
Technical Newsletter File Number S360-29

Re: Form No. Y28-6800-3

This Newsletter No. Y33-6002

Date May 1, 1968

" IBM SYSTEM/360 OPERATING SYSTEM
PL/I (F) COMPILE~
PROGRAM LOGIC MANUAL

Previous Newsletter Nos.

'This Technical Newsletter provides replacement pages for
IBM System/360 Operating System, PL/I (F) Compiler, Program Logic
Manual, Form Y28-6800-3. Pages to be inserted and removed are
listed below.

Pages to be
Inserted

25,26
33-36
43-46,46.1
49-52
59-61,61.1,62
117,118
129#130
135,136
139,140
209,210
243,244
255,256
287-290
302.1,302.2
303,304
33-5-338
345,345.1,346
355,356,356.1
363-365,365.1,366
313,374
413,414
421,422,422.1
425-428,428.1

Pages to be
Removed

25,26
33-36
43-46
49-52
59-62
117,118
129,130
135,136
139,140
209,210
243,244
255,256
287-290

303,304
335-338
345,346
355,356
363-366
373,374
413,414
421,422
425-428

}~ change to the text or a small change to an illustration. is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol • to the left of
the caption.

None

Y33-6002 (Y28-6800-3)
IBM United Kin;,:dom Laboratories Ltd., Programmin,i!, Publications, Hursley Park, Winchester, Hampshire, En<-l!,land.

PRINTED IN U.S.A.
Restricted Distribution Page 1 of 2

The specifications contained in this Technical Newsletter
correspond to Release 16 of IBM System/360 Operating System.
Significant changes or additions will be reported in subsequent
revisions or technical newsletters.

Summary of Amendments

This Technical Newsletter documents incremental improvements
to the PL/I F Compiler for Release 16 of IBM System/360 Operating
System. These improvements include: implementation of the
UNALIGNED attribute and the STRING function; array and subscript
optimization: and diagnostic message improvements.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

Y33-6002 (Y28-6800-3)

Page 2 of 2

Module AD

Module AD performs inter-phase dumping.

All specified active storage is dumped
at t.he end of the phases stated or implied
in the DUMP option. If the DUMP option
includes either I, for the Annotated Dic­
tionary Dump, or E, for the Annotated rext
Dump, or both, then phase. AD will load
either phase AH, or phases AI and AJ, or
all three, to produce the required output.

The DUMP qption

The DUMP option which is specified in
the PARM field of the EXEC card indicates
where dumping of main storage is to take
place. It may be specified in one of the
following ways:

1. DUMP " means a dynamic dump is required
(the dump routine will be called by a
:runn:Lng phase)

2. DUMP:: (AREA, x 1 ,x:a, x3 , •••• xn) means a
dump of the storage after the named
phasE:! •

AREA
T
D
P
S
C
I
E

is any combination of TDPSCIE:
text blocks
dictionary blocks
phases loaded
scratch storage
control phase
arlnotated dictionary blocks
annotated text blocks

The general syntax is:

DUMP[=([AREA],{xl (y,z)}, •••)]

A single phase name indicates dumping of
storage after this single phase. A pair of
phase name:s indicates a continuous group of
phases aft.er which dumping of storage is to
occur.

The dump will appear on SYSPRINT,
inserted into the normal compiler output.

If AREA is omitted the default taken is
DTSP. If a program check occurs and DUMP
has been specified then AREA will be given
the default DTSPC.

Use of the DUMP -option may cause the
compiler to use about 8K bytes more core
than the SIZE option specifies. This is
because SIZE specifies the amount of core
the compiler can use for normal compilation
and does not allow for the internal compil­
er diagnostic dumps.

Example of an EXEC card using the DUMP
option:

//STEP1 EXEC PROC=PL1LFC,
PARM'.PL1L='DUMP=(TE,QJ),

This statement specifies coropilation using
the DUMP option to obtain a printout of the
text blocks, the annotated text blocks, and
of storage after the completion of compiler
phase QJ.

Module AE

Module AE is the
READ-IN Phase control.

Module AF

finalization of the
(See Fig.4, Note~)

Module AF is a control section consist­
ing of a table containing the compiler
options which may be used during a compila­
tion. The table is constructed at system
generation time. The control section is
brought into storage by the initialization
Module AS at compilation tirre. A descrip­
tionof the use of Module AF is given in
Appendix G.

Module AG

Module AG closes SYSUT3 for output, and
re-opens it for input.

The closing and opening operations are
performed in the following order:

CLOSE
alter macro-type in data control block
(DCB)

OPEN (INPUT)
switch routine ZURD to point at SYSUT3
DCB

Module AH

This module produces a dump of the
d·ictionary. It prints out the corrmuni­
cations region in the first block, and the
offsets tables for each block if the
extended dictionary option is in use. The
remainder of each block is printed
out entry by entry. The BCD is trans­
lated for those entries containing BCD. At
the end of the dump, a list of all the

Section 2 (Compiler Phases): Contro!., 48-Character Preprocessor 25

dictionary codes used is given, with an
explanation for each code.

The module is called by phase AD only if
an I is specified in the AREA field of the
DUMP option.

I Modules AI and AJ

Modules AI and AJ are called, if E is
specified in the area field of the dump
option, to provide an 'easy-to-read' text
print in which the triples and pseudo-code
items comprising the text are printed sep­
arately. This option is available between
phases IA and OE inclusive.

Module AI< is the closing routin.e of the
compiler. Its function is to release core
used for dictionary, text blocks, scratch
storage, and completed phases. If batch
compilation is not specified, module AK
closes all the files used by the compiler.
If a batch compilation is specified, a
check is made to determine whether any
source programs are still to be compiled.
Where there are none module AK closes all
files. Where one or more programs remain
to be compiled, the spill file only is
closed, the batch delimiter card is scanned
for syntax errors. and control is returned
to module M.

Module AL

This module contains the control rou­
tines for dictionary and text-block han­
dling for the extended dictionary.

Module AM

Module AM marks phases as either wanted
or not wanted. depending upon the compiler
invocation options. Phases that are always
loaded are marked wanted.

AM is the first compiler phase loaded
after compiler initialization. It tests
the relevant bits in CCCODE and marks the
phases accordingly.

26

Module AN

This module contains the routines for
dictionary and text-block handling for the
normal-sized dictionary.

Module JZ

Module JZ builds the seccnd half phase
directory. A build list is constructed
from the second half list held in Module
AA; a BLDL is performed on this list. The
phase directory is then reconstructed in
Module AA for the second half of the
compiler.

48-CHARACTER SET PREPROCESSCR

Phase BX is the 48-character set prepro­
cessor. It is loaded on programmer option
and receives, as input, source text in the
48-character syntax.

The preprocessor scans the input text
for occurrences of characters peculiar to
the 48-character set,· and converts these to
the corresponding 60-character symbols. !t
then puts out the adjusted text onto back­
ing storage ready for Phase CI, the first
pass of the Read-In Phase.

The text is rea1 in record by record.
It is then scanned for alchatetic charac­
ters which may be the i~itial letters of
operator keyWords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is :jisco­
vered, tests are made to determine whether
or not one of the reserved operator key­
words has been found. If one has been
found, it is replaced by its 60-character
set equivalent. Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a semi­
colon if the comma-period pair is not
immediately followed by a numeric
character.

Allowance is made for the possibility
that a concatenation of characters which is
meaningful in the 48-character set may be
split between two records.

Before the text is processed a copy of­
the original input is preserved. The out­
put from the preprocessor is the trans­
formed text, record by record, followed by
the original text. The Read-In Phase proc­
esses transformed text but prints out the

r-------------------------------------,
r---> I I

r--> I Dictionary entry for entry label IA.
r-I I I L _____________________________________ J

I
I r-------------------------------------,
L_>I En1:ry type 2. Used to provide I

I dal:a description of target in I B
r--I RE~~URN (expression). I I L __________________ --_________________ J

I
I r---,
I I V
I r-------~---------~-------------------,
L_> I En1:ry type 3. This entry is used

I to point at the data description C I
L ___ I and parameter descriptions for para-ID
r--I weter matching. I
I L-------T~--------T--------------T----J
I I I I

r-------------------------------------,
I Second entry type 2. I
I Used to provide data description I
I of value returned when lacel A Ie
I is invoked as a function. ~his I
I entry may, and usually will, coin- I
I cide with B.· I I I I L _____________________________________ J

I L __________ , L ____________________________ ,

I I I
V V V

r----------------------, r----------------------, r-----------------------,
I Description of I I Description of I I Description cf I
I IE I lEi I IE2
I first parameter I I second parameter I I each parameter I L ______________________ J L __ --------____________ J L _______________________ J

r----------------------, r----------------------, r-----------------------, I Ent.ry type 1 for I I Formal parameter I I Description of Dara- I
L_> I PROCEDURE or IF I type 1 entry I G I meter used in r:rologuelH

I construction I I EN~?RY sta temEmt I I I
L-----------T----------J L---------------T------J

L _______________________ J

I " I " I I I I L ______________________ J L ___________ ~ __________ J

Note: There is an entry E for each parameter described in D.

Figure 6. Dictionary Entries for an Internal Entry Point

Phase ED contains a set of subroutines,
for procE!ssing certain of the tasking and
list processing attributes, and tables of
generic and non-generic built-in functions.
The phase obtains lK of scratch core, into
which it moves the routines and tables,
setting a slot in the communications region
to point at them. This address is later
picked up and used by phase EL.

Phase E:G has two main functions. The
first is to set up a hash table, and to
insert thE! label entries left in the dic­
tionary by the Read-In Phase into hash
chains. 'l'he second function of the phase

is to create dictionary entries for PROCE­
DURE, BEGIN, and ENTRY staterrents, and to
construct chains linking entries cf parti­
cular types.

For PROCEDURE-BEGIN statements, entry
type 1 dictionary entries are created (see
Appendix C.2), and block header chains are
set up to li.nk these entries seqpentially.
A containing block chain is also set up to
link each entry with that of its containing
block.

On the appearance of PROCEDURE st.ate­
rnents, circular PROCEDURE-EKTRY-chains are
initialized to link the entry tyre 1 dic­
tionary entries of the PROCE~URE and Et~RY
statements of the same block. ~he formal
parameter list is scanned, and formal par­
ameter type 1 entries are created and
inserted into the hash chain. Details of
the PROCEDURE-ENTRY chains arpear in Appen­
dix C.2.

section 2 <compiler Phases): Dictionary Logical Phase 33

The attribute list is scanned ani an
options code byte is created in the entry
type 1 (see Appendix C.2). A check is then
made for invalid and inconsistent attri­
butes. CHARACTER and BIT attributes are
processed, and second file statements (see
Appendix D.8) are created if necessary.
Precision data are converted to binary, and
llictionary entries are created for pictures
(see AFpendix C.7).

statement labels are scanned and their
entry type 2 dictionary entries are creat­
ed. ~he relevant data bytes in the dic­
tionary are completed by default rules (see
Appendix C.3).

For ENTRY statements, entry type 1 dic­
tionary entries are created (see Appendix
C.2), and the circular PROCEDURE-ElffRY
chain is extended. Formal parameters,
attributes, and labels are processed in a
similar manner to those for PROCEDURE
statements, except that the options code
byte is not created.

I Phase EI (EH, EJ)

Phase EI scans the chain of DECLARE
statements set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers:
verted to binary.

these are con-

Factored Attributes: parentheses enclosing
factored attributes are replaced by special
code bytes, so that Phase EK can distingu­
ish them easily. A factored attribute
tatle is set up. It consists of slots
corresponding to each factored level. Each
slot contains the address of the attribute
list associated with that level, and the
addrtss of the slot for the containing
level.

The following attributes are processed:

DIMENSION: dimension table entries (see
Appendix C.8) are created in the dictionary
and the source text is replaced by a
pointer to the entry. Fixed bounds are
converted to binary and inserted in the
table. A second file statement (see Appen­
dix D.8) is created at the end of the text,
for adjustable bounds, a~d a pointer to the
statement is inserted in the dimension
table. Identifiers with identical array
bounds share the same dimension table.

PRECISION: prec1s10n and scale constants
are converted to binary.

34

INITIAL: dictionary entries are created
for INITIAL attributes.

INITIAL CALL: second file statements are
created for INITIAL CALL attributes.

CHARACTER and BIT: fixed length constants
are converted to binary; a cede byte marker
is left for * lengths (see Appendix C.8).
Second file statements (see Appendix D.8)
are created for adjustatle length con­
stants, and the source text is replaced by
pointers to the statements.

DEFINED: second file statements (see
Appendix 0.8) are created and the source
text is replaced by pointers to the state­
ments.

POSITION: the position ccnstant is con­
verted to binary.

PICTURE: a picture table entry (see Appen­
dix C.7) is created and inserted into the
picture chain; similar pictures share the
same picture table. The scurce text is
replaced by a pointer to each entry.

USES and SETS: USES and EE~S attributes
are--moved into dictionary entries, and
pointers to the entries replace the source
text.

LIKE: BCD entries are created for iden­
tifiers with the LIKE attritute.

LABEL: if the LABEL attritute has a list
of statement label constants attached, a
single di.ctionary entry is created. The
dictionary entry contains the dictionary
references of the statement label constants
in the list.

OFFSET and BASED: Second file statements
are made and text references are inserted
in the DECLARE statements for these attri­
butes.

AREA: Fixed-length specifications are con­
verted to binary; second file statements
are made for expressions; a code byte,
followed by the length of text reference,
is inserted in the DECLARE statement text.

All other attributes, identifier~, or
constants are skipped.

Phase EL (EK, EM)

Phase EL, consisting of mcdules EK, EL,
and EM, scans the chain of DECLARE state­
ments constructed by the Read-In Phase.

An area of storage kncwn as the attri­
bute collection area is reserved. This--r5

used to store information about the i1en­
tifiers, and has entries of a similar
format to that for dictionary entries.

complete dictionary entries are con­
structed for every identifier found in a
[ECLARE statement. These identifiers can
le one of the following types:

1. Data Items (see Appendix C.4)

2. structures (in this case, the 'true'
level number is calculated) (see
Appendix C.4)

3. Lapel Variables (see Appendix C.4)

4. Files (see Appendix C.7)

5. Entry Points (see Appendix C.2)

6. Parameters (see Appendix C.7)

7. Event Variables

8. Task Variables.

Identi:Eiers appearing as multiple dec­
larations are rejected and a diagnostic
message is given.

The a·ttributes
each identifier are
ways.

to be associated with
picked up in three

Fi.rst, the attributes immediately fol­
lowing th~:! identifier are stored in the
attribute collec·tion area.

Secondly, any factored attributes and
structure level numbers are examined.
These ar~~ founcl by using the list of
addresses placed in scratch core storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g. dimension
table address, or picture table address, is
moved int:.o a standard loca tion in the
attribute collection area. All conflicting
attributes are rejected and diagnostic mes­
sages are given.

Finally, any a ttributes which are
required by the identifier, and which have
not been declared, are obtained from the
defa ul t rules.

After the dictionary J • ent.ry has been
made, further processing (e.g. linking of
chains, etc.) must be done in the follow­
ing cases::

1. DEFINED data

2. Data with the LIKE attribute

3. Fi les

4. strings 'with adjustable lengths

5. Arrays having adjustable bounds

6. GENERIC identifiers

7. Structure members

8. Identifiers with INITIAl CALL

9. Identifiers with the I~ITIAL attribute

After the declaration list has been
fully scanned and processed, it is erased.

Phase EP

Phase EP first conditionally marks later
phases as 'wanted' or 'not wanted,' accord­
ing to how certain flags in the dictionary
are set on or off. This assists in the
load-ahead technique.

The entry type 1 chain in the dictionary
is then scanned. For each FROCEDURE entry
in the chain, each entry lacel is examined
for a completed declaration of the type of
data the entry point will return when
invoked as a function. If this has pre­
viously been given in a DECLARE statement
nothing further is done, etherwise entry
type 2 and 3 dictionary entries are con­
structed from default rules (see Appendix
C.2). If this default data description
does not agree with the desGription derived
from the PROCEDURE or ENTRY statement, a
warning message is generated.

At each PROCEDURE entry, the chain to
the ENTRY statement entry type 1 is fol-
10we1. Each statement is treated in a
similar manner to that fer a PROCEDURE
entry type 1.

The CALL chain is then scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one is not found, a dic­
tionary entry for an EXTERNAL procedure is
made (see Appendix C.2), using default
rules for data description. Before making
the entry, the identifier is checked for
agreement with any of the built-in function
names. If there is agreement a diagnostic

section 2 (Compiler Phases): Dictionary Legical Phase 35

message is generated, and a dummy diction­
ary reference is inserted.

If an identifier is found, it is exam­
ined to see if it is an Wldefined forma I
parameter. If 'it is, the formal parameter
is made into an entry point, again using
default rules for data description. If it
is not~ or if the declaration of the formal
parameter is complete, the type of entry is
checked for the legality of the call. A
diagnostic message is generated if the item
may not be called. In all cases, the item
called is marked IRREDUCIBLE if it has not
previously been declared REDUCIBLE.

I Phase EW (EV)

Phase EW is an optional phase, loaded
only if any LIKE attributes appear in the
source program.

This phase scans the LIKE chain which
has been constructed by Phase EK, and
completes the dictionary entry for any
structure containing a LIKE reference.
When a structure in the LIKE chain is
found, its validity is checked, and dimen­
sion data and inherited information are
saved. The dictionary is scanned for the
reference of the "likened" structure and
the entry is ,checked for validity~

This dictionary entry (see Appendix C.4)
is copied into the dictionary, with altera­
tions if there is a difference between the
original structure and this structure with
regard to dimensioned data. If both struc­
tures have dimensions a straight copy is
made; if the structure with the LIKE attri­
bute has dimensions and the likened struc­
ture has not, the dimension information is
added to the copy; if the structure with
the LIKE attribute is not dimensioned and
the likened structure is, then the dimen­
sion data is deleted from the copy. Inher­
ited data is added to the copy. If an
error is found, the structure with the LIKE
attribute is deleted and a base element
copy of the master structure is inserted
instead. Where copies of entries occur
which refer to dimension tables with varia­
ble dimensions, the dimension table entry
is copied, and new second file dictionary
entries and statements are created. Simi­
lar entries must be made if the structure
item has been declared to be an adjustable
length string, or has been declared with
the INITIAL attribute~

Finally, the newly completed structure
is scanned by the ALIGN ro~tine in phase
EV,to provide correct explicit/inherited/
default alignment attributes for its base
elements.

36

Phase EY

Phase EY is an optidnal phase which
processes all ALLOCATE stateRents.

The second file is scanned first and all
pointers to the dictionary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated iteros are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCA~E state­
ment for an item are collected together.

A copy of the dictionary entry of the
allocated item is then made (see Appendix
C.4), and the ALLOCATE statement is set to
point to it. The dictionary entry is
completed by including any attributes given
on the ALLOCATE statement, and copying any
second file statements from the DECLARE
chain which are not overriden by the ALLO­
CATE statement.

In the case of an ALLOCA~E statement
which a based variable is declared, no
of the original dictionary entry
required. The BCD is, replaced by
original dictionary reference.

in
copy

is
the

All pointer qualified references in the
text are checked to determine that the
qualified variable is based. For every
occurrence of a variable with a different
pointer a new dict'ionary entry is made. If
the variable is a structure the entire
structure is copied. A PEXP second file
statement ,is made for the pointer and the
'defined' slot in the new dictionary entry
is set to point to iot instead of to the
declared pointer.

The BCD of the pointer and the based
variable in the text are replaced by the
new dictionary reference followed by pad­
ding of blanks which will te removed by
phase FA.

The based variable can be the qualified
name of a structure member. If this is so,
the name is checked for validity_ Only the
first part or lowest level of the qualified
name in the text is replaced by the dic­
tionary reference of the roember. It is
preceded by a special marker to tell phase
FA that a partially replaced name follows,.

Phase FA

Phase, FA scans the text sequentially.
If, during the scan, qualified names are
found with subscripts attached, they are
reordered so that a single subscript list
appears after the base element name. The

each dimension.. It is then added to the
AUTOMATIC chain for the appropriate block.
I'terative DO loops are constructed, with
the temporaries iterating between the upper
and lower bounds of that particular dimen­
sion. Ba=::~e elements are assigned" with the
ternporariE~s as subscripts, and with scalars
remaining unchanged. END statements are
created :t:or the DO loops, and SELL state­
ments for the temporaries. The statements
which have been created are nested within
the original stat.ement.

Phase HK

The p\:ll~pOSe of Phase HK is to detect
array or scalar assignments., possible array
expressions in I/O lists in GET and PUT
statements, and nested statements, in par­
ticular nE!sted a'ssignment statements.

The lE!ftmost array in an ~xpress ion! or
the leftmost array or scalar .l.n a,n assl.gn­
ment is used as a basis for comparison, and
if similar dimensions or bounds are not
found in t~he array references, diagnostic
messages are issued. Any expression con­
taining only scalars is left unchanged.

For Ulnsubscripted arrays which are
equally spaced in core only one temporary
is bought. For all other arrays a tempora­
ry is boulght for each dimension, except in
the case Clf certain partially subscripted
arrays where the number may be-minimized.
Each temporary will be added to the AUTO­
MATIC cha.in for the appropriate block. If
the ON-ccmdition name SUBSCRIPTRANGE is
enabled for any statement, a temporary will
be bought, for each dimens ion in all cas es.
Iterative DO loops are constructed: for an
unsubscripted array expression of dimen­
sionality N, the temporary will iterate
between t.he lower bound of the Nth dimen­
sion and a.n evaluated product so that all
elements of the array are processed; while
for other arrays the temporaries will iter­
ate betweem the lower and upper bound of
the particular dimension of the array. The
assignment, ~tatement is added to the output
string with additional subscripts where
necessary. End statements are created for
the DO loops, and SELL statements for the
temporaries. The statements which .have
been created are nested within the original
statement.

The syntax of pseudo-variables is also
checked.

Phase HP

Phase HP scans the source text for
references to items defined using iSUBs.
For each reference found, the subscripts
are computed for the base array correspond­
ing to the subscripts given for the defined
array.

The subscripts of the defined array are
assigned to temporaries specially created
for this purpose, which are then used to
replace the iSUBS in the defining subscript
list. The base array, with the subscript
list so formed, replaces the defined array
in the text.

THE TRANSLATOR LOGICAL PHASE

The Translator Phase ccnsists of two
physical phases, the stacker phase and the
generic phase. The purpose cf the Transla­
tor is to convert the output from the
Pretranslator into a series of "triples"
(see Appendix D.4). A "triple" is in the
form of an operator followed normally by
two operands.

The translation is achieved by using a
double stack, with one part for operators,
and the other' part for operands, and
assigning two weights to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight)
applies when the operator is obtained from
the input string.

When an operator is obtained from the
input s,tring it is compared wi th the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators is switched on to determine what
action is next to be perforroed. Apart from
some special cases, this action is usually
either to continue to fill the stack, or to
generate a triple. The special cases lead
to various manipulations of the stack
items, after which the translation process
continues.

For the purposes of translation, the
input text to the translator is considered
to consist of operators a.nd operands only.
This means that I/O options, etc., are
regarded as operators.

After translation, the text string con­
sists of operands and operators. All
statements start with an operator to indi­
cate a statement number or label, followed
by the statement type, whl.Cn ~ay be a
single operator, as in the case of RETURN
or STOP, or which may be an operator such

Section 2 (Compiler Phases): Translator Logical Phase 43

as a function or subscript marker., followed
by a list of arguments. This list may also
include compiler generated statements,
e.g., DO loops for I/O lists. All I/O
options are regarded as operators and
require no markers before them. The end of
the source text will be marked by a special
operator, and compiler generated code,
which may follow this end-of-program mark­
er, will appear between the marker and the
special second-end-of-program marker. The
end of a block of text will be marked by an
ECB operator. The program is now assumed
to be syntactically correct.

Phase IA

Phase IA rearranges the source text into
a prefix form, in which parentheses and
statement del imi ters have been removed" and
the operations within a statement have been
so arranged that those with the highest
priority appear first.

As operators and operands are encoun­
tered, they are stored in stacks. Tables
give the priority of each operator as it
appears in tne input text and in its stack.

When an operator is found during the
scan of the source text, its compare weight
(see Appendix 0.4) is tested against the
stack weight of the top operator in the
stack. If the compare weight is the lesser
of the two, then action is taken according
to the compare operator. This is referred
to as the compare action. Similarly, if
the compare weight for the current operator
found in the scan is greater than or equal
to the stack weight of the top stack
operator, action is taken according to the
top stack operator. This is referred to as
the stack action. Normally, the compare
action is to place the compare operator in
the stack, and to continue the scan, plac­
ing any subsequent operand in the stack
until another operator is found. The nor­
mal stack action is to generate a triple,
consisting of the top operator in the stack
and the top two operands, eliminating the
items from the stack, and inserting a
special flag as the operand of the triple
which is now at the top of the stack. The
source (compare) item is then compared with
the new top stack item.

The output text of the stacking phase is
in the form of a series of triples, i.e.
statement types with no operands, and oper­
ators with one or two ope~ands. If the
result of a triple operation is to be used
in a later triple, the appropriate result
is flagged accordingly.

44

certain phases ar~ marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference" Phases IL and 1M are marked
wanted. If it does not, Phases IL, 1M, IN,
10, IP, IQ, MG, MH, MI, MJ, ~K, MM, MN, and
MO are marked not wanted. Phases MB and Me
are marked wanted when the source text
contains pseudo-variables or multiple
assignments; otherwise, they are marked not
wanted. The DO loop processing phases (LG
and LH) are marked in co-operation with the
dynamic initialization phases (LB and LC).
If LB and LC are requested, the marking of
LG and LH is left until that stage of
compilation; otherwise, LG and LH are
marked by Phase IA independently.

When ALLOCATE and FREE statements occur"
phase NG is marked wanted. When LOCATE
statements occur, phase NJ is marked want­
ed.

Phase IG is an optional phase which is
loaded to process array and structure argu­
ments to built-in functions. When aggre­
gate arguments are given for built-in func­
tions they are expanded by the structure
and array assignment phases so that the
built-in functions appear as base elements,
subscripted where necessary.

Phase GP examines these arguments, and
ascertains whether it is necessary to
create a dummy. If it is necessary, a
scalar dummy is created, but the assignment
of the argument expression is not inserted
in the text, as this would' be an inval id
aggregate assignment.

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then
inserts an assignment triple in the correct
place in the text.

Phase IL

This phase immediately precedes the main
generic phase. Its function is to obtain a
block of scratch storage and place the
entire built-in function table in that
area. The starting address cf this table
is then placed in a register, and control
is released to the main generic processor.

Phase 1M scans the source text for
procedure invocations by a CALL statement,
procedure or library invocations by a func­
tion reference, and assignments to
"chameleon" dummy arguments (see Phase GP).

Any procedure which is generic and is
invoked by a CALL statement or function
reference is replaced by the appropriate
family member. If the invoked procedure is
non-generic, it is ignored. A generic
library routine invoked by a function ref­
erence is also replaced by the appropriate
family member.

The arguments passed to l1brary routines
are checked for number and type, and a
conversion inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of 'an e:lCpression assigned to a
"chameleon" dummy is determined and set in
the dictionary entry which relates to the
dummy.

Phase IT scans the source text for
function triples and, in particular, the
built-in functions for which code will be
generated in-line. Further tests are made
to detect the functions which, according to
the method used to generate in-line code,
are optimizable. This applies only to the
SUBSTR., UNSPEC, and INDEX functions. All
references to 'chameleon' temporary assign­
ments within the scope of these functions
are removed s'ubject to certain restrictions
imposed by the fWlction nesting situation.

Phase IX cheeks that POI NTER and AREA
references are uSE~d as specified by the
language. This phase is loaded only if
POINTER or AREA references are . found,
declared either expl ic.itly or contextua1. ly •
Error mess.ages ar(~ produced if errors are
found and ·the statement in error is erased.

Data type triples in the text are
scanned and a stack of temporary results is
created containinq the values:

X'40' for POINTER
X'02' for AREA
X'OO' for any other data type

The maximum permitted number of tempo­
raries at anyone point in a program is
200. The compilation is terrrinated if this
figure is, exceeded.

Phase JD

Phase JD scans the text for concatena­
tion and unary prefixed triples with con­
stant operands.' These are evalu~ted and
the results are placed in new di~tionary
entries. The references are passed through
a stack into the corresponding result slots
in the text.

THE AGGREGATES LOGICAL PHASE

I The Aggregates Phase consists of three
physical phases, the preprccessor (phase
JI), the structure processor (phase JK) and
the DEFINED chain check (phase JP).

The structure processor phase carries
out the mapping of structures and arrays in
order to align elements on their correct
storage boundaries.

The DEFINED chain check ensures that
items DEFINED on arrays and structures can
be mapped consistently.

Phase JI

The first function of phase JI is to
obtain scratch storage in which the text
skeletons contained in phase JJ are to be
held. Phase JJ is then loaded, and it£
contents are moved to the scratch storage
for subsequent use by phases JI and JK.
Phase JJ is then released and control is
returned to phase JI.

The main function of fhase JI is to
expedite data interchange activities. A
sca~ of static, automatic, and controlled
chains is performed. The chains are reor­
dered so that all data variables appear
before non-data items. Adjustable PL/I
structures and arrays are detected. Each
entry in the COBOL chain is mapped as far
as possible at compile-time, removed from
the chain, and placed in the appropriate
AUTOMATIC chain.

Section 2 (compiler Phases): Aggregates Logical Phase 45

Phase JK

This phase scans the AUTOMATIC, STATIC,
and CONTROLLED chains for arrays, struc­
tures (including COBOL structures), adjus­
table length strings,- DEFINED items, .AREA,
and POINTER arrays and structures, TASK and
EVENT arrays, and TASK and EVENT arrays in
structures.

For
without
lengths,
made:

the base elements of structures
adjustable bounds or string
the following calculations are

The offset from the start of the· major
structure

'Ihe padding required to align the ele­
mentson the correct boundary

All multipliers of arrays of struc­
tures.

For all minor structures and major
structures the following calculations are
made:

Size

The offset from the preceding alignment
boundary with the same value as the
maximum appearing in the structure

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers 'are calcu­
lated, unless the array contains adjustable
items, in which case the Library performs
the calculations.

For adjustable structures, arrays, or
strings, code is generated to add a symbol­
ic accumulator register into the virtual
origin slot of the dope vector, and the
accumulator register is incremented by the
size of the item.

Calculations are made in a similar
fashion for arrays of strings (in struc­
tures or otherwise) with the VARYING attri­
tute. In addition, code is generated to
~et up an array of string dope vectors
which refe~ to the individual strings in
the array using the dope vector~ Code is
also generated to convert the original dope
vector to refer to the array of string dope
vectors" instead of to the storage for the
array.

The routine which generates code for
arrays of VARYING strings is also used to
generate code for the initialization of
arrays of TASK, EVENT, and AREA variables.

46

DEFINED items are processed in the fol­
lowing way:

Code is generated to s~t the ~ultipli­
ers and virtual origin address of cor­
respondence defined arrays without
iSUBs in the dope vector of the DEFINED
items from the defining tase dope vec­
tor.

Code is generated for cverlay DEFINED
items if they do not fall into the
class which is to be addressed direct­
ly. The code first maps the DEFINED
item, if necessary, calculates the
address of the start of the storage to
be used by the DEFINED item, and final­
ly, relocates the DEFINED item using
this address.

Dope vector descriptor dictionary
entries and record dope vector dictionary
entries are made for items which need to be
mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP

Phase JP scans the DEFINED chain, and
differentiates between the fCllowing:

1. Correspondence defining

2. Scalar overlay defining

3. Undimensioned structure overlay defin­
ing

4. Mixed scalar-array-structure~string
class overlay defining

In correspondence d~fining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks
that the elements of the defined item may
validly overlay the elements of the base
belong to the same defining class, and that
the base is contiguous.

In scalar overlay defining, this phase
checks that the defined it err. may validly
overlay the base.

For undimensioned structure overlay
defining, this phase checks that the ele­
ments of the defined item may validly
overlay the elements of the base.

For mixed scalar-array-structure-string
class overlay defining, this phase checks
that all elements of the defined item and
all elements of the base belcng to the same
defining class (bit or character), and that
the base is contiguous.

THE PSEUDO-CODE I .. OGICAL PHASE

The PSE~udo-CoCle Phase accepts the output
of the Translator Phase, and converts the
triples into a series of machine-like
instructions. 'l'he transformation into
pseudo-code is achieved by a series of
passes thl:,ough the text; each pass removes

section 2 <Compiler Phases}: Pseudo-Code Logical Phase 46.1

variables, subscripts, functions, and argu­
ment markE!rs.

The pUl:pose of Phase LR is to save space
during thE! expression evaluation phase,. LS.
It providE!s the initialization for Phase LS
t:y obtaining 4,096 bytes of scratch storage
and sett:ing st.ack pointers. The scan
phase, Phase LA, is initialized and Phase

"MP is mar~~ed.

The translate table for scanning tri­
ples, and the constants for expression
evaluation are included in this phase and
are moved to the first lK area of scratch
storage. Subroutines required by phase LS
are also moved into scratch core at this
time. Finally, control is passed to Phase
LS.

Phase LS

Phase]~S scans the source text to con­
vert exprE~ssion t.riples to pseudo-code. If
a triple produces a result, it is added to
the tempol:ary work stack.

For the arithmetic "triples +,-,*,/,**,
prefix + I' and prefix -, the operands are
combined 1:0 give the base, scale., mode, and
precision of the result. If conversion is
necessary I' an assignment triple, with the
target and source types as operands, is
inserted in the text. In-line pseudo-code
is genera1:ed for all operators except **
and some complex type * and / operators.
In these cases~ Library calling sequences
a:re geneJ:ated. An intermediate result is
always produced and the t.riple is removed
f rom the i:.ext.

The operands of comparison triples GT,
GE, equals, NE. I.E, and LT are combined and
converted as for the arithmetic triples.
In-line pseudo-code is generated and the
triple is removecl from the text, unless
both opeJcands are string type, in which
case a temporary is created. If the next
triple is a conditional branch, a mask for
branch-on--false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND, OR,
NOT, and string comparisons, if an operand
is zero, TMPD triples, containing the
intermediate result from the top of the
stack, ar~~ inserted in the text after the
triple. The result is a CHARACTER or BIT
string or a CO~PARE operator.

When subscript triple~ appear, a symbol­
ic register number is inserted in the
triple. The result contains the dictionary
reference of the array and the symbolic
register.

For function triples., a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, multiply, and divide functions,
the function and argument triples are
removed from the text. Arithmetic type
in-line pseudo-code is generated, with
modifications for the precision and scale
factor, and the result is added to the
intermediate stack.

with pseudo-variable triples, a special
marker is added to the interroediate result
stack.

Other triples which rray use an inter­
mediate result, are examined. If an oper­
and is zero, two or three TMPD triples,
containing the intermediate result from the
top of the stack, are inserted in the text
after the triple. If t:oth operands are
zero, the TMPDs for the second operand
precede those for the first operand.

Phase LV

Phase LV provides string handling facil­
ities for the pseudo-code phases.

It converts any type of data item to a
CHARACTER or BIT string, and an assignment
triple,. with the target and source types
used as the operands. is inserted in the
text.

A string dope vector
produced from a standard
tion.

Phase LX (LWL-1!l

description is
string descrip-

Phase LX consists of three modules, LW,
LX, and LY. Module LW acts as a pre­
processor for LX and LY, moving constants
into scratch core prior to loading the
string-handling modules.

Phase LX scans the source text to
convert string triples to pseudo-code. If
a result is produced it is added to a stack
of intermediate string results.

section· 2 (Compiler Phases): Pseudo-Code Logical Phase 49

For the comparison triples GT. GE,
equals, NE, LE. AND LT, both operands are
already string type. If one operand is
zero, the operand 1S obtained from the
associated TMPD triples. In-line pseudo­
code is generated if the operands are
aligned and are of known lengths less than
or equal to 255 bytes; otherwise, Library
calling sequences are generated. The
triple and any TMPD triples are removed
from the text.

In the case of the string triples CAT,
AND, OR, and NOT', the operands are convert­
ed to string type by phase LV. Zero
operands are obtained from associated TMPD
triples. In-line pseudo-code is gener~ted
wh~n operands are aligned and are of known
lengths less than or equal to 255 bytes.
For the CAT operator, the first operand
must be a mul tipl e of 8 bits unless the
strings involved are less than or equal to
32 bits in length. In-line code is also
generated for the following cases involving
non-adjustable varying strings:

1. character string concatenation of
varying strings with lengths less than
256 bytes.

2. Bit string operations for AND, OR,
NOT, concatenation, and comparison
where the strings are aligned and are
less than 33 bits in length.

Otherwise, Library calling sequences are
generated. The triple and any TMPD triples
are removed from the text, and the string
result is added to the intermediate result
stack.

For TMPD triples, if 'the intermediate
result described by t:le TMPD triples is a
string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. If the TMPD
triples do not describe a string, they are
ignored.

In-line code is generated for the BOOL
functions AND, OR, and EXCLUSIVE OR, when
the third argument is a character or bit
string constant and the first and second
arguments are aligned and of known lengths
less than or equal to 255 bytes. Otherwise
Library calling sequences are generated.
Subscript and function triples may produce
intermediate string results.

Phase MB

Phase MB scans the text for pseudo­
variable markers and ~ultiple assignment
markers. A stack of pseudo-variable
descriptions is maintained, together with

50

the left hand side descriptions of multiple
assignments when they occur. Pseudo-code
and triples are generated for p~eudo­
variables and the left hand side
descriptions of multiple assignments are
put out in the correct sequence.

Phase MD

Phase MD uses the SCAN routine LA to
scan the text for ADDR and S~RING built-in
functions for which it generates in-line
code. It appears before the normal func­
tion processor phase and rerroves all trace
of the in-line function. The general SCAN
routine passes control when these functions
are found.

For all cases of ADDR the generated code
establishes the start address of the argu­
ment. If structure name arguments are
present the structure chain is hashed for
the first base-element. For array names
the address of the first elerrent is calcu­
lated.

If the argument to the S~RING function
is contiguous in core, and its length is
known at compile-time, an adjustable string
assignment is generated. Otherwise the
library routines IHESTGA and IHESTGB are
called to produce the concatenated length
and to concatenate the elements of the
array or structure argument.

Phase ME

Phase ME identifies all invocations of
the SUBSTR function and pseudo-variable,
all UNSPEC, S~ATUS, and CCMPLETION func­
tions, and those invocations of the INDEX
function which can be implerrented in-line;
and generates pseudo-code tc perform these
functions at object time. The scan of the
text is conducted by the general SCAN
routine, and all trace of the invocations
of these functions is removed before the
normal function processor phase is loaded.
When the end-of-program marker is encoun­
tered the terminating routine is entered.

Phase MG

Phase MG identifies functions which are
to be coded in-line, and generates, in
their place. the pseudo-code to perforro the
relevant function. This phase appears
before the normal function processor phase

.,

and removes all trace of the in-line func­
tion.

The scan of t.he text is conducted by the
general BCAN routine, and control is handed
to the present. phase when one of the
followin9 functions is found:

ALLOCATION FLOOR BINARY
BIT lMAG DECIMAL
CEIL REAL FIXED
CHAR TRUNC FLOAT
COMPI,EX PRECISION
CONJG

Control is also passed to this phase if
ABS is found with real arguments. The
arguments are collected, and the appropri­
ate rout.ine is entered to generate the
pseudo-code. When the end-of-program mark­
er is encountered the terminating routines
are entered.

Phase MI

Phase MI identifies functions which are
to be· coded in-line, and generates , in
their place, pseudo-code to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace ot the in-line func­
t.ion.

The scan of the text is conducted by the
general SCAN routine and control is handed
to the present phase when one of the
following functions is found:

MAX MOD
MIN ROUND

If the number of arguments to the MAX or
MIN functions is greater than three, a
Library call is generated.

Phase MK

Phase MK identifies functions which are
to be coded in-·line, and generates, in
their place, pseudo-code to perform the
relevant functi.on. This phase appears
before thE~ normal function processor phase
and remo,res all trace of the in-line func­
tion.

The scan of the text is conducted by the
general SCAN routine, and control is passed
to the present phase when one of the
following functions is found:

DIM
LBOUND
LENGTH

Phase ML

HBOUND
SiIGN
FREE

Phase ML scans the source
generic entry name arguments to
invocations.

text for
procedure

Such entry names may be floating arith­
metic built-in functions cr programmer­
supplied procedures with the GENERIC
attribute. When one is found, the correct
generic family member to be passed is
selected by this phase, depending on the
entry description of the invcked procedure.

Phase MM

Phase MM scans through the source text
for procedure invocations ty a CALL state­
ment, or for procedure or Library routine
invocations by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
Library routine invocations are replaced by
an external or internal standard calling
sequence as appropriate (see Appendix
D.10).

If a .cALL is accompanied by a TASK,
EVENT, or PRIORITY option, library module
IHETSA is loaded rather than IHESA, and the
parameter list is modified to include the
addresses of the TASK and EVENT variables
and the relative PRIORITY.

Phase MP

Phase MP reorders the BUY and SELL
statements involved in obtaining Variable
Data Areas (VDAs) for adjustable length
strings or temporaries, which were created
by Phase GK. On entering this phase, the
BUY triples precede the code compiled to
evaluate the length of storage required for
the VDA. This evaluation cede is included
between further BUYS and BUY triples, which
themselves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the EUY triple of
the adjustable string temporary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

section 2 (Compiler Phases): Pseudo-Code Logical Phase 51

Phase MS

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is
generated to calculate the offset of the
subscripted element in relation to the
origin of the array. If necessary, further
pseudo-code is generated to check the sub­
script range.

optimization of constant subscript
evaluation is carried out on arrays having
one subscript which is an integer constant,
and all 'following subscripts declared to
have .fixedupper and lower bounds. This
applies to arrays with fixed-length ele­
ments.

Phase NA

Phase NA generates pseudo-code for the
following triples:

For
Library
routine.

PROCEO'URE'
call is

and BEGIN' triples a
generated to the FREEDSA

For RETURN triples a Library call is
generated, unless a value is to be returned
as the result of a function invocation, in
which case code is first generated to
assign the result to the target field, and
then the Library call is made. If the
function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement label constants in
the same PROCEDURE or BEGIN block. In this
case, they will be compiled as one­
instruction branches.

§OL~ triples are compiled into one­
instruction branches to the compiler label
number in operand 2 of the triple.

A GOOB (Go Out Of Block) triple is a
branc~o a label variable, possibly
subscripted, or to a label in a higher
block than the current one (a branch to a
lower block is invalid). A call is gener­
ated to a Library epilogue routine, point­
ing at a double-word slot containing the
address of the label and the Pseudo­
Register Vector (PRV) offset (for a label
constant), or the invocation' count (for a
label variable).

52

STOP and EXIT statements are implemented
simply by invocation of the appropriate
Library routine.

For IF triples, if the second operand is
an identifier, or the result of an
expression which is not a comparison, code
is generated to convert it to a BIT string,
if necessary. This BIT string is compared
to zero, either in-line, or by a call to
the Library.

The second operand may be a mask which
will have been inserted by the expression
evaluation phase as a result of the compaf­
ison specified in the IF statement. Th1s
mask is put into a generated idstruction to
branch if the condition is not satisfied,
i.e. either to the ELSE clause or to the
next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double-word ON slot in the DSA.

For SIGNAL arithmetic condition triples,
in-line code is' generated to simulate the
condition.. For all other conditions, a
Library error routine is called.

REVERT triples generate code to set flag
bits in the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences
to the Library for DELAY and DISPLAY and
WAIT statements.

It generates code to call the library
routines which handle ALLOCATE and FREE
statements whose arguments are BASED varia­
bles.

For DELAY statements, the argument has
to be a fixed binary integer, and, if
necessary, code is generated for conver­
sion.

For DISPLAY statements, the message must
be a CHARACTER string, or, if necessary,
converted to one. A parameter list is
built up to pass to the Library.

For WAIT statements, the parameter list
is built up in WORKSPACE. It consists of
the address of the scalar expression
(converted to a fixed binary integer),
followed by the addresses of the event­
names that appear in each WAI~ statement.
If the scalar expression option does not
appear, the address of the total number of
event-names is used.

When alII data element descriptors and
symbol t.ables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC
control section is placed in a slot in the
communica.tions region .•

Phase PP extracts all ON condition
entries and pla'ces them at the head of the
AUTOMATIC chain. It then extracts all
temporary variable dictionary entries from
the AUTOMIATIC chain and pI aces them in the
zone following the ON conditions in the
chain.

All dictionary entries which are totally
independent of any o·ther variable are
extracted, and ,also placed in the zone
following the ON conditions.

The phase then extracts all dictionary
entries which depend upon some other varia­
ble in containing blocks or in the zones
already extracted, and places them in the
next following zone. Dependency includes
expressions for string lengths, expressions
for array bounds, expressions for INITIAL
itera.tion factors, and defined dependen­
cies. This "is repeated recursively until
the end of the chain. If some variable
depends upon i ·tsel f., a warning message is
issued.

A special zone delimiter dictionary
entry is inserted between each zone in the
AU'roMA'IIC chain (see Appendix C.7). A code
byte is initialized in the delimiter to
indicate to Phases PT and QF whether its
following zone contains any variables which
require storage (i. e,., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the
following zone contains any arrays of VARY­
ING strings.

Phase PT allocates AUTOMATIC storage"
scans the CONTROLLED chain, and determines
the size of the largest dope vector. It
scans the entry type 1 chain" and for each
PROCEDURE block or BEGIN block it allocates
storage for a DSA and compiles code to
initialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block., and
code is compiled to initialize the slot.
Space for the addressing vector and work­
space in ·the DSA is also allocated.

Two words are allowed for tasking infor­
mation in the DSAif the TASK option is ~n
the external PROCEDURE of the compila,tion.

The AUTOMATIC chain is scanned and dope
vectors are allocated for the items requir­
ing them,. Code is compil ed to copy' the
skeleton dope vector" and to relocate the
address in the dope vector.

Where there is a block with its DSA in
STATIC, dope vector initialization is not
per~ormed for the variables in the first
reg10n of the AUTOMATIC chain. Address
slots in dope vectors for variables in the
remainder of the chain are relocated.

Storage is allocated for addressing tem­
poraries type 2 and for addressing con­
trolled variables, and for the parameters
chained to the entry type 1

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision vari­
ables, CHARACTER strings and BIT strings,
in that order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the virtual origin. For
arrays of strings with the VARYING attri­
bute, the secondary dope vector is also
allocated and code is compiled to initial­
ize the secondary dope vector~ correctly
aligned storage is allocated for struc­
tures. If a structure contains any arrays
of strings with the VARYING attribute, the
storage f.or the secondary dope vector is
allocated at the end of the structure.

A pointer is set up in the AUTOMATIC
chain delimiter to the second file state­
ment which has been created.

The remaining regions of the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variable Data Area (VDA) for each
region. Code is compiled to copy the
skeletons into the dope vectors and to
relocate the addresses in the dope vectors.
During this pass, any DEFINED items which
are to be addressed directly have the.
storage offset and the storag~ class copied
from the data item specified as the base
identif ier .•

Phase QF

Phase QF" which constructs prologues.,
scans that text which is in pseudo-code
form at this time with end-of-text block
markers inserted.

Section 2 (Compiler Phases): storage Allocation Logical Phase 59

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURE statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditions

When a BEGIN statement is found, a
standard prologue of simple form is gener­
ated, and code is inserted from second file
statements (if there are any) to get the
DSA, either dynamically, or in the case of
eligible bottom-level blocks, by using the
supplementary LWS made available at ini­
tialization time. Code is also inserted to
initialize the DSA and to allocate and
initialize any VDAs.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. If it is
a PROCEDURE block, a specialized prologue
is generated. This takes account of the
manner of getting the DSA, the number of
entry points, the number of entry labels on
a given entry point, the number of paramet­
ers on each entry point, and whether the
PROCEDURE is a function.

Prologue code is generated for AUTOMATIC
scalar TASK, EVENT or AREA variables, in
order to perform the initialization
required when these variables are allocat­
ed.

The code generated by the prologue con­
struction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited by special pseudo­
code items) has the same form as the code
produced by the Register Allocation Phase
(see Appendix D.7).

DSA optimization is performed under
certain conditions (see Appendix H).

At the end of the prologue, the state­
ment label item saved earlier is inserted
to mark the apparent entry point. Code is
produced to effect linkage to BEGIN blocks
in such a way that general register 15
contains the address of the entry point,
and general register 14 contains the
address of the byte beyond the BEGIN epilo­
gue.

At the end of the text, any text blocks
that are not needed are freed, and control
is passed to the next phase.

60

Phase QJ

Phase QJ scans the text for ALLOCATE,
FREE, and BUY statements.

On finding an ALLOCATE statement, a
routine is called which does a 'look ahead'
for initialization statements associated
with the allocated variable, e.g., adjusta­
ble array bounds or adjustatle string
lengths, and places the text references of
each statement in the dictionary entry
associated with each statement.

If the allocated item has a dope vector,
code is generated to move the skeleton dope
vector generated by Phase PH into a block
of workspace in the DSA of the current
block.

Any adjustable bound expressions or
string length expressions are then extract­
ed from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation" and copied into the workspace.

Code generated by Phase JK to initialize
multipliers, etc., is extracted and placed
in-line, after first loading the variable
storage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size of the
item.

If the item has no adjustatle paramet­
ers, code is generated to increrrent the
accumulator by the size calculated at com­
pilation time. If this size is greater
than 4,096, Phase JK generates a cOnstant
dictionary entry, which is used in this
code.

If the item has any arrays of varying
strings, the size of the array string dope
vector is added to a second accumulator
register. Code is generated to add the two
accumulators into the second one, which is
a parameter to a Library rcutine. A rou­
tine is then called which extracts the
Library call inserted by pseudo-code and
places it in-line in the text.

Code is inserted after the Library call
to initialize the dope vector in workspace
to point to the allocated stcrage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

The code generated by phase JK to ini­
tialize arrays of varying strings, tasks,
events, and areas is then inserted in the
output stream.

Phase RA

Phase RA scans the text for dictionary
references, the beginnings and ends of
PROCEDURE and BEGIN blocks, and the start­
ing points of the original PL/I statements.

A dictionary reference, when found, is
decoded into a word-aligned dictionary
address alnd a code. These are used to
determine what is being referenced. The
corresponding object time address as an
offset and base is then calculated.

If the address required has an offset
less than 4,096 and a base which is either
an AUTOMA'I'IC or STATIC data pointer, no
extra ins:tructions are generated. If this
is not so, extra instructions are inserted
in the t.ext stream to calculate the
required address. The calculation of this
address is: broken down into logical steps
in a 'steI=1 table.' On completion, the table
is scannE!d backwards to determine whether
an interm€!diate result has been previously
calculated. The steps which have not been
previousl~' calculated are then assembled
into the pseudo-code.

The compiled code is added either to the
output stream or to a separate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The ~extra "insertion file" is
placed in ~he prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item is
CONTROLLED, if it is a pararreter, if fewer
instructions are required to recalculate
the base. rather than load the stored
address, or if the reference itself is in
the prologue.

If no addressing code is generated, a
special item is put in text to tell phase
RF what base to use.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked
at the start and end of the blocks respec­
tively.

At the start of PL/I statements, code is
compiled to keep the required PREFIX ON
slots in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the calling sequence to the Libra~y error
package is generated, and the error marker
removed.

Section 2 (Compiler Phases): Register Allocation Logical Phase 61.1

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RF

Phase RF scans the text for register
occurrences, implicit and explicit, and the
start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is
stacked;, and is later unstacked at the
corresponding end.

Registers are classified as assigned,
symbolic, or base.

Assigned registers require the explicit­
ly menticned register to be used. If that
register is not free it is stored. Symbol­
ic registers may occupy any register in the
range 1 through 8. An even-odd pair may be
requested. Base registers may occupy any
of registers 1 through 8.

When a register is requested, a table of
the contents of registers is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look-ahead is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is insured that all the necessary param­
eter registers are in physical registers,
and not in storage.

No flow trace is carried out by the
compiler. Therefore, the register status
is made zero at branch-in and branch-out
pOints. An exception is at a conditional
branch. Here the registers are not freed
after having been saved.

Any coded addressing instructions are
expanded when found in-line. At a specific
"insertion point" in a prologue, any
addressing instructions in the "insertion
file" are brought in and expanded.

62

THE FINAL ASSEMBLY LOGICAL FHASE

The Final Assembly Phase converts the
pseudo-code output of the register alloca­
tion phase into machine code, the principal
functions being the substitution of machine
operation codes for pseudo-code operations,
and the replacement of PL/I and compiler
inserted symbolic labels ty offset values.

Loader text is generated for program
instructions, DECLARE control blocks, and
OPEN file control blocks, initial values
defined in the source program, parameter
lists, skeleton dope vectors, symbol
tables, etc. ESD and RLD cards are gener­
ated for external names and pseudo­
registers. An object listing of the code
generated by the compiler is produced if
the option has been specified by the source
prog rammer.

Phase TF

Phase TF scans the text, assigns offsets
to compiler and statement labels, and
determines the code required for instruc­
tions which reference labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location counter is maintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for instruc­
tions to reference labels is also deter­
mined, while attempting to reduce this from
the amount estimated by the first assembly
pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructio~s
which refer to contiguous locations.

Chart, EP.

.****
"EP *
* Al* * • •

Phase EP Overall Logic Diagram

NOTE:

**** • * * B2 * .. *
.***

00000000000000000001)000000000000000000000000000000000

EPL20 X LBPROC X- EPL 75 X 0*. EPL 100 0
*****Bl*.*.*****'~ **.*.B2*****.**** *****B3*.******** 84 *. *****85**********
* GO TO'" * * * CCNSTRUCT * .* *. * *
: F IRSINENTRY : •• 0 ••••• x! G~N1~yD~6J :. •• 0 •••• x: Ty~~T~I ~~D : •• 0 ••••• x*::* H~h *:*~~ •••••• x: G~Nl~yD ~8l :
* ENTRY TYPE 1 * * FIRST LABEL * * 3 IF NOT * *. .* * NEXT LABEL *
* CHAIN *. * * TH~RE * *. 0 * * •
*+** •• *"'********* ****.************ ***************** *. 0 * ****************"

* YES

'EPL4D ic • *.
*****C2********** C3 *.
• GO TO NEXT '" 0 * *. ****
* ENTRY IN * 0* *. YES * *
• PROCEDURE * ••••••• oX*. PROCEDURE .* •••• x* B2 *
* ENTRY CHAIN * *. .* * *
• • *0 0* **** ***************** *0 • * * NO

aXoo 00000000 00 00 00 000000 00 0000 0000 00 00000 0000001'1 00 00 0 x • NO

EPL~22**Dl*****.**** 03
0
*. *. *.***04********** 05··· *.

: ~~hU~~E : YES .*',·'"eNO OF *0*. NO : GC TC NEXT: 0*0. * ••• : ~~LrT~~II2F :XooooooooooClooooooooooooooooooooooo'*o.:NTRY CHAI~*o*ooooooooX: ITEM IN CHAIN :ooooooooX*o.oPRCCEOUREo.o*

*.. *0 0 * .. * *. 0"
*****.**.*.****** *0 0* '*.*******.******* *0 0*
**** • * • D • El •• x. . .. •••• x

* * YES *.*. • * •
.0X* B2 * * •

*.**
0.. ••• EPl340 0.. COItEN

EI *. ..***E2."*****"** E3 *. E4 *. *****E5******.* ••
• * *0 * SCAN THE * 0* *0 .* IS .0 *MAKE DICTIONARY*

.* END *. NO * DICTIONARY * .* *. NO .*IDENTIFIER *. NO * ENTRY USING *
.'*. O~HHhL .*.* •••••••• X! ID~2~1~~~R :" •• ' •• 'X*'*. KNOWN .*.* •••••• 0.X*·*J~~H'j6~ .*.* •• o.o ••• X: ~5~A~HAR¥~~~ :

*. 0" ., .. *0 0" *0 0" * ..
*. o. *****."'.*.*.***** .0 0 * *0 0 * .***************** • YES * YES * YE S

~
:~:*: '~~~Ho~/r8~Ho~~LI CR
AI PHASE EY (OPTIONAL I OR
* * PHASE FA (NON-OPTION~Ll

*
OaO x

F3 *. *****F4**********
.* "'. '" GENERATE *

• * IS *. NO '" ERRO~ •
. CALL •••••••••• x 'IE SSAGE *

. VALID . * INSERT DUMMY •
*. • * • REFERENCE •

0 0. ***** ••• ~***.****

EPL 360 ~
*** •• F 5.******.**
* REPLACE *
* BCO BY *
* DIC TI ON~RY *
* REFERENCE * * •
.************ * YI'S

EPL360 X EPL290 X
*****G3********** ***.*G4*****.****
* REPLACE * * GET TEXT *
* BCD BY * * REFERENCE • •
• OICTIONAR.V *OIOO •• OOOX* OF t\EXT *Xoaaoooooooooooooo
• REFERENCE * '" ITEM IN •
• * * CALL CHAIN *
.*.******.******* '.***.******* *****

x

* '" '" El *
* * ****

Section 3: Charts and Routine Directories 117

• Chart EW.

****. *EW •
* A1*
* * ·

EWBEGN it

Phase EW Overall Logic Diagram

•• ***A 1 *********.*
* INI TIALIZE. •
* GET SCRATCH *
* STORAGE AN[•
* FIRST ITEM IN •
* LIKE CHAIN *
*****.*********.*

•••• 0

* •• * B1 *.x. * •• .*.* •
EWSTRT X

·**·*81********·* * •
* SAVE ADDRESS •
* CODE BYTES *
* LEVEL ETC *
• '*
,,* **** ****** •• ** *

CESCN X
*****C1********** * •
*SCAN DICTIONARY.

: ~?~HS!~~P~~8 :
* . *
.* •• *************

x
.*. EhERNC .*. EWELO"

01 *. *****02**"*""**** *****[13***"****** 04 *. *"***D~*""**"*"''''*
.*·"'tHn A *'*. NO : SET UP ERROR : : WG~T~~E: •• "'tHH ~ "JO : f2PtHE~T~YI~~ : *. VALID •••••••••• X* CODE .ooooo.oox* .. nfH THE LIKE *0 •••• 0 ••)(*. MAJOR D.ODoooaooX. INTO lCRA¥CHo ..

.STRUCTURE. • '" '" ATTR.IBUTE * "'. STRUCTURE.'" * !OO DEFAULT •
"'.... .. • * • ...* * VALUES *

*. ... ******"*.****.**** ***************** *. CI" •• **************. • YES * YES

X
EWNOLK • *. EWORDM. *. EWC OPY

E1 *. E2 .. ****"'E3*' •• ".****

.*·6RlbfNAL *'*. NO •• ··![E~~~~*· •• YES :COPY STRUCTLI\E :
••• X*. STRUCTURE .* •••••••• X*. DI"'ENSIONED .* •••••••• X* ELEMENT I"JTO *

*. DIMENS- .• * *. .* '" SCPATCH *
.IONED. *..* * * *. 0" *0 0" ** •• ***~*.******* * YES .. NO

:eWElTS .:.
F 1 *.

.*1 S THIS*.
• * ELEMENT *. YES

*. 01 MENS ICl"JE 0 • * ••••• 0 *. •• *. .*
0 . * NO

:EWCOPY x

EWONDM it
.***.F 2* .** ... **** * EXPANDS *
* ENTRY INTO *
.. SCRATCH WITH *
* NEw *
* OIMENSIONS • .* .•.......•. ***.

X
*****F3*· •••• .. • • CALCULATE NEW.
• NUMBER ~F *
.. CI'~F.NSIO"JS. * * PI CK UP *
"OIM~NSION TABLE"
..**********~

x .*.

x
**** • * * J2 .. * ..
*-**

··***G1·********* ... *
*COPY STRUCTURE *

G 3 *. .t:***G4**·.******
ic NO .*·~HE~~EA'l~·*. YES :SCA~!U~E~E~ON :

* ELEMENT INTO * •• 0.0000 •••• 000000000 ••••• 000.*0 VARIABLE .*OClO.OOClOX" VARIABLE ..
* SCRATCH *

* * *.**** *******.** * · .. • X ••••••••••• 0

:EWINCH x EWElO~ it
*****H1 ********** *****H2"~*"*****'"
* MAKE DICT. * CCPY ENTRY. *
* ENTRY UPDATE * '" ~NCLlJDE ..
: ~2~~l~~At~~ :X •••••••• : OI"'p~H~~¥ IF :

* ,. '" ... ************.*",** **** ... ,.."'. * ••• ***
**** • * ••

• J1 *.X.
* *.

"'*** x .*.
**** * • * J2 *0000

* *. *..... x • *. EWENO

. OI"'ENS- . X '"OIMF''lSICN ENTRY*
.IONS . * * *. 0" ******~ ***** ••

*

:EW2FNT x
:::.: #*H4**·***~***
.. COpy '"
.2"10 '1LE DICT. '"
"'E"JTRV ANO TElCT ..
.. "OR ENTRV *

* * *** **.*.ltJ):*******

.*j! TH!S*. • * ~ ~ TH 15*. :**"*J~~*;;"'****:
• NO.* THE END *. • ••• *. OF A NEW 0"

*. STRUC TURE •• *. ••
0 .

'" YES

All GN X
'*****K 1**********
* CORRECT *
,. ALIGN~ENT CF *
.. LIKENED *
* STRUCTURE * ,. *

118

• * THE ENe *. YES • END ROUT I NE ..
oooX*. OF THE LIKE .* ••.• ooooX. TO RELr::ASE •

•• CH~IN .* .SCRATCH STORAGF*
.. .. * "0 0" **.*************** .. NC

x
****

~ 81 :

'***

x
*.*** *EY * ... A1* NOT E:

'" CONTFC!l I S PASSED TO
PHASE ~V ((\PTION~L I OP
PHASE FA INON-CPTICNH I

Table ED. Phase ED, Initialization

r-----------------------------------T---------------T-----------------------------------,
I IMain Processingl I
I Stat€!ment or Operation Type I Routine I SubroutinE's Used I
.---------,---------------,-----------+---------------+-----------------------------------~
I sets up routines in scratch core I SETUP I None I
Ifor phase EL I I \
L_~-------,--------------------------~---------------~ ___________________________________ J

• Table ED!. Phase ED Routine/Subroutine Directory

r------------------T--,
\ Routine/Subroutine \ Function \
.--------_._--------+--~
I EVENT \ \
\ TASK I I
I CELL \ Routines for processing declared attributes. These set 11p I
I BASED I information in the attribute collection area of scratch core, I
I POI NTER I for ref(?rence by CDICE~-l, etc., in pha se EL. \
IOFFSET I I L ___________________ L __ J

Table EG. Phase EG Dictionary Initialization

r------------------------------------T---------------T-----------------------------------,
I I Main Processing I I
I Statement or Operation Type I Routine I Subroutines Used I

.-----------------------------------+------------~--+-----------------------------------~
IHashes label.s ICAA! ICHASH, CBCDL2 I
.-----------------------------------+---------------+---------------------------~~------~
I P:qOCEDURE-BEGIN cha in I CA7 I None I
.-------_._--------------------------+---------------+-----------------------------------~
I BEGIN ICA8A I None I

.-----------------------------------+---------------+----------------------------------~~
I PROCEDURE \ CAPROC \ CANATP, CFORP I

.~----------------------------------+---------------+-~---------------------------------~
I ENTRY ICAlO ICANATP, CFORP I
.-----------------------------------+---------------+-----------------------------------~
IFormal pcirameters ICFORP ICHASH, CBCDL2 I
~-----------------------------------+---------------+-----------------------------------i
'Attribut4~ list ICAN~.TP ICAPRE!, CATCHA, CATBIT, CATPIC I
.-----------------------------------+--~------------+-----------------------------~-----~
ICreates 43ntry type 2 ent',ries for ICTYPBL IENT2F, 'CDEFAT I
I labels I I I L ___________________________________ ~ _______________ ~ _________________________ ~ _______ ~_J

Section 3: Charts and Routine Directories 129

• Table EG1. Phase EG Routine/Subroutine Directory
r------------------T--,
I Routine/Subroutinel Function I
~------------------+--~
CAAl Scans label table and hashes labels.

CANATP

CAP ROC

CAPREl

CATBIT

CATCHA

CATPIC

CA6

CA8A

CA10

CBCDL2

CDEFAT

CFORP

CfLA.SH

C'TYPBL

:t.NT2F

'IYPW

OPTNl (EF)

OPTN2 (E IT)

OPTN3 (EF)

Processes attribute list.

Processes PROCEDURE statements.

Processes precision 1ata.

Processes BIT attribute.

Processes CHARACTER attribute.

Processes PICTURE attribute.

Scans the PROCEDURE-BEGIN chain for the relevant staterrents.

Processes BEGIN statements.

Processes ENTRY statements.

Traverses the hash chain looking for entries with the same BCD as
that just found.

Completes data byte for ent~y type 2 entries by default rules.

Processes formal parameter lists.

Obtains an address in the hash table for an identifier.

Creates entry type 2 entries for labels.

Creates or copies second file statements.

Scans ENTRY chain.

Checks containing block options, for inheritance.

Processes procedure options.

Performs post processing, makes STATIC DSA decisions.

IA'ITRBT (En Processes POINTER, o Fli'SFT, and AREA attributes. L __________________ ~ __ J

130

• Tabl e ELl. Phase EL Routine/Subroutine Directory
r------------------T-----------------------------~--------------------------------------,
I Routine/Subroutine I Function I
.------------------+--~
ATLSCN Scans the list of attributes following the identifier.

BCDISB checks for multiple declarations, etc.

BCDPR Processes BCD of identifier.

CDATPR (EK) Attribute controlling routine.

CDAT40 ,(EK) Processes DECIMAL attribute.

CDAT41 (EK) Processes BINARY attribute.

CDAT42 (EK) Processes FLOAT attribute.

CDAT43 (EK) Processes FIXED attribute.

CDAT44 leEK) Processes REAL attribute.

CDAT45 leEK) Processes COMPLEX attribute.

Cj)AT46 KEK) Processes precision attributes.

CDAT48 KEK) Processes VARYING attribute.

CDAT49 ~~EK) Processes PICTURE attribute.

CDAT4A ~:EK) Processes BIT attribute.

CDAT4B (EK) Processes CHARACTER attribute.

CDAT4C (EK) Processes FIXED DIMENSIONS attribute.

CDAT4D (EK) Processes LABEL attribute.

C!)AT4F (EK) Processes ADJUSTABLE DIMENSIONS attribute.

CDAT56 (EK) Processes USES attribute.

COAT57 (EK) Processes SETS attribute.
I
ICDAT58 (EK) Processes ENTRY attribute.
I
I CDAT59 (EK) Processes GENERIC attribute.
I
ICDAT5A (EK) Processes BUILT-IN attribute.
I
I CDAT60 (EK) Processes EXTERNAL attribute.
I
ICDAT61 (EK) Processes INTERNAL attribute.
I
iCDAT62 (EK) Processes AUTOMATIC attribute.
I
ICDAT63 (EK) Processes STATIC attribute.
I
iCDAT64 (EK) Processes CONTROLLED attribute.
I
I CDAT69 (EK) Processes INITIAL attribute.
!
ICDAT6A (EK) IProcesses LIKE attribute. L ________ . __________ .L ________________________ • __ J

Section 3: Charts and Routine Directories 135

• Table ELl. Phase EL Routine/Subroutine Directory (cont'd)

r------------------T--,
\ Routine/Subroutine \ Function \
~------------------+--i
CDAT6B (EK) Processes DEFINED ATTRIBUTE.

CDAT6C (EK) Processes ALIGNED attributes.

CDAT6D (EK) Processes UNALIGNED attribute.

CDAT70 (EK) Processes AREA attribute.

CDAT88 (EK) Processes POS attribute.

CDCLSC Scans each item of DECLARE statement.

CDFATT (EM) Applies factored attributes.

CDFLT (EM) Applies default attributes.

CDICEN (EM) Constructs dictionary entry.

CGENSC (EM) Performs phase initialization and scans chain of DECLARE statements.

CHASH (EM) Hashes BCD of identifier.

DCID1 Main scan routine.

DCIDPR Processes factor brackets and level numbers.

ECHSKP (EK) Initializes and passes control to Module EM.

IMPA'IT (EM) Applies implicit attributes.

INTLZE Performs initialization for each identifier declared.

POSTPR Post-processor.

SCAN4 (EM) Scans chain of DECLARE statements.

SELMSK selects correct test mask to be initialized.

STRPR Processes inheriting of dimensions in structures.

\TEMSCN Scans ahead for next level number. L __________________ .L _______ , ___ • ______ _

136

Table EW. Phase EW Dictionary LIKE
r--------.---------------------------T---------------T-----------------------------------,
I IMain Processing I I
! Stat.ement or Operation Type I Routine I Subroutines Used I
~--------.---------------------------+---------------+-----------------------------------~
IScans LIKE chain IEWBEGN I EWCOPY, EWELDM, EWINCH, EWONDM I
~--------.---------------------------+---------------+-----------------------------------~ I updates hash chain for new "entry I EWHSCN I None I
.-------_._--------------------------+---------------+-----------------------------------~
I Calculat.es start of structure data I EWART I None I
I from sta.rt of variable information I I I
~-----------------------------------+---------------+-----------------------------------i
IChanges error entry to base elementlEWCHEN I None I
.--------.---------------------------+---------------+-----------------------------------i
ICopies dlimension table entry and I EW2FNT I EWNWBK I
I second file statement \ I I L ________ . ___________________________ ~ _______________ ~ ___________________________________ J

• Table EW1. Phase EW Routine/Subroutine Directory
r--------·----------T--,
~Routine/Subroutine\ Function I
~--------.----------+--~ I ALIGN n:v) Provides correct alignment of base elements in likened structure.
I

BASED (E:V) Inserts or deletes defined slot, where only one structure is based.

CESCN

EWBEGN

EWCHEN

EWCOPY

EWDCCY (EV)

EWELDM

IEWELTS

EWEND

EWERNC

EWHSCN

mUNCH

EWNOLK

EWNHBK (EV)

EWONDM

IEWOR~M

I
I EWSTR'I
~

Scans dictionary to find entry corresponding to BCD in text.

Scans LIKE chain.

Changes error entry to base element.

Copies dictionary entry into scratch storage.

Copies initial dictionary entries and associated second file state­
ments, etc.

Copies entry into scratch storage with dimension data removed.

Tests whether the likened structure is dimensioned.

Handles transfer of control to next phase.

Processes erroneously "likened" major structure.

Updates hash chain for new entry.

Completes entry copy and places it in dictionary.

Tests whether original structure is dimensioned.

Obtains new dictionary block and terminates current one in use.

Copies entry into scratch storage, inserting dimensicn inforrration.

Processes dimension information in original structure.

\Tests validity of likened structure.
\

I.
I

IEw2FN'I (EV) ICopies second file statement and associated dictionary reference. \ l ________ . __________ ~ __ J

Section 3: Charts and Routine Directories 139

• Table EY. Phase EY Dictionary ALLOCATE
r-----------------------------------~--------------~-----------------------------------,
I IMain Processing I I
I statement or Operation Type I Routine I Subroutines Used I
~-----------------------------------+---------------+-----------------------------------~
IScans text for explicitly pointer- \IEMEX IEY14 I
Iqualified based variables I I I
~-----------------------------------+---------------+-----------------------------------~
\Copies dictionary entries for \EY14 IHASH, ATPROC, DICBLD, S~RCPY \
I explicitly qualified based varia- \ I I
\bles I I \
~-----------------------------------+---------------+-----------------------------------~
\Second file pointers. Scans ALLO- IIEMEY IATPROC, DICBLD, HASH, STRCPY I
ICATE statements I I I
~-----------------------------------+---------------+-----------------------------------~
ICompletes copied dictionary entry IATPROC with \ MOVEST I
Ifor an allocated item \second entry \ I
I \ point ATPROD I I
~-----------------------------------+--------------~+-----------------------------------~
IControls ATPROC and ATPROD routineslSTRCPY IATPROC, ATPROD I
I for each member of a structure I I I L ___________________________ - _______ ~ _______________ ~ ___________________________________ J

• Table EY1. Phase EY Routine/Subroutine Directory
r------------------T--,
I Routine/Subroutine I Function I
~------------------+--1
ATPROC/ATPROD (EZ) Complete copied dictionary entry for allocated item ty including I

attributes from ALLOCATE and second file statements. I
I

DICBLD Collects attribute given for an identifier and copies its dictionary
entry.

EY16 Processes ALLOCATE statements.

EY17 Processes identifier in ALLOCATE statement.

EY21 Processes major structures.

HASH Hashes BCD of identifier to obtain its dictionary reference.

IEMEX Scans text for explicitly pointer-qualified variables.

EY14 Copies dictionary entries for explicitly qualified based variables.

IEMEY Scans second file, reverses pointers. Scans ALLOCATE statements.

IMOVEST (EZ) Copies second file statement and associated dictionary entry.
I
ISTRCPY Controls ATPROC and ATPROD for each member of structure. L __________________ ~ __ J

140

.Chart MD. Phase MD Overall Logic Diagram

.**.*
*MO * * B1* * •

*
CI Xo 0 0 0 00 CI 0 0 0 00 00 00 0 0 GO 00 00 000000000000000000000000 00 00 00 0 00 0 0000000000 0 0 0 0 GCI 000000 eo 00 000 0 0

X X '.

*****B 1********** * •.
: F5~A~R I~N ::
* OF INTEREST "
* " *******.********l(r

x
.*. lFAR(N .*. LFARIl

C 1 *. C 2 *. *****C3* .*.******
.* IS *. •• *. • MAKE ENTRY * .*. IT A *. YES .* IS *. YES . * IN STACK * •

*0 FUNCTION o*ooooooooX*o [T ADOQ. OR 0*00000000')(* ,..ODIFV SCAN *0000

. TRIPLE . •• STRING .* * PARAMETER * X
*0 0 * *0 0 *' * *

0 . *0 0 * ***************** * NO * NO

x

o **** ." * ooX* 81 ..
* . * ****

.*. LFIGN .*.
01 *. 02 *. *****03**********

• '" 1 S *. • * 1 S *. * • .* IT AN *. YES .* IT AN *. Y·ES '" REMOVE *.
*0 IGNORE 01Or.oooooooX*o IN-LINE o*ooooooooX* TRIPLE :(cODOO

*. TRIPLE· •• *.FUNCTION .* * FRO" TEXT * X
*0 0 * *0 0 * .. *

*0 0 * *0 0" ***************** * NO * NO

x

o ****
• * * •• X* 81 *

* * ****
.*. LFSPEC .*.

E 1 *. E 2 *. *****E3**********
.* IS IT *. .* *. * I'AKE ENTRY *

.* A SPECIAL *. YES .* IS IT "'. YES * IN STACK * • *. ASSIGNMENT .* ••••.••• X*. AN IN-LINE .* •••••••• X* TO PRODUCE A. * •••• *. TRIPLE' .* *.FUNCTION .* * BUY TRIPLE * X
*0 • * *0 0 * ..' * *0 • * *0 0" ***************** *' NO • Nn

• * * •• X* 81 •

X **.***
.*. LFCO'. *. LFDR

F 1 "'. F 2 *. **"'**F3**********
•• IS* *. * INSEP.T A *

.* IT AN *. YES .* IS IT *. YES * DESCRIPTION * •
*0 ARGUMENT o*oo<)oooooX*o A"" IN-LINE 0.00000000'<* CF ARGU~ENT *0000 *. TRIPLE .* "'.FUNCTION •• * INTO STACK '"

*0 .• * *0. * .. *
~o 0* *0 0 * *********.*******

... NO '" NO

• * '" •• X* 61 *
X ** '"

.*. .*. SNAKE LFMOVE
G1 *. G2 *. *****G3********** *****G4******"***

..

.* IS *. .* *. * * * MOVE CODE *
.* IT AN *. YES •• ' IS IT *. YES * PRODUCE *. * TO OUTPUT * •

ENO-OF-FUNCTION •••••••• X*. EIIO OF AOOR .* •••••• o.X* ~.PPR(1PPIATE * •••• o •• oX* RESET SCAli * ••••
. TRIPLE . *.Fuf\CTICN .* .. IN-LINE CODE * * PARAMETER *

*0 •• .0 0'" * *
*. o. *0 0" ***************** ****:fI************

* NO * Nn X

l(

*ME * * B 1*
* * *

~
• *. ROPE

H2 •• *****H3*********.
• * IS *. * * • ,. IT FNO *. YE S * PPf'OUCE * • *0 (IF STRING o*o·oooooooX* APP~H1PRIATE *00000000(100(1000000

*. FUIIC lION • * * CODE *
0 0 * *' "0 0" .**************** * NC

x
**** • * *' 61 '" .. *

Spction 3: Charts and Routine Directories 209

'Chart ME. Phase ME Overall Logic Diagram

.....
• ME •
• 81· . . ·

X
·**··81······*···
*INITIALlZATlON •
• -*-.-*-*-.-.-.-*
• 08TAI N SCPATCH •
: STOr~~~G_~ET :
.* •••••••••• * •••• .*.. . · ..
• Cl •• X. · X
·····Cl······· •••

:-.-~~~L~~*-*-:
• SCAN FCR •
: IM~~~s~F :

x ...
El •• • * IS ••

•• IT AN •• YES *. END OF ••••••••
•• FUNCTION' •• •

• TRIPLE.*
0 .

• NO

$.*111
." . •• x* Cl •

•••••• 0 •• 00 x. x

• ••• · . • e5 • · . ••••
;

SIGN ••• .•... 84............. !l5 •.
.. .. 0* * •
• DELETE • IGNORE.. IS IT .. .
: ~W~~[~T :1(•••••••••• *.0~G~8e~LE
• • *. CC",..A. * ** •• *** •••• **.*.1!1 *. 0"

:OCU8LE
.r.eMMA

SOCOM X
···C5·······*··
• '* • • PLACE SECOND *

• •••• 00.000 ••••••)(* OPt:R,6NO ..
• INlO SlACK • · .. ••• * •••••••••••••

x ...
05 ••

•• IS *.
NO ." IT A ••

:0 O. 00 •• 0000 •••• o ••• *~l~~I~~~~~.*o"

x '" 4··· ..•••.• · ... • CONSlPUCl •
• TOB FROM •
• TMFOS • · ... ••••••••••••••• *.

0 .
It. 0"

• YES

'"'57 iI
• ••• *E 5*.**.**.*.
.CONSTPUCT TOB. *
• PLACE F IIIST ...
.TRIPLE OPERAND *
• INTO FIELC 6 .. ·

x 0041 0 •••••• o. 0 •• ,.*
* •
• Cl "

•••••••• o •• oo •••••••••••• x. ...
Fl·.

• *l~GME~f t~ •. YES
•• ONE OF THE ••••••

•• RELEVANT •• *. FNS,.·
* •• *

• NO

x ...
Gl ••

•• IS ••

x
.*** · ..

: 85 :
•• I TEND •• NO

•• OF PROGRAM
•• TRIPLE ••

210

. . * •• *
• YES

x
***** • MG •
• AI· .. ·

x · . • Cl • · . .* •.

X ... ·.F2·········· · . • CCWNC4TE •
• STACK PO INll'R • · . · . •• * ••••••••• * ••••

X
•• ***HZ***·*****:I.l
• o,FSET CFLAG •
• FRCM STACK. *
'" "OV~ TRIPLE •
• TO nUT PUT • · . • * •••••••••••••••

; *····J2*·· ..•• ,. •• · . • IF C ~LAG .. ~ •
• SET ~p GU'4ENT •
• SWITCH r.N • · " *.* 't*.*~***

..

MSG X .····H4······"'··· · . • RESET CFLAG •
• FRO'"' STACK • * • *

. .
,'<00000.00 •• 000000000 •• 00 ••• 0000000000000000000" ••• 00
~ .* ••

" " * Cl " " ,., *'*Iiillfr

"58 X
• •••• F 5 ••• * •••••• · . * MCVE' TC8 •
• TO ST4CK • · .
• * ••••• * * ••

Table MB1. Phase MB Routine/Subroutine Directory
r---------·---------T-----'---,.
I Routine/Subroutine I Function I
~---------.---------+-----.---~
IDRFTMP IMakes temporary descriptor from a dictionary reference.
I I
IGETWKS IObtains workspace to accommodate a variable of given type.
I I
IMBOOOl IScans source text.
I I
IMB0004 IMulti-switch for triples of interest.
I I
IMB0010 IOn reaching end-of-text marker. releases remaining block, and
I I releases control of phase.
I l
IMB0011 I PSI operator: starts new lentry in stack for pseudo-variable.
I I
MB0012 IPSI' operator; completes stack entry and generates code for data

Ilist items.
I

MB0013 I ASSIGN: completes stack and rescan group of assignments, putting
I target descriptions out i:n correct sequence, generates code for
Ipseudo-variable in stack.
I

MB0014 Multiple ASSIGN: places any target descriptors in stack.

MB0020 constructs pseudo-variable stack entry~

MB1310 Resets input pointer to start of sequence of ASSIGNS.

MB1311 Rescans ASSIGNS and associated TMPDS from stack in reverse order.

IMB1316 Tests for end of stack.
I
I MB131S Tests for pseudo-varaible TMPD .•
I
IMB1320 Generates code for pseudo-variable.
I
IMMV3A5 Moves one triple to output_
I
IMVTMPD Places temporary descriptor in stack.
I
IOUTMPD Places temporary descriptor in output st-.ring.
I
I SWITCH Changes scanning table.
I
I TARGET Obtains temporary workspace for pseudo-variable, if necessary. L ________ • __________ ~ ________________________________ ~_------------~--__________________ _

Section 3: Charts and ~outine Directories 243

• Table MD. Phase MD Pseudo-Code In-Line Functions
r-----------------------------------T---------------T-----------------------------------,
I IMain Processingl I
I statement or Operation Type I Routine I Subroutines Used I
~-----------------------------------+---------------+-----------------------------------1
IScans text IPhase LA (SCAN)INone I
~----------------~------------------+---------------+-----------------------------------~
IBuilds up function stack ILFARIN I None I
~-----------------------------------+---------------+-----------------------------------~
IBuilds up argument stack ILFCOM I None I
~-----------------------------------+---------------+-----------------------------------~
IMoves generated code to output ILFMOVE IMV3CLA) I
I block I I I
~-----------------------------------+---------------+-----------------------------------~
IGenerates in-line code and ILFEOF2 ISNru~E,ROPE I
Ilibrary calling sequences I I I l ___________________________________ ~ _______________ ~ ___________________________________ J

• Table MD1. Phase MD Routine/Subroutine Directory
r------------------T--,
LFARIl continues scan for in-line functions.

LFARIN Builds up function stack.

LFCOM Builds up argument stack.

LFDR Unpacks dictionary reference of argument when argument triple found.

LFEOF2 Calls subroutines to generate in-line code.

LFIGN Removes triple from text if inside an in-line function.

LFSPEC Branches if IGNORE triple or not an in-line function.
1

ROPE Generates code for STRING function. I
I

S~KE Generates code for ADDR function. I l __________________ ~ ___ ~ ___ ~ __________ J

244

• Table MS. Phase MS Pseudo-Code Subscripts
r--------·--------.-------------------T----------------r------------------------------------,
I IMain Processing I I
I Stat43ment Ol~ Operation Type I Routine I Subroutines Used I
~--------.-------.-------------------+--------,-------+-----------------------------------~
I Scans te:lCt I SBSCAN I None I
~-----------------------------------+---------------+-----------------------------------~
I Calculat43s element offset I SBSTIH I SBASS, SBCOBI, SBGNOR I SBMVCD, I
I I I SBNEST, SBSUBP, SBSUDV, SBXOP, I
I I I UTTEMP, SBOPT I
~--------.--------.-------------------+--------,-------+-----------------------------------~
I Checks subscript: range I SBSBRN I None I L ________ . _______ • ___________________ .L ________ , _______ .1 __________________________________ .11

• Table MS1. Phase MS Routine/Subroutine Directory
r------------------T--,
I Routine/Subroutine I Function I
~------------------+--i
SBASS Updates scan pointer over an assignment.

SBCOBI (lMT) Converts subscript to binary integer.

SBERR (M'r) Puts error message into dictionary.

SBGNOR (lWr> Allocates an odd symbolic register.

SBMVCD (lMT) Generates pseudo-code and moves it into output text tlock.

SBNEST (lMT) Handles nested subscript situation.

SBOPT Calculates element offset~ in optimizable cases.

SBSBRN CMT) Checks subscript range.

SBSCAN Branches to LA for scan.

SBSTIH Generates code to calculate element offset.

SBSUBI Saves array name.

SBSUBP (,MT) Handles end of subscript list,.
I

SBSUDV Generates code to set up the dope vector of an array of adjustable
strings.

SBS05 Generates code to multiply subscript by multiplier.

SBS06 compiles code to convert to fixed binary.

SBS002 Checks for occurrence of subscript.

SBS029 Generates code to multiply subscript by 4 or 8.

SBTRID Scans for comma, subscript prime, or subscript triple.

SBXOP (MT) Handles special index feature.

SCAN Controlling scan of text.

I UTTEMP (MT) Allocates workspace. L _______________ . ___ .1 ___ ~ __ J

Section 3: Charts and Routine Directories 255

Table NA. Phase NA Pseudo-Code Branches, ON, Returns
r-----------------------------------T---------------T-----------------------------------,
\ \Main Processing \ I
I Statement or Operation Type \ Routine I Subroutines Used I
~-----------------------------------+---------------+-----------------------------------~
IInitializes text block INAINIT ISCINIT (LA) I
~-----------------------------------+---------------+---------------------~-------------~
Iscans text for. next triple of INASC1, NASC2, ISC1, SC2, SC3 (all in LA) I
linterest to user \NASC3 \ I
~-----------------------------------+---------------+-----------------------------------~
\Processes STOP statements \ STOP \NAUTl I
~-----------------------------------+---------------+-----------------------------------~
\Processes EXIT statements IEXIT INAUTl I
~-----------------------------------+---------------+-----------------------------------i
IProcesses IF statements IIF INAUTD, NAUT16, NAUT2l, ZSTUTl I
~-----------------------------------+---------------+-----------------------------------~
IProcesses ON statements ION INAUTD, NAUT6, NAUT16, SC5 (LA) I
~-----------------------------------+---------------+-----------------------------------~
IProduces Library call at end of IPROCP, BEGINP INAUTl I
leach PROCEDURE or BEGIN block in I I I
I source text I I \
~-----------------------------------+---------------+-----------------------------------i
\Processes RETURN statements \ RETURN INAUTl I
~-----------------------------------+---------------+-----------------------------------~
IProcesses function RETURN state- INA3002 INAUTB, NAUTCA, NAUT1, NAUT12 I
\ roents for one data type I \ I
~-----------------------------------+---------------+-----------------------------------~
IProcesses function RETURN state- INA3013 I NAUTA, NAUTB, NAUTCA, NAUTD, NAUTF,I
\ments for more than one data type I INAUT1, NAUT7, NAUT8, NAUT9, NAUTll, I
I I I NAUT12 I
~-----------------------------------+---------------+-----------------------------------~
I Processes GO TO statements I Goro I NAUTD I
~-----------------------------------+---------------+-----------------------------------i
\ Processes GOLN triples I GOLN I NAUTD I
~-----------------------------------+---------------+--------------------~--------------~
I Processes GOOB statements \GOOB INAUT5, NAUTD, NAUT16, SC5 (LA) I
~-----------------------------------+---------------+-----------------------------------~
IProcesses SIGNAL statements I SIGNAL INAUTD, NAUT6, NAUT16, R~UT8, I
I I \NAUT10, NAUT2l \
~-----------------------------------+---------------+-----------------------------------~
\Processes REVERT statements I REVERT INAUTD, SC5 (LA) I L ___________________________________ ~ _______________ ~ ___________________________________ J

256

eChart QJ. Phase QJ Overall Logic Diagram

*$ •••
·OJ •
• 06.1·

'" '" .

; ...
C 1 ." • * *. •• . EN/) CF •• YES

0 TF::XT 0 •••• 00 .• 0

0 . 'J(*. It * 1t.*.*
*. •• *~u *

• NO .. At •

x
El ,."

• 1(1 *.
• NO •• BUyS OR ••
•••• *. BUY .*

. .
. ~ * •• * .. YIES

x . ". G1 .. "
• * *.

. '" •

• "'ADJUSTAEI_E "'. NO *. AkRAY r~ 0".0.0
"'. STRUCT ...

. '. * •• *
'" YES

BYI h",~~M "'~"'''' **
'" .. '" EXTRAC r ..
'" MAPPING '"
.. CODE"

************.**111*

x
***7'.1: '" .

• F2 '" '" ..

X 1ll*1tI. ,. ..
.. F2 .. . '"

.*** · . ,. ~2 .. · "

• ** ••
• ~ '* a.X. E'4 *

• *

* •••
• F2

:0':(1**

L1BCl X
*****r:: 3**:t*.***~ •
• OHER~I~E ..
: ~~li~~A~~O :
• CALLING •
• S~QUEN(E "
**** 0

11 F3 *0 x. · ". ."... x
F:3 *.

a * *.

***l(t · .. • e4 • · .. *.~.

X
·~:tC4*.#·*·))·it'*
• O:XTRACT • .* .. '" ~AP~ING •
:0 rl'),)E ~Q~'" J!cooooX'Ifc 1;=5 ..
.. 2·'10 FIL~ • • •
* 'h .""**
~****l6c**_*:t~ ~.tc ... *

~ .".

• ••• • • • E5 • .. . tc.*.

X
F4 *. • FS"."""" .. *""

0"" * •
• 0< INIT! AL •• NO •• STA~ •• N!' : og~~E~~H(l1l :

.. R~L(CATt(1N " *. VALUE .*0000 *. STRING .*ClOOOO.

•• LENGTH ." .. CODE " *. . .*
. 0 * • • ~

• YES

X "'* ·G:!"H "'
• F XTP ACT 2NC *
• FIL~ ..
.. 5T 6TE"fNT " · '" .. *.~ItI***lOo .. *.***JOc*

· . • X •• ACI G •• 0 •• 00. CI. CI •• II ••••••

~

~.**
.. ~l

*'b*tc

x *. 0* * •• *
***'* ,. ... • YES

• *** 0 • At • . . · .. " G4 ".X.
**** · .. **.* 0

PI\EVAL X
.·*·*G4"""·""""·· " . " Cr,PY •

•••• OL~ •
• " OCPE VECTOR " . . .
X .***** ••• 'flt**16'b:*b*

**** . "
.. E 5 "

" " ****

· .. "*"*
•• ,. F3 * • *

."**
••• GS .. ······,,·· • EXTIIACT ..

• • 2NC FILE ..
• •• X" STATEMENT •

• FOR • .. LENGTH .. ." ••••• " *

section 3: Charts and Rout; ne Directories 287

.Chart QU. Phase QU Overall Logic Diagram

**** '" "'

*$lfC'**
·ou ,.
• A1" ,. ,.

"'

• Cl *00.
* *-.

. .
0000000000000000000000000)'. ;

x
.*.

!l5 * •
• * OTHEP *.

Nt) .* INSTR.Un'S * •
••• *. RE'UIR ING .*

X
'tr'(t~*

'" * .. C l. '"

* '" ****

*. ALIGNMENT. *
*e 0'" *(1 0*

'" "F.S

"'*** x .*. y HLlB;) .*. ~4 *.
x

C1 *.
o~ .0

NO • * . END *.
000*. OF ppnGRAM .*
X

***I(t
'" "' '" A2 '"

0 .
. 0 **** ~ 0* • ..

* YES • 02
**** It * o * *. :11:.'1.1*

*****(,3*****'**
* " * : SFT [',,:DSW .i'!oooo

'" * ***:t-**********

"' '" 00 x* J 5 * 0 0

"'*"'"' * '* .')tOGOOOOOO 00000000 000000 00 00 00 OOO!!OOO!) 0

***'" ~ x
ALHGQ .*. ALIGN'.~. TTS

01 "'. 02 ••
0* IS *. 0 * IS *.

NO .*IT RFGISTER*. ~:'}.'" OPCR~Nf) *.

• ~.~"*IJ ?*:JII****h ••• * SFT •
.. ALlG~~~\jT *

••• *kITH MISALIGNED*X •••••• o."'. OICTICN~PV .*
. ADOPESS . *.PFFcQF~Cc.",

"RF~l[) ACC"'~I)I"G *x •••
"Te HISTPUCTION '" *..* 'b o . (I *'

0 0 lIlIo 0 * * '" ** **"****jIc.,******* x
** •• * VE S * YE S

'" '" : ~2 :

~*** x X
Elo*o*o .:ALGR!=F E2o*0*0

° '* *. 0 -if IS *0
NO.* DEOSw *. VeS.* IT A *. "Ie * *

0000*0 OR APGS.... o*Xoooooooo*o "'ISALIGNI:C o*ooooX. A2 *
*. SFT .• * ".VARI AE\L~ .* x.... *

0 0 *0 0* 0 ****
0 0 *0 01(1

* YES *

X
"'****Fl .. "'* **"''''*** * SET * * ALlGNMfNT *
'" PEQUlf<FD FIlCM '"
*OEO OF VARI ~ELE'"

'" '" ****** *********** . .
• OOf' 00 00 00 0 X.

x

**** .. " .. S3 1ft:

* * ****

0* T S *. • * IT WITH I~· "'. 0,:0 *. A CALLIf\G 0*000.

.SEQUF'ICf. .
#0 o 'It

·0 0 * x * YES **** * *

x

:****C5* **** ****:

'" TU"N OFF *
'" ARGSW ~ND *.x •••
: CEOSW :

*****. ***********
o **l\c*
o • * 1:c
oox*n3*

'" '" ***~ 0*. 0* •
04 *. D5 *.

0* *0 0 *' *0

.'" G~T/PUT ". '10 .* IS IT *.!IIO.
lilt 0 !=~IT t~ITo o*ooooeooo"'*o L lS, ENTRY 0*0000

Q.OUTINE C~LL'" X *. .*
*0 SfQ o:g *0 0*

0 o¥ 1(10 0 * Yf S * YE S ***. 0

* "'. * ~~ *oX o
'" ". x : TLt-'. 1.01>:** ;

;J!P~*~=4.*t."~:**D l(t :·l&*·~~:*D~*·tI-"b~:

'" SFT * STAC~ ..
: ~~H~~T .. ;' •• 0... : ~~g;~U~+6~~D :

*********".if::t.:* *****:6::b:***tl-tr1fr1(c***

AOFS 10 0*0 AOEOO 0*0 0*0 MTSc) 0*0 MTMVC
Gl *. G2 *0 G3 *0 G4 *0 .***.GS ********

0* *. 0*.0 .* *0 .* IS .0 .. flUTPUT '*
.* IS *. NO .* *. 'Ie .* "'. NO .* OPERAND *. Y~S .. f>10[IFIEO *

*0 ALIG~'~ENT 0*000000(0)(*0 DFOSW O*OODOOOOO-X*o ARGSw' 0*00.00(00)(*. A TA'tGET o"'oooocoooX-b: INSTRUCTION 1&
. O.K. . *. ... *. .* ... FIELC .* '" FOLLOk~D ..

288

. 0 *0 o. *0 0* *0 o it. * PVflVC ..
*0 0 *' .0 0 * *0 0" *0 0" **-b::6'-b.:b:**********

" vE S " Y~ S '" YE S * NO

x

'" * * A2 .. * ..
**.*

~S-TACI< X "'S X
*****H3****lCr:*··*· ****.xH4 ******~*J'r*
.. PUT ~VC '" * t)UTPUT ..
'" INSTPUCTIO!l! '" * MVC FC'LL(,WH' * * FI'P IT INTO * ~ flY "'ODIFI~" * * ST~CK *
* '"

: INSTRUCTIC'" :

tt*2!'rtr ** ** l):* * *.***********n*"** . . .
o x.oo 0 0 00 00 00 0 0 0 0 000000000(0)(000000000000000000000 00 ° 0
~

* ,.
,. A2 .. ,. ,.

"bit.-b'b

X
-tt*** * ..

'" A2 '" '" .. *.**

>I< * * J5 '" ,. ,.

**lIlI:o.CI:

X
'11:1.>-***
"'OX >I<

"'* "~:b ..

-Chart QX. Phase QX Overall Logic Diagram

'

'" '" * (,1 '"
* * "'***

***** *QX ,.
* A2*

-'I

SCANC ~
***** A?******** **
* SCAN STATIC *
'Il AUTOMA TIC AND *
* cn'TRCLLFC *
* CHAINS IN *
* DICT toNARY *
****.*********.*.

L
*****82**>1*>1***·*
* * * GET HEAC CF ..
* STATIC CHAIN *

* * * * *************>1***

.*** 0 * *. * C2 *.X.
* *.

~
*****84*****>1* *>1*>1*85>1*****>1**>1
* '* .. * * TURN ON * * GET HEAC CF * : s~ng~ >I >I •••••••• X:PROCEnURE CHAIN:

* * ~ * ****.********"'* *********"'******* x

x
*.**

X lI!... ":0 o~o YES 0;0 YES
*****c 1********** C 2 *. C3 *. C4 *.

* * * E4 *
'" >I * • 0'" *0 0'" *0 0" *0 **** *GET NEXT ENTRY'" .* END *. YF.S .• * WAS IT *. NO .* WAS IT *.

IN CHAIN ••••••••• X •• OF CHAIN, .* •••••••• X.. STATIC .* •••••••• X •• CONTRCLLEC .>1
* *. .>1 *. CHAIN .* *. CHAIt-: .* * * .0'0 * *0 0" *0 0 * .* •• :;w," *****...... lt~ 0" *0 0 * *0 0 * x * t-:I') * * NC

~
o ~o 0*0 X

02 *. J3 *.
0* *0 0 * I SIT * 0

.* IS *. YES .* ENTRY FOR *. NO
.CDBOL SWITCH . •••••••• X*A COBOL ~AJOR-.* ••••

*****04**********
AUTO~ATIC CHAIN
* F INI SHED. GFT ...
* NEXT ENTRY IN *
PROCEDURE CHAIN *. ON.* *.STRUCTURE.* * 0 0'" *0 0 *

*0 0 * *0 0" * NO * 'YE S

. .
o Xo o • o 0 00<000000000000000000

x ."'. E2 *. • * IS IT *.
• NC .*ENTRY FOR A*.
oXooo.oooooooooooo*. MAJ-STR: OR 0*

NON-STRUCTURED
.ARRAY.

0 0
.. YES

ANAGG ;
***** F2 **********
* * * ANALYSE DieT: *
• ENTRY FeR AN *
* AGGREGATE *
* . * **** ** *** ***"'****

MAKEN X
*****G2 ********** * ,.
*MAKE ENTRY FOR *
'" . .AGGREGATE IN >'
'" TEXT BLOCK *

'" * ******4*****:10*** ..

X
*"'***H2******* *
'" CHAIN THE * .' * E~HY I~TC *

.'0 •••• 000000000000* ALP ... ABETIC ..
* SE".EIICE OF '"
*AGGP IDHlIFIER'"
******* **********

x
"' ... "'''' * * * Cl '"

* * ."'**

* * ****.**********"'*

x

lOI***
* '" '" C2 *
* '" *"'** x

E4 *. **"'''*E 5**********
.* *. * GET HEAD OF *

* * .* END OF *. NO * AUTCMATIC *
* E4 * •••• x*. PROCEDURE .* •••••••• X* CHAIN FOR *
* * *. CHAIN .* * PRCCEDURE •
*.** *0 0" .. *

*0 0" ***************** * YES

x .*. F4 *. *****F5***"'******
0* *0 'If. *

.* IS *. NO * GET HEAl) OF *
.COa'JL SWITCH . •••••••• X .. CCNTRCLLEO

. ON. * CHAIN,
0 0 .. '*

0 0' ****$************ * 'YES

PRNTAB X
'.* **6.4*** **** .. '"

PRINT
D.GGREGATE

LH'GTH
TABLE

********tt****

x
****'"
"'PA *
.. AI'"
* * *

x

* * '" C2 * * ..
***~

Section 3: Charts and' Routine Directories 289

Table PA. Phase PA DSAs in STATIC Storage
r-----------------------------------T--------------~-----------------------------------,
I IMain Processing I I
I statement or Operation Type I Routine I Subroutines Used I
~-----------------------------------+---------------+-----------------------------------~
IScans Entry Type 1 chain for blockslPADSA I DSASIZ,DVSIZE I
leligible for STATIC DSAs I I I
~--~--------------------------------+---------------+-----------------------------------~
IMakes a dictionary entry for each IDICENT I None I
I STATIC DSA I I I
~-----------------------------------+---------------+-----------------------------------~
ISorts STATIC chain (called from PD)ISCSORT I None I
~-----------------------------------+---------------+-----------------------------------~
IScans STATIC chain for INTERNAL IARRSCN I None I
larrays; calculates number of ele- I I I
Irrents for those arrays needing I I I
I initialization. Allocates storage I I I
I for arrays and, if necessary, for I I I
Isecondary dope vectors I I I L ___________________________________ ~ _______________ ~ __________________________ ---------J

Table PAl. Phase PA Routine/Subroutine Directory
r------------------T--, I Routine/Subroutine I Function I
~------------------+--~
ARRSCN Scans STATIC chain for INTERNAL arrays; allocates storage for arrays

DICENT

DSASIZ

DVSIZE

PAD SA

SCSORT

and secondary dope vectors (called from PH).

Makes a dictionary entry for each STATIC DSA.

Calculates size of DSA excluding Register Allocator Workspace.

Scans AUTOMATIC chain for variables requiring dope vectors, and
calculates size of dope vectors.

Determines eligibility of a block for a STATIC DSA.

Sorts STATIC chain (called from PD). L __________________ ~ __ J

290

• Table QU. Phase QU Alignment Processor
r-----------------------------------T--~------------T-----------------------------------,
I I Main Processingl I
I Statement or Operation Type I Rou.' tne I Subroutines Used I
~,---------------.--------------------+-------------.--+-----------------------------------~
ITests pseudo-code instructions for IALIGNQ IALREGQ,MVCMAK,REGENT I
Imisaligned operands and deduces thel I I
I correct alignment I I I
~---------------.--------------------+---------------+-----------------------------------~
IGenerates a mOVE~ character (MVC) IMVCMAK I ABEOT,NEXREG,OUTEST,PSMOVE, REMOVE, I
linstructicn for a misaligned oper- I ISNEXT,TRANS I
land I I I
.-----------------------------------+---------------+-----------------------------------~
ISkips a pseudo-code item IT3 ITNEXT I
.-----------------------------------+---------------+-----------------------------------~
I Processes the load address (LA) I TLA I TRR I
Ipseudo-code instruction I I I
.-----------------------------------+---------------+-----------------------------------i
IProcesses the library calling ITLTB IABEOT,T3 I
Isequence in the pseudo-code I I I
.--------------_._-------------------+---------------+-----------------------------------~
IProcesses the L pseudo-code ITLL I ALIGNQ,ALREGQ,OUTES'I ,PSMOVE,RENOVE, I
I instruction I ISNEXT,TRANS,TRR I
.-----------------------------------+---------------+-----------------------------------~
IProcesses pseudo-code instructions,ITHT IALIGNQ,TRRS I
lother than L and LA, that may have I I I
Imisaligned operands I I I
.-----------------------------------+---------------+------------------------------~----i
IExamines a pseudo-code item and. I TRANS IT3,TABS,TDROP,TEOP,'IH'I,TLA,'ILIB, I
I passes control to the appropriate I I TLL,TRR, TSN I
Iprocessing routine 1 ~ I L ___________________________________ ~ _______________ ~ ___________________________________ J

302.1

• Tabl e QU1. Phase QU Rout ine/Subroutine Directory
r------------------T--,
I Routine/Subroutine I Function I
~------------------+--~
ABEOT IOutputs terminal error message. I

I I
ALREGQ Tests whether or not the register is in the register table. 1

I
NEXREG Gets a symbolic register. I

I
OUTEST Gets a new output text block if required. I

PSMOVE

REGEN'I

REMOVE

SNEXT

TABS

'IDROP

'ISOB

TEOP

TRR

Fills current output text block and gets a new one.

Makes an entry in the register table for a register that has been
loaded with the address of a misaligned operand.

Copies text into the output text block.

Accesses next pseudo-code item in the source text.

Scans absolute code and copies it onto the output text if necessary.

Removes dropped registers from the register table.

At the end of a source text block, moves out the scanned text and
gets the next source text block.

At the end of the program, outputs the remaining text, and releases
control.

Deletes an assigned register from the register table.

I

I
ITSN Updates the statement number slot in the communications region. I l __________________ ~ __ J

302.2 Section 3: Charts and Routine Directories

• Table QX. Phase QX Print Aggregate Length Table
r------------------------------------T---------------T-------------------------------~---,
I IMain Processingl I
I statement or Operation Type I Routine I Subroutines Used I
~-----------------------------------+---------------+-----------------------------------i
IScan storage chains in dictionary ISCANC IANAGG, PRNTAB I
Ifor aggregate entries I I· I
~-----------------------------------+---------------+-----------------------------------i
IAnalyze aggregate dictionary IANAGG I ANCOB,EXTENT,FINALA,FIRS'IA, FORMAL, I
lentries and print table entry I IGETVO,GETSB,MAKEN,PRHED,SORTEN, I
I \ IVOPLUS I L ___________________________________ ~ _______________ ~ ___________________________________ J

• Table QX1. Phase QX Routine/Subrouti ne Directory
r------------------t--,
\ Routine/Subroutine \ Function I
~---------.---------+--~
ANAGG \ Analyzes dictionary entrie!s for a major structure or non-structured

\ array.
\

ANCOB JFinds original major structure dictionary entry for a COBOL major

E.XTENT

FINALA

FIRSTA

FORMAL

GS"'TVO

GETSB

!'I'AREi'''

PRHED

PRNTAB

SCANC

SORTEN

structure.

Calculates length in bytes of a data variable, label, task, event,
or arpa.

Calculates address of final basic element of a major structure.

Calculates address of first basic element of a major structure.

calculates length of a non-structured array.

Gets virtual origin of a dimensioned variable.

sets pointer to BCD in a dictionary entry.

Makes an ent.ry in text block for each aggrega teo

Prints main heading and sub-heading of table.

Prints Aggregate Length Table.

Scans STATIC, AUTOMATIC and CONTROLLED chains in dicticnary for
aggregate entries.

Sorts text block entry for aggregate so that the entries are chained
in collating sequence order 0f the aggregate identifiers.

\VOPLUS Calculates address of first or last element of major structure. L ___________________ ~ __ J

303

chart 09. Register Allocation Logical Phase Flowchart

***** *09 *
• A1*
* * *

X
** ••• A1*·*·******
F IRST SCAN RA
*- *-*- *-*-*-*-*-*
* ESTABLISH •
• ADDRE SS I 81 L lTV * * • *.*.****.** •••• ", ..

x
** •••
*10 •
'" B1*
* '" '"

304 Section 3: Charts and Routine Directories

This aFpendix relates the logical phas­
es, physical phases, and modules contained
within the physical phases. The compiler
name is IE!1AA.

PHYSICAL
PHASE ~]()DULES

AB

AC

AD

Al~

AF'

AG

Ali

AI,AJ

Ale

AL

AN

BX

DESCRIPrION

Controls
compiler

running of

Performs detailed ini­
tialization

T~ri tes recoras on
intermediate file
SYSUT3

Performs interphase
dumping as sp~cified in
the DUMP option

End of read-in phas~

Controls system genera­
tio~ compiler options

Closes SYSUT3 for out­
put, reopens for input

Format annotated dic­
tionary dUITlO

Format annotated t~xt
dump

Closing phase of com­
piler

Controls extended dic­
tionary compilation

Phase marking

Controls normal dic­
tionary compilation

48-character set prep­
rocessor

Builds second half
phase directory

compile-tiffe Processor Logical Phase

AC' .)

AV

Resident phase for
compile-time processor

Initialization
for compile-time
essor

phase
proc-

BC

BG

BW

APPENDIX A: GUIDE TO PHASES AND MODULES

BC.BE,BF

BG.BI,BJ

BM,BN

BO,BV

Initial scan and tran­
slation phase for
compile-time processor

Final scan and replace­
ment phase for compile­
time processor

Error message printout
phase

Contain the diagnostic
messages

Cleanup phase for
compile-time processor

Read-In Logical Phase

c'A Read-In phase coremon
routines

CC Read-In phase coromon
routines

CE Keyword tables

CI CG.CI Read-In pass 1

CK Keyword tables

CL CL,Cr"l Read-In pass 2

CN Keyword tables

co CO.CP Read-In Fass 3

CR Keywcr"! tables

CS CS,CT Reai-In pass 4

CV CV,CW Reaa-In t:ass 5

Dictionary-Logical Phase

F.D

FG

EI

EL

EP

ED

EF,EG

EH,EI,EJ

EK,EL,EM

EP

Initialization,
subroutine package for
Declare Fass 2

Ini tia lization

First ~ass over DECLARE
statements

Second pass over
DECLARE statements

Constructs dictionary
entries for PROCEDURE,
ENTRY and CALL state­
ments

Appendix A: Guide to Phases and Modules 335

EW EV,EW

EY EX,EY,EZ

FA FA,FB

FE FE,FF

FI FI

FK FK

FO FO,FP

FQ FQ

F'I FT,FU

FV rv,FW

FX,FY,FZ

Constructs dictionary
entries for LIKE attri­
butes

Constructs dictionary
entries for ALLOCATE
and for explicitly
qualified based varia­
bles.

Ch ec ks cont ext of
source text

Changes BCD to dic­
tionary references

Checks validity of dic­
tionary references

Rearranges attributes

Constructs dictionary
entries for ON-
con1itions

Checks validity
PICTURE chain

Dictionary
house-keeping

of

Merges second file
statements into text

Processes identifiers
for cross reference and
attribute listing

Pretranslator Logical Phase

GA GA

GB GB,GC

GK GK

GO GO

GP GP,GQ,GR

GU GU,GV

HF HF,HG

HK HK,HL

HP HP

Constructs DECLARE and
OPEN control blocks

Modifies I/O statements

Checks parameter match­
ing

Preprocessor for second
check on parameters

Second check on param­
eters

Processes CHECK condi­
tion statements

Processes
assignments

structure

Processes array assign­
ments

Processes items defined
using iSUBs

Translator Logical Phase

336

IA

IG

IL

1M

IT

IX

JD

IA,IB,IC

IG

IL

1M, IN,
IP,IQ

IX

JD

Stacks operators and
operands

Processes array and
structure argurrents and
built-in functions

Preprocessor for gener­
ic functions

Processes generic fUnc­
Ic functions

Processe-s function tri­
ples

POINTER and AREA check­
ing

Evaluates
expressions

constant

~regates Logical Phase

JI JI,JJ

JI JI,JK,JL

JK JK,JL,JI-I

JP JP

Struccure
pre-preprocessor

Structure preprocesdor

Structure processor

Checks CEFINED chains

Pseudo-Code Logical Phase

LA LA

LB LB.LC

LD LD

LG LG,LH

LR LR

LS LS.LT,LU

LV LV

LW LW

LX LX,LY

MB MB,MC

I MD MD

Utility scanning phase

Generates triples to
initialize AUTOMATIC
and CC~1ROLLED scalar
variables

constructs.~ictionary
entries for initialized
STATIC scalar variacles
and arrays

Expands CO loops

Ini.tialization
Phase LS

for

Converts expression
triples to pseudo-code

Provides string
dling facilities

Initialization
phase LX

han-

for

Converts string tripleq
to pseudc-code

Constructs pseudo-code
for pseudo-variables

Scans for ADDR and

ME ME

MG MG,MH

MI MI,MJ

MK .MK

ML .ML

MM IMM,MN.MO

MP I~P

MS l~S.,MT

NA NA

NG NG

NJ NJ,NK

NM NM,NN

NT NT

NU NU,NV

OB OB,OC

00

OE OD,OE.OF

OG OG,OH

OM OM,ON,OO

STRING functions and
generates code for each

constructs pseudo-code
for in-line functions

constructs pseudo-code
for in-line functions

Constructs pseudo-code
for in-line functions

Con$tructs pseudo-code
for in-line functions

Processes generic entry
names

Processes
function
invocations

CALL and
procedure

Reorders BUY and SELL
statements

Constructs pseudo-code
for subscripts

Generates pseudo-code
for branches, RETURN
triples, etc.

Generates Library call­
ing sequences for DELAY
and DISPLAY statements

Generates Library call­
ing sequences for exe­
cutable RECORD-oriented
input/output statements

Generates Library call­
ing sequences for exe­
cutable STREAM-oriented
input/output statements

Pre-processor for NU

Generates Library call­
ing sequences for
data/format lists

Processes
functions
variables

compiler
and pseudo-

pseudo-code assignment

Constructs Pseudo-code
for assignments

Generates library
calling sequences

Generates pseudo-code
for data type conver­
sions in-line

OP OP"OQ

OS OS"OT,OU

Generates pseudo-code
for further in~line
conversions

Converts constants to
required internal form

Storage Allocation Logical Fhase

PA

PO

PH

PL

PP

PT

QF

QJ

QX

PA

PO

PH

PL,PM

PP

PT,PU,PV

QF"QG,QH

QJ.QK,QL

QU

QX

Puts eligible
into STATIC

DSA's

First STATIC storage
alloca ticn phase

Second STATIC storage
allocation. phase

Constructs
tables and DEDs

symbol

Sorts AUTOMATIC chain

Allocates
storage

AUTOMATIC

Constructs prologues

Allocates DYNAMIC stor­
age

Aligns rr.isaligned oper­
ands

Lists lengths of aggre­
gates

Register Allocation Logical lhase

RA RA,.RB,RC

RF RF,RG,RH

Processes
mechanisms

addressing

Allocates physical reg­
isters

Final Assembly Logical Phase

TF TF

TJ TJ,TK

TO TO,TP,TQ

TT TT,TU

UA UA,UB,UC

un un, UB, UC

UE UE, UB" UC

UF UF" 00, UH

Assembly first pass

Optimiza.:ion

Produces ESD cards

Assembly second pass

Final assembly initial
values, first pass

Generates RLD and TXT
cards to set up dope
vectors for STATIC DSAs

Final assembly initial
values, second pass

Produces listings

Appendix A: Guide to Phases and Modules 337

XA,XB Constructs the third
UI UI,UG.UH Completes final ass em- phase list

bly'listings
XA,XC Controls the printing

of messages
Error Editor

XF Message address blocks
XA XA Determines whether

there are diagnostic XG,YY Contain the diagnostic
messages to be printed messages

338

APPENDIX C: INTERNAL FORMATS OF DI~~IONARY ENTRIES

This appendix describes the formats of
dictionary entries during the compilation
of a source program. The appendix is
organized in the following manner:

1. Dictionary entry code bytes

2. Dictionary entries for ENTRY points

3. Code bytes
entries

for ENTRY dictionary

4. Dictionary entries for DATA,' LABEL,
and smUCTURE items

5. Code bytes for DATA, LABEL, and STRUC­
TURE dictionary entries

6. Uses of the OFFSET
slots in DATA, LABEl.,
dictionary entries

1 and OFFSET 2
and STRUCTURE

7. Dictionary entries for:

lalbel con stan ts
dat.a constants
fOlrmal parameters
FIl['E entries
TASK and EVENT data
int.ernal library functions
paJeameter descriptions
ON conditions
PICTURES
expression evaluation workspace
dope vector skeletons
sYffibol table entries
Am~OMATIC cha in def ini tions
DED dictionary entries
FED dictionary entries
terf'Corary dope vectors
BCD entries
second file statements

8. Dimension tables

1. I:ICTI9NARY ENTRY CODE BYTES

The dictionary is used to communicate a
complete clescription of every element of
the source program~ the compiled object
program, amd the compiler diagnostic messa­
ges betwee!n phases of the compiler: the
text describes the operations to be carried
out on the! elements.

Each type of element has a charac­
teristic alictionary entry, which is iden­
tified by a code occupying the first byte
of the. ent.ry. In general, each type of

element has a different code byte, but in
order to permit rapid identification of
dictionary entries~ the code bytes have
been allocated on the following basis:

First Half Byte

Bit Bit
Position Value Meaning

0 0 entry has BCD
1 entry has no BCD

1* 0 entry is to be chained
1 entry not to be chained

2 0 not a member of structure
1 member of structure

3 0 not dimensioned
1 dimensioned

*This bit only applies to Phase FT which
constructs the storage class chains by a
sequential scan of the dictionary; later in
the compiler, items with this bit on are
added to the storage class chains.

Second Half Byte

In the second half byte, the following
codes have the meanings shown, unless the
first half byte is X'C':

X'7'

I X'. C'
X'D'
X'E'
X'F'

means label variable
means task identifier
means event variable
means structure
means data variable

The second and third cytes of eve:y
dictionary entry contain the length, 1n
bytes, of the entry. If the entry has BCD
(i.e.~ the first bit of the entry is zero),
this length count does not include the BCD;
instead, the BCD, which. follows the main
body of the entry, is preceded by a single
byte containing one less than the number of
characters of BCD.

Using this general scheme, the code
bytes allocated. for dictionary entries
appear in the following tatle. Code bytes
in the table which have no corresponding
description are not allocated.

X'OO'
01
02
03
04

statement label constant
Procedure or entry label
GENERIC, entry label
External entry label (entry type 4)
Built-in function, e.g., DATE

Appendix C: Internal Formats of Dictionary Entries 345

05 Temporary variable and controlled
allCica tion workspace

06 Built-in GENERIC label, e.g., SIN

Appendix C: Internal Formats of Dictionary Entries 345.1

07 Label variable
08 File constant
09
OA
OB
OC Task identifier
OD Event variable
OE
OF Data variables (not dimensioned or a

structure member)

10
11
12
13
14
15
16
17 Dimensioned label variable
18
19
1A
1B
1C Dimensioned task identifier
1D Dimensioned event variable
1E
1F Dimensioned data variable

20
21
22
23
24
25
26
27 Label variable in structure
28
29
2A
2B
2C Task identifier in structure
20 Event variable in structure
2E Structure item
2F Data variable in structure

30
31
32
33
34
35
36
37 Dimensioned and structured label

variable
38
39
3A
3B
3C Dimensioned task identifier in

structure
3D Dimensioned event variable in

structure
3E Dimensioned structure item
3F Dimensioned and structured data

variable

40 Formal parameter type 1
41

346

42
43
44
45
46
47
48
49
4A
4B
4C
4D ON CONDITION entry
4E
4F

80 ENTRY type 1 -- from a PROCEDURE
statement

81 BEGIN statement entries -- entry
type 1

82 ENTRY statement -- entry type 1
83 Entry type 5
84 Entry type 3
85 Entry type 2
86 Entry type 6
87 Label variable fcrmal parameter or

temporary
88 Constant
89 File formal parameter cr file

temporary
8A
8B
8C Task identifier formal parameter
80 Event variable fcrmal ~arameter
8E
8F Data variable formal ~arameter or

temporary

90 Invocation count dictionary entry
91
92
93
94
95
96
97 Dimensioned variable formal parameter

or temporary
98 File attribute entry
99
9A
9B
9C Dimensioned task identifier forrr.al

parameter
90 Dimensioned event variable formal

parameter
9E
9F Dimensioned data variable formal

parameter or dimensioned tem~orary

AO
A1
A2
A3
A4
A5
A6
A7 Structured label variable temporary
A8
1\9

5. CODE BYTES l:"yR DATA, LABEL, AND STRUCTURE DICTIONARY ENTRIES

The First Code Byte - Other 1

r--:---T---------------------,..----------------T'------------------,
I Bit I I I
I No. I Description I Set By I
~-----+------------------------------------.--+------------..;.-----~

1 S~'mbol or requires load constant if Phase EL, FT, or I
laLbel· constant NU I

I
I

2 Defined on Phase EL I
I
I

3 ~€!ntioned in CHECK list Phase FO I
I
I

4 Needs DV!) Various I.

5

6

7

8

Last member in structure

variable dimensions

* dimensions

* string length for da ta item

--More labels follow for a label
constant

Phases EL or EW

Phase EL

Phases EL and FT

Phases EL and FT

Phase EG

---Major structure - no member of Phase EY
the structure has a dimension or
length attribute which is not * L_____ _ ____________________________________ ~ __________________ J

1~e Second Code Byte - Other 2

r-----T----------·---------------------------T----~-------------,

I Bit I Description I Set by I
I No. I I I
t-----+-------------------------------------+------------------i

1 Dynamically defined Phase EL

2

3

CONTROLLFD major structure with
varying s1:rings

NORI-1AL = 0, ABNORMAL 1

Phase EY

Phases EI a·nd FT

4 Peserve1

5

6

7

anj

Fo:rmal Pal~ameter

IN~rERNAL :: 0, EXTERNAL = 1

00 = AUTOMATIC or DEFINED or simple
parameter

01 = STATIC

Phase EI

Phase EI

Phase EL

Phase EL

8 11 = CONTROLLED Phase EL L _____ ~_~ ___________________________________ ~ __ ~ ______________ _

Appendix C: Internal Formats of Dictionary Entries 355

The Third Code Byte - Other 3

r-----T-------------------------------T------------------------------,
I Bit I I I
I No. I Description I set by I
~-~---+-------------------------------+------------------------------~

1 Needs dope vector Phases EK and EY if variable

2 Needs DED

3 Needs no storage for the item
itself

4 Correspondence defined

5 Chameleon

6 Sign bit for first offset

7 Indication of the state of
the value in the first offset

0 rubbish
1 = good value

dimension entries, variable
string length, or in
CONTROLLED storage;
Phase NU when item appears
in an argument list

Phase NU

Phase GP

Phase FV

Phase GP

Phase PH for STATIC and
Phase PT for AUTOMATIC

1?hase Pn: for STATIC and
Phase PT for AUTOMATIC

8 As above but for second Phase PH
address slot

-----~-------------------------------~------------------------------

356

The Fourth Code Byte - other 4

r-----T---·----------------------------T--------------------,
I Bit I I I
I No. I Description I Set by I
~-----+---.----------------------------+---------------------1
I 1 Usage (i): I Phase EL (for EW)
I An explicit alignment I
I declaration has been made I
I Usage (ii): I Phase JK

A const.ant has been produced
for this struct.ure or array

2 00 Not temporary Phase GP"
and O:lL Temporary type 2 IM" or LB
3 10 = Temporary not sold

l~L = COBOL temporary

4 M4~mber of defined structure Phase FV

5 Packed = 0 Aligned = 1 Phase! EL

6 Major structure Phase EL

7 No dope vector initialization Phase GP

8 A temvorary type 2 which has Phase OB
been incorpo rated in work-
space 1 or RDV required. For
COBOL temporaries this bit
means RDV required

HF" HK,

-----~---------.----------------------~-------------------

Appendix C: Internal Formats of Dictionary Entries 356.1

7

8

9

10

11

12

13-14

Da ta Pr ec is ion*

Scale Factor*

*These are the apparent pre­
C1S10n and factor derived
from the BCD of the constant
(see Note 2)

Type (see note 1)

DATA byte (2)

Data Precision (2)**

Scale Factor (2)**

**These bytes are inserted
by the pha.se requesting con­
version. If a picture is
required, these bytes are
used to contain a picture
table ·reference (see Note 3)

Dictionary reference - used

Eighth bit: 1 indicates that no con­
version is required.

2. After the constants processor the
bytes 6 through 8 will contain the
offset of the constant from the start
of the pool of constants. If a dOFe
vector is requested then the offset of
this from the start of the constants
pool is eight less than that of the
converted constant.

3. Should a DED be required, this will be
constructed by Pha.se FL. The two
bytes, precision(2) and scale
factor(2), will contain a dictionary
reference of a DED dictionary entry.
If the constant requires a dope vector
then Phase OS will make a dictionary
entry for it, and the dictionary ref­
erence preceding the BCD will be the
dictionary reference of this.

when a phase requires a con- Task Identifiers and EVENT Data
st:ant to be converted into a
specific location in storage

The format of the dictionary entries for
15 BCD I task identifiers and EVENT data is, apart

Notes:

1. The type byte has the following mean­
ing:

F irs·t and second bits:

00 - normal BCD constant. The first
offset slot must be relo­
cated by the storage allo­
cation phase, to contain
the offset of the converted
constant from the start of
STATIC storage, rather than
from the start of the con­
stants pool

11 - the BCD is replaced by the inter­
nal form of the constant.
The first offset slot is
treated in the same way as
:Eor the code 00

10 or 01 - 'the constant is required to
be conve~ted into a speci­
fic location in stora.ge.
'rhe second code implies the
converted constant should
be made negative before
being stored

sixth bit: 1 indica-tes that the con­
staIllt requires a DED.

Sev€!nth bit: 1 indicates that the
constant requires a dope vector.

from the initial code byte, the same as
that for a label variable.

Dictionary Entries for Built-in Functicns

The format is:

Byte Number

1

2-3

4-5

6-8

9-10

11-12

Description

Code byte X, 04'

Length

Hash chain - later becomes
the STATIC chain

Offset - aives the
in STATIC storage
load constant for
routine

position
of the
Library

Code bytes - the first code
byte contains a value which
identifies the built-in
function and also provides
information atout it. It is
used mainly by phases IM and
MD-MM inclusive. The second
code byte ccntains further
information atout the built­
in functicn (See "Second
Code Byte.")

DECLARE state~en~ number

Appendix C:Internal Formats of Dictionary Entries 363

13 Level

14 Count

15 BCD length-1

16 BCD

.,Second Code Byte

The second code byte contains the
following information:

Eit Number Descr i]2tion

1 May be passed as an argument

2 May have an array as an
argument

3 Must have an array as an
argument

4 Is a pseudo-variable

5 Indicates to which of the
two tables the offset refers

6 May have an array (or
structure) as an argument,
but will return a scalar
resul t

Internal Library Functions

Library routines, other than built-in or
GENERIC functions* are known as Internal
Library Functions. Their dictionary entry
format is as follows:

Byte Number

1

2-3

4-5

6- 8

9

10

11-12

364

Description

Code Byte X'C 2'

Length

Hash chain

Offset

Library Code identifies
the particular Library rou­
tine required

Not used

Code Bytes - the first code
byte contains a value used
by phase MG to pick up com­
plete information about the
Library function. The sec­
ond code byte contains

further information about
the function

13 Level

14 Count

BCD entries

I BCD entries are used when the LIKE or
DEFINED attributes are used. A short dic­
tionary entry with the format given below
is used. This is pointed at by the dic­
tionary entry with the attribute.

Byte Number

1

2-3

4

5

Description

Code Byte X'40"

Length

BCD length-1

BCD

Dictionary Entry for Parameter Descriptions

Dictionary entri€s for parameter des­
criptions are identical with the normal
entry for data variable~ latel variable,
structure, file. or entry pOints, except
for the following details:

Hash chain contains pointer to formal
parameter type 1. After Phase FT this
pointer is moved to the tytes contain­
ing' level and count

No BCD is present

No block identification is present for
ENTRY or FILE

The code byte for an entry point
referred to as entr"y type 6 - is X' 86'

ON statements

Entries for ON statements are made by
Phase FO, and contain the following:

~te Number

1

2-3

4-5

Description

Code Byte X'CD'

Length

AUTOMATIC chain

6-S

9

10

11

12

Offset

Code byte as "supplied by the
Read-In Phase

Block level

Block count

n

13 onwards n dictionary
variables or
entries

references of
ON condition

ON Condition

This entry is made by Phase FO:

Byte Number

1

2-3

4-5

6-S

9

10

11

12

pescription

Code Byte X' 4D~

:Length

Hash chain later used as
AUTOMATIC chain

Offset

Code tyte as supplied by the
read in phase

8lock level

'Block count

:SCD length-l

13 onwards BCD

CHECK Li.st Ent~

This entry is made by Phase FO:

Byte Number pescription

1 Code Byte X 'CS'

2-3 Length

n where n is the number of
dictionary references fol­
lowing

5 onwards Dictionary references
bytes)

(2n

PI CTURE Ent ry

The format of an entry in the picture
table in the dictionary.

Byte Number

1

2-3

4-5

6-S

9

10

11

12

Description

Code Byt e X I C S '

Length = L+13

contains address of next
entry in picture chain

Usage (1) (Before Phase FQ)
Dictionary reference of
associated declare or format
statement. right adjusted

Usage (11)
Offset in STATIC storage

Code Byte (after Phase FQ)
(See Code Byte description)

P the number of digit
positions in field in numer­
ic picture.

Q the number of digit
positions after V character
in numeric picture. Code
X-SO' represents 0, XI 7F'
represents -1, and X I S1'
represents +1.

w - apparent length of P1C-
ture. length of picture
following. (For a non-
numeric picture the length
is obtained in bytes 12-13.)

14 onwards Picture.

Byte 9 - Code Byte

Bit Number

1

2

3

4

5

"6

Description

o string
1 numeric

o correct
1 error

o ·not sterling
1 sterling

o short
1 long

Not used

O·decimal
1 binary

Appendix C: Internal Formats of Dictionary Entries 365

1 o fixed
1 floating

8 Not used

AppendixC: Internal Formats of Dictionary Entries 365.1

Dictionary Entry for Workspace Requirement

The format for a dictionary entry for
workspace requirement is:

Byte Number Descri}2tion

1 Code Byte X'CS' or X'CA'

2-3 Length = S

4-S Total workspace required

6-S Offset

If the code byte
temporary workspace
(temporary type 1).

is CS this is the
used by pseudo-code

Dictionary Entry for Parameter Lists

Dictionary entries for parameter lists
have the following format:

Byte Number Descri}2tion

1 Code Byte X'CS'

2-3 Length

4-5 STATIC chain

6-S STATIC offset

9-10 Assembled length

11 onwards Contains DCA's

Dictionary Entries for DO}2e vector
Skeletons

Byte Number Descri}2tion

1 Code Byte X'C6'

2-3 Length

4-5 STATIC chain

6-S Offset in STATIC

9-10 Dictionary reference
DECLARE number

or

11 onwards Bit pattern of skeleton dope
vector

This entry is constructed by Phase PO

366

Symbol Table Entry

Symbol table entries are made by Phase
PL.

Byte Number

1

2-3

4-5

6-S

9-11

12-13

lS-16

17-1S

Descri}2tion

Code Byte X'C7'

Length

STATIC chain

Offset in STATIC of DED

Actual DED if not pictured.
If a picture is involved.,
the last two bytes are the
dictionary reference of the
picture table entry

Offset in S~A~IC storage of
symbol table entry

Dictionary reference of next
item in the symbol table for
this block

Dictionary reference of item
requiring entry in symbol
table

Dictionary Entry for AUTOMATIC Chain
Delimiter

An entry for AUTOMATIC chain delirriter
is made by Phase PP.

Byte Number

1

2-3

4-S

6-7

S-9

Descri}2tion

Code Byte X'CC'

Length

AUTOMATIC chain

Pointer to first second file
entry

Pointer to second second
file entry

DED Dictionary Entry

An entry for a DED is created by Phase
PL.

Byte Number Description

1 Code Byte X'C7'

• First LevE~l Table (80 to FF)

8 9 A B C D E F

r---------T-------T----------T-------T---------T----------T---------T-------------,
I I I IHYBRID I I I I I

o ITO I LINE IA I QUAL I I SN I I FL DEC lMAG I

~---------+-----,--+---------+-------+---------+--.--------+---------+-------------~
I I I I I IASSIGN BY I I I

1 I ALLOCA~~E I I CALL I ENTRY I I NAME I I FL DEC REAL I

~---------+-------+----------+-------+---------+----------+---------+-------------~
2 I BY I I B I I I SL I I FL BIN lMAG I

~---------+-------+----------+-------+---------+----------+---------+-------------~ I 3 I FREE I I RETURN I PROC I I SL' ION PROC I FL EIN REAL I

~-------.-+-------+----------+-------+---------+----------+---------+-------------i
4 IWHILE I IP I CHECK I ICN I IFIX DEC IMAG I

~-------.-+-------+- -------+-------+---------+----------+---------+-------------i
5 I IDISPLAYIGOOB+ IBEGIN I I GET I IFIX DEC REAL '1

I----~---.-+-------+----------+-------+---------+----------+---------+-------------i
6 ISNAP I COL IR I I ICL I IFIX BIN IMAG I

~-------.-+-------+--------~-+-------+---------+----------+---------+-----------~-i
7 I I SIGNA~ I GO TO I ITDO I WRITE I PUT I END DO I FIX EIN REAL I

~-------.-+-----,--+----------+-------+---------+----------+---------+-------------i
I I I INO 12nd LEVELl I I I

8 I SYSTEM I E I I CHECK I MARKER I I END ITDO I INTEGER I

~-------.-+-------+----------+-------+---------+~---------+---------+-------------i
9 I WAIT I REVER,! I I DO I READ I UNLOCK I END I STG DEC REAL I

~-------.-+-------+----------+-------+---------+----------+---------+-------------i
I I I I DATA I I I I I

A I THEN I F I ILl S T DO I I I I I
~-------.-+-------+----------+-------+---------+----------+---------+-------------i

B IDELAY I I INIT LABELIIF I LOCATE I REWRITE lEND PROG ION I

~-------.-+-------+----------+-------+---------+----------+---------+-------------i
ICONTROIJ I I I I I I I ARRAY I

C IVARIABIJEI I ISN2 I I I ICROSS SECTIONI

~-------.-+-------+----------+-------+---------+----------+---------+-------------~
D I EXI! I NULL I DECLARE I ELSE I DELETE I OPEN I END BLOCK I CHAR CONSTANT I

~-------.-+-------+----------+-------+---------+----------+---------+-------------i I E I IC I X I NO SNAP I I I I ISUE I

1--------.-+-------+----------+-------+---------+----------+·---------+-------------i
F I S'IOE I ASSIG~ I I FORMAT I I CLOSE I I BIT CONSTANT I

l _______ ._.L ______ ~J..----------.l..-------.L---------.L--------__ .L _________ .L _____________ J

+ Go Out Of Block

Appendix D: Internal Formats of Text 373

• Second Level Table (00 to 7F) (preceded by second level marker byte cel

o 1 2 3 4 5 6 7

r----------T--------T--------T-------T--------------~-----------T----------T---------, o I IFILE I I .1 DECIMAL I OPTIONS I EXTERNAL IAREA I
~----------+--------+--------+-------+--------------+-----------+----------+---------~

1 t I I I I BINARY I IRREDUCIBLE I INTERNAL I POINTER I
~----------+--------+--------+-------+--------------+-----------+----------+---------1

2 I ILIST I I IFLCAT I REDUCIBLE IAUTOMA~IC IEVENT I
~-----~----+--------+--------+-------+--------------+-----------+----------+---------~

3 I I EDIT IEVENT1 1 1 FIXED 1 RECURSIVE 1 STATIC 1 TASK I
~----------+--------+--------+-------+--------------+-----------+----------+---------1

4 ITITLE I DATA I PRIORITY I I REAL I ABNORMAL ICONTRCILEDICELL I
~----------+--------+--------+-------+--------------+-----------+----------+---------~

5 IATTRIBUTESISTRING I REPLY 1 I COMPLEX I NORMAL \SECONDARY IBASED 1
~----------+--------+--------+-------+--------------+---~-------+----------+---------~

6 I PAGESIZE I SKI I I IPRECISION 1 I USES I I OFFSET I
~----------+--------+--------+-------+--------------+-----------+----------+---------1

7 IIDEN~ I LINE I 1 IPRECISION 2 ISETS I I I
~----------+--------+--------+-------+--------------+----------~+----------+---------~ e ILINESIZE I PAGE I I I VARYING I ENTRY IINITVAR 1 I I
r----------+--------+--------+-------+--------------+-----------+----------+---------~

9 I I COpy I I I PICTURE (NUM) I GENERIC I INITIAL IINITVAR 21
~~---------+--------+--------+-------+--------------+-----------+----------+---------i

A I INTO I KEYTO I 1 I BIT ATTRIBUTE I BUILTIN I LIKE I I
~----------+--------+--------+-------+--------------+-----------+----------+---------~

B I FROM I TASKOP I I I CHAR ATTRIBUTE I I DEFINED I I
~----------+--------+--------+-------+--------------+-----------+----------+---------~

C ISET I lIN 'IDIMS(INTEGERS)I I ALIGNED I I
~----------+--------+--------+-------+--------------+-----------+----------+---------~ I: ~~~~;----tii;;;~;-t--------t----;--t~~:~---------t-----------t~~~~i~~~~-t---------1
~----------+--------+--------+-------+--------------+-----------+----------+---------~
I I FORMAT I I I DIMS I I I PICTURE 1

F I IGNORE I LIS I 1 BY NAME I (NON-INTEGER) IRETURNS I POS I (CHAR) I
l __________ i ________ i ________ i _______ ~ ______________ i _ _ ~--------i----------~-------_J

374

1The EVENT built-in function
and pseudo-variable are
known externally by the
equivalent name COMPLETION.

• Table 3. Communications Region. Bi t Usage in ZFLAGS
r--------T----------T-------T----------T-------------------------~----------------------,
I BYTE I OFFSET I BIT I BIT NAME I DESCRIPTION I
I NAME I I (HEX) I I Bits are set on, on encountering:- I
.--------+-------.---+-------+----------+--i

I
I
I
I
I
I
I
I
I
I

ZFLAG1 ZCOMM+16 80 ZDEFFL DEFINED attribute

ZFLAG2 +17

ZFLAG3 +18

ZFLAG4 +19

ZFLAG5 +20

40 ZAWAFL ALLOCATE statement
20 ZSECFL Second File statement
10 ZDIMFL Dimension attribute
08 ZCHKFL CHECK/NOCHECK prefix
OlJ ZONFL ON, SIGNAL or REVERT statement
02 ZSTRFL structure
01 ZDECFL DECLARE statement

80 ZLIKFL
40 ZINTST
20 ZOPCFL
10 ZGTPFL
08 ZGOTFL
04 ZTEPFL
02 ZPICFL
01 ZISBFL

80 ZCO!''JTG
40 ZSETFL
20 ZOSSFL
10 ZARGFL
08 ZINLFL
04 ZDIOFL
02 ZRECIO
01 ZINTAC

80 ZFREE
40 STM256
20 FILEFL
10
08 ZPUTFL
04 ZGETFL
02 ZPTRFL
01 ZRODFL

80 ZFTASK

40 ZDENFL
20 ALCSLM
10
to
01

LIKE attribute
STATIC INITIAL
OPEN/CLOSE statement
GET/PUT statement
GO TO statement
TASK/EVENT/PRIORITY options, REPLY statement
PICTURE attribute/format· item
iSUB defining

UNALIGNED (NONSTRING) attribute
SETS attribute
DELAY, DISPLAY, WAIT statement
Argument list
INITIAL Label
DATA directea I/O
RECORD I/O
AUTO/CTL initialization

FREE statement
More than 256 statements
Files present
SPARE
PUT DATA
GET DAT.P~

Pointer Qualifier
STATIC DSA Entry

TASK/:EVENT/PRIORITY option on a CALL
statement
Set by FT
ALLOCATE, with second level marker
spare'

L ________ .L._. _________ .1. _______ .1. __________ _ ___ J

Appendix F: Communications Region 413

APPENDIX G: SYSTEM GENERATIO~

For full details of the system genera­
tion process, see IBM System/360 Operating
System: system Generation, Form C28-6554.

During the system generation process, a
control section named IEMAF is assembled
(see Figure 13) containing a table consist­
ing of five fixed-point values aligned on
full-word boundaries, immediately followed
by a bit string field that is twelve bytes
in length. The five fixed-point values are
related to the compiler options LINECNT,
SIZE, SORMGIN (start), SORMGIN (end), and
CONTROL COLUMN (PAGECTL), respectively.
Bits 1 to 39, and 43 to 46 in the string
are used to specify the default status of
the options. Bits 47 to 91 in the string
are used to specify if an option keyword is
to be deleted or not. A "1" in the bit
string means '''yes'' and a "0" means "no".
The remaining bits in the string are spare
bits not currently in use. Figure 14 shows
the bit identification table associated
with the control section.

r---------------------------------------~----------------------------,
IEMAF START

DC F'60'

DC F'99999'

DC F'2'

DC F'72'

DC F'O'
r---1

DC B'IO 0 0 000 0 0 000 0 0 000 ' DEFAULT I
I I

DC B'IO 0 0 000 0 0 000 0 0 000 ' SWITCHES I
I r----------------------~

DC B' 10 0 0 0 0 0 0 0 0 0 0 0 0 010 0 ' DELETE I
~----------------------------J I

DC B'IO 0 0 000 0 0 0 000 0 000 ' SWITCHES I
I r-~-----------~~

DC B' 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' I SPARE I
I r-------------J I

DC B'IO 0 0 000 0 0 0 0 010 0 000' SWITCHES I L ______________________ ~ ____________________________ ~

______________________________________ -------_______________________ J

Figure 13. The IEMAF Control Section

414

ST 4,84(13) L 15,A •• IHESAFA
ST 2,80(13) BR 15
ST 2,8 (13)
MVI 76(13),X'00'
ST 2,96(13) * END SUBROUT'INE
BR 14
L 15,32(11) * STATIC PROLOGUE SUEROUTINE
BR 15

L 4,PR •• IHEQINV(12)

* END SUBROUTINE LTR 4,4
BC 11,86(15)

* EPILOGUE SUBROUTINE L 7,PR •• IHEQLWO(12)
MVC 80 (4, 3) , 80 (7)

TM 1(13),X II RO' LA 4,1(4)
BC 8,60(15) ST 4,PR •• IHEQINV(12)
L 2.,80(13) ST 4,84(3)
LTR 2,2 MVI 76(3),X'00'
BC 7,60(15) ST 3,8(13)
C 13,PR •• IHEQSLA(12) LR 13,3
BC 7,60(15) L 3,PR •• IHEQSLA(12)
L 13,4(13) ST 3,4(13)
ST 13,PR •• IHEQSLA(12) ST 13,PR •• IHEQSLA(12)
TM 0(13),X'80' SR 2,2
BC 1,50(15) ST 2,80 (13)
L 13,4(13) ST 2.8(13)
B 34(15) ST 2,96(13)
ST 2.8 (13) BR 14
LM 14, 11, 12 (13)
BR 14 * END SUBROUTINE

Appendi.x H: Code for Prologues and Epilogues 421

APPENDIX I: DIAGNOSTIC MESSAGES

The messages produced by the PL/I (F)
compiler are explained in the publication
IBM Systeml360 Operati~stem, PLiI (F)
Prograromer's Guide, Form C28-6594. The
following table associates a message number
with the particular phase and module in
which the corresponding message is generat­
ed.

Message
~umbef

IEM00011
IEM00021
IEM00031
IEM00041
IEM00051
IEM00061
IEM00071
IEM00081
IEM0009I
IEM00101
IEM00111
IEM00121
IEM00131
IEM00141
IEM00151
IEM00161
IEM00171
IEM00181
IEM00191
IEM00201
IEM00211
IEM00221
IEM00231
IEM0024I
IEM00251
IEM00261
IEM00271
IEM00281
IEM00291
IEMOO 311
IEM00321
IEM00331
IEM00351
IEM00371
IEMOO 381
IEM00391
IEM00401
IEM00431
IEM00441
IEM00451
IEM00461
IEM0048I
IEM00491
IEM00501
IEM00511
IEM00521
IEM00531
IEM00541
IEM00551
IEM0056I

422

Logical Phase

Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In

Module

CA
CA
CA,CP
CA
CArCL
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CG
CA
CA,f~L,CT

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CG
CI
CL,CP
CL,CP
CO
CO
CO
CP
CT

IEM00571
IEM00581
IEM00591
IEM00601
IEM00611

IIEM00621
IEM00631
IEM0064I
IEM00661
IEM00671
IEM00691
IEM00701
IEM00711
IEM00721
IEM00741
IEM007CjI
IeM00761
IEM00771
IEM00781
IEM00801
IEM00811
IEM0082I
IEM00831
IEM00841
IEM00851
IEM0090I
IEM0094I
IEM00951
IEM0096I
IEM00971
IEM00991
IEM0100I
IEM0101I
IEM01021
IEM01031
IEM01041
IEM0105!
IEM01061
IEM01071
IEM01081
IEM01091
IEMOllOI
IEM0111I
IEMOl12I
IEMOl131
IEMOl14I
IEM01l51
IEM01l61
IEMOl181
IEM01281
IEM01291
IEM0130I
IEM013l1
IEM01321
IEM0133I
IEM0134I
IEM0135I
IEM01361
IEM01381
IEM01391
IEM01411
IEM01421

Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Bead. In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In
Read In

CC
CC
CP
CP
CP
CP
CO
CC
CG
CL
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CI
CI
CI
CI
CG,CI
CI
CI
CI
CM
CI
CI
CC
CC,CG
CI,CV
CI
CI
CG,CI
CI
CI
CI
CG,CM
CI
CL
CI
CL
CO
CL
CL
CO
CO
CO
CP
CP
CO
CP
CP
CP
CO

IEM0143I
IEM0144I
IEM0145JC

Read In
Read In
Read In

co
co
co

Appendix I: Diagnostic Messages 422.1

TEM0798I Pretranslator GP,GQ,GR IEMi05iI Translator 1M
IEM0799I Pretranslator GP,GQ,GR IEMi056I Translator 1M
IEM0800I Pretranslator GP,GQ,GR IEMi057I Translator 1M
IEM080iI PretI:anslator GP,GQ,GR IEMi058I Translator 1M
IEM0802I Pretranslator GP,GQ,GR IEMi059I Translator 1M
IEM0803I Pretranslator GP,GQ,GR IEMi060I Translator 1M
IEM0804I Pretranslator GP',GQ,GR IEM106i:i: Translator 1M
IEM0805I Pretranslatol: GP,GQ,GR IEMi062I Translator IM
IEM0806I Pretranslator GP,GQ,GR IEMi063I Translator 1M
IEMOB07I Pretranslator GP,GQ,GR IEMi064I Translator 1M
IEM08i6I Pretranslator GU,GV IEMi065I Translator 1M
IEM08i7I Pretranslator GU,GV IEMi066I Translator 1M
IEM08i8I Pretranslator GU,GV IEMi067I Translator 1M
IEM08i9I Pretranslator GU,GV IEMi0681 Translator .IM
IEM0820I Pretranslator GU,GV IEM107iI Translator 1M
IFM082iI Pretranslator GU,GV IEMi072I Translator 1M
IEMOB23I Pretrans lator GU,GV IEMi073I Translator 1M
IEM0824I Pretranslator GU IEMi074I Translator 1M
IE~0825I Pretranslator GU,GV IEMi076I Translator JD
IEMOB26I Pretranslator GU,GV IEMi082I Translator IX
IEMOB32I Pretranslator HF, HG IEMi088I Aggregates JK
IEM0833I Pretransla tor HF,HG IEMi089I Aggregates JK
IEMOB34I Pretranslator HF, HG IEM1090I Aggregates JK
IEM0835I Pretranslator HF,HG IEMi09iI Aggregate Preprccessor JI
IEM0836I Pretranslator HF,HG IEMi092I Aggregates JK
IEM0837I Pretranslato:t' HF, HG IEMii04I Aggregates JP
IEM0848I Pretranslator HF,HG IEMii05I Aggregates JP
IEMOB49I Pretranslator HF,HG IEMii06I Aggregates JP
IEM0850I Pretranslator HF,HG IEMii07I Aggregates JP
IEMOB5iI Pretrans lator HF,HG IEMli08I Aggregates JP
IFM0852I Pretranslator HF,HG IEMiii0I Aggregates JP
IEM0853I Pretranslator HF, HG IEMiiiiI Aggregates JP
IEM0864I Pretranslator HK,HL IEM11i2I Aggregates JP
IEM0865I Pretranslator HK,HL IEMll13I Aggregates JP
IEM0866I Pretranslator HK,HL IEMlii4I A.ggreg·a tes JP
IEM0867I Pretranslator HK,HL IEMll15I Aggregates JP
IEM0868I Pretrans lator HK,HL IEMl120I Aggregates JP
IEM0869I Pretranslator HK,HL IEMl12iI Aggregates JP
IEM0870I Pretrans lator HK, HL IEMl122I Aggregates JP
IFN0871I Pret:t'ansla tor HK,HL IEM1123I Pseudo- code LD
IEMOB72I Pretranslator HK,HL IEM1125I Pseudo-cod.e LD
IEM0873I Pretransla tOl:' HK,HL IEM1200I Ps~udo- code LA
IEMOB74I Pretrans lator HK,HL IEM1569I Pseudo-cone LG-ON
IEM0875I Pretranslator HK,HL IEM1570I Pseudo- cod e LG
IEM0876I Pretranslator HK,HL IEM157iI Ps eudo- cod e LG
IEM0877I Pretranslator HK,HL IEM1572I Pseudo-code LG
IEM0878I Pretranslator HK,HL IEM1574I Pseudo- code LG
IEM0879I Pretranslator HK,HL IEM1575I Pse udo- cod e LG
IEM0880I Pretranslator HK,HL IEM1600I Ps eudo- cod e LS,LT,LU
IEM088iI Pretranslator HK,HL IEM160iI Pseudo-code LS
IEM0882I PretI."anslator HK IEM1602I Ps eudo- cod e LS,LT,LU
IEM0896I Pretranslator HP IEM1603I Pseudo-co1e LS,LT,LU
IEM0897I Pretranslator HP IEM1604'I Pseudo-code LS,LT,LU
IEM0898I Pret rans la tor HP IEM1605I Pseudo- code LS,LT,LU
IEM0899I Pretranslator HP IEM1606I Pse udo- cod. e LS,LT,LU
IEM0900I Pretranslator HP IEM1607I Pseudo- code LS,LT,LU
IEM090iI Pretranslator HP IEM1608I Pseudo-code LS,LT,LU
IEM0902I Pretranslator HP IEM1609I Ps eudo- cod e LS,LT,LU
IEM0903I Pretranslator BP IEM16i0I Pseudo-code LW
IEM0906I Pret:t'ansla tor HP IEM1611 I Ps eudo- cod e LW
IEM09071 Pretranslator HP IEM1612I Pseudo-code LW
IEM1024I Translator IA IEM16i3I Ps e udo- cod e LS,LT,LU
IEMi025I Translator IA IEM1614I Pseudo- cod e LW
IEMi026I Translator IA IEM1615i Pseudo-code ME
IEM1027I Translator IA IEM1616I Ps e'udo- cod e ME
IEM1028I Translator IA IEM16i7I Pseudo-code MB
IEM1029I Translator IA IEM1618I Ps eudo- cod e MB
IEMi040I Translator 1M IEM16i9I Pseudo-code MB

Appendix I: Diagnostic Messages 425

1EM16201 Pseudo-code MB 1EM18121 Pseudo-code OS
1EM16211 Pseudo-code MB 1EM18131 Pse udo- cod e OS
1EM16221 Pseudo-code MB,ME 1EM18141 Ps eudo- cod e OS
IEM16231 Pseudo-code MB 1EM18151 Pseudo-code OS
1EM16241 Pseudo-code l>1B 1EM18161 Ps eudo- code NJ
1EM16251 Pseudo-code MB 1EM18171 Pseudo- cod e NJ
1EM16261 Pseudo-code ME '1EM18181 Ps eudo- cod e NJ
1EM16271 Pseudo-code ME 1EM18191 Pseudo-code NJ
1EM16281 Pseudo-code ME 1EM18201 Ps eudo- cod e NJ
1EM16291 Pseudo-code ME 1EM18211 Pseudo-code NJ
1EM16301 Pseudo-code MG,MH 1EM18221 Pseudo-code NJ
1EM16311 Pseudo-code M1,MJ 1EM18231 Pseudo-code NJ
1EM16321 Pseudo-code M1,MJ 1EM18241 Pseudo-code NM
1EM16331 Pseudo-code ME 1EM18251 Pseudo-code NG
1EM16341 Pseudo-code ME 1EM18261 Pseudo-code NG
1EM16351 Pseudo-<;:ode ME 1EM18271 Ps eudo- cod e NG
1EM16361 Pseudo-code ME 1EM18281 Pseudo-code NG
1EM16371 Pseudo-code ME 1EM18291 Pseudo-code NG
1EM16381 Pseudo-code ME 1EM18301 Pseudo-code NG
1EM16391 Pseudo-code MF 1EM18321 Ps eudo- code NM
1EM16401 Pseudo-code MM,MN 1EM1833I Pseudo,-code NM
1EM16411 Pseudo-code MM,MN 1EM1834I Ps eudo- cod e NM
1EM16421 Pseudo-code MM,~ 1EM18351 Pseudo-code NM
IEM16431 Pseudo-code MM,MN 1EM18361 Pseudo-code NM
1FM16441 Pseudo-code MM,MN 1EM18371 Pseudo- code NM
1EM16451 Pseudo-code MM,MN 1EM18381 Pseudo-code NM
1EM16481 Pseudo-code MM,MN 1EM18 39 I Ps eudo- cod e NM
1EM16491 Pseudo-code MM,MN 1EM18401 Pseudo-code NM
1EM16501 Pseudo-code MM,MN 1EM18411 Ps eudo- cod e NM
1EM16511 Pseudo-code MM,MN 1EM18431 Pseudo-code NM
1EM16521 Pseudo-code MM,MN 1EM184,41 Pseudo- code NM
1EM1653,I Pseudo-code MM,MN 1EM18451 Ps eudo- cod e NM
1EM16541 Pseudo-code MM,MN IEM18461 Pseudo-code NM
1EM16551 Pseudo-code MN 1EM18471 Pseudo- code NM
1EM16561 Pseudo-code ME 1EM1848I Pseudo-code NM
1EM16571 Pseudo-code MM 1EM18491 constant Conversions as
1EM16701 Pseudo-code MP 1EM18501 Constant Conversions as
1EM16711 Pseudo-code MP IEM18601 Pseudo-code NU
1EM16801 Pseudo-code MS 1EM18611 Pseudo-code NU
1EM16871 Pseudo-code MS 1EM18621 Ps eudo- cod e NU
1EM16881 Pseudo-code MS 1EM18701 Pse udo- cod. e NU
1EM1689I Pseudo':"'code MS 1EM18711 Pseudo- code NU
1EM1691I Pseudo-code MS 1EM18721 Ps eudo- cod e NU
1EM16921 Pseudo-code MS IEM18731 Pseudo-code NU
1EM16931 Pseudo-code MS 1EM18741 Ps eudo- cod e NU
1F..M17501 Pseudo-code MS 1EM18751 Pseudo-code NV
1EM17511 Pseudo-code li!S IEM23041 Storaqe Allocation PD
1EM17521 Pseudo-code NA 1EM2305I storage Allocation PD
IEM17531 Pseudo-code NA 1EM23521 storage Allocation PD
1EM17541 Pseudo-code NA I1EM25601 Storage Allocation QU
1EM17901 Pseudo-code OG,OM IEM27001 Register Allocation RF,RG,RH
1EM17931 Pseudo-code OE 1EM27011 Register Allocation RF ,RG, RH
1F~17941 Pseudo-code OE 1EM27021 Register Allocation RF,RG,RH
1EM17951 Pseudo-code OE 1EM2703I Register Allocation RF,RG,RH
1EM1796I Pseudo-code OE 1EM2704I Register Allocation RF,RG,RH
1EM17971 Pseudo-code OE 1EM27051 Register Allocation RF,RG,RH
1EM18001 Pseudo-code as 1EM27061 Register Allocation RF,RG,RH
IEM18011 Pseudo-code as IEM27071 Register Allocation RF,RG,RH
IEM18021 Pseudo-code as 1EM27081 Register Allocation RF,RG,RH
1EM1803I Pseudo-code as 1EM27091 Register Allocation RF,RG,RH
1EM18041 Pseudo-code as IEM27101 Register Allocation RF ,RG, RH
1EM18051 Pseudo-code as 1EM27111 Register Allocation RF,RG,RH
1EM18061 Pseudo-code as 1EM27i2l Register Allocation RF,RG, RH
1EM18071 Pseudo-code as 1EM28171 DCB Generation GA
1EM18081 Pseudo-code as 1EM28181 DCB Generation GA
IEM18091 Pseudo-code as 1EM28191 DeB Genera tion GA
1EM18101 Pseudo-code as 1EM28201 DCB Generation GA
1EM18111 Pseudo-code as 1EM28211 DCB Generation GA

426

IEM28221 DCB Generation GA IEM38511 Compiler Control AA
IEM28231 DCB Generation GA IEM38521 Compiler Control AA
IEM28241 DCB Generation GA IEM38531 Compiler Control AA
IEM28251 DCB Generation GA IEM38551 Compiler Control AA
IEM28261 DCB Generation GA IEM38561 Compiler Control AA
IEM28271 DCB Generation GA IEM38571 Compiler Control AA
IEM28281 DCB Generation GA IEM38581 Compiler Control AA

IIEM28291 DCB Generation GA IEM38591 compiler Control AA
IEM28331 Final Assembly TF IEM38601 Compiler Control AA
IEM28341 Final Assembly TF IEM3861I Compiler Control AA
IEM2835I Final Assembly TF IEM3862I Compiler Control AA
IEM2836I Final Assembly TF IEM3863I Compiler Control AA
IEM2837I Final Assembly TF IEM3864I Compiler Control AA
IEM2849I Final Assembly TJ IEM3865I Compiler Control AA
IEM2852I Final Assembly TJ IEM3872I Compiler Control AA
IEM2853I Final Assembly TJ IEM3873I Compiler Control AA
IEM2854I Final Assembly TJ IEM3874I Compiler Control AA
IEM28551 Final Assembly TJ IEM3875I compiler Control AA
IEM2865I Final Assembly TO IEM3876I Compiler Control AA
IEM2866I Final Assembly TO IEM.3877I Compiler Control AA
IEM2867I Final Assembly TO IEM3878I compil,er Control AA
IEM2868I Final Assembly TO IEM3880I Compiler Control AA
IEM2881I Final Assembly TT IEM3887I Compiler control AA
IEM2882I Final Assembly TT IEM3888I Compiler control AA
IEM2883I Final Assembly TT IEM3889I Compiler Control AA
IEr42884I Final Assembly TT IEM3890I Compiler Control AA
IEM2885I Final Assembly TT IEM3891I Compiler Control AA
IEM2886I Final Assembly TT IEM3892I Compiler Control AA
IEM2887I Final Assembly TT IEM3893I Compiler Control AA
IEM28881 Final Assembly TT IEM3894I Compiler Control AA
IEM2897I Final Assembly UA IEM389,5I Compiler Control AA
IEM2898I Final Assembly UA IEM3896I Compiler Control AA
IEM2899I Final Assembly UC IEM3897I Compiler Control AA
IEM2900I Final Assembly UC 1EM3898I Compiler Control AA
1EM29131 Final Assembly UF 1EM3899I Compiler Control AL
1EM30881 Dictionary, Declare EL IEM3900I Compiler Control AB

Pass 2 1EM3901I Compiler Control AB
IEM3136I-· Dictionary, Declare EL IEM3902I Compiler Control AB

31491 Pass 2 IEM39021 compiler Control AB
IEM31511 Dictionary, Declare EL 1EM3903I Compiler Control AB

Pass 2 1EM3904I Compiler Control AA
1EM31531 Dictionary, Declare EL IEM3905I Compiler Control AA

Pass 2 IEM39061 compiler Control AA
1EM31541 Dictionary, Declare EL 1EM39071 compiler Control AA

Pass 2 1EM39081 Compiler Control AA
1EM31561 Dictionary, Declare EL IEM39091 Compiler Control AL

Pass 2 1EM3910I Compiler Control AB
IEM3162I Dictionary, Declare EL 1EM3911I Compiler Control AB

Pass 2 IEM39121 Compiler Control AB
IEM31671·· Dictionary , Declare EL 1EM41061 Compile-time Processor AS

31731 Pass 2 1EM41091 Compile-time Processor AS
1EM31761·· Dictionary, Declare EL 1EM41121 Compile-time Processor AS

31901 Pass 2 1EM41151 Compi I e-t im,e Processor AS
1EM31991·· Dictionary, Declare EL 1EM41181 Compile-time Processor AS

32131 Pass 2 1EM4121I compile-time Processor AS,BC,BG
IEM35841 48 Character BX 1EM41241 Compile-time Processor BC,BG

Preprocessor 1EM41301 Compile-time Processor BG
1EM38401 Compiler Control AA 1EM41331 Compile-time Processor BC
IEM38411 Compiler Control AA IEM41341 compile-time Processor BC
IEM38421 Compiler Control AA 1EM41361 Compile-time Processor BC
1EM38431 Compiler Control AA 1EM4139I Compile-time Processor BC
IEM38441 Compiler Control AA 1EM4142I Compile-time Processor BC
IEM38451 Compiler Control AA 1EM41'431 Compile-time Processor BC
1EM38461 Compiler Control AA 1EM41481 Compile-time Processor BC
IEM38471 Compi ler Control AA IEM41501 Compile-time Processor BC
IEM38481 Compiler Control AA 1EM41511 compile-time Processor BC
IEM38491 Compiler Control AA 1EM41521 Compile-time Processor BC
IEM38501 Compiler Control AA 1EM41531 Compile-time Processor BC

Appendix I: Diagnostic Messages 427

1EM41541 Compile-time Processor BC 1EM43461 Compile-time Processor BC
1EM41571 Compile-time Processor BC 1EM43491 Compile-time Processor BC
1EM41601 Compile-time Processor BC 1EM43521 Compile-time P'rocessor BC
1EM41631 Compile-time Processor BC 1EM43551 Compile-time Processor BC
1EM41661 Compile-time Processor BC 1EM43581 Compile-time Processor BC
1EM41691 Compile-time Processor BC 1EM43611 Compile-time Prccessor BC
1EM41721 Compile-time Processor BC 1EM43641 Compile-time Processor BC
1EM41751 Compile-time Processor BC 1EM43671 Compile-time Prccessor Be
1EM41761 Compile-time Processor BC 1EM43701 Compile-time Processor BC
1EM41781 Compile-time Processor BC 1EM43731 Compile-time Processor BC
1EM41841 Compile-time Processor BC 1EM43761 Compile-time Processor BC
1EM41871 Compile-time Processor BC 1EM43791 Compile-time Processor BC
1EM41881 Compile-time Processor BC 1EM43821 Compile-time Processor BC
1EM41901 Compile-time Processor BC IEM42831 Compile-time Processor BC
1EM41931 compile-time Processor BC 1EM43911 Compile-time Processor BC
1EM41961 Compile-time Processor BC 1EM43941 Compile-time Processor BC
1EM41991 Compile-time Processor BC 1EM43971 Compile-time Processor BC
1FM42021 Compile-time Processor BC 1EM4400 I compile-time Prccessor BC
1EM42051 Compile-time Processor BC 1EM44031 Compile-time Processor BC
1EM42081 Compile-time Processor BC 1EM44061 Compile-time Processor BC
1EM42111 Compile-time Processor BC 1EM44071 Compi I.e-time Prccessor BC
1EM42121 Compile-time Processor BC 1EM44091 compile-time Processor BC
1EM42141 Compile-time Processor BC 1EM44121 Compile-time Processor BC
1EM42171 Compile-time Processor BC 1EM44151 Compile-time Processor BC
1EM42201 Compile-time Processor BC 1EM44211 Compile-time Processor BC
1EM42231 Compile-time Processor BC 1EM44331 Compile-time Prooessor BG
1EM42261 Compile-time Processor BC 1EM44361 Compile-time Processor BG
1EM42291 Compile-time Processor BC 1EM44391 Compile-time Processor BG
1EM42321 Compile-time Processor BC 1EM44481 Compile-time Processor BG
IEM42351 Compile-time Processor BC IEM44511 Compile-time Processor BG
1EM42381 Compile-time Processor BC IEM44521 Compile-time Prooessor BG
1EM42411 Compile-time Processor BC IEM44541 Compile-time Processor BG
1EM42441 Compile-time Processor BC IEM44571 Compile-time Prccessor BG
IEM42471 Compile-time Processor BC IEM44601 Compile-time Processor BG
1EM42481 Compile-time Processor BC 1EM44631 Compile-time Processor BG
1FM42501 Compile-time Processor BC 1EM44691 Compile-time Processor BG
1EM42531 Compile-time Processor BC 1EM44721 Compile-time Processor BG
1EM42541 Compile-time Processor BC 1EM44731 Compile-time Processor BG
1EM42561 Compile-time Processor BC 1EM44751 Compile-time Processor BG
1EM42591 Compile-time Processor BC 1EM44781 Compile-time Prccessor BG
1EM42621 Compile-time Processor BC 1EM44811 Compile-time Processor BG
1EM42651 Compile-time Processor BC 1EM44841 Compile-time Processor BG
1EM42711 Compile-time Processor BC 1EM44991 Compile-time Processor BG
1EM42771 Compile-time Processor BC 1EM45021 Compile-time Processor BG
LEM42801 Compile-time Processor BC 1EM45041 Compile-time Processor BG
1EM42831 Compile-time Processor BC 1EM45051 Compile-time Processor BG
1EM42861 Compile-time Processor BC 1EM45061 Compile-time Processor BG
1EM42891 Compile-time Processor BC 1EM45081 Compile-time Prooessor BG
1EM42921 Compile-time Processor BC 1EM45111 compile-time Processor BC
1EM42951 Compile-time Processor BC 1EM45141 Compile-time Processor BG
1EM42961 Compile-time Processor BC 1EM45171 Compile-time Prccessor BG
1EM42981 Compile-time Processor BC 1EM45201 Compile-time Processor BG
1EM42991 Compile-time Processor BC 1EM45231 Compile-tim.e Processor BG
1EM43011 Compile-time Processor BC 1EM45261 Compile-time Processor AS
1EM43041 compile-time Processor BC 1EM45291 Compile-time Prccessor BC BG
1EM43071 Compile-time Processor BC 1EM45321 Compile-time Prccessor AS
1EM43101 Compile-time Processor BC 1EM45351 Compile-time Processor AS
1EM43131 Compile-time Processor BC 1EM4538 I Compile-time Processor BC
1EM43191 Compile-time Processor BC 1EM45471 Compile-time Processor AV
1EM43221 Compile-time Processor BC 1EM45501 Compile-time Prccessor BG
1EM43251 Compile-time Processor BC 1EM45531 Compile-time Processor BG
1EN43281 Comp il e- time Processor BC 1EM45591 compile-time Prccessor BG
1EM43311 Compile-time Processor BC 1EM45621 Compile-time Processor BG
1EM43321 compile-time Processor BC 1EM45701 Compile-time Prccessor BG
1EM43341 compile-time Processor BC 1EM45721 Compile-time Processor BG
1EM43371 Compile-time Processor Be 1EM45741 Compile-time Processor BG
1EM43401 Compile-time Processor BC 1EM45761 Compile-time Prooessor BG
1EM43431 Compile-time Processor BC

428

IEM45781
IEM45801

Compile-time Processor BG
Compilc~-time Processor BG

Appendix I: Diagnostic Messages 428.1

Any initial value statements associated
with the ALLOCATE statement are extracted
and plac4:d in-line. The initialization
statements are then skipped, and the scan
continues.

The last two steps are also performed
for LOCA~rE (based var iable) and ALLOCATE
(based variable) statements.

The act.ion on encountering a BUY state­
ment is similar to that for ~he ALLOCATE
statement j' with the following except ions:

1.

2.

3.

Bound and string length code is in­
line j' bracketed between BUYS and BUY
statE~ments - there is therefore no
look ahead

There i.s no initial value code
associated with temporaries

A slot in the DSA is updated with the
pointer to the allocated storage for a
temporary

The act:ion on encountering a FREE state­
ment is tc generate code to load a pa:!:'amet­
er regist:er wi th the pointer to the allo­
cated storage for the FREE VDA Library call
inserted by the pseudo-code.

I Phase QU

Phase C1U scans the pseudo-code text in
search of instructions which ha ve misal­
igned operands. (A misaligned operand has
the UNALIGNED attribute and is not aligned
on the boundary appropriate to its data
type) • Vi/hen. such an instruction is found,
QU inserts a move character (MVC) instruc­
tion in the pseudo-code text to move the
operand to or from an aligned workspace
area, and substitutes the address of this
workspace for the operand address in the
original instruction. If the address of a
misaligned! operand is loaded into a reg­
ister, a note is made of that register. QU
thereafter treats the instructions which
refer to i.t as if they referred to the
operand i t:self, by inserting a move charac­
ter instrUiction, and substituting the work­
space address for the reference in the
instruction.

Phase C;!U uses storage beginning at off­
set 32 from register 9 for its workspace.

Whenev€~r a load address (LA) instruction
is found which lies within the callinq
sequence of a library routine and which
loads the address of a wisaligned argument
of that routine, an aligned workspace
address is substituted in the instruction,
and the requisite move character instruc-

tion is stacked. It is not inserted in the
output text until the instruction is
encountered that loads register 15 prior to
the exit to the library routine, or in the
case of EDIT-directed I/O routines, until
the appropriate branch-and-link (BALR)
instruction is encountered. The stacked
move character instruction is inserted into
the output before the exit to the routine
if the argument in question is an input
argument to the routine, and after the
return from the routine if it is an output
argument.

I Phase QX

Phase QX is the 'AGGREGA~E LENGTH TABLE'
printing phase. It is entered only if the
ATR (attribute list' option is specified.
It scans the STATIC, AUTOMA~IC, CONTROLLED
and COBOL chains, and, for each major
structure or non-structured array that is
found, an entry is printed in the AGGREGATE
length table.

An A'GGREGATE LENGTH TABLE entry consists
of the source program DECLARE staterrent
number, the identifier and the length (in
bytes) of the aggregate. In the case of an
aggregate with the CONTROLLED attribute, no
entry is printed for the DECLARE staterrent,
but an entry is printed for each ALLOCATE
for the aggregate, the source program ALLO­
CATE statement number being printed in the
'statement number' colUmn.

Where the aggregate length is not known
at compilation the word "adjustable" is
printed in the 'length in 'bytes ' column.
In the case of a DEFINED aggregate, the
word 'DEFINED', and not the aggregate
length, appears in the 'length in bytes'
column.

Before printing begins th~ aggregate
length table entrie~ are sorted so that the
identifiers appear in collating sequence
order.

THE REGISTER ALLOCATION LOGICAL PHASE

The purpose of the Register Allocation
Phase is to insert into the text the
appropriate addressing mechanisms for all
types of storage, and to allocate physical
general registers where syrr,tclic registers
are specified or required as base reg­
isters.

This phase comprises twc physical phas­
es, each with a specific function. The
first, Phase RA, processes the addressing
mechanisms, while the second phase, Phase
RF, allocates the physical registers.

section 2 (Compiler Phases): Register Allocation Logical Phase 61

	0001
	0002
	025
	026
	033
	034
	035
	036
	043
	044
	045
	046.0
	046.1
	049
	050
	051
	052
	059
	060
	061.1
	062
	117
	118
	129
	130
	135
	136
	139
	140
	209
	210
	243
	244
	255
	256
	287
	288
	289
	290
	302.1
	302.2
	303
	304
	335
	336
	337
	338
	345.0
	345.1
	346
	355
	356.0
	356.1
	363
	364
	365.0
	365.1
	366
	373
	374
	413
	414
	421
	422.0
	422.1
	425
	426
	427
	428.0
	428.1
	61.0

