IBM System/360 Operating System
TESTRAN

Program Logic Manual

Program Number 360S-PT-516

This publication describes the logic of the test
translator (TESTRAN) portion of IBM System/360
Operating System. TESTRAN is divided into three
parts: the TESTRAN macro instructions, the TESTRAN
interpreter, and the TESTRAN editor. The operation
of each of these parts is discussed in detail.

Program Logic Manuals are intended for use by
IBM customer engineers involved in program mainte-
nance, and by system programmers involved in alter-
ing the program design.

File Number S/360-37

Order Number GY28f6611-0'

Program Logic

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

PREFACE

This publication describes TESTRAN in
three sections, one for each of its three
parts. The description is at a sufficiently
detailed level to direct the user to the
portion of the program listing with which
he is concerned.

Before using this publication the reader
should be familiar with the contents of the
following publications:

IBM System/360 Operating System: !

Concepts and Facilities, Form C28-6535

Supervisor and Data Management Services,
Form C28-6646

Supervisor and Data Management Macro-
Instructions, Form C28-6647

Assembler Language, Form C28-6514

Linkage Editor, Form C28-6538

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

First Edition

| This edition applies to release 20.1 of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical News-
letters. Changes are continually made to the specifica-
tions herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM
System/360 SRL Newsletter, Form N20-0360, for the editions
that are applicable and current.

Requests for copies of IBM publications should be made
to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments
may be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N.Y.
12602

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

CONTENTS

INTRODUCTION <cececcaccacsccasasaccancnas 1 ° The Trace ROULINES .ccecccceccccecnsas 23
. The TRACE START Routine
The TESTRAN Macro-Instructions

7 (IEGTTRNL) ccececccccccccsacasaas 2U
The TIA Table ceeceieeeiaiccancncnnaas 1 The TRACER Routine (IEGTTRNT) ... 25

The TEST OPEN Macro-Instruction 7 The TRACE STOP Routine
The TEST AT Macro-Instruction 7 (IEGTTRNM) cccinceccecccenenseeass 25
The GO BACK Macro-Instruction 8 The Dump ROULINES .ciaeececeaccaceaces 25
The DUMP DATA Routine (IEGTTRNA) . 25

The TESTRAN Interpreterc.........°8 The DUMP COMMENT Routine

Operation of the Interpreter 8 (IEGTTRNB) ccccccecccacccccacneans 26
The DUMP MAP Routine (IEGTTRNK) . 26

The TESTRAN EQitOr <ccecececcaccccacaces 8 . The DUMP PANEL Routine
(IEGTTRNC) cecccccenceccecccccss 20

Relationship Between TESTRAN and the The DUMP TABLE Routine

Operating SyStem e.ceecececcecccscacacas 9 (IEGTTRNF) cceiecacccacsacssscass 26

‘PART I: THE TESTRAN MACRO-INSTRUCTIONS 11 Modifications of Trace Interrupt and
Go Back Routines for the Model 91 26

The TIA Table .cccceceeccccccncnaccsass 11

Interpreter Logic Flow Example 26
Assembling The TIA Tableccccee.... 11 .
PART III: THE TESTRAN EDITOR <eccecee.. 29

TESTRAN Macro-Definitions ...ceccecec.. 13
TEST Macro-Definition ...cecc.ccec... 13 Operation of the TESTRAN Editor 29
SET Macro-Definitionceccece... 18)

GO Macro-Definition ...ceceecaseccsa. 1l Editor TableS ..ceccceeccancscccccscsasas 30

DUMP Macro-Definitionc..c...... 14 Table Dictionary .ec.eccececececesc.-ss 30
TRACE Macro-Definition 14 MAP <cccecccccecscconcacccccncasaeaas 30
Action Table LiSt e.cccecscecseaccsas 30
PART II: THE TESTRAN INTERPRETER 15 Action Table ...ccccicecccaccacacanaas 30
Dump Change LiSt .cc.cccececcccscsss 30
The Setup ROULINES ..cicecceccecccacasesas 16 Dump Change Table .cccecececececccccess 30
i The Save Routine (IGC0106A) 16 Symbol Table <.eecceeccccecscccaccsaeas 30
The TEST OPEN Routines ...cceceeee.. 17 Reference Table .cecccecececcacacaaas 31
The TTOPEN 1 Routine (IGC0004I) . 17 Initialization Routines ...eceec..... 31
The TTOPEN 2 Routine (IEGOPEN2) . 18 The Start Routine (IEGMC00A) 31
The TTOPEN 3 Routine (IEGOPEN3) . 18 The Root Module (IEGMNOOA) 31
The Resident SVC Routine (IGC038) .. 19 The Editor Message Routine
The Router Routine (IEGTTROT) 19 (IEGSFOOA) cececcecccccccccncacas 32
The Overlay Routines ...ccceccece... 20 Internal ROUtINES ...cccececcecacaseass 32
The Overlay 1 Routine (IEGTTRNO) 20 The Reference Table Routine
The Overlay 2 Routine (IEGTTRNX) 20 (IEGRKOOA) & ccceecceccacccaacanaas 32
The Trace Routinescccceceacc... 20 The Action Table Routine
The TRACE INTERRUPT Routine . (IEGRLOOA) ccceccccasccccacancacca 32
(IEGTTRNZ) .c.ccvcscecnccncceasss 20 The Invalid Record Routine
(IEGPEOOA) <ccececcccccecacacceas 33
The Service Routines ...ccececececccca.s 21 The End-of-Run Routine
. The TEST ROUtines ...cccececeaceaceeasas 21 - (IEGPKOOA) ceccececccccccacacaaaa 33
The TEST ON Routine (IEGTTRNE) .. 21 The Relocation Table Routine
The TEST WHEN.Routine (IEGTTRNG) 21 (IEGREOOA) ececoccenscecseccnases 33
The TEST CLOSE Routine The Map Change Routine
(TEGTTRNH)® .ieeeecesenncaccanana 21 (IEGRCOOA) ceeeceeceacecccancsasas 33
The GO Routinesccceiccecccccceas 22 The CESD Map Routine (IEGRAOOA) . 33
The GO IN/GO OUT/GO TO Routine) The Symbol Table Processing
(IEGTTRND) cccaceccecccccncenanees 22 ROULINES ceiceececcecaccnccnacasas 3l
The GO BACK Routine (IEGTTRNJ) .. 22 Output ROUtINES ..cccceecccencaceass 34U
The Set Routinescccecccececesss 23 The Interpreter Message Routine
The SET FLAG Routine (IEGTTRNP) . 23 (IEGPIOOA) .ecec.... B, cecae~s 34
The SET COUNTER Routine The Action Router Routine
(LEGTTRNN) . (IEGMGOOA) .ccceceeccsceasaccccsssces 35
. The SET VARIABLE Routine The DUMP COMMENT Routine

(IEGTTRNR) .ccecececccencscncscess 23 (IEGNOOA) cencacdecccccacacnacacsa 35

The DUMP TABLE Routine ' TEST DEFINE FLAG Entry. 91
(IEGNPQOOA). e« o o o o« o« 35 TEST ON ENtry « o« « o o ¢« o o « o « « 92
The TRACE STOP Routlne) TEST WHEN Entry « « ¢« ¢ ¢« ¢ ¢ « « « « 93
(IEGPAOOA) « « « 35 SET COUNTER Entry « « « « o « « « « o 93
The TRACE Routine (IEGNVOOA) e« « « 35 SET FLAG Entry. « « ¢ « ¢ « « « « « « 94
The TEST OPEN Routine (IEGPGOOA) . 36 SET VARIABLE Entry. . « « « « « « « « 94
The DUMP MAP Routine (IEGNGOOA). . 36 GO IN ENtry « « o « ¢ o o o « o « « - 94
The TEST CLOSE Routine GO OUT ENtYY. « « o o o « « o« « « « « 95
(IEGPHOOA). e o o« o« 36 . GO BACK Entry « « ¢ ¢ ¢ ¢ « o « « « « 95
The DUMP CHANGES Routlne GO TO ENtry « « o o ¢ o « « o« o « « « 95
(IEGNDOOA). . . . e e e o « « « 36
The DUMP DATA Routlne (IEGNAOOA) . 36 APPENDIX B: ‘TESTRAN INTERPRETER
The DUMP PANEL Routine TABLES. = ¢ « o o ¢ « « o« o« « o o « « « 96
(IEGPPOOA) . « ¢ « « « o o « « « « 37 Control Core 560 Bytes. . . « « . « . 96
The Address Analyzer Routine Trace Core 272 Bytes . « « « « « « 99
(IEGSNOOA) . « ¢ o ¢ « o o « « « « 37 Trace Table (120 Bytes Maximum) . . .101
The Symbol Search Routine DCB/REL COX€. « « 2 o o o o o« « o« « 4102
(IEGSQOOA). . « o« o « o = « « « « 37 Reference Table « . . .103
The Attribute Analyzer Routine Flag Table. ¢« « ¢ &« « « . . 104
(IEGSROOA). « « o ¢ o « = o « « o 37 Counter Table. . . « ¢« « « « « « . .105.
The Data Edit Routines 38 Table COY€. « o o ¢ ¢ o ¢« o « « « « 106
Subroutine Table. « « « . . .107
TESTRAN Editor Control Flow for Sample
Edit. o« ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e 4« o e« o o o o 39 APPENDIX C: TESTRAN EDITOR TABLES . . .108
Table Dictionary. . « « « « « « . . .108
CHARTS « « o« « o = o « o o o o s « « o« « 41 Map Entry . . ¢ ¢ ¢« ¢ ¢ o « ¢« « « « 108
Action Table List e e e o« o o « o« 2109
APPENDIX A: TEST INTERPRETER ACTION Action Table Entrles. e o o o e o o 2110
(TIA) TABLE ENTRY TYPES . . - . « . « . 81 Dump Change List Entry.111
A Field Expansion . « « « « « « « . o 81 Dump Change Table Entry111
Modifier Fields s, P, FO, L 82 Sympbol Table. .« « ¢« ¢« o = o o « « « .112
DUMP DATA Entries « . . . 83 Reference Table Entry113
DUMP CHANGES Entry. . « « « - « « « . 884
DUMP MAP Entry. « « « « « « « « « « - 84 APPENDIX D: TESTRAN EDITOR INPUT
DUMP PANEL Entry. « « « =« « « « « « « 85 RECORD FORMATS. o« « o « « o « « « « « o114
DUMMY COMMENT Entry . . . « « « « « - ‘86 Prologue Record . « « « . « « « « - o114
DUMP TABLE Entry. « « « « « « « « « . 86 M Field Expansion « .« .«115
TRACE REFER Entry « « « ¢« « =« « « . « 87 Data Record . « « « « « ¢ « « « « « 116
TRACE CALL Entry. « « « « « « « « - . 88
TRACE FIOW Entry. « « « « « « « « - - 88 APPENDIX E: TESTRAN FLOWCHART CROSS
TRACE STOP Entry. « « « « « « « « « o 89 REFERENCE LIST. « ¢ « « « o o o o « « 2121
TEST AT ENtry . -« « = « « « =« « « « . 89 ,
TEST OPEN Entry « « « « « « « « « « « 90 APPENDIX F: TESTRAN CONTROL BLOCK AND
TEST CLOSE Entry. « « « ¢« ¢« ¢ « « « - 90 RECORD FORMAT CROSS REFERENCE LIST. . .123
TEST DEFINE COUNTER Entry 91

INDEX. o 2 « o o o o o « « o o« « = « « «125

EIGURES

Figure 1. Three Parts of TESTRAN
Within Operating System/360
Figure 2. General Format for TIA
Table Entries . « .« « « ¢« ¢« ¢« « « & .
Figure 3. TESTRAN Interpreter Logic
Flow Example. « « « o o o o « o o o «
Figure 4. TESTRAN Editor Organization
Figure 5. TESTRAN Editor Control Flow
for Sample Edit « « ¢« ¢ ¢ ¢ o o o o .

CHARTS

Chart 10. TESTRAN Macro-Definition -
TESTe o « o o a o o o s o o« o o« o o o
Chart 11. TESTRAN Macro-Definition -
SET ¢ @ « o « o o o a s s o o o o o @

Chart 12. TESTRAN Macro-Definition -
GOe o o o o o o o o o 2 « o o o o a =
Chart 13. TESTRAN Macro-Definition -

DUMP. © ¢ ¢ ¢ « o o o o o s a a « o =
Chart 14. TESTRAN Macro-Definition -
DUMP. © &« ¢ e « o e o o s o o« s o s «
Chart 15. TESTRAN Macro-Definition -
TRACE 2« ¢ o o o o o o o o o o o o

Chart 30. TESTRAN Interpreter
Chart 31. TESTRAN Interpreter
Chart 32. TESTRAN Interpreter
Chart 33. TESTRAN Interpreter
Chart 34. TESTRAN Interpreter
Chart 35. TESTRAN Interpreter
Chart 36. TESTRAN Interpreter
Chart 37. TESTRAN Interpreter
Chart 38. TESTRAN Interpreter
Chart 39. TESTRAN Interpreter

10
12

27
29

40

42
43
4y
45
46
47
49
50
51
52

54
55

57

LLLUSTRATIONS

TABLES

Table 1. Explanation of General Format
Symbols for TIA Table Entries
Table 2. TESTRAN Interpreter Modules .

Chart 40. TESTRAN Interpreter
Chart 41. TESTRAN Interpreter . . .

Chart 42. TESTRAN Interpreter
Chart 43. TESTRAN Interpreter
Chart 50. TESTRAN Editor.
Chart 51. TESTRAN Editor. . « « « « «
Chart 52. TESTRAN Editor.
Chart 53. TESTRAN Editor. . . . « .« .
Chart 54. TESTRAN Editor.
Chart 55. TESTRAN Editor. . « « « « .
Chart 56. TESTRAN Editor.
Chart 57. TESTRAN Editor. . . « . . .
Chart 58. TESTRAN Editor.
Chart 59. TESTRAN Editor. . . . « . .
Chart 60. TESTRAN Editor.
Chart 61. TESTRAN Editor. . . . « . .
Chart 62. TESTRAN Editor. . . . « . .
Chart 63. TESTRAN Editor. . . . « . .
Chart 64. TESTRAN Editor.
Chart 65. TESTRAN Editor. . . . « . &
Chart 66. TESTRAN Editor.
Chart 67. TESTRAN e e e o

Editor. .

.

« s s e

13
15

TN

The test translator (TESTRAN) is a pro-
gram testing and debugging aid for IBM
System/360 Operating System assembler lan-
guage programmers. It consists of three
basic parts:

e The TESTRAN macro-instructions.
s The TESTRAN interpreter.
e The TESTRAN editor.

Availability of TESTRAN in the operating
system is determined at system generation
(SYSGEN) time. Each of the three parts
functions during a separate job step within
the operating system.

The TESTRAN macro-instructions are
expanded at assembly time from their macro-
definitions, which are included in the
system macro-library at SYSGEN. The status
of the macro-instructions, therefore, is
that of an expansion of the assembler's
macro-instruction 1library (SYS1.MACLIB).
When a user writes TESTRAN
instruction statements, they become input
to the assembler.

The TESTRAN interpreter functions in the
supervisor stdte at program execution time.
Its routines are entered via supervisor
call (sSvC) interruptions and LINK macro-
instructions. The individual routines are
reenterable. They are executed
"out-of-1line" from, but in succession with,
the problem program. Some of the
interpreter's routines generate test output
data.

The TESTRAN editor
program test output data. Since the editor
functions after the execution of the
problem program, it is a "post processor."

prints the problem

The routines of the editor are serially
reuseable. the editor is executed as a
separate job step and is treated the same

as any processor by the operating system.

THE TESTRAN MACRO-INSTRUCTIONS

The TESTRAN macro-instructions are the
user's means of indicating where testing in
the problem program is to begin, the exact
points at which testing is to take place,
and what tests are to be done. Although
there are a number of TESTRAN macro-
instructions, the TEST OPEN, TEST AT, and
/GO BACK macro-instructions assume a special
significance. The TEST OPEN macro-
instruction initiates testing; the TEST AT

- macro- -

INTRODUCTION

macro-instruction tells where testing is to
take place. (These two macro-instructions
need to be coded previous to any other
TESTRAN macro-instructions.) ' The GO BACK
macro-instruction is used, ‘either
explicitly or implicitly, to return control
to the problem program after a series of
tests are completed.

THE TIA TABLE

The TESTRAN interpreter action (TIR)
table is constructed from theé assSembler's
expansion of the TESTRAN macro-
instructions, according to their macro-
definitions which are contained in the

system macro-library.

The table consists
entirely of constants. -

Each macro-instruction entry into the
TIA table has a specific format. (These
formats are discussed in detail in Part I
of this manual.) The entries in the table
are in the same sequence as the -source
macro-instructions that caused them to be
created. Except for the TEST OPEN entry,
the TIA table is nonexecutable.

THE TEST OPEN MACRO-INSTRUCTION

The TEST OPEN macro-instruction entry is
always the first entry in the TIA table.
Although this entry is identical to other
macro-instruction entries in that it
contains various constants, the TEST OPEN
entry has one important distinction. It is
the only TIA table entry that is executa-
ble. The first byte of each TIA entry is
the "type entry" code that is specified in
the macro-definition; a different value is
inserted for each of the 23 macro-
instruction types. Because the type entry
byte for the TEST OPEN entry is the
operation code for an SVC instruction, this
entry is executable.

THE TEST AT MACRO-INSTRUCTION

The - TEST AT macro-instruction entry in
the TIA table indicates where test services
are to be performed in the problem program.
At execution time, a TESTRAN interpreter
routine inserts SVC instructions into the

Introduction 7

problem program at the places specified in

the operands of the TEST AT macro-
instructions. When the problem program is
executed, the inserted SVC instructions
cause interruptions that pass control to
the TESTRAN interpreter which, in turn,
initiates the performance of the test
services.

THE GO BACK MACRO-INSTRUCTION

The GO BACK macro-instruction entry in
the TIA table indicates when control is to
be returned from the TESTRAN interpreter to
the problem program. Since all testing
takes place in the supervisor state, it is
‘necessary to return control to the problem
state before problem program execution can
be continued.

The GO BACK macro-instruction may be
coded, calling for its functional routine
explicitly, -or the routine may be called
for implicitly. Regardless of how control
is passed to the go back routine, its
execution allows control to be returned to
the problem program so that it may resume
execution.

THE TESTRAN INTERPRETER

After assembly, the problem program and
associated TIA tables must be linkage edit-
ed into a single load module. The load

module produced is neither reenterable nor

reuseable. When this load module is speci-
fied in an EXEC statement with a TEST
parameter, the control program prepares the
job step for execution.

________ TESTRAN in interpreter rou-
‘tines ;hat perform the tests execute under
control of the-
The~ TESTRAN ‘interpreter Toutines generate
test output data for processing and print-
ing by the TESTRAN editor in - a subsequent
job step. Testing of the problem program
occurs in succession with the execution of
the problem program, but out-of-line from
it; i.e., the test service routines of the
interpreter are executed at the points
within the problem program where the user
has indicated he wanted them. The request-
ed series of tests are performed, while the
problem program execution is temporarily
suspended, and at the conclusion of the
series of the test services, problem pro-
gram execution is resumed.

‘location and executes it.

Both the problem

“samé task control block.

OPERATION OF THE INTERPRETER

At problem program execution time, con-
trol must be passed to the TEST OPEN entry
in the TIA table to initiate testing.
Since that entry is an SVC instruction, its
execution causes an interruption that pass-
es control to the TESTRAN interpreter.

The interpreter inserts a TESTRAN SVC
into the problem program at each point
specified in the TEST AT macro-
instructions. The two bytes of the problem
program displaced by the SVC instruction
are stored in an interpreter table for
later retrieval and execution.

Once the SVC insertions have been made,
control passes to the entry point specified
for the problem program, and execution of
the problem program begins. When an SVC
instruction is encountered in the problem
program, the interruption processed for the
SVC causes control to be passed to the
interpreter's router routine, which
determines the TEST AT macro-instruction
that caused the interruption and analyzes
the TIA table entry following that TEST AT
entrye. The router then passes control to
the proper service routine for the perfor-
mance of the requested test service. When
the current series of test requests in the
TIA table is completed, the router routine
passes control to the go back routine. The
go _back routine retrieves the two bytes of
displaced problém program instruction from’
the interpreter table where they were
stored when the TESTRAN SVC was inserted,
reassémbles the instruction at a remote

It then returns

control "to ‘the problem program. When the
problem program terminates, the function of
the TESTRAN interpreter is completed.

The test output data, generated as a
result of the execution of the interpreter
test service routines is written onto a
system data set whose ddname is SYSTEST.
This data is stored for later retrieval and
editing by the TESTRAN editor.

THE TESTRAN EDITOR

The TESTRAN editor transcribes the
information contained in the test output
data created by the interpreter into a
printable output. It is a post processor
in that it functions only after the problem
program whose test output it is to edit is

terminated. The editor consists of dis-
crete routines that read the test output
data generated by the TESTRAN interpreter

and select the records with +the proper
output selection codes for processing. The

records are transcribed into the correct
output format as determined by the type of
interpreter routine that generated the
data. Proper headings for the record type
and available symbolic labels are written
with the data onto the system print data
set (SYSPRINT).

The editor analyzes the output selection
code associated with a test output data
record to determine whether or not it is to
process that particular record. This
determination is Dbased upon the output
selection code or codes specified in the
job control language execute (EXEC) state-
ment for the editor job step. The output
selection code indicated there is compared
with the output selection code in the
record itself; those records whose output
selection codes are acceptable are proc-
essed, and those whose output selection
codes have not been specified are skipped.
The actual output selection code for the

job step is an integer from one to eight, a

blank, or the letter A. The output selec-
tion code in the record itself is either a
value (see Table 1(C)) or a hexadecimal
Zero.

The TESTRAN editor is always a separate
job or Jjob step. It is not automatically
executed, but must be called for in the
same manner as any other processor.

RELATIONSHIP BETWEEN TESTRAN AND THE
OPERATING SYSTEM

The three parts of TESTRAN as they
operate within the operating system are
shown 1in Figure 1. Parameters and options
within job control statements are coded by

the user to initiate the use of TESTRAN in

a specific job. Control statements ini-
tiate the assembly of the source state-
ments, problem program and TESTRAN inter-

preter execution, and
TESTRAN editor.

operation of the

Jok control language statements calling
for assembly require the reading of the
TESTRAN source statements and an expansion
of them. The expansion is directed by the
macro-definitions in the macro-library.
The expanded macro-instructions are assem-

bled into the (TIA) table in the form of a
control section separate from the problem
program. The TIA +table and the problem
program text are written onto an output
data set as object modules.

The symbol table and external symbol
dictionary from an assembly with a test
parameter are written out with the object
modules in an 80-character record format:
labeled SYM. The TESTRAN interpreter save
and test open routines together locate andj
copy the data onto SYSTEST. The TESTRAN)
editor uses the data to symbolically 1labell
dumps and to identify section definitions;
in its storage map. At this point, the,
user either exits and suspends further
operations, or supplies job control state-|
ments to call for the execution of the|
problem program. -

Before the object modules can be execut-
ed, they must be 1linkage edited into a
single load module and fetched into main
storage. At appropriate times during the
execution of the problem program, the
TESTRAN interpreter honors the test
requests that have been coded into the TIA
table. Because the interpreter operates
wholly in supervisor state, and the problem
program operates entirely in problem state,
operation alternates between the two states
on a schedule determined by the TESTRAN
statements that are being interpreted.

Test output data generated by the inter-
preter routines is written onto SYSTEST for
later retrieval and editing by the TESTRAN
editor. The functions of the interpreter
are completed when the problem program
being tested reaches an end-of-task.

When job control 1language statements
calling for the TESTRAN editor are supplied
by the user, the editor is fetched for
execution. This may be directly following
the execution of the problem program or at
some later time. The. editor reads the
interpreter's test output data from SYSTEST
and determines from the output selection
code whether a record is to be processed or
skipped. If the record is to be processed,
the editor provides proper headings,
applies symbolic 1labels (when the symbol
table is provided), converts data to prin-
table format, and writes the record onto
SYSPRINT.

Introduction 9

no

IR AT RN
* TESTRAN
* INDICATED IN

ASSEMBLE TESTRAN
MACRO-INSTRUCTIONS

******02*¥*********
READ
* TESTRAN *

SOURCE
* STATEMENTS *

36369 3 36 3 36 3 KK X

TESTRAN
ERHHEHED R HERRRXR

#MACRO-DEFINITIONS
X W E K KW K R
* ASSEMBLE *
* TIA TABLE *

* *
% 333 3 I3 3 I I I XX

v
3t 3 963 3 3 F 2 ¥ 33 6 3 3 X X
WRITE
* ouUT THE *
TIA
* CSECT #

3 3 3 3 3 XK H

v
X EG2N RN EXR
* *
* EXIT *
* *

3 % 36 3 3 3 3 3 I 3 %%

Figure 1. Three

10

% JOB CONTROL

*
*
: STATEMENTS :
LA L S e e e 22

TEST PROBLEM PROGRAM
(WITH TESTRAN
INTERPRETER)

v
¥ D JH XK KK H
LINKAGE EDIT
* AND FETCH *
#*PROBLEM PROGRAM#
QND TIA TABLE¥
*

3 I N

TESTRAN
HHXRRE FHHHRNRRNREE

* INTERPRETER *
Hm Wk — B WX —H—
PERFORM TEST &
*SERVICES CODED *
*#INTO TIA TABLE *
LR R R e e

v
IR Z I W HKE
WRITE
* OUT TABLES *

AND TEST)
* OUTPUT DATA

33 3 2 6 3 X XXX

v
HREEGIHERRRTRER
* *
* EXIT *
*) *
IR R RR

Parts of TESTRAN Within

EXECUTE THE
TESTRAN EDITOR

v
ERDL IR NER
*

* FETCH *
* TESTRAN *
* EDITOR *
* *

ER L L L L s

v
33 KX K E G XK XX N

* INTERPRETER®'S *
TEST OUTPUT
* FOR EDITOR *
PROCESSING
3 36 N XK

|

%
I

|
TESTRAN
HREEKE LEHRHERRERR

* EDITOR *
e s o T S

* PREPARE TEST *

33 3 3 3 3 W I K NN X K

|
I

\
XHRHGHEHRERIR RN
*

*
* EXIT *
*

W33 33 I WX R

Operating System/360

TN

27N

The TESTRAN macro-instructions are a
part of the macro-library of the IBM Oper-
ating System/360 assembler processor.
There are five basic macro-instructions in
TESTRAN: TEST, SET, GO, DUMP, and TRACE.

By including the first operand, these five
basic macro-instructions are extended into
23 usable macro-instructions. An installa-
tion that uses TESTRAN enters the macro-
definitions for these macro-instructions
into the assembler macro-library at SYSGEN
time.

The TEST, SET, and GO macro-instructions

are classed as "test _ control" macro-
instructions because their expansions
provide internal control of TESTRAN. They

do not generate output as a primary pur-
pose. The function of the DUMP and TRACE
macro-instruction expansions is the genera-
tion of test output data. These two macro-
instructions are classed as "test
macro-instructions. T

macro-instructions normally
expand into a sequence of executable
instructions. TESTRAN macro-instructions,
however, are translated and assembled into
a series of constants called the TIA table.
These entries in the TIA table are test
requests to be honored by the TESTRAN
interpreter.

System

Because the assembler does not expand
any other TESTRAN macro-instruction until
after a TEST OPEN macro-instruction is
expanded, TEST OPEN must always be the
first macro-instruction in an assembly.

THE TIA TABLE

The TIA table consists entirely of _con-
stants. For each type of TESTRAN macro-
“{nstruction, there is a specific format
that includes some mandatory and some
optional fields. The formats are shown in
Figure 2. For a detailed presentation on
how to code these macro-instructions, refer
to the publication IBM System/360 Operating
System: Control Program Services. Each
entry in the table has a type-entry fleld
an i > field, and a length
“three fields are referred to
the "common data." The
other fields of an entry are referred to
collectively as the "variable field."
Within the variable field there are various
address (A) fields and modifier fields.
Specific formats for each TESTRAN macro-
instruction type are found in Appendix A.

action"

PART I: THE TESTRAN MACRO-INSTRUCTIONS

Except for the TEST OPEN entry whose
first two bytes form the operation code for
an SVC instruction, the TIA table is
composed of nonexecutable code. The TEST
OPEN entry permits control to be passed to
the TIA table and an interruption generated
to allow testing to be initiated.

ASSEMBLING THE TIA TABLE

TESTRAN macro-instruction statements may
be coded and assembled with the problem
program assembler-language source state-
ments, or they may be coded as a separate
assembly. The TESTRAN macro-instructions
are always assembled into a separate con-
trol section (CSECT). Depending on how the
user wants to separate his test sequences,

the TESTRAN macro-instructions may be
assembled into more than one CSECT. Howev-
er, a TEST OPEN macro-instruction mustwﬁbe

written for each CSECT desired. It is the
CSECT, which has been formed for a series
of TESTRAN macro-instructions, that is

referred to as the TIA table.

Assembling the TIA table in a separate
CSECT from the problem program permits the;
linkage editor to delete the TESTRAN CSECT
(TIA table) from a load module when testing
has been completed without the necessity of
reassembling the problem program. If addi-
tional or different tests are desired, they
can be coded into the TIA CSECT without
altering the problem program being tested.
Eliminating the need for reassembly of the
problem program eliminates the possibility
of new errors being introduced in the
assembly process.

When the assembler processor encounters
a macro-instruction statement, it expands
the statement into assembler language
statements as directed by the corresponding
macro-definition. The assembler language
statements generated during the expansion
of TESTRAN macro-instructions are DC
(define constant) statements.

After the assembler
appropriate DC statements for a given
TESTRAN macro-instruction, it translates .
them into the machine language constants
that form the TIA table entry for the
macro-instruction. The particular con-
stants generated for a given TESTRAN macro-
instruction are determined by its
corresponding macro-definition and by the
specific operands coded for the macro-
instruction statement.

has generated the

Part I: The TESTRAN Macro-Instructions 11

e o —— o — — ——— — — — — — ——— —— — —— S— —— — — — —— — — —— ——— —— — —— —— —— — — — — ——— — — =}

< Variable Field >

<-Common Data--> <-==--A Field=----> {===——=-Modifiers—————->

| | | | I N I
1 | OR | L | AL | P || s || Fo
I I I | I
J L 1 1 4

(1 |

I wilF |

| | I |
J L Ll]

o e e
.

| |
1 i

Legend
T specifies type byte. The 1-byte hexadecimal code indicates the

ID

LN

macro-instruction type this entry represents. (See Table 1 (A4).)

represents identification byte. This 1-byte number is assigned to this
macro-instruction at assembly time. (SVC number is assigned if type is
TEST OPEN.)

indicates entry length byte. This 1-byte number specifies the total
length (in bytes) of this TIA entry.

Note: Multiple A fields are possible.

e o o i " o, S e S e S i, S . S 03

OR specifies organization byte. This 1-byte code indicates the
organization for this A field. (See Table 1 (B).)
|
L denotes length byte.” This 1-byte number indicates the 1length (in]
bytes) of the AL field if it is a literal. |
|
AL indicates address/literal. This, is a variable 1length field whose |
contents depends on the organization byte. |
|
P specifies output selection code. This 1-byte code represents the |
1-to-8 priority (output selection code) scheme used by the TESTRAN |
editor. (See Table 1 (C).) |
. |
S represents scale. This 2-byte count specifies +the number of places
(binary or decimal) point is to be shifted left.
|
FO indicates format. This 1-byte data format identifier code specifies |
the format of the data to be referred to by this entry. (See
Table 1 (D).)
LO specifies length overrider. This 2-byte value overrides the otherwise
specified length of the data fields referred to by this entry. |
|
F represents flagq byte. This 1-byte value indicates the presence of the |
P, S, FO, and LO modifiers in the variable field.
J
Figure 2. General Format for TIA Table Entries

12

Table 1. Explanation of General Format Symbols for TIA Table Entries

[A. Type Byte Code B. Organization Byte Code

L

v

Hex Code Entry Type	Bit 0: "L" Field Flag
02 TEST AT	1 - Present
06 DUMP DATA	0 - Absent
OA TEST OPEN	

| OE DUMP CHANGES |)

12 DUMP MAP '	Bit 1: Not Used
16 DUMP PANEL	’ '
1A DUMP COMMENT	
1E DUMP TABLE I	

| 22 TRACE REFER |

| 26 TRACE CALL | Bits 2 and 3: AL Field Type

| 2A TRACE FLOW | |
| 2E TRACE STOP | 00 - Literal

32 TEST CLOSE	01 - 24-bit absolute address
36 GO IN	10 - 16-bit displacement address
3a GO OUT	11 - 1-byte register number
3E GO BACK	(contents used as a value,
42 TEST DEFINE COUNTER [not an address)	
46 TEST DEFINE FLAG	
un SET COUNTER	
4E SET FLAG	Bits 4 through 7: 1Index Register
52 SET VARIABLE	
56 TEST ON	00 - No indexing
5A TEST WHEN	01 through 15 - General register
5E GO TO	to be used to index address
I 62 END TABLE MARKER	in AL field
L il i	
r T 1	
€. Output Selection Code	D. Format Code
1] 4	
r T i	
80 Output Selection 1	ou Fixed-point half
40 Output Selection 2	08 Fixed-point full
20 Output Selection 3	(0] Floating-point long
10 Output Selection 4	10 Floating-point short
08 Output Selection 5	14 Packed decimal

| ou Output Selection 6 | 18 Unpacked decimal |
| 02 Output Selection 7 | 1cC Character

| 01 Output Selection 8 | 20 Address]
| | 24 Hexadecimal]
| | 28 Instruction |
| | 2C Binary |
L i |]

TESTRAN MACRO-DEFINITIONS

There 1is a macro-definition for each of
the five basic TESTRAN macro-instruction
types. Macro-definitions are placed in the
macro-library at SYSGEN time. Brief des-
criptions of the five macro-definitions
follow.

TEST MACRO-DEFINITION

When the assembler encounters a TEST
macro-instruction, it refers to the TEST
macro-definition for directions. The TEST
macro-definition directs the assembler to

check the macro-instruction statement's
operand fields for «critical errors. (A
critical error is one that makes further
processing of the macro-instruction impos-
sible.) If a critical error is detected,
an error message is written, and expansion
of the macro-instruction is terminated. If
no critical errors are detected, the common
data fields are generated, and positional
operands are processed sequentially from
left to right. Following the processing of
positional operands, any keyword operands
present are processed, the necessary flags
are generated, and expansion of the macro-
instruction is completed.

The flow of the TEST macro-definition
process is shown in Chart 10.

Part I: The TESTRAN Macro-Instructions 13

SET MACRO-DEFINITION

When the assembler encounters a SET
macro-instruction it refers to the SET
macro-definition for directions. The SET
macro-definition directs +the assembler to
perform the necessary diagnostic functions.
If a critical error is detected, an error
message is written and expansion of the
macro-instruction is terminated.
Otherwise, the common data is generated and
positional operands are processed sequen-
tially from left to right. If any keyword
operands are present they are processed
last.

The flow of the SET macro-definition is
shown in Chart 11.

GO MACRO-DEFINITION

When the' assembler encounters a GO
macro-instruction, it refers to the GO
macro—-definition for directions. The GO
macro~definition directs the assembler to
check for critical errors in the operand
fields. If a critical error is detected,
an error message is written and expansion
of the macro-instruction is terminated. If
not, the common data is generated, then the
necessary addresses and flags are generated
to complete the expansion.

The flow of the GO macro-definition is
shown in Chart 12.

14

DUMP MACRO-DEFINITION

When the assembler encounters -a DUMP
macro-instruction, it refers to the DUMP
macro-definition for directions. The DUMP
macro-definition directs the assembler to
check for critical errors in the operand
fields. If a critical error is detected,
an error message is written and expansion
of the macro-instruction is terminated. If
none are detected, the common data is
generated, and the positional operands are
processed sequentially from left to right.
Folleowing this, keyword operands present
are processed, and any necessary flags are
generated to complete the expansion.

The flow of the DUMP macro-instruction
is shown in Charts 13 and 14.

TRACE MACRO-DEFINITION

When the assembler encounters a TRACE
macro-instruction, it refers to the TRACE
macro-definition for directions. The TRACE
macro-definition directs the assembler to
check for critical errors. If any are
detected, an error message is written and
expansion of the macro-instruction is ter-
minated. Otherwise, the common data is
generated and the positional operands are
processed. Following this, the keyword
operands present are processed and flags
are generated to complete the expansion.

The flow of the TRACE macro-definition
is shown in Chart 15.

TN

to

The TESTRAN interpreter consists of the
25 setup-and service routines that are used

test the problem program. With the

ex@bptlon of the save routine, all of the
routlnes function 1in the supervisor state
at problem program execution time.

specific

The 16 service routines are executed in
response to
since macro-instructions can be coded in a
variety of sequences, the service routines
can also be executed in the same variety of
sequences.

The 9 set

a given macro-instruction and,

up routines are executed at

points in the execution of the

problem program. They support the service
routines by
and by establishing the flags and switches
needed by the service routines. Entry into

the

acquiring storage for tables

various setup routines 1is gained

Table 2. TESTRAN Interpreter Modules

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

| PART II: THE TESTRAN INTERPRETER

through the execution of TESTRAN SVC
instructions and through the execution of
the system macro-instructions LINK = and
XCTL. Exit from the routines is via a
RETURN or an XCTL macro-instruction.

Except for the tracer routine, which
normally is entered via an XCTL macro-
instruction from the go back routine, all
service routines are entered from the rout-

er (setup) routine via a LINK macro-

instruction. Table 2 is a complete list of

the interpreter modules, their classifica-
tions, and their normal residences.

The TESTRAN interpreter generates test
output data and writes it into SYSTEST.
This test _output data consists of two
physical records for each 1logical record.
The physical tecords include a prologue

r
|
I

l.__

I
|
|
i
|
]
|
I
|
l
|
|
|
I
|
I
I
|
I
i
I
|
I
|
I
|
|
|
|
]
!

T T 1
Module] Module | Service | |
Designation | Residence | or Setup | Macro-Instruction Interpreted |
1 } 4 3

1 1 T 1

IEGTTRNA | L | S | DUMP DATA,DUMP CHANGES |
IEGTTRNB | L | s | DUMP COMMENT |
IEGTTRNC | L] S | DUMP PANEL]
IEGTTRND | L | S | GO TO,GO IN,GO OUT]
IEGTTRNE | L] s | TEST ON |
IEGTTRNF | L | S | DUMP TABLE |
IEGTTRNG | L | s | TEST WHEN |
IEGTTRNH | L | S | TEST CLOSE |
IEGTTRNI | L | S | GO BACK]
IEGTTRNK | L | s | DUMP MAP |
IEGTTRNL | L | S | TRACE FLOW,TRACE CALL,TRACE REFER |
IEGTTRNM | L | S | TRACE STOP |
IEGTTRNN | L | s | SET COUNTER |
IEGTTRNO | L | (o] | none (this is overlay 1 routlne) |
IEGTTRNP | L I s | SET FLAG |
IEGTTRNR | L | s | SET VARIABLE |
IEGTTRNT | L | S | TRACE FLOW,TRACE CALL,TRACE REFER |
IEGTTRNX = | L | o | none (this is overlay 2 routine) |
IEGTTRNZ | L | ¢] | none (this is trace interrupt routine) |
IEGOPEN2 | L | (06S) | none (this is phase 2 of TEST OPEN) |
IEGOPEN3 | L | (0€3) | none (this is phase 3 of TEST OPEN)]
IEGTTROT | L | o | none (this is router routine) |
G;IEC038 | R] o} |] mnone (this is resident SVC routine) |
IGCO04T | I [(08S) | TEST OPEN (this is phase 1 of 3) |
IGC0106A | I | ¢]] none (this is the save routine) |
1 1 4 5)

1

Legend |
L - Module resides or Link library |
R - Module is part of resident nucleus |
I - Module resides on SVC library]
S - Module is service, interprets named macro-instruction |
O - Module is setup, supports service modules]
(TEST OPEN routines are a combination of both types) |
J

Part II: The TESTRAN Interpreter 15

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

record, which has a fixed length of 128
bytes, and a data record, which has a
variable 1length. The information concern-

ing which macro-instruction caused the out-

put to be generated is contained in the
prologue record.

Although the test control macro-
instruction entries (i.e., TEST, SET, and

GO) do not generate output records as their
primary function, +the TESTRAN interpreter

posts the execution of these macro-
instruction entries in a buffer. When a
test action macro-instruction entry (i.e,
DUMP or TRACE) generates an output record,

this buffer is written onto the prologue
portion of that test action recerd and the
buffer is cleared. Because of the size of
the prologue record, a maximum of 28 test
control macro-instruction entry executions
can be recorded on it. The data record of
the record pair is of variable 1length,
dependent on the record type.

THE SETUP ROUTINES

The setup routines perform the "house-
keeping"” and selection fuchtions necessary
to support and control the choice of the
service routines. These routines are
executed at specific times, relative to the
execution of the problem program. Their
sequence of execution is restricted, cer-
tain routines being prerequisite to others.

The save routine must be the first setup
routine executed. If) is executed when the
test attribute of the load module is reco-
gnized by contents supervisor. Should the
execution of a test open routine be
attempted prior to that of the save rou-
tine, the test open routine will not be
executed. Instead, control will be given
to the problem program and the problem
program will be executed without being
tested. .

If the save routine is executed prior to
the time the test open routine is given
control, however, the test open routine
inserts SVC instructions into the problem
program. These SVCs generate interruptions
in the problem program and pass control to
the TESTRAN interpreter.

In an overlay program, the overlay
supervisor calls the TESTRAN overlay rou-
tine whenever it fetches a new segment into
main storage. Once the test open routine
in executed in the root segment, this
overlay routine performs test open func-
tions on the newly loaded segment.

16

The resident SVC routine is a portion of
the control program nucleus. When an
interruption is caused by one of the SVC
instructions inserted by the TEST OPEN
routine, this routine passes control to the
router routine.

The router routine can be executed only
after the save and test open routines have
been executed, control has passed to the
problem program, and an inserted SVC
instruction has been executed. The trace
interrupt routine is given control when an
interruption occurs during a trace.

THE SAVE ROUTINE (IGCO0106A)

The TESTRAN save routine (see Chart 30)
retains the address and the extent data
used by program fetch when load modules are
acquired f£from their external residence.
The test open routine later uses this data
to acquire the symbol table and ESD records
from the external residence.

Entry to the TESTRAN save routine is via
an XCTL from the TSO TEST save routine
(IGC0006A) (see TSO Test/TMP PLM). If the
TESTRAN flag (test attribute bit) is set in
the partitioned data set directory entry
for the program 1load module member, the
contents supervisor issues an SVC instruc-
tion. This instruction results in a load
cf the TSO TEST save routine. The TSO TEST
save routine will XCTL to the TESTRAN save
routine if the TCB under which the SVC was
issued does not indicate a TSO task.

The TESTRAN save routine 1is executed
after the load module containing the pro-
blem program and the TIA table is fetcheqd,
but before it is given control.

This routine acquires areas of main
storage for the DCB/REL ' core and control
core tables. It enters data into thé
DCB/REL core that relates to the external
residence (disk) addresses of the symbol
table and the external symbol dictionary
(ESD) from the assembler, and the composite
external symbol dictionary (CESD) from lin-
kage editor. (The dictionaries and the
table are generated at assembly time.) It
also fills in a 1loaded address field in
DCB/REL core for each CSECT in the 1load
module and copies of the data control block
(DCB) and the data extent block (DEB) that
were used by program fetch in' loading the

module. Addresses in the DCB and the DEB
are corrected to show the actual 1loaded
address. (For a detailed description of

DCB/REL core, see Appendix B.)

As one of its fields, control core
contains a pointer to the DCB/REL core. It
also contains fields for the pointers that
are used by the TESTRAN interpreter to
refer to its control blocks, and fields for
"the =~ wvarious flags, buffers, temporary

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

storage areas, counters, and control blocks
that are necessary for effective interface
with the basic sequential access method
(BsaM) routines. The address of the con-
trol core table “is entered into the task

control block (TCB) for the task.

Part IT: The TESTRAN Interpreter 16.1

16.2

Only a few of the fields in control core
are filled at save time from the data
supplied by the save routine. Data from
the problem program or the TIA table is
used to complete other fields during execu-
tion of the test open and router routines.

THE TEST OPEN ROUTINES

The test open routines are the test
routines that perform setup functions for
the TESTRAN interpreter. The other test
routines are discussed under "The Service
Routines."

Three routines are used to perform the
TEST OPEN functions: TTOPEN 1, TTOPEN 2,
and TTOPEN 3. These routines can be
entered in two ways: one in which control
is initially passed to the TEST OPEN entry
in the TIA table at execution time, and the
second in which a direct branch to the TEST

OPEN entry is contained within the problem
program. When control is passed to the
TEST OPEN entry, the SVC 49 that is the

first two Dbytes of the entry is executed.
The interruption processed as a result of
the SVC passes control to the TTOPEN 1
routine.

In the first method of entry, the user
supplies a linkage editor control ENTRY
statement to the linkage editor at 1linkage
edit time. This statement, when properly
coded to do so, overrides the END statement
in the user's assembler source module and
causes control to be initially passed to
the instruction named as the operand in the
ENTRY statement. For example, if the user
codes END START in his source module, at
execution time control normally passes to
the instruction named START to begin execu-
tion of the program.

When a 1linkage editor control ENTRY
statement such as ENTRY TEST is used,
however, control passes to the instruction

named TEST. Should TEST be the name of the
TIA table associated with the problem pro-
gram (and the name of its TEST OPEN entry)
control passes to the TEST OPEN entry while
the problem program still has its original
END START statement (now overriden) for use
after testing is deleted.

To allow the test open routines to pass
control to the beginning of the problem
program so that it may be executed, the
user must also code within his TEST OPEN
macro-instruction an "entry" positional
operand that specifies the normal program
entry point (i.e., START). In this entry
method, deletion of the TESTRAN CSECT from
the load module is accomplished by a pass
through the 1linkage editor. Altering or

reassembling the problem program after
testing is completed is not necessary.

In the second method of entry, the user
supplies a direct branch from within the
problem program to the TEST OPEN entry in
the TIA table. Reassembly of the problem
program at the completion of testing in
order to delete the branch is necessary
when this method of entry is employed.
Except for the reassembly requirement, this
method has the same operation and require-
ments as the first method.

If the problem program to be tested is
an overlay program and has multiple TIA
tables, the test open routine ignores list-
ed TIA tables which are not in main stor-
age.

TEST OPEN macro-instructions associated
with segments other than the root segment
are <called "secondary TEST OPEN macro-

. instructions,” and as such do not require

the inclusion of "entry" positional
operands 1in their macro-instruction state-
ments.

Secondary TEST OPEN macro-instruction
entries contained in the TIA tables asso-
ciated with overlay segments should never
be given control and, therefore, never
executed. Instead, the overlay 1 routine
perfornms the necessary test open functions,
such as inserting SVC instructions into the
newly loaded segment. In an overlay pro-
gram, the test open routines execute only
once per execution of the program.

The TTOPEN 1 Routine (IGCOO0O0H4TI)

The TTOPEN 1 routine (see Chart 31) is
entered initially as a result of the execu-
tion of the TEST OPEN entry in the TIA
table (the first two bytes of which are the
operation . code for an SVC instruction).
This routine determines if the save routine
has been executed. If the save routine has
not been executed, the test open functions
are not performed, and control is returned
to the problem program. The problem pro-
gram then executes as though there were no
TESTRAN macro-instructions coded to test it
(i.e., no testing takes place).

If the save routine has been executed,
the TTOPEN 1 routine 1loads the router
routine into main storage and proceeds to
examine the TEST OPEN entry in the TIA
table to establish the maximums to be used
for this execution of the problem program
(i.e., number of lines of test output data
allowed and number of TESTRAN statement
executicns allowed). This information, the
output selection code, and the link or load

Part II: The TESTRAN Interpreter 17

option specified in the TEST OPEN entry are
placed into the proper fields of control
core. (For a detailed description of con-
trol core, see Appendix B).

At this point in its execution, the
TTOPEN 1 routine 1links to the TTOPEN 2
routine if it determines that this is its
first execution since the execution of the
save routine. Otherwise, the TTOPEN 1
routine 1links to +the TTOPEN 3 routine to
prepare the problem program for testing.

After the TTOPEN 3 routine has operated,
inserting SVC instructions into the problem
program and establishing various TESTRAN
tables, it returns control to the TTOPEN 1
routine. The TTOPEN 1 routine writes a map
change record (if necessary), the TIA and
reference tables, and a test open record
onto the intermediate data set (SYSTEST)
for use by the TESTRAN editor. The map
change record is generated for each program
overlaz and it indicates the presence and

active Bf"lnactlverstatus of each program

segment 1n maln ~storage.

Note: The link or 1load mode option is
specified in the TEST OPEN macro-
instruction. In the 1load mode, routines
are acquired from the link library via the
LOAD macro-instruction and then control is
passed to them via a LINK macro-
instruction. Routines, up to the available
limits, are retained in storage. In the
link mode, routines are acquired from the
link library when they are needed. No
attempt 1is made to retain them in storage.

The TTOPEN 2 Routine (IEGOPEN2)

The TTOPEN 2 routine (see Chart 32)
performs the copying functions of test
open. With this routine, control core

fields are initialized and the data whose
address and extent has been recorded and
retained in DCB/REL core by the save
routine is copied for 1later use by the
TESTRAN editor.

The TTOPEN 2 routine uses DCB/REL core
address data to read records (symbol table,
ESD, and CESD) from their external resi-
dence into an area of storage it acquired
for a Dbuffer. It copies them from the
buffer onto SYSTEST. Buffers acquired by
the routine and storage acquired for use as
DCB/REL core are then released. Control
returns to the TTOPEN 1 routine.

18

The TTOPEN 3 Routine (IEGOPEN3)

The TTOPEN 3 routine (see Chart 32)

prepares the problem program for testing.
It first determines if the TIA table it
refers to 1is already open, and if so,
returns control to the TTOPEN 1 routine.

If the TIA table is not open, this routine
tests for valid entry types in the TIA
table.

If all the entries are valid, the rou-
tine computes the amount of storage it will
need for a block called table core_ by
scanning the entire TIA table to determine
the number of flags and counters (either
explicitly or implicitly defined) and the
number of TEST AT entries in the table.
(For a description of table core, which

includes the reference, counter, and flag
péglgs,“ see Appendix B.) The routine then
acquires the necessary main storage. The

routine scans the TIA table a second time
and inserts SVC instructions into the prob-
lem program at each point specified in. a
TEST AT entry in the table. It also
inserts, into the reference table area that
corresponds to that TEST AT entry, the two
bytes of problem program code that the SVC
instruction displaced, and the locations of
the SVC instruction in the problem program
and the TEST AT entry in the TIA table.

Likewise, the TTOPEN 3 routine enters a
flag into the flag table area for each flag
specified in a TEST DEFINE FLAG TIA entry.
The counter table area of table core is
filled in, in this same manner, with the
counters specified in the TEST DEFINE COUN-
TER TIA table entries. Pointers to the
first entry in each of the reference, flag,
and counter tables are entered into the
fixed area - of table core (or the previous
reference, flag, and counter tables). A

pointer to table core is entered into
control core (or the previous control
core).

To ensure that the TIA table associated
with a problem program is not altered by
that program, the TESTRAN interpreter com~-
putes a "checksum" of the TIA table and
stores it in table core.

Note: The checksum is a summation of the
entire TIA table, added in 4-byte incre-
ments. The add logical instruction is used

to -compute the U4-byte sum. When the length
of a TIA table is not an even multiple of
four bytes, the remaining bytes are right
justified and added to the low order end of
the previous sum.

Whenever the TESTRAN router routine _is
entered during execution of the problem
program, a checksum of all TIA tap{?g“"iﬁ'

main storage as they exist _at that time is

computed. If a newly computed checksum
does not match the one stored in table
core, that TIA table has been altered and a
message to indicate this is written onto
SYSTEST. As a result the task is brought
to an abnormal end (ABEND).

If additional TIA tables are 1listed in
an "OPTEST=" operand field in the TEST OPEN
entry, the next TIA table is examined to
determine whether or not it is currently in
storage. If it is, that TIA table is also
opened (i.e., the TTOPEN 3 7routine 1is
repeated for the next TIA table). If there
are no more TIA tables to be opened,
control is returned +to the TTOPEN 1 rou-
tine.

THE RESIDENT SVC ROUTINE (IGC038)

The resident SVC routine (see Chart 30) -

consists of the parameters and instructions
for 1linking to the router routine. When a
TESTRAN-inserted SVC instruction is execut-
ed during problem program
execution/testing, the operating system's
SVC handler passes control to the resident
SVC routine. This routine, in turn, passes

control to the router routine that was
loaded by the TTOPEN 1 routine. When a
series of TIA table entry interpretations

are complete, control is returned from the
router routine, through the resident SVC
routine, to the problém program.

THE ROUTER ROUTINE (IEGTTROT)

The router routine (see Chart 33) deter-
mines from the entries in the TIA table
which of the TESTRAN interpreter service
routines are to be executed. Each time it
is entered, this routine tests the validity
of each TIA table currently in main storage
by computing a checksum of the table and by
comparing that checksum with +the original
one computed and stored in table core by
the TTOPEN 3 or overlay 1 routine. If the
checksums do not agree, the router routine
issues an error message to indicate that
the TIA table has been altered and brings
the task to an abnormal end (ABEND).

service routines of the
classified as "test
because they are not

Some of the
interpreter are
control" routines

- field (within the same entry

concerned with the generation of test out-
put data, but rather with the internal
control of testing. As one of these rou-
tines 1is executed, the router routine
enters information to indicate that it has
been executed into a prologue record buf-
fer. This information, in the form of a
list of executed statements, is written in
the prologue record of the output record
pair generated for the next "test action"
routine executed.

To pass control to the proper service
routine, the router routine first deter-
mines the address of the SVC instruction
that caused it to receive control by sub-
tracting two bytes (length of the SvC) from
the address of the next problem program
instruction as it appears in the old pro-
gram status word (PSW). This gives the
routine the address of the SVC instruction
in the problem program. The router routine
then scans the reference table to find a
matching address in the object program
address field. When it finds this matching
address, the address in the TIA address
in the ref-
erence table) is the address of the TEST AT
macro-instruction entry .that caused the SVC
to 'be inserted. The router routine then
scans the TIA table to find the type byte
of the next entry.

The router routine uses the type byte as
an index factor to find the correct charac-
ter in an internal table. The character is
appended to the symbolic name root

(IEGTTRN) of the service routines to com-
plete the symbolic name of the required
service routine. The router routine then

links, or loads and links, to the =routine.
Control returns to the router routine when
the service routine has completed its func-
tions. If the previous routine was not a
go back routine, the router routine exam-
ines the next entry and repeats the above
procedure. If it was a go back , control
is returned to the problem program or to
the tracer routine, as explained in the go
back discussion.

Two of +the 1router's subroutines
contained entirely within it and are
branched to as required. The first,
HBADDRSR (see Chart 34), interprets "A"
field expansions (see Appendix A) in the
TIA entries, computes an actual address for
these entries, and returns that address to
the service routine that needs it. The
second, HQOUTPUT (see Chart 34) controls
the writing of prologue and data records of
an output record pair. It also checks the
output-line count to ensure that the number
of 1lines generated has not exceeded the
maximum allowed.

are

Part II: The TESTRAN Interpreter 19

THE OVERLAY ROUTINES

The Overlay 1 Routine (IEGTTRNO)

In an overlay program, whenever the
overlay supervisor causes a new segment
with test attributes to be fetched into
main storage it 1links to the overlay 1
routine (see Chart 35).

The overlay 1 routine first determines
whether or not the test open routine has
operated, and if it has not, this routine
causes a map change record to be written
onto SYSTEST and returns control to the
overlay supervisor.

If the test open routine has been exe-
cuted, the overlay 1 routine next checks
the count of TIA +tables 1listed for the
OPTEST= operand of the TEST OPEN entry in
the root segment TIA table. If the OPTEST
count is zero, and if the trace mode switch
is on, control is passed to the overlay 2
routine. For OPTEST count zero and trace

mode switch off, a map change record is

written onto SYSTEST and control is
returned to the overlay supervisor.

When the OPTEST count is non-zero, the
overlay 1 routine determines which TIA
table is next in the list and if that table
has ever been opened. If the TIA table has
previously been opened, this routine checks
to find whether it is now in main storage.
If the TIA table is not in main storage,
its associated reference, flag, and counter
tables are flagged inactive, and the OPTEST
count is again tested for zero or nonzero.

If the next TIA table has been opened
previously, and is now in main storage, the
TESTRAN SVCs are inserted into the freshly
loaded copy of the segment. The OPTEST
count is again tested for zero or non-zero.

When the next TIA table in the OPTEST
list has not been opened previously, a
check 1is made to determine if it is now in
main storage. If it is not, it is ignored
and the OPTEST count is again tested for
Zero OYr non—-zero. If, however, the TIA
table is now in main storage the overlay 1
routine performs the normal test open func-
tion on the TIA table and then returns to
check the OPTEST count for zero or non-zero
again.

Tre Overlay 2 Routine (IEGTTRNX)

The overlay 2 routine (see Chart 36) is
used whenever there are active traces' in
progress at the time an overlay occurs.

20

.of trace

The overlay 2 routine checks each table
core to find +the numbers of any inactive
TIA tables. The trace table is searched
for entries with matching TIA table num-
bers. Any such matching traces are stopped
by removing their entries from the trace
table. A trace stop record is written onto
SYSTEST. If all active traces are stopped
as the result of an overlay, the overlay
stop bit is set in the trace stop flag byte
core. Exit from this routine is
to the overlay supervisor via a RETURN
macro-instruction. (Trace core is
explained in detail in Appendix B.)

THE TRACE ROUTINES

Tracing operations within TESTRAN
require the use of both setup and service
routines. The trace interrupt routine is a
setup routine, the other trace routines are
service types and are discussed in the
section entitled "The Service Routines."

The TRACE INTERRUPT Routine (IEGTTRNZ)

If it becomes necessary either to sus-
pend or halt tracing during a trace opera-
tion, the +trace interrupt routine (see
Chart 38) is used. Depending on the event
that triggered it, the routine initiates an
abnormal-end-of-task (ABEND) sequence of
events, transfers control to the tracér
routine (via an XCTL macro-instruction), or
returns control to the problem program (via
the router routine). The following condi-

tions cause the trace interrupt routine to

be given control:

e Program check, which causes a transfer
of control to the tracer routine if a
user-supplied interrupt routine exists
(SPIE macro-instruction). If no user-
supplied interrupt routine exists, an
ABEND results.

e Trace stop switch set on (stop flag
byte in trace core), which writes an
output message to indicate that tracing
has 'been stopped and returns control to
the problem program, providing the
switch has been set by an overlay
routine.

e Untraceable svC (LINK, XCTL, or
RETURN), which generates an output
record and returns control to the prob-
lem program via the router routine.

P
N

Form Y28-6611-0, Page Revised by TNL Y28-2371, 11/15/68

Procedure for Decimal Instructions o
Model 91 :

Trace interrupt routine modifications
for handling decimal instructions encoun-
tered when operating on the Model 91 are
described in this part under the section
*Modifications of Trace Interrupt and Go
Back Routines for the Model 91." '

THE SERVICE ROUTINES

The service routines perform the test
services specified by the TESTRAN macro-
instructions. There are 16 service rou-
tines to accommodate the 23 TESTRAN macro-

instructions: three TEST, three SET, two
GO, five DUMP, and three TRACE. With the
exception of the tracer routine, each of

these routines is entered via a LINK macro-
instruction issued by the router routine.
The tracer routine is entered via an XCTL
macro-instruction from the go back routine.

THE TEST ROUTINES

Except for the test open routine, which
is a setup routine, the routines that
correspond to the other TEST macro-
- instructions are service routines.

routines include: test on, test when, and
test close. .

The TEST ON Routine (IEGTTRNE)

The test on routine (see Chart 36)
examines the value in the counter in the
TIA entry to determine if the value is a
multiple of the stipulated interval within
the high and low limit specification. If
the counter value meets the requirements,
control returns to the router routine with
the address in the VF pointer altered to
show the address of the entry named as the
operand of the TEST ON entry. If the
requirements are not met, testing continues
in an unaltered sequence.

Note: TESTRAN uses a register, called the
varible field (VF) pointer, as a next entry
indicator. The VF pointer is incremented
as the router routine examines the TIA
table entries. It points to the first byte
of the next entry when the test services
requested by the current entry have been
executed. To transfer from the interpreta-
tion of one series of TIA table test
request entries to another, the address of
the first entry in the new series is
substituted for the address of the next
sequential entry in the VF pointer.

The pointer is required for normal
sequential flow from one TIA entry +to the
next as well as when the normal flow is
altered. Conditional entries such as TEST
ON and TEST WHEN, and unconditional entries

These

- and one

such as GO IN, GO OUT, and GO TO use the VF
pointer to alter the sequence of
interpretation.

The TEST WHEN Routine (IEGTTRNG)

The test when routine (see Chart 37)
compares two operands specified ‘in the
entry. Depending on the result of the
comparison, the routine either continues
interpreting TIA entries or starts inter-
preting a new sequence beginning with the
one specified in the test when entry. The
user may specify one of six different
"operators" upon which to base his compari-
son. These operators include:

Equal to

-Less than

Less than or equal to
Not equal to

Greater than

Greater thamn or equal to

A comparison has a "true" result whenev-
er the result conforms to the operator that
was chosen. For example, if operand 1 has

- a lesser value than operand 2, and the

operator chosen by the user is "less than",
the result of the comparison is true. If,
however, the same two operands were com-
pared using "equal to" as the operator, the
result of the comparison would be “false".

The two operands may be either flags or
values in any one of several optional data
modes (fixed point, floating point, hexade-
cimal, character, etc.). ' The test when
routine has four comparison subroutines:
one for fixed point values; one for float-
ing point values; one for decimal values;
that compares any of the
hexadecimal-, character-, binary-,
instruction-, or address-coded values.

The test when routine makes the compari-
son specified in its entry and, if the
result ‘is true, causes the address of the
entry specified as the operand of the TEST
WHEN entry to replace the address of the
next sequential entry in the VF pointer.
Thus, interpretation of the sequence of TIA
table entries in which the TEST WHEN was
located is terminated, and the interpreta- -
tion of a new series is begun. A false
result of the comparison causes a continua-
tion of the interpretation of the current
series of test requests.

The TEST CLOSE Routine (IEGTTRNH)

The test close routine (see Chart 39)
closes the TIA table or tables that were
opened by the test open routine when test-
ing of the problem program was initiated.
When the router routine encounters a TEST
CLOSE entry in the TIA table, it 1links to

Part II: The TESTRAN Interpreter 21

the test <close routine which, in turn,
reinserts the problem program instruction
bytes that were displaced by the inserted
SVC instructions. The routine retrieves
the bytes from the reference table portion
of takle core and relinquishes the storage
acquired for any table core associated with
a closed TIA table.

Any trace operations started by entries
in the closed TIA table are halted and a
trace stop record is written onto SYSTEST.
A test close record is also written onto
SYSTEST. A bit is set on in the stop flags
byte of trace core if all traces are
stopped.

A device called the dummy go back,
unique to the test close routine, is used
to return control to the problem program.
For entries other than a TEST CLOSE, a GO
BACK entry (either explicit or implicit)
eventually follows in the TIA table. 1In
such cases, control returns to the problem
program via the go back routine, the router
routine, and the resident SVC routine.

After the test close routine is execut-
ed, the TIA taple is no longer active, and
no interpretation of an entry following the

TEST CLOSE entry can be made. The VF
pointer, therefore, is set to the address
of a GO BACK entry in control core. This

control core entry is labelled DUM and is a
dummy GO BACK entry. Using the dummy go
back as a device to pass control to the go
. back routine after the execution of a test
close routine, control returns to the prob-
lem program, from the go back routine, in
the normal manner.

THE GO ROUTINES

Although there are four GO macro-
instructions, the TESTRAN interpreter uses
only two routines to interpret them. The
GO IN, GO OUT, and GO TO macro-instructions
are interpreted by one routine; the GO BACK
macrc-instruction by the other. Routines
for the GO macro-instruction entries
unconditionally alter the sequence of TIA
~ table entry interpretation when the router
routine encounters their entries. The test
on and test when routines alter the
sequence of TIA table entry interpretation
conditionally and are essentially addition-
al go routines.

The GO IN/GO OUT/GO TO Routine (IEGTTRND)

Whenever the router routine encounters a
GO IN, GO OUT, or GO TO entry in the TIA

22

table, it passes control to the go. routine
(see Chart 40). The actual execution of
the go routine, however, is different for
each entry.

For a GO TO entry, the address, speci-
fied as the location of the TIA table entry
to Dbe interpreted next, is checked to
determine if it is an entry in an active
and open TIA table. If it is, the address
is placed into the VF pointer register and
control is returned to the router routine.

For a GO IN entry, the address of the
next sequential entry that was in the VF
pointer register is stored in the subrou-
tine table for retrieval at the time a GO
OUT macro-instruction entry is interpreted.
(The subroutine table is a 9-byte table
within . control core. It can hold up to
three such addresses.)

For a GO OUT entry, the address of the
next entry to be interpreted is retrieved
from the subroutine table and entered into
the VF pointer register. (The address of
the next entry for GO TO and GO IN entries
is contained within the entry itself.)

Note: The subroutine +table consists of
three 3-byte entries. At each entry to the
router routine (the execution of an SVC
instruction inserted for a TEST AT entry in

-the TIA table), the subroutine table is
zeroed. The go in routine fills the first
vacant entry with the address of the next

sequential TIA table entry following the GO

IN itself. This address is used by the go
out routine so that it can return to the
next entry in the former sequence of
entries.

Likewise, any subsequent GO IN entries
enter the address of the otherwise next
sequential entry into the subroutine table.
If there are more than three entries into
the table, the first entry is "lost". When
a go out routine retrieves an address from
the subroutine table, it takes the last one
entered, and zeros that entry. Sequences
of TIA table entries can be "nested" to a
depth of three, the depth of the subroutine
table.)

The GO BACK Routine (IEGTTRNJ)

The go back routine (see Chart 41) is
entered via a LINK macro-instruction from
the router routine. This routine is
entered whenever the router routine encoun-
ters an explicit or implicit GO BACK entry
in the TIA table. A GO BACK entry is
implied if the router encounters either an
end-of-table marker entry, or a TEST AT
entry signifying the beginning of a new

Form Y28-6611-0, Page Revised by TNL Y28-2371, 11/15/68

In either case,
interpreted

series of test requests.
the series of entries being
have come to an end.

With an explicit GO BACK entry, the user
can specify the address (problem program
address) to which he wishes control to be
returned. The problem, program is then
reentered at a point other +than the omne
from which the inserted SVC instruction
caused it to be interrupted. If no address
is specified in an explicit entry, the
removed problem program instruction is
reassembled and executed remotely. Control
is then returned to the instruction follow-
ing the inserted SVC via the router and
resident SVC routines. The go back routine
alters the address stored in the old PSW to
make these returns possible.

If the trace mode switch has been set,
the go back routine passes control +to the
TRACER routine instead of returning control
to the problem program. If the user has
supplied an SPIE macro-instruction to
handle a program interruption, and that
interruption occurs, the go back routine
passes control to the user-supplied inter-
ruption handler routine. Otherwise, if a
program interruption occurs, the go back
routine initiates an ABEND.

Procedure for Decimal Instructions on
Model 91

Go back routine modifications for handl-
ing decimal instructions encountered when
operating on the Model 91 are described in
this part under the section "Modifications
of Trace Interrupt and Go Back Routines for
the Model 91."

THE SET ROUTINES

Each SET macro-instruction has its own
service routine. The SET routines receive
control from the router routine via a LINK
macro-instruction. When their function is
completed, control returns to the router
routine.

The SET FLAG Routine (IEGTTRNP)

The first operand in the TIA table entry
for the SET FLAG being interpreted is
checked to ensure that it is in the flag
table of an open and active TIA table. The
second operand may also be a flag. If so,
it is also checked to determine whether or
not it is in an active flag table. If the
first operand is an active flag and the
second operand is either an active flag or
a specific value, the first operand is set
to the value of the second. If the second
operand is a valid storage address, the

set to the value of the
(see Chart

first operand is
contents of the second operand.
42.)

The SET COUNTER Routine (IEGTTRNN)

The first operand in the TIA table entry
for the SET COUNTER being interpreted is
checked to ensure that it is in the counter
table of an active and open TIA table.
Likewise, the second operand, if it is a
counter, is checked to determine whether or
not it is in an active counter table. If
the first operand is an active counter and
the second operand 1is either an active
counter or a specific value, the first
operand 1is set to the value of the second.
If the second operand is a valid storage
address, the first operand is set to the
value -of the contents of the second
operand. (See Chart 42.)

The SET VARIBLE Routine (IEGTTRNR)

The first operand in the TIA table entry
for the SET VARIBLE being interpreted is
checked to ensure that it 1is within the
user's task; i.e., either a register or a
field in main storage. The second operand
is checked to ensure that it is either a
valid storage address, an active counter,
or a literal. If the checks indicate that
both operands are valid, the first operand
is set to equal the register, literal, or
counter value of the second operand. If
the second operand is a valid storage
address, the first operand is set to the
value of the contents of the second
operand. (See Chart 39.)

THE TRACE ROUTINES

There are three trace routines to inter-
pret the four TRACE macro-instructions.
Two routines, trace start and tracer, are
executed for the TRACE CALL, TRACE FLOW,
and TRACE REFER entries; the other, for the
TRACE STOP entry. The trace service rou-
tines are supported by the trace setup
routine (trace interrupt).

Whenever the go back routine is entered,
it interrogates the trace mode switch (a
flag bit in control core). The trace mode
switch is set on by the trace start rou-
tine, when the first trace is started, to
indicate that any subsequent trace is not
the first and that a table called "trace
core" already exists. If the trace mode
switch is off, the storage required for
trace core and the table contained within
it (trace table) must be acquired and the
tables initialized. The address of the
trace table (and trace core, since the
trace table 1is the first portion of trace

Part II: The TESTRAN Interpreter 23

core) is entered into a
core. A record-pair, containing a prologue
record that includes a type byte to indi-
cate what type of trace has been started,
is written as output from the execution .of
the TRACE START routine. The additional
data describing the trace, addresses for
start and stop 1limits of the trace, is
‘written into the data record. (Detailed
descrlptlons of trace core and trace table
are in Appendix B.)

field of control

To perform a ‘trace operation, TESTRAN
routines copy a problem program instruction
from its 1location in the program to a
remote location (low end of main storage),
examine it, then remotely execute it. at
that location. The exact procedure depends
on the problem program instruction and the
type of trace being made.

The low order 48 bytes of main storage
are used temporarily by the tracer routine,
their original contents are saved and later
restored. The contents of the general
registers, as they appeared in the problem
program, are restored before the instruc-
tion is executed and then preserved after
it is executed. ‘

On ‘each entry to the tracer routine, the
stop flags byte in trace core is examined
to ensure that no event has stopped all
traces since the 1last entry. Except for
program check interruptions +that are en-
abled by the problem program, all interrup-
tions are disabled. Six bytes of problem
program, beginning with the next instruc-
tion to be executed, are moved to location
zero in main storage. The instruction is
then examined and the course of action to
be taken is determined.

Should the instruction type cause a
branch in the problem program, it is first
determined whether or not the branch should
occur. If the branch would occur during a
normal untraced operation it must be deter-
mined whether or not a TRACE FLOW or TRACE
CALL is in effect and whether or mnot this
branch requires an output record to be
generated. If a record is necessary, it is
written onto SYSTEST to indicate the
branch. The pointer used to indicate the
problem program instruction to be examined
next is altered so that it now contains the
"branch to" address.

: If the instruction examined is a store
type and a TRACE REFER is in progress, the
routine changes the storage protection key
to that of the problem program and writes a
"before"™ record of the area onto SYSTEST.
It then executes the instruction and re-
stores the storage protection key to zero.
If the conditions required for a "before"
record to be written were met, an "after"
record must also be written.

24

just as

If the examined instruction is . an exe-
cute, it 1is first determined that the
operand instruction is not also an execute,
since it is invalid to execute an execute.
If the operand instruction is a valid type
it is moved (six bytes) to 1location zero
and the determination of its type is begun
though it were an "in 1line"
instruction. The
next-1nstructlon-to-be-examlned-p01nter is
kept pointing at the instruction that
follows the execute.

For certain traceable SVC instruction
types encountered, a trace stop record is
written and control is returned to the
router routine. If the generation of a

trace flow output record is required, it is
written.
With privileged instructions, control

passes to the trace interrupt = routine via

an XCTL macro-instruction.

other than those
is moved
Interrup-
starts

program

For all instructions
mentioned above, the instruction
to 1location zero, and executed.
tions are enabled, and the process
again with . the next problem
instruction.

The TRACE START Routine (IEGTTRNL)

start routine (see Chart 37)
initiates trace operations within TESTRAN
by writing a trace start record and ini-
tializing trace core and the trace table..
For the starting of subsequent traces, it
adds an entry to the trace table for each
new trace.

The trace

Note: Since the trace table is limited to
ten entries, the number of concurrent trac-
es is also 1limited to ten. Should the
number of traces exceed ten, the last trace
started is "lost". (The trace table is
sorted by trace type and the last entry is
flagged. An entry for a trace after the
tenth one replaces the previous 1last
entry.)

Following the execution of the trace
start routine, control returns to the rout-
er routine. If the router determines that
the next entry in the TIA table represents
another test action or test control macro-
instruction to be acted upon, it proceeds
to do so, ignoring the fact that the trace
mode switch is on.

If, however, the next entry is a GO BACK
(either explicit or implicit) and the go
back routine finds that the trace mode
switch is set on, instead of returning
control to the problem program, the go back

routine passes control to the tracer
routine so that it may monitor each problem
program instruction. (Even if the entries
directly after the TRACE entries are other
than GO BACK entries, this condition will
eventually occur.)

The TRACER Routine (IEGTTRNT)

The tracer routine does not
TIA table entries directly, but rather,
with the trace start routine provides the
tracing services. (See Chart 43.)

interpret

When the router routine passes control
to the go back routine at the completion of
a sequence of test requests, the go back

routine tests the status of the trace mode
switch. If the trace mode switch is set,
the go back routine passes control to the

tracer routine, which examines each problem
program instruction and executes it remote-

ly.

If a TRACE CALL is being executed, each
CALL macro-instruction executed within the
area specified by the TRACE CALL entry in
the TIA table causes an output record pair
to be generated and written onto SYSTEST.

If a TRACE FLOW is being executed, each
branch to or from the areas specified in
the TRACE FLOW entry in the TIA table
causes an output record pair to be generat-
ed and written onto SYSTEST.

If a TRACE REFER is being executed, each
instruction that alters the contents of any
area specified in the TRACE REFER entry in
the TIA table causes an output record pair
to be written onto SYSTEST.

Should the tracer routine encounter a
TESTRAN SVC instruction while it is execut-
ing the problem program, control returns to
the router routine.

Whenever a privileged instruction is
encountered, whenever a program check
occurs, or whenever an untraceable SVC

(LINK, XCTL, or RETURN) is encountered in
the problem program, control passes from
the tracer routine to the trace interrupt
routine. :

A machine check interruption that occurs
while the tracer routine is in operation
results in an ABEND.

Note: While the tracer routine is execut-
ing the problem program, interruptions are
enabled and then disabled after each prob-
lem program instruction is executed. SVC
called routines such as the overlay super-
visor are not traced.

The TRACE STOP_Routine (IEGTTRNM)

The trace stop routine (see Chart 37) is
entered when the router routine encounters
a TRACE STOP entry in the TIA table. If
the entry has no specific traces named as
operands, all traces are stopped and their
entries are removed from the trace table.
If, however, specific traces are named as
operands, each tracé so named is stopped
and its entry is removed from the trace
table. A bit in the stop flags byte of
trace core is set on if all traces are
stopped by a TRACE STOP entry interpreta-
tion.

Each entry in the trace table contains
data to identify its type, its output-
record priority codes, its TIA table and

macro-instruction numbers
to this trace, and the
limits of the trace.

that correspond
start and stop

THE DUMP ROUTINES

Five dump routines are used to interpret
the six DUMP macro-instructions. The DUMP
DATA and DUMP CHANGES macro-instructions
are interpreted by one routine; the other
four by their respective dump routines.

All of the routines are entered from the
router routine via a LINK macro-
instruction.

The DUMP DATA Routine (IEGTTRNA)

Whenever the router routine encounters a
DUMP DATA or DUMP CHANGES entry in the TIA

table, it links to the dump data routine
(see Chart 40). The dump data routine
determines whether these addresses are

within the physical size limitations of the
computing system, whether the start address
is lower than the stop address, and whether
the area requested 1is more than 65,535
bytes long. If no violations are discov-
ered, the contents of the area specified is
written onto SYSTEST.

Except for a unique type byte in the
prologue, the same output is generated for
both a DUMP DATA entry and a DUMP CHANGES
entry if Dboth are concerned with the same
area of storage.

Part II: The TESTRAN Interpreter 25

Page of GY28-6611-0
Revised September 1,1971
By TNL GN26-8018

The DUMP COMMENT Routine (IEGTTRNB)

Whenever the router routine ineteprets a
DUMP COMMENT entry in the TIA table, it
links to the dump comment routine (see
Chart 40). This routine generates a prolo-
gue record that contains a DUMP COMMENT
type byte and the identification numbers of
both the TIA table being interpreted and
the macro-instruction whose TIA entry
caused this entry to the dump comment
routine. The record-pair is written onto
SYSTEST, with the data record of the pair
consisting of a dummy record. The actual
comment itself is not written onto the data
set. (The TESTRAN retrieves the comment
from the TIA table at edit or edit time.)

The DUMP MAP Routine (IEGTTRNK)

The router routine links to the dump map
routine (see Chart 40) whenever it encoun-
ters a DUMP MAP entry in the TIA table.
The dump map routine generates ‘an output
record-pair that consists of a prologue
record and a data record. The data record
contains a series of subrecords acquired
from system tables, one for each field of
storage associated with the current task.
The number of subrecords is indicated in
the data record. Each subrecord contains
information as to whether that area is a
program or a data area, the name of the
program to which the area is assigned, and
the beginning address and length of the
area. After the record-pair is written
onto SYSTEST, control returns to the router
routine.

The DUMP PANEL Routine (IEGTTRNC)

Whenever the router routine encounters a
DUMP PANEL entry in the TIA table, it links
to the dump panel routine (see Chart 40).
This routine retrieves the contents (at the
time of the inserted-SVC-caused interrup-

tion) of the 16 general registers from the
register save area. It also gets the
contents of +the floating-point registers

(if present) directly from the registers,
and the contents of the old PSW. An
indentifying prologue record and a data
record that contains the data items just
described are written onto SYSTEST. When
the TESTRAN editor processes the record at
edit time, it selects the required
registers.

The DUMP TABLE Routine (IEGTTRNF)

The dump table routine (see Chart 31) is
linked to by the router routine whenever it
encounters a DUMP TABLE entry in the TIA
table. The DUMP TABLE entry specifies
either the TCB, DCB, or DEB. 1If a TCB is
specified, the task control block of the
requesting task is written out as the data

26

record portion of a record-pair. If a DCB
is specified, the named data control block
is written out as the data record portion
of the record-pair. If a DEB is specified,
the named DCB is examined and the address
of the data extent block is obtained from
the field in the DCB. The contents of the
DEB are written as the data record. When
the function of this routine is completed,
control returns to the router routine.

MODIFICATIONS OF TRACE INTERRUPT AND GO
BACK ROUTINES FOR THE MODEL 91

In the simulaticn of problem program
instructions while operating in either the
trace mode or the go-back mode cf TESTRAN,
a program interruption occurs on the Model
91 whenever the TESTRAN interpreter encoun-
ters a decimal instruction of the rproblem
program. The TESTRAN Trace and Go-back
routines have been modified tc permit the
TESTRAN interpreter to utilize the facili-
ties of the Decimal Simulator (IEAXDSO00)
routine via the PFLIH routine.

When either the TESTRAN Trace Interrupt
routine (IEGTTRNZ) or the TESTRAN Go-back
routine (IEGTTRNJ) receives a program check
interruption caused by an invalid operation
code, a ‘routine-to-TESTRAN' PSW and an
error return address are established in the
TESTRAN Control Core. (The TESTRAN Control
Core contains the PSW at location 448 and
the error return address at location 444.)
The high-order bit (called the ‘'return-to-
TESTRAN' flag) in the TESTRAN Control Core
Pointer (i.e., the TCBTRN field) in the TCB

is set to 1 to indicate that the TESTRAN
program 1is entering +the PFLIH routine.
~TESTRAN saves the contents of the general

registers 9 through 8 keginning at location
456 in the control core. Control is then
given to the PFLIH routine.

If the decimal instruction that TESTRAN
gives to the PFLIH routine, and which
subsequently is given to the Decimal Simu-
lator, is simulated successfully, the
Decimal Simulator rcutine returns control
to TESTRAN. Return is achieved by locating
the ‘'return-to-TESTRAN' PSW and then using
the LPSW instruction.

If the decimal instruction is not simu-
lated successfully, the Decimal Simulator
routine returns ccntrol to the PFLIH rou-
tine, which checks the 'return-to-TESTRAN'
flag to ensure that the entrance to the
PFLIH routine was from TESTRAN. The
address of the TESTRAN error-handling rou-
tine is moved into the 'return-to-TESTRAN'
PSW, and control is given to the error
routine. The TESTRAN interpreter |recog-
nizes the type of error that was detected
bty the Decimal Simulator routine by testing

the program old PSW. The functions of the
TESTRAN error—-handling routine are
unchanged.

INTERPRETER LOGIC FLOW EXAMPLE

Figure 3 shows the flow of control
through a -simplified problem program/TIA
table execution. The problem program/TIA
load module includes CSECTs for both the
problem program and the TIA table.

The load module uses SVC instructions
and RETURN macro-instructions to communic-
ate with the TESTRAN interpreter's test

open routine and router routine (setup
routines). The router routine communicates
with the TESTRAN interpreter's dump, go

back, tracer, and trace stop routines (ser-
vice routines) via LINK and RETURN macro-
instructions. An XCTL macro-instruction is
used for communication between the go back
and tracer routines.

Page of GY28-6611-0
Revised September 1,1971
By TNL GN26-8018

After program fetch enters the 1load
module into main storage and the contents
supervisor determines that the load module
has test attributes, control passes to the
TS0 TEST save rcutine via an SVC 61
instruction. The TISO TEST save routine
will XCTL to the TESTRAN interpreter's save
routine if +the TCE under which the sSvC 61
instruction was issued does nct indicate a
TSO task.

The save routine retains the address
data used by program fetch when it acquired
the load module from its external residence
and then returns control to the contents
supervisor. The contents supervisor, in
turn, passes control to the entry point
specified for the load module; i.e., the
TEST OPEN entry in the TIA table.

This entry, executable as an SVC 49,
causes an interruption and transition from
problem to supervisor states. The test
open routine obtains storage for its tables
and initializes them. It inserts an SVC 38
instruction into the problem program at
each point specified in a TEST AT entry in
the TIA table.

Part II: The TESTRAN Interpreter 26.1

Entry from
Program Fetch

TSO TEST

Contents

Save

Supervisor
Routine

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

TESTRAN
Save

XCTL

Routine

RETURN

d TEST1 TEST OPEN

LPSW

TEST AT Z
DUMP DATA E-F
GO BACK

TESTRAN TESTATY

Test Open

SVC 49 TRACE FLOW G-H

GO BACK
TEXT AT X
TRACE STOP
62 (End Table)

Routine

TESTRAN <

™ START XXXXXX

LINK

TESTRAN

XXXXX

Dump Data
Routine -

RETURN
LINK

TESTRAN

Go Back
Routine

KRETURN

TESTRAN

Trace
Start
Routine

LINK

XCTL
RETURN

TESTRAN LINK

Tracer
Routine

RETURN

TESTRAN
Trace
Stop
Routine

LINK

RETURN

/

LINK
RETURN

SvC 38 SvC 38

XXXXX

\z

XXXXX
SvC 38
XXXXX

Router
Routine

H=Xm

H XXXXX

X SvC 38
XXXXX

Figure 3.

The test open routine copies onto the
output data set the assembly time symbol
tables, and external symbol dictionary
(ESD) data acquired from their external
residence using the address data retained
by the save routine. It also writes a
composite ESD (CESD) record, a relocation
table record, and records consisting of
copies of the TIA and reference tables. 1In
addition, it writes a test open record for
the editor, indicating that test open has
occurred. It then loads the TESTRAN inter-
preter's router routine into main storage
and passes control to the

at the point specified in the TEST OPEN
macro-instruction; i.e., the instruction
labeled START.

Control 1is 1in the problem state and

remains in this state and within the pro-
blem program until an inserted SVC 38
instruction is encountered. Control - then
goes to the supervisor state and through
the resident SVC routine to the router
routine, which determines the SVC 38
instruction that caused this = interruption.

problem program

TESTRAN Interpreter Logic Flow Example

This routine also determines which TESTRAN
test request is coded into the TIA table
immediately after the TEST AT entry that
caused that SVC to be inserted into the
problem program. s

In Figure 3, location Z in the problem
program CSECT is specified as the point. at
which the tests are to begin. The next
entry in the TIA table specifies DUMP DATA
E through F. The router routine examines
the entry and passes control, via a LINK
macro-instruction, to the DUMP DATA rou-
tine, which operates in the supervisor
state. After the contents of the main
storage area between instructions E and F

are written onto the SYSTEST, control
returns to the router routine.
The router routine determines that the

next TIA entry is a GO BACK entry and
passes control to the go back routine via a
LINK macro-instruction. The go back rou-
tine executes the problem program instruc-

Part II: The TESTRAN Interpreter 27

tion displaced when the SVC 38 was inserted
into the problem program. It then returns
control to the problem program at instruc-
tion E. Control is again in the problem
state. It remains in this state through
instruction F.

When instruction Y is executed, another
SVC 38 causes an interruption and a transi-
tion from problem to supervisor state
occurs. As a result of the interruption,
the router routine receives control. It
then 1locates the TIA table entry that
follows the proper corresponding TEST AT
entry; i.e., TEST AT Y.

Since the next TIA entry is a TRACE FLOW
G through H, the router routine passes
control to the trace start routine to
initiate the trace. This routine estab-
lishes the tables and entries necessary for
trace operations. It also generates an
output record to indicate that the trace
has been initiated and sets a switch to
show that a trace is in progress. When
this operation is completed, control
returns to the router routine. The router
routine examines the next sequential entry

in the TIA table to determine the next
routine to get control; i.e., a GO BACK
entry. Control, therefore, passes to the

go back routine, which reassembles the
displaced problem program instruction and
then examines the switch that indicates
whether or not a trace is in progress. (It

examines this switch each time it receives
control.) Since there is a trace in pro-
gress and the switch is set, the go back

routine does not return control to the
problem program, but rather passes it to
the tracer routine.

within

The tracer routine operates

supervisor state but executes the problem-

28

program. It examines the problem program
instruction-by-instruction and executes it
remotely. i

Each instruction is "lifted" from the
problem program sequentially, beginning
with the one displaced by the SVC, and

examined to determine whether it is a
program-transfer type instruction or an
execute that causes a program-transfer type
to be executed. If it is such an instruc-
tion within the specified 1limits of the
trace, an output record is generated to
describe the action.

In Figure 3, control remains with the
tracer routine until the routine encounters
the SVC 38 at location X. As the result of
encountering the SVC, the router routine
receives control and it again €finds the
proper entry in the TIA table to be inter-
preted; i.e., the TRACE STCOP entry. As a
result of the execution of the trace stop
routine, all traces in progress are
stopped. In this case, since the TRACE
FLOW is the only trace in operation it is
the only trace that is stopped. The trace
stop routine removes the trace table entry
that identifies the trace. An output mes-
sage, which indicates that the trace was
stopped, 1is written and control returns to
the router routine.

The router routine again determines the
next entry in the TIA table; i.e., an
end-table entry, (which is an implied GO
BACK). The router routine passes control
to the go back routine. The go back
routine reassembles the displaced problem
program instruction and executes it. Con-
trol then passes via the resident SVC
routine to the problem program, which con-
tinues to execute without further TESTRAN
steps. :

The TESTRAN editor is a post processor
that functions after the execution of the
problem program. Operating completely
within problem state, it converts test
output data generated by the TESTRAN inter-
preter into a printable output which the
user can employ to debug his problem pro-
gram. The editor is a separate job or job
step and is scheduled and controlled in the
same way as any problem program oOr proc-
essor.

Thirty-eight routines make up the
TESTRAN editor. These routines are divided
into the following:

o Initialization routines.
o Internal routines.
o Output routines.

All the TESTRAN editor's routines reside
on the 1link library (SYS1.LINKLIB) parti-
tioned data set. Control is passed among
the routines via LINK, XCTL, and RETURN
macro-instructions and to the routines of
the root module via direct branches.

The overall program structure of the
TESTRAN editor is shown in Figure U&. The
editor's routines are used in a variety of
patterns which are determined by the
sequence of records read from the input
data set. The input data set processed by
the editor is the TESTRAN interpreter's
output data set (SYSTEST).

In addition to test output data generat-
ed by the TESTRAN interpreter's service and
setup routines, the interpreter's test open
routine writes records that contain copies
of the TIA and reference tables, the assem-
bler symbol table (SYM), and extermal sym-
bol dictionary (ESD), the composite exter-
nal symbol dictionary (CESD), and the con-
trol section relocation table. If the
problem program is an overlay program, the
test output data also includes map change
records. These records, when available,
are used by the TESTRAN editor to prepare
symbolically labeled output records for the
user. Although the editor can function
without most of these input data records,
it cannot function without a copy of the
TESTRAN interpreter®'s TIA table.

PART IIT: THE TESTRAN EDITOR

Job Step
Initiation

IEGMCO0A
Root Module

START XCTL IEGMNOOA

Communication

Area

1/O Interface
IEGSBO0OA IEGMGO0A

Line Out

IEGSHO0A
Print Action XCTL

Rout
IEGMEOOA outer Editor

Editor ROU'EU'
Router outines

Editor
Internal
Routine

LINK
LINK RETURN

Data
Edit
Routines

Figure 4. TESTRAN Editor Organization

OPERATION OF THE TESTRAN EDITOR

The TESTRAN editor is a separately
scheduled job step that must be executed
after the execution of a problem program
which has been under test with TESTRAN.
For the editor to operate, a TIA table for
testing the problem program must have been
assembled and linkage edited into a 1load
module with the problem program, following
which the program must have been executed.
The interpreter setup and service routines
must have generated some test output data
and written it onto a secondary storage
data set whose ddname 1is SYSTEST. This
data set must be made available as input to
the editor at its execution time.

The editor provides the user with a
printed output to use in debugging the
problem program. Storage dumps are iden-
tified with loaded and assembled addresses,
and symbolic labels are applied to data
items they name. Dumps of program areas of
storage can be printed with the assembler
language mnemonics inserted, floating point
data items can be printed in decimal form,
etc.

The TESTRAN editor builds and uses sev-
eral tables which are essential to its
operatiom. The various tables serve to
establish the environment of +the problem

Part III: The TESTRAN Editor 29

RETURN

program as it existed when each test output
data record was generated.

EDITOR TABLES

The editor alters and updates its tables
throughout its execution. This continuing
process of keeping the tables current,
relative to the problem program's execu-
tion, is the job of the internal routines.
The tables include the table dictionary,
the map, the action table, the dump change

table, the symbol table, and the reference
table. Diagrams and field-by-field break-
downs of these tables are contained in

Appendix C.

TABLE DICTIONARY

The table dictionary contains four
8-byte entries. These entries give the
starting address and the current length of

the map, the reference table, the action

table list, and the dump change list.

MAP

The editor's map contains a series of
24-byte entries. Each entry is updated
continuously, throughout execution of the
editor, to show the identification, the
status, and the significant addresses of a
defined section of the problem program.
Defined sections include CSECTs, DSECTs,

unnamed or private code CSECTs, and blank
common control sections. The number of
entries in the map depends on the number of
program sections that are 1loaded. The
maximum size of the map is determined
during initialization, and is one of the
two possible sizes indicated in the
listing.

ACTION TABLE LIST

The action table list contains a series
of 10 byte entries. The entries give the
secondary storage address and identifi-
cation needed by the editor's routines to
locate the action table and a specific
entry within the action table. The number
of entries in this table is dependent on
the number of test open routine executions
during the execution of the problem pro-
gram. Maximum size for this table is
indicated in the 1listing.

30

ACTION TABLE

The action table is a version of the
TESTRAN interpreter's TIA table which has
been altered by an editor internal routine
to eliminate data not needed and to fix the
length of some variable fields. The origi-
nal interpreter TIA table has up to 23
entry types, whereas this altered version
retains only 9 entry types. If it exceeds

the size of the buffer used, the altered
TIA table (action takle) is written on
secondary storage as it is altered. The

action table list permits the retrieval of
the action table entries. A fixed length
buffer in main storage is used to form the
secondary storage records. This buffer is
also used by the symbol table initializer
routine.

DUMP CHANGE LIST

The dump change 1list 1is a series of
5-byte entries used to point to the secon-

dary storage residence of a dump change
table. Each entry gives the TIA table
number and the number of the DUMP CHANGES

macro-instruction entry within that TIA
table, plus the address on secondary stor-
age of the dump change table. The number
of entries in this table (list) depends on
the number of DUMP CHANGES entries inter-
preted at problem program execution time.
The maximum size of the list is determined
at initialization and is one of two possi-
ble sizes as indicated in the listing.

DUMP CHANGE TABLE

The dump change table contains a series
of 9-byte entries. This table is main-
tained on secondary storage. It indicates
the loaded address (at problem program
execution time), the length, and the secon-
dary storage 1location of the specified
data. This data is the last copy of the
area of storage referred to in a dump
changes TIA entry. It is the copy of the
storage area with which the editor compares
the copy in a qump changes record it is
processing.

SYMBOL TABLE

The editor®'s symbol table is an altered
version of the assembler's symbol table -
which was passed to the editor by the
interpreter test open routine. The symbol

table 1is stored on secondary storage in
records of a fixed length (size of symbol
table buffer) for each section definition.
An entry is made in the editor's map to
identify the first record of each symbol

table. Each record of variable 1length
symbol table entries is given a heading
which indicates the last (highest) offset

into the defined section,
The heading also

from the origin,
of the current record.

indicates whether that record is the last
record of a table. This heading data
speeds the search for symbol information

needed by the editor routines.

REFERENCE TABLE

The TESTRAN editor's reference takle
contains a series of six byte entries. It
is an altered version of the TESTRAN inter-
preter reference table. It contains .the
displaced instruction bytes and their loca-
tions in the problem program plus the
segment number of the associated TIA table.
It is used by the editor in showing what
instruction was displaced, in dump type
output records containing inserted SVCs.

The number of entries in this table is
dependent on the number of TEST AT entries
in the interpreter TIA table. The maximum
number of entries is determined at initial-
jzation and is one of two possible limits
indicated in the listing.

INITIALIZATION ROUTINES

The Start Routine (IEGMCOO0A)

At edit time, control passes initially

to the start routine. (See cChart 50.)
This routine gets main storage for input
record buffering. It tailors the table
sizes to the amount of storage available.

The start routine processes parameters from
the job control EXEC statement (PARM=). It
also opens the three data sets used by the
editor: the input data set (SYSTEST), the
intermediate data set (SYSUT1), and the
output data set (SYSPRINT). SYSTEST is the
output data set from the interpreter, gen-
erated at problem program execution time.
SYSUT1 is the editor's scratch or working
data set maintained on secondary storage.
SYSPRINT is the data set upon which the
editor's output print data is written.

The start routine passes control to a
LOAD macro-instruction routine to call the
editor's root module (IEGMNOOA) into main
storage. The tables and buffers used by

the editor are initialized by the start
routine after it has acquired the necessary
storage. The area of main storage occupied
by the start routine is relinquished when
it passes control to the root module via an
XCTL macro-instruction.

The Root Module (IEGMNOOA)

The root module is divided into a com-
manications area, an I/0 interface, and
three discrete routines; the print routine,
the line out routine, and the editor router
routine.

The module is loaded into main storage
by the start routine and remains resident
in main storage throughout the editor's
execution. The root module is the only
editor module that is maintained thus.
Control is passed to the module's routines

from other editor routines via a branch
list.

Print Routimne (IEGSHQOA): The print rou-
tine writes the editor's output records
onto SYSPRINT. This routine is device
independent. It may or may not actually

print the output records. When control
passes to the print routine, the current
120-character buffer is written onto S¥YS-
PRINT and the 1line count total is incre-
mented. To write the record onto SYSPRINT,
the print routine calls upon the I/0 inter-
face routine to establish communication
between it and data management's BSAM which
performs the writing function.

When the maximum line count per page is
reached, a page eject is initiated and a
new header record written before the next
output record can be written. Once an
output record is written, its buffer is
cleared.

The print routine checks the output page
count. If the established maximum page
count 1is reached, a special exit from the
print routine is taken.

Line Out Routine (IEGSBOOA): The line out
routine builds the print lines written onto
SYSPRINT by the print routine. Data to be
printed is indicated to this routine
through designated general registers and
parameters that are contained within the
communications area. Information concern-

ing the source of the data, the length of
the data, and the number of blanks to
follow the data are all passed to this
routine.

A pointer in the communications area,
indicating the current position in the
current buffer into which data can be

Part III: The TESTRAN Editor 31

added, is used to indicate where the data
fits into the buffer. The line out routine
updates this same pointer and checks for
attempted 1line overflows, passing control
back to the calling routine through an
overflow exit without entering anything in

the line if such an overflow attempt
occurs.

Editor Router Routine (IEGMEQOOA): The edi-
tor router routine (see Chart 50) controls

the reading of 21 input record types from
SYSTEST and makes an initial analysis of
the record type. Depending on that analy-
sis, this ‘routine 1links to the action
router routine for records that require the
selection of a routine to process them, or
back to the routine that processed the
previous record for a continuation type
input record.

I/0 Interface (IEGMN80OA): All reading and
writing of input, output, and secondary
storage data within the TESTRAN editor uses
the I/0 interface portion of the root
module. This portion contains the DCBs,
the DECBs, and the buffering routines used
by the editor in its interface with BSAM.

Communications Area (IEGMNOOA): The com-
munications area of the root module con-
tains the constants needed by the editor's
other routines to maintain contact with one
another. It contains the constants and
common address parameters used by the other
routines and a branch list to allow control
to be passed from a routine to one within
the root module.

The Editor Message Routine (IEGSFQ0A)

All error and informational-type mes-
sages issued by the editor are written
under control of the editor message rou-
tine. (See Chart 51.) The message text is
stored within the calling routine. Whenev-
er an editor routine requires a message to
be written onto SYSPRINT, it links to this
routine. The editor message routine, in
turn, calls the 1line out routine to move
the selected message to the current print
buffer, and the print routine to write the
message onto SYSPRINT. At the conclusion
of its functions, the editor message rou-
tine returns control to the editor routine
that issued the message request.

INTERNAL ROUTINES

The TESTRAN editor's internal routines
process the input record types that provide
information concerning the problem ' program

32

whose test output data is being edited.
This information is maintained by the edi-
tor in the form of storage maps and tables.
Each time the problem program's storage
configuration changes due to an overlay,
the TESTRAN interpreter writes a map change
record which is essentially a copy of the
overlay segment table.

Each map change record is applied to the
storage map by the internal routines to
reflect the current (relative to problem
program execution) status of storage. Any
output records that follow can then be
applied to the proper program section and
any symbolic data available can be assigned
to the proper data. Other internal rou-
tines update tables used by the editor,
generate editor altered versions of inter-
preter tables, process symbol table
records, and provide end-of-run processing
when needed.

The Reference Table Routine (IEGRKOOQAZ)

The reference table routine (see Chart
52) processes reference table type records
read from SYSTEST. It refers to the prolo-
gue record or the editor's map to determine
the overlay segment number of the TIA table
associated with this reference table, and
adds this information to the data in the
reference table entry from the interpreter.
The address of the TEST AT macro-
instruction ‘entry in the interpreter's TIA
table is deleted from the reference table
entry and the resulting altered form of the
entry is stored in the editor's reference
table. When it completes the processing of
the reference table record, this routine
returns control to the editor router
routine.

The Action Table Routine (IEGRLO0A)

The action table routine (see Chart 52)
is linked to by the action router routine
when the router routine determines that the
current input record is a TIA table type.
The routine eliminates all TIA table entry
types except for the test open, dump, and
trace types. These entries are altered to
eliminate non-useful data An editor action
table is formed from them. As the fixed
length buffer used to form the table is
filled it is written onto secondary stor-
age. All the action table entries are
presented in Appendix C.

The Invalid Record Routine (IEGPEOOA)

The invalid record routine (see Chart
53) keeps an invalid record count that is
updated each time an unreadable or invalid-
type record is encountered as input to the
TESTRAN editor. If the invalid record
count reaches three, the input is
considered to be uneditable and the editor
run is terminated. Control passes to the
editor message routine, so that a message,
indicating that the count of invalid
records has exceeded the 1limit, can be
issued.

If the count has not reached +three, an
invalid record message is issued and con-
trol is returned to the editor router
routine. Should the count reach the limit,
after issuing both the invalid record and
excessive invalid records messages, the
invalid record routine passes control to
the end-of-run routine to terminate the
job.

The End-of-Run Routine (IEGPKOOA)

The end-of-run routine (see Chart 53) is
entered via an XCTL macro-instruction from
the invalid record routine. An actual
end-of-data-set condition from SYSTEST,
exceeding the maximum-pages-of-output
limit, an uncorrectable I/0O error, or an
invalid CSECT relocation table record also
causes control to be passed to this rou-
tine. The routine writes (on SYSPRINT) an
end-of-job message, a maximum pages message
or an I/0 error message (when applicable),
and a count of statements processed. It
also closes the data sets opened by the
editor and returns control to the supervi-
SOor.

The Relocation Table Routine (IEGREOQOA)

The relocation table routine (see Chart
52) processes CSECT relocation table
records written by the TESTRAN interpreter.
Since the editor's map is kept sorted on
the loaded address field, the order of
entries within the map. does not correspond
to the sequence in which the entries were
made. Each entry in theée map, therefore, is
given a sequence number.

When a CSECT relocation table record is
processed, the relocation table routine
applies each relocation factor to the map

in sequence number order (i.e., from the
lowest numbered CSECT to the highest num-
bered one). Following the application of

the relocation factors, this routine
searches the program . storage area for
defined sections which occupy storage iden-
tified in the map as belonging to some
other defined section. Such a situation
develops when using LOAD, DELETE, LINK, and
XCTL macro-instructions but not through an
overlay. In such circumstances, the entry
in the map that details the section that
has been "stored over" is purged from the
map. The routine again sorts the map on
the loaded address field. It then returns
control to the editor router routine.

If the relocation factor cannot be cor-

related with the map, a message 1is issued
and the editor run is terminated.

The Map Change Routine (IEGRCOOA)

‘"recoxrd to the TESTRAN

The map change routine (see Chart 54)
processes the map change record from the
interpreter and applies +the data in the
editor's map. The
storage map contains information that con-
cerns the storage in use by the problem
program at the time testing was taking
place. The map change record is written by
the interpreter because an overlay of the
problem program has altered the contents of
storage.

CSECTs and their associated TIA tables,
which were active and may have been gener-
ating test output data previous to the
overlay, wmay have been overlaid and no
longer be active. For the editor to apply
the proper set of symbolic 1labels to the
test output data it is processing, it must
keep its storage map current, relative to
that data. The map change routine alters
the map to keep it current, reflecting the
changes from active +to inactive (or vice
versa) of all CSECTs so changed. At its
completion, it returns control to the edi-
tor router routine.

The CESD Map Routine (IEGRAO0OA)

When the action router routine (see
Chart 53) determines that the input record
from SYSTEST is a CESD record, it passes
control to the CESD map routine via an XCTL
macro-instruction. If an editor map
exists, the addresses assigned by the link-
age editor and contained in the CESD record
are inserted in it, and sequence numbers
are assigned to the CSECTs in the map. Iif
no map exists when a CESD record is read,
this routine creates one from the available
information. At the conclusion of its
operations, this routine returns control to
the editor router routine.

Part III: The TESTRAN Editor 33

The Symbol Table Processing Routines

Five routines are used by the TESTRAN
editor . to process symbol table (SYM)
records. The routines process both the
assembler SYM records and the assembler's
external symbol dictionary (ESD) records.
The output from these routines is written
onto secondary storage (SYSUT1l). This sec-
ondary storage data is in the form of an
altered symbol table arranged to expedite

retrieval by the other editor routines.

Symbol Table Base Routine (IEGRFO00A): The
symbol table base routine (see Charts 55
and 56) receives control, via an XCTL
macro-instruction; from the action router
routine when it finds that the input record
to be processed is a symbol table record.
The routine establishes addressability of
the communication area for +the SYM rou-
tines. It contains subroutines necessary
to get the variable length SYM records from
the input area and to build and search the
editor map.

This routine remains resident in main
storage throughout the SYM processing with
control being passed to its subroutines
from each of the other SYM routines.

Symbol Table Initializer Routine
(IEGNS00A): The symbol table initializer
routine (see Charts 55 and 56) receives

control from the symbol table base routine
via a LINK macro-instruction. Initial
entry to this routine causes the contents
of the action table buffer to be saved by
writing it onto secondary storage. This
frees the buffer for use during the execu-
tion of the symbol table initializer rou-
tine. The routine causes the .editor map
base to be established. Subsequent entries
to +this routine are via an XCTL macro-
instruction from the symbol table last pass
routine at the conclusion of SYM processing
for each assembly of the load module. If
more data (SYM or ESD records) is to be
processed the symbol table initializer
routine operates and then passes control,
via an XCTL macro-instruction, to the sym-
bol table first pass routine. Otherwise,
the action table buffer is restored, and
control is returned to the editor router
routine.

Symbol Table First Pass Routine (IEGNYQOA):
The symbol table first pass routine (see
Charts 55 and 56) is entered from the
symbol table initializer routine via an
XCTL macro-instruction. It processes the
variable - length input SYM records into
fixed length recoids, sorts these records,
and writes them onto SYSUT1.

This routine exits, via an XCTL macro-
instruction, to the symbol table ESD

34

.records

routine when the SYM records (in the input)
end and are followed by the ESD records.

Symbol Table Last Pass Routine (IEGSPOOA):
The symbol table 1last pass routine (see
Chart 57) is entered from the symbol table
base routine at the conclusion of process-
ing SYM records from each assembly. It
gets the fixed length records formed by the
symbol table first pass routine from their
secondary storage residence and processes
them into variable 1length records broken
down by CSECT. The new strings of symbol
table records formed by the preceding proc-
ess are again written onto secondary stor-
age (SYSUT1) and the I/O address of the
symbol table data for each CSECT is placed
in the editor map entry for that CSECT.

The symbol table 1last pass routine
exits, via an XCTL macro-instruction to the
symbol takle initializer routine to process
any following SYM records.

The Symbol Table ESD Routine (IEGRGOOA):
The symbol table ESD routine (see Chart 58)

processes the ESD records read in as part
of the SYM records. If +the record 1is a
section definition (CSECT, DSECT, etc.),

the symbolic name 1is inserted into the
editor map. The routine is terminated by
the symbol table base routine at the end of
each assembly's SYM records so that the
symbol table base routine can get the next
input record if it is a SYM record.

OUTPUT ROUTINES

The output routines
from the data supplied by the
TESTRAN interpreter. They are supported by
the initialization and intermnal routines.
The output routines prepare symbolically
labeled output data in the form of storage
dumps, and traces for the user to employ in
debugging his problem programs. The ini-
tial determination that a record read in by
the editor is other than a continuation
type is made by the editor router routine.
When the editor router routine detects such
a 7record, it passes control to the action
router routine so that it may determine
which routine 1is needed to process that
record.

produce output

The Interpreter Message Routine (IEGPI0OA)

The interpreter message routine (see
Chart 53) receives control from the action
router routine for either of the two inter-
preter message record types. The records
contain the code used by the interpreter

N

message routine to select the proper mes-
sage from the table of messages contained
within the routine itself. Depending on
which of the record types the routine is
processing, the executed statements line
may or may not be printed. To identify the
message as a TESTRAN interpreter message,
this routine prefixes the characters
"***% JEGI" to the head of the message.

If the message includes an address as a
suffix, this routine links to the address
analyzer routine to allow display of the
address in symbolic form. It uses the line
out and print routines of the root module.

This routine exits, via a RETURN macro-
instruction, to the editor router routine.

The Action Router Routine (IEGMGOOA)

If the editor router routine determines
that the record from SYSTEST is to be
processed, it passes control to the action
router routine (see Chart 54). The action
router routine further analyzes the record
to determine whether it requires an output
routine to process it, and if so whether
its output selection code is one which is
to be processed. If the record does not
have one of the selected output selection
codes, it is ignored. Control remains with
the action router until any continuation
records for the non-selected record have
been read, following which control is
returned to the editor router routine.

When the routine processes an output
record, it formats the "AT LOCATION" (where
applicable), the "EXECUTED STATEMENTS", and
the "CURRENT ACTION" lines. It locates the
editor action table entry that corresponds
to the record and then passes control to
the specific output routine, which process-
es that record type, via an XCTL macro-

instruction.
If the record to be processed is one
which requires the use of an internal

routine, this routine passes control to
that internal routine via an XCTL macro-
instruction.

The DUMP COMMENT Routine (IEGNMOOA)

If the action router routine determines
that the record to be processed is a DUMP
COMMENT type, it passes control to the DUMP
COMMENT routine (see Chart 59) via an XCTL
macro-instruction. The DUMP COMMENT
routine extracts the comment number from
the prologue record of +the DUMP COMMENT

‘record-pair and uses it to find the comment

in the editor action table. The comment is
moved to the current print buffer and then
written onto SYSPRINT by the line out and
print routines, respectively. At the com-
pletion of this action, control is returned
to the editor router routine.

The DUMP TABLE Routine (IEGNPOOA)

‘

When the action router routine deter-
mines that a DUMP TABLE record is being
processed, it passes control to the DUMP
TABLE routine (see Chart 59) wvia an XCTL
macro-instruction. The DUMP TABLE routine
examines the action table entry associated
with this record to determine which table
type is to be dumped and then applies
available names +to the respective logical
sections of the block. Lengths and names
of fields, and the sequence of fields in a
table are contained within the routine.
The symbolic location of the table,
acquired from the address analyzer routine,
is written onto SYSPRINT with the table,
using the line out and print routines.

The TRACE STOP Routine (IEGPAOOA)

If the record type being processed by
the action router routine is a TRACE STOP
record, the action router routine passes
control to the TRACE STOP routine (see
Chart 59) via an XCTL macro-instruction.
The TRACE STOP routine examines the editor
map (if it exists) to acquire the symbolic
identification of the TRACE macro-
instructions whose trace actions are halted
by this TRACE STOP action. This
information 1is moved to the current print
buffer by the line out routine and written
onto SYSTEST by the print routine. Control
is returned to the editor router routine.

The TRACE Routine (IEGNVOOA)

Except for TRACE STOP, all TRACE macro-

instruction records encountered by the
action router routine result in a control
transfer to the trace routine. (See Chart

60.) This includes records generated by
the TESTRAN interpreter's trace start rou-
tine. If the record is a trace flow or

trace refer output, the problem program
instruction that caused the record to be
generated is indicated in the output record
as it appeared in storage.

Part III: The TESTRAN Editor 35

If the instruction was performed remote-
ly by an execute instruction, it is indi-
cated in its modified form along with the
execute instruction. Registers involved
and comments requested are also included in
- the output record generated and moved to
the print buffer by the line out routine
and written onto SYSPRINT by the print
routine. The trace routine links to the
address analyzer, attribute analyzer, dump
data, and dump panel routines.

The TEST OPEN Routine (IEGPGOOA)

The action router routine passes control
to the test open routine (see Chart 61)
when it encounters a test open type record
as its input. The test open routine finds
the action table entry that corresponds to
the record and extracts the information
about the TEST OPEN macro-instruction from
that entry.

The 1line out routine moves the data to
the current print buffer, the print routine
writes the data onto SYSPRINT. When the
test open routine is terminated, control
returns to the editor router routine.

The DUMP_MAP Routine (IEGNGQ0A)

If the action router routine detects a
dump map type record, it passes control to
the dump map routine (see Chart 59) via the
XCTL macro-instruction. The routine takes
the data in the record, which shows the
storage configuration used by the program
under test at its execution time, and
writes it onto SYSPRINT.

The line out routine moves the data to
the current print buffer, the print routine
writes the data onto SYSPRINT. At comple-
tion, the DUMP MAP routine returns control
to the editor router routine.

The TEST CLOSE Routine (IEGPH00A)

A test close type record causes the
action router routine to pass control to
the test close routine (see Chart 53) via
the XCTL macro-instruction. This routine
lists the TESTRAN interpreter TIA tables
which the TEST CLOSE entry caused to be
closed (deactivated). The routine uses the
address analyzer routine to correlate the
symbolic name of the tables with +their
storage addresses and uses the line out and
print routines to move the data to the

36

current print buffer and write it onto

SYSPRINT, respectively.

The routine also adjusts the editor's
internal tables to reflect the altered
status of the testing environment of the
problem program brought about by the test
close operation. For each TIA table closed
by the test close routine, its correspond-
ing entry in the action table 1list is
zeroed.

Exit from the test close routine is to

the editor router routine via the RETURN
macro-instruction.

The DUMP CHANGES Routine (IEGNDOOA)

The action router routine passes control
to the dump changes routine (see Charts 62
and 63) via an XCTL macro-instruction when
it encounters a dump changes type record.
The routine uses the dump change 1list to
determine if an earlier image of the stor-
age area covered by this record exists. If
such an image does exist, the dump change
list points to its dump change table on
secondary. storage.

The dump change table entry indicates
the address of the image, also on secondary
storage. This image is compared byte-by-
byte and field-by-field with the image
contained within the input record. If no
variations exist between the current
(input) image and the one on ‘' secondary
storage, "none" 1is written onto SYSPRINT.
If, however, a difference does exist, the
changed areas are written onto SYSPRINT.
The new, or latest, image of the storage
area becomes the new standard for
comparison, and replaces the old image on
secondary storage.

The dump changes routine passes control
to other editor routines wvia the LINK
macro-instruction. During its operation,

this routine uses the symbol search rou-
tine, the attribute analyzer routine, the
editor message routine, and the root
module's line out and print routines.

Exit from the dump changes routine is to

the editor router zroutine via a RETURN
macro-instructione.

The DUMP DATA Routine (IEGNAOOA)

The dump data routine (see Chart 61) is
entered from the action router routine via
an XCTL macro-instruction when +the action
router routine detects a dump data type

~

record or via a LINK macro-instruction from
the trace routine for a trace refer type
record. In either case, the routine pro-
duces output records that contain an image
of a specified area of storage (at problem
program execution time) with all possible
labels and attributes indicated. ’

For a dump data record, this is the sole

‘purpose, but for a trace refer record both
a "before"™ and an "after" image must be
produced. The routine scans the action

table entry that corresponds to the inter-
preter TIA table entry whose interpretation
caused the input record to be generated.
It searches the entry for attribute over-
riders for the data. Any such overriders
found are stored in the root module's
communications area. The dump data routine
links to the symbol search and attribute
analyzer routines to locate and analyze
symbol table attributes, respectively.

The data edit routines are called, as
needed to process each tield defined by the
attributes. ’

Exit from this routine is via the RETURN
macro-instruction. For the trace refer
record, the return is to the trace routine;
for the dump data record, it is to the
editor router routine.

The DUMP PANEL Routine (IEGPPO0A)

The dump panel routine (see Chart 61)
receives control from the action router
routine via an XCTL macro-instruction when
the action router routine detects a Qump
panel type record. The record, as generat-
ed by the interpreter, contains images of
all 16 general registers, the floating
point registers (where applicable), and the
program status word (PSW). The register
selection mask in the action table is
interrogated to determine which of the
register images is to be printed.

The dump panel routine links to the data
edit routines to convert the data in the
registers to printable form and expands the
PSW. The root module's line out and print
routines are used to move the data to the
current buffer and to write the data onto
SYSPRINT, respectively.

Exit from the dump panel routine is to
the editor router routine via the RETURN
macro-instruction.

The Address Analyzer Routine (IEGSNOOQOA)

The address analyzer routine (see Chart
64) is entered from the other output rou-
tines via a LINK macro-instruction. It
identifies a given loaded address by its
assembled address, its symbolic name, and
its CSECT name. This routine obtains this
information by searching the map, and sup-
plies it to the print buffer via the 1line

out routine, as requested by the calling
routine. Following its execution, control
passes to the calling routine via the

RETURN macro-instruction.

The Symbol Search Routine (IEGSQO00A)

The symbol search routine (see Chart 64)
is linked to by the other editor routines.
It finds the attributes of a data item for
which the calling routine can supply the
loaded address. The routine searches the
editor map and the corresponding symbol
table for .these attributes and sets a
pointer to them.

If the loaded address supplied for a
data item 1is not at the beginning of that
item, but at some offset from the begin-
ning, the symbol table attributes (length,
duplication factor, etc.) are altered to
reflect this. For duplicated items, the
duplication factor is altered to properly
reflect the portion of the item from the
offset to the end of the item. For multi-
ple DSECTs, an offset from the beginning of
the first DSECT is converted to an actual
offset into the correct copy.

The attributes for the data, as deter-
mined by this routine, are made available
to the calling routine.

Exit from the symbol search routine is

via a RETURN macro-instruction to the call-
ing routine.

The Attribute Analyzer Routine (IEGSRO0A)

The attribute
Chart 65) is

analyzer routine (see
linked to by other output
routines (dump data, dump changes, and
trace.) This routine correlates the attri-
butes of a data item given to it at
assembly time or overriders provided by the
user with the data item. It maintains the
relationship, between data and its attri-
butes, that was established by the symbol
search routine. It does this by continual-
ly wupdating pointers so that the proper
attributes continue to be applied to data

Part III: The TESTRAN Editor 37

and by causing the data to. be converted to
hexadecimal format when input data comes
from the subsequent CSECTs. The routine
also initiates the writing of a print
buffer when a line is filled and identifies
each print 1line with its assembled and
loaded addresses. Attribute pointers are

maintained in the root module's communi-
cation area. This 1routine 1links to the
appropriate data edit routine through its

edit linkage subroutine (IEGEDIT).

Note: The TESTRAN editor uses a system of
three print 1line buffers. The format of
the printed output for a specific type of
test output data can be found in the
publication IBM System/360 Operating Sys-
tem: Control Program Services.

The Data Edit Routines

The data edit routines consist of eight
routines that convert data from one format
to another and prepare it for printing.
These routines are linked to either by the
attribute analyzer routine or by the DUMP
PANEL routine. The calling routine remains
resident in main storage during the opera-
tion of a data edit routine.

If a record being processed has a con-
tinuation record, control passes from the
data edit routine to the editor router.
The editor router gets the continuation
record and passes control back to the data
edit routine. The amount of data converted
by an edit routine is dependent on the
item®s length attribute as stored in
IEGCMARA within the communications area of
the root module. All results from data
edit routines are in the EBCDIC print
character form. The actual moving of edit-
ed data from the work area to the print
buffers is accomplished by the attribute
analyzer routine in all edits except zoned
decimal, alphameric and hexadecimal (over 4
bytes).

Hexadecimal Edit Routine (IEGSU01Z): The
hexadecimal edit routine (see Chart 66)
converts U-bit hexadecimal values to the
corresponding EBCDIC character. The rou-
tine moves the substituted EBCDIC charac-
ters to the current print buffer and
returns control +to the calling routine.
The processing is done one field at a time,
with control returning to the calling rou-
tine after each field is processed.

‘nstruction Edit Routine (IEGSU06Z) : The
.nstruction edit routine (see Chart 66)
replaces the operation code portion of an
instruction image (in its internal machine
coded form) with the assembler language
mnemonics for that instruction. The oper-

.38

and portion of the instruction image is
converted to the EBCDIC characters for the
hexadecimal values they represent. If a
TESTRAN SVC instruction, that was inserted
by the interpreter into the user's program,
is encountered, its image is placed into
the print buffer so that it appears direct-
ly below the instruction bytes it displaces
when the buffers are printed.

The correlation between SVC and dis-
placed instruction bytes is made through
the use of the editor's reference table.
If no reference table exists, only the SVC
instruction will be printed. If the rou-
tine encounters an invalid operation code
byte, it is placed into the print buffers
in its 2-hexadecimal-character form with
the two characters placed side by side and
flanked with asterisks in the printed out-
put. The routine will retain control for
the area defined by one entry in the symbol
table, or for any area with an instruction
overrider.

Alphameric Edit Routine (IEGSU40Z): The

alphameric edit routine (see Chart 66)
moves a specified number of EBCDIC coded
alphameric characters into the current
print buffer and checks to determine wheth-
er or not each character is a valid print
character. If a character is not a valid
print character, this routine converts it
to its 2-hexadecimal-character equivalent
and places the two hexadecimal characters
into the print buffers so that they will be
printed one above the other.

The routine is linked to either by the
dump panel routine or by the attribute
analyzer routine. At the conclusion of its
operation, control returns to the calling
routine.

Binary Edit Routine (IEGSUS50Z): The binary
edit routine (see Chart 67) converts each
bit within each specified byte into its
equivalent decimal value, and moves the
decimal character (or characters) into the
current print buffer. The routine leaves
the result of 1its conversion of the last
specified byte in the work area. The
calling routine moves the last byte's con-
verted value into the print buffer.

Zoned Decimal Edit Routine (IEGSU60Z): The
zoned decimal edit routine (see Chart 66)
checks the validity of the sign of the
zoned decimal number to be processed. If
it is a wvalid sign, this routine places
that sign ahead of the number in the print
buffer. The digits are moved to the print
buffer and any found to be invalid are
converted into their 2-hexadecimal-
character equivalent and placed into the
print buffer so that they are printed one
above the other.

If the length of the input data field is

greater +than 16 bytes, control passes to
the alphameric edit routine via an XCTL
macro-instruction. Otherwise, control

returns to the calling routine.

Packed Decimal Edit Routine (IEGSU70Z):
The packed decimal edit routine (see Chart
66) converts or "unpacks" data in packed
decimal form into a zoned decimal equival-
ent. This routine does not perform a
validity check of the data. "If the length
of the input field is greater than 16
bytes, control passes to the hexadecimal
edit routine via an XCTL macro-instruction.

Fixed-Point Edit Routine (IEGSUS80Z) : The
fixed-point edit routine (see Chart 51)
converts binary numbers to decimal numbers.
This routine operates on binary numbers
with a scale that is equal to, greater
than, or less than zero. Processing of the
number by the routine depends on the scale,
with a different procedure for the 3 varia-
tions in scale. The converted output (in
the form of decimal numbers) is placed into
the print buffer. Control then returns to
the calling routine.

Floating-Point Edit Routine (IEGSU90Z):
The floating-point edit routine (see Chart
65) converts a floating-point number in its
internal hexadecimal coded form into a
decimal number and places the decimal num-
ber generated into the current print buf-
fer. The actual conversion routine follows
several basic steps, some of which depend
on whether the floating-point number is
short or long. The relative scale of the
number also affects the processing flow.
More processing is necessary for larger or
smaller numbers than for mid-range numbers.

It is possible that the separate job
step of editing TESTRAN test output data
may also be done on a separate computing
system. It is possible that a computing
system without the floating point feature
might be called upon to edit floating point
data. For this reason, only the standard
instruction set 1is used in the floating
point edit routine.

TESTRAN EDITOR CONTROIL FLOW FOR SAMPLE EDIT

Figure 5 depicts the
through the TESTRAK editor

control flow
for a sample-

case editor run. The sample is a
relatively simple one in which the problem
program was tested with TEST OPEN, TEST AT,
and TEST CLOSE test control macro-
instructions and a DUMP DATA test action
macro-instruction.

As Figure 5 indicates, initial entry to
the TESTRAN editor is made into the start
routine. After it initializes the program,
the start routine transfers control to the
editor router routine. This routine reads
the 1input records from SYSTEST and passes
control to the action router unless the
record is a continuation record. For a
continuation record, the editor router
passes control directly back to the routine
which had been processing the previous
portion of the record.

When . the action router gets control it
examines the record type to determine which
routine is to be given control. The
records to be processed in this sample edit
are indicated within the action router
block, sequentially from top to bottom, in
the succession in which they are read.

Opposite each record-type name are
blocks representing the routines used to
process that record type. In some cases, a
routine in the longer sequences may trans-
fer control back to a previous routine
which 1is still resident in main storage.
In other instances a routine that was used,
early in the processing sequence, has to be
loaded into main storage again.

Figure 5 shows that the records

essed are:

proc-

Symbol Table
CESD

Relocation Table
TIA Table
Reference Table
Test Open

Dump Data

Test Close

End of Data

The end-of-data processing is initiated
by an end-of-data-set condition rather than
a record.

Part III: The TESTRAN Editor 39

** Required Data

Figure 5.

40

IEGMCO0A|

!

Edit Routine

IEGMGO0A.

Symbol
Table

1 Record

®._> IEGMEOOA |_»

CESD

Record

Relocation
Table
Record

TIA
Table
Record

Reference
Table
Record

Test
Open
Record

Dump
Data
Record

Test
Close
Record

End of
Data

TESTRAN Editor Control Flow for Sample Edit

L >{1EGRFO0A |—{IEGNS00A | IEGNY00AL] IEGRGO0A || 1EGSPOOA |—{1IEGNS00A L [EGRFO0A
| >! IEGRAGOA —>®
! IEGREODA —>®
[
—>{ IEGRLOOA —-@
L >1 |IEGRKOOA —>®
N lEGPGOOA—>®
>/ IEGNAGOA|—]|IEGSQO0A | IEGSRO0A |—] IEGSU**A] 1EGNA00A__>®
|5 IEGPHO0A _,®
—> IEGPKO0A -———>. Retum to Supervisor

TN

PR

Flowchart representations of the rou-
tines described in the text are printed on
the following pages. The numbering system
used to identify the charts is as follows:

10 through 15 - TESTRAN macro-definition
processes.

30 through 43 - TESTRAN
routines.

CHARTS

interpreter

50 through 67 - TESTRAN editor routines.

Charts

41

Chart 10. TESTRAN Macro-Definition - TEST

o¥q oty
A3 *q A4 *g FRRRRASHERE N R RN RN
FE AR N AR o* IS . ¥ * *
* BEGIN * o THIS *o NO o ¥ WAS * GENERATE *
* EXPANSION *. >*o. ‘TEST OPEN % > XY TEST > * ERROR *
* * *o o* *. OPENED * MESSAGE *
XREEEREREEREER *o o *o . * *
*e ok L ERREREREEERRRRRRN
* YES * YES
]]
Ve
HHFREBD N RN RREEER B4 * o \"2
HRERG]HRRRNEEAR »* * . o 1 *e HERRBSRREREERRR
* TERMINATE * * GENERATE * *q % THIS A * TERMINATE *
* EX¥PANSION * o * ERROR *< ¥ *, LEGAL TEST * EXPANSION *
* * * MESSAGE * *q ¥ *e TYPE ¥ * . *
M REEI R R AR * * *, o* *. ok l RN NRN
L I e r e o e oF
* YES * YES EEEE
* *
* E1 *
* *
LA 222
e*eo Ve Ve
FRERRC] RERRENRARRR cz2 xq c3 *q ca *o W C SRR N
* * o® ARE % IS *q % ARE ¥, * *
* GENERATE * YES <*¥0THER POSI-#%*, ENTRY POINT#*, o* REQUIRED %4 NO * GENERATE *
* ERRUGR ol S *TIONAL OPERANDS*< SPECIFIED % *0OPERANDS SPEC- #———>¥% ER *
* MESSAGE * *. SPEC- % o #.IFIED. ANDG* * MESSAGE *
* * *FIED o% *oVALID* * *
IR KNKR XK Xy o Xe oF RN RN RN RN
’I * WO * YES
i
I v v
v EEEERD2HFREENERRR HRHARDLE R XA RS v
FRBED] R RERAERER * »* * SHIFT TO * HREDSHRRRHREEN
* TERMINATE * * STORE AND * I *TESTRAN CSECT +% * TERMINATE *
* EXPANSION % * INITIATE *< * GENERATE TYPE * * EXPANSION ¥
* * # CSECT NAME # % CODEs IDENTa, * * *
IR TN * *® * AND LENGTH *]
ER 2222222222222 E2 222 22 sttt
XN
* *
*x El *——y
* *
AR |
v Ve
F R T X RRED MM NE N RRR Ea .
* * * PROCESS ENTRY ¥ XX e* IS *q
* GENERATE * *POINT, DCB NAME* * * YES o THIS *e
* ERROR * * IDENTIFIER, #* * K4 #<——=n, TEST CLOSE
* MESSAGE * * SELECT CODE, * - *e -
* * * MAXP AND MAXE * *AE *e o
RN *, oF
! * NO
1
l
| oVe
v F2 .
HHENE] HAERRRERNE % ARE ¥, ERER °
* ' TERMINATE * «*OTHER TESTS¥*. NO * * ¥ THIS .
* EXPANSION * *o,TO BE OPENED % >% K4 * *o TEST WHEN
* * e o ¥ * * *, -
R R ST) *, R EX 22 *q o
e ¥
* YES
v v
EEERRG2REE RN RRR EERERGESERREXRRRXSR
ERERE * PROCESS * * *
* * * OTHER * * PROCESS *
* K& *< * TEST * »* DATAM *
* * * OPENS * »* *
L2 2 R * * * *
* * e I R L I R T
* Hi *
* *
LR s 2
| v
| L2 2]
] » *
Ve * g4 »
H1 *g RN NN R RN * *
«® 1S * * ¥ - ¥ * NN
«* COUNTER * GENERATE * NO .* SELECT *o YES o% .
g SPECIFIED >%* A COUNTER * SPECIFIED o#*<m——mi—i, o*
. o* * * . o . .
*, ot * * *, o«* *, ¥
*o oF HEEEEREHERRREREER *e oF X, o
* YES * YES * NO
]
i | : |
i v i
i *XEE i
, S | i
v * J4 % v v
EX S NER ST IS 2] * * HHEER JIHRERER AT ERRFEJLRREXR TR R RN
x * EREKR #* * * * ERERJEEERERA LS
* PROCESS » * PROCESS * * PROCESS * * TERMINATE *
* THE COUNTIR * * SELECT * >% ADDRESSES *<— * EXPANSION *
% ¥ * CODE * * | * *
* * * * * * HFREEFFERER RN
FERREEFREREEERREN FEREERRRRRARE AR RS P e s TR A
EEEE
% * 1 !
i * Jao*]
M * *
i | - l
td * |
* 4 * v
* * EERRRKGEREERR R XS FRRERLSERER LR RR AR
LS L X3 LA 2 s * * * *
. * * * GENERATE - * RESTORE »
* K& * >* FL * >+ USERS *
* * * * * CSECT *
Exen * * * *
EERRFRRERREERR RN EREERAFERER R RN

42

TN

Chart 11.

HERHAL RN XN
% BEGIN *
* EXPANSION %—n.
* *

R R e

EHREL] REHARR RN
TERMINATE *
EXPANSION L

*

R e

ok ok

e¥e
A2 *o
¥

ST .
#*o OPENED %
- .
¥y o¥
* N
]

v
P R T
*

*

* GENERATE *
* ERROR *
* MESSAGE *
* *
EE 2222222 L 2222 2ok

*o
o® WAS *o YES
S* o TE *

TESTRAN Macro-Definition - SET

o¥e

A3 *o FRRERALRRERENRRER
o* ARE %, * * HEREASHEEEREERR
«* REQUIRED #*, NO * GENERATE * * TERMINATE *
>%*, OPERANDS o e ¥ ERROR * >* EXPANSION *
%*e SPECI- % * MESSAGE * * *
*eFIED o#% * * F I I

X, o P T

T YES

ERRXRDEAEERR R RER
* * ERRRBSHRERN R RN

* GENERATE * * TERMINATE *
>* ERROR *: ->* EXPANSION *
* MESSAGE * * *

* E st 2 TR LTS

*
BRI IR

REEERCTHRREERHNNN
* *

* SHIFT TO *
* TESTRAN *
* CSECT *
* *
* *

L I I T 2 A

v
HHRRHD T RN R NN AN
x GENERATE
* TYPE CODE,
*IDENTIFICATION
* AND LENGTH

* QF ENTRY
HRREARERH RN R RAR

EEEE RN

.

E3

o¥* IS

NO % THIS SET

* o VARIABLE
*o

*, ¥

o
0O % DATAM
%o SPECIFIED
*e

*o

¥
*, ok

o o
* YES

I

v
HRHERGIHERNERRHEHR
* *

* PROCESS *
* DATAM *
* *
* *
LR]

v
EXRBRHIHERENH RN RE
*

PROCESS

*

* *
L—>% ADDRESSES *
* *

* *
FERREEEREHERERNNN

v
ERRERJTERELE A RSN
* *
GENERATE

FLAGS

* *
* *
* *
* *
* *

R
|
i
i

v
HRHERKIHEERARRERE
* * ERENKARREREERRR

* SHIFT TO * * TERMINATE *
* USERS *— >* EXPANSION *
* CSECT * *

* * ERERRFAREERRRES
HERERERERR RN L NN R

Charts

43

Chart 12. TESTRAN

REERALREHRERENE
#* BEGIN *
* EXPANS IDN *
* *

I I I SIS S]

|
|
|
|
|

|
oVe
81 *o
o* HAS ¥,
o*% TEST OPEN #*. NO
*o OCCURRED ok

¥ ARE %,
«*% REQUIRED %, NO
%o ADDRESSES %
*o SPECI- %
¥oFIED o*
*e o
* YES

P —

3 33D] I KRk X R

* GENERATE *
* TYPE CODE, *
*IDENTIFICATION *
* AND LENGTH *
*® OF *

*

ENTRY
LA 222 T R T e 222

|
i
Ve
El_ %,

¥ IS *o
e* THIS GO *. YES
%*e¢ IN OR GO TO o%—

- .
*, ok
X, o¥

* NO

L2222 PR 22 22222 2L
x *
* PROCESS »
* GO BACK *
* ADDRESS *
+* *
* *

[T T T Y ey
|
i
N

v
WREN] HERERRNRR
* TERMINATE *
: EXPANS ION *

*
3636 3 3 3 3 3 3 I I N

44

Macro-Definition - GO

L 2 E 2 I-VE R S22 2 &2 2]
*

*

* PRINT *

>* ERROR *
* MESSAGE *

*

*
3 3 I I3 I I NN

E2 222 Je- R 2 T2 2 22222

* *
* PRINT *
>* ERROR *
* MESSAGE *
* . *
33 3 I 3 3 I I I E NN

v
HRERD2REEEEHRRN
* TERMINATE *
* EXPANSION *
*

*
333 3 I I I XX

NN 2NN N
* TERMINATE *
>%* EXPANSION *
* *

3 36 3 I I 3 I I I KX

R DA RN
TERMINATE *
EXPANSION *

*

*
333 3 I I I XX

HRERG2W RN
* TERMINATE *
># EXPANSION *
* »

E2 S22 2T 222222

*
>3 4
*

HRW XD IR RNR
TERMINATE
EXPANSION

336 3 3 3 3 3 I WA XX

*
*
*

Chart 13.

TESTRAN Macro-Definition - DUMP

ote «ZY oty g
A2 . AW E AL NAR RN N
FUBRALEEERRS AR o* WAS o* ARE %, * WK A NI
* o TEST <% REQUIRED #*. NO * GENERATE * * TERMINATE *
* EXPANSION Fepp——D ¥ o OPENED >%#4 ADDRESSES % >* ERROR *. >%* EXPANSION *
x * *o ok *e SPECI- % * MESSAGE * * *
BRRREBRRBRRRRRS *q o* *#,FIED o% * B e e
#, o . oF P I I e I T
* NO * YES
v °Z1 v
HRRRRD2ERE RN RRE ERERRBTIHNN NN NR
BARRDLREERRRRRE * * * GENERATE *
- TERMINATE * * GENERATE * * TYPE CODE *
* EXPANSION *< * ERROR #* #*IDENTIFICATION *
* * * MESSAGE * #* AND LENGTH *
SRR EERRRNR NN »* * * OF ENTRY * EERE
EERREERRRRRRERRRES L e R * *
* H3 *
* #*
*HR
| o
01 e¥e oVe ke «El *o
HRBENCLHRRERARERE c2 *e COMMENT o c3 *e ca *o C *o
* * ¥ *e DATA, o¥ WHAT ¥, TABLE s ¥ *e ¥ WAS ¥,
* PROCESS * COMMENT .* WHAT *e CHANGES % TYPE OF %*. PANEL o* WHAT *e TABLE o¥% SELECT .
* COMMENT b Samm— TYPE o ¥ Qe DUMP IS o ¥ %, TYPE » ¥——————>%, SPECIFIED *
* * . o* #, THI . . *o
* * *, o *, o* *q 3 *, o*
BERRBRRRRBRRRRRRE *, o R o o . o¥ *e o¥
*DATA * MAP *PANEL * YE
CHANGES L Lt ad
* *
>* G4 *
*
XA
«D2 Ve . eBl2 - «F1 «CO Ve 8
D1 ., e P e D4 *, A HRRDSH NI RN TR AR
¥ WAS %, * * % WAS %, ¥ ARE ¥, * GENERATE *
NO % SELECT *o * PROCESS * «¥% SELECT *e YES «¥% REGISTERS %*+ NO * CODE TO *
SPECIFIED % * FROM * *, SPECIFIED % *, SPECIFIED % >%* DUMP ENTIRE *
. o* * ADDRESS * *e o* I *. o* * PANEL *
, o * * *, o *, o * *
v *e ok ERERREERRRRRRARNE X o¥ v He o# P T IR 2T s 2 s 2
1 22] * YES * NO RN * YES
*14 ® e | * *
F3 » * i * G4 *
>* G4 * v * »*
* * X RN
ENEE *14 *
* F3% «C1 v
EERARE] R RE RN * * HRRERELRRNRHER NS
x * * *
* GENERATE * * PROCESS *
» A STO0 * e * REGISTERS *
* ADDRESS * * *
* * * *
IR RN RN RN NEE
i
«819 v Ve
Ty R Y] Fa *o
* * XX XR o% WAS %,
* PROCESS * * * SELECT *o
* 'TO* * * K3 *< SPECIFIED +*<
* ADDRESS * * * *q o *
* * 2] *q ¥
ERERRRERFRERERERE ®, o®
* YES
I l
«832 eVe Z2 v
G2 *, RN GLN NN R RN
WAS *, * * E2 223
«* SELECT *e YES * PROCESS * * *
b ———————— >%*, SPECIFIED % >* SELECT *<- * G4 *
o o * CODE * * *
*, o® *RER * * HXER
%y o * * HRAEBNERRETNRERRN
* NO * H3 *
* *
*RNE
v
"
* *
* K3 % Ve Ve
* * H3 *eo Ha *o
ERER «* IS *o o* IS #*o
THIS . NO THIS *o YES
———————%. DUMP_TABLE » # %, DUMP MAP OR <%
v . . o COMMENT o v
EREEN *q . *q ok 22231
*14 * Ko o ¥ *o oF *14 *
* F3% * NO * * F3%
* * * *
»* *
oVe
J3 *o HRRER AR RN R
% IS *, * * ARER
* 1T *e YES * PROCESS * * *
*o DUMP TABLE o¥——>% T *. >%* K3 *
. . * ADDRESS * * *
*q ok * * R
%, o # L e e
* NO
EXRE |
* *
* K3 *=>
Ee 22
Ve «Z5
K3 *o HARERKG NN RN
o* IS %, * *
NO <% DATAM *eo YES * PROCESS *
————%, SPECIFIED o #———D>% DATAM F——
v *o o* * * v
ERERE *, ok - HRREE
*14 * *o o# e e] *14 *
* A3% * * A3®
* % * %
* *

Charts

45

Chart 14. TESTRAN Macro-Definition

EET T 2
%14 *
* A3%®

«Z16 eVe
A3 *eo

«¥* IS *o
¥ THIS *e YES
#*eo DUMP TABLE .
*o OR .
*oPANEL o %
He oF

* NO

«* IS *o
NO o% NAME *q
%o SPECIFIED <%
* 3*

44 v
ER 2 i decE 22 22 22 2 T 23

PROCESS
NAME

% %k %k Xk ok

*
*
*
*
*
*

3 3 3¢ 3 3 3 3 36 36 WX % 63X X

«Bas Ve
03 .

¥ IS *o
ok DSECT %o NO
——>%, SPECIFIED o%—>
* *

«B46 v
I E TR TR
* *
PROCESS
DSECT

* %k 3k %k
% % % ok

3636 36 3 3 I 3 I 363 I W I XK H

EX 222 3
*14 *
* F3% .B47 v
* * I T XN
* * *
L * GENERATE *
> FLAGS *<
* *

* *
% 363636 36 3¢ 3 3 I I M I I X XXX

v
XA GIHNK AN HR
* TERMINATE *
R EXPANSION *
* *

33636 3 I3 3 I I 3 XN

46

DUMP

TN

Chart 15. TESTRAN Macro-Definition - TRACE

HEREFAEREREREE S

x BEGIN *
* EXPANSION *
* *

EERERRERRNRESRR

|

B1 *, HREERT2H RN TR R
o* . * *
«* HAS TEST *e NO * GENERATE
* ¢ OPEN OCCURRED s #——-— >% AN ERROR MSG
*, ok *

*
R

ERARRCAREEANRRER

¥ GENERATE

x TYPE CODE

*TUENTIFICATION
OF ENT

v
ERERCOERERERERE
* TERMINATE *
* EXPANSION *
* *

EEREE R

* + LNG
£ L2222 RS S22 L]
EERRARERERR AT RRA N
|
i
Ve
o1 * W ED 2R RN NN
-k ® PROCESS ADDRS *
2% IS5 THIS *, YES * OF TRACES *
¥. TRACE STQP +¥-——————>4# T0 BE STOPPED *
* g ¥ * *
e Gk * *
*, o N NN HN RN NN
% NO
v
ERER
* *
* HL *
* *
ERER
Ve
F1 *, ERREREREERRERERR
o% . ARE ¥, * »
¥ REQUIRED #, NO * GENERATE bl
*ADDR SPELCIFIED * > * AN ERROR *
e . * MESSAGE *
*g ok * *
. o% RRAEEHRERERRERLE N
* YES

; |
| O
! 1

EERERG | HAERARREER v
* ERRFG2HHNFREE RN
0CESS * * TERMINATE *
*#1FROM? AND °*TO*#* * EXPANSION *
DOR:! *

* * TN
L Y e a2 T

oVe
H1 *o

LR E el

% 1 *o
*SELECT' %+ NO
D SPECIFIED *

o

v
HHRE LN RN RE
* *

x* PROCESS *
* THE SELECT *
* CODE *
* *
REAERAARERTEERRRE

* kK

¥ I
———>%e TRACE STOP ¥
*o

N
As %,
*

S THIS

.
. ¥

*e o®
* NO

oVe
84 *,

«* IS x4
«% A COMMENT ¥, NO

*o SPECIFIED %
*

v
EARERCLERR AR RRE
*

PROCESS
THE COMMENT

EEE]
R

EREREEHERAERBRRER

D& %,
o *.
«* 1S THIS
—>%. TRACE REFER «
*g ¥
*g - ¥
*, ¥
L2 2 2] * YES
* *
* D4 *
* *
LE 2 22
Ve
E4 .

- *,
o* IS DATAM %, NO

*. SPECIFIED %
* ok

%, o
* YES

v
ERRBRFLERERRBRREN

PROCESS
THE DATAM

LR R 2]
LR R R

L2 I e e T e e

Ve
G4 #,
% 1 *e
«* A DSECT *. NO
>%e. SPECIFIED %
*q o ¥
g ¥
. o¥
R #* YES
*
G4 *
*
R
v
HERERH YRR TR AR AR
* *
* PROCESS *
* THE DSECT #
* *
* *
E2 2222222222 222223
v
FERRRJL B RR AR R
* *
¥ GENERATE *
>* ONE BYTE *
* OF FLAGS *
*
E2 222222222 222222 3
* 33
*
J4 #
E2 223
v
222 2 2 22 22

* TERMINATE *
* EXPANSION *
* *

AN FR TR REDS

EEER

"

EE 2 2
* *
>* D4 *
* *

ERRR

EEER

* *
>* G4 *
* *

EEER

*RER
* *
>¥ g4 *
* *

R

Charts

47

Page of GY28-6611-0
Revised April 1,1971
By TNL GN26-8016

Chart 30. TESTRAN Interpreter

RERRADRARRARRES CQI{AS.'I‘IGQ‘GG
- - *
- 16C0106A : - 16038 -
-
EiZ 222222212222) E2R 222222222222 3
SAVE RESIDENT SVC
HRLARGE Ve v
ARBRBP] RBERBRRERE B2 - ARFRBBINBRRRRRREE ERRAABSEARERRRAER
% INITIALIZE # o® .. * INITIALIZE #* * *
*+ FOR LARGE # NO_.® MIN = FOR_MIN * * ENABLE *
* SYSTEM #————#, SYSTEM >% SYSTEM * * 1/0 »
. ENTRY : ®. EWTRY _.# * ENTRY * * INTERRUPTS #
- * * *
RiZ2 2RI 2222222223 .l. .l. EAZ 2222222222222 22 EA 2222 222222222223
*
]
HRCOMMON V. KDGO
. cz2 o ERCSRERERRS
- "q * *
«% FIRST #. NO » LINK
*o ENTRY o * TO *
., o * IEGTTROT _*
- ¥ -
e o ¥ EZ 22222222 23
* YES
v
BRD2ANRREES
- » RRBRDSHABRRBRRRE
* GET MAIN & - *
FOR CONTROL # - RETURN *
. CORE -
E2 222221222 22223

BEEERRBRREE

PLIFIY
-

OPEN

232273
-

THE -

- OUTPUT *
- [} -

c8

- -
RERERBEBREY

HR30

<=

SERRRF2ARRRRBERRS
bl COMPUTE bl

LA RN

SIZE OF
DCB/REL CORE
REQUIRED

L2 R 2]

HARBERNERARRRRBRER

HEG2RBRRRER
» -

#* GET MAIN *
* FOR DCB/REL #
* AREA -

AREBRARERER

REH2RARRAEE

SREBRBBRRES

]

#COPY_DCB, DEB, *
- TTR AND

RELOCATION
- TABLE

GOTTEN MAIN
RESGBERRRRABRARARES

48

T0

LEE R]

]

oVe
G3 *e

o® o
¥ PROG #e¢ NO
*o CONTAIN oy
#o OVERLAY o%
. -
*, o
* YES

.&uuin;u«a..u.
» SET

THE #
* OVERLAY @
. FLAG IN .
* CONTROL _#
- -
SRBBRBERNBRRERAN

<

HRNO
AERBR YRR RABRERR
» ORRECT »
#* POINTERS IN #
. THE DCB .
* DEB -
- - -

FERRRBRRRRRARDAER

v
FREAKIFRBRRBRAN
* -
- RETURN -
* -
R 2222212222227

Chart 31. TESTRAN Interpreter

TR EAD KR EREEEN
*
* 1G6C00041 *

BTN R

|TTOPEN1

Ve
B2 *o
HENRE] HHRRRER R ¥ *,
RETURN * NO o% HAS *e
10 L%, 1GC06A g
* *.EAECUTED <%
*. ¥
¥y o ¥
* YES

o

* AL_ER
2 s T s 2 2 S T]

v
B RECO2EERER RN RN
* *
* ENABLE *
#1/0 INTERRUPTS *
* *
* »
IR R

I

HUGOD eVe
D2

v
HERRREDHRE R RTRR
OPEN PRIORITY

*
*
* AND MAX
* STATEMENTS
*
*

i
I

v
HRF2RERENRE
*
* LOAD
* IEGTTROT *
* *
*
HEERERILNRE

v
REERBGH AR REHERER
* *

* SET LINK
* LOAD FLAG
* IN CONTROL
*

PEET]

RN
* *
* D3 *
* *
L
HUL INK v
XRDIEREREXN
* *

* LINK TO *
* IEGOPEN3 *
* *

* *
I T

*

v
HERERFIHERRRRRNRN
* OUTPUT
* THE STORAGE
* CHANGE
* RECORD
*

*

TR

I e e e

HUNSCREQ v
NG TR AN NN

LEEEE R

REFERENCE
TABLES OPENED

*

[T

*
* D3 *<
* *

xR

|
i
v

ERYDHEEER AR
* *

HUGO1

* LINK TO *
* IEGOPEN2 *
* (coPY) *
* *

R RN RN

FEEE TR

HHE RN NNR

HUF INISH v
HRKEEHIH RN AR RN
*

* oUTPUT
* THE OPEN
* RECORD
*
*

EEEE R RS

e T

HHEEAL NI R RN
* *
* TEGTTRNF *
* *

FRE RN RN RE R

DUMP TABLE

HEERRCAEHIREREERE
GENERATE
QUTPUT
PROLOGUE
RECORD

* Kk K K K
+ A KK K

RN NN NN RN

v
ERDLRHERNRR
* QOUTPUT *

* PROLOGUE. *
* AND DATA *
* RECORDS *
* *

HHEERHERERR

HFERROUT
RS RS2 TS S S s sl d
* *

* oUTPUT *
>* ERROR *
* MESSAGE *
* *

*

HERERERRHRERHRER

v
RGN R N
* *
* RETURN *
* *

LR e

HUOUT Ve HUKILL
*e HHEHE JLRHERERTERR
* *
* ENTRY *s NO * CUTPUT *
> * ERROR *
* MESSAGE *
. ¥ * *
*o o ox E e s
* YES
}
I i
v v
R e FEREKAIERHEER RN
* * * *
* RETURN * * ABEND *
* * * *
et e e

Charts

49

Chart 32. TESTRAN Interpreter

HRREA2E XK AR AR
* *
* IEGOPEN2 *
* *
IR NN
TTOPEN2
XX
* *
* 52 ¥-—>
* *
ERE
v
HRB2HEEEERR
* *
* GET MAIN *
* FOR _INPUT *
** BUFFER *

*
HEEER MR ENRRN

JEREAD
EREHERCHREHRERNENN

* READ *
* RECORD *

HRRERN KRR REREN

JEKILL

KEKEAD] HREK XXX HRR

x * -
x OLTPUT * YES o%
* ERROR ol S—

x MESSAGE * *e
x *

HHFH KR NK NN RN N

|
i
|
i
|
i Ve
HHMNE] RN RH N NN
IS *
x ABEND *
B *

PR

JECESD o¥a
i

*e
-*
FIRST *o YES o% CESD *e
r CESD o ¥ *o RECORD o
o* *. o
o - .
* *e o ¥
* YES * NO

Cm———

JESYMESD V-
KRNELL | HRARRENERR HEEERG2AREEEEXR®
* * * *
* QUTPUT * * ouTPUT *
x THE OUMMY % * THE *
* SYM RECORD * * RECORD *
* * * *
EE RS T2 2222 L) R 22T 22T RS ITTT S
i
v
Y | XXX
* *
JEOUTESD Vv * c2 *
LR R LS PR S S SRS * *
* * EE 2 2]
= OUTPUT *
* THE CESD *
x RECORD *
* *
RN KRR RRARRN

v
* R

X
0
n

LR

XHER

50

JEOTHER
HERERRETHRERERRREN
* i *

* OUTPUT_ THE
>%* RELOCATION

* A
*

LEE T

EEERERENEERRERNRN

v
AEEIHRERRRR
* *
* FREE THE
* DCB/REL
*~ CORE

*
RN RR

\
EE U222
* *
* FREE INPUT *
* BUFFER
* AREA *
* *

HHERR TN XRRN

v
HEEEYTRREERERRRR
*
* RETURN *
* *

RN NN NN RN

R AL NN NN N
*
* IEGOPEN3 *
* *
ER 2222222222

TTOPEN3
L322

* B4 *—>
* *

L2
«Ve
B4 *eo
¥ *o
YES o% THIS *o
r——%e TIA ALREADY %
o OPEN o
, o
%y o ¥
* Ni

v
FRIHKCH IR KT RRER
* COMPUTE *
* SIZE OF *
* TABLE CORE *
* REQUIRED *
* *
* *

eI e 2

HYCHECK Ve HYBAD
D4 * HREREDSE R ER R AR
o* *e * . »*
o ¥ ANY *o YES * OUTPUT *
*e INVALID o > * ERROR *
*, ENTRIES o% * MESSAGE *
*o o® * *
*e o P
* NO
I |
i |
v I
HEELHRHXRENN v
* * RARRESHEEERRRRE
* GET MAIN * * *
* FOR TABLE * * ABEND *
* CORE »* * *

* * TR RN NN NN
RN

| ' (

v
TN G WK N R
* *
* *
* CTR TABLES *
* INSERT SVC'S *
* *
* *

HRREEAR RN RENR

HYCHAIN
ERRRRGLRRERRXARER
* *

CHAIN ALL *
TABLES TO *
OTHERS *
*
*

HHEN NIRRT N R NRN

* ok Kk

FHEEERHLHRRRRRRRER
* *
* CHECKSUM *
* THE *
* TIA *
* *
* »

ERRERKERRRERRNN

HYCTST

o ¥ *, EEXR
-® MORE *, YES * *
e TIA'S TO o > B4 *
, OPEN o * *
* o® EERE

.
e o¥
* NO

I
I

v
HREFKGHRRERR RN
* *
* RETURN *
* *

HEERRRERRERR NN

VRN

Chart 33.

* STORE *
* *TEST AT* *
* PRIORITY *
* * XX
HEEEEERRERRERRRNR * *
* G3 *
XN * »*
* XXX
* G2 i—>|
XXX i
\ KAREPT Ve
HHHEEG] RN EEEER *, v
* *® o%* NEXT %, HRRRGIRREEERXRN
* OUTPUT * NO % TIA *q
* ERROR #L——————%, ENTRY VALID .* * RETURN *<
* MESSAGE * A *. TYPE o * *
* * *q ox HEBRERERERERERN
s e R 2T o ¥
* YES
KAMET v

v
HREEH] EHEREERR
* *
* ABEND *
* *

EEEREREEEEREERR

TESTRAN Interpreter

XREEAZH A ERRRRE
» *
* 1EGTTROT *
* *

ERREEEEAREEERRR

|RGUTER

XN

KANEXT v

ERERRB2E XA RRENR

* *

CHECKSUM *

ALL TIA *

TABLES *
*
*

ok kK

EEEREREREREERE RN

eVe
c2 *o
NO % LL
CHECKSUMS «#%
*q LID %
* g ¥
K, o ¥
* YES
|
v
EEEARD2RXE XN
* *
* SEARCH *
* REFERENCE *
* TABLES *
* * Lt 2
RS 22 S22 2222 s * *
* G3 *
* *
X E
| A
1 |
Ve KAERROR
EZ2 *g FAERREIRERERXRERE
¥ g * *
«* ADDRESS *. NO *» QUTPUT *
*, OUND * >* ERROR *
* MESSAGE *
* *
FEERERREREREERERR

—
i
.
D4 *o
¥ *o
ot LOAD *
*q OPTION
*, REQUEST o%
* *

EAELERRRRRR
* *
* LOAD THE
* REQUIRED
* ROUTINE
*

*
HEREEER XN

v
AERERF2RAREERRHRR
* *

FEERRHDE R IR R RNE
* *

* GENERATE *
* NEXT *M?* *
* FIELD ENTRY %
* *
* *

NI NN AR

oVe
J2
*.

o*
YES o% MAX *q
*o STATEMENTS %
*,EACEEDED %
*, o®

<

KANOLOAD v
ERFLRARERRR
*

* LINK TO

* THE REQUIRED

* ROUTINE

ERERRERRXRR

KARETS Ve
4

*.

o *o
* GOBACK % RETURNED *
——%, FROM

¥
«* RETURN

*. FOR ROUTER
*, svc

o

v
ERJQARREREEE
* EXECUTE *
* THE TEST
OPEN OR
*‘UVERLAY SVC‘

HEERRRERRRR

*

« NO
o ¥—

*

=

*

*

EEER
o OTHER®* *
D% G2 *
* *

EEER

*

*

v
FERRKGRRRERRERR

XCTL TO
* IEGTTRNT
*

ERERABRBRERRER

»*
*
*

Charts

51

Chart 3u4.

HBLIT

52

*

*
*
*
*
*
*

HRRND] ERRIERNRRN
COMPUTE *
LITERAL *
ADDRESS *<

AND LENGTH *
*

LR LIS S22 222222

¥
LITERAL o% TYPE

TESTRAN Interpreter

3 3% A DN WX XX
*

*
* HBADDRSR *
* *

EE 2222222 2L E 2]

SUBROUTINE
TO IEGTTROT

HBADDRSR «Ve
B2

*o
#o. REG NUM

- .

OF
#*o ADDRESS o¥%
- ¥
®e o
*B/D-ABS

v
333 % C 2 323 X XX ®
*

*
* COMPUTE *
* EFFECTIVE *
* ADDRESS *
* »*
3333 3 F I RN R

HBREG oty
83

HBFLOAT Ve
c3

*e
o
o
. .
*g o

*e o¥
* YES

*e
o

-
«® MACH *o NO
*e CONTAIN o®
*e FePe ¥
*q ¥
®e o
* YES

|
HBINDEX eVe HBOK \

D2 *o XERERDIRNEREERERN
¥ *o * STORE THE *
¥ *o NO * FLOATING *
*o INDEXING o * POINT *
*e o * REGISTER *
*o o ¥ * *
*e o P e

* YES

v
W NE DWW KN NN
*

*
* ADD *
* INDEX *
* CONTENTS *
* *
* *

I J NN

v
TN TR XK

* LOAD ADDR *
* OF STORED *
* REG AND *
* LENGTH OF 8 *
* *
IR IR X

*o

FoP. *, NO

>%. REGISTER = o%
*

>* AND SET

HRERNDL X XK HHNENE
* COMPUTE *
* REGISTER ADDR #*
* LENGTH OF 4 %
* *

33 3 I I K XX

33 3% 3% 3 C 4 3% 33 6% XX
* *

* ouTPUT *
>* ERROR *
* MESSAGE *

*

*
3336 3 I I I I 3K I H K

v
HXRRDGXREXERELR
* *
* - ABEND *
* *

333 3 3 I 3 I X XN

Wy

v
EEERFE2HRRRKNE AR
* *
* EXIT *
* *

33 3 I I I I HX

3 3 I3 H 4 ¥ I I K XK
* *

* OUTPUT *
* ERROR *<:
* MESSAGE *
* *

¥ 3 3¢ 3 3 3 I I K XN

v
(222 NPE 222 222222
* *
* ABEND *
* *

3363 3 I I I 3 I I X XX

IR ASER RN HRRRR
* *
* HQOUTPUT *
* *
LR 22222 222222 2]

SUBROUTINE
TO IEGTTROT

HQOUTPUT
W NXB SN KE NN

* COMPUTE *
* *
* *
* LENGTH *
* *
* *

33 33 3 3 3 3 XX XK

>

Ve
c5 *o
¥ *q
«* REMAINING *. NO
*e RCD COUNT o %—
*e GT MAX o¥
* g - ¥
He o¥
T YES

v
HHRRKDSIE XN EK®
* *

* SET THE *
* CONTINUATION *
* FLAG *

3* *
33 3t 3 I I I 3 I I XK

<

HQGTMIN \2
ARESHERRHRR
*

* OUTPUT *
* THE PROLOGUE +
* RECORD *

* *
363 I K KX

v
ARFSRERXREE
* *

* QUTPUT *
* THE DATA *
* RECORD *

*

*
W3 XN KR

|
Ve
G5 *,
o* IS *,
YES o% CONTIN- *,

<UATION RECCRD.
#oREQUIRED o%*
*o o
He ¥
* NO

|
|

HQEXIT Ve
HS *o
o* *o
YES % MAX *e
* o OUTPUT o ¥
*o REACHED %
*q ¥
*g o
* NO

(

v
RN S KKK H N
* ¥

* EXIT
*

I3 33 I I I I XX

Chart 35.

HRERRC L HERERER

* SAVE SEGTAB#*
* ADDRESS *
* SET DuMP

* SEGTAB FLAG *
» »
*

EEEARRRRRERRN

P —

HRERDLHNXERNRR
» d

* RETURN
*

*
AREREXRXREARERR

*
*
*
RSS2 PRS2 222
* FLAG ALL *
®* ASSOCIATED *
* TABLES AS
* INACTIVE #
-
ER 2222222222 23
*RER

*x

*
N
' x

TESTRAN Interpreter

HERRADKRRERRE RN
* *

* IEGTTRNO *
* *
AT RE R
OVERLAY 1
HTGO oVe
c2 *o
o* *o
NO o#* HAS *o
#L———————%, USER OPENED <%
YE o
*e o
Ko o
* YES
XEEEDIEEE IR
* * XCTL TO *
* * IEGTTRNX *
* *
HREERRINREHRRR
A
1
rT Yy
* * !
* E2 *—>
* »
ERRN I YES
HTFETCH Ve a¥a
E2 *e E3 *a
o *o
«* OPTEST *o YES o TRACE *e
*o COUNT o > MODE o
*o =0 ¥ o ok
. o *. o
*e o¥ e o
* NO * NO

v
L2 ST AR 222 222
* *

* GET NEXT *
* TIA ADDRESS *
* *
* *
LA RS i R e 2y

R ER
*
BS *<
AR
oVe
H2 *e
*o
NO % TIA *o
*< . NOW IN *
*e STORAGE o%
. .
o ¥
* YES

HTPREV v
FAEERJOEARRRREANR
* *

* REINSERT
* TESTRAN
* SvC*s
*
*

Rt I T e Y e T

LEE R

v
EEERREIHERERERRXE
* *

ouUTPUT
MAP CHANGE
RECORD

* 0k K

*
*
*
*
*

HERREREET RN NEN

I

v
FERRGIHRERERNRR
* *
* RETURN *

EE2 I e T2

HHETRDLE I E R KRR
* *

* QUTPUT *
* ERROR *<
* MESSAGE *
* *
HEERERERRRERERERR

v
RRERELRERRERRRR
* *
* ABEND *
* *

WA RE RN

HERERJA R RRERN
* *

* CHECKSUM *
* THE TIA *<:
* TABLE *
* *
e RS s TR

v
222

* ok ok
m
N

LEX]

EEER

HTCHECK oVe
DS

S o% ANY _ »
*JINVALID TIA o%

v
HERHECSHRERRRNN S

* *
* *
* *
* TABLE CORE *
* *
* *

W NN IR NN AR R

*a
*

*o ENTRIES %
- .
Ko o ¥

NO

4
RAESHAXEERN
* *

* GETMAIN *
* FOR TABLE *
* CORE AREA ¥

*

*
NN XN R

\
WK SRR RN W RN
BUILD FLAG

* *
* *
* REF TABLE *
* INSERT TeTe *
* SvCe *
* *

v
LA e e e 2]

HTCHAIN

v
FREREGSEHRRREHR R
* *
* CHAIN *
* TABLE TO *
* OTHERS *
* *
*: *

KNI WK IR

HTEND2

v
FRRBXHSEE SRR RS
* *
* OUTPUT *
* THE TIA *
* TABLE *
* *

[R I T T

v
ERREEJSEREERER RN
* *
* OUTPUT THE *
* REFERENCE *
* TABLE *
* *
* *

R T S

Charts

53

Chart 36.

HRIRIC]I N NN
* QUTPUT TRACE
STOP RECORD

* IF ANY TRACES *<
* STOPPED *

*
EREEREEERREERRRAS

HSEXIT v
D1

*
*
*

*

TESTRAN Interpreter

EEERAEREREIERR
* *
* TEGTTRNX *
* *

HERREREERRERE RS

OVERLAY 2

HSNEXT v
ERRERB2ARERRRERAR
* *

* HUNT FOR

* AN INACTIVE #<—
* TIA TABLE *
*
*

*
EREEERRRERRERERR

*

* OUTPUT
#STORAGE CHANGE
: RECORD

LEE R R

2% ¥

D

step o}

ALL TRACE! *

FROM THE >
INACTIVE TABLE *
*

LR E RS

v
HHREE] HREEERERR
* RETURN TO
* OVERLAY
* SUPERVISOR
REEEREEREREENNN

54

*
*
*

RERRKEEREREERR

* RETURN *

* TRUE *<.
*

ARRERRRRRRRE RN

HHACTTAB
EREERK TR RS
*

* SET VF *
* POINTER TO *
* GO ADD *
- *
RERERRARARAREERRS

EERRAGERERRRRRE

*

* IEGTTRNE *
* *
EEERFRERRRRRN R

TEST ON

HHGETADR v
WD G N R ER
* *

* COMPUTE

* ADDRESSES OF
* VARIABLES
*
*

ERRRAEE RN ERN

* ok ko

Ve
ca *o
o® *o
*o

o ALL NO
*o ADDRESSES ¥
- VALID %

*e o
* YES

v
HRRREDGERRELRREER
- *

LOCATE
COUNTER
TO BE USED

ERRRRERERERRER R

'EET]
* % kK

Ve
E4 *o

¥ -
-*" COUNTER *. NO
:
“#. ACTIVE %
*

H, %
* YES

oVe
Fa #.

¥ *e
e* COUNTER #*. YES
*o AT MAXIMUM o
*o UE %
. ¥
LI
* NO

v
HREERGHE NN AN
* *
INCREMENT
COUNTER
BY ONE

FI I 2SI RIS IR 3

LR R
LEE R

Ve
Ha %,

¥ *o
% COUNTER #*. NO
GT OR EQ D

*e
*e Low o
*, -

Ve
Ja #.

o® *o
«% COUNTER
*o
#*e HIGH
*

- .
*, oF
* NO

eVe
Ka *q

¥ *g
YES % COUNTER #*. NO
<—————%_ MULTIPLE OF .*
#4 INTERVAL %
*. o
e o
*

HRRRBESHERRRERERR
T

*

*

El *

* MESSAGE *
*

*

*
L s et e s 2 e 2

EARRRKSHERERE R
* RETURN »
># FALSE *
*

»
AERRREERERRRRRER

s

TN

VR

Chart 37. TESTRAN Interpreter
RERBAL NN ERE RS ERERAZHERNET RSN HARALE RN NN
»* * * * *
* IEGTTRNG * * IEGTTRNL * * IEGTTRNM *
* » * * * *
L e e I Ty RN IE TR N B e
TEST WHEN TRACE START TRACE STOP
KK1 Ve HG4
HERRKD]HEHEREHIIER Ba *o HREERDSHEAEEEENRN
* DETERMINE * o # DEACTIVATE A *
AND ANALYZE * *. NO NO .* TRACE *. * TRACE AND PUT *
* THE ADDRESS * *e START o F— . MODE . * ITS MACRO AND *
* OF FIRST * *. ALLOWED o* | *o o #* TABLE NOS. IN *
* OPERAND * *e o ¥ *o ¥ * OUTPUT AREA *
L T T Ay 2 *e o¥ v *e o eI e T e e
* YES EREE * YES
* *
* K& *
* *
EXER
YES
. KK3 o¥e Ve HG3 ¥y
c1 *e c2 *, HRBHRCT RN RER ca %, cs *,
* 1S *o - Is * DETERMINE * o%* ARE . I % ANY ¥,
¥ THERE #*o NO ¥ IRST *o YES * THE HIGH * . ALL *e YES V o«* ACTIVE *o NO
. A SECOND o 4. OPERAND *AND LOW LIMITS #* *e TRACES TO % >*TRACES LEFT IN *——
#o OPERAND % *e =0 ¥ l * OF THE * . . *. TRACE *
*e . * RACE *STOPPED*
Ho ¥ v et e e i *e o¥
* YES ERRW * NO
* *
%* g2 %
v
EXRR EERR >
* *
KK2 v * H2 * HX2 Ve HG2 Ve
l’ib]**'****il{ * * 03 *o D4 . *{&l&DSlQ}lllllil
DETERMINE * TR ¥ o* DOES %,
* AND ANALYZE * YES % TESTRAN #, «*MACRO-ADDR *. YES THE CRO *
* THE ADDRESS * %o TRACING ¥ POINT TO A)*AND TABLE NUS. *
* OF "'SECOND * *e NOW o *e TRACE % OF *
* OPERAND * * kR . . *oMACRO * TRACE *
EE L e T s I T = * *e oF *o o Q*il&li’li**‘li*&
* H2 * * NO * NO
* *
(2213
A
l i NO
KK8 eVe KK4 ¥, v HGERROR v HG12 eVe
E1 *e E2 *, **E3llii§** EREERELRHEREERNRR ES *.
o® ¥ 1 * *HQOUTPUT 34A5% o *o
L el Is *e YES «* EITHER *a * GETMAIN * Fm o N RN NN . Is *o
*e OPERAND o ® 4. OPERAND ¥ * FOR TRACE * * OUTPUT * * THIS TRACE o
¥, = TAND' % = * * TABLE * * AN _ERROR * TIV o*
*, o * * * ESSA! * .I
®e ¥ L T T E) B e L L] o
* NO I I YES
v
R >
* *
* g2 * HX8 Ve , v
* * 3 *. *{**npslu*aniaaiu
*RER «% HAS *. * DEACTIVATE *
NO o%* THIS . v * TRACE AND *
——* ¢ TRACE ALREADY. PE 22 # PUT ITS MACRO *
. *o BEGUN % *AND TABLE NOS. *
FXE* *e . . - *IN OUTPUT AREA #*
* * *e o® *oe oF T e T
* g2 * * YES * NO
* *
l (3233
] |
| YES 1 |
v KKS oo v HGS v
HREEHGLH RN ERNR | G2 *e ERRRHGIHHHNNE R NN L ey A it
DETERe COMPARE # ¥ ARE ¥, * INSERT THE * *HQOUTPUT 34A5%
*LENGTH AND PAD * ok BOTH * * NEW HIGH AND # ot R F RN
* OR TRUNCATE * >%. OPERANDS ¥ * LOW LIMITS IN *_\ * OUTPUT THE *
LITERAL OPERAND¥ *o =0 T * THE TRACE * * TRACE STOP *
* IF NECESSARY #* *q o * ENTRY * ESSAGE *
E e T i L] *e oF FE s e i!*lii!&ii****lh*
* NO
EXRE
* *
* H2 *—>
* *
i *RRW .
KKTRUE v HX11 «Ve
ERRRRH] H2 3 Ha * 2 SRS T SRR ST T Y
* DECODE * * * * INSERT THE * . ANY ¥, * COMPRESS *
* FORMAT AND * * BRANCH * * NEW ENTRY * «* ACTIVE *. YE * TRACE TABLE *
#PERFORM ARITM— * * wILL BE * —>% IN THE * o TRACES LEFT % >* (MOVE ACTIVE *
#METIC COMPARI- * * TAKEN * * TRACE * IN * TRACES) *
* SON * * * * TABLE * *oTABLE* * *
e %o o l&ll*}i{iﬁilkli**
* NO
RN
* *
* J2 *—>
* *
X RR I I
v HG18 v v
KKFALSE v EERERJIHERRRRRRRS FRRRE JRREETRERNNR P N e T Y
WRERJORRAFRRR XN *HQOUTPUT 34A5% * * * AT SAME TIME, *
NO B ptalnt it il d * SET * *#SET SWITCHES TO#*
. . o >* RETURN * OUTPUT THE * * TRACE STOP * *INDICATE TYPES #*
eSATISFIED. * * * TRACE START * * SWITCH * *0F TRACES LEFT %
*q ok TR RN H R MESSAGE * * * IN TABLE *
o o¥ !*i*i*{*i!&*i{**l e e e ey
* YES
| HRER
[} *
v * K4 *—>
XEER < * *
* * >k w
* H2 *
* * HX v HG21 v
wEEE AERRKIEERERERRE ERRRKLREERRERNR
* *
* RETURN * * RETURN *
* * * *
N RE AR E RN

Charts

55

Chart 38. TESTRAN Interpreter

FEHRADEER RN XN
*

*
» 1EGTTRNZ »
h * *
AEREEERAERRERRE
TRACE
INTERRUPT
Ve
B2 *q
o* ENTRY %,
o FOR *o YES
*e OVLY TRACE %
*, STOP ¥
*g -
*y ¥
i NO
JBNOTOVL eVe
ERBRRC] RN REERER c2 * g
* PREPARE TC * o* ENTRY ¥,
* CONT TRACE * YES o% FOR *
* AT POINT OF #<— *#.SPECIAL INT. o%
* INTERRUPT # *. EXIT o*
» - *. SVC o%
T R T P
* NO

v
RREADIHERRERENR

* XCTL TO *
* IEGTTRNT *
* *
LR 22222222223
v .
Ere T * NO
* *
* B3 *
- *
R
oV
E2 %
«* ENTRY *.
R *. NO
*e. PRIVe OR EX o%—
*. T e
» ¥
*y, R
] YES
v

ERRERFOREREERA NS
*

SIMULATE
A PROGRAM
CHECK

.k ok k%

*
*
*
*
*

HERERRERR AR RRN

<

JBNOTPES v
EERERCOERERNNERRS
* OUTPUT AFTER *
* PORTION TRACE *
* R F »
* REQUIRED *
*

-
RERERREERRRERAERS

Ve
H2 g
o* *,

- SPICA *o YES
*o SUPPLIED o ¥
*q ¥
, o

*, o

* NO

JBNOHNOL
REREEJORERRRER R RN
*

OUTPUT
MESSAGE

LR R EY

*
*
*
*
*

RERRRRRRRRERRRNE

v
RRBBCO R R AR

» ABEND
*

ERRERERRE AR

56

ERER

ok
]
o

PR

LA 22
v

EES 22 KPR 2SS 2T s
* *
* 0UTPUT *
>*% APPROPRIATE *
* MESSAGE *
* *
*

BN
JBROTRET
sxc
*

*
M RER N RRN N

v
R RDTH NN
* *
* RETURN *
* *

TN NN

JBWILL
EEERRHTEEEEREEERN
* *
* OUTPUT *
> * MESSAGE *
* *
*

*
EERREERERRRRERERE

v
HEEEETRRRERRRRRR
* PREPARE TO *
* CONT. TRACE *
* AT INTERRUPT #
* ROUTINE *

*
*

*
NN

v
RERAKCTRNRRRE RS
XCTL TO *
IEGTTRNT *
*

R AR

LR R

TN

Chart 39. TESTRAN Interpreter

ERBMAL N RAE NN
*

*
* IEGTTRNH *
*
AREEERRERRRRRRR L2 2 2 3
* *
TEST CLOSE * B2 *
* *
R
<
HYLOAD v
HERARBLRERNRNRRER
* *
* LOCATE NEXT *
* TABLE TO *
* BE CLOSED *
* *
EAS RS2 222222 22
HWCL OSE v
XRERMC]HNE AR RN NN HRERECOREHRERR
* REPLACE * * *
* TeTe SVC'S * - SET THE *
* IN OBJECT * #* TRACE STOP
* PROGRAM * * SWITCH *
* * * *
EE A iS22 2222222) EE 22222 22 s
<
HWALLIN v HWEXIT

HRERED] HHRE AR RER
* DELETE ALL
*CONTROL TABLES
* FROM

(o]
* CHAINS
x

KKK
a K
-

I
m
o
<
z
z
=<

FERRER R NN NN

v
HERRAE P RARERRRRRS

v
* STOP ALL * ERRBEDARARRRRRR
* TRACE WITH * * *
* THIS TABLE * * RETURN *
* NUMEER * * *
* * EEEEERERBRRRE RS
Y L)
HWFREL

v
HRF LR ENER
* FREE *

* THE CONTROL *
* TABLE *
* AREA »
* *

ERRARNRENNR

HWCLSOUT
HEMRRH] E MR RN \
* *

* QUTPUT THE *
* TEST CLOSE *
* MESSAGE *
* »
* *

EEREERERR AR

v
LT T NP S T T T
* *

* QUTPUT TR.

* STOP RECORD
* IF REQUIRED
*
*

EEEEEY

RN RN RN

REER
* *
* D5 *<
* *

R

RARRALEERRERRRR
*

#
* IEGTTRNR *
* *

NI NN NE

SET VARIABLE

v
ERERRBL R REREEFRER
* *
* COMPUTE
* THE *TO°
: ADDRESS
*

EERRARRBRRRREEER

* Kk ok

v
ERERRCOERARREERER
* *
* COMPUTE *
* THE 'FROM® *
* ADDRESS *
* *
* *

ERERERERERE T RS

oVe
E4 o
1S

¥ .
NO «* SENDING *.
AREA IN o*%
*. MACH. o%
*

HJGOOD v
EEEEFFLAEREEERRRR
* *

* SET THE
* VARIABLE
*
*

LER]

FRERERXERERR AR RRR

v
REFRGHE R ERRE AR
*

* RETURN *
* *

EEEEERRBRERIR RN

X EH

* ok ok
o
o

* XK

ERRR

HJBAD v
HERERRDSHE X R RERR

* OUTPUT THE *
* APPROPRIATE *
> ERROR *
* MESSAGE *
* *
ES 22 22 22222 22 222 23

v
EEXRESEEERRRA RS
* *
* RETURN *
* *

RERERERERRRN RN

Charts

57

Chart 40.

ERREAL RN RN
* *

TIEGTTRNA

TR NN

TESTRAN

Interpreter

IDUMP DATA/CHANGES

HC7 oVe
B1 *o
o*1IS *TO ¥,

REREEB2EERNEEEERR
* *

RRRRALRERREREEE
» *
* IEGTTRND *
* *
REERREEREEERE R

GO IN/OUT/TO

RERERBIHREERE RN Ba *,
* * o* *,

G1
ERERRBSAEERRRRRRS
* »

<% ADDR LESS *. NO * IF THERE IS A * * GET °GO* ADDR * NO o% * GET °'GO' ADDR *
o THAN "FROM' % > DSECTs CALC A * * FROM * *. 'GO OUT* >%* FROM CONTROL *
%o ADDR % * NEW *TO' ADDR * * 9GO* MACRO * . * CORE TABLE *
*q ¥ * * * *q ¥ * *
g oW g oF R 222222222 222223

* YES i *

]

Ve HNG1S Ve HNG17
- RERERCIHAERRREERR ca * g FHRRRRCSHEEERRERERR
- * TRUNCATE * o *o *HQOUTPUT 34A5%
TO *. NO * DUMP TO * «* IS 'GO' *. NO Fo R R R KRR K%
ADDR o¥————>% END STORAGE * * ADDR * > WRITE *—
WITHIN % * WRITE * VALID * ERROR *
CORE . » MESSAGE * - . * MESSAG *
He o FREERRN R EER RN e ¥ E2 2222222222222 2 2 3
* YES l * YES
I
HC91 v HNGS Ve HNG10
D2 EERREDIHEEXRRRERR D4 EFRRERDSHEREREREXRRREX
HQOUTPUT 34A5 * IF DUMP IS * * TRUNCATE DUMP * o* * *
Eo R R R kR AR * LONGER THAN * * IF CROSSES * o* *. YES * STORE RETURN *
* DUMP JUST 1 * * 65,535 BYTES, *< * TASW BOUND *. GO IN® >*ADDR IN CONTROL*
* BYTE AT * WRITE MESSAGE * * WRITE - *o o * CORE TABLE *
* SFROM' ADDR * * AND TRUNCATE = * MESSAGE * . o * *
K, ¥ EZ 2222 2222222 22 223
A * NO

1

v
E1 E2
*HQOUTPUT 34AS¥ *HQOUTPUT 34AS*
EE 2t B L 2 2t B B EEs Bt B E 2 o B
L—>x WRITE * * *<
* AN _ERROR * * buMP *
* MESSAGE * *
|
HC17 v
R] RN NN AR
* *
* RETURN *<
* *
EE 222222 22222223
] NN REREHOE XX RRERER
* * *
* IEGTTRNC * IEGTTRNB *
* * *
L2 2SS 2222222223 FREERERFRRRRRER
bump DUMP
PANEL COMMENT

HEEEE Y] R ERREE R
*HQOUTPUT 34A5%
e e e e
* DUMP USER'S #*
* PSW _AND ALL *
* REGISTERS *

HEEEEJOREREERRERR
*HQOUTPUT 34A5%
Fm K K R N K B
* WRITE DUMP *
*COMMENT RECORD *
* TO EDITOR *

v
R] XN
* *
* RETURN *
* *

EREREERRREREERR

58

v
RN
* *
* RETURN ®
* *

REREEERRERRERER

AERBELHXERX RN
* *

* RETURN
*

HREEEERRRR

(
\
RERRFLERRRRRRER
* »
* IEGTTRNK *
* *
P
DUMP MAP
Ve
HRBRRGIERRERERERE G4 *, HRRARGCSEEEREEERRR
* * o* *o *HQOUTPUT 34A5%
* INITIALIZE * MINIMUM % *e¢ MULTI- oSttt bt butentbutetmted
* POINTER TO N, SYSTEM o¥————>% MAP *GETMAIN® *
* LOWEST USER * * «* TASK * AREAS FROM *
* ORE * #*SUBPOOL QUEUES #*
EEREERXRERRREREE R ERARERREREREREERRR
Ve v
H3 *g EERRRHSERRERRRRER
o* - R *HQOUTPUT 34A5%
<% IS THIS #*. YES #* L o Bt e
—>%, AREA oH———D>% K4 * * MAP PROGRAMS #
%o 'FREE' % * * * FROM CONTENTS #
*o ¥ REE * DIRECTORY =
*. o HARERERERRRRR R
Ve Jca20
J3 *, HREERJLARRRRERRER v
o* . #HQOUTPUT 34AS* EEREISEERREEREE
«* IS THIS *, YES L e I T 2 3 * *
*q A PROGRAM #———>% PROGRAM * * RETURN *
*o AREA o ¥ bl AREA * * *
*q ¥ * MAP * ERRRRERFRRRRRRR
*e o¥ EREERREERRREERRER
* NO
ERER
* *
* K& *—>
* *
% YES
Jcaz v Jc3z2 v JC14 o¥e
ERRERKTHERRRERERR REERRKLQRERERER RN KS *q
*HQOUTPUT 34A5% * * o -
Fm e e W R R W B *SET POINTER TO * HAS ALL *.
* *GETMAIN® #——————>% NEXT HIGHER #* CORE BEEN %
* AREA * * CORE AREA * e MAPPED %
MAI * * *. o®
EEEERREERERRERRER ERRERRRRERRRERERR Ey o
1 NO ,
\
AN

Chart 41. TESTRAN Interpreter

HEEEADEEEHERE RR
* *
* TEGTTRNJ *
* *
W N IR N

GO BACK

.
¥ EXIT
#, TO TRACE
*oREQUIRED «

*

PR
NO

KESTOPTR
HAFRRC] RHAAERRXNN
* *
RELEASE *
TRACE *<
*

*
*
*
* *
EEEREEAEERREERRR

| |

KEEXRMIN oVe

REXRRD] HHXRRER D2 *,

* * o

2 CLEAR * . (3]

* TRACE * >%. BACK WITH %

* MODE * *o ADDR %

*

*

* *, o*
EEEEEXERERERN %o oF
* NO

o ¥
NO «* BRANCH
—¥%e INST
*, .
*, ¥
*e o ¥

v
EREREF2HEEAREHRRS
* SET BRANCH *
* ADDRESS FOR %
* GO BACK *
* ROUTINE *
* *
* *

HERT AN RERTERRR

S

KEDISABLE V
HAEERG2EERERRRER
DISABLE *
#* INSTRUCTION *
#* TO LOW CORE %
* AND EXECUTE *
* El *
* *

NABLE
L s e a2

*

o* *o
«* MACHINE *
*o CHECK

eVe
J2 *e
2223

* *
#* E4 *#< * o
* *

R

*e
*o YES

o¥ *e
NO «* PROGRAM #, YES
CHECK o®

*
Ba‘ ‘l. FEEERDAFERRAERERER
o *o * SET TO *
«* REASON *es YES * TRACE INST *
>%*.G0 BACK WITH % >* AT GO BACK *
*. ADDR o * ADDRESS *
o ¥ * *
e o Iy s
* NO
|
v |
ERREXRCIHRFERNE R \'2
SET 710 HEERCHEFRRRRRXRE
TRACE INST * XCTL *
> T0 *

*
* TIEGTTRNT

*
*
*
*
* EEREXEREER NN
*

*
*

* svc

* DISPLACED
*

*

HREHRHERNHNRH N

EEERRDIHREERNRARR

IC!
HHERERHIE N RE R TR
* * FEEFHLEEERREERR
*

* OUTPUT * *
> * ERROR * >* ABEND *
* MESSAGE * * *
* FREERERNR AR RN
*

*
ERRERRERTDRER RS
A

NO

HERED ABDRDERERRE

»
* oP.¥ 7O *
>#* SP.< *
* ADDRL S *
-
S 22 2]

v
ERERCLERRERERER
- *
* RETURN *
- =

ERFARRFREFRBRER

+ MODIFY OPSW *
* FOR RETURN *
>* TO GO BACK *
* ADDR *
* * RER
FEERERRERRE RN * *
* E4 *
* *
R 2 2]
| |
|
l Ve KEDIDBR
v *, EEERRESER XXX RRER
ERARHEIHRERRRERS *, * *
* * DID * * COMPUTE *
* RETURN * « BRANCH INST >* BRANCH *
* * *. BRANCH % * ADDRESS *
R 222222222 2223 *g - * *
g ¥ R 2222 2222 22 2222 22
T NO
v v
Fa FS
* PSW ADDRESS * * OPSW ADDRESS *
* * * TO BRANCH %
* INSTRUCTION * * ADDRESS *
* PLUS LENGTH * * »
* * * *
|
|
v
FEREGCGSERREREXER
* *
l—>. RETURN *
EREERRFXERERERRR
KEMACHCK

Charts

59

Chart 42. TESTRAN Interpreter
L2 2V VES IR LS S S
* *
* 1EGTTRNP *
* *
3 3 3 3 3 I I XN X H

SET FLAG

HLENT2 v
P TR e
* (8 *

* SEARCH FOR %
* FLAG TO BE *
* SET *
E2 2 23 * *
* * I T2 ZIZISIST LS
* C1 *
* *
EX 2 X3
| |
HLERXT v Ve
3 X C] WA N c2 *q
* * ¥ * g
* ouTPUT * NO «* _ FLAG *o
* ERROR *< *. FOUND AND <%
* MESSAGE * *. ACTIVE o*%
* * * g ¥
B33 3 3 I AR R X Ny o ¥
| * YES
I
i
| v
v EZ HPT T T T2
HHRND L NN RRR * *
* * COMPUTE *

*

* RETURN * * THE FROM *

* * * ADDRESS *
NN * *
EZ 2 S 22T 2 2

HLSET Ve
E2 *o

X% o *,
* * NO o%* VALID *eo
* C1 *< * o ADDRESS o
* * %o o ¥
2223 *, ¥

*o

o
* YES

HLOK v
R K DR AN
* *

* SET THE %
* FLAG *
* *
* *

Ea X 2222222

HLEXIT v
HHEEGD XTI EN RN

* *
* RETURN *
* *

336 33 3 3 % %N %

60

23 AL KRR K
*

*
* IEGTTRNN *
* *

I KN
SET COUNTER

HKSRCH
KB LRI NR KR
*

*
* SEARCH FOR *
* COUNTER TO *
* BE SET *
* *

*

33 3 3 36 3 I I I 3 W I XN

*o
¥ CTR *o NO
#o FOUND AND %
*e ACTIVE %
* o o3
He ok
* YES

v
HRDLEHERXRN
*

* COMPUTE *
* THE FROM *
* ADDRESS *
* *

3 3 % 3 W I 3 3 ¢ %X

HKSET Ve
E4 *e
o« *q
¥ VALID *e NO
*o ADDRESS o
. -
* g ¥
*e ¥
* YES

HKOK v
HHXXNF 4R X RXER
* *

SET THE *

*
* COUNTER *
* *
* *

333 I WA I W HX

HKEXIT v
KGN NN R NN

* *
* RETURN *
* #*

336 3 3 363 I I 3 3 % 3 3%

E2 222
* *
* C5 *
* *
XX
|
|
|
v
HERAKRCSHERXRE IR
* *
* ouTPUT *
> % ERROR *
* MESSAGE *
* *
(2 e e T]

|
v
XRERDSH X LK KT ER®
* *
* RETURN *
*

*
33 I3 I I I I N

¥ H X

*

>* C5 *
* *

% ¥

Chart 43.

—>* PROG

REERA]HRREEE RN
* *
* IEGTTRNT *
* *

HERREERRREREE RN

TRACER
£33 2] I

»* *
* Bl x->
* *

N

JASTART

v
HERRRB] HHERER RN
* DISABLE ALL *
* BUT MACH AND #*
CHECK *
CHANGE MACH AND
PROG CHECK NPSW#
RERERAEXRERREREER

TESTRAN Interpreter

JAMOSTIN v
FITTT-PT R AR Ty TR
* *
* EXECUTE *
* THE OBJECT *
* INSTRUCTION *
* *

RN NN NN

l v
ERER
| * *
v * G3 »
HEHRRC] R RENERR * *
* * EE 2 2]
* MOVE *
* INSTRUCTION *
* TO WORK AREA *
* *
LR E 2222 22222222 23
Ve
D1 .
- ¥ *q LA 2]
¥ INST *, » *
o TYPE o#——— D1 %
- *
*g ERER
RN
* *
* TYPE * LOCN *
LA S 2 2
* * *
* STORE * 4383 *
* BRANCH * 4384 *
* PRIVILEGED * 43Fs *
* EXECUTE * 4385 *
* SVC 38.45,49 * 4345 *
* VC 34657 * 43F5 *
* svC (OTHER) * 43G4 #*
* ALL OTHER * 4382 *
* * *
EE 22222 2223 E2Z 223

EEEE

*

* G3 %
* *

EEER

MACH CHECK
INTERRUPT

R] R EERN R
* *
* JAMACHCK *
* »

EEREEBARRRERRRN

P ——

LA S NR RZ TS 2222
* *
* ABEND =
* *

HERER RN RN NN EN

PROG CHECK
INTERRUPT

HEERH2ERERRERRH
*

* JAPROGCK

*

EEREEREEERRRR RN

v
EREERJOREERRNR AR
» ENABLE
* RESTORE MACH
* AND PROG
* CHECK NPSwW

LR R R E R

*
ERFERRRERERREE RS
v
RERRCORRE AR RR
XCTL *
T0 *

*

TEGTTRNZ
HEREMR RN RN

*xox

t2 22

LR R]
o
w

>k ok

ERRN

JAALTERS v
ARBIRERRRER

OUTPUT -
* "BEFORE® *
RECORD
* IF REQUIRED *
* *

ERRREARRRRE

*

JASKIP
EEERRCIHRERRRRRNE
CHANGE
PROTECTION
KEY TO

* *
* *
* *
* USER'S *
* *
* *

HERR RN R ERE RN

v
ERFRRD IR RN
* EXECUTE *
* THE STORE *
» TYPE *
INSTRUCTION #*
* *
* *

TN R

v
ERERREIHRAXFRRRRR
* *

* PROTECTION *
* KEY BACK *
* TO ZERO *
* *
ERRERERE R EEN R RN
JAZERO
ERFIRRAERRR

* OUTPUT *
* YAFTER' *
* RECORD IF *
* REQUIRED *
* *

EREREABREER

v
HRRERGIREEEERXRNE
* REPLACE
* TESTRAN SvC

>* IF
* REQUIRED
*

EEE R T

HRRER R EERENRRR

v

HRHRRHTE R LR RER

ENABLE *
* RESTORE MACH *
* AND PROG *
CHECK NPSW *
* *
* *

EEEEETNRT KRR

|

v
XEEEE YT HERREER
* »
* CLEAR *
* THE EXECUTE *
* FLAG *
*
*

*
REERERRRRNEER

EREXRBARFERERREHR
* *
SIMULATE
BRANCH

ok

*
*
*
*

E I e 2 22

Ha
s *
#* BS *
* *
xR
JAEXINST Ve
BS %o
¥ *eo
YES <* EXECUTE #e
—*e. FLAG SET o*
*e
*e .
v *o oF
ERRH * NO
* *
* F5 * I
* * i
|
v

JAWILLBR V
REDLERRREER

* OUTPUT =

* FLOW® *
* RECORD IF *
*, REQUIRED

AR NE AR

&&Eqi¥i§{il
* OUTPUT *

* *CALL®* *
* RECORD IF *
* REQUIRED *

*

*
MR EENR

JASVCHND v
ARGAARRRARRR
* 0OUTPUT *

* FLOW® *
* RECORD IF *
* REQUIRED *
* *

L e e T 2

v

FRERRHGEE R R R RN
ENABLE *
RESTORE MACH *
AND PROG *
CHECK NPSW *
*

*

KK K K

ERERRRRRERFRR BN

JASVC v
EER S NSRS 2222 22 2]
* *

* EXECUTE *
* THE *
* svC *®
* *
* *

HEEARRRRBRRRRRE

v
EXER

ERER

*
*
*

*
*
*

1

v
W

o1

2223

—>

llli
FS

AR

EXXRRCSHRARRRRE
* *

* SET THE *
* EXECUTE *
* FLAG £
* *
FERBBRERRER RN

v
EERREDSH AR X FEERRS

* COMPLETE *
* EFFECTIVE *
* ADDRESS OF *
* EXECUTE *
* *
EERBREERRRRRRRRRR

{

i
HREXARESHEXXRERRR AR
* MOVE INST TO *
* WORK AREA AND *
* OR REG BYTE #*
* IF REQUIRED *
* *
ERRRRBEANREERBARR
#*

*

*

HEXARFSEEHERER RN

* ENABLE
*# RESTORE MACH
* AND PROG

*
*
*
* CHECK NPSW =
*
*

*
B s
|

*
*
) I

4
EERRGSERRFHRXER
XCTL *

T0 *
1E

GTTRNZ
ERERRARRHRRIRE

* ok ok

EREE

Kok
[N
u

* kK

XREE

v
EXERRRJSHRTERERERE
ENABLE
RESTORE MACH
AND PROG
CHECK NPSW

kK R Kk
M EEEEE

EREBRERRRERERRS

v
HEERKSHERERREER
RETURN el
#

* 1EGTTROT =
RERFARRRADERR AR

Charts

61

Chart 50. TESTRAN Editor

HXXEADHEEEEE XN

* *
* IEGMCOOA *
* *
NI NN IR
’START
|
i
IEGMCO1A v
HRENRG2RHREREEXER
* LOAD *
* IEGMNOOA *

#(ROOT CONSTANTS#
* AND *

* SUBROUTINES) *
393 36 36 3 369 I 3 3 K *

v
HEXRHHCD XN HRRNNXR
* *

* ASSIGN BUFFER *
x AREAS *
* 3*
* OPEN DCB *

3536 36 I 3 3 3 I I I I KK KX

\4
33X I D2 F W XWX NN X
* *

PROCESS
PARAMETERS ON
EXECUTE CARD

336 36 3 3 I 3 I 33 I K W X XK

* X Kk
* kK ok X

v
HERREDH X NRER XN RN RETH RN HREHXR
* * *
TO D IEGMNOOA *
* IEGMNOOA * * *
LR R e L 2 LR s S 2
TEGMEO2A v
BN TR IR XXX
* *
* *
—>%* GET *<
* INPUT *
* RECORD *

T3 I KNI NN

|
Ve
G3 %,
o *.

¥ *e Y
#¢CONTINUATION o%*
*e¢ RECORD %

*q ¥
e o
T NO

*****H3i¥***l****
*IEGMGOOA S54A2%
[2 R e
* LINK TO *
* PROCESS *

* ECORD *
L e T R 2 s 22

62

>%

3% K E 4% %% XXX
*

* IEGMEOOA
*

*
*
*

333 I 3 I I I KX

!EGMEOlAlEDITOR
ROUTER

CONT
RECOR

*+ EAPECTED
*

-
%o o

D

-
*

*.
*o NO

o ¥
¥

HREHGE RN R XRER

* RETURN TO
ROUTINE VIA %

*

* LINK REGISTER %
LR TS 2 SR S T 22

W %W HF SN NN
#* *

RETURN

3 3 369 3% I I X XXX

TN

Chart 51. TESTRAN Editor

HERIADN RSN

*

* IEGPEDIT *

* *
HEE KR TR NK

SUBROUTINE TO
PANEL EDIT

ERERALERERRERNR

*

* IEGSFOOA *
* *
HERRERERERELSR

EDITOR
MESSAGE

v
EE 22 *® XX R DG W RN R
* BAL TO ONE OF THE * * *
% FOLLOWING EDIT ROUTINES * * MOVE *
R * MESSAGE *
* * * * * TO PRINT *
* IEGSUO1Z * HEX * 66C2 * * *
* 1EGSUO6Z * INSTRUCTION * 66G1 * FRRERERREHAERERRR
* 1EGSU40Z * ALPHA * 66C5 *
* 1EGSUS0Z * BINARY * 67A1 *
* 1EGSU60Z * ZONE DEC * 66A4 *
* 1EGSU70Z * PACK DEC * 66A1 *
* 1EGSUB0Z * FIX PT * S1E3 *
* IEGSU90Z * FLT PT * B67A3 *
FTs2 221 *% v
* NAME * FUNCTION * CHART* ARRERCHRREEREREER
* *
| * PRINT *
l * MESSAGE »
* *
l * *
| EE 22222222 22222
| I
i I
i
|
v
v
EAZ 2 R 23 TS s WX HDY R TR R X KR
* EXIT VIA * * *
* LINK * * RETURN *
* REGISTER * * *
EE 22222 2222 2 22 EX I 2221222222
EREREIERERERERE
* *
* 1EGSUBOZ *
* *
RS2 22222222222
FIXED
POINT
v
FXRN N F XN R XN
* * -
* *
* INITIALIZE %
* *
* *
Ea 222222222222 2223
1EGSUB6 Ve
X G2 NN NN G3 - RRRERGHH RN XX RERNR
* * RS *. * SEPARATE F *
* POSITION TO * LT 0 o* *, GT O * AND I, MPY *
* LEFT S *<: *o SCALE e¥—————>% F BY 5 TO THE *
* SPACES * . o *95t POWERe SET *
* * *. o SWITCH ON_ *
AR 222222222222 222) *, ¥ R 22 222222222222
, * EQ 0 |
! e |
1EGSUBOQ Ve 1EGSUB1
D NN NN RNNR H3 *q R RHG KRR X XRR
* OIVIDE 8Y * o¥IS It X, * *
* 1 BILLION % YES OVER *. NO * CONVERT *
* CVD Q AND R < *o 31 o F————>% *
* AND * *. BITS % * DECIMAL *
* COMBINE * - . * *
BT 3NN XN *, oW EA 22 S22 22 s s
|
-vo
J3 w,
¥
. OFF
SWITCH o
. e
Hy o ¥
ON

v
ERRERKTERERERRRER
* *

COMBINE *
F AND 1 >
*

* ko k

*
RN N NN

M
RN NN N
* EXIT VIA *
* LINK *

*

REGISTER *
ERFREERBERFERNR

Charts

63

Chart 52.

TESTRAN Editor

333 A Z 33N R R N

* *
* IEGREOQOA *
* *
I NN NNH
RELOCATION
TABLE
IEGREOLA Ve
B3 *, W EH XL R RER
ot *e * *
SCATTER <% LOAD *o BLOCK * COMPUTE *
r ¥* o METHOD o #———————>% RELOCATION *
, o * FACTOR *
*, ok * *
*, o NN RN
*
IEGREO7A \ IEGREO3A i
FRERRCO RN RN RER AR RCHI R EER
* SEARCH FOR * * *
* NEXT MAP * * APPLY TO *
——>%* ENTRY SEQ NO. # * NEXT MAP #* L
* AND APPLY * * ENTRY ®
* RELOCATION * * 3*
NIRRT RNR P L
eVe IEGREOG6A oVe
- ERHBRDIHERLRRRRES D4 *,
* g * PURGE AND * o *g
#o YES * SORT * YES <% *o NO
o F————>* RELOCATED ¥, DONE ¥
- - # MAP ENTRIES * *o o
*, o ¥ * * #, o
L I T T e o
* *

LR R 2oL 2 2 2 2 2 3 2
*

*
* IEGRLOOA *
* *

I3 3 33 3 I XX RN

\%
EEEREIEREER R ER
* *
* RETURN *
*

) 936 3 33 N 3N I XA

ACTION (TIA)
TABLE

IEGRLO1A v
RGN RN R
* *

* INITIALIZE *
* FOR CURRENT
* TIA TABLE *
*
*

*
6363 3 I I XXX

IEGRL10A
N] RN RN A
* *

* LOCATE AND *

PROCESS NEXT = #<——
* TIA ENTRY *
*
*

*
39 3 3 I 6 I XN

6u

*<

1

>
eVe IEGRL10J i
H2 *g HRWEHHIH R RR
o * * *
NO o% #*o FULL * *
* o DONE o ¥——————> % WRITE *
. . * OVERFLOW *
*o - * BUFFER #*
Xe o ¥ e e
* YES

v
R PRI AT ER
*

*
* RETURN *
* *

N A RN AR

REBHRESREXRREXNR

* :

* IEGRKOOA

* N
FRHERREEEREERER

REFERENCE
TABLE

IEGRKO1A v
HEEERFSHIENARRENE
* *

* COMPUTE TABLE ¥
* SIZE, LOCATE *
*SEG NO. IN MAP *
* *

EE 2222 2222 222222

TEGRKO3A
HEHERGSEE XXX RRXR
* *

* BUILD NEXT
—>% REFERENCE
* TABLE ENTRY

*
*
*
*

*
336 336 3 3 3 I XX

v
FHEE JSHE RN FRE
*

*
* RETURN
*

FRXRERRERANRRER

7N

Chart 53. TESTRAN Editor

HHRBAL SRR
*

* IEGPEOOA *
* *
W RN RN

INVALID
RECORD

P

1EGPEO1A
HHERRE] R RN NN
* *

%*0QUTPUT MESSAGE
#¢INVALID TYPE®
*

* K kK

AND
* UPDATE COUNT
LR L

* - HERRCO2EARRREERN
¥ COUNT *o NO * *
, LIMIT - >* RETURN *
o o * *
. ¥ HEREERREREREH AR
Fo ok
* YES

v
EERERDIRERERERRRR
* *

*OUTPUT MESSAGE *
*'LIMIT INVALID *
* RECORDS *
* EXCEEDED®* *
(R e T 2

|
1
|
v
EHRERE] RERENERRR
XCTL *
* TO

*
* IEGPKOOA *
HEEKEXERRERX RN

EREEFDHEERRER RN
*

*
* IEGPKOOA *
* *

e

|END OF RUN

|
1

IEGPKO1A Ve
G2 *,
o* *,
NO . EXCEEDS
%o MAX IMUM *
*a PAGES %
*

¥

Ko ok
* YES

1EGPKO2A v
HRERRH2E R ERFRRRR
* *

*QUTPUT MESSAGE
* *MAX PAGES

* EXCEEDED"*

*

R Rk

EE T e

1EGPKO13 v
EREREJORRERRRE RSN
*

*
*QUTPUT MESSAGE *
># *END EDIT® *
* CLOSE DCB AND *
* SET RETURN *
EEEE RN RN REN

v
ERERK2R AR ENFN RN
*

* RETURN
*

*
ERREERD SRR RN

EE S VW A2 222 s s
* *
* IEGPHOOA *
»* *

EEZ 22222222 222

TEST CLOSE

1IEGPHO1A v
AREERDIHRRRERR AR
* *

* LOCATE NEXT
—>%* ACTION TABLE

* CLOSE AND

* PRINT ID
L T T]

LR]

|

l

IEGPHOSA V.
c3

NO o%

P —

RS kLTSI E S S]
* *
* RETURN »
* *

NIRRT RRN

HERKE L ¥R H RN RN
* *
* IEGPIO0OA *
* *

RN IR NN

INTERPRETER
MESSAGE

IEGSD v
XRERREGHHHHERHERH
* *

* RESET *
* SWITCH A *
* *
* *
*

FRRERERRRR R RN NN

|
|
v

ERRERGIHAXERRRRNR “x.

* *

* SET *

* SWITCH A *L: ACDRESS

* * *e PRESENT o%
* * *, o*
s s ®o o ¥

l * NO
|

v
W G NN
SEARCH
| * FOR MESSAGE
——————————>% BY NUMBER AND
* MOVE TO
* BUFFER
EE 2 2 22 RS2 22 R

* % ok ok Kk Xk

PIADSW Ve
EE 2 NKKEZ SIS S Ja * g
*IEGSNOOA 64A1% o *o
Et T 2 S B 2 B 2
* MOVE *< SWITCH A %
* ADDRESS TO * . .
* BUFFER * . o
FRERRBEERR AR RERR Ky o ¥

SDPRNT v
EEEREKLEREERRHHER
* *

* *
>* PRINT BUFFER *
* *
*
*

*
e e T)

FEEKASHEERBEIRR
* *
* TEGRAOOA *
* *

REEARERFRRRRARR

CESD MAP

IEGRAO1A v
HRFRRBSEF NI ERENE
* *

* LOCATE NEXT %
—>% MAP ENTRY AND ¥*
ENTER CESD DATA
* *

RN NNNR

IEGRAO7A V.
cs

¥

HEXRDSEERRERRRR
* *
* RETURN *

EEREFHERERERER

P S]
> * RETURN *
* *

EEREXRRERRN RN

Charts

65

Chart 54.

IEGMGO1A Ve
B2

TESTRAN Editor

R AD K R X RN
* *
* IEGMGOOA *
* *
IR HR

ACTION ROUTER

o* *,
YES o% 0¥TPgT *. NO
* YP

eVe
C1 *q

o -
«* SELECTED *. YES
e PRIORITY o
*q ¥
* o ¥
*e o¥
T NO

v
XERXDLHHHIHKX IR
* *
* RETURN *
* *

L2 22222222 222 L2

>* IDENTIFY *
* TATY *

IEGMIO1A

° o #———r

*o RECORD %
*o *

-
¥y o
*

3333 C 2 ¥ 33 XXX XN

*JEGMGO6A 64A1%
Hm R H e RN R X R

* LOCATION *
L R e 2 2L

v
AR DD N NN KR TRK
PRINT ACTION %
* INTRODUCTORY *
* INES, *
#* LOCATE ACTION *
* T E *
AT RRREERR

v
WX RED NN RN
* *

* DETERMINE *
#*# ROUTINE TO *—
*PROCESS RECORD *
* *

3363 3 3 I3 3 3 363 I 3

3 3 I I 3 36 I I I I I I I I I KRR
* *

* XCTL TO ONE OF THE FOLLOWING *
* ROUTINES *
* *
IEGNAOOA DUMP DATA 61A3 *
* IEGNDOOA DUMP CHANGES 62A2 *
* IEGNGOOA DUMP MAP 59A2 *
* TEGNMOOA DUMP COMMENT S59H1 *
* IEGNPOOA DUMP_TABLE S9F4
* IEGNVOOA ALL TRACES 60A1 *
* IEGPAOOA TRACE STOP S59A5 *
* IEGPGOOA TEST OPEN 61A5 *
* IEGPHOOA TEST CLOSE S3A3 *
* IEGPIO00A INTRP MSG S3E4 *
IEGPPOOA DUMP PANEL 61A1 *
IEGPEOOA INVALID 53A1 *
* IEGPIO00A MESSAGE S3E4 *
* IEGPKOOA END OF RUN S3F2 *
#* IEGRAOOA CESD MAP 53A5 *
* IEGRCOOA MAP CHANGE S4A4
IEGREOOA RELOCATION S2A3 =
* IEGRFO0A SYMBOL TABLE 55A2 *
* JEGRKOOA REFERENCE S2ES *
IEGRLOOA TIA TABLE S2F2 *
363 3036 3 33 20 236 36 3 9696 6 3636 63 362 36 I 363 I 3 I 3 6 IE 4
3* *
* NAME FUNCTION CHART #

*

66

REERALHEERREERR
*

*
* IEGRCOOA *®
* *

33 I I X RR

MAP CHANGE

1EGRC Ve
B4 *

o¥* HAS ¥,
o* A MAP *o NO
*e BEEN GEN- %
*o ERATED o%
- o
*e o ¥
* YES

RGLOOP3 v
HEERRCHERREEEERER
* *

* LOCATE
—>* NEXT MAP
* SEGMENT

*
336 3636 3 3 3 X XXX XX

LE R R X]

HRRERELHEREERRNEE
LOCATE NEXT

SET STATUS

* *
= *
* ENTRY AND *
* *
* IN MAP *
EAREERRAERERERRRER

RCDONE eVe
Fa

ok *e
NO

e oF
* YES

v
FRERGLERARERRRR
*

*
* RETURN *
* *

Ea 22222222222 223

RGLOOP eVe
4 *e
o® *q
*e YES
*o DSECT o ¥—
. -
*g o
He oF
* NO
|
v

o *.
o DONE o<—
* *

EERERBSEREREEREER
JEGSFO0A S1A4%
L e e et e

> * MESSAGE *
* *INVALID *
OVERLAY RECORD®#*
e e e e e e L

v
HEERCSEEXRERERS
* *
* RETURN *
*

36 3 I I I 33 XX R

—

TN

N

Chart 55.

HHEHC] RN RN
»* *
* IEGNSO0A *
*
LA SRS R R RS2 L)
SYMBOL TABLE
INITIALIZER

eVe
D1 *o

-
*e YES

o H—

o
% RGLOOPSW
*o DONE
*, o
*e ¥
*, o
T NO

Ve
E1 *o

o *.
* RGLOOPSW *
1ST

*o TIME ¥
*

. ¥

*e oK
* YES

v
FHERKE | R KK TR R
* GET MAP BASE *
* ADDRESS *
* SAVE ACTIGHN *
* TASLE *
*
*

*
N -
|

RGCONSRT v
HRERNG] HHEHRRERRR
* *

* INITIALIZE *
* COMARA *L—
* *

*

*

*
L T

|

1

v
EHERF] HHER NN RN
XCTL *
TO *
IEGNYOOA *
AN KA RN AN

K K

TESTRAN Editor

HHARADR RN R RN
*

*
* 1EGRFOO0A *
* *

LE R R s
SYMBOL TABLE
BASE

v
e Ry Py
* *

* INITIALIZE *
* BASE AND SET #
* RGLOOPSW *
* *

*

A HC2H RN R RN RN
TEGNSOOA 55C1#

Fm e R N W N
* INITIALIZE *
* SYMBOL TABLE *
* PROCESSING *
L S 2

RGEND
EE L L
* *
* RESTGRE *
>* ACTION *
* TABLE *
* *

[I I T T

I
|

v
W IE 2NN
* EXIT VIA *
* LINK *
* REGISTER *
LA R e 2

EERECIHRERRR N NN
*

>* RETURN
*

E

*
*
*

NG W N
* *
* IEGNYOOA *
* *

L e I e T T

SYMBOL TABLE

FIRST PASS

v
EZ 2R RNV SRS 2 22 2 8 L8]
* *
* INITIALIZE *
* RETURN FOR *
*. RGGETPUT *
* *
* *

WK

RGLOOPER v
ERERRCAREERRRH AR

* CLEAR NAME *

* SET SIZE TO 6 *
»

*
FA IR N

*o
*e YES
o

RGETNAME v
KR 4NN
RGETPUT S8A3%
En e e e ettt T
* GET NAME *
* FROM INPUT *

* *
BRI KR NN K

T
* *
* SET *
* 0ORG *
* TYPE *
* »

EX 2222 SRS 2]
EX 2 2]
*
*55

* Jaw
A

*
*—=>

Ja *o

o*
ON o% SKIPPING
* o SWITCH

<

RGOUTER
FIRHERKG IR AR RNR
* WRITE FIXED
* LENGTH

*
*
* RECORDS SORT *
* FULL BLOCKS =
*
*

*
L e

HREEK

* GET ORG BYTE #
———>%* GET ADDRESS "<——j

HRARHDSEN NN ER NN
* *
* FLUSH 1ST

> * PASS

* ouTPUT

*
L e T e

EEE R

v
HRNKESHERR IR NN
* *
* T0 *
* IEGRGOOA *
T T TR T L

Charts

67

Chart 56.

TESTRAN

Editor

nrnn

DUMMY

- *o
SECTIGN..* SELECT *o DATA

RGDATA
EERRRALEAENNEHENE
* -

* SET OUTPUT

“s. TYPE
° . ".
#* CONTROL
SECT 10N

o*
»

RGCSTPRC oVe
82

o

RGDUMMY v
AERERCRARRERRERD ERREECO AR NNN RERERCTHRNE R RRNE
* * * * * *
* SET_1YPE » * SET * * SET TYPE TO *
N TV * * TYPE TO * * " PVT CODE *
* DuUMMY » * CSECT * * *
* - * * » »
PP

RGCHANGE

ERERADHAEARRR RN

*

*SET SKIPPING Sw¥

>* [Y SN
OFF

ERAR * *

* EREEREEERERNERRAR
* E1 *
P

RGNUSYMS
EERERERRRRRRE RS ERBEREDRRERRER NN
* * * *

* PURGE MAP ¥ * SEARCH *
* OF SELECTED * * FOR #<—
- ENTRY * * SyMBOLIC *
* * * NAME »
RN R RN

KGNOTIN
ARRRRE L RERRRR RN
* *

» CREATE *
* MAI *<
* ENTRY »
- *
ERRERARRAEERRREEN
RGASSNO V.

RABRRHRREEREERNR H2 »,
* » o *.
* INDICATE MAP * % SAME *. YES
* FULL ON IST # *. ASSEMBLY .
* OCCURRENCE % #. T UNDe W%
* * . o*
RRRERRR R R AR RN . ot

*"ND

RGMAPFUL Ve
FEERR I REARAEARNR g2" e
M * o . rrxs
* SET » YES .* PREVIOUS *. NO * *

* SKIPPING *< *. ASSEMBLY % >* E1 *
N SW ON * ®.HAVE SYMS.* * *
. » *e KEY o% P
ARERRERERRRDRRN R *y o
.
v
ERERR
*55 *
* Caw RGOCSECT
» w ERRBRKORRRARRN BN RREREK TR RN RN
* » *

e INCREMENT *
* SSEMBLY NO.

>

68

*CS|
* SET MAP TYPE

* SET
*KEY I
*

*

LAST SORT
N CURRENT
KEY

LR

v
wanon
*55 *
® Ccaw

>% FI1ELD SIZE
- COUNT _SW

PRy

* OFF
ERBERBARRRRRERRER

ERRERBOEIEERRERRRE
*

LENGTH
FIELD TO
TARGET AREA

AERERRERRERENAEEN

PR
T

HEEERCHERERRIRREN
* *

SET COUNT
SW OFF

LX)
P ET]

P I I s

Ve
D& *ao
¥ *e
* -
DUPLICATION o%
*, FACTOR <%
* o

*, o o®
* YES

EERERELRERRRRERRR
* *
* MORE

* DUPLICATION
* BYTES

* TO WORK AREA

EEE R

>
RGSCALER _ oVe
Fa

NO

——,

RERERGAHENBREREER
* *

% MOVE SCALING #
» BYTES TO *
* TARGET :

* AREA
P e e

HREREHARERRERERER

»

* SET DATA’

> T
FIELD

PETTITTT R SR TS

ERRE KK

RGDATOUT oVe
NI

* .

YES
#. FACTOR o%

. = o*
. o®
*

B e s T

o *. NO
%o DUPLICATION o#%——

Chart 57. TESTRAN Editor

ERERALRFREER RN RAREATHREEREERS
* *

* *
* REMEROUT * * T1EGSPOOA *
* * » »
e e T g 2]
SUBROUT INE SYMBOL TABLE
|TO IEGSPOOA LAST PASS
i
|
|
i i
Ve RGMDONE RGMERGE1 Ve
31 *e FREERD2EREERRE R 63 .
o *a * * * *.
.* 15 *. YES * FLUSH OUuT * MORE *. NO
*, STRING —— LAST * TO P
* FINISHED * BLOCK * MERGE %
*, . * * .
L L S T T T *o oF
NO * YES

v
EREERC]HREEERRNER FERERCIT AR R RE KR
* * *

RGMERBAK
FEI S L- VST 222 ¥R

* *

* GET *

>* NEXT *

* RECORD *

*

*

*
R e
A

l

RERRRCLRNERRARNER
*

RGOUT *
L L Eor e e e I

* PUT SELECTED * * INITIALIZE *
* RECORD IN * * FOR_NEXT * * EDIT RECORD *<
* QUTPUY BUFFER * * MERGE * * AND PUT IN *
* » * * * QUTPUT BUFFER *
EERREEEREERRR RN R
|
Ve oVe
D1 *a EEEREDORRR D3 *o
o *, * o* *.
i MORE *o¢ NO * WRITE * ¥ COMPARE %, LOW B
#ROOM IN BUFFER % = >* * —>%, ASSEMBLER +¥—""——
. * BLOCK * *e. ADDR ¥
* * *. o
L e] *. o o¥
XN * LOW A
* *

l * D3 *

| * *

| l XN

v

v
EEERREIHEERRNRRAR

HEEHE | XA R RRR * RGMEROUT *
* EXIT VIA * R L I e e
* LINK ‘<________________J * MOVE A *
* REGISTER * * TO *

ERFERERREERN KRR * OUTPUT *
EREREAERRRREHERRR

FEKERELAXFAFRRRERS

* RGMEROUT *
L e e et
* MOVE B *
* TO *

* OUTPUT *
HHEARRREERRR NI RR

RGETA v RGETB
EAEERFIHER Fa
* * #* *
* GET * * GET *
* RECORD * * RECORD *
* A * * B8 *
* * * *
I I N EE 22222222222 222
R R 22
* » »
>% D3 >% D3 *
* * * *
L 22 R 22]
o ¥o
G2 *o
HRENGLRXRHEN RN ¥ * g
* * o YES
* RGOUT e >#.RGOUTSW1 SET !
* *o o
NN RN #*, ¥
Hy o ¥
* NO
I >
1 RGOCNT1 Ve RGCONOUT RGONCE
LR RS CPREZ S22 2 22 2 H2 * g EAZ 2 k222 S] EE 22 S TSR R 2222 2 22)
* * ot *q * * * *
* WRITE * NO .* ROOM *. YES * BUILD * * RESET *
* *< *, IN o >%* DUTPUT * * RGOUTSW1 *
i BLOCK * *. BLOCK % * ENTRY * * SWITCH *
* * *g - * * * *
HRERRRRRRERTRR R RN %y o
*
RGCST Ve
J3 =,
o® *e
«* CSECT *. NO v
- ¥
*. BREAK _o¥%
. o®
gy oW
* YES
|
v RGCOML
K3### K
K3 * * *
* FLUSH OUT * % MOVE ENTRY %
* LAST CSECT * >* TO OUTPUT *
* ENTRY * * TEMPORARY *
* * *

. *.
YES % MORE *o
.
*. RECORDS %
*

. .
*e oF
* NO

RGALDONE
HRERRDSEERF T RERN
*WRITE LAST BLK *
COMPUTE LAST *
BLK ADDRESS SET
* NO STRING *
* CONTINUATION *
I E ey e e

v
HRERESHERERERER
XCTL

T0
IEGNSO0A
LR R S S e

LR
wk ok

RS H N RRE
EXIT VIA
LINK
REGISTER
LR e e s s

*
>#
*

LR RS

Charts

69

Chart 58.

EEREALEREREENRR
x *
* RGET *
*
HHERREHKARRREEN
| SUBROUTI
ITO IEGNY

Ve
31 *a

.
RGLOOP *e
SWITCH *.*

o

*q o
*e o
T ON

v
EREERC]HERRERERRR
*

CLEAR
RGLOGP
SWITCH

EI 2 T e ST T e

LER R
LERE X1

RGBACK2
RN] NN RN
*

* GET NEXT
* CARD

* IMAGE
*
*

e TR R R

* Kk kK

Ve
F1
o L
o* TYPE *.

- -
*e CHANGE %
* *

- .

o
* YES

*o

RGINERR
HRERRHLHERERRERER

SET RGLOOP
SWITCH ON
SAVE INPUT

BUFFER
Rl R s S s

EXL L]
LEER 33

RGMERGE Ve
Ji *
¥ *o
o* ANY *e
* oLD *
*o SYMS o ¥
* *

*, o%

v
RRREK] ERERRERER
TL

LR R}

T0
IEGNSS00A
ERREERREERRERRN

*wx

70

TESTRAN Editor

NE
00A

OFF

HEERE TR RN
EXIT VIA
LINK
REGISTER
Ea g E R e e L

LR
LEX]

RGCONT1
EERERC2RRERERRRNR
* *
NO v * *
— > * GET NEXT *
* BYTE *
* *
F e
EERREGERIRERERER
* *
YES * SET RETURN *
>* ADDRESS *
* IN REG *
*

*
EREREERERERAREREN

v
EEXRHOE R RRNEAR
* EXIT VIA *
* REGISTER *
* *

HEERREERRRERE RN

EREEJORNEERNE RN
XCTL *

*

> TO *
* IEGSP0O0A *
i s e a2

HEEEATEREREEERE

* *
* RGETPUT *
* *

EEEREREEEEEREEE

RGPBAK v
AEERRCTHRRREERERR
RGET S8A1

o T e it o =
—>% GET *
* ONE BYTE *
* *

FEXEERERREEREERER

v
HERBEDIHEEEREEERE
*

MOVE BYTE
TO
TARGET AREA

LER RS
* ok ok kK

ERRREXEREEEER LR

v
AREREIHEREERRRR
* RETURN VIA

*
*

* ok

REGISTER
R e st

SUBROUT INE
TO IEGRGOOA,

IEGNYOQO0A

o,
ca4 *e
*o
YES % *e
#oSECTION DEF- %
*o INITION o%
* *

- .
e o

l

RGESDS

RRERASEREEEERRR
*

*
* IEGRGOOA *
* *

EERREERREEERERR
SYMBOL TABLE
SD

v
EEXRRCSHEFRRRRERR
* *

SET MAP
OVERFLOW TO
RETURN TO

o’k ok ok ok
* ok ok ok ok

RGESDS
HEREREEEERIN R

ERRR

ERRRRCSHEERRRRRER
RGETPUT S8A3
R o it
>* GET NEXT SECT *
* DEFINITION *
* ESD ENTRY *
I T R

RGESD2
HRERREQGRFREREREER
* *

CREATE *
*

T

EERERREREREEERRERR

v
AREEAGLFEREREERRR
*

*
*
S
*
*
*

* ENTER NAME
* AND ASSEMBLY
* NUMBER
*
=

IF NEW
EREEXERERERRERER

EEEE

* % %
0
n

* ok ok

ruEE

NEW <
MAP ENTRY *
*

EERRRDSHRRFEEERRN
* *

* SEARCH *
>* MAP *L——y
* FOR NAME *
* »

EEEEREERERERRRRRR

RGESDCNT v
EREEAGSHEREXEEERR
* ENTER *
* ASSEMBLED *
* ADDRESS AND *
* LENGTH IN *
* MAP ENTRY *
EEEEREAEREERARRER

EREE

L

Chart 59. TESTRAN Editor

EERKARKEERRERR
*

* TEGNGOOA

*
EEEXREREREEEERR

iDUMP MA

\
i

v
ERERRB2HRRRERN RN
P *
* * * LOCATE NEXT
* B2 * >%* INPUT RECORD
* * * ENTRY
R

*
T e

*
*
*

P

*
*

*
*
*
*
*

STORAGE
*

P J—

NGOTCORE
EERRRDIF R EREERRS

* INDICATE *
* AREA LIMITS *
* AND 'OBTAINED *
* STORAGE' TYPE *
* *
ERFREERERERRRRERR

*
*
*

I
NGLOOP Ve
2 *
- ®
PROGRAM % MAP *
*o ENTRY
| *. TYPE ok
i *. .
I ®. oF
I *
i
NGMAPOUT Vv
R RD | RN
* INDICATE *
* AREA LIMITS *
* AND 'LOADED *
* PROGRAM' TYPE *
* * *XEE
FERFEER RN RN NN * *
* B2 *
* *
R
| A
|
NO
NGCONT2 _ .*.
| o
L-————————-———-—>*. DONE -
g o.
*, *
* YES
!
|
v
FHERRF2HXRERER XN
*
* RETURN
*
PN NN R

RN] RN
* *
* IEGNMOOA *
* *

LA 2222222222223

DUMP COMMENT

1

v
FHENE Y] REN KRN RNN
* LOCATE *
* COMMENT IN *
* ACTION TABLE, *
*COMPUTE LENGTH *
* AND PRINT *
i R I e e T

I
v
HHIC] RN
*

»
* RETURN *
* *

ERERERREREERR R

DC
NPDCBPRT v NP
HERER JIREXERRRRR
* *
* EDIT AND *
* PRINT *
* Dcs *
* *
B T
|
|
|
e —

ERERASENEE XN ERN
*
* IEGPAOOA *
* *
ERREREERERERKEXR

TRACE STOP

PABACK
R 2 RIS 2 22T
* LOCATE *
* NEXT TRACE *

—>* ENTRY TO *
* STOP_AND *
* PRINT ID *
ER 22222 S22 22222 2]

l

.
Ccs
¥
o
* DONE
*o
*

|
I
NO

. ¥

PP

XRREDSH RN RI NN
* *
* RETURN *
* *

HRHREERI R RN RNR

FREKEF 4R R R NE NN
* *
* IEGNPOOA *
* *

R R RN

DUMP TABLE

v
AARERGAREERRRR RN
*IEGSNOOA
* IDENTIFY *
* LOCATION *

* OF TABLE *
LR R 2

Ve
Ha %,
o *.
B «% TABLE *. TCB
*o TYPE
.
*o
*

DEBPRT V NPTCBPRT _ V .
PR PR RR TR RRR RN EE 2 S NEE S S S22 2
* * * *
* EDIT AND * * EDIT AND *
* PRINT * * PRINT »
* DEB * * TCB *
* * * *
HHEREEREREERERRRR AR S22 222 222

|
|
]
i
|
v I
REREKLLERRRRRE IR
* *
>* RETURN *<
*

HHRMEREEE RN RN

Charts

71

Chart 60. TESTRAN Editor

REREATHERRERERE
» »
* IEGNVOOA *
* *

EREREERNRRN RN
TRACE

Ve
B1 *o

o *e
o« ® TRACE *e YES
*e START ¥
*, o
*, ¥
e ok
* NO

Ve

D1 *.

o *.

«* TRACE *. YES
. CALL o

. .
g, ¥

o
* NO

RARRRE]RRRRRRRERR
*TEGSNOOA 64A1%
et e kit it

* IDENTIFY *
* REF 1 *

* *
ERAEAARERRRREERRE

L bddadit Bt 22 22 2]
*TEGSNOOA G4ALN

LR B B B Tt B B B
* IDENTIFY »
* REF 2 *

* *
RN AN NN

v
HEERBG] RN R RNN
lNEDT 60CS

[P ron _u_{-u-n—
» »
* INSTRUCTION *
» »

RRRERRBERRERRRRRN

v
RN L RN
*
ADD *
COMMENT *
OVERRIDER *
*
*

EERRRRRRERERRRRR

EEE R

v
RN SRR RRERN
XCTL TO

* IEGNAOOA *
LR AT TR R S 22

CHART 61A3

72

NYSTART
ERERNBIHEERARRRER

*IEGSNOOA 64ALN

ERER BT NN
*IEGSNOOA = 64A1%

>* IDENTIFY *.
* REF 1 *
»

> * IDENTIFY ——y
* REF 2 *

TEGNYOOA
[&-1]
IEGSNOOA GQAI

Ll B Bt B e e e e I it T 2 e e
> IDENTIFY % > " TIDENTIFY *
» REF 1 * » REF 2 *
* * »*
T1EGNV
D2 03

2IEGSNOOA saalx * *
————— Lt * EDIT PSW *
>e IDENTIFY » * CONDITION *
* REF1 » * CODE *
» * * *

v
AAEREEDHRERRR R AN

ERRRRETHA RN RES R

IEGSNOOA 64A1¥ *INEDT 60C5*
Em N e et) e o o Tt)
* lDENYlFY * * EDIT *
* REF * #* INSTRUCTION *
* * * *
v NVBACK2 v

*IEGPPOOA 61Al‘ * = *
----- ’— —%— * ADD *
0 n > * COMMENT *<—
* REGISTERS * *
* *

EREERNBRRRRR RN RN

SPsVC26
iilillelilﬂiﬁlil
*

* SET upP »
* SVC CONSTANT *<
®* INSTRUCTION #
- »

W NN NN N

SPSPEXIT
ERREKOHNERRRARS

* EXIT VIA

* LINK

»* REGISTER
FRRERRTERRRRR RN

*
*<
*

* OVERRIDER
*

*
AR RN ERRRERNR

v
AEERGIHRRRRERRN

*
* RETURN *
* *

RN RN

HREEHIE R AR NN
* *
» SPINST *
* *

E2 2222222222222)

SUBROUTINE
TO I1EGNVOOA

\
HREERK TR RN
!EGSROOA 65A2

-

* lNSTRUCTlDN *
* *

EERBEERRERRRRRRRE S

HERRCSHEFRRREER

. »
* INEDT *
* *
RZ e e et I e s

SUBROUTINE
TO IEGNVOOA

P Pt s T 2
SPINST 6OH3
f e B e
* EDIT *
: INSTRUCTION :
RN NN

ES %.
i
NO «* EXECUTE
%, !NSTRUCTION o
*

&. .*.

*e o®
* YES

v
R REE S RENRRERAN
IEGSNOOA 64A1

Eas Bl 2 St S S S Bt 4
* IDENTIFY *
* EX INSTR *

l!l’lll’ilil*ll*l

v
HERERGSEERERRE LR

SPlNST 60H3
Hm R B W N W B B
* EDIT EX *

#* INSTRUCTION *
* *
FIE T

SPCONT v
AR SRR NN NN
*IEGPPOOA * 6IA1‘

* REGISTERS *
* *

EEEERERERRRARERRE

v
RN PSRN NN
* EXIT VIA
* LINK
* REGISTER
EEZ2 2222122222223

LR R

Chart 61.

HHMAA] NN
* #*
IEGPPOOA »
* *

HRE R AR AR RN

DUMP PA

IEGPPO1A
HURERDHRREEN R AR

AND ASSUMPTIONSH
* *

RN NN

TESTRAN Editor

NEL

v
C1 c2
* LOCATE NEXT #IEGPEDIT S1A2%
* SELECTION OF # f et
>#* GENERAL *< ol SELECTED *
* PURPOSE * #* ROUTINE *
* REGISTER * * *
f
TEGPPO3A .V. IEGPPO3E
D1 - EX TS OFET IS TR T
ot * g * *
NO % *o YES * SET HEADING *
*o SELECTED o #——————>% SELECT AND i
e o #INITIALIZE EDITH
*g * *
Ry I
IEGPPOSC eVe
El
o* “x. WD RN
o ¥ #*o NO # *
*o PSW o ¥ i RETURN *
o o® #
#*q . ET22TI S22 222)
e oW
* YES
T1EGPPOB v
ER R ISR 2222222
* *
*
* EDIT PSW #
* *
* *
s

Ve
G1 *.
¥ *, G2 W W R
* *
o FLY REGS > RETURN *
° . * *
*. o R ER RN B
* g *
#* YES
1EGPPOSE v
EREEREHT H2
* * #IEGPEDIT S1A2%#
* LOCATE NEXT % Hm MmN K W
>* SELECTION OF #< ol SELECTED *
* FP REGISTER * * ROUTINE *
* * * *
*
?
i
Ve 1EGPPO3E
J1 *, HREEE YD REARER RN
¥ * * *
| NO o% *o YES * SET HEADING #
e SELECTED o >%* SELECT AND *®
*o - *INITIALIZE EDITH*
*q ok * *

o ok
* DONE

I

v
WRAWK] RN R NR
*

RETURN *
*

RRBRRBRENRRE D SD

BRI NN

AR AR RN
* #*
* IEGNAOOA *
* *

HHBERRERRRDA RN

DUMP DATA

IEGNAO1A
HARRRBIERREERERNS
* INITIALIZE *
#COMARA WITH TIA¥
*OVERRIDERS AND *
ASSUMPTIONS #*
*

* LA
SEREN RN RN

v
HREHRCTHER R EREH

*IEGSQO0A 64A4%
Hm e N Fm W R N
* LOCATE SYMS *

S
AND ATTRIBUTES #
* *

EE e e I

Ve
D3 *e

o #*o YES
#*o DUMP DATA #—————D#*
. o

IEGNASO
HERRAEIRRERRRERRR
* *

* SET _TRACE *
#*BEFORE® HEADER#*
* *

* *
FERERREERAABRDARE

HERERF IRRB RSN

*IEGSROOA
o Bt o ot]

* *
EERRERRRRERREREER

TEGNASOA Ve
G3 *

ERRERDGRARERREARN
*#IEGSROOA 65A2%
e fm B e R
EDIT DUMP *
* DATA *

* *
FREREGRE R AL ENR

v
HRRIES RN R RNR
* *
* RETURN *
* *

L e e

TEGNASS

ERRRRELERRRTR NN
* *
*. SET TRACE *
#¢*AFTER* HEADER #
#GET DATA RECORD#
* *

ER e 2]

v
FRREHTIEE T RN

* *
* RETURN *
* *

L e e

ERRAASERRERHRRR

* *
* 1EGPGOOA *
* *

EE TS a2 22 I]

TEST OPEN

Ve
BS *o
*

.
FIRST *o

v
HRRRRCSREEEEE RN RN
*

SET_ID
IN PAGE
HEADING

FHRRERRERREEERRRR

LEE X3
* ok kK K

>

PGPRNT1 v
HERBRDSH RN NN
* *

* *
* PRINT MACRO #
*ID AND OPEN ID *
* *

TR

v
RERRRFESHEER AR XR AR
*MOVE MAX PAGES *
* AND MAX *
* STATMENTS *
* TO BUFFER *
* *
EHREEERERRRER RN FR

PGCSTNAM v
RRERGSEE IR NN RN

NAME TO
BUFFER

RN

* kN k ok

*
MOVE CSECT *
*(-J
*
*

R RS SRR HN
*

*

PRINT 2ND *

* LINE OF *
* OUTPUT *
*

*
EHERERAR AR ER RS

v
ERRRJSHEEREE RN
*
* RETURN *
* *

RN WNN RN

Charts

73

Chart 62. TESTRAN Editor

74

XTIV E TR E ¥

* *
* IEGNDOOA *
* *
R ERRERNREERR RN

DUMP CHANGES

IEGNDO1A
G2 NN
* INITIALIZE *
* OVERRIDERS *
#* AND LOCATE *
* CHANGE DUMP %
* *
* *

36 36 3 I 3 3 3 3 I XN XN
L2 2 23

* *
* C2 *—>
* *

R
IEGNDO3A V

Rt 2 le-E 22 22 22 222
* *
* COMPARE *
>* LOADED *<
* ADDRESS *
*

*
36 3 I I 3 I I X I XXX KK X

v
HRHERD] HRERIEEREK p2" . EEXRRDIHHHREEREES
IEGNDO4A 62A5 ¥ *q *JTEGNDOG6A 63A4%
KoK X—K—H—R—¥—¥—XUNMATCHED o% *o UNMATCHED*—¥—%—¥—%—J%—%—%—%
* PRINT, SAVE, * L%, RESULT - * > * UPDATE *
* AND UPDATE * INP *q o¥* CHG * CHG *
* INP POINTER * *o ¥ * POINTER *
EEZ 222222222222 2T *y o e 222222 22222222 2]

*EQUAL

Ve
HHRIRE] KRN E2 %, AEREREIRERXEEXRER

*IEGNDOSA 63A2%
et ot S L 2

IEGNDO4A 62AS

ok *e
EQ * COMPARE *. NOT B

* UPDATE *¥———————%¢, DATA FIELD o¥————>% PRINT, SAVE, ¥
* INP * *o «* EQ #* AND UPDATE *
* POINTER * *o ¥ * INP POINTER *
IR EXIR RN XN Xy ok L2 a2 2 e s T e

|
I f
L l
*IEGNDOG6A 63A4%
Hm R KW Fm NN X N I
>%* UPDATE *<
* CHG *

* POINTER *
363 3 I 36 3 3 3% I I I XX

v
HXR

* %k %
()
N

* Kk Xk

%% %

A SR XNR

* *
* IEGNDO4A *
* *

36 I I I I I KX

\

SUBROUTINI
TO IEGNDO!(

v
R R TR e TR
*

SET
CHGSW
ON

* ok ok K Xk
* % ok K

HRHRRHEEERNHRRRRR

\

cs*
IEGSQO0A 64A4
e R W W N W NN — %
* LOCATE *
* SYM *
* ATTRIBUTE *
E2 2222222222222 2 2 3

|
Ve
DS *o
¥ IS *q
NO «% FIELD CUT #*,
*o BY CONTe ¥
*q ¥
*q o ¥
e oF
* YES

|

v
HERERESHERE X RE XX
*IEGNDOSA 63A2%
L s T e =
* CAUSE INP *
* CONTINUATION *
*RECORD TO READ *
L SRR e s R 2]

v
333 SN NN

*TEGSROOA 65A2%
[o i B i e

—>% EDIT *

* FIELD *

* *
36 363 I3 I I I XN

\
FXHRHGS R HHH XX NN

*TEGNDOSJ 63A2%
L e e e

* DO _NOT *
* UPDATE INP *
* POINTER *

EE 22222 2 22 222 2 St
1
|

FRERHSER R RREER
* EXIT VIA *
* LINK *
* REGISTER *

EEEXREEERERERFH

TN

Chart 63. TESTRAN Editor

A DT K RH KR
* *
* IEGNDOSA *
#* *

LE 22 e e e e]

SUBROUT INE
TO IEGNDOOA

v
EREXRB2EREEXHERRR
* *
INCREMENT INP *

TO NEXT *
FIELD *
*

* % %

#*
¥ 336 3 3 3 3 3 3 6 I 3K 3 K3

i
v

oVe
c2 *e
HHHRCLHERERK X %R o ¥ *q
* EXIT VIA * NO <% END OF
* LINK #F L%, PROCESS- . *
* REGISTER * *o ING o ¥
LR R R e S s * g o
Ko oF
* INP
CONTINUATION

S AL N
* *
* IEGNDOG6A *
* ~ *

N N NN R

SUBROUT INE
TO IEGNDOOA

v
XK B G RTREH
*

INCREMENT CHG
TO NEXT
FIELD

* *
3 3 363 I 3% I 36 I I I 3 X H

% % %k
* %k % Xk

IEGNDOSB oVe
HHEHRRCIHNEXHHNHEN ca *,
* FLUSH PRINT * o ¥ *o
*BUFFERSs WRITE * ECD <% END OF *o NO
>% LAST CHG BUF #<{—%, PROCESS- o ¥
* AND SET * *q ING - ¥
* CHG LIST * *q - ¥
I T S T T T *e o
#* CHG
CONTINUATION
IEGNDO6C v
EEEARDGERHHFRHAER
* *
* ' LOCATE AND *
* READ NEXT *
*# CHG BUFFER *
* *
e e e]
IEGNDOSD Ve
E3 *o W N RELH W RRERH
¥ *, * #*
- *e ON * WRITE CHG *
> 5 CHGSW o ¥————————>% BUFFER AND *
*o ¥ * RECORD *
*o ¥ * N LIST *
e o I3 33 363 9 3 3633 XX
I OFF
i
|
v
E T S
TEGMEOOA S0E4
W e e B e W B K
* BAL TO *<
3* ROUTER TO *

* GET INPUT *
HAEREXRRREFRREERR

v
G IR RN
EXIT VIA
LINK
REGISTER
L R R T 2

* ok

*
*
*

3 336 % C S 33 %X XN

* REGISTER

3 3 3 6 3 3 3 I 3¢ 3 3 3¢ 3% % H

XRHRDSH XKW

*
> 3*
*

Charts

REGISTER
SR ERRE AR RN

75

*
*
*

*
*
*

Chart 64. TESTRAN Editor

HRHRAL HNN NN RRR
* *
* IEGSNOOA *
* *
HAEERXERERERRRRR

ADDRESS
ANALYZER

|
I

v
KB] I

*IEGSQO0A 64A4% N DD TN
L e i Tt * *
* LOCATE * * RETURN *<
* SyYMB0L * * *
* IR NN RN

*
I3 I3 I I NN N

v
HRRHRD] HERHRREARR
* IDENTIFY *
* LOCATION *
* WITH *
* SyMBOLIC *
* ATTRIBUTES *
LR e E e e L s 2

IEGIDO3A v
I RE] NN
* *

*
>* MOVE LOCATION
*IDENTIFICATION
* TO OUTPUT
R e e e e e

LERE R

v
R] N RN
*

*
* RETURN *
* *

33 I I I H

76

3 3 3% 3 % B 3 % 33 %% 3 %% XX

*

3 3636 3 I3 3 3 3 3 W K X

336 3 3 X C 3% 33 I 3 3 XXX

39 3333 NN

LR 22 VS 22 22 2 882
*

*
* IEGSQO0A *
* *

3 336 3 336 I I I I I XX

SYMBOL SEARCH

IEGSQO1 oVe
B4

*o
o ¥ *,
NG o% *g
* o MAP o ¥
*, o¥
*, o ¥
Xy o
* YES
IEGSQ02A Ve IEGSQO03
ca *o RN C SRR NN
o* *q * *
OTHER % *o DSECT * SEARCH
* o TYPE o ¥—————D % MAP BY
*, . »
*, o ¥
%o oF
* BLANK
COMMON
IEGSQ15

v
363 3 D 4 % I 3 K KX KXW
* *
* SEARCH MAP *
* BY ASSEMBLY *
* NUMBER *
* *
*

33 3 3 I W I XX XX

IEGSQ90 v
X W HE LRI NKR
* LOCATE *

* SYMBOL *
>*ATTRIBUTES AND *<
#* INITIALIZE *

* COMPARA *
L2 e e R 22 2 2]

v

R X 4N NN E XX KN
* *
* RETURN *
* *

33636 3 3 36 3 I I I3 6% %X

NAME

*
FE I NN NN NN K

% %k ok ok

77N

Chart 65.

W E] NN R
#INITIALIZE FOR *
* CONTINUATION *

* PROCESSING *#<

*SAVE REMAINDER %
* SET POINTER %
38 23 TN

v
IR] I N
TEGMEOOA SO0E4
Ho b B B B e —
* BAL TO *
* INPUT *
* ROUTER *
E Y I T

1IEGSS07 v
HH RG] IR
* *

1EGSR12 Ve
cz2

YES %
*. TINUATION o%<

TESTRAN Editor

222V LSS E 2]

*
* IEGSROOA *
* *

33 % 3 3 3 3 36 3 K X

ANALYZER

IEGSRO1

s
KRB 2 NI KRR
* *

INITIALIZE
DATA LOCATION
AND LENGTH

%ok
* K kK K

*
3 3 3 3 3 3 3 34 3 3 % 3 %

o *
*o

o
*eo SYMBOLS o ¥
* *

v
L R T
* *

INITIALIZE *
* FOR NO SYMS #
% PROCESSING *
* *
* *

3 3 I 3 9 3 I 3 3 I 33 X

oty
E2 *o
* #* g
CON- *e

*¢ RECORD o#%
*q o
*, o ¥

NO

\
WA R D3 I I
* *
* SET EXIT #*
* *
* SWITCH ON *
* #*
* *

33 I3 N

ATTRIBUTE

IEGSR16
AT RN NRN
* *
UPDATE *
*<

*
* SYM

* POINTER *
* *
*

% 338 3 36 3 3¢ 33 I X X

>* GET NEXT
*

3 ¥ % % B 4 3 33 3 % XX
¥*
*

*
*
*
SYM BUF *
*
*

*
3 36 36 3 3 W3 R 3 KK

IEGSR10 eVe
Cc3 *o
o *

YES - “x. YES

Dk o CLUSTER o
. L
* g o
*e o
#* NO

>% FOR CLUSTER

33 3% 3% 3 C 4 W 3 36 3 3% 36 % 3 %%
*

* INITIALIZE

ok K ok ok

: PROCESSING

3 36 36 3 36 36 3 3 363 I I A 3k

|<

v

3 3 363 3 D T 3 % 3 % 3 % 3% H
* INITIALIZE *
* SYMBOL *
># ATTRIBUTES OR *
* OVERRIDERS *
#*

#*

*
3 36 % 3 3 R 3 3 343 3 3 % H

y I

*e
o% DATA ¥,

1
IEGSS06 _ «Ve
E3

YES <% BUFFER *o NO
* o EXHAUSTED o
MORE . .
*q o ¥
e o
* YES
DONE
IEGSS22

v
% 3 33 3 F 3 3 3 3 I 3 3 H % 3
* #*

SET EXIT

* ok kK

*
*
* SWITCH ON
*
*

36 3 3 3¢ 35 3 3 3 36 3 3 3 2 3 % %

* SET LENGTH *
* SET DATA #*
* POINTER *
* *

3 339 3636 38 38 3696 3 3 3 3 3

NO NOT
IEGSS10A o ite «*ZERO
E4 *o ES *o
ot *q o *,
ot *o YES, o%* DECREMENT *.
L SYMBOLS o #————————>%, AND TEST o
. - *#DUP FACTOR * ZERO
*, o *q o
*e oF e ok
A *
OFF
1IEGSS10 oo
Fa *o
¥ *q SR
¥ EXIT #*e ON * *
o SWITCH o > RETURN *
*o o * *
*o o (a2 22222 22 a s 2]
He o

1EG

A

SS07Z
3G 4 IR
*

*
* UPDATE *
* DATA *
* POINTER 3*
#* #*
#* 3

36 3¢ 3¢ 38 3¢ 3 3 36 36 3¢ 3 3 3 %

v
336 36 2 3 3 3 3¢ 3 23 3 I 2 36 6 3 I I I 3 2N

*

LINK TO ONE OF THE

* FOLLOWING EDIT ROUTINES

*

* TEGSUO01Z HEX 66C2
IEGSU06Z INST 66G1
TEGSU40Z ALPHA 66CS
IEGSUS0Z BINARY 67A1
IEGSU60Z ZONE DEC 66A4
* TEGSU70Z PACK DEC 66A1
IEGSU80Z FIX PT S1E3
: IEGSU90Z FLT PT 67A3
*

#* NAME FUNCTION CHART
*

3 3 3 3 38 3¢ 3 3 36 36 3¢ 3 3 34 36 3 3 5 3 3F 3 36 34 2 3 36 JF 3F 3 3 3F 3F 3 3

EEEEAERE R EREEEE RS R

Charts 77

Chart 66.

REERALEREREEEES
A *
* 1EGSU70Z »
X | *

RN RN N

PACKED
DECIMAL

*o 16 o
eBYTESe
* NO

IEGSU70A
*

IEG

v

RN C] RN R R
* MOVE TO. OUT-
*PUT AREA, MOVE
* SIGN TO FRONT
* AND CHECK

* VALIDITY

RS 2R T 2 2 X 2

* Xk % %k kK

v .
HRRRD] RN AR
EXIT VIA
LINK

REGISTER
LR R e a2

*

.k

FEERG] TR NN NN
*

*
* IEGSU06Z *
* *

RN IR N

INSTRUCTION

suo8

00K UP
* 0P MNEMONIC
EA 2222222222222 2]
EEER
* *
* H1 %
» *
XRR

78

TESTRAN Editor

HERRB2ERREHEE RN
* XCTL TO *
> IEGSU01Z *

* »

IR IR NN

HRRRCO2HEERRNEER
* *
* IEGSU01Z *
* *
P i

HEX

IEGSUO1A
HRERDDEERRRREREE
* LOCATE NEXT #*
* 4 BYTE GROUP =
* AND CONVERT #*<:
* TO PRINT *

* *
HRRERRERRERREEEER

IEGSUO02
E2

o

*g ok
*e o

* YES

v
HIEREDRER AR RE
* EXIT VIA *
* LINK *
* *

REGISTER
a2 1

IEGSU13A %,
H2

REERALHERRERLRR
* *
* 1EGSU60Z *
* *

RN R KN

ZONED
DECIMAL

*e 16 o
eBYTESe
* NO

IEGSU61 v
HERERCHEEEENEEER

MOVE TO OUTPUT #
AREAs MORE SIGN
* TO FRONT AND #
#CHECK VALIDITY #
* *

e e L]

v
ERRRDGREERRER RN
* EXIT VIA *
* LINK *
* *

REGISTER
L e TR e 2

1EGSU14 oo IEGSU14H
H3 *e ERBERHEHHREEERRRE
A * SEARCH REFTBL *
8 * YES * AND ADD *
svcz6 R DISPLACED *
. . #* INSTRUCTION *
- - »* *
*e o# P I IR T
* NO
IEGSU14F
ERFREJPIRERRRERRRE
* *
* ONVER' *
* CODE TO HEX *
» EEOPEE *
* *
LI TR TE 32T 2 2 T

IEGSU16 eVe
K4

1IEGSU608B

HERRCSHERERE RN
* XCTL TO

> % 1EGSU40Z *
* *

R e T I Ty 2

HERRCSERRRERRNR
* *
* IEGSU40Z *
* *

L e e

ALPHAMERIC

IEGSU40B v
FRREEDSHE RN NN
* LOCATE NEXT *
*AREA TO PRINT, *
* AND MOVE TO %*<—
* QUTPUT AREA :
*

NI RN NN

IEGSU40C _ +Ve
ES *o
*o
VALID *e
PR

o*
YES <%
%o INT
*o CODES %
* g ¥
*e ok
* NO

IEGSUa2
RN SRR TR
* *
* CONVERT TO *
* INVALID HEX *
* FORMAT *
* *
* *

SR TR IR S 2

v
ERERHSHRERERRRE
EXIT VIA
LINK

; REGISTER
EEZ 2222222222223

> k%
* k%

RRERCSE RN RN
* EXIT VIA »
>* LINK *
* *

REGISTER
ERREERRERERRRRR

Chart 67.

[T YNSRI XTI R 222
*

*
* IEGSUS50Z *
* *

333 3 36 I I 3 I WKWK

IBINARY

v
3 336 B] ¥ K KKK
* LOCATE NEXT *
* BYTE AND *
* CONVERT BITS ¥<——y
* TO PRINT *

* *
3 3 33 I I 3 I XN XX

HERED]HEEXEE KRR
* EXIT VIA
* LINK
* REGISTER
LR e s s 2]

* ok K

TESTRAN Editor

HHRHRC2H M NN E RN
* USE *

* CcvD *
* TO CONVERT *<
* MANTISSA *
*
*

*
336 3 36 3 3 36 369 3 3 3 kKX

NI ATH R E N
* *
* IEGSU90Z *
* *

NI NN

FLOATING
POINT

. v
XRREEBIHER R EREN

* ADJUST RADIX *
* POINT TO *
* FORM *
* INTEGER *
*
*

*
Ea 22 222222 222222

I
Ve
c3 x.

¥ *o
NO .* DOUBLE *o YES

*e PRECISION o
*e -
*q o
. o ¥
*

363X D T NN K XXX

* COMBINE *
* SCALE AND *
>* UNPACK *<
* MANTISSA *

* *
33 36 3 3 I I 3 3 XN

IEGSU93

HEERRCHE XX XEXERRR
* USE FIXED *
* PT METHOD *
>% TO CONVERT *
* MANTISSA *
* *

*

L2222 22 222222222

IEGSU901 IEGSU90F .Ve. IEGSU90H
HERXRRED KX HHXRHR E3 *q I E 4NN
* DIVIDE * o¥* *o * MULTIPLY *
* UNPACKED * NEGATIVE % COMBINED *. POSITIVE * UNPACKED *
* MANTISSA BY #<{————¥, SCALE - ¥————>* MANTISSA *
* 2 TO THE * *o o¥* * BY 2 TO THE *
* S POWER * *o ok * S POWER *
L2 a2 22 *y oF LA E s s e s 2 e s
| * ZERO
IEGSU92D

* OPERATION
* AND SCALE *
HEEEEEERHHREERRXE

v
R G H R RN
* EXIT VIA
* LINK
* REGISTER
E2 22222222222 L 23

* %k

v
E2 2 22 dot 22 22 2 222 2] .
* COMPUTE E *
* FROM *
>*MULTIPLY/DIVIDE*<
*

Charts

79

AN

APPENDIX A: = TEST INTERPRETER ACTION (TIA) TABLE ENTRY TYPES

This appendix contains pictorial representations of each of the 23 TIA table entry
types. The ©"A" (address) and modifier fields appear in many of the entries and are
explained fully at the beginning of this appendix and merely named in the individual
entry presentations.

A FIELD EXPANSION

The A fields included in the TIA entries are expanded as follows:

r T . T 1
| OR] L | AL |
L 1 L J
OR (1 byte) Organization Byte L (1 byte) Length
Bit 0 - "L® Field Flag If +the "AL" field contains a literal,
1 = Present this field contains the length of that
0 = Not present literal.
Bit 1 - Not Used
Bits 2,3 - Type of "AL" Field present
00 = Literal AL (1-255 bytes)
01 = 24 bit absolute address This field will vary depending on bits
10 = 16 bit base displacement 2 and 3 of the organization byte as
address follows:
11 = 1 byte register number
The contents of this register
are to be used as a value 00 Literal - Length will be specified
rather than an address. This in the"L" field
type will only appear in the 01 24 bit Absolute Address
SET family of macros and in 10 16 Bit Base/Displacement Address
the TEST WHEN and TEST ON Bits 0-3 - Base register
macros. Bits 4-15 - Displacement
Bits 4-7 - Index Register Number 11 1 Byte Register Number
0 = No indexing Bit 0
1-15 = The number of the general 1 = Floating point
register to be wused for i 0 = General
indexing the address con- Bits 1-3 - Not Used
tained in the "AL" field. Bits 4-7 - Register Number

Appendix A: Test Interpreter Action (TIA) Table Entry Types 81

MODIFIER FIELDS S, P, FO, L

In the variable field descriptions on subsequent pages, modifier fields are defined as
follows:

el

2 Bytes 1 Byte 1 Byte 2 Bytes
r 1 T 1 T 1 T 1
| s 1 2 || Fo || L [
L J L J L J L —d
S (2 bytes) Scale Modifier

A two byte signed integer field which specifies the number of places the decimal or

binary point is to be moved to the left.
(1-byte) Output Selection Code

A one byte field containing a hexadecimal coded value of 1-8 used by the TESTRAN
Editor to determine the processing of test data.

80 Output Selection Code

40 Output Selection Code

20 Output Selection Code

10 Output Selection Code

8 Output Selection Code

4 Output Selection Code

2 Output Selection Code

1 Output Selection Code

OO EFEWN R

FO (1 byte) Format Modifier
00 Character
01 Hexadecimal
02 Fixed Point?
03 Floating Point?
04 Packed Decimal
05 Zoned Decimal
0A Binary
0B Instruction

L (2-byte) Length Modifier .
Overrides any previously defined length attributes for the data referred to by the
macro-instruction.

iLength will always be present to distinguish between half-word and full-word fixed point
and between short and long floating point.

82

DUMP DATA ENTRIES

T 'l" T T T T T

|
1

T T 1
FO | L | MM | DS | F |
L L J

T (1 byte) Type Entry
06 for DUMP DATA

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
The length of this entry in bytes

Al1,A2
These fields contain the from and to
addresses.

P,s,FO,L (S,L=2 bytes; P,FO,=1 byte each)
These fields specify an output
selection code for output generated by
this statement and overriders for
attributes contained in +the symbol
table. If no symbol table exists,
these are attribute specifications.

NM (2-9 bytes) Name Modifier
Byte 1 - Length of Symbolic Name
Bytes 2-9 - Symbolic Name

DS (5-12 bytes) Dummy Section Name

This field consists of 5-12 bytes of

data as follows:

Byte 1 - Length (1-8) of the symbolic
dummy section name

Byte 2 - Repeat Count (1-255)

Bytes 3,4 - Base/displacement address
of dummy section

Bytes 5-12 - Symbolic name of dummy
section

byte) Flags
Bit 0 - "P" Field Flag
1 = Present
0 = Not present
Bit 1 - "S" Field Flag
Present
Not present
Bit 2 - "FO" Field Flag
Present
Not present
Bit 3 - "L" Field Flag
Present
Not present
Bit 4 - "NM" Field Flag
1 Present
0 Not present
Bit 5 - "DS" Field Flag
1 Present
0 Not present
Bits 6,7 - Not Used

non

o

1
0

o
Wn nn

Appendix A: Test Interpreter Action (TIA) Table Entry Types 83

DUMP CHANGES ENTRY

r
| T | ID
L L

-
o =4

Al T T T
IN| AL | B2 | P | S
L L L L

NM DS

e
s e
e
o e

Lol
S

T (1 byte) Type Entry
OE for DUMP CHANGES

ID (1 byte) Identification :
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
The length of this entry in bytes

Al,A2
These fields contain the from and to
addresses.

p,s,Fo,L (s,1=2 bytes; P,FO,=1 byte each)
These fields specify an output
selection code for output generated by
this statement and overriders for
attributes contained in the symbol
table. If no symbol table exists,
these are attribute specifications.

NM (2-9 bytes) Name Modifier
Byte 1 - Length of Symbolic Name
Bytes 2-9 - Symbolic Name

DUMP MAP ENTRY

T (1 byte) Type Entry
12 for DUMP MAP

ID (1 byte) Identification

The number assigned to this macro-
instruction at expansion time

84

DS (5-12 bytes) Dummy Section Name

This field consists of 5-12 bytes of

data as follows:

Byte 1 - Length (1-8) of the symbolic
dummy section name

Byte 2 - Repeat Count (1-255)

Bytes 3,4 - Bases/displacement address
of dummy section

Bytes 5,12 - Symbolic name of dummy
section

byte) Flags
Bit ‘0 - "P" Field Flag
1 Present
0 Not present
Bit 1 - "S" Field Flag
Present
Not present
Bit 2 - "FO" Field Flag
Present
Not present
Bit 3 - "L" Field Flag
1 Present
0 Not present
Bit 4 - "NM" Field Flag
1 Present
0 = Not present
Bit 5 - "DsS" Field Flag
1 Present
o Not present
Bits 6,7 - Not Used

QR

(=N
inn wn W

o

LN (1 byte) Length

P

Length of this entry in bytes

(1 byte) Output Selection Code
Specification

TN

DUMP PANEL ENTRY

RRn

T (1 byte) Type Entry
16 for DUMP PANEL

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

RR1-RRn (1 or 2 bytes each)
Register request. Length of each of
these entries depends on the first
four bits as follows:

Bits 0-3 =1
Individual general register
request. Length of entry is one
byte. Bits 4-7 specify general
register to be dumped.

Bits 0-3 = 2
Individual floating point register
request. Length of entry is one

byte. Bits U4-7 specify floating

point register to be dumped.

Bits 0-3 = 4

Range of general registers request.

Length of entry is two bytes.

Bits 4-7 - First general register
of range

Bits 8-11 - Not used

Bits 12-15 - Last ygeneral register
of range

Bits 0-3 = 8

Range of floating point register
request

Bits 4-7 - First floating point
register of range

Bits 8-11 - Not used

Bits 12-15 - 1last floating point
register of range

P,S,FO,L (S,L=2 bytes; P,FO=1 byte each)

These fields specify an output selec-
tion code for output generated by this
statement and overriders for attri-
butes contained in the symbol table.
If no symbol table exists, these are
attribute specifications.

bytes) Flags
Bit 0 - "P" Field Flag
1 = Present
0 = Not present
Bit 1 - "S" Field Flag
1 Present
0 Not present
Bit 2 - "FO" Field Flag
1 Present
o Not present
Bit 3 - "L" Field Flag
1 = Present
0 = Not present
Bit 4-7 - Not Used
Bits 8-15 - Count of "RR" Fields

Appendix A: Test Interpreter Action (TIA) Table Entry Types 85

DUMMY COMMENT ENTRY

r T T Ll T 1

| T | ID | IN | c | P F |

L 1 i L L]

T (1 byte) Type Entry P (1 byte) Output Selection Code
1A for DUMP COMMENT Specification

ID (1 byte) Identification
The number assigned to this
instruction at expansion time

macro-

LN (1 byte) Length

F (1 byte) Flag Byte
Bit 0 - "P" Field Flag

Length of this entry in bytes 1 = Present
) 0 = Not present

C (variable) Comment Bits 1-7 - Length in Bytes of "C"

Alphanumeric comment as supplied by Field.

the user
DUMP TABLE ENTRY
r T T T T T T]
| T | ID | LN | TT | P | A | F |
L i & i | 1 L L L J
T (1 byte) Type Entry field. Contents of this field for

1E for DUMP TABLE each table type is as follows:

DCB Normal "A" field containing

ID (1 byte) Identification the DCB address

The number assigned to this macro- DEB Normal "A" field containing

instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

TT (1 byte) Table Type
This byte specifies the type of table
to be dumped as per the following:

04 = DCB (Data Control Block)
08 = DEB (Data Extent Block)
0C = TCB (Task Control Block)

A (0-4 bytes) Name Address Field
This field varies depending on the
table type contained in the *TT*

86

the DCB address
TCB This field is omitted for TCB

P (1 byte) Output

Specification

Selection Code

F (1 byte) Flags
Bit 0 - "P" Field Flag

1 = Present
0 = Not present
Bits 1-6 - Not Used
Bit 7 - "A" Field Flag

1 Present

0 Not present

VRN

TRACE REFER ENTRY

=
=]
[}
o
=
=4
e
Y
e
N
g

= —
0

| FO | L coM | DS
L L i L

b e o

T (1 byte) Type Entry
22 for TRACE REFER

ID (1 byte) Identification

The number assigned to this macro-

instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

Al1,A2

These fields contain the from and to

addresses.

P,S,FO,L (S,L=2 bytes, P,FO=1 byte each)
specify an output
selection code for output generated by

These fields

this statement and overriders

attributes contained in the symbol
table. If no symbol table exists,
these are attribute specifications.

COM (2-121 bytes) Comment Field
Byte 1 - Length of Comment
Bytes 2-121 - Alphanumeric Comment

Appendix A: Test Interpreter Action (TIA) Table Entry Types

DS (5-12 bytes) Dummy Section Name

This field consists of 5-12 bytes of

data as follows:

Byte 1 - Length (1-8) of the
dummy section name

Byte 2 - Repeat Count (1-255)

symbolic

Bytes 3,4 - Base/displacement address

of dummy section
Bytes 5-12 - Symbolic name
section

F (1 byte) Flags
Bit 0 - "P" Field Flag

Present
Not present
Bit 1 - "S" Field Flag

1 Present

0 Not present
Bit 2 - "FO" Field Flag
1 Present

0 Not present
Bit 3 - "L" Field Flag

1 Present

(0] Not present
Bit 4 - "COM" Field Flag
1 Present

0 Not present
Bit 5 - "DS" Field Flag
= Present
= Not present
6-7 - Not Used

nwn

1
0

(1]

1
0
Bits

of dummy

87

TRACE CALL ENTRY

r T T L] T T T T T 1
{T | ID | LN | Al | A2 | P | coM | DS | F |
L L L 4 [l L L1 1 J
T (1 byte) Type Entry This field consists of 5-12 bytes of
26 for TRACE CALL data as follows:
Byte 1 - Length (1-8) of the symbolic
ID (1 byte) Identification dummy section name
The number assigned to this macro- Byte 2 - Repeat Count (1-255)
instruction at expansion time Bytes 3,4 - Base/displacement address
of dqummy section
LN (1 byte) Length Bytes 5-12 - Symbolic name of dummy
Length of this entry in bytes section
Al,A2 F (1 byte) Flags
These fields contain the from and to Bit 0 - "P" Field Flag
addresses. 1 = Present
0 = Not present
P (1 byte) Output Selection Code Bits 1,2,3 - Not Used
Specification Bit 4 - "COM" Field Flag

COM (2-121 bytes) Comment
Byte 1 - Length of Comment
Bytes 2-121 - Alphanumeric Comment

DS (5-12 bytes) Dummy Section Name

TRACE FLOW ENTRY

Present
Not present
Bit 5 - DS Field Flag
1 Present

o Not present
Bit 6,7 - Not Used

1
0

LN Al A2 P

-
coM] DS
1.

T (1 byte) Type Entry
2A for TRACE FLOW

ID (1 byte) Identification
The number assigned to this
instruction at expansion time

macro-

LN (1 byte) Length
Length of this entry in bytes

Al-A2
These fields contain the from and to
addresses.

P (1 byte) Output Selection Code
Specification

COM (2-121 bytes) Comment
Byte 1 - Length of Comment
Bytes 2-121 - Symbolic Comment

88

DS (5-12 bytes) Dummy Section Name

This field consists of 5-12 bytes of

data as follows:

Byte 1 - Length (1-8) of the
dummy section name

Byte 2 - Repeat Count (1-255)

Bytes 3,4 - Basesdisplacement address
of dummy section

Bytes 5-12 - Symbolic name
section

symbolic

of dummy

byte) Flags
Bit 0 - "P" Field Flag
1 Present
) Not present
Bits 1,2,3 - Not Used
Bit 4 - "COM" Field Flag
1 Present
0 Not present
Bit 5 - DS Field Flag
1 Present
0 = Not present
Bits 6,7 - Not Used

TRACE STOP ENTRY

r T T T T T T T 1
| T | ID I LN | TAl | TA2 | TAn | P | F |
L 1 1 1 L i 4 4 J
T (1 byte) Type Entry If any "TA" fields are present, they
2E for TRACE STOP will contain addresses of specific
macros whose action is to be stopped

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

and only those listed will be stopped.

P (1 Byte) Output

Specification

Selection Code

F (1 Byte) Flags
Bit 0 - "P" Field Flag

1 = Present

TA1,TAn (3 bytes each) 0 = Not present

If no "TA" fields are present; all Bits 1-7 - Count of "TA" fields in

active trace macros will be stopped. this entry
TEST AT ENTRY
r T T T T T T T T E}
| T | ID | LN | P | LoCc1 | LOoC2 | LoC3 | LOCn | F |
L 1 1 1 L 1 L L 1 J
T (1 byte) Type Entry LOC1-1LOCn (3 bytes each) AT Location

02 for TEST AT Each of these fields is a 24 bit

ID (1 byte) Identification
The number assigned to this
instruction at expansion time

macro-

LN (1 byte) Length
Length of this entry in bytes

P (1 byte)

Specification

Output Selection Code

Appendix A:

Test Interpreter Action (TIA) Table Entry Types

aksolute address at which the user has
specified some TESTRAN action.

F (1 Lbyte) Flags
Bit 0 - "P" Field Flag
1 Present
o Not present
Bits 1-7 - Count of "A" field present

89

TEST OPEN ENTRY

T T T L T
T |ID|LN| EP | iD I
1 L 1 1

T T T T
P|MP | ME| TL1L | TL2 I TLn | F |
i L L J

T (1 byte) Type Entry
OA for TEST OPEN

ID (1 byte) Identification
For the TEST OPEN entry, the number of
the SVC assigned to the TESTRAN open
routine (49)

LN (1 byte) Length
Length of this entry in bytes

EP (3 bytes) Entry Point
This field contains the address to
which TESTRAN is to give control after
executing the TEST OPEN macro.

ID (8 bytes) Identification
This field contains an alphanumeric
name, supplied by the user, to be used
by TESTRAN to identify output of this
table.

P (1 byte) Output Selection Code Specifi-
cation

MP (2 bytes) Maximum number of Output pages
the user desires TESTRAN to generate
(1-65535)

ME (2 bytes) Maximum number of macros to be
executed by the TESTRAN Interpreter

TEST CLOSE ENTRY

==
=

ip I LN |

T (1 byte) Type Entry
32 for TEST CLOSE

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

920

TL1-TLn (4 bytes each) Table Locations
Each of these fields contain the
address of a secondary TEST OPEN macro
to be loaded with this TEST OPEN

F (2 bytes) Flags
Bit 0 - "EP" Field Flag
1 = Present
0 = Not present
Bit 1 - Not used
Bit 2 - "ID" Field Flag
Present
Not present
Bit 3 - "P" Field Flag
1 Present
0 Not present
Bit 4 - "ML" Field Flag
Present
Not present
Bit 5 - "ME" Field Flag
1 Present
0 Not present
Bit 6 - Not used
Bit 7 - Transient or Non Transient
mode flag as follows:
1 LINK
o LOAD
This is a flag to inform the
TESTRAN Router whether to link to
or load required routines.
Bits 8-15 - TL count
These bits contain a count of the
"TL" fields present in this TEST
OPEN macro.

1
0

oM
mn

nn

LN (1 byte) Length
Length of this entry in bytes.

Note: This macro does not have a variable

field.

N

TEST DEFINE COUNTER ENTRY

r T 1 A R 1

| T | ID | LN | CcT1 | CT2 | CT3 | CTn |

L 1 1 L 1 L 4L J

T (1 byte) Type Entry LN (1 byte) Length
42 for TEST DEFINE COUNTER Length of this entry in bytes

CT1-CTn (1 byte each)

ID (1 BYTE) Identification Each of these one byte fields is a
The number assigned to this macro- counter to be used by TESTRAN TEST ON
instruction at expansion time macros. Their initial value is zero.

TEST DEFINE FLAG ENTRY

r T T h) k) N 1

| T | ID | LN | FG1 | FG2 | FG3 | FGn |

L 1 L 1 L L L J

T (1 byte) Type Entry IN (1 byte) Length
46 for TEST DEFINE FLAG Length of this entry in bytes

ID (1 byte) Identification FGl1 - FGn (1 byte each)

The number assigned to this macro- Each of these are one byte fields

instruction at expansion time

Appendix A:

which the user may use as a switch.
Each flag has an initial value of zero
(off).

Test Interpreter Action (TIA) Table Entry Types 921

TEST ON ENTRY

TA Al

- — -

T (1 byte) Type Entry
56 for TEST ON

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

TA (3 bytes) TESTRAN Address
This field contains the 24 bit address
of the next TESTRAN macro to be
interpreted if a +true conclusion is
reached for this macro.

Al Counter Field
This "A" field will contain either a
one byte literal (initialized at zero)
to be used as a counter or the 4 byte
address of a counter defined with a
test define counter macro.

92

A2-AL

These 3 "A" fields will each contain
one of the items listed below.

1.

Literal: A 1literal value to be
used in determining a true -or
false conclusion for this macro.

Address: The address of a four
byte variable, in the object pro-
gram to be used in determining a
true or false conclusion for this
macro.

Register Number: A general reg-

ister whose contents are to be
used for determining a true or
false conclusion.

A2 - Low Limit
A3 - High Limit
A4 - Interval

VA

TEST WHEN ENTRY

= =
H

LS
ID IN | TA |
L1

—

A2

s e)

Al I
L

T (1 byte) Type Entry
5A for TEST WHEN

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

TA (3 bytes) TESTRAN Address

This field contains the 24 bit address

FO (1 byte) Data Format

E (1 byte) Extent
This field specifies the length of the
data items to be compared.

Al,A2 Address Fields
These fields will each contain one
the following.

of

of the next TESTRAN macro to be
interpreted if a true conclusion is 1. Literal: A literal to be used as
reached for this macro. one item in the compare.
OP (1 byte) Operator
This field contains an operator speci- 2. Address: The address of a varia-
fying the relation to be checked ble or constant to be used in the
between A1l and A2 as follows: compare.
00 = Equal
04 = Not Equal
08 = Less Than 3. Register Number: The number of a
0C = Greater Than general or floating point reg-
10 = Less than or equal to ister whose contents are to be
14 = Greater than or equal to used in the compare.
18 = AND*
1C = OR*
20 = Independent Field (A2 Not
Present)?®
i1No FO or L fields will exist.
SET COUNTER ENTRY
r T T T T 1
| T { 1ID | 1N | TA | a2 |
L L L 1 J
T (1 byte) Type Entry A2
4a for SET COUNTER This field will contain one of the
three items listed below.
ID (1 byte) Identification
The number assigned to this macro- 1. Literal: The counter is to be set
instruction at expansion time to the value of this literal.
2. Register Number: The counter is
LN (1 byte) Length to be set to the value contained
Length of this entry in bytes in this General Register.
3. Address: The counter is to be set
"TA (3 bytes) TIA Table Address to the value contained in the
This field contains the address of the full word located at this
counter to be set. address.
Appendix A: Test Interpreter Action (TIA) Table Entry Types 93

SET FLAG ENTRY

r 1 1 1 1 L)

| T | 1D | 1IN [TA | A2 |

L L XL i R J
T (1 byte) Type Entry A2

4E for SET FLAG This "A" field will contain either an

integer (must be 0 or 1) or the

ID (1 byte) Identification address of another TESTRAN flag. If

The number assigned to this macro- the field contains an integer, the

instruction at expansion time flag will be set to that value. If

the field contains another flag

LN (1 byte) Length address, the flag specified in the

Length of this entry in bytes *TA' field will be set to the value of

TA (3 bytes)
This field will contain the address of
the TESTRAN flag to be set. This flag
must be defined elsewhere with a TEST
DEFINE FLAG macro.

SET VARIABLE ENTRY

the flag at that address.

T
ip | LN | Al
1

e e e}

A2 | L
L

e e e

T (1 byte) Type Entry
52 for SET VARIABLE

ID (1 byte) Identification
The number assigned to this macro-
instruction at expansion time

LN (1 byte) Length
Length of this entry in bytes

GO IN ENTRY

Al1,A2 Address Fields
These fields may contain either of the
two items listed below.

1. Address: An object program
address. .
2. Register Number: A general or

floating point register number.
In addition, the A2 field may
contain a literal.

L (1 byte) Length of data fields specified

¥ T T 1 1
| T | ID | LN | TA |
L L 41 1]
T (1 byte) Type Entry IN (1 kyte) Length

36 for GO IN Length of this entry in bytes

TA (3 bytes) TIA Table Address

ID (1 byte) Identification This field contains the address of the

The number assigned to this macro- TIA Table entry to be interpreted

instruction at expansion time

B

next.

GO OUT ENTRY

r T T
| T | ID | IN
L L A
T (1 byte) Type Entry IN (1 byte) Length
3A for GO OUT Length of this entry in bytes
ID (1 byte) Identification
The number assigned to this macro- Note: This macro does not have a variable
instruction at expansion time field.
GO BACK ENTRY
r - T v T 1
| T | ID | LN | Al |
L 1 L]
T (1 byte) Type Entry Al Address Field
3E for GO BACK This field when present will contain
an object program address to which the
ID (1 byte) Identification programmer wants TESTRAN to return
The number assigned to this macro- control.

instruction at expansion time

LN (1 byte) Length
The length of this entry in bytes

GO TO ENTRY

v T T T 1
| T | 1D | LN | TA |
L - L J
T (1 byte) Type Entry IN (1 bkyte) Length
5 for GO TO Length of this entry in bytes
TA (3 bytes) TIA Table Address
ID (1 byte) Identification This field contains the address of the
The number assigned to this macro- TIA Table entry to be interpreted
instruction at expansion time next.

Appendix A: Test Interpreter Action (TIA) Table Entry Types 95

APPENDIX B: TESTRAN INTERPRETER TABLES

This appendix contains diagrams and byte-by-byte descriptions of the tables generated
and used by the TESTRAN interpreter.

CONTROL CORE 560 BYTES

== 16 BYTES >
r T T T 1
0] N | NEXT | REF TAB | FLAG TAB | CTR TAB |
k- T } T 1 "= + : 1
16| F | RF | AP | TR CORE | OP | (NOT USED) | SEG TAB I
! L : 1 ¢ L H . y
32| CUR TABLE I MAX LINES I CRB | TCB | HQOUTPUT I
1 1 1 1 L : 4
r T T T 1
48| RETADR I OUTAMT | ME | |
L 1 1 J I
8
6u| |
I PROLOGUE BUFFER |
| 142 |
112] [4
128} 1 I
| |
144 DATA BUFFER |
| |
224 246 255 |
| r T 4
2401) | SUBRT | DUM |
L L L 3
r T K
256| REFENT | |
————————] l
272} TEMPORARY STORAGE 1 300 I
| r
288] 312 | HB TEMP
L 1
8
3044 328 TEMPORARY i
L q
r T T 1
320| STORAGE 2| (NOT USED) | [
L L J I
336] |
| (328 TO 423 INCL.) OUTPUT DCB |
| 424 |
| T .|
416] | OUTPUT DECB [
b : x i
432] (424 TO 443 INCL.) | |
b e |
| 444 |
| (444-515 INCL.) |
| BSAM SAVE AREA |
| |
| ¢ i
| | |
L Il I
8
| 516 |
528| (516 TO 559 INCL.) HQSAVE AREA |
| |
L J

96

N (1 Byte)
Last number assigned to a TIA table

NEXT (3 Bytes)
Address of next core area

REF TAB (4 Bytes)
Address of first reference table in
the reference table chain

FILAG TAB (4 Bytes)
Address of first flag table in the
flag table chain

CTR TAB (4 Bytes)
Address of first counter table in the
counter table chain

F (2 Bytes) Flags
Bit 0 = Removed instruction execution
control
0 = Execute removed instruction
1 = Delete execution of removed
instruction
Bit 1 - Overlay flag
1 = Program contains overlay
0 = No overlay
Bits 2,3 = Table type

11 = Control
Bit 4 Links/load option
1 Link mode
0 Load mode
Bit 5 - Dump SEGTAB flag
1 SEGTAB must be dumped
0 No SEGTAB to be dumped
Bit 6 - Protection
1 Protection
0 No protection
1

W

Bit 7 - Floating point register flag

= Hardware contains floating-
point

0 = No floating-point hardware

Bit 8 - No start trace flag

1 = Suppress trace start

0 = Permit trace start

Bit 9 - Not used

Bit 10 - SAVE routine flag

= SAVE routine has operated

= SAVE routine has not operated

11 - Trace mode

= Trace mode

= Non trace mode

Bit 12 - Branch type instruction (used
by GO BACK)
1 = Instruction being executed is a

branch
Instruction being executed is
not a branch
3 - Type Tasking
1 = Variable number of tasks
0 = Fixed number of tasks
4 - Not used
- Table opened
A TIA has been opened
No TIA opened

RF (2 Bytes) Return flags

0000 Return from all routines except
TRACE, GO BACK, CLOSE

0008 Return from GO BACK, CLOSE

000E Return for TRACE, TESTRAN SVC

0014 Return from TRACE for TTOPEN or

overlay SVC
AP (1 Byte) AT Priority
Priority from the last "TEST AT" macro
TR CORE (3 Bytes) .
Address of working storage gotten for

trace

OP (1 Byte) OPEN Priority
Priority from the "TEST OPEN" macro

NOT USED (3 Bytes)
SEG TAB (4 Bytes) Segment table address

address
TIA

CUR TABLE (4 Bytes) Current tab)
Address of table core “ r the
table currently being in :rpreted

MAX LINES (4 Bytes)
Maximum 1lines of output
generated for the ¢ .rent task

to be

CRB (U4 Bytes)
Callers R.B. address
TCB (1 byte)
Size of TCB in bytes

HQOUTPUT (3 Bytes)
Address 'of HQOUTPUT routine

RETADR (4 Bytes)
Address in users program control is to
return to

OUTAMT (4 Bytes)
Number of 1lines of
generated for this task

output already

ME (2 Bytes)
Maximum
macros
task

execution count of TESTRAN
to be interpreted during this
PROLOGUE BUFFER (84 Bytes)
DATA BUFFER (104 Bytes)

SUBRT (9 Bytes)
Subroutine table

DUM (1 Byte)
Dummy GOBACK macro

REFENT (4 Bytes)
Address of the current reference table
entry

TEMPORARY STORAGE 1 (40 Bytes)

Appendix B: TESTRAN Interpreter Tables 97

HBTEMP (12 Bytes)
Temporary storage reserved for the
HBADDRSR routine

TEMPORARY STORAGE 2 (12 Bytes)

NOT USED (4 Bytes)

OUTPUT DCB (96 Bytes)
DCB to be used for intermediate output

98

OUTPUT DECB (20 Bytes)
DECB used for writing on the inter-
mediate device

BSAM SAVE AREA (72 Bytes)
Register save area for the BSAM rou-
tines

HQSAVE AREA (44 Bytes)
Save area used by HQOUTPUT subroutine

TRACE CORE 272 BYTES

< 16 BYTES >
r a1
+ 0] |
I |
16| |
|
32|
| |
u8| TRACE TABLE |
|
6u|
|
80|
|
96| +120 123 124
i r T T
112} i ZERO | on | EADR |
L 1 L 1 4
r T)
128 UPSW | WPSW |
IL' T =T T L T v 'Jl
144| EF | CONTROL | SF | CcoPY | TF | BA |
} L 1 L L i =|'
| 145 148 149 155 156 I
160 | |
|
176 |
: |
192} TEMPORARY STORAGE 1 |
I
208| [
I
224 244 248 249 250 |
% T T T T T %
240} RRB | TEMPORARY STORAGE 2 | C | LE | svc | |
L 4 i d i J I
3
256 | TEMPORARY STORAGE 3 |
L J
TRACE TABLE (120 BYTES) FF = Instruction being traced is an

This field contains a list of all cur-
rently active traces.

ZERO (3 Bytes)
Work constant of zero

OL (1 Byte) Output length

Storage for 1length of output data
record

EADR (4 Bytes) Execute address
Addréss of 1last execute instruction
traced

UPSW (8 Bytes) User PSW
Storage for the users PSW

WPSW (8 Bytes) Work PSW

PSW build area used during enable and
disable functions

EF (1 Byte) Execute Flag
00 = Instruction being traced not an
execute '

execute
CONTROL (3 Byte) Control address

SF (1 Byte) Stop flags
Bits 0-3 Not used

Bit 4 1 = Stop trace due to SVC, bad
EX, PRIV. instruction' or -
bad store address

Bit 5 1 = Stop trace due to program
check

Bit 6 1 = stop trace due to overlay

Bit 7 1 = stop trace due to TRACE

STOP macro

COPY (6 Bytes) Instruction copy
Copy of the instruction presently
being interpreted

TF (1 Byte) Flags
Bits 0,1 Not used
Bit 2 Interrupt routine flag
1 = User-supplied interrupt routine
being traced
0 = Not in interrupt routine

Appendix B: TESTRAN Interpreter Tables 99

Bit 3 SVC in switch
1 = TESTRAN SVC must be reinserted
0 = TESTRAN SVC not to be reinsert-
ed
Bit 4 Reference out switch
1 = The before portion of reference
trace output has been generated
for the instruction presently
being interpreted
0 No output generated
Bit 5 Reference trace switch
1 = Reference type trace active
0 = No reference type trace active
Bit 6 Call trace switch
1 Call type trace active
0 No call type trace active
Bit 7 Flow trace switch
1 Flow type trace active
0 No flow type trace active

BA (4 Bytes) Branch address
Effective address of branch instruc-
tion being interpreted

100

Temporary storage 1 (80 Bytes)

RRB (4 Bytes) Router RB
Contains the address
routers routine block

of the TESTRAN

Tempcrary storage 2 (4 Bytes)

C (1 Byte) Count of trace table entries

LE (1 Byte) Last trace table entry

SVC (2 Bytes) Dummy SVC
Dummy SVC used during execution of a
user SVC

Temporary storage 3 (20 Bytes)

TRACE TABLE (120 BYTES MAXIMUM)

< - 12 BYTES >
r T T T T) 1
1 1 T | P | TN | MN | FROM | TO |
(I f + + 1 + i
| | | | I I |
1| | | | I | |
I | | | | | I
0| | | | | | I
= | | | | I I |
10 | 1 | I | I |
| | | I I I I
E | | | | | | |
N | | { | | | |
T | | | | | | |
R | | | | | | |
I | | | | | |
E | | | | | | |
s | | I | I | |
I | | | | I |
I | | | | | |
|| | | | | | |
|1 | | | | | |
I | | | | | |
L L L L iR L J
T (1 Byte) Type of entry MN (1 Byte) Macro number
00 = End of table The macro number of the macro which
22 = Call type trace entry generated this entry
26 = Reference type trace entry

2a Flow type trace entry
FROM (4 Bytes)
P (1 Byte) Output Selection Code Start address of the area being traced
Output selection code for output gen-
erated by this entry
TO (4 Bytes)
TN (1 Byte) Table number
Number of +the TIA table containing End address of the area being traced
this trace macro

Appendix B: TESTRAN Interpreter Tables 101

DCB/REL CORE

< 8 BYTES >
3 Al
+ 0| NEXT | TTR
1 L
r
+ 8| M B B C C H H R
lL' L] T {
+16| F | LASZ | |
t 4 ! |
+24] DCB |
| r .|
+32] | LAl |
L J |
b
| |
| |
| |
| |
| |
I |
| |
| r 1
| | 1An |
L L Jd
r |
| DEB |
L 3
NEXT (4 Bytes) LASZ (2 Bytes)
Pointer to the next DCB/REL. Zero in This field contains a count of the

this field designates the end of the
" chain.

TTR (U4 Bytes)
Relative disk address of the symbols,
ESD and composite ESD

MBBCCHHR (8 Bytes)
Absolute disk address of the symbols,
ESD and composite ESD
(2 Bytes) Flags
Bits 0,1 Not used
Bits 2,3 Table type
10 = DCB/REL
Bits 4-15 Not used

102

bytes occupied by 'LA' entries.

DCB {16 Bytes)
This field contains a copy of the DCB
used by program fetch to 1load the
program.

LAl1-LAn (4 Bytes each)
Loaded address of a control section in
the load module

DEB (variable size)
Copy of the DEB used by program fetch
in loading the program

REFERENCE TABLE

< 8 BYTES >

r T 1
| NEXT F | CT |
p-—- T } i
| OAl | RM1 | TAl |
L ! 1 4
v T T 4
| 0A2 | RM2 | TA2 |
| | | |
b + ¢ 4
I [
		I
i | | 4

[T A

| I |

1 } 1

T T a

| OAn | RMn | TAn |
L L 1 J
Each TESTRAN action table generates a OA1-OAn (3 Bytes each) Object program

reference table. Each SVC inserted, by address

TESTRAN, in the problem program generates Address in the object program where a

an entry in the reference table.

NEXT (4 Bytes)
Address of the next reference table

F (1 Byte) Active/Inactive flag
00 Table active
FF Table inactive

CT (3 Bytes)
Count of
table

entries in this reference

Appendix B:

TESTRAN SVC has been inserted

RM1-RMn (2 Bytes each) Removed instruction
The two bytes of the object program
displaced by the TESTRAN SVC

TA1-TAn (3 Bytes each) TIA address
Address in the TESTRAN action table,
of the "TEST AT' macro which caused
the SVC to be inserted

TESTRAN Interpreter Tables 103

FLAG TABLE

4 BYTES >

<

r- T 1
| & | CT | NEXT TAB |
L 1 1
r v]
| FG1 | ADR1 |
L 1]
v T 1
| FG2 | ADR2 |
i 4 J
r T A
| | !

| |
| | |
I | I
|] I
| | I
i l]
r T 1
| FGn | ADRn 1
L 1 J

A (1 Bit) NEXT TAB (3 Bytes)
This bit specifies the table is active This field contains the address of the
or inactive next flag table
0 = Active
1 = Inactive FG1-FGn (1 Byte each)
The actual flag to be set and cleared
by TESTRAN

CT (7 Bits)
Count of the number of entries in ADR1-ADRn (3 Bytes each)
this table TIA table address of the flag

104

COUNTER TABLE

< 8 BYTES >
T T L |
A | COUNT | NEXT TAB [
L 1 d
T 1
ADR1 | CTR1 |
H 1
ADR2 | CTR2 |
L 1 (]
r 1 1
L 1	
3 T 4	
ADRn	CTRn
L L J

A (1 byte) Active byte ADR1 - ADRn (4 Bytes each)

Zero-table is active These fields will contain the TESTRAN
Not zero-table is inactive TIA table address of where the counter

was defined.
COUNT (3 Bytes)
Count of the number of entries in this

table CTR1 - CTRn (4 Bytes each)
These fields will contain the actual
NEXT TAB (4 Bytes) counters used by the TESTRAN routines.

This field contains the address of the
-next counter table in this chain.

Appendix B: TESTRAN Interpreter Tables 105

TABLE CORE

< 16 BYTES >
r T T T T) 1
| NEXT | N | TIA | OPBY | CS |
1 ! H i 1 1
r T T 1
| F | LN | |
l[_ 1] l
| REFERENCE TABLE |
i %
| .

| FLAG TABLE |
| |
i i
| COUNTER TABLE |
[]

NEXT (4 Bytes) Next pointer
Pointer to the next table core or
DCB/REL core. Zero in this field
indicates the end of the chain.

N (1 Byte) TIA number
Number assigned the TIA table asso-
ciated with this table core

TIA (3 bytes) TIA address
Address of the TIA table for which
this table core was generated

OPBY (4 Bytes) Open address
Address of the TEST OPEN macro which
opened the TIA associated with this
table core

Bit 1 Not used
Bits 2,3 Table type
00 = Table core
Bits 4-6 Not used
Bit 7 Just opened flag
0 = Just OPENed
1 = Not just OPENed
Bits 8-15 Not used

LN (2 Bytes) Length
Length of the TIA table for which this
table core was generated

REFERENCE TABLE

Reference table associated with the

TIA table
CS (4 Bytes) Checksum
Checksum word for the TIA associated FLAG TABLE
with this table core Flag table associated with the TIA
table

F (2 Bytes) Flags

Bit 0 Active/Inactive Flag COUNTER TABLE
0 = Table active Counter table associated with the TIA
1 = Table inactive table

106

SUBROUTINE TABLE

< 3 BYTES >

b e et e b e

3 entries of 3 bytes each

The GO IN routine fills the first vacant
3 byte slot with a return address. If the
table gets filled, (more than 3 entries)
the first entry is pushed off the top and
the whole table is moved up one entry with
the new entry inserted at the bottom.

the addresses are used

On returning,
As one is used for a

from bottom to top.
return it is zeroed.

This entry table is zeroed on each entry
to the TESTRAN router. (A TESTRAN SVC
caused by a TEST AT macro.)

Appendix B: TESTRAN Interpreter Tables 107

APPENDIX C: TESTRAN EDITOR TABLES

This appendix contains diagrams and byte-by-byte descriptions of the tables generated
and used by the TESTRAN editor. ‘

TABLE DICTIONARY

< 8 BYTES >
T T 1
[MAP I |
| Start Address | Current Length |
L] J
1) T 1
REFERENCE TABLE | |
Start Address | Current Length |
L |]
t T H
| ACTION TABLE LIST | |
| Start Address | Current Length |
1 1
T A
DUMP CHANGE LIST | |
Start Address | Current Length |
1 J
(4 bytes) (4 bytes)
MAP ENTRY

(Sorted by LA field)

r 1) L T v k| T 1
| N AA s | LA | B | L | T | C | I |
L 1 A i L L 1 J
N (1 byte) Input Sequence Number 0 = CSECT

4 = Private Code
AA (3 bytes) Assembled Address 5 = Common

8 = DSECT
S (1 byte) Segment Number
LA (3 bytes) Loaded Address L (3 bytes) Length of CSECT in bytes
B (1 byte) Status Byte T (8 bytes) CSECT Name

Bit 0 Active Indicator

0 = CSECT Active C (1 byte) Assembly Number
1 = CSECT Inactive ,
Bits 4-7 Type I (3 bytes) I/O Key of Symbol Table

108

ACTION TABLE LIST

Entry

r T T T T 1
| TIA | ID | IOKEY | DISP | LA |
| | L L L L J
TIA (1 byte) Action Table Number DISP (2 bytes) Offset of Action Table from

ID (1 byte) Identification of last entry in
Action Table

IOKEY (3 bytes) I/O Key of Action Table

beginning of buffer

LA (3 bytes) Loaded address of TIA Table at
Interpreter Time

Appendix C: Testran Editor Tables 109

ACTION TABLE ENTRIES

T T T T T T L] 1
TEST |ID LN | M | DCB | NAME | ML | ME |
OPEN | | I I | | | |

L] (1 1] 1 1 iR

T v 1) 1 T T T T T T Ll 1
puMP |ID |LIN | M|FO| S | L |DSR| DSA | DSNM |[VLN| NM]|
DATA | U I A | [I I | | | P

4 (] [] 4 1 L 1 |l 1 4 L J

T T T v T T 1 i T T k) a
pDUMP |ID |[LN | M |[FO| S | L |DSR| DsA | DSNM |VLN|NM |
CHANGE | | | I | | | P

— -t S e t Lot

DUMP |ID |LN | M |[FO| S | L | REGMSK |
PANEL | [I | 1| |

1 4 [4 1 i] 4

T T T T T
DUMP |ID |LN | M |TT |
TABLE | | | | |

[1 1 1 L

T T) T . . 1
DUMP |ID |LN | M | Variable Field |
COMMENT | | | | |

1] | 1 1

T T L] T T] T T L] 1} T 1
TRACE |ID |[LN | M |[FO| S | L |[DSR| DSA | DSNM |VLN|CcoM|
REFER | | [| I | | |]

" 4 [l 4] 1 L 1 L 4 1]

T T T T T T T T T
TRACE |ID |LN | M |[DSR| DSA | DSNM | VLN | coM |
cat. | | 1 1 | I I I

1 1] |] [l L] |

T] T] T T T 13 1
TRACE |ID |LN | M |[DSR|{ DSA | DSNM | VLN | com
FLow | [I I | [

4L 4L 1 1 L i L 1

ID (1 byte) Macro Identification Number
LN (1 byte) Length of entry in bytes

M (1 byte) Mask, indicating presence of

Bit 0 FO or DCB
Bit 1 S or ID
Bit 2 L or ML
Bit 3 gﬁ or ME
Bit 4 or COM
Bit 5 REGMSK

DCB (3 bytes) Address of DCB

NAME (8 bytes) Name of TESTRAN Control
Section

ML (2 bytes) Maximum number of output lines

ME (2 bytes) Maximum number of TESTRAN
statements to execute

FO (1 byte) Format modifier
00 Character
01 Hexadecimal
02 Fixed Point
03 Floating Point
04 Packed Decimal
05 Zoned Decimal
OA Binary

110

S (2 bytes) Scale Modifier

L (2 byte) Length Modifier

DSR (1 byte) Repeat Count

DSA (2 bytes) Dummy Section Address

DSNM (8 bytes) Dummy Section Name

VLN (1 byte) Length of COM or N field

REGMSK (3 bytes) Register Mask
Bits 0-15 General Registers 0-15
Bit 16 Floating Point Register
Bit 18 Floating Point Register
Bit 20 Floating Point Register
Bit 22 Floating Point Register

AENO

TT (1 byte) Table ID Dumped

COM (Variable) Comment Over-rider

NM (Variable) Name Over-rider

DUMP CHANGE LIST ENTRY

= =

T
TIA | M | IOKEY
L

b e o)

TIA (1 byte) Action Table Number
M (1 byte) Macro Identification Number

IOKEY (3 bytes) I/O Key of Dump Change Table

DUMP CHANGE TABLE ENTRY

b e ol

13 T
| N LA L I IOKEY
L L

N (1 byte) Dump Change Table Entry Number
LA (3 bytes) Loaded Address of Data
L (2 bytes) Length of Data

IOKEY (3 bytes) I/O Key of Dumped Data

Appendix C: Testran Editor Tables 111

SYMBOL TABLE

T T 1
HEADING | A | IND|
Jr T + + T T T T 1
| LE | A | OR | LD | SYM | M | S
=_ L 1 L L T 1 1 J]
| |
VARIABLE | T 4
LENGTH | |
ENTRIES } T 4
| |
t t 1
| |
1 J
HEADING (5 bytes) One heading per buffer 5 Zoned Decimal
6 A Type Data
A (2 bytes) Offset from the start of the 7 Y Type Data
Section Definition for the last byte 8 S Type Data
defined in this buffer 9 V Type Data
A B Type Data
IND (1 byte) Indicator for last buffer B Instruction
FF = More SYMS for this Section Defi- C CCwW
nition D Space
00 = No more SYMS for this Section Bit 4 Zero if label present
Definition One if label not present
Bits 5-6 Duplication
00 No Duplication, not
VARIABLE LENGTH ENTRY (variable) One entry cluster subfield
per named or data defining statement 01 Cluster subfield
10 Duplication, no cluster
LE (i byte) Length of this entry 11 Duplication, with clust-
er subfields
A (2 bytes) Offset from the start of the Bit 7 Zero if no scaling

Section Definition of the
described by this entry

first byte

OR (1 byte) Organization

Bits 0-3 Format
Character
Hex
Fixed Point
Floating Point
Packed Decimal

FWNRO

112

One if scaling

ID (2 bytes) Explicit length of data field
SYM (0 or 8 bytes) Label
M (0 or 3 bytes) Duplication factor

S (0 or 2 bytes) Scaling

AN

REFERENCE TABLE ENTRY

r T T h)
| LA | I | SEG |
L 4 L 3
LA (3 bytes) Loaded address of displaced

instruction
I (2 bytes) Displaced instruction
SEG (1 byte) Overlay segment number con-

taining TESTRAN SVC

Appendix C: Testran Editor Tables 113

APPENDIX D:

TESTRAN EDITOR INPUT RECORD FORMATS

This appendix contains diagrams of the organization of the 21 record types
by the TESTRAN interpreter and processed by the TESTRAN editor.

generated
The presentation for the

prologue record of the record pairs is generalized, while the data records are presented

separately for each record type.

PROLOGUE RECORD

r T=--7T T T
| ID [NO | T | P |
L 4 L L L

-—

ID (1 byte) Record Identification
00000000 Skip this record
00000010 TESTRAN

NO (1 byte) For Type S5E records - TIA table
identification number
For Type 5A records -
or zero
For Types 22, 26, 2A records
Bit 0 = 0 - Normal trace record
1 - Trace start record
For Type 1lE records

Segment number

04 = DCB
08 = DEB
0C = TCB, where
Bit 0 = 0 - No floating point
registers
1 - floating point
included

T (1 byte) Type of Entry in D field (See
note below)
06 DUMP DATA
0A TEST OPEN
OE DUMP CHANGES
12 DUMP MAP
16 DUMP PANEL
1A DUMP COMMENT
1E DUMP TABLE
22 TRACE CALL’
26 TRACE REFER
2A TRACE FLOW
2E TRACE STOP
32 TEST CLOSE
36 ERROR
42 Continuation
46 Message
4A CESD
4E Map Change
52 CSECT Relocation Table
56 Symbol Table
5A Reference Table
5E TIA Table

Note: Bit 7 in the T byte, if one,
indicates that the current Data Record is
continued in the next Data Record.

114

P (1 byte) TESTRAN Output Selection Code
(8 bits, left to right, indicate out-
put selections 1-8 respectively)

F (4 bytes) where
Byte 0 - Action Table ID number of
Action Statement
Bytes 1-3 - Address
(null if no AT)

of AT statement

J (8 bytes) Name of load module
C (1 byte) Number of M fields

SA (3 bytes)
Absolute starting address of data for
06, OE, 1E or TIA Table in Type 5A, S5E
records
Ignored for all other entry types

L (2 bytes)
Length of Data Field (bytes) including
continuations ,
Exception: Trace with continuation.

In this case, the length is for the
current Data Record only.

A (2 bytes) Current Action Pointer
Byte 0 - Action Table ID Number
Byte 1 - Macro Number

M (2 bytes) Executed Statement Pointer
Byte 0 - Action Table ID number
. Byte 1 - Macro Number
The M fields provide the ability to

supply the programmer with a trace of-

the executed TESTRAN statements prior
to the action which resulted in this
output record.

Note: The data record for asynchronous
trace output starts in the third byte of
the M field and is continued in the Data
Record. There are no TESTRAN executed
statements associated with asynchronous
trace output. This minimizes continuation
in Trace Refer.

TN

U (14 bytes) Not used R (4 bytes)

Regardless of the number of M fields, Contents of the base register for
this field always starts with byte 85 DSECT, used in DUMP DATA and DUMP
(offset from beginning of record by 84 CHANGES. |

bytes). S

M FIELD EXPANSION

T T T T 1) R hl T 1
TRACE FLOW |AO|Al|A2| R | 1 |E |ELjcC]|
L L L 1 1 L L L J4

A0 (2 bytes) Not used E (4 bytes) Execute Instruction
(null if not present)
Al (4 bytes) From Address (absolute)

A2 (4 bytes) To Address (absolute) EL (4 bytes) Location of execute instruc-
tion (absolute)
R (64 bytes) General Registers 1 thru 0 (not present if E is null)
I (8 bytes) Active Branch Instruction CC (4 bytes) Program Status Word
r A k) h) : T T T 1
TRACE REFER|AO|Al|A2| R |1T |E |EL]
L L L L . 1 L 4 []
AQ0 (2 bytes) Not used I (8 bytes) Referencing Instruction
Al (4 bytes) Referencing Location
(absolute) E (4 bytes) Execution instruction
(null, if not executed)
A2 (4 bytes) Referencing Location ,
(absolute) EL (4 bytes) Location of execute instruc-
tion (absolute)
R (64 bytes) General Registers 1 thru 0 (not present if E is null)
1 T T T 1
TRACE CALL |AO|A1|A2] : R |
[A N § 4
A0 (2 bytes) Not used A2 (4 bytes) To Address (absolute)
Al (4 bytes) From Address (absolute) R (64 bytes) General Registers 1 thru 0

Appendix D: TESTRAN Editor Input Record Formats 115

DATA RECORD

.
TRACE FLOW |

X (16 bytes) Padded Dummy Record
(A1l data in M field of Prologue)

r
TRACE REFER|
L

C (variable) Referenced Data

Contents of referenced location before

reference (256 bytes maximum). The

C

field in the next sequential Data

Record will contain the contents

the referenced 1location after
erence.

of

ref-

.
TRACE CALL |
L

X (16 bytes) Padded dummy record
(A11 data in M field of Prologue)

DUMP MAP | c | T|
1

Al | A2
i

S

C (1 byte))
Number of T, N, Al, A2, fields in
Data Record

T (1 byte) Type Area
01 Program area
Data area

02

the

N (8 bytes) Name of Task
Al (4 Dbytes) Beginning actual address o
area to be mapped i

A2 (4 bytes) Ending actual address of area
to be mapped

r T
TRACE STOP | T | M |
L 4 L

T (1 byte) Action ID of action stopped

M (1 byte) Macro ID of action stopped

116

DUMP DATA r
DUMP CHANGES |
L

e s ol

B (variable) Dumped Data
The starting address of the Dump is
found in the SA field of the prologue
record.

.
DUMP PANEL | GR ,

r
| Psw I FR
L

—

GR (64 bytes) General Registers 0-15
PSW (8 bytes) Program status word

FR (32 bytes) Floating point registers 0-7
(Will not be present if file was
generated on system with no floating
point option.)

.
DUMP TABLE |

L

TD

T

TD (variable) Contents of table.
The table ID is found in the NO field
in the prologue record.

r
DUMP COMMENT |
L

R

X (16 bytes) Padded Dummy Record

r
TEST OPEN |

b

X (16 bytes) Padded dummy record

r T
TEST CLOSE | N1 | N2 | N3 |
L L L

Nn

b

N (1 byte) Number of Action Table closed

Appendix D:

TESTRAN Editor Input Record Formats

117

ERROR r

Message | 1D
L

ID (2 bytes) Message ID Number

C (2 bytes) Count of characters in V field.
If 128 or greater, the V field must be

converted to Hex; otherwise, it is
converted to decimal.

edited. If bit 9=1, the V field is V (variable) Characters to add to message
r 1
Continuation| C |
L]
C (variable) Continuation of previous Data
Record
Relocation T T T .
Table | R1 | R2 | R3 | Rn |
L L L 1 J
R (4 bytes) Relocated Address Scatter Load
A U4 Dbyte relocated address for each
Block Load respective control section of this
One 4 byte relocated address linked module.
(indicates this relocation factor is
applied to all control sections of
this linked module).
Reference P - 1
Table | TR]
L]
TR (variable) Reference Table
(See Appendix B for detail.)
TIA r .
Table | TA N
L]

TA (variable) TIA Table
(See Appendix A for detail.)

118

77N

r
CESD | H | E1l
L L

H (8 bytes) Header - Ignored
E (16 bytes) CESD entry
Bytes 0-7 Control Section Name

Byte 8 ESD Type

Map

Bytes 9-11 Linkage Edited Address
Byte 12 Segment Number
Bytes 13-15 Control Section Length

r
CHANGE | s1

o

| s3 | Sn
4

b e

S (4 bytes) Overlay Segment Indicator

Bit 0-30 Ignored

Bit 31 If zero, segment is in storage

and is active.

Symbol

Note: Each 4 byte entry occurs in numer-

ical sequence.

Table

o e =y
>

= =
[os]

e e

A (4 bytes) Header
Bytes 0-2 Not Used
Byte 3
record (240 bytes max.)

B (80 bytes) Card Images (3 maximum)

Byte 0 Hex 02
Bytes 1-3 Characters SYM

Appendix D:

Byte Count on remainder of

Bytes U4-9 Not Used

Bytes 10-11 Byte count of text in this

card image
Bytes 16-71 Symbol Table text
Bytes 72-79 Not Used

Note: Bytes 16-71 of the B field
Table Text)
lows:

TESTRAN Editor Input Record Formats

(Symbol
are further described as fol-

119

Symbol r T T
Table | OR | AA | SYM
Text L L 1

F D

R

-
!
i

T
|
1

b e

OR (1 byte) Organization Byte

Bit 0 - If 0, not Data Type. Bits 1-3
indicate the following:

Bits 1-3 000 Space
001 Control Section
010 Dummy Control
Section
011 Common
100 Instruction
101 Command Control
Word
110 Not Used
111 Not Used
- If 1, Data Type. Bits 1-3
indicate the following:

Bit 1
If 0, no duplication
If 1, duplication
(indicates presence of M
field)

Bit 2

If bit 1=0
0 indicates independent
1 indicates cluster

subfield

If bit 1=1
0 indicates independent
1 indicates cluster

Bit 3
If 0, no scaling
If 1, scaling (indicates
presence of S field)

120

Bit 4 - If 0, label present
If 1, label not present

Bits 5-7 Length of label minus one

AA (3 Dbytes) Displacement from base of

Control Section
SYM (0-8 bytes) Symbol

F (1 byte) Format
00 Character
oy Hex
08 B Type Data
0ocC Not Used
10 Fixed Point, Full
14 Fixed Point, Half
18 Floating Point, Short
i1c Floating Point, Long
20 A Type Data
24 Y Type Data
28 S Type Data
2C V Type Data
30 Packed Decimal
34 Zoned Decimal

ID (1 byte) Data Length (actual 1length

S e 1)

MinGgs i/

If the format of the data is charac-
ter, binary, or hex, the LD field will

be two bytes.
M (3 bytes) Duplication factor

S (2 bytes) Scaling

N

APPENDIX E:

Page of GY28-6611-0
Revised April 1, 1971
By TNL GN26-8016

TESTRAN FLOWCHART CROSS REFERENCE LIST

This appendix lists all TESTRAN routines by their symbolic names and all TESTRAN macro

instructions by name. It gives the flowchart reference for each item 'and names the
function of each item.
A routine whose name is preceded by an asterisk contains message text.
r T k]) R)
| ROUTINE | FLOWCHART | PROGRAM] FUNCTION |
] 1 1 4 4
r T T T 1
| DUMP | 13-a1 | i MACRO-DEFINITION]
] GO | 12-a1 | | MACRO-DEFINITION |
HBADDRSR	34-A2	INTERPRETER	ROUTER SUBROUTINE
HQOUTPUT	34-A5	INTERPRETER	ROUTER SUBROUTINE
IGC0004T	31-A2	INTERPRETER	TTOPEN1 SVC 49
IGC0106A	30-A2	INTERPRETER	SAVE
IGC038	30-A5	INTERPRETER	RESIDENT SVC l
* IEGMCOOA	50-A2	EDITOR] START	
] IEGMEOOA	S0-E4	EDITOR	EDITOR ROUTER
* IEGMGOOA	S54-A2] EDITOR i ACTION ROUTER		
] IEGNAOOA i 61-A3] EDITOR	DUMP DATA		
* IEGNDOOA	62-A2] EDITOR	DUMP CHANGES	
IEGNGOOA i 59-A2	EDITOR	DUMP MAP	
] IEGNMOOA	59-H1	EDITOR	DUMP COMMENT
IEGNPOOA	59-Fu	EDITOR	DUMP TABLE
IEGNS00A	55-C1] EDITOR	SYMBOL TABLE INITIALIZER	
IEGNVOOA	60-A1	EDITOR	TRACE
IEGNYO0OA	55-A4	EDITOR	SYMBOL TABLE, FIRST PASS
] IEGOPEN2	32-a2	INTERPRETER	TTOPEN2 COPY]
IEGOPEN3	32-A4	INTERPRETER	TTOPEN3 OPEN
] IEGPAOOA	59-AS	EDITOR	TRACE STCP]
* IEGPEOOA	53-A1] EDITOR	INVALID RECORD	
IEGPEDIT	51-A2	EDITOR	PANEL EDIT
IEGPGOOA	61-A5	EDITOR	TEST OPEN
] IEGPHOOA i 53-A3	EDITOR	TEST CLOSE	
* IEGPIOOA	53-E4	EDITOR] INTERPRETER MESSAGE	
* IEGPKOOA	53-F2	EDITOR	END OF RUN]
IEGPPOOA	61-A1 I EDITOR	DUMP PANEL [
IEGRAOOA	53-A5] EDITOR	CESD MAP 1	
* IEGRCOOA] S4-Ay4] EDITOR	MAP CHANGE		
* IEGREOOA	52-A3	EDITOR	RELOCATION TABLE
* IEGRFOOA	55-A2	EDITOR	SYMBOL TABLE BASE]
] IEGRGOOA] 58-A5	EDITOR	SYMBOL TABLE, ESDas	
* IEGRKOOA	52-E5	EDITOR	REFERENCE TABLE
* IEGRLOOA	52-F2	EDITOR	ACTION TABLE
IEGSFO0A	51-AY4	EDITOR l EDITOR MESSAGE	
IEGSNOOA	64-21	EDITOR	ADDRESS ANALYZER
IEGSPOOA	57-A3	EDITOR	SYMBOL TABLE, LAST PASS
IEGSQO0A	64—AY	EDITOR	SYMBOL SEARCH
IEGSRO0A	65-A2	EDITOR	ATTRIBUTE ANALYZER
IEGSU012	66-C2	EDITOR	EDIT, HEX
IEGSU062Z	66-G1] EDITOR	EDIT, INSTRUCTION	
IEGSU402	66-C5	EDITOR	EDIT, ALPHAMERIC]
IEGSU502Z	67-A1	EDITOR	EDIT, BINARY
IEGSU602Z] 66-AL	EDITOR	EDIT, ZONED DECIMAL]	
] IEGSU70%	66-A1	EDITOR	EDIT, PACKED DECIMAL
] IEGSU802Z	51-E3] EDITOR	EDIT, FIXED POINT	
IEGSU90Z	67-A3	EDITOR	EDIT, FLOATING POINT
L R 1 — L J
Appendix E: TESTRAN Flowchart Cross Reference List 121

1 1) 1 1 h |
| ROUTINE | FLOWCHART | PROGRAM l FUNCTION |
L 1 i 1 1
L] R} T 1 k]
| IEGTTRNA | 40-A1 i INTERPRETER I DUMP DATA |
I IEGTTRNB | 40~-H2 i INTERPRETER] DUMP COMMENT i
IEGTTRNC =	40-H1 I INTERPRETER	DUMP PANEL
IEGTTRND 1 40-Al i INTERPRETER	GO IN/OUT/TO	
IEGTTRNE 1 36-Al	INTERPRETER i TEST ON	
] IEGTTRNF i 31-At i INTERPRETER] DUMP TABLE i		
] IEGTTRNG	37-a1	INTERPRETER] TEST WHEN
IEGTTRNH 1 39-a1	INTERPRETER i TEST CLOSE	
IEGTTRNJ	41-A2	INTERPRETER l GO BACK
IEGTTRNK	40-FUu i INTERPRETER I DUMP MAP]	
IEGTTRNL] 37-a3	INTERPRETER i TRACE START	
IEGTTRNM i 37-A4 I INTERPRETER	TRACE STOP]	
IEGTTRNN	42-Al] INTERPRETER] SET COUNTER	
] IEGTTRNO	35-a2 I INTERPRETER	OVERLAY 1
IEGTTRNP	42-a2	INTERPRETER
IEGTTRNR	39-A4	INTERPRETER
IEGTTRNT	43-A1	INTERPRETER
I IEGTTRNX	36-A2	INTERPRETER i OVERIAY 2
] IEGTTRNZ	38-A2] INTERPRETER i TRACE INTERRUPT	
IEGTTROT	33-A2	INTERPRETER 1 ROUTER
{ JAMACHCK	43-H1 I INTERPRETER	MACHINE CHECK INTERRUPT
JAPROGCK	43-H2	INTERPRETER
SET	11-A1] MACRO-DEFINITION]
I TEST	10-A2	
TRACE	15-A1] MACRO-DEFINITION]
- L 2 L J

122

APPENDIX F: TESTRAN CONTROL BLOCK AND RECORD FORMAT CROSS REFERENCE LIST

This appendix 1lists all of TESTRAN's control blocks and record formats. Each item
.isted is identified with the portion of TESTRAN which uses or processes it. It is also
identified with the appendix and page on which it is presented.

r T T 1
| [|

: CONTROL BLOCK, RECORD | PROGRAM | APPENDIX |
! !] .'
r H H 1
ACTION TABLE	EDITOR	C - Pg. 110
ACTION TABLE LIST	EDITOR	C - Pg. 109
CONTROL CORE	INTERPRETER	B - Pg. 96
COUNTER TABLE	INTERPRETER	B - Pg. 105
DATA INPUT, CESD	EDITOR	. D - Pg. 119
DATA INPUT, CONTINUATION	EDITOR	D - Pg. 118
DATA INPUT, DUMP CHANGES	EDITOR	D - Pg. 117
DATA INPUT, DUMP COMMENT	EDITOR	D - Pg. 117
DATA INPUT, DUMP DATA	EDITOR	D Pg. 117
DATA INPUT, DUMP MAP	EDITOR	D - Pg. 116
DATA INPUT, DUMP PANEL	EDITOR	D - Pg. 117
DATA INPUT, DUMP TABLE	EDITOR	D - Pg. 117
DATA INPUT, ERROR MESSAGE	EDITOR	D - Pg. 118
DATA INPUT, MAP CHANGE	EDITOR	D Pg. 119
DATA INPUT, REFERENCE TABLE	EDITOR	D Pg. 118
DATA INPUT, RELOCATION TABLE	EDITOR	D - Pg. 118
DATA INPUT, SYMBOL TABLE	EDITOR i D - Pg. 119	
DATA INPUT, TEST CLOSE	EDITOR	D - Pg. 117
DATA INPUT, TEST OPEN	EDITOR	D - Pg. 117
DATA INPUT, TIA TABLE	EDITOR	D Pg. 118
DATA INPUT, TRACE CALL	EDITOR	D - Pg. 116]
DATA INPUT, TRACE REFER	EDITOR	D Pg. 116
DATA INPUT, TRACE STOP	EDITOR	D - Pg. 116
DATA INPUT, TRACE FLOW	EDITOR	D Pg. 116
DCB/REL CORE	INTERPRETER	B Pg. 102
DUMP CHANGE LIST	EDITOR	Cc - Pg. 111
DUMP CHANGE TABLE	EDITOR	Cc - Pg. 111
FLAG TABLE	INTERPRETER	B - Pg. 104
MAP i EDITOR	Cc - Pg. 108	
PROLOGUE INPUT, TRACE FLOW	EDITOR	D - Pg. 115
PROLOGUE INPUT, TRACE REFER	EDITOR i D - Pg. 115	
PROLOGUE INPUT, TRACE CALL	EDITOR 1 D - Pg. 115	
REFERENCE TABLE	EDITOR	C - Pg. 113
REFERENCE TABLE	INTERPRETER	B Pg. 103
SYMBOL TABLE	EDITOR	C - Pg. 112
SUBROUTINE TABLE	INTERPRETER	B - Pg. 107
TABLE CORE	INTERPRETER	B - Pg. 106
TABLE DICTIONARY i EDITOR	Cc - Pg. 108	
TIA TABLE, A FIELD	INTERPRETER	A - Pg. 81
TIA TABLE, DUMP CHANGES	INTERPRETER	A - Pg. 84
TIA TABLE, DUMP COMMENT	INTERPRETER	A Pg. 86
TIA TABLE, DUMP DATA	INTERPRETER	A - Pg. 83
TIA TABLE, DUMP MAP	INTERPRETER	A Pg. 84
TIA TABLE, DUMP PANEL	INTERPRETER	A - Pg. 85
TIA TABLE, DUMP TABLE	INTERPRETER	A - Pg. 86
TIA TABLE, GO BACK	INTERPRETER	A - Pg. 95
TIA TABLE, GO IN	INTERPRETER	A - Pg. 94
TIA TABLE, GO OUT | INTERPRETER | A - Pg. 95 |

TIA TABLE, GO TO | INTERPRETER | A Pg. 95 |

4 L 4

Appendix F: TESTRAN Control Block and Record Format Cross Reference List 123

r T 1 i |
|
= CONTROL BLOCK, RECORD = PROGRAM | APPENDIX }
I I | I
t == + + .|
| TIA TABLE, TEST AT I INTERPRETER | A - Pg. 89 |
| TIA TABLE, TEST CLOSE I INTERPRETER I A - Pg. 90 |
I TIA TABLE, TEST DEFINE COUNTER | INTERPRETER I A - Pg. 91 [
I TIA TABLE, TEST DEFINE FLAG | INTERPRETER | A - Pg. 91 |
1 TIA TABLE, TEST ON | INTERPRETER I A - Pg. 92 |
| TIA TABLE, TEST OPEN | INTERPRETER | A - Pg. 90 |
I TIA TABLE, TEST WHEN | INTERPRETER | A - Pg. 93 I
I TIA TABLE, TRACE CALL | INTERPRETER | A - Pg. 88 |
| TIA TABLE, TRACE FLOW | INTERPRETER | A - Pg. 88 |
I TIA TABLE, TRACE REFER I INTERPRETER | A - Pg. 87 |
| TIA TABLE, TRACE STOP | INTERPRETER | A - Pg. 89 |
I TIA TABLE, SET COUNTER | INTERPRETER | A - Pg. 93 |
1 TIA TABLE, SET FLAG | INTERPRETER 1 A - Pg. 94 |
I TIA TABLE, SET VARIABLE i INTERPRETER I A - Pg. 94 [
I TRACE CORE I INTERPRETER I B - Pg. 99 |
I TRACE TABLE I INTERPRETER | B - Pg. 101 |
L L. 1 J

124

Form ¥28-6611-0, Page Revised by TNL Y28—2371,‘11/15/68

Abend 19,20,23,25
Address analyzer routine 35-37
Alphameric edit routine 38-39
Analyzer (see Address, Attribute)
Assembler 7,11,13,14,16,17,29
.Assembler tables, use of 16,29
Attribute analyzer routine 36-38
Attributes

data 37,38

overriders 37

pointers 38

test 16

Binary edit routine 38

Binary number conversion 39

BSAM, editor interface with 31,32
BSAM, interpreter ‘interface with 16
Buffer, current print 31,32,35,36
Buffer, editor action table 30,34
Buffer, prologue 16,19

Buffer, symbol table 31

Buffer TTOPEN2 18

Checksum 18,19

Comment (see dump comment)
Configuration 32,36

Constant 11

Continuation record 32,38,39

control core 16,18,22,24

Control flow 7-20)
control flow in sample program 26
Ccontrol section relocation table 29,33
control table 18,20,23 ’)
Counters 21,23

CSEcT 11,16,17,27,34,37

Data, common 11,13,14
Data record 16,26
Data modes - 21
Data set
editor output SYSPRINT 9,29,31,36,37
interpreter output, editor input
SYSTEST 8,9,15,18,26,27,29,31
Data, test output 7-9,11,15,17,19,29
DCB (data control block) 16,18,26
DEB (data extent block) 16,26 - .
Decimal instructions on the Model 91 26
Dictionary, ESD, CESD 9,16,27,29,34
Dictionary, table 30
Dump change list . 30
Dump change table 30
Dump macro—-instruction 11,14,16,21,25,30
Dump routines, editor
dump changes 36
dunp comment 35
dump data 36
‘dump map 36
"~ dump panel 37
dump table 35
Dump routines, . interpreter
dump comment 26
dump data, dump changes 25
dump map 26

dump panel 26
dump table 26
Duplication factor 37

EBCDIC 38
Edit routine 38
Edit, sample 39

Editor, linkage 8,9,11,16,17,29,33

Editor message routine 32
Editor router routine 32
Editor tables 29-35

Editor, TESTRAN 7-9,18,26,29
End statement overrider 17
Entry, directory 16

Entry point 8,17

Entry positional operand 17
Entry statement 17

Entry, TIA table 7,8,11,16-28

Entry, trace table 24
Execute (EXEC) statement 9

Execution, problem program/TIA 26

Extent (See DEB)

Fixed point edit routine 39
Flag, load module test 16
Flag table 18,20,23
Floating point edit routine

Flowchart cross reference 121

Flowcharts 42-79

Format, conversion 38
Format, printed ouput 38
Format, SYM record 9
Format, TIA entries 13

Generations, system (SYSGEN) 7,11,13

GO back, dummy 22

GO BACK macro-instruction - 7,8

GO back routine 15,19,21-28
GO (IN, 0OUT, TO) routine 22

HBADDSR routine 19
Hexadecimal edit routine 38
HQOUTPUT routine 19

Image instruction 38
Image, storage 36,37

Inactive
CSECT 33
segment 18
tables 20

INDEX

Instruction, displaced 8,18,22,23,28,31,38

Instruction edit routine 38
Instruction, inserted SVC
8,16,19,22,23,26,28,38
Interface, BSAM 16,32
Interface, 1I/0 31,32

Interpreter action table (see TIA)
Interpreter, composition of 15

Interpreter logic flow 27
Interpreter message routine
Interpreter, operation of 8

Interruption, TESTRAN SVC 8,11,16,17,26,28

Invalid record routine 33

Index 125

Form Y28-6611-0, Page Revised by TNL ¥28-2371, 11/15/68

Job control language 9,31
Job steps 7-9,29,39

Key, storage protect 24

Link library 29

Link/load mode 17,18

Link macro-instruction
7,15,18,20-27,29,33,34,37
Linkage editor (see editor)

Load (see link/load)

Load macro-instruction 31,33

Load module 8,9,11,16,17,26,29,34

Macro—-definition

DUMP 14

GO 14

SET 14

TEST 13

TRACE 14 ' :
Map, editor storage 9,18,20,26,29-37
Mask, register selection 37
Message identification 35
Model 91 modifications 26
Modifier fields 11,82

Module
load 8,9,11,16,17,26,29,34
object 9

root 29,31,32,36-38
source 17 ‘

Operator, comparisen 21
Organization, editor 29 :
Output record pair 19,24,25,26,35
Qutput routimes 34,35

Output selection code '8,9,35
Overflow 32

Overlay 16-19,25,32,33

Overlay routines 20

Overrider 38

Parameter, test 8,9

Pointer, VF 21,22,24

Problem program 7-11,15-36,39
Processor, post 7-9,29

Program check 20,25

Program execution 7,9,19,30-32
Program fetch 26

Program status word (PSW) 19,23,26,37
Prologue record 15,16,19,24-26,32,35
PSW (see program status word)

Reference table 18-20,22,27,29-32,38,39
Register selection mask 37
Resident SVC routine 16,19,22,23,27
Return-to-TESTRAN

flag 26

PSW 26
. Root module 29,31,32,36-38
Root segment 16,17,20
Router, action 32,34-37,39
Router, editor 32-39
Router, interpreter §8,15-28

Save area 26

Save routine 9,15-18,26,27
Scale modifier 39

Section definition 30-34
Service routines 8,15-23,26,29

126

Sequence of execution 16

Set counter routine 23

Set flag routine 23

Set macro-instruction 14,16,23
Set variable routine = 23
Setup routines 15-17,20,23
Storage map (see map) :
Subroutine table 22
Supervisor call (see SVC)
Supervisor, contents 16,26
Supervisor, overlay 16,20,25

Supervisor state 7,9,15,26-28

svc 7,8,11,15-20,22-28,38
SYM (see symbol)
Symbol search routine 37
Symbol table 9,16,18,27,29-32,34,36-39
Base routine 34
ESD routine 34
First pass routine 34
Initializer routine 34
Last pass routine 34
Symbolic labels 9,19,29,32,33,35
SYSGEN 7,11,13
SYSPRINT 9,31-37
SYSTEST 8,9,15,18-20,22,24-35,39
sYsuri 31,34 :

Table (see symbol, trace, TIA, control
core, flag, reference, counter,
subroutine)

Table core 18,19

Table dictionary 30

Task control block (TCB) 8,16,26

TCB (see task control block)

Test actiom macro—-instructions 11i,16,15,24

TEST AT macro-instruction 7,8,18,19,32

Test attribute 16,26)

Test close routine 21,22

Test close routine (editor) 36

Test control macro-instructions
11,16,19, 24

TEST macro-definition 13

TEST OPEN macro-instruction 7,8,11,27

Test open routine (editor) 36

Test open routines 9,16,17,20,26,30

Test output data (see data)

Test when routine 21

TESTRAN, definition of 7

Text, message 32

Text, problem program 9

TIA table 7-13,16-33,36,37,39

Trace core 20,22-24

Trace interrupt routine 16,20,23,26

TRACE macro-definition 14

TRACE macro-instruction 11,16

Trace mode switch 20,23-25

Trace routine (editor) 35

Trace start routine 23,24

Trace stop 20,22,24,26

Trace stop routine (editor) 35

Trace table 20,23,24

Tracexr routine 23,25,26

TTOPEN routines 17-19

Validity, TIA table 19
VF pointer (see pointer)

XCTL macro—instruction
15,20,21,24-26,29,31,33-37,39

®

File Number

Technical Newsletter
Re: Order No.

S360-37

GY28-6611-0

This Newsletter No. GY28-2371

Date November 15, 1968

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM
TESTRAN
PROGRAM LOGIC MANUAL

This Technical Newsletter, a part of release 17 of the System/
360 Operating System, provides replacement pages for the TESTRAN
Program Logic Manual, Form Y28-6611-0. These replacement pages
remain in effect for subsequent releases unless specifically
altered. Pages to be inserted and/or removed are listed below.

Cover,Preface
Contents

21-26,26.1

125,126

Comments, Back Cover

A change to the text is indicated by a vertical line to the left
of the change.

Summary of Amendments

Modifications to the. trace and go-back routines are necessary
when operating on the Model 91. (Page 21, 23, 26.) The publica-
tion form number is changed in accordance with standards for pro-
gram logic manuals.

File this cover letter at the back of the manual to provide a
record of changes. -

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

: IBM Technical Newsletter File Number S/360-37 (0S Release 20.1)
Re: Order Number GY28-6611-0

This Newsletter Number GN26-8016
Date April 1, 1971

Previous Newsletter Numbers GY28-2371

IBM SYSTEM/360 OPERATING SYSTEM
TESTRAN
PROGRAM LOGIC MANUAL

This Technical Newsletter, a part of release 20.1 of the System/360
Operating System, provides replacement pages for the subject publica-
tion. These replacement pages remain in effect for subsequent re-
leases unless specifically altered. Pages to be inserted and/or
removed are:

Front Cover
Contents
15-16.2
25-28

47, 48

121, 122

A change to the text or to an illustration is indicated by a vertical
line to the left of the change.

Summary of Amendments

This Technical Newsletter modifies the publication to indicate a
change to SVC 61 to support TSO (Time Sharing Option) test.

IBM Corporation, Programming Publications, Dept. D78, San Jose, Calif. 95114

PRINTED IN US.A.

IBM Technical Newsletter File Number S/360-37 (0S Release 20.1)

Re: Order Number GY28-6611-0
This Newsletter Number GN26-8018
Date September 1,‘1971
Previous Newsletter Numbers GY28-2371

GN26-8016

IBM SYSTEM/360 OPERATING SYSTEM
TESTRAN
PROGRAM LOGIC MANUAL

This Technical Newsletter provides replacement pages for the
subject publication. Pages to be inserted and/or removed are:

25-26.1

A change to the text or to an illustration is indicated by a
vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter replaces information inadvertently
deleted in Technical Newsletter GN26-8016.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Publications, Dept. D78, San Jose, Calif. 95114

PRINTED IN US.A.

READER’S COMMENT FORM
IBM System/360 Operating System

TESTRAN , GY28-6611-0
Program Logic Manual “{ L,rwa, (CTNL &l 26-%008
e Is the material: Yes No

Easy to read? OSSP O O

Well organized? R RO O O

Complete? e e O Od

Well illustrated? SRR O O

Accurate? SO U U RO OPRPURTUTRO: O O

Suitable for its intended audience? R O O

e How did you use this publication?

[0 As an introduction to the subject Other =
J For additional knowledge

e Please check the items that describe your position:

] Customer personnel O Operator [Sales Répresentative
[0 IBM personnel] Programmer] Systems Engineer
[0 Manager 0 Customer Engineer (] Trainee
] Systems Analyst [0 Instructor Other
‘e Please check specific criticism (s), give page number (s), and explain below: ’
[0 Clarification on page(s) . . o [0 Deletion on page(s)
] Addition on page(s) B O Error on page(s)
Explanation: _
67‘ [- QLI\L&"@AL& !I‘D Cmu\‘ L !ﬂfﬁ’ﬁﬂw"’\ ‘—\L/{V"‘*is {
i ' u , i ; ,
x q; el 2 i G27-2¢ c(v 34 Condoncos mu"-\(/ dhaxt fle Hot ‘L’S’j' SAWR & gyiin “—f{n'Js[\(s (oc’vlw{'f\»

4 P s { /; 4 .‘ :
({)CCT W»oc, 4 b ?L(AL Li‘ﬁ’ Q\/«,_,wm:’) \u«/ﬂ (,(¢§ Jr(:w *L&K IWl3 e ('){’:%p:%«--\v o
."»i’/\uZQU"GT (Lj; {L‘l{]i’x\u) r{i)(éé\fé
\7 ‘r—"*(':({ Q?ﬁd@’)"lom WM;H@” A, ablez: 1ECo3g stadd v IGCco3g
iV

()',[9— c,wgc{,u— SETUY DOUT{\, S (twe 2 'r—ucml‘w\d i s>/’7-a /“°°- F2, lre 2L skowld e I

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GY28-6611-0

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality. ' '

..

FIRST CLASS
.PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO: POSTAGE STAMP NECESSARY IF MAILED IN U, S. A.

/

POSTAGE WILL BE PAID BY

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

BV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[lmarnatiunal]

09€/S WAl

‘V'S'N Ut palulg

0-1199-8CTAD

