File No. $360-29
Order No. GY28-6801-6

Program Logic

IBM System/360 Operating System
PL/I Subroutine Library
Program Logic Manual

Program Number 360S-LM-512

This publication describes the internal
specifications of the PL/I Subroutine Library

as a system component of IBM System/360

Operating System. The relationships between the
code produced by the PL/I (F) compiler, the PL/I
Library modules and the control program are
described, and summaries of the properties of
individual modules are provided. This information
is intended for use by those involved in program
maintenance and by system programmers who are
altering the program design. Program logic
information is not necessary for the use and
operation of the program; therefore, distribution
of this publication is limited to those described
above.

Restricted Distribution

iSeventh Edition (June, 1972)
|

IThis is a minor revision of, and obsoletes, GY28-6801-05
jand Technical Newsletters GN33-6017 and G¥33-6018.
i

1
|
|
{
|
!
IThis edition applies to Release 18 of IBM System/360 i
iOperating System, and to all subsequent releases until i
|otherwise indicated in new editions or Technical |
INewsletters. Changes are continually made to the specif- |
lications herein; before using this publication in |
lconnection with the operation of IBM systems, consult the |
Ilatest IBM System/360 Bibliography SRL Newsletter, Form |
IN20-360, for the editions that are applicable and current. |
19 4

RESTRICTED DISTRIBUTION: This publication is intended

primarily for use by IBM personnel involved in program

design and maintenance. It may not be made available to
others without the approval of local IBM management.

The information contained in this publication concerning
Model 195 support is for planning purposes only.

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving your
locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Publications Dept.,
Hursley Park, Winchester, Hampshire, England.

© Copywright International Business Machines Corporation,
1966, 1967, 1968, 1969.

This publication describes the object-time

PL/I Library package which forms an
integral part of the PL/I processing

system. General information covering the
overall design and conventions is provided

as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to

understand the structure of the library in

order to maintain, modify, or expand the
PL/1 processing system.

Information relevant to this manual is

contained in the following IBM
publications:

IBM System/360:

Principles of Operation, Order No.
GA22-6821

PL/I Lanquage Specifications, Order
GY33-6003

Model 91, Functional Characteristics,

Order No. GA22-6907

IBM System/360 Operating System:

Assembler Langquage, Order No.
GC28-6514

Introduction, Order No. GC28-6534

Concepts and Facilities, Order No.
GC28-6535

PL/I (F) Language Refergnce Manual,
Order No. GC28-8201

Linkage Editor and Loader, Order No.
GC28-6538

Job Control Lanquage User's 3uide,
Oorder No. 3C28-6703

Job Control Lanquage Reference, Order

No. GC28-6704

System Programmer's Guide, Order No.
GC28-6550

PREFACE

system Generation, Order No. GC28-6554

PL/I Subroutine Library Computational
Subroutines, Order No. GC28-6590

PL/I (F) Programmer's Suide, Order No.
GC28-6594

System Control Blocks, Order No.
GC28-6628

Supervisor_and Data Management
Services, Order No. GC28-6646

Supervisor and Data Management Macro
Instructions, Order No. GC28-6647

QTAM Message Processing Program
Services, Order No. GC30-2003

OTAM Message Control Program, Order No.
GC30-2005

PL/I(F) Compiler, Program Logic Manual,
Order No. GY28-6800

The publication includes two
introductory chapters, °‘The PL/1 Library'
and 'General Implementation Features',
which contain a general description of the
library as a component of IBM System/360
Operating System, and general notes on
features of the operating system and the
PL/I (F) Compiler that are used in the
library implementation. The remainder of
the manual describes the design of the
library modules in relationship to PL/I
language features, and indicates the use
that is made of the control program to
support the design.

The descriptive material is supported by
a set of module description summaries and
several appendixes. The module summaries
indicate the salient features of individual
modules in the library package, and act as
guides to the program listings that are
available as part of the PL/I Library
distribution. The appendixes contain
details of the system macro instructions
used, system generation, library
pseudo-registers and macro instructions,
library internal error codes and associated
messages, and PL/I control blocks.

'CHAPTER 1: THE PL/I LIBRARY.
Function. « « « « « « « o«
USAQE « o « o o o « « o «

Link Library . . « « . .
Instruction Set Requirements

CHAPTER 2: GENERAL IMPLEMENTATION
FEATURES - - - - - - - - - - - - -
Naming Conventions. . . « « . .
Registers: Symbolic Names . . .
Linkage Conventions
Coding Conventions. . . . + . .
Library Macro Instructions. . .
Data Representation
Communication Conventions . . .
Pseudo-Register Vector (PRV)
Library Workspace (LWS). . .
Library Communication Area (L
Object-Time Dump
Checkpoint/Restart
sort/Merge - PL/I Interface.

CHAPTER 3: INPUT/OUTPUT. . . « - .
Files and Data Sets . « - « . «
File Addressing Technique . . .

Declare Control Block (DCLCB)

STREAM-Oriented I/0.

RECORD-Oriented I/0. « « « « «

File Control Block (FCB) .
Program Execution. . . .
OPEN/CLOSE Functions. . . .
Explicit Opening.
Open Control Block (OCB)
The Open Process
The Close Process. . . «
Implicit Opening.

e & 8 o 8 &
s &6 8 & & & &

Current File.
Standard Files. . . . -
SYSPRINT in Multltasklng.
GET/PUT Object Program Str
Data Specifications . . .
Executable Format Scheme.
options « « ¢« « ¢ ¢ o o« o

s & & 0

ctu

LI R R - S B S)
o 8 ¢ M s s 0

Object Program Structure. .
General Logic and Flow .

Record-Oriented I/0 Control
Record Dope Vector (RDV)
String Dope Vector (SDV)
Request Control Block. .
170 Control Block (IOCB)
Exclusive Block.

Access Method Interfaces.
CONSECUTIVE Data Sets.
INDEXED Data Sets. .
REGIONAL Data Sets .
TELEPROCESSING Files
OPEN/CLOSE Functions
Teleprocessing. . .
I/0 statements for
Teleprocessing. . «

[

$ 8 8 5 s 8 s 0t s Qs s

Q
LI I SN D R T Y R Y B I B B)

¢ & 5 5 o 8 o 0 s s D v

n

e e 0 8

oc.Qool.uu-c.l

€.

s 8 8 V. s & & & 8 4 & o s ¢ & o &

O 8 8 8 & 3 8 & & & & 8 0 0

CHAPTER U4:
MANAGEMENT. - - - L . - .« e - .

CONTENTS

Error Handling
PL/I OBJECT PROGRAM

Introduction. . . « o o @
Program Init1a11zation « o o
Block Housekeeping: Prologues

and Epilogues
Storage Management
Operating-System Facilities.

Automatic Storage: Storage

Management . . « . c e o o o
Dynamic Storage Area (DSA) .
Variable Data Area (VDA) . .
Library wWorkspace (LWS). . .
Allocation and Freeing of

Automatic Storage

Controlled Storage: Storage

Management . . « ¢« « . ¢ o« o« o

List Processing: Storage Management
System Storage - Based Variables

The AREA Attribute
The Area Variable.

Area Storage for Based Variables

Area Variables - Assigment .
The AREA Condition

Program Management.

Initialization of a PL/I Prosram
Termination of a PL/I Program.

30 TO Statements

on-Units and Entry-Parameter

Procedures. . « « « <« o «
Block Housekeeping . . « «
Object-time Optimization .

CHAPTER 5: PL/I OBJECI PROGRAM
MANAGEMENT IN MULTITASKING. . .

Introduction < . . .« . .

Pl/I TaSkS « « ¢ « o =« « o« = o o

Task Attachment and Initialization

Control Taske « « « o o « o o
Control Task Subroutines. . .
Initialization of Major Task.
Invocation of Subtask
Initialization of a Subtask .
Message Taske « « « « o o < o«

Exit and Termination 2f Tasks. .
Normal Termination of a Task.

3

Abnormal End-of-Task Exit Routine

GO TO Statements. « « « « « «
On-Units and Entry Parameter
Procedures « « « « o o o o o
Controlled Storage. « « « « o

Multitasking Pseudo-Variables and

Built"In Fllnctions- e o o e o o
COMPLETION Pseudo-Variable. .
PRIORITY Pseudo-Variable. . .

e & s & 02 o s 8 8 ¢ 0

62
62
62

PRIORITY Built-In Function.
The WAIT Statement. « « « ¢ « « « o

Alternative 1/0 Modules for
Multitasking Programs « « « « « « =« «

CHAPTER 6: ERROR AND INTERRUPT
HANDLING. « © « o © o o @« o o o =
Program Interrupts.
ON.Conditions« -
Action by Compiled Code. . -
Action by the Library. . . .
System Action. «+ . .

standard System Action and

conditions other than ON

conditions « « < « < <
Built-in Functions.

s« 6 ¢ 8 s
.

ONLOCe « « o« o o o
ONCODE < « « « « =«
Model 91 and Model 195 Interrupt
Handling « « o« « ¢ ¢ ¢ o o o « @
Implementation

ONCOUNT Built-in Function.
Flush Instructions.
Model 91 and Model 195

Object-Time Diagnostic Messages

CHAPTER 7: MISCELLANEOUS CONTROL
PROGRAM INTERFACES: ¢ « ¢ ¢ « « « « =
Full and Minimum Control Systems
CHAPTER 8: DATA PROCESSING ROUTINES. .
I/0 Editing and Data Conversion. . . .
Structure of Library Conversion
Package€e « « « o o o o ¢ o« o =
Directors. « « « « « < =«
Edit-directed I/0. . . .
I/0 Editing . . . « o o
List- and Data-dlrected
Input/Output.
Mode Conversions. . . .
Type Conversions. . . «
String Conversions. . .
Arithmetic Conversions.
Data Checking and Error
Edit Directed. . . .
List/Data-Directed .
Internal Conversions

s & 8 Tle s o &
o
¢ s 8 a2 s s s s
Q
e 0 0 e &t 4 s 2
[
s 8 & e s 0 s o
[Te]
s & 8 & 8 & s s
* 8 6 8 8 0 s s

Computational Subroutines.
Mathematical Functions.
Arithmetic Operations and Functions
Array Functions . « « ¢« « « < . . .

String Subroutines

CHAPTER 9: MODULE SUMMARIES. « o o e
Control Program Interfaces. « o o o
Data Processing « « « « ¢ « o - «

I70 Editing and Data Conversions
Module SUMMArie€S. « « « « « « « o «
APPENDIX A: SYSTEM MACRO INSTRUCTIONS.
APPENDIX B: SYSTEM GENERATION.
System Generation Process. . .

PL/I Library System
Generation « « ¢ ¢ ¢ ¢ o« o o o

. bU
. 64
. 67
. 67
. 68
. 69

. 70
. 70
. 70
. 70

. 71
. 72
. 73
. 73

) e & & 8 & & s s 8 [
[} [e] ~
w o [=))

.
o]
v

o« s 0 s e
o]
~

.157

.159
.159

.159

Storage Utilization and Shared Library

APPENDIX C: PL/I OBJECT PROGRAM
PSEUDO~REGISTERS. « 2 « ¢ o « o « o @
APPENDIX D: LIBRARY MACRO INSTRUCTIONS

APPENDIX E: PL/I LIBRARY INTERNAL
ERROR CODES AND MESSAGES. « « « « &

APPENDIX F: DUMP INDEX . .
SYSPRINT Buffers . .
Files Currently Open
Current File
Save Areas « « « « o o
Other Information. . .

e & o &
e o o & 0 o
e 8 s o o »
o o o & o o
e & & o 9
e o 8 s & o

LENGTHS AND LOCATIONS OF

APPENDIX 3:
MODULES .

APPENDIX H: COMPILER-GENERATED CONTROIL
BLOCKSe « « « « ¢ o« o o o o o o o o @
Array Dope Vector (ADV)
Data Element Descriptor (DED) .
Dope Vector Descriptor (DVD). .
Format Element Descriptor (FED)

Library Communication Area (LCA)
Library Workspace (LWS)
Standard save Area (SSA). . . .
String Array Dope Vector (SADV)
String Dope Vector (SDV). . . .
Structure Dope Vector
Symbol Table (SYMIAB)

APPENDIX I: INPUT/OUTPUT CONTROL
BLOCKSe « « .« « PO
Declare control Block (DCLCB)
Event Variable. . « «
Exclusive Block . . -«
File Control Block (FCB). . .
Input/dutput Controsl Block (ID
Open Control Block (OCB).
Example of Chainingy . . .
Files. « « o« « @
IOCBSe « « o o «
Event Variables.
Exclusive Blocks

e 8 8 8 s & (D6 0 s s
o]

8 6 6 6 8 8 e o 0 0

. [] L] L] L] . . L] . L] . L[]

s & s 0
"« o e 0
[R I T)
e & a2 o 0

APPENDIX J: STORAGE-MANAGEMENT CONTROL
BLOCKS: « o o o o « o « o o o o o o =
Area Variable « o o o
Dynamic Storage Area (DSA). « o o o
Variable Data Area (VDA). . « . « &
APPENDIX K: MULTITASKINS CONTROL
BLOCKS: ¢ « ¢ o o © e o o o o o
Control Task Storage Area . .
Dynamic Storage Area (DSA). .
Event Variable. . . «
PRV VDA ¢ ¢ o« ¢ o ¢ o o o -
Task Variable . « « « « & o
Task Communication Area . .

s e 85 o & s o
e & ¢ & 8 o
s e s o o o »

APPENDIX L: PL/I LIBRARY MODULE NAMES,
MEMBER NAMES AND ALIASES. « « « « « &

INDEXe ¢ ¢ o ¢ o o o o. a e o o o o o =

.159

.167
.169

.171

.173
173
173
-173
.173
.173

177

.181
.183
.185
.187
.189
.191
.193
.195
.197
-199
.201
.203

. 205
.207
.209
.211
.213
.217
.221
.223
.223
.223
.223
.223

.225
227
.229
.231

233
.235
237
.239
.241
.243

.245

. 247

Figure 1. External Names used by the
PL/I Librarye « « ¢« o o o« « o o o o «

Pigqure 2. Arithmetic Data
Representaton « . « « « « e o o @
Figure 3. Statement-Label Data
Representation. . . «

Figure 4. sString Data Representation.
Figure 5. File Addressing Scheme. . .
Figure 6. Format of the IHEQFOP Chain
Figure 7. Error Codes Indicating
Causes of Failure in Open Process . .
Figure 8. Flow through the OPEN

MOQUlES o« ¢ « =« « o o o o « o o o o @
Figure 9. Modular Linkage through
Stream-Oriented I/0 « o o
Figure 10. Format of the Current F11e
Pseudo-Register-
Figure 11. Allocation of SYSPRINT
Resources in Multitasking
Figure 12. Object Program Structure
Of GET/PUTe o o o o o o o o o o o o =
Figure 13. Executable Format Scheme .
Figure 14. Data Management Access
Methods for Record-Oriented I/0 . . .
Figure 15. Linkage of Access Modules
in Record-Oriented I/0. . . .« . « o« &«
Figure 16. IHESAP Entry Points. . . .
Figure 17. sStructure of the Free-Core
Chain for Automatic Variables
Figure 18. Storage Allocation for a
Controlled Variable . . . - .

Figure 19. Format of Area Var1ab1e. -
Figure 20. Example of DSA Chain . . .
Figure 21. cContinuation of the Dsa
Chain ¢« <« ¢ c o o o 2 s a « o o o o o
Figure 22. Construction of the
Save-area Chain . . «
Figure 23. Structure of the DSA chain

when the error-handling subroutine is
entered after a new LWS has been
obtained. « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ s o e o
Figure 24. Structure of the DSA chain
when the on-unit DSA is attached. . .
Figure 25. cComparison of IHESAP and
IJHETSA. o ¢ o« @ ¢ o © o @ o o o o o =
Figure 26. Format of Storage Areas,
Save Areas, etC.. . . e o s o o o
Figure 27. Parameter L1st for IHETSAT
Figure 28. Program Interrupts and
PL/I Conditions
Figure 29. Flow through the Error
Handling Routine (IHEERR)
Figure 30. Format of the Program
Interrupt Control Area (PICA) . . . «
Figure 31. Format of the Program
Interrupt Element (PIE) « . «
Figure 32. PL/I ON Conditions . . .
Figure 33. Format of the Search word
Comparator. . . e o
Figure 34. Module Usage indicated by
Letters of Module Name. « « .

52
52
54

56
59

64
65
66

66
67

67
75

FIGURES

Figure 35. DED Flag Byte for
Character Representation of an
Arithmetic Data Item. - « . .

Figure 36. Structure of the
conversion Package€. « « ¢ o « o ¢ o &

Figure 37. Input/Output Directors for
PL/I Format Ite€mS « « ¢ o o ¢ o ¢ o o

Figure 38. Conversion for List/Data
Directed I/0. « ¢ « ¢ ¢ o o o o o o o

Figure 39. Modules for Type
conversions e« o o

Figure 40. Modules for Strxng
conversions . . « <« ¢ c ¢ o o o ¢ o @

Figure 41. Structure of the
Arithmeric Conversion Package

Figure 42. Conversion Code Set in
JHEQERR ¢ ¢ ¢ ¢ « o o o « o o o o o =«

Figure 43. Relationship of Data Form
and sixth Character of Module Name. .

Figure 44. Mathematical Functions . .

Figure 45. Arithmetic Operations and
Functions « . « ¢« o « ¢ o o o o o o

Figure 46. Array Indexers and
FUNCLioNS « ¢« « o o o o o o o o o o «

Figure 47. sString Operations and
Functions « ¢« « ¢ o o o o ¢ ¢ o o o =

Figure 48. Coincidence of Source and
Target Fields in some String Modules.

Figure 49. Internal Codes for ON

Condition Entries . . . « o o

Figure 50. Format of the Array Dope
Vector (ADV).

Figure 51. Format of the Data Element
Descriptor (DED). e« o o o

Figure 52. Format of the DED Flag
Byte. - - - - - - L] . - . L] - L] L -

Figure 53. Library Communication Area
‘ LCA) - L - L] - - - - - - - L] - - . .
Figure 54. Standard Format of Library
Workspace (LWS) « o o « o o « o o o «

Format of the standard
Save Area (SSA) ¢ v« v o « 2 « o o « @
Figure 56. Format of the SSA Flag
Byte- e 8 @ e ® ® e ®© ® e o o e ® o @
Figure 57. Format of the Primary
String Array Dope Vector (SaDvVv) . . .
Figure 58. Format of the String Dope
Vector (SDV).
Figure 58.1 Format of the Structure
Dope Vector (SDV) . o ¢ « ¢ o o o o «
Figure 59. Format of the Symbol Table
(smAB). - - L] - - - L] - - - - L] - -
Figure 60. Format of the Declare
Control Block (DCLCB) ¢« « « o« o o «
Figure 61. Format of the Event
Variable. .« . . ¢ ¢ ¢ ¢ 4 ¢ 4 o o o «
Figure 62. Format of Exclusive Block.
Figure 63. FCB for stream-Oriented
0 L] - - L - L - - - L] - - - - L]
Figure 64. FCB for Record-Oriented
I,o - - - - - . - - - L] - - L] L]

Figure 55.

. 83
. 83

.17
.183
.185
.185
.191
.193
195
.196
.197
.199
.201
.203
«207

.209
.211

.213
.213

Figure 65.

Figure 66.

size of IOCB for Various Access

Methods

Figure 67.

Block (OCB) « « « « « o« .« o

Figure 68.

control Block « « « « =« e o @

Figure 69.

Figure 70. Format of the Dynamic
storage Area (DSA)e « « o « o « « =

Figure 71. Format of the DSA Flag
Byte. . . . B . . -
Figure 72. Format of the Varlable

Data Area (VDA) . « o « o « « o =

TABLES

Table 1.

Library
Table 2.
Table 3.
Table 4.
Table 5.

Grouping of Modules (Shared

Feature)e. « « ¢ « ¢ « o« o«
Housekeeping Package . .
Conversion Package . . .
STRING Function Package.
ARRAY Function Package .

Format of Area Varlable.

Format of the I/O Control
Block (IOCB) L] - L] - - - - - L] L] -
values used in Computing

Format of the Open control

Example of Chaining of I/o

.217

.219
.221

.224
.227

.229
.229

.231

.160
-160
.161
.162
.162

Pigure 73. Format of the VDA Flag
BYte. - - - - - - - - - - - - - - - -

Figure 74. Format of the PRV VDA. . .
Figure 75. Format of LWS VDA.
Figure 76. Format of the Control Task
Storage Area for Multitasking
Figure 77. Format of the Dynamic
Storage Area (DSA) for Multitasking .
Figure 78. Format of the Event
Variable. « ¢ « ¢« ¢ ¢ o ¢ ¢ o o o o »
Figure 79. Format of PRV VDA for

Multitasking. c e ¢ =
Figure 80. Format of the Task
Variable. o« o o

Figure 81. Format of the Task
Communication Area. « « « « « « o o &

Table 6. Arithmetic Function Package.
Table 7. Mathematical Function
Package « « « o « o o © ¢« o o o o o «
Table 8. RECORD I/0 Package
Table 9. STREAM I/0 Package . . .
Table 10. Cross-Reference to lerary
Modules and GXroUpPS. « « « « « « « o «

.233

.231
.231

.235
237
-239
.241
.243

.245

.162
.163
.163
.163

.164

FUNCTION

The PL/I library was designed as a set of
reentrant load modules, each performing a
single function or a group of related
functions.

The library modules can be divided into two
groups:

1. Those that act as an interface between
compiled code and the IBM System/360
Operating System; these modules are
mainly concerned with input/output,
dynamic program and storage
management, and error and interrupt
handling.

2. Those that are closed subroutines
specifically designed to perform
arithmetic computations, data
conversions, I/0 editing and string
generic built-in functions as the
major part of their task.

USAGE

The linkage editor or linkage loader
combines the object modules from a PL/I
program with their required library modules
to produce executable load modules. This
is done by means of the external symbol
dictionary (ESD) which resolves all direct
references to the library modules by
entry-point names (seven-character names)
or, under certain circumstances, by module
name (containing six characters). (see
*Naming Conventions' - Chapter 2)

The library modules may in turn call
other, secondary, library modules (e.g. as
in data conversion). To ensure that only
the ones required are called, any library
object module that calls a secondary module
is preceded by a linkage-editor LIBRARY
statement. This statement specifies that
the references to the secondary modules
(which are seven-character entry-point
names) should not be resolved unless the
secondary modules are already part of the
input to the load module. For any such
secondary modules called, the compiler
generates an ESD in which the references
are six-character module names.

The PL/I library acts as the sole
interface between compiled code and the
operating system. The compiled code does

CHAPTER 1: THE PL/Y LIBRARY

not issue SVCs or system macro instructions
but instead issues a library call.
Although the library module(s) called can
issue an SVC instruction, it is more
convenient to use system macro
instructions. This method means that when
the operating system changes, only the
library module is rewritten, with the call
to the library.from the compiler remaining
as before. sSimilarly, if the SVC calling
sequence changes, the system macro is
changed accordingly and the library module
need only be reassembled.

For further details on macro
instructions, see IBM System/360 Operating

System: Supervisor and Data Management
Macro .Instructions. The system macro
instructions used by the library are listed
in Appendix A.

The PI/I library for each version of the
F compiler is compatible with previous
versions only. For example, whilst a
module compiled under Version 2 can be
link-edited and executed by an operating
system that includes the Version 3
compiler, the reverse is not possible.

User-designed modules can be substituted
for library modules; each user module is
given the name of the library module it is
meant to replace.

Link Librar

Certain modules are loaded dynamically
during program execution. These modules
reside in the link library (SYS1.LINKLIB);
they are transient modules and are loaded,
when required, by the system macros LINK,
LOAD and XCTL. DD statements are not
required. The link-library modules are
marked ¢ in Appendix G; they comprise:

1. The print and message modules of the
error and interrupt handling
subroutines.

2. The modules for opening and closing
files.

3. The record-oriented 1/0 transmission
modules.

4. sSpecial multitasking modules.
These modules can be replaced by
user-designed modules, if required. The

Chapter 1: The PL/I Library 9

user module is placed by the linkage editor
into a partitioned data set (PDS); this
data set must be described in a JOBLIB DD
statement.

All library modules normally residing on
SYS1.LINKLIB may be made resident in the
system when operating under MFT II or MVT.

In an MFT II system, the resident area
is effectively an extension of the nucleus;
in an MVT system, the resident area is a
section of the high order main storage
called the LINK PACK AREA (LPA).

Load Library: all other library modules are
" link-edited with compiled code by the

linkage editor. These modules reside on

S¥S1.PL1LIB, and, normally, they may not be

10

resident in the system. However, the new
shared library feature permits selected
combinations of modules to be made resident
by combining them into a load module (for a
discussion on the shared library feature,
see Appendix B).

INSTRUCTION SET REQUIREMENTS

The universal instruction set is generally
required for the execution of PL/I
programs. It is possible that
floating-point or decimal instructions may
be used in the execution of programs that
do not use floating-point or decimal data.

NAMING CORVENTIONS

PL/I library external names always begin
with IHE; this is followed by two, three or
four characters, according to the name
function (see Figure 1).

REGISTERS: SYMBOLIC NAMES

The following symbolic names are used in
the library modules for general registers
0-15:

Symbolic Symbolic
Register Name Register Name
0 RO 8 RH
1 R1,RA 9 RI
2 RB 10 RJ
3 RC 11 RX,WR
4 RD 12 PR
5 RE 13 DR
6 RF 14 LR,RY
7 RG 15 BR,R2Z

The following symbolic names are used
for the floating-point registers:

Symbolic
Register Name
0 FA
2 FB
4 FC
6 FD

CHAPTER 2: GENERAL IMPLEMENTATION FEATURES

LINKAGE CONVENTIONS

Linkage between modules generally follows
the operating system standard calling
sequence. The main features of this are:

1. Arguments are passed by name, not by
value. The addresses of the arguments
are passed, not the arguments
themselves.

2. These addresses are stored in a
parameter list.

3. The address of the list is stored in
register RA.

Full details are provided in IBM System/360
Operating System: Supervisor and Data

Management Services.

some PL/I Library modules, however, are
called by a PL/I standard calling sequence.
The main features of this are:

1. Arguments are passed by name.

2. Arguments are passed in general
registers.

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the operating system standard is used.

Two PL/I Library modules, IHESA and
IHETSA, do not use either of these
standards. The subroutines in these
modules pass arguments by value as well as

r L3 v
|Number of |Format | Use T Meaning i
|Characters| | |
i i3 1 3
r T T 1
| 5 |THEXX | |
| |Module name |
I 6 | THEXXX | XXX are chosen for mnemonic |
t + + identification of function. |
{ 6 |IHExxx |PL/I Library defined macros |
T '}
| 7 IIHExxxx}Entry-901nt name First six characters are module name;]
| |] the seventh identifies the entry point |
! | | within the module. N
r T + {
[7 | IHEQXXX | Pseudo-register name XXX are chosen for mnemonic }
| { | identification of function. (See [
| | | Appendix C.) |
L L L]
Figure 1. External Names used by the PL/I Library

Chapter 2: General Implementation Features 11

by name, and pass them in parameter lists
and in general registers.

In general, whichever standard is used,
whenever one module links to another a save
area must be provided for the contents of
the registers used by the called module.
The save area procedure is:

1. The calling module provides a standard
save area (Ssh) for the called module.
The address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together by the chain-back address
field in the new save area.

3. On return to the calling module, the
following will be unchanged:

Registers RB through LR
Program mask

Program interrupt control area
(PICA)

while the following may be changed:

Registers RO, RA, and BR
Floating-point registers
condition code
The standard save area is a 72-byte area
in which the contents of all the general
registers can be saved. The format is
described in Appendix H.

The library does not support
inter-module trace. Therefore:

1. The chain-forward field in the SSA is
not set.

2. Calling sequence and entry-point
identifiers are not employed.

CODING CONVENTIONS

Because all modules within the PL/I Library
are coded to be reenterable, the following
coding constraints must be observed:

1. The modules are read-only.

2. Workspace (for save areas and

12

temporary work areas) is obtained
within an area dynamically allocated
at program initialization or by a call
to the Get VDA (variable data area)
subroutine in IHESA. (See ‘'Library
Workspace' in this chapter and in
Chapter 4.)

LIBRARY MACRO INSTRUCTIONS

Seven macro instructions are available for
use in the library modules. To obtain
these macro instructions, use PL/I (F)
SYMLIB tape 360S-LM512 XT05-00 and IEBUPDTE
to create a partitioned data set named
SYS1.PVTMACS. SYS1.PVTMACS should then be
concatenated with SYS1.MACLIB (the
partitioned data set containing the
standard system macro instructions used by
the operating system).

Five of the seven macro instructions,
IHEEVT, IHELIB, IHEZAP, IHEXLV, and IHEZ22Z,
set up symbolic definitions in the program
listing and the other two, IHESDR and
IHEPRV, set the current addresses of the
standard save area and the pseudo-register
vector (PRV) respectively. The library
macros are described in Appendix D.

DATA REPRESENTATION

Three types of data may exist within a PIL/I
programs:

1. Arithmetic
2. String
3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. The invocation count
used in the statement-label data
representation is described in Chapter 4.

Arithmetic or string data may be
specified with the PICTURE attribute. A
PICTURE arithmetic data item is called a
numeric field and is represented internally
as a character string. An arithmetic data
item without a PICTURE attribute is called
a coded arithmetic data _item (CAD) and is
represented internally in one of three
Systemv360 formats:

Fixed-point binary
Floating-point
Packed decimal

L 1
{ Data Type | Implementation |
ll' v % h s T Al . ‘=
|{Scale| Base |Precision| Internal | Alignment | Processing |
| | | | format | i |
% 'y 4 . L. L ‘J'
| REAL data |
b T T T T T - |
I |Binary | P.q | Fixed-point |p>15: Word JArithmetic operations are performed |
l	Max p: 31	binary	ps15: Half-	on p-digit integers: scale factor q	
				word	is specified in a DED. (See Appendix
		i		H, °'Data Element Descriptor'.)	
Fixed} + o ¢ +					
	Decimal	P,q	Packed dec-	Byte	The p digits occupy FLOOR ((p + 2)/2)
}	Max p: 15	imal		bytes. Arithmetic operations as for	
		(see i		fixed bindry i	
		note)	[[
p———=t + + + $ {					
	Binary	p		p<21: Word	
		Max ps 53		p>21: Double-	
			Hexadecimal	word]The data is normalized in storage
Float +- {floating- } {before and after arithmetic operat-					
	Decimal] P	point	p<6: Word	ions.	
]		Max p: 16]	p>6: Double-]		
				word	I
'l_ L. 4 L i 4 %					
I COMPLEX data I					
:' v v ¥ T Al {					
	Binary	Peq	Fixed-point	p>15: Word	As for real fixed binary. The real
		Max p: 31	binary	p<15: Half-	and imaginary parts occupy adjacent
				word	fullwords or halfwords, with the
					real part first.
Fixed - + ¢ ¢ + ' {					
	Decimal] pP,q	Packed dec-	Byte	As for real fixed decimal. The real	
		Max p: 15	imal		and imaginary parts occupy adjacent
]		fields, with the real part first.	
L 1 4 L N 1. J					
v T T T T T					
jBinary	P		p<21: Word	As for real float binary. The real	
		Max p: 53		p>21: Double-	and imaginary parts occupy adjacent
I }		word	fullwords or doublewords, depending		
]		lon the precision, with the real part	
			Bexadecimal		first.
Float { + {floating- ¢ +]					
	Decimal	p	point	p<6: Word	As for real float decimal. The real
i i	Max p: 16]	p>6: Double-	and imaginary parts occupy adjacent		
				word	fullwords or doublewords, depending
]		on the precision, with the real part	
]				first.	
L 4. 4d L i 4 J |

Note: When p is even, the effective precision for all arithmetic operations except div-
ision is (p + 1,q), except when the SIZE condition is being checked. When this
occurs, the first digit in the high-order byte must be checked to ensure that it
is zero.

Figure 2. Arithmetic Data Representaton

0 7 8 31 COMMUNICATION CONVENTIONS
1
Invocation Count |
T { The use of library modules in a PL/I
| | A(Statement label) | program requires that:
t i]
Figure 3. sStatement-Label Data 1. Working storage be provided for the
Representation modules.

Chapter 2: General Implementation Features 13

L]

| Inplementation

Data type}
|Representation
L

Length

e e o

$
Bit |1 binary digit
|per bit-

|byte |
4.

4

|Maximum length: 32,767. If a VARYING attribute is
{declared, maximumn length is 3declared length,
Character|1 character per|regardless of the string value. |

]
|
T {
| Alignment|
4 ¥
T 1
|
|

| (see note)

P p——

ote: The string occupies CEIL (n/8) bytes. If the string comes within the scope of an

UNALIGNED attribute, the address of the first bit is provided by a byte address and

bit offset in an SDV.

Fiqure 4. String Data Representation

2. Techniques for passing information
about arguments and program status be
provided.

Working storage is obtained as library
workspace (LWS). Appendix H gives the
format of LWS, which is allocated by the
library program management modules IHESAP
and IHETSA.

Two modes of communication are available
for passing information:

Uses parameter lists and
registers. (See 'Linkage
Conventions'.)

Explicit:

Uses pseudo-registers or a

Implicit:
Library communication area.

Some library modules are interpretive
(as opposed to declarative), and
accordingly require that information
regarding the characteristics of their
arguments be supplied. Such information is
made available to the library in the form
of standardized control blocks. The form
. and content of the compiler-generated
control blocks in general use throughout
the implementation are described in
Appendix H; one or more blocks is required
according to the nature of the data passed:

Scalar arguments:
Data element descriptor (DED)
String dope vector (SDV)
Symbol table (SYMTAB)

Array arguments:
Array dope vector (ADV)
String array dope vector (SADV)

Structures:

Structure dope vector

Dope vector descriptor (DVD)
Formats:

Format element descriptor (FED)

14

(See *'string Dope Vector'

in Appendix H.)

Special-purpose control blocks, such as
the file control block (FCB), are described
in Chapters 3, 4, and 5, and in Appendixes
I, J, and K.

Pseudo-Register Vector (PRV)

This is an area of task-oriented storage,
addressed through register PR. The PRV
contains a number of pseudo-registers which
effectively operate as implicit arguments
and give information about, for example,
current program status. All references to
specific pseudo-registers within the PRV
are made by the addition of a fixed
displacement to the PRV base address in
register PR.

A pseudo-register is defined within a
library module as a Q-type address constant
which is fixed during the linkage editing
process. All pseudo-register address
constants within the PL/I implementation
are two bytes long. The maximum size of a
PRV is 4096 bytes. The pseudo-registers
used by the PL/I Library are shown in
Appendix C.

Library Workspace (LWS)

Various library modules require working
storage:

1. For internal functions.

2. For linkage to other modules. (A
register save area must be provided.)

Since the library is designed to function
within a multitasking environment, such
storage must be allocated on a
task-oriented basis. The storage so
allocated is termed library workspace
(LWS).

Library modules which use LWS refer to
it by means of the PRV. A group of
pseudo-registers in the PRV is set during
LWS allocation to contain the addresses of
contiguous areas within IWS. (See Appendix
H.) Each of these areas is at a different
level.

The notion of level exists because of
inter-module linkage between library
modules:

1. A module which invokes no other
modules is assigned level 0.

2. A module which invokes other modules
is assigned a level number greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i.e., does not expect
a return) is assigned the level number
of that module.

Invocation of the error-and-interrupt-
handling subroutine is not considered
sufficient to raise the level number of the
invoking module, since the error subroutine
uses a special level.

Library workspace is allocated as
primary or secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed to
the main procedure. The storage thus
obtained is not freed until the PL/I
program is finished.

Secondary LWS is allocated for special
purposes during program execution and is
freed when the situation for which it was
created no longer exists. It is allocated:

1. When an on-unit is entered from a
library module. This may lead to a
recursion problem: library modules'
called may overwrite this LWS. To
avoid this, the existing LWS is
stacked, a new one obtained and all
the LWS pseudo-registers updated.

2. When SNAP, system action or error
messages are to be printed. The PRINT
subroutine may overwrite the existing
LWS: to avoid this, the same procedure
is followed as for an on-unit.

The library program management module
IHESAP controls the allocation of LWS and
the setting of library pseudo-registers.
(See Chapter 4.) The library macro IHELIB
controls the length of LWS and of each area
within it. The LWS format can be changed
by changing IHELIB and reassembling IHESAP.

Modules using specific areas in LWS
address these areas by the following
library macros:

IHEPRV: Used to address the LCA or when

using an area as temporary workspace.
IHESDR: Used when a module requires a

standard save area for a module it is
calling.

Library Communication Area (LCA)

Within the area allocated for library
workspace is an area in which various
symbolic names are defined. These names
are used for implicit communication between
library modules (mainly the data conversion
modules). This area is the library
communication area (LCA); its format and
the usage of the symbolic names are shown
in Appendix H. The LCA address is stored
in the pseudo-register IHEQLCA.

In the LCA there is a doubleword
immediately before the first symbolic name.
This contains (in the first four bytes) the
address of the prior generation of LCA
within a given task. This field is used to
readdress the LCA which existed before an
ON block was entered. IHEQLCA contains the
address of the first symbolic name.

Object-Time Dump

A PL/I user may obtain a dump at any time
by calling one of the following:

IHEDUMC: Dump current task and then
continue execution.

IHEDUMJ: Dump all tasks and then continue
execution.

IHEDUMP: Dump all tasks and terminate
major task (i.e., terminate the
job step).

IHEDUMT: Dump current task and then
terminate it.

Identification of required information
(such as save-area locations) in the dump
is difficult because this information is
not necessarily stored in locations
arranged in a chronological sequence. To
facilitate reading the dump, therefore, two
subroutines, IHEZZC and IHEZZF, are
provided. They extract certain information
(chiefly about save areas and opened files)
and print it as an index to the dump. Full
details of this information are given in
Appendix F.

Chapter 2: General Implementation Features 15

If a DD card exists, the information
will be printed on the PL1DUMP file (unless
there is something wrong with the PL/I
save-area chains, in which case the
SYSABEND or SYSUDUMP file will be used).

If the data set specified is other than the
‘SYSOUT file, DISP=MOD should be used on the
DD card. If there is no DD card and the
operating system has the primary control
program or MFT, only the normal indicative
dump will be provided; in an MVT
environment, if there is no DD card, there
will be no dump at all.

Checkpoint/Restart

In an operating system with PCP, MFT II or
MVT, a PL/I user may establish a checkpoint
at any point within a job step by calling
IHECKPS or IHECKPT. If IHECKPT is called,
he must include a DD statement with the
ddname SYSCHK to define the data set on
which the checkpoint information is to be
saved. If IHECKPS is called, any ddname
may be used for the same purpose.

Normally, the automatic restart function
restarts the program at the most recent
checkpoint whenever an abnormal termination
occurs. If, however, a restart is to be
forced by the user, CALL IHEREST must be
specified. Alternatively, the automatic
restart function can be disabled by the
statement CALL IHERESN. This statement
disables the automatic restart for any of
the checkpoints if it is enabled; if it is
already disabled, then it is considered and
treated as a NOP.

Automatic restart can be re-established
by issuing a call to the checkpoint modules
IHECKPT and IHECKPS.

The module IHECKP is called directly
from compiled code. It obtains an ordinary
VDA for use as a save area, rather than
using library workspace, because the CHKPT
macro instruction that is issued by IHECKP
makes use of the first byte of the save
area; the first byte of a save area in LAWS
is used for PL/I information. (Refer to
Chapter 4 for a discussion of the VDA and
LWS VDA.) Each time IHECKP is called, it
creates, from a dummy held as part of the
module, a DCB that refers to the data set
defined by the ddname specified as a
parameter to IHECKPS. As well as the
address of the DCB, the checkpoint
identifier specified for IHECKPS is also
passed to the IHECKPT routine.

16

sorts/Merge -~ PL/I .Interface

A PL/I procedure may call the operating
system Sort/Merge program, using the
library module IHESRT. The publications in
which the operation of Sort/Merge is
described are: IBM System/360 Operating
System: Sort/Merqge, Form C28-6543, and,
Sort/Merge Program Logic_Manual, Form
Y28-6597.

Four entry points, IHESRTA, IHESRTB,
IHESRTC, IHESRTD are provided to enable use
to be made of Sort/Merge user exits E15 and
E35 to call PL/I procedures, as required by
the application.

Sort/Merge control statements are
supplied as arguments to the PL/I CALL
statement. These arguments correspond in
format to standard Sort/Merge control
statements, from which the parameter lists
are generated.

These arguments also specify the PL/I
entry points to be invoked by the user
exits E15 and E35, and any return codes to
be used for inter-program communication.

The normal library conventions for
save-area chaining are not used for this
module. Instead the module allocates a DSA
(with code X'80°' in the first byte). This
is to ensure that if either user exit is
used, the chain-back is through the DSas
only.

After the parameter list for Sort/Merge
is generated, the following actions are
performed before linking to Sorts/Merge:

1. The registers in the external save
area of the PL/I procedure are saved
and replaced by special registers
which are used in terminating the sort
when:

a. A PL/I exit procedure is
terminated, due to an errxor, before
the sort has terminated, or

b. A GO TO from an exit procedure to a
procedure at a level equal to,.or
higher than, the calling procedure,
occurs.

Otherwise the PL/I procedure would
terminate allowing the operating
system to regain control, either
directly or indirectly, while the link
to Sort/Merge is still operative, with
a resultant system interrupt. The
registers stored in the special save
area cause the calling procedure to
enter IHESRT and complete the
Sort/Merge operation. Any user exit
calls to the now non-existent PL/I

exit procedures are deleted, before
restoring the external save area and
returning control from the PL/I
procedure.

2. The PICA is set to system action for
Frogram interrupts.

3. Register 13 is set to a special save
area with a chain back address of
zero.

On normal completion of the sort, the
PICA and external save area are reset to

the conditions at entry to IHESRT and
control is returned to the calling program.

If an exit is taken, the PL/1I
environment is reestablished and register
13 is reset to the DSA allocated for
IHESRT. The exit procedure is then invoked
and thus the DSA chain is correct.

Before returning to Sort/Merge the PICA
and register 13 are reset to their values
on initial entry to the exit routine in
IHESRT.

Chapter 2: General Implementation Features 17

CHAPTER 3: INPUT/OUTPUT

FILES AND DATA SETS

Within this publication, the term 'data
set' refers to a collection of records that
exist on an external device. A file is
known as such only within a program; it is
possible that, within a given program,
several files will use the same data set
concurrently (direct access only).
Similarly, a data set may be used by
several programs, either concurrently or
successively.

The relationship between a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identified by the TITLE option.
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight characters of the file
name. The data set identifier is not the
data set name, but the ddname (i.e., the
name of the DD statement). Error messages
which are related to file operations use
the full file name (1 through 31
characters).

The attributes of a file in some
instances restrict the attributes of its
associated data set, but in those instances

where device independence is possible, the
full capabilities of the job control
language DD statement are available. Unit

assignment, space allocation, record format
and length, and various data management
options (such as write-verify) are
established on a dynamic basis.

DCLCB PRV
0 31 0
T T 1 r
| PRV offset | | |
L d l '
v T
| | | |
1 | i f-———mmm -
| L + >1 A(FCB)
| | k -—--
| | |
| | |
| I |
| | |
| | |
L 4 L -
Figure 5. File Addressing Scheme

18

FILE ADDRESSING TECHNIQDUE

In order to accommodate reentrant usage of
a PL/I module, which may imply that the
module exists in read-only storage, the
following technique is employed to
communicate file arguments. All calls from
compiled modules to the library involving
file arguments address a read-only control
block, the DCLCB. The library, using a
field within this control block, is abie to
address a cell within the pseudo-register
vector generated for the task. This cell,
the file register, in turn addresses a
dynamically allocated control block, the
file control block (FCB). (See Figure 5.)

Declare Control Block (DCLCB)

This control block, generated during
compilation, contains information derived
from a file declaration (either explicit or
contextual). In addition, it contains the
offset within the PRV of the file register,
a fullword pseudo-register employed within
the file addressing scheme. This
pseudo-register contains the address of a
dynamic storage area containing a file
control block. The DCLCB is read-only, and
thus permits compiled programs to exist
within a reentrant environment (which may
imply that the program is loaded into
supervisor protected storage). The maximum
length of a DCLCB is 56 bytes.

File attributes specified within the
DCLCB may be supplemented, but not
overridden, by attributes specified in the
OPEN statement which opens the file. An

FCB

31

A (DCLCB)

SR SR T —_— e

exception to this rule is the LINESIZE
option, which overrules record length
information declared in the ENVIRONMENT
attribute.

The format of the DCLCB is described
fully in Appendix I.

File Control Block (FCB)

This control block is generated during
program execution when a file is opened.
Dynamic allocation of the FCB storage is
required in order to accommodate reentrant
usage of a given module, for the FCB is not
read-only. The FCB contains fields for
both the PL/I Library and for operating
system data management. The initial
portion of an FCB is PL/I-oriented, while
the second portion is the DCB required by
data management for all data set
operations. The PL/I portion, called the
DCB-appendage, is described in Appendix I;
details of the various DCB constructions
are available in the following IBM
publications:

IBM System/360 Operating System: System
Control Blocks

IBM System/360 Operating System:
Supervisor and Data Management Services

IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions

IBM System/360 Operating System: System
Proqgrammer's Guide

An FCB is generated for each file opened
within a program; an FCB cannot exist for
an unopened file. FCBs are generated in
task-oriented storage (in the same subpool
as the PRV for the task: subpool 1).

Accordingly, if a file is implicitly
closed because of the termination of the
task that opened it, its FCB is freed and
the file register is set to zero. The
contents of a given file register in a
non-opening upward task are zero.
Subsequent reference to the file may cause
the file to be reopened. (A non-opening
upward task for a given file is a task that
does not open the file, and which is not a
subtask of a task that has opened the
file.)

When a file is opened, its generated FCB
is placed in a chain which links together
(through the TFOP field in the FCB) all
files opened in a given task. When files
are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHEQFOP, exists in order to
perform special PL/I closing processes at
task termination (whether normal or
abnormal). When a task terminates, the
object-program housekeeping routines
determine which files are currently opened
by this task. This is performed by the
relevant housekeeping module calling
IHEOCLD (close), which scans the chain and
calls IHECLTB to close all files opened in
the current task. If the cell IHEQFOP is
zero, then no files are, at present, opened
by the task. When a subtask is attached,
this cell is initialized to zero in the
newly generated PRV. The IHEZFOP chain is
shown in Figure 6.

Since an FCB is generated in dynamic
storage, its address cannot be determined

PRV

r g |

| |

| |

t

IREQFOP| }

L

r

| | FcB1 FcB2 v FCB3

| I r 1<~ r 1<~= r i |

| | | [| I I |

| | | I (I |

[b I B S i1

] | | 0 | Lty | L | TFOP

| | t - pmmmmmmm - y

t 4 | | | |
| | | | |
| | | | |
L J L] []

Note: The FCBs are opened in the order 1, 2, 3, etc.

Figure 6. Format of the IHEQFOP Chain

Chapter 3: Input/Output 19

either at compile time or link-edit time;
it is this characteristic of the FCB which
requires the file addressing scheme
outlined above. If a given procedure is
being executed by two or more jobs
(multi-jobbing), an FCB (with its
associated PRV) exists for each job; the
procedure does not, however, necessarily
operate on different data sets. Similarly,
if a file is opened in two parallel
subtasks, an FCB exists for each task.

Program Execution

When program execution is initiated, the
PRV (including all file registers) is
initialized to zero. When a file is opened
(prepared for I/0 operations), its
associated file register is set to address
an FCB; similarly, when a file is closed
explicitly, its file register is again set
to zero.

Since a copy of the PRV of the attaching
task (calling procedure) is provided to the
attached task (called procedure), the state
of a file is communicated downward through
major to minor tasks. If the file is not
open, the file register remains zero. If a
file has gone through the opening process
but has failed to be opened (UNDEFINEDFILE
condition), the high-order byte (bits 0 to
7) of the file register will contain an
error code that indicates the cause of
failure. The codes consist of two
hexadecimal digits; they are shown in
Figure 7.

If the file register is non-zero, the
file is open and its FCB is also available
to all the subtasks created while the file
was in the open state. This technique of
communicating the state of a file makes it
possible to access a file in two parallel
subtasks.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCLCB, in conjunction with
an implicit opening statement,
provides all the information necessary
to open a file, a file can be opened
by I/0 statements other than the OPEN
statement.

2. Because the DCLCB is part of the
static storage of a load module, its
address is constant throughout program
execution. This address can be used
therefore as the file identification
in ON conditions that relate to files.
ON conditions may be enabled for a
file before it is opened, since the
DCLCB address is always available.

20

¥ T 1
| Error | |
| code | Meaning |
b } 4
| 81 | Conflict between DECLARE and |
i | OPEN attributes |
82	File access method not
	supported
83	No block size
84	No DD card
85	TRANSMIT condition while
initializing data set (only	
applicable to DIRECT OUTPUT	
	REGIONAL files)
86	Conflict between PL/L
]	attributes and environment
	options
87	Conflict between environment
	options and DD parameters i
88	Key length not specified
89	Incorrect block size or logical
	record size specified
1	
8A	Line size greater than
	implementation-defined maximum
I i J	

Figure 7. Error Codes Indicating Causes

of Failure in Open Process

OPEN/CLOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OPEN statement,
or implicitly because of other 1/0
operation statements.

Opening a file involves the creation,
within dynamic storage (subpool 1 of the
opening task), of an FCB, the setting of a
file register to address the FCB, and the
invocation of the data management OPEN
executor. The closing of a file involves
invocation of the data management CLOSE
executor, freeing FCB storage, and clearing
the associated file register.

EXPLICIT OPENING

In order to conserve storage, the module
structure of the OPEN and CLOSE processors
involves a 'bootstrap' routine, IHEOCL,
which links to the modules IHEOPN and
IHECLT. In a multitasking environment
IHEOCT links to IHEOPN and IHECTT. The

bootstrap module passes to the loaded
modules the address of a list of all
necessary address constants and
pseudo-register offsets, since these
cannot be set in a module not
link-edited with the executing
program. The list is found in the
library module IHESAP
(non-multitasking) or IHETSA
(multitasking).

All errors are communicated back to
IHEOCL/IHEOCT by means of the file
registers; IHEOCL/IHEOCT then invokes the
error handling subroutine. The error
conditions are signaled in the high-order
byte of the file register; IHEOCL/IHEOCT,
upon detecting an error condition, sets bit
0 of this register to indicate an
unopenable file. The error codes are shown
in Figure 7.

Open Control Block (OCB)

One of the parameters which may be passed
to IHEOPN is the open control block (0OCB),
which is generated by the compiler. This
four-byte control block indicates the
attributes specified in the OPEN statement.
During the opening process, this
information is merged with that in the
DCLCB in order to construct the proper FCB
and check for attribute conflicts. (See
Appendix I for details of the OCB.)

The Open Process

The flow through the OPEN modules is
illustrated in Figure 8.

The open process is performed by the
modules IHEOPN, IHEOPO, IHEOPP, IHEOPQ and
IHEOPZ which reside within the LINKLIB data
set. These modules are dynamically loaded
in order to conserve object-program
storage. They initially receive control
from a bootstrap module, IHEOCL
(non-multitasking) or IHEOCT
(multitasking); each module, after
performing its functions for all files
being opened, passes control to the next by
the XCTL macro. IHEOPQ then returns to the
bootstrap module.

open Process, Phase I: IHEOPN: This
pexrforms file attribute checking and

defaulting functions. If a file being
opened is REGIONAL, and is opened for
DIRECT OUTPUT (creation), the module IHEOPZ
is invoked by IHEOPN to initialize (format)
the initial space allocation of the
associated data set. Such initialization

is required in order to allow subsegquent
direct insertion of records into the data
set. If, in phase I, all files specified
in the OPEN statement have detected errors,
a return to the bootstrap IHEOCL is made
immediately. Otherwise phases II, III and
IV are invoked and a return is made to
IHEOCL from IHEOPQ.

OCL/0CT

o e s s conems oy

1

|

4

OPEN/CLOSE |<

bootstrap |
J

T

— — —

v !
v 1 T b
| OPN | | oPZ |
I d L J l
v Bl L 1
| OPEN |<==-=>] REGIONAL | |
| Phase I { | Formatting|
L d i ¥ |
T
|
v -
LB 1
{ oPO |
[) | |
v]
} OPEN | |
| phase II | |
L > 3 l
T
| I
v |
r 3 r 1 I
1 OPP | | oPQ | |
L d L ,' '
v t L3
| OPEN | OPEN f————o J
| Phase III | | Phase IV |
(% b § L J
Figure 8. Flow through the OPEN Modules

Initialization for REGIONAL data sets of
F format records involves writing dummy
records (and keys, except for REGIONAL (1))
throughout the data set. On the other
hand, initialization for U or V format
records (REGIONAL (3) only) requires merely
that the capacity record (RO) be written in
each track to signal a free track, the
track being automatically cleared as well.

Open Process, Phase II: IHEOPO: This
obtains storage for an FCB for each file
being opened, and sets fields in both the
DCB and the DCB-appendage according to the
declared attributes.

Open_Process, Phase III: IHEOPP: This
executes the OPEN macro, and accepts
DCB-exits.

Open _.Process, Phase IV: IHEOPQ: This
dynamically loads record-oriented 1I/0
modules (setting their addresses in the
FCcB), and enters the files being opened
into the IHEQFOP chain of files opened in
the current task.

- Chapter 3: Input/Output 21

The Close Process

This process consists of: removing files
from the IHEQFOP chain; freeing dynamically
acquired storage (file control blocks,
buffers, exclusive control blocks, and I/0
control blocks); and deleting any
appropriate dynamically-loaded
record-oriented I/0 modules. In the
following description the non-multitasking
module is followed with its multitasking
alternative in parentheses.

Module IHEOCL (IHEOCT) starts the close
process; for an explicit close it links to
IHECLTA (IHECTTA); for an implicit close to
IHECLTB (IHECTTB). If the last operation
on a BUFFERED SEQUENTIAL INDEXED OUTPUT
embedded-key file, before it is closed
explicitly, is LOCATE, module IHEOCL
(IHEOCT) replaces the embedded key with the
KEYFROM option, before passing control to
IHECLT (IHECTT). For further information
refer to Indexed Data Sets on page 35.

Module IHEOCL (IHEOCT) calls IHEITC to
finish formatting the current extent when
closing a REGIONAL SEQUENTIAL OUTPUT file.
If IHEITC finds a key sequence error due to
a previous LOCATE statement on a REGIONAL
file with U- or V-format records the key
sequence is ignored and a message is
displayed on the console.

The normal return from a KEY on-unit is
to the statement following that in which
the condition is raised. Consequently, if
the KEY condition is raised during the
execution of an explicit CLOSE statement,
the file will not be closed unless the
on-unit also includes a CLOSE statement.

In addition, if a file is closed
implicitly (on termination of a task),
IHEOCL or IHEOCT scans the IHEQFOP chain to
find the file. In a multitasking
environment, if a task is terminated
normally, IHEOCT unlocks all records locked
in the task and frees the corresponding
exclusive blocks; if a task is terminated
abnormally, it merely removes the exclusive
blocks from their chains. For an implicit
close, all events associated with event
variables in the IHEQEVT chain are purged,
and the associated IOCBs, if any, are
freed.

Modules IHECLT and IHECTT reside within
the LINKLIB data set and are loaded
dynamically in the same manner as the OPEN
modules. They perform additional special
functions as follows:

Stream-oriented I/0:
If OUTPUT with U-format records, the

last record is written.

22

Record-oriented 1I/0:

All incomplete event variables
associated with the file are set
complete, abnormal, and inactive, and
the I/0 operations are purged.

In a multitasking environment:

1. The event variables in the TEVT
chain are set complete, abnormal,
and inactive.

2. For a REGIONAL EXCLUSIVE file, or
an INDEXED EXCLUSIVE file with
unblocked records, locked records
are unlocked and all exclusive
blocks in the TXLV chain are freed.

3. For an INDEXED EXCLUSIVE file with
blocked records, the file is
unlocked.

IMPLICIT OPENING

If a file is not open and an I/0 operation
is initiated, then one of the compiler-
interface modules (IHEIOA, IHEIOB (or
IHEIBT), or IHEION (or IHEINT)) calls
IHEOCL (or IHEOCT), at implicit-open entry
point IHEOCLC (or IHEOCTC), passing any
implied parameters, and the open proces
begins. :

If the OPEN modules return control to
IHEOCL (or IHEOCT) and the file is still
unopened, the UNDEFINEDFILE condition is
raised.

STREAM-ORIENTED I/O

Although I/0 devices available within IBM
System/360 are usually designed to transmit
data in records of various lengths
(blocks), the stream-oriented facilities
allow a program to ignore record
boundaries. The GET and PUT statements
transmit data between storage and one or
more record areas which exist within a
buffer, the location within the buffer
being updated as each data field is
accessed. When a record area becomes
filled (if output) or empty (if input),
another record is obtained. Support for
record access is provided by the data
management access method QSAM (queued
sequential access method). Normally, the
GET and PUT data management macros are used
in the locate mode, to conserve space and
time; paper tape input, however, must use
the MOVE mode. See Figure 9 for the flow
through the stream-oriented 1/0 modules.

1

|

|

|

]

|

|

!

[

“
= oy b e
[[}
| | |
| | +
R -
11 naQ e
I i1ACc
1 Foderd |
|]]
|] !
SRS S ——

A

|

]

[}

]

|

]

[}

|
= o vy e e oy
1# |]
] 1]
| | & |
= RN
101k
Iaotog |
| 1o |
| | |
| | |
| SR S— |

[}

|

|

}

|

]

|

1

v
o ————
] | 1
|] |
| I md |
IR i3 |
11 N8|
1| ug |
| | Lo |
| 7]
L-l__J

r

]

]

|

|

1
R T
*TE]
< ledh |
10O 1|\ |
I oL
| |
| =]
{_L 5]

T

|

]

-

|
4

[ettt T LY

A
1
]
]
[}
|
|
|
] ~—>
4.
» [}
1
& L3 |
Qtmo3
QPO k—-
N R
o103l
Q (<IN]
a |
—)
—Y
\4
A
o e e e e
[A |
| I o |
| | 8 |
1 B0 11O |
1O 1L PHI
[-R]
| oA £ 1
| I HO |
L_L&0]
A
|
|
-’
)
|
]
1
o oy e o oy
1= | |
M
|8 lgd
Bl N
-W.PR"
“0_ IR
P -
o e e g e
|
|
\

| SR
CLOSE

L———|OCL/OCT *|<
 —

r

-

¢
T

pmmmmmmm

|

- (7]
1]
| +
| :
—— e e
* [] I -~ U
M | TAaEgE
N] £ _ 0
0 T P] LN -
a EVU ke~ i o Y
N] v & 0
Q) ON] - —— —— - ————— 7] >
O) A | [} [| [] [} el O =t
0 o | | et) B B =K
b o e) 1] ton | 1B z | Q300
] o1~ 9o 1 1R O | $Y4T OT
> 10 1O IN | W e noMxO
| I+ 100 | P A S E-A0Q
——y oy] | |lVvwm | [RIE N L o]
*] | | © 1 T] [~ o]
=] | | [l=] [[| (O3] < ST O
m + 1} e b g e b b o o b PO~
b 1] |] 2 oo
OlHE p— ! ol O Q
H I OMN I Yo pE
[$3Ne] | olc £ 0
N W | Zlv 00
»]
—t g e i
] v
] o o g e e s e oy
| 1 | ~ |
! | | Q1
[} | | T o Ot o e e et o
L} | | NOZE®) [
v v 1 | OO |] |
IO 1 O0OVW M I | | >
1H)P 00O) [=] [}
| g~ | | @ | [
] | (=3 | i =
| 1 H 1 [1 (o]
| S |)]
A | S SRR ——-
S — [N SO p——
o e Ty — e “
(3] | o e e e e e sy
Bl ®] *
llllll > (3] [75]] \N O
218 | £
[SNY) | M w m
0L ! S18H
[o i — ——— ————— —— ——— ——— L b e ks e e o
o o oy e o oy e ey
> - o o oy e o —
- - * o
L
igiEs -1z, 3
[— —
| 518217710 158 31SE
[l
I} R = (SR
| A (U]
] S S—— S S W e N —
| A
|]
v 1
— I — = o ey e e - —— ——
1 - | * m ~
| o) - | =) .u@
2 “ Z1Z0 o229 — QI H u m X
12 p—ee——D A 1RO =D A IR® P& =]
5 | Si82(T 1S182 1%1ZEES
| & & | 12252
| | AOO0O
R P WON— T SUU— e e s e e e e s

Modular Linkage through Stream-Oriented I/0

e Figure 9.

23

Chapter 3: Input/Output

CURRENT FILE

The current file is that one which is being
operated upon by an I/O statement; it is
established when an operation begins, and
removed when the operation is completed.
The current file is addressed through the
pseudo-register IHEQCFL, which addresses
the DCILCB for the file. This
pseudo-register is available for inspection
upon entry to ON blocks, and during

transmission. Its format is shown in
Figure 10.

0 78 31
T Ll R}
| o i A (DCLCB) 1
b ¢ {
1 | A(Abnormal return) |
L [J
Figure 10. Format of the Current File

Pseudo-Register

Within a stream-oriented data
specification there may exist expressions
which involve function references. 1In
turn, the function procedure may itself
perform I/0 operations or may refer to ON
blocks that perform I/0 operations. When
this situation occurs, it is necessary to
stack the current file pseudo-register.
The presence of the COPY option in a GET
statement and the raising of the TRANSMIT
condition for an item in the data stream
are flagged in the fifth byte of IHEQCFL:

TRANSMIT to be raised on item: Bit S =1
COPY option in statement: Bit 6 = 1
Current file in PRV: Bit 7 =0
Current file stacked in DSA: Bit 7 = 1

Stacking of the current file is effected
by the I/0 initjalization modules; upon
entering such a module (e.g., IHEIOA and
IHEIOB), the contents of the
pseudo-register IHEQCFL are stored in the
DSA (dynamic storage area) of the invoking
procedure, as addressed by register DR.
The stacking cell is termed the current
file pseudo-register update. (See Chapter
4.) Upon termination of an I/0 operation,
either normally, or by means of a GO TO
statement out of an ON block, this cell is
copied back into the pseudo-register
IHEQCFL.

GET and PUT statements with the STRING
option employ the current file
pseudo-register, but no abnormal return
entry exists. Instead, the latter four
bytes address a simulated FCB.

24

STANDARD FILES

The standard files, SYSIN and SYSPRINT,
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options
causes compile-time syntax substitution of
the file names SYSIN and SYSPRINT
respectively. These files have the same
compiled linkage to the library as other
files. Within the library, SYSIN is not
used; the file SYSPRINT, however, is used
in that error messages and listing of data
fields for the COPY and CHECK options
require the presence of this file.

SYSPRINT may be implicitly opened either
by:

1. the first PUT executed in the compiled
procedure, or

2. a call from within the library for the
COPY option or an error message.

If the library attempts to open this file,
and it cannot be opened (missing DD card,
etc.), this situation is flagged and all
error messages will appear on the system
console. In addition, any COPY options, or
system action for the CHECK condition, will
be ignored. The UNDEFINEDFILE condition is
suppressed in the above cases.

If a compiled procedure attempts to open
SYSPRINT, and it cannot be opened, the
normal UNDEFINEDFILE condition is raised.

Because the library and the source
program both use the SYSPRINT file, it is
necessary that they both refer to the same
DCLCB. This is achieved by the use of
CSECT facilities within the linkage editor;
both the compiled DCLCB and the
library-supplied DCLCB for SYSPRINT (within
the module IHEPRT) are supplied with the
same name, so that only one of them will be
placed within the linked program. The name
of both CSECTs is IHESPRT; the name of the
associated file register is IHEQSPR.

SYSPRINT IN MULTITASKING

In a multitasking environment, to ensure
that there is no conflict between
operations in different tasks that refer to
the same non-exclusive file, it is
necessary for the programmer to synchronize
these operations (by using an EVENT
variable, the COMPLETION pseudo-variable,
and the WAIT statement). Since the library
uses the file SYSPRINT, it is not possible
for the programmer to synchronize all
operations on this file. Therefore the

library module that implements PUT
statements for SYSPRINT (IHEIOB), and other
modules that use this file, issue an ENQ
macro instruction before executing each PUT
statement on SYSPRINT, and a DEQ macro
instruction on completion of the operation.
All SYSPRINT operations cannot be enqueued
on the same resource, since this could
result in an interlock situation (two or
more operations, each waiting for the
completion of the others). For example,
this would be the case if a PUT statement
involved a function reference that required
another PUT operation; if both were
enqueued on the same resource, the second
operation could not commence until the
completion of the first, which itself could
not proceed until the function had returned
an answer.

The library resolves the difficulty by
employing a resource counter (the first
byte of the current-file field in the DSA:
see Appendix J). Before each SYSPRINT
operation is executed, the operation is
enqueued on the resource number in the
counter, and the counter is then
incremented by one; on completion of the
operation, the counter is decremented by
one before the operation is dequeued. When
a new DSA is obtained (on entry to a new
block: see Chapter 4), the resource count
is copied from the DSA of the block from
which the new block was entered.

In the example (Fiqure 11), when the.
major task (task A) is initialized, the
resource count in its DSA is set to zero.
Task A then attaches tasks B and C, and in
each case the resource count (0) is copied
into the new DSA. Tasks A, B, and C then
réquest PUT operations, all of which are
enqueued on resource 0; in each case the
resource count is then incremented by 1.
These operations are therefore completed in
the order in which they were requested.

During execution of the PUT statement in
task B, an error condition occurs that
involves a library call to print a message
(e.g., UNDERFLOW). The library PUT
statement is enqueued on resource 1, since
the resource counter is incremented after
the task PUT statement is enqueued, but
before the statement is executed. The
library PUT operation is therefore not
dependent on the completion of the PUT
statement that raised the error condition.

If a GO TO statement is executed that
passes control to a statement preceding a
series of enqueued operations, the program
management routine IHETSAG releases the
DSAs of the blocks thus freed and dequeues
the 1/0 operations they contain. This is
jllustrated in task C (Figure 11), where
control is passed to an on-unit as a result

of an error in a PUT statement in a
function reference made during the
execution of the second PUT statement in
the task. The PUT statement is engqueued on
resource 0, and the resource count is then
incremented. When the function is called,
the resource count (1) is copied into its
DSA; consequently, the next PUT statement
is enqueued on resource 1, and the counter
is again incremented. The count 2 is
copied into the on-unit DSA when control
passes to the on-unit. On execution of the
GO TO statement, which passes control back
to a statement preceding the original PUT
statement, IHETSAG frees the function and
on-unit DSAs, dequeues all the PUT
operations, and resets the resource counter
in the DSA for task C to its value on entry
to the task (0).

No special provision is made for
handling SYSPRINT resources on termination
of a task, since this file cannot be used
by the library end-of-task exit routine.

The gname and rname used in the ENQ and
DEQ macro instructions are:

gname (two words):
Bytes 1-U4: A(SYSPRINT FCB)
Bytes 5-8: A(SYSPRINT FCB)

rname (1 byte):
Resource count in DSA

GET/PUT OBJECT PROGRAM STRUCTURE

The code compiled for stream-oriented I/0
GET and PUT statements has the general
structure illustrated in Figure 12. There
are three 'call sets' compiled for these
statements:

1. Initialization:

This call invokes one of the I1/0
initiator modules, passing:

a. The address of the file DCLCB.

b. The address of the termination
call. (This is the abnormal
return which is set within the
current file pseudo-registe
IHEQCFL.)

c. The address of the LINE or SKIP
value.

The initialization process includes
stacking the current file, checking
the specified file (and opening it if
not already open), and performing any
necessary option operations.

Chapter 3: Input/Output 25

Task B Task A Task C
(major task)
|
0 |
|
r i
o | |
| t --- -1
| | o |
ENQ | |
1 Error | |
PUT———m 1 | |
0 | | ENQ
DEQ | ENQ 1
| i 1 PUT
| Message PUT 0
| routine 0 DED
1	DEQ	
		o ————————— >
ENQ [
2 { ENQ		
PUT	1 Function reference	
1	PUT--——e e 1	
DEQ		1
		1 PROC;
!		
	ENQ	
	2 Error	
Note: The figures at	{ PUT——— 1	
the left of each column		
indicate the contents of		
the resource counters.		
		2 BEGIN;
L DEQ< DEQ< GO TO		
Figure 11. Allocation of SYSPRINT Resources in Multitasking
2. Data specification: 3. Termination:

26

This is a series of calls to perform
list-, data-, or edit-directed
stream-oriented I/0 operations. This
series is omitted only for GET/PUT
statements which have no data
specification. Details of the
implementation of the three forms of
data specification appear in 'Data
Specifications', below.

This call invokes the terminal
subroutine of the module which
performed the initialization. At this
point the current file is unstacked
and (for PUT calls) V format output
records have their record-length field
updated.

Initialization
call

T

v

Call set 1

= e s
TPp——

Data
Specification
call,

b e e o

T
|
v

|
—————— |
|

S

Call set 2

|
|
v

Data
Specification
callp
L]

|
v

& e o e e e

[o — s
b e o o ol

Termination
call

Call set 3

o v . ay
e e e s

Figure 12. Object Program Structure of

GET/PUT

DATA SPECIFICATIONS

There are three forms of data
specification:

Data-directed
List-directed
Edit-directed

compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-directed I/0, the data items
transmitted are passed by means of the
standard linkage described above. (See
*Linkage Conventions' in Chapter 2.) The
PL/I standard (using registers) is employed
wherever possible; where it is not, the
operating system standard (using a
parameter list) is employed. For
edit-directed 1I/0, the 'executable format
scheme' described below is required.

The ON CHECK facilities for data items
being input are supported by compiled code
between data-list item specifications, in

the instances of list- and edit-directed
I/0; data~directed 1/0 determines the
existence of this condition from the symbol
table entry for a given data item.

EXECUTABLE FORMAT SCHEME

The executable format scheme exists to
support two requirements for edit-directed
data items:

1. The matching at object time of
data-list items with format-list
items.

2. The evaluation of expressions during
an I/O operation.

The scheme exists in compiled code for use
by the library format directors and
conversion package. (See 'I/O Editing and
Data Conversion' in Chapter 8.)

The scheme is required because
edit~directed data specifications contain
format lists composed of format items that
may have expressions for replication
factors and format subfields. These
expressions may have to be evaluated with
values read in during a GET operation.
Finally, the use of dynamic replication
factors and the possible existence of array
data-list items of variable bounds prevent
any pre-determinable matching of data-list
items and format-list items.

Basically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
of format-list item specifications. These
two series are compiled as the 'secondary
calling set for a GET or a PUT operation.

To support the dynamic matching of a
format-1list item with any data-list item, a
group of format directors exists within the
library; one of these directors receives
the call from the secondary compiled series
of format item specifications. A director
will determine which conversions are
regquired to satisfy the transmission of a
data item according to its internal
representation (described by its DED) and
its specified external representation
(described by a FED).

The structure of edit-directed compiled
code is illustrated in Figure 13. The
first column, 'Primary code', consists of
calls to units in the second column,
'Secondary code'; i.e., data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

Chapter 3: Input/Output 27

The scheme works as follows:

The address of the start of the
format-list code (executable format)
is obtained.

1.

Transmission of the first data item is
requested; its storage address and DED
address are loaded into registers RA
and RB.

Ccontrol is transferred to the
executable format; at the same time
the location counter of the data-list
code is updated.

The executable format loads, into
register RC, the address of an FED.

A call is made to a format director
and at the same time the location
counter of the format-list code is
updated.

Primary Code Secondary Code

The format director causes the
conversion package to convert the data
according to DED and FED information,
storing the converted data in the
specified storage address, if input,
or placing it in a buffer, if output.

Return is then made to the data-list
code, by means of the data-list
location counter, LR.

The above steps, 2 throuah 7,
repeated until the end of the
data-list code is reached.

are

Within both primary and secondary code,
looping and invocation of function
procedures may occur. Within secondary
code, the appearance of control format
items (PAGE, SKIP, LINE, COLUMN, X) will
cause the location counter for primary
code, register LR, to be temporarily
altered, so that control is returned from
the library, not to the primary code, but
to the secondary code. This allows the

Format Directors

Initialization
{
|
v
f] r —===—1 [rm—————————— 1
| Request p—-->1 Specify (-—->| Format |
|data item 1} | format | | director |Ke—-eee—wea 1
| transmission| ¢-->{ 1 F-—-->1 a | |
L 3| L -1 by J v
| (V] 13 [m——————————— 1
r -——=d | | Conversion |
| | ‘ | | package |
| | foo——————— 4 | |
v | | L .
r 1 l r N - | r 1 A
| Request 1 | | Specify | | | Format | |
|data item 2}p-—-->| format p=---->| director |K-—————c—e— 4
|transmission| | | 2 I | B |
L i | I 8 3 | L T J
i | (2) |
| | |
| | |
r 4
|
v

r 1
| Request {
|data item 3}-
]transmission|
L J

|
|
|
|
;|

s e e e o o o et e ot

—

|
v

Termination

Figure 13. Executable Format Scheme

28

data-list item which activated the control
format item to be matched with a data
format item.

OPTIONS

COPY: This option causes each data field
accessed during a GET operation to be
listed on the standard output file,
SYSPRINT. This is performed by calling
the module IHEPRT. Each data field
occupies the initial portion of a line.
If there is no DD card for SYSPRINT,
the COPY is ignored by IHEPRT.

STRING: This option causes a character
string to be used instead of a record
from a file. This situation is made
transparent to the normal operation of
the I/0 modules since the
initialization module for GET/PUT
STRING (IHEIOC) constructs a temporary
FCB for the string. Information
regarding the address and length of the
string is set in the FCB fields TCBA,
TREM and TMAX. A temporary file
register is created in the second word
of the pseudo-register IHEQCFL. (A
dummy DCLCB is placed in front of the
generated FCB and consists of two bytes
which indicate the offset of the dqummy
file register.)

PAGE, SKIP, LINE (print files): These
options cause the current record (which
is equivalent to a 'line') to be put
out, and a new record area to be
oktained. SKIP can also be used with
input to cause the rest of a record in

the input stream to be ignored. Record
handling for these functions is
performed by the module IHEIOP. All

printing options (and format items) are
supported by use of the ASA control

characters:

1 Page eject

+ Suppress space before printing
b Single space before printing

0 Double space before printing

Triple space before printing

Should spacing greater than triple be
required for a LINE or SKIP request, a
series of blank triple space records is
generated, followed by a single or
double space record, if necessary.

SKIP (non-print files):

1. Input files: The SKIP(n) option
causes the rest of the current
line (record) to be ignored in the
input stream, and a further
(n - 1) lines to be ignored.

2. OQutput files: The SKIP(n) option
causes the remainder of the
current line (record) to be
ignored and (n - 1) blank lines to
be inserted into the output
stream. Note that, for format F
records, each line is padded with
blanks; for format V and U
records, only the necessary
control bytes and record lengths
are supplied.

RECORD-ORIENTED I1/0

OBJECT PROGRAM STRUCTURE

In record-oriented I/0, the data entities
accessible to the source program are data
management logical records (unlike
stream-oriented 1/0, where the data
entities are data fields).

A wider range of record access is
therefore available with record-oriented
I/0: records may be keyed or not, may be
directly or sequentially accessed, and may
be manipulated within the data set by
insertion, replacement, or deletion. The
specific facilities available vary
according to the data management access
method employed to support a given data
set.

The data management facilities employed
are indicated in Figure 14, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access
methods are employed are provided in
*Access Method Interfaces'.

General Logic and Flow

The overall flow of record-oriented I/O
modules is illustrated -in Figure 15.
Modules IHEION(IHEIOG) (non-multitasking)
or IHEINT(IHEIGT) (multitasking) are
general interface modules, one of which is
invoked by a compiled call for any
record-oriented I/0O statement, in either a
non-multitasking or multitasking
environment. This module interprets the
requested I/O operation, verifies its
applicability to the specified file (and,
possibly, implicitly opens it), and then
invokes an access method interface module
(characterized by the module names IHEIT#*)
to have the operation performed.

Chapter 3: Input/Output 29

1) T v T Al T T 1
| | | | |Record | Access| Notes on Use of |
|Oorganization | Access | Mode |Buffering |Format | Method| Access Method |
b 4 $ 4 -4 } } i
| | | |BUFFERED |ALL |gSaM | Locate-mode

| | | INPUT | | | | (except paper tape)|
| CONSECUTIVE | SEQUENTIAL |OUTPUT} -4 + + 4
| | | UPDATE | UNBUFFERED |F, U, V | BSAM | - |
L 1 1 I ——— 1 1]
3 T v T T T 1
| | | INPUT |BUFFERED | | | Scan-mode; |
| | |UPDATE| or |F, FB2 | | ESETL/SETL |
{ | SEQUENTIAL }j—-———- {UNBUFFERED | |QISAM | - {
| INDEXED | | OUTPUT| 1 | | Load-mode]
| b $ e $ ¢ '
| | DIRECT | INPUT | - |F, FB |BISAM | - |
| | | UPDATE | | | [|
b-- } 4 — } $ } -—- :
| | | INPUT |BUFFERED |F 10samM/ | - |
| | SEQUENTIAL |UPDATE| or | (REGIONAL(1),|BSamM3 | |
| | b {UNBUFFERED| REGIONAL(2))} + i
| | | OUTPUT | | |BsaM | BSAM Load-mode |
| i } - t : 4
			\F, U, V		REGIONAL (1) 2	
			-			Relative record
REGIONAL(1)					BDAM	without keys
REGIONAL(2)		INPUT		(REGIONAL(3))		REGIONAL(2) 2
REGIONAL(3) { DIRECT	OUTPUT				Relative record	
		UPDATE				with keys
			{		REGIONAL(3) 2	
						Relative track
						with keys
b $ 1 - -4 } '						
TELEPROCESSING TRANSIENT	INPUT	BUFFERED	G,R	oTaM	-	
I 1	ouTPUT		[[
I	= N L ——— - i L R _,{					
Note 1: FB is not allowed for UNBUFFERED files						
Note 2: OUTPUT causes data set to be formatted using BSAM (BDAM load-mode) at open time]						
Note 3: QSAM is used for REGIONAL(1) BUFFERED but not KEYED						
L [J

Figure 14.

Modules IHEION and IHEINT supersede
modules IHEIOG and IHEIGT at Release 17.
The latter are. retained in case a
previously compiled load module is
link-edited with the new library. The new
modules perform the same function as the
0ld except that they transfer control to
the transmitters rather than link to them.
The transmitters return direct to compiled
code. This avoids saving and restoring
registers between the interface module and
the transmitter.

The verification of a statement is
performed by IHEION (IHEINT in ‘
multitasking) by ANDing together a mask at
offset -8 from the FCB and the second word
of the Request Control Block. If the
result is zero then the statement is
invalid. The mask in the FCB is set up by
IHEOPQ to indicate which statements are
valid, and the RCB contains the statement
type as a single bit in its second word.

On receiving control, the interface
module first performs any necessary key

30

Data Management Access Methods for Record-Oriented I/0

analysis and record-variable length
checking, and establishes any control
blocks required. It then invokes data
management for the transmission of a
record. After transmission, or (if the
EVENT option is employed) after initiation
of transmission, control returns to the
general interface module IHEION (or
IHEINT), and thence to the compiled
program. Errors may be detected within
IHEION (or IHEINT) before an interface
module is invoked, or within an interface
module either before or after data
management has been invoked. The relevant
ON condition is raised when detected.

As indicated by the overall flow
diagram, record-oriented I/0 is implemented
in such a fashion that the addition of
further access method interface modules
requires minimal changes (if any) within
other parts of the implementation. The
general interface module IHEION or IHEINT
provides each access method interface
module with a standard parameter set:

r 1
| Compiled }j-—--—ccmemeee—q 1
| Code | |
L T J v
| e
_I | OSW/TSW *|
- 1 |‘ ““““““ "
| ION(IOG) /INT(IGT) *| | WAIT |
Note: An asterisk indicates that } 4 | |
the module can be entered | compiler | b r———
directly from compiled code | interface | |
t T 4 |
| |
|< J
|
|
4
1] 1
| |
v |
| Sotetututiuany — r~ T = T - 1 i T T 1
|OCL/OCT *| - 1 | | | | | |
p———————- i | \Y v Vv v v | \ v
| l“" - 1 1 r 1T 1 | r- 1 r =1
| CLOSE/ }p——=————ee 1] ITB | | ITC | | ITE | 1 ITH 111 ITF | 1 ITJ |
| OPEN |——-- 1lt { b 1t {1 F =11} it 4
| | K======- +11| BSAaM | | BsaM | | BIsAM | | BISAM ||| BDAM I 1 BDAM |
| | IRER! | | (LOAD)| |No Multi-| | Multi- |}|No Multi-| | Multi- |
L e 1] v—— 4t 4 | tasking | | tasking ||]tasking | | tasking |
| | ' L__-__---__.I [- J L - J | | I J Lo .y
L 1|t + T -t -—— 1
¢ +-—- v | | |
v ([| !
L) L} r 3 I l | r T 4 T === 1 I
| OPZ | | OPN | | | vv v v v
t | } - v | p==————- 1 (——————- 1 r 1 r 1
|{REGIONAL |<-—{ OPEN | fom————-—q || ITL | | ITD | | I1ITG | | ITK ||
| formatting| | Phase I | | CLT/CTT | |} { b -—4 b 4 - {1
L . t T 4 t 1 |l osaMm | | oIsaM | | gsaM | | QSAM ||
| | CLOSE F->] | SPANNED | } | NON- | | SPANNED| |
| | | |1 ouTPUT| | | | SPANNED| | INPUT ||
r Jd | R | l L J i d | R J L J '
| [—
| | v
v | r————--"
r 1 r 1 r 1 I ' ITP I
| or0 | | 192 S ! OPQ | === 4
L J L d t 4 I l I
r 1 r 1 L 3 1
| OPEN }-->| OPEN }-->| OPEN p--1 | QTaM |
| Phase II | | Phase III| | Phase 1IV| | |
L 4 L 3 L] [N

e Figure 15. Linkage of Access Modules in Reco

RA: A(Compiled parameter 1list)

Parameter list:
A (DCLCB)
A (Record dope vector/IGNORE/SDV)
A(Event variable)/0/A(Error return)
A (KEY | KEYFROM| KEYTO SDV) /0

A (Request control block)

rd-Oriented 1/0

The record dope vector and the request
control block are described below under
*Record-Oriented I/0 Control Blocks'.

The interface modules are also invoked
to handle WAIT statements associated with
I/0 events. The WAIT module, having
determined that an évent variable (see
Appendix I) is associated with a
record-oriented I/0 operation, invokes the
relevant I/0 transmitter (IHEIT#), passing
the following parameters:

Chapter 3: Input/oOutput 31

RA: A(Compiled parameter list)
Parameter list:
A (DCLCB)
A(IOCB being waited for)
A(Event variable)
(Reserved)
A(Request control block)

The transmitter then completes the
previously initialized record transmission,
and performs any checking required before
returning control to the WAIT module. (See
also 'The WAIT Statement' in 'PL/I Object
Program Management in Multitasking®.)

From the arguments, the interface module
is able to determine fully the operation
requested of it. The location of the
required interface module is available to
IHEION from the FCB associated with the
file; the field TACM in the FCB is set
during the open process to point to the
appropriate dynamically loaded module.

Thus, when extra interface modules are
provided, the only change required in the
open modules is the provision of code to
set TACM and any other FCB fields relevant
to the new access method interface.

RECORD-ORIENTED I/0 CONTROL BLOCKS

Record Dope Vector (RDV)

The record dope vector is an eight-byte
block that describes the record variable.
Its format depends on the type of statement
and the associated options:
Bytes 0-3: A(INTO/FROM area), or
A(POINTER variable) for SET
option in READ statement,
or
A(buffer) for LOCATE
statement

Byte U: Reserved

Bytes 5-7: Length of variable

String Dope Vector (SDV)

The address of the string dope vector is
passed instead of that of the record dope
vector to record I/0 interface modules when

32

the input or output of varying strings is
requested. The string dope vector is an
eight-byte block:

Bytes 0-3: A(INTO/FROM string)
Bytes 4-5: Maximum length of string
Bytes 6-7: Current length of string

(output), undefined
(input)

Request Control Block

This eight-byte block contains the request
codes, in the first four bytes, for various
RECORD I/0 operations and options. The
format is defined in the BREQ field of the
I/0 control block (IOCB). (See Appendix
I.)

The additional four bytes which are
contained in the compiler argument list are
not copied into the IOCB. Each type of
Record-oriented I/0 statement is
represented by one bit as follows:

Bit_number Statement + options

0 READ SET

1 READ SET KEYTO

2 READ SET KEY

3 READ INTO

4 READ INTO KEYTO

5 READ INTO KEY

6 READ INTO KEY NOLOCK

7 READ IGNORE

8 READ INTO EVENT

9 READ INTO KEYTO EVENT
10 READ INTO KEY EVENT
11 READ INTO KEY NOLOCK EVENT
12 READ IGNORE EVENT

13 WRITE FROM

14 WRITE FROM KEYFROM

15 WRITE FROM EVENT

16 WRITE FROM KEYFROM EVENT
17 REWRITE

18 REWRITE FROM

19 REWRITE FROM KEY

20 REWRITE FROM EVENT

21 REWRITE FROM KEY EVENT
22 LOCATE SET

23 LOCATE SET KEYFROM

24 DELETE

25 DELETE KEY

26 DELETE EVENT

27 DELETE KEY EVENT

28 UNLOCK KEY

29-31 Reserved

I/0 Control Block (IOCB)

Record-oriented I/0 employs several data
management access methods that require that
operation requests be provided with a
special form of parameter list. This
parameter list is termed the data event
control block (DECB). A DECB must be
provided for each operation, but may be
reused when the operation is completed. If
several operations are outstanding (owing
to the use of the EVENT option in I/0
statements, or multitasking), then one DECB
is required for each operation.

In order to meet these requirements, the
PL/1 open process allocates one or more 1/0
control blocks (IOCB), which are
subsequently manipulated or increased in
number as follows:

DIRECT access (BISAM and BDAM):
The IOCBs are created by
IHEITE(BISAM) or IHEITF(BDAM); for
multitasking, they are created by
IHEITH(BISAM) or IHEITJ(BDAM).
Only one IOCB is created at open
time; any others required are
created when needed.

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained
at open time; an attempt to use
more than those already in
existence raises the ERROR
condition.

The IOCB format for both these usages is
described in Appendix I.

A number of IOCB fields exist in order
to support the EVENT option. Since the
operation is split into two parts --
initiation through the READ, WRITE, etc.,
statements, and completion by the WAIT
statement -- information regarding a
particular operation must be retained for
use at the time of completion. For
example, if a hidden buffer is employed for
a READ, the address of the user's record
variable must be retained for subsequent
movement from the buffer to the specified
area.

IOCB -- SEQUENTIAL Usage: Manipulation of
IOCBs for SEQUENTIAL usage is required only
for BSAM, which is employed for:

1. CONSECUTIVE UNBUFFERED files.

2. SEQUENTIAL creation or access of
REGIONAL files which have the KEYED
attribute or are unbuffered.

A number of IOCBs is allocated during the
open process by means of the GETPOOL macro;
subsequent selection of a particular IOCB

is made by a routine similar to that
provided by the GETBUF macro. Whenever an
IOCB is selected, it is entered into the
chain of IOCBs currently in use; the TLAB
field in the FCB points to the last IOCB to
be used.

The chain of IOCBs is required for two
reasons:

1. All I/0 operations must be checked in
the order in which they were issued.

2. Detection of dummy records for a
REGIONAL (2) or (3) data set requires
reordering of outstanding requests
(due to the use of the EVENT option).

This chain, however, is principally
required for the EVENT option, which can
cause more than one I/0 operation to be
outstanding at a given time.

The number of IOCBs (buffers) allocated
is determined by the DD statement
subparameter HNCP. The value of this
subparameter should not be greater than 1
unless the EVENT option is employed; if
NCP = 1, there is then one IOCB and one
channel program. If NCP is unspecified a
default of 1 is used.

The size of each IOCB varies, depending
upon the organization, the record format of
the data set, and whether or not the file
(if REGIONAL) has the KEYED attribute.
Figure 66 in Appendix I specifies the size
requirements.

I0CB -~ DIRECT Usage: Manipulation of
IOCBs for DIRECT usage is required for both
BDAM and BISAM. One IOCB is allocated to a
DIRECT file when it is opened; subseguent
selection of an IOCB is performed by the
modules IHEITE, IHEITF, IHEITH, and IHEITJ.
Unlike SEQUENTIAL access, the order of I/0
operation is not normally considered.
(However, see the BISAM interface modules
IHEITE and IHEITH.)

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB; the
chain may be extended beyond the original
single IOCB if the EVENT option or
multitasking is used. An extension occurs
if, while there exists an I/O operation
that has not been completed, another 1/0
operation is initiated.

IOCBs for DIRECT access are obtained in
subpool zero, in order to cope with
multitask manipulation of the chain. The
chain of one or more IOCBs is released when
the file is closed.

Chapter 3: Inputs/Output 33

Exclusive Block

When a DIRECT UPDATE file is opened in a
multitasking environment, the interface
module IHEITH (BISAM) or IHEITJ (BDAM) is
loaded instead of IHEITE or IHEITF. IHEITH
and IHEITJ contain code to implement the
EXCLUSIVE attribute. When a record is
locked, an exclusive block is created in
subpool 1 of the current task; the block is
freed when the record is unlocked. The
exclusive block contains the gname (address
of the FCB for the file) and rname (region
number for REGIONAL(1), region number and
key for REGIONAL(2) and (3), and key for
INDEXED) required by the ENQ and DEQ macro
instructions that are issued to lock and
unlock the record. The format of the
exclusive block is given in Appendix I.

ACCESS METHOD INTERFACES

This section describes how the PL/I Library
relates to the various data management
access methods for record-oriented I/0, and
gives details of the support required from
the library for various PL/I features.

This information supplements, but does not
replace, that provided in the module
summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are QSAM and BSAM. The choice
between them is governed by the file
attributes BUFFERED and UNBUFFERED:

BUFFERED: osaM (All record formats)
UNBUFFERED: BSaM (F,V,U) (Blocked
records are illegal)

OSAM (IHEITG): A BUFFERED file is
specified in order to take advantage of
automatic transmission, process-time
overlap, and blocking or deblocking of
records. All record formats may be
handled.

The locate mode of the GET and PUT
macros is employed with this access method
(except for paper tape devices) for the
following purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEITG allocates the
data management buffers for the
records, and sets the pointer

34

appropriately. The first byte of a
buffer is always on a doubleword
boundary; for blocked records, the
user must ensure that his alignment
requirements are met by adjusting the
lengths of the variables being
transmitted.

2. To remove or add V-format control
bytes if the INTO or FROM option is
employed.

Paper tape input requires the use of the
move mode to effect translation of the
characters transmitted. The open process
establishes a work area, placing its
address in TREC; the GET macro instruction
specifies this area as the receiving area.
If an illegal character is read from the
paper tape, the access method (QSAM) passes
control to the SYNAD routine in IHEITG;
control returns from the SYNAD routine to
QSAM. When the GET macro instruction has
been satisfied, the data is moved into the
record variable or a pointer is set, and
the TRANSMIT condition is raised.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the operating
sys;em uses the ABEND macro to end the
task.

Buffered VS- or vBS-format records are
processed using QSAM Locate Mode for input
(module IHEITK) and QSAM Data Mode for
output (module IHEITL).

QSAM Spanned Records (IHEITK,IHEITL):

The methods employed are similar to
those described above for module IHEITG
although the following should be noted:

1. Update Mode (REWRITE) is not supported
by the library, since it is not
possible to update complete records
(0/S restriction).

2, The use of LOCATE or READ SET
statements will cause a work area to
be established equal to the maximum
record size. This area is only
released if there is a subsequent READ
(#ithout SET) or WRITE statement.

BSAM (IHEITB): An UNBUFFERED file is
specified in order to avoid the space and
time overheads of intermediate buffers when
transmitting records. Overlap of
transmission and processing time is only
available if the EVENT option is employed.

BSAM requires the use of DECBs to
communicate information regarding each I/0
operation requested of it; see 'I/O Control
Block (IOCB)' and Appendix I (IOCB) for
details of the DECB. IHEITB selects an

IOCB (which contains a DECB area) from the
I0CB (buffer) pool for each input/output
operation. The IOCBs used for CONSECUTIVE
organization do not contain hidden buffers,
except when V-format records are employed.
Hidden buffers are used in this case so
that the V-format control bytes can be
eliminated from the record before the data
is moved into the record variable. If,
however, the data set consists of F-format
unblocked records, and the size of a record
variable is less than the fixed size of
data set records, a temporary buffer area
is dynamically obtained. The use of a
temporary buffer area for input prevents
the destruction of data following the INTO
area; for output, it prevents triggering of
the fetch-protect interrupt.

INDEXED Data Sets

The access methods employed for this
organization are QISAM and BISAM; they are
used thus:

QISAM: SEQUENTIAL creation and access
BISAM: DIRECT access

All usage of INDEXED data sets requires the
presence of buffers, even though the file
is UNBUFFERED or DIRECT. The buffer is
required in order to deal with a 10-byte
overflow record link-field. Only F- or
V~-format records, blocked or unblocked, are
permitted.

QISAM (IHEITD/IHEITN): SEQUENTIAL creation
and access of INDEXED data sets is
performed using this access method.
Creation requires that keys be presented in
ascending collating sequence. The sequence
is checked by the library before the PUT
macro is executed, in order to synchronize
a given WRITE statement with the raising of
the duplicate KEY condition. This
arrangement is necessary because, since PUT
LOCATE is employed, QISAM would normally
raise the condition only on the subsequent
PUT operation.

For records with embedded keys, when a
WRITE statement with a KEYFROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FPCB. In the next operation on the file
after a LOCATE statement (including a CLOSE
statement), the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY
condition is raised. On normal return from
the on-unit, control passes to the next
statement in the program (i.e., the one
following that which caused the KEY
condition to be raised). The process of

comparing keys and raising the KEY
condition is repeated in successive
statements that refer to the file until the
embedded key has been changed. (After a
LOCATE statement has been executed, no
further operations are possible on the file
until the record has been transmitted; for
records with embedded keys, this cannot
occur until the KEYFROM string matches the
embedded key.)

When a file is closed implicitly (i.e.,
on termination of a task), the KEYFROM
string overwrites the key part of the
record in the buffer, and the record is
written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message is printed out at the
console.

To support the REWRITE statement without
the FROM option, the key is saved on
execution of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a PUTX macro instruction
is issued. If the key has changed, the
PUTX macro is not issued and the KEY
(specification) condition is raised.

To support the DELETE statement without
the KEY option, the first byte of the
logical record is set to X'FF' and a PUTX
macro instruction is issued to rewrite the
record.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the QISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records,
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the key
length, the string is placed in an area
addressed by TPKA in the FCB. If the file
is not KEYED (indicating that the KEY
option will not be employed), the QISAM
SETL routine is not loaded during the open
process. :

Since buffers are employed, truncation
or padding of records is performed during
the move between the buffer and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by QISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the
DCBSYNAD field before issuing the CLOSE
macro. The operating system uses the ABEND
macro to terminate the task.

Chapter 3: Inputs/Output 35

BISAM in a Non-Multitasking Environment
(IHEITE/1IHEITM): When the TASK option is
not employed, direct access of INDEXED
files, both exclusive and non-exclusive, is
performed by modules IHEITE/IHEITM. For an
exclusive file, IHEIOG treats the UNLOCK
statement as 'no operation' (although it
may implicitly cause the file to be
opened); the NOLOCK option is ignored by
IHEITE/IHEITM.

BISAM requires the use of DECBs to
communicate information regarding each 1/0
operation requested of it; see 'I/O Control
Block (IOCB)' for details of the DECB and
its use in BISAM.

Since the EVENT option may be employed,
and, moreover, the KEYFROM or KEY
expression may yield a character-string
value in temporary storage, the key value
is moved into the buffer before BISAM is
invoked. Truncation or padding of the
character-string key to conform to the
KEYLEN specification is performed during
the move. A further reason for the move is
that BISAM may destroy the contents of the
key and record fields when adding new
records to a data set.

If the data set consists of unblocked
records, a READ statement need not precede
a REWRITE statement. If blocked records
are used, the sequence must be READ, then
REWRITE, since the READ macro instruction
has the KU parameter, and BISAM requires
this type of READ to be rewritten. The
WRITE K macro instruction used to rewrite
the updated block must address the same
DECB(IOCB) as that used for the READ KU
macro instruction. This is achieved by not
freeing the IOCB used for the READ
operation. On the next operation on the
file, a check is made for such an IOCB: if
one exists, ,and the operation is not a
REWRITE specifying the same key, the ERROR
condition is raised.

A DELETE statement is implemented by
first issuing a READ KU macro instruction,
then setting the first data byte to X'FF',
and finally rewriting the record with a
WRITE K macro instruction.

BISAM in a Multitasking Environment
(IHEITH/IHEITO): To ensure that the

initialization and chaining of event
variables, IOCBs, and exclusive blocks
cannot be interrupted, the interface module
IHEINT raises the dispatching priority of
the current task to its limit before
calling IHEITH/IHEITO. IHEITH/IHEITO
restore the priority to its original value
before executing an 1/0 macro instruction.
The formats of the event variable and the
exclusive block are described in Appendix
I, which also includes an example of the
chaining of these blocks.

36

For non-exclusive files, modules
IHEITH/IHEITO perform the same functions as
IHEITE/IHEITM, and in addition chain any
event variables that are made active. Each
event variable is placed in a chain
anchored in the pseudo-register IHEQEVT in
the PRV for the current task. This chain
enables I/0 eVent variables for which a
WAIT statement has not been executed to be
set complete, inactive, and abnormal when
the task is terminated.

The implementation for exclusive files
includes the following additional features:

1. Files with unblocked records: When any
operation referring to a record
(except WRITE and UNLOCK) is
initiated, the chain of exclusive
blocks anchored in the TXLV field of
the FCB is searched for an existing
exclusive block established in the
current task for the record. 1If one
exists, the lock statement count
(XSTC) in the exclusive block is
incremented by one. If there is no
exclusive block, one is created in
subpool 1 and inserted in the task
chain (anchored in pseudo-register
IHEQXLV in the current task) and the
file chain (anchored in the TXLV field
of the FCB of the current file). The
lock statement count is set to one,
and the lock bit (XLOK) to one (unless
the operation is READ with NOLOCK),
and the resource is enqueued (i.e.
the record is locked). After control
of the resource has been obtained, it
is dequeued if XLOK = 0. The gnane
and rname given in the ENQ and DEQ
macro instructions are:

gname (two words):

Byte O: Zero
Bytes 1-3: A(FCB)
Bytes U4-7: Zero
rname (one word):
Byte O: X'03"
Bytes 1-3: A(Record key)

After the CHECK macro instruction for
the I/0 operation has been executed
(i.e., on execution of the WAIT
statement if the EVENT option is
used), IHEITH/IHEITO raise the
priority of the current task to its
limit, decrease the lock statement
count by one, and then:

1. If the record is no longer locked
(XLOK=0) and the lock statement
count is zero, dechain and free
the exclusive block.

2. If the record is still locked
(XLOK=1), unlock it (unless the
statement is READ without the

NOLOCK option), and set XLOK to
zero. If the lock statement
count is zero, they then dechain
and free the exclusive block.

IHEITH/IHEITO then restore the
dispatching priority to its original
value. When processing V-format
records using IHEITO, the READ, WRITE,
REWRITE, and DELETE statements are
restricted as in 2 below.

2. Files with blocked records: To prevent
other tasks interfering with the READ,
REWRITE sequence, each READ, WRITE,
REWRITE, and DELETE statement is
enqueued on the same resource (i.e.,
there is only one exclusive block for
each file in each task, and it is not
freed until the file is closed).
Control of the resource is retained by
a given task until the WRITE, REWRITE,
or DELETE operation is completed; or,
if the resource was enqueued by a READ
operation, until a REWRITE or UNLOCK
statement is executed. When a READ
statement with the NOLOCK option is
executed, the resource is dequeued
immediately after the task gains
control of it.

The gname and rname given in the ENQ
and DEQ macro instructions are:

gname (two words):

Byte 0: Zero
Bytes 1-3: A(FCB)
Bytes 4-7: Zero

rname (one word):
Byte O: X'03°
Bytes 1-3: A(FCB)

Apart from these differences, the .
implementation is as for files with
unblocked records.

REGIONAL Data Sets

The access methods employed for these
organizations are BSAM and BDAM, as
follows:

BSAM: Creation and SEQUENTIAL access
BDAM: DIRECT access

Reys supplied by the source code are
termed 'source keys'. These have two
formats, one of which is interpreted in two
ways:

Source key

Organization format
REGIONAL (1):
Relative record addressing,
without recorded keys A
REGIONAL (2):
Relative record addressing,
with recorded keys B
REGIONAL (3):
Relative track addressing,
with recorded keys B
Key Format A:
- 1
| M I
L J
< - L >

(=}
1}

Length of key (1 through 255
bytes)
M = Key value

Only the characters blank and 0 to 9 may
be used in M, which, when converted to
binary, is the relative record position, as
required for the BDAM BLKREF parameter.

The last eight characters are scanned for
an unsigned decimal integer representation;
if less than eight characters exist, only
the available characters are scanned, from
left to right.

When a format-A source key is regquired
for the KEYTO option, the relative record
position of the current record is converted
from a binary count field into character
representation and is assigned to the last
eight characters of the KEYTO character
string variable. If the variable has fewer
than eight characters, the converted value
is assigned, right to left, to the KEYTO
variable. Format A keys are not appended
to data set records as recorded keys.

Key Format B:

-
Q
=

b
LV Spu—

<- L

L = Length of key (1 through 255
bytes)

M = Last eight characters in the
source key

C = The remaining characters in the
source key other than the M
characters

M consists of up to 8 characters, which
can be blanks or 0 to 9. When converted to
binary, it represents either the relative
record position (REGIONAL (2)), or the
relative track position (REGIONAL (3)).

Chapter 3: Input/Output 37

If L < 8, C does not exist. The C
characters can be any of the 256 characters
available; they are not scanned.

The format-B source key is appended to
output records when they are added to the
data set; the number of characters in the
appended (recorded) key is determined by
the KEYLEN specified for the data set. 1If
KEYLEN is less than the length of the
source key, the latter is truncated when
appended to its record; if greater, the
source key is padded with blanks.
Similarly, when retrieving keyed records,
the source key is altered to conform to
KEYLEN. This permits 1 though L characters
to be used as the recorded key. The M
characters might thus be used only for
computation of the relative record or track
position.

BSAM (IHEOPZL IHEITC, IHEITB): Creation
and sequential access of REGIONAL data sets
employs this access method.

SEQUENTIAL creation is performed by the
module IHEITC, which adds records to the
data set in physically sequential record
and track positions. This module also
inserts dummy records, as required, by the
user incrementing the source key position
information by a value greater than one.

When a sequentially created REGIONAL
data set is closed, the current space
allocation (which may be either the initial
or a secondary allocation) is completed:

1. by writing dummy records (F-format
only), or

2. by setting the capacity records of the
remaining tracks to indicate empty
tracks.

An FCB history flag (TMET) is turned on
when, after writing a record, this record
is seen to be the last one of an extent.

If this flag is off, the close process will
continue the initialization until an
end-of-extent condition is met.

When LOCATE statements are used to
create a REGIONAL data set, an IOCB is
selected from the pool in the normal
manner. The KEYFROM string is evaluated,
and all necessary formatting of the data
set is done, before the pointer is set and
control is returned to compiled code. To
ensure that the record is always aligned on
a doubleword boundary, the open process
rounds up the keylength to a doubleword and
allows space in the IOCB for the keylength
and the block size. Module IHEITC places
the key right-aligned in the key area, thus
ensuring that the key and data are in
contiguous areas, and that the data is
aligned on a doubleword boundary.

38

The record is not actually transmitted
until the next statement on the file (e.g.,
CLOSE, WRITE, LOCATE) is executed. If it
is found on transmission that there is no
room for the record in the region
(REGIONAL(3) V and U format records only),
the capacity record is written and the KEY
sequence error condition is raised. On
normal return from the on-unit, control
passes to the next statement. If this
occurs when a file is closed implicitly (on
termination of a task) or explicitly, a
warning message is printed and the file is
closed (after the initialization of the
current extent has been completed). Note
that it is therefore possible that the
original record associated with the LOCATE
statement may not have been written.

DIRECT creation requires the
initialization of the data set during the
open process; this is performed by the
module IHEOPZ. Subsequently, records may
be added to the data set in a DIRECT
fashion using module IHEITF or IHEITJ.
Initialization of a data set for DIRECT
creation causes:

1. the initial space allocation
(secondary allocation is ignored) to
be written with dummy records
(F-format records, for all REGIONAL
types), or

2. the capacity record of each track of
the initial space allocation to be set
to indicate empty tracks (U-format or
V-format records, REGIONAL (3), only).

If recorded keys are required, dummy keys
(initial byte X'FF', remaining bytes
undefined) are also written for F-format
records only. If during the initialization
for DIRECT creation an error arises, the
UNDEFINEDFILE condition is raised, the type
of error being indicated by the ONCODE
value.

As SEQUENTIAL access of a REGIONAL data
set (module IHEITB) is performed with BSaM,
it is not possible to support the KEY
option on the READ statement. The KEYTO
option is supported as follows:

REGIONAL (1):
A counter (the TREL field in the FCB)
beginning at zero, is incremented as
each record, including dummy or deleted
records, is read; this is converted to
character string representation and
assigned to the KEYTO variable.

REGIONAL (2) and (3):
The recorded key is read in with the
record, and assigned, without
conversion, to the KEYTO variable.
Transmission of the recorded key only
occurs if the file has the KEYED
attribute; otherwise the KEYLEN DCB
field is forced to zero to prevent
input of keys (since, for F or U
records, there are no hidden buffers).

For both SEQUENTIAL creation and access,
BSAM requires the use of DECBs to
communicate information regarding each I1/0
operation requested of it; see 'The 1/0
Control Block (IOCB)' for details of the
DECB and its use for BSAM. When REGIONAL
data sets with the UNBUFFERED attribute are
accessed (IHEITB) or created (IHEITC),
hidden buffers are present in all cases
except for REGIONAL(1), since the key and
data must be within a contiguous area in a
buffer.

When reading REGIONAL data sets
sequentially, BSAM retrieves all records
within the data set, whether dummy
(deleted) or actual records. For REGIONAL
(2) and (3) data sets, the library prevents
dumny (deleted) records being passed to the
PL/1 program. This is achieved by
inspecting the initial byte of the recorded
key as transmitted to the hidden buffer.
(Hidden buffers are always required for
KEYED SEQUENTIAL access of REGIONAL (2) and
(3) data sets, because BSAM requires that
the recorded key and the record be
transmitted into contiguous storage areas.)

If the initial byte is the dummy, or
deleted, code (X'FF'), the IOCB chain is
reorganized to move each input request down
one entry in the chain; this resynchronizes
the READ statements with the actual
records. The reorganization occurs each
time such a flagged key is detected. This
technique is not available for REGIONAL
(1), since for this type of organization:

1. there is no way of knowing whether the
records are actual or dummy, since
there are no restrictions regarding
the initial byte of the data record,
and

2. there are no recorded keys.

When a READ statement with the SET
option is executed for REGIONAL files, the
data is always aligned on a doubleword
boundary in the IOCB buffer.

BDAM(IHEITF _and IHEITJ): DIRECT access to
a REGIONAL data set employs this access
method, the usage depending upon the
REGIONAL type:

REGIONAL (1):
Relative record (block) addressing,
no key argument

REGIONAL (2):
Relative record (block) addressing,
with key search argument

REGIONAL (3):
Relative track addressing,
with key search argument

In the instance of REGIONAL (2) and (3),
the "extended search" feature is always
employed. A user may control the effects
of extended search by using the DCB
subparameter LIMCT; a value may be
specified to limit the number of records or
tracks which are searched for a given keyed
record, or for space to add one. Unless so
limited, searching for records extends
throughout the complete data set.

The BDAM access method requires the use
of DECBs to communicate information
regarding each I/O operation requested of
it; see 'I/0 Control Block (IOCB)' for
details of the DECB and its usage for BDAM.
If vV format records are used, any IOCB
created will contain a hidden buffer.

The BDAM CHECK macro is issued to check
that the operation is complete. 1If an
error is found, the BDAM modules enter the
IHEITF SYNAD routine, where the error is
interrogated.

If the TASK option is not used, direct
access of REGIONAL files, both exclusive
and non-exclusive , is performed by module
IHEITF. For an exclusive file, IHEION
treats the UNLOCK statement as 'no
operation' (although it may implicitly
cause the file to be opened); the NOLOCK
option is ignored by IHEITF.

If the TASK option is employed, module
IHEITJ is loaded instead of IHEITF. ' The
difference between these modules is the
same as that between IHEITE and IHEITH for
unblocked records. (See *BISAM in a
Multitasking Environment®'.)

TELEPROCESSING Files

The implementation of the teleprocessing
feature employs the queued teleprocessing
access method (QTAM), which handles the
transmission of messages between the
operating system and remote terminals.

Chapter 3: Input/Output 39

Messages accessed by QTAM are handled by
two kinds of program:

1. the message control program, and
2. the message processing program.

PL/1I supports the message processing part
of QTAM through process queue facilities,
full descriptions of which can be found in
IBM System/360 Operating System: QOTAM
Message Processing Program Services and IBM
System/360 Operating System: QTAM Message
Control Program.

OTAM (IHEITP): To the PL/I user, the
process queues appear as TRANSIENT
SEQUENTIAL RECORD FILES, and are processed
by means of the PL/I READ, WRITE and LOCATE
statements.

Additional language required for this
feature is:

TRANSIENT file attribute on DECLARE or
OPEN statements.
ON PENDING (filename) on-unit.

Note: the TRANSIENT attribute conflicts
with the following attributes:-

STREAM
PRINT
UPDATE
DIRECT
BACXWARDS
EXCLUSIVE
UNBUFFERED

New environment options required are:

G(max. length) : record format is a whole
message, Or

R{max. length) : record format is a
segment from a message

(max. length being the maximum size of

message segment or record to be read. This
value will be set in the halfword DBLK of
the DCILCB, with information on the format
(G or R) and an indicator showing the file
to be of teleprocessing organisation (see
Appendix I1)).

Bit 0 of flag B (the second byte) of the
open control block (OCB) will be set if the
TRANSIENT attribute appears in the OPEN
statement, and bit 4 of the DCLB byte of
the DCLCB will be set if it appears in the
DECLARE statement.

The options KEYTO (character
string-variable) and KEYFROM (expression)
are also acceptable under a teleprocessing
environment, used with record 1/0 READ,
WRITE and LOCATE statements. The compiler
deals with these statements as discussed

40

under 'Record Oriented I/0' in this
chapter.

OPEN/CLOSE_Functions_in_Teleprocessing

OPEN: the open process will be the same as
for other record-oriented files discussed
earlier in this chapter with the following
additional functions:-

1. Test for conflict between TRANSIENT
and other attributes

2. Create an FCB as previously but with a
DCB for QTAM. The max. length value,
as specified in the ENVIRONMENT
attribute, will be placed in the field
DCBSOWA of the DCB, and the number of
buffers specified in the ENVIRONMENT
attribute will be set in the DCBBUFR(C
field. (If no buffers are specified,
the default number is two.)

3. Take the DCB exit as for other files
and test the following fields:

a. DCBBUFRQ - if this is still not
set, either by the ENV attribute
or by DD card, then apply the
default of two

b. DCBSOWA - if this field is empty,
because the max. 1length has not
been set in the ENV attribute,
raise the undefined file condition

c. DCBRECFM - if the record format
has not been specified, raise the
undefined file condition.

4, Assuming the tests carried out above
do not raise error conditions, the
OPEN exit routine additionally issues
a GETMAIN macro instruction for an
area large enough to hold the longest
terminal identification plus the max.
length of message plus four bytes for
control information for QTAM
(8 + DCBSOWA + 4). The address of
this area will be held in the DCBTRMAD
field of the DCB. The first eight
bytes of the GETMAIN area will be used
for holding the terminal name, and the
remainder as an intermediate (dummy)
buffer for messages. The address of
the *message buffer' will be kept in
the FCB (in the TswWA field).

5. Load the teleprocessing transmitter
module IHEITP and set the first word
in the FCB for valid statements as is
the case for other files. The bits-
set and the statements they refer to
are:

bit 1 - READ SET KEYTO
bit 4 - READ INTO KEYTO

for input:

for output: bit 14 - WRITE FROM KEYFROM
bit 23 - LOCATE SET KEYFROM

CLOSE: The close process again will be
similar to previously described functionms,
but additionally will check to see if the
last operation on the file was LOCATE. If
so, the close module will invoke the
transmitter to write out the last record.
This is in line with the general rules of
‘the PUT MOVE mode which is used by this
implementation.

The close routine, after the last record
is written out, will delete module IHEITP
which was loaded at OPEN time.

170 Statements for Teleprocessing

All I/0 statements on TRANSIENT files
invoke module IHEITP through modules IHEION
(non-multitasking) and IHEINT
(multitasking). The latter two modules
will carry out tests on the validity of
such I/0 statements as described under
"General Logic and Flow" in this section.

Input: The transmitter will issue a QTAM
‘GET' macro instruction to read the next
sequential instruction on the file, and
record and terminal identification will be
placed in the ‘dummy’ buffer. The length
of the data read will be found in the first
two bytes of the four byte control
information area. For SET options, the
pointer will be set to point to the data in
the dummy buffer. The data will be aligned
on a doubleword boundary.

The terminal identification will be
moved into the KEYTO string. If the length
of the identification field is less than
the KEYTO length, it will be padded with
blanks, unless the KEYTO string is varying,
in which case only the current length will
be set. If the length of the
identification field is greater, it will be
truncated.

Output: The sequence of operations for
output is very similar to those for input,
using a QTAM 'PUT' macro instruction
instead of 'GET'. The data and terminal
identification are placed in the dummy
buffer in the same way, with the control
information set; additionally, the third
byte of the control information will be set

to X'02' to indicate the end of the
message.

Only the first eight characters of the
KEYFROM string will be moved into the
buffer. If there are less than eight
characters in the string, the string will
be padded with blanks to fill all eight
positions. The RECORD condition will be
raised (when necessary) in accordance with
the rules for V-format records.

Error Handling

Wwith the addition of the ON-conditions
listed below, the error handling routine
for teleprocessing files follows the same
course as for other record-oriented files
(for a discussion on ON-conditions, see
chapter 6: "Error and Interrupt Handling").

The ON-conditions associated with
teleprocessing are:

1. ON TRANSMIT (filename) -~ could be
raised for input only

2. ON RECORD (filename) - could be raised
as for other files. The records in a
teleprocessing file would be treated
as V-format records with the
corresponding rules applying.

3. ON ERROR - could be raised as for
other files with one additional
condition. If the KEYFROM string is
invalid or missing, then an error
condition with an ONCODE of 1020 will
be raised.

4. ON PENDING - is very similar to the ON
ENDFILE condition, with QTAM passing
control to the user through an EODAD
exit routine. If EODAD is not
supplied, then QTAM ‘'waits' until more
data is available. The normal return
from the on-unit which implies this
‘'wait' will be implemented as follows:

a. Take EODAD exit

b. Raise PENDING condition (when
normal return, then)

c. Zero EODAD field and re-execute
GET macro

d. Reset EODAD to the correct exit
routine address.

Chapter 3: Input/Output 41

CHAPTER 4: PL/I OBJECT PROGRAM MANAGEMENT

INTRODUCTION

The PL/I Library provides facilities for
the dynamic management of PL/I programs.
This involves:

1. Program management: Housekeeping at
the beginning and end of a program or
at entry to and exit from a block.

2. Storage management: Allocation and
freeing of storage for automatic and
controlled variables, and for list
processing.

This section describes the requirements
for these facilities and their
implementation by the library. With the
exceptions of the compiler optimization
routine and storage management for list
processing, all the functions described are
performed by module IHESAP, whose entry
points are listed in Figure 16; full
details are given in Chapter 9. Object
program management in a multitasking
environment is discussed in Chapter 5.

Ent int Function
IHESADA Get DSA

IHESADB Get VDA

IHESADD Get controlled variable
IHESADE Get LWS

IHESADF Get library VDA
IHESAFA END

IHESAFB RETURN
IHESAFC GO TO
IHESAFD Free VDA/Free LWS
IHESAFF Free controlled variable
IHESAFQ Abnormal program termination
IHESAPA
IHESAPB Program initialization
IHESAPC
IHESAPD
IHESARA Environment modification
IHESARC Setting of return code
IHESATA STAE exit for 0O/S abnormal
termination
| Figure 16. IHESAP Entry Points

Program Initialization

Certain functions must be carried out on
entry to a PL/I program before the PL/I
main procedure is given control. One of
the library program-initialization
subroutines is always given control by the

42

supervisor on entry to the program. Its
functions are:

1. Allocation of storage for the PRV.
(see 'Communications Conventions' in
Chapter 2.)

2. Initial allocation of LWS.
3. Passing of the address of the library
error-handling subroutine (IHEERR),

which assumes control when an
interrupt occurs, to the supervisor.

Block Housekeeping: Prologues and Epilogues

Prologues and epilogues are the routines
executed on entry to and exit from a PL/I
procedure or begin block. The library
subroutines contain those sections that are
common to all prologues and epilogues. The
functions of the library prologue
subroutine are:

1. To preserve the environment of the
invoking block.

2. To obtain and initialize automatic
storage for the block.

3. To provide chaining mechanisms to
enable the progress of the program to
be traced. A detailed description of
the chaining mechanisms employed is
provided below.

The main functions of the epilogue
subroutine are:

1. To release storage for the block.
2. To recover the environment of the

invoking block before returning
control to it.

Storage Management

In IBM Systemv360 Operating System, storage
is obtained or freed by using the GETMAIN
and FREEMAIN macros. The library assumes
responsibility for obtaining and freeing
storage in this way in order to:

1. Provide an interface between compiled
code and the control program.

2. Reduce the overhead involved in making
a supervisor call every time storage
is obtained and freed.

3. Set up chaining mechanisms for dynamic
storage.

There are three types of dynamic storage
in PL/I, controlled, automatic, and based.
Based storage is discussed in 'List
Processing: Storage Management'.

Operating-System Facilities

The following facilities appropriate to
this chapter are provided by IBM System/360
Operating System. (See IBM System/360
Operating System: Supervisor and Data
Management Macro Instructions.)

SPIE macro instruction: Specifies the
address of a routine to be entered when
specified program interrupts occur.

STAE macro_instruction: specifies the
address of a routine to be entered when a
task terminates abnormally.

ABEND macro instruction: Causes a job step
or task to be terminated abnormally.

Write To Operator (WTO) macro instruction:
Can be used to write a message on the
operator's console.

R-type GETMAIN: Requests that the
supeérvisor allocate a contiguous block of
main storage to the caller. A subpool
number should be specified. (See below.)

R-type FREEMAIN: Releases a main storage
area. The length, subpool number, and
address of the beginning of the area must
be specified.

Subpools: Subpool numbers are of
significance only in an operating system
with MVT. '

Subpool zero
The storage in subpool zero is allocated

on a job-step basis, and is never
automatically released until the end of
the job step.

Subpool non-zero

The storage in a subpool with a non-zero
number is allocated on a task basis, and
is automatically released on the
téermination of the task that owned the
subpool.

IBM System/360 Operating System:
Supervisor and Data Management Services
contains a full discussion of
main-storage management.

AUTOMATIC STORAGE: STORAGE MANAGEMENT

Two types of automatic storage area are
needed to implement the functions described
above. These are:

1. The storage area associated with the
execution of a PL/I block, known as a
dynamic storage area (DSA).

2. The storage area mainly used for
automatic variables whose extents are
unknown at compile time, known as a
variable data area (VDA).

Each type of storage area is identified by
flags set in the first byte. These flags
also indicate the existence of certain
optional entries in the storage area. The
flag patterns are shown in Appendix J.

Dynamic Storage Area (DSA)

This area, always associated with the
execution of a PL/I block, is used to
record the progress and environment of a
program. It also contains space for
AUTOMATIC variables declared in the block
and for various optional entries. The
minimum size of a DSA is 100 bytes. The
format is described in Appendix J.

The address of the DSA associated with a
particular block is held in a
pseudo-register. Herice there is a
pseudo-register for each block; the group
of these pseudo-registers is known as the
display. The address contained in a
display pseudo-register can be used to
identify the DSA associated with a
non-recursive block when a GO TO statement
specifying a label in that block is
executed.

When a block is entered recursively, a
new DSA is created for the invoked block.
The address of the DSA associated with the
previous invocation of that block is stored
in the display field of the new DSA. This
address is already stored in the
appropriate pseudo-register, where it is
now replaced by the address of the new DSA.
When this latest invocation is finished,
the new DSA is freed and the address of the
previous DSA is restored to the appropriate
pseudo-register.

) When there is a GO TO statement to a
label in a recursive block or to a label
variable, a unique means of identifying the
block containing the label is needed. This
is accomplished by means of an invocation
count, which is stored in the
invocation-count field in the DSA during

Chapter 4: PL/I Object Program Management 43

the prologue. The current invocation count
is contained in a pseudo-register and is
increased by one each time a DSA is
obtained.

Variable Data Area (VDA)

A variable data area is a special type of
automatic storage area used for variables
whose extents are not known at compile
time. This storage area is associated with
the storage obtained for a particular
block. The only housekeeping necessary is
that which provides a means of
identification of the type of storage area
and a method of associating it with a
particular block for epilogue purposes.

VDAs are used for three other purposes:

1. Temporary storage for library modules.
These areas are only distinguishabile
from an ordinary VDA by the flag byte.
This is to allow them to be freed on a
GO TO, as described in the example in
'DSA Chain' under ‘'Block
Housekeeping'.

2. The PRV and primary LWS are contained
in a VDA known as the PRV VDA which is
chained back to the external save
area.

3. Secondary LWS is contained in a
special library workspace VDA.

The formats of the VDA, PRV VDA, and LWS
VDA are shown in Appendix J.

Library Workspace (LWS)

The housekeeping associated with library
workspace can be divided into two parts:

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of
automatic storage and to any previous
library workspace.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The first allocation of LWS is contained
in the PRV VDA; subsequent allocations are
contained in the LWS VDA. The
pseudo-register IHEQLSA always contains the
address of the current LWS. Save areas
within LWS are indicated thus:

1. The address of each save area is held
in a pseudo-register.

4y

2. The beginning of each save area is
indicated by X'60' in the first byte.
(A DsA can often be readily
distinguished from a save area in LWS
by the presence of X'8' to X'F' in its
first half byte. Appendix J includes
the format of the first byte of the
DSA.)

Allocation and Freeing of Automatic Storage

This section describes the methods of
controlling the allocation and freeing of
automatic storage for VDAs, DSAs and
secondary LWS.

To minimize the number of supervisor
calls necessary to obtain automatic
storage, a fairly large block of storage is
obtained every time a call is made. Areas
are allocated by the library from this
block as required until a request is made
that is too big to be satisfied from the
remaining storage in the block. Another
block is then obtained by a call to the
supervisor. So that a check can be made as
to whether the amount of storage remaining
in a block is sufficient to meet an
allocation, a record of the amount is
stored in the block. When a storage area
is freed, its length is added to the
available length in the block. When the
available length equals the total length of
the block, the block is returned to the
supervisor.

Since storage areas are released in the
reverse order to their allocation, a
chain-back mechanism, with a pointer to the
last member of the chain, is provided.

Initially, storage is allocated for the
PRV VDA from a Uk or a 6k block. When
further requests are made for storage,
are satisfied by allocations from the
remaining storage of this block. When a
request cannot be satisfied, a 2k block (or
a block containing a multiple of 2k bytes)
is obtained by means of a GETMAIN macro.
This block is chained to the existing block
by the free-core chain. (See Figure 17.)

they

In any block that contains unallocated
storage (that is, contains free core), the
first four words of the unallocated storage
are used for control purposes:

1st_word: Length (in bytes) of the
unallocated storage for that
block (excluding the four
control words)

2nd_word: Block length

3rd word: A(Free core length in previous

block)

Figure 17. Structure of the Free-Core Chain

4th word: A(Free core length of following

block)

The first and last blocks require a
slightly different usage:

Uses the free-core
pseudo-register IHEQSFC in
the chaining forward and
back:

First block:

1. IHEQSFC contains
A(Free-core length of

first block).

3rd word of block
contains

(A(IHEQSFC) - 12), which
is a dummy free-core
length in the PRV.

Last block: U4th word contains 0

When a request for storage is received,
a search of the free-core lengths, starting
from the first, is made. If a free-core
length equal to or greater than the length
requested is found, the request is

Chapter 4: PL/I Object Program Management

r 3 r 1 r 1
PRV]	2k_block		2k _block	
		Used core		Used core
(
t {<—=—1				
t .		1		
	I			
F i [
	[
t				
i IHEQSFC -l	[
— i L4->F i< 1				
		1 L(Free core)	[
	I -1	1		
			Block length	
	[
	t-—§ Chain-back pointer	1 1]		
	t -1	1		
		Chain-forward pointerjp-——q		
	I ————— .	L-->} 1		
				b
		Free core		1 Block length
				i
] -4y Chain-back pointer		
			13 i	
				Zero
] 3 4		
{	l			
]	Free core	
L 3 b ——— 1 Lem - ~d

for Automatic Variables

satisfied from that block. The free-core
length and pointers are adjusted, as are
the appropriate pointers in the blocks on
either side.

When storage is freed, the pointers are
adjusted, and the free-core field in the
corresponding block is updated. If a 2k
block becomes available, it is freed by
issuing a FREEMAIN macro, and the free-core
chain pointers are adjusted accordingly.

CONTROLLED STORAGE: STORAGE MANAGEMENT

Controlled storage is used for controlled
variables only; it is requested by the
ALLOCATE statement and freed by the FREE
statement.

Allocation of a particular controlled
variable may occur a number of times.
Since the latest allocation is always the
one to be used it is convenient to have a
pseudo-register pointing at it; this
pseudo-register is sometimes referred to as

4s

ALLOCATION 2

ALLOCATION 1

3 1 r T L} € v 1
| PR - | TIC | PR offset]| | TIC | PR offset|
[4 I |8 1 ¥] L 'y |
) B v A 1 ¥ ¥
| | 1 | Chain-back address }— | 0 l
| [11 ¢ i
| N Length BN Length |
| | t==>} { >} 4
L J L J L J
Figure 18. Storage Allocation for a Controlled Variable

an 'anchor word'. Each allocation is
chained back to the previous allocation so
that the pseudo-register can be updated
when the current allocation is freed
(Figure 18). The length of the data is
recorded in the fullword field following
the chain-back address. The length of the
data is 12 bytes less than the length of
the allocation. The Task Invocation count
is held in the TIC field.

When there is no allocation, the
contents of the pseudo-register are zero.
Each allocation points to the previous
allocation, the pointer being zero in the
first allocation, which is at the bottom of
the stack. Thus the various allocations of
a particular controlled variable become
part of a push-down (ALLOCATE) pop-up
(FREE) list.

When a request is made to storage
management for a new allocation, it is
serviced by issuing a GETMAIN macro.
Twelve bytes are added to the length
requested, for control purposes, and this
new length is rounded up to a multiple of
eight bytes. The length field contains the
actual length requested. The
pseudo-register is updated and points to
word four of the area. When a request is
made to storage management to free an
allocation, it is serviced by updating the
pseudo-register and issuing a FREEMAIN
macro.

LIST PROCESSING: STORAGE MANAGEMENT

This section describes the functions of
module IHELSP, which controls the
allocation and freeing of storage for the
PL/I list-processing facility. The
functions involved are:

1. Allocation and freeing of system
storage for based variables.

ué

2. Allocation and freeing of storage for
based variables in programmer-defined
areas (area variables).

3. BAssignments between area variables.

System Storage - Based Variables

Storage for based variables is allocated
and freed in a similar manner to controlled
storage, but it is not stacked since each
generation is associated with a particular
pointer value: reference may be made to any
current generation of based storage by
associating the appropriate pointer value
with the name of the based variable. A
request for a new generation of based
storage is serviced by issuing a GETMAIN
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the variable and its offset from
a doubleword boundary is rounded up to a
multiple of eight bytes. All based storage
allocated in a task is freed at the end of
the task.

The AREA Attribute

The AREA attribute enables a programmer to
define a block of storage (an area
variable) in which he can collect and make
reference to based data. Space within the
area variable is requested and released by
ALLOCATE and FREE statements that include
an IN(area-variable) clause. Reference can
be made to a based variable contained by an
area variable just as if the based variable
were in system storage. The contents of
one area variable can be assigned to
another area variable, and an area variable
can be handled as a single data item in
input/output operations.

0 78 31

0 Flags Length of AREA variable
——————— 41 Offset of End of Extent
! :————--84 Offset of Largest Free Element
|
! bor=—-12s Zero if Free List
T [T
N
[|
Pl
{ : : Allocated
b
R N R
E o = Length of Free Element
; ! L—r—— Offset of next smaller Free Element
Do 1 Free
] { I Element
Lot '
P |
o T U I
A
i ,
Lo
b Allocated Extent
R
o e
! L“—II‘" Length of Free Element
! L] Offset of next smaller Free Element
I
: Free
] Element
l
i
|
I
I
I
' — — ———
]
I
|
: Allocated
|
5 1 H Y
 EE —

Not Allocated

Figure 19. Format of Area Variable

The Area Variable

The format of the area variable is shown in
Figure 19. The start of the area is
aligned on a doubleword boundary. The
first four fullwords are used for control
information, the remainder of the area
being the storage requested by the
programmer in declaring the area variable.
The portion of the area that has been
allocated to based variables is termed the
extent. When storage is allocated to an
area variable, its length is set in the
last three bytes of the first word, and the
‘'second word (offset of end of extent) is
set to zero.

Area Storage for Based Variables

Storage for based variables within an area
variable is allocated only in multiples of
eight bytes; each such allocation is termed
an element. The first request for storage
for a based variable is satisfied by the
allocation of the appropriate number of
bytes starting at the beginning of the
unused space; the offset of the end of this
allocation is set in the second word of the
area variable, which now points to the
first available doubleword of unused
storage. Providing no storage has been
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
being updated each time.

If the last allocation of the extent is
freed, the offset in the second word of the
AREA variable is reduced. However, if
allocations other than the last in the
extent are freed, the éxtent is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
of an offset from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth word of the area variable, which
is set to zero. The chain of free elements
is termed the free list, and is anchored in
the third word of the area variable, which
contains the offset of the largest free
element. When an area variable contains a
free list, the first bit of the flag byte
is set to 1.

Whenever storage in an area variable is
to be allocated to a based variable, the
free list is searched for the smallest
element that will contain the based
variable. 1If no free element is large
enough, space is allocated from the unused

us

part of the area. If this, also, is too
small, the AREA condition is raised. When
an element is freed, it is placed in the
free list according to its size. 1If it is
contiguous with another free element, the
two are merged and included in the free
list as a single element. If the last
element in the extent is freed, the extent
is reduced and the element is not placed in
the free list.

Area Variables - Assigment

When the contents of area variable A are
assigned to area variable B, the current
extent and the control words (except the
length of A) are copied into B. If the
length of B is less than the extent of A,
the AREA condition is raised.

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement, the ALLOCATE
statement is executed again after the
on-unit has been terminated normally. The
return address passed by compiled code is
stored in the library communications area
(WREA) before the on-unit is entered. On
normal termination of the on-unit, IHEERR
returns control to the address in WREA.

If the AREA condition is raised during
the execution of an assignment statement,
the statement is not executed again.

PROGRAM MANAGEMENT

Initialization of a PL/1 Program

On entry to a PL/I program, one of the
library initialization subroutines
(IHESAPA, IHESAPB, IHESAPC, and IHESAPD) is
always given control by the supervisor; the
entry point that is used depends on the
level of compiler optimization required
(see below) and on whether the PL/I program
is called from an assembler-language
routine. The initialization routine first
obtains storage for the PRV VDA. The
length required is the sum of:

L(PRV) (passed by the linkage editor)

L(IWS) (assembled by the initialization
subroutine)

8 control bytes

Since a pseudo-register is referenced by
the addition of a fixed displacement to the
base address in register PR, and the
maximum displacement allowed by the
assembler is 4096 bytes, the length of the
PRV is limited to 4096 bytes. This puts
the upper limit on the combined number of
blocks, files and controlled variables at
about 1000. If the initialization routine
is asked to get a PRV longer than 4096
bytes, a message is printed out on the
console and the program is terminated.

The initialization routine zeros the
PRV, sets up the LWS pseudo-registers, and
issues a SPIE macro instruction naming
IHEERR and a STAE macro instruction naming
IHESTA. 1In addition, IHESAPA and IHESAPC
enable a PARM parameter on the EXEC card to
be passed to the PL/I program. (See IBM
System/360 Operating System: Job Control
Lanquage User's Guide, and Job Control
Language Reference.) On exit from the
initialization subroutine, register RA
points at a location containing the address
of the SDV of the parameter.

Termination of a PL/I Program

Normal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of which involves
releasing the automatic storage associated
with the procedure. If a request is made
to free a DSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFB (RETURN) raises the FINISH
condition and the program branches to the
error-handling subroutine (IHEERR). If and
when this subroutine returns control,
IHESAFA or IHESAFB causes all opened files
to be closed (by calling the library
implicit-close subroutine). Subsequently
all automatic storage, including the PRV
VDA, is returned to the supervisor.

IHESARC is then called to set the return
code and return control to the supervisor.

Abnormal Termination: A PL/I program is
considered to terminate abnormally when the
FINISH condition is raised by any means
other than a RETURN, END, or SIGNAL FINISH
statement (e.g., when an object-time error
occurs such that the ERROR condition is
raised). If there is not a GO TO out of
the ERROR or FINISH on-unit (if any), the
error-handling subroutine (IHEERR) calls
IHESAFQ, which closes all the open files in

the manner described above; IHESAFQ returns
to the supervisor with a return code of
(2000 + any return code already set (module
1024)).

System Termination: If the operating
system schedules the abnormal termination
of a PL/I program, such a termination will
be intercepted and a message will be output
on SYSPRINT if possible; alternatively the
message will be output on the system
console. Control will then be passed back
to the abnormal termination routine of the
operating system.

GO TO Statements

In PL/I, a GO TO statement not only
involves the transfer of control to a
particular label in a block but also
requires the termination of contained
blocks. The housekeeping requirements for
this are:

1. A return address.

2. A means of identifying the automatic
storage associated with the block to
be made current.

Identification of the appropriate storage
depends on whether the environment is
recursive or non-recursive:

A count (the invocation count)
is kept of the number of times
any block is entered; this
count can be used to identify
the storage for a particular
invocation.

Recursive:

Non-recursive: The address of the storage

for each block is required.

On-Units and Entry-Parameter Procedures

If, in a recursive environment, the program
enters:

1. an on-unit, or

2. a procedure obtained by calling an
entry parameter,

that environment must be restored to the
state that existed when the ON statement
was executed or the entry parameter was
passed. Similarly, at the exit from the
on-unit or the entry-parameter procedure,
the environment must be restored to its
former state.

Chapter 4: PL/I Object Program Management 49

If the on~unit or entry-parameter
procedure refers to automatic data in
encompassing blocks, these references will
be to the generations that existed when the
ON statement was executed or the entry
parameter was passed. These will not
necessarily be the latest generations.

The correct environment is obtained by
restoring the display to what it was at the
time the ON statement was executed or the
entry parameter passed.

Wwhen an on-unit is to be entered, the
library error-handling subroutine calls
IHESARA and passes it:

1. The address of the on-unit.

2. The invocation count of the DSA
associated with the procedure
containing the ON statement.

when an entry-parameter procedure is to
be called, compiled code branches to
IHESARA and passes it:

1. The address of the called procedure.

2. The invocation count of the passing
procedure.

The state of the display at the time of
passing is determined by examining the DSAs
of active blocks invoked before the passing
procedure. The display is modified and
control is transferred to the called
procedure.

Before an on-unit or an entry-parameter
DSA is freed, the display is restored, in a
similar manner to that described above, to
the state it had immediately before the
on-unit was entered or the entry-parameter
procedure was called.

Block Housekeeping

The chaining of automatic storage areas is
required both for housekeeping purposes and
for storage management. In general, both
these functions are satisfied by the
automatic storage area chain (called the
DSA chain or 'run time stack'). When a
library module is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA Chain: The DSA chain consists of the
external save area, PRV VDA, DSAs and VDAs.
DSAs are added to the chain as procedures
and blocks are entered. VDAs are added to
the chain after the DSA of the block in
which they are required. The
pseudo-register IHEQSLA is always set to

50

point at the last allocation in the chain.
Initially it points at the PRV VDA.
Register DR always points to the current
save area.

Consider a sample program. Successive
areas are added to the chain thus:
1. PRV VDA
2. DSA (Main procedure)
3. DSA (Procedure)

4. DSA (Begin block)

3
PR | PRV VDA >¢ 3
-—->t | |
{ | External |
| PRV [|
IHEQLSA | | | save area |
-==>} |1 |
| [|
| wws1 | | te—e————q
| ||
A |
| |
e
| I
| DsA 1l |<-4
| (Procedure) |
| |
R |
A
|
==ty
| |
| DsA 2 |
| (Procedure) |
| |
(RO |
A
|
B ——
|
| Dsa3 |
| (Begin) |
| |
L 3
Figure 20. Example of DSA Chain

At this stage the storage map is as
shown in Figure 20. If the begin block
required a VDA this would be added to the
end of the chain. Figure 21 shows an
example in which the begin block required
two VDAs. If the program now executes:

1. An END statement: The storage in the
chain is released, starting with the
area pointed at by IHEQSLA and
finishing when the current DSA has
been released. This leaves the chain
with items 1, 2 and 3 only.

2. A RETURN statement: All areas up to
and including the immediately
encompassing procedure DSA are
released, leaving only items 1 and 2.

It is also possible to release the

last VDA in a chain without releasing any
other areas, by freeing the area pointed at
by IHEQSLA.

If a GO TO statement referring to a
label in the main procedure had been
executed when the situation was as shown in
Figure 21, then either the invocation count
or the display of the main procedure would
be passed to the library subroutine
(IHESAFC). This would then search back up
the chain until it found the DSA with that
invocation count or display, and then make
this DSA current. It would then free:

1. All areas up to and including the DSaA
allocated after the DSA to be made
current.

2. Any library VDAs or LWS between the
DSA to be made current and the
following DSA. A VDA used by the
library is distinquished from one used
by compiled code by the flags in the
first byte. (See Appendix J.)

A
—————t———-—
{ |
| Dsa 2 |
| |
| |
S

A

|

DR |
R A N
| |
| Dsa 3 |
| |
| |
[|

A

|

|
e |
l |
| VDA |
| |
b J

A

i

IHEQSLA |
N, S REVEVRES S —
| i
| VDA |
| |
[|

Figure 21. Continuation of the DSA Chain

Save-Area Chain: When a PL/I block calls a
PL/I Library subroutine, the save area
passed is that in the DSA for that block.
I1f the library routine calls a lower-level
library routine, the save area passed is
that of the appropriate level in LWS. Thus
a save-area chain is built up as an
offshoot of the DSA chain. (See Figure
22.) Normally the save-area chain unwinds
itself as control returns up through the
levels; in the example, the chain would be
left with DSAs 1, 2 and 3 remaining.

frm—m——————— b I Sttt 1
		WS	
DSA 3	<=y [
[Lsa		
		DR	
D e ——— L B e i

A I | I
| S { Save area |
| | |
o= by | |
| | | |
| voa l e 1
| | | I
. K| | |
A | [
| | |

IHEQSLA | | |

—=>p————- Lo 1 | |
| | | |
| VDA | D 4
| !

b J
Figure 22. Construction of the Save-area

Chain

Treatment of Interrupts: When a program
interrupt occurs in a subroutine (library
or compiled code), the library
error-handling subroutine (IHEERR) is
entered and the address of the save area of
that subroutine is set in register DR.

(see Figure 23.)

IHEERR calls IHESADE, passing its own
save area, to get a new LWS (LWS2). 1If
there is an on-unit corresponding with the
interrupt condition, then, on return from
IHESADE, IHEERR branches to IHESARA (which
modifies the display) and passes it the
save area LSA in LWS2. 1In turn, IHESARA
branches to the on-unit and passes it the
same save area. The prologue for the
on-unit then calls IHESADA to obtain a DSA.
The DSA chain can now continue if required.
(See Figure 24.)

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See Chapter 6.)

There are two possible ways of freeing
the on-unit DSA:

Chapter 4: PL/I Object Program Management 51

By a GO TO statement from the on-unit.
If the GO TO is to a statement in a
block associated with DSA 3, or
earlier, then the save-area chain can
simply be forgotten. Registers are
restored from the DSA to become
current.

[1 I —
| | | Lws 1 i
| DSA 3 |<=y | |
| | LSA |
L S 1<
A Ly |
| | save area | |
| | P
| DR | |
prmm—dommmmy o3} |
| | | -1
| VDA I >l LWE
| | |
b e I I
A [|
| | |
| [|
e R B |
| I I |
| vDA 11 |
| | | |
et e B N |
A || |
| I |
IHEQSLA | [RS —
e e T
IHEQLSA | 1LWS VDA | |
Rl Smeans - |
| ws 2 }p—1
| |
| 1sa |
prmm e -
| |
| save areas |
| |
S |
Figure 23. Structure of the DSA chain when
the error-handling subroutine
is entered after a new LWS has
been obtained
2. By the on-unit issuing a request to

52

storage management to free the on-unit
DSA. When this is done, control is
returned to the error-handling
subroutine at the point following that
from which control was transferred to
the on-unit. The error-handling
subroutine restores DR in the normal
way to point at LWE in IWS 1 and calls
IHESAFD to free LWS 2. Control is
then returned to the interrupted
routine. In the example, the
situation would now be as in Figure
22.

r L] r R}
| | | LWws 1 |
| DSA 3 |<=y | |
l I 1 | 1sa |
| [|
b e T B et R
A (I (I
| l——}save area| |
| | [
=ty pmmmmemeee 11
| | | I
| VDA | => LWE |-
| [|
b R B '
A I |
| P |
| P I
prmm=temeey || |
| I e
| voa | | | l
| | |
b e N |
A | |
I I |
| I |
m——t—— | | |
| I |
| LWs 2 jp--1 | |
| | | |
e | |
A R -
IHEQSLA, DR %
———S> e de
| !
| on-unit|
| Dsa |
| |
| J
Figure 24. Structure of the DSA chain when

the on-unit DSA is attached

Object-time Optimization

The compiler contains an optimization

technique which minimizes the necessary
housekeeping and provides faster execution

of the prologue and epilogue. The
technique can only be applied if the

optimization option (OPT=01.Default) is
specified for the compilation of the main

procedure of a program. In this case,

in a

non-multitasking environment, a 512-byte

storage area is reserved at the end of
primary IWS during initialization and
pseudo-register IHEQSLA is set to the
address of that save area. The
pseudo-register IHEQLWF contains the

address of the reserved area attached to

the current IWS. A reserved area is

released only when its associated LWS is

released.

Whenever a DSA is allocated for the
innermost procedure or procedures (at the
same depth) of a nest of procedures, the
optimization technique will try to meet the
requirement from the reserved area. If
this is not possible (because the DsA
requires more than 512 bytes), the required
storage is obtained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at
compile time, is identified by a 'one' in
the first bit of the second byte. (See IBM

System/360 Operating System: PL/I (F)

Compiler, Program Logic Manual for a
discussion of DSAs in STATIC storage.)

Chapter 4: PL/I Object Program Management 53

CHAPTER 5: PL/I OBJECT PROGRAM MANAGEMENT IN_ MULTITASKING

INTRODUCTION

This section describes the facilities
provided by the PL/I Library for the
dynamic management of PL/I multitasking
programs in an operating system with MVT.
PL/I multitasking can be used in a
multijobbing or a multiprocessing
environment.

For multitasking, the program management
module IHESAP is replaced entirely by the
module IHETSA. Although some of the
routines in IHETSA are peculiar to
multitasking, most of them perform similar
functions to the corresponding routines of
IHESAP; Figure 25 compares the two modules.
Only those features of IHETSA that are not
included in IHESAP are described in detail.
The library facilities for the multitasking
pseudo-variables and built-in functions,
and for the WAIT statement, are described
at the end of this section; Appendix K
gives full details of the PL/I control
blocks for multitasking.

Function

Get DSA

Get VDA

Get controlled variable
Get LWS

‘Get library VDA

END

RETURN

GO TO

Free VDA/Free LWS

Free controlled variable
Abnormal program termination

Program initialization

Environment modification
Setting of return code
Initialization of major task
CALL with task option

EXTR (abnormal end-of-task exit routine-STAE exit)

EXIT (PL/1 abnormal end-of-task routine)
Initialization routine for subtask

PL/I TASKS

All tasks created in a PL/I multitasking
program are executed as subtasks of a
common ancestor, the control task. The
control task is the initial task which
receives control from the operating system
at the commencement of program execution.
The use of a control task ensures that
there is always present a task with a
higher priority than that of the major
task, the task for the main procedure. The
control task can then be entered whenever
it is necessary to terminate the major
task, e.g. on execution of a STOP
statement. Subsequent tasks attached by
the major task are known as subtasks.

The management of all tasks in the PL/I
program is carried out by the control task.
It creates and initializes the major task
and any subtasks required and arranges for
the termination of these tasks, either
normally or abnormally. When multitasking
is used in a multiprocessing environment,
it is possible that two or more tasks may
attempt to execute "soft"™ code (code which
accesses or modifies control blocks) at the

Entry Points

IHESAP IHETSA
IHESADA IHETSAD (Alias)
IHESADB IHETSAV
IHESADD See Note
IHESADE IHETSAL
IHESADF IHETSAW
IHESAFA IHETSAE
IHESAFB IHETSAR
IHESAFC IHETSAG
IHESAFD IHETSAF
IHESAFF See Note
IHESAFQ IHETSAY
IHESAPA IHETSAP (Name)
IHESAPB IHETSAA (Alias)
IHESAPC
IHESAPD
IHESARA IHETSAN
IHESARC IHETSAC
THETSAM
IHETSAT
IHETSAX
IHETSAZ
IHESUBA

Note: The allocation and freeing of controlled storage in a multitasking environment
is handled by a separate module, THETCV, which is called by compiled code.

Figure 25. Comparison of IHESAP and IHETSA

54

same time. So that only one task may
access "soft" code at any one time, the
control task treats all tasks as subtasks
of itself, and supervises these subtasks by
a series of event control blocks; the POST
event control block (PECB) and the WAIT
event control block (WECB) for each task.

A list of PECBs is kept by the control task
in an ECBLIST which is checked every time a
subtask requests access to soft code. When
a request to execute soft code is made, the
control task either POSTs the subtask to
continue (if no other subtask is executing
the same area of soft code) or,
alternatively, keeps the requesting task in
a WAIT state. On completing execution of
the soft code, the subtask informs the
control task which is then free to accept
further requests.

Note: The "soft" areas of code are those
concerned with:

1. Task Attachment

2. End of task

3. End of block with attached tasks
4. PRIORITY pseudo-variable

5. COMPLETION pseudo-variable and EVENT
variable assignment

6. WAIT statement
7. OPEN statement
8. CLOSE statement

9. Exclusive block chaining

TASK_ATTACHMENT AND INITIALIZATION

CONTROL TASK

The control task is established at a
priority (16*JSPRI+11), where JSPRI is the
priority specified in the JOB statement for
the PL/I program. The presence of the TASK
option in the PL/I main procedure statement
causes the compiler to insert the name of
one of the initialization routines of
library module IHETSA into control section
IHENTRY. At execution time, control is
passed initially to IHENTRY which then
branches to the initialization routine
selected by the compiler (IHETSAA or
IHETSAP). Execution of the selected
routine constitutes the control task. The
control task obtains contiguous storage
for:

1. Its own save area and workspace (144
bytes)

2. The event control block for the major
task task variable (60 bytes)

3. The PRV VDA for the major task.

The length required for the PRV VDA is
the sum of:

1. Eight control bytes
2. L(PRV) (passed by the linkage editor)

3. L(LWS) (the total length of workspace
initially required by the library)

4. Four task-oriented words
(Four

5. Task Communications Area (TCA)
words long)

(If a PRV longer than 4096 bytes is
reguested, a message is printed out on the
console and the program is terminated.)

The format for the complete area of
storage involved, with lengths, is shown in
Figure 26. (Key numbers corresponding to
the above are shown on the left of the
Figure.)

Having allocated these storage areas,
the control task:

1. Uses the area allocated for the TASK
variable of the major task, sets it
active and initializes it, using an
EXTRACT macro to obtain the limit and
dispatching priorities from the TCB
(task control block) set up for the
control task by the operating system.
(The TASK variable contains the task
control information required by the
PL/I Library).

2. Creates an EVENT variable for the
major task and sets it active.

3. Sets up an ECBLIST (list of PECBs
currently being waited on) in a 1024
byte area. The ECBLIST initially
contains only the address of the PECB
for the major task. The ECBLIST
continually expands and contracts as
tasks are attached or detached, but
when the ECBLIST becomes equal to
zero, i.e. there are no further tasks
to be attached or detached, control
returns to the calling program (this
would normally be the operating
system).

4. Sets the CTECB (control task ECB), the
PECB and theWECB of the major task to
zero,

Chapter 5: PL/I Object Program Management in Multitasking 55

L(bytes)

v 1
72 | |
| Standard Save |
| Area |
| |
L 4
) 1
72 | |
| 2nd. Save Area/ |
| Workspace
|
t
28 | Task Variable
L ___.‘,
1}
32 | Event Variable |
k i
1024 | |
| |
| ECBLIST {
| |
L 3
1 3 b)
4 | CTECB |
L }
) 1
S. 16 | Task Communications |
| Area |
¢ i
1. 8 | VDA Control |
| |
[V 4
L3 1
2. LPRV | PRV |
| |
L 3
L} 1
4| Y |
L]
3 1
4. 4 | 0 |
t i
4 | A (IHEZTASK) |
| |
L 1
13 1
| |
3. LLWS | LWS |
| |
L 3
s L}
16 | Free Core |
| Control |
| |
L J
[, |
| Available Space |
| |
| |
| |
| |
1 |

® Figure 26.

56

MAJOR TASK

DEC
00

~
N

144
172
204

1268+
LPRV

1268

LPRV+

LLWS

1284+
LPRV+

LLWS

L(bytes)

16

LPRV

LLWS

16

Format of Storage Areas, Save Areas, etc.

¥ 1
| Task Communications |
| Area |
b -1
1]
| VDA Control |
| |
L J
8 1
| PRV |
|
i
A(DSA of Attaching |
Task) |
4
h
A(PRVVDA of Attaching |
Task) |
b 4
| A(Task Variable) |
| |
[4
[8 a1
| |
| A(Parameter List) |
| |
L —— J
[3 1
| |
| Copied On-Slots |
| |
| 4
1] B
| . |
| Parameter List |
| |
|8 4
|3 1
| |
| LWS |
| |
L 4
L] 1
| |
| Free Core Control |
| |
t J
|
|
|
|
|
|
|

Available Space

SUBTASK

— ot — — it

DEC
00

16

24

24+
LPRV

28+
LPRV

32+
LPRV

36+
LPRV

40+
LPRV

5. Sets up the APLIST, which is a
parameter list consisting of a return
address and a parameter list address,
to be passed to IRETSAM.

6. Sets up an ECBLIST of two words]
containing the addresses of the ECB of
the major task and the PECB of the
major task.

7. Attaches the module IHESUB at a
priority one less than the control
task. IHESUB then sets up a parameter
list for IHETSAM and branches to
IHETSAM (This method circumvents the
use of the IDENTIFY macro, thus
enabling the Linkage Loader to be used
when desired).

Note: IHETSAM receives control from IHESUB
which is attached each time a new subtask
is created (all tasks, including the major
task, are considered subtasks of the
control task in this context). Using the
information stored in register RA, IHETSAM
initializes the major task, a subtask or a
message task, according to the values of
RA:

a. RA is negative: subtask
initialized

b. RA is positive and points to a
fullword whose bit 0 = 0: major
task initialized

c. RA is positive and points to a
fullword whose bit 0 = 1: message
task initialized

8. Waits on the two words in ECBLIST until
one of them is complete:

a. if the ECB of the major task has
been posted, then an error has
occurred which caused the
operating system to terminate the
task; in this case a message is
put out and the program is
terminated.

b. the PECB of the major task has
been posted. The control task
determines the action it is to
take from the code posted.

CONTROL TASK SUBROUTINES

Baving passed control to IHETSAM (via

IHESUB), the control task will go into a
WAIT state on the two word ECBLIST. This
wait may be resolved by a code posted in
four of the thirty bits used for the POST
CODE of the PECB of a subtask, or by

termination of the major task. The code

and the subsequent action to be taken is as
follows:

DECIMAL

1. 0 (ENQUEUE) Control task is to go into
a wait state until subtask has
finished with a soft area of code

2. U (ATTACH) Attach a new subtask

3. 8 (PRIORITY) Change the priority of a
specified subtask

4. 12 (DETACH) Special detach routine for
message tasks only.

‘5. 20 STOP has been executed.

These subroutines operate in the
following way:

1. Engueue Subroutine

This subroutine simulates an
ENQUEUE/DEQUEUE by putting the control
task in a WAIT state so that it is
unable to service requests from other
tasks until the subtask which
requested the enqueue brings the
control task out of the WAIT state.
The functions of this subroutine are:

a. (1) set a bit 'on' in the FLAG
byte of the TCA to indicate
"ENQUEUED"

(2) set the completion code of the
WECB of the subtask to allow
it to continue

b. Wait on CTECB until posted by
subtask

c. Zero the CTECB
d. Go back to WAIT on ECBLIST.

2. Attach Subroutine

The functions of this subroutine are:

a. If the TASK or EVENT variables are
already active, post the WECB of
the subtask with the appropriate
error code and go back to wait on
ECBLIST.

b. (1) Initialize the TASK and EVENT
variables. 1If one or both do
not exist, issue a GETMAIN
macro for dummy TASK or EVENT
variables and set a flag in
the variables so they can be
freed when the task is
detached.

Chapter 5: PL/I Object Program Management in Multitasking 57

58

(2) Determines that there are not
more than 254 active subtasks:
if more than 254 active
subtasks, post error code.

c. Attach IHESUB with the correct
priority

d. IHESUB passes control to IHETSAM

e. Wait on a two-word ECBLIST for
either the task to terminate (due
t0 no core being available) or
until IHETSAM has completed the
subtask initialization. The
subtask will post back the address
of its TCA when initialization is
completed.

f. Post the WECB of the attachors
subhtask with code 0 to indicate no
errors

g. Go back to wait on ECBLIST.

Priority Subroutine

Since all tasks are now subtasks of
the control task, any task can change
the priority of any other task. To
accomplish such a priority change,
compiled code invokes entry point
IHETPRA of module IHETPR. IHETPRA in
turn requests the control task to
effect the change via entry point
IHETPRB.

Therefore, the functions of this
subroutine are:

a. Call IHETPRB to perform the
priority change (see 'PRIORITY
Pseudo-Variable' in this chapter)

b. Post WECB of the subtask with zero

c. Go back to wait on the ECBLIST

a) Letach Subroutine for Non-Message
Tasks

A subtask always requests the
DETACH function of the control
task when it is enqueued (i.e.

the control task is waiting on
CTECB). Therefore, the subtask
must set a code in the CTECB to
request the control task to DETACH
a particular task. The CTECB is
posted with a completion code
equal to the address of the TCA of
the task which is to be detached.

There are three types of tasks to
consider:

(1) The task to be detached is the
requesting task and APLIST is

zero (i.e. task did not
terminate abnormally). In
this case, the functions of
the control task are:-

(a) Remove the A(PECB) of the
subtask from its ECBLIST

(b) Detach the TCB of the
subtask

(c) Free the TASK and EVENT
variables if they were
dummy

(d) Go and wait on the ECBLIST

(2) The task to be detached is not
the requesting task. In this
case, step (d) above will be
replaced by:-

(d) Wait on CTECB again

The remaining functions are the
same.

(3) The task to be detached is the
requesting task and APLIST is
non-zero (i.e. task
abnormally ended). 1In this
case, the functions of the
control task are:-

(a) Remove A(PECB) of the
subtask from its ECBLIST

(b) Issue a GETMAIN macro
instruction. 1In this area
set a flag to indicate to
IHETSAM that a message
task is to be initialised
and to store the
completion code statement
number and offset. The
attached task will link to
IHETEXC, using the
provided workspace.

(c) Detach the TCB of the
subtask and free dummy
TASK or EVENT variables.

(d) Attach IHESUB(IHETSAM) and
add the address of its
PECB (which is located in
the GETMAIN area) to the
ECBLIST of the control
task.

(e) Go and wait on the new
ECBLIST

4. b) Detach Subroutine for Message
Tasks
This routine detaches the
requesting message subtask and
frees the core storage obtained
for it. It then returns to wait
on ECBLIST.

5. STOP

When STOP is posted, the control task
sets a flag to indicate this and then
goes to the ENQ subroutine.

INITIALIZATION OF MAJOR TASK

When the major task initialization routine,
IHETSAM, is attached (via the control task
and IHESUB) it has a priority of one less
than the control task. This has the effect
of making the whole program appear to have
a priority of one less than the operating
system limit priority, which allows the
control task to be posted and to assume
control immediately.

IHETSAM is similar to the
non-multitasking initialization routine
IHESAP (described in Chapter 4), but in
addition:

1. A flag bit (bit 8) in the PRV VDA is
set to indicate that it is a
multitasking PRV VDA

2. The address of the task variable is
placed in the PRV VDA and the other
task~oriented words of the PRV VDA are
set to zero (see Apprendix K)

3. A SPIE (Specified Program Interruption
Exit) macro is issued which names the
error-handling module, IHEERR, which

0 31
r T 1
0| Flags | A(Task variable) |
[4 d
v |
4 A(Event variable) |
‘L. 4
8| Priority relative to attaching task I
L
3
12] A(called procedure)
L
8
16| For library use |
L d
v 1
20| For library use |
L d
8
24| Argument list for called procedure]
| (X'80*' in first byte of last entry |
| indicates end of list) |
L J

Figure 27. Parameter List for IHETSAT

Flags

is invoked in case of a program
interrupt

4. A STAE (Specify Task Asynchronous
Exit) macro is also issued which
specifies IHETSAX as the exit routine,
and the address of the TCA as the
address of the STAE parameter list

5. The pseudo-registers IHEQVDA, IHEQFVD,
IHEQADC, IHEQCTS, IHEQTCA, IHEQSLA,
IHEQSFC, and IHEQATV are then
initialized

INVOCATION OF SUBTASK

When a CALL statement with a TASK, EVENT or
PRIORITY option is executed, compiled code
calls the library module IHETSAT, which
requests the control task to attach the
subtask specified in the CALL statement.

When the PL/I program includes the TASK
or EVENT options in a CALL statement, then
compiled code is generated which, at
execution time, is used to initialize the
TASK and EVENT variables. The
initialization consists of setting TASK and
EVENT variables inactive, inserting the
address of the associated symbol table
entry in the TASK variable and setting the
STATUS halfword in the EVENT variakle to
zero . Furthermore, compiled code would
have created an argument list (Figure 27)
and inserted its address in register RA.

Pointers to the PRV and DSA of the
attaching task are stored in the two words
of the parameter list reserved for library
use; they are used in chaining tasks in
'mother-daughter' relationships:

If the CALL statement includes a
PRIORITY option, the sum of the relative

Zero if no TASK option

Zero if no EVENT option

X'80' if no PRIORITY option

X'80' if no argument list

Chapter 5: PL/I Object Program Management in Multitasking 59

priority from the parameter list supplied
by the compiled code and the dispatching
priority in the task variable of the
attaching task is stored in the task
variable of the subtask; if the sum exceeds
the limit priority for the PL/I program
(16*JSPRI+10), the dispatching priority for
the subtask is made equal to the limit.
(See IBM System/360 Operating System: PL/I
(F) Programmer's Guide for a discussion of
priority in a PL/I program). The limit
priority of the attaching task is also
placed in the task variable of the subtask.
If there is no PRIORITY option, and a task
variable exists, the dispatching priority
in the task variable is assumed; if the
task has a dummy task variable, the
dispatching priority is the same as that of
the attaching task at the time the subtask
is attached.

INITIALIZATION OF A SUBTASK

Module IHETSAT is called by compiled code
when a subtask is to be attached. This
routine stores the address of the PRV and
DSA of the attaching task in the parameter
list, and then stores the address of the
parameter list in APLIST (in the TCR).
Having posted the control task to attach a
subtask, IHETSAT waits until it is informed
by the control task that the subtask has
been attached or an error has been found.
when the WAIT is satisfied, it tests to see
if any errors were detected. If so, it
raises the appropriate ERROR condition and
branches to IBREERRC. If there are no
errors, it returns normally to compiled
code.

On being posted by IHETSAT to attach a
subtask, the control task executes its
attach subroutine which calls IHESUB. The
subtask initialization routine, IHETSAM,
receives control from IHESUB, which is
attached each time a new subtask is
created. At this time, register RA
contains the complement of the address of
the parameter list prepared by compiled
code (Figure 27). This conforms to the
previous discussion on the control task
wherein it was stated "RA is negative;
subtask initialized".

IHETSAM calculates the length of the PRV
VDA and LWS required by the subtask and
issues a GETMAIN macro instruction for the
amount of storage needed (rounded up to a
multiple of 2048 bytes):

Then it initializes the PRV VDA as
follows:

60

1. It copies the contents of the PRV of
the attaching task into the PRV of the
new subtask

2. It initializes the pseudo-registers
IHEQTCA, IHEQSLA and IHEDATV, and
zeroes IHEQRTC, IHEQEVT, and IHEQFOP

3. It copies any ON-fields in the DSA of
the attaching task, and the procedure
argument list (if one is being
passed), into the PRV VDA of the new
subtask.

4. It increments the pseudo-register
IHEQTIC by one. (IHETSAM sets IHEQTIC
to zero when it initializes the major
task. Each time a new subtask is
attached, IHETSAM adds one to the
count in IHEQTIC; the count thus
indicates the level of each task
within the hierarchy)

5. It issues a SPIE macro for IHEERRA
6. It issues a STAE macro for IHETSAX.

The control task is then posted to
indicate the completion of the
initialization routine and IHETSAM then
branches to the address of the called
procedure.

MESSAGE TASK

In the case of a message task being
required, IHETSAM sets up register 1 to
contain the address of the parameter 1list
and then links to IHETEXB to put out a
message. IHETSAM then asks to be detached
by posting the control task and waits until
detached.

EXIT AND TERMINATION OF TASKS

NORMAL TERMINATION OF A TASK

A PL/I task can be terminated by the
execution of any one of the statements END,
RETURN, STOP and EXIT.

The action taken by the library END,
(IHETSAE) and RETURN (IHETSAR) routines is
similar to that of the GO TO routine
(IHETSAG); the action differs from that of
the non-multitasking equivalents in that
any tasks attached in the block being
terminated must also be terminated. This
termination is done by means of the CTECB
DETACH routine (see °'Control Task
Subroutines'). If the block to be

terminated is also the end of a procedure
called with the TASK option, the control
task is informed and the task is detached.

If it is the end of the major task, the
FINISH condition is raised and the program
branches to the error-handling routine.

The END or RETURN routine will, on
completion, post the control task to detach
the major task. Finally, when the ECBLIST
has no entries left, control is returned to
the calling program.

The abnormal-end-of-task routine
(IHETSAZ) is entered

1. From IHEERR when return is made from
the error routine in a subtask or from
the FINISH routine in the major task.

2. When an EXIT statement is executed in
any task, or

3. When CALL IHEDUMT is executed in any
task.

IHETSAZ detaches the task, and any tasks
that it has attached, in the manner
described under °*GO TO Statements'.

The end-of-program routine IHETSAY is
entered when a STOP or CALL IHEDUMP
statement is executed in any task. IHETSAY
terminates all subtasks in the manner
described under 'GO TO Statements'. 1In
both cases, control passes back to the
calling program, by way of the control
task, at completion.

ABNORMAL END-OF-TASK EXIT ROUTINE

If a task terminates abnormally, the STAE
exit routine (IHETSAX) is called. IHETSAX
is specified in the STAE macro and is
invoked whenever a subtask is attached.

The STAE exit routine firstly detaches all
subtasks of the abnormally terminating task
and then informs the control task of the
condition of that subtask. An area of
storage is obtained by the control task in
which the name of the subtask and the
completion code are stored. This storage
area also contains space for a save area to
be used by the message task. The control
task detaches the terminating task and
attaches a task which prints out a message
(as described under ‘Control Task
Subroutines') giving the name, if any, of
the subtask, the operating system
completion code, and, in the more common
cases, an indication of the probable error.
The message is put out on SYSPRINT if it is
open, otherwise it is put out on the
console.

To obtain the name of the subtask for
insertion in the message, IHETSAX locates
the task variable of the subtask by
initiating a save-area trace from the PRV
of the current task. The address of the
TCA of the abnormally terminating task is
passed in a parameter list to the STAE exit
routine along with the completion code.

GO TO STATEMENTS

The multitasking housekeeping routine for
GO TO Statements (IHETSAG) differs from its
non-multitasking equivalent only in that if
control is transferred outside the block in
which the statement occurs, any tasks that
are attached in the blocks that are freed
must be terminated. If any tasks have been
attached in the block, the task variable
chain pointer in the DSA will point to the
task variable of the most recently created
subtask. IHETSAG searches the chain
through each DSA in each task until a task
is found that has attached no subtasks;
this task is then terminated by informing
the control task that this task is to be
detached.

The process is repeated until all the
tasks attached in the block, and their
descendants, have been terminated. 1In the
process, all storage associated with these
tasks is returned to the supervisor, and
all files opened in the tasks are closed.

ON-UNITS AND ENTRY PARAMETER PROCEDURES

The multitasking routine IHETSAN modifies a
recursive environment when an on-unit or an
entry parameter procedure is entered or
ended. It differs from the
non-multitasking routine (IHESARA) in two
respects. :

1. the chain of recursive DSAs is
followed back to the PRV of the major
task, and

2. 1if a CALL statement calls an entry
parameter procedure with a task
option, the address of the entry
parameter is placed at the top of the
parameter list, the address of IHETSAT
is assigned to the entry parameter,
and IHETSAN is called. When IHETSAN
terminates, it points register Ra at
the IHETSAT parameter list and
branches to IHETSAT.

Chapter 5: PL/I Object Program Management in Multitasking 61

CONTROLLED STORAGE

The allocation and freeing of storage for
controlled variables in a multitasking
environment is handled by library module
IHETCV. This module is independent of
IHETSA and is loaded only if the CONTROLLED
attribute is used. When storage is
allocated, the task invocation count from
pseudo-register IHEQTIC is stored in the
first halfword of the controlled variable.
Before a controlled variable is freed, its
task invocation count is checked; if it
does not correspond with the value in
IHECTIC for the task in which the statement
occurs, the variable is not freed.
controlled storage is allocated in subpool
0 if it is in the major task, and in
subpool 1 if it is in a subtask.

MULTITASKING PSEUDO-VARIABLES AND BUILT-IN
FUNCTIONS

Statements in which the STATUS
pseudo-variable appears, or which contain
the COMPLETION or STATUS built-in function,
are executed from compiled code without a
library call.

COMPLETION PSEUDO-VARIABLE

On execution of an assignment statement in
which the COMPLETION pseudo-variable
appears, the expression on the right-hand
side is evaluated and converted to a
bit-string of length 1, which is then
stored at bit 24 of a fullword. Compiled
code then calls IHETEVA, passing the
address of the event variable named in the
pseudo-variable, and that of the fullword
(in a list pointed to by register RA). If
the event variable is active, the ERROR
condition is raised - otherwise IHETEVA
takes the following action:

1. It informs (POSTS) the control task it
wishes to execute soft code and then
waits until the request is satisfied.

2. It sets the I/0 flag in the event
variable (bit 1 of the flag byte) to
zero.

3. (a) If the bit string = '0'B, it sets
bit 1 (the ‘complete' bit) of the
ECB in the event variable to zero.

(b) If the bit string = '1'B, it tests
to see whether the event is
already complete. TIf not complete
it posts the ECB with a completion

62

code of zero. If it is complete,
IHETEVA does nothing.

4. It informs the control task it has
finished executing soft code(Code = 0)

PRIORITY PSEUDO-VARIABLE

The PRIORITY pseudo-variable is used to set
the dispatching priority of a task to a new
value relative to that of the current task.
On execution of an assignment statement in
which the PRIORITY pseudo-variable appears,
the expression on the right-hand side is
evaluated and converted to a fixed-point
binary constant of default precision, which
is assigned to a fullword. Compiled code
then calls IHETPRA, passing the address of
the task variable of the task named in the
pseudo-variable and that of the fullword
(in a list pointed to by register RA). 1If
the pseudo-variable does not specify a
task, the current task is assumed. IHETPRA
requests the control task to change the
priority of a task by posting a code of 08
in the PECE of the specified subtask. The
control task branches to IHETPRB which uses
the dispatching priority of the task
variable to compute the new priority.
IHETPRB then stores the new priority value
in the task variable; if the task variable
is already active, it issues a CHAP (change
priority) macro to change the priority of
the associated task. It then assigns to
the task variable the new value of the
dispatching priority, calculated as
follows:

New dispatching priority of named task
= MAX (0,MIN (limit-1,P+N))

where P = dispatching priority of
current task and N = increment

NOTE: Under this system of changing
priorities, any task can change the
priority of any other task.

PRIORITY BUILT-IN FUNCTION

The PRIORITY built-in function yields the
dispatching priority of a task relative to
that of the current task. On execution of
a statement in which the function appears,
compiled code calls IHETPBA, passing the
address of the task variable of the task
named in the function and the address of a
fullword target field (in a list pointed to
by register RA). IHETPBA subtracts the
dispatching priority of the current task
from that of the named task, and assigns
the difference to the target field. The

dispatching priorities are obtained from
the respective task variables.

THE WAIT STATEMENT

When a WAIT statement is executed in a
multitasking environment, compiled code
calls the library module IHETSW, passing
the addresses of the event variables
associated with the statement. IHETSW
first places itself in any gqueue that may
exist via control task subroutine ENQ so
that the control task may decide when
IHETSW may safely access "soft code".

It then scans the event variables to see
whether enough events to satisfy the WAIT
statement are complete with regard to the
PL/I program ('complete' bit, ECMP, set to
1). If not, IHETSW scans the ECBs for the
1/0 events, and in each case where the I/0
event is complete sets the check bit (EMCH)
in the corresponding event variable to '1°'.
A list is then made of all the incomplete
I/0 and multitasking events.

If the number of PL/I and I/O complete
events is sufficient to satisfy the WAIT
statements, the relevant I/0 transmit
modules are invoked to complete the I/0
events. (See 'General Logic and Flow'
under 'Record-Oriented I/0' in Chapter 3.)
I1f there are no multitasking events in the
list, and if the number of completed 1I/0
events is not sufficient and all the I/0
events must be completed to satisfy the
WAIT statement, the check bit in each event
variable is set to 1 and the relevant 1/0
transmit module is invoked. 1If not all the
I/0 events need to be waited on, or if
there are some multitasking events in the
list, a multiple WAIT instruction is issued
for the list of incomplete events. When
the macro has been satisfied, if the list

included any I/0 events, the corresponding
ECBs are scanned and the check bits in the
event variables corresponding to completed
ECBs set to 1; the I/0 transmit module is
then invoked.

The I/0 event variables that are checked
by the transmit modules are set complete
and the check bits are set to zero. The
event variables are then set inactive and
removed from the task and file chains.
IHETSW then dequeues from the control task
by posting the CTECB with a completion code
of zero.

ALTERNATIVE I/0 MODULES FOR MULTITASKING
PROGRAMS

Alternative multitasking and
non-multitasking modules for input/output
operations have been created in order to
prevent the non-multitasking user from
being inflicted with any multitaskiing

overheads. These modules are:
Non-multitasking Multitaskinag
IHEOCL IHEOCT
IHECLT IHECTT
IHEPRT IHEPTT
IHEIOB IHEIBRT
IHEDDO IHEDDT
IHEION IHEINT

The entry points for the multitasking
modules correspond with the entry points of
the non-multitasking modules. Modules
which have no alternative form will call
the correct module by extracting its
address from the list addressed by
pseudo-register IHEQADC. This list is
assembled into IHESAP or IHETSA, whichever
is present.

Chapter 5: PL/I Object Program Management in Multitasking 63

CHAPTER 6: ERROR AND INTERRUPT HANDLING

The PL/I Library handles two types of
conditions at object time which cause
interruption to the main flow of a program.
These are:

1. Conditions for which it is possible to
specify an on-unit:

a. Computational program interrupts.

b. Other conditions.

2. Execution error conditions not covered
by a PL/I-defined condition.

If any of these conditions occurs,
control is passed to the library error
handling module IHEERR. (See Figure 29.)
This module is always resident; if it is
necessary to print a message at execution
time, IHEERR links to a group of modules
normally non-resident but brought into
storage when required. These are:

IHEESM: This loads one of the message
modules and prints the
appropriate message.

IHEERD: Data processing error messages.

IHEERE: Error messages other than those
in the other error message
modules.

IHEERI: Input/output error messages.

IHEERO: Error messages for non-I/0 ON
conditions.

IHEERP: Error messages for I/0 ON
conditions.

IHEERT: -Multitasking error messages.

The error messages and their associated
ONCODES are described in IBM System/360
Operating System: PL/I (F) Programmer's
Guide.

All the PL/I-specified ON conditions
except I/0 SIZE and 1/0 CONVERSION are
raised by compiled code to facilitate
reference by the error-handling
subroutines. Each ON condition has a code
number (internal to the library) consisting
of two hexadecimal digits. When an ON
condition is raised, the code associated
with it is placed in the error-handling
pseudo-register IHEQERR.

64

There is an error message for each ON
condition. In some cases the condition
(e.g., CONVERSION) may have a group of
errors associated with it and has therefore
a group of messages. A complete list of
the internal error codes and their
associated messages is given in Appendix E.

PROGRAM INTERRUPTS

Fifteen possible program interrupts can
occur in System/360. Seven of these are,
or may be, related to computational
conditions in PL/I (see Figure 28);
on-units may be specified for these
conditions. Seven of the remaining eight
are treated as errors of a non-ON type; the
eighth one, significance is not handled.

UNDERFLOW
ZERODIVIDE

Exponent underflow
Floating-point divide
(R

Figure 28.

r T =
| Program Interrupts | PL/I Conditions|
L

I ——

| Fixed-point overflow FIXEDOVERFLOW

| Fixed-point divide ZERODIVIDE

| Decimal overflow FIXEDOVERFLOW

| Decimal divide ZERODIVIDE

|

|

|

b o S o S c— —

|
|
|
|
Exponent overflow | OVERFLOW
|
|
4

Program Interrupts and PL/I
Conditions

Because the user may specify on-units
for handling certain PL/I conditions, when
an interrupt occurs the PL/I program must
gain control to see if there is an on-unit
associated with that particular interrupt.
This is achieved by the GET PRV subroutine
in the IHESA module, which issues a SPIE
macro to:

1. Provide a program interrupt control
area (PICA). This is a six-byte area
(in IHESA) which contains the address
to which control is passed when an
interrupt occurs, and information on
the type of interrupt handled by
IHEERR.,

2. Cause the supervisor to create a
program interrupt element (PIE). This
is a 32-byte area which contains the
PICA address and also a save area for
the o0ld PSW and registers 14 to 2 when
an interrupt occurs.

ImEERRA_ 1 L IHEERRD | . _ IHEERRC _ _\HEERRD__ |
FROCRAM NON - ON CHECK AND
INTERRUPTS ON CONDITIONS CONDITIONS CONDITION

AT EINONMENT DETERMINE DETERMINE
IMULA N N
IHANDLING ON-TYPE FROM ON-TYPE FAOM
COMPLETE : SET HEQERR REG. RA
RESULTS iF
INECESSARY)
NO
oN
CONDITION N\ YES CREATE SEARCH
FOR THIS
INTERRUPT, woro
LINK 1O THEESH
{LOADS MESSAGES
INTO_STORAGE)
suN A
R T YES CONDITION N\ Yis
WITH DSA?, OISABLED ?
NO

SELECT
MESSAGE (5) 1O
BE PRINTED

GET NEXT DSA

PRINT SNAP l IF SNAP LINK

MESSAGE(S) TO (HEESN

PRINT
MESSAGES

IHESARA BRANCH TO ENTER
(ON-UNIT ENTRY) ON-UNIT

ON-UNIT (EXITS ONVERSION YES RAISE ERROR

STILL
BACK TO PROC) INVALID ? CONDITION

ERROR
LONDITION ?,

YES RAISE FINISH
CONDITION

r—_0

FINISH
CONDITION ?

YES

PRINT CHECK

TERMINATION ABEND INFORMATION

Cren) (o)

Fiqure 29. Flow through the Error Handling Routine (IHEERR)

Chapter 6: Error and Interrupt Handling 65

034 78 . 31
T v T 1
| | PM | A(Exit subroutine) |
L L 1 J

32 ‘ 47
r L)
| Interrupt Mask |
1 y]

Figure 30. Format of the Program Interrupt

Control Area (PICR)

Definitions of PICA fields:

PM: Program mask

A(Exit subroutine): Address of the entry
point in IHEERR to which control is to
be passed when one of the specified
interrupts occurs. This entry point
is IHEERRA.

Interrupt mask: Indicates to the supervisor
which interrupts are to be handled by

IHEERR. These interrupts are all the
fifteen possible ones except
significance.

0 7 8 31
r Al a1
|] A(PICA) |
t L 1
{ OPSW(Bits 0-31) |
L '
v 1
| OPSW(Bits 32-63) |
L 4
13 a
| Register 14 |
L]
v]
| Register 15 |
L 4
L 8 1
| Register 0 |
L
¢ |
| Register 1 |
L 4
LB 1
| Register 2 |
1 3
Figure 31. Format of the Program Interrupt

Element (PIE)

Definitions of PIE fields:

A(PICA): Address of PICA, for supervisor
use

OPSW: Contents of the old program status
word

Registers 14 to 2: Contents of these
registers when an interrupt
occurs

On entry to IHEERRA, register RA
contains the address of PIE.

It is possible for another program

interrupt to occur before user corrective
action has been completed. IHEERR has to

66

guard against this eventuality when it
obtains control, otherwise the second
interrupt would cause the supervisor to
terminate the task. To avoid this, the
following method is used:

1. The PSW in PIE (the old PSW) is saved
in the LWE + x '70' area in library
workspace.

2. Bits 40 to 63 of the PSW in PIE are
changed to contain the address of the
appropriate entry point in IHEERR;
control is returned to the supervisor.

3. The supervisor assumes the interrupt
has been handled satisfactorily and
transfers control to the new address
in the PSW in PIE; thus it enters
module IHEERR again.

Floating-point registers are saved in
the library communication area, and the old
PSW is inspected to find the cause of the
interrupt.

If a fixed-point or decimal overflow
interrupt is forced to occur, the SIZE
condition may be raised. Therefore when
one of these interrupts occurs, the
pseudo-register IHEQERR must be inspected
to see if the SIZE code has been set.
Similarly, if any of the divide interrupts
occurs, IHEQERR must be inspected to see if
the ZERODIVIDE code has been set. If it
has, the condition is disabled and control
returns to the point of interrupt.

Certain very unusual circumstances may
result in a program interrupt occurring
during the execution of IHEERR or of one of
the library modules called, or linked to,
from it. For example, if the program
destroys the PRV, or the DSA chain, or
parts of library workspace, then it is
likely that sooner or later a specification
or addressing interrupt will occur.

Under these circumstances, the
programmer or systems engineer requires a
dump at the earliest opportunity. To
achieve this, and to prevent any attempt to
re-enter IHEERRA on account of the second
interrupt, a SPIE macro is issued every
time IHEERR is entered. This macro
provides that, in the event of an interrupt
occurring, IHEERR shall be entered at entry
point IHEERRE. Similarly, another SPIE
macro is issued at each exit point, to
restore IHEERRA as the normal entry point
for program interrupts during the execution
of compiled code and library routines.

When IHEERRE is entered, a message is
printed on the console and the program is
abnormally terminated, with a dump.

[} v k) . . v 1
		Condition	
Type	Condition	Prefixes	Default
		permitted	situation
L i	4 4 4		
2 T T 1) 1			
	CONVERSION		
	FIXEDOVERFLOW		alu
Comput-	OVERFLOW	Yes	enabled
ational	SIZE		except
	UNDERFLOW		SIZE
	ZERODIVIDE		
L 1 S 1 1			
r . T T 1 1			
jList	AREA	No	Always
pro- {		enabled	
cessing			
b S —— +_ & {
1) T T

	ENDFILE	{	
	PENDING		
	ENDPAGE		
Input/	KEY		Always
Output	NAME	No	enabled
	RECORD		
	TRANSMIT		
i	UNDEFINEDFILE		i
b= } $- +]			
Program	CHECK		
check-	SUBSCRIPT-	Yes	Disabled
jout	RANGE	i	
	STRINGRANGE		
[4 4 X d			
r T T T 1			
Prog-	CONDITION		Always
rammer-		No	enabled
Inamed | | | |
[i N 4 LN _‘
4 T b3 T

| System |ERROR | No | Always |
|action | FINISH | | enabled |
L s i L K]

Figure 32. PIL/I ON Conditions

ON CONDITIONS

The six classes of ON conditions defined in
PL/I are shown in Figure 32. To deal
satisfactorily with the situation when any
of these conditions arise, IHEERR must:

1. Recognize the condition.
2. See if it is enabled.

3. If so, see if there is an on-unit for
the condition.

4. If there is an on-unit, transfer
control to IHESARA, which, after doing
the necessary housekeeping, will
transfer control to the on-unit.

5. If no on-unit, take system action for
the condition.

6. Return to the interrupted program or
terminate, according to the provisions
of the PL/I language.

In order to carry out these operations
IHEERR needs:

1. Information passed when the error
condition arises.

2. Information set by compiled code in
the DSA for each procedure. A
two-word ON field is allocated in the
DSA for this purpose. (See Chapter
4.)

Action by Compiled Code

Action taken by compiled code in
preparation for the possibility of a
condition arising during execution is
summarized here.

Prologue: The prologue allocates space in
the Dsa for:

1. Every ON statement in the block.

2. Each ON condition disabled in the
block.

ON CHECK (identifier 1,......identifier n)
is interpreted as n ON statements.

For each of the occurrences given above,
the prologue stores information in the two
words in the DSA ON field:

1lst _word: Contains the error code for the
condition and the address of data
identifying the condition. This word
is called the search word comparator.
(See Figure 33.)

r T 1
| Type of ON | Contents of word |
| condition ¢ — {
| |Byte 1| Bytes 2 to 4 |
[N 4 3 v
8 T T a
| 1/0] | A (DCLCB) |
b 1 k- =
| CONDITION | | A (CSECT) |
b-- {Error } -4
CHECK (label)		A (Symbol name &
	code	length)
CHECK (variable)		A (Symbol table)
t - 4 l,)		
[B	1	
Others		Nothing stored
L L. 4 J
Figure 33. Format of the Search Word

Comparator

2nd Word: Byte 1:
as follows:

Bits 0, 1 and 4 are set

Bit 0

0 Not the last ON field in the
DSA

1 Last ON field in the DSA

Chapter 6: Error and Interrupt Handling 67

Bit 1 1 Condition disabled

Bit 4 = 1 Dummy ON field

In the second word, either bit 1 or bit &4
is set to 1. (See 'Prefix Options’',
below.)

ON Statement: When the ON statement is
executed, compiled code stores information
in the second word of the ON field:

Byte 1:
Bit 2 = 0 SNAP not required
= 1 SNAP required
Bit 3 = 0 Normal
= 1 System action required
Bit 4 = 0 No longer dummy
Bytes 2-4: A(on-unit)

Prefix options: An ON field for an ON
condition must be created by the prologue
whenever:

1. An ON statement is present in the
block.

2. BAn ON condition becomes disabled at
any time during the execution of the
block.

3. CHECK is enabled within the block.

This ON field is always set to dummy by the
prologue. It is also set to disabled if:

1. The condition is disabled by a prefix
option in the block-header statement.

2. The condition is disabled by default
and there is no enabling prefix option
in the block-header statement, or
within the block. The exceptions to
this are CHECK, SIZE, STRINGRANGE, and
SUBSCRIPTRANGE, which are dealt with
as follows:

CHECK: No ON fields are created if
this condition is disabled by
default

SIZE, STRINGRANGE, and SUBSCRIPTRANGE:
If these conditions are disabled
by default, flags are set in the
flag byte of the DSA as follows:

SIZE: bit 7 =0
STRINGRANGE bit 2 =0
SUBSCRIPTRANGE: bit 4 = 0

Execution of an ON statement in the block
causes removal of the dummy flag and
insertion of the flags indicating the
action required. It does not remove the

68

disable flag if on. Execution of a REVERT
statement causes reinstatement of the dummy
flag.

During execution of the block, statements
may be executed which have disabling prefix
options in them. Compiled code must be
inserted before and after the statements
to:

1. Set the disable flag before the
statement.

2. Restore the original flags after the
statement.

Similarly, to enable prefix options,
compiled code must:

1. Set the disable flag off before the
statement.

2. Restore the original flags after the
statement.

Prefix options specified on outer blocks
carry down into internal blocks. The
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Library

When an ON condition arises during
execution, IHEERR gains control from one of
the following:

1. The supervisor
2. Compiled code

3. Another library module

In case 1, the ON condition code
required is determined by inspection of the
program interrupt code in the o0ld PSW. For
cases 2 and 3, the ON condition code is
passed in pseudo-register IHEQERR, except
for the CHECK and CONDITION conditions,
when a parameter list is used. From this
code and information passed in the calling
sequence, a search word is generated in
library workspace in all three cases; the
format of the search word is identical with
that of the search word comparator
(Figure 33).

When the search word has been created,
IHEERR initiates a search through the chain
of DSAs to determine the action to be
taken. Each DSA is analyzed in turn, from
the end of the chain upwards towards the
beginning. The search proceeds as follows:

1. Bit 6 of the flag byte of the first
available DSA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA is the
current DSA and the condition is
SIZE, STRINGRANGE, or
SUBSCRIPTRANGE, the flag byte of
this DSA is examined to see if the
condition is disabled:

Disabled: the program returns to
the point of interrupt.

Not disabled: The DSA is ignored.

If the condition is CHECK, the

program returns to the point of

interrupt.
b. ON fields: The first word of each
ON field - the search word
comparator - is compared with the
search word to see if a match is
found. If a match is found, the
second word of the ON field in the
DSA is tested to see what action is
required.

2. If the last ON field is reached before
finding a match, then:

a. 1f the DSA is the current DSA and
the condition is SIZE, STRINGRANGE,
or SUBSCRIPTRANGE, the
corresponding flags in the DSA are
tested.

b. The error code is tested to see if
the condition is CHECK.

This may result in a return to the point
of interrupt. If not, the next DSA is
obtained and analyzed in the same way.

If a match has been found, then the
following tests are made:

1. 1Is the condition disabled by a prefix
option? (This test can only be
applied when the matching ON field is
contained in the current DSA.)

Disabled: No further processing
in IHEERR; the program returns to
the point of interrupt.

Not disabled: Next test is made.

2. Is the matching ON field a dummy ON
field?

Dummy ON field: The field is
ignored and the next DSA is
obtained.

No_dummy ON field: Next test is
made.

3. 1Is SNAP action required?

SNAP_action_required: A summary
flow trace is written on the
system output file. This output
contains the ON-condition
abbreviation and trace-back
information identifying the
procedures in the chain. The
statement number may optionally
be included. Each procedure is
identified by chaining back
through the DSA chain until a
procedure DSA is found and then
using the contents of register BR
in the appropriate save area.

The search ends when the
chain-back reaches the external
save area. An example of this
output is given in IBM System/360
Operating System: PL/I (F)
Programmer's GSuide.

SNAP action not required: Proceed
normally.

In a multitasking program, when the
search word has been created, IHEERR calls
IHETER, which searches the ON fields of the
DSA in a similar manner to IHEERR. In the
absence of a matching ON field, the search
continues until the PRV VDA of the major
task is reached. If a subtask PRV VDA is
encountered during the search, any ON
fields that have been copied into it from
the DSA of the attaching task are also
checked. If a match is not found, the
search continues through the DSAs of the
attaching task.

System Action

System action means writing a message and
then either continuing or raising the ERROR
condition. It is performed if:

1. the system action flag is set in the
matching ON field, or

2. no matching ON field can be found in
the DSA chain.

If a match is found, and an on-unit
address is given, then, to guard against
the possibility of recursive use when
control returns from the on-unit by means
of a GO TO statement, a new block of
library workspace is obtained. This LWS is
added to the DSA chain as described in
'PI1/1I Object Program Management'. In order
to pass control to the on-unit, the
recursion subroutine in IHESAP is called;
this establishes the correct environment
and then branches to the on-unit. Return
from the on-unit may be made in one of two
ways:

Chapter 6: Error and Interrupt Handling 69

1. On normal completion, control passes
to IHEERR, which returns to compiled
code at the point following the
instruction which caused the condition
to be raised.

2. Execution of a GO TO statement. In
this case the GO TO subroutine
(IHESAFC or IHETSAG) is entered to
carry out the housekeeping described
in Chapters 4 and 5.

STANDARD SYSTEM ACTION AND CONDITIONS OTHER
THAN ON CONDITIONS

If an ON condition is raised and there is
no matching ON field for the condition,
standard system action is taken. This
action is defined by the PL/I language.
Another set of error conditions can arise
at object time for which no specific ON
condition is defined in the language (e.g.,
logarithm of a negative number). In these
cases, implementation-defined system action
is taken.

An error message is printed when
PlL/I-defined or implementation-defined
system action occurs. Then, depending on
the severity of the condition, either
processing continues or the ERROR condition
is raised. In a non-multitasking program,
or in a major task, raising the ERROR
condition generally leads to the FINISH
condition being raised and then to the
abnormal termination of the job step by the
ABEND macro. The exceptions to this are
when there is a GO TO statement in the
ERROR or FINISH unit. In a multitasking
program, if the ERROR condition is raised
in a subtask, instead of the FINISH
condition being raised, IHETSAZ is invoked.
(See 'Termination of a Task' in Chapter 5.)
A complete list of object-time error
messages, with details of the conditions
that cause them to be issued, is given in
IBM System/360 Operating System: PL/I (F)
Programmer's Guide.

wWhen the printing of an error message is
required, the appropriate modules of the
non-resident part of the error package are
dynamically loaded into storage. The seven
modules concerned are:

IHEERD, IHEERE, IHEERI, IHEERO, IHEERP,
IHEERT: The error message modules;
they contain the error message texts
together with tables to locate the
messages. Only the module containing
the required message is loaded.

IHEESM: Contains the code required to

print SNAP and system action messages.
This module is always required.

70

An action indicator is obtained during the
process to determine whether normal
processing should continue if the ERROR
condition is raised. The appropriate
action is taken when the message has been
printed as output.

BUILT-IN FUNCTIONS

The two built-in functions, ONLOC and
ONCODE, may only be used in an on-unit;
they provide environmental information
associated with the raising of the latest
ON condition.

ONLOC

An interrupt can occur that can cause entry
to the on-unit in which ONLOC is specified.
If this happens, the ONLOC built-in
function identifies the BCD name of the
entry point of the procedure in which the
interrupt occurs.

The address of this BCD name is computed
by chaining back through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
appropriate save area. The length of this
name and the maximum length are found;
these two lengths and the pointer to the
BCD name are inserted in the target SDV
whose address has been passed to ONLOC as a
parameter.

If ONLOC is specified outside an
on-unit, a null string is inserted in the
target SDV.

ONCODE

The ONCODE built-in function picks up a
value from the WONC field in the library
communication area in LWS previously set by
IHEERR. This value is implementation-
defined by the type of error that caused
the interruption. It may be specified in
any on-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR or
FINISH unit to be entered.

If ONCODE is specified outside an
on-unit, a unique ONCODE value (0) is
returned. A list of ONCODEs and an
explanation of their use are given in IBM
system/360 Operating System: PL/I(F)
Programmer's Guide.

MODEL 91 AND MODEL 195 INTERRUPT HANDLING

Program interrupts occurring in code
executed on an IBM Systenv 360 Model 91 or
Model 195 require different treatment from
that described above. This is necessary
because Models 91 and 195 are capable of
executing several instructions
concurrently: hence a situation may arise
in which several program exceptions may
occur before an interrupt is raised.

As soon as a single exception occurs,
Models 91 and 195 ensure that execution of
the instructions already decoded is
completed, and then raise an interrupt.
During execution of these instructions,
further exceptions may occur. If there are
no more instructions to be executed at the
time an exception occurred, then the
interrupt raised is known as a precise
interrupt; the PSW contains the address of
the instruction following that in which the
exception occurred.

If, however, further instructions were
executed, then the interrupt is known as an
imprecise intexrupt; the PSW at
interrupt-time contains the address of the
next instruction to be executed, but this
is not necessarily the address of the
instruction following any of the exceptions
raised. The instructions causing the
exceptions cannot therefore be identified.
If there is more than one exception prior
to interrupt, then a multiple-exception
imprecise interrupt is said to have
occurred. Full details of Model 91 and
Model 195 operation and interrupt handling
are given in IBM Systems/360 Model 91,
Functional Characteristics, Form A22-6907,
and IBM System/360 Model 195, Functional
Characteristics, Form A22-6943.

When an imprecise interrupt is raised,
therefore, Models 91 and 195 indicate the
situation by setting the interruption code
and the interruption length code in the PSW
as follows:

1. Recognition that an imprecise
interrupt has occurred: Bits 26-33 are
set to zero for Model 91 and bits
28-33 are set to zero for Model 195.

2. 1Identification of the type or types of
exception in the interrupt: For Model
91 bits 16-25, and for Model 195 bits
16-27 excluding bit 18 are set as

follows:
Bit Type of Exception
16] Model Protection
17 195 addressing
18 Specification
19 h Data

.20 Fixed-point overflow
21 Model (Model Fixed-point divide
22 91 195 Exponent overflow
23 Exponent underflow
24 Significance |
25 Floating-point divide
26 Decimal overflow
27 y Decimal divide

Implementation

The Library module IHEM91 handles the
problems associated with imprecise
interrupts on Models 91 and 195. This
module is obtained by the user specifying
the OBJIN option as a parameter in the EXEC
statement; this creates an ESD entry that
results in IHEM91 being linkage-edited with
the Library error and interrupt module
IHEERR.

Initially, IHEERR tests bits 28-31 of
the PSW to determine if these bits are all
zero (i.e., if an imprecise interrupt
exists):

1. All zero: Imprecise interrupt; control
is passed to IHEM91

2. Any bit non-zero: No imprecise
interrupt; IHEERR handles the
situation in the normal way

On receiving control, IHEM91 tests bits
16-27 excluding bit 24 to determine which
exceptions have occurred. All bits (except
significance) are tested, as more than one
type of exception can occur in an imprecise
interrupt. If the bit tested is on
{non-zero), then:

1. Condition list: IHEM91 sets an entry
in a list of PL/I conditions and
program exceptions. The list is
stored in the LWE area of Library
workspace (LWS); an entry indicates
that the particular condition or
exception must be raised. The list
consists of from one to eight entries,
processed in the order:

Chapter 6: Error and Interrupt Handling 71

UNDERFLOW
FIXEDOVERFLOW or SIZE
OVERFLOW

ZERODIVIDE

Data exception
Specification exception
Addressing exception
Protection exception

Note: ZERODIVIDE is entered only once
in the list, even if
floating-point divide and
fixed-point divide both occur.
ZERODIVIDE will be raised on
Model 195 if decimal divide
occurs. idence three exceptions
may result in one ZERODIVIDE on
Model 195. significance is not
handled, as it is disabled in
all PL/I programs.
FIXEDOVERFLOW and SIZE cannot
both be raised since they are
raised by the same hardware
condition. FIXEDOVERFLOW may be
raised by fixed-point overflow
and decimal overflow on Model
195.

Interrupt count: The value in the

ONCOUNT field (WONC + 4) in the LCA is
incremented by 1. Thus the total
value in this field is the total
number of conditions or exceptions to
be raised. When a multiple-exception
imprecise interrupt does not exist
(because there are no exceptions or
only a single exception) the value in
the ONCOUNT field is zero.

IHEM91 then returns control to IHEERR in

order that each condition in the list can
be raised. As described above, a condition
can be handled in one of two ways:

1.

2.

By entering an ON-unit, with exit by
either:

a. A normal return
b. A GO TO statement

By system action

These rules have to be considerably

extended for handling a multiple-exception
imprecise interrupt:

1.

72

ON unit for UNDERFLOW, FIXEDOVERFLOW,

information indicating the nature
of these unprocessed entries is
given. However, the ONCOUNT
built-in function, when used in an
ON unit, will return the number of
entries remaining unprocessed.

2. System action:

a. For UNDERFLOW: When the erxrror
message has been printed, the next
entry in the list is processed.

b. For FIXEDOVERFLOW, SIZE, OVERFLOW,
or ZERODIVIDE: No further entries
in the list are processed. If the
program terminates as an immediate
result of system action, messages
are printed to indicate the nature
of the unprocessed entries.

3. ERROR raised for a data,
specification, addressing or
protection exception: No further
entries in the list are processed. If
the program terminates as an immediate
result of the system action, messages
are printed to indicate the nature of
the unprocessed entries.

In order to implement these rules,
IHEERR tests for a multiple-exception
imprecise interrupt after:

1. Return from an ON_unit: If a
multiple-exception imprecise interrupt
exists, IHEM91 is entered at a second
entry point in order to:

a. Process the next entry
b. Reduce the ONCOUNT value by one
c. Return to IHEERR

2. Program termination caused by ERROR
condition: If a multiple-exception
imprecise interrupt exits, IHEM91 is
entered at a third entry point. The
condition list is processed in order
to print out a message for each entry
not handled at the time the program
terminated. Program termination is
completed when the list is exhausted.

ONCOUNT_Built-in Function

SIZE, OVERFLOW or ZERODIVIDE:

a. Normal return: Next entry in the
list is processed. If there are
no more entries to be processed,
then a return is made to the
address in the PSW.

b. GO TO statement: No more entries
in the list are processed, and no

The ONCOUNT built-in function returns a
non-zero value only when this function is
used in an ON unit entered as a result of a
multiple-exception imprecise interrupt in a
Model 91 or 195. 1In such a situation, the
binary integer returned is the number of
entries that remain unprocessed (including
the current one) at the time the ONCQUNT
function is used.

Flush Instructions

A program may not operate correctly on
Model 91 or 195 if it requires
identification of the instruction causing
an imprecise interrupt. Similarly, it may
not operate correctly if it requires that
an imprecise interrupt is honored before
some instruction later in the program is
executed. However, the unwanted effects of
imprecise interrupts can usually be
eliminated by placing 'flush®' instructions
at certain points in the program. A
'flush' instruction is an Assembler
Language instruction of the form:

BCR x,0

where x is not equal to zero. An
instruction of this type is a no-operation
instruction for all of Systems/360, but it
is implemented in the Models 91 and 195 in
such a way that its execution is delayed
until all previously decoded instructions
have been executed.

If the OBJIN compiler option is
specified, flush instructions are generated
by the compiler at the following points in
the program:

1. Before every ON statement

2. Before every REVERT statement

3. Before code to set the SIZE condition

4. For every null statement

5. Before code to change prefix options.
If both the OBJIN and the STMT options are
specified, the compiler generates a flush

instruction to precede every statement in
the program.

Model 91 and Model 195 Object-Time
Diagnostic Messages

If object-time diagnostic messages are
issued as a result of an imprecise
interrupt, the words "AT OFFSET..." are

replaced by "NEAR OFFSET...", since in
these circumstances the instruction causing
the interrupt cannot be precisely
identified.

After a multiple-exception imprecise
interrupt on a Model 91 or 195, certain
exceptions will remain unprocessed if the
ERROR condition is raised before all the
exceptions have been handled. If the
program subsequently terminates as a direct
result of the ERROR condition being raised
in these circumstances, one or more of the
following messages will be printed out.

IHES810I PROTECTION EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

IHES11I ADDRESSING EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

IHES8121 SPECIFICATION EXCEPTION
UNPROCESSED AFTER
MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

IHES13I DATA EXCEPTION UNPROCESSED
AFTER MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

IHES14I ZERODIVIDE UNPROCESSED
AFTER MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

IHES8151 OVERFLOW UNPROCESSED AFTER
MULTIPLE-EXCEPTION

IMPRECISE INTERRUPT

Chapter 6: Error and Interrupt Handling 73

CHAPTER 7: MISCELLANEOUS CONTROL PROGRAM INTERFACES .

one function of the PL/I Library is to
provide a standard interface with the
control program which can be utilized by
compiled code. Detailed implementation is
described in Chapters 3, 4, and 5. The
implementation described here concerns
support for PL/I language statements and
functions with a control program interface
that does not fall into one of the
categories discussed in those chapters.
These are the PL/I statements DISPLAY,
DELAY, STOP and EXIT, and the built-in
functions TIME and DATE.

Full and Minimum Control Systems

The full control system of IBM System/360
Operating System will enable the PL/I
Library to issue macro instructions which
support the above-mentioned statements and

functions. The relationship is as follows:
PL/1 Macro_instruction
DELAY STIMER (WAIT)
TIME TIME
DATE TIME
DISPLAY WTO, WTOR (WAIT)

Thus, the library support for language
features is as follows:

DELAY: The execution of the current task
is suspended for the required time.

EXIT and STOP: Both these statements raise
the FINISH condition and then cause

normal termination of the PL/I program. .

TIME: The time of day is returned to
the caller in the form HHMMSStht where:

HH = hours (24-hour clock)
MM = minutes

SS = seconds
tht = tenths, hundredths and

thousandths of a second

74

DATE: The date is returned to ©
the caller in the form YYMMDD where:

YY = year
MM = month
DD = day

DISPLAY: A message may be written on the
console with no interruption in
execution or, if a reply is expected,
execution is suspended until the
operator's reply is received. If the
EVENT option is used when a reply is
expected, execution is continued
without interruption until a
corresponding WAIT statement is
encountered; execution is then
suspended until a reply is received.

The multiple console support (MCS)
feature is supported for PL/I usage by
means of the ROUTCDE and DESC (route code
and message descriptor) parameters of the
WTO macro instruction. This feature allows
the use of one Master Console and up to 31
secondary consoles. The values provided
for ROUTCDE and DESC, in PL/I are:

DISPLAY ROUTCDE = 2
DESC =7
DISPLAY WITH REPLY ROUTCDE = 1
DESC =7

ERROR MESSAGES (if SYSPRINT not available)
ROUTCDE = 11
DESC 7

The minimum control system does not
support the TIME and STIMER macro
instructions. Use of the DELAY statement,
and TIME and DATE built-in functions will
result in the ERROR conditions being
raised.

I/0 EDITING AND DATA CONVERSION

PL/I allows the user a wide choice in
selecting the representation for his data,
both on the external medium and internally
in storage; considerable flexibility is
permitted in specifying changes of data
type and form. The library conversion
package is designed to implement the full
set of editing and conversion functions.

To avoid unnecessary duplication of code,
standard intermediate forms are used. This
has the effect of reducing the number of
library modules in the package to about
fifty, to cover about two hundred logical
conversions. To speed up processing,
direct routines are provided for some of
the most frequently used conversions, while
the compiler generates in-line code for
some of the simpler ones.

To restrict further the storage
requirements for the library conversion
package, the F level compiler analyses the
actual changes of data required for a
particular execution. Sometimes these are
not fully known at compile time, and then a
worst case has to be taken. From this
information, by use of the linkage editor
LIBRARY statement and external references
within the compiled modules, the loading of
conversion modules is limited to those
known to be required. This technique can
be of considerable value, especially when
only a small number of data types is used
by the source programmer. Further details
are provided in IBM System/360 Operating
System: PL/I (F) Compiler, Program Logic
Manual.

With one exception, all the modules
contained within the library conversion
package are called by means of the PL/I
standard calling sequence (described in
‘Linkage Conventions', Chapter 2). The
exception is IHEVCS (complex-to-string
director) which is called by the operating
system external standard calling sequence.

The letters in the module name indicate
the module usage; see Figure 34.

STRUCTURE OF LIBRARY CONVERSION PACKAGE

To perform a change from a source data item
to a target data item may involve a
succession of steps and the use of several
individual library modules within the

CHAPTER_8: DATA_ PROCESSING ROUTINES

package. The structure of the library
conversion package is shown in Figure 36.

In association with each individual
step, the attributes of the source or the
target fields, or of both, must be known.
The required information is provided in the
calling sequences. Each data item has a
corresponding format element descriptor
(FED) or data element descriptor (DED).
With one exception, the formats of these
control blocks are described in Appendix H.
The exception is that of a DED generated at
object time for communication between
library modules. (See Figure 35.)

3 T 1
| Letters | |
t .| |
]1 2 3 4 5 6| Meaning |
b 1 i
|} I H E D | Director |
L L d
L) T N 1
| I H E K | Picture check |
L i |
r 9
I B E V P	Conversion involving
	packed-decimal
	intermediate, except
	IHEVPG and IHEVPH
L 4 4	
T 1	
] I H E V F	Conversion involving
	floating-point
	intermediate
b ¥ {	
I B E V K	cConversion involving
	numeric fields
b 1]	
r T+ i	
I H E V S	Conversion involving
	strings]
b 4 - 1	
I B E V C	Conversion involving
	external character
	data being converted
to type string	
L 4	
v 1	
I H E V Q Direct conversion to	
improve performance	
[N 4	
v L]	
I # E U P	Mode conversions
L L J

Figure 34. Module Usage indicated by

Letters of Module Name

This DED is created when it is necessary
to convert a character representation of an
arithmetic value to an intermediate coded
arithmetic data type, prior to conversion
to a string target. The form of this DED
is the same as that for a coded arithmetic
data item (CAD), and consists of a flag
byte and precision bytes representing the
quantities p and q. As for coded data, the

Chapter 8: Data Processing Routines 75

T v 1
| | Bit |
l } T T ™" T T T==== T %
| Code | 0 { 1 { 2 | 3 | 4 | S | 6 | 7 |
F t t } $ t } 4 $- !
| | | | Non- | | [| | |
| =0 | 1 | 1 | sterling| Short | 1 | Decimal | Fixed | Real {
b 4 } } } 4 4 $- $- i
| =1 | 1 | 1 | Sterling| Long | 1 | Binary | Float | Complex |
L 4 4 L L L i 4 4 d
Note: Bits 0, 1 and 4 are always 1. The hexadecimal '10' superimposed on the DED flag

byte indicates the presence of a halfword fixed point binary variable.

set to 1 and bit 6 is set to 0.

Figure 35.

flag byte defines the attributes of the
corresponding data item; bit 1 is set to 1
to indicate that a character representation
of an arithmetic value is referred to.

Directors

The structure chart makes frequent
reference to *directors'. These modules
are used to fulfil two main purposes:

1. The matching of source element with
target element, which may not be known
at compile time.

2. The controlling of the flow at object
time by means of interpretative
information passed to them.

The latter function is best illustrated by
the arithmetic conversion director
(IHEDMA), where a single call determines
the flow through a sub-package of over
twenty arithmetic conversion routines.
(See below in 'Arithmetic Conversions'.)

There are director routines at four
levels. (See Figure 36.) They are:

1. complex format directors.

2. Input/output format directors and the
complex-to-string director.

3. String-to-arithmetic and
arithmetic-to-string directors.

4. Arithmetic conversion director.

All directors except the complex-to-string
director can be called directly from
compiled code; the complex-to-string
director is invoked from the complex format
directors or from list/data-directed input
only.

Any director can call any below it in
the structure.

76

Bit 3 is

DED Flag Byte for Character Representation of an Arithmetic Data Item

Edit~-directed 1/0

Edit-directed transmission allows the user
to specify the storage area to which data
is to be assigned or from which data is to
be transmitted and the actual form of the
data on the external medium. The
information concerning storage areas is
specified in the source program by means of
a data list, and the information about the
form of the data on the external medium by
means of a format list.

The library conversion package is
designed to implement the executable format
scheme discussed in Chapter 3. This is
done by the object time matching of 1list
item and format item through the use of the
director routines mentioned above. The set
of I/0 directors provided and their
association with the PL/I data format items
is shown in Figure 37.

I/0 EDITING

Complex Directors: Complex format items on
the external medium may have real and
imaginary parts of differing attributes.
When the list item and the target field are
of type arithmetic, this situation is
handled in the complex director by making
consecutive calls for real and imaginary
format items, and passing control to the
particular format director associated with
the format item.

When the target field is a string,
however, there are two problems with C
format items. First, the data on the
external medium must be scanned dynamically
in order to deduce the attributes of the
format item. The information derived from
this is stored in a special DED. (See
‘Structure of Library Conversion Package'.)
This DED is necessary for the conversion of
all format items and constants.

T 1
| Compiled | LWS
r T -—4 code } T 1 Level
| | | | | | No.
v t- T 4				
(————————————- 1	i			
	Complex			
r—1 format b	>	4		
	1 director			
	¢t T 4			
l				
	v	v		
	1	r 1]		
		Complex-		
		to-string		K= 4 format po——————— > 3
i 1 director			directors }-4	
	Lt	b T 1]		
1<	-—- -	--	- 1	
i]	!	
		v		
		r 1		
I		String<->		
	p—————— >	arithmetic }--		- -=>
			directors b	=->
		Lo T-——-—-- 4		
1<		-		
]				
		v	\	
		r 1	r -1	
			Mode	(I Decimal
	po———————- >	conversion	<-———=——=--	
			routines	
		L T 4	tmm—mmmgpmmmd	
L -1	bd			
v			v	
r 3	l ' 1 I			
Arithmetic			(I Direct	1
conversion	< i 1		arithmetic	
director			conversion	
L T J [S —— J				
; i				
v v v \Y				
r 1 T i	r b] T 1			
Arithmetic		Data		Picture
conversion		analysis		checking
routines		routines] routines	
L 1 [1 L J L J
Note: <-> indicates a conversion in either direction
Figure 36. Structure of the Conversion Package
Second, the base, scale and precision of imaginary parts of the C format item. Each

the real and imaginary parts have to be
compared, to determine the highest set of
attributes, so that the form of the
converted data in the string target may be
known. This is done by invoking a special
director, called the complex-to-string
director, which performs the necessary
analysis on the DEDs of the real and

item is then converted by the rules of type
conversion to coded complex and then to
string.

Input/Output Directors: The input/output
directors named above (other than C format)
perform three major functions. Because
there are slight differences between input

Chapter 8: Data Processing Routines 77

r L) T 1
| PL/I | | Module name |
| | 5 T i
| format item | Director | Input | Output |
- } % B y
| Complex | ¢ | IHEDIM | IHEDOM |
| I | | |
| Fixed and | F/E | IHEDIA | IHEDOA |
| floating point | | | |
| | | | |
| Bit string | B | IHEDID | IHEDOD |
| | | | |
| Character string | A | IHEDIB | IHEDOB |
| | | | |
| Picture | P(DEC,STL) | IHEDIE | IHEDOE |
| | P(CHAR) | IHEDIB | IHEDOB |
L i 4 L. J
Fiqure 37. Input/Output Directors for PL/I Format Items

= 1
| INPUT 1
L J
i s H X X T - 1
| String value | List item i Conversion |
[N 1 1 ¥
1 3 T T a
	Arithmetic	Character to arithmetic
Character string	character string	Character string assignment
	Bit string	Character to bit string
L 1 — 4 J		
r T T 1		
	Arithmetic	Bit string to arithmetic
Bit string	Character string	Bit string to character string
	Bit string	Bit string assignment
L K - KN]		
T T v 1		
Arithmetic	Arithmetic	Arithmetic type conversion
(including	Character string	Arithmetic to character string
expression)	Bit string	Arithmetic to bit string
1 : 4 - 4 4		
LB		
OUTPUT		
b ——— T . T 4		
List item	String value	Conversion
L 1 -— kN —— 4		
r T T 4		
Arithmetic	Character representation	Arithmetic to character string
	of data value	
b + 4 {		
Bit string	Bit string in character	Bit to character
	form	i
} 4 + {		
Character string	Character string	Character string assignment
L 1 i J
Figure 38. Conversion for List/Data Directed I/0

and output, the functions are described
under these headings.

Input: A call is made to IHEIOD to request
w bytes and a data field pointer. If the w
bytes can be obtained from the current
buffer, the address returned to the input
director is that of the data field in the
buffer itself. If not, a VDA is obtained
and the requisite field of w bytes is built
up in the dynamic area. The VDA address is
stored in WSDV in the LCA.

These two conditions are normal. If, on
the other hand, an abnormal return occurs

78

at this point, this signifies that an
ENDFILE condition exists and that a return
has been made from an ENDFILE on-unit. 1In
this case, the I/0 director must return
control to the code associated with the
next PL/I source statement, which is
pointed at by the second word of
pseudo-register IHEQCFL.

If there is no abnormal return, the
target DED is inspected by the director
routine and the first stage of the
necessary conversion process is initiated
by means of a suitable call to a routine

below the input director level. (See

structure chart, Figure 36.)

wWhen the conversion has been completed
and the data item assigned to the list
item, the input director calls the I/0
package again. At this stage, the I/0O
routine tests for the TRANSMIT condition,
and, if necessary, calls IHEERR, to specify
that the TRANSMIT condition is active, and
that the format item transmitted is
therefore suspect. In addition, any VDA
that has been allocated is freed.

Output: A call is made to the library I/0
package to obtain an address for the
external data item. If the w bytes
specified can be satisfied within the
current buffer, the address of the current
buffer pointer is returned; if not, a VDA
is obtained and the address of this dynamic
storage is passed back. The source DED is
then inspected and a call is made to the
first subroutine in the conversion package
to perform conversion.

After assignment of the data item to a
buffer area or VDA, a call to the
appropriate I/0 routine is made from the
output director. If a VDA was used, the
output field is split off into the
appropriate buffers and the dynamic storage
released.

For both input and output, control is
finally returned to compiled code.

List- and Data-directed Input/Output

The total set of conversions required by
list/data-directed I/0 is shown in Figure
38.

Since all the conversions represented
deal with change of data from one internal
representation to another, the conversion
package is fully capable of performing the
conversion for list/data-directed 1/0. The
type conversions are fully defined in the
PL/I language and the modules that
implement them are given below. Some
examples of lists/data-directed I/0 are

included in IBM System/360 Operating
System: PL/I (F) Programmer's Guide.

MODE CONVERSIONS

Since data may be declared COMPLEX, and
complex values may be written or read by
list-directed and data-directed input and
output, or by the C format item, two
routines are provided to facilitate

conversions of mode during I/0 editing and
during conversions between internal
arithmetic and string data.

TYPE CONVERSIONS

Four director routines are provided to
control the flow which enables changes
between data of type string and data of
type arithmetic, as required by the PL/I
language. These routines are used by
list-, edit- and data-directed I/0 and in
some internal conversions.

r T 1
| I TO: I
| b=-- =T - -1
| |Arithmetic| String |
| | —mmmoee
| | Bit |Character|
b 4 o e 1
| FROM: | | | |
I o | | |
| Arithmetic| - | IHEDNB | IHEDNC |
| |]] I
Bit string	TIHEDBN	-	-
Character	IHEDCN	-	-
string	I I		
L i i L J

Figure 39. Modules for Type Conversions

STRING CONVERSIONS

A set of generalized interpretive routines
is provided to support the possible string
conversions and assignments that may exist.
Each module interrogates source and target
information contained in the string dope
vectors and DEDs in order to handle
truncation, padding, and alignment for
fixed and varying strings. Figure 40 shows
the modules provided; it should be noted
that there is no difference between a
source character string with a picture and
one without, as once the data has been
checked into the source field, no further
use is made of the picture.

r

TO:

T
Character|Character with
|picture

w
Pl
ad

FROM:

—— e

Bit HEVSA| IHEVSB IHEVSF

R SpRu—

H M
R

Character

-

Figure 40.

HEVSD| IHEVSC IHEVSE
d

TP ERp——— AR PR

Modules for String Conversions

Chapter 8: Data Processing Routines 79

ARITHMETIC CONVERSIONS

A direct routine IHEVQA converts
floating-point data to fixed-point binary,
in order to provide fast processing of this
frequently used routine. Normally,
however, all conversions (including this
one) are dealt with by the library
conversion package.

This package carries out editing and
conversions for all type arithmetic source
fields which have type arithmetic target
fields. It also handles conversions of
format items and constants, which are
character representations of arithmetic
type data. The flow control through this
subpackage is achieved by the arithmetic
conversion director described below.

The method employed is to use an
intermediate form of representation
according to the form of the source data
and to relate this intermediate form to the
target data, either by direct conversion or
by use of a second intermediate form (which

implies radix change). The two
intermediate forms in use are:

1. Packed decimal intermediate (PDI)

This consists of 17 digits and a sign,
together with a one-word scale factor
(WSCF) in binary representing powers of
ten.

2. Long floating—poiht intermediate (FPI)

This is the standard internal form, and
consists of 14 hexadecimal digits.

The logical flow through the package is
shown in Figure 41.

The arithmetic conversion director
(IHEDMA) links together the modules
required for a particular arithmetic
conversion. It is called either directly
by compiled code or by other director
routines. The flag bytes in the source and
target DEDs are interrogated to determine
which modules are required for the current
conversion and their order of execution.

————————————

|Ar1thmet1c
r {conversion 1
| | director |
I et | b r 1 |
| | Sterling | VRC | | |
I->{numeric field|< 1 r 4 Binary | <--4
1 | | VKG | | VPG | constant | |
l L d l l L J '
		r 1				
	Decimal	VKB		VPB	Binary	
}->	numeric field	< 4 3 =>	fixed	<-—4		
1 data	VKF		VFD	data		
t 4 {	L 4					
{ v v						
r N 1 r - 1 r R 1 i						
]	Decimal	VPF	Library	VPA	Library	
=>1 fixed	<==——->	packed decimal	<-—-~- >	floating-point		
[data	VPD	intermediate	VFA	intermediate		
' L J L J	8 J ‘					
A A						
r > 1		r 1				
	F format	VPE i	VFC	Floating-		
p->	character 1< 9 b ->	point	<--14			
	string	VPB		VFE	data	
' L J ' ' [Jd '						
(
I et		r 1				
	E format	VPE 1		Bit string		
L->	character I < J L >	constant	K=—d			
string	VPC VPH	i				
L. J i 8 d

Note: The three-letter names, e.g., VKC, are the last three letters of the module name. A
name above the flow lines indicates a conversioh from left to right; a name below
the line indicates a conversion from right to left.

Figure 41.

80

Structure of the Arithmeric Conversion Package

The library communication area is used to
record information required by successive
modules as follows:

WBR1 Address of entry point of second
module

WBR2 Address of entry point of third
module (if required)

WRCD Target information

The conversion director then passes
control to the first module in the chain;
the first transfers control to the second,
and so on until the conversion is complete.
The last module returns to the program
which called the conversion director. All
the modules which can be first in the chain
set up by the conversion director use the
source parameters passed to this director.
The first conversion is always to the
intermediate form of the same radix as the
source. The results are stored in the
following LCA fields:

WINT Binary results
WINT
WSCF

Decimal results

Three modules in the arithmetic package
deal with data on the external medium. Two
modules handle the output of F and E format
items from packed decimal intermediate
format, and the third provides conversion
from F or E format items to packed decimal
intermediate format. The LCA fields used
for these modules are:

WFED A(FED) at input

WFDT A(FED) at output

WSWA Switches

WSWC

WOCH A(Error character): for ONCHAR
built-in function

WOFD Dope vector for ONSOURCE built-in

function

DATA CHECKING AND ERROR HANDLING

Checking is carried out on data on the
external medium for edit-, data- and list-
directed input and on internal data items
taking part in conversions.

Edit Directed

All data described by a picture is matched
against the picture description. When a P
format item is read in, this checking is
performed by one of three picture check
routines (decimal, sterling, and character)
which is called by the appropriate input
director.

F/E format items are checked against the
format element descriptor (FED). The
validity of the characters in the data item
is investigated prior to conversion to
packed decimal intermediate format.

If B format items are assigned in the
target DED to a bit string, the items are
checked in the character-to-bit module.
Otherwise, a pre-scan within the B format
input director checks that all characters
in the string are either zero or one.

If A format or B format is specified on
input without a w specification, the
compiled code calls IHEDIL (illegal-input
format director). This routine calls the
execution error package, passing an error
code. This causes a message to be printed
and the ERROR condition to be raised.

List/Data-Directed

Within the conversion package, the
constants which are converted to arithmetic
are checked in the appropriate internal
conversion modules.

Decimal constants are converted by the
F/E-to-PDI routine and are therefore
checked by that routine as above.

Binary constants are checked prior to
conversion to floating-point intermediate.

Bit string constants are checked prior

to conversion to floating-point
intermediate.

Internal Conversions

Checking of data is provided for the
following:

1. Character string to arithmetic.
2. Character string to bit string.
3. Character string to pictured character

string.

Chapter 8: Data Processing Routines 81

4. Bit string to pictured character
string.

In cases 1 to 3 above, if an invalid
character is found the CONVERSION condition
is raised; in case 4, the ERROR condition
is raised.

When CONVERSION is raised, an error code
is passed to IHEERR. The error code passed
depends:

1. On the type of operation (internal,
I1/0, or I/0 with TRANSMIT condition
raised).

2. On the various formats and conversions
involved. These consist of:

F format

E format

B format

Character string to arithmetic

Character string to bit string

Character string to pictured
character string

P format (decimal, character and
sterling)

Different ONCODE values are set for each,
and may be interrogated in an on-unit
provided for the CONVERSION condition. If
the condition is associated with I/O, it is
also possible that a TRANSMIT condition may
be active. This can be tested in the
on-unit for CONVERSION. A list of ONCODE
values is given in IBM System/360 Operating
System: PL/I (F) Programmer's Guide.

The conversion package routines set the
following information before invoking the
execution error package:

WOFD Dope vector for field scanned
WOCH Address of character in error
IHEQERR Value of the error code. For

I1/0 editing, a 1 bit is set in
bit zero.

Bits 12 to 15 are set according
to the conversion being
performed. (See Figure 42.)

In addition to the occurrence
of the CONVERSION error, the
SIZE condition can also occur in
the conversion package. Once
again, a distinction is made
between internal conversions and
conversions involving the
external medium. In the latter
case, bit zero in IHEQERR is
again set to one.

82

r T 1
| Conversion | Code |
b —--mmem—t i
F format	1
E format	2
B format	3
Character string to	4
arithmetic { i	
Character string to	5
bit string	
Character string to	6
pictured character string	
P format (decimal)	7
P format (character)	8
P format (sterling)	9
L - 4 J
Figure 42. Conversion Code Set in IHEQERR

In certain cases an illegal conversion
may be requested or an invalid parameter
may be passed to a conversion routine. 1In
these cases the conversion package calls
the error-handling subroutine, having set
register RA to point to an error code.
This causes a message to be printed which
describes the error found; the
error-handling subroutine then raises the
ERROR condition.

If a CONVERSION error occurs, the
program can proceed in three ways:

1. If system action is specified, a
message will be printed and the ERROR
condition raised.

2. If CONVERSION is disabled, the
conversion will continue, ignoring the
character in error.

3. If an on-unit exists, it will be
entered. If the on-unit returns
control to the conversion routines,
they will assume that either the
ONCHAR or ONSOURCE pseudo-variable has
been used to correct or replace the
character or field in error, and will
automatically retry the conversion.

Note: 1If the pseudo-variables have not
been used to correct the error, and if the
on-unit attempts to return control to the
conversion, a message will be printed and
the ERROR condition raised.

COMPUTATIONAL SUBROUTINES

Computational subroutines within the PL/I
Library supplement compiled code in the
implementation of operators and functions
within three main groups. These groups
are:

1. Arithmetic evaluation
2. Mathematical functions
3. Array functions

In addition to the description provided
in this document, detailed information on
algorithms and performance is published in
IBM System/360 Operating System: PL/I
Subroutine Library: Computational
Subrouthes.

A number of error and exceptional
conditions not directly covered by
PL/I-defined ON conditions may occur in

Linkage to all mathematical subroutines
is by means of the operating system
standard.

Where evaluation or conversion of an
argument is necessary, this is done prior
to the invocation of the library module.
Hence, all arguments passed to the
mathematical subroutines must be of scale
FLOAT. As such, it is assumed that the
arguments are normalized in aligned
fullword or doubleword fields for short or
long precision respectively. The results
returned are normalized similarly.

r

1
these subroutines. In these cases, a Real Arguments |
diagnostic message is printed and the ERROR v v {
condition raised. By use of the ONCODE | Short | Long |
built-in function, the cause of interrupt Function | float | float |
may be ascertained in an ERROR unit and 4 $ 4
appropriate action may be taken. A list of SQRT | IHESQS | IHESQL |
the error messages and ONCODEs is given in | EXP | IHEEXS | IHEEXL |
IBM System/360 Operating System: PL/I (F) LOG,L0G2,L0G10 | IHELNS | IHELNL |
Programmer"s Guide. SIN, COS,SIND,COSD | IHESNS | IHESNL |

TAN, TAND | IHETNS | IHETNL |
When an aggregate of data items is being ATAN, ATAND | IHEATS | IHEATL |
processed, the indexing through the SINH, COSH | IHESHS | IHESHL |
aggregate is achieved by in-line code, as TANH | IHETHS | IHETHL |
the library routines generally handle ATANH | IHEHTS | IHEHTL |
individual elements only. The array ERF, ERFC | IHEEFS | IHEEFL |
functions, however, perform their own L 4 4 J
indexing, so that only a single call from
compiled code is made. r 1
| Complex Arguments |
For modules handling data in coded form, T 4
character six of the module name indicates Short | Long |
the type of data concerned; the meanings of Function float | float |
this character are given in Figure 43, $ 4
SQRT IHESQW | IHESQZ |
r T EXP IHEEXW | IHEEXZ |
Data | Character LoG IHELNW | IHELNZ |
SIN,COS, SINH, COSH IHESNW | IHESNZ |
: Real or TAN, TANH IHETNW | IHETNZ |
Internal form Real Complex Complex ATAN, ATANH IHEATW 1 IHEATZ |
d
Binary | B u Figure 44, Mathematical Functions
Packed decimal | D v
Binary or
packed decimal F X ARITHMETIC OPERATIONS AND FUNCTIONS
Short float s W G
Long float | L Z H)
i Library arithmetic modules provide support
Figure 43. Relationship of Data Form and for all those arithmetic generic functions

Ssixth Character of Module Name

MATHEMATICAL FUNCTIONS

THe library provides subroutines to deal
with all float arithmetic generic functions
and has separate modules for short and long
precision real arguments, and also for
short and long precision complex arguments
where these are admissible.

and operations for which the F level
compiler neither generates in-line code nor
(as for the functions FIXED, FLOAT, BINARY,
and DECIMAL) uses the library conversion
package.

Linkage between compiled code and the
arithmetic modules is established by means
of the operating system standard for the
functions supported and by means of the
PL/I standard for the operators sugported.
The module description summaries provide
information about linkage to individual
modules.

Chapter 8: Data Processing Routines 83

Fixed-point data often require data
element descriptors (DEDs) to be passed in
order to convey information about precision
(p, 9). Binary data is always assumed to
be stored in a fullword correctly aligned,
with 0 < p < 31. Decimal data is always
assumed to be packed in FLOOR (p/2) + 1
bytes, where 0 < p £ 15. Where such fields
introduce high-order digits beyond the
specified precision, these digits must not
be significant.

In decimal routines, the target area is
assumed to be of the correct size to
accommodate the result precision as defined
by the language.

Where assignment to a smaller field is
required, the compiled code should generate
an intermediate field for the result and
subsequently make the assignment. This
does not apply to ADD, MULTIPLY and DIVIDE
with fixed-point decimal arguments, which
perform the assignment themselves. Such
action by compiled code avoids much

unnecessary object-time testing and enables
a clear distinction to be made between SIZE
and FIXEDOVERFLOW conditions.

Floating-point arguments are assumed to
be normalized in aligned fullword or
doubleword fields for short or long
precision respectively; the results
returned are similarly normalized.

ARRAY FUNCTIONS

The library provides support for compiled
code in the implementation of the PL/I
array built-in functions SUM, PROD, POLY,
ALL, and ANY. Calls to array function
modules are by means of the operating
system standard; the indexing routines,
which are used internally by the library,
use the PL/I standard calling sequence.

r -= 1
| ARITHMETIC OPERATIONS |
b - T e S SRt
I Operation | Binary | Decimal| Short | Long |
| | fixed | fixed | float | float |
t N F S —— . 1 i
| Real Operations |
I . —- T yoo—=—=- T Too=====—{
Integer exponentiation: x*#*n	IHEXIB	IHEXID	IHEXIS	IHEXIL
General exponentiation: x*#*y		-	IHEXXS	IHEXXL
shift-and-assign, Shift-and-load		IBEAPD	-	-
% 1 e - 1 - 4 - ,'				
Complex Operations				
b ————- - S y-o-———- T 1				
Multiplication/division: z, *z,, z,/z,	IHEMZU	IHEMZIV	-	-
Multiplication: z,*z,		-	IHEMZW	IHEMZZ
Division: z4/22		-	IHEDZW	IHEDZZ
Integer exponentiation: z#*#*n	IHEXIU	IHEXIV	IHEXIW	IHEXIZ
General exponentiation: z,**z,		-	THEXXW	IHEXXZ
L —— i i L i 3

r 1
| ARITHMETIC FUNCTIONS |
l|= . T . T N T T -—"
| Function | Binary | Decimal| sShort | Long |
| | fixed | fixed | float | float |
% L 1 i L __.|
| Real Arguments |
} T T T T ""
| MAX, MIN | IHEMXB | IHEMXD | IHEMXS | IHEMXL |
| apD | - | IHEADD | - | -]
} 1 1 L 5 - 4
| Complex Arguments |
% T T T T """
abp	- { IHEADV	-	-	
MULTIPLY	IHEMPU	IHEMPV	-	-
DIVIDE	IHEDVU	IHEDW	-	-
ABS	IHEABU	IHEABV	IHEABW	IHEABZ
L 1 i L L 4
Figure 45. Arithmetic Operations and Functions

84

r~ T T 1
	Simple arrays, and	Interleaved string
	interleaved arrays of	arrays with fixed-
	variable-length strings	length elements
L 4 4 d		
13 T v 1		
Indexers	IHEJXS	IHEJXI

| ALL, ANY | IHENL1 | IHENL2 |
L d 4 4

Note: IHEJXI is also used for indexing
through interleaved arithmetic arrays

r T T 1
| PL/I | Fixed - point | Floating-point arguments |
| functions | arguments 3 - 4
| | | Short precision | Long precision |
| b= T $-—- v T i
| | Simple |Interleaved| Simple {Interleavedl Simple |Interleaved|
t + 4 ¥ + t + 1
SUM real	IHESSF	IHESMF	IHESSG	IHESMG	IHESSH	IHESMH
Complex	IHESSX	IHESMX	IHESSG	IHESMG	IHESSH	IHESMH
	I					
PROD real	IHEPSF	IHEPDF	ITHEPSS	IHEPDS	IHEPSL	IHEPDL
complex	IHEPSX	IHEPDX	IHEPSW	IHEPDW	IHEPSZ	IHEPD2Z
F 1 + L + 4 4						
POLY real	IHEYGF	IHEYGS	IHEYGL			
complex	IHEYGX	IHEYGW	IHEYGZ			
L L 4 4 J
Figure #46. Array Indexers and Functions

In all cases, the source arguments are
arrays and the function value returned is a
scalar. The evaluation of this function
value requires only one call from compiled
code, indexing through the array being
handled internally within the library.

In the interests of efficiency, two sets
of modules are provided: those which deal
with arrays whose elements are stored
contiguously (simple arrays), and those
which also deal with arrays whose elements
are not in contiguous storage (interleaved
arrays).

In order to deal with array element
addressing, the library modules require an
array dope vector (ADV or SADV) to be
passed as an argument. The format of these
dope vectors is described in Appendix H.
The number n, the number of dimensions of
the array, is required in addition to the
ADV or SADV, and is passed as a separate
argument.

The PL/I language requires that the
scalar values resulting from the use of the
array functions, SUM, PROD, and POLY,
should be floating-point. Since the
library modules are addressing each array
- element successively, the necessary calls
to the conversion routines (to change scale
from FIXED to FLOAT) are made from the SUM,
PROD, and POLY modules which have
fixed-point arguments. In the case of ALL
and ANY functions, it is expected that any

necessary conversion to bit string will be
carried out before the library is invoked.

STRING SUBROUTINES

The library string package contains modules
for handling both bit and character
strings. Generally, individual modules
handle a particular function or operation
for bit or for character string; in the
interests of efficiency however, additional
modules are provided to deal with
byte-aligned data for some of the kit
string operations.

The functions LENGTH and UNSPEC are
handled directly by compiled code; support
for BIT and CHAR is provided in the library
conversion package.

Linkage to the string subroutines is by
means of the operating system standard for
the functions SUBSTR, INDEX and BOOL, and
by the PL/I standard for all others. The
functions REPEAT, HIGH, and LOW use the
PL/I standard as they are implemented as
entry points to the concatenation and
assign/fill routines.

The address and the maximum and current
lengths of a string are passed to library
modules by means of string dope vectors.
All string lengths supplied in SDVs are
assumed to be valid non-negative values;

Chapter 8: Data Processing Routines 85

unpredictable results will ensue if this providing the actual target field of the
condition is not satisfied. assignment as the temporary result field,

subject to the following conditions:
Conversions (e.g. of decimal integers

into binary integers for functions such as 1. If the target field is the same as a

REPEAT) and evaluation of expressions are field involved in expression

handled by the compiler, which is also evaluation, an intermediate area is

responsible for recognising instances of required to develop the result (unless

byte-alignment which are suitable for the otherwise stated in the module

byte-aligned bit functions provided. description summaries). For example,
A =B || A requires an intermediate

The general design of the string package field, but A = A §¢ B does not.

is influenced by the concept that complete

evaluation of the right-hand side of an 2. Padding of fixed-length strings does

assignment statement occurs before the not occur automatically when a string

assignment. In this evaluation, there is operation is performed, except in the

usually an intermediate stage in which a case of assignment of fixed-length

partial result is placed in a field acting character strings and fixed-length

as a temporary result field. This does not byte-aligned bit strings. Separate

prevent the compiler from optimizing by routines are available for padding.

r T I T 1

| PL/1 | PL/I | Bit String |Character|

| Operation | Function } T { String |

| | | General |Byte-aligned| |

k== 4 } } + 4

| And | - | Use BOOL | IHEBSA | - |

| or | - | Use BOOL | IHEBSO i - |

| Not | - | Use BOOL | IHEBSN | - |

| Concatenate| REPEAT | IHEBSK | - | IHECSK |

| Compare | - | IHEBSD | IHEBSC | IHECSC |

| Assign | - | IHEBSK | IHEBSM | IHECSM |

| Fill | - | IHEBSM | - | IHECSM |

| - | HIGH/LOW | - | - | IHECSM |

| - | SUBSTR | IHEBSS | - | IHECSS |

| - | INDEX | IHEBSI | - | IHECSI |

| - | BOOL | IHEBSF | - | - |

L 4 A i 1 J

Figure 47. String Operations and Functions

86

This section provides information about
individual modules of the PL/I Library. It
serves as an introduction to the more
detailed accounts given in the prefaces to
the program listings. A brief statement of
function is given; also provided are full
specifications of linkage and inter-modular
dependency. Since many library modules
invoke the execution error package
(IHEERR), no reference is made to this
module in the 'Calls' section. Appendix G
gives the lengths of the modules and
indicates their locations (SYS1.PL1LIB or
SYSl.LINKLIB).

CONTROL PROGRAM INTERFACES

The 'Calls' and 'Called by' sections
include the use of the LINK and XCTL macros
to pass control.

DATA PROCESSING

All integral values specified in the
'‘Linkage' section of the module description
will be represented internally as fullword
binary integers. Target fields will also
be fullwords unless otherwise specified or
implied (for example, for long
floating-point results).

When FIXED data is passed to the
library, a DED is associated with it in the
linkage. In cases where the DED is not
interrogated, the appropriate entry in the
'Linkage' section is marked with an
asterisk.

Complex arguments are assumed to have
real and imaginary parts stored next to
each other in that order, so that the
address of the real part suffices for both
of them. Both parts are described by the
same DED.

170 Editing and Data conversions

Target fields may, if desired, be
overlapped with source fields in all cases
except IHEVSA, IHEVSB, IHEVSC, IBEVSD,
IHEVSE, and IHEVSF.

CHAPTER_9: MODULE SUMMARIES

strings: A source string field may
coincide with a target string field in the
modules listed in Figure 48. It should be
noted that use of the same address for the
dope vectors of source string and target
string is not generally permitted, even
though the string fields themselves may be
overlapped. The exceptions to this are the
entry points IHEBSKK and IHECSKK, where a
considerable saving of time can be obtained
by using the same address for both the
first source and target SDVs.

v 1

| Sourcestarget coincidence |

L i]

L) T 1

Module | First source |Either source |

| field only | field |

4 N J

T v 1

IHEBSA | Yes I - |
IHEBSO | - | Yes |

| IHEBSK | Yes | - |
| IHEBSM | Yes] -]
IHEBSF	- i Yes	
IHECSK	Yes	-
IHECsM	Yes	-
L 4 4. J

Ccoincidence of Source and
Target Fields in some String
Modules

Figure u8.

The first byte of the result produced by
the comparison modules IHEBSC, IHEBSD, and
IHECSC contains:

Bits contents
to 1 Instruction length code 01

to 3 Condition code as below
to 7 Program mask (calling routine)

&£ NVO

The condition code is set as follows :
00 sStrings equal

01 First string compares low at first
inequality

10 First string compares high at first
inequality

Arithmetic: Target fields may, if desireqd,
be overlapped with source fields in all
cases except IHEXIU, IHEXIV, IHEXIW,

IHEXIZ, IHEXXL and IHEXXS.
Mathematical: Target fields may, if

desired, be overlapped with source fields
in all cases except IHEEFL, IHEEFS, IHELNW,
IHELNZ, IHESQW and IHESQZ.

Chapter 9: Module Summaries 87

MODULE SUMMARIES

IHEABN
Entry point: IHEABND
Function:

Default module for
Sets function code

Linkage:

None
Called by: IHEERR
IHEABU
Entry point: IHEABUO
Function:

ABS(z), where z is
binary.

Linkage:

system ABEND feature.
in register 15.

complex fixed-point

RA: A(Parameter list)

Parameter list:
A(z)
*A(DED for 2z)
A (Target)
*A (Tarqget DED)

Called by: Compiled code

IHEABV
Entry point: IHEABVO
Function:

ABS(z), where z is
decimal.

Linkage:

complex fixed-point

RA: A(Parameter list)

Parameter list:
A(z)
A(DED for z)
A(Target)
A(Target DED)

Called by: Compiled code

IHEABW
Calls: IHESQS
Entry point: IHEABWO
Function:
ABsS(z), where z is
floating-point.

88

complex short

Linkage:

RA: A(Parameter list)
Parameter list:

a(z)

A(Target)

‘Called by: Compiled code, IHESQW

IHEABZ
Calls: IHESQL

Entry point: IHEABZO

Function:

ABS(z), when z is complex long

floating-point.
Linkage:

RA: A(Parameter list)

Parameter list:

a(z)
A(Target)

Called by: Compiled code, IHESQZ
IHEADD
Calls: IHEAPD
Entry point: IHEADDO
Function:

ADD(x,y,pP,q9), Where x and y are real

fixed-point decimal, and (p,q) is the

target precision.
Linkage:s
RA: A(Parameter list)
Parameter list:
A(x)
A(DED for x)
Aly)
A(DED for y)
A(Target)
A(Target DED)
Called by: Compiled code, IHEADV
IHEADV
Calls: IHEADD
Entry point: IHEADV(

Function:

ADD(w,z,P,q), Where w and z are complex

fixed-point decimal, and (p,q) is the
target precision.

Linkages:

RA: A(Parameter list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for 2z)

A(Target)

A(Target DED)

Called by: Compiled code

IHEAPD
Calls: IHEERRB

Entry point IHEAPDA

Function:

To assign x to a target with precision

(pa., 9a2), where x is real fixed-point

decimal with precision (ps, d91), and ps

< 31.

Linkage:
RA: A(x)
RB: A(DED for x)
RC: A(Target)
RD: A(DED for target)

Called by: IHEADD, IHEDVV, IHEMPV

Entry point IHEAPDB
Function:
To convert x to precision (31,q3),
where x is real fixed-point decimal
with precision (p;, 9i), and p, < 31.
Linkage: As for IHBEAPDA
Called by: IHEADD, IHEDVV
IHEATL
Entxy point IHEATL1

Function:

ATAN(x), where x is real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code

Ent oint IHEATL2

Function:

ATAN(y,x), where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)

A(x)

A(Target)

Called bys cCompiled code, IHEATZ, IHELNZ

Entry point IHEATL3

Function:

ATAND(x), where x is real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code

Entry point IHEATLY

Function:

ATAND(y,x), where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)

A(x)

A(Target)

Called by: Compiled code

IHEATS
Entry Qgint IHEATS1
Function:

ATAN(x), where x is real short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
a(x)
A(Target)

Called by: Compiled code

Chapter 9: Module Summaries 89

Entry point IHEATS2

Function:

ATAN(y,x), where x and y are real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

Aly)

A(x)

A(Target)

Called by: Compiled code, IHEATW, IHELNW

Entry point IHEATS3

Function:
ATAND (x), where x is real short
floating-point. .
Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code

Entry point IHEATSY

Function:

ATAND(y,x), where x and y are real
short floating-point.

Linkage:
RA: A(Parameter 1list)
Parameter list:
A(y)
A(x)
A(Target)

Called by: Compiled code

IHEATW
Calls: IHEATS, IHEHTS

Entry point IHEATWN
Function:

ATAN(z), where z is complex short
floating-point.

90

Linkage:
RA: A(Parameter list)
Parameter list:
a(z)
A(Target)

Called by: Compiled code

Entry point IHEATWH
Calls: IHEATS2, IHEHTS
Function:
ATANH(z), where z is complex short
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
a(z)
A(Target)
Called by: Compiled code
IHEATZ
Calls: IHEATL, IHEHTL

Entry point IHEATZN

Calls: IHEATL2, IHEHTL
Fanction:

ATAN(z), where z is complex long
floating-point.

Linkage:
RA: A (Parameter list)
Parameter list:
a (z)
A (Target)
Called by: Compiled code

Entry point IHEATZH

Calls: IHEATL2, IHEHETL

Function:

ATANH (z), when z is complex'long
floating-point.

Linkage:
RA: A (Parameter list)
Parameter list:
A (2)
A (Target)

Called by: Compiled code

IHEBEG
Calls:

Supervisor (LINK, GETMAIN, FREEMAIN),
IHETOM

Entry point IHEBEGA
Function:
Links to IHETOM to issue a WTO macro
instruction if the PRV is longer than
4096 bytes.
Linkage: None
Called by: IHESAP, IHETSA
Entry point IHEBEGN
Function:
Links to IHETOM to issue a WTO macro
instruction if the program does not
have a main procedure.
Linkage: None
Called by: IHESAP, IHETSA, IHEMAIN
IHEBSA
Entry point: IHEBSAO

Function:

AND operator (&) for two byte-aligned bit
strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)
Called by: Compiled code
IHEBSC
Entry point: IHEBSCO
Function:
To compare two byte-aligned bit strings.
Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)
Called by: Compiled code
IHEBSD

Entry point: IHEBSDO

Function:
To compare two bit strings with any
alignment.
Linkage:
RA: A(sSDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)
Called by: Compiled code
IHEBSF
Entry point: IHREBSFO

Function:

BOOL (Bit string, bit string, string n,
Nz N3 n,).

Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of first source string)
A(SDV of second source string)
A(Fullword containing bit pattern n, n,
ns n, right justified)
A(SDV of target field)
Called by: Compiled code
IHEBSI
Entry point: IHEBSIO
Function:
INDEX (Bit string, bit string).
Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of first source string)
A(SDV of second source string)
A(Target field)
Called by: Compiled code
IHEBSK
Entry point IHEBSKA
Function:

To assign a bit string to a target
field.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Chapter 9: Module Summaries 91

Entry point IHEBSKK

Function:

Concatenate operator (||) for bit
strings.
Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)
Called by: Compiled code, IHESTGA

Entry point IHEBSKR

Function: REPEAT (Bit string,n).
Linkage:
RA: A(SDV of source string)
RB: A(n)
RC: A(SDV of target field)
Called by: Compiled code
IHEBSM
Entry point IHEBSMF

Function:

To assign a byte-aligned bit string to
a byte-aligned fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code
Entry point IHEBSMV
Function:

To assign a byte-aligned bit string to
a byte-aligned VARYING target.

Linkage: As for IHEBSMF
Called by: Compiled code
Entry point IHEBSMZ
Function:
To £fill out a bit string from its
current length to its maximum length
with zero bits.

Linkage: RA: A(SDV)

Called by: Compiled code

92

IHEBSN
Entry point: IHEBSNO

Function:

NOT operator () for a byte-aligned bit
string.

Linkage:

RA: A(SDV of operand)
RB: A(SDV of target field)

Called by: Compiled code
IHEBSO
Entry point: IHEBSOO

Function:

OR operator (|) for two byte-aligned bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code
IHEBSS

Entry point IHEESS2

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, 1i).

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV of source string)
a(id)
Dummy argument
A(Field for target SDV)

Called by: Compiled code

Entry point IHEBSS3

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, i, j).

Linkage:

RA:A(Parameter list)
Parameter list:
A(SDV of source string)
a(i)

A(3)
A(Field for target SDV)

Called by: Compiled code
IHEBST

Calls: IHEBSF, IHREBSI, IHEBSS
Entry point: IHEBSTA
Function: Translate bit string

Linkage:

RA: A(Parameter 1list)

Parameter list:
A(SOURCE/TARGET SDV)
A(REPLACEMENT SDV)
A(POSITIONAL SDV)

Called by: Compiled code.
IHEBSV

Calls:

Entry point: IHEBSVA
Function: Verify bit string

Linkage:

RA: A(Parameter 1list)
Parameter list:

A(E1 sDV)

A(E2 sSDV)

A(Result field)

Called by: Compiled code.
IHECFA
Entry point: IHECFAA
Function:

ONLOC: Locates the BCD name of the

procedure that contains the PL/I

interrupt that caused entry into the
current on-unit. If ONLOC is specified
outside an on-unit, a null string is
returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code
IHECFB
Entry point: IHECFBA

Function:

ONCODE: Returns a value corresponding to

the condition which caused the interrupt.

If specified outside an on-unit, a unique

code (0) is returned.

Linkage:
RA: A(Parameter list)
Parameter list:

A(4-byte word-aligned target)

Called by: Compiled code

IHECFC

Entry point: IHECFCA

Function:
ONCOUNT: Returns a value equal to the
number of PL/I conditions and program
exceptions, including the current one,
that have yet to be processed. A zero
value is returned if:

1. ONCOUNT is used outside an ON unit,
or

2. ONCOUNT is used in an ON unit entered

because of a precise interrupt or a
single imprecise interrupt

(This built-in function is used in
connection with the Model 91 and 195
option)

Linkage:

RA: A(Parameter list)
Parameter list:
A(4-byte word-aligned target)

Called by: Compiled code
IHECKP

Calls: Supervisor

Entry point: IHECKPS

Function:

Requests the control program checkpoint
facility to save main storage areas and
control information so that the job
step may be restarted from the check-
point.

Linkage:
IHECKPS:
RA: A(Parameter list)
Parameter list:
A(ddname SDV)
A(checkid sDV)
A(data set organization sDV)
A(Return code field)

Called by:

Compiled code (CALL IHECKPS statement)

Chapter 9: Module Summaries

Entry point: IHECKPT
Function: As for IHECKPS

Linkage: none

Called by: compiled code (CALL IHECKPT
statement)

IHECLT

Calls:

IHESA, Supervisor (CLOSE, DCBD, DELETE,
FREEMAIN, FREEPOOL, RETURN)

Entry point IHECLTA

Function:

Close files:
1. Free FCB.
2. Set file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for

record-oriented I/0.

5. Purge outstanding I/0 events,
setting event variables complete,
abnormal, and inactive.

Linkage:

RA: A(Parameter list)
Parameter list:
A(CLOSE parameter list)
A(Private adcons)

CLOSE parameter list:
A(DCLCB,)
(Reserved)
(Reserved)

A(DCLCBp)

(Reserved)

(Reserved)

(High-order byte of last argument
indicates end of parameter list)

Called by: IHEOCL

Entry point IHECLTB

Function:

To close all files when a task is
terminated.

94

Linkage:

RA: A(Parameter list)

Parameter list:
F(number of files to be closedsu)
A(Adcon list)
A(1lst FCB)

A(nth FCB)
(High-order byte of last argument
indicates end of parameter list.)
Called by: IHEOCL
IHECNT
Entry point IHECNTA

Function:

Returns count of scalar items
transmitted on last I/0 operation.

Linkage:
RA: A(Parameter list)
Parameter list:
A (DCLCB)
a(Fullword)
Called by: Compiled code

Entry point IHECNTB

Function:
Returns current line number (LINENO).
Linkage: As for IHECNTA
Called by: Compiled code
IHECSC
Entry point: IHECSCO
Function:
To compare two character strings.
Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)
Called by: Compiled code
IHECSI
Entry point: IHECSIO
Function:

INDEX (Character string, character
string).

Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of first source string)
A(SDV of second source string)
A(Target field)

Called by: Compiled code

IHECSK

Entry point IHECSKK

Function:

Concatenate operator (||) for character

strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)
Called by: Compiled code
Entry point IHECSKR
Function:
REPEAT (Character string, n).
Linkage:
RA: A(SDV of source string)
RB: A(n)
RC: A(SDV of target field)
Called by: Compiled code
IHECSM
Entry point IHECSMF

Function:

To assign a character string to a
fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code
Entry point IHECSMV
Function:
To assign a character string to a
VARYING target.
Linkage: As for IHECSMF

Called by: Compiled code

Entry point IHECSMB

Function:

To £ill out a character string from its

current length to its maximum length

with blanks.
Linkage:
RA: A(SDV)
Called by: Compiled code

Entry point IHECSMH

Function: HIGH
Linkage: As for IHECSMB
Called by: Compiled code

Entry point IHECSML

Function: LOW.
Linkage: As for IHECSMB

Called by: Compiled code

IHECSS

Entry point_ IHECSS2

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR
(Character string, i).

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV of source string)
A(L)
Dummy argument
A(Field for target SDV)

Called by: Compiled code
Entry point IHECSS3
Function:
To produce an SDV describing the
pseudo-variable or function SUBSTR
(Character string, i, 3j).
Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of source string)
a(id)

acy§
A(Field for target SDV)

Chapter 9: Module Summaries

95

Called by: Compiled code

IHECST
Calls:
Entry point: IHECSTA
Function:
Supplements translate character string
Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of SOURCE/TARGET)
A(SDV of REPLACEMENT)
A(SDV of POSITIONAL)
A(Translate table)
Called by: Compiled code.
IHECSV
Calls:
Entxy point: IHECSVA

Function: Supplements verify character
string

Linkage: RA:A(Parameter list)
Parameter list:
A(E1 sDV)
A(E2 SDV)
A(Translate table)
A(Result field)

Called by: Compiled code.
IHECTT

Calls:

IHETSA, Supervisor (CLOSE, DCBD, DELETE,

DEQ, FREEMAIN, FREEPOOL, RETURN)

Entry point IHECTTA

Function:

Close files in a multitasking
environment:

1. Free FCB.
2. sSet file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for

record-oriented I/0.
5. Purge outstanding I/0 events,

setting event variables complete,
normal, and inactive.

96

(1) Check that the file is in
the IHEQFOP chain for the
current task.

(ii) Free IOCBs, setting
associated EVENT variables
complete, abnormal, and
inactive.

(iii) sSet EVENT variables in TEVT
chain complete, abnormal,
and inactive.

(iv) For REGIONAL EXCLUSIVE
files, or INDEXED EXCLUSIVE
files with unblocked
records, dequeue locked
records and free EXCLUSIVE
blocks in the TXLV chain.

(v) For INDEXED EXCLUSIVE files
with blocked records, unlock
the files.

Linkage:

RA: A(Parameter list)
Parameter list:
A(CLOSE parameter list)
A(Private adcons)

CLOSE parameter list:
A(DCLCB,4)
A(IDENT SDV,)/0
A(IDENT DED4)/0

-

A(DCLCBp)

A(IDENT SDVp)/0

A(IDENT DEDp)/0

(High-order byte of last argument
indicates end of parameter list)

Called by: IHEOCT

Entry point IHECTTB

Function:

To close all files when a task is
terminated.

Linkage:

RA: A(Parameter list)

Parameter list:
F(number of files to be closed#*i)
A(Adcon list)
A(1st FCB)

A(nth FCB)
(High-order byte of last argument
indicates end of parameter list)

Called by: IHEOCT

Entry point IHECTTC

Function:

Implicit close for tasks detached at
undetermined points.

Linkage: as for IHECTTB

Called by: IHEOCT

IHEDBN

Calls: IHEDMA, IHEUPA, IHEUPB

Entry point: IHEDBNA

Function:
To convert a bit string to an arithmetic
target with a specified base, scale,
mode, and precision.

Linkage:

A(Source SDV)

A(Source DED)

A(Target)
A(Target DED)

RA:
RB:
RC:
RD:

Called by:
Compiled code, IHEDOA, IHEDOE, IHEDOM
IHEDCN

Calls: IHEDMA, IHEUPA, IHEUPB, IHEVQB

Entry point IHEDCNA

Function:

To convert a character string
containing a valid arithmetic constant
or complex expression to an arithmetic
target with specified base, scale,
mode, and precision. The ONSOURCE
address is stored.

Linkage:

RA:
RB:

A(source SDV)
A(source DED)
RC: A(Target)

RD: A(Target DED)
WOFD: A(Source SDV)

Called by:
compiled code, IHEDIB, IHEDOA, IHEDOE
Entry point IHEDCNB
Function:

As for IHEDCNA, but the ONSOURCE
address is not stored.

Linkage:
As for IHEDCNA, but without WOFD

Called by: As for IHEDCNA

IHEDDI
Calls:

IHEDDJ, IHEIOF, IHELDI, IHESAP, IHETSA

Entry point IHEDDIA

Function:

To read data
assign it to
according to
conventions.

from an input stream and
internal variables
symbol table information
Restrictive data list.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table,)

A (Symbol tablep)
(High-order byte of last argument
indicates end of parameter list.)
Called by: Compiled code

Entry point IHEDDIB

Function:
As for IHEDDIA, but no data list.
Linkage:

RA: A(Parameter list)
Parameter list: A(Symbol table chain)

Called by: Compiled code

IHEDDJ

Entry point: IHEDDJA

Function:

To compute the address of an array
element from source subscripts and an
ADV.

Linkage:

RA:
RB:
RC:
RD:
RE:

A (ADV)

A (DED)

A(Field for element address)
A(Ssymbol table entry, 2nd part)
A (SDV for subscripts)

Called by: IHEDDIA

Chapter 9: Module Summaries

97

IBEDDO
Calls:

IHEDDP, IHEIOF, IHELDO, IHEPRT

Entry point IHEDDOA
Function:

To convert data according to
data-directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays.

Linkage:

RA: A(Parameter list)
Parameter list:
A(symbol table entry,)

A(Symbol table entryp)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOB

Function:

As for IHEDDOA but for array variable
elements.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)
A(Element address,)

A(Symbol table entryyp)

A(Element addressp)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOC

Function:

To terminate data-directed transmiss-
ion.

Linkage: None

Called by: Compiled code

98

Entry point IHEDDOD

Function:

As for IHEDDOA, but used to support the
CHECK condition.

Linkage:
RA: A(Parameter list)
Parameter list:
A(Symbol table entry)
A(Element address)
Called by: IHEERR, IHESAPA

Entry point IHEDDOE

Function:
In the absence of a data list, to
convert all data known within a block
according to data-directed output
conventions and to write it onto an
output stream.

Linkage:
RA: A(Parameter list)
Parameter list:

A(First symbol table entry)
Called by: Compiled code
IHEDDP
Entry point IHEDDPA

Function:
To prepare an array for subscript
output operation, and to address the
first element.

Linkage:
RA: A(Field for A(VDA))
RB: A(FCB)
RC: A(Symbol table entry, 2nd part)

Called by: IHEDDO, IHEDDT

Entry point IHEDDEB

Function: To perform subscript output.
Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)

Called by: IBREDDO, IHEDDT
Entry point IHEDDPC
Function:

To address the next element.

Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)
Return codes:
BR=0: Another element
BR=4: End of array

Called ky: IHEDDO, IHEDDT

Entxy point IHEDDPD

Function:
To prepare an array for subscript
output operation for a given element.
Linkage:
RA: A(Field for A(VDA))
RB: A(FCB)
RC: A(Symbol table entry, 2nd part)
RD: A(Element)

Called by: IHEDDO, IHEDDT

IHEDDT

Calls:
Supervisor (DEQ, ENQ), IHEDDP, IHEIOF,
IHELDO, IHEPTT

Entry point IHEDDTA

Function:

To convert data according to

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)
A(Element address,)

A(Symbol table entryn)

A(Element addressp)

(High-order byte of last argument
indicates end of parameter list)

Called by: Compiled code

Entry point IHEDDTC

Function:

To terminate data-directed transmission

in a multitasking environment.
Linkage: None
Called by: Compiled code

Entxy point IHEDDTD

Function:

As for IHEDDTA, but used to support the

CHECK condition in a multitasking
environment.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Symbol table entry)
A(Element address)

data-directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays in a
multitasking environment.

Called by: IHEERR, IHETSA

Entry point IHEDDTE

Function:

In the absence of a data list, to convert
all data known within a block according
to data-directed output conventions and
to write it onto an output stream in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)

. Linkage:

A(Symbol table entryp) RA: A(Parameter list)
(High-order byte of last argument Parameter list:
indicates end of parameter list) A(First symbol table entry)

Called by: Compiled code Called by: Compiled code, IHEDDTA

Entry point IHEDDTB JHEDIA
Function: Calls:

As for IHEDDTA but for array variable
elements.

IHEDMA, IHEDNB, IHEDNC, IHEIOD, IHEUPA,
IHEUPB, IHEVCA, IHEVQB, IHEVSA, IHEVSC

Chapter 9: Module Summaries 99

Entry point IHEDIAA

Function:
To direct the conversion of F format
data to an internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code, IHEDIM

Entry point IHEDIAB

Function:
To direct the conversion of E format
data to an internal data type.
Linkage: As for IHEDIAA
Called by: As for IHEDIAA
IHEDIE
Calls:

IHEDCN, IHEIOD, IHEKCD, IHEVSC, IHEVSD,
IHEVSE

Entxy point IHEDIBA

Function:

To direct the conversion of A format
data to an internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)
Called by: Compiled code
Entry point IHEDIBB
Function:
To direct the conversion of pictured
character string data to an internal
data type.
Linkage: As for IHEDIBA
Called by: Compiled code
IHEDID

Calls:

IBEDBN, IHEDMA, IHEIOD, IHEUPA, IHEUPB,

IHEVSC, IHEVSD, IHEVSE

100

Entry point: IHEDIDA
Function:
To direct the conversion of external B
format data to an internal data type.
Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code

IHEDIE
Calls:
IHEDMA, IHEDMB, IHEDMC, IHEIOD, IHEKCA,

IHEKCB, IHEUPA, IHEUPB, IHEVSC, IHEVSD,
IHEVSE

Entry point: IHEDIEA

Function:
To direct the conversion of external data
with a numeric picture format to an
internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code, IHEDIM

IHEDIL

Entry point IHEDILA

Function:
To set up appropriate error handling
when no width specification for A
format input is given.

Linkage: None

Called by: Compiled code

Entry point IHEDILB

Function:
As for IHEDILA, but B format
Linkage: None

Called by: Compiled code

IHEDIM
Calls:

IHEDIA, IHEDIE, IHEIOD, IHEKCA, IHEVCA,
IHEVCS

Entry point: TIHEDIMA

Function:

To direct the conversion of external data
with C format to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target DED)

RC: A(Real format director)

RD: A(Real FED)

RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called by: Compiled code
IHEDMA
Transfers control to:

IHEVFD, IHEVFE, IHEVKB, IHEVKC, IHEVPE,
IHEVPF, IHEVPG, IHEVPH

Entry point: IHEDMAA

Function:

To set up the intermodular flow to effect
conversion from one arithmetic data type
to another.

Linkage:

RA: A(Source)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)

Called by:

Compiled code, 1/0 directors, IHEDBN,

IHEDCN, IHEDNB, IHEDNC, IHELDI, IHEPDF,
IHEPDX, IHEPSF, IHEPSX, IHESMF, IHESMX,
IHESSF, IHESSX, IHEUPB, IHEVCS, IHEVFA,
IHEVFB, IHEVFC, IHEVPA, IHEVPB, IHEVPC,
IHEVPD, IHEVKF, IHEVKG, IHEYGF, IHEYGX

IHEDNB

Calls: IHEDMA, IHEVSA

Entry point: IHEDNBA

Function:
To convert an arithmetic source with
specified base, scale, mode, and

precision to a fixed-length bit string or
a VARYING bit string of specified length.

Linkage:
RA: A(Source)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
Called by:

Compiled code, IHEDI, IHEDIE, IHEDOD,
IHEVCS

IHEDNC
Calls:
IHEDMA, IHEUPA, IHEVQC, IHEVSC, IHEVSE
Entry point: IHEDNCA
Function:
To convert an arithmetic source of
specified base, scale, mode, and
precision to a character string or a
pictured character string.
Linkage:
RA: A(Source)
RB: A(Source DED)
RC: A{(Target SDV)
RD: A(Target DED)
Called by:

Compiled code, IHEDIA,
IHEDOB, IHELDI, IHELDO,

IHEDIE, IHEDOA,
IHEVCS

IHEDOA
Calls:

IHEDBN, IHEDCN, IHEDMA, IHEIOD, IHEVQC

Entry point IHEDOAA

Function:

To direct the conversion of internal
data to external F format.

Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDOAB

Function:

To direct the conversion of internal
data to external E format.

Chapter 9: Module Summaries 101

Linkage: As for IHEDOAA
Called by: As for IHEDOAA
' IHEDOB

Calls:

IHEDNC, IHEIOD, IHEVSB, IHEVSC, IHEVSE,

IHEVSF

Entry point IHEDOBA

Function:

To direct the conversion of internal
data to external A(w) format.

Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDOBB

Function:

To direct the conversion of internal
data to external A format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: Compiled code

Entry point IHEDOBC

Function:
To direct the conversion of internal
data to external pictured character
format.
Linkage: As for IHEDOBA
Called by: Compiled code
IHEDOD
Calls: IHEDNB, IHEIOD, IHEVSB, IHEVSC
Entry point IHEDODA
Function:
To direct the conversion of internal

data to external B(w) format.

102

Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDODB

Function:

To direct the conversion of internal
data to external B format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: Compiled code
IHEDOE
Calls:
IHEDBN, IHEDCN, IHEDMA, IHEIOD, IHEVSB
Entry point: IHEDOEA
Function:
To direct the conversion of internal data
to external data with a numeric picture
format.
Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)
Called by: Compiled code, IHEDOM
IHEDOM
Calls:
IHEDBN, IHEUPA, IHEUPB, IHEVCA, IHEVCS
Entry point: IHEDOMA

Function:

To direct the conversion of an internal
data type to external C format data.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

RC: A(Real format director)

RD: A(Real FED)

RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called by: Compiled code

IHEDSP

Calls: supervisor (WAIT, WTO, WTOR,
GETMAIN, POST, FREEMAIN, CHAP)

Entry point: IHEDSPA

Function:

To write a message on the operator's
console, with or without a reply. The
EVENT option can be used for a message
with a reply.

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV for message)
A(sDV for reply)
A(Event variable)
(The parameter list is either one,
two, or three elements long,

depending on the use of the REPLY and

EVENT options. The high-order byte
of the last argument indicates the
end of the parameter list.)

Called by: Compiled code

IHEDUM
Calls:

Supervisor (ABEND, LINK, POST, SNAP,
WAIT), IHEQMA, IHESAFQ IHETSA, IHEZZC

Entry point IHEDUMC
Function:

Dump current task and then continue
execution.

Linkage:
RA: A(Parameter list)
Parameter list:
F(Number in range 0 through 255)

Called by: Compiled code (CALL IHEDUMC
statement) ’

Entxy point IHEDUMJ
Function:

Dump all tasks and then continue
execution.

Linkage: As IHEDUMC

Called by: Compiled code (CALL IHEDUMJ
statement)

Entry point IHEDUMP

Function:
Dump all tasks and terminate major
task.

Linkage: As IHEDUMC

Called by: Compiled code (CALL IHEDUMP
statement)

Entry point IHEDUMT

Function:

Dump current task and then terminate
it.

Linkage: As IHEDUMC

Called by: Compiled code (CALL IHEDUMT
statement)

IHEDVU

Entry point: IHEDVUO

Function:

DIVIDE(w,2,p,q), Wwhere w and z are
complex fixed-point binary, and (p,q) is
the target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

Alw)

A(DED for w)

A(z)

A(DED for 2)

A(Target)

A(DED for target)

Called by : Compiled code
IHEDVV

Calls: IHEAPD

Entry point: IHEDVVO

Function:

DIVIDE(w,z,p,q), where w and z are
complex fixed-point decimal, and (p,q) is
the target precision.

Chapter 9: Module Summaries 103

Linkage: Entry point IHEEFLC

RA: A(Parameter list) Function:

Parameter list:
A(wW) ERFC(x), where x is real long
A(DED for w) floating-point.
a(z)
A(DED for z) Linkage: As for IHEEFLF
A(Target)
A(DED for target) : Called by: Compiled code

Called by: Compiled code IHEEFS

Calls: IHEEXS
IHEDZW
Entry point IHEEFSF

Entry point: IHEDZWO

Function:
Function: ERF(x), where x is real short
floating-point.
Z4/23, Where z, and z, are complex short
floating-point. Linkage:
RA: A(Parameter list)
Linkage: Parameter list:
aA(x)
RA: A(z,) A(Target)
RB: A(z3)
RC: A(Target) Called by: Compiled code
Called by: Compiled code Entry point IHEEFSC
IHEDZZ Function:
Entry point: IHEDZZO ERFC(x), where x is real short

floating-point.
Function:
Linkage: As for IHEEFSF
2,/22, Where z, and z, are complex long

floating-point. Called by: Compiled code
Linkage: IHEERD
RA: A(z,) Function:
RB: A(Zz)
RC: A(Target) Non-resident part of the error-handling
routines. It contains the
Called by: Compiled code data-processing error messages, and when
required is dynamically loaded from
IHEEFL IHEESM (Versions 3 and 4).
Calls: IHEEXL IHEERE
Entry point IHEEFLF Function:
Function: Non-resident part of the error-handling
routines. It contains the input/output
ERF(x), where x is real long error messages, and when required is
floating-point. dynamically loaded from IHEESM (Versions
Linkage: 3 and 4).
RA: A(Parameter list) IHEERI
Parameter list:
A(x) Function:
A(Target)

. Non-resident part of the error-handling
Called by: Compiled code . routines. It contains the remaining

104

error messages, that is, those not
contained in IHEERD, IHEERE, IHEERO and
IHEERP, and when required is dynamically
loaded from IHEESM (Versions 3 and 4).

THEERN
Function:

Non-resident part of the error package.
It contains the error messages, and is
dynamically loaded as required by IHEERR
(Version 1) or IHEESS (Version 2).

IHEERO
Function:

Non-resident part of the error-handling
routines. It contains the error
messages, and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

IHEERP
Function:

Non-resident part of the error-handling
routines. It contains the error
messages, and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

IHEERR
Calls:

Supervisor (LINK, SPIE), IHEDDO, IHEDDT,
IHEERS (Version 1), IHEESM, IHEESS
(Version 2), IHEM91, IHEPRT, IHEPTT,
IHESAP, IHETER, IHETSA

IHEERRE calls: LINK, ABEND with DUMP and
STEP options

Entry point IHEERRA (Program Interrupt):

Function:

To determine the identity of the error or
condition that has been raised, and to
determine what action must be taken on
account of it. Several courses of action
are possible, including combinations of:

(1) Entry into an on-unit

(2) sNapP

(3) No action ~ return to program

(4) Print error message and terminate

(5) Print error message and continue

(6) set standard results into float
registers

(7) Branches to IHEM91 for imprecise
interrrupts.

Linkage: None

Called by: Supervisor

Entry point IHEERRB (ON Conditions):

Function: As for IHEERRA.
Linkage:

RA: A(DCLCB) (for I/0 conditiomns)
IHEQERR: Error code

Called by: Compiled code, library modules
Entry point IHEERRC (Non-ON errors):
Function: As for IHEERRA.
Linkage:
RA: A(Two-byte error code)
A(Four-byte code if source program
error)
Called by: Compiled code, library modules
Entry point IHEERRD (CHECK, CONDITION):
Function: As for IHEERRA.
Linkage:
RA: A(Parameter list)
Parameter list:
One-byte error code
Three-byte A(X)
X: Symbol table
X: Symbol table (CHECK variable), or
Symbol length and name(CHECK label),
or
Identifying CSECT (CONDITION)
Called by: Compiled code
Entry point IHEERRE
Function:
To accept control when a program
interrupt occurs in IHEERR or in
modules that IHEERR calls or links to;
to link to IHETOM to write a disaster
message on the console; to terminate
the program and to provide an operating
system ABDUMP.
Linkage: None
Called by: Supervisor
IHEERS
Entry point: IHEERSA
Function:
SNAP: To determine and record the
location of the point of interrupt and to

print the procedure trace-back
information associated with it.

Chapter 9: Module Summaries 105

Linkage:

RA: A(Third word of a library VDA to
be used as a save area and message
buffer): words 21 to 23 of the VDA
are used to pass the following
parameters:

21: A(Interrupt VDA)/0
22: A(PRINT routine)
23: A(Current DSA)

Called by: IHEERR (Version 1)

IHEERT

Function:

Non-resident part of the error-handling
routines. It contains the multitasking
error messages, and is dynamically loaded
when required from IHEESM or IHETEX
(Version 4).

IHEESM
Calls:
Supervisor (DELETE, DEQ, ENQ, LOAD),

IHEERD, IHEERE, IHEERI, IHEERO, IHEERP,
IHEERT, IHEPRT, IHEPTT, IHESAP, IHETSA

Entry point IHEESMA

Function:

To print out SNAP and system action
messages.

Linkage:

RA: A(First word of a library VDA to be
used as a save area and message
buffer)

RH: A(Current DSA)

Also passed are:
A(IHEPTTB) or A(IHEPRTB): current LWE
A(;Hé%gAL) or A(IHESADE) : current LWE
A(;HéggAF) or A(IHESAFD): current LWE
Le;gigzof PRV: current LWE+102

Called by: IHEERR (Versions 3 and &)
Entry point IHEESMB
Function:
To print CHECK (label) system action

messages.

106

Linkage:

RA: A(Label)
RB: A(Length of label)

Also passed:
A(IHEPTTB) or A(IHEPRTB): Current LWE
+ 124

Called by: IHEERR (Versions 3 and 4)

IHEESS

Calls: IHEERN, IHEPRT, IHESAP, IHETSA

Entry point IHEESSA

Function:

To print out SNAP and system action
messages .

Linkage:

RA: A(First word of a library VDA to be
used as a save area and message
buffer)

Also passed are:

A(Interrupt VDA/0O): current LWE + 96
A(Current DSA): current LWE + 100
A(IHESADE) : current LWE + 104
A(IHESAFE) : current LWE + 108
A(IHEPRT): current LWE + 112

Called by: IHEERR (Version 2)
Entr oint IHEESSB
Function:

To‘print CHECK (label) system action
messages .

Linkage:

RA: A(Label)
A(Length of label)

Also passed:
A(IHEPRTB): current LWE + 112
Called by: IHEERR (Version 2)
IHEEXL
Entry point: IHEEXLO
Function:

EXP(x), where x is real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(X)
A(Target)
Called by:
Compiled code, IHEEFL, IHEEXZ, IHESHL,
IHESNZ, IHETHL, IHEXXL
IHEEXS

Entry point: IHEEXSO

Function:
EXP(x), where x is real short
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by:

Compiled code, IHEEFS, IHEEXW, IHESHS,
IHESNW, IHETHS, IHEXXS

IHEEXW
Calls: IHEEXS, IHESNS
Entry point: IHEEXWO
Function:

EXP(z), where z is complex short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code, IHEXXW
IHEEXZ
Calls: IHEEXL, IHESNL
Entry point: IHEEXZO
Function:

EXP(z), where z is complex long
floating~-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(2)
A(Target)

Called by: Compiled code, IHEXXZ

IHEHTL

Calls: IHELNL

Entry point: IHEHTLO

Function:
ATANH(x), where x is real long
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHEATZ

IHEHTS

Calls: IHELNS

Entry point: IHEHTSO

Function:
ATANH (x), where x is real short
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHEATW

IHEIBT

This module is used in a multitasking
environment and is equivalent to module
IHEIOB in a non-multitasking environment.
Calls:

Supervisor (DEQ,ENQ), IHEIOP, IHEOCT

Chapter 9: Module Summaries 107

Entry point IHEIBTA 1. Open
2. Transmit error

Function: 3. Invalid

To initialize the PUT operation, and to
check the file status, in a Linkage: As for IHEIBTC
multitasking environment:

Called by: Compiled code

1. Open
2. Transmit error
3. Invalid Entry point IHEIBTE
Function:
Linkage:
To initialize PUT, and perform PAGE and
RA: A(Parameter list) LINE, and to check the file status, in
Parameter list: a multitasking environment:
A(DCICB)
A(Abnormal return) 1. Open
2. Transmit error
Called Ly: Compiled code 3. Invaliad

Linkage: As for IHEIBTC
Entry point IHEIBTB

Called by: Compiled code

Function:
To initialize PUT, and perform PAGE, Entry point IHEIBTT
and to check the file status, in a
multitasking environment: Function:
1. Open. To terminate the PUT operation, in a
2. Transmit error multitasking environment.
3. Invalid

Linkage: None
Linkage: As for IHEIBTA

Called by: Compiled code
Called by: Compiled code

Entry point IHEIBTC IHEIGT
Function: Entry point: IHEIGTA

To initialize PUT, and perform SKIP,
and to check the file status, in a Function:
multitasking environment:
As for IHEINT
1. Open
2. Transmit error IHEINT
3. Invalid
This module is used in a multitasking
Linkage: environment and is equivalent to module
: IHEION in a non-multitasking environment.
RA: A(Parameter list)

Parameter list: Calls:
A(DCICB)
A(Aknormal return) Supervisor (CHAP, FREEMAIN, GETMAIN),
A(Expression value) IHEITB, IHEITC, IHEITD, IHEITE, IHEITF,

IHEIG, IHEIH, IHEIJ, IHEITP, IHEOCT
Called by: Compiled code
Entry point: IHEINTA
Entry point IHEIBTD

Function:
Function:
To verify a RECORD I/0 request and to
To initialize PUT, and perform LINE, invoke the appropriate data management
and to check the file status, in a interface module to perform the required
multitasking environment: operation, in a multitasking environment.

108

Linkage:

RA: A(Parameter list)

Parameter list:
"A{DCLCB) ‘
A(RDV)/ (IGNORE factor)
A (EVENT variable)/ (0)/A(Error return)
A (KEY | KEYFROM|{KEYTO SDV)/(0)
A(Request control block)

Called by: Compiled code

IHEIOA

Calls: IHEIOP, IHEOCL, IHEOCT

Entry point IHEIOAA

Function:

To initialize the GET operation, and to
check the file status:

1. oOpen

2. Endfile

3. Invalid
Linkage:

RA: A(Parameter list)
Parameter list:
A(DCLCB)
A(Abnormal return)

Called by: Compiled code

Entry point IHEIOAB

Function:

To initialize the GET operation, with
the COPY option, and to check the file

status:
1. Open
2. Endfile
3. Invalid
Linkage: As for IHEIOAA

Called by: Compiled code

Entry point I
Function:

IOAC

To initialize the GET operation with
the SKIP option, and to check the file

status:
1. Open
2. Endfile
3. 1Invalid

Linkage:
RA: A(Parameter list)
Parameter list:
A (DCLCB)
A(Abnormal return)
A(Expression value)
Called by: Compiled code
Entry point IHEIOAT
Function:
To terminate the GET operation.
Linkage: None
Called by: Compiled code
IHEIOB
Calls:
IHEIOP, IHEOCL

Entry point IHEIOBA

Function:

To initialize the PUT operation, and to
check the file status:

1. Open
2. Transmit error
3. 1Invalid
Linkage:
RA: A(Parameter list)
Parameter list:
A (DCLCB)
A(Abnormal return)
Called by: Compiled code
Entry point IHEIOBB
Function:

To initialize PUT, and perform PAGE,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIOBA
Called by: Compiled code
Entry .point IHEIOBC
Function:
To initialize PUT, and perform SKIP,
and to check the file status:

Chapter 9: Module Summaries 109

1. Open
2. Transmit error
3. 1Invalid

Linkage:
RA: A(Parameter -list)
Parameter list:
A(DCLCB)
A(Abnormal return)
A(Expression value)

Called by: Compiled code

Entry point IHEIOBD

Function:

To initialize PUT, and perform LINE,
and to check the file status:

1. Open

2. Transmit error

3. Invalid
Linkage: As for IHEIOBC

Called by: Compiled code

Entry point IHEIOBE

Function:

To initialize PUT, and perform PAGE and

LINE, and to check the file status:
1. Open
2. Transmit error
3. Invalid
Linkage: As for IHEIOBC
Called by: Compiled code

Entry point IHEIOBT

Function:
To terminate the PUT operation.
Linkage: None
Called by: Compiled code
IHEIOC
Calls: IHESAP, IHETSA

Intry point IHEIOCA

Function:

To initialize the GET operation, with

the STRING option.

110

Linkage:

RA: A(Parameter list)
Parameter list:

A (sDV)

A (DED)

Called by: Compiled code

Entry point IHEIOCB

Function:

To initialize the GET operation, with
the STRING and COPY options.

Linkage: As for IHEIOCA

Called by: Compiled code

Entry point IHEIOCC

Function:

To initialize the PUT operation, with
the STRING option.

Linkage: As for IHEIOCA

Called by: Compiled code

Entry point IHEIOCT

Function:

To terminate the GET or PUT operations,
with the STRING option.

Linkage: None

Called by: Compiled code

IHEIOD

Calls: IHEIOF, IHESAP, IHEPRT, IHEPTT,

IHETSA

Entry point IHEIODG

Function:

To obtain the next data field from the
record buffer(s).

Linkage:
Library communication area (WSDV)

Called by: Format directors, IHEIOX

Entry point IHEIODP

Function:

To obtain space for a data field in the
record buffer(s).

Linkage: As for IHEIODG

Called by: Format directors, IHEIOX

Entry point IHEIODT
Function:

To terminaté the data field request.

Linkage: As for IHEIODG
called by: Format directors

IHEIOF

Calls: Data management {QSAM)

Entry point: IHEIOFA

Function:
To obtain logical records via data
management interface modules, and
initialize FCB record pointers and
counters.

Linkage: RA: A(FCB)

Qalled bys
IHEDDI, IHEDDO, IHEDDT, IHEIOD, IHEIOP,
IHEIOX, IHELDI, IHELDO, IHEOCL, IHEOCT,
IHEPRT, IHEPTT

IHEIOG

Entry point: IHEIOGA

Function:

As for IHEION

IHEION

This module is used in a
non-multitasking environment and is
equivalent to module IHEINT in a
multitasking environment.

Calls:

Supervisor (FREEMAIN, GETMAIN), IHEITB,
IHEITC, IHEITD, IHEITE, IHEITF, IHEITG,
IHEITP, IHEOCL

Entry point: IHEIONA
Function:

To verify a RECORD I/0 request and to

invoke the appropriate data management

interface module to perform the required
operation, in a non-multitasking
environment.

Linkage:

RA: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /7 (IGNORE factor)
A(EVENT variable)/ (0)/A(Error return)
A(KEY| KEYFROM|KEYTO SDV)/(0)
A(Request control block)
Called by: Compiled code
IHEIOP
Calls: IHEIOF
Entr oint IHEIOPA
Function: PAGE option/format.
Linkage: No explicit parameters
Called by: Compiled code, IHEIOB, IHEIBT
Entry point IHEIOPB
Functions: SKIP option/format,
Linkage:

RA: A(FED)
FED: Halfword binary integer

called by: Compiled code, IHEIOA, IHEIOB,
IHEIBT

Entry point IHEIOPC
Function: LINE option/format.
Linkage: As for IHEIOPB
Called by: As for IHEIOPA
IHEIOX
Calls: IHEIOD, IHEIOF
Entry point IHEIOXA
Function:
To skip next n characters in record(s).
Linkage:

RA: A(FED)
FED: Halfword binary integer

Called by: Compiled code
Entry point IHEIOXB
Function:
To place n blanks in record(s).
Linkage: As for IHEIOXA
Called by: Compiled code

Chapter 9: Module Summaries 111

Entry point IHEIOXC
Function: To position to COLUMN(n).
Linkage: As for IHEIOXA
Called by: Compiled code

IHEITB

Calls:

Data management (BSAM), Supervisor (CHAP,
GETMAIN)

Entry point: IHEITBA
Function:
To provide the interface with BSAM for:

1. CONSECUTIVE data sets with the
UNBUFFERED attribute.

2. REGIONAL data sets, whether or not
UNBUFFERED, opened for INPUT/UPDATE

Linkage:

RA: A(FCB)

RB: A(Parameter list)

Parameter list:
A (DCLCB)
A(RDV) /A (IOCB) /A (IGNORE factor)/A(sSDV)
A(Event variable)/(0)
A (KEY | KEYFROM|KEYTO SDV)/(0)
A(Request control block)

Called by: IHEION, IHEINT
IHEITC
Calls:

Data management (BSAM), Supervisor (CHAP,
GETMAIN)

Entry point: IHEITCA
Function:

To provide the interface with BSAM for
creating REGIONAL data sets when opened
for SEQUENTIAL output.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A (DCLCB)
A(RDV)/A(IOCB)
A (Event variable)/(0)/A(Abnormal
return)
A (KEY | KEYFROM sbV) / (0)
A(Request control block)

Called by: IHEION, IHEINT, IHEOCL, IHEOCT

112

IHEITD
Calls:

Data management (QISAM), Supervisor
(GETMAIN), IHESAP, IHETSA

Entry point: IHEITDA

Function:

To provide the interface with QISAM for
creating or accessing fixed length record
INDEXED data sets when opened for
SEQUENTIAL access.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A (DCLCB)
A(RDV) /A (SDV)
A(Exxror return)/(0)
A(KEY| KEYFROM|KEYTO SDV)/ (0)
A(Request control block)

Called by: IHEION, IHEINT
IHEITE
Calls:

Data management (BISAM), Supervisor
(GETMAIN), IHESAP

Entry point: IHEITEA
Function:

To provide the interface with BISAM for
accessing fixed length record INDEXED
data sets opened for DIRECT access in a
non-multitasking environment.

Linkage:

RA: A(FCB)

RB: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /A (IOCB) /A(SDV)
A(Event variable)/ (0)
A(KEY | KREYFROM SDV)/(0)
A(Request control block)

Called by: IHEION, IHEOSW
IHEITF
Calls:

Data management (BDAM), Supervisor .-
(GETMAIN), IHESAP

Entry point: IHEITFA

Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A (DCLCB)
A(RDV)/A(IOCB)/A(SDV)
A (Event variable)/(0)
A (KEY | KEYFROM SDV)/(0)
A (Request control block)

Called by: IHEION

IHEITG
Calls: Data management (QSAM)

Entry point: IHEITGA

Function:

To provide the interface with QSAM for
CONSECUTIVE data sets opened for RECORD
I/70 with the BUFFERED attribute.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A (DCLCB)

A (RDV) /A (SDV)

A(Error return)/(0)

a(0)

A(Request control block)

Called by: IHEION, IHEINT
IHEITH
Calls:

Data management (BISAM), Supervisor
(CHAP, DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITHA

Function:
To provide the interface with BIsaMm for
accessing fixed length record INDEXED
data sets opened for DIRECT access in a
multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /A(IOCB)/A(SDV)
A(Event variable) /(0)
A(KEY | KEYFROM SDV)/(0)
A(Request control block)

Called by: IHEINT, IHETSW

IHEITJ

Calls:

Data management (BDAM), Supervisor (CHAP,
DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITJA
Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A(RDV) /A(IOCB)/A(SDV)
A(Event variable)/ (0)
A(KEY | KEYFROM SDV) /(0)
A(Request control block)

Called by: IHEINT
IHEITK
Calls:

Data Management (QSAM), Supervisor
(GETMAIN, FREEMAIN)

Entry point: IHEITKA
Function:

To provide the interface with QSaM for
consecutive data sets opened for RECORD
I/0 Input with the BUFFERED attribute and
VS or VBS format records.

Linkage:

RAa: A(FCB)
RB: A(Parameter list)
Parameter list:

A(DCLCB)

A(RDV) /A (SDV)

A(Error Return)/(0)

a(0)

A(Request Control Block)

Called by: IHEION, IHEINT

Chapter 9: Module Summaries 113

IHEITL

Calls:
Data Management (QSAM), Supervisor
(GETMAIN, FREEMAIN)

Entry point: IHEITLA

Function:
To provide the interface with QSAM for
consecutive data sets opened for RECORD

I/0 Output with the BUFFERED attribute
and VS or VBS format records.

Linkage: as for IHEITK

Called by: IHEION, IHEINT, IHEOCL
IHEITM
Calls:

Data management (BISAM), Supervisor
(GETMAIN), IHESAP

Entry point: IHEITMA
Function:

To provide the interface with BISAM for

accessing variable length record INDEXED
data sets opened for DIRECT access in a

non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A (RDV) /A(IOCB) /A (SDV)
A (EVENT variable)/ (0)
A(KEY | KEYFROM SDV)/ (0)
A (Request control block)

Called by: IHEION, IHEOSW
IHEITN
Calls:

Data management (QISAM), Supervisor
(GETMAIN), IHESAP, IHETSA

Entry point: IHEITNA

Function:
To provide the interface with QISAM for
creating or accessing variable length

record INDEXED data sets when opened for
SEQUENTIAL access.

114

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A(RDV) /A (SDV)
A(Error return)/(0)
A(KEY| KEYFROM|KEYTO SDV)/(0)
A(Request control block)

Called by: IHEION, IHEINT

IHEITO
Calls:

Data management (BISAM),
SUPERVISOR (CHAP,DEQ, ENQ, GETMAIN) , IHETSA

Entry point: IHEITOA

Function:

To provide the interface with BISAM for

accessing variable length record INDEXED
data sets opened for DIRECT access in a

multitasking environment.

Linkage:

RA: A(FCB)

RB: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /A (IDCB)/A(SDV)
A(EVENT variable)/ (0)
A(KEY|KEYFROM SDV)/(0)
A(Request control block)

Called by: IHEINT, IHETSW
IHEITP
Calls: Data management (QTAM)

Entry point: IHEITPA

- Function:

To provide the interface with QTAM for
teleprocessing files opened for record
I/0.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A(RDV) /A (SDV)
A(Exrror return)/(0)
A(KEY SDV)
A(Request control block)

Called by: IHEION, IHEINT

IHEJXI

Calls: IHESAP, IHETSA

Entry point IHEJXII

Function:
To initialize IHEJXI to give bit

addresses, and to find the first
element of the array.

Linkage:
RA: A(ADV)
RB: A(Number of dimensions)

On return:
RA: Bit address of first element

Called by: IHENL2, IHESTG

Entxry point IHEJXIY

Function:

As for IHEJXII but for byte addresses.

Linkage:

RA: A(ADV)

RB: A(Number of dimensions)
on return:

RA: A(First element)

called by:

IHEOSW, IHEPDF,
IHEPDX, IHEPDZ,
IHESMX, IHESTG,

IHEPDL,
IHESMF,
IHETSW

IHEPDS,
IHESMG,

IHEPDW,
IHESMH,

Entry point IHEJXIA

Function:
To find the next element of the array.
Linkage:

No explicit arguments
Implicit arguments:
ILCA
VDA, obtained in initialization
Oon return:
RA: Bit or byte address of the next
element
BR=0: Normal return
BR=4: If the address of the last
element of the array was provided
on the previous normal return

Called by:

All modules calling IHEJXII and IHEJXIY

IHEJXS

Entry_.point IHEJXSI

Function:

To find the first and last elements of
an array and to give their addresses as
bit addresses.

Linkage:

RA: A(ADV)

RB: A(Number of dimensions)
On_Return:

RO: Bit address of first element
RA: Bit address of last element

Called by: IHENL1

Ent oint IHEJXSY

Function:
As for IHEJXSI but for byte addresses.
Linkage:

RA: A(ADV)

RB: A(Number of dimensions)
On_return:

RO: A(First element)

RA: A(Last element)

Called by:

IHEPSF, IHEPSL, IHEPSS, IHEPSW,
IHEPSZ, IHESSF, IHESSG, IHESSH,
IHENL1, compiled code for
initialization purposes

IHEPSX,
IHESSX,

IHEKCA

Entry point: IHEKCAA

Function:
To check that external data with a
decimal picture specification is valid
for that specification.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDIE, IHEDIM

IHEKCB
Entry point: IHEKCBA
Function:

To check that external data with a

sterling picture specification is valid
for that specification. '

Chapter 9: Module Summaries 115

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDIE

IHEKCD

Entry point IHEKCDA

Function:

To check that external data with a
character picture specification is
valid for that specification. The
ONSOURCE address is stored.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDIB

Entry point IHEKCDB

Function:

As for IHEKCDA, but the ONSOURCE
address is not stored.

Linkage: As for IHEKCDA
Called by: IHELDI
IHELDI
Calls:

IHEDCN, IHEDMA, IHEDNB, IHEDNC, IHEIOF,
IHERCD, IHEPRT, IHEPTT, IHESAP, IHETSA,
IHEUPA, IHEUPB, IHEVCA, IHEVCS, IHEVSC,
IHEVSD

Entry point IHELDIA

Function:

To read data from an input stream and
to assign it to internal variables
according to list-~directed input
conventions.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Variable,)
A(DED,)

A(Variablep)

A(DEDp)
(High-order byte of last argument
indicates end of parameter list.)

116

Called by: Compiled code

Entry point IHELDIB

Function:
As for IHELDIA but for single
variables. '
Linkage:

RA: A(Variable)
RB: A(DED)

Called by: Compiled code

Entry goint IHELDIC
Function:

To scan the value field (entry for
data-directed input).

Linkage:

RA: A(Buffer sDV)
RB: A(Control block)
Control block: H'VDA count so far®
X'Flag box' (one byte)
Return codes:
BR=0: Not last item
BR=U4: Last item
BR=8: End of file encountered before
complete data field collected

Called by: IHEDDI
Entry.point IHELDID
Function:

To assign a value to a variable (entry
for data-directed input).

Linkage:
RA: A(Variable)
RB: A(DED)
RC: A(Control block)
control block: H'VDA count so far'
X'Flag box' (one byte)
Called by: IHEDDI
IHELDO
Calls: IHEDNC, IHEIOF, IHEVSB, IHEVSC

Entry point IHELDOA

Function:

To prepare data for output according to
list-directed output conventions, and
to place it in an output stream.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Variable,)
A(DED,)

A(Variablep)

A(DEDp)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code, IHEDDT

Entry point IHELDOB

Function:

As for IHELDOA, but for only one item
of the list of data.

Linkage:

RA: A(Variable)
RB: A(DED)
Called by: Compiled code, IHEDDT

Entry point IHELDOC

Function:

As for IHELDOA, but used by
data-directed output.

Linkage:

RA: A(vVariable)
RB: A(DED)
RC: A(FCB)

Called by: IHEDDO, IHEDDT

THELNL
Entry point IHELNLE

Function:

LOG(x), where x is real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called Ly:

IHELNZ, IHEXXL,

Compiled code, IBEHTL,
IHEXXZ

Entry point IHELNL2

Function:

L0G2(x), where x is real long
floating-point.

Linkage: As for IHELNLE
Called by: As for IHELNLE

Entry point IHELNLD

Function:

1L0G10(x), where x is real long
floating-point.

Linkage: As for IHELNLE
Called by: As for IHELNLE
IHELNS

Entry point IHELNSE

Function:

LOG(x), where x is real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called by:

IHEXXS,

IHEHTS, IHELNW,

Compiled code,
THEXXW

Entry point IHELNS2

Function:

L0G2(x), where x is real short
floating-point,
Linkage: As for IHELNSE
Called by: As for IHELNSE

Entry point IHELNSD

Function:

LOG10(x), where x is real short
floating-point.

Linkage: As for IHELNSE
Called by: As for IHELNSE
IHELNW

THELNS

Calls: IHEATS,

Chapter 9: Module Summaries 117

Entry point: IHELNWO
Function:

-LOG(z), where z is complex short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(2)
A (Target)
Called by: Compiled code, IHEXXW
IHELNZ
Calls: IHEATL, IHELNL
Entry point: IHELNZO

Function:

LOG(z), where z is complex long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
aA(2)
A(Target)
Called by: Compiled code, IHEXXZ
IHELSP
Calls: Supervisor (FREEMAIN,GETMAIN)
Function:
Storage management for list processing.

Entry point IHELSPA

Function:

To provide storage in an area variable
for an allocation of a based variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: A(ALLOCATE statement)

Parameter list:

Byte 0: Not used

Bytes 1-3: A(Area variable)

Byte u4: Offset of beginning of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

On_return:
RA: A(Eight-byte word-aligned parameter
list)

118

Parameter list:

Byte 0: Not used

Bytes 1-3: A(Based variable)

Byte 4: Offset of beginning of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point IHELSPB

Function:

To free storage allocated to a based
variable in an area variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: A(Area variable)

Parameter list:

Byte 0: Not used

Bytes 1-3: A(Based variable)

Byte U4: Offset of beginning of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point IHELSPC

Function:
Assignments between area variables.
Linkage:

RA: A(Source area variable)
RB: A(Target area variable)

Called by: Compiled cogde.

Entry point IHELSPD

Function:
To provide system storage for an
allocation of a based variable (using
GETMAIN macro)..

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Bytes 0-3: Not used

Byte 4: Offset of beginning of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

Oon_return:

RA: A(Eight-byte word-aligned parameter
list)
Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Bytes #4-7: Not used

Called by: Compiled code

Entry point IHELSPE

Function:

To free system storage allocated to a
based variable (using FREEMAIN macro).

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Byte 0: Not used

Bytes 1 - 3: A(Based variable)

Byte 4: Offset of beginning of based
variable from doubleword
boundary

Bytes 5 - 7: Length of based variable

Called by: Compiled code

IHELTT

Calls: IHESAP, IHETSA, compiled code,
operating system

Function:

This module is the transfer vector
table which is link-edited to the PL/I
program when the Shared Library feature
is selected. It formats the standard
section of the PRV and is responsible
for ensuring the correct entry to the
PL/I program from the operating system.
It also sets the address of the
transfer vector tables into the first
pseudo-register of the PRV.

Entry point IHELTTA

Function:
Main entry point from operating system.
Loads library module IHELTVA if this is
not already resident and determines
address of IHELTVA.
Calls: IHESAP/IHETSA

Called by: operating system

Entr oint IHELTTB
Function:

Stores the addresses of the pseudo
entry points of the transfer vector
modules IHELTTA and IHELTVA in the PRV,
(see * below)

Called by: IHESAP/IHETSA

Entry point IHELTTC

Function:
Deletes library module IHELTVA if this
was loaded and returns to the operating
system.

Called by:

compiled code (on completion of PL/I
program)

*Pseudo_Entry points:; IHELTT1, IHELTTZ2,
IHELTT3, IHELTT4, IHELTTS

Function:
These act as reference points for the
transfer vector tables when control is

passed between the resident library
modules and the partition.

IHELTV

Function:
Transfer vector table link-edited to
the resident library modules when
shared library feature is selected.
Formats standard section of PRV and
locates transfer vector table pseudo
entry points.

Called by: IHELTT

Entry point IHELTVA

Function:
Contains addresses of pseudo entry
points (*see below) in first twenty
bytes.

Called by: IHELTT

*Pseudo Entry Points: IHELTV1, IHELTVZ2,
IHELTV3, IHELTV4, IBELTVS

Function: as for IHELTT.

IHEM91

Calls: IHEERR

Chapter 9: Module Summaries 119

Entry point IHEM91A

Function:
1. To analyze the exception or
exceptions in an imprecise interrupt
on Models 91 and 195

2. To set up a list of these exceptions
(in LWE)

3. To raise the first of a series of
PL/I conditions corresponding to
these exceptions

Linkage:

PSW at interrupt is in current
LWE + 112

Called by:

IHEERR, when an imprecise interrupt is
detected

Entxy point IHEM91B
Function:
To continue raising, in succession, the

PL/I conditions corresponding to the
exceptions.

Linkage:

List of exceptions is in current
LWE + 136
Called by: IHEERR

Entry point IHEM91C

Function:
To print an error message for each
unprocessed exception when, as a result
of the processing of an earlier
exception in the list, a program is
forced to terminate before processing
of the list is complete.

Linkage: None

Called by: IHEERR

IHEMAI
Entry point: IHEMAIN
Function:

Contains address of IHEBEGN; loaded only
if there is no main procedure.

Linkage: None

120

Called by: IHESAP, IHETSA
IHEMPU

Entry point: IHEMPUO

Function:

MULTIPLY(w,Z,p,q), where w and z are
complex fixed binary, and (p,q) is the
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for z)

A(Target)

A(DED for target)

Called by: Compiled code

IHEMPV
Calls: IHEAPD
Entry point: IHEMPVO
Function:
MULTIPLY (w,2,p,q), where w and z are
complex fixed decimal, and (p,q) is the
target precision.
Linkage:
RA: A(Parameter list)
Parameter list:
A(w)
A(DED for w)
a(z)
A(DED for z)
A(Trarget)
A(DED for target)
Called by: Compiled code
IHEMSI
Entry point: IHEMSIA
Function:
To call IHEERRC so that an error message
is printed saying that STIMER facilities
are unavailable.
Called by: compiled code
IHIMST

Entry Point: IHEMSTA

Function:

To call IHEERRC so that an error message
is printed saying that the TIME facility
is unavailable.

Called by: Compiled code

IHEMSW

Calls:

Supervisor (FREEMAIN, WAIT), I/O transmit
module whose address is in the FCB.

Entry point: IHEMSWA

4

Function:

1. According to the count passed, to
return to the caller or to wait until
a single 1I/0 event is complete. 1If
the count is <0, immediate return is
made; otherwise the event is waited
on.

2. To branch to the I/0 transmit module
to raise I/0 conditions if necessary.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Count)
A(Event variable)

Called by: Compiled code

IHEMXB

Entry point IHEMXBX

Function:

MAX(X4 ,X2,---+,Xn), Wwhere x;,x; and xp
are real fixed-point binary.

Linkage:

RA: A(Parameter list)
Parameter list:

A(xi)

A(DED for x,)

A(Xn)

A(DED for xp)

A(Target)

A(Target DED)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXEN

Function:

MIN(X4 ,X2,+4¢,Xn), Wwhere x,,x2 and xpn
are real fixed-point binary.

Linkage: As for IHEMXBX

Called by: Compiled code

IHEMXD

Entry point IHEMXDX

Function:

MAX (X3 ,X2,+.+,Xn), Where x,,x, and xp
are real fixed-point decimal.

Linkage:

RA: A(Parameter list)
Parameter list:

Alx,)

A(DED for x,)

A (Xn)

A(DED for xp)

a(Target)

A(Target DED)

(High~order byte of last argument
indicates end of parameter list.)

Ccalled by: Compiled code

Entry point IHEMXDN

Function:
MIN(X, ,X2...¢Xn), where x,,Xxz and xp
are real fixed-point decimal.
Linkage: As for IHEMXDX

Called by: Compiled code

IHEMXL

Entry point IHEMXLX
Function:

MAX (X4 ,X2/¢0++,%Xn), where x,,xz; and xn
are real long floating-point.

Chapter 9: Module Summaries 121

Linkage:

RA: A(Parameter list)
Parameter list:

A(X1)

A(x;)

A(Xn)

A(Target)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXLN

Function:

MIN(X4,X27e-s%Xn), Where x,4,x; and xp
are real long floating-point.

Linkage: As for IHEMXLX

Called by: Compiled code

IHEMXS

Entry point IHEMXSX

Function:

MAx(x1,x3;...,xn), where x4,%, and xp
are real short floating-point.

Calls: IHEJXS
Linkage:

RA: A(Parameter list)
Parameter list:

A(X1)

A(Xz)

A(Xn)

A(Target)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXSN

Function:

MIN(X4,X34ee+sXn)s Where x,,x; and xp
are real short floating-point.

Linkage: As for IHEMXSX

Called by: Compiled code

122

IHEMZU

Entry point IHEMZUM

Function:

Z4+*2,, Where z, and z, are complex
fixed-point binary.

Linkage:

RA: A(z,4)

*RB: A(DED for z,)
RC: A(z:)

*RD: A(DED for z3)
RE: A(Target)
*RF: A(Target DED

Called by: Compiled code, IHEXIU

Entry point IHEMZUD

Function:

z4/23, Where z, and 2z, are complex
fixed-point binary.

Linkage:

RA: Af(z,4)

RB: A(DED for z4)

RC: A(Zg)

*RD: A(DED for z,)

RE: A(Target)

*RF: A(Target DED)
Called by: Compiled code

IHEMZV

Entry point IHEMZVM

Function:

Z4%2,, where z, and z, are complex
fixed-point decimal.

Linkage:

RA: A(Zq)

RB: A(DED for z4)
RC: A(z:)

RD: A(DED for zj;)
RE: A(Target)
*RF: A(Target DED)

Called by: Compiled code, IHEXIV

Entry point IHEMZVD

Function:

24/22, where z, and z, are complex
fixed-point decimal,

Linkage: As for IHEMZVM

Called by: Compiled code

IHEMZW
Entry point: IHEMZWO
Function:

Z,%z3, Where z, and z, are complex short
floating-point.

Linkage:
RA: A(z,)
RB: A(z3)
RC: A(Target)
Called by: Compiled code,IHEXIW
IHEMZ2
Entry point: IHEMZZO

Function:

Z4%2Z,, where z; and z, are complex long
floating-point.

Linkage:

RA: A(21)
RB: A(z:)
RC: A(Target)

Called by: Compiled code,IHEXIZ

IHENL1
Calls: IHEJXS

Entry point IHENL1A

Function:

ALL or ANY for a simple array (or an
interleaved array of VARYING elements)
of byte-aligned elements and a
byte-aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:
A(saDV)
A(Number of dimensions)
A(DED of the array)
(A(IHEBSAO) for ALL, or
(A(IHEBSO0) for ANY
A(SDV for Target field)

Called by: Compiled code

Entry point IHENLI1L

Function:

ALL for a simple array (or an
interleaved array of VARYING elements)
of elements with any alignment, and a
target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:
a(sabv)
A(Number of dimensions)
A(DED of the array)
A(IHEBSFO)
A(SDV for target field)

Called by: Compiled code

Entry point IHENLIN
Function: As for IHENL1L, but ANY.

Linkage: As for IHENL1L

Called by: Compiled code

IHENL2
Calls: IHEJXI

Entry point IHENL2A
Function:

ALL or ANY for an interleaved array of
fixed-length byte-aligned elements and
a byte-aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:
A(SADV)
A(Number of dimensions)
*A(DED of the array)
(A(IHEBSAO) for ALL, or
(A(IHEBSO0) for ANY
A(SDV for target field)

Called by: Compiled code

Entr oint IBENL2L

Function:

ALL for an interleaved array of
fixed-length elements with any
alignment, and a target with any
alignment.

Linkage:

RA: A(Parameter list)
Parameter list:
A(saDpv)
A (Number of dimensions)
*A(DED of the array)
A (IHEBSFO0)
A(SDV for target field)

Called by: Compiled code

Chapter 9: Module Summaries 123

Entry point IHENL2N

Function:
ANY for an interleaved array of
fixed-length elements with any
alignment, and a target with any
alignment.
Linkage:
RA: A(Parameter list)
Parameter list:
A(SADV) i
A(Number of dimensions)
*A(DED of the array)
A(IHEBSFO0)
A(sSDV for target field)
Called by: Compiled code
IBEOCL
Calls:

Supervisor (DCBD, FREEMAIN,LINK), IHECLT,
IHEIOF, IHEITC, IHEITL, IHEOPN, IHESAP

Entry point IHEOCLA
Function:
Explicit open: links to IHEOPNA;
handles error conditions detected by
IHEOPN, IHEOPO, IHEOPP, IHEOPQ or
IHEOPZ.
Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

Called by: Compiled code, IHEPRT
Entry point IHEOCLB
Function:
Explicit close: links to IHECLTA.
Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECLTA

Called by: Compiled code
Entry point IHEOCLC
Function:
To perform implicit open.
Linkage:
RA: A(OCB)
RB: A(DCLCB)

124

Called by: IHEIOB, IHEION, IHESAP

Entry point IHEOCLD

Function:
Implicit close:
1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECLTB).
Linkage:
RA: A(PRV of current task)
Called by: IHESAP
IHEOCT
Calls:
Supervisor (DCBD, DEQ, FREEMAIN, LINK),
IHECTT, IHEIOF, IHEITC, IHEITL, IHEOPN,
IHETSA

Entry point IHEOCTA

Function:
Explicit open in a multitasking
environment: links to IHEOPNA; handles
error conditions detected by IHEOPN,
IHEOPO, IHEOPP, IHEOPQ or IHEOPZ.
Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

Called by: Compiled code, IHEPTT

Entry point IHEOCTB

Function:

Explicit close in a multitasking
environment: links to IHECTTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECTTA

Called by: Compiled code

Entry point IHEOCTC

Function:

To perform implicit open in a
multitasking environment.

Linkage:

RA: A(OCB)
RB: A(DCLCB)

Called by IHEIBT, IHEINT, IHETSA

Ent int IHEOCTD

Function:

Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECTTB).

2. To dequeue all records locked by
the task and free the corresponding
EXCLUSIVE blocks.

To set all imcomplete EVENT
variables complete, inactive, and
abnormal, and to free the
associated IOCBs.

Linkage:

RA: A(PRV of current task)

Called by: IHETSA

IHEOPN
Calls:

IHEOPO (via XCTL), IHEOPZ (via LINK),
IHESAP, IHETSA

Entry point: IHEOPNA

Function:

Open files:
1. Merge declared attributes with OPEN
options.
2. Invoke IHEOPO.
3. Invoke IHEOPZ if declared DIRECT
OUTPUT (REGIONAL (1), (2) and (3)
only).

Linkage:

RA: A(Parameter list)
Parameter list:
A(OPEN Parameter list)
A(Private Adcons)

OPEN Parameter list:
A(DCLCB,)
A(OPEN Control block,)/0
A(PITLE-SDV,)/0
(Reserved)
(Reserved)
(Reserved)
A(LINESIZE,)/0
A(PAGESIZE,) /0

A(DCLCBp)

A(OPEN Control blockp)/0

A(TITLE-SDVph)/0

(Reser ved)

(Reserved)

(Reserved)

A(LINESIZEp) /0

A(PAGESIZEp) /70

(High-order byte of last argument
indicates end of parameter list.)

Called by: IHEOCL, IHEOCT

IHEOPO
Calls:

Supervisor (DCB,DCBD,DEVTYPE,GETMAIN),
IHEOPP (via XCTL), IHESAP, IHETSA

Entry Point: IHEOPOA

Function:
1. To create and format the FCB.

2. To set file register to A(FCB).

Linkage:

RA: A(Parameter list)
Parameter list:
A(IHEOPN Parameter list)
A(Subparameter list)
Subparameter list:
XL4'4*n' (where n is the number of files
to be opened)
X'Access/Organization Codey'
AL3 (DCLCB,)
XL4*Merged attribute,®

X*Access/Organization Codep'
AL3 (DCLCBp)
XL4 *Merged attributep'

NOTE: Access/Organization Code is described
in the module listing.

Called by:s IHEOPN

Chapter 9: Module Summaries 125

IHEOPP
Calls:

Supervisor (DCBD,GETMAIN,GETPOOL,OPEN),
IHEOPQ (via XCTL), IHESAP, IHETSA

Entry point: IHEOPPA
Function:

1. To invoke data management (OPEN
macro) .

2. To establish defaults at DCB exit.
3. To acquire initial IOCBs for BSAM.
Linkage:

RA: A(Parameter list)
Parameter list:
A (IHEOPN Parameter list)
A(Subparameter list)
Subparameter list:
XL4'4*n' (where n is the number of files
to be opened)
X'Access/Organization Code,*
AL3(DCLCB,)
XL4'Merged attribute,’

X*'Access/Organization Codep'
AL3 (DCLCBn)
XL4'Merged attributen’

NOTE: Access/Organization Code is described
in the module listing.

Called by: IHEOPO
IHEOPQ
Calls:

Supervisor (DCBD,FREEPOOL,GETMAIN,LOAD),
IKESAP, IHETSA

Entry point: IHEOPQA
Function:

1. To load record-oriented 1I/0
interface modules.

2. To link FCBs through the IHEQFOP
chain.

3. To acquire the initial IOCBs for
BDAM and BISAM linkage.

4. To simulate PUT PAGE when opening a
PRINT file.

Linkages

RA: A(Parameter list)

126

Parameter list:
A(IHEOPN parameter list)
A(Subparameter list)
A(Data management OPEN parameter
list)

Subparameter list:
XL4'4*n' (where n is the number of
files to be opened)
X*'Access/Organization Codep,*
AL3(DCICB,)
XL4'Merged attributes,'

X'Access/Organization Coden'
aL3(DCILCBp)
XL4*Merged attributesp,'

Data management OPEN parameter list:
XL4*'4*n*' (where n is the number of
files to be opened)
X(Flags for data management OPEN
executor,)
AL3(DCBy)

X(Flags for data management OPEN
executorp)
AL3(DCBp)

NOTE: Accesss/Organization Code is described
in the module listing.

Called by: IHEOPP
IHEOP2Z
Calls:

Supervisor (CHECK,CLOSE,DCB, DCBD,
MAIN, FREEPOOL,GETBUF ,GETMAIN,OPEN)

FREE-

Entry point: IHEOPZA
Function:
To provide the format for the initial
allocation of a volume assigned to a .
REGIONAL data set when opened for DIRECT
OUTPUT.
Linkage:
RA: A(Parameter list)
Parameter list:
A(Merged attributes)
A{Entry in IHEOPN Parameter list)
A(DCLCB)
Called by: IHEOPN
IHEOSD
Calls: TIME macro

Entry point: IHEOSDA

Function: To obtain current date.
Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code
IHEQSE

Calls: IHESAP, IHETSA (to terminate the
task)

Entry point: IHEOSEA

Function:
To terminate the current task abnormally,
raising the FINISH condition if it is the
major task.

Called by: Compiled code

IHEOSI

' calls: STIMER macro

Entry point: IHEOSIA

Function:

To use the STIMER macro with the WAIT
option for the implementation of DELAY.

Linkage:
RA: A(Parameter list)
Parameter list:
Interval of delay, in milliseconds, in
a fullword
Called by: Compiled code
IHEQSS

Calls: IHESAP, IHETSA (to terminate the
task)

Entry point: IHEOSSA
Function:

To raise the FINISH condition and
abnormally terminate the job step.

Linkage: None

Called by: Compiled code
IHEOST
Entry Point: IHEOSTA
Function:

To use the TIME macro to obtain the time
of day.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

IHEOSW
Calls:

Supervisor (FREEMAIN,WAIT), IHEJXI,
IHESAP, I/0 transmit module whose address
is in the FCB

Entry point: IHEOSWA
Function:

To determine whether a specified number
of events has occurred. If not, to wait
until the required number is complete,
and, in the case of I/0 events, to branch
to the I/0 transmit module (which raises
I/70 conditions if necessary).

This module is used in a non-multitasking
environment.

Linkage:

RA: A(Parameter list)
Parameter list:

Word 1:
1. If all events are to be waited
on:
Byte 0 = X'FF'
Bytes 1 - 3 not used
2. If a specified number (N) of
events is to be waited on:
Byte 0 = X*'00°*)
Bytes 1 - 3 = A(N)

Subsequent words (one for each element
or array event):

1. Array event:
Byte 0 = dimensionality
Bytes 1 - 3 = A(ADV)
2. Element event:
Byte 0 = X'00°
Bytes 1 - 3 = A(Event variable)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code
IHEPDF
Calls: IHEDMA, IHEJXI

Entry point: IHEPDFO

Chapter 9: Module Summaries 127

Function:
PROD for an interleaved array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)
Called by: Compiled code
IHEPDL
Calls: IHEJXI
Entry point: IHEPDLO
Function:
PROD for an interleaved array of real
long floating-point elements. Result is
real long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)
Called by: Compiled code
IHEPDS
Calis: IHEJXI
Entry point: IHEPDSO
Function:
PROD for an interleaved array of real
short floating-point elements.
real short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)
Called by: Compiled code
IHEP:'W
Calls: IHEJXI

Entry point: IHEPDWO

128

Result is

Function:

PROD for an interleaved array of complex
short floating-point elements. Result is
complex short floating=-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPDX

Calls: IHEDMA, IHEJXI

Entry point: IHEPDXO
Function:

PROD for an interleaved array of complex
fixed-point binary or decimal elements.
Result is complex short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(aDV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

IHEPDZ

Calls: IHEJXI

Entry point: IHEPDZO
Function:

PROD for an interleaved array of complex
long floating-point elements. Result is
complex long floating-point. :

Linkage:

RA: A(Parameter 1list)
Parameter list:
A(aDW)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPRT
Calls:

Supervisor (Wro, EXTRACT), IHEIOF,
IHEOCL, IHESAP

Entr int IHEPRTA
Function:
To COPY a data field on the SYSPRINT
file, opening it if necessary.
Linkage:
RA: A(Character string)
RB: A(Halfword containing length of
character string)

Called by: IHEIOD,IHELDI

Entry point IHEPRTB

Function:
To write an error message on the
SYSPRINT file, opening it if necessary.
Also, to prepare for system action for
CHECK condition.
Linkage: As for IHEPRTA
Called by: IHEDDO, IHEERR, IHEESM, IHEESS
IHEPSF
Calls: IHEDMA, IHEJXS
Entry point: IHEPSFO
Function:
PROD for a simple array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)
Called by: Compiled code
IHEPSL
Calls: IHEJXS

Entry point: IHEPSLO

Function:
PROD for a simple array of real long
floating-point elements. Result is real
long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(rarget)

Called by: Compiled code

IHEPSS
Calls: IHEJXS
Entry point: IHEPSSO
Function:
PROD for a simple array of real short
floating-point elements. Result is real
short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPSW
Calls: IHEJXS
Entry point: IHEPSWO
Function:
PROD for a simple array of complex short
floating-point elements. Result is
complex short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)
Called by: Compiled code
IHEPSX
Calls: IHEDMA, IHEJXS

Entry point: IHEPSXO0

Chapter 9: Module Summaries 12y

Function:
PROD for a simple array of complex
fixed-point binary or decimal elements.

Result is complex short or long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(DED of the array elements)
A(Target)
A(DED for target)
Called by: Compiled code
IHEPSZ
Calls: IHEJXS
Entry point: IHEPSZ0
Function:
PROD for a Simple array of complex long
floating-point elements. Result is
complex long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)
Called by: Compiled code
IHEPTT
This module is used in a multitasking
environment and is equivalent to module
IHEPRT in a non-multitasking environment.
Calls:

Supervisor (DEQ, ENQ, EXTRACT, WTO),
IHEIOF, IHEOCT, IHETSA

Entry point IHEPTTA

Function:
To COPY a data field on the SYSPRINT
file, opening it if necessary, in a
multitasking environment.

Linkage:
RA: A(Character string)
RB: A(Halfword containing length of

character string)

Called by: IHEIOD, IHELDI, IHETEX

130

Entry point IHEPTTB

Function:
To write, in a multitasking
environment, an error message on the
SYSPRINT file, opening it if necessary.
Also, to prepare for system action for
CHECK condition.

Linkage: As for IHEPTTA

called by: IHEDDT, IHEERR, IHETSA

IHERES

Entry point: IHBEREST

Function:

to restart program at last checkpoint.

Linkage: None
Called by: compiled code
Entry point: IHERESN
Function:
to cancel automatic restart.
Linkage: none

Called by: compiled code, IHESAP

IHESAP
Calls:

Supervisor (FREEMAIN, GETMAIN, SPIE),
IHEBEG, IHEMAN, IHEDDO, IHEOCL, IHEPRT

Function:

Storage management in a non-multitasking
environment.

Entry point IHESADA (Get DSA):
Function:
To provide a DSA for a procedure or
begin block and to set DR to point to
itl
Linkage:

RO: Length of DSA
DR: A(Current save area)

Called by: Prologues

Entry point IHESADB (Get VDA):

Function:

To get a VDA for compiled code; sets
RA=A(VDA).

Linkage:
RO: Length of VDA (excluding control
words)
DR: A(Current save area)
Called by: Compiled code

Entry point IHESADD (Get CONTROLLED
variable):

Function:

To provide storage for an allocation of
a controlled variable, and to place the
address of its fourth word in its
pseudo-register.

Linkage:
RO: Length of area (not including
control words)
RA: A(Controlled-variable pseudo-
register)
Called by: Compiled code

Entry point IHESADE (Get LWS):

Function:

To provide a new LWS, and to update the
LWS pseudo-registers.

Linkage: None
Called by: Library modules

Entry point IHESADF (Get Library VDA):

Function:

To provide a VDA for library modul es
and to set RA = A(VDA).

Linkage:

RO: Length of VDA (including control
words)

Called by: Library modules

Entry point IHESAFA (END):

Function:

Frees the DSA current at entry together
with its associated VDAs. Request to
free the DSA of the main procedure
results in raising FINISH, closing all
opened files, releasing automatic

storage to the supervisor and finally
returning to the supervisor with a
return code of zero.

Linkage: None

Called by: Epilogues

Entry point IHESAFB (RETURN):

Function:
Frees all chain elements up to and
including the last procedure DSA in the
chain. Can terminate a main procedure
as in IHESAFA.

Linkage: None

Ccalled by: Compiled code

Entry point IHES 2FC (GO TO):

Function:

The DSA indicated by the invocation
‘count, or pointed to by DR, is made
current. All chain elements up to this
DSA, with the exception of its VDAs and
itself, are freed.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)
Parameter list:
Word 1 = Either Invocation count (bit
0 of word 2 = 0)
Or PR offset (bit 0 of word
2=1)
Word 2 = A(Location to which control
is to be returned)

Called by: Compiled code

Entry point IHESAFD (Free VDA/LWS)

Function:

Frees the VDA or LWS at the end of the
DSA chain.

Linkage:
IHEQSLA: A(VDA or LWS to be freed)
(A VDA or LWS can be freed only when it
is the last allocation)
Called by: Compiled code, library modules

Entry point IHES FF_(Free controlled
variable):

Function:
Frees the latest allocation of a

controlled variable, and updates the
associated pseudo-register.

Chapter 9: Module Summaries 131

Linkage:

RA: A(Controlled variable pseudo-
register)

Called by: Compiled code

Entry point IHESAFQ
Function:
To close all files and to return to the
supervisor.

Linkage: None

Called by:

Library modules, IHEDUMP, IHEOSE,
IHEOSS

Entry point IHESAPA

Function:

1. To provide a PRV and LWS for a main
procedure, and to issue a SPI1E
macro; then to transfer control to
an address constant named IHEMAIN.

2. To pass a PARM parameter from the
EXEC card.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry
Entry Point IHESAPB
Function:

As for IHESAPA, except that the code
handling PARM parameter is bypassed.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Entry point IHESAPC

Function:

As for IHESAPA, but also reserves a
512-byte area for optimization

purposes.

Linkage:
L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

132

Entry point IHESAPD

Function:
As for IHESAPB, but also reserves a
512-byte area for optimization
purposes.

Linkage:
L(PRV) from linkage editor
L(LWS) from assembly or IHELIB

Entry point IHESARA

Function:

To restore the environment of a program
to what it was before:

1. the execution of an ON statement
associated with the on-unit to be
entered, or

2. the passing of the entry parameter
associated with the called
procedure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Entry parameter). The entry
parameter is an 8-byte field
containing:

1st word: On-unit or entry address

2nd word: Invocation count of the
DSA associated with
either the passing
procedure or the
procedure in which the ON
statement was executed

Called by: Compiled code, IHFERR

Entry point IHESARC

Function:

To place the return code in the
pseudo-register IHEQRTC.

Linkage:
RA: A(Parameter list)
Parameter list:
A(Return code) (The return code is
fullword fixed binary.)

Called by: Compiled code

Entry point IHESATA

Function:
To provide the interface between 0O/S
STAE routine and the PL/I STAE routine.
Linkage:

RA = address of 0O/S STAE parameter
list.

Called by: SUPERVISOR

Calls:

IHESHL

Calls: IHEEXL

Entry point IHESHLS
Function:

SINH(x), where x is real long floating-
point.

Linkage:
RA: A Parameter list)
Parameter list:
A(x)
A(Target)
Called Ly: Compiled code
Entry point IHESHLC

Function:

COSH(x), where x is real long
floating-point.

Linkage: As for IHESHLS
Called by: Compiled code

IHESHS

Calls: IHEEXS

Entry point IHESHSS
Function:

SINH(x), where x is real short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code

Entr oint IHESHSC

Function:
COSH(x), where x is real short
floating-point.

Linkage: As for IHESHSS

Called by: Compiled code

IHESIZ
Entry point: IHESIZE
Function:
to return the length of the PRV in RA.

Linkage: none

Called by: IHESAP, IHETSAP
IHESMF
Calls: IHEDMA, IHEJXI

Entry point: IHESMFO

Function:

SUM for an interleaved array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.

Linkage:

RA: A(Parameter list)

Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

IHESMG
Calls: IHEJXI

Entry point IHESMGR

Function:
SUM for an interleaved array of real

short floating~point elements. Result
is real short floating-point.

Chapter 9: Module Summaries 133

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV))
A(Number of dimensions)
A(Target)

called by: Compiled code

Entry point IHESMGC

Function:
SUM for an interleaved array of complex
short floating-point elements. Result
is complex short floating-point.
Linkage: As for IHESMGR
Called by: Compiled code
IHESMH
Calls: IHEJXI

Entry point IHESMHR

Function:

SUM for an interleaved array of real
long floating-point elements. Result
is real long floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)
Called by: Compiled code

Entry point IHESMHC

Function:
SUM for an interleaved array of complex
long floating-point elements. Result
is complex long floating-point.
Linkage: As for IHESMHR
Called by: Compiled code
IHESMX
Calls: IHEDMA, IHEJXI
Entry point: IHESMXO
Function:
SUM for an interleaved array of complex
fixed-point binary or decimal elements.

Result is complex short or long
floating-point.

134

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

IHESNL

Entry point IHESNLS

Function:
SIN(x), where x is real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

alx)
A(Target)

Called by: Compiled code, IHEEXZ, IHESNZ

Entry point IHESNLZ

Function:

SIND(x), where x is real long
floating-point.

Linkage: As for IHESNLS

Called by: Compiled code

Entry point IHESNLC

Function:

COos(x), where x is real long
floating-point.

Linkage: As for IHESNLS
Called by: Compiled code, IHEEXZ, IHESNZ

Entry point IHESNLK

Function:

cosD(x), where x is real long
floating-point.

Linkage: As for IHESNLS

Called by: Compiled code

IHESNS

Entry point IHESNSS

Function:

SIN(x), where x is real short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHEEXW, IHESNW

Entry point IHESNS2Z

Function:

SIND(x), where x is real short
floating-point.

Linkage: As for IHESNSS

Called by: Compiled code

Entry point IHESNSC

Function:
cos(x), where x is real short
floating-point.

Linkage: As for IHESNSS

Called Lky: Compiled code, IHEEXW, IHESNW

Entry point IHESNSK

Function:
CosD(x)}, where x is real short
floating-point.
Linkage: As for IHESNSS
Called ky: Compiled code
IHESNW
Calls: IHEEXS, IHESNS
Ent int IHESNWS
Function:

SIN(z), where z is complex short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(2Z)
A(Target)
Called by: Compiled code
Entry point IHESNWZ

Function:

SINH(z), where z is complex short
floating-point.

Linkage: As for IHESNWS
Called by: Compiled code

Entry point IHESNWC
Function:

cos(z), where z is complex short
floating-point.

Linkage: As for IHESNWS
Called by: Compiled code

Entry point IHESNWK
Function:

COSH(z), where z is complex short
floating-point.

Linkage: As for IHESNWS
Called by: Compiled code
IHESN2
Calls: IHEEXL, IHESNL
Entry point IHESNZS
Function:

SIN(z), where z is complex long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(2z)
A(Target)
Called by: Compiled code
Entry point IHESNZ2
Function:
SINH(z), where z is complex long
floating-point.

Chapter 9: Module Summaries

135

Linkage: As for IHESNZS

Called by: Compiled code

Entry point IHESNZC

Function:

cos(z), where z is complex long
floating-point.

Linkage: As for IHESNZS

Called by: Compiled code

Entry point IHESNZK

Function:
COSH(z), where z is complex long
floating-point.
Linkage: As for IHESNZS
Called by: Compiled code
IHESPR
Entry point: IHESPRT
Function:
Contains the default DCLCB for SYSPRINT.
This module is used only when no other
DCLCB is provided.
Called by: IHEPRT, IHEPTT
IHESQL
Entry point: IHESQLO
Function:

SQRT(x), where x is real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHEABZ, IHESQZ
IHESQS
Entry point: IHESQSO
Function:
SQORT(x), where x is real short
floating-point.

136

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHEABW, IHESQW

IHESQW
Calls: IHESQS, IHEABW

Entry point: IHESQWO

Function:
SQRT(z), where z is complex short
floating-point.
Linkage:
RA: A{Parameter list)
Parameter list:
A(2)
A(Target)

Called by: Compiled code

IHESQZ

Calls: IHEABZ, IRESQL
Entry point: IHESQZO
Function:

SQRT(z), where z is complex long
floating-point.

Linkage:
RA: A(Parameter list)
Parametexr list:
A(z)
A(Target)
Called by: Compiled code
IHESRC

Entry point IHESRCA

Function:

Returns SDV of erroneous field
(ONSOURCE pseudo-variable). 1If used
out of context, the ERROR condition is
raised.

Linkage:

RA: A(Parameter list)
Parameter list: A(Dummy SDV)

Entry point IHESRCB

Function:

Assigns erroneous character to target
(ONCHAR built-in function). 1If used
out of context, then 'blank' is
returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Entry point IHESRCC
Functions:

Returns SDV of erroneous field
(DATAFIELD). If used out of context, a
null string is returned.

Linkage: As for IHESRCA

Entry point IHESRCD

Function:

Returns SDV of erroneous character.’
(ONCHAR pseudo-variable). If used out
of context, the ERROR condition is
raised.

Linkage: As for IHESRCA

Entry point IHESRCE
Function: A
Returns SDV of the name of the file
(ONFILE) which caused entry to the
current ON block. If used out of
context a null string is returned.
Linkage: As for IHESRCA

Fntry point IHESRCF

Function:
Returns SDV of erroneous field
(ONSOURCE built-in function). If used
out of context, a null string is
returned.
Linkage: As for IHESRCA
IHESRD
Entry point: IHESRDA
Function:
Returns SDV of current key (ONKEY

built-in function). If used out of
context, a null string is returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Dummy SDV)

IHESRT
Calls:

IHESAP, IHETSA, Supervisor (GETMAIN,
FREEMAIN, LINK, SPIE), SORT

Function:

To call dynamically, through the use of
a LINK macro, the operatinag system
sortsMerge from within a PL/I
procedure, and, optionally, permitting
the use of Sorts/Merge user exits E15
and E35 to invoke PL/I exit procedures
contained within the calling PL/I
procedure.

Entry point IHESRTA

Function:

To call operating system Sort/Merge to
sort a predefined file (SORTIN) placing
the sorted records on another
predefined file (SORTOUT).

Linkage:

RA: A(Parameter list)
Parameter list:

1. A(A character string which
represents the Sort/Merge control
card to describe the sort fields
contained in the record.)

2. A(A character string which
represents the Sort/Merge control
card to describe the record
format of the records which are
to be sorted.)

3. A(A fullword fixed binary value
specifying the amount of core
storage available to Sort/Merge.)

4. A(A fullword fixed binary value
to be used as a return code from
the sort. A return code of 0
indicates the successful
completion of the sort, 16
indicates an unsuccessful sort
operation.)

5. A(sSDV for the DD name replacement
string). This is an optional
parameter.

Called by: Compiled code (PL/I source
statement)

Chapter 9: Module Summaries 137

Entry point IHESRTB

Function:

To call operating system Sort/Merge to
sort individual records, passed to
Sort/Merge through user exit E15 by a
PL/I exit procedure, onto a predefined
file (SORTOUT).

Linkage:

RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 are as for IHESRTA

S. A(The PL/I functional procedure
entry name invoked by Sort/Merge
user exit E15. This exit
procedure returns a character
string representing a record
which is to be included in the
sort.)

6. as for 5 in IHESRTA
Called by: Compiled code (PL/I source

statement)

Entry point IHESRTC

Function:

To call operating system Sort/Merge to
sort a predefined file (SORTIN),
passing individual sorted records
through Sort/Merge user exit E35 to a
PL/I exit procedure.

Linkage:

RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 are as for IHESRTA

5. A(The PL/I procedure entry name
invoked by Sort/Merge user exit
E35. This exit procedure

receives a sorted record from the

sort.)
6. as for 5 in IHESRTA

Called by: Compiled code (PL/I source
statement)

Entry point IHESRTD

Function:

To call operating system Sort/Merge to
sort individual records passed to the

sort by an exit procedure, through user

exit E15, and to pass the sorted
records, through user exit E35, to an
exit procedure.

138

Linkage:

RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 as for IHESRTA
5. as for IHESRTB
6. as for 5 IHESRTC
7. as for 5 in IHESRTA

Called by: Compiled code (PL/I source
statement)

IHESSF
Calls: IHEDMA, IHEJXS
Entry point: IHESSFO
Function:

SUM for a simple array of real
fixed-point binary or decimal elements.
Result is real short or long
floating-point.
Linkage:

RA: A(Parameter list)
Parameter list:

A {ADV)

A (Number of dimensions)

A(DED of the array)

A(Target)
A(DED for target)

Called by: Compiled code
IHESSG
Calls: IHEJXS
Entry point IHESSGR
Function:
SUM for a simple array of real short
floating-point elements. Result is
real short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A(Number of dimensions)
A(Target)
Called by: Compiled code

Entry point IHESSGC

Function:

suM for a simple array of complex short

floating-point elements. Result is
complex short floating-point.

Linkage: As for IHESSGR

Called by: Compiled code

IHESSH
Calls: IHEJXS

Entry point IHESSHR
Function:

SUM for a simple array of real long
floating-point elements. Result is
real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

Entry point IHESSHC
Function:
SUM for a simple array of complex long
floating-point elements. Result is
complex long floating-point.
Linkage: As for IHESSHR
Called by: Compiled code
IHESSX
Calls: IHEDMA, IHEJXS
Entry point: IHESSXO0
Function:
SUM for a simple array of complex
fixed-point binary or decimal elements.
Result is complex short or long
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)
Called by: Compiled code
IHESTA

Entry point: IHESTAA

Function:

Write out error messages under ABEND
conditions.

Linkage:
RA: A(PLIST)
PLIST: A(Latest save area)
A(O/S STAE parameter list)
A(First free core block)
Unused
A(Adcon list)
A(SYSPRINT in PRV)

called by: IHESAP

IHESTG
Calls: IHEJXI, IHEBSK
Entry point IHESTGA
Function:
Given a structure dope vector and its
DVD, returns a fullword containing the
string length which would result from
the concatenation of all the elements
of the structure.
Linkage:
RA: A(Structure dope vector)
RB: A(DVD)
RC: A(One-word target field)
Called by: Compiled code

Entry point IHESTGB

Function:
Given a structure dope vector and its
DVD, assigns the result of
concatenating all the elements of the
structure to a string target.
Linkage:
RA: A(Structure dope vector)
RB: A(DVD)
RC: A(Target)
Called by: Compiled code
IHESTP
Calls: IHEBSK, IHEBSM, IHEJXI
Entry point: IHESTPA
Function:
Assigns a bit or character string to

the elements of a scalar, array or
structure variable.

Chapter 9: Module Summaries 139

Linkage:
RA: A(Dope Vector)
RB: A(Dope Vector Descriptor)
RC: A(sSDV)

Called by: Compiled code.

IHESTR
Calls: IHESAP, IHETSA

Entry point IHESTRA

Function:

To compute the address of the first
2lement of a structure and the total
length of the structure, using a
complete structure dope vector. The
result in the two-word target field is.

1st word: A(Start of structure), in
bytes and bit offset

2nd word: Length of structure, in
bytes

Linkage:

RA: A(Structure dope vector)
RB: A (DVD)
RC: A (Two-word target)

Called by: Compiled code

Entry point IHESTRB

Function:

Given a partially completed structure
dope vector, to map a structure
completely, namely:

1. Locating each structure base
element on the alignment boundary
required by its data type.

2. Calculating the offset of the start
of each base element from the byte
address of the beginning of the
structure.

3. cCalculating the multipliers of all
arrays appearing in the structure
and calculating the offset of the
virtual origin of each array from
the byte address of the beginning
of the structure.

4. Calculating the total length of the
structure.

5. Calculating the offset from the
maximum alignment boundary in the
structure to the byte address of
the start of the structure.

140

The result is a completed structure
dope vector, and a target field which
containss

0 7 8 k)

Zerxo

L e

1
| Offset |
L

4

Length

Offset: Offset in bytes from the maximum
alignment boundary in the structure
to the start of the structure

Length: Length of structure, in bytes

Linkage: As for IHESTRA
Called by: Compiled code

Entry point IHESTRC

Function:

As for IHESTRB, but using the COBOL
structure mapping algorithm.

Linkage: As for IHESTRA
Called by: Compiled code

IHESUB

Calls: IHETSAM

Entry point: IHESUBA
Function:

to be attached by IHETSAP and pass
control to IHETSAM.

Linkage:

RO(length of PRV)
RA: A(Parameter list)

Parameter list:
A(IHETSAM)
A(Parameter list)
Called by (attached by): THETSAP
IHETAB
Base address of table: IHETABS
Function:
This module is a table of default
information provided for use at
installation or when individual program
replacements are reguired. It contains:
1. Default PAGESIZE, LINESIZE, and left

and right margin positions for all
PRINT files.

2. Default tabulation positions for
list- and data-directed PRINT file
output.

IHETCV
Calls: Supervisor (FREEMAIN,GETMAIN)

Entry point IHRETCVA

Function:

To provide storage for an allocation of
a controlled variable in a multitasking
environment, and to place the address
of its fourth word in its
pseudo-register.

Linkage:
RO: Length of area (excluding control
words)
RA: A(Controlled-variable
pseudo-register)
Called by: Compiled code

Entry point IHETCVB

Fanction:
Frees the latest allocation of a
controlled variable in the current
task, and updates the associated
pseundo-register.
Linkage:
RA: A(Controlled-variable
pseudo-register)
Called by: Compiled code
IHETEA
Calls: Supervisor (POST,WAIT)
Entry point: IHETEAA
Function: Event variable assignment.

Linkage:

RA: A(Source event variable)
RB: A(Target event variable)

Called by: Compiled code

IHETER

Entry point: IHETERA

Function:
To search for a matching ON field in a
multitasking environment by chaining
through DSAs and PRV VDAs. A return code

is set in register BR to indicate the
result of the search.

Linkage: DR: A(LWE)

Called by: IHEERR

IHETEV

Calls: Supervisor (POST,WAIT)

Entry point: IHETEVA

Function:

COMPLETION pseudo-variable (COMPLETION(v)
= expression): sets the specified event
variable complete or incomplete according
to the evaluation of the expression.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Event variable)
A(Fullword to hold completion value (in
bit 24))

Called by: Compiled code

IHETEX
Calls:
IHEERT, IHEPTT Supervisor (WTO, LOAD,
DELETE, EXTRACT, ENQ, DEQ, PUT)

Entry point IHETEXA

Function:

To generate a message when a task has
been terminated while still active due
to the freeing of the block in which
the task was attached.

Linkage:
RA contains the address of a VDA which
contains space for the creation of the
message and the following parameters:
A (IREPTTB)
A(Symbol table entry for which the
task has been terminated)
A (IHEQSPR)
Called by: IHETSA
Entry point IHETEXB
Function:
To generate a message when a task has

been abnormally terminated by the
operating system.

Chapter 9: Module Summaries 141

Linkage:
DR points to an area of storage
containg a save area, an area for the

creation of the message and the
following parameters:

Completion code

A(Symbol table entry for the task
which has been terminated)

A(IHEQSPR)

Called by: IHETSA

Entry point IHETEXC

Function:
Version 5 entry point (instead of
IHETEXB)
Linkage:
A (PROC NAME)
Statement no. when task abended
Offset when task abended
A(Symbol table)
Completion code
A(SYSPRINT in major PRV)

Called by: IHETSA

IHETHL

Calls: IHEEXL

Entry point: IHETHLO
Function:

TANH(x), where x is real long floating-
point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHETNZ
IHETHS
Calls: IHEEXS
Entry point: IHETHSO
Function:
TANH(x), where x is real short
floating-point.

142

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHETNW

IHETNL

Entry point IHETNLR

Function:

TAN{(x), where x is real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHETNZ
Entry point IHETNLD

Function:

TAND(x), where x is real long
floating-point.

Linkage: As for IHETNLR
Called by: Compiled code
IHETNS
Entry point IHETNSR
Function:

TAN(x), where x is real short
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHETNW

Entry point IHETNSD

Function:

TAND(x), where x is real short
floating-point.

Linkage: As for IHETNSR

Called by: Compiled code

IHETNW
Calls: IHETHS, IHETNS

Entry point IHETNWN

Function:
TAN(z), where z is complex short
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code

Entry point IHETNWH

Function:

TANH(z), where z is complex short
floating-point.

Linkage: As for IHETNWN
Called by: Compiled code
IHETN2Z
Calls: IHETHL, IHETNL
Entry point IHETNZN
Function:

TAN(z), where z is complex long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

Called by: Compiled code
Entry point IHETNZH
Function:

TANH(z), where z is complex long
floating-point.

Linkage: As for IHETNZN

Called by: compiled code

IHETOM

Calls: Supervisor (WTO, EXTRACT)

Entry point IHETOMA
Function:

Issues WTO macro instruction if the
program does not have a main procedure.

Linkage:
DR points to an area of storage which
is used as a save area and as workspace
to build up the message.

Called by: IHEBEG

Entry point IHETOMB

Function:

Issues WTO macro instruction if the PRV
is longer than 4096 bytes.

Linkage:
As for IHETOMA
Called by: IHEBEG

Entry point IHETOMC

Function:

Issues WTO macro instruction if there
has been an interrupt in the error
handler.

Linkage:
As for IHETOMA

Called by: IHEERR

Entry point IHETOMD

Function:
Issues WTO macro instruction if the
major task of a multitasking program

has been terminated with an ABEND. The
message contains the completion code.

Linkage:

As for IHETOMA but in addition the
completion code is passed in the area
pointed to by DR.

Called by: IHETSA

Entry point IHETOME

Function:

Issues WTO macro instruction if there
is an abnormal KEY condition when:
CLOSING a file after a LOCATE
statement. The file may be INDEXED
(with RKP # 0) or REGIONAL.

Chapter 9: Module Summaries 143

Linkage: as for IHETOMA

Called by: IHEOCL, IHEOCT

IHETPB

Entry point: IHETPBA

Function:

PRIORITY built-in function: returns the
priority of a named task relative to the
priority of the current task.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Task variable)
A(Fullword target field)

Called by: Compiled code

IHETPR
Calls: Supervisor (CHAP, POST,WAIT)
Entry point: IHETPRA
Function:
PRIORITY pseudo-variable (PRIORITY(v) =
expression): sets the priority of the
specified task to the given value
relative to the priority of the current
task.
Linkage:
RA: A(Parameter list)
Parameter list:
A(Task variable), or zero (if current
task)
A(Relative priority)

Called by: Compiled code

IHETSA

Calls:
Supervisor (ATTACH, DEQ, DETACH, EXTRACT,
FREEMAIN, GETMAIN, LINK, POST, SPIE,
STAE, WAIT), IHEBEG IHEDDT, IHEERR,
IHEMAI, IBEITA, IHEOCT, IHEPTT, IHESIZ,
IHETAB, IHETEX

Function:
Object program management in a
multitasking environment.

144

Entry point IHETSAA
Function:

1. Obtains storage for the PRV VDA,
task variable, and event variable
for the major task, ECBLIST, CTECB
and TCA.

2. Attaches the PL/I major task and
then enters a wait state until
either the event variable for the
major task or the CTECB is
completed.

The execution of IHETSAA is termed the
control task. Return is made to the
calling program when there are no
outstanding tasks in the calling
program.

Linkage:

L(PRV) from IHESIZE
L(LWS) from assembly of IHELIB

Called by:
Program that calls the PL/I program.

Entry point IHETSAC

Function:

To place the return code in the
pseudo-register IHEQRTC.

Linkage:
RA: A(Parameter list)
Parameter List: .
A(Return code) (The return code is
fullword fixed binary.)
Called by: Compiled code

Entry point IHETSAD (Get DSA)

Function:
To provide a DSA for a procedure or
begin block and to set DR to point to
it.

Linkage:

RO: Length of DSA
DR: A(Current save area)

Called by: Prologues, IHESRT

Entry point IHETSAE (END)

Function:

Frees the DSA current at entry and its
associated VDAs, and abnormally
terminates any tasks attached in the

block. A request to free the first DSA
in a subtask results in the closing of
all files opened, the dequeuing of
resources enqueued, and the release of
all dynamic storage allocated in that
task. A request to free the DSA of the
main procedure also raises the FINISH
condition, but does not cause
controlled storage allocated in the
major task to be freed.

Linkage: None
IHESRT

Called by: Epilogues,

Entry point IHETSAF (Free VDA/IWS)

Function:

Frees the VDA or LWS at the end of the
DSA chain.

Linkage:
IHEQSLA: A(VDA or LWS to be freed)
Only the most recently allocated VDA or
LWS can be freed.

Called by: Compiled code, library modules

Entry point IHETSAG (GO TO)

Function:

The DSA indicated by the invocation
count, or pointed to by DR, is made
current. All chain elements up to this
DSA, with the exception of its VDAs and
itself, are freed. Any active tasks
attached to the DSAs freed are
aknormally terminated.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Invocation count (bit
0 of word 2=0)

or PR offset (bit 0 of word
2=1)

word 1=either

Word 2=A(Location to which control is
to be returned)

Called by: Compiled code

Entry point IHETSAL (Get LWS)

Function:

To provide a new LWS, and to update the
LWS pseudo-registers.

Linkage: None
Called by: Library modules
Entry point IHETSAM
Function:
Initializes new subtasks, and, where
applicable, the PRV and primary LWS for
the major task. Issues a SPIE and STAE

macro instructions and branches to the
main procedure.

Linkage:

RA: A(Parameter list)
Parameter list contains control
information from the control task.

Called by: IHESUBA

Entry point IHETSAN

Function:

To change the environment of a program
to that which existed at the time of

1. the execution of an ON statement
associated with the on-unit to be
entered, or

2. the passing of the entry varameter
associated with the called
procedure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Entry parameter). The entry
parameter is an 8-byte field
containing:

1st word: On-unit or entry address

Invocation count of the DSA
associated with either the
passing procedure or the
procedure in which the ON
statement was executed

2nd word:

Called by: Compiled code, IHEERR

Entry point IHETSAP

Function:

As IHETSAA, but also passes a PARM
parameter from the the EXEC card.

Chapter 9: Module Summaries 145

Linkage:

L(PRV) from IHESIZE
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry point IHETSAR (RETURN)

Function:
Frees all chain elements up to and
including the last procedure DSA in the
chain. Terminates the main procedure
and subtasks as in IHETSAE.

Linkage: None

Called by: Epilogues

Entry point IHETSAT

Function:

To implement a CALL statement with a
task option:

1. Completes the parameter list
(reserved fields)

2. Requests control task to attach
subtask.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Task variable) (Byte 0 = X'80' if
no PRIORITY option; bytes 1 - 3 =0
if no TASK option)
A(Event variable) (Zero if no EVENT
option)
Relative priority
A(Called procedure)
Reserved
Reserved (X'80' if no argument list)
Variable length argument list for
called procedure (Omitted if no
argument list: X'80' in first byte of
last word indicates end of list.)

Called by: Compiled code
Entry point IHETSAV (Get VDA)
Function:

To get a VDA for compiled code; sets
RA=A(VDA).

Linkage:
RO: Length of VDA (excluding control
words)
DR: A(Current save area)

Called by: Compiled code

146

Entry point IHETSAW_ (Get Library VDA)

Function:
To provide a VDA for library modules
and to set RA = A(VDA)

Linkage:

RO: Length of VDA (including control
words)

Called by: Library modules

Entry point IHETSAX

Function:
Function:
STAE exit routine. Enqueues on control
task if necessary. Requests detach of
any subtasks, informs control task that
task has abnormally terminated.
Linkage: None
Called by: Supervisor

Entry point IHETSAY

Function:

Completes the implementation of STOP:
closes all opened files, releases
dynamic storage, and requests that all
subtasks of the control task, including
itself, be detached.

Linkage:
RA: Return code
Called by: IHEDUM, IHETSS

Entry point IHETSAZ

Function:
Abnormal end of task: closes all files
opened in task, releases dynamic
storage, and terminates the task and
all subtasks attached by it.
Linkage:
RA: Return code
Called by: IHEDUM, IHEERR, IHETSE
IHETSE
Calls: IHEERR, IHETSA

Entry point: IHETSEA

Function:
To abnormally terminate the current task,
and to raise the FINISH condition if the
current task is the major task.

Linkage: None

Called by: Compiled code

IHETSS

Calls: TIHEERR, IHETSA

Entry point: IHETSSA

Function:
To raise the FINISH condition and
abnormally terminate the PL/I program in
a multitasking environment.

Linkage: None

Called by: Compiled code

IHETSW

Calls: IHEERR, IHEJXI
Supervisor (FREEMAIN,POST,WAIT), IHEJXI,
IHETSA, the 1/0 transmission module whose

address is in the FCB.

Entry point IHETSWA

Function:

To determine whether a specified number
of events has occurred. If not, to
wait until the required number is
complete, and, in the case of I/0
events, to branch to the I1/0
transmission module (which raises 1/0
conditions if necessary). This mcdule
is used in a multitasking environment.

Linkage:

RA: A(parameter 1list)
Parameter list:

Word 1:

1. If all events are to be waited
on:

Byte 0 = X'FF'
Bytes 1-3 not used

2. If a specified number (N) of
events is to be waited on:

Byte 0 = X'00°'
Bytes 1-3 = A(N)

Subsequent words (one for each
element or array event):

1. Array event:

Byte 0 = dimensionality
Bytes 1-3 = A(ADV)

2. Element event:
Byte 0 = X'00°*
Bytes 1-3 = A(EVENT variable)

(The high-order byte of the last
argument indicates the end of the
parameter list.)
Called by: Compiled code
IHEUPA

Entry Point IHREUPAA

Function:
To zero the real part of a complex
coded data item and to return the
address of the imaginary part.
Linkage:
RA: A(Source)
RB: A(Source DED)
WRCD: A(Imaginary part)
Called by: IHEDCN, IHEDBN

Entry Point IHEUPAB:

Function:
To return the address of the imaginary
part of a complex coded data item if
switch is on, and to zero the imaginary
part if switch is off.

Linkage:
RA: A(Source)
RB: A(Source DED)
WSWA: Switch for update address only
WRCD: A(Imaginary part)

called by:

IHEDBN, IHEDCN, IHEDIA, IHELDI, IHEDID,
IHEDIE, IHEDNC, IHEDOM, IHEVCS

IHEUPB
Calls: IHEDMA

Entry Point IHEUPBA:

Function:
To zero the real part of a complex

numeric field and to return the address
of the imaginary part.

Chapter 9: Module Summaries 147

Linkage:

RA: A(Source)
RB: A(Source DED)
WRCD: A(Imaginary part)

Called by: IHEDCN, IHEDBN

Entry Point IHEUPBB:

Function:

To return the address of the imaginary
part of a complex numeric field if
switch is on, and to zero the imaginary
part if switch is off.

Linkage:
RA: A(Source)
RB: A(Source DED)
WSWA: Switch for update address only
WRCD: A(Imaginary part)
Called by:

IHEDBN, IHEDCN,
IHEDOM, IHEVCS

IHEDIA, IHEDID, IHEDIE,

IHEVCA
Entry Point: IHEVCAA
Function:
To define the attributes of arithmetic
data in character form by producing a DED
(flags, p, Q).
Linkage:
RA: A(Target DED)
WNCP: A(Start and end addresses of data
to be analysed)
Called by:
IHEDIA, IHEDIM, IHEDOM, IHELDI
IHEVCS
Calls:
IHEDMA, IHEDNB, IHEDNC, IHEUPA
Entry point IHEVCSA
Function:
To direct the conversion of character
representation of complex data to
internal string data. The character
data is first converted to coded
complex, with attributes derived from

the real and imaginary parts of the
source data (according to the

148

arithmetic conversion package rules)
and then converted to string.

Linkage:

RA: A(Parameter list)
Parameter list:
A(start and end addresses of real
data)
A(Real DED)
A(Start and end addresses of
imaginary data)
A(Imaginary DED)
A(Taxrget SDV)
A(Target DED)
A(Real FED)
A(Imaginary FED).

Called by: IHEDIM, IHEDOM, IHELDI

Entry point IHEVCSB

Function:

As for IHEVCSA but the conversion is to
coded complex only.

Linkage: As for IHEVCSA
Called by: As for IHEVCSA
IHEVFA
Calls: IHEVTB
Entry point: IHEVFAA
Function:
Radix conversion: binary to decimal

To convert long floating-point to packed
decimal intermediate.

Linkage:

WINT: Long precision floating-point
number

called by: IHEDMA

IHEVEB

Entry point: IHEVFBA

Function:

To convert a long precision
floating-point number to a fixed-point
binary number with specified precision
and scale

factor.

Linkage:

WINT: Long precision floating-point
number

WRCD: A(Target)
A(Target DED)

Called by: IHEDMA
IHEVFC

Entry point: IHEVFCA

Function:
To convert a long floating-point number
to a floating-point variable with
specified precision.
Linkage:
WINT: Long-precision floating-point
number

WRCD: A(Target)
A(Target DED)

Called by: IHEDMA

IHEVFD

Entry point: IHEVFDA -

Function:
To convert a fixed-point binary integer
with scale factor to long precision
floating-point.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVFE
Entry point: IHEVFEA
Function:
To convert a floating-point number of
specified precision to long precision
floating-point.
Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVKB

Entry point: IHEVKBA

Function:
To convert a fixed- or floating-point
decimal numeric field to packed decimal
intermediate.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVKC
Entry point: IHEVKCA
Function:

To convert a sterling numeric field to
packed decimal intermediate.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVKF
Entry point: IHEVKFA
Function:
To convert packed decimal intermediate to
a decimal fixed- or floating-point
numeric field with specified precision.
Linkage:
WINT: Decimal integer
WSCF: Scale factor
WRCD: A(Target)
A(Target DED)
Called by: IHEDMA
IHEVKG
Entry point: IHEVKGA
Function:
To convert packed decimal intermediate to
a sterling numeric field with specified
precision.
Linkage:
WINT: Decimal integer
WSCF: Scale factor
WRCD: A(Target)
A(Target DED)

Called by: IHEDMA

Chapter 9: Module Summaries 149

IHEVPA Linkage:

Calls: IHEVTB WINT: Decimal integer
WSCF: Scale factor
WRCD: A(Target)

Entry point: IHEVPAA A(Target DED)

Function: Called by: IHEDMA
Radix conversion: decimal to binary

To convert packed decimal intermediate to IHEVPE
long precision floating-point.

Entry point: IHEVPEA

Linkage: Function:
WINT: Decimal integer To convert an F/E format item to packed
WSCF: Scale factor decimal intermediate.

Called ky: IHEDMA

Linkage:
IHEVPB RA: A(Source)
RB: A(Source DED)
Entry Point: IHEVPBA WFED: A(FED)
Function: Called by: IHEDMA
To convert packed decimal intermediate to
an F format item. IHEVPF
Linkage: Entry point: IHEVPFA
WINT: Decimal integer Function:
WSCF: Scale factor
WFDT: A(FED) To convert a decimal integer with
WRCD: A(Target) specified precision and scale factor to

packed decimal intermediate.
Called by: IHEDMA

IHEVPC Linkage:
Entry point: IHEVPCA RA: A(Source)

RB: A(Source DED)
Function:
Called by: IHEDMA
To convert packed decimal intermediate to

an E format item. IHEVPG
Linkage: - Entry point: IHEVPGA
WINT: Decimal integer Function:
WSCF: Scale factor
WFDT: A (FED) To convert a binary fixed- or floating-
WRCD: A(Target) point constant to long precision
floating-point.
Called by: IHEDMA
Linkage:
IHEVPD
WCNP: A(Beginning of constant)
Entry point: IHEVPDA A(End of constant)
Function: Called by: IHEDMA

To convert packed decimal intermediate to IHEVPH
a decimal integer with specified
precision and scale factor. Entry point: IHEVPHA

150

Function:

To convert a bit string constant with up
to 31 significant bits to long precision
floating-point.

Linkages:

WCN1: A(Beginning of constant)
A(End of constant)

Called by: IHEDMA

IHEVOA

Entry point: IHEVQAA

Function:
To convert a floating point number of
specified precision to a fixed-point
binary number with specified precision
and scale factor.

Linkage:
RA: A(Source)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)

Called by: Compiled code, IHEVQB

IHEVOB

Calls: IHEVQA, IHEVTB
Entry point: IHEVQBA
Function:

To convert a decimal constant to a coded
arithmetic data type.

Linkage:

RA: A(First character of constant)

RB: A(Last character of constant)

RC: A(Target)

RD: A(Target DED)

WFED: A(FED) if constant is part of F or
E format input

WSWB: Switches specifying type of source
string

Called by: IHEDCN, IHEDIA
IHEVQC
Calls: IHEVSC, IHEVSE
Entry point: IHEVQCA
Function:
To convert some coded arithmetic data

types to F or E format or character
string.

Linkage:

RA: A(Source)

RB: A(Source DED)

RC: A(Target SDV)

RD: A (Target DED)

WFDT: A(FED)

WSWB: Switches specifying type of target
string

Called by: IHEDNC, IHEDOA

IHEVSA

Entry point: IHEVSAA

Function:
To assign a fixed-length or VARYING bit
string to a fixed-length or VARYING bit
string.

Linkage:
RA: A(Source SDV)
RB: A(Source DED)

RC: A(Target SDV)
RD: A(Target DED)

Called by: Compiled code, IHEDIA, IHEDNB

IHEVSB

Entry point: IHEVSBA

Function:
To convert a fixed-length or VARYING bit

string to a fixed-length or VARYING
character string.

Linkage:
RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
Called by:

Compiled code, IHEDOB, IHEDOD, IHEDOE,
IHELDO

IHEVSC
Entry point: IHEVSCA
Function:

To assign a fixed-length or VARYING.

character string to a fixed-length or
VARYING character string.

Chapter 9: Module Summaries 151

Linkage: ..
RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
Called by:
Compiled code, IHEDIA, IHEDIB, IHEDID,
IHEDIE, IHEDNC, IHEDOB, IHEDOD, IHELDI,
IHEVQC
IHEVSD

Entry point IHEVSDA

Function:

To convert a fixed-length or VARYING
character string to a fixed-length or
VARYING bit string. The ONSOURCE
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
WODF: A(Source SDV)

called by:

compiled code, IHEDIB, IHEDID,
IHELDI

IHEDIE,

Entry point IHEVSDB

Function:

As for IHEVSDA, but the ONSOURCE
address is not stored.

Linkage:
As for IHEVSDA, but without WODF
Called by: As for IHEVSDA
IHEVSE
Entry point IHEVSEA
Function:
To assign a fixed-length or VARYING
character string to a pictured
character string. The ONSOURCE address
is stored.
Linkage:
RA: A(Source SDV}
RB: A(Source DED)
RC: A(Target SDV)

RD: A{(Target DED)
WODF: A(Source SDV)

152

Called by:

Compiled code, IHEDIB, IHEDID, IHEDIE,
IHEDOB '

Entry point IHEVSEB
Function:

As for IHEVSEA, but the ONSOURCE
address is not stored.

Linkage:

As for IHEVSEA, but without WODF

Called by: IHEDNC, IHEVQC
IHEVSF
Entry Point: IHEVSFA

Function:

To convert a fixed~length or VARYING bit
string to a pictured character string.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by: Compiled code, IHEDOB

IHEVTB

Base address of table: IHEVTBA

Function:

This module is a table of long precision
floating-point numbers representing
powers of 10 from 1 to 70. It is used by
the radix conversion routines IHEVPA,
IHEVQB, and IHEVFA.

Linkage:

Not called. Referenced as external data
by IHEVPA, IHEVQB and IHEVFA.

IHEXIB
Entry point: IHEXIBO
Function:

x**n, where x is real fixed-point binary
and n is a positive integer.

Linkage:
RA: A(X)
#RB: A(DED for x)
RC: A(n)
RD: A(Target)
*RE: A(Target DED)

Called by: Compiled code
IHEXID

Entry point: IHEXIDO

Function:

x**n, where x is real fixed-point

decimal, and n is a positive integer.
ﬁiﬁkage:

RA: A(x)

RB: A(DED for x)

RC: A(n)

RD: A(Target)

RE: A(Target DED)

Called by: Compiled code

IHEXIL
Entry point: IHEXILO
Function:

x**n, where x is real long
floating-point, and n is an integer.

Linkage:
RA: A(x)
RB: A(n)
RC: A(Target)
Ccalled by: Compiled code
IHEXIS
Entry point: IHEXISO

Function:

x#*n,'where x is real short
floating-point, and n is an integer.

Linkage:
RA: A(x)
RB: A(n)
RC: A(Target)
Called by: compiled code
IHEXIU
Calls: IHEMZU
Entry point: IHEXIUO

Function:

z**n, where z is complex fixed binary and

n is a positive integer.

Linkage:
RA: A(2)
*RB: A(DED for 2z)
RC: A(n)
RD: A(Target)

*RE: A(Target)
Called by: Compiled code
IHEXIV
Calls: IHEMZV
Entry point: IHEXIVO
Function:

z**n, where z is complex fixed-point
decimal and n is a positive integer.

Linkage:
RA: A(z)
RB: A(DED for z)
RC: A(n)
RD: A(Target)

*RE: A(Target DED)
Called by: Compiled code
IHEXIW
Calls: IHEMZW
Entry point: IHEXIWO

Function:

z**n, where z is complex short
floating-point, and n is an integer.

Linkage:
RA: A(2)
RB: A(n)
RC: A(Target)
Called by: Compiled code
IHEXIZ
Calls: IHEMZ2
Entry point: IHEXIZO

Function:

z**n, where z is complex long
floating-point, and n is an integer.

Linkage:
RA: A(2)
RB: A(n)
RC: A(Target)

Called by: Compiled code

Chapter 9: Module Summaries

153

IHEXXL

Calls: IHEEXL, IHELNL

Entry point: IHEXXLO
Function:

x**y, where x and y are real long
floating-point.

Linkage:
RA: A(y)
RB: A(x)

RC: A(Target)
Called by: Compiled code
IHEXXS
Calls: IHEEXS, IHELNS
Entry point: IHEXXSO
Function:

x**y, where x and y are real short
floating-point.

Linkage:
RA: Aly)
RB: A(x)

RC: A(Target)
Called by: Compiled code
JHEXXW
Calls: IHEEXW, IHELNS, IHELNW
Entry point: IHEXXWO
Function:

z,**2,, where z, and z, are complex short
floating-point.

Linkage:
RA: A(z3)
RB: A(z,)
RC: A(Target)
Called by: Compiled code
IHEXXZ
Calls: IHEEXZ, IHELNL, IHELNZ
Entry point: IHEXXZ0
Function:
Z4.**2z,, where z, and z,; are complex long

floating-point.

154

Linkage:
RA: A(z3)
RB: A(Zq)
RC: A(Target)

Called by: Compiled code

IHEYGF

Calls: IHEDMA -

Entry point IHEYGFV
Function:

POLY (A,X) for both A and X vectors of
real fixed-point binary or decimal

numbers. Result is real short or long
floating-point.
Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(ADV of argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

Entry point IHEYGFS

Function:

As for IHEYGFV but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(Argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

IHEYGL

Entry point IHEYGLV

Function:

POLY (A,X) for both A and X vectors of
real long floating-point numbers.
Result is real long floating-point.

Linkage:

RA: A(Parameter list)

Parameter list: i
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGLS

Function:

As for IHEYGLV but X is scalar.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

IHEYGS

Entry point IHEYGSV

Function:

POLY (A,X) for both A and X vectors of
real short floating-point. Result is

real short floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argqument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGSS

Function:

As for IHEYGSV but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

IHEYGW

Entry Qoint IHEYGWV
Function:

POLY (A,X) for both A and X vectors of
complex short floating-point. Result

is complex short floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)
Called by: Compiled code
Entry point IHEYGWS
Function:
As for IHEYGWV, but X is scalar.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 2)
A(Argument 1)
A(Target)
Called by: Compiled code
IHEYGX
Calls: IHEDMA
Entry point IHEYGXV

Function:

POLY (A,X) for both A and X vectors of
complex fixed-point binary or decimal

numbers. Result is complex short or
long floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(ADV of argqument 2)
A(DED of argument 2)

A(Target)
A(DED of target)

called by: Compiled code
Entry point IHEYGXS
Function:

As for IHEYGXV, but X is scalar.

Chapter 9: Module Summaries

155

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(Argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code
IHEYGZ
Entry point IHEYGZS
‘ Function:
As for IHEYGZV, but X is scalar.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)
Called by: Compiled code
Entry point IHEYGZV
Function:
POLY (A,X) for both A and X vectors of
complex long floating-point numbers.
Result is complex long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of arxrgument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

156

IHEZZC

Calls: IHEZZF
Entry point: IHEZZCA

Function:
To provide a SNAP dump with save-area
trace and information about the PL/I
files that are open.

Linkage:
RA: A(Parameter list)
See source listing for parameter list.

Called by: IHEDUM

IHEZZF

Entry point: IHEZZFA

Function:

To provide the save-area trace that forms
part of the output produced by IHEZZC.
Linkage:

RA: A(Parameter list)
See source listing for parameter list.

Called by: IHEZZC

APPENDIX A: SYSTEM MACRO INSTRUCTIONS

The following table lists the system macro instructions used by the PL/I library and
associates their use with individual library modules.

System Macro Library Module

ABEND IHEDUM, IHEERR

ATTACH IHETSA

CHAP IHECTT, IHEIGT, IHEITB, IHEITC, IHEITH, IREITJ, IHEITO

CHECK IHEITF, IHEITJ, IHEOPZ, IHEITB, IHEITC

CHKPT IHECKP

CLOSE IHECTT, IHECLS, IHECLT, IHEOPZ

DCB IHEOPO, IHEOPZ

DCBED IHECLT, IHECTT, IHEITB, IHEITC, IHEITD, IHEITE, IHEITF, IHEITG, IHEITH,
IHEITJ, IHEOCL, IHEOCT, IHEOPO, IHEOPP, IHEOPQ, IHEOPZ

DELETE IHECLT, IHECTT, IHEESM, IHETEX

DEQ IHECTT, IHEDDT, IHEESM, IHEIBF, IHEITH, IHEITJ, IHEOCT, IBEPTT, IHETSA,
IHETEX, IHEITO

DETACH IHETSA

DEVTYPE IHEOPO

ENQ IHEDDT, IHEESM, IHEIBT, IHEITH, IHEITJ, IHEOCT, IHEPTT, IHETEX, IHEITO

ESETL "IHEITD

EXTRACT IHETSA, IHETEX, IHETOM, IHEPRr, IBEPTT

FREEMAIN IHEBEG, IHECLT, IHECTT, IHEDSP, IHEIOG, IHEITB, IHEITC, IHELSP, IHEMSW,
IHEOCL, IHEOPZ, IHEOSW, IHESAP, IHETCV, IHETSA, IHESRT, IHETSW

FREEPOOL IHECLT, IHECTT, IHEOPQ, IHEOPZ

GET IREITD, IHEITG, IHEITP
GETBUF IHEOP2Z
GETMAIN IHEBEG, IHEDSP, IHEERR, IHEIGr, IHEIOG, IHEITB, IHEITC, IHEITD, IHEITE,

IHREITF, IHEITH, IBEITJ, IHEITP, IHELSP, IHEOPO, IHEOPP, IHEOPQ, IHEOPZ,
IHESAP, IHETCV, IHESRT, IHETSA

GETPOOL IHEOPP

LINK IHEBEG, IHEDUM, IHEERR, IHEOCL, IHEOCT, IHEOPN, IHESRT, IHETSA

LOAD IHEESM, IHEOPQ, IHETEX

OPEN IHEOPP, IHEOPZ

POST IHEDSP, IHEDUM, IHEIGT, IBEINT, IHEITB, IHEITC, IHEITH, IHEITJ, IHEOCT,

IHETEA, IHETEV, IHETPR, IBETSA, IHETSW

Appendix A: System Macro Instructions 157

System Macro
PUT

PUTX
READ
RETURN
SETL
SNAP
SPIE
STAE
STIMER
TIME

WAIT

WRITE

WTOR
XCTL

158

Library Module

IHEITD,
IHEITD,
IHEITB,
IHECLT,
IHEITD

IHEDUM

IHEERR,
IHESAP,
IHEOSI

IHEOSD,

IHEDSP,
IHEMSW,

IHEITB,
IHEITN,

IHEDSP,
IHEDSP
IHEOPN,

IHEITG,
IHEITG
IHEITE,

IRECTT

IHESAP,

IHESTA

IHEOST

IHEDUM,
IHEOCT,

IHEITC,
IHEITO

IHEOCL,

IHEOPO,

IHEITP,

IHEITF,

IHESRT,

IHEIGT,
IHEOSW,
IHEITE,

IHEOCT,

IHEOPP

IHETEX

IHEITH, IHEITJ, IHEITK, IHEITM, IHEITN, IHEITO

IHETSA

IHEINT, IHEITB, IHEITC, IHEITE, IHEITH, IHEITJ,
IHETEA, IHETEV, IHETPR, IHETSA, IHETSW

IHEITF, IHEITH, IHEITJ, IHEOPZ, IHEITL, IHEITM,

IHEPRT, IHETOM, IHETEX, IHEPTT

System Generation Process

IBM System/360 Operating System consists of
libraries of program modules that can be
united in a variety of combinations,
according to options specified by the user.
The user selects the programming options
that meet his data processing requirements
and conform to his machine facilities. The
selected options are translated into
program module requirements by the system
generation process, the modules being
compiled into libraries that form the new
operating system.

The operating system is generated in two
stages. First, a series of user-supplied
macro instructions, which describe the
machine facilities and programming options
required, is written. From these, if no
errors are found, a job stream is
generated. In the next stage, the job
stream is processed by the assembler, the
linkage editor, and utility programs, to
generate the libraries of modules which
form the new operating system. The whole
process is carried out using an existing
operating system. The system generation
process is described in IBM System/360
Operating System: System Generation.

PL/I Library System Generation

All PL/I library modules are in load module
form. Before system generation they exist
on two libraries on the starter system:

1. sysi1.PL1LIB. This PDS contains
modules which are always required by
a system using PL/I.

2. §SYs1.LM512. This contains both
modules which are optionally
required and modules which will be
copied into SYS1.LINKLIB.

Three PL/I library system macros are used,
whose purpose is to produce COPY control
cards for inclusion in the job stream.

The first macro, SGIHESLA, produces COPY
control cards to copy modules from
SYS1.LM512 into SYS1.LINKLIB.

The second macro, SGIHESPB, produces
COPY control cards to copy the non-optional
modules on the starter system SYS1.PL1LIB
into the new SYS1.PL1LIB.

>

APPENDIX Bs SYSTEM GENERATION

The third macro, SGIHE5SPC, tests for the
COMPLEX arithmetic option. If it is
present, COPY control cards are produced
for modules dealing with complex arithmetic
(about 30% of the total number). The macro
then tests to see if the TIME and STIMER
options have been requested and are
available. If so, COPY control cards are
produced for IHEOST and IHEOSI. If either
or both of these options are not required,
either or both of the dummy modules IHEMST
and IHEMSI are renamed IHEOST and IHEOSI
respectively and the appropriate COPY
control cards are produced. Similarly, if
the MULTIPLE WAIT option is not requested,
the SINGLE WAIT module IHEMSW is renamed
IHEOSW.

STORAGE _UTILIZATION_ AND_ SHARED LIERARY

Users of MVT and MFT control programs
within the operating system may use the
shared library feature in which parts of
the re-entrant PL/I library are resident in
the operating system. This feature enables
certain modules to be shared between
partitions or regions, thus greatly
reducing the storage requirements of an
individual PL/I program within a partition
or region.

Transfer of control between each
partition and the resident library is
achieved by means of two transfer vector
modules, IHELTV and IHELTT. The module
IHELTT is link-edited to the PL/I program
and controls the calls to the resident
library. IHELTV is link-edited to the
resident library and controls the calls to
the partition. Correlation between the two
transfer vector modules is maintained by
the PRV in each partition. Therefore,
standardisation of the PRV is implicit in
this feature.

Practical implementation of the shared
library feature necessitates separation of
the library modules into functional groups.
These groups are selected by options in the
SYSGEN PL1LIB macro and are listed in Table
1. This list includes those modules which
may not be made resident (i.e., not
shareable) and these are placed in Group 1.
The storage management modules (group 2 or
3) will always be included in a resident
library. Tables 2 through 9 show the
modules in their respective "packages™ with
their associated group numbers, whilst
Table 10 is an alphabetical cross-reference
list of the modules.

Appendix B: System Generation 159

The Shared Library feature is made
available at system generation time by
specifying the required options in the
PL1LIB macro. The specification of these
options governs the generation of the
resident load modules IHELTTA and IHELTVA.

Table 1. Grouping of Modules (Shared
Library Feature)
Group
No. Main Functions of the Group
1 |Non-shared modules
2 |Multi-tasking storage management
3 |Non-tasking storage management
4 |Error handler (ON-units)
5 |List processing and structure |
| mapping
6 |Basic conversion package
| 7 |Edit conversions
8 |Complex conversions
9 |Bit string conversions
10 |Character string conversions
11 |Picture conversions
12 |sterling conversions
13 |optimization=1 special conversions
14 |Bit string functions

15 |Character string functions

16 |°*STRING' BIF and PV

17 |Real non-interleaved arrays

18 |Real interleaved arrays

19 |Complex non-interleaved arrays

20 |Complex interleaved arrays

21 |Real arithmetic operators

22 |complex arithmetic operators

23 |Real short arithmetic functions

24 |Real long arithmetic functions

25 |Complex short arithmetic functions

26 |Complex long arithmetic functions

27 |Non-tasking data-directed I/0

28 |Non-tasking list-directed I/0

29 |Non-tasking edit-~directed I/0

30 |Multi-tasking data-directed 1/0

31 |Multi-tasking list-directed I/0

32 |Multi-tasking edit-directed I/0

33 |Non-tasking record 1/0

34 |Multi-tasking record 1/0

35 |Non-tasking record 1/0 wait

36 |Multi-tasking record I/0 wait |
-

Note: The non-shared modules (Group 1)
comprise those modules from the
Housekeeping, String Function, and STREAM
I/0 Packages which cannot reside in the
shared library.

IHELTVA consists of the resident
transfer vectors plus all the library
modules selected for residency; the latter
are link-edited to IHELTVA. IHELTTA
consists of the non-resident transfer
vectors. At initial program load time, the
load module containing IHELTVA must be made
resident in the link pack area of MVT or
the resident access methods area of MFT
control programs.

160

Module IHELTTA must be included when a
user wishes to create the shared library
feature, and this may be achieved by means
of the catalogued procedures discussed in
IBM _System/360 Operating System: PL/I (F)
Programmer's Guide.

For details of the PL1LIB macro
instruction, see IBM_.System/360 Operating
System: System Generation. Main storage
requirements for this feature are discussed
in IBM System/360 Operating System: Storage
Estimates.

Table 2. Housekeeping Package
v 1
| Group Number |
Module | Description F-r-—v—v-—--4
| 112 |3 |4 |5
1 } }
IHEABN| ABEND option X | |
IHETCV| Control Variable 1X
IHETEA| Event Variable ix
IHETER| ON Field Ix
JHETEV| COMPLETION |1X
IHETPB| PRIORITY | X
IHETPR| PRIORITY 1X
IHETSA| Storage Manag.t Ix
IHETSE| FINISH .8
| IBETSS| FINISH Ix
|IHESAP| Storage Manag.t | X
IHEOSS| FINISH | X |
IHEOSE| EXIT X | |
IHECKP| Checkpoint X | |
IHEDSP| Display X | |
IHEDUM| Dump | IX |X
IHESRT| Ssort X |
IHEERR| Error X X
IHECFA| ONLOC X
IHECFB| ONCODE X
IHECNT| ONLINE X
IHEOCL| OPEN/CLOSE X |
(non-tasking)
IHEOCT| OPEN/CLOSE IX
(multitasking) |
IHESRC| ONSOURCE | X
IHESRD| ONKEY | X
IHELSP| List Processing | X
IHESTR| Structure Mapping | X
IHEBEG| Terminal Error X |
IHECFC| Mod 91 and 195 X |
interrupts
IHEM91| Mod 91 and 195 X
exrors |
IHEMAI| Main X
IHEMSI| No Timer IX
IHEMST| No TIME 11X
IHEMSW| WAIT I/O Event IX
IHEOSD| Date X |X
IHEOSI| Delay X
IHEOST| Time 1 Ix Ix
IHEPTT| COPY Tasking X
IHEPRT| COPY Non-tasking X
IBERES| Restart X |
IHESIZ| Length PRV X1 |
IBESPR| SYSPRINT DCLCB X ! l
4

Conversion Package

4

o

o

Table 3.
T
| Group Number
Module Description t
6 7 8 9 10 1 12 13
IHEDIA F format director X X X
IHEDIB | E to Internal X X
IHEDID B to Internal X X
IHEDIE | Picture to Internal X X X
IHEDIL | A/B error X |
| IHEDIM | C to Intermal X
IHEDOA Internal to F/E X X X
IHEDOB | Internal to A X |
| IHEDOD Internal to B X
IREDOE Internal to Picture X X X
IHEDOM Internal to C X | |
IHEDMA | Conversion director X X X X X | X X |
IHEDNB Arithmetic to Bit X | | {
IHEDBN Bit to Arithmetic X i
| IHEDCN | Bit to Character | X |
IHEDNC | Arith to Character X X
JHEKCA | Vvalid Dec. Picture X I X
IHEKCB | Valid Sterling Picture | X |
IHEKCD | valid Char. Picture | X
IHEUPA | Address Real Complex | X
IHEUPB | Address Imag. Complex | X X
| IHEVCA | Arith. attributes X
| IHEVCS | Complex to Internal X |
| IHEVFA | Binary to Decimal X X | X
| IHEVFB | Float to Fixed X | X } X
| IHEVFC | Float to Float X | |
| IHEVFD | Fixed to Float X | X | X |
IHEVFE | Float to Float x |
IHEVKB | Decimal to Packed | X
IHEVKC | Sterling to Packed | X
IHEVKF | Packed to Fixed | X
IHEVKG | Packed to Sterling | X
IHEVPA | Decimal to Binary X | X | X
IHEVPB | Decimal to F X | X | | X
IHEVPC | Packed to E I x | X X
IHEVPD | Packed to Decimal X X X
| IHEVPE E/F to Packed X X X
| IHEVPF | Decimal to Packed X X X
| IHEVPG Fixed to Float X
IHEVPH Bit to Float X
IHEVSA Varying Bit X
IHEVSB | Varying Bit/Character | X X
IHEVSC | Varying Character | X
IHEVSD | Varying Bit/Character X X
IHEVSE | Character to Picture X
IHEVSF Bit to Picture | X X
IHEVQA Float to Fixed | X
IHEVQOB | Decimal to Arithmetic | X
| IHEVQC | Arith. to E/F/Char. | X
L L

Appendix B: System Generation

161

Table 4.

STRING Function Package

L § A L 1
| | | Group Number |
| Module | Description b v v T 4
| | I 1 | W} 15} 16 |
; + S s s e
| IHEBSA | And | I X | 1 |
| IHEBSO | Or | 1 x | |
IHEBSN | Not | I x|
IHEBSC | Compare | X |
IHEBSM | Assign | X |
IHEBSK | Concat, REPEAT | X |
IHEBSD Compare | X |
IHEBSS Compare, SUBSTR | X |
| IHEBSI | INDEX | X | |
IHEBSF BOOL | X |
THEBSV VERIFY | X |
| IHEBST | TRANSLATE | x | i |
IHECSK | REPEAT | i x
IHECSC | Compare | | X
IHECSM | Assign, Fill HIGH/LOW | | | X |
IHECSS | SUBSTR i | 1 X |
IHECSI | INDEX i | I x |
| IHESTG | STRING BIT | | | | X
| IHESTP | STRING PV | 1 | | x
{ IHECSV | VERIFY | | | x|
| IHECST | TRANSLATE | | | x |
L d L L 4 s
Table 5. ARRAY Function Package Table 6. Arithmetic Function Package
L T T 3 T 1
| | | Group Number | \ Group Number|
| Module | Description } T v T | Module | Description T
| | 1 17 | 18 | 19 | 20 i | 21 | 22 |
L 4 1 1 1 — L i 4
L] T T T + " T T T + "
IHEJXS	Indexer	X	X	X	X		IHEXIB X**N	X	
IHEJXI	Indexer		X		X		IHEXID X**N	X	
IHENL1	ALL ANY	X	X	X	X	IHEAPD X**N	X		
IHENL2	ALL ANY		X		X IHEXIS X**N	X			
IHESSF	SUM	X		IHEXXS shift	X				
IHESMF	SUM 1 X			IHEXIL X**Y X					
IHESSG	SUM X		X		IHEXXL X%**Y X				
IHESMG	SUM	X		X	IHEMZU X*Y X/Y X				
THESSG SUM X	X IHEXIU X**N X								
IHESMH SUM	X X IREMZV X*Y X/Y X								
IHEPSF	PROD X		IHEXIV	X#**N X					
IHEPDF PROD X THEMZW X#*Y	X								
IHEPSS PROD X IHEDZW XY X									
IHEPDS PROD X IHEXIW X**N X									
IHEPSL PROD X IHEXXW XexyY X									
IHEPDL PROD X	IHEMZ2 X*Y X								
IHEYGF POLY X X IHEDZZ X/yY X									
IHEYGS POLY X X IHEXIZ X**N X									
IHEYGL POLY X X IHEXX?Z X**Y X									
IHESSX	SUM	1 x		IHEMXB	MAX MIN X				
IHESMX	SUM		x IHEMXD	MAX MIN 1 x					
IHEPSX	PROD	X	IHE2DD ADD] X						
IHEPDX	PROD X IHEMXS.	MAX MIN > S							
IHEPSW	PROD X IHEMXL	MAX MIN X							
IHEPDW | PROD | | | X IHEMPU | MULTIPLY I x|
IHEPSZ | PROD X | IHEDVU | DIVIDE 1 x|
IHEPD2Z PROD | X IHEADV ADD | X |
IHEYGX POLY X X IHEMPV MULTIPLY | X |
IHEYGW POLY X X IHEDVV DIVIDE | X |
IHEYGZ | POLY I X X L 1 4 J
L | L 'l e L

162

Table 7. Mathematical Function Package Table 8. RECORD I/0 Package
L2 v T 1 ¥ T | | 1
| | | Group Number | | i |Group Number|
| Module | Description - 4 Module| Description Bt |
| | 23124125126 | | 33|34135|36
b + -1 $ +
IHESQS | SQRT X X | IHEION|I/0 transmitter route| X (
IHBEEXS | EXP X X | | IHEOSW|Wait I/0 EVENT X |
IHELNS | LOG x| Ix | IHEOCL | OPEN/CLOSE X |
IHESNS | SIN COS IX| |X IHEINT|I/0 transmitter route x| |
IHETNS | TAN X X IHETSW|Wait I/0 EVENT | I I B ¢
IBEATS | ATAN X X IHEOCT | OPEN/CLOSE | IXx | |
IHESHS SINH COSH IX X | 4 1 o ——
IHETHS | TANH | x X |
IHEHTS ATANH |1X X
IHEEFS ERF X X
IHESQL SQORT X X
| IHEEXL ‘ EXP X X
IHELNL | LOG X X
IHESNL SIN COS | X X
IHETNL TAN X X
IHEATL | ATAN X X
IHESHL SINH COSH |1X X
IHETHL TANH X X
IHEHTL ATANH X X
JIHEEFL ERF . IX
IHESQW SQRT | | |x
IHEEXW | EXP | 1 X
IHELNY | LOG 1 X
IHESNW | SIN COS SINH COSH | X
IHETNW | TAN TANH | X
IHEATW ATAN ATANH | X
IHESQZ | SQRT | X
IHEEXZ EXP | X
IHELNZ | LOG | X
IHESNZ SIN COS SINH COSH | X
IHETNZ TAN TANH | X
IHEAT?Z ATAN ATANH | X
| IHEABU | ABS | 1x
IHEABV | ABS | | X
IHEABW | ABS [I T B
| IHEABZ | ABS I I O P O
L i I G R | J
Table 9. STREAM I/0 Package
h] h)
| Group Number |
Module Description
1 27 28 29 30 31 32
IHEDDI Read Data X X
IHEDDO | WritesConvert Data X
IHEDDJ | Array/address X X
IHEDDP | Array subscript X X
IHEDDT Write Data Tasking X
IHEIBT | Tasking PUT X X X
IHEIOA | GET X X X X X X
IHEIOB | Non-tasking PUT X X X
IHEIOC GET string X
IHEIOD | Datafield handler X X
IHEIOF | Logical records X X X X X X
IHEIOP PagesSkipsLine X X X X X X
IHEIOX Skip/Column) . X X
IHELDI | Read List X X
IHELDO | WritesConvert List X X
IHETAB | Pages/Line default | X | X X X |
L 4 —d B g) 3 d

Appendix B: System Generation 163

Table 10. Cross-Reference to Library

Modules and Groups

Module Name

Selected Group

Module Name

Selected Group

THEABN
IHEABU
IHEABV
IHEABW
IHEABZ
IHEADD
IHEADV
IHEAPD
IHEATL
IHEATS
IHEATW
IHEATZ
IHEBEG
IHEBSA
IHEBSC
IHEBSD
IHEBSF
IHEBSI
IHEBSK
IHEBSM
IHEBSN
IHEBSO
IHEBSS
IHEBST
THEBSV
| IHECFa
IHECFB
IHECFC
IHECKP
IHECLT
IHECNT
IHECSC
IHECSI
IHECSK
IHECSM
IHECSS
IHECST
IHECSV
IHECTT
IHEDBN
IHEDCN
IHEDDI
IHEDDJ
IHEDDO
IHEDDP
IHEDDT
IHEDIA
IHEDIB
IHEDID
IHEDIE
IHEDIL
IHEDIM
| IHEDMA
| IHEDNB
IHEDNC
IHEDOA
IHEDOB
IHEDOD
IHEDOE
IHEDOM
IHEDSP
IHEDUM

—— e —— — — — —— q— — a—. — — — — " c—)

|
Jf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
[
|
|
|
|
|
|
|
|

1

25

25

26

26

21

22

21
24,26
23,25

LINKLIB
9

10
27,30
27,30
27
27,30
30
6,7,13
7,10
7,9
7,11,12
7

7
6,7,8,9,10,11,12
9

10,13

6,7,13

11,12

[N IS I IR I |
-
w

—— ———— a—— —— — a— v s o)

164

— s m—

IHEDVU
IHEDWV
IHEDZW
IHEEFL
IHEEFS
IHEERD
IHEERE
IHEERI
IHEERO
IHEERP
IHEERR
IHEERT
IHEESM
IHEEXL
THEEXS
IHEEXW
IHEEXZ
IHEHTL
IHEHTS
IHEIBT
IHEINT
IHEIOA
IHEIOB
IHEIOC
IHEIOD
IHEIOF
IHEION
IHEIOP
IHEIOX
IHEITB
IHEITC
IHEITD
IHEITE
IHEITF
IHEITG
IHEITH
IHEITJ
IHEITK
IHEITL
IHEITP
IHEJXI
IHEJXS
IHEKCA
IHEKCB
IHEKCD
IHELDI
IHELDO
IHELNL
IHELNS
THELNW
IHELNZ
IHELSP
IHEMAI
IHEMPU
IHEMPV
THEMSI
THEMST
IHEMSW
THEMXB
THEMXD
IHEMXL
IHEMXS
THEMZU

—— s - e B2t e e e e i

22
22

22

24,26
23,25
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
2,3
LINKLIB
LINKLIB
24,26
23,25

25

26

24,26
23,25
30,31,32
3y
27,28,29,30,31,32
27,28,29
1

29,32
27,28,29, 30,31, 32
33
27,28,29,30,31,32
29,32
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
LINKLIB
18,20
17,18,19, 20
11,13

12

10

28,31

28,31

24,26

23,25

25

26

5

1

22

22

1

1

1

21

21

21

21

22

S — I " W —— — . G— — ———— — —— — —— — —— —— — ——— — — i w— o]

e o a—

1} T T L)
| Module | Module | |
Name | Selected Group Name | Selected Group
N 4
T]
IHEMZV | 22 IHETAB | 27,28,30,31 .
IHEMZW | 22 IHETCV | 2 |
IHEM22 22 IHETEA | 2
IHEM91 1 IHETER 2
IHENLA1 17,18,19,20 IHETEV 2
IHENL2 18,20 IHETEX LINKLIB
IHEOCL 3,33 IHETHL 24,26
IHEOCT 2,34 IHETHS | 23,25
IHEOPN LINKLIB IHETNL 24,26
IHEOPO LINKLIB IHETNS 23,25
IHEOPP LINKLIB IHETNW. 25
IHEOPQ LINKLIB IHETNZ 26
IHEOP2 LINKLIB IHETOM | LINKLIB
{ IBEOSD 2,3 IHETPB | 2
IHEOSE 3 IHETPR 2
IHEOSI 1 IHETSA 2
IHEOSS 3 IHETSE 2
IHEOST 2,3 IHETSS 2
IHEOSW 35 IHETSW 36
IHEPDF 18 IHEUPA 8
i IHEPDL 18 IHEUPB 8,11
IHEPDS 18 IHEVCA 8
IBEPDW 20 IHEVCS 8
IHEPDX 20 IHEVFA 6,8,11
IHEPDZ 20 IHEVFB 6,8,11
IHEPRT 3 IHEVFC 6
IHEPSF 17 IHEVFD 6,8,11
| IHEPSL 17 IHEVFE 6
| IHEPSS 17 IHEVKB 11
| IHEPSW 19 IHEVKC 12
| IHEPSX 19 IHEVKF 1
IHEPSZ | 19 IHEVKG | 12 i
IHEPTT 2 IHEVPA 6,8,11 |
| IHERES 1 IHEVPB 6,8,11 |
| IHESAP | 3 IHEVPC 6,8,11
| IHESHL | 24,26 IHEVPD | 6,8,11
IHESHS 23,25 IHEVPE | 6,8,11
IHESIZ 2,3 IHEVPF 6,8,11
IHESMF 18 IHEVPG 10
THESMG 18,20 IHEVPH 9
IHESMH 18,20 IHEVQA | 13
IHESMX | 20 IHEVQB 13
IHESNL 24,26 IHEVQC 13
IHESNS 23,25 IHEVSA 9
IHESNW 25 IHEVSB 9,10
IHESNZ 26 IHEVSC 10
IHESPR 1 IHEVSD 9,10
IHESQL 24,26 IHEVSE 10
IHESQS 23,25 IHEVSF | 9,10
IHESQW 25 IHEVTB 6
IHESQZ 26 IHEXIB 21
IHESRC | 4 IHEXIC 21
IHESRD | 4 IHEXIL 21
IHESRT 1 IHEXIS | 21
IHESSF 17 IHEXIU 22
IHESSG 17,19 IHEXIV 22
JIHESSH 17,19 IHEXIW 22
IHESSX 19 IHEXIZ 22
IHESTA LINKLIB IHEXXL 21
IHESTG 16 IHEXXS 21
IHESTP 16 IHEXXW 22
IHESTR | 5 IHEXXZ | 22
IHESUB | LINKLIB IHEYGF | 17,18
d.

Appendix B: System Generation

165

— o oy

Module

e s o)

P

Name Selected Group

IHEYGL 17,18

IHEYGS 17,18 |
IHEYGW 17,18

IHEYGX 19,20

IHEYG2 19,20

IHEZZA LINKLIB

IHEZZB LINKLIB

IHEZZC LINKLIB

IHEZZF LINKLIB

b v

166

APPENDIX C: PL/I OBJECT PROGRAM PSEUDO-REGISTERS

PL/I object programs require
pseudo-registers (symbolic name format
IHEQxxx), some of which are defined by the
compiled program, others by the library
modules. During execution of a program
register PR always points to the base of
the PRV (see ‘Pseudo-Register Vector',
Chapter 2).

IHEQADC

Pointer to a list of address constants
for use by the I/0 routines: for
non-multitasking the list is in IHEsSA, for
multitasking in IHETSA.

IHEQATV

Contains the address of the task
variable for the current task.

IHEQCFL

The current-file pseudo-register,
8-bytes, word aligned. Used by STREAM 1/0
modules for implicit communication of the
file currently being operated upon; see
‘Current File' in Chapter 3.

IHEQCTS

Contains the address of the save area
for the control task in a multiprogramming
environment.

IHEQERR

Serves as a parameter list when calling
IHEERRB. The code associated with the ON
condition to be raised is placed into
IHEQERR. See °'ON Conditions' in Chapter 6.

IHECEVT

The anchor cell for the incomplete 1I/0
event variables in a given task. When
IHEQEVT contains zero, no 1/0 event
variable in the task is incomplete.

IHEQFOP

The anchor cell of the chain linking the
FCBs for the files opened in a given task.
When IHEQFOP is zero, none of the files
opened in this task are still open. See
'File Control Block' in Chapter 3.

IHEQFVD

Pointer to the Free VDA module: IHESAFD
for non-multitasking, IHETSAF for
multitasking.

IHEQINV

contains the invocation count, and is
updated by a library module each time a DSA
is obtained.

IHEQLCA

Pointer to the current geéeneration of the
library communication area; see 'Library
Workspace' in Chapters 2 and 4.

IHEQLPR
Length of the pseudo-register vector.
IHEQLSA

Pointer to the first save area in LWS,
which serves two purposes: (1) the save
area provided by the error-handling
routines for an on-unit, and (2) an area
where initial task information is saved
(PICA, program mask, etc.). See Chapter 4.

IHEQLWO, IHEQLW1, IHEQIW2, IHEQLW3, IHEQLWY4

Pointers to the various levels of
library workspace ; see °‘Library Workspace'
in Chapters 2 and &.

IHEQLWE

Pointer to the save area and workspace
used by the error-handling routines when
calling other library routines (not an
on-unit).

IHEQLWF

Pointer to the reserved area attached to
the current LWS. Used for optimization in
storage management. See 'Object-time
Optimization' in Chapter 4.

IHEQRTC

Contains the return code used in the
normal termination of a PL/I program.
Chapter 4.)

(See

IHEQSAR

Contains an environment count used by
the display modification module (IHESAR)
when on-units and entry parameter
procedures are used in prologues and
epilogues.

Appendix C: PL/I Object Program Pseudo-Registers 167

IHEQSFC

Pointer to free-core within first block
of storage obtained by the task
initialization library module (IHESA); see
Chapter 4.

IHEQSLA

Pointer to the latest element in the DSA
chain allocated by the storagé management

routines. The area may be a DSA or a VDA.
See Chapter 4.
IHEQSPR

The file register for SYSPRINT, the name
being standardized to allow usage of. the
same FCB for both the source program and
the library modules. See ‘'Standard Files',
and 'File Addressing Technique' in Chapter
3.

IHEQTCA

Used only in multitasking.
address of the tasks TCA.

IHEQTIC

Contains the task invocation count,
which is used in multitasking in the
freeing of controlled storage.

IHEQTT1 through IHEQTTS

contains the pseudo entry points for the
transfer vector tables held in the
partition when the Shared Library feature
is enabled.

Contains the

NOTE: The Shared Library feature, involving
the pseudo-registers above, must have the
common section of the PRV formatted in the
following sequence:

168

(cont.) IHEQINV

IHEQTT1
T2 LCA
T3 LSA
T4 LWO
TT5 LWl
V1 LW2
V2 I3
™™v3 Lwa
™Y LWE
TVS LWFP
LPR RTC
ADC SAR
ATV SFC
CFL SLA
CTS SPR
ERR TIC
EVT VDA
FOP XLv
FVD TCA
IHE through)

Contains the pseudo entry points for the
transfer vector tables in resident main
storage when the Shared Library feature'is
enabled. '

IBEQVDA

Pointer to the Get VDA module: in
non-multitasking set(in IHESAP) to IHESADF;
in multitasking, set (in IHETSAM) to
IHETSAW.

IBEQXLV

The anchor cell for the exclusive blocks
created in a given task. When IHEQXLV
contains zero, the task has no exclusive
blocks.

IHELIB

Operands: None

Result:

Definitions of LWS pseudo-registers.

Langths of save areas in LWS.

Format of the library communication area.

Definitions of save area offsets.

Definitions of standard register
assignments.

IBEEVT
Operands: None
Result:

Definitions of the event variable and its
flags.

IHEPRV
Operands:

A three-character code denoting the last
three letters of a pseudo-register name
(default: LCA)

A code denoting a general register
(default: WR)

A keyword parameter OP=XX, where XX is an
RX instruction (default: L)

Result:

The RX operation is performed on the
pseudo-register. This macro is
generally used to store the contents of
a pseudo-register in a general
register.

IHESDR
Operands:
A three-character code denoting a
workspace level (default: LWO0)

A code denoting a general register other
than register DR (default: WR)

APPENDIX D: LIBRARY MACRO INSTRUCTIONS

Result:

The address of

the required workspace
level is put

into register DR.
IHEXLV

Operands: None
Result:

Definition of exclusive block and its
flags.

IHEZAP
Operands: None
Result:

Definitions of I/0 pseudo-registers.

Definitions of the file control block and
its flag bytes.

Definition of the declare control block.

Definitions of various I/0 address
constants, parameters, operations and
options.

Definitions of the I/0 control block and
its flag bytes. :

Definitions of the I/0 event variable and
its flags.

IHEZZ2
Operands: DUMP/none
Result:

If the operand is omitted, or is not
DUMP, a full DSECT is generated. If
the operand is DUMP, only the parameter
list for IHEZZC is defined as a DSECT.

Used only by IHEDUM, IHEZZC, IHEZZF.

Appendix D: Library Macro Instructions 169

170

APPENDIX E: PL/I LIBRARY INTERNAL ERROR CODES AND MESSAGES

Among the errors that occur during program
execution are errors that are covered by
PL/I-defined conditions. If one of these
occurs, an appropriate error code is passed
to IHEERR in pseudo-register IHEQERR. This
code is a U4-digit hexadecimal number. The
two high-order digits denote the PL/I
condition (Figure U49); the others denote
the errors associated with that condition.

r—= T 1
i Code | Condition |
b t i
10	STRINGRANGE
18	OVERFIOW
20	SIZE
28	FIXEDOVERFLOW
30	SUBSCRIPTRANGE
38	CHECK(label)
40	CONVERSION
us	CHECK(variable)
50	CONDITION(identifier)
58	FINISH .
60 { ERROR	
68	ZERODIVIDE [
70	UNDERFLOW
{ 78	AREA
] 88	NAME
90	RECORD
98	TRANSMIT
I A0	1/0 SIZE
A8	KEY
BO	ENDPAGE i
BS	ENDFILE
co	I/O CONVERSION
cs8	UNDEFINEDFILE [
e i i

Figure 49. Internal Codes for ON Condition
Entries

I1f system action is required, an error
message will be printed. The messages
relating to the errors for the PL/I
conditions are given here.

Error code Message

1000 STRINGRANGE

1800 OVERFLOW

2000 SIZE

2800 FIXEDOVERFLOW

3000 SUBSCRIPTRANGE

4000 CONVERSION

4001 CONVERSION ERROR IN F-FORMAT
INPUT

4002

4003

4004

4005

4006

4007

4008

4009

5000
5800
6000
6800
7000
7800
7801

7802

8800
9000
29001

9002

9003

9004
9800
9801

CONVERSION ERROR IN E-FORMAT
INPUT

CONVERSION ERROR IN B-FORMAT
INPUT

ERROR IN CONVERSION FROM
CHARACTER STRING TO ARITHMETIC

ERROR IN CONVERSION FROM
CHARACTER STRING TO BIT STRING

ERROR IN CONVERSION FROM
CHARACTER STRING TO PICTURED
CHARACTER STRING

CONVERSION ERROR IN P-FORMAT
INPUT (DECIMAL)

CONVERSION ERROR IN P-FORMAT
INPUT (CHARACTER)

CONVERSION ERROR IN P-FORMAT
INPUT (STERLING)

CONDITION
FINISH

ERROR
Z2ERODIVIDE
UNDERFLOW
AREA SIGNALED

AREA CONDITION RAISED IN
ASSIGNMENT STATEMENT

AREA CONDITION RAISED IN
ALLOCATE STATEMENT

UNRECOGNIZABLE DATA NAME
RECORD CONDITION SIGNALED

RECORD VARIABLE SMALLER THAN
RECORD SIZE

RECORD VARIABLE LARGER THAN
RECORD SIZ2E

ATTEMPT TO WRITE ZERO LENGTH
RECORD

ZERO LENGTH RECORD READ
TRANSMIT CONDITION SIGNALED

PERMANENT OUTPUT ERROR

Appendix E: PL/I Library Internal Error Codes and Messages 171

9802
2800
A801
Ag802

AB03 .

ABOY
A805
A806

A807

B80O
c800

c801

172

PERMANENT INPUT ERROR

KEY CONDITION SIGNALED
KEYED RECORD NOT FOUND
ATTEMPT TO ADD DUPLICATE KEY
KEY SEQUENCE ERROR

KEY CONVERSION ERROR

KEY SPECIFICATION ERROR

KEYED RELATIVE RECORD/TRACK
OUTSIDE DATA SET LIMIT

NO SPACE AVAILABLE TO ADD
KEYED RECORD

END OF FILE ENCOUNTERED

UNDEFINEDFILE CONDITION
SIGNALED

FILE ATTRIBUTE CONFLICT AT
OPEN

c802
c803
csou
c805

C806

c807

c808

c809

(63:11):1

C80B

FILE TYPE NOT SUPPORTED
BLOCKSIZE NOT SPECIFIED
CANNOT BE OPENED (NO DD CARD)

ERROR INITIALIZING REGIONAL
DATA SET

CONFLICTING ATTRIBUTE AND
ENVIRONMENT PARAMETERS

CONFLICTING ENVIRONMENT AND/OR
DD PARAMETERS

KEY LENGTH NOT SPECIFIED

INCORRECT BLOCKSIZE AND/OR
LOGICAL RECORD SIZE

LINESIZE GT IMPLEMENTATION
DEFINED MAXIMUM LENGTH

CONFLICTING ATTRIBUTE AND DD
PARAMETERS

The dump index provided by the subroutines
IHEZZA, IHEZZB, and IHEZZC contains
information about:

SYSPRINT buffers

Files currently open

Current file
Save areas
On-units, interrupts and other details

This information is output to a file called
PL1DUMP.

SYSPRINT Buffers

The contents of each buffer are given, in
EBCDIC. If U-format records are used, the
contents of the intermediate buffer used by
the library are also printed.

Files Currently Open

File name
A(DCLCB)
A(FCB)
A(DCB)

File-register offset in PRV

Current File

1/0 Files: File name
A(DCLCB)
A(FCB)
A(DCB)

STRING Files: A(SDV)

APPENDIX F: DUMP INDEX

Save Areas

A trace-back through the save-area chain
provides the following addresses:

A(All save areas, including the
library save areas)
A(Current LCA)

A(PRV VDA)

A(VDA for Lws2)

Other Information

If a CALL was made: A(CALL)
A(Procedure) or
A(Entry point of
library module)

If a BEGIN block was entered: A(Entry
point)

If a program ipterrupt occurs: A(Interrupt)

If an on-unit was entered: Type of on-unit.
If this on-unit is the error on-unit and
was entered as a result of system
action, the condition causing the system
action is given.

If IBEDMA occurs in the trace-back: The
names of the modules used in the
conversion are given.

The statement number (if it exists) is
given.

The following program illustrates the
use of the dump index:

Appendix F: Dump Index 173

TDUMP: PROC OPTIONS (MAIN);

1 TDUMP: PROC OPTIONS(MAIN);

2 DCL A CHAR(4)INIT('ABCD');

3 DCL IHESARC ENTRY(FIXED BINARY(31));

4 ON ERROR CALL IHEDUMP;

6 ON CONV CALL CONVPROC;

8 CALL IHESARC(20);

9 PUT LIST ('THIS IS THE FIRST LINE');

10 PUT SKIP LIST('THIS IS THE SECOND
LINE');
11 OPEN FILE(XYZ) OUTPUT;
12 BEGIN;
13 X=3; /% CONV ERROR #*/
14 END ;
15 CONVPROC: PROC;
16 DCL Y(-32768:-32768,-32768:-32768) CHAR(1);
17 2=Y(32767,32767); /* ADDRESSING ERROR */
18 END TDUMP;

The addressing error only occurs if this program is the only one being executed.

The dump index produced for this program is:

* * & PL/I F-COMPILER S5TH VERSION * IHEDUMP * * #

* * * SYSPRINT BUFFERS
BUFFER 01

HE FIRST LINE " U Ya 3 R IHEOPNA O O
BUFFER 02

IHES04I ADDRESSING INTERRUPT IN STATEMENT 00017 AT OFFSET +000B4
FROM ENTRY POINT CONVPROC

**%* FILES CURRENTLY OPEN

XYZ DCLCB 00AL88 FCB O3EB40 DCB 03EB70 PR OFFSET 01C
SYSPRINT DCLCB 00A4UCO FCB O03EBDO DCB 03EC00 PR OFFSET 020

#** CHAIN BACK THROUGH SAVE AREAS
03F9B0 DSA FOR ERR ON-UNIT CALLS IHEDUMP FROM OOA1FA (STMT 5)

03DF10 SECONDARY LIBRARY WORKSPACE

03DF20 SAVE AREA FOR LIBRARY CALLS OOA;QC FROM 00CA3E LCA AT 03E3]
03F690 SAVE AREA FOR LIBRARY CALLS 00a522 FROM 00CAO4 LCA AT 03F730
03Fu4C8 SAVE AREA FOR LIBRARY INTERRUPT A& O0AF46 LCA AT 03F730
03F8D8 DSA FOR PROC CONVPROC CALLS OOAEFO FROM 00A318 (STMT 17)
03F828 DSA FOR CONV ON-UNIT CALLS 00A264 FROM O0A2SE (STMT 7)

03F338 SECONDARY LIBRARY WORKSPACE
03F348 SAVE AREA FOR LIBRARY CALLS 00A200 FROM OOCA3E LCA AT 03F730

03F018 SAVE AREA FOR LIBRARY CALLS 00A522 FROM 00CAO4 LCA AT O03FOBS

174

03EDBS
03FESO
03F290
03F1BO
03EC60

03FFBY

SAVE AREA FOR LIBRARY CALLS 00C728 FROM 00B9CA LCA AT O3FOBS

SAVE AREA FOR LIBRARY CALLS 00B8DO FROM OOAF06 LCA AT O03FOBS8
DSA FOR BEGIN CALLS OOAEFO FROM 00A186 (STMT 13)

DSA FOR PROC TDUMP ENTERS BEGIN AT 00A138

PRV =~ PSﬁUDO REGISTERS START AT 03EC68

EXTERNAL SA CALLS 00R020

*** END OF OUTPUT

When V-format records are used, the first nine data characters of one of the SYSPRINT

buffers may be blanked out.

If there had been a current file, this would have appeared after the section on ‘'Files

Currently Opened'.

Appendix F: Dump Index

175

176

APPENDIX G: LENGTHS AND LOCATIONS OF MODULES

The following list comprises all the Module Length
library modules provided for Version 5 of
the PL/I (F) Compiler. As each module is IHEDDT 760
aligned on a doubleword boundary in main IHEDIA 784
storage, the length of each module given IBEDIB 280
here has been rounded up to a multiple of IHEDID 4yg
eight. Some of the modules are not IHEDIE 456
required by Version 5, but are included for IHEDIL 48
compatibility with previous versions; IHEDIM 528
numbers in parentheses after the names of IHEDMA 248
these modules indicate the versions that do IHEDNB 264
use them. The modules marked #* reside in IHEDNC 648
the 1ink library (SYS1.LINKLIB); all other IBEDOA 520
modules are in SYS1.PL1LIB. IHEDOB 328
: IBEDOD 296
Module Length IHEDOE 224
IBEDOM 584
IHEABN 12 IBEDSP 648
IHEABU 224 IHEDUM 420
IHEABV sS4y IHEDVU 488
IHEABW 128 IHEDVV 576
IHEABZ 128 IHEDZW 104
IHEADD 216 IBEDZ2 104
IHEADV 96 IHEEFL 688
IHEAPD 360 IHEEFS 416
IHEATL 480 & THEERD 720
IHEATS 368 ¢ IHEERE 1704
IHEATW 288 ¢ IBEERI 896
IHEATZ 288 & THEERN (1,2) 4096
IHEBEG 128 * IHEERO 856
IHEBSA 296 s IHEERP 1272
IHEBSC 272 IHEERR 1824
IHEBSD 192 * IHEERS (1) 848
IHEBSF 480 * IHEERT 712
IHEBSI 296 * IHEESM 1776
IHEBSK 472 * IHEESS (2) 1960
ITHEBSM 384 IHEEXL 456
IHEBSN 192 IHEEXS 248
IHEBSO 312 IBEEXW 136
IHEBSS 240 IHEEXZ 136
IHEBST 584 IHEHTL 264
IHEBSV 408 IHEHTS 176
IHECFA 160 IHEIBT 576
IHECFB 584 IHEIGT (1,2,3,4) 1344
IHECFC 88 IHEINT 440
IHECKP 184 IHEIOA 360
¢ IHECLs (1,2,3) 992 IHEIOB 480
* THECLT 1368 IHEIOC 288
IHECNT 72 IHEIOD 672
IHECSC 200 IHEIOE (1,2,3) 176
IHECSI 168 IHEIOF 736
IHECSK 320 IHEIOG (1,2,3,4) 1104
IHECSM 280 IHEIOH (2) 200
IHECSS 224 * IHEIOJ (2,3) 1992
IHECST 304 IHEION 248
IHECSV 198 IHEIOP 496
* IHECTT 1800 IHEIOX 336
IBREDBN 360 * IHEITB 3784
IHEDCN 496 ¢ IHEITC 2640
IHEDDI 1264 * IHEITD 2280
IHEDDJ 4us *+ THEITE 1760
IHEDDO 6u8 ¢ IHEITF 1856
IHEDDP 640 .

Appendix G: Lengths and Locations of Modules 177

© 178

LA BE K BE BE BF B B)

L 3R K B

Module

IHEITG
IHEITH
IHEITJ
IHEITK
IHEITL
IHEITM
IHEITN
IHEITO
IHEITP
IHEJXI
IHEJXS
IHEKCA
IHEKCB
IHEKRCD
IHELDI
IHELDO
IHELNL
IHELNS
THELNW
IHELNZ
IHELSP
IHELTT
IHELTV
IHEM91
IHEMAI
IHEMPU
IHEMPV
IHEMSI
IHEMST
THEMSW
IHEMXB
IHEMXD

IHEMXS
IHEMZU
JHEMZV
THEMZW
IHEMZZ
IHENL1
IHENL2
IHEOCL
IHEOCT
IHEOPN

IHEOPP
IHEOPQ
IHEOPZ
IHEOSD
IHEOSE
IHEOSI
IHEOSS
IHEOST
THEOSW
IHEPDF
IHEPDL
IHEPDS
IHEPDW
IHEPDX
IHEPDZ
IHEPRT
IHEPSF
IHEPSL
IHEPSS
IHEPSW
IHEPSX
IHEPS2Z

1168
2616
2656
736
536
2720
2400
2590
936
320
104
1560
1464
240
2112
1048
344
264
216
224
1064
Varying
Varying
344
8
312
288
32
32
136
152
120
96
96
344
672
64
64
280
192
1352
2200
984
1992
2008
1368
992
216
80
72
56
88
1064
144
88
88
120
288
120
672
176
72
72
96
272
. 96

Length

Module

IHEPTT
IHERES
IHESAP
IHESHL
IHESHS
IHESIZ
IHESMF
1HESMG
IHESMH
IHESMX
IHESNL
IHESNS
IHESNW
IHESNZ
IHESQL
I1HESQS
IHESQW
IHESQZ
IHESPR
IHESRC
IHESRD
IHESRT
IHESSF
1HESSG
IHESSH
IHESSX
IHESTA
IHESTG
IHESTP
IHESTR
IHESUB
IHETAB
IHETCV
IHETEA
IHETER
IHETEV
IHETEX
IHETHL
IHETHS
IHETNL
IHETNS
IHETNW
IHETNZ
IHETOM
IHETPR
IHETPR
IHETSA
IHETSE
IHETSS
IHETSW
IHEUPA
1HEUPB
IHEVCA
IHEVCS
IHEVFA
IHEVFB
IHEVFC
IHEVFD
IHEVFE
1HEVKB
IHEVKC
1HEVKF
I1HEVKG
IHEVPA
1EEVPB
IHEVPC

Length

792
104
2488
240
168
16
136
128
128
240
408
32¢
312
360
160
168
280
296
32
344
128
1360
184
104
104
232
1128
1384
1440
1592
16
16
216
248
272
256
1464
248
200
320
256
176
176
512

272
5720
88
72
1520
232
232
272
480
232
240
40
104
32
784
720
1624
1248
352
424
496

* % * e

Module

IHEVPD
IHEVPE
IHEVPF
IHEVPG
IHEVPH
IHEVQA
IHEVQB
IHEVQC
IHEVSA
IHEVSB
IHEVSC
IHEVSD
IHEVSE
IHEVSF
IHEVTB
IHEXIB
IHEXID
IHEXIL
IHEXIS
IHEXIU
IHEXIV
IHEXIW
IHEXIZ
IHEXXL
IHEXXS
IHEXXW
IHEXXZ
IHEYGF
IHEYGL
IHEYGS
IHEYGW
IHEYGX
IHEYG2
IHE2ZA
IHEZZB
IHEZZC
IHE2ZF

(3)
3

280
432
240
2u0
280
704
280
1296
1704
3008
1600

Appendix G: lLengths and locations of Modules

179

180

APPENDIX H: COMPILER-GENERATED CONTROL BLOCKS

This appendix describes all the compiler-generated control blocks used by the PL/I
Library except the DCLCB and the OCB, which are described in Appendix I (Input/Output
Control Blocks). All offsets are given in hexadecimal form.

Appendix H: Compiler-Generated Control Blocks 181

182

ARRAY DOPE VECTOR (ADV)

0 23 78 15 16 1

r T T 1
|BtoOf | | Virtual origin

: L [R, —— ---{.

Multiplier,
. |

.
3 N
Multipliern
'8
v T
Uppexr bound,
L -
5 +- .
.
.
.
b $
Upper boundp
i d d

Format of the Array Dope Vector
(ADV)

Figure 50.

This control block contains information
required in the derivation of elemental
addresses within an array data aggregate.
The ADV is used for three functions within
the library:

1. Given an array, to step through the
array in row-major order.

2. Given the subscript values of an array
element, to determine the element
address.

3. Given an element address, to determine
its subscript values.

Within PL/I implementation, arrays are
stored in row-major order, upward in
storage. The elements of an array are
normally in contiguous storage; if the
array is a member of a structure, its
elements may be discontigquous. Such
discontiguity, however, is transparent to
algorithms which employ an array dope
vector.

The ADV contains (2n + 1) 32-bit words,
where n is the number of dimensions of the
array. The number of dimensions in the
array is not described within the ADV, but
is passed to the library as an additional
argument.

Definitions of ADV fields:

BtOf (= Bit offset): For an array of bit
strings with the UNALIGNED attribute,
this is the bit offset from the byte
address of the virtual origin.

virtual origin: The byte address of the
array element whose subscript values
are all zero, i.e.,X(0,...,0);this
element need not be an actual member of
the array, in which case the virtual
origin will address a location in
storage outside the actual bounds of
the array.

Multiplier: These are fullword binary
integers which, in the standard ADV
algorithm, effect dimensional
incrementation or decrementation to
locate an element. Bit multipliers are
used for fixed-length bit string
arrays; byte multipliers are used for
everything else.

Upper Bound: Halfword binary integer,
specifying the maximum value permitted
for a subscript in the ith dimension.
This value may be negative.

Lower Bound: Halfword binary integer,
specifying the minimum value permitted
for a subscript in the ith dimension.
The value may be.negative.

ADV_Algorithm: Given subscript values for

an n-dimensional array, the address of
any element is computed as:

n
Address = origin + Si*M;
1=1

where S value of the ith subscript
M§ = value of the ith multiplier

For an array of bit strings with the
UNALIGNED attribute, the origin is a
bit address formed by concatenating the
virual origin and the bit offset. For
all other arrays, the origin is the
virtual origin.

Appendix H: Array Dope Vector (ADV) 183

184

DATA ELEMENT DESCRIPTOR (DED)

L] h 1
| | Bytes |
| t T T T r T i
| Data type| Representation | 1 | 2 | 3 | 4 | 5 | 6 and onwards |
4 1 4 1 4 4 4 v
¥ hl T 1 hl T T)
| Fixed-point | | | | | | I
| Floating-point |Flags| p | q | = - - |
Arithmetic| Packed decimal | | | | | |
| b ————- + } $ } 4 3--- 4
| | Numeric field |Flags| p | @ | w | 1 | Picture specn |
i 4 4 d 4 4 4 d
s T N T T T T T]
| | Unpictured |Flags| - | - | - - | - |
| String } + t — + L 4
{ | Pictured |Flags| 1 | Picture specification |
[1 4 4 L d
Figure 51. Format of the Data Element Descriptor (DED)
T T R h)
| Code | Bit]
' } L] v Ll v v T T %
| | Y 111 2 | 3 | 4 I 5 t 6 | 7 |
[4 4 4 ks N 4 L i 3
¥ T T T R 13 R T LD v 1
| =0 | | * |Unaligned| Fixed | Picture| Bit . | 0 |
S {0 = S $ t $ t 1
| | string | | | | No | | |
=1] | * | Aligned | varying | Picture| Character . | 0 |
4 — 4 4 3 4 4 4 d
1 T T 1]] R Bl) T t
] | | Non- | | Numeric| | | |
=0 | 1= { * | sterling| Short | field | Decimal | Fixed | Real |
j——----{ Arithmeticj——-t } 4 -4 $ + 4
=1 | }] * | Sterling| long | coded | Binary | Float | Complex]
L il i L 41 4 4 e 4 d

* These bits are used by the compiler, but, when a DED is passed to a library

module, they are always set to zero.

NOTE: the hexadecimal *10' superimposed on the DED Flag byte indicates the presence of a
Bit 3 is set to 1 and bit 6 is set to O.

halfword fixed point binary variable.

Figure 52. Format of the DED Flag Byte

Data element descriptors (DEDs) contain
information derived from explicit or
implicit declarations of variables of type
arithmetic and string. There are four DED
formats; they are shown in Figure 51.

Definitions of DED fields:

Flags: An eight-bit encoded form of
declared information (Figure 52). Those
flags which are specified as zero must be
set to zero.

p byte: p is the declared or default
precision of the data item.

g byte: g is the declared or default scale
factor of the data item, in excess-128
notation (i.e., if the implied fractional
point is between the last and the
next-to-last digit, q will have the value
129).

Appendix H: Data Element Descriptor (DED).

For numeric fields, q is the resultant
scale factor derived from the apparent
precision as specified in the picture,
i.e., the numbexr of digit positions after
a V picture item as modified by an F
(scale factor) item.

For fixed decimal pictures, any explicit
scaling of the form F(:I) is combined
with the implied scale, as described
above, and reflected in the DED. The
F(tI) is then no longer required and is
removed from the picture.

byte: w specifies the number of storage
units allocated for a numeric field.

byte(s): 1 specifies the number of bytes
allocated for the picture associated with
a numeric field. If the data item is
string, 1 occupies two bytes; if
arithmetic, one byte.

185

Picture specification: This field
contains the picture declared for the
data item, If the data item is string,
the picture may occupy 1 through 32,767
bytes; if arithmetic, 1 through 255
bytes. If the original picture
specification contained replication
factors, it will have been expanded in
full. .

186

DOPE VECTOR DESCRIPTOR (DVD)

This provides a key for scanning the
standard array, string and structure dope
vectors. It consists of one entry for each
major structure, minor structure and base
element in the original declaration. Each
entry consists of one word and can have one
of two formats:

1. Structure:

0o 1 2 7 8 15
T T R
|F1|F2| L | N |
L 4 4 d
16 31
r AL}
| Offset |
L 4
F1 =0 Structure
F2 =0
L = Level of structure
N = Dimensionality, including

inherited dimensions

Offset Ooffset of containing
structure from start of
DVD

= - 1 for a major structure

Base element:

0 78 9 10 15
=T T T T T |
iF1{F2| L |FS|F6] N |
[S —dedo_L J

16 17 18 23 24 31
r T T T T="7T 1
|F3|Fu| A | | | D |
L -4 s 4 4 d
F1 =1 Base element
F2 = 0 Not end of structure

=1 End of structure
L = Level of element
F5 = 1 Area variable
=0 Not area variable
F6 = 1 Event variable
=0 Not event variable
N = Dimensionality
F3 = 0 Not an aligned bit string
= 1 Aligned bit string
FuU =0 Not a varying string
= 1 Varying string
A = Alignment in bits (0 to 63)
D = Length, if not a string, in

bits

0 if a string, in which case

the length is in the dope
vector

Appendix H: Dope Vector Descriptor (DVD)

187

188

FORMAT ELEMENT DESCRIPTOR (FED)

This control block contains information 3.
derived from a format element within a

format list specification for edit-directed

1/0. There are five forms of the FED:

1. Format item E:

1 2 3 4

L] Ll |
tdals|

4 i J 4.

o e oy
£

w = width of data field in characters

d = number of digits following decimal

point

s = number of significant digits to be
placed in data field (ignored for 5.
input)

2. Format item F:
1 2 3 4

¥ K} L] L}
I w |dalpl
L bl 3

w and d: as for E format

p = scale factor in excess-128
notation

Format items A, B, X:

I w1

| DTS ——

w = as for E format

Format item P:

There are two forms of the FED for the
P format items, these being identical
to the DEDs for numeric fields and
pictured character strings.

Printing format items PAGE,SKIP, LINE,
COLUMN:

The FEDs for SKIP, LINE and COLUMN are
halfword binary integers. PAGE does
not have an FED.

Appendix H: Format Element Descriptor (FED) 189

190

LIBRARY COMMUNICATION AREA (LCA)

10
14
18
20
29
2A
2C

34
38

CE

38
60

38
3c
4y

r v L] 1
| symbolic|Length | |
| name |(bytes)| Function |
b 4 4 :
WBR1	4	2nd XCTL address for communication in arithmetic
		conversion package.
WBR2	4 } 3rd XCTL address for communication in arithmetic	
]	conversion package.	
WRCD	8	Al(Target),A(DED): Implicit parameters for final
		conversion in arithmetic scheme. Stored by
		arithmetic director.
WFED	4	A({Source FED): Implicit parameter for F or E
	format input conversion.	
WSCF 4	Scale factor for library decimal intermediate	
	form.	
WsDV 8	Input/output field dope vector.	
WINT	9	Library intermediate form storage area.
WSWA	1	Eight 1-bit switches: Intermodular
communication.		
WSWB 1 Eight 1-bit switches: General purpose switches.		
WswC	1	Eight 1-bit switches: Not used across calls.
WOFD	8	Dope vector for ONSOURCE or ONKEY built-in
	functions.	
WwWocH	4 A(Error character): ONCHAR built-in function.	
WFCs	150 Character string (in required format) used by	
		list-directed and data-directed output.
WCFD	4 Library intermediate FED: String/arithmetic	
	conversion.	
WFDT	4	A(Target FED): Implicit parameter for F or E
		format output conversion.
WODF	8	SDV for DATAFIELD in error.
WCNV	8	Library GO TO control block.
WFIL	4	A(DCLCB) for ONFILE.
] WOKY	8	SDV(Null string); requested when ONKEY built-in
		function used out of context.
WEVT	%	AS(event variable).
WREA	4	Return address for AREA on-unit.
L 4 1 J
Alternative entries:

3 L) T 1
| WFC1 | 4o { Workspace for interleaved array indexer. |
| WONC | 40 | Exrror code; storage area for contents of |
] | floating-point registers in error-handling |

| | subroutines. |

L 1 i J
r T R 1
| WCNP | 4 | Implicit parameter: A(Constant descriptor). |
WCN1 | 8 | A(start of constant), A(End of constant). |
WCN2 | 8 | A(start of constant), A(End of constant). |

L P i J

Figure 53. Library Communication Area (LCA)

The library communication area (LCA) is part of library workspace
(LWS), the format of which is given in Figure 54. The use of LWS and
LCA is described in ‘Communication Conventions® in Chapter 2.

Appendix H: Library Communication Area (LCA)

191

192

LIBRARY WORKSPACE (LWS)

0 78 31
IHEQLSA >r T 1
0 | Flags | Length |
b L 1
4 | Chain-back address |
b {
8 | Chain-forward address |
t |
c | |
| Register save area)
| |
t {
48 | (8 bytes unused) |
| |
IHEQLWO: >t 4
50 | |
| |
| Workspace level 0 |
| |
| |
IHEQLW1 >t 4
E8 | |
| |
| Workspace level 1]
]]
| |
IHEQLW2-- >t 4
180 | |
| !
| Workspace level 2 }
! |
| |
IHEQLW3 >t 4
218 | |
| |
| Workspace level 3 |
| |
| |
IHEQLWY >t 4
2B0 | |
|
| Workspace level U
'.
IHEQLWE-~ >t
348 |
|
| Workspace level E
|
| |
IHEQLCA >t |
3E0 | |
|
| Library communication area (LCA) |
| |
| |
IHEQLWF-- >t 4

Figure 54. sStandard Format of Library Workspace (LWS)
The use of Library Workspace (LWS) is described in Chapter 2.

The format of the LCA is given in Figure 53 and that of the SSA
in Figure 55.

Appendix H: Library Workspace (LWS) 193

194

STANDARD SAVE ARER (SSA)

Offset General Register Standard Save Area
Symbolic Symbolic Usage
Value Name Number Name 0 78 31
0 OFCD - - [--Flags i Length -———]
4 OFDR 13 DR |: Chain-back address
8 - - - [Chain~-forward address |
c OFLR 14 LR,RY |: ------- 1
10 OFER 15 BR, RZ [T 1
14 OFRO 0 RO [contents of register -i
18 OFRA 1 R1,RA [T T - 1
1c OFRB 2 RB { Contents of register ---1
20 OFRC 3 RC t ------- contents of register 1
24 OFRD 4 RD i Contents of register -]
28 OFRE 5 RE { Contents of register i
2C OFRF 6 RF {----— contents of register T - }
30 OFRG 7 RG [Contents of register 1
34 OFRH 8 RH i contents of register —__-I
38 OFRI 9 RI i Contents ;;—register ----1
3c OFRJ 10 RJ f Contents of register 1
40 OFWR 11 RX,WR i““ B -"1
44 OFPR 12 PR { ngzao-register pointer) ---j
Figure 55. Format of the Standard Save Area (SSA)

Flags: One-byte code, employed by PL/I
housekeeping procedures to specify the
nature of the storage area in which the
SSA resides. (See Figure 56.)

Length: Three-byte binary integer
specifying the total length of the
storage area in which the SSA resides;
used by PL/I housekeeping to free
dynamic storage areas. (See ‘PL/I
Object Program Management®'.) When
OPT=01.Default is used, bit 1 of these
three bytes is used as a flag.

Chain-back Address: Address of the Ssa
originally provided for a module that
now calls another module.

Chain-forward Address: Address of the Ssa
acquired by a called module. This
field is not set for any PL/I Library
module, since intermodule trace is not
supported within the library.

Return address of the calling module:
Contents of register LR on entry to the
called module, set by the calling
module to the address of the point of
return. All PL/I Library modules
return using register LR.

Entry Point of the called module: Contents
of register BR on entry to the called
module.

Appendix H: Standard Save Area (SSA) 195

RO

to PR: Contents of the specified
registers on entry to the called
module. PL/I Library modules save all
registers LR through WR in order to
meet the requirements of a GO TO
statement in an on-unit. (See Chapter
4.) The register PR field is set by
the subroutine in IHESA that
initializes the main procedure; it
remains unchanged throughout the task.

o
[
ot

Meaning
T

=0 | = 1

1

[=]

Always = 1

-t

s
No statement num- |Statement number
bter field in DSA |[field in DSA

4

P SISO S SEpA——

2

T
|No dummy ON field |STRINGRANGE field
| for STRINGRANGE jcreated as for
| |other ON condition
4

= T
| Procedure DSA | Begin block DSA
4

-+ : }
|No dummy ON field |SUBSCRIPTRANGE
| for SUBSCRIPTRANGE|field created as
| | for other ON con-

[M Sy 7 (S SN S Sy Sp—

S S ———
]
&l wl

| |ditions
-1 }

5 |Non-recursive DSA, |Recursive DSA,
|without display |with display up-
|update field | date field
1 4
T s

6 |No ON fields {ON fields

-——+ ¥ i

7 {No dummy ON field |SIZE field created|
| for SIZE |as for other ON |
| | conditions |
4 i J

Fig

196

ure 56. Format of the SSA Flag Byte

STRING ARRAY DOPE VECTOR (SADV)

0 15 16 31

ADV

Current length/0

. Y e

h)
Maximum length |
3

Format of the Primary String
Array Dope Vector (SADV)

Figure 57.

This control block contains information
required to derive, directly or indirectly
(through a secondary array of SDV entries),
the address of elemental strings. The SADV
is identical to the basic ADV, with the
addition of a fullword which describes the
string length.

Fixed-length strings require only a
primary dope vector. The two length fields

are set to the same value, which is the
declared length of the strings.

VARYING strings require, in addition to
the primary dope vector, a secondary dope
vector. This consists of SDV entries for
each elemental string within the array.
The secondary dope vector is addressed via
the primary dope vector by the standard ADV
algorithm; having located the relevant SDV
the actual string data is directly
addressable. The maximum-length field
appended to the ADV is set to the declared
maximum length of each array element. The
current-length field is set to zero.

The multipliers of the ADV for a
fixed-length string apply to the actual
string data. Those of the ADV for a
variable-length string apply to the
secondary dope vector of SDV entries.

Appendix H: String Array Dope Vector (SADV) 197

198

STRING DOPE VECTOR (SDV)

0 23 78 15 16 31

L
BtOf |

1

Byte address of string

Current length

Ll
Maximum length |
4

.

Figure 58. Format of the String Dope
Vector (SDpV)

A string dope vector (SDV) is an 8-byte
word-aligned block that specifies storage
requirements for string data.

Definition of sSpV fields:

BtOf (Bit offset): If the string is a bit
string, positions 0 to 2 of the SDV
specify the offset of the first bit of
the string within the addressed byte.
The bit offset is only applicable to
bit strings which form part of a data
aggregate, and then only if that
aggregate has the UNALIGNED attribute.

Byte address of string: For both character
and bit strings, this three-byte field

specifies the address of the initial
byte of the string.

Maximum length: Halfword binary integer
which specifies the number of storage
units allocated for the string; byte
count if character string, bit count if
bit string. This value does not vary
for a particular generation of its
associated string.

Current length: Halfword binary integer
which specifies the number of storage
units, within the maximum length,
currently occupied by the string; only
applicable to strings with the VARYING
attribute.

The two length fields exist to
accommodate strings with the VARYING
attribute; in the instance of a
fixed-length string, the two fields contain
identical values. Both fields may contain
a maximum value of 32,767.

Appendix H: String Dope Vector (SDV) 199

200

STRUCTURE DOPE VECTOR

*

This control block contains information
required to derive, directly or indirectly,
the address of all elements of the
structure.

The format of a structure dope vector is
determined as follows. The dimensions
which have been applied to the major
structure or to minor structures are
inherited by the contained structure base
elements; undimensioned non-string base
elements are assigned a dope vector
consisting only of a single-word address
field. The structure dope vector is then
derived by concatenating the dope vectors

0 ; 31

C's Virtual origin

Multiplier,

Multiplier,

—— crlen

‘Upper bounds Lower bound,

Upper bound, Lower bound,

}
| Maximum length l Current length
i D's Virtual origin
| Multiplier
Upper bound Lower bound
Maximum length ! 0
| F's Address
¢ G's Virtual origin
Multiplier
Upper bound i Lower bound

i

H's Address

Maximum length i
4

Current length

which the base elements would have if they
were not part of a structure, in the order
in which the elements appear in the
structure.

The following structure would result in
a dope vector of the form shown below in
Figure 58.1.

1a, 2B(10), 3c(10) CHAR(6),
3D BIT(10) VARYING,

2E, 3F FLOAT(S),
3G(10) FIXED,
3H CHAR(3);
9 1
| B's
> Dope
Vector
A's
> Dope
Vector
4
9
E's
> Dope
Vector i
4 1

eFigure 58.1 Format of the Structure Dope Vector (SDV)

Appendix H: Structure Dope Vector 201

202

SYMBOL TABLE (SYMTAB)

0 78 15 16 31
r T

| 0 | Chain-forward address

t 4

T T

| Length | |
S ——— J

|

| Identifier

!

1] T

i D | A (DED)

L

T

| Flags Field A

"-‘ L T

| Field B |]
L A J
Figure 59. Format of the Symbol Table

(SYMTAB)

The symbol table consists of one or more
entries which define the attributes,
identifier, and storage location of
variables which appear in the data list for
data-directed I/0. Each SYMTAB entry
contains the address of the next entry or a
stopper.

Definition of SYMTAB fields:

Chain-forward address: The address of the
next entry in the symbol table; all
symbols (identifiers) known within a
given block are chained together. The
last entry in the chain is signaled by
a zero chain-forward address. (The
symbol table of a contained block must
include the symbol table of the
containing block; hence the
chain-forward address of the last entry
for variables declared in a contained
block is that of the first entry in the
symbol table of the containing block.)

Length: Number of characters comprising the
identifier. Maximum length is 255
characters.

Identifiexr: The name declared for a
variable. If the variable is known by
a qualified name, the identifier
includes separating periods.

D (= Dimensionality): The number of
dimensions declared for an array
variable; D = 0 for scalar variables.

A(DED): Address of the data element
descriptor associated with the
variable.

Flags:
Bit
0 (Reserved)
1 =1 ON CHECK for the variable
2 =1 ON CHECK for label variable
3 (Reserved)
4 (Reserved)
Bits
5671
000 Variable is STATIC
001 Non-structured AUTOMATIC or
CONTROLLED
010 Structured AUTOMATIC or
CONTROLLED
Field A:

1f STATIC: Address of data item or its
dope vector.

If AUTOMATIC (non-structured): Offset of
data item or its dope vector
within DSA. (See note.)

If AUTOMATIC (structured): Offset of dope
vector for data item (within a
structure dope vector),
relative to origin of DSA.
(See note.)

If CONTROLLED (non-structured): Offset to
data item or its dope vector.

If CONTROLLED(structured): As for
AUTOMATIC (structured), but
offset is relative to origin
of structure dope vector.

Field B:

If STATIC: Not used.

If AUTOMATIC: Offset of display within
PRV.

If CONTROLLED: Offset of the anchor word
(pseudo-register) of the
controlled variable.

Note: See Chapter 4 for description of

storage class implementation and for
definition of DSA.

Appendix H: Symbol Table (SYMTAB) 203

204

APPENDIX I: INPUT/OUTPUT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the PL/I Library I1/0
interface modules, including those blocks generated by the compiler. The functions of
the blocks and the way in which they are used by the library are described in Chapter 3.
In the diagrams, all offsets are in hexadecimal.

The appendix includes an example of the chaining of I/0 control blocks.

Appendix I: Input/Output Control Blocks 205

206

DECLARE CONTROL BLOCK (DCLCB)

0 78 15 16 23 24 31
v T
0 DPRO] DCLA
'y
v
4 DBLK | DLRL
4
T T
8 DCLD DBNO | DCLB | DCLC
4 4
T R
C DXAL |NCP Value|Reserved
4 4.
10 (Reserved)
14 (Reserved)
¢ i
18 | DFLN |
pomm—————-d
DFIL

Figure 60. Format of the Declare Control
Block (DCLCB)

DPRO: Halfword binary integer (set by the
linkage editor) specifying the offset,
within the pseudo-register vector
(PRV), of the pseudo-register
associated with the declared file.

DCLA: Four four-bit codes specifying

the file type, organization, access and

mode:

Byte 1
Type

0001 xxxx STREAM
0010 xxxx RECORD

Organization

xxxx 0000 CONSECUTIVE
xxxx 0001 INDEXED

xxxx 0010 REGIONAL (1)
xxxx 0011 REGIONAL (2)
xxxx 0100 REGIONAL (3)
xxxx 0101 TELEPROCESSING

(Stream-oriented 1/0 is supported only

for data sets of CONSECUTIVE
organization.)

DBLK

Byte 2
Access

0001 xxxx SEQUENTIAL
0010 xxxx DIRECT

(These are used for record-oriented 1/0
only.)

Mode

xxxx 0001 INPUT
xxxx 0010 OUTPUT
xxxx 0100 UPDATE
xxxx 1000 BACKWARDS

(Stream-oriented I/0 uses INPUT and
OUTPUT only.)

: Halfword binary integer specifying
the length, in bytes, of the blocks
within the data set:

F-format records: block length
specified for data set (constant
for all blocks except possibly the
last one).

U-, V-, VS- or VBS-format records:

maximum length of any block in
data set.

TP: maximum message length

DLRL: Halfword binary integer specifying

the length, in bytes, of the records
within the data set. Two or more
records may be grouped (blocked) to
form one physical block.

F-format records: record length
specified for data set (constant
for all records).

V-, VS- or VBS-format records: maximum
length of any record in the data
set.

U-format records: this specification is
not permitted; the block size
defines the record length.

Appendix I: Declare Control Block (DCLCB) 207

DCLD:
ENVIRONMENT options:

Bit

One byte containing

Option

Noueswhhs0

DBNO:
the number of buffers to be allocated
to the file when it is opened, as
specified by the BUFFERS option.

DCLB:

208

Bit

LEAVE
COBOL file
CTLASA
CTL360
INDEXAREA
NOWRITE
REWIND
GENKEY

One-byte binary integer specifying

One byte containing attribute
codes:

Attribute

NSO EsEWwNN=a0

KEYED
EXCLUSIVE
BUFFERED
UNBUFFERED
TRANSIENT
(Reserved)
(Reserved)
(Reserved)

DCLC:

Eight-bit code which specifies the

format of records within the data set:

Bits Code Format
0 and 1 01 v
0 and 1 10 F
0 and 1 1 U

~NounswNn
| JR T G S

DXAL:

- (Reserved)
Blocked
VS/VBS
PRINT/G

R

(Resexrved)

Halfword binary integer specifying

the count in the INDEXAREA area

environment option.

DFLN:

One-byte binary integer specifying

the length (minus one) in bytes of the
file name in the following field.

DFIL: Character string,
long, specifying the
If there is no TITLE
statement, the first

up to 31 bytes
name of the file.
option in the OPEN
eight characters

of this name are used as the name of
the DD statement associated with the
file during program execution. (The
compiler will have padded the name with
blanks to extend it to at least eight
characters in length.)

EVENT VARIABLE

0 78 15 16 31
r T
0 | EVF1 | EVEC
t +
4 | EVF2 | EVIO
L L ___+
3
8 | EVCF
b =
3
c | EVCB |
L
[v
10 | EVST | Reserved
L 4.
t
1 | EVFF
pm——-
18 | EVFB
L
¥
1c | EVPR
[§ d
Figure 61. Format of the Event Variable

In a multitasking environment, event
variakles are placed in two chains:

1.

The file chain, which is anchored in
the TEVT field of the FCB and includes
all active event variables related to
a file and for which there is no
corresponding IOCB. This chain
enables all associated event variables
that are not being waited on to be set
inactive, complete, and abnormal when
a file is closed.

The task chain, which is anchored in
the pseudo-register IHEQEVT, and
includes all active I/0 event
variables associated with the task.
This chain facilitates the setting of
those event variables that are not
being waited on inactive, complete,
and abnormal on termination of the
task.

An example of the chaining of event
variables is given at the end of this
appendix.

EVF1: 8-bit code containing implementation

EVEC:

EVF2.

EVIO:

EVCF:

EVCB:

EVST:

EVFF:

EVFB:

EVPR:

flags:

Flags code Name
Active event variable 1000 0000 EMAC
1/0 associations 0100 0000 EMIO
No WAIT required 0010 0000 EMNW
FCB address contained

in the first word 0001 0000 EMFC
This event variable

is to be checked 0000 1000 EMCH
DISPLAY event variable 0000 0100 ENDS
IGNORE option with

this event 0000 0010 EMIG

Contains the address of the DECB
associated with the event, or the
address of the FCB when no IOCB was
obtained, e.g., when READ IGNORE (0)
is executed.

PL/I ECB flag byte:
Flags Code Name
Wait 1000 0000 EMWB
Complete 0100 0000 EMCP
Not used.

Event variable chain-forward pointer
(task).

Event variable chain-back pointer
(task).

Status field:

Normal status value: All zeros.
Abnormal status value: Low-order bit
is 1, remainder is zero (unless
set otherwise by STATUS

pseudo-variable),

Event variable chain-forward pointer
(file).

Event variable chain-back pointer
(file).

Address of the PRV of the task in
which the associated I/0 event was
initiated.

Appendix I: Event Variable 209

210

EXCLUSIVE BLOCK

0 78 15 16 31

 §]
0 | XCFF

L

L]

4 | XCBF

i

[}

8 | XCFT

L

C|r XCBT |
L d
T |
10 | XPRV |

t v T

14 | XFL1 |(Reserved) XSTC

} 4 L

18 |

i XONM

|

t t 4
20 | XIRN | XKYI/XREG | A
L. 4 JI
3 1
24 | P
| ||
| XKYR | XRNM
| |1
i | |
| ||
| | Vv
L Jm
Figure 62. Format of Exclusive Block
Exclusive blocks are placed in two
chains:

1. The task chain, which is anchored in
the pseudo-register IHEQXLV, and
enables all records locked in a task
to be unlocked when the task is
terminated.

2. The file chain, which is anchored in

the TXLV field of the FCB, and
facilitates the freeing of all
exclusive blocks related to the file
when it is closed, and facilitates a
check on whether a record is already
locked.

An example of the chaining of exclusive

blocks is given at the end of this
appendix.

XCFF:

XCBF:

XCFT:
XCBT:

XPRV:

XFL1:

XSTC:

XQNM:

XRNM:

Chain-forward pointer (file).

Chain-back pointer (file).

Chain-forward pointer (task).
Chain-back pointer (task).

Address of the PRV for the task in
which the exclusive block was
created.

Flags: XLOK: Code 1000 0000 indicates
that the record associated with the
exclusive block is locked owing to a
READ operation or an incomplete
REWRITE or DELETE operation.

Lock statement count: the number of
incomplete I/0 operations that
currently refer to the exclusive
block.

Eight-byte gname used in the ENQ and
DEQ macro instructions. The first
word contains the address of the FCB,
right-aligned, and the second
contains zero.

The rname used in the ENQ and DEQ
macro instructions:

XLRN: One byte containing the length
of the rname.

XKYI/XREG:
XKYI: INDEXED files (unblocked
records) : Key of record
being locked.
INDEXED files (blocked
records) : A(FCB).
REGIONAL files: Region
number of the record
being locked.

XREG:

XKYR: REGIONAL(2) and (3) files:
recorded key of the record

being locked.

The

Appendix I: Exclusive Block 211

212

FILE CONTROL BLOCK (FCB)

0 78 15 16 23 24 31
r- 1
-8 | TVAL |
[d
3)
-4 TRES
v
0 TFLX | TDCB
4
L)
4 TTYP | TACM
4
T h j
8 TFLA | TFLB | TLEN
b ¢ L
c | TFIO | TDCL
t L
r
10 | TCBA
it
L}
14 | TREM TMAX
18 TREC
1c TCNT
k
20 | TPGZ | TLNZ
[4
T T
24 | TLNN | TFLC TFLD
L 4
I v
28 | TFLE | TFOP
L s
12 T
2C | TFLF | TTAB
} 1
30 | |
| |
|
| DCB
|
|
|
L J
Figure 63. FCB for Stream-Oriented I/0
TVAL: Word containing bits indicating
which statements are valid for this
file
TRES: Reserved
TFLX: Eight-bit code specifying error and

exceptional conditions:

Conditions

EOF on data set
Error on output
Exrror on input
Error on data field
Do not raise
TRANSMIT
List terminator
ENDPAGE raised

Name

. TMEF
TMOE
TMIE
TMIT

TMNX
TMLC
TMEP

0 8 15 16 23 24 31
[}
-8 | TVAL
1
1 8
-4 | TRES |
L 4
[3 Ll a4
0| TFLX | TDCB !
4
Ll
4 TTYP | TACM
4
T v
8 TFLA | TFLB | TLEN
+ b 1
o] TFIO | TDCL
|}
10 TLAB/TCBA
14 TPKA/TSWA
18 TBBZ/TREL
1c | TADC
F {
20 | TLRR/TAID |
d
Al B
24 TLRL TFLC | TFLD |
8 4L
8
28 TFLE TFOP
T
2C | TFLF | TFMP | (Reserved) |
b . : i
30 TEVT |
d
1
34 Zero }
L d
[4 |
38 | TXLV* |
+
3c Zero*
40 TXLZ*
b
4y |
|
|
DCB
J

* These fields are omitted in
non-multitasking environment: DCB
commences at byte 38.

Figure 64. FCB for Record-Oriented I/0

TDCB: Address of the DCB part of the FCB.

TTYP: Eight-bit code specifying I/O .type:

Appendix I: File Control Block (FCB) 213

Type Code
STREAM 1/0 xxxx 0000
RECORD 1/0 xxxx 0001
STRING I/0 xxxx 0010
Temporary flags, 1000 xxxx

valid for single 0100 xxxx
1/0 call only 0010 xxxx
0001 xxxx

TACM:

access methods.

Name

TMDS
TMRC
TMST
TMT1
TMT2
TMT3
TMTU

Address of I/0 transmit module,

which interfaces with data management
The names of all such
library modules are IHEIT*, where #* is

a letter identifying the module.

TFLA: Two four-bit codes specifying the
record format and the current file
mode:

Format Code
V (varaable) 0001 xxxx
F (fixed) 0010 xxxx
U (undefined) 0100 xxxx
ASA control/print
file 1XXX XXXX
Mode Code
INPUT xxxx 0001
OUTPUT xxxx 0010
UPDATE xxxx 0100
BACKWARDS xxxx 1000

TFLB: Eight-bit code specifying the file
attributes:

Attribute code
EXCLUSIVE 1XXX XXXX
UNBUFFERED X1xX xxxX
Hidden buffers XX1x XXxXx
SYSPRINT file Xxx1 Xxxx
Hidden buffer may

be required XXXX X1xx
KEYED XXXX XX1x
DIRECT XXXX XXX1

TLEN:

Name

TMVB
TMFX
TMUN

TMAS

Name

TMIN
TMOP
TMUP
TMBK

Name

TMEX
TMBU
TMHB
TMPT

TMHQ
TMKD
TMDR

Halfword binary integer, specifying

the length, in bytes, of the FCB.

TFI0: Eight-bit code

of 1/0 operation:
Operation Code

PUT 1000 0000
GET 0100 0000
EVENT option
with IGNORE option 0000 0010
COPY option 0000 0001

TDCL:
file.

214

specifying the type

Name

TMPW
TMGR

TMEI
TMCY

Address of the DCLCB defining the

TCBA/TLAB:

STREAM:

RECORD:

TCBA: Address of next available
byte in a buffer.

TLAB:

Sequential: Address of last
IOCB obtained.

Direct: Address of first 1I0CB
in chain.

TCBA:

Sequential: Address of last
record located.

TREM/TMAX/TPKA:

STREAM:

RECORD:

TREM: Number of bytes remaining
in current record. This value
is equal to TLNZ when the
record is initialized for
output.

TMAX: Halfword binary integer
specifying the number of bytes
in a record:

Input:
read.

the number of bytes

Qutput: the number of bytes
initially available.

For V format records, this
number includes the four-byte
record control field; for all
record formats, it includes the
ASA control byte (if present).

TPKA: Address of previous key.
(Used for SEQUENTIAL access to
REGIONAL data sets, LOCATE
creation of INDEXED data sets,
and padding key for SEQUENTIAL
INDEXED data sets.)

TSWA: Address of data in dummy
buffer got at OPEN time

TREC/TBBZ/TREL:

STREAM:

RECORD:

TCNT/TADC:

STREAM:

TREC: Address of buffer
workspace (paper-tape input,
U-format output).

TBBZ: Length of IOCB. The
first byte contains the subpool
number.

TREL: Relative record count.
(Used only for SEQUENTIAL
access to REGIONAL data sets.)

TCNT: .Fullword binary integer
specifying the number of scalar
items transmitted during the
most recent 1/0 operation (GET
or PUT) on the file

RECORD:

TADC: Address of the adcon
list.

TPGZ/TLNZ/TLRR/TAID:

STREAM:

RECORD:

TPGZ: Halfword binary integer

specifying the maximum number

of lines per page. This field
is only used for PRINT files.

A default value of 60 lines is
assumed if:

1. +the OPEN statement that
opens the file does not
include the PAGESIZE
option, or

2. an implicit open occurs.

TLNZ: Halfword binary integer
specifying the maximum number
of characters per line. A
default line size is obtained
from the record length
specified in the ENVIRONMENT
attribute if:

1. the OPEN statement that
opens the file does not
include the LINESIZE
option, or

2. an implicit open occurs.

If the ENVIRONMENT attribute is
not specified, the record
length used is that specified
in the associated DD statement.

If none of these specifies a
record size, and if the file is
a print file, a default length
of 120 characters per line is
assumed.

The TLNZ value includes all
characters available within a
line.

TLRR: Address of I0CB of last
complete READ operation. This
is required whenever the EVENT
option is used; it provides a
means of identifying the last
complete READ operation when a
REWRITE is executed. 1In the
case of spanned records this
field holds the length of the
previously read record if the
previous operation was a READ
SET.

TAID: Address of dummy work
area for terminal
identification.

TLNN/TLRL:
STREAM: TLNN: Halfword binary integer

specifying the current line
number.

RECORD: TLRL: Maximum logical record
length for the file.
TFLC: Two U-bit codes giving:
1. Type of device.

2. Further file history.

Device Code Name
Paper tape 1000 0000 TMPA
Printer 0100 0000 TMPR

Previous operation
was READ with SET

option 0000 1000 TMPS
Attempt to close in

wrong task 0000 0100 TMDT
OPEN or CLOSE

in progress 0000 0010 TMOC

TFLD: Eight-bit code specifying the
organization of the data set associated
with the file:

Organization Code Name
CONSECUTIVE X'00°* TMCN
INDEXED X'04° TMIX
REGIONAL (1) X'08°* TMR1
REGIONAL (2) X'oc’ TMR2
REGIONAL (3) X*'10° TMR3
TELEPROCESSING X*14° TMTP

TFLE: Eight-bit code specifying the
history of the file:

History Code Name

Preceding operation

a READ 1000 0000 TMRP
IGNORE in progress 0100 0000 TMIG
CLOSE in progress 0010 0000 TMCL
End of the extent

reached by the

last operation 0001 0000 TMET
Preceding operation

a REWRITE 0000 1000 TMWP
Preceding operation

a LOCATE 0000 0100 TMLT
1/0 condition on

CLOSE 0000 0010 TMCC
Implicit CLOSE 0000 0001 TMCT

TFOP: Address of the prior FCB opened in
the current task, or zero (if FCB is
the first FCB opened).

Appendix I: File Control Block (FCB) 215

TFLF: Eight-bit code specifying the
load module code (used by IHECLS,
IHECLT and IHECTT to specify module
names in the DELETE macro):

STREAM:

Miscellaneous Code Name
TAB table exists 0000 0001 TMTB

RECORD:

Module Code Code Name
QSAM X*'00°* TMQS
BDAM X'ou TMBD
QISAM X*'08°* TMQI
BISAM X*'ocC* TMBI
BSAM X*'10°* TMBS
BSAM load mode X'14¢* TMBL
QTAM X*18° T™MQT
Tab control table

exists X'01° TMTB

TTAB: Address of

TFMP: RECORD 1/0 only.

216

files only).

by exclusive

TAB control table (PRINT

This flag is used
files to act as a lockout

flag when updating the chains of IOCBs
and exclusive blocks. A TS loop is
performed on this byte until it is
freed. When the chaining operation is
complete, the byte is set to zero.

TEVT: Pointer to chain of active I/0 event

variables associated with the file, but
for which there is no corresponding
I0OCB: enables the event variables to be
set complete, inactive, and abnormal
when the file is closed.

TXLV: Pointer to chain of exclusive blocks

associated with locked records of the
file: enables locked records to be
unlocked when the file is closed.
(Used only in a multitasking
environment.)

TXLZ: Length of exclusive block: the first

byte contains X'01'(the number of the
subpool in which storage for the block
is allocated).

DCB: This field, variable in length and

format, is the data control block
defined by data management for the
various access methods.

INPUT/OUTPUT CONTROL BLOCK (IOCB)

0 78 15 16 31
r L 3 R}
0 | BACT | BPIO | A
L 1 |
4 BNIO | |
T i |
8 | BERR | BFCB | |
i i d ‘
v 1
c | BREQ | |
b T { |
| BERC/BEFC/BXTC/BKYC | BRCC | IOCB
s i | foundation
1 | BRVS |
L 3
13 1
18 | ~ BEVN |
d
h]
1c BDF1/BBF1 |
4
T A
20 | BDF2/BBF2 | BDF3/(Reserved) |
L 1 d
T]
24 | BDFU4/BBF3 |
d
1
28 ' BDF5/BBF3 (contd.) | v
(4
$
2C BECB/BEXD | A A
L d | |
| § T |
30 | BTYP | BLEN | BSAM BDAM/BISAM
b ! 4 DECB DECB
34 | BDCB | | |
L
T “4 | |
38 | BARE | | |
L 4
b | | |
3c | BSTS/BLOG | v |
L + |
1] T
40 | BKVS/BKEY | i
L { |
T h)
44 | BBLK/BEXI | v
1 -4
v T
48 | BDBF/BXLV | A
1 4 I
r 1
4c | (Reserved) | {
t 4 BDAM/BSAM
50 | | Hidden
o | BBBF | buffer
o | | area
-1 | |
- | | |
| | v
t J
Note: (The IOCB includes the Data Event Control Block (DECB)

for the BSAM and BDAM/BISAM Interfaces)

Figure 65. Format of the I/0 Control Block (IOCB)

BACT: One byte containing an activity flag BPIO: Chain-back address of the previous

(used only in direct access): I/0 control block.
BNIO: Chain-forward address of the
Code Meaning next I/0 control block.
X'FF* In use BERR: Flag byte for record-oriented
X'00°* Free I/0 situations:

Appendix I: Input/Output Control Block (IOCB) 217

Code

Situation Name
IOCB has been checked 0000 0001 BMCH
1/0 error exists 0000 0010 BMER
End-of-file has

occurred 0000 0100 BMEF
Possible lock for

REWRITE 0000 1000 BMPR
Lock for

REWRITE 0001 0000 BMNR
IOCB for BISAM

READ UPDATE mode 0100 0000 BMDF
Dummy buffer acquired 1000 0000 BMDB

BFCB: Address of the FCB for the file.

BREQ: Request control block. Four-byte
field specifying the request codes for
associated operations (as passed by the
compiled calling sequence):

Byte 1 Operation

X'00° READ

X'04" WRITE

X'08°* REWRITE

X'oc* DELETE

X'10°* LOCATE

X'14°* UNLOCK

xX'18°* WAIT

Byte 2 Option Set 1

X'00° None/SET

x'oyu" IGNORE

X*'08°* INTO/FROM

Byte 3 Option Set 2

X*00° None

X'04°* KEYTO

X'08°* NOLOCK

Byte 4 Option Set 3

X*'20° EVENT option

X'40° VARYING record variable
(INTO)

X'80°* VARYING KEYTO

BERC/BEFC/BXTC/BKYC: Error codes for
various conditions.

BERC: ERROR condition
BEFC: ENDFILE condition
BXTC: TRANSMIT condition
BKYC: KEY condition

(See Chapter 6 for details of these
codes.)

BRCC: Error code for RECORD condition.

(See Chapter 6 for details of these
codes.)

218

BRVS: Address of RDV or SDV for record

variable.

BEVN: Address of event variable; zero, if
none exists for associated operation.

BDF1/BBF1:

BSAM: BDF1l: Address of the user's
record variable.

BDAM: BBF1l: Address of the user's
record variable.

BDF2/BBF2

BSAM: BDF2: Length, in bytes, of the
user's record variable.

BDAM: BBF2: Length, in bytes, of the
user's record variable.

BDF3:

BSAM: Length, in bytes, of the KEYTO
area.

BDAM: (Reserved)

BDF4/BBF3

BSAM: BDF4: Address of the KEYTO area.

BDAM: BBF3: Relative record or track
number (BLKREF).

BDF5: BSAM: Relative record number
(REGIONAL (1)).

BECB/BEXD:

BECB: The data management event control
block (ECB).

BEXD: If BDAM is used, bytes 2 and 3
(= BEXD) of this field contain
the BDAM exception codes. For
definitions of these codes, see
IBM System/360 Operating System:
Supervisor and Data Management
Macro Instructions.

BTYP: Type of 1I/0 operation (set
by data management macro).

BLEN: Length, in bytes, of the records to
be transmitted.

BDCB: Address of the DCB.
BARE:
Hidden buffers: Address of the
appended buffer.
No hidden buffers: Address of the record
variable.

BSTS/BLOG: BEXI: If BISAM is used, one byte
(= BEXI) contains the BISAM

BSAM: BSTS: Address of the status exception codes. For definitions
indicator. of these codes, see IBM
System/360 Operating System:
BDAM: BLOG: Address of the IOB (I/0 Supervisor and Data Management
block; see 1IBM System/360 Macro Instructions.

Operating System: System

Programmer's Guide.
BLOG: Address of the logical BDBF/BXLV:

record.

BISAM

BKVS/BKEY BSAM and BISAM: BDBF: Start of hidden
buffer.
BSAM: BKVS: Address of SDV for XEYTO.

BDAM: BKEY: Address of KEY BDAM: BXLV: Address of the exclusive
block (if any) associated with

BBLK/BEXI record being referenced.

BBLK: Address of BLKREF, the relative
record or track number (i.e., the BBBF: Start of BDAM/BISAM hidden buffer.
address of BBF3).

r T T 1
| | SEQUENTIAL | DIRECT |
l l’— T -4-- T {
) | CONSECUTIVE | REGIONAL | REGIONAL | INDEXED |
| | | (KEYED) | | |
] | | Q) (2) (3) | (1) (2) (3) | |
I 1 1 _+__ 4 4
8 T L] T T T v T 1
F-format	A	A A	A	A	a	a	A
records	B	} B B	B	¢	¢	¢	c
		8 Dy	Da	8	Da	Di	Dy
		Da	Da				Da
							16
							(Note 1)
4 + +- 1 + + + + + i							
V-format	A i - - 1 a - 1 - 1 A	-					
records i B		B		¢			
	Da		Ds		Da		
				Da			Da
b + S G At e SR -1							
U-format	A	- - { a } -t -1 a	-				
records	B		B ! i ¢ 1				
			Da		Ds		
			Da				
8 i i 1 4 1 1 L 9							
A: size of IOCB foundation	Note 1: If RKP # 0, then Dy = 0.]						
:+ Size of BSAM DECB	If RKP = 0 then for blocked						
C: sSize of BDAM/BISAM DECB	records: Dy = L, and for						
D: Size of hidden buffer: junblocked records: Dy = 2L,							
Dy : Length of recorded key	where L = length of recorded						
Da: Length of block (record)	keye.						
	Note 2: The data value is ob-						
	tained by summing the sizes {						
	given under each entry.						
L 4 J

Figure 66. Values used in Computing Size of IOCB for Various Access Methods

Appendix I: Input/Output Control Block (IOCB) 219

220

OPEN CONTROL BLOCK (OCB)

0) 8 12

L 3 v T

| Type | 0 | Access | Mode

L yu 4

16 20 24 28 31
T R j T

FlagA | FlagB | FlagCc | Flag D

i i 4

Figure 67. Format of the Open Control

Block (OCB)
Type STREAM 0001
RECORD 0010
Access SEQUENTIAL 0001
DIRECT 0010
Mode INPUT 0001
OUTPUT 0010
UPDATE 0100
BACKWARDS 1000
Flag A Bit: 0 KEYED
1 EXCLUSIVE
2 BUFFERED
3 UNBUFFERED
Flag B 0 TRANSIENT
Flag C (Reserved)
Flag D Bit: O (Reserved)
1 PRINT
2 (Reserved)
3 (Reserved)

Appendix I: Open Control Block (OCB)

221

222

EXAMPLE OF CHAINING

Figure 68 contains an example of the
chaining of FCBs, l10OCBs, event variables,
and exclusive blocks in a single task.

Files

The task has opened two files, and the
addresses of their FCBs (FCB1 and FCB2) are
stored in the PRV; the FCBs are placed in a
chain that is anchored in the
pseudo-register IHEQFOP and uses the TFOP
fields in the FCBs. The task also has
access to another file that was opened in a
higher task; the address of the FCB for
this file (FCB3) was copied into the PRV
when the task was attached. (Note that
this FCB does not appear in the IHEQFOP
chain.) A DCLCB exists for each file
declared, but only the one corresponding to
FCB1 is shown in Figure 68; this file is an
exclusive file that has been opened for
DIRECT UPDATE.

10CBs

Three of the current I/0 operations that
refer to FCB1 required IOCBs. The IOCBs
are placed in a chain anchored in the TIAB
field of the FCB so that they can be freed
when the file is closed. The BXLV field in
each IOCB addresses the corresponding
exclusive block. The EVENT option was used
with two of the I/0 operations: the BEVN
fields in I0CBs 1 and 3 therefore point to
the corresponding event variables. (The
third operation originated in another
task.)

Event Variables

The task has four active I/0 event
variables. These are chained from the
pseudo-register IHEQEVT so that, on

termination of the task, they can be set
complete, inactive, and abnormal. (Note
that the address in the chain-back field
EVCB in event variable 1 is not that of
IHEQEVT, but that of the field three words
higher: IHEQEVT is thus in the same
position relative to this address as EVCB
is relative to the first byte of the event
variable.) Event variables 1, 3, and 4
relate to the file corresponding to FCB1,
and must be set complete, inactive, and
abnormal when the file is closed.
Communication with event variables 1 and 3
is established via the corresponding IOCBs.
But event variable 4, which relates to an
I/0 operation for which an IOCB was not
required, is placed in a chain anchored in
the TEVT field of the FCB. Event variable
2 is related to an 1/0 operation on another
file in the task.

Exclusive Blocks

For REGIONAL files and INDEXED files with
unblocked records, an exclusive block
exists for each record currently locked;
all those shown refer to the file
corresponding to FCB1. (If the files have
blocked records, only one exclusive block
exists for each file in each task; it is
created the first time a record in the file
is locked, and is not freed until the file
is closed.) The exclusive blocks are
placed in a chain anchored in the TXLV
field of the FCB s0 that the blocks can be
freed when the file is closed. Only two of
the records have been locked by this task,
and their exclusive blocks (1 and 3) are
placed in a chain anchored in
pseudo-register IHEQXLV so that the records
can be unlocked on termination of the task.
(Note that the chain-back fields, XCBT and
XCBF, in exclusive block 1 point, not to
IHEQXLV and TXLV, but to fields in the PRV
and FCB1 that have the same positions
relative to IHEQXLV and TXLV as the start
of the exclusive block has relative to XCBT
and XCBF.)

Appendix I: Example of Chaining 223

@ ® ©

2 T N
v | Fo—————— i Sttt
- 1l TN il
i! 1 i
i 11 ! \
T i
! 2 o 1 "
! Slolol 2=kl Q2 > o |z
Voo ISICE N = S8 Elsz !
! F olzlg |gleR o G EREEE _
L)
| v
! AL e =z
! * .*“ | _*_ ar o
o~ o 11 | | 00
ol)| |O ! | ! 1y a4
Vi w | ___ | ___ " v
“l " | Il ! Py X ¥
| | by | g z2z
| _ I " _ Ly S3
B L | H
Il e e L ! P
1] g g
| | rm——== i1 I ~——=== 1
b I J———— J ruJ r-J"“ ||||| J rnJ
| | al
| e e o e e e e e e e e Al ——— ——— ——
T 1 : a _ -
| R I
I N [| i b
11 11 | | _‘
[| ! |
L e " | " |
- | ! " .I.uc w|e0 " wled _C u.| 0| I W m
all | lekklsl>ls! zZ2lg |90 | ulu P8 OIS _ ol P2 I
ol | I¥ol<>IS12 SR I | 22 212 I SIS 51
[= 0 = = I I we | | | ol wiad
b > | |]
3 | “ |
i Y _ _ _
bl i _ ! |
" __“ ! | o ! _
] T T
[“__ _”] { |
1R ! | "
1o | | |
“ ol “__ © | ® ! ® !
[T |
| P! S S | 1
AT - | 3 |
My v - =1 S "
] ! i L]
AR | etk 1] S Ittt 1T e
| e ey M . -1l
| _ “ ﬁ | it i
(| T“ :_
S| [o - W.S
> 2 19[=21ER S 22| lukl w il Sl I
& 10 I e e e e A o S0(uivlo vldlulY o
R w VI = 02| x|x[x|* x [x<| =] u
x I [a] us =2 VVIVIV
(= | | L[m] XX XX
RF
a O
i
|
| |
b e 4

O ©

Figure 68. Example of Chaining of I/O Control Blocks

224

APPENDIX J: STORAGE-MANAGEMENT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the non-multitasking
storage-management modules of the PL/I Library; the formats of the multitasking
equivalents are given in Appendix K. The functions of the blocks and the way they are
used are described in Chapter 4. In the diagrams, all offsets are in hexadecimal.

Appendix J: Storage-Management Control Blocks 225

226

AREA VARIABLE

0 78 31

r T - 1
0 |See Note | Length of Area Variable \

[4]

r 1
4 | Offset of End of Extent |

|8 4

1]
8 | Offset of Largest Free Element |

t d

1) - h)
C | See Note |

L ¥]

L 1

|

|

|

|

| |

|

|

|

| |

L 4

Note: If the area variable contains a free

list, bit 0 of the first byte is set
to 1, and the fourth word is set to
0.

Figure 69. Format of Area Variable

Appendix J: Area Variable 227

228

DYNAMIC STORAGE AREA (DSA)

78 31

0

r T
|

L

r

|

Flags |

d

Chain-back address

Length

e whs e ol

Chain-forward address

Register save area

&Ze s 0o) ®©® & O

&

Current file

wn &
o [
_q-—.r.

Invocation count

wn
©

OPTIONAL ENTRIES:

Display
Statement number
ON fields N

Dope vectors |

AUTOMATIC data
Workspace
Parameter lists

J

Figure 70. Format of the Dynamic Storage

Area (DsSA)

The minimum size of a non-multitasking
DSA is X'64' bytes.

Standard Entries

Standard Save Area: The area starting with
the flags and continuing up to and
including the register save area.
Figure 55 and associated text.)

(See

Current File: This field is eight bytes
long; its use is described in 'Current
File' in Chapter 3. In a multitasking
environment, the first byte is used as the
SYSPRINT resource counter; see 'SYSPRINT in
Multitasking' in Chapter 3.

Invocation Count: This field is eight bytes
long and contains:

1st word: Environment chain-back address or
zero

2nd word: Invocation count

T 1
| Meaning |
Bit v }
=0 ' =1 |
4 {
(| Always = 1 |
+ v {
1 |No statement num~ |Statement number |
|ber £field in DSA |field in DSA
4
|

N

STRINGRANGE field
created as for
other ON condi-
tions

No dummy ON field
for STRINGRANGE

Procedure DSA
o dummy ON field |SUBSCRIPTRANGE
or SUBSCRIPTRANGE|field created as
for other ON con-
ditions

Begin block DsA

2

_,.
1o
e o e e s o e i s o

5 |Non-recursive DSA, |Recursive Dsa,
|without display with display up-
jupdate field date field
iy

|
|
|
3
1
|
]

6 |No ON fields ON fields
1

7 {No dummy ON field |SIZE field created
|for SIZE as for other ON
| |conditions
1

4

Figure 71. Format of the DSA Flag Byte

Optional Entries

Display: This field is eight bytes long and
contains:

1st word: Pseudo-register offset

2nd word: Pseudo-register update
If it occurs at all, the display field
always appears at offset 58.

Statement Number: This field is four bytes
long; it is described in 'Error and
Interrupt Handling'. If it occurs at all,
the statement number always appears at
offset 60; bytes 60-61 are always set to
zero and bytes 62-63 contain the statement
number in hexadecimal notation. If there
is no statement number, this field can be
used for optional DSA entries, e.g., ON
fields.

ON fields: Each ON field is two words long.

Appendix J: Dynamic Storage Area (DSA) 229

The ON fields are described in 'ON
Conditions®' under 'Error and Interrupt
Handling'. The position of the first ON
field depends on whether there are entries

in the display update and statement number
fields:

1. No display update, no statement
number: ON fields begin at offset 58.

2. Display update, but no statement
number: ON fields begin at offset 60.

3. Statement number (with or without a

display update): ON fields begin at
offset 64,

230

- Blocks').

The last ON field is indicated by bit
0 =1 in the second word.

Remaining Entries

The dope vector formats are described in
Appendix H ('Compiler-Generated Control
The AUTOMATIC data, workspace
and parameter lists areas are provided for
use by the compiler.

VARIABLE DATA AREA (VDA)

0 78 31
[3 T
0| Flags | Length
d
4 Chain-back address |
4
8| |
Data |
|
L J
Figure 72. Format of the Variable Data
Area (VDA)
r T b
| Bit | |
¢ T | Meaning |
| 0123|4567 | |
L 1 - 4
v T T 1
I [P |
| 0010|0000 | Ordinary VDA% |
L d 4 y]
L} ¥ T)]
] 0010)] 0001 | VDA obtained for a |
| | | library subroutine? |
t + + 1
] 0010} 0101 | VDA containing a |
i | | secondary LWS |
1 1 1 .1
1 3 T T
] 0010|1001]| PRV VDA |
[§ 4 4 d

Figure 73. Format of the VDA Flag Byte

0 78 31
r v 1
0| Flags | Length(= L(PRV) + L(LWS) + 8) |
L 4 {
¥
4 A(External save area) |
t i
8) |
| Pseudo-register vector (PRV) |
! |
] I
| Library workspace (LWS) |
! !
| |
| LWF(DSA optimization area, |
| OPT=01 only |
| |
tem J
Figure 74. Format of the PRV VDA
0 78 31
r T 1
0| Flags | Length |
i 4 J
1) 1
4 | Chain-back address |
L i |
¥ b}
8 | Chain-back address |
| (previous LWS) |
} i
| (unused) |
t 1
10 | |
| Library workspace (LWS) |
! !
] |
| LWF(DSA optimization area, |
| OPT=01 only) |
| |
L]
Figure 75. Format of LWS VDA

1VDA obtained to hold automatic data declared with adjustable bounds or lengths.

3VDA obtained for a library subroutine, or obtained by compiled code for a temporary data

item.

Appendix J: Variable Data Area (VDA)

231

232

APPENDIX K: MULTITASKING CONTROL BLOCKS

This appendix describes the control blocks used by the multitasking storage-management
modules of the PL/I Library. The way in which they are used by the library is described
in Cchapter 5. In the diagrams, all offsets are in hexadecimal.

Appendix K: Multitasking Control Blocks 233

234

CONTROL TASK STORAGE AREA

WORKSPACE: used by control task for

(a) Parameter list for IHESUB
(b) Parameter list for attach macro
(c) Parameter list for IHETEXC

ECBLIST: 256 words for a maximum of 256
tasks. The last entry in contains
X'80' in top byte.

Or 1
| |
| Save Area |

il 1
{ Workspace {
90 }- —
I |
| Major Task Task Variable |
| |
T 1
| Major Task Event Variable |
I |
Ccf 1
| ECBLIST |
| |
uccr---—-- 1
| CTECB |
4pot J

CTECB: the ECB posted by tasks after
completion of "soft"™ code.

® Figure 76. Format of the Control Task Storage Area for Multitasking

Appendix K: Control Task Storage Area

235

236

DYNAMIC STORAGE AREA (DSR)

0 78 31
r =T ===

0 | Flags | Length
b 1 -——
4 | Chain-back address |
— :
8 | Chain-forward address |
k- -4
c | |
- | , |
« | Register save area |
- |
4y | |
k- o
48 | |
| . |
| Current file |
| |
b~ :
50 | |
| , |
| Invocation count |
| |
prmm e {
58 | |
| Display |
| |
k- v -1
60 | Flags | Statement number |
——— e
64 | A(Task variable chain) {
— 4
68 | Zero |
k- - i
6C | ON fields |
| Dope vectors |
i AUTOMATIC data |
| Workspace |
| Parameter lists |
L p |

Figure 77. Format of the Dynamic Storage
Area (DSA) for Multitasking

The minimum size of a multitasking DSA
is X'6C' bytes.

The multitasking DSA contains two fields
that do not appear in the non-multitasking
DSA (RAppendix J): the fullword commencing
at byte 64 contains the address of the
first task variable in the task-variable
chain (if any); the following fullword is
always set to zero. The presence of a task
variable chain is indicated by bit 0 = 1 in
byte 60. The Get DSA routine IHETSAD
differs from its non-multitasking
equivalent only in that it sets the
doubleword commencing at byte 64 to zero.

Appendix K: Dynamic Storage Area (DSA)

237

238

EVENT VARIABLE

0 78 15 16 23 24 31
r ™~ i]
0 | Flags | Reserved |
k- 1 --
4 | Internal PL/I ECB
'.-
8 | Reserved
k- - - i
C | Reserved |
i
T T ==
10 | Status | statement Number
- i
14 | Reserved
k-
18 | Reserved
'. _____
ic | External ECB

e Figure 78. Format of the Event Variable

The task event variable is not chained.

Flags:
Flag code
Active event variable 1000 0000
Dummy event variable obtained
by control task 0100 0000
Normal PL/I termination 0010 0000
Abnormal PL/I termination 0001 0000

Internal PL/I ECB: This is the internal

PL/I event control block. Bit 0 is
set to 1 when a WAIT macro instruction
referring to this ECB is issued; bit 1
is set to 1 when a POST macro
instruction is issued. When a WAIT
for a task event is specified, this
ECB is waited on until posted by PL/I
control task.

Status: Normal status: set to zero.

Abnormal status: set to 1.

Statement Number: Number of the statement

in which the task was attached.

External ECB: This ECB is specified to the

control program when the task is
attached. When the task is detached,
the control program posts this ECB.

Appendix K: Event Variable

239

240

PRV VDA

[-]
~
[«
w
s

Length of PRV VDA

|
]
i
1
-

A(External save area)

|
[S—— _—

Pseudo-register vector (PRV)

|

|

|

|
R S W,

A(Attaching DSA)

A(Attaching PRV VDA)

A(Task variable)

A(Parameter list)

| Optional entries:

| ON field
|
|

e
!
|
]
|
e

Parameter list

| Library workspace (LWS)
L_

Figure 79.

| |
] 1 1
| | 1
! | !
[SIS S S ST Y

——————————————d

Format of PRV VDA for
Multitasking

A PRV VDA for multitasking is identified
by a 1 in the first bit of the length field
(bit 8 of the PRV VDA). Like its
non-multitasking counterpart (Appendix J),
it contains the PRV and primary LWS and is
chained back to the external save area. It

differs in the settings of the flag byte
and in the presence of the following

additional fields immediately following the
PRV:

1st word: Chain back to the DSA of the
attaching task.

2nd word: Chain back to the PRV VDA of
the attaching task.

3rd word: Address of its own task
variable.

4th word: Address of the parameter list
for the called procedure; if no
parameters are being passed,
this word is set to zero.

The following fields are omitted if there
are no entries:

ON field: When a subtask is attached, the
entries in the ON field of the
DSa of the attaching task are
copied into this field.

Parameter list: Parameter list for the
called procedure.

The settings of the flag byte are as
follows:

Major task

Subtask

Subtask with entries
in ON field

X*29°*
X'2Dp"

X'2F°*

Appendix K: PRV VDA 241

242

TASK VARIABLE

0 78 15 16 31
~ T h]
0 | Flags | A(PRV VDA) |
t t i
4 | | A(TCB) |
L 4 d
3 T a
8 | | A(SYMTAB entry) |
L 4
r T --°"
C | | A(Event variable) |
b 1 *
T T
10 | Limit priority|Dispatching |
| |priority |
b v L
14 | | Chain-forward address
L 4
r T
18 | | Chain-back address |
L 1 y)

Figure 80. Format of the Task Variable

The task variable contains the task
control information required by the PL/I
Library. To enable subtasks to be detached
when the attaching task is terminated, all
task variables activated in a task are
placed in a chain anchored in the DSA of
the attaching task. Only the first two
bits of the flag bytes are used:

Bit 1: 0 = Task variable inactive (task
not attached)
1 = Task variable active
Bit 2: 0 = CALL with TASK variable
specified
1 = CALL without TASK variable
specified

Appendix K: Task Variable 243

2u4

TASK COMMUNICATION AREA

0p—----- - 1 PLIST: parameter list passed to control
| PECB | task
u} - -
| PLIST | WECB: task wait ECB; waits until control
8}-—- —_— 4 task has accepted request.
| WECB |
Cpmmmen T { [ELAGS
| FLAGS | WORKSPACE | =1 =0
10t—- . 4 [om=y==="" T = 1
| BIT| Message] PL/I1 |
e Figure 81. Format of the Task | 0 1{ Task | Subtask |
Communication Area e -4 ——— -4
|BIT| Task engqueued | Not |
| 1 | on control task | enqueued |
The TCA contains the POST and WAIT ECBs —-4% - -4=- -4
required by tasks wishing to request | BIT| Reserved | Reserved [
control task facilities, e.g., CALL another |2-6] | |
task, change priorities, etc. t—-4-—--- + 4
{|BIT| Enqueued | Not |
PECB: task post ECB; posts code requesting 1 71 on IHEOPEN | enqueued |
control task action L 1 1 -4

Appendix K: Task Communication Area 245

246

APPENDIX L: PL/I LIBRARY MODULE NAMES, MEMBER NAMES AND ZLIASES

This appendix contains a table listing the

[4 T T 2]
PL/I Library modules in alphabetical order Module Name | Member Name | Aliases |
along with their associated member names 4 4 4
and aliases. For a description of each DDO | DDOA | DDOB, |
module, see Chapter 9, Module Summaries. | | pbpocC, |
In the interests of clarity, the preceding | | | DDOD, i
characters IHE, as indicated by the first | DDOE |
entries, have been omitted. DDP | DDPA DDPB, |
| DDPC, |
r T T 1 | DDPD |
| Module Name | Member Name | Aliases | | DDT | DDTA | DDTB, |
t 4 + | | | { DDTC, |
| IHEABN | IHEABNO | None | | DDTD, |
| ABU | ABUO | - | | DDTE |
i ABV | ABVO | . | DIA | DIAA DIA, |
| ABW | ABWO | . \ | | | DIAB |
| AB2Z | ABZO0 | " (| DIB | DIBA | DIBB |
i ADD | ADDO | » | | DID | DIDA None |
ADV	ADVO	. i DIE	DIEA DIE
APD	APDA	APDB	DIL DILA DILB
ATL	ATLY	ATL1,	DIM DIMA None
	283 DMA DMAA DMA		
ATS	ATS1	ATS 2, 3 DNB DNBA DNB	
		&8 i DNC DNCA DNC	
ATW	ATWN	ATWH	DOA DOAA DOA,
ATZ ATZN	ATZH DOAB		
BEG BEGN	BEGA DOB DOBA DOBB,		
BSA BSAO i None DOBC			
BSC BSCO	. DOD DODA DODB		
BSD BSDO	. DOE DOEA DOE		
BSF BSFO	. DOM DOMA None		
BSI BSIO	. DSP DSPA »		
BSK BSKK	BSKA, DUM DUMP DUMC,		
	BSKR	DUMJ,	
BSM	BSMF	BsMV, DUMT	
		BSMZ DVU DVUO None	
BSN	BSNO	None DWWV DwVVvVo "	
BSO	BSOO	. DZW DZWO "	
BSS	BSs2	Bss3 DZ% DZ20 "	
BST	BSTA	None EFL EFLC EFLF	
BSV	BSVAa	. EFS EFSF EFSC	
CFA	CFAA	. ERD ERDA None	
i CFB	CFBA	.	ERE EREA -
CFC i CFca	- ERI ERIA -		
CKP i CKPT	- ERO EROA .		
CLT CLTA	CLTB ERP ERPA "		
CNT CNTA	CNTB ERR ERRA ERRB,		
CsC CsCo	None ERRC,		
csI CsI10	. ERRD		
CSK CSKK	CSKR ERT ERTA None		
CSM CSMF	None	ESM ESMA ESMB	
css css2	css3 EXL EXLO None		
CST CSTA	None EXS EXS0 "		
csv csva	. EXW EXWO .		
CTT CTTA	CTTB, EXZ EX20 .		
CTTC HTL HTLO .			
DBEN DENA	DBN BETS HTSO -		
DCN DCNA	DCN, IBT IBTA IBTB,		
DCNB IBTC,			
DDI DDIA	DDIB	IBTD,	
DDJ DbJA	DDJ		IBTE
L i 4 J t 4 J]
Appendix L: PL/I Library Module Names 247

T L] Al 1])
| Module Name | Member Name Aliases | Module Name | Member Name | Aliases
} - { $ $
| INT | INTA None | MZW | MZWOo | None
| IOA | IOAA IOAB, M2Z MZZ0 -
| | 10AC, M91 M91A M91,
| IOAD M91B,
| IOB IOBA IOBB, M91cC
| | IOBC, NL1 NL1N LN1Aa,
| IOBD, NL1L
| IOBE NL2 NL2N NL2A,
| I0C I0oCcA IOCB, NL2L
| I0CC OCL OCLA OoCLB,
| IOD I0DG IODP OoCLC, |
IoF IOFA	None		OCLD	
ION i IoNA	" ocT	OCTA	OCTB,	
10P i IOPA	IOPB,		octc,	
		IOPC	i	OcCTD
I0X	IOXA	IOXB, i OPN OPNA	None	
		IOXC	OPO OPOA	-
ITB	ITBA	None	OPP OPPA	.
iTc	iTca	" oPQ OPQA	-	
ITD	ITDA	" oP2Z orza	"	
ITE	ITEA	. 0sD 0SDA	.	
ITF	ITFA	" OSE OSEA	.	
ITG I ITGA	"	osI 0SIA	"	
ITH	ITHA	"	oss ossa	-
173	ITIA	- OST osTA	-	
ITK	ITKA	- OSW OSWA	-	
ITL i ITLA	"	1 PDF PDFO0	-	
ITP	iTPA	-		PDL
JXI	JIXII	JIXIY		PDS
JXS	JXSI	JSXY	PDW	PDWO -
KCA KCAR KCaAa	PDX PDXO0 -			
KCB KCBA KCB] PDZ PDZO0	-			
KCD	KCDA	KCD, PRT	PRTA	PRTB
{ KcDB PSF	PSFO	None		
LDI LDIA LDIB, PSL PSLO .				
LDIC, PSS PSSO .				
LDID PSW PSWO y				
LDO	LDOA LDOB, PSX PSX0 e			
		LDOC	PSZ PSz0 .	
LNL LNLZ	LNLD, PTT PTTA PTTB			
	LNLE RES REST RESN			
LNS LNSZ	LNSD, SAP SAPA SAPB,			
i	LNSE SAPC,			
{ LNW LNWO	None SAPD,			
LNZ LNZO0 "		SADA		
LSP LSPA LSPB, i SHL	SHLS SHLC			
LSPC,	SHS	SHSS SHSC		
LSPD	S1Z	SIZE None		
LTT LTTA None SMF	SMFO	-		
LTTB . SMG	SMGC	SMGR		
	LTTC " SMH	SMHC	SMHR	
LTV	LTVA	.	SMX	SMXO
] MAI MAIN .		SNL	SNLK SNLC,	
MPU MPUO "		SNLS,		
MPV MPVO "		SNLZ		
MsI MSIA - SNs	SNSS	SNsC, i		
MST MSTA -		SNSK,		
MSW MSWA	'	SNSZ		
MXB MXBX	MXBN SNW	SNWK SNNC,		
MXD MXDX MXDN	SNWS,			
MXL MXLX MXLN	SNWZ			
MXS MXSX MXSN SNZ	SNZK SNzZC,			
MZU i MZUM	MZUD	SNZS,		
MZV	MZCM	MZVD		SN2z
L i L J 4 p - J

2u8

r v T r h) v A
Module Name l Member Name | Aliases Module Name l Member Name | Aliases |
d 4 J |
6l R] al b R
SPR SPRT None 14 28 VPCA | VPC |
SQL SQLO . VPD VPDA | VPD |
SQS sSQs0 " VPE VPEA | VPE
SQW SQW0o . VPF VPFA | VPF
| sQ2 sQz0 | " VPG VPGA | VPG
SRC SRCA | SRCB, VPH VPHA | VPH
| SRCC, VQA voaR | None
SRCD, VOB VQBA VOB |
SRCE vQ<C | VQCA vocC
SRD SRDA None vsa | VSAA VSA
SRT SRTA SRTB, VSB VSBA VSB |
SRTC, vscC VSCA vsc |
SRTD vsD VSDA vsD, |
{ SSF SSFO0 None VSDB |
| SSG SSGC SSGR VSE VSEA VSE, |
SSH SSHC SSHR VSEB [
SsX SSX0] None VSF VSFA VSF |
STA STAA . VTB VTBA None |
STG STGA STGB XIB XIBO . |
| STP STPA None | XID | XIpo | " |
STR | STRA | STRB, XIL XILO .
i | STRC XI1s XI1s0 -
SUB | SUBA None XIU X100 b
TAB TABS " XI1v XIVo b
TCV TCVA TCVB XIA XIWO0 . |
TEA TEAA None X12 X120 -
TER TERA TER XXL XXLO .
TEV TEVA None XXS XXs0 .
TEX TEXA TEXB, XXW XXWO0 .
| | TEXC XX2 | Xx20 | "
THL THLO None YGF YGFV | YGFS
THS THSO d YGL YGLV | YGLS |
TNL TNLD TNLR YGS YGSV YGSS
TNS TNSD TNSR YGW YGRV YGWS
TNW TNWH TNWN YeX | YGXV | YGXS |
TNZ TNZH TNZN YGZ | YGZV | YGZS |
TOM TOMA TOMB, Z2A ZZAA None
TOMC, Z72B ZZBA .
| TOMD Z22C ZZCA * |
TPB TPBA None | Z2ZF ZZFA | - |
TRP TPRA " L 8]
TSA TSAP TSAA,
TSAB,
TSAD,
TSAO
TSE TSEA None
TSS TSSA o
TSW TSWA "
UPA UPAA UPAB
UPB UPBA UPBB
VCA VCAA VCA
vcs vCcsa ves,
vCcsB
VFA VFAA VFA
VFB VFBA VFB
VFC VFCA VFC
VFD VFDA VFD
VFE VFEA VFE
VKB VKBA VKB
VKC VKCA VKC
VKP VKFA VKF
VKG | VKGA | VKG
VPA | VPAA | VPA
| VPB | VPBA | VPB |
L A 4 J
Appendix L: PL/I Library Module Names 249

- 250

Indexes to program logic manuals are consolidated in the publication IBM System/ 360

Operating System: Program Logic Manual Index, Form Y28-6717.

For additional information

about any subject listed below, refer to other publications listed for the same subject

;n the Master Index.

(Where more than one page reference is given, the major reference is first.)

*anchor word®' 46

'bootstrap®’ routine 20

‘call sets, 25

*check bit' (EMCH) 63

'‘complete bit' (ECMP) 63

*complete bit' (event variable) 62
*‘mother-daughter® relationship 59
'extended search' feature 39
*soft' code 55

A format items 81

ABEND macro 43

abnormal return 79

abnormal termination 70

abnormal-end-of-task routine 61

access method interfaces
CONSECUTIVE data sets

BSAM 34

osAaM 34
INDEXED data sets

BISAM 35

QIsAaM 35
REGIONAL data sets

BDAM 37

BSAM 37

additional access modules, record I/0 32
address of current LWS 44
addressing interrupt 66
ADV (Array Dope Vector)
ADV field definition 183
aliases of modules 247
alignment, (fixed/varying strings) 79
alignment of modules 177
ALL (arrays) 8u4-85
ALLOCATE statement 45
allocation request 46
alternative I/0 modules (multitasking) 63
ANY (arrays) 84-85
APLIST (parameter list) 57
area storage for based variables 48
area variable 48,227
area variable assignment 48
AREA
alignment 48
attribute 46
based-variables, extent 48
condition 48
arguments
array 14
conversion of 83-84
evaluation of 83-84
in mathematical subroutines
scalar 14
arithmetic assignment, function and
operations 83-84)
arithmetic conversions and editing 80

14,8u4-85

83-84

arithmetic data representation 13
arithmetic target fields 87
array dope vector (ADV) 14,8u4-85
array dope vector (ADV) field
definition 183
array functions 83
array functions
ALL 84-85
ANY 84-85
POLY 8u4-85
PROD 84-85
SUM 84-85
value returned 84-85
array element address 183
array, storage 183
arrays
interleaved
simple 84-85
assignment of area variables 48
ATTACH (post code) 57
attach subroutine 58
automatic restart 16
automatic storage 43
automatic storage
allocation 44
allocation requirements 44
chain-back u4
freeing 44
automatic transmission 34

84-85

B format items 81
based-variables
allocation 46
area storage
allocate 48
element 48
free elements 48
free list U8
offset 48
system storage U6
BCD name, address and length 70
BDAM BLKREF parameter 37
BDAM
CHECK macro 39
DIRECT access of REGIONAL 39
TASK option 39
BISAM
multitasking
blocked records 37
unblocked records 36
non-multitasking
DELETE 36
exclusive 36
KEY 36
KEYFROM 36

Index

251

READ 36 modular 177

UNLOCK 36 PL/I library 9
WRITE 36 compiled code, edit-directed 27
bit functions, byte aligned 85-86 COMPLETION pseudo-variable 62
bit string conversion 8u4-85 complex arguments 87
bit strings/picture character-string complex directors 76
conversion 82 complex-to-string directors 77-78
block header statement 68 computational subroutines 82
block housekeeping 42 computer-generated control blocks 181
epilogues 42 conditions other than on-conditions 70
ocbject program management 50 control blocks 14
prologues 42 control blocks
blocks, non-recursive/recursive 43 computer-generated 181
BOOL function 85-86 input/output 217-219
BSAM multitasking 233
creation and access record I/0 32
DIRECT creation 38 control length allocation request 46
DIRECT initialization 38 control program interfaces 87
error ONCODE 38 control task defined 54
F-format records 35 control task ECB (CTECB) 55
LOCATE 38 control task storage area 235
overlap of transmission 34 control task
READ SET 39 format S5
SEQUENTIAL access of REGIONAL 38 lengths of areas 55
UNBUFFERED 34 priority 55
v-format records 35 save area 55
built-in functions (multitasking) 62 subroutines 57
built-in functions workspace 55
DATE 74 CONTROLLED attribute 62
ONCODE 70 controlled storage 45
ONLOC 70 controlled storage (multitasking) 62
TIME 74 conventions
byte-aligned bit functions 85-86 coding 12

naming 11
CONVERSION error code 82

C format item 79 conversion handling 85-86
CAD (coded Arithmetic Data Item) 12 conversion of arguments 83-84
CALL conversion to bit string 84-85
with EVENT option 59 conversion
with PRIORITY option 59 functions 75
with TASK option 59 of internal arithmetic 79
calling sequence, PL/I 11 mode 79
chain-back address 12 package structure 77-78
chaining of control blocks 223-224 conversions, arithmetic 80
chaining of IOCB's 205 conversions, string 79
change data (internal) 79 COPY control cards 159
change, priority 62 COPY option 29,24
CHAP (change priority) macro 62 counter, location 27
character stringsarithmetic conversion 81 counter, resources in multitasking 25
character string/bit string conversion 81 creation of library 159
character string/picture character string CTECB (control task ECB) 55
conversion 81 current file dump index 173
CHECK option 24 current file
CHECKPOINT/RESTART 16 address 24
CLOSE functions function references 24
EXPLICIT 20 stacking 24
IMPLICIT 22 current LWS address Ul

close process
explicit 22

implicit 22 data checking

close QSAM data sets 34 data-directed 81

coded arithmetic data item (CAD) 12 edit-directed 81

coding conventions 12 list-directed 81

communication conventions 14 data conversion 75,87

communication mode data element descriptor (DED) 185,75,14
explicit 14 data event control block (DECB) 33
implicit 18 data form 76

compatibility data 1list 76

252

data management access methods, record
170 30

data processing 87

data processing routines 75

data representation 12,75

data representation

arithmetic 13
string 14

data sets 18

data specifications
data-directed 26
edit-directed 26

Index 252.1

list-directed 26 editing arithmetic 80

data-directed data specification 26 EMCH (‘'check bit‘') 63
data-directed input/output 79 end of major task 61
DATE built-in function 74 END routine 61
DCB-appendage 19 ENQUEUE (post code) 57
DCLCB (Declare Control Block) 207,18 enqueue subroutine 58
DECB (Data Event Control Block) 33 entry-parameter procedures
decimal overflow interrupt 66 (multitasking) 61
declare control block (DCLCB) 18,207 entry-parameter procedures 49
declare control block, format 19 entry-point names 9
DED (Data Element Descriptor) usage 14 epilogues 42
DED discussion 185,75 error codes 20
DED field definition 185 error codes, OPEN/CLOSE 20
DED error handling 64
creation 75 error handling
flag byte 75 flowchart 65
DELAY statement 74 teleprocessing 41
dependency, inter-modular 87 module IHEERR 64
DESC (message descriptor) 74 data-directed 81
DETACH (post code) 58 edit-directed 81
DETACH routine 61 list-directed 81
detach subroutine (non-message) 58 error message printing 70
directors, library format 27 error messages, modules 64
directors ESD (External Symbol Dictionary) 9
complex 76 evaluation of arguments 83-84
input 77-78 event control block (ECB) 55
input/output 77-78 event variables 209,239
output 79 EVENT variable, major task 55
disabling prefix options 68 exclusive block 34,211
dispatching priority 50,55 executable format scheme 76,27
dispatching priority (value) 62 execution of program 20
DISPLAY statement 74 exit of tasks 60
DISPLAY with EVENT option 74 EXIT statement 74
divide interrupt 66 explicit close 22
dope vector address restrictions 87 EXPLICIT OPEN/CLOSE 20
dope vector descriptor (DVD) 187,14 external names 11
DSA (Dynamic Storage Area) 24 external references 75
DsA definition 43 : external symbol dictionary (ESD) 9
DSA format 229,237 EXTRACT macro 55
DSA chain search 68
DsSA
‘run-time stack' 50 F/E format items 84
address 43 g FCB (File Control Block) 213-216,18
chain 50 FCB history flag 38
format 43 FED (Format Element Descriptor) usage 14
save-area chain 50 FED format 189,75
size 43 file control block (FCB) 213-216,14
dump (to obtain) 66 file control block
dump index 173 address 19
dump discussion 19
object-time 15 file register 20-21
PL/I 16 filesdata set relationship 18
read subroutines 15 file
DVD (Dope Vector Descriptor) 187,14 addressing 18
DVD structure 187 attributes 18
dynamic storage 43 control block 18
dynamic storage area (DSA) 24 in control block chaining 223-224
dynamic storage area (DSA) definition 43 FINISH condition 61

dynamic storage area (DSA) format 229,237 fixed data to library 87
fixed-point overflow interrupt 66
Float-arithmetic generic functions 83-84

ECB (Event Control Block) 55 floating-point arguments 83-84
ECBLIST (list of PECB's) 55 form of data 76

ECMP ('complete bit') 63 format directors

edit-directed compiled code 27 I/0 176

edit-directed data specification 26 library 27

edit-directed input/output 76 arithmetic conversion 76
editing 75 arithmetic-to-string 76

Index 253

complex 76
complex-to-string 77-78
string-to-arithmetic 76
format element descriptor (FED) 189,75
format element descriptor (FED) usage 14
format item attributes 77-78
format item
A/B/X 189,81
E 189,81
F 189,81
P 189
picture 81
format list 76
format of PICA 66
format, pseudo-register names 167
format, subfields 27
format
SSA 195
ssA flag byte 196
formats 14
FPI (Long Floating Point Intermediate) 80
FREE statement U5
free-core chain
format 44
structure 45
free elements (area storage) 48
free list (area storage) 48
FREEMAIN macro 42
functional groups of modules 159

general design, string package 85-86
general implementation features 11
generation stages (library) 159
generation, system 159

GET/PUT code structure 25

GETBUF macro 33

GETMAIN macro 42

GETPOOL macro 33

GO TO statements 49

GO TO statements (multitasking) 61

HIGH/LOW function 85-86

IDENTIFY macro 57
IHEABN 88
IHEABU 88
IHEABV 88
IHEABW 88
IHEABZ 88
IHEADD 88
IHEADV 88
IHEAPD 89
IHEATL 89
IHEATS 89
IHEATW 90
IHEATZ 90
IHEBEG 91
IEEBSA 91
IHEBSC 91
IHEBSD 91
IHEBSF 91
IHEBSI 91
IHEBSK 91
IHEBSM 92
IHEBSN 92

254

IHEBSO
IHEBSS
IBEBST
IHEBSV
IHECFA
IHECFB
IHECFC
IHECKP
IHECKP
IHECLT
IHECNT
IHECSC
IHECSI
IHECSK
IHECSM
IHECSS
THECST
IHECSV
IHECTT
IHEDBN
IHEDCN
IHEDDI
IHEDDJ
IHEDDO
IHEDDP
IHEDDT
IHEDIA
IHEDIB
IHEDID
IHEDIE
IHEDIL
IHEDIM
IHEDMA
IHEDNB
IHEDNC
IHEDOA
IHEDOB
IHEDOD
IBEDOE
IHEDOM
IHEDSP
IHEDUM
IHEDVU
IHEDVV
IHEDZW
IHEDZ22
IHEEFL
IHEEFS
IHEERD
IHEERE
IHEERI
IHEERN
IHEERO
IHEERP
IHEERR
IHEERS
IHEERT
IHEESM
IHEESS
IHEEXL
IHEEXS
IHEEXW
IHEEXZ
IHEHTL
THEHTS
IHEIBT
JIHEIGT
IHEINT

92
92
93
93
93
93
93
93
16
9u
94
9%
94
95
95
95
96
96
96
97
97
97
97
98
98
99
99
100
100
100
100
101
101
101
101
101
102
102
102
102
103
103
103
103
104
104
104
104
104
104
104
105
105
105
105
105
106
106
106
106
107
107
107
107
107
107
108
108

IHEIOA
IHEIOB
JHEIOC
IHEIOD
IHEIOF
IHEIOG
IHEION
IHEIOP
IHEIOX
IHEITB
IHEITC
IHEITD
JHEITE
IHEITF
IHEITG
IHEITH
IHEITJ
IHEITK
IHEITL
IHEITM
IHEITN
IHEITO
IHEITP
IHEJXI
IHEJXS
IHERCA
IHEKCB
IBEKCD
IHELDI
IHELDO
IHELNL
IHELNS
IHELNW
IHELN2Z
IHELSP
IHELTT
IHELTV
IHEMAI
IHEMPU
IHEMPV
IHEMSI
IHEMST
1HEMSW
IHEMXB
IHEMXD
IHEMXL
IHEMXS
IHEMZU
IHEMZV
IHEMZW
IHEMZ2Z
IHEM91
IHENL1
IHENL2
IHEOCL
IBEOCT
IHEOPN
IHEOPO
IHEOPP
IBEOPQ
IBEOPZ
IHEOSD
IHEOSE
IHEOSI
IHBEOSS
IHEOST
IHEOSW
IHEPDF

109
109
110
110
i11
111
111
111
111
112
112
112
112
112
113
113
113
113
114
114
114
114
114
115
115
115
115
116
116
116
117
117
117
118
118
119
119
120
120
120
120
120
121
121
121
121
122
122
122
123
123
119,71
123
123
124
124
125
125
126
126
126
126
127
127
127
127
127
127

IHEPDL 128
IHEPDS 128
IHEPDW 128
IBEPDZ 128
IHEPRT 129
IHEPSF 129
IHEPSL 129
IHEPSS 129
IHEPSW 129
IHEPSX 129
IHEPSZ 130
IHEPTT 130
IHEQxxx (symbolic name of
pseudo-registers) 167
IHERES 130
IHESAP 130,15
IHESHL 133
IBESHS 133
IHESIZ 133
IHESMF 133
JHESMG 133
IHESMH 134
IHESMX 134
IHESNL 134
IHESNS 135
IHESNW 135
IHESNZ 135
IHESPR 136
IHESQL 136
IHESQS 136
IHESQW 136
IHESQZ 136
IHESRC 136
IHESRD 137
IHESRT 137,16
IHESSF 138
IHESSG 138
IHESSH 139
IHESSX 139
IHESTA 139
IHESTG 139
IHESTP 139
IBESTR 140
IHESUB 140,57
IHETAB 140
IHETCV 141
IHETEA 141
IHETER 141
IHETEV 141
IHETEX 141
IHETHL 142
IRETBS 142
IHETNL 142
IHETNS 142
IHETNW 143
IHETNZ 143
IHETOM 143
IHETPB 144
IHETPR 144
IHETSA 144
IHETSAM 57
IHETSAT 60
IHETSAT parameter list 59
IHETSE 146
IHETSS 147
IHETSW 147
IHEUPA 147
IKEUPB 147

Index 255

IBEVCA 148 control block (IOCB) 33,218-219

IHEVCS 148 control blocks 205

IHEVFA 148 directors 77-78

IHEVFB 148 editing 75-76,87

IHEVFC 149 flag (event variable) 62
IHEVFD 149 initiator modules 25

IHEVFE 149 data-directed 79

IHEVKB 149 list-directed 79

IHEVKC 149 return of control 79

IHEVKF 149 statements (teleprocessing) 41
IHEVKG 149 instruction set requirements 10
IHEVPA 150 integral values ‘linkage® 87
IHEVPB 150 inter-modular dependency 87
IHEVPC 150 interface modules, record I/0 29-30
IHEVPD 150 interleaved arrays 84-85

IBEVPE 150 internal change of data 79
IBEVPF 150 internal conversions 81

IHEVPG 150 interrupt handling 64

IHEVPH 150 interrupt handling

IHEVQOA 151 Model 91 and Model 195 71
IHEVQB 151 interrupt mask 66

IHEVQC 151 interrupts, treatment of 51
IHEVSA 151 invalid parameters 82

IHEVSB 151 invocation count 12

IHEVSC 151 invocation of subtask 59

IHEVSD 152 IOCB (Input-Output Control
IHEVSE 152 Block) 33,217-219

IHEVSF 152 IOCB chaining

IHEVTB 152 exclusive blocks 223-224
IHEXIB 152 files 223-224

IHEXID 153 IOCH's 223-224

IHEXIL 153 IoCB, example of chaining 223-224
IHEXIS 153 I0CB

IHEXIU 153 creation 33

IHEXIV 153 DIRECT usage 33

IHEXIW 153 SEQUENTIAL usage 33

IHEXIZ 153 size 33

IHEXXL 154
IHEXXS 154

IHEXXW 154 KEY sequence error condition 38
IHEXXZ 154 KEYFROM (teleprocessing) 40
IBEYGF 154 KEYTO (teleprocessing) 40
IHEYGL 154
IHEYGS 155
IHEYGW 155 LCA (Library Communication Area) 191,15
IHEYGX 155 length control bytes U6
IHEYGZ 156 LENGTH function 85-86
IHEZZC 156 length of PRV 49
IHEZZF 156 lengths of modules 177
illegal conversion 82 library communication area (LCA) 191,15
illegal input, format director 81 LIBRARY statement 9,75
implementation-defined system action 70 library
implicit close 22 : conversion package 75
IMPLICIT OPEN-CLOSE 22 creation 159
INDEX function 85-86 external names 11
indexing routines 84-85 format directors 27
initialization of program 42 macro instructions 12,169
initialization selection 159

major task 59 library workspace (LWS) 44,193

PL/1 program 48 library workspace

PRV 20 definition 14

routines levels

entry point 48 primary 15
exit 49 secondary 15

of subtask 60 LIMCT subparameter 39
initiator modules, input-output 25 limit, priority 59,55
INPUT-OUTPUT 18 LINE option 29
input/output link library 9

256

link pack area (LPA) 10
linkage
conventions 11
specifications 87
linkage to string subroutines 85-
list processing, allocation 46
list-directed data specification
list-directed input/output 79
list-processing
based variables 46
storage U6
load library 10

LOCATE
GET 34
PUT 34

location counter 27

location of modules 177

long floating point intermediate

representation 80

LOW function 85-86

LPA (Link Pack Area) 10

LWS (Library Workspace)
definition 14
pseudo-registers 49
VDA 44
format 193

44,193

macro instructions

system 9,157

library 12
macro, library 169
main-storage management 43
major task

defined 54

end 61

EVENT variable 55
initialization 59,57

PRV VDA (allocation) 55
TASK variable 55

management
module (IHESAP) 42
program 42

storage 42
mathematical functions 83-84
mathematical target fields 87
MCS (Multiple Console Support) 74
message control program 40
message descriptor (DESC) 74
message processing program 40
message segment size U0
message task 60
message task, initialization 57
miscellaneous control program

interfaces 74

mode conversions 79
Model 91,195

condition list 71

interrupts, implementation 71

diagnostic messages 73

flush instructions 73

interrupt count 72

ONCOUNT built-in function 72
modular linkage

record 1I/0 31

stream I/0 23
module

alignment 177

86
26

compatibility 177
lengths-location 177
linkage 11

module names (see also: IHExxx entries in

alphabetic order) 87-156
module names/aliases 247-249
module summaries 87-156
module usage 9
modules
as closed subroutines 9
as interface 9
multiple console support (MCS) 74
multiple WAIT 63
multiprocessing 55
multitasking
alternative 170 modules 63
control blocks 233
indicator flag bit 59
operations synchronization 24

allocation of controlled storage 54

allocation/SYSPRINT resources 26
built-in functions 62
controlled storage 62

freeing of controlled storage 54
library facilities 54

modules (IHETSA) 54

on-units 62

pseudo-registers 59
pseudo-variable 62

resource counter 26

SPIE macro 59

STAE macro 54

task definition 54

naming conventions 11
non-recursive block #3
non-resident transfer vectors 160

object-time dump 15
object-time optimization 52
OBJIN option 71,73
OCB (Open Control Block)
ON CHECK 27,67
ON-condition code number 64
ON ERROR (teleprocessing) 41
ON PENDING (teleprocessing) 41
ON RECORD (teleprocessing) 41
ON TRANSMIT (teleprocessing) U4l
on-conditions
compiled code action 67
disabled 68
disabled by default 68
disabling prefix options 68
library action 68
ON CHECK 67
ON STATEMENT 68
prefix options 68
prologuie 69
SNAP action 69
system action 69
ON-units 49
on-units (multitasking) 61
ONCODE built-in function 83

221,21

open control block (OCB) 221,21
open process 21
OPEN/CLOSE
Index

257

'bootstrap' routine 20

discussion 20

error codes 20

EXPLICIT 20

files 20

IMPLICIT 20

modules 20
operating-system facilities 43
optimization, object-time 52
Option

OBJIN 71,73
OUTPUT/INPUT 18
overlap target field 87

packed decimal intermediate
representation 80
padding (fixed-varying strings) 79
PAGE option 29
paper tape input
CONSECUTIVE 34
illegal characters 34
parameter list (APLIST) 57
parameter list (IHETSAT) 59
partitioned data set (PDS) 10
PDI (Packed Decimal Intermediate) 80
PDS (Partitioned Data Set) 10
PECB (Post Event Control Block) 55
PICA (Program Interrupt Control
Area) 12,64
PICA, field definition 66
PICA, format 66
picture character string 79
picture format items 81
PIE (Program Interrupt Element) 64
PIE field definitions 66
PL/I dump 16
PL/I internal error codes/messages 171
PL/I library generation 159
PL/I library system macros 159
PL/I1 library
compatibility 9
function 9
PL/I on-conditions 67
PL/I program management 42
PL/I program termination 49
PL/I pseudo-registers 167
PL/I standard calling sequence 11
PL/I statements
DELAY 74
DISPLAY 74
EXIT 74
STOP 74
POLY (arrays)
POST CODE 57
post event control block (PECB) 55
precision, binary data 83-84
precision, decimal data 83-84
precision, fixed-point data 83-84
prefix options (on-conditions) 68
PRIORITY (post code) 58
priority subroutine 58
PRIORITY, built-in function 62
priority
change 62
control task 55
dispatching 55,59
limit 55,59

84-85

258

PRIORITY, pseudo-variable 62

process-time overlap 34

PROD (arrays) 84-85

program execution 20

program initialization 42

program interrupt control area
(PICA) 12,64

program interrupt element (PIE) 64

program interrupt overlap 66

program interrupts 64

program management 42

program mask (PM) 66

prologues 42

PRV (Pseudo-Register Vector) 14

PRV initialization 20

PRV length 49

PRV VDA 241,44

PRV VDA (multitasking indicator) 59

PRV VDA (subtask initialization) 60

pseudo-register vector (PRV) 14

pseudo-register, defined 14

pseudo-registers (multitasking) 59

pseudo-registers, PL/I object programs

pseudo-variables (multitasking) 62

PUT statements 25

PUTX macro 35

q name (ENQ macro) 25
QISAM
close 35
RKEY condition 35
KEYED attribute 35
keys 35
PUT LOCATE 35
REWRITE 35
use in SEQUENTIAL INDEXED data sets
WRITE KEYFROM 35
QsaM
close 34
spanned records

LOCATE 34
READ SET 34
REWRITE 34

r name (DEQ macro) 25
R-type FREEMAIN macro U3
R-type GETMAIN macro 43
radix change 80
RDV (Record Dope Vector) 32
re-enter prevention 66
record blocking 34
record deblocking 34
record dope vector (RDV) 32
record input/output
addition of access modules 32
control blocks 32
data management access methods 30
general flow 29-30
interface modules 29-30
logic 29-30
modular linkage
statement type 33
statement verification 31
transmitters 31
record variable description 32
recursion subroutine 69

167

35

recursive block 43
REGIONAL ‘'source keys'

format B 37

format A 37

organization 37
regional data sets

initialization 21

open process 21
Register RA (initialization routine)
relative record position, format A 37
relative record position, format B 37
REPEAT function 85-86
replication factors 27
request codes 32
request control block 32
residency of shareable modules
resident area 10
resident library modules 10
resident transfer vectors 160
resource counter, multitasking 26
restart

automatic 16

disabled 16

forced 16
RETURN routine 61
REVERT statement 68
ROUTCDE (route code) 74
run-time stack 50

57,60

160

SADV (String Array Dope Vector)
save area (control task) 55
save area (dump index) 173
save areas, standard 12

197,14

save-area
chain 51
trace 61

scalar values 84-85
SDV (string Dope Vector) usage 14
SDV discussion 32,199
search word comparator 67
SET option 34
shared library 'packages®’ - tables
shared library feature 159,160
shared library feature, residency of
modules 160
shared modules 159
significance interrupt 64
simple arrays 84-85
SIZE code 66
SIZE condition (conversion) 82
size of record (teleprocessing) 40
SKIP option

non-print files 29

print files 29
SNAP 15
SORT/MERGE

link 16

return 17
source attributes 75
source keys

format A 37

format B 37
sources/target coincidence 87
specification interrupt 66
specifications, linkage 87
specifications, data 26
SPIE macro (multitasking) 59

160-166

SSA (Sstandard Save Area) 195
SsA format 195
STAE exit routine 61
STAE macro 43
STAE macro (multitasking) 59
stages of generation (library)
standard calling sequence 11
standard files
SYSIN 24
SYSPRINT 24
standard save area (SSA) 195
standard system action (other than
on-conditions) 70
statement verification, record 1/0 31
STATUS halfword 59
STIMER macro 74
STOP (post code) 58
STOP statement 74
STOP subroutine 59
storage identification
non-recursive 49
recursive 49
storage management
macros 42
control blocks 225
storage of arrays 183
storage requirements, subtask 60
storage utilization 159
storage
freed 45
request 45
search 45
stream input/output
data management 22
general 22
GET/PUT statements 25
initialization modules 24
mode 22
modular linkage 23

159

string array dope vector (SADV) 197,14
string conversions
general 79
modules 79
string data representation 14
string dope vector (sDV) 32,114,999

handling 87
option 29,24

string
STRING

string package, general design 85-86
string subroutines

address of string 85-86

bit 85-86

character 85-86

linkage to 85-86
Structure Dope Vector 201,14
structure of conversion package 77-78
structure, GET/PUT code 25
structures 14
subparameter NCP (of DD statement) 33
subpool

non/zero 43

zero U3
subroutines

computational 82

control task 57

error/exceptional conditions 83
SUBSCRIPTRANGE condition 69
SUBSTR function 85-86
subtask

Index

259

defined 54

initialization

invocation 59

storage requirements 60
SUM (arrays) 84-85

60,57

symbol table (SYMTAB) 203,14
symbolic names

defined 15

of registers 11
SYMTAB (Symbol Table) 203,14

synchronization, multitasking
operations 24
SYSIN files 24
SYSPRINT buffers, dump index 173
SYSPRINT files

implicit open 24

multitasking 24

termination 25
system action (on-conditions) 69
system generation 159
system macro instructions
SYsl1.LM512 159
SYS1.PL1LIB 159

9,157

target fields
attributes 75
arithmetic 87
mathematical 87
overlap 87
task attachment (control task) 55
task communications area (TCR) 245,55
task control block (TCB) 55
task definition 54
task exit 60
task hierarchy 60
task initialization (control task) 55
task invocation count (TIC) 46
task invocation count (multitasking)
TASK option 55
task termination
abnormal 60
normal 60
task variable 243
task variable address 59
TCA (Task Communications Area)
TCB (Task Control Block) 55
TELEPROCESSING files
environment options 39
OPEN/CLOSE 40
teleprocessing
CLOSE 41
error handling 41
I/0 statements 41
KEYFROM 40

245,55

260

62

KEYTO 40

OPEN 40

record size 40

statement validity 41
terminal identification 41
terminating statements 60
termination call 26
termination of SYSPRINT 25

termination
PL/I program
system 49

abnormal 49

normal 49
TIC (Task Invocation Count) 46
TIME built-in function 74
TIME macro 74
TITLE option 18
transfer of control 159
transfer vector modules 159
TRANSIENT SEQUENTIAL RECORD files 40
TRANSMIT condition 24
TRANSMIT condition test 79
transmitters, record 1/0 31
truncation (fixed/varying strings) 79
type conversions (string-arithmetic) 79
type of initialization (by register RA)

UNDEFINEDFILE condition 20

unique oncode value 70

UNSPEC function 85-86

user selected library modules 159

value of array function 84-85
variable data area (VDA) 44,231
variable data area (VDA) usage 12
varying string records 32
VARYING strings 197

VDA (Variable Data Area)
VDA usage 12

44,231

WAIT (multiple) 63

wait event control block (WECB) 55
WAIT statement 63

WAIT statement, interface modules 32
WECB (Wait Event Control Block) 55
workspace (control task) 55

WREA (library communications area) 48
WTO (Write to operator) macro 43

XCTL macro 21

GY28-6801-6

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only}

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

9-10B9-8ZAD V'S’ N ul paiuud 09E/waisAs WAl

