
GC28-6794-0

Systems Guide to PL/S II

First Edition (May, 1974)

Changes will appear in new editions or Technical Newsletters. The RETAIN/370 System
will be used to notify the field of new editions or newsletters.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N. Y. 12602. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1974

Preface

Purpose of Guide

The PL/S II (Programming Language/Systems-Second Version) compiler is a
proprietary program used by IBM to develop other programs that are made
generally available. The PL/S II compiler is not available outside IBM. Programs
written by IBM in PL/S II are documented by means of listings in microfiche form.
This guide provides general information on reading and interpreting these listings.
The book also provides some guidelines on how to modify compiler-generated·
assembler code. However, the specifications of PL/S II and the style of assembler
code generated are subject to change in the interest of improving IBM programs.

This guide does not contain information on writing and compiling PL/S II source
programs. Furthermore, it does not list the assembler code generated for each
PL/S II statement; the large number of possible combinations of source language
elemen ts makes such a list impractical.

Information on the first version of PL/S can be found in the publication,
Guide to PL/S-Generated Listings, GC28-6786.

Users of Guide

Readers should be experienced systems programmers who have this background:

• They know the basic assembler language.

• They are familiar with a higher level language such as FORTRAN, COBOL, or
preferably PL/I (which PL/S II closely resembles).

The general knowledge of PL/S II obtained from this guide should assist these
programmers in interpreting PL/S II program listings. They may find it easier to
understand what a system module does by reading the PL/S II statements rather
than by reading the more detailed assembler language instructions.

Fonnat of Guide

The guide is organized into the following sections:

Section 1, the Introduction, provides an overview of the PL/S II language, the
compiler, and the o,utput produced by a compilation.

Section 2, the PL/S II Language, describes the purpose and format of PL/S II source
statements and built-in functions.

Section 3, Compiler Output, describes the compiler-generated code and information
listings produced by the compiler.

Section 4, Guidelines for Code Modification, lists some guidelines for consideration
when modifying the compiler-generated assembler code.

Section 5, the Glossary, defines terms associated with PL/S II.

Preface 3

4 Guide to PL/S II

Section 1: Introduction
The PL/S II Compiler .
Code Modifications.
Index to PL/S II Keywords

Section 2: The PL/S II Language.
PL/S II Procedures .

OPTIONS on the PROCEDURE Statement
Saving Registers Across Procedures
Compiler Register Assignments
REENTRANT and A UTODA TA Options
CODEREG and DA T AREG Options .
Transferring Control Between Procedures
Communication Between Procedures.

Data Definitions.
Data Types .
Initialization and Constants
Boundary Alignment
Where Data Resides.

Data in Registers
Data in Main Storage

Data References Across Procedures
Indirect Addressing .
Arrays
Structures
The GENERATED Attribute

Data Manipulation .
Operators
References to Arrays and Strings

Control Flow Within a Procedure
Unconditional Branches
Conditional Flow

IF Statement Format
Iteration .

Built-in Facilities
The GENERATE Statement

Section 3: Compiler Output
PL/S II Compilation Options Listing
PL/S II Source Statement Listing.
PL/S II Attribute and Cross- Reference Table
PL/S II Segmented Source Listing
Assembler Listing

Compiler-Generated Labels

Section 4: Guidelines for Modifying Assembler Code
Modifying Instructions .
Modifying Data

Structures

Section 5: Glossary

Index.

Contents

7
7
8
9

11
11
12
13
14
14
14
15
15
16
16
17
17
18
18
18
19
19
20
21
22
23
23
23
24
24
24
25
26
26
27

29
30
32
33
36
38
40

43
43
44
44

47

51

Contents 5

Figures

Figure 1. Overview of PL/S II Translation Process 8
Figure 2. Procedure Statement Options 12
Figure 3. Linkage Registers 13
Figure 4. Save Area Format 13
Figure 5. Compiler-Assigned Functions for Registers 14
Figure 6. Argument List Contents 15
Figure 7. OPTIONS Attribute Keywords 17
Figure 8. Forms of PL/S II Literal Constants 17
Figure 9. PL/S II Operators 23
Figure 10. IF Statement Comparison Operators 25
Figure 11. PL/S II Built-In Functions . 26
Figure 12. GENERATE Statement Keywords 27
Figure 13. Sequence of Listings for a PL/S II Program 29
Figure 14. PL/S II Options Used Listing 30
Figure 15. PL/S II Source Statement Listing . 32
Figure 16. PL/S II Attributes and Cross-Reference Table 33
Figure 17. PL/S II Segmented Source Listing 36
Figure 18. Assembler Listing 38
Figure 19. Data Area Layout 40
Figure 20. Labels Generated by the Compiler 41

6 Guide to PL/S II

Section 1: Introduction

Programming Language/Systems II (PL/S II) is a language designed for IBM systems
programmers. It is related to the higher level languages such as FORTRAN,
COBOL, and particularly PL/I.

PL/S II is designed to express operations used in systems programs. In assembler
language many instructions are usually required to express these operations. With
PL/S II, data can be defined and utilized with fewer statements. Because PL/S II is
more compact and English-like than assembler code, PL/S II source programs can be
understood by the reader faster than equivalent assembler programs.

PL/S II also allows assembler statements to be used in a PL/S II program. The
GENERATE (abbreviated GEN) statement marks such insertions. GENERATE
with the option DATA marks assembler data definitions; the compiler places this
data in the data areas it creates.

The PLjS II Compiler

PL/S II language statements are grouped into a source program called a procedure.
A procedure is converted to object code through successive steps of compilation
and assembly. These two translation steps can be summarized as follows:

1. The PL/S II compiler translates the PL/S II source language statements into
assembler language instructions suitable for input to an assembler. Several
assembler language instructions usually result from a single PL/S II statement.

2. An assembler program accepts as its input the compiler-generated assembler
instructions and translates them into an object module, which is link edited in
the normal manner.

Figure 1 provides an overview of the PL/S II translation process.

Section 1: Introduction 7

8 Guide to PL/S II

Input

*These listings are placed on microfiche.
They may be ordered from the IBM
Programming Information Department.

Translation Steps

PL!S II
Compiler

m

Assembler

Figure 1. Overview of PL/S II Translation Process

Output

11 The PL/S II language statements are input to the PL/S II compiler.

II The compiler produces the PL/S II source statement listing and the PL/S II
attribute and cross-reference table.

II The generated assembler language instructions, containing PL/S II statements
interspersed as assembler comments, are input to the assembler.

m The assembler translates the compiler-generated assembler language
instructions into object code. The assembler also produces the assembler
listing.

Code Modifications

If you are considering modifications to your operating system, you can order the
assembler source modules in machine readable form from the IBM Programming
Information Department. After making changes to the assembler source code, you
can assemble and link edit the modules into the system.

Index to PL/S II Keywords

ABS 26 MAX 26
ADDR 26 MIN 26
AUTODATA 14 NONLOCAL 18
AUTOMATIC(AUTO) 18 NOSAVEAREA 13
BASED 19 NOSEQFLOW 17,27
BINARY 16 OPTIONS 12, 17
BIT 16 POINTER(PTR) 16
BOUNDARY(BDY) 17 POSITION(POS) 19
BY 26 PROCEDURE(PROC) 15
BYTE 17 REENTRANT 14
CALL 15 REFS 17,27
CHARACTER(CHAR) 16 REGISTER(REG) 18
CODE 15 RESPECIFY 18,20
CODEREG 14 RESTRICTED 18
CONSTANT 17 RETURN 15
DATA 21 RETURN TO 15
DATAREG 14 SAVE 13
DECLARE(DCL) 16 SAVEAREA 13
DEFINED 19 SIGNED 16
DEFS 27 SETS 17,27
DIM 26 STATIC 18
DO 26 THEN 24
DWORD 17 TO 15,26
ELSE 24 UNRESTRICTED 18
END 11,26 UNSIGNED 16
ENTRY 15,16 UNTIL 26
EXIT 17,27 VLIST 17
EXTERNAL(EXT) 19 WHILE 26
FIXED 16 WORD 17
FLOWS 17,27
GENERATE(GEN) 27
GENERATED(GEND)22
GOTO 24
HWORD 17
IF 24
INITIAL(INIT) 16
INTERNAL(INT) 17
LABEL 16
LENGTH 26
LOCAL 18
LOCATION 18

Section 1: Introduction 9

10 Guide to PL/S II

Section 2: The PLjS II Language

PL/S II statements appear on one or more lines; they are terminated by a
semicolon.

Executable statements may start with one or more labels, which are separated from
the statement and from each other by colons. The following is an example of a
labeled statement:

LABEL 1:
A = B+C;

PL/S II comments are delimited by the symbols /* and */. For example:

/* THIS IS A COMMENT * /

PLjS II Procedures

PL/S II programs are divided into external and internal procedures.

An external procedure, after compilation and assembly, is one assembler CSECT.
Internal procedures are subdivisions of external procedures; they are wholly
contained within external procedures.

All procedures begin with a PROCEDURE statement (abbreviated PROC) and end
with an END statement. (You may find a GENERATE statement, but no others,
before the PROC of an external procedure. Its use is for necessarily first assembler
statements, such as macro definitions.) The label that precedes the PROC keyword
is the name of the procedure, and is its primary entry point. For external
procedures, this name is the object module name that you will find on microfiche
cards and listings.

Parameters and options often follow the PROC keyword. Parameters arc a means
of communicating from one procedure to another. They are a list of variables -
enclosed in parentheses and separated by commas - that immediately follow the
PROC keyword. Options affect the way the compiler produces code for the
procedure. They are a list of keywords, enclosed in parentheses, that follows the
OPTIONS keyword.

The sample PROCEDURE statement below has two parameters and one option:

IKJEFF01 :PROC (A,B) OPTIONS(REENTRANT)

Section 2: The PL/S II Language 11

12 Guide to PL/S II

OPTIONS on the PROCEDURE Statement

The following table indicates the OPTIONS which are available to alter PL/S II
compiler-generated prolog and epilog code. Note that some can be coded only
on the PROCEDURE statement of an external procedure, while others can be
coded on either external or internal procedures.

REENTRANT*

CODEREG*

NOCODEREG*

DATAREG*

NODATAREG*

SAVE

NOSAVE

SAVEAREA

NOSAVEAREA

ID*

NOID*

OS*

DOS*

ENTREG

NOENTREG

RETREG

NORETREG

PARMREG

NOPARMREG

SAVEREG*

NOSAVEREG*

PROLOG*

NOPROLOG*

EPILOG*

NOEPILOG*

AUTODATA*

NOAUTODATA*

KEY*

*external procedure only

indicates that compiler-generated code should be reentrant code.

specifies the register or registers to be used for addressing code.

specifies that the compiler should not set up code addressing
registers.

specifies the register or registers to be used for addressing data.

specifies that the compiler should not generate a GETMAIN,
FREEMAIN or data addressability.

specifies which registers are to be saved on entry to and restored
on exit from the procedure.

specifies which registers should not be saved on entry to and
restored on exit from the procedure.

specifies that a save area, chained via register 13, is to be
generated.

specifies that no save area is to be generated for the procedure.

specifies that an identifying character string is to appear as part
of the compiler-generated prologue.

indicates that there is no identifying character string.

indicates that the operating environment of the procedure is OS.

indicates that the operating environment of the procedure is DOS.

specifies that register 15 locates the entry point.

indicates that no register can be relied on to locate the entry point.

specifies that register 14 locates the return location.

indicates that no register can be relied on to locate the return
location.

specifies that register 1 locates parameter lists.

indicates that no register can be relied on to locate a parameter
list.

specifies that register 13 locates save areas on the save chain.

inc;ticates that there is no save register and therefore, no save chain.

indicates that the compiler generates prologue code for the
PROCEDURE and ENTRY statements.

specifies that no prologue code is generated by the compiler.

specifies that no epilogue code is generated by the compiler for
the procedure RETURN and END statements.

suppresses generation of epilogue code by the compiler.

indicates the size limit of the dynamic DSECT created for a
reentrant procedure.

indicates that there should be no dynamic data.

indicates that the protection key is modified ina procedure.

Figure 2. Procedure Statement Options

Saving Registers Across Procedures

The assembler code produced for procedures follows standard linkage conventions.
Figure 3 shows the registers used for the standard linkage functions.

Register Function .-
15 Contains the address of the entry point in the called procedure.

14 Contains the address of the return point in the calling procedure.

13 Contains the address of the calling procedure's save area.

1 Contains the address of a parameter list, if arguments are passed to the
called procedure.

Figure 3. Linkage Registers

A procedure normally has a save area to preserve its registers. The format of this
area is shown in Figure 4.

Word Contents
"-Not used.

2 Address of calling procedure's area.

3 Address of called procedure's save area.

4 Register 14

5 Register 15

6 Register 0

7 Register 1

8 Register 2

9 Register 3

10 Register 4

11 Register 5

12 Register 6

13 Register 7

14 Register 8

15 Register 9

16 Register 10

17 Register 11

18 Register 12

Figure 4. Save Area Format

The size of the area can be governed by the SAVEAREA option. The area can be
eliminated by the NOSAVEAREA option. If neither option is specified, the
compiler may eliminate it if there are no CALL or GE~-.jERATE statements, or may
(for internal procedures) alter its size and/or bypass chaining.

All of the registers shown in Figure 3, and register 13, are saved on entry to a
procedure and restored on exit from a procedure, unless the SAVE or NOSAVE
option appears on the PROC statement. SAVE is followed by an explicit list of
registers to be saved and restored by the procedure; NOSA VE is followed by a list
of those that are not to be saved and restored.

Section 2: The PL/S II Language 13

14 Guide to PL/s II

Compiler Register Assignments

As the PL/S hcompiler produces assembler code, it assigns registers to the
functions shown in Figure 5.

~--------~--.----------.---
Register Function

~--------4---'--------------o Used in REENTRANT prolog and epilog. Otherwise available.

Parameter list pointer across calls. Used in REENTRANT prolog and epilog.
Otherwise available.

13 Save area pointer.

14 Used to contain a return address across calls. Otherwise available.

15 Used to contain an entry point address across calls. Otherwise available.

Some unused Base register for addressing code. For REENTRANT, another unused
register register is assigned to address dynamic data.

All other Used for arithmetic, indexing, and addressing.
registers

Figure 5. Compiler- Assigned Functions for Registers

REENTRANT and AUTODATA Options

This option, which you may find on the PROC statement for an external procedure,
tells the compiler to provide for reentrant code for the external procedure and all
procedures internal to it. The compiler produces code to obtain a storage area
dynamically for the external procedure and its internal procedures on entry- to the
external procedure. This storage area contains:

• save areas

• dynamic data defined with a GENERATE DATA statement

• temporary storage used by the compiler

• data declared in the procedure, except data with the STATIC or INITIAL
attributes

The compiler maps this area into a DSECT labeled @DATD.

The NOAUTODATA option prohibits the use of dynamic data. AUTO DATA
allows it, and may include a bound on its size.

CODEREG and DATAREG Options

The CODEREG option is followed by one or more register numbers. These
registers are established as the base registers for code addressing. NOCODEREG
tells the compiler not to estabHsh addressability - it is not needed or is provided by
a GENERATE statement.

The DA T AREG option is followed by one or more registers to be used as the base
registers for addressing the dynamic data area. NODATAREG tells the compiler
not to obtain the area, and not to establish addressability for it, although the
compiler still sets up its description.

Transferring Control Between Procedures

Control flow between procedures is accomplished by the CALL, RETURN, and
END statements. The CALL keyword is followed by the label of the statement
that receives control. This label is for an external procedure or for a procedure that
is internal to the calling procedure. It is always the label of a PROCEDURE
statement, which is the primary entry point of a procedure, or of an ENTRY
statement, which defines a secondary entry point.

Control returns to the statement immediately following the CALL when execution
reaches either a RETURN statement or an END statement that matches a
PROCEDURE statement. A RETURN TO statement sends control to a return
point specified on the statement; the return point will usually be in the calling
procedure.

Communication Between Procedures

A calling procedure communicates with a cCJlled procedure by means of an
argument list on the CALL statement. This list appears, in parentheses, following
the entry point label. It may contain single variables, expressions, and constants.

The compiler creates an argument list that has one word for each argument; an
address is inserted in each word. The address inserted depends on the type of
argument, as shown in Figure 6.

If the argument is: The argument list address is:

A variable, not in The address of the variable.
parentheses.

A constant, not in The address of the constant.
parentheses.

A variable or constant in The address of a temporary variable that contains a copy
parentheses. of the variable or constant.

An expression The address of a temporary variable that contains the
result of evaluating the expression.

Figure 6. Argument List Contents

The high-order bit in the last word of the argument list will be set on if the
DECLARE statement for the entry point of the called procedure contains the
attribute OPTIONS (VLIST). The bit indicates the end of a variable length
argument list.

The called procedure will receive control at a PROCEDURE or ENTRY statement.
These statements have parameter lists, and the parameters in them correspond
positionally to the arguments on the CALL statement. Since the correspondence is
positional, the names used for an argument and its associated parameter may not be
identical.

When a called procedure returns control by means of a RETURN statement, it may
pass back a vahie that is obtained from a variable, an expression, or a constant
which follows the CODE keyword on the RETURN statement. The value is
returned to the calling procedure in register 15.

Section 2: The PL/ S II Language 15

16 Guide to PL/S II

Data Definitions

The attributes of data are described in DECLARE statements (abbreviated DCL).
These statements start with the DCL keyword, followed by the data item's name,
followed by the keywords that define the data item's attributes. Since many
attributes are defined by default, check the data item's description in the Attribute
and Cross-Reference listing for a complete list of explicit and default attributes of
each data item.

A single DCL statement frequently defines multiple data items. Each declaration is
separated from the next by a comma. For example:

DCl A POINTER(31), AREAl CHAR(12), AREA2 CHAR(12);

This example is a declaration of three data items - A, AREAl, and AREA2.
Because AREA 1 and AREA2 share a common attribute - CHAR{l2) - the
statement would normally appear in the following form, which is equivalent
to the preceding example:

[DCl A POINTER(3l), (AREA1,AREA2) CHAR(l~

When attributes follow data items that are in parentheses, the attributes apply to
all of the data items that are in the parentheses. If a data item has unique
attributes, the unique ones appear after the data item within the parentheses.
For example:

DCl A POINTER(3l)' (AREAl INIT('ABC'), AREA2) CHAR(12);

The attribute INIT('ABC') applies to AREAl only; CHAR{l2) applies to both
AREAl and AREA2.

Data Types

The DCl statement defines four types of data - arithmetic, string, pointer, and
label.

Arithmetic data is interpreted as a binary, fixed-point integer; it is identified by
the keywords BINARY and/or FIXED. Either keyword may be followed by a
number, in parentheses, which is the precision of the data, expressed in terms of
bits. (PreCision determines how many bytes will be assigned to contain the data).
Data can also be specified as SIGNED (allowing negative values) or UNSIGNED
(non-negative). Precisions of 15 and 31 can be SIGNED or UNSIGNED (defaulting
to SIGNED); precisions of 8, 16, 24 and 32 can only be UNSIGNED.

String data is a sequence of bytes or a sequence of bits. Character strings are
identified by the keyword CHARACTER (abbreviated CHAR) followed, in
parentheses, by the number of bytes in the sequence. Bit strings are identified by
the keyword BIT followed, in parentheses, by the number of bits in the sequence.

The keyword POINTER (abbreviated PTR) identifies data that is interpreted
as the address of other data. This keyword may have a precision following it.
This precision is expressed in terms of bits.

Labels are identified by either the ENTRY or LABEL keyword. A label declared
with ENTRY is the address of a PROCEDURE or ENTRY statement; labels of
other statements are declared with the LABEL keyword. (Often labels are not
explicitly declared.)

The VALUERANGE attribute gives possible actual labels for BASED LABEL or
ENTRY items. ENTRY data may also have an OPTIONS attribute to indicate
special entry requirements and actions; possible OPTIONS values are:

EXIT

FLOWS

NOSEQFLOW

REFS

SETS

VLlST

notes that the called procedure may exit unusually (e.g .• ABEND).

notes possible continuation point labels.

notes that simple continuation flow cannot occur.

notes which data may be referenced.

notes which data may be assigned new values.

notes the need for setting on the high-order bit in the last word of
the argument list.

Figure 7. OPTIONS Attribute Keywords

Initialization and Constants

The INITIAL attribute (abbreViated INIT) is the means of initializing a data item at
program load time. This attribute is followed by a constant or an assembler­
resolvable expression. PL/S II has five types of literal constants - decimal,
hexadecimal, character, bit, and binary. The general form of each is shown in
Figure 8.

Constant Type Format
--

Decimal decimal digits

Hexadecimal ' any hex digits 'X

Binary zeroes and ones B

Bit ' zeroes and ones '8

Character ' any EBCDIC characters'

Figure 8. Form of PL/S II Literal Constants

PL/S II also provides declaring names for constants. The DECLARE statement is
used for giving the name, the data type attributes, and the attribute CONSTANT
followed by the desired value.

Boundary Alignment

The purpose of the BOUNDARY attribute is to provide an explicit boundary
alignment for a data item. This attribute (abbreviated BDY) is followed by the
keyword BYTE, HWORD, WORD, or DWORD, corresponding to byte, halfword,
fullword, and doubleword. These keywords, in turn, may be followed by a decimal
number that indicates the starting byte pOSition within the boundary. The digit 1
indicates the left-most byte.

Section 2: The PL/S II Language 17

18 Guide to PL/S II

Where Data Resides

PL/S II variables are either areas of main storage or registers. When they reside in
main storage, they are assigned storage by one procedure but they may be used by
others. The assigned storage may be in the CSECT of the assigning procedure or in
a dynamic storage area.

Data in Registers

A register variable is identified by the keyword REGISTER (abbreviated REG) on
its OCL statement. This attribute is followed by the number of the general purpose
register used for the variable.

The attribute RESTRICTED is used with REGISTER to prevent the compiler from
using the specified register in assembler instructions that it produces. If
RESTRICTED does not appear on the DCL statement, or if the UNRESTRICTED
attribute appears, then the compiler is free to use the register.

The RESTRICTED attribute reserves the register in the declaring procedure (either
internal or external) and its contained procedures. The register may be released for
compiler use at any point by a RESPECIFY statement. The RESPECIFY
statement, when used to release a register, consists of the keyword RESPECIFY,
one or more register names, and the keyword UNRESTRICTED.

Similarly, an unrestricted register may be restricted at any point by a RESPECIFY
statement that contains the keyword RESTRICTED.

Note on Register Restriction: Restriction applies to a particular name for a
physical register; therefore, all symbolic names by which the physical register is
known must be unrestricted to make the register available.

Data in Main Storage

Data declared with the STATIC attribute is assigned storage in a fixed area. The
AUTOMATIC attribute (abbreviated AUTO) causes the data to be assigned in a
dynamically acquired area, which the compiler maps in a DSECT labeled @DATD.

Although the STATIC attribute causes data to be assigned in a fixed area, it does
not specify which CSECT the fixed area is in. The LOCAL attribute does that.
Data declared with the LOCAL attribute is assigned storage in the CSECT of the
declaring procedure. A DECLARE statement with the NON LOCAL attribute
means that the data is assigned storage in a procedure other than the declaring one.

Certain system data have absolute locations. Such data are declared with the
LOCATION attribute, which includes the byte on which such data starts.

Data References Across Procedures

A variable declared with the keyword INTERNAL (abbreviated INT) can be
referenced in the declaring procedure and in any procedure internal to it. When a
variable is referenced in two or more external procedures, it will be declared with
the EXTERNAL attribute (abbreviated EXT) in each procedure.

The compiler produces an assembler language EXTRN instruction and an A-type
address constant for data items declared NONLOCAL EXTERNAL, except branch
points declared NONLOCAL EXTERNAL produce a V-type address constant.
I terns declared LOCAL EXTERNAL cause the compiler to produce an assembler
ENTRY instruction.

Indirect Addressing

Storage is assigned to variables declared STATIC or AUTOMATIC, but none is
assigned when a variable is declared with the DEFINED or BASED attribute. A
DECLARE with DEFINED or BASED simply defines a set of attributes: These
attributes are applied to a storage area specified by the name of the overlayed item
(DEFINED, abbreviated DEF) or by a locator address (BASED). The POSITION
attribute (abbreviated POS) can be used with DEFINED or BASED to indicate a
relative position with respect to the item or address.
Here are some examples: .

DCl P POINTER;
DCl H BIT(8) DEFINED(P);
DCl B CHAR(4) BASED(P);
DCl C CHAR(1) DEF(B) POS(4);

H maps to the high-order byte ofP. P locates bytes described by Bas CHAR(4),
the last of these described by C as CHAR(1).

The BASED keyword is not always followed by a locator, but before the variable is
used, a locator will be supplied. PL/S II has two facilities for supplying the locator
- pointer notation and the RESPECIFY statement. (If the BASED keyword does
supply a locator, these same facilities can override it).

Pointer notation has the general form:

pointer variable - > BASED variable

For example,

P - >B

means that a reference to BASED variable B is a reference to the storage area that
starts at the address contained in pointer variable P. The statement

P - >B = C + D;

Section 2: The PL/S II Language 19

20 Guide to PL/S II

causes this:

P

~
B

Total of C + D

Multiple levels of pointer notation are also possible. For example:

P1 - > P2 - > B = C + D ;

causes this:

P1

~
P2

~
B

Total of C + D

Pointer notation supplies or changes a locator only temporarily; a locator will be
supplied again before or upon subsequent references to the BASED variable. If
pointer notation overrides a previous locator, then the previous locator will be used
for subsequent references to the BASED variable.

The other facility for supplying or changing a locator, the RESPECIFY statement,
has the form:

I RESPECIFY (one or more BASED variable names) BASED(pointer expression);!

The specified pointer expression will be used to locat~ the specified variable(s).
Unlike pointer notation, the RESPECIFY statement has more than temporary
effect. The new locator will be used unless pointer notation or until another
RESPECIFY statement changes it.

Arrays

An array is a collection of variables (called elements) that have identical attributes
and that occupy a contiguous storage area; the collection has a common name.

A DCL statement defines an array if the variable name is followed immediately by
a decimal number or numbers in parentheses. Each number is a dimension of the
array: Le., the number of elements in it. An array can have up to 15 dimensions.

Attributes on a DCL statement for an array apply to all elements. However, the
INITIAL attribute can initialize each element individually. For example, the
statement

I DCl ARY(5) FIXED(31) INIT(0,4,8, 12, 16);

defines a five-element array of fullword arithmetic variables that is initialized like
this:

o
4

8
12

16

When an asterisk appears in place of an initializing value, the corresponding element
is not initialized. Multiple elements are initialized when a replication number
appears, in parentheses, before an initial value. For example, this statement:

DCl ARY(5) FIXED(31) INIT(3)O,12,16);

defines this:

o
o
o

12

16

If the INITIAL attributes does not specify enough values to initialize all array
elements, the last elements are uninitialized. If INITIAL provides too many values,
the last values are ignored.

Structures

A structure is a data collection that is divided into individually named components.
The entire collection can be referenced by the structure name, or a component can
be referenced individually by its name. Although all components can have the
same attributes, they are usually assigned unlike attributes.

The DCL statement for a structure defines how components map into the structure,
and defines the attributes that apply to the structure and its components. This
DCL statement

DCl 1 STRUCT FIXED(31),
2 A FIXED(15),
2 B FIXED(15);

defines a simple one-word structure that has two components, A and B. The
numbers that precede structure and component names indicate the hierarchy of
components within the structure. They are not used in references to the variables.

Section 2: The PL/S II Language 21

22 Guide to PL/S II

Components can themselves be structures and can have their own components.
For example,

DCl 1 STRUCT FIXED(31),
2 A FIXED(15),
2 B FIXED(15),

3 C BIT(8),
3 D BIT(8);

The mapping of this structure looks like this:

STRUCT
\

-".--.---
C D

~~----~v~----~A~----~v~----~

A B

If the size of the structure is not sufficient to contain its components, then the
components will overlap. For example:

DCl 1 STRUCT,
2 A CHAR(3),

3 B CHAR(2),
3 C CHAR(2),

2 D CHAR(4);

D will overlap C in the resulting mapping:

STRUCT
r~-------------JA~----------~~

I I ------------B C
'------v A. v.-----......

A D

If an asterisk appears instead of a structure or component name, then the structure
or component will never be referenced explicitly by name. However, it may be
referenced as part of another structure.

The GENERATED Attribute

A PL/S II program can contain data defined by assembler instructions that follow
a GENERATE DATA statement. Such data will not be referenced by PL/S II
statements unless the data is also defined by a DECLARE statement. This
DECLARE statement will contain the attribute GENERATED (abbreviated
GEND).

Similarly, labeled assembler instructions following a GENERATE statement will
not be referenced by PL/S II statements unless the labels are declared with the
GENERATED keyword.

The GENERATE statement can indicate the items it defines by using the DEFS
option.

Data Manipulation

Data is copied from one location to another by a simple assignment of the form:

receiving variable = source; I
When the source consists of operands connected by operators (an expression)t the
specified operations are performed and the result is placed in ~he receiving variable.
Source variables are unchanged by the operations.

Operators

Figure 9 shows the PLjS II operators and their meanings.

Operator Operation

+ Prefix plus

- Prefix minus

* Multiplication

I Division for quotient

/I Division for remainder*

+ Addition

- Subtraction

& And

I Or

&& Exclusive or

*This operation yields the remainder contained
in the even-numbered register.

Figure 9. PL/S II Operators

References to Arrays and Strings

A reference to an array will contain a subscript (or subscripts if multiply
dimensioned) to specify which element is to be used. For example, this statement

A = 8(4);

moves the fourth element of array B to A. The subscript in this example is the
number 4, but subscripts may be variables or expressions.

Arrays are referenced one element at a time, but references to string variables can
be to the entire string or to a portion of it. For example, if the character string
A is declared like this,

DCl A CHAR(4);

then its first (left-most) byte might be referenced like this:

x = A(l);

Section 2: The PL/S II Language 23

24 Guide to PL/S II

Only the first byte of A is placed in X. The portion of a string to be referenced can
be specified by a digit, as in the example above, by a variable, or by an expression.
When more than one character or bit of a string is referenced, the starting and
ending locations, separated by a colon, are specified. For example,

DCl A CHAR(80);
I = 10;
BUF = A(1:I);

moves the first to the tenth (inclusive) characters of A into BUF.

When a string is part of an array, then a reference to a portion of the string will
specify both the array element and the string portion. In this example,

DCl ARY(10) CHAR(80);
X = ARY(4,80);

X receives the last byte of the fourth element of ARY. In this example,

I = 70;
X= ARY(4,1:80);

X receives the 70th through the 80th characters of the fourth element of ARY.

Control Flow Within a Procedure

Unconditional Branches

The GOTO statement is the PL/S II facility for unconditional branches. This
statement consists of the keywords GO TO (or the single keyword GOTO) followed
by a transfer point, which is normally in the same procedure. The GOTO statement
does not set up return linkage.

Conditional Flow

Conditional flow occurs at IF statements, which have this general form:

I F definition of one or more comparisons
THEN clause

ELSE clause

The THEN and ELSE clauses are the statements to be executed if the comparisons
are true or false, respectively. When no ELSE clause appears, no false-path action
is required. .

A single comparison definition is two operands joined by a comparison operator.
The operands can be variables, constants, or expressions; the operators are shown
in Figure 10.

Operator Meaning

> Greater than

< Less than

-,> Not greater than

-,< Not less than

= Equal to

-,= Not equal to

> = Greater than or equal to

< = Less than or equal to

Figure 10. IF Statement Comparison Operators

Multiple comparison definitions are linked by the connectors & or I.
If two comparison definitions are linked by &, both must be true for the THEN
clause to execute. If they are linked by I, either must be true. Parentheses can be
used to alter comparison ordering; the 'not' operation (--,) can be used preceding
a parenthesized comparison (or linked comparisons) to invert the result of the
comparison.

Note on the Symbols & and I: These symbols are used to "and" and "or" bit
strings as well as to join comparison definitions. A comparison operand that
contains & or I as bit string operators will be enclosed in parentheses.

IF Statement Format

The keyword ELSE is usually aligned in the same column as the IF keyword or the
THEN keyword it is associated with. This alignment helps to identify paths,
especially when IF statements are nested, i.e., when a THEN or ELSE clause
contains another IF statement. For example,

IF

THEN

IF THEN

I
ELSE

ELSE

IF THEN

I
ELSE

The association of IFs with ELSEs is indicated by their alignment.

Section 2: The PL/S II Language 25

26 Guide to PL/S II

Iteration

The DO statement is the PL/S II facility for grouping statements in order to
execute them as a group one or more times. Iteration of the group is controlled by:

• a control variable

• an initializing value for the control variable

• an increment or decrement value (BY, defaulting to 1)

• a limit value (TO)

• conditions for continuing, either as leading decision (WHILE) or trailing
decision (UNTIL).

These are arranged in the statement as follows:

DO [control variable = initializing value]]
[BY increment or dec.rement] [TO limit value]

[
[WHILE(neCessary condition)]]
[UNTI L (terminating condition)]

A single DO group extends from the DO statement to an END statement. When
DO groups are nested, each will be closed by an END statement. An END state­
ment is usually aligned vertically with the DO it closes.

If the statement is just {DO;}, the group executes once. If just a WHILE or
UNTIL appears, the group is repeatedly executed under control of the WHILE or
UNTIL condition; the WHILE is tested before each execution, stopping when the
condition fails; the UNTIL is tested after each execution, stopping when the
condition becomes true.

Built-In Facilities

The PL/S II language has a number of built-in functions. They are not separate
statements, but are embedded in PL/S II expressions when their functions are
required. Figure 11 shows the general form and purpose of the built-in functions.

General Form Purpose

ABS (variable or expression) Obtains the absolute value of the variable expression.

ADDR (variable) Obtains the address of the specified data.

DIM (array name [,dimension]) Obtains the dimension extent (the number of
elements) of the specified array. For multi-
dimensioned arrays, the second argument selects the
dimension.

LENGTH (variable name or Obtains the length ofthe specified data. The length
string constant) will be in bytes, or in bits if the data was declared

with the BIT attribute.

MAX (expression Obtains the maximum value among the set of
[,expression] ...) arguments.

MIN (expression Obtains the minimum value among the set of
[,expression] ...) arguments.

Figure 11. PL/S II Built-In Functions

PL/S II also has special statements corresponding to selected machine instructions.
The general form is:

instruction -name [(operand [, operand] ... I J ;]

The instruction determines the operand requirements, with PL/S II assisting in
such things as addressability and register use.

The GENERATE Statement

The GENERATE statement provides the ability to insert assembler instructions
into the PL/S II procedure. The 'simple' GENERATE includes the assembler text
in parentheses. The 'block' GENERATE (one without parenthesized text) inserts
following lines until the ENDGEN control statement appears.

GENERATE may be used ahead of the PROCEDURE statement for the external
procedure. In this situation, itis being used to insert necessarily-first assembler
instructions, such as macro definitions or special prologues.

The DATA keyword indicates that the GENERATE is defining data. The data is
declared with the GENERATED attribute, and may be STATIC LOCAL or
AUTOMATIC. The DEFS keyword on the GENERATE statement says which
items it defines and determines which data area to insert the definitions in.

A GENERATE statement inserting code can have keywords similar to the
OPTIONS keywords:

EXIT

FLOWS

NOSEQFLOW

REFS

SETS

notes that the inserted instructions may exit the procedure.

notes possible continuation point labels.

notes that simple continuation flow will not occur.

notes which data may be referenced.

notes which data may be assigned new values.

Figure 12. GENERATE Statement Keywords

Section 2: The PL/S II Language 27

28 Guide to PL/S II

Section 3: Compiler Output

PL/S II programs are documented by means of the listings shown in Figure 13.

PL/S II Compilation Options

PL/S II Source Statements

PL/S II Attribute and Cross-Reference Table

PL/S II Messages

Assembler External Symbol Dictionary

Assembler Source Instructions

Assembler Relocation Dictionary

Assembler Cross-Reference

Figure 13. Sequence of Listings for a PL/S II Program

This section describes the format and content of these major listings:

• A PL/S II Compilation Options Page.

• A PL/S II Source Statement Listing.

• A PL/S II Attribute and Cross-Reference Table.

• A PL/S II Listing with the Segmented Source Option.

• An Assembler Source Listing.

Section 3: Compiler Output 29

~ PLjS II Compilation Options Listing

CJ
c:
~
S
"= t"'"
CI5 --

PL/S II VERSION 6.1M
........ V r'"

II

II
II COMPILATION CONTROL CARDS

@PROCESS TITLE ('SAMPLE PROGRAM') ;

COMPLETE COMPILATION OPTIONS
OPTIONS
SIZE (MAX) ACTUAL SIZE=14996011
BUFSIZE (010240)
EXTEND (000000)
MPERCENT (20)
MARGINS (02,72)
GENMARGINS (02,72)
LINECOUNT (00060)
FLAG (I)
NOTERM
NOMONITOR
NOCOMPATIBLE

II CONCHAR (' @ ,)
MACRO
NOMSOURCE
NOMDECK
NOMXREF
NODCLMAP
NOFORMAT
COMPILE
NOANALYZE
SOURCE (NOSEGMENT)
XREF (NUM)
ASSEMBLE
NODECK
ANNOTATE
MACHINE (S360)
OPTIMIZE (3,SPACE)
NOIDR
ATITLE
NOADEFS

Figure 14. PL/S II Options Used Listing

PAGE 1 TIME 13.34 DATE 74.049 .. III

(j
o
S
'S.
~

w -

II The common heading information line in Figure 14 appears on each
page of the information listing. The first heading item is the name and
the version of the compiler used.

II The heading, 'INVOCATION PARM FIELD', would appear in this
listing if options were passed in the PARM field of an EXEC statement
invoking the compiler. The options appearing in the P ARM field are
printed following the heading.

II The heading 'COMPILATION CONTROL CARDS' appears when
control cards have been used. The control cards are listed following the
heading.

II Appearing at this point is a list of the PL/S II options in effect for the
current compilation. Options are listed in phase related groups. When
a phase is not executed, for example the format phase in the figure,
other options concerning that phase would be meaningless and are not
listed.

II When SIZE (MAX) is specified, the compiler supplies the ACTUAL
SIZE=nnnnnn entry to indicate the number of bytes actually used.

II The page number is incremented by one for each new page.

iii TIME indicates the time of day when the current compilation occurred.
The time is based on the 24 hour clock.

III DATE indicates the year and day when the compilation occurred.

~ PL/S II Source Statement Listing

C')
~

s.:
<D

0"
~

.t.
Vl --

PL/S II VERSION 6.1M SAMPLE PROGRAM PAGE 2 TIME 13.34 DATE 74.049
IF DO LINE STMT -L-------I---------2---------3-S0URCE--4---------5---------6---------7-R-------8 LINE CROSS-REFERENCE

II II Ii
' ,

Ii
't.. I \ •• II iii

1 1 MAIN: PROCEDURE; 1
2 2 DECLARE /*VARIABLE DATA ITEMS FOR THIS PROCEDURE*/
3 BUF CHAR(80), /*INPUT CARD BUFFER */ 3
4 OUT CHAR(121) , /*OUTPUT LINE BUFFER */ 4
5 /* RETURN CODE VARIABLE */
6 CODE FIXED (31) , /*
7 I FIXED(31) INIT (2) ; /*
8 3 DECLARE /* ROUTINES CALLED */
9 READCARD ENTRY, /*

10 PRINT ENTRY; /*
11 4 /* OBTAIN AN INPUT CARD */
12 OBTAIN: CALL READCARD(BUF,CODE); /*
13
14
15
16 5 /* CHECK CODE FOR VALIDITY */
17 IF CODE=O THEN /*

1 18 6 /* PRINT OUT THIS CARD AND KEEP
1 19 DO;
1 1 20 7 OUT(I)=' ';
1 1 21 8 OUT(I:I+80)=BUF;
1 1 22 9 CALL PRINT (OUT) ;
1 1 23 10 GO TO OBTAIN;
1 1 24 11 END;

25 12 ELSE
1 26 RETURN;

27 13 END MAIN;

Figure 15. PL/S II Source Statement Listing

11 The IF column count in Figure 15 increases by one each time a THEN
path or ELSE path of an IF statement is encountered. The count
decreases by one each time the related path is completed.

iii The DO column count increases by one for each DO statement encount­
ered. The count decreases by one for each END statement that closes a
DO group.

/*
/*
/*
/*

/*
/*
/*

II The LINE column contains consecutively numbered entries for each line
in the source listing.

m The STMT column contains consecutively numbered entries for each
statement in the source listing.

CODE SET BY READCARD */ 6
INDEX TO OUTPUT LINE */ 7

READS IN A CARD */ 9
PRINTS A LINE */ 10

GET A CARD, &~D SET CODE: 12,9,3,6
=0, NORMAL READ
=1, END-OF-FILE
=2, ERROR */

VALID INPUT */ 6
GOING */

SET FOR SINGLE SPACING */ 4
MOVE CARD TO OUTPUT LINE */ 4,7,7,3
OUTPUT THE CARD */ 10,4
CONTINUE WITH NEXT CARD */ 12

NO MORE INPUT OR ERROR */
RETURN TO CALLING PROGRAM */
END OF THE PROCEDURE */ 1

II L identifies the left margin of the input source statements.

II SOURCE identifies the field where the input source statements are listed.
It is marked off in multiples of ten.

II R identifies the right margin of the input source statements.

m This field provides a cross-reference between the variables in the associated
statements and the points in the source listing where they are first defined.
If XREF(NUM) is specified, all references are in terms of line numbers;
the heading is 'LINE CROSS REFERENCE.' If any form of XREF(STMT)
is used, all references are in terms of statement numbers; the heading is
'STMT CROSS REFERENCE.'

til
G

~ o·
::s
w

n
0
:3
'9.
Sf
0
~
.;
e
w
w

PL/S II Attribute and Cross-Reference Table

PL/S II VERSION 6.1M SAMPLE PROGRAM m DECLARED mNAME II ATTRIBUTES AND LINE REFERENCES
PAGE 3

3

6

7

1

12

4

10

9

BUF II LOCAL CHARACTER (80) BOUNDARY (BYTE)

CODE
II 12 21

LOCAL BINARY FIXED(31) BOUNDARY (WORD)
12 17

I LOCAL BINARY FIXED (31) BOUNDARY (WORD)
21 21

MAIN LOCAL ENTRY EXTERNAL
27

OBTAIN LOCAL LABEL
23

OUT LOCAL CHARACTER(121) BOUNDARY (BYTE)
20 21 22

PRINT NON LOCAL ENTRY EXTERNAL
22

READ CARD NON LOCAL ENTRY EXTERNAL
12

II 029730 BYTES WERE ALLOCATED FOR MPERCENT
000556 BYTES WERE USED BY MPERCENT

INITIALIZED

104048 BYTES WERE ALLOCATED FOR MACRO DEFINITIONS AND INVOCATIONS
000000 BYTES WERE USED BY MACRO DEFINITIONS AND INVOCATIONS

00019968 BYTES OF THE SIZE OPTION WERE USED IN THE COMPILE PHASE
00019968 BYTES IS MINIMUM POSSIBLE COMPILER SIZE

0008 VARIABLES WERE USED IN THIS COMPILATION
0000 VARIABLES WERE IMPLICITLY DEFINED AS FIXED(31) OR PTR(31) IN THIS COMPILATION
0000 VARIABLES WERE UNREFERENCED IN THIS CO~~ILATION
000 WAS THE DEEPEST LEVEL OF MACRO NESTING
000 WAS THE DEEPEST LEVEL OF INCLUDE NESTING
001 WAS THE DEEPESE LEVEL OF PROC NESTING
001 WAS THE DEEPEST LEVEL OF DO NESTING
001 WAS THE DEEPEST LEVEL OF IF NESTING

TIME 13.34 DATE 74.049

Figure 16. PL/S II Attributes and Cross-Reference Table

•
II

II

The DECLARED column identifies the statement or line numbers in
which the named variables are declared. The term IMPLICIT will appear
in this column for implicitly d~fined variables such as a CALL target
variable which is not declared. The term BUILT-IN appears in this
column when the name used is a built-in function.

The NAME field contains a listing of variable names and built-in
functions used in the source program.

The term 'STATEMENT REFERENCES' appears in this heading when
the XREF(STMT) option is used. If the XREF(NUM) option is used,
the term 'LINE REFERENCES' appears instead.

IJ The first set of lines in this field, opposite its associated variable name,
describes the attributes of that variable. For built-in functions the
attribute is BUILT-IN.

.. The second set of lines in this field lists all non-declaration references to
the associated variable found in the source program. The references are
line numbers if XREF(NUM) is in effect; for XREF(STMT) they are
statement numbers.

.. Notes pertaining to the compilation appear at the end of the listing.

34 Guide to PL/S II

The attribute and cross reference table is usually followed by a table of
unreferenced variables. These variables are components of structures defined in
the PL/S II source program. Referenced components appear as normal entries in
the attribute and cross·reference table. Those not used appear in the unreferenced
variables table. A sample entry appears like this:

LINE NAME

37 CBFXYY

38 CBFXYZ

LINE

417

423

NAME

OCBF

OCBFTTY

The LINE field references the PL/S II source line defining the items.
If cross-reference were by statement, the heading would be STMT and it
would reflect the defining statement.

Section 3: Compiler Output 35

~ PLjS II Segmented Source Listing

o s::
~
0'
"tI
t""I -tn --

PL/S II VERSION 4.0 SAMPLE PROGRAM PAGE 2 TIME 03.01 DATE 72.227
IF DO LINE STMT L--------1---------2---------3-S0URCE--4---------5---------6---------7-R-------8 LINE CROSS REFERENCE

1, 1 P:PROCi .1.1
2 2 DCL A FIXED (31) ; 1.2 II 3 3 A=l: 1.2
4 @MACRO INCLUDE SYSLIB (Ml) i II /* A COMPILER INSERT */ '''LISTING A'l"Z.S)

12 8 A=6: 1.2
13 9 END Pi 1.1

~
PL/S II VERSION 4.0 SAMPLE PROGRAM PAGE 3 TIME 03.01 DATE 72.227
IF DO LINE STMT L--------1---------2---------3-S0URCE--4---------5---------6---------7-R----- 8 II LINE CROSS REFERENCE

4 @MACRO INCLUDE SYSLIB (Ml) i /* A COMPILER INSERT */ START SEGMENT 2.51
~B, 5 4 A=2; 1.2

6 @INCLUDE SYSLIB(M2):
1.2 • '., ~ 10 7 A=5i .. 11 @ENDINCLUDE; /* A COMPILER INSERT */ ~ END SEGMENT 2 .5 I

~
PL/S II VERSION 4.0 SAMPLE PROGRAM PAGE 4 (TIME 03.01 DATE 72.227
IF DO LINE STMT L--------1---------2---------3-S0URCE--4---------5---------6---------7-R-----~-8

@INCLUDE SYSLIB(M2)i ~
LINE CROSS REFERENCE

6
7 5 A=3;
8 6 A=4:
9 @ENDINCLUDEi /* A COMPILER

PL/S II VERSION 4.0
DECLARED NAME

M
~

A

P

SAMPLE PROGRAM
ATTRIBUTES AND LINE REFERENCES

LOCAL BINARY FIXED(31) BOUNDARY (WORD)
ml1.3 2.5 3.7 3.8 2.10 1.12 I

LOCAL ENTRY EXTERNAL

Figure 17. PL/S II Segmen ted Source Listing

w
;z"

1.2
1.2

INSERT */ :f.o-f~1f*'.;t

PAGE 5 TIME 03.01 DATE 72.227

(")
o
3
'S. gr

Figure 17 shows four pages of a segmented source listing. Segmented listings
aid structured programming by listing selected text segments on individual
pages. They are requested by the SOURCE (SEGMENT) compiler option.

11 If SOURCE (SEGMENT) is specified, all side cross references and
references in the Attribute and Cross Reference listing are of the form
n.n. The number before the point is a level number. The number after
the point is a statement or line number.

iii "*LlSTING AT 2.5" points to the segment containing the text included
by "Cg)MACROINCLUDE SYSLlB(M1);".

II "START SEGMENT 2.5" appears as the first line in the side cross
reference on the page containing the included text. The end of the
included text is marked by "END SEGMENT 2.5".

ID Nested INCLUDEs generate higher level segments. "@INCLUDE
SYSLlB(M2);" found within segment 2.5 generates segment 3.7.
Segments are listed in level number order, e.g. , segments at the 3 level
are listed after all segments at the 2 level.

Note: Later compiler versions replace the point
in a reference by an L if a line reference, or by
an S if a statement reference.

II "@MACROINCLUDE SYSLIB(Ml);" is a compHer generated statement.
The macro INCLUDE that it replaces is processed by the macro facility
before compile time and is not available when the source listing is
produced. Note that the INCLUDE statement appears both at the point
of the INCLUDE and as the first statement on the page containing the
included text.

II "@ENDINCLUDE;" is a compiler generated statement. It appears as
the last statement on the page for each included segment. The END
SEGMENT n.n identifier appears on the same line.

II To locate a line or statement referenced in the Attribute and Cross
Reference listing or as a side cross reference, use the segment identifiers
(START SEGMENT n.n). All references to level 1 (l.n) are in the first
segment and preceed the first segment identifier. For levels higher than
1 there may be many segments having the same level number. To find a
referenced item, locate the first segment having the referenced level
number, then scan the line or statement numbers.

~ Assembler Listing This listing, shown in Figure 18, is a listing produced by assembling the output of the PL/S II compiler.

CJ c:
~
0-
""C!
.t:'.
til --

SAMPLE PROGRAM

LOC OBJECT CODE ADDR1 ADDR2

000000
000000 90EC DOOC
000004 OSCO
000006
000006
000006 SODO C062
OOOOOA 41EO COSE
OOOOOE SOEO 0008
000012 180E

000014 S8FO COAG
000018 4110 COS2
00001C OSEF

00001E S8FO COB2
000022 12FF
000024 4770 C046

000028 9240 C10A 00110

OOOOC

00068
00064
00008

OOOAC
00058

000B8

0004C

00002C 5810 COB6 OOOBC
000030 41F1 C109 0010F
000034 9240 FOSO 00050
000038 D24F FOOO COBA 00000 OOOCO

00003E 58FO COM
000042 4110 C05A
000046 05EF

000048 47FO COOE

00004C 5800 0004
000050
000050 98EC DOOC
000054 07FE
000056
000058
000058 OOOOOOCO
00005C 000000B8
000060 00000110
000064
000064
OOOOAC
OOOOAC 00000000
OOOOBO 00000000

Fir 8. Assembler Listing (part 1 of 2)

OOOBO
00060

00014

00004

OOOOC

STMT SOURCE STATEMENT

2 MAIN
3 @PROLOG
4
5 @PSTART
6
7
8
9

10
11 *
12 *OBTAIN:

i!: •
15 *
16 OBTAIN
17
18
19 *
20 *
21
22
23

CSECT ,
STM @14,@12,12(@13)
BALR @12,0
OS OH
USING @PSTART,@12
ST @13,@SA00001+4
LA @14,@SAOOOOI
ST @14,8(,@13)
LR @13,@14
/* OBTAIN AN INPUT CARD */
CALL READCARD(BUF,CODE);

L @15,@CV00040
LA @01,@AL00004
BALR @14,@15
/* CHECK CODE FOR VALIDITY
IF CODE=O THEN
L @15,CODE
LTR @15,@15
BNZ @RF00005

PAGE 2

F15OCT70 2/18/74
II

0001 00003000
0001 00004000
0001 00005000
0001 00006000
0001 00007000
0001 00008000
0001 00009000
0001 00010000
0001 00011000
0004 00012000

/* GET A CARD, AND SET CODE: 00013000

*/

=0, NORMAL READ 0004 00014000
=1, END-OF-FlLE 0004 00015000
=2, ERROR */ 00016000

0004 00017000
0004 00018000
0004 00019000
0005 00020000

/* VALID INPUT */ 00021000
0005 00022000
0005 00023000
0005 00024000

24 * /* PRINT OUT THIS CARD AND KEEP GOING */ 00025000
25 *
26 *
27
28 *
29
30
31
32
33 *
34
35
36
37 *
38
39 *
40 *
41 *
42 * II
43 @ELOOOOI
44 @EFOOOOI
45 @EROOOOI
46
47 @DATA

1:1 48
49 @AL00004
50
51 @AL00009
52
53 @SAOOOOI
54
55 @CV00040
56 @CV00041

DO;
OUT(l)=' ';

MVI OUT,C"
OUT(I:I+80)=BUF;

L @Ol,I
LA @15,OUT-1(@01}
MVI 80(@15),C"
MVC 0(80,@15) ,BUF

CALL PRINT (OUT) ;
L @15,@CV00041
LA @01,@AL00009
BALR @14,@15

GO TO OBTAIN;
B

END;
ELSE

OBTAIN

RETURN;
END MAIN;
L @13,4(,@13)
DS OH
LM @14,@12,12(@13)
BR @14
DS OH
DS OF
DC A(BUF)
DC A (CODE)
DC A(OUT)
DS OF
DS 18F
DS OF
DC V (READCARD)
DC V(PRINT)

/* SET FOR SINGLE SPACING
0006 00026000

*/ 00027000
0007 00028000

/* MOVE CARD TO OUTPUT LINE */ 00029000
0008 00030000
0008 00031000
0008 00032000
0008 00033000

/* OUTPUT THE CARD */ 00034000
0009 00035000
0009 00036000
0009 00037000

/* CONTINUE WITH NEXT CARD */ 00038000
0010 00039000
0011 00040000

/* NO MORE INPUT OR ,ERROR */ 00041000
/* RETURN TO CALLING PROGRAM */ 00042000
/* END OF THE PROCEDURE */ 00043000

LIST WITH 2 ARGUMENT(S)

LIST WITH 1 ARGUMENT(S)

0013 00044000
0013 00045000
0013 00046000
0013 00047000

00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000

SAMPLE PROGRAM

LaC OBJECT CODE AODRI ADDR2 STMT SOURCE STATEMENT

0000B8
0000B8
OOOOBC 00000002
OOOOCO
000110
000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
OOOOOA
OOOOOB
OOOOOC
OOOOOD
OOOOOE
OOOOOF
00004C
000189
000000

Figure 18. Assembler Listing (Part 2 of 2)

57 DS
58 CODE DS
59 I DC
60 BUF DS
61 OUT DS
62 @OO EQU
63 @01 EQU
64 @02 EQU
65 @03 EQU
66 @04 EQU
67 @05 EQU
68 @06 EQU
69 @07 EQU
70 @08 EQU
71 @09 EQU
72 @10 EQU
73 @11 EQU
74 @12 EQU
75 @13 EQU
76 @14 EQU
77 @15 EQU
78 @RF00005 EQU
79 @ENDDATA,EQU
80 END

OD
F
F'2'
CL80
CL121
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
@ELOOOOI
*
MAIN

• The PL/S II source statements producing executable instructions appear
as comments ahead of the generated code. A label on a PL/S II
statement becomes the label of the first generated instruction.

III The compiler-generated labels appear in the label field of the listing.

&I The statement numbers for those PL/S II statements producing
executable assembler code appear in the remarks field of the generated
instructions.

m The assembler data area. This area is laid out in the basic format shown
in Figure 19. (Note: for REENTRANT programs, some definitions for the
fixed and dynamic areas may be interpersed.)

PAGE 3

F150CT70 2/18/74

00058000
00059000
00060000
00061000

EQUATES FOR REGISTERS 0-15
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000

40 Guide to PL/S 11

Reentrant Program Non -reentrant Program

@DATA @DATA

- constants, including address - constants, including address
constants and static argument constants and argument lists.
lists. - save areas.

- user normal STATIC LOCAL - compiler temporary data.
data.

- user normal data.
- user GENERATED STATIC

LOCAL data. - user GENERATED data.

- BASED and DEFINED (on - BASED and DEFINED name

STATIC) name definitions. definitions.

- register definitions. - register definitions.

- label equates . - label equates.

@ENDDATA @ENDDATA

@DATD

- save areas.

- compiler temporary data.

- user normal AUTOMATIC data.

- user GENERATED
AUTOMATIC data.

- DEFINED (on AUTOMATIC)
name definitions.

@ENDDATD

Figure 19. Data Area Layout

Compiler-Generated Labels

The labels (statement identifiers) that appear in the PL/S II source program are
reproduced in the compiler-generated assembler code. However, the compiler
generates additional labels to identify areas, values, and statements created by
expansion of the PL/S II program into assembler code. To help you identify
various items in the assembler code, the conventions for compiler-generated labels
are listed in Figure 20;

Label

@OO to @15

@AFTEMPS
@ALn

@CAdidx
@CBdidx
@CCdidx
@CFdidx
@CHdidx
@CVdidx

@DATA
@DATD
@DBsn
@DCsn
@DEsn
@DLsn

@ECsn
@EFpn
@ELpn
@ENDDATA
@ENDDATD
@EPsn
@ERpn

@GLn

@MAINENT

@NMn

@PBpn
@PCpn
@PROLOG
@PSTART

@RCsn

@RFsn
@RTsn

@SApn
@SCdidx
@SIZDATD
@SMdidx
@SNdidx
@SOdidx
@SXdidx

@TFn
@TSn

@ZLEN
@ZTEMPS
@ZT00001
@ZT00002
@ZT00003

Notes:

General Registers 0-15

Special Argument Temporaries
Argument List (Start)

Address Constant
Bit Constant (including hex)
Character Constant

Function

Fixed Constant (except halfword)
Halfword Fixed Constant
V-type Address

Start of Static Data
DSECT for Dynamic Data
Do loop Body (if loop also has WHILE)
Continuation Statement Past DO Loop
End-of-Ioop Text
Do loop Body (Statements in Loop or WH I LE test)

Continuation Statement Past Entry
Label in Epilog
Epilog Corresponding to Simple RETURN
End of the Static Area
End of the Dynamic Area
Unique Portion of Entry Prologue
Label in Epilog

Generated Label for a complex relational expression or a built-in
function.

Main Entry Point

Substitute name supplied if no name or duplicate name is found

Continuation Statement past internal procedures
Copy of Parameter List Pointers
Common Prolog
Start of Normal Addressability

Continuation Statement for relational expression when THEN
and ELSE paths merge after an I F statement.
False or ELSE Path after an I F statement
True or TH EN Path after an I F statement

Save Area
CLC Execute Target
Size of Dynamic Area
MVC Execute Target
NC Execute Target
OC Execute Target
XC Execute Target

Fullword Temporary
String Temporary

Length of Zero Temporaries
Start of Zero Temporaries
Fullword Temporary with Hi-Order byte=O.
Fullword Temporary with Two Hi-Order bytes=O.
Fullword Temporary with Three Hi-Order bytes=O.

'n' is a five-digit decimal number from 00001 to 99999.

'sn' is the five-digit statement number for D labels, E labels, and R labels, (of the DO or
ENTRY or I F statements respectively).

'pn' is the five-digit procedure number (00001 to 00255) assigned by the compiler.

'didx' is the five-digit dictionary index of a constant or execute target.

Figure 20. Labels Generated by the Compiler

Section 3: Compiler Output 41

42 Guide to PL/S II

Section 4: Guidelines for Modifying Assembler Code

You can order the assembler source code as machine readable material if you want
to make modifications to the compiler-generated code. However, you should be
aware that certain problems may arise from these modifications.

When modules coded in PL/S II are recompiled by IBM for a new release, the
assembler code for certain statements may be generated differently. Thus
modifications may not work in a new release if they depend on PL/S II statements
always producing the same assembler source code. The following guidelines will
simplify modifications and will help assure that the modifications you make are
impacted as little as possible by subsequent PL/S II compilations.

Modifying Instructions

1. Do not make references to compiler-generated labels (shown in Figure 20,
Section 3). These labels may change when a PL/S II module is re-compiled.
The compiler generates labels that begin with the @ character; your own
assembler labels should have a non-conflicting rule such as to start them with
the dollar sign character.

2. Give an explicit length when you add instructions that require a length. This
is necessary because the PL/S II compiler may define data to the assembler by
means of equate statements or other statements not establishing the expected
length.

3. Use explicit base values when making references to parameter lists, BASED
variables, or NON LOCAL variables. This is necessary because the PL/S II
compiler defines these data classes to the assembler by means of equate
statements, equating the item to its displacement from a base point.

4. Do not insert any new assembler instructions into an instruction sequence
generated for a single PL/S II statement. Make insertions either before or
after the generated instruction sequence.

5. Protect your registers around any inserted code. This is desirable because of
the compiler flexibility in changing the registers it uses.

6. Keep your modifications together, separate from the insertion points, by
making the modification a macro and the actual insertion an invocation, or by
surrounding each unit by an ANOP and AGO and making the actual insertion
a corresponding AGO and ANOP. This will lessen the effect of sequence
numbers changing in a subsequent release.

7. Develop modifications as separate modules.

Section 4: Guidelines for Modifying Assembler Code 43

44 Guide to PL/S II

Modifying Data

Add new data at the end of the generated assembler data area. The symbol
@ENDDATA on the assembler listing identifies the end of the STATIC area, and
@ENDDATD identifies the end of the AUTOMATIC area (see Figure 19, Section
3 for a description of these areas.) You sh,ould insert the additional data just
ahead of these symbols.

If you insert new data elsewhere, make sure that you don't affe~t expected
alignment of data that follows. Similarly, if you change the length of a data item,
make sure that alignments are preserved. You should also check for displacements
becoming greater than 4095, and modify references accordingly.

When you increase or decrease the length of a data item, you must also modify the
length in all instructions that refer to the item.

Refer to PL/S II REGISTER variables by the PL/S II name, not by the associated
general register number. This will help keep such references valid if a different
physical register is used in future compilations.

Structures

If you add new data to a structure that has the BASED attribute, add it at the end
of the structure to avoid displacing data within the structure.

If you add new data to a structure that has the STATIC or AUTOMATIC attributes,
you should also add it at the end of the structure to avoid displacing data within
the structure. Then you should check alignment and displacement of following
data.

If you change the length of a componen t of a STATIC, A UTOMA TIC, or BASED
structure, you must change the length in all instructions that reference:

• the changed component, and

• any structure that contains the changed component

For example, this structure,

DCl 1 A CHAR(80),

appears as:

I

(

I

2 B CHAR(40).
2 C CHAR(40)'

3 D CHAR(20),
3 E CHAR(20);

A
A

B C
A

"
A

I

\

'\

I
----~ D E

E is referenced when C, its containing structure, is referenced, and when A, the
containing structure for C, is referenced. So if you change the length of E, you
must change the length in all instructions that reference E, C, or A.

Section 4: Guidelines for Modifying Assembler Code 45

46 Guide to PL/S II

ABS function: One of the built-in functions; it is used
to obtain the absolute value of a variable or expression.

ADDR function: One of the built-in functions; it is
used to obtain the address of some data.

argument: A constant, variable, or expression passed to
a called procedure. Arguments appear on a CALL
statement.

argument list: An area of storage used to contain the
address of each argument that appears on a CALL
statement when the CALL statement invokes another
procedure.

array: A col1ection of data that has identical attributes.
The data occupies a contiguous area of storage and is
referenced by a common name.

assignment statement: A statement used t? provide a
new value for a data variable.

attribute: A characteristic of data. Most attributes have
an associated keyword in PLjS II.

AUTODATA: A procedure option controlling the use
of dynamic storage.

AUTOMATIC: A data attribute that causes a variable to
be assigned space in a dynamic storage area.

BASED: A data attribute that causes no storage to be
assigned to a variable. The attributes of a BASED
variable are applied to a storage area indicated by a
locator.

BIT: A data attribute used to define a bit string.

BOUNDARY: A data attribute used to align a variable
on a specified boundary.

built-in function: An expression facility of PLjS II that
provides a desired value.

built-in instruction: One of the special statements which
correspond directly to a selected machine instruction.

BY: A DO statement keyword that specifies a value to
be added to or subtracted from a control variable in order
to control iteration of a DO group.

CALL statement: A statement used to invoke an external
or internal procedure.

Section 5: Glossary

called procedure: A procedure invoked by another
procedure. The CALL statement invokes another
procedure.

calling procedure: A procedure that invokes another
procedure. The CALL statement invokes another
procedure.

CODE: A RETURN statement keyword that precedes
a return value (a constant, variable, or expression.)

CODEREG: See "code register".

code register: A register used to address compiler­
generated code. The compiler chooses a register unless
the CODEREG option on the PROCEDURE statement
indicates otherwise.

comparison definition: Two operands separated by a
comparison operator that appears on an IF statement.

components: The parts of a structure. A component
can itself be a structure.

connector: Either the & or I operator used to connect
comparison definitions on an IF statement.

constant: A fixed or invariable value or data item.

control variable: A variable used (in conjunction with
BY and TO values) to control iteration of a DO group.

DATA: A keyword on a GENERATE statement
allowing data definitions.

DATAREG: See "data register".

data register: A register used in a reentrant environment
to address data. The compiler chooses a register unless
the DATAREG option on the PROCEDURE statement
indicates otherwise. "

DECLARE statement: A statement used to describe the
attributes of data.

DEFINED: A data attribute indicating an overlay for a
data item.

DEFS: A keyword on a GENERATE statement
indicating what items it defines.

DIM function: One of the built-in functions; it is used
to obtain the extent of a dimension of an array.

Section 5: Glossary 47

dimension: The number of elements in a one-dimension
array, or for multi-dimension arrays, a partition of the
elements.

DO group: A set of statements that begin with a DO
statement and end with an END statement. The group
may execute once or repeatedly.

DO statement: A statement used to group a number of
statements in a procedure.

dynamic storage area: The storage for data that is
allocated automatically upon entry into a procedure.

element: One of a collection of data in an array.

ELSE clause: The part of an IF statement used to specify
the action to be performed if the comparison of
operands on the IF statement is false.

END statement: A statement used to indicate the end
of a procedure or the end of one or more DO groups.

ENTRY: A data attribute applied to the label of a
PROCEDURE or ENTRY statement. These labels are
entry points.

entry point: Any place within a procedure to which
control can be passed by another procedure.

ENTRY statement: A statement used to designate a
secondary entry point for a procedure.

EXIT: A keyword for the GENERATE statement and
the OPTIONS attribute indicating unusual exit from
the current environment.

expression: Constants and variables used in combination
with operators to represent an operation to be performed.

EXTERNAL: A data attribute. When two or more
external procedures must reference a variable, the
EXTERNAL attribute appears on the DECLARE
statement for the variable in each procedure.

external procedure: A procedure that is not internal to
another procedure.

FLOWS: A keyword for the GENERATE statement and
the OPTIONS attribute indicating possible continuation
labels.

GENERATE: -The statement that allows one or more
assembler instructions to be placed in PL/S II compiler­
generated code. GENERATE with the DATA keyword
allows the assembler instructions to define data.

GOTO statement: A statement used to transfer control
to a point preceding or following this statement.

48 Guide to PL/S II

IF statement: A statement used for conditional
statement execution. This statement is always followed
by a THEN clause and, optionaJIy, an ELSE clause.

INCLUDE statement: A compiler statement to obtain
text for compilation from a library.

indire~t addressing: A technique used to obtain data by
referencing a variable that contains the address of the
desired data.

INTERNAL: A data attribute which specifies that the
associated variable is not referenced outside the
declaring procedure and any procedures nested within
the declaring procedure.

internal procedure: A procedure that is contained
within another procedure.

iteration: Repeated execution of a DO group.

keyword: A symbol that identifies a data attribute, a
PL/S II statement, or some qualifying information for
a statement.

LABEL: A data attribute applied to the label of any
statement other than PROCEDURE or ENTRY. These
labels are not entry points.

LENGTH function: One of the built-in functions; it is
used to obtain the length of some data.

level number: A number assigned to a structure or a
component to indicate its position within the hierarchy
of a structure.

limit value: A constant, variable, or expression used to
stop iteration of a DO group. Iteration stops when the
control value exceeds the limit value.

LOCAL: A data attribute that causes storage for a
variable to be assigned in the CSECT of the declaring
procedure.

LOCATION: A data attribute for an item at an absolute
location.

locator: A variable or expression that follows the
BASED attribute and is used to locate data, or a pointer
supplied by pointer notation when the data is referenced.

MAX: A built-in function to obtain the maximum of a
set of values.

microfiche: Microfilm containing program listings.

MIN: A built-in function to obtain the minimum of a
set of values.

nesting: Inclusion of one or more procedures, IF
statements, or DO statements within another procedure,
IF statement, or DO statement, respectively.

NONLOCAL: A data attribute that causes no storage for
a variable to be assigned in the CSECT of the declaring
procedure. Storage is assigned elsewhere.

NOSEQFLOW: A keyword for the GENERATE state­
ment and the OPTIONS attribute indicating that simple
continuation flow does not occur.

operand: One or more constants and variables that are
operated upon.

operator: One or more symbols used in combination to
indicate the action to be performed on operands.

OPTIONS: A keyword for the PROCEDURE statement
or an attribute for ENTRY data noting special
requirements and actions.

parameter: A variable name that appears on a
PROCEDURE or ENTRY statement. This name is used
in a called procedure to reference information passed
to it from the calling procedure.

pointer: Data that is taken to be the address of some
other data.

pointer notation: The notation used when data is to be
located indirectly by an address contained at the
location of some POINTER variable. The composite
symbol - > appears between the POINTER variable and
the name of the data.

precision: The number of bits assigned for the maximum
positive value of either FIXED or POINTER data.

primary entry point: The major entry point of a
procedure. It is signified by the appearance of a
PROCEDURE statement.

procedure: An independent, named block of statements
that defines a specific portion of a program.

PROCEDURE statement: A statement used to indicate
the primary entry point for a procedure.

reentrant: A characteristic of a procedure that causes
dynamic allocation of space for data, save areas, and
compiler work areas. This characteristic is applied to a
procedure when the REENTRANT option appears on
the PROCEDURE .statement of the external procedure.

REFS: A keyword for the GENERATE statement and
the OPTIONS attribute indicating what data may be
referenced.

RESPECIFY statement: A statement used to provide
or change a locator, or to alter register availability.

RESTRICTED: A data attribute which indicates that a
specified register is not available for the compiler to use
in the code it produces.

RETURN: The PL/S II statement that sends control to
the statement following the CALL statement in the
calling procedure. The RETURN TO statement sends
control to a specified labeled statement.

secondary entry point: An entry point in a procedure
other than the primary entry point. It is signified by the
appearance of an ENTRY statement.

SETS: A keyword for the GENERATE statement and
the OPTIONS attribute indicating what data may be
assigned new values.

SIGNED: An attribute of arithmetic data which can be
negative.

source expression: That part of an assignment
statement that appears to the right of the equal sign.
I ts value is assigned to the receiver.

static storage area: The fixed storage for data that once
assigned is never reassigned.

string: A sequence of 8-bit EBCDIC characters or else
a sequence of bits that are unrelated to each other.

structure: A collection of data that usually has unlike
attributes (the data can have identical attributes). The
data occupies a contiguous area of storage and names
are assigned to parts of the data so that the entire area
or portions of it can be referenced.

subscript expression: An expression that appears in
parentheses follOWing an array name. It is used to
reference an element of an array.

substring expression: An expression that appears in
parentheses follOWing the variable name assigned to
string data. It is used to reference a portion of string
data.

THEN clause: The part of an IF statement used to
specify the action to be performed if the comparison of
operands on the IF statement is true.

TO: A DO statement keyword that specifies a control
variable's limit value.

UNRESTRICTED: A data attribute which indicates
that a specified register is available for the compiler to
use in the code it produces.

Section 5: Glossary 49

UNSIGNED: An attribute of arithmetic data which
cannot be negative.

UNTIL: A DO statement keyword that specifies a
terminating condition for iteration.

variable: Symbolic representation of a quantity or data
string that occupies a storage area.

VLIST: A keyword used in the OPTIONS attribute for
an entry name to indicate that the number of arguments
passed by the procedure may vary. VLIST causes the
parameter list to have its high-order bit in the last word
set on.

WHILE: A DO statement keyword that specifies a
necessary condition for iteration.

50 Guide to PL/S II

&
as connector in IF statement 25
as logical operator 23

as connector in IF statement 25
as logical operator 23

ABS built-in function 26
defined in Glossary 47

absolute locations 18
ADDR built-in function 26

defined in Glossary 47
argumen t list

defined in Glossary 47
on CALL statement 15
variable length 15

arithmetic data 16
array 20,23

defined in Glossary 47
assembler source listing 38-39
assembler source modules 7

guidelines for modifying 43
assignment of values 23
assignment statement 23

defined in Glossary 47
asterisk

used in array initialization 21
used instead of structure name 22

attribute 16
default 29
defined in Glossary 47

attribute and cross-reference table 16,33
AUTODATA 14

defined in Glossary 47
AUTOMATIC 18

defined in Glossary 47

BASED· 19-20
defined in Glossary 47
referring to BASED variables 43

BIT 16
defined in Glossary 47

BOUNDARY 17
defined in Glossary 47

built-in function
ABS 26
ADDR 26
defined in Glossary 47
DIM 26
LENGTH 26
MAX 26
MIN 26

built-in instructions 27
defined in Glossary 47

BY 26
defined in Glossary 47

BYTE 17

CALL 15
defined in Glossary 47

called procedure 14-15
defined in Glossary 47

calling procedure 14
dermed in Glossary 47

CHARACTER 16
CODE 15

defined in Glossary 47
code modifications 8, 43-45
CODEREG 14

defined in Glossary 47
code register 14

defined in Glossary 47
colon

as PL/S label delimiter 11
used in string references 24

comments 11
on assembler source listing 8, 38-39

comparison definition 24
defined in Glossary 47

compiler-generated labels 40-41
components 21

changing the length of 44
defined in Glossary 47

conditional flow 24
connector 25

defined in Glossary 47
constant 17

defined in Glossary 47
control flow 15,24
control variable 26

defined in Glossary 47
cross-reference table 16, 33

DATA 21
data definitions 16,44
DATAREG 14

defined in Glossary 47
data register 14

defined in Glossary 47
data residence 18
DECLARE 16

defined in Glossary 47
DEFINED 19

defined in Glossary 47
DEFS 22,27

defined in Glossary 47
DIM built-in function 26

defined in Glossary 27
dimension 20,26

defined in Glossary 48
DO 26

defined in Glossary 48
DWORD 17
dynamic data area 14,40

Index

Index 51

dynamic storage area
contents 14
defined in Glossary 48
starting and ending labels 41

element 20,26
defined in Glossary 48

ELSE clause 24
alignment with IF 25
defined in Glossary 48

END
as DO delimiter 26
as procedure delimiter 11
d(~fined in Glossary 48

ENTRY attribute 16
defined in Glossary 48

ENTRY statement 15
defined in Glossary 48

expression 23
defined in Glossary 48

EXTERNAL 19
defined in Glossary 48

external procedure
as division of a PL/S II program 11
defined in Glossary 48

FIXED 16

GENERATE 7,11,13,27
GENERATE DATA 7,22

in dynamic storage area 14
GENERA TED 22
GOTO 24

defined in Glossary 48

HWORD 17

IF 24
defined in Glossary 48

INCLUDE compiler statement 37
defined in Glossary 48

indirect addressing 19-20
defined in Glossary 48
(see also BASED)

INITIAL 16
used to initialize an array 20

INTERNAL 17
d{~fined in Glossary 48

internal procedure
as division of a PL/S II program
defined in Glossary 48

iteration 26
defined in Glossary 48

keyword index 9

LABEL 16
df!fined in Glossary 48

labels 11,27
as CALL target 15
compiler-generated 40-41
creating new 43
identified by LABEL or ENTRY

52 Guide to PL/S II

11

17

LENGTH built-in function 26
defined in Glossary 48

level number 21
defined in Glossary 48

limit value 26
defined in Glossary 48

linkage conventions 13
listings 8, 29

assembler 38-39
PL/S II attributes and cross-references
PL/S II source statements 32, 36

LOCAL 18
defined in Glossary 48

LOCATION 18
defined in Glossary 48

locator 19

MAX built-in function 26
defined in Glossary 48

microfiche 3, 11
defined in Glossary 48

MIN built-in function 26
defined in Glossary 48

33,35

\

modifying compiler-generated code 8, 43-45

nesting
defined in Glossary 49
of DO statements 26
of IF statements 25

NONLOCAL 18
defined in Glossary 49
referring to NONLOCAL variables 43

NOSAVE 13
NOSAVEAREA 13

object code
translation of PL/S II to 7

operator
arithmetic and logical 23
comparison 25
defined in Glossary 49

OPTIONS
attribute 17
defined in Glossary 49
on procedure 11,12

overlay 19

parameter 11, 15
defined in Glossary 49
referring to 37

PL/S 3
, pointer 19

defined in Glossary 49
POINTER 16
pointer notation 19-20

defined in Glossary 49
POSITION 19
precision

defined in Glossary 49
of arithmetic data 16
of pointer data 16

primary en try poin t
as PROCEDURE statement label 11
defined in Glossary 49

procedure 7, 11

PROCEDURE statement 12,15
defined in Glossary 49
purpose 11

PTR 16

reentrant
defined in Glossary 49
REENTRANT option 14

references 23
REGISTER 18

referring to 43
registers

affected by NOSA VE 13
affected by SAVE 13
assigned by compiler 14
available to compiler 18
linkage 13
save area 13

RESPECIFY
defined in Glossary 49
used to control register availability
used to supply a locator 20

RESTRICTElD 18
defined in Glossary 49

RETURN 15
defined in Glossary 49
used to return a value 15

RETURN TO 15

SAVE 13
SAVEAREA 13
secondary entry point

defined by ENTRY 15
defined in Glossary 49

semicolon, as PL/S delimiter 11
SIGNED 16

defined in Glossary 49
source expression 22

defined in Glossary 49
statements 11
STATIC 18
static storage area 18, 40

defined in Glossary 49

18

string 16
defined in Glossary 49

string data 16, 23
structure 21

defined in Glossary 49
guidelines for modifying 44
overlap in 22

subscript 23
subscript expression 23

defined in Glossary 49
substring expression 23

defined in Glossary 49

THEN clause 24
alignment with IF 25
defined in Glossary 49

TO 26
defined in Glossary 49

translation process 7-8

unreferenced variables 35
UNRESTRICTED 18

defined in Glossary 49
UNSIGNED 16

defined in Glossary 50
UNTIL 26

defined in Glossary 50

VALUERANGE 17
variable 17

defined in Glossary 50
VLlST 17

defined in Glossary 50

WHILE 26
defined in Glossary 50

WORD 17

Index 53

Guide to PL/S II

GC28-6794-0

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

READER'S
COMMENT
FORM

What is your occupation? ... _ ... ____ ._._. __ . ________ ._. __ .. _ ... _ .. _ ___ .~ -.... _. __ ... _______ ._., . __ _

Number of latest Technical Newsletter (if any) concerning this pUblication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

CiC28-6794-0

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
F'old Fold

- - -- --- - - - ----- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602·

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

----------------~

J!rnlkt~
<!>

Internatiollal Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

G)
c
a:
(1)

..-+ o
-0

C en

GC28-6794-0

J1rn~(
(1;,

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

G")
c:
a:
(1)

.-+ o
""C

C
en

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	replyA
	replyB
	xBack

