
Systems Reference Library

IBM System/360 Operating System

TES TRAN

TESTRAN is a facility for testing programs written
in the assembler language for execution under the
System/360 Operating System. It is intended for
use by the individual programmer in testing his own
programs.

This publication explains how to use TESTRAN for
typical testing purposes, how to write essential
job control statements, and how to interpret printed
test results. It formally describes TESTRAN state­
ments, cataloged procedures supplied by IBM, and
TESTRAN diagnostic messages.

The information in this publication applies to
systems that include the primary control program
(PCP) and to systems that provide multiprogramming
with a fixed number of tasks (MFT or Option 2) or
multiprogramming with a variable number of tasks
(MVT or Option 4).

File No. 8360-37
Form C28-6648-1 OS

Second Edition (November 1968)

This is a reprint of C28-6648-0 incorporating changes released
in the following Technical Newsletters:

Form Number

N28-2249

N28-2270

N28-2303

N28-2324

Pages Affected

Cover, Preface
Contents, Illustrations
8, 13-16,16.1, 19-22,
25-28, 31-34,34.1-.9,
35-48,48.1-.4, 49,50,
53,54, 63-66, 69-71,
73,73.1,74, 85,86, Index
13,14, 29,30, 33-34.2,
37,38, 41,42, 45-48.2
Preface, Contents
Illustrations
37-48,48.1-.7, 49,50,
75,76, 89-92
48.1-.2, 48.7
73.1,74, 77,78,78.1

Date

June 27, 1968

September 19, 1967

January 31, 1968

May 1, 1968

This edition applies to Release 15/16 of IBM System/360
Operating System until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the
specifications herein; before using this publication in con­
nection with the operation of IBM systems, consult the latest
IBM 360 SRL Newsletter, Form N20-0360, for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

©Copyright International Business Machines Corporation 1967

PREFACE
~--~-

This publication describes the TESTRAN
facility for testing programs written in
the assembler language. It introduces this
facility in Section 1, which shows by an
example how TESTRAN helps in testing a
program, and shows how the reader can use
TESTRAN in testing his own programs.

Sections 2, 3, and 4 guide the reader in
writing a source program, in writing job
control statements, and in interpreting
test results. The reader need not go
beyond Section 2 before completing his
source coding, and need not go beyond
Section 3 before actually testing his pro­
gram under the operating system. Also, he
need not read any section in its entirety,
because each treats a number of independent
topics that can be referred to directly
from the table of contents.

Several appendixes provide detailed
descriptions of source statements, cata­
loged procedures, and diagnostic messages.
Appendix A is of special interest, because
it formally describes statements that are
informally described in Section 2. The
reader can use either Appendix A or Section
2 as the model for his own coding, depend­
ing on the style of presentation he
prefers.

PREREQUISITE PUBLICATIONS

The following publications are
prerequisites:

IBM System/360 Operating System:

Introduction, Form C28-6534

Concepts and Facilities, Form C28-6535

Assembler Language, Form C28-6514

Knowledge of the macro-language, as
described in the Assembler Language publi­
cation, is not required. However, the
reader should know the general functions of
system-defined macro-instructions (SAVE,
OPEN, GET, PUT, DCB) that are introduced in
the Concepts and Facilities publication and
are fully described in the publications:

IBM System/360 Operating System:

Supervisor and Data Management Services,
Form C28-6646

Supervisor and Data Management Macro
Instructions, C28-6647

PUBLICATIONS TO WHICH THE TEXT REFERS

The following publications are ref erred
to in this publication, but are not neces­
sarily prerequisites:

IBM System/360 Operating System:

Assembler (E) Programmer's Guide, Form
C28-6595

Assembler
C26-3756

(F} Programmer's Guide, Form

Linkage Editor, Form C28-6538

Job Control Language, Form C28-6539

Utilities, Form C28-6586

Messages and Codes, Form C28-6631

Programmer's Guide to Debugging, Form
C28-6670

SECTION 1: INTRODUCTION ••

Testing Procedure . . • . .

Requesting TESTRAN Services
Structure of TESTRAN Statements.
Functions of TESTRAN Statements.

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS .

Basic Recording Functions • . • . •
How to Dump a Storage Area . . • • . • . .

' • • I • ' • '

CONTENTS

8

. • 11

. . 12
• 12
. 12

. • • 14

14
• 14

How to Dump Changes to a Storage Area.••..•. • • 16
How to Dump a Duromy Control Section. • . • . . • •
How to Dump Storage Maps, Registers, and Control Blocks.
How to Control Output Format • . • . . . • . . • •
How to Trace Control Flow and References to Data . • . •
How to Comment the TESTRAN Listing . •
How to Classify Test Information for Selective Retrieval

Testing of Complex Programs . • • • • . . •
How to Test a Module Already in a Library. •
How to Enlarge on a Partially Tested Prograrr •
How to Test an Overlay Prograrr. . • . . . •
How to Test a Dynamic Serial Program • . .
How to Test a Dynamic Parallel Program

Logical Functions • . • • • • • • .
How to Test on Condition ••••
How to Off set Program Errors . .
How to Create TESTRAN Subroutines ••

SECTION 3: HOW TO WRITE JOB CONTROL STATEMENTS

Assembly .•

Linkage Editing •

Execution • . .

TESTRAN Editing •

Assembly and Linkage Editing ..

Assembly, Linkage Editing, and Execution •.•

Assembly, Linkage Editing, Execution, and TESTRAN Editing •

SECTION 4: HOW TO INTERPRET SYSTEM OUTPUT.

Page Heading (••• TESTRAN OUTPUT •••)

Test Point Identification (AT LOCATION .•.) .•

Statement Output (•.• MACRO ID .•.) •
DUMP CHANGES Output.
DUMP COMMENT Output.
DUMP DATA Output .
DUMP MAP Output. . •

• 17
• 20
. 22
. 25

• • • 2 9
• 29

30
• 30
. 32
• 33
• 34

.• 34.1

• 34.1
34.2
34.7

• 34.8

• 35

• 35

• 36

38

• 39

• 41

• 44

48.1

• 49

• 52

• 52

• 52
• 53
• 53
• 53

• • 54

DUMP PANEL Output. •
DUMP TABLE Output. •
ERROR Message. . . •
TEST CLOSE Output. •
TEST OPEN Output . •
TRACE CALL Output.
TRACE FLOW output. •
TRACE REFER Output •
TRACE STOP Output.

TESTRAN Statement Trace (EXECUTED STATEMENrs •••).

TESTRAN Editor Message (*** IEGE •••) • •

APPENDIX A: FORMAL DESCRIPTION OF TESTRAN srATEMENTS ••

Coding Conventions ..•••••

Functions of TESTRAN Statements
DUMP and TRACE Statements ••
TEST Statements •.•••••

Linkage Statements ••••
Specification Statements.
Decision-Making Statements ••

GO Statements.
SET St:atements

Format of TESTRAN Statements.

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES •

Procedure ASMEC .
P::r:;-ocedure ASMFC .
Procedure LKED. .
Procedure TASME
Procedure TASMEG.

Procedure TASMEGED.

Procedure TTED.
APPENDIX C: TESTRAN MESSAGES •

TESTRAN Editor Messages ••••

TESTRAN Interpreter Messages ••

TESTRAN Macro-Expansion Messages ••

INDEX •

• 55
• 56
• 56
• 57
• 57
. 58
. 59
. 60
. 61

• 62

• 62

. 63

. 63

. 63

. 64
• 66
. 66
• 67
. 68

• • 69
. 70

. 71

. 73

. 73

. 73

. 73

. 73

• • • • • • • 7 4

. 74

. 74

. 75

• 76

• 77

• 85

. 89

ILLUSTRATIONS

FIGURES

Figure 1. Use of TESTRAN to Detect an Error in a Program. . • . 9
Figure 2. Combination of TESTRAN and Prctlem Program Source

Modules. • • • . • • • • • • • . • • • . . • . . • . • . • 11
Figure 3. Execution Time Testing of the Problem Program •....• 11
Figure 4. Printing of Test Information. . . . • • . • . 12
Figure 4A. Calling and Returning froIT Three Levels of TESTRAN
Subroutines. • . • . • . • • • . • . • . • . • . • 34.9

Figure 5. Job Control Assembly . • . 35 Statements for
Figure 6. Job Control Linkage Editing. • . 36 Statements for
Figure 7. Job Control Execution. • . • • . •. 38 Statements for
Figure 8. Job Control TESTRAN Editing. • . •. 39 Statewents f cr
Figure 9. Job Control Assembly and Linkage Editing . 41 Statements for
Figure 10. Job Control Assembly, Linkage Editing, Statements for

and Execution. • . . • • • • • • • . . • . . . • • . . • • . • . 44
Figure 11. Job Control Statewents for Assembly, Linkage Editing,
Execution, and TESTRAN Editing . • . . . • . • • . . • • . • 48.1

Figure 12. TESTRAN Editor Listing: Sample Page •••..•••.•• 50

TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Printing Forwats for Data Types ..•
Format of TESTRAN Statements . • • . . • . • •
Definitions of Abbreviations Used in Table 2 •
Definitions of Variables Used in Tables 2 and 3.
Definition of Type, Length, and Scale •.
TESTRAN Messages • • • • • • . . • . • • . • • •

. . • 51
• • • ·71

• 71
• 71
• 71
• 75

SECTION 1: INTRODUCTION

The testing of a major program can
and coding of its routines. Although
the need to meet deadlines of ten
subsequent failures. And a failure in
delay an entire project.

be as time-consuming as the design
testing is always time well spent,
leads to incomplete testing and

a single control section can

To help in testing programs, the IBM System/360 Operating System
offers a facility known as the test translator, or TESTRAN. This
facility helps to uncover faulty logic by providing printed information
about the actual working of a program. At the programmer's direction,
TESTRAN describes the changing contents of storage areas, registers, and
control blocks, and also the way in which control flows from one group
of instructions to another.

- As an example, the test of a subroutine named PRIMER is shown in
Figure 1. For any positive number X, PRIMER is designed to find the
smallest number greater than X that is a prime number. The TESTRAN
listing shows that PRIMER contains an error, because, as shown at Cl) in
the figure, it returns a result of 3 rather than 2 for X = 1.

From the TESTRAN listing, the programmer can reconstruct the flow of
data and control that occurred during execution of PRIMER. As shown at
(2), the value X = 1 was loaded into general register 10 before
execution of the instruction assembled at 000064. Branches were made to
ODD and GOT. The erroneous result +3 was stored from general register
11 before execution of the RETURN macro-instruction assembled at OOOOCO.

Tracing the flow of control, it is easy to find the instructions that
caused the error. Because X was an odd value, it was moved to register
11 and, at (3), increased by two. The result, being a prime number, was
stored as the answer. The error is obviously based on the assumption
that, if X is an odd number, the next larger p~ime number must also be
an odd number. In the single case X = 1, the assumption is invalid.·

The error in PRIMER is simple enough that it might easily be
recognized even without the hel~ of TESTRAN. From this example,
however, it should be clear that TESTRAN could be most helpful in
finding hidden and complicated errors. In addition, one should remember
that even so trivial an error could be difficult to find if the
subroutine were part of a large, complex program.

A TESTRAN listing, such as that shown in Figure 1, is printed after
execution of the program being tested. During execution, TESTRAN can
provide an additional service by checking for predefined error condi­
tions and taking corrective actions when necessary. For example, the
programmer might know that some value in his program should never exceed
a certain maximum. The value might te a result computed by a
subroutine, or it could be a counter used to control a processing loop.
TESTRAN could be used to check the value and, if the maximum were
exceeded, to substitute a lesser value or to pass control to some other
pa~t of the program~ Of course, the final results of the program would
probably be incorrect, but the continued processing would offer the
chance of fi~dir.g other errors not related to• the faulty loop or
subroutine.

8

TESTRAN LISTING

CD(~o:t!~,~~l:~esult)- - - - - - - - - - - -
returned by
PRIMER is +3. TESTING
It should be +2.

TESTRAN OUTPUT DATE 66/084 5 TIME 00/00 PAGE

1) MACRO ID 003 1 DUMP CHANGES

NONE

(

A branch was
~~~"'~~~~~~~~~~~"'~~~~..v-~~~~~~~~~~--..~~~.,....-~~~~~~~~~~~~~~~"'~~~~---- made to ODD 

from relative 
I ocat ion 000072 • 

1) MACRO ID 002 1 TRACE FLOW / TTPRIME / FROM (PRIMER ) OOOOCO 0057EO, CC=2 
SVC 26 G1 00 1 0000003C G1 01 1 8000581C G'l4 1 4000582A G1 15 1 00005778 

AT LOCATION TTSVC2 (CALLTEST) OOOOEA 00582A ENTER DATAGEN 

AT LOCATION (PRIMER ) 000058 005778 ENTER TTPRIME 

( 

A branch was ) 
-- made to GOT 

from relative 
location 000094. 

LOC OBJECT CODE I 
000058 
000058 

OOOOD8 
OOOOD8 0001 
OOOODA 0002 
000058 

ADDRl ADDR2 STM~ SOURCE S 

PRIMER 

18 9 ERR 
194 
195 
196 
197 



TESTRAN LISTING 

tAN OUTPUT DATE 66/084 TIME 00/00 PAGE 5 

IE , FROM (PRIMER ) 000064 005784, CC=O ~ 
01~ 8000581C G1 14' 4000582A G1 15 1 00005778 ~ 

(

The value X=+l) 

10(G'10'). I
~~ -- ;:~~::;d~~;~~~~ 

x POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF I 

( 

A branch was 
;-.;\'.'\'\:r-;;~;;;--;-;;;:;7,~:;--~-;;-;:~;-:;-;;:--FJ;~~~~~~---;:-;:;-;;--;;:;-;:::;;-~~~-;;-;;--;:;-i::~~~'\\S~~--- madetoODD 

from relative 
location 000072. 

1E , FROM (PRIMER ) OOOOCO 0057EO, CC=2 
01 1 8000581C G1 14 1 4000582A G1 15 1 00005778 

00582A ENTER OATAGEN 

IN SECTION CALLTEST 

ENTER TTPR IME 

( 

A branch was ) 
-- made to GOT 

from relative 
location 000094. 

ASSEMBLY LISTING 

LOC 

000058 
000058 

OBJECT CODE I ADDRl ADDR2 STM~ SOURCE STATEMENT I 

PRIMER CSECT 
~--~USING ::,15 

SAVE (14,12) 
L 12,0(l) 

~~~~~~~~~~~~~~~~~~~~~~~ L 10,0(12) 
LTR 10,10
BC 12,ERR
SR 11,11
SRDL 10,1
LTR 11,11

r--;;:-;;-;;A-;:;-,;-r:-;;--;;-n-;;----="""'"'"""'"'"""..,...,,,."""""......,."""':--<'""<""<"T"'<'"t"T"'<~~"MB~NnZ""~O~O~O"'"""'"'~

000008
000008 0001
OOOODA 0002
000058

RETURN (14,12),RC=O
LTORG

END

=H' 1 1

=H 1 2 1

ERROR EXIT FROM PRIMER

E 01FEB66 3/30/66

odd, X+2 was the first

(

Because X was)

tentative result.' The
logic errs, because
X+l is the correct
result when X=l.

Figure 1. Use of TESTRAN to Detect an Error in a Program

Section 1: Introduction 9

TESTING PROCEDURE

Requests for TESTRAN services are coded in a TESTRAN source module.
This module is combined with the program to be tested (the problem
program) either by the assembler or by the linkage editor, as shown in
Figure 2. In the first case, the TESTRAN and problem program source
modules are assembled together and result in a single object module. In
the second case, the source modules are assembled separately, result in
separate object modules, and are processed by the linkage editor to form
a single load module.

TESTRAN
Source
Module

TES TRAN
Object
Module

L ---

___ Combination of modules by the assembler
____ Combination of modules by the linkage editor

Combined
Object
Module

Combined
Load
Module

Problem
Program
Source
Module

Problem
Program
Object
Module

I
______ _!

Figure 2. Combination of TESTRAN and Problem Program Source Modules

The single load module is loaded and executed as a problem program.
Requests for test services are interpreted by the TESTRAN interpreter, a
component of the control program that receives control during program
interruptions. As shown ill' Figure 3, the TESTRAN interpreter places
test information in a TESTRAN data set, along with control information
which it copies f rorr. the unloaded form of the load module.

Problem
Program

II ---

Control Information / /

Load
Module

--

/
I
I
\
\

\
\

\----
Test lnforma~;;--- - TESTRAN

- Data Set

Figure 3. Execution Time Testing of the Problem Program

Test information, in the form of dumps and traces, is printed by the
TESTRAN editor, as shown in Figure 4. A dump is a symbolic representa­
tion of data as it existed at a particular time during execution of the
problem program. A trace is a record of control flow or references to
data over a period of time.

Section 1: Introduction 11

TEST RAN
Data Set

------- - - -- - - ___ ..._ TEST RAN
Editor

Figure 4. Printing of Test Information

Printed
Test
Information

Like the assembler and the linkage editor, the TESTRAN editor is a
processing program that is executed as a job step. It uses the control
information copied from the load module to edit test information into a
meaningful symbolic ·format. The control information includes symbol
tables and a control dictionary for each object module that is included
in the load module. The control dictionary is produced as a standard
feature of assembly, while the symbol table is produced as an optional
feature. Both are placed in the load module as an optional feature of
linkage editing.

REQUESTING TESTRAN SERVICES

Requests for TESTRAN services are written as statements in the
TESTRAN source module. Each statement is a coded TESTRAN macro­
instruction, which the assembler automatically replaces with a series of
constants. The constants, in effect, are a control statement that
directs the TESTRAN interpreter to perform a specific operation.

When the interpreter performs a requested operation, the operation
itself determines whether the next sequential macro-instruction is
interpreted, or whether a logical branch is made to some other
macro-instruction. The process of interpreting a TESTRAN macro­
instruction thus resembles the execution of a machine instruction, and
is more conveniently referred to hereafter as the execution of a TESTRAN
statement.

STRUCTURE OF TESTRAN STATEMENTS

The structure of TESTRAN statements is similar to that of statements
in the basic assembler language. Each statement includes an operation
code and one or more operands. The operation code can be preceded by a
symbolic name, and the operands can be followed by a comment.

The operation code and first operand together define the type of
operation to be performed, and are used as generic names for statements.
For example, a DUMP MAP statement dumps a map of control sect.ions and
allocated storage areas; the operand MAP distinguishes this statement
from DUMP statements that request other types of dump operations.

FUNCTIONS OF TESTRAN STATEMENTS

The operations requested by TESTRAN statements provide the following
general functions:

12

• Recording functions, which provide dumps and traces of the problem
program.

• Linkage functions, which control linkage to the TESTRAN interpreter.

• Decision-making functions, which provide condition testing and
conditional branching.

• Branching functions, which provide unconditional branching and
subroutine capabilities.

• Assignment functions, which control values of variables in the
problem program and of special variables used in decision making.

These functions are provided by statements that are formally
described in Appendix A. E'unctiona~ descriptions of the statements
appear in the next section, which describes how to write statements for
typical test applications.

Section 1: Introduction 13

SECTION 2: HOW TO WRITE TESTRAN STATEMENTS

This section shows how to write TBSTRAN statements to perform typi~al
testing functions. It gives examples of statements for performing each
function, and the reader can adapt these examples to his own needs. If
there is some question about adapting a specific example, refer to
Appendix A for complete, formal descriptions of the statements involved.

section 2 has three parts:

• Basic Recording Functions
• Testing of Complex Programs
• Logical Functions

The first part shows how to program various types of dumps and traces.
The second part shows how to test programs that are not simply
structured or not formed from single object modules. The third part
shows how to perform various logical functions, such as the detection
and correction of error conditions.

The first part of Section 2 should be of generai interest, while the
others should be read or ignored according to indiv~dual need. Each
part discusses various topics, and these also should be studied in a
selective fashion.

Note: TESTRAN statements can either follow or precede source statements
of the problem program. If they follow, however, they must follow
statements of a regular control section. They must not directly follow
statements of a dumrr.y or blank common control section.

BASIC RECORDING FUNCTIONS

This part of Section 2 describes various types of dumps and traces.
Remember that a dump represents data as it exists at a particular time;
a trace represents control flow or references to data over an extended
period of time.

HOW TO DUMP A STORAGE AREA

Assume that the program containing the area is very simple and can be
represented as follows:

ENTRY SAVE (14,12)

PROCESS MVC MYDATA(20),0(6)

MYDATA DC C'DATAAREA'
DC F'0,1,2'

END ENTRY

The problem might then be to dump the 20-byte area beginning at MYDATA,
just before the contents are changed by PROCESS. If so, the next
listing shows a solution:

14

Execution begins at NEWENTRY, the beginning of a TESTRAN sequenct that
means "Enter the problem program at ENTRY; at PROCESS, dump the area
from MYDATA to MYDATA+20." In this sequence, only the first statement
is actually executed. This statement uses the information in another
statement (TEST AT) to synchronize testing specified by a third
statement (DUMP DATA) with execution of the problem program. It
establishes a test point Ca special link to the TESTRAN interprEteI) at
PROCESS, and passes ,J=Ontrol to ENTRY. When PROCESS is reached, thE
interpreter executes the DUMP DATA statement; it returns control to the
problem program, where the MVC instruction is executed. The dump is
printed as:

0090
005F68

MYDATA
DATAAREA +O +1 +2

assuming that MYDATA was assembled at location 000090 and loaded at
location 005F68.

To dump more than one area, the programmer simply writes additional
DUMP DATA statements:

To dun.p these areas at more than one point in the prograri-t, he specifies
additional instruction addresses in the TEST AT statement:

To dump different areas at various test points, he uses additional TEST
AT statements:

Section 2: How to Write TESTRAN Statements 15

A dum.E_ed area__§hould lie entirely within a single control section or
allocated~e a:iea:" If it does not, the area may be distorted" by
scatter loading of control sections or by variation in the relative
locations of separately allocated areas. Also, if a dumped area begins
in one control section and ends in another, only data from the first
control section can be formatted properly.

r

In a system with storage protection, the TESTRAN interpreter limits
dumps to contiguous storage blocks that have the same protection key as
the job step task:

• In a system with MFT, a dump is truncated at the end of the job step
partition.

• In a system with MVT, a dump is truncated at the end of the job step
region, or at the beginning of a block within the region that has
the supervisor protection key. (The supervisor protection key is
assigned to re-enterable programs from the link and SVC libraries,
to certain blocks used by the control program, and to blocks not
assigned to any subpool.)

HOW TO DUMP CHANGES TO A STORAGE AREA

The method is the same as for a~mping a storage area; the basic
difference is that CHANGES replaces DATA in the DUMP statement:

Execution begins at NEWENTRY and continues at ENTRY. Before PROCESS is
executed, the TESTRAN interpreter dumps the 20-byte area at MYDATA. If
PROCESS is executed three times, the dumps may appear as:

16

0090
005F68

0090
005F68

OOAO
005F78

MYDATA
DATAAREA

MYDATA
WORKAREA

-40

OOAO
005F78 -41

+O +1 +2

+3

The first dump shows the full contents of the four fields assembled at
000090 and loaded at 005F68. The second shows changes to the first,
second, and fourth fields, and shows that the third field is unchanged.
The third dump shows that only the fourth field has changed since the
previous dump.

To show changes to an area, a DUMP CHANGES statement must be executed
more than once. If PROCESS were executed only once, the example would
have to be changed to specify additional test points:

Section 2: How to Write TESTRAN Statements 16.1

Change riumps would then occur at the test points PROCESS, INPUT, and
INPUT+18. There might be other TESTRAN statements to be executed,
however, and these statements might not be the same for each test point.
In this case, it would be necessary to use branching stat~ments:

The statement CONTINUE is the last executed at eacn test point. The GO
TO statements in no way affect the logic of the program neing tested;
control is returned to each test point in the normal manner.

To dump changes to more than one area of storage, the prograrrrnc:r
should specify each area in a separate statement:

Each statement produces a separate series of change dumps, even if two
statements should specify the same storage area. Each dump shows
changes to the area since the last dump by the same statement.

Changes
addresses.

in index values redefine areas that are specified by indexed
For example, the statement

DUMP CHANGES,ALPHA(4),ALPHA+60(4)

dumps a 60-byte area whose location depends on an index value in general
register 4. On the first execution of the statement, the index value
might be zero, causing a dump of the area from ALPHA to ALPHA+60. On
the next execution, the index value might be 40, redefining the ciurnped
area as that from ALPHA+40 to ALPHA+lOO. The second dump would show
changed fields from ALPHA+40 to ALPHA+60 and all fields from ALPHA+60 to
ALPHA+lOO.

HOW TO DUMP A DUMMY CONTROL SECTION

A dununy control section describes a storage area without actually
reserving the area. The area may be allocated during execution, or may
be reserved by a regular control section, as in the following example:

Section 2: How to Write TESTRAN Statements 17

This program defines a dummy-control section named DUMMY, and assigns it
the storage reserved for MYDATA. The example otherwise is the same as
that used in "How to Dump a Storage Area." The instruction named
PROCESS here refers to DUMMY rather than MYDATA, but its effect is the
same as in the earlier example.

Assume that DUMMY is to be dumped after PROCESS has been executed,
and that the 20-byte area at MYDATA is to be dumped as before. The
program then becomes:

As before, execution begins at NEWENTRY, control is passed to ENTRY,
and the area of MYDATA is dumped at PROCESS. After PROCESS is executed,
the new statements dump the 20 bytes from COUNT to NUMBERS+16. Thus,
the two dumps of the same area might appear as follows:

18

Form C28-6648-0, Page Revised by TNL N28-2249, 6/27/67

0090
005F68

0000
005F68

MYDATA
DATAAREA

COUNT
00002A6

+0 +1 +2

NUMBERS
-647 +30 -1

The durops show that MYDATA was assembled at 000090 and that COUNT was
assembled at 000000; both had the same location (005F68) when dumped.

Note that a special operand CDSECT=DUMMY) points to a dummy control
section, which is made addressable by a USING statement. A USING
statement is not needed preceding the other TESTRAN statements, since
their address operands are assembled as A-type address constants.

A dummy control section may describe more than one area of storage;
for example, it may define each of several tuffers in a buffer pool. If
the areas are contiguous, they can be duroped by a single statement, as
in the following example:

PROCESS moves data into a 60-byte area beginning at DUMMY, i.e., at
MYDATA. This area is duroped as three 20-byte areas
C (NUMBERS+16) -COUNT=20) , each area having the format defined in DU!-'JMY:

0000 COUNT NUMBERS
005F68 000002A6 -647 +30 -1

0000 COUNT NUMBERS
005F7C 00000006 +4 +O -2

0000 COUNT NUMBERS
005F90 OOOOOlCF +278 -64 -89

Changes to a dummy control section can be dumped, just as changes to
a regular control section. For this purpose, a DUMP CHANGES statement
Cwith a DSECT operand) is used in place of a DUMP DATA statement. For
examples of the use of DUMP CHANGES, refer to "How to Dump Changes to a
Storage Area."

Section 2: How to Write TESTRAN Statements 19

HOW TO DUMP STORAGE MAPS, REGISTERS, AND CONTROL BLOCKS

For simplicity, assume that a storage map, registers, and control
blocks should all be dumped at X in the following program:

START

x

MYDCB

SAVE

OPEN

DCB
END

(14,12)

(MYDCB, (OUTPUT))

DSORG=PS,MACRF'=(PM),DDNAME=MYDD
START

The unshaded statements below perform these functions:

Execution begins at NEWSTART, where X is established as a test point.
Control passes to START, and the DUMP statements are executed at X. The
dumps appear as follows:

Storage Map (recorded by DUMP MAP):

NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH-DEC HEX

GO LOADED PROGRAM NEWS TART 000000 009020 47 2F
LOADED PROGRAM 000030 009050 172 AC

I EGTTRNK LOADED PROGRAM 009120 1048 418
IEGTTROT LOADED PROGRAM 07F3DO 1160 488

OBTAINED STORAGE 07F858 96 60
OBTAINED STORAGE 07F948 560 230
OBTAINED STORAGE 07FBBO 360 168

Registers (recorded by DU.MP PANEL) :

G'OO' 0007FD58 G'Ol' 0007FD58 G'02 1 00000058 G 1 03 1 50009050 G1 04 1 00006EE8 G1 05 1 0007FF5C G 1 06 1 00005460 G 1 07 1 00000000
G'OB' 0000003C G'09' 40011062 G'lO' 0007FF1C G1 11 1 0007FF5C G 1 12' 00000180 G'l3 1 0007FE98G'14 1 50009088 G'l5' 92007750
PSW FF l 5 0026 4 0 00908A CC:O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

F'O' 00000000 00000000 F'2 1 00000000 00000000 F 1 4 1 00000000 00000000 F'6 1 00000000 00000000

20

Task Control Block (recorded by DUMP TABLE,TCB)

SECTION FIELD NAME CONTENTS

TCBFRS 00000000 00000000 00000000 82000170 00040000 0007DCB8 00000000 00000000
TCBRBP 00009100
TCBPIE 00000000
TCBDEB 0007FCDC
TCBTIO 0007FF5C
TCBCMP 00000000
TCBTRN 0007F948
TCBMSS 00005670
TCBPKF 10
TCBFLGS 00000000 00000000 00000000 00000000 00000000
TCBLMP 000
TCBDSP 000
TCBLLS 0007F3A8
TC BJ LB 00000000
TC BJ SE 00000000
TCBGRS OOOOOOC6

0007FAFO
000054BO 800092F4 0007FB04 Li007FF844 50004ClA 00000001 0007FAFO 0007FA90 0007FE58
04000030 OlOOOOAC 40404040 l/Ol/04040 40404040

TCBIDF 01000000
TCBFSA 404040
TCBTCB 40404040
TCBTME 40404040

Data Control Block (recorded by DUMP TABLE,DCB,MYDCB)

SECTION FIELD NAME CONTENTS

DEV I CE DEPENDENT INTERFACES

DCB 00000000 00000000 00000000 00000001 00810000

COMMON INTERFACE

DCB 0207FC10 00004000 00000001

FOUNDATION BLOCK EXTENSION

DCB 42000001 80000000

FOUNDATION BLOCK

DCB 00400050 0007FCDC 92

ACCESS METHOD INTERFACES

DCB 00775000 007B880C 00000100 09005028 28282840 07FBEOOO 07FCB800 07FCB800 00005000 00000100

00000000 00884848 70201EC9 C5C7E3E3 D9D5C600 4C0040F6 40404000 00000000 00000002 0026FE06

78000140 40404040 40404000 00000000 00000002 0027FE06 78000140 40404040 40404000 00000000

00000002 0028FE06 78000140 40404040 l/0404000 00000000 00000002 0029FE06 18000140 40404040

40404000 00000000 00000002 002AFE06 78000340 40404040 l/0404000 00000000 00000002 002DFE06

78000106

Data Extent Block (recorded by DUMP TABLE,DEB,MYDCB)

SECTION FIELD NAME CONTENTS

PREFIX SECTION

DEBWKARA 00
DEBDSCBA 00000000 000000
DEBDCBMK 00000000 00000001 10011111 11100000
DEBLNGTH oc

NUCLEUS

DEBNMSUB 003
DEB TC BAD 000180
DEBAMLNG 004
DEBDEBAD 07F87C
DEBOFLGS 11001000
DEBIRBAD 000000
DEBOPATB 00001111
DEBSYSPG 000000
DEBNMEXT 001
DEBUSRPG 000000
DEBPRIOR 000
DEBECBAD 000000
DEBPROTG 001
DEBDEBID 015
DEBDCBAD 00909C
DEBEXSCL 002
DEBAPPAD 07FCB8

EXTENT

DEB 33002000

ACCESS METHOD

DEB 00010000

SUBROUTINE ID

DEB ClD9ClD2 1000

Section 2: How to Write TESTRAN Statements 21

The format of each dump is explained in "Section 4: How to Interpret
System Output." Note that:

• The storage map shows the length and location of each program that
was loaded and each storage area that was obtained for the active
task. The first program (GO) is the problem program; the others are
components of the TESTRAN interpreter. GO includes two control
sections: NEWSTART, which is defined by the TEST OPEN statement and
contains all five TESTRAN statements, and an unnamed control
section, which contains the problem program instructions.

• The dump of registers includes both the general and floating-point
registers, assuming that the computing system· includes the floating­
point option. It also includes the program status word (PSW) that
was stored when the problem program was interrupted at the current
test point.

• The dumps of control blocks show the task control block CTCB) for
the active task, the data control block (DCB) named MYDCB, and the
data extent block (DEB) created during the opening of MYDCB.

In the second dump, the contents of all registers appear in
hexadecimal format. The programmer can specify a different format (such
as fixed-point or floating-point) in the DUMP PANEL statement (refer to
"How to Control oµtput Format)." Since the specified format applies to
all registers dumped by the statement, it is often desirable to use
separate statements for dumping general and floating-point registers:

DUMP PANEL,G'0,15'
DUMP PANEL,F'0,6'

The first statement dumps the general registers 0 to 15; the second
dumps the floating-point registers 0 to 6. The programmer can also
select specific registers, as in the statement

DUMP PANEL, (G'4',G'SUM',G'8,9',G'13,1')

which dumps only the following general registers:

• Register 4.
• The register whose number is the value of the symbol SUM.
• Registers 8 and 9.
• Registers 13, 14, 15, O, and 1.

Of course, if the programmer wishes to dump specific general and
floating-point registers, and to dump both in the same format, he can
specify them in a single statement, such as:

DUMP PANEL, (G'5',F'SUM',F'4,6',G'8,10')

HOW TO CONTROL OUTPUT FORMAT

The TESTRAN editor determines the format of the output from most
TESTRAN statements. However, the statements

DUMP DATA
DUMP CHANGES
DUMP PANEL
TRACE REFER

produce output whose format may be determined in any of three ways:

22

1. By special operands.
2. By symbol tables.
3. By default.

By understanding each way of determining format, and the conditions
under which it is used, the programmer can control the format of data
recorded from registers and main storage.

SPECIAL OPERANDS: There are two operands by which the programmer can
specify output format:

• The DATAM operand, which defines storage field or register format.
• The NAME operand, which defines a field name.

The DATAM operand can be used in any of the four statements; the NAME
operand can be used in a DUMP DATA or DUMP CHANGES statement.

The DATAM Operand: The DATAN operand specifies the format of a field or
register in terms of three attributes:

l : Type
Length
Scale

The specification of attributes is similar to that in an assembler DC or
DS statement and is illustrated by the following statements:

Dl
D2
D3
Tl

DUMP DATA,INPU'I'+6,DATAM=L74
DUMP CHANGES,OC0,13),72(0,13),DATAM=L4
DUMP PANEL,F'0,6',DATAM=D
TRACE REFER,TABLE,TABLE+80,DATAM=FL4S-2

Dl dumps a single field that begins at INPUT+6. The length of the
field is 74 bytes; because no type is specified, the contents of the
field are printed as hexadecimal data.

D2 dumps a series of up to eighteen 4-byte fields, each containing
changes to the contents of a 72-byte storage area.

D3 dumps the old program status word COPSW) and the contents of the
floating-point registers. The type of data in the registers is
specified as D (long floating-point), which implies a length of 8 bytes
for each.

Tl traces references to 4-byte fields within an 80-byte area. The
trace shows the contents of a 4-byte fixed-point field beginning at each
address to which a reference is made. The contents before and after the
reference are shown multiplied by the scale factor c2- 2).

The NAME Operand: The NAME operand specifies a syrnbol that is printed
as the name of a field dumped by a DUMP DATA or DUMP CHANGES statement.
Its use is illustrated by the following statements:

Dl
D2

DUMP
DUMP

DATA,TABLE(6),DATAM=CL8,NAME=FUNCTION
CHANGES,MATRIX,MATRIX+160,NAME=NEWMATRX

Dl dumps a single 8-byte field located at TABLE(6). FUNCTION is
printed as the name of the field.

D2 dumps a 160-byte area, which may contain any numner of fields.
NEWMATRX is printed as the name of the first field that is dumped.

Section 2: How to Write TESTRAN Statements 23

SYMBOL TABLES: Symbol tables are part of the control information that
is passed to the TESTRAN editor by the TESTRAN interpreter. (See Figure
3.) Produced by the assembler, each symbol table describes fields
defined in a named, unnamed, dummy, or blank common control section.
The TESTRAN editor uses the symbol tables to:

Determine field formats when the DATAM operand is omitted.
Provide field names when both the DATAM and tne NAME operands
omitted.

are

A blank common control section is common to two or more object
modules, and is therefore represented by more than one symbol table. To
print fields defined in a common control section, the TESTRAN editor
identifies the object module in which the test point was located, and
uses the symbol table for the control section as defined in that module.

Except in the case of a blank common control section, the symbol
tables define only one format for a given area of storage. They do not
define the format of fields that are overlapped by other fields, as in
the following sequence:

LONGFLT DS
SHORTFLT DS

ORG
ADRLONG DC
ADRSHORT DC

D
E
*-8
A(LONGFLT)
ACSHORTFLT)

This sequence defines fields that together occupy three full words.
LONGFLT occupies the first two words, the second of which is overlapped
by ADRLONG. SHORTFLT occupies the third word and is overlapped by
ADRSHORT. If the three words were dumped, the first would be printed in
default format, and the second and third would be printed as normal
address constants.

DEFAULT: The fields described in the symbol tables are storage areas
and constants defined by assembler DS and DC statements. Instructions
are described only if named, and are therefore assumed to be the
contents qt any program area whose format is not defined in the tabl~~
The area contents are analyzed"'°for operation codes, which are used to
determine the printing format for each instruction.

Unless treated as a dununy control section, an allocated area of main
storage is not represented by a symbol table. By default, data from
such an area is printed in 4-byte hexadecimal fields. Data from
registers, including floating-point registers, is also printed in this
format.

24

HOW TO TRACE CONTROL FLOW AND REFERENCES TO DATA

Suppose that the following sequence is the program to be traced:

BEGIN SAVE (14,12)

REPEAT ST 6,MYDATA

DECIDE BC 4,REPEAT
CONTINUE CALL ROUTINEl

NEXTSTEP SR 5,5

DC F'O'

END BEGIN

The problem is to trace control flow from BEGIN to NEXTSTEP and to trace
references to the area beginning at MYDATA. The traces are to be
started at BEGIN and are to be stopptd at NEXTSTEP.

The next sequence shows a solution:

Section 2: How to Write TESTRAN Statements 25

Execution begins at NEWBEGIN, where a TEST OPEN statement establishes
BEGIN and NEXTSTEP ·as test points. NEWBEGIN passes control to BEGIN,
where three traces are started:

• The TRACE FLOW statement starts a trace of branches and supervisor
calls to, from, or within the area from BEGIN to NEXTSTEP.

• The TRACE CALL statement starts a trace of subroutine calls by CALL
macro-instructions located between CONTINUE and NEXTSTEP.

• The TRACE REFER statement traces references by instructions that
could change data in the 72-byte area beginning at MYDATA.

To pe.rform these traces, the TESTRAN interpreter retains
executes the program interpretively, starting at BEGIN.
the traces are stopped and execution continues normally.

control and
At NEXTSTEP,

The printed output of the three traces can be represented, in
abbreviated fashion, as follows:

Output

AT LOCATION BEGIN ••.

• • • TRACE FLOW •••
STARTED

••• TRACE CALL •••
STARTED

••• TRACE REFER •.•
STARTED

••• TRACE REFER ••• TO MYDATA •.. FROM REPEAT .••
BEFORE +O AFTER +16

••• TRACE FLOW ••• FROM DECIDE ••. TO REPEAT ••• CC=l

••• TRACE CALL .•. TO ROUTINEl ••• AT CONTINUE ••.

AT LOCATION NEXTSTEP •••

••• TRACE STOP,ALL

Recorded
During Execution of:

TESTRAN Statements

Problem Program

~ TESTRAN Statements

The output shows that the traces were started at BEGIN and stopped at
NEXTSTEP. It shows that the following events occurred during execution
of the problem program:

26

• A reference was made to MYDATA by REPEAT, resulting in a new value
of +16.

• A branch was made from DECIDE to REPEAT on condition code 1 •

• A call was made to ROUTINEl from CONTINUE.

complete output, as actually printed by the TESTRAN editor,
show the images of certain instructions, the values
addresses, and the contents of pertinent registers.

would also
of symbolic

suppose now that only the traces of control flow should be stopped at
NEXTSTEP, and that the trace of references should be continued until the
end of the program. The TESTRAN statements should then be written as
follows:

The TRACE STOP statement here stops only the traces started by the
statements TRACE#1 and TRACE#2. The TESTRAN interpreter continues its
interpretive execution of the problerr- program, and records references to
the area at MYDATA until termination of the task.

The TRACE STOP statement speeds up execution by reducing the number
of traces. While any trace is in effect, the TESTRAN interpreter must
examine each instruction before it is executed to determine whether it
will cause some event, such as a branch, that rr.ust be recorded. This
interpretive execution is necessarily slow, and the time it requires is
reduced by stopping each trace when it is no longer needed.

Testing efficiency is also increased by limiting the size of storage
areas specified in TRACE statements. For example, if there were three
adjoining areas, all could be specified as a single area in a single
statement; however, if only the first and third areas were of real
interest, it would be better to eliminate output from the second area by
using two TRACE statements to specify the first and third areas
separately.

With respect to limiting traces, the following specific limits should
be kept in mind:

• A trace area should lie entirely within a single control secyion or
allocated storage area. If it does not, the area may be distorted
by scatter loading of control sections or by variation in the
relative locations of separately allocated areas. Also, if a trace
area begins in one control section and ends in another, only data
from the first control section can be formatted properly.

• No more than ten traces (corresponding to ten TRACE statements) can
be performed simultaneously. If an eleventh trace is started, the
tenth trace the one most recently started is stopped
automatically.

A stopped trace can be restarted by executing again (at a later test
point) the TRACE CALL, TRACE FLOW, or TRACF REFER statement that
originally starte~ the trace. In the same way, an active trace can be
shifted to a new area if the area is specified by indexed addresses
whose values have changed since the trace was started.

Traces of Asynchronous Bxit Routines: Traces are stopped automatically
when any of the following routines is entered:

Section 2: How to Write TESTRAN Statements 27

• The end of task exit routine specified by the ETXR operand of an
ATTACH macro-instruction.

• The timer completion exit routine specified by a STIMER macro­
instruction.

• The error analysis exit routine specified by the SYNAD operand of a
DCB macro-instruction.

To trace execution of one of these routines, it is necessary to start
traces at a test point within the routine. When the routine returns
control to the control program, these traces are autoruatically stopped
and the traces stopped on entry to the routine are automatically
restarted.

Traces are not stopped on entry to the program interruption exit
routine specified by a SPIE macro-instruction.

Use of Dummy Control Sections: The programmer can trace references to
fields of dummy control sections by using the general technique
described in "How to Dump a Dummy Control Section." If he assigns
varying locations to the dummy control section, he can shift the trace
from one location to the next as in the following example:

NEWSTART TEST OPEN,START
TEST AT,LOADBASE+2
USING RECORD,6
TRACE REFER,ID,DATb+5,DSECT=RECORD

START SAVE (14, 12)

GETNEXT GET MYDCB
LOADBASE LR 6,1

MY DCB
RECORD
ID

DATE

USING RECORD,6

PUTX MYDCB
B GET NEXT

DCB DSORG=PS,MACRF=(GL,PL),DDNAME=MYDD
DSECT
DS XL4

DS PL5
END NEWS TART

GETNEXT uses register 1 to point to a buff er that contains a record to
be updated. The program assigns the buffer location to RECORD, a dummy
control section that describes the record format. After processing the
record., the program replaces it in the data set and executes the same
set of instructions to update the next record. On each loop, the TRACE
REFER statement is executed immediately after LOADBASE makes RECORD
addressable. When first executed, it starts a trace of references to
the buffer containing the first record; on each subsequent execution, it
shifts the trace to the buff er containing the next record.

28

HOW TO COMMENT THE TESTRAN LISTING

A TESTRAN listing can become difficult to interpret when it contains
many individual dumps and traces. To make the listing easier to
interpret, the programmer can introduce comments that explain or call
attention to particular items.

The programmer specifies a comment as an operand of a special DUMP
statement (DUMP COMMENT) or in a special operand of a TRACE CALL, TRACE
FLOW, or TRACE REFER statement. The following example illustrates both
methods:

TEST
TRACE

TEST
DUMP
DUMP

AT,PAYROLL
CALL,CALLFICA,NEXTSTEP,COMMENT='TRACE OF CALLS TO PAYROL­
L SUBROUTINES'
AT,TESTCODE-4
COMMENT,'G''15'' CONTAINS FICA RETURN CODE'
PANEL, G' 15'

The comment TRACE OF CALLS TO PAYROLL SUBROUTINES is printed with all
output produced by the TRACE CALL statement. The comment G'15' CONTAINS
FICA RETURN CODE is printed immediately before the dump of register 15.

(Note that the apostrophes in the second comment are each represented by
a pair of apostrophes in the statement. This representation is
necessary because apostrophes are used to delimit the comment; for other
reasons, ampersands must be represented in the same way.)

HOW TO CLASSIFY TEST INFORMATION FOR SELECTIVE RETRIEVAL

To avoid printing large quantities of test output, the programmer can
divide the output into several classes that can be retrieved
selectively. By means of a job control statement, he can select one or
more classes for printing immediately after execution of his program.
From this information he can decide what other classes he needs for his
evaluation of the program. He can then select these classes by
submitting a new job that reprocesses the TESTRAN data set.

To classify output, the programmer writes a special operand (ShLECT)
in one of the following statements:

• TEST OPEN
• TEST AT
• Any DUMP or TRACE statement

Depending on where it appears, the SELECT operand classifies:

• Information recorded at the test points established by a TEST OPEN
statement.

• Information recorded at the test pointCs) specified in a TEST AT
statement.

• Information recorded by an individual DUMP or TRACE statement.

The SELECT operand classifies information
identification number Can integer from 1 to 8),
statement:

by means of a class
as in the following

Tl TEST OPEN,ENTRY,SELECT=8

Section 2: How to Write TESTRAN Statements 29

All information recorded at the test points established by this
statement belongs to class 8, except for information that is reclassi­
fied by a TEST AT, DUMP, or TRACE statement. Thus, if Tl is followed by

TEST AT,PROCESS,SELECT=6

all information recorded at PROCESS belongs to class 6, except for
information that is reclassified by a DUMP or TRACE statement, such as:

DUMP DATA,MYDATA,SELECT=5

The dump of MYDATA belongs to class 5, and only to class 5. As a result
of reclassification, it does not belong to either class 6 or class 8.

Use of the SELECT operand does not imply that all information must be
classified. Unclassified as well as classified information can be
selected for printing.

TESTING OF COMPLEX PROGRAMS

This part of Section 2 describes the testing of programs that are not
simply structured or are not formed from single object modules.

HOW TO TEST A MODULE ALREADY IN A LIBRARY

As stated in Section 1, TESTRAN statements and the problem program
can be assembled together or separately. Assembling the two together is
usually the more convenient, but the sophisticated programmE:r may
discover cases where separate assembly is more efficient. For example,
the programmer may have assembled and tried to execute a program before
deciding to use TESTRAN. If he has saved the program in a library, he
may wish to assemble TESTRAN statements separately to avoid reassembling
the program to be tested.

Separate assembly presents two major problems. First, there is no
simple symbolic way that TESTRAN statements can refer to locations in
the problem program. Second, assuming that the object or load module in
the library contains no symbol tables, there is no simple way of
obtaining TESTRAN output in the proper symbolic format.

References to the Problem Proqram: There are three ways that TESTRAN
statements can refer to locations in the pronlem program. The first,
which is the only way that can be used in TEST OPEN and TEST AT
statements, is to· write each address as an external reference plus or
minus an appropriate displacement. The external reference is a symbol
defined in the problem program and listed in the external symbol
dictionary (the first part of the assembly listing). The displacement
is the number of bytes from the location named by the symbol to the
location of the operand; it can be calculated from the object code
addresses contained in the assembly listing.

The second way of referring to the problem program is by explicit
addresses. These can be written to use base registers loaded by the
problem program. Displacements 'from base addresses can be calculated
from the object code addresses in the assembly listing.

The third way of ref erring to the problem program is to use dummy
control sections that describe the format of the problem program. The
name of each must be declared as the address in a base register that is
loaded by the problem program. Areas defined in the aummy control
sections (which correspond to areas in the problem program) can then be
referred to symbolically by DUMP DATA, DUMP CHANGES, and TRACE.REFER
statements that are written with DSECT operands. Remember that TESTRAN
statements must not follow statements of a dummy control section.

30

Output Format: The output of DUMP DATA, DUMP CHANGES, and TRACE REFER
statements is printed as four-byte hexadecimal fields unless each
statement contains a DATAM or DSECT operand. The DATAM operand
specifies a uniform field format for all data in the area specified by
the statement. The DSECT optrand specifies use of the symbol table for
a dummy control section that is assewbled with the TBSTRAN statements.

Symbol tables are optional features of assembly and linkage editing,
and are requested by means of job control statements. If the programmer
anticipated the use of TESTRAN, he could have requested symbol tables
when the problem program module was created. The tables for the problem
program could then be used to determine the output format.

Linkage Editing and Execution: After being assembled, the TESTRAN
module (TESTRAN statements and dummy control sections) is processed by
the linkage editor. The programmer must provide linkage editor control
statements to combine this module with the problem program module. For
example, the statements:

INCLUDE MYLIB(MYPROG)
ENTRY NEW START
NAME MYPROG(R)

specify that the load module is to include the load module MYPROG from
the library MYLIB; that the entry point is to be NEWSTART (assumed to be
the name of a TEST OPEN statement); and that the new load module is to
replace the original problem program module in the library.

The normal procedure is followed in executing the new load module and
printing the TESTRAN output. If the output shows an error in a
particular control section, tne programmer can replace the control
section with a new one through use of the linkage editor. Since a
symbol table can be requestEa when assembling the new control section,
the programmer may wish to eliminate DATAM or DSECT operands in TESTRAN
statements that ref er to the control section. If so, he assembles a
complete new set of TESTRAN statements, which form an implicit control
section named after the TEST OPEN statement. If each new control
section is named after the control section it replaces, the replacement
is automatic, and only two linkage editor control statements are needed:

INCLUDE MYLIB(MYPROG)
NAME MYPROG(R}

When the new load module is tested, the TESTRAN output may show an
error in one of the replacement control sections. If there is a symbol
table for this control section, the control section should not be
replaced witp another of the same name. The linkage editor does not
replace symbol tables when it replaces control sections; therefore, the
table originally associated with each section name remains in effect.

Test Completion: When testing is completed, the programmer can direct
the linkage editor to prepare the load module for productive use. For
example, he might write the following control statements:

ENTRY START
REPLACE NEWSTART
INCLUDE MYLIB(MYPROG)
NAME MYPROG(R)

These statements restore the normal entry point (START) and delete the
TESTRAN control section (NEWSTART). Symbol tables in the module are
deleted as a result of omitting an option in a job control statement.

section 2: How to Write TESTRAN Statements 31

HOW TO ENLARGE ON A PARTIALLY TESTED PROGRAM

Suppose that the following program has been tested successfully:

TESTMOD1 TEST OPEN,MOD1

MODl CSECT

END TESTMOD1

another control section, MOD2, and
are be tested together. The enlarged

Execution begins at TESTMOD2, the first of a group of TESTRAN statements
for testing MOD2. In effect, this statement executes the statement
TESTMOD1; as a result, it establishes test points as specified by TEST
AT statements following both TESTMODl and TESTMOD2. TESTMOD2 ignores
the second operand CMOD1) of TESTMODl and passes control to the problem
program at MOD2.

Because MOD1 has been tested previously, test information about MODl
is simply insurance against unexpected errors. The prograrrur1er may
therefore wish to def er printing this information until after he has
examined the information about MOD2. If so, he can classify the
information about MOD2 and select only this information for immediate
printing. He can save the data set that contains the information and,
if it proves necessary, select the information about MODl at a later
date.

The programmer classifies information about MOD2 by
special operand (SELECT) described in "How to Classify Test
for Selective Retrieval." There are several statements in
write tnis operand, but for the present purpose he can best
the TEST AT statements that follow TESTMOD2:

32

means of a
Information

which he can
write it in

The programmer can select information about MOD2 by specifying class 8
in a job control statement, as explained in Section 3. In a later job,
he can repeat the editing of TESTRAN output and select unclassified
output to print information about MODl.

The SELECT operands in the TEST AT statements classify information
recorded at test points in MOD2. A SELECT operand in the statement
TESTMOD2 would provide the same function if that statement did not
include the operand OPTEST=TE.STMODl. In a TEST OPEN statement, a SELECT
operand classifies information recorded at all test points established
by the statement, including those established as the result of an OFTEST
operand. A SELECT operand in TESTMOD2 would therefore classify informa­
tion recorded at test points in both MOD2 and MODl. It would do so even
if a different SELECT operand (e.g., SELECT=?) were written in TESTMODl,
because the operands of a TEST OPEN statement are ignored if the
statement is not actually executed.

HOW TO TEST AN OVERLAY PROGRAM

An overlay program is a load module that is divided into several
overlay segments. For testing purposes, each segment must be treated as
a separate program. That is, it must contain its own TESTRAN state­
ments, beginning with a TEST OPEN statement. During execution, only one
TEST OPEN statement can receive control; it must be located in the root
segment, and it must contain a special operand (OFTEST) that points to
all other TEST OPEN statements, as in the following example:

{

TESTSEGl TEST
Segment 1
(Root Segment)

r TESTSEG2 T.t.ST

Segment 2~

-{

TESTSEG3 TEST

Segment 3

END

OPEN,ENTRY,OPTEST=(TESTSEG2,TESTSEG3)

OPEN

OPEN

TESTSEGl

Except for references by the OFTEST operand, symbolic references between
segments are not allowed in TESTRAN statements. External references
must be declared in assembler EXTRN and ENTRY statements.

A TEST OPEN statement and the TESTRAN statements that follow it form
an implicit TESTRAN control section that must be inserted in the proper
overlay segment. Thus, for the example just given, the programmer might
write the following linkage editor control statements:

Section 2: How to Write TESTRAN Statements 33

INSERT
OVERLAY
INSERT
OVERLAY
INSERT

TESTSEGl, •..
ROO.TNODE
TESTSEG2, ...
ROOTNODE
TESTSEG3, ••.

When a segment is overlaid, traces started by TRACE statements in the
segment are automatically stopped. They are not automatically restarted
when the segment is reloaded, but are restarted when the TRACE
statements are again executed at a test point in the segment. To ensure
that traces are restarted, the programmer must therefore design his
testing logic so that TRACE statements are executed each time a segment
is entered after being cverlaid and reloaded.

HOW TO TEST A DYNAMIC SERIAL PROGRAM

A dynamic serial program is a combination of two or more load nodules
that are loaded and executed as a single task. Each load module can
contain TESTRAN statements; if it does, however, it is neither reenter­
able nor serially reusable.

A module that is not reusable is normally loaded each time it is
entered by a supervisor assisted linkage. For this reason, a TEST OPEN
statement must be executed to establish test points each time the module
is entered by means of a LINK, XCTL, or ATTACH macro-instruction.
Before control is passed or returned to another module, testing of the
module should be stopped by a TEST CLOSE statement, as in the following
example:

At the test point FINISH, the TEST CLOSE ~tatement nullifies the effect
of the TEST OPEN statement and returns control to the test ooint. As a
result, the TESTRAN interpreter releases storage areas-acquired for
internal functions. If not released, the areas would be duplicated the
next time the module was loaded and tested. If the RETURN macro­
instruction was replaced by an XCTL macro-instruction, the task would be
abnormally terminated if TEST CLOSE were omitted.

If a nonreusable module is loaded by a LOAD macro-instruction, the
loaded copy of the module may be entered more than once before it is
deleted. When an entry point is identified by an IDENTIFY macro­
instruction, a used copy is considered reenterable. In systems with the
primary control program or MFT, a used copy is considered serially
reusable whenever it is not currently in use. The programmer must
ensure that LOAD and IDENTIFY macro-instructions do not cause improper
use of a module that includes TESTRAN.

When a supervisor assisted linkage is made to another module, all
traces are automatically stopped. They are not automatically restarted
when control is returned, but can be restarted by appropriate TRACE
statements. The TRACE statements should follow a TEST AT statement that
specifies the return address as a test point.

34

HOW TO TEST A DYNAMIC PARALLEL PROGRAM

A dynamic parallel program is a combination of two or more load
modules that are loaded and executed as more than a single task. A task
may be the execution of a load module containing TESTRAN statements or
the execution of several such modules as a dynamic serial program.
Because TESTRAN modules are not reusable, the use of LOAD, ATTACH, and
IDENTIFY macro-instructions should be restricted so that a single copy
of a module is not executed under more than one task.

For each task there must be a separate TESTRAN data set. The TESTRAN
interpreter defines and opens the necessary data control blocks, but the
programmer must prov~de the corresponding DD control statements. The
programmer must point to one of these statements by means of a special
operand (DDN) in the first TEST OPEN statement executed under each task.
For example, the statement

NEWENTRY TEST OPEN,ENTRY,DDN=TESTDD#l

points to a DD statement whose ddname is TESTDD#l. Of course, a given
TEST OPEN statement must not be executed first under more than one task,
since a unique DD statement is required for each data set. The
processing of each data set by the TESTRAN editor must be performed as a
separate job step.

When an ATTACH macro-instruction is executed, all traces are automat­
ically stopped. These traces are not automatically restarted when
control is returned to the next sequential instruction, but can be
restarted by appropriate TRACE statements. The TRACE statements should
follow a TEST AT statement that specifies a test point immediately
following ·the ATTACH macro-instruction.

Traces are also stopped when a task is interrupted and ano~her task
is given control. When the interrupted task regains control, the
stopped traces are restarted automatically.

LOGICAL FUNCTIONS

This part of Section 2 describes various logical functions:
tional testing, error recovery, and TESTRAN subroutines.

condi-

Section 2: How to Write TESTRAN Statements 34.1

HOW TO TEST ON CONDITION

The programmer can write a sequence of TESTRAN statements so that it
will not be executed every time a particular test point is reached, but
only when certain conditions are met. The prograrr:mer can choose any
conditions he wishes, formulating each as a matter of count, logic, or
arithmetic value. Thus, he can make dumps and traces dependent on such
conditions as:

• Reaching a particular test point more than a given number of times
Ca count condition).

• Failing to enter a particular problem program routine Ca logical
condition).

• Computing a value greater than some given value Can arithmetic
condition).

Testing on Count Conditions: Consider the following simple sequence of
.TESTRAN statements:

TEST AT,XX
DUMP PANEL

These statements perform a series of dumps at a test point XX in a
problem program. They do so unconditionally, because the DUMP state­
ments are executed every time that control passes to XX.

suppose now that XX .is located in a subroutine that may be called
many times. Since the test point may be reached repeatedly, uncondi­
tional testing could produce very large amounts of TESTRAN output. To
limit the output to a meaningful sample, the testing can be made
conditional, as in the following sequence, which arbitrarily limits
dumps to the first 24 times that XX is reached.

SAMPLE

TEST AT,XX
TEST ON,,24,,SAMPLE
GO BACK
DUMP PANEL

The TEST ON statement is the first statement executed at XX. Each time
control passes to XX, the statement adds one to a counter, which
initially has a value of zero. The statement then tests the counter for
a value of 24 or less. If the counter has such a value, the statement
branches to SAMPLE, and the DUMP statements are executed. If the
counter has a greater value, the next sequential statement is executed;
this statement, GO BACK, returns control to the problem program.

In this example, the TEST ON statement tests for a single condition:
a counter value that is 24 or less. It can be written to test for
further conditions, such as ·a counter value that is 5 or greater and is
a multiple of 2:

34.2

TEST ON,5,24,2,SAMPLE

Each condition must be met, or no branch is made. Thus, no branch is
made when the counter value is 5, because 5 is not a multiple of 2. The
statement as written branches only on even values of the counter from 6
to 24.

When an operand is omitted, it has an assumed value that essentially
negates testing for the condition it represents. For example, the
second and fourth operands have assuroed values of one; thus, the
statement

TEST ON,,24,,SAMPLE

tests a counter for a value that is not less than 1, is not greater than
24, and is a multiple of 1. Since the counter value is 1 when the first
test is made, the statement effectively tests only for a value not·
greater than 24. If the third operand were omitted, its assumed value
would be 231-1, which is the highest value that the counter can attain
and the highest value that can be specified for any of the three
operands.

At times, the programmer may want to test a counter against values
that are generated during execution. In a TEST ON statement, he can
refer to any full-word fixed-point value in a register or in main
storage, as shown by the following statement:

TEST ON,G'6',MAXIMUM,G'REGX',CONTINUE

This statement branches to CONTINUE on each counter value that is not
less than the value in general register 6 (G'6'), is not greater than
the value at ~.!AXIMUM, and is a multiple of the value in the general
register whose number is the value of the symbol REGX. The contents of
G'6', MAXIMUM, and G'REGX' are evaluated each time the statement is
executed.

It is sometimes useful to be able to change the value of a counter
and to use several TEST ON statements to test a single counter. In such
instances, the counter must be given a name, as in the following
example:

NEWENTRY TEST OPEN,ENTRY

FINISH

TEST DEFINE,COUNTER,#PARAMS
TEST AT,A

TEST ON,1,G'3',G'3' ,FINISH,COUNTER=#PARAMS
TEST AT,B
TEST ON,1,G'3',G'3',FINISH,COUNTER=#PARAMS

GO BACK
SET COUNTER,#PARAMS,=F'O'
DUMP COMMENT,'LAST PARAMETER HAS BEEN PROCESSED. NUMBER OF PA­
RAMETERS IS IN G''3''.'
DUMP PANEL,G'3'

Section 2: How to Write TESTRAN Statements 34.3

When executed, NEWENTRY establishes test points A and B, and creates a
TESTRAN counter named #PARAMS. The counter is defined by the TEST
DEFINE statement, which, like the TEST AT statements, is used as a
source of information but is not executed. The TEST OPEN statement
passes control to ENTRY, the entry point of the program being tested.

The statements in this example test a subroutine that is called to
process a number of parameters. The number of parameters is provided in
general register 3 (G'3'), and when each is processed, control passes to
one of the two test points A and B. At either test point, a TEST ON
statement increments the counter #PARAMS by one, so its current value is
always the number of parameters that have teen processed. When the
value of the counter equals the value in G'3', one of the TEST ON
statements resets the counter to its initial value of zero, and
appropriate dumps are taken. The resetting of the counter prepares the
TEST ON statements for use in testing the subroutine the next time it is
called.

Testing on Logical Conditions: Suppose that there is a problem program
that calls a certain subroutine only when certain conditions in the
program are satisfied. If the subroutine is called, testing is to occur
at a test point SS in the subroutine; if the subroutine is not called,
testing is to occur later at a test point XX in the calling routine.

The following TESTRAN sequence makes testing at XX conditional on not
testing at SS:

NEWENTRY TEST OPEN,ENTRY

RESET

TEST DEFINB,FLAG,SSTEST
TEST AT,SS
SET FLAG,SSTEST,=l

TEST AT,XX
TEST WHEN,SSTEST,RESET

GO BACK
SET FLAG,SSTEST,=0

When executed, NEWENTRY establishes test points at SS and XX, and
creates a TESTRAN flag named SSTEST. The flag is defined by a TEST
DEFINE statement, in the same way as a TESTRAN counter. The TEST OPEN
statement passes control to ENTRY, the entry point of the program being
tested.

The flag SSTEST is a single binary digit whose initial value is zero.
If control passes to 3S, the flag's value is changed to one by a SET
FLAG statement. When control passes to XX, the flag is tested by a TEST
WHEN statement; if its value is one, a branch is made to RESET, a
statement that resets the flag to zero before control is returned to the
problem program. If the value of the flag is zero, the testing
statements following the TEST WHEN statement are executed.

Suppose now that there is a second subroutine, which may be called if
the first subroutine is not called. If it is called, testing is to
occur at a test point TT in the subroutine; if it is not called, testing
is to occur at SS or XX as before. The following sequence makes testing
at XX conditional on not testing at either SS or TT.

34.4

In this example, NEWENTRY establishes three test points (SS, TT, and XX)
and creates two TESTRAN flags CSSTEST and TTTEST). The flags are set to
indicate testing at SS and TT; they are tested at XX by two TEST wHEN
statements. The first TEST WHEN statement tests for an error condition:
execution of both subroutines, indicated by both flags having values of
one. If the error condition exists, the statement branches to ERROR,
and an appropriate comment is inserted in the TESTRAN listing. If the
error condition does not exist, the second TEST WHEN statement deter­
mines whether either of the subroutines has been executed. If either
flag has a value of one, the statement branches to RESET, where two SET
FLAG statements set SSTEST to zero and assign its new value (zero) to
TTTEST.

Note that the operands AND and OR allow a single TEST WHEN statement
to perform the function of a sequence of statements. The statements in
this example are equivalent to the following sequences:

TEST WHEN,SSTEST,AND,TTTEST,ERROR:

TEST WHEN,SSTEST,X
GO TO,Y

X TEST WHEN,TTTEST,ERROR
y

TEST WHEN,SSTEST,OR,TTTEST,RESET:

TEST WHEN,SSTEST,RESET
TEST WHEN,TTTEST,RESET

Testing on Arithmetic Conditions: Suppose that there is a processing
loop that performs fixed-point calculations involving general register 7
and a storage field named TEMP. According to the logic of the program,
the value at TEMP should never exceed the value in register 7; if it
does, an error has occurred, and dumps should be taken at LOOP+12. The
following sequence shows a solution for this problem:

Section 2: How to Write TESTRAN Statements 34.5

TEST AT,LOOP+12
TEST WHEN,TEMP,GT,G'7',ERROR
GO BACK

ERROR DUMP COMMENT,'ERROR -- TEMP IS GREATER THAN G''7''.'
DUMP DATA,TEMP
DUMP PANEL,G'7',DATAM=F

TEMP DS F

The TEST WHEN statement is the first statement executed at LOOP+12. It
means: "When the value at TEMP is greater than (GT) the value in general
register 7 CG'7'), branch to ERROR." Appropriate dumps are taken if the
branch is made; otherwise, control is returned to the program by the GO
BACK statement.

A TEST WHEN statement can be used to test an arithmetic condition
involving any of the following:

I ·~
Values in main storage
Values in registers
TESTRAN counters
Literal constants

The condition must be expressed as a relationship between two values of
the same data type and length, as, for example, two full-word· fixed­
point values. The relationship rrust be expressed by one of the
following special operands:

GT - greater than
GE - greater than or equal to
EQ - equal to
NE - not equal to
LT - less than
LE - less than or equal to

The type and length of both values in a relationship is usually
implied by the operand that represents the first value. Thus, in the
relationship TEMP,GT,G'7', the operand TEMP implies fixed-point type and
four-byte length, because TEMP is defined by a DS statement as a
full-word fixed-point variable. If the relationship were expressed as
G'7',LE,TEMP, four-byte length and hexadeciwal type would be implitd.

If the first value is represented by an external reference or by an
address that includes no symbols, the type and length are implied by the
operand that represents the second valut in the relationship. For
example, if COUNT in the relationship 4(0,3),EQ,COUNT is a TESTRAN
counter, it implies fixed-point type and four-byte length for the value
at 4(0,3).

Sometimes, it is necessary to specify type and length explicitly.
For example, a reference to a value in a floating-point register implies
a length of eight bytes. If the value is a short floating-point number,
its true length can be specified as in the following statement:

TEST WHEN,F'O' ,GE,F'4',CONTINUE,DATAM=E

34.6

The DATAM operand specifies the standar~ short floating-point type code
E, which implies a length of four bytes, just as in a DS or DC
statement. It might also be written as DATAM=DL4, thus specifying
four-byte length for a long floating-point number.

HOW TO OFFSET PROGRAM ERRORS

Consider again the last example of the previous topic, "How to Test
on Condition." In that example, a TEST WHEN statement was used to test
a relationship between two values, and to branch to a sequence of DUMP
statements if the relationship indicated an error condition. To offset
the error condition, additional statements can be included in the
sequence, as follows:

The DUMP COMMENT statement describes how the error is offset. The SET
VARIABLE statement sets· TEMP equal to the value in general register 7,
eliminating the error conaition as defined in the TEST WHEN statement.
The GO BACK statement returns control to NEXTSTEP in the problem
program, forcing an exit from the processing loop that produced the
error.

This example shows two ways of offsetting a program error:

[

• Using a SET VARihBLE statement to change problem program data.
• Using a GO BACK statement to change problem program control flow.

Neither way actually corrects the error; it simply provides an
opportunity for additional testing by allowing execution to continue
when it might otherwise be terminated.

If an error is successfully offset, execution may continue to normal _,...
completion, thus making it appear that there has not been an error. The ~·
DUMP COMMENT statement should therefore be used, as in the example, to
call attention to any error that is detected, ana to describe the
offsetting action by TESTRAN statements.

Note that the SET VARIABLE statement in the example refers to two
values, TEMP and G'7', and that these values have the same aata type and
length. Because the SET VARIABLE statement is equivalent to a move or
load instruction, the length of the data to be moved or loaded is very
important. It is determined in the same way that type and length are
determined for values referred to by a TEST WHEN statement: it is either
implied by one of the values, or is stated explicitly by a DATAM
09erand. Thus, to load a short floating-point number X into a
floating-point register, tne following statement might be written:

SET VARIABLE,F'O',X,DATAM=L4

The DATAM operand specifies a length of four bytes; if it were omitted,
the operand F'O' would imply a length of eight tytes.

Section 2: How to Write TESTRAN Statements 34.7

HOW TO CREATE TESTRAN SUBROUTINES

Consider the following sequence of TESTRAN statements:

TEST AT, (XX,YY,ZZ)
DUMP CHANGES,MYDATA,MYDATA+100

GO BACK

In effect,
test points
automatically
called.

this sequence is a closed subroutine that is called at the
named in the TEST AT statement. When executed, it
returns control to the test point from which it was

Suppose now that this subroutine should be executed at an additional
test point, WW. At WW, its execution is to be followed by the execution
of additional TESTRAN statements rather than by immediate return of
control to the problem program. This subroutine should then be called
as in the following sequence:

The first statements in this sequence form a new subroutine that is
called at the test point WW. The new subroutine calls the original
subroutine by means of a GO IN statement, which specifies X as an entry
point. In the original subroutine, GO BACK is replaced by GO OUT, which
returns to the statement that follows GO IN. Like GO BACK, the GO OUT
statement returns control to the problem program when the subroutine is
called at XX, YY, or ZZ.

As shown in Figure 4A, GO IN and GO OUT statements can be used to
create up to three levels of TESTRAN subroutines. That is, the first
subroutine called by a GO IN statement can call a second subroutine, and
the second can call a third. In each subroutine, a GO OUT statement can
be used to return to the subroutine at the next higher level. The third
(lowest) level subroutine can thus return to the second level subrou­
tine, the second to the first, and the first to the subroutine that made
the original call (the closed subroutine that was entered directly froro
a test point).

34.8

From
Problem
Program

To

GO IN, Sl

Problem---+--- GO BACK
Program

Sl

GO IN, S2

GO OUT

First Level

S2 S3

GO IN, S3

GO OUT GO OUT

Second Leve I Third Level

TESTRAN Subroutines

Figure 4A. Calling and Returning from Three Levels of TESTRAN Subrou­
tines

If an attempt is made to create a fourth level subroutine, the
ability to return from the first level subroutine is lost. In effect,
the second level becomes the ne~ first level, the third level becomes
the new second level, and the newly created "fourth level" becomes the
new third level. If a GO OUT statement is later executed at the old
first level, control is returned to the problem program.

If a TESTRAN subroutine returns control to the problem program,
existing subroutine levels cease to be recognized. At a later test
point, new first, second, and third levels can be created, but old
levels cannot be returned to. If an attempt is made to return to an old
level by executing a GO OUT statement before executing a GO IN
statement, control is returned to the problem program.

Section 2: How to Write TESTRAN Statements 34.9

SECTION 3: HOW TO WRITE JOB CONTROL STATEMENTS

To use TESTRAN, the programmer must write job control statements to
define the job to be performed by the operating system. A typical
TESTRAN job consists of one or more job steps, each of which performs one
of the following functions: -

• Assembly of the problem program
• Linkage editing of the problem program
• Execution of the problem program
• Editing of test information

The job control statements used in defining jobs and job steps are
described in the publication IEM System/360 Operating System: Job Control
Language. Statements for performing specific TESTRAN-oriented jobs are
listed below. The jobs defined by these model job definitions include
the following job steps:

• Assembly
• Linkage Editing
• Execution
• TESTRAN Editing
• Assembly and Linkage Editing
• Assembly, Linkage Editing, and Execution
• Assembly, Linkage Editing, Execution, and TESTRAN Editing

Most of the model job definitions refer to IBM-supplied cataloged
procedures, which are defined in Appendix B. Before attempting to use
these procedures, the programmer should make certain that they have been
included in the procedure library at his installation. If a procedure
has been omitted, the programmer can copy the necessary statements from
the appendix.

ASSEMBLY

Figure 5 defines a job that executes the E- or F-level assembler
program. The statements ~n the figure are numbered, and are explained in
the correspondingly numbered paragraphs below. The shaded statements are
optional.

r---1
I I
I L I
I 2 • I
I 3 • I
I I
I 4. I
I I
I 5 • I
I I
L---J

·Figure 5. Job Control Statements for Assembly

1. This statement provides general job control information.

2. This statement refers to one of two cataloged procedures, each of
which defines a single job step, ASM. The PROC parameter specifies
the procedure ASMEC to select the E-level assembler program, or the
procedure ASMFC to select the F-level assembler program. The PARM
parameter specifies the option TEST, which causes symbol tables to

Section 3: How to Write Job Control Statements 35

be included in the object module; it also implies the following
options:

NOLOAD
DECK
LIST
XREF
LINECNT=standard line count

If desired, other options can be specified in place of the implied
options. The TEST option, however, must be specified.

3. This statement is optional. If present, it saves the object module
as a data set on a private magnetic tape er direct-access volume.
The data set can subsequently be used as primary or additional input
to the linkage editor. (If the data set is saved on a tape volume,
the SPACE parameter can be omitted.)

4.

5.

Statement 3 overrides the following statement in the procedure
ASMEC:

//SYSPUNCH DD UNIT=SYSCP

or the following statement in the procedure ASMFC:

/ /SYSPUNCH DD SYS.OUT=B

If th~ statement in the procedure is not overridden, it causes the
object module to be produced as a deck of punched cards.

This statement is
that of statement
statement 3 is
procedure ASMFC,
PARM parameter.

This statement
to be assembled.

optional. If present, its function is the same as
3, and it should therefore be written only if
omitted. This statement is valid only with the

and only when the LOAD option is specified in the

defines a data set that contains the source program
This data set can appear in the input stream.

LINKAGE EDITING

Figure 6 defines a job that executes the largest linkage editor
program available at the installation. The statements in the figure are
numbered, and are explained in the correspondingly numbered paragraphs
below. The shaded statements are optional.

Figure 6. Job Control Statements for Linkage Editing

1. This statement provides general job control information.

36

2. This statement refers to a cataloged procedure named LKED, which
defines a single job step that is also named LKED.

Region Size: Region size is the amount of main storage available to
a job step that is executed under a system with MVT. The procedure
LKED defines region size as 96K, which is the minimum required for
the 88K version of linkage editor F. (Region requirements for other
versions are given below.) A larger or smaller region can be
requested by writing:

REGION=nnnnnK

where nnnnn is a one- to five-digit decimal number specifying region
size in units of K (1024) bytes.

Linkage Editor Options: The PARM parameter specifies the option
TEST, which causes symbol tables and object module control dic­
tionaries to be included in the load module. Additional options
that can be specified are:

SCTR or OVLY
DC
OL
LIST
XREF or MAP
NCAL
LET or XCAL
SIZE=(value1 ,value2)

Of these, LIST and XREF (which includes MAP) are diagnostic options,
and NCAL and LET (which includes XCAL) are special processing
options that are useful in testing a program.

The SIZE option improves the performance of the F-level linkage
editor by indicating the amount of available main storage (value 1) ,

and the size of the text buff er (value 2) • The possibility of
one-pass processing is enhanced if .the text buff er is at least as
large as the load module to be created.

Minimum value2 is 6K; maximum is 100K. Minimum value 1 depends on
value2 and on .the size of the linkage editor; maximum value 1 is
9999K. The following table defines minimum value 1 , together with
the region size required in systems with MVT:

r--------------------.-T---------------------T----------------------1
I Size of the I I I
I Linkage Editor I Minimum value1 I MVT Region Size I
r---------------------+---------------------+----------------------~
I 44K I value2 +38K I value1 +10K I
I 88K I value2 +44K 1 I value1 +8K I
I 128K I value2 +66K2 I value1 +8K I
~---------------------L---------------------L----------------------~
l 1 When value 2 is less than 44K, minimum value1 is 88K. I
j 2 When value2 is less than 66K, minimum value1 is 128K. I
L--J
If the SIZE option is omitted, default values are used. These
values are established at system generation. In a system with MVT,
care must be taken to specify the correct region size based on
default value 1 •

Because the TEST option must be specified, the NE, REUS, RENT, and
REFR options cannot be specified. The load module is therefore
editable but not reusable or refreshable.

Section 3: How to Write Job Control Statements 37

3. This statement is optional. If present, it saves the load module as
a member of a partitioned data set (library) on a private direct­
access volume. The data set may be new or may already exist; if it
exists, the load module replaces any other member of the data set
that has the same member name. (If the data set already exists, the
DISP parameter can be omitted because DISP=(MOD,PASS) is specified
in the cataloged procedure.)

4.}
5.

The load module can be referred to by its member name for subsequent
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol tables and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 3 overrides the DSNAME, UNIT, and DISP parameters of the
following statement in the procedure LKED:

//SYSLMOD
//

DD DSNAME=&GOSET (GO) ,SPACE= (1024, (50,20, 1)),
UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements define the input to the linkage editor. Statement
4 defines the primary input, which is a data set containing one or
more object modules, or linkage editor control statements, or both.

Statement 5 is optional. If present, it defines either an included
data set or an automatic call library. It can be repeated as
necessary to define any number of input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with the primary control program, only one data
set can appear in the input stream; and it must be defined by the
last DD statement for the step LKED.

EXECUTION

Figure 7 defines a job that executes a program for testing by the
TESTRAN interpreter. The statements in the figure are numbered, and are
explained in the correspondingly numbered paragraphs below. The shaded
statements are optional.

r---1
I I
I 1. I
I 2. I
I I
I 3. I
I 4 • I
I I
I s. I
I 6. I
I I
L---J
Figure 7. Job Control Statements for Execution

38

1. This statement provides general job control information.

2. This statement is optional. If present, it points to a private load
module library that is to be used as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a load module that is a member of either
the system link library or the job library.

4. This statement saves the output of the TESTRAN interpreter as a data
set on a private magnetic tape or direct-access volume. This data
set can subsequently be ref erred to for processing by the TESTRAN
editor. (If the data set is saved on a tape volume, the SPACE
parameter can be omitted.)

The data set contains test information resulting from the execution
of a single task. In a system with a primary control program or
MFr, there is only one task per job step; only one data set is
required, and this statement need appear only once. In a system
with MVT, there may be many tasks per job step; this statement must
be repeated (with varying ddnames) as many times as necessary to
define a separate data set for each task.

The name of the DD statement for each data set is determined by the
first TEST OPEN statement executed under the corresponding task.
The TEST OPEN statement either implies the ddname SYSTEST, or
s~ecifies a ddnarne by means of a DDN operand.

5. This statement is optional. If present, it defines a data set to
contain an abnormal termination dump. To limit this dump to problem
program areas, the ddname SYSABEND can be changed to SYSUDUMP.

6. This statement is optional. If present, it defines a data set that
is used by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input
stream. However, in a system with the primary control program, only
one data set can appear in the input stream, and it must be defined
by the last DD statement for the job step.

TE:STRAN EDITING

Figure 8 defines a job that executes
statements in the figure are numbered,
correspondingly numbered paragraphs below.

the
and

TESTRAN editor.
are explained in

The
the

r---1
I I
I 1. lljobname JOB job parameters I
I 2. II EXEC PROC=TTED I
I 3. llEDIT.SYSTEST DD DSNAME=dsname,DISP=OLD, Continue I
I II UNIT=Ctype,SEP=SYSUTl),VOLUME=CPRIVATE,SER=ser#) I
I I
L---J
Figure 8. Job Control Statements for TESTRAN Editing

Section 3: How to Write Job Control Statements 39

1. This statement provides general job control information.

2. This statement refers to a cataloged procedure named TTED, which
defines a single job step named EDIT.

TESTRAN Editor Options:
parameter written as:

Three options can be specified by a PARM

*

Ta

Pb

PARM=[*] [Ta] ••• [Pb]

increases the speed of TESTRAN editing by a factor of four. At
the same time, it increases main storage requirements from 18K
bytes to SOK bytes. If present, it must occupy the first
position in the parameter.

In a system with MVT, the * option should always be specified.
The procedure TTED provides a SOK byte region, which is wasted
if the option is not specified.

identifies a class of test information that is to be edited.
The value a is either an unsigned decimal integer from 1 to 8,
a blank, or-the letter A. If an integer, it is a class
identification number specified by a SELECT keyword operand in
one or more TEST OPEN, TEST AT, DUMP, or TRACE statements. If
a blank, it indicates that all unclassified data is to be
edited. If the letter A, it indicates that all data is to be
edited, regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired information for processing during a single
execution of the TESTRAN editor. Note that if a class of
information is not selected, and has not previously been
edited, the input TESTRAN data set should be saved to allow
later editing of this information.

If the subfield Ta is omitted, all information is printed as if
TA were specified.

specifies the maximum number of pages to be printed. The value
Q is an unsigned decimal integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb i~ omitted, the maximum count is as
specified in the first TEST OPEN statement executed under the
task that created the data set. If this TEST OPEN statement
did not specify a maximum, the installation maximum is assumed.

3. This statement defines the input TESTRAN data set, which contains
the test information to be edited.

40

If all information is to be edited (rather than just selected
classes), the disposition can be changed to DISP=(OLD,DELETE). It
is safest, however, to keep the data set until printed output has
actually been returned. The data set can then be deleted, if it is
on a tape volume, by instructing the operations staff to scratch the
tape; if it is on a direct-access volume, it can be deleted by use
of the IEHPROGM utility program. For information on how to use
IEHPROGM, refer to the publication IBM System/360 Operating System:
Utilities.

ASSE~IBLY AND LINKAGE EDITING

Figure 9 defines a job that executes the largest assembler and linkage
editor available at the installation. The statements in the figure are
numberej, and are explained in the correspondingly numbered paragraphs
below. The shaded statements are optional.

r---1
1.
2.
3.

4.
5.
6.
7.

8.
9.

Figure 9. Job Control Statements for Assembly and Linkage Editing

1. This statement provides general job control information.

2. This statement refers
defines two job steps:

to a cataloged procedure named TASME, which
ASM and LKED.

Region Size: Region size is the amount of main storage available to
a job step that is executed under a system with MVT. The procedure
TASME defines region size for the job steps ASM and LKED.

For the step LKED, the procedure defines region size as 96K, which
is the minimum required for the 88K version of linkage editor F.
(For the region requirements of other versions, refer to 11 Linkage

Editor Options. 11
) A larger or smaller ~egion can be requested by

writing:

REGION.LKED=nnnnnK

where nnnnn is a one- to five-digit decimal number specifying region
size in units of K (1024) bytes.

Assembler Options: The following assembler options are specified or
implied in the cataloged procedure:

TEST
NOLOAD
DECK
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables to be included in
the object module; the others are standard default options. NOLOAD
and DECK indicate that the object module is to be stored on an
external storage device. (Refer to paragraphs 3 and 4.) LIST and
XREF are diagnostic options useful in program testing.

Section 3: How to Write Job Control Statements 41

42

The default options can be overridden by writing:

PARM.ASM={TEST,overriding options)

where the overriding options are any of the following:

LOAD
NOD ECK
NOLI ST
NOXREF
LINECNT=nn

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The TEST option, because
it is not a default option, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is required to cause symbol tables and object module
control dictionaries to be included in the load module. LIST and
XREF are diagnostic options; NCAL and LET are special processing
options that are useful in testing a program.

These options can be respecified by writing:

PARM.LKED=(TEST,respecified options)

where the respecified options are any of the following:

SCTR or OVLY
DC
OL
LIST
XREF or MAP
NCAL
LET or XCAL
SIZE=(value1 ,value2)

Each of the original options (TEST, LIST, XREF, NCAL, and LET) is
overridden if it is not respecified. Because the TEST option must
be respecified, the NE, REUS, RENT, and REFR options cannot be
specified.

The SIZE option improves the performance of the F-level linkage
editor by indicating the amount of available main storage (value1) ,

and the size of the text buffer (value2) • The possibility of
one-pass processing is enhanced if the text buff er is at least as
large as the load module to be created.

Minimum value2 is 6K; maximum is 100K. Minimum value1 depends on
value2 and on the size of the linkage editor; maximum value1 is
9999K. The following table defines minimum value1 , together with
the region size required in systems with MVT:

r---------------------T---------------------T----------------------1
I Size of the I I I
I Linkage Editor I Minimum value 1 I MVT Region Size I
r---------------------+---------------------+----------------------1
I 44K I value2 +38K I value 1 +10K I
I 88K I value2 +44K 1 I value 1 +8K I
I 128K I value 2 + 66K 2 I value 1 +8K I
r---------------------~---------------------L----------------------~
l 1 When value2 is less than 44K, minimum value 1 is 88K. I
l 2 When value 2 is less than 66K, minimum value 1 is 128K. I
L--J

If the SIZE option is omitted, default values are used. These
values are established at system generation. In a system with MVT,
care must be taken to specify the correct region size based on
default value1 •

3. This statement is optional, but, if it is written, statement 6 must
also be written. The two statements together save the object module
produced by the assembler as a data set on a private magnetic tape
or 1irect-access volume. This data set can later be used as primary
or additional input to the linkage editor.

Statements 3 and 6 override the DSNAME, UNIT, and DISP parameters of
the following statements in the procedure TASME:

//SYSPUNCH
//
//SYSLIN

DD DSNAME=&LOADSET,UNIT=SYSDA,
SPACE= (80, (200, 50)) , DISP= (MOD, PASS)

DD DSNAME=&LOADSET,DISP=(OLD,DELETE)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set in direct-access storage.
This data set is deleted at the end of the job.

If statements 3 and 6 are present, statement 5 must appear between
them in the sequence. If statement 4 is also present, it must
appear between statements 3 and 5.

4. This statement is optional. If present, it produces a copy of the
object module as a deck of punched cards. This statement is valid
only for the F-level assembler, and is recognized only when LOAD is
specified as an overriding option in statement 2.

5. This statement defines the data set that contains the source program
to be assembled. This data set can appear in the input stream.

6. Refer to paragraph 3 above.

7. This statement is optional. If present, it saves the load module as
a member of a partitioned data set (library) on a private direct­
access volume. The data set may be new or may already exist; if it
exists, the load module replaces any other member of the data set
that has the same member name. (If the data set already exists, the
DISP parameter can be omitted because DISP=(MOD,PASS) is specified
in the cataloged procedure.)

The load module can be referred to by its member name for later
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section

Section 3: How to Write Job Control Statements 43

8.}
9.

would continue to be represented by the symbol tables and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 7 overrides the DSNAME, UNIT, and DISP parameters of the
following statement in the procedure TASME:

//SYSLMOD
//

DD DSNAME=&GOSET (GO) , SPACE= (1024, (SO, 20, 1)) ,
UNIT=SYSDA,DISP=(MOD,PASS)

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements are optional.
the linkage editor.

If present, they define input to

Statement 8 defines a data set to be concatenated with the primary
input to the linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 6 above.)

Statement 9 defines either an included data set or an automatic call
library. It can be repeated as necessary to define any number of
input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with the primary control program, only one data
set can appear in the input stream, and it must be defined by the
last DD statement for the step LKED.

ASSEMBLY, LINKAGE EDITING, AND EXECUTION

Figure 10 defines a job that executes the largest assembler and
linkage editor available at the installation, and the load module
produced by the linkage editor. The statements in the figure are
numbered, and are explained in correspondingly numbered paragraphs below.
The shaded statements are optional.

r---1
1.
2.

3.
4.

5.
6.
7.
8.

9.
10.
11~

12.
13.

L---
Figure 10. Job Control Statements for Assembly, Linkage Editing, and

Execution

44

1. This statement provides general job control information.

2. This statement is optional. If present, it points to a private load
rrodule library that is to be used as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a cataloged procedure TASMEG that defines
three job steps: A_SM, LKED, and GO.

Reqion Size: Region size is the amount of main storage available to
a job step that is executed under a system with MVT. The procedure
TASMEG defines the region size of each job step except the problem
program job step, GO. For GO, the default region size is assumed.

For the step LKED, the procedure defines region size as 96K, which
is the minimum required for the 88K version of linkage editor F.
(For the region requirements of other versions, refer to "Linkage
Editor Options.") A larger or smaller region can be requested by
writing:

REGION.LKED=nnnnnK

where nnnnn is a one- to five-digit decimal number specifying region
size in units of K (1024) bytes.

For the job step GO, a region larger than the default region size
can be requested by writing:

REGION.GO=nnnnnK

Assembler Options: The following assembler options are specified or
irr.plied in the cataloged procedure:

TEST
NOLOAD
DECK
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause syrr~ol tables to be included in
the object module; the others are standard default options. NOLOAD
and DECK indicate that the object module is to be stored on an
external storage device. (Refer to paragraphs 4 and 5.) LIST and
XREF are diagnostic options useful in program testing.

The default options can be overridden by writing:

PA.RM. ASM= (TEST, overriding options)

where the overriding options are any of the following:

LOAD
NOD ECK
NOLI ST
NOXREF
LINECNT=nn

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The TEST option, because
it is not a default option, must be explicitly specified.

Section 3: How to Write Job Control Statements 45

46

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is required to cause symbol tables and object module
control dictionaries to be included in the load module. LIST and
XREF are diagnostic options; NCAL and LET are special processing
options that are useful in testing a program.

These options· can be respecified by writing:

PARM.LKED=(TEST,respecified options)

where the respecified options are any of the following:

SCTR or OVLY
DC
OL
LIST
XREF or MAP
NCAL
LET or XCAL
SIZE=(value 1 ,valuea)

Each of the original options (TEST, LIST, XREF, NCAL, and LET) is
overridden if it is not respecified. Because the TEST option must
be respecified, the NE, REUS, RENT, and REFR options cannot be
specified.

The SIZE option improves the performance of the F-level linkage
editor by indicating the amount of available main storage (value 1) ,

and the size of the text buff er (value2) • The possibility of
one-pass processing is enhanced if the text buff er is at least as
large as the load module to be created.

Minimum value2 is 6K; maximum is 100K. Minimum value 1 depends on
value2 and on the size of the linkage editor; maximum value1 is
9999K. The following table defines minimum value1 , together with
the region size required in systems with MVT:

r---------------------T---------~----------T----------------------1

I Size of the I I I
I Linkage Editor I Minimum value1 I MVT Region Size I

~------------~--------+---------~----~----+----------------------~
I 44K I value2 +38K I value1 +10K I
I 88K I value2 +44K 1 I value1 +8K I
I 128K I value2 +66K2 I value1 +8K I
~-------------~------i _____________________ i ______________________ ~
l 1 When value2 is less than 44K, minimum value 1 is 88K. I
f 2When value2 is less than 66K, minimum value1 is 128K. I
L------------------------------~-----~---------------------------J

If the SIZE option is omitted, default values are used. These
values are established at system generation. In a system with MVT,
care must be taken to specify the correct region size based on
default value1 •

Problem Program Information:
problem program by writing:

Information can be passed to the

PARM. GO= (xxx •••)

where xxx ••• is the information.

4. This statement is optional, but, if it is written, statement 7 must
also be written. The two statements together save the object module
produced by the assembler as a data set on a private magnetic tape
or direct-access volume. This data set can later be used as primary
or additional input to the linkage editor.

Statements 4 and 7 override the DSNAME, UNIT, and DISP parameters of
the following statements in the procedure TASMEG:

//SYSPUNCH
//
//SYSLIN

DD DSNAME=&LOADSET,UNIT=SYSDA,
SPACE= (80, (200 ,50)) ,DISP= (MOD,PASS)

DD DSNAME=&LOADSET,DISP=(OLD,DELETE)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set in direct-access storage.
This data set is deleted at the end of the job.

If statements 4 and 7 are present, statement 6 must appear between
them in the sequence. If statement 5 is also present, it must
appear between statements 4 and 6.

5. This statement is optional. If present, it produces a copy of the
object module as a deck of punched cards. This statement is valid
only for the F-level assembler, and is recognized only when LOAD is
specified as an overriding option in statement 3.

6. This statement defines a data set that contains the source program
to be assembled. This data set can appear in the input stream.

7. Refer to paragraph 4 above.

8. This statement is optional. If present, it saves the load module as
a member of a partitioned data set (library) on a private direct­
access volume. The data set may be new or may already exist; if it
exists, the load module replaces any other member of the data set
that has the same member name. (If the data set already exists, the
DISP parameter can be omitted because DISP=(MOD,PAS~ is specified
in the cataloged procedure.)

The load module can be referred to by its member name for later
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAcl control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol tables and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symlx>lic format.

Statement 8 overrides the DSNAME, UNIT, and DISP parameters of the
following statement in the procedure TASMEG:

//SYSLMOD
//

DD DSNAME=&GOSET(GO) ,SPACE=(1024, (50,20,1)),
UNIT=SYSDA,DISP= (MOD, PASS)

Section 3: How to Write Job Control Statements 47

9.}
10.

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements are
the linkage editor.

optional. If present, they define input to

Statement 9 defines a data set to be concatenated with the primary
input to the linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 7 above.)

Statement 10 defines either an included data set or an automatic
call library. It can be repeated as necessary to define any number
of input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with the primary control program, only one data
set can appear in the input stream, and it must be defined by the
last DD statement for the step LKED.

11. This statement saves the output of the TESTRAN interpreter as a data
set on a private magnetic tape or direct-access volume. This data
set can subsequently be ref erred to for processing by the TESTRAN
editor. (If the data set is saved on a tape volume, the SPACE
parameter can ne omitted.)

The data set contains test information resulting from the execution
of a single task. In a system with a primary control program or
M.1''T, there is only one task per job step; only one data set is
required, and this statement need appear only once. In a system
with MVT, there may be many tasks per job step; this statement must
be repeated (with varying ddnames} as many times as necessary to
define a separate data set for each task.

The name of th€ DD statement for each data set is determined by the
first TEST OPEN statement executed under the corresponding task.
The TEST OPEN statement either implies the ddname SYSTEST, or
specifies a ddname by means of a DDN operand.

12. This statement is o~tional. If present, it defines a data set to
contain an abnormal termination dump. To limit this dump to problem
program areas, the ddname SYSABEND can be changed to SYSUDUMP.

13. This statement is optional. If present, it defines a data set that
is used by the problem prog~am. It can be repeated as necessary to
define any number of data sets.

48

Sequentially organized input data sets can appear in the input
stream. However, in a system with the primary control program, only
one data set can appear in the input stream, and it must be defined
by the last DD statement for the step GO.

ASSEMBLY, LINKAGE EDITING, EXECUTION, AND TESTRAN EDITING

Figure 11 defines a job that executes the largest assembler and
linkage editor available at the installation, the load module produced by
the linkage editor, and the TESTRAN editor. The statements in the figure
are numbered, and are explained in the correspondingly numbered para­
graphs below. The shaded statements are optional • . ------------------~--~--~---------~-----~-------~-~---~----------~-~--~-~-,

1. JOB
2.

3.
4.

5.
6.
7.
8.

9.
10.
11.

•Figure 11. Job Control Statements for Assembly, Linkage Editing, Execu­
tion, and TESTRAN Editing

1. This statement provides general job control information.

2. This statement is optional. If present, it points to a private load
module library that is to be used as the job library. If this
library has been cataloged, the UNIT and VOLUME parameters should be
omitted.

3. This statement refers to a cataloged procedure TASMEGED that defines
four job steps: ASM, LKED, GO, and EDIT. The COND parameter
specifies that EDIT is to be executed even if a previous job step
terminates abnormally. As a result, the output of· the TESTRAN
interpreter is always edited, even after abnormal termination of the
job step that produces the output.

Reqion Size: Region size is the amount of main storage available to
a job step that is executed under a system with MVT. The procedure
TASMEGED defines the region size of each job step except the problem
program job step, GO. For GO, the default region size is assumed.

For the step LKED, the procedure defines region size as 96K, which
is the minimum required for the 88K version of linkage editor F.
(For the region requirements of other versions, refer to "Linkage
Editor Options.") A larger or smaller region can be requested by
writing:

REGION.LKED=nnnnnK

where nnnnn is a one- to five-digit decimal number specifying region
size in units of K (1024) bytes.

Section 3: How to Write Job Control Statements 48.1

48.2

For the job step GO, a region larger than the default region size
can be requested by writing:

REGION.GO=nnnnnK

Assembler Options: The following assembler options are specified or
implied in the cataloged procedure:

TEST
NO LOAD
DECK
LIST
XREF
LINECNT=standard line count

The TEST option is required to cause symbol tables to be included in
the object module; the others are standard default options. NOLOAD
and DECK indicate that the object module is to be stored on an
external storage device. (Refer to paragraphs 4 and 5.) LIST and
XREF are diagnostic options useful in program testing.

The default options can be overridden by writing:

PARM.ASM=(TEST,overriding options)

where the overriding options are any of the following:

LOAD
NODE CK
NOLI ST
NOXREF
LINECNT=nn

where nn is an unsigned decimal integer from 1 to 99. Any default
option not overridden remains in effect. The TEST option, because
it is not a default option, must be explicitly specified.

Linkage Editor Options: The following linkage editor options are
specified in the cataloged procedure:

TEST
LIST
XREF
NCAL
LET

The TEST option is required to cause symbol tables and object module
control dictionaries to be included in the load module. LIST and
XREF are diagnostic options; NCAL and LET are special processing
options that are useful in testing a program.

These options can be respecified by writing:

PARM.LKED=(TEST,respecified options)

where the respecified options are any of the following:

SCTR or OVLY
DC
OL
LIST
XREF or MAP
NCAL
LET or XCAL
SIZE=(value 1 ,value2)

Each of the original options (TEST, LIST, XREF, NCAL, and LET) is
overridden if it is not respecified. Because the TEST option must
be respecified, the NE, REUS, RENT, and REFR options cannot be
specified.

The SIZE option improves the performance of the F-level linkage
editor by indicating the amount of available main storage (value 1) ,

and the size of the text bUffer (value 2) • The possibility of
one-pass processing is enhanced if the text buff er is at least as
large as the load module to be created.

Minimum value2 is 6K; maximum is 100K. Minimum value 1 depends on
value2 and on the size of the linkage editor; maximum value1 is
9999K. The following table defines minimum value 1 , together with
the region size required in systems with MVT:

r---------------------T---------------------7----------------------1
I Size of the I I I
I Linkage Editor I Minimum value1 I MVT Region Size I
~---------------------+--------------~-----+----------------------~
I 44K I value2+38K I value1 +10K I
I 88K I value2+44K 1 I value1 +8K I
I 128K I value2+66K 2 I value1 +8K I
~-----------~--------i---------------------L----------------------~
l 1 When value 2 is less than 44K, minimum value1 is 88K. I
l 2 When value2 is less than 66K, minimum value1 is 128K. I
L--J

If the SIZE option is omitted, default values are used. These
values are established at system generation. In a system with MVT,
care must be taken to specify the correct region size based on
default value 1 •

Problem Program Information:
problem program by writing:

Information can be passed to the

PARM. GO= (xxx •••)

where xxx... is the information.

TESTRAN Editor Options: Two options can be specified by a PARM
parameter written as:

*
PARM. EDIT=[*] [Ta] ••• [Pb]

increases the speed of TESTRAN editing by a factor of four. At
the same time, it increases main storage requirements from 18K
bytes to SOK bytes. If present, it must occupy the first
position in the parameter.

Section 3: How to Write Job Control Statements 48.3

Ta

Pb

In a system with MVT, the * option should always be specified.
The procedure TASMEGED provides a SOK byte region, which is
wasted if the option is not specified.

identifies a class of test information that is to be edited.
The value a is either an unsigned decimal integer from 1 to 8,
a blank, -or the letter A. If an integer, it is a class
identification number specified by a SELECT keyword operand in
one or more TEST OPEN, TEST AT, DUMP or TRACE statements. If a
blank, it indicates that all unclassified data is to be edited.
If the letter A, it indicates that all data is to be edited,
regardless of classification.

The subfield Ta can be repeated as many times as necessary to
select all desired information for processing during a single
execution of the TESTRAN editor. Note that if a class of.
information is not selected, and has not previously been
edited, the input TESTRAN data set should be saved to allow
later editing of this information.

If the subfield Ta is omitted, all information is printed as if
TA were specified.

specifies the maximum number of pages to be printed. The value
~ is an unsigned decimal integer. It must not be greater than
the maximum page count established at the installation during
system generation.

If the subfield Pb is omitted, the maximum count is as
specified in the first TEST OPEN statement executed under the
task that created the data set. If this TEST OPEN statement
did not specify a maximum, the installation maximum is assumed.

4. This statement is optional, but, if it is written, statement 7 must
also be written. The two statements together save the object module
produced by the assembler as a data set on a private magnetic tape
or direct-access volwne. This data set can later be used as primary
or additional input to the linkage editor.

Statements 4 and 7 override the DSNAME, UNIT, and DISP parameters of
the following statements in the procedure TASMEGED:

//SYSPUNCH
//
//SYSLIN

DD DSNAME=&LOADSET,UNIT=SYSDA,
SPACE= (80, (200,50)) ,DISP= (MOD, PASS)

DD DSNAME=&LOADSET,DISP=(OLD,DELETE)

If these parameters are not overridden, they cause the object module
to be produced as a temporary data set in direct-access storage.
This data set is deleted at the end of the job.

If statements 4 and 7 are present, statement 6 must appear between
them in the sequence. If statement 5 is also present, it must
appear between statements 4 and 6.

S. This statement is optional. If present, it produces a copy of the
object module as a deck of punched cards. This statement is valid
only for the F-level assembler, and is recognized only when LOAD is
specified as an overriding option in statement 3.

6. This statement defines a data set that contains the source program
to be assembled. This data set can appear in the input stream.

7. Refer to paragraph 4 above.

48.4

8. This statement is optional. If present, it saves the load module as
a member of a partitioned data set (library) on a private direct­
access volume. The data set may be new or may already exist; if it
exists, the load module replaces any other member of the data set
that has the same member name. (If the data set already exists, the
DISP parameter can be omitted because DISP=(MOD,PASS) is specified

9.}
10.

in the cataloged procedure.) ·

The load module can be ref erred to by its member name for later
execution as a program or for reprocessing by the linkage editor.
The saved load module should not be reprocessed, however, if the
reprocessing involves replacing any non-TESTRAN control section with
another control section of the same name. Such a control section
would continue to be represented by the symbol tables and control
dictionaries for the object module to which it originally belonged.
Data recorded from this control section would therefore not be
printed in the proper symbolic format.

Statement 8 overrides the DSNAME, UNIT, and DISP parameters of the
following statement in the procedure TASMEGED:

//SYSLMOD
//

DD DSNAME=&GOSET(GO) ,SPACE=(1024, (50,20,1)),
UNIT=SYSDA,DISP=(MOD,PAS~

If these parameters are not overridden, they cause the load module
to be produced as a member of a temporary data set that is deleted
at the end of the job.

These statements are
the linkage editor.

optional. If present, they define input to

Statement 9 defines a data set to be concatenated with the primary
input to the linkage editor. (The primary input is the object
module produced by the assembler; refer to paragraph 7 above.)

Statement 10 defines either an included data set or an automatic
call library. It can be repeated as necessary to define any number
of input data sets.

Sequentially organized data sets can appear in the input stream.
However, in a system with the primary control program, only one data
set can appear in the input stream, and it must be defined by the
last DD statement for the step LKED.

11. This statement saves the output of the TESTRAN interpreter as a data
set on a private magnetic tape or direct-access volume. This data
set can subsequently be ref erred to for processing by the TESTRAN
editor. (If the data set is saved on a tape volume, the SPACE
parameter can be omitted.)

The data set contains test information resulting from the execution
of a single task. In a system with a primary control program or
MFT, there is only one task per job step; only one data set is
required, and this statement need appear only once. In a system
with MVT, there may 'be many tasks per job step; this statement must
be repeated (with varying ddnarnes) as many times as necessary to
define a separate data set for each task.

Section 3: How to Write Job Control Statements 48.5

The name of the DD statement for each data set is determined by the
first TEST OPEN statement executed under the corresponding task.
The TEST OPEN statement either implies the ddname SYSTEST, or
specifies a ddname by means of a DDN operand.

If SYSTEST is specified or implied as a ddname, the SYSTEST DD
statement is optional. If present, this statement must precede all
other DD statements for the job step GO, and should be written as:

/~GO.SYSTEST

//
DD DSNAME=dsnarne,DISP=(NEW,KEEP),
UNIT=type,VOLUME=(PRIVATE,RETAIN,SER=seri)

This statement overrides the DSNAME, UNIT, and DISP parameters of
the following statement in the procedure TASMEGED:

//SYSTEST DD DSNAME=&TESTSET,SPACE=(300, (200,50)) I

// UNIT=SYSSQ,DISP=(NEW,PASS)

If these parameters are not overridden, they define a temporary data
set that is either on magnetic tape or in direct-access storage.
This data set is deleted at the end of the job.

12. This statement is optional. If present, it defines a data set to
contain an abnormal termination dump. To limit this dump to problem
program areas, the ddname SYSABEND can be changed to SYSUDUMP~

13. This statement is optional. If present, it defines a data set that
is used by the problem program. It can be repeated as necessary to
define any number of data sets.

Sequentially organized input data sets can appear in the input.
stream. However, in a system with the primary control program, only
one data set can appear in th~ input stream, and it must be defined
by the last DD statement for the step GO.

14. This statement points to a TESTRAN data set that _contains TESTRAN
interpreter output to be processed by the TESTRAN editor. It should
be present if:

48.6

o Statement 11 overrides the statement SYSTEST in the cataloged
procedure, or

• SYSTEST is not specified or implied as a ddname in a TEST OPEN
statement.

Otherwise, statement 14 should be omitted, because it overrides the
DSNAME and DISP parameters of the following statement in the
procedure TASMEGED:

//SYSTEST DD DSNAME=&TESTSET,UNIT=SYSSQ,SEP=SYSUT1,
// DISP=(OLD,DELETE)

If these parameters are not overridden, they ref er to a temporary
data set that is created by the TESTRAN interpreter, processed by
the TESTRAN editor, and deleted at the end of the job.

Statement 14 can be written only once.
by statement 11 but is not referred to
edited under the procedure TASMEGED.
under another procedure, TTED, which
optional statements, 15 and 16.

Any data set that is defined
by statement 14 cannot be
Such a data set can be edited
is invoked by writing two

If all of the information in a data set is to be edited (rather than
just selected classes) , the disposition in statement 14 can be
changed to DISP=(OLD,DELETE). It is safest, however, to keep the
data set until printed output has actually been returned. The data
set can then be deleted, if it is on a tape volume, by instructing
the operations staff to scratch the tape; if it is on a direct­
access volume, it can be deleted by use of the IEHPROGM utility
program. For information on how to use IEHPROGM, ref er to the
publication IBM System/360 Operating System: Utilities.

15.} These state~ents are optional. If present, they define a job step
16. that edits a TESTRAN data set defined by statement 11 but not

referred to by statement 14. The two statements together can be
repeated to define a number of job steps equal to the number of data
sets that are to be edited.

Statement 15 refers to a cataloged procedure named TTED, which
defines a job step named EDIT. The COND parameter specifies that
this step is to be executed even if a previous step terminates
abnormally. TESTRAN editor options can be specified as in statement
3.

Statement 16 points to the TESTRAN data set that is to be edited.

Section 3: How to Write Job Control Statements 48.7

SECrION 4: HOW ro INTERPRET SYSTEM OUTPUT

Every TESTRAN job produces system output that includes listings of
job control statements and of certain data sets. The control statements
include both those in the input stream and those in cataloged procedures
that are invoked in the input stream. The data sets are those to which
the job control statements assign a SYSOUT disposition.

Typical system output data sets are abnormal termination dumps and
the listings produced by the assembler, the linkage editor, and the
TESTRAN editor. This section describes only the last listing; the
others are described in the publications:

fBM System/360 02erating System: Progranuner's Guide to Debugging

!_BM System/360 0£erating System: Assembler (E} Programmer's Guide

!_BM System/360 0Eerating System: Assembler (F} Programmer's Guide

IBM System/360 0Eerating System: Linkage Editor

InterEreting a TESTRAN Listing: Test information is printed on the
system output device in a co-~umn 120 characters wide. Each page
includes a standard page heading and an average of 55 lines of
information produced by one or more TESTRAN statements. The general
format of a page is shown by the sample page in Figure 12.

The circled numbers in Figure 12 distinguish five basic formats for
individual lines of print. These are as follows:

1. • •• TESTRAN OUTPUT ••• heads each page.

2. AT LOCATION •••
test point.

indicates entry to the TESTRAN interpreter at a

3. • •• MACRO ID ••• indicates one of the following:

• Execution of a DUMP, TRACE, TEST OPEN, or TEST CLOSE statement.
o Output resulting from an executed TRACE statement.
• Detection of an error following execution of a statement.

4. EXECUTED STATEMENTS, ••• traces execution of GO, SET, TEST ON, and
TEST WrlEN statements.

5. *** IEGE •••
editor.

indicates a diagnostic message from the TESTRAN

Each of these formats is described in detail in the remainder of this
section.

The printing formats for specific types of data are shown in Table 1.
The letters used to represent printing formats in the table are used
with the same meanings throughout the remainder of this section. In
addition, the letter y is used to designate a printed character for
which the data type is variable.

Section 4: How to Interpret System Output 49

JOBI TESTRAN OUTPUT DATE l0/l61t

@ 11 MACRO ID 000, TEST OPEN , TESTRAN CONTROL SECTION • BEGIN , IDENTIFICATION JOBl

® AT LOCATION CSVMALTERI OOOOEC OlOOEC ENTER BEGIN

@ EXECUTED STATEMENTS, BEGIN 003

@

@

21 MACRO ID 005, DUMP DATA STARTING IN SECTION SYMALTER
015.\ INAREA

01015.\ COMEBACK MVC WRI TAREAl881 ,ENTER CLEAR BUFFER FOR NEXT CARD

'ti MACRO ID 006, DUMP PANEL
G'Olt' 00010151t G•oe• OOOIOOFC

TIME 10/0lt PAGE

0003

PSW 00 0 1 0002 0 0 OlOOBC CC•O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

@ EXECUTED STATEMENTS, BEGIN 001, 008

@ 11 MACRO 10 Ollt, DUMP DATA STARTING IN SECTION SYMALTER
OOFB ERRFLAG STARTIN STAR TO

OlOOFB

® AT LOCATION RETURNl ISYMALTERI OOOODA OlOOOA ENTER BEGIN

@ EXECUTED STATEMENTS, BEGIN 010

@ 31 MACRO ID 012, DUMP DATA STARTING IN SECTION SYMALTER
OOFC DUTAREA

OlOOFC COMEBACK MVC WRITAREAC881,ENTER CLEAR BUFFER FOR NEXT CARD 0003

@ EXECUTED STATEMENTS, BEGIN 013

@ 11 MACRO ID 01"t DU .. P DATA STARTING IN SECTION SVHAL TER
OOF8 ERRFLAG STARTIN STARTD

OlOOFB l

@ ••• IEGE07 END OF TESTRAN EDIT--0000005 STATEMENTS PROCESSE

Figure 12. TESTRAN Editor Listing: Sample Page

50

Table 1. Printing Formats for Data Types
r-------------------------T------------------T--------------------------1
I !Assumed Length I I
I I in Bytes I Printing Format I
!Data Type I Cl) I (2) I
·-------------------------+------------------+--------------------------~
I Character I 1 I c I
I c 3 > I I I
~-------------------------+------------------+~-------------------------~
I Hexadecimal I 1 I xx I
~-------------------------+------------------+--------------------------~
I Binary I 1 I bbbbbbbb I
~-------------------------+------------------+--------------------------~
!Fixed-point Chalf-word) I 2 lsddddd I
I I I c 4> I
~-------------------------+------------------+--------------------------~
!Fixed-point (full-word) I 4 lsdddddddddd I
I I I < 4 > I
·-------------------------+------------------+--------------------------~
!Short floating-point I 4 lsO.dddddddd Esdd I
~-------------------------+------------------+--------------------------~
!Long floating-point I 8 1so.dddddddddddddddd Esdd I
~-------------------------+------------------+-~------------------------~
!Packed decimal I 1 lsd I
~-------------------------+------------------+--------------------------~
!Zoned decimal I 1 lsd I
~-------------------------+------------------+--------------------------~
I Address I I I
I c 5 > I I I
~-------------------------+------------------+--------------------------~
I Instruction: I I I
I RR format I 2 I cccc xx I
I RS, RX, and SI formats I 4 lcccc xx x xxx I
I SS format I 6 I cccc xx x xxx x xxx I
L-------------------------L------------------L--------------------------J

Notes to Table 1

1. The lengths assumed in definitions of printing formats are the
assembler implied lengths for the corresponding data types. (Refer
to Appendix A, Table 5.)

2. The letters shown in definitions of printing formats have the
following meanings:

c is one EBCDIC character.
x is one hexadecimal digit.
b is one binary digit.
sis an algebraic sign C+ or-).
d is one decimal digit.
0 is a high order zero.
E means 'exponent'; the succeeding signed pair of digits is the

exponent of the floating-point number.
cccc is a machine mnemonic operation code.

3. Unprintable characters Cother than blanks) are printed as two
hexadecimal digits, the second of which appears on a separate line
immediately below the first. For example, the hexadecimal data

C1~3D7C8Cl03C4C1E3Cl

when edited into character format, is printed as

ALPHAODATA
3

Section 4: How to Interpret System Output 51

4. This format includes a decimal point that is positioned according to 1

the scale factor associated with the data.

5. All addresses are printed in their source language formats.

PAGE HEADING .C ••• TESTRAN OUTPUT •••)

The following heading is printed at the top of each page:

r---1
I cccccccc TESTRAN OUTPUT DATE dd/ddd TIME dd/dd PAGE dddd I
I I
L---J
cccccccc

is the output identification specified as the third positional
operand of the first-executed TEST OPEN statement.

DATE dd/ddd
is the current date Cyea.r/dar>-

TIME dd/dd
is the time (hour/minute) at which editing was begun.

PAGE dddd
is the output page number.

TEST POINT IDENTIFICATION CAT LOCATION •••)

The following line indicates entry to the TESTRAN interpreter at a
test point:

r---1
I AT LOCATION cccccccc(cccccccc) xxxxxx xxxxxx ENTER cccccccc I
I I
L---J

AT LOCATION ccccccccCcccccccc) xxxxxx xxxxxx
identifies the test point. The field ccccccccCcccccccc) identifies
the test point by name Cif any), and by name Cif any) of the control
section that contains the test point. The fields xxxxxx xxxxxx are
the assembled and loaded addresses of the test point.

ENTER cccccccc
identifies the TESTRAN control section in which the test point was
specified. (The control section is defined by an identically named
TEST OPEN statement, as indicated in the assembly listing by message
number IEGM04.)

Note: The SELECT operand does not affect printing of the AT LOCATION
line. This line is omitted, however, if it is not followed by the output
of a DUMP or TRACE statement, or by an error message.

STATEMENT OUTPUT (••• MACRO ID •••)

Statement output is all output that is identified by "MACRO ID". It
includes TEST OPEN., TEST CLOSE, DUMP and TRACE statement output, and
error messages issued by the TESTRAN interpreter. Specific types of
statement output are described below.

52

DUMP CHANGES OUTPUT

DUMP CHANGES output is a change dump of main storage whose format is
the same as that described below under "DUMP DATA Output."

DUMP COMMENT OUTPUT

The following lines are a dump of a programmer-written comment.

r---1
I I
I ~~c~~~~ ID ddd, DUMP COMMENT I
I I
L---J
d)

is the class number assigned to the dump by a SELECT operand.

lv.IACRO ID ddd, DUMP COMMENT
identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

ccccc .•.
is the dumped comment, which has a maximum length of 120 characters.

DUMP DATA OUTPUT

The following lines are a dwup of main storage:

r---1
1

1

d) MACRO ID ddd, DUMP DATA STARTING IN SECTION cccccccc
1

1

xxxx cccccccc cccccccc cccccccc I xxxxxx yyyyyyyyyyyyy ••• yyyyyyyyyyyyy ••• yyyyyyyyyyyyy... I

L---J

d)

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP CHANGES
identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

STARTING IN SECTION cccccccc
identifies the control section that contains the dumped data.

xx xx
xxxxxx

are the assembled and loaded addresses of a dumped field. The field
is the first field printed to the right of these addresses.

CC CCC CCC

YYYYYYYYYYYYY···
are the symbolic name Cif any) and contents of a dumped field. The
name and format of the field are as defined in the problem program,
or as specified by NAME and DATAM operands.

Section 4: How to Interpret system output 53

Note: The number of named fields per line varies from one to eleven due
to differences in length; the starting positions are a minimum of nine
printing positions apart. Fields too long for the current line are
started on a new line.

In a dump of an instruction sequence, an instruction may be printed
with the instruction SVC 26 immediately beneath it. If so, the
instruction is located at a test point; the SVC instruction is the means
by which the test point gives control to the TESTRAN interpreter. The
SVC instruction replaced the original instruction when the test point was
established; the original instruction was saved for execution on return
of control to the test point.

DUMP MAP OUTPUT

The following lines are
storage areas associated
statement is executed.

a map of control sections and allocated
with a task that is active when a DUMP MAP

r---1 I d) MACRO ID ddd, DUMP MAP . - - I
I NAME TYPE CSECT NAME ASSEMBLED AT LOADED AT LENGTH-DEC HEX I
I cccccccc 'LOADED PROGRAM cccccccc xxxxxx xxxxxx dddd xxx I I OBTAINED STORAGE xxxxxx dddd xxx I
L---J
d)

is the class number assigned to the dump ty a SELECT operand.

MACRO ID ddd, DUMP MAP

NAME

TYPE

identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the asserobler, and appears with the
statement in the assembly listing (message number IEGM09).

is a column heading.
module) associated with
ed by one line of print
given line, the name
different from the name

The column identifies each program Cload
the active task. Each program is represent­
for each of its control sections. In a

cccccccc of a program is printed only if
that apf lies to the previous line.

is a column heading. The column indicates the type of storage area
that is represented. LOADED PROGRAM indicates a control section for
which storage was reserved during assembly. OBTAINED STORAGE
indicates an allocated storage area.

CSECT NAME
is a column heading. The colurrn identifies each control section of
each program associated with the active task.

ASSEMBLED AT
is a column heading. The column contains the assembled address of
each control section narr:ed in the du~p.

LOADED AT
is a column heading. The column contains the loaded address of each
control section named in the dump. It also contains the address of
each allocated storage area.

LENGTH-DEC HEX

54

is a double column heading. The double column defines the decimal
and hexadecimal length of each control section and allocated storage
area.

Note: Some of the areas included in the dump will be areas allocated for
use by the operating system.

DUMP PANEL OUTPUT

The following lines are a dump of registers and the program status
word.

r---1
Id) MACRO ID ddd, DUMP PANEL . I
I G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx G'dd' xxxxxxxx I
I ~~~d'x~x~x~x~~x~'~d: ~~~~~~xxc~~~d'F~~x;~~~~ ~~~~L~~x~~~xx0~~d~~E~~~~~x~~cG'~~; ~~~~~~WG~~~· ~~~~~;~~~~~d~c~xxxxxxx I
I F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx F'dd' xxxxxxxx xxxxxxxx I
L---1
d)

is the class number assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP PANEL
identifies the statement responsible for the dump. The identifi­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

G'dd' xxxxxxxx
is the number Cdd) and contents Cxxxxxxxx) of a dumped gt:neral
register. The contt:nts of the register are either in hexaaecimal
format as shown, or in s.ome other format as specified by a DATAM
operand.

PSW xx x xxxx x x xxxxxx

CC=d

is the program status word CPSW) stored on interruption of the
problem program at the current test point.

specifies the value of the condition code Cbits 34 and 35 of the
program status word).

FIX POINT OVERFLOW ccc
specifies the status of the fixed-point overflow mask Cbit 36 of the
program status word). The status ccc is either ON or OFF.

DEC OVERFLOW ccc
specifies the status of the decimal overflow mask (bit 37 cf the
program status word). The status ccc is either ON or OFF.

EXP UNDERFLOW ccc
specifies the status of the exponent underflow mask Cbit 38 of the
program status word). The status ccc is either ON or OFF.

SIGNIFICANCE ccc
specifies the status of the significance mask Cnit 39 of the program
status word). The status ccc is either ON or 9FF.

F'dd' xxxxxxxx xxxxxxxx
is the number Cdd) and contents Cxxxxxxxx xxxxxxxx) of a dumped
floating-point register. The contents of the register are either in
hexadecimal format as shown, or in some other format as specified by
a DATAM operand.

Section 4: How to Interpret System Output 55

DUMP TABLE OUTPUT

The following lines are a dump of a system table (control block).

r----------------------------------.-------------------------------------1
I d) MACRO ID ddd, DUMP TABLE cccc ccccccc BLOCK LOADED AT cccccccc(cccccccc) xxxxxx xxxxxx I
I SECTION FIELD NAME CONTENTS I
I · cccccccc I
I cccccccc YYYYY. • • I
L---J

d)

is the class nuIT.ber assigned to the dump by a SELECT operand.

MACRO ID ddd, DUMP TABLE
identifies the statement responsible for the dump. The identif i­
cation number ddd is assigned by the assembler, and appears with the
statement in the assembly listing (message number IEGM09).

cccc ccccccc BLOCK
identifies the dumped table as a task control block, data control
block, or data extent block.

LOADED AT cccccccc<cccccccc) xxxxxx xxxxxx
specifies the location of a task control block or data control
block. The field ccccccccCcccccccc) specifies th~ name Cif any) of
a data control block and the name Cif any) of the control section
that contains the data control block. A single field xxxxxx
specifies the address of a task control block; two fields xxxxxx
xxxxxx specify both the asse~bled and loaded addresses of a data
control block.

SECTION
is a column heading. The column identifies major sections of the
table.

FIELD NAME
is a column heading. The column identifies fields within major
sections of the table.

CONTENTS
is a column heading. The column defines the contents of each field.

ERROR MESSAGE

The following lines indicate detection of an error during execution of
a TESTRAN statement.

r---1

I I
I ~~.'1Ai~gI~~ ~~~~c:~~OR I
I I
L---J

d)
is a class number assigned by a SELECT operand.

MACRO ID ddd, ERROR

56

identifies the statement that caused or detected the error. The
identification number ddd is assigned by the assembler and appears
with the statement in the assembly listing (message number IEGM09).

*** IEGidd ccccc •••
is an error message issued by the TESTRAN interpreter. The text of
the message Cccccc .••) is preceded by a standard system message
code CIEGidd). For an explanation of the message, refer to Appendix
c, where all messages issued by the interpreter are listed in order
by message code.

TEST CLOSE OUTPUT

The following lines indicate the execution of a TEST CLOSE statement.

r---1
I I
I ~~c:~~~ c~~c~~~~crE~~x~~~5~xxxxx • • • I
I I
l-------------------------------------~---------------------------------J

d)
is the class number specified by the SELECT operand Cif any) of a
TEST OPEN statement.

MACRO ID ddd, TEST CLOSE
identifies the TEST CLOSE statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGM09).

ccccccccCcccccccc) xxxxxx xxxxxx
identifies a TESTRAN control section closed by the TEST CLOSE
statement. The field ccccccccCcccccccc) contains a symbol generated
during assembly and the name of the TESTRAN control section. The
fields xxxxxx xxxxxx are the assembled and loaded addresses of tht
control section. (The control section is defined by an identically
named TEST OPEN statement, as indicated in the assembly listing by
message number IEGM04.)

Note: The SELECT operand does not affect the printing of these lines of
information.

TEST OPEN OUTPUT

The following lines indicate the execution of a TEST OPEN statement.

r---1 I d) MACRO ID ddd, TEST 01'1.:N ' TESTRAN CONTROL SECTIOt: "' cccccccc, IDENTIFICATION cccccccc l
I ;,1AXIMUM NUMBER OF PAGES ddd, MAXIMUM HUMBFR OF STATE!1ENTS ddd I
l ___ J

d)
is the class number specified by the SELECT operand Cif any) of the
TEST OPEN statement.

MACRO ID ddd, TEST OPEN , TESTRAN CONTROL SECTION = cccccccc
identifies the TEST OPEN statement. The identification n~ber ddd
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGM09). The name of the 'l'ESTRAN
control section Ccccccccc) is also the name of the TEST OPEN
statement. (The control section is defined by the TEST OPEN
statement, as indicated in the assembly listing by message number
IEGM04.)

Section 4: How to Interpret System Output 57

IDENTIFICATION cccccccc
specifies the output identification as provided by the third
positional operand of the TEST OPEN statement.

MAXIMUM NUMBER OF PAGES ddd
specifies the maximum number of pages produced.

MAXIMUM NUMBER OF STATEMENTS ddd
specifies the maximum number of executed TESTRAN statements.

Note: The SELECT operand does not affect the printing of these lines of
information.

TRACE CALL OUTPUT

The following groups of lines indicate the execution of a TRACE CALL
statement and the later execution of a CALL macro-instruction.

r---1
1

1

d) MACRO ID ddd, TRACE CALL , cccccccc, FROM cccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx

1

1

STARTED

I ccccc... I
~---~-----~
I d) MACRO ID ddd, TRACE CALL , cccccccc, TO cccccccc (cccccccc) xxxxxx xxxxxx ·AT cccccccc (cccccccc) xxxxxx xxxxxx I
I g:~~: ~~~~~~~~ : : : I
I ccccc... I
L---J
d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE CALL , cccccccc,
identifies the statement responsible for the trace. The identifi­
cation number ddd is assigned by the assembler, and qppears with the
statement in the assembly listing <message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGM04.)

FROM ccccccccCcccccccc) xxxxxx xxxxxx TO ccccccccCcccccccc) xxxxxx xxxxxx
defines the trace area. FROM ccccccccCcccccccc) specifies the name
Cif any) of the leftmost byte of the area and the name Cif any) of
the control section to which it belongs. TO cccccccc(cccccccc)
gives the same information for the rightmost byte plus one. The
fields xxxxxx xxxxxx are the corresponding assembled and loaded
addresses.

TO ccccccccCcccccccc) xxxxxx xxxxxx .AT ccccccccCcccccccc) xxxxxx xxxxxx
identifies a called subroutine and the calling macro-instruction.
TO cccccccc(cccccccc) specifies the name Cif any) of the subroutine
entry point, and the name Cif any) of the control section that
contains the entry point. FROM ccccccccCcccccccc) specifies the
name Cif any) of the CALL macro-instruction and the name Cif any) of
the control section that contains the CALL macro-instruction. The
fields xxxxxx xxxxxx are the corresponding assembled and loaded
addresses.

G'dd' xxxxxxxx

58

gives the number Cdd) and contents Cxxxxxxxx) of a general register
used by the CALL macro-instruction.

ccccc •••
is a comment specified by a COMMENT operand Cif any) in the TRACE
CALL statement. The maximum length is 120 characters.

TRACE FLOW OUTPUT

The following groups of lines indicate the execution of a TRACE FLOW
statement and the later execution of a branch or SVC instruction.

r--~--1
I I I ~~A:i~o ID ddd, TRACE FLOW , cccccccc, FROM cccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx I
I ccccc... I
~---~
I d) MACRO ID ddd, TRACE FLOW , cccccccc, FROM cccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx, CC=d 1

1 I cccc xx x xxx G' dd I xxxxxxxx •••
I ccccc... I
~---~
II d) MACRO ID ddd, TRACE FLOW , cccccccc, FROM cccccccc (cccccccc) xxxxxx xxxxxx TO cccccccc (cccccccc) xxxxxx xxxxxx, CC=d .II

cccc xx x xxx EXECUTED AS cccc xx x xxx BY EX xx x xxx FROM LOCATION cccccccc (cccccccc) xxxxxx xxxxxx

I ~~~~~. ~~xxxxxx • • • I
L---J
d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE FLOW , cccccccc,
identifies the statement responsible for the trace. The identifi­
cation number ddd is assigned by the assembler and appears with the
statement in the assembly listing (message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assembly
listing by message number IEGM04.)

FROM ccccccccCcccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx
either (1) defines the trace area, or (2) identifies an executed
branch or SVC instruction and the branch destination:

CC=d

1. FROM ccccccccCcccccccc) specifies the name Cif any) of the
leftmost byte of the trace area, and the name (if any) of the
control section to which it belongs. TO ccccccccCcccccccc)
gives the same information for the rightmost byte plus one.
The fields xxxxxx xxxxxx are the corresponding assembled and
loaded addresses.

2. FROM cccccccc(cccccccc) specifies the name Cif any) of an
executed branch or SVC instruction, and the name Cif any) of
the control section that contains the instruction. TO
ccccccccCcccccccc) specifies the name Cif any) of the branch
destination., and the name Cif any) of the control section that
contains the destination. The fields xxxxxx xxxxxx are the
corresponding assembled and loaded addresses.

specifies the value of the condition code when the branch or SVC
instruction is executed.

cccc xx x xxx
is the branch or SVC instruction.
printed as cccc xx.>

(If an RR-type instruction, it is

Section 4: How to Interpret System Output 59

EXECUTED AS cccc xx x xxx BY EX xx x xxx
indicates execution of a branch or SVC instruction by an EX
instruction CEX xx x xxx). The instruction as executed is cccc xx x
xxx Cor cccc xx if it is an R~-type instruction>. The effective
values of bits 8-15 are shown.

FROM LOCATION ccccccccCcccccccc> xxxxxx xxxxxx
specifies the location of the EX instruction. The field
ccccccccCcccccccc) specifies the name Cif any> of the EX instruction
and the name Cif any) of the control section that contains the
instruction. The fields xxxxxx xxxxxx are the assembled and loaded
addresses of the EX instruction.

G'dd' xxxxxxxx
gives the number Cdd) and contents Cxxxxxxxx) of a general register

· used by a branch or EX instruction.

ccccc •••
is a comment
FLOW statement.

specified by a COMMENT operand Cif any> in the TRACE
The maximum length is 120 characters.

TRACE REFER OUTPUT

The following groups of lines indicate the execution of a TRACE REFER
statement and the later execution of a reference to data.

r---1
I I I ~~A~~~O ID ddd, TRACE REFER , cccccccc, FROM cccccccc(cccccccc) xxxxxx xxxxxx TO cccccccc(cccccccc) xxxxxx xxxxxx I
I ccccc... 1
·---i
1

1

d) MACRO ID ddd, TRACE REFER , cccccccc, TO cccccccc (cccccccc) xxxxxx xxxxxx FROM cccccccc (.cccccccc) xxxxxx xxxxxx 1

1
cccc xx x xxx x xxx GI dd I xxxxxxxx •••

I c~~~~RE· yyyyy... AFTER yyyyy... I
~--------~--i
I I
I ~~c~;~o x I~x~d~, x~~i~~~i~ AS c~~~~c~~, x T~x~c~c~~~c ~~c~~ccc~~ ~x~~~x F~~~x~~C~~~~N c~~~~~~~~ (~~~~~~~~) x~~~~~x x~~~~~x I

. I G'dd' xxxxxxxx ••• I
I c~~~gRE• yyyyy... AFTER YYYYY··· I
L---J

d)

is the class number assigned to the trace by a SELECT operand.

MACRO ID ddd, TRACE REFER , cccccccc,
identifies the statement responsible for the trace. The identif i­
cation number ddd is assigned by the assembler and appears with the
statement in the assembly listing (message number IEGM09). The
field cccccccc is the name of the TESTRAN control section to which
the statement belongs. (The control section is defined by an
identically named TEST OPEN statement, as indicated in the assewbly
listing by message number IEGM04.)

FROM ccccccccCcccccccc) xxxxxx xxxxxx TO ccccccccCcccccccc) xxxxxx xxxxxx
def~nes tne trace area. FROM cccccccc(cccccccc) specifies the name
Cif any) of the leftmost byte of the area and the naroe Cif any) of
the control section to which it belongs. TO ccccccccCcccccccc)
gives the same information for the rightmost byte plus one. The
fields xxxxxx xxxxxx are the corresp6nding assembled and loaded,
addresses.

60

TO ccccccccCcccccccc) xxxxxx xxxxxx FROM ccccccccCcccccccc) xxxxxx xxxxxx
identifies a field to which a reference is made and the instruction
making the reference. TO cccccccc(cccccccc) specifies the name Cif
any) of the field and the name (if any) of the control section that
contains the field. FROM ccccccccCcccccccc) specifies the name Cif
any) of the instruction making the reference and the name Cif any)
of the control section that contains the instruction. The fields
xxxxxx xxxxxx are the corresponding assembled and loaded addresses.

cccc xx x xxx x xxx
is the instruction making the reference. (If an RS-, RX-, or
SI-type instruction, it is printed as cccc xx x xxx.)

EXECUTED AS cccc xx x xxx x xxx BY EX xx x xxx
indicates that the instruction making the reference is executed by
an EX instruction CEX xx x xxx>. The instruction as executed is
cccc xx x xxx x xxx Cor cccc xx x xxx if it is an RS-, RX-, or
SI-type instruction). The effective values of bits 8-15 are shown.

FROM LOCATION ccccccccCcccccccc) xxxxxx xxxxxx
specifies the location of the EX instruction. The field
cccccccCcccccccc) specifies the name Cif any) of the control section
that contains the instruction. The fields xxxxxx xxxxxx are the
assembled and loaded addresses of the EX instruction.

G'dd' xxxxxxxx
gives the number Cdd) and contents Cxxxxxxxx) of a general register
used by the instruction making the reference, or by an EX instruc­
tion.

ccccc •••
is a comment specified by a COMMENT operand Cif any) in the TRACE
REFER statement. The maximum length is 120 characters.

BEFORE yyyyy •••
specifies the contents of the field before the reference.

AFTER yyyyy ••.
specifies the contents of the field after the reference.

TRACE STOP OUTPUT

The following line indicates execution of a TRACE STOP statement.

r---1
: d) MACRO ID ddd, TRACE STOP cccccccc ddd, ddd, ••• , cccccccc ddd, ddd, • • • I
L---J
d)

is the class number assigned by a SELECT operand.

MACRO ID ddd, TRACE STOP
identifies the TRACE STOP statement. The identification number ddd
is assigned by the assembler and appears with the statement in the
assembly listing (message number IEGM09).

cccccccc ddd1 ddd, •.•
identifies TRACE statements ref erred to by the TRACE STOP statement.
Each number ddd is the identification number of a TRACE statement in
a TESTRAN control section cccccccc. Each identification number is
assigned by the assembler and appears with a statement in the

Section 4: How to Interpret System Output 61

assembly listing (message
section is defined by
(message number IEGM04).

number IEGM09).
an identically

Each TESTRAN control
named TEST OPEN statement

Note: If the TRACE STOP statement does not refer to other statements
by name, the word ALL is printed to indicate that all traces are
stopped.

TESTRAN STATEMENT TRACE (EXECUTED STATEMENTS •••)

The following line traces execution of GO, SET, TEST ON, and TEST WHEN
statements.

r---1
f I I EXECUTED STATEMENTS, cccccccc ddd, ddd, ••• , cccccccc ddd, ddd, ••• I
L---J

cccccccc ddd, ddd, •••
identifies the executed statements. Each number ddd is the iden­
tification number of a statement in a TESTRAN control section named
cccccccc. Each identification number is assigned by the assembler
and appears with a statement in the assembly listing (message number
IEGM09). Each TESTRAN control section is defined by an identically
named TEST OPEN statement (message number IEGM04).

Note: This line is printed only if followed by the output of a DUMP or
TRACE statement, or by an error message. The number of statements
identified is limited to 28: the first 27 statements that are executed
and the last statement that is executed before other output is generated.

TESTRAN EDITOR MESSAGE C*** IEGE •••)

The following line is a diagnostic message issued by the TESTRAN
editor.

r---1
I • • • IEGEdd ccccc. • • I
I I
L---J

IEGEdd
is a message code that identifies the message.

ccccc •••

62

is the message text. For an explanation of the text, refer to
Appendix c, which lists all messages in order by message code.

APPENDIX A: FORMAL DESCRIPTION OF TESTRAN STATEMENTS

This
function

appendix formally describes the
and format of TESTRAN statements.

CODING CONVENTIONS

TESTRAN statements are coded according
to the coding conventions for assembler
language macro-instructions. These conven­
tions are described in the publication IBM
System/360 Operating System: Assembler Lall=
quage. They should be familiar to the
reader who has experience in writing his
own macro-instructions or in using those
defined by the system for requesting super­
visor and data management services.

The coding of macro-instructions differs
in two ways from the coding of machine
instructions:

1. There is no limit to the number of
continuation lines that can be used.

2. There is a wider variety of operands.

For the reader who has no experience
with macro-instructions, the following
brief description of the operand field may
be helpful.

The Operand Field: As in a machine
instruction, the operand field consists of
individual operands that are separated by
commas. The meaning of each operand either
is implied by its position in the field or
is expressed by a keyword that is part of
the operand itself. For example, the three
statements

DUMP DATA,CHANGES,DATAM=L8,SELECT=l
DUMP DATA,CHANGES,SELECT=l,DATAM=L8
DUMP CHANGES., DATA, SELECT=l., DATAM=L8

each contain two positional operands fol­
lowed by two keyword operands. Because the
position of a keyword operand is unimpor­
tant, the first two statements are func­
tionally equivalent; they are not equival­
ent to the third statement, which differs
in its first and second (positional) oper­
ands.

Some operands are optional: they can be
written or omitted as the programmer
chooses. If a positional operand is omit­
ted., it must be represented by a comma if
it precedes a positional operand that is
not omitted. In the statement

the second and third operands are omitted
and each is represented by a comma. An
omitted positional operand is not rep­
resented by a comma if it is not followed
by a positional operand that is actually
written. An omitted keyword operand is
never represented by a comma.

To allow the use of commas within an
operand, a positional operand or the right­
hand part of a keyword operand can some­
times be enclosed in parentheses. Within
the parentheses, commas separate individual
items of information, which together are
called a sublist. In the statements

Tl TRACE STOP, CTRACE#l,TRACE#2,TRACE#3)
Dl DUMP DATA,INPUT,INPUT+80,DSECT=CINPUT,3)

the second (positional) operand of Tl is a
sublist of three items, and the DSECT
keyword operand in Dl contains a sublist of
two items. The number of items in a
sublist is variable; the programmer speci­
fies one or more items as he chooses. If
only one item is specified, no commas are
needed to separate items and the enclosing
parentheses can be omitted.

FUNCTIONS OF TESTRAN STATEMENTS

The following pages describe the func­
tions of TESTRAN statements and their oper­
ands. For convenience, the statements are
divided into four groups:

• DUMP and TRACE statements.
• TEST statements.
• GO statements.
• SET statements.

The description of each group has two
parts:

• A list of the statements in the group
and the general function of each state­
ment.

• A list of the operands for the state­
ments and the specific function of each
operand.

To use this part of the appendix, turn
to the last part, "Format of TESTRAN State­
ments," and fold out the last page to show
Tables 2-5. Table 2 defines the format of
TESTRAN statements using conventions that
are standard in the Systems Reference
Library. Tables 3-5 present supplementary

Appendix A: Formal Description of TESTRAN Statements 63

information about the format of certain
operands.

To write a statement using this appen­
dix, first select a statement from the list

DUMP AND TRACE STATEMENTS

The DUMP and TRACE statements record
information about the problem program.
Their basic functions are as follows:

DUMP DATA
dumps a storage area.

DUMP CHANGES
dumps changes to a storage area;
dumped fields are printed only if Cl)
contained in the first dump taken by•
the statement, or (2) contained in a
later dump and changed since the pre­
vious dump by the same statement.

DUMP COMMENT
dumps a programmer's comment contained
in the statement.

DUMP MAP

DUMP

dumps a map of control
allocated storage areas
with the active task.

sections and
associated

PANEL
dumps
isters
stored
Of the

general and floating-point reg­
and the program status word
at the most recent interruption
problem program.

DUMP TABLE
dumps a specified
(control block).

system table

TRACE CALL
traces subroutine calls by CALL macro­
instructions in a specified storage
area.

TRACE FLOW
traces transfers Cby branch and SVC
instructions) to, from, or within a
storage area.

TRACE REFER
traces references to a storage area by
instructions that could change data
within that area.

TRACE STOP

64

stops traces
TRACE FLOW,
statements.

started
and

by TRACE CALL,
TRACE REFER

of statements for one of the groups. Refer
to the tables on the foldout page to learn
the format of the statement. Then refer to
the list of operands for a description of
each operand indicated in the tables.

Operands: The operands of the DUMP and
TRACE statements are as follows:

address
• as the second operand, points to the

leftmost byte of a storage area.
• as the third operand, points to the

rightrrost byte plus one of a storage
area, with this exception: in a DUMP
TABLE statement, the third operand
points to the data control block
(DCB) that is dumped or that is
associated with the data extent
block (DEB) that is dumped.

Note on Storage Areas: A storage area
is defined by the effective values of
the address operands at the time a
DUMP or TRACE statement is executed.
Indexing of addresses may cause an
area to vary in size and location when
a statement is executed several times
(i.e., at several test points). A
change dump of a variable area
includes all additions to the pre­
viously dumped area, plus changed data
that lies within both the present and
previous areas. A trace is shifted
from the previously defined area to a
newly defined area on each execution
of the statement that first started
the trace.

If a statement does not point to both
ends of a storage area, the length of
the area is determined by the DATAM
keyword operand. If this operand is
omitted, the length is determined by
the length attribute of the first
symbol used in the address. If the
address contains no symbols, or only
an external sym~ol, the length is
assumed to be one byte.

'text'
specifies a programmer's comment.

Cregisters[,registers] •••)
• specifies the registers to be

durriped.
• if absent, implies that all reg­

isters are to be dumped.

Note
DA TAM

on Printing Format: Unless the
keyword operand is written,

dumped registers <including floating­
point registers) are printed in
hexadecimal format.

TCBIDCBIDEB
specifies the system table to be
dumped, as follows:

TCB - the task control block for the
active task..

DCB - an open data control block
whose address is the third
operand of the statement.

DEB - the data extent block for an
open data control block whose
address is the third operand
of the statement.

Csymbol[,symbol] •••)
• specifies the names of one or more

TRACE statements that started traces
which are to be stopped.

• if absent, implies that all current
traces are to be stopped.

d~ DSECT=Csymbol{.1JJ,integer})
identifies a storage area as a dummy
control section, or as part of a dummy
control section.

symbol
1.

2.

!I integer

is the name of the dummy
control section.
specifies the assumed loca­
tion of the dummy control
section, which must be
addressable by means of a
base register previously
defined and loaded by the
problem program.

1. specifies a number by which
the length of the storage
area is multiplied on exe­
cution of the statement.

d

n

c.

2. specifies the maximum nuni­
ber of times the format of
the aummy control section
is to be repeated to define
the f orrnat of printed
information.

DATAM=[type] [L{length}] [S{scale}]
• specifies type, length, and scale

attributes.
• determines either the length of a

storage area when the third posi­
tional operand is omitted, or the
length of data (right justified) in
a dumped register.

• determines either the printing for­
mat for each field of a storage area
when the DSECT operand is ornitted,
or the printing format of data
dumped from a register.

NAME= symbol
• provides a symbol to be printed as

the name of the first field of a
dump.

• suppresses the
names as they
source program.

printing of field
are defined in the

COMMENT='text'
annotates trace output
programmer's comment.

SELECT={lj2j3j415161718}

with a

• classifies test information productd
by the DUMP or TRACE statement;
reclassifies this information if it
has already been classified in a
TEST OPEN or TEST AT statement.

• identifies the class by a number,
which can be usea Cin a job control
statement) to select the class for
printing by the TESTRAN editor.

Appenaix A: Formal Description of TESTRAN Statements 65

TEST STATEMENTS

TEST statements are of three types:

Linkage stateroents: TEST OPEN
TEST CLOSE

Specification statements: TEST AT
TEST DEFINE

Decision-making statements: TEST ON
TEST wHEN

Each type is described separately.

Linkage Statements

The TEST OPEN and TEST CLOSE statements
control linkage between the problem program
and the TESTRAN interpreter. Their basic
functions are as follows:

TEST OPEN
• defines a TESTRAN control section

having the same naroe as the state­
ment itself.

• opens the TESTRAN control section;
loads the standard entry point reg­
ister (15), and passes control to
the problero program entry point
(second operand).

• specifies task options (third,
fourth, MAXE, and MAXP operands).

• chains the opening of other TESTRAN
control sections COPTEST operand).

• classifies test information for sel­
ective retrieval (SELECT operand).

TEST CLOSE
• closes the TESTRAN control section

in which it is located.
• closes any other TESTRAN control

sections that were opened at the
same time by chained opening.

• returns control to the problem pro­
gram.

A TEST OPEN statement defines a control
section that includes all TESTRAN state­
ments that precede the next TEST OPEN
statement, if any, in the source program.
It must be the first TESTRAN statement in
the source program.

when executed, the TEST OPEN statement
"opens" the control section by reference to
TEST specification statements. It esta­
blishes a link to the TESTRAN interpreter
at each test point specified in a TEST AT
statement, and it creates counters and
flags as specified in TEST DEFINE state­
ments.

66

A TEST CLOSE statement closes a TESTRAN
control section by nullifying the linkages,
counters, and flags established when the
control section was opened. When closed, a
control section cannot te entered by a
branch from another TESTRAN control sec­
tion, and its counters and flags cannot be
used by statements in other control sec­
tions.

Operands: The operands of the TEST linkage
statements are as follows:

address
• is placed in register 15.
• receives control after TEST OPEN.
• is required if TEST OPEN is execut­

ed.
• is ignored if TEST OPEN is not

executed Ci.e., if opening of the
control section is chained by the
execution of another TEST OPEN
statement).

ta~k opt~on~
• control testing under a task and

editing of the resulting test out­
put.

• can te specified only in the first
TEST OPEN statement executed under a
task; are ignored when specified in
other TEST OPEN statements.

• are specified by five operands, one
of which (the DDN operand) is some­
times required in systems with MVT.

symbol
1.

2.

appears in the heading of
each page printed by the
TESTRAN editor.
identifies test information
produced under the task.

LINKjLOAD
~~ 1. specifies which system

macro-instruction the TES­
TRAN interpreter should use
to load its nonresident
modules.

or increases
the storage

and the oper-

2. reduces CLINK)
(LOAD) both
requirements
ating speed
preter.

of the inter-

DDN=SYSTESTjDDN=symbol
1. points to the DD control

statement for the TESTRAN
data set.

2. is required (when testing a
dynamic parallel program in
a system with MVT) to
define a separate TESTRAN
data set for each task
under which testing is per­
formed.

MAXE=integer
1. specifies the maximum num­

ber of statements to be
executed by the TESTRAN
interpreter.1

2. causes abnormal termination
if the maximum is exceeded.

MAXP=integer
1. specifies the maximum num­

ber of pages of test infor­
mation to be produced.1

2. causes abnormal termination
if the maximum is exceeded.

OFTEST= (symbol C, symbol],, ••• >
· • points to the TESTRAN control sec­

tions defined by other TEST OPEN
statements.

• chains the opening of these control
sections: causes all of them to be
opened when the TEST OPEN statement
is executed .•

• is ignored if the TEST OPEN state­
ment is not executed.

.6 SELECT=U 1213141516 P'l 8}
• classifies test information produced

by control sections opened by the
TEST OPEN statement.

• identifies the class by a number,
which can be used Cin a job control
statement) to select the class for
printing by the TESTRAN editor.

• is ignored if the TEST OPEN state­
ment is not executed.

Specification Statements

The TEST AT and TEST DEFINE statements
specify functions that are performed when
the TESTRAN control section is opened:

TEST AT
• specifies one or more test points in

the problem program (second
operand).

• classifies test information for sel­
ective retrieval (SELECT operand).

TEST DEFINE
defines TESTRAN counters or flags.

1This maximum must not exceed the installa­
tion maximum established during system gen­
eration. If it does, or if the operand is
omitted, the installation maximum is
assumed.

A TEST AT statement must be placed so
that the next sequential TESTRAN statement
is the first that should be executed at
each specified test point. A TEST DEFINE
statement can be placed anywhere in a
TESTRAN control section.

In an executed sequence of TESTRAN
statements, a TEST AT statement returns
control to the problem program. A TEST
DEFINE statement performs no operation; the
next sequential statement is executed.

Operands: The operands of the TEST speci­
fication statements are as follows:

({*laddress}[,address] •••)
• points to one or more test points in

the problem program.
• refers, if * is written, to the

value of the location counter for
the current problem program control ·
section.

• is subject to the following restric­
tions:
1. Each specified address must be

that of an instruction in the
problem program.

2. The instruction must not be a
privileged or SVC instruction,
or an EX instruction that exe­
cutes a privileged or SVC
instruction.

3. The instruction must not be
modified by any instruction or
executed by an EX instruction.

.6 SELECT={112131415161718}
• classifies test information recorded

at test points specified in the
statement; reclassifies this infor­
mation if it has already been clas­
sified in a TEST OPEN statement.

• identifies the class by a number
which can be used Cin a job control
statement) to select the class for
printing by the TESTRAN editor.

COUNTER I FLAG
determines whether counters or flags
are defined by the statement.

Note on Counters and Flags: A counter
is a full-word, fixed-point value. A
flag is a single binary digit. Both
are set to zero when the control
section is opened. Their values are
lost when the control section is
closed.

CsymbolC,symboll •••)
specifies a name for each counter or
flag (the number of names determines
the number of counters or flags that
are defined).

Appendix A: Formal Description of TESTRAN Statements 67

Decision-Making.Statements

The TEST ON and TEST WHEN statements
perform decision-making functions based on
conditional branching to other TESTRAN
statements. Their functions are as fol­
lows:

TEST ON
• increments a counter (COUNTER

operand) by one.
• tests the counter against three

values (second, third, and fourth
operands).

• branches to a TESTRAN statement
Cf ifth operand) if the value of the
counter Cl) is greater than or equal
to the second operand, (2) is less
than or equal to the third operand,
and (3) is a multiple of the fourth
operand.

TEST WHEN (first form)
• tests the value of a flag (second

operand).
• branches to a TESTRAN statement

(third operand) if the value of the
flag is one.

TEST WHEN (second form)
• specifies a logical relationship

between two flags (second, third and
·fourth operands).

• branches to a TESTRAN statement
(fifth operand) if the relationship
is correct.

TEST WHEN (third form)
• specifies an arithmetic relationship

between counters and/or variables
(second, third, and fourth
operands).

• branches to a TESTRAN statement
(fifth operand) if the relationship
is correct.

Operands: The operands of the TEST ON and
TEST WHEN statements are as follows:

a4~ addresslregisterlinteger

68

• specifies a fixed-point value from 1
to 23 1-1.

address
1.

2.

points to a full-word,
fixed-point value in main
storage; this value need
not be on a full-word
boundary.
cannot be written as an
integer.

register
points to a full-word, fixed­
point value in a general
register.

integer
is a decimal value that is
assembled as a full-word,
fixed-point value.

• if absent, implies the value 1 for
the second or fourth operand, or the
value 2 31-1 for the third operand.

symbol
• as the second or

points to a flag
DEFINE statement.

fourth operand,
defined by a TEST

• as the third or
points to a TESTRAN

fifth operand,
statement.

COUNTER=symbol
•points to a ·counter defined by a

TEST DEFINE statement.
• if absent, implies that the state­

ment increments and tests an unnamed
counter that is automatically
defined for exclusive use by the
statement.

ANDjOR
specifies a logical relationship
between the flags specified by the
second and fourth operands.

AND

OR

specifies that the value of
both flags is one.

specifies that the value of one
flag, or of both, is one.

a4l addresslregisterjliteral
specifies an arithmetic value.

address
points to a value in the prob­
lem program or to a TESTRAN
counter.

register
points to a value in a reg­
ister.

literal
specifies a constant value that
is assembled as part of the
statement.

Note on Data Format: If the DATAM
operand is omitted, the format (type
and length) of both the second and
fourth operands is implied as follows:

• If the second operand is an
address, the format is deterrr.ined
by the attributes of the first
symbol used in the address. If the
address contains no symbols, or
only an external symbol, the forrrat
is determined by the fourth operand
in the same manner as by the second
operand. However, if the fourth
operand is also an address, and
contains no symbol other than an
external symbol, the format is
assumed to be hexadecimal with a
length of one byte.

• If the second operand is a ref­
erence to a general register, the
format is hexadecimal with a length
of four bytes. If it is a ref­
erence to a floating-point reg­
ister, the format is floating-point
with a length of eight bytes.

GO STATEMENTS

The GO
functions.
follows:

statements
Their basic

provide branching
functions are as

GO TO

GO IN

branches unconditionally to a TESTRAN
statement.

calls a TESTRAN subroutine.

GO OUT
returns from a TESTRAN subroutine.

GO BACK
returns control to the problem pro­
gram, or passes control to a specified
executable instruction.

• If the second operand is a literal,
the format is specified or implied
ty the literal notation.

GTIGEIEQINEILTILE
• specifies an arithmetic relationship

between the values specified by the
second and fourth operands.

• has the following meaning:

GT - greater than
GE - greater than or equal to
EQ - equal to
NE - not equal to
LT - less than
LE - less than or equal to

d DATAM=Ctype] [L{length}] [S{scale}]
• specifies type, length, and scale

attributes.
• defines the type and length of

values specified by the second and
fourth operands.

Operands: The operands
rnents are as follows:

symbol
is the name of the
that is branched
first statement of a
tine.

of the GO state-

TESTRAN statement
to or that is the

TESTRAN subrou-

Note on TESTRAN Subroutines: A maximum
of three levels of TESTRAN subroutines
can be rraintained. The first level is
lost if a fourth level is created.

address
• points to an executable instruction

to which control is passed.
• if absent, causes execution of the

problem program instruction at the
current test point.

Appendix A: Formal Description of TESTRAN Statements 69

SET STATEMENTS

The SET statements assign values to
counters, flags, and variables. Their
functions are as follows:

SET COUNTER
assigns a value to a TESTRAN counter.

SET FLAG
assigns a value to a TESTRAN flag.

SET VARIABLE
assigns a value to a problem program
variable (storage field or register>.

Operands: The second operand of each SET
statement points to a counter, flag, or
variable; the third operand specifies the
value that is assigned. The operands are
as follows:

symbol
• in a SET COUNTER statement, points

to a TESTRAN counter.
• in a SET FLAG statement, points to a

TESTRAN flag.

anl addresslregisterlliteral

70

specifies the new value of a counter
or variable.

address
points to a value in the prob­
lem program or to a TESTRAN
counter.

register
points to a value in a reg­
ister.

literal
specifies a constant value that
is assembled as part of the
statement.

=01=1
specifies the new value (zero or one)
of a TESTRAN flag.

address I register
points to a variable to which a value
is assigned.

address
points to a value in the prob­
lem program.

register
points to a value in a reg­
ister.

Note on Data Format: If the DATAM
operand is omitted, the length of the
values specified by the second and
third operands is determined as fol­
lows:

• If the second operand is an
address, the length is determined
by the first symbol used in the
address. If the address contains
no symbols, or only an external
symbol, the length is determined by
the third operand in the same man­
ner as by the second operand. How­
ever, if the third operand is also
an address and contains no symbol
other than an external symbol, the
length is assumed to be one byte.
If the third operand is a literal,
the length is specified or implied
by the literal notation.

• If the second operand is a ref­
erence to a general register, the
implied length is four bytes. If
it is a reference to a floating­
point register, the implied length
is eight bytes.

d DATAM=Ctype][L{length}] [S{scale}J
• specifies type, length, and scale

attributes.
• defines the length of values

specified by the second and third
operands of a SET VARIABLE state­
ment.

within brack­
They may be

r's discretion.

tical stroke I
ore than one of
ould te coded

is underlined,
that is, the
automatically

rall'mer's choice
s coded.

group related ·
1 alternative

cates that the
of items can be
succession.

ers to a foot­
of a statement.

Table. ~. Format of TESTRAN Stateroents
r--------T---------T-------------+--1
I Name I Operation I Operand I
~--------+---------+------~---1
I [symbol] !DUMP I {DATAICHANGES},address[,address] C,d.6] [,d] [,n] [,.6] I
I I !-----------------------------------~-------~-------------------------~
I I I COMMENT, 'text' [, .6] I
I I 1---1
l I I MAP [, .6] I
I I 1---1
I I I PANEL[, (registers[,registers] .•.)] [,d] {,.6] I
I I !---~
I I ITABLE,{TCBj{{DCBjDEB},address}}[,.6] I
t--------+---------+--~
I [symbol] I TRACE ICALL,address,address[,e] [,.6] I
I I !--·-----------~
I I IFLOW,address[,address][,e][,.6] I
I I !---~
I I IREFER,address[,address] C,d.6] [,d] [,e] [,.6] I
I I l---------------------------~---1
I I I .STOP [, (symbol [,symbol] •..)] [, .61 I
!---------+---------+--~
I symooP- I TE.ST j OPEN [, address 2 [, -ta.6 k o p-t-lo n.6] [,OPT EST= Cs ymbol [,symbol] ...) 1 [, .61 1 I
I I l---7---------------1
I I I CLOSE I
l I 1---1
I I I AT, ({* I address 2 } [, address 2] •••) [, .6] I
I I !---~
I I IDEFINE,{COUNTERIFLAG},(symbol[,symbolJ ••.) I
I I !---~
I I ION, [aJtiJ, [a.It.,{.], [aJz.iJ ,syn~ool[,COUNTER=syrnbol] I
I I !---~
I I IWHEN, syrLbol,syrnr:;ol I
I I 1---1
I I jWHEN,symbol,{ANDIORJ,symbol,symool I
I I 1---1
I I IWHEN,aJz.l,{GTIGEl~QINEILEILT},aJz.l,symbol[,.6] I
l---------+---------+--1
I [symbol] IGO I {TOIIN},symbol I
I I t--1
I I IOUT I
I I !---~
I I I BACK [,address] I
t--------+---------+--1
llsymbol]ISET ICOUNTER,symbol,aJz.l I
I I 1---.--1
I I I FLAG, symbol, {sy·mnolt=Oj=l} I
I I !---~-------~
I I jVA~IABLE,{addresslreyister},aJz.l[,d] I
~--------L---------L--~---------------------1
j1A symbol is required in the na1"e field of a TEST O.PEN statement; it is optional. inj
I other TEST statements. I
l 2 This operand can be written only as a nonindexed implied address. I
L---J

Table 3. Definitions of Abbreviations Used in Table 2
r-~----------T--1
I Abbreviation I Definition I
t------------+--1
I aJti I address I r~gister I integer I
I aJz.l I address I register I literal I
je I COMMENT=' text' I
Id IDATAL'1=[type1 [Lflength}J [S{scale}] I
I df) I DSECT= CsymboH-Ll_ j, integer}) I
I n I NAME=symbol I
I .6 I SELECT= { 11 213 I 41 5 l 6 [7 l 8} I
1-ta.&k op-t-lon.6 I [symbol] {,LINE! ,LOADH,DDN=SYS'IEST.l ,DDN=symboll I
1 I · . [,MAXE=integer] [,MAXP=integer] I
L-----------~------~---J

Table 4. Definitions of Variables used in Tables 2 and 3
r------------T---------------~--1
jVariable I _Definition I
1-------------+---------------~--i
!address !An indexed or nonindexed implied or explicit address1 I
!integer IA decimal self-defining term I
!length !An unsigned decimal integer (see Table 5) I
!literal IA constant pr~ceded by an equal sign (=) I
!register IA pointer to a general or floating-point register2 I
!registers IA pointer to one or a series of general or floating-point registers 2 I
jscale IA signed or unsigned decimal integer (see Table 5) I
!symbol IA string of letters and digits that begins with a letter and is not I
I I longer than eight characters I
I text I A character constant 3 I
!type IA standard data type code (see Table 5) I
j-------------L--i
1The format of an address is given by the fellowing table: I

Implied address
Explicit address

Indexed
s(x)
dCx,b)

Non indexed
s
d co, b>

~ is an abpolute or relocatable expression; Q, ~, and b are absolute
expressions. ~ is a numeric or syrobolic storage address; ~ is an index
register number; d is a displacement from a base address; E is a base
address register number.

An implied address is assembled in base-displacement form only if a DSECT operand
appears in the same ~tatement. Normally, it is evaluated by an A-type address
constant. . If it is indexed, its effective value is that of the constant plus the
contents of the index register at the time the staterrent is executed.

2The format of the pointer is given by the following table:

General register
Floating-point register

Single
Register
G'reg'
F'reg'

Series of
Registers
G'reg1 ,regn'
F'reg1 ,regn'

reg, ~' and ~ are each a symbol or decimal integer whose value is a
valid register number. ~ and ~ are the first and last registers of
a series. ~ can have either a higher or ·a lower value than ~-

I 3The format of the character constant is that of the constant subfield of a DC
I statement that defines a character constant. As shown in Tables 2 and 3, the constant
I is enclosed by apostrophes. The constant can include any valid. EBCDIC character, but
I must include a pair of apostrophes or ampersands to represent a single apostrophe (')
I or a~persand <&>. The maximum length is 120 characters, counting each pair of
I apostrophes or ampersands as a single character.
L---J

Table 5. Definition of Type, Length, and Scale
r-------------------T---------------------------T---------------------------------------1
I · Type I I I
I I Length in bytes 1 I Scale2 I
~----T--------------+----------------T----------~ I
jCodejMeaning I Specified I Implied I I
!-----+-~------------+----------------+----------+---------------------------------------~
I c I character 11 to 256 I 1 I (not applicable) I
I X I hexadecimal 11 to 256 I 1 I (not applicable) I
I B I binary 11 to 256 I 1 I (net applicable) I
I H I fixed-point 11 to 8 I 2 1-187 to +346 I
I F I fixed-point 11 to 8 I 4 1-187 to +346 I
I E lfloating-pointll to 8 I 4 I (net applicable) I
I D lfloating-pointll to 8 I 8 I <not applicable) I
I P jpacked decimaljl to 16 f 1 I <not applicable) I
I z I zoned decimal 11 to 16 I 1 I <not applicable) I
l I r~nstruction I (not applicable) I (variable) I (not applicable) , I
~----L--------------L----------------L------.---~------------------~--------------------1
11The implied length is used if the type, but not the length, is specified. I
l 2 The implied scale is zero if no scale is specified. If a positive scale is intended, I
I the sign (+) can be omitted. · I
L---J

Appendix A: Formal Description of TESTRAN Statements 71

APPENDIX B: IB~-SUPPLIED CATALOGEI PROCEDURES

This appendix defines cataloged procedures that are supplied by IBM and are re£erred
to in Section 3 of this publication.

PROCEDURE ASMEC

r---1
I //ASM EXEC PGM=IETASM 00020000 I
I //SYSLIB DD DSNAME=SYSl.MACLIB,DISP=OLD 00040000 I
I //SYSUTl DD UNIT=SYSSQ,SPACE=(400,(400,50)) 00060000 I
I //SYSUT2 DD UNIT=SYSSQ,SPACE=(400,(400,50)) 00080000 I
I //SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB)), COOlOOOOO I
I // SPACE=(400,(400,50)) 00120000 I
I //SYSPRINT DD SYSOUT=A 00140000 I
I //SYSPUNCH DD UNIT=SYSCP 00160000 I
L---J

PROCEDURE ASMFC

r--~----------1

I //ASM EXEC PGM=IEUASM,REGION=50K 00020000 I
I //SYSLIB DD DSNAME=SYSl.MACLIB,DISP=SHR 00040000 I
I //SYSUTl DD UNIT=SYSSQ,SPACE=C1700, (400,50)) 00060000 I
I //SYSUT2 DD UNIT=SYSSQ,SPACE=(1700, (400,50)) 00080000 I
I //SYSUT3 DD UNIT=CSYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB)), C00100000 I
I // SPACE=(1700, (400,50)) 00120000 I
I //SYSPRINT DD SYSOUT=A 00140000 I
I //SYSPUNCH DD SYSOUT=B 00160000 I
L--~--------------------J

PROCEDURE LKED

I
r---1
I //LKED EXEC PGM=IEWL,PARM='XREF,LIST,1ET,NCAL',REGICN=96K 00020000 I
I //SYSPRINT DD SYSOUT=A 00040000 I
I //SYSLIN DD DDNAME=SYSIN 00060000 I
1·//SYSLMOD DD DSNAME=&GOSET(GO),SPACE=C1024, (50,20,1)), C00080000 I
I // UNIT=SYSDA,DISP=(MOD,PASS) 00100000 I
I //SYSUTl DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSlIN)), C00120000 I
I // SPACE=(l024,C200,20)) 00140000 I
L---J

Appendix A: Fcrroal Descripticn of TESTRAN Statements 73

PROCEDURE TASME

.--,
//ASM EXEC PGM=ASMBLR,PARM=TEST,REGION=50K 00020000
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR 00040000
//SYSUT1 DD UNIT= (SYSSQ,SEP= (SYSLIB)) ,SPACE= (1700, (400, 50)) 00060000
//SYSUT2 DD UNIT= (SYSSQ,SEP= (SYSUT1)) ,SPACE= (1700, (400,50)) 00080000
//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), C00100000
// SPACE=(1700, (400,50)) 00120000
//SYSPRINT DD SYSOUT=A 00140000
//SYSPUNCH DD DSNAME=&LOADSET,UNIT=SYSDA, C00160000
// SPACE= (80, (200, 50)) , DISP= (MOD, PASS) 00180000
//LKED EXEC PGM=IEWL,PARM=(XREF,LIST,LET,NCAL,TEST) ,REGION=96K 00200000
//SYSPRINT DD SYSOUT=A 00220000
//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE) 00240000
// DD DDNAME=SYSIN 00260000
//SYSLMOD DD DSNAME=&GOSET(GO) ,SPACE=(1024, (50,20,1)), C00280000
// UNIT=SYSDA,DISP=(MOD,PASS) 00300000
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00320000
// SPACE= (1024, (200,20)) 00340000

L--~--------------------------

..

Appendix B: IBM-Supplied Cataloged Procedures 73.1

PROCEDURE TASMEG

r-~----~~~-------~--------------------------~-----------------------------------1
//ASM EXEC PGM=ASMBLR,PARM=TEST,REGION=50K 00020000
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR 00040000
//SYSUT1 DD UNIT=(SYSSQ,SEP=(SYSLIB)) ,SPACE=(1700, (400,50)) 00060000
//SYSUT2 DD UNIT= (SYSSQ,SEP= (SYSUT1)) .,SPACE= (1700, (400, 50)) 00080000
//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), C00100000
// SPACE= (1700, (400, 50)) 00120000
//SYSPRINT DD SYSOUT=A 00140000
//SYSPUNCH DD DSNAME=&LOADSET,UNIT=SYSDA, C00160000
// SPACE= (80, (200, 50)) , DISP= (MOD, PASS) 001 80000
//LKED EXEC PGM=IEWL,PARM=(XREF,LIST,LET,NCAL,TEST) ,REGION=96K 00200000
//SYSPRINT DD SYSOUT=A 00220000
//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE) 00240000
// DD DDNAME=SYSIN 00260000
//SYSLMOD DD DSNAME=&GOSET (GO) ,SPACE= (1024, (50,20, 1)), C00280000
// UNIT=SYSDA,DISP=(MOD,PASS) 00300000
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00320000
// SPACE= (1024, (200, 20)) 00340000
//GO EXEC PGM=*.LKED.SYSLMOD 00360000 .__ ___ _

PROCEDURE TASMEGED

,--1
//ASM EXEC PGM=ASMBLR,PARM=TEST,REGION=SOK 00020000
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR 00040000
//SYSUT1 DD UNIT= (SYSSQ,SEP= (SYSLIB)) ,SPACE= (1700, (400,50)) 00060000
//SYSUT2 DD UNIT=(SYSSQ,SEP=(SYSUT1)) ,SPACE=(1700, (400,50)) 00080000
//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIB,SYSUT2)), C00100000
// SPACE= (1700, (400, 50)) 00120000
//SYSPRINT DD SYSOUT=A 00140000
//SYSPUNCH DD DSNAME=&LOADSET,UNIT=SYSDA, C00160000
/I SPACE= (80, (200, 50)) ,DISP= (MOD,PASS) 00180000
//LKED EXEC PGM=IEWL,PARM=(XREF,LIST,LET,~CAL,TEST) ,REGION=96K 00200000
//SYSPRINT DD SYSOUT=A 00220000
//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE) 00240000
II DD DDNAME=SYSIN 00260000
//SYSLMOD DD DSNAME=&GOSET(GO) ,SPACE=(1024, (50,20,1)), C00280000
// UNIT=SYSDA,DISP=(MOD,PASS) 00300000
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00320000
// SPACE= (1024, (200, 20)) 00340000
//GO EXEC PGM=*.LKED.SY.SLMOD 00360000
//SYSTEST DD DSNAME=&TESTSET,SPACE=(300, (200,50)), C00380000
// UNIT=SYSSQ,DISP=(NEW,PASS) 00400000
//EDIT EXEC PGM=IEGTTEDT,REGION=50K 00420000
//SYSUT1 DD UNIT=SYSDA,SPACE=(500 (300,100)) 00440000
//SYSTEST DD DSNAME=&TESTSET,UNIT=SYSSQ,SEP=SYSUT1, C00460000
II DISP=(OLD,DELETE} 00480000
//SYSPRINT DD SYSOUT=A 00500000

~---~
I Note: In the job step EDIT, the statement SYSUT1 defines a work data set for the I
I TESTRAN editor. This data set must be on a direct-access device. Its primary space I
I allocation must be at least two tracks. I .__ ___ J

PROCEDURE TTED

r---1
I //EDIT EXEC PGM=IEGTTEDT,REGION=50K 00020000 I
I //SYSUT1 DD UNIT=SYSDA,SPACE=(500, (300,100)) 00040000 I
I //SYSPRINT DD SYSOUT=A 00060000 I
r ~
I Note: See note to the procedure TASMEGED. I
L--~~--J

74

APPENDIX C: TESTRAN MESSAGES

This appendix reproduces the following sections from the publica1=ion IBM ,System/360
Operating System: Messages and Codes:

TESTRAN Editor Messages
TESTRAN Interpreter Messages
TESTRAN Macro-Expansion Messages

Table 6 describes the messages in these sections.

Table 6. TESTRAN Messages
r-----------T----------T----------------------------------.,-----------------------------1
I MESSAGE I WHERE I I I
I !PRINTED !MESSAGE FORMAT !COMMENTS I
~-----------+----------+-----------------------------------+----------------------------~
ITESTRAN ITESTRAN I*** IEGEnn text !Messages indicate errors I
!Editor !Listing I !found during the editing I
!Messages I (TESTRAN IIEG TESTRAN message code lof test output. I
I I editor I Enn = .Message serial number I I
I ISYSPRINT I indicating the I I
I I data set) I TESTRAN editor I I
I I !text Message text I I
~-----------+----------+-----------------------------------+----------------------------~

i ITESTRAN ITESTRAN I*** IEGinn text !Messages indicate errors I
IInterpreterlListing I !found by the TESTRAN inter- I
!Messages I (TESTRAN IIEG TESTRAN message code lpreter during execution of I
I !editor !Inn =Message serial number !the program being tested. I
I ISYSPRINT I indicating the I I
I I data set) I TESTRAN interpreter I I
I I !text Message text I I
~-----------+----------+-----------------------------------+----------------------------~
ITESTRAN Assembly lss,*** IEGMnn text !Messages indicate errors in
!Macro- Listing I !the position and syntax of
!Expansion (Assembler ss Severity code, which is ITESTRAN statements. The
Messages SYSPRINT one of the following: !assembler finds these errors

data set) * Informational message; !when it expands TESTRAN
no effect on execution I statements (macro-instruc-

4 Warning message; success-ltions) into sequences of
ful execution is probablelassembler language state-

8 Error; execution may faillments. If errors in a
12 Serious error; successfullsource statement cause

execution is improbable !errors in its expansion, the
IEG = TESTRAN message code !assembler may issue addi-
Mnn Message serial number ltional messages when it

indicating macro-expansion I assembles the statements in
text = Message text lthe expansion. The addi­

jtional messages do not have
ITESTRAN message codes and
!are not included in this
I appendix.

-----------L----------L-----------------------------------L----------------------------J

Appendix C: TESTRAN Messages 75

TESTRAN EDITOR MESSAGES

IEGE02 UNKNOWN MACRO

Explanation: During TESTRAN edit­
ing, an input record could not be
related to a TESTRAN statement
(macro-instruction) associated with

the task that produced the data
set.

System Action: The count of inva­
lid records was incremented, and
the record was ignored.

IEGE03 EXCESSIVE CHANGE DUMPS

Explanation: During TESTRA.N edit­
ing, the output from an excessive
number of DUMP CHANGES statements
was selected for editing by the
TESTRAN editor.

System Action: Only the output
from the allowable number of DUMP
CHANGES statements was edited.

User Response: To edit the output
from subsequent DUMP CHANGES state­
ments, repeat the job step without
selecting the output from the DUMP
CHANGES statements already edited.

IEGE04 INVALID RECORD--IGNORED

Explanation: During TESTRAN edit­
ing, an invalid or unreadable input
record was encountered.

System Action: The count of inva­
lid records was incremented, and
the record was ignored.

IEGEOS EXCESSIVE INVALID
DISCONTINUED

RECORDS--EDIT

76

Explanation: During TESTRAN edit­
ing, the number of invalid or unre­
adable records in the data set
exceeded the allowable limit.

System Action:
terminated.

The job step was

User Response: Determine whether
the correct data set was used as
input. If it was, recreate the
data set by executing the problem
program again.

IEGE06 EXCESSIVE OUTPUT

Explanation: During TESTRAN edit­
ing, the amount of edited output
exceeded the limit specified in the
PARM parameter of the. EXEC state­
ment for the job step being tested.

Syste.m Action:
terminated.

The job step was

User Response: Execute the job
step again, specifying either a
higher page limit or fewer output
class identification numbers.

IEGE07 END OF TESTRAN EDIT--xxx STATEMENTS
PROCESSED

Explanation:
completed.

TES TRAN

In the message text,
number of TES TRAN
executed by the
interpreter.

editing was

xxx is the
statements

TES TRAN

IEGE08 INVALID OVERLAY RECORD

IEGE09

Explanation:
ing, an input
change in
segment.

During TESTRAN edit­
record specified a

an unknown overlay

System Action:
ignored.

The record was

INVALID RELOCATION
DISCONTINUED

RECORD--EDIT

Explanation: During TESTRAN edit­
ing, an input record contained con­
trol section relocation information
that did not correspond to the
control section definitions of the
program that was being tested.

System Action:
terminated.

The job step was

User Response: Determine whether
the correct data set was used as
input. If it was not, recreate the
data set by executing the problem
program again.

IEGE10 EXCESSIVE
ENTRY xxx

SECTION DEFINITIONS--

Explanation: During TESTRAN edit­
ing, the number of definitions of
control, dummy, and blank common
sections exceeded the limit allowed
in the tested program.

In the message text, xxx is the
entry name of the excess section.

System Action: Dumps and traces of
the excess sections were printed in
4-byte hexadecimal format, except
where this format was overridden by
DATAM operands.

User Response: Reduce control sec­
tions, dummy sections, and blank
common sections to the allowable
number. Count each TESTRAN control
section once for each time it is
opened.

IEGE11 EXCESSIVE 'TEST AT'S

Explanation: During TESTRAN edit­
ing, the number of supervisor call
(SVC) instructions inserted by TEST

AT statements exceeded the limit.

System Action: Data resulting from
the excess supervisor call instruc­
tions was ignored.

User Response: Reduce problem pro­
gram addresses specified by TEST AT
statements to the allowable number.
Count each address once for each
opening of the TESTRAN control sec­
tion in which the address is
specified.

IEGE12 EXCESSIVE 'TEST OPEN'S

Explanation: During TESTRAN edit­
ing, the opening of TESTRAN control
sections by TEST OPEN statements
exceeded the limit.

System Action: Data resulting from
the excess control section openings
was ignored.

User Response: Reduce TESTRAN con­
trol section openings to the allow­
able number.

!EGE 13 UNA.BLE TO o·PEN

Explanation: During TESTRAN edit­
ing, a required data set could not
be opened because no DD statement
was supplied for the data set.

System Action:
terminated.

User Response:
DD statement
step again.

The job step was

Supply the missing
and execute the job

IEGE14 IO ERROR

IEGE15

Explanation: During TESTRAN edit­
ing, an uncorrectable input/output
error occurred.

System Action: The job step was
terminated.

User Response: If the input/output
error persists, have the computing
system checked.·

EXCESSIVE SEQUENCE BREAKS

Explanation: During TESTRAN edit­
ing, the assembler symbol tables
proved unusable. There were too
many breaks in the sequences of
source statements defining named,
unnamed, dummy, and blank common
control sections.

System Action: The job step was
terminated.

User Response: Restructure the
source program to minimize the
number of interruptions and con­
tinuations in the definition of
each control section. Alternative­
ly, assemble the program without
symbol tables (i.e., without the
TEST option) , and use the DATAM
operand to specify printing format.

TESTRAN INTERPRETER MESSAGES

IEGIOO INVALID ADDRESS--IGNORED

Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement ref erred to an address
higher than the highest address in
main storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, make sure
that all address operands were spe­
cified correctly and were not modi­
fied. Also, check the contents of
any registers referred to in the
statement. Correct the error.

Appendix C: TESTRAN Messages 77

IEGI01 INVALID 'GO TO' AT xxx

Explanation: During execution of
the TESTRAN interpreterr a GO TO or
GO IN statement did not specify in
its second operand the address of a
TESTRAN statement in an open con­
trol section.

In the message textr xxx is the
address in hexadecimal of the GO TO
or GO IN statement.

System Action: The statement was
ignored. The next sequential sta­
tement was executed.

User Response: If the job step is
to be executed againr make sure
that the second operand specified
the address (symbolic name} of a
TESTRAN statement and was not inco­
rrectly modified. Also make sure
that the control section containing
the address will be open when the
GO TO or GO IN statement is
executed.

IEGI02 INACTIVE 'GO TO' AT xxx

Explanation: During execution of
the TESTRAN interpreterr a GO TO or
GO IN statement in an overlay pro­
gram specified as its second
operand the address of a TESTRAN
statement. This statement was in a
control section that was not cur­
rently in main storage.

In the message textr xxx is the
address in hexadecimal of the GO TO
or GO IN statement.

System Action: The GO TO or GO IN
statement was ignored. The next
sequential stateme~t was executed.

User Response: If the job step is
to be executed againr make sure
that the control section containing
the specified address will be in
main storage when the GO TO or GO
IN statement is executed.

IEGI03 INVALID 'GO OUT' AT xxx
I

78

Explanation: During execution of
~he TESTRAN interpreterr a GO OUT
statement was to be executedr but
the associated GO IN statement had
not saved a return address.

In the message textr
address in hexadecimal
OUT statement.

xxx is the
of the GO

System Action: The GO OUT state­
ment was treated as a GO BACK
statement in which the second
operand was omitted.

User Response: If the job step is
to be executed againr determine why
the return address was missingr
making sure that no attempt was
made to save more than three return
addresses.

IEGI04 NULL 'TEST OPEN' ENTRY POINT~-ABEND

Explanation: During execution of
the TESTRAN interpreterr a TEST
OPEN statement did not specify as
its second operand an entry point
address in the problem program to
which control could be returned.

System Action: The task was ter­
minated abnormally.

User Response: Specify the entry
point address in the TEST OPEN
statement, making sure that the
statement was not incorrectly modi­
fied. Alternatively, avoid execu­
tion of this statement by listing
it in the OFTEST operand of another
TEST OPEN statement.

IEGI05 INVALID 'TEST AT'--IGNORED

Explanation: During execution of
the TESTRAN interpreter, the second
operand (address sublist) of a TEST
AT statement specified an address
that was outside the boundaries of
the main storage assigned to the
current task.

System Action: A supervisor call
(SVC) instruction was not inserted
at the erroneous address. Supervi­
sor call instructions were inserted
at valid addr~sses specified in the
same sublist.

User Response: If the job step is
to be executed againr make sure
that the address was specified
correctly and was not incorrectly
modified. Correct the error.

IEGI06 EXCESSIVE OUTPUT REQUESTED

Explanation: During execution of
the TESTRAN interpreter, the MAXP
operand of a TEST OPEN statement
specified a limit higher than the
installation's limit on TESTRAN
output.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXP operand, or specify a limit
less than or equal to the installa­
tion's limit.

IEGI07 EXCESSIVE PROCESSING REQUESTED

Explanation: During execution of
the TESTRAN interpreter, the MAXE
operand of a TEST OPEN statement
specified a limit higher than the
installation's limit on processing
by the TESTRAN interpreter.

System Action: The installation's
limit was used instead of the limit
specified by the statement.

User Response: If the job step is
to be executed again, eliminate the
MAXE operand, or specify a limit
less than or ·equal to the installa­
tion's limit.

Appendix C: TESTRAN Messages 78.1

IEGI08 LIMIT OF ONE 'TEST OPEN' IN OVERLAY

Explanation: During execution of
the TESTRAN interpreter, a second
TEST OPEN statement was executed in
an overlay program.

System Action: No control sections
were opened on execution of the
second TEST OPEN statement. Con­
trol was returned to the problem
program at the address specified by
the second operand.

User Response: If the job step is
to be executed again, remove the
second TEST OPEN statement from the
overlay program. The one TEST OPEN
statement allowed must be in the
root segment. Its OFTEST operand
should specify the names of other
TEST OPEN statement 5 for which
control sections are to be opened.

IEGI09 'AT' LOCATION CONTAINS INVALID
TESTRAN SVC

Explanation: During execution of
the TESTRAN interpreter, a supervi­
sor call (SVC) instruction was not
inserted in the program being test­
ed when the TESTRAN control section
was opened by a TEST OPEN state­
ment. The address in the program
at which the supervisor call
instruction should have been
inserted was specified in a TEST AT
statement. The supervisor call
instruction would have called the
TESTRAN interpreter.

System Action: The address in the
TEST AT statement was ignored and a
supervisor call instruction was not
inserted.

User Response: If the job step is
to be executed again, make sure
that the address specified in the
TEST AT statement Cl) was correct,
(2) was not incorrectly modified,
and (3) was the address of an
executable problem program instruc­
tion.

IEGilO DUMP TRUNCATED AT END OF STORAGE

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified an ending address that
was higher than the highest address
in main storage.

IEGill

System Action: Only the storage
from the starting address to the
end of storage was dumped.

User Response: If the job step is
to be executed again, make sure
that the third positional operand
specifies an address within storage
and that it was not incorrectly
modified.

'TEST OPEN' LIMIT REACHED

Explanation: During execution of
the TESTRAN interpreter, TESTRAN
control sections had been opened
255 times and another request to
open a TESTRAN control section was
found in the same task. TESTRAN
control sections can be opened only
255 times during execution of one
task.

System Action: No additional con­
trol sections were opened. Control
was returned to the problem program
address specified by the TEST OPEN
statement that was executed most
recently.

User Response: If the job step is
to be executed again, count the
number of times TESTRAN control
sections are opened. A control
section is counted once for each
time it should be opened according
to the logic of the program.
Change the program to reduce the
total openings if they exceed 255.
If the total openings are fewer·
than 256, check for an uncontrolled
loop that might cause repeated
opening and closing of one or more
control sections.

IEGI12 DUMP TRUNCATED AT TASK BOUNDARY

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified an ending address that
was outside the boundaries of the
main storage assigned to the task.

System Action: Only the
from the starting address
task boundary was dumped.

storage
to the

User Response: If the job step is
to be executed again, make sure
that the second and third posi­
tional operands of the statement
were specified correctly and were

Appenaix C: TESTRAN Messages 79

not incorrectly modified. If the
program is scatter loaded, both
operands should specify addresses
in the same control section.

IEGI13 INVALID 'SET VARIABLE' 'TO' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a SET
VARIABLE statement specified a
variable at an address that was
outside the main storage assigned
to the task.

System Action: The SET VARIABLE
statement was ignored.

user Response: If the job step is
to be executed again,, make sure
that the address of the variable
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers
referred to in the statement.

IEGilS UNDEFINED COUNTER

Explanation: During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement
referred to a TESTRAN counter that
was not in an open TESTRAN control
section.

system Action: The statement was
ignored.

User Response: If the job step is
to be executed again~ define the
counter with a TEST DEFINE state­
ment in a control section that will
be open when the counter is
referred to.

IEGI16 TESTRAN CSECT ALTERED

Explanation: During execution of
the TESTRAN interpreter, a control
section containing TESTRAN state­
ments was modified .•

system Action: The task was termi­
nated abnormally.

User Response: Find the error that
caused the TESTRAN control section
to be modified, correct it, and
execute the job step again.

IEGI17 MAXIMUM PAGES EXCEEDED

80

Explanation: During execution of
the TESTRAN interpreter, the limit
on TESTRAN output was exceeded.

System Action: The task was termi­
nated abnormally.

User Response: If excessive output
was produced, check for errors in
the statements that cause output
and in the sequence in which they
were executed. If the output was
not excessive, specify a higher
limit in the MAXP operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

IEGI18 MAXIMUM STATEMENTS EXCEEDED

IEGI19

Explanation: During execution of
the TESTRAN interpreter, the number
of TESTRAN statements that can be
processed during a single task
exceeded the limit.

system Action: The task was termi­
nated abnormally.

User Response: Check the test out­
put for logical errors that would
cause excessive processing. If no
errors are found, specify a higher
limit in the MAXE operand of the
first TEST OPEN statement executed
in the task. Then execute the job
step again.

INVALID TESTRAN SVC--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super­
visor call (SVC) instruction. The
supervisor call instruction was not
inserted by the TESTRAN interpreter
in the current task.

System Action: No testing was per­
formed. Control was returned to
the location following the invalid
supervisor call instruction.

User Response: If the job step is
to be executed again, remove the
invalid instruction or correct it.

IEGI20 INACTIVE TESTRAN SVC--IGNORED

Explanation: Control was given to
the TESTRAN interpreter by a super­
visor call (SVC) instruction that
had been inserted during opening of
a TESTRAN control section in anoth­
er overlay segment. The segment
containing the control section had !

been overlaid.

IEGI21

System Action: No testing was
formed. The displaced problem
gram instruction was executed,,
control was returned to the
sequential instruction.

per­
pro­

and
next

User Response: If the job step is
to be executed again, check all
TEST AT statements to ensure that
they specify problem program
addresses in the same overlay seg­
ment. Correct any erroneous
addresses.

INVALID 'TEST ON' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST ON
statement should have branched to
another TESTRAN statement. The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check the
branch address which is specified
by the fifth operand of the TEST ON
statement. Ensure that the control
section containing the address will
be open when the TEST ON statement
is executed.

IEGI22 INACTIVE 'TEST ON' BRANCH. ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST ON
statement should have branched to
another TESTRAN statement. The
other statement was in an overlay
segment not currently in main stor­
age.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check the
branch address, which is specified
by the fifth operand of the TEST ON
statement. Ensure that the control
section containing the address will
be in main storage when the TEST ON
statement is executed.

IEGI23

IEGI24

'DUMP' TRUNCATED AT 65K BYTES

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified dumping of a storage area
containing more than 65,535 bytes.

System Action: Only the first
65,535 bytes of the specified area
were dumped.

User Response: If the job step is
to be executed again, check the
starting and ending addresses for
the dump; these are specified by
the second and third positional
operands. Ensure that the differ­
ence between the addresses will not
exceed 65,535 bytes when the pro­
gram is loaded. If the program is
scatter loaded, both addresses must
be in the same control section.

INACTIVE COUNTER

Explanation: During execution of
the TESTRAN interpreter, a SET
COUNTER or TEST ON statement
ref erred to a TESTRAN counter in an
overlay segment not currently in
storage.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again, define the
counter with a TEST DEFINE state­
ment that will be in storage when
the counter is ref erred to.

IEGI25 INVALID DATA LENGTH

Explanation: During execution of
the TESTRAN interpreter, the second
and fourth operands of a TEST WHEN
statement specified the location of
data in registers or main storage.
Both the type and length attributes
of this data were specified by a
DATAM operand. The data length
exceeded the limit for the data
type.

System Action: The statement was
ignored. The next sequential
statement was executed.

User
to be
DAT AM
length
tent.

Response: If the job step is
executed again, correct the
operand by specifying a data
and type that are consis-

Appendix C: TESTRAN Messages 81

IEGI26 INVALID 'DUMP' ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA or DUMP CHANGES statement
specified a starting or ending
address that was higher than the
highest address in main storage.

system Action: The statement was
ignored.

User Response: If the job step is·
to be executed again, make sure
that the second or third operand of
the DUMP DATA or DUMP CHANGES
statement was specified correctly
and was not incorrectly modified.
Also check the contents of any
registers ref erred to in the oper­
and.

IEGI27 INVALID 'WHEN' BRANCH ADDRESS

Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was not in an open
control section.

System Action: No branch occurred.
The next sequential statement was
executed.

User Response: If the job step is
to be executed again, check this
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be open when the
TEST WHEN statement is executed.

IEGI28 INACTIVE 'WHEN' BRANCH ADDRESS

82

Explanation: During execution of
the TESTRAN interpreter, a TEST
WHEN statement should have branched
to another TESTRAN statement. The
other statement was in an overlay
segment not currently in storage.

System Action: No branch occurred.
The next sequential statement was
executed.

user Response: If the job step is
to be executed again., check the
branch address, which is specified
by the last positional operand of
the TEST WHEN statement. Ensure
that the control section containing
the address will be in main storage
when the TEST WHEN statement is
executed.

IEGI29 INVALID SIGN ON DECIMAL FIELD

IEGI30

Explanation: During execution of
the TESTRAN interpreter, the second
or fourth positional operand of a
TEST WHEN statement specified the
address of a decimal value. The
sign position of the decimal value
contained an invalid bit conf igu­
ration.

System Action: The TEST wHEN state­
ment was ignored. The next sequen­
tial statement was executed.

User Response: If the job step is
to be executed again, correct the
sign in the rightmost byte of the
decimal value.

ADDRl GREATER THAN ADDR2

Explanation: During execution of
the TESTRAN interpreter, a DUMP
DATA, DUMP CHANGES, TRACE REFER,
TRACE FLOW, or TRACE CALL statement
specified a starting address that
was higher than the ending address
for the dump or trace.

System Action: The dump or trace
was restricted to the single byte
at the starting address.

User Response: If the job step is
to be executed again, make sure
that the second or third operand
was specified correctly and was not
incorrectly modified. Also check
the contents of any registers
ref erred to in the operand. If the
program is scatter loaded, both
operands should specify addresses
in the same control section.

IEGI31 TRACE TABLE FULL AT xxx

Explanation: During execution of
the TESTRAN interpreter, a TRACE
CALL, TRACE FLOW, or TRACE REFER
statement was executed when ten
traces were already active.

In the message text, xxx is the
address in hexadecimal of the
statement.

system Action: A new trace was
started, as specified by the state­
ment. However, the tenth trace,,
the one that had been most recently
started, was suspended.

User Response: If the job step is
to be executed again, change the
testing logic so that no more than
ten traces are active at one time.

IEGI32 DEB UNAVAILABLE

Explanation: During execution of
the TESTRAN interpreter, the second
operand of a DUMP TABLE statement
specified dumping of a data extent
block (DEB). The associated data
control block {DCB), specified by
the third operand, was not current­
ly open.

System Action: The DUMP
statement was ignored.

TABLE

User Response: If the job step is
to be executed again, make sure
that the data control block will be
open when the DUMP TABLE statement
is executed.

IEGI33 ILLEGAL 'TEST AT' DELETED FROM--xxx

Explanation: During execution of
the TESTRAN interpreter, control
was to be returned to the problem
program at an address specified by
a TEST AT statement. At the return
address was a TESTRAN supervisor
call (SVC) instruction that dis­
placed either another supervisor
call instruction or a privileged
instruction. Before control was
returned, the original instruction
was replaced in the problem pro­
gram ..

In the message text, xxx is the
return address in hexadecimal in
the problem program.

System Action: If the original
instruction was a privileged
instruction, its execution caused
abnormal termination of the task.

If it was a - supervisor call
instruction, it was executed nor­
mally and remained in the problem
program until the TESTRAN inter­
preter received control from a
supervisor call instruction insert­
ed at some other address. Then,
the original supervisor call
instruction was again displaced by
a TESTRAN supervisor call instruc­
tion.

User Response: If the original
instruction was privileged, change
the TEST AT statement so that it
inserts the supervisor call
instruction at another address.
Then execute the job step again.

If the original instruction was a
supervisor call instruction and if
the job step is to be executed
again, allow for the temporary dis­
placement of the TESTRAN supervisor
call instruction, or rewrite the
TEST AT statement.

IEGI34 PROGRAM CHECK DURING 'GO BACK' -­
INSTRUCTION AT xxx

IEGI39

Explanation: During execution of
the TESTRAN interpreter, control
was to be returned to the problem
program after execution of an
instruction that was displaced by
insertion of a TESTRAN supervisor
call (SVC) instruction. Execution
of the displaced instruction caused
a program interruption.

In the message text, xxx is the
address in hexadecimal of the TES­
TRAN supervisor call instruction.

System Action: The standard system
exit routine, or the routine speci­
fied by a SPIE macro-instruction,
was given control.

User Response: Correct the instruc­
tion causing the program interrup­
tion and execute the job step
again.

INACTIVE FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement ref erred to
a TESTRAN flag contained in an
overlay segment not currently in
main storage.

system Action: The statement was
ignored.

User Response: If the job step is
to be executed againJ define the
flag with a TEST DEFINE statement
that will be in storage when the
flag is referred to.

Appendix C: TESTRAN Messages 83

IEGI41 UNDEFINED FLAG

Explanation: During execution of
the TESTRAN interpreter, a SET FLAG
or TEST WHEN statement referred to
a TESTRAN flag not contained in an
open TESTRAN control section.

System Action: The statement was
ignored.

User Response: If the job step is
to be executed again1 define the
flag with a TEST DEFINE statement
in a control section that will be
open when the flag is ref erred to.

IEGI42 INVALID 'TRACE STOP' ENTRY AT xxx

Explanation: During execution of
the TESTRAN interpreter, the second
operand of a TRACE STOP statement
specified an address or sublist of
addresses. One of these addresses
was not the address of a TRACE
statement and was, therefore,
invalid.

In the message text, xxx is the
invalid address in hexadecimal.

System Action: The invalid address
was ignored. If the operand was a
sublist, all traces corresponding
to valid addresses were stopped.

User Response: If the job step is
to be executed again, correct the
invalid address.

IEGI43 'TRACE' STOPPED BY OVERLAY AT xxx

84

Explanation: During execution of
the TESTRAN interpreter, the prob­
lem program loaded an overlay seg­
ment that overlaid all the TRACE
statements for active traces.

In the message text, xxx is the
address in hexadecimal of the
instruction that caused the load­
ing.

System Action: All traces were
stopped. They were not automat­
ically restarted when the segment
containing the TRACE statements was
reloaded.

User Response: If the job step is
to be executed again, change the
program so that the TRACE state­
ments are not overlaid or be pre­
pared to restart any traces that
will be overlaid but will be
required subsequently.

IEGI45 PROGRAM CHECK DURING 'TRACE'
INSTRUCTION AT xxx

Explanation: During execution of
the TESTRAN interpreter, a program
interruption occurred during a
trace of the problem program.

In the message text, xxx is the
address in hexadecimal of the
instruction that caused the inter­
ruption.

System Action: The standard system
exit routine, or the routine speci­
fied by a SPIE macro-instruction,
was given control. Active traces
were not suspended.

User Response: If the job step is
to be executed again, correct the
instruction causing the program
interruption.

IEGI47 'TRACE' STOPPED BY SVC AT xxx

Explanation: During execution of
the TESTRAN interpreter, a LINK,
XCTL, or RETURN macro-instruction
was executed during a trace of the
problem program.

In the m~ssage text, xxx is the
address in hexadecimal of the
supervisor call (SVC) instruction
in the macro-expansion.

system Action: All traces were
stopped. They were not automat7
ically restarted when control was
returned to the problem program.

User Response: If the job step is
to be executed again, restart any
traces that were stopped, but are
required, upon return to the prob­
lem program.

IEGI48 FLOATING POINT REGISTER SELECTED
NO FLOATING POINT HARDWARE
JOB ABORTED

Explanation: During execution of
the TESTRAN interpreter, a TESTRAN
statement referred to a floating
point register, but the computing
system did not include the floating
point option.

System Action: The task was termi­
nated abnormally.

User Response: Either remove all
references to floating point reg­
isters, and execute the job step
again, or execute the job step on a
computing system with the floating
point option.

TESTRAN MACRO-EXPANSION MESSAGES

IEGMOl TEST HAS NOT BEEN OPENED

Explanation: A TESTRAN statement
precedes the first valid TEST OPEN
statement.

System Action: The statement was
deleted. Severity code = 8.

User Response: Precede the state­
ment with a valid TEST OPEN state­
ment.

IEGM02 NAME NOT SPECIFIED

Explanation: A TEST OPEN statement
does not contain a symbol in its
name field.

System Action: The statement was
deleted. Severity code = 12.

User Response: Provide the required
symbolic name.

IEGM03 ENTRY POINT NOT SPECIFIED

Explanation: The second positional
operand (problem program entry
point) was omitted from a TEST OPEN
statement.

System Action: The
processed normally.
= *·

statement was
Severity code

User Response: No response is
required if the TEST OPEN statement
never receives control directly,
but instead is ref erred to by the
OPTEST operand of another TEST OPEN
statement. If the TEST OPEN state­
ment does receive control directly,
the omitted operand should be sup­
plied.

LEGM04 THIS MACRO ESTABLISHES CSECT xxx

Explanation: A TEST OPEN statement,
named xxx, initiates assembly of a
control section with the same name.
This control section will contain
all subsequent TESTRAN statements
until the next TEST OPEN macro­
instruction initiates a new control
section.

System Action: The
processed normally.
= *·

statement was
Severity code

IEGM05 xxx NOT A VALID OPERAND FOR yyy

Explanation: The first operand of a
TESTRAN statement is xxx. This
operand is not valid following the
operation field yyy.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the first
operand.

IEGM06 xxx yyy ADDRESS NOT SPECIFIED

IEGM07

Explanation: A required address
operand was omitted from a TESTRAN
statement whose operation field is
xxx and whose first operand is yyy.

System Action: The statement was
deleted. Severity code = 8.

User Response: Provide the required
address operand.

THIS TEST DEFINE xxx HAS NO xxxS

Explanation: The third positional
operand (flag or counter sublist)
was orritted from a TEST DEFINE
statement. The second positional
operand, xxx, is either COUNTER or
FLAG.

System Action: The statement
deleted. Severity code = 8.

was

User Response: Provide the required
sublist of flag or counter names.

I-EGM08 xxx NOT A VALID TEST DEFINE OPERAND

Explanation: The second positional
operand of a TEST DEFINE statement
is xxx. This operand is invalid.

Appendix C: TESTRAN Messages 85

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the second
operand. It must be either COUNTER
or FLAG.

IEGMO 9 MACRO NUMBER xxx IN yyy

IEGMlO

Explanation: An identification num­
ber, xxx, was assigned to a TESTRAN
statement. This statement is in a
control section named yyy, which is
the name of the preceding TEST OPEN
statement.

System Action: The
processed normally.
= *·

statement was
Severity code

User Response: Keep the assembler
source and object program listing
for comparison with the listing of
TESTRAN edited output. The state­
ment identification number, which
appears in both listings, identifi­
es all output produced by the
statement.

SELECT CODE INVALID AND IGNORED

Explanation: The SELECT operand of
a TESTRAN statement does not speci­
fy a valid TESTRAN output class.

System Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Specify a valid out­
put class number Can integer from 1
to 8), or compensate for the error
by changing the PARM parameter of
the EXEC statement for the TESTRAN
editor.

IEGM12 xxx NOT A VALID OPERATOR

86

Explanation: The third positional
operand of a TEST WHEN statement is
xxx. This operand is not a valid
logical or relational operator.

System Action: The statement was
deleted. Severity code = 8.

_ns_er Response: Specify a valid log­
ical operator CAND or OR) or rela­
tional operator (LT, LE, EQ, NE,
GT, or GE).

IEGM13 INVALID LITERAL TYPE CODE

Explanation: An operand of a TES­
TRAN statement is a literal in
which the type code is either
absent or invalid.

_s_y_s_t_e_~_n~_A_c_t_i_·o~n_: The statement was
deleted. Severity code = 8.

User Response: Correct the operand
by specifying a valid type code
following the equal sign .<=> of the
literal.

IEGM14 BOTH xxx AND yyy CANNOT BE LITERALS

Explanation: The second and fourth
positional operands of a TEST WHEN
statement are xxx ana yyy, respec­
tively. Both are literals.
Because the arithmetic relationship
between two literals is constant, a
test of this relationship would be
meaningless.

System Action: The statement was
deleted. Severity code = 8.

User Response: Replace one
with pointer to a main
location, a register, or a
counter.

literal
storage
TES TRAN

IEGM17 DATAM IGNORED ON THIS FORM OF TEST
WHEN

Explanation: A DATAM operand
appears in a TEST WHEN statement
that tests the condition of a TES­
TRAN flag, or a relationship
between TESTRAN flags. The operand
is invalid in this context.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code 4.

User Response: Omit the DATAM
operand, or rewrite the statement
to test a relationship between
arithmetic variables.

IEGM18 FORMAT UNKNOWN. 1 BYTE HEX ASSUMED

Explanation: In a SET VARIABLE' or
TEST WHEN statement, two operands
specify the location of data, which
is in registers or main storage.
The attributes of this data are not
defined in the symbol table nor are
they specified by a DATAM operand.
The data is, therefore, assumed to
be hexadecimal with a length of one
byte.

System Action: The
processed normally.
= *·

statement was
Severity code

User Response: If a 1-byte hexa­
decimal format is not intended,
provide a DAT.A.M operand that speci­
fies the correct attributes.

IEGM19 TEST WHEN WRITTEN IMPROPERLY

Explanation: The format of a TEST
WHEN statement is invalid.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the error in
the format.

IEGM20 NO RIGHT PAREN IN OPERAND xxx

Explanation: A positional operand
of a TESTRAN statement is an expli­
cit or indexed implied address. In
this operand, the right parenthesis
was omitted. The position of the
operand in the operand field is
xxx.

System Action: The statement was
processed; the right parenthesis
was assumed to be present. Sever­
ity code = 4.

User Response: Check the source and
object program listing to determine
if assumption of the parenthesis
resulted in correct processing of
the statement. Rewrite the operand
if the processing was not correct.

IEGM31 COMMENT IS INVALID

Explanation: In a DUMP COMMENT
statement, the second positional
operand Ca programmer-written
comment) either was omitted or is
invalid. If invalid, the operand
either is shorter than three char­
acters (including delimiting
apostrophes), or does not contain
one or both of the requir·ed apos­
trophes.

System Action: The statement was
deleted. Severity code = 8.

User Response: Specify or correct
the comment operand.

IEGM32 xxx NOT A VALID TABLE TYPE

IEGM33

IEGM34

IEGM40

Explanation: The second positional
operand of a DUMP TABLE statement
is xxx. This operand is invalid.

System Action: The statement was
deleted. Severity code = 8.

User Response: Correct the second
operand. It must be DCB, DEB, or
TCB.

INVALID REGISTER NOTATION

Explanation: The second positional
operand Ca register sublist) of a
DUMP PANEL statement contains
invalid register notation.

system Action: The statement
processed; the invalid operand
ignored and dumping of all
isters was assumed. Severity
= 4.

was
was

reg­
code

User Response: No response is nec­
essary.

INVALID TYPE CODE IN xxx

Explanation: The operand DATAM=xxx
contains an invalid type code.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response:
operand.

correct the DATAM

A REQUIRED ADDRESS NOT SPECIFIED

Explanation: This message occurred
for either of two reasons:

• The second positional operand
(the starting address for a
trace) was omitted from a TRACE
CALL, TRACE FLOW, or TRACE REFER
statement.

• The third positional operand (the
ending address for a trace) was
omitted from a TRACE CALL state­
ment.

system Action: The statement was
deleted. Severity code = 8.

User Response: Provide the
required address operand.

Appendix C: TESTRAN Messages 87

IEGM41 THIS TRACE STOP STOPS ALL TRACES

Explanation: The optional second
positional operand (trace sublist)
was omitted from a TRACE STOP
statement. This statement will,
therefore, stop all active traces.

System Action: The
processed normally.
= *·

statement was
Severity code

User Response: If all traces
should not be stopped, provide the
optional trace sublist operand to
specify only those traces that are
to be stopped.

IEGM42 COMMENT IS INVALID AND IGNORED

88

E~planation: The COMMENT operand
of a TRACE statement is invalid.
The operand either is shorter than
three characters (including delim­
iting apostrophes>, or does not
contain one or both of the required
apostrophes.

system Action: The statement was
processed, but the invalid operand
was ignored. Severity code = 4.

User Response: Correct the COMMENT
operand.

IEGMSO 2ND AND 3RD OPERANDS MUST BE
PRESENT

IEGM51

Explanation: One or more
positional operands were
from a SET statement.

required
omitted

System Action: The statement was
deleted. severity code = 8.

User Response: Provide the
required operand or operands.

SET FLAG CONDITION MUST BE =O or =1

Explanation: The third positional
operand (condition> of a SET FLAG
statement is invalid.

System Action: The statement was
deleted. severity code = 8.

User Response: Write the third
operand as =O or =1, or as the
symbolic name of a TESTRAN flag.

Address
as an external reference 30
assembled as a constant 19,71
declared in a USING statement 19,30
explicit 30,71
indexed 17,27,64,71
test point 15,67

Ampersand 29,71
Apostrophe 29,71
Area

(see storage area)
ASM (job step) 35,41,45,48.1,73,74
ASMEC and ASMFC {cataloged procedures)

definition 73
use 35

Assembler
E- or F-level assembler program 35
listing 9,49
options 36,41,45,48.2
processing of TESTRAN

macro-instructions 12
symbol tables 24
use with TESTRAN 11

Assembly
job control statements for

35,41,44,48.1
listing 8,9,30
of address operands 19,71
of problem program and TESTRAN 11,30

Assignment functions 13,70
{see also SET statements)

Asynchronous exit routines 27
Attributes 23,64,65,69,70

Base address
for addressing dummy control sections

19,28
for addressing other object modules 30

Blank common control section 24
Branch

by a TESTRAN statement 1?,66,68,69
tracing of 26,64

Branching functions 13,69
(see also TESTRAN subroutines)

Call library 38,44,48,48.5
CALL macro-instruction 25,26,32,64
Cataloged procedures {IBM-supplied)

definitions 73,74
use 35,36,39,41,44,48.1

Chained opening
definition 67
examples 32,33

Change dump 17,64
Changes

in index values 17
to a dummy control section 19
to a storage area 16,64

Class {of test information)
definition by a SELECT operand

29,33,65,67

identification in a TESTRAN listing
53-61

selection for printing 40,48.4
Class identification number

in a job control statement 40,48.4
in a SELECT operand 29,65,67
in a TESTRAN listing 53-61

Class number
{see class identification number)

Coding conventions 63
Commas 63
COMMENT operand

description 71
example 29
function 65

Comments
in the comments field 12
in the operand field 29

Common control section 24
Completion

of testing 31
of a timer interval 28

Condition
condition code 26,55,59
condition testing 11,34.2,68
error conditions 8,34.7

Conditional branching 68
Constants 12
Control block 20-22,64,65
Control dictionary

handling by the linkage editor
38,44,47,48.5

inclusion in a load module
12,37,42,46,48.2

production by the assembler 12
Control flow

changing of 34.7
tracing of 25

Control information
recorded by the TESTRAN interpreter
used by the TESTRAN editor 12
(see also symbol tables)

Control sections
defined by TEST OPEN {see TESTRAN

control section)
map of 20
replaced by the linkage editor

31,38,43,47,48.5
Conventions

for coding TESTRAN statements 63
for describing TESTRAN statements 71

Count
line count for assembly listing

36,41,45,50
page count for TESTRAN listing

40,48.4,67
Counter

(see TESTRAN counter)

Data control block
Data extent block

21,22,64,65
21,22,64,65

11

Index 89

Data set
(see TESTRAN data set)

Data types
printing formats 51
specification 71

DATAM operand
description 71
examples 23,34.6,34.7
function 65,69,70

DCB
macro-instruction 20,28
operand 20,21,65,71
(see also data control block)

DON operand
description 71
example 34.1
function 66

DEB
operand 20,21,65,71
(see also data extent block)

Decision-making functions 13,68
(see also condition testing)

Default
assembler options 41,45,48.2
printing format 24

Dictionary
(see control dictionary; external symbol·

dictionary)
Displacement 30,71
DSECT operand

description 71
examples 18,19,28
function 65

Dwnrny control section
addressing of ta
describing another module 30
dumping changes to 19
dumping of 17
tracing references to 28

Dump
definition 11
examples 15,16,19-21,29
formats 53-56

DUMP statements
examples

DUMP CHANGES 16,23
DUMP COMMENT 29,34.7
DUMP DATA 15,18,23,30
DUMP MAP 20
DUMP PANEL 20-23
DUMP TABLE 20

formats 71
functions 64

Dynamic parallel program 34.1
Dynamic serial program 34

EDIT (job step) 40,48.1,74
Editing

linkage editing 11,12,36,41,44,48.1
TESTRAN editing 11,12,39,48.1

END statement 14-34
Entry point

in an END statement 14,15
in an ENTRY statement 31
in a TEST OPEN statement 15,66

Entry point register 66

90

ENTRY statement
assembler 33
linkage editor 31

Error
detected by the TESTRAN interpreter

49,56
diagnostic message 56,62,75-88
recovery 8,34.7

ETXR operand 28
Execution, job control statements for
38,44,48.1

Exit routine 27
Exponent 51
External reference 30,33
External symbol 30,64,69,70
External symbol dictionary 30
EXTRN statement 33

Field
(see operand field; storage field)

Flag
(see TESTRAN flag)

Format

GO

printing format
control of 22,31
of data types 51
of a TESTRAN listing 49

statement format 71

job step 45,48.1,74
load module 20,38,44,47,73,74

GO statements
examples

GO BACK 34.2,34.7
GO IN 34.8
GO OUT 34.8
GO TO 17

formats 71
functions 69

Hexadecimal
as a default format 31,69
as an implied data type 23

Implicit control section 29,31
(see also TESTRAN control section)

Indexed addresses 19,27,64,71
Interpretive execution 26,27

Job control statements, writing of 35
Job library 39,45,48.1

Keyword operands 63

Length attribute
of a symbol 64
specified by a DATAM operand

23,34.6,34.7,65,69-71
Library

(see call library; job library;
procedure library)

Limits on traces 27
Linkage editing

job control statements for
36,41,44,48.1

of problem program with TESTRAN
11, 31, 33

Linkage functions 12,66
Listing

(see,assembly listing; TESTRAN listing)
Literal'- 68-71
LKED

cataloged procedure 37,73
job step 37,41,45,48.1,73,74

MACRO ID
in an assembly listing (see MACRO

NUMBER)
in.a TESTRAN listing 49-61

MACRO NUMBER 86
Macro-instruction

ATTACH 28,34
CALL 25,26,32,64
DCB 20,28
GET, PUTX 28
IDENTIFY, LINK, LOAD, XCTL 34
OPEN 20
RETURN 8,9
SAVE 8,9,15-20,25,28
SPIE, STIMER 28
TESTRAN 12

(see also TESTRAN statements)
MAXE operand 66,67
Maximum number

of dummy control section formats 65
of executed TESTRAN statements 67
of internal subroutine levels 69
of pages in a TESTRAN listing

40,48.4,67
of traces 27

MAXP operand 66,67
Messages 56,62,75

NAME operand
description 71
examples 23
function 65

Opening of a TESTRAN control section 66,67
Operand field 63
Operation code

of a dumped instruction 24,51
of a TESTRAN statement 12

OPTEST operand
description 71
examples 32,33
function 67

Options
assembler 36,41,45,48.2
linkage editor 37,42,46,48.2
TESTRAN editor 40,48.1
(see also task options)

Output identification
printing of 52
specification of 66

Overlay program 33

PARM parameter 35~48.4
Positional operands 63
Printing format

control of 22,31
of data types 51
of a TESTRAN listing 49

Procedure library 35
Program status word, dumping of 20

PSW
(see program status word)

Recording functions 12,14,64
Reference

external reference 30,33
reference between overlay segments 33
tracing of references 2.5

REFR option 37,42,46,48.3
Region size

for linkage editor 37,41,45,48.1
for problem program 45,48.1

Registers
dumping of 20
specification in TESTRAN statements 71

RENT option 37,42,46,48.3
Reprocessing

of a load module 31,38,43,47,48.5
of a TESTRAN data set 29

Return of control 15,17,34,53,66,69
REUS option 37,42,46,48.3
Reusability 34

(see also RENT option; REUS option)

Scale attribute 23,52,69-71
Scatter loading 27
Segment 33,34
SELECT operand

description 71
examples 29,30,33
function 65,67

Selective retrieval
classification of information for 29,33
selection of classified information

40,48.4
SET statements 70,71

examples
SET COUNTER 34.3
SET FLAG 34.4,34.5
SET VARIABLE 34.7

formats 70
functions 71

SIZE option 37,42,46,48.3
Speed

of the TESTRAN editor 40,48.3
of the TESTRAN interpreter 66

Storage area
allocated 22,24,27,54
defined by indexed addresses 17
described by a dummy control section

17,19
described by a symbol table 24
dumping changes to 16
dumping of 14
length of 64,65
specification of 64
tracing references to 25

Storage field
defined by a DATAM operand 23,31,65
defined by a DS or DC statement 24

Storage map, dumping of 20
Storage requirements

of the TESTRAN editor 40,48.3
of the TESTRAN interpreter 66

Sublist 63
Subroutine call

by a GO IN statement 69
tracing of 26,64

Index 91

Supervisor call
supervisor call instruction 54,67
tracing of 26,64

SVC instruction
(see supervisor call instruction)

Symbol tables
handling by the linkage editor

12,31,37,38,42,43,46,47,48.2,48.4
production by the assembler

12,35,41,45,48.2
use by the TESTRAN editor 12,24

SYNAD operand 28
System output 49
System table

(see control block)

Task control block 21,22,65
Task options 66,71
TASME (cataloged procedure)

definition 73
use 41

TASMEG (cataloged procedure)
definition 74
use 44

TASMEGED (cataloged procedure)
definition 74
use 48.1

TCB
operand 20,21,65,71
(see also task control block)

Test information
classification for selective retrieval

29,33
recording and printing of 11
selective retrieval of 40,48.4

TEST option
assembler 36,41,45,48.2
linkage editor 37,42,46,48.2

Test point
definition of 15
identification of 49~52
specification of 67
SVC instruction at 54

TEST statements
examples

TEST AT 14,30,33
TEST CLOSE 34
TEST DEFINE 34.3-34.5
TEST ON 34.2,34.3
TEST OPEN 15,29,32,33,34.1
TEST WHEN 34.4-34.7

formats 71
functions 66-68

TESTRAN control section
chained opening by OPTEST 32,33,67
closing by TEST CLOSE 34,66
definition by TEST OPEN 66,85
insertion in overlay segments 33
replacement by the linkage editor

31,38,43,47,48.5
TESTRAN counter

definition of 66,67
setting of 34.1,34.3,70
testing of 34.2,34.3,68

TESTRAN data set
creation by the TESTRAN interpreter 11

92

definition by a SYSTEST DD statement
34.1,39,48,48.1,48.6

processing by the TESTRAN editor
29,40,48.3,48.7

TESTRAN editing, job control statements
for 39,48.1

TESTRAN editor
definition 11
listing (see TESTRAN listing)
storage requirements 40,48.4

TESTRAN flag
definition of 66,67
setting of 34.1,34.4,34.5,70
testing of 34.4,34.5,68

TESTRAN interpreter
control of
definition 11
linkage to 12,15,66

TESTRAN listing
commenting the listing 29
example of 9,49
interpretation of 49
maximum page count 40,48.4,67

TESTRAN macro-instructions 12
(see also TESTRAN statements)

TESTRAN messages 75
TESTRAN output

(see TES~N listing)
TESTRAN services

description 8
requests for 11,J2

TESTRAN statement trace 49,62
TESTRAN statements

examplesof 14-34.9
execution of 12,15
functions 12,63
output of 52-62
structure and format 12,71

TESTRAN subroutines 34.8,69
Trace

definition 11
examples 26
printing formats 58-61
shifting a trace 27,28
starting a trace 25
stopping and restarting a trace

25-27,34,34.1
Trace area

identification of 59,60
limitation of 27
specification of 64

TRACE statements
examples 25-29
formats 71
functions 64

TTED (cataloged procedure)
definition 74
use 39

Type attribute
of a symbol 64
specified by a DATAM operand

23,34.6,65,69-71

USING statement 18,19,28

Variable 13,70

C28-6648-1

YOUR COMMENTS PLEASE

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold .. :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

Attention: Programming Systems Publications

Department D58

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

t .. :

Fold

®

International Business Machines Corporation
Data Processing Division
112 East Past Raad, White Plains, N.Y.10601
!USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New Yark, New York 10017
!International]

Fold

READER'S COMMENT FORM

IBM System/360 Operating System
TES TRAN

Form C28-6648-1

• Is the material: Yes No
Easy to read?.. D D
Well organized?.. D D
Complete? . D D
Well illustrated? . D D
Accurate? D D
Suitable for its intended audience? D D

• How did you use this publication?
D As an introduction to the subject
D For additional knowledge

Other

• Please check the items that describe your position:
D Customer personnel D Operator
D IBM personnel D Programmer
D Manager D Customer Engineer
D Systems Analyst D Instructor

D Sales Representative
D Systems Engineer
D Trainee
Other

• Please check specific criticism (s), give page number(s), and explain below:
D Clarification on page (s) D Deletion on page (s)
D Addition on page (s) D Error on page (s)

Explanation:

~I l{3, (' r(s-- t l ~ Li.!A-fl { 4 5 lt--0v-ld l<-e /I &P· <;;y s TE sT) uo f- II Ii DI T,, -----

~-1~. d "-r NLJ''t><lopf ~~ 9r\JE.j "~~!',.~"LA 't,lll'(DA-nt'' ,.. ... ,rie~.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6648-l

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International I

	01
	02
	03
	04
	05
	06
	07
	08
	09a
	09b
	11
	12
	13
	14
	15
	16.0
	16.1
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34.0
	34.1
	34.2
	34.3
	34.4
	34.5
	34.6
	34.7
	34.8
	34.9
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48.0
	48.1
	48.2
	48.3
	48.4
	48.5
	48.6
	48.7
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	73.0
	73.1
	74
	75
	76
	77
	78.0
	78.1
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	replyB
	replya
	xBack

