File No. S360-37 us 4
Form C28-6648-0

Systems Reference Library

IBM System/360 Operating System
TESTRAN

TESTRAN 1is a facility for testing programs written
in the asserbler language for execution under the
System/360 Operating System. It is intended for use by
the individual programmer in testing his own programs.

This publication explains how to use TESTRAN for
typical testing purposes, how to write essential job
control statements, and how to interpret printed test

" results. It formally describes TESTRAN statements,
cataloged procedures supplied by IBM, and TESTRAN
diagnostic messages.

The information in this publication applies to
systems that include the primary control program (FCP)
or provide multiprogramming with a fixed number of
tasks (MFT or Option 2). Amendments to this publica-
tion will supply information applicable to systems that
provide multiprogramming with a variable number of
tasks (MVT or Option #).

H:HHEBEB

First Edition (February 1967)

This publication 1is one of a set of three publications which entirely
replace and obsolete the publications IBM System/360 Operating System:
Data Management, Form C€28-6537, and IBM System/360 Operating System:
Control Program Services, Form C28-6541. The facilities and services
available through the wuse of supervisor and data management macro-
instructions are now described in the publication IBM System/360
Operating System: Supervisor and Data Management Services, Form
C28-66U46. The descriptions and definitions of the supervisor and data
management macro-instructions are contained in the publication IBM
System/360 Operating System: Supervisor and Data Management Macro-
Instructions, Form C28-6647. The facilities available through the use
of TESTRAN macro-instructions, as well as the descriptions and
definitions of the TESTRAN macro-instructions, are contained herein.

Specifications contained herein are subject to change from time to
time. Any such change will be reported in subsequent Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602.

© International Business Machines Corporation 1967

This publication describes the TESTRAN
facility for testing programs written in
the assembler language. It introduces this
facility in Section 1, which shows by an
example how TESTRAN helps in testing a
program, and shows how the reader can use
TESTRAN in testing his own programs.

Sections 2,
writing a

3, and 4 guide the reader in
source program, in writing job

control statements, and in interpreting
test results. The reader need not go
beyond Section 2 before completing his
source coding, and need not go beyond

Section 3 before actually testing his pro-
gram under the operating system. Also, he
need not read any section in its entirety,
because each treats a number of independent
topics that can be referred to directly
from the table of contents.

Several appendixes provide detailed des-

criptions of source statements, cataloged
procedures, and diagnostic messages.
Appendix A is of special interest, because

it formally describes statements that are
informally described in Section 2. The
reader can use either Appendix A or Section
2 as the model for his own coding, depend-
ing on the style of presentation he pre-
fers.

PREREQUISITE PUBLICATIONS

The following publications are prerequi-
sites:

IBM System/360 Operating System: Intro-
duction, Form C28-6534
IBM System/360 Operating System: Con-

cepts and Facilities, Form C28-6535

PREFACE

IBM System/360 Operating System: Assem-
bler Language, Form C28-6514

Knowledge of the macro-language, as des-
cribed in the Assembler Language publica-
tion, is not required. However, the reader
should know +the general functions of
system-defined macro-instructions (SAVE,
OPEN, GET, PUT, DCB) that are introduced in
the Concepts and Facilities publication and
are fully described in the publications:

IBM System/360 Operating System: Super-
visor and Data Management Services, Form
C28-6646

IBM System/360 Operating System:
visor and Data Management
Instructions, Form C28-6647

Super-
Macro-

PUBLICATIONS REFERRED TO IN THIS

PUBLICATION

The following publications are referred
to in this publication, but are not
necessarily prerequisites:

IBM System/360 Operating System: Assem—
bler (E) Programmer's Guide, Form
C28-6595

IBM System/360 Operating System: Linkage
Editor, Form C28-6538

IBM System/360 Operating System: Job
Control Language, Form C28-6539

Messa-—
Storage

IBM System/360 Operating System:
ges, Completion Codes, and
Dumps, Form C28-6631

SECTION 1: INTRODUCTION. . « o o « « o o o « «
Testing Procedure . .« o o ¢ o o« o o o o o o o« =

Requesting TESTRAN Services . . « ¢« « ¢« & ¢ « .
Structure of TESTRAN Statements. . « +« « « &«
Functions of TESTRAN Statements. . « « . .

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS . .

Basic Recording Functions . . « « « « « o &
How to Dump a Storage Area « . . « « .« .
How to Dump Changes to a Storage Area. . . .
How to Dump a Dummy Control Section. . .

How to Dump Storage Maps, Registers, and Contro

How to Control Output Format . « .« « « « « =

How to Trace Control Flow and References to Data

How to Comment the TESTRAN Listing

LI S

.

How to Classify Test Information for Selective

Testing of Complex ProgramsS . « « « « o o o o« o
How to Test a Module Already in a Library. .
How to Enlarge on a Partially Tested Program
How to Test an Overlay Program . . . « « » &
How to Test a Dynamic Serial Program

SECTION 3: HOW TO WRITE JOB CONTROL STATEMENTS

Assembly. ¢ ¢ o« 4« v ¢ ¢ e e s e o o o o o o o

Linkage EAiting « « « ¢ ¢ ¢ o ¢ 4 ¢ ¢ o« o o o

Execution « « o o ¢ o ¢ o o ¢ o « o o o 8 o « @

TESTRAN Editing . . ¢« o ¢ v ¢ &« ¢ ¢ o « » « o @

Assembly and Linkage Editing. . « . « « « o « .

Assembly, Linkage Editing, and Execution. . . .

Assembly, Linkage Editing, Execution, and TESTRAN

SECTION 4: HOW TO INTERPRET SYSTEM OUTPUT. . .
Page Heading (...TESTRAN OUTPUT...) . « . « +
Test Point Identification (AT LOCATION...). . .

Statement Output (...MACRO ID...)
DUMP CHANGES Output.
DUMP COMMENT Output. . . .
DUMP DATA Output
DUMP MAP Output.
DUMP PANEL Output.
DUMP TABLE Output. . . « « o o o o ¢ o « « «
ERROR Message. « « o « o o o« &
TEST CLOSE Output.

TEST OPEN Output . .+ . « ¢ ¢ ¢ ¢ o« o« « & « .
TRACE CALL Output. . . « . . .

.
¢ s ¢ 8 s
.

e« ¢ & 8 0
[T T Y |
.

L T T
s

.
.
.
.
.
»
.
.
.

1 Blocks

Retrieval

CONTENTS

- - .12
S
- . . 12

TRACE FLOW Output.
TRACE REFER Output
TRACE STOP Output.

TESTRAN Statement Trace (EXECUTED
TESTRAN Editor Message (*** IEGE.
APPENDIX A: FORMAL DESCRIPTION OF
Coding Conventions. . . . « « .« .

Functions of TESTRAN Statements .
DUMP and TRACE Statements. . .
TEST Statements. « « . ¢« « «

Linkage Statements.
Specification Statements. .
Decision-Making Statements.
GO Statements. . « « « « « o o
SET Statements . . « « -« « . .

Format of TESTRAN Statements. . .

STATEMENTS...). . .

ee) o .

TESTRAN

STATEMENTS.

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

Procedure ASMEC . . o« o o o o« o &
Procedure LKED. « « o ¢ o « o« o .
Procedure TASME . .« « « « o« « o .
Procedure TASMEG. . « « « o « o =«
Procedure TASMEGED. + « . o« « o«
Procedure TTED. « « o ¢ « o o o .
APPENDIX C: TESTRAN MESSAGES . .
TESTRAN Editor Messages . « . . .
TESTRAN Interpreter Messages. . .
TESTRAN Macro-Expansion Messages -

INDEX e s e 4 & e 4 o 4 a4 o &

74
74
74
75
76
77
85

89

FIGURES

Figure
Figure

1.
2.

Modules.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

3.
4.
5.
6.
7.
8.
9.
io.

ILLUSTRATIONS

Use of TESTRAN to Detect an Error in a Program. .
Combination of TESTRAN and Problem Program Source
Execution Time Testing of the Problem Program . .
Printing of Test Information.
Job Control Statements for Assembly . . « « . . .
Job Control Statements for Linkage Editing. . . .
Job Control Statements for Execution.
Job Control Statements for TESTRAN Editing. . .
Job Control Statements for Assembly and Linkage
Job Control Statements for

and EXeCUtioN. « o ¢ o ¢ o o o s o o o o o o« o o o o o o o

Figure

Execution,

Figure

TABLES

Table
Table
Table
Table
Table
Table

11.

12.

2.
3.

5.
6.

Job Control Statements for Assembly,
and TESTRAN Editing « e e e e e
TESTRAN Editor Listing: Sample Page e e e e e e .

Linkage Editing,

- .

Printing Formats for Data Types.

Format of

TESTKAN Statements

-

Definitions of Abbreviations Used in Table 2

Definitions of Variables Used in Tables 2 and 3. .

Definition of Type, Length, and Scale.
TESTRAN MesSSageS . « « o o o o o o o =

.
¢ o ¢ o e
L]

Editing
Assembly, Linkage Editing,

SECTION 1: INTRODUCTION

The testing of a major program can be as time-consuming as the design
and coding of its routines. Although testing is always time well spent,
the need to meet deadlines often leads to incomplete testing and
subsequent failures. And a failure in a single control section can
delay an entire project.

To help in testing programs, the IBM System/360 Operating System
offers a facility known as the test translator, or TESTRAN. This
facility helps to uncover faulty logic by providing printed information
about the actual working of a program. At the programmer's direction,
TESTRAN describes the changing contents of storage areas, registers, and
control blocks, and also the way in which control flows from one group
of instructions to another.

As an example, the test of a subroutine named PRIMER is shown in
Figure 1. For any positive number X, PRIMER is designed to find the
smallest number greater than X that is a prime number. The TESTRAN
listing shows that PRIMER contains an errox, because, as shown at (1) in
the figure, it returns a result of 3 rather than 2 for X = 1.

From the TESTRAN listing, the programmer can reconstruct the flow of
data and control that occurred during execution of PRIMER. As shown at
(2), the value X =1 was 1loaded into general register 10 before
execution of the instruction assembled at 000064. branches were made to
ODD and GOT. The erroneous result +3 was stored from general register
11 before execution of the RETURN macro-instruction assembled at 0000CO.

Tracing the flow of control, it is easy to find the instructions that
caused the error. Because X was an odd value, it was moved to register
11 and, at (3), increased by two. The result, being a prime number, was
stored as the answer. The error is obviously based on the assumption
that, if X is as odd number, the next larger prime number must also be
an odd number. In the single case X=1, the assumption is invalid.

The error in PRIMER is simple enough that it might easily be
recognized even without the help of TESTRAN. From this example,
however, it should be clear that TESTRAN could be most helpful in
finding hidden and complicated errors. 1In ad@ition, one should remember
that even so trivial an error could be difficult to find if the
subroutine were part of a large, complex program.

A TESTRAN listing, such as that shown in Figure 1, is printed after
execution of the program being tested. During execution, TESTRAN can
provide an additional service by checking for predefined error condi-
tions and taking corrective actions when necessary. For example, the
programmer might know that some value in his program should never exceed
a certain maximum. The value might be a result computed by a
subroutine, or it could be a counter used to control a processing loop.
TESTRAN could be used to check the wvalue and, if the maximum were
exceeded, to substitute a lesser value or to pass control to some other
part of the program. Of course, the final results of the program would
probably be incorrect, but the continued processing would offer the
chance of finding other errors not related to the faulty 1loop or
subroutine.

@f\/\

For the value

X =+1, the result
returned by
PRIMER is +3.

It should be +2. TESTING

1) MACRO ID 003, DUMP CHANGES

1) MACRO ID 002, TRACE FLOW
SVC 26 G'00' 000

TESTRAN LISTING

TESTRAN OUTPUT DATE 66/084

, TTPRIME , FROM (PRIMER
0003C G'01' 8000581C G'14?

) 000064 005784, CC=0
4000582A G'15' 00005778

AT LOCATION (PRIMER) 000064

DM

FF 0 5 0026 &4 0 005786

CC=0

FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

S%%x&A§%Q§g%§%%§§§§§§§§§§§§§§§g$§§§§§§§§§§§£§§SQ§§§§SS§N\V&\QSXQSR\

) 000072

NTo oDpD

(PRIMER

AATAEERARR AR RN)\oo\o\o\s\z\\m&\

) 0000

J 0000B38

D R R e R e

AN

SRR

1> MACRO ID 002, TRACE FLOW
SVC 26

, TTPRIME , FROM (PRIMER

) 0000C0 0057E0, CC=2
G'00' 0000003C G'Ol' 8000581C G'14' L4L00O0582A G'15' 00005778

[AT LOCATION (PRIMER

) U000CORN

%

PSW FF 0 5 0026 6 0 0057E2

AT LOCATION TTSVC2 (CALLTEST

1) MACRO ID 010, DUMP DATA

f X RESULT
N +1 +3
AT LOCATION (PRIMER) 000058

CC=2 FIX POINT OVERFLOW OFF DEC OVERFLOW OFF

) 00O0CEA 00582A ENTER DATAGEN

STARTING IN SECTION CALLTEST

005778 ENTER TTPRIME

EXP UNDERFLOW OFF

SIGNIFICANCE OFF

/(

B
L

ASSEMBLY

rﬁ LOC OBJECT CODEJ ADDR1 ADDR2 STMT] SOURCE STATEMENTJ

000058 150 [PRIMER CSECT
000058 151 L——'——‘T USING ¥,15
The value X=+1 152 SAVE (1#6223
: 00005C 58C1 0000 00000 155 L 12,0(1
w::;;‘;d;d o ‘ \%@‘K\ - L 10,0(12)
general register [P FE0068 \ LTR 10,10
10 (G"10%. 000066 47C0 F072 900CA 158 BC 12,ERR
00006A 1BBB 159 SR 11,11
00006C 8CAO 0001 00001 160 SRDL 10,1
000070 128BB 11,11
A branch was 00007 ; ; 908
from relative B\ 8% NN
location 000072. ‘ VNN g DO RDL 10,31
] 000086 LABO F082 000DA 167 AH 11,=H'2?
00008A 4190 0003 00003 168 LOAD LA 9,3
A branch was 00008E 1859 169 AGAIN LR 5,9
made to GOT 000090 1CLS 170 MR 4,5
from relative ~, 000092 1958 171 CR 5,11
location 000094. 00009k 5;30 F060 BH GOT }
: 4'\\§§ N
QOTAENDRRY
AN)
AW .‘h \:' \x} V‘%
QB8 AS B % 0 6
/A result of +3 ;\\ .\ N \N; X ‘.\ >
was stored from \‘.}ft.“;}\\ -\\ \ \ \
general register 000088 SRR B GOT L 12,4(C1)
11 (G'11Y. ~—
I et
(0000C0)D - RETURN (14,12),
189 ERR RETURN (14,12),
0000D8 194 LTORG
0000D8 0001 195 SH'1Y
0000DA 0002 196 =H12"
000058 197 END

/\,/\

Fiq

TESTRAN LISTING

RAN OUTPUT DATE 66/08% TIME 00/00 PAGE 5
ME , FROM (PRIMER) 000064 005784, CC=0
101" 8000581C G'14'

4000582A G'15' 00005778
The value X=+1

was loaded into

general register

10 (G'10").

L

SIGNIFICANC
A branch was

Qs§§§&FROM (PRIMER
\SNRQQSN\\§5SNS\\§NQQN§§S&

made to ODD

000072 A
from relative

TO 0oDD (PRIMER

NANRNANRRA RN RN

) 000082

NN Y\\§%§§§§§§§§§§b

B

|
R R R R e T R e e Y./ 4 broneh was

vE ,

FROM (PRIMER
'01' 8000581C G'14"

~—~—~ made to GOT

from relative
) 0000CO 0057EQ, CC=2

4000582A G'15' 00005778

-

general register

IX POINT

A 00582A

5 IN SECTION CALLTEST

ENTER

\//“

A result of +3
was stored from
P

OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF 11 (G'11Y,

ENTER DATAGEN

TTPRIME

location 000072.

ASSEMBLY LISTING

location 000094.

NI

\
) RN
\

| LOC OBJECT CODE| ADDR1 ADDR2 STMT| SOURCE STATEMENT | E O1FEB66 3/30/66

000058 150 [PRIMER CSECT

000058 151 USING ¥,15 :

152 SAVE (1%,12)
005C_58C1 00 00000 155 = L 12,0€1) G'1' POINTS TO ADCON FOR X

lE@gQ§§§§§§§§§S§§§E\SQQCQ§§§F\ - \§g>\ L 10,0¢12) PUT X IN G'10°' N

000064 LTR 10,10 ' , \

000CA 158 BC 12,ERR IF X 1S LE O

00006A lBBB 159 SR 11,11 ZERO OUT G'11"

00006C 8CA0 0001 00001 160 SRDL 10,1 SHIFT LO-ORDER BIT INTO G'11'

000070 12BB 161 LTR 11,11 Q)--WAS BIT A ZERO

000072 4770 FOZA NTLETRN BNZ oDD W\W\\

000082 . oDD SRDL 10,31 \\\53 MOVE X TQ G'11'

000086 LABD F082 000DA 167 AH 11,=H2" INCREASE X TO NEXT ODD VALUE | Y§&§g§§

00008A 4190 0003 00003 168 LOAD LA 9,3 LOAD G'9' WITH Y

00008E 1859 169 AGAIN LR 5,9 MOVE Y TO G'S5!'

000090 4,5 SQUARE Y

000092 5,11 Q)--1S Y®¥¥2 T X

000094 GOT

L 12,4(1)

ST
RETURN (14,12),RC=4

11,0(12)

\lmssuu FROM g}&;&\\\\&\\\\\\

0000D8 194
0000D8 0001 195
0000DA 0002 196
000058 197

RETURN (1%,12),RC=0
LTORG

=H'1!

=Hl2l

ERROR EXIT FROM PRIMER

END

Figure 1.

Section 1:

Because X was

odd, X+2 was the first
tentative result. The
logic errs, because
X+1 is the correct
result when X=1.

Use of TESTRAN to Detect an Error in a Program

Introduction 9

TESTING PROCEDURE

Requests for TESTRAN services are coded in a TESTRAN source module.
This module is combined with the program to be tested (the problem
program) either by the assembler or by the linkage editor, as shown in
Figure 2. 1In the first case, the TESTRAN and problem program source
modules are assembled together and result in a single object module. In
the second case, the source modules are assembled separately, result in
separate object modules, and are processed by the linkage editor to form
a single load module.

TESTRAN Problem
Source Program
Module Source
|\ Module
I TTe— /’,,,—,"” 1
{ \I/" Problem
TESTRAN Program
Object . Object
Module Cor{nbmed Module
; Object
- _ Module o
______ — e
Combined
Load
Module

Combination of modules by the assembler
—_ ___ Combination of modules by the linkage editor

Figure 2. Combination of TESTRAN and Problem Program Source Modules

The single load module is loaded and executed as a problem program.
Requests for test services are interpreted by the TESTRAN interpreter, a
‘component of the control program that receives control during program
dnpterruptions. As shown in Figure 3, the TESTRAN interpreter places
itest dinformation . in a TESTRAN data set, along with control information
which it copies from the unloaded form of the load module.

Load
Module

Control Information
s

TESTRAN

Interpreter / \\
T \

T—— b Y
—

Test Information ™ —_ TESTRAN
Data Set

Problem
Program

Figure 3. Execution Time Testing of the Problem Program

Test information, in the form of dumps and traces, is printed by the
TESTRAN editor, as shown in Figure 4. A dump is a symbolic representa-
tion of data as it existed at a particular time during execution of the
problem program. A trace is a record of control flow or references to
data over a period of time.

Section 1: Intrcduction i1

Printed
Test
Information

TESTRAN

TESTRAN

Data Set

Figure 4. Printing of Test Information

Like the assembler and the linkage editor, the TESTRAN editor is a
processing program that is executed as a job step. It uses the control
information copied from the load module to edit test information into a
meaningful symbolic format. The control information includes symbol
tables and a control dictionary for each object module that is included
in the load module. The control dictionary is produced as a standard
feature of assembly, while the symbol table is produced as an optional
feature. Both are placed in the load module as an optional feature of
linkage editing.

REQUESTING TESTRAN SERVICES

Requests for TESTRAN services are written as statements in the
TESTRAN source module. Each statement 1is a coded TESTRAN macro-
instruction, which the assembler automatically replaces with a series of
constants. The constants, in effect, are a control statement that
directs the TESTRAN interpreter to perform a specific operation.

When the interpreter performs a requested operation, the operation
itself determines whether the next sequential macro-instruction is
interpreted, or whether a 1logical branch is made to some other
macro-instruction. The process of interpreting a TESTRAN macro-
instruction thus resembles the execution of a machine instruction, and
is more conveniently referred to hereafter as the execution of a TESTRAN
statement.

STRUCTURE OF TESTRAN STATEMENTS

The structure of TESTRAN statements is similar to that of statements
in the basic assembler language. Each statement includes an operation
code and one or more operands. The operation code can be preceded by a
symbolic name, and the operands can be followed by a comment.

The operation code and first operand together define the type of
operation to be performed, and are used as generic names for statements.
For example, a DUMP MAP statement dumps a map of control sections and
allocated storage areas; the operand MAP distinguishes this statement
from DUMP statements that request other types of dump operations.

FUNCTIONS OF TESTRAN STATEMENTS

The operations requested by TESTRAN statements provide the following
general functions:

e Recording functions, which provide dumps and traces of the prcblem
program.

e Linkage functions, which control linkage to the TESTRAN interpreter.

12

¢ Decision-making functions, which provide condition testing and
conditional branching.

¢ Branching functions, which provide unconuitional branching and
subroutine capabilities.

e Assignment functions, which control values of variables in the
problem program and of special variables used in decision making.

These functions are provided by statements that are formally
described in Appendix A. Functional descriptions of the statements
appear in the next section, which describes how to write statements for
typical test applications.

Section 1: Introduction 13

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS

This section shows how to write TESTRAN statements to perform typical
testing functions. It gives examples of statements for performing each
function, and the reader can adapt these examples to his own needs. If
there is some question about adapting a specific example, refer to
Appendix A for complete, formal descriptions of the statements involved.

Section 2 has two parts:

e Basic Recording Functions.
¢ Testing of Complex Programs.

The first part shows how to program various types of dumps and traces.
The second part shows how to test programs that are not simply
structured or not formed from single object modules.

The first part of this section should be of general interest, while
the second should be read or ignored according to individual need. Each
part discusses various topics, and these also should be studied in a
selective fashion.

BASIC RECORDING FUNCTIONS

This part of Section 2 describes various types of dumps and traces.
Remember that a dump represents data as it exists at a particular time;
a trace represents control flow or references to data over an extended
period of time.

HOW TO DUMP A STORAGE AREA

Assume that the program containing the area is very simple and can be
represented as follows:

ENTRY SAVE (14,12)

PROCESS MVC MYDATA(20),0(6)

MYDATA DC C'DATAAREA"
DC F'0,1,2"'

END ENTRY
The problem might then be to dump the 20-byte area beginning at MYDATA,

just Dbefore the contents are changed by PROCESS. If so, the next
listing shows a solution:

14

EWENTRY TEST OPEN,ENTRY
TEST AT,PROCESS

END NEWENTRY

Execution begins at NEWENTRY, the beginning of a TESTRAN sequence that
means "Enter the problem program at ENTRY; at PROCESS, dump the area
from MYDATA to MYDATA+20." 1In this sequence, only the first statement
is actually executed. This statement uses the information in another
statement (TEST AT) to synchronize testing specified by a third
statement (DUMP DATA) with execution of the problem program. It
establishes a test point (a special link to the TESTRAN interpreter) at
PROCESS, and passes control to ENTRY. When PROCESS is reached, the
interpreter executes the DUMP DATA statement; it returns control to the
problem program, where the MVC instruction is executed. The dump is
printed as:

0090 MYDATA
005F68 DATAAREA +0 +1 +2

assuming that MYDATA was assembled at location 000090 and loadea at
location 005F68.

To dump more than one area, the programmer simply writes additional
DUMP DATA statements:

DUMP DATA,MYDATA, MYDATA+20:
DUMP DATA,0(0,6),80(0,6)

To dump these areas at more than one point in the program, he specifies
additional instruction addresses in the TEST AT statement:

To dump different areas at various test points, he uses additional TEST
AT statements:

Section 2: How to Write TESTRAN Statements 15

HOW TO DUMP CHANGES TO A STORAGE AREA

The method is the same as for dumping a storage area; the basic
difference is that CHANGES replaces DATA in the DUMP statement:

Execution begins at NEWENTRY and continues at ENTRY. Before PROCESS is
executed, the TESTRAN interpreter dumps the 20 byte area at MYDATA. If
PROCESS is executed three times, the dumps may appear as:

0090 MYDATA
005F68 DATAAREA +0 +1 +2

0090 MYDATA
005F68 WORKAREA +3

00A0
005F78 -40

00A0
00SF78 -41

The first dump shows the full contents of the four fields assembled at
000090 and loaded at 005F68. The second shows changes to the first,
second, and fourth fields, and shows that the third field is unchanged.
The third dump shows that only the fourth field has changed since the
previous dump.

To show changes to an area, a DUMP CHANGES statement must be executed

more than once. If PROCESS were executed only once, the example would
have to be changed to specify additional test points:

16

TEST AT, (PROCESS, INPUT, INPUT+18)

Change dumps would then occur at the test points PROCESS, INPUT, and
INPUT+18. There might be other TESTRAN statements to be executed,
however, and these statements might not be the same for each test point.
In this case, it would be necessary to use branching statements:

TO, CONTINUE

TO, CONTINUE

The statement CONTINUE is the last executed at each test point. The GO
TO statements in no way affect the logic of the program peing tested;
control is returned to each test point in the normal manner.

To dump changes to more than one area of storage, the programrmer
should specify each area in a separate statement:

DUMP CHANGES,MYDATA,MYDATA+20
DUMP CHANGES,TABLE (4),TABLE+8 (4)

Each statement produces a separate series of change dumps, even if two
statements should specify the same storage area. Each dump shows
changes to the area since the last dump by the same statement.

Changes in index values redefine areas that are specified by indexed
addresses. For example, the statement

DUMP CHANGES,ALPHA(4),ALPHA+60 (4)

dumps a 60-byte area whose location depends on an index value in general
register 4. On the first execution of the statement, the index value
might be zero, causing a dump of the area from ALPHA to ALPHA+60. On
the next execution, the index value might be 40, redefining the aumped
area as that from ALPHA+40 to ALPHA+100. The second dump would show
changed fields from ALPHA+40 to ALPHA+60 and all fields from ALPHA+60 to
ALPHA+100.

HOW TO DUMP A DUMMY CONTROL SECTION
A dummy control section describes a storage area without actually

reserving the area. The area may be allocated during execution, or may
be reserved by a regular control section, as in the following example:

Section 2: How to Write TESTRAN Statements 17

LA 4 ,MYDATA
USING DUMMY, 4
‘PROCESS MVC DUMMY (20) ,0(6

This program defines a dummy control section named DUMMY, and assigns it
the storage reserved for MYDATA. The example otherwise is the same as
that used in "How to Dump a Storage Area." The instruction named
PROCESS here refers to DUMMY rather than MYDATA, but its effect is the
same as in the earlier example.

Assume that DUMMY is to be dumped after PROCESS has been executed,
and that the 20-byte area at MYDATA is to be dumped as before. The
program then becomes:

TEST AT,PROCESS+6
USING DUMMY, 4 :
DUMP DATA,COUNT,NUMBERS+16,DSECT=DUMMY

As Dbefore, execution begins at NEWENTRY, control is passed to ENTRY,
and the area of MYDATA is dumped at PROCESS. After PROCESS is executed,
the new statements dump the 20 bytes from COUNT to NUMBERS+16. Thus,
the two dumps of the same area might appear as follows:

18

0090 MYDATA
005F68 DATA AREA +0 +1 +2

0000 COUNT NUMBERS
005Fr68 00002a6 -6u7 +30 -1

The dumps show that MYDATA was assembled at 000090 ana that COUNT was
assembled at 000000; both had the same location (005F68) when dumped.

Note that a special operand (DSECT=DUMMY) points to a dummy control
section, which 1is made addressable by a USING statement. A USING
statement is not needed preceding the other TESTRAN statements, since
their address operands are assembled as A-type address cornstants.

A dummy control section may describe more than one area of storage;
for example, it may define each of several buffers in a buffer pooli. If
the areas are contiguous, they can be dumped by a single statement, as
in the following example:

DUMP DATA,COUNT,NUMBERS+16,DSECT=(DUMMY, 3

PROCESS moves data 1into a 60-byte area beginning at DUMMY, i.e., at
MYDATA. This area is dumped as three 20-byte areas
-((NUMBERS+16)~CCUNT=20), each area. having the format defined in DUMMY:

0000 COUNT NUMBERS

005r68 00000226 -647 +30 -1
0000 COUNT NUMBERS

005F7C 00000006 +4 +0 -2
0000 COUNT NUMBERS

005F90 000001CF +278 -64 -89

Changes to a dummy control section can be dumped, just as changes to
a regular control section. For this purpose, a DUMP CHANGES statement
(with a DSECT operand) is used in place of a DUMP DATA statement. For
examples of the use of DUMP CHANGES, refer to "How to Dump Changes to a
Storage Area."

Section 2: How to Write TESTRAN Statements 19

HOW TO DUMP STORAGE MAPS, REGISTERS, AND CONTROL BLOCKS

For simplicity, assume that a storage map, registers, and control
blocks should all be dumped at X in the following program:

START SAVE (14,12)

OPEN (MYDCB, (OUTPUT))
X .

MYDCB DCB DSORG=PS, MACRF= (PM) , DDNAME=MYDD
END START

The unshaded statements below perform these functions:

MAP

PANEL

TABLE, TCB
TABLE,DCB, MYDCB
TABLE,DEB, MYDCB

Execution begins at NEWSTART, where X is established as a test point.
Control passes to START, and the DUMP statements are executed at X. The
dumps appear as follows:

Storage Map (recorded by DUMP MAP) :

NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH=-DEC HEX
GO LOADED PROGRAM NEWSTART 000000 009020 47 2F
LOADED PROGRAM 000030 009050 172 AC

TEGTTRNK LOADED PROGRAM 009120 1048 418
IEGTTROT LOADED PROGRAM 07F3D0 1160 488
OBTAINED STORAGE 07F858 96 60

OBTAINED STORAGE 07F948 560 230

OBTAINED STORAGE 07F8B0O 360 168

Registers (recorded by DUMP PANEL) :

i
G'00' 0007FD58 G'01' 0007FD58 G'02' 00000058 G'03' 50009050 G'O4' 00006EE8 G'05' 0007FFSC G'06' 000054B0 G'07' 00000000
G'08* 0000003C G'09' 40011062 G'10' 0007FF1C G'11' DOO7FFSC G'12' 00000180 G'13"' 0007FE98 G'14' 50009088 G'15' 92007750
PSW FF 1 5 0026 4 0 00908A CC=0 FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

F'0' 00000000 00000000 F'2' 00000000 00000000 F'4' 00000000 00000000 F*'6' 00000000 00000000

20

Task Control Block (recorded by DUMP TABLE, TCB):

SECTION FIELD NAME CONTENTS
TCBFRS 00000000 00000000 00000000 82000170 000400ND QOO7DCB8 00000000 00000000
TCBRBP 00009100
TCBPIE 00000000
TCBDEB 0007FCDC
TCBTIO 0007FFSC
TCBCMP 00000000
TCBTRN 0007F9L8
TCBMSS 00005670
TCBPKF 10
TCBFLGS 00000000 00000000 00000000 00000000 G0000000
TCBLMP 000
TCBDSP 000
TCBLLS 0007F3A8
TCBJLB 00000000
TCBJSE 00000000
TCBGRS 000000C6 0D00054BO 800092F4 0007FBOY4 LOO7FF844 50004C1A 00000001 0007FAF0 0007FA90 COO7FESS
0007FAFO 04000030 010000AC 4O40LOHO 4OLOLOLO 4OLOLOLO
TCBIDF 01000000
TCBFSA 4ouok4o
TCBTCB 40404040
TCBTME 40404040

Data Control Block (recorded by DUMP TABLE,DCB,MYDCB) :

SECTION FIELD NAME CONTENTS
DEVICE DEPENDENT INTERFACES
o] 00000000 0000000 00000000 00000001 00810000
COMMON INTERFACE
DCB 0207FC10 00004000 00000001
FOUNDATION BLOCK EXTENSION
DCB 42000001 80000000
FOUNDATION BLOCK
DCB 00400050 0007FCDC 92
ACCESS METHOD INTERFACES
DCB 00775000 007B880C 00000100 09005028 28282840 O07FBE0OO 07FCB800 07FCB80O0 00005000 00000100
00000000 00884848 70201ECY C5C7E3E3 DID5C600 4C0O040F6 4O4OLOOO 00000000 00000002 0026FE06
78000140 40404040 40404000 00000000 00000002 0027FE06 78000140 40404040 40LOLOOO 00000000
00000002 DO028FE06 78000140 40404040 40404000 00000000 00000002 0029FE06 18000140 4CLOLOLO

40404000 00000000 00000002 002AFE06 78000340 40404040 40404000 00000000 00000002 OC2DFE06
78000106

Data Extent Block (recorded by DUMP TABLE,DEB, MYDCB):

SECTION FIELD NAME CONTENTS
PREFIX SECTION

DEBWKARA 00

DEBDSCBA 00000000 000000

DEBDCBMK 00000000 00000001 10011111 11100000
DEBLNGTH oc

NUCLEUS
DEBNMSUB 003
DEBTCBAD 000180
DEBAMLNG 004
DEBDEBAD 07F87C
DEBOFLGS 11001000
DEBIRBAD 000000
DEBOPATB 00001111
DEBSYSPG 000000
DEBNMEXT 001
DEBUSRPG 000000
DEBPRIOR 000
DEBECBAD 000000
DEBPROTG 001
DEBDEBID 015
DEBDCBAD 00909¢C
DEBEXSCL 002
DEBAPPAD 07FCB8

EXTENT

DEB 33002000
ACCESS METHOD

DEB 00010000
SUBROUTINE ID

DEB C1D9C1p2 1000

Séction 2: HOw to Write TESTRAN Statements 21

The format of each dump is explained in "Section 4: How to Interpret
System Output." Note that:

e The storage map shows the length and location of each program that
was loaded and each storage area that was obtained for the active
task (job step). The first program (GO) is the problem program; the
others are components of the TESTRAN interpreter. GO includes two
control sections: NEWSTART, which is defined by the TEST OPEN
statement and contains all five TESTRAN statements, and an unnamed
control section, which contains the problem program instructions.

¢ The dump of registers includes both the general and floating-point
registers, assuming that the computing system includes the floating-
point option. It also includes the program status word (PsSwW) that
was stored when the problem program was interrupted at the current
test point.

o The dumps of control blocks show the task control block (TCB) for
the active task (job 'step), the data control block (DCB) named
MYDCB, and the data extent block (DEB) created during the opening of
MYDCB.

In Figure 5, the contents of all registers appear in hexadecimal
fornat. The programmer can specify a different format (such as
fixed-point or floating-point) in the DUMP PANEL statement (refer to
"How to Control Output Format)." Since the specified format applies to
all registers dumped by the statement, it is often desirable to use
separate statements for dumping general and floating-point registers:

DUMP PANEL,G'0,15"
DUMP PANEL,F'0,6"'

The first statement dumps the general registers 0 to 15; the second
dumps the floating-point registers 0 to 6. The programmer can also
select specific registers, as in the statement

DUMP PANEL, (G'4',G'SUM',G'8,9',G'13,1")
which dumps only the following general registers:
Register 4.
The register whose number is the value of the symbol SUM.

Registers 8 and 9.
Regyisters 13, 14, 15, 0, and 1.

Of course, 1if the programmer wishes +to dump specific general and
floating-point registers, and to dump both in the same format, he can
specify them in a single statement, such as:

DUMP PANEL, (G'5°',F'SUM',F'4,6',G"'8,10")

HOW TO CONTROI OUTPUT FORMAT

The TESTRAN editor determines the format ¢f the cutput from most
TESTRAN statements. However, the statements

DUMP DATA
DUMP CHANGES
DUMP PANEL
TRACE REFER

produce output whose format may be determined in any of three ways:

22

1. By special operands.
2, By symbol tables.
3. By default.

By understanding each way of determining formak, and the conditions
under which it is used, the programmer can control the format of data
recorded from registers and main storage.

SPECIAL OPERANDS: There are two operands by which the programmer can
specify output format:

e The DATAM operand, which defines storage field or register format.
e The NAME operand, which defines a field name.

The DATAM operand can be used in any of the fcur statements; the NAME
operand can be used in a DUMP DATA or DUMP CHANGES statement.

The DATAM Operand: The DATAM operand specifies the format of a field or
register in terms of three attributes:

¢ Type
¢ Length
e Scale

The specification of attributes is similar to that in an assembler DC or
DS statement and is illustrated by the following statements:

D1 DUMP DATA,INPUT+6,DATAM=L74

D2 DUMP CHANGES,0(0,13),72(0,13),DATAM=LY4
D3 DUMP PANEL,F'0,6",DATAM=D

T1 TRACE REFER,TABLE, TABLE+80, DATAM=FLUS-2

D1 dumps a single field that begins at INPUT+6. The 1length of the
field is 74 Dbytes; because no type is specified, the contents of the
field are printed as hexadecimal data.

D2 dumps a series of up to eighteen 4-byte fields, each containing
changes to the contents of a 72-byte storage area.

D3 dumps the o0ld program status word (OPSW) and the contents of the
floating-point registers. The type of data in the registers is
specified as D (long floating-point), which implies a length of 8 bytes
for each.

Tl traces references to U-byte fields within an 80-byte area. The
trace shows the contents of a u4-byte fixed-point field beginning at each
address to which a reference is made. The contents before and after the
reference are shown multiplied by the scale factor (2-2).

The NAME Operand: The NAME operand specifies a symbol that is printed
as the name of a field dumped by a DUMP DATA or DUMP CHANGES statement.
Its use is illustrated by the following statements:

D1 DUMP DATA,TABLE(6),DATAM=CLS8, NAME=FUNCTION
D2 DUMP CHANGES, MATRIX, MATRIX+160, NAME=NEWMATRX

D1 dumps a single 8-byte field located at TABLE(6). FUNCTION is
printed as the name of the field.

D2 dumps a 160-byte area, which may contain any number of fields.
NEWMATRX is printed as the name of the first field that is dumped.

Section 2: How to Write TESTRAN Statements 23

SYMBOL TABLES: Symbol tables are part of the control information that
is passed to the TESTRAN ‘editor by the TESTRAN interpreter. (See Figure
3.) Produced by the assembler, each symbol table describes fields
defined in a named, wunnamed, dummy, or blank common control section.
The TESTRAN editor uses the symbol tables to:

e Determine field formats when the DATAM operand is omitted.
e Provide field names when both the DATAM and the NAME operands are
omitted.

A blank common control section is common to two or more object
modules, and is therefore represented by more than one symbol table. To
print fields defined in a common control section, the TESTRAN editor
identifies the object module in which the test point was located, and
uses the symbol table for the control section as defined in that module.

Except in the case of a blank common control section, the symbol
tables define only one format for a given area of storage. They do not
define the format of fields that are overlapped by other fields, as in
the following sequence:

LONGFLT DS D
SHORTFLT DS E

ORG *-8
ADRLONG DC A (LONGFLT)
ADRSHORT DC A (SHORTFLT)

This sequence defines fields that together occupy three full words.
LONGFLT occupies the first two words, the second of which is overlapped
by ADRLONG. SHORTFLT occupies the third word and is overlapped by
ADRSHORT. If the three words were dumped, the first would be printed in
default format, and the second and third would be printed as normal
address constants.

DEFAULT: The fields described in the symbol tables are storage areas
and constants defined by assembler DS and DC statements. Instructions
are described only if named, and are therefore assumed to be the
contents of any program area whose format is not defined in the tables.
The area contents are analyzed for operation codes, which are used to
determine the printing format for each instruction.

Unless treated as a dummy control section, an allocated area of main
storage 1is not represented by a symbol table. By default, data from
such an area 1is printed in U4-byte hexadecimal fields. Data from
registers, 1including floating-point registers, is also printed in this
format.

24

HOW TO TRACE CONTRCL FLOW AND REFERENCES TO DATA

Suppose that the following sequence is the program to be traced:

BEGIN SAVE (14,12)
REPEAT ST 6, MYDATA

DECIDE BC 4, REPEAT
CONTINUE CALL ROUTINE1l

NEXTSTEP SR 5,5
MYDATA DC F'0"

END BEGIN

The problem is to trace control flow from BEGIN to NEXTSTEP and to trace
references to the area beginning at MYDATA. The traces are to be
started at BEGIN and are to be stopped at NEXTSTEP.

The next sequence shows a solution:

W, i]
TRACE CALL, CONTINUE, NEXTSTEP
\ 2

Section 2: How to Write TESTRAN Statements 25

Execution begins at NEWBEGIN, where a TEST OPEN statement establishes
BEGIN and NEXTSTEP as test points. NEWBEGIN passes control to BEGIN,
where three traces are started:

e The TRACE FLOW statement starts a trace of branches and supervisor
calls to, from, or within the area from BEGIN to NEXTSTEP.

e The TRACE CALL statement starts a trace of subroutine calls by CALL
macro-instructions located between CONTINUE and NEXTSTEP.

e The TRACE REFER statement traces references by instructions that
could change data in the 72-byte area beginning at MYDATA.

To perform these traces, the TESTRAN interpreter retains control and
executes the program interpretively, starting at BEGIN. At NEXTSTEP,
the traces are stopped and execution continues normally.

The printed output of the three traces can be represented, in
abbreviated fashion, as follows:

Recorded
Output During Execution of:

AT LOCATION BEGIN... =

«e«e TRACE FLOW. ..
STARTED

> TESTRAN Statements
«e«TRACE CALL...

STARTED

-« TRACE REFER...

STARTED J
«+..TRACE REFER...TO MYDATA...FROM REPEAT... B

BEFORE +0 AFTER +16

«+«+TRACE FLOW...FROM DECIDE...TO REPEAT...CC=l4

. L Problem Program

««.TRACE CALL...TO ROUTINEl...AT CONTINUE...

. J

AT LOCATION NEXTSTEP...
TESTRAN Statements
.« TRACE STOP,ALL

The output shows that the traces were started at BEGIN and stopped at
NEXTSTEP. It shows that the following events occurred during execution
of the problem program:

¢ A reference was made to MYDATA by REPEAT, resulting in a new value
of +16.

e A branch was made from DECIDE to REPEAT on condition code 4.

e A call was made to ROUTINE1l from CONTINUE.

26

Complete output, as actually prihted by the TESTRAN editor, would also
show the images of certain instructions, the values of symbolic
addresses, and the contents of pertinent registers.

Suppose now that only the traces of control flow should be stopped at
NEXTSTEP, and that the trace of references should be continued until the
end of the program. The TESTRAN statements should then be written as
follows:

TRACE#1 TRACE FLOW,BEGIN,NEXTSTEP

The TRACE STOP statement here stops only the traces started by the
statements TRACE#1 and TRACE#2. ' The TESTRAN interpreter continues its
interpretive execution of the problem program, and recoxrds references to
the area at MYDATA until termination of the task (job step).

The TRACE STOP statement speeds up execution by reducing the number
of traces. While any trace is in effect, the TESTRAN interpreter must
examine each instruction before it is executed to determine whether it
will cause some event, such as a branch, that must be recorded. This
interpretive execution is necessarily slow, and the time it requires is
reduced by stopping each trace when it is no longer needed.

Testing efficiency is also increased by limiting the size of storage
areas specified in TRACE statements. For example, if there were three
adjoining areas, all could be specified as a single area in a single
statement; however, if only the first and third areas were of real
interest, it would be better to eliminate output from the second area by
using two TRACE statements to specify the first and third areas
separately.

With respect to limiting traces, the following specific limits should
be kept in mind: ' o

¢« A trace area should lie entirely within a single control section or
_@&llocated storage area. If it does not, the area may be distorted
by scatter loading of control sections or by variation in the
relative locations of separately allocated areas. Also, if a trace
area begins in one control section and ends in another, only data
from the first control section can be formatted properly.

e No more than ten traces (corresponding to ten TRACE statements) can
be performed simultaneously. If an eleventh trace is started, the
tenth trace ~-- the one most recently started -- is stopped
automatically.

A stopped trace can be restarted by executing again (at a later test
point) the TRACE CALL, TRACE ; FLOW, or TRACE REFER Statement that
originally started the trace. In the same way, an active trace can be
shifted to a new area if the area is specified by indexed addresses
whose values have changed since the trace was started.

Traces of Asynchronous Exit Routines: Traces are stopped automatically
when any of the following routines is entered:

Section 2: How to Write TESTRAN Statements 27

* The end of task exit routine specified by the ETXR operand of an
ATTACH macro-instruction.

e The timer completion exit routine specified by a STIMER macro-
instruction.

* The error analysis exit routine specified by the SYNAD operand of a
DCB macro-instruction.

To trace execution of one of these routines, it is necessary to start
traces at a test point within the routine. When the routine returns
control to the control program, these traces are automatically stopped
and the traces stopped on entry to the routine are automatically
restarted.

Traces are not stopped on entry to the program interruption exit
routine specified by a SPIE macro-instruction.

Use of Dummy Control Sections: The programmer can trace references to
fields of dummy control sections by using the general technique
described in "How to Dump a Dummy Control Section." If he assigns
varying locations to the dummy control section, he can shift the trace
from one location to the next as in the following example:

NEWSTART TEST OPEN,START
TEST AT,LOADBASE+2
USING RECORD,6
TRACE REFER, ID,DATE+5,DSECT=RECORD

START SAVE (14,12

GETNEXT GET MYDCB
LOADBASE LR 6,1
USING RECORD, 6

PUTX MYDCB
B GETNEXT

MYDCB DCB DSORG=PS,MACRF=(GL,PL) ,DDNAME=MYDD
RECORD DSECT
ID DS XL4

DATE Ds PL5
END NEWSTART

GETNEXT uses register 1 to point to a buffer that contains a record to
be updated. The program assigns the buffer location to RECORD, a dummy
control section that describes the record format. After processing the
record, the program replaces it in the data set and executes the same
set of instructions to update the next record. On each loop, the TRACE
REFER statement is executed immediately after LOADBASE makes RECORD
addressable. When first executed, it starts a trace of references to
the buffer containing the first record; on each subsequent execution, it
shifts the trace to the buffer containing the next record.

28 -

HOW TO COMMENT THE TESTRAN LISTING

A TESTRAN listing can become difficult to interpret when it contains
many individual dumps and traces. To make the 1listing easier to
interpret, the programmer can introduce comments that explain or call
attention to particular items.

The programmer specifies a comment as an operand of a special DUMP
statement (DUMP COMMENT) or in a special operand of a TRACE CALL, TRACE
FLOW, or TRACE REFER statement. The following example illustrates both
methods:

TEST AT,PAYROLL

TRACE CALL,CALLFICA,NEXTSTEP,COMMENT='TRACE OF CALLS TO PAYROL-
L SUBROUTINES'

TEST AT,TESTCODE-4

DUMP COMMENT,'G""15'' CONTAINS FICA RETURN CODE'

DUMP PANEL,G"'15"'

The comment TRACE OF CALLS TQ PAYROLL SUBROUTINES is printed with all
output produced by the TRACE CALL statement. The comment G'15' CONTAINS
FICA RETURN CODE is printed immediately before the dump of register 15.

(Note that the apostrophes in the second comment are each represented by
a pair of apostrophes in the statement. This representation is
necessary because apostrophes are used to delimit the comment; for other
reasons, ampersands must be represented in the same way.)

HOW TO CLASSIFY TEST INFORMATION FOR SELECTIVE RETRIEVAL

To avoid printing large quantities of test output, the programmer can
divide the output into several classes that can be retrieved
selectively. By means of a job: control statement, he can select one or
more classes for printing immediately after execution of his program.
From this information he can decide what other classes he needs for his
evaluation of the program. He can then select these classes by
submitting a new job that reprocesses the TESTRAN data set.

To classify output, the programmer writes a special operand (SELECT)
in one of the following statements:

¢ TEST OPEN
e TEST AT
¢ Any DUMP or TRACE statement

Depending on where it appears, the SELECT operand classifies:

e Information recorded at the test points established by a TEST OPEN
statement.

e Information recorded at the test point(s) specified in a TEST AT
statement.

¢ Information recorded by an individual DUMP or TRACE statement.

The SELECT operand classifies information by means of a class
identification number (an integer from 1 to 8), as in the following
statement:

Tl TEST 0PEN,ENTRY,SELECT=8

Section 2: How to Write TESTRAN Statements 29

All information recorded at the test points established by this

statement belongs to class 8, except for information that is reclassi-

fied by a TEST AT, DUMP, or TRACE statement. Thus, if T1 is followed by
TEST AT,PROCESS,SELECT=6

all information recorded at PROCESS belongs to class 6, except for
information that is reclassified by a DUMP or TRACE statement, such as:

DUMP DATA,MYDATA,SELECT=5

The dump of MYDATA belongs to class 5, and only to class 5. As a result
of reclassification, it does not belong to either class 6 or class 8.

Use of the SELECT operand does not imply that all information must be

classified. Unclassified as well as classified information can be
selected for printing.

TESTING OF COMPLEX PROGRAMS

This part of Section 2 describes the testing of programs that are not
simply structured or are not formed from single object modules.

AOW TO TEST A MODULE ALREADY IN A LIBRARY

As stated in Section 1, TESTRAN statements and the problem program
can be assembled together or separately. Assembling the two together is
usually the more convenient, but the sophisticated programmer may
discover cases where separate assembly is more efficient. For example,
the programmer may have assembled and tried to execute a program before
deciding to use TESTRAN. If he has saved the program in a library, he
mnay wish to assemble TESTRAN statements separately to avoid reassembling
the program to be tested.

Separate assembly presents two major problems. First, there is no
simple symbolic way that TESTRAN statements can refer +to locations in
the problem program. Second, assuming that the object or load module in
the 1library contains no symbol tables, there 1is no simple way of
obtaining TESTRAN output in the proper symbolic format.

References to the Problem Program: There are three ways that TESTRAN
statements can refer to locations in the problem program. The first,
which is the only way that can be wused in TEST OPEN and TEST AT
statements, 1is +to write each address as an external reference plus or
minus an appropriate displacement. The external reference is a symbol
defined in the problem program and listed in the external symbol
dictionary (the first part of the assembly listing). The displacement
is the number of bytes from the location named by the symbol to the
location of the operand; it can be calculated from the object code
addresses contained in the assembly listing.

The second way of referring to the problem program is by explicit
addresses. These can be written to use base registers 1loaded by the
problem progranm. Displacements from base addresses can be calculated
from the object code addresses in the assembly listing.

The third way of referring to the problem program is to use dummy
control sections that describe the format of the problem program. The
name of each must be declared as the address in a base register that is
loaded by the problem program. Areas defined in the dummy control
sections (which correspond to areas in the problem program) can then be
referred to symbolically by DUMP DATA, DUMP CHANGES, and TRACE REFER
statements that are written with DSECT operands.

30

Qutput Format: The output of DUMP DATA, DUMP CHANGES, and TRACE REFER
statements 1is printed as four-byte hexadecimal fields wunless each
statement contains a DATAM or DSECT operand. The DATAM operand
specifies a uniform field tormat for all data in the area specified by
the statement. The DSECT operand specifies use of the symbol table for
a dummy control section that is assembled with the TESTRAN statements.

Symbol tables are optional features of assembly and linkage editing,
and are requested by means of job control statements. If the programmer
anticipated the use of TESTRAN, he could have requested symbol tables
when the problem program module was created. The tables for the problem
program could then be used to determine the output format.

Linkage Editing and Execution: After Dbeing assembled, the TESTRAN
module (TESTRAN statements and dummy control sections) is processed by
the 1linkage editor. The programmer must provide linkage editor control
statements to combine this moduleée with the problem program module. For
example, the statements:

INCLUDE MYLIB(MYPROG)
ENTRY NEWSTART
NAME MYPROG (R)

specify that the load module is to include the load module MYPROG from
the library MYLIB; that the entry point is to be NEWSTART (assumed to be
the name of a TEST OPEN statement); and that the new load module is to
replace the original problem program module in the library.

The normal procedure is followed in executing the new lcad module and
printing the TESTRAN output. . If the output shows an error in a
particular control section, the: programwmer can replace the control
section with a new one through use of the linkage editor. Since a
symbol table can be requested whén assembling the new control section,
the programmer may wish to eliminate DATAM or DSECT operands in TESTRAN
statements that refer to the control section. If so, he assembles a
complete new set of TESTRAN statements, which form an implicit control
section named after the TEST OPEN statement. If each new control
section is named after the control section it replaces, the replacement
is automatic, and only two linkage editor control statements are needed:

INCLUDE MYLIB(MYPROG)
NAME MYPROG (R)

When the new load module is tested, the TESTRAN output may show an
error in one of the replacement: control sections. If there is a symbol
table for this control section,; the control section should not be
replaced with another of the same name. The linkage editor does not
replace symbol tables when it replaces control sections; therefore, the
table originally associated with each section namne remains in effect.

Test Completion: When testing: is completed, the programmer can direct
the linkage editor to prepare the load module for productive use. For
example, he might write the following control statements:

ENTRY START
REPLACE NEWSTART
INCLUDE MYLIB(MYPROG)
NAME MYPROG (R)

These statements restore the normal entry point (START) and delete the

TESTRAN control section (NEWSTART). Symbol tables in the module are
deleted as a result of omitting an option in a job control statement.

Section 2: How to Write TESTRAN Statements 31

HOW TO ENLARGE ON A PARTIALLY TESTED PROGRAM
Suppose that the following program has been tested successfully:

TESTMOD1 TEST OPEN,MOD1

-

MoD1 CSECT

END TESTMOD1

MOD1 is now tc become a subroutine of another control section, MOD2, and
the two control sections are to be tested together. The enlarged
program is as follows:

ESTMOD2 TEST OPEN,MOD2,O0PTEST=TESTMOD

END TESTMOD2

Execution begins at TESTMOD2, the first of a group of TESTRAN statements
for testing MOD2. In effect, this statement executes the statement
TESTMOD1; as a result, it establishes test points as specified by TEST
AT statements following both TESTMOD1 and TESTMOD2. TESTMOD2 ignores
the second operand (MOD1l) of TESTMOD1 and passes control to the problem
program at MOD2.

Because MOD1 has been tested previously, test information about MOD1

is simply insurance against unexpected errors. The programmer may
therefore wish to defer printing this information until after he has
examined the information about MGCD2. If so, he <can classify the

information about MOD2 and select only this information for immediate
printing. He can save the data set that contains the information and,
if it proves necessary, select the information about MOD1 at a later
date.

The programmer classifies information about MOD2 by means of a
special operand (SELECT) described in "How to Classify Test Information
for Selective Retrieval." There are several statements in which he can
write this operand, but for the present purpose he can best write it in
the TEST AT statements that follow TESTMOD2:

32

The programmer can select information about MOD2 by specifying class 8
in a job control statement, as explained in Section 3. 1In a later job,
he can repeat the editing of TESTRAN output and select unclassified
output to print information about MOD1.

The SELECT operands in the TEST AT statements classify information
recorded at test points in MOD2. A SELECT operand in the statement
TESTMOD2 would provide the same - function if that statement did not
include the operand OPTEST=TESTMODl1. In a TEST OPEN statement, a SELECT
operand classifies information: recorded at all test points established
by the statement, imcluding thosé established as the result of an OPTEST
operand. A SELECT operand in TESTMOD2 would therefore classify informa-
tion recorded at test points in both MOD2 and MOD1. It would do so even
if a different SELECT operand (e.g., SELECT=7) were written in TESTMOD1,
because the operands of a TEST OPEN statement are ignored if the
statement is not actually executed.

HOW TO TEST AN OVERLAY PROGRAM

An overlay program is a load module that is divided into several
overlay segments. For testing purposes, each segment must be treated as
a separate program. That is, it must contain its own TESTRAN state-
ments, beginning with a TEST OPEN statement. During execution, only one
TEST OPEN statement can receive control; it must be located in the root
segment, and it must contain a special operand (OPTEST) that points to
all other TEST OPEN statements, as in the following example:

TESTSEGL TEST OPEN,ENTRY,OPTEST=(TESTSEG2,TESTSEG3)
Segment 1 .
(Root Segment) .

TESTSEG2 TkST OPEN

Segment 2 .

TESTSEG3 TEST OPEN

Segment 3 .

END TESTSEG1

Except for references by the OPTEST operand, symbolic references between
segments are not allowed in TESTRAN statements. External references
must be declared in assembler EXTRN and ENTRY statements.

A TEST OPEN statement and the TESTRAN statements that follow it form
an implicit TESTRAN control sec¢tion that must be inserted in the proper
overlay segment. Thus, for the example just given, the programmer might
write the following linkage editor control statements:

Section 2: How to Write TESTRAN Statements 33

INSERT TESTSEGL,...
OVERLAY ROGTNODI
INSERT TESTSEG2,...
OVERLAY ROOTNODE
INSERT TESTSEG3,...

When a segment is overiaid, traces started by TRACE statements in the
segment are autometically stopped. They are not automatically restarted
when the segment is reloaded, but are restarted when the TRACE
statements are again executed at a test point in the segment. To ensure
that traces are restarted, the programmer must therefore design his
testing logic so that TRACE statements are executed each time a segment
is entered after being overiaid and reloaded.

HOW TO TEST A DYNAMIC SERIAL PROGRAM

A dynamic serial program is a combination of two or more load modules
that are loaded and executed as a single task. Each load module can
contain TESTRAN statements; if it does, however, it is neither reentera-
ble nor serially reusable.

A module that is not reusable is normally loaded each time it 1is
entered by a supervisor assisted linkage. For this reason, a TEST OPEN
statement must be executed to establish test points each tinme the nodule
is entered by means of a LINK, XCTL, or ATTACH macro-instruction.
Before control is passed or returned to another module, testing of the
module should be stopped by a TEST CLOSE statement, as in the following
example:

At the test point FINISH, the TEST CLOSE statement nullifies the effect
of the TEST OPEN statement and returns control to the test point. AaAs a
result, the TESTRAN interpreter releases storage areas acquired for
internal functions. If not released, the areas would be duplicated the
next time the module was loaded and tested.

A module 1is not loaded each time it is entered if it is already in
storage and either of these conditions is met:

* The program was loaded by a LOAD macro-instruction and is not
currently being used in a supervisor assisted linkage.

e The program is entered by means of an ATTACH macro-instruction at an
entry point identified by an IDENTIFY macro-instruction.

If the module is loaded only once, the TEST CLOSE statement need not be
used, and a TEST OPEN statement need be executed only once.

When a supervisor assisted linkage is made to another module, all
traces are automatically stopped. They are not automatically restarted
when control is returned, but can be restarted by appropriate TRACE
statements. The TRACE statements should follow a TEST AT statement that
specifies the return address as a test point.

34

SECTION 3: HOW TO WRITE JOB CONTROL STATEMENTS

To wuse TESTRAN, the programmer must write job control statements to
define the job to be performed by the operating system. A typical
TESTRAN job consists of one or more job steps, each of which performs one
of the following functions:

e Assembly of the problem program

¢ Linkage editing of the problem program
¢ Execution of the problem program

¢ Editing of test information

The Jjob control statements used in defining jobs and job steps are
described in the publication IBM System/360 Operating System: Job Control
Language. Statements for performing specific TESTRAN-oriented jobs are
listed below. The Jjobs defined by these model job definitions include
the following job steps:

Assembly

Linkage Editing

Execution

TESTRAN Editing

Assembly and Linkage Editing

Assembly, Linkage Editing, and Execution

Assembly, Linkage Editing, Execution, and TESTRAN Editing

Most of the model job definitions refer to IBM-supplied cataloged
procedures, which are defined in Appendix B. Before attempting to use
these procedures, the programmer should make certain that tney have been
_included 1in the procedure library at his installation. If a procedure
has been omitted, the programmer can copy the necessary statements from
the appendix.

ASSEMBLY

Figure. 5 defines a job that executes the F-level assembler prograi.
. The statements in the figure are numbered, and are explained in the

correspondingly numbered paragraphs below. The. shaded statement is
" optional. - . : : - '

T a
1.|//jobname JOB job parameters |
2.1/ |
3.

4.]//ASM.SYSIN DD data definition parameters
L .

o e e e s e e

Figure 5, Job Control Statements for Assembly
1. This statement provides general job control information.

2. This statement refers to a cataloged procedure named ASMEC, which
defines a single job step named ASM. The PARM parameter specifies
the option TEST, which causes symbol tables to be included in the
object module. The PARM parameter implies the following options:

DECK
LIST
XREF
LINECNT=standard line count

Section 3: How to Write Job Control Statements 35

If desired, other options can be specified in place of the implied
options. The TEST option, however, must be specified.

3. This statement is optional. If present, it saves the object module
as a cataloged data set in direct-access storage. The data set can
supbsequently be referred to by name as primary or additional input
to the linkage editor.

Statement 3 overrides the following statement in the procedure
ASMEC:

//SYSPUNCH DD UNIT=SYSCP

If this statement is not overridden, it causes the object module to
be produced as a deck of punched cards.

4. This statement defines a data set that contains the source program
to be assembled. This data set can appear in the input stream.

LINKAGE EDITING

Figure 6 defines a job that executes the largest linkage editor
program available at the installation. The statements in the figure are
numbered, and are explained in the correspondingly numbered paragraphs
below. The shaded statement is optional.

r
| r - 1
| 1.|//jobname JOB job parameters |
| 2.177 EXEC PROC=LKED, PARM=TEST

| 3.F

i

|

I

L

4.
5. :

Figure 6. Job Control Statements for Linkage Editing

1. This statement provides general job control information.

2. This statement refers to a cataloged procedure named LKED, which
defines a single job step that is also named LKED. The PARM
parameter specifies the option TEST, which causes symbol tables and
object module control dictionaries to be included in the load
module. Additional options that can be specified are:

SCTR or OVLY
DC

LIST

XREF or MAP
NCAL

LET or XCAL

Of these, LIST and XREF (which includes MAP) are diagnostic options,
and NCAL and LET (which includes XCAL) are special processing
options that are useful in testing a program.

Because the TEST option must be specified, the NE and REUS or RENT
options cannot be specified. The load module is therefore editable
and not reusable.

3. This statement is optional. If present, it saves the load module as
a member of a new cataloged partitioned data set (library). The

36

data set may be new or may already exist; if it exists, the load
module replaces any other member of the data set that has the same
member name. If the data set has already been cataloged, the DISP
parameter should be omitted. :

The load module can be referred to by its member name for subsequent
execution as a program or for reprocessing by +the 1linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this c¢ontrol section would therefore not be
printed in the proper symbolic format.

Statement 3 overrides the DSNAME and DISP parameters of the
following statement in the procedure LKED:

//SYSLMOD DD DSNAME=§GOSET (GO),SPACE=(1024, (50,20,1)),
// UNIT=SYSDA, DISP=(MOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements define the input to the linkage editor. Statement
4 defines the primary input, which is a data set containing one or
more object modules, or linkage editor control statements, or both.

Statement 5 is optional. If present, it defines either an included
data set or an automatic call 1library. It can be repeated as
necessary to define any number of input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

EXECUTION

Figure 7 defines a job that executes a program for testing by the

TESTRAN interpreter. The stateme¢nts in the figure are numbered, and are
explained in the correspondingly numbered paragraphs below. The shaded
statements are optional.

r
|
|
|
|
|
|
]
|
L

1

EXEC PGM=member

L ey

Figure 7. Job Control Statements for Execution

1.

2.

This statement provides general job control information.

This statement is optional. If present, it points to a private load
module 1library that is to be wused as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

Section 3: How to Write Job Control Statements 37

3. This statement refers to a load module that is a member of either

the system link library or the job library.

4. This statement saves the output of the TESTRAN interpreter as a
cataloged data set. This data set can subsequently be referred to

by name for processing by the TESTRAN editor.

5. This statement is optional. If present, it defines a data set to

contain an abnormal termination dump.

6. This statement is optional. If present, it defines a data set that
is used by the problem program. It can be repeated as necessary to

define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a primary control program or with
MFT, only one data set can appear in the input stream, and it must

be defined by the last DD statement for the job step.

TESTRAN EDITING

Figure 8 defines a job that executes the TESTRAN editor.
statements in the figure are numbered, and are explained in
correspondingly numbered paragraphs below.

The
the

== —_— — —

r
1.|//jobname JOB job parameters
2.177 EXEC PROC=TTED

|

| 3.|//EDIT.SYSTEST DD DSNAME=dsname, UNIT=SYSSQ, SEP=SYSUT1,DiIsP=(OLD)
| L

L

Figure 8. Job Control Statements for TESTRAN Editing

1. This statement provides general job contrcl information.

2. This statement refers to a cataloged procedure named TTED, which

defines a single job step named EDIT.

TESTRAN Editor Options: Three options can be specified by a PARM

parameter written as:

PARM=[*][Tal...[PDb]

increases the speed of TESTRAN editing by a factor of four.
the same time, it increases main storage requirements from

At
18K

bytes to 50K bytes. If present, it must occupy the first

position in the parameter.

Ta

identifies a class of test information that is to be edited.
The value a is either an unsigned decimal integer from 1 to 8,
a blank, or the letter A. If an integer, it 1is a class
identification number specified by a SELECT keyword operand in

one or more TEST OPEN, TEST AT, DUMP or TRACE statements.

If a

blank, it indicates that all unclassified data is to be edited.
If the letter A, it indicates that all data is to be edited,

regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired information for processing during a single
execution of the TESTRAN editor. Note that if a class of

38

information is not seiected, and has not previously been
edited, the input TESTRAN dJdata set should be saved to allow
later editing of this information.

If the subfield Ta is omitted, all information is printed as if
TA were specified

Pb
specifies the maximum number of pages to be printed. The value
b is an unsigned decimal integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb is omitted, the maximum count is as
specified in the first TEST OPEN statement executed under the
task (job step) that created the data set. 1If this TEST OPEN
statement did not specify a maximum, the installation maximum
is assumed.

This statement defines the input TESTRAN data set, which contains
the test information to be edited. If all of the information is to
be edited (rather than just selected classes), the disposition
should be changed to DISP=(OLD,DELETE).

ASSEMBLY AND LINKAGE EDITING

Figure 9 defines a job that exécutes the E-level assembler program and

the

largest 1linkage editor program available at the installation. The

statements in the figure are numbered, and are explained in the
correspondingly numbered paragraphs below. The shaded statements are
optional.

[e o s e e . . . e

2.
3.
4.
5.
6.
7.
8.

r 1
1.|// jobname JOB job parameters |

Figure 9. Job Control Statements for Assembly and Linkage Editing

1.

2.

This statement provides general job control information.

This statement refers to a cataloged procedure named TASME, which
defines two job steps: ASM and LKED.

Assembler Options: The follbwing assembler options are specified or

implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables to be included in
the object module. The LOAD option indicates that the object module
is to be stored on an external storage device. The last three
options are standard default options; of these, LIST and XREF are
diagnostic options useful in program testing.

Section 3: How to Write Job Control Statements 39

40

The default options can be overridden by writing:
PARM.ASM=(TEST,LOAD,overriding options)
where the overriding options are any of the following:
NOLIST
NOXREF
LINECNT=nn
where nn is an unsigned decimal integer from 1 to 99. Any default

option not overridden remains in effect. The TEST and LOAD options,
because they are not default options, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is required to cause the symbol tables and object
module control dictionaries to be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are useful in program testing.

These options can be respecified by writing:
PARM. LKED=(TEST, respecified options)
where the respecified options are any of the following:

SCTR or OVLY
DC

LIST

XREF or MAP
NCAL

LET or XCAL

Each of the original options (TEST, LIST, XREF, NCAL, and LET) is
overridden if it is not respecified. Because TEST must be respeci-
fied, the REUS, RENT, and NE options cannot be specified.

This statement is optional, but, if it is written, statement 5 must
also be written. The two statements together save the object module
produced by the assembler as a cataloged data set in direct-access
storage. This data set can later be referred to by name as primary
or additional input to the linkage editor.

Statements 3 and 5 override the DSNAME and DISP parameters of the
following statements in the procedure TASME:

//SYSPUNCH DD DSNAME=§LOADSET,UNIT=SYSDA,
/7 SPACE=(80, (200,50)) ,DISP=(MOD,PASS)
//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 3 and 5 are present, statement 4 must appear between
them in the sequence.

4. This statement defines the data set that contains the source program
to be assembled. This data set can appear in the input stream.

5. Refer to paragraph 3 above.

6. This statement is optional. If present, it saves the load module as
a member of a cataloged partitioned data set (library). The data
set may be new or may already exist; if it exists, the load module
replaces any other member of the data set that has the same member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be referred to by its member name for later
execution as a program or :for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 6 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASME:

//SYSLMOD DD DSNAME=§GOSET(GO), SPACE=(1024, (50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, they cause the 1load@ module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

7.1 These statements are optional. If present, they define input to
the linkage editor.

Statement 7 defines a data set to be concatenated with the primary
input to the 1linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 5 above.)

Statement 8 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

ASSEMBLY, LINKAGE EDITING, AND EXECUTION

Figure 10 defines a job that executes the E-level assembler program,
the largest linkage editor program available at the installation, and the
load module produced by the linkadge editor. The statements in the figure
are numbered, and are explained in correspondingly numbered paragraphs
below. The shaded statements are optional.

Section 3: How to Write Job Control Statements 41

Figure 10. Job Control Statements for Assembly, Linkage Editing, and

42

Execution
This statement provides general job control information.

This statement is optional. If present, it points to a private load
module 1library that is to be wused as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

This statement refers to a cataloged procedure TASMEG that defines
three job steps: ASM, LKED, and GO.

Assembler Options: The following assembler options are specified or
implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard line count

the object module.
is to be stored on an external ‘storage dev;ce{
options are standard -default ‘options; . of these,
diagnostic optlons useful in’ program testlng.ﬂ

The default optlons can. be overr1dden by wrltlng.
PARM.ASM=(TEST, LOAD,overxriding optlons)
where the overriding options are any of the following:
NOLIST
NOXREF
LINECNT=nn
where nn is an unsigned decimal integer from 1 to 99. Any default

option not overridden remains in effect. The TEST and LOAD options,
because they are not default options, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

6.

7‘

The TEST option is required to cause the symbol tables and object
module control dictionaries to be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are useful in program testing.

These options can be specified by writing:
PARM.LKED=(TEST,respecified options)
where the respecified options are any of the following:

SCTR or OVLY
DC

LIST

XREF or MAP

NCAL

LET or XCAL

Any of the original options (TEST, LIST, XREF, NCAL, and LET) that
is not respecified is overridden. Because the TEST option must be
respecified, the REUS, RENT, and NE options cannot be specified.

Problem Program Information: Information can be passed to the
problem program by writing:

PARM.GO=(XXXae4.)
where xxx... is the information.

This statement is optional, but, if it is written, statement 6 must
also be written. The two statements together save the object module
produced by the assembler gs a cataloged data set in direct-access
storage. This data set can later be referred to by name as primary
or additional input to the linkage editor.

Statements U4 and 6 override the DSNAME and DISP parameters of the
following statements in the procedure TASMEG:

//SYSPUNCH DD DSNAME=§LOADSET,UNIT=SYSDA,
7/ SPACE=(80, (200,50)) ,DISP= (MOD, PASS)
//SYSLIN DD DSNAME=§LOADSET,DISP=(OLD)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 4 and 6 are present, statement 5 must appear between
them in the sequence.

This statement defines a data set that contains the source program
to be assembled. This data set can appear in the input stream.

Refer to paragraph 4 above.

This statement is optional. .If present, it saves the load module as
a member of a cataloged partitioned data set (library). The data
set. may be new or may already exist; if it exists, the load module
replaces any other member of the data set that has the same member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be referred to by its member name for later
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with

Section 3: Kow to Write Job Control Statements 43

10.

11.

12.

another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 7 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEG:

//SYSLMOD DD DSNAME=&GOSET(GO), SPACE=(1024, (50,20,1)),
7/ UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements are optional. If present, they define input to
the linkage editor.

Statement 8 defines a data set to be concatenated with the primary
input to the linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 6 above.)

Statement 9 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

This statement saves the output of the TESTRAN interpreter as a
cataloged data set. This data set can later be referred to by name
for processing by the TESTRAN editor.

This statement is optional. If present, it defines a data set to
contain an abnormal termination dump.

This statement is optional. If present, it defines a data set that
is used by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a primary control program or with
MFT, only one data set can appear in the input stream, and it must
be defined by the last DD statement for the step GO.

ASSEMBLY, LINKAGE EDITING, EXECUTION, AND TESTRAN EDITING

Figure 11 defines a job that executes the E-level assembler program,

the largest linkage editor available at the installation, the load module
produced by the linkage editor, and the TESTRAN editor. The statements
in the figure are numbered, and are explained in the correspondingly
numbered paragraphs below. The shaded statements are optional.

4y

1
1.|//jobname JOB jo0b parameters

10.

—— —— s e . e i S . T e S S S .t o ey
[o2]
.

Note: This sequence produces a load module and executes it as a job step. If the job|
|step terminates normally, the output of the TESTRAN interpreter is processed by the|
| TESTRAN editor; if the job step terminates$ abnormally, no editing is performed. |

|
|To ensure execution of the TESTRAN editor, the job can be divided into two jobs byl
Jusing the sequences described in "Assembly, Linkage Editing, and "Execution" and|
| "TESTRAN Editing." The output of the TESTRAN interpreter is then edited even if the|
| job step that produces the output terminates abnormally. |
L

——— 4

Figure 11. Job Control Statements for Assembly, Linkage Editing, Execu-
tion, and TESTRAN Editing

1. This statement provides general job control information.

2. This statement jis optional. .If present, it points to a private load
module library that is t¢ be wused as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a cataloged procedure TASMEGED that defines
four job steps: ASM, LKED, GO, and EDIT.

Assembler Options: The following assembler options are specified or
implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables tc be included in
the object module. The LOAD option indicates that the object module
is to be stored on an external storage device. The last three
options are standard default options; of these, LIST and XREF are
diagnostic options useful in program testing.

The default options can be overridden by writing:
PARM. ASM=(TEST,LOAD,overriding options)
where the overriding options are any of the following:
NOLIST
NOXREF
LINECNT=nn
where nn 1is an unsigned decimal integer from 1 to 99. Any default

option not overridden remains in effect. The TEST and LOAD options,
because they are not default options, must be explicitly specified.

Section 3: How to Write Job Control Statements 45

4e

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

Of these, TEST is required to cause the symbol tables and object

module control dictionaries to be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are useful in program testing.

These options can be respecified by writing:
PARM. LKED=(TEST, respecified options)
where the respecified options are any of the following:

SCTR or OVLY
DC

LIST

XREF or MAP

NCAL

LET or XCAL

Any of the original options (TEST, LIST, XREF, NCAL, and LET) that
is not respecified is overridden. Because the TEST option must be
respecified, the REUS, RENT, and NE options cannot be specified.

Problem Program Information: Information can be passed to the
problem program by writing:

PARM. GO=(XXXee.)
where xxX... is the information.

TESTRAN Editor Options: Two options can be specified by a PARM
parameter written as:

PARM.EDIT=[*]([Tal...[Pb]

increases the speed of TESTRAN editing by a factor of four. At
the same time, it increases main storage requirements from 18K
bytes to 50K bytes. If present, it must ogcupy the first
position in the parameter.

Ta

identifies a class of test information that is to be edited.
The value a is either an unsigned decimal integer from 1 to 8,
a blank, or the letter A. If an integer, it 1is a class
identification number specified by a SELECT keyword operand in
one or more TEST OPEN, TEST AT, DUMP or TRACE statements. If a
blank, it indicates that all unclassified data is to be edited.
If the letter A, it indicates that all data is to be edited,
regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired information for processing during a single
execution of the TESTRAN editor. Note that if a class of
information is not selected, and has not previously been
edited, the input TESTRAN data set should be saved to allow
later editing of this information.

If the subfield Ta is omitted, all information is printed as if
TA were specified.

Pb
specifies the maximum number of pages to be printed. The value
b is an unsigned decimal' integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb is omitted, +the maximum count is as
specified in the first: TEST OPEN statement executed under the
task (job step) that created the data set. If this TEST OPEN
statement did not specify a maximum, the installation maximum
is assumed.

This statement is optional, but, if it is written, statement 6 must
also be written. The two statements together save the object module
produced by the assembler as a cataloged data set in direct-access
storage. This data set can later be referred to by name as primary
or additional input to the linkage editor.

Statements 4 and 6 override the DSNAME and DISP parameters of the
following statements in the procedure TASMEGED:

//SYSPUNCH DD DSNAME=ELOADSET,UNIT=SYSDA,
7/ SPACE=(80, (200,50)) ,DISP=(MOD,PASS)
//5YSLIN DD DSNAME=§LOADSET,DISP=(OLD)

If these parameters are not overrxridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 4 and 6 are present, statement 5 must appear between
them in the sequence.

This statement defines a data set that contains the source program
to be assembled. This data set can appear in the input stream.

Refer to paragraph 4 above.

This statement is optional. If present, it saves the loaa module as
a member of a cataloged partitioned data set (library). The data
set may be new or may already exist; if it exists, the load module
replaces any other member of the data set that has the same member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be referred to by its menber name for later
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section woula therefore not be
printed in the proper symbolic format.

Statement 7 overrides the. DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSLMOD DD DSNAME=§GOSET(GO),SPACE=(1024, (50,20,1)),
/7 UNIT=SYSDA,DISP=(MOD,PASS)

Section 3: How to Write Job Control Statements u7

10.

11.

12.

13.

48

If these parameters are not overridden, they cause the 1load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements are optional. If present, they define input to
the linkage editor.

Statement 8 defines a data set to be concatenated with the primary
input to the 1linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 6 above.)

Statement 9 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organizeda data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

This statement is optional. If present, it saves the output of the
TESTRAN interpreter as a cataloged data set. This data set can be
referred to by name for later processing by the TESTRAN editor.

Statement 10 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSTEST DD DSNAME=§TESTSET,SPACE=(300,(100)),
/7 UNIT=SYSSQ,DISP=(NEW,PASS)

If these parameters are not overridden, they define a temporary data
set that is deleted at the end of the job.

This statement 1is optional. If present, it defines a data set to
contain an abnormal termination dump.

This statement is optional. If present, it defines a data set that
is wused by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a primary control program or with
MFT, only one data set can appear in the input stream, and it must
be defined by the last DD statement for the step GO.

This statement is optional. If present, it points to a data set
defined by statement 10. The data set contains the test information
to be edited under the procedure TASMEGED.

If all information is to be edited (rather than just selected
classes), the disposition should be changed to DISP=(OLD,DELETE).

Statement 13 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSTEST DD DSNAME=ETESTSET,UNIT=(SYSSQ,SEP=(SYSUT1)),
/77 DISP=(OLD,DELETE)

If these parameters are not overridden, they refer to a temporary
data set defined by the previous step of the procedure. This data
set is deleted at the end of the job.

SECTION 4: HOW_TO INTERPRET SYSTEM OUTPUT

Every TESTRAN job produces system output that includes listings of job
control statements and of certain data sets. The control statements
include both those in the input stream and those in cataloged procedures
that are invoked in the input stream. The data sets are those to which
the job control statements assign a SYSOUT disposition.

Typical system output data sets are abnormal termination dumps and the
listings produced by the assembler, the linkage editor, and the TESTRAN
editor. This section describes only the last listing; the others are
described in the publications:

IBM System/360 Operating System: Messages, Completion Codes and
Storage Dumps

IBM System/360 Operating System: Assembler (E) Programmer's Guide

IBM System/360 Operating System: Linkage Editor

Interpreting a TESTRAN Listing: Test information is printed on the
system output device in a c¢olumn 120 characters wide. Each page includes
a standard page heading and an average of 55 1lines of information
produced by one or more TESTRAN statements. The general format of a page
is shown by the sample page in Figure 12.

The circled numbers in Figure 12 distinguish five basic formats for
individual lines of print. These are as follows:

1. ...TESTRAN QUTPUT... heads each page.

2. AT LOCATION... indicates entry to the TESTRAN interpreter at a test
point.

3. ...MACRO ID... indicates one of the following:

¢ Execution of a DUMP, TRACE, TEST OPEN, or TEST CLOSE statement.
e Output resulting from an executed TRACE statement,
e Detection of an error following execution of a statement.

4., EXECUTED STATEMENTS,... traces execution of GO, SET, TEST ON, and
TEST WHEN statements.

5. *%* TEGE... indicates a diagnostic message from the TESTRAN
editor.

Each of these formats 1is described in detail in the remainder of this
section.

The printing formats for specific types of data are shown in Table 1.
The letters used to represent printing formats in the table are used with
the same meanings throughout the remainder of this section. In addition,
the 1letter y is used to designate a printed character for which the data
type is variable.

Section 4: How to Interpret System Output 49

®
®

@O PO @60 ©@ ©O6

®

JoBl TESTRAN OUTPUT DATE 10/164 TIME 10704 PAGE

1) MACRO ID 000, TEST OPEN s TESTRAN CONTROL SECTION = BEGIN + IDENTIFICATION JOB1

AT LOCATION (SYMALTER) 0000EC Ol00EC ENTER BEGIN

EXECUTED STATEMENTS, BEGIN 003

2) MACRO ID 005, DUMP DATA STARTING IN SECTION SYMALTER
0154 INAREA
010154 COMEBACK MVC WRITAREA(88) JENTER CLEAR BUFFER FOR NEXT CARD 0003

4) MACRO ID 006, DUMP PANEL
G'04' 00010154 G*08* 000100FC)
PSW 00 0 1 0002 0 O 0100BC CC=0 FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF

EXECUTED STATEMENTS, BEGIN 007, 008

1) MACRO [D Ol4, DUMP DATA STARTING IN SECTION SYMALTER
0OF8 ERRFLAG STARTIN STARTO
0100F8 -

AT LOCATION RETURNL (SYMALTER) OQOODA 0100DA ENTER BEGIN

EXECUTED STATEMENTS, BEGIN 010

3) MACROD 1D Ol2, DUMP DATA STARTING IN SECTION SYMALTER

0OFC OUTAREA
O0100FC COMEBACK MVC WRITAREA(B8) ENTER CLEAR BUFFER FOR NEXT CARD 0003
EXECUTED STATEMENTS, BEGIN 013

1) MACRO ID 014, DUMP DATA STARTING IN SECTION SYMALTER
00F8 ERRFLAG STARTIN STARTOD
0100F8 L 1

##s [EGEO7 END OF TESTRAN EDIT--0000005 STATEMENTS PROCESSED

Figure 12. TESTRAN Editor Listing: Sample Page

50

SIGNIFICANCE OFF

Table 1. Printing Formats for Data Types

e —— . Sy S ——)

---------- —_—— : « ——————q
[Assumed Length { |
|in Bytes |Printing Format |

Data Type | (1) | (2) |
oo T 1

Character | 1 lc |

(3) I | |
e - $-—- -- -4
|Hexadecimal | 1 | xx |

t 4 R {

|Binary | 1 | bbbbbbbb |

’ e e 1

| Fixed-point (half-word) | 2 | sdéddd |

| [| () |

—mmmmem ¥ R B 1

| Fixed-point (full-word) | 4y | sdddddddddd |

I | | (4) |

e T T - o 1

|Short floating-point | 4 | s0.dddddddd Esdd |

- b R S S

| Long floating-point | 8 | s0.dddddddddddadddd Esdd |

-4 ¥ oo 1
| Packed decimal] 1 |sd |

O P $ P 1

| Zoned decimal i 1 | sd |

pommmm e oo 4 1 e

| Address i | |

|) | | I

- —rmmm g e o 1

| Instruction: 1 | |

RR format [2	ccce xx	
RS, RX, and SI formats	4	ccce xx x XXX
SsS format	6 Jccecec xx X XXX X XXX	

L s —— 4 e J

Notes to Table 1

1.

The lengths assumed in definitions of printing formats are the
assembler implied lengths for the corresponding data types. (Refer
to Appendix A, Table 5.)

The letters shown in definitions of printing formats have the
following meanings: '

is one EBCDIC character.

is one hexadecimal digit.

is one binary digit.

is an algebraic sign (+ or -).

is one decimal digit.

is' a high order zero.

means ‘'exponent'; the succeeding signed pair of digits is the
exponent of the floating-point number.

ccec is a machine mnemonic operation code.

Hoono X O

Unprintable characters (other than blanks) are printed as two
hexadecimal digits, the second of which appears on a separate line
immediately below the first. For example, the hexadecimal data
C1D3D7C8C103CHC1E3CL
when edited into character format, is printed as
ALPHAODATA
3

Section 4: How to Interpret System Output 51

4, This format includes a decimal point that is positioned according to
the scale factor associated with the data.

5. All addresses are printed in their source language formats.

PAGE HEADING (...TESTRAN OUTPUT...)

The following heading is printed at the top of each page:

1
ccececcece TESTRAN OUTPUT DATE dd/ddd TIME dd/dd PAGE dddd I
4

ccecccce
is the output identification specified as the third positional
operand of the first-executed TEST OPEN statement.

DATE ddrsddd
is the current date (year/day).

TIME ddrsdd
is the time (hour/minute) at which editing was begun.

PAGE dddd
is the output page number.

TEST POINT IDENTIFICATION (AT LOCATION...)

The following line indicates entry to the TESTRAN interpreter at a
test point:

AT LOCATION ccccccec (coccceccec) XXXXXX XXXxxx ENTER ccccccec

fm e e ey
b v e aued

AT LOCATION cccccccc(cececceecl) XXXXXX XXXXXX
identifies the test point. The field cccccccclccccecee) identifies
the test point by name (if any), and by name (if any) of the control
section that contains the test point. The fields XXXXXX XXXXXX are
the assembled and loaded addresses of the test point.

ENTER ccccccee
identifies the TESTRAN control section in which the test point was
specified. (The control section is defined by an identically named
TEST OPEN statement, as indicated in the assembly listing by message
number IEGMO4.)

Note: The SELECT operand does not affect printing of the AT LOCATION

line. This line is omitted, however, if it is not followed by the output
of a DUMP or TRACE statement, or by an error message.

STATEMENT OUTPUT (...MACRO ID...)

Statement output is all output that is identified by “MACRO ID". It
includes TEST OPEN, TEST CLOSE, DUMP and TRACE statement output, and
error messages issued by the TESTRAN interpreter. Specific types of
statement output are described below.

52

DUMP CHANGES OUTPUT

DUMP CHANGES output is a change dump of main storage whose format is
the same as that described below under "DUMP DATA Output."

DUMP COMMENT OUTPUT

The following lines are a dump of a programmer-written comment.

- ——————— e ———— ———— e 1

d) MACRO ID ddd, DUMP COMMENT I
ccecec. . .

[c— ——

d)
is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP COMMENT
identifies the statement responsible for the dump. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGMO09).

CCCCC. ..
is the dumped comment, which has a maximum length of 120 characters.

DUMP DATA OUTPUT

The following lines are a dump of main storage:

S —— _— e .
I d) MACRO ID d4dd, DUMP -DATA STARTING IN SECTION cccccece I
I XXXX ccceecccece ccececeee cececeeece l
I XXXXXX YYYYYYYYYYYYYero YYYYYYYYYYYVYereo YYYYYYYYYYYYYe:or | |
L ——— ‘ - _— - -1
a)

is the class nuwber assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP CHANGES
identifies the statement responsible for the Adump. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGMO09).

STARTING IN SECTION cccccecce
identifies the control section that contains the dumped data.

XXXX
KXXXXX
are the assembled and loaded addresses of a dumped field. The field
is the first field printed to the right of these addresses.

ceccccece
YYYYYYYYYYYYY -~ B
are the symbolic name (if any) and contents of a dumped field. The
name and format of the field are as defined in the problem program,
or as specified by NAME and DATAM operands.

Section 4: How to Interpret System Qutput 53

Note: The number of named fields per line varies from one to eleven due
to differences in length; the starting positions are a minimum of nine
printing positions apart.. Fields too 1long for the current line are
started on a new line.

In a dump of an instruction sequence, an instruction may be printed
with the instruction SVC 26 immediately beneath it. If so, the
instruction is located at a test point; the SVC instruction is the means
by which the test point gives control to the TESTRAN interpreter. The
SVC instruction replaced the original instruction when the test point was
established; the original instruction was saved for execution on return
of control to the test point.

DUMP MAP OUTPUT
The following lines are a map of control sections and allocated

storage areas associated with a task that is active when a DUMP MAP
statement is executed.

[T e - 1
| d) MACRO ID ddd, DUMP MAP |
| NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH-DEC HEX I
I cceceeccce LOADFD PROGRAM cececcecee KXKXEX KXXXXX dddad XXX '
| ORTAINED STORAGFE XXXXKX dddd XXX |
e e e e e e e ————————— e — 4

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP MAP
jdentifies the statement responsible for the qump. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGMO09).

NAME
is a column heading. The column identifies each program (load
module) associated with the active task (job step). Each program is
represented by one line of print for each of its control sections.
In a given line, the name ccccccce of a program is printed only if
different from the name that applies to the previous 1line.

TYPE
is a column heading. The column indicates the type of storage area
that is represented. LOADED PROGRAM indicates a control section for
which storage was reserved during assembly. OBTAINED STORAGE
indicates an allocated storage area.

CSECT NAME
is a column heading. The column identifies each control section of
each program associated with the active task (job step).

ASSEMBLED AT
is a column heading. The column contains the assembled address of
each control section named in the dump.

LOADED AT
is a column heading. The column contains the loaded address of each
control section named in the dump. It also contains the address of
each allocated storage area.

LENGTH-DEC HEX
is a double column heading. The double column defines the decimal
and hexadecimal length of each control section and allocated storage
area.

54

Note: Some of the areas included in the dump will be areas allocated for
use by the operating system.

DUMP PANEL OUTPUT

The following 1lines are a dump of registers and the program status
word.

r- - - -

' d) MACRO ID ddd, DUMP PANEL I
G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx 6'dd' xxxxxxxx G'dd' xAXXXXXXX G'dd' XXXXXXxXx G'dd' XXXXXXXX G'dd' XXXXXXXX .
G'dd' xxxxxxxx G'dd’ xxxxxxxX G'dd' xxXxXxxkx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' XXXXXXXX G'dd' XXXXXXXX
PSW XX X X XXXX X X XXXxxXx CC=d FIX POINT OVERFLOW ccc DEC OVERFLOW ccc EXP UNDERFLOW ccc SIGNIFICANCE ccc

| F'dd' XXXXXXXX XXXXXXXX F'dd' xxxxxxxx XKxxXxXX F'dd' xXXXXXxX XXXxXXxX F'dd' XXXXXXXX XXKKXXXX

|
L _— _— _— - S |

d)
is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP PANEL
identifies the statement responsible for the dump. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

G'dd" XXXXXXXX
is the number (dd) and contents (xxxxxxxx) of a dumped general
register. The contents of the register are either in hexadecimal
format as shown, or in some other format as specified by a DATAM
operand.

PSW XX X XXXX X X XXXXXX
is the program status word (PSW) stored on interruption of the
problem program at the current test point.

cc=d
specifies the value of the condition code (bits 34 and 35 of the
program status word).

FIX POINT OVERFLOW ccc
specifies the status of the flxed-p01nt overflow mask (bit 36 of the
program status word). The status ccc is either ON or OFF.

DEC OVERFLOW ccc
specifies the status of the decimal overflow mask (bit 37 of the
program status word). The status ccc is either ON or OFF.

EXP UNDERFLOW ccc ‘
specifies the status of the exponent underflow mask (bit 38 of the
program status word). The status ccc is either ON or OFF.

SIGNIFICANCE ccc
specifies the status of the significance mask (bit 39 of the program
status word). The status ccc is either ON or OFF.

F'dd' XXXXXXXX XXXXKXXX
is the number (dd) and contents (xxxxxxxx xxxxxxxx) of a dumped
floating-point register. The contents of the register are either in
hexadecimal format as shown, or in some other format as specified by
a DATAM operand.

Section 4: How to Interpret System Output 55

DUMP TABLE OUTPUT

The following lines are a dump of a system table (control block).

r - ——— e 1
l d) MACRO ID ddd, DUMP TABLE cccc ccccccc BLOCK LOADED AT €ccccece (CCCCCCCC) XXXXXX XXXXXX l
| SECTION FIELD NAME CONTENTS |
I ccecceee |
I ccecececee eee '
L _ SO lebh e e e e e e e 3

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP TABLE
identifies the statement responsiple for the dump. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

ccce ccceccce BLOCK
identifies the dumped table as a task control block, data control
block, or data extent block.

LOADED AT cccccccecc(cececceCel) XXXXXX XXXXXX

specifies the 1location of a task control block or data control
block. The field ccccceccl(ccccecce) specifies the name (if any) of
a data control Dblock and the name (if any) of the control section
that contains the data control block. A single field xxxxxx
specifies the address of a task control block; two fields xxxxxx
xxxxxX specify both the assembled and loaded addresses of a data
control block.

SECTION
is a column heading. The column identifies major sections of the
table.

FIELD NAME
is a column heading. The column identifies fields within major
sections of the table.

CONTENTS
is a column heading. The column defines the contents of each field.

ERROR MESSAGE

The following lines indicate detection of an error during execution of
a TESTRAN statement.

1
* d) MACRO ID ddd, ERROR |
**%* JEGIdd ccccCe.s '

= e e 2

______ - —_— -_— [N SES—

d)
is a class number assigned by a SELECT operand.

MACRO ID ddd, ERROR
identifies the statement that caused or detected the error. The
identification number ddd is assigned by the assembler and appears
with the statement in the assembly listing (message number IEGMO09).

56

***¥ TEGIdd ccccc...
is an error message issued by the TESTRAN interpreter. The text of
the message (ccccc...) is preceded by a standard system message
code (IEGIAd). For an explanation of the message, refer to Appendix
C, where all messages issued by the interpreter are listed in order
by message code.

TEST CLOSE OUTPUT

The following lines indicate the execution of a TEST CLOSE statement.

d) MACRO ID ddd, TEST CLOSE
CCCCCCCC (CCCCCCCC) XXXXXX XXXXXX oo

= o e e o
e e e e d

da)
is the class number specified by the SELECT operand (if any) of a
TEST OPEN statement.

MACRO 1D ddd, TEST CLOSE
identifies the TEST CLOSE statement. The identification number ddad
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGMO09).

cccccecc (Ccececeecet) XXXXXX XXXXXX

identifies a TESTRAN control section closed by the TEST CLOSE
statement. The field ccccceec(cecececee) contains a symbol generated
during assembly and the name of the TESTRAN control section. The
fields =xxxxXxx Xxxxxx are the assembled and loaded addresses of the
control section. (The control section is defined by an identically
named TEST OPEN statement, as indicated in the assembly listing by
message number IEGMOU4.)

Note: The SELECT operand does not affect the printing of these lines of
information.

TEST OPEN OUTPUT

The following lines indicate the execution of a TEST OPEN statement.

r————-- === T T T T T T T T T T T T T T T T T T T 1
= d) MACRO ID ddd, TEST OPEN , TESTRAN CONTROL SECTION = cccccecc, IDENTIFICATION cccccece I
| MAXIMUM NUMBER OF PAGES ddd, MAXIMUM NUMBER OF STATEMENTS ddd |
L —_—— ——— —————— e e o e e e e]

is the class number specified by the SELECT operand (if any) of the
TEST OPEN statement.

MACRO ID ddd, TEST OPEN » TESTRAN CONTROL SECTION = ccccccece

identifies the TEST OPEN statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGM09). The name of the TESTRAN
control section (ccccccec) 1is also the name of the TEST OPEN
statement. (The control section is defined by the TEST OPEN
statement, as indicated in the assembly listing by message number
IEGMO4.)

Section 4: How to Interpret System Output 57

IDENTIFICATION cccccccece
specifies the output identification as provided by the third
positional operand of the TEST OPEN statement.

MAXIMUM NUMBER OF PAGES ddd
specifies the maximum number of pages produced.

MAXIMUM NUMBER OF STATEMENTS ddd
specifies the maximum number of executed TESTRAN statements.

Note: The SELECT'operand does not affect the printing of these lines of
information.

TRACE CALL OUTPUT

The following groups of lines indicate the execution of a TRACE CALL
statement and the later execution of a CALL macro-instruction.

TTTTT T T B |

d) MACRO ID ddd, TRACE CALL , cccecccec, FROM cecccoccc{cecceccece) XXXXXX XXXXXX TO ccccocec (CCCCCCCC) XXXXXX XXXXXX I
STARTED
CCCCCuu l

_ ————————— i

d) MACRO ID ddd, TRACE CALL , cccceccc, TO CCCCCCCC (CCCCCCCC) XXXXXX XXXXXX AT ccocceeee (CCECCeCl) XXXXXX XXXXXX I
G'dd' XXXXXXXX +.. I
G'dd" XXXXXXXX <.

cecec. .. I

7 = e e g e e =

n.
[0
o

is the class number assigned to the trace by a SELECT operand.

MACRO ID - ddd, TRACE CALL , cccccece,

identifies the statement responsible for the trace. The identifi-
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly 1listing (message number IEGM09). The
field cccceccce is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGMO04.)

FROM cccccccclceccececee) XXXXXX XxxXxxx TO cccccccc(cceccececeC) XXXXXX XXXXXX
defines the trace area. FROM ccccccecclccceccece) specifies the name
(if any) of the leftmost byte of the area and the name (if any) of
the control section to which it belongs. TO cccccccc(ceeccece)
gives the same information for the rightmost byte plus one. The
fields xxXxxXXX XXXXxXx are the corresponding assembled and loaded
addresses.

TO ccccccec{cccecececee) XXXXXX XXXXxx AT ccccccecc(CeccceCe) XXXXXX XXXXXX

identifies a called subroutine and the calling macro-instruction.
TO ccccccccl(cccceccee) specifies the name (if any) of the subroutine
entry point, and the name (if any) of the control section that
contains the entry point. FROM ccccceccclccececcecce) specifies the
name (if any) of the CALL macro-instruction and the name (if any) of
the control section that contains the CALL macro-instruction. The
fields xxxxXX XxxXXx are the corresponding assembled and loaded
addresses.

G'dd"' XXXXXXXX

gives the number (dd) and contents (xxxxxxxx) of a general register
used by the CALL macro-instruction.

58

CCCCCa..
is a comment specified by a COMMENT operand (if any) in the TRACE
CALL statement. The maximum length is 120 characters.

TRACE FLOW OUTPUT

The following groups of lines indicate the execution of a TRACE FLOW
statement and the later execution of a branch or SVC instruction.

e e e e i e i e e e e e S o {2 ———— o (] i S T S 2 o e | o e

d) MACRO ID ddd, TRACE FLOW , cccecccec, FROM cccccccc(ccccecce) xxxxxx xxxxxx TO cccceecce (CCocceoe) XXXXXX XXXXXX
STARTED
ccecc. ..

d) MACRO ID d&d, TRACE FLOW , ccccecccc, FROM ccccocec(ccececee) XXXXXX Xxxxxx TO ©Ccoecece (CCCCCCOC) XXXXXX XXXXxX, CC=d
cece XX X XXX G'dd' XXXXKXXX o4
ceeec. ..

- P— ——

[e g

d) MACRO ID ddd, TRACE FLOW , cccccccce, FROM cccectcc{Ceecceeae) XXXXXX XXXX¥x TO CCCCCCCC (CCCCCCCC) XXXXXX XXXXXK, CcC=4a
CCCC XX X XXX EXECUTED A9 CCCC XX X XXX BY EX xx X xxx FROM LOCATION ccccccec (CCCeCeCe) XXXXXX XXXXXX

| G'dd' XXXXXXXX ...
CCCCCa .

[o GEp G A — O S S— —

!
1
r
1
|
I
I
|
|
]
|
|
|
|
|
|
|
!
|
|
|
]
1
1
i
1
|
|
|
1
|
|
|

Qu
~

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE FLOW , cccccccc,

identifies the statement responsible for the trace. The identifi-
cation number ddd is assigned by the assembler and appears with the
statement in the assembly 1listing (message number IEGM09). The
field cccccecec is the name of the TESTRAN control section to which
the statement belongs. (The control section 1is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGMO4.)

FROM cccccccec (cececeee) XXXXXX XXxxxXx TO ccccccec(CceeCeel) XXXXXX XXXXXX
either (1) defines the trace area, or (2) identifies an executed
branch or SVC instruction and the branch destination:

1. FROM cccccceccl(cecccecece) specifies the name (if any) of the
leftmost byte of the trace area, and the name (if any) of the
control section to which it belongs. TO ccccceccccelcceccecec)
gives the same information for the rightmost byte plus one.
The fields xXXX%XX XXXXXX are the corresponding assembled and
loaded addresses.

2. FROM cccccccce(ccecccecee) specifies the name (if any) of an
executed Dbranch or SVC instruction, and the name (if any) of
the control gection that contains the instruction. TO
cccecccc (cecccecece) specifies the name (if any) of the branch
destination, and the name (if any) of the control section that
contains the destination. The fields =XxXxXXxXxxX XXXxXxXxx are the
corresponding assembled and loaded addresses.

cc=4
specifies the value of the condition code when the branch or SvVC
instruction is executed.

CCCC XX X XXX

is the branch or SVC instruction. (If an RR-type instruction, it is
printed as cccc xx.)

Section 4: How to Interpret System Output 59

EXECUTED AS CCCC XX X XXX BY EX XX X XXX

FROM

G'da‘

indicates execution of a branch or SVC instruction by an EX
instruction (EX xxX x xxx). The instruction as executed is cccc xx X
xxx (or cccc xx 1if it is an RR-type instruction). The effective
values of bits 8-15 are shown.

LOCATION cccccceccec{CccCCCCCl) XXXXXX XXXXXX

specifies the location of the EX instruction. The field
ccceccccel(ccccecccce) specifies the name (if any) of the EX instruction
and the name (if any) of the control section that contains the
instruction. The fields xxxxxx xXxxxxxx are the assembled and loaded
addresses of the EX instruction.

XXXXXXXX
gives the number (dd) and contents (xxxxxxxx) of a general register
used by a branch or EX instruction.

CCCCCe e

is a comment specified by a COMMENT operand (if ary) in the TRACE
FLOW statement. The maximum length is 120 characters.

TRACE REFER OUTPUT

The following groups of lines indicate the execution of a TRACE REFER
statement and the later execution of a reference to data.

______ —_— ———— e

d) MACRO ID ddd, TRACE REFER , ccccccecc, FROM cccceccce (Cececeece) XXXXXX XXXXXX TO CCCCCCCC (CCCCOCCC) XKXXXX XXXKXXX l
STARTED I
CCCCC, .o

o e o e o o e e

d) MACRO ID ddd, TRACE REFER , cccccccc, TO cccccece (CCCCCeeeC) XXXXXX XXXXxX FROM ceccccec (Ccccecel) XXXXXX XXXXXX l
CCCC XX X XXX X XXX G'dd' XAXXXXXX ... |
cccec. ..

BEFORE yyyyy... AFTER yyyyy..- I

d) MACRO ID ddd, TRACE REFER , ccccceccc, TO ccoccccc (CCCCoeee) XXXXXX XXXXXX FROM ©CCCCCCC (CCCCCCEC) XKXXXX XXXXXX l
CCCC XX X XXX X XXX EXECUTED AS cCCC XX X XXX X XXX BY EX XX X xxx FROM LOCATION cccccccc(CCCCCCCC) XXXXXX XXXXXX |
G'dd' XXXXXXXX ...

©CcCeC. .. ‘
BEFORE YYYYYeos AFTER YYYYY--- |

e e e e e o e e e e e e e e e e e e o e e e e 2 . . i e e e e 2 e . e e e . e e e e e e J

d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE REFER , cccccceccec,

FROM

60

identifies the statement responsible for the trace. The identifi-
cation number ddd is assigned by the assembler and appears with the
statement in the assembly 1listing (message number IEGM09). The
field ccccccec is the name of the TESTRAN control section to which
the statement belongs. (The controcl section is defined by an
identically named TEST OPEN statement, as indicated in the asserbly
listing by message number IEGMOL4L.)

cccceccec(cceceeceee) XXXXXX XXXXXX TO cccccecec(CCcCCCCel) XXXXXX XXXKXX
defines the trace area. FROM ccccccceclccceccece) specifies the name
(if any) of the leftmost byte of the area and the name (if any) of
the control section to which it belongs. TO cccccccc(cceccceccce)
gives the same information for the rightmost byte plus one. The
fields =xXXXXX XXXXXX are the corresponding assembled and loaded
addresses.

TO cccccecec(cececeeceel) XXXXXX XXXxXXx FROM cccccccec{(Ccecceeeer) XXXXXX XXXXXX
identifies a field to which a reference is made and the instruction
making the reference. TO cccccccclcccccecece) specifies the name (if
any) of the field and the name (if any) of the control section that
contains the field. FROM cccccccc(ccececce) specifies the name (if
any) of the instruction making the reference and the name (if any)
of the control section that contains the instruction. The fields
XXXXXX XXXXXX are the corresponding assembled and loaded addresses.

CCCC XX X XXX X XXX
is the instruction making the reference. (If an RS-, RX-, or
SI-type instruction, it is printed as cccc XX X XXX.)

EXECUTED AS CCCC XX X XXX X XXX BY EX XX X XXX
indicates that the instruction making the referénce is executed by
an EX instruction (EX xx x xxx). The instruction as executed is
CCCC XX X XxX X xxx (or cccc xx x xxx if it is an RS-, RX-, or
SI-type instruction). The effective values of bits 8-15 are shown.

FROM LOCATION cccccccc{ccceececct) XXXXXX XXXXXX
specifies the location of the EX instruction. The field
ccccecc(cccceccee) specifies the name (if any) of the control secticn
that contains the instruction. The fields xxXxXxXxX XXXXXX are the
assembled and loaded addresses of the EX instruction.

G'dd"' XXXXXXXX
gives the number (dd) and contents (xxxxxxxx) of a general register
used by the instruction making the reference, or by an EX instruc-
tion.

cccecC. ..
is a comment specified by a COMMENT operand (if any) in the TRACE
REFER statement. The maximum length is 120 characters.

BEFORE YYYYYe-«-
specifies the contents of the field before the reference.

AFTER YYYYYeoo
specifies the contents of the field after the reference.

TRACE STOP OUTPUT

The following line indicates execution of a TRACE STOP statement.

—_— —————— e ——— e —————— 1

r
} d) MACRO ID ddd, TRACE STOP ccocccee ddd, ddd, ..., cceccccec ddd, ddd, ... l
L

e e e e e e —— e e s o e o e 2 i e o i o e

d)
is the class number assigned by a SELECT operand.

MACRC ID ddd, TRACE STOP
identifies the TRACE STOP statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGM09).

cccceceee ddd, ddad, ...
identifies TRACE statements referred to by the TRACE STOP statement.
Each number ddd is the identification number of a TRACE statement in
a TESTRAN control section ccccccce. Each identification number is
assigned by the assembler and appears with a statement in the

Section 4: How to Interpret System Output 61

assembly listing (message number IEGMO09). Each TESTRAN control
section is defined Dby an identically mnamed TEST OPEN statement
(message number IEGMO4).

Note: If the TRACE STOP statement does not refer to other statements

by name, the word ALL is printed to indicate that all traces are
stopped.

TESTRAN STATEMENT TRACE (EXECUTED STATEMENTS...)

The following line traces execution of GO, SET, TEST ON, and TEST WHEN
statements.

EXECUTED STATEMENTS, ccccccce ddd, ddd, ..., ccccceec ddd, d4dd, ... |

o ——— oy

i —_— . o e e o e e s e s e e e e e e S e e e o B i . e e e e o S i J

ccccecccc ddd, ddd, ...
identifies the executed statements. Each number ddd is the iden-
tification number of a statement in a TESTRAN control section mnamed
CcCCcCcCCCCe. Each identification number is assigned by the assembler
and appears with a statement in the assembly listing (message number
IEGM09). Each TESTRAN control section is defined by an identically
named TEST OPEN statement (message number IEGMO4).

Note: This 1line is printed only if followed by the output of a DUMP or
TRACE statement, or by an errxor message. The number of statements
identified is 1limited +to 28: the first 27 statements that are executed
and the last statement that is executed before other output is generated.

TESTRAN EDITOR MESSAGE (*** IEGE...)

The following line is a diagnostic message issued by the TESTRAN
editor.

e e e e e it e e e e e e e e e et e e ———— e et e et e e e 4

XEGEdd
is a message code that identifies the nmnessage.

CCCCCaue

is the message text. For an explanation of the text, refer to
Appendix C, which lists all messages in order by message code.

62

APPENDIX A:

FORMAL DESCRIPTION OF TESTRAN STATEMENTS

This appendix formally describes the
function and format of TESTRAN statements.

CODING CONVENTIONS

TESTRAN statements are coded according
to the coding conventions for assembler
language macro-instructions. These conven-
tions are described in the publication IBM
System/360 Operating System: Assembler Lan-
guage. They should be familiar to the
reader who has experience in writing his
own macro-instructions or in using those
defined by the system for requesting super-
visor and data management services.

The coding of macro-instructions differs
in two ways from the coding of machine
instructions:

1. There is no 1limit +to the number of
continuation lines that can be used.

2. There is a wider variety of operands.

For the reader who has no experience

with macro-instructions, the following

brief description of the operand field may
be helpful.

The Operand Field: As in a machine
instruction, the operand field consists of
individual operands that are separated by
commas., The meaning of each operand either
is implied by its position in the field or
is expressed by a keyword that is part of
the operand itself. For example, the three
statements

DUMP DATA,CHANGES,DATAM=LE, SELECT=1
DUMP DATA,CHANGES,SELECT=1,DATAM=LS8
DUMP CHANGES, DATA, SELECT=1,DATAM=LS8

each contain two positional operands fol-
lowed by two keyword operandsi. Because the
position of a keyword operand is unimpor-
tant, the first two statements are func-
tionally equivalent; they are not equival-
ent +to the third statement, which: differs
in its first and second (positional) oper-
ands.

Some operands are optional: they can be
written or omitted as the programmer
chooses. 1If a positional operand is omit-
ted, it must be represented by a comma if

it precedes a positional operand that is

not omitted. In the statement

TEST ON,,,2,EVEN

Appendix A:

the second and third operands are omitted
and each is represented by a comma. An
omitted positional operand is not rep-
resented by a comma if it is not followed
by a positional operand that is actually
written. An omitted keyword operand is
never represented by a comma.

To allow the use of commas within an
operand, a positional operand or the right-
hand part of a keyword operand can some-
times be enclosed in parentheses. Within
the parentheses, commas separate individual
items of information, which together are
called a sublist. In the statements

T1 TRACE STOP, (TRACE#1,TRACE#2, TRACE#3)
D1 DUMP DATA, INPUT, INPUT+80,DSECT= (INPUT, 3)

the second (positional) operand of Tl is a
sublist of three items, and the DSECT
keyword operand in D1 contains a sublist of
two items. The number of items in a
sublist is variable; the programmer speci-
fies one or nore items as he chooses. If
only one item is specified, rno commas are
needed to separate items and the enclosing
parentheses can be omitted.

FUNCTIONS OF TESTRAN STATEMENTS

The following pages describe the func-
tions of TESTRAN statements and their oper-
ands. For convenience, the statements are
divided into four groups:

DUMP and TRACE statements.
TEST statements.

GO statements.

SET statements.

The description of each two

parts:

group has

¢ A 1list of the statements in the group
and the general function of each state-
ment.

e A list of the operands for +the state-
ments and the specific function of each
operand.

To wuse this part of the appendix, turn
to the last part, "Format of TESTRAN State-
ments," and fold out the last page to show
Tables 2-5. Table 2 defines the format of
TESTRAN statements using conventions that
are standard in the Systems Reference
Library. Tables 3-5 present: supplementary

Formal Description of TESTRAN Statements 63

information about the format of certain

operands.

To write a statement using this appen-
dix, first select a statement from the list

of statements for one of the groups. Refer
to the tables on the foldout page to learn
the format of the statement. Then refer to
the 1list of operands for a description of
each operand indicated in the tables.

DUMP AND TRACE STATEMENTS

The DUMP and TRACE statements record
information about the problem program.
Their basic functions are as follows:

DUMP DATA
dumps a storage area.
DUMP CHANGES
dumps changes to a storage area;

dumped fields are printed only if (1)
contained in the first dump taken by
the statement, or (2) contained in a
later dump and changed since the pre-
vious dump by the same statement.

DUMP COMMENT
dumps a programmer's comment contained
in the statement.

DUMP MAP
dumps a map of control sections and
allocated storage areas associated

with the active task (job step).

DUMP PANEL
dumps general and floating-point reg-
isters and the program status word
stored at the most recent interruption
of the problem program.

DUMP TABLE
dumps a specified
(control block).

system table

TRACE CALL
traces subroutine calls by CALL macro-
instructions in a specified storage
area.

TRACE FLOW
traces transfers (by branch and SVC

instructions) to, from, or within a

storage area.

TRACE REFER
traces references to a storage area by

instructions that could change data
within that area.

TRACE STOP
stops traces started by TRACE CALL,
TRACE FLOW, and TRACE REFER

statements.

6u

Operands: The operands of the DUMP and
TRACE statements are as follows:

address
e as the second operand, points to the
leftmost byte of a storage area.
¢ as the third operand, points to the
rightmost byte plus one of a storage
area, with this exception: in a DUMP
TABLE statement, the third operand

points to the data control block
(DCB) that is dumped or that is
associated with the data extent

block (DEB) that is dumped.

Note on Storage Areas: A storage area
is defined by the effective values of

the address operands at the time a
DUMP or TRACE statement is executed.
Indexing of addresses may cause an

area to vary in size and location when
a statement is executed several times
(i.e., at several test points). A
change dump of a variable area
includes all additions to the pre-
viously dumped area, plus changed data
that 1lies within both the present and
previous areas. A trace. is shifted
from the previously defined area to a
newly defined area on each execution
of the statement that first started
the trace.

If a statement does not point to both
ends of a storage area, the length of
the area is determined by the DATAM
keyword operand. If this operand is
omitted, the length is determined by
the length attribute of the first
symbol used in the address. If the
address contains no symbols, or only
an external symbol, the 1length is
assumed to be one byte.

‘text'
specifies a programmer's comment.

(registersl,registersl...)

¢ specifies the registers to be
dumped.
o if absent, implies that all reg-

isters are to be dumped.

Unless the
written,

Note on Printing Format:
DATAM keyword operand is

dumped registers (including floating-
point registers) are printed in
hexadecimal format.

TCB| DCE | DEB
specifies the system table
dumped, as follows:

to be

TCB - the task control block for the
active task.

DCB - an open data
whose address 1is the
operand of the statement.

DEB - the data extent block for an
open data control blodk whose
address is the third operand
of the statement.

control block
third

(symbol[,symboll...)

e specifies the names of one or more
TRACE statements that started traces
which are to be stopped.

e if absent, implies that all
traces are to be stopped.

current

ds DSECT=(symbol{,1|,integer})
identifies a storage area as a dumny
control section, or as part of a dummy
control section.

symbol

1. is the name of the
control section.

2. specifies the assumed loca-
tion of the dummy control
section, which must be
addressable by means of a
base register previously
defined and 1loaded by the
problem program.

dummy

l]linteger
1. specifies a number by which
the length of the storage
area 1is multiplied on exe-
cution of the statement.

2. specifies the maximum nun-
ber of times the format of
the dummy control section
is to be repeated to define
the format of printed
information.

d DATAM=I[typel [L{length}][S{scale}]

* specifies type, length, and scale
attributes.

¢ determines either the 1length of a
storage area when the third posi-
tional operand is omitted, or the
length of data (right justified) in
a dumped register.

¢ determines either the printing for-
mat for each field of a storage area
when the DSECT operand is omitted,
or the printing format of data
dumped from a register.

n NAME=symbol
» provides a symbol to be printed as
the name of the first field of a
dump.
e suppresses the printing of field
names as they are defined in the
source program.

¢ COMMENT="'text'
annotates trace output
programmer's comment.

with a

4 SELECT={1}2|3|4|5]|6|7]|8}

» classifies test information produced
by the DUMP or TRACE statement;
reclassifies this information if it
has already been classified in a
TEST OPEN or TEST AT sitatement.

e identifies the class by a number,
which can be used (in a job control
statement) to select the <class for
printing by the TESTRAN editor.

Appendix A: Formal Description of TESTRAN Statements 65

TEST STATEMENTS

Test statements are of three types:

Linkage statements
¢ TEST OPEN
e TEST CLOSE

Specification statements
s TEST AT
e TEST DEFINE
Decision-making statements
¢ TEST ON
¢ TEST WHEN

Each type is described separately.

Linkage Statements

The TEST OPEN and TEST CLOSE statements
control linkage between the problem program
and the TESTRAN interpreter. Their basic
functions are as follows:

TEST OPEN
e defines a TESTRAN control section
having the same name as the state-

ment itself.

e opens the TESTRAN control section;
loads the standard entry point reg-
ister (15), and passes control to
the problem program entry point
(second operand).

e specifies task options (third,
fourth, MAXE, and MAXP operands).

e chains the opening of other TESTRAN
control sections (OPTEST operand).

e classifies test information for sel-
ective retrieval (SELECT operand).

TEST CLOSE

» closes the TESTRAN control section
in which it is located.

» closes any other TESTRAN
sections that were opened
same time by chained opening.

» returns control to the problem pro-
gram.

control
at the

A TEST OPEN statement defines a control
section that includes all TESTRAN state-
ments that precede the next TEST OPEN
statement, if any, in the source program.
It ‘must be the first TESTRAN statement in
the source program.

66

When executed, the TEST OPEN statement
"opens" the control section by reference to
TEST specification statements. It esta-
blishes a link to the TESTRAN interpreter
at each test point specified in a TEST AT

statement, and it creates counters and
flags as specified in TEST DEFINE state-
ments.

A TEST CLOSE statement closes a TESTRAN
control section by nullifying the linkages,
counters, and flags established when the
control section was opened. When closed, a
control section cannot be entered by a
branch from another TESTRAN control sec-
tion, and its counters and flags cannot be

used by statements in other control sec-
tions.
Operands: The operands of the TEST linkage

statements are as follows:

address
¢ is placed in register 15.
* receives control after TEST OPEN.

¢ is required if TEST OPEN is execut-
ed.

e is ignored if TEST OPEN is not
executed (i.e., if opening of the
control section 1is chained by the
execution of another TEST OPEN
statement) .

tash options
e control testing under a task (job

step) and editing of the resulting
test output.

e can be specified only in the first
TEST OPEN statement executed under a
task; are ignored when specified in
other TEST OPEN statements.

¢ are specified by four operands, as
follows:

symbol
1. appears in the heading of
each page printed by the
TESTRAN editor.
2. identifies test information
produced under the task.

LINK | LOAD
1. specifies which system
macro-instruction the TES-
TRAN interpreter should use

to 1load its nonresident
modules.

2. reduces (LINK) or increases
(LOAD) both the storage
requirements and the oper-
ating speed of the inter-
preter.

MAXE=integer
1. specifies
ber of
executed by the
interpreter.t
2. causes abnormal termination
if the maximum is exceeded.

the maximum num-
statements to be
TESTRAN

MAXP=integer
1. specifies the maximum num-
ber of pages of test infor-
mation to be produced.t
2. causes abnormal termination
if the maximum is exiceeded.

OPTEST=(symboll[,symboll,...)
e points to the TESTRAN control sec-

tions defined by other TEST OPEN

statements.

e chains the opening of these control
sections: causes all of them to be
opened when the TEST OPEN statement
is executed.

e is ignored if the TEST OPEN
ment is not executed.

state-

4 SELECT={1|2|3{4|5|6]7]|8%

¢ classifies test information produced
by control sections opened by the
TEST OPEN statement.

e identifies the class by a number,
which can be used (in a job .control
statement) to select the class for
printing by the TESTRAN editor.

e is ignored if the TEST OPEN state-
ment is not executed.

Specification Statements

The TEST AT and TEST DEFINE statements
specify functions that are performed when
the TESTRAN control section is opened:

TEST AT
e specifies one or more test points in
the problem program (second
operand).
e classifies test information for sel-
ective retrieval (SELECT operand).

TEST DEFINE
defines TESTRAN counters or flags.

iThis maximum must not exceed the installa-
tion maximum established during system gen-

eration. If it does, or if the operand is
omitted, the installation maximum is
assumed.

Appendix A:

A TEST AT statement must be placed so
that the next sequential TESTRAN statement
is the first that should be executed at
each specified test point. A TEST DEFINE
statement can be placed anywhere in a
TESTRAN control section.

In an executed sequence of TESTRAN
statements, a TEST AT statement returns
contxol to the problem program. A TEST

DEFINE statement performs no operation; the
next sequential statement is executed.

Operands: The operands of the TEST
fication statements are as follows:

speci-

({*|address}(,addressl...)

e points to one or more test points in
the problem program.

o refers, if * 1is written, +to the
value of the 1location counter for
the current problem program control
section.

¢ is subject to the following restric-
tions:

1. Each specified address must be
that of an instruction in the
problem program.

2. The instruction muast not be a
privileged or SVC instruction,
or an EX instruction that exe-

cutes a privileged or svc
instruction.
3. The instruction must not be

modified by any instruction or
executed by an EX instruction.

4 SELECT={1]|2|3|4|5|6]7]8}

e classifies test information recorded
at test points specified in the
statement; reclassifies this infor-
mation if it has already been clas-
sified in a TEST OPEN statement.

¢ identifies the class by a number
which can be used (in a job control
statement) to select the class for
printing by the TESTRAN editor.

COUNTER | FLAG
determines whether counters or
are defined by the statement.

flags

Note on Counters and Flags: A counter
is a full-word, fixed-point value. A
flag is a single binary digit. Both
are set to zero when the control
section is opened. Their values are
lost when the contrcl section is
closed.

(symboll[, symboll...)
specifies a name for each counter or
flag (the number of names determines
the number of counters cr flags that
are defined).

Formal Description of TESTRAN Statements 67

Decision-Making Statements

The TEST ON and TEST WHEN statements
perform decision-making functions based on
conditional branching to other TESTRAN
statements. Their functions are as fol-

lows:
TEST ON

e increments a counter (COUNTER
operand) by one.

* tests the counter against three
values (second, third, and fourth
operands) .

* branches to a TESTRAN statement

(fifth operand) if the value of the
counter (1) is greater than or equal
to the second operand, (2) is less
than or equal to the third operand,
and (3) is a multiple of the fourth
operand.

TEST WHEN (first form)

» tests the value of a flag (second
operand).
» branches to a TESTRAN statement

(third operand) if the value of the
flag is one.

TEST WHEN (second form)

» specifies a logical relationship
between two flaygs (second, third and
fourth operands).

o branches to a TESTRAN statement
(fifth operand) if the relationship
is correct.

TEST WHEN (third form)

o specifies an arithmetic relationship
between counters and/or variables
(second, third, and fourth
operands).

o branches to a TESTRAN statement
(fifth operand) if the relationship
is correct.

Operands: The operands of the TEST ON and
TEST WHEN statements are as follows:

and address|register|integer
¢ specifies a fixed-point value from 1
to 231-1,

address

1. points to a full-word,

fixed-point value in main
storage; this value need
not be on a full-word
boundary.

2. cannot be written as an
integer.

68

register
points to a full-word, fixed-
point value in a general
register.

integer
is a decimal value that is

assembled as a
fixed-point value.

full-word,

» if absent, implies the value 1 for
the second or fourth operand, or the
value 231-1 for the third operand.

symbol
* as the second or fourth operand,
points to a flag defined by a TEST
DEFINE statement.
* as the third oxr fifth operand,
points to a TESTRAN statement.

COUNTER=symbol

* points to a counter
TEST DEFINE statement.

e if absent, implies that the state-
ment increments and tests an unnamed
counter that is automatically
defined for exclusive use by the
statement.

defined by a

AND|OR
specifies a logical relationship
between the flags specified by the
second and fourth operands.

AND
specifies that the value of

both flags is onme.

OR
specifies that the value of one
flag, or of both, is one.

anf address|register|literal
specifies an arithmetic value.

address
points to a value in the prob-
lem program or to a TESTRAN
counter.

register
points to a
ister.

value in a reg-

literal
specifies a constant value that
is assembled as part of the
statement.

Note on Data Format: If the: DATAM
operand 1is omitted, the format (type
and length) of both the second and

fourth operands is implied as follows:

e If the second operand is an
address, the format is determined
by the attributes of the' first
symbol used in the address. If the
address contains no symbols, or
only an external symbol, thei format
is determined by the fourth operand
in the same manner as by the’ second
operand. However, if the K fourth
operand is also an address, and
contains no symbol other than an
external symbol, the format is
assumed to be hexadecimal with a
length of one byte.

e If the second operand is a ref-
erence to a general register, the
format is hexadecimal with a! length
of four bytes. If it 1is a ref-
erence to a floating-point reg-
ister, the format is floating-point
with a length of eight bytes.

» If the second operand is a literal,
the format is specified or inplied
by the literal notation.

GT|GE|EQ|NE|LT|LE
e specifies an arithmetic relationship
between the values specified by the
second and fourth operands.
¢ has the following meaning:

GT - greater than

GE - greater than or equal to
EQ - equal to

NE - not equal to

LT - less than

LE - less than or equal to

d DATAM=I[typel (L{length}]l[(S{scalel}]

¢ specifies type, length, and scale
attributes.

¢ defines the type and 1length of
values specified by the second and

fourth operands.

GO STATEMENTS

The GO statements provide branching
functions. Their basic functions are as
follows:

GO TO
branches unconditionally to a TESTRAN
statement.

GO IN

calls an internal subroutine.

GO OuUT
returns from an internal subroutine.

GO BACK
returns control to the problem pro-
gram, or passes control to a specified
executable instruction.

Appendix A:

Operands: The operands of the GO state-

ments are as follows:

symbol
is the name of the TESTRAN statement
that 4is branched to or that is the
first statement of an internal subrou-
tine.

Note on Internal Subroutines: A maxi-
mum of three levels of internal sub-
routines can be maintained. The first
level is lost if a fourth 1level is
created.

address
e points to an executable instruction
to which control is passed.
e if absent, causes execution of the
problem program instruction at the
current test point.

Formal Description of TESTRAN Statements 69

SET STATEMENTS

The SET statements
counters, flags, and variables.
functions are as follows:

assign values to
Their

SET COUNTER

assigns a value to a TESTRAN counter.

SET FLAG
assigns a value to a TESTRAN flag.

SET VARIABLE
assigns a value to a problem program
variable (storage field or register).

Operands: The second operand of each SET
statement points to a counter, flag, or
variable; the third operand specifies the
value that is assigned. The operands are
as follows:

symbol
e in a SET COUNTER statement,
to a TESTRAN counter.
¢ in a SET FLAG statement, points to a
TESTRAN flag.

points

anf address|register|literal
specifies the new value of a counter
or variable.

address
points to a value in the prob-
lem program or to a TESTRAN
counter.

register
points to a value in a
ister.

reg-

literal
specifies a constant value that
is assembled as part of the
statement.

70

=0|=1

specifies the new value (zero or one)
of a TESTRAN flag.

address|register

points to a variable to which a value
is assigned.

address
points to a value in the prob-
lem program.

register
points to a value in a reg-
ister.
Note on Data Format: If +the DATAM

operand is omitted, the length of the
values specified by the second and

third operands is determined as fol-
lows:

o If the second operand is an
address, the length is determined
by the first symbol wused in the
address. If the address contains

no symbols, or only an external
symbol, the length is determined by
the third operand in the same man-
ner as by the second operand. How-
ever, if the third operand is also
an address and contains no symbol
other than an external symbol, the
length is assumed to be one byte.
If the third operand is a 1literal,
the 1length is specified or implied
by the literal notation.

e If the second operand is a ref-
erence to a general register, the
implied length is four bytes. if
it 1is a reference to a floating-
point register, the implied 1length
is eight bytes.

d DATAM=[typel [L{length}]l(S{scale}]

¢ specifies type, length, and scale
attributes.

e defines the
specified by the
operands of a
ment.

length of values
second and third
SET VARIABLE state-

FORMAT OF TESTRAN STATEMENTS * Items or groups of items within brack-

3The format of t
statement that
is enclosed by
must include a
or ampersand
apostrophes or

3. Definit
ets [1 are optional. They may be Table 2. Format of TESTRAN Statements Table ;
omitted at the programmer's discretion. f H Sy | ' iati

The format of TESTRAN statements is !Name loperatlonEOperand J !AbbreV1atlon!
defined in Table 2. The following conven- v H H ' Vani 1
S R i an addi
tions are used: * Items separated by a vertical stroke | :[symbol]!DUMP !{DATA[CHANGES},addIess[,address][,dA][,d][,n][,A] J :anz }addl
are alternatives. No more than one of | COMMENT , * . 1 COM?
the alternative items shoulid be coded { : 1CO NT,"text'[,4] J :3 EDATI
by the programmer. | MAP - 1 DSE(
* Uppercase letters, numbers, and punc- ! : ! [,4] J %ié iumm
tuation marks must be coded by the ¢ If an alternative item is underlined, T s : | SELI
programmer exactly as shown. Excep- that item is implied; that is, the } { !PANEL[,(reglsters[,reglsters]...)l[,d][,é] j !iabh Optionbg[syl
tions to this convention are brackets operating system will automatically I i iTABLE {TCB| { {DCB|DEB}, address}} [, 4] h I _ 1 B
[1, the vertical stroke |, braces { 1}, assume it 1is the programmer's choice H 1 1 ! I ! ' j
the ellipsis ... and superscripts. when none of the items is coded. H H 1 . H
These are mever coded. {[symbol]|TRACE !CALIuaddress,address[,c][,A] }
i) i * Braces { } are used to group related H ! | FLOW address!,address)i,cli, el i
¢ Lowercase letters and words represent items, such as several alternative i i ! ' ’ (it |
variables for which specific informa- items. 1 i 4 Definit
tion or specific values must be substi- : = {REFER.address[,address][,dé][,d][,c][,A] j Table . eT
tuted by the programmer when coding. e An ellipsis ... indicates that the H) H l i
Their meanings are given in Tables 3 preceding item or group of items can be { 1 !STOP{,(symbol[,symbol]...)][,é] ! lVarlable i
and 4. Table 3 defines abbreviations, coded more than once in successicn. H 1 1 H - : = b { An
which are shown in italics; Table & | symbol? |TEST {OPEN[,addresz[,ta,bk options][,OPTEST=(symbol[,symboll...}1[,4]] J| I|iﬂ$£§2i :A a
defines basic variables wused in both * A superscript number refers to a foot- I I 'CLOSE K |length |An
Table 2 and Table 3. note to the description of a statement. } ! ! ! |literal 1A ¢
r 1 .
| | |AT, ({*|address2}[,address2)...)[,4] | |register :2 P
| | t i | registers p
| | | DEFINE, {COUNTER | FLAG}, (symbol[,symboll...) | Iscale1 }A s
| | k | | symbo A s
| | |ON, laril, lanil, larnil ,symbol [, COUNTER=symbol] | | |
| | F { ltext A e
| | |WHEN, symbol, symbol | Itype |a s
| | 5 1 F
| i | WHEN, symbol, {AND | OR} , symbol, Symbol | |1The format of a:
| | t 1 |
| | |WHEN, a1£, {GT|GE |EQ|NE|{LE| LT}, axf,symboll, 4] | | .
i 1 1 N . ¥ | mp
r T T 1
| [symboll | GO | {TO| IN}, symbol | | Exp
| | F i1 .
| | |ouT | | S
I i } i exp
| i | BACKI ,address] | | reg
t : t i add
{ {symboll | SET | COUNTER, symbol, arf | |
i | ! .| | An implied ad
= : | FLAG, symbol, {symbol|=0]=1} ! } appzrstin t?g ‘
L constant.
) 1
| | | VARIABLE, {address | register}, arll, d] | | contents of the
i L 1 4 |
T 1
|22 symbol is required in the name field of a TEST OPEN statement; it is optional in| |2The format of t
| other TEST statements. ' | |
|2This operand can be written only as a nonindexed implied address. |
L 4 |
| Gen
i Flo
|
| reg
| val
| as
|
|
|
i
l
|
!

EN statement; it is optional in

d address.

Table 3. Definitions of Abbreviations Used in Table 2 Table 5. Definition of Type, Length, and Scale
3 r L] r T R}
| |Abbreviation| Definition | | Type | | |
i b + i | | Length in bytes? i Scale? |
(,dll,nlf,s]] |ard |address|register|integer | b T + T | |
4 larnk |address|register|literal | | | Meaning | Specified | | |
I e | COMMENT=" text " [t + + + + 4
{ |d |DATAM=[typel [Lilength}] [S{scale}] | | ¢ |character |1 to | 1 i (not applicable) i
| |ds | DSECT=(symbol{,1]|,integer}) | | X |hexadecimal |1 to | 1 | (not applicable) |
. In | NAME=symbol | | B |binary |11 to | 1 | (not applicable) |
'1¢,4] | 1s | SELECT={1]2|3|4|5]6]7]|8} | | H |fixed-point |1 to 8 |2 |-187 to +346 |
X| |task options|[symboll {,LINK|,LOAD}[,MAXE=integer][,MAXP=integer] i | F |fixed-point |11 to | 4 |-187 to +346 |
i i 4 | E |floating-point|l to | 4 | (not applicable) |
i | D |floating-point{l to 8 | 8 | (not applicable) |
| i P {packed decimal{l to i 1 { {not applicable) |
i | 2 |zoned decimal |1 to | 1 | (not applicable) |
| | I |instruction | (not applicable) | (variable) | (not applicable) |
1 t i i 1 4 s
§ 1
8] i Table 4. Definitions of Variables Used in Tables 2 and 3 {1The implied length is used if the type, but not the length, is specified. |
] r 1 |2The implied scale is zero if no scale is specified. If a positive scale is |
| |variable | Definition | | the sign (+) can be omitted. |
3 L 4 d L i |
; r T 1
'=(symbol{,symboll...)1I[, 531 } |address |An indexed or nonindexed implied or explicit address?t |
] |integer |A decimal self-defining term |
| |1length |An unsigned decimal integer (see Table 5) |
4 |literal |A constant preceded by an equal sign (=) |
| |register |A pointer to a general or floating-point register? |
9 |registers |A pointer to one or a series of general or floating-point registers2 |
I i jscale {2 signed or unsigned decimal integer {see Table 5) !
4 | symbol |2 string of letters and digits that begins with a letter and is not |
‘symbol] | | | longer than eight characters |
.| | text |A character constant? |
I ltype |A standard data type code (see Table 5) |
4 L 1 4
r 1
i |*The format of an address is given by the following table: |
1 !
woll, s] } Indexed Nonindexed |
{ Implied address s(x) s |
| Explicit address d(x,b) d(0,b) |
i |
I
!
|
!
|
1
|
i
|
!
[
I
I
J

[e e . s P o o s | o — T _—— s T T— (i S— —— —— —_— —— — T— o T— . s

s is an absolute or relocatable expression; d, X, and b are absolute|
expressions. s 1is a numeric or symbolic storage address; x is an index|

register number; 4 is a displacement from a base address; b is a base|

address register number. |

|

An implied address is assembled in base-displacement form only if a DSECT operand |
appears in the same statement. Normally, it is evaluated by an A-type address|
constant. If it is indexed, its effective value is that of the constant plus the|
contents of the index register at the time the statement is executed.

2The format of the pointer is given by the following table:

Single Series of

Register Registers
General register G'reg’ G'reg, ,regn'
Floating-point register F'reg' F'reg,,regn'

req, regqg,, and regp are each a symbol or decimal integer whose value is a
valid register number. regq; and reqp are the first and last registers of
a series. regp can have either a higher or a lower value than req,.

3The format of the character constant is that of the constant subfield of a DC}
statement that defines a character constant. As shown in Tables 2 and 3, the constant|
is enclosed by apostrophes. The constant can include any valid EBCDIC character, butj
must include a pair of apostrophes or ampersands to represent a single apostrophe (')
or ampersand (§). The maximum length is 120 characters, counting each pair of‘

apostrophes or ampersands as a single character.
4

Appendix A:

Formal Description of TESTRAN Statements

This

PROCEDURE ASMEC

appendix

APPENDIX B:

IBM-SUPPLIED CATALOGED PROCEDURELS

defines cataloged procedures that are supplied by IBM and are referred
to in Section 3 of this publication.

b s o e — v . s s o e, st e . S . s

r - - == -1

| /77ASM EXEC PGM=IETASM 00020000 |

| 7/SYSLIB DD DSNAME=SYS1.MACLIB,DISP=0OLD 00040000 |

| 7/S¥suT1 DD UNIT=SYSSQ,SPACE={400,(400,50)) 00060000 |

| /7/75YsuUT2 DD UNIT=SYSSQ,SPACE=(u400, (400,50)) 00080000]

| /7/8YsSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB)), C00100000 |

| 77/ SPACE=(400, (400,50)) 00120000 |

| 7//SYSPRINT DD SYSOUT=A 00140000 |

| //SYSPUNCH DD UNIT=SYSCP 00160000

L —_— — e i e 4

PROCEDURE LKED

v - 1

| 7/7/LKED EXEC PGM=IEWL,PARM='XREF,LIST,LET,NCAL' 00020000 |

| /7/SYSPRINT DD SYSOUT=A 00040000 |

| //SYSLIN DD DDNAME=SYSIN 00060000 |

| /7/SYSLMOD DD DSNAME=§GOSET (GO),SPACE=(1024, (50,20,1)), €00080000 |

| 77 UNIT=SYSDA,DISP=(MOD, PASS) 00100000 |

| /7/5YSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00120000 |

| 77 SPACE=(1024, (200,20)) 00140000 |

L P— —— . . e o . |

PROCEDURE TASME

r - _—

| 77ASM EXEC PGM=IETASM, PARM=(LOAD,TEST) 00020000

| /7/SYSLIB DD DSNAME=SYS1.MACLIB,DISP=(OLD) 00040000

| 7/SY¥SUT1 DD UNIT=(SYSsSQ,SEP=(SYSLIB)), Cc00060000

| 77 SPACE=(400, (150, 20)) 00080000

| //S¥sUT2 DD UNIT=(SYSSQ,SEP=(SYSUT1)),SPACE=(400,(150,20)) 00100000

| //SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), C00120000

| 77 SPACE= (400, (150,20)) 00140000

| //SYSPRINT DD SYSOUT=A 00160000

| //SYSPUNCH DD DSNAME=§LOADSET,UNIT=SYSDA, €00180000

| 77 SPACE=(80, (200,50)) ,DISP=(MOD, PASS) 00200000

| //1KED EXEC PGM=IEWL,PARM=(XREF,LIST,LET,NCAL,TEST) 00220000

| //8SYSPRINT DD SYSOUT=A 00240000

| 7/SYSLIN DD DSNAME=§LOADSET,DISP=(0OLD) 00260000

| 77 DD DDNAME=SYSIN 00280000

| //SYSLMOD DD DSNAME=§GOSET(GO),SPACE=(1024,(50,20,1)), €00300000

| 77 UNIT=SYSDA,DISP=(MOD, PASS) 00320000

| 7/5YSUTL DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), c00340000

| 77 SPACE=(1024, (200,20)) 00360000

L —— . e o i . . S e . o e . . S W . T — ——
Appendix A: Formal Description of TESTRAN Statements 73

PROCEDURE TASMEG

r - 1
| 77AsM EXEC PGM=IETASM, PARM=(LOAD, TEST) 00020000 |
| //SYSLIB DD DSNAME=SYS1.MACLIB,DISP=(OLD) 00040000

| //SYSUT1 DD UNIT=(SYSSQ,SEP=(SYSLIB)), €00060000 1
| 77 SPACE= (400, (150,20)) 00080000 [
| //SYSUT2 DD UNIT=(SYSSQ,SEP=(SYSUT1)),SPACE=(400,(150,20)) 00100000 |
| //SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), €00120000

| 77 SPACE= (400, (150,20)) 00140000 |
| //SYSPRINT DD SYSOUT=A 00160000

| //SYSPUNCH DD DSNAME=§LOADSET, UNIT=SYSDA, €00180000 |
| 77 SPACE=(80, (200,50)) ,DISP=(MOD, PASS) 00200000 1
| //LKED EXEC PGM=IEWL,PARM=(XREF,LIST,LET,NCAL, TEST) 00220000 |
| //SYSPRINT DD SYSOUT=A 00240000 |
| //SYSLIN DD DSNAME=§LOADSET,DISP=(OLD) 00260000 |
| 77 DD DDNAME=SYSIN 00280000 |
| //SYSLMOD DD DSNAME=§GOSET (GO),SPACE=(1024, (50(20(1)), €00300000

| 77 UNIT=SYSDA,DISP=(MOD, PASS) 00320000 |
| //SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00340000 |
| 77 SPACE=(1024, (200, 20)) 00360000 |
| 7760 EXEC PGM=*.LKED.SYSLMOD 00380000 |
| IS—— ——— J
PROCEDURE TASMEGED

=== == T T T T T T T T T T T T T T T e 1
| /7AsM EXEC PGM=IETASM,PARM=(LOAD,TEST) 00020000 |
| //SYSLIB DD DSNAME=SYS1.MACLIB,DISP=(OLD) 00040000 |
| //SYSUT1 DD UNIT=(SYSSQ,SEP=(SYSLIB)), C00060000

| 77 SPACE= (400, (150,20)) 00080000 |
| //SYSUT2 DD UNIT=(SYSSQ,SEP=(SYSUT1)),SPACE= (400, (150,20)) 00100000 [
| //SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), €00120000

| 77 SPACE= (400, (150,20)) 00140000 |
| //SYSPRINT DD SYSOUT=A 00160000 1
| //SYSPUNCH DD DSNAME=§LOADSET,UNIT=SYSDA, C00180000 |
| 77 SPACE=(80, (200,50)),DISP=(MOD, PASS) 00200000

| //LKED EXEC PGM=IEWL,PARM= (XREF,LIST,LET,NCAL, TEST) 00220000 1
| //SYSPRINT DD SYSOUT=A 00240000 I
| //SYSLIN DD DSNAME=§LOADSET,DISP=(OLD) 00260000 I
| 77 DD DDNAME=SYSIN 00280000 |
| //SYSLMOD DD DSNAME=§GOSET(GO) ,SPACE=(1024, (50,20,1)), €00300000 |
| 77 UNIT=SYSDA,DISP=(MOD, PASS) 00320000 I
| //SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), c00340000 [
| 77 SPACE=(1024, (200,20)) 00360000 I
| 7760 EXEC PGM=+*.LKED.SYSLMOD 00380000 I
| //SYSTEST DD DSNAME=§TESTSET,SPACE=(300, (100)), C00400000 |
| 77 UNIT=SYSSQ,DISP=(NEW, PASS) 00420000 |
| //EDIT EXEC PGM=IEGTTEDT 00440000 |
| /7/SYSUT1 DD UNIT=SYSDA,SPACE=(500, (100)) 00460000 I
| //SYSTEST DD DSNAME=§TESTSET,UNIT=(SYSSQ,SEP=(SYSUT1)), c00480000 |
| 77 DISP=(OLD, DELETE) 00500000 |
| //SYSPRINT DD SYSOUT=A 00520000 I
L N]
PROCEDURE TTED

r D ===) |
| //7EDIT EXEC PGM=IEGTTEDT 00020000 |
| #//SYSUT1 DD UNIT=SYSDA, SPACE=(500,(100)) 00040000 |
| //SYSPRINT DD SYSOUT=A 00060000 I
L J

74

APPENDIX C: TESTRAN MESSAGES

This appendix reproduces the following sections from the publication IBM System/360
Operating System: Messages, Completion Codes, and Storage Dumps:

TESTRAN Editor Messages
TESTRAN Interpreter Messages
TESTRAN Macro-Expansion Messages

Table 6 describes the messages in these sections.

Table 6. TESTRAN Messages

r T T - T—===""
| MESSAGE | W"HERE |
| | PRINTED | MESSAGE FORMAT | COMMENTS
b + + t —mmmee
| TESTRAN | TESTRAN | *¥** IEGEnn text |Messages indicate errors
|Editor | Listing i | found during the editing
|Messages | (TESTRAN |IEG = TESTRAN message code |of test output.
|editor |Enn = Message serial number |
| SYSPRINT indicating the

|
|data set) | TESTRAN editor
| Message text

| S -4

|
|
|
t i o
TESTRAN TESTRAN *¥¥ TEGInn text Messages indicate errors
i g
|
|
l
|
|

s
o
»
!

i

| Interpreter|Listing found by the TESTRAN inter-
Messages (TESTRAN |IEG = TESTRAN message code preter during execution of

editor |Inn = Message serial number the program being tested.

SYSPRINT | indicating the

data set) | TESTRAN interpreter

|text = Message text
4

+

TESTRAN Assembly ss, *¢* JEGMnn text | Messages indicate errors in

Macro- Listing |the position and syntax of

Expansion (Assembler|ss = Severity code, which is | TESTRAN statements. The

Messages SYSPRINT one of the following: |assembler finds these errors
data set) * Informational message; |when it expands TESTRAN

L

|

:

|

l : is TES

| no effect on execution | statements (macro-instruc-

| 4 Warning message; success~|tions) into seguences of

| ful execution is probable|assembler language state-
| | 8 Error; execution may fail|ments. If errors in a

| 12 Serious error; successful|source statement cause

| execution is improbable |errors in its expansion, the

Il

|

|

|

|

%

L

IEG = TESTRAN message code |assembler may issue addi-
Mnn = Message serial number | tional messages when it
| indicating macro-expansion |assembles the statements in
| text = Message text |the expansion. The addi-
|

|tional messages do not have
| TESTRAN message codes and
|are not included in this

| appendix.

15

b e e e —— —— —— ——— —— —— —— — . — s w—— — v —— . T ol s S o o s S— . Sl s St 2]

= . e s s e s

Appendix C: TESTRAN Messages 75

TESTRAN EDITOR MESSAGES

IEGEO2

IEGEO3

IEGEOL

IEGEOS

76

‘Explanation:

UNKNOWN MACRO

During TESTRAN edit-
ing, an input record could not be
related to a TESTRAN statement
(macro-instruction) associated with
the task that produced the data
set.

System Action: The count of invalid
records was incremented, and the
record was ignored.

EXCESSIVE CHANGE DUMPS

Explanation: During TESTRAN edit-
ing, the output from an excessive
number of DUMP CHANGES statements
was selected for editing by the
TESTRAN editor.

System Action: Only the output from
the allowable number of DUMP
CHANGES statements was edited.

User Response: To edit the output
from subsequent DUMP CHANGES state-
ments, repeat the job step without
selecting the output from the DUMP
CHANGES statements already edited.

INVALID RECORD--IGNORED

Explanation: During TESTRAN edit-
ing, an invalid or unreadable input
record was encountered.

The count of invalid
and the

System Action:
records was incremented,
record was ignored.

EXCESSIVE INVALID RECORDS—--EDIT

DISCONTINUED

Explanation: During TESTRAN edit-
ing, the number of invalid or
unreadable records in the data set
exceeded the allowable limit.
System Action: The
terminated.

job step was

Determine whether
the correct data set was used as
input. If it was, recreate the
data set by executing the problem
program again.

User Response:

IEGEO6

IEGEOQO7

IEGEOS

IEGEO9

IEGE10

EXCESSIVE OUTPUT

Explanation: During TESTRAN edit-
ing, the amount of edited output
exceeded the limit specified in the
PARM parameter of the EXEC state-
ment for the job step being tested.
System Action: The
terminated.

job step was

User Response: Execute the job step
again, specifying either a higher
page 1limit or fewer output class
identification numbers.

END OF TESTRAN EDIT--xxx STATEMENTS
PROCESSED

Explanation: TESTRAN editing was

completed.

In the message text, =xxx is the
number of TESTRAN statements exe-
cuted by the TESTRAN interpreter.
INVALID OVERLAY RECORD

During TESTRAN edit-
record specified a

Explanation:
ing, an input

change in an unknown overlay seg-
ment.

System Action: The record was
ignored.

INVALID RELOCATION RECORD--EDIT
DISCONTINUED

Explanation: During TESTRAN edit-
ing, an input record contained con-
trol section relocation information
that did not correspond to the
control section definitions of the
program that was being tested.
System Action: The
terminated.

job step was

Determine whether
the correct data set was used as
input. If it was not, recreate the
data set by executing the problem
program again.

User Response:

EXCESSIVE
ENTRY xxx

SECTION DEFINITIONS~--

Explanation: During TESTRAN edit-
ing, the number of definitions of
control, dummy, and blank common
sections exceeded the limit allowed
in the tested program.

1EGE11l

IEGE12

IEGE13

In the message text, xxx is the
entry name of the excess section.

System Action: Dumps and traces of
the excess sections were printed in
4-byte hexadecimal format, except
where this format was overridden by
DATAM operands.

User Response: Reduce control sec-
tions, dummy sections, and blank
common sSections to the allowable
number. Count each TESTRAN control
section once for each time it is
opened.

EXCESSIVE 'TEST AT'S

Explanation: During TESTRAN edit-
ing, the number of supervisor call
(SVC) instructions inserted by TEST
AT statements exceeded the limit.

System Action: Data resulting from
the excess supervisor call instruc-
tions was ignored.

User Response: Reduce problem pro-
gram addresses specified by TEST AT
statements to the allowable number.
count each address once for each
opening of the TESTRAN control sec-
tion in which the address is speci-
fied.

EXCESSIVE 'TEST OPEN'S

Explanation: During TESTRAN edit-
ing, the opening of TESTRAN control
sections by TEST OPEN statements
exceeded the limit.

System Action: Data resulting from
the excess control section openings
was ignored.

User Response: Reduce TESTRAN con-
trol section openings to the allow-
able number.

UNABLE TO OPEN

Explanation: During TESTRAN
ing, a required data set could not
be opened because no DD statement
was supplied for the data set.

System Action: The job step was
terminated.
User Response: Supply the missing

DD statement
step again.

and execute the job

edit-

IEGE14 IO ERROR
Explanation: During TESTRAN edit-
ing, an uncorrectable input/output
error occurred.
System Action: The job step was
terminated.
User Response: If the input/output
error persists, have the computing
system checked.

TESTRAN INTERPRETER MESSAGES

IEGI0O0 INVALID ADDRESS--IGNORED
Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement referred to an address
higher than the highest address in
main storage.
System Action: The statement was
ignored.
User Response: If the job step is
to be executed again, make sure
that all address operands were
specified correctly and were not
modified. Also, check the contents
of any registers referred to in the
statement. Correct the error.

IEGIO1 INVALID 'GO TO' AT XXX
Explanation: During execution of

the TESTRAN interpreter, a GO TO or
GO IN statement 4id not specify in
its second operand the address of a
TESTRAN statement in an open con-
trol section.

In the message text, xxx 1is the
address in hexadecimal of the GO TO
or GO IN statement.

System Action: The statement was
ignored. The next sequential
statement was executed.

User Response: If the job step is
to be executed again, make sure
that the second operand specified
the address (symbolic name) of a
TESTRAN statement and was not

incorrectly modified. Also make
sure that the control section con-
taining the address will be open
when the GO TO or GO IN statement
is executed.

Appendix C: TESTRAN Messages 17

IEGIO02

IEGIO3

IEGIOH

78

INACTIVE 'GO TO' AT xxX
Explanation: During execution of

the TESTRAN interpreter, a GO TO or
GO 1IN statement in an overlay pro-
gram specified as its second oper-
and the address of a TESTRAN state-
ment. This statement was in a
control section that was not cur-
rently in main storage.

In the message text, xxx is the
address in hexadecimal of the GO TO
or GO IN statement.

System Action: The GO TO or GO IN
statement was ignored. The next
sequential statement was executed.

User Response: If the job step is
to be executed again, make sure
that the control section containing
the specified address will be in
main storage when the GO TO or GO
IN statement is executed.

INVALID 'GO OUT' AT XXX
Explanation: During execution of

the TESTRAN interpreter, a GO OUT
statement was to be executed, but
the associated GO IN statement had

not saved a return address.

xxxX is the
the GO

In the message text,
address in hexadecimal of
OUT statement.

System Action: The GO OUT statement

was treated as a GO BACK statement
in which the second operand was
omitted.

User Response: If the job step is
to be executed again, determine why
the return address was missing,
making sure that no attempt was
made to save more than three return
addresses.

NULL *TEST OPEN' ENTRY POINT--ABEND
Explanation: During execution of
the TESTRAN interpreter, a TEST
OPEN statement did not specify as
its second operand an entry point
address in the problem program to
which control could be returned.

System Action: The task was termi-
nated abnormally.

User Response: Specify the entry
point address in the TEST OPEN
statement, making sure that the

statement was not incorrectly modi-

IEGIOS5

IEGIO06

IEGIO7

fied. Alternatively, avoid execu-
tion of this statement oy listing
it in the OPTEST operand of another
TEST OPEN statement.

INVALID 'TEST AT'--IGNORED
Explanation: During execution cof
the TESTRAN interpreter, the second
operand (address sublist) of a TEST
AT statement specified an address
that was outside the boundaries of
the main storage assigned +to the
current task.

System Action: A supervisor call
(SVC) instruction was not inserted
at the erroneous address. Supervi-
sor call instructions were inserted
at valid addresses specified in the
same sublist.

Usex Response: If the job step is
to be executed again, make sure
that the address was specified cor-
rectly and was not incorrectly
modified. Correct the error.

EXCESSIVE OUTPUT REQUESTED

During execution of
interpreter, the MAXP
TEST OPEN statement
limit higher than the

limit on TESTRAN

the TESTRAN

operand of a
specified a
installation's
output.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXP operand, or specify a 1limit
less than or equal to the
installation's limit.

EXCESSIVE PROCESSING REQUESTED

Explanation: During execution of
the TESTRAN interpreter, the MAXE
operand of a TEST OPEN statement
specified a limit higher than the
installation's 1limit on processing
by the TESTRAN interpreter.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXE operand, or specify a limit
less than or equal to the
installation's limit.

IEGIOS8

IEGIOQ

IEGI10

LIMIT OF ONE 'TEST OPEN' IN OVERLAY
Explanation: During execution of
the TESTRAN interpreter, a second
TEST OPEN statement was executed in

an overlay program.

System Action: No control sections
were opened on execution of the
second TEST OPEN statement. Con-
trol was returned to the problem
program at the address specified by
the second operand.

Usexr Response: If the job step is
to be executed again, remove the
second TEST OPEN statement from the
overlay program. The one TEST OPEN

statement allowed must be in the
root segment. Its OPTEST operand
should specify the names of other

statement 5 for which
sections are to be opened.

TEST OPEN
control

'AT* LOCATION CONTAINS INVALID
TESTRAN SVC

Explanation: During execution of
the TESTRAN interpreter, a supervi-
sor call (SvC) instruction was not
inserted in the program being test-
ed when the TESTRAN control section
was opened by a TEST OPEN state-

ment. The address in the program
at which the supervisor . call
instruction should have been
inserted was specified in a TEST AT
statement. The supervisor call
instruction would have cdlled the

TESTRAN interpreter.

System Action: The address in the
TEST AT statement was ignored and a
supervisor call instruction was not
inserted.

User Response: If the job step is
to be executed again, make sure
that the address specified in the
TEST AT statement (1) was correct,
(2) was not incorrectly modified,
and (3) was the address of an
executable problem program instruc-
tion.

DUMP TRUNCATED AT END OF STORAGE

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified an ending address that
was higher than the highest address
in main storage.

IEGI11

IEGI12

System Action: Only the storage
from the starting address to the
end of storage was dumped.

User Response: If the job step is
to be executed again, make sure
that the third positional operand
specifies an address within storage
and that it was not incorrectly
modified.

YTEST OPEN' LIMIT REACHED
Explanation: During execution of
the TESTRAN interpreter, TESTRAN
control sections had been opened
255 times and another request to
open a TESTRAN control section was
found in the same task. TESTRAN
control sections can be opened only
255 times during execution of one
task.

System Action: No additional con-
trol sections were opened. Control
was returned to the problem program
address specified by the TEST OPEN
statement that was executed most

recently.

User Response: If the job step is
to be executed again, count the
number of times TESTRAN control
sections are opened. A control
section is counted once for each

time it should be opened according
to the logic of the program.
Change the program to reduce the
total openings if they exceed 255.
If the total openings are fewer
than 256, check for an uncontrolled
loop that might cause repeated
opening and closing of one or more
control sections.

DUMP TRUNCATED AT TASK BCOUNDARY

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified an ending address that
was outside the boundaries of the

main storage assigned to the task.

System Action: Only the
from the starting address to
task boundary was dumped.

storage
the

User Response: If the job step is

to be executed again, make sure
that the second and third posi-
tional operands of the statement
were specified correctly and were

Appenaix C: TESTRAN Messages 79

IEGI13

IEGI1S

IEGI16

IEGI1?

80

not incorrectly modified. If the
program 1is scatter loaded, both
operands should specify addresses
in the same control section.

INVALID 'SET VARIABLE' 'TO' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a SET
VARIABLE statement specified a
variable at an address that was
outside the main storage assigned

to the task.

System Action: The SET VARIABLE

statement was ignored.

User Response: If the job step is
to be executed again, make sure
that the address of the variable
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers

referred to in the statement.

UNDEFINED COUNTER

During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement
referred to a TESTRAN counter that

Explanation:

was not in an open TESTRAN control
section.
System Action: The statement was
ignored.
User Response: If the job step is

to be executed again, define the
counter with a TEST DEFINE state-
ment in a control section that will
be open when the counter is
referred to.

TESTRAN CSECT ALTERED

Explanation: During execution of
the TESTRAN interpreter, a control
section containing TESTRAN state-
ments was modified.

System Action: The task was termi-
nated abnormally.

User Response: Find the error that
caused the TESTRAN control section
to be modified, correct it, and
execute the job step again.

MAXIMUM PAGES EXCEEDED

Explanation: During execution of
the TESTRAN interpreter, the limit
on TESTRAN output was exceeded.

IEGI1S8

IEGI19

IEGI20

System Action: The task was termi-
nated abnormally.

If excessive output
check for errors in
that cause output

User Response:
was produced,
the statements

and in the sequence in which they
were executed. If the output was
not excessive, specify a higher

limit in the MAXP operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

MAXIMUM STATEMENTS EXCEEDED

Explanation: During execution of
the TESTRAN interpreter, the number
of TESTRAN statements that can be
processed during a single task
exceeded the limit.

System Action: The task was termi-
nated abnormally.

User Response: Check the test out-
put for logical errors that would
cause excessive processing. If no
errors are found, specify a higher
limit in the MAXE operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

INVALID TESTRAN SVC--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super-
visor call (SVC) instruction. The
supervisor call instruction was not
inserted by the TESTRAN interpreter
in the current task.

System Action: No testing was per-
formed. Control was returned to
the location following the invalid
supervisor call instruction.

User Response:
to be executed
invalid instruction or correct

If the job step is
again, remove the
it.

INACTIVE TESTRAN SVC--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super-
visor call (SVC) instruction that
had been inserted during opening of
a TESTRAN control section in anoth-
er overlay segment. The segment
containing the control section had
been overlaid.

IEGI21

IEGI22

System Action: No testing was per-
formed. The displaced probliem pro-
gram instruction was executed, and
control was returned to the next
sequential instruction.

User Response: If the job step is
to be executed again, check all
TEST AT statements to ensure that
they specify problem ‘program
addresses in the same overlay seg-
ment. Correct any erroneous
addresses.

INVALID 'TEST ON' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST ON
statement should have branched to
another TESTRAN statement. The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check the
branch address which is specified
by the fifth operand of the: TEST ON
statement. Ensure that the control
section containing the address will
be open when the TEST ON statement
is executed.

INACTIVE 'TEST ON' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST ON
statement should have branched to
another TESTRAN statement. The
other statement was in an overlay
segment not currently in main stor-
age.

System Action: No branch c¢ccurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, c¢heck the
branch address, which is gpecified

by the fifth operand of the TEST ON
statement. Ensure that the control
section containing the address will
be in main storage when the TEST ON
statement is executed.

IEGI23

IEGI24

IEGI25

'DUMP' TRUNCATED AT 65K BYTES

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified dumping of a storage area
containing more than 65,535 bytes.

System Action: Only the first
65,535 bytes of the specified area
were dumped.

User Response: If the job step is
to be executed again, check the
starting and ending addresses for
the dump; these are specified by
the second and third positional
operands. Ensure that the differ-
ence between the addresses will not
exceed 65,535 bytes when the pro-
gram is loaded. If the program is
scatter loaded, both addresses must
be in the same control section.

INACTIVE COUNTER

Explanation: During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement

referred to a TESTRAN counter in an
overlay segment not currently in

storage.
System Action: The statement was
ignored.
User Response: If the job step is

to be executed again, define the
counter with a TEST DEFINE state-
ment that will be in storage when
the counter is referred to.

INVALID DATA LENGTH

Explanation: During execution of
the TESTRAN interpreter, the second
and fourth operands of a TEST WHEN
statement specified the location of
data in registers or main storage.
Both the type and length attributes
of this data were specified by a
DATAM operand. The data 1length
exceeded the 1limit for the data

type.
System Action: The statement was
ignored. The next sequential

statement was executed.

User Response: If the job step is
to be executed again, correct the
DATAM operand by specifying a data
length and type that are consis-
tent.

Appendix C: TESTRAN Messages 81

IEGI26

IEGI27

IEGIZ28

82

INVALID ‘'DUMP' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified a starting or ending

address that was higher than the
highest address in main storage.
The was

System Action: statement

ignored.

User Response: If the job step is
to be executed again, make sure
that the second or third operand of
the DUMP DATA or DUMP CHANGES
statement was specified correctly
and was not incorrectly modified.
Also check the contents of any
registers referred to in the oper-
and.

INVALID "WHEN' BRANCH ADDRESS
Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check this
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be open when the
TEST WHEN statement is executed.

INACTIVE 'WHEN' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was in an overlay

segment not currently in storage.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check the
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be in main storage
when the TEST WHEN statement 1is
executed.

IEGI29

IEGI30

IEGI31

INVALID SIGN ON DECIMAL FIELD

Explanation: During execution of
the TESTRAN interpreter, the second
or fourth positional operand of a
TEST WHEN statement specified the
address of a decimal value. The

sign position of the decimal value
contained an invalid bit configu-
ration.

System Action: The TEST WHEN state-
ment was ignored. The next sequen-
tial statement was executed.

User Response: If the job step is
to be executed again, correct the
sign in the rightmost byte of the
decimal value.

ADDR1 GREATER THAN ADDR2

During execution of
the TESTRAN interpreter, a DUMP
DATA, DUMP CHANGES, TRACE REFER,
TRACE FLOW, or TRACE CALL statement
specified a starting address that
was higher than the ending address
for the dump or trace.

System Action: The -dump or trace
was restricted to the single byte
at the starting address.

User_ Response: If the job step is
to be executed again, make sure
that the second or third operand
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers
referred to in the operand. If the
program is scatter 1loaded, both
operands should specify addresses
in the same control section.

TRACE TABLE FULL AT xxx

Explanation: During execution of
the TESTRAN interpreter, a TRACE
CALL, TRACE FLOW, or TRACE REFER
statement was executed when ten
traces were already active.

In the message text, xxx is the
address in hexadecimal of the
statement.

System Action: A new trace was
started, as specified by the state-
ment. However, the tenth trace,
the one that had been most recently
started, was suspended.

IEGI32

IEGI33

User Response: If the job step is
to be executed again, change the
testing logic so that no more than
ten traces are active at one time.

DEB UNAVAILABLE

Explanation: During execution of
the TESTRAN interpreter, the second
operand of a DUMP TABLE statement
specified dumping of a data extent
block (DEB). The associated data
control block (DCB), specified by
the third operand, was not current-
ly open.

System Action: The DUMP TABLE

statement was ignored.

User Response: If the job step is
to be executed again, make sure
that the data control block will be
open when the DUMP TABLE statement
is executed.

ILLEGAL 'TEST AT' DELETED FROM--XXX

execution of
the TESTRAN interpreter, control
was to be returned tc the problem
program at an address specified by
a TEST AT statement. At the return

Explanation: During

address was a TESTRAN supervisor
call (SvVC) instruction that dis-
placed either another supervisor

call instruction or a privileged
instruction. Before control was
returned, the original instruction
was replaced in the problem pro-
gram. :

In the message text, xxx is the
return address in hexadecimal in
the problem program.

System Action: If the original
instruction was a privileged
instruction, its execution caused

abnormal termination of the task.

If it was a
instruction, it was
mally and remained in
program until the TESTRAN inter=-
preter received control from a
supervisor call instruction insert-
ed at some other address. Then,
the original supervisor call
instruction was again displaced by
a TESTRAN supervisor call instruc-
tion.

supervisor call
executed nor-
the problem

IEGI3h

IEGI39

User Response: If the
instruction was privileged,
the TEST AT

original
change
statement so that it
inserts the supervisor call
instruction at another address.
Then execute the job step again.

If the original instruction was a
supervisor call instruction and if
the job step is to be executed
again, allow for the temporary dis-
placement of the TESTRAN supervisor

call instruction, or rewrite the
TEST AT statement.
PROGRAM CHECK DURING 'GO BACK' --

INSTRUCTION AT XXX

Explanation: During execution of
the TESTRAN interpreter, control

was to be returned tc the problem
program after execution of an
instruction that was displaced by
insertion of a ' TESTRAN supervisor
call (SVC) instruction. Execution
of the displaced instruction caused
a program interruption.

In the message text, xxx is the
address in hexadecimal of the TES-
TRAN supervisor call instruction.

System Action: The standard system
exit routine, or the routine speci-
fied by a SPIE macro-instruction,
was given control.

User Response: Correct the instruc-
tion causing the program interrup-
tion and execute the job step
again.

INACTIVE FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement referred to
a TESTRAN flag contained in an

overlay segment not currently in
main storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
flag with a TEST DEFINE statement

that will be in storage when the
flag is referred to.

Appendix C: TESTRAN Messages 83

IEGIul

IEGI42

IEGIu3

84

UNDEFINED FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement referred to
a TESTRAN flag not contained in an
open TESTRAN control section.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
flag with a TEST DEFINE statement

in a control section that will be
open when the flag is referred to.

INVALID "TRACE STOP' ENTRY AT xxX
Explanation: During execution of
the TESTRAN interpreter, the second

operand of a TRACE STOP statement

specified an address or sublist of
addresses. One of these addresses
was not the address of a TRACE
statement and was, therefore,
invalid.

In the message text, xxx 1is the

invalid address in hexadecimal.

System Action: The invalid address
was ignored. If the operand was a
sublist, all traces corresponding
to valid addresses were stopped.

User Response: If the job step is
to be executed again, correct the
invalid address.

'TRACE' STOPPED BY OVERLAY AT XXX
Explanation: During execution of
the TESTRAN interpreter, the prob-
lem program loaded an overlay seg-
ment that overlaid all the TRACE
statements for active traces.

In the message text, xxx 1is the
address in hexadecimal of the
instruction that caused the load-
ing.

System Action: All traces were
stopped. They were not automat-

ically restarted when the segment
containing the TRACE statements was
reloaded.

User Response: If the job step is
to be executed again, change the
program so that the TRACE state-
ments are not overlaid or be pre-
pared to restart any traces that
will be overlaid but will be
required subsequently.

IEGIHS

IEGIu7

IEGIuS

PROGRAM CHECK DURING 'TRACE' --

INSTRUCTION AT xxx

Explanation: During execution of
the TESTRAN interpreter, a program
interruption occurred during a
trace of the problem program.

In the message text, xxx 1is the
address in hexadecimal of the
instruction that caused the inter-
ruption.

System Action: The standard system
exit routine, or the routine speci-
fied by a SPIE macro-instruction,
was given control. Active traces
were not suspended.

User Response:
to be executed again,

If the job step is
correct the

instruction causing the program
interruption.
'TRACE' STOPPED BY SVC AT xxx

During execution of
the TESTRAN interpreter, a LINK,
XCTL, or RETURN macro-instruction
was executed during a trace of the
problem program.

Explanation:

In the message text, xxx is the
address in hexadecimal of the
supervisor call (SVC) instruction
in the macro-expansion.

All traces were
stopped. They were not automat-
ically restarted when control was
returned to the problem program.

System Action:

User Response: If the job step is
to be executed again, restart any
traces that were stopped, but are
required, upon return to the prob-
lem program.

FLOATING POINT REGISTER SELECTED
NO FLOATING POINT HARDWARE
JOB ABORTED

Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement referred to a floating
point register, but the computing
system did not include the floating
point option.

System Action: The task was termi-
nated abnormally.

TESTRAN

User Response: Either ‘ remdve all
references to floating point reg-
isters, and execute the jdb step
again, or execute the job step on a
computing system with the floating
point option.

MACRO-EXPANSION MESSAGES

IEGMO1

IEGMO2

IEGMO3

TEST HAS NOT BEEN OPENED

Explanation: A TESTRAN statement
precedes the first valid TEST OPEN
statement.

System Action: The statement was
deleted. Severity code = 8.

User Response: Precede the state-
ment with a valid TEST OPEN state-
ment.

NAME NOT SPECIFIED

A TEST OPEN statement
symbol in its

Explanation:
does not contain a

name field.

The statement was
12.

System Action:
deleted. Severity code =

User Response: Provide the required
symbolic name.

ENTRY POINT NOT SPECIFIED

Explanation: The second positional
operand (problem program entry
point) was omitted from a TEST OPEN
statement.

system Action: The
processed normally.
= ¥,

statement was
Severity code

User Response: No response is
required if the TEST OPEN statement
never receives control directly,
but instead is referred to by the
OPTEST operand of another TEST OPEN
statement. If the TEST OPEN state-
ment does receive control directly,
the omitted operand should be sup-
plied.

IEGMOU

IEGMO5

IEGMO6

IEGMO7

IEGMOS

THIS MACRO ESTABLISHES CSECT xXxx

Explanation: A TEST OPEN statement,
named xxx, initiates assembly of a
control section with the same name.

This control section will contain
all subsequent TESTRAN statements
until the next TEST OPEN macro-

instruction initiates a new control
section.

statement was
Severity code

System Action: The

processed normally.
= ¥,

xxx NOT A VALID OPERAND FOR yyy

Explanation: The first operand of a
TEST statement is XXX. This
operand is not valid following the
operation field yyy.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the first

operand.

XXX yyy ADDRESS. NOT SPECIFIED

Explanation: A required address
operand was omitted from a TESTRAN
statement whose operation field is
xxx and whose first operand is yyy.

System Action: The statement was
deleted. Severity code = 8.

User Response: Provide the required
address operand.

THIS TEST DEFINE xxx HAS NO XxXXS

Explanation: The third positional
operand (flag or counter sublist)
was omitted from a TEST DEFINE

statement. The second positional
operand, xxx, is either COUNTER or
FLAG.

System Action: The statement was
deleted. Severity code = 8.

User Response: Provide the required
sublist of flag or counter names.

xXx NOT A VALID TEST DEFINE OPERAND

Explanation: The second positional
operand of a TEST DEFINE statement
is xxx. This operand is invalid.

Appendix C: TESTRAN Messages 85

IEGMO9

IEGM10

IEGM12

86

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the second
operand. It must be either COUNTER
or FLAG.

MACRO NUMBER xxx IN yyy

Explanation: An identification num-
ber, xxx, was assigned to a TESTRAN
statement. This statement is in a
control section named yyy, which is
the name of the preceding TEST OPEN
statement.

statement was
Severity code

System Action: The
processed normally.
=*.

User Response: Keep the assembler
source and object program listing
for comparison with the listing of
TESTRAN edited output. The state-
ment identification number, which
appears in both listings, identifi-
es all output produced by the
statement.

SELECT CODE INVALID AND IGNORED

Explanation: The SELECT operand of
a TESTRAN statement does not speci-
fy a valid TESTRAN output class.

System _Acticon: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Specify a valid out-
put class number (an integer from 1
to 8), or compensate for the error
by changing the PARM parameter of
the EXEC statement for the TESTRAN
editor.

Xxxx NOT A VALID OPERATOR

Explanation: The third positional
operand of a TEST WHEN statement is
XXX This operand is not a valid
logical or relational operator.

System Action: The statement was
deleted. Severity code = 8.

User Response: Specify a vaiid log-
ical operator (AND or OR) or rela-
tional operator (LT, LE, EQ, NE,
GT, or GE).

IEGM13

IEGM14

IEGM17

IEGM18

INVALID LITERAL TYPE CODE

An operand of a TES-
literal in
either

TRAN statement is a

which the type code is
absent or invalid.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the operand
by specifying a wvalid type code
following the equal sign (=) of the
literal.

BOTH xxx AND yyy CANNOT BE LITERALS

Explanation: The second and fourth
positional operands of a TEST WHEN
statement are xxx and yyy, respec-
tively. Both are literals.
Because the arithmetic relationship
between two literals is constant, a
test of this relationship would be
meaningless.

The

System_ Action: statement was

deleted. Severity code = 8.

User Response: Replace one literal
with pointer to a main storage
location, a register, or a TESTRAN
counter.

DATAM IGNORED ON THIS FORM OF TEST
WHEN

Explanation: A DATAM operand
appears in a TEST WHEN statement
that tests the condition of a TES-
TRAN flag, or a relationship
between TESTRAN flags. The operand
is invalid in this context.

System Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Omit the DATAM
operand, oOr rewrite the statement
to test a relationship between
arithmetic variables.

FORMAT UNKNOWN. 1 BYTE HEX ASSUMED
Explanation: In a SET VARIABLE or
TEST WHEN statement, two operands
specify the location of data, which
is in registers or main storage.
The attributes of this data are not
defined in the symbol table nor are
they specified by a DATAM operand.
The data is, therefore, assumed to
be hexadecimal with a length of one
byte.

TEGM19

IEGM20

IEGM31

System Action: The statement was

processed normally. Severity code
= %,

User Response: If a 1l-byte hexa-
decimal format is not intended,

provide a DATAM operand that speci-
fies the correct attributes.

TEST WHEN WRITTEN IMPROPERLY

Explanation: The format of a TEST
WHEN statement is invalid.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the error in

the format.

NO RIGHT PAREN IN OPERAND XXx

Explanation: A positional operand
of a TESTRAN statement is an expli-
cit or indexed implied address. In
this operand, the right parienthesis
was omitted. The position of the
operand in the operand field is
XXX.

The statement was
right parnenthesis
present. Sever-

System Action:
processed; the
was assumed to be
ity code = 4.

User Response: Check the scource and
object program listing to determine
if assumption of the paxrenthesis
resulted in correct processing of
the statement. Rewrite the operand
if the processing was not correct.

COMMENT IS INVALID

Explanation: In a DUMP COMMENT
statement, the second positional
operand (a programmery-written
comment) either was omitted or is

invalid. If invalid, the operand
either is shorter than three char-
acters (including delimiting

does not contain
required apos-

apostrophes), or
one or both of the
trophes.

System Action: The statement was
deleted. Severity code = 8.

User Response: Specify or correct

the comment operand.

IEGM32

IEGM33

IEGM34

IEGMU4O

xxx NOT A VALID TABLE TYPE
Explanation: The second positional
operand of a DUMP TABLE statement
is xxx. This operand is invalid.

The statement was
Severity code = 8.

System Action:
deleted.

User Response: Correct the second
operand. It must be DCB, DEB, or
TCB.

INVALID REGISTER NOTATION

Explanation: The second positional
operand (a register sublist) of a
DUMP PANEL statement contains
invalid register notation.

System Action: The statement was
processed; the invalid operana was
ignored and dumping of all reg-
isters was assumed. Severity code
=4,

User Response:
essary.

No response 1is nec-

INVALID TYPE CODE IN xxX

Explanation: The operand DATAMN=XXX
contains an invalid type code.

System Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Correct the DATAM

operand.

A REQUIRED ADDRESS NOT SPECIFIED

Explanation: This message occurred
for either of two reasons:

e The second positional
(the starting address for a
trace) was omitted from a TRACE
CALL, TRACE FLOW, or TRACE REFER
statement.

operand

» The third positional operand (the
ending address for a trace) was
omitted from a TRACE CALL state-
ment.

System Action: The statement was
deleted. Severity code = 8.
User Response: Provide the

required address operand.

Appendix C: TESTRAN Messages 87

IEGMUL

IEGMU42

88

THIS TRACE STOP STOPS ALL TRACES

Explanation: The optional second
positional operand (trace sublist)

was omitted from a TRACE STOP
statement. This statement will,
therefore, stop all active traces.

statement was
Severity code

System Action: The
processed normally.
= ¥

-

User Response: If all traces
should not be stopped, provide the
optional trace sublist operand to
specify only those traces that are
to be stopped.

COMMENT IS INVALID AND IGNORED

Explanation: The COMMENT operand
of a TRACE statement is invalid.
The operand either is shorter than
three characters (including delim-
iting apostrophes), or does not
contain one or both of the required
apostrophes.

System Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

IEGM50

IEGM51

User Response:
operand.

Correct the COMMENT

2ND AND 3RD OPERANDS MUST BE
PRESENT

Explanation: One or more required
positional operands were omitted

from a SET statement.

System Action: The statement was
deleted. Severity code = 8.

User Response: Provide the

required operand or operands.

SET FLAG CONDITION MUST BE =0 or =1

The third positional
of a SET FLAG

Explanation:
operand (condition)

statement is invalid.

The statement was
Severity code = 8.

System Action:
deleted.

User Response: Write the third
operand as =0 or =1, or as the
symbolic name of a TESTRAN flag.

INDEX

Address Class number
as an external reference 30 (see class identification numker)
asserbled as a constant 19,71 Coding conventions 63
declared in a USING statement 19,30 Commas 63
explicit 30,71 COMMENT operand
indexed 17,27,64,71 descripticn 71
test point 15,67 example 29
Ampersand 29,71 function 65
Apostrcophe 29,71 Comments
Area in the comments field 12
(see storage area) in the operand field 29
ASM (job step) 35,39,42,45,73,74 Common control section 24
ASMEC {cataloged procedure) Ccmpleticn
definition 73 of testing 31
use 35 of a timer interval 28
Assembler Condition
E-level assembler program 35,39,41,44 ccndition code 26,55,59
listing 9,49 condition testing 11,68
options 39,42,45 exror conditions 8
processing of TESTRAN Conditional branching 68
macro-instructions 12 Constants 12
symktol tables 24 Control block 20-22,64,65
use with TESTRAN 11 Control dictionary
Assemkly } handling by the linkage editor
job control statements for 35,39,41,u4 37,41,44,47
listing 8,9,30 inclusion in a load module
of address operands 19,71 12,36,40,u43,46
of problem program and TESTRAN 11,30 production by the assembler 12
Assignment functions 13,70 Control flow, tracing of 25
Asynchronous exit routines 27 Control information
Attributes 23,64,65,69,70 recorded by the TESTRAN interpreter 11
used by the TESTRAN editor 12
Base address - (see also symbol tables)
for addressing dummy contrxol sections Control sections
19,28 defined by TEST OPEN (see TESTRAN
for addressing other object modules 30 control section)
Blank common control section 24 map of 20
Branch replaced by the linkage editor
by a TESTRAN statement 12,66,68,69 31,36,41,43,47
tracing of 26,64 Conventions
Branching functions 13,69 for coding TESTRAN statements 63
for describing TESTRAN statements 71
Call likbrary 37,41,44,48 Count
CALL macro-instruction 25,26,32,64 line ccunt for assemkly listing
Cataloged procedures (IBM-supplied) 36,39,42,45
definitions 73,74 page count for TESTRAN listing 39,47,67
use 35,36,38,39,41,44 Counter
Chained opening (see TESTRAN counter)

definition 67
examples 32,33

Change dump 17,64 Data control block 21,22,64,65
Changes Data extent block 21,22,64,65
in index values 17 Data set
to a dummy control section 19 (see TESTRAN data set)
to a storage area 16,64 Data types
Class (of test informationm) printing formats 51
definition by a SELECT cperand specificaticn 71
29,33,65,67 DATAM operand
identification in a TESTRAN listing description 71
53-61 exanples 23
selection for printing 38,46 functicn 65,69,70
Class identification nurxber DCB
in a job control statement 38,46 macro-instruction 20,28
in a SELECT operand 29,65,67 operand 20,21,65,71
in a TESTRAN listing 53-61 (see also data contrcl block)

Index 89

DEB
operand 20,21,65,71
(see also data extent block)
Decision-making functions 13,68
Default
assermbler options
printing format 24
Dictionary
(see control dictionary; external symbol
dictionary)
Displacement 30,71
DSECT operand
description 71
exarples 18,19,28
function 65
Dummy control section
addressing of 28
describing another module 30
dumping changes to 19
dumping of 17
tracing references to 28
Dump
definition 11
examples 15,16,19-21,29
formats 53-56
DUMP statements
examples
DUMP CHANGES 16,23
DUMP COMMENT 29
DUMP DATA 15,18,23,30
DUMP MAP 20
DUMP PANEL 20-23
DUMP TABLE 20
formats 71
funictions 64
Dynamic serial program 34

39,40,42,44,45

EDIT (job step)
Editing
linkage editing 11,12,36,39,41,44
TESTRAN editing 11,12,38,44
END statement 14-34
Entry point
in an END statement 14,15
in an ENTRY statement 31
in a TEST OPEN statement 15,66
Entry point register 66
ENTRY statement
assembler 33
linkage editor 31
Exroxr
detected by the TESTRAN interpreter
49,56
diagnostic message
ETXR operand 28
Execution, job control statements for
34,41 ,44
Exit routine 27
Exponent 51
External reference 30,33
External symbol 30,64,69,70
External symbol dictionary 30
EXTRN statement 33

38,45, 74

56,62,75-88

Field

(see operand field; storage field)
Flag

(see TESTRAN flag)

90

Format
printing format
contrcl of 22,31
of data types 51
cf a TESTRAN listing 49
statement format 71

GO
job step
load module
GO statements
example (GO TO) 17
formats 71
functions 69

42,45,47,74
20,37,41,44,73,74

Hexadecimal
as a default format 31,69
as an implied data type 23

Implicit control section 29,31

(see also TESTRAN control section)
Indexed addresses 19,27,64,71
Internal sukbroutine 69
Interpretive execution 26,27

Job control statements, writing of 35
Jok library 37,42,45

Keyword operands 63

Length attribute
of a symbol 64
specified by a DATAM operand
23,65,69-71
Library
(see call library; job library;
procedure library)
Limits on traces 27
Linkage editing
job control statements for 36,39,41,44
of problem program with TESTRAN
11,31,33
Linkage functions
Listing
(see asserwbly listing; TESTRAN listing)
Literal 68-71
LKED
cataloged procedure 36,73
jok step 36,39,42,45,73,74

12,66

MACRO ID
in an assembly listing (see MACRO
NUMBER)
in a TESTRAN listing 49-61
MACRO NUMBER 86
Macro-instruction
ATTACH 28,34
CALL 25,26,32,64
DCE 20,28
GET, PUTX 28
IDENTIFY, LINK, LOAD, XCTL 34
OPEN 20
RETURN 8,9
SAVE 8,9,15-20,25,28
SPIE, STIMER 28
TESTRAN 12
(see also TESTRAN statements)
MAXE operand 66,67

Maximur number
of dummy control section formats:
of executed TESTRAN statements 67
of internal subroutine levels 69
of pages in a TESTRAN listing 39,47,67

65

of traces 27
MAXP operand 66,67
Messages 56,62,75

NAME operand
description 71
examples 23
function 65

Opening of a TESTRAN control section 66,67
Operand field 63
Operation code
of a dumped instruction 24,51
of a TESTRAN statement 12
OPTEST operand
description 71

exanples 32,33
function 67

Options
assembler 35,39,42,45
linkage editor 36,40,42,H45
TESTRAN editor 38,46

(see also task options)
Ooutput identification
printing of 52

specification of 66
Overlay program 33
PARM parameter 35-46
Positional operands 63

Printing format

control of 22,31

of data types 51

of a TESTRAN listing 49
Procedure library 35
Program status word, dumping of 20
PSW

(see program status word)

Recording functions
Reference
external reference 30,33
reference ketween overlay segmernts
tracing of references 25
Registers
dunping of 20
specification in TESTRAN statements
RENT option 36,40,43,46
Reprocessing
of a load module 31,37,41,43,47
of a TESTRAN data set 29
Return of control 15,17,34,53,66,69
REUS option 36,40,43,46
Reusability 34
(see also RENT option; REUS option)

12,14,64

33

71

Scdle attribute 23,52,69-71
Scatter loading 27
Segment 33,34
SELECT operand
description 71
examples 29,30,33
function 65,67

Sel

SET
Spe

Sto

Sto

Sto
Sto

suk
Sub

Sup

svC

Sym

SYN
Sys
Sys

Tas
Tas
TAS

TAS

TAS

TCB

Tes

TES

ective retrieval
classification of information

selection of classified inform
38,46

statemwents 70,71

ed

of the TESTRAN editor 38,46
of the TESTRAN interpretex
rage area

allocated 22,24,27,54
defined by indexed addressies

66

for
ation

17

29,33

described by a dummy contxrol section

17,19
described by a symbol takle 2
durping changes to 16
durping of 14
length of 64,65
specificaticn of 64
tracing references to 25
rage field
defined by a DATAM operand
defined ky a DS or DC statemen

rage map, dumping of 20
rage requirements
of the TESTRAN editor 38,46

of the TESTRAN interpreter 66
list 63
routine call
ky a GO IN statement
tracing of 26,64
ervisor call
supervisor call instruction 5
tracing of 26,64
instruction
(see supervisor call instructi
bol takles
handling by the linkage editor
12,31,36,37,40,41,43,44, 46,04
production by the assembler
12,35,39,42,45
use by the TESTRAN editor 12,
AD operand 28
tem output 49
tem table
(see ccntrol block)

69

k control block 21,22,65
k options 66,71

ME (cataloged procedure)
definition 73

use 39

MEG (cataloged procedure)
definition 74

use 41

MEGED (cataloged procedure)
definition 74
use 44

operand 20,21,65,71
(see also task control klock)

4

t 24

4,67

on)

7

24

23,31,65

t information

classification for selective retrieval
29,33

recording and printing of 11

selective retrieval of 38,46

T option

assemblexr 35,39,42,45

linkage editor 36,40,42,u46

Index

91

Test point
definition of 15
identification of 49,52
specification of 67
SVC instruction at 54
TEST statements
examples
TEST AT 14,30,33
TEST CLOSE 34
TEST OPEN 15,29,32,33
formats 71
functions 66-68
TESTRAN control section

chained cpening by OPTEST 32,33,67

closing by TEST CLOSE 34,66
definition by TEST OPEN 66,85

insertion in overlay segments 33
replacement by the linkage editor

31,37,41,43,47
TESTRAN counter
definition of 66,67
setting of 70
testing of 68
TESTRAN data set

creation by the TESTRAN interpreter 11
definition by a SYSTEST DD statement

37,38,42,45,74
processing by the TESTRAN editor
29,38,46

TESTRAN editing, job control statements

for 38,44
TESTRAN editor
definition 11
listing
(see TESTRAN listing)
storage requirements 38,46
TESTRAN flag
definition of 66,67
setting of 70
testing of 68
TESTRAN interpreterx
control of
definition 11
linkage to 12,15,66
TESTRAN listing
commenting the listing 29

92

example of 9,49
interpretation of 49
maximum page count 39,47,67
TESTRAN macro-instructions 12
(see also TESTRAN statements)
TESTRAN messages 75
TESTRAN output
(see TESTRAN listing)
TESTRAN services
description 8
requests for 11,12
TESTRAN statement trace 49,62
TESTRAN statements
examples of 14-34
execution of 12,15
functions 12,63
output of 52-62
structure and format 12,71
Trace
definition 11
examples 26
printing formats 58-61
shifting a trace 27,28
starting a trace 25
stopping and restarting a trace
25-27,34
Trace area
identification of 59,60
liritation of 27
specification of 64
TRACE statements
examples 25-29
fcrmats 71
functicns 64
TTED (cataloged procedure)
definition 74
use 37
Type attribute
of a symbol 64
specified by a DATAM operand
23,65,69-71

USING statement 18,19,28

Variakle 13,70

CUT ALONG LINE

‘READER'S COMMENTS

Title: IBM System/360 Operating System Form: C28~6648~0
TESTRAN
Is the material: Yes No
Easy to Read? — —_—
Well organized? —_— —_—
Complete? J— —_
Well illustrated? _ J—
Accurate? —— —_
Suitable for its intended audience? —_— —_
How did you use this publication?
— As an introduction to the subject __ FPor additional knowledge
Other
Please check the items that describe' your position:
— Customer personnel — Operator S
—— IBM personnel —— Programmer —Systems Engineer
—— Manager ——Customer Engineer ——Trainee
—— Systems Analyst — Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
——Clarification on page(s)
—— Addition on page(s)
—_Deletion on page(s)
—— Error on page(s)

Explanation:

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fola

___Sales Representative .

fold

C2Z28-bb48-0

staple stapl
fold fol

T |

| FIRST CLASS |

| PERMIT NO. 81 |

| |

| POUGHKEEPSIE, N.Y. |

L 4

- -

BUSINESS REPLY MAIL |
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |

. FHEEn
NRRRN

NN
IBM CORPORATION
P.O. BOX 390 LT
POUGHKEEPSIE, N. Y. 12602

NERNE!

o — .

POSTAGE WILL BE PAID BY

el
~
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS RENRN 5
DEPT. D58 e
RN e
[N
_ e _ =]
fold a
o
s
O
N
[oe]
&
[e)]
E~
[e o]
|
o
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA OUnly]
IBM World Trade Corporation stapl

821 United Nations Plaza, New York, New York 10017
[International]

C28-6648-0

JIBIM]

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

UT DpojUTIg

¥°s°n

0-8%99-8¢0

	01
	02
	03
	04
	05
	06
	07
	08
	09a
	09b
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71a
	71b
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	replyA
	replyB
	xBack

