
Systems RefeJ~ence Library

IBM System/~~60 Operating System

TES TRAN

File No. 8360-37
Form C28-664B-O

TESTRAN is et facility for testing programs written
in the assembler language for execution under the
System/360 Operating System. It is intended for use by
the individual programmer in testing his own programs.

This publication explains how to use TESTRAN for
typical testing purposes, how to write essential job
control statements, and how to' interpret printed test
results. It formally describes TESTRAN statements,
cataloged procedures suppliea by IBM, and TESTRAN
diagnostic messages.

The information in this ,publication applies to
systems that include the prima.fy control program (PCP)
or provide multiprogramming .with. a fixed number of
tasks CMFT or Option 2). Amen~ments to this publica­
tion will supply information applicable to systems that
provide multiprograrruning with a variable number of
tasks (MVT or Option 4).

OS

,.,

First Edition (February 1967)

This publication is one of a set of three publications which entirely
replace and obsolete the publications IBM System/360 Operating System:
Data Management,, Form C28-6537, and IBM System/360 Operating System:
Control Program Services, Form C28-6541. The facilities and services
available through the use of supervisor and data management macro­
instructions are now described in the publication IBM System/360
Operating system: supervisor and Data Management Services, Form
C28-6646. The descriptions and definitions of the supervisor and data
management macro-instructions are contained in the publication IBM
System/360 Operating System: Supervisor and Data Management Macro­
Instructions, Form C28-6647. The facilities available through the use
of TESTRAN macro-instructions, as well as the descriptions and
definitions of the TESTRAN macro-instructions, are contained herein.

Specifications
time. Any such
Newsletters.

contained herein
change will be

are subject to change from time to
reported in subsequent Technical

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie# N. Y. 12602.

©International Business Machines Corporation 1967

This publication describes the TESTRAN
facility for testing programs written in
the assembler language. It introduces this
facility in Section 1,, which shows by an
example how TESTRAN helps in testing a
program, and shows how the reader can use
TESTRAN in testing his own programs.

Sections 2,, 3, and 4 guide the reader in
writing a source program, in writing job
control statements, and in interpreting
test results. The reader need not go
beyond Section 2 before completing his
source coding, and need not go beyond
Section 3 before actually testing his pro~
gram under the operating system. Also, he
need not read any section in its entirety,,
because each treats a number of independent
topics that can be referi:·ed to directly
from the table of contents.

Several appendixes provide? detailed des­
criptions of source statements,, cataloged
procedures. and diagno~tic messages.
Appendix A is of special inte!rest, because
it formally describes statements that are
informally described in Section 2. The
reader can use either Appendix A or Section
2 as the model for his own c:oding., depend ...
ing on the style of presentattion he pre­
fers.

PREREQUISITE PUBLICATIONS

The following publications are prerequi­
sites:

IBM System/360 Operating System: Intro­
duction. Form C28-6534

IBM system/360 Operating System: Con~
cepts and Facilities, Form C28-6535

PREF AC!:

IBM System/360 Operating System: Assem­
bler Language, Form C28-6514

Knowledge of the macro-language, as des­
cribed in the Assembler Lan9uage publica­
tion, is not required. However, the reader
should know the general functions of
system-defined macro-instructions (SAVE,
OPEN, GET, PUT, DCB) that are introduced in
the Concepts and Facilities publication and
are fully described in the publications:

IBM systenv360 Operating system: Super­
visor and Data Management Services, Form
C28-6646

IBM svstem/360 Operating system: Super-_
visor and Data Manaqement Macro­
Instructions, Form C28-6647

PUBLICATIONS REFERRED TO IN '!'HIS
PUBLICATION

The following publications are ref erred
to in this publication, but are not
necessarily prerequisites:

IBM System/360 Operating system: Assem­
bler CE) Programmer's Guide, Form
C28-6595

IBM System/360 Operating Bystem: Link~~
Editor, Form C28-6538

IBM System/360 Operatincr System: Job
Control Language, Form C2B-6539

IBM System/360 Operating System:
ges, Completion Codes, and
Dumps, Form C28-6631

Messa-
Storage

SECTION 1: INTRODUCTION •.

Testing Procedure • • • • •

Requesting TESTRAN Services
Structure of TES~CRAN Statements.
Functions of TES~rRAN Statements.

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS •

Basic Recording Functions • • • • •
How to Dump a Storage Area • • •
How to Dump Chan9es to a Storage Area.
How to Dump a Dummy Control Section. •
How to Dump Storage Maps, Registers, and Control Blocks •.
How to Control Output Format • • • • • • • • • •
How to Trace Control Flow and Ref eren9es to Data • . • • •
How to Comment the TESTRAN Listing .
How to Classify ~rest Information for Selective Retrieval •

Testing of Complex Programs • • • • • • • • •
How to Test a Module Already j.n a Library. • •
How to Enlarge on a Partially Tested Program •
How to Test an overlay Program • • • • • • • •
How to Test a Dynamic Serial Program • • • • •

SECTION 3: HOW TO WRITE JOB CONTROL STATEMENTS

Assembly ••

Linkage Editing •

Execution • • • •

TESTRAN Editing •

Assembly and Linkage Editing.

Assembly, Linkage Editing, and Execution •••

Assembly, Linkage Editing, Execution, and TESTRAN Editing •.

SECTION 4: HOW TO INTERPRET SYSTEM OUTPUT ••

Page Heading (••• TESTRAN OUTPUT •••)

Test Point Identification CAT LOCATION •••) ••

Statement Output (. ••• MACRO ID •••) •
DUMP CHANGES Output. .
DUMP COMMENT Output. • • • • • •
DUMP DATA Output • • •
DUMP MAP output. •
DUMP PANEL Output. •
DUMP TABLE Output. • • • • •
ERROR Message. • • • •
TEST CLOSE Output •••
TEST OPEN output •
TRACE CALL Output. •

CONTENTS

8

• • 11

12
12

• • 12

14

14
14

. 16
• • • 17

. 20
22
25

• 29
29

• • 30
• 30

32
• 33

34

• 35

• • • 35

36

• 37

• • • 38

• • • 39

41

44

• 49

52

52

52
53
53

• 53
• • 54

• 55
56

• 56
• 57

• • • 5 7
• 58

TRACE FLOW Output. • • • •
TRACE REFER Output •
TRACE STOP Output.

TESTRAN Statement Trace (EXECUTED STATEMENTS •••) ••

TESTRAN Editor Message (*** !EGE •••) • .

APPENDIX A: FORMAL DESCRIPTION OF TESTRAN STATEMENTS.

Coding Conventions. • • . • • •

Functions of TESTRAN Statements • •
DUMP and TRACE Statements.
TEST Statements .••••••

Linkage Statements. • . .
Specification Statements.
Decision-Making Statements ••

GO Statements.
SET Statements

Format of TESTRAN Statements.

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

Procedure ASMEC .
Procedure LKED. .
Procedure TASME .
Procedure TASMEG. .
Procedure TASMEGED.

Procedure TTED. . .
APPENDIX C: TESTRAN MESSAGES .

TESTRAN Editor Messages ••••

TESTRAN Interpreter Messages ••

TESTRAN Macro-Expansion Messages .•

INDEX

59
• 60

• • • • 61

62

• • 62

• • 63

• • • • 63

• • 63
• 64

• • 66
• • 66

• 67
68

• 69
• 70

• • • 71

• 73

• 73

• 73

• • • 73

• • 74

• • • 74

• • • • 7 4

• • 75

• 76

• • 77

• 85

• • • • 8 9

ILLUSTRATIONS

FIGURES

Figure 1. Use of ~rESTRAN to Detect an Error in a Program. • 9
Figure 2. Combination of TESTRAN and Problem Program Source

Modules. .• • • • . • • • •. • • • • . . • • • . • • • • . • 11
Figure 3. Execution Time Testing of the Problem Program • . . 11
Figure 4. Printinq of Test Information. . • • • • • • • . 12
Figure 5. Job control Statements for Assembly . • . • • • • 35
Figure 6. Job Cont.rel Statements for Linkage Editing. • • • 36
Figure 7. Job Control Statements for Execution. • . • • . 37
Figure 8. Job Control Statements for TESTRAN Editing. • • . 38
Figure 9. Job Control Statements for Assembly and Linkage Edi.ting • 39
Figure 10. Job Cont.rel Statements for Assembly, Linkage Editing,

and Execution. • • • • • • • . • • • • • • • • • • . • • • • • . 4 2
Figu,re 11. Job Control Statements for Assembly, Linkage Editing,
Execution, and TES~rRAN Edi ting • • • • • • • • • . 4 5

Figure 12. TESTRAN Editor Listing: Sampl.e Page • • . • • . . • • • • 50

TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Printing Formats for Data Types. . • • • • • • • •
Format of TESTRAN Statements • • • • • • . • • • .
Definitions of .Abbreviations Used in Table 2 • . •
D~finitions of Variables used in Tables 2 and 3 •.
Definition of Type, Length, and Scale. • . • •
TESTRAN Messages • • • • • • • • • • • • • • • •

• • 51
• 71
• 71
• 71
• 71

• • 75

SECTION 1: INTRODUCTION

The testing of a major program can
and coding of its routines. Although
the need to meet deadlines of ten
subsequent failures. And a failure in
delay an entire project.

be as time-consuming as the design
testing is always time well spent,
leads to incomplete testing and

a single control ;:;ection can

To help in testing programs, the IBM System/360 Operating System
offers a facility known as the test translator, or TESTRAN. This
facility helps to uncover faulty logic by providing printed information
about the actual working of a program. At the programmer's direction,
TESTRAN describes the changing contents of storage areas, registers, and
control blocks, and also the way in which control flows from one group
of instructions to another.

As an exarn~le, the test of a subroutine named PRIMER is shown in
Figure 1. For any positive number X, PRIMER is designed to find the
smallest number greater than X that is a prime number. The TES'l'RAN
listing shows that PRIMER contains an error, because, as shown at Cl) in
the figure, it returns a result of 3 rather than 2 for X = 1.

From the TESTRAN listing, the programmer can reconstruct the flow of
data and control that occurred during execution of PRIMER. As shown at
(2), the value X = 1 was loaded into general register 10 before
execution of the instruction assembled at 000064. branches were made to
ODD and GOT. The erroneous result +3 was stored from general register
11 before execution of the RETURN macro-instruction assembled at OOOOCO.

Tracing the flow of control, it is easy to find the instructions that
caused the error. Because X was an odd value, it was moved to register
11 and, at (3), increased by two. The result, being a prime number, was
stored as the answer. The error is obviously based on the assumption
that, if X is as odd number, the next larger prime number must also be
an odd number. In the single case X=l, the assumption is invalid.

The error in PRIMER is simple enough that it might easily be
recognized even without the help of TESTRAN. From this example,
however, it should be clear that TESTRAN could be most helpful in
finding hidden and complicated errors. In ad?ition, one should remember
that even so trivial an error could be difficult to find if the
subroutine were part of a large, complex program.

A TESTRAN listing, such as that shown in Figure 1, is printed after
execution of the program being tested. During execution, TESTRAN can
provide an additional service by checking for predefined error condi­
tions and taking corrective actions when necessary. For example, the
programmer might know that some value in his program should never exceed
a certain maximum. The value might be a result computed by a
subroutine, or it could be a counter used to control a processing loop.
TESTRAN could be used to check the value and, if the maximum were
exceeded, to substitute a lesser value or to pass control to some other
part of the program. Of course, the final results of the program would
probably be incorrect, but the continued processing would offer the
chance of finding other errors not related to the faulty loop or
subroutine.

8

TESTRAN LISTING

CD .
(~o:t;~,~l~~esult)- - - - - - - - - - - -

returned by
PRIMER is +3. TESTING
It should be +2.

TESTRAN OUTPUT DATE 66/084

1) MACRO ID 003 1 DUMP CHANGES

1) MACRO ID 002 1 TRACE FLOW , TTPRIME , FROM (PRIMER) 000064 005784, CC=O
SVC 26 G'OO' 0000003C G'Ol' 8000581C G'l4' 4000582A G'l5' 00005778

1) MACRO ID 002 1 TRACE FLOW / TTPRIME 1 FROM (PRIMER) OOOOCO 0057EO, CC=2
SVC 26 G'OO' 0000003C G'Ol' 8000581C G1 14' 4000582A G1 15 1 00005778

AT LOCATION TTSVC2 (CALLTEST) OOOOEA 00582A ENTER DATAGEN

1) MACRO ID 010, DUMP DATA STARTING IN SECTION CALLTEST

~~l :~SULT'

AT LOCATION (PRIMER) 000058 005778 ENTER TTPRIME

TIME 00/00 PAGE 5

(

A branch was
-- made to GOT

from relative
location 000094.

LOC OBJECT CODE I
000058
000058

PRIMER

ASSEMBL'I

CSECT
US ING :~ 1 15
SAVE (14,12)
L 12,0(l)

~~~~~~~~~~~~~~~~~~~~~~~ L 10,0(12) p. LTR 10,10 
BC 12,ERR 
SR 11,11 
SRDL 10,l 
LTR 11 1 11 

,-;;:-;;--;:;-;=;-:;--.-r:-:T":;-;:;---=,,..~~~~~~~~""'"""-=~~~""<'"'<""<~,rtB~N"Z:.,....,...,~O~D~D=.----.~~ 

~ 

000008 
000008 0001 
OOOOOA 0002 
000058 

F082 
0003 

OOODA 
00003 

189 ERR 
194 
195 
196 
197 

RETURN (14,12), 
LTORG 

END 

=H'l' 
=H 1 2 1 

Fi gt 



TESTRAN LISTING 

RAN OUTPUT DATE 66/084 TIME 00/00 PAGE 5 

qE , FROM (PRIMER ) 000064 005784, CC=O ~ 
1 01' 8000581C G1 14' 4000582A G1 15' 00005778 ~ 

~(~~:~!) r . · · . • ~~l~Wm 
~ IO(G'IO'). 

IX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF I 

qE , FROM (PRIMER ) OOOOCO 0057EO, CC:2 
1 01 1 8000581C G1 14' 4000582A G1 15 1 00005778 

~ 00582A ENTER OATAGEN 

IN SECTION CALLTEST 

ENTER TTPRIME 

( 

A branch was 
- made to ODD 

from relative 
I ocat ion 000072. 

( 

A branch was ) 
-- made to GOT 

from relative 
location 000094. 

ASSEMBLY LISTING 

LOC OBJECT CODE I ADDRl ADDR2 STM~ SOURCE STATEMENT! 

000058 
000058 

PRIMER CSECT 
USING 
SAVE 

~~~~~~~~~~~~~~~~~ 
~...::...::...::..;:.~~~~~~..u..:~;,..:,,._:,,~..i..i..:u...;..~~~~~~c:w..:~ LTR

:~, 15
(14, 12)
12,0(l)
10,0(12)
10,10
12,ERR
11, 11
10, 1

...--;;"'"""...,,-;..,.--.,--;-::-,.--="'=-;:-:;;-.-.~t""<"-.-.,....,--.-.....,.......,.......,~"""""""~~~~..--.-.....--.-1

000008
000008 0001
OOOOOA 0002
000058

189 ERR
194
195
196
197

BC
SR
SRDL
LTR 11, 11

ODD

RETURN (14,12),RC=O
LTORG

END

=H'l'
:H 1 2 1

ERROR EXIT FROM PRIMER

E 01FEB66 3/30/66

odd, X+2 was the first

(

Because X was)

tentative result.' The
logic errs, because
X+l is the correct
result when X=l •

Figure 1. Use of TESTRAN to Detect an Error in a Program

Section 1: Introduction 9

TESTING PROCEDURE

Requests for TESTRAN service$ are codeJ in a TESTRAN source modulE::.
This module is combined with the program to be tested (the problem
program) either by the assembler or by the linkage editor, as shown in
Figure 2. In the first case, the TESTRAN and problem program source
modules are assembled together an<!l result in a single object modulE. In
the second case, thE~ source modules are assembled separately, result in
separate object modules, and are processed by the linkage editor to form
a single load module.

TEST RAN
Source
Module

TES TRAN
Object
Module

I

L

___ Combination of module:; by the assembler
- --- Combination of module:; by the linkoge editor

Combined
Object
Module

Combined
Load
Module

---- -----------

Problem
Program
Source
Module

I

j_

Problem
Program
Object
Module

T
_I

Figure 2. Combination of TESTRAN and Problem Program Source MoJ.ules

'rhe single load module is loaded and executed as a problem program.
Requests for test services are interpreted by the TESTRAN interpreter, a
«;;omponent of the control program th?t·t receives control durin9 program
.".:-in-t;:erriipti'onS:. A.s slhown in Figure 3, the TEST~AN interpreter places
::·test ihformat:ion ijn C3;. TE$T~AN data set., along with control information
·,w:J:l.ich it >C,<;>pies frorr. the unloaded form o.f the load module. '

Problem
Program

l'ESTRAN
Interpreter

Control Information/'

I
I
\
\

\
\

(

Load
/ Module

------- \c --Test lnformatio;-·-- __ TESTRAN
Data Set

Figure 3. Execution Time 'l'esting of the Problem Program

Test information, in the form of dumps and traces, is printed by the
TESTRAN editor, as shown in Figure 4. A dump is a symbolic representa­
tion of data as it existed at a particular time during execution of the
problem program. .A. trace is a record of control flow or references to
data over a period of time.

Section 1: Introduction 11

TEST RAN
Data Set ------ - - - -- - - ----

Figure 4. Printing of Test Information

Printed
Test
Information

Like the assembler and the linkage editor, the TESTRAN editor is a
processing program that is executed as a job step. It uses the control
information copied from the load module to edit test information into a
meaningful symbolic format. The control information includes symbol
tables and a control dictionary for each object module that is included
in the load module. The control dictionary is produced as a standard
feature of assembly, while the symbol table is produced as an optional
feature. Both are placed in the load module as an optional feature of
linkage editing.

REQUESTING TESTRAN SERVICES

Requests for TESTRAN services are written as statements in the
TESTRAN source module. Each statement is a coded TESTRAN rnacro­
instruction, which the assembler automatically replaces with a series of
constants. The constants, in effect, are a control statement that
directs the TESTRAN interpreter to perform a specific operation.

When the interpreter performs a requested operation, the operation
itself determines whether the next sequential macro-instruction is
interpreted, or whether a logical branch is made to some other
macro-instruction. The process of interpreting a TESTRAN macro­
instruction thus resembles the execution of a machine instruction, and
is more conveniently ref erred to hereafter as the execution of a TESTRAN
statement.

STRUCTURE OF TESTRAN STATEMENTS

The structure of TESTRAN statements is similar to that of statements
in the basic assembler language. Each statement includes an operation
code and one or more operands. The operation code can be preceded by a
symbolic name, and the operands can be followed by a comment.

The operation code and first operand together define the type of
operation to be performed, and are used as generic names for statements.
For example, a DUMP MAP statement dumps a map of control sections and
allocated storage areas; the operand MAP distinguishes this statement
from DUMP statements that request other types of dump operations.

FUNCTIONS OF TESTRAN STATEMENTS

The operations requested by TESTRAN statements provide the following
general functions:

12

• Recording functions, which provide dumps and traces of the problem
program.

• Linkage functions, which control linkage to the TESTRAN interpreter.

• Decision-making functions, which provide condition testing and
conditional branching.

• Branching functions, which provide uncorraitional branching and
subroutine capabilities.

• Assignment functions, which control values of variables in the
problem program and of special variables used in decision making.

These functions are provided by statements that are formally
described in Appendix A. Functional descriptions of the statements
appear in thE: next section, which describes how to write statements for
typical test applications.

Section 1: Introduction 13

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS

This section shows how to write TESTRAN statements to perform typical
testing functions. It 9ives examples of statements for performing each
function, and the reader can adapt these examples to his own needs. If
there is some question about adapting a specific example, refer to
Appendix A for complete, formal descriptions of the statements involved.

Section 2 has two parts:

• Basic Recording Functions.
• Testing of Complex Programs.

The first part shows how to program various types of dumps and traces.
The second part shows how to test programs that are not simply
structured or not formed from single object modules.

The first part of this section should be of general interest, while
the second should be read or ignored according to individual need. Each
part discusses various topics, and these also should be studied in a
selective fashion.

BASIC RECORDING FUNCTIONS

This part of Section 2 describes various types of dumps and traces.
Remember that a dump represents data as it exists at a particular time;
a trace represents control flow or references to data over an extended
period of time.

HOW TO DUMP A STORAGE AREA

Assume that the program containing the area is very simple and can be
represented as follows:

ENTRY SAVE (14,12)

PROCESS MVC MYDATAC20),0(6)

MYDATA DC C'DATAAREA'
DC F'0,1,2'

END ENTRY

The problem might then be to dump the 20-byte area beginning at MYDATA,
just before the contents are changed by PROCESS. If so, the next
listing shows a solution:

14

Execution begins at NEWENTRY, the beginning of a TESTRAN sequence that
means "Enter the problem program at ENTRY; at PROCESS, dump the area
from MYDATA to MYDATA+20." In this sequence, only the first statement
is actually executed. This statement uses the information in another
statement (TEST AT') to synchronize testing specified by a third
statement (DUMP DATA) with execution of the problem program. It
establishes a test point Ca special link to the 'I'ESTRAN interpreter) at
PROCESS, and passes control to ENTRY. When PROCESS is reached, the
interpreter executes the DUMP DATA statement; it returns control to the
problem program, where the MVC instruction is executed. The dump is
printed as:

0090
005F68

MYDATA
DATAAREA +O +1 +2

assuming that MYDATA was assembled at location 000090 and loaded at
location 005F68.

To dump more than one area, the programmer simply writes additional
DUMP DATA statements:

To dump these areas at more than one point in the program, he specifies
additional instruction addresses in the TEST AT statement:

To dump different areas at various test points, he uses additional TEST
AT statements:

Section 2: How to Write TESTRAN Statements 15

HOW TO DUMP CHANGES TO A STORAGE AREA

The method is the same as for dumping a storage area; the basic
difference is that CHANGES replaces DATA in the DUMP statement:

Execution begins at NEWENTHY and continues at ENTRY. Before PROCESS is
executed, the TESTRAN interpreter dumps thE~ 20 byte area at MYDATA. If
PROCESS is executed three times, the dumps may appear as:

0090
005F68

0090
005F68

OOAO
005F78

MYDATA
DATAAREA

MYDATA
WORKAREA

-40

OOAO
005F78 -41

+O +1 +2

+3

The first dump shows the full contents of the four fields assembled at
000090 and loaded at 005F68. The second shows changes to the first,
second, and fo1nth fields, and shows that the third field is uncha~ged.
The third dump shows that only the fourth field has cLanged since the
previous dump.

To show cnanges to an area, a DUMP CHANGES statement must be ex~cuted
more than once. If PROCESS were executed only once, the example would
have to be changed to specify additional test points:

16

Change aumps would then occur at the test points PH.OCESS, INPUT, and
INPUT+18. There might be other TESTRAN statements to be E:~xecuted,
however, and these statements might not be the same for each test point.
In this case, it would be necessary to use branching statements:

The statement CONTINUE is the last executed at each test point. The GO
TO statements in no way affect the logic of the program neinq tested;
control is returned to each test point in the normal manner.

To dump changes to more than one area of storage, the progra:rrmt;r
should specify each area in a separate statement:

Each statement produces a separate series of change dumps, even if two
statements should specify the same storage area. Each dump shows
changes to the area since the last dump by the same statement.

Changes
addresses.

in index values redefine areas that are specified by indexed
For example, the statement

DUMP CHANGES,ALPHA(4),ALPHA+60(4)

dumps a 60-byte area whose location depends on an index value in general
register 4. On the first execution of the statement, the index value
might be zero, causing a dump of the area from ALPHA to ALPH~+60. On
the next execution, the index value might be 40, redefining the aurnped
area as that from ALPHA+40 to ALPHA+lOO. The second dump would show
changed fields from ALPHA+40 to ALPHA+60 and all fields from ALPHA+60 to
ALPHA+lOO.

HOW TO DUMP A DUMMY CONTROL SECTION

A dummy control section describes a storage area without actually
reserving the area. The area may be allocated during execution, or may
be reserved by a regular control section, as in the following example:

Section 2: How to Write TESTRAN Statements 17

This program defines a dummy control section named DUMMY, and assigns it
the storage reserved for MYDATA. The example otherwise is the same as
that used in "How to Dump a Storage Area." The instruction named
PROCESS here refers to DUMMY rather than MYDATA, but its effect is the
same as in the earlier example.

Assume that DUMMY is to be dumped after PROCESS has been executed,
and that the 20-byte area at MYDATA is to be dumped as before. The
program then becomes:

As before, execution begins at NEWENTRY, control is passed to ENTRY,
and the area of MYDATA is dumped at PROCESS. After PROCESS is executed,
the new statements dump the 20 bytes from COUNT to NUMBERS+16. Thus,
the two dumps of the same area might appear as follows:

18

0090
005F68

0000
005F68

MYDATA
DATA AREA +O +1 +2

NUMBERS COUNT
00002A6 -647 +30 -1

The dumps show that MYDATA was assembled at 000090 and. that COUNT was
assembled at 000000; both had the same location (005F68) when dumped.

Note that a special operand CDSBCT=DUMMY) points to a dummy control
section, which is made adqressable by a USING statt.ment. A USit~G
statement is not needed preceding the other TESTRAN statements, since
their address operands are assembled as A-type aadress cor.stants.

A dummy control section may describe more than one area of storage;
for example, it may define t.ach of several buffers in a buffer pool. If
the areas are conti9uous, they can. be dumped by a single statement, ns
in the following example:

PROCESS moves data into a 60-byte area beginning at DUMMY,. i.e., at
MYDATA. This a.tea is dumped as three 20-bytE:! areas
< CNUMBERS+16)-COUNT==20), each area having the format defined in DUMMY:

0000 COUNT NUMBERS
005F68 000002A6 -647 +30 -1

0000 COUNT NUMBERS
005F7C 00000006 +4 +O -2

0000 COUNT NUMBERS
005F90 OOOOOlCF +278 -64 -89

Changes to a dummy control section can be dumped, just as changes to
a regular control section. For this purpose, a DUNP CHANGES statement
Cwith a DSBCT operand) is used in place of a DUMP DATA statement. For
examples of the use of DUMP CHANGES, refer to "How to Dump Changes to a
Storage Area."

Section 2: How to Write 'l'ESTRAN Statements 19

HOW TO DUMP STORAGE MAPS, REGISTERS, AND CONTROL BLOCKS

For simplicity, assume that a storage map, registers, and control
blocks should all be dumped at X in the following program:

START

x

.MYDCB

SAVE

OPEN

DCB
END

(14,12)

(MYDCB, (OUTPUT))

DSORG=PS I MACRF'= (PM) I DDNAME=MYDD
START

The unshaded statements below perform these functions:

Execution begins at NEWSTART, where X is established as a test point.
Control passes to START, and the DUMP statements are executed at x. The
dumps appear as follows:

Storage Map (recorded by DUMP MAP) :

NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH-DEC HEX

GO LOADED PROGRAM NEWS TART 000000 009020 47 2F
LOADED PROGRAM 000030 009050 172 AC

IEGTTRNK LOADED PROGRAM 009120 1048 418
IEGTTROT LOADED PROGRAM 07F3DO 1160 488

OBTAINED STORAGE 07F858 96 60
OBTAINED STORAGE 07F948 560 230
OBTAINED STORAGE 07FBBO 360 168

Registers <recorded by DUMP PANEL):

' G'OO' 0007FD58 G'Ol' 0007FD58 G'02 1 00000058 G'03 1 50009050 G'04' 00006EE8 G'05' 0007FF5C G'06' 000054BO G'07' 00000000
G'08 1 0000003C G'09' 40011062 G'lO' 0007FF1C G1 11 1 0007FF5C G'l2' 00000180 G'13' 0007FE98 G'l4' 50009088 G'l5 1 92007750
PSW FF 1 5 0026 4 0 00908A CC=O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

F'O' 00000000 00000000 F 1 2' 00000000 00000000 F 1 4' 00000000 00000000 F 1 6' 00000000 00000000

20

Task Control Block (record~d by DUMP TABLE,TCB)

SECTION FIELD NAME CONTENTS

TCBFRS 00000000 00000000 00@00000 82000170 00040000 0007DCB8 00000000 00000000
TCBRBP 00009100
TCBPIE 00000000
TCBDEB 0007FCDC
TCBTIO 0007FF5C
TCBCMP 00000000
TCBTRN 0007F948
TCBMSS 00005670
TCBPKF 10
TCBFLGS 00000000 00000000 00000000 00000000 00000000
TCBLMP 000
TCBDSP 000
TCBLLS 0007F3A8
TC BJ LB 00000000
TC BJ SE
TCBGRS

00000000
OOOOOOC6
0007FAFO

000054BO 80P092F4 0007~B04 4007FF844 50004ClA 00000001 0007FAFO 0007FA90 0007FE58
04000030 OlOOOOAC 40404040 40404040 40404040

TCBIDF 01000000
TCBFSA 404040
TCBTCB 40404040
TCBTME 40404040

Data Control Block (recorded by DUMP TAB:LE,DCB,MYDCB)

SECTION FIELD NAME CONTENTS

DEVICE DEPENDENT INTERFACES

DCB 00000000 00000000 00000000 00000001 00810000

COMMON INTERFACE

DCB 0207FC10 00004000 00000001

FOUNDATION BLOCK EXTENSION

DCB 42000001 80000000

FOUNDATION BLOCK

DCB 00400050 0007FCDC 92

ACCESS METHOD INTERFACES

DCB 00775000 007B880C 00000100 09005028 28282840 7FBEOOO 07FC!3800 07FCB800 00005000 00000100
00000000 00884848 70201EC9 C5C7PE3 D9D5C600 C0040F6 40404000 00000000 00000002 0026FE06
78000140 !10404040 40.404000 00000000 00000002 027FE06 78000140 40404040 40404000 00000000
00000002 0028FE06 78000140 40404040 40404000 0000000 00000002 0029FE06 18000140 4(404040
40404000 00000000 00000002 002AFE06 78000340 0404040 40404000 00000000 00000002 OC2DFE06
78000106

Data Extent Block (recorded by DUMP TABLE, DEB, MYDCB)

SECTION FIELD NAME CONTENTS

PREFIX SECTION

DEBWKARA 00
DEBDSCBA 00000000 000000
DEBDCBMK 00000000 00000001 1O•O11111 11100000
DEBLNGTH DC

NUCLEUS

DEBNMSUB 003
DEB TC BAD 000180
DEBAMLNG 004
DEBDEBAD 07F87C
DEBOFLGS 11001000
DEBIRBAD 000000
DEBOPATB 00001111
DEBSYSPG 000000
l'>EBNMEXT 001
DEBUSRPG 000000
DEBPRIOR 000
DEB EC BAD 000000
DEBPROTG 001
DEBDEB ID 015
DEBDCBAD 00909C
DEBEXSCL 002
DEBAPPAD 07FCB8

EXTENT

DEB 330020DO

ACCESS METHOD

DEB 00010000

SUBROUTINE ID

DEB ClD9ClD2 1000

section 2: How to write TESTRAN statements 21

The format of each dump is explained in "Section 4: How to Interpret
System Output." Note that:

• The storage map shows the length and location of each program that
was loaded and each storage area that was obtained for the active
task Cjob step). The first program (GO) is the problem program; the
others are components of the TESTRAN interpreter. GO includes two
control sections: NEWSTART, which is defined by the TEST OPEN
statement and contains all five TESTRAN statements, and an unnamed
control section, which contains the problem program instructions.

• The dump of registers includes both the general and floating-point
registers, assuming that the computing system includes the floating­
point option. It also includes the program status word CPSW) that
was stored when the problem program was interrupted at the current
test point.

• The dumps of control blocks show the task control block CTCB) for
the active task Cjob step), the data control block (DCB) named
MYDCB, and the data extent block (DEB) created during the opening of
MYDCB.

In Figure ~, the contents of all registers appear in hexadecimal
format. The programmer can specify a different format (such as
fixed-point or floating-point) in the DUMP PANEL statement (refer to
"How to Control Output Format)." Since the specified format applies to
a.11 registers dumped by the statement, it is often desirable to use
separate statements for dumping general and floating-point registers:

DUMP PANEL,G'0,15'
DUMP PANEL,F'0,6'

The first statement dumps the general registers 0 to 15; the second
dumps the floating-point registers 0 to 6. The programmer can also
select spedific registers, as in the statement

DUMP PANEL, (G'4',G'SUM',G'8,9',G'13,1')

which dumps only the following general registers:

• Register 4.
• The register whose number is the value of the symbol SUM.
• Registers 8 and 9.
• Registers 13, 14, 15, O, and 1.

Of course, if the programmer wishes to dump specific general and
floating-point registers, an<i to dump both in thE! same format, he can
specify them in a single statement, such as:

DUMP PANEL,(G'5',F'SUM',F'4,6',G'8,10')

HOW TO CONTROL OUTPUT FORMAT

The TESTRAN editor determines the format of the output from most
TESTRAN statements. However, the statements

DUMP DATA
DUMP CHANGES
DUMP PANEL
TRACE REFER

produce output whose format may be determined in any of three ways:

22

1. By special op~rands.
2. .By symbol tableH,
3. By default.

By understanding each way of determining format, and the conditions
under which it is used, the programmer can control the format of data
recorded from regisb~rs and main storage.

SPECIAL OPERANDS: There are two operands by which the programmer can
specify output format:

• The DATAM operand, which defines storage field or register tormat.
• The NAME operand, which defines a field name.

The DATAM operand can be used in any of the four statements; the NAME
operand can be used in a DUMP DATA or DUMP CHANGES statement.

The DATAM Operand: 1rhe DATAM ope~and specifies the format of a field or
register in terms of three attributes:

• Type
• Length
• Scale

The specification of attributes is similar to that in an assembler DC or
DS statement and is illustrated by the following statements:

Dl DUMP DATA, INPU'I'+6 ,DATAM=L 74
D2 DUMP CHANGES, 0CO 1 13) , 7 2 (0, 13), DATAM=L4
D3 DUMP PANEL,, FI 0 i 6 I , DATAM=D
Tl TRACE REFER,TABLE,TABLE+80,DATAM=FL4S-2

Dl dumps a single field that begins at INPUT+6. The length of the
field is 74 bytes; because no type is specified, the contents of the
field are printed as hexadecimal data.

D2 dumps a series of up to eighteen 4-byte fields, each containing
changes to the conte~nts of a 7 2-byte storage area.

D3 dumps the old program status word (OPSW) and the contents of the
floating-point registers. The type of data in the registers is
specified as D (long floating-point), which implies a length of 8 bytes
for each.

Tl traces references to 4-byte fields within an 80-byte area. The
trace shows the contents o.f a 4-Qyte fixed-point field beginning at each
address to which a reference is made. The contents before and after the
reference are shown multiplied by the scale factor c2- 2 >.

The NAME Operand: The NAME operand specifies a symbol that is printed
as the name of a field dumped. by a DUMP DATA or DUMP CHANGES statement.
Its use is illustrated by the following statements:

Dl DUMP DATA,. TABLE (6) I DATAM=CL8 I NAME=FUNCTION
D2 DUMP CHANGES,MATRIX,MATRIX+160,NAME=NEWMATRX

Dl dumps a single 8-byte field located at TABLE(6). FUNCTION is
printed as the name of the field.

D2 dumps a 160-byte area, which may contain any numner of fields.
NEWMATRX is printed as the name of the first field that is dumped.

section 2: How to Write TESTRAN Statements 23

SYMBOL TABLES: Symbol tables are part of the control information that
is passed to the TESTRAN editor by the TESTRAN interpreter. (See Figure
3.) Produced by the assembler, each symbol table describes fields
defined in a named, unnamed, dummy, or blank common control section.
The TESTRAN editor uses the symbol tables to:

• Determine field formats when the DATAM operand is omitted.
• Provide field names when both the DATAM and tne NAME operands are

omitted.

A blank common control section is common to two or more object
modules, and is therefore represented by more than one symbol table. To
print fields defined in a common control section, the TESTRAN editor
identifies the object module in which the test point was located, and
uses the symbol table for the control section as defined in that module.

Except in the case of a blank common control section, the symbol
tables define only one format for a given area of storage. They do not
define the format of fields that are overlapped by other fields, as in
the following sequence:

LONGFLT OS
SHORTFLT DS

ORG
ADRLONG DC
ADRSHORT DC

D
E
*-8
A(LONGFLT)
A(SHORTFLT)

This sequence defines fields that together occupy three full words.
LONGFLT occupies the first two words, the second of which is overlapped
by ADRLONG. SHORTFLT occupies the third word and is overlapped by
ADRSHORT. If the three words were dumped, the first would be printed in
default format, and the second and third would be printed as normal
address constants.

DEFAULT: The fields described in the symbol tables are storage areas
and constants defined by assembler DS and DC statements. Instructions
are described only if named, and are therefore assumed to be the
contents of any program area whose format is not defined in the tables.
The area contents are analyzed for operation codes, which are used to
determine the printing format for each instruction.

Unless treated as a dununy control section, an allocated area of main
storage is not represented by a symbol table. By default, data from
such an area is printed in 4-byte hexadecimal fields. Data from
registers, including floating-point registers, is also printed in this
format.

24

HOW TO TRACE CONTROL FLOW AND REFERENCES TO DATA

Suppose that the following sequence is the program to be traced:

BEGIN SAVE (14,12)

REPEAT ST 6, MYDATA

DECIDE BC 4,RE:PEAT
CONTINUE CALL ROU'rINEl

NEXTSTEP SR 5,5

MYDATA DC F'O'

END BEGIN

The problem is to trace control flow f com BEGIN to NEXTSTEP and to trace
references to the area beginning at MYDATA. The trac.es are to be
started at BEGIN and are to be stopped at NEXTSTEP.

The next sequence shows a solution:

Section 2: How to Write TESTRAN Stat1~ments 25

Execution begins at NEWBEGIN, where a TEST OPEN statement establ.ishes
BEGIN and NEXTSTEP as test points. NEWBEGIN passes control to BEGIN,
where three traces are started:

• The TRACE FLOW statement starts a trace of branches and supervisor
calls to, from, or within the area from BEGIN to NEXTSTEP.

• The TRACE CALL statement starts a trace of subroutine calls by CALL
macro-instructions located between CONTINUE and NEXTSTEP.

• The TRACE REFER statement traces references by instructions that
could change data in the 72-byte area beginning at MYDATA.

To perform these traces, the TESTRAN interpreter retains
executes the program interpretively, starting at BEGIN.
the traces are stopped and execution continues normally.

control and
At NEXTSTEP,

The printed output of the three traces can be represented, in
abbreviated fashion, as follows:

Output

AT LOCATION BEGIN •••

• • • TRACE FLOW •••
STARTED

••• TRACE CALL •••
STARTED

••• TRACE REFER •••
STARTED

••• TRACE REFER ••• TO MYDATA •.• FROM REPEAT •••
BEFORE +O AFTER +16

••• TRACE FLOW .•• FROM DECIDE ••• TO REPEAT ••• CC=4

••• TRACE CALL .•• TO ROUT1NE1 ••• AT CONTINUE •••

AT LOCATION NEXTSTEP •••

••• TRACE STOP,ALL

Recorded
During Execution of:

TESTRAN Statements

Problem Program

~ TESTRAN Statements

The output shows that the traces were started at BEGIN and stopped at
NEXTSTEP. It shows that the following events occurred during execution
of the problem program:

26

• A reference was made to MYDATA by REPEAT, resulting in a new value
of +16.

• A branch was made from DBCIDE to REPEAT on condition code 4.

• A call was made to ROUTINE1 from CONTINUE.

Complet~ ()utp.ut, C!S actually printed by the TESTRAN editor, would also
show· the images of certain instructions, the values of s:yrnbolic
addresses, and. the contents of pertinent registers.

suppose now that only the traces of control flow should be stopped at
NEXTSTEP, and that the trace of teferences should be continued until the
end of the program. The TESTRAN statements should then be written as
follows:

The TRACE STOP statement here stops only the traces started by the
statements TRACE#l and TRACE#2. · The TESTRAN interpreter continues its
interpretive execution of the problem program, and records refE:rences to
the area at MYDATA until termination of the task Cjob step).

The TRACE STOP statement sp:eeds up execution by reducing the number
of traces. While any trace is i:n effect, the TESTRAN interpn~ter must
examine each instruction before it is executed to determine whether it
will cause some event, such as a branch, that must be record4=d. This
interpretive execution is necessarily slow, and the time it r1equires is
reduced by stopping each trace when it is no longer needed.

Testing efficiency is also increased by limiting the size of storage
areas specified in TRACE stat~ments. For example, if there were three
adjoining areas, all could be specified as a single area in a single
statement; however, if only the first and third areas were of real
interest, it would be better to eliminate output from the second area by
using two TRACE statements to specify the first and third areas
separately.

With resp~Gt; to limiting traces, the following specific limits should
be kept ;i~ Illind: ·

•· A tra<;;$ ar~.a s.hoµld lie entirely vtithin a single control section or
~llo(;at~d storitge a'i·e;a. If :Lt does. 'not, the area may be distorted
by $datter · lc)ading of c0ntrol sections or by variation in the
relative locations· of separately allocated areas. Also, i.f a trace
area begins in one control section and ends in another, only data
from the first control section can be formatted properly.

• No more than b:m traces (corresponding to ten TRACE statements> can
be performed simultaneously. If an eleventh trace is started, the
tenth trace the one most recently started is stopped
automatically.

A stopped trac4e can be rest~rted by executing again Cat a later test
point) the TRACE CALL,, TRACE 'FLOW, or TRACE REFER statement that
originally started the trace. In the same way, an active trace can be
shifted to a new a:rea if the area is specified by indexed addresses
whose values have changed since: the trace was started.

Traces of Asynchronous Exit Routines: Traces are stopped automatica.lly
when any of the following routines is entered:

section 2: How to Write TESTRAN Stati:ments 27

• The end of task exit routine specified by the ETXR operand of an
ATTACH macro-instruction.

• The timer completion exit routine specified by a STIMER macro­
instruction.

• The error analysis exit routine specified by the SYNAD operand of a
DCB macro-instruction.

To trace execution of one of these routines, it is necessary to start
traces at a test point within the routine. When the routine returns
control to the control program, these traces are automatically stopped
and the traces stopped on entry to the routine are automatically
restarted.

Traces are not stopped on entry to the program interruption exit
routine specified by a SPIE macro-instruction.

Use of Dummy Control Sections: The programmer can trace references to
fields of dummy control sections by using the general technique
described in "How to Dump a Dummy Control Section." If he assigns
varying locations to the dummy control section, he can shift the trace
from one location to the next as in the following example:

NEWSTART TEST OPEN,START
TEST AT,LOADBASE+2
USING RECORD,6
TRACE REFER,ID,DATh+5,DSECT=RECORD

START SAVE (14, 12)

GETNEXT GET MYDCB
LOADBASE LR 6,1

MY DCB
RECORD
ID

DATE

USING RECORD,6

PUTX MYDCB
B GET NEXT

DCB DSORG=PS,MACRF=(GL,PL),DDNAME=MYDD
DSECT
DS XL4

DS PLS
END NEWS TART

GETNEXT uses register 1 to point to a buff er that contains a record to
be updated. The program assigns the buffer location to RECORD, a dummy
control section that describes the record format. After processing the
record,, the program replaces it in the data set and executes the same
set of instructions to update the next record. on each loop, the TRACE
REFER statement is executed immediately after LOADBASE makes RECORD
addressable. When first executed, it starts a trace of references to
the buffer containing the first record; on each subsequent execution,, it
shifts the trace to the buffer containing the next record.

28

HOW TO COMMENT THE 'TESTRAN LISTING

A TESTRAN listing can become; difficult to interpret when it contains
many individual dumps and traoes. To make the listing 4::!asier to
interpret, the programmer can introduce comments that explain or call
attention to particular items.

The programmer specifies a comment as an operand of a special DUMP
statement (DUMP COMMENT) O:t" in a special operand of a TRACE CALL, TRACE
FLOW, or TRACE REFER statement. The following example illustrates both
methods:

TEST
TRACE

TEST
DUMP
DUMP

AT,F'AYROLL
CALI,, CALLFICA, NEXTSTEP, COMMENT=' TRACE OF CALLS 'TO PAYROL­
L SUBROUTINES'
AT I 'I'ESTCODE- 4
COMMENT,'G''15'' CONTAINS FICA RETURN CODE'
PAN:E:L,G'15'

The comment TRACE OF OALLS TO PAYROLL SUBROUTINES is printed with all
output produced by the TRACE CALL statement. The comment G'15' CONTAINS
FICA R:t:TURN CODE is printed immediately before the dump of register 15.

(Note that the apostrophes in tlile second coµiment are each represented by
a pair of apostrophes in the statement. This representation is
necessary because apostrophes are used to delimit the comment; for other
reasons, ampersands must be represented in the same way.)

HOW TO CLASSIFY TEST INFORMATION FOR SELECTIVE RETRIEVAL

To avoid printing large quantities of test output, the pro9rarnmer can
divide the output into several classes that can be retrieved
selectively. By mE=ans of a job control statement, he can selE~ct one or
more classes for printing i~ediately after execution of his program.
Prom this information he can decide what other classes he needs for his
evaluation of th~e program. He can then select these classes by
submitting a new job that reprocesses the TESTRAN data set.

To classify output, the programmer writes a special operand (SELECT)
in one of the following statements:

• TEST OPEN
• TEST AT
• Any DUMP or TRA.CE statement

Depending on where it appears, the SELECT operand classifies:

• Information recorded at the test points established by a TEST OPEN
statement.

• Information recorded at the test point(s) specified in a. TEST AT
statement.

• Information recorded by an individual DUMP or

The SELECT operand classifies information
identification number Can integer from 1 to 8),
statement:

Tl TEST .OPE:N 1:ENTRY,SELECT=8

TRACE statement.

by means of a class
as in the following

Section 2: How to Write TESTRAN Statements 29

All information recorded at the test points established by this
statement belongs to class 8, except for information that is reclassi­
fied by a TEST AT, DUMP, or TRACE statement. Thus, if Tl is followed by

TEST AT,PROCESS,SELECT=6

dll information recorded at PROCESS belongs to class 6, except for
information that is reclassified by a DUMP or TRACE statement, such as:

DUMP DATA,MYDATA,SELECT=5

The dump of MYDATA belongs to class 5, and. only to class 5. As a result
of reclassification, it does not belong to either class 6 or class 8.

Use of the SELECT operand does not imply that all information must be
classified. Unclassified as well as classified information can be
selected for printing.

TESTING OF COMPLEX PROGRAMS

This part of Section 2 describes the testing of programs that are not
simply structured or are not formed from single object modules.

HOW TO TEST A MODULE ALREADY IN A LIBRARY

As stated in Section 1, TESTRAN statements and the problem program
can be assembled together or separately. Assembling the two together is
usually the more convenient, but the sophisticated programmer may
discover cases where separate assembly is more efficient. For example,
the programmer may have assembled and tried to execute a program before
deciding to use TESTRAN. If he has saved the program in a library, he
may wish to assemble TESTRAN statements separately to avoid reassembling
the program to be tested.

Separate assembly presents two major problems. First, there is no
simple symbolic way that TESTRAN statements can ref er to locations in
the problem program. second, assuming that the object or load module in
the library contains no symbol tables, there is no simple way of
obtaining TESTRAN output in the proper syrrIDolic format.

References to the Problem Program: There are three ways that TESTRAN
statements can refer to locations in the problem program. The first,
which is the only way that can be used in TEST OPEN and TEST AT
statements, is to write each address as an external reference plus or
minus an appropriate displacement. The external reference is a symbol
defined in the problem program and listed in the external symbol
dictionary Cthe first part of the assembly listing). The displacement
is the number of bytes from the location named by the symbol to the
location of the operand; it can be calculated from the object code
addresses contained in the assembly listing.

The second way of ref erring to the problem program is by explicit
addresses. These can be written to use base registers loaded by the
problem program. Displacements from base addresses can be calculated
from the object code addresses in the assembly listing.

The third way of ref erring to the problem program is to use dummy
control sections that describe the format of the problem program. The
name of each must be declared as the address in a base register that is
loaded by the problem program. Areas defined in the dummy control
sections <which correspond to areas in the problem program) can then be
referred to symbolically by DUMP DATA, DUMP CHANGES, a.nd TRACE REFER
statements that are written with DSECT operands.

30

Output Format: The output of DU~P DATA, DUMP CHANGES, and TRACE REFER
statements is printed as fou.If-byte hexadecimal fields unless each
statement contains a DATAM or DSECT operand. The DATAM operand
specifies a uniform field tormqt for all data in the area specified by
the statement. The DSECT operanq specifies use of the symbol table for
a dummy control section that is assembled with the TESTRAN statements.

$ymbol tables are optional features of assembly and linkage editing,
and are requested b~r means of job control statements. If the programmer
anticipated the use of TES:TRAN, he could have requested symbol tables
when the problem program module was created. The tables for the problem
program could then be used to determine the output format.

Linkage Editing and Execution~ After being assembled, the TESTRAN
module CTESTRAN statements and dUmmy control sections> is processed by
the linkage editor.. The progra$mer must provide linkage editor control
statements to combine this modul~ with the problem program module. For
example, the staternEmts:

INCLUDE MYI.,IB C MYPROG)
ENTRY NEW START
NAME MYPROGCR)

specify that the load module is to include the load module MYPROG from
the library MYLIB; that the entry point is to be NEWSTART (assumed to be
the name of a TEST OPEN statement>; and that the new load module is to
replace the original problem program module in the library.

The normal procedure is followed in executing the new lead module and
printing the TESTRAN output. If the output shows an E?rror in a
particular control section, the: programmer can replace the control
section with a new one thro~gh use of the linkage editor. Since a
symbol table can be requested wh~n assembling the new control section,
the programmer may wish to elim~nate DATAM or DSECT operands i.n TESTRAN
statements that ref~~r to the control section. If so, he ass.ewbles a
complete new set of TES'Ji'RAN st~tements, which form an implicit control
section naz:oed after the TEST OPEN statement. If each new control
section is named after the cont~ol section it replaces, the replacement
is automatic, and only two linkage editor control statements are needed:

INCLUDE MYI,IB (MYPROG)
NAME MYPROG(R)

When the new load module is tested, the TESTRAN output may show an
error in one of the replacement control sections. If there is a symbol
table for this control section,, the control section should not ne
replaced with another of the; same name. The linkage editor does not
replace symbol tables when it replaces control sections; therefore, the
table originally associated with each section name remains in effect.

Test Completion: When testing is completed, the programmer can direct
the linkage editor to prepare the load moaule for productive use. For
example, he might w:ri te the follpwing control statemE=nts:

ENTRY ST,1\RT
REPLACE NEWSTART
INCLUDE MYLIB(MYPROG)
NAME MYPROG(R)

These statements restore the nprmal entry point (START) and delete the
TESTRAN control section CNEWSTARtt'). Symbol tables in the module are
deleted as a result of omitting an option in a job control statement.

Section 2: How to Write TESTRAN Statements 31

HOW TO ENLARGE ON A PARTIALLY TESTED PROGRAM

Suppose that the following program has been testea successfully:

TESTMODl TEST OPEN,MOD1

MOD1 CSECT

END TESTMODl

MODl is now to become a subroutine of another control section, MOD2, and
the two control sections are to be tested together. The enlarged
program is as follows:

Execution begins at TESTMOD2, the first of a group of TESTRAN statements
for testing MOD2. In effect, this statement executes the statement
TESTMODl; as a result, it establishes test points as specified by TEST
AT statements following both TESTMODl and TESTMOD2. TESTMOD2 ignores
the second operand (MODl) of TESTMODl and passes control to the problem
program at MOD2.

Because MODl has been tested previously, test information about MODl
is simply insurance against unexpected errors. The programmer may
therefore wish to def er printing this information until after he has
examined the information about MOD2. If so, he can classify the
information about MOD2 and select only this information for immediate
printing. He can save the data set that contains the information and,
if it proves necessary, select the information about MODl at a later
date.

means of a
Information

which he can
write it in

The programmer classifies information about MOD2 by
special operand (SELECT) described in "How to Classify Test
for Selective Retrieval." There are several statements in
write this operand, but for the present purpose he can best
the TEST AT statements that follow TESTMOD2:

32

The programmer can select information about MOD2 by specifying class 8
in a job control statement, as explained in Section 3. In a !alter job,
he can repeat th4= editing of TESTRAN output and select unclassified
output to print information about MODl.

The SELECT operands in the TEST AT statements classify information
recorded at test points in MOD2. A SELECT operand in the statement
TESTMOD2 would provide the same function if that statement did not
include the operand OPTEST=TE.STMOD1. In a TEST OPEN statement, a SELECT
operand classifies information recorded at all test points established
by the statement, including those established as the result of an OPTEST
operand. A SELECT operand in TE$TMOD2 would therefore classify inf orma­
tion recorded at te:st points in both MOD2 and MOD1. It would do so even
if a different SELECT operand (e.g., SELECT=?) were written in TESTMODl,
because the operand:s of a TEST OPEN statement are ignored if the
statement is not actually executed.

HOW TO TEST AN OVERLAY PROGRAM

An overlay program is a ;load module that is divided into several
overlay segments. For testing· pµrposes, each segment must be treated as
a separate program. That is, it; must contain its own TESTRl\.N state­
ments, beginning with a TEST OPEN statement. During executioni, only one
TEST OPEN statement can receive1 control; it must be located in the root
segment, and it must contain a special operand (OFTEST) that points to
all other TES'T OPEN statements, as in the following E:xample:

i
TESTSEG1 TEST

Segment 1
(Root Segment)

---{

TESTSEG2 Tl!.ST

Segment 2

--{

TESTSEG3 TEST

Segment 3

END

OPEN,ENTRY,OPTEST=CTESTSEG2,TESTSEG3)

OPEN

OPEN

TESTSEGl

Except for references by the OP':OEST operand, symbolic references between
segments are not allowed in TESTRAN statements. External ['eterences
must be declared in assembler EXTRN and ENTRY statements.

A TEST OPEN statement and the TESTRAN statements that follow it form
an implicit TESTRAN control se¢tion that must be inserted in the proper
overlay segment. Thus, for the'example just given, the programmer might
write the following· linkage editor control statemt:nts:

s,ection 2: How to Write TESTRAN Statements 33

INSERT
OVERLAY
INSERT
OVERLAY
INSERT

TESTSEGl, •••
ROOT NOD~
TESTSEG2, ••.
ROOTNODE
TESTSEGJ, ••.

When a segment is overlaid, traces started by TRACE statements in the
segment are automatically stopped. They are not autoffiatically restarted
when the segment is reloade<l, but are restarted when the TRACE
statements are again executea at a test point in the segment. To ensure
that traces are restarted, the programmer roust therefore design his
testing logic so that TRACE statements are executed each time a segment
is entered after being overlaid and reloaded.

HOW TO TEST A DYNAMIC SERIAL PROGRAM

A dynamic serial program is a combination of two or more load modules
that are loaded and executed as a single task. Each load module can
contain TESTRAN statements; if it does, however, it is neither reentera­
ble nor serially reusable.

A module that is not reusable is normally loaded each time it is
entered by a supervisor assisted linkage. For this reason, a TEST OPEN
statement must be executed to establish test points each ti.r.ie the n:odule
is entered by means of a LINK, XCTL, or ATTACH macro-instruction.
Before control is passed or returned to another module, testing of the
module should be stopped by a TEST CLOSE statement, as in the following
example:

At the test point FINISH, the TEST CLOSE statement nullifies the effect
of the TEST OPEN statement and returns control to the test point. As a
result, the TESTRAN interpreter releases storage areas acquir€d for
internal functions. If not released, the areas would be duplicated the
next time the module was loaded and testea.

A module is not loaded each time it is entered if it is already in
storage and either of these conditions is met:

• The program was loaded by a LOAD macro-instruction and is not
currently being used in a supervisor assisted linkage.

• The program is entered by means of an ATTACH macro-instruction at an
entry point identified by an IDENTIFY macro-instruction.

If the module is loaded only once, the TEST CLOSE statement need not be
used, and a TEST OPEN statement need be execut~d only once.

When a supervisor assisted linkag~ is made to another module, all
traces are automatically stopped. They are not automatically restarted
when control is returned, but can be restarted by appropriate TRACE
statements. The TRACE statements should follow a TEST AT statement that
specifies the return address as a test point.

34

S.ECTION.3: HOW TO WRITE JOB CONTROL STATEMENTS

To use TESTRAN, the programmer must write job control statements to
define the job to be performed by the operating systerr.. A typical
TESTRAN job consists of one or more job steps, each of which performs one
of the following functions:

• Assembly of the problem program
• Linkage editing of the problem program
• Execution of the problem program
• Editing of test information

The job control statements used in defining jobs and job steps are
described in the publication IBM System/360 Operating System: Job Control
Language. Statements for performing specific TESTRAN-orie:nted jobs are
listed below. The jobs defined by these model job definitions include
the following job stE~ps:

• Assembly
• Linkage Editing
• Execution
• TESTRAN Editing
• Assembly and Linkage Editing
• Assembly, Linkage Editing, and Execution
• Assembly, Linkage Editiny, Execution, and TESTRAN Editing

Most of the model job definitions refer to IBM-supplied cataloged
procedures, which are defined in Appendix B. BeforP atterr:pting to USE;

these procedures, thE~ programmer should make certain that tney have been
~ncluded in the procedure library at his installation. If a proc~dure
has- been omitted, the programmer can copy the necessary statements from
the appendix.

ASSEMBLY

Fi~ure 5 defines a .job that executes the E-level assembler program.
The statements in tbe f igurt are numbe~ed, and are explained in the
cotrespondingl}7 nurnbered paragraph.s below~.. .The shaded statement is
optional.

r---1
I r---1 I I 1. I //jobnarne JOB job parameters 11

I ; : ~~wzti.'.{fft'l¥$1%tJ.:sw.,~>i~&~r\n\~$.W.•¥;\tt.*#ii~,;8,i.¢,#.,~xitl~mm:\i,®P.$.e:(\~,:n~\w'gKH'nrA1111x$&¥mJff,i;i~w.1:l:~ir1&x:~ \
I 4.l//ASM.SYSIN DD data definition parameters I I
I L---J I L---J
Figure 5. Job Control Statements for Assembly

1. This statement provides gen~ral job control information.

2. This statement refers to a cataloged procedure named ASME.C, which
defines a sin9le job step named ASM. The PARM parameter specifies
the option TESTA, which causes symbol tables to be included in thE::
object module. The PARM parameter implies the following options:

DECK
LIST
XREF
LINECNT=standard line count

Section 3: How to Write Job Control St:.atemf:nt.ti JS

If desired, other options can be specified in place of the implied
options. The TEST option, however, must be specified.

3. This statement is optional. If present, it saves the object module
as a cataloged data set in direct-access storage. The data set can
subsequently be ref erred to by name as primary or additional input
to the linkage editor.

4.

Statement 3 overrides the following statement in the procedure
ASMEC:

//SYSPUNCH DD UNIT=SYSCP

If this statement is not overridden, it causes the object module to
be produced as a deck of punched cards.

This statement
to be assembled.

defines a data set that contains the source program
This data set can appear in the input stream.

LINKAGE EDITING

Figure 6 defines a job that executes the largest linkage editor
program available at the installation. The statements in the figure are
numbered, and are explained in the correspondingly numbered paragraphs
below. The shaded statement is optional.

r---1
I r---1 I I 1.l//jobnarne JOB job parameters II

i ~~ j
L---J
Figure 6. Job Control Statements for Linkage Editing

1. This statement provides general job control information.

2. This statement refers to a cataloged procedure named LKED, which
defines a single job step that is also named LKED. The PARM
parameter specifies the option TEST, which causes symbol tables and
object module control dictionaries to be included in the load
module. Additional options that can be specified are:

SCTR or OVLY
DC
LIST
XREF or MAP
NCAL
LET or XCAL

Of these, LIST and XREF (which includes MAP) are diagnostic options,
and NCAL and LET (which includes XCAL) are special processing
options that are useful in testing a program.

Because the TEST option must be specified, the NE and REUS or RENT
options cannot be specified. The load module is therefore editable
and not reusable.

3. This statement is optional. If present, it saves the load module as
a member of a new cataloged partitioned data set (library). The

36

data set may be new or mqy already exist; if it exists, the load
module replaces any other member of the data set that has the same
member name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be referred to by its member name for subsequent
execution as a program or fot reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing inv'olves replac:Lng any non-TESTRAN control section with
another control section of the same name. such a control section
would continue to be represented by the symbol table and control
dictionaries for the o.bject ~odule to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 3 overrides the· DSNAME and DISP parameters of the
following statement in the pL"ocedure LKED:

//SYSLMOD DD DSNAME~&GOSET(GO),SPACE=C1024,(50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, the:y cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

4.}These statements define the input to the linkage editor. Statement
5. 4 defines the primary input, which is a data set containing one or

more object modules, or linkage editor control statements, or both.

Statement 5 is optional. I~ present, it defines either an included
data set or an automatic call library. It can be repeated as
necessary to define any numb~r of input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can ap~ear in the input stream, and it must be
defined by the last DD statement for the step LKED.

EXECUTION

Figure 7 defines a job that executes a program foz testing by the
TESTRAN interpreter.. The statem~nts in the figure are numbered, and are
explained in the correspondingly numbered paragraphs below. The shaded
statements are optional.
r---1
I r-------------------·--1 I
I 1. I// jobname JOB job parameters, J I
I 2 • tzzg,Jplii.lt%%%\@\%W%\if:P,\\%%:t%t.tifli•W:4i.\4.\it:1~#.~i\Mtf+.:11W%%~)1~::j\\\f.?t%~li\1.;\ljl,:fi:i:@§$:l.§.\~l&#§.fl.B:W:l~~eMl!iii.®.\\¥.\%1 I
I 3. I// EXEC PGM=mernber I I
I 4.j//SYSTEST DD DSNAME=dsnaroe,µNIT=SYSSQ,SPACE=C300, (100)),DISP=CNEw,CATLG> II

! t !
L-------------------------------~-------~--------~--------------------------------------J
Figure 7. Job Control statements for Execution

1. This statement provides general job control information.

2. This statement is optional. If present, it points to a private load
module library that is to be used as the job library. If this
library has been cataloged, the UNIT and VOLUME pararr,eters should be
omitted.

Section 3: How to Write Job Control Statements 37

3. This statement refers to a load module that is a member of either
the system link library or the job library.

4. This statement saves the output of the TESTRAN interpreter as a
cataloged data set. This data set can subsequently be ref erred to
by name for processing by the TESTRAN editor.

5. This statement is optional. If present, it defines a data set to
contain an abnormal termination dump.

6. This statement is optional. If present; it defines a data set that
is used by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a pr:imary control program or with
MFT, only one data set can appear in the input stream, and it must
be defined by the last DD statement for the job step.

TESTRAN EDITING

Figure 8 defines a job that executes
statements in the figure are numbered,
correspondingly numbered paragraphs below.

the
and

TESTRAN editor.
are explained in

The
the

r---1
I r---1 I
I 1. l//jobnarne JOB job parameters II
I 2 • I / / EXEC PROC=TTED I I
I 3. l//EDIT.SYSTEST DD DSNAME=dsname,UNIT=SYSSQ,SEP=SYSUTl,DISP=(OLD) II I L ___ J I

L---J
Figure 8. Job Control Statements for TEST.RAN Editing

1. This statement provides general job control information.

2. This statement refers to a cataloged procedure named TTED, which
defines a single job step named EDIT.

38

TESTRAN Editor Options: Three options can be specified by a PARM
parameter written as:

*

Ta

PARM= [*] [Ta] ••• [Pb]

increases the speed of TESTRAN editing by a factor of four. At
the same time, it increases main storage requirements from 18K
bytes to SOK bytes. If present, it must occupy the first
position in the parameter.

identifies a class of test information that is to be edited.
The value a is either an unsigned decimal integer from 1 to 8,
a blank, or-the letter A. If an integer, it is a class
identification number specified by a SELECT keyword operand in
one or more TEST OPEN, TEST AT, DUMP or 'l'RACE statements. If a
blank, it indicates that all unclassified data is to be edited.
If the letter A, it indicates that all data is to be edited,
regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired information for processing during a single
execution of the TESTRAN editor. Note that if a class of

Pb

information is not selected, and has not previously been
edited, the input TESTRAN data set should be saved to allow
later editing of this ipformation.

If the subfield Ta is o~itted, all information is printed as if
TA were specified

specifies the maximum number of pages to be printed. The value
~ is an unsigned decimal integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb is omitted, the maximum count is as
specified in the first TEST OPEN statement executed under the
task (job step) that cr~ated the data set. If this TEST OPEN
statement did not specify a· maximum, the installation maximum
is assumed.

3. This statement defines the input TESTRAN data set, which contains
the test information to be edited. If all of the information is to
be edited <rather than just selected classes), the disposition
should be changjed to DISP=COLD,DELETE).

ASSEMBLY AND LINKAGE EDITING

Figure 9 defines a job that ex~cutes the E-level assembler program and
the largest linkag~e edit.or program available at the installation. The
statements in the figure are · numbered, and are explained in the
correspondingly numbered paragraphs below. The shaded statE~ments are
optional.

r~--·------------1

I r--·-----------, I
I 1. I// jobname JOB job parameters 11
I 2. I// EXEC PROC=TASME • I I
I 3 • f¥¥All.k$.:lliii:ltM¢.lt\%til.i\%%\M\\$\$).lji,•#'A.~M\ffe.fu.¥.M~l\~t{#%Ul&P.:Mt'fii.\$.J.l.tl:\:Y ... ?:::.:3\\N?Y'''.'. :>7FY~: ... ~E:<<Y ... iV:::·»::::'.'. : .. ·: · :.?\\\\\:\\@\\\\%:\\%\tMM I

U~ I
Figure 9. Job Control Statements for Assembly and Linkage Editing

1. This statement provides general job control information.

2. This statement xefers to a c?-taloged procedure named TASME, which
defines two job steps: ASM and LKED.

Assembler Options: The f ollbwing assembler options are spe~cif ied or
implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables
the object module. The LOAD!option indicates that
is to be stored on an exter~al storage device.
options are standard defaµlt options; of these,
diagnostic options useful in program testing.

to be included in
the object module

The laLst three
LIST and XREF are

Section 3: How to Write Job Control Statements 39

The default options can be overridden by writing:

PARM.ASM=CTEST,LOAD,overriding options)

where the overriding options are any of the following:

NOLIST
NOXREF
LINECNT=nn

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The ·rEST and LOAD options,
because they are not default options, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is required to cause the symbol tables and object
module control dictionaries to be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are useful in program testing.

These options can be respecified by writing:

PARM.LKED=CTEST,respecified options)

where the respecified options are any of the following:

SCTR or OVLY
DC
LIST
XREF or MAP
NCAL
LET or XCAL

Each of the original options (TEST, LIST, XREF, NCAL, and LET) is
overridden if it is not respecified. Because TEST must be respeci­
fied, the REUS, RENT, and NE options cannot be specified.

3. This statement is optional, but, if it is written, statement 5 must
also be written. The two statements together save the object module
produced by the assembler as a cataloged data set in direct-access
storage. This data set can later be referred to by name as primary
or additional input to the linkage editor.

40

Statements 3 and 5 override the DSNAME a.nd DISP parameters of the
following statements in the procedure TASME:

//SYSPUNCH
//
//SYSLIN

DD DSNAME=&LOADSET,UNIT=SYSDA,
SPACE=C80,(200,50)),DISP=(MOD,PASS)

DD DSNAME=&LOADSET,DISP=(OLD)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 3 and 5 are present, statement 4 must appeaJ::- between
them in the sequence.

4. This statement defines the da
1

ta set that contains the source program
to be assembled. This data s'et can appear in the input str4:!am.

5. Refer to paragraph 3 above.

6. This statement is optional. If present, it saves the load module as
a member of a cataloged partitioned data set Clibra.ry>. The data
set may be new or may alre~dy exist; if it exists, the load module
replaces any other member of the data set that has the sami? member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be referred to by its member name for later
execution as a program or for reprocessing by the linkag,e editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replaci;ng any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 6 ov-errides the DSNAME and DISP parameters of the
following statement in the procedure TASME:

//SYSLMOD
//

DD DSNAME==&GOSET(GQ),,SPACE=C1024, (50,20,1)),
UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

7.} These statements: are optional.
8. the linkage editor.

If present, they define input to

Statement 7 defines a data set to be concatenated with the primary
input to the linkag:e editor. (The primary input is the object
module produced by the assembler; refer to paragraph 5 above.)

Statement 8 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets ..

Sequentially organized data sets can appear in the input stream.
However, in a s:ystem with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

ASSEMBLY, LINKAGE EDITING, AND EXECUTION

Fi.gure 10 defines a job that e~ecutes the E-level assembler program,
the largest linkage editor program available at the installation., and the
load module produced by the linkage editor. The statements in the figure
are numbered, and are explained in correspondingly numbered paragraphs
below. The shaded statements are optional.

Section 3: How to Write Job Control Statements 41

r---1 r---1
1. l//jobname JOB job parameters I
2 • f?Millmit.lt\tt\tt:\\fWtt%1J.t~i%%\\l®.lftBffi'iWB.lffi.WMl,filt#!\\J:Q\mti\f:A$.l.\\t\Mlll!it¥1:1$11MIO:k.UNlilll!¥1¢:i*iWl\i.\%H

~ : ~~MBi.il\f:iJtiBU).l\tibfi.'U\t\:\%ii.@.#i.#:a#aajl\J.it.1~i.IRM&.tti\~lilfi\t\\:\\\\\:%\\\\\:lJ%\\\\\\tJ%::\tt\:::\\\\:f\\\\\\fa\\\\\:::w%\:\:\%\::mt:\\\\\\%HM:\%%\\\:\Mtt\\\M\:E~
5.,//ASM.SYSIN DD data definition parameters I

i~
H:

L---J
Figure 10. Job Control Statements for Assembly, Linkage Editing, and

Execution

1. This statement provides general job control information.

2. This statement is optional. If present, it points to a private load
module library that is to be used as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a cataloged procedure TASlYl.EG that defines
three job steps: ASM, LKED, and GO.

42

Assembler Options: The following assembler options are specified or
implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard lin£ count

The TEST option is required to cause symbol teibles t.o be .included. in
the object module. The LOAD. option indicates that ~he. ·9:b}ect ·modqle,
is ~o be stored on an external .. st~;cage ·. ,dev~9.~f · ., .. '::.f,r:~¢:::f/f:.a.:~·~ .·-,"·~~:~~:~:;1
options are . standard defau~t ·options; .of these; ·.~IS1.1Jf;iJl:~::,•X.RE.F1 ;;~~·~''i
diagnostic options useful in· progr~m ·testih.9;~,:. ~:·: ~} .. : ·>.:+~:;"· ::::');,Ye:",::(~.';'::·:'/<<C:·~~~::~

. '
:;.·· .. '.... ,;·. >~, •. 1.·.·'.. ··,L.:<;. ·· ... ·· .; .r f/·,.~.

The default options can be overridden· by ·;writJ.hgi: ·

PARM.ASM=(TEST,LOAD,overriding options)

where the overriding options are any of the following:

NOLIST
NOXREF
.LINECNT=nn

.. ..~),·~'.<·\~-~:.,;'. \

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The 'I'EST and LOAD options,
because they are not default options, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is r~quir~d to cause the symbol tables and object
module control diction~ries ~o be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are tiseful in program testing.

These options can be specified by writing:

PARM.LKhD=CTEST,respecified options>

where the respec;::ified options are any of the following:

SCTR or OVLY
DC
LIST
XREF or MAP
NCAL
LET or XCAL

Any of the original options (TEST, LIS'!', XREF, NCAL, and LET) that
is not respecified is overridden. Because the TEST option must be
respecified, the REUS, RENT, and NE options cannot be specified.

Problem Program Information: Information can be passed to the
problem program by writing:

PARM.GO=(xxx •••)

where xxx ••• is the information.

4. This statement is optional, but, :Lf it is written, statement 6 must
also be written. The two statements together save the object module
produced by the assembler as a cataloged data set in direct-access
storage. This data set can later be ref erred to by name as primary
or additional input to the linkage editor.

s.

Statements 4 and 6 override the DSNAME and DISP parameters of the
following statements in the procedure TASMEG:

//SYSPUNCH
//
//SYSLIN

DD DSNAME=&LOAOSET,UNIT=SYSDA,
SPACE=C80, C200,50)),DISP=CMOD,PASS)

DD DSNAME=&LOADSET,DISP=(OLD)

If these parameters ar;e not overridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 4 and 6 are present, statement 5 must appear between
them in the sequence.

This statement
to be assembled~

defines a data set that contains the source program
This, data set can appear in the input stream.

6. Refer to paragraph 4 above.

7. This statement is optional. If present, it saves the load module as
a member of a cataloged partitioned data set <library). The data
set may be new or ma:y already exist; if it exists, the load module
replaces any other member of ,the data set that has the same member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be ref erred to by its memner name for later
execution as aL prog:ram or; for reprocessing by the linkage editor.
The saved load module .should:not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with

Section 3: How to Write Job Control Statements 43

another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 7 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEG:

//SYSLMOD DD DSNAME=&GOSETCGO),SPACE=C1024, (50,20,1)),
// UNIT=SYSDA,DISP=CMOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a mt:mber of a temporary data set that is deleted
at the end of the job.

8.} These statements are
9. the linkage editor.

optional. If present, they define input to

Statement 8 defines a data set to be concatenated with the primary
input to the linkagt: editor. CThe primary input is the object
module produced by the assembler; refer to paragraph 6 above.)

Statement 9 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

10. This statement saves the output of the TESTRAN interpreter as a
cataloged data set. This data set can later be referred to by name
for processing by the TESTRAN editor.

11. This statement is optional. If present, it defines a data set to
contain an abnormal termination dump.

12. This statement is optional. If present, it defines a data set that
is used by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a primary control program or with
MFT, only one data set can appear in the input stream, and it must
be defined by the last DD statement for the step GO.

ASSEMBLY, LINKAGE EDITING, . EXECUTION.,. AND TESTRAN EDITING

Figure 11 defines a job that executes the E-level assembler program,
the largest linkage editor available at the installation, the load module
produced by the linkage editor, and the TESTRAN editor. The statements
in the figure are numbered~ and are explained in the correspondingly
numbered paragraphs below. The shaded statements are optional.

44

r---,---1
r----------------------------~-------~---------~----------------------------------1

~ : l:z,¥i&lii.\li\t%\W\%\i&\\\\\\\@\iu\w\%\\\\\\\~i~lta#:imi#i.~ii#\$.~\1i:¥:m1.a1~#.$.!i\l\Wtt,•tw1¥$®1m1ey,1.um$.®*i~*~\•**i.\J.w1~
~ : l~'k®lllt~flilP.ic:ltttii\mt;ni1~$.8#~liiii.Mut•il#i\Ui\.i.iM\ll!U~\UHH%\\\t\\%tt\\fa\\\Ht&%%%t%%'.'\%t'\\%\ti\\\fa%\%tt\\\\\t%fr\%\\\\%t%\%%%~

Note: This sequence produces a load module and executes it as a job step. If the jobl
!step terminates normally, the output of the TESTRAN interpreter is processed by thel
ITESTRAN editor; if the job step terminate$ abnormally, no editing is performed. I
I I
ITo ensure execution of the TESTRAN editor, the job can be divided into two jobs byl
!using the sequences described in "Asse~bly, Linkage Editing, and Execution" andl
I "TESTRAN Editing." The output of the TESTRAN interpreter is then edited eirnn if the I
I job step that produces the output terminates abnormally. I
L---•-----------------------------------·----------J

Figure 11. Job Control Statement$ for Assembly, Linkage Editing, Execu­
tionJ and TESTRAN Editing

1. This statement provides gene.-=-al job control information.

2. This statement is optional. If present, it points to a private load
module library that is tcp be used as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a cataloged procedure TASMEGED tha.t defines
four job steps: ASM, :LKED, GO, and EDI 1I.

Assembler Options: The follo~ing assembler options are specified or
implied in the cataloged procedure:

TEST
LOAD
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables to be included in
the object module. The LOAD option indicates that the object module
is to be stoJred on an external storage device. The last three
options are standard default options; of these, LIST and XREF are
diagnostic options useful in program testing.

The default options can be overridden by writing:

PARM.ASM=CTEST,LOAD,overriding options)

where the overriding options are any of the following:

NOLIST
NOXREF
LINECNT=nn

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The TEST and LOAD options,
because they are not default options, must be explicitly specified.

Section 3: How to Write Job Control Statements 45

46

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

Of these, TEST is required to cause the symbol tables and object
module control dictionaries to be included in the load module. LIST
and XREF are diagnostic options, and NCAL and LET are special
processing options that are useful in program testing.

These options can be respecified by writing:

PARM.LKED=CTEST,respecified options)

where the respecified options are any of the following:

SCTR or OVLY
DC
LIST
XREF or MAP
NCAL
LET or XCAL

Any of the original options (TEST, LIST, XREF, NCAL, and LET) that
is not respecified is overriddeh. Because the TEST option must be
respecified, the REUS, RENT, and NE options cannot be specified.

Problem Program Information: Information can be passed to the
problem program by writing:

PARM.GO=Cxxx •••)

where xxx ••• is the information.

TESTRAN Editor Options: Two options can be specified by a PARM
parameter written as:

*

Ta

PARM.EDIT=[*] [Ta] ••• [Pb]

increases the speed of TESTRAN editing by a factor of four. At
the same time, it increases main stoz·age requirements from 18K
bytes to SOK bytes. If present, it must oq.cupy the first
position in the parameter.

identifies a class of test information that is to be edited.
The value ~ is either an unsigned decimal integer from 1 to 8,
a blank, or the letter A. If an integer, it is a class
identification number specified by a SELECT keyword operand in
one or more TEST OPEN, TEST AT, DUMP or TRACE statements. If a
blank, it indicates that all unclassified data is to be edited.
If the letter A, it indicates that all data is to be edited,
regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired.information for processing during a single
execution of the TESTRAN editor. Note that if a class of
information is not selected, and has not previously been
edited, the input TESTRAN data set should be saved to allow
later editing of this information4

Pb

If the subfield Ta is omitted, all information is printed as if
TA were specified.

specifies tlhe maximum number of pages to be printed. ~~he value
]2 is an unsigned decimal: integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb is omitted, the maximum count is as
specified .in the first TEST OPEN statement executed under the
ta.sk Cjob step) that created the data set. If this TEST OPEN
statement did not speclfy a maximum, the installation maximum
is assumed.

4. This statement is optional, but, if it is written, statement 6 must
also be written. The two statements together save the object module
produced by the assembler a,s a cataloged data set in direct-access
storage. This data set can later be ref erred to by name as primary
or additional input to the li:nkage editor.

5.

Statements 4 and 6 override the DSNAME and DISP paramete:rs of the
following statements in the p:rocedure TASMEGED:

//SYSPUNCH
//
//SYSLIN

DD DSNAM~=tLOAQSET,UNIT=SYSDA,
SPACE::= (8 0 I (2!0 0, 50)) I DISP= (MOD I PASS)

DD DSNAME=&LOADSET,DISP=(OLD)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set that is deleted at the end of
the job.

If statements 4 and 6 are present, statement 5 must appear between
them in the sequence.

This statement
to be assembled.

defines a data set that contains the source program
This data set can appear in the input stream.

6. Refer to paragraph 4 above.

7. This statement is optional. If present, it saves the loaa module as
a member of a cataloged partitioned data set (library). The data
set may be new or may already exist; if it exists, the load module
replaces any other member of the data set that has the same member
name. If the data set has already been cataloged, the DISP
parameter should be omitted.

The load module can be· referited to by its member name for later
execution as a prog!ram or 1 for reprocessing by the linkage editor.
The saved load module should·not be reprocessed, however, if the
reprocessing imml ves repla.c:i,.ng a.ny non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol table and control
dictionaries for the object 1 module to which it originally belonged.
Data recorded from this control section woula therefore not be
printed in the proper symbolic format.

Statement 7 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSLMOD DD DSNAME=&GOSE':j:' (GO), SPACE= (1024, (50I20I1)),
// UNIT=SYSDA,DISP=CMOD,PASS)

Section 3: How to Write Job Control Statements 47

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

8.} These statements are optional. If present, they define input to
9. the linkage editor.

Statement 8 defines a data set to be concatenated with the primary
input to the linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 6 above.)

Statement 9 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organizea data sets can appear in the input stream.
However, in a system with a primary control program or with MFT,
only one data set can appear in the input stream, and it must be
defined by the last DD statement for the step LKED.

10. This statement is optional. If present, it saves the output of the
TESTRAN interpreter as a cataloged data set. This data set can be
referred to by name for later processing by the TESTRAN editor.

Statement 10 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSTEST
//

DD DSNAME=&TESTSET,SPACE=C300,C100)),
UNIT=SYSSQ,DISP=CNEW,PASS)

If these parameters are not overridden, they define a temporary data
set that is deleted at the end of the job.

11. This statement is optional. If present, it defines a data set to
contain an abnormal termination dump.

12. This statement is optional. If present, it defines a data set that
is usea by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with a primary control program or with
MFT, only one data set can appear in the input stream, and it must
be defined by the last DD statement for the step GO.

13. This statement is optional. If present, it points to a data set
defined by statement 10. The data set contains the test information
to be edited under the procedure TASMEGED.

48

If all information is to be edited <rather than just selected
classes>, the disposition should be changed to DISP=(OLD,DELETE).

Statement 13 overrides the DSNAME and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSTEST
//

DD DSNAME=&TESTSET,UNIT=(SYSSQ,SEP=CSYSUTl)),
DISP=COLD,DELETE)

If these parameters are not overridden,, they refer to a temporary
data set defined by the previous step of the procedure. This data
set is deleted at the end of the job.

SECTION 4: HOW TO INTERPRET SYS~~EM OUTPUT

Every TESTRAN job produces system output that includes listings of job
control statements and of certain data sets. The control statements
include both those in the input stream and those in cataloged procedures
that are invoked in the input stream. The data sets are thosE~ to which
the job control statements assign a SYSOUT disposition.

Typical system output data sets are abnormal termination dumps and the
listings produced by the assembler, the linkage editor, and thE~ TESTRAN
editor. This section describe~ only the last listing; the oth~rs are
described in the publications:

IBM System/360 Operating system: Messages, Completion Codes and
Storage Dumps

IBM System/360 Op4eratinq Systetn: Assembler (E) Programmer's Guide

IBM System/360 Operating System: Linkage Editor

Interpreting a TES'rRAN Listing: Test information is printed on the
system output device in a eolurnn 120 characters wide. Each pag~~ includes
a standard page heading and an average of 55 lines of information
produced by one or more TESTRAN statements. The general format of a page
is shown by the sample page in Figure 12.

The circled numbers in Figu;re 12 distinguish five basic formats for
individual lines of print. These are as follows:

1. ••. TESTRAN OUTPUT... heads each page.

2. AT LOC~TION ••• indicates entry to the TESTRAN interpreter at a test
point.

3. • •• MACRO IO ••• indicates one of the following:

• Execution of a DUMP, TRACE, TEST OPEN, or TEST CLOSE statement.
• Output resulting from an. executed TRACE statement.
• Detection of an error following execution of a statement.

4. EXECUTED STATEMENTS,., ••
TEST WHEN statements.

traces execution of GO, SET, TEST ON, and

5. *** !EGE •••
editor.

indicates a diagnostic message from the TESTRAN

Each of these formats is described in detail in the remainder of this
section.

The printing formats for specific types of data are shown in Table 1.
The letters used to represent printing formats in the table are used with
the same meanings throughotit the remainder of this section. In addition,
the letter y is used to designate a printed character for which the data
type is variable.

Section 4: How to Interpret System Output 49

CD J081 TE STRAN OUTPUT DA TE 1 O/l.61t

@ 11 MACRO ID 000, TEST OPEN , TESTRAN CONTROL SECTION • BEGIN

® AT LOCATION ISYMALTERI OOOOEC OlOOEC ENTER BEGIN

(~

@

@

EXECUTED STATEMENTS, BEGIN 003

21 MACRO ID 005 1 DUMP DATA STARTING IN SECTION
0151t INAREA

01015'> COMEBACK MVC WRI TAREAl88J ,ENTER

It) MACRO ID 006, DUMP PANEL
G104' 00010151t G'08' OOOlOOFC

SYMAL TER

CLEAR BUFFER

, IDENTIFICATION JOBl

FOR NEXT CARO

TIME 10/04 PAGE

0003

PSW 00 0 1 0002 0 0 01008C CC•O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP .UNDERFLOW OFF SIGNIFICANCE OFF

@

@

®
@

@

@

@

EXECUTED STATEMENTS, BEGIN 007, 008

11 MACRO ID 0141 DUMP DATA STARTING IN SECTION SYMALTER
OOF8 ERRFLAG STARTIN STAR TO

OlOOF8

AT LOCATION RETURNl ISYMALTER I OOOOOA OlOODA ENTER BEGIN

EXECUTED STATEMENTS, BEGIN 010

31 MACRO ID 012, DUMP DATA STARTING IN SECTION SYMAL TER
OOFC OUTAREA

OlOOFC COMEBACK MVC WRITAREAl88J,ENTER CLEAR BUFFER

EXECUTED STATEMENTS, BEGIN 013

11 MACRO ID 0141 DUMP DATA STARTING IN SECTION SYMALTER
OOF8 ERRFLAG STARTIN STARTO

OlOOF8 l

® ... IEGE07 END OF TESTRAN EDIT--0000005 STATEMENTS PROCESSED

FOR NEXT CARD

Figure 12. TESTRAN Editor Listing: Sample Page

so

0003

Table 1. Printing Pormats for D<;ita Types
r-------------------------y------~-----------T--------------------------1
l [Assumed Length I I
I l:in Bytes I Printing Format I
I Data Type I! (1) I (2) I
·-------------------------+------------------+--------------------------i
I Character f 1 I c I
I < 3 > I' I I
·-------------------------+---------------~--+--------------------------i
I Hexadecimal I 1 I xx I
·-------------------------+------------------+--------------------------i
I Binary I 1 lbbbbbbbb I
·---------------------~---+------------------+--------------------------i
!Fixed-point (half-word) I 2 lsddddd I
I I I c 4> I
·-------------------------+------------------+--------------------------i
!Fixed-point (full-word} i 4 lsdddddddddd I
I I I < 4 > I
·-------------------------+------------------+--------------------------i
I Short floating-point I 4 I sO. dddddddd Esdd I
·-------------------------+------------------+-----------------·---------i
!Long floating-point ! 8 lsO.dddddddddddddddd Esdd I
·-------------------------+------------------+--------------------------i
IPacked decimal I 1 lsd I
·-------------------------+------------------+-----------------·---------~
IZoned decimal I 1 lsd I
·-------------------------+------------------+--------------------------i
I Address I I I
I cs> I I I
·-------------------------t------------------+--------------------------i
I Instruction: 1 I I
I RR format .I 2 I cccc xx I
I RS, RX, and SI formats I 4 lcccc xx x xxx I
I SS format 1 6 lcccc xx x xxx x xxx I
L-------------------------~------------------~--------------------------J

Notes to Table 1

1. The lengths assumed .in definitions of printing formats are the
assembler implied lengths for the corresponding data types. CRefer
to Appendix A, Table 5.)

2. The letters shown in definitions of printing formats have the
following meanings:

c is one EBCDIC character.
x is one hexadecimal digit.
b is one binary digit.
sis an algebraic si~n C+ or->.
d is one decimal digit.
0 is· a high order ze~o.
E means 'exponent'; the succeeding signed pair of digits is the

exponent of the floating-point number.
cccc is a machine mnemonic operation code.

3. Unprintable characte~s Cother than blanks} are printed as two
hexadecimal digits, the second of which appears on a separate line
immediately below the first. For example., the hexadecimal data

C1D3D7C8C103C4C1E3C1

when edited into character format, is printed as

ALP HAO DATA
3

Section 4: How to Interpret System Output 51

4. This format includes a decimal point that is positioned according to
the scale factor associated with the data.

5. All addresses are printed in their source language formats.

PAGE HEADING C ••• TESTRAN OUTPUT •••)

The following heading is printed at the top of each page:

r---1 I cccccccc TESTRAN OUTPUT DATE dd/ddd TIME dd/dd PAGE dddd I
L---J
cccccccc

is the output identification specified as the third positional
operand of the first-executed TEST OPEN statement.

DATE dd/ddd
is the current date Cyea.r/day).

TIME dd/dd
is the time (hour/minute) at which editing was begun.

PAGE dddd
is the output page number.

TEST POINT IDENTIFICATION (AT LOCATION •••)

The following line indicates entry to the TESTRAN interpreter at a
test point:

r---1
I AT LOCATION cccccccc(cccccccc) xxxxxx xxxxxx ENTER cccccccc I
I I
L---J
AT LOCATION ccccccccCcccccccc) xxxxxx xxxxxx

identifies the test point. The field ccccccccCcccccccc) identifies
the test point by name Cif any), and by name Cif any> of the control
section that contains the test point. The fields xxxxxx xxxxxx are
the assembled and loaded addresses of the test point.

ENTER cccccccc
identifies the TESTRAN control section in which the test point was
specified. (The control secti,on is defined by an identically named
TEST OPEN statement, as indicated in the assembly listing by message
number IEGM04.)

Note: The SELECT operand does not affect printing of the AT LOCATION
line. This line is omitted, however, if it is not followed by the output
of a DUMP or TRACE statement, or by an error message.

STATEMENT OUTPUT (••• MACRO ID •••)

Statement output is all output that is identified by "MACRO ID". It
includes TEST OPEN., TEST CLOSE, DUMP and TRACE statement output, and
error messages issued by the TESTRAN interpreter. Specific types of
statement output are described below ..

52

DUMP CHANGES OUTPUT

DUMP CHANGES output is a chang:e dump of main storage whose format is
the same as that described· below under "DUMP DATA Output."

DUMP COMMENT OUTPUT

The following lines are a dump of a programn;er-wri tten commeint.

r---1
I I I ~~c~~~~ ID ddd, DUMP COMMENT I
I I
l--·---------J
d)

is the class number a~signed to the dump by a SELECT operand.

MACRO ID ddd, DUMP COMMENT
identifies the~ statement responsible for the dump. The identifi­
cation number d.dd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

ccccc •••
is the dumped comment~ which has a maximum length of 120 characters.

DUMP DATA OUTPUT

The following lines are a dump of main storage:

r-------------------·--1
1, d) MACRO ID ddd, DUMP DATA STARTING IN SECTION cccccccc II

xxxx cccccccc cccccccc cccccccc
I xxxxxx yyyyyyyyyyyyy ••• YYYYYYYYYYyYY··· YYYY¥YYYYYYYY··· I
L---------------------------------------~-------------------------------J

d)

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP CHANGES
identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

STARTING IN SECTION cccccccc
identifies the control section that contains the dumped data.

xx xx
xxxxxx

are the assembled and loaded addresses of a dumped field. The field
is the first field printed to the right of these addresses.

cccccccc
YYYYYYYYYYYYY•••

are the symbolic name C if ~my) and contents of a dumped field. The
name and format of the field are as defined in the problem program,
or as specified by NAME and DATAM operands.

Section 4: How to Interpret System Output 53

Note: The number of named fields per line varies from one to eleven due
to differences in length; the starting positions are a minimum of nine
printing positions apart.· Fields too long for the current line are
started on a new line.

In a dump of an instruction sequence, an instruction may be printed
with th~ instruction SVC 26 immediately beneath it. If so, the
instruction is located at a test point; the SVC instruction is the means
by which the test point gives control to the TESTRAN interpreter. The
SVC instruction replaced the original instruction when the test point was
established; the original instruction was saved for execution on return
of control to the test point.

DUMP MAP OUTPUT

The following lines are a map of
storage areas associated with a task that
statement is executed.

control sections and allocated
is active when a DUMP MAP

r--1 I d) MACRO ID ddd, DUMP MAP I
I NAME TYPE C~ECT NAME ASSEMBJ.ED AT LOADED AT LENGTH-DEC HEX I
I cccccccc LOADFD PROGRAM cccccccc xxxxxx xxxxxx dddd xxx I I OPTAINED STOlV\GF xxxxxx dddd xxx I
L---J
d)

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP MAP

NAME

TYPE

identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

is a column heading. The column identifies each program (load
module> associated with the active task Cjob step). Each program is
represented by one line of print for each of its control sections.
In a given line, the name cccccccc of a program is printed only if
different from the name that applies to the previous line.

is a column heading. The column indicates the type of storage area
that is represented. LOADED PROGRAM indicates a control section for
which storage was reserved during assembly. OBTAINED STORAGE
indicates an allocated storage area.

CSECT NAME
is a column heading. The column identifies each control section of
each program associated with the active task Cjob step>.

ASSEMBLED AT
is a column heading. The column contains the assembled address of
each control section named in the dump.

LOADED AT
is a column heading. The column contains the loaded address of each
control section named in the dump. It also contains the address of
each allocated storage area.

LENGTH-DEC HEX

54

is a double column heading. The double column defines the decimal
and hexadecimal length of each control section and allocated storage
area.

Note: Some of the areas included in the dump will be areas allocated for
use by the operating system.

DUMP PANEL OUTPUT

The following lines are a dump of .registers and the program status
word.

r--·---------,
I d) MACRO ID ddd, DUMP PANEL I I G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxx~x G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx I
I

G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxx.x G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx I
PSW xx xx xxxx xx xxxxxx CC"'d FIX POI\'lT OVERFLow:ccc DEC OVERfLOW CCC EXP UNDERFLOW CCC SIGNIFIC~NCE CCC I F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx I

L---J
d)

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP PANEL
identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

G'dd' xxxxxxxx
is the number Cdd) and contents Cxxxxxxxx> of a dumped gt!neral
register. The contents of the register are either in hexaciecimal
format as shown, or in s.ome other format as specified by a DATAM
operand.

PSW xx x xxxx x x xxxxxx

CC=d

is the program status word CPSW) stored on interruption of the
problem program at the current test point.

specifies the value of the condition code Cbits 34 and 35 of the
program status word).

FIX POINT OVERFLOW ccc
specifies the status of the fixed-point overflow mask Cbit 36 of the
program status word). 'I'he status ccc is either ON or OFF.

DEC OVERFLOW ccc
specifies the status of the decimal overflow mask Cbit 37 cf the
program status word). 'I'he status ccc is either ON or OFF.

EXP UNDERFLOW ccc
specifies the status of the exponent underflow mask Cbit 38 of the
program status word). The status ccc is either ON or OFF.

SIGNIFICANCE ccc
specifies the status of the significance mask (bit 39 of the program
status word). The status ccc is either ON or 9FF.

F' dd • xxxxxxxx xxxx:Kxxx
is the number Cdd) and contents Cxxxxxxxx xxxxxxxx) of a dumped
floating-point register. The contents of the register an~ either in
hexadecimal format as shown, or in some other format as specified by
a DATAM operand.

Section 4: How to Interpret System Output 55

DUMP TABLE OUTPUT

The following lines are a dump of a system table (control block)v

r---1 I d) MACRO ID ddd, DUMP TABLE cccc ccccccc BLOCK LOADE:D AT cccccccc (cccccccc) xxxxxx xxxxxx I
I SECTION FIELD NAME CONTENTS I
I cccccccc I
I cccccccc yyyyy. • • I L---J
d)

is the class nuIT.ber assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP TABLE
identifies the statement responsiole for the dump. The identifi­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

cccc ccccccc BLOCK
identifies the dumped table as a task control block, data control
block, or data extent block.

LOADED AT ccccccccCcccccccc> xxxxxx xxxxxx
specifies the location of a task control block or data control
block. The field ccccccccCcccccccc) specifies the name Cif any> of
a data control block and the name Cif any) of the control section
that contains the data control block. A single field xxxxxx
specifies the address of a task control block; two fields xxxxxx
xxxxxx specify both the asserr.bled and loaded addresses of a data
control block.

SECTION
is a column heading. The column identifies major sections of the
table.

FIELD NAME
is a column heading. The column identifies fields within major
sections of the table.

CONTENTS
is a column heading. The column defines the contents of each field.

ERROR MESSAGE

The following lines indicate detection of an error during execution of
a TESTRAN statement.

r---1
I I
I ~~*MAi~gI~~ ~~~~c:~~OR I
I I
L---J
d)

is a class number assigned by a SELECT operand.

MACRO ID ddd, ERROR

56

identifies the statement that caused or detected the error. The
identification number ddd is assigned by the assembler and appears
with the statement in the assembly listing (message number IEGM09).

*** IEGidd ccccc •••
is an error message issued by the TESTRAN interpreter. The text of
the message Cccccc •••) i~ preceded by a standard system message
code CIEGidd). For an explanation of the message, refer to Appendix
c, where all messages issued by the interpreter are listed in order
by message code.

TEST CLOSE OUTPUT

The following lines indicate the execution of a TEST CLOSE statement.

r---1
I I I d) MACRO ID ddd, TEST CLOSE I I cccccccc(cccccccc) xxxxxx xxxxxx ••• I
l-------------------------------------~---------------------------------J

d)
is the class number specified by the SELECT operand (if any> of a
TEST OPEN statement.

MACRO ID ddd, TEST CI,OSE
identifies the TEST CLOSE statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listin9 <message nurnber IEGM09).

cccccccc(cccccccc) xxxxxx xxxxxx
identifies a TESTRAN control section closed by the TEST CLOSE
statement. The field cccccc¢c(cccccccc) contains a symbol generated
during assembly and the name of the TESTRAN control section. The
fields xxxxxx xxxxxx are the assembled and loaded addresses of th~
control section.. (The contrcl>l section is defined by an identically
named TEST OPEN statement, as indicated in the assembly listing by
message number IEGM04.)

Note: The SELECT operand does not affect the printing of these lines of
information.

TEST OPEN OUTPUT

The following lines indicate the execution of a TEST OPEN statement.

r---~---------, I d) MACRO ID ddd, TEST OPI::N , TFSTRAN CONTROL SECTION = cccccocc, IDENTIFICATION cccccccc I
I MAXIMUM NUMBER OF PAGES ddd, MAXIMUM NUMBER OF STATE!"1ENTS ddd I
l ___ J

d)
is the class number apecif i~d by the SELECT operand Cif any) of the
TEST OPEN statement.

MACRO ID ddd, TEST OPEN , TESTR~N CONTROL SECTION = cccccccc
identifies the ~rnST OPEN statement. The identification mur.ber ddd
is assi9ned by the assembl~r and appears with the statemEmt in the
assembly listin9 (message number IEGM09). The name of thE~ 'l.'ESTRAN
control section Ccccccccc> is also the name of the TEST OPEN
statement. CThE~ control section is defined by the 'l~EST OPEN
statement, as indicated in the assembly listing by message number
IEGM04.)

Section 4: How to Interpret system Output 57

IDENTIFICATION cccccccc
specifies the output identification as provided by the third
positional operand of the TEST OPEN statement.

MAXIMUM NUMBER OF PAGES ddd
specifies the maximum number of pages produced.

MAXIMUM NUMBER OF STATEMENTS ddd
specifies the maximum number of executed TESTRAN statements.

Note: The SELECT operand does not affect the printing of these lines of
Information.

TRACE CALL OUTPUT

The following groups of lines indicate the execution of a TRACE CALL
statement and the later execution of a CALL macro-instruction.

r---1
II d) MACRO ID ddd, TRACE CALL , cccccccc, FROM ~ccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx I
II STARTED I
II ccccc... I
~---~
II d) MACRO ID ddd, TRACE CALL , cccccccc, TO cccccccc(cccccccc) xxxxxx xxxxxx ·AT cccccccc(cccccccc) xxxxxx xxxxxx I
II ~:~~: ~~~~~~~~ : : : I
11 ccccc... 1

L---J
d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID'ddd, TRACE CALL , cccccccc,
identifies the statement responsible for the trace. The identif i­
cation number ddd is assigned by the assembler, and eippears with the
statement in the assembly listing <message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGM04.)

l~ROM ccccccccCcccccccc) xxxxxx xxxxxx TO ccccccccCcccccccc> xxxxxx xxxxxx
defines the trace area. FROM ccccccccCcccccccc) specifies the name
Cif any> of the leftmost byte of the area and the name Cif any) of
the control section to which it belongs. TO ccccccccCcccccccc>
gives the same info1mation for the rightmost byte plus one. The
fields xxxxxx xxxxxx are the corresponding assembled and loaded
addresses.

TO ccccccccCcccccccc> xxxxxx xxxxxx .AT ccccccccCcccccccc) xxxxxx xxxxxx
identifies a called subroutine and the calling macro-instruction.
TO cccccccc(cccccccc) specifies the name Cif any> of the subroutine
entry point, and the name Cif any> of the control section that
contains the entry point. FROM cccccccc(cccccccc) specifies the
name Cif any) of the CALL macro-instruction and the name Cif any> of
the control section that contains the CALL macro-instruction. The
fields xxxxxx xxxxxx are the corresponding assembled and loaded
addresses.

G'dd' xxxxxxxx

58

gives the number Cdd) and contents Cxxxxxxxx) of a general register
used by the CALL macro-instruction.

ccccc •••
is a comment specified by a COMMENT operand Cif any) in the TRACE
CALL statement. The maximum length is 120 characters.

TRACE FLOW OUTPUT

The following groups of lines indicate the execution of a TRACE FLOW
statement and the later execution of a branch or SVC instruction.

r---------------------------------------~-------------------------------,

II d) MACRO ID ddd, TRACE FLOW , cccccccc, FROM cccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx II
STARTED

I ccccc... I
t-------------------·---------------------·--------------------------------~

I d) MACRO ID ddd, TRACE FLOW , cccccccc, FROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx, CC=d I I cc cc xx x xxx GI dd I XXXX:KXXX • • • I
I ccccc... I
t-------------------------------~-------~-------------------------------i
1

1

d) MACRO ID ddd, TRACE FLOW , c:ccccccc, FROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx, CC=d 1

1
Cece xx x xxx EXECUTED Ml cccc xx x xxx BY EX xx x xxx FROM LOCATION cccccccc (cccccccc) xxxxxx xxxxxx

I ~~~~~. ~~xxxxxx • • • I
L-------------------------------~--------~------------------------------J

d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE FLOW w cccccccc,
identifies the statement responsible for the trace. The identif i­
cation number ddd is assigned by the assembler and appears with the
statement in the assembly listing <message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs., (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGM04.)

FROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc> xxxxxx xxxxxx
either Cl) defines the trace area, or (2) identifies an executed
branch or SVC instruction and the branch destination:

CC=d

1. FROM cccccccc C cccccccc) specifies the name Cif any> of the
leftmost byte of the trace area, and the name (if any]I of the
control siection to which it belongs. TO cccccccc I'. cccccccc)
gives the same information for the rightmost byte plus one.
The fields xxxxxx xxxxxx are the corresponding assembled and
loaded addresses.

2. FROM cccccccc(cccccccc) specifies the name Cif any) of an
executed branch or SVC instruction, and the name (if any) of
the control section that contains the instruction. TO
cccccccc(ccccccca> specifies the name Cif any> of the branch
destination., and the name C if any) of the control section that
contains the des"ti.ination. The fields xxxxxx xxxxxx are the
corresponding assembled and loaded addresses.

specifies the value of the condition code when the branch or SVC
instruction is executed.

cccc xx x xxx
is the branch or SVC ilnstruction.
printed as cccc xx.>

Section 4:

(If an RR-type instruction, it is

How to Interpret System Output 59

EXECUTED AS cccc xx x xxx BY EX xx x xxx
indicates execution of a branch or SVC instruction by an EX
instruction CEX xx x xxx>. The instruction as executed is cccc xx x
xxx Cor cccc xx if it is an RR-type instruction). The effective
values of bits 8-15 are shown.

FROM LOCATION ccccccccCcccccccc) xxxxxx xxxxxx
specifies the location of the EX instruction. The field
ccccccccCcccccccc> specifies the name <if any> of the EX instruction
and the name (if any> of the control section that contains the
instruction. The fields xxxxxx xxxxxx are the assembled and loaded
addresses of the EX instruction.

G"dd' xxxxxxxx
gives the number Cdd) and contents Cxxxxxxxx) of a general register
used by a branch or EX instruction.

CGCCC
is a comment
FLOW statement.

specified by a COMMENT operand (if any) in the TRACE
The maximum length is 120 characters.

'I'RACE REFER OUTPUT

The following groups of lines indicate the execution of a TRACE REFER
statement and the later execution of a reference to data.

r---1
I d) MACRO ID ddd, TRACE REFER , cccccccc, FROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx I
I STARTED I
I ccccc... I

~---~
~ d) MACRO ID ddd, TRACE REFER , cccccccc, TO cccccccc(cccccccc) xxxxxx xxxxxx FROM cccccccc(cccccccc) xxxxxx xxxxxx I
I ~~~~c ~~. x xxx x xxx G' dd' xxxxxxxx . . . I
II BEFORE yyyyy. • . AFTER YYYYY. . . I
~---~
II d) MACRO ID ddd, TRACE REFER , cccccccc, TO cccccccc(cccccccc) xxxxxx xxxxxx FROM cccccccc(cccccccc) xxxxxx xxxxxx I
II cccc xx x xxx x xxx EXECUTED AS cccc xx x xxx x xxx BY EX xx x xxx FROM LOCATION cccccccc (cccccccc) xxxxxx xxxxxx I
~ ~~~~~-~~xxxxxx ••• I
11 BEFORE yyyyy. • • AFTER yyyyy. • • I
L---J

d)
is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE REFER , cccccccc,
identifies the statement responsible for the trace. The identifi­
cation number ddd is assigned by the assembler and appears with the
statement in the assembly listing (message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assewbly
listing by message number IEGM04.)

F'ROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx
defines tfie trace area. FROM cccccccc(cccccccc) specifies the name
Cif any) of the leftmost byte of the area and the nawe Cif any) of
the control section to which it belongs. TO ccccccccCcccccccc)
givt!s the same information for the rightmost byte plus one. The
fields xxxxxx xxxxxx are the corresponding assembled and loaded
addresses.

60

TO ccccccccCcccccccc) xxxxx:x xxxxxx FROM ccccccccCcccccccc) xxxxxx xxxxxx
identifies a field to which a reference is made and the instruction
making the reference. TO ccccccccCcccccccc) specifies the name Cif
any) of the field and the name Cif any) of the control section that
contains the field. FROM ccccccccCcccccccc) specifies the name (if
any) of the instruction making the reference and the name (if any)
of the control section that contains the instruction. The fields
xxxxxx xxxxxx are the corresponding assembled and loaded addresses.

cccc xx x xxx x xxx
is the instruction making the reference. (If an RS-, RX-, or
SI-type instruction, it is printed as cccc xx x xxx.)

EXECUTED AS cccc xx x xxx x xxx BY EX xx x xxx
indicates that the instruction making the reference is executed by
an EX instructibn (EX xx x xxx). The instruction as executed is
cccc xx x xxx x xxx (or cccc .xx x xxx if it is an RS-, RX-, or
SI-type instruction). The effective values of bits 8-15 are shown.

FROM LOCATION cccccccc(cccccccc) xxxxxx xxxxxx
specifies the location of the EX instruction. The field
ccccccc(cccccccc) specifies the name (if any) of the control section
th~t contains the instruction. The fields xxxxxx xxxxxx are the
assembled and loaded addresses of the EX instruction.

G'dd' xxxxxxxx
gives the number Cdd) and contents Cxxxxxxxx) of a general register
used by the instruction making the reference, or by an EX instruc­
tion.

ccccc •••
is a comment specified by a COMMENT operand Cif any) in the TRACE
REFER statement. The maximum length is 120 characters.

BEFORE yyyyy •••
specifies the contents of the field before the reference.

AFTER yyyyy •••
specifies the contents of the field after the reference.

TRACE STOP OUTPUT

The following line indicates execution of a TRACE STOP statement.

r---1
: d) MACRO ID ddd, TRACE STOP cc,:::ccccc ddd, ddd, ••• , cccccccc ddd, ddd, • • • l
L---1

d)
is the cla.ss number assigned by a SELEC'l' operand.

MACRO ID ddd, TRACE S'rOP
identifies the TRACE STOP statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listing <message number IEGM09).

cccccccc ddd~ ddd, •••
identifies TRACE statements referred to by the TRACE STOP statement.
Each number ddd is the identification number of a TRACE statement in
a TESTRAN control section cccccccc. Each identification number is
assigned by the assembler and appears with a statement in the

section 4: How to Interpret System output 61

assembly listing (message
section is defined by
<message number IEGM04).

number IEGM09). Each TESTRAN control
an identically named TEST OPEN statement

Note: If the TRACE STOP statement does not refer to other statements
by name, the word ALL is printed to indicate that all traces are
stopped.

'.!'ESTRAN STATEMENT TRACE (EXECUTED STATEMENTS .••)

The following line traces execution of GO, SET, TEST ON, and TEST WHEN
:statements.

r---1
I I I EXECUTED STATEMENTS, cccccccc ddd, ddd, ..• , cccccccc ddd, ddd, •.. I
l, __ J

cccccccc ddd, ddd, •••
identifies the executed statements. Each number ddd is the iden­
tification number of a statement in a 'l'ESTRAN control section named
cccccccc. Each identification number is assigned by the assembler
and appears with a statement in the assembly listing (message number
IEGM09). Each TESTRAN control section is defined by an identically
named TEST OPEN statement (message number IEGM04) •

. ~lote: This line is printed only if followed by the output of a DUt-'1P or
''.I~RACE statement, or by an error message.; The number of statements
identified is limited to 28: the first 27 statements that are executed
and the last statement that is executed before other output is generated.

~~ESTRAN EDITOR MESSAGE (*** !EGE •••)

The following line is a diagnostic message issued by the TESTRAN
editor.

r---1
I *** IEGEdd ccccc... I
I I
L---J
IEGEdd

is a message code that identifies the message.

ccccc •••

62

is the message text. For an explanation of the text, refer to
Appendix C, which lists all messages in order by message code.

APPENDIX A: FORMAL DESCRIPTION OF TE:STRAN STATEMENTS

This
function

appendix formally describes the
and format of TESTRAN statements ..

CODING CONVENTIONS

TESTRAN statements are coded according
to the coding conventions for assembler
language macro-instructions.. These conven­
tions are described in the publication IBM
System/360 Operating system: Assembler Lari=
guage. They should be familiar to the
reader who has experience in writing his
own macro-instructions or in using those
defined by the system for requesting super­
visor and data management services.

The coding of macro-instructions differs
in two ways from the coding of machine
instructions:

1. There is no limit to the m,1mber of
continuation lines that can be used.

2. There is a wider variety· of owerands.

For the reader who has no experience
with macro-instructions,, the f0llowing
brief description of the operand field may
be helpful.

The Operand Field: As in a machine
instruction, the operand field consists of
individual operands that are separated by
commas~ The meaning of each operand either
is implied by its position i.n the field or
is expressed by a keyword that is part of
the operand itself. For example, the three
statements

DUMP DATA,CHANGES,DATAM=L8,SELECT=l
DUMP DATA,CHANGES,SELECT=1.,DATAM=L8
DUMP CHANGES,, DATA, SELECT=l.,, DATAM=f=L8

each contain two positional operands fol­
lowed by two keyword operands. Because the
position of a keyword operand is unimpor­
tant, the first two statements a;J:"e func­
tionally equivalent; they are~ not equival­
ent to the third statement,. which differs
in its first and second <positional) oper­
ands.

Some operands are optional: they can be
written or omitted as the programmer
chooses. If a positional opE~rand is omit­
ted,, it must be represented by a comma if
it precedes a positional opE~rand that is
not omitted. In the statement

TEST ON, I ,, 2 ,, EVEN

the second and third operands are omitted
and each is represented by a comma. An
omitted positional operand is not rep­
resented by a comma if it is not followed
by a positional operand that is actually
written. An omitted keyword operand is
never represented by a comma.

To allow the use of commas within an
operand, a positional operand or the right­
hand part of a keyword operand can some­
times be enclosed in parentheses. Within
the parentheses, commas separate individual
items of information, which together are
called a sublist. In the statements

Tl TRACE STOP,CTRACE#l,TRACE~2,TRACE#3)
Dl DU.MP DATA,INPUT,INPUT+80,DSECT=CINPUT,3)

the second (positional> ope.rand of Tl is a
sublist of three items, and the DSECT
keyword operand in Dl contains a sublist of
two items. The number of items in a
sublist is variable; the prog·rammer speci­
fies one or more items as be chooses. If
only one item is specified, no commas are
needed to separate items and the enclosing
parentheses can be omitted.

FUNCTIONS OF TESTRAN STATEMENTS

The following pages describe the func­
tions of TESTRAN statements amd their oper­
ands. For convenience, the statements are
divided into four groups:

• DUMP and TRACE statements.
• TEST statements.
• GO statements.
• SET statements.

The description of each ~Jroup has two
parts:

• A list of the statements in the group
and the general function of each state­
ment.

• A list of the operands for the state­
ments and the specific function of each
operand.

To use this part of the appendix, turn
to the last part, "Format of TESTRAN State­
ments," and fold out the last page to show
Tables 2-5. Table 2 defines the format of
TESTRAN statements using conventions that
are standard in the Systems Reference
Library. Tables 3-5 present supplementary

Appendix A: Formal Description of TESTRAN Statements 63

information about the format of certain
operands.

To write a statement using this appen­
dix, first select a statement from the list

DUMP AND TRACE STATEMENTS

The DUMP and TRACE statements record
info:rmation about the problem program.
Thei:r basic functions are as follows:

DUMP DATA
dumps a storage area.

DUMP CHANGES
dumps changes to a storage area;
dumped fields are printed only if Cl)
contained in the first dump taken by
the statement, or (2) contained in a
later dump and changed since the pre­
vious dump by the same statement.

DUMP COMMENT
dumps a programmer's comment contained
in the statement.

DUMP MAP
dumps a map of control sections and
allocated storage areas associated
with the active task (job step>.

DUMP PANEL
dumps general and floating-point reg­
isters and the program status word
stored at the most recent interruption
of the problem program.

DUMP 'rABLE
dumps a specified
(control block>.

system table

TRACE: CALL
traces subroutine calls by CALL macro­
instructions in a specified storage
area.

TRACE: FLOW
traces transfers Cby
instructions> to, from,
storage area.

branch and SVC
or within a

TRACE REFER
traces references to a storage area by
instructions that could change data
within that area.

TRACE STOP
stops traces started
~~RACE FLOW, and
statements.

64

by TRACE
TRACE

CALL,
REFER

of statements for one of the groups. Refer
to the tables on the foldout page to learn
the format of the statement. Then refer to
the list of operands for a description of
each operand indicated in the tables.

Operands: The operands of the DUMP and
TRACE statements are as follows:

address
• as the second operand, points to the

leftmost byte of a storage area.
• as the third operand, points to the

rightmost byte plus one of a storage
area, with this exception: in a DUMP
TABLE statement, the third operand
points to the data control block
(DCB) that is dumped or that is
associated with the data extent
block <DEB) that is dumped.

Note on Storage Areas: A storage area
is defined by the effective values of
the address operands at the time a
DUMP or TRACE statement is executed.
Indexing of addresses may cause an
area to vary in size and location when
a statement is executed several times
Ci.e., at several test points). A
change dump of a variable area
includes all additions to the pre­
viously dumped area, plus changed data
that lies within both the present and
previous areas. A trace is shifted
from the previously defined area to a
newly defined area on each execution
of the statement that first started
the trace.

If a statement does not point to both
ends of a storage area, the length of
the area is determined by the DATAM
keyword operand. If this operand is
omitted, the length is determined by
the length attribute of the first
symbol used in the address. If the
address contains no symbols, or only
an external symbol, the length is
assumed to be one byte.

'text'
specifies a programmer's comment.

CregistersC,registersl .••)
• specifies the registers

dumped.
• if absent, implies that

isters are to be dumped.

to be

all reg-

Note on Printing Format: Unless the
DATAM keyword operand is written,

dumped registers (including f l:oating­
point registers) are printed in
hexadecimal format.

TCBIDCBIDEB
specifies the system table to be
dumped, as follows:

TCB - the task control block for the
active task .•

DCB - an open data control block
whose address is the third
operand of the statement.

DEB - the data extent block for an
open data control blodk whose
address is the third operand
of the statement.

<symbolC,symbol] •••)
• specifies the names of one or more

TRACE statements that started traces
which are to be stopped.

• if absent, implies that all current
traces are to be stopped.

d~ DSECT=Csymbol{i.11.integer})
identifies a storage area as a dummy
control section, or as part of a dummy
control section.

symbol
1.

2.

!I integer

is the name of the dummy
control section.
specifies the assumed loca­
tion of the: dummy control
section, which must be
addressable by means of a
base registe:r previously
defined and loadecl by the
problem program.

1. specifies a number by which
the length of the storage
area is multiplied on exe­
cution of the~ statement.

d

n

c.

2. specifies thE. maximum num­
ber of times the format of
the dummy control section
is to be repe.:ited to define
the format of printed
information.

DATAM= [type] [LUength}] [S {scale}]
• specifies type, length, and scale

attributes.
• determines either the length of a

storage area when the third posi­
tional operand is omitted, or the
length of data Cright justified) in
a dumped register.

• determines either the printing for­
mat for each field of a storage area
when the DSECT operand is omitted,
or the printing format of data
dumped from a register.

NAME=symbol
• provides a symbol to be printed as

the name of the first field of a
dump.

• suppresses the printing of field
names as they are defined in the
source program.

COMMENT='text'
annotates trace output
programmer's comment.

SELECT={112131415161718}

with a

• clas,sif ies test information produced
by the DUMP or TRI\,CE statement;
reclassifies this information if it
has already been classified in a
TEST OPEN or TEST A'l1 statement.

• identifies the class by a number,
which can be used (in a job control
statement) to select the class for
printing by the TESTRl~N editor.

Appenaix A: Formal Description of TESTRAN Statements 65

TEST STATEMENTS

Test statements are of three types:

Linkage statements
• ']?EST OPEN
• ']~EST CLOSE

Specification statements
• TEST AT
• 'l~EST DEFINE

Decision-making statements
• 'I'EST ON
• "rEST WHEN

Each type is described separately.

Link;~ge Statements

The TEST OPEN and TEST CLOSE statements
contirol linkage between the problem program
and the TESTRAN interpreter. Their basic
functions are as follows:

TEST OPEN
• defines a TESTRAN control section

having the same name as the state­
ment itself.

• opens the TESTRAN control section;
loads the standard entry point reg­
ister (15),, and passes control to
the problem program entry point
(second operand).

• specifies task options (third,
fourth., MAXE, and MAXP operands> •

• chains the opening of other TESTRAN
control sections (OFTEST operand).

• classifies test information for sel­
ective retrieval (SELECT operand).

TEST CLOSE
1• closes the TESTRAN control section

in which it is located.
1• closes any other TESTRAN control

sections that were opened at the
same time by chained opening.

•• returns control to the problem pro­
gram.

A TEST OPEN statement defines a control
section that includes all TESTRAN state­
ments that precede the next TEST OPEN
statement; if any,, in the source program.
It must be the first TESTRAN statement in
the source program.

66

When executed, the TEST OPEN statement
"opens" the control section by reference to
TEST specification statements. It esta­
blishes a link to the TESTRAN interpreter
at each test point specified in a TEST AT
statement, and it creates counters and
flags as specified in TEST DEFINE state­
ments.

A TEST CLOSE statement closes a TESTRAN
control section by nullifying the linkages,
counters, and flags established when the
control section was opened. When closed, a
control section cannot be entered by a
branch from another TESTRAN control s.ec­
tion, and its counters and flags cannot be
used by statements in other control sec­
tions.

Operands: The operands of the TEST linkage
statements are as follows:

address
• is placed in register 15.
• receives control after TEST OPEN.
• is required if TEST OPEN is execut­

ed.
• is ignored if TEST OPEN is not

executed (i.e., if opening of the
control section is chained by the
execution of another TEST OPEN
statement> •

~a..6 k. o p~-lo n.6
• control testing under a task (job

step> and editing of the resulting
test output.

• can be specified only in the first
TEST OPEN statement executed under a
task; are ignored when specified in
other TEST OPEN statements.

• are specified by four operands, as
follows:

symbol
1.

2.

appears in the heading of
each page printed by the
TESTRAN editor.
identifies test information
produced under the task.

LINK I LOAD
1. specifies which system

macro-instruction the TES­
TRAN interpreter should use
to load its nonresident
modules.

2. reduces CLINK) or increases
(LOAD) both the storage
requirements and the oper­
ating speed of the inter­
preter.

MAXE=integer
1. specifies thE! maximum num­

ber of statE~ments to be
executed by the TESTRAN
interpreter.1.

2. causes abnormal termination
if the maximwn is exceeded.

MAXP=integer
1. specifies thE~ maximpm num­

ber of pages <>f test infor­
mation to be produced.i..

2. causes abnormal term~nation
if the maximum is ex~eeded.

OPTEST= (symbol [,symbol] if •••)
• points to the TESTRAN contr:ol sec­

tions defined by othier TES:T OPEN
statements.

• chains the opening of these control
sections: causes all oiE them to be
opened when the TEST OPEN st:atement
is executed .•

• is ignored if the TEST OPEN state­
ment is not executed.

~ SELECT={11213141516l718l
• classifies test information produced

by control sections opened by the
TEST OPEN statement.

• identifies the class by a number,
which can be used <in a job control
statement> to select the cl~ss for
printing by the TESTRAN editor.

• is ignored if the TEST OPEN state­
ment is not executed.

Specification Statements

The TEST AT and TEST DEFINE statements
specify functions that are performed when
the TESTRAN control section is opened:

TEST AT
• specifies one or more test points in

the problem program <second
operand).

• classifies test information for sel­
ective retrieval (SELECT ope~and).

TEST DEFINE
defines TESTRAN counters or flags.

1 This maximum must not exceed the iastalla­
tion maximum established during system gen­
eration. If it does, or if the operand is
omitted, the installation maximum is
assumed.

A TEST AT statement must be placed so
that the next sequential TESTHAN statement
is the first that should be executed at
each specified test point. A TEST DEFINE
statement can be placed anywhere in a
TESTRl\N control section.

In an executed s equencE~ of TES TRAN
statements, a TEST AT stat•~ment returns
control to the problem program. A TEST
DEFINE statement performs no operation; the
next sequential statement is i~xecuted.

Operands: The operands of. thi~ TEST speci­
fication statements are as follows:

({*laddress}[,addressl •••)
• points to one or more test points in

the problem program.
• refers, if * is written~ to the

value of the location counter for
the current problem p:C'ogram control
section.

• is subject to the following restric­
tions:
1. Each specified address must be

that of an inst.ruction in the
problem program.

2. The instruction must not be a
privileged or SVC instruction,
or an EX instruction that exe­
cutes a privile.ged or SVC
instruction.

3. The instruction must not be
modified by any instruction or
executed by an EX instruction.

~ SELECT={112131415161718l
• classifies test information recorded

at test points specified in the
statement; reclassifies this infor­
mation if it has already been clas­
sified in a TEST OPEN statement.

• identifies the class by a number
which can be used Cin a job control
statement) to select the class for
printing by the TESTRAN editor.

COUNTER I FLAG
determines whether counters or flags
are defined by the statement.

Note on Counters and Flags: A counter
is a full-word, fixed-point value. A
flag is a single binary digit. Both
are set to zero when the control
section is opened. Their values are
lost when the control section is
closed.

CsymbolC,symbolJ •••)
specifies a name for each counter or
flag (the number of na.mes determines
the number of counters or flags that
are defined).

Appendix A: Formal Description of TESTRAN Statements 67

Deci~!ion-Making Statements

The TEST ON and TEST WHEN statements
perform decision-making functions based on
conditional branching to other TESTRAN
statE~:ments. Their functions are as fol­
lows::

TEST ON
• increments a counter (COUNTER

operand) by one.
• tests the counter against three

values (second, third, and fourth
operands).

• branches to a TESTRAN statement
Cf ifth operand) if the value of the
counter (1) is greater than or equal
to the second operand, (2) is less
than or equal to the third operand,
and (3) is a multiple of the fourth
operand.

TEST WHEN (first form)
•• tests the value of a flag <second

operand).
•• branches to a TESTRAN statement

(third operand) if the value of the
flag is one.

TEST WHEN (second form)
•• specifies a logical relationship

between two flags (second, third and
fourth operands).

•• branches to a TESTRAN statement
(fifth operand) if the relationship
is correct.

TEST WHEN (third form)
11 specifies an arithmetic relationship

between counters and/or variables
(second, third, and fourth
operands).

•1 branches to a TESTRAN statement
Cf ifth operand) if the relationship
is correct.

Opera!1ds: The operands of the TEST ON and
TEST WHEN statements are as follows:

a~i addresstregisterlinteger

68

• 1 specifies a fixed-point value from 1
to 231-1.

address
1.

2.

points to a full-word,
fixed-point value in main
storage; this value need
not be on a full-word
boundary.
cannot be written as an
integer.

register
points to a full-word, fixed­
point value in a general
register.

integer
is a decimal value that is
assembled as a full-word.,
fixed-point value.

• if absent, implies the value 1 for
the second or fourth operand, or the
value 231-1 for the third operand.

symbol
• as the second or

points to a flag
DEFINE statement.

fourth operand,
defined by a TEST

• as the third or
points to a TESTRAN

fifth operand,
statement.

COUNTER=symbol
• points to a counter defined by a

TEST DEFINE statement.
• if absent, implies that the state­

ment increments and tests an unnamed
counter that is automatically
defined for exclusive use by the
statement.

ANDjOR
specifies a logical relationship
between the flags specified by the
second and fourth operands.

AND

OR

specifies that the value of
both flags is one.

specifies that the value of one
flag, or of both, is one.

a~l addresstregisterlliteral
specifies an arithmetic value.

address
points to a value in the prob­
lem program or to a TESTRAN
counter.

register
points to a value in a reg­
ister.

literal
specifies a constant value that
is assembled as part of the
statement.

Note on Data Format: If the, DATAM
operand is omitted, the? format (type
and length) Of both thE! second and
fourth operands is implie!d as follows:

• If the second operand is an
address, the format is det~rmined
by the attributes of the' first
symbol used in the address. If the
address contains no symbols, or
only an external symbol, the1 format
is determined by the fourth operand
in the same manner as by the second
operand. However, if the fourth
operand is also an addre~s, and
contains no symbol other than an
external symbol., thE~ format is
assumed to be hexadecimal with a
length of one byte.

• If the second operand is p. ref­
erence to a general register, the
format is hexadecimal with a: lengtq
of four bytes. If it is a ref­
erence to a floating-point reg­
ister, the format is floatin~-point
with a length of eight bytes.

GO STATEMENTS

The GO statements
functions. Their basic
follows:

provide branching
functions ~re as

GO TO

GO IN

branches unconditionally to a TESTRAN
statement.

calls an internal subroutine.

GO OUT
returns from an internal subroQtine.

GO BACK
returns control to the problem pro­
gram, or passes control to a specified
executable instruction.

• If the second operand is a literal,
the format is specifiE~d or implied
by the literal notation.

GTIGEjEQINEILTILE
• specifies an arithmetic relationship

between the values specified by the
second and fourth operands.

• has the following meaning:

GT - greater than
GE - greater than or equal to
EQ - equal to
NE - not equal to
LT - less than
LE - less than or equal to

d DATAM= [type] [L{length} l [S{scale} l
• specifies type, length, and scale

attributes.
• defines the type and length of

values specified by the second and
fourth operands.

Operands: The operands of the GO state­
ments are as follows:

symbol
is the name of the TESTRAN statement
that is branched to 1:>r that is the
first statement of an internal subrou­
tine.

Note on Internal Subroutines: A maxi­
mum of three levels of internal sub­
routines can be maintain1ed. The first
level is lost if a f ou:cth level is
created.

address
• points to an executable instruction

to which control is passed.
• if absent, causes execution of the

problem program instruction at the
current test point.

Appendix A: Formal Description of TESTRAN Statements 69

SET STATEMENTS

The SET statements assign values to
counters, flags, and variables. Their
functions are as follows:

SET COUNTER
assigns a value to a TESTRAN counter.

SET FLAG
assigns a value to a TESTRAN flag.

SET VARIABLE
assigns a value to a problem program
variable <storage field or register).

Oper<~nds: The second operand of each SET
statE;,ment points to a counter, flag, or
variable; the third operand specifies the
valUE:! that is assigned. The operands are
as follows:

symbol
• in a SET COUNTER statement, points

to a TESTRAN counter.
• in a SET FLAG statement, points to a

TESTRAN flag.

a~l addresslregisterlliteral

70

specifies the new value of a counter
or variable.

address
points to a value in the prob­
lem program or to a TESTRAN
counter.

register
points to a value in a reg­
ister.

literal
specifies a constant value that
is assembled as part of the
statement.

=01=1
specifies the new value (zero or one)
of a TESTRAN flag.

address I register
points to a variable to which a value
is assigned.

address
points to a value in the prob­
lem program.

register
points to a value in a reg­
ister.

Note on Data Format: If the DATAM
operand is omitted., the length of the
values specified by the second and
third operands is determined as fol­
lows:

• If the second operand is an
address, the length is determined
by the first symbol used in the
address. If the address contains
no symbols, or only an external
symbol, the length is determined by
the third operand in the same man­
ner as by the second operand. How­
ever, if the third operand is also
an address and contains no symbol
other than an external symbol, the
length is assumed to be one byte.
If the third operand is a literal,
the length is specified or implied
by the literal notation.

• If the second operand is a ref­
erence to a general register, the
implied length is four bytes. If
it is a reference to a floating­
point register, the implied length
is eight bytes.

d DATAM=Ctype][L{length}][S{scale}]
• specifies type, length, and scale

attributes.
• defines the length of values

specified by the second and third
operands of a SET VARIABLE state­
ment.

FORMAT OF TESTRAN STATEMENTS

The format of TESTRAN statements is
defined in Table 2. The following conven­
tions are used:

• Uppercase letters, numbers, and punc­
tuation marks must be coded by the
programmer exactly as shown. Excep­
t ion's to this convention are brackets
[], the vertical stroke I, braces { },
the ellipsis and superscripts.
These are never coded.

• Lowercase letters and words represent
variables for which specific informa­
tion or specific values must be substi­
tuted by the progra:mroer when coding.
Their meanings are given in Tables 3
and 4. Table 3 defines abbreviations,
which are shown in italics; Table 4
defines basic variables used in both
Table 2 and Table 3.

• Items or groups of iteffis within brack­
ets C] are optional. They may be
omitted at the programmer's discretion.

• Items separated by a vertical stroke
are alternatives. No more than one of
the alternative items should be coded
by the programmer.

• If an alternative item is underlined,
that item is implied; that is, the
operating system will automatically
assume it is the programmer's choice
when none of the items is coded.

• Braces { } are used to group related
items, such as several alternative
items.

• An ellipsis indicates that the
preceding item or group of items can be
coded more than once in succession.

• A superscript number refers to a foot­
note to the description of a statement.

Table 2. Format of TESTRAN Statements
r--------T---------.--1
jName I Operation I Operand I
;-------+---------+---~--i
j[symbo1llDUMP l{DATAICHANGES},address[,address][,d.6] C,d)[,n] C,.6] I
I I ----------------------------------i
I I jCOMMENT, 'text' C ,41 I
I I t--i
I I IMAPC,.61 I
I I t--i
I I I PANEL C, (registers C, registers] ••• H C, dl C ., .6 l I
I I t--i
I I jTABLE,{TCBl{{DCBIDEB},address}}(,41 I
t--------+---------+-------~---i
I [symbol] I TRACE I CALL,, address,address [, c.] C ,.61 I
I I t--~
1 I ; FLOVl,, address (,address] [. c.] [" .o l I
I I t--i
I I I REFER,. address C,. address l C , .d.6 l C, d] C, c.] C , 6] I
I I t-----.--i
I I ISTOP{,(symbol[,symbol] •••)][,.6] I
t--------+---------+--i I symbo11 I TEST I OPEN C, address2 C , ta..6 Ii o pt.£.o n.6 J C, OPT EST=< symbol C, symbol] •.• } 1 [, .6]] I
I I t--i
I I I CLOSE I
J I t--~
I 1 !AT, ({*laddress2 }[,address2] •••) C,.6] I
I I t---~---~
I I I DEFINE;, {COUNTER I FLAG}, {symbol C,, symbol] ••.) I
I I t------------------------~--~
I I ION. [a.Jtil,, [a.Jt..i.1 • [a.Jt,£.J ,symboll,COUNTER=symbo11 I
I J t----- i
I I JWHEN,,i;;ymbol,symbol I
I I t---~
I I jWHEN,,symbol.{ANDJOR},symbol,symbol I
I I r--~
I I I WHEN,, a.Jtl 8 {GTIGE jEQ INE I LE I LT}, a.Jtl, symbol[, .6] I
~--------+-------+---i
I [symbol] I GO I {TO I IN} , symbol I
I I t----------------------------------~--------------------------------i
I I IOUT I
I I r------------~-----------~---i
I I I BACK [,address] I
t--------+---------+---~-----------------------i
I [symbol] I SET I COUNTER, symbol,,a.Jtl I
I I t---~
I I I FLAG., symbol, {symbol I =O I =1} I
I I t--~
I I IVARIABLE,{addresstregister},a.JtlC,dl I
r--------L----------L---~
11A symbol is required in the name field of a TEST OPEN statement: it is optional inl
I other TEST statements. I
12This operand can be written only as a nonindexed implied address. I
L---J

Table 3. Defini1
r------------T----
1 Abbreviation I
t------------+----
1 a.Jt..i. 1 add1
t 4Jl.l taEld1
I c. I COMl
Id IDATJ
ld.6 IDSE<
I it INAMl
I .6 I SELl
1.ta.¢ k a pt..i.o n¢ I Csy1
L-------------L---·

Table 4. Defini1
r------------T---·
I Variable I
t-----------+----
1 address IAn :
I integer I A d4
I length IAn 1

I literal I A C4
!register IA p
I registers I A p4
!scale IA s:
I symbol I A s'
I I
!text IA cj
ltype IA s·
t-----------..l---·
j 1The format of a:

I
I
I
I
I
I
~
I
I
I
I
i
I
I
I

Imp
Exp

§. i:
exp
reg
add

An implied ad'
appears in the
constant. If
contents of the

2The format of t

Gen
Flo

reg
val
a s

3The format of t
statement that
is enclosed by
must include a
or ampersand
apostrophes or

·-------------------------------1
I

·-------------------------------i
C , d l C , n] C , .o l I

·------------------------------i
!

·-------------------------------i
I

·-------------------------------i
!lC.,.01 I
·------------------------------i

I
·-------------------------------i

I
·-------------------------------i

I
·-------------------------------i

I 6] I
·-------------------------------i

I
·-------------------------------i
'=<symbol C, symbol] •••) 1 C, .o }] I
·------------------------------i

. I
·------------------------------i

I
·-------------------------------i
.] ...) i
·-------------------------------i
:symbol] I
·------------------------------i

I
·-----------------------------i

I
-------------------------------i
101 c, .oJ I
·-------------------------------i

I
·-------------------------------i

I ______________________________ .,
I

·------------------------------1
I

-------------------------------i
I

·---~-------------------------i
I

--------------------------~----i
'EN statement; it is optional inl

I
d address. I
·--------------------------~----J

Table 3. Definitions of Abbreviations used in Table 2
r------------T--1
I Abbreviation I Def ini ti on I
~------------+---1
I a.lei I address I register I integer I
I a.tc.l I address I register I literal I
1e I COMMENT=' text' I
Id IDATAM=[type] [L{length}] [S{scale}] I
td.o IDSECT=(symboHi.11,integer}) I
I rt I NAME=syrobol I
1.0 I SELECT= { 112131 4 I 51 617 I 8} l
1ta.o~ option.01 [symbol]{,LINKl,LOAD}[,MAXE=integer] [,MAXP=integerl I
L------------L--j

Table 4. Definitions of Variables used in Tables 2 and 3
r------------T---1
I Variable I Definition I
~------------+---1
address An indexed or nonindexed implied or explicit address1 I
integer A decimal self-defining term I
length An unsigned decimal integer Csee Table 5) I
literal A constant preceded by an equal sign (=) I
register A pointer to a general or floating-point register2 I
registers A pointer to one or a series of general or floating-point registers2 I
scale A signed or unsigned decimal integer (see Table 5) I
symbol A string of letters and digits that begins with a letter and is not I

longer than eight characters I
text A character constant 3 I
type A standard data type code <see Table 5) J
~-----------L--i
l 1The format of an address is given by the following table: I
I I
I Indexed Nonindexed I
1 Implied address s (x) s I

Explicit address dCx,b) d(O,b) I
I

~ is an absolute or relocatable expression; g, ~· and b are absolute!
expressions. ~ is a numeric or symbolic storage address; x is an indexl
register number; g is a displacement from a base address; £- is a baseJ
address register number. I

An implied address is assembled in base-displacement form only if a DSECT
appears in the same statement. Normally, it is evaluated by an A-type
constant. If it is indexed, its effective value is that of the constant
contents of the index register at the time the statement is executed.

2 The format of the pointer is given by the following table:

General register
Floating-point register

Single
Register
G'reg'
F'reg'

Series of
Registers
G'reg1 ,regn'
F'reg1,regn'

I
operandi
address I

plus the

req, req1 , and ~ are each a symbol or decimal integer whose value is a
valid register number. ~ and ~ are the first and last registers of
a series. ~ can have either a higher or a lower value than ~-

13 The format of the character constant is that of the constant subfield of a DC
I statement that defines a character constant. As shown in Tables 2 and 3, the constant
I is enclosed by apostrophes. The constant can include any valid EBCDIC character, butj
I must include a pair of apostrophes or ampersands LO represent a single apostrophe (')I
I or ampersand {&). The maximum length is 120 characters, counting each pair of,.
I apostrophes or ampersands as a single character.
L--J

Table 5. Definition of Type,, Length, and Scale
r-------------------T---------~----------------T--------------------------~-----------1

I Type I I I
I I Length in bytes1 I Scale2 I
~----r--------------+-~-------------T----------1 I
I Code I Meaning I Specified I Implied I I
~----+--------------+----------------+----------+--1
I c I character 11 to 256 I 1 i (not applicable) j
I X I hexadecimal 11 to 256 I 1 I <not applicable) I
I B I binary 11 to 256 I 1 I Cnot applicable) I
I H lfixed-point 11 to 8 I 2 1-187 to +346 I
I F !fixed-point 11 to 8 I 4 I-187 to +346 I
I E I floating-point I 1 to 8 I 4 I Cnot applicable) I
I D I floating-point I 1 to 8 I 8 I <not applicable} I
j P jpacked decirnalll to 16 I 1 I (not applicable) l
I z I zoned decimal 11 to 16 I 1 I (not applicable) I
I I I instruction I <not applicable) I <variable) I Cnot applicable) I
~---~L-------------L----------------i----------L--~-------~-------------------------1
1'-The implied length is used if the type, but not the length, is specified. I
12The implied scale is zero if no scale is specified. If a positive scale is intended, I
I the sign (+) can be omitted. I
L---J

Appendix A: Formal Description of TESTRAN Statements 71

APPENDIX B: IBM-SUPPLIED CAIALOGED PROCEDUR~S

This appendix defines cataloged procedures that are supplied by IBM and are referred
to in Section 3 of this publication.

PROCEDURE ASMEC

r---·--------------1 I //ASM EXEC PGM=IETASM 00020000 I
I //SYSLIB DD DSNAME=SYSl. MACLIB,DISP=OLD 00040000 I
I //SYSUTl DD UNIT=SYSSQ., SPACE= (400 I (400 I 50)) 00060000 I
I //SYSUT2 DD UNIT=SYSSQ,SPACE=(400,(400,50)) 00080000 I
I //SYSUT3 DD UNIT=(SYSS,!,,SEP=($YSUT2,SYSUT1,SYSLIB)), C00100000 I
I // SPACE= (400 I (400 I 50)) 00120000 I
I //SYSPRINT DD SYSOUT=A 00140000 I
I //SYSPUNCH DD UNIT=SYSCP 00160000 I
L---J

PROCEDURE LKED

r---1 I //LKED EXEC PGM=IEWL,.PARM='XREF,LIST,LET,NCAL' 00020000 I
I //SYSPRINT DD SYSOUT=A 00040000 I
I //SYSLIN DD DDNAME=SYSJCN 00060000 I
I //SYSLMOD DD DSNAME=&GOSET(GO),SPACE=Cl024,(50,20,1)), C00080000 I
I// UNIT=SYSDA.,DISP=(MOD,PASS) 00100000 I
I //SYSUTl DD UNIT=<sYsD1~ 1 sEP=<sYsLMOD,SYSLIN>>, coo120000 1
I // SPACE=(102L~, (200,20)) 00140000 I
L--~--------------------------------------J

PROCEDURE TASME

r---1
//ASM EXEC PGM=IETASM,PARM=(LOAD,TEST) 00020000
//SYSLIB DD DSNAME=SYSl.MACLIB,DISP=COLD) 00040000
//SYSUTl DD UNIT=(SYSSQ,SEP=(SYSLIB)), C00060000
/ / SP ACE= (4 0 0 I (15 0 I 2i0)) 0 0 0 8 0 0 0 0
//SYSUT2 DO UNIT=(SYSSt;:},SEP=(SYSUTl)) ,SPACE=(400, <150,20)) 00100000
//SYSUT3 DD UNIT= (SYSS1~, SEP= C'SYSLIB,SYSUT2)), C00120000
// SPACE= (400 I <150 I 2'0)) 00140000
//SYSPRINT DD SYSOUT=A 00160000
//SYSPUNCH DD DSNAME=&LO.M>SET, UNIT=SYSDA, C00180000
// SPACE=(80, (200,50)) ,DISP=(MOD,PASS) 00200000
//LKED EXEC PGM=~EWL,PARM=C:XREF,LIST,LET,NCAL,TEST) 00220000
//SYSPRINT DD SYSOUT=A 00240000
//SYSLIN DD DSNAME=&LO.ADSET,DISP=(OLD) 00260000
// DD DDNAME=SYSIN 00280000
//SYSLMOD DD DSNAME=&GOSET(GQ),,SPACE=C1024,C50,20,1)), C00300000
// UNIT=SYSDA,DISP=~MOD,PASS) 00320000
//SYSUTl DD UNIT=CSYSDA,SEP=~SYSLMOD,SYSLIN)), C00340000
/ / SP ACE= (10 2 4 I (2 0 0 I' 2 0)) 0 0 3 6 0 0 0 0

----·---J
Appendix A: Formal Description of TESTRAN statements 73

PROCED!JRE TASMEG

r---1
//ASM EXEC PGM=IETASM,PARM=CLOAD,TEST)
//SYSLIB DD DSNAME=SYSl. MACLIB, DISP= (OLD)
//SYSUTl DD UNIT=(SYSSQ,SEP=(SYSLIB)),
// SPACE=(400,(150,20))
//SYSUT2 DD UNIT=(SYSSQ,SEP=CSYSUT1)),SPACE=C400,C150,20))
//SYSUT3 DD UNIT=(SYSSQ,SEP=CSYSLIB,SYSUT2)),
// SPACE=C400,(150,20))
//SYSPRINT DD SYSOUT=A
//SYS:PUNCH DD DSNAME=&LOADSET,UNIT=SYSDA,
// SPACE=C80,C200,50)),DISP=CMOD,PASS)
//LK:E:D EXEC PGM=IEWL,PARM=(XREF,LIST,LET,NCAL,TEST)
//SYSPRINT DD SYSOUT=A
//SYS.LIN DD DSNAME=&LOADSET,DISP=(OLD)
// DD DDNAME=SYSIN
//SY:SLMOD DD DSNAME=&GOSET (GO), SPACE= <1024, (50 (20 (1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//SYSUTl DD UNIT=CSYSDA,SEP=(SYSLMOD,SYSLIN)),
// SPACE=C1024,(200,20))
//GO EXEC PGM=*.LKED.SYSLMOD

00020000
00040000

C00060000
00080000
00100000

C00120000
00140000
00160000

C00180000
00200000
00220000
00240000
00260000
00280000

C00300000
00320000

C00340000
00360000
00380000

L-----·--J

PROCEDQRE TASMEGED

r---1
I //ASM EXEC PGM=IETASM,PARM=(LOAD,TEST) 00020000
I //SYSLIB DD DSNAME=SYSl.MACLIB,DISP=COLD) 00040000
I //SYSUTl DD UNIT=(SYSSQ,SEP=CSYSLIB)), C00060000
I// SPACE=(400,(150,20)) 00080000
I //SYSUT2 DD UNIT=(SYSSQ,SEP=(SYSUTl)) ,SPACE=C400, (150,20)) 00100000
1 //SYSUT3 DD UNIT=CsYssQ,SEP=CsYsLIB,sYsuT2», coo120000
I// SPACE=(400,C150,20)) 00140000
I //SYSPRINT DD SYSOUT=A 00160000
I //SYSPUNCH DD DSNAME=&LOADSET,UNIT=SYSDA, C00180000
I // SPACE=(80, (200,50)),DISP=(MOD,PASS) 00200000

//LKE:JD EXEC PGM=IEWL,PARM=CXREF,LIST,LET,NCAL,TEST) 00220000
//SYSPRINT DD SYSOUT=A 00240000
//SYS:LIN DD DSNAME=&LOADSET, DISP= (OLD) 0026 0000
// DD DDNAME=SYSIN . 00280000
//SYSLMOD DD DSNAME=&GOSET(GO) ,SPACE=(1024, (50,20,1)), C00300000
// UNIT=SYSDA,DISP=(MOD,PASS) 00320000
//SYSIJTl DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00340000
// SPACE=C1024,(200,20)) 00360000
//GO EXEC PGM=*.LKED.SYSLMOD 00380000
//SYS~rEST DD DSNAME=&TESTSET,SPACE=C300, (100)), C00400000
// UNIT=SYSSQ,DISP=(NEW,PASS) 00420000
//EDrr EXEC PGM=IEGTTEDT 00440000
//SYSUTl DD UNIT=SYSDA,SPACE=C500,(100)) 00460000
//SYS~rEST DD DSNAME=&TESTSET, UNIT=(SYSSQ,SEP=(SYSUTl)), C00480000
// DISP=COLD,DELETE) 00500000
//SYSPRINT DD SYSOUT=A 00520000

L--
PROCEDU!IB TTED

r-------·--1
I //EDI~~ EXEC PGM=IEGTTEDT 00020000 I
I //SYSUTl DD UNIT=SYSDA,,SPACE=CSOO, {100)) 00040000 I
I //SYS:PRINT DD SYSOUT=A 00060000 I
L---J

74

APPENDIX C: TESTRAN MESSAGES

This appendix reproduces the following sections from the publication IBM System/360
Operating System: Messages, Completion Codes, and Storage Dumps:

TESTRAN Editor Messages
TESTRAN Interpreter Messages
TESTRAN Macro-Expansion Messag-es

Table 6 describes the messages in these sections.

Table 6. TESTRAN Messages
r-----------T----------y-----------------------------------T----------------------------1
I MESSAGE I WHERE I I I
I I PRINTED I MESSJ~GE FOR!VlAT I COMMENTS I
·-----------+----------+-----------------------------------+----------------------------i
I TESTRAN I TESTRAN I*** IEGEnn text I Messages indicate errors I
IEditor !Listing I !found during the editing I
!Messages ICTESTRAN IIEG TESTRAN message code lof test output.. I
I !editor IEnn Message serial number I I
I I SYSPRINT I indicating the I I
I I data set> I TEST:I<AN editor I I
I I !text = Message text I I
·-----------+----------+-----------------------------------+----------------------------i
ITESTRAN I TESTRAN I*** IEGinn text I Messages indicate errors I
I Interpreter I Listing I I found by the TJ:l:STRAN inter- I
I Messages I (TESTRAN I IEG = TESTRAN message code I preter during 1:xecution of I
I I editor I Inn = Mess:age serial number I the program being tested. I
I I SYSPRINT I indi;cating the I I
I I data set) I TEST1AAN interpreter I I
I I I text = Mess:age text I I
·-----------+----------+----·-------'------------------------+--------------·--------------i
I TESTRAN I Assembly ss,, •:u IEG!Mnn text I Messages indiCi!te errors in
!Macro- !Listing !the position a:nd syntax of
!Expansion l<Assembler ss = Seveirity code, which is ITESTRAN statements. The
Messages ISYSPRINT one of the following: !assembler finds these errors

data set) *]nformational.message; lwhen it expands TESTRAN
no effect on execution !statements Cmacro-instruc-

4 Warning message; success-It.ions) into sequences of
fiul execution is probablelassembler language state-

8 Error; execution may faillments. If errors in a
12 Serious error; successfullsource statement cause

execution is improbable !errors in its expansion, the
IEG = TES~RAN message code !assembler may issue addi-
Mnn = Message serial number ltional messages when it

ind~ca.ting macro-expansion !assembles the statements in
text Message text !the expansion. The addi­

ltional messages do not have
ITESTRAN message codes and
lare not included in this
I appendix. I

-----------~----------~-----------------------------------~~---------------------------J

Appendix c: TESTRl.\.N Messages 15

TESTRt~N EDITOR MESSAGES

IEGE02 UNKNOWN MACRO

Explanation: During TESTRAN edit­
ing, an input record could not be
related to a TESTRAN statement
(macro-instruction) associated with
the task that produced the data
set.

system Action: The count of invalid
records was incremented, and the
record was ignored.

IEGE03 EXCESSIVE CHANGE DUMPS

Explanation: During TESTRAN edit­
ing, the output from an excessive
number of DUMP CHANGES statements
was selected for editing by the
TESTRAN editor.

System Action: Only the output from
the allowable number of DUMP
CHANGES statements was edited.

User Response: To edit the output
from subsequent DUMP CHANGES state­
ments, repeat the job step without
selecting the output from the DUMP
CHANGES statements already edited.

IEGE04 INVALID RECORD--IGNORED

IEGE05

76

Explanation: During TESTRAN edit­
ing, an invalid or unreadable input
record was encountered.

system Action: The count of invalid
records was incremented, and the
record was ignored.

EXCESSIVE INVALID
DISCONTINUED

RECORDS--EDIT

Explanation: During TESTRAN edit­
ing, the number of invalid or
unreadable records in the data set
exceeded the allowable limit.

system Action: The job step was
terminated.

user Response: Determine whether
the correct data set was used as
input. If it was, recreate the
data set by executing the problem
program again.

IEGE06 EXCESSIVE OUTPUT

Explanation: During TESTRAN edit­
ing., the amount of edited output
exceeded the limit specified in the
PARM parameter of the EXEC state­
ment for the job step being tested.

System Action: The job step was
terminated.

User Response: Execute the job step
again, specifying either a higher
page limit or fewer output class
identification numbers.

IEGE07 END OF TESTRAN EDIT--xxx STA'l'EMENTS
PROCESSED

Explanation: TESTRAN editing was
completed.

In the message text, xxx is the
number of TESTRAN statements exe­
cuted by the TESTRAN interpreter.

IEGE08 INVALID OVERLAY RECORD

Explanation: During TESTRAN edit­
ing, an input record specified a
change in an unknown overlay seg­
ment.

System Action:
ignored.

The record was

IEGE09 INVALID RELOCATION
DISCONTINUED

RECORD--EDIT

Explanation: During TESTRAN edit­
ing, an input record contained con­
trol section relocation information
that did not correspond to the
control section definitions of the
program that was being tested.

System Action: The job step was
terminated.

User Response: Determine whether
the correct data set was used as
input. If it was not, recreate the
data set by executing the problem
program again.

IEGElO EXCESSIVE
ENTRY xxx

SECTION DEFINITIONS--

Explanation: During TESTRAN edit­
ing, the number of definitions of
control, dummy, and blank common
sections exceeded the limit allowe6
in the tested program.

In the message text, xxx is the
entry name of the excess section.

System Action: Dumps and traces of
tne excess sections were printed in
4-byte hexadecimal format, except
where this format was overridden by
DATAM operands.

User Response: Reduce control sec­
tions, dummy sections, and blank
common sections to the allowable
number. count each 'JrnSTRAN control
section once for each time it is
opened.

IEGEll EXCESSIVE 'TEST AT'S

Explanation: During TESTRAN edit­
ing, the number of supervisor call
(SVC) instructions inserted! by TEST
AT statements exceed1~d the limit.

System Action: Data result:ing from
the excess supervisoir call instruc­
tions was ignored.

User Response: Reduce problem pro­
gram addresses speci:f ied by1 TEST AT
statements to the allowable number.
Count each address once for each
opening of the TESTRi~N conbrol sec­
tion in which the address i:s speci­
fied.

IEGE12 EXCESSIVE 'TEST OPEN'S

Explanation: During ·TESTR~N edit­
ing, the opening of 'TESTRAN control
sections by TEST OPEN statements
exceeded the limit.

system Action: Data resulting from
the excess control section openings
was ignored.

User Response: Reduce TESTRAN con­
trol section openings to the allow­
able number.

IEGE13 UNABLE TO OPEN

Explanation: During TESTRAN edit­
ing, a required data set eould not
be opened because no DD statement
was supplied for the data set.

system Action: The job step was
terminated.

User Response: supply the missing
DD statement and execute the job
step again.

IEGE14 IO ERROR

Explanation: During TESTRAN edit­
ing, an uncorrectable input/output
error occurred.

System Action: The job step was
terminated.

User Response: If the input/output
error persists, have the computing
system checked.

TESTRAN INTERPRETER MESSAGES

IEGIOO INVALID ADDRESS--IGNORED

Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement referred to an address
higher than the hight~st address in
main storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed aga.in, make sure
that all address operands were
specified correctly and were not
modified. Also, check the contents
of any registers ref erred to in the
statement. Correct the error.

IEGI01 INVALID 'GO TO' AT xxx

Explanation: During execution of
the TESTRAN interpreter, a GO TO or
GO IN statement did not specify in
its second operand the address of a
TESTRAN statement in an open con­
trol section.

In the message text, xxx is the
address in hexadecimal of the GO TO
or GO IN statement.

System Action: The statement was
ignored. The next sequential
statement was executed.

User Response: If the job step is
to be executed again, make sure
that the second operand specified
the address <symbolic name) of a
TESTRAN statement and was not
incorrectly modified. Also make
sure that the control section con­
taining the address will be open
when the GO TO or GO IN statement
is executed.

Appendix C: TESTRP.N Messages 77

IEGI02 INACTIVE 'GO TO' AT xxx

Explanation: During execution of
the TESTRAN interpreter, a GO TO or
GO IN statement in an overlay pro­
gram specified as its second oper­
and the address of a TESTRAN state­
ment. This statement was in a
control section that was not cur­
rently in main storage.

In the message text, xxx is the
address in hexadecimal of the GO TO
or GO IN statement.

system Action: The GO TO or GO IN
statement was ignored. The next
sequential statement was executed.

User Response: If the job step is
to be executed again, make sure
that the control section containing
the specified address will be in
main storage when the GO TO or GO
IN statement is executed.

IEGI03 INVALID 'GO OUT' AT xxx

Explanation: During execution of
the TESTRAN interpreter., a GO OUT
statement was to be executed, but
the associated GO IN statement had
not saved a return address.

In the message text,
address in hexadecimal
OUT statement.

xxx is the
of the GO

System Action: The GO OUT statement
was treated as a GO BACK statement
in which the second operand was
omitted.

User Response: If the job step is
to be executed again, determine why
the return address was missing,
making sure that no attempt was
made to save more than three return
addresses.

IEGIOl.J NULL 'TEST OPEN' ENTRY POINT--ABEND

78

Explanation: During execution of
the TESTRAN interpreter, a TEST
OPEN statement did not specify as
its second operand an entry point
address in the problem program to
which control could be returned.

system Action: The task was termi­
nated abnormally.

User Response: Specify the entry
point address in the TEST OPEN
statement, making sure that the
statement was not incorrectly modi-

f ied. Alternatively, avoid execu­
tion of this statement oy listing
it in the OFTEST operand of another
TEST OPEN statement.

IEGI05 INVALID 'TEST AT'--IGNORED

Explanation: During execution of
the TESTRAN interpreter, the second
operand (address sublist> of a TEST
AT statement specified an address
that was outside the boundaries of
the main storage assigned to the
current task.

System Action: A supervisor call
(SVC) instruction was not inserted
at the erroneous address. Supervi­
sor call instructions were inserted
at valid addresses specified in the
same sublist.

User Response: If the job step is
to be executed again, make sure
that the address was specified cor­
rectly and was not incorrectly
modified. Correct the error.

IEGI06 EXCESSIVE OUTPUT REQUESTED

IEGI07

Explanation: During execution of
the TESTRAN interpreter, the MAXP
operand of a TEST OPEN statement
specified a limit higher than the
installation's limit on TESTRAN
output.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXP operand, or specify a limit
less than or equal to the
installation's limit.

EXCESSIVE PROCESSING REQUESTED

Explanation: During execution of
the TESTRAN interpreter, the MAXE
operand of a TEST OPEN statement
specified a limit higher than the
installation's limit on processing
by the TESTRAN interpreter.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXE operand, or specify a limit
less than or equal to the
installation's limit.

IEGI08 LIMIT OF ONE 'TEST OPEN' IN OVERLAY

Explanation: During execution of
the TESTRAN interpreter, a second
TEST OPEN statement was executed in
an overlay program.

System Action: No control sections
were opened on execution of the
second TEST OPEN :statement. Con­
trol was returned to the problem
program at the addre:ss specified by
the second operand.

User Response: If the job step is
to be executed again, remove the
second TEST OPEN statement from the
overlay program. The one 'DEST OPEN
statement allowed must be in the
root segment. Its OFTEST operand
should specify the names of ·other
TEST OPEN statement 5 for which
control sections are to be opened.

IEGI09 'AT' LOCATION CONTAINS INVALID
TESTRAN SVC

IEGilO

Explanation: During execution of
the TESTRAN interpreter, a supervi­
sor call (SVC) instruction was not
inserted in the program being test­
ed when the TESTRAN control section
was opened by a TEST OPEN state­
ment. The address in the program
at which the supervisor call
instruction should have been
inserted was specified in a TEST AT
statement. The supervisor call
instruction would have called the
TESTRAN interpreter.

System Action: The address in the
TEST AT statement was ignored and a
supervisor call instruction was not
inserted.

user Response: If the job step is
to be executed again, make sure
that the address specified in the
TEST AT statement (1) was correct,
(2) was not incorrectly modified,
and (3) was the address of an
executable problem program instruc­
tion.

DUMP TRUNCATED AT END OF STORAGE

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified an ending addiress that
was higher than the highest address
in main storage.

IEGill

System Action: Only the storage
from the starting address to the
end of storage was dumped.

User Response: If the job step is
to be executed again, make sure
that the third positional operand
specifies an address within storage
and that it was not incorrectly
modified.

'TEST OPEN' LIMIT REACHED

Explanation: During execution of
the TESTRAN interpreter, TESTRAN
control sections had been opened
255 times and another request to
open a TESTRAN control section was
found in the same task. TESTRAN
control sections can be opened only
255 times during execution of one
task.

System Action: No additional con­
trol sections were opened. control
was returned to the problem program
address specified by the TEST OPEN
statement that was executed most
recently.

User Response: If the job step is
to be executed again, count the
number of times TESTRAN control
sections are opened. A control
section is counted once for each
time it should be opened according
to the logic of the program.
Change the program to reduce the
total openings if they exceed 255.
If the total openings are fewer
than 256, check for an uncontrolled
loop that might cause repeated
opening and closing of one or more
control sections.

IEGI12 DUMP TRUNCATED AT TA.SK BOUNDARY

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHA.NGES statement
specified an ending address that
was outside the boundaries of the
main storage assigned to the task.

System Action: Only the
from the starting address
task boundary was dumped.

storage
to the

User Response: If the job step is
to be executed again, make sure
that the second and third posi­
tional operands of the stat~ment
were specified correctly and were

Appenaix c: TESTRP.,N Messages 79

not incorrectly modified. If the
program is scatter loaded, both
operands should specify addresses
in the same control section.

IEGI13 INVALID 'SET VARIABLE' 'TO' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a SET
VARIABLE statement specified a
variable at an address that was
outside the main storage assigned
to the task.

System Action: The SET VARIABLE
statement was ignored.

User Response: If the job step is
to be executed again,, make sure
that the address of the variable
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers
referred to in the statement.

IEGI15 UNDEFINED COUNTER

Explanation: During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement
ref erred to a TESTRAN counter that
was not in an open TESTRAN control
section.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
counter with a TEST DEFINE state­
ment in a control section that will
be open when the counter is
referred to.

IEGI16 TESTRAN CSECT ALTERED

Explanation: During execution of
the TESTRAN interpreter, a control
section containing TESTRAN state­
ments was modified.

system Action: The task was termi­
nated abnormally.

User Response: Find the error that
caused the TESTRAN control section
to be modified, correct it, and
execute the job step again.

IEGI17 MAXIMUM PAGES EXCEEDED

80

Explanation: During execution of
the TESTRAN interpreter, the limit
on TESTRAN output was exceeded.

System Action: The task was termi­
nated abnormally.

User Response: If excessive output
was produced, check for errors in
the statements that cause output
and in the sequence in which they
were executed. If the output was
not excessive, specify a higher
limit in the MAXP operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

IEGI18 MAXIMUM STATEMENTS EXCEEDED

IEGI19

Explanation: During execution of
the TESTRAN interpreter, the number
of TESTRAN statements that can be
processed during a single task
exceeded the limit.

System Action: The task was termi­
nated abnormally.

User Response: Check the test out­
put for logical errors that would
cause excessive processing. If no
errors are found, specify a higher
limit in the MAXE operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

INVALID TESTRAN SVC--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super­
visor call (SVC) instruction. The
supervisor call instruction was not
inserted by the TESTRAN interpreter
in the current task.

System Action: No testing was per­
formed. Control was returned to
the location following the invalid
supervisor call instruction.

User Response: If the job step is
to be executed again, remove the
invalid instruction or correct it.

IEGI20 INACTIVE TESTRAN svc--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super­
visor call (SVC) instruction that
had been inserted during opening of
a TESTRAN control section in anoth­
er overlay segment. The segment
containing the control section had
been overlaid.

IEGI21

System Action: No testing was
formed. The displaced problem
gram instruction was executed,,
control was returned to ~he
sequential instruction~

per­
p ro­

and
next

User Response: If the job step is
to be executed again, check all
TEST AT statements to ensu~e that
they specify problem program
addresses in the same overlay seg­
ment. Correct any erroneous
addresses.

INVALID 'TEST ON' BRA.NCH ADIDRESS

Explanation: During execution of
the TESTRAN interpre?ter, a TEST ON
statement should have? branched to
another TESTRAN staltemento The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check the
branch address which is specified
by the fifth operand of the TEST ON
statement. Ensure that the· control
section containing the address will
be open when the TEST ON statement
is executed.

IEGI22 INACTIVE 'TEST ON' BRANCH. A.DDRESS

Explanation: During execution of
the TESTRAN interpr1eter I a1 TEST ON
statement should have branched to
another TESTRAN statement. The
other statement wa:s in an overlay
segment not currently in malin stor­
age.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, ¢heck the
branch address, which is specified
by the fifth operand of the TEST ON
statement. Ensure that the control
section containing the address will
be in main storage when the TEST ON
statement is executed.

IEGI23 'DUMP' TRUNCATED AT 65K BYTES

IEGI24

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified dumping of a storage area
containing more than 65,535 bytes.

System Action: Only the first
65,535 bytes of the specified area
were dumped.

User Response: If the job step is
to be executed again, check the
starting and ending addresses for
the dump; these are specified by
the second and thi.rd positional
operands. Ensure thatt the differ­
ence between the addresses will not
exceed 65,535 bytes: when the pro­
gram is loaded. If the program is
scatter loaded, both addresses must
be in the same control section.

INACTIVE COUNTER

Explanation: During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement
ref erred to a TESTRAN counter in an
overlay segment not currently in
storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
counter with a TEST DEFINE state­
ment that will be :in storage when
the counter is referred to.

IEGI25 INVALID DATA LENGTH

Explanation: During execution of
the TESTRAN interpreter, the second
and fourth operands of a TEST WHEN
statement specified the location of
data in registers or main storage.
Both the type and length attributes
of this data were specified by a
DATAM operand. The data length
exceeded the limit for the data
type.

System Action: The statement was
ignored. The next sequential
statement was executed.

User
to be
DATAM
length
tent.

Response: If the job step is
executed again, correct the
operand by specifying a data
and type that are consis-

Appendix C: TESTRAN Messages 81

IEGI26 INVALID 'DUMP' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified a starting or ending
address that was higher than the
highest address in main storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, make sure
that the second or third operand of
the DUMP DATA or DUMP CHANGES
statement was specified correctly
and was not incorrectly modified.
Also check the contents of any
registers ref erred to in the oper­
and.

IEGI27 INVALID 'WHEN' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check this
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be open when the
TEST WHEN statement is executed.

IEGI2H INACTIVE 'WHEN:' BRANCH ADDRESS

82

Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was in an overlay
segment not currently in storage.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again,, check the
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be in main storage
when the TEST WHEN statement is
executed.

IEGI29 INVALID SIGN ON DECIMAL FIELD

IEGI30

Explanation: During execution of
the TESTRAN interpreter, the second
or foui:·th positional operand of a
TEST WHEN statement specified the
address of a decimal value. The
sign position of the decimal value
contained an invalid bit conf igu­
ration.

System Action: The TEST WHEN state­
ment was ignored. The next sequen­
tial statement was executed.

User Response: If the job step is
to be executed again, correct the
sign in the rightmost byte of the
decimal value.

ADDRl GREATER THAN ADDR2

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA, DUMP CHANGES, TRACE REFER,
TRACE FLOW, or TRACE CALL statement
specified a starting address that
was higher than the ending address
for the dump or trace.

System Action: The dump or trace
was restricted to the single byte
at the starting address.

User Response: If the job step is
to be executed again, make sure
that the second or third operand
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers
ref erred to in the operand. If the
program is scatter loaded, both
operands should specify addresses
in the same control section.

IEGI31 TRACE TABLE FULL AT xxx

Explanation: During execution of
the TESTRAN interpreter, a TRACE
CALL, TRACE FLOW, or TRACE REFER
statement was executed when ten
traces were already active.

In the message text, xxx is the
address in hexadecimal of the
statement.

system Action: A new trace was
started, as specified by the state­
ment. However, the tenth trace,,
the one that had been most recently
started., was suspended.

User Response: If the job step is
to be executed again, change the
testing logic so that no mo~e than
ten traces are active at one time.

IEGI32 DEB UNAVAILABLE

Explanation: During executiion of
the TESTRAN interpreter, the second
operand of a DUMP T.ABLE stiatement
specified dumping of a data extent
block (DEB). The associatied data
control block CDCB), specinied by
the third operand;, was not current­
ly open.

System Action: The DUMP
statement was ignored.

TABLE

User Response: If the job step is
to be executed again, make sure
that the data control block will be
open when the DUMP TABLE statement
is executed.

IEGI33 ILLEGAL 'TEST AT' DELETED FROM--xxx

Explanation: During execution of
the TESTRAN interpreter, control
was to be returned to the problem
program at an address specified by
a TEST AT statement. At the return
address was a TESTRAN suf>ervisor
call (SVC) instruction th.at dis­
placed either another suwervisor
call instruction or a privileged
instruction. Before! control was
returned,, the original instruction
was replaced in the problem pro­
gram.

In the message text, xx~ is the
return address in hexadecimal in
the problem program.

System Action: If the 0riginal
instruction was a privileged
instruction, its exe!cution caused
abnormal termination of the task.

If it was a supervisor call
instruction, it was executed nor­
mally and remained in the problem
program until the TESTRAN inter­
preter received ccmtrol from a
supervisor call instruction insert­
ed at some other address. Then,,
the original supervisoit call
instruction was again displ~ced by
a TESTRAN supervisor call instruc­
tion.

User Response: If the original
instruction was privileged, change
the TEST AT statement so that it
inserts the supervisor call
instruction at another address.
Then execute the job step again.

If the original instruction was a
supervisor call instruction and if
the job step is to be executed
again, allow for the temporary dis­
placement of the TESTRAN supervisor
call instruction, or rewrite the
TEST AT statement.

IEGI34 PROGRAM CHECK DURING 'GO BACK' -­
INSTRUCTION AT xxx

IEGI3'9

Explanation: During execution of
the TESTRAN interpreter, control
was to be returned to the problem
program after execution of an
instruction that was displaced by
insertion of a TESTRAN supervisor
call (SVC) instruction. Execution
of the displaced instruction caused
a program interruption.

In the message text, xxx is the
address in hexadecimal of the TES­
TRAN supervisor call instruction.

System Action: The standard system
exit routine, or the routine speci­
fied by a SPIE macro-instruction,
was given control.

User Response: Correct the instruc­
tion causing the progrram interrup­
tion and execute the job step
again.

INACTIVE FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement ref erred to
a TESTRAN flag contained in an
overlay segment not currently in
main storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
flag with a TEST DEFINE statement
that will be in storage when the
flag is referred to.

Appendix C: TESTRAN Messages 83

IEGI41 UNDEFINED FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement referred to
a TESTRAN flag not contained in an
open TESTRAN control section.

System Action: The statement was
ignored.

user Response: If the job step is
to be executed again, define the
flag with a TEST DEFINE statement
in a control section that will be
open when the flag is ref erred to.

IEGI42 INVALID 'TRACE STOP' ENTRY AT xxx

Explanation: During execution of
the TESTRAN interpreter, the second
operand of a TRACE STOP statement
specified an address or sublist of
addresses. One of these addresses
was not the address of a TRACE
statement and was, therefore,
invalid.

In the message text, xxx is the
invalid address in hexadecimal.

System Action: The invalid address
was ignored. If the operand was a
sublist, all traces corresponding
to valid addresses were stopped.

user Response: If the job step is
to be executed again, correct the
invalid address.

IEGI43 'TRACE' STOPPED BY OVERLAY AT xxx

84

Explanation: During execution of
the TESTRAN interpreter, the prob­
lem program loaded an overlay seg­
ment that overlaid all the TRACE
statements for active traces.

In the message text, xxx is the
address in hexadecimal of the
instruction that caused the load­
ing.

system Action: All traces were
stopped. They were not automat­
ically restarted when the segment
containing the TRACE statements was
reloaded.

user Response: If the job step is
to be executed again, change the
program so that the TRACE state­
ments are not overlaid or be pre­
pared to restart any traces that
will be overlaid but will be
required subsequently.

IEGI45 PROGRAM CHECK DURING 'TRACE'
INSTRUCTION AT xxx

Explanation: During execution of
the TESTRAN interpreter, a program
interruption occurred during a
trace of the problem program.

In the message text, xxx is the
address in hexadecimal of the
instruction that caused the inter­
ruption.

System Action: The standard system
exit routine, or the routine speci­
fied by a SPIE macro-instruction,
was given control. Active traces
were not suspended.

User Response: If the job step is
to be executed again, correct the
instruction causing the program
interruption.

IEGI47 'TRACE' STOPPED BY SVC AT xxx

Explanation: During execution of
the TESTRAN interpreter, a LINK,
XCTL, or RETURN macro-instruction
was executed during a trace of the
problem program.

In the m?ssage text, xxx is the
address in hexadecimal of the
supervisor call (SVC) instruction
in the macro-expansion.

System Action: All traces were
stopped. They were not automat­
ically restarted when control was
returned to the problem program.

User Response: If the job step is
to be executed again, restart any
traces that were stopped, but are
required, upon return to the prob­
lem program.

IEGI48 FLOATING POINT REGISTER SELECTED
NO FLOATING POINT HARDWARE
JOB ABORTED

Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement referred to a floating
point register, but the computing
system did not include the floating
point option.

System Action: The task was termi­
nated abnormally .•

user Response: Ei the:C' · remove all
references to floating poj!nt reg­
isters., ·and execute the jolb step
again, or execute the job s~ep on a
computing system with the :Hoating
point option.

TESTRAN MACRO-EXPANSION MESSAGES

IEGMOl TEST HAS NOT BEEN OPENED

Explanation: A TESTRAN s~atement
precedes the first valid TSST OPEN
statement.

System Action: The statement was
deleted. Severity code = 80

User Response: Prec:ede the state­
ment with a valid TEST OPEN state­
ment.

IEGM02 NAME NOT SPECIFIED

Explanation: A TEST OPEN s·tatement
does not contain a symbol in its
name field.

System Action: The statement was
deleted. Severity code = 12.

User Response: Provide the re<;1ui~ed
symbolic name.

IEGM03 ENTRY POINT NOT SPECIFIED

Explanation: The second positional
operand (problem program entry
point) was omitted from a ~EST OPEN
statement .•

System Action: The
processed normally.
= *·

statement was
severity code

User Response: No response is
required if the TEST' OPEN statement
never receives control <lirectly,
but instead is referred to' by the
OPTEST operand Of another TEST OPEN
statement. If the 'I'EST OPEN state­
ment does receive control <!lirectlyr
the omitted operand should be sup­
plied.

IEGM04 THIS MACRO ESTABLISHES CSECT xxx

Explanation: A TEST OPEN statement,
named xxx, initiates assembly of a
control section with the same name.
This control section will contain
all subsequent TESTRAN statements
until the next TEST OPEN macro­
instruction initiates a new control
section.

System Action: The
processed normally.
= *·

statement was
Severity code

IEGM05 xxx NOT A VALID OPERP.,ND FOR yyy

Explanation: The first operand of a
TEST statement is xxx. This
operand is not valid following the
operation field yyy.

System Action: The statement was
deleted. Severity code = 8.

User Response: CorrE:ct the first
operand.

IEGM06 xxx yyy ADDRESS.NOT SPECIFIED

IEGM07

Explanation: A required address
operand was omitted from a TESTRAN
statement whose operation field is
xxx and whose first operand is yyy.

System Action:· The statement was
deleted. Severity code = 8.

User Response: Provide the required
address operand.

THIS TEST DEFINE xxx HAS NO xxxs

Explanation: The third positional
operand (flag or counter sublist)
was omitted from a TEST DEFINE
statement. The second positional
operand, xxx, is either COUNTER or
FLAG.

system Action: The statement was
deleted. Severity code = 8.

User Response: Provide the required
sublist of flag or counter names.

IEGM08 xxx NOT A VALID TES'I' DEFINE OPERAND

Explanation: The second positional
operand of a TEST DEFINE statement
is xxx. This operand is invalid.

Appendix C: TESTRl~N Messages 85

System Action: The statement was
deleted. severity code = 8.

User Response: Correct the second
operand. It must be either COUNTER
or FLAG.

IEGM09 MACRO NUMBER xxx IN yyy

IEGM10

Explanation: An identification num­
ber, xxx., was assigned to a TESTRAN
statement. This statement is in a
control section named yyy., which is
the name of the preceding TEST OPEN
statement.

System Action: The
processed normally.
= *·

statement was
severity code

User Response: Keep the assembler
source and object program listing
for comparison with the listing of
TESTRAN edited output. The state­
ment identification number, which
appears in both listings, identifi­
es all output produced by the
statement.

SELECT CODE INVALID AND IGNORED

Explanation: The SELECT operand of
a TESTRAN statement does not speci­
fy a valid TESTRAN output class.

system Action: The statement was
processed, but the invalid operand
was ignored. severity code = 4.

User Response: Specify a valid out­
put class number Can integer from 1
to 8), or compensate for the error
by changing the PARM parameter of
the EXEC statement for the TESTRAN
editor.

IEGM12 xxx NOT A VALID OPERATOR

86

Explanation: The third positional
operand of a TEST WHEN statement is
xxx. This operand is not a valid
logical or relational operator.

System Action: The statement was
deleted. Severity code = 8.

user Response: Specify a vaLid log­
ical operator (AND or OR) or rela­
tional operator (LT, LE, EQ, NE,
GT, or GE).

IEGM13 INVALID LITERAL TYPE CODE

Explanation: An operand of a TES­
TRAN statement is a literal in
which the type code is either
absent or invalid.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the operand
by specifying a valid type code
following the equal sign C=> of the
literal.

IEGM14 BOTH xxx AND yyy CANNOT BE LITERALS

Explanation: The second and fourth
positional operands of a TEST WHEN
statement are xxx and yyy, respec­
tively. Both are literals.
Because the arithmetic relationship
between two literals is constant, a
test of this relationship would be
meaningless.

System Action: The statement was
deleted. Severity code = 8.

User Response: Replace one
with pointer to a main
location, a register, or a
counter.

literal
storage
TES TRAN

IEGM17 DATAM IGNORED ON THIS FORM OF TEST
WHEN

Explanation: A DATAM operand
appears in a TEST WHEN statement
that tests the condition of a TES­
TRAN flag, or a relationship
between TESTRAN flags. The operand
is invalid in this context.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Omit the DATAM
operand, or rewrite the statement
to test a relationship between
arithmetic variables.

IEGM18 FORMAT UNKNOWN. 1 BYTE HEX ASSUMED

Explanation: In a SET VARIABLF or
TEST WHEN statement, two operands
specify the location of data, which
is in registers or main storage.
The attributes of this data are not
defined in the symbol table nor are
they specified by a DATAM operand.
The data is, therefore, assumed to
be hexadecimal with a length of one
byte.

System Action: The
processed normally.
= *·

state:ment was
Severity code

User Response: If a 1-byte hexa­
decimal format is not intended,
provide a DATA.M operand that speci­
fies the correct attributes.

IEGM19 TEST WHEN WRITTEN IMPROPERLX

Explanation: The format O!f a TEST
WHEN statement is invalid.

System Action: The statement was
deleted. Severity code = 8'.

User Response: Correct the error in
the format.

IEGM20 NO RIGHT FAREN IN OPERAND XIXX

Explanation: A positional operand
of a TESTRAN statemeillt is a!n expli­
cit or indexed implied add~ess. In
this operand, the riight parenthesis
was omitted. The po:sition of the
operand in the operand field is
xxx.

system Action: The statement wa.s
processed; the right parlenthesis
was assumed to be present. Sever­
ity code = 4.

User Response: Check the source and
object program listing to determine
if assumption of the pa~enthesis
resulted in correct proceasing of
the statement. Rewrite the operand
if the processing was not correct.

IEGM31 COMMENT IS INVALID

Explanation: In a DUMP COMMENT
statement, the second pc>sitional
operand (a programmeit-writt~n
comment> either was omitted or ~s
invalid. If invalid, the operand
either is shorter than thr~e char­
acters (including delimiting
apostrophes>, or does no~ contain
one or both of the requir'ed apos­
trophes.

system Action: The statement was
deleted. Severity code = 8.

User Response: Specify or correct
the comment operand.

IEGM32 xxx NOT A VALID TABLl~ TYPE

IEGM33

IEGM34

IEGM40

Explanation: The second positional
operand of a DUMP TABLE statement
is xxx. This operand is invalid.

system Action: The statement was
deleted. Severity code = 8.

User Response: Correct the second
operand. It must .be DCB, DEB, or
TCB.

INVALID REGISTER NOT.~TION

Explanation: The second positional
operand (a register sublist) of a
DUMP PANEL statement contains
invalid register notation.

System Action: The statement
processed; the invalid operana
ignored and dumping of all
isters was assumed. Severity
= 4.

was
was

reg­
code

User Response: No response is nec­
essary.

INVALID TYPE CODE IN xxx

Explanation: The operand DATAM=xxx
contains an invalid type code.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response:
operand.

Correct the DATAM

A REQUIRED ADDRESS NOT SPECIFIED

Explanation: This message occurred
for either of two reasons:

• The second positional operand
(the starting address for a
trace) was omitted from a TRACE
CALL, TR~CE FLOW, or TRACE REFER
statement.

• The third position.al operand (the
ending address for a trace) was
omitted from a TRACE CALL state­
ment.

system Action: The statement was
deleted. Seve~ity code = 8.

User Response: Provide the
required address operand.

Appendix c: TESTRA.N Messages 87

IEGM~~ 1 THIS TRACE STOP STOPS ALL TRACES

Explanation: The optional second
positional operand (trace sublist>
was omitted from a TRACE STOP
statement. This statement will,
therefore, stop all active traces.

System Action: The
processed normally.
= *·

statement was
severity code

User Response: If all traces
should not be stopped, provide the
optional trace sublist operand to
specify only those traces that are
to be stopped.

IEGM42 COMMENT IS INVALID AND IGNORED

88

E~planation: The COMMENT operand
of a TRACE statement is invalid.
The operand either is shorter than
three characters (including delim­
iting apostrophes), or does not
contain one or both of the required
apostrophes.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Correct the COMMENT
operand.

IEGM50 2ND AND 3RD OPERANDS MUST BE
PRESENT

IEGM51

Explanation: One or more
positional operands were
from a SET statement.

required
omitted

System Action: The statement was
deleted. Severity code = 8.

User Response: Provide the
required operand or operands.

SET FLAG CONDITION MUST BE =O or =1

Explanation: The third positional
operand (condition) of a SET FLAG
statement is invalid.

system Action: The statement was
deleted. Severity code = 8.

User Response: Write the third
operand as =O or =1, or as the
symbolic name of a TESTRAN flag.

Address
as an external reference 30
assembled as a constant 19,71
declared in a USING statement 19,30
explicit 30,71
indexed 17,27,64,71
test point 15,67

Ampersand 29,71
Apostrophe 29,71
Area

(see storage area)
ASM (job step) 35,39,42,45,73,74
ASMEC (cataloged procedure)

definition 73
use 35

Assembler
E-level assembler program 35,39,41,44
listing 9,49
options 39,42,45
processing of TESTRAN

macro-instructions 12
symtol tables 24
use with TESTRAN 11

Assembly
job control statements for 35,39,41,44
listing 8,9,30
of address operands 19,71
of problem program and TESTRAN 11,30

Assignrr.ent functions 13,70
Asynchronous exit routines 27
Attributes 23,64,65,69,70

Base address
for addressing dummy contir:ol seotions

19,28
for addressing other object moduQes 30

Blank common control section 24
Branch

by a TESTRAN statement 12,66,68,69
tracing of 26,64

Branching functions 13,69

Call library 37,41,44,48
CALL macro-instruction 25,26,32,6ij
cataloged procedures <IBM-supplied)1

definitions 73,74
use 35,36,38,39,41,44

Chained opening
definition 67
examples 32,33

Change dump 17,64
Changes

in index values 17
to a dummy control section 19
to a storage area 16,64

class (of test information)
definition ty a SELECT operand

29,33,65,67
identification in a TESTR.AN listing

53-61
selection for printing 38,46

Class identification nuwber
in a job control statement 38,46
in a SELECT operand 29,65,67
in a TESTRAN listing 53-61

Class number
(see class identification numter>

Coding conventions 63
Commas 63
COMMENT operand

description 71
example 29
function 65

Comments
in the comments field 12
in the operand field 29

Common control section 24
Ccrnpleticn

of testing 31
of a timer interval 28

Condition
condition code 26,55,59
condition testing 11,68
error conditions 8

Conditional branching 68
Constants 12
Control block 20-22,64,65
Control dictionary

handling by the linkage editor
37,41,44,47

inclusion in a load modul•e
12,36,40,43,46

production by the assembl•er 12
Control flow, tracing of 25
Control information

recorded by the TESTRAN i:nterpreter 11
used by the TESTRAN editor 12
Csee also symbol tables)

Control sections
defined by TEST OPEN (see TESTRAN

control section)
map of 20
replaced by the linkage editor

31,36,41,43,47
Conventions

for coding TESTRAN statereents 63
for describing TESTRAN statements 71

Count
line count for assembly listing

36,39,42,45
page count for TESTRAN listing 39,47,67

Counter
(see TESTRAN counter)

Data control block 21,22,6Q,65
Data extent block 21,22,64,65
Data set

(see TESTRAN data set)
Data types

printing formats 51
specif icaticn 71

DATAM operand
description 71
examples 23
function 65,69,70

DCB
macro-instruction 20,28
operand 20,21,65,71
Csee also data control block)

Index 89

DEB
operand 20,21,65,71
(see also data extent block)

Decision-making functions 13,68
Def a ult

as.13en;bler options 39, 40, 42, 44, 45
pi::inting format 24

Dictionary
C siee control dictionary; external syrobol

dictionary)
Displacement 30,71
DSEC'I' operand

dE!Bcription 71
exaRples 18,19,28
function 65

Dummy control section
addressing of 28
describing another module 30
dumping changes to 19
dumping of 17
tracing references to 28

Dump
definition 11
examples 15,16,19-21,29
f m:1r.ats 53-56

DUMP statements
ex<:troples

DUMP CHANGES 16,23
DUMP COMMENT 29
DUMP DATA 15,18,23,30
DUMP MAP 20
DU!oiP PANEL 20-23
DU:MP TABLE 20

foi:mats 71
functions 64

Dynamic serial program 34

EDIT (job step) 38,45,74
Editiri1g

linkage editing 11,12,36,39,41,44
TESTRAN editing 11,12,38,44

END statement 14-34
Entry point

in an END statement 14,15
in an ENTRY statement 31
in a TEST OPEN statement 15,66

Entry point register 66
ENTRY statement

assembler 33
li~kage editor 31

Error
de1tected by the TESTRAN interpreter

49,56
diagnostic message 56,62,75-88

ETXR operand 28
Execuition, job control statements for

34,41,44
Exit Jroutine 27
Exponent 51
External reference 30,33
External symbol 30,64,69,70
External symbol dictionary 30
EXTRN statement 33

Field
(see operand field; storage field)

Flag
(see TESTRAN flag)

90

Format

GO

printing format
contrcl of 22,31
of data types 51
cf a TESTRAN listing 49

statement format 71

job step 42,45,47,74
load module 20,37,41,44,73,74

GO statements
example (GO TO) 17
f oz:mats 71
functions 69

Hexadecimal
as a default format 31,69
as an implied data type 23

Iroplicit control section 29,31
(see also TESTRAN control section)

Indexed addresses 19,27,64,71
Internal subroutine 69
Interpretive execution 26,27

Job control statements, writing of 35
Job library 37,42,45

Keyword operands 63

Length attribute
of a symbol 64
specified by a DATAM operand

23,65,69-71
Library

(see call library; job library;
procedure library>

Limits on traces 27
Linkage editing

job control statements for 36,39,41,44
of problem program with TESTRAN

11,31,33
Linkage functions 12,66
Listing

Csee asserebly listing; TESTRAN listing)
Literal 68-71
LKED

cataloged procedure 36,73
job step 36,39,42,45,73,74

MACRO ID
in an assembly listing (see MACRO

NUMBER)
in a TESTRAN listing 49-61

MACRO NUMBER 86
Macro-instruction

ATTACH 28,34
CAl·L 25, 26, 32, 64
DCB 20,28
GET, PUTX 28
IDENTIFY, LINK, LOAD, XCTL 34
OPEN 20
RETURN 8,9
SAVE 8,9,15-20,25,28
SPIE, STIMER 28
TESTRAN 12

(see also TESTRAN statements)
MAXE operand 66,67

Maximum number
of dummy control section f orroats 65
of executed TESTRAN statements 67
of internal subroutine levels 69
of pages in a TESTRAN listing 39,47,67
of traces 27

MAXP operand 66,67
Messages 56,62,75

NAME operand
description 71
examples 23
function 65

Opening of a TESTRAN control section 66,67
Operand field 63
Operation code

of a dumped instruction 24,51
of a TESTRAN statement 12

OPTEST operand
description 71
examples 32,33
function 67

Options
assembler 35,39,42,45
linkage editor 36,40#42,45
TESTRAN editor 38,46
(see also task options)

output identification
printing of 52
specification of 66

overlay program 33

PARM parameter 35-46
Positional operands 63
Printing format

control of 22,31
of data types 51
of a TESTRAN listing 49

Procedure library 35
Program status word, dumping of 20
PSW

(see program status word)

Recording functions 12,14,64
Reference

external reference 30,33
reference between overlay segments 33
tracing of references 25

Registers
dumping of 20
specification in TESTRAN statements 71

RENT option 36,40,43,46
Reprocessing

of a load module 31,37,41,43,41
Of a TESTRAN data set 29

Retur11 of control 15;, 17, 34, 53, 66, 69
REUS option 36,40,43,46
Reusability 34

(see also RENT option; RE:Us option)

scale attribute 23, 52. 69-71.
Scatter loading 27
Segment 33,34
SELECT operand

description 71
examples 29,30,33
function 65,67

Selective retrieval
classification of information for 29,33
selection of classified information

38,46
SET statements 70,71
Speed

of the TESTRAN editor 38,46
of the TESTRAN interprete1~ 6 6

Storage area
allocated 22,24,27,54
defined by indexed addresses 17
described by a dummy cont1:ol section

17,19
de.scribed by a symbol table 24
dumping changes to 16
durrping of 14
length of 64,65
specif icaticn of 64
tracing references to 25

Storage field
defined by a DATAM operand 23,31,65
defined by a DS or DC statement 24

Storage roap, dumping of 20
Storage requirements

of the TESTRAN editor 38., 46
of the TESTRAN interprete:r 66

sublist 63
Subroutine call

by a GO IN statement 69
tracing of 26,64

Supervisor call
supervisor call instruction 54,67
tracing of 26,64

svc instruction
Csee supervisor call instruction)

symbol ta:tles
handling by the linkage editor

12,31,36,37,40,41,43,44,46,47
production by the assembler

12,35,39,42,45
use by the TESTRAN editor 12,24

SYNAD operand 28
system output 49
System table

Csee central block)

Task control block 21,22,65
Task options 66,71
TASME (cataloged procedure)

definition 73
use 39

TASMEG (cataloged procedure)
definition 74
use 41

TASMEGED (cataloged proceduz·e)
definition 74
use 44

TCB
operand 20,21,65,71
(see also task control block)

Test information
classification for selective retrieval

29,33
recording and printing of 11
selective retrieval of 38,46

TEST option
assembler 35,39,42,45
linkage editor 36,40,42,46

Index 91

Test point
definition of 15
identification of 49,52
specification of 67
SVC:: instruction at 54

TEST i;tatements
examples

~['EST AT 14, 30 I 33
~t'EST CLOSE 34
TEST OPEN 15~291 32,33

f oJC'lllats 71
f u.nctions 66-68

TESTR1\N control section
chained opening by OPTEST 32,33,67
cle>sing by TEST CLOSE 34,66
definition by TEST OPEN 66,85
insertion in overlay segments 33
replacement by the linkage editor

31,37,41,43,47
TESTRJlN counter

definition of 66,67
setting of 70
testing of 68

TESTRJ~N data set
crE!ation by the TESTRAN interpreter 11
definition .by a SYSTEST DD statement

37,38,42,45,74
processing by the TESTRAN editor

29,38,46
TESTR.AN editing, job control statements

for 38,44
TESTRA.N editor

definition 11
listing

(see TESTRAN listing)
storage requirements 38,46

TESTRl!,N flag
definition of 66,67
setting of 70
testing of 68

TESTRAN interpreter
co:ntrol of
de:f inition 11
linkage to 12,15,66

TESTRAN listing
commenting the listing 29

92

example of 9,49
interpretation of 49
maximum page count 39,47,67

TESTRAN macro-instructions 12
<see also TESTR.AN statements)

TESTRAN messages 75
TESTRAN output

(see TESTRAN listing)
TESTRAN services

description 8
requests for 11,12

TESTRAN statement trace 49,62
TESTR.AN statements

examples of 14-34
execution of 12,15
functions 12,63
output of 52-62
structure and format 12,71

Trace
definition 11
examples 26
printing formats 58-61
shifting a trace 27,28
starting a trace 25
stopping and restarting a trace

25-27,34
Trace area

identification of 59,60
linitation of 27
specification of 64

TRACE statements
examples 25-29
f crmats 71
functicns 64

TTED (cataloged procedure>
definition 74
use 37

Type attribute
of a s:}'mbol 64
s~ecif ied by a DATAM operand

23,65,69-71

USING statement 18,19,28

Variable 13,70

READER'S COMMENTS

Title: IBM System/360 Operati1ng System
TES TRAN

Is the material: Yes
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?

No

Form: C28-6648-0

_As an introduction to the subject _ For additional knowledge
Other~---------------------

Please check the ~terns that describe your position:
_Customer personnel _._Operator
_ IBM personnel _Programmer
- Manager _._customer Engineer
_ Systems Analyst -·-Instructor

fola

_ Sale!s Representative
_systems Engineer
_Trainee

Other

Please check specific criticism(s), give page number(s) ,and explain below:
__ Clarification on page (s)
_Addition on page (s)

µ.:i _Deletion on page (s)
~I _Error on page (s)
HI
l!> Explanation:

~I
~I
~
C.)

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

crn-0048-o

staple

fold

fold

r--1
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
L--J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. 058

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA CJ:nly]

IBM Wurld Trade Corporation
821 Un:ited Nations Plaza, New York, New York 10017
[International]

stapl

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I
L--------------------J

111111

111111

111111

I If 111

111111

111111

I 11 111

CJ) .

n
N
00
I

0\
0\
+::
00
I

0

fol

stapl

C28-6648-0

International Bualnaaa Machinaa Corporation
Data Pro1caasing Division
112 Eaat Past Raad, Whits Plains, N.Y.10601
[USA Only]

IBM Wa1~ld Trade Corporation
821 UnitEld Nations Plaza, NawYark, NawYark 10017
[Intarna.UanalJ

.....
::s
0
I

(J
N
00
I

°' °' .(:::

CXl
I

0

	01
	02
	03
	04
	05
	06
	07
	08
	09a
	09b
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71a
	71b
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	replyA
	replyB
	xBack

