intermediate results obtained
during the execution of the program.
This may be required because the storage
capacity does not suffice to accommodate
both the program and the data.

e To store the results obtained by the
execution of the program (maybe for use
as input either to the same program at a
later execution or to another program).

tion transferred between internal storage
and the external storage medium of the
file.

A record is the unit of information
which is logically- transferred between the
program and the file by a single PL/I READ,
WRITE, or REWRITE statement. A block may
contain more than one record (blocked reco-
rds). In blocked record files, the records
are buffered until a full block has been
gathered and then physically transmitted to
the file. In the case of input files, one
block is read into a buffer, and each READ
statement transfers (locates) one single
record to the progran.

identifies a magnetic tape file or a direct
access storage device (DASD) file. Labels
are processed by the PL/I statements OPEN
and CLOSE.

A key is the information required to
locate a record within a DASD file declared
with the attribute DIRECT.

File Organization Schemes

The organization of a file may be consecu-
tive, regional, or indexed.

The term file organization is synonymous
with an algorithm for identifying and
locating blocks and records on the storage
medium holding the file.

Data Files

CONSECUTIVE FILES

The blocks contained in CCNSECUTIVE files
are identified by the sequence in which
they are stored. This renders it imposs-
ible to .access (or store) the blocks in any
manner other than sequential. This, in
turn, implies that the DIRECT attribute is
not permitted for CONSECUTIVE files.

A PL/I file declared to be CONSECUTIVE
may consist of a deck of punched cards, a
listing on a printer, one or more reels of
magnetic tape, or some space on one Or more
1316 disk packs used with the 2311 disk
drive. Other storage media for CONSECUTIVE
files like the paper tape reader, the opt-
ical character reader, or teleprocessing
lines (DOS only) may be addressed by using
subroutines written in Assembler language
that will process these files.

For an example showing the creation and
updating of a sequential disk file, refer
to Appendix L. Programming Examples,
"Creating And Updating a Sequential Disk
File".

A magnetic tape file may be contained on
a single tape reel or on more than one reel
(multi-reel file). The logical unit where
the file is located must be declared in the
MEDIUM option of the ENVIRONMENT attribute.
When using a multi-reel file, more than one
tape drive may be assigned to this logical
unit by specifying the ALT option in the
ASSGN statement to overlap processing and
mounting of tape reels. Cnly labeled files
should be used for multi-reel files.

A magnetic tape may also contain more
than one file. To positicn the file
correctly an MTC statement may be used to
space the tape forward over as-many tape
marks as precede the file to be opened.
(Refer to Multi-File Volumes_and Backwards

REGICNAL FILES

The regional file organization is possible
only for DIRECT DASD files. REGIONAL files
are processed using the DOS Direct Access
method. Two different methods are used:

e REGIONAL(1) where records are addressed
by their relative position in the file

¢ REGIONAL(3) where reccrds are addressed

(1) by the number of the track on which
they reside, the track number being

Data Files 27

relative to the first track of the file
and (2) by means of a key associated
with the record.

For further details refer to the section
Disk Organization.

] 3 DTOOTANAY €31 aa e
Restricticns.

€1 I - o
SSo < [Roavaivtian LILEDS mMudStL e aew

clared with the attributes DIRECT and

KEYED, which exclude the use of the STREAM,
PRINT, SEQUENTIAL, and the buffering attri-
butes. The XEYLENGTH option of the

ENVIRONMENT attribute is not permitted for
REGIONAL(1) files but must be specified for
REGIONAL (3) files. REGIONAL files permit
only fixed unblocked records. The V, U,

BUFFERS, LEAVE, and NOLABEL options of the
ENVIRONMENT attribute are not permitted for

REGICNAL files. The maximum relative reco-
-~ DI

L

rd or track number is 22%-2%,
statements for REGIONAL files must be supp-
lied in ascending symbolic-unit order. If
there are multi-volume files, the symbolic
units must be assigned in consecutive

order.

Note on Compatibility. In 0S PL/I, certain
information contained in the key field or
data field of REGIONAL files is used to
flag a record of that file as deleted.
Therefore, if the user plans to create
files with DOS PL/I and read and/or update
them with 0S PL/I, he should avoid keys or
data that would cause 0S PL/I to consider
the record as deleted. For detailed infor-
mation refer to the pertinent section of
the 0S PL/I Programmer‘®s Guide, Order

No. GC28-6594,

REGIONAL(1) Files

The individual records in a REGIONAL(1)
file are identified by their position rela-
tive to the position of the first record in
the file, which has a relative record numb-
er of 0. A track is assumed to contain as
many records as may fit, i.e., if some
parts of the track are still emgty, these
"holes" are nevertheless counted as real
recoxrds. The number of records per track
is shown on the Programmer's Reference
Chart, Form X20-1705. The key used to
identify individual records and issued with
the KEY or KEYFROM option of a READ, WRITE,
or REWRITE statement is not written onto
the DASD file but specified as a numeric
field declared as PICTURE '(8)9'. There-
fore, records to be read from a REGIONAL(1)
file must not contain keys on the DASD.

The value contained in the numeric field
(key) is the relative number of the record
in the file.

Creating a REGIONAL(1l) File. The extents
to be used by a PL/I REGIONAL(1) file must
be preformatted by the DOS Clear Disk uti-
lity program. (For details refer to the
SRL publication IBM Systen/360, Disk and
Tape Operating Systems, Utility Program
Specifications, Order No. GC2U-3465.) This
utility program creates dummy records that
contain a string filled with user-defined
characters. The file can then be actually
created by specifying the OUTPUT attribute.
Figure 15 shows a sample card deck used for
preformatting a REGIONAL(1l) file.

The DLBL and EXTENT statements are
described in the section File Labels.

=R S ada e

Note

Y
w
-
«
o
<
®
<
3
=

YJNIS'MU]Ol920?lau«pnutun‘m:u 32{33}34135, 36[37.381 39,

—T
42}43 14|45 46 47 148 a9 50 51 [s2 53 5859 “~«uuw-wmnnmnqﬂﬂﬂn
L 1
Ll

T

e el e
>
[l (2R~
[02)
[a]
Zz

= |y X
~
]

MNNIKS IS~~~

! ﬁox.\.\

g oo g

=~

NN !\J
>

/1, DLBL, |

J R S S

xy’

ENT|

JLN
,ﬁq4

[y

i

. cL, 8=
15~>D1 }r T S R
!.f&' o

Figure 15.

28

Sample Card Decks for Preformatting REGIONAL Files

that the dummy file should have an expira-
tion date that has already been passed
because, otherwise, the unexpired-file con-
dition would prevent the PL/I output file
from being opened. HNote further that the
dummy file is sequential and that its name
is UOUT, independent of the actual name of
the file to be used in the PL/I program.
The UCL statement and the END statement are
utility control statements and have a fixed
format, i.e., no additional blanks must be
inserted. K=0 means that no key is asso-
ciated with the records. D=100 means that
the block length is 100. This value may be
modified to the user's regquirements and
must be identical with the actual block
length of the PL/I file. The dollar sign
is the character to which the file is
cleared. It may be replaced by any other
character.

The KEY and KEYFROM Options for REGIONAL(1)
Files. The expression in the KEY or KEY-
FROM option in READ, WRITE, or REWRITE sta-
tements must result in a character string
of the form PICTURE '(8)9'. The value n
represented by this expression is used to
access the n-th record of the file relative
to the beginning of the file. n must be
less than 224,

For a programming example refer to
Appendix L. Programming Examples, "Creat-
ing And Retrieving a REGIONAL(1l) File".

REGIONAL(3) Files

Contrary to REGIONAL(1l) files, records in
REGIONAL{3) files are addressed by the
number of the track on which they are
located, the track being relative to the
first track occupied by the file.. The
first track of a REGICNAL(3) file is coun-
ted as track 0. Each individual record
contained in one track is associated with a
key on the DASD in order to distinguish it
from other records in that track. The
length of this key is declared in the KEY-
LENGTH option of the ENVIRONMENT attribute.
The key is a concatenation of two strings.
The first (left) key string is a character
string of a maxi-mum length of 247 charac-
ters and contains the information required
to distinguish the records from the remain-
ing records on the same track. The second
(right) key string is a numeric field de-
clared as PICTURE '(8)9' which contains the
relative track number. The full key is
written onto, or read from, the DASD file.

Like REGIONAL(1) files, REGIONAL(3)
files require preformatting by the DOS
Clear Disk Utility program. In addition to
its clearing function, the utility program
resets the record RO (capacity record) to
reflect that all tracks are empty. The
file can then be actually created by speci-
fying the OUTPUT attribute.

If an attempt is made to write more
records onto a track than its capacity per-
mits, the CN KEY condition is raised.

The KEY and KEYFROM Options for REGIONAL(3)
Files. The expression in the KEY or KEY-
FROM opticn in READ, WRITE, or REWRITE sta-
tements must result in a character string
whose length is the same as the length spe-
cified in the KEYLENGTH option of the
ENVIRONMENT attribute. The last 8 charac-
ters must be in the form PICTURE *(8)9°'.
The numeric value n represented by the last
8 characters is used to access the n-th
track of the file with a key identical to
the character-string expression. n must be
less than 224,

INDEXED FILES

This file organization is supported by the
DOS PL/I compiler and by the PL/I DASD
macro instructions. Both methods may be
used to create, access, and update files
with the indexed-sequential file organiza-
tion. For details on the PL/I DASD macro
instructions refer to the publication IBM
System/360 Disk Operating System, PL/I DASD
Macros, Order No. GC24-5059.

Indexed~-Sequential Organization

An indexed-sequential file is one whose
records are organized on the basis of a
collating sequence determined by control
fields (referred to as keys) that precede
each block of data. The key for each block
of data is from 1 to 255 bytes in length
and contains the identifier of the last
logical record in that block. Indexed-
sequential files are contained in some
space allocated on direct access volumes as
prime areas and index areas.

The indexed-sequential file organization
gives the programmer great flexibility in
the operations he can perform on a file.
Using this scheme of file organization, he
has the akility to

¢ read or write (in a manner similar to
that for seguential files) logical reco-
rds whose keys are in ascending collat-
ing sequence.

s read or write random logical records.

If a large portion of the file is being
processed, reading records in this mann-
er is somewhat slower than reading
according to a collating sequence since
a search for pointers in indexes is
required for the retrieval of each
record.

Data Files 29

¢ add logical records with new keys. The
system locates the proper position in
the file for the new record and modifies
the indexes accordingly.

Indexes. The ability to read and write
records from anywhere in an indexed-
sequential file is provided by indexes that
are part of the file. There are always two
types of indexes: a cylinder index for the

cadla

cylinder. B&An entry in a cylinder or track
index contains the identification of a spe-
cific cylinder or track and the highest key
associated with that cylinder or track.

The system locates a given record Ly its
key after a search of a cylinder index and
a track index within that cylinder.

A third type of index, the master_index,
is optionally available for very large
files. A master index is generated only if
the INDEXMULTIPLE option is specified in
the declaration of the respective output

file. The master index contains an entry
for each track cf the cylinder index. If a

master index is present, the search in the
cylinder index is limited to a search on
one track. For usual applications, a mast-
er index is not recommended if the cylinder
index consists of less than four tracks.

The track index always resides on the
same extent as the prime data area. The
cylinder and master index may reside on the
same volume as the prime data area; howev-
er, they may also reside on a different
volume of a different DASD type. The
cylinder index must be immediately adjacent
to the master index, if any, on the same
volume. Master and cylinder index must be
completely contained in one volume.

Insertion of Records. A new record added
to an indexed-sequential file is placed
into a location on a track which is deter-
mined by the value of its key field. If
records were inserted in precise physical
sequence, insertion would necessistate
shifting all records of the file that have
keys higher than that of the one inserted.
However, an overflow area is available for
each cylinder. Thus, a record can be
inserted into its proper position with only
those records on the track being shifted in
which the insertion is made.

overflow Area. In addition to the prime
area, whose tracks initially receive the
records of an indexed-sequential file,
there is an overflow area for records for-
ced off their original tracks by insertion
of new records. When a record is to be

30

inserted, the records already on the track
that are to follow the new record are writ-
ten back onto the track after the new reco-
rd. The last record on the track is writ-
ten onto an overflow track. Figure 16
illustrates this adjustment for addition of
records to an indexed-sequential file whose
keys are in a numerical ascending seguence.

initial Format of Fiie

Prime Track 1 i 2 3 4 5 8 10§ 1
Prime Track 2 12113116
Overflow Track 1

Format of File after Insertion of Record 7

Prime Track 1 11213 4 |5 % 8 |10

Prime Track 2 121131 16

Overflow Track 1 n
Format of File after insertion of Records 17-22
and Record 9

Prime Track 1

Prime Track 2

Overflow Track 1

Figure 16. Addition of Records to a 1-

Cylinder, 3-Track Indexed-
Sequential File

When this file is created, its records
are placed on the prime tracks in the
storage area allocated to the file. 1If a
record, e.g., record 7, is to be inserted
into the file, the indexes indicate that
record 7 belongs on primary track 1. Reco-
rd 7 is then written immediately following
record 5, and records 8 and 10 are retained
on this track. Since record 11 no longer
fits, it is written onto an overflow track
and the proper track index is adjusted to
show that the highest key on prime track 1
is 10 and that an overflow record exists.
When records 17 to 22 are added to the end
of the file, prime track 2 receives records
17 to 21 but record 22 does not fit and is
written following record 11 on the overflow
track. When record 9 is inserted, record
10 is shifted to the overflow track after

record 22. Note that records 10 and 11 on
the overflow track are chained together to
show their logical sequence and to indicate
that they belong to the same prime track.

Independent Overflow Area. An independent
overflow area can be specified by an EXTENT
statement (before the program is executed)
to specify the area extent. If one or more
of the (cylinder) overflow area(s) become
full, additional overflow records are writ-
ten on the independent overflow area. This
area may be on the same volume as the data
records or on another volume, but must be
contained on one single volume. The number
of overflow tracks reserved on each cylind-
er of the prime data area is determined by
the OFLTRACKS option of the ENVIRONMENT
attribute.

When using the PL/I DASD macro instruc-
tions, two tracks per cylinder are reserved
as overflow area. The number of extents
per file with PL/I DASD macro instructions
is restricted to ten. Note that the
cylinder index constitutes a separate
extent.

The location of index areas, overflow
areas, and the prime data areas on DASD
devices are specified by means of DLBL and
EXTENT statements. (Refer to the section
File Labels.)

PSP bbb

Record Format and Keys. With indexed
files, all records must be of fixed length
(blocked or unblocked). Since only one key
is permitted per block on DASD devices, the
access method for blocked records requires
that the key be embedded in the data field
of the record. The location of the key
within the record is specified by the KEY-
LOC option of the ENVIRONMENT attribute.
The key must be embedded in the data field
if records are blocked; it may be embedded
if the records are unblocked. If KEYLOC is

specified to indicate embedding, the key is
inserted automatically into the field dur-
ing creation of the file or during addition
of records to the file.

When the PL/I DASD macros are used, a
record key is located within each record,
and one extra key is associated with each
block. This key is identical with the
highest (or only) record key in the block.

When processing INDEXED files, the KEY
condition is raised in a number of cases.
If the programmer wants to identify a spe-
cific situvation at execution time, take
action, and continue processing, it is sug-
gested to include the following coding in
the program:

DCL, ERRBYTE BIT(8) EXTERNAL;
CALL ERROUT (ERROUT is an Assembler
routine which returns in
ERRBYTE the contents of the
error byte)

IF ERRBYTE = *00000100'B THEN ...
{duplicate record, for
example)

The contents of the error byte for
indexed-sequential output files and the
corresponding ON-conditions raised are as
shown in Figure 17.

The contents of the error byte for all
other indexed files and the corresponding
ON-conditions raised are as shown in Figure
18.

The Assembler routine ERROUT is shown in
Figure 19. (The address of the error byte
is in the 10th word of the DTF-appendage.)

Data Files 31

. . ON condition | Followed by
Bits Cause Explanation raised PL/I Messoge
0 | DASD error Any uncorrectoble DASD error hes occurred (except wrong length record). oC -
1 | Wrong length record A wrong length record has been detected during an /O operation. OE -
2 | Prime data area full The next to the last track of the prime data area has been filled during the load
or extension of the data file. The nroblem programmer chould issue the ENDFL s &2
macro, then do a load extend on the file with new extents given.
3 I Cylinder Index arec full IThe Cylinder Index crea is not large enough to contain all the entries needed io
index each cylinder specified for the prime data area. This condition can occur _ 7i
during the execution of the SETFL. The user must extend the upper limit of the
cylinder index by using a new extent card.
4 | Moster Index full The Master Index area is not large enough to contain all entries needed to index
each track of the Cylinder Index. This condition can occur during SETFL. The _ 72
user must extend the upper limit, if he is creating the file, by using an extent
card. Or, he must reorganize the data file ond assign a larger area.
5 | Dupiicate record The record being loaded is a duplicate of the previous record. 0D 83
6 | Sequence check The record being loaded is not in the sequential order required for loading. 0D 84
7 | Prime data area overflow [There is not enough space in the prime data area to write an EOF record. This - -
lcondition can occur during the execution of the ENDFL macro.
Figure 17. Contents of Error Byte For Indexed-Sequential Output Files
Bt Cause lanati ON-conditon | Followed by
Explanation raised PL/I Message
0 jDASD error Any uncorrectable DASD error has occurred (except wrong length record). O_C 7;)*
1 i Wrong length record A wrong iength record has been detected during an 1/O operation. OE -
2 | End of file The EOF condition has been encountered during execution of the sequential 0A -
retrieval function,
3 | No record found The record to be retrieved has not been found in the date file. This applies to 0A**or 80
Random (RANSEQ) and to SETL in SEQNTL (RANSEQ) when KEY is specified, 00
or ofter GKEY .
4 |liltegal ID specified The ID specified to the SETL in SEQNTL (RANSEQ) is outside the prime data - -
file limits.
5 |Duplicate record The record to be added to the file has a duplicate record key of another record oD 83
in the file.
6 | Overflow area full An overflow area in a cylinder if full, and no independent overflow area has oD 81
been specified, or an independent cverflow area is full, and ihe additiog cannot
be made. The user should assign an independent overfiow area or extend the
limit.
7 |Overflow The record being processed in one of the retrieval functions (RANDOM/SEQNTL) - -
is an overflow record.
* For indexed-sequential with READ KEY
** OA is raised if the key is too high, otherwise 0D is raised.

Figure 18.

Contents

of Error Byte For All Cther Indexed Files

ERRCR START O
EXTRN ERRBYTE
USING +#,9
STM 14,12,12(13)
LR 9,15
LA 10,SAVEA
ST 13,4(10)
LR 13,10
MvC INDIC+2(1),INDIC+3
L 1,FILE
L 1,36(1)
L 4 ,AERRBYTE
USING ERRBYTE, 4
MVC ERRBYTE(1),0(1)
L 13,4(13)
LM 14,12,12(13)
BR 14
DS OF
SAVEA DC X*'03"
DC AL3 (INDIC)
DC F'O"
INDIC DC 3%°'0°*
DC X'F8"
FILE led V(filename)
AERRBYTE DC A (ERRBYTE)
END
Figure 19. Assembler Routine ERROUT

No RECORD condition will be raised for
retrieving or updating files. The IOCS
module gets the record length during OPEN
time from the format-2 file label as it was
written at creation time. No checking is
made between this entry and the entry in
the DTF table.

For blocked records, the RECORD condi-
tion will be raised when the first record
of a block with one or more wrong-length
records is read. With each execution of a
READ statement the RECORD condition is
raised until the last record of the block
has been read.

The IOCS modules used by the PL/I (D)
compiler are not reentrant. The PL/I
library routine IJKTXCF deblocks such a
wrong-length record. No other file using
the same IOCS module may raise the RECORD
condition before the wrong-length record
has been deblocked to the end.

The KEY, REYFRCM, and KEYTO Options for
INDEXED Files. The expression or variable
in the KEY, XEYFROM, or KEYTO option of
READ, WRITE, or REWRITE statements must
result in or be a character string of the
same length as the length specified in the
KEYLENGTH option of the ENVIRONMENT
attribute.

Note: 1In indexed-seguential files, retri-
eval, updating, and adding of records can
be performed either sequentially or at ran-
dom. However, indexed-seguential files can
be created only sequentially.

Note on Compatibility. In OS PL/I, certain
information contained in the key field cr
data field of INDEXED files is used to flag
a record of that file as deleted. There-
fore, if the user plans to create files
with DOS PL/I and read and/or update them
with 0S PL/I, he should avoid keys or data
that would cause 0S PL/I to consider the
record as deleted. For detailed informa-
tion refer to the pertinent section of the
0S PL/I Programmer's Guide, Form C28-659.4.

Disk Organization

As an example of a DASD organization, this
section describes the 1316 disk pack used
with the 2311 Disk Storage Drive. The 2316
disk pack used with the 2314 or 2319 Direct
Access Storage Facility is organized very
similarly. However, the 2316 disk pack
consists of 11 disks with 20 surfaces on
which data is recorded with double density.
For further details (also on the 2321 Data
Cell Drive) refer to the publications IBM
System/ 360 Component Descriptions, Order
No. GA26-3599 (for the 2314) and IBM
System/360 Component Descriptions, Order
No. GA26-5988 (for the 2311 and 2321).

The 2311 DASD uses 1316 disk packs as
recording medium. One disk pack consists
of 6 disks. The top surface of the upper
disk and the bottom surface of the lowest
disk are not used, which leaves 10 surfaces
for recording. Each disk surface contains
203 concentric tracks. Track 1, 2, 3,
etc., on each surface is physically located
below or above track 1, 2, 3, etc., of the
other surfaces. Therefore, the correspond-
ing tracks are referred to as 203 concentr-

ders 200 cylinders are used for
actual recording; the remaining 3 are
reserved.

The 2311 is provided with one access arm
equipped with 10 read/write heads. The
heads are mounted vertically sc that data
contained in one cylinder can be accessed
without any mechanical movement. This,
however, renders it necessary to internally
switch from surface to surface within a
cylinder in case one track (of a consecu-
tive file) is completely filled. When a
cylinder is filled, reading or writing is
resumed on the first track of the next
cylinder. This technique minimizes the
access-arm movement time.

Thus, a disk pack is thought of as con-
sisting of 200 cylinders, each cylinder
consisting of 10 tracks. A consecutive
part of cylinders (or tracks) set aside for
usage by a specific file is referred to as
an extent. An extent is defined by an
EXTENT statement (refer to the section File
Labels). 1In case two or more files are to
be accessed alternatingly, each individual

Data Files 33

Record O (Track
Descriptor) RO

Data

P———

, Home Address

Defines the location of the track in
terms of the physical parameters of
the files.

Index Marker

Indicates the physical beginning of each track.

Figure 20. Contents of a Track

file may be assigned a part of consecutive
tracks per cylinder instead of full cylinm-
ders. For instance, tracks 0 to 4 of
cylinders 10 to 99 may be assigned to
FILEA, while tracks 5 to 9 of the same set
of cylinders may be assigned to FILEB. The
latter technique is referred to as gplit-
cylinder technique.

The information contained on a track is
recorded in physical records (see Figure
20). Each physical record consists of 2 or
3 fields.

The first field is a count field (C)
identifying the record. The programmer is
not concerned with this field. The second
field is the key field (K). It has the
length given in the KEYLENGTH option of the
ENVIRONMENT attribute or in the KEYLEN
operand of a PL/I DASD macro instruction
and contains the key given in the KEY or
KEYFROM option. CONSECUTIVE and REGIONAL(
1) files have no key field. The last field
is the data field (D) and contains the
block to be read or written. The first
record (Track Descriptor) of each track
(R0) is not part of the information trans-
ferred by a PL/I program but contains some
statistical information. The home address
(HA) is of no interest to the PL/I
programmer.

Record Types

These are five record types that can be
handled by PL/I programs:

fixed unblocked

fixed blocked
variable unblocked

34

Address Marker

Indicates the beginning of a new record. The
record RO does not have an address marker.

variable blocked
undefined

Fixed Unblocked Records

All records are of the same length. Each
block contains exactly one record. The
ENVIRONMENT option used is F(m).

Fixed Biocked Recoxds

All records are of the same length. Each
block contains a fixed number of records.
(Only the last block of a file may contain
less records.) The ENVIRONMENT option used
is F(m,n).

variable Blocked Records

The records are of variable length, each
block containing a variable number of reco-
rds. However, a maximum block length is
specified. To enable the input/output con-
trol routines to determine the lengths of
blocks and records, the blocks contain
extra fields that are not part of the actu-
al record. The first 4 bytes of each block
contain a block control field. Each record
in the block is also preceded by a 4-byte
record control field. The ENVIRONMENT
option used is V(m), where m is the maximum
block size. m must include the number of
bytes required by both the records and the
control fields.

The D Compiler automatically supports
variable-length blocked records if V{m) is
specified, i.e., it always accommodates as
many records in a block as will fit.

If at the end of a track there is not
enough space for the wnole block, the I/O
routines write part of the block (but com-
plete user-defined records) at the end of
the track and shifts the remaining records
onto the next track. Boundary problems may
occur, however, if thne rules for using the
LOCATE statement with the SET option are
not followed.

Variable Unblocked Records

This is a real subset of variable blocked.
With variable unblocked records, the value
of m in V(m) is 8 higher than the largest
possible record in the file. Variable
blocked and variable unblocked records may
be intermixed.

Undefined Records

The records are of variable length. Each
block contains one record. No control
fields are used. The ENVIRONMENT option
used is U(m).

Restrictions
For the restrictions regarding the block
length refer to Appendix J under Blocksize

A block has the meaning that the physic-
al storage medium is advanced one block
after the corresponding operation has been
performed. 1In the case of punched cards,
for instance, this implies that one card is
read or punched. This, in turn, implies
that the remainder of the card is ignored,
and the next block starts with transmission
of column 1 of the next card in case a
block length of less than 80 bytes is spe-
cified for a card file.

Input/Output Processing

Access Methods

Since records in files declared with the
CONSECUTIVE option are identified merely by
the sequence in which they are created, the
only possibility to read, write, or update
records in such files is to sequentially
process the file from its starting point.
This procedure is referred to as the
sequential access method, and files so
accessed have the attribute SEQUENTIAL.

In other files, the records are identi-
fied by keys. 1In this case, each individu-
al record can be accessed by use of the key
regardless of the physical location of the
record. This procedure is referred to as
the direct access method, and a file so
accessed has the attribute DIRECT.

Note: Indexed-sequential files may be read
or updated either sequentially or direct.

Note: 1If two or more files are simul-
taneously open cn the same physical non-
DASD device or DASD extent, the order of
access to the files is unpredictable. Read
and punch feed of a 2540 Card Read-Punch
count as two different devices. For
example, a read and a punch file cannot be
open at the same time using the same 1442
or 2520 Card Read-Punch. As another
example, if there is a record file assigned
to a printer and the standard system -
STREAM - file uses the same printer, both
files have their own buffers and print
independently of each other, i.e., the
printed lines will not necessarily appear
in the same sequence as the WRITE and PUT
statements are executed.

Buffering

A buffer is a part of storage used to
accommodate data to be read or written.
Buffers are used to allow transmission of
data asynchronously to the program flow.

Files with the UNBUFFERED attribute
allow no overlapping of input/output opera-
tions. In files declared with the BUFFERED
attribute, execution of I/0 operations is
overlapped if the option BUFFERS{2) is spe-
cified in the ENVIRONMENT attribute. For
files declared with the BUFFERED attribute,
the buffers can be made available for use
as work areas by using the READ statement
with the SET option or the LOCATE state-
ment, i.e., the based record variables are
located directly in the buffers.

Tape files with the UNBUFFERED attribute
must also have the NOLABREL attribute.
Therefore, no multi-volume files or
alternate-tape specifications are
permitted.

If OUTPUT is specified in addition to
UNBUFFERED and NOLABEL, tape labels are not
checked and not overwritten.

Disk input and update files with the
UNBUFFERED attribute are opened with the
_____ Therefore, the
expiration date for such files must be
lower than the current date.

Although kuffering attributes are not
permitted for DIRECT files, one buffer is
assigned to REGIONAL and INDEXED DIRECT
files. The minimum length of the buffer is
the record length. The maximum length of
the buffer is the record length + keylength
+ 8 for REGIONAL files and INDEXED DIRECT
INPUT files. For INDEXED DIRECT UPDATE
files, the maximum length of the buffer is
the block length + keylength + 8 + 10 (for
the sequence link field).

Data Files 35

File Labels

A tape reel or disk pack may contain infor-
mation that is required for a certain
period of time. Therefore, each file (tape
reel or disk extent) must be checked for
its expiration date. In addition, a check
must be performed tc determine if the prop-
er volume has been mounted for processing.
These checks are performed by reading and
comparing special records that are con-
tained in the respective volume. These
special records, which are referred to as
labels, are processed whenever an OPEN or
CLOSE statement is executed for a particu-
lar file.

The label information is furnished by
means of special Job Control statements,
which are described later in this section.
There are two types of labels: volume
labels and file labels.

Yclume labels are used to identify the
volume (tape reel or disk pack). During
execution of the OPEN routine, the volume
serial number is compared against the
information supplied to the Supervisor.
Volume labels can be created by means of
IBM-supplied utility programs.

R Bt

cessed by the program and indic¢ate whether
or not the file must be retained for a cer-
tain period of time. When an CPEN state-
ment is encountered, the information con-
tained in the file labels of input and upd-
ate files is compared against the informa-
tion supplied to the Supervisor. If a mis-
match is found, a message to the operator
is printed. When an OPEN statement is
encountered for an output file, the expira-
tion date in the file label is checked
against the date stored in the communica-
tion region of the Supervisor. If the
expiration date has been neither reached
nor passed, a message to the operator is
printed and the execution of the program is
interrupted. In case the expiration date
has been reached or passed, a new file
label is created from the information supp-
lied through the control cards. The old
file label is overwritten by the new file
label.

Labeled tape files have two types of
labels: header labels and trailer labels.
The header label precedes each file and
defines it. The trailer label is written
at the end of the file. It furnishes the
information required to determine whether
the end of the file has been reached or
whether the file is continued on another
volume. Tape files may also be unlabeled.

This condition is specified by the opticn
NOLABEL in the ENVIRONMENT attribute.

Disk files must be lakeled. Disk file
labels do not precede or follow the indivi-
duai file. They are contained in a special
region referred to as the VTOC (Volume
Table Of Contents). Disk labels are
updated either during execution of the
CLOSE routine or when an end-of-extent is
reached. Switching from volume to volume
for multi-volume files is effected automat-
ically without any programming effort.
Note: Puncned-card and print files must

not be labeled.

For detailed information and restric-
tions on label processing see the SRL pub-
lications describing the DOS/TOS data mana-
gement concepts, the DOS/TOS Supervisor and
1/0 macro instructions, and the DOS system
control and service pregrams.

Processing of File Labels by PL/I

PL/1I does not provide for label processing
of UNBUFFERED files. However, file labels
are checked for expiration (also if INPUT
is specified) and cleared. The volume
label is maintained.

No provision has been made for label
processing of the standard PL/I files SYSIN
and SYSPRINT.

As far as label processing is concerned,
UPDATE and INPUT files are handled in the
same manner.

Job-Control Statements

A set of Job Control statements is required
for each labeled file. This set of state-
ments must be in a specific sequence and
immediately precede the // EXEC statement
for the job step in which the file is
processed.

Each set of label information submitted
within a job or job step is written in the
appropriate temporary label information
area. This information is not carried from
job to job. Unless overwrittenm by a suc-
ceeding job step, any label information
submitted at the beginning of a job can be
used by a subsequent job step. For
example, if a job consists of three job

steps, label information submitted at the
beginning of the first job step can be used
by the second and third job steps of the
job. However, label information submitted
at the beginning of the second job step
would destroy the label information written
at the beginning of the first job step.

Note: DLBL and EXTENT Job Control state-
ments for SYSIPT, SYSLST, or SYSPCH must

precede the corresponding permanént ASSGN
commands.

The seguence of Job Control statements
for disk labels is as follows:

// DLBL
// EXTENT (one or more)

The Job Control statement for tape
labels is as follows:

// TLBL

The syntax rules are the same as those
for the other Job Control statements.
Trailing commas not followed by an operand
may be suppressed.

Note: The former disk and tape label Job
Control statements DLAB, VOL, XTENT, and
TPLAB may still be used. However, the old
and new disk label statements must not be
intermixed, i.e., XTENT is associated with
DLAB and VOL, and EXTENT is associated with
DLBL.

The DLBL Statement

The DLBL statement furnishes the disk file
label information. The format of this sta-
tement is as follows:

// DLBL filename, [*file-ID'], [datel, [codes]

The meaning and format of the operands is
described below:

filename is identical to the name of the

PL/I file.

'file-ID' is the name of the file that is
recorded on the disk drive as an identifi-
cation of the file. It may comprise from 1
to 44 bytes of alphameric data. If less
than 44 characters are used, the field is
left-justified and padded on the right with
blanks. If this field is omitted, the file
name is used as file-ID.

date is a field of one to six numeric
characters. Two formats are possible. The
first format is yy/ddd, which indicates the
expiration date of the file for output or
the creation date for input. (The day of
the year may have from one to three charac-
ters.) Optionally, a 1- to 4-digit reten-

tion period may be specified for output
files. If this operand is omitted, a 7-day
retention period is assumed for output
files. For input files, no checking is
performed if this operand is omitted or if
a retentiocn period is specified.

codes is a 2- or 3-character field indicat-
ing the type of file label as follows:

SD for Sequential Disk,

DA for REGICNAL files,

ISC for Indexed Sequential using Load Cre-
ate, or

ISE for Indexed Sequential using Load
Extension, Add, or Retrieve.

SD is assumed if this parameter is
omitted.

For output files, the current date is
used as the creation date.

The EXTENT Statement

The EXTENT statement defines an extent of a
DASD file. One or more EXTENT statements
must follow each DLBL statement. The
EXTENT statement has the format

// EXTENT [S¥YSxxx]l,([ssssss],{t], (nnnl,
[rrrrr], [mmmmm], {dd]

The meaning and format of the operands is
described below.

field that indicates the symbolic unit of
the volume to which this extent applies.

If this operand is omitted, the symbolic

unit of the preceding EXTENT statement is
used.

For multi-volume REGIONAL files the sym-
bolic unit numbers in the corresponding
EXTENT statements must be in direct ascend-
ing sequence (e.g., S¥YS006, SYS007,
SYS008). :

ssssss (serial number) is a field of one to
six characters that indicates the volume
serial number of the volume to which this
extent applies. If less than six charac-
ters are used, the field is right-justified
and padded to the left with zeros. If this
operand is omitted, the volume serial numb-
er of the preceding EXTENT statement is
used. If no volume serial number was pro-
vided in that statement, the serial number
will not be checked. (Files may be des-
troyed in this case due to mounting of the
wrong volume.)

File Labels 37

t (type) is a 1-digit field indicating the
type of extent as follows:

1 - data area (no split cylinder)

2 - independent overflow area (for indexed
sequential file)

4 - index area (for indexed sequential
file)

2 - data

ara
GQacta axT

¥}

F
Type 1 is assumed if this operand is
omitted.

nnn (segquence number) is a field of one to
three characters that contains a decimal
number from 0 to 255. The decimal number
indicates the sequence number of the extent
within a multi-extent file. For indexed
files, the sequence number 0 is always
associated with the master index. Thus, if
a master index is specified, the sequence
number for indexed files starts with 0;
otherwise, i.e., if no master index is
used, the first extent of an indexed file
has the sequence number 1. The extent
sequence number for all other types of
files begins with 0. If this operand is
omitted for the first extent of ISFMS
files, the extent is not accepted. This
operand is not required for SD and DA
files.

rrrrr (relative track number) is a field of
one to five characters that indicates the
sequential number of the track (relative to
zero) where the data extent is to Lkegin.
For instance, track 0 of cylinder 150 on a
2311 has the relative track number 1500.

If this operand is omitted on an ISFMS
file, the extent is not accepted. The
operand is not required for SD or DA input
files (the extents from the file labels are
used in this case).

mmmmm (number of tracks) is a field of one
to five characters that indicates the numb-
er of tracks to be alotted to the file.

The operand may be omitted for SD or DA
input files. For split cylinders, the
number of tracks must be an even multiple
of the number of tracks per cylinder speci-
fied for the file.

dd (split cylinder track) is a field of one
or two digits that indicates the upper
track number for the split cylinder in SD
files.
Note: For INDEXED and REGIONAL files the
LBLTYP card must also be present.

The TLBL Statement

The TLBL statement contains file lakel
information for tape label checking and
writing. Its format is as follows:

38

// TLBL filename, ["file-ID'], (datel,
[file-serial-numkerl,
[volume-sequence-numberl,
[{file-sequence-numberl,
[generation-number],
[version-number]

The meaning and format of the operands
is descrikbed below.

filename is a field of cne to six charac-

ters identical to the name of the PL/I
file.

'file-ID' is a field of one to 17 charac-
ters, contained within apostrophes, that
indicates the name associated with the file
on the volume. This operand may contain
embedded blanks. If this operand is
omitted for output files, filename is used
instead. If this operand is omitted for
input files, no labels are checked.

date is a field of one to six numeric
characters. Two formats are possible. The
first format is yys/ddd, which indicates the
expiration date of the file or output or
the creation date for input. (The day of
the year may have from one to three charac-
ters.) Optionally, a 1- to 4-digit reten-
tion period may be specified for output
files. If this operand is omitted, a 0-day
retention period is assumed for outrput
files. For input files, no checking is
performed if this operand is omitted or if
a retenticn period is specified.

file-serial-number is a field of one to six
characters that indicates the volume serial
number of the first (or only) reel of the
file. If less than six characters are spe-
cified, the field is right-justified and
padded with zeros. If this operand is
omitted for output files, the volume serial
number of the first (or only) reel of the
file is used. 1If this operand is omitted
on input, no checking is performed.

volume-sequence-number is a field cf one to
four digits. The sequence numbers of the
volumes of a multi-volume file must be in
ascending order. If this operand is
omitted for output files, BCD 0001 is
assumed. No checking is performed if this
operand is omitted for ingput files.

file-sequence-number is a field of one to
four digits. The sequence numbers of the
files of a multi-file volume must be in
ascending order. If this operand is
omitted for ocutput files, BCD 0001 is

assumed, No checking is performed if this The following three statements in Figure

operand is omitted for input files. 21 show an example the creation of an inde-
xed sequential file by usage of the PL/I
DASD macro LODIS. In addition to the pre-

generation-number is f field of one to four vious example, the expiration date of the

characters that modifies the file-ID. 1If file (March 1, 1969) and the code ISC is
this operand is omitted for output files, specified in the DLBL statement. There are
BCD 0001 is assumed. No checking is per- two EXTENT statements. The first one spe-
formed if this operand is omitted for input cifies the extent of the cylinder index,
files. which is extent 1. It starts at track
number 1000 (i.e., cylinder 100, track 0)
version-number is a field of one or two on logical unit SYSO004 and consists of 10
characters that modifies the generation tracks. The data area, which is the second
number. If this operand is omitted for extent, resides on a different logical
output files, BCD 01 is assumed. No check- unit: SYS005. The extent number need not
ing is performed if this operand is omitted be specified in this case, but the delimit-
for input files. ing comma must be written.
Notes: The last statement in Figure 21 gives an
1. For output files, the current date is example of a TLBL statement. The file is
used as the creation date. assumed to be an input file. It is no
2. As far as label processing is con- multi-file volume and a version number is
cerned, UPDATE files are handled the not used. Since it is an input file, no
same as INPUT files. date entry has been specified.
Examples_for Label Statements Multi-File Volumes And Backwards Files
The first two statements in Figure 21 show The handling of multi-file volumes on the
an example of DLBL and EXTENT statements 2311 requires no special preparation since
used for a sequential 2311 disk input file. all file labels are available when the file
The statements identify the file declared is opened. When using tape files, the tape
as MASTIN in a PL/I program. Its external must be positioned so that the label can be
identification (stored in the VTOC) is checked during execution of the OPEN rou-
MASTER-INVENTORY- FILE. No further entries tine. Positioning is not required for the
in the DIBL statement are required for an first file on the tape because it is auto-
input file. matically positioned unless the LEAVE

option has been specified. For correctly
positioning the tape for the second, third,

The logical unit used for the file is ««., nth file, the LEAVE option must be
SYS005 and the volume identification of the specified in the ENVIRONMENT attribute.
1316 disk pack to be mounted on SYS005 is This prevents the OPEN routine from rewind-
VOL172. No further EXTENT statement ing the tape reel. A labeled tape file has
operands are required. the format shown in Figure 22.
112]3|4)5161718(9 110]1112[13]14[15{16(17(18(191 20{ 21{ 22|23 24]25)26 |27 |28{29| 30|31 {32 36{37138|39 40 41 {42 |43 144 | 45146 |47 48 |49 150) 51 57158159160} 61 67)68169|70(71|72) 731 74|75 76| 771 78| 79| 80

T
;
/11, DiLBL| | | CluisITIIN] ' icuisITIOMEIR - FITILIE| 317", 1619,/ §l6/! 1iSiC
[EXTIENT S 4 PN BRARAYTTINA
! x_ﬂ_ T IsiNsi9ds, PiN0/02/7, 11, 12,118, + (
] NEEEE
' S e ‘ | IENSS
[0 TLEL || PANReL . PANROILL-FITLE" |, 39/, 1. 10 L] | EEEE
BERERE B = BN RERRRERERNEN i L]
i R [TTrTrT T [T T T ! b i

Figure 21. Examples for Disk and Tape Label Statements

File Labels 39

| | e |] ;
Volume First g First File g First g Second g Second File
Label Header ° Data e Trailer o Header % Data ete.
s Label ﬁ' Records R Label E— Label §. Records {
A
Load
point

1 mma T
Figure 22 Format of Labeled Tape File

To position a tape reel that contains
labeled files at the nth file, the tape
reel must first be rewound and then spaced
forward in such a manner that the first
information read is the header label of the
nth file. The Job Control statement used
to control tape drive operations has the
following form:

// MTC code, S¥YSxxx[,nn]

The operand code is one of the following
function codes:

BSF backspace file

BSR backspace record

ERG erase gap

FSF forward space file
FSR forward space record
REW rewind

RUN rewind and unload
WIM write tape mark

Forward-space-file and backspace-file
cause the read head tc be positicned at the
record foliowing the next tape mark that is
encountered.

The operand SY¥Sxxx is the logical device
address of the tape drive on which the per-
tinent tape reel is mounted.

The operand nn is a decimal numbker from
01 through 99 that specifies the number of
times the specified function is to be per-
formed., If this field and the comma pre-
ceding it are omitted, nn is assumed to be
01.

The following example shows the MTC sta-
tements reguired to position the tape reel
on SYS006 at the header label of the third
data file.

// MIC REW,SYS006
// MTC FSF,SYS006,03

In unlabeled tape volumes, the end of
each file is indicated by a tape mark. A
tape mark may or may not precede the first
file. Unlabeled tape files written by PL/I
programs have a tape mark preceding the
first file unless NOTAPEMK is specified in
the ENVIRONMENT attribute.

490

If a magnetic tape file has the BACK-
WARDS attribute, the read head must be
positioned behind the trailer label of this
file before the file is opened. In case a
file has been written and closed just
before it is re-opened to be read back-
wards, it is positioned correctly if the
LEAVE option was specified for the written
file. Unlabeled BACKWARDS files must start
with a tape mark.

If an input file of a multi-file volume
declared with the LEAVE option has been
closed and the next file of this volume is
to be opened (or the same file is to be
opened in the reserve direction), the mag-
netic tape is positioned correctly only if
the ENDFILE condition was raised prior to
the closing of the file. 1In the case of
STREAM input, additional (dummy) GET state-
ments must be issued to synchronize the
input stream with the ENDFILE condition.

To prevent raising of the CONVERSION condi-
tion, the variakles read by these dummy GET
statements snould be of the cnaracter type.

Link-Editing And Labeled Files

Before a program that uses and/or processes
labeled files can be processed by the Lin-
kage Editor, the Linkage Editor must be
instructed to reserve a label area. This
area must precede the area occupied by the
program, except in the case of CONSECUTIVE
disk files where no such area is required.
To reserve the label area, a special Job
control statement must precede the state-
ment // EXEC LNKEDT. The type of statement
used depends on whether the program runs
under control of the Disk Operating System
or of the Tape Operating System.

Job Control Statements for DOS

The format of the Job Control statement for
processing disk files with the REGIONAL or
INDEXED option is as fcllcws:

/7 LBLTYP NSD(nn)

The operand nn is the largest number of
extents to be used by any single file.

Note that this number must be enclosed in
parentheses.

Note that nn must specify the number of
EXTENT cards and not the EXTENTNUMBER in
the ENVIRONMENT attribute.

The format of this statement for the
processing of labeled tape files is as
follows:

/7 LBLTYP TAPE
Note: This statement is not required for

processing of labeled tape files if REGION-
AL files are used at the same time.

Job _Control Statements for TOS

The format of the Job Control statement for
the processing of labeled tape files is as
follows:

/7 LBLTYP TAPE(nn)

The operand nn is the number of labeled
tape files to be processed.

Figure 23 shows a source deck including
Job Control statements for processing one
REGIONAL file with two extents, and two
tape files.

// JOB INVENTRY
// OPTION.LINK, LIST, ERRS, 60C
PHASE UPDATE, *
// EXEC PL/I
INVENTRY : PROCEDURE OPTIONS (MAIN);
DECLARE MASTER FILE UPDATE RECORD ENVIRONMENT
(REGIONAL().:..). ...,
BACKUP FILE OUTPUT ENVIRONMENT (MEDIUM
(SYS007,2400).....).....,
EXEPT FILE OUTPUT ENVIRONMENT (MEDIUM
. (SYS008,2400).....). ...,

END;
*
ENTRY
// LBLTYP NSD(02)
// EXEC LNKEDT
// DLBL MASTER,’ MASTER INVENTORY FILE’,,DA
// EXTENT SYS005,1427
// EXTENT SYS006,1431
// TLBL BACKUP,’BACKUP INVENTORY”,100,2711,,,10,8
// TLBL EXEPT,’EXCEPTION INVENTRY’,30,2614,,,10,0
// EXEC
data
*

/&

Figure 23. Sample Source Deck with Control

Statements

CATALOGING CF LABEL INFCRMATION

For DOS, the DLBL, EXTENT, and TLRL state-
ments for sequential files may be cataloged
as standard files so that the programmer is
relieved from issuing the control cards
with each execution of the program. For
details refer to the SRL publication
describing the DOS system control and sys-
tem service programs.

Program-Label Communication

Figure 24 shows the communication between a
PL/I source program, the object program,
Job Control statements, and a 2311 disk
unit with a 1316 disk pack.

The LIOCS (Logical Input/Output Control
System) table produced by the PL/I compiler
somewhere contains the file name as a
character string. The communicatiocn
between this table and the actual file
extent(s) is established by storing the
extent information in the table during
execution of the OPEN statement.

The set of label statements (DLBL,
EXTENT) to be used for opening the file is
the one whose DLBL statement contains the
same file name as stored in the character
string of the LIOCS table. The logical
device address is taken from the EXTENT
card. The physical unit -- in this case a
2311 disk drive -- is then determined from
the standard assignment or from the tem-
porary assignments, respectively. The
serial number field of the EXTENT statement
is compared against the volume label of the
1316 disk pack to determine whether the
right pack has been mounted.

The remaining action depends on the file
type. For INPUT or UPDATE files, the VTOC
on the disk pack is searched for a label
matching the file-ID issued in the DLBL
statement (MY DEAR FILE in Figure 24.)

When a matching label is found, the remain-
ing file information is checked against the
label information in the VTCC, and the
extent information is passed to the LIOCS
table to allow proper addressing of the
blocks to be transferred.

In case of OUTPUT files, all existing
labels in the VTCC are checked against
overlap with the file to be created. The
file is opened only if there is no overlap
with any unexpired file. The new label is
then written into the VTOC.

In case of CONSECUTIVE multi<volume
files, one volume will be opened at a time,
i.e., the second volume is opened when the
last extent of the first volume has been
processed, etc. Opening of the second and

File Labels 41

following volumes is automatic. Thus, no
explicit OPEN statement need be given. For
all other files, all volumes will be opened
at once. Therefore, all volumes to be pro-
cessed must be mounted at the same time in
this case.

The handling of tape label information
is similer.

Assignment of System Files to Disk

In systems with at least 24K positions of
main storage, the system logical units SYS-
IPT, SYSLST and/or SYSPCH may be assigned

to an extent of 2311, 2314, oxr 2319 disk
storage.
It should be ncted that the assignment

of system files to disk reguires operator
intervention. For a complete description
(also of ASSGN and CLOSE commands) refer to
the SRL publication System/360 Disk Operat-
ing, System Control and System Service Pro-
grams, Order No. GC24-5036.

The PL/I programmer should be aware of
the fact that the PL/I standard files SYSIN
and SYSPRINT are assigned to SYSIPT and
SYSLST respectively. Since these files
cannot be closed by the programmer and only
one PL/I file can be opened for one System
logical unit on Disk at any one time, the
use of GET or PUT statements without the
FILE option should be avoided if there are
user-declared files for SYSIPT and SYSLST.
In order to avoid implied usage of SYSLST
for comments as a result of error condi-
tions, it is recommended to use the ONSYS-
LOG option in the OPTIONS attribute of the
MAIN procedure.

The assignment of system logical units
to disk storage drives must be permanent.
The operator ASSGN command must be used
instead of the programmer statement
(// ASSGN). Temporary assignments (via the
// BSSGN statement) to other device types
are permitted.

Note: The system generation parameter SYS-
FIL is required to allow assignment of sys-
tem logical units to a disk drive.

System input and output files are

assigned to disk by providing a set of DLBL
and EXTENT statements and then submitting a

42

permanent ASSGN Command. The set of DLEL
and EXTENT statements preceding the ASSGN
command may contain only one EXTENT
statement.

The filename in the DLBL statement
(which will be associated with the SYSxxx
entry from the accompanyinq EXTENT state-
ment) wust be one of the following:

IJSYSIN for SYSRDR, SYSIPT, or the
combined SYSRDR/SYSIPT file SYSIN

IJSYSPH for SYSPCH
IJSYSLS for SYSLST

In the DLBL statement, the codes operand
must specify SD (or blank, which means SD)
to indicate sequential DASD file tvpe.

In the EXTENT statement, type may be 1
(data area, no split cylinder) or 8 (data
area, split cylinder). There is no unique
requirement for the remaining operands of
the EXTENT statement.

The ASSGN command must be one of the
following:

1. ASSGN SY¥SIN,X'cuu' (for a combined
SYSRDR/SYSIPT file).

2. ASSGN SYSRDR,X'cuu' (for SYSRDR only).

3. ASSGN SYSIPT,X'cuu' (for SYSIPT only).

4, ASSGN SYSPCH,X'cuu' (for SYSPCH).

5. ASSGN SYSLST,X'cuu' (for SYSLST).
Note that all must be rpermanent
assignments.

System logical units assigned to disk
must be closed by the operator. The opera-
tor CLOSE command must be used to specify a
system input or output file which has been
previously assigned to a 2311, 2314, or
2319. The optional seccnd parameter
(X*cuu') of the CLCSE command may be used
(instead of an ASSGN command) to assign the
system logical unit to a physical device.
The system will notify the operator that a
CLOSE is required when the limit of the
file has been exhausted. If a program
attempts to read or write beyond the limits
of the file, the program will be terminated
and the file must be closed.

// ASSGN SYS004,X'191°

Unit X'191'

]

Object program
LIOCS table

DC CL8'FILEA

FILE
—1 'My DEAR
FILE'
Volume label I—
VOLI2A |
2311 Disk Unit I
A 4 l i
(// EXTENT SYS004,VOLI2A, ,,1000,210 |
// DLBL FILEA,'MY DEAR FILE' :
}:I;Slco;:ontaining - ——}
'MY DEAR FILE'

—-—-—1/O commands in LIOCS table control actual data transfer
File information chain
— — — Information flow between VTOC ond LIOCS table ot open timed

Figure 24. Program - Label Communication

PL/1 source program

DECLARE FILEA FILE
UPDATE ENVIRONMENT
(MEDIUM (SYS004,2311)

File Labels

43

Linkage Conventions

The user of PL/I programs is not concerned
with internal linkage during activation and
de-activation of blocks. To increase the
capability and/or efficieny of his program
he may, however, wish to combine modules
written in the PL/I Subset language with
modules written in Assembler language.
example, the programmer may wish to make
use of the checkpoint facility. Since
there is no checkpoint facility in PL/I,
the user may call a subroutine written in
Assembler language. Calling of subroutines
written in FORTRAN or COBOL is not
permitted.

Fer

Register Conventions

Some registers may have to be used during
the execution of the called program. The
user must save the contents of these regis-
ters by providing a save area. The address
of the save area is contained in register

Note: If control is transferred from an
Assembler routine to another PL/I subrou-
tine, registers 7 and 8 must contain the
same values as when contrcl was trans-
ferred to the Assembler routined

Calling

Assume that register 13 has been set ear-
lier in the program. To accomplish
correct linkage, three additional regis-
ters (1, 14, and 15) must be set. Regist-
er 1 need not be set if no arguments are
passed on and the call is not a function
reference. The three different seguences
that may be used to establish the required
linkage between the main program and the
called subroutine are shown in Figure 26.
Note: The DOS/TOS macro instruction CALL
may be used to facilitate programming in
cases 2 and 3 shown in Figure 26.

13. The general registers involved in r 1

linking a called procedure to the main pro- | L 15, =V(subroutine) |

gram are listed in Figure 25. Note that | BALR 14,15 |

floating-point registers are not saved by b i

the called subroutine. | CNOP 2,4 |
| L 15,=V(subroutine) |

r T -1 | LA 14, #+6+4%n |

| REGISTER | CONTENTS | | BAIR 1,15 |

i s] | DC A(addressl) |

| 1 |Address of an argument list. | | DC A(address2) |

| | This 1list contains the addresses| | ces i

| |of the arguments in the sequence] | .ee |

| |stated in the argument (or para-| | DC A(addressn) |

| |meter) list in the CALL, PROCE- | po—————————e i

| |DURE, or ENTRY statement. Each | | L 15,=V(subroutine) |

| |argument requires one full-word | | L 1,=A(listaddr) |

| J]on full-word boundary. In func-| | BALR 14,15 |

| | tion references, the argument | | cae |

H |list is immediately followed by | | ces |

| |the address of the field where | |listaddr DC A(addressl) |

| {the information computed by the | | e |

| | subroutine is stored. | | . |

b ¥ 1t -

| 13 |Address of the save area. 1

b + 4 Figure 26. Three Different Codings for

| 14 |Address to which the called sub-| Linking the Main Program and

| {routine returns when execution | the Called Subroutine

| | has been completed. |

b 4 { :

| 15 |Branch address, i.e., the | Savxng

| |address in the called subroutine|

H |to which control is transferred | Each calling progranr must provide a save

| | for execution. | area to store the contents of the general

L i 3 registers used by the called subroutine,
When communicating with PL/I, the minimrum

Figure 25. General Registers Used for length of this area is 20 full-words (80

Linking to a Subroutine Writ-
ten in Assembler Language

b

bytes). The area may be expanded for
storing intermediate results or data of

L

e

r T T ‘JT R |
| WORD | DISPLACEMENT | CONTENTS [STORED BY i
o : - S .
I 1 | 0 |oC X*03* [Calling module |
i I |DC AL3 (INDIC)? | i
b + + + - 1
I 2 4 |Save area address of program {Calling module |
| | | that called the calling program| |
— t - H 1
1 3 1| 8 |Save area address of called |Calling module if initialized |
| | |program |by IJKSZCN=2 |
" t t .
& | 12 |Register 14 |Called module i
e t + {
I 5 | 16 |Register 15 {Called module |
p-——-1 + ¢ :
| 6 20 |Register O |Called module |
L 1 4 1 _’
) T T . T -

1 7 1 24 |Register 1 |Called module |
L IR] iR]
T T 1 T 1
I« . [osaa loecan {
PR | - | R Jowen H
L 1] R 1
r T T . T A
| 18 | 68 |Register 12 |Called module [}
p-——t ' t _ 1 {
| 19 | 72 |Invocation count |PL/I library |
b L 3 L i |
F====T T T B
| 20 | 76 |DSA pointer to embracing |PL/I internal procedures i
{ | |static block [i
I[_ L i L =|I
| 1INDIC is a full-word containing the information on the status of i
| statement prefixes. |
| 2Modules. written in PL/I are initialized by IJKSZCN. |
L 3 3

Figure 27.

the storage class AUTOMATIC. This storage
is called the DSA (Dynamic Storage Area).

Figure 27 shows the layout of the first
20 full-words of the DSA of a calling pro-
gram. Assume that register 13 contains
the address of the first word of the DSA.

The first instruction of a subroutine
written in Assembler language must save
the general registers 14, 15, 0,, 12.
The DOS/TOS macro instruction SAVE can be
used for this purpose. These registers
must be saved even if their contents are
not destroyed during execution of the sub-
routine. Otherwise, ON-conditions that
may occur might not be handled correctly.
The next steps to be taken are:

1. store the contents of register 13 in
word 2 of the subroutine save area.

2. Ensure that word 3 of the save area of
the calling PL/I program is not des-
troyed by the Assembler subroutine.

3. Set register 13 to the address of the
subroutine save area.

Layout of the First 20 Words of the DSA of a Calling Program

4. Ensure the addressability in case
register 15 is destroyed during execu-
tion of this module.

Returning

Before returning control from the subrou-
tine to the calling program, the contents
of all registers must be restored. This
is done as follows:

L 13,4(13) RESTORES REG13
LM 14,12,12(13) RESTORES REG14-12
BR 14

The last two instructions may be replaced
by DOS/TOS macro RETURN (14,12)

The usage of LABEL parameters for
returning from subroutines written in
Assembler language necessitates a library
call instead of a RETURN macro instruc-
tion. Therefore, the address of the LABEL
parameter must be loaded into register 1.
The routine IJKSZCP must be called next.
The contents of register 13 are automatic-
ally saved by this routine. Therefore,
they must not have been changed
previously.

Linkage Conventions 45

The following example shows how a
library call can be used to return from a
subroutine written in Assembler language
by means of LABEL parameters.

L 1,8(3)
*¥ LOADS ADDRESS OF TABLE VARIABLE
CALL IJKSZCP

Note: The library subroutine IJKSZCN must
be used to initialize the DSA if LABEL
parameters are used.

Correlation Between PL/I And
Assembler Modules

Modules written in the PL/I Subset lan-
guage may call modules written in Assembl-
er language and vice versa. However, if
the program is combired of both PL/I angd
Assembler modules, one PL/I module with
the attribute MAIN is required for correct
initialization of the PL/I modules. Note
that this - MAIN procedure must be the first
module to be executed.

Callina an Assembler Module

A module written in Assembler language is
called according to the rules for calling
external procedures either by means of a
CALL statement or by means of a function
reference. The Assembler module must
satisfy all linkage rules given in this
section. If the Assembler module does not
call any other module, it must provide a
minimum save area of two full-words. The
4-bvte field INDIC pointed to by bytes 1
to 3 of the first word must contain the
following information:

Byte 3 contains the standard prefix
option switches, whereas byte 2 contains
the actual prefix option switches. If
INDIC is not initialized by the library
subroutine IJKSZCN, the contents of byte 3
must be moved into byte 2 by the prologue
of the module. The contents of byte 2 may
be changed during execution of the module.

Bits 0 to 5 are used as switches with
the following functions:

Q0 ZERODIVIDE

1 UNDERFLOW

2 OVERFLOW

3 FIXEDOVERFLOW
4 CONVERSION

5 SIZE

If the respective bits are on (1), the
corresponding ON-condition is enakled. If
they are off (0), the ON-condition is
disabled.

If bit 7 is on, the PL/I interrupt-
handling routine interprets a hardware

46

fixed-point or decimal overflow condition
as a SIZE error. If bit 7 is off, the
condition is interpreted as FIXEDOVERFLOW.

Note: Word 2 of the save area and regist-

er 13 must be correctly initialized prior
to the occurrence of any interrupt.

Assembler Module Calling PL/I Modules

indirectly call PL/I modules must provide
a full DSA with a minimum of 20 full-
words. This can be done by using the PL/I
library subroutine IJKSZCN, which creates
the DSA and provides correct handling of
register 13. The subroutine sets the
words 1, 2, 3, 19, and 20 of the DSA.

Word 20 accommodates the contents of
register ¢ at the time when IJKSZCN was
called. In internal PL/I procedures, this
will be the address of the DSA of the
statically embracing block. Word 3 con-
tains the address of the storage location
where IJKSZCN will construct the next DSA
in case the present module calls another
module,

Calling IJKSZCN destroys register 5.
Therefore, register 5 should not be
initialized by an Assembler module before
IJKSZCN is called. IJKSZCN is called as
shown below:

LA 1,PBL
L 15,=V(IJKSZICN)
BALR 14,15

PBL is an 8-byte area containing the fol-
lowing information:

DS OF

PBL DC X'03°
DC AL3(INDIC)
DC A(length)

Note:
bytes.

Length is the length of the DSA in

The calling sequence for IJKSZCN should
be preceded only by the SAVE macro
instruction and two LR instructions pro-
viding for the addressability of the

- ~a1E oA T o mmaaan e 4
module itself and the argument iist.

Passing Arguments

>

The argument addresses in the argument
list point to the first byte of the data,
array, or structure to ke passed on. The
address of a V-type constant is passed for
an ENTRY argument. The word following the
V-type constant contains a pointer to the
DSA of the block statically embracing the
passed procedure if the passed procedure
is internal.

123‘526 73891011121314151617]13"”“ 73|24125 26127 128129130 31| 32 33| 34(35| 36| 37|38| 39 |40 41 |42 |43 5 |4 474849575152“““"‘"ﬂsﬂwﬂ"“i“““"éﬁ”mEnnhhlolli&ﬁw
HERREEEN R}, laidld]r lels]s|-|i |- |plalrjaimeltielr -1t [i}s}t] | lLlojADis| [ADDIRE]SS] [0l [PlalsiSE/D AlRlGluMENT
:i% L 1., 1=Al(lar lgjuiment |- 1L i lsd [} | OINILIY| |I|F| AIRIGUIMIEIN[T|S| |A|RE| |PIAISISIED| [T|O|
b L L ClAlLLED RIOWTINE.| 17| [1]S| AsisulMED] THAT
L 1 RERENEES ARGUMENT LTST |1l ILOCATED REMOTIEL
T e 15,0l 0l(R) L] LOADS| |REG| |15 AND 0 BN
Lol BALR 1y 45l NSNS EEREEN RN L i :
‘ { il T [’ C T CTTT r ; i | |
- + = f ? N e } R t + ; : i T
A R e e e e A
Figure 28. Format of Call to Entry Parameter

To allow fcr addressing of AUTOMATIC
variables contained within the embracing
bleck of an entry parameter, a call to the
entry parameter should have the format
shown in Figure 28.

If FILE arguments are used, the address
in the argument list points to the file
appendage. In addition to the information
in byte 0, the first word of the file
appendage contains the address of the DTF
table for this file.

File arguments should be used very
carefully in Assembler subroutines. Issu-
ing an IOCS macro to a CCB which is part
of a DTF table used by a PL/I program may
destroy the synchronization between the
PL/TI program and logical IOCS. (Note that
the CCB address must be inserted at object
time when IOCS macros are used for file-
name parameters.) However, a programmer
experienced in DOS/TOS IOCS may use file-
name parameters in Assembler subroutines
to improve the capability of his program.
For example, he may:

1. change DTF tables to allow handling of
additional user labels or non-standard
tape labels before opening a file.

change DTF tables to accomplish spe-
cial stacker selection. PL/I programs
use normal stackers for card input
files and stacker 2 for punched-card
output files.

issue a CNTRL macro instruction for
seeking on a REGIONAL file to allow
overlapping of seek time.

Figure 29 shows a PL/I procedure that
calls a module written in Assembler lan-
guage, which itself contains a function
reference to another external PL/I
procedure.

Data of the scope EXTERNAL may be
shared between PL/I and Assembler modules.

Case_l. Data items within PL/I modules
which are referred to by Assembler lan-

guage modules:

Use EXTRN statement in the Assembler
modules.
Case_2. Data items within Assembler
modules which are referred to by PL/I
modules:

Each data item must be a separate CSECT;
otherwise incorrect addresses will be
assigned when the programs are
link-edited.

If a data item is a structure, all its
individual elements can be coded together
as a series of DCs or as a DS in the
Assembler-language module under a single
CSECT. In preparing such a structure, the
PL/I structure mapping rules as described
under Data_ Storage Mapping must, however,
be observed.

The CSECT statement must be used if the
respective name is not declared to be
EXTERNAL in any PL/I program within the
same phase. In all other cases, the pro-
grammer may use the instruction he consi-
ders convenient.

Note: Values returned by routines written
in Assembler language must have the format
specified for PL/I. Floating-point data
must_be normalized.

Checkpoint And Restart

B typical example for a procedure written
in Assembler language is checkpointing and
restarting. For convenience, both the
checkpoint part and the restart part
should be contained in the same routine.

If checkpointing is desired, the
restart address, the end address, and the
tape file positioning information must be
provided. (Some additional information is
required if the checkpoint is to be writ-
ten on disk.) The restart address is
known if it is in the same module as the
checkpoint routine. The end address can
be taken from word 3 of the save area,
since this is the address of the next (not
yet allocated) save area. Names of tape
files can either be passed as parameters
or addressed directly by using a V-type

Linkage Conventions 47

constant. (See the discussion on file
parameters in the section Passing_ Argu-
_____ The same applies to the usage of
V-type constants.)

After the job has been restarted with
the RSTRT statement, the restart routine
must issue an STXIT macro for Program

tively. Moreover, the program mask must
be reset. - -

}._Igte,: PL/I "n?ﬂt files must not contain

inEErspersed checkpoint records.

P T=1

Check Interruption. The two address

operands to be issued with STXIT are the
external names IJKSZCI and IJKZWSI for the
respec-

routine address and the save area,

pupy- |

Figure 30 shows a coding example of a
routine comblnlng the checkpoint and the
restart part. For detailed informati
refer to the following SRL publicatio

g =

// EXEC PL/
CALLER: PROCEDURE OPTIONS (MAIN);
DECLARE C CHARACTER (25) STATIC;
CALL SUBASM (A,B,C) /* CALLS SUBROUTINE WRITTEN IN ASSEMBLER LANGUAGE */;
END;
/i
// EXEC ASSEMBLY
TITLE SUBROUTINE CALLED BY PL/I AND CALLING PL/IY
SUBASM START 0 PARAMETERS ARE A, B, C
USING *,9
SAVE (14,12) SAVE REGISTERS
e 2,18 ASSURE PROGRAM ADDRESSABILITY
LR 3,1 ASSURE ADDRESSABILITY OF PARAMETERS
LA 1,PBL CREATE OWN DSA
CALL 1JKSZCN
L 1,0(3) MAKE A ADDRESSABLE
 LE 0,0(1) LOAD A
L 1,43) MAKE 8 ADDRESSABLE
AE 0,0(1) ADD B8
- CALL LEVEL3, (X, Y.RETURN) CALL PL/I FUNCTION PROCEDURE
L 1,8(3) MAKE C ADDRESSABLE
MYC 024, 1), RETURN C = RETURN §f *.%;
Mvi 24(1), X 48"
13,4(13)
RETURN (14,12) RETURN TO CALLING PL/I PROCEDURE
X DS F ARGUMENT X
Y DS CL3 ARGUMENT Y
DS OF
PBL DC X03’ DATA TO CREATE DSA
DC AL3(ONINDICT) POINTER TO ON-INDICATOR WORD
DC 20A 20-WORD DSA
ONINDICT DC 3x0’
DC 8711110000/ SIZE AND CONVERSION DISABLED
RETURN DS ClL24 SPACE FOR RECEIVING STRING FROM
* PL/I FUNCTION LEVEL3
END
/’
// EXEC PL/t
LEVEL3: PROCEDURE (U,V) CHARACTER (24);
DECLARE STR CHARACTER (21), V FIXED DECIMAL (5,2);
RETURN (3%’ |1 STR) /* ONE BLANK AUTOMATICALLY
ADDED AT THE END TO OBTAIN
CORRECT LENGTH */;
END;
/:

Figure 29.

Lg

Example of Linkages between PL/I Procedure and Assembkler Module

For DOS

IBM System/360 Disk O{Serating System, Sys-
tem Control and System Service Programs,
Order No. GC24-5036

IBM System/360 Disk Operating System,
Supervisor and Input/Output Macros, Order

For TOS

IBM System/360 Tape Operating System, Sys-
tem Control and System Service Programs,
Order No. GC24-5034

IBM System/360 Tape Operating System,
Supervisor and Input/Output Macros, Order

No.

GC24-5037

‘No. GC24-5035

CPRS TITLE /CHECKPOINT-RESTART ROUTINE’
* . CALLED BY A PL/l PROCEDURE, THE INFORMATION ON THE
* POSITIONING OF THE TWO FILES TAPEIN AND TAPEOUT IS
* TO BE CHECKPOINTED.
CHPRES START
USING *,12
SAVE 014,12)
LR 12,15 SET BASE REGISTER ‘
LA 1,PBL CALL PL/I PROLOGUE ROUTINE
L 15,=V(IJKSZCN)
BALR 14,15
L 2,=V(TAPEIN) PREPARE FILE TABLE
L 2,0(2)
ST 2,FILETAB+2
L 2,=V(TAPEOUT)
L 2,0(2)
ST 2,FILETAB+
L 2,8(13) LOAD END ADDRESS
BALR 3,0 SAVE PROGRAM MASK IN AUTOMATIC
1 3,80(13) STORAGE
CHKPT SYS007,RESTART, (2), TPOINT CHECKPOINT ON SYS007
B RETURN
* RESTART PART. NOTICE THAT ALL GENERAL
* REGISTERS ARE AUTOMATICALLY RESTORED.
RESTART L 0,=V(IJKSZCI) SET PROGR. CHECK INTERRUPTION EXIT.
L 1,=V(IJKZWSI)
SIXIT PC,(0),(1)
L 2,80(13) SET PROGRAM MASK.
SPM 2
RETURN L 13,4(13) RETURN TO PL/1 CALLER
RETURN (14,12)
DS OF
PBL DC X’03’ ARGUMENT FOR IJKSZCN
DC AL3(INDIC)
DC 22A PL/I SAVE AREA DEFINITION + 1 WORD FOR
* SAVING PROGRAM MASK (MUST BE MULTIPLE
* OF EIGHT).
INDIC DC A(0) ON INDICATORS
TPOINT DC A(FILETAB) POINTER TO FILETABLE
DC A(0) PIOCS FILES NOT USED
CNOP 2,4
FILETAB DC H’2* * FILE TABLE
DS 2F *
END
Figure 30. Coding Example of Combined Checkpoint and Restart Routine

Linkage Conventions

49

General Programming Information

This section describes some programming
techniques to save storage, produce a
faster object program, perform functions
not easily achieved with more conventional
: /I Language faciliities, make a program
4~ e o~ ey
-

into the available storage, etc.

STATEMENT FORMAT

The first column of every source text card
must be blank. Columns 73-80 are ignored;
they may contain any information.

PROGRAM SEGMENTATION

Every program should be written so that it
can be segmented if necessary. The case
of storage overflow should be provided for
so that, if it does occur, it can be
nandied easiiy. Breakpoints in the logic
of a program, i.e., points where a program
phase can be terminated and a subsequent
phase entered, should be numerous.

Data common to successive programs can
be kept through the proper use of the
EXTERNAL attribute. However, not all data
need be external.

Programs that read data, compute, and
write results ljend themselves to segmenta-
tion most readily. Wherever practical,
entire programs should be written as
seguences of calls for subroutine proce-
dures because each call is a logical brea-
kpoint. Thus, the entire storage can be
lcaded with as many subroutines as can be
accommodated. The next phase then repeats
the process of loading the storage with
the next group of subroutines, etc.

PROGRAM EXPANSION

In general, no more than 90 % of the
storage available for any program phase
should be used during the first six months
of its life because, at one time or anoth-
er, every program tends to expand due to

1. programming errors,

2. the need to expand the original
function,

3. errors in the system program or in the
associated subroutines, and/or

4, an increase of the data storage
requirements.

50

If a program uses the entire storage
and no space is left for eventualities,
reascnakle sclutions become difficult.
1f, however, normal expansion was provided
for, the overall job is much easier.

CONVERSIONS

If a numeric variable is to be used fre-
guently in expressions, it is much more
economical to convert the variable to
coded form once and use the coded form in
all expre551ons. This is easily done by

means of an assignment statement.

Conversions implicit in IF statements
follow the rules for arithmetic conver-
sions, and the intermediate precisions
should be considered when using such
expressions.

For example, in case 3 (IF X=U THEN...)
of the following sample program the conv-
ersion rules are applied to X, giving a
short-precision floating-point number
which is then expanded (padded) with
trailing zeros to long precision before
the actual comparison operation. Thus
expression 2 will be executed, not expres-
sion 1. However, if X and U are assigned
with a value which will be the same in
both short and long precision (e.g. 0.5),
then expression 1 will be executed.

In evaluating the following program,
refer to Section F: Data Conversion in
IBM System/360, Disk and Tape Operating
Systems, PL/I Subset Reference Manual,
Order No. GC28-8202.

Z: PROCEDURE OPTIONS(MAIN) ;
DECLARE X DECIMAL FIXED(5,2);
DECLARE T DECIMAL FIXED(15,2);
DECLARE Y FLCAT(6);

DECLARE U FLOAT(16) ;

X=123.45;

¥=123.45;

T=123.45;

U=123.45;

IF X=Y THEN expression 1; /* Yes */
ELSE expression 2; /* No */

IF X=T THEN expression 1; /* Yes */
ELSE expression 2; /* No */

IF X=U THEN expression 1; /* No */
ELSE expression 2; /* Yes #*/

IF Y=T THEN expression 1; /* No */
ELSE expression 2; /* Yes */

IF Y=U THEN expression 1; /* No */
ELSE expression 2; /* Yes #*/

IF T=U THEN expression 1; /% Yes */
ELSE expression 2; /* No */

END;

For an example showing the conversion
of characters into binary numbers, refer
to Appendix L. Programming Examples,
"Conversion of Numbers in Character Form
Into Binary Numbers®".

USE_OF_UNSPEC

The UNSPEC pseudo variable and the UNSPEC
built-in function handle the internal
representation of data. The internal
representation of data is summarized in
Figure 50 and described in detail in the
section Data Storage Requirements.

The programmer must make sure that
values assigned by the UNSPEC pseudo vari-
able have the correct format. Otherwise,
the results are unpredictable. Note that
the internal representation of floating-
point data is normalized. Consider the
following example:

DECLARE A FLOAT, B CHARACTER(l1), C FIXED
DECIMAL(5,3); '

B= *8*;

X: PUT EDIT (UNSPEC(B)) (SKIP,B);

Y: TUNSPEC(A)=(31)'0°'B *1'B;

Z: UNSPEC(C)=(16)"0°'B |{ '01100000°'B;

¢

The result of statement X is 11111000.
Statement Y yields unpredictable results
since the value to be assigned is not nor-
malized. Statement Z also yields unpre-
dictable results since the last half-byte
does not contain a valid sign for packed
decimal data representation.

For an example of the UNSPEC built-in
function, see Appendix L. Programming
Examples, "Conversion of Numbers in

Character Form to Binary Numbers".

COMPUTATIONS WITH OVERLAY

Wnenever possible, input/output phases
should be performed separately from compu-
tational phases. Thus, the I/0 sukrou-
tines including the E and/or F conversion
subroutines are never in storage simul-
taneocusly with the other subroutines (ari-
thmetic, base, and scale conversion,
etc.). This can result in considerable
storage savings (see Figure 31).

ROOT
1 2 3 4 5 [}
/

Phase 1: Phase 2: Phase 3:
Opens files, Opens files,
Performs input, Computation Performs output,
Closes files. Closes files.

Figure 31. Example of Using Overlays tc

Perform Computations and 1/0
Operations Separately

BLOCKING

It may happen that one large set of data
is used in a program only at one specific
point, that another large set of data is
used at another point, etc. In this case,
each set of data used at one point should
appear in a separate block so that the
data is AUTCMATIC by default (unless de-
clared to be STATIC) and allocated only
when the respective blcck is active.
Thus, the same storage area can be used
for all data sets to be used.

SIMULATION CF_P-FORMAT_ ITEMS

The PICTURE-format items of OS PL/I are a
more powerful tool for editing than the
format items available in DOS/TOS PL/I.
However, numeric fields in edit-directed
I/0 operations can easily be simulated by
overlaying numeric fields with character
strings using the DEFINED attribute. An
example is shown below:

DECLARE U PICTURE '$$,$$9.V99BCR',
B CHARACTER (12) DEFINED U;

U= ...

PUT SKIP EDIT (‘U = *, B) (2 A);

SIMULATION OF ARRAYS QF STRUCTURES

Since arrays of structures are not per-
mitted in the PL/I Subset language, it is
recommended to simulate arrays of struc-
tures by using arrays in structures, i.e.,
by arrays that are not themselves struc-
tures. Should this not be feasible,
arrays of structures may be simulated by
using based structures. This can be

General Programming Information 51

accomplished by assigning to the pointer
the value of an element of a character-
string array. The programmer is respons-
ible for satisfying all boundary
requirements.

The following example shows the handl-

of structures in 0S PL/I versus DOS/
PL/I:

DECLARE 1 A, 2 B FLOAT, 2 C(10), 3 D
PICTURE '9999°,
3 E PICTURE 'XX',
3 F PICTURE '99V99*;

This could be written in DOS/TOS as
follows:

DECLARE PTR POINTER, 1 A, 2 B FLOAT, 2 C
(10) CHARACTER(10), 1 X BASED
(PTR), 2 D PICTURE '9999°', 2 E
PICTURE 'XX', 2 F PICTURE '99v99';

DO I=1 to 10;
PTR=ADDR{A.C{%33};
X.D=eiaa

END;

USE_QOF THE DEFINED ATTRIBUTE

For scalar variables or arrays, the
DEFINED attribute is used when

1. a variable is to have more than one
name (correspondence defining), or

2. two separate variables are to occupy
the same storage area provided they
are never required simultaneously
(overlay defining).

In either case, the actual storage
requirement is that of the base identifier
and not the sum of the storage reguire-
ments of all variables. For restrictions
on the use of the DEFINED attribute for
scalar variables and arrays see the Subset
language publication.

52

The use of the DEFINED attribute can
result in considerable savings of storage.
This is obvious for arrays, e.g., the
statement

DECLARE A (5,9,7), B (5,9,7) DEFINED A;

merely requires the storage area for array
A (315 data items). Without the DEFINED
attribute, the storage requirements would
be twice as much. But in spite of the
more severe restictions on the use of the
DEFINED attribute for structures, it can
also be of considerable use in this case.

USE_CF

The restrictions on the use of the DEFINED
attribute for structures can be circum-
vented by using based variables instead of
the DEFINED attribute. For example, in
the statement shown below structures U and
I are based variables. They are never
allocated any storage. Instead, the
pointer variakle P can be used to utilize
the storage occupied by structure A
whenever structures U and I are referred
to (provided that structure A is not
required at the same time).

DECLARE P PCINTER,

1 ALIGNED,

B BIT(7),

C FIXED DECIMAL(13,2),
D CHARACTER (21),
ALIGNED BASED (P),
V BINARY,
W,
X BIT(19),
BASED (P),
J,
K,
L;

NDONMNDHDLONCGND DN DY

The statement
P = ADDR (A);

would cause any subsequent reference to
either U or I or any corpcnent of U or I
to point to the storage area occupied by
A. This simulates the use of the DEFINED
attribute with all of its restrictions
removed except that the based structures
must be mapped in the same or less storage
than the map of the overlaid structure.
This process may be extended even further
so that a based variable structure occu-
pies the storage area of any one of many
structures. This is demconstrated below:

DECLARE (V1,V2) POINTER,
13, 2B, 2 Cracaaca,
1 U ALIGNED, 2 F, 3 Q BIT (9),...,
1R, 27Z, 2 M, 3 S CHARACTER(2),..,
1 P1 BASED (V1), 2 L, 2 X,eee,
1 P2 ALIGNED BASED (V2),
2 D BIT(9),.;

V1=aADDR(A) ;

. using P1 here points to A

V1=ADDR(U);

. using P1 here points to U

V2=ADDR(R);

. using P2 here points to R

V1=ADDR(R);
. using P1 here points to R
etc.

Oof course, the storage requirement of
structure Pl must not exceed that of the
smallest of either A, U, or R. Since the
structure P2 does not point to A or U in
this procedure, the only prerequisite is
that its storage regquirement must not
exceed that of R.

Note on Compatibility: The structure-
mapping technique for 0S PL/I is identical
to that for DOS/TOS PL/I in every respect
but one. The exception is that DOS/TOS
PL/I causes all structures to begin at
double-word boundaries. This is accomp-
lished by padding to the left of the first
addressable element until byte zero is
reached. (See the section Structure Map-
ping Rules, rule 11.)

0S PL/I begins structures at the first
addressable element. This difference is
of no significance in PL/I programming
unless the above-described technique is
employed. When this technique is used,
compatibility is guvaranteed if at least
one element of the non-based structure has
a stringency level that is as high as that
of the element (or elements) of the high-
est stringency level of the based
structure.

For the D Compiler the pointer asso-
ciated with a based structure must be
assigned an address value which insures
that the first element of the structure
has the same distance to a double-word
boundary as it would have if the structure
was not based.

Note: The use of based structures to
avoid the use of the DEFINED attribute is
dependent on structure mapping which, in
turn, is implementation-defined.

REDEFINITION OF ATTRIBUTES

The two preceding sections showed that a
number of structures can be made to occupy
the same storage area. Similarly, a
single character-class variable may be
conceived of in many different ways. Con-
sider the declaration shown below.

DECLARE A CHARACTER (80),
1 B DEFINED B3,
C CHARACTER (40),
D CHARACTER (30),
E CHARACTER (10),
DEFINED &,
G PICTURE *(8)9°*,
H PICTURE *‘9°,
I CHARACTER (61),
J PICTURE '(5)9v(5)9',
DEFINED A, ,
L (10) PICTURE *'$$(4)9V(2)9°';

NMNRONDDODNDEONDND

A represents a string of 80 characters
whereas B, F, and K represent three dis-
tinct structures. However, these three
distinct structures refer to the same
storage area as A. This technique is
especially useful in programs with many
different structures to be read. For
instance, the program may read a character
string and, depending on its first
character, treat it in any one of many
different ways without requiring space for
each possible structure.

USE_CF_THE_U48-CHARACTER_SET

If the 48-character set is used, the word
PT, in addition to those listed in the
Subset language publication, is a reserved
keyword. Programs written in the 60-
character set can be read if 48C is speci-
fied in the OPTION statement (but not vice
versa).

SIZE OVERFLOW

If a size overflow occurs during F-format
output, the output field will contain
asterisks, even if SIZE is disabled.

USE_OF_THE DISPLAY STATEMENT WITH THE
REPLY OPTION

Using the DISPLAY statement with the REPLY
option is possible only if a 1052 Printer-
Keyboard is available.

PRECISION OF DECIMAL DATA

The use of an odd precision for decimal
data will keep the generated code at a
minimum and thus improve the program
performance.

General Programming Information 53

CHANGING THE_ TAB_ CONTROL_TABLE

List-directed output to PRINT files auto-
matically aligns data on preset tab posi-
tions. TFor the D-level compiler, these
tab positions are 1, 25, 49, 73, 97, and
121.

The tab positions are determined from
the control table IJKTLTB which is catalo-
gued under this name in the relocatable
library. Tc obtain different tab posi-
tions, the programmer conly has to change
this table by specifying the following
macro instruction:

IJKZL (tab, [tab,...,1FF)

In this macro instruction, 'tab' is a
decimal constant indicating the desir
tab postion, and *FF" indicates the en
the table. Tabs must be specified in
ascending sequence, and their values must
range between 1 and 144. The length of
the tab list specified in the IJKZL macro
instruction must not exceed 127 charac-
ters, including opening and closing paren-
theses and commas.

3
(o

Following is an example of the IJKZL
macro instruction and the control state-
ments required to change the tab settings.

// JOB IJKTLTB
/7 OPTION DECK
// EXEC ASSEMBLY
IJKZL (1,25,50,75,100,FF)
END
VA
* THE RESULTING OBJECT DECK IS INPUT
* FOR THE FOLLOWING EXEC MAINT PROGRAM
// EXEC MAINT

(Object deck)
/*
/&

If the specified tab positions do not fall
between the values 1 and 144, or if they
are not in ascending sequence, one of the
following messages is issued:

PARAMETER GT 144

PARAMETER NOT IN ASCENDING ORDER

IMPROVEMENT OF DO-LOOPS

The execution time c¢f a DG-loop can be
reduced if a fixed binary variable is used
as control variable in the DO statement.

For example, if in the statement

54

DC var = expl TO exp2 [BY exp3l
[WHILE (exp®)1;

'var' is a fixed binary value, all con-
stants used as expl, exp2, and exp3 will
be converted to fixed binary during compi-
lation, in order to avoid conversions dur-
ing execution.

ROUNDING CN_QUTPUT WITH E_AND F FORMAT

On output, data edited by the E- or F-
format are rounded at the last numeric

position, and not truncated.

HANDLING BLANK NUMERIC FIELDS

When using a PICTURE specification with

'9's for numeric fields and the field is
olank, a program check (data excepticn)

accurs.

This is a particular problem for card
input where fields are often left blank
rather than filled with zeroes.

The problem can be avoided by declaring
the field with PICTURE using 'Z' rather
than '9' or with PICTURE using '9' plus
one of the overpunch picture characters T,
I, or R.

Assume card columns 1-10 are numerical
and may or may not be punched.

DECLARE COL_1 PICTURE '(10)9°;
DECLARE CCL_1 PICTURE '(10)z2°*;
DECLARE COL_1 PICTURE *(9)9(1)I°*;

The first DECLARE statement causes a
data exception if the field is blank. No
data exception occurs for blanks in
columns 1 through 10 if the field is de-
clared as shown by the second and third
DECLARE statements.

The programmer should, however, be
aware that the exclusive use of '9's in a
PICTURE specification results in more
efficient code.

USE_OQF LIST-DIRECTED AND_ EDIT~DIRECTED
DATA_TRANSMISSION

When the list-directed and edit-directed
transmission modes are used for the same
file, the user is responsible for the
correct positioning of the file.

USE_OF _PICTURES WITH STREAM-CRIENTED DATA

1. Character-string pictures:

The D Compiler nandles them in the
same way as normal character-string
variables.

2. Arithmetic pictures:

211l kinds of arithmetic pictures are
possible in the data lists of GET and
PUT statements.

a. Edit-directed transmission:
Only such items in the data stream
which can be described by the E or
F format can be transferred from
(PUT) or into (GET) arithmetic
pictures. If, on output, the pro-
grammer wants the character repre-
sentation of the picture, he
should use the CHAR built-in func-
tion as pseudo-variable with the
ricture as argument in the data
list.

b. List-directed transmission:
On input, only [+|-]1 arithmetic
constants can be transferred into
arithmetic pictures. On output,
the character representation will
be transferred into the data
stream.

PICTURE SPECIFICATIOQNS

Storage can be saved by proper declaration
of fixed numeric PICTURE fields.

1. PICTURE specifications without drift-
ing characters: make the first digit
position 'Z' or '*' and avoid writing
the first '9' in the field immediately
following an insertion character.

'29,99.V99* is better than '99,99.V99"
*SZ79999" is better than '5999999"
'+2%2,2999' is better than "+%2%Z,9999°*

2. Specifying "V." rather than ".V"
results in better code in the follow-
ing cases:

(a) If the first fractional digit
position is the first *9*' in the
field, then
V2Z,272ZV.99' is better than
192,222.V99".

(b) If a drifting character or zero-
suppression is specified past the
decimal point, then
'$485885V.$8" is better than
155585 V8sT
T x**%V *¥*x' is better than
Tkkkkk VEk

3. Give the variable in the right-hand
side of an assignment statement the
attribute DECIMAL FIXED with the same
scale and precision as the PICTURE.
If there is an expression on the
right-hand side try to produce the
desired scale and precision.

4., Zero-suppression with "*" costs more
storage (code) than zero-suppression
with "z" if

"+" or "-" is used (static or drift-
ing) or

"B" is used after the last digit
position.

5. If the PICTURE does not contain at
least one "9", "T", "I" or "R", but
does contain a "vV", additional code is
required for clearing the field in
case of a zero value.

ENDPAGE WITH MULTIPLE-LINE PUT

When using a PUT statement producing mul-

tiple lines, the ENDPAGE condition should

not be enabled kecause of possible loss of
data:

ON ENDPAGE(F) GOTO X;
PUT FILE(F) EDIT(data-list) (format-list);
X: new header;

In this example the ENDPAGE condition
may be raised during execution of the data
list (assuming multiple-line output); but
no return from X is possible, so that the
rest of the data list will be ignored.

General Programming Information 55

Program-Checkout Facilities

Certain language features are provided in
PL/I to assist the programmer in debugging
his program.

ad1an - o
These facilities are

described below.

For a detailed discussion of how to
debug a PL/I program, refer to the section
Debugging PL/I Programs in the SRL publi-
cation IBM System/360 Disk Operating Sys-
tem, System Programmer's Guide, GC2u4-5073.

Exhibit Changed

T™mM oy \ak=inY £
The EXHIBIT CHANGED feature uses the

library routine IJKEXBHC which requires
approximately 1200 bytes of main storage.

In addition, each variable appearing in
a CALL IJKEXHC statement requires about 12
bytes of storage plus a field containing
the variable name plus a field containing
the value of the variable in static
storage.

Function:

The first execution of the CALL IJKEXHC
statement causes the printing of the names
listed in the statement, and their values
in hexadecimal notation.

Generai Format:

CALL IJKEXHC (name , name

ceeal?

The argument 'name' can be an unsub-
scripted, unqualified name representing an
element, an array, or a structure which
are not contained in an array or struc-
ture, or it can be a string or arithmetic
constant. However, it cannot be a lakel
constant, an entry name, or a file name.,

General Rules:

1. Names with the attribute AUTOMATIC are
printed each time the CALL IJKEXHC
statement is first executed after a
new block activation. Names with the
attribute STATIC are printed only the
first time the CALL IJKEXHC is
executed if the activated block is
internal. They are printed each time
the CALL IJKEXHC statement is executed
if the activated block is external.

2. On subseguent passes of the CALL
IJKEXHC statement, the names and
values are printed only if the value
has changed since the time the state-
ment was last executed.

56

3. If there are several CALL IJKEXHC sta-
tements in one program, they are inde-

rrmm A At

4. The maximum number of arguments for
one CALL IJKEXHC statement is 12. If
an argument has the BASED or DEFINED
attribute, the related pointer or base
variable is counted as an argument,
regardless of whether it has been spe-
cified in the argument list or not.

5. Up to 30 names can be checked by CALL
IJKEXHC statements within one block,
if 10K bytes are available to the com-
piler. For each additional 4K, up to
46K, 30 additional names can be

checked.

6. The values of element variables having
the attributes BINARY FIXED, BINARY
FLOAT, DECIMAL FIXED, DECIMAL FLOAT,
CHARACTER, BIT, or PICTURE are also
printed in their external form.

Tracing

The TRACING feature uses the library rou-
tine IJKTRON which requires 1258 bytes of
main storage.

In addition, about 34 bytes of storage
are required for each CALL IJKTRON state-
ment and about 12 bytes for each CALL IJK-
TROF statement.

Function:

The two statements, CALL IJKTRON and CALL
IJKTROF, function like a switch. IJKTRON
switches tracing on, while IJKTROF turns
it off,

If tracing is enabled for a block, the
following information is printed om
SYSLST:

1. On entry, the external name of the
block, or, if the block has no 1label,
the internal name of the block.

2. On leaving a block via an END or
RETURN statement, & message is given
to indicate the exit. If the SIMT
option is active, the statement number
of the END or RETURN statement is
printed as well as the number of the
statement to which the program
returns.

Note: If for *CALL entry name’ infor-
mation should be printed, tracing must

be enabled for the block which con-
tains the entry name.

For each executed GOTO statement

a. the external name (up to. eight
characters) and value of the label
variakle or constant if the GOTO
statement is_not in an on-unit, or

b. the ON-condition and the value of
the label wvariable or constant if
the GOTO statement is in an
on-unit.

If the STMT option is active, the sta-
tement nurber of the GOTO statement
and the statement number of the target
statement are also displayed.

General Format:

CALL IJKTRON;
CALL IJKTROF;

General Rules;

1.

2.

Tracing can be explicitly enabled in a
block by a CALL IJKTRON statement.

A CALL IJKTROF statement explicitly
disables tracing in a block.

If tracing is neither explicitly
enabled nor disabled in a block, the
tracing status of the dynamically con-
taining block is applied.

The dynamically containing block of
the main procedure has tracing
disabled.

At least one of the two statements has
to be specified if tracing is to
appear in an external procedure.

When calling an external procedure
(provided tracing is enabled at the
time of the call), the called phase
must have a call for either IJKTRON or
IJKTROF. If this condition is not
satisfied, the results are unpredict-
able in the event of an interrupt.

1) Al: PROCEDURE OPTIONS (MAIN):;

2)

3)

CALL IJKTRON;

GOTO All;

u)
5)

6)

7

8)

9)

10)

11)

12)
13) Bl:

14)

15

16)

All: CALL B1;

Cc=3;
GéTO A2;
Aé: BEGIN;
CALL IJKTROF;
GaTO A21;
Ailz CALL IJKTRON;
E&D A2;
END Ai;
PRCCEDURE;

CALL IJKTROF;

RETURN;

END B1;

This example causes the follcwing (the
statement numkers in the above example are
referenced in the left-hand margin below):

1)

2)

3)

4,13)

14,15)

6)

When the main procedure is invoked,
no tracing status is specified and,
therefore, tracing for this block
and, per definition, for the dynam-
ically containing block is
disabled.

Tracing is explicitly enabled in
block Al.

The external name and value of
lakel All are printed.

No tracing status is specified for
this block; therefore, the
(enabled) status of the containing
block Al is adopted and the name of
the procedure Bl is printed.

Tracing is explicitly disabled for
this block, and no message is
printed when control returns to
statement 5.

The external name and value of the

label A2 are printed since tracing
is still enabled in Al.

Program-Checkcut Facilities 57

7) With the activation of block A2
tracing is neither enabled nor dis-
abled, therefore the (enabled) sta-
tus of block Al is adopted and the
external name of block AZ is
printed.

8,9) Tracing is disabled for block A2

10,11) Tracing is again enabled and the
pass of the END statement is indi-
cated on SYSLST.

12) Since tracing in the main routine
is still enabled, the pass of this
END statement is also indicated on
SYSLST.

The DYNDIIMP Routin

The statement
CALL DYNDUMP (argument-list);

may be used to have the internal represen-
tation of the items in the argument list
displayed in hexadecimal notation. The
argument list may contain up to 12 items.
Each argument must be either a scalar
expression or a variable name.

The DYNDUMP routine (56 bytes in
length) uses the PL/I Control routine and
the SYSPRINT file with the associated
module. No additional I/0 subroutines are
required. Thus, the DYNDUMP routine pro-
vides an economical way of displaying
intermediate results during checkout of
PL/I programs with a minimum of library
and I/0 module overhead.

The following example shows the use of
the DYNDUMP routine.

DECLARE A FIXED(5,2), B(10),

C BIT(1);

eecesw

CALL DYNDUMP (A,B,C);
Three items are displayed: A as 3
bytes (6 hexadecimal digits), B as 40
bytes (80 hexadecimal digits), and C as
one byte (2 hexadecimal digits).

Note: The current value of C is indicated
by the first bit. If the variable length
is an exact multiple of 48 bytes, the end
address+1 will be printed on the next line
in order to delimit the variables for ease
of reading.

Locating Execution-Time Errors
If a PL/I object program is terminated by

the PL/I Control routine and the DUMP
option is active, the problem program area

58

is printed (dumped) on the device assigned
to SYSLST. The following information is
intended to assist the programmer in ana-
lyzing a program dump and to locate the
error that caused the termination of this
program.

+ o =i <
Note: There is nc guarantee that mai
as

storage organization will always be
described below. Severe programming
errors, e.g., iilegal use of based
variables, the UNSPEC pseudo variable, or
use of user-written Assembler subroutines
may yield unpredictable results.

b

1

If the error was caused by an I/90
operation, look up the Linkage Editor
storage map to find the address of the DTF
table for the respective file. The first
word of the DTF table contains the address
of the corresponding CCB. For details on
the CCB refer to the SRL publications
describing the DOS/TOS Supervisor and I/O
macro instructions.

Data declared with the attribute
EXTERNAL can be found using the addresses
given in the Linkage Editor storage map.

To determine the absolute address of
static internal data refer to the offset
table listing (see the section Qffset
Table Listing).

To locate the storage allocated to an
automatic variable, the offset of the
variable within the DSa (Dynamic Storage
Area) is determined from the offset table,
and this offset is added to the DSsA
address of the block to which the variakle
is internal. The address of the DSA is
automatically lcaded into register 13 at
prologue time. Word 20 of the DSA con-
tains the DSA address of the statically
embracing block.

The load point of the main DSA is the
next double-word boundary after the high-
est high-core address of all external
blocks linked in the program.

More than one DSA may be allocated,
i.e., if more than one block is active.
To find the DSA of the block where the
error is detected, check the byte pointed
to by register 13. If this byte contains
either X'hl' or X'h3' (h may be any hexa-
decimal digit), register 13 points to the
relevant DSA. In this case, the error
message was most probably caused by a Pro-
gram Check interrupt.

The instruction that caused the inter-
rupt can be found by means of the diag-
nostic message. The old PSW and the regi-
sters can be found at the location with
the external label IJKZWSI.

If the byte contains X'05', register 13
points to a LSSA (Library Standard Save
Area), the second word of which contains
the chain-back word. If this again points
tc a LSSA, repeat the chain-back process
until the chain-back word points to a DSA.
This DSA then belongs to the block where
the error was detected.

To identify the block, go to the chain-
back address of the relevant DSA. If this
points to another DSA, word 5 of the DSA
contains the absolute address of the
block. The block can then be identified
using the object code listing and the Lin-

kage Editor storage map. If the chain-
back word does not point to a DSA, the
relevant DSA is the DSA of the MAIN proce-
dure (see Figure 32).

The chain of DSAs resembles the current
environment at the point of execution
where the error was detected. Each DSA in
the chain has its corresponding currently
active block. From where and at which
location a specific block is activated can
be determined by means of the DSA of the
calling block. For detailed information
on the first 20 words of the DSA refer to
the secticn Linkage Conventions.

MAIN. .PROCEDURE OPTIONS (MAIN), . SUB1..PROCEDURE, . LAST. .PROCEDURE, .
CALL SUB1 USING *,15 USING *,15
F-P= STM 14,12,12,03) ——3-STM 14,12,12013)
L 15,=V/(SUB1) | ~ {
BALR 14,15 | ,
= | PROLOGUE | PROLOGUE
| -_ | |
| | |
I : CALL LAST i
I END, . | L 15,=V(LAST) | RETURN
I L 13,4(13) | BALR 14,15 : L 13,4(13)
i LM 14,12,12(13) | ~f | LM 14,12,12(13)
I BR 14 to STOP Routine 11 i BR 14
i |
l DUMDSA [1| RETWRN !
Hia N B 13,4,(13) i
I ! LM 14,12,12(13) I
| [14 I
| ¥ |
| I Static Storage : | Static Storage : Static Storage
] I i
1 h P | A
i 1T IR '
I I |
: | DSA SAVMAIN | | | § DSA sAvsusl | | lDSA SAVLAST |
I : Flags | AL3(Block Description) |- | : : : Flags | AL3(Block Description) ! : : : Flogs | AL3(Block Description) -
I - Lyt i A
L Chain Back L | | Chain Back L 1 Chain Back
: A(DUMDSA) ‘IT + *I" A(Calling DSA) ‘:“f‘ A(Calling DSA)
|
| |
| Chain Forward . _} | : Chain Forward i _: Chain Forward
| A(Next Available Core) I | A(Next Available Core) - = | A(Next Available Core)
| 11 |
L Retum Register 14 : LY Retum Register 14 | Retum Register 14
|
Entry Register 15 e L——-j Entry Register 15 H - - Entry Register 15
Work Area Work Area Wori< Area
Variables Variables Variables
v Y V
Figure 32. DSA chaining
Program-Checkout Facilities 59

Data Storage Requirements

The storage requirements for data depend
on the following two factors:

1. The storage required for the data
itself.

2. The storage required for the data
descriptor. (The data descriptor is
required whenever the compile-time
data description is to be used in the
object program.)

Data Descriptors

A data descriptor may describe more than
one data item. Only one data descriptor
is required for a group of data items that
have identical (either explicitly or
implicitly declared) attributes, e.g., for
individual variables of identical attri-
butes or for array elements. Thus, the
statement

DECLARE (A, B, C(21), D) FIXED DECIMAL
(5,2), (E, F, G) PICTURE '$99.99°;

requires only two descriptors: one
describing A, B, the 21 C's, and D, and
one describing E, F, and G. Constants
(except those used in output lists), label
variables, label constants, or pointer
variables do not require a descriptor.

A data descriptor and, therefore,
storage in the object program is required
only if the pertinent data item is used in
a conversion or I/0 library subroutine.

Data Items

Pigure 33 shows the types of data iters
that require storage. In the following
text, the storage requirements for each of
these items are specified and illustrated
by means of examples. The storage
requirements given in these examples per-
tain to the data only. Unless otherwise
stated, references to coded arithmetic and
string data apply to both variables and
constants. Cther data types will have
constants and variables explicitly dif-
ferentiated in regard to storage
requirements.

CODED ARITHMETIC DATA
Binary Fixed

Default precision: 15 bits
Maximum precision: 31 bits
Storage requirements:

1. Descriptor

3 bytes {(if required)
2. Data

4 bytes internal fixed-point regard-
less of declared or default precision.

Figure 34 shows the storage require-
ments for the binary fixed data declared
in the following sample statement:

DECLARE I(8,5), A FIXED BINARY(7),

r T T 1

| Fixed decimal| | | J STATIC, Z(3) FIXED BINARY(27);

{Float decimal] i |

| Fixed binary |Coded | | r-——-T T T 1
|Float binary | | I |DATA| DECLARED | DEFAULT I |
|sterling | l | |ITEM| ATTRIBUTES | ATTRIBUTES |RYTES]|
| constants | | | b + + 1 1
} + {Arithmetic | | I |Dimension (8,5)|FIXED BINARY | 160 |
|Fixed decimal|Numeric | | | | |Precision (15)| |
IFloat decimal} (picture- | i | s + + |
isterling | specified) | | | A |FIXED BINARY |Ncne | 4
F $———- + .| t jPrecision (7) | | [
| Character | ! | 'y + i T -1
_|Bit |String | I | 3 |STATIC | FIXED BINARY | 4 |
| Picture- | | | | | |Precision (15)| |
| specified | | | t + N + + -1
| character | | | | Z |Dimension (3) |None I 12 |
b + {Non- | I |FIXED BINARY | | |
| Label |Label |arithmetic | | | Precision (27) | | |
F t -1 N 1 Lommeey
| Pointer | Pointer | | TOTAL 180 |
L - i 1 4 L -4
Figure 33. Tyres of Data Items Figure 34. Example of Binary Fixed Data

60

Decimal Fixed

Default precision: (5,0)
Maximum precision: (15,0)
Storage requirements:

1. Descriptor

2. Data
Packed decimal form --
4 bits = 1/2 byte for each digit. The
sign is always stored and requires 1/2
byte. The total storage required must
be expressible in byte form, i.e.,
+5.2 requires 2 bytes (1/2 byte for
the sign, 1 byte for the two digits,
1/2 byte padding).
Scale factor range:
present).

0 to 15 (if

Figure 35 shows the storage require-
ments for the decimal fixed data declared
in the following sample statement:

DECLARE A FIXED, B(5,2,3) FIXED,
STATIC, Q FIXED(14,2);

I FIXED

r T T ’ H H
|DATA| DECLARED | DEFAULT | 1
|ITEM| ATTRIBUTES | ATTRIBUTES |BYTES|
t + + 1 i
{ A |FIXED iDECIMAL i i
I I |Precision(5,0)] 3 |
i 4 L R 4
v T 1 3 T b
| B |Dimension |DECIMAL { |
i | (5,2, |Precision(5,0)f 90 |
| | FIXED | | |
L L L L d
& T B L] T b)
| I |FIXED STATIC |DECIMAL ! |
| | |Precision(5,0)| 3]
L 1 L 4 4
3 T 7 T T h]
| @ |FIXED | DECIMAL | 8 |
| |Precision(14, 2) | | |
I'_ L . . 'y ‘1|
| TOTAL 104 |
L 3
Figure 35. Example of Decimal Fixed Data

Default precision: 21 bits
Maximum precision: 53 bits
Storage requirements:

1. Descriptor
2 bytes (if required)
2. Data

Hexadecimal floating-point form (see

the SRL publication IBM System/360,

Principles of Operation, Order No.

A22-6821).

a. Short floating-point form (4
bytes) used for a precision of
less than 22 bits.

b. Long floating-point form (8 bytes)
used for a precision of greater

than 21 bits.

Figure 36 shows the stcrage require-
ments for the binary float data declared
in the following sample statement:

DECLARE A BINARY, B BINARY(29), C(2,5)
BINARY(16), D FLCAT BINARY(50);

¥ T Rl T 1
|DATA | DECLARED | DEFAULT | |
|ITEM| ATTRIBUTES | ATTRIBUTES |BYTES]|
t + + + i
| & |BINARY | FLOAT |
| | |Precision (21){ |
L 4 4 4

1 L) 1 1 4'
| B |BINARY | FLOAT | 8]
| |Precision (29) | | |
s + + {
| € |Dimension (2,5)|FLOAT | 40 |
| | BINARY } | {
| |Precision (16) | | |
e t + 4
| D |BINARY FLOAT |None | 8 |
| |Precision (50) | | |
t L - i 1
| TOTAL 60 |
L 4
Figure 36. Example of Binary Float Data

Decimal Float

Default precision: 6 decimal digits
Maximum precision: 16 decimal digits
Storage regquirements:

1. Descriptor
2 bytes (if required)
2. Data
a. Short form (4 bytes) used for less
than 7 decimal digits.
b. ILong form (8 bytes) used for more
than 6 decimal digits.

Figure 37 shows the storage require-
ments for the decimal float data declared
in the following sample statement:

DECLARE A(5,3), B FLOAT(8),
C DECIMAL(14), D;

r) T T 1
| DATA| DECLARED | DEFAULT | |
|ITEM| ATTRIBUTES | ATTRIBUTES |BYTES]|
e T } 4 1
| 2 |Dimension (5,3)|DECIMAL FLOAT | 60 |
| | |Precision (6) | |
p——t o $-mf
| B |FLOAT |DECIMAL | 8 |
| |Precision (8) | | i
G ey rmmmmm e emmmmi
| C |DECIMAL { FLOAT | 8 |
| |Precision (14) | |]
p--—-+ } -
| D |None | DECIMAL FLOAT | &4 |
{ | |Precision (6) | |
I,___ 1 i 1 {
] TOTAL 80 |
L J
Figure 37. Example of Decimal Float Data

Data Storage Requirements 61

NUMERIC (PICTURE-SPECIFIED) DATA

Default precision: not applicable

Maximum length: after resolution of all
replications, the picture-specified num-
eric field must not be greater than 32
characters. The number of possible
pricture-specified digit positions
depends on whether the nuwber is num
fixed (15 digits) or numeric float (
digits).

Storage requirements:

iC

exr
16

1. Descriptor

a. Fixed-point data -- one byte for
each picture character plus 8 to
20 bytes, with an average of 12
additional bytes (if required).

b. Floating-point data -- one Lyte
for each picture character plus 20
to i4 bytes, with an average of 2i
additional bytes (if required).

c. Numeric sterling data -- one byte
for each picture character plus 4
bytes (if required).

One byte for eacn picture character
except for M, Vv, K, and G.

Figure 38 shows the storage require-
ments for the numeric data declared in the
following sample statement:

DECLARE A PICTURE "$99.99', B PICTURE
*(8)9V(W)9', C PICTURE '.99K+99', D
PICTURE ®ZZ99B9(2)B.9,99';

2. Data

1 byte per character

Figure 39 shows the storage require-
ments for the character-string data de-

clared in the following sample statement:

DECLARE A(5) CHARACTER(20), B CHARACTER

£4149% _
[B

i T T I
| DATA ITEM | DECLARED ATTRIBUTES | BYTES |
F | fommmamed
| a | Dimension (5) | 100 |
| | CHARACTER (20) | |
b t ¥ i
I B | CHARACTER (111) {111 |
l.___ L ——— L j'
| TOTAL 211

i J

Figure 39. Example of Character-String
Data

Bit-String Data

Default precision: not applicable
Minimum length: 1 bit

Maximum length: 64 bits

Storage requirements:

1. Descriptor
2 bytes (if required)

2. Data
1 byte for each group of 8 bits or
part thereof. Packed format is not

permitted.

Figure 40 shows the storage require-

Figure 38. Example of Numeric Data

STRING DATA

Character-String Data

Default precision: not applicable
Minimum length: 1 cnaracter
Maximum length: 255 characters
Storage reguirements:

1. Descriptor
2 bytes (if regquired)

62

Figure 40. Example of Bit-String Data

Picture-Specified Character-string Data

Default precision: not applicable
Minimum length: 1 character
Maximum length: 255 characters
Storage requirements:

1. Descriptor

2 bytes (if required)
2. Data

1 byte per character

r T T - T 1

| | BEFORE 1 AFTER | | ments for the bit-string data declared in

|DATA|] REPLICATION | REPLICATION | | the following sample statement:

|ITEM| RESOLUTION | RESOLUTION |BYTES]|

3 + + + | DECLARE A BIT(12), B (11,7,2) BIT (1);

| & }1$99.99 |Same | 6 |

e + e B T T y

| B [(8)9v(W)9 199999999v9999 | 12 | | DATA ITEM | DECLARED ATTRIBUTES | BYTES |

p-———1 ‘ 1 f--——— } 1 } !

| C 1.99K+99 | same | 6 | | A | BIT (12) | 2 |

S t e AR S fomme e 1 4

| D 12Z99B9(2)B.9,99]1Z2Z99B9BB.9,99 | 13 | | B | Dimension (11,7,2) | 154 |

I 1 —1 i | | BIT (1) | |

I TOTAL 37 | t L 1 {

L - J | TOTAL 156 |
(g -1

Figure 41 shows the storage require-

ments for the picture-specified character-

string data declared in the following
sample statement:

DECLARE A PICTURE
CHARACTER(105);

'(105)X', B

r T T 1
| DATA ITEM | DECLARED ATTRIBUTES | BYTES |
’ t ¥ {
| A | PICTURE *(105)X' | 105 |
I [l + 4
r 1T T 1
i B | CHARACTER (105) | 105 |
¢ L : {
| TOTAL 210 |
L i
Figure 41. Example of Both Character-
String and Picture-Specified
Character-string Data
LABEL DATA

Label Variables

Default precision: not applicable
Maximum precision: not applicable
Storage requirements: 8 bytes

Label Constants

Default precision: not applicable
Maximum precision: not applicable
Storage reguirements: 8 bytes for each
occurrence of the label in an assignment
statement or in a GO TO statement refer-
ring to a label that is not contained in
the block containing the GO TO statement.
Label constants in R format items require
4 bytes.
require storage.

Figure 42 shows the storage require-
ments for the label data declared in the

All other label constants do not

Figure 43 shows the storage require-

ments for the pointer variable declared in
‘the following sample statement:

DECLARE P PCINTER, A BASED (P) FLOAT;

L) T T T 1
|DATA| DECLARED | DEFAULT i |
{ITEM| ATTRIBUTES | ATTRIBUTES |BYTES|
e ¢ $———of
| P |POINTER |None [|
} L 1 L {
[TOTAL 4
L J
Figure 43, Example of Pcinter Data

Data Storage Depending on Storage Class

STATIC and AUTOMATIC data require the same
amount of storage. No storage is required
for BASED data. However, accessing based
variables by means of pcinters requires 4
extra bytes per reference compared with
the other storage classes.

Storage of External Data

Each distinct EXTERNAL variable, array, or
structure requires storage in multiples of
8 bytes, since padding to the next double-
word boundary is required if the length of
the EXTERNAL data item is not 8 or a mul-
tiple of 8 bytes. Figure 44 shows the
storage requirements of the EXTERNAL data
declared in the following sample
statement:

DECLARE (A BIT(2), B{(3,2,3) CHARACTER(2),
C CHARACTER(9), D FLOAT(1W4), E,
F PICTURE '$99.99', G FIXED DECIMAL
(13,2)) EXTERNAL;

r Ll 1
following sample statement: | l BYTE REQUIRED |
| t T 1
DECLARE A LABEL, B(7) LABEL; | VARIABLE | DATA |) |
| | STORAGE | PADDING | TOTAL |
L 4 4 4 {
r T T 1 r T T T
| DATA ITEM | DECLARED ATTRIBUTES | BYTES | | 2 | 1] 7 | 8 |
F t } it t t + -
] .Y | LABEL | 8 | | B I 36 | 4 | 40 I
b ¢ et B } } } i
| B | Dimension (7) | 56 | | c | 9 | 7 | 16 |
| | LABEL | | 3 + t + .
F = = 1 | D { 8 | 0 | 8 |
| TOTAL 64 | } 4 + + y
t 4| E | 1 4 | 8 |
L L L L 5 |
N i T T T 1
Figure 42. Example of Label Data | F | 6 | 2 | 8 |
IR 4 4 N 4
T T T 1 1
POINTER VARIABLES | @] 7 1 | 8 |
L L L i d
Default precision: not applicable
Maximum precision: not applicable Figure 44. Example of External Data
Storage requirements: U4 bytes Storage
Data Storage Requirements 63

Use of Constants in The Source Text

Constants may appear in the source text
wherever an expression is permitted. 1In
addition, they may appear as replication
factors, upper bounds of a subscript range
in the dimension attribute of an array,

etc.

Appearance and representation of

constants in the object program depends
entirely on their representation and con-

text in the source program.

Only the fol-

lowing three cases are of concern to the
programmer:

1.

64

If a constant appears in the source
text as an argument in a function or
subroutine procedure, its object-time
representation is derived directly
from the source-program representa-
tion. For example, the statement

CALL A (1.5, 3.7E-4, 110011B);
results in an object-time FIXED DECIM-
AL representation of the constant 1.5,
a FLOAT DECIMAL (short float) repre-
sentation of the constant 3.7E-4, and
a FIXED BINARY representation of the
constant 110011B.

tNote: If arguments are written as
constants, these constants are trans-
mitted to the called routine in coded
form and witn the precision derived
from the source text representation.
The called routine, in turn, assumes a
certain internal representation of the
argument as specified in the parameter
declaration. The user must therefore
ensure that base, scale, and precision
of both arguments and parameters
match. For instance, declaring the
first parameter in the above example
as FIXED {(7,1) might lead to an
object-time error because the called
program assumes an argument that occu-
pies U4 bytes, whereas the constant 1.5
occupies only 2 bytes.

If a constant appears in the source
text as the upper bound of an array
subscript, the appearance of this con-
stant in the object program depends on
how the expression used in this sub-
script position is employed in the
remainder of the source text. At
best, no constant appears at object
time for any upper bound. In the most

unfavorable case, a FIXED BINARY con-
stant appears in the object program
for every upper bound in the dimension
attribute of the DECLARE statement.

Thus,

DECLARE A (5, 7, 23,

to
~
w0
-
[y
=
vt

may result in, at most, five FIXED
BINARY constants in the obiject pro-
gram. At best, no object-time con-
stant will appear for the five upper
bounds in the source text.

An object-time constant is derived
from each source-text constant of a
certain base, scale, and precision.
However, lkase, scale, and precision of
the obiject-time constant depend
entirely on the context in which it is
used. For example, the statements

DECLARE A BINARY;
A= 1.7;

the object program in floating-point
form, even though the source-text
representation is fixed decimal.
shows that identically represented
source-text constants may be converted
at compile time intc a number of dif-
ferent cobject-time constants (this
does not apply to constants in DO
iteration specifications). For
instance, the following samgle
statements

cause the constant 1.7 to be stored in
n

This

DECLARE A FIXED DECIMAL,
B BINARY, C FIXED BINARY;

A= 2;
B = 2;
C = 2;

result in three different object~time
representations of the single compile-
time constant 2. On the other hand,
constants of equal value, base, scale,
and precision are stored only once in
the object program unless NOOPT has
been specified in the PL/I PROCESS
card. When in doubt about constants
which appear similar, c.g., 1.2E+7 as
opposed to 12000000, the programmer
should review the guestion of preci-
sion of arithmetic constants in the

Subset language publication.

This section discusses the location of a
variable in relation to other variatles.
The location of data with respect to the
entire program is discussed in the section
Program Overhead.

Boundary Reguirements

In the object program, variables that are
not part of a structure are grouped
according to certain rules referred to as
boundary regquirements, which depend on the
hardware configuration of the system used.
For the System/360, the largest unit of
storage is the "double word" (8 bytes),
which must always be on a double-word
boundary (double-word aligned). That is,
the first byte of any double word in
storage must be-on an address divisible by
8.. "Full words" (& bytes) must be full-
word aligned, i.e., the first byte of any
- full word in storage must be on an address
divisible by 4. Bit strings, as another
example, must be byte aligned, i.e., they
may occur on any byte boundary. If any
machine address divisible by 8 is chosen
as arbitrary byte 0, the above boundary
requirements can be reduced to the
following:

¢ double-word aligned data may appear on
any byte 0;

e full-word aligned data may appear on
any byte 0, 4, 0, 4, etc.; and

s Dbyte-aligned data may appear on any
byte 0, 1, 2, 3, ... 7, 0, etc.

Storage Mapping — Element Data

To minimize padding between element data
items, the DOS/TOS PL/I compiler gathers -
as far as possible - all element data
items that are subject to the same boun-
dary requirements. This is done regard-
less of the point of declaration within
the program.

The following discusses the possibili-
ties of mapping elementary data items not
contained in structures or arrays and
should be understood as an introduction to
the mapping of structures.

Much storage can be saved by economic-
ally arranging the individual data types.
Consider the following example:

A BIT(2), B, C BIT(9), D;

The result of left-to-right storage
allocation is illustrated in Figure u5.

Data Storage Mapping

The total storage requirement in this
example is 16 bytes, of which 5 are used
for padding.

0 1. 2 3
Figure 45. Storage Allocation Example 1

Rearranging the variables as follows:
A BIT(2), C BIT(9), B, D;

results in a reduction of the total
storage requirements to 12 bytes with only
one padding byte. Figure 46 illustrates
the storage allocation.

A C B D

] lﬁ‘lﬁ*l*'l‘—I
ERE=REEEEEEN!
o 1 2 3 4 5 6 7 0 1V 2 3
Figure 46. Storage Allocation Example 2

Finally, assume that the variables were
rearranged as follows:

B, Dy A BIT(2), C BIT(9);

This is the way in which the DOS/TOS PL/1

compiler gathers elementary data items not
contained in arrays or structures. The
total storage requirements would be
reduced to 11 bytes without any padding.
The storage allocation is shown in Figure
47.

B D A C
- AN
| T T T T T T
I [| [I I 1 I
1] 1 1 1] 1
0 1 2 3 4 5 6 7 0 1 2

Figure 47. Storage Allocation Example 3

Storage Mapping — Arrays

The storage requirement of an array equals
the sum of the requirements of the indivi-
dual data items contained in the array.
Bit-string data items are aligned on byte
boundary. Thus, the storage requirement
of the array declared in the statement

DECLARE A(5,4,3) BIT(9);

can be calculated as follows: The number
of data items in the array is 5xi4x3=60.
Due to boundary alignment, each item
requires 2 bytes. Total storage require-
ment: 2x60=120 bytes.

Data Storage Mapping 65

The individual items of an array are
stored in major row sequence. For the
akbove example, this means that the items
are stored as follows:

a(1,i;»
a(1,1,2)

Al 0 2)
[S e P} ;

Sy gL

a(5,4,3)

Storage Mapping — Structures

To minimize padding, the DOS/TOS PL/I com-
piler gathers - as far as possible - all
elementary data items that are subject to
the same boundary requirements.

In the declaration of a structure, such
thering of data is not performed because
a structure is regarded as one record, and
the programmer might wish to predestine
the relative position of every data item
within that record, e.g., in a punched
card. Thus, the statement below results
in the storage allocation illustrated in
Figure 48. The total storage requirement
is 12 bytes, including 3 padding bytes.

DECLARE 1 A ALIGNED, 2 B, 2 C BIT(1), 2 D;

8 C
T T E
1 [I
1 1

¢ 1 2 3 4 5 & 7 0 1 2 3

Figure 48. Storage Allocation Example 4

In this example, structure A, which has
the unused 3 bytes between C and D, can be
thought of as a record without any editing
descriptors for the components B, C, and
D. It should not be thought of as a bit
string because this might lead the pro-
grammer to erroneously assume that the
first bit of the byte following C is the
first bit of D.

Logical Depth Concept

In the following discussion, the term
"logical depth"™ is used to describe the
level number of a minor structure or ele-
mentary data item relative to the level of
the major structure. A minor structure or
elementary data item can have a high level
number but be at a relatively low logical
depth. For instance, in the following
sample declaration:

DECLARE 1 A&,
15 B,
i5 ¢C,
95 D,
95 E,
i5 F,
31 G,

66

31 H,
45 1,
45 J,
54 K,
54 L;

structure J has components at logical
depth 5 although the level number is 5i.
The logical depth of these comronents is
greater than that of the components of
structure C (3), even though their level
number (54) is not as high.

When mapping a major structure, first
map all minor structures at greatest log-
ical depth n. Then continue with mapping
the minor structures at logical depth n-1.
The components that form the minor struc-
ture at logical depth n-1 consist of:

1. elementary items at logical depth n,
and

2. minor structures at logical depth n,
which have already been mapped.

After mapping the minor structures at
logical depth n-1, proceed by mapping all
minor structures at logical depth n-2.
Again, the components that form the minor
structure at logical depth n-2 consist of:

1. elementary items at logical depth n-1,
and

2. minor structures at logical depth n-1,
which have already been mapped and
contain the mapped structures at log-
ical depth n.

Continuing this process leads to the
major structure, which is at logical
depth 1. Mapping of the major structure
is done by joining the components at log-
ical depth 2. These components consist
of:

1. elementary items logical depth 2, and

2. nminor structures at logical depth 2,
which have already been mapred and
contain the mapped structures at log-
ical depth 3. These, in turn, contain
the mapped structures at logical depth
4, etc.

The storage mapping of structures is
done according to the set of rules listed
below. In the mapping process, a com-
ponent (or a group of partially mapped
components) may be shifted to minimize the
padding that may be required between the
component and the component to be
appended. The opportunity or potential
for such shifting depends on the stringen-
cy level of the element to be appended.
The amount of shifting that is permissible

r 1) T 1 i} T 1
Variable {Stored Internally	Storage	Alignment		Strin-	
Type	as	Requirement?	Requirement	Explanation	gency
{	(in Bytes)]		Level		
L 5N L 4 1 i 1					
) T T T T 1 1					
BIT(n)?2	One byte for each				
	group of 8 bits	CEIL -			
	(or part thereof)]			
t 1 + i					
CHARACTER (n)	One byte per	n			
	character {		Data may		
k } + i	begin on				
PICTURE	One byte for each	Number of	Byte	any byte	1
	PICTURE character	PICTURE charac-			
	except M,V,K,G	ters other than			
	M, V, K, and G]			
[N 1] | l I l
i 1 T 1

DECIMAL FIXED 11/2 byte per	w+tl			
(w,)	digit plus 1/2	CEIL ==		
	byte for sign	2	i i	
L 1 iR 4 4 4 _'
T L . . T T 1 T

| BINARY FIXED (w) |[Binary integer | | | | |
t + i I | | |
r 1 T

| BINARY FLOAT (w) | | | | Data must | |
| w < 22 |Short | 4 | Full-word | begin on | |
3 {floating point | | { byte 0 or 4 | |
| DECIMAL FLOAT (w) | | | | | 2 |
| w <7 | | | | | |
L L 1] ' I I
T 1 T 1

| LABEL | --- | 8 I | | |
L. i L 4 i R J l
T 1 T T 1 1

[POINTER i -] u | Full-word | Data must | |
| | | | (right- | begin on | |
| | | | adjusted) | byte 0 or 4 | |
L L 4 L 4 4 |
T T T T 1 T a
| BINARY FLOAT (w) | | i | | |
| 21 < w < 5S4 | |] | Data must | |
t {Long | 8 | Double- | begin on | 3 |
| DECIMAL FLOAT (w)|floating point | | word | byte 0 | |
| 6 <w <17 | | | | | |
IL L L 1 i - L “ll
|1See Storage_ of External Data for data declared with attribute EXTERNAL. |
| 2structures containing bit strings must have the attribute ALIGNED because the default |
| attribute (UNALIGNED) is not permitted in the PL/I Subset language. |
L 4

Figure 49. Summary of Data Alignment Requirements and Stringency Levels

is determined by the alignment require- 3.
ments of the element(s) to be shifted.

Both the stringency level number and

the alignment requirements for the indivi-
dual data items are shown in Figure 49.

Structure Mapping Rules

1. Locate the first minor structure of
the greatest logical depth. (See
Figure 50, part A. The declaration
shown is used throughout the figure.)

2. Begin the map with the first element
of this minor structure. The map
begins on byte zero (See Figure 50,
part B).

Append the next element of the minor
structure at the first following byte
position where it may be legally
placed. This byte position is deter-
mined by the alignment requirement of
the element to be appended. (See
Figure 50, part B.)

Cwing to the alignment requirement,
some unused space (padding) may result
between the first and the appended
element. The preceding element may
then be shifted to the right provided
the alignment requirement of that ele-
ment is still satisfied after the
shifting. If no shifting or only a
partial shifting is permissible, the
padding remains there permanently.
(see Figure 50, part B.)

Data Storage Mapping 67

The elements so mapped are now per-
manently joined and may be considered
a single element. The alignment
reguirement of the joined items is
that of the item of higher stringency
level.

ina

=<
elements of the minor structure. (See
Figure 50, part B.)

Repeat rules 2 through 6 for all minor
structures of the same logical depth.
Map all minor structures individually.
(See Figure 50, part C.)

Repeat rules 2 through 7 for the minor
structures of the next higher lcgical
depth. Elementary items are appended
according to rules 3 and 4. Minor
structures are aprended beginning at
the byte position they had when they
were previously mapped. Padding
between the two elements, if any, is
removed by

a. shifting the succeeding element as
far to the left as its alignment
requirement permits, and

b. shifting the preceding element as

far to the right as its alignment
requirement permits.

10.

11.

12.

Any padding that remains after these
two shifting processes remains there

permanently.

(See Figure 50, part D.)

Continue this repetitive process until

all minor structures
Figure 50, part E.)

are marped. (See

Map the major structure as if mapring

a minor structure.
part F.)

(See Figure 50,

If the shifted structure does not
begin on byte zero, pad to the left

until byte zero is reached.

This is

the physical beginning of the struc-

ture. However,

the name of the maijor

structure still points to the first

component of the structure.

The first element of

the structure

must kegin on byte zero of the struc-

ture being mapped if
a based variable and
able associated with
SET clause of a READ
ment. In this case,

the structure is

the pointer vari-
it appears in the
or LOCATE state-

the user must

make sure that the structure begins on

byte zeroc. Padding,

if required, is

best done with a dummy variable of the

CHARACTER type.
G.)

(See Figure 50, part

@ DECLARE 1 A ALIGNED,

Start here ——— 5 J BIT (7),
(Rule No. 1}

2 B DECIMAL FIXED (11),

2 ¢,

D BIT),

£ PICTURE '(8)9V (4)9',
F

4 G LABEL,
4 H PICTURE *9.9KS99",
41

5 K FLOAT (¢),
5 L BINARY (32),

4m, J

J
ﬁ Rule No. 2

M
5 N CHARACTER (4),
5 O FIXED (7,3),

5

P FLOAT (16),

2 Q,
3 RBIT (7),
3s

’

© N
e ——
0 T 2 3
N [o]
A AR B Y
! e
I N , B N No. 3

IR

—
b o=

0167 o0

J
4 T LABEL, P .

4 11 i isans Snoy
4 U BIlNARY (205,

4 V FLOAT (9),

L[

e = = o
—
-

3 W CHARACTER (3), 3 4 5

4 5 ¢

2 X DECIMAL (6);

Sample Declaration

Figure 50.

68

|
Application of Structure Mapping Rules Nos

Rule No. 6
. 2-6

Rule No. 6

Application of Structure Mapping Rule Neo. 7

Example of Structure Storage Mapping (Part 1 of 2)

T7} R [Role No. 2 I HEHE L [Rule No. 2
T B RN S 1 [T W T | i1

T u
e e,
[}
Y HE Rule No. 3

l U
| T T T T 1T
| I T T T A T
1 1 A 1 1. 1
| 012 3 4 5 6 7 [} 12 3 4 5 6 7
Rule No. 6
GiH 1 | T+U v
s — P rdar— N A N
: 7 weroos | T 0] 11 1 L1 11] wen
[B G T weres 1 IRREEEEEE T
4 0 1 2 3 46 7 ' ¥450701234567,
—
G+H | M I S
e N e —
T T T T l
I Ry
1 |
4 50 1 2 3 46 7 0 16 7,
-~
F Application of Structure Mapping Rule No., 8
® b R
ﬁkule No. 2 l ﬁkulaNo. 2
0 I o
D E | R H
1 T T T T 7 v T
[[R f@uNm3| H [thma
3 [] 1 1] 1 1] I3 1
0 1 2 3 4 5 6 7 0 i 2 3 4 l 0 1 2 3 4 56 7
| R S
| [T e
0 13 4 5 6 7 0 1 2 3 4 56 7 l 3 4 56 7

D+E F
Y vemean

O e } [T e
I

7023 4567
—

Application of Structure Mapping Rule No. ¢

® 8 _ ©

l’ A

H Rule No. 2 - - —

o 1 2 3 4 5 & -—»% lhl % I |] I
0 1212 3 4 5 & 7

||
1
-

B C
T T T ; T Rol If one of the conditions specified in Structure Mapping Rule
: : : H : H ule No. 3 No. 12 were applicable to structure A, the leading padding
\d be P .
0) 2 3 4 s s 7 06 7 ?Zlileo::-u d removed by inserting 0 dummy varicble as

DECLARE 1 A ALIGNED,
2 B DECIMAL FIXED (11),
2C,

The unused character varioble PAD now occupies byte 0 so
that the requirements of Rule No. 12 are met.

Application of Structure Mapping Rule No. 10 Application of Structure Mapping Rule No. 12

Figure 50. Example of Structure Storage Mapping (Part 2 of 2)

Data Storage Mapping

Subroutine Storage Requirements

Three types of subroutines may be required
in a program:

1. Conversion subroutines.

2. Subroutines called by buiit-in func-
tion names, pseudo variables, and
other implied subroutine calls.

3. Subroutines called by I/O statements.

Conversion Subroutines

Conversicn subroutines are reguired in the
object program when certain conversions
are implicitly requested in the source
text. For example, the statements

DECLARE A FIXED BINARY, B FIXED, C
BINARY;

A =B+ C;

imply that B is to be converted to binary
float before being added to C, and that
the sum is to be converted to fixed binary
before being stored in a.

The 18 conversion subroutines (see
Aprendix A) can perform every kind of data
conversion permitted in the PL/I Subset
language. Appendix B lists all possitle
combinations of data conversion and shows
which subroutines are required to perform
such converstions. For instance, the conv-
ersion from numeric float to numeric fixed
decimal regquires subroutines 4, 5, and 12.
Subroutine 5 converts from numeric float
to an internal intermediate form. Subrou-
tine U4 converts from this internal inter-
mediate form to coded fixed. decimal. Sub-
routine 12 converts from coded fixed
decimal to nuweric fixed decimal.

Note: In some cases it may happen that no
subroutine is used at object time although
the condition for its inclusion was satis-
fied. 1In these cases, the user has over-
estimated his storage requirements.

Average Conversion Reguirements

A system used for scientific purposes will
normally use subroutines 1, 2, 7, 8, 9,
10, and possibly 17 and 18, with a total
storage requirement of approximately 2K
for an average program.

A system used for commercial purposes
will most likely use subroutines 11 and 12
with a total storage requirement of appro-
ximately .7K for an average program.

70

Built-in Functions, Pseudo-Variables, And
Other Implied Subroutine Calls

Certain built-in functions and pseudo-
variables require an object-time subrocu-
tine for proper functioning. Some of the
built-in functions only allow float argu-
ments. If an argument is not in this
form, it is converted before the subrou-
tine is activated.

The source text operator ** is an
implicit request for an éxponentiation
subroutine and, depending on the attri-
butes of the aryuments, six different sub-
routines could be required.

All information required for this type
of subroutines is listed in Appendix C.

Depending on the specific arguments,
some functions that are marked IL may or
may not require subroutines, For
instance, a fixed first argument in the
FIXED function would not require a subrou-
tine, whereas a float first argument most
probably would. However, the subroutine
used is a conversion subroutine rather
than a function subroutine.

The object-time subroutines are cata-
loged in the relocatable library. The
programmer can find the module name in the
entry-points column. If a module has more
than one entry point, the module name is
written first.

Note: For some mathematical functions,
the programmer may be interested in
details such as error statistics and
algorithms. For such details refer to the
SRL publication IBM System/360 Operating
System, PL/I Library Computational Subrou-
tines, Order No. GC28-6590. The DOS/TOS
PL/I compiler uses the same algorithms as
the 0S PL/I compiler. Where aprlicable,
the respective internal names of the 0S
PL/I compiler subroutines are given in
parentheses in the rightmost column of
Appendix C.

Special Note Regarding Compatibility

Certain built-in functions available in
the full PL/I language are not available
in the PL/I Subset language. Thus, if the
name of a user-written function procedure
happens tc be the same as that of an
unavailable built-in function, the user-
written function procedure is called if
the program was compiled by means of the
DOS/TCS PL/I compiler because the built-in

function of that name is not available.
However, if this program were compiled by
means of the 0S PL/I compiler, the built-
in function of that name -- which, in this
case, is available -- would be called.

For example:

A: PROCEDURE;

-

= REAL({(Y);

o B

END;

REAL is a function procedure. If this
procedure is compiled by means of the 0S
PL/I compiler, the built-in function REAL

is called. Therefore, user-written func-
tion procedures should be named in such a
manner as to avoid these complications.

Subroutines Called by I/0 Statements

Subroutines may be called by I/O source
statements for use at object time. The
library subroutines that may be called are
listed and described in Appendix D.

Care should be taken that any subrou-
tine called by an I/0 statement does not
itself contain an I/0 statement, a PUT/GET
STRING statement, or invoke anocther sub-
routine containing such a statement.

Subroutine Storage Regquirements 71

I/0 Storage Requirements

This section provides the information that
allows the user to determine the amount of
storage required for I/0 purposes at
object time, Object-time core storage is
required

1. as a function of the file declaration
itself, and

2. Dby library subroutines called by I/O
statements, such as GET, PUT, etc.

The library subroutines called Lky I/O
statements are listed in Appendix D.

File Declarations
Each file declaration requires four items:

1. Buffers (if required)
DTF table

Appendage

I0CS logic module

s Wi
0

a0

The first three items are unique to
each declaration. The fourth may ke used
by various file declarations.

BUFFERS

The number of buffers and the correspend-
ing storage requirements directly derive
from the file declaration.

For files other than REGIONAL or INDE-
XED, the buffer size is equal to the block
size specified in the F, V, or U option.
Thus, 80 bytes are required with the
option F(80). If, in addition, the option
BUFFERS(2) is used, the storage require-
ments for the buffers of this file are
doubled. The total storage required for
such files equals the sum of the storage
requirements for all buffers used for all
these files.

Note: No buffer auu;age is required if
the F or U option is used with unkuffered
files.

Additional buffer storage (8 * numker
of extents) is set aside for REGIONAL
files.

For REGIONAL(3) files the key length
must be added to the buffer length.

The buffer storage requirements for

indexed files can be calculated according
to the following formulas:

72

1. Indexed sequential inrut and update

2 11\.1
recsize+2* keyl

e
MAX(blocksize,keyl

blocked:
recs ize)

ngth+1i0
ength+1i0+

2. Indexed sequential output

blocksize+keylength+8+recsize
[+keylength if unblocked]

3. Indexed direct update

recsize [+keylength 1f unblocked]
{+ADDBUFF if specified]

[+MAX (8+keylengthtblocksize,
8+keylength+10+recsize) if ADDBUFF
not specifiedl]

[+ INDEXAREA if specifiedl

4, Indexed direct input

keylength+MAX (blocksize,10+recs ize)
[+INDEXAREA if specifiedl]

DTF TABLE

The DTF (Define The File) table is
required for each declaration. The func-
ion of the DIF table is ({(together with

tne appendage) to allow communication
between the object prograr produced from
I/0 source statements and the DTF program.
The DTF program in turn comrmunicates with
the operating system for physical device
control.

The DTF table has a fixed length for
each I/0 device type. Figure 51 shows the
storage requirements for the individual
DTF tables.

The number of DTF tables is equal to
the number of files. The total storage
required for all DTF tables is, therefore,
equal to the sum of their individual
storage requirements. Thus, an object
program using three printers and five buf-
fered, blocked-record, magnetic tape files
would require

3 x 48 + 5 x 112 = 704 bytes of storage

for DTF tables.

A DTFCD table is generated for each
card device. Figure 52 shows the PL/I
attributes and the corresponding DTFCD
parameters.

r L) 1 r T
|Declaration | Storage Requirements | |PL/TI ATTRIBUTES | DTFCD PARAMETERST
ISpecified by Filej in Bytes | 3 - - + .
b } 1 |Blocksize in F option | BLKSIZE |
|card dev. INPUT | 56 l t + 4
| Card dev. OUTPUT | 48 | |Logical device address |DEVADDR |
j 2540, 0UTPUT | 136 | |in MEDIUM option | 1
12520,0U0TPOT i 56 | I . + .|
F-—- 4 i |Dev. type in MEDIUM opt.| |
| Printer | ug | | 2540 | DEVICE=2540 |
} + i | 1442 | DEVICE=1442 |
| Unbuffered | { | 2520 | DEVICE=2520]
| magnetic tage | 48 | | 2501 |DEVICE=2501 |
F + T T i b + i
| Magnetic tape, 1 | | | |Function attribute] ;
:gtheg thgzhuzguf-E } ‘ } } INPUT :TYPEFILE=INPUT |
ered, wi e ECFACDR |
|option | INPUT| OUTPUT | UPDATE] | OUTPUT | TYPEFLE=OUTPUT |
} . f 11 i Ton T ? l LSSELECT=2 i
- [3 T 1
i v | 128 | 120 | - |F (blocksize) | RECFORM=FIXUNB |
| u {112 | 104 | - b-- + 4
p=—-- + $ 4 4 | BUFFERS option | {
IR L e | | | Meme doen |
wi - RE,
| without VERIFY | 216 | 216 | 216 | | {ICAREA2 |
b + § + 1 | TOREG=(2) |
|Regional (3)* | | | | t + 4
jwith VERIFY 1 - | 328 } 336 | {2540, - OUTPUT { CRDERR=RETRY I
without VERIFY 216 288 288 - + |
L ' i i : i 4 tControl character for T]
jIndexed direct* | 300 | - | 556%%| |RECORD I/C] |
|with INDEXAREA* | 324 | - | 580%*| I CTLASA]CTLCHR=ASA |
| Indexed | 1 | | | CTL360 | CTLCHR=YES i
{ sequential# | 284 | 252 | 284 | L L -4
| ot . cont " | - éd ae } Figure 52. PL/Q.Attributes and Corres-
| Note: X extentnumber mus e adde o ponding DTFCD Parameters
| all values given for indexed files |
b " - T- T T i r T - 1
|Consecutive disk#¥| | ! |PL/I ATTRIRBUTES | DTFPR PARAMETERS| |
| Unbuffered | 152 | 152 | 152 | F ' + |
| F] 136 | 160 | 160 | |Blocksize im F option | BLKSIZE |
i v | 152 | 176 | 192 | ¢ + {
| U | 152 | 168 | 192 | |Logical device address |DEVADDR |
b ' + + } { {in MEDIUM option | |
| DTFDI | 240 | 240 | 240 | b - } |
t * Not itted ; Tosl * i }Dev. fzgg 0 MEDLON opt.}D I 1403 {
ot permitte or . EVICE=
| **¥ Add keylength to this value. | | 1404 |DEVICE=1404 |
L J 1 1443 |DEVICE=14i3 i
Figure 51. Storage Requirements for DTF | 1445 |DEVICE=1445 |
Tables b 4 {
|F (blocksize) | RECFORM=FIXUNB |
—_— 1 y !
. T b
A DTFPR table is generated for each |BUFFERS Cption | |
printer. Figure 53 shows the PL/I attri- I BUFFERS(1) | IOAREAL |
butes and the corresponding DTFPR | BUFFERS (2) | IOARREAL |
parameters. | | ICAREA2 i
| | IOREG=(2) |
A DTFMT table is generated for each S + 1
magnetic tape drive. Figure 54 shows the |USAGE attribute | |
PL/I attributes and the corresponding | STREAM | CTLCHR=ASA |
DTFMT parameters. | RECORD | PRINTOV=YES)
| CTLASA | CTLCHR=ASA |
A DTFSD table is generated for each i CTL360 | CPLCHR=YES |
disk file with the CONSECUTIVE option. L L -4
FPigure 55 shows the PL/I attributes and Figure 53. PL/I Attributes and Corres-

the corresponding DTFSD parameters.

ponding DTFPR Parameters

I/0 Storage Requirements 73

r T -1 r T 1
{PL/I ATTRIBUTES iDTFMT PARAMETERS| |PL/1I ATTRIBUTES | DTFSD PARAMETERS|
b fo———m o { t + 4
|Blocksize in F, | BLKSIZE i |Blocksize in F, | BLKSIZE |
v, U opticn i i iV, U option | |
t -+ i t + -1
|Recsize in F option |RECSIZE | |Recsize in F option |RECSIZE |
t + i s + 1
|Logical device address jDEVADDR ! IDevice type in {BEVICE= 23i1l

|in MEDIUM option |] |MEDIUM option 1 2314 |
3 + i i ! 2321 !
! F, V. U OPti0!1 ll i 'f + == ‘I
| | | |F, V., U option | |
i | | i | |
F (blocksize)	RECFORM=FIXUNB	I F (blocksize)	RECFORM=FIXUNB	
F (blocksize,	RECFORM=FIXBLK		(blocksize,	RECFORM=FIXBLK
recsize)	IOREG= (2)	} recsize)	ICREG=(2)	
V (maxblocksize)	RECFORM=VARBLK		V (maxblocksize)	RECFORM=VARBLK
I	IOREG= (2) I		ICREG=(2)	
U (maxblocksize)	RECFORM=UNDEF !	U (maxblocksize) iRECFORM UNDEF 1		
r i - 1 b= o + {				
BUFFERS option			BUFFERS option	
[i			
	[BUFFERS(1)	IoAREAL i	
] BUFFERS (1)	IOAREA1L		BUFFERS (2)	IORREAL [
BUFFERS(2)	IOAREAL			ICAREA2
]	IORREA2			IOREG= (2)
1 { IOREG={2) i s + {				
} + ———————————e 4	Function attribute			
Function attribute				
			INPUT	TYPEFLE=INPUT
i				EOFADDR
] INPOT	TYPEFLE=INPUT	i OQUTPUT	TYPEFLE=OUTPUT	
I	EOFADDR		UPDATE	TYPEFLE=INPUT
i OUTPUT	TYPEFLE=OUTPUT			UPDATE=YES
i INPUT	TYPEFLE=WORK i]	ECFACDR		
] } UNBUFFERED]	i i INPUT	TYPEFLE=WORK [
] OUTPUT	EOFADDR I) UNBUFFERED	DELETFL=NO	
t - fo e X i OUTPUT i EOFADDR I				
V (maxblocksize) OUTPUT [VARBLD (3	i UPDATE UNBUFFERED	EOFADDR		
b + 1 ¢ : —				
INPUT, V and F	WLRERR		V (maxblocksize) OUTPUT	VARBLD—(3) i
not UNBRUFFERED		3 - 4		
b= + -	VERIFY	VERIFY—YES I		
BACKWARDS	READ=BACK	- $ -4		
k + 1	- - -	ERROPT=Library		
LEAVE	REWIND=NORWD			routine
t 1 1 t-- 1
iNOLABEL option | | IINPUT or UPDATE, F and VIWLRERR]
i { I 3 i
i NOLABEL | FILABL=NO | | U, other than UNBUFFEREDlRECSIZE=('-I) |
i without NOLABEL | FILABL=STD | L 1 4
k-~ + 4

|U option, BACKWARDS | IOREG=(2) | Figure 55. PL/I Attributes and Corres-

v + 9 ponding DTFSD Parameters

| INPUT | ERROPT=Library |

| | routine |

p=———- + -_— —————q DTF APPENDAGE

| U, other than UNBUFFERED‘RECSIZJ:.-) |

e R 4 The DTF appendage, like the DTF table,

Figure 54.

PL/I Attributes and Corres-

pcnding DTFMT Parameters

A DTFDA takle is generated for each
disk file with the REGIONAL option.
Figure 56 shows the PL/I attributes and
the corresponding DTFDA parameters.

~d
4=

consists of information derived from the
It also allows communi-

file declaration.

cation between the object program produced
from I/0 source statements and the DTF

program.

declaraticn

The length of the aprendage is
exclusively determined by the presence of
a single attribute or option.

If the

1. contains the INDEXED option, the
appendage length is 40 bytes;

2. contains the REGIONAL option, the
appendage length is 56 bytes;

3. contains the BUFFERED, STREAM, or UPD-
ATE attribute, the appendage length is
24 bytes;

4. contains the PRINT attribute or is for
SYSLST, the appendage length is 32
bytes;

5. does not apply to one of the file
types listed under items 1 through &,
the appendage length is 16 bytes.

The number of appendages is equal to
the number of files. The total storage
required for appendages is equal to the
sum of their individual storage
requirements.

r T
|PL/T ATTRIBUTES |DTFDA PARAMETERS
L 1
T T
|Blocksize in ¥ option | BLKSIZE
b ¢ -
|Device type in |DEVICE= 2311
|MEDIUM option | 2314
| i 2321
F ’ +
|F (blocksize) | RECFORM=FIXUNB
[1
r 1
| BUFFERS (1) | IOAREAL
t +
|

| Function attribute and.
organization option}
INPUT, REGIONAL(1l) |TYPEFLE=INPUT
| READID=YES
OUTPUT, REGIONAL(1l) |TYPEFLE=OUTPUT
| NRITEID=YES
UPDATE, REGIONAL(1) |TYPEFLE=INPUT
| READID=YES
| NRITEID=YES
INPUT, REGIONAL{(3) |TYPEFLE=INPUT
| READKEY=YES
| KEYARG
{KEYLEN
OUTPUT, REGIONAL(3)|TYPEFLE=QUTPUT
|AFTER=YES
| KEYLEN
UPDATE, REGIONAL(3)|TYPEFLE=INPUT
| READYKEY=YES
| WRITEKY=YES
| KEYARG
| KEYLEN
| AFTER=YES
1

T
VERIFY | VERIFY=YES
1

}
| SEEKADDR

| ERRBYTE

| XTNTXIT=IJKTXRM
| CONTROL=YES

L

b e s s et st e el S d— — —— — — — o —— — —— — — — — —— — s v, 2 o s, it e, et et s . s et b s it o, s

[R s S . g — A . " — g e g, S e, S s S s W e et S s o

PL/I Attributes and Corres-
ponding DTFDA Parameters

Figure 56.

[} T 1
{PL/T | i
|ATTRIBUTES |DTFIS PARAMETERS |
t + i
| INPUT | TYPEFLE=SEQNTL |
| SEQUENTIAL or |ICAREAS 1
	IOREG=(2)
	ICROUT=RETRVE
	KEYARG?
k= 1 4	
INPUT DIRECT	TYPEFLE=RANDOM
{ IOAREAR]	
	ICREG=(2)
	ICROUT=RETRVE
	KEYARG (separate)
t + 1	
{OUTPUT	IOAREAL I
SEQUENTIAL	WORKL {(only if blocked)
	IOROUT=LCAD I
¢ t -	
UPDATE DIRECT	TYPEFLE=RANDOM
I	IOAREALZ, * 1
i	WORKL* I
	ICAREAR?
	IOREG=(2)
i { IOROUT=ADDRTR]	
	KEYARGY, 3 1
e 4 i	
Device type	DEVICE=2311, 2314, or 2321}
F Ot .	
VERIFY or	
{device	VERIFY=YES [
type = 2321]
t f - 4	
F(a)	RECFORM=FIXUNB
F(a,b)	RECFORM=FIXRLK
i	NRECDS
	RECSIZE
% 4 — {	
KEYLENGTH	KEYLEN
OFLTRACKS	CYLOFL
INDEXMULTIPLE	MSTIND=YES
EXTENTNUMBER	DSKXTNT
KEYLOC	KEYLOC l
INDEXAREA	INDAREA
{	INDSIZE
	INDSKIP i
ADDBUFF	IOSIZE
JHIGRINDEX 2311	HINDEX=n
2314	
2321}	
F ¢ —	
* Separate for blocked	
2 ICAREAL and IOAREAR may be one and the	
same area	
2 Same as WORKL if unblccked	
* ADD separate	
! |
L _ ———d
Figure 57. PL/I Attributes and Corres-

ponding DTFIS Parameters
A DTFIS table is generated for each
disk file with the INDEXED option. Figure
57 shows the PL/I attributes and the
corresponding DTFIS parameters.

I/0 Storage Requirements 75

A DTFDI takle is generated for Stream
files or buffered Record files if

1. the logical address specifies SYSIPT,

required for each module is stated in

bytes.

r T - H —======3
SYSLST, or SY¥SPCH in the MEDIUM | card | Cne Buffer | Two Buffers i
option, I t T + T 1
| Files | Input | Output] Input | Output |
2. records are of fixed length and F + + + -+ -1
unblocked, and the record size (n) is i 2540 | 96 i 192 | 128 | 216 |
t 4 : + 4 1
not greater than 80 for SYSIPT | 1442 | 100 | 74 i 132 | i16 |
rct greater than 81 for SYSPCH s + + + 4
ot greater than 121 for SYSLST and | 2520 | 96 | 80 i 128 | 124
- b H t + $ {
3. for output files either | 2501 | 96 | -- | 128 | - |
L L L 1 1 4
CTLASA (RECORD OUTPUT files) or
PRINT (STREAM OUTPUT files) Figure 59. IOCS Logic Modules for Card
Reading and Punching Devices
is specified,
13 1
Figure 58 shows the PL/I attrilbutes and i Printer Files i
the corresponding DTFDI parameters. } T 4
| STREAM I RECORD |
r T 1 b= T % T .|
| PL/I ATTRIBUTES | DTFDI PARAMETERS | |1 Buffer |2 Buffers |1 Buffer |2 Buffers |
[N 1 d 1 4 4 4 1
T 1 1 r T L [-1
| Device address in i | | 196 | 220 | 118 | 152 |
| MEDIUM option | DEVADDR=SYSxxx { L L L 4. 4
r -t 1
! BUFFERS(1) | IOAREAl | Figure 60, ICCS Logic Modules for
| BUFFERS(2) | IOARERA1 | Printers
i | IOAREA2 |
| | IOREG=(2) | r T T 1
b } -—q | | Buffered | Unbuffered |
| SYSIPT | EOFADDR=name | | F T 4 |
} { ERROPT=name | |Tape Files| F | U | V | |
| | WLRERR=name I b } } 4 -4
b ——— + i jBackwards | 738 | 556 | =-- | {
j Recsize in F option | RECSIZE=... | b $ + 4 4 318 |
e e 4 |All others| 690 | 564 | 762 | {
L L L L ——deme 4

PL/I Attributes and Corres-
ponding DTFDI Parameters

Figure 58.

I0Cs LOGIC MODULE

The IOCS logic module uses the information
obtained from the DTF table and the appen-
dage, to communicate between the object
program and the DOS/TOS control program.
Different IOCS logic modules are used
depending on the options and attributes
specified in the file declaration. Files
having the same options and attributes use
the same IOCS logic module. For instance,
any number of file declarations, each of
which refers to a double-buffered input
file using a 2540 card reader, would gen-
erate a requirement for one single IOCS
logic module only.

The device type is the principal factor
in determining which IOCS logic module is
to be used. 1In Figures 59 through 64, the
individual modules are therefore grouped
according to device types. The storage

76

Figure 6i. IOCS Logic Modules for Magnet-

ic Tape Units

If both BACKWARDS and non-BACKWARDS
modules are used in the same program, only
the BACKWARDS module is included.

r T S T 1
| | Consecutive {Regional |
|Disk ¢ + 1
|Files |Un- H T
| |buffered | Buffered | | |
I | t T T ! | |
| I [71 v | Uy 11 3]
F—- + --—+ + + + +-———1
JInput | 682 | 546} 746] 618| 392| 392
F t + + + + + 1
|Output| 682 | 57411166 730| 392| 696]
b= + + + + + +--—-1
|Update| 722 | 910]1255[1062| 392| 696}
| R—— 4 L i L L Y S |
Figure 62. IOCS Logic Modules for Disk

Units (other than INDEXED
Files)

r T T T 1
| Disk | Input{Output| Update |
| | | T i
| Indexed Files | | | Blocked| Unbl. |
[[l 1 4 4 {
I T T T T

Sequential	1086] 803	1086	1086	
Direct	99%0	--	2948	2752
with INDEXAREA	1138	--	3162 [2966	
with ADDBUFF	-1 --	3220 [2936		
L L 1 L L J

Figure 63. IOCS Logic Modules for Disk
Units (INDEXED Files)

r T 1

{ |BUFFERS(1) BUFFERS(2) |

P + 1

| Input | 308 368 |

| Output | 643 723 |

L L J

Figure 64. IOCS Logic Module for DTFDI
Files

EXAMPLES

The following examples show the storage
requirements for buffers, DTF table,
appendage, and IOCS logic module.

DECLARE PUNCHF FILE OUTPUT ENVIRONMENT

(F(80) MEDIUM (SY¥SPCH, 2540));
Buffers 80 bytes
DTF table 136 bytes
Appendage 24 bytes
I0CS logic module 192 bytes
Total 432 bytes
Example 2

DECLARE PRINTF FILE STREAM OUTPUT PRINT
ENVIRONMENT (CONSECUTIVE F(121) BUFFERS
(1) MEDIUM (SYSLST, 2400));

Buffers 121 bytes
DTF table 240 bytes
Appendage 32 bytes
IOCS logic module 690 bytes
Total 1083 bytes
Example 3

DECLARE TAPEFF FILE RECORD UNBUFFERED
ENVIRONMENT (U(512) MEDIUM (SYS004,
LEAVE NOLABEL);

Buffers 0 bytes
DTF table 48 bytes
Appendage 16 bytes
I0CS logic module 318 bytes

Total 382 bytes

2400)

Example 4

DECLARE TAPEBF FILE RECCRD RACKWARDS
UNBUFFERED ENVIRONMENT (U(512) MEDIUM

(SYs004, 2400) LEAVE NOLABEL);
Buffers 0 bytes
DTF table 48 bytes
Appendage 16 bytes
IOCS logic module 318 bytes
Total 382 bytes
Example 5

DECLARE DISK1F FILE STREAM INPUT ENVIRON-

MENT (F(1739) BUFFERS (2) MEDIUM (SYsS001,
2311));

Buffers 3478 bytes

DTF table 136 bytes

Appendage 24 bytes

IOCS logic module 546 bytes

Total 4184 bytes

Example 6

DECLARE DSKF FILE RECORD UPDATE BUFFERED

ENVIRONMENT (F (1024, 256) BUFFERS (1)
MEDIUM (S¥S002, 2311));

Buffers 1024 bytes

DTF table 160 bytes

Appendage 24 bytes

I0CS logic module 910 bytes

Total 2118 bytes
Example 7

DECLARE DSKR3F FILE RECORD OUTPUT DIRECT

KEYED ENVIRONMENT (REGIONAL (3) F(800)
MEDIUM (S¥S003, 2311) KEYLENGTH (9))

Buffers 809 bytes

8x3 extents (default) 24 bytes

DTF table 288 bytes

Appendage 56 bytes

I0¢S logic module 696 bytes

Total 1873 bytes
Example 8

DECLARE DSKR1F FILE RECORD UPDATE DIRECT

KEYED ENVIRCNMENT (REGICNAL (1) F(600)

MEDIUM (SYs004, 2311));
Buffers 600 bytes
8x3 extents (default) 24 bytes
DTF table 216 bytes
Appendage 56 bytes
I0CS logic module 392 bytes
Total 1288 bytes

I/0 Storage Requirements

77

Example 9
DECLARE TAPERF FILE RECORD INPUT BUFFERED
ENVIRONMENT (vV(2048) BUFFERS (2) MEDIUM

oo n

{5YsG05, 240035,

Buffers 4096 bytes
DTF table 128 bytes
Appendage 24 bytes

I0CS logic module 762 bytes

Total 5010 bytes
Example 10:

DECLARE INDSQI FILE RECORD INPUT KEYED
ENVIRONMENT (F(800,80) MEDIUM (SYS011,
2314) INDEXED KEYLENGTH(10) EXTENTNUMBERI(
3) INDEXMULTIPLE KEYLOC(15));

Buffers 800 bytes
DTF table 296 bytes
Appendage 40 bytes

IOCS logic module 1086 bytes

Total 2222 bytes

Example 1l

DECLARE INDDUP FILE RECORD UPDATE DIRECT
KEYED ENVIRONMENT (F(800,80) MEDIUM
(SYsS012,2321) INDEXED KEYLENGTH(12) VERIFY
EXTENTNUMBER(2) OFLTRACKS(3) KEYLCC(23)
ADDBUFF(1688));

Buffers 1768 bytes
DTF table 576 bytes
Appendage 40 bytes
IC0CS lugic module 3220 bytes

Total 5604 bytes

78

Note: If all of the file declarations
shown in these examples were to appear in
the same program, the total storage
requirements would be less than the sum of
the individual storage requirements
because, in a few cases, different file
declarations would use the same IOCS logic
module.

System Units

SYSPRINT

The storage required for the DTF table,
appendage, and ICCS logic module for SYS-
PRINT is 416 bytes for TOS and 424 bytes
for DOS. 1If DOS5 aliows a 2311 as SYSLST,
688 bytes are required.

SYSIN

The storage required for the DTF table,
appendage, and IOCS logic module is 192
bytes for TCS and 216 bytes for DOS. If
DOS allows a 2311 as SYSIPT, 408 bytes are
required.

Note: If SYSIN and SYSPRINT are used in
one program, the storage required for both
is 568 bytes for TOS and 600 for DCS. The
storage reguirement is 920 bytes for DOS
if a 2311, 2314, or 2319 is permitted for
SYSIPT or SYSLST.

Object-program overhead derives from the
following two sources:

1. The DOS/TOS Supervisor, the size of
which is installation-dependent.

2. The general PL/I overhead area, which
exists as a function of the PL/I
source text. This area comprises the
following four parts:

a. The static storage area.

b. The dynamic storage area.
c. The block prologue.

d. The PL/I control module.

Static Storage Area

Static storage is required by the seven
items listed below. (Note that internal
blocks require only the static storage
listed under items 5 - 7.)

1. A constant basis of 132 bytes.

2. 2All variables in any block declared
with the attribute STATIC.

3. Constants used in the source text.

4, Four bytes for

a. each library sukroutine explicitly
or implicitly used in the source
text;

b. each reference to a procedure that
is external to the procedure under
construction; and

c. each distinct data item contained
in any block and declared with the
attribute EXTERNAL.

5. A communications area of 4 bytes.

6. An entry table with a minimum length
of 4 bytes. If the block is a proce-
dure, an additional entry of 4 bytes
is made fcr each ENTRY statement in
the block.

7. BAn entry of 8 bytes is made for the
occurrence of each different condition
in any ON statement internal to the
block.

Since items 1, 5, and 6 are always
required, the minimum static storage area
required is 140 bytes, even for the most
trivial procedure. For example,

A: PROCEDURE OPTIONS (MAIN);
END;

Program Overhead

Examples of Calculating Static Storage
Requirements

The following procedure:

A: PRCCEDURE CPTIONS (MAIN);
DECLARE B FIXED BINARY STATIC;
C: PROCEDURE;

D: ENTRY;
RETURN;
END;
E: BEGIN;
DECLARE I STATIC;
I=1101B;
END;
F: ENTRY;
END;

consists of the blocks &, C, and E. The
static storage requirements of the indivi-
dual blocks are discussed in terms of the
items 1 through 7 listed above.

Block A

1. 132-byte kasis 132 bytes

2. Two variaktles with the STATIC
attribute 8 bytes

3. One constant 4 bytes

4. Communications area 4 bytes

5. Entry table of 4 bytes minimum

plus 4 bytes for entry point F 8 bytes

TOTAL 156 bytes

Block C

1. Communications area 4 bytes

2. Entry table 8 bytes
TCTAL 12 bytes

Block E

1. Communications area 4 bytes

2. Entry table 4 bytes

TOTAL 8 bytes

Consider another external procedure A
that contains no other blocks. It uses
400 bytes of static data storage
(variables and constants). It requires
five library subroutines explicitly and
three library subroutines implicitly.

Program Cverhead 79

Three procedures external to A are
referred to in procedure A. Six variables
are declared with the attribute EXTERNAL.
The procedure has seven secondary entry
noints and contains six ON statements, of
which four have differing conditions.
External procedure A would require the
following static storage:

1. 132-byte basis 132 bytes
2. STATIC variables
400 bytes

3. Constants
4., a. 8 library subroutines 32 bytes

b. 3 procedures external to A 12 bytes

c. 6 EXTERNAL variables 24 bytes
5. Communications area 4 bytes
5. Entry table ' 32 bytes
7. Four ON statements with

differing conditions 32 bytes

TOTAL 668 bytes

Finally, consider a third external pro-
cedure W that contains two other proce-
dures, X and Y. Procedure Y contains a
BEGIN block 2.

W uses 400 bytes of static data
storage, X and Y each use 100, and Z uses
200 bytes. Procedure W requires 3 library
subroutines, X requires 2, Y requires 5,
and Z requires 13. The library subrou-
tines used in bleocks W, X, and Y are all
different. The 13 subroutines used by Z
comprise 3 that are reguired by other
blocks. No procedure external to W is
referred to, and there is no EXTERNAL
data. Procedure W has 5 ENTRY statements,
X has 2, and Y has 3. There are no ON
statements in W, 2 ON statements with
identical conditions in X, 3 ON statements
with differing conditions in Y, and no ON
statement in Z.

The static storage requirements for the
individual blocks are as follows:
-byte basis 132 bytes

2. STATIC variables

800 bytes
3. Constants
4. A total of 20 library 80 bytes
subroutines
5. Communications area 4 bytes
6. Entry table 24 bytes
TOTAL 1040 bytes

g0

Block X

1. Communications area 4 bytes

2. Entry table 12 bytes

3. One ON statement 8 bytes
TOTAL 24 bytes

Block Y

1. Communications area 4 bytes

2. Entry table 16 bytes

3. Three differing ON ccnditions 24 bytes

TOTAL 4y bytes

1. Communications area 4 bytes
2. Entry table 4 bytes
TOTAL 8 bytes

The total static storage required by
external procedure W thus amounts to
1040 + 24 + 44 + 8 = 1116 bytes.

Dynamic Storage Area

Each blocks has its own dynamic storage
area. The dynamic storage area is zero
when the block is not active. The length
of the dynamic storage area when the block
is active is determined by the following
five items:

1. Data with the attribute AUTOMATIC,
either declared or by default.

2. A communications area of 80 bytes.

er to be transmitted to this block.

4. Working storage area I:

This area is used to store intermedi-
ate results of arithmetic expressions.
The length of this area is a function
of the complexity of the source text.
For a program with arithmetic data
only, the average length of this area
is approximately 36 bytes. However,
if the expressions contain character
strings, the length increases with the
length of the character strings.

5. Working storage area II:

This area is used to store expressions
contained in DO loops. DO statements
may be of either one of the following
three forms:

a. DO var=expr-1,expr-2,...,expr-n;
For such DO statements, the expre-
ssions are developed and stored
directly in the variable so that
no additional storage is required.

b. DO var=expr-1 TO expr-2; or
DO variable=expr-1 BY expr-2;

16 bytes are required for each DO
statement of this form, regardless
of the number of iteration speci-
fications in each statement.

TO BY
expr-2 expr-3;
BY TO

c. DO var=z=expr-1

24 bytes are required for each DO

statement of this form, regardless
of the number of iteration speci-

fications in -each statement.

The information required to determine
which iteration specification is being
operated upon is also stored in work-
ing storage area II. Each DO state-
ment with more than one iteration spe-
cification requires additional bytes
to service all iteration specifica-
tions. Thus, each DO statement
requires zero, 16, or 24 bytes for
storing expressions within iteration
specifications, plus 8 bytes if there
is more than one iteration specifica-
tion for the DO statement.

Example of Calculating Dynamic Storage
Requirements '

Assume a procedure consists of the extern-
al procedure A, which contains the intern-
al procedures B and C. Internal procedure
C contains the BEGIN block D. A and B
each have 400 bytes of AUTOMATIC data, C
has 200, and D has 100 bytes of AUTOMATIC
data. Procedures A, B, and C have only
one entry point (their primary entry
point), and each procedure has a list of
five parameters. Only coded arithmetic
data is used. The dynamic storage
requirements of tne individual blocks are
then as follows:

Block A ;

1. Data 400 bytes
2. Communications area 80 bytes
3. Parameter storage 20 bytes
“. Working storage area I, 36 bytes
5. Working storage area II (de- 96 bytes

pends on complexity of DQ's)

TOTAL 632 bytes

Block B
1. Data 400 bytes
2. Communications area 80 bytes
3. Parameter storage 20 bytes
4. Working storage area I, 36 bytes
approx.
5. Working storage area II, 32 bytes
approx.
TOTAL 568 bytes
Block €
1. Data 200 bytes
2. Commanications area 80 bytes
3. Parameter storage 20 bytes
4. Working storage area I, 36 bytes
approx.
TOTAL 336 bytes
Block D
1. Data 1060 bytes
2. Communications area 80 bytes
3. Working storage area I, 36 bytes
approx.
4. Working storage area II, 32 bytes
approx.
TOTAL 248 bytes

The total requirement for dynamic
storage at a given moment depends on which
blocks are simultaneously active. The
total storage required is the sum of the
dynamic storage areas for the active
blocks. In the above exanple, this is a
minimum of 632 Lkytes. If all blocks are
active simultaneously, the dynamic storage
requirements amount to 1784 bytes.

The Block Prologue

The prologue is a set of instructions
generated for a PROCEDURE, ENTRY, or BEGIN
statement. The generated instructions
vary depending on the statement. The
minimum prologue is 52 bytes. The maximum
is approximately 140 bytes. The minimum
prologue is used whenever the block is a
BEGIN block. In all other cases, the
average is approximately 60 bytes per pro-
logue. A secondary entry point with 12
arguments results in the maximum of 140
bytes.

Program Overhead 81

The PL/I Control Routine

The PL/I control routine is a library sub-
routine, which is always required in
storage for PL/1 programs. It is respons-
ible for the interaction of the individual
PL/1I program components. Some of its
functions are listed below:

1. Dynamic storage aliocation.

2. Hardware interrupt servicing.

3. Handling of ON conditions.

4. Conscructing diagnostic messages.

5. Terminating execution.

82

6. Transmitting communications informa-
tion from block to block.

7. Providing library work space.

The PL/I control routine is fixed in
length (approximately 1500 bytes) and is
present only once in a PL/I program,
regardless of the complexity of blocking
structures, the number c¢f external proce-
dures, and depth of overlaying.

Note: In the discussion of the program
overhead, it was shown where the STATIC
and AUTOMATIC data will be. 1In all furth-
er references, the term "overhead" is used
for the actual overhead without data and

After having estimated the storage
requirements of (1) data, (2) library sub-
routines, (3) file declarations, and (&)
overhead contained in the program, the
user can determine what part of the total
storage capacity is left for the remaining
part of the program. The remaining part
mainly consists of (1) in-line instruc-
tions produced directly from the source
text and (2) calling sequences to subrou-
tines for those operations that cannot be
done in line.

What instructions are produced from the
source text can be shown by a simple
example.

DECLARE A FIXED DECIMAL;

A =B *C+ D;

The instructions produced from the assign-
ment statement might be as follows:

. In-line instruction to load B into
some register.

. In-line instruction to multiply C
(floating-point multiplication) with
the contents of this register.

o In-line instruction to add D
(floating-point) to the contents of
this register.

. Calling sequence(s) to convert the
contents of this register to fixed
decimal form.

. In-line instruction to store the
result in A.

Calling sequences can be avoided in
some cases, €.9., in the example shown
akove by giving A the attributes FLOAT
DECIMAL instead of FIXED DECIMAL. To save
storage, the user should, therefore, write
his programs in such a manner as to avoid
unnecessary calling seguences.

The above example shows that a series
of instructions is generated for a single
PL/I statement. The number of generated
instructions depends on the form and com-
plexity of the respective statement. The
number of instructions generated for a
source-text DO statement, for instance,
depends on the complexity of the expre-

Source Text And Object Program

ssions within an iteration specification,
the number of options chosen, and the
number of iteration specifications.
However, the following average values can
be assumed:

1. In a purely scientific environment,
the average PL/I source statement
generates ten 4-byte instructions.

2. In a purely commercial environment,
the average PL/I source statement
generates seven U-byte instructions.

3. These average values are considerably
increased by an excessive use of con-
versions of tase or scale and GET and
PUT statements in either scientific or
commercial environments.

4. Parameters as well as BASED and
EXTERNAL data require 4 bytes in addi-
tion to the storage reguirements of
the data item.

Thus, if 5000 bytes are available for
the object program, the user may assume
that approximately 125 PL/I statements
(scientific environment) or 178 PL/I sta-
tements (commercial envircnment) can be
accommodated in this area. If the program
exceeds this number of statements, the
user must either shorten the function of
the program or use the overlay feature.
(Refer to the section Qverlay.)

Note: If listing of source-program state-
ment numbers in case of execution-time
errors is requested (by specifying STMT in
the PL/I PROCESS card), the additional
storage requirements are 4 bytes for each
time the statement number appears in the
object-program listing.

Problem Analysis Example

A tape system that has a storage caracity
of 16K is used for maintaining files. The
problem program consists of 3 phases.
Phase 1 reads transaction cards (one 80-
column card per transaction) and sorts,
edits, and writes the contents of these
transaction cards on a magnetic tape file.
Phase 2 reads the cld master file, a tran-
saction card, and writes a new master file
record. Both of these operations involve
magnetic tapes for o0ld and new master
records. An exception report is written,
if necessary, on a fourth magnetic tape.
Phase 3 takes the excepticn file and pre-
pares it with appropriate headings.

Source Text and Cbject Program 83

In the following example, only the
storage reguirements for phase 2 are
examined.

FILE DESCRIPTION

0ld Master File: Unblocked, 320-character
records of fixed length.

New Master File: OUnblocked, 320-character

records of fiwed length.

Transaction File. Unblocked 80-character
records of fixed length.

Exception File: Unblocked 100-character
records of fixed length.

DATA ASSUMPTIONS

Due to the requiremeénts of temporary
storage, arithmetic statements, etc., 50
variables and constants are used in addi-
tion to the data read from and written
into files. All data is describable in
terms of pictures and character strings;
no data is read or written in packed mode.

OTHER ASSUMPTIONS
1. Each file has only one buffer.

2. The data is processed in its respec-
tive buffer by use of the READ SET or
LOCATE SET statements.

3. The program can be written in one
block.

4. The problem does not necessitate
inter-phase communication.

5. 1If conversions from numeric fixed to
coded fixed become excessive, the user
will convert the data items once and
use the coded fixed form for subse-
quent computations.

Storage Requirements
The storage requirements are as follows:
1. Data

a. Data read from, or written into,
files are accounted for in

buffers.
b. 30 variables (XXXX.XX) 120 bytes
20 constants (XXX.XX) 60 bytes

c. Descriptors approximately 150 bytes

TOTAL approx. 330_bytes

o
£

2. Non-I/C Subroutines

Numbers 11 and 12

TOTAL 640 bytes

3. File Descriptions

a. Buffers - 820 bytes
b. DTF tables - 368 bytes
c. Appendages - 96 bytes
d. IOCS logic modules - 690 bytes

TOTAL 1974 bytes

4. I/0 Subroutines

Number 6
TOTAL 652 bytes

S. Qverhead
a. Static - approx. 160 bytes
b. Dynamic - approx. 150 bytes
C. Prologue - approx. 60 bytes
d. PL/I control - approx. 1500 bytes
TOTAL arprox. 1870 bytes

6. DOS/TCS Control Program

approx. 6150 bytes

GRAND TOTAL arrrox. 11,616 bytes

This means that approximately 4,770
bytes of storage are available for the
actual program, so that the approximate
number of PL/I statements that would fit
into storage is 160.

After having programmed the problem,
the user would determine whether or not he
can change the buffering to allow for
faster transaction processing. If the
data read and/ox written are changed into
packed form, the buffer requirements are
reduced, and the non-1/C subroutines of
640 bytes would not be required. This
would allow for approximately 30 addition-
al PL/I statements.

If certain parts of an object program are
not reguired in storage throughout its
execution and never simultaneously
required in storage, the same storage area
can be used to store these parts to reduce
the overall requirements of the program.

Each part of the program that will
reside in storage only for a fraction of
the execution time is referred to as an
overlay. The MAIN procedure must not be
used as an overlay. Each overlay as well
as any portion of the program that resides
in storage throughout the execution is
referred to as a phase. A phase consists
of one or more external procedures.

The PL/I subset does not provide direct
overlay facilities. However, overlays can
be performed by using the library subrou-
tine OVERLAY that provides a link to the
operating system which, in turn, loads the
actual overlay. (Refer to the SRL publi-
cations describing the DOS/TOS control and
service programs.) The statement calling
the overlay must be coded as follows:

[label:] ... CALL OVERLAY
(character string expression - max.
length 8)
For example, LINK: CALL OVERLAY
(*PHASES*);

The overlay call activates the OVERLAY
subroutine and transmits the name .of the
phase to be fetched to the control pro-
gram. The control program locates this
phase on the external medium. The phase
is then loaded into storage. It must not
overlay the fetching procedure. Finally,
control is returned to the fetching
procedure.

Rules For Using Overlay

The following 17 rules should be observed
when using overlay calls:

1. &after the phase has been entered in
storage, it must be activated Ly means
of a call to the procedure name or any
of its entry points.

2. The phase name is independent of the
procedure name. It is assigned by
means of a PHASE card during proces-~
sing by the Linkage Editor.

3. & fetching phase (i.e., a phase acti-
vating an overlay) may have been

4.

io0.

11.

Overlay

fetched into storage by a preceding
fetching phase. A series of succes-
sive fetching phases is referred to as
a tree structure (see Figure 65). The
principal fetching phase of a tree
structure is referred to as the root.
A phase within the tree structure
which is not a fetching phase is
referred to as a leaf.

A fetching phase may fetch any phase
lower than itself in the tree struc-
ture, provided the fetched phase is on
the same kranch as the fetching phase.

If a phase fetches a phase more than
one level below it, an empty space is
left in storage for each phase between
the fetching and the fetched rhase.

The root cannot be overlaid. It
resides in storage throughout the
execution of the problem program.

A phase may be activated at any time
after it has been fetched, provided it
has not been destroyed.

Fetching a phase already fetched into
storage causes a new copy of that
phase to be fetched into storage. All
variables of that phase which are in
static storage have no known value.

Data to be known in more than one
phase may be given the EXTERNAL attri-
bute or be transmitted through argu-
ment lists of the CALL statement.
External names that are to be common
to more than one phase below the rooct
level must be declared to be external
both in the affected rhases and in the
root. For larger volumes of data, the
use of the EXTERNAL attribute general-
ly requires less storage than argument
transmission. Where the argument
names change, argument transmission is
normally more economical than giving
the data the EXTERNAL attribute.

External names of procedures to be
fetched must be unique (see Figure
65.)

A library subroutine is incorporated
in every phase in which it is used if

a. the subroutine is used in a proce-
dure rkelow the root level; and

b. that subroutine is not in the
root. The multiple appearance of

Overlay 85

the subroutine can be avoided by
incorporating it in the root
through the use of an INCLUDE sta-
tement during link-editing so that
it appears only in the root.

ROOT
T
1
A B
i 1 [1
c D E M N o
F G H 1
1]
J K L

Note : The ROOT phase may fetch any phase, A through O. Phase A

may fetch any phase, C through L.Phase B may fetch any phase,
M through O. Phase C may fetch phases F ond G. Phase E may
fetch any phase, H through L. Phase H may fetch phases J
through L. Phases D, M, N, O, F, G, I, J, K, and L are
leaves.

Figure 65. Schematic Representation of a
Tree Structure
Note: Care should be taken if relo-

12.

13.

86

catable modules that are not PL/I
library subroutines are to be included
into more than one phase by the auto-
link feature. For details, refer to
the SRL publications describing the
DOS/TOS system control and system ser-
vice programs.

If many phases from different Lranches
of the tree structure activate the
same procedure, this procedure may be
incorporated in the root in a manner
similar to the inclusion of subrou-
tines (see rule 11).

If (1) the declaration of a file is
made internal to some phase which is
not the root,., (2) this file is opened
in this phase, and {(3) the phase is
about to be overlaid with a phase from
another branch of the tree structure,
the user mrust close this file before
it is destroyed. This restriction
does not apply if the file is declared
both in the root and in a lower phase.

Note: 1If the PL/I standard files are
used (by a GET or PUT statement) in a
phase other than the root, these files
must either be used in the root phase,
too, or in a phase that will not ke

further overlaid. Another possibility

17.

is to include the corresponding
modules in the root by means of the
Linkage Editor control statements

INCLUDE IJKSYSA (for PUT)
INCLUDE IJKSYSI (for GET)

In all other cases, the standard files
cannot be closed, wil

and an error will
occur at End-of-Job.

anlQ

If the object-time diagnostic
are to include the numbers of
source statements causing the errors,
STMT must be specified in the PROCESS
card for at least the first external
procedure contained in the root phase.

messages
the

The time to find and transfer a phase
to core storage requires between 200
and 600 msec for DOS, depending on the
phase length. A 10K rhase, for
example, would require approximately
350 msec.

he time re 1

phase to core storage for TOS
depends on the physical location of
the phase on SYSLNK.

[V

Different modules to be included from
the relocatable library may be ident-
ical except for one or more additional
entry points in one of these modules.
If the module without the additional
entry point(s) is contained in the
root phase, calling of the module with
the entry pcint(s) in overlay rhases
will result in an error during
link-editing.

For instance, the PL/I library rou-
tines IJKTSTM and IJKTLCM have the
following entries:

r - T T 1
| Module Name | IJKTSTM | IJKTLCM |
L 4 1

k t + 1
Entry	IJKTSTM	IJKTSTM
Names	IJKISTN	IJKISTN
	IJKTSTR	IJKTSTR
		IJKTLCM
t - L] i J

(IJKTSTM is used for stream I/0,
IJKTLCM is used for stream I/O with
COLUMN or LINE.)

If IJKTSTM is contained in the root
phase, calling of IJKTLCM in an over-
lay phase will result in an error dur-
ing link-editing. To avoid such
errors, the module containing the
additional entry (IJKTLCM in this
case) must be included in the root
phase by means of an INCLUDE
statement.

Overlay Example

Assume that some program consists of one
external procedure, which is a single
block. Compilation of this procedure on a
system with a storage capacity of 16K pro-
duces an object program that requires 20K.
The storage requirements for the individu-
al parts of the program are as follows:

DOS/TOS control program - 6K
Overhead - 2K
Data - 2K
Subroutines including - 5K
logical IOCs

Object program - 5K

Actually, the program requires only 19K
under the assumption that 1K of data is
automatic and 1K is static. However, 20K
is required when the data is allocated.

In order to make the object program run
on a system with a storage capacity of
16K, it is segmented into 8 phases. The
root, which is located behind the DOS/TOS
control program, contains the MAIN proce-
dure and the subroutines. Thus, the root
pius the DOS/TOS control program may
require 11K plus the overhead and program
requirement of 2K, i.e., a total of 13K.
Since the PL/I control program is in the
root phase, the total overhead for the
non-root phases is approximately .5K.

This remaining overhead increases
slightly because there are now 8 separate
blocks, each of which with its own over-
head. The allotment of this remaining
overhead may result in .25K per block.

Due to these changes, the program logic
must be slightly changed and extended to
allow for the overlaying. This brings the
requirement for the object program to
about .7K per phase. Since each phase
requires less than 1K and the root plus
the control program requires 15K, the pro-
gram will now run on a system with a
storage capacity of 16K. The root will
fetch the first phase (named PHSE1l) and
activate it. Control is then returned to
the root, and the second phase (named
PHSE2) is fetched and activated. This
process is regeatéd until the eighth phase
has been executed. This completes the
processing of one block of input data, and
the process is then repeated. The names
of the procedures shown below are A for
the root and B1, B2,, B8 for the
phases.

A:PROCEDURE OPTIONS (MAIN);
DECLARE (data items) EXTERNAL;
ON ENDFILE (file-name) action;

BEGIN: CALL OVERLAY ('PHSE1l");
CaLL Bl;
CALL OVERLAY ('PHSE2');
CALL B2;

CALL OVERLAY (°'PHSE8');

CALL BS8;
GC TC BEGIN;
END

B5: PRCCEDURE;
DECLARE (data items) EXTERNAL;

. source text

RETURN;
END;

For DOS, the additional time required
per block of input data when using the
overlay feature is approximately 4
seconds. For TOS, the additional time
required depends on the number and order
of the phases. In the above example, the
time increase is about the same for DOS
and TOS.

Processing of Overlays by The Linkage
ditor

All phases of one program are processed by
the Linkage Editor programr in one single
job step. Therefore, only cne // EXEC
LNKEDT statement must be given for a
multi-phase program. Each rhase requires
one PHASE statement, which must immediate-
ly precede the input for this phase. The
ENTRY statement, if used, must be the last
statement in the input stream to be writ-
ten on SYSLNK. A multi-phase program must
contain -one external procedure with the
option MAIN. This external procedure must
appear in the physically first rphase,
i.e., in the root phase.

If programs that contain overlays are
to be processed by the Linkage Editor pro-
gram, a PHASE statement of either one of
the following three formats must be used:

1. PHASE phasename,RO0T
This format must be used for the root
phase. It must be the first PHASE
statement in the input stream.

2. PHASE phasename,*
This format of the PHASE statement
causes the subsequent phase to be
loaded beginning at the next double-
word boundary. The use of this state-
ment is recommended for the second
phase.

3. PHASE phasename,symbol

Symbol is either a previously-defined
phase name or an entry name appearing
in a previous phase (except in the
root phase). This format of the PHASE
statement causes the next phase to be
loaded beginning at the address of the
symbol.

The syntax rules for the PHASE state-
ment are as follows:

Overlay 87

1. A phase name must be from 5 to 8
characters long.

2. All phase names of a program must be
identical in their leftmost four
characters.

Ngte.
tures) must differ in the first four
characters of their phase names in

order to avoid incorrect storage
allocation.

3. The phase names must be identical to
the values of the character-string
expressions (except for blanks on the
right-hand side) that are used as
arguments in the OVERLAY statement.

When link-editing multiphase foreground

programs, the ACTION statement with the
operand Fl1 or FZ2 must be used because,
otherwise, the PHASE card for the first
phase could not have the ROOT operand.

The first three characters of the phase
names of a multiphase foreground program
should be FGP to have them retrieved fast-

er from the core-image library.

1
|7/ JOB MYOVLAY
|// OPTION LINK
| PHASE OVLAY1l,ROOT
|// EXEC PL/I
| RT:PROCEDURE OPTIONS (MAIN);
RU : ENTRY
1 CALL OVERLAY ('OVLAY2');

CALL OVERLAY ('OVLAY3');

\¥]

|

|

|

|

i R

3] CALL E;
| -

| END;
[/*

| INCLUDE JKLM
| PHASE OVLAY2,*
| INCLUDE
| deck XYZ
| /*

| PHASE OVLAY3,OVLAY2
| INCLUDE MYPROG

|// EXEC PL/I

| E:PROCEDURE;

|
|
|
|
|
|
i

END;

*

/
7 ENTRY RU
EXEC LNKEDT

/
8{// EXEC
&

\\\

I
I
|
I
I
|
I
I
I
i
|
|
i
|
[
{5
|
!
i
16
I+
I
I
|
I
|
I
|
I
b

e o et s e o (o . O i S i < S . e . oo, o o, . e S b . e, e i, i, e)

Sample Program to be Processed
by the Linkage Editor

Figure 66.

Figure 66 shows a sample program to be
processed by the Linkage Editor. The num-
bers at the left-hand margin are not part
of the coding; they serve as reference to
the explanations only.

88

Different programs (tree struc-

Explanation
1 Causes loading of phase CVLAY2.
2 Causes loading of phase CVLAY3.

3 Activates procedure E in phase OVLAY3.
It is assumed that phase OVLAY3 has
been loaded previously and has not been
destroyed, {(for example, by reloading
phase CVLAY2).

4 The module JKLM that is cataloged in
the relccatabkle library is to be used
in OVLAY2 and OVLAY5. Therefore, it is
included in the ROOT phase by an
INCLUDE statement.

5 This statement causes three actioms:

a. t signals that the input stream of

VIAY1l is terminated.

Cr =~

b. The modules that are contained in
the relocatable library and
required for OVLAY1l are retrieved
from the library by the autolink
feature in order to complete
OVLAY1.

c. Phase CVLAY2 is loaded beginning at
the first double-word boundary fol-
lowing the last module of OVLIAY1l.

6 This statement causes three actions:

a. It signals that the input stream of
OVLAY2 is terminated.

b. The library modules that are
required for phase OVLAY2 and not
contained in the ROOT phase
(OVLAY1) are retrieved from the
library by the autolink feature.

Cc. The starting point of OVLAY3 is
determined to be the same as that
for CVLAY2.

7 This statement causes four actions:

a. It signals that the input stream
for the program is terminated.

b. The library modules that are
required for phase OVLAY3 and not
contained in the RCCT phase
(OVLAY1l) are retrieved from the
likrary by the autolink feature.

c. RU is determined to ke the starting
point for the execution of the
program.

d. The starting point of the dynawmic
storage area is determined to begin
on the first double-word boundary
following OVLAY2 or OVLAY3, whi-
chever is longer.

8 Fetches OVLAY1 and transfers control to
entry point RU. Note that only the
ROOT phase is loaded by // EXEC.

+ See PL/I Procedures Contained in the
Relocatable Library below.

The structure of the resolved overlay
scheme of the above example is shown in
Figure 67.

}DO&WOS
4
} RT
OVLAY1 ¢ } JKLM
Modules included by the
autolink feature, if any.
XYZ . } MYPROG
OVLAY2 Modules included T
by the autolink OVLAY3 E
feature, if any. 1
Modules included
by the autolink
i feature, if any.

Dynamic storage

I
I
I
|
L

Structure of the Resolved Overlay Scheme - R.

Structure of the Resolved
Overlay Scheme

Figure 67.

PL/I Procedures Contained in The
Relocatable Library

Precompiled PL/I procedures may be inco-
rporated in the relocatable library by
using the DOS/TOS MAINT service program.

A module is retrieved from the library and
incorporated in the object program by the
autolink feature when the name of the
module is specified for the first time
either in a PL/I function reference or in
a CALL statement.

No module is retrieved from the library
if only secondary entry points are
referred to in the calling procedure(s).
In this case, a statement of the format

INCLUDE module-name

is required to include the module in the
object program. Cn the other hand, inco-
rporation by the autolink feature can be
suppressed for a specific module by refer-
ring only to secondary entries of that
module. To obtain the same result as by
calling the primary entry point, the pro-
grammer may insert a statement of the
format

ENTRY secondary-entry-name

immediately behind the PRCCEDURE statement
of the external procedure.

Note: Although this description covers
most of the applications of the overlay
scheme, the reader should study the sec-
tion covering the Linkage Editor program
in the SRL puklications that describe the
DOS/TOS system control and service
programs.

Overlay 89

Program Listings

Source Program Listing

All source program cards are listed if the
LIST option is in effect. Each card is
printed as one line. The source state-
ments are numbered sequentially starting
The statement number is printed in
print positions 1 through 6 of the line
where the statement begins (right-
aligned). 1In case a line contains more
than one statement, only the number of the
first statement is printed. However,
since the remaining statements are coun-
ted, the next line again gives the correct

statement number.

- -
at 1.

Note: If comments cr character strings
are not correctly opened or closed in the
source text, unpredictable diagnostic mes-
sages may be produced. Also, the source

statement numbering will be erratic.

If the source statement contains any
errori{s), the statement number is used in
the corresponding diagnostic message to
clearly identify the statement in error.
The diagnostic messages are listed in
Appendix F.

Column 1 of PL/I source program cards
must always be blank. If column 1 of a
source card ccntains any character, print
positions 7 through 20 of the correspond-
ing line in the source program listing --
i.e¢., the gap between the statement number
column and the source statement column
plus column 1 of the source card -- are
filled with asterisks to indicate this
error. Columns 73 through 80 are ignored
and may contain any information.

Symbol Table Listing

If the SYM option is specified, all sym-
becls used in PL/I source programs are
listed in the symbol table. The format of
the symbol table is shown in Figure 68.

The symbcl table is listed even if
NOSYM was specified in case a declaration
contains an error or an external name is
too long.

The programmer is advised to examine
the symbol table listing after the first
compilation of a procedure to detect
erroneously declared identifiers and iden-
tifiers that may have been incorporated by
default rules as the result of
mispunching.

The attributes ALIGNED or UNALIGNED, if
specified for a major structure, are

90

structure, unless an opposite attribute
has been explicitly declared for a parti-
cular element.

r

—

| Print
{Positions|Contain
————— e
v
| 1-31 |user-defined name
b +
| 33-36 |internal representation
—_— 4
[}
38-39 | block number
1
T
41 jblock ievel number
-1t

43-49 jone of the attributes ARRAY,

| STRUCT., ENTRY, or BUILTIN#*

e e b v e iy . e e it et il s S g s Pt s ol e i e i aiine e v ks el i s e i . i s i o

|logical structure levelx*
1

+
jone of the attributes ARITHM.,
|STRING, LABEL, PCINTER, FILE,
jor PICTURE*

I}

55-61

|
L
b
i
H
|
|
L
s
| 51-53
L
T
|
|
|
|.
|
|
I

+
63-69 |one of the attributes DECIMAL,

| BINARY, ALIGNED, UNAL., CONST.,
|or VARIAB.*

S P —_—

| 71-75 |one of the attributes FIXED,

| |FLCAT, BIT, CHAR., or STERL¥

b i

T T

| 77-81 |the precision or length¥

b + -

| 83-88 |one of the attributes STATIC,

| | AUTOM., BASED, PARAM., Or

| | DEFIN. *

t +

| 90-92 {one of the attributes INT or

| | EXT

} L

|* if applicaktle
Lo

Figure 68.

Fofmat of the Symbol Table
Listing

Any error detected during compilation in
the declaration of the symbols is identi-
fied in the symbol table. 1In this case,
only the source program symbol, one of the
messages listed in Figure 69, three
asterisks, and the code pertaining to the
message aprpear in the respective line of
the listing.

parand only. Comparison starts with the
innermost block and proceeds either on the
same nesting level according to the block
sequence of the program, or to the block
with the next higher nesting level.

Example:
OUT: PROCEDURE;
DECLARE E BINARY EXTERNAL;
IN: PROCEDURE;
DECLARE E DECIMAL EXTERNAL;
END IN;
END OUT;

The message appears with the £ in procedure
IN.

Q
[}
jol}
[©)

Message Text

o
[

e e o e o e e e = o

SYNTACTICAL DECLARE ERROR.

o
N

CONFLICTING ATTRIBUTES.

03 |PRECISION IS MISSING OR WRONG.

o
=~

BASE VARIABLE ITSELF IS DEFINED OR
BASED.

(=]
w

BASE OR POINTER INCORRECT.

H

06 |ATTRIBUTES OF SECONDARY ENTRY CCN-
|FLICT WITH THOSE OF PRIMARY ENTRY.
i

4
07 |MULTI-DECLARED IDENTIFIER.
1

1
08 |ENTRY RETURNS VALUE WITH CONFLICTING
|ATTRIBUTES.
!

}

09 |INVALID STRUCTURE. (Any invalid
|element in a structure may invalid-
[ate the entire structure).

1
T
OA |ARRAY TOO LONG.

4

[}

0B | STRUCTURE TOO LONG.

-+

0C |POINTER IN BASED STRUCTURE.

[=]
lw}

TOO MANY ARRAYS.

INVALID PICTURE.

. s T e e i e T e R N B i VSpEpeT S

(o) o
o] 2]
e o e e e

STRUCTURE LEVEL DEEPER THAN EIGHT

10 |NAME EXCEEDS 31 CHARACTERS IN
| LENGTH.

11 |EXTERNAL NAME EXCEEDS 8 CHARACTERS
|IN LENGTH.
1

} -
12 |MULTIPLE DECLARATION OF EXTERNAL
| NAME INCONSISTENT.
1

[e e S e s R e g S i o T M e s S S s ey 4 s S SO e S S e e s g S [e o M o o S Y e g = g

Figure 69. Error Codes Used in the Symbol

Table Listing

Cross-Reference Listing

If XREF is specified either ir the OPTION
statement or in the PL/I PROCESS statement
& cross-reference listing will be provided

containing the external names in alphabetic
order as well as the internal names and the
statement numbers of those statements in
which the names appear. References to
identifiers in DECLARE statements or to
incorrectly declared identifiers are not
printed.

Offset Table Listing

The offset takle listing is produced if the
SYM option is specified in the OPTION sta-
tement. THe information is printed in four
columns in hexadecimal noctation.

Internal Name. A variable or constant is
listed in the offset table if (1) it is de-
clared in the source text and (2) it
appears either in the automatic or static
storage area, and (3) has a fixed offset
relative to the beginning of the respective
storage area.

Offset. This column gives the offset of
the data item relative to the beginning of
the automatic or static storage area for

the corresponding block.

Type. This column indicates whether the
data item is contained in static or in
automatic storage.

Module Offset. This column gives the off-
set of the data item relative to the begin-
ning of the mocdule in which it appears.
(Since the addresses in automatic storage
are dynamically assigned, no offset rela-
tive to the beginning of the module can be
given for automatic data.) The absolute
address of the data item contained in stat-
ic storage can be determined by adding the
load address of the module (to be found in
the Linkage Editor storage map) to the
value given here.

External Symbol Table Listing

The external symbol table is produced if
the SYM option is specified in the OPTION

statement. It contains the following

information:

column 1: SYMBOL - the external symbol

column 2: TYPE - either SD, LD, or ER

column 3: ESID - ESID number of control
section that is referred
to (for SD and ER)

column 4: ADDR - begin address (for SD
and 1D)

column 5: LENGTH - end address (for sD
only)

ESID number of control
section that is referred
to (for LD)

column 6: ESID

Program Listings 91

Block Table Listing

The block table listing is produced if the
SYM option is specified in the OPTION sta-
tement. The block table gives the number
of the program block and the size of the

corresponding DSA in hexadecimal notation.

Object Code Listing

The object code generated for a PL/I source
program is listed following the offset
table. The following should be noted:

1. BAll addresses and operands are printed
in hexadecimal notation.

2. Length specifications in SS instruc-

3 - A meaAal~ [~
tions are printed modulo 256 if one
1 3 3 - o | 14 =2c

length is specified and modulo 16 if

two lengths are specified.

(=

3. Operands of the form X'nnn'(b) repre-
sent generated variables or constants.
nnn is the displacement and b is the
base register.

4. Operands of the form N'nnn', where nnn
is greater than or egqual to 100, repre-
sent internal names of declared items.
(These can also be found in the symbol
table.)

5. Operands of the form N'nnn', where nnn
is less than 100, represent internal
names of PL/1 library subroutines.

6. Labels of the form L'nnn' represent
internal names of declared or generated
labels. (Only declared labels can be
found in the symbol table.)

7. Operands of the form N'nnn' that appear
in the instructions BC, BAL, or BCT
represent internal names of either de-
clared or generated labels.

8. A 'constant' of the form X'' has the
same function as the assembler instruc-
tion EQU *,

9. An instruction of the form
L*nnn® DC A(N'nnn‘)
does not represent an address constant
of itself. L'nnn', in this case, is
the label of the constant, whereas A(
N*'nnn') refers to an entry point of
that internal name in the program. For
example, in the instruction

L'0104' DC A{N'Q0104">

92

L*0104' is the label of the constant
defined by the DC. A(N'0104*') refers
to an entry point in the program that
has the internal name.

10. If a statement is preceded by more than
one label, all labels are equated to
the one directly preceding the state-

— D o P ..
ment. For the statements
A: B: C: X =1Y%;

the following code would be generated:

L' ' EQU ¥ (for Aa)
Lt ! EQU * (for B)
L' * MVC ...

11. The number of the source statement for
which the object code is generated is
printed at the end c¢f the specific part
of the object text. The statement
number may appear more than once if the
respective source statement was broken
down into logical parts during
compilation.

Statement Offset Listing

If LISTO is specified in the PRCCESS card
the statement numbers and the relative
location of the end of each statement
within the object module is printed. LISTO
overrides LISTX, i.e., if LISTO and LISTX
are specified, the LISTX option is ignored
because the object code listing and the
statement offset listing cannot be printed
together.

Compile-Time Diagnostic Messages

Errors caused by non-observance of language
rules or restrictions in the source text
are detected ky the compiler. A diagnostic
message is printed for each detected error
following the source listing. For a state-
ment containing one or more errors, several
diagnostic messages may be printed.

The individual diagnostic error messages
are listed in Appendix F.

Object-Time Diagnostic Messages

Exrrors that occur during execution of PL/I
programs cause the printing of an object-
time diagnostic message. For the format of
this message and fcr an explanation of the
message codes that may be included in the
message, refer to Appendix G.

Appendix A. Conversion Subroutines

F T T T 1
iNo. and] | | |
jintern. | - |Reason for Inclusion | |
| name | Function |in Object Program {Sizelin Bytes)|
i . + : + -
| 1 |Converts input data |F or E format has appeared | 404
| IJRVECM| from F or E notation to an |in an input statement |

| |internal intermediate form | |

i 2 Converts data from an internal |F or E format has appeared | 1024
| IJRVCEM}intermediate form to F or E |in an output statement i

| | format in preparation for output| |

N 1 1 . L

T T T T

| 3 |Converts data in storage in |Coded fixed decimal expres- | 68
| |coded fixed decimal form to an |sion appears in an output list |

| IJRVPCM|{internal intermediate form | or i

4 | |Coded fixed decimal data |

i | |requires conversion to float- |

| | |ing scale or binary base |

b t + +

| 4 |Converts data from an internal |Coded fixed decimal variable | 214
] | intermediate form to coded |appears in an input list |

| IJKVCPM{fixed decimal form i or |

] | |Whenever a conversion to |

| | |coded fixed decimal is required|

1 X 1 4

r T i T T

{5 |Converts data stored in |A numeric float variable | 492
i IOKVFCM|numeric float form to an inter- |appears in an arithmetic |

| IJKVNPM]nal intermediate form jexpression or in an output list|

i 1 4 1

U T T T

i 6 |Converts data in an internal | Numeric float variable | 680
I {intermediate form to internal |appears in an input list |

| IJRVCFM|numeric float | or {

| ITKVPNM| |appears on the left side of an |

| | |assignment symbol 1

F + + : +

| 7 |Converts data in storage in |Integer binary fixed expres- i 60
| IOKVBCM|fixed binary form to an inter- |sion appears in an output list |

{ |nal intermediate form | |

L [} 1

r T 1 T

i 8 |Converts data in an internal |Binary fixed variable appears | 238
| IJKVCBM| intermediate form to fixed |in an input list |

| {binary form { |

b 1 + ¥

| 9 |Converts data from coded float- |Coded float expression or non- | 3202
| l|ing point form (short or long |integer binary expressiont |

| IORVTCM]word) to an internal intermedi- |appears in an output list |

| |ate form | or |

} | |Coded float or non-integer |

i | | fixed binary expression is i

| | |assigned to a numeric decimal |

| | |variable or a coded fixed |

| | |decimal variakle |

; t t ¢

| 10 |Converts data from an internal |[Coded float variable appears i 3922
| IJKVCTM| intermediate form to coded |in an input list [

| |floating form (short or long) | or |

| | |Conversion to coded float is |

i | jregquired from either numeric {

| | |data or coded fixed decimal |

L L L L

e e et e . v e el i i i . St i e . . g s, e, s, Al oo e, e st S et s, e s, D s s s collats s e e s, e U P . S it s i bl e i i il et Bt .

Appendix A. Conversion Subroutines 93

r T T T 1
{No. and| i | |
|intern. | |Reason for Inclusion | |
| name |Function jin Cbject Program]Slze(ln Bytes) |
1 !] <+ 4
T T -T N 1
11%	Converts data from numeric	Numeric fixed decimal number is] 368
IORKVNPM	fixed form to coded fixed jused in an arithmetic	
]decimal form3 Jexpression or in an output list		
L i i 4		
r T 4 3 ki		
125	Converts data from coded fixed	Numeric fixed decimal number
ldecimal form to numeric fixed {appears on the left of an i i		
I IJKVPNMIdecimal form3 {assignment symbol or in an	i	
i	input 1list i	
% + t t :		
13	Converts from numeric fixed	Numeric sterling field is used
IOKVRPM	sterling to coded fixed decimal	in an arithmetic expression or
		in an output list
t 4 . e _ - 1 1		
1a	Converts from coded fixed	Numeric sterling number
	decimal to numeric fixed lappears on the left of an ! !	
ICKVPRM] sterling fassignment symbeol or in an i i		
		input list
L i 1 4 {
r T T T

| 15 |Converts character string to |Conversion to kit string from | 254 |
| |bit string |character string form is | |
| IJRVGIM} |required - | 1
¢ + ¥ - : -4
116 {Converts bit string to character|Conversion to character i i48 i
	string	string from bit string is	
IGRVIGM	jrequired or a bit-string		
		expression appears in an	
		output list §	
L I + 4]			
¥ v T 1			
17	Converts fixed binary data to	Conversion from binary	132
j IOKVBTM	coded ficat	fixed to coded flecat is	
		required	
o + t - i —			
18	Converts coded float data to	Conversion from coded] 228	
TIRVTIBM! fixed binary {float tc fixed kinary is i i			
i i jrequired			
', _____ i N -—— 1 -!			
‘ . , . L			
1The only way fcr a non-integer fixed binary number to appear is if the result of a			
division of one fixed binary integer by another results in a non-integral value or by			
use of any of the built-in functions PRECISION, BINARY, or FIXED.			
2Also requires a table of 128 bytes. Subroutines 9 and 10 require this table. If both			
subroutines appear, the table is in storage only once.			
I			
2Any picture data represented by [9...1(Vv1[9...1(T] is converted to and from coded			
fixed decimal by a single in-line instruction and requires no subroutines.			
! I			
“Subroutine 11 is a subset of sukroutine 5. If 5 is present, 11 is not. i			
I |
{*Subroutine i2 is a subset of subroutine 6. If 6 is present, 12 1s not. |
e e e — J

94

Appendix B. Possible Combinations of Data Conversions

FORMAT ITEMS

-
-
10 S 3
2| ¥ o O
g| o -1 Z z
2lgl .| 5| 2.8
ol x <| O w| Z| »
x|zl o] & & < £ 0
FROM clolT| el 25|z =
0 (-4 0 -4 -4 < oz
I |l
olzlolzlzlz| 3|5 3¢
]’4’ 114'
F NP NP (NP [N | 1,4 | 157 1,10) 1,6] 1| 1,8 NP NP | NP | NP
< 1,4 1,4
§ E NP | NP [NP NP [1,4 1’2’ 1,100 1,6 {4'{ 1,8 NP [NP | NP | NP
*é' A NP [NP {NP [NP NP NP NP O[NP [NP NP | X [NP | NP NP
o
o B NP [NP {NP [NP NP | NP NP [P [NP | NP NP LTS | NP NP
CODED FIXED DECIMAL 2,3]2,3 (NP |NP [1L |12 [3,00(3,6 | 14 {IL | NP |IL [NP |NP
NUMERIC FIXED DECIMAL ff' 2]']3' NP (NP | T 11,123;10' 3"1"'11,14 I T T FNC N
CODED FLOAT 2,9(2,9 |NP | NP | 4,9 4']92' I | e,9f%% 18 | NP |18 | NP NP
NUMERIC FLOAT 2,5(2,5 |NP | NP |4,5 4']52' 5,10 5,6 4{3' 58 1L |5,8]NP |NP
NUMERIC STERLING 2"33 23 INp NP |13 12,133"'30' 3]'36'13,14 13 |13 [N [Np
FIXED BINARY 2,712,7 |np e L L {12 [17 6,7 14 | L [Ne L [N [N
CHARACTER STRING NP [NP | x [NP NP NP NP NP NP NPl |15 | Ne NP
BIT STRING NP (NP [NP {16 [IL [12 {10 {6,714 1L {16 [IL | NP |NP
LABEL NP | NP | NP | NP NP | NP NP [NP | NP NP NP NP IL NP
POINTER NP [NP | NP | NP NP | NP | NP NP | NP NP NP NP NP | IL

Legend: NP - Not permitted.
IL - Done directly in-line; no subroutine required.
X - Contained as part of edit-directed |/O package to be discussed in /O chapter.

The numbers indicate the applicable conversion subroutines listed in Appendix A.

appendix B. Possible Combinations of Data Conversions 95

Appendix C. Built-In Functions, Pseudo-Variables, And Other
Implied Subroutine Calls

Contained in TRUNC. Entry points are IJKRT..

Contained in TRUNC. Entry points are IJKRV..

(T T T T . T i
I | | | size | I
!Nogﬂame |Argument (s) {Internal | in jRestrictions and Additional i
i i { |Name(s) | Bytes |Information |
k-—+ + 4 4 pomm oo {
P {bit string |IJRKRBKA | 292 | !
[| | IJKRBKB| |Result must not exceed max. i
{ L9{REPEAT 3 - + + {string length |
|| Jcharacter string {IJKRGKM | 84 | !
==+ £ + e 4
{20} |bit string | IJKRBIM | 292 | |
f-—1 INDEX b - + 4 i |
121] |character string | ITJKRGIM | 108 | |
==+ ¥ + ¢ ¢ 4
122 {BOOL | | IJXRBBM | 424 | |
F--4 1 _ + + + !
b |character string lin-line | ~-= | i
{23 | SUBSTR t } +] i
{1 {bit string | IJKVIIM | 180 | |
F-—+ - , $ommmmt + :
| 24| UNSPEC |bit string |in-1ine | -- |Argument must not exceed |
ol ! ! | |8 bytes 1
| 26| DATE I {IJKSDTM | 58 | |
L 4 b R 4 4 L 4
1] T T . . T T 1
127lSTRING ! lln-llne l - 1 l
v 1 € T] T 1
| | |fixed binary |IJRKRUBM | 148 |]
| 28 |ROUND {fixed decimal |in-line | - i |
I F + + i I
|1 |float {in-line | - | |
[N 1 4 4 4]
L T T T T T "1
129] lall fixed binary IIJRRMBX | 278 ! [
P | | IJRRMBN| [, |
F--4 t } + {Argument with differing data |
[30] {all fixed decimal |IJKRMPX | 386 |attributes causes some of the |
[| | IJKRMPN} |data to be converted to one of|
p-—-4MAX/MIN + + + {the four permissible types. |
131 {all short float | IJKRMSX | 132 |The choice depends on the
[| | TJKRMSN| |element of the highest |
--4 t 4 + {stringency level. |
132} l|all long float | IOKRMLX | 172 | |
L] | | IJKRMLN| | |
i 4 L 1 .y i)
r T T T . T T "1
133}SIGN 1 lln-llne l - l |
T T L] T L] T {
| |fixed binary |IJKRWBM | 356 | |
Il 'y + + i I
L 1fixed decimal | ISKRWDPM | 580 {In-line code for TRUNC of i
} 34| TRUNC F + + {fixed decimal data. IJKRWPM is|
I} |short float | TJKRWSM | 236 |used only for FLOOR and CEIL. |
P t + -—=+ 1 |
! | |1long float | ITKRWLM | 244 | i
T ey s e |
¥ 4 :
[I |
1 i

|
[}
|
|

fXe]
(<2}

r T T
o | Fepeores | 5 |
o |Name Size
el {Argument(s) |Internal | in =Restrictions and Additi ;
i
i i : iName(s) l Bytes !Information tonal }
b {flxed-blnary | IJKRSBM f 200 i 1
|1 1£1 , H H 1 |
. |£ixed decimal |TJKRSPM | 265 | '
I i ! i i |
I Ishort float [IJRRSSM | 184 | ‘
|] 1 ' H |
bt llong float | ITKRSLM]r 192 i l
[38 | PRECISION 1 t H H !
oo H lin-line | -—- 1
| 39| HIGH 1 H H H i
Lot ! |in-line | -—- 1
|40 | LOW i + t H I
bt H |in-line | - 1
| 41] FIXED] t H H !
I 1
bt ! | jAttributes of |
- - ' | 1 grguments must
1 21F OBAT l I } ige;mlt_conver51on specified by:
{Q3YBINARY i I ! i ullt-lp fupction name. No |
431 j | | }iﬁbroutlne is called if |
H ' gument is already in re-
!uulDECIMAL ' : | |quested form. Apprgpriatz !
b1 ! i {subrouti - (I
e i I | oo nes 1-18 are used. |
45 J I | |Choice depends on attributes |
lu6YCHAR H i | jof argument and built-in i
fu6] I ! ! |funct19n nane. (See |
{47;SUM % H I !Appendlx,A. i
! . T
Ly H jin-line | -- I H
[48 | PROD] t H t |
o1 H |in-line | - -
|49} ALL | Hoiline H !
bt H jin-line | - !
150 |aNY 1 b f t l
i H |in-line | -— | 1
| 51]ABS | 4 t H I
bt H lin-line | - !
|5 | iexpr.l.fixed binar TIJKREB H - H J
‘ 2‘ |expr.2 integer yl " : 92 |IResuirl = 23 }
: | constant | l l
I__*] ' ! | | (IHEXIE) |
_ |expr.l fixed deci H H
- |IJKREP
;53; |mal, expr.2 integer: ! ; 140 |1Result| = 10%5-1 1
1 |constant | ! |
l__{l] ! | | (THEXID) |
|expr.1 short f1l i 1
4 L b oat, | IJKRES 1
'IS || =expr.2 short binar;{ M : 144 I||Resultl < 7.2x107¢ 1
with scale fact
r——iexpr.l**expr.Z% x Oi 1 l(IHEXIS) ‘
lexpr.l long f1l 1 1
5 ong oat IJKRELM H
: 5: :expr.z fixed binaéy: { 152 ;lResultl = 7.2x1078 i
with scale factor |
{__1 i 0 |% ! | (IHEXID) :
{561 {expr.l short float |IJKRXSA i 152 iEx r.1 > 0; 1
56! I | (601 221+ pr. i expr.2 not integer|
L l i l . |constant or fixed binary;
| ! | {{result| < 7.2x1075 |
- 1] | {l' | (IHEXXS) !
+ -
. lexpr.1 long float |IJKRXLM | 168 |Expr.l > 0; ¢ : 1
571 ! | | (61, 03y + pr. 0; egpr.Z not integer|
I i | | . |constant or fixed binary; |
|1 I | | jjresultj < 7.2x1075 i
! ! | | (IHEXXL)
L L |
¥

Appendix C. Built-i i
in Functions, Pseudo Variables, and Cther Implied Sukroutine Call
alls 97

r T T T T . T 1
I ! I | Size | !
| No| Name |Argument (s) |Internal | in jRestrictions and Additional |
[i |Name(s) | Bytes |Information |
I 4 1 4 4 4 3]
U T T T T Ll 1
[|short float | ZTKQQSM | 176 |Argument = 0 or 2.4x10-78 < |
1581 i | | largument < 7.2x1075 |
11] | I | (IHESQS) i
F--{5QRT ¢ b + : e ee]
| 1 |1long float | IJKQQLM | 160 |Argument = 0 or 2.4x10-78 <
| 59] | 1 | |argument < 7.2x107%5
[i i] | (IHESSQL)
k=4 + ¢ ot
| 60] |short float |ITKQASM | 232 |Argument < 174.6

(IHEEXS)
e S S e
| 61] |long float |IJKQALM | 456 |Argument < 174.6

(IHEEXL)
- ! ; ; o
i i jshort float {ISRQLSA | 272 |(Argument < 7.2x107%
:62: i : iJKQLSBi ;(IHuLNS)

JKQLSC
t--41L0OG/LOG10/LOG2} 4 + +
1 1 [long float | IJKQLLA | 384 |Argument < 7.2x107S
163} | | IJKQLLB| | (IHELNL)
| | | TIJKQLLC]| I
k-4 : 4 $ 1
11 |short float |IJRQSSD | 304 ||Radian Arg] < 21®8xpi
}6&: = % iJKQSSi} ;|Degree Arg| < 218x180
JKQSS
(. | | TIJKQSSA| | (IHESNS)
f--1sIN/cos/ b + 4 +
| | SIND/COSD |long float |IJKQSLD | 416 ||Radian Arg| < 259xpi
;65: : % IJKQSLB{ ;[Degree Axrg| < 250x180
, IJKQSLC

1| | | IJKQSLA] | (ZHESNL)
b+ 4o } + ¥
| - |short float | ITJKQTSB | 280 ||Radian Arg| < 28xpi
j66 i i IJKQTSAj i iDegree Arg{ < 233x180

(IHETNS)
i }TAN/TAND i i i i —_
(. |long float | IJKQTLB | 360 ||Radian Arg| < 25°xpi
|67} | | IJRQILA| | |Degree Arg| < 2%5°x180

(IHETNL)
- - ; ! ;
1 |short float | IOKQNSD | 400 |0 < |X,¥| £ 7.2x1075
j68]| { | IJKQNSB| |
| |ATAN(X) | | IJKQNSC| I
| |ATAN(Y,X) | | IJRQNSA| | (IHEATS)
b--JATAND (X) s + + + -
| |ATAND(Y,X) |long float |IJRONLD | 536 |0 | X, ¥} < 7.2x107%
N I | IJKQONLB| [
1 69} | | IJKQNLC| |
[| | TJKQNLA] | (IHEATL)
F-—1 fomm oo === ¥ % -
1 70} |short float |IJKQCSA | 208 ||Arg| < 174.6
| | | IJKQCSBl (60)#*| (IHESHS)
}-—4 SINH/COSH I $-- 4 +
1 71 |long float |IJKQCLA i 288 ||Arg| < 174.6
1 1 | | IJKQCLB| (61)* | (IHESHL)
s S t ¥ 1 1 -
|72} | short float |IJRQDSA | 212 | |Arg} < 7.2x107s

(60)* | (THETHS)

- i S s —
1 73] |long float |IJKQDLA | 288 ||Arg}] < 7.2x1075
|-] | | (61)*| (IHETHL)
L L L N 1 L - ——

o s e e s e i . . el e s i — - ——] ——— e i, . o a2l e e e . e e il S — — iy W e o, ol i i i sl s e ke i o el s s,

98

R 1 i | size | i
ize
| No | Name |Argument (s) |Internal | in |Restrictions and Additional 1
1 1 ! !Name(s) l Bytes !Information }
i' T T T T T 1
| 74 |short float |IJRQBSA | 208 ||Aarg| <1 |
L } . [l 1 (62)*1(IHEHTS) }
--{ATANH r T T T 1
| 751 |long float |IJKQBLA | 280 ||Arg| < 1 I
i i l l 1 (63)*1(IHEBTL) }
b--+ . H H :
|76} | short float |IJKQRSB | 408 ||Arg| < 7.62x1037 {
{1 | | IJKQRSA| (60)* | (IJEEFL)]
t-—{ ERF/ERFC F } + } 1
[77] llong float |IJRQRLE | 776 ||Arg] < 7.62x1037 |
[| | IJKQRILA| (61) * | (IHEEFL) [
L 4 1 4 1 iR 3
r T Ll T, . T T 1
| 78] ADDR | |in-1line | -~ |
F—+ + T t .
| 79 {RULL | |in-line | - |
b-—4 1 ¢ 1 + {
80|ADD in-line -
oot ! ; ; ; :
81|DIVIDE in-line | -- ‘
154 ! ! | ! ,'
fng Y T T' l' 1 'If 1
MULTIPL in-line -
|92] ! ! ! | 4
| *The subroutine whose number is given in parentheses is also used by |
| this routine. !
L

IN THE D-LEVEL COMPILER

BUILT-IN FUNCTIGONS CONTAINED IN THE FULL-SET LANGUAGE, BUT NOT IMFLEMENTED

o — e . o gt s i 1y

ALLOCATION
COMPLETION
COMPLEX
CONJG
COUNT

DATAFIELD
DIM

EMPTY
HBOUND
IMAG

LBOUND
LENGTH
LINENO
NULLO

OFFSET

ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC

CNSCURCE
POINTER
PCLY
PRIOCRITY
REAL
STATUS

T YU R R S -

Appendix C. Built-in Functions, Pseudo Variables, and Cther Implied Subroutine Calls

99

Appendix D.

I/0 Subroutines

r T T T T T 1
| I |Internal | |Reason for Inclusion in] {
imumberimame Eﬂame{s) iDeSCIlpthﬁ 1ODJECt Program |Bytes}
_(T R v T T '% H
i 1 jPagesize |IJKTPSM |Controls number of |The PAGESIZE option appears | 72
i i i jlines on prlnted page] in an OPEN statement | |
k + + + + i
| 2% |Stream JIJKTSTM |Constructs a 1oglcal }Always present for files |674% |
] |Constructor I| IJKTSTN|stream from physical |declared with the STREAM | |
| | | IJKTSTR|record and vice versalattrikute | |
[1 1 i 4 4 3
r T 13 v t]
| 3%t |Stream |IJKTLCM |[Same as Stream Con- |Always present for files {876* |
| |ConstructorII| IJKTSTM|structor I except |with the STREAM attribute, | |
! i i IJKTSTNjthat LINE or COLUMN |[with format list containing | l
{ i i IJKTSTR{is used |LINE or COLUMN, or with PUT | |
| | | | jstatement containing the | |
{ 1 ! 1 1LINE option 1 J
T T L] T . . T T 1
| 42 |Format I | LIRTFDM |A§SOC}ates a YarlablelGET/PUT FILE EDIT statement |[480 |
, ; } g;:g ;;ioeditlng |appears in source program ! !
r r
i L 4 4. 4 i H
1 H H H v T -4
| 52 |Format II | IJKTGDI |Same as Format I |GET/PUT STRING EDIT state- |u414 |
= } : IJKTGDO, }ment appears in source | |
program | 1
L 1 4 4 | J
) v . i T . T 1
| 6 |Consecutive |IJKTCBM |Transmits data to/ |READ/WRITE/LOCATE/REWRITE | 552% |
{ |Buffered | |from the buffer from/|statement is used for a | {
| | Transmitter | jto a record variable |consecutive buffered file | |
| | | | for consec. files | | |
b | i + o
| 7 |Consg§ut1ve !IJKTCUM |Transmits data | READ/WRITE/REWRITE statement|252#% |
i jUnbuffered i |directly from/to an |is used for a consecutive ! |
	Transmitter		external device Junbuffered file		
			directly to/from a		
]		record variable			
L : L i L L 1. 1					
T T .] R a					
8	Regional	ITIKTRGM lTransmlts data to anlemAD/WRITE statement is used	398		
	Transmitter		from a regional de-	for a regional file	i
			vice via a hidden		
buffer					
A ; ; i —					
9	Regional	IJKTXRM	Determines extent of	A regional file exists 1356	
	Extent I		regional file at openjfor 2311 or 2314		
		{time and serves as			
	}	{file addressing rou-	i !		
		[tine to subroutine 8			
L 1 1 1 - 4 J . 1					
) T N T r T I -1					
‘ 10 }Reglonal :IJKTXRN	Same as 9	A regional file exists	378		
Extent II		for 2321	{		
b + + -—1- + -- + {					
11	Indexed	IJKTSIM	Transmits data to/	READ/WRITE statement is used	652
; :iequen@iil } }fr:m indexed data :for indexed sequential file					
ransmitter sets in seq. access					
		{access]	
b + t . - . $o———{					
12 IIpdexed	IJKTDIM	Transmits data to/	READ/WRITE statement is used]	540	
{ [Direct i	from §ndeged data	for indexed direct file]		
	Transmitter		sets in direct access		
— L L L L X1 d					

I/0 Subroutines,

100

Part 1 of 2

r T L} T L) T 1
{ | |Internal | |Reason for Inclusion-in | |
| Number | Name |Name (s) |Description |Okiect Program [|Bytes|
L 4 4 L 3 4 3
r T =T T 1 + 5
13	Display	IORTDPD	Handles DISPLAY	{DISPLAY statement appears	18u
	{ IJKTDPR	statement and REPLY	in source program		
			option	!	
b 4 4 { : t———1					
1t	LIST-I/0	IJKTLIM	Handles list-directed	GET [FILE/STRING] LIST 11068	
			input [
" ¢ t + =1					
15	LIsST-1I/0	IJRTLOM	Handles list-directed	PUT [FILE/STRING] LIST {1076	
I		output		I	
[N 1 L L 1 L J					
r 1					
l					
. . .					
igubroutines 2 and 3 are never both used in any object program.					
2Reguires a 200-byte format scanner. May be required by either subroutine 4 or 5,					
but is present only once.					
I					
*Requires an additional subroutine of 100 bytes. May be required by several {					
subroutines but is present only once.					
I |
i 3

I/0 Subroutines, Part 2 of 2

Appendix D. I/C Subroutines 101

>
<

1ogqeT o714 9del piepuels

Field

.

File Label Number

Ll 2 3 4 5 é 7 8 9 10 f1i 12 13 14
File Volume Fils =¥ Creation Expiration Block
File Identifier Serial Sequence | Sequence ! B _é Dat. pDu' Count System Code Reserved
Jumber Number | Number e3 ° e oun
o Z
]
= -
AL LI LTI TLT LT T ol 1] [el [ol [el [mislslsd | [[sle] | | tofale [] '8 RJe 8
f—g— [——’
Lobel Veision
Identifier Number of File Security
Generation
The standard tape file lobel format and contents are as follows:
FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
1. LABEL IDENTIFIER Identifias the type of label 9. CREATION DATE Indicates the yeor and the day of the year that the
3 bytes, EBCDIC HDR = Header -~ beginning of a data file & bytes file was created:
EOF = End of File -~ end of o set of data
EOV= End of Volume -~ end of the physicul reel Position Code Moonii_ny
2, FILE LABEL NUMBER Always a 1 3 btank none
3. FILE IDENTIFIER Uniquely identifies the sntire fils, may contain only 4-6 001 - 366 Doy of Year
17 bytes, EBCDIC printable characters. (e.g., January 31, 1965 would be entered as 65031)
4., FILE SERIAL NUMBER Unigquely identifies a file/volume relationship. This 10. EXPIRATION DATE Indicates the year and the day of the year when the
6 bytes, EBCDIC field is identical to the Volume Serial Nurber in the 6 bytes file may become a scratch tape. The format of this
volume label of the first or only volume of @ multi- field is identical to Field 9. On a mulij-fils reel,
volume file or a multi-file set. This field will normally processed sequentially all files are considerad to ex-
be numeric (000001 to 999999) but may contain any six pire on the same day.
alphameric characters. . FILE SECURITY Indicates sscurity status of the file.
5. VOLUME SEQUENCE NUMBER | indicates the order of a volume in a given file or 1 byte — "’ = no ":‘""Y P’°'i‘°"°:l sditional Identification of
4 bytes multi-file set. The first must be numbered 0001 and ’ho_ f?l:u;:yro':::::'::f;u h':;":h. p::'c.::'d” ©
svbsequonf numbers must be in proper numeric sequence. (Not used by DOS / TOS)
6. FILE SEQUENCE NUMBER Assigns ncmeric sequence to o file within ¢ multi-file 12, BLOCK COUNT Indicates the number of data blocks written on the file
4 bytes set. The first must be numbered 0001. 6 bytes from the last header label to the first trailer label ex-
- clusive of tape marks. Count does not include check-
7. GENERATION NUMBEF. Uniquely identifies the various editions of the file. point records, This field is used in Troiler Labels.
4 bytes May be from 0001 to 9999 in proper numeric seq .
13, SYSTEM CODE Uniquely identifies the programming system.
8. YVERSION NUMBER OF Indicates the version of & generation of a file. 13 bytes
GENERATION 2 bytes
14, RESERVED Reserved. Should be recorded as blanks.
7 bytes

sjeurioJ [aqer] o1 " x1puaddy

sjewicd Tege] STTJ *d xXtpueaddy

€0T

(£ Jo T 3xed) T 3ewIod ‘Taqe] STTd ASYA pIepuels

Field

File Name

File
Serial
Number

alIRRRARR AR AR AR ANR AR

45

AL

4 05 6;:2 8
‘g-g § ‘gg §- System Code
28]

ofala] [slo] [sfefeple [[[[1{[[] [k

L Format

Extent —I L Bytes used in last

Identifier Count block of directory
g 1012 13| 14113 16 117 5 18 1912 First Extent Additional Extent Additional Extent 3
g Eg B|oelE £ .g'g Lost 212 23 24 s 28 9] a2
Reserved = |u K} -g‘gg g g s 8 Record §- Lower Upper Pointer
2 '§§ 283 7 -§<=t Pointer & Limit Limit
il I
Jenl<
S 11| [sefsoleiealoeeseile] | fs] || leleeisple] |] | felble] | sio] [lnaiie] | el [P8]| 5
Data Set Exrenf——’ Extent
Indicators Type Sequence
Indicator Number
Format 1: This format is common to all data files on Direct Access Storage Devices.
| FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH _DESCRIPTION

EILE NAME
44 bytes, alphomeric
EBCDIC

This field serves as the key portion of the file label.

Each file must have a unique file name. Duplication of
file name will cause retrieval errors. The file name can
consist of tree sections:

1. File ID is an alphameric nome assigned by the user
and identifies the file, Can be 1-35 bytes if gene~
ration and version numbers are used, or 1~44 bytes
if they are not used.

2, Generation Number. If used, this field is separated
from File ID by a period. It has the format Gnnnn,
where G identifies the field as the generation number
and nnnn (in decimal) identifies the generation of
the file,

Version Number of Generation. If used, this section
immediately follows the generation number and has.
the format Vnn, where V identifies the field as the
version of generation number and nn (in decimal)
identifies the version of generation of the file.

d

Note: The Disk Operation System compares the entire
field against the file-ID given in the DLBL statement .,
The generation and version numbers are treated
differently by Operating System /360.

The remaining fields comprise the DATA portion of the file label:

2, FORMAT IDENTIFIER 1 = Format 1
1 byte, EBCDIC numeric
3. FILE SERIAL NUMBER Uniquely identifies a file/volume relationship. It is
6 bytes, alphameric EBCDIC identical to the Volume Serial Number of the first or
only volume of a multi-volume file.
4, VOLUME SEQUENCE NUMBER Indicates the order of a volume relative to the first
2 bytes, binary volume on which the data file, resides.
5, CREATION DATE indicates the year and the day of the year the file was
3 bytes, discontinuous binary created. It is of the form YDD, where Y signifies the
' year (0-99) and DD the day of the year (1 - 366),
6. EXPIRATION DATE Indicates the year and the day of the year the file
3 bytes, discontinuous binary may be deleted. The form of this field is identical to
that of Field 5.
7A EXTENT COUNT Contains a count of the number of extents for this file

on this volume. If user labels are used, the count does
not include the user label track. This field is maintained
by the Disk Operating System programs.

hotT

(€ 30 Z 31ed) T 3ewxod ’YaqeT oTTd ASYd PIepuels

FIELD NAME AND LENGTH DESCRIPTION FIELD MNAME AND LENGTH DESCRIPTION
7 BYTES USED IN LAST BLOCK Used by Operating System /360 only for partitioned 13, BLOCK LENGTH Indicates the block langth for fixed langth records or
OF DIRECTORY (library Structure) data sets. Mot usea by the Disk 2 bytes, binary maximum block size for variable length blocks.
1 byte, binary Operating System. ; "
4, RECORD LENGTH Indicates the record length for fixed length records or
7C SPARE Resorved, 2 bytes, binary the maximum record length for varicble length reconds.
1 byte
15, KEY LENGTH Indicates the length of the key portion of the data
8 SYSTEM CODE Uniquely identifies the programming system. The churac- T byte, binary records in the file.
13 bytes ter codes that con be used in this field are limited to -
0-9, A-Z, orblanks. 16. KEY LOCATION Indicates the high order pustion of the data record.
- 2 bytes, binary
9 RESERVED Reserved - . - -
7 bytes 17. DATA SET INDICATORS Bits within this field are used to indlicate the following:
1 byte
10. FILE TYPE The contents of this field uniquely identify the type of bt
2 bytes data file: 0 If on, indicates that this is the last volume on which
- . this file normally resides. This bit is usad by the
Hex 4000 = Consecutive organization Disk Operating System
Hex 2000 = Direct-access organization 1 If on, indicates that the data set described by this
Hex 8000 = {ndexed~-sequential organization file must remain in the some obsolute location on
Hex 0200 = Librory organization the direct access devica.
. o 2 if on, indicates that Block th. must al by
Hex 0000 = Organization ot defined in the file lobel. o muitiote of 7 byren Length. must always be
1n. RECORD FORMAT The contents of this field indicate the typs of records 3 If on, indicates that this data file ist security pro-
1 byte contained in the files tected; a password must be provided In order to
Bit access it.
Position Content Meaning 4-7 Spare. Reserved for future use.
Oand1 o Vorloble length records 18. SECONDARY ALLOCATION Indicates the amount of storaga fo be requested for this
10 Fixed length records 4 bytes, binary data file ot End of Extent. This field is used by Opsra~
n Undefined format ting System /360 only. It is not used by the Disk Opa-
; rating System routines. The first-byte of this field s
2 0 No track overflow an indication of the type of ailocation request. Hex
. code C2 (EBCDIC B) blocks (physical records), hex
! File is orgonized using code E3 (EBCDIC T) indicates tracks, and hex code
track overflw (Opera- C3 (EBCDIC ©) indi linders. The next th
ting System /360 only) (C) |cs:h.s cylinders. he next three
bytes of this field is a binary number indicating how
3 0 Unblocked racords many bytes, tracks or cylinders are requested.
! Blocked records 9. LAST RECORD POINTER Points to the last recard wiitten In sequentlal o
4 0 No truncated records 5 bytes, discontinuous binary partition-organization data set. The format is TTRLL,
) . where TT is the relative address of the track contal-.
! Trun records In file ning the last record, R is the ID of the lost record,
S5ond 6 01 Control character ASA and LL is the number of bytes ining on the track
code following the last record. If the entire fieid contains
10 Control character binary zercs, the lost record pointer does not cpply.
machine code 20. SPARE Reserved
00 Control character rot 2 bytes
stated 2
1. EXTENT TYPE INDICATOR Indi the type of extent with which tha following
7 0 Records have no keys 1 byte fields are assoclated:
1 Ricords are written
with keys. HEX CODE
12 OPTION COD, 00 Next three fields do not indicate any extent.
. ION CODES Bits within this field are used to indicate vari 7 \
Tbye u;od“;n b:ll ding the :;::. © indicate varfous options 01 Prime area (Indexed Saquantial); or Consecutive

Bit

0= |f on, indicates data file was created using Write
Validity Check.

1 =7 = urwsed

area, etc., (i.e., the extent containing the
user’s data records.)

Overflow area of an Indexed Sequential file.

Cylinder Index or master Index area of an
Indexed Sequential file.

£8

sjewxod ToqeT STTJd °*F xXTpuoddy

G0t

(€ 3O € 3Ted) T 3IewIod ‘TaqeT STTJd ASYA plepuels

FIELD

FIELD NAME AND LENGTH DESCRIPTION NAME AND LENGTH DESCRIPTION
40 User label track area. 25-28, ADDITIONAL EXTENT These fields have the same format as the fields 21 - 24
N R 10 bytes above.
8n Shared cylinder indicator, where n=1, 2, or 4.
29-32. ADDITIONAL EXTENT These fields have the same format os the fields 21-24
22. EXTENT SEQUENCE NUMBER Indicates the extent seq in @ mylti-extent file, 10 bytes above.
1 byte, binary -
33. POINTER TO NEXT FILE LABEL The address (format CCHHR) of a continuation label if
a3, LOWER LIMIT The cylinder and the track address specifying the WITHIN THIS LABEL SET needed to further describe the file. If field 10 indicates
4 bytes, discontinuous binary starting point (lower limit) of this extent component. 5 bytes, discontinuous binary Indexed Sequential organization, this field will point
This field has the format CCHH. to a Format 2 file label within this label set, Other-
wise, it points to a Format 3 file label, and then only
24, UPPER LIMIT The cylinder and the track address specifying the ending

v0int (upper limit) of this extent component. This field
has the format CCHH.

if the file contains more than three extent segments.
This field contains all binary zeros if no additional
file label is pointed to.

1 2 3 4 5 6 718]9]10{11 12 13 14115 16 17 18 9 |{Field
5 2
5 £ €
- =3
o 2 Zz
.2 z
T File © Cucbar| YOlume O PEXTENT{EXTENT| w| 5
| Filename| _[File ID | Serial | 2| |2 (':’of'" Serial S [Lower |Upper [B g zZ|5
Z 5 Number é 518 o € [Number ‘é §- Limit |Limit [V]9 CIlY]
5 3 o 2151813 ol S
w - eI SIEl 9|0 Z|z ele S
2 g 2 HHERE S|a L3 e e
2 P 3 SIEIRIEE Xix 212188
[=] [=] w SO jw e O Wi W N[N
1 7 1] 4 [1 6 |213]3]2]1} 13 -] 111 4 4 T [1]1]7 |Bytes
0 i 8 9 |53] 54 60] 62| 65|68|70 71 84 |90]|91 92 96 [100]104102{103} Displacement
Field Name Description
1. DLBL-EXTENT Indicator X'80' = Next EXTENT on new pack.
X'40' = Last EXTENT
X120' = Bypass EXTENT (SD), or number of EXTENTS (DA or ISFMS).
X110' = New value on same unit.
X'08' = EXTENT limits omitted.
X'04' = EXTENT converted to DASD address.
2. Filename
3. DA/IS Switch Same as field 1 except that only bits 4 and 5 are used for DA or ISFMS.
4. File ID File identifier including = tion and version numbers.
If field is missing on DLBL card, filename padded with blanks is inserted.
5. Format ID Numeric 1 is inserted.
6. File Serial Number Volume serial number from first EXTENT,
7. Volume Sequence Number Always initialized to X'0001'.
8. Creation Date Initialized with 3 bytes of X'00'.
9. Expiration Date If date is in the form YYDDD, it is converted to YDD.
If dote is in reteniion period form, 1 to 4 characters, the field is padded with
binary zeros.
10, Reserved The retention period, if specified, is converted to a 2-byte number and
inserted in this field.
i Open Code DLBL rype:
S = Sequential
D = Direct Access
C or E = Indexed Sequential File Management System
12. System Code Initialized to contain:
DOS/360 VER 3, This field is not processed by DOS,
13, Volume Serial Number Volume serial number for EXTENT,
14. EXTENT-Type Same codes as in Format 1 label :
X'00' = Next three fields do not indicate any extent.
X'01" = Prime area (ISFMS) or consecutive area, efc., (i.e., the extent
containing the user's data records).
X'02' = Overflow area of an ISFMS file,
X'04' = Cylinder index or master index of an ISFMS file.
X'40" = User label track area.
X'8n' = Shared cylinder indicator, wheren=1, 2, or 4.
15. EXTENT Sequence Number Number of extents as determined by the EXTENT card sequence.
16. EXTENT Lower Limit Relative extent converted to the form HHnnT for // DLBL job control statement, or
CCHH from // DLAB job control statement.,
17. EXTENT Upper Limit Same s field 16, but for upper limit.
18, System Unit Class Device class and unit numbers.
System Unit Order
19. 2321 Lower Cal! 2321 EXTENT lower and upper limit bin numbers.

2321 Upper Call
Note: For Sequential Disk files, a complete 104-byte block is repeated for each new EXTENT. For Direct Access and ISFMS files,

only fields 13 through 18 are repeated for each EXTENT.

Format of DASD Label Information in Label Area Reserved by LABTYP Card

106

Appendix F. Compile-Time Diagnostic Messages

In the list of diagnostic messages below,
the message text is preceded by the message
number and the applicable severity code.
Where necessary, the messages are followed
by an explanation, an example, a descrip-
tion of the action taken by the system, and
the response required from the user.
Explanation, Example, and System Action are
given only when the text of the message is
not sufficiently self-explanatory.

When no User Response is stated, the
user should assume that he must correct the
error in his source program unless the
action taken by the system makes it unne-
cessary for him to do so. However, even
when system action successfully corrects an
error, the user should remember that, if he
subsequently recompiles the same program,
he will get the same diagnostic message
again unless he has corrected the source
error.

The format of the diagnostic messages is
as follows:
5xdddr

nnnn C comment

where:

x may be one of the following
characters:

A if comprilation must be terminated as
a result of a job-control device
assignment or option error or

if an error is detected in the PL/I
PROCESS card.

C if a logical error has been detected
in a source statement.

E if a syntactical error has been
detected in a source statement.

G if the source program is too long or
causes a storage overflow.

ddd 1is the number of the error message.
For a message that is also printed on
the console, the number is composed of
only two digits.

I indicates that the message is of
information type and that no operator
action is required.

nnnn is the number of the statement in
which the error was detected. This

number is given only in 5C and 5E type
messages.

C 1is the severity code, which may be one
of the following:

W = Warning.

This code indicates that the compiler
suspects an error although the program
is written in legal PL/I language.

The compiler takes nc further action.

E = Error.

The program is in error. However, the
compiler has taken arpropriate correc-
tive action. Execution of the program
will be successful if this corrective

action was adequate.

S = Severe Error.

The program contains errors which the
compiler cannot correct, but which do
not prevent the compilation from being
continued. Execution of the generated

object program will be unsuccessful.

T = Termination.

The source program contains errors
causing the compilation to be ter-
minated. Compilation ends after the

messages have been printed.

comment
is a compiler-generated explanation of
the type of error.

The error messages are printed on the
unit assigned to SYSLST if ERRS was speci-
fied in the Job Control CFTION statement or
in the PL/I PROCESS card. The error list
is followed by a message resulting from all
detected errors. This message gives the
action taken by the compiler.

If errors of the severity T are
detected, the message is:

5E01I JOBSTEP PL/I TERMINATED. LINK
OPTION RESET.

If no errors of the severity T, but
errors of the severity S are detected, thne
message is:

5E02I LINK OPTION RESET.

Appendix F. Compile-Time Diagnostic Messages 107

Since in the case of severe errors no
linkage editing is possible, the // EXEC
LNKEDT statement, if any, is flagged as
invalid by the Job Contrcl message 1S1nD
STATEMENT OUT OF SEQUENCE.

If only errors of the severity W or E

are detected, the message is:

ale QeTectel; NesSSa -_—

CHARACTER MARKED BY ASTERISK

Note: This diagnostic messag
statements.

THE PRECEDING ERROR CONCERNS

[

atement item

cean REPRESENTS CHARACTER
______ Illegal use of
sentation of the character-st
replaced by four periods.

Example: DECLARE N P1CTURE A
string '99999' is not recogni
constant. The following mess
tement number:

5C019I xx S INVALID ATTRIBUT

cens REPRESEN

THE PRECEDING ER

5a0011 NC

COMPILER CUTPUT SPECIFIED

L&

5a0021 NOT THE SAME OR WRONG MEDIUMT

Explanation: SY¥S001, S¥Ys002,
type, i.e., either to magneti

520031 PARTITION SIZE TOO SMALL FOR

5A0041 ASTERISK IS NOT FOLLOWED BY B

Refers to PL/I

—— e e

asterisk.

50051 ASTERISK AND BLANK(S) NOT FOL

Refers to PL/I

—_—— e e

asterisk.

5A0061 OPTION invalid option UNKNOWN

Explanation: Refers to PL/I

5A0071 KEYWORD PROCESS NOT FOLLOWED

Refers to PL/I

520081 PROCESS LIST TOO LONG.

Explanation: Refers to PL/I

108

5E03I POSSIBLE ERRORS IN SOURCE PROGRAM.

Note: One or more of the following four
diagnostic messages may arpear after one of
the messages 5C003I through 5C030I in order
to give additional information. These four
messages are printed without message num-

havre and cawrawi s

Pare e F=1=1
WCLO Gl OoTVEAL4LLYy TUUTO.

IS NOT IN 60

e will only be printed for errors in DECLARE

THE VARIABLE NAMED variable name

mur
THE

STRING CONSTANT.

character-string constant. Since external repre-
ring constant is not available, the constant is

*99999'. Due to the illegal character 'A' the
zed as numeric picture but as character-string
ages will be issued where xx represents the sta-

E(S) IGNORED..A'....'

TS CHARACTER STRING CONSTANT.

ROR CONCERNS THE VARIABLE NAMED N.
iIN OPTION

STATEMENT.

YPES FOR SY¥S001, S¥sS002, SYs003.

and SYS003 must be assigned to the same device
¢ tape drives, or to 2311 or 2314 DASD extents.

THE 12K VARIANT.
LANK. CARD IGNCRED.

PROCESS card. A plus sign is treated as an

LOWED BY KEYWORD PRCCESS.

PROCESS card. A plus sign is treated as an

FOLLOWING TEXT IGNORED.

PROCESS card.
BY BLANK. CARD INGORED.

PROCESS card.

IGNORED IS invalid option

PROCESS card.

SA009I

520101

5A011T

5C003I

5Cc0041

5C005T1

5C0061

5C0071

5C0081

5C0091

5C010I

5C0111

5C0121

5C0131

5C014T

5C0151

5C0161X

5C0171

PROCESS LIST TOO LONG.
Explanation: Refers to PL/I PROCESS card.

COMMA NOT FOLLOWED BY OPTICN.

Explanation: Refers to PL/I PROCESS card.

OPTION NOT FOLLOWED BY COMMA.

Explanation: Refers to PL/I PROCESS card.

LEVELNUMBER OF STRUCTURE ITEM TOO HIGH. ASSUMED TO BE level number
Explanation: Level number must not be higher than 255.

NO OPTIONS LIST WITH ENVIRONMENT ATTRIBUTE.

Example: DECLARE FIL FILE ENVIRONMENT INPUT;

OPTION LIST NOT CLOSED BY). PARENTHESIS INSERTED AT END OF STATEMENT.

Explanation: This message concerns the ENVIRONMENT and the INITIAL
attributes.

Example: DECLARE FIL FILE PRINT ENV(MEDIUM(SYSLST,1403) F(80) ;

NOC POINTER SPECIFIED FOR BASED ITEM.

Example: DECLARE VAR BASED:

ERROR IN SPECIFICATION OF POINTER FOR BASED ITEM. IGNORED IS based data item

Examples: 1. DECLARE B BASED (A,D);
2. DECLARE C BASED (F(I));

NO BASE. SPECIFIED FOR DEFINED ITEM.

"Example: DECLARE X DEFINED;

ERROR IN SPECIFICATION CF BASE FOR DEFINED ITEM. IGNORED IS defined data item
ERROR IN RETURNS LIST. IGNORED IS invalid elements

Example: DECLARE FUNCT ENTRY RETURNS (7);

NO LENGTH SPECIFIED FOR STRING. LENGTH ASSUMED TO BE maximum value

ERROR IN STRING LENGTH SPECIFICATION. IGNORED IS invalid element

Example: DECLARE CHARA CHARACTER (STU);

ERROR IN PRECISION ATTRIBUTE. IGNORED IS invalid element

Example: DECLARE VAR FIXED (XYZ);

VALUE OF ARRAY BOUND MUST NOT BE 0. ASSUMED TO BE 1.

VALUE OF ARRAY BOUND TOO HIGH. ASSUMED TO BE maximum value

ERROR IN DIMENSION ATTRIBUTE. IGNORED IS invalid element

Example: DELCARE A(7,I,J);

RIGHT PARENTHESIS MISSING. CORRESPONDING LEFT ONE IGNORED BEFCRE declare_sta-

tement item

Appendix F. Compile-Time Diagnostic Messages 109

a

5C018I

5C0191I

5CC20I

5C0211

5C0221

5C0231

5C0271
5C0281

5C0291

5C0301

5C0431

5Cou4T

110

[ei]

NESTING OF ATTRIBUTE FACTORIZATIONS TOO DEEP. DECLARATIONS FRCM NESTING LEVEL
9 ON IGNORED

INVALID ATTRIBUTE(S) IGNORED.. invalid attribute [,invalid attribute...]
SYNTACTICALLY ILLEGAL CHARACTER(S) IGNORED.. ignored character(s)
Example: DECLARE PP FIXED §;

DECL. TOO LONG. ITEMS EXCEEDING LIMIT ARE IGNORED BEGINNING WITH declare sta-
tement iten

NO NAME OR FACTORIZATION FOR LEVELNUMBER.. 1level number
Example: DECLARE 1 STR, 2, 3 STR1;
NO INITIALIZATION WITH INITIAL ATTRIRBUTE.

LEVELNUMBER MOST NOT BE 0. ASSUMED TC BE 1.
STRINGLENGTH MUST NOT BE 0. ASSUMED TCO BE maximum value
PRECISION TOO LARGE. SET TC 53.

SCALEFACTOR TOO GREAT. ASSUMED TO BE maximum value
STRINGLENGTH TOO GREAT. ASSUMED TC BE maximum value

LIST OF INITIALIZATIONS NOT CLOSED BY). PARENTHESIS INSERTED AT END OF
STATEMENT.

NUMBER OF DIGITS IN PRECISION ATTRIBUTE MUST NCT BE 0. DEFAULT VALUE ASSUMED.

TOO MANY DIGITS SPECIFIED FOR PICTURE VARIABLE. DEFAULT VALUE IN SYMTAB
ASSUMED FOR variakle name.

Exglanation: The precision of the numeric-picture variable exceeds 15 or 16
digits for decimal fixed or decimal float, respectively. This would lead to
an error at execution time. In the symbol-table listing, the default value is

printed.
SYNTAX ERROR IN INITIALLIST. NO INITIALIZATICN CF variable name

Explanation: The INITIAL-list is composed of the following elements: con-

stants, iteration-factors, left and right parentheses, and commas. Error
number 44 will be issued if

e the succession of these elements is incorrect, or
* the constants or iteration-factors are incorrect.

Examples of incorrect succession:
i. LINLTIAL (1,2,)

2. INITIAL (1,(2,3))

3. INITIAL (1,(10) (2,3)4)

Examples of incorrect constants:

1. 1013B
2. 123E
3. 1.21.2L

5Cc0451

5C0461

5C0471

5C048I

5C0491

5C0501

5C0511
5C0521

5C0531

5C0541
5C0551
5C0561
5C0571

5C0581

+3

Examples of incorrect iteration-factors:

1. INITIAL ((-3)0)
2. INITIAL {((0)(1,2))
3. INITIAL (10(1,2))

Moreover, message number 4% will be issued, if there is an illegal character
within the INITIAL-list, e.g., INITIAL (2 * 3).

NESTING DEPTH EXCEEDS 8. NO INITIALIZATION CF variable name

ITERATION FACTOR NOT ALLOWED FOR SCALAR VARIABLE. NO INITIAL. COF variable
namne

Example: DECLARE % FIXED INITIAL ((3)#);
ITERATION FACTOR GREATER THAN 32K. NO INITIALIZATION OF variable name
WRONG DATA TYPE. NO INITIALIZATION OF variable name

Explanation: This error message will be issued, if the type of a constant

within the INITIAL-list is not compatible with the type of the variable to be
initialized.

Example: DECLARE A DECIMAL FIXED INITIAL ('ABC');

INITIAL VALUE IS NOT A IABEL CONST. WITHIN THE SCOPE OF LABEL VARIABLE. NO
INITIAL. OF variable name

Explanation: The label constant is internal to a procedure or begin block
internal to the block in which the label-variable is declared.

Example: P: PROCEDURE;
DECLARE LAB LABEL INITIAL (L2);

BEGIN;
L2: END;
END P;

MORE THAN ONE CONST. FOR SCALAR VARIABLE. NO INITIALIZATION OF variable name
Example: DECLARE Y INITIAL (3E + 01, 33 E + 2);

TOO MANY CONSTANTS FOR ARRAY. EXCESS ONES IGNORED FOR array name

INITIALLIST TOO LONG. INITIAL ATTRIBUTE IGNORED FOR variable name

SYMBOL TABLE ERROR FOR INITIALIZED name

Explanation: This message occurs only if a STATIC structure containing ele-
ments with INITIAL attribute is multiply declared.

ERROR IN F-OPTION OF FILE filename

LEFT PARENTHESIS INSERTED IN FILE filename
ILLEGAL ELEMENT IGNORED IN FILE filename
RIGHT PARENTHESIS INSERTED IN FILE filename

ILLEGAL USAGE OF REGIONAL OPTION. OPTION IGNORED IN FILE filename

Appendix F. Compile-Time Diagnostic Messages 111

5C059I W KEYED ATTRIBUTE INSERTED FOR DIRECT AND/OR INDEXED FILE filename

Explanation: Files with the attributes DIRECT and/or INDEXED must have the

attribute KEYED.
5C060I T XEYLENGTH SPECIFICATION MISSING IN FILE filename

Exnlanatian:

ZEp=aat U0 P ot ikos 4 e

IN KEYLENGTH SPECIFICATION FOR FILE filename

w
C)
[}
[}
Py
[

=
52}
=
i
@]
=

5C062I T ERROR IN BLOCKSIZE SPECIFICATION FOR FILE filename
5C063I E ERROR IN BUFFERS OPTION. BUFFERS(1) ASSUMED FCR FILE filename
5C064I E ERROR IN OFLTRACKS SPECIFICATION. OFLTRACKS IGNORED FOR FILE filename

5C065I T ERROR IN MEDIUM OPTION FOR FILE filename

J
>
]
621
[¢)]
-
+
4
Z
5
>
wl
F-
¢
o]
O
A
F
o)
95

led TR A XN
L DEVICE NAME Id

-
&

ST

Example: DECLARE FILE2 FILE INPUT ENVIRONMENT (MEDIUM (SYSRDR, 2540) ...);
SYSRDR is an invalid logical unit (choice must be made between SYSIPT and SYS-
nnn [nnn=001-2221).

5C0671 T INVALID DEVICE TYPE SPECIFICATION IN FILE filename
Examrle: DECLARE FILE3 FILE...ENVIRONMENT (MEDIUM(...,2020)...);

5C068I T DEVICE TYPE OR FUNC. ATTR. CONFLICTS WITH LOG. DEVICE NAME IN FILE filename

Example: DECLARE FILE4 FILE INPUT ENVIRONMENT (MEDIUM (SYS001, 1403)...);
Input from Printer 1403 impossible.

5C069I T CONFLICTING ATTRIBUTES AND/OR OPTIONS IN FILE filename
Examples: 1. DECLARE FILES FILE INPUT RECORD UPFDATE ...;

2. DECLARE FILE6 FILE OUTPUT ENVIRCNMENT (MEDIUM (S¥YS002, 1403)
LEAVE NOLABEL F (81));

5C070I T INPUT, OUTPUT, OR UPDATE ATTRIBUTE MISSING IN FILE filename
5C071I E DIRECT ATTRIBUTE INSERTED FOR REGIONAL FILE filename

5C072I E NOLABEL OPTION INSERTED FOR UNBUFFERED TAPE FILE filename
5C073I T ENVIRONMENT ATTRIBUTE MISSING IN FILE filename

5C074I T MEDIUM OPTION MISSING IN FILE filename

5C075I T BLOCKSIZE NOT DIVISIBLE BY RECORDSIZE IN FILE filename
5C076I W RECORDSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE filename

Explanation: The record size must be divisible ky 8 if blocked records are to

be transferred by a READ SET or LOCATE statement.
5C077I W DIVISION OF BLOCKSIZE BY 8 DOES NO1 YIELD REMAINDER CF 4 IN FILE filename

Explanation: If the V option is used, the record size of records to be trans-

ferred by a READ SET or LOCATE statement must yield a remainder of 4 after
division by 8.

5C078I T BLOCKSIZE BEYOND DEVICE DEPENDENT LIMITS IN FILE filename

5C079I T F, U, OR V OPTION MISSING IN FILE filename

112

5C080I T MORE ERROR(S) IN FILE filename

Explanation: The maximum number of error messages issued for one file

declaration is 7. If the file declaration contains more than 7 errors, this
message is printed.

5C081I E INVALID ATTRIBUTE IGNORED IN FILE filename

5C082I E PRINT ATTRIBUTE ASSUMED FOR PRINTER AS PHYSICAL DEVICE IN FILE filename
5CC84I T ERROR IN EXTENT NUMBER SPECIFICATION FOR FILE filename

5C085I E EXTENTNUMBER SET TO 3 IN DECLARATICN OF FILE filename

5C086I S INVALID DEVICE TYPE SPECIFIED FOR HIGHINDEX IN FILE filename

Explanation: Only the device types 2311 and 2314 are allowed. 2321 may be
specified if the device type in the corresponding MEDIUM option is also 2321.

System Action: The invalid device type is used for execution.

5C087I S NUMBER OF OFLTRACKS EXCEEDS DEVICE DEPENDENT LIMITS IN FILE filename

Explanation: The number n of overflow tracks specified in the OFLTRACKS

option must be within the following limits:

0
0

8 for 2311
18 for 2314 and 2321

n
n

IAIA
IA A

System Action: The value in error is used for execution.

S5C088I S KEYLOC BEYOND RECORDSIZE LIMITS IN FILE filename

Explanation: The key location n specified in the KEYLOC option must be within
the following limits:

1 £ n £ record size - keylength + 1

The message is issued if n > record size - keylength + 1. If n = 0 message
5C092T is printed.

System Action: The value in error is used for execution.

5C089I S ADDBUFF AREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename

Exrlanation: The number n of bytes specified in the ADDBUFF ortion must be

within the following limits:
64 + block size + keylength £ n < 32K

System Action: .The value in error is used for execution.

5C090I S RECORDSIZE NOT GREATER THAN KEYLENGTH IN FILE filename

Exrlanation: For blocked records, the record size must be greater than the

keylength. If KEYLOC is specified, this also applies for unblocked records.

System Action: The value in error is used for execution.

5C091T W RECORDSIZE EXCEEDS LIMIT FOR OVERFLOW RECORD IN FILE filename

Explanation: The lengths n of the records on the overflow tracks are

restricted as follows:

3605 - keylength - 10 bytes for 2311
7249 - keylength - 10 bytes for 2314
1984 - keylength - 10 bytes for 2321

=~ R =
INIA A

Appendix F. Compile-Time Diagnostic Messages 113

5C092I E INDEXAREA, ADDBUFF, HIGHINDEX OR KEYLOC OPTICN IGNQRED IN FILE filename

Explanation: One of the options INDEXAREA, ADDBUFF, HIGHINDEX or KEYLOC is

either not followed by a parenthesized specification or is followed by an
invalid specification.

un
o]
<)
v
W
L]
w
=
=<

=]
]
>,ﬂ
b
x
<)
o
[l
s
1]
7
=3
i
X

Explanation: The number n of bytes specified in the INDEXAREA option must not

exceed the following limits:
3 + (keylength + 6) < n < 32K

System Action: The value in error is used for execution.

5C094I s MAX. NUMBER OF EXPL. DECLARED VARIABLES PER BLOCK REACHED WITH name

5C095I E MORE THAN ONE INITIAL ATTRIBUTE FOR variable name

System Action: Only the first INITIAL attribute is used.

5C096I E MORE THAN ONE DIMENSION ATTRIBUTE FOR variable name

System Action: Only the first dimension attribute is used.

5C097I E MORE THAN ONE LEVELNUMBER FOR STRUCTURE ITEM structure item name

System Action: The first level number is used.

5C098I E MORE THAN ONE PRECISION OR STRING LENGTH SPECIFIED FOR variakle name

System_Action: The first precision or length is used.

5C099I E MORE THAN ONE PICTURE ATTRIBUTE SPECIFIED FOR variable name
5C100I E MORE THAN ONE BASE OR POINTER SPECIFIED FOR variable name
Example: DECLARE NAME BASED(X) DECIMAL FIXED(7) BASED(Y);

5C101I E STRUCT. NOT START. WITH LEVELNUMBER 1, ASS. TO BE MAJCR STRUCT. NAME IS struc-
ture name

Example: DECLARE 2A, 2B, 2C; A is assumed to be the major-structure name.
5C102I E NON-FILETYPE ATTRIBUTES IGNORED FOR FILE filename
5C1031 E NON-APPLICABLE ATTRIBUTE(S) IGNORED FOR STRUCTURE structure name

5C104I S INVALID INITIALIZATION IGNORED FOR variable name

Example: DECLARE E ENTRY INITIAL (SUBPRO);

5C105I E ALIGNMENT PERFORMED FOR BITSTRING bitstring-variable name

Explanation: Bit strings contained in structures and bitstring-arrays are
aligned by the D-compiler.

5C106I E MORE THAN 12 DIFF. PARAMETERS TO BE PASSED TO OR FROM BLOCK NUMBER block
number

114

5C1071

5C108I

5C1091
5C1101

5C1111

5C1131

5C1151
5Cl1l1e6I
5C1171
5C1181
5C1191

5C1201

5C1211
5C1221
5C1231

5C1241

5E001I

E

E

Explanation: Number of parameters is limited toc 12.

TQO MANY DIGITS SPECIFIED IN PREC. ATTR. DEFAULT VALUE ASSUMED FOR variable
namwe

NO SCALE ALLOWED WITH FLOAT OR BIN FIXED. DFLT.PRECIS. ASSUMED FOR variable
nane

Explanation: A scale factor must not be specified within the precision attri-

bute of BINARY FIXED or FLOAT variables. The whole precision attribute will
be ignored and the default precision is assumed for that variable.

Illegal: Assumed:
BINARY FIXED (15,3) BINARY FIXED (15)
BINARY FIXED (31,0) BINARY FIXED (15)
DECIMAL FLOAT (3,2) DECIMAL FLCAT (6)
DECIMAL FLOAT (6,0) DECIMAL FLOAT (6)
BINARY FLOAT (53,98) BINARY FLOAT (21)
BINARY FLOAT (53,0) BINARY FLOAT (21)

ENTRY INTO EXT. PROC. IS OF TYPE EXTERNAL. INTERNAL ATTR. IGN. FOR entry name
MORE THAN 32K BYTES REQUIRED FOR ARRAY array name |
POINTER AND/OR BASE IDENT. NOT OR INCORRECTLY DECL. FOR ARRAY array name
Example: DECLARE U, BAS(10) BASED (U); U is not a pointer.

REFERENCED VARIABLE OR RELATED BASE/POINTER INCORR. FOR ARRAY array name

Example: DECLARE 1 A, 2 (B(10),C), X(10) DEFINED B;
Defining on elements of structures is not allowed.

REPLICATION FACTOR OF ZERO IGNORED IN INITIAL LIST CF variable name

STRING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name
EXPONENTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name

FLOAT. CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variakle name

ZERO ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST COF variable name

MAX. VALUE ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST OF variable
name

STERLING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name
BINARY FIXED CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name
DECIMAL FIXED CONSTANTS TRUNCATED CN RIGHT IN INITIAL LIST CF variable name

RESULT OF CONST. CONV. UNDEF. DUE TO SIZE ERROR. CHECK INITIAL LIST OF vari-
able name

ILLEGAL CHARACTER IN LABEL PREFIX OR STATEMENT BEGINNING.

Exampiles: 1. LBl: +B2: LB3: ABC = 50;
Second labkel is not an identifier.

2. LAB: +BC = 50;
Statement begins with an illegal character.

System_Action: The error statement is replaced by a dummy statement.

Appendix F. Compile-Time Diagnostic Messages 115

5E002I T STATEMENT TYPE CANNOT BE IDENTIFIED.

Explanation: 2an identifier at statement beginning is neither a statement
identifier nor followed by the assignment symbol =.

Example: POUTT SKIP EDIT (B) (A&); PUTT is not a statement identifier.

System Action: The error statement is replaced by a dummy statement.

5E003I T NESTING OF BLOCKS EXCEEDS 3 LEVELS.

Explanation: Implementation restriction. The depth of nested blocks is
restricted to 3 levels. The external proceduce is the first level.

System Action: The flagged statement is replaced by the required number of
END statements. The sulksequent statements are ignored.

5EO04I T NUMBER OF BLOCKS EXCEEDS 63.
________ mplementation restriction. The total number of blocks in an
i re {including the external procedure) must not exceed 63.
System Action: The flagged statement is replaced by the required number of
END statements. The subsequent statements are ignored.

User Response: Reduce number of blocks in one compilation by generating
external procedures.

SEQO05I T ILLEGAL CHARACTER FOUND IN IF-STATEMENT BEFORE 'THEN' IS DETECTED.
gxamgle: IF A = 1; THEN GOTO LAB;

System Action: The incorrect IF statement is replaced by a dummy statement.

5EG06I T NO LABEL IS PERMITTED BEFORE AN ELSE-CLAUSE.

Example: IF A = 1 THEN ...; LAB: ELSE B = 5;

5E007I T ELSE FOLLOWED BY INVALID UNIT.
Example: IF A = 1 THEN ...; ELSE 5 = B; where B is a correctly declared
variable

System Action: The invalid ELSE clause is replaced by a dummy statement.

5EC08I T DO-GROUP NESTING EXCEEDS 12 LEVELS.

Explanation: Implementation restriction. The maximum depth of a nested set
of DO statements (including repetitive specifications in GET or PUT state-
ments) is 12.

System_Action: The flagged DO statement is replaced by a dummy statement and
the following text is ignored.

5E009I T INVALID END STATEMENT.

Explanation: The keyword END is not followed by a semicolon cr by the label

of its associated PROCEDURE, BEGIN, or DO statement.

Example: LAB: PROCEDURE;

END LAS;

116

5E0101

5E011I

580121

5E013I

5E014I

5E0151

5E016I

5E0171

5E0181

T

T

T

LOGICAL END OF PROGRAM DETECTED BEFORE END OF SCURCE TEXT.

Explanation: Text follows the logical end of the program. The programmer

seems to have made an error in matching END statements with PROCEDURE, BEGIN,
or DO statements.

System Action: All text following the flagged statement is ignored.

MORE THAN ONE LABEL BEFORE PROCEDURE OR ENTRY STATEMENT.

Exprlanation: PROCEDURE and ENTRY statements must have one and only one label.

NO LABEL BEFORE PROC. OR ENTRY STATEMENT. LABEL B INSERTED.

Explanation: PROCEDURE and ENTRY statements must have one and only one label.

System Action: The compiler inserts the label 'B:* before the flagged state-
ment. This may cause further error messages (e.g., multiple declaration).

FIRST STMNT NOT PROCEDURE STMNT. FOLLOWING TEXT IGNCRED.

System Action: Further error messages may result (e.g., 5E0121I and SE015I).

STATEMENT TOO LONG. STATEMENT TRUNCATED.
Explanation: Internal buffer overflow.

User Response: Subdivide statement and recompile.

END OF SOURCE MODULE FOUND BEFORE LOGICAL END OF PROGRAM.
Explanation: Problem causing the errdr may be:
1. Missing final semicolon.

Example: LAB: PROCEDURE OPTIONS (MAIN);

-

END
/*

2. Missing END statement(s).

Example: LAB: PROCEDURE OPTIONS (MAIN);

DO I =1 TO 5;
END;
Ve
RIGHT PARENTHESIS MISSING IN THIS STATEMENT.
Example: A(2,3,1 = 15; where A is declared as a three-dimensional array.
END OF SOURCE MODULE FOUND IN PARENTHESIZED LIST.
ILLEGAL CHARACTERS IGNORED IN THE PROGRAM

Explanation: Any of the characters listed below in hexadecimal nctation are
ignored unless they are included in a character string. In a program contain-
ing such illegal characters, the compiler flags the first statement that is

found to include one or more of these characters.
the illegal characters are:
B8 DA through DF

BA through BF EA through EF
CA through CF FA through FE

Appendix F. Compile-Time Diagnostic Messages 117

5E020I T ELEMENT IN PREFIX LIST IS NOT A LEGAL CONDITION NAME.

Examples: 1. (Y: LAB: statement;

2. (ZERODIVIDE,+UNDERFLOW): LAB: statement;

3. (ZERODIDIVE, UNDERFLOW): LAB: statement;

System_Action: The entire prefix list is ignored.

SE021I T NAME IN PREFIX LIST NOT FOLLOWED BY COMMA OR PARENTHESIS.
Examples: 1. (ZERODIVIDE UNDERFLOW): statement;

F et TEMTYT /Ar fala} ™ TN
Za {OVERFLCW+CONVERSICN) : statement;

System Action: The entire prefix list is ignored.

5E(022I T CONFLICTING CONDITION NAMES IN PREFIX LIST.
Example: (NOCONVERSION,CONVERSION): statement;

System Action: The conflicting names are ignored.

5E023I T COLON AFTER PREFIX LIST IS MISSING.

5E025I T RIGHT PARENTHESIS IS MISSING IN DATA OR FORMAT LIST

5E026I T MAIN PROCEDURE HAS INCORRECT OPTION LIST.
Explanation: For the D-level compiler, the option list of a rain procedure is
defined as

MAIN{, ONSYSLOG]

on. The

e

It must be enclosed in parentheses immediately followed by a semico
problem causing the error may be:

1. Missing comma or right parenthesis.
Example: TEST: PROCEDURE OPTIONS (MAIN;

2. Element in list which is not an identifier.
Example: TEST: PROCEDURE OPTIONS (+AIN);

3. Identifier in list which is neither MAIN nor ONSYSLOG.
Example: TEST: PROCEDURE OPTIONS (MIAN);

4. Option list not followed by semicolon.

5E0271 T NESTING OF ATTRIBUTES EXCEEDS 8 LEVELS.

5E028I T INVALID DEFINED ATTRIBUTE IGNORED.

5EC029I T TILLEGAL FACTORIZATION OF FILE ATTRIBUTES.

5E034I T TWO OR MORE IDENTICAL IDENTIFIERS IN ONE PARAMETER LIST.

SEQ40I T FIRST ARGUMENT IN SUBSTR PSEUDO-VARIABLE IS NCT A STRING VAR.

SEC41I T MAJOR OR MINCR STRUCTURE IN IF STATEMENT.

118

5E0421
SEO431
5EQ44T

5E0451

5E0461

S5EO047I

SEO49I

5E0501

5E051I

5E053T

5E0551

5E0561

T

ARRAY IN ELEMENT-EXPRESSION OF IF-STATEMENT

NO DATA FORMAT ITEM IN FORMAT LIST.

ARRAY DECLARATION INCORRECT. FIRST BOUND OF ARRAY IS ZERO.
EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 8 CHARACTERS.
Explanation: See explanation of message 5EO461.

EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 6 CHARACTERS.

Explanation: Implementation restriction. The length of external identifiers

must not exceed 6 characters. This also applies to names that are external Ly
default such as filenames, names of external procedures, etc. If an identifi-
er has 7 or 8 characters, the object program can still be executed but errors
may possibly occur. If the external identifier is longer than 8 characters
the compilation is terminated (message 5EO045I is issued). The statement in
error indicated in this message need not be the statement in which the error
is detected.

TOO MANY IDENTIFIERS IN THIS STATEMENT.

User Response: Subdivide statement and recompile.

POINTER AND/OR BASE IDENTIFIER NOT OR INCORRECTLY DECLARED.

Examples: 1. DECLARE G CHARACTER (4);
DECLARE K CHARACTER (4) BASED (G);
K = 'TEST';
2. DECLARE P DECIMAL FLOAT POINTER;
DECLARE A BASED (P);
A = A+1;

In both examples, the third statement is flagged.
ATTRIBUTE TABLE OVERFLOW. TOO MANY VARIABLES IN THIS STMNT.

User Response: For each element variable and for each structure element named
in the statement, a takle entry will be generated.

Subdivide statement and recompile.
INVALID DEFINING
Example: DECLARE 1 A,
2 B DEFINED D,
2 C;
DECLARE D;
B = 4;
The third statement causes the error message.

OPERAND IN A GOTC STATEMENT IS NOT A LABEL.

Explanation: The operand in a GOTO statement must always be a label constant
or an element label variable.

ZERO-REPLICATION FACTOR FOR STRING CONSTANT IGNORED.

STRING CONSTANT TOO LONG. TRUNCATED.

Explanation: Implementation restriction. The length of bit-string constants
is restricted to 64 bits; the length of character-string constants is

restricted to 255 characters.

System Action: Bit strings exceeding 64 bits and character strings exceeding
255 characters are truncated on the right.

Appendix F. Compile-Time Diagnostic Messages 119

5E057I E EXPONENT TOO LONG. TRUNCATED.

Explanation: Implementation restriction. The exponent subfield of a decimal
floating point constant is restricted to 2 digits, and that of a binary float-

ing point constant to 3 digits.

System Action: The exponent is truncated on the right.

0]

SE058I E FLOATING-POINT CONSTANT TQQ LONG, TRUNCATED.

Explanation: Implementation restriction. The length of binary flcating-point
data is restricted to 53 bits; the length of decimal floating-point data is
restricted to 16 digits-

System Action: Decimal and binary floating-point constants exceeding 16
digits or 53 bits, respectively, are truncated on the right, and the exponents
are increased by the number of digits or bits truncated.

5E059I E FLOATING-POINT CONSTANT TOO SMALL. SET TC ZERC.
SE060I E FLOATING-POINT CONSTANT TOO LARGE. MAXIMUM VALUE ASSUMED.
5E061I FE STERLING CONSTANT TRUNCATED.

Explanation: The sterling constant is converted to and stored as decimal

fixed-point pence. The converted ccnstant must not exceed 15 significant
digits.

System Action: The converted decimal fixed-point pence number is truncated cn
the right.

5E062I E BINARY FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

Explanation: Implementation restriction. The length of binary fixed-point
numbers must not exceed 31 bits. :

System Action: The constant is truncated on the right.

5E063I E DECIMAL FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

Explanation: Implementation restriction. The length of decimal fixed-point
numbers must not exceed 15 digits.

System Action: The constant is truncated on the right.

SE064TI E RESULT OF CONSTANT CONVERSION UNDEFINED DUE TO SIZE ERROR.

Explanation: The number of significant digits resulting fror the constant
conversion is greater than the precision specified for the target.

Example: DECLARE X FIXED BINARY (10);
‘ X = 2.4U4ES5;

5E065I T TOO MANY CONSTANTS IN THIS COMPILATION.

Explanation: Internal buffer or constant-counter overflow.

5E067I E INVALID CHARACTER STRING. ONE BLANK ASSUMED.

Explanation: The apostrophe opening the character string is immediately fol-

lowed by the closing apostrophe.

System Action: The compiler assumes the character string to consist of one
blank.

5E068I T QUALIFIED NAME NOT DECLARED.

120

SE069I T
5E070I E
5E071I T
5E072I T
SE073I E
S5EQ74I E
SE075I T
5E076I T
SE077I T
S5E078I S
5E079I T
SEO80I T
5E081I T
5E082I T

Example: LAB: PROCEDURE OPTIONS (MAIN);
STRUCT.SUB1 = 50;
END;
REFERENCED VARIABLE OR RELATED BASE/POINTER INCCRRECT.

Example: DECLARE A CHARACTER (3) BASED (P);
A = "XYZ2';

If P is not declared, the assignment statement causes the error
message.

A) HAS BEEN INSERTED IN ARGUMENT OR FORMAL PARAMETER LIST.

Example: CALL DYNDUMP (A,B ;

UNSPECIFIED SYNTACTICAL ERROR.

Example: DO A = (B TO C BY D WHILE (E)); where A is a variable and B, C, D,
E are valid expressions. The parentheses enclosing the specification of the
DO statement are illegal.

INTERNAL BUFFER OVERFLOW. (PROBABLY TOC MANY PARENTHESES).

User Response: Subdivide statement and recompile.

ONE OR MORE) INSERTED TO- OBTAIN A VALID EXPRESSION.

Example: DECLARE (A,B,C,D,E) DECIMAL FIXED;
A = B#* (C+D*E ;

ACTION FOR SE073I MAY CAUSE ADDITIONAL ERROR MESSAGES.
2ND OPERAND IN DISPLAY STATEMENT INVALID.

Explanation: The second operand of the DISPLAY statement must be a character-
string element variable enclosed in parentheses.

SHILLING FIELD OF STERLING CONSTANT GREATER THAN 19.

ERROR IN PARAMETER, OR SUBSCRIPT, CR ARGUMENT LIST.

ILLEGAL FILENAME OR LABEL IDENT. IN ON, SIGNAL OR REVERT STMT.
WHILE FOLLOWEﬁ BY INVALID EXPRESSION.

1ST OPERAND IN DISPLAY STATEMENT INVALID.

Explanation: The first operand in a DISPLAY statement must be an element
expression enclosed in parentheses.

INVALID OR MISSING CONDITION NAME.

Explanation: The keyword ON is not followed by a valid condition name and/or
filename.

Examples: 1. ON +ONVERSION GOTO LAR;

2. ON CNVERSION GOTO LAB;

3. ON ENDFILE GOTO LAB; (filename missing)

4. ON ENDPAGE(?RATE)GOTO LAB; (invalid filename)
INVALID OR MISSING OPERAND AFTER GOTO IN ON STATEMENT;

Explanation: The keyword GOTO in an ON statement is not followed by an
identifier.

Examples: 1. ON CONVERSION GOTO;
2. ON CONVERSION GOTO +AEB;

Appendix F. Compile-Time Diagnostic Messages 121

5E083T

5E084T

5E085T

5E0861

5E087I

5E088I

5E089I

5E090I

122

UNSPECIFIED ERROR IN ON STATEMENT.

Explanation: The ON statement has the following format:
ON condition {SYSTEM;| ON-unit}

The compiler detected that the ON-condition is neither followed by the keyword
SYSTEM nor by a valid ON-unit.

Example: ON COMVERSION +5;
INVALID CALL STATEMENT.

Explaunation: No identifier, especially no entry name, is following the key-

Examples: 1. CALL +AB;
2. CALL;

ERRCR IN CLOSE LIST.

Explanation: The CLOSE statement has the following format:

CLOSE FILE (filename) [, FILE (filename)]l ...;

Either the keyword CLOSE or one of the commas in the list is not followed by

+ho Irouvward BTTER
T ACYWCIG faiaudl.

Examples: 1. CLOSE FLE (OUT);
2. CLOSE (0UT);
3. CLOSE FILE (0OUT), (IN);

ERROR IN FILE OPTION

Explanation: Syntax error. The file option consists of the keyword FILE fol-
lowed by the file name enclosed in parentheses.

Examples: 1. OPEN FILE (+-%):
2. OPEN FILE IN);
3. CLCSE FILE (IN ;

where IN is a valid file name.

ERROR IN OPEN LIST.

Explanation: The OPEN statement has the following format:

OPEN FILE (filename) options group [,FILE (filename) options groupl...;

Either the keyword OPEN or one of the commas in the list is not followed by
the keyword FILE.

Examples: 1. OPEN FLE (IN);

~ £ nan
La VEDIN \ANJ g

3. OPEN FILE (IN), (OUT);
WRONG FILE OPTION IN READ, WRITE, OR REWRITE STMNT.

Explanation: The keyword READ, WRITE, or REWRITE is not followed by the key-

word FILE.
INVALID OR MISSING OPERAND IN PAGESIZE OPTION.
NO SET OPTION IN LOCATE STATEMENT.

Exrlanation: The file option in a LOCATE statement is not followed by the

keyword SET.

5E0911

5E0921

5E0931

5E0941I

5E0961

5E0971

5E098I

5E0991

5E1001

581011
5E1021
5E1031
5E1041

5E105T

Examples: 1. LOCATE A FILE (OUT);
2. LOCATE A FILE (OUT) SE (P);
INVALID OR MISSING OPERAND IN KEY OPTION.

Explanation: Syntax error. The KEY option must consist of the keyword KEY

INVALID FROM, FILE, OR INTO OPTICN.

Explanation: Syntax error. FROM, FILE, or INTO is not followed by a valid
operand, or the operand is not enclosed in parentheses.

Example: PUT FILE OUT EDIT (BUFFER) (A);
INVALID OR MISSING OPERAND IN SET, STRING-, CR KEYTO OPTION.

Explanation: Syntax error. E.g., the SET option consists of the keyword SET
followed by the name of a pointer variable enclosed in parentheses.

Examples: 1. LOCATE A FILE (OUT) SET (Pl ; where P1 is a pointer variable.
2. LOCATE A FILE (OUT) SET (1);

INVALID OR MISSING OPERAND IN KEYFROM OPTION.

Explanation: The keyword KEYFROM must be followed by an element expression
enclosed in parentheses.

ERROR IN FORMAT LIST
Explanation: The error may be caused by:

1. Left parenthesis of one of the format lists is missing.

2. A left parenthesis or one of the commas in the list is neither followed by
an iteration factor nor by a valid format item.

3. An iteration factor in the list is neither followed by a valid format item
nor by a format list.

MISSING) INSERTED IN FORMAT LIST.

MISSING OR INVALID CONTROLVARIABLE IN DO-STATEMENT.

Example: DO C(5) =1 TO 7;
The control variable C must not be sukscripted.

INVALID LINE, COLUMN, OR X FORMAT ITEM.
Explanation: Missing or invalid operand in a LINE, COLUMN, or X-format item.

Example: PUT SKIP EDIT (BUFFER) (X(5, B);

In the above example, the right parenthesis enclosing the operand of the X-
format item is missing.

INVALID R FORMAT ITEM.

Explanation: Missing or invalid operand in an R-format item.
MISSING (IN E OR F FORMAT ITEM.

MISSING INTEGER IN E OR F FORMAT ITEM.

MISSING) IN E OR F FORMAT ITEM.

COMMA MISSING AFTER 1ST INTEGER IN E FORMAT ITEM.

BUILT-IN FUNCTICN AS ARGUMENT OF PSEUDC-VARIABLE.

Appendix F. Compile-Time Diagnostic Messages 123

5E1081

5E1091

5E1101

5E1111

5E1131
5E114T

5E116I

5E1181
5E1191

5E120T

5E1221

5E1231

124

=3

=]

INVALID OPTION LIST IN READ OR WRITE STATEMENT.

MAIN PROCEDURE MUST NOT RETURN AN EXPRESSION VALUE.

CHARACTER OR BIT EXPRESSION IS TOO LONG.

Explanation: The numher of characters regulting from the evalunation of a
character-string expre851on must not exceed 255. For bit-string expressions,
the number of resulting bits must not exceed 6i.

DATA, OPTION, OR FORMAT LIST CONTAINS INVALID ITEM(S).
Examples: 1. PUT SKIP EDIT (BUFFER (A);
Right parenthesis missing after BUFFER.
2. PUT EDIT SKIP (BUFFER) (3d);

The keyword EDIT must immediately be followed by the data
specification.

INVALID REPETITIVE SPECIFICATION.

ENTRYPOINT IN THIS STATEMENT INVALIDLY DECLARED.

MISSING OR WRONG BASED VAR. OR FILE OPTION IN LOCATE STMNT.

Explanation: Syntax error. The LOCATE statement has the follcwing forﬁat:

LOCATE based variable FILE (filename) SET (pointer variable);

The based variable must be unsubscripted and must not be a minor structure or
an element of a structure.

Examples: 1. LOCATE +1 FILE (OUT) SET (P1);
2. LOCATE Ai (OUT) SET (P1);

INVALID EXPRESSICHN.
Explanation: The error may be caused by:

1. Missing operand.
2. Two infix operators not separated by operand.

WARNING FOR INCORRECT PREFIX IN ENTRY STATEMENT.
TOO MANY ENTRY POINTS AND/OR ON CONDITIONS IN BLCCK.
ILLEGAL NULL STATEMENT IN ON-UNIT.

Explanation: The null on-unit must not be specified for the conditions CONV-
ERSION, ENDFILE, and KEY. .

END OFf INVALIDLY NESTED DO GROUP. .NESTING EXCEEDS 12 LEVELS.

Explanation: Implementation restriction. The maximum depth of a nested set
of DO statements (including repetitive specifications in GET or PUT state-
ments) is 12. This message is issued as a follow-up to message 5EQ08I.

System Action: The flagged END statement is replaced by a dummy statement.

ILLEGAL FILENAME IN ON CONDITION.
ILLEGAL LABEL IDENTIFIER IN ON UNIT.

Example: DECLARE C DECIMAL FIXED;
ON CONVERSION GOTC C;

5E1241

5E1261

5E1271

5E1281

5E1291
5E130I

5E1311

581321

5E1331
5E1341
5E135T1

5E137I

5E138I
5E1401
S5E1411
5E142I1
5E1431
5E144T
5E1451

5E1u461

S5E1471

+3

H 1 4 #= 0

-3

REVERT STATEMENT WITHOUT CORRESPONDING ON STATEMENT.

INCORRECT NUMBER OF ARGUMENTS.

Example: B = SUBSTR(A, 1 1);

Due to a missing comma in the argument list, the compiler recognizes only twc
arguments.

OPTIONS MAY NOT BE SPEC. FOR SUBPRCCEDURES. CPTIONS IGNORED.

BUILT-IN FUNCTION NAME IN INCORRECT CONTEXT.

Explanation: A built-in function name has explicitly been declared with the
BUILTIN attribute, but is used in a non-function-reference context.

Example: DECLARE ABS BUILTIN;
ABS = ABS + 1;
Note: Built-in functions without arguments or which have been declared con-
textually only are not concerned.
CONVERSION OF ARITH. DATA TO BIT STRING YIELDS RESULT GT 31.
INVALID KEY.
MORE THAN 65534 VARIABLES AND/OR CONSTANTS.

Explanation: An internal overflow of the variable and constant counter of the

compiler occurred.
STACK OVERFLOW. {(IF-NEST TOO DEEP).

Explanation: Implementation restriction: The maximum number of IF statements
in a nest is 100. :

PROBABLY BAD IF-NEST.

ELSE IMMEDIATELY FOLLOWS IF.

ELSE IMMEDIATELY FOLLOWS ANOTHER ELSE.

ILLEGAL STATEMENT USED AS UNIT IN AN IF STATEMENT.

Examples: 1. IF element expression THEN FORMAT (format-list);
2. IF element expression THEN unit-1 ELSE FORMAT (format-list);

The FORMAT statement is not permitted as unit in an IF statement.
ELSE WITHOUT CORRESPONDING IF.

INCORRECT SPECIFICATION OF CONSTANT ARGUMENT.

TOO MANY STRUCTURES IN STRUCTURE ASSIGNMENT.

NUMBER OF INTERMEDIATE RESULTS IS TOO BIG. STACK OVERFLOW.
NON-IDENTICAL STRUCTURING IN STRUCTURE ASSIGNMENT.

ARRAY USED IN INCORRECT CONTEXT.

STRUCTURE USED IN INCORRECT CONTEXT.

INVALID CONVERSION OR ILLEGAL COMBINATION OF DATA TYPES.
Example: P = A; where A is a character string and P is a pointer variable.

NON-IDENTICAL NUMBER OF ARRAY ELEMENTS IN ARRAY-ASSIGNMENT.

Appendix F. Compile-Time Diagnocstic Messages 125

5E1481

5E149I

5E1501

581521

5E153I
SE1541
5E1551

5EQ01561

5E1571

S5E158I

5E1591

5E1601I

5E1611I
5E162I
5E163I

5Ei641

T

UNPERMITTED ASSIGNMENT TC FUNCTION VALUE.

Explanation: The left side of an assignment statement is a built-in function

which is neither a STRING built-in function nor a pseudo variable.
NUMBER OF ARGUMENTS IS GREATER THAN TWELVE.
TOO MANY REPETITIVE SPECIFICATIONS.

Explanation: Implementation restriction. The number of iteration specifica-
tions must not exceed 50.

Example: DO I =1 TO 2, 2 TO 3, 3 TO 4, ..., 51 TO 52;

System_Action: The flagged DO statement is replaced by a dummy statement and
the following text is ignored.

PROCESSING OF STATEMENT TERMINATED. (TABLE CVERFLOW).

Explanation: An internal table overflow occurred during the processing of a
DO statement.

Since the DO statement will be deleted from the text string, there will be a
surplus END statement in the source program.

User Response: Subdivide statement and recompile.

POINTER AS ELEMENT OF DATA LIST.
POSSIBLE ERROR IN FORMAT ITEM IF USED FOR OUTPUT.
INCORRECT ARGUMENT IN BUILT-IN FUNCTION OR PSEUDC-VARIABLE.

Example: DECLARE (A,B) CHARACTER (2);
B = SUBSTR(A,5,4);

Since A and B are only two characters long, the arguments 5 and 4 in the argu-
ment list are invalid.
INVALID NUMBER OF DIMENSIONS.

Example: A (2 3,1) = 15; where A is declared as a three-dirensional array.

The error is caused by a missing comma between the integers 2 and 3.

ERROR IF USED FOR OUTPUT.

ENTRY NAME OR LABEL ON LEFT SIDE COF ASSIGNMENT STATEMENT.

Example: LAB: N = 3; DO LAB = A TO B; where A and B are valid expressions.
R FORMAT ITEM IN ITERATION LIST AT DEPTH GREATER THAN TWO.

STATEMENT TOO LONG. STATEMENT DELETED.

Explanation: Internal buffer overflow.

ppie? ~odolbrtct i

User Response: Subdivide statement and recompile.

TOO MANY IDENTIFIERS IN PROGRAM.

CONTROL ITEMS NOT ALLOWED FOR THIS STATEMENT.

NO LABEL DESIGNATOR IN REMCTE FORMAT ITEM.

LABEL CONST. IN R FORMAT ITEM NOT INTERNAL TO CRRNT BLOCK.

Explanation: The R format item and the specified FORMAT statement must be
internal to the same block.

5E165I

5E1661

5E1671T

5E1691I
5E170I

SE171I

5E1721
5E173I
5E1741

5E1751

5E1761

5E1771

5E1781I

5E1791

5E180I
5E1811

5E1821

5E183X
5E184T
5E1861
5E1871I

5E218T

NO POINTER VARIABLE IN SET OPTION.

INCCRRECT RECORD VARIAEBLE.

RECORD VARIABLE ON WRONG BOUNDARY.

Explanation: The variakle is not on a double-word boundary. An error may

occur if later a READ statement with the SET option is issued, and a similar
variable is used.

RECORD VARIABLE ON WRONG BOUNDARY.

RECORD VARIABLE LENGTH NOT IN ACCORDANCE WITH RECORDSIZE.
INCORRECT VARIABLE IN STRING OPTION.

INCORRECT NAME IN FILE CPTION.

Explanation: File name not or incorrectly declared.
STATEMENT NOT IN ACCORDANCE WITH FILE DECLARATICN.
INCORRECT ITEM IN DATA LIST.

NO STRING VARIABLE IN SUBSTR PSEUDO-VARIABLE.

FORMAT LIST TOO LONG.

Explanation: Internal buffer overflow.

FORMAT STATEMENT NOT PRECEDED BY LABEL. STATEMENT DELETED.
Explanation: A FORMAT statement must be preceded by at least one label.

TOO MANY FORMAT LABELS IN PROGRAM.

Explanation: Implementation restriction. The number of labels preceding FOR-
MAT statements in one program is restricted to 127.

NESTING OF ITERATION LIST IN FORMAT LIST TCC DEEP.
REMOTE FORMAT ITEM IN FCRMAT STATEMENT. STATEMENT DELETED.
Explanation: A FORMAT statement cannot contain an R format item.

System Action: The error statement is deleted from the text string.

INCORRECT A,B FORMAT ITEM IN GET STATEMENT.

VICLATION OF FORMAT ITEM RESTRICTION.

MOD (LENGTH OF RECORD VARIABLE,8) IS UNEQUAL TC FOQUR.
division by 8.

INCORRECT VARIABLE IN REPLY OPTIOQN.

WRONG VARIABLE IN SET OR KEYTO OPTION.

TOOC MANY REPETITIVE SPECIFICATIONS IN DATA SPECIFICATION.
LENGTH OF RECORD VARIABLE GREATER THAN MAXBLCCKSIZE.

ITLEGAL EXPRESSION IN ASSIGNMENT STATEMENT.

Appendix F. Compile-Time Diagnostic Messages 127

5E219I

5E2281

5E229I

5E230I

5E231I
5E2321I

5E2331

5E234T

5E2351

5E2361

5E2371

5E2381

5G01I
5G021
5G031
5G041

5G05I

i2s

MORE THAN TWELVE PARAMETERS IN PROCEDURE/ENTRY STATEMENT.

System_Action: The parameter list is truncated on the right.

CHARACTER STRING IN DISPLAY STATEMENWT LONGER THAN 80 BYTES.
EVALUATION OF OPTIM. SUBSCR. YIELDS DISPLACEM. GREATER 32K

Explanation: At least one subscripted variable in this statement is outside

the declared pbound of the array.

Example: The semantically wrong statement A(I) = A(I+35000); where A is de-
clared as A(10), will cause this diagnostic message. This error is only
detected if OPT is specified.

IMPLEMENTATION DEFINED SUBROUTINE.

Explanation: This warning message will appear for each statement using one of

the facilities DYNDUMP, OVERLAY, IJKTRCN, IJKTRCF, IJKEXHC.

TOO MANY ARGUMENTS FOR IJKEXHC IN ONE BLOCK.
INVALID ARGUMENT(S) FOR EXHIBIT CHANGED IGNORED.
UNPERMITTED VALUE OF CONSTANT SUBSCRIPT(S).

Expianation: Constant subscriptis) too large. The absolute value of the dis-
placement to the origin of the array is greater than 32767.

NO SCALE FACTOR GIVEN IN BUILT-IN-FUNCT.

Explanation: Concerning the built in functions ADD, MULTIPLY, DIVIDE for

fixed-scale arguments.
INTERMED. RESULT IN ADD-FUNCT. TOO LONG. STATEMT. IGNORED

Explanation: Length of necessary working space (resulting frcmr precisicn and

scale of the arguments} greater than hardware defined iimits {(omnly for fixed
scale arguments).

INTERMED. SCALE-FACT. EXCEEDS PERMITTED RANGE

Explanation: The intermediate scale factor in the built-in-functions ADD,

MULTIPLY, or DIVIDE is greater than 127 or less than -128 (only for fixed-
scale arguments).

EVEN PRECISION HERE NOT ALLOWED. CHOQICE ODD TARGET PRECISION.
TIME/DATE/OR NULL ASSUMED TO NAME PL/I BUILT-IN-FUNCTICN

Explanation: Builtin functions without arguments should be explicitely de-

clared with the BUILTIN attribute.

UNKNOWN FUNCTION OR SUBROUTINE. ATTR. ENTRY ASSUMED

Explanation: Entry names must be explicitly declared with the attribute

PROGRAM BLOCK GREATER THAN 32K. CCMPILATICN TERMINATED.
SOURCE PROGRAM TOO LONG. COMPILATION TERMINATED.

STATIC STCRAGE OVERFLOW. COMPILATION TERMINATED.
AUTOMATIC STORAGE CVERFLOW. COMPILATION TERMINATED.

MORE THAN 256 ESID NUMBERS NECESSARY. COMPILATICN TERMINATED.

5G06TI

5G07I
5W01I1

5W02I

MORE THAN 65,534 VARIABLES AND/OR CONSTANTS. COMPILATION TERMINATED.

POSSIBLE RECURSIVE USE OF EXTERNAL PROCEDURE. COMPILATION TERMINATED.

SUCCESSFUL COMPILATION.

COMPILATIGN IN ERROR.

Appendix F.

Compile-Time Diagnostic Messages

129

Appendix G. Object-Time Diagnostic Messages

Note: For a discussion of the program-
checkout facilities of the compiler, refer

to the gection Drngr:m-checkcut Facili

The format of object-time diagnostic mes-
sages is as follows:

SLO0I ccggqggg aaaaaa ERROR nnnn

5L09OI is a prefix to identify the message
as a PL/I object-time message.

cc are two hexadecimal dlglts identi-

€ ssage, {(see the message
ist below),

are six hexadecimal digits qualify-
ing the message code with the
address-of a file, if applicaltle.
Otherwise six zeros.

999999

aaaaaa are six hexadecimal digits specify-
ing the address where the error was
detected. If the error was
detected in a library routine,
aaaaaa is the address of the
instruction that follows the call
of the routine in the PL/I object

program.

is the number of the source state-
ment that caused the error. This
numper is printed aniy if STMT was
specified in the PL/I PROCESS card.
If STMT was not specified or when
the ccmpiler cannot determine the
statement that caused the error,
nnnn is set tc 0000.

nnnn

The messages are .listed below by message
code number (cc above).

1. For errors not raising an ON-condition
(other than ERROR), a message is
printed for the specific error and the
ERROR condition is raised. This app-
lies to all errors with a message code
higher than 10.

2. If SYSLST is not yet opened (for
example, because of insufficient
storage available for DSA), some of the
messages may be printed only on the
console.

LIST OF MESSAGE CODES

PL/I_ON-Condition Comments

These object-time diagnostic messages are
issued only if an enabled PL/I ON-condition

130

is raised and no ON-unit is currently being
executed for this condition.

01 OVERFLOW

02 UNDERFLCW

03 ZERODIVIDE

o4 FIXEDCVERFLOW

05 SIZE
06 CONVERSICN
09 ERROR

0A ENDFILE
0C TRANSMIT
0D KEY

0E RECORD

Only the last four conditions use the file-
name qualification.

With indexed-sequential files the END-
FILE condition will also be raised if a key
higher than the last one on the file is
requested. If the ENDFILE condition is not
enabled for the file, the message 80 = NO
RECORD FOUND - will be issued.

Hardware Interrupts

Severe programming errors might lead to
program-check hardware interrupts during
the execution of a PL/I program. These
possible interrupts are identified by the
following codes:

11 oOperation Exception

12 Privileged-Operation Exception
13 Execute Exception

14 Protection Exception

15 Addressing Exception

16 Specification Excepticn

17 Data Exception

1E sSignificance Exception

Each of these exceptions is briefly dis-
cussed below.

11 Operation Exception. When an operation
code is not assigned or the assigned opera-

tion is not available on the particular

model, an operation excepticn is reco-
gnized. The operation is suppressed.

The instruction-length code is 1, 2, or 3.
12 Privileged-Operation Exception. When a

privileged instruction is encountered in
the problem state, a privileged-operation
exception is recognized. The operation is
suppressed.

The instruction-~length code is 1 or 2.

13 Execute Exception. When the sukject
instruction of EXECUTE is another EXECUTE,
an execute exception is recognized. The
operation is suprressed.

The instruction-length code is 2.

14 Protection Exception. When the key of
an instruction halfword or an operand in
storage does not match the protection key
in the PSW, a protection exception is
recognized.

The operation is suppressed on a store
violation, except in the case of STORE MUL-
TIPLE, READ, DIRECT, TEST, AND SET, and
variable-length operations, which are
terminated.

Except for EXECUTE, which is suppressed,
the operation is terminated on a fetch
violation.

The instruction-length code is 0, 2, or 3.
15 Addressing Exception. When an address
specifies any part of data, an instruction,
or a control word cutside the available
storage for the particular installation, an
addressing exception is recognized.

In most cases, the operation is ter-
minated for an invalid data address. Data
in storage remain unchanged, except when
designated by valid addresses. In a few
cases, an invalid data address causes the
instruction to be suppressed - AND (NI),
EXCLUSIVE OR (XI), OR (0I), MOVE (MVI),
CONVERT TO DECIMAL, DIAGNOSE, EXECUTE, and
certain store operations (ST, STC, STH,

- 8TD, and STE). The operation is suppressed
for an invalid instruction address.

The instruction-length code normally is 1,
2 or 3; but may be 0 in the case of a data
address.

16 Specification Exception. A specifica-
tion exception is recognized when:

1. A data, instruction, or control-word
address does not specify an integral
boundary for the unit of information.

2, The R; field of an instruction speci-
fies an odd register address for a pair
of general registers that contains a
64-bit operand.

3. A floating-point register address other
than 0, 2, 4, or 6 is specified.

4. The multiplier or divisor in decimal
arithmetic exceeds 15 digits and sign.

5. The first operand field is shorter than
or equal to the second operand field in
decimal multiplication or division.

6. The block address specified in SET
STORAGE KEY or INSERT STORAGE KEY has
the four low-order bits not all zerc.

7. A PSW with a nonzero protection key is
encountered when protection is not
installed.

The operation is suppressed. The
instruction-length code is 1, 2, or 3.

17 Data Exception.
recognized when:

A data exception is

1. The sign or digit codes of operands in
decimal arithmetic or editing opera-
tions or in CONVERT TC RBRINARY are
incorrect.

2. Fields in decimal arithmetic overlap
incorrectly.

3. The decimal multiplicand has too many
high-order significant digits.

The operation is terminated. The
instruction-length code is 2 or 3.

1E Significance Exception. When the result
of a floating-point addition or subtraction
has an all-zero fraction, a significance
exception is recognized.

The operation is completed. The inter-
ruption may be masked by PSW bit 39. The
manner in which the operation is completed
is determined by the mask bit.

The instruction-length code is 1 or 2.

Housekeeping Errors

21 STORAGE OVERFLOW
There is not sufficient storage avail-
able for dynamic storage allocation.

22 INVALID LABEL
The label variable in a GOTO statement
does not contain a valid label.

23 SECOND CALL OF MAIN
A procedure with the option MAIN is
called by a PL/I program.

24 PARAMETER NOT CON DOUBLE-WORD BOUNDARY
Procedure expecting doukle-precision
floating-point variable as parameter
has been passed single-precision value.

25 INVALID SIGN CHARACTER
Incorrect character for sign position
of PICTURE data containing T, I, or R
in specification.

Mathematical and Arithmetical Subroutines
(short Argquments)

30 X LT 0 IN SQRT(X)

Appendix G. Object-Time Diagnostic Messages 131

36
37

38

39

3a

ABS(X) GE (2#%#%#18)#K IN SIN(X)
OR COS(X) (K=PI) OR SIND(X) OR
COosD (X} (R=180)

ABS(X) GE (2*#*18)K IN TAN(X)
(K=PI) OR TAND(X) (K=180)

X. GR 174.6 IN SINH(X) OR COSH(X)

X GR 174.6 IN EXP(X)

X GR 1 IN ATANH(X)

X LE 0 IN LOG(X) OR LOG2(X) OR LOG10 (X)
OR X LE 0 AND Y NOT FIXED POINT (P,O}
IN EXPRESSION X#**Y

X=0, Y LE 0 IN X**Y

X=0, N=0 IN X**N

Mathematical and Arithmetical Subroutines

(Long Arquments)

40

41

42

43

uy
us
46
47
48
19

4n

X LT 0 IN SQRT(X)

ABS(X) GE (2#%#50)*K IN SIN(X) OR COS(X)
(K=PI) OR SIND(X) OR COSD({X) (K=180)

ABS(X) GE (2#**50)#*K IN TAN(X) {(K=PI) OR
TAND(X) (K=180)

X TOO NEAR SINGULARITY IN TAN(X) CR
TAND (X)

Y=X=0 IN ATAN(Y,X)

X GR 174.6 IN SINH(X) OR COSH(X)
X GR 174.6 IN EXP(X)

X GR 1 IN ATANH(X)

LOG2(X) OR LOG10(X)
FIXED POINT (P,0)

X LE 0 IN LOG(X) OR
OR X LE 0 AND ¥ NOT
IN EXPRESSION X**Y

YT N TN VhaW
L Llh VA AT A

N=0 IN X**N

Other Built-in Functions

50

51

132

¥=0 IN MOD(X,Y)
Binary fixed arguments

¥Y=0 IN MOD(X,Y)
Decimal fixed arguments

¥=0 OR
ABS(X/Y) GT 7.2%10*%75 IN MOD(X,Y)
Short floating-point arguments

53

54

(%)
(%]

¥=0 OR
ABS(X/Y) GT 7.2%10%*75 IN MOD(X,Y)
Long flcating-point arguments

MOD(X,Y) GE ABS(Y)
Short floating-point arguments
MOD(X,Y) GE ABS(Y)

Long floating-point arguments

MOD for floating-point arguments will
be calculated as
a=X/Y; b=Y¥*a; MOD({X,Y)=X-Db

If the exponent of X is so high that
X+Y has the same value as X, then MOD(
X, ¥)=0; message 54 or 55 will be
generated in such a case.

Input/Output Errors

61

62

63

64

65

66

FORMAT ERROR
Illegal combination of data list item
and format list item.

END OF STRING
A+treamnt +0 ryead or write hevond +ha
ATTEmMPT TC rYead Cr wWrxite leyont The

specified string in a GET EDIT or PUT
EDIT statement with the STRING option.

JLLEGAL USE OF CONTROL FORMAT OR OPTION
An invalid PAGE, SKIP, LINE, or COLUMN
format is specified for a file.

ILLEGAL USE OF STREAM FILE

Attempt to execute a disallowed GET
EDIT or PUT EDIT statement for a STREAM
file.

This error message may also occur if a
program processes file labels, but the
job-control LBLTYP card has been
omitted in the job-control deck for the
program.

ILLEGAL USE OF CONSECUTIVE BUFFFRED
FILE

Attempt to execute a disallowed READ,
WRITE, REWRITE, or LOCATE statement for
a CONSECUTIVE BUFFERED file,

This error message may also occur if a
program processes file labels, but the

SAah_~Anntral TDTMYN ~Aar»A haac hasew
JOO—CONTITa. wLona i

omitted in the job-control deck for the
program.

CaAdLu uao JTTcu

ILLEGAL USE OF CONSECUTIVE UNBUFFERED

FILE

Attempt to execute a disallowed READ,

WRITE, or REWRITE statement for a CON-
SECUTIVE UNBUFFERED file.

This error message may also occur if a
program processes file labels, but the
job-contrcl LBLTYP card has been
omitted in the job-control deck for the
program.

67

69

6A

6B

6C

6D

6E

6F

70

71

ILLEGAL USE OF REGIONAL FILE

Attempt to execute a disallowed READ,
WRITE, or REWRITE statement for a
REGIONAL file.

This error message may alsc occur if a
program processes file labels, Lkut the
job-control LBLTYP card has been
omitted in the job-control deck for the
program.

PAGE SIZE OPTION FOR NON~PRINT FILE

ILLEGAL USE OF INDEXED SEQUENTIAL FILE
Attempt to execute an invalid READ,
WRITE, or REWRITE statement for an
INDEXED SEQUENTIAL file.

ILLEGAL USE OF INDEXED DIRECT FILE
Attempt to execute an invalid READ,
WRITE, or REWRITE statement for an
INDEXED DIRECT file.

This error message may also occur if a
program processes file labels, but the
job-control LBLTYP card has been
omitted in the job-control deck for the
program.

INPUT DATA ELEMENT TOO LONG
Attempt to read an element of excessive
length in a GET LIST statement.

TOO MANY CONCURRENT I/0 ERRORS FOR
STACK SIZE

Indicates that more than three files
have WLR and/or TRANSMIT errors being
handled at the same time.

FILE IN ERROR NOT IN STACK

Indicates that a file with WLR or TRAN-
SMIT error flagged in the DTF appendage
is not in the error file stack.

This message can also occur if the
LBLTYP card has been omitted, thereby
causing label data to overlay and set
the appropriate bit in the DTF
appendage.

ILLEGAL USE OF STREAM FILE

Attempt to execute a disallowed GET
LIST or PUT LIST statement for a STREAM
file.

ERROR DURING PQSITIONING OF INDEXED
SEQUENTIAL INPUT FILE

An error has occurred during the posi-
tioning to the record key specified in
the KEY option of a READ statement.

ERROR DURING INITIALIZATION OF INDEXED
SEQUENTIAL OUTPUT FILE

The cylinder index area is not large
enough to accommodate all entries
required to index each cylinder speci-
fied for the prime data area.

72 ERROR DURING INITIALIZATION OF INDEXED
SEQUENTIAL OUTPUT FILE
The master index area is not large
enough to accommodate all entries
required to index each track of the
cylinder index.

7B END OF STRING
Attempt to read or write beyond the
specified string in a GET LIST or PUT
LIST statement with the STRING optioecn.

If the ERROR condition is raised as a
result of System action for the KEY condi-
tion, one of the following messages may be
printed to give a more specific description
of the error that caused the KEY condition
to be raised.

80 NO RECORD FQUND
The record to be retrieved by a READ
KEY from an INDEXED file has not been
found in the data file.

81 OVERFLOW AREA FULL
There is no more space available in the
overflow areal{s) for the record to be
added to an INDEXED DIRECT file by a
WRITE KEYFROM statement.

82 PRIME DATA AREA FULL
The prime data area has been filled
while creating or extending an INDEXED
SEQUENTIAL file by a WRITE KEYFROM
statement.

83 DUPLICATE RECORD
The record being added by a WRITE KEY-
FROM STATEMENT to an. INDEXED SEQUENTIAL
or DIRECT file has a duplicate record
key of another record in the file.

84 SEQUENCE CHECK
The record being written by a WRITE
KEYFROM statement to an INDEXED SEQUEN-
TIAL file is not in the sequential
order required.

87 FORMAT ERROR IN INPUT
a) Delimiter is neither blank nor comma

b) Character B is missing in external
format of a bit string

c) External format of data item is
incompatible with internal declara-
ticn; for example:

r i 1
| External | Internal |
% ¢ {
{Character string|Bit string |
L L i]
¥ T 1
|String data | Numeric, E, |
| |F-format |
L L 3

Appendix G. Object-Time Diagnostic Messages 133

Appendix H. I/O Statement Format And On-Condition Checklist

STREAM

DIRECT

REG-
1ONAL

)

IN-
DEXED
DIRECT]

AN

VALID INPUT/DUTPUT
STATEMENT FORMATS
AND APPLICABLE
*N-CONDITIONS

TYPE OF FILE

BACKWARDS, INPUT NOT DECLARED
INPUT/OUTPUT NOT DECLARED, INPUT
INPUT/OUTPUT NOT DECLARED, OUTPUT]
INPUT

INPUT DECLARED

INPUT
INPUT
INPUT
INPUT

FILE (filename)

O JOUTPUT, NOT FRINT
O JOUTPUT PRINT

z
z JourpPur DECLARED?

2 FUPDATE DECLARED

2 fourtpur
2 JUPDATE
z

Z Joureur
2 JUPDATE
z

Z Jourpur
Z JUPDATE

[e]
z
z

Z Jourput
< J UPDATE

z

INPUT
Z [UPDATE

FILE (filename) INPUT
OPEN

z
z

FiLE (filename} OUTPUT

FILE (filenome) PAGESIZE (n)

)

CLOSE FILE (filenome) O

[¢]

FILE (filename) EDIT (dota) (Format) [(data)(format)]. . .

(o]

GET*
FILE (filename) LIST (data) [e]

FILF (filename) EDIT (data) #ormat) [{data)(format)]. ..

FILE (filename) LIST (data)

FILE (filename) PAGE [_i:lNE(nH

pUT™ FILE (filenome){PAGE|LINE (n)|SKIP (n))

FILE (filename{PAGEILINE {n)|SKIP {n)}EDIT (data)(format)i{data) (format)]

FILE {filename {PAGE[LINE (n)|SKIP (n)} LIST (data)

O |0jCc[0o|0O]|0O

FILE (filename) INTO (variable)

FILE {filename) SET {pointer)

READ FILE {filename) INTO (variable) KEY (expression)

FILE (Filename) INTO (varicble) KEYTO (varioble)

| FILE {filename)

REWRITE FILE (filename) FROM (variable)

FILE {filenome) FROM (variable) KEY (expression)

LOCATE variable FILE (Filename) SET {pointer)

Fl i 0 i
WRITE LE (filenome) FROM (variable)

FILE (filename) FROM (variable} KEYFROM (expression)

CONVERSION [e]

SIZE

(e}

mesmirr~ase | ENDFILE (Filename) [0}
COiNDITIONS

WHICH MAY ENDPAGE (filename)

OCCLR KEY (filename)

RECORD (filename)

[¢]
[¢]
[e]
[e)
[e]
[¢]

(o]

[e]
[¢]

TRANSMIT (filenome) O

Symbols used: M = Use of this statement is mandatory

Q = For I/Q statements: Use of this statement format is optional
For ON conditions: This condition may occur

* = Note that GET/PUT STRING is not on 1/O statement and may be used without

Appendix I. File A ttributes And Options

ST, CONSECUTIVE - REGIONAL TNDEXED |
PE OF FILE INPUT Oumul | Gl BUFFERED UNBURFERED o | @ |scuenmad | orecr
PRINT INPUT ouTPUT |uPD)] DASD ONLY
I~ o !5 5
FILE E g g 5 g % % g
x o | < & I X w w w w
AND OPHONS sga§;s§gesgégéaEgaaw’ie§e§§§5§§5§'§§§
Sl E| 2|3 x|8|2] 2| 5RO 5|3 7| 8| 5|R2R2|5]2|3|51Z|3(5({2|3(|5(2|5
filename [1-6 characters) s{s{s|s|sls|sls|s¥sls]s}s}s|sfsjsjs|isislsjsis]| sisis {s|s[s]sls
FILE DD D p[po[p]o D o EIERE p|lolo
RECORD S S S S S S|S S|s|s S S sts
STREAM D|D | D D|{D|/D]|DjD|D
INPUT sls|s sls |s|s E[E s s B s
ouTPUT s|{s|ls|o|p]|o s[s|s E|E S s s
UPDATE S S. S S S S
SEQUENTIAL p[p(Do{D[D[D|D|D| D|D[D D| D] D
DIRECT S| Ss|s sIs|s S|s
KEYED s|s|s] s|sls | sl s|s|sS|s
BACKWARDS S O
PRINT sis|s
BUFFERED pl bl D} D D| D|D D D| &} D
UNBUFFERED . S S|s
ENVIRONMENT (s|sls |s|sls|s]s|sq1s|s|sis|s|s|s|s}|s|s|s|s|{s|sS]|s|s]s |s]s|[sls]|s
MEDIUM (slsls [sls]sis|s|sPsls|s|s|sis|{s|s]sis]s|s]sislsls[s [s[s[s|s][s
sysier, clclc cl ¢ [4
SYSPCH, clclc [[S
SYSLST, clcjclclclc clcle
$YSann, [nnn = 000-227} clclelclclelelclelcl clslclelcfcl{s s [s|s{s{s{s]|si{s|s|[s]s]s]s]|s
2501125201 25401 1442) S C C
1403114041 144311445) c s c
2400) s s s sis 3 s
2311|2314|2321) s 3 s s BERE MK s sls| s|ss [s|s|[s]s]s
U (maxblocksize) c;] C| C c/jcjcjcic]|cC
F (blocksize) sis|s |s|sisls|s|sfslclecicfslclciclc]lclc]s|]s|s]|s]|s]|s |clclc]c]c
F (blocksize, recsize) ciclc clclc clclclclc
V (maxblocksize) c [clclc
BUFFERS (1) pD|p|D|b|D|D|D]|D|DfD[D|D|D|[D| D|D|D
BUFFERS (2) ojolo]o| olojolo ol ofofo]l ojojo
CTLASAICTL 360)
LEAVE o [) [9)
NOLABEL 0 o o ol o &) s
NOTAPEMK [o o
VERIFY o [) ofo olo ojo olo o] o o
CONSECUTIVE p/o|(p|p|{po(p[pfp[o]p{D|D|/DJD|D|D|D|D|D|D
REGIONAL (1) } s|s|s
REGIONAL (3) sls|s
INDEXED S St S S| S
KethNem(n)[:;?:zé’g::f;‘;gg‘o‘“<3) s s s [s{sf{s]s|s
EXTENTNUMBER (n)s * oloflo|oloflo|s|s]|s} s|s
INDEXMULTIPLE ol ol of of o
HIGHINDEX ({2311]23142321}) O O O 0O 9
OFLTRACKS (n) niO-S for 2311 ‘] ° o
n = 0 =18 for all other DASDs |
KEYLOC (n) [15n$recsize-keylengfh+l] Bf{ B8/ B} B|B
INDEXAREA (n)[n<32K] o
ADDBUFF (n)[74: blocksize + keylength < n < 32K]]
) S{s s Is s {s [s[s|s fs|S|s|{Ss|S5|s |s|sIs|s|s|s s]sisls Is|sis]s]|s
fexternaL pi{p|p |[p{b|o|p|pfpo fo|lo|o|o]|o[o|[p]|ofo]o|p]o|folo]plp|p Jp|o]|D}| D|D
S = Atiribute or option must be specified, No entry is pemmitted where a blank
D = Default attribute or option if not specified. * UNBUFFERED 1s not permitted for files residing on o 2321 Dato Celi Drive,
O~ Optional attribute or option, Specify if applicable. **For INDEXED files, EXTENTNUMBER (n) must be specified[2<n < 256).
C = Choice must be made between these options. For REGIONAL files, EXTENTNUMBER () s opHonal [0< n<256).
E = Must be specified here or in the OPEN statement (but not in both places),
B = Optional for unblocked files, The defoult value for blocked files is n=1,

Appendix I. File Attributes and Options 135

Appendix J. Default Attributes of Coded Arithmetic Variables

DECLARED ATTRIBUTES DEFAULT ATTRIBUTES
DECIMAL FIXED 5,0)
DECIMAL FLOAT &)
BINARY FIXED (15)
BINARY FLOAT {21
DECIMAL FLOAT (8)
BINARY FLOAT (21)
FIXED DECIMAL {5,0)
FLOAT DECIMAL)
None - initial cheracter | = N BINARY FIXED (15)
Nene - oll others DECIMAL FLOAT &)

136

Appendix K. Restrictions to The PL/I Subset Language

ALIGNED or UNALIGNED

Must not be specified for minor-structure
names.

Arithmetic Constants

Any embedded blanks in arithmetic constants
will be deleted from the number string and
no error message will be given. However,
embedded blanks in repetition-factor fields
of PICTURE items are not deleted.

Arrays

The maximum number of arrays in a source
medule is 32.

Arrays of Structures

Arrays of structures are not implemented.

Attribute Factorization

The maximum attribute factorization depth
is 8.

Binary Fixed-Point Data

Binary fixed-point numbers may have a
length between 1 and 31 bits. This also
applies to all intermediate results in
binary fixed-point form.

Binary Floating-Point Data

Binary floating-point data may have a
length between 1 and 53 bits.

Bit Strings

Bit strings may have a length between 1 and
64 bits. The default alignment attribute
is not implemented; bit strings are aligned
by the D-Compiler. &2 warning message is
given if a bit string associated with the
default alignment attribute occurs within a
structure.

Blanks embedded in arithmetic constants
will be deleted (see also Arithmetic
Constants).

Blanks between operators will also be
deleted. E.g., X ¥ ¥ ¥; will be inter-
preted as X**Y. Similarly, "XXX' ‘'Yyy'
will be interpreted as *XXX''YYY', result-
ing in a character-string value of XXX'YYY.

Blocks {of Program)

The size of any internal or external pro-
gram block (exclusive of data) is
restricted to 32K. The size of an external
block plus all of its internal blocks
(exclusive of data) must not exceed 6UK.

The depth of nested blecks is restricted
to 3. The external procedure counts as
depth 1.

The total number of blocks in -an extern-

al procedure (including the external proce-
dure) must not exceed 63.

Blocksize Options

The block length must be at least 1 byte
(18 bytes for magnetic tape files) and must
not exceed 32,767 bytes. The device types
and corresponding maximum block lengths are
as follows:

2540 80
2540 (CTLASA, CTL360) 81
1442 : 80
1442 (CTLASA, CTL360) 81
2520 80
2520 (CTLASA, CTL360) 81
2501 80
1403 (PRINT attribute or CTLASA or 133
CTL360)
1403 (no PRINT attribute) 132
1404 (PRINT attribute or CTLASA or 133
CTL360)
1404 (no PRINT attribute) 132
1443 (PRINT attribute or CTLASA or 145
CTL360)
1443 (no PRINT attribute) 144
1445 (PRINT attribute or CTLASA or 114
CTL360)
1445 (no PRINT attribute) 113
2400 (no PRINT attribute) 32,767
2400 (PRINT attribute) 145
2311 (no key, no PRINT attribute) 3625
2311 (PRINT attribute) 145
2311 (including key) 3605
2314 (no key, no PRINT attribute) 7294
2314 (PRINT attribute) 145
2314 {including key) 7249
2321 (no key, no PRINT attribute) 2000
2321 (PRINT attribute) 145
2321 (including key) 1984

The block size option V must include the
control fields for the blocks and records.

Only fixed~length unblocked records are
permitted for STREAM files.

appendix K. Restrictions to the PL/I Subset lLanguage 137

The block size options V and U and the F
option with the record size option are per-
mitted for magnetic tape files and disk
files only.

Built-in Functions

String arguments must not be used in the
ROUND buiit-in function.

Bit arquments must not be used with the
UNSPEC built-in function.

Character Strings

Character strings may have a length between
1 and 255

LT e

Compatibi;ity with 0S F_PL/I

1. A GOTO statement which branches direct-
ly into an iterative DO loop will not
be diagnosed as an error by the D Com-
piler, although such a statement is not
allowed in the language, and is flagged
as illegal by the F Compiler.

2. Certain statements are not recognized
by the F Compiler (see DYNDUMP,
IJKEXHC, ... 4in this Appendix).

3. The I/O ENVIRONMENT attributes are not
recognized by the F Compiler.

Refer also to Appendix B. Upward Compa-

DOS/TOS PL/I Subset Reference Manual, Order
No. GC28-8202.

Conversion

Arithmetic to bit string:
The scale factor must be less than the
precision.

Bit string to arithmetic:
The maximum length of the bit string to be
converted is 31.

Data_Storage

Static - internal:

The static storage for any external proce-
dure (excluding external data) must be less
than 64K.

Automatic:
The automatic storage area per block must
be less than 6UK.

Data aggregates:

Each individual data aggregate must be less
than 32K.

138

Decimal Fixed-Pcint Data

Decimal fixed-point numbers may have a
length between 1 and 15 digits. This alsc
applies to all intermediate results in
decimal fixed-point form.

Decimal Floating-Point Data

Decimal floating-point numbers may have a
length between 1 and 16 digits.

DECLARE Statement

The length of a DECLARE statement is unre-
stricted; however, the length of one
declaration-unit appearing in a DECLARE
statement is restricted to

¢ 136 syntactical elements, if 10K bytes
are available to the compiler, and to

s 2000 syntactical elements, if 46K bytes
are available to the compiler.

One declaration-unit is delimited by
s the keyword DECLARE and a semicolon, or

¢ the keyword DECLARE and a first-level
comma, oOr

s two first-level commas, or
¢ a first-level comma and a semicolon.

Each parenthesis, identifier, comma,
attribute, and constant is counted as one
syntactical element. A character-string
constant in an INITIAL-list counts as two
syntactical elements. Consider the follow-
ing example:

DECLARE (X FIXED, D FLCAT) STATIC,
(A INITIAL (7), B{10)) EXTERNAL,
NAME CHARACTER (4) INITIAL
(*ABCD');

The above DECLARE statement consists of
three. declaration-units, the first of which
contains 8, the second 13, and the third 10
syntactical elements.

DEFINED Attribute

A bit class variable must not be a DEFINED

item. The attributes for the DEFINED item

and the base identifier will not be checked
to determine whether they correspond to the
rules for overlay defining.

Dimension Attribute

The maximum number of dimensions is 3.

Each bound must be an unsigned integer less
than 32,768. The dimensicn attribute may
be factored.

DISPLAY Statement

The result in the message expression in the
DISPLAY statement must not exceed 80 chara-
cters. If the REPLY option is used, the
message must be followed by the EOB (End of
Block) condition by pressing the appropri-
ate keys. For an example see Appendix L._
Programming Examples, "Using The Console
For Communications".

DC _Statement

The number of iteration specifications in a
DO nest must not exceed 50.

The maximum depth of a nested set of DO
statements is 12. For details on repeti-
tive specification see GET Statement.

DYNDUMP, IJRKEXHC, IJKTRON, IJKTROF, OVERLAY

The names DYNDUMP, IJKEXHC, IJKTRCN, IJK-
TROF, and OVERLAY are not recognized by the
0S PL/I compiler. Consegquently, the CALL
statement referring to one of these names
will result in an unresolved external
reference from the linkage editor under the
0S PL/I compiler. Under the D-level com-
piler, a warning message is issued for each
statement using one of these names.

END Statement

If a label follows the END statement, it
must be the label of the nearest unmatched
PROCEDURE, BEGIN, or DO statement. If a
BEGIN or DO statement is preceded by more
than one label, only the one closest to the
statement identifier may be used with the
END statement.

Exponent Subfield

The exponent subfield for decimal and
binary floating-point constants is
restricted to 3 digit positions for binary
and 2 digits for decimal constants.

Files (unbuffered)

For unbuffered files the RECORD condition
will not be raised for records of incorrect
length, because for the implementation of
unbuffered files the system work files have
been used (compiler enters the DTFSD para-
meter TYPEFLE=WORK in the DTF table).

FORMAT Statement

Replication factors:

The replication factor in a FORMAT state-
ment may range between 1 and 255.

The depth of nested replication factors in
a format list of a FORMAT statement is
linited to 2.

Format constants:

The format constants must be such that w,
d, s, and p are decimal integer constants.
Only p may be signed (positive or nega-
tive). The A, X, LINE, and COLUMN field
widths must be less than 256. The B field
width must be less than 65.

The E and F field width must be less than
33. This width includes the sign for out-
put fields even when they are positive,
i.e., written as a blank. 2 SKIP must be
less than 4.

The exponent subfield for input data
described by the E format specification is
limited to 2 digit positions.

The exponent subfield for output data
described by the E format specification is
always written with 2 digit positions.

GET_Statement

The replication factor in a format list in
GET or PUT statements may range between 1
and 255.

The depth of nested replication factors
in a format list of GET or PUT statements
is restricted to 5. If the format list
contains a remote format item that is con-
tained in a replication nest, it must not
be at a depth greater than 2.

The depth of a nested set of repetitive
specifications as well as the total number
of repetitive specifications in GET and PUT
statements are restricted to 11.

Identifiers

The length of EXTERNAL identifiers must not
exceed 6 characters. This also applies tc
names that are external by default, such as
file names, names of external procedures,
etc.

IF Nesting

o=

The maximum number of IF statements in a
nest is 100.

Implicit Declarations

The identifiers DATE, NULL, and TIME shculd
always be declared explicitly. If they are
not explicitly declared a warning message
is issued, and the BUILTIN attribute is
assumed.

INITIAL Attrikute

The length of the INITIAL-list for a
character-string array is restricted by the
following formula:

NC # LE + 14 * NF < NI

aAppendix K. Restrictions to the PL/I Subset Language 139

where

NC = the number of constants in the
INITIAL-list

LE = the length of one array element

NF = the number of iteration factors

NI = 1500 (if 10K are available to the
compiler)

18000 (if 46K are availakle to the
compiler)

Consider the following example:

DECLARE CH(10) CHARACTER(250) INITIAL
(N (2)*'a*,'B",(2)°C','D*,"E",'F',
'G"'H');

The INITIAL-list in the above DECLARE
statement contains eight constants and one
iteration factor. String repetition fac-
tors (as in (2)'A' and (2)°C*) are not

counted. The length of one array element
is 250.

Applicaticn of the above formula yields
a result of 2014 which is in error if NI =
1500.

KEY Condition

The KEY condition will not be raised for
REGIONAL files if an attempt is made to add
a duplicate key by a WRITE statement.

Labels

The total number of labels for all remote
FORMAT statements in an external procedure
must not exceed 127. This restriction is
independent of the size of the available
background program area.

Since environmental information is
assigned to a label variable during assign-
ment, a static label variable must ke
initialized each time a procedure is

| activated.

e S

The statement PUT LIST(NULL); - where NULL
is declared as the built-in function - will
not be diagnosed as an error, but will be
executed giving unpredictable output data.

Internal names:

The maximum number of names in all DECLARE
statements of a program block is 3048. The
maximum number of names given all its
attributes by default is 3048.

140

Note: The above restrictions are applic-
able only if the source program is compiled
on a 16K system. The restrictions are
eased considerably with the availability of
additional core storage.

External names:
The number of external names must not

1 'S -V
........... Names c<f external structures

count as two names. This restriction is
independent of the size of the available
background program area.

Note: The number 255 includes the nares of
all library subroutines used by this
external procedure.

Total number of names:
The total number of distinct internal and

external names in a source program must not
exceed 32,000. This restriction is inde-
pendent of the size of the available
background

Nesting I/0 Statements

While an I/C statement is active, no other
1/0 statement must be activated (GET and
PUT STRING are considered I/C statements in
this connection). Thus, in the following
example the second PUT statement is not
allowed since it is 'nested' in the first
one.

PUT FILE (X) EDIT (FUNCTI(PAR1,PARZ2,e...)
(format list);

FUNCT: PROCEDURE (PARA1l,PARAZ,....)
RETURNS (CHAR(120));
DCL Y CHAR (120);

PUT STRING (Y) EDIT (data list)
list);

(format

RETURN (Y);
END FUNCT;

ON_Statement

If the condition of the ON statement is
CONVERSION, ENDFILE, or KEY, the action
must not be the null statement. A prefix
is not allowed in an ON statement.

ON ENDFILE must not be specified with
default files. When a program uses an
implicit file declaraticon, such as GET FILE
LIST (A,B,C); it is not possible to use ON
ENDFILE (SYSIN). Therefcre, when the END-
FILE condition is raised, a message occurs,
and the job 1is cancelled.

When a key error occurs in a WRITE sta-
tement, the KEY condition is raised during
execution of the current statement or the
next I/0 operation.

The standard system action for FIXEDO-

VERFLOW is corment and raise the ERROR
condition.

PAGESIZE Option

The default condition is the size specified
by the 1line count of the system.

Parameters

The number of distinct parameters of a pro-
cedure must nct exceed 12. The same para-
meter appearing in a number of parameter
lists of the same procedure (one PROCEDURE
statement and several ENTRY statements,
each with parameter lists) is considered as
only one parameter.

Entry name parameters must be explicitly
declared with the ENTRY attribute.

PICTURE Attribute

A PICTURE specification must have at least
one PICTURE character other than M, Vv, K,
or G. Arithmetic pictures must not have
more than 32 characters excluding M, V, K,
and G. PICTURE character strings must not
have more than 255 characters. A PICTURE
character preceded by the replication fac-
tor k is considered as k PICTURE
characters.

PICTURE Data

Data declared with the PICTURE attribute
must not have more than 15 digit-characters
for numeric fixed-point data and 16 digit-
characters for the mantissa and two for the
exponent of numeric floating-point data.

Pictures with the £fill character * pre-
ceded or followed by one of the characters
+, -, S, or § cause these characters to be
replaced by * when the variable has a value
of zero. Similarly, CR or DB are replaced
by *¥%*,

The picture character B is implemented
as a conditional insertion character when
used in conjunction with a drifting
character.

Procedure Default Condition

The default condition for all procedures
excluding built-in functions and likrary
subroutines is IRREDUCIBLE. The default
condition for all data is ABNORMAL in the
DOS/TOS PL/I compiler.

Appendix K.

The PL/I Subset language does not have
the attributes REDUCIBLE, IRREDUCIBLE,
NORMAL, and ABNORMAL. Therefore, the user
should familiarize himself with these items
1f he wishes to run programs written in the
PL/I Subset language under CS control. Fcr
details on these attributes see the SRL
publication IBM System/360, Operating Sys-
tem, PL/I(F) Language Reference Manual,
Crder No. GC28-8201.

PROCEDURE_ Statement

The CPTIONS attribute permits an options
list, the form of which is (MAIN ¢,
ONSYSLOG]). The MAIN option specifies this
procedure to be the initial procedure. The
ONSYSLOG opticn specifies that all output
as a result of action taken due to an ON
condition is to be printed on the device
assigned to SYSLCG. If both options are
used, they must appear in the order given
above. Procedures declared with the
OPTIONS attrikute cannot ke called from
other procedures.

Put Statement

Refer to GET Statement.

Qualified Names

If a qualified name is truncated on the
right, the remaining part of the qualified
name must be unique. For example, in the
structure

DECLARE 1 ATR,
2 A1,
3 B1,
3 B2,
4 D1,
4 D2,
2 A2,
3 B1,
4 D3,
4 D4,
3 B3;

the qualification ATR.B1.D3 is not allowed
since ATR.B1 is not unique. The correct
qualification would be ATR.A2.B1.D3. Ambi-
guous names may not be flagged by the com-
piler, and the code produced for such ambi-
guous references is unpredictable.

Repetition Factor

A repetition factor must ke an unsigned
decimal integer. Its length is restricted
to three digits. 1Its value must not exceed
255. The two examples below are in error:

DECLARE A PICTURE *(0010)X";
DECLARE B PICTURE ' (260)X';

No embedded blanks are allowed in the
repetition factor. E.g. DECLARE C PICTURE

Restrictions to the PL/I Subset Language 141

*(1 2)9'; is dinvalid. dowever, preceding
or following blanks are allowed, as e.g. in
DECLARE D PICTURE'(4)X*;

Declaration of a scale factor is permitted
only with decimal fixed-point data. It may
range between 0 and 15 and must be
unsigned. :

The total number of identifiers, constants,
and delimiters (excluding insignificant
blanks and ccmments) contained in a state-
ment must not exceed 230.

The number of different identifiers and
constants (excluding constants not con-
tained in an expression) is limited tc 90

for each statement.
Note: The above restrictions are applic-
able only if the program is compiled on a
16K system. Each additional 4K availakble
to the compiler allows an equivalent

Structure Declarations

The maximum logical depth of a structure is
8. The maximum level number is 255. The
number of names in a structure is
restricted to 62, if 10K are available to
the compiler (766 if 48K are availatle).

la2

This includes the major-structure name,
minor-structure name(s), and structure-
element names.

Structures (level numbers)

Any embedded blanks in level numbers will
be deleted from the number string during
compilaticn and nc errcr message will be
given. Level numbers may only be factored
for elements of a structure, i.e., if fac-
torization occurs in a structure declara-
tion, the corresponding items are reco-

gnized as structure elerents.

For example, in the declaration

B, C, Dy E, F and G will all be assumed to
be elements of structure A, and will be
assigned the logical level 2.

In order to obtain the structure

DCL 1 A,
2 B,

2 C,

2 D,

3 E

3 F

3G

€

~ w

the declaration of D must be removed from
the factorization brackets. H1

Appendix L. Programming Examples

Conversion of Numbers in Ch ter Forn
Into Binary Numbers H Hharacter Torm

The example in Figure 70 (encircled numbers
are used for reference purposes only) shows

how numbers in character form may be con-
l w2 BOUR BINART (31) FIXED, verted into binary numbers. For this pur-
pose the time is used.

~ PUT EDIT ('HOUR','MIN','SEC','HULL',Y) Note, however, that the example shows
*@ (SKIP,X(3) ,A(4),X(2),2(3),X(2),A2(3), machine-dependent programming and was cho-

X(2) oA () ,SKIP,F(6) (F (3) ,F () F(6)) sen for illustration purposes only.

The current time is okbtained with the

t A . DEY) 31 TIME built-in function (@) which returns a
@ ’ character string of length nine, in the
2 AH CHARACTER (2), 3
2 AN CHABACTER (2). form hhmmssttt, where:

2 AS CHARACTER (2), .
- 2 AMI caAmcun}p hh is the current hou; of the day
o mm is the number of minutes
ss 1s the number of seconds
ttt is the number of milliseconds in

machine-dependent increments

Through the use of the STRING pseudo-
+@| HOUR1 BIN PIXED(31), ’ variable the time (nine characters) is

. assigned piece by piece to the elements of
X (@ (the lengths of the pieces being

© BIRLE B . determined by the lengths of the elements
1 STRING (X) =TIME; in X).
(4)1 1= '0000111100001111'B ;
9 : g =3N§P§?(“)3 Take, for example, the time
AM AMI
(8) 1 B1=SUBSTR (H, 1,8) ; lezs130%0 (BP-M., 2::')“”"" 19 seconds, and
(7)! B2=SUBSTR(H,9,8 }; AH AS millisec
®' o s 1
To convert from character to binary, the
UNSPEC built-in functicn () is used which
returns a bit string that is the internal
representation of a given value. Thus, the
characters '1' and '6' would be represented
as
1 ond 110
Figure 70. Conversion of Numbers in zone portion zone portion
Character Form to Binary
Numbers

Appendix L. Programming Examples 143

To eliminate the zone portion of the
characters, a mask is used and "anded"
with the binary representation of the
characters '1' and '6' (9 :

. Although the first byte of H now would
contain binary one and the second binary
six, the value of H would not be sixteen.
To obtain an actual value of binary six-
teen, the following is done:

The SUBSTR built-in function is used to
(a) extract the first eight bits of H
{which would be '00000001') which are
assigned to Bl (® and (b) extract the
second. eight ‘bits ('00000110') which are

agssigned to B2 (7). Then the valne of R1

144

is multiplied by ten {(which would yield a
value of ten) and the value of B2 (six) is
added (giving a total of sixteen).

The result must have a precision of

21 e A s vy A~ Al v~ on 19T Ay Faw
J1 aClording. To uhe precisicn ruigs Iox

binary multiplication ((9 and @9, if

L truncation is to be avoided.

The method that is used to convert the
hours is also used to convert the minutes,
seconds, and milliseconds. The results are
returned to the invoking procedure which
prints them in the following form :

HOUR MIN SEC MULL
16 33 8 960
HOUR MIN SEC MULL
16 33 9 80
HOUR MIN SEC MULL
16 33 9 220
HOUR MIN SEC MULL
16 33 9 360

HQUR MIN SEC mull

Storing And Retrieving Statistical Data how volumes of statistical data that are
too large to fit in core storage may be
The example in Figure 71 (encircled numbers stored on disk and retrieved.

are used for reference purposes only) shows

~
~

JOB STATLAB BEGIN OF JOB

ASSGH SYS009,X’291’ LOGICAL DEVICE ADDRESS IS
ASSIGNED TO PHYSICAL DEVICE (SEE ENV ATTRIBUTE)

DLBL STATLI,’LAB 6 DATA FILE’,O,SD

STATLI = FILENAME USED IN PROGRAM

'LAB 6 DATA FILE'=IDENTIFICATION OF DATA SET ON DISK
O MEANS THAT THE FILE MAY BE OVERWRITTEN ANY TIME

SD INDICATES A SEQUENTIAL DISK FILE

EXTENT SYS009,PLIDO3,1,0,1800,40

SYS009 = LOGICAL ADDRESS OF EXTENT (SEE ENV ATTRIBUTE)
PLIDO3 = SERIAL NUMBER OF VOLUME TO WHICH EXTENT BELONGS
1 INDICATES A DATA AREA

O = EXTENT SEQUENCE NUMBER

1800 = RELATIVE TRACK NUMBER (TRACK O OF CYLINDER 180}
40 = NUMBER OF TRACKS THAT MAY BE USED

ASSGN SYS010,X’291’

// DLBL STATLA 'LAB 6 DATA FILE’,0,SD

// EXTENT SYSO10,PL1DO3,1,0,1800,40

// OPTION LINK,LIST,SYM,ERRS,60C,NODECK,LISTX, DUMP

// EXEC PL/I EXECUTION IS INITIATED

~
~

~ ~ Nk
Jk*k*k **\15*#**

DECLARE 1 X,
(:)I 2 XX(10) FLOAT BINARY (21),
21

2 Y7(10) FLOAT BINAR

1 TO 500;
1 T0 10;

1) INTO (X);

Figure 71. Storing And Retrieving Statistical Data

Appendix L. Programming Examples

145

The program creates 5000 values (1)
which are stored on disk in groups of 10
values each ((2) and (@). For this pur-
pose a nested DO-group is used (D .

The same_data is then retrieved again
from disk @ and printed in the form shown
in Figure 72 ®

146

-

P g N S e e e e e e
[SESECNNESENECESENESNENE SN SE NN SE NN SN N

WWwWWwwwwwwwwwwwwwwww

P N N NN EE N NN EFEEE-RN
[V NV NC. NV QU NC NU NEINE RV O NS N N NS, T NS N
NN NN
seadNsNSNNSINSN NN NNNNNNN
€0 0 00 ¢o 00 0o 00 o 00 O €O 00 O O 0 W
(Y- IV NV V. V. RV, QY. VSRV RV RV JV- TV JVe V- JATV. RVe V.]

Figure 72.

|

Program Output of STAT

- oemd b oamd b eed b amd d aed = e wd) e b b b

Creating And Retrieving a REGIONAL(1) File

The program shown in Figure 73 (encircled
numbers are used for reference purposes
only) shows how a REGIONAL(1) file (@ may
be created and retrieved from disk.

Appendix L. Programming Examples 147

// J0B CLEAR
// ASSGN SYS011,X'291°]

/7 DLBL UOUT, 'CLASS'.OOO
EXTENT SYSO11 PLILC03,1,0,1500,5
// S\ Job Control Statements

/ EXEC CLRDSK
@ 4 /fo Clear And

Preformat Disk Area

CLEAR DISK UTILITY /
UTILITY CONTROL CARLS /
// UCL B=(K=0,0=C80) ,X'40",ON |
// END)

SPECIFIED PARANMETERS
KEY LEWGTE - 0
DATA LENGTH - 080

| FILL CHARACTER - X'UO'

! DECLARE
OPEN PIL

@fwarm FILE (CLASS) FROM (X) KEYFROM (IREC)

(0)! READ FILE (CLASSI) INTO (X) KEY (IREC);

Figure 73. Creating And Retrieving a REGIONAL(1) File

148

Before a REGIONAL(1) file can be
created, the extents used by the file must
be preformatted by the DOS Clear Utility
program (), which creates dummy records
that contain a string filled with user-
defined characters é% .« Only wvhen the disk
area preformatted, can the REGIONAL(1l) file
actually be created with the OUTPUT attri-
bute @ .

Each record in the file has a length of
80 characters (® and (). The key ®
which must be declared as a numeric-
character variable with the attributes
PICTURE' (8)9' is not contained in the reco-
rd; it is not written on disk, but only
indicates the relative number of the record
in the file. The first record in a
REGIONAL(1) file always has the relative
record number 0 (@ and). The key
used to identify the record on disk must be
specified in the KEYFROM option (9 of the
WRITE statement, or in the KEY option
of the READ statement.

Printed, the records of the program
shown in Figure 73 would look as shown in

Figure 74.
123456789 0123456789
123456789 4123456789
123456789 8123456789
123456789 12123456789
123456789 16123456789
123456789 20123856789
123456789 24123456789
123456789 28123456789
123456789 0123456789
123456789 4123456789
123456789 8123456789
123456789 12123456789
123456789 16123456789
123456789 20123456789
123456789 24123456789
123456789 28123456789

Figure 74. Program Output of FTEST

Appendix L. Programming Examples 149

Creating and Updating a Sequential
Disk File

The three programs shown in Figures 75
through 77 (encircled numbers are used for
reference purposes only) will create a
file, update the file, and punch the file
back onto cards. It is a sequential file.
The input is also sequential.

The program shown in Figure 75 creates a
sequential disk file whose records are
80 bytes long. The input for this file is
furnished by presorted cards (@ . The
records on the cards are just read 3) and
written onto disk as they are.

In the program shown in Figure 76 the
data on disk created in the first program
is updated (@) . Input for any updates is
furnished by other pre-sorted cards @D.

The information that is processed con-
cerns college students, their credit hours,
grade points, etc. (@ . The updates
reflect changes during a semester.

The update process is as follows: Stu-
dent identification (ID) on card records

are compared with student ID on
disk records. If a disk record ID is
smaller than the corresponding card ID, a

is read in ® , @ If the
ID numbers are equal, the disk record is
updated depending on the code of the card
file record. The codes may be one of the
following:

ecord

ular_ hours and grade

MK

o
[}
1

concerns only r
point changes (

oo

L]
1
]

ﬂs,¥,l" total hours attempted
)

N -- 6cerns credit hours (@ @

P -~ concerns probation (@ . ‘. .)

A -- copgerns _Qnly attempt to change hours
(@. . @

G -

congerns _hours _towards graduation
(@, @ @

When updated, the record is written back
onto disk (25) . ID errors (26) and data
errors (27) “Ere signalled by Printing then
out. The third program (shown in Figure
77) reads the data on disk (@ -and @)
and punches them, as they are (@, into
cards @ .

// JOB CUMBUILD

// DLBL 1JSY¥S10, 'DATA-FILE'

/7 BEXTENT SISC lU,Lu.suC?;':,Q'.ESGQ,.?SG
// ASSGN SYsS(010,X%291¢?

// EXEC PL/I

®
@

@ |;'RE‘A'D:
@'

// OPTION LINK,SYH,LIST,ERBS,60C,NODECK,LISTI

"CECLARE 'IJ'szs'w PILE OUTPOT RECORD EOFFERED
ENVIRONMENT (MEDIUM (SYS010,2311) F(80) BUFFERS (2));
DECLARE CUMCARD FILE INPUT RECORD

) FI80)) ;5

READ FILE (CUMCARD) INTO (SEMGRADECARDS) ;
WRITE FILE(IJSYS10) FROM (SEMGRADECARLS) ;

Figure 75. Creation of Sequential Disk File

150

// JOB CUMUPDT

// OPTION LINK,SYM,ERRS,60C,NODECK,LIST,LISTX
// ASSGN S1sS01C,X'291!

// DLBL 1JSYS10,'DATA-FILE'

// EXTENT SYsS010,PLIDO3,1,0,1500,250

// EXEC PL/I

0 *MDECLARE 1J5YS10 FILE UPDATE RECORD
ENVIRONMENT (MEDIUM (SYS010,2311) F(80));

(:) DECLARE CUMCARD FILE INPUT STREAM
NVIRONMENT (MEDIUM (
r

2 SEMHOURSATTEMPTED PICTURE '99V9°',
2 SEMHOURSOFNOCREDIT PICTURE '99',
2 SEMGRADEPOINTS PICTURE '99V9',
2 SEMGRADEPOINTAVE PICTURE '9V999+,
2 TOTHOURSATTEMPTED PICTURE '999V9’',
2 TOTHOURSOFNOCREDIT PICTURE '99',
2 TOTGRADEPOINTS PICTURE '999V9°',
2 CUMULATIVEGRADEPOINTAVE PICTURE '9V999',
2 TOTHOURSTOWARDGRADUATION PICTURE '999V9',
2 SEMHOURSOFFORGGRADES PICTURE '99',

<:> 2 MAJOR PICTURE '999°',
2 MARITALSTATUS PICTURE '9°',
2 ADVISOR PICTURE '999°',
2 CLASSIFICATION PICTURE '9',
2 COLLEGE PICTURE '9',
2 SEX PICTURE '9',
2 STUDENTIDNUMBER PICTURE '99999',
2 STUDENTALPHANUMBER PICTURE '99999',
2 SEM PICTURE '9',
2 YEAR PICTURE '99',
2 AFFILIATION : PICTURE '9',
2 STUDENTNAME CHARACTER (23) ,

ON RACTER (

GRADE POINTS ARE OF FORM R+3 0 +9. 0 (LETTER, F9 0 FlO 0)
R CARDS ARE REGULAR HOURS, GRADE POINTS CHANGES.
F GRADE CARDS MAY BE POSITIVE OR NEGATIVE AND ONLY AFFECT TOTAL
HOURS ATTEMPTED. NO-CREDIT CARDS ARE OF THE CHANGE NO HOURS
ONLY AND ARE OF THE FORM N3.0 (LETTER, F9.0) */
/* A = CHANGE HOURS ATTEMPTED ONLY. */
/* G = CHANGE HOURS TO GRADUATION ONLY. */
: ; OF LAST NAME ON FILE. */
LAST RAME ON CARD. +/
'23(56?8901236567890 *5
0.

}
~ GET EDIT (ID, CNAME, DUMMY) (COLUMN(l) F(5),A(2),A(3)) ;
U OMMME = CNAME;

ROIBIE),

©

Figure 76. Updating Sequential Disk File (1 of 3)

Appendix L. Programming Examples

151

oD = ID}
NEWCARD: v :
(:)lLoop READ FILE (IJSYS10) INTO (SEMGRADECARDS);
PHANE = SUBSTR ([STUDENTNANE, 1,2):
| IF STUDENTIDNUMBER = ID THEN GO TO UPDATE;
gggl ELSE IF STUDENTIDNUMBER ¢ ID THEN GO TO LOOP;
ELSE DO; -
PUT EDIT (¢ Si"ﬁi‘:ﬁ ®T ID nwﬁ rxi«i' .S‘i‘ﬁ
* CaRD ID WUSBEE' ,Ib)
PUT EDIT (*#03$S4sssssnasssnnosnest) |
GG T0 CHECKNEXITCARD;
BND; by .
/% CHECK PIRST THO LBTTERS 0? Sfﬁﬁt’! LiST : _
UEDATE: IF FPEABE -= CEANE THEN GO T@ Iﬁ!!&ﬂi e
PUT EDI? {STUDERTNABE) (SXIP(2}.4) :
PUT EDIT {* BRFORZ ﬁPDl!!'}(SKI?.&’.' ;- y
PUT BDIT (* ID',ID,' ALEHA',CHANR,* m “3“33‘-
TOTHOURSATTEEFTED, t HBS. RCYy .
TOTHOURSOPNQCREDIT, * GRADE 1"”
' HRS. T0.6RAD.', !ﬁfﬁﬂﬁas*o*lanﬁ&ﬁﬁﬁ&fx;
Yy { A, FL6) ,A,h{3) A TS, 1},3,?(
/% SCAY REST OF CARD AND DPDATE PFILE
NEXTDATA: GET EDIT {SIGNH) {3(1}}:

muumzm, o,

| IF SIGN = 'R*' THEN GQ TO HOURS;

| IF SIGN = *F' THEN GO TO FGRADE;

i IF SIGN = 'N' THEN GO TO NOCREDIT:
i IF SIGN = *P" THEN GO TO PROBATION:
| IF SIGN = 'A' THEN GO TO ATTHOURS;
| IF SIGN = *'G' THEN GO TO GRADHOURS;

IP SIGN == ¢ ¢ THER GO T0 DATABRESOR; BLSE GO 10 CHECEREIN

HOU?S: GET EDIT (CREDITHOURS,GRADEPOINTS) (F(9,0),F(10,0))
TOTHOURSATTEMPTEL = TOTHOURSATTEMPTEL + CREDITHOURS;
TOTGRADEPOINTS = TOTGRADEPOINTS + GRADEPOINTS;
TOTHOURSTOWARDGRALDUATION = TOTHOURSTOWARDGRADUATION

+CREDITHOURS;

GO TO NEXTDATA;

FGRADE: GET EDIT (CREDITHOURS) (P (9,0));

TOTHOURSATTEMPTED = TOTHOURSATTEMPTED

+ CREDITHOURS;

GO TO NEXTDATA;

NOCREDIT: GET EDIT (CREDITHOURS) (F(9,0)):
TOTHOURSOFNOCREDIT = TOTHOURSOFNOCREDIT + CREDITHOUORS;
TOTHOURSATTEMPTED=TOTHOURSATTEMPTED + CREDITHOURS;
TOTHOURSTOWARDGRADUATION=TOTHOURSTOWARDGRADUATION+CREDITHOURS;
GO TO NEXTDATA;

PROBATION: CONTROLCODE='5";
GET EDIT (DUMMI) (F(9,0));
GO TO NEXTDATA;

ATTHOURS: GET EDIT (CREDITHOURS,GRADEPOINTS) (F(9,0),F(10,0)):
TOTHOURSATTEMPTED = TOTHOURSATTEMPTED + CREDITHOURS;
GO TO NEXTDATA;

® @ © @ ©EE™

Figure 76. Updating Sequential Disk File (2 of 3)

|COBRECTFILE:

: ’
@9 |D'-STUDENTIDNUNBER,' FILE ALPHA',FNABE)
(SK1P,A,F(6),A,A(3) ,A,F(6) ,A,A(3));

GO TO NEWCARD;

DATAERROR: PUT EDIT (* DATA ERROR, UPDATE ID',ID,°

(SKIP,A,F(6),A,A(3));
GO TO NEWCARD;

GRADHOURS: GET EDIT (CREDITHOURS,GRALEPOINTS) (F(9,0),F(10,0));
CZ? TOTHOURSTOWARDGRADUATICN = TOTHOURSTOWARDGRADUATION
+CREDITHOURS;
@ GO TO NEXTDATA;

ALPHA' ,CNANME)

Figure 76. Updating Sequential Disk File (3 of 3)

// JOB CUMPCH

// ASSGN SYS01C,X'291"

// DLBL IJSYS1C

// BXTENT SYS010,PLID03,1,0,1500,250

// OPTION LINK,SYM,LIST,ERRS,60C,NODECK,LISTX
// EXEC PL/I

DECLARE IJSYS10 FILE INPUT RECORD
BUFFERED

DECLARE CUMCARD FILE OUTPUT RECORD
BUFFERED

ENVIRONMENT (MEDIUM(SY3010,2311) F(80) BUFFERS (2));

ENVIRONMENT (MEDIUM (SYSPCH,2540) F(80) BUFFERS (2))

Figure 77. Punching Disk Data Into Cards

Appendix L. Programming Examples

153

The DO WHILE Statement

The program shown in Figure 78 shows how

......... + 172 + 173 ¢ 174 +
1/5 + ... may be computed using the DO
WHILE statement.

WHILE: PROCEDURE CPTIONS {(MAIN);

SUM=1;

N=1;

DO WHILE {(i/N > 1.E-3%3S0UM):;

N=N+1;

SUM=SUM+1/N;

END;

PUT LIST(SUM,N);

END;

Figure 78. Example Illustrating The Use of

The DO WHILE Statement

Using The Console For Communications

The example in Figure 79 (encircled numbers
are used for reference purposes only) shows

clerenc Sl pos=es

154

how the console may be used for communica-
tion with a program.

Four files are used: a tape input file

, a_tape output file (@, a card output
file » and a print file (no declaration,
default). The input from the tape input
file may be written on tare, punched into
cards, or printed. The answer as to what
is to be done; must be given by the opera-
tor using the console C; . The operator
has to type any combinaticn of "PRINT",
"COPY", or "PUNCH".

The answer is then scanned by the pro-
gram to determine first whether COPY 5 ,
then whether PRINT (), and finally whether
puNCH (O Las becn returned. If the reply
that is searched for is not found in
ANSWER, 0 is returned by the INDEX built-in
function.

Depending on the answer of the operator,
the input is written onto tigg ® , punched
1)

a0 .

into cards GD

KL=

NY nrinted
QY prainTed

/7 ‘JOB MON_i3

* PAUSE READY TAPES MASTER ON 180
// BASSGN SYSC1C,X'182'

// ASSGN SYS011,X'181¢

/
ACTION NOMAP
/7 EXEC PL/I

UTIL: PROCEDURE OPTIONS (MAIN);

of

NOLABEL) ;
DECLARE CARDOU

DECLARE CARD CHAR({80);

DECLARE ANSWER CHAR (20}

DECLARE (COPYBIT,PRINTBIT, ?E!t

DECLARE LOGIC 0813{33.

ON EBDFILE {TAPRIN) GO TO 9038‘ .
START: '

ABSWER = ¢ 3

COPYBIT = ¢ v

% '} REPLY. {RNSHRR): -
| M=INDEX (ANSWER,'COPY');

i M=INDEX (ANSHER, 'PRINTY);
IF # == 0 THEN PRINTBIT = $1%;
[M=INDEX (ANSWER,'PUNCH');

OXCIOXO,

OK&Y.

IF COPYBIT = '1/ TH
' OPEN FILE {?Akzaa

IP PUNCHBIT = 17
~ OPEN FILE (C
LOOP: READ FILE EIN

IF COPYBIT = '1’ THEN

WRITE FILE (TAPEOU) FROM (CARD);
IF PUNCHBIT = ‘1’ THEN
® WRITE FILE (CARDOU)
IF PRINTBIT = ’'1’ THEN
PUT EDIT (CARD) (SKIP,A(SQ))i

FROM (CARD);

/ OPTION LINK, LIST,SYM,ERRS,60C,NODECK,LISTI,DUMP

DECLARE TAPEIN FILE RECORD SEQUENTIAL INPUT ENVIRONMENT
(MEDIUM (SY¥s010,2400) CONSECUTIVE F(800,80) BUFFERS (2)

NOLABEL) ;
DECLARE TAPEOU FILE RECORD SEQUENTIAL OUTPUT ENVIRCNMENT
(:) (MEDIUM (SYS011,2u400) CONSECUTIVE F(800,80) BUFFERS (2)

FILE RECORD SEQUENTIAL OUTPUT ENVIRONMENT
{MEDIUM (SYSPCH,2540) CONSECUTIVE F(80) BUFFERS (2)), »

?ﬁ!ﬂ!ﬁi&*r b4
} DISPLAI ('TYPE CONTROL WORDs - PRINT, PUNCH

IFP N ~= O THER COEYBI!"'*§* “ SEROEE B Ea L

: PONCHRIT = v ,.“5
COPY- ANY COHBINATION

Figure 79. Using the Console for Communications

Appendix L. Programming Examples

155

Index

(Where more than one page reference is given, major reference appears first.)

ABNORMAL attribut@.iccaceiccacsscceacaseess 141

AcceSS MethOdSeeeeresseacnccnccacannanas 33
ACTIQON gtateme 10 24

tatement ciceeccncsencsnceacsnas L4 L0

ALIGNED.ceeveccccnscoanescascasansansace 137
Alignment requirements of data.e...... .. 67
Bll OPtiONeicaceocacsncsacneaccnacasnsccss LU
APPENA20Ceccacnunensccocsescssssasencans 10
Arguments, passSing Ofceecececcacssacaccss U
Arithmetic constantS..ceeecececacaaceass 137
Arithmetic data (storage
requirements)...cecccceccccczccccz222-2-2 60
ATTAY DOUNGS.ececemencaancnananananns=nsa= 05
AT YAV Seeeenacccnscsncssnnsssaccanaannnns 137
Arrays of structureS...cecececeess.. 51,137
Assembler MOAN1leS.ecccceanncaccscanssasas U6
Assembler modules calling PL/I..ceccessas U6
Assembler modules, linking of........... Ul
ASSGN statement.cecececvececesccssanccesas 13
Attribute factorizZatiGCiieesassneveascess 137
Attributes, redefining...ceeceeeescecaeas 52
Autolink featuUre.icneeeescecececaannensas 20
AUTOMATIC data storTag€eeeececcceasse. 63,138
AUTOMATIC variableS.c.eccececcccsaceeassa Ub

Background partition....ececececsecess 11,18
Background processing..eeceeceeecscecsee. 11,18
BACKWARDS attribut@.ice.ececsceccesansecese 39
BACKWARDS file€S..ceeecscacscscvcneansnsss 39
BASED attribute..cccccscecsccaccccscsaaa D2
BASED data StOr20€eeeeccasacsccsscancnee 063
Based StruCtUreS.ceeceseccscscscveacananas D2
Based variableS..cecccoccccacsccceascacans 52
Based variables with structureS....e«... 52
Binary
fixed dat@.cecccccsacoceanaceaaasss 60,138
fixed and float variableS....cececeees 67
£ixeA AAtBesceceansccansscennocesss 60,137
float dat@eeecceeecscsaacnsncsaseenes 60,137
Bit StringSeccecesecccccacsccnnsscss 137,62
BlanKkS.eeaaaesccecsansaannsassanasnsanses 137
Block (0f dat@)ecececececcccccnancnnaaee 27
Blocks (of program).eceececcececascenass 137
Biock length.iceeecccancaancennsaansess 137
Block pPrOlOQUE..eecececsacacaaaasanscanas 81
DlOCK SiZ@enescvscenssacsssnncsansenasas O1
Block table listing...eeeceeaceceacaeaaa. 92
Blocked reCOrdS..ceeecaceesessncssancecsas 31
BlOCKiNG.seescecesocnanaascacscasasnassecs Ol
Blocksize OptiONescececccvacescacacaneass 137
Boundary rejuirementS.ccececccccancseraes 65
Bounds Of 3N 2¥raYeceececccesscasccancss OU
Buffer (length).ic.cciecencesceacaaceasaas 35
BUFFERED attribut@..ccececccscscnaccaccas 35
BUff@rSecacccacannananancscnnsosncsncace 712
BUfferingeececssssceceaacsaceacsccacnananans 35
Buffering attributes.ccceneececcnncenasae 35
Built-in functionS.a:ccveacesvesaeces 96,138

CALL statement.ce.ccceceseccaceccnesas LU, U6
Calling Assembler modules............... 46
CATAL Up_LOll {OPTICHN statement)eeescesceas 15
CataloginNgeceacecscescscaccssnaanansneces 20
foreground ProgramSececccescessssceesss 26
into core-image 1ibrary.ceececeecene-aa. 24
into relocatable librarye.eceeseeeceess. 24
label informatioN.ececceacceceancsceancees U1
relocatable MOdUleSeeeeeecececnansnaas 2L
CATALR sStatemeNt..ceececececsccccccacannoas 2U
Chain-back Word.. . .ccecveeacccnannanncns 58
Chaining of DSA'~=a.s===;aa.;;aeaiia.-.. 58
Character StringSecccwsseccasccasess 138,62
CHARACTER variableSiececceccacsscanasacsaas 67
Checkpointingecseccecncasesacasasssscanans 47
CNTRL MACYOeneceassosnccanccasnansnsncas U7
COBOL subroutines (calling of).cececaecss U4
Coded arithmetic data (storage
TEQUIYEMENES) caveeennccacannnsnnnecanns 00U
Coded arithmetic variables (default
attributes Of).cieiececacecaacaneaneaaes 136
Comments statement.seceeececceaccsccecanes 16
Compatibilityecieeaecenencaccanacaaas 138,70
Compilation requirementSeeeeeeeasees-- 18,5
in background partitioNececeescecesa.. 18
in foreground partition...cccececsceeca. 18
Compilation under DOS/TOSe..=ssseasasss 17,20
Compile and Cata@lOgeawecesasensesssssccas 25
Compile-time diagnostiCSeeceececcesecaecass 107
Compile-time CptiCNSeececcnaneneeaeae 15,15
Configuration (supported maxXimum)eeeeeeee 6
CONSECUTIVE fil€S.eceecesacaasacsnncanns 27
Console (using console for
COMMUNICALIiON) teeseencccnscnncnananemas OU
Constants, representation Ofececcecceases 6U
Control fielde.eeeeeensscaaceccsncacannaas 34
Control routine, PL/Tlecececescencnacscas 82
CONVERSION conditiONeececesceaccssaees 140,040
CONVEYSiONeiceacaasccannscnsssceaneneas 50,138
EXAMP1lCe e eeeseaccnsnincncssncennnsces 103
possible combinations oOf..ccceeccacaas 95
requirementS. cccecseccacancnasssccsasncs 10
SUbIrOULiNeSecaaccesscscseaasncenaaeas 70,93
Core-image libraryeececccccsccescacsacaass 11
Correspondence definingececceceecacacass 52
Cross-reference 1iStiNJeeceescsccacasaas 91
CSECT NAMES ececcencscosvacccscnscsanncsnanse 21
Cylinderaeeeeeceseeacsocssccssccancssnnass 33
Cylinder indeX.ceceececceccssscsaccacnnsaa 30

DA (DLBL statement) ceecececscccsasnecannees 37

DASD file label formatSeececsecccscases. 102

Data
alignment.cecsacecacsacannscanscsranea 67
8g0YegateScececsenvescaasansansacnses 137
QY CO caaacseacssscsccssnaavonssonasneese 37
AeSCriptOreceeceescsesacanacscacsnanaes 60
f1leSeaeecaccnnnassaseancascacsnccnncaa 27
1teMSeeiceaassaccsacscsnansancsncnsncaas HO

StOY2gCeaeeceanrnocassacnacncassarsas 138
StOrage mapPiNgececceccesacaacansnnnnsas 65
storage reguirementSeecscecscsssccccess 60
conversion, possible combinations..... 95
Date {(in job control).ceceeceecacesean 37,38
Decimal
data, precision Cfeceeaeseccccnacaneeas 53
fixed and float variableS..eeccecsceses 67
fixed dat@eeeeeccacacsssaancscanss 138,61
float Jat@eeessccccascassncnsessss 138,61
DECK option (OPTION statement)a.eceeecee.. 15
DECLARE sStatement..cceceecececeasceesasss 138
DEFINED attribut€..cececececssceceessss 52,138
DELETC StatemeNtececcevececcancsnscccasass 24
Deleting from l1ibrarieSecececrcesscscaes 24
DELETR statement..ceceeernacncscacancsas 25
Device addreSS.sceencaceaacanassscnncnsnss 13
Device specification for tapeS.e.ccce.... 13
Diagnostic messages
compile-timeiecenceacccacanacaseaaeas 107
object-time.c.eeeeeaneeeinecacannaaas 130
Dimension attribute..ceeceeeceanceeaeasas 138
Direct access methOd.ceacscaneansnsess 29,35
Disk and Tape Operating SYSteMS...sesee.. 10
DiSK fileS.ceceaecocacanasscnancannaasees 36
creating and updating sequential..... 150
Disk file proOCESSiNGeecescsccascecansnsss 36
Disk labelS.cieieecnceaenaccanscsccnnsasnoes 36
Disk organizatioON.ceieeeescicessccsanaaea 33
DISPLAY statement.icececececeanscaeseaces 139,53
Displaying intermediate results
(DYNDUMP) ceceenceanccscnacaancnsacssscncs 38
DLAB statement..cacecccecasncsccenssccces 37
DLBL statement...eceececececcecccscanssss 37
DO loops
optinization Of.cccceceeccaaccacancaass OU
DO statement.csccescscccscsaceansaass 139,154
DOWN OpPtifN,ueeeeeeenancasencnccanannanas 104
DSA- tseecsannoccsanscsacsncansncsssnscsass 80
chainingesesceeeecaececsasacaanaaanaas 58
1ay0Ut.s et eeeccenacccanceanssssacancaas UB
DTF PYOJYaAMeeeeseeceocsecnanesssncnsescns 12
DTF tablEeacececacsnccsacancnnnasnans 72,.,47,58
DTFCDeeesecnscsnancasnccsnanannansncanansans 12
DTFDAceecenccennonsassnnosnsssncnsacencas 4
DTFDIuccecacccancancacccscaccannsnnanasase /6
DIFISacacsceancseacnascssnannancssccannnanea /D
DTFMTeceecasscncnanancanascssnsnnnsscannas 13
DIFPReccecccacecccnccacscacannancsnancacnsns /3
DTFSDeccccascacsconncsnsnccnasssanncasane U
Dump interpretation.cceecescecececacaseaeass 58
DUMP option (OPTION statement).......... 15
Dynamic storage area (DSA)..c¢e<... 80,46,58
DYNDUMP routin€..ceecececsacscaseasaaass 58,139

E-format output........ 1
Edit-directed data transmissione........ 54
END statement {PL/TJ.cecceccanscacaasaes 139
ENDFILE cOnditioNeececceacsesanaaaseass 140,40
End-of-data-file statemente.cecceceancs.. 16
End-of-job statement...cccceceancacacnass 16
ENDPAGE with multiple-line PUTececcesees 55
Entry name parameter..ccececcecccececeses 141
Entry pointS.e..cececceaccccccnacnccasens 21
ENTRY statement..ccecccecscaccsanccccasnaa 21
Error messages
compile~time.. . ceeeececcanacnanncnsaa 107

ObjeCt-timMee.cecenancssancsvecancansans 130
Error statistics (for mathematical
functions) ceeieeecaencseccanscanasaceas 70
Errors
due to multiple secondary entry
POINtSececasccesanasscnascsnacnscansas 21
due to multiple CSECT NameS.eecmaecesecees 21
tracing object-tim€eeeiacecec... 31,56,58
tracing compile-tim@.ceiceeecacecanaceae 90
ERRS option (OPTION statement)..ece.eee.. 15
EXEC statement.ceceeasecsencacsacsanaancnes 13
Execution requirementScicacceacesesccsccssns O
Execution-time errOrS..csseccencssaccassn 58
EXHIBIT CHANGED.we<ceesasenaassssascsacnne 2O
Expiration dat@ecceeececcesascaccncsnaass 36
Exponent subfield..ceecciecceccennenaas 139
EXtentecevertoeeeeccncnscsencaascccnsancees 33
EXTENT statement.c.ececesccecansasess 33,37
External
attribute..e..ceceaececeacncenavaa. 50,85
data StOragC.cescecescecascsacnnancaas 63
PrOCEAUYE e caneesacsansccsncnnannsccnanee 21
SEYUCLUYESeceeecennncssecccccscansaces 1U0
symbol table 1istingeesccecececcssacsss 91

F-fOrmat OULPUL<eveewocnccconceccconnaes 5l

Factorization of attributeS.ec.eeeeeceass 137
Fill@ueeseeeeecnenenenacocacanccncnnannane 27
APPeNAEGC e acaccanacccnascananncaannes U7
ATJUMENES e ceesacccacscansnsassuvnsnnaes 47
attributeS.sceecnnencnccaancennsas 135,35
declaration checCkliSteeascecacacecasas 135
deCclarationS.seececaccccsconcanacannee 72
generation NUMDEr..ceeecassesccasscaaseas 39
identificatioN,acaceecccccnnccnancanas 37
label formatS.cecececcecccsomcancscsss 102
1abelSeacecaanacnsanseannsccncsecannoanne 36
MOAUL e e e cencnencennonsnosnnncsnacanas 24
OrganizatiON.ceecsccececccscesnancaanns 27
DAYAMeL @Y Secicacceccnananscaancssacaans U6
SEQUENCE NUMDEr ecaenscssccessscsesecsss 38
Serial NUMDer.ececeeaseuvasessnsssemsnsass 38
unbufferedeicecececnccccsnnsccaass 35,139
VErSiOn NUMDEY.secescesccsscsacnsonnse 39
Fixed blocked recOrdSeseaccssecscasascess 34
Fixed unklocked recOrdScecuecsescecccsaaes 3k
Floating-point regisSterS.ieceescececeaaase Ul
Foreground partitioNeeeeeececececeseasss 11,18
Foreground PrOgYa@Meeceececesecsccsenssees 11,26
Foreground SavVe arC€8.eeeassccsssavessccss 18
Format CONStaAntSaeeececscvscavacscseansases 139
FORMAT statement...ceeccececescccansssesss 139
FORTRAN subroutines (calling O0fdeececa.s U4
Function referenCeicciececacsccscsescsccacss U6

Generated catalog control statementsS.... 25
Generation NUMDET..csrmcrsmcenaccseacsacas 39
GET StatemeNteeccececseacccacosasasassaces 139

Hardware interruptSeacccacecsesscescseass 130
Header label.ec.i.ceccccecccncccnsnccncnaanas 36
Housekeeping errOrSaaeacececceacecesenaas 131

Identification (file)eeeceinceavcaneccaasas 38

IdentifierSeeecencenansaanassncnncsases 139
IF nesting..sceceaccecenscccscacnensaaas 139

Index 157

IJREXHC . eaaaoescsasassannasasasaaans 56,139
IJKSZC I eccenncsnacsnasscssnscsanscnnsanas 48
IJKSZCNeeneaaeesansaacsannascnssnnnnnanas 46
IJRTROF cunnecscsasnsesaannencaaseass 96,139
IORTRONeeuvacenacnsssacnnnsasenannss 20,139
IJKZL macro instructioNeeeecececea - 1. |
ToKZWST e e eumosansnsacncnsncanascacnscenns 48
Implicit declaratiON..eeceescicaacecesas 139
Implied subroutine caliSi.cecceceeneas 96,70

Including
by compilatiOneceacennasceasenseannesses 20
from the relocatable library 20

Lyeeecscasena

object card deCKS.ceecacencaccascnnnes 20

object mMOdUlES.cccccanncncacan P —Y
Independent OVEerflow ar€aeesececccsceceacss 31
INdeX.eoaoccccoaccacanscancancanacannsanss 30

TNAdEeX B8rCAeesssssesncssacccaeansesesees 30,38
LNDEX built-in funcCtiONesecesccecseaseaes 154
Indexed fileS.caeeeenacenncacsccnanneaas 29

options fOr.oe.cacenannaacecaaaaaea==-- 33
Indexed-sejuential

file, creation Ofeecececceccacanasacaas 29

OrganizatioNe.ceececeeeeseccenananeaanas 31
INITIAL attribute.ceeeaceccasanancnseas 139
Initial Program Loader.eeceee-caacesewas 10
I/C device aSSigNMENt..cacsccceccaneaccass 12

1isting Ofcececucdacecancasesnscasseanns 12
I/0 EXTI0TSeacnssccvancnannnsns eemseeses 132
I/0 procesSSingneceececensseccsceaassscaanes 39
1/0 statement

format checkliSt.eccceesceecncaaneaeaas 138

nesting Of.aeccccncererccncncacascaas 140
I/0 storage requirementS.eceecececacenaae 72
I/0 subroutines (1ist 0f)eeeccacscesea- 100
IOCS logic MOAUlEeeuaccanansccnnaacananas 76
TPliccecnececsosnsesesosanssnseccssnnseves 10
IRREDUCIBLE attribut@.cecceccssanenceas 141
ISC (DLBL statementY....eeneeeceacancseas 37
ISE (DLBL statementl.iccieecrcanans «eeew 37

Iteration specification (DO nest)...... 139

JODeeeencesasnascenvacansesacsasccesnanasnse 12

Job Control pPrografiecaesssecccceccsesvesess 12
Job Control statementSeeccesassesceveanas 12
JOB statement..ceceesceesscscssanscanssasaaa 1U
JOL StePeeaceanecacacssacnncarsaancaneas 12

KEeYeeanaoaaencaansoanassnnamansannasanse 27,29
KEY conditiONeecceaceccaacesansanssasss 31,140
KEY OPti1ON.cececensncscsassccansonans 29,33
KEYFROM OpPti0Nesevccaccsccncacascassss 29,33
KEYLENGTH OpPtiOfNeeececesccensccecaecea 29,33
KEYTO OptiON.eccceceiencanssanncscansasssen 33

LAaDEleeceasscacmecananasnoacnnnancanes 30,140
constants (Storage)..ciecescaneaseaseacess 63
control statementS.e..ceccecececcacaceces 36
datBeacesasacsoncnccccnccnnnns I 63
{END statement).cecceevacscesscaansscsa 139
information, cataloging of......c0c... 41
PrOoCeSSiNT.eeacescccaces cesaccsracscenes 36
-program CoOmmUNiCatiON.eseceasacnvecaas 41
statement exXampleS..ceececacccceccsaa. 39,40
variables....ecsecenenea ceesvcannse- 53,67

Labeled files, link-editingec.iececesc.. U0

Labeled tape fil€S.eeeeeeeeaecnaasas. 36,40

LBLTYP sStatement.cecececscacceasanesceaness U0

Leaf {of overlay treed).i.iceecacecanseeaass 85

158

LEAVE OpPtiONee<aceascacenacceanacncasanss 39
Level number (StruCtUreS)ecececcascssees 1U2
Librarian.e.ccecessssnscasacscanssamscseses 11
CONt¥O0l StateMeNntSeaccseasscccancccanas 2U
Library maintenance {(TOSjeeacescsasseceses 20
maint €Nance rUNS..ececccsccescansscsans 2
standard save area (LSSA)eceecescseaes. 58
SUDrOUtineS...cccaeecsacncenccscancananas B
LINK option (OPTION statement)...cevew.. 15
Linkage EQitOY.c.ueenncecesccsananaas 18,10
control StatementSeececacecccccacsaanas 18
PrOGYa3Meeseeoncananonecesnessosavcssemes 18
SLOYAge MAPeeecesssnsanncnncannssas 58,18
Link~editing
foreground pProgramSeceeecscccscescccasss 18
labeled fileS.ieaceansaccsscacasassanneas UO
multiphase foreground programSe.<<.<-<.. 88
OVEYlaYSeeeeeseaacsansscacccanancnnsanee 87
Linking Assembler mOAuleSeecececececeasas UL, U6
T1nk1nﬂ conventionS.:c:csce. uu

LIOCS £3blecciccccccosnscssssnssssnsvensss U1
LIST option (OPTION statement).essseass. 15
List-directed data transSmisSsiONecwesce.. 54
LisSt I/0ececcccsasceacanccassnsasacasas 1UO
Listing of I/0 assignmentS.ececcaccassss 14
Listings, progral.ccesceccececescscacaanass 90
LISTIO statementeccsceececsccsensescoecceess 14U
LISTO option {(PROCESS statementleeceeeses 17
LISTX option (OPTICN statement)......... 15
Locating execution-time errorSeeecececeec.. 58
LODIS MACYOceacsansaoaccacsnceansacancnnas 39
LOG option (OPTION statement)e..ceaases. 15
Logical depth (structures)...acceacc.cc. 66
Logical device addresSS.eeecececcesscannss 12
Logical UnitS..ieececencceccceancanaacnnes 13

Machine featUreS..ceeccessaccccscncannaas b
Machine requirementSeacceccecsccconcacenes 6
Magnetic tape, positioning Ofeseececescees 40
MAIN OpPtiONececceeceacnssancannncanees 1U0,H46
MAIN pProCcedure..ce.eaccensncsancscscasca 46
Mapping (StOrage)..eceecsssccscacccnsnsecas 65
Master indeXeeeceoeccoccscsscacssacannnnee 30
MINSYS option (OPTION statement)........ 15
Module NamMeS.c.cnceceacncacanncscanannass 204
MTC statemeNte..ceescecccceccssacaaes 14,39,40
Multi-extent fil@e.eaeeceeacaccacanaceas 37
Multi-file VOlUME..ceeeeacsocncaneaseanas 39
Multiprogramminge.cececascececsecacaecnenaas 11
Multi-reel fileaeeeacacecccccasnsensnnas 27
Multi-volume fil€eseeaacanasnsanceacanseaas 39

NaMESe e eeaenvenaccsasannancnssncanesesns LU0
Nested bloCKSeaeeteececncacosnnaannssas 137
Nested L/C StatementSeccevecessnsessssns 1U0
NEWVOL library statement.ecececcecacccsececs 26
NOAUTO option (PHASE or ACTION stmt)es.. 20
NODECK option (OPTION statement)..aevae... 15
NODUMP option (OPTION statement)..e.ee.. 15
NOERRS option (OPTION statement)........ 15
NOLINK option (OPTION stateméent)........ 15
NOLIST option (OPTION statement)........ 15
NOLISTO option (PROCESS statement)...... 17
NOLISTX option (OPTION statement)...ee...15
NOLOG option (OPTION statement)eeeeceea.. 15
NOOPT option (PROCESS statement)........ 17
NORMAL attribuUt@.iaceiececaccnscecasnsssss 141
Normalized dat@.c.eaasascscscacssaacanaes 51

NOSTMT option (PROCESS statement)....... 17
NOSYM option (OPTION statement)...c...... 15
NOXREF option (OPTION statement)...ee... 15
NULLesevassanasoasnccsannanannssccacsss 139
Numeric data (Storage)eeececceccecacececes 62
Numeric fields in edit-directed 1I/0.. 51,54

Object code listiNGaeessceecancccacanseece 92
Object MOAUlCeecsecceceracencsccccncnceseas 8
Object-time AiagnoStiCSeeeceacccaceeess 130
Object~time errors (locating).ecciceec... 58
Object-time storage layOUt.seceeeeeceeaes.. 10
Offset table 1listing.ecesseaseccscceases 91,58
ON-CONALitiOoNSeeceneancncancsnccasnss 134,140
ON-condition COMMENtS.sececceanscnscnssass 130
ON StatemeNt.ccecacececosccacanonneesasss 140
ONSYSLOG OPtiON..eeceseacsescencssansnes 141
OPEN statementeceececccecccsccssncscnanseas 36
OPT option {PROCESS statement)ee.eeeece.. 17
Optimization (of compiled coded...eeeea.. 17
OPTION Statement.ecececessnencsecssaneenaes 15
OPTIONS attributecciececiceeaceenceacess 141
Options
supported by job control....cececeeceas. 17
not supported by job control.....eee.. 17
OVerfiow are@iecceececscccceacseacccccacans 30
independenteceeecceccececscccccacasneaanee 37
Overhead.eeecesccccnccancssanssannanss 79,8
overlap, S€eK tiMe.cecscesccccansacnanas 47
Overiapping I/0 OpEratiOnNSecccscscasecss 35
OVErlaYeeaesosscacannencscannnnsaesss 85,511,139
definingececeassaasceccccvesacsananacanse D2
eXAMPlCeeeeencnnanccassannanensnencsen 87
rules FOY USINGeaveasaovenncasnansnsnaen 85

P-format itemS.cceececeacscacacsasasasosns D1
PA3AiNgeccecaceacsnnacscnsecacacasnnscnnesa 05
PAGESIZE OpPtiONecsceceavcascscssnasenss 141
PaYaMEteYSeeanacacsnacconoaccsscnsnscennene 141
Partition, foregrcund/background........ 11
PAUSE sStatemeNt..cceccecascscassascsscsses 16
PHaSEiaecenacnscccnnannnccanseassnsnaas 85,8
108GinNgececenccascsccannccncasenscacacess 86
NAMES.casssscessossssssscnnccansnsne 24,85
PHASE statemente.ceccecacscccenssesanass 19,87
Physical device addresSS.evecececceccceees 12
PICTURE attribUtCicccacescsccanuannnsasas 141
Bt B evenaancnannnnanancenssonscaases 101
specificationSecieacecscacescacessncanas D5
Picture-specified
character StringSeeccececececcesaccaes 62
data (storage).i.ieeceeeneccenceancncaaas 62
DPICTURE variableS.cceceecccscscccencacnae 67
Pictures, use witn stream-oriented
data transSmiSSiON.ecaccececcsssscassaceas D5
PL/I control routine..cccececeeccancaneas 82
Pointer variables.....ceecaccaveacesas 63,67
StOrag€ecceecceeeccsecnanannacsaanssas 03
Positioning of magnetic tapeS..c.ceeee.. U0

Precision (of arithmetic constants)..... 64

Precision {of decimal data)e..ceceeceeas 53
Preformatting REGIONAL filesS........ 28,149
Prime data a7€8c.vcasescsssscacsacsascsas 28
Private relocataple librarye....c.<.... 20,23
Prccedure
contained in relocatable library...... 89
default conditioONeeeecaccacacsacaanassas 181

MOAULEe e e eveeecceaecesnaacananneeaans 3,20
PROCEDURE statementeeecccacecscescasaass 141
PROCESS statementiccecesecceacevcensccceass 16
PROG OPtiONecacacccacncssacacccsncnncnanas 14
Program eXampPleSe..cceecceccceccasanaanes 1843
Program €XPanNSiONececceccscececcceccasees 50
Program segmentatiONeeacecasescecseseasaces 50
Program storage requirementS.eceseeces.. 83
Programmer logical UnitSecececececececsecass 13
Pseudo variableS...cceaasaacaccsnnases 70,96
PUT statemeNteccececaccsscncsacnacsssnssas 141

Qualified NAMeSeseeeaccssnacsscsscancsas 141

Re-assigning logical unitS.ceeesecessesse 13
RECOYJeeeeracaacacananconnncsnsnenccanee 27

LYPeSeeeeceeccacacnsscancassnnancseeas 3l
RECORD CONditiONeececeseeececccccccsssacas 33
Redefinition of attributeS.ececeececcecesss 53
REDUCIBLE attribUt€.caccecascassiacasanas 1U41
REGIONAL fileS.ceaaceancsccsssccssnncannee 27

creating and retrieving a

REGIONAL(1l) fil€.ieecaoeascsevanacass 147

Register usage for linkinge.sicsecoeceees 44

Relative track number..ccececacececeaass 38
Relocatable libra¥y.eeeeaeseewesseas 89,11,24

PriVat@eseeccascsacsscsascansncsnnsasess 20
Remote format iteMeaecacesececccescaceases 139
Remote FORMAT statemeNteaeeccesceeasseeas 139
Repetition faCtOreeecaeceecccasacvaneens 1U1
Repetitive specificatioNeaceveceaceseass 139
Replication factOreseecececsoesasaaaseas 139
REPLY OptiONeeacsccecascccsenncanacss 139,53
RESET StatemenNt.ceccecescscecsaccscaeases 16
REStarting.ceecececscnsssscancsancacesanns U7
Restrictions on PL/I languag€e.eecees=se. 137
Retention periode.ccceccecessocacassss 37,38
RETURN MBCYOecsamesancnsecracscasasenancasa 45
RetuUrning regisSterSecececcwseccccaceceanes 45
Rewind OperatiONececcscescececcscocnseses U0
ROOLceeecacscncssosansccannsansscanncnnns 85
Rounding ON OUtPUt.ceeveeecoscsesscsccss DO
RSTRT StatemeNt.ecceeeecaneececsacaananss U7

SAVEe 3X€Ae.scetescencsancnsasncnnasnaaas U6
SAVE MACYOeeeecacoansnncansosccsnnnsnnses U5
Saving reglSterS.iecacacecccesssosnansaans Ui
Scale factOYeeeieecaeansnascacaasonncasas 1U2
SD (DLBL statement)eeeceececccecsccccacen 37
Secondary entry poOintSe.eccecsececceasscseces 89
Seek time OVerlaP.eeeseecescsccsancsnnsons U7
Segmentation O0f ProgramMS.ssececccessscaecs 50
Self-relocating PrograMS.eccececasceccecacaes 20
Sequence number (file).eeaceceasoccaaaes 39
Sequential access methOdeeccaceccaess 27,35
Serial number (file)ee.eeecececanancacaes 38
SIZE OVerflOWa.ceeceseacccsassssscaneaseese D3
SKIP.iceassocacasoacacsnccsananssanacnans 139
Source
MOAUl e e ceeianeenennccanacnsnanscannes 3
program 1istingeeceeccececscessccescscceees 90
statement library.cececccecscscscensaas 11
text and object programe..ceccceccssecee 83
Split-cylinder techniquUe.e.ecececceveass 34
Split cylinder traCKeeiceeseececeencaasss 38
Standard I/70 asSSigNmMeNntSescececcsecccasseaes 12
Statements (restrictionsS tO0)eeceeececas. 182
Statement formateccececececncaceeases 50,142

Index 159

Statement offset 1listing..eeceeececcessas 92
STATIC data StOrag€ecececccecaccnsceansnnens 63
Static StOrage.cccccececancacensccaaca. 138
Static StOrage arec.cecccceeccccsscsencces 79
STMT option (PROCESS statementleeeeece.. 17
Storage layoUf.e.cecececceaccncencaannas 10
Storage mapping
AYYAYSeeaacscasncnsscancnsaansanseannnas 09
element Jat@.eceeciecenenecceacacnanaeanes 65
SErUCEUIeS . cuesenaaccnnnneccancannsnes 66
Storage reguirements
for bilock prologue-......-:ccccccscssss 81
for compilatioNececesceccccencacccaannes 18
for data@eeeeeeereaceecnnncecacacnaanas 60
for dynamicC StOrag@eceaceee=ecsaaccessas 80
examples fOor cCOmMpUtinGicecescecsass 83,87
fOr I/0cceceaccenancncsncnsnnasscancas 12
for PL/I control routin@e..ceeeececeecea. 82
for program exXpanSiONec.scecessscscsss 50
for static storage..... Y °]
for subroutineS..cieecececnccccncannennces 70
STREAM files (blocksize options)....... 137
String data, storage Of.c.cecacicenacaa. 62
STRING pseudo-variable.......c.ecceeaa. 143
Stringency level.iieeeeeseceacacceesss 66,67
StrUCTUT . ciceceeenencnnaccccsnacacnnnes 51
declaratioNe.ceeececcacaccesecaaceses 142
external i L. .iicccieiecncaccrnacensnas 140
Jevel NUMDEYS.ccecnceacccccacacnanaas 142
MAPPINGearccesanancaansacanaceannsss 66,51
MAPPING TUlE@S.ceeescaceccscnnsasannnee 67
maximum GepPtheceeccesccscacscsconsanan 142
maximum level NUINDer..ecoeceesanaannss 1U2
STXIT MACIDeevocnsccasccsascscscsssacsances UB
Subroutine calls, implied..ccceaneaess 96,70
Subroutine storage requirementS.....<.... 70
Subroutines, (called by I/0
statements) cuceeenecsearsnccsanennscnnss 71
CONVEYSiONieeseeceenennnannan “eeaeena. 93
SUBSTR built-in functionN..eieceaccacass 144
SUPEIViSOT.eeenceeasennacsnnssasscacnssa 10
Symbol table 1istingeeeceeeececscceseeass 90
Symbolic unit...... . ¥
SYM option (OPTION statement)...ceceeeeassas 15
SYS OPtiONeceececnnsacacscsaccnnnseanssaa 1l
SYSCLBueeneacaanaacan eessessssaneseas 12,13
SYSINwceraenonamseancacnnnaannaans 13,36,78
SYSIPTeeeuasassasocnccnacncanannnansas 12,13
SYSLNKeweeenoanasssnoesacvannnaennens 12,13
assignments fOreieieeceeencecnanensaaes 19
SYSLOGeeeanoeceascancannssnnscaneesas 12,13
SYSLSTeeeaaecsanacsancnaasssncnanansns 12,13
SYSOUT wecensanssovanascsncssncansasssnsas 12
SYSPCHeveeascseancsonssncssnanannansnas 12,13

SVSDRTNT 36'78

s 12,13

SYSRDRueeaaccosecnasnscansanssasnnnas

[y
(=)
<«

SYSRESeeesecensascssnencsnasananncesesas 13
SYSRLBuecacecaascsnncacnacanccansanasccann 20
SYS001-003. cenenceevecnnnsonnnacnaanans 12,13
System cOntrol ProOgYaMSeeecececssesecesass 11
System files

assignment to disSKeeceecenoesencanaeas U2
System logical UnitSeececeesncesccsss 12,13
System Service ProgramSe«ceesecscsssesss 11
System UNitSe.esececsnscsencnannnnnnancans 78

Tab control tablei.iceccscasncsscncacanscas Dl
Tab POSitiONSeaceeacncacacseneccacsasaaas Sb

Tape
drive control operatiONececccscccennes 39
file pProcessSinNgeccecececececaccaccaanas U0
1abelScasecevscacenacnncasccasnnnnanns 36
Terminology (basicC)ececcecscccceccacsocees 8
TIME . eeeoecacasancscnanacnsaasaenass 143,139
TLBL sStatement.cscscecacecsscacnacacsess 38
TPLAB statement....cccccccscsccscnacnnns 37
TRACINGeworcasenscesczsczsssscassssnasssss 20
TYr8CKeeeeaeannsccncocnonasansensocsncccs 33
indeX.ieeeecaasanasancsacaasncaansnsaas 30
NUMbEr Of.ceeceacacanscascccnccsaceanas 38
Trailer labeleceececaacscncscscacscacasanne 36
Tree sStrucCtUre..cecccccceacecacccancaseas 86

UA OpPLiONacessceceasssasncansssnncennaas 1
UCL statement..c.ciceeeaceceacecnnscncsnacen 29
UNALIGNEDe cccevoevacvassacsccsccnnssnses 137
Unassigning (logical units)eeecessascsaes 13
UNBUFFERED attribut€.c.ceccececcsencaecass 35
Undefined recOrdScccesececsceansccanneass 35
UNITS OptiONeceeseacecsnceccccaanscnnaes 1l
Unlabeled f1l€Seesesvwcacaccsccessncaane 33
Unlabeled tape fileS.weecasccscansacaacs U0
UNSPECaeaecsancccncssascsscasannscncnsanss DL
Updating (sequential disk file)........ 150
UPST byte.iiviciuecanmunna esesescneeae 16,25
UPSI statement...cecvacesasscascasseces 16,25
User Program Switch IndicatOrei.ece.ceee.. 16

V OPtiONeeecnecenneecsacssncnanasnaneses 137
Variable blocked reCOrdS.cececcecceceseass 3l
Variable unblocked recOrdS.ceeccsassscaes 35
Version NUmMber.....casesccccassscccasnsss 39
VOL statementeecececaencsncecccsnasacseas 37
VOlUME.eneteencacnasasnscssacasansnnccens 36
labeliceeiceiccancnnnccancsanacannnnasae 36
serial NUMbere.eceeescccasnnssseses 36,37
Sequence NUMbEere..eecscecececcsnsacsocaass 39
Table of Contents (VIOC).eeaceaaeass 36,41
VIOC . eeaeaccsncnsasaenssnanasssncavasens 36,41

XREF option {OPTION) statemeNteeceeecev.. 15
XTENT statement.cceeeccccnsancsansncencas 37

GC24-9005-6

TSIV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, Whita Plains, New York 10604
[U.S.A. only]

I1BM World Trade Corporation
821 United Nations Plaza, New York, Naw York 10017
[Internationall

9-5006-+ZDO 8pInD s, sawwniBoig | /1d SOL/SOA 098/ WaisAS wal

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	xBack

