IBM System/360 Operating System
Report Program Generator

Program Number 360S-RG-038

This publication describes the internal logic of the
Report Program Generator for System/360 Operating
System. It is intended for use by persons involved
in program maintenance and by system programmers

who are altering the program design.

Restricted Distribution

Y26-3704-0

Program Logic

PREFACE

This program logic manual (PLM) supplements
the program listing of the Operating System
Report Program Generator compiler (referred
to in this publication as RPG) by describ-
ing the program.

The first section of this PLM discusses
the overall structure of the RPG compiler.
An overall flowchart is presented with a
storage allocation map and a table illustra-
ting the input/output organization.

A section of the manual is devoted to
each phase of the RPG compiler. Included
for each phase are a flowchart of the
logical elements, a storage allocation map
and an input/output flowchart. The text
includes a summary of each routine and
subroutine (identified by the symbolic
label in the program listing) and the pro-
grammed switches used by the phase.

The last two sections of the manual are
appendixes containing tables and record
formats and a glossary of the terms used
in this publication.

The program listing and its supplementary
comments supply detailed information about
the functions of the logical elements.

PREREQUISITES AND RELATED LITERATURE

Effective use of this manual requires an
understanding of the Operating System
Report Program Generator language contained

in the publication IBM Svstem/360 Operating

System, Report Program Generator, C24-3337.
For information on the Operating System

that is beyond the purpose of this pub-
lication, refer to the following publi-
cations:

IBM System/360 Operating System, Assembler
(E) Programmer's Guide, C28-6595

IBM System/360 Operating System Data
Management, C28-6537

IBM System/360 Operating System, Concepts
and Facilities, C28-~6535

IBM/360 Operating System, System Program-
mer's Guide, C28-6550

IBM System/360 Operating System,
Editor, C28-6538

Linkage

IBM System/360 Operating System, Job

Control Language, C28-6539

IBM System/360 Operating System,
Messages, Completion Codes and
Storage Dumps, C28-6631

For titles and abstracts of associated
publications, see the IBM System/360
Bibliography (A22-6822).

RESTRICTED DISTRIBUTION: This publication is intended for use by IBM personnel only
and may not be made available to others without the approval of local IBM management,

First Edition

Specifications contained herein are subject to change from time to time. Any such change

will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made your IBM representative or to the

IBM branch office serving your locality.

A form is provided at the back of this publication for reader's comments.

If the form

has been removed, comments may be addressed to IBM Corporation, Programming

Publications, Department 425, Rochester, Minnesota 55901,

© International Business Machines Corporation 1966

INTRODUCTION . . v & « & o o o o o
System Environment
Use of Additional Features. . .
Program Organization
Major Components.

.

Functions of the Major Components

Phase NamesS. . . « & & « « o o «

-

COMPILER INPUT/OUTPUT EXECUTOR (CIOEX)

Introduction. « .« . .
Logic . . . e e e e .
Switches and Indlcators [
Main Routines e .
Constant Always in CIOEX Data
Area of Core Storage. “ .
Allocation of General Registers
for All Phases. . . « « « + +
RESIDENT PHASE « « . .
Introduction.
PREPHASE .« &« ¢« ¢ + &« o o o « o =«
Introduction.+ « . .
LOgIiC « v v ¢« v ¢ ¢ o« & o o 4 W
Main Routines
Subroutines

ENTER PHASE 1. . « « ¢ & « & o o«
Introduction. . . « . .+
Logic [
Switches and Indlcators o e e
Main Routines
Subroutines

ENTER PHASE 2. . . « « ¢« « o«
Introduction.
Logic e e e e e e s
Switches and Indlcators e e e
Main Routines
Subroutines

ENTER PHASE 3. . + ¢ v ¢« + « o«
Introduction.«
Logic e e e e e e .
Switches and Indlcators e e
Main Routines . . + « « « .+ . .
Record Identification
Field Description
Subroutines« ¢ o . .

ENTER PHASE 4. . ¢ ¢ ¢« ¢ o o o o =&
Introduction. « . « « « .« . . .
LOgic « v v v v v v e e e e e
Switches and Indicators
Main Routines
Subroutines

Output Record Format (RLDBUF) .

.

ANUVDDNNRH =

O

iii

ENTER PHASE 5. « « . . .
Introduction.+ » « « « .
Logic « « « « o o + o .
Switches and Indicators
Main Routines - - + =+ =«
Subroutines . - - - . .

ENTER PHASE 6+ « « « « +
Introduction. « . .« .« .
Logic « « « « ¢« o « o .
Switches and Indicators
Main Routines +« « - . .
Subroutines +« + -« - . .

INTERMEDIATE PHASE -« « -
Introduction- « - .« . .

ASSIGN PHASE 1 . - « . . .
Introduction. « + « .« -
Logic.........
Switches and Indicators
Main Routines - - - .« .

Subroutines « + ¢« .+ . .

ASSIGN PHASE 2 + =« +« + «
Introduction. « -« « . .
Logic « « « « « < . .
Switches and Indicators
Main Routines . - . .
Subroutines .« .« . . .

ASSEMBLE PHASE 1 . . .
Introduction.
Logic « « « + « + < . .
Switches and Indicators
Main Routines
Subroutines . .« .« . . .
Precoded Routines . . =«

ASSEMBLE PHASES 2 AND 2.5.
Introduction.
Logic (Phase 2) - . . .
Logic (Phase 2.5) . . .
Switches and Indicators
Phase 2 Main Routines -
Phase 2.5 Main Routines

Subroutines Common to Phases

2.5 ¢« o e 4 e e .
2 Subroutines . .
2.5 Subroutines -

Phase
Phase
Phase
Phase
Phase

ASSEMBLE PHASE 3
Introduction.
Logic « « « « « « « . .
Switches and Indicators

2 Precoded Routines
2.5 Precoded Routines

CONTENTS

fiain Routines
Subroutines

ASSEMBLE PHASES 4 AND 4.5
Introduction

Logic .« « + + « « « .« .
Switches and Indicators .

Phase 4 - Section I Routines
4 - Section II Routines .

Phase
Phase 4.5 Routines

I/0 PHASES 1,2 . . .
Introduction -
Logic (Phase 1)
Logic (Phase 2)
Phase 1 Main
Phase 2 Main Routines
Subroutines
Precoded Routines . .

- .

DIAGNOSTIC PHASES. . .
Introduction . . .

Logic -« « .« .« . . .
LINKAGE PHASE
Introduction
Logic . e e e e
Main Routines
Subroutines . . .

Precoded Routines .

Routines .

.

.

iv

TERMINAL PHASE ¢« « « « « « &
Introduction+ . . .« .« .
APPENDIX A. FILE NAME TABLE
APPENDIX é. FIELD NAME TABLE . . .
APPENDIX C. LITERAL TABLE
APPENDIX D. RESULTING INDICATOR TABLE
APPENDIX E. COMPRESSIONS
APPENDIX F. LINKAGE RECORDS . ., . . .
APPENDIX G. BLANK AFTER ENTRY FORMAT
APPENDIX H. HALT INDICATOR (HO)
ANALYSIS AID
GLOSSARY . e e e e s .« .
INDEX . e e e e e e . .« .

104
104

105

107

109

111

112

121

122

123

124

127

Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.

General Organization of

the Operating System.

Overall RPG Compiler

Storage Allocation Map.

CIOEX Storage Allocation

Map

Resident Phase Storage

Allocation Map.

Resident Phase Input/

Output Flow

Prephase Storage Allocatlon

Map . . =

Prephase Input/Output

Flow. . .

.

-

Enter Phase l Storage

Allocation Map.

Enter Phase 1 Input/Output

Flow. .

Enter Phase 2 Storage

Allocation Map.

Enter Phase 2 Input/Output

Flow.

.

Enter Phase 3 Storage

Allocation Map.

Enter Phase 3 Input/Output

Flow.

Enter Phase 4 Storage

Allocation Map.

Enter Phase 4 Input/Output

Flow. . .

Enter Phase 5 Storage

Allocation Map.

Enter Phase 5 Input/Output

Flow.

-

Enter Phase 6 Storage

Allocation Map.

Enter Phase 6 Input/Output

Flow. . . .

Intermedlate Phase Storage

Allocation Map.

Intermediate Phase Input/

Output Flow

Assign Phase 1 Storage

Allocation Map.

Assign Phase 1 Input/

Output Flow . .

Assign Phase 2 Storage

Allocation Map.

Assign Phase 2 Input/

Output Flow . .

Assemble Phase 1 Storage

Allocation Map.

Assemble Phase 1 Input/

Output Flow . .

Assemble Phase 2 Storage

Allocation Map.

Assemble Phase 2.5 Storage

Allocation Map-

.

.

.

.

.

.

.

.

.

13
13
14
16
17
19
22
24
27
30
34
37
42
45
47
49
52
52
53
55
59
61
63
64
68

69

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

Figure 48.

Tables
Table 1.
Table 2.

Table 3.
Table 4.

Table 5.

Table 6.

Charts

Chart AA.

ILLUSTRATIONS

Assemble Phase 2 Input/

Output Flow . - . e . 72
Assemble Phase 2. 5 Input/
Output Flow . . . Y]
Assemble Phase 3 Storage
Allocation Map. - « « « . 79
Assemble Phase 3 Input/
Output Flow . - 82
Assemble Phase 4 Storage
Allocation Map. - - . . . 85
Assemble Phase 4.5 Storage
Allocation Map. . . - . 86
Assemble Phase 4 Input/
Output Flow 92
Assemble Phase 4.5 Input/
Output Flow 92
Organization of I/O

Interface - . - .« - 93
I/0 Phase 1 Storage
Allocation Map- 94
I/0 Phase 2 Storage
Allocation Map- - - - 94
I/0 Phase 1 Input/Output
Flow. . = e e e e e = e 97
I/0 Phase 2 Input/Output
FIOW:. « + o« « « o « o« « « 97
Diagnostic Phases Input/
Output Flow 98
Sample Print-Out of a

Memory Map. 100
Linkage Phase Storage
Allocation Map. 102
Linkage Phase Input/

Output Flow « 102
Terminal Phase Storage
Allocation Map. 104
Terminal Phase Input/

Output Flow 104

Input/Output File

Organization by Phase . . 3
Linkages to Resident
Routines. . . s e s e e 9

RPG Control Card Switches 16
Operation Code 1-Byte

Equivalence Table 37
Summary of Operation
Specifications. 38

Summary of Entries
Appearing on a Memory Map 101

RPG Compiler Program. . . 4

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

AB.
AM.
BA.
CA.
DA.
EA.
EB.
FA.
FB.
FF.
FG.
GA.
GM.
HA.
HB.

CIOEX

« e .

Resident Phase .

Prephase .

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

ot dWWwNDE,

Intermediate Ph
Assign Phase 1.
Assign Phase 2.

ase -

vi

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Assemble
Assemble
Assemble
Assemble
Assemble
Assemble
Assemble
Assemble
Assemble
Assemble

Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase
Phase

I/0 Phase 1.
I/0 Phase 2.

Diagnostic Phases .
Linkage Phase .

Terminal

Phase

D BB WWwW NN

.
. U0

IBM System/360 Operating System consists of
a control program and a number of proces-
sing programs (Figure 1). The control pro-
gram governs the order in which the proces-
sing programs are executed and provides
services that are required in common by the
processing programs during their execution.
The processing programs consist of language
translators and service programs that are
provided by IBM to assist the user of the
system, as well as problem programs that
are written by the user and incorporated as
part of the system. Operating System Re-
port Program Generator (RPG) converts a
System/360 RPG language program directly to
relocatable System/360 machine language in-
structions. The System/360 RPG language
provides the programmer with an efficient
technique for writing source programs that
can be translated into object modules
(machine language) by the System/360 RPG
program.

IBM
SYSTEM/360
OPERATING

SYSTEM

Language Service
Control translators User-Written Programs
P m ®Assembler Problem ®Linkage
rogra ®COBOL Programs Editor
@®FORTRAN ®Sort/
ORPG Merge
®Utilities
Figure 1. General Organization of the

Operating System

The Operating System RPG consists of a
source language and a compiler. The source
language provides for specification of
input and output data sets, the component
fields of input data records, the literals,
the operations and calculations to be per-
formed, and the fields of the output rec-
ords. The RPG compiler translates into an
object module the RPG language entries
specified on the RPG coding forms.

The RPG compiler is a fast, efficient
program. The input/output operations are
reduced by retaining as much source data

INTRODUCTION

as possible in core storage. To accomplish
this objective, all identifying information
is deleted from the source specifications
and the resulting compression is placed in
a reserved area of core storage.

The number of data passes is reduced by
placing field names, literals, and resulting
indicators into tables as they are encoun-
tered. The areas allotted to the tables
are large enough to contain all of the
entries in most of the programs to be
compiled. As a result, addresses can be
assigned to the entries immediately and
machine instructions can be generated.

SYSTEM ENVIRONMENT

The RPG compiler program operates under
supervision of the Operating System Control
Program. The minimum System/360 and I/0
requirements are

1. Minimum requirements of the Operating
System Control Program.
2. Three work data sets which can be DASD,

magnetic tape, or mixed. These (SYSUT1,
SYSUT2, SYSUT3 (BASAM)) utility data
sets are used for external storage, the
use and formats of these data sets

will vary from one phase to another.

3. Fixed, unblocked SYSIN data set from
card reader, disk or magnetic tape.
4, Fixed, unblocked SYSPRINT data set to

printer, disk or magnetic tape.

5. Either a fixed, unblocked SYSPUNCH
(card punch, disk or magnetic tape) or
a SYSGO (magnetic tape or disk).

6. Additional data sets as required by the
object program.
7. No fewer than 15,360 bytes of core

stcrage available for RPG use. The
size of the control program must be
added to this figure to obtain total
core storage required.

NOTE: Standard labels are required on
disk-resident data sets; standard labels

or no labels may be used with magnetic tape
resident data sets.

USE OF ADDITIONAL FEATURES

Additional core storage will be used if
available. The field name table, literal
table and the compression area will be
expanded.

Introduction 1

PROGRAM ORGANIZATION Assign Phases
Assemble Phases

I/0 Phases

MAJOR COMPONENTS Diagnostic Phases
Linkage Phase

The RPG compiler consists of the following Terminal Phase

major components:
These major functional modules enable

Compiler Input/Output Executor (CIOEX) the RPG compiler to read the scurce program
Prephase and generate machine language instructions.
Resident Phase Figure 2, Table 1, and Chart AA illustrate
Enter Phases the organization and operation of the
Intermediate Phase compiler.

CIOEX Data Area
(Resident Phase)

T—T_T_T

. Enter Phase 1 -
Phase Logic Assign Phase 1
Assign
S —— Phase 2
CIOEX Routines Assemble
P}wses and
Ph.
Resulting Indicator Table 1/O Phases
Diagnostic
Phase -
Field Name Table Te?:\?nal
Phase

File Name, Literal Tables

R |

Compression Area

I |

NOTE: Shaded area indicates OS requirements

Figure 2. Overall RPG Storage Allocation Map

Table 1.

Input/Output File Organization by Phase
SYSTEM RESI- SYSGO/ ’
DENCE VOLUME SYSIN SYSPRINT SYSPUNCH SYSUTI SYSUT2 SYSUT3

RESIDENT
PHASE

PREPHASE

ENTER
PHASE 1

ENTER
PHASE 2

ENTER
PHASE 3

ENTER
PHASE 4

ENTER
PHASE 5

ENTER
PHASE 6

INTERMEDIATE
PHASE

ASSIGN
PHASE 1

Input-Compiler
Program Supplies

ASSIGN
PHASE 2

the Program Logic
of Each Phase of
the Compiler
When Called

ASSEMBLE
PHASE 1

ASSEMBLE
PHASE 2

ASSEMBLE
PHASE 2.5

ASSEMBLE
PHASE 3

ASSEMBLE
PHASE 4

ASSEMBLE
PHASE 4.5

1/0 PHASE 1

1/O PHASE 2

DIAGNOSTIC
PHASES 1-5

LINKAGE
PHASE

TERMINAL
PHASE

OPEN-
Control Card

File Description
Specification

[File E?e:s?o:mﬂ
Line Counter
Specifications

Input
Specifications

E

Calculation
Specifications

OQutput-Format
Specifications

Output=Print
Specifications
and Appropriate
Diagnostic Codes
During Each of
These Phases

cLOSE *

CLOSE **

Print Resulting

Indicator,

Field Name

| and Literal
Tables and

| Diagnostic Codes

Print Diagnostic
Codes

Print Diagnostic
Codes

Print Diagnostic
Messages

Print Memory
Map

OPEN
SYSGO

OPEN*
SYSPUNCH

Qutput-ESD and
TEXT Cards During
These Phases
(Object Module)

Output-RLD,
ond
TEXT Cards

CLOSE

CLOSE **

OPEN

Output-
Appropriate
Specification
Compression
Records

Output-
Appropriate
Specification
Compression
Records

Input/Output-
Compression
Records

Input-
Compression
Records
During These
Phases

CLOSE

OPEN

Temporary Storage
and Output-Blank
After Entries

Temporary Storage
and Input/Output-

Blank After Entries

Qutput=
Blank After
Entries

Input-Blank
After Entries

Output/ Input
Temporary
Storage

CLOSE

OPEN

Output=
Preprocessed
Specifications

Input-
Preprocessed
Specifications

Output-RLD

Output-RLD

Input-RLD

CLOSE

Notes: Shading indicates data sets not referenced in a particular phase.
* SYSIN is closed and SYSPUNCH is opened if the compiler option DECK, LOAD is specified.
** SYSIN, SYSGO and SYSPUNCH are closed according to the compiler option specified (see Terminal Phase).

—T

Introduction 3

SERKALFEXERRERN
: BEGIN
AERESRERRE KRR

Chart AA.

:-tttl?tttt.otn#:
SRESINENT PHASE *

+«X$CONTROLS DS/RPG¥
» *

- -
BERREEERRER AR REN

ceaan

e

ttt.tﬁz#"t‘»tt.:
L d

- PREPHASE

* PROCESS RPG
* CONTROL CARD

AR R R ER Bk

LX)

o

AR ERC 2 AR RN
*

PREPHASE
INITIALIZE

CTXTTS
ruw

FEAEERREER R R

LERRRDZANEEERRRY

*
- ENTER 1 *
* COMPRESS FILE *
: DESCRIPTION :

FREERRERERERAKRNE

.
X
o
E
H

X
*
E
S
1
]
*

>

:ti‘tht'tt.tt‘t.

*
* ENTER 3 *
‘CDNPRESE gNPUT *
: SPEC *

.
SEAREHERERRN RN RS

X
:."‘ﬂz#i‘."‘.#:

* ENTER & *
* PREPROCESS *
* CALC SPECS M

- *®
T T
:

X
SreasHzassrraseey
- ENTER § -
» COMPRESS *
* PREPROCESSED #
* CALC SPECS *
SRFASIAREAS SR RE
.

X
freerizenerreners

ENTER & b
- COMPRFSS *
* QUTPUT SPECS :
SREEERRERERS HRERS

.

.

%

..,
K2 *.

o .o
«DECK _AND %OAD.
*. SPECIFIED ¥
*, ¥
. "
L

* NO

X

o
* *
A4 &
- -

e

SETENKI SRR ANRENR
YES * INTERMEDIATE
sevescsoX¥

XOPENS SYSPUNCH *
* L

. Upa
EI 2T

G
R
*i
.
X
*

L *
«* rane Tel ves ¥ ayltd
. ERFLOW ':'........xt A¥s¥;
R
*:

EEREEER

AERRRES ran
* ASS

:GENER cTs
* COMP
PEITYS wene

+*2ee8F H
* F 83 ‘Sgg S *

Xe s e 80 e BOAQHBN BN 5

fad e (L ET I TE 2]

* DIAGNO
I
* MESSAGE

—
>
@
Z
o
*ANG

FOR
TI1CS
Kk

HEREAKAEEO RS RRE AR
$TERDRNES RUEE
: DATA SE

RPG Compiler Program

ERahg
*

:PROOU
AEEREN

..‘.'KS".....'C

:.....---K. END
*

R PR S22l]

FUNCTIONS OF THE MAJOR COMPONENTS

Compiler Input/Output Executor

The Compiler Input/Output Executor (CIOEX)
routines are loaded with each phase of the
RPG compiler. Only those routines required
for a particular phase are loaded. The
CIOEX routines perform the input/output
processing for the compiler. A CIOEX data
area which resides in core for all phases
is in the resident phase. It contains
constants and key addresses. The functions
of CIOEX are

1. Handle all linkages to the Operating
System (i.e., calls to read source
program specifications from the SYSIN
and write object module text on
SYSGO/SYSPUNCE)

2. Maintain the addresses of data areas
(i.e., beginning of file description,
input, calculation, and output-format
specifications in the compression area)

3. Maintain key information to be used by
the other phases, such as sterling
code information

4. Maintain an address counter for the
machine language code being generated
5. Contain routines which are common to

the RPG compiler phases

Resident Phase

There is a small routine in this phase that
receives control from the operating system
and transfers control to Prephase. At

the end of the job this routine returns
control to the operating system. This phase
also contains the CIOEX data area and the
DCBs for SYSIN, SYSPRINT, SYSPUNCH or

SYSGO, SYSUT1, SYSUT2 and SYSUT3.

Prephase

Prephase performs the initial operations
necessary for the other phases of the RPG
compiler. The tasks performed by Prephase

are

1. Open all data sets needed by the RPG

compiler

2. Determine the amount of available core
for compiler tables

3. Initialize the compiler tables

4. Process and diagnose the RPG control
card

Enter Phases

There are six enter phases that diagnose
and compress the source program deck.
Their functions are
1. Read, diagnose, and list the source
statements
2. Compress the source statements
3. Build the following:
a. File name table
b. Resulting indicator table
c. Field name table
d. Literal table

While executing the enter phases, the field
name table or literal table may exceed
allotted core. If this occurs, no more
entries are made; however, the other func-
tions of the phases are continued.

The enter phases place the compressed
source statements (specifications) in the
compression area. When this area becomes
filled, it is written on work data set 1
(SYSUT1) .

Intermediate Phase

the SYSIN DCB and sets up
for SYSPUNCH. Entry to

if both the DECK and

been specified by the user.

This phase closes
and opens the DCB
this phase occurs
LOAD options have

Assign Phases

There are two assign phases. Under normal
conditions, only Assign Phase 1 is executed.
Assign Phase 2 is executed only if the field
name or literal tables generated in the
enter phases exceed the allotted core.
Assign Phase 2 duplicates the table build-
ing function of the enter phases and the
address assigning function of Assign

Phase 1. The functions of these phases are

1. Perform further diagnostics of the
specifications, i.e., multidefined,
undefined, and unreferenced field names
and resulting indicators

2. Compute and assign addresses to the
fields, literals, and resulting indica-
tors contained in the tables

3. Replace the symbolic name in the compres-
sion area with the assigned addresses

4. Put out text card images for the result-
ing indicators, fields and literals

5. If any resulting indicators is an ENTRY
type, an ESD (external symbol dictionary)

Introduction 5

card image is output for that
indicator

6. Put out ESD card images and RLD
(relocation list dictionary) entries
for EXTRN and ENTRY type field names.
The ESDs are put out on SYSPUNCH or
SYSGO and the RLD entries are put out
on work data set 3 (SYSUT3).

Assemble Phases

Six assemble phases generate the RPG object
program from the compressed specifications
which were formed during the preceding
enter and assign phases.

I/0 Phases
The function of the two I/O phases is to

generate and put out object code linkages
to the Operating System.

Diagnostic Phases

The diagnostic phases put out a list of
diagnostic messages which explain all
diagnostic errors that have occurred during
the compilation.

Linkage Phase

The linkage phase puts out the linkage
program, prints the memory map and generates
RLD card images. This phase also puts out
precoded routines for the object program.

Terminal Phase

The terminal phase closes all compiler data
sets.

PHASE NAMES

The following is a list of names used to
identify the various phases. The name

of the next phase to be executed is stored
at PHSNAM in the CIOEX data area as
RPG10xxx where xxx is the last three digits
of component name.

PHASE COMPONENT
NAME NAME IDENTITY
RESIDENT PHASE 1ESRPG «038
PREPHASE IESO00 <038
CIOEX {ES009 (038
ENTER PHASE 1 1ESO30 &038
CIOEX 1ESO39 1038
ENTER PHASE 2 1ESO40 $038

PHASE
NAME

CIOEX

ENTER PHASE 3
CIOEX

ENTER PHASE 4
CIOEX

ENTER PHASE 5
CIOEX

ENTER PHASE 6
CIOEX

INTERMEDIATE PHASE

ASSIGN PHASE 1
CIOEX

ASSIGN PHASE 2
CIOEX

ASSEMBLE PHASE 1
CIOEX

ASSEMBLE PHASE 2
CIOEX

ASSEMBLE PHASE 2.5
CIOEX

ASSEMBLE PHASE 3
CIOEX

ASSEMBLE PHASE 4
CIOEX

ASSEMBLE PHASE 4.5
CIOEX

1/O PHASE 1
CIOEX

1/0 PHASE 2
CIOEX

DIAGNOSTIC PHASE 1
CIOEX

DIAGNOSTIC PHASE 2
CIOEX

DIAGNOSTIC PHASE 3
CIOEX

DIAGNOSTIC PHASE 4
CIOEX

DIAGNOSTIC PHASE 5
CIOEX

LINKAGE PHASE

STERLING CONVERSION INPUT
STERLING CONVERSION OUTPUT
TEST ZONE AND DECIMAL

TEST ZONE (BCD)
SIGN CHECK
TABLE LOOK-UP
SET INDICATOR
CIOEX

TERMINAL PHASE

COMPONENT
NAME IDENTITY
1ES049 *038
1ES050 (038
1ES059 ;038
IES060 —038
JES069 - 038
IES070 /038
1ES079 ,038
1ES080 %038
1ES089 >038
IESO8A 2038
1ES090 -038
1IES099 #038
IES100 @038
1ES109 038
IEST10 =038
IEST19 "038
1ES120 A038
IES129 BO38
IES130 Co38
1ES139 D038
IES140 E038
IES149 F038
IES150 G038
IES159 Ho38
1ES160 1038
IES169 Joas
1€5170 K038
1ES179 1038
IES180 MO038
IES189 NO38
IES190 Qo038
IES199 R038
1ES200 5038
1ES209 1038
1ES210 U038
IES219 vo3s
1ES220 wo3s
1ES229 X038
IES230 Y038
1ES239 2038
IES240 0038
1ES241 1038
1ES242 2038
1ES243 3038
1ES244 4038
1ES245 5038
1ES246 6038
1ES247 7038
1ES249 8038
1ES250 9038

INTRODUCTION

RPG Compiler Input/Output Executor (CIOEX)
is loaded with each phase of the RPG.
CIOEX consists of a method (CIOEX Driver)
of interpreting an input/output request and
the necessary routines to perform the re-
quired I/O for a particular phase. All
CIOEX routines are read-only and use the
CIOEX data area to hold constants, key ad-
dresses, switches, status information, and
buffers for SYSIN, SYSPRINT and SYSPUNCH
or SYSGO. The CIOEX data area resides

in Resident Phase.

The CIOEX routines required for each
specific phase are loaded rather than load-
ing the entire library with each phase.
Therefore, within the object module each
phase consists of its own logic together
with the CIOEX driver and the applicable
CIOEX routines.

Figure 3 and Chart AB illustrate the
organization and operation of CIOEX.

LOGIC

GR7 is the linkage register between CIOEX
and other phases and contains the starting
address of the CIOEX driver (address calcu-
lating instructions and table of displace-
ments to CIOEX routines).

The calling routine loads the desired
CIOEX routine number (Table 2) into GR2,
stores its return address in GR5, and
branches to GR7.

The CIOEX driver uses the wvalues in GR2
to develop the branch address of the proper
CIOEX routine.

Upon completion of the CIOEX routine a
return to the main program occurs by way
of GR5.

All calling routines use one of the two
types of linkage.

SWITCHES AND INDICATORS
CXINVPRT

X'FO0' Inverted print

COMPILER INPUT/OUTPUT EXECUTOR (CIOEX)

CXCOLSEQ

X'FO0' alternate collating sequence

CIOEX Driver

GETCMP

PUTCMP

PHSCAL

PNTERR

PNTSPC

RDSPEC

PUTCOD

RLDIN,RLDOUT

BLKIN,BLKOUT

NOTEIN,NOTECL,NOTEOT,NTASGN

PNTINP,PNTCLC ,PNTOUT, PTCMPR,
PTBLKR,PTRLDR,PTASGN

SWITCH

Figure 3. CIOEX Storage Allocation Map

Compiler Input/Output Executor (CIOEX)

7

HEEEA IR
*
-

*=O-
WX 0000 e
*ZDX
wmm
*ax
-
*
*
*

TJR

k3
w

.
B .,
- LN
#.REQUFST CODE .*
*, NUMBER _.¥

. .
., ¢
-

. .
. EREARCIERAREE NS N
ERREC 20 RrkkkEn - L) * AERECEERE ERRRER - ARERCSRE kRN EREE
x =) . =16% . * *232 . *

2 GETCMP [LERTEE PTCHPR H : PNTCLC L LERPETRN STALKR *
RRERERRE R RN : * * KRRk : kAR kR Rk
- EE s 2 22t Lt L] 2] -

. .

. .

ARERD2 A EEE KRR M RREDIREBRRRRR R EEEDS * . Rk

=2 . =18 - w=34 , =250& -
: PUTCHP :X.---...X: RLDDUT : : PNTOUT :X.......X: PYRLOR :
AEREERREEERRARE : SRERFEERRRREERE LiEAAL ST 21T] : ERRREERR R NE R
ARERE2RAR R KRR M HRRRE Rk KRR AERRE AR AR M
T =L0 * a3 o
: PHSCAL :X-.. ..K: RLOIN : : NOTEIN :X.-.-
AREEREREERRRREE : EEERERESARRER R AERRREEEEEEEEE G :
RESRFI SR e R R Lk L i dEf 24t d 22l] REEEFQEEE KEEEE S :
*=f 22% * - *x38 o
: PNTERR :X--- --X: PTRLOW : : NJTECL :X....
AR EERRREERRRE : LAl ittt 2t 2] EREERR TR R G :
. .
. .
L2 b drrd L2 Ll 1] g EERRGAERREE RN K EERNGRREEREFEER o :
=8 240 o
* PNTSPC “~. BLKOUT * : NOTEDT :Xooac
FAERRRERRR K [T rereeery .
EEREH2 Rk LA LR 2 22 12 2] REXRHAERE OR kR :
=26 » =42 .
: ROSPEC -.X: BLKIN : : NTASGN
PRI P2 21 £2 1 2] ERERERRREARE RN EEERERERERRRERE
EaREIZERRRLRRE : R EL L AR A EREEERRER
* PUTCOD PTRLKW 4 * PTASGN
T T T Ty P T e
EREEK 2 ehkkkEREE . LAl &L Lt 212
*=16 *«
* SHITCH . veeX¥ PNTINP :
T T
NDTE, ALL ROUTINES RETURN
DIRECTLY VIA REG 7

Chart AB. CIOEX

Table 2. Linkages to Resident Routines
Routine Routine Type of
Name Number Linkage*
GETCMP 0 A
PUTCMP 2 A
PHSCAL 4 A
PNTERR 6 A
PNTSPC 8 A
RDSPEC 10 A
PUTCOD 12 A
SWITCH 14 A
PTCMPR 16 A
RLDOUT 18 B
RLDIN 20 B
PTRLDW 22 A
BLKOUT 24 B
BLKIN 26 B
PTBLKW 28 A
PNTINP 30 A
PNTCLC 32 A
PNTOUT 34 A
NOTEIN 36 A
NOTECL 38 A
NOTEOT 40 A
NTASGN 42 A
PTASGN 44 A
PTBLKR 48 A
PTRLDR 50 A
*Linkage in calling routine.
Type A Type B
LA 2, Routine number LA 1, Address of I/O area
BALR 5, 7 LA 2, Routine number
BALR S5, 7
CXSTRLNG
00XXXXXX Shillings column blank/input
0 1XXXXXX IBM shillings for input
10XXXXXX BSI shillings for input
XX00xXxXxXX Pence column blank/input
xx01xxxx IBM pence for input
xx10xxxXX BSI pence for input
xxxx00xx Shillings column blank/output
xxxx01xx IBM shillings for output
xxxx10xx BSI shillings for output
xxxxxx00 Pence column blank/output
Xxxxxx01 IBM pence for output
XXxxXx10 BSI pence for output

CXCMPOPT
Compiler option byte

Not used

XXXXX0xXX LIST

XXXXX1XX NOLIST
xxxxxx00 LOAD, NODECK
xxxxxx01 DECK, NOLOAD
XXXXXX10 DECK, LOAD
XxxXxx11l NOLOAD, NODECK

MAIN ROUTINES
GETCMP

® Reads the next block of compression from
a work data set

e Updates the count of the block being
processed

PUTCMP

® Writes a block of compression on a work
data set

® KXeeps a total count of the number of
blocks during the enter phases

® Links to the table initialization routine
PHSCAL

® DProvides linkage to the Operating System
for loading of the next phase

e Loads key registers
® Passes control to the phase

PNTERR

® Turns on the appropriate note switch,
using the unpacked numbers in positions
97-99 of the print area

e Moves IESnnnI into the print area
(where nnn is the note number)

® Passes control to PNTSPC
PNTSPC
® Prints the information in the print area

e Initiates a skip to channel 1 when a
full page has been printed

e Prints a new heading line
RDSPEC

® Reads a record from the system input
device

Compiler Input/Output Executor (CIOEX) 9

e® Provides the address of this record to
the calling phase (register 4)

PUTCOD

® Writes 80 bytes of information on
SYSPUNCH/SYSGO

® Register 4 points to the first byte

e If NOLOAD and NODECK options have been
selected, this routine is not executed,
but returns to the calling routine

SWITCH

® Repositions work data set number 1 at
the origin point

PTCMPR

® Positions compression for reading, at
the origin, on the next GETCMP request

RLDOUT

® Writes RLD entries on work data set 3
as 132-character records

® Uses register 1 as a pointer
RLDIN
® Reads RLD entries from work data set 3

® Reads the 132-byte record into the area
pointed to by register 1

PTRLDW

® Conditions the RLD to be written at
the beginning of the data set

PTRLDR

® Conditions the RLD to be read at the
beginning of the data set.

BLKOUT

® Puts out a blank-after entry onto work
data set number 2

® Uses register 1 as a pointer to the out-
put area

10

BLKIN

® Reads a blank-after entry into the area
pointed to by register 1

PTBLKW

® Repositions, for writing at the origin,
the work data set containing the blank-
after entries

PTBLKR

® Repositions, for reading at the origin,
the work data set containing the blank-
after entries

PNTINP

e Conditions compression to read the
block containing the first input
specification compression

PNTCLC

® Conditions compression to read the
block containing the first calculation
specification compression

PNTOUT

e Conditions compression to read the
block containing the first output-
format specification compression

NOTEIN

® Notes the block containing the first
input specification compression

NOTECL

e Notes the block containing the first
calculation specification compression

NOTEQOT

® Notes block containing the first output-
format specification compression

NTASGN

® Notes the compression block currently
being processed

PTASGN Name Length Purpose

® Conditions the compression to read the CXBLKNUM 2 Compression block being processed
block referenced by the previous NTASGN CXIDSPLC 2 Displacement to first input specification
compression

CXCDSPLC 2 Displacement to first calculation specifi-
cation compression

CONSTANTS ALWAYS IN CIOEX DATA AREA OF
CORE STORAGE

CXODSPLC 2 Displacement to first output-format
® At the beginning of each phase the ad- specification compression
dress of this data area is in GR6 and CXANSPLC 2 Displacement to locate field names in
GR12 compression
. CXHDGSW 1 User page number switch
® GR6 must contain the address of the data
area at all times when CIOEX routines CXRETCDE ! Return code
have control CXIPTEOF 2 Linkage to EOF routine
® GR12 is loaded to provide compatability CXCMPOPT ! Compiler option byte
betwee?n phases cc_)ded prior . to the re- CXSTRLNG 1 Sterling code switches
designing of the interface into re-
enterable routines (CIOEX) CXCOLSEQ 1 Alternate collating sequence
CXINVPRT i Inverted print switch
CXONEPCK 1 Number 1 in packed format
Name Length Purpose CXTRKBF 1 Track blocking factor for DASD
CXDUBLWD 8 Used for work area CXLITOVF 4 Literal overflow
CXPHSNAM 8 Name of next phase to be loaded CXFLDOVF 4 Field name overflow
CXDCBSRC 4 Address of DCB for input data set CXCMPOVF 2 Compression overflow
Byte 1 X'FO' Compression is on disk
CXDCBLST 4 Address of DCB for print data set X'00' Compression is on tape
Byte 2 X'FO' Compression overflow
CXDCBPGO 4 Address of DCB for PUNCH/GO data set X'00' No compression overflow
CXDCBWKI1 4 Address of DCB for SYSUT1 CXSEQINP 4 Sequence number of first input
specification
CXDCBWK2 4 Address of DCB for SYSUT2
CXSEQCAL 4 Sequence number of first calculation
CXDCBWK3 4 Address of DCB for SYSUT3 specification
CXRIADDR 4 Address of Resulting Indicator Table CXSEQOUT 4 Sequence number of first output-format
specification
CXFLDADD 4 Address of Field Name Table
CXLINBCT 2 Line counter branch and count
CXLITADD 4 Address of Literal Table
CXLINCNT 2 Line counter total value
CXADDCNT = 4 Counter of core used for object program
CXPAGNUM 4 Page number count
CXCMPADD 4 Address of compression area
CXPUNCNT 4 Sequence count for punching
CXCMPEXT 4 Length of compression area
CXSYNERR 4 Linkage to synchronous error routine
CXHLDREG 4 Hold area for return register
CXPGRNAM 6 Program name ('RPGOBJ')
CXNOTES 32 Diagnostic note array
CXPASKEY 8 Temporary storage between phases
CXFLDLEN 4 Length of Field Name Table
CXHEADIN 17 Header and version identification
CXLITLEN 4 Length of Literal Table
CXJOBNAM 8 Job name from JOB
CXCALCNT 4 Record count for {ocating calculation
specification compressions CXSTEPNA 8 Step name from EXEC
CXOUTCNT 4 Record count for locating output-format CXTODAY 8 Today's date
specification compressions
CXSYSPDD 8 ddname for SYSPUNCH
CXINPCNT 4 Record count for locating input
specification compressions RDRPCHCD 1 Control character for stacker select
CXNOTNUM 4 Record count for locating field names in RDPRCHAR 80 Reader/Punch buffer 1
compression
PNTRARAC 1 Control character for carriage control
CXEXTCNT 2 External counter (ESD)
PNTRAREA 120 Printer area
CXNUMCMP 2 Number of compression blocks
CXSAVEAR 72 Save area
CXNUMBLK 2 Number of blank-after entries
) CXSPIESV 4 Address of PICA from previous
CXNUMRLD 2 Number of RLD records SPIE

Compiler Input/Output Executor (CIOEX) 11

ALLOCATION OF GENERAL REGISTERS FOR
ALL PHASES

Volatile*

Volatile*

Volatile*

Compression area

Read in/punch out

Return register

CIOEX data area base register
CIOEX base register

Phase base register

[e<BEN N NE TNV)

12

9 Work register or phase base register
10 Print area
11 Work register
12 Work register
13 Work register
14 Volatile*
15 Volatile*

*These registers are used by CIOEX and/or
0S. The contents will be destroyed.

INTRODUCTION

Input/output areas are required for the
operation of the System/360 Operating
System. Resident Phase provides the CIOEX
data area (see Compiler Input/Output
Executor) and DCBs for SYSIN, SYSPRINT,
SYSGO/SYSPUNCH, SYSUT1l, SYSUT2, and SYSUT3.
These areas and a small routine for com-
munications between RPG and OS remain in
core throughout the execution of the RPG
compiler.

The communication routine

CIOEX Data Area, INIT,SPIEROUT

DCB SYSIN, DCB SYSPRINT

DCB SYSGO/SYSPUNCH, DCB SYSUT1, DCB SYSUT2

DCB SYSUT3

Figure 4. Resident Phase Storage

Allocation Map

AEERAD Rk
* ENTER
* RESIDENT

LT

A
LR e
.
INIT X
L Ly
* - * ORI EERR R R
* SAVE * * RETURN FROM %
: REGISTERS : :YERM[NAL PHASE :
* * HRRE AR R
P T P T .
. .
. .
% X
P L T REERRC IR Rk ok
-

*
*INITIAL REG 13 *
* RPG SAVE AREA #*
RARREERBRRREEE R KN EEEERREEERREERE RN

- -

LNAD
RETURN CODE
INTO REG 15

ERERR
LX)

. .
X X
ARREAD2HE R AR SREEEDINREREEERES
. . . ' .

RESIDENT PHASE

1. Receives control for the supervisor

2. Links to the next phase specified in
the CIOEX data area

3. Accepts the return from Terminal Phase

4. Returns control to the supervisor

Resident Phase also issues the SPIE
macro-instruction and contains the SPIE
routine for the RPG processor.

Figure 4 and Chart AM illustrate the
organization and operation of Resident
Phase. Figure 5 illustrates the input/
output flow for the phase.

RPG Phases
SYSTEM Load
RESIDENCE RESIDENT
VOLUME PHASE
RESIDENT
PHASE

Figure 5. Resident Phase Input/Output Flow

ERRCHERERERREE
*SPIE INTFRRUPT *
LI T

x
*

D4 EEEREREN K
*

* _ISSUE SPIE * * RESTNRE * *
* FOR PROCESSOR * % REGISTERS * ABEND *
* * * * *
= - * * *
AR R -

- . .

. . .

. : .

X X X
: LINK T : * RETURN TO * * RéTURN T *

N

* PR%PHAS? * SUPERVISOR SUPERVISNR
: : * * * *
AERRERERR SRR ERE HREEEEE RSN AR ORE

.

X

HAEREEERKERARREERR
*
EXIT

* -

AREREEEER R SR

Chart AM. Resident Phase

Resident Phase 13

PREPHASE

INTRODUCTION

The RPG Prephase is loaded as the first
phase of the RPG processor. Prephase opens
all files needed by RPG, diagnoses the RPG
control card, determines the amount of
available core for compiler tables, and
initializes the literal table, field name
table, and compression area.

Figure 6 and Chart BA illustrate the
organization and operation of Prephase.

Figure 7 illustrates the input/output
flow for Prephase.

LOGIC

The compiler options specified by the user
affect the assignment of the DCB reserved
for SYSGO/SYSPUNCH. If LOAD, NODECK is
specified, the DCB is assigned to SYSGO.
If NOLOAD, DECK is specified, the DCB is
assigned to SYSPUNCH. If LOAD, DECK is
specified, the DCB is assigned to SYSGO
and SYSPUNCH overlays the SYSIN DCB in
Intermediate Phase. CXCMPOPT is set
accordingly.

SYSIN, SYSGO/SYSPUNCH, SYSPRINT, SYSUTI1,
SYSUT2, and SYSUT3 are opened.

The available core is divided between
the field name, literal and resulting
indicator tables and the compression area.
The tables and area are initialized by
being filled with X'FE'. A card is read
and checked to see if it is a control card,
valid specification, or other type (treated
as comment card). The respective actions
are: perform control card diagnostics,
indicate an error (no control card), or
read another card.

The switches for the RPG control card
are shown in Table 3.

MAIN ROUTINES
PREPHASE
e Picks up compiler options, ddnames and

heading information passed by job
scheduler or invoker

14

PREPHASE

OPEN, GETCORE

TBLINIT, DATEROUT

RDCTLCD, TESTSTL

ALTCSTST, PGMIDTST

Constants, Tables, Work areas

e e e e e s e e e . . — —— — — — —— ———

Figure 6. Prephase Storage Allocation Map

GETCORE
® Gets core for processor tables

® Computes table sizes and addresses

OPEN

e Opens data sets

DATEROUT
e Picks up data from OS

® Converts data from YYDDD format to
month/day/year

® Stores converted data in CIOEX data area

RDCTLCD
® Reads a card and prints it

® Tests to determine if it is a control
card

Chart BA.

TESTSTI
ek
*
*
*ST
*

Pt

ok
*
*
AST
*

*
hx

ALT

PGM

*1D
*
LELs

MR 2 AR AR R

*

*®

Prephase

PRF

OPEN
AREARECIRRRE AR

TBL

TRk ARk kX
* ENTER *
: PREPHASE :

ERRARE AR

PHASE
KERRKAThRRRERER kS
& pEcK up

* COMPILER, *
& APTIONS *
* DDNAMES, AND #
* WEADINGS
RISl R R Tl]

e s 8 86 RANTmR LS ¢ 000 a e

* OPEN
DATA SETS

FRREEREORER R

L DATERIUT X
R FEEREI bRk crr ey
*
DIAGNOSE * * SET DATE IN * -
ERLING INPUT *X... * CIOEX DATA * cenX¥,
FIELDS * - : AREA : -
KREEEEERRRRRRS | ARk AR RO .
. - *
. . i . .
. . * . .
. . * 63 *.Xe . -
.
. - el . . -
X « RDCTLCD X - X
*¥G2 . G3 . EEARRREE
* - - HRITE
DIAGNOSE * . * READ A * - * CARD [MAGF *
ERLING NUTPUT* . CARD TMAGE . ON SYSORINT
FIELDS * - » * - * AS A *
* - . CIMMENT
LT ST T . ERRRER AR R
. . M.
. - . * *
. - ve XX G3 %
. . *
M . P
ST . .
FRH2 SRR RRR . .
SFT * - -
VERTED PRINT* « VYES . .
ND ALTERNATE ecsace¥e B
CNLLATING
SWITCHES #*
RN
ST NNC
R
*
PICK UP .
PROGRAM *
ENTIFICATION :
L e T Y
.
X

CALL
. NEXT PHASE

HERRR AR RN

sesesenrensna

X
AEREKGRERRERRER

EXIT
HERREERER KRR

*
*
*

Prephase

15

TESTSTL Table 3. RPG Control Card Switches

e Performs diagnostics on sterling input ;
. t
and output entries Column Entry Setting
é H Condition = Diagnostic continues.
® Checks to determine if inverted print ¢ E's‘?“{‘“"’e (r:""c'; e'g:;":w, .
i r L &N U ’ . e 15
1s requeSted treat as a comment.,
7-16 blank Not used
ALTCSTST 17 Set sterling code byte to:
2 10xxxxxx (BSI format)
1 Olxxxxxx (IBM format)
® Checks to determine if alternate col- blank 00xxxxxx (no sterling)
lating sequence is requested - other 01xxxxxx Assume |IBM format
18 2 xx T0xxxx
PGMIDTST 1 xx01xxxx
blank xx00xxxx
other xx01xxxx Assume IBM format
® Checks to determine if the program has
a name 19 2 xxxx 10xx
1 xxxx01xx
blank, 0| xxxx00xx
. . th 01xx A IBM f t
® Uses 'RPGOBJ' if it does not oer oo Aome erma
20 2 xxxxxx 10
1 xxxxxx01
SUBROUTINES blank, 0| xxxxxx00
other xxxxxx01 Assume IBM format
IBLINIT
R 21 Set Inverted Print byte to:
1 \
e Initializes the literal table, field bk | oo
name table and the compression area of:er X'FO' Assume |
with X'FE'
RPG Phases 22-25 blank Not used
SYSTEM Load 26 Set Alternate Collating Sequence byte to:
R\ng&;}? PREPHASE A X'FO*
blank X'00*
other X'FO' Assume A
RPG Control Card L RPG Control Card
27-74 blank Not used
PREPHASE SYSPRINT 75-80 blank Program name assumed to be RPGOBJ.
Otherwise use contents of 75-80 as Pro-
Figure 7. Prephase Input/Output Flow gram Nome.

16

INTRODUCTION

The System/360 RPG file description speci-
fications define the characteristics.of all
files (input, output, RAF, table or chain-
ing) that are to be used in an RPG program.

Enter Phase 1 processes the file de-
scription specification source statements.
The functions of this phase are

1. Read specification input statement

2. Diagnose errors

3. Build file name table

4. Compress the file description speci-
fication input statement

5. Build field name table

6. Print processed statement and any
applicable diagnostic codes

7. Call Enter Phase 2 or Enter Phase 3

Figure 8 and Chart CA illustrate the
organization and operation of Enter Phase 1.
Figure 9 illustrates the input/output flow
for Enter Phase 1.

LOGIC

Each field entry in the file description
specifications is analyzed for validity of
format. An assumption of a valid entry
will be made, if possible, to correct a
recognized error condition. A diagnostic
code is printed to indicate an assumption
has been made for an invalid entry. Ir-
recoverable error diagnostics are also
printed to indicate the specification was
not processed.

Processed specifications provide entries
for the file name table (Appendix A). Each
entry in the table is 16 bytes long, and
the table has a capacity of ten entries.

If the table capacity is exceeded, the ad-
ditional entries are treated as comments
and a diagnostic code is printed. Before
an entry is made in the table, a search is
made to determine if the entry is already
present. Multidefined files are entered in
the table only once. A diagnostic code is
printed for all successive occurrences of a
multidefined file. For Enter Phase 1, the
assembled entry is as follows:

ENTER PHASE 1

ENTER1

CPS, OUTPT

RAF, 1UC

1UPS

DRDLG

DRELDV

FNTLUP

PRINT,ENDPSN

Subroutines

Constants - Literals

Figure 8.

Enter Phase 1 Storage Allocation
Map

Enter Phase 1 17

Chart CA.

18

SEBEALRRERSERES
- *
* ENTFR PHASE 1 *
* *

L] e
. * -
. * B2 %
T - - *
* * erk
* Bl * .
* * . . . s
LI
ENDPSN X cirs X - X
T e e T AERERRIRRRER AR S L e T P o Peensasareessenss
* SCAN FILENAMF * * DIAGNISF * .
*TABLE T0 CHFCK * * PRINT FRROR # * RAF, TABLF . - * MAKE ENTRIF
READ SPEC * FOR MISSING *....caeaX NOTES FMR * CDHQ’NF* ANg . *INTD Fl‘LD VAWF‘
* FILE EXT OR % * MISSING * * OUTPUT FILFS = - * TAALE (RAF)
*LENE CTR SPECS * {GENERAL) * . 4 '
EAEEREERERBRE AREEREESERRRSE NS SREEERRRERR R EEERRRERRERERRA KN o RRREERRREREAFREES
. . . - .
- - . ok . . -
. -
. . - * C4 *,Xo - a
. eXecaseeussnceansscanssocna - . .
X X - - -
* x DRALG X <TVFLED X
T T e FEEERCHARERRERENK . t#t‘ttil‘tttt‘ttt
DIAGNISE . * FNTER
* *RECORD LFNGTH, * - *N,FLN IND lNTﬂt
X PRINT ERIRNR ¥ BLNCK LENSTH, * . * BFES_IND TABLE +
* NNTF * * KEY LNCATION, # - & (nurvuv FILE) *
* FILENAME P *
o L e T IR e 1Y PR 2 e TP T TS
- . - . .
- . . . - .
. eXesosaseensnseaanansecnces . : .
X X . - .
¥, ¥ X . X
n- e, 02 PRI R LT R P P Y AEEADG HER .
- . <% WAS A *, * " . * *
+% INPUT *, YES +% PRIMARY *, NO * * DIAGNISE * . ®« ENTER FILE *
. caLc & “¥eeae *, e¥eoesaaaaX PRINT ERROR * DFVICE, LABFL * . *DESCR SPEC [NT0*
. OUTPUT . - *.SPECIFIED.* NODTE * * Extr * - * COMPRESSION #
*,SPEC .# - ., ¥ * - * *
*, o X ., % SEXEREEERRORN PLIETRT PRI TR 1Y e EEEsEEREAERRENERE
*« NO _EEX * YFS - -
. » . - PR G
- * B2 * . - b
. * * . - ‘ £S5 ' xo
- LR PS canse . * -
. . . ne’ .
X X «PRINT
SR ERF] €2 T REEEREE G e R AR
* -
* MOVE SPEC * * * - *
® 70O PRINT BFR # CALL NEXT PHASE . PRINT SPEC
* * - » *
- *
EREREREEERE RS RN ERERKEERERERE AXRRERERRRERE
X .
-*. X
F1 -, SERERRF SRR AR
. *, e ex
.. *. YES % * - » PRINT .
*, COMMENT e¥easoX¥ ES ¥ * B} *Nieae FRRNR NDTFS
-, ot - - * .
, o hE kA
*, ox AR R
* NO
X
=

-®
.2
Te. ot
«*No
X
FRERRRH] E kRN ERR R

-
PRINT ERRIR
* SPEC *

R

X
E
* -
* Bl *
* L
ax

el

o*
“x
INPUY FILE .
e o
*, o%
* NO
X
o uc X
M2 e, ‘t#t‘H]ttt‘t"l’!
-¥
- YES ‘nlﬂGNDSE UﬁOATF.
. UPDATF FILE AuceaceedX® FILE OR INPUT %..
* CHAINFD FILE %
“x. Ky * *
ok HE R ERE Rk X
* ND L
. * *
- * 04 %
. » *
. LI
X
¥ PS
2 e hiddd bbbttt
. -
YES DIAGNOSE AYES
.CDHB!N‘D F(LE '........X* COMRINED FILE *....
'- .* ‘ * -
. % P L IR e T]
*"ND LaZ 2
. * *
- * B4 X
- - *
. LR
X
o* oureY vl
LE N FRAEEK IRERLAR SR
% - *
¥ YES » *
wl OUTFUT FILF -‘o....---X'DIAGNﬂSE ATBUT*, ..
. * FILE - -
“x, o L
¥ RO X
NO L
- * *
. . Be
X . *
ey een
* *
* ES5 &
* *
e

Enter Phase 1

H& ‘-

o*
'. TABLE FILF

. cuAlwsn F]LF‘.'
.. .*
o' N0
[%
AEEEIK G EFE RN RN
* *
% DIAGNISE. %
« INPUT PRI IR *
USEC FILE *
RN

AF
*.#t‘ﬁ5t.¥'."‘lt

*
*
xt OTAGNOSE RAF
*
*
Tesarererenserens
%

L

* *

* B4 &

* .

ren rexn

*

"o YES
e¥esoaX¥ B4 ¥

FLTTs

Ll
* *

cesX® HI &

ek

RPG Phases

SYSTEM
RESIDENCE
VOLUME

File Description
Specifications

Figure 9.

Load

ENTER
PHASE 1

'

ENTER
PHASE 1

Flow

1. Bytes 1-8
2. Byte 9

3. Bytes 10-11

4. Byte 12

5. Bytes 13-16

Filename
Reference
byte

Sequence
number
Type byte

Record
length

File Description
Specifications
and Diagnostics

SYSPRINT

Compression

SYSUTI

Enter Phase 1 Input/Output

Columns 7-14
Always blank
for file de-
scription
specification
Generated in-
ternal se-
quence number
File usage
(Appendix A)
Columns 24-27

An entry is made in the field name table

(Appendix B)

for every accepted specifica-

tion that is a record address file.
For Enter Phase 1 the assembled entry is

as follows:
1. Bytes 1-6
2. Byte 7

3. Bytes 8-9

4. Byte 10
(Beta)
5. Byte 11
6. Byte 12
7. Byte 13
(Gamma)

Field name

Reference
byte
Field ad-
dress

Field in-
formation
byte
Field
length

Decimal
positions

Field type

byte

CONTDb or col-
umns 54-59
R or X'D9'

Blank until
filled during
assign phase
X'40'
X'00'
B)

(Appendix

(Columns 29-30
L minus 1) or
X'03"

X'40' (alpha-
meric)

X'04' (Appendix
B)

All specifications that are processed,
and any applicable diagnostic codes, are

printed.

At the conclusion of Enter Phase 1, a
scan is made of the file name table to de-
termine if at least one file description
has been processed and that there is only
one primary file. Diagnostic codes are
printed for any error situation detected.

The internal sequence number is incre-
mented by one and placed in SEQINP in the
CIOEX data area for use by the next phase.
The next phase called is Enter Phase 2, if
the next input record is a file extension
specification or line counter specification;
otherwise, Enter Phase 3 is called.

If Enter Phase 3 is called, a scan is
made of the file name table to determine if
any files should have been referenced by a
file extension or line counter specifica-
tion. Diagnostic codes are printed for any
error situation detected.

SWITCHES AND INDICATORS

INDSW

X'ol! Column 28--R; column 31--K;
column 32--I. This indicates a
random, key field location,
indexed-sequential file is present

X'02' A record address file is present.
Left ON for rest of Enter Phase 1

X'04" A primary file is present. Left
ON. for the rest of Enter Phase 1.

X'40" One valid file description speci-
fication has been processed. Left
ON

X'80' Ten file description specifications
have been processed. Left ON

ZEROSW

Contains the highest character processed
during a scan of a numeric field. A zero
or blank in this switch indicates an error.

MAIN ROUTINES

ENTER1
® Reads the input record
file

e Verifies form type, file type,

designation
e Enters an R or T in the type byte

® Calls the next phase

Enter Phase 1 19

CPS

e Diagnoses a combined file designated as
primary or secondary

e Enters an I or E in the type byte

QUTPT

e Diagnoses an output file

e Enters an O or P in the type byte
RAF

e Diagnoses a record address file
Iuc

e Diagnoses an input file or an update
file (designated as a chained file)

e Enters a C, D, W, or X in the type byte

IUPS

e Diagnoses an input file or an update
file (designated as a primary or

secondary file)

e Enters an I, E, U, V, Y, or 2 in the
type byte

DRDLG

e Diagnoses record length, block length,
key field starting location, filename,
device,and labels

DRELDV

® Diagnoses file type, and device
combinations

FNTLUP

e Provides table lookup and entry routines
for file name table and field name table

® Enters file description specification
into compression (Appendix E)

PRINT
® Prints specification and diagnostic
codes

ENDPSN

® Scans file name table

20

® Checks for missing file description
cards and primary file description

e Calls next phase

SUBROUTINES

All returns are made from the subroutines

by an instruction BR REG1ll, unless stated

otherwise.

SUBC16

® Diagnoses the file designation entry
(column 16) for primary (P) or secondary
(s)

SUBC18

® Diagnoses the sequence entry (column 18)

SUBC17

e Diagnoses the end of file designation
(column 17)

SUB19F

® Diagnoses the file format designation
(column 19)

SUBC39

e Diagnoses the extension code designation
(column 39)

suBc24

® Assigns a diagnostic code to indicate an
invalid or missing record length designa-
tion (columns 24-27)

SUBC20

® Assigns a diagnostic code to indicate
an invalid or missing block length
designation (columns 20-23)

SUBCO7

® Assigns a diagnostic code to indicate an
invalid or missing filename designation

(columns 7-14)

® Exits to PRINT

SUBC35

® Assigns a diagnostic code to indicate an

invalid or missing key field starting e Exits via register 14 if an equal entry
location designation (columns 35-38) is found

® Exits via register 11 if an open entry
SUBC54 (end of the table) is found

® Assigns a diagnostic code to indicate an
invalid or missing name of label exit TLOKUP
designation (columns 54-59)
® Executes a scan of the file name table
® Exits to PRINT
® Exits via register 14 if an equal entry

is found
ALPAMR
e Exits via register 15 on table
® Diagnoses individual columns of a given overflow
field for wvalid alphabetic or numeric
characters or blanks ® Exits via register 11 if an open entry

(end of the table) is found
e Exits to the location designated by
register 9 if an error is detected

ERRSUB
SUBNUM ® Advances to the next entry in the error
table
e Diagnoses individual columns for valid
numeric characters or blanks e Exits via register 5
e Exits via register 9 if an error
condition is detected TCOPOF
e Tests for compression area overflow
FLTLUP
® Gives the calling sequence to CIOEX to
® Executes a scan of the field name table put out compression

Enter Phase 1 21

ENTER PHASE 2

INTRODUCTION and/or conversion routine names are diag-

nosed as errors and are not processed.

The System/360 file extension specifica-
tions provide RPG with information about
chaining, table, or record address files.

The System/360 line counter specifica-
tions provide RPG with information about
reports that will be printed. The car-
riage control information links the line to
be printed with the corresponding punch in
the carriage control tape.

Enter Phase 2 processes the file exten-
sion specifications and line counter speci-
fications source statements. The functions
of this phase are

1. Read specification input statement

2. Diagnose errors

3. Search and update file name table

4. Search and update field name table

5. Compress specification input statement

6. Print processed statement and any
applicabhle diagnostic codes

7. Scan file name table for error
condition diagnosis

8. Call Enter Phase 3

Figure 10 and Chart DA illustrate the

organization and operation of Enter Phase 2.

Figure 11 illustrates the input/output flow
for Enter Phase 2.

LOGIC

In processing file extension statements,
the from filename entry and the to filename
entry are checked against the file name
table. If the entry is found, the refer-
ence byte is changed to E. The type byte
in the table entry determines the type of
file to be processed. A filename entry
without a corresponding entry in the file
name table is an error condition.

The field name table is searched for an
entry to correspond to the statement entry
for conversion routine name or table name
(columns 27-32) or second table name (col-
umns 46-51). If a corresponding entry is
found in the table, and the entry being
processed is a table name, the reference
byte is changed to M to indicate a multi-
defined condition; otherwise, the entry is
added to the table and the reference byte
is created as blank. If the table over-
flows, subsequent additional table names

22

ENTER2

CHAING

CONESY

RAFCMR

TABLER

C46B

TABLEC

LCNTER

COUNTE, ENDPHC

Subroutines

Constants - Literals

Figure 10.

Enter Phase 2 Storage Allocation

Map

R EA] SRRk
x
* ENTER PHASE 2 *
FREREEERRRRERRE
ELL
* -

* Bl %,
* P
T . -
READ X -
Oy :
REAN SPEC :
FEEEEREEREE :
: . :
INIT c1” e, "°5¥2..c‘ COREACSERRRR SRR
o* - * SCAN EILENAME ¢
" INPUT *, YES *TABLE TO CHECK * * PRINT ERROR *
#1 CALCy OR t*eceaeecsX® FOR MESSING #sveeseeeX NOTE EDR PRINT ERROR
. OUTPUT . * FILE_EXT OR_* * MISSING * . SPEC .
*.SPEC .+ *LINE CTR SPECS *
FA) AEARERERERUNE
*“NO . .
. . . .
. . . .
. Xesosvessoosssvesseuevsson .
. < . NO
X X DFES N «%. (FRROR)
1 03" %, 05" 4.
* * o -, ¥ *,
. MOVE . * * ok *. NO ot *
% SPEC TO PRINT * CALL NEXT PHASE ceo XX CHAINING FILEC#..0. X% TABLE FILE .#
* RFR - * * N i, 3 *. o*
* - *, - *, ¥
AR KRR Aok KK PRt R 2222t s] - , o - . *, ¥
. . «"VYES * *"YES
.
.
X . M . .
o*, SCHAING X RAFPSY X RABLER X
E1” s, PR T P E
o PO * . * * *
. . % DIAGNOSE * * * * *
w2 COMMENT Je..L. < % CHAINING FILE * * DIAGNOSE RAF * *DIAGNDSE TABLE *
. . . - * » * * e FILE *
.. o M .= » * * M *
o o* x T REERERERRERRRRE
*“Np o N . . .
. *
N £ H5 * . . .
.
. LT . S .
X . X .
.., LCNYER . ok, CONESY X
F1° e, B . F3' e, SHERRES SEBRRE
¥ * * - ¥ , L d Ed *
o* . * . . o * ENTER * * ENTER TABLE #
#.LINE CTR SPECe*cececeeaeX® DIAGNOSE LINE * . *, CONVERSION ? VER?lﬂN NANE* * NAME(S) INTO
. o* * CTR SPEC * . * ROUTINE .* *INTO FIELD NAME® * "FIELD NAME *
*. o * * . . o * TABLE . * TABLE *
oo ARRRERE AR R M o o% Y "
«“NO . M *"Nn . .
.
.
. - . sXeoocovrencsesssvecncesone .
X - . X s
ot X . o>, RAFCHMR TCOMPR X
61" . AERARG2EREEERER SR M 63" #. -
o .. * . : .. . * b3 « *
YES J#HAS A LINE *, *ENTER LINE CTR # . o *, YES & ENTER RAF # * ENTER TABLE #
cess® TR SPEC BEEN.® * P 0 N RAF eFecvecee Kb EXT SPEZ TNTD * * FILE EXT SPEC %
- *, PROC ok * COMPRESSION * . - -* * COMPRESSION % * INT *
.* * * * COMPRESSIDN &
: . ¥ B] . . %
< *"NO . . *“Np .
- - - - - hkh
. * -
. . X . . £ HS .,
: . her M : * *
. X » * . . ene
. o¥, * H5 * <COMPR X PRINT X
. H1 * * P T T Y o T Y
- ¥ *, Rl 1] - L d *
. .. . YES < %ENTER CHAININI *
. *.FILE EXT SPEC.* . * FILE EXT SPE
. .. oF * INTO *
. . o * COMPRESSION #
: o PO T T e e FEREREE RPN
. *"NO .
cevesssececXe .
X X
N CRERERISREEEEEREEEE
» PRINT, .
PRINT ERROR ERROR NOTES
* SPEC * . .
T r— ERERERRERE RS
X X
o s
* - * *
* Bl * * Bl *
* * . .
R EEE
Chart DA. Enter Phase 2

Enter Phase 2

23

RPG Phases
SYSTEM
RESIDENCE E'ng Fi'le Extension and
VOLUME PHASE 2 Line Counter
) Specifications,
ond Diagnostics
File Extension SYSPRINT
and Line Counter
Specifications
ENTER
PHASE 2 .
Compression

SYSUT1

Tigure 11. Enter Phase 2 Input/Output Flow

For entries that are made in the field
name table during Enter Phase 2, the as-
sembled entry is as follows:

Columns 27-32
or 46-51 for
table name or
conversion
routine name

1. Bytes 1-6 Field name

2. Byte 7 Reference Blank or M
byte
3. Bytes 8-9 Field Blank
address
4. Byte 10 Field in- X'00' for con-
(Beta) formation version routine
byte name
X'04', X'05°',
X'06' for table
name (Appendix B)
5. Byte 11 Field Columns 40-42
length or 52-54 (bin-
ary) minus 1
for table name
or X'03' for
conversion rou-
tine name
6. Byte 12 Decimal Column 44 or 56
positions for table name
or X'40' for
conversion rou-
tine name
7. Byte 13 Field type X'08' for table
(Gamma) byte name or X'20'

for conversion
routine name
(Appendix B)

As each file extension specification is
compressed (Appendix E), the from filename
and to filename entries are replaced by the
sequence numbers from the file name table
entries.

24

In processing the line counter statements,
the filename entry is checked against the
file name table. If the entry is found, the
reference byte is changed to L if it is
blank or E. A diagnostic code is assigned
to indicate a multidefined condition, if
the reference byte is already L.

Each line number entry is converted to
binary and placed in the corresponding chan-
nel number position (1-12) in the line
counter table. If either channel 1 or chan-
nel 12 has not been specified, a diagnostic
code is assigned to the specification.

As each line counter specification is
compressed (Appendix E), the filename entry
is replaced by the generated sequence num-
ber from the file name table entry. The
sequence number is converted to binary for
the compression.

At the conclusion of Enter Phase 2 a scan
is made of the file name table to determine
if any files should have been, but were not,
referenced by file extension or line counter
specifications. Diagnostic codes are
printed for files which require a reference.

Enter Phase 3 is called when an input
record with an I (input specification) is
detected. The internal sequence number is
incremented by one and moved to the sequence
number of the first input specification.

SWITCHES AND INDICATORS

INDSW

X'08" One RAF is present. Left ON for
rest of Enter Phase 2

X'10" An RAF or chaining file that
specifies a conversion routine name
is being processed

X'20' An RAF (not a chaining file) is
being processed or a second table
name is specified

X'40' At least one line counter speci-
fication has been processed

X'80' 100 table file extension speci-
fications have been processed.
Left ON

ZEROSW

Contains the highest character processed
during a scan of a numeric field. It is an
error if this switch contains a zero or
blank at the end of a complete scan.

MAIN ROUTINES
ENTER2

® Reads the input record, and verifies
form type

® Sends line counter specifications to
LCNTER

@ Verifies from filename of file extension
specifications, in the file name table,
along with the corresponding type byte

® Sends chaining files to CHAING

CHAING

e Diagnoses chaining files by verifying
number of chaining field entry (1-9)

® Diagnoses record address files

® Verifies the to filename and correspond-
ing type byte in the file name table

CONESY

® Diagnoses the name of the conversion
routine entry (table name) for RAF or
chaining files

® Compresses chaining file entries

® Verifies conversion routine name in the
field name table

RAFCMR
® Compresses record address file entries
(Appendix E)

® Turns off INDSW setting X'20' and turns

on setting X'08'

TABLER

e Diagnoses table files by wverifying the
to filename entry with the corresponding
valid type byte in the file name table

e Verifies number of table entries per
record, number of table entries per
table, length of table entry, decimal
position, and sequence entries

e Converts length of table entry to binary

@ Verifies table name and moves it into
field name table

C46B

e Diagnoses the second group of table en-

tries in the same manner as TABLER does
for the first group

TABLEC

® Routine for table file compression

LCNTER

® Diagnoses line counter specifications by
verifying filename in the file name table
and verifying the line number and channel
number entries

® Converts the line number entries to
binary and stores them in the line
counter table

® Compresses the entries and the table

COUNTE

e Updates the sequence counter

® Prints the specification and the related
diagnostic codes

® Returns the program to READ

ENDPHC

® Scans the file name table to determine
if there are file extension or line
counter specifications missing

® Calls Enter Phase 3 as the last logical
step of this phase

SUBROUTINES

All returns are made from the subroutines

by an instruction BR REG1ll unless stated
otherwise.

SUBNUM

e Diagnoses individual columns of a numeric
field for valid numeric characters or
blanks

e Exits via register 9 if an error is
detected

ALPAMR
e Diagnoses individual columns of an alpha-
meric field for valid alphabetic or

numeric characters or blanks

® Exits to the location designated by
register 9 if an error is detected

TCOPOF

® Tests compression overflow

Enter Phase 2 25

® Gives the calling sequence to CIOEX
e Puts out compression
ERRSUB

e Advances to the next entry in the error
table

e Exits via register 5
TLOKUP

e Scans the file name table for a given
entry

® Exits via register 14 if an equal entry
is found

e Exits via register 11 when a complete
scan of the table has been made

SUBREF

e Places the reference byte E into the
file name table

SUBCON
e Sets INDSW setting X'20' OFF

e Assigns a diagnostic code for an invalid
conversion name

e Exits to OUT
FLTLUP

e Scans the field name table for a given
entry

e Exits via register 15 if the end of the
table is reached without an equal entry

e Exits via register 9 if an equal entry
is found

e Exits via register 11 if an open entry
(without an equal entry) is found

FDFULL

e Entered from FLTLUP on a full field
name table condition

® Sets INDSW settings X'1l0' and X'20' OFF

e Assigns a diagnostic code for field name
table overflow

® Returns to OUT
SUBC47

e Assigns a diagnostic code for an invalid
number of table entries per record

26

SUBC48

e Assigns a diagnostic code for an invalid
number of table entries per table

SUBC49

® Assigns a diagnostic code for an invalid
length of table entry

e Exits via register 15

A4042

e Assumes length of table entry 1 is 10

SUBC51

® Assigns a diagnostic code for an invalid
decimal position entry or entries

SUBC50

® Assigns a diagnostic code for an invalid
packed (P) entry or entries

SUBC41

® Assigns a diagnostic code for an invalid
sequence (A/D) entry or entries

SUBC27

e Assigns a diagnostic code that indicates
the first three characters of table name
are not TAB

5254

e Assumes length of table entry 2 is 10

SUBCA45
® Assigns a diagnostic code that indicates

the last three characters of table name
are not alphameric

e Exits to OUT
SUBC33

e Assigns a diagnostic code that indicates
the length of table entry for an alpha-
meric field exceeds 256 characters

SUBC38
e Assigns a diagnostic code that indicates

the length of table entry for a numeric
field exceeds 15 digits

INTRODUCTION

The System/360 RPG input specifications are
divided into two categories. The first
type, record identification, specifies the
record codes that identify a record and
relate it to other records in the file.
Field description type specifications de-
scribe the fields of the record. Record
identification type specifications are fol-
lowed by their corresponding field
descriptions.

Enter Phase 3 processes the input speci-
fication source statements. The functions
of this phase are

1. Read specification input statement

2. Diagnose errors

3. Search and update file name table

4. Search and update resulting indicator
table :

5. Search and update field name table

6. Compress specification input statement

7. Print processed statement and applicable
diagnostic codes

8. Scan file name table for error diagnosis

9. Call Enter Phase 4 or Enter Phase 6

Figure 12 and Charts EA and EB illustrate
the organization and operation of Enter
Phase 3.

Figure 13 illustrates the input/output
flow for Enter Phase 3.

LOGIC

In processing record identification type
input specifications, the filename entry is
verified in the file name table. The
reference byte of the located entry is ver-
ified and changed to an R (multidefined) if
it is blank or E. The generated sequence
number from the table entry is entered into
the compression for the specification. The
specification is skipped if a table entry
is not found.

Record identification specifications
without a filename entry are identified by
a record sequence entry. To identify the
records within a file, the sequence entry
is placed in the compression.

In processing field description type
input specifications, the field name entry
is placed in the field name table. The
reference byte is created as blank for a
new entry in the table. If the entry has
previously been put in the table, the logi-
cal AND of the field type byte (gamma) and
the search name field mask are formed. If

ENTER PHASE 3

the result is zero, the field length values
of the search entry and the table entry
(bytes 11,12) are compared. The reference
byte (byte 7) is changed to M (multidefined)
if these values are not equal.

ENTER3, OUTC

TLUI, FLDSCN, INC

SEQOR, ZERO

SEQCH

OPTION, RIND, STACK

REIDC, CZDC, BACK

FIELD, FLCH, CTD12

CTD9A

CTD8, STER1

STRA

CAMPFLD, NAMEST, MATCHF

RICX, PMZTE

STER2A, ERRTNE

SPWR

SKIP, RITLU, DIGIT, NOTEIN

Constants - Literals

Figure 12,

Enter Phase 3 Storage
Allocation Map

Enter Phase 3 27

Ltend
*FA %
* A2%
*

eXeasoseessssccancsecssvsrressssecnvrsccasensvosusncnnne

x
AEREBEAZERRR ERRERNE

AEREALEEREEEAEE M
% ENTER PHASE 3 * READ SPEC M
SEAEOE R RN H
- BEERAERRRERRE -
. . .
eXeaeesvosvreecconcsoncscns -
X .
o outg .
(1)} L " -
.. 'S » » M
o *._VES
*, SPEC = C e®ecesveasX® STORE PHASE #..cceceeX CALL NEXT PHASE -
.. . * NAME H x ¥ * .
“e. o2 REREHENEIRRERRR R : e T :
*"No . .
. . .
. . :
M . .
X . .
c1” e, AEHEAC2UE SRR AR M :
o . . . : .
o *, YES * * - .
2 SPEC = 0 _o¥eceeceesX® STORE PHASE #...... .
.. R - NAME . -
- ¥ » - .
P TERSARAE RO RaE :
* NO .
. .
. .
M .
H .
01" "%, EREKEED2ERRNERANRRN .
o .. Yy :
¥ *, YES * * x * .
#2 SPEC = & o¥..leeeeoX PRINT CONMENT ... X¥ A2 & .
.. - . * » .
. . e :
o RN .
*"ND .
. M
. .
M :
X .
oo .
El .,
o .. - .
o spec =1 T1ed0 x5 spel PR SET 3 X BT SEe ¢ xearnr exa wore
- - - evesossce - -
. R 56 LhRor>cT £*" % * NUMBER S & TTTTTTUCT o *
A PO T T RS REAEERRRE SREEEREAR RN
* YES . X
. M B
: seseseseenaes :
INC 3 ; o :
F1© ., F2" e REARE IR R R RN EEE :
o * . o* *. .
o2 canpe rec Tieres XoSTANDY REC TN saees X emint spec " p
Sy ANDS REC lk.oieenes -‘.‘ GREC TN ShecooenneX TR .
Ce. o Che o0 . prerrTT X :
**ND * : et M
. . ER_* M
: seseseresaas * G2* :
<eaoR H L YES .
61" e, G2~ e, T T T :
=t ey ves ' * v wo * PRINT SPEC * :
#230RY REC TYPEI#1cl.ceioX®D YOR® REC IN 1®eveveecX WITHOUT SEQ eicicvccreccencest
*, ..t ", SEQ ¥ * NUMBER b
Ca, et Ty o8 SEERERRARNENY
* NO »
.
.
X
ey
*EB
. ALs
o
-
Chart EA. Enter Phase 3

When the field name table overflows, the
sequence number of the specification caus-
ing the overflow is saved in the CIOEX data
area. X'FD' is placed at the end of the
table to indicate the table has overflowed.

The resulting indicator table (Appendix
D) is referenced when Enter Phase 3 veri-
fies the resulting indicator entry, the
control level entry, matching fields entry,
field-record relation entry, and field in-
dicators entries. The resulting indicator
specified in a record identification

28

specification is defined by setting the
reference byte REF (used only by this phase)
to X'01' and ORing it with the reference
byte of the corresponding indicator in the
table (byte 3).

The control level entry from the field
description type specification is defined
by setting the phase reference byte (REF)
to X'01'. A chaining field indicator (Cl-
C9) or a matching field indicator (M1-M3)
causes the matching record indicator (MR)
to be referenced. This is accomplished by

B bt

+EB *
* AL
* &
*
X
¥
Al *.
o e, LT
¥ *. YES * *
. FILENAHE eHeel Xk C3 *
%, BLANK .% * *
*. -t o
*,
* ND
.
X
FLDSCN ¥
81" a, EERRENB2 3
- .
FILE *. NO * ?RINT SPEC * * *
*2 NANE IN YABLE *ou . WITHOUT SEQ esseeseX PRINT FRR NOTE cecee
. o * NUMRER * * T
X % . BEERR RS L L e T
* YES -
. . Rk
. * L3 x, .,
- LI
X wke X
o¥e . FIELD ok,
c1 . . c3” e, SEREAACHERE KRR AR
% . o -, weax
- FILE . 1S NO l *
'.‘ VA%&% :DR ¥oosenae - ﬂCD SEQ ﬁLANK '...-....X SPEC H TH SE: eeee X% D1 ‘
*, o “x. o aee
. oF ok BERRE TR AARRAK
* YES * YES
ok, .
* * 0 M
* DI *.X. -
* L .
ookR o X
X FLCH ok SKIP
FreveDLeRrerr ey @02 0.‘
VERIFY RCD * FIELD *, NO * PRINT SPEF * * *
* SEQy NUMBER, * ‘- NANE VALID o%ccsecoceX WITHOUT StQ wesesevaX PRINY ERR VDTE seen
: AN& OPTION : ‘. . * NUMBFR * * .
. .
R L T TR o ok R AR R AEREERREREREE X
N * YES a?u
. : * Aze
. .
X TSFLN X
WK E [R HEERERES EREREEREARK
* *
* VERIFY * » PRINT *
#RES [ND & STACK* SPEC WITH SEQ
* SELECT * P * NUMBER -
RO * * EEEROKESRERRE
. * F2 % .
* * .
. s .
. . .
X . .
REIDC ¥, X STRA X
F1 *. F2
*, * * * *
o® . BUILD b » CALCULATE *
‘. lD PRESENY -'....-.-.X' COMPRESSION ¥ tFIE%D LE”GTN & *
¥ * * * OMPRESS *
- o * * - -
. .k
* YES .
. an . .
. *EQ_* - .
- * G2 *,X. -
. .
. e X .
X ¥ NAMEST X
PHEAGLEC R R ‘cz . FERaGREreeavet
* VERIFY, * INPUT ‘e, vES * TEST, VERIFY *
AND PROCFSS RCD.... SPECS NOTED o%.c00 * ANg LoMPRESS *
b ID CODES * - ok . * CTL. EEV. MF, &
- * . “e. o . *FLD. RCD. REL. &
P T P T o . LI P S
L = NO . .
* * - - -
: F2 : . . .
own M : .
s . s
X . X STER]
2 ‘ M FORREHE SREERARE AR
- * O * * * seRe
Dol §o: i d BRI e
. .oe ceee
* LOG?C - - * - E? RL; - . -
* * - - * e
' . FEEERER SRR Y
eXeoesveosees
x
¥,
J2 *,
o *,
o *, NO
*.. COMP FULL o¥cccccescccccs ceee
- o*
LS.
*"YES
X
FEERRK2EEEEEAEREE

Chart EB.

* WRITS
: CONP BLSCK

- *
PR LTI T LT

Enter Phase 3

¥ eessesccsccnns
*

#® PDEXIseseseseest sttt

Enter Phase 3

29

RPG Phases

SYSTEM Load
R\E/gESu(E:E psx.ggk;; Input Specifications

and Diagnostics

l SYSPRINT

ENTER
PHASE 3

Input Specifications

-

Compression

SYSUTI

Figure 13. Enter Phase 3 Input/Output Flow

setting the phase reference byte REF to
X'03'., The field-record relation entry sets
REF to X'02' and is ORed with the corres-
ponding indicator in the table. The field
indicator entries set REF to X'0l' for

plus or minus and to X'05'
The status of a resulting indicator is de-
termined by the value of its reference byte
(Appendix D). The final diagnostics of the
resulting indicator table are made by the
assign phases.

Each specification is compressed (Appen-
dix E) and after the last input specifica-
tion has been processed a final diagnostic
scan is made of the file name table for un-
referenced, unused, and multidefined en-
tries. The table is then cleared and ini-
tialized for the literal entries to be made
later.

If the next input record is a calculation
specification, Enter Phase 4 is called. For
an output-format specification input record,
Enter Phase 6 is called.

SWITCHES AND INDICATORS

CLSW

X'FF' Indicates an improperly specified
control level

ENTSW

X'FF' Indicates an invalid plus or minus
indicator

FLDSW

X'FF' Entry may be made in the field

name table

30

for zero or blank.

INSW

X'FF' Input specification encountered

FSW

X'FF' Resulting indicator table search
located a valid entry

INIT

X'FF' Specification is out of sequence;
print without sequence number

FIIND

X'FF' AND or OR card not in sequence

MAIN ROUTINES

ENTER3

® Reads the input record and verifies the
form type

® Assigns a diagnostic code for an invalid
specification type

® Tests for an AND card

® Assigns a diagnostic code for an AND card
which is out of sequence

® Tests for an OR card

® Assigns a diagnostic code for an OR card
which is out of sequence

® Sets the alpha byte (bits 1 and 2) to
reflect the record type

RECORD IDENTIFICATION
ZERO
® Tests for a valid filename entry

® Sets the file name table reference byte
to R if blank or E

® Assumes file name if file name and field
name entries are both present

e Sets the alpha byte (bit 5) to reflect
this entry

SEQCH
® Verifies the sequence entry

® Places the sequence entry and the

generated sequence number (from the
file name table) in compression

e Assumes numeric sequence for an error
situation

e Sets the alpha byte (bits 1, 2, and 4)
to reflect conditions tested in this
routine

OPTION

® Verifies the option (0) entry

e Assigns a diagnostic code if the entry
is other than blank or 0

@ Sets the alpha byte (bit 3) to reflect
this entry

RIND
e Verifies the resulting indicator entry

® Assigns a diagnostic code if the entry
is blank or invalid

e Assumes an entry of 99 for an error
situation

e References this entry in the resulting
indicator table

e Places the entry in compression
STACK
e Tests the stacker select entry

e Places the stacker select entry in
compression

e Sets the alpha byte (bit 1) in the
record type compression to reflect the
entry

® Assigns a diagnostic code for an entry
other than blank or numeric

REIDC

e Diagnoses the record identification
codes entries

e Assigns diagnostic codes for embedded
blanks and non-numeric entries

e Assumes an entry of N if the NOT entry
is other than blank or N

® Assumes an entry of C for an entry other
than C/%Z/D

® Moves the entry into the T byte of the
record type compression (Appendix E)

. ® Moves the number of record codes into

the alpha byte (bits 6-7) of the com-
pression

® Writes the compression block when full

FIELD DESCRIPTION

FIELD

e Diagnoses the field name entry by check-
ing for left-justification, alphameric
characters, and embedded blanks

CTD9A

e Diagnoses and packs field location
entries (from and to)

e Verifies the entries for decimal
positions

@ Clears field indicators if they are
present

® Verifies the length of the alphameric
or the numeric field
STER1

e Diagnoses the entries that describe a
sterling field

e Calculates and converts the field length

STRA

® Calculates the binary length for a packed
numeric field

® Stores the decimal positions and the
field type indicator in compression
(field type)

CMPFLD

® Searches, tests, and adds to the field
name table

@ Places the field name in compression
(field type)

NAMEST

e Diagnoses the control level entry

e Enters the control level entry specified

in the resulting indicator table and also
into compression

Enter Phase 3 31

® Assigns a diagnostic code if the speci-
fication entry is not valid
MATCHF

e Diagnoses the entry for matching fields
or chaining fields

® Branches the program to RICX for a
chaining fields indicator

@ Verifies a matching fields indicator
(any other entry is assumed to be a
matching fields indicator) for an entry
greater than 3

® Sets the alpha byte in compression to
reflect this entry (bit 1 and bit 7)

e Moves the indicator to compression

RICX

e Diagnoses the entry for field-record
relation

® References the entry in the resulting
indicator table

® Moves the entry into compression

® Sets the alpha byte (bit 2) to reflect
this entry

® Assigns a diagnostic code if the entry
is invalid
PMZTE

e Diagnoses entries for field indicators-
plus, minus, zero, or blank

® References a valid entry in the result-
ing indicator table

e Moves the valid entry into compression

® Sets the alpha byte (bits 3, 4, 5) to
reflect the indicator entries

STERZ2A

e Diagnoses the entry for sterling sign
position

® Analyzes each position of the field for
a blank or numeric character

® Replaces blanks by zeros

32

® Compares the entry to the from and to
entries of field location

® Moves the entry into compression

® Sets the alpha byte (bit 6) to reflect
this entry

e Places a D in the type of specification
position of compression

OuTC

® Sets up the linkage to Enter Phase 4 or
Enter Phase 6

® Scans the file name table for unrefer-
enced, unused, and multidefined file-
names

® Clears the file name table

® Prints each error and diagnostic code

SUBROUTINES
TLUl

® Scans the file name table for a given
filename entry

® Assigns a diagnostic code if the entry
is not found

FLDSCN

® Scans the field name table for a given
field name entry

® Sets FLDSW if there is a space for an
entry to be made

e Verifies the usage of an entry that is
found in the table

® Assigns a diagnostic code for invalid
use of a field name

ERRTNE

e Sets up the diagnostic codes to be
printed by the print error service
routine

® Returns via Register 5

SPWR

® Prepares the input specification for
printing by PNTSPC

® Returns via Register 14

SKIP ® Updates the reference byte to reflect
an OR condition if the indicator is

e Skips a specification that is a comment found
or contains an error that prevents
further processing ® Returns via Register 15

® Reduces the sequence number
DIGIT
e Prints the specification and the error
code if applicable
® Verifies and packs a given four-position

® Returns to RDSPEC numeric field
RITLU
® Replaces invalid characters and embedded
® Scans thé resulting indicator table for blanks by zeros in a position-by-position
a given entry scan for numeric characters

Enter Phase 3 33

ENTER PHASE 4

INTRODUCTION

Enter Phase 4 is a preprocessing (partial
processing) phase for the calculation spec-
ifications. The preprocessing consists of
scanning the specifications, building
literal entries, and performing preliminary
diagnostics. In addition, specifications
containing the operation codes EXTCV,
RPGCV, KEYCV, RLABL, ULABL, TAG, GOTO,
EXIT, and ERPGC are compressed in format,
but not actually entered into compression
until Enter Phase 5.

The remaining specifications, partially
processed, are referred to as preprocessed
specifications. They will be compressed in
Enter Phase 5.

All specifications, whether compressed
or preprocessed, are written on work data
set 3 (SYSUT3), with any applicable error
notes, for processing during Enter Phase 5.

When the first output-format specifica-
tion is encountered, it is written on SYSUT3
and Enter Phase 5 is called.

Figure 14 and Charts FA and FB illus-
trate the organization and operation of
Enter Phase 4.

Figure 15 illustrates the input/output
flow for Enter Phase 4.

LOGIC

The specification is checked to determine
its type, i.e., output-format, comment, or
calculation. Only calculation speci-
fications are processed by Enter Phase 4.

The factor 1, factor 2, result, and op-
eration fields are scanned in that sequence.
Blanks or a field name in factor 1 cause a
branch to scan factor 2. If factor 2 is
blank or contains a field name, the result
field is scanned. A literal in either fac-
tor field causes a literal entry to be built
(for use in building a literal table in
Fnter Phase 5) before proceeding with the
next scan. A literal entered in result
field is an error condition.

Following the factor entries and result
field entry processing, the operation entry
is checked. 1If it contains one of the op-
eration codes to be compressed by Enter
Phase 4, it is verified (Table 4), com-
pressed, and written out on SYSUT3.

Verification consists of checking for
the presence of the proper factor and/or
result field entries for the particular op-
eration code (Table 5). If the operation
code is not one of those to be compressed by

34

Enter Phase 4, the specification is written
on SYSUT3 without being compressed, and
the next specification is read.

BEGIN

SCNSPC

OPCODE

FACSCN

NUMSCN

FORPAK

ALFSCN

VERFLN

Op Code l-byte equivalents

TESTCL
TSTIND

FLDSCN

GETLEN

OPCK1
ENDSPC
CALFIV
WRTOUT
ERROUT
READX
RITLU

EXTCV

TSTVB
EXNAM

Operation Code Table

Program Constants

Program Variables

Figure 14. Enter Phase 4 Storage Allocation

Map

HREEA R R R
* *
* ENTER PHASE & *

FEEERERRERRERRR

*.

*.
*. YES

e¥esensescsentencrtcssscssssscsncarsssssacssnnes
*

sncese READ SPEC
*

aXaseoesesesacssetecsnceseceesesscnscnsssnsecencesesscssacsscnsson
BEGIN X
REREERA D KRRk kR R A REE

*

FREREERRRREEE
CALFIV
* WRITE * * * *
e X SPEC ON _RLD . aeeX CALL NEXT PHASE
* DATA SET * » * *
ARk AR EEERRERR SRR R

X

ERROUT FNNSPC

P R R R R R R RN

* «
ok *, NO * INVALID * * * * * -
*. SPEC = C Heeeeees s XXSPEC 'VPE NOTE *..c00aeeX WRITE BUT THIS ceeecacsX WRITE _ERROR eves
3.‘ *.' : ERROR : * SPEC * * NOTE .
“e. .t; P e L e L AEEEEEEERRREE
* YES
X
ok
£1 .,
* *,
o*
*. F1 BLANK -
*. ' . X
, o bt
L FB8
* NO " AL%
- * %
. *
SCNSPC X
P T S e
-
-
*PERFORM FACTOR *
* SCAN *
FEERAE ROk
.
X
ke TFACT2 *e
Gl *. G2 *o SEEKRGIHRKERERRER
o* -, * -

o *. YES o “e. YES * *
*#IFL = LITERAL IxeoloeeeoxsEL VALID LIT o0 looccoxt BUILD LITERAL %

*
£1 “#. NO * SET .
cea®iz FIELD NAME 2¥ceeeueeoXXERROR TNDICATOR®ceecaneeoacosaneX
- *, * * *

. o*
o %
*"ND
.
.
X
e
H® T
¥
YES .*
M LR o
X LI
P *
SFB *
* Al*
%
*

“x. o H M
", . SRR R E e
* NO N

X
Eddad ird 22 2122
- *

.
.

* *
AEEARERAREERNEK

Chart FA. Enter Phase 4

Enter Phase 4

35

R bt

FACSCN -
Al
o *,
YES ¥ x,
« FACTZ BLANK .*
-, o
.. o
oLk
NO

e 0000 B
.

haduia i3S 222 22T L L2
* *

* *
*PERFORM FACTOR *
* SCAN *

. *o
¥ F2 -
*.= FIELD NAME
., o
., ¥
o
* YES

P

P R R R R R T TR

X
¥
El -
* .,
-,
RSLT FIELD %
‘.. BLANK .*
Ceo ot
* NO

YES o7

en¥a

#xs 300

%,

F1 *,

o
o¥ RSLY
*, FLD = FLD
*. NAME B
- %
o ok
* YES

esesarsa it es s

ceesscsvsosXa

‘e, N0

e¥eeonsonaX

* *
PR LT ST e
x
¥, o
c1 *, €2 *,
o* *, o* -,
o* *, YES L
¥.F2 = LITERAL v®ascccsneX¥, VALID
*. * .. -
L ¥ *, ¥
* .* *, L®
* NO * NO
: .
X :
%o X
1 *, EARD 2K R R
* -

0 ?ET *
‘..-.....X:ERRDR NDICATns'

* *
EERRERRR R
.

x

AERRRE2 R KRRk
* *
» SET *
:ERRDR anlCAngt

* *
FEEERER AR

“Xeaeovessseasasssnancnnace

OPCODE X
SERSRGLEREkkbRERE
- *

* *
:PRDCESS op CDDE:

* *
ERERRRERE RSN

e 000

H1 L

*, T
.PROCESSED.
. o
oo
*"No

e s e

VERFLN .
J1
o

.
. *. ND . SET .
#2,IS OP VALID Z#........x® UP ERROR NOTE %.eeeeeeoraeanaX

*
<
m
)

(=73 3
ZX #Xe oo e
|

*
*
*
.
*
*
*

AEREERAERRREE

Chart FB.

36

- *, -
* 1s op *. YES *
8! .'....-...X'.ls

¥,
H2 *e

*

*
.
.

»

xs a8 %

Eed s N PA RSS2 E 2 1Y
» *

* *
EEERERREERR R IR

Enter Phase 4

YE

sescesecsccccansnesX R
IN

CALNUM
EERRRCTRRR SR ARRR
* -

* -
esX* BUILD LITERAL *
* *

* L
kR Rk kR

“sceresasssesnanaes

bl AL UERLE L L L2
*

*.
*, S Bug%n *
SPEC VALID.%¥eveeoaee X*CNMPRESSION FOR®
* * SPEC *

Ld *
RL R LRIt 2t

e

P E L P e P e
¢ WRITE SPEC *

ORD S ALB
FORMAT ION FOR
PROCESSING

A~

e
. T

* BEmexs e
*N»
LT 2

RPG -Phases

SYSTEM
RESIDENCE
VOLUME

Load
ENTER
PHASE 4

Calculation
Specifications

ENTER
PHASE 4

Figure 15.

Preprocessed
Specifications

SYSUT3

Enter Phase 4 Input/Output Flow

Table 4. Operation Code 1-Byte Equivalence
Table
Operation Hexadecimal Operation Hexadecimal
Code Equivalent Code Equivalent

ADD FA TESTZ DC
Z-ADD F8 GOTO C4
SuUB FB TAG E8
Z-SUB F9 EXIT Cc5
MULT FC RLABL E9
DIV FD ULABL EA
MVR FE SETON Cl
MOVE D2 SETOF c3
MOVEL D6 LOKUP Cc8
MLHZO D7 RPGCV C2
MHLZO D5 EXTCV c7
MHHZO D1 ERPGC Cé
MLLZO D3 KEYCV EB
COMP DA

SWITCHES AND INDICATORS

DECSW

X'FF'

Set if factor scanned in FACSCN

starts with a decimal point

X'00' Cleared

ERSW

X'FF' Set if a required field name is miss-
ing on operation codes EXTCV or RPGCV

X'00' Cleared

FDWS

X'FF' 1Indicates field length entry is not
valid numeric

X'00' Indicates field length entry is not
blank

FSW

X'00' Cleared at start of table search

X'FF' Set if find made

MINSW

X'FF' Set if factor scanned in FACSCN
starts with minus sign

X'00' Cleared

PAKSW

X'00' Indicates factor scanned in FACSN
starts with plus sign or apostrophe

X'FF' Set when character from specification
has been moved to PAKAR

TOTSW

X'FF' Set if control level specified

X'00' Cleared

USESW

X'FF' 1Indicates factor field name

X'00' Indicates result field name

FLDMSK

xx11xxlx All other field names (normal)

xx111x11 Result field of a KEYCV follow-

ing an EXTCV

11x11111 Factor 1 of EXTCV, RPGCV

111x1111 Factor 2 of EXTCV, EXIT

x111lxx1ll Factor 2, result field of a

LOKUP

xx11lxxll RLABL

111111x1 TAG, GOTO

x111111x ULABL

Enter Phase 4 37

Table 5. Summary of Operation Specifications

O = Optional R = Required b = blank
Operation G| ndicaters | Fe5IT| Oparation | Fegier | B | | Dettions | Adjost | indieaton

Add (o} o R ADD R R o (o]
Zero and Add O b Z-ADD R R o (@) O o
Subtract [e] o R SUB R R o o (¢] (@]
Zero and Subtract o (o) b Z-SUB R R (e] o] O
Multiply (@) (o] R MULT R R () 0o (¢] O
Divide (o] o R DIV R R () O O o
Move Remainder O (o} b MVR b R o o b b
Move (0] (0] b MOVE R R o} b b b
Move Left (o] o b MOVEL R R o} b b b
Move High=to-Low Zone (o] O b MHLZO R R O b b b
Move Low-to-High Zone (o] (o] b MLHZO R R (o] b b b
Move High-to-High Zone O (o} b MHHZO R R (0] b b b
Move Low=-to-Low Zone (o] [®) b MLLZO R R o b b b
Compare o o R COMP R b b b b R
Test Zone O O b TESTZ b R R R b R
Exit to a Subroutine (@) o b EXIT R b b b b b
RPG Label o b b RLABL b R (@) O b b
User's Label O b b ULABL b R R R b b
Branching or GOTO o (¢] b GOTO R b b b b B b
Providing a Label for GOTO (@] b R TAG b b b b b b
Set Indicators ON O o b SETON b b b b b R
Set Indicators OFF (e) b SETOF b b b b b R
Table Lookup (e] (¢] R LOKUP R o (¢] o b R
RPG Conversion (@] b R RPGCV b R R R b b
End of RPG Conversion (o] b b ERPGC b b b b b b
External Conversion Routine (¢] b R EXTCV R R R R b b
Record Key O b b KEYCV b R O (0] b b

38

FACTSW @ Checks control level indicator usage for
calculation specifications

lxxxxxxx Factor 1 if field name
xlxxxxxx Factor 1 is a literal SCNSPC
xxxxlxxx Factor 2 is field name
xxxxxX1xx Factor 2 is a literal ® Determines which field (factor 1, factor
xxxxxxxl Result field name 2, or result field) will be scanned by
FACSCN

ERBYT OPCODE
1xxxxxxx Factor 1 not a field name e Compares the operation entry to the list
x1lxxxxxx Decimal positions invalid of valid operation codes in table OPSYM
xx1xxxxx Field length not specified

or invalid ® Branches to either an error routine or an
xxxlxxxx Invalid operation code operation code handling routine
xxxxlxxx Required factor 1 missing
xxxxxlxx Factor 2 missing or invalid CALFIV

xxxxXx1x Result field not factor name
xxXxxxxxl Specification types not 0,*, or C e Calls in the next phase

EXTCV
ERBYT+1
® Processes EXTCV, RPGCV, KEYCV, RLABL,
lxxxxxxx First column of resulting and ULABL operation codes
indicator not blank or N
xx1lxxxxx Factor name used improperly ® Places the compressed specification in
xxxlxxxx Field length exceeds 256 bytes the output buffer
xxxxlxxx No control level entry but
TOTSW is ON EXNAM
xxxxxlxx First position of control level
not L or invalid e Handles EXIT, TAG, and GOTO operation
xxxxxxlx Invalid resulting indicator codes
entry
xxxxxxxl RPGCV or EXTCV result field
length invalid SUBROUTINES
IBYT FACSCN
1xxxxxxx Compressed specification in e Scans factor and result field entries
record
x1xxxxxx Invalid specification ® Branches to the appropriate routine to
xx1xxxxx Preprocessed specification handle an alpha literal, numeric literal,
xxxxxlxx Compressed specification and it or field name
caused name table overflow
e Determines which branch to take by the
first position of the field
ABYT
Refer to alpha byte in Appendix E. NUMSCN
® Scans either factor 1 or factor 2 for a
MAIN ROUTINES valid numeric literal
BEGIN ® Packs the literal into the work area

called WKCOMP
® Rewinds the work data set

® Moves a specification to the output ALFSCN

buffer
® Builds the alpha literal entry for the

® Determines specification type literal table

Enter Phase 4 39

VERFLN

® Scans either the factor 1 or factor 2
or the result field entries for a valid
six-character (maximum) name

TESTCL

® Verifies the control level entry

TSTIND

® Checks the validity of any indicators in
the 9 byte indicator entry

FLDSCN

® Scans field names and builds the field
name table

® Verifies field name usage (factor or
result field entry usage sometimes not
allowed)

GETLEN

® Checks the validity of the field length
entry and converts it to binary

® Checks the decimal positions entry for
proper usage

ENDSPC

e Initiates a branch to write a specifica-

tion (WRTOUT)
® Reads a specification (READX)

® Continues (START)

WRTOUT

® Writes a record on SYSUT3

ERROUT
® Sets error indication

® Branches to ENDSPC

READX

e Initiates reading a specification

RITLU

® Searches the resulting indicator table

40

® Sets FSW to X'FF' if a find is made

TSTVB

® Checks for an IDCV or a KEYCV operation
code following an RPGCV or EXTCV

FORPAK

® Moves information from the specification
into an intermediate storage location in
preparation for packing

OUTPUT RECORD FORMAT (RLDBUF)

Compressed Specification

RLDBUF = 132 bytes

RLDBUF to RLDBUF+79 Original specification

RLDBUF+80 IBYT

RLDBUF+81 SAVEOP - 1 byte oper-
ation code (present
only with IBYT of
X'80', X'88',or
X'20")

RLDBUF+120 ERBYT

RLDBUF+121 ERBYT+1

RLDBUF+84 Length - 1 of com-

pression (used with
IBYT of X'80', or

X'88"')
RLDBUF+85 to Available for
RLDBUF+131 compression

Preprocessed Specification

RLDBUF = 132 bytes

RLDBUF to RLDBUF+79 Original specification

RLDBUF+80 IBYT
RLDBUF+81 SAVEOP l-byte opera-
tion code
RLDBUF+82 FACTSW
RLDBUF+83 to Factor 1 literal* as
RLDBUF+94 follows:
1 byte; length of en-

try +2 (hexadecimal)

1 byte; decimal posi-
tions (unpacked num-
ber)

1-8 bytes; literal

1st byte after literal;
number of digits in
original entry minus 1
2nd byte after literal;
decimal positions

*Tf there is no factor 1 and/or factor 2
literal, data remaining from previous
specifications will be present except
in byte RLDBUF+86 (alpha byte), which
is initialized to X'00'.

RLDBUF+95 to
RLDBUF+106
RLDBUF+107 to
RLDBUF+131

3rd byte after 1lit-
eral; padding X'FF'
for numeric literal,
X'FO0' for alphameric
literal

Factor 2 literal?,
as above

X'00' or

information

remaining from pre-
vious specifications

*If there is no factor 1 and/or factor 2
literal, data remaining from previous
specifications will be present except in
byte RLDBUF+86 (alpha byte), which is
initialized to X'00'.

Enter Phase 4

41

ENTER PHASE 5

INTRODUCTION

Enter Phase 5 reads, lists, diagnoses, and
compresses the calculation specifications
prepared in Enter Phase 4. This phase uses
data from the preprocessed calculation spec-
ifications to continue to search and build
the field name table, resulting indicator
table and literal table.

The data record from the SYSUT3 can
have one of five formats

1. Specification with compression and
error notes (if any)

. Specification with an error note

Specification with literal entries

Output-format specification

Comments

s wN

Those specifications with compression are
assigned a number in sequence and written
on SYSPRINT. If there are errors, the
error note numbers are printed immediately
following the specification. The compres-
sion built in Enter Phase 4 is entered into
the compression area.

Calculation specifications that have
been diagnosed as invalid are printed with-
out a sequence number. The error note as-
signed to the specification is printed im-
mediately following the specification.

Those specifications that were prepro-
cessed in Enter Phase 4 are verified and
compressed in this phase. The specification
is examined to determine if it meets the
requirements of the operation code (e.g.,
SETON requires that resulting indicators be
specified and valid). If it does, the spec-
ification is considered valid and is as-
signed a sequence number, printed, and
compressed.

If the specification is invalid, it is
printed without a sequence number, and the
error note associated with the specifica-
tion is printed immediately following.

In order to retain as much source data
in storage as possible, all unnecessary data
is deleted from the calculation specifica-
tions, and the resulting data is placed in
the compression area. Appendix E illus-
trates the format of the compressed specifi-
cation.

Figure 16 and Charts FF and FG illustrate
the organization and operation of Enter
Phase 5.

Figure 17 illustrates the input/output
flow for Enter Phase 5.

42

LOGIC

The specification is checked to determine
its type, i.e., output, comment, or
calculation. Only calculation specifica-
tions are processed by Enter Phase 5.

START

TSTOPC

FINSPC

FIRTN, F2RTN, RFRTN

STFLSH, RIRTN

SETON,SETOF ,MVR, TESTZ

BTASCN

VERIND

TESTCL, TSTIND

RITLU, MVIND

FLDSCN

GETLEN

LITLUP

ERSKIP

SKIP

1/O Service Routines, Constants, Switches

Figure 16. Enter Phase 5 Storage Allocation

Map

FERRAL R R REREE

*
: ENTFR PHASE § :
AR AR

.
[T
X

ELE R TR 2 2 2 22 L]

* READ RECORD *
SYSUT3
* *
P
%
ok
Cl *, REAKC
.. .. . -
o* IS SPEB *, Y * SET _UP * * *
, AN OUTPUT o¥esasoeeeX® NAME FOR NEXT X,o.0veeeX CALL NEXT PHASE
*.. SPEC t.' : PHASE : * *
Tk oot P e LI e
* N
x
FEEEIDLER R RS
* MOVE BODY OF %
* SPEC TO PRINT *
*BUFFER (MVSPC) :
P e R L
H
E1° e R E2 AR R AR AR
o* *, o
o¥ IS *. Y * - * *
, SPEC A e¥seo0eceeeX PRINT COMMENT o.eoX Bl *
, COMMENT . * * *
EN o ey
e oW ARERAR R
* N
. K
. *FE %
- * FZ'*...
X o .
*
Jeeen

* PRINT *
sseeX . ERROR NOTFS .

* PRINT
SPEC WITHOUT
* SEQ. NO.

*
. ok - s
. ok . TR AR PR e X
"y . R
. . * %
- . * Bl *
. . * *
. . e
X
L
Gl .
o IS *.
o* SPEC * -
*o INVALID CALC <*cevees
. SPEC o
*, -
. o
* N
X
o,
H1 *o
«*[S SPEC*.
o *
*.PRE-PROCESSED. -
*. SPEC o¥ X
, o it P hed
ok *FG * FF %
N * AL¥ * J5%
. * % %
. *
. .
X . H
.%o ¥,
kR J | B BEEEES 2R AR FEN FEEEREJGEREREREEARE 45
* « *o -*
*MOVE gUMPRSSSEDO * L] ¥ ARE *, Y * PRINY * . lg
* SPEC T XocesoaseX PRINT THE SPECe soesceeeX®,THERE ERRORS o¥eeccoeceX ERRIR NOTES eeveceseX¥, COMPRESS
* COMPRESSION * * * . . * * - BLOCK
* * LS ok * EULL L ¢
TRRERRER R R R e T e . AR RERARRE *, .;
N *
. . _EEER
. - ¥
X eeX¥® Bl *
Py
* * LT
* 45 &
* * AEEEEEKG R EAEEARREE
LT

Chart FF. Enter Phase 5

. WRITE »
COMPRESSION Xees
. 81.6CK .

RERRREERARRRER
X
Rl 2]
* -
* B1 *
sEeE

.
-
.

Enter Phase 5

43

*FG % * * * *
* ALK * A2 & A4 &
- * * L
* Ty ok
. . .
. . .
X X X
Faade IR AR AR A 2R R ARk 'Ab' 't_ ott-xgsst-taotta:
- *
TERMINE * MOVE 0P * ESULT NO oy
‘np CODE RUUTINF‘ * CODE Y0 * ...X'.FIELD PlFSFVT '..-.....X'RESULT FIELD ’D
. {75 : COMPRESSTON : - COMPRESSTON :
P M FRORRRE RO SRR
. N
X X
¥ ¥
L1} *. a2 .
¥ 0P -, o LS * - .
. o N ¥ N * STORE _DUMMY * .
*.RFQUIREMENTS o%*uees *,FACT2 PRESFNT 0.....-..!* FACT2 IN ¥oensa .
*. MET ¥ - *, ok COMPRESSION * .
. o . *, o : * M
o o X *, ok Rk :
="y REEE xy . .
. *FF % . - -
. * F2% . .
. - x .
. * -
% H %
LT T S T TR c2’ 'u.. A ARARC 3 SRR AR badddd il Ll
o . * * *
* PRINT * % FACT? %, N ¥ SCAN AND * * MOVE RESULT %
SPEC WITH SFQ #. A LITERAL .*...ee.ao.X% BUILD FIELD * * * .
* NUMBER * *, ¥ * NAME TABLE * * COMPRESSION * -
., o * * * * .
EREREEERRE R x, % ekkkk .
. *y . . .
:
. . tesveecscace
H % %
o1t FERRRDZERRE LxRRE R AN G bR ARk
<*CAN 0P *, SCAN * - FORM *
. HAVE *. N AND RUILD . * LENGIH, DEC, *
*, lNDlFATORS e*aeee ' LITERAL TABLE * . *P0S. A&HA. AND*
o . » (LiTUP) * . * HALF-ADJ *
“x. - . » £ . ENTRIES *
% . ERRE R R . PO LI I R T
.y
. . . . N
. - eXeoseesasnacsssccsccassnne -
3 : X H
‘rl' . AR EEH Rk ERRREG KRR AR RE
. - » *
*. N X * * % PLACE THESE *
2 YHFV PRESENT .‘-... * FAFY? “10 * * FIELD IN *
e o . : COMPRFSS. : * COMPRESSTON *
* .‘.a' : P LI T
Y . . .
: M x N
. . L .
. . * » %
X - A4 ® o
EREEFL R . * » Fé4
* VER1 . L *
* IND. - . EéUL
* COMPR - #. INDICAT
* (TEST . PRESE!
- (TSTY . .
P I . -,
- . x
X X
-, -
FEERREGSEERERRREENE
AR *
CA eeX PRINT ERRDR
AL » NOTE *
R HRAEREERRERE
. .
N X
.]
M *FE *
X * J5%
BEERRHDER R TreesisRseeranErt *
*SCAN IND BU!LD * - PLACE *
«X*_ FIELD N, * IND. 1 *
*TABLFE (ENTFLN) : : COMPRFSS. :
. AEEAREERRERERANNR P e e Y
: . M
. - X
. . L idd
. o ®FF %
X . ' S5k
PRt bt i . b
SCAN . -
* AND BUIL; ‘ .
* LITERAL TAOLE * .
: {LITLUP) : .
B L :
. .
%
badddd ittty
* P% CE *
* FACT1 IN -
: CNNPRESSION :
ARERERATEREAERRE
X
L
* *
* A2 %
* -
Ry

Chart FG. Enter Phase 5 '

44

RPG Phases MAIN ROUTINES

SYSTEM Load Calculation
RESIDENCE ENTER Specifications
VOLUME PHASE 5 and Diagnostics START
SYSPRINT e Rewinds the work data set
Preprocessed
Specifications ® Reads a specification
SYSUT3 552?5 e Determines the type

c , ® Branches to the appropriate routine
ompression

SYSUTI TSTOPC

® Checks the operation code of a prepro-
cessed specification for validity
Figure 17. Enter Phase 5 Input/Output Flow
® Causes a branch to the proper routine
to handle the particular operation code
The ‘information byte (IBYT) is checked
to determine whether this is a preprocessed
specification (not compressed in Enter FINSPC
Phase 4).
If it is not a preprocessed specification e Finalizes the specification compression
this means that it already contains the
calculation specification compression. If ® Checks for a full block
no errors have been noted, the specifica-~
tion is assigned a sequence number, printed, e Branches to read a record
and entered in the compression and a new
specification is read.
If IBYT indicates a preprocessed speci- SUBROUTINES
fication, proper usage of factor and result
field are checked. If no error is found, a F1RTN, F2RTN
sequence number is assigned, the specifica-

tion is printed, the calculation specifica- @ Checks the presence of factor 1, 2

tion is entered in the compression, and a

new specification is read. ® Verifies the usage of the field name
RFRTN

SWITCHES AND INDICATORS
® Tests the result field for a field name

ERRSW e Verifies the usage of the field name
X'FF' 1Invalid specification STFLSH

® Sets up scan of field name table
ERIND

® Verifies the usage of factor 1, factor 2,
X'FF' 1Invalid resulting indicator or result field entries
FLDERR RIRTN
X'FF' Multidefined field or improper

field name usage ® Scans the resulting indicators entries
for the presence of valid indicators.

FACTSW, USESW, FSW, FDSW, ERSW, ABYT, ERBYT, The specifications for SETON, SETOF,
IBYT, FLDMSK are carried over from previous COMP, TESTZ, and LOKUP cannot be
phase (see Enter Phase 4 Switches_and accepted unless this requirement is
Indicators) . met.

Enter Phase 5 45

BTASCN

® Scans the resulting indicators entries
for validity and also for valid com-
binations, e.g., greater than and less
than cannot be specified together.

VERIND

® Checks to make sure that LO or 00 are
not specified as resulting indicators

e Verifies that the resulting indicator
entries are each one of those listed in
the resulting indicator table

® Sets the alpha byte in the calculation
compression according to which indi-
cators, if any, are present

TESTCL

® Tests for and, if present, verifies a
control level specification

® Places the specification in the cal-
culation compression

® Sets the alpha byte accordingly

® Assumes LO for an invalid specification

TSTIND

e Tests, then verifies any indicators en-
tries specified in positions 9-17 of
the calculation specifications

® Moves verified indicators into the
calculation compression

® Sets the alpha byte accordingly

® Assumes indicator 00 for an invalid
indicator entry

® Produces a diagnostic message
RITLU

® Scans the resulting indicator table

46

® Sets X'FF' in FSW if a matching entry
is found

MVIND

® Moves any valid resulting indicators
(as specified by alpha byte bits) to
the calculation compression

FLDSCN

® Checks field names against the field
name table

e Verifies that each field name is being
used properly

GETLEN

® Verifies the field length entry

® Converts the entry to binary

e Verifies the decimal positions entry

LITLUP

® Searches and builds the literal table,
using the literal entries formed in
Enter Phase 4

ERSKIP

® Checks the error bytes associated with
the specifications processed in Enter
Phase 4

® Branches to an error-handling routine
(ERRTNE) if an error bit is found

SKIP

® Prints invalid specifications without
a sequence number

INTRODUCTION

Enter Phase 6 reads, sequences, lists,
diagnoses, and compresses the output~format
specifications and makes certain entries
into the literal, resulting indicator, and
field name tables. The output-format spec-
ifications entries define the character--
istics of the records within each output
file, i.e., whether printed or punched,
when produced, etc., and of the fields
within these records, i.e., position in
record, type of data, etc.

In order to retain the maximum data in
storage, unnecessary information is deleted
from the specifications and the result is
placed in the compression area. When the
compression area is filled, it is written
out and a new compression is started. The
format of the compressed output-format
specifications is shown in Appendix E.

Figure 18 and Chart GA illustrate the
organization and operation of Enter Phase 6.

Figure 19 illustrates the input/output
flow for Enter Phase 6.

LOGIC

When Enter Phase 6 is called, the first
output-format specification has already
been read and its type has been determined.

The phase must first determine if the
specification is defining a record to be
output or a field within the output record
defined previously. It must also recognize
AND and OR types, which are actually con-
tinuations of or new sets of conditions for
the preceding record line.

If the specification is a record type,
the appropriate diagnostics and compression
are performed. Undefined and unreferenced
output file names are not detected at this
time, because the file name table has been
destroyed to make way for the literal table.
The AND and OR types are checked to see that
they follow record specifications rather
than field specifications.

If the specification defines a field in
the output record, the column entries are
checked and the appropriate diagnostics and
compression are produced. The presence of
an entry in field name is tested and, if
there is one, the field name table is
searched to determine if the field has been
defined previously. The result of the
table search will be one of the following:

1. The field is in the table. The gamma
() byte is tested with the proper mask.

ENTER PHASE 6

If the result of the test indicates that
the field is inappropriate for an output,
the reference byte is changed to M
(multidefined) regardless of its

present contents.

START, BEGIN,READ, INIT

D01 - D09

FLDCHK

LITRT

CONCHK

EDWCHK

E23

RECORD

ANDOR

CHKIND

RILOOK

OUT,PRINT,ERROUT

ERRNUM

NUMER

ALPHA

Switches and Indicators, Constants, and Storage Definition

Figure 18. Enter Phase 6 Storage
Allocation Map

Enter Phase 6 47

R ERA L RERERE RN

-

: ENTER PHASE 6 :
EIZ R 2 IS 2L 2])

e

HERREBL AR ERARRR RS

[*

- *

INITIALIZE SEQ.

: NO. CTR. :

R ARREERBR R AR
.

.
sesesacecccscscnsecncacneXe
X

e

READ
HRRERRA KRR

it

» *®
READ NEXT SPEC
* *

AR

*xe s ane

B2 *e
.t *,

ENU 0F SPEC

¥,
c2 *.

s “x.
*2 COMPRESSION
*, FULL ok

o W%
* NO

Xeesae

“"‘DZ.;*.'.“"
* REINTTIALIZE *
T COUNTERS, ¥
SWITCHES *
STORAGE, TABLES
RS kAR Rk
:
i
..
E2 *, EEREKKEL PSR ARRRR
. -, ok 'S *
. IS *. YE . tsrncn;n. goACk.S
#ICOMMENT SPEC .%.0. X% H2 # * H/ 0/
. . » AN M
. o e SErLENANE, Erc. *
*, L% Pt FNA 4
*"NO !
: |
: |
X i
o "t
F2" . ! LS
*. I ¥ Rk
ERROR *. RECORD ? oKk w
ceutl TVPE oF spec..t..................................x* gpec VR otvv.t....x‘ 7 %
. “x, o ., .o JO,
X e o . o ¥
o « ** ERROR
L] . .
* GA % .
* :
EE i1 - -
X :
FIELD . X
“Esf F{ELD N‘HE; G2 -, - BEFERAGHEEE AR AR REE
T R
» FORMAT, EDIT # ER .) *
* CONSTART, x .spec VEL!DIYV.'.- PRINT ERRIR
* sriangséTc H ™ R * NDTE .
PRI AL “x. o2 M ARREEERRRRRE
* 0K ik -
Rid i - * * -
* * o * G4 % .
* H2 X0 > :
* * . LLL 4] -
LT .
:'...NZ'!".‘*": :
* BUILD » M
* COMPRESSION # .
* L d -
* b -
RERNEERREEREEREAE
. .
Xasureensnscntnnsnnasnssasunnnssusanntunonnanasnsen
X
HARERE J2RRARRRRE AR
. PRINT
, OUT RECORD
Rl Pt
.
i
Ll 2l
- -
* A2 %
* -
ELi]
Chart GA. Enter Phase 6

48

Lt L EE LSS L P]
YES * =
PSS | 2ALL NEXT FWASE

AEERRRRAAR SN

FEERRECIERRERERR R AR

S * NUTPUT
e¥eoesneneX COMPRESSION
* OVERFLOW *

Rk

RPG Phases

SYSTEM Load Output-
put-Format
RESIDENCE ENTER Specificatiors
VOLUME PHASE 6 and Diagnostics

Output=Format
Specifications

l SYSPRINT

ENTER
PHASE 6

Compression

SYSUT1

Figure 19. Enter Phase 6 Input/Output Flow

If the test indicates the field is
appropriate for an output, then the ac-
tion depends on whether it is a PAGE (n)
field. For a field that is not PAGE(n),
the reference byte is checked and
changed to R (referenced) if it contains
a blank (defined but unreferenced).
Otherwise, the reference byte is not
changed. If it is a PAGE(n) field,
both the reference byte and the decimal
position bytes are checked. If the
reference byte is blank (defined but
unreferenced) or U (referenced but un-
defined), it is changed to R. The
decimal position must be zero. If it is
not, then it is changed to zero and the
reference byte is changed to M.

2. The field is not in the table, the table
has not overflowed, and it is a PAGE (n)

field. PAGE(n) fields are entered with
a reference byte of R, a length of four
(entry of X'03'), a decimal position of

zero, and a gamma byte of X'80'. If a
PAGE(n) entry causes a table overflow,
X'FD' indicator is placed at the end of
the table and the specification sequence
number causing the overflow is saved in
the CIOEX data area. The PAGE(n) entry
then will be handled later by Assign
Phase 2.

3. The field is not in the table and the
table has overflowed. The specifica--
tion is compressed and processing
continues. Any such overflow fields

) will be handled by Assign Phase 2.

4. The field is not in the table and the
table has not overflowed, and it is not
a PAGE (n) field. All such fields are
not processed but are given a diagnostic
noting that the field is undefined.

A field specification may also have an
edit word associated with it. If there is
an edit word, it is translated into an EDIT
instruction pattern and the result treated
in the same manner as the constants
mentioned below.

If a field type specification has no
entry in the field name positions, the
specification is tested for the presence of
a constant. If no constant is defined, the
specification is in error, a diagnostic code
is assigned and processing of the entry is
terminated.

If there is a constant, the literal table
is searched to determine if the constant has
been defined previously. If it has been
defined previously, no further action is re-
quired. If the constant has not been de-
fined and the table is not full, the con-
stant is added, along with eight information
bytes (entry length, literal length, type,
etc.). If the table is full, the procedure
is much the same as for the field name table
above. For a detailed description see the
literal table in Appendix C. :

In addition to the previous testing for
record and field type specifications, the
output indicator positions of the specifi-
cation are checked. If an indicator is
found, the resulting indicator table is
searched. This table is pre-loaded with all
valid indicators; thus, overflow can never
occur. If the indicator from the specifi-
cation is found in the table, the table
reference byte is changed to indicate the
reference. This byte is also checked to
see if the indicator has been previously
defined. If the indicator is undefined,
or if it is invalid, i.e., not found in
the table, it is replaced by the LO
indicator. (The actual substitution is
done in the assign phases, although the
diagnostic code is assigned here.)

If an incorrect entry is encountered in
a specification, a valid entry is assumed
in its place whenever possible and the
processing continued. When an invalid
entry that causes the specification to be
discarded is found, all other entries on
the specification are checked and diagnosed,
if possible.

SWITCHES AND INDICATORS

SWITCH - 1 byte

CONSW XXXXXXK]1 Constant edit is a
constant

EDITSW XXXXXK1X Constant edit is an
edit word

PAGESW XXKXKIXX Field is a page

OUTSW XXXX1xXxX Invalid specification

RECDSW XXX1XXXX Tells field type spec-
ification if preceding
specification was a
record type specifi-
cation

ZEROSW XX1xxXxXXX Decimal positions for

page field must be
changed to zero in
the field name
table

Enter Phase 6 49

TABSW - 1 byte

RREFSW

FDSW

BLAFSW
RITSW

EDSW - 1

XXXXXXX 1
XXXXX1XX
XXXX1RXX
XXXIKXXK

XX1XXXXX

RECERR -

RECERR
NAMERR

EDBYT
XXXXXXXL
XXXXXX1x
XXXXKIXX
XXXX1XXX
INDBYT
x1xxxxx1
1xxxxx1x

1lxxxx1ll

XXX1XxXXX

SPCBYT

XXXXXXX1
XKXXXXX1X
XXXXX1IXX
XXXX]IXXX

XXX1XXXX
XX 1IXXXKXX

X1IXXXXXX

1XXXXXXX

50

XXXXXXX 1

XXXXXX1X

XXXX1XxXX

Xx11xxXxx
11lxxxxxx
1xxxRXXRX

byte

1 byte

XXXXXXX1
XXXXXX1x

Page field is to be
placed in the field
name table

Reference byte is to be
placed in the field
name table

A page field has caused
the field name table to
overflow

Blank after field
Second indicator blank
First indicator blank

Zero suppress
Floating dollar
Zero switch
Negative (credit)
switch

Fill switch

Invalid record
Invalid or missing file-
name

CR (credit)
Minus sign
Floating dollar
Fixed dollar

symbol

Valid first resulting

indicator

Valid second resulting
indicator

Valid third resulting

indicator

Overflow indicator

Packed

Sterling

OR record or literal
AND record or no
blank-after

Zero suppress

Field name or T
(total) specification
D (detail) speci-
fication

H (header) speci-
fication

MAIN ROUTINES

D01 - D09

® Determine the type of specification,

i.e., comment, record, field, edit word,
constant, page, or invalid specification

FLDCHE

e Diagnoses and compresses all field type
specifications

LITRT

e Diagnoses literals (constant or edit

word entries)

CONCHK

® Moves constant entry characters to
compression

EDWCHK

® Analyzes edit word entry and places in
compression

RECORD

e Diagnoses and compresses all record
type specifications including AND or OR

ANDOR
® Diagnoses AND and part of OR specifica-
tions

SUBROUTINES

CHKIND

® Checks presence of output indicators

® Sets bits in compression to indicate how
many indicators are present

RILOOK.

e Diagnoses output indicator entries

e Puts the entries in the
compression

ERRNUM high order blanks

® Obtains the address of the next

empty slot in error table ALPHA
NUMER

® Checks for a valid alphabetic character
® Checks for a valid numeric digit or or $, #, or @

Enter Phase 6 51

INTERMEDIATE PHASE

INTRODUCTION

This phase is entered and executed only

if the user has specified both of the com-
piler options LOAD and DECK. The functions
of this phase are

1. Close SYSIN ’

Phase Logic (INTPHASE) I DCB SYSPUNCH

-]
Figure 20. Intermediate Phase Storage
Allocation Map
RPG Phases
SYSTEM Load
RESIDENCE INTERMEDIATE
VOLUME PHASE
INTERMEDIATE]
PHASE
Figure 21. Intermediate Phase Input/

Output Flow

52

2. Overlay the DCB (in Resident Phase) for
SYSIN with the DCB for SYSPUNCH
3. Open SYSPUNCH

Figure 20 and Chart GM illustrate the
organization and operation of Intermediate
Phase. Figure 21 illustrates the input/
output flow for the phase.

EERE AT ERRREEERES
* INTERMEDIATE *
L o
.

Bltlti’iltt.t
*
CLOSE SYSIN
* *

LTI LSS

tttttcat:t#'t‘.#l

-
* OVERLAY »*
*SYSIN DCA WITH *
: SYSPUNCH DCB :
AEREERE R SRR KRR

.
X
hhadd L DER L LIS Id Ll
* *
OPEN SYSPUNCH
* *

AXRRERR AR
-

.
X
AARRRREG R Rk SR

* CALL
NEXT PHASE
L *

ARk

Chart GM. Intermediate Phase

INTRODUCTION

Assign Phase 1 is the first of two phases
designed to compute and assign addresses
for table entries. Under normal conditions
the first is the only assign phase executed.
Assign Phase 2 is executed only if the
field name or literal tables overflow.

The functions of Assign Phase 1 are

1. Put out the program card to SYSGO/
SYSPUNCH

2. Compute and assign the address for each
entry in the resulting indicator table

3. Compute and assign the address for each
entry in the field name table

4. Compute and assign the address for
each entry in the literal table

5. Put out text cards from the entries
in the three tables

6. Print a symbol table from the entries
in the three tables

7. Enter into the compression records the
addresses from the three tables

8. Put out ESD card images for entry type
and external type table entries

9. Put out RLD entries for external type
field name entries

10. Print diagnostic codes for multide-
fined, undefined, and unreferenced field
names and resulting indicators

Figure 22 and Chart HA illustrate the
organization and operation of Assign
Phase 1.

Figure 23 illustrates the input/output
flow for Assign Phase 1.

LOGIC

The addresses that are assigned to the
table entries are developed in a full word
field in the CIOEX data area. This phase
increments the counter by the appropriate
amount as each address is assigned.

Each resulting indicator table entry re-
quires one byte of storage and each is as-
signed an address. The assigned address is
placed in bytes 4 and 5 of the table entry
(Appendix D). .

The number of bytes required for each
entry in the field name table is deter-
mined by three factors.

1. The field name type (byte 13,
Appendix B)
2. The length of the field (byte 11)

ASSIGN PHASE 1

3. The type of data to be contained in the
field (byte 12)

BEGIN (Part 1)

FIF1

LI(Part 2), NWLN

FELAD

LITAD

OVERLP,ALIGN, COUNT, ZADR, HEXIT

TXTP

CMPSN

LTYP,ETYP,TTYP,RTYP,FTYP

ITYP, DTYP

CTYP

MTYP

RITLU, FLDLU

LITLU, ERRTNE

CIOEX Linkage, OUT

Constants ~ Literals

Figure 22.

Assign Phase 1 Storage
Allocation Map

Assign Phase 1

53

LE it
Al
i ld

L2 Y
new

GFCA
tatottAh&ti##ttttto
R AL IR 22223
*ENTER ASSIGN 1 % esr cjnpnssslog
AR kE KRR
- ERREEERERRE
: L1 g :
: * B4 &.Xo
: =
i L2l :
SRR] RROR R Rk SRR RER KRR Bh~ %,
* ASSIGN ADDRS * . o .
TO RESULTING * MOVE ADDRESS * YES .47 DETECT ‘%,
INNDICATNR TABLE * FROM TABLE TD ‘x.....o.-'. RESULTING .#
® ANG_0UTPU * COMPRESSION *. INDICATAR,*
* ESDIS * : *. ..
RS R LS S 2ol 2 1 HERERRERRER Rk *, ¥
. N *ND
: ; H
RADS X X o
kskekC] wEkREC 5% (Y 1. EHRERC S bR Ry
* AssIgN * * .c *
* ADDRESSES £ * x 15T PASS * L4 RINT * YES * MOVE ADDRESS &
* QUTPUT ESD'S * *THRU FIELD NAME® DIAGNDSTIC [OFTE T 1L’ .*........x' FROM TABLE T0 %
* “FOR TABLE & * * TABLE * * MESSAGE I[F # %, VAME & COMPRESSION #
*INTERNAL NAMES * . * ANY . . .
ok X HEEA ROk *, TEHEREAREERE RO RKRE
. *“no .
. X N
SECPS X Liv2 o' X
D1 2 *ERERDIHRREREREEE *, ERREEENG EREEEREEEER
*ASSIGN ADDRS & * * * * .,
* QUTPUT ESD'S # * 2ND PASS % % MOVE ADDRESS % vES DETECT, *: PRINT .
EOR ENTRY,EXTNL STHRU FIELD NAMEX & FROM TABLE TO #X...... LITETAL #Xe.eeueeo . DIAGYDSTIC
%6 NORMAL NAME &% » TABLE * * COMPRESSION * . . * MESSAGE IF =
*RLDS FOR EXTNL * * * * .. ANY
L ERBEREEEEERE T RE R o o KRR EEERERRKR
N . *«“Np
- . X
LADS X X o,
't‘*‘Fl‘.*"‘.‘l# ERREREEIRRRRERF Sk 'Eb ., Fo
SASSIGN ADDRESS ¥ PRINT - ° _END *. v *
* OT0LITERAL . # DIAGNOSTIC cesasca X8l OF SEGUENT J#ecloX® A4 %
* TABLE ENTRIES * * MESSAGE IF . .
ANY ., * ke
EREEEEERE R RE RN kR E Rk ¥, ¥
. *"NO
: X
RETR X L o*e
. X100° - S END 'c.
= PUNCH . £ I0 INITIALIZE & ND aF
TEXT EDR RSLT * ON & XSFOF * s 84 3x..00el comeREsSIN 1w
* IND » *INITTALIZE OFF * L * %, N
* - RL Ll -, ¥
KRR RERRKERE R REEFREEERRRREERRK ', %
. " YES
. X
60SK X o
AEEEEKEGLAE RN R R HEERERC IR RN RN G6 *, BEREARGH ERERE Rk Rk KK
* PRINT RSLT * . CALL . « CALL TN *
IND_SYMBOL IN ESSIGN 2 X x ASSENBLE
* TABLE L] * * PHASE 1
HEERERKEERR R WhER RN EREEE RN SRR RN
N
NTNU X
HEERERH] R R R
SPUNCH TEXT FOR *
ENTRY, EXTNL &
*NORM' TYPE FLO®
NAMES
bk Rk
.
X
P N T
*
SEXTERNAL FIELO %
NAMES ARE *
* INTTALIZED X
* WITH X900° *
AEERERRRKERER R R
t.“iKl.h CY:gg} FEKZ2REBRREE SRR NoTNY k112 SRRtk ke ok
* NORM €
* TYPE FLD * PRINT FIFLD # * euncH -
*INIT WIT eeX NAMES SYMBOL ee X LETE ALS IN VHB)% TABLE
FLL * TABLE * TEXT CARDS # *FOR LITERALS *
ks kkkk FERERE KRR GRS Rl 22 2211132 EEEEEREE AR RN
.
X
Rl
* »
. A% *
* -
Ei 1]
Chart HA. Assign Phase 1

54

RPG Phases

2 is called to duplicate the table-building

Field Nome, ;
dim|mw function of the enter phases and the ad-
SYSTEM Load i N . . X
Resulting dress assigning function of Assign Phase 1.
RESIDENCE ASSIGN :
Indicator Tables
VOLUME PHASE 1 . A
and Diagnostics
SYSPRINT SWITCHES AND INDICATORS
Compression PASID
ASSI .
PHA&ﬂ SYSUTI X'BO' Second pass of field name table

ESD's and

Toxt RLD LTKEY

SYSGO/ X'0o1l' Calculation specification

SYSPUNCH SYSUTS i

compression record
N
KEY (EQU LTKEY)
Figure 23. Assign Phase 1 Input/Output

Flow

The number of bytes required for each
entry is determined as follows:

Field Name Number of Bytes Number of Bytes

Type If Alphameric If Numeric
Table 16 + L +1 16 + [L-f—l]+ 1
Internal 4 4
External 4 4
Entry L+1 [L ; l]+ 1
Normal L +1 [L%-l] + 1

where x =(L + 1)/2 (L is the length of the
field; where [x] is the greatest integer
less than or equal to x.

Two passes are made through the field
name table. On the first pass addresses
are assigned to table and internal type
field names. On the second pass, addresses
are assigned to the remaining types
(external, entry and normal). Addresses
for table, internal and external type field
names are full word aligned.

The assigned address is placed in bytes
8 and 9 of the table entry (Appendix B).

The overflow indicator is placed in byte 13.
The number of bytes required for each
entry in the literal table is determined by
the literal type.
the number of bytes required is equal to one
plus the length contained in the length byte

of the entry (byte 1, Appendix C). For a
numeric literal, the number of bytes re-
quired is equal to [(L + 1)/2] + 1 where
L is the length of the literal in bytes.

If no literal or field name table over-
flow occurs during this phase, Assemble
Phase 1 is called. Otherwise, Assign Phase

For an alphameric literal,

X'40' More text to be put out
MAIN ROUTINES

BEGIN (Part I)

e Initializes registers and address counter
for the phase

e Puts out the program card image

® Puts out an entry type ESD card image
for each entry-type resulting indica-
tor table entry

® Places the computed machine address with
each entry in the resulting indicator

FIF1

® Makes two passes through the field name
table

® Assigns addresses to table and internal
type field name entries on the first
pass

® Assigns addresses to external, entry and
normal type field name entries on the
second pass

® Puts out an ESD card image for each
entry and external type field name entry
in the table

® Puts out an RLD entry (Appendix F)
for each external type field name entry
in the table

Assign Phase 1 55

® Assigns a computed address to each entry
in the literal table

® Branches to OVERLP to be sure that no
part of the entry is more than 4096
bytes from the base address

® Saves the ESD count for use by Assign
Phase 2

NWLN (Part II)

® Saves the overflow count for use by
Assign Phase 2

® Puts out the text card images for the
entries in the resulting indicator table

e Prints the symbol table at the same time
FELAD .

® Puts out the text card images for the
entries in the field name table

e Prints the symbol table at the same time
LITAD

® Puts out the text card images for the
entries in the literal table

® Prints the symbol table at the same time

CMPSN (Part IIT)

® Gets each compression and analyzes it
for type

e Branches out to the appropriate routine
for the type of record

® Updates a block of compression records
® Puts out each block and obtains the next

® Repeats this procedure until all of the
compression records have been updated

e Calls Assign Phase 2 at the end of the
compression if there has been an over-
flow in the field name table or literal
table

e Otherwise calls Assemble Phase 1

LTYP (Line Counter)

e Skips this type of compression

56

ETYP (File Extension)

e Obtains the address of the conversion
routine name in this compression type
from the field name table

e Inserts it in compression

DTYP (Input Field Name)

® Locates the address for the field name
entry in the field name table

e Inserts it in compression

® Obtains the addresses for resulting in-
dicators for control levels, matching
fields, or chaining fields from the
resulting indicator table

® Inserts them in compression

CTYP (Calculation)

® Locates the addresses for the resulting
indicator entries in the resulting
indicator table

e Inserts them in compression

® Locates the address for each factor entry
in either the field name table or the
literal table depending on the type of
entry

MTYP (Output-Format Field)

® Obtains the addresses for resulting in-
dicator, field name, and literal entries
from the resulting indicator, field
name, and literal tables

® Inserts them in compression
e Skips blank-after and sterling entries

TTYP (Table)

® Secarches the field name table for the
table name or names in this type of
compression

® Inserts the address found in the table
in compression

RTYP (Record Address File)

® Searches the field name table for CONDT

® Inserts the address found in com-
pression

FTYP (File Description)

® Searches the field name table for the
field name from this type of compression

® Inserts the address found in the table
in compression

e Searches the resulting indicator table
® Obtains the address for an 0 type file

indication

ITYP (Input Record)

® Searches the resulting indicator table
if there is a file name or if this is a
compression for an OR type record

® Inserts the address found in the table
in compression

OTYP (Output Record)

® Obtains the addresses for the resulting
indicators from the resulting indicator
table

® Inserts addresses in compression

SUBROUTINES

The following subroutines exit via register

15 unless stated otherwise.

OVERLP

® Checks the length of a literal to deter-
mine if it exceeds 4096 positions from
the base

® Adds the length to the address counter

if the overflow exists

ALIGN

® Increments the address counter

® Adjusts the address to a full word
boundary

® Adjusts the counter to show the true
address

COUNT

® Increments the address counter

® Increments the overflow counter if over-
flow occurs

® Stores the updated counter in the inter-
face

ZADR

® Converts the base and displacement form
of address to absolute form

® Restores the overflow register

® Stores the absolute address

HEXIT

® Converts the base and displacement form
of address to printable hexadecimal form

® Restores the print area pointer

TXTP

® Assembles the text into punched card
format

® Creates multiple card images if the text
length exceeds 56 characters

® Puts them out to the go/punch data set

RITLU

e Looks up the resulting indicator in the
resulting indicator table

e Assigns a diagnostic code for an unde-
fined or an unreferenced resulting
indicator

LITLU

® Looks up a literal from the compression
in the literal table

® Inserts the corresponding length, address,
and decimal position into compression

FLDLU

® Looks up a field name from the compres-
sion in the field name table

® Assigns a diagnostic code for an unde-
fined, multidefined, or an unreferenced
field name

e Inserts the corresponding address from
the table into compression

Assign Phase 1 57

Linkage to CIOEX

PUTCOD, PHSCAL, PNTERR, RLDOUT, PNTSPC,
PUTCMP, SWITCH, GETCMP

58

Load call numbers
Branch to OUT

Link to the service routines in CIOEX

ERRTNE

e Moves the diagnostic code number and
unpacked specification number to the
print area

® Branches to the CIOEX linkage to
print the error indication

INTRODUCTION

Assign Phase 2 is executed only if a table
overflow occurred during the enter phases
The table overflow condition indicates that
because the number of entries exceeded the
allotted table area, not all field names
and literals have been assigned addresses.
Assign Phase 2 creates the table or tables
that overflowed, and assigns addresses to
the entries.

Figure 24 and Chart HB illustrate the
organization and operation of Assign Phase
2.

Figure 25 illustrates the input/output
flow for Assign Phase 2.

LOGIC

The CIOEX data area contains the location
of the specification that caused the table
overflow. Assign Phase 2 begins with this
specification and creates the necessary
tables from the entries of field names or
literals that do not have assigned ad-
dresses.

Any compression that has been assigned
an address will have had the 6-byte name
field replaced by the last six bytes of the
corresponding table entry (see Appendix E).
Knowing this, Assign Phase 2 has only to
check the location in the compression where
the beta byte would be. Since the zone
portion of beta byte is always X'0', the
presence of anything other than X'0' in this
position of the compression indicates that
the actual name is still present and there-~
fore an address has not yet been assigned.

An exception to this method is a literal
in the calculation compression; here the
byte checked is the 12th byte of the literal
area. When an address is assigned to the
literal, the byte is set to zero.

When the last specification is checked,
Assign Phase 2 computes addresses for the
table entries and replaces field names and
literals in compression with addresses as-
signed to the table entries. If an over-
flow occurs in building the tables, Assign
Phase 2 is executed again; otherwise,
Assemble Phase 1 is called.

ASSIGN PHASE 2

ASSIGN

INITAB

BLTAB

FIFN

LI

INIZ

FLDTAB

LITAD

HEXIT

TXTP

CMPSN

LITLU

FLDLU

RESULT

EDITR

NOTFOD

MASK

1/0 Linkage

Constants

Figure 24.

Assign Phase 2 Storage
Allocation Map

Assign Phase 2 59

HEEEATERRRRERRN

-
*ENTER ASSIGN 2 *
* *

RESREARRER R
.

L]
*
B3 XX
*

ceens

L2

e
ASSIGN X
REEERD YRR EE R
L
* CLEAR -
FIELD & LITFRAL
- TABLES *
SRR AR AR
ok

*

€3 *.X

3
L A
LT T T

(TN

GE

=

T
*

R R

*
GET COMPRESSION
* *

HEEERRERRR R
Rl
*

N3 *.x
*
AAEE

XYY

PR

o

Rk ED] kkk ek kg n2 g, D3 *,
* * o* ..

* BUILD * ND_ .% HAS *. YES .
* FIELD NAME A*Xeooonves ¥ ADDRESS BEEN c*Xeevoeoe

* TABLE * *.:SS GNED‘.‘

* *
Rl s Rl el s]

eecsesersve

oo RLTAB

E4 t.‘ KA EHE SRR R ERRE
B .* -
*, YFS ok HAS *. NO * AUILD *
e¥esooesseX® ADDRESS BEEN o®.csceeeeX® LITERAL TABLE #*
*o % #,ASSIGNED % * *
.. o .. o * .
P . HERERERRORE RN R
* ND * YES -
. . .
. X -
ix-u--cloo--l|oo'lo.-ooooovvo-lo---olv-llcocoo-.ll.oo
BACK o*. .
*. F3" e, AREEERF L OB RS R
e & CEND Cx, o 'R
* *YES o 0F .. NO .* END . . »
* D3 *X,eoo%e COMPRESSION .#X.oacesoso®e OF SEGMENT % eeX GFT CIMPRESSION Xecesoenscasnosonsecesvacccnse
L3 - -, ¥ *, .] - * L4 -
anan .. o* *, o . M
., .» *, .x . AR AR .
* NO * YES ThEE -
. P T - Pt .
. * Fo ¥ » .
. uX® C3 * * * Gas *, .
: » e * -
. xen * .
X _ LITLY .
2%% * *. -
* ASSIGN * * MOVE ADOR * L *, .
* ADDRESSES 1O * # FROM TABLE TO * YES o% DfTECT ", .
* FLD_NAME ¢ * * COWP OUTPUT #Xeeaeeeea® LITEAL d -
*QUTPUT ESD'S & * *DIAG MESSAGE IF* *, ¥ .
* RLD'S - » NY . . o .
¥o ok .
. - « .
. . . -
- ..--......--.....-.-..-o-li .
X FLDLY ¥ .
ARAREH2ERR KA FARE He y .
. P o *. * MOVE ADDRESS % |
* ASSIGN * o¥ ¥, YES * EROM TABLE TO * .
* ADDRESSES TO * ®,DEVECT FIELD e¥eecnesneeX® ?0"? £ _QUTPUT ¢ .
: LITFRALS : ¥. NAME ¥ MNIAG ﬂﬁa;l E]F: -
BERAREEE R REREK ‘s, ox" FORAEESAAERARERRK
. *"ND . .
. . . .
. . . .
- X . .
. P A LT P T T T T T T TR PR PP .
RETF X ok -
L 43" e, .
.
* PUNCH TXY CDS * .
FOR FLD NAMES .
* AND PRINT ~*
SYMBOL TABLE
FORRERRE AR
. X
NOTNU X ¥ ¥
P T e e k3~ "a, xe m, AERRAAKG AR AR SRR
PUNCH TXT CDS «* END *, o -
* FOR LITERALS * YES .* *, NO ¥ T‘BLS *. NO * -
AND PRINT esak. COMPRESSION o%eeuveseeX®s DVERFLOW e¥®easaseneX CALL NEXT PHASE
« SYMBN) - . . * * .
YT T T X . ARRES AR ORS
. wHne
P - I3
o * . Ga
TeXE F4 % *
. * ke
e

Chart HB. Assign Phase 2

60

Field Name, ® Saves the print buffer address

RPG Phases Literal,
Resulting
SYSTEM Load Indicator Tables
RESIDENCE ASSIGN and Diagnostics ASSIGN
VOLUME PHASE 2
SYSPRINT @ Clears field name and literal tables
l c - ® Goes to the specification that caused
ompression
the overflow
’,;“E,,S\'S?}’ SYSUTI
BLTAB
ESD's and
Text RLD .)
A~ e Build tables from compression
SYSGO/
SYSPUNCH SYSUTS
\ / F1F1l1l
. e Mak two passes th i
Figure 25. Assign Phase 2 Input/Output tabi: P s rough field name
Flow
® Assigns addresses to internal names on
the first pass
SWITCHES AND INDICATORS e Assigns addresses to entry, external,
and normal fields on the second pass
LTKEY e Puts out ESD's for entry and external
— fields
LTKEY =xxxxxxxl Calculation type coms«
pression LI
PAGE XXXXXX1X Page type field name
TAB XXXXX1IXX On during table building ® Assigns addresses to literals
phase of program
RESID xxxxlxxx Field name is from ® Sets the decimal position to indicate the
result field type of literal
BLKAF xxXX1xxxx Blank-after
MCOMP xX1XXXXX M type compression INIZ
LNSW IXXXXXXX There is a length as-
sociated with name from ® Initializes for the text card routine
type D and C compression and printing of symbol table
KEY XIXXXXXX More text to be output
FLDTAB
PASID e Puts out text card images for fields
Full word storage area. First byte used as LITAD
indicator
® Puts out text card images for literals
X'00' Off status
X'BO' Second pass indicator for assign
addresses to field names routine TXTP
(F1F1l1l) ; otherwise wused as
storage area. e Formats and puts out text card images
MAIN ROUTINES CMPSN
® Prints last line of literals
BEGIN

® Puts out the last text card image
® Saves CIOEX key registers

e Gets first input specification com-
® Moves overflow byte from CIOEX data area pression

Assign Phase 2 61

RESULT

® Sets the reference byte for the result
field names

n

EDITR

e Sets reference byte for the factor
field names

NOTFOD

® Enters the field name in the table if
there is room

MASK

® Finds the field mask for the corres-
ponding gamma byte

SUBROUTINES

INITAB
e Initializes table area

ZADR

® Converts base and displacement form of
address to absolute form

COUNT

® Increments the address counter

® Sets the overflow indicator when over-
flow occurs

62

ALIGN

e Aligns the. address on a full word
boundary

OVERLP

® Checks for a field that would overlap
a 4096 boundary

HEXIT

® Converts the base and displacement form
of address to printable hexadecimal
format

LITLU

® Looks up literal in literal table

® Inserts the corresponding length, ad-
dress, and decimal position into the
compression

® Adds the literal to the table if there

is room

FLDLU

® Looks up field name in table

® Inserts the address in compression

® Adds the field name to the table if
there is room

INTRODUCTION

Assemble Phase 1 puts out precoded machine
language subroutines for RAF, chaining and
table files. This program builds parameter
tables from the file description speci-
fication and file extension specification
compressions for these types of files.
These parameter tables are put out and pro-
vide the information necessary for the
subroutines to operate at object time.
Assemble Phase 2 also provides parameters
for chaining files.

Figure 26 and Chart KA illustrate the
organization and operation of Assemble
Phase 1.

Figure 27 illustrates the input/output
flow for Assemble Phase 1.

LOGIC

The addresses of the routines I/O intercept,
record address file, chaining and table
(input/output) are written on the work data
set as V-type records (Appendix F). The
linkage phase uses these records to develop
the linkage vector.

The enter phases have set switches in
the CIOEX data area to indicate the pres-
ence of RAF, chaining and table files.

This allows Assemble Phase 1 to overlay the
precoded routines after they are put out or
if they are not needed by the program.

The order in which the routines and the
associated information are put out is as
follows:

1. Precoded chaining routine (CCOUNT) or
the dummy chaining routine (CCDUMY)

2. Chaining parameter table recoxds

3. Precoded table logic (input/output)
(TC0000) or the dummy table routine
(TCDUMY)

4. Parameter list table for table files

5. The table linkage field (TLF) for the
first table. The TLF for the second
table (if applicable)

6. The input/output interceptor routine
(INTRCP)

7. Precoded RAF support (DC0000/IC0000)

8. V-type records for the linkage vector

9. R~type records for the RLD

ASSEMBLE PHASE 1

AMISRT

AM2200

Constants

TCBLD

CHNSUB, ADDCNV

TXTFUL, TXTHLF, TXTCHR, OUTEXT, TCDUMY, CCDUMY

1C0000

DCO0000

CCOUNT

INTRCP, TC0000

Figure 26.

Assemble Phase 1 Storage
Allocation Map

Assemble Phase 1

63

AMISRT
EREEA) REE SRR
* EN *
: ASSEMBLF :
KR ERRER Rk

AM0200 X
HEERRER] KRR

* GET
COMPRESSED
* SPEC *

AR KRk :
: .
X .
o .
c1’ e, N
o .
. ®. YESI
2 F TYPE L
‘.. e
*, ¥
*"No
X
. AM1500
N1 *, ARk D2 AR AR AR K
¥ *, L *
vee chaInIng YTy s :
*TvP elieeaen eee
e o * CHAINING %
. o ROUT INE
X, ok AEEER R AR E R RE
*“No
X
AM2200 .. TCBLD
F1 RERREDREAERAARRE
- ¥ ., * .
21 Tvpe TaBLESIHTCy e H
T TY Heiieeees .
'~.‘ ot £TABLES ROUTINE ¥
Th, o P e L T P
*“No
:
X
AM2600 .
*, AREERF 2 kR RR TR
. *, * *
- « YES . *
2R TYPE RAF o¥eceanees xx RECNRD ..
.. . ADOR FILE *
*, o ROUTINE *
Xy ok EERARRREEEERERE RS
*"No
.
AM3000 X
"“‘Gl*.i*l..t':
M

COMPLETE OUTPUT
* DF EXTENSION *
* ROUTINES :

»
ELET I RS2 S22t s)

e v oene

R REH] Rk Rk
* *
CALL NEXT PHASE
* *

RN EE kR

Chart KA. Assemble Phase 1

SWITCHES AND INDICATORS

64

ing buffer area

clear instructions

CPSSWT
First Pass X'FO' Routine clears chain-
Last Pass X'oo' Not first pass, bypass

CLSTPS

Last Pass X'FOo' Last file extension
processed. Chaining
is completed and buffer
has been put out
X'00! Not last pass, bypass
complete chaining in-
structions

MAIN ROUTINES

AMISRT
® Reads the compression record as input

e Verifies the type of specification com-
pression

® Stores the length of record from a file
description specification compression
for an RAF

® Returns to read the next compression
record

® Puts out the chaining logic (CCOUNT) for
a file extension compression if the first
pass switch (AMSWTH) is set as X'00'

® Sets AMSWTH as X'FO'

® Builds a parameter table for chaining
files

e Builds a parameter table for table files

RPG Phoses
SYSTEM Load .
RESIDENCE ASSEMBLE ESD's
VOLUME PHASE 1 and Text
SYSGO/
SYSPUNCH
Compression
SYSUTI ﬁ,ﬁﬁg’és%f
RLD
SYSUT3

Figure 27. Assemble Phase 1 Input/Output
Flow

Puts out the filled chaining parameter
table block directly behind the chain-
ing logic

Extracts the from filename and to file-
name fields from a compression record
for an RAF

Inserts them into the RAF routines for
indexed-sequential (IC0000), and direct
organization (DC0000)

AM2200

9

13-16

Completes and puts out the chaining
parameter table when the last file
extension specification compression
has been processed

Puts out the table logic (TC0000) and
the parameter table for table files

Puts out
if there

the dummy table routine (TCDUMY)
have been no table files

Puts out
(CCDUMY)
chaining

the dummy chaining routine
if there have been no
files

Builds the TLF (table linkage field) for
the first table entry and for the second
table entry if necessary. This field is
built from the entries in the parameter
table for table files. The table link-
age field is assembled and put out as
follows:

Table Linkage Output 16 Bytes:

Bytes

1 Table type byte

Bits 0-3 0000 Not used

Numeric table
1 Alphameric
table
Packed input
1 ©Unpacked input
Ascending table
Descending
table
Neither
Not used
Length of entry
Number of table entries
Address of start of table
Address of end of table
Work address initialized as zero

2
-4

I vw

8
12

Puts out the I/O intercept routine and
the RAF support routine specified
(direct organization or indexed-
sequential)

® Sets AMDIOR as X'FO0' for direct organi-
zation; X'00' for indexed-sequential

e Sets up and puts out the linkage vector
images

® Calls Assemble Phase 2

SUBROUTINES

The following subroutines exit via register
15 unless stated otherwise.

TCBLD

Builds a list of parameters for a table
file defined in a file extension com-
pression. The parameter entry or entries
are as follows:

Byte 1 Action byte X'0l' for input/
no second entry.
X'03' for input/

second entry

2 Input file number (binary)

3 Output file number (binary)

5 Number of entries per record
(binary)

Number of table entries (binary)
Address of TABNNN-16 for first
file

Length of table entries in first
table

Unpacked/packed, numeric/alpha-
meric, ascending/descending

for first table

Bits 0-3 0000 Not used

Numeric table

1 Alphameric table
Packed input

1 Unpacked input
Ascending table
Descending table
Neither

Not used

Address of TABNNN-16 for second
file

Length of table entries in
second table

Unpacked/packed, numeric/alpha-
meric, ascending/descending

for second table

13-15
16

17

TXTFUL, TXTHLF, TXTCHR

Prepares text for output to a given tar-
get area. The text is either full word
or half word aligned in segments of

56 bytes, or less

Assemble Phase 1 65

Builds the parameters for use by the
output routine as follows:

SLVRG1
SLVRG2

Number of bytes to be put out
Address of the target area

Links to OUTEXT

Returns with the target address in
SRTPNT

ADDCNV

Converts an address from the form BDDD
to absolute form. The address is con-
tained in a field described as follows:
WRKRG1l Points to BDDDXXXXXXO0K/Returns
with converted address.
B = Data base register (DATBS1
to DATBS1+4)
DDD Displacement
K Overflow key (0,1,2,3,4)
Represents lowest data base
register
Is a half word aligned work
area
SLVRG2 ,LNKREG are used as work registers

DATBS1

HLFWRD

The overflow key (0K) specifies the
number of times 4096 must be added to
the base

Places the absolute address developed
in WRKRG1

OUTEXT

Puts out text using the parameters
developed by TXTCHR plus PUNREG (the
address of the output buffer)and LOCREG
(the address of the field)

Links to CIOEX to put out the text card
image

CHNSUB

66

Builds a list of parameters for a chain-
ing file defined in a file extension

compression. The parameter entry is as
follows.
Byte 1 From file

2,3 Record sequence number

4 Numeric portion of chaining

field number

To file

Conversion routine linkage
point address

5
6-8

Entries are put out with six entries
per card immediately following the
chaining logic.

Links to TXTCHR to put out the chaining
parameter list buffer when six entries
have been developed

PRECODED ROUTINES

The following precoded routines are designed
to exit via register 15 unless stated other-
wise.

TC0000

Included in the output of this phase if
there has been a file extension speci-
fication compression for a table file

® Inserts entries in a table or extracts
entries from a table when executed in
the RPG object program

CCOUNT

e Included in the output of this phase if
there has been a file extension speci-
fication compression for a chaining file

e Supports the split chaining fields op-
tion

® Uses the switch CCFOND set as X'F0' to
indicate the first entry for split
chaining fields has been processed

® Sets CCPROS as X'00', X'02', X'04', X'06"'
for the particular processing pass of
the routine

e Sets the halt indicator INDHHO to X'FO'
when the chaining request is not in the
table of acceptable chaining requests

DC0000

® Included in the output for this phase if
there is a file extension specification
compression for an RAF with direct
organization. This form of access must
have a conversion routine

® Builds the linkage to the conversion
routine within this routine during the
first pass. The first pass switch is
DCPSWT.

e Links with the input/output routine
(IOROUT) to get records from the
input file

IC0000

® Included in the output for this phase if

there is a file extension specification

compression for an RAF with indexed- CCDUMY

sequential specified. The first pass

switch is ICPSWT ° Put out if there is not an actual chain-
ing file defined

e Links with the input/output routine ° Turns on halt indicator HO (INDHHO set
(IOROUT) to get records from the as X'F0')
input file
INTRCP
TCDUMY

° Establishes linkage to the RAF support
routine included in the program if the
e Put out if there is not an actual table object program refers to an RAF
file defined
° Otherwise establishes linkage to the
input/output routine included in the
e Links back to the program directly program

Assemble Phase 1 67

ASSEMBLE PHASES 2 AND 2.5

INTRODUCTION

Assemble Phases 2 and 2.5 process the input
specifications compressions and generate
RPG object program text. Two phases are
needed to complete the processing
required.

The functions of Phase 2 are

1. Scan the file description specifications
and enter information regarding multiple
file specifications in the file environ-
ment table (FET)

2. Generate object program routines to move
input data into the appropriate fields
and to call the chaining subroutine if
chaining fields are present

3. Put out a record to the work data set
for each control level field and match-
ing field. These records are used for
generating object code to determine
control breaks and matching records

4. Reserve a common working storage area
in the object program to be used for
processing the control level and match-
ing fields

The functions of Phase 2.5 are

1. Complete processing of the input speci-
fication record type. Process OR
specifications by completing the object
code instruction generation

2. Complete processing of the input speci-
fication field type. Generate object
code instructions for the last OR speci-
fication of a record group and for the
processing of matching fields

3. Put out blank-after entries to be pro-
cessed in Assemble Phase 4

4. Put out the precoded object program
routines to control and analyze input

Figures 28 and 29 and Charts LA and LB
illustrate the organization and operation
of Assemble Phase 2 and 2.5.

Figures 30 and 31 illustrate the input/
output flow for Assemble Phase 2 and 2.5.

LOGIC (PHASE 2)

The instructions that are generated for
moving input data are created by this pass
for both record and field type input speci-
fications. The object program precoded
subroutine output moves data and provides
linkage to the subroutines to pack and
unpack fields and to check for blanks and
field status.

68

A chaining request block (CHB) is created
for each field designated as a chaining
field. These CHBs are linked by pointers.
In the object routine generated for the
record group is a call for the chaining sub-
routine with a pointer at the first chain-
ing field CHB.

BASEP1

(PASS1)(SCANFD)CLSTAB(GETN)

(RESSTOYMFSTAB(RECTYP)

GENCM

GENMF, GENCHR, RMFLCK

FMFLCK, FLDTYP, PACKED

FLDIND, ALPHA, STERNG

FLDOPS

Constants

ALIGN,FLDREL,CK4UBA, GENMVF ,ERROR

DMPSPC (& buffer)

DMPTXT

ADD2AC, GNXCMP, GETINP,IOEXC

(DSPC, STAT, PACK, PACTST, ZAPN, ZAPTST, TEST4B)

DMPTXTBF

NOTE: Labels within parenthesis identify
routines that are overlaid.

Figure 28. Assemble Phase 2 Storage

Allocation Map

BASEP2

RECSPC

GEUNID, GENRDR

BEGREC, GENIDT

FLDSPC

ENDP2

Constants

DMPTXT

ADD2AC, GNXCMP, GETINP, I0EXC,ALIGN
TXTOUT,DRTY ,DRTY2
PROCMF ,PRESEQ ,RDRIVR

GIRC, GNR, GNXP

GNXR
GNS, CLSUBR

Figure 29. Assemble Phase 2.5 Storage

Allocation Map

LOGIC (PHASE 2.5)

The blank-after entries consist of 12 bytes
and are blocked six per physical record.
The format of these entries is illustrated
in Appendix G. If a block is not filled
when the phase is completed, it is filled
with X'00'.

The data that is common to Phase 2 and
2.5 is generated by Phase 2 and written

to a work data set. Subsequently the data
is read in to overlay a similarly defined
area in Phase 2.5.

SWITCHES AND INDICATORS

CLS

X'FO' Control levels are present

CLSIND

X'FO' Set during Phase 2 to cause
to put out CLSUBR

FLDSW

X'FO' Field specifications are
present

IDCSW

X'FO' No ID codes are present

PHASE 2 MAIN ROUTINES

SCANFD

® Conditions CIOEX to read and make
available the file description
specification compressions

® Tests for file type (primary, secondary,
chained) and the bits are set in the
file environment table (FET) as

follows:
BITS VALUE
0-1 00 Primary file
01 Secondary file
11 Chained file
2 Not used
3 Not used
4 1 E specified in column
17 of file description
specification
0 Blank in column 17
5 1 Ascending seqguence
0 Descending seguence
or blank
6 Not used
7 1 Card input
device

0 Other device

Assemble Phases 2 and 2.5 69

P
» »
* A2 *
e

X
RREERRAD S XRRARRERRE

BEFBAL EEERRRRRR ‘GE' CDHPﬂ SED
®
ZENTER ASSEMBLE %...cocauX FIL EE y Keeteteseeteeiietitiittttetietintentett et e nsasaaaes
ERERREEREEREREE M
EERPRREERRNRY -
.
X -
. .
82" s, AKk$EB3 .
ok -, * .
0 .+ - * COMPLETE .
. +~*lEND OF speCs --X% GENERATIONS .
. . o . » .
- ., ¥ CHERERRERER PRk EI AL e 2R T LY .
. * N
. .
<
X
IFF .. o, o+
c1 t. c2 t. c3 -, TRRERCA R EE AR AR R .
.t .. *. o *. * L
YES MARY "%, ND . *. NO . L
'FILE TYPE SPEC PUMPS DR SE DNDARV .‘...--.-.l'.' CHAINED '.‘.....i..X:AOVANCE PU!NTFR:....
. .. ., % - * *
‘. .‘ * *, % . ERRERERRRR AR
* NO * YES * YES -
- - - - hrE
. . . - * *
. . . PN T T
= . . - Ll 2] X
X X X - ot
bd .l"‘oa.."\l..‘.: - D&
: . ot .
. * » sTOP * 2oesiALEND . . %" PACKED . ND
GET INPUT SPEC * MULTI FILE %......0.X#OESIGNATINR LRI *0 NUMERY
* . * COUNTER + ENVIRONMENT * .. o
* * ABLE * . ¥
ERERRERREEERE SEERRRRR SRR NP R A A EEEE KRR RN ER R ..‘. ;Es
tttt . .
* .
TR .
* - -
ok X -
N NUREC PACKED X
El *, ERELEEENEIK
¥ *, * * * *
o* *. coSEhERATE - . DATA . L e
*.INPUT RECORD- o eeX® CODING DRIVER * * SPEC ROUTINE * *FI1ELD OPT[ONAL *
., . . RTN * : H * "FEATURES =
‘.--:. EERSRE R REERE R RE SEREERERREERRRERR AR RS KR
9 . .
. . -
. . .
s X s
X ... H
AR EEF L SR ERSR RS F2 -, F3 Le il 22 2]
* * - . - * -
* COMPLETE » o *. YES * . » PROCE SS .
* GENERATION ¢ *. NEW FILE _i%........X* STORE FILE NO * . FIELD .
* » . o . - * INDICATORS #
* L d ., ¥ £ L d - .
RN EERRE B R RREE ", ¥
*«"ND M .
. . .
. - . -
. eXeosvreussnsesensscacencvae .
. X GENZAP X
- SRR ERGE R Rk R EERED :l..‘GQ".‘.*"#‘
.
M * * * GEN *
. GET NEXT SPEC_ .e.. * CALL FOR My *
. * . . * PACKED H
. .
- EEEEREREERARE X AERRREEEER RGNS KX
. ke .
M * - LT -
* F1 » L » -
* He & X
veree . L ek dd * * vee
- Rk -
o, M CK4UDB X
‘H] .,‘ ‘.“'HZ'*‘..."‘: :‘l"“‘.“t“"‘.
. . *
«® CONTROL =, * RESERVE . % DEFINE ANV -
*. LEVELS . cesesX® AREAS GEN * $ PREVINUS .
, PRESENT . * DRIVER * - UNDEFINED *
L .. * * . BRANCH *
..‘.; Rl 22 It 2 2t SEERERE RS SRk kh kS
0 M
. .
. X
- wEEy
X . -
o, . A2 %
J1 t, "le"t"‘ LAt N EL LSl el L] * *
-* . PROCESS * e
¥ .- YES ? * Flg&ﬂ -
. STERLING ’.-.-....X‘FIE%D ?PT ONAL ‘-...--.-X'INnICAT S GEN #....
. . : CALLS : .
, ¥ .i‘.““." BERERKERR RO R EENN X
* NO 1Ty
- - -
* He »
. - *
- Ll 1]
H
K1~ e, SRR 2RO HREREK I RERER DA
. .. . » * BLANK *
. T R XeE1E "3§§unt'c XSINDICATDRS GEN
. cee crecrnse cone
e ot " kgA UR -* : Cxelé : .
- . .
e o¥ SRRRREEERET EREEEEEARRERREERS X
* NO Ll L]
. - Ld
- ® H »
X * *
Rl ld Ll]
4 -
L]
» -
-
Chart LA. Assemble Phase 2

70

SENShkkEr &R

AEEARNEEEER

X
AEESEEAEEES

* PROCESS
*

LD
t.lND!CATDRS
AEREEESEEEN

Cersearaensaas

seessan

ESS
4 '........X'FlFlD OPleﬂAL U
ATURES

*
*

* 13
* A2 ¥
* *
e
.
X
ASM25 ¥ ORSPEC
HRERENRERRRE EERE
AERA LR RRRRR AR COH? TE 08 tttt
1]
ASSEMBLE PHASE % . . X E EE?NGFO& ‘....X‘ E3 *
LT+ -, o 2 ek
. LY SRR RS RR
. * NO
. .
. .
. .
. X
X ¥,
Pt TRl i L B2" e *akp3
PUT OUT * .- * *
084 SUBR * FIRST SP NO * *
* (PRECODED) TO .OF NEN RECDRD.'.-.- * AND TYPE SPEC *
DETERMINE * . *
RECORD TYPE * . . * * b1
o e it i 2 . ox RHEER KRRk * -
- * YES o €« Cs %
. * * * *
. * E3 * REH
- * * -
. T .
. X
ok, X ENDP2 ok
Cl *. mtcttszntttaatatt Co %, PEEEACSEREEEORY
o¥ *, & COMPLETE NBJ % - ¥ by *
o CgNYRDL *, NDO * ROUTINE FOR # +XMULTT FILES®. NO
. e¥enoe * LAST OR GROUP % *.(PRIMARY AND %
*, PRESFNT ¥ % OF PRECEDING * *SECONDARY). &
*, ¥ CcD * N -*
*, ¥ RER kAR *, o
* YES - * YFS
. Lo L P
. * * . . *
. * D2 %, X. aeX¥ D2 *
. * « * *
& L " ohkk
HokkERD] 2 tttttnscocttttrtt
* GENERATE * * FOR * « G E 284 -
* 0BJ SUBR TO * * PRECEDNING * U E
#COMPARE CONTROL* * REEURD GROUP % .
* FIELDS FOR A % *GENERATE RECORD® ‘ HITNUU .
* BRE AK * * DRIVER * K -
*% * .4 .
- . * E3 *
. *
. Lo
- % . eXeosssvsssacesnssnvecsnncs
Py . .
P2GOGO X NEWREC ¥ X X
BRRRERE] ERARRR AR AR E -, E o
GE ¥ *. ROM *
* FIRST * <% CURRENT *, ENT_SPEC_ * * *
conp%sssen #.,SPEC FIRST OF.%,, ATE CNDE * CALL NEXT PHASE
* INPUT SPEC * *.NEW FI%E ¥ T REgﬂRD * * *
*.GROUP . % gODE *
R *, .tE R ERREREERERREE
* YES .
. . * F3 %0,
P L
X
ARETRELEERLRC 0L AEREAF I ORRERERRAE
* FOR PRECEDING *
* FILE GROUP * * ADVANCE Yg *
* GENERATE CODE * *NEXT COMPRESSED*
*TD HANDLE UNI- * * SPEC *
'DENTIFIED DATA * * *
. .
. .
- .
o...o---..--.----o-.o..-x- %
FPBFDR ok
tt‘tucz:ttt*ztvtt 63 *, P L T E R L
t GENERATE FILF t *GET NFXT BLOCK *
DRIVER AND FILE
: PRNCESS BLOCK * * COMPRESSION *
P L e T SRR ARk
. .
. .
. .
TRYMFS ; ENMXT1
ok
T e H2" s,
ok -, ok 2]
* 1RESSR¥E * YES o% MATCHING *, o YES *
*MATCHIN TELDS*Xusaoaas o #FIELDS PRESENT LS EN RECORD TVPE .*o.-ox‘ A2 *
* HOLD AREA FOR »* FOR THIS FILE *.
* HE * *, o* . ot Rk
AR AR RS *, W% o .*
. * NN * NO
. . o
ssassavcssesscsccsesascsnXs “
hAR .
. »
* E3 % oMy
* * P
ey o - * *
o *. _NO *ALL INPUY SPECS*
. FKFLD JYPE o*.eea ESSEN *
SPEC N . ' '
g .‘ X "‘.’It‘tllt"“t
* YES Aokkk
. * *

Chart LB. Assemble Phase 2.5

Assemble Phases 2 and 2.5 71

RPG Phases

SYSTEM
RESIDENCE A
VOLUME PHASE 2 ESD's and
N Text
N
SYSGO/
SYSPUNCH
Compression
ASSEMBLE
SYSUT1
PHASE 2 Temporary
Storage and
Blank After
Entries
Diagnostics SYSUT2
SYSPRINT
Figure 30. Assemble Phase 2 Input/Output
Flow
RPG Phases

SYSTEM Load

RESIDENCE ASSEMBLE ESD's and
VOLUME PHASE 2.5 Text
7~ N\
SYSGO/
SYSPUNCH
Compression
SYSUTI ASSEMBLE
PHASE 2.5
RLD
Temporary Storage and SYSUT3
Blank After Entries
Figure 31. Assemble Phase 2.5 Input/
Output Flow
GETN

® Uses GETIN to get the first input speci-
fication compression record for proces-
sing

e Calls ALIGN to force the object program
addresses to be aligned as a full word

e Clears MFTARG, MFLTAB, and MFDUPS tables
which are used for processing speci-
fications for matching fields

RESSTO

® Overlays the preceding routines starting
at the symbolic location PASS1

® Reserves working storage in the object
program for processing control levels
and matching fields specifications.
Register 2 contains the number of bytes
to be reserved

72

RECTYP

® Generates the entry and exit points of
the MVFLDS object program subroutine

® Generates MVFLDS subroutine for each
record group to move the input data into
assigned fields, sets field indicators,
and calls the chaining subroutine if
chaining fields are specified

e Completes the MVFLDS subroutine for the
preceding group when a new record group
is detected

® Performs validity checking to check the
matching fields specifications (if ap-
plicable) for the preceding group

® Calls CIOEX to get the next input speci-
fication

® Starts again for a record type
® Branches to FLDTYP for a field type
e Completes Phase 2 processing

Phase 2 processing is completed by reserv-
ing a working storage area within the object
program if control levels and/or matching
fields are specified. The reserved area is
equal to either the sum of the maximum
length specified for control levels or the
sum of the maximum length of the matching
fields. Generates a table of the displace-
ments to the starting byte for each control
level (1-9) within the common working
storage.

Finally, the control level and matching
fields records that have been written on the
work data set during the execution of Phase
2 are processed (GENCLM). The object
program subroutines, MCL2WS and MFSUBR,
for processing control levels and matching
fields are generated.

Phase 2 reinitiates the work data set,
writes out the data common to Phase 2 and
2.5 and calls CIOEX to bring in Phase 2.5.

FLDTYP

® Generates the instructions that move
input data into assigned fields

® Tests field status
® Sets the field indicators

® Generates the chaining request block for
chaining field specifications

® Processes alphabetic, sterling, and
packed numeric fields through subroutines

Generates the appropriate calling se-
quences for the object program

Calls CIOEX to get the next input speci-
fication compression

PHASE 2.5 MAIN ROUTINES

BASEP2

® Brings in the common data and tables that
were saved on the work data set from Phase
2 as the first logical step in Phase 2.5

e Puts out the object program subroutine
DRTY that calls the FDRIVR (file driver
or linkage table) for the requesting
file

® Puts out other precoded object program
routines under certain circumstances.
For instance, if control levels are
present, CLSUBR is generated and put out

® Generates FDRIVR and FPB (file proces-
sing block) at the beginning of each
file group (FPBFDR)

® Branches into the section of BEGREC that
generates the first instruction for the
object program for this input record

RECSPC

e Performs the processing of the input
record type specification

® Completes generating the object code
for the preceding OR group for an OR
type record

® Completes the linkage between the groups

GENIDT

® Generates object program instructions
that test record ID codes to determine
record type

® Calls CIOEX (GNXCMP) to get the next
input specification

® Exits to FLDSPC for a field type

® Exits to RECSPC for a record type

e Exits to ENDP2 to complete the proces-
sing for Assemble Phase 2 and 2.5

FLDSPC

e Performs the processing of input field

type specifications

® Completes the generation of the object
code for the last OR of the current
record group

® Calls CIOEX to get the next input speci-
fication

® Branches to exit as described in GENIDT

ENDP2

® Completes generating the object code for
the last record group of the last input
file group

® Generates and puts out GIRC which is the
object program subroutine that gets the
next input record for processing

® Branches to put out the last block of
blank-after entries

® Restores CIOEX registers

® Branches to CIOEX to call Assemble

Phase 3

SUBROUTINES COMMON TO PHASE 2 AND PHASE 2.5

The following subroutines exit via register
15 unless stated otherwise.

ALIGN

Obtains the object program counter from
the CIOEX data area

® Forces the object program counter to full
word alignment

® Restores the updated counter to CIOEX

® Exits via register 14

GETINP

® Calls CIOEX to get the first input speci-
fication compression

e Exits with the first byte address of
the input specification compression in
register 3

GNXCMP

e Examines the next available byte in the
compression block

e Exits if the field type is I (record) or

D (field) or if the next specification is
other than an input type

Assemble Phases 2 and 2.5 73

e Calls CIOEX to get the next compression
block

® Returns to the test for record type

ADD2AC

® Maintains the object program address
counter that contains the absolute ad-
dress, plus one, of the last location
used by the object program being compiled

DMPTXT

® Accepts object code and generates a
binary text card for output

® Writes card images to be punched even-

tually on the go/punch data set

PHASE 2 SUBROUTINES

GENCHR

74

Generates the exit (BR) from the MVFLDS
object program subroutine for the pre-
ceding record group

® Generates a calling sequence for the
chaining subroutine if chaining fields
were present in the preceding group

® Places the decrement to the first chain-
ing block into the calling sequence

e Advances the object program address
counter (ADD2AC)

e Exits via register 12

RMFLCK

e Executed when matching fields were pres-
ent in the record group preceding a new
record group just detected

e Checks the equality of the total length
of each set of M1-M3 fields in the pre-
ceding record group if there is more
than one set to a record group

e Assigns a diagnostic code if the length
of each set is not the same

® Sets an indicator for a diagnostic code

if the length of each set is not also
equal to the length of each set in all
previously processed record groups of
the file group

FMFLCK

Executed when a new input file group is
detected or after the last input file
group has been processed

Checks multi-files (primary and second-
ary) if there were matching fields in
the preceding file group

Assigns a diagnostic code if matching
fields are not specified for the primary
file

Assigns a diagnostic code if matching
fields are missing for the secondary
file

Assigns a diagnostic code if the lengths
of the M1-M3 fields for the primary and
secondary file are not equal

Assigns a diagnostic code if the indica-
tor has been set for it during execution
of RMFLCK

CK4UBA

Defines the branch address for the BNE
instruction generated by FLDREL when the
field-record relation is present

Exits via register 12

FLDREL

Executed if a field has an associated
field-record relation indicator

Generates instructions that test the
status of the indicator and branch to
the next field if the indicator is not
on

Exits via register 12

FLDOPS

Processes the control level field to de-
termine the maximum length of each level
(L1-19) in order to reserve common work-
ing storage in the object program

Processes the field-record relation in-
dicator (FLDREL)

Generates the object code to test the
field-record relation indicator if a
specification has a field-record rela-
tion indicator and chaining fields
(IFCHF)

Sets the CHB (data identifier) processed
code ON if the indicator is not ON. The
chaining request block generated is as
follows:

X'BOOC' Data identifier
(compiler use)
Processed code and
field address over-
flow

File number
(binary)

Record sequence
Chaining field
number

Field length

Field address
Decrement for
accessing preceding
CHB

CHB DC

DC X'FO'

FILENO DS CL1

CL2
X'00'

RECSEQ DS
CHFNO DC

DS CL1
DS CL2
DS CL2

Checks the matching field table for
duplicate matching fields if there are
no chaining fields but there are match-
ing fields

Eliminates duplicates because M1-M3 is
allowed once with each field-record re-
lation indicator and once without an
associated indicator

Makes an entry in the table if this M
number is not a duplicate

Accumulates the total length of the
fields of each set

Puts out a matching field specification
on the work data set

FLDIND

Places the address of each indicator used
into the calling sequence for the move
fields subroutine (MV2FLD) in the object
program

Changes the entry displacement to the
move

Performs status checks

Exits via register 14

DMPSPC

Controls blocking and output of control
level specifications and matching field
specifications onto the work data set

These specifications are subsequently pro-
cessed by GENCLM after the execution of Phase

The format of the records that are writ-
ten on the work data set is

RRFFLNA
where
RR = Field-record relation indicator

(the first byte of RR = X'FD' if
no field-record relation indicator

FF = Address of input data (BDDD)
L = Field length
N = Level number, 1-9 for control levels

and 1-3 for matching fields. The
zone of this byte indicates the
specification type, C for control
level or E for matching field

A = Decimal position and packed indi-
cation (same as compression)

GENCLM

® Processes control level and matching
fields specifications

The following instructions are generated
for the object program for a control level

specification with or without a field-record

relation indicator. These instructions
move the control level data from the input
area to the working storage.

MvC TA(L,GR9) ,FF(GR2) Moves alpha and
packed data

MVN TA(L,GR9),FF(GR2) Moves unpacked
data

For fields without a field-record rela-
tion indicator

TA = CLWSDP(N-1)+DPWORR(N-1)

For fields with a field-record relation
indicator

TA = CLSWDP(N-1)+DPWRR(I)
where
(N = Control level number)

e Defines any preceding undefined branches
(for a control level with a field-record
relation)

® Generates the instructions necessary for
the object program to test the field
indicator (FLDREL)

® Generates for a matching fields speci-
fication

2 is complete and before Phase 2.5 is
brought into ccre. When the work data set

is brought back into core, the records over-

lay the part of the Phase 2 program logic
starting at symbolic location PASS1.

Supplies the input data area address and
length of matching fields to the routine
DRTY2 which is an object code subroutine
put out during 2.5

Assemble Phases 2 and 2.5 75

® Makes a test for the type of specifica-
tions being processed at the end of a
record group

® Generates a branch as the last instruc-
tion of MFSUBR which is the object pro-
gram subroutine for matching fields
specifications

ALPHA

® Generates an instruction for alphameric
input data

® Processes the alphabetic input data by
branching out to FLDOPS, GENMVF and
DMPTXT

e Returns to the main program to get the
next specification

STERNG

® Generates the calling sequence for the
sterling input conversion subroutine in
the object program

® Processes sterling input data by branch-
ing out to FLDOPS, GENMVF, and DMPTXT

® Returns to the main program to get the
next specification

PHASE 2.5 SUBROUTINES

The following subroutines exit via register
15 unless stated otherwise.

TXTOUT

® Checks the buffer area used for assem-
bling text output for overflow

® Generates an additional branch if the
current request would cause an overflow

e Prevents DMPTXT from creating output by
branching around the undefined branch
addresses and creating a new undefined
branch address. The preceding UBAs are
defined to branch to the new UBA

® Branches to DMPTXT to put out the text if
there is no overflow

GENRDR

® Generates instructions and fills in
pertinent data in RDRIVR at the end of
a record group. RDRIVR (an object pro-
gram subroutine) is generated for each
record group and follows the coding
which tests the record ID codes

76

® Branches to TXTOUT to put out the text
before the exit is taken

GEUNID

® Checks for ID codes in the preceding
group at the end of a record group

® Defines the BNE instructions generated
in the preceding group to go to the next
group if the ID codes are not equal

® Generates a stacker select code if the
file device specified by the FET entry
is a card reader; the generated code is
put out by TXTOUT

PHASE 2 PRECODED ROUTINES

DSPC

® Receives control from either the linkage
routine or the chaining subroutine

® Executes the MVFLDS subroutine for the
input record type being processed; the
MVFLDS subroutine moves the input data
into the assigned fields and calls the
chaining subroutine for chaining fields

® Contains the transfer vector (table) to
branch to the following subroutines:
PACK Packs unpacked numeric input
data into a packed field
Packs unpacked numeric input
data into a packed field and
checks the status of the field
(STAT)
Moves packed numeric input data
into a field
Moves packed numeric input data
into a field and checks the
status of the field (STAT)
Checks an alphameric field to
see if it contains all blanks
and, if so, sets the blank
indicator ON
Checks the status of a numeric
field and sets the respective
plus, minus, or zero indicator
ON

PACTST

ZAPN

ZAPTST

TEST4B

STAT

PHASE 2.5 PRECODED ROUTINES

DRTY

e Called by the chaining subroutine to de-

termine the record type and set the re-
sulting indicator ON

Register 1 contains the number of the
requesting file when this routine is
entered

Calls the FDRIVR (file driver or linkage
routine) corresponding to the requesting
file number

DRTY2

Called from DRTY and GNR to determine
the record type and to process matching
fields

Entry conditions are as follows

Address of IORB

Address of FPB

Address of RPG object program
common area

GR9
GR1
GR13

PROCMF

Moves matching fields to working storage
and compares them with matching fields
of the preceding record group

Turns on halt indicator HO to indicate
an out of sequence condition (for file
sequence checking)
Entered from DRTY2, the conditions are
as follows

GR9 Address of common working storage
for matching fields and control
levels (reserved by Assemble
Phase 2)

Address of M1 field
Address of M2 field
Address of M3 field

GR10
GR11
GR12

in input area
in input area
in input area

PRESEQ

Checks input records that are designated
to be in a predetermined sequence

Included in the object program immedi-
ately following DRTY and DRTY2 object
program subroutines

Predetermined sequence is specified in
the input record type specifications

Entered from RDRIVER (record driver or
linkage routine)

Sets halt indicator (HO) if the sequence
number is not equal to the expected se-
guence number, the option was not speci-
fied, and there is only one specifica-
tion; if there is more than one speci-
fication in the above instance, the
indicator will be set if there is not

at least one specification with the
expected sequence number

RDRIVR

® Generated for each record group

® Included in the object program following
the coding that tests the record ID
codes for the record group

e Turns on the proper resulting indicator
when the record is identified

® Places the addresses, necessary for
processing the record, in the FPB (file:
processing block)

GIRC

e Receives control from the linkage routine
in order to get the next input record
for processing

® Turns on the resulting indicator associ-
ated with the record

® Tests for control level breaks

GNR

® Called from either GNP or GNS to read a
record and determine the record type;
address of the FPB (file processing
block) for the requesting file is in
register 1

® Calls the input/output routine to read
the record and DRTY2 to determine the
record type

GNXP

® Generated as a part of GIRC when multi-
files are present

® Calls GNR to read the next record from
the primary file

® Sets the end-of-file indicator for the
primary file

@ Tests the end-of-file indicator for the
secondary files

GNXR

® Selects the next input record for
processing

® Reads the next record from the file
last processed

® Compares records from the primary and

secondary (or group of secondary) files
to determine which record is to be

processed next

Assemble Phases 2 and 2.5 77

78

Processes files that are in ascending
sequence in the following order:

P« S Process primary
P>S Process secondary
P=S8 Process all primary records of the

matching group and then process
the matching secondary records

Processes files that are in descending
sequence in the following order:

S Process secondary
S Process primary

P
P
P S Same as for ascending sequence

nvA

Reads the secondary file last processed

Compares the records from each secondary
file to select one to compare with the
primary file record

Selects the record with the matching
field of the lowest value if the files
are in ascending sequence

Selects the highest record if the rec-
ords are in descending sequence

CLSUBR

Compares control level fields of the
input records being processed with the
same fields of the preceding records

Sets the appropriate level indicator or
indicators on when a control break
occurs

Replaces the preceding value, which is
stored in a hold area, with the value
of the field in the current record

Entry is made into CLSUBR for each
level (L1-19) present within a record
group

follows:

Entry conditions are as

GR9 Points to working
where the control
the current input
stored

Points to hold area containing
the latest control level values

storage area
level data of
record 1is

GR10

Logic of CLSUBR is repeated in the
object program nine times, once for
each level, L1-19

Operands of the MVC and CLC instructions
are modified for each time the coding is
repeated

INTRODUCTION

Assemble Phase 3 processes the calculation
specifications compressions and generates
RPG object program text. The detail speci-
fications are processed first with the
total specifications following. If there
is an RPGCV or EXTCV entry, this phase
makes two passes over the compression. The
first pass expands all of the calculation
specifications except the EXTCV (and
associated KEYCV) and the specifications
that are between the RPGCV and ERPGC. The
second pass extends the EXTCV and RPGCV
specifications. The functions of Assemble
Phase 3 are

1. Decompress the calculation specifica-
tions compressions

2. Calculate all addresses required for
the operation expansions

3. Select segments of an operation ex-
pansion according to the attributes of
the fields involved

4. DPut out the object program text to the
go/punch data set

Figure 32 and Charts MA and MB illustrate
the organization and operation of Assemble
Phase 3. Figure 33 illustrates the input/
output flow for Assemble Phase 3.

LOGIC

As the compression is decompressed and
each field is analyzed, the characteristics
are stored in condition codes. These
condition codes are used to select the
object code expansion that fits the re-
quirements of the specification.

The method of developing all of the
addresses for all possible operations for
each field avoids the need for the logic
to choose and calculate a subset of the
addresses.

Blank-after requirements are detected
and put out to a work data set to be pro-
cessed by Assemble Phase 4.

SWITCHES AND INDICATORS

FIRSTOT

X'FF' The program has executed the detail

end logic

ASSEMBLE PHASE 3

SONOF

X'00'
X'FO'

Generate code for SETOF
Generate code for SETON

FINDEM

LISTIT

SET8

TROP

HOW Table

FNAM

CLAD

Constants

SETUP

TRUNC, FINEX

PUN

Calculation Specification
Expansions

Assemble Phase 3 Storage
Allocation Map

Figure 32.

Assemble Phase 3 79

* * » L3
* A2 X% x AL =
* * * .
ok EE
X X
SET8 o ¥ ¥ TRUNC
A2" Tl Pt ERTE LT T T A&T T E FEERRRAS KRR EEEREN
EHARA] TR * *, » * o .
* ASSEMBLE * o *. YES * *
* PHASE 3 * ‘.sRﬂOQ ™ SPEC.’....-.;.X :RlNl‘ THE Eﬂﬂﬂz
. ¥
D e T T .t .
o . T T T
NO * .
.
*MA &
* ASE
R
FINDEM X X
balia il Lt il d A3 Al FEERRSERREERENY
* *
H : * * : TRUNCA H
* - . * CUPDAYE TABN‘W. * 'THE =XPRFSSIBN '
FIND CALC SPECS *DECOMPRESS THE * 1F USE *
* * L CALC SPEC bd ‘ *
FEEERREF R KRR * LIS 2] t.‘tt‘ttttt't‘ttt
. B
x
e
* »
X FINXO x F4 %
RRREC DR R ARk o » .
* * * * P
* SET up * . * *
DETAIL LOCATIONX . * CALL TO
* * - *SET RESULY INDSH®
» * . (F USED
B T . LT S P T
. - -
- .
. . X
X SETJUMP X FINX1 ¥,
TERERDLR SRR RES FEARADIIARKER AR D4 wl haaatliditidis
* * * o ..
* = * * YES RESET 'WORK &
* * * COND*ND * ' "V‘I JUFllflﬂN LIS -.-.-X' AREA USED® *
: DETAIL PREFIX * :[NDICAYDR TESYS: ..‘ o ‘ SHITCH ‘t
P L T P L T T €, % P T T
. . «“No .
. . . .
. - eXeevesoavseconvsasnnsnovas
. % 5
. bahadd ELLLLL L) F4 FHRRRESKRRERRIILY
. * ok *
. * RESFT WORK * % HDRK “x. NO "E ET
- * ARFA' [INSTR * e REA .‘........X' TRESET ORK *
. : ’: ‘.' USFB ‘.‘ ‘AREA' FROH LISY'
- EIE LAt ST 222 212 *, .l ."‘..l.t‘t“.‘..
. - * YES -
. M S . .
- - ‘ F4 ‘ K. -
- . ‘ eXeseeocevsrocascncensccone
- . ‘*
. X F!NXZ PUN
. ERERFIRERR RS tt:t.p«ttctt.ottc tt‘tttFittttt.‘tltt
. *
* BASE * "‘ ADD ' * *
.ENO 0F RLDCK * L0DAD FOR ANY % li(:l')l‘)E L NGTH T ‘ .o X
-* * EXTNLS * CDDE STAR . #PUNCH A TEXT *
t. .; R » - t CARD
. ot * - LTI L T
*“Np ® A2 * . ottt .
. - * LT .
. o * - o a FS5 H .
- * G4 %, Xe * .
. eXeasseossnone - * . "” .
X S . erk X
¥ k. PUN B
Gl T, 62" *. HERERGH SEE R RRE RS W55t
o -, o* *, » Rl .,
¥ *. ¥ ¥ *. * ﬂOXE %IS'EO * YES .% PART NF &,
*, CALC SPFC «X&, DETAIL %ALC ¥ * 0 J MY *X. aea¥e SE"MFN" LEFT .*
‘-' .-' 'c' SPEC ..' * PUNCH BJFFER = o
P— P FERE RS R AR 'u. o
* NO * NO - * NO
. . - bbbl - MR ¥ - .
. . . *MA & . * X2% - .
. . . * H3 X, . .
sXeoevsnsersovansetevccccnne - - - .
X . bl . X .
DETEND ¥ DETTOY ¥ « CLAD X o .
H1 H2" T, . totttuztatttttt#t H&e .
.' *, o* *e . 1s .
o* N ¥ * % ' " ?EGH
*. FIRSY TIHE .X‘. CALC SPEC ‘LFN? ED IN * *. N T .
*. o MOS ANS!ONS‘ « FOR .
"o o R . * . .
" L o % P T e L e -, .
* YES & NO . * -
X . X SETUP X X . .
Lerrrilesrrerres T EEERR 2 R REESR SRR ARAE RO AR prevejsnersruneet .
- - - *® * * . -
* SET _UP * . » * * * TRANSLATE 70 »* . -
*TOTAL LOCATION * . - * k\g - - .
* bd * TOTAL SUFFIX L4 *ADDRESSES ETC. * -
* - * - * * *
CEREE R
X . x PUNT
TERE K | TR T AR
» - .
* * . * SET * o NO YES
* STL *revons *'RUNOUT® SWITCH® L GUFFER FULI. ‘.-‘-....X‘ LISY USFO UP Teele.
*SUFFIX AND TTL * * * -
* PREFIX * * * “e. .- “a, .! .
LI . .t X
* YES * NO L bbtad
. . *HE_*
. . * BS*
X X L
e Lty
* * . *
* F5 % * G4 *
* * - .
e ene

Chart MA. Assemble Phase 3

80

sus

TAG

LOKUP

MVR

SETOF

Chart MB.

* ok EREERPREREERFRRE
- * *

- * *
cosceseX¥ NO ACTION %*escesees
* *

* * ladd
AR RkRRr & S bRk EMA %
* AS*
%
Pl
AMA_*
* X2% FIxsus
% P
* * *
. * pUT *
«X¥TAS/SP* OP CNDES
* To 'SP *
, *
EERTEE R RN
X
FreveDzeerREees
- RESET *
®ISYUB" TO YADD' *.oceanes
* * X
* * P i
HREAASAEA R KRR KMA &
* Ak
.
P radd
Mg *
* X2% FIXTAG
N Lt il
. * 'BALR 8,0' IN *
I LIng .
* *
* *
P L T T
X
FEEEREZERR R LAY
*
-
PUNCH CARD ¥eveosaose
#* LOC*RF TEXT= * X
*LOC OF BALR B,0% Dbl
P AR #MA *
*
» x
*
ot
NB_
* X2& FIXLK1
s P
* * *
. * *
.-.-.--X: {gF g:b% :-....-ni
§Utﬁ0¥1 * i
R P AMA *
* ek
%
i
*MB_ X
& X2% FIXMYR
% R ERH2 SR bk
- * -
: X% EQUAY B3 oF %
: SIVIDE op :
PRI I e
Rt
*MB *
* X2% FIXSTF
L Terrrazrenkerress

. * PUT " *
ceecceeX® SETON/SEVOF *
* BYTE TO SETDF *

» *
L2t L e S 2]
.
.
%
ARARRK 2 4RR KRR R
*
* ESET *
* 'SE%D?' TO %eeeeaees
* YSETON' *
* bt
Rt Sl e LY AMA *
x xky
* *

Assemble Phase 3

¢ ¥,

Y *

o T,
NO %

evee®, RUNOUT SET

. *, 3

- .. o ¥

- *y o

- * YES

: :

- X

: ..

: D4 Ta.

: .

- o ¥ BLANK

- *,AFTER BUFFER

: %o EMPTY ¥

. L -

. *. o ¥

. * YFS

:

:

.
X
Lid
A
H
*

L NO_o®" BLANK °#
e¥®Xeeneseea®* AFTER RUFFER .%
. *. FULL o%

L1

x.
e¥esaseneeX

ERARRBSARARE KRR

RESEY

LENGTH
ACCUMULATOR
AR EEARR SR ERK

e
ERREN

e s 0.

DPUNPUN] %
"L
* *

e ok
YFS

Xo ¢ 0 0o %

LAN
FRERREDSRERERREREER
* *
TF
T BLANK
E|
*

WR
AND RES

AFTER

AREAEERE

4
E
T
R 2T T
.

evessncsscescssenccsnsoseXe
X

. o
¥
* YES
.
X
¥
FS *,
* .
NO o% TEXT A
coesk, LEFY IN o*
, SUFFER .
L .t
, o
* YES
X

FERAEAGE R RSN RRRK

PUNCH
* A SHORT TXT %
ERERERERE RN S

AEEEEJSERREERERER
*

* PUT é“lv
® UPDATEN LOC
* COUNT

LITTT

AR ERRTEREE RS

ceve

s

SEERNEKSHR AR R ek
* .
CALL NFXT PHASE
* *

AEAERER SRR RR

Assemble Phase 3

81

RPG Phases
PDEN AS‘éEﬁBLE 23"5 i
RESIDENCE
VOLUME PHASE 3 77N
SYSGO/
SYSPUNCH
Blank After
Compression Entries
ASSEMBLE
SYSUT1 PUASE 3 SYSUT2
Diagnostics
SYSUT3
Figure 33. Assemble Phase 3 Input/Output
Flow
XAPSP
X'FB' Generate code for SUB
X'FA' Generate code for ADD
USEW1l
X'o1l! Work area is used

MAIN ROUTINES

FINDEM

® Puts out the detail prefix

® Accumulates the computed length of text

® Branches to the decompression and ex-
pansion routine (SET8) for a calcula-
tion specification compression

® Otherwise, branches to FINX2 to conclude
the functions of the phase

SETS8

® Decompresses the calculation specifica-
tion compression

® Checks and analyzes the following fields:
control level, indicators, factor fields
1 and 2, operation code, result field,
and resulting indicators

® Constructs the LOKUP switch

82

® Puts out the number of tests involved,
the code for the reset, and the loads
needed to get the EXTERN addresses

TROP

e Translates the operation code from hexa-
decimal (in compression) to an internal
sequence number, for subsequent trans-
lation by a branch to the proper sub-
routine

® Generates
depending

the object code expansion,

on the branch address (either

a segment address or a special case
address), as illustrated in the following
table, which has the added information
corresponding to each instruction:

1 - branch address

0 - expansion address
XXXXKXX1X 1 - calculate address

0 - do not calculate address

XXXXXXX]1

KXXXX1IXX Used for KEYCV
1 - operation cannot update
table
XXXRIKKX 1 - resulting indicator set as
part of expansion
0 - not set as part of expansion
XXXIXXXX 1 - operands must be numeric

0 - operands may be alphabetic

HOW DC X'08' For SETON Go To SETUP
X'01" RPGCV* TRUNC
X'09" SETOF FIXSTF,

SETUP
X'00" GOTO SETUP
X'00" EXIT SETUP
X'0D' LOKUP FIXLKL
X'02"' MHHZO* * CLAD,
SETUP
X'0A' COMP CLAD,
SETUP
X'OA' TESTZ CLAD,
SETUP
X'01' TAG FIXTAG
X'12" Z-~ADD CLAD,
SETUP
X'12°" %-SUB CLAD,
SETUP
X'12"' ADD CLAD,
SETUP
X'11"' SUB FIXSUB,
CLAD,
SETUP
X'12' MULT CLAD,
SETUP
X'12! DIV CLAD,
SETUP
X'13! MVR FIXMVR,
CLAD,
SETUP

*Same for ERPGC,EXTCV,RLABL,ULABL,KEYCV
**Same for MOVE,MLLZO,MHLZO,MOVEL,MLHZO

The special cases that allow multiple use
for sets of code or instruction modification
are SUB, SETOF, LOKUP, MVR, and TAG. ERPGC,
EXTCV, RLABL, RPGCV, ULABL and KEYCV all
branch to truncate (TRUNC) the expansion
and bypass the specification.

The table DECODE contains the addresses
of the object code expansions and is used
in conjunction with HOW. The table BLUN
is used for converting the compressed
operation code into its sequential position
for use in a computed GOTO.

SETUP

® Uses the information extracted and
stored by CLAD, LISTIT, and TROP2 to
select segments of an operation expan-

sion. Stored information is as follows:
Reg 0 RLEN Length of list buffer
(computed in LISTIT)

1 RD2D1 SWl in first byte and
SW4, SW7 in next two
bytes

2 RACC SW2 These switches are

all set up in CLAD

3 RDWDR SW3 where all attributes

are evaluated. Their

4 RZCC SW5 meaning is made ex-

plicit in the section

5 RDRD2 SW6 named CLAD and also

wherever they are

6 RLRL2 SW8 wused or tested.

Registers 6,7,8 are

7 RF2RF SW9 also used as work

8 RL1L2 SwWl0 registers.

9 RSEG Contains pointer to seg-
ment address setup in
TROP2

10 RYES Points to INTERP

11 RSTEP Step counter for number
of segments to be skipped

12 RWAY Holds computed GOTO
branch, and used as
scratch

13 RNO Has address of NEWSEG

14 RSCAN Points to code in segment
currently used

TRUNC

phase and
codes

® Provides linkage between this
CIOEX to print the diagnostic
assigned in this phase

® Truncates the expansion at the last
calculation specification on an error

FINEX

e Does some final checking on tables,
resulting indicators, MVR operations,
and use of work areas

® Computes and transfers the length of the
code of the expansion to the routine
(PUN) that moves the expansion to the
punch buffer area

PUN

® Moves the selected expansions to the
punch area, using the length and the
address from the list (see SETUP)

® Stores a new address and length at the
same list position for continuations

® Links with CIOEX to put out the
text

e Writes out the linkage vector entries
for calling the detail and total lines
routines

SUBROUTINES

LISTIT

® Moves the length and address of a
sequence of object code into a list
(LIST1), referred to during the output
to the punch routine (PUN)

FNAM

® Separates and stores the attributes of
the field name as follows:

Field Name =B (BASE) DDD (Displacement).

BETABETA = Field information
byte
LL = Field length-1 (in binary)

X=X'E' for external field, or

X'0' if not external

D=X'B' for alphameric, X'0'-
X'9' for numeric

OV = Overflow key X'00'~X'04"

Literal field is all the same except that
XD is replaced by OD=X'OB' for alphameric,

X'00'-X'09' for numeric, and X'0OA' for
edit word.
Field information byte (BETABETA),

starting from left, has format TTTTXYZZ

Assemble Phase 3 83

where TTTT is not used and

0 No blank-after is wanted
0 BDDD address reference is direct

1 It refers to the table linkage

X =
Y =
field
ZZ = 00 Table
01 Table
10 Order

If data base

is in ascending order
is in descending order
is not specified

overflow is indicated, the

appropriate base number is substituted in
the field address. The 24-bit (unrelocated)
address of the field is formed for possible

84

use in the look-up (LOKUP) operation.

CLAD

® Loads registers with the attributes of
the field name and calculates the
addresses required

® Stores the condition codes and addresses
for use in other routines. The list of
registers and the information they
contain is described under SETUP

INTRODUCTION

These phases perform additional diagnostics
and generate an executable object routine
in relocatable text, which assembles and
puts out all records requested on the out-
put-format specifications sheet. The data
used are the compressed specifications from
the file description and output-format
specifications, produced previously by

ASSEMBLE PHASES 4 AND 4.5

3. Generates the instructions for testing
the overflow switches for all data sets

4. Generates a linkage point and puts it
out on the RLD data set

5. Generates the instructions necessary to
assemble and puts out all total records
conditioned by overflow

Enter Phases 1 and 6,
indicator information
work file produced by

and the resulting
from the blank-after
Assemble Phases 2

START, AGO, AO4

and 3.

Figures 34, 35 and Charts NA, NB, NC,
ND, NE illustrate the organization and
operation of Assemble Phases 4 and 4.5.
Figures 36 and 37 illustrate the input/
output flow for Assemble Phases 4 and 4.5.

LOGIC

Assemble Phases 4 and 4.5 are separately
loaded and executed. Phase 4 generates the
instructions that perform the logical tests
to determine when the record is to be put
out, and that put out the line.
which is in two sections, is concerned with
compressed specifications labeled 0 (line).
Phase 4.5 generates the instructions to
assemble the output record from the com-
ponent fields and to test any output in-
dicators associated with it. This phase is
concerned with compressed specifications
labeled M (field).

In processing the output-format
the field name is tested to determine if a
blank-after is indicated. For this situa-
tion, the blank-after data set is searched
for an equivalent field name address, and
instructions are generated to set any
associated resulting indicators on or off.

Section 1 of Phase 4 builds the file
description table and performs error diag-
nostics. This table contains information
on all valid output files in the source
specifications. This information consists
of such entries as type, format, record
length, overflow indicator, output device,
and sequence number of the defining speci-
fication.

Section II of Phase 4 has the following
separate functions:

1. Generates a linkage point and puts it
on the RLD data set
2. Generates the instructions necessary

to assemble and output all total records

not conditioned by overflow

BO1

Col

Constants and Tables

TSTSW2,D01,D03

NEXT, PASS2-PASS7,D06

This phase,

GENER1

entries,

FIELD, PRNTFN

LINKPN

JO1-J04 ,SETCOD, OVFSET,UBADEF ,ERROUT

END5, END2, END

DMPTXT

Switches - Constants - Areas

Precoded Instructions

Buffer for DMPTXT

Figure 34. Assemble Phase 4 Storage
Allocation Map

Assemble Phases 4 and 4.5 85

START, Tables and Areas

ENTRY, FIELD1

INCOMP, END

TSTNAM

STERL

F10

BLNKAF

FLDEND, DATOV1, Subroutines

DMPTXT

Constants = Switches - Areas

Precoded Instructions

Buffer for DMPTXT

Figure 35. Assemble Phase 4.5 Storage
Allocation Map

6. Generates the instructions necessary to
put out all heading records and all de-
tail records conditioned by overflow

7. Generates a linkage point and puts it
out on the RLD data set

8. Generates the instructions to turn off
all X-switches

9. Generates the instructions necessary to

86

assemble and puts out all heading
records and all detail records not
conditioned by overflow

10. Generates the instructions to turn all
overflow switches on and off

11. Places the file description table,
built in section 1 of Phase 4, after
the blank-after data set for com-
munication with Phase 4.5

Phase 4.5 creates all of the object code
necessary to assemble the fields for the
line coding generated in Phase 4. In pro-
cessing the output-format entries, the field
name is tested to determine if a blank-after
is indicated. 1If it is indicated, the data
set containing the blank-after entries is
searched for equal field name addresses,
and instructions are generated to set on
any associated blank or zero indicator.

The starting address for each string of
field coding is placed in the assemble 4
table. Each string of line code that is
generated for the O-type compressed speci-
fications, ends in a branch to the assemble
4 table. The addresses that have been
placed in the table provide the link to the
field coding for that line. The field
coding, in turn, returns the program to the
next sequential line to be processed.

The maximum number of unique lines of
coding that can be generated is 1023.

SWITCHES AND INDICATORS

General Switch No. 1 - Phase 4

TTOVSW xxxxXxx1lx Data pass 5 completed
PROCSW xxxxxlxx Present line started
BALRSW xxxlxxxx BALR issued

LINESW xxX1lxxxxx Previous line built
ANDSW x1xxxxxx Process AND specification
PNCHSW lxxxxxxx Punch/print issued

General Switch No. 2 - Phase 4

XXXXXXX1
XXXXXX1X

FLDSW
PAS2SW

Suppress field linkage
Indicates data pass 2
completed

General Switch No. 1 - Phase 4.5

PROCSW xxxxxxxl Line not to be processed
FLD1SW xxxxxxlx Pirst field of a line
ULABSW xxxxx1lxx ULABL was used
SIGNSW XXxxlxxx Non-standard sterling
sign
EDITSW xxx1xxxx Edit a sterling field
FTOSW xxlxxxxx First-time switch
branch address
NOFTAB x1xxxxxx Not in file description

table

ARERAD A RARRAR K
:AﬁSFﬂBLE PHASF :

4
* DATA PASS 1 ¥
LR e T

START x
REEERKG2 KRR RR AR
GET 1ST
* BLOCK OF *
COMPRESSED
* FILE DESCR *
SPECS
ok kekE Rk
ceetessancassecsesessssasasnarsacrassXy
- X
+A00 . o ¥ o ¥y
o EEEERECLEFREERRRERE c2 *, C4 *,
- I END OF o% TEST *. END _0OF <% ANY K,
- * BLOCK 0OF * BLOCK .* FOR FILE *, FILE DESCRIPTION «% TABLES *. NO
- COMPRESSED Xeasssnoe®s DESCRIPTION c¥iveeersvssnvorsscrcacassncassncsesXhe PRESENT s¥geseserccnsencsnan
. * FILE DESCR, * XYFFY *, SPEC . ®,(PASSKEY).* .
- - SPECS *o . *, ok .
- PR e p et P] LPL *, . .
- *F SPFC * YES -
: M PP 99 :
- X X X -
-A03 ¥ . . A0S *, -
- REEAD] HREERERE K D2 -, - EpRRRE R bttt D& *, €ND DF -
- *° ¥ *o . G?? NEXT END OF ¥ *, FILE .
- INCREMENT * ND % [4) *o . * BLOCK NF * BLOCK o#* TEST FOR *.EXTEN -
esse® COMPRESSION #*Xoepessee®es U OR 6 TYPE % o Cl HPkESgED Xeosssseo FILFE e¥cosescccccsnvnveXe
POINTER * X *, ¥ . JLE EXT XIFES * EXTENTION. * .
* . - ¥ . SPECS *,SPEC L% -
R Rk Kk - K, ¥ - L2233 it lilsl] e oF -
. * YES . * YES .
. . : . X
. - - - EERKE
. . - X ANB %
- X <AD6 %o * A2%
. E . € E4 *, . *
- * M * * . *, *
. :BUILD NEW ENTRY#® - * INCREHENT * NO_.* *o
esescs FOR FILE * eesa®* COMPRESSION #*Xecseoses® DUTPUT TABLE .*
* DESCRIP TARLE : : POINTER : X ., '.0
: I
- * YES
. tlt&th’Ettatttat
- CHANGE
. *REFERENCE BYTE *
cassec® IN FILE *
DESCRIPTION *
TABLE
RERERE Rk ERREE Rk
Chart NA. Assemble Phase 4
PHASE 4 - SECTION I ROUTINES co1l
® Makes a reverse scan of the file descrip-
A00 tion table in order to diagnose file
type errors
e Searches the file description specifi-
cation compressions for valid output ® Assigns a diagnostic code for an error
files and builds table entries for that is detected
them
PHASE 4 - SECTION II ROUTINES
A04
® Searches the file extension specifi- TSTSW2
cation compressions for any table refer-
ences to output files @ Re-initializes the compression for
the next pass through the output-
format specifications
BO1l
e Scans the output-format compressions to DOl
complete the file description table and
to determine if any invalid files are
referenced in these specifications ® Examines the next compression

Assemble Phases 4 and 4.5 -87

RO1 -
A2 ", HRRARE A S SRR KAk AR
¥ *,
+*ANY OUTPUT *. NO * *NO
-, SPFCS e¥eeessaseX OUTPUT SOECS
. -* * GIVEN® -
., o
LY R
* YF§

s o000

ROS
ARERRKB2 KRR
GET FIRST BLNCK#

**eaR3 EEREEE

»
L
S

T ST

*:
A
N
G

* DIAGNDSE

* c *
OF COMPRESSED * DIAG TIC *
*NUTPUT SPECS » * MESSA OHASE *
LT P Ttk
R R EREE
P PP
2803 H
TR ERC] AR AR R c2" e, AEERRCIRRR R R
. END OF ok FND NF - =
- *GET NEXT BLOCK * BLOCK .* TEST EN *, OUTPUT *SCAN COMPLFTED *
. NF _COMPRESSED Xaeesnase®LAST SPEC IN o¥®oveosenaXk TABLE ANO *
. #QUTPUT SPFCS * X*FF? ‘-. BLNCK *® X'FDY * DIAGNOSF *
M R Te. SRR R
- «"ND .
. . .
. . .
. X .
«B13 REINIT ¥, X
D W07 T, B P
P . .
. * INCREMENT * LIS TEST -, * RE-INIY]I%IZE *
wees® COMPRESSION *Xeessesae®a SPEC TYPF ¥ FIRS
H POINTER 0 Tx ., Ry * NUTPUT SPEC #
P T I ‘e, " R R
. *n0 -
. . .
. ; .
: CRRRRE2 AR E R X
. * COMPLETE ERAREIRRRE RS
. * BUILOING OF * *
. * FILE DESCRIPT ¢ *CALL DATA PASS *
- * TABLF ENTRY * *
- * Ll EETLEE R 1S 21)
M AR AR «
. . .
. : X
M . Ty
. . NC %
« CO1 X * A2%
M R -
. - - »

neses® FILE-TYPE®
: FRRORS
RO AR ROk

n

Chart NB. Assemble Phase 4

88

Tests for the end of the compression
block, the record type (O or M), and
the record type for AND and OR speci-
fications

Puts out the print/punch function infor-
mation if necessary

Performs the operations required to
finish the previous line and start the
next. These operations finish the code
generation and fill in the UBAs for the
last line, update the address counter
to include the last code block, store
filename and the print/punch function
information from the compression

NEXT

® Not a routine but a list of branch in-
structions that guide the program through
the various passes, in sequence

D06

® Resets the appropriate switches for the
next specification and increases the
compression pointer in order to obtain
the next specification

PASS2-PASS7

® A set of six routines that determines, by

testing, if a specification is to be
processed by the particular pass

GENER1

® Generates the user object code for line
type (0O) specifications

® Includes routines to process AND and OR
types, H/D/T types, and specifications
with no resulting indicators

FIELD

® Sets up the linkage to the assemble 4
table that is built in Phase 4 to provide
an address for a branch to the coding
for the field type (M) specifications

PRNTFN

® Issues the code for moving the print/
punch function information from the
compression to the IORB

LINKPN

.
® Puts out the V-type linkage record on
the RLD data set

e Issues the first object code of the block

Jol - Jo4

e Common linkages to the punch text code
routine (DMPTXT), which issues the code
for BALR and a resulting indicator test,

ok

*NC ¥
* 2%
* %
*
:
}
WAORKA 2 kR Rk
%+ DATA pass 2 *
EEEI RIS 2222221)
.
:
R 4 - -
X X - -
01 . PASSIN . - -
RS2 TSRS 2 S22 LT B2 ‘. Wk kDI Rk kR kg - -
] END NE - TR EBGRREREERA K -
T SGET NEXT BLOCK ® BLOCK .®'7esT F . OUTPUT * RE-INITIALIZE * - -
: OF COMPRESSED *ILAST PFC !N “*iieiaeeeX T FIRST eese=eesX¥CALL DATA PASS * =
T +BUTRUT SPECS x stoc XEDS * NUTPUT SPEC * - -
- . - - EERE TSI 22122] -
- RS TP T2 L] *, o PRI 22Ty] - -
. * - -
: X
.007 o' FIELD ..
. :t“'clt*t'i.*‘ﬁ: 'CZ \'.‘ C‘ *,
. INCREMENT % o*° RECARD % .+ Ts RECORD'*
ceee* COMPRESSION # #0 OR FIELD i#eeeeeenevesnsscosassnsssosssoncesaXfe 1o 8e_ogteur
* NTE * ., SPECT % .
RE R o Rk Rk “w, e ". .t'
X R + YES
- EL L] - .
Xo% C1 % : :
e - . - .
. ohak - X .
. - .., :
. - 02" %, - :
. - o* LINE “#, - .
. - YES J*CONDITIONED®. - 2
Xeeeessesesemeccaks BY NVERFLOW % - :
: - . o* - :
. - . o - 2
. - Ko ok .
. *"ND .
: - . .
. - X M
. - o, X
- - F2 .‘ AERRECLRKE KR ERKEE
. NO_ %D Tx, * DIAGNISE *
: <% TOTAL LINE ,ix * *FIELD-TYPE® *
: M . - * ERRORS *
. - . o - .
M - . ok - ERRRAER AR R
: N «°vES - .
. - . - .
. . .
: X :
: f2" 'a. SEREEE R AR M
. .t * :
. YES STORE * .
. * FIRST 0F YHIS.'........X* ADDRESS FOR * .
: *, CTYPE L& CINKEGE * :
. ‘ay ox" P ey :
. *"Np . :
. . .
: . :
. . M
. PXeoseerasasanacesenaosacal .
: .
. %
- tttccgz*:tttttttt ERRERGLEREEREEE SR
. * GENERATE *
: % oppANST IO * COUNT NUMBER
. * DETERMINE IF * * GF ENTRIES T0 #
. SLINE SHOULD BE % * FIELD CODE #*
. * CASSEMALE * .
o R PR ag 22 ""'l‘ EERRRERERE R RN R &R
. . .
: : 5
: EERERRH2 R KRRk hEkkk RREARHE R R Rk kR
. * outeut . « nureut]
: MACHINE CODE MACHINE_CNOE
N * - * LINK T0FLD #
: R ERRR R R R Wk ok R
. . .
Ceeeecsesnesescaseass
Chart NC. Assemble Phase 4

@

L

- NO *
.0....K: C1 x

kAR

Assemble Phases 4 and 4.5

89

Chart ND.

920

X
.

TNy
YES . +COND]TIONED®.
wece®. BY OVERFLOW .#

.. o
¥
* NO

PELLRL L ety

o* .
NO .* *,
eeee®. DETAIL LINE .#

. o

: FERKATERER SR KRS : EREEASKERKES AR :
- * * - * -
- DATA PASS 3 @.....x:cnu DATA PASS * - DATA PASS 4 <eetXCALL DATA PASS & -
- ER LTt T T L] - HEERERTE KRR AN -
z .. z z
- *, -
- ONED* -
- FLOW -
z v -
z o z
- YES -
z .. z e -
- o* .. - .. . z
- NO .* -, - NO o ., -
—eoeo®. TOTAL LINE & eees®IHEADING LINE (% -
- *. . . o -
- ., ¥ *, «® -
- . oK - e, oK -
- AYES - -YES -
: REA L kRl 222 22 01] - SRERDSER kR kbR -
- * - L -
- DATA PASS S @ ««X¥CALL DATA PASS # - XHCALL DATA PASS * —
- ‘ EREREEREP RO - EREREREERERREkE -
z . z o . z
- N0 s - ON E -
—eeee®e B BY 9 -
z - z
z - . o z
- - L -
- - * ND -
- - % z
z ot -
- - (2N -
z - -, " z
- - *y o -
- - .YFS -
- . -z M z
:
WRITE
. FILE » * CALL ASSEMBLE *
DATA PASS 7 weeveX _ DESCRIPTION conueeseX PHASE 4.5
* DN SYSUT1 * * *
ERERERERAERRE EREERETE RN,

(KRR R R RN NN NN NN NN NN NN

Assemble Phase 4

AR RA e R R

* GET FILE * »
DESCRP, TABLE Xeeeoew ¥
*FROM RLANKAF *

HRE AR kK

tl“‘g‘#..."t‘

ASSEMRLF
PHASE 4.5

EEEEEERRERRRRRE

.
X
:‘tt*“ltt‘#t##t“
N
S

FOTIPII
e 6000
SR EREE)

RG]

* *

* aurPUY * COUNT * * *
MACHINE CODE * EACH GROUP * CALL NEXT PHASE

* FOR FIELD » : : * *
R AT TR el ad E T Rl f 2] 2

TR R EERR

. .
sseessscesceXosesaseccccscssnsssnanscnen

»
* REINIT -
*COMPRESSTON TO *
LIST 0/7P RECORD *
ok sk kR Rk kR
.
ceecressesnXe
LINCOMP X
o ARG | R Rk
: GET
.. NEXT *
: COMPRESSTON
N * SPEC *
: FERRERRRER RN
H :
. .
. X
ZENTRY .
. n1” .
. o ..
. . *. YES
< *IEND OF COMPR l#.iieeeeececns sareance Sessmasiasenan [P
: ‘e, o .
. L .
M +*No .
B N .
. . .
: s eeseees cosese .
. X . N N
. o . X END X
. S S N 2 £
. o “e. YES L *OUTPUT HACHINE & LI LT *
T #ILINE'O' SPEC i#.ce.. CODE LINK TN FINAL LINK TO
: 'a.‘ ot * ° * LINE CODING * INRE EONTNE .
. Ca, o HEERERARRERRK Rk Rk
. N . .
: : : M
. . . .
. X FIELD3 % X
M EERERE | R AR FRARE 2Rk
. * - *
. % DIAGNDSE * & PLACE ADDR OF * PuT
D % sFIELD® TYPE » * ELD conE TN e our FIELD
P ERRORS H * FIELD TABLE % * TABLE .
: EREERRREERRNRERRE Rk rR R RIS 222 2l
.
.
.
.
.

Chart NE. Assemble Phase 4.5

increments the displacement register
for a line, and increments the UBA
counter
SETCOD
® Sets up and issues the user object code
for linking to the I/O intercept routine
OVFSET
® Sets the overflow switch on/off from
the X-switch setting
UBADEF

e Linkage to the UBA-defining subroutine
(ADRDEF)

ERROUT

® Linkage to CIOEX to print the diagnostic
codes

END5

® Executed at the end of the pass that
processes a detail line conditioned by
overflow

® Issues code for a printer carriage
automatic skip to channel 1 and for the
end of the first object code output
block

® Updates the address counter to include
the last code block

® Issues code for the first entry into a
detail line code block

e Writes the linkage information on the
RLD data set

® Issues code to load and store registers
and store constants

® Resets X-switches for all print lines

END2

® FExecuted at the end of the pass that
processes a total line not conditioned
by overflow

® Issues code for testing overflow
switches for print lines

END

® Executed at the end of Pass 1 to put out
the file description table and the
assemble 4 table on the blank-after
data set which are used by Phase 4.5

DMPTXT

® Puts out the text card images for the
object program

® Described in more detail in Assemble
Phase 2

PHASE 4.5 ROUTINES

START

® Reinitializes the compression for

Assemble Phases 4 and 4.5 91

RPG Phases

Blank After
Entries

SYSTEM Load
RESIDENCE ASSEMBLE
VOLUME PHASE 4

SYSUT2
l RLD

ASSEMBLE
PHASE 4

Compression

SYSUT1 P‘

SYSUT3

ESD's
Diagnostics and Text
d
(5185,

Figure 36.
Flow

RPG Phases

Load
ASSEMBLE
PHASE
4.5 SYSPRINT

SYSTEM Diagnostics
RESIDENCE

VOLUME

o

Compression RLD

ASSEMBLE
SYSUT1 PTA;_’SE

SYSUT3

m
[}
o
w

Blank After Entries and Text
SYSUT2 SYSGO/
SYSPUNCH
A4

Figure 37. Assemble Phase 4.5 Input/

Output Flow
the next pass through
e Brings in the file description table
and the assemble 4 table address for
use in this part of the program
ENTRY
e Examines the next compression

® Checks for end-of-compression block

i

Assemble Phase 4 Input/Output

® Determines which path to follow for
specific record type

END

e Executed at the end of Phase 4.5 to put
out any remaining text, the last RLDX
record, the last branch address

® Calls I/0 Phase 1

TSTNAM

® Processes the M-type records by
generating object code to process all
fields, including edit words, floating
dollar sign, status sign, numeric,
alphameric, sterling, zero suppress,
and constants

STERL

® Performs diagnostics on sterling fields

® Sets up the code for linking to the
sterling conversion routine

® Determines the correct lengths and
addresses for sterling fields

F1l0

® Performs diagnostics on the position of
the field within the line

® Issues the code for testing the result-
ing indicators, conditioning a field,
handling page fields, and providing
linkage to the sterling conversion
routine

BLNKAF

® Issues the code for a blank-after opera-
tion for a numeric or alphameric field

DATOV1

® Issues the code to load the correct

value if the present field address
overflow key has changed from that of
the previous key

I/0 PHASES 1, 2
INTRODUCTION LOGIC (PHASE 2)
The purpose of the I/O phases is to generate The functions of Phase 2 are
the machine code and parameters (I/O
interface) necessary for the execution of 1. Input the DCBs, work areas, and IORB
the input/output of data records at object pointer tables
time. 2. Put out the master and interpretive
The I/0 interface, illustrated in access method routines
Figure 38, consists of
N
1. The data control blocks (DCB) and data BEE; §$$$
event control blocks (DECB) required DCBREG ——») .
for input/output operations under the .
control of the operating system e Pointer
2. The master routine (IORPG) and the no.
interpretive routines necessary to
process and execute the input/output Work Area] Pointer
requests from the RPG object program WAy Pointer
3. An input/output request block (IORB) :
to act as the interface between the .
RPG object program and the RPG I/O WA, . Pointer > 5
interpretive routines .
4. Pointer tables for DCBs, work areas,
interpretive routines, and IORBs
QSLN Pointer
The logic required to create the I/O g;xr Ezmg
interface is contained in two phases that Driver —pml ISAM Pointer
are separately loaded and executed. Pointers BDAM Pointer
Figures 39 and 40 and Charts OA and OC QSWR Painter
illustrate the organization and operation QseR Pointer
of I/0 Phases 1,2. Figures 41 and 42 J
illustrate the input/output flow for the 5
two I/0 phases. DCB;
Work Areay
. S
DCB,
LOGIC (PHASE 1) Work Area,
The functions of Phase 1 are Line Counter Tables 2
1. Build and put out the DCBs and the work IORPG
areas
2. Locate and put out the line counter
tables . 4
X Access Method and Line
3. Build and put out the IORBs Counter (if required) Drivers
4, Put out the linkage vector entries
The DCBs created correspond to the IORB; %
access method used in processing the file. IORBy
The access methods used are BSAM for com- .
bined files, ISAM for indexed-sequential : F3
files, BDAM for files with a direct ox- |ORB
ganization and QSAM for sequential files o n J
other than combined files. . .
The record work area for each file is NOTE: m°ﬂfsmmn°“°““”'“cme
: . umbers represent sequence of
equal in length to the longest logical generation
record plus additional bytes as required
for variable length files and control Figure 38. Organization of I/O
characters. Interface
I/0 Phases 1,2 93

IOPHSE, 103

1031, 105

IOPH2,BSAMP, QSAMP

QISAM, 1075
NEWBLOCK, ALIGNLCT, TXTCHR, TSTPRPN

Constants and
Tables

I/0 Phase 1 Storage Allocation
Map

Figure 39.

3. Put out the pointer tables
The pointer tables consist of the DCB
addresses at object time and the addresses

of the IORPG access method routines and
the line counter subroutine.

PHASE 1 MAIN ROUTINES

IOPHSE

® Saves registers

94

IOPHSE2, TXTCHR

Constants and Tables

IORPG

OPENER, CLOSER, CLRBUF, EOFDISP

Storage and Constants, PRINCONYV, QSAM

QSPR, QSLN

BSAM,
ISAM,
BDAM

Figure 40. 1I/O Phase 2 Storage Allocation

Map

e Initializes compression

e Aligns the location counter
e Initializes pointer vectors
103

® Locates line counter tables

® Puts out line counter tables as text

- *
* A2 &
* *
LRl L]
.
M
.
x 1034 ..
.t’#.‘z.".‘..l.i A3 ‘. EREEEALKEERERE R EK
HrarALEEEE . .t # PLACE L1C CTR %
- * _ PREPARE DRIVER INTY
* 1/0 PHASE 1 # % 70 PLRCELOC. $uvevegeoxss POINTER EQUAL t........xt CORRESPINDING *
*CTR VALUES INTO x ZERD DITVER
RO *. DRIVER P13 . “e. o POINTER
- KRR EERER AR RR R KkE - w, ok AR ERRCERRERE RN
. . * YES .
. . . :
. . . :
M . M :
M . X .
1oPHASE % l1038 .., X
ER B] Kk kR ok - B3 *y “"‘Bk""*l"'.‘
* PLACE ADDR OF : . . $JEDATE Lag
*1ST_CB POINTER® DND LT LAST el SCNTR BY L ENETH c
INTo bee tece®l DRIVER b £
POINTER L INKAGE +FOINTER o» & CORRESPONDING .
VECTOR *TESTED,* * 7 URIUTINE
EE 2T S dd P ittt] *, %
. «'YES
. M
M .
. M
% X
*d k() SRk Ebhk HERRANCI ARG RN SR SRS
* PLACE ADDRESS &
* OF IST ORIVER * * GENERATE AND
* POINTER INTO %
* CORRESPONDING * + IORB TABLE #
*LINKAGE VECTOR *
L 2R 222 2l gt] iR a2 22 22 22 2
. .
: N
: M
. M
X X
...'.Dl""*".': HRERREDI RN R ke SRk
TADORESS FOR LOCS *PUNCH ONE WORD *
*CTR EROM_ADDCNT# 0F Z¢Rg IO
* IN CIOEX DATA & * SIGNIFY END #
AREA * T0RB TABLE
RE2 IS 22 bt TR L] LR e L e L et
. .
. .
N M
: .
: .
X %
REERRE l Sk Eakk Rk AR EI R ERR Rk
« START «
APROCESSING EILES * OUTPUT .
* DESCRIPTIONS * ORIVER PTS
* CFOR DCB % » "TO BLANK. ®
* PARAMETERS % AFTER FILE
SERREEEERAEREREER R 222 2t]
wern o :
. 1 N
* F1o%.XD .
Eidt] X "
101A RN 10PH2 %
F1 *, l‘ﬁ..F(3
o MOYE : CLINKACE YECTOR &
.
- oescifpvton .'........X#APPROPEYATE DCR* EKTRTELS
*.PROCESSED. * aRMAT 10 SETUPS . RLD
x EERREEERERREEERRE REREEERERER O
. .
. :
% M
ERRERG2 R R R R kR kR kS X
* * LRI T P T 2
SET uyp *
8 PARAMETERS * * 1/0 PHASE 2 *
. +0%Ro MOVE INTD
. * B8 POINTER - EDREEKEERRES kRS
. - P2 R Rt 2t)
. . .
. N :
X . X
Aok R L RSk ok : AREREH 20 R Rk
PLACE M BLACE
* LOC CTR VALUE * J * LOC CTR VALUE
INTO LINE : * INTO
SCOUNTER LINKAGE® © * CORRESPONDING
VECTGR : DCB POINTER 4
.
. : :
. : .
: : :
X : X
ERERd S L ARkRkE . L S T At bt
« LOCATE ALL * FUPOATE L0c CTR e
* LINE COUNTER * © 0CB _LENGTH *
*x "TABLES AND _ * 1 a5 PLACE VAL UES
*0UTPUT AS TEXT * o *IN CORRESP, WRK&
AUPDATE LOC CTR * | * AREA POINTER *
Aok kAR ok ek . EE AP I IS d 22122
. : .
103} X X
SRR L ER Rk AR QR Rk TRk K I nkik bk kg HEREAK S Rk ERRRE ok
* PLACE LOC CTR * * PUT SIZE OF * * * * .
* VALUE INTG % *08J TIME DRIVER® * UPDATE LOC * QUTPUT TEXT %
$]ORPE Lo8J TiMes * N $eevereaXd CTRBY MORK $........xt FOR 0CBoAND
170 HASTER RINYE * CORRESPONDING * * AREA LENGTH * WORK AREA #
*LINKAGE VECTOR * *ORTVER POINTER * * - . .
R e 2R £ L 2t 2] R R R R
. .
% %
ok kK
* * * *
* A2 % & F1 %
* *
ok xkEE
Chart OA. 1I/O Phase 1

I/0 Phases

95

CHERAT AR RNE
* ENTER

: 1/0 PHASE 2 :
ARREAAERERRRREE

:LlNKAGE VECTOR :
AR SRR R K

Xo o0 nn

AR ERDI KRR AR KK Rk
n ut RP
* TEXT & UPDATE *
*LNG 05 ORPG *
LL LRt T e

2 =3
G-l

T05R
ttt#t[ztc.tttttt:
*

LIRS Lol 2

-
#Xs 880 EBDUAR

F3 .,
*o

OF *. YES
nNTER.‘.......----.......

SRR KRG R RRRRER R
*

mc
A
°
=
=

*
COR
* DR

I E

m:
X4 0008 s HuBY
Zz
o

*n<i
*
*m_ 3
*RIE
2=
* Z=
»
»

-

Padaaa kL2 DI L1 1

*
*UPDAYE LOC CTR *
* BY LENGTH OF *
:DR]VEk ROUTINE *
HRRERE R RO

v
WMo s s aesesense sttt eesrsenses st

*
*

.
X ¥,

PR L RET s s J4. %,
* * . .
* CLEAR * . END *, YES
* LENGTH _OF ¥eeeaoesaX®e OF POINTER o¥oveveesnX
* ROUTINE FROM % *. TABLF .#*
*DRIVER POINTER * *, ¥
SRRA AR KRR L P

* NO

. Lalzd

.« *

eeX* F3 &

La2 2]

Chart OB. I/0 Phase 2
1031

® Generates IORB

e Puts out IORB tables

® Puts out driver pointers

96

FERRERKSRRERNERE AR

*

ouTPUY
PDINTER
TABLES

Aok kAR kW

xe s 88

CALL NEXY
PHASE

AR SRR B

1057
ARAAERJSHRRE R ERERE

.
*

IOPH2

® Inserts parameters into DCB skeleton

® Reserves work area

® Determines the access method(s) required

@ Controls access method processors

BSAMP

® Basic sequential access method processor
(BSAM) for combined files only

QSAMP

® Queued sequential access method processor
(QsAM) for other than combined files

QISAM

® Indexed-sequential access method
processor (ISAM)

BDAM

e Basic direct access method processor
(BDAM)

PHASE 2 MAIN ROUTINES

IOPHSE2
® Inputs driver pointers

® Puts out the object time I/O processor
(IORB)

® Puts out the pointer tables

® Calls the next phase

SUBROUTINES

TXTCHR

e Puts out text card images

NEWBLOCK

® Gets a block of compression

ALIGNLCT

e Aligns the location counter on a double
word boundary

SYSTEM
Load
RESIDENCE
VOLUME 1/O PHASE 1
Compression RLD
SYSUTI 1/0O PHASE 1 | SYSUT3
Driver ESD's
Pointers and Text
\
SYSGO/
SYSUT2 SYSPUNCH
Nl

Figure 41.

SYSTEM
RESIDENCE
VOLUME

Load
1/O PHASE 2

Driver Pointers

SYSuUT2 1/0 PHASE 2

Fig

TST

ESD's
and Text

SYSGO/
SYSPUNCH

N

ure 42. I/O Phase 2 Input/Output Flow

PRPN

® Tests device entry in compression for a

I/0 Phase 1 Input/Output Flow

printer or punch indication and sets

corresponding bits in IORB

PRECODED ROUTINES

IORPG

e Start of object module execution

e IORB first pass processor

® Sets up parameters for data set OPEN
e Branches to OPEN routine

I20

® Determines access method address

® Branches to access method processor

OPENER

) Opens data sets

° 'Clears work areas
CLOSER

0 Closes all data sets
CLRBUF

° Clears an area to blanks

° Register 5 contains address of lst
character

® Register 12 contains the field length

e Registers 6 and 14 are entry and exit
registers

PRINCONV
) Extracts printer commands from IORB
° Converts commands to control characters

° Stores control characters for use by the
write and line counter routines

EOFDISP

® The end of data routine that sets the
end-of-file flag in the IORB

QSAM

) GET/PUT for sequential files
BSAM
) Combined files

ISAM

o Indexed-sequential files
BDAM

) Direct access files

QSLN

o Line counter routine (appended to QSAM)

QSWR

° Write routine (appended to QSAM)

QSPR

° Print routine (appended to QSAM)

I/0 Phases 1,2 97

DIAGNOSTIC PHASES

INTRODUCTION

The function of the diagnostic phases is
printing the diagnostic code messages that
correspond to the codes assigned during
all of the previous phases.

Figure 43 and Chart PA illustrate the
input/output flow and the operation of the
diagnostic phases.

LOGIC

A record of all of the codes that have been
assigned is in the CIOEX data area. This
record is a 256-bit position field in
which the bit that corresponds to each
numbered code assigned is turned on. Thus,
this record serves as an index from which
the appropriate messages for printing are
selected.

Five separate core loads are required
to store the 256 messages. Some codes are

RPG Phases

SYSTEM Load
RESIDENCE
VOLUME DI NasTIC

Diagnostic Messages

DIAGNOSTIC
PHASES SYSPRINT

Figure 43, Diagnostic Phases Input/Output

Flow

98

provided but undefined and, if used, cause
the message, NO ERROR MESSAGE ASSIGNED FOR
THIS NOTE, to be printed. The program
logic is loaded concurrently with each set
of messages.

Each set (a program plus messages) uses
CNTRG2 to keep track of the bit to be
analyzed in the error byte and CNTREG to
control the number of bytes analyzed for
each program. When all of the bits in the
bytes applicable to the program in core
have been scanned, the next set in numeri-
cal sequence is brought in. In this
manner the linkage phase is called when all
messages have been printed.

ERAKAT R R
* ENT *
: DIAGNOSTIC :

AREEERFEERAARES

B3" e AEEERRDL K AR ERRRR

- T,
.+ END *. YES * CALL .
'.‘OF MESSAGES o®cvecoces X . NEXT PHASE .
“a. o

o o
«"ND

EREREEERREE KR
:

: %

INODEF RN

: €3 e

D NO %" PRINT &

s N0 T s R ace" e

X ., ¥
.

- L P

: *"YES

: .

SCHECK X
SERERNDI SRR e AR ERRRS
* oyTPUT *

. JERROR MESSAGE,

RRRA SRR R

Chart PA. Diagnostic Phases

INTRODUCTION
The linkage phase has several functions:

1. Put out all of the subroutines to be
used by the RPG object program
(sterling conversion, table look up,
test zone, set indicator, sign check)

2. Create linkage for the execution, at
object time, of the routines compiled
by the previous phases

3. Put out the linkage routine and linkage
vector

4. Put out the memory map

5. Put out the RLD card images

6. Put out the END card image

LOGIC

The subroutines listed in 1 above are
loaded in object code form with the logic
of the phase. The logical functions of
these routines are described briefly under

the heading Linkage Phase Precoded Routines.

As the routines to accomplish the func-
tions specified in the RPG source program
are developed, the locations of these rou-
tines are stored as V-type (Appendix F)
records on the work data set. The linkage
phase uses those records to create a pre-
determined order of execution and the
linkage vector. The linkage vector is a
table which provides the absolute addresses
of the routines to be executed at object
time.

The memory map consists of a printout
of the name of each routine used by the
RPG object program and the absolute hexa-
decimal address of the routine at object
time. Figure 44 is a sample of a memory
map print-out. Table 6 is a summary of the
various entries that can appear in the
memory map. The addresses are not relo-
cated; thus the relocation factor from
LINKEDIT must be added to obtain the
routine address. The relocation factor
of the RPG object program can be obtained
by adding X'20' to the starting address of
the corresponding request block shown on
the ABEND dump. The request block to be
used is listed under the ACTIVE RBS section
of the ABEND dump and has the name
previously given to the object program
load module.

The work data set that contains the V-
type entries also contains R- (relocation
dictionary) type records (Appendix F).
Card images are created to provide this
information to the Operating System at
object time.

LINKAGE PHASE

Figure 45 illustrates a storage alloca-
tion map for the logic of the linkage phase
plus the precoded subroutines stored for
output.

Figure 46 illustrates the input/output
flow for the linkage phase. Chart ZA
illustrates the operation of the linkage
phase.

MAIN ROUTINES

ASSEM6

® Puts out (on the go/punch data set) each
subroutine (object code form) that has
been called for by the other phases.
Possible routines are as follows:

. Sterling conversion - input and output
. Table look-up

. Punch

. Test zone and decimal

5. Set indicator

6. Sign check

=W N

The linkage routine (object code form)
is output (on the go/punch data set) along
with the linkage vector. The linkage vector
is a table of absolute addresses of all of
the routines used in the object program.
This routine also prints the memory map
(Figure 44).

DR

® Processes the remaining records of the
RLD data set; that is, the R- type
records (Appendix F)

® Puts out as many card images to the go/
punch data set as are necessary to
contain all of the RLD entries

® Puts out the END card image to the go/
punch data set

@ Calls the terminal phase

SUBROUTINES

The following subroutines exit via register
15 unless stated otherwise.

PLINK

® Used by the major portion of the phase to
prepare output for the go/punch data set

Linkage Phase 99

O8/7RPGI32K4VL,LO SAMPL2 aApPG 09726766
SYMBOL TABLES
AESYLTING INDICATORS

ADDRESS RI _ ADDRESS RI ADDRESS ADDRESS R1 ADDRESS RI ADDRESS ADDRESS RI

#'s o © &

Q0001L OF 000014 1P 080015 000016 00 000017 O1 ooools 000019 03
OO0O1A 04 000018 05 DO007A GOOo078 L1 Q0D0B4 MR 00008% 000086 HL
00008T H2 000088 H3 000089 O0008A HS5 000088 He 00008L Doo0sh Ha
DOOOSE HY

FIELD NAMES

@

ADORESS FlELD ADDRESS FIELD ADDRESS FIELD ADDRESS FIELD ADDRESS FLELD

000123 NAME 000133 MONTH 000138 DAY 000130 INVNO 000140 CUSTRO
0301%3 STATE 090145 CLTY QO0147 AMT Q00L48 DATE 00014F RECORD
GO0IB3 MASBAL 000187 PAYDAT 030183 PAYPUR

@.

LITERALS

it

& ““:a¥

ADDRESS LITERAL ADDRESS LITERAL ADORESS LITERAL

s o @ € ® ¢ & @ & @

O0CIBF DAILY TRANSACTION REpQ 000107 AT 000109 CUSTOMER

0001EL LOCATION INVOECE 00D1F7 INVDICE OATE INVOICE 00020E NUMBER CUSTUMER
008225 NAME 060229 STATE crTy NUMBER ono241 Mo DAY ARMOUNT
¢00256 ERROR IN DATE CARD 003268 B et R St 000273 CREDIT :

000279 wmgmmfo=—CR 000286 #*

®

&

MENORY MAP

INPUT/OUTPUT INTERCEPT 00028C
TABLE (INPUT AND DUTPUT) 000288
GETERMINE RECORD YYPE Da0570
DATA SPECIFICATION 000284
GET INPUT RECORC 300948
DETAIL CALCULATIONS 200034
TOTAL CALCULATIONS DDOCAC
DETAIL LINES D30E24
TUTAL LINES 000CCo
INPUT/QUTPUT REQUEST BLOCKS POINTER noL9ss
LOCATION OF DUB PDINTERS 301128
INPUT/DUTPUT INTERFACE ROUTINES D014CH
LINE COUNTER 001178
WORK AREA POINTER 001E08
OVERFLOW BYPASS J00E1C
CUNTROL LEVEL 0201740
TABLE(ASSEMBLE 4} DITFSC
TESY ZONE (BCD) . 90190C
OVERFLOW LINES . DHDL3IC
LINKAGE PROGRAM 99184

@ & & @ 0o e @ © 9

& e

Figure 44. Sample Print-Out of a Memory Map

e Stores information for punch output in PRECODED ROUTINES
an area designated TEX, the lower limit
of which is in register 9 and the upper

limit, register 3 BEGIN1
e Linkage routine for the RPG object
HEXIT program
® Unpacks and converts, byte-by-byte a e Computes the displacement factor and
given absolute address, stored in adds it to the linkage factor and to
register 14, to printable hexadecimal the entries in the linkage vector

form and replaces it in register 14
e Establishes the linkage to each of the
routines contained in the object program
ouT
— ® The routines are as follows:
® Stores and restores registers 6 and 7
1. Open
® Branches to the interface program 2. Table

100

Table 6. Summary of Entries Appearing on a Memory Map

Name of Routine

Generated by Phase:

*Comments

Input/Output Intercept

Assemble Phase 1

Determines if disks (DASD) are used and
establishes linkage to the RAF support or
the input/output routine.

Record Address File

Assemble Phase 1

Determines the disk addresses to be used.

Chaining

Assemble Phase 1

Provides chaining capability for disk
records.

Table (Input and Output)

Assemble Phase 1

Reads input and creates a user table,

Sterling Input Conversion

Linkage Phase

Sterling Output Conversion

Linkage Phase

Determine Record Type

Assemble Phase 2

Data Specification

Assemble Phase 2

Cet Input Record

Assemble Phase 2

Detail Calculations

AssemBIe Phase 3

Total Calculations

Assemble Phase 3

Detail Lines Assemble Phase 4 Not conditioned by overflow.

Total Lines Assemble Phase 4 Not conditioned by overflow.

Input/Output Request Blocks 1/0 Phase 1 Unrelocated address points to first IORB.

Pointer [File No. (1-10)-1] 32=Logical Record
Address

Location of DCB Table Pointers 1/0 Phase 2 Unrelocated address points to list of DCB

pointers (1-10).

Input/Output Interface Routines 1/0 Phase 2 Main input/output routine.

Table Look-Up

Linkage Phase

Table look-up routine.

Testz Routine

Linkage Phase

Routine for Calculation specifications.

Line Counter

1/0O Phase 2

Line Counter routine.

Line Counter Table

1/0 Phase 1

Work Area Pointer

Linkage Phase

A scratch work area, internal to RPG.

Overflow Bypass

Assemble Phase 4

Address points to first instruction not in=-
volved in overflow coding of Output-
Format specifications.

Set Indicator Routine

Linkage Phase

Sign Check Routine

Linkage Phase

Control Level

Assemble Phase 2

Table (Assemble 4)

Assemble Phase 4

A linkage table which pemits interchange
between lines and fields of Output-Format
specifications.

Test Zone (BCD)

Assemble Phase 2

RPG routine to test Input specifications.

Overflow Lines

Assemble Phase 4

Address points to the first instruction for
lines conditioned by overflow.

Alternating Sequence

Linkage Phase

Linkage Program

Linkage Phase

*NOTE: The address {unrelocated) that appears on the Memory Map points to the first byte of the routine or table unless

otherwise clarified in the comments.

Linkage Phase

101

ASSEMB6

REAR1

NAMES

[Name Table]

[Constants and Card Formats]

HEXIT, BEGINT, PLINK, DR

Precoded Routines

Figure 45. Linkage Phase Storage

STEROT

e Sterling output conversion routine

102

Allocation Map

Detail lines

Get input

Total calculation

Detail calculation
Data specification
Close

RPG Phases

RLD Cards

SYSTEM Load
LINKAGE END Card and Text
PHASE 77 N\
| SYSGO/
SYSPUNCH
RLD
LINKAGE
SYSUT3 PHASE
Memory Map

SYSPRINT

Figure 46. Linkage Phase Input/Output Flow

® Converts a packed pence field with a
maximum of eight positions to a pounds-
pence~decimal pence field configuration

e Maximum of three decimal positions can
be specified

STERLIN

e Sterling input conversion routine

® Converts a shilling-pound-pence-decimal
pence field to a packed all-pence field

SETIND

e Indicator turn-on routine

e Turns on and off indicators representing
plus, minus, and zero

TESTZ

® Test zone routine

e Turns on the plus indicator for a twelve
punch, the minus indicator for an eleven
punch, and the zero indicator for any
other punch detected

SIGNCHK

e Sign check routine for a numeric field

® Considers the sign to be minus when
bits 4-7 contain D, B, 6; otherwise
the sign is considered to be plus

Chart ZA.

ceeeseers et sttt ass 0t tas s as st ae

EREEA Kk R
. 2
* LINKAGE PHASE *

EREEE R R

:
N
X

cK1=5
ERREED D RR Rk Kk
*FORMAT PRECDDED®
* " ROUTINES ~ %
*(STERLING,JLU; *
$SET INDICyETC) *

R ARk

.

o'tnttcztéttvt.t#tt
PUNCH

pa 2 I TT LSS 1Y

X
:“tinzt‘tt‘#ttt:
* FORM
* LINKAGES FOR
* ROUTINES

P 2T 2T P T 2
.

Enwn

tee

X
FEEEKKEQ SRR REEREE

PUNCH

Rk Rk kAR

REAR X
AR EREE D Rk Rk

* READ RLD *
DATA SEI
* *

HEEREER AR R

PR

ke
*
.‘GZ -

i J
.x “#. YES % *
*2 LAST RECORD s%eesoX® AG *
*, ¥ * *

*, o
*o ok
* NO

vrYP X
“t‘ﬂHZit‘#.**#t:
»

e L e e R ST] 2

.
cseseesanssn

Linkage Phase

Ea 2]

LIl T3

R R R I R N R R R R I I

s
A4 #
e

X
EEEEEEALEERAREE KRR X

o
* VéCTO& *
EEREEERBRERE K
.

.

.

X
RRRERB SRR R
* -
* FORMAY *
* MEMORY *
= HAP *
* *
PO LT P e Y
.

N
-

X
AECERRCHESRRERERREN

PRINY *
MEMORY
* MAP *
ARERRERROREE
X
REREED 4R R Rk Rk
* *
* REINITIALIZE *
* RLO DATA SET *
- *
* -
FRRRER RS E R R
REARLD X
HREEREE AR ERRREE RN

* READ RLD -
DATA SET

R REER R

X
4 %
Fa k.

'.‘ *,
S

, FILE o
* *

»

X
BEEIGAREROEROEY

- FORM
: RLD CARD
*

L2212

R RRAREARE R RS
-

X
P T P
» PUNCH *
w6UERRD
. .

RS ERREEE R

RS
HEERERESEFREEEER kRS

[+]

sescses

.
.

R

X, el

FEEERE R EREEE
.

.
.
.
-

X
HREREE)SERRERERRERK

* CALL
. NEXT PHASE

FEEEEERRRRRRE

Linkage Phase

103

TERMINAL PHASE

INTRODUCTION RPG Phases

SYSTEM
RESIDENCE
VOLUME

Load
TERMINAL

As the last logical element of the RPG
PHASE

compiler program, Terminal Phase closes
the compiler data sets (SYSIN, SYSPRINT,
SYSGO/SYSPUNCH, SYSUT1l, SYSUT2, SYSUT3).
A separate phase is provided for this
function because of the large amount of
work area required by the parallel CLOSE TERMINAL
of six data sets. PHASE

This phase sets a switch in the CIOEX
data area that signals to the resident
phase that a return to the supervisor is
requested.

Figure 47 and Chart ZM illustrate the
organization and operation of Terminal
Phase. Figure 48 illustrates the input/ I
output flow for this phase. Frarsrrnsssranns

Figure 48. Terminal Phase Input/Output
Flow

.
X
EEERCIRERR KRR S

Phase Logic TERMINAL

*
*
*
R *
-
*
*

IS EXT T

x
ARAEERDI kK KRR

*

1o RESTRent "
e e o e e —— . —— — —— ——— — * PHASE *

Ee LD A TET Pt 2]

Figure 47. Terminal Phase Storage
Allocation Map Chart ZM. Terminal Phase

104

APPENDIX A.

FILE NAME TABLE

Each entry in the File Name Table is 12 bytes long and the table can contain 10 entries. If the number exceeds 10 (overflows),
Enter Phase 1 treats the additional entries as comments and prints an error. Each entry in the File Name Table contains four parts:
filename (bytes 1 - 8), reference byte (byte 9), generated unpacked sequence number (bytes 10-11), and type or usage of the file

(byte 12).

Before an entry is placed in the table, the table is searched to determine if the entry is already present. If the entry is not in the
table it is added and the reference byte is created as a blank. If the entry is in the table the reference byte remains as is, but a

diagnostic is printed indicating multidefined file.

TABLE ENTRY FORMAT

1 2 3 45 67 8 9 10 11 12 13 14 15 16
X X x x x x x xr s s t 4 4 4 4
x = filename
r - reference byte
Reference Byte Encountered as:
Type Specification Blank E L R Filename Not in Table
File Description Leave as Blank N/A N/A N/A Create as ablank
File Extension Change to E Leave as E N/A N/A Make Diagnostic Message
Line Counter Change to L Change to L | Leave as L N/A Make Diagnostic Message
Input Change to R Change to R N/A Leave as R Make Diagnostic Message
s = generated sequence number in unpacked format
t - type byte, the type or usage of file
Type File *File
Byte Type Designation Type of File Designation Method of Processing
| Input P, S Seq'l or Indexed Seq'l Sequential Without Chaining
1 Combined P, S Sequential Sequential Field
E Input P, S Seq'l or Indexed Seq'l Sequential Without Chaining
E Combined P, S Sequential Sequential Field
U Input P, S Indexed Sequential Random (or Without Chaining
Between Limits) Field
U Update P, S Indexed Sequential Random
v Input P, S Indexed Sequential Random (or With Chaining
Between Limits) Field
\ Update P, S Indexed Sequential Random
Y Input P, S Direct Organization Random Without Chaining
Y Update P, S Direct Organization Random Field
4 Input P, S Direct Organization Random With Chaining
Z Update P, S Direct Organization Random Field
o} Qutput Blank Sequential Sequential Without Line Counter
P Qutput Blank Sequential Sequential With Line Counter
R Input R Sequential Sequential With Extension Code
T Input T Sequential Sequential With Extension Code

*P = Primary, S - Secondary, R - Record Address, T - Table, C - Chained

Appendix A.

File Name Table

105

106

Type
Byte

v Bw)

XX £z

File
Type

Input
Update

Input
Update

Input
Update

Input
Update

*File

Designation

C

C
C
C
C
C
C
C

Type of Designation

Indexed Sequential
Indexed Sequential

Indexed Sequential
Indexed Sequential

Direct Organization
Direct Organization

Direct Organization
Direct Organization

Random
Randon

Random
Random

Random
Random

Random
Random

*P - Primary, S - Secondary, R - Record Address, T - Table, C - Chained.
J - maximum record length (unpacked format)

Method of Processing

Without Chaining
Field

With Chaining
Field

Without Chaining
Field

With Chaining
Field

APPENDIX B. FIELD NAME TABLE

Each field name entry is 13 bytes long and the table can contain 70 entries (16K system). Each entry in the table consists of three
parts: field name, reference, and field length information.

Before an entry is placed in the table, the table must be searched to determine if the entry is already present. If the entry is
found, the logical AND of the table name gamma byte (byte 13) and the search name field mask is formed.

If the result is non-zero, the table name is referenced as multidefined, o diagnostic is listed and the specification associated with
the search entry is dropped. |f the result is zero, the field length attributes of the search entry and the table entry are compared.
If the field length attributes (bytes 11-12) are unequal, the reference byte (byte 7) is changed to an M, to indicate multidefined.
If the field length attributes are equal (length from table equal length from search or length from search is blank), the reference
byte is changed to an R and processing continues.

If the entry is not in the table and the table has not overflowed, the entry is added. If the name is specified in a Result Field, the
reference byte is created as a blank. If the name is specified in a Factor 1 or Factor 2, the reference byte is created as U, When
the number of entries exceeds the allotted area (overflows), the sequence number of the specification causing the overflow is saved
in the CIOEX Data Area and X'FD' is placed in the first byte following the last table entry.

TABLE ENTRY FORMAT
1 23 45 67 8 9 10 11 12 13 (13 byte field)
X x x x x xr bbb g L D v

x - field name

r - reference byte
b = defined but unreferenced
U= referenced but undefined
R = referenced

M= multidefined
b - blank (X'40'): field address will be placed here by the assign phases

B - field information byte

Bit Value . Meaning
0-3 0000 Always zero
4 0 No blank-after reference
1 Blank-after reference
5 0 BDDD references field directly
1 BDDD references table linkage field
6-7 00 Table is in ascending order
01 Table is in descending order
10 Table is not specified as ascending or descending

1 Not assigned

L - field length in binary

Sourc L = Length Value of Field Number of Bytes
2ouree in Compression To be Reserved
Input Specification
Shilling Numeric BSI ’ L=TO-FROM # 1 (LA 1)/21 #1
IBM L = TO-FROM [(L#1)/2] #1
Numeric (unpacked) L = TO-FROM (L4121 A1
Numeric (packed) L = 2 (TO-FROM) (L #1)/2]1 #1
Alphameric L = TO-FROM LA

[x] = integer portion of x
L # 1 = number of digits or characters in the field

Appendix B. Field Name Table

107

108

FIELD NAME TABLE (CONTINUED)

s L = Length Value of Field . Number of Bytes
2ource in Compression To Be Reserved
Caleulation Specification
Numeric L = field length - 1 [(LA1)/2) 41
Alphameric L = field length - 1 LA
File Extension Table
Numeric (unpacked L = length of table entry - 1 L # 1)/21 #/1
Numeric (packed) L = 2 (length of table entry = 1) [(L#1)/21 #1
Alphameric L = length of table entry ~ 1 LA
File Description Specification
RAF with Conversion L = length of record address field - 1 LA
Qutput Specification
PAGE (n) L=3 (LA 1)/21 £1

[x]= integer portion of x
L # 1 = number of digits or characters in the field

D - decimal position (unpacked): X'40' = alphameric
X'FO' = X'F9' = numeric

Y - field type byte

Gamma

Byte Value Field Type Field Mask* Meaning

10000000 All other field names (normal) 00110010 The zeros in the masks correspond
to the allowed combinations of

01000000 Result Field of a KEYCV following 00111011 field types. For example, the

an EXTCV mask for Factor 1 of EXTCV,

RPGCV is 11011111, This indicates

00100000 Factor 1 of EXTCV, RPGCV 11011111 that the field name associated with
this mask can be used only to

00010000 Factor 2 of EXTCV, EXIT 1moim identify a conversion routine. An
attempt to use the field name in

00001000 Factor 2, Result Field of a LOKUP 01110011 any other manner would result in
the name's being referenced as multi-

00000100 RLABL 00110011 defined,

00000010 TAG, GOTO 11111101

00000001 ULABL 01111110

* When a match is found between a search name and a table name, the logical AND of the table name gamma byte and the search
name field mask is formed. |f the result is zero, the search name is processed; if the resuit is nonzero, the table name is refer-
enced as multidefined, and the specification associated with the search name is dropped.

TABLE

APPENDIX C. LITERAL

Entries are made into this table from the Calculation Specifications (Factor | and Factor 2) and from the Output-Format Specifications
(Constant or Edit word). This table overlays the File Name Table area. There are three types of literal entries possible: numeric
literals, alphameric literals, and edit words.

The table entries vary in length. Each entry consists of eight information bytes plus the number of bytes in the actual literal. The
number of entries the table can contain depends on the size of the literals entered. The shortest possible entry is |l bytes (literal of
three bytes) ; the longest entry is 33 bytes (literal of 25 bytes). The table area is initially filled with X'FE’s and terminated by

33 X'FF's,

Before entering a literal in the table, the table must first be searched to determine if the entry is already present or if the table
area is already full. A full table is detected by reaching one of the 33 X'FF’s at the end of the area without first detecting an
X'FE'. If the entry is not present, and the table is not full, it is added. The length values which are placed in the table must be
calculated by the phase. During the Enter Phases, if the entry is not present but the table is full, an X'FD' is placed immediately
after the end of the last entry, and the literal is not entered. The specification sequence number causing the overflow is saved in
the CIOEX Data Area. However, if an X'FD’ is found in the table, then a previous specification has caused an overflow. In this
case no action is taken, Literals not placed in the table during the Enter Phases because of overflow are handled in Assign Phase 2.

The three types of literal entries are:
Numeric

Entered from a Calculation Specification only. A Factor 1 or Factor 2 may contain a numeric literal with @ maximum length of ten
unpacked digits. This is packed into the literal table giving a maximum length of six bytes. The minimum length when packed is
three bytes. If it is less than three it will be padded. The decimal position is noted in table entry bytes 2 and n+5. The decimal
is removed before packing. The sign (if any) must be moved to the units position of the literal before packing.

Alphameric

This may be entered either from the Calculation or the Output-Format Specifications. In the Calculation Specifications it is con=
tained in Factor | or Factor 2 and has @ maximum length of eight characters. In the Output-Format Specifications it is contained in
the Constant or Edit Word Field and has a maximum length of 24 characters. In both cases the minimum length is three. Entries less
than this length are padded. Two adjacent apostrophes indicated on the specifications sheet are reduced to a single apostrophe before
the literal is entered in the table.

Edit Words

Entered from the Output-Format Specifications only, Since an extra **fill*’ character is supplied for use in the EDIT instruction, an
edit word may have a maximum length of 25 characters., The minimum length, including the ‘“fill’’ character, is three bytes.
Entries less than this length are padded.

The entry in the literal table differs from the entry on the specification sheet in the following ways:

. A"fill" character of X'5C'for asterisk protection or X'40' is placed at the start.
. All blanks or floating dollar signs are replaced by X'20°,

. A zero or asterisk denoting the end of zero suppression is replaced by X'21°,

A dollar sign appearing in column 46 is replaced by X'40’,

. An ampersand is replaced by X'40’ (blank)

. Two adjacent apostrophes are replaced by an apostrophe.

1
2
3
4
5
6
7

. All other characters are entered without change.

After the last source specification is processed, Assign Phase 1 will perform the assigning of machine addresses to the literals in the
table. After an address has been computed, its base and displacement will be placed in the table entry in bytes n+ 1 and nt+ 2,
Byte n+ 5 is changed X'00' = X'09' for numeric entries, X' OB' for alphameric entries, and X' 0A* for edit words, Byte n+ 6 is
filled with the appropriate overflow address factor,

If table overflow occurrs, Assign Phase 2 also performs this function on the table or tables that it creates. (Assign Phase 2 con-
tinues to rebuild the table until all literals are accommodated.)

Appendix C. Literal Table

109

LITERAL TABLE (CONTINUED)
TABLE ENTRY FORMAT

1 2 3 n n+1 n+ 2 nt+ 3 n+ 4 n+5 nt+ 6
N D x x X'40" X'40' X'00’ n D X'00’
N (1) - Length of actual literal + 2 (binary), Gives displacement by byte n+ 1.
D (2) - Decimal position or type numeric X'FO' - X'F9’

alphameric ~ X’40’
edit word X'AA’

x(3 thru n) - Actual literal = minimum length is 3 bytes; maximum is 25 bytes. (May contain 1 or 2 pad characters to insure
minimum length of 3.)

X'40'(n+ 1; nt 2) - Always blank . Overlayed with an address during ASSIGN phase.

X'00'(n+ 3) - B - byte. Always X'00’ for literal table entry.

n(n+ 4) - Number of positions in actual literal - | (binary) does not include pad characters (if any),

D(nt+ 5) - Repeat of information in byte 2.

X'00'(n+ 6) - Always X'00". Replaced by overflow address factor during Assign Phase |, 2 if storage address is above 20,480.

110

APPENDIX D. RESULTING INDICATOR TABLE

Each entry consists of 5 bytes and the table can contain 130 entries. Each entry consists of three parts; the resulting indicator, a
reference byte, and the address assigned (initialized with X'00' and replaced by an address during the Assign Phase).

This table is pre-loaded with all valid indicators; thus overflow can never occur. [f the indicator from a specification is found
in the table, the table reference byte is changed to indicate "referenced.” This byte is also checked to see if the indicator has
been previously defined.

If an indicator is specified but is not found in the Resulting Indicator Table, the indicator is in error; a diagnostic is noted and
the indicator is replaced by the LO indicator.

TABLE ENTRY FORMAT

i - resulting indicator
r - reference byte:

The reference byte of the resulting indicator entry is initialized as follows:

. Reference Byte

Indicator (Hexadecimal)
MR 00
LR 03
L1-L9 00
H1-H? 03
1P 07
Lo 07
OA-OG 00
ov 00
00 07
01-99 00

The reference byte of an indicator will be set to reflect its usage in a specification as follows:

Bits Value

0-3 0000

4 1 - RLABL Usage
0 - Otherwise

5 0 - |Initialize OFF
1 - Initialize ON

6 0 - Not referenced
1 = Referenced

7 0 - Undefined
1 = Defined

a - assigned address

Appendix D. Resulting Indicator Table 111

APPENDIX E. COMPRESSIONS

FILE DESCRIPTION COMPRESSION

FNNNNNNNNTDESFFBBBLLLPAIA]AOKLKLKLKLCD]D D,SnSASHLR NN NN N N LD YN NENENENEN

150D pLaNLNLNU NN N L D Y Ng %

1 e'ePe
- Type of Specification

- Filename

- File Type (I, O, U or C)

File Designation (P, S, C, R, T, or blank)

- End of File (E or blank)

- Sequence (A, D, or blank)

- File Format (F or V)

mwmog - 7z ™
1

-n

- Block Length (in binary format)

- Record Length (in binary format)

- Mode of Processing (L, R, or blank)

Length of Record Address Field (in packed format) or Overflow Indicator (in unpacked format)

- Record Address Type (I, K, or blank)
- Type of File Organization (I, D, or blank)

O)>)>'v|—m
1

- Key Location

-~

Extension Code (E, L, or blank)
- Device

O 0N =
1

- Not Used in OS/RPG
- Labels (S, E or blank)

~
@ O

N, - Name of Label Exit (X'00' if no Label Exit)
L, - Binary length of Label Exit address constant (always equal to X'03', one less than actual length)
D, - Number of Decimal Positions (always equal to X'40' since Label Exit is always alphameric).

¥, - Gamma Byte (always equal to X'10' since Label Exit is always field type "Factor 2 of EXTCV, EXIT")
L Y ys €q

N_ - Not Used in OS/RPG

E
Lg - Not Used in OS/RPG
DE - Not Used in OS/RPG

Ye C Not Used in OS/RPG

Minimum Compression Length - 55 bytes

Maximum Compression Length - 55 bytes

LINE COUNTER COMPRESSION
LRFL Ly Lpbobalalybybsts Ly Ly Ll Labolobiobioly Ly Ly ok 2
L - Type of specification

F - Filename generated (in binary) Sequence Number (from File Name Table)

L....L

1 12 - Line Number of respective Channel (in binary)

Minimum Compression Length - 27 Bytes

Maximum Compression Length - 27 Bytes

112

FILE EXTENSION COMPRESSION

Chaining File
ESSNFFTT&NNNNNNLD v

- Type of Specification

- Record Sequence (unpacked format) from columns 15 - 16 of Input Specifications, i.e., AA or 01
Number of the Chaining Field (unpacked format) from column 62 of Input Specifications

- From Filename generated unpacked Sequence Number (from File Name Table)

- To Filename generated unpacked Sequence Number (from File Name Table)

Q—|112Lnrr|
1

~ « equal fo C indicates conversion routine present
a equal to blank indicates conversion routine not present
- Name of conversion routine
Binary Length of conversion oddress constant (always equal to X'03', one less than actual length)

- Number of Decimal Positions (always equal to X'40' since conversion field is always alphameric)

R Or zZ
]

- Gamma Byte (always equal to X'20' since conversion is always field type "Factor 1 of EXTCV, RPGCV")

Minimum Compression Length = 9 Bytes

Maximum Compression Length - 18 Bytes

Record Address File

REFFTTNNNNNNLDY2aN NN N NN LDY
cccccceccec
- Type of Specification
- From Filename generated unpacked Sequence Number (from File Name Table)

To Filename Generated unpacked Sequence Number (from File Name Table)

Z - m =
1

- Name of Record Address Field (since the RAF is not described on the input specifications, the entries in the RAF will
always be made available in a field called CONTD)
L - Binary Length of Record Address Field CONTD (always equal to one less than actual length as specified
in columns 29-30 of the File Description specification)
- 'Number of Decimal Positions (always equal to X'40' since Record Address Field CONTD is always alphameric)
Y - Gamma Byte (always equal to X'04' since Record Address Field CONTD is always field type RLABL
a = o equal to C indicates conversion routine present

a equal to blank indicates conversion routine not present

Nc - Name of conversion routine
Lc - Binary Length of conversion address constant (always equal to X'03', one less than actual length)
Dc - Number of Decimal Positions (always equal to X'40' since conversion field is always alphameric)

Yo - Gamma Byte (always equal to X'20' since conversion is always field type "Factor 1 of EXTCV, RPGCV"

Minimum Compression Length = 15 Bytes

Maximum Compression Length = 24 Bytes

Appendix E. Compressions

113

114

FILE EXTENSION COMPRESSION (CONTINUED)

TFFOOBBBEEEEN, N, N, N, N ! N 1 ﬁ] L,D, ’)/1 PS; N2N2N2N2N2N232|_2[)2'y2p252

Type of Specification
From Filename generated unpacked Sequence Number (from File Name Table)
To Filename generated unpacked Sequence Number (from File Name Table) or blank
Number of Table Entries Per Record (unpacked format)
Number of Entries Per Table (unpacked format)
Name of Table 1
Beta Identification Byte for Table 1:
1. Beta Byte equals X'04' if sequence of table is ascending
2. Beta Byte equals X'05' if sequence of table is descending
3. Beta Byte equals X'06' if sequence is neither ascending or descending
Binary Length of Table 1 Entry (always equal to one less than length as specified in columns 40-42 of the
File Extension specification)
Number of Decimal Positions for Table 1 Entry (zero through nine if numeric or blank if alphameric)
Gamma Byte (always equal to X'08' since Table 1 is always field type "Factor 2, Result Field of a LOKUP")
Packed or unpacked Table 1 Entry (P or blank)
Sequence of Table 1 Entry (A, D, or blank):

5] equal to T indicates Table 2 Entry present
5] equal to blank indicates Table 2 Entry not present
Name of Table 2
Beta Identification Byte for Table 2:
1. Beta Byte equals X'04' if sequence of table is ascending
2, Beta Byte equals X'05' if sequence of table is descending

3. Beta Byte equals X'06' if sequence is neither ascending nor descending

Binary Length of Table 2 Entry (always equal to one less than length as specified in columns 52-54 of the File
Extension.specification)

Number of Decimal Positions for Table 2 Entry (zero through nine if numeric or blank if alphameric)

Gamma Byte (always equal to X'08' since Table 2 is always field type "Factor 2, Result Field of a LOKUP")
Packed or unpacked Table 2 Entry (P or blank)

Sequence of Table 2 Entry (A, D, or blank)

Minimum Compression Length - 25 Bytes

Maximum Compression Length - 37 Bytes

INPUT COMPRESSION

Record Type

1BBFFRRSPPPTCPPPTCPPPTC

| - Type of specification
@ - [ndicates presence of fields via bit values

Bit Value

0 0 - no Stacker Select field
1 - Stacker Select field

1-2 | 00 - OR record type

01 - AND record type
10 - alpha record type
11 = numeric record type

3 0 - numeric mandatory record type
1 - numeric optional record type

- Input record sequence (Alpha or Numeric)

- File Name Generated Sequence Number (from File Name Table)
- Resulting Indicator

Stacker Select Number

- Position of character (in packed format)

- T »n X M w
]

- Type of character test

0 1 = negative test
0 - positive fest

1 1 - character test
0 - not character test

2 1 - zone test
0 - not zone test

3 1 - digit test
0 - not digit test
C = Character used for code test

Minimum Compression Length - 7 bytes

Maximum Compression Length - 24 bytes

Bit Value

4 0 - numeric 1 or more record type
1 = numeric 1 only record type

5 0 - no Filename field
1 - Filename field

6-7 | 00 - no record codes

01 - 1 record code
10 - 2 record codes
11 = 3 record codes

Appendix E.

Compressions

115

INPUT COMPRESSION (CONTINUED)
Field Type
DaFFFLD YANNNNNNLMRRPIIZZSSSS

D - Type of specification

@ =~ |ndicates presence of Fields via Bit Values

Bit Valuve Bit Value
0 0 = no Control Level 4 0 = no Minus used
1 - Control Level 1 - Minus used
1 0 - no Matching Field 5 0 - no Blank or Zero used
1 - Matching Field 1 - Blank or Zero used
2 0 - no Field-Record Relation 6 0 - no Sterling Field
1 - Field-Record Relation 1 - Sterling Field
3 0 - no Plus used 7 0 - no Chaining Field
1 = Plus used 1 - Chaining Field

F = From position of field (in packed format)

L - Field Length: binary number calculated as follows:

Field is Shilling: IBM Format L = (TO-FROM)
Field is Shilling: BSI Format L = (TO-FROM + 1)
Field is packed numeric: L =2 (TO-FROM)
Otherwise: L = (TO-FROM)

NOTE: L has a value one less than the number of Characters or digits in the field. The number of bytes occupied
by the field can be calculated as:

Bytes = [L—;]} +1 Numeric
=L+1 Alphabetic

o
1

Decimal Position (Unpacked Number)

7 = Field Type Byte: Constant X'80'

= Decimal Positions and Packed Indication
- Field Name

Control Level Number

= Matching or Chaining Field Number

~ Record-Field Relation

T mZTEZ>
'

= Plus Indicator

Minus Indicator
Z - Zero or Blank Indicator
- Sterling Field (unpacked Number)

Minimum Compression Length = 15 Bytes

Maximum Compression Length - 29 Bytes

116

CALCULATION COMPRESSION

CaBBIHIIINIFFFFFFFFFFFFOOTTTTTTTTTTRRRRRRLDYHSSMMZ Z

C - Type of specification

@ = Indicates presence of fields via bit values

Bit Value Bit Value
0 0 - no Control Level 4 0 - Factor 2 is a Field Name (in this
1 - Control Level case reserve 6 bytes in the
e compression)
! ? _ ?:d:c:;z:o(; 1 indicator is used 1 - Factor 2 is a Literal (reserve 12 bytes
all are placed in the compression) in the compression)
5 0 - no Plus indicator
2 ? :;zclig::f‘or ! 1 - Plus indicator
3 0 - Factor 1 is a Field Name (in this 6 ?) "M°.M'“.”s indicator
. - Minus indicator
case reserve 6 bytes in the
compression) 7 0 - no Zero Indicator
1 = Factor 1 is a Literal (then reserve 1 - Zero indicator
12 bytes in the compression)

B - Conirol Level

| = Indicators

F - Factor 1

O - Operation Code

T - Factor 2

R = Result field

L - Length of field in binary

D - Decimal Positions (unpacked number)

y = Byte value indicates field type:
Byte Value
10000000 All other field names (normal)
01000000 Result Field of a KEYCV, IDCV following an EXTCV
00100000 Factor 1 of EXTCV or RPGCV
00010000 Factor 2 of EXTCV or EXIT
00001000 Factor 2, Result Field of a LOKUP
00000100 RLABL
00000010 TAG, GOTO
00000001 ULABL

- Half Adjust

N X w T
i

- Plus-High indicator
Minus-Low indicator

- Zero-Equal indicator

Minimum compression length - 20 bytes
Maximum compression length - 50 bytes

Appendix E.

Compressions

117

118

Record Type

e}

a

M X O > ® OV

OUTPUT-FORMAT COMPRESSION

O aA SBADDKKFFFFFFFFILIIIIN
- Type of Specification
- Indicates presence of fields
Bit Value Bit Valve
! ? - :of(:teadi'l:\g line 5 0 - File Name present
- heading fine 1 - no File Name and an AND line type
2 ? -301 c!fflcfll line 6 0 - File Name present
- defail fine 1 = no File Name and an OR line type
3 (]) - r;o: :oli:al line 7-8 | 00 - no Resulting Indicators
- fotal line 01 - one Resulting Indicator
4 0 - line not conditioned by overflow 10 - two Resulting Indicators

1 - line conditioned by overflow 11 - three Resulting Indicators

- Length of compressed specification (binary)

= Stacker Select Number

Space Before

- Space After

Skip Before

Skip After

File Name (omit for AND/OR type)
Output Resulting Indicators (3 bytes each)

Minimum Compression Length - 6 bytes
Maximum Compression Length ~ 27 bytes

Field Type
M oA FFFFFFEEENTLLL. ., LLATBBBBBIIIIICCSSSS
M - Type of specification
a - Indicates presence of fields:
Bit Value Bit Value
1-2 | 00 - no Resulting Indicators 5 0 - Blank After
01 ~ one Resulting Indicator 1 = no Blank After
10 - two Resulting Indicators .
11 - three Resulting Indicators 6 (‘) _ E?re"rgfml
S ::‘i’ef;eﬁa::me 7 | 0 -no Sterling Field
1 - Sterling Field
4 ? :lz\loroZero supspiressson 8 0 - no Packed Output Field
ero suppression 1 - Packed Output Field
A - Llength of compressed specification (binary)
F - Field .Name (omit for constants)
E - End Position (binary) (first bit of first byte is 1 for PAGE)
N - Literal Entry Length + 2 (binary)

OUTPUT- FORMAT COMPRESSION (CONTINUED)

- Literal Type (X'AA' or X'40')

- Literal Field*

Actual Literal Length = 1 (binary)*
- Repecﬁ of Literal Type*

- Edit Word Information*

Resulting Indicators (3 bytes each)

@ -~ > r~ —
'

C - Space for Blank After Resulting Indicator (2 blanks if present)
S - Sterling Field

Minimum Compression Length = 12 Bytes
Maximum Compression Length =62 Bytes

*Literal Field and Associated Entries:
1. Constant
L] L2L3 ves Ln - Literal data (maximum of 24 bytes)
A - Literal LengthisO < A <23(A =n - 1forn > 3)

T - X'40', indicates a Literal

2, Edit Word

L0 - * for asterisk protection; otherwise blank

L] L2L3 cee Ln - Edit Word (maximum of 25 bytes)
A - Edit Word Length (minus 1) including LO : 1<A<25(A=nforn>2)
T - X'AA' indicates an edit word

B.B BB B. - Edit Word information:

17273745

B] - Edit Word body length

82 = flags for:
Bit Value
1-4 Not used
5 Fixed dollar
-] Floating dollar
7 Sign status is =
8 Sign status is CR

83 ~ displacement of sign status from LO
B4 = number of digit positions in body

B5 - Displacement of zero suppression end

Appendix E. Compressions 119

RESULTING INDICATORS, FIELD NAMES AND LITERALS IN COMPRESSIONS
The resulting indicators, field names, and literals contained in the compressed specifications will be replaced with the following information:
Resulting Indicators will be overlaid by:
BD DD

B = Base

DDD = Displacement

Field Names will be overlaid by:
BD DD 8B LL XD OV

B = Base
DDD = Displacement
BB = Field Information Byte
LL = Field Length-1 (Binary)
= X'E' for External Field, X'0' for Nonexternal Field
D = B for Alpha Field, X'0' - X'9' for Numeric Field

OV = Overflow Key , X'00' - X'04'

Literals will be overlaid beginning in the second byte by:
BD DD 8B LL OD OV

B = Base
DDD = Displacement
BB = Field Information Byte
LL = Field Length - 1 (Binary)
OD = X'OB' for Alphameric Literal; X'00' - X'09" for Numeric Literal; and X'0A" for Edit Word
OV = Overflow Key, X'00' - X'04'

Literals in the calculation compression are always stored in a 12 byte field. When the literal is overlaid, the 12th byte of this
field is set to X'00', This is for Assign 2 to key on to determine when a literal has been overlaid with an address.

The Field Information Byte, BB , has the following form:

Bit Value
0-3 0000 - Assignment Key for Assign 2
4 0 - no blank-after
1 - blank-after
5 0 - BDDD references field directly

1 - BDDD references Table Linkage Field

6-7 00 - Table is in ascending order

01 - Table is in descending order

10 - Table is not specified as ascending or descending
11 - not assigned

Addressing, BDDD and OV, have the following meaning:

B 03-07 specifies base register used (binary)
DDD 000-FFF specifies displacement used (binary)
ov 00-04 specifies contents of base register

00 nooverflow - 16,384
01 1st overflow - 20,480
02 2nd overflow - 24,576
03 3rd overflow - 28,672
04 4th overflow - 32,768

Plus the Program
Relocation Factor

120

APPENDIX F. LINKAGE

RECORDS

Linkage records are output by the Assign and Assemble Phases for later use by the Linkage Phase.
® R type records are output by the Assign and Assemble Phases and are used by the Linkage Phase to output RLD cards.
o V type records are output by Assemble Phases and are used fo print out the memory map of object routine addresses.

R TYPE RECORD FORMAT

RAAANNLAAANNL.........FD
R =1 byte, X'09' signifies RLD type record.
AAA - 3 bytes; absolute address of the address constant to be relocated.

NN = 1 byte; if the address constant to be relocated is an external type, NN will be the 1D number from the
ESD; otherwise NN will be the program number.

L - 1 byte; the length of the address constant.
X'FD' = 1 byte; signifies the last RLD entry in a record.
One or more RLD entries may be contained per record.

V_TYPE RECORD FORMAT

VDDAAAADDAAAA..........FD
V =1 byte, X'E5' signifies routine address record.
DD = 2 bytes, displacement (binary) of address in Linkage Vector,

AAAA = 4 bytes, routine address.

Appendix F. Linkage Records 121

APPENDIX G. BLANK AFTER ENTRY FORMAT

122

The Blank After entries are written out by Assemble Phases 2 and 3'whenever a Field Name (in compression) is encountered that
has indicators to be set on or off when the field is blanked. The format of the Blank After entries is as follows:

1 2 3 4
BD DD B8 LL XD OV BD DD BD DD BD DD
where:
1 6 bytes, the field address and information bytes placed in compression by the Assign Phases.
2 2 bytes, the address of the indicator fo be set on if the content of the field is plus (or high).
3 2 bytes, the address of the indicator fo be set on if the content of the field is minus (or low).
4 2 bytes, the address of the indicator fo be set on if the content of the field is zero or blank (or equal).

NOTE: The addresses of the indicators are expected in the above order and any unused indicators will be filled with null
characters (X'00'). Addresses for the indicators are put into compression by the Assign Phases.

APPENDIX H. HALT INDICATOR (HO) ANALYSIS AID

Displacements in Decimal From GR3 284 288 289 290
- * Resulting Byte Combinations Set
Condition That Turned HO On (Hexadecimal)

Initialized on or on due to programmer request N/A 00 00 00
Invalid Chaining request (A) 02 N/A N/A
Undefined record type (B) 10 N/A N/A
Collating sequence error (matching records) N/A 04 N/A N/A
Record sequence error (predetermined sequence) N/A 08 N/A N/A
1/O Error = Combined Files (D) 12 N/A N/A
1/O Error - Direct Access File (D) 16 (G)* (G)*
1/0O Error - Indexed-Sequential File (Random

processing) (D) 20 N/A (E)*
1/0O Error - Indexed-Sequential File (Sequential or

between limits processing) (C) 24 (F)* (F)y*
1/O Error = Sequential File (C) 28 N/A N/A
*
(A) = Chaining ldentifier address
(B) = Address of IORB
(C) = DCB address
(D) = DECB address
(E) = Exceptional condition code from DECB (ISAM)
(F) = Two-byte exceptional condition code from DCB
(G) = Two-byte exceptional condition code from DECB (DAM)

Appendix H. Halt Indicator (HO) Analysis Aid 123

GLOSSARY

Absolute address. Machine address. A pat-
tern of characters that identifies a
unique storage location (without
modification).

Alpha (a) byte. Byte in the compression
record that represents the presence or
absence of fields (via bit values).

Alternate collating sequence. External
subroutine (ALTSEQ) used to translate
the sequence of a matching field to the
collating sequence of the System/360.

Attribute., A characteristic; e.g., attri-
butes of data include record length,
record format, data set name, associated
device type and volume identification,
use, creation date.

BSI (British Standards Institution). For-
mat for representing sterling fields;
differs from the IBM format.

Beta (B8) byte. Byte that represents field
information (via bit values) in the
field name and literal tables. Repre-
sents the sequence (via bit values) for
table files in the compression.

Betabeta (BB) byte. Two bytes that repre-

sent field information in the data that
overlays the resulting indicators, field
names and literals in the compression.

Chaining request block (CHB). Area within
Assemble Phase 2 that contains identify-
ing information and is generated and
put out for each chaining field.

Compression. Technique used by this com-
pller to store the most data in the
least amount of space. All unused in-
formation is deleted from the source
specifications and the result is placed
into a reserved area of core storage in
form of records. Records are written on
a work data set to be brought back in
for processing in later phases of the
program.

Concatenated data set. A collection of
Jogically connected data sets.

Data set. The major unit of data storage
and retrieval in the operating system,
consisting of a collection of data in
one of several prescribed arrangements
and described by control information
that the system has access to.

124

Decompression. Method used by the assemble
phases to analyze compression created
from specifications input and processed’
during enter phases.

Delta (A) byte. Byte that represents the
length (binary) of the compressed output-
format specification.

Driver (input/output, CIOEX, file, record).
Routine malntailned 1n core storage; con-
tains table of data (constants, key ad-
dresses, switches, etc.) necessary to
direct the program to certain routines.

Embedded blanks. Blank positions falling

between characters of a name, e.g.,
DATE CRD.

ESD (external symbol dictionary). Control
information assoclated with an object
or load module which identifies the ex-
ternal symbols in the module.

Expansion. Method used by the compiler to
convert compressed specification data
into output text for the object program.

FET (file environment table). Table gener-

ated during Assemble Phase 2 and 2.5
for each input file in the object pro-
gram. Contains identifying information
obtained from file description speci-
fications.

File group. Term used by Assemble Phase 2
and 2.5 to describe processing record
type form of the input specification
compressions.

FPB (file processing block). Area within
Assemble Phase 2.5 generated and output
for each primary, secondary or chained
input file. Contains identifying in-
formation.

Gamma (¥) byte. Byte that represents field

type definition. Appears in the com-
pressions and in the field name table.

Intercept. Input/output interface for RAF,
and chaining files; put out with the
object program by Assemble Phase 1.

Interface. Control program that links the
problem program with the operating
system. Both the control program for
the RPG compiler (CIOEX) and the control
program for the generated object program
are referred to as interface.

Internal sequence number. Number assigned
by the compiler to each accepted speci-
fication as the compression is built.
Used as a cross-reference throughout the
phases of the program.

Inverted print. Numeric literals and edit
words use the European conventions of
punctuation (commas for decimal points
and vice versa) in printed output.

IORB., Symbolic name of an area in the in-
put/output phase (I/O Phases 1,2) that
contains information in coded form about
the input/output operation to be per-
formed.

Linkage editor. A program that produces a
load module by transforming object
modules into a format that is acceptable
to fetch, combining separately produced
object modules and previously processed
load modules into a single load module,
resolving symbolic cross references
among them, replacing, deleting, and
adding control sections automatically on
request, and providing overlay facilities
for modules requesting them.

Linkage vector. Table output as part of
the linkage program. Contains the ad-
dresses at execution time of all the
routines used by the object program.

Load Module. The output of the linkage
editor; a program in a format suitable
for loading into main storage for
execution. (Also referred to as object
program.)

LOKUP (look up). Operation that procures
specific information from one of the
tables that is contained in core storage
at object program execution time.

Multidefined. Describes a file defined
more than once. Specifies the same
filename in multiple specification en-
tries. A multidefined file is created
by a field name specified more than once
but with different attributes.

Note point logic. Type of program logic
designed to record (NOTE) the position
on a work data set of the last block
read or written. Subsequently the
work data set is repostioned (POINT)
to a specific block that was NOTEAd.

Object module. The output of a single
execution of an assembler or compiler
which constitutes input to linkage
editor. (Also referred to as object
program.)

Parameter list or table. Table or list of

variables that provides a specific func-
tion at object time; used by generalized
routines output with the object program.
The compiler builds these lists or
tables from information obtained from
specifications.

Precoded routines. Routines output with the

object program. Stored within the com-
piler phases in object code form; output
when requested by the specifications.

Preprocessed specifications. Calculation
specifications for 18 possible operation
codes partially processed, but not com-
pressed, during Enter Phase 4. These
preprocessed specifications are complete-
ly processed and compressed by Enter
Phase 5.

RAF (record address file). Auxiliary file
that contains the record keys (low and
high) or a key to each record that is to
be randomly processed. The object pro-
gram depletes the RAF by processing all
the data between the limits described
by the keys.

Record group. Term used by Assemble Phase 2

Reenterable.

to describe processing the field type
form of the input specification com-
pression.

Characteristic of a routine
in main storage that allows the same
copy of the routine to be executed
concurrently on behalf of two or more
routines or tasks.

RLD (relocation dictionary). Contains the

addresses within the object program and
the symbol in the ESD (for an external
type) of address constants used in the
generated object program; identified in
RLD card images, and put out with the
object program.

Service routines. Routines (CIOEX) that

provide the logic for the input/output
linkage to the operating system.

Symbol table. Printed listing of the en-

tries in the field name, resulting in-
dicator, and literal tables that were
made during compilation.

System residence volume. The volume on

which the nucleus of the operating
system and the highest level index of
the catalog are located.

Glossary 125

Text. Instructions and data generated for
the object module; written in card
image format to be punched and/or input
to a link edit job step.

TLF (table linkage field). Control field

created for each table in the object
program. Subfields (length, number of
entries, address, etc.) are used by
table operations at object time.

Transfer vector. Table used by Assemble
Phase 2 to direct the program to the
subroutines used by the phase. List
of branch instructions.

126

UBA_(undefined branch address). Branch

instruction of the format B 0(0), which
is put out in the object text stream.
The address is inserted in a later step
in the same phase.

Undefined.
defined.

Table entry referenced but not

Unreferenced.
referenced.

Table entry defined but not

Volatile. Characteristic of registers
whose contents will not be preserved
by CIOEX routines.

Assemble Phase 1 6, 63
flowchart 64
I/0 3, 64
main routines 64
precoded routines 66
storage allocation 2, 63
subroutines 65
switches . 64

Assemble Phase 2 and 2.5 6, 68
flowcharts 70, 71
/0 3, 72
main routines 69, 73
precoded routines 76
storage allocation 2, 68
subroutines 74, 76
switches 69

Assemble Phase 3 6, 79
flowcharts 80, 81
I/0 3, 82
main routines 82
storage allocation 2, 79
subroutines 83
switches 79

Assemble Phase 4 and 4.5 6, 85
flowcharts 87, 88, 89, 90, 91
I/0 3, 92
routines 87
storage allocation 2, 85, 86
switches 86

Assign Phase 1 5, 53
flowchart 54
1/0 3, 55
linkage to CIOEX 58
main routines 55
storage allocation 2, 53
subroutines 57
switches 55

Assign Phase 2 5, 59
flowchart 60
I/0 3, 61
main routines 61
storage allocation 2, 59
subroutines 62
switches 61

Blank-after 69, 79, 85, 119, 120,

Calculation Specifications
compreSsions 40, 42, 79
input 34, 79
preprocessed 34, 40, 42
Chaining files 17, 24, 63, 66
Chaining request block 68, 75
CHB 68, 75
CIOEX 5, 7
constants 11
flowchart 8
general registers allocation 12
linkages to resident routines 9

main routines 9
storage allocation 2, 7
switches 7
Compiler Input/Output Executor
Compiler option byte 11, 14
Compiler program flowchart 4
Compression area
initialization 14
storage allocation 2
Constants, CIOEX 11
Control card switches 16

Diagnostic Phases 6, 98
flowchart 98
I/0 3, 98
storage allocation 2

Enter Phase 1 5, 17
flowchart 18
I/0 3, 19
main routines 19
storage allocation 2, 17
subroutines 20
switches 19

Enter Phase 2 5, 22
flowchart 23
I/0 3, 23
main routines 24
storage allocation 2, 22
subroutines 25
switches 24

Enter Phase 3 5, 27
field description 31

flowcharts 28, 29
1/0 3, 30 :
main routines 30

record identification 30
storage allocation 2, 27
subroutines 32
switches 30

Enter Phase 4 5, 34
flowcharts 35, 36
I/0 3, 37
main routines 39
output record format 40
storage allocation 2, 34
subroutines 39
switches 37

Enter Phase 5 5, 42
flowcharts 43, 44
I/0 3, 45
main routines 45
storage allocation 2, 42
subroutines 45
switches 45

Enter Phase 6 5, 47
flowchart 48
I/0 3, 49
main routines 50

5, 7

Index

INDEX

127

storage allocation 2, 47
subroutines 50
switches 49

ESD Cards 5, 99

Field description specifications 31
Field information byte 83, 107, 120
Field name table
entries 1, 5, 14, 19, 22, 24, 27,
47, 53, 83
format 107
overflow 59
storage allocation 2
Field names 27, 47, 59, 107, 120
Field type byte 108
File Description Specifications
compressions 19, 63, 68, 112
input 17, 68
File description Table 85
File Extension Specifications
compressions 24, 63, 113
input 22
File environment table 68
File name table
entries 5, 19, 22, 27, 47
format 105
storage allocation 2

General registers, all phases 12
Glossary 124

Halt indicator 123
HOW table 82

Identification, phase 6
Input Specifications

compressions 30, 68
field description 31, 68
input 27

record identification 30, 68
Intermediate Phase 5, 52
flowchart 52
1/0 3, 52
storage allocation
I/0 Interface 93
I/0 Phases 1,2 6, 93
flowcharts 95, 96
interface 93
I/0 3, 97
main routines 94
precoded routines 97
storage allocation 2, 94
subroutines 96
I0CS
compiler program 5, 7
object program 6, 93

2, 52

Line Counter Specifications
compressions 24, 112
input 22

Linkage Phase 6, 99
flowchart 103

128

42,

I/0 3, 102

main routines 99

memory map 100,

precoded routines

storage allocation

subroutines 29
Linkage vector 99,

100
2, 102

Linkage to resident routines 9

Literal Table

entries 1, 5, 14,

format 109
overflow 59
storage allocation

Literals 34, 49, 59,

Major components 1
Matching fields 28,
Memory map 100, 101

34, 42, 47, 49, 53

2
109, 118, 119, 120

68, 72

Minimum System/360 and I/O requirements 1

Operation codes 37,
Output record format

40

Output-Format Specifications

compressions 47,
field (M) 47, 85
input 47

line (O) 47, 85

Phase identity 6

85, 118

Phase names 6
Precoded routines 6, 63, 68, 99
Prephase 5, 14

flowchart 15

I/0 3, 16

main routines 14

storage allocation 2, 14

subroutines 16

switches 16
RAF 17, 24, 63
Record identification specifications 30
Resident Phase 5, 13

flowchart 13

I/0 3, 13

storage allocation 2, 13
Resulting indicator table

entries 1, 5, 28, 42, 49, 53

format 111

storage allocation 2 .
Resulting indicators 28, 42, 84, 111, 120

RLD cards 6, 99, 121

RLDBUF 40
RPG control card 16

Switches and Indicators

ABYT 39, 45
ANDSW 86
BALRSW 86
BLAFSW 50

BLKAF 61
CLS 69

CLSIND 69
CLSTPS 64

CLSW 30 MINSW 37

CONSW 49 MCOMP 61
CPSSWT 64 NAMERR 50
CXCMPOPT 9, 11 NOFTAB 86
CXCOLXEQ 7, 11 OUTSW 49
CXINVPRT 7, 11 PAGE 61
CXSTRLNG 9, 11 PAGESW 49
DECSW 37 PAKSW 37
EDBYT 50 PASID 55, 61
EDITSW 49, 86 PAS2SW 86
EDSW 37, 50 PNCHSW 86
ENTSW 30 PROCSW 86
ERBYT 39, 45 RECDSW 49
ERBYT+1 39 RECERR 50
ERIND 45 RESID 61
ERRSW 45 RITSW 50
ERSW 37, 45 RREFSW 50
FACTSW 39, 45 SIGNSW 86
FDSW 37, 45, 50 SONOF 79
FIIND 30 SPCBYT 50
FIRSTOT 79 SWITCH 49
FLDERR 45 TAB 61
FLDMSK 37, 45 TABSW 50
FLDSW 30, 69, 86 TOTSW 37
FLD1SW 86 TTOVSW 86
FSW 30, 37, 45 ULABSW 86
FTOSW 86 USESW 37, 45
General switch no. 1 86 USEW1l 82
General switch no. 2 86 XAPSP 82
IBYT 39, 45 ZEROSW 19, 24, 49
IDCSW 69

INDBYT 50
INDSW 19, 24

INIT 30 Table files 17, 22, 63, 65
INSW 30 Table linkage field 65

KEY 55, 61 Terminal Phase 6, 104

LINESW 86 flowchart 104

LNSW 61 I/0 3, 104

LTKEY 55, 61 storage allocation 2, 104

Index 129

——— —— —— — —— — — — —— — —— — — — — — ——— —— —— —— — — — — — — — —— — — — — — — — — — — ———— m—— ey ———— o ——— e — —— — — — — — — — — — — —

READER'S COMMENT FORM

IBM System/360 Operating System Form Y26-3704-0
Report Program Generator

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

, Yes No
® Does this publication meet your needs? i 1
¢ Did you find the material:
Easy to read and understand? O O
Organized for convenient use? 0 O
Complete? M 1l
Well illustrated? O [
Written for your technical level? | [
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? ' As an instructor in a class? []
For advanced knowledge of the subject?] As a student in a class? |
For information about operating procedures? [7] As a reference manual? il

Other
Please give specific page and line references with your comments when appropriate.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y26-3704-0

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN,

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation

Systems Development Division
Development Laboratory
Rochester, Minnesota 55901

*V°S°N U pAulld 09¢/S WAl

Attention: Progr ing Publications, Dept. 425

T8IV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

0-$0.€-92&

Y26-3704-0

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

*V*S*n U paluild 09¢/S WG

0-P0LE-92A

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	replyA
	replyB
	xBack

