
Student Text

Introduction to IBM System/360

Direct Access Storage Devices

and Organization Methods

Preface

This text discusses the physical characteristics and
capacities of the following Direct Access Storage De­
vices available for System/360 Models 25, 30, 44, 50,
65, 67, 75, and 85:

2301 Drum Storage
2302 Disk Storage
2303 Drum Storage
2311 Disk Storage Drive
2314 Direct Access Storage Facility
2321 Data Cell Drive

The file organization methods and access methods pro­
vided for these devices by the IBM System/360 Op­
erating System, the IBM System/360 Disk Operating
System, and the IBM System/360 Basic Operating
System are also discussed. The uses of direct access
storage, basic terminology, and the establishment of
controls for a direct access system are other topics
addressed by this text. Most of the chapters end with
student exercises, answers to which may be found
at the end of the manual.

No attempt at completeness is made. Refer to the
publications listed in the Bibliography for additional
details.

MAJOR REVISION (April 1969)
This edition, C20-1649-3, is a major revision of, and obsoletes,

the previous edition, C20-1649-2. The significant changes in
this edition are designated in three ways:

1. A vertical line appears at the left of affected text where only
part of a page is changed.

2. A dot (.) appears at the left or right of the page number
where a complete page should be reviewed.

3. A dot (.) appears at the left of the title of each figure that
has been changed.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for readers'
comments. If the .form has been removed, comments may be
addressed to IBM, DP Education Development, Education
Center, Endicott, New York 13760.

© International Business Machines Corporation 1966

"

Chapter 1: Introduction .. . 1
1
2

Terminology
Uses of Direct Access Storage

Chapter 2:
System/360 Direct Access Storage Devices.
Physical Description
Recording of Data
Access Mechanisms
Cylinder Concept and Capacities
Timing
Exercises

Chapter 3: DASD Control Units ..
Control Unit Functions

File Commands
Status Information
Data Transfer
Checking

Track Format
Index Point .
Home Address
Gaps
Track Descriptor Record (RO)
Data Record Formats .
Track Descriptor Record (RO)

Record Formats.
Fixed, Unblocked .
Fixed, Blocked
Variable, Unblocked
Variable, Blocked
Undefined
Reasons for Blocking Records .

Track Capacity
File Commands

Control Commands
Search Commands
Read Commands
Write Commands

Verification of Write Operations
Control Unit Features

Additional Storage
File Scan.
Record Overflow .
2844 Auxiliary Control Unit.
Two Channel Switch

Exercises

Chapter 4: Introduction to File Organization.
Data File Characteristics
Processing Characteristics
Methods of Organization ...
IBM Operating Systems

Chapter 5: Sequential Organization
Description of Records

DASD Storage Requirements
Timing.

6
6
8
9

10
12

. 15

17
17
17
17
17
17
17
19
19
19
19
19
20
20
21
21
21
21
21
21
21
23
23
23
24
24
24
25
25
25
25
25
25
26

27
27
27
28
28

30
30
30
30
30
30

Sequential Processing
Random Processing

File Maintenance 30
Uses for Sequential Organization
Operating System Functions

30
31

Contents

Queued Access Method 31
Basic Access Method 31
User Options. 31

Exercises 31

Chapter 6: Partitioned Organization.......... 31
Description of Records 31
DASD Storage Reql.lirements 31.
Operating System Functions 31

Chapter 7: Indexed Sequential Organization 32
Prime Area 32
Indexes 32

Track Index.................. ... 32
Cylinder Index 33
Master Index 33

Overflow Area 33
Cylinder Overflow Area 33
Independent Overflow Area 34
Overflow Records 34

Additions Procedure 34
First Addition to a Prime Track 35
Subsequent Additions to a Track 36
Addition of High Keys.............................. 37

Timing 37
Sequential Processing 37
Random Processing 37
File Maintenance 38
Variable-Length Records 39
Operating System Functions 39

Queued Access Method 39
Basic Access Method 39
User Options 39

Exercises 40

Chapter 8: Direct (Random) Organization
General Characteristics
Addressing
Directly Addressed File .

Using the Key as the Address
Using a Cross-Reference List

Indirectly Addressed File
Randomizing Techniques

Division/Remainder Method .
Digit Analysis
Automatic Programmed Address Conversion
Folding

41
41
41
41

......... 41
41
42
42
42
43
43
44

Radix Transformation
Evaluation of Results

....................... 44

Description of a Directly Organized File
File Creation, Maintenance, and Processing
Chaining Method

Creation of the File
Additions to the File
Deletions from the File
Reorganization of the File .
Processing the File ...

Progressive Overflow Method
Creation of the File .

44
44
45
45
46
48
48
48
48
49
49
49 Additions to the File

Deletions from the File
Reorganization of the File
Processing the File ...

.... 49
49
49

Progressive Overflow Compared to Chaining .
Activity Loading
Blocked Records .

Directly Addressed File ..
Indirectly Addressed File

Operating System Functions
User Options

Exercises

Chapter 9: System Design Considerations ...
Data Validation at Initial Input
Systems or Internal Controls

51
51
52
52
52
52
52
53

54
54
58

Output Controls
Program Testing .
Direct Access Label Checking
The Audit Trail
Reconstruction Procedures
Bypass Procedures
Restart Procedures

Bibliography ...

Answers to Exercises

62
62
62
63
64
65
65

66

67

--

This chapter presents System/360 and direct access
terminology and concepts that are prerequisite to an
understanding of the remainder of the text. It also
discusses various ways in which direct access devices
can be used.

Terminology
Direct Access Storage Device (DASD). A direct ac­

cess storage device (DASD) is one on which each physi­
cal record has a discrete location and a unique address.
Thus records can be stored on a DASD in such a way
that the location of anyone record can be determined
without extensive searching. Records can be accessed
directly rather than serially.

File. The term "file" can mean a physical unit (a
DASD, for instance), or an organized collection of re­
lated information. In this text, the latter definition
usually applies. An inventory file, for example, contains
all the data concerning a particular inventory. It may
occupy several physical units or part of one physical
unit. System/360 Operating System, one of the pro­
gramming systems available for System/360, uses the
term "data set" instead of "file" to describe an organ­
ized collection of related information.

Record. The term "record" can also mean a physical
unit or a logical unit. A logical record may be defined
as a collection of data related to a common identifier.
An inventory file, for example, would contain a record
(logical record) for each part number in the inventory.
A physical record consists of one or more logical rec­
ords. The term "block" is equivalent to the term "phys­
ical record". On a DASD, certain "non data" informa­
tion required by the control unit of the device is
recorded in the same record area as the physical rec­
ord. This non data information and the physical record
may be referred to as a whole with the term "data
record".

Key. Each logical record contains a control field or
key that uniquely identifies it. The key of the inventory
record, for example, would probably be the part
number.

Byte. A byte is the smallest addressable unit of in­
formation on the System/360. It is composed of eight
data bits and a parity bit. A bit means a binary digit-

Chapter 1: Introduction

that is, one that can represent two conditions (0 or 1).
A punching position in a card is similar to a bit; it is
either punched or not punched.

The bits in a byte can represent several different
things, depending on how they are interpreted:

• Zoned decimal format: One byte represents one
character. The bit "values" of the eight data bits in
a byte are ZZZZ8421. Various combinations of the
zone (Z) and numeric bits make it possible to repre­
sent 256 different characters. In numeric fields, the
sign of the field is represented by the zone bits of
the low-order byte. The field +1234 in zoned deci­
mal requires four bytes: 1 ZI 1 Z2 1 Z3 1 +4 1

• Packed decimal format: This is efficient for deci­
mal numeric information because only four bits are
required to represent any decimal digit. In packed
decimal format, one byte represents two decimal
digits. The bit "values" are 84218421. The four low­
order bits of the low-order byte of a packed decimal
field always contains the sign of the field. The field
+1234 in packed decimal requires three bytes:
[01 [23 [4+ [. Numeric information must be in this
format for decimal arithmetic operations and for
editing operations (suppression of high-order zeros,
insertion of commas, decimal points, etc.).

• Binary format: With this format, a byte repre­
sents a binary (numbering system with a base of
2) value rather than a decimal (base of 10) value.
The only knowledge about the binary numbering
system required for this text is that one byte repre­
sents a maximum decimal value of 28 -lor 255 and
two bytes represent a maximum decimal value of
216 -lor 65,535.
Any combination of these formats is permissible

either internally in core storage or externallv on
DASD, although binary fields are usually group~d to­
gether in a logical record.

A byte in core storage actually consists of nine bits:
the eight data bits (discussed above) and a parity bit
that is used to check the validity of data transfer. A
byte must always have an odd number of I-bits. The
parity bit is set to 0 or 1 as required to establish odd
parity. A parity bit for each byte is not used in DASD
recording. Instead, another method of validity check­
ing is used (see "Checking" in Chapter 3) .

Chapter 1: Introduction 1

Uses of Direct Access Storage

Inline Processing with Direct Access Storage

One requirement for many applications is the ability
to process data as it becomes available. The term ap­
plied to this type of processing is "inline", meaning
that input data does not have to be subjected to pre­
liminary editing or sorting before entering the system,
whether the input consists of transactions of a single
application or transactions of multiple applications.

High-capacity direct access storage devices make
the inline processing approach feasible. While sorting
may still be advantageous before certain processing
runs, in many cases the necessity for presorting trans­
actions before processing is eliminated. In addition,
the ability to process data inline provides solutions
to systems problems for which previous solutions were
impractical.

As an example of an inline systems solution, an
automotive parts distributor maintains records for a
warehouse inventory of 25,000 items, each of these
items identified by a ten-character part number. The
distributor wanted to record each transaction affecting
each item as it occurred, so that if anyone item in
inventory was depleted he would immediately receive
an out-of-stock notification, thus permitting the inven­
tory to be replaced as soon as possible. His existing
data processing system provided these notifications
only once a day, because his orders were batched and
processed; all transactions affecting inventory were
accumulated, sorted into part-number sequence and
processed against a master inventory file at the end
of each day. The problem was solved with the installa­
tion of a direct access storage system. All inventory
transactions would be processed inline, as they oc­
curred, and the required status notifications would be
provided almost immediately.

Although the example refers to multiple types of
inventory input transactions which were processed
inline, it should not be inferred that inline processing
is a unique requirement of inventory applications, or
that the inline concept should be limited to transac­
tions involving a single application. Direct access stor­
age enables the user to maintain up-to-date records for
diversified applications and to process nonsequential
and intermixed input data for multiple application
areas.

Direct Access Storage Inquiry

Data processing installations have always found it
desirable to obtain specific information from files in
the middle of an operation. Before the development
of direct access storage, the ability to request informa­
tion directly from temporary or permanent storage

2

devices was limited. Procedures were developed but
at best they resulted in time-consuming interruptions,
and often the information was not completely up to
date when received. The special ability of direct access
storage systems to process input data of various types
for multiple applications inline, along with the ability
to immediately update all affected records, makes it
possible to request information directly from storage
and have the reply displayed in readable form. This is
significant because it no longer makes it necessary to
disrupt normal processing, nor is there need for a
delay between a requirement for information and a
reply. To illustrate, a large airline operated a number
of reservations offices throughout the country and at­
tempted to maintain a record of all flights and passen­
ger reservations on ledger-type cards in a centralloca­
tion. The records were updated and inquiries made by
telephone. Replies were often inaccurate and delayed.
An analysis of the problem indicated that a direct
access storage system would be a solution. Flight­
passenger records could be maintained in direct access
storage and given the proper communications link
from reservation desks to a computer, thus permitting
all inquiries to be answered quickly and accurately.

Other examples emphasize the importance of im­
mediate inquiry and response. In demand deposit ac­
counting, the question might arise: 'What is the bal­
ance of account number 133420?" An inventory control
question might be: ''How many of part number 55632
are there on order?" Manufacturing: "How many sub­
assemblies of part number 16414 are on hand?" And
in payroll: 'What are the year-to-date earnings of em­
ployee number 13862?" Granted that each of these
questions could eventually be answered in other data
processing approaches, the question is when and how.
Normally, it would be at the end of a completed run,
which might be too late to be of significant value.

It is necessary, therefore, to consider the impact of
immediate inquiry capability on any system, for in­
quiry may be needed regardless of previous data
processing experiences.

The ability to request information directly from a
computer and receive an immediate response without
involved or complex operational procedures is in itself
a justification for direct access storage devices in many
applications.

Complex Activity Modification

As the data processing requirements of a business
increase, there also tends to be an increased interde­
pendency between applications. Various applications
require the same input records, or, for processing, re­
quire reference to the same master file records used
in other applications. Modification of existing proce-

dures to vary the sequence of file referencing and/or
to accommodate additional references is more easily
accomplished on direct access storage systems.

In the case of a company with production control,
inventory maintenance and budgetary accounting, fre­
quent procedure changes were required when new
products were manufactured and when budget revi­
sions were issued. Therefore, the referencing sequence
changed and additional references to master file rec­
ords became necessary. Regardless of the system se­
lected to do the job, the procedures had to be altered
when changes occurred. However, a direct access
storage system was selected to make changes easier.
With it, master file records were always accessible
regardless of referencing requirements. In addition,
direct access storage units contained both inventory
records and budgetary records and each could be ref­
erenced as needed. Thus complex activity was handled
with a minimum of effort.

In the solution to this problem lies the solution to
other data processing problems where multiple, inter­
dependent activities and multiple reference to inter­
related records are required.

Direct Access Storage and Low-Activity Data Processing

Many of the applications installed today involve the
processing of a limited number of input transactions
against very large master files. Although very few
master file records are altered or referenced by the
input data for a particular run, an entire master file,
which is necessarily maintained in sequence, must be
searched. As an example, in a representative billing
system, 100,000 customer master records are main­
tained, only 9000 of which are referenced daily. The
9000 records could be collected and sorted into master
file customer-number sequence and processed against
the file in a single run daily. However, the billing oper­
ation requires that bills be completed throughout the
day. The data is therefore batch-processed nine times
during the day, with the result that 1000 input trans­
actions are processed against the 100,000 master rec­
ords on each run. Since there is no practical way to
skip through a file, every record must be examined by
the system in each of the nine runs.

An answer to this billing problem, as well as to
many other similar processing problems, lies in the
use of direct access devices, which permit the retrieval
of a single record. The storing of data records so that
the location of anyone can be determined without ex­
tensive searching is the unique capability of data
processing systems using direct access storage effi­
ciently.

High Activity

The use of direct access storage should be considered
as a solution to the problems of high-activity applica­
tions, that is, those in which a comparatively small
number of records are referenced or updated fre­
quently. As an example, in the processing of piece­
work payroll calculations for a company having 10,000
employees, each employee working on ten or more
different jobs each day, each at a specific rate and
under a specific guarantee, and each calculation based
upon the employee's unique work history, there is a
need for continual reference to a comparatively small
number of rate tables. In a batch approach, as job
completion tickets were received they would be
batched by employee, and a master rate file would be
searched for all the employee rate tables required to
process each employee's job tickets - or, as an alter­
nate, a separate edit run could be made to determine
which rate tables would be required. In either case
job ticket data would be tagged with a rate table code,
the data would be sorted into rate table requirement
sequence, and all reference to a particular rate table
would be completed. When all rate data was ex­
tracted, another run would be required to complete
the calculation. In a direct access approach there
would be access to all rate tables as they were re­
quired, without having to batch or to search through
the file for each one and without having to go through
an involved procedure of repeated sorting and process­
ing to complete the job.

Program Residence

Program steps required for processing can also be
stored on direct access storage so that they can be
used when required. Doing this offers several ad­
vantages:

1. The size of main core storage can be reduced
because only the optimum number of program steps
for processing data need be in core storage at any
one time.

2. Time between runs is reduced significantly be­
cause tapes no longer have to be rewound and set up.
Instead, operational setup time can be limited to
those functions pertaining to output, such as changing
printer output forms.

3. Data can be processed inline, regardless of the
type of record referenced or updated. As an example,
a company with an inventory control data pr.ocessing
tape system required a total of 35,000 individual com­
puter program steps for the processing of many types
of input data. The system selected for the job could
contain about 750 program steps in main core storage

Chapter 1: Introduction 3

at one time. A tape program library was considered
but the maintenance and continual searching of the
library tape was inefficient because runs could not be
made in the same sequence as the library tape. A bet­
ter solution for this problem resulted with the attach­
ment of a direct access storage device to the computer.
When an order was entered, it triggered a seek of the
order program and a transfer of it to core storage. If
there came a time in the processing where the back­
order program was required, back-order program steps
would overlay the order program in core storage and
the back order processed. If a receipt was processed,
it would trigger the transfer of the receipt program to
core storage and be processed. And so on through the
many transactions which affect inventory. All this was
done automatically.

Another difficulty that can be resolved by having
random access to program steps is program compac­
tion. (Compacting occurs when the programmer at­
tempts to get as many program steps as possible within
a limited number of core storage positions.) Although
direct access storage does not remove the need for
efficiency, the programmer's job is assisted. If his pro­
gram is not limited by space, he can better spend his
time on writing a program that operates efficiently. By
setting up his programs as a series of blocks, each with
its own specified locations in direct access storage, he
also simplifies the task of modifying them. He can
organize his programs into sets of expandable sub­
routines and proceed with the initial layout of the sys­
tem, confident that all processing planned can be
achieved. Large programs can be broken into primary
and secondary subroutines with the access and trans­
fer of secondary subroutines when needed and in the
sequence required. Only when primary core storage
is exceeded may additional processing time be re­
quired for further transfers of subroutines.

Three of the four operating systems available for
System/360 require that a DASD be used for program
residence. In these cases, IBM programs (such as
Assembler or RPG language translators), user pro­
grams, and IBM control programs (such as routines
to handle interrupts and perform job-to-job transition)
must be on DASD.

Direct Access Storage and Online Systems

"Online" refers to the operation of input/output de­
vices under direct control of the CPU (central proc­
essing unit). When this can be accomplished, it elimi­
nates the need for human intervention between input
origination and output destination within computer
processing. "Online" can be applied to those units
under direct control of the CPU and physically lo­
cated next to it - for example, an online printer. It is

4

also used for teleprocessing units not located next to
the CPU but requiring a communications link.

In the airline flight reservation problem the need
for inquiry was discussed. Since the reservations offices
were remote from the computer, a teleprocessing com­
munications link was necessary. Teleprocessing and
direct access equipment therefore were mutually sup­
plemental. Without direct access storage the main­
tenance of and access to flight records on a computer
system would be extremely difficult. Without tele­
processing equipment online, the ability to change
records or to inquire regarding information on those
records would also be difficult. The lack of either
would make a computer system impractical. The res­
ervations office console I/O units were online to make
inline processing possible. Any computer system re­
quiring remote I/O units online must be carefully
analyzed to determine whether the advantages of
direct access storage can also be applied.

Direct Access Storage as Intermediate Storage

When immediate processing of certain I/O types is
not required, direct access storage can be used to
accumulate the infrequently occurring transactions.
For example, in an installation of a manufacturer with
several salesmen, the sales credits for commission cal­
culation are saved until the end of the week, at which
time commission statements are printed. Credit is
given to the salesmen at billing time, but credits are
accumulated for a weekly run. Rather than calculate
the commission for each order at billing time, the re­
quired information can be stored as it occurs on a
DASD. At the end of the week all of the credit data
is processed and statements are printed. This means
that all processing of credits can be done at once and
that the setup time for printing a special commission
statement from the online printer is required only
once a week.

In any application where selected input transactions
can be accumulated, control totals taken, and total
counts of items maintained, it might be advisable to
use direct access storage as intermediate storage to
gain a time-balanced system. When the accumulated
batch is of sufficient size to warrant processing, a sig­
nal may be given to the system calling for initiation of
processing when the system is temporarily idle; or the
system may be programmed to look at a count to de­
termine when the number is of sufficient size for
processing.

Output records may be accumulated in the same
way. During the course of a day, random transactions
may have been processed calling for the generation of
output documents which, if produced at that time,
involve multiple setups of equipment or the continu-

-,

ous reservation of a magnetic tape drive. For conveni­
ence in scheduling the printing operations, records
may be retained in a section of the DASD until the
information file is large enough to warrant printing, or
until some other batch that produces a similar docu­
ment is run.

In an application that produces several outputs, the
intermediate results can be stored on a DASD. For
example, when doing a payroll on a system with one
printer, all the calculations can be done and the pay­
roll register printed. At the same time, the information
required for the checks can be written on a DASD.
When all employee records have been processed, the
check records can be quickly read back and the
checks printed.

Direct Access Storage and the Responsive System

The ability to process input data inline regardless of
the diversity of applications and to store both master
records and programs makes direct access storage sys­
tems uniquely responsive. They can process data
randomly, give an immediate response, or, even more
appropriately, give these responses on a priority basis.

When a system is called upon to process many ap-

lications and the input data is received randomly, it
often becomes necessary to schedule processing and
establish a priority for processing. The use of direct
access storage gives unlimited flexibility in doing this
without creating an overpowering burden upon the
operators of the system. For example, a general file
maintenance run can be interrupted to process an in­
quiry; upon completion of inquiry processing, the ma­
chine can return to its file maintenance run. A payroll
job ticket calculation run can be interrupted to do an
assembly of a new program or even to test a new pro­
gram. In other words, a direct access storage system
responds to changing priorities and requirements.
Rather than always processing data on a first-come,
first-served basis, a direct access storage system re­
sponds effectively on a controlled first-things-first pri­
ority basis.

Sorting with a Direct Access Storage System

When a direct access system is selected to fulfill the
data processing needs of an installation, it may not
obviate the need for sorting records into sequence. Di­
rect access storage devices can be used for very ef­
ficient sorting operations.

Chapter 1: Introduction 5

Chapter 2: System/360 Direct Access Storage Devices

Several DASD's are available for System/ 360 Models
30, 40, 44, 50, 65, 67, 75, and 85, and, unless noted
otherwise under "Physical Description", each one can
be used on any of the above models of System/ 360.
The devices by type and number are:

Drive with removable disk packs: 2311 and 2314
Drive with nonremovable disks: 2302
Drum: 2301 and 2303
Data cell drive: 2321

The devices differ in physical appearance, capacity,
and speed. This chapter discusses these characteristics
for each of the devices.
Functionally and logically, however, they are similar
in terms of data recording, checking, formatting, and
programming (see Chapter 3).

Physical Description

2311 Disk Storage Drive (see Figure 1). The 2311 is
a drive with removable disk packs. It can be used with
System/ 360 Models 25, 30, 40, 44, 50, 65, 67, 75, and
85. The packs, when removed from the drive, are en­
closed in protective covers. Each pack consists of six
disks mounted on a vertical shaft. The disks are 14
inches in diameter and are made of metal with a mag­
netic oxide coating on both sides. Since the top surface
of the top disk and the bottom surface of the bottom

I

Figure 2. 2314 Direct Access Storage Facility

6

Figure 1. 2311 Disk Storage Drive

disk are not used for recording, each pack contains ten
recording surfaces.

2314 Direct Access Storage Facility (see Figure 2).
The 2314 consists of five or nine drives, depending
upon the model, and a control unit. All five or any
eight of the nine drives can be online at a time. The
ninth drive is available for backup if one of the other
drives requires servicing or maintenance. The 2314
can be used with System/ 360 Models 30, 40, 50,

'/

65, 67, 75, and 85. This device uses removable disk
packs similar to those on the 2311. The packs are
larger, however, each consisting of II disks with 20
of the surfaces used for recording.

2302 Disk Storage (see Figure 3). The 2302 is ~
drive with nonremovable disks. It can be used with
System/ 360 Models 30, 40, 50, 65, or 75. It is available
in two models. Model 3 contains one module of disks;
Model 4 contains two modules, one mounted above
the other. Each module consists of 25 disks, similar to
those in a 23II pack, but 25 inches in diameter. In each
module, 46 of the surfaces are used for recording.

2303 Drum Storage. The 2303 is a vertically mounted
drum. Data is recorded on its outer surface. It can be
used with System/ 360 Models 40, 50, 65, 67, 75, and 85.

Figure 3. 2302 Disk Storage Drive

Figure 4. 2J21 Data Cell Drive

2301 Drum Storage. The 2301 is a drum similar
in appearance to the 2303. It can be used with Sys­

I tem/ 360 Models 65, 67, 75, and 85.
2321 Data Cell Drive (see Figure 4). The 2321 is a

drive with removable data cells. It can be used with
System/ 360 Models 30, 40, 50, 65, 67, and 75. The cells,
when removed from the drive, are enclosed in protec­
tive covers. Each cell is divided into 20 subcells (see
Figure 5). Each subcell contains ten strips, which are
the recording medium of this device. The strips are
made of tape with a magnetic oxide coating on one
side. Each strip is 2~ inches wide, 13 inches long, and
about three times as thick as magnetic tape. The strips
are held in place by the bottom of the cell and by the
adjacent strips.

Chapter 2: System/ 360 Direct Access Storage Devices i

A complete drive contains 2000 strips or recording
surfaces. When the drive is in operation, ten cells must
be mounted. Some of these may be ballast cells that
do not contain strips; their purpose is to balance the
drive properly if the full recording capacity is not
required.

Recording of Data
The recording surface of each device is divided into
many tracks. A track is defined as a circumference of
the recording surface. This definition applies to the
2321 Data Cell, as well as to the other devices, since
the strip being processed is wrapped around a drum.
The tracks are concentric, not a spiral like a phono­
graph record.

Except for the 2301 drum, data is recorded serially
bit-by-bit, eight bits per byte, along a track. The parity
bit associated with each byte in core storage is not re­
corded (for the way in which data transfer is checked,
see Chapter 3). On the 2301, data is recorded in paral­
lel groups of four bits. Actually, each addressable
track of the 2301 consists of four physical tracks.

DRIVE
10 Cells per Drive

SUBCElL
10 Strips per Subcell---ff---<OOi

CElL
20 Subcells per Cell

The number of tracks per recording surface and the
capacity of a track for each device are as shown in
Figure 6. Each track has some "nondata" information
recorded on it (again see Chapter 3). The capacity
given is the maximum number of data bytes that can
be recorded on a track. vVhere alternate tracks are
shown, these are reserved for use in case of damage to
the recording surfaces. For the drum devices, "spare"
tracks are provided for this purpose. Figure 5. 2321 drive, cell, subcell

2311 Disk Drive: 200 tracks per surface (plus 3 alternates);
3625 bytes per track.

2314 Storage Fac iI ity: 200 tracks per surface (plus 3 alternates);
7294 bytes per track.

2302 Disk Drive: 492 tracks per surface (plus 8 alternates);
4984 bytes per track.

2303 Drum: 800 addressable tracks;
4892 bytes per track.

2301 Drum: 200 addressable tracks;
20483 bytes per track.

2321 Data Cell Drive: 100 tracks per strip. 2000 bytes per track.
'\ The last four strips of each cell (400 tracks

per ce II) a re reserved as a I ternates .

• Figure 6. DASD tracks.

8

Access Mechanisms
Each device has some type of access mechanism
whereby data is transferred to and from the device.
The mechanisms are different for each device, but
each mechanism contains a number of read/write
heads that transfer data as the recording surfaces ro­
tate past them. Only one head can be transferring data
(either reading or writing) at a time.

2311 Disk Drive (see Figure 7). The access mecha­
nism consists of a group of access arms that move to­
gether as a unit. This comb-type access mechanism
can move horizontally to 203 different positions, thus
giving access to all the tracks. Each arm has two
read/write heads. There are ten heads in all - one for
each recording surface.

2314 Storage Facility. Each drive of the 2314 has a
comb-type mechanism like the 2311. Each mechanism
has 20 read/write heads - one for each recording sur­
face.

2302 Disk Storage (see Figure 8). Each module of
the 2302 has two comb-type mechanisms; one serv­
ices the inner 250 tracks of each surface, the other
services the outer 250 tracks. Each mechanism has 46
read/write heads - one for each recording surface.
Model 4, since it consists of two modules, has four
access mechanisms. The two (or four) access mecha­
nisms of each 2302 move independently of each other.

Figure 7. 2311 access mechanism

500 Tracks per Disk;
Two Access Mechanisms
per Module.

Figure 8. 2302 access mechanism

\ Each Access
Mechanism

2303 Drum. The 2303 access mechanism includes
a read/write head for each addressable and spare
track. The heads are fixed in position on several verti­
cal racks that surround the drum. Data is transferred
to or from the drum as the single recording surface
rotates past the fixed heads.

2301 Drum. The 2301 access mechanism is as de­
scribed for the 2303 except that there is a set of four
read/write heads for each of the addressable and
spare tracks, since data is recorded in parallel groups
of four bits.

Chapter 2: System/360 Direct Access Storage Devices 9

2321 Data Cell Drive. The array of cells is rotated
until the subcell containing the strip to be processed is
under a drum that is fixed in position above the array.
Each strip has a hole near the top and two index
tabs that are in a different position for each of the ten
strips in a subcell. The selected strip is isolated as
separation fingers push back the index tabs of the ad­
jacent strips (see Figure 9a). As the drum rotates, the
pickup head drops down and latches through the hole
in the top of the strip (see Figure 9b). As the drum
continues to rotate, the strip is withdrawn from the
sub cell and wrapped around the drum (see Figure
9c and 9d).

As the drum continues rotating, the strip moves past
a bar of 20 read/write heads. The heads are positioned
at each fifth track of the strip. The bar of heads can
move horizontally to five different positions, thus pro­
viding access to all 100 tracks of a strip. There is no
actual physical contact of head and strip, since there is
an air cushion between them.

The strip remains attached to the rotating drum un­
til another strip is selected, a command is given to re­
store it, or 800 milliseconds (ms) have elapsed since
the completion of the last command or series of com­
mands to that 2321. The strip is restored by reversing
the direction of rotation of the drum. The strip drops
back into its subcell position between the separated
adjacent strips.

Read/Write Heads

Strip Pickup Head

Cylinder Concept and Capacities
A cylinder of data is the amount that is accessible with
one positioning of the access mechanism. This is an
important concept, since move~ent of the access
mechanism represents a significant portion of the time
required to access and transfer data. In a System/360
DASD, a large amount of data can be stored in a
single cylinder, thus minimizing the movements of the
access mechanism. Using the 2311 as an example,
physically the pack consists of ten separate horizontal
recording surfaces, while from an access point of view
it consists of 203 separate vertical cylinders of ten
tracks each (see Figure 10).

The capacities given below do not include the sur­
faces or tracks reserved as alternates or spares and
assume the use of part of each track for information
required by the IBM operating systems.

2311 Disk Drive. Each pack has 200 cylinders (plus
three alternates), which is equal to the number of
positions to which the access mechanism can move.
Each cylinder has ten tracks, which is equal to the
number of recording surfaces. A cylinder has a maxi­
mum capacity of 36,250 data bytes (3625 bytes per
track, 10 tracks per cylinder). A pack has a maximum
capacity of 7.25 million data bytes (36,250 bytes per
cylinder, 200 cylinders per pack).

-~ Separation Fingers Strips -:...-._

a. Separation

c. Strip Withdrawal

Figure 9. 2321 strip pickup cycle

10

b. Strip Pickup

d. Pickup Head latched
to Drum

-

Figure lO. 2311 cylinders

2314 Storage Facility. Each pack has 200 cylinders
(plus three alternates), which is equal to the number
of positions to which the access mechanism can move.
Each cylinder has 20 tracks, which is equal to the
number of recording surfaces. A cylinder has a maxi­
mum capacity of 145,880 data bytes (7294 bytes per
track, 20 tracks per cylinder). A pack has a maximum
capacity of 29.17 million bytes. A 2314 Model Al
(eight drives) has a maximum of 233.408 million bytes
available to the system at one time. A 2314 Model A2
(five drives) has an on-line capacity of 145.880 million
bytes:

2302 Disk. Each module has 492 cylinders (pIlls
eight alternates), which is equal to the sum of the
number of positions to which each access mechanism
can move. (Each access mechanism can address 250
cylinders.) Model 4, which consists of two modules,
has 984 cylinders (plus 16 alternates). Each cylinder
has 46 tracks, which is equal to the number of record-

ing surfaces. A cylinder has a maximum capacity of
229,264 data bytes (4984 bytes per track, 46 tracks
per cylinder). A 2302 Model 3 has a maximum capac­
ity of 112.79 million data bytes. A 2302 Model 4 has
a maximum capacity of 225.59 million data bytes.

2303 Drum. The cylinder concept does not fully apply
to drums. Since the access mechanism is fixed in posi­
tion, all of the data on the drum is accessible at all
times. However, the 800 addressable tracks are di­
vided electronically for addressing purposes into 80
cylinders of 10 tracks each. A cylinder has a maximum
capacity of 48,920 data bytes (4892 bytes per track,
10 tracks per cylinder). A 2303 has a maximum capac­
ity of about 3.9 million data bytes. Spare tracks are
provided to ensure that each recorded bit can be
stored in a magnetically perfect medium. If a defect
is encountered on a track, the entire track is disabled
by the customer engineer, and one of the spare tracks
is substituted. This spare track is given the address of
the original disabled track.

2301 Drum. The entire drum is considered as one
cylinder consisting of 200. addressable tracks. Each
track has a maximum capacity of 20,483 bytes. The
2301 has a maximum capacity of 4.09 million data
bytes. Spare tracks are provided to cnsure that each
recorded bit can be stored in a magnetically perfect
medium. If a defect is encountered on a track, the
entire track is disabled by tbe customer engineer, and
one of the spare tracks is substituted. This spare track
is given the address of the original disabled track.

2321 Data Cell Drive. Each strip contains five
cylinders, which is equal to tbe number of positions to
which the bar of read/write beads can move. Since a
drive can hold 2000 strips, the entire array contains
10,000 cylinders. Each cylinder has 20 tracks, wbich
is equal to the number of read/write heads. A cylinder
has a maximum capacity of 40,000 data bytes (2000
bytes per track, 20 tracks per cylinder). A strip has
a maximum capacity of 200,000 data bytes. A complete
array has a maximum capacity of 400 million data
bytes. (This includes 8 million bytes per array - 400
tracks in each data cell - reserved as alternates.)

Chapter 2: System/360 Direct Access Storage Devices 11

Timing
The time required to access and transfer data consists
of four parts: access motion, head selection, rotational
delay, and data transfer.

Access Motion Time. This is the time required to po­
sition the access mechanism at the cylinder containing
the specified record. If the mechanism is already at
the correct cylinder, there is no need to move it, so

I access time is zero. In the following discussion of each
device, the figure given is the minimum access time
if the mechanism does move.

-il
c
0
u

.~

°e
o~
~
E

i=

• 2311 Disk Drive: As shown in Figure 11, acceler­
ation of the mechanism is a factor, but the access
motion time is essentially a function of the num­
ber of cylinders moved. For a movement of one
cylinder, the minimum time is 25 milliseconds
(ms); the maximum is 135 ms; the average over
the entire pack is 75 ms.

• 2314 Storage Facility: The average access motion
time is 20% faster than the 2311. The minimum is
25 ms, maximum 130, and average 60.

• 2302 Disk: The 250 cylinders of each access zone
are divided into areas of 60-40-60-40-50 cylinders
(see Figure 12). Each area is further divided into
groups of 10 cylinders each. Movement within a

140

120

100

V
./

~
80

r

I r
60

40

20

o I

group takes 50 ms. Movement to a different group
or to a different area takes 120 ms or 180 ms,
respectively. The minimum is 50 ms; the maxi­
mum is 180 ms; the average over an entire access
zone is 165 ms.

• 2303 Drum: None, since the access mechanism
does not move.

• 2301 Drum: None, since the access mechanism
does not move.

• 2321 Data Cell: Access time may include restor­
ing the strip already on the drum and/or picking
a new one. As shown in Figure 13, it takes 200 ms
to restore a strip, from 75 to 225 ms to rotate the
array, and 175 ms to pick a strip. The movement
of the bar of read/write heads takes 95 ms; this
is overlapped with the restore or pick if either
occurs. The minimum access time is 95 ms; the
correct strip is already on the drum and only
head bar motion is required. The maximum is
600 ms: 200 ms to restore, 225 ms to rotate five
cells (the array rotates in both directions, so this
is the maximum), and 175 ms to pick. The aver­
age for the entire array (assuming that the previ­
ous strip has already been restored) is 350 ms:
175 ms to rotate 2~~ cells and 175 ms to pick.

v
v V'"

~
~

o 20 40 60 80 100 120 140 160 180 200

Number of tracks trove led

FiglJre 11. 2311 access time

12

-

8 0- 0- 0- 0- 0-
N M (!; on

0 0 0 0
I I I I I I

§ 0 0 0 0 0
N 8 (!; g 0 0

000-009

010-019

020-029

030-039

040-049

050-059

060-069

070-079

080-089

::I 090-099
!! 100-109 "t:I

"t:I
<C(110-119
~

"t:I 120-129 .=
>. 130-139 u
:E 140-149
0

150-159 "" u.

160-169

170-179

180-189

190-199

200-209

210-219

220-229

230-239

240-249

Figure 12. 2302 access time

R/W
HEAD

Figure 13. 2321 access time

TO Cylinder Address

0- ~ 0- 0- 0- 0- 0- 0-
<3 co 0- 0 N !:? 0 0 0

I I I I I I I I
0 R 0 0 8 0 0 0
<3 ~ g; N !:? 0

~R/W

II~~."~
111111111~Ei~sSTRP

0-
;!

I
0
;!

0- 0- ~ 0-
!0 ~ ~

I I I I
0 ~ R 0
!0 ~

&: g; ~
N N

I I I
0

~
0

~ N

g; 0-
M

N N

~ ~
N M
N N

0-

~
~
~

• 50 milliseconds

~ 120 milliseconds

o 180 milliseconds

Chapter. 2: System/360 Direct Access Storage Devices 13

Head Selection. Electronic switching is required to
select the correct read/write head of the mechanism.
The time is negligible in all cases.

Rotational Delay. This is the time required for the
correct data to rotate to the read/write head so that
the data transfer can begin. It can range from zero to a
full rotation (revolution). Half a rotation (average
rotational delay) is generally used for timing pur­
poses. The full rotation and average rotational delay
for each device are:

Full Average

2311 disk drive 25 ms 12.5 ms
2314 storage facility 25 ms 12.5 ms
2302 disk 34 ms 17 ms
2303 drum 17.5 ms 8.6 ms
2301 drum 17.5 ms 8.6 ms
2321 data cell 50 ms 25 ms

Data Transfer. The time required to transfer data
between the device and core storage is a function of
rotation speed and the density at which the data is
recorded.

14

2311 disk drive
2314 storage facility
2302 disk
2303 drum
2301 drum
2321 data cell

KBO

156 KB
312 KB
156 KB

303.8 KB
1200 KB

55 KB
"Thousands of bytes per second

"AI illiseconds
per byte

0.0064103
0.0032051
0.0064103
0.0032916
0.0008333
0.0181818

Summary of Timing. In timing a job, the direct
access portion consists of access motion time plus rota­
tional delay plus data transfer. An average of half a
rotation is generally used for rotational delay. In the
practice exercises in this text, a simplified approach
has been used to reduce the number of computations
required to complete the timing exercises. This ap­
proach allows a full rotation for each read (or write)
to include both rotational delay arid data transfer.
Complete timing for a job requires, of course, the
consideration of additional factors such as problem
program processing time, access method processing
time, and control program time. In this text, only
direct access device timing is discussed.

-

Exercises
It is not expected that the details presented in this
text be memorized; refer to the text as necessary, there­
fore, to complete the following exercises. The answers
are listed at the end of the text.
1. Complete the table of DASD characeristics below.
Do not include any alternate recording areas in the
capacities.

Bytes per Access Motion (ms)
Tracks

Storage Per
Device Medium Cylinders Cylinder Track Cylinder

2311

Pack:

2314
Model Ai
Total:
Model A2
Total:

Model 3:
2302

Model 4:

2303

2301

Strip:
2321

Array:

2. What accounts for the fact that the transfer rate
of the 2314 is twice that of the 2311?
3. What unique characteristic of the 2301 partially
accounts for the extremely high transfer rate?
4. Which of the direct access devices provide offline
storage?

5. In designing a file, it has been determined that
nine cylinders are required.

a. If the device is a --~ - _, a ___ ~~ ___ , or
a -----, it will make no difference which
nine adjacent cylinders are used, as far as ac­
cess motion time is concerned.

b. If the device is a - ---- __ , the nine cylinders
should be within the same ____ ~ ______ ;
if the device is a ~~ ___ , the nine cylinders
should be within the same - - ___ in order to
minimize access time.

6. With the 2302, state the access motion time be­
tween the following cylinders:

Rotation Transfer
Device (ms) Rate
(Million) Min. Max. Avg. (Full) (KB)

Pack:
Model Ai
Total:
Model A2
Total:

Model 3:

Model 4:

a. 000 to 059 ____ _
b. 059 to 060 ~ __ _
c. 050 to 059 _~~~

7. In designing a file, it has been decided that there
will be 10,000 records and that each record will be
200 bytes long. Given the number of records per track
stated below, calculate how many tracks and cylinders
will be needed on each device.

a. 2311: 13 records/track, tracks,
--~ - cylinders

b. 2314: 23 records/track, -- - --_ tracks,
cylinders

c. 2302: 18 records/track, tracks,
cylinders

d. 2303: 16 records/track, tracks,
-----_ cylinders

e. 2301: 61 records/track, tracks
f. 2321: 7 records/track, tracks,

cylinders, ____ strips

Chapter 2: System/360 Direct Access Storage Devices 15.

8. Approximately what percentage of the total num­
ber of cylinders is required for the files in problem 7?

a. 2311: d. 2303:----
b. 2314-Al: e.2301:----
c. 2302-3: f. 2321:----

9. Assume that the files in problem 7 have been re­
corded starting at cylinder 0, track 0 (and for the
2321, strip 0 of a subcell). If the entire file is to be
processed in physical record sequence, calculate the
access motion time required for the job. Do not include
the time to access the first record.

a.2311:----ms d.2303:---.ms
b. 2314: ms e. 2301: ms
c. 2302: ms f. 2321: ms

10. As shown in problem 9, access motion time is
negligible if a file is being processed consecutively.
The significant time is rotational delay and data trans­
fer. Allowing a full rotation per record, reading the
entire file of 10,000 records would take approximately:

16

a. 2311:---min. d. 2303:--min.
b. 2314: __ min. e. 2301:---min.
c. 2302: ___ min. f. 2321:--min.

11. Given the following layout of a record, indicate
whether you would select packed decimal or zoned
decimal format for each of the fields, and the number
of bytes each will require.

Characters Format Bytes

a. Employee number 6

b. Name 18

c. Number of dependents 2

d. Social Security number 9

e. Salary 6

f. YTD gross earnings 7

g. YTD withholding tax 6

h. YTD FICA 5

Total 59

This chapter discusses the ways in which the devices
are alike. They all attach to a control unit which in
turn attaches to the CPU via a channel. It is the con­
trol unit that determines the functional and logical
characteristics of the devices.

There are actually three control units for the dif­
ferent devices. As already mentioned, the 2314 storage
facility has a self-contained control unit. The control
unit for the 2301 drum is the 2820. It can control up
to four 2301s.

The control unit for the other four devices is the
284l. The general rule for the 2841 is that it can con­
trol up to eight access mechanisms of varying types in
any combination. Exceptions to that rule exist for the
attachment of 2303s, and of both 2303s and 2311s to
the same 284l.

A maximum of two 2303s may be installed on any
284l. Since both the 2303 and the 2311 use the 2841
as a source of power, the number of 2311S that can
be attached to a 2841 in combination with 2303s is
restricted. If one 2303 is attached, a maximum of three
2311s may also be attached. If two 2303s are attached,
no 2311s may be attached. The rules for attaching
both 2311s and 2303s to a single 2841 do not restrict,
however, the ability of the 2841 to handle eight access
mechanisms. Thus, if one 2303 and three 2311s were
attached (a total of four access mechanisms), four
more access mechanisms that are not 2311S or 2303s
could also be attached - for instance, 2321s. If two
2303s were attached (a total of two access mecha­
nisms), devices totaling six additional access mecha­
nisms could also be attached.

This chapter also discusses the record formats per­
mitted when using IBM programming systems.

Control Unit Functions

File Commands

The control unit interprets and executes the file com­
mands obtained from the CPU via the channel. It is
these commands that control the operation of the
devices. They are discussed in more detail later in this
chapter.

Chapter 3: DASD Control Units

Status Information

The control unit furnishes status information to the
CPU. Examples are (1) transfer of data has been com­
pleted, (2) the end of the data file has been sensed,
and (3) an error has been detected.

Data Transfer

The control unit provides a path for data between the
CPU and the devices, and translates the data be­
tween the CPU (where it is parallel-by-byte) and the
devices (where, except in the case of the 2301, it is
serial-by-bit) .

Checking

The control unit checks the validity of data transfer.
As data is written (transferred from the CPU to a
device), the control unit removes the parity bit from
each byte. It then computes two Cyclic Check bytes,
which are written at the end of each area. The two
Cyclic Check bytes are coded to represent the data in
the associated area. As data is read (transferred from
a device to the CPU), all areas read are inspected by
the control unit. Cyclic Check bytes are recalculated
for each area and compared with those retrieved from
storage. As the control unit transmits data to the CPU,
Cyclic Check bytes are removed and parity bits are
restored as needed to maintain odd parity.

There are two advantages to this method of check­
ing. It detects more errors than can be checked with a
parity check. It also saves storage space on the de­
vices; checking requires 16 bits per data area rather
than one bit per byte.

Track Format
Information is recorded on all devices in a format
which is prescribed by the control unit and which is
identical for all devices. Each track contains certain
"nondata" information (such as the address of the
track, the address of each record, the length of each
record, and gaps between areas) as well as data in­
formation (see Figure 14).

Chapter 3: DASD Control Units 17

Index
Point

Track Descriptor
Record (RO) Data Record (Rl) Data Record (Rn) I 1 1 ______ -JA~ ____ ~

r , , {-

~G I Count \G ro;;tc;I G rAlG I Count \ G ~ G 0 n G ~ G I Count I G I Data I o Area ~ LJ Area ~ U 0 Area Area

.-------- Index Point

,..------ Gap

L--______ Flag

Figure 14. Track formats

18

A. Count-data format

\
\

C
I

--- -----
CC

I

~
Cyclic Check

Data length

Key length

Record Number }

Head Number

Cylinder Number

F lag

L-_______________ Address Iv'oarker

B. Count-key-data format

Identifier

Index Point

For each device, there is one Index Point to indicate
the physical beginning of each track.

Home Address

On each track, there is one Home Address to define
the physical location of the track (the track address)
and the condition of the track. As shown in Figure
14B, it is a seven-byte area consisting of:

• Flag - one byte indicating the condition of the
track (operative or defective) and the use of the
track (primary or alternate).

• Cylinder Number - two bytes indicating the
cylinder in which the track is located.

• Head Number - two bytes indicating the read/
write head that services this track. The combina­
tion of cylinder and head numbers indicates the
address of the track.

• Cyclic Check - two bytes used for error detection,
as already described. Special Home Address com­
mands are used to read or write home addresses.
Normally, this function is performed only by util­
ity programs.

Gaps

Gaps separate the different areas on the track. Certain
equipment functions take place as the gap is rotating
past the read/write head. The length of the gap varies
with the device, the location of the gap, and the length
of the preceding area. For instance, the gap that fol­
lows the index point is a different length from the gap
that follows the home address, and the length of the
gap that follows a record depends on the length of
that record.

Track Descriptor Record (RO)

This record, sometimes referred to as RO, is the first
record after the Home Address and is also illustrated
in Figure 14. IBM programming systems use RO to
store various information about the track. Details
about its contents and use are discussed later.

Data Record Formats

One or more user data records follow record RO on the
track. The first part of each data record is an Address
Marker, a two-byte area which is supplied by the con­
trol unit as the record is written and which enables
the control unit when reading records to locate the
beginning of the record. As shown in Figure 14, there
are- two possible data record formats (Count-Data
and Count-Key-Data), one of which may be chosen
for a particular file.

Count-Data format

Records of this format (see Figure 14A), consist of
an Address Marker, a Count Area and a Data Area.
Records formatted in this way are said to be formatted
without keys.

The Count Area is an eleven-byte field which identi­
fies the record (in terms of cylinder number, head
number, and record number) and indicates the rec­
ord's format (Count-Key-Data or Count-Data) and
length. The fields within the Count Area are as
follows:

• Flag - a byte containing the same information as
the Home Address Hag byte and some additional
information used by the control unit.

• Identifier (ID) - a collective term used to refer
to the cylinder number, head number, and
record number fields as a whole.
Cylinder and Head numbers - four bytes nor­
mally containing the same information as the
corresponding bytes in the Home Address.
Record Number - one byte containing a record
number (in binary notation) ranging from 1 to
255. The first user data record is record 1 (R1),
the second is record 2 (R2), etc.

• Key Length - a one-byte field always containing
o for a record of the Count-Data format.

• Data Length - two bytes specifying the number
of bytes in the Data Area of the record excluding
the Cyclic Check. It is in binary notation, so it
can range from 0 to a theoretical maximum of
65,535. A data length of 0 indicates the end of a
logical file.

• Cyclic Check - two bytes used for error detection,
as already described.

Count-Key-Data format

Records of this format (see Figure 14B) consist of an
Address Marker, a Count Area, a Key Area, and a
Data Area. Records formatted in this way are said to
be formatted with keys. The Key Area, which can
range from 1 to 255 bytes, contains the key (part
number, man number, account number, etc.) that
identifies the following Data Area. In most cases rec­
ords will be formatted with keys so that they can be
quickly located.

The major difference between the two formats is
that the Count-Key-Data format contains a Key Area
while the Count-Data format does not. The existence
of a Key Area causes one other difference between the
two formats. The Key Length field of the Count Area
in the Count-Data format is always zero, but in the
Count-Key-Data format it specifies (in binary nota­
tion) the length of the Key Area and therefore con­
tains a number from 1 to 255.

Chapter 3: DASD Control Units 19

Track Descriptor Record (RO)

The Track Descriptor Record, as mentioned earlier,
follows the Home Address and is used by IBM pro­
gramming systems to store infor.mation about the track.
The programming systems require that it contain a
Count Area and a Data Area and no Key Area. The
Count Area is the same as described for data records
except that record number is always 0 (hence its name
RO), Key Length is always 0, and Data Length is al­
ways 8. The Data Area is therefore eight bytes long
plus two bytes for the Cyclic Check.

Figure 15 shows that the Track Descriptor Record
serves another purpose in addition to its use by pro­
gramming systems. In case a track on a non-drum de­
vice becomes defective, RO's Count Area provides a
cross reference between the original primary track
and the alternate track to which data has been moved
by containing the cylinder number and head number
(track address) of the alternate track, instead of (as
is normal) the track address of the original primary
track. On drum devices, the address of an alternate
track is changed by the customer engineer to the ad­
dress of the original primary track.

If IBM programming systems are not used, the data
area of RO may contain user's data. If this choice is
made, the restrictions noted above that Key Length

Fixed, Unblocked

IAAAI Record 000

Count Key Data

Fixed, Blocked

equal 0 and Data Length equal 8 do not apply. This
choice, however, is not recommended, since the use of
IBM programming systems greatly simplifies the user's
programming.

Home Add ress RO Count Areo
Track F* C H F* C H

Primary 2 2 8 2 200 1

Alternate 1 200 1 1 2 8

* A 2 in the flag byte indicates that this is a defective
primary track; a 1 indicates that this is an operative
alternate track.

Figure 15. Cross-referencing between original track and
alternate track via RO

Record Formats
When using IBM programming systems, logical rec­
ords may be in one of five formats, as shown in
Figure 16. The same five formats shown are permis­
sible without Key Areas. In all cases, if the records
are formatted with keys, all records in the file must
have Key Areas and all of the Key Areas must be the
same length.

Count
~ IAAAI Record 000

Key
IlccCI Record ccc IIFFF I Record fff

Data

Variable, Unblocked

IAAA I I BL II RL I Record 000

Count Key Data

Variable, Blocked

D ~ I BL II RL IAAAI Record 000 § II RL ICCCI Record ccc II RL IFFF I Record fff

Count Key Data

Undefined

IAAAI Record 000

Count Key Data

Figure 16. Record formats

20

-

Fixed, Unblocked

All records in the file are the same length. Each Data
Area contains one logical record. If the records are for­
matted with keys as shown, the key is usually not re­
peated in the Data Area. In some cases, the key may
appear in both areas, as discussed in Chapters 5-8.

Fixed, Blocked

All records in the file are the same length. Each Data
Area contains a block of more than one logical record.
All blocks are the same length except for a possible
short block at the end of the file. The Key Area usually
contains the key of the highest record in the block.
The key is also a field in each logical record, so that
records can be identified during processing.

Variable, Unblocked

The records in the file are of varying lengths. Each
Data Area contains one logical record and the special
fields shown. BL (block length) is the first four bytes
of the block; it indicates the number of bytes in the
block including itself. RL (record length) is the first
four bytes of the logical record; it indicates the num­
ber of bytes in the record including itself.

Variable, Blocked

The records in the file are of varying lengths. Each
Data Area contains a block of logical records. BL and
RL have the same significance as for Variable, Un­
blocked.

Undefined

This format is provided to permit the handling of
records that do not conform to the other formats. An
example is variable-length records that do not con­
tain the BL and RL fields.

Reasons for Blocking Records

The primary reason for blocking records is to pack
direct access storage more efficiently. With blocked
records, there is an Address Marker, Count Area, Key
Area, and gaps for each block of records rather than
for each logical record.

Another reason for blocking is that it may save
time. If records are processed consecutively, there is
only one rotational delay before reading or writing a
block of records. If records are not processed consecu­
tively, however, blocking may be a disadvantage, since
it takes longer to transfer the entire block rather than
the single record to be processed.

Track Capacity
In Chapter 2 the capacity of a track was expressed in
terms of the maximum number of data bytes. This
maximum may be achieved when there is one data
record per track formatted without a key. As the track
is divided into multiple data records, the additional
Address Markers, Count Areas and gaps reduce the
number of bytes available for data. This section dis­
cusses track capacity from the more realistic stand­
point of how many data records of a given length will
fit on a track.

In the tables and formulas presented below, the
capacities are based on the Track Descriptor Record
being used as specified by IBM programming sys­
tems rather than for user's data.

In most cases, the table shown in Figure 17 can be
used to look up the number of given-length records
per track. Note that the table is divided into two
parts, since the capacity varies depending on whether
records are formatted with or without keys. Examples
using the table:

• Device is the 2311, records are unblocked and for­
matted without keys, and data length is 120 bytes.
There will be 19 records per track.

• Device is the 2321, records are unblocked and for­
matted with keys, data length is 100 bytes, and
key length is 8 bytes. In using the right-hand
side of the table, the number to look up is data
length plus key length - in this example, 108.
There will be 9 records per track.

• Device is the 2302, records are blocked and for­
matted without keys, blocking factor is 3, and
logical record length is 200 bytes. The data area
will be 600 bytes, so there will be 7 blocks of 3
records each or 21 logical records per track.

In some cases, the table in Figure 17 cannot be used
and the number of records per track for a given rec­
ord design must be calculated using the formulas
shown in Figure 18. The formulas are different for
each device because the gap lengths required by each
device are different. The formulas in Figure 18 indi­
cate the number of bytes required for each data rec­
ord other than the last one on the track, as well as
the number of bytes required for the last data record
on the track. These two categories are further divided
into data records formatted with keys and data rec­
ords formatted without keys. In the formulas, KL =
Key Area length (not including the Cyclic Check),
and DL = Data Area length (not including the Cyclic
Check).

Chapter 3: DASD Control Units 21

Maximum Bytes per Record Records Maximum Bytes per Record
Formatted without Keys per Formatted with Keys

2311 2314 2302 2303 2301 2321 Track 2311 2314 2302 2303 2301 2321

3625 7294 4984 4892 20483 2000 1 3605 7249 4964 4854 20430 1984
1740 3520 2403 2392 10175 935 2 1720 3476 2383 2354 10122 920
1131 2298 1570 1558 6739 592 3 1111 2254 1550 1520 6686 576
830 1693 1158 1142 5021 422 4 811 1649 1139 1104 4968 406
651 1332 912 892 3990 320 5 632 1288 893 854 3937 305

532 1092 749 725 3303 253 6 512 1049 730 687 3250 238
447 921 634 606 2812 205 7 428 877 614 568 2759 190
384 793 546 517 2444 169 8 364 750 527 479 2391 154
334 694 479 447 2157 142 9 315 650 460 409 2104 126
295 615 425 392 1928 119 10 275 571 406 354 1875 103

263 550 381 346 1741 101 11 244 506 362 308 1688 85
236 496 344 308 1585 86 12 217 452 325 270 1532 70
213 450 313 276 1452 73 13 194 407 294 238 1399 58
193 411 286 249 1339 62 14 174 368 267 211 1286 47
177 377 264 225 1241 53 15 158 333 245 187 1188 38

162 347 244 204 1155 44 16 143 304 224 166 1102 29
149 321 225 186 1079 37 17 130 277 206 148 1026 21
138 298 209 169 1012 30 18 119 254 190 131 959 15
127 276 196 155 952 24 19 108 233 176 117 899 9
118 258 183 142 897 20 20 99 215 163 104 844

109 241 171 130 848 15 21 90 198 152 92 795
102 226 161 119 804 10 22 82 183 142 81 751
95 211 151 109 763 6 23 76 168 132 71 710
88 199 143 100 726 24 69 156 123 62 673
82 187 135 92 691 25 63 144 116 54 638
77 176 127 84 659 26 58 133 108 46 606
72 166 121 77 630 27 53 123 102 39 577
67 157 114 70 603 28 48 114 95 32 550
63 148 108 64 577 29 44 105 89 26 524
59 139 102 58 554 30 40 96 83 20 501

Figure 17. Track capacity table

Track
Bytes Required by Data Records

Capacity Data Records (except for Last) Last Data Record
-

Device (in bytes) without key with key without key with key

2311 3625 61 + 537 (Ol)
81 + 537 (KL + DL)

DL 20 + KL + DL 512 512

2314 7294 101 + 2137 (DL)
2048

146 + 2137 (KL + Dl)
2048

DL 45 + KL + DL

2302 4984 61 + 537 (DL)
81 + 537 (KL + DL)

DL 20 + KL + DL 512 512
2303 4892 108 + DL 146 + KL + DL DL 38 + KL + Dl
2301 20483 133 + DL 186 + Kl + DL DL 53 + KL + DL _.

2321 2000 84 + 537 (Dl)
100 + 537 (KL + DL)

DL 16 + KL + DL 512 512

Figure 18. Track capacity formulas

22

• The track capacity figure is the number of bytes left
for data records after subtracting the bytes required
for the Home Address, the Track Descriptor Record
(RO is used by programming systems), and the Ad­
dress Marker, Count Area, Cyclic Check and gaps for
one data record.
• The formula for the number of bytes required for
the last data record represents only Data Area length
(and Key Area length if formatted with keys). The
number of bytes required for the fixed portion of the

I last record and the gaps has already been subtracted
from the track capacity figure.
• The formula for the number of bytes required for
each data record except the last includes the bytes
required for the Address Marker, Count Area, Cyclic
Check, and fixed gaps for a record of this type. The
2311, for instance, requires 61 bytes for this informa­
tion. This formula sometimes includes a fixed factor
to account for the allowable deviation in the position
of the record. The 2311 formula is an example of this.
• The formulas for data records with keys differ from
those for data records without keys in that they in­
clude the length of the Key Area itself (represented
by KL) and a fixed factor which accounts for the
Cyclic Check and gap that follow the Key Area. The
fixed factor for the 2311 is 20.

The formulas can be combined in the following
way to determine the number of data records per
track:
data records per track =

1+
(

capacity per track - bytes required)
for last data record

bytes required for each data record
except the last

The formulas in Figure 18 are, used rather than the
table in Figure 17 if the data records are shorter than
those shown in the table. In an example where the
records to be recorded are unblocked and formatted
with keys, the key length is 6, the data length is 50,
and the device to be used is the 2311, how many rec­
ords can be placed on each track? The solution is as
follows:

Bytes for each data record except the last =

81 + 537 (6 + 50) = 81 58 = 139
512 +

Bytes for the last data record = 20 + 6 + 50 = 76

R d k
3625-76

ecor s per trac = 1 + = 1 + 25 = 26
139

Note: The remainder is dropped in both division
calculations.

File Commands
Although the IBM programming systems relieve the
user of the need to program I/O operations at the
command level, a familiarity with the commands is
helpful in understanding the various access methods.
The commands, which are interpreted and executed
by the control unit, are the same for all direct access
devices and fall into the four groups discussed below.

Control Commands

The Seek command positions the access mechanism at
the specified cylinder and/or selects the specified
read/write head. Once the specified address has been
transferred from main storage to the control unit, the
channel is not busy during a Seek. (There are several
other control commands not pertinent to this discus­
sion.)

Search Commands

The search commands cause a comparison between
data from main storage and the specified area (ID,
Home Address, or Key) on the device. The search may
be restricted to one track or it may continue on suc­
cessively higher tracks. The search terminates when
the specified condition has been satisfied or when the
end of the search occurs. A single-track search is ended
when the end of the track is reached. A multiple-track
search is ended when the end of the cylinder is
reached. In case of drum devices, a multiple-track
search may be extended to the end of the drum. The
search does not itself cause any transfer of data; it is
normally followed by a read or a write command which
performs the data transfer. The channel is busy during
a search operation. The search commands are:

• Search Home Address Equal

• Search Identifier Equal. This causes a search of
the five-byte Identifier (cylinder-head-record num­
ber) portion of the Count Areas. This and the
other search identifier commands start the search
with the ID of the record following the next Ad­
dress Marker or Index Point.

• Search Identifier High. The condition searched
for is an Identifier on the device higher than the
search argument in core storage.

• Search Identifier High or Equal

• Search Key Equal. This causes a search of the
Key Areas. This and the other search key com-

Chapter 3: DASD Control Units 23

mands start the search with the Key Area of the
record following the next Address Marker.

• Search Key High

• Search Key High or Equal
• Search Key and Data Equal. This command, like

the next two, requires that the control unit has
the File Scan feature. It causes a search of all or
part of the Key and Data Areas. The search
argument in core storage has all I-bits in the
bytes that are not to be compared.

• Search Key and Data High

• Search Key and Data High or Equal
When a search is restricted to one track and is fol­

lowed by a read or write command to transfer the
data, and the search condition is satisfied, the search­
read sequence or search-write sequence takes place
during one rotation. One can, in this case, think of the
search as taking place during rotational delay time. If
the search ends without the condition being satisfied
(that is, if a Search Key Equal for one track was pro­
grammed but no equal key was found), one rotation
should be estimated as the direct access time for that
search.

Read Commands

The read commands cause the specified area to be
transferred to core storage and checked. The Cyclic
Check bytes of the area are not transferred to core
storage. The channel is busy during a read operation.
The read commands are:

24

• Read Home Address. This transfers five bytes of
the Home Address (all except the Cyclic Check).

• Read Track Descriptor Record. Both the Count
Area and the Data Area of RO are transferred.

• Read Count. Eight bytes of the Count Area (all
except the flag byte and Cyclic Check) following
the next Address Marker encountered are trans­
ferred.

• Read Count, Key and Data. The entire record
(except gaps and Cyclic Checks) following the
next Address Marker encountered is transferred.

• Read Data. This command is normally chained
from a search command. The Data Area trans­
ferred is that of the record which satisfied the
search condition. Both the search and the read
take place on the same revolution. If not chained
from a search command, the Data Area following
the next Address Marker encountered is trans­
ferred.

• Read Key and Data. The same comments as fm

Read Data apply, except that both the Key Area
and Data Area are transferred.

Write Commands

The write commands cause data to be transferred from
core storage to the specified area on the device. Dur­
ing the transfer, the control unit generates and adds
the Cyclic Check bytes to each area. The channel is
busy during a write operation.

Three of the write commands are used to initialize
tracks or records. After a chain of these commands has
been completed, the remaining portion of the track is
erased. These format write commands are:

• Write Home Address.

• Write Track Descriptor Record. The first eight
bytes transferred become the Count Area (the
flag byte is generated by the control unit). The
remaining data becomes the Key Area and Data
Area as specified by the Key Length and Data
Length fields of the Count Area.

• Write Count, Key and Data. This is the same as
Write Track Descriptor Record, except that an
Address Marker is generated by the control unit
and written in front of the Count Area.

The other two write commands are used to add
records to a previously formatted track or to update
records. They must be chained from a search equal
command. These data write commands are:

• Write Data. This must be chained from a Search
Identifier Equal or a Search Key Equal. As with
Read Data, both the search and the data transfer
take place on the same revolution.

• Write Key and Data. This must be chained from
a Search Identifier Equal. "gain, both the search
and the write take place Ol; the same revolution.

Verification of Write Operations
As already discussed under "Checking", the parity
check verifies that data transfer between the CPU and
the control unit is correct, and the Cyclic Check veri­
fies that data transfer from the device to the control
unit on a read operation is correct. The Cyclic Check
does not verify that data transfer from the control unit
to the device is correct. It only establishes a check
for subsequent reads.

Verification of transfer from the control unit to the
device is performed by following a write command
with a read command coded in such a way that no
data is transferred to core storage. Data is transferred
from the device to the control unit, however, and the
Cyclic Check is performed. This operation, called

-

Write Verify, is performed by the IBM programming
system after every 2321 write operation and may be
optionally specified by the user for write operations
on the other DASDs. If Write Verify is performed,
one extra revolution is required for each write com­
mand. Write Verify should be specified for permanent
files. For those cases where the 2321 is used without
IBM programming support, it is recommended that
the programmer always provide for a Write Verify
operation.

Control Unit Features
The features discussed below are standard for some
control units and available as a special feature on
others. The support of each feature by programming
systems and the estimated date at which the support
will be available should be verified with the local IBM
representative. To review, the control units are:

• 2314 - self-contained control unit of the disk stor­
age facility.

• 2820 - Controls the 2301 drum.
• 2841 - controls the other four devices (2311 disk

drive, 2302 disk, 2303 drum and 2321 data cell).

Additional Storage

This feature is available only for the 2841. It permits
the attachment of eight more 2302 access mechanisms
in addition to the eight access mechanisms that the
standard 2841 can control.

File Scan

As already discussed, this feature permits the use of
the Search Key and Data Equal, High, and High and
Equal commands, which in turn permit a search of all
or part of both the Key and Data Areas of records. It
is standard on the 2314 and available as a special fea­
ture on the 2841. When installed on a 2841, this
feature is effective for any 2302s, 2311s, and 2321s
attached to that 2841.

Record Overflow

This feature permits a record to overflow from one
track to the next. It is useful in achieving a greater
data packing efficiency and in formatting records that
exceed the capacity of a track. The cylinder boundary
is the factor that limits the size of a record.

Each segment of an overflow record (the portion
written on one track) has a Count Area. The Data
Length field specifies the length of that segment only.
For all segments except the last, a bit in the flag byte
indicates that the record is an overflow record. If the
records are formatted with keys, there is normally just
one Key Area associated with the first segment. On
read or write operations, all segments of the overflow
records are transferred on successive revolutions. The

record overflow feature is standard on the 2314 and
the 2820 and available as a special feature on the 2841.

2844 Auxiliary Control Unit

A 2844 may be attached to the basic 2314 facility to
serve as a second control unit. When so attached, any
online 2314 disk module can be controlled through
either the 2844 or the basic 2314 control. Switching
of any module to operate with either control unit is
effected by programming.

The 2844 and the basic 2314 control can be attached
to the same or to two different selector channels. If two
channels are used, the 2844 attaches to only one, and
the basic 2314 control attaches only to the other. Each
control can communicate with only one channel except
when the Two Channel Switch feature is used.

The 2314/2844 complex provides for:
1. Simultaneous operation of any two 2314 online

disk modules with two selector channels.
2. Availability of the 2314 modules to the system if

either control (that is, the basic 2314 or the
2844) should require preventive or unscheduled
maintenance.

The Two Channel Switch feature can be installed
on either the 2314 or the 2844 or both to permit op­
erations with any 2314 module to be initiated through
any of the four (maximum) channels to which the
2314/2844 complex is attached.

Two Channel Switch

The Two Channel Switch feature enables the control
unit to be shared by two channels and also allows indi­
vidual devices (access mechanisms) to be reserved
for the exclusive use of either of the two channels. The
two channels may be attached to the same CPU or dif­
ferent CPU's. Channel switching and device reserva­
tion is under program control. The Two Channel
Switch feature is limited to eight access mechanisms.

When installed on the 2841, 2820, or the 2314 facil­
ity without a 2844, the control unit can control input/
output operations for its devices via either of the two
channels. Assume that a 2841 with a Two Channel
Switch feature is attached to selector channels 1 and
2. If selector channel 1 is busy with the operations of
another control unit, the 2841 can perform operations
through selector channel 2 if it is not busy.

When a 2844 Auxiliary Control Unit is installed on
a 2314 facility, the Two Channel Switch feature can
be installed on either the 2314 or the 2844 or both to
permit operations with any 2314 module to be ini­
tiated through any of the four (maximum) channels
to which the 2314/2844 complex is attached.

When a control unit is attached to two channels
that are attached to two different CPU's, it permits the
two CPU's to share the same direct access devices.

Chapter 3: DASD Control Units 25

Exercises
12. It is desired to attach five 2311's and one of the
following to one 2841. Place a check in the correct
column for each case.

REQUIRES ADDITIONAL

IMPOSSIBLE OK STORAGE FEATURE

a. Three 2321's

b. Two 2303's

c. One 2302-3

d. Two 2302-4's

13a. The validity of data being transferred between
core storage and the control unit is checked by
means of the
associated with each --____ .

b. The validity of data being transferred between
the control unit and a direct access device is
checked when data is read, by means of the

associated with each

14. A record will always have a Area
and a Area. It mayor may not have a
_____ Area.

15. All of the following information is recorded on a
formatted track. Indicate in which area (s) each one is
located.

a. One-byte record number: ---------
b. Four-byte cylinder/head number:
c. Two-byte cyclic check:

26

d. Flag indicating track condition: ------
e. Key that identifies a record: --------
f. Length of key area: -----------
g. Length of data area: ----------

16. How many data records can be recorded per
track for each of the following?

a. 2321, unblocked records, data length of 200 bytes,
formatted with a key that is 8 bytes:

b. 2302, unblocked records, data length of 250 bytes,
formatted without keys: -----

c. 2311, unblocked records, data length of 150 bytes,
formatted with a key that is 10 bytes:

17. Given logical records 100 bytes long, to be for­
matted without keys on a 2311, how many logical
records per track are there for each of the following?

a. Unblocked: c. Blocked 5: ----
b. Blocked 2: d. Blocked 8:

18. Given logical records 120 bytes long, to be for­
matted without keys on a 2302, what blocking factor
will allow the most logical records per track? (The
block is not to exceed 1000 bytes. --------

19. It is desired to write one 200-byte record followed
by as many 75-byte records as will fit on a 2311 track.
All records are to be unblocked and formatted with­
out keys. How many of the 75-byte records can be
written on a track? -----

-

Records in a file must be logically organized so that
they can be retrieved efficiently for processing. This
chapter discusses some factors to be considered in se­
lecting a method of organization. It also presents an
introduction to the methods of file organization sup­
ported by the IBM Operating Systems for the Sys­
tem/360.

Data File Characteristics
The inherent characteristics of the file must be con­
sidered in selecting an efficient method of organiza­
tion:

Volatility. This term refers to the addition and dele­
tion of records from a file. A static file is one that has
a low percentage of additions and deletions, while a
volatile file is one that has a high rate of additions and
deletions. No matter how the file is organized, addi­
tions and deletions are of significant concern, but they
can be handled more efficiently with some methods of
organization than with others.

Activity. The percentage of activity is one of the
factors to be considered. If a low percentage of the
records are to be processed on a run, the file should
probably be organized in such a way that any record
can be quickly located without having to look at all
the records in the file.

The distribution of the activity is also a considera­
tion. With some methods of organization, some records
can be located more quickly than others. The records
processed most frequently should certainly be the
ones that can be located most quickly.

The amount of activity also makes a difference. An
active file (that is, one which is frequently referred
to) must be organized very carefully, since the time
involved in locating records may amount to an ap­
preciable period of time. At the other extreme, an in­
active file may be referred to so infrequently that the
time required to locate records is immaterial.

Size. A file so large that it cannot all be online
(available to the system) at one time must be organ­
ized and processed in certain ways. A file may be so
small that the method of organization makes little dif­
ference, since the time required to process it is very
short no matter how it is organized.

Chapter 4: Introduction to File Organization

The growth potential of the file is also a considera­
tion. Usually, files are planned on the basis of their
anticipated growth over a period of time. Initial plan­
ning must also consider how growth that exceeds this
size will eventually be handled.

Processing Characteristics
The distinction between the organization of a master
file and the order of the input detail records processed
against that file is important. In sequential processing,
the input transactions are grouped together, sorted in­
to the same sequence as the master file, and the re­
sulting batch is then processed against the master file.
When tape and cards are used to store the master files,
sequential processing is the most efficient means of
processing. Direct access storage devices are also very
efficient sequential processors, especially when the per­
centage of activity against the master file is high.

Random processing is the processing of detail trans­
actions against a master file in whatever order they
occur. With direct access devices, random processing
can be very efficient, since a file can be organized in
such a way that any record can be quickly located.

It is possible, on a run, to process the input trans­
actions against more than one file. This saves setup
and sorting time. It may also minimize control prob­
lems, since the transactions are handled less frequently.

It is feasible to handle unscheduled transactions.
This is particularly significant in a teleprocessing sys­
tem or in a system where there are many inquiries
about the data in the files.

It is not necessary to wait until a batch of transac­
tions has been accumulated to make processing worth­
while. The transactions can be processed inline - that
is, as soon as they are available. If it is not necessary
to do inline processing of all transactions, most of them
can be batched for scheduled runs, and only high­
priority or exceptional transactions processed inline -
that is, as soon as they enter the system.

The use of a DASD to store a master file makes it
possible to choose the processing method to suit the
application. Thus some applications can be processed
sequentially, while those in which the time required
to sort or the delay associated with batching is un-

Chapter 4: Introduction to File Organization 27

desirable can be processed randomly. Real savings in
overall job time can only be made by combining runs
in which each input affects several master flIes; the
details can be processed sequentially against a primary
file and randomly against the secondary files, all in a
single run. This is the basis of inline processing.

Methods of Organization
Four methods of organization for direct access devices
are supported by IBM programming systems. They are
described briefly in this section and discussed fully in
the f:Jllowing chapters.

Sequential Organization. In a sequential file (the
IBM System/360 Operating System term is "data set"
instead of "file"), records are organized solely on the
basis of their successive physical locations in the file.
The records are generally, but not necessarily, in se­
quence according to their keys (control numbers) as
well as in physical sequence. The records are usually
read or updated in the same order in which they ap­
pear. For example, the hundredth record is usually
read only after the first 99 have been read.

Individual records cannot be located quickly. Rec­
ords usually cannot be deleted or added unless the en­
tire file is rewritten. This organization is generally
used when most records are processed each time the
file is used.

Partitioned Organization. A partitioned file is one
that is divided into several members. Each member
has a unique name. Members may be called by name
for processing. Members may be added or deleted as
required. The records within the members are organ­
ized sequentially and are retrieved or stored succes­
sively according to physical sequence.

Partitioned organization is used mainly for the stor­
age of sequential data, such as programs, subroutines,
and tables. For example, a library of subroutines may
be a partitioned file whose members are the subrou­
tines.

Indexed Sequential Organization. An indexed se­
quential file is similar to a sequential file in that rapid
sequential processing is possible. Indexed sequential
organization, however, by reference to indexes associ­
ated with the file, makes it also possible to quickly lo­
cate individual records for random processing. More­
over, a separate area of the file is set aside for addi­
tions; this obviates a rewrite of the entire file, a process
that would usually be necessary when adding records
to a sequential file. Although the added records are
not physically in key sequence, the indexes are re­
ferred to in order to retrieve the added records in key
sequence, thus making rapid sequential processing
possible.

In this method of organization, the programming
system has control over the location of the individual

28

records. The user, therefore, need do very little I/O
programming; the programming system does almost
all of it, since the characteristics of the file are known.

Direct (Random) Organization. A file organized in
a direct (random) manner is characterized by some
predictable relationship between the key of a record
and the address of that record on a DASD. This rela­
tionship is established by the user. This organization
method is generally used for files whose characteristics
do not permit the use of sequential or indexed se­
quential organizations, or for files where the time re­
quired to locate individual records must be kept to an
absolute minimum.

This method has considerable flexibility. The accom­
panying disadvantage is that although the program­
ming system provides the routines to read or write a
file of this type, the user is largely responsible for the
logic and programming required to locate records,
since he establishes the relationship betwen the key of
the record and its address on the DASD.

IBM Operating Systems
Operating systems are part of the programming sys­
tems support supplied by IBM. The operating systems
include 10CS (input/output control system) routines
to schedule and control the transfer of data between
core storage and I/O devices.

Three System/360 operating systems that support
direct access devices are discussed in this text. They
differ from one another in the operating system func­
tions provided and in the machine configuration sup­
ported. The three systems are;

• IBM System/360 Operating System, which re­
quires a CPU with a minimum of 64K (K =
1024) positions of core storage.

• IBM System/360 Disk Operating System, which
requires a CPU with a minimum of 16K positions
of core storage.

• IBM System/360 Basic Operating System, which
requires a CPU with a minimum of 8K positions
of core storage.

In the remainder of this chapter, and in the follow­
ing chapters, which discuss the methods of organiza­
tion in detail, the term "operating system" applies to
all three unless otherwise noted. Where there are dif­
ferences, "OS" means the Operating System, "DOS"
means the Disk Operating System, and "BOS" means
the Basic Operating System.

Since this text must deal with the three operating
systems in rather general terms, refer to the texts cited
in the Bibliography for specific information on a par­
ticular operating system.

One difference between the operating systems is in
the direct access devices that are supported. OS sup-

-

ports all of them; DOS supports the 2321 Data Cell

I
Drive, the 2311 Disk Storage Drive, and the 2314
Direct Access Storage Facility; BaS supports the
2311 only.

Sequential, indexed sequential, and direct methods
of organization are supported by all the operating sys­
tems. as also supports partitioned organization. The
operating systems allow users to concentrate their pro­
gramming efforts on processing the records read and
written by the laCS routines. The responsibility of the
assembler language programmer in the area of input/
output is essentially to describe the files to be proc­
essed and then issue GET or READ instructions to
cause records to be transferred to core storage, and
PUT or WRITE instructions to cause records to be
transferred to I/O devices.

These instructions issued by the user are called
"macro instructions". For one macro instruction, a
number of machine instructions and commands are
assembled. These in turn call into use certain laCS
routines. The I/O macro instructions and associated
laCS routines are referred to as "access methods" and
are divided into two categories: queued access meth­
ods and basic access methods.

The queued access methods provide GET and PUT
macro instructions. These access methods are used in
situations where the sequence in which records are to
be processed is known to the system and the program­
mer wishes the operating system to perform anticipa­
tory buffering and scheduling of I/O operations using
the buffers (I/O areas) requested by the user. (More
than one I/O area and/or a work area can be specified
for a file.) As soon as a channel and device are free,
the system can read the next record (s) into the buf­
fers or write the preceding record (s) from the buffers
at the same time that the current record is being proc­
essed. Therefore, more than one record is normally in
core storage at the same time, so that processing and
I/O operations can be overlapped. A queued access
method, if the records are blocked, performs auto­
matic blocking and deblocking and makes the next
logical record available to the user when he issues the
next GET. Queued access methods are provided for
sequential organization and indexed sequential organi­
zation by BaS, DOS, and as.

The basic access methods provide READ and
WRITE macro instructions. These access methods are
used when the operating system cannot predict the
sequence in which records are to be processed or
when the programmer does not want some or all of the
automatic functions that are performed by the queued
access method. The system does not provide anticipa­
tory buffering and scheduling. Macros are provided,
however, to help the user program these functions.
Moreover, READ and WRITE macros read and write

physical, not logical, records. Thus, blocking and de­
blocking of records is (in most basic access methods)
the user's responsibility. Basic access methods are pro­
vided in as for all types of organization. BaS and
DOS provide a basic access method for direct and
indexed sequential organizations. DOS also provides a
basic access method for sequential organization.

The BaS, DOS, and as programmer specify the
I/O macros in different ways. This text, however, does
not discuss the way in which these macros are writ­
ten, but only the various methods of file organization
supported by as, BaS, and DOS and the capabilities
of the access methods.

In BaS and DOS terminology, the various access
methods are referred to collectively as "logical laCS".
In most situations, the programmer will find it advan­
tageous to use the access methods (logical laCS),
since their use greatly reduces programming effort.
Occasionally, however, it may be necessary for him
to control the I/O devices directly. He can do this by
using the EXCP macro to call upon a lower level of
laCS called "lOS" in as and "physical laCS" in BaS
and DOS. In the following chapters on file organiza­
tion, any restrictions noted apply only when the ac­
cess methods (logical laCS) are being used.

As previously implied, access methods are identified
primarily by the file organization to which they apply.
For instance, we speak of a basic access method for
direct organization. Although an access method is
identified with a particular organization, there are
times when an access method identified with one or­
ganization can be used to deal with a file usually
thought of as organized in a different manner. Thus,
in as, a file that is considered to be a directly organ­
ized file is formatted and must be created with the
basic access method for sequential organization. It is
processed at random with the basic access method for
direct organization.

The facilities for creating and processing files on
DASD are discussed in the next four chapters. Utility
programs are also provided by each of the operating
systems. In addition, a number of stand-alone 2311
utility programs for operations outside the control of
an operating system are provided in the category of
Basic Programming Support. This category also in­
cludes Initialize Disk (2311) and Initialize Data Cell
(2321) programs.

Please note that the DASD timings in the practice
exercises for Cpapters 5, 7, and 8 are approximate
times. In addition, these times are not estimates of
total job time, since the practice exercises do not con­
sider factors beyond the scope of this text, such as
problem program processing time, access method
processing time, and control program time.

Chapter 4: Introduction to File Organization 29

Chapter 5: Sequential Organization

In a sequential file, records are written one after the
other - track by track, cylinder by cylinder - at suc­
cessively higher addresses. The records are usually in
key sequence.

Description of Records
Records may be fixed- or variable-length, blocked or
unblocked, or undefined.

The records may be formatted with or without keys.
If the file is always processed sequentially, as is nor­
mally the case with this method of organization, there
is no point in formatting with keys. If for some reason
there is an appreciable amount of random processing,
records should be formatted with keys so that they can
be located more quickly.

DASD Storage Requirements
The amount of DASD storage required is simply
enough to hold all the records in the file. The area
should be large enough for the maximum number of
records, although it is permissible to have the file ex­
tend over several noncontiguous areas.

Timing

Sequential Processing

The time required is one seek per cylinder and one
read per record (or block of records). Remember that
in this text we are using a simplified timing approach
of allotting a full rotation for each read (or write) to
include both rotational delay and data transfer.

Random Processing

Random processing of a sequential file is, at best, very
inefficient. If it is done infrequently, the time required
to locate the records may not matter. There are several
ways to program random processing, with Significant
differences in the time required. The slowest way is to
read the records sequentially until the desired one is
located. On the average, half of the file would have to
be read. A sequential search takes less time if the rec­
ords are formatted with keys. The search is done on
Search Key High or Equal at the speed of one revolu­
tion per track. When the search condition is satisfied,
the corresponding record is read.

30

Another way of processing a sequential file in a
random fashion is first to perform a binary search of
the file in order to determine in which small section of
the file the desired record is located. Then only that
small section need be searched in full. A binary search
of an eight-cylinder file formatted with keys is illus­
trated in Figure 19. The last record in cylinder 4 is
read and compared with the search argument. Then
the last record in either cylinder 2 or 6 is read and a
comparison performed again. Then, depending on the
result of that comparison, the last record in either
cylinder 1, 3, 5, or 7 is read and compared against the
search argument. This last comparison indicates in
which one of the eight cylinders the desired record is
to be found. That cylinder can then be searched in
full.

~ ___ .:.:.H.:...{I 4 \,.:l:,:O:....-__

Figure 19. A binary search of an eight-cylinder file

File Maintenance

Additions and deletions require a complete rewrite of
a sequential file. This is desirable from a timing stand­
point only if additions and deletions can be combined
with another job that also requires reading and up­
dating all the records.

Uses for Sequential Organization
Sequential organization is used on direct access stor­
age devices primarily for tables and intermediate
storage rather than for master files. Its use is recom­
mended for master files if they have a high percentage
of activity and if virtually all processing is sequential.

-

Operating System functions

Queued Access Method

The queued access method is used for creating a se­
quential file and for reading or updating all of the rec­
ords in physical sequence. The operating system takes
care of any required blocking or deblocking of rec­
ords. It provides anticipatory buffering, overlap of in­
put/output with processing and error checking.

Basic Access Method

The basic access method for sequentially organized
files is available only with OS and DOS. Anticipatory
buffering and blocking/deblocking routines are not
provided. The basic access method can be used to
read or write records formatted with keys (OS only)
or without keys (OS and DOS). It can be used, to
a limited extent, to store and retrieve records at ran­
dom. Note that the DOS basic access method for
sequentially organized files does not permit the proc­
essing of files formatted with keys. A basic access
method for directly organized files may be used in
DOS to create and process (sequentially or at ran-

A partioned data set consists of several sequential
units or members. The data set also includes a direc­
tory containing the name and beginning address of
each member. This method of organization is sup­
ported only by OS.

Description of Records
The records in the members may be fixed- or variable­
length, blocked, unblocked, or undefined, and may
be formatted with or without keys. The records in all
the members must have identical formats. Members
are stored one after another in the order in which they
are written.

The directory contains one record for each existing
or projected member of the data set. The directory
records are grouped into 256-byte blocks, each con­
taining as many records as will fit into the block. The
directory records, which are in alphabetic sequence by
member name, vary from 12 to 74 bytes in length, de­
pending on how much user data is included in addi­
tion to the member's name and starting address. Each
directory block has an eight-byte Key Area containing
the name of the last member in the block.

DASD Storage Requirements
Enough DASD storage is required to hold the se-

dom) such files. A corresponding access method ex­
ists in OS that can be used to process at random se­
quential files formatted with keys.

User Options
The operating system performs a W'rite Verify after
write operations if the user so requests. OS only sup­
ports the Record Overflow feature.

Exercises
The following questions apply to a sequential file on a
2311 Disk Storage Drive. There are 10,000 logical rec­
ords, each 160 bytes long. The records are to be for­
matted without keys.
20. If the block is kept under 1000 bytes, what
is the optimum blocking factor for maximum storage
utilization?

21. If the optimum blocking factor is used, how
many cylinders are required for the file?

22. What is the disk time required to read the entire
file sequentially? Use one revolution per read.
23. What is the disk time required to read 5000 of
the records in random sequence?

Chapter 6: Partitioned Organization

quentially organized members and the directory. As
new members are added, OS allocates additional areas
if the original area is full. If the directory is full, how­
ever, no new members can be added until the file is
reorganized. A deleted directory entry can be reused.
Deleted member Data Areas cannot be reused.

Operating System functions
The basic access method is always used for partitioned
organization. Three special macro instructions are pro­
vided. FIND causes the starting address of a specified
member to be returned to the user so that the member
can be processed. STOW causes the name of a mem­
ber to be entered into, changed, replaced, or deleted
from the directory. BLDL causes a list to be built in
core storage. This list contains the starting address and
user information from the directory for each specified
member. The FIND macro can then be directed to an
entry in the list rather than to the directory in order
to minimize access time.

The members are created or processed through use
of the basic access method for sequentially organized
files after the name has been entered into the directory
or the starting address has been determined. See "Op­
erating System Functions", in Chapter 5.

Chapter 6: Partitioned Organization 31

Chapter 7: Indexed Sequential Organization

An indexed sequential file is a sequential file with in­
dexes that permit rapid access to individual records as
well as rapid sequential processing. An indexed se­
quential file has three distinct areas: a prime area, in­
dexes, and an overflow area. Each area is described in
detail below.

Prime Area
The prime area is the area in which records are writ­
ten when the file is first created or subsequently re­
organized. Additions to the file may also be written in
the prime area. The prime area may span multiple
volumes and (in OS only) consist of several noncon­
tiguous areas. The records in the prime area are in
key sequence.

Prime records must be formatted with keys. They
may be blocked or unblocked. If blocked, each logical

CYLINDER INDEX

record contains its key and the key area contains the
key of the highest record in the block. Only fixed­
length records are permitted.

Indexes
There are two or more indexes of different levels. They
are created and written by the operating system when
the file is created or reorganized.

Track Index (See Figure 20)

This is the lowest level of index and is always present.
Its entries point to data records. There is one track in­
dex for each cylinder in the prime area. It is always
written on the first track (s) of the cylinder that it in­
dexes.

100610 I 0000 I 101500 I 0100 I 103975 10200 1 I 05432 1 0300 1 Dummy

L Data: Home address of track index I
for cylinder 00

Key: Highest key on cylinder 00

TRACK INDEX

Normal Overflow
10000 1 ICOCRI 100014 10001 I 00014 1 0001 I

One such entry for
each cylinder of
the prime data area

Normal

I 00027 I 0002 I
Overflow

I 00027 1 0002 I
Home Lata: Home address of

l
One normal and one

Addr. prime dota track 0001 overflow entry for
ey: Highest key on each prime data track

prime dota track 0001 on cylinder 00

~
Normal Overflow

100610 10042 1 100610 1 0042 1 Oummy IData Records

PRIME DATA AREA

10001 1 1 00001 I 1 00003 1 100004 1 I 000061

Home tl.. Data Record: Count, Key and Data for
Addr. record with key '00001

Figure 20. An indexed sequential file with no additions

32

~

\
\

-

Each track index may contain a special first record
called a "Cylinder Overflow Control Record" (see be­
low, "Overflow Area"). The rest of each track index
consists of alternating normal and overflow entries.
There is a pair of entries for each prime data track in
the cylinder. The normal entry contains the home ad­
dress of the prime track and the key of the highest
record on the track. The overflow entry is originally
the same as the normal entry. It is changed when rec­
ords are added to the file (see below, "Additions Pro­
cedure").

The last entry of each track index is a dummy entry
indicating the end of the index. The rest of the index
track contains prime records if there is room for them.
In this case, the first pair of entries in the index refers
to this track.

Each index entry (normal, overflow, or dummy) has
the same format. It is an unblocked, fixed-length rec­
ord consisting of a Count Area, a Key Area and a Data
Area. The length of the Key Area is as specified by the
user. It contains the key of the data record to which
the entry points, except for the dummy entry whose
key is all I-bits (highest in collating sequence). The
Data Area is always ten bytes long. It contains the full
address of the track or record to which the index
points and other information such as the level of index
and type of entry. The Data Area of the dummy entry
is null (all O-bits). For simplicity, in Figure 20 only
the cylinder and head portion of the address in the
Data Areas is shown.

Cylinder Index (See Figure 20)

This is a higher level of index and is always present.
Its entries point to track indexes. There is one cylinder
index for the file. It may be on a different type of
DASD than the rest of the file. In BOS and DOS it
is written wherever the user specifies. In OS it may
be placed in an independent index area, an inde­
pendent overflow area, or in the prime area.

The cylinder index consists of one entry for each
cylinder in the prime area, followed by a dummy en­
try. The entries are formatted in the same fashion as
the track index entries. The Key Area contains the key
of the highest record in the cylmder to which the en­
try points. The Data Area contains the Home Address
of the track index for that cylinder.

If the prime area is not filled when the file is cre­
ated, the last cylinder index entries are inactive. These
inactive entries have all I-bits in the Key Area and a
null Data Area, just like the dummy entry. The track
indexes for prime cylinders that do not yet contain
data records also have inactive entries. The inactive
entries provide for adding higher records to the end of
the file or for expanding the file when it is reorganized.

Master Index

This is the highest level of index and is optional. It is
used when the cylinder index is so long that a search
through it is too time-consuming. It is suggested that
a master index be requested when the cylinder index
occupies more than four tracks.

BOS and DOS permit one level of master index for
the file and require that it be written immediately
before the cylinder index. A master index of one level
consists of one entry for each track of the cylinder
index and is formatted in the same way as the cylin­
der index. The Data Area of each entry contains the
Home Address of the track of the cylinder index to
which the entry points. The Key Area contains the
highest key in the cylinders indexed by that track of
the cylinder index.

OS permits three levels of master indexes and al­
lows them to be written in an independent index area,
an independent overflow area, or in the prime area.
Each bears the same relationship to the next lower
one as the lowest one bears to the cylinder index.
That is, if the user specifies that he wants a master
index if the cylinder index exceeds four tracks, there
will be a second master index if the first one exceeds
four tracks and a third master index if the second one
exceeds four tracks.

Overflow Area
There are two types of overflow areas: a cylinder

overflow area and an independent overflow area.
Either one or both may be specified for an indexed
sequential file. Records are written in the overflow
area(s) as additions are made to the file.

Cylinder Overflow Area (See Figure 21)

A certain number of whole tracks, as specified by the
user, are reserved in each cylinder for overflows from
the prime tracks in that cylinder. When a cylinder
overflow area is specified, record 0 (the track descrip­
tor record) of each track index is used as a Cylinder
Overflow Control Record (COCR, Figure 20). BOS,
DOS, and OS use the COCR to keep track of the ad­
dress of the last overflow record in the cylinder and
the number of bytes left in the cylinder overflow area.
OS also uses this record for additional information
needed when the file has variable-length records. OS
uses two bytes of the COCR for this purpose. These
two bytes are blank in BOS and DOS.

An advantage of having a cylinder overflow area is
that additional seeks are not required to locate over-

Chapter 7: Indexed Sequential Organization 33

CYLO CYLl CYL 2icYL 31CYL 4 CYL5 CYL6
T rae k Indexes

I I
Prime Area

I
T

Cylinder Overflow Area

Figure 21. Cylinder overflow area

flow records. A disadvantage is that there will be un­
used space if additions are unevenly distributed
throughout the file.

Independent Overflow Area (See Figure 22)

Overflows from anywhere in the prime area are placed
in a certain number of cylinders reserved solely for
overflows. The size and unit location of the inde­
pendent overflow area are as specified by the user.
The area must, however, be on the same type of
DASD as the prime area.

CYL 0 I CYL 1 I CYL 2 I CYL 3

Track ndexes

p,;-r
Figure 22. Independent overflow area

34

CYL X CYL Y

Independent
Overflow

.Area

An advantage of having an independent overflow
area is that less space need be reserved for overflows.
A disadvantage is that accessing overflow records takes
additional seeks.

A suggested approach is to have cylinder overflow
areas large enough to contain the average number of
overflows caused by additions and an independent
overflow area to be used as the cylinder overflow
areas are filled.

Overflow Records

Overflow records must be unblocked. They must be
formatted with keys. They may be fixed-length or, in
OS only, variable-length. If prime records are blocked,
the key of an overflow record is contained in both the
Key Area and the Data Area so that all logical records
have the same format.

The first field in the Data Area of an overflow record
is a link field. It is used to chain together in key se­
quence the records that have overflowed from a prime
track. The link field is ten bytes long and contains the
same type of information as the Data Area of index
entries. If an overflow record is not the last link in a
chain, its link field so indicates and contains the ad­
dress of the next overflow record in the chain. If an
overflow record is the last link in a chain, its link field
so indicates and points back to the track index.

The fact that an overflow record has a link field
while a prime record does not is of significance to the
user only in that the link field requires space on the
DASD and in core storage. The operating system
presents logical records to the user in such a way that
he is not aware of the difference in formats.

Additions Procedure
As records are added to the file, they are no longer
physically in key sequence. They are still logically in
key sequence, however, through use of the track in­
dexes and link fields. Three different situations may
occur when a record is added to the file. Each is dis­
cussed below.

First Addition to a Prime Track (See Figure 23)
The new record (key 00010) is written in its proper
sequential location on the prime track. The rest of the
prime records are moved up one location. The bumped
record (00014) is written in the first available location
in the overflow area. The record is placed in the cylin­
der overflow area for that cylinder if it exists and if
there is space in it; otherwise, it is placed in the in­
dependent overflow area. The Key Area of the normal
index entry is changed, since record 00011 is now the
highest record on the track. The Data Area of the
overflow index entry is changed; it now contains the

CYLINDER INDEX (No change)

address of the overflow record. The first addition to a
track is always handled in this way. Any record that is
higher than the original highest record on the preced­
ing track but lower than the original highest record on
this track is written on this track. Record 00015, for
example, would be written as the first record on track
0002, and record 00027 would be bumped into the
overflow area. Note that no change to higher-level in­
dexes is required. Record 00611 would be written as
the first record in the second cylinder. Record 00610 is
still and will remain the highest record in the first
cylinder.

10061010000 1 101500 1 01001 10397510200 1 105432 1 0300 1 Dummy

TRACK INDEX
Normal Overflow Normal

~ !CoCRI
H.A.

1 00011 1 0001 1 1 00014 100431 I 1000271 0002 1
[Key of normal !Overflow entry changed - now points

entry changed to record 1 on track 0043

PRIME DATA AREA

1 0001 I 1 0000 1 1 1 00003 1 1 000041 1 00006 1

H.A.

• •• .. •• . 1 000091 ~ Ij" 1
New record
Original record moved up

~ 1000161 100017 1 100019 / 1000201 1 00025/ 100027/

OVERFLOW AREA

1 00431 100431 I 00014 I xxxOoolxxx Rest of data

H.A. Count Key link field: This is the last link of a chain, so it
contains the original value of the track index
entry - that is, the home address of the prime track.

Figure 23. An indexed sequential file after the first addition to a prime track

Chapter 7: Indexed Sequential Organization 35

Subsequent Additions to a Track (See Figure 24)

Subsequent additions are written either on the prime
track where they belong or as part of the overflow
chain from that track. If the addition belongs between
the last prime record on a track and a previous over­
flow from that track (as is the case with record 00013),
it is written in the first available location in the over­
flow area, with its link field containing the address of
the next record in the chain. The link field of a previ­
ous overflow may need to be changed; it is not neces­
sary in this example. Because the Data Area of the
overflow index entry always refers to the address of
the lowest key in a chain, it is changed if necessary
(as in this example).

If the addition belongs on a prime track (as would
be the case with record 00005), it is written in its
proper sequential location on the prime track. The

CYLINDER INDEX (No Change)

bumped record (00011) is written in the first available
location in the overflow area. The Key Area of the
normal index entry is changed (to 00010). The link
field of a previous overflow and the Data Area of the
overflow index entry are changed if necessary.

Note the logical similarity between the normal and
overflow index entries. The normal entry indicates that
a sequence of records starts at the beginning of track
0001, the last record having a key of 00011. The over­
flow entry indicates that a sequence of records
(chained together by the link fields), starts with the
third record on track 0044, the last record having a
key of 00014.

Although the cylinder overflow area may eventually
contain overflows from all prime tracks in the cylinder,
and the independent overflow area may eventually
contain overflows from anywhere in the file, each
prime track has its own chain.

1 0061010000 1 1 0150010100 1 1 0397510200 1 10543210300 1 Dummy

TRACK INDEX

10000 I
H.A.

ICOCR I
Normal

I 00011 1 0001 I

PRIME DATA AREA (No Change)

Overflow Normal

1 00014 100443 1 1 000271 0002 I
L Overflow entry changed - points

to address of lowest key which
overflowed from this track -
record 3 on track 0044

I 0001\ 100001 I 100003 \ 1 00004 I 100006 1 1 00009 I 100010 \ 100011 \

10002 I 100016 I 100017 I 100019 I 100020 I 1 00025 I 100027 I

OVERFLOW AREA

~
H.A.

100431

Count

1000141 xxxooOlxxx Rest of data I········
Key ~link field: No change - this record

will always be the last link in this chain.

H.A. Count

00013 1 xxx00431xx Rest of data I········

Key ClinK field - points to next link

100443

in chain - record 1 on track 0043

Figure 24. An indexed sequential file after subsequent additions to a track

36

Addition of High Keys

A record with a key higher than the current highest
key in the RIe is placed on the last prime track con­
taining data records if that track is not full. If that
track is full, the record is placed in the overflow area.
The sequence link for these records is chained to the
last prime track containing data records. The Key
Area of higher level indexes is changed to reflect the
addition.

If a number of "high-key" records must be added to
the RIe, it is possible in BOS and DOS to extend the
prime area and load the new records there.

Timing
None of the following detail is programmed by the
user. The steps shown indicate the general logic of the
IOCS routines generated by the operating system from
the user's GET macro.

Sequential Processing

The logical steps required to retrieve all of the records
in key sequence are as follows (assuming that the
prime area consists of one contiguous area):

1. Initialize.
a. Position access mechanism at the track index
of the first cylinder of the RIe.
b. Search the track index and read into core
two entries from the track index (the current
overflow entry and the next normal entry).

2. Read and present to the user each record on the
specified prime track. If the end-of-RIe record is read,
go to the end-of-RIe routine.

3. If the current overflow entry has been changed,
read and present to the user each record in the over­
flow chain and then go to step 5.

4. If the current overflow entry has not been
changed, go to step 5.

5. If the next prime entry is a dummy (that is, if all
the records in this cylinder have been read), seek the
next cylinder and go to step 7.

6. If the next prime entry is not a dummy, go to
step 7.

7. Search the track index and read into core the
next pair of entries (the overflow entry of the next
prime track to be processed and the normal entry for
the prime track following that).

8. Go to step 2.
Note that reference to the cylinder index (and mas­

ter index) is necessary only for the initial positioning
at the beginning of the RIe and that reference to the
track index is necessary only once for each prime
track.

The minimum disk time to process the RIe sequen­
tially is:

1. One seek for each prime cylinder.
2. One search and read (and write, or write and

Write Verify, if updating) for each data record (or
block of records) in the file.

3. One search and read for each pair of entries in
the track indexes.

The search for and reading of a data record should
be estimated at one rotation (following our procedure
of allowing one rotation to include both rotational de­
lay and data transfer time). Since the index entrtes
are such short records, the search for and reading of a
pair of track index entries should be rated at half a
rotation instead of a full rotation. The seek for each
prime cylinder could be rated at minimum access time
rather than average access time, since the RIe is lo­
cated on one contiguous area. Additional time is re­
quired if the file has an independent overflow area.

In some cases it may be desirable to process only a
section of an indexed sequential RIe. This can easily
be done. Assume that an indexed sequential payroll
RIe is in sequence by man number within department.
It might be necessary, for instance, to process the por­
tion of the RIe that begins with the record identified
as man number 20, department 05. A SETL macro is
used to specify the key of the first record to be proc­
essed (in this case 0520). The programming to process
the first record and the ones following it would be the
same as for normal sequential processing, except that
the user's program must, if it is not necessary to proc­
ess through the end of the RIe, recognize when the last
desired record has been processed and issue an ESETL
macro at that point to terminate the sequential access­
ing of the file.

In OS and DOS only, the SETL macro can specify
only the prefix of a key and thus ask that the process­
ing of a file start with the first record containing that
prefix in its key. Assuming the payroll RIe mentioned
above, the SETL macro could specify 0500, causing
the processing to start with the first record of depart­
ment 05. This prefix capability of the SETL macro
frees the user from the necessity of knowing the entire
key of the first record of a certain class to be proc­
essed. Again, the ESETL macro can be used to ter­
minate the sequential accessing of the file.

Random Processing

The logical steps required to retrieve specified records
in random sequence are:

1. Read transaction.
2. Search the cylinder index for Key High or Equal.
3. When search is satisfied, read corresponding

Data Area.

Chapter 7: Indexed Sequential Organization 37

4. Seek to the referenced cylinder.

5. Search the track index for that cylinder for Key
High or Equal.

6. When search is satisfied, read corresponding
Data Area.

7. If it is a normal entry:
a. Search the referenced prime track for Key
Equal.
b. Read and present to the user the correspond­
ing Data Area. If the prime records are blocked
the operating system searches the block in core
and presents the specified logical record to the
user.

8. If it is an overflow entry:
a. Search the referenced overflow track for
Identifier (record address) Equal.
b. Read corresponding Key and Data Areas.
c. If it is the specified record, present to the
user.
d. If it is not, repeat steps a and b, using the
address from the link field until the specified rec­
ord is found.
e. If the end of' the chain is reached, go to rec­
ord-not-found routine.

Thus the disk time required to locate a record is two
seeks (to the cylinder index and to the prime cylinder)
and three reads (of the cylinder index, track index,
and data record). As in the discussion of sequential
processing of an indexed sequential file, each read of
a data record should be rated at one full rotation, and
each search and read of an index track at half a
rotation.

Additional disk time is required if the file has a
master index or if there is an independent overflow
area. Additional time is also required if the specified
record is other than the first overflow record in an
overflow chain. Notice in Figure 24 that record 00013
is referenced directly by the overflow index entry.

The disk time can be minimized by placing the
cylinder index on a different access module from the
rest of the file. Then the cylinder index access mecha­
nism does not have to move after it is first positioned.
(This approach, however, is not helpful in an OS or
DOS multiprogramming environment, since a file proc­
essed by another task might be located on the same
module as the cylinder index and thus require the
movement of the access mechanism.)

OS, however, offers the user the option of searching
the file's highest-level index in core. The entire index
is read once and held in core for the duration of the
job. Thus the minimum disk time to locate a record
can be reduced to one seek and two reads (of the
track index and the data record). DOS offers theuser

38

the option of holding all or part of the cylinder index
in core. If only a portion of the cylinder index is kept
in core, a new portion of the cylinder index will be
read into core when the key of the record to be proc­
essed is not within the range of keys in the "in core"
cylinder index.

File Maintenance
The user writes his own load and maintenance pro­
grams using the macros provided by the operating
system. Additions are handled by the operating sys­
tem as already discussed. The user may choose to write
a separate additions program or to include the addi­
tions procedure as part of another job.

The file must be reorganized periodically for three
reasons: (1) the overflow area will eventually be
filled, (2) additions increase the time required to
locate records at random, and (3) the prime area may
contain too many deleted records. The frequency of
reorganization depends on the volatility of the file
and on the user's timing and direct access storage
requirements. There are two ways to handle reorgani­
zations: (1) The file can be written sequentially into
another area of direct access storage or some other
storage medium and then re-created in the original
area. (2) It can be reorganized in one pass into some
other area of direct access storage, in which case none
of the area occupied by the original file can be used
by the reorganized file.

The operating system maintains statistics that are
pertinent to reorganization. These statistics are writ­
ten on the direct access device and may be read by
the user at any time. The statistics maintained are the
number of cylinder overflow areas that are full, the
number of unused tracks in the independent overflow
area, the number of references to non-first overflow
records, and (in OS only) the number of records
marked for deletion.

BOS and DOS do not handle deletions in any way.
The usual approach is for the user to tag deleted
records in some way and then omit them when the
file is reorganized.

OS offers a delete option to the user. A record to be
deleted is tagged by writing all I-bits in the first byte
of the logical record. If a tagged record is bumped off
the prime track by a subsequent addition, it is not re­
written in the overflow area. When the file is reorgan­
ized, any tagged records remaining in the prime area
can be omitted from the reorganized file by the user.
When the file is processed sequentially, records tagged
for deletion are not retrieved for processing. When the
file is processed in random sequence, tagged records
are retrieved like any other record and thus should be

I checked for the deletion code by the user's program.

Variable-Length Records
As already noted, BOS, DOS, and OS do not permit
variable-length records.

One approach to variable-length records that does
not require programming system support of variable­
length records is to use trailer records. A trailer record
is an extension of a master record. It is separate from
the master and written as required. Using an open­
item accounts receivable file as an example, the master
records contain information common to all accounts,
and the number of invoices sufficient for most of the
accounts, while the trailer record contains more in­
voices. A master may have as many trailer records
associated with it as are required.

The trailer records may be written immediately after
the associated master record. Since duplicate keys
are not allowed, it is necessary to add a digit or char­
acter to the true key. Thus 123A would be the master
record for account number 123; 123B would be the
first trailer, 123C the second trailer, and so forth.

The trailer records may be written as a separate file.
This approach would be advantageous if many jobs
referenced only the master records. Reference between
a master record and its trailer record can be effected
by having a link field in each record. The master record
would contain the address of the first trailer record,
the first trailer record would contain the address of
the second, and so forth. The trailer file would prob­
ably be written and processed using the basic access
method for directly organized files. The logic of han­
dling the trailer records as a separate file is more com­
plex and requires more programming by the user than
the first approach described above.

Operating System Functions

Queued Access Method

The queued access method for indexed sequential
files is used when reading or updating the records in
key sequence. The entire file may be processed, or
processing may begin at a specified key or record num­
ber. The operating system takes care of all searching

of the indexes and link fields and any required de­
blocking and presents the next sequential logical rec­
ord to the user. OS provides anticipatory buffering and
overlap of input/output with processing; with BOS
and DOS, this can be programmed to a limited extent
by the user.

This access method is also used with OS for creating
the file - both for the initial loading and for reorgani­
zation. With BOS and DOS, the basic access method
is used. The operating system formats all the tracks in
the specified areas, writes the data records, and cre­
ates and writes all the index entries.

Basic Access Method

The basic access method for indexed sequential files
is used when adding records to the file. The operating
system writes the new record, rewrites existing records
as required, rewrites index entries and link fields as
required, and takes care of blocking if required.

This access method is also used when reading or up­
dating records at random. The user supplies the key
of the desired record. The operating system takes care
of all searching of the indexes and link fields, along
with any required deblocking, and either presents the
specified logical record to the user or indicates that
it could not be found.

User Options

Following is a list of the available options already
discussed.

All levels of operating system:
Prime records blocked or unblocked.
Master index if cylinder index exceeds specified

length.
Cylinder or independent overflow area, or both.
Write Verify.
Reorganization statistics.

OS only:
Three levels of master index.
Highest level index held and searched in core.
Delete option.

DOS only:
All or part of the cylinder index can be held and

searched in core.

Chapter 7: Indexed Sequential Organization 39

Exercises
24. With OS, when processing an indexed sequential
file at random, it takes a minimum of ____ seek(s)
and rotation (s) to locate each record. Name
the four situations that will require additional time.

The following questions all apply to an indexed
sequential file with the following characteristics:

Device is the 2311 Disk Storage Drive.
Logical records are 160 bytes long, including a 7-

byte key.
Blocking factor is 5.
File is designed for 10,000 prime records.
One track per cylinder is reserved for overflow.
The area assigned to the file is one contiguous

area.
The operating system used is OS.

25. How many logical records will fit on each prime
track?

26. How many logical records will fit on each overflow
track?
27. Assuming that each track index will require less
than a full track, this leaves the rest of that track
for prime records. In addition, how many full tracks
per cylinder are left for prime records?

28. How many entries will each track index have in
addition to the COCR?

40

29. Using the track capacity formulas given in Chapter
3, calculate the total number of bytes required for
the index entries for each track index.

30. How many prime records (logical records) will fit
on the rest of each track index track?

31. Except for higher-level indexes and the cylinder
overflow area, how many cylinders will the file require?

32. How many entries will the cylinder index have?

33. How many tracks will the cylinder index require?

34. If the cylinder index were to be held in core dur­
ing a job, how many bytes would be required for it?

35. Should a master index be specified for this file?

36. What is the disk time required to read the entire
file sequentially? Assume that the overflow areas are
half full.
37. What is the disk time required to read 5000 of the
logical records in random sequence? Assume that the
cylinder index is serviced by the same access mecha­
nism as the rest of the file and is not to be held in core.
38. What is the disk time required to read 5000 of the
logical records in random sequence if the cylinder in­
dex is serviced by a different access mechanism from
the rest of the file?
39. What is the disk time required to read 5000 of the
logical records in random sequence if the cylinder in­
dex is held and searched in core?

This chapter discusses some commonly used methods
of direct (random) organization, as well as the access
methods provided for files so organized. The user is
not restricted to the methods of organization dis­
cussed here; they are presented as suggestions only.

General Characteristics
With direct organization, there is a definite relation­
ship between the key of a record and its address. This
relationship permits rapid access to any record if the
file is carefully organized. The records will probably
be distributed non sequentially throughout the file. If
so, processing the records in key sequence requires a
preliminary sort or the use of a finder file.

Addressing
With direct organization, the user generally develops
a record address that ranges from zero to some maxi­
mum. Track addresses on most DASD's, however, are
noncontiguous. For example, the address of the last
track on the first cylinder of a 2302 is 0045, while the
first track on the next cylinder is 0100. Furthermore,
the file may start at other than the first track of a
device and it may occupy several nonadjacent areas.

as and DOS allow the user to refer to a relative
track address. If N tracks are allotted to a file, the
user refers to relative track 0 through N-l. lacs con­
verts this to the corresponding absolute track address.
With BaS, the user programs the steps to convert the
relative track address to an absolute track address of
the format shown in Figure 25. Each byte in the ad­
dress is a binary number. With all levels of the oper­
ating system, if the user wants to refer to a particular
record, he must supply either its key or its identifier
(cylinder number, head number, and record number)
as well as the track reference.

Directly Addressed File
With direct addressing, every possible key in the file
converts to a unique address. This makes it possible
to locate any record in the file with one seek and one
read.

Chapter 8: Direct (Random) Organization

Byte 2311 2321

0 0-244 volume 0-244 volume
1 0 ~-9 } 2 0 cell
3 ~-199 }

0-19 subcell
4 cylinder 0-9 strip
5 0 } 0-4 cylinder
6 0-9 head 0-19 head

• Figure 25. Absolute track address

Using the Key as the Address

In order to be able to use the key of a record directly
as its address, the records must be fixed-length and the
keys must be numeric. One computation is required.
Divide the key by the number of records per track;
the quotient equals the relative track address, and
the remainder plus one (record 0 is used as a capacity
record) equals the record number.

This method of direct addressing not only allows
minimum disk time when processing at random, but
is also ideal for sequential processing since the records
are written in key sequence. A possible disadvantage is
that there may be a large amount of unused direct
access storage. A location must be reserved for every
key in the file's range even though many of them are
not used.

Using a Cross-Reference List

With this method, each record in the file is assigned
an address and a cross-reference list of keys and as­
signed addresses is maintained. The list may be a
printed one. Some clerical and keypunch time is re­
quired for each transaction, since the address must be
looked up and included in the input to the job. Con­
trols must be tight, since the list, as well as the file,
must be kept up to date. The list may itself be a file
recorded on a DASD. Although any record can be
located directly when its address is known, time is re­
quired to look up the address in the list. Indexed se­
quential organization is a variation of this method.

Chapter 8: Direct (Random) Organization 41

Indirectly Addressed File
Indirect addressing is generally used when the range
of keys for a file includes such a high percentage of
unused ones that direct addressing is not feasible. For
example, employee numbers range from 0001 to 9999
but only 3000 of the possible 9999 numbers are as­
signed. Indirect addressing is also used for nonnumer­
ic keys.

With indirect addressing, the range of keys for a file
is compressed to the smaller desired range of addresses
by some sort of computation. This technique is called
"randomizing". It inevitably causes "synonyms" - two
or more records whose keys randomize to the same
address. Two objectives must be considered in select­
ing a randomizing technique: (1) every possible key
in the file must randomize to an address in the allotted
range, and (2) the addresses should be distributed
evenly across the range so that there are few syno­
nyms.

A record that is written where it "belongs" (at the
address to which its key randomizes) is called a "home
record". Any other records whose keys randomize to
this address are "overflow records". What to do about
overflow records is discussed later in this chapter, but
the point to be made now is that synonyms should be
kept to a minimum because of the additional time re­
quired to locate overflow records.

A way to minimize synonyms is to allot more space
for the file than is actually required to hold all the
records. The term "packing factor" means the per­
centage of allotted locations that are actually used.
For an indirectly addressed file, an initial packing
factor of 80-85% is suggested. For example, a 10,000-
record file packed 83% would be allotted space for
12,000 records.

A way to minimize overflows is to randomize to track
address rather than to record address. If randomizing
to record address, every synonym causes an overflow.
As shown in Figure 26, 30% of the records are syno­
nyms and 30% are overflows. If randomizing to track
address, there are many synonyms, but no overflow
until a track is full. As shown in Figure 26, 70% of the
records are synonyms (the two A3 records, B2, B4,
two C2 records, and C3), but there are no overflows.
If randomizing is to record number, the commands
to locate a record are Seek, Search Identifier Equal,
Read Data. If randomizing is to track address, the
commands are Seek, Search Key Equal, Read Data.
Both sets of commands take the same amount of time.

42

Track A

IAll
2

A3
IA31

3 4

Track 8

181 182 I
1 2 3

a. Randomizing to record address

IAI IA31A3 I 181 182 I B4 I

4

1 2 3 4 2 3 4

b. Randomizing to track address

Figure 26. Synonyms and overflows

Randomizing Techniques

Track C

C2
C2

I C21C31
2 3 4

I C21 C2 I C2 I C31
1 2 3 4

There are many randomizing techniques. Selecting a
good one for a particular file may require some trial
and error. A suggested goal is no more than 20% syn­
onyms. If randomizing to track address, count only
the synonyms in excess of the number of records per
track.

Division/Remainder Method

It is suggested that this technique be tried first, be­
cause it is a simple one that often gives good results.
The key is divided by a prime number (a number
evenly divisible only by itself and by one) that is
close to the number of addresses allotted to the file.
The remainder is used as the address.

Example 1: Load 8000 200-byte records on a 2311,
randomizing to track address.

a. With 80% packing, 10,000 locations are required.

b. Can load 13 records per track, so 770 tracks
are required.

c. A prime number close to 770 is 769.
d. Divide the key by 769.
e. The remainder (000 to 768) equals the relative

track address.
Example 2: Same as above, but randomizing to

record address.
a. A prime number close to 10,000 is 9973.
b. Divide the key by 9973.
c. Divide the remainder by the number of records

per track (13).

d. The quotient equals the relative track address;
the remainder plus one equals the record num­
ber.

This method can also be used with nonnumeric keys.
Using binary arithmetic will probably give better re­
sults than using decimal arithmetic, since the unique­
ness of the letters and special characters in the key is
retained.

The division/remainder method automatically
achieves the first objective mentioned earlier - that
is, to have all keys convert to addresses within the
allotted range. Whether it achieves the second objec­
tive for a particular file - that is, to have few syno­
nyms - can be determined only by trying it.

Digit Analysis

Since the primary objective of a randomizing tech­
nique is to develop addresses spread evenly across a
range, it may be possible to make use of any existing
evenness in the distribution of the keys.

Figure 27 shows the output of a digit analysis pro­
gram that counted the number of times each digit
appeared in each position of the keys of a particular
file.

If allotting 20,000 locations for the 16,045 records,
the keys must randomize to addresses that range from

TOTAL NUMBER OF RECORDS

DIGIT

1 2 3 4 5

0 16045 1852 5168

1 4408 3147 5638

2 2198 3792 1174 4958

3 576 2231 2724 281

4 1195 2459 1194

5 12076 3155 1267

6 1243

7 1228

8 1227

9 989

Figure 27. Digit analysis table

00000 to 19999. Since positions 7, 8, 9 and 10 of the
key are evenly distributed, they may be used as the
four low-order digits of the address. Of the four posi­
tions chosen as the four low-order digits of the ad­
dress, use one position as the basis of forming the
high-order digit of the address; if that position is odd,
use 1 as the high-order digit of the address; if even,
use zero.

If randomizing to track address, divide the record
address developed above by the number of tracks re­
quired for the 20,000 records. The remainder equals
the relative track address.

Automatic Programmed Address Conversion

This 1401 program (l401 01.4.034) can be used to de­
velop a randomizing technique. The program first
performs a digit analysis of the keys in a file. It then
develops a table of constants based on the counts in
the digit analysis. The table can be written on a direct
access device and used for randomizing by looking
up the constant for each digit in a key, adding them
together, and multiplying the result by a constant
which is the number of locations allotted to the file.

The program also evaluates the results of the ran­
domizing and prints the average number of seeks per

16,045

KEY POSITION

6 7 8 9 10 11

1807 1738 1574 1597 1579 87

2120 1748 1652 1651 1599 235

1745 1743 1587 1569 1604 334

1684 1610 1620 1576 1603 9371

1378 1617 1647 1652 1619 3164

1647 1688 1580 1605 1645 1939

1560 1606 1538 1611 1625 565

1329 1450 1560 1598 1557 253

1415 1411 1630 1618 1622 76

1360 1434 1657 1568 1592 21

Chapter 8: Direct (Random) Organization 43

record and a summary of synonyms which shows the
number of addresses with one record assigned, the
number of addresses with two records assigned, and
so on up to twelve.

Either the digit analysis phase or the evaluation
phase can be used alone as an aid in developing some
other randomizing technique.

Folding

The key is split into two or more parts, which are
added together. The sum, or part of it, is used as a
relative address.

Examples of folding a key of 746298:
746 + 298 = 1044 (split in half)

74 + 62 + 98 = 234 (split in thirds)
769 + 428 = 1197 (alternate digits)

Radix Transformation

The key is transformed to a different radix or base.
Excess digits are discarded, leaving an address of the
required length.

Example of converting a key of 4 2 3 5 6 to radix
11 to produce a four-digit address:

(4 x 114) + (2 x 113) + (3 x 112) + (5 x Ill) +
(6 x 11°) =

58564 + 2662 + 363 + 55 + 6 = 61650
Use 1650 as the relative address.

Evaluation of Results

The selected randomizing technique should be ap­
plied to the entire file of keys and carefully evaluated
before deciding to use it. When evaluating a random­
izing technique, it is not sufficient to calculate the per­
centage of synonyms. The expected average number
of reads (revolutions) per record should also be de­
veloped. For example, if ten keys randomize to ad­
dresses 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, then 20% are synonyms.
Assuming that one read (revolution) is required for
each of the first eight, and two reads for each of the
last two, the average number of reads per record is
1.2. If the keys randomize to addresses 1, 2, 3, 4, 5, 6,
7, 8, 1, 1, however, 20% are synonyms, but if one read
is required for each of the first eight, two for th~ ninth,
and three for the tenth, the average number of reads
per record is 1.3.

The evaluation, then, should be based on the aver­
age number of reads (revolutions) per record. An aver­
age of 1.2 is considered to be good. The final question
may be: "Does this rather rapid access time justify the
additional preinstallation planning and programming
required for a directly organized file?" Another ques­
tion may be whether it justifies the effort involved in
the development of a new randomizing technique and
the subsequent reprogramming that might be neces-

44

sary if the directly organized file were later relocated
on another type of DASD. A directly organized file is
relatively device-dependent, since it implies a specific
relationship between the key of a record and its ad­
dress on a DASD.

Description of a Directly Organized File
With direct organization, records may be fixed-length,
variable-length (OS only), or undefined. Since BOS
and DOS permit undefined records, they, too, can
handle variable-length records.

Records may be formatted with or without keys.
If the file is indirectly addressed and randomization
is to track address, the records should be formatted
with keys for efficiency. If not, each record on the
track must be read to determine whether it is the
desired one.

The records may be blocked or unblocked. If they
are blocked, the user is responsible for all blocking
(assembling a block of logical records before using
the WRITE macro) and deblocking (searching the
block read into core by the READ macro for the de­
sired logical record), because in the access method
for directly organized files the operating system han­
dles physical records rather than logical records. If
the file is indirectly addressed, the records are prob­
ably unblocked. The problems that may occur with
blocked records are discussed later in this chapter.

With most directly organized files, RO of each
track is used as a capacity record. It contains the ad­
dress of the last record written on the track and is
used by the operating system to determine whether a
new record will fit on the track. The capacity records
(which are originally written for a file by a utility pro­
gram in BOS and DOS, and a user-written program
in OS) are updated by the operating system as rec·
ords are added to the file. They do not account for
deletions. Once a track is full, it remains full as far
as the operating system is concerned (until the file is
reorganized), even though the user deletes records.

An indirectly addressed file generally consists of
just one logical area, which may actually be several
nonadjacent physical areas. The location of overflow
records is up to the user, but they are generally put
in unused locations in the main (and only) area.
Overflow records can be put in a separate area if the
user desires. The disadvantage of doing this is that
each overflow record will require an additional seek.
If there is just one area, and if a good randomizing
technique has been selected and the file is not packed
too tight, overflow records are likely to be in the same
cylinder as the home record, thus eliminating the need
for an additional seek.

File Creation, Maintenance, and Processing
As already noted, the user has complete freedom in
deciding where records are to be located in a directly
organized file. The logic and programming are his
responsibility.

When creating or making additions to the file, the
user may specify the location for a record by supply­
ing the track address and identifier, or he may supply
just a track address and let the operating system find a
location for the record. If there is room on the speci­
fied track, the operating system writes the record
(and updates the capacity record for files constructed
with capacity records). If the specified track is full,
OS continues searching on successively higher tracks
until a location is found. This search continues for as
many tracks as the user has specified, to a maximum
of the entire file. If a maximum search is specified and
the end of the file is reached, the search resumes at
the beginning and continues until a location is found
or until the original track is reached. With BOS or
DOS, if the specified track is full, the user must sup­
ply another track address.

When reading or updating the file, the user must
supply a track address and either the identifier or the
key of the desired record. When an identifier is sup­
plied, the operating system reads or writes back that
specific record. When a key is supplied, the operating
system searches for that key and, upon finding it, reads
or writes back the corresponding Data Area. If the key
is not found, the operating system so indicates to the
user. A search by key may be a restricted or an extend­
ed one. On a restricted search, only the track speci­
fied by the user is searched. On an extended search,
OS continues searching on successively higher tracks
for as many tracks as the user has specified; BOS and
DOS continue searching to the end of the cylinder.

With indirect addressing, the logic of creating,
maintaining, and processing the file depends mainly on
the overflow records. The area in which to place
the overflow records has already been discussed. Now
the problem of how to locate them quickly must be
considered.

Two approaches to the handling of overflow records
are discussed in the following sections: chaining and
progressive overflow. They are discussed in order to
point out how the maintenance and processing of a
file depends on the way in which it was created and
the interaction between operating system functions
and the user's programming. They are presented as
suggestions only; other more complex and possibly
more efficient approaches are possible. Both
approaches assume that:

• The records are unblocked.
• The records are formatted with keys.

• Randomization is to track address.
• Overflow records are placed in unused locations in

the main (and only) area.

Chaining Method
One record on each track is used as a chaining rec­

ord to provide a link between the home track and an
overflow track. Overflow records are written on the
next higher available track.

Track Chaining Data Reco~s
Record

A B A1 A2 A3

B D B1 A4 B2

C C1 C2 C3

D D1 B3 A5

Figure 28. Chaining

Figure 28 shows a chained file. The sequence in
which the records were loaded was AI, BI, A2, DI,
CI, A3, C2, A4 (overflow), B2, C3, B3 (overflow), A5
(overflow). The following questions and answers ex­
plain how records in a chained file are located:

Q. If looking for an "A" record, where does the search
begin?

A. On track A. Searches always begin with the home
track.

Q. If an "A" record is not found on track A, what is
the next track searched?

A. Track B. Searches always continue at the track
specified in the chaining record.

Q. If the "A" record is not found on track B, what is
the next track searched?

A. Track D.

Q. If a "C" record is not found on track C, what is the
next track searched?

A. None. The blank chaining record shows that there
are no more "C" records.

Chapter 8: Direct (Random) Organization 45

Creation of the File

The way in which the records are loaded may have a
significant effect on the average number of reads that
it will take to locate them.

The file may be completely loaded in one pass. The
results of this one-pass load and the number of reads
required to subsequently locate each record are shown
in Figure 29. This example and those following show
one record per track for simplicity. The logical results
will be the same with multiple records per track. With
the one-pass load, the record is written on its home
track, if there is room. If the track is full, the record is
written on the next available track, and the chaining
record of the home track is updated. Assume that home

records require one read, first overflows require two
reads (home track and overflow track), second over­
flows require three reads (home track, first overflow
track, second overflow track), etc. Notice that record
C should have been a home record, but an overflow
from track 1 took its place first.

The file may be loaded in two passes. The results
of this are shown in Figure 30. On the first pass, only
home records are loaded. On the second pass, the
overflow records are loaded and the chaining records
updated. Because all home records are written on
their home track, less chaining is required, and the
average number of reads per record has decreased.
The general logic of a two-pass load is shown in Fig­
ure 31.

Key Home Where Chaining Number
Track Loaded Address of Reads

A 1 1 2 1
B 1 2 3 2
C 2 3 4 2
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 9 10 2
I 2 4 - 3
J 7 10 - 3

Average reads per record = 1 .7

Figure 29. One-pass load

Key Home Whe re Loaded Chaining Number
Track Pass 1 Pass 2 Address of Reads

A 1 1 3 1
B 1 - 3 - 2
C 2 2 4 1
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 - 9 10 2
I 2 - 4 - 2
J 7 - 10 - 3

Average reads per record = 1.5

Figure 30. Two-pass load

46

-

,-

PASS 1

RANDOMIZE

KEY TO TRACK
ADDRESS

PASS 2

Restricted search of
home mck only

Operating system notifies
user. Ii YES, record has

been written and capacity

record updated.

Write record in work
are a on disk or tape.

Bypassed records
from pass 1

MOVE OVERFLOW

TRACK ADDRESS

TO CHAINING

RECORD

Figure 31. Logic of a two-pass load

BOS and DOS: If no room found

add 1 to track address

and repeat WRITE

as: Extended search

BOS and DOS: User knows address

as: Address returned to user

Chapter 8: Direct (Random) Organization 47

Additions to the Fil.

The logic of making additions to a chained file is a
combination of pass 1 and pass 2 of the load routines.
The same problem that was illustrated with a one-pass
load will eventually occur: there should be room for
the new record on its home track, but it is already filled
with overflows from other tracks. There is no really
effective, simple solution to this problem. Placing the
new record where it belongs involves a dump and
reload of all affected records, which can be very com­
plicated and time-consuming. For example, try to add
record D2 to the sample file shown in Figure 28 (as­
sume that this is only part of the file and that a loca­
tion is available somewhere). The complexity is due
to the fact that when randomizing to track address, a
track may contain overflows from more than one home
track. A suggested solution is to ignore the problem
for the time being and write the record on the next
higher track on which there is available space. The
situation will be corrected when the file is reorganized.

Deletions from the File

Records to be deleted may be tagged in some way and
omitted when the file is reorganized. If the operating
system is responsible for finding locations for new
records, there is no point in literally deleting records
since the capacity record is not updated to reflect this.

Reorganization of the File

Particularly with a volatile file, a change in the distri­
bution of the keys may adversely affect the results of

RANDOMIZE
KEY TO TRACK
ADDRESS

YES

PROCESS

Restricted search
of one track

$U'PLY Cf'ER-

" >iQ'-..j A TINe SYSTEM

Missing record routine

WTIli OVERFLOW
TRACK ADDRESS

Figure 32. Processing a chained file

48

the randomizing technique and the speed with which
the file can be referenced. Directly organized files may
therefore require frequent reorganizations. The oper­
ating system maintains no statistics as it does with
indexed sequential organization. Therefore the user
should, at least periodically, calculate the average
number of reads per record to ensure that the existing
organization continues to provide the desired degree
of efficiency. Reorganization will be needed less fre­
quently if the user develops more complicated addi­
tion and deletion routines than those that have been
discussed.

As with indexed sequential, there are two ways to
handle reorganization. The file can be written else­
where and then, on a separate run, re-created in the
original area, or it can be reorganized directly into a
different area of direct access storage.

Processing the File

The general logic of processing a chained file is shown
in Figure 32. Note that locating an overflow record
actually requires two additional reads (revolutions)
for each link in the chain: (1) a read of the chaining
record, and (2) a search of the overflow track followed
by a read if the key is found. When evaluating a ran­
domizing technique for a file with chaining, three reads
should be allowed for the first overflow, five for the
second, and so forth when computing the average
reads per record.

The same logic can be used when the file is to be
processed sequentially. The input to this job is a finder

file on any storage medium of all the keys in sequence.
An alternate approach is to sort the file into key se­
quence and then process it using the sequential ac­
cess method.

Progressive Overflow Method
As with chaining, overflow records are written on the
next higher available track. The difference is that there
is no chain from the home track to the overflow track.
The links in the chain are simply consecutive tracks.

Creation of the File

With progressive overflow, a one-pass load produces
the same results as a two-pass load. Some of the rec­
ords may be written in different locations, but the
average number of reads per record is the same.
Figure 33 shows the results of a one-pass load of the
same file used to illustrate the loading of a chained
file. Note that the average number of reads (revolu­
tions) per record is higher than those shown in Fig­
ures 29 and 30 because all tracks between the home
track and the one where an overflow record is located
must be searched. Note that a search without a read
takes place for all tracks except the one on which the
desired record is located. The general logic of a one­
pass load is shown in Figure 34.

Key Home Where Number
Track Loaded of Reads

A 1 1 1
B 1 2 2
C 2 3 2
D 7 7 1
E 5 5 1
F 6 6 1
G 8 8 1
H 7 9 3
I 2 4 3
J 7 10 4

Average reads per record = 1 .9

Figure 33. Progressive overflow

RANOOMIZE

KEY TO
TRACK ADDRESS

If no room found
add 1 to track address
and repeat WRITE

OS: Extended search

Figure 34. Logic of a one-pass load for a progressive overflow
file

Additions to the File

The logic is the same as the load routine.

Deletions from the File

The comments made for the chaining method apply
here also.

Reorganization of the File

The comments made for the chaining method apply
here also.

Processing the File

When processing the file, either of two approaches is
possible: an extended search (Figure 35) or a track­
by-track search (Figure 36). A track-by-track search
takes longer than an extended search to locate overflow
records, since the capacity record is read if the de­
sired record is not found on a track. A track-by-track
search, however, signals a missing record condition
earlier (when the system encounters the first track that
is not full) than an extended search.

Chapter 8: Direct (Random) Organization 49

RANDOMIZE
KEY TO
TRACK ADDRESS

BOS and DOS: Extended search; if not found

by end of cylinder, add 1 to

cy linder portion of address

and repeat READ

as: Extended search of entire file

NO

>----::~ Missing record routine

PROCESS

Figure 35. Processing a progressive overflow file with extended
search

Missing record routiDe

Figure 36. Processing a progressive overflow file with a track­
by-track search

50

Progressive Overflow Compared to Chaining

The chaining method of handling overflows requires
somewhat more complicated load and addition pro­
grams but in some circumstances it may result in a
shorter search for overflow records. If a fairly low
packing factor is used, however, progressive overflows
will usually be located on the track that follows the
home track, and progressive overflow with a track-by­
track search will result in timing equivalent to that
provided by the chaining method described. Progres­
sive overflow with extended search provides the fast­
est timing. Only when the packing factor approaches
100% will the time required for progressive overflow
increase significantly.

Loading in key sequence:

Key Home Where Number Frequency of
Track Loaded of Reads Reference

A 1 1 1 2 • .5%
B 1 2 2 2.SOIO
C 2 3 2 2.SOIO
D 7 7 1 2.SOIO
E .5 .5 1 2.SOIO
F 6 6 1 2.SOIO
G 8 8 1 2 • .5%
H 7 9 3 2.SOIO
I 2 4 3 40%
J 7 10 4 40%

Average reads per record = 3.1

Loading in activity sequence:

Key Home Where Number Frequency of
Track Loaded of Reads Reference

I 2 2 1 40%
J 7 7 1 40%
A 1 1 1 2.SO/o
B 1 3 3 2.SO/o
C 2 4 3 2.SOIO
D 7 8 2 2.SO/o
E 5 .5 1 2.SOIO
F 6 6 1 2.SOIO
G 8 9 2 2. SOlO
H 7 10 4 2.5%

Average reads per record = 1.225

Figure 37. Effect of loading sequence on timing

Activity Loading
With an indirectly addressed file, the sequence in
which the records are loaded may have a significant
effect on the time to locate records, regardless of how
overflows are handled. The average number of reads
per record depends on the frequency with which
each record is processed as well as on the number of
reads required to locate it. Figure 37 shows what a
drastic difference the method of loading makes when
20% of the records (I and J) account for 80% of the
activity. The example uses progressive overflow.

If uneven distribution of activity is a characteristic
of the file, the most active records should be loaded
first, so that they have the greatest probability of being

Reads Times
Frequency

.02.5

.0.50

.050

.02.5

.02.5

.02.5

.02.5

.07.5
1.200
1.600

Reads Times
Frequency

.400

.400

.02.5

.07.5

.075

.050

.02.5

.02.5

.050

.100

Chapter 8: Direct (Random) Organization 51

home records. If activity statistics are not available
before installation of the system, they can be accumu­
lated once the system is installed. Activity statistics
should continue to be accumulated, since the distribu­
tion of activity may change seasonally or over another
time period. The file can then be sorted into the cur­
rent activity sequence as part of each reorganization.

Blocked Records
Although blocking records is advantageous as far as
direct access storage utilization is concerned, it may
have an adverse effect on timing when direct organi­
zation is used. Moreover, as already noted, the user
is responsible for all blocking and deblocking routines.

Directly Addressed File

Blocking presents no problems if direct addressing is
used. It simply requires a different computation of the
address of a record:

1. Divide the key by the number of logical records
per track. The quotient equals the relative track
address.

2. Divide the remainder from step 1 by the number
df records per block. The quotient plus one equals
the identifier (record number of the block). The
remainder equals the position of the logical rec­
ord within the block which can be used in the
blocking and deblocking routines.

A point to remember is that read and write file com­
mands transfer entire Data Areas. Therefore, the load
and addition programs would have to be updating
operations - that is, reading and then writing back.
For example, when adding a record to the file, an
entire block must be written. If the user simply set
up an output area in core storage, moved the new rec­
ord to its proper location, and issued the WRITE
macro, any other records already in the block would
be destroyed. Instead, the existing block must be read,
the new record moved to its proper location, and the
block rewritten.

Indirectly Addressed File

The problem here is that there is no logical key to a
block of indirectly addressed records. Therefore, the
points already discussed will have to be modified as
follows.

Records are formatted without keys. Randomization
is to record address (actually block address) as shown
in the second example under "Division/Remainder
Method" in this chapter. The prime number to be used
is one close to the number of blocks allotted for the
file. In step 3, divide by the number of blocks per
track.

When loading the file or making additions to it, the

52

operating system cannot find a location for a record
because it has no way of knowing whether the speci­
fied block is full. The user has to read the home block
and search it in core to see whether it is full. If it is
not, the new record is moved in and the block rewrit­
ten. If it is full, the next sequential block (progressive
overflow) or the next block in the chain (chaining)
is read and the search continued until a location is
f(,lUnd. Note that if the chaining method is used, the
linkage is between blocks, not between tracks.

When processing the file, the user would have to
read block after block and search them in core until
the desired record was located.

If enough core is available so that the entire track
can be handled as one block, the timing will be about
the same as for an unblocked file. If there is more than
one block per track, it will take longer to locate rec­
ords - for two reasons: (1) since randomizing is to
a smaller "bucket", there will probably be a higher
percentage of overflows, and (2) the search itself will
take longer because approximately one revolution per
block, rather than one revolution per track, is required.

If the primary reason for using direct organization is
to minimize the time required to locate records, the
effect of blocking on timing should be carefully evalu­
ated.

Operating System Functions
For direct organization only a basic access method is
provided. The operating system does not provide au­
tomatic buffering and overlap of input/output with
scheduling. Macros are provided, however, so that the
user can program these functions if he knows in ad­
vance which record he will want next. This access
method is used for writing new records and for read­
ing and updating existing records as already discussed.
In OS, some directly organized files can be created
with the basic access method for sequentially organ­
ized files.

User Options

Following is a list of the available options that have
already been discussed.

All levels of operating system:
Records fixed or undefined.
Records formatted with or without keys.
Restricted or extended search when processing.
Write Verify.

OS only:
Records fixed, variable, or undefined.
Restricted or extended search when writing new

records.
Record Overflow feature, for fixed-length records

only.

Exercises
The following questions apply to a file with the fol­
lowing characteristics:

Device is the 2311 Disk Storage Drive.
Logical records are 160 bytes long, including a 7-

byte key.
The records are unblocked and formatted with keys.
File is designed for 10,000 records.
The packing factor is 85%.
The records are indirectly addressed.
Progressive overflow with extended search will be

used.

40. How many cylinders will be required for the file?

41. What is the disk time required to read the entire
file in key sequence? Assume that a finder file is
used and that it takes an average of one seek and
1.2 reads to locate each record.
42. What is the disk time required to read 5000 of the
records in random sequence?

Chapter 8: Direct (Random) Organization 53

Chapter 9: System Design Considerations

This chapter discusses some factors to be considered
when designing a system using direct access storage
devices.

Controls are established and used to ensure accuracy
throughout data processing operations.

The controls established for direct access storage
operations are basically the same as for any system;
the difference lies in the manner in which they are
applied. With random processing, new data is entered
to update an old master record; the old record is de­
stroyed or erased when the new record replaces it in
the file. This updating process may occur once or sev­
eral thousand different times a day. Because the master
record is continually updated, it is more difficult to
establish the status of a record at a given time in the
past, select the transactions that affected it (which are
in random sequence), provide the correct output
(which may have related transactions), and maintain
control so that all records are still in balance and can
be checked. For these reasons, the controls that will
keep any type of error from going through the system
will certainly increase productive time.

Data Validation at Initial Input
The largest single checking problem exists in the vali­
dation of input data at the time it initially enters the
system. At this time, the data is on cards, or in the
form of card images on magnetic tape, or on paper
tape. The entire record should be checked, and any
record which cannot be processed by all subsequent
programs should be rejected.

Programmed validation checks fall into four cate­
gories: character checking, field checking, batch or
level checking, and control field checking. Since all
this validation represents an extensive amount of pro­
gramming, it probably will be desirable to have a
separate program for input editing. In such a case, the
input data is not actually processed to update the file
records until editing is completed.

Several techniques are discussed in this section.

Character Checking

The checking of each character is usualJy done by ex­
amining the characters as a group or field.

Test for Blanks. An indication must be made as to
which fields must be blank. If the field requires blanks,
a constant of the proper number of blanks is com-

54

pared against the field, and a test made for an equal
condition. An unequal comparison indicates an error
condition.

There is a case where, even though certain positions
do not in themselves need to be checked for blanks, it
may be necessary to perform the check to show up a
keypunch error in an adjacent position. For instance,
if column 25 is not used, but column 26 can be a blank
or contain a 1, then a 1 in column 25 would indicate
a keypunch error and, therefore, column 25 should be
checked for a blank.

In some cases, because of a keypunch procedure, a
field can contain either blanks or zeros. In this case a
test for blanks or zeros is made. Usually it is desirable
to replace blanks with zeros. When possible, fields
should be punched with zeros rather than left blank.

Test for Sign. This type of check is made to ensure
that the proper algebraic sign is present for the type
of transaction involved.

Test for Numeric. A numeric field is tested to ensure
against having interspersed blanks and/or extraneous
zone bits. Blanks are replaced by zeros. If the numeric
field may not contain zone bits, zones are stripped
from the field by the appropriate instructions.

Zone bits over characters that are supposed to be
strictly numeric generally indicate that the numeric
portion is also a probable error. For instance, if zone
bits that are the equivalent of an 11 or X punch are
present over a digit 1, it cannot be assumed that 1 is
the correct numeric digit, since both a J and a 4 are
on the same key of the card punch. Therefore, the in­
tended digit may very well be a 4 and not a 1. If this
is the case, the incorrect numeric digit might be caught
on the hash or control total check.

Test for Alphabetic. Normally, it is not serious if
alphabetic information is omitted, since the phrase "No
Description" can be inserted in the record and a mes­
sage put out to correct the record later. If, however,
this information is vital to the application, such as the
name on a payroll check, an error should be signaled.

Field Checking

These checks are concerned with the contents of fields
within records.

Sequence Check. A sequence check is performed if
incoming data records must be sequenced for further
processing. If applicable, this type of check can be
expanded to include a check on multiple records mak­
ing up one transaction. For example, if three records

are necessary to complete a transaction, the program
should check to determine whether they are all there,
in order. Further discussion of this check is included
under "Completeness Check". A check for duplicate
records may be included if it is necessary.

Reasonableness Check. A reasonableness check is a
programmed judgment on data to determine whether
it is normal. An example is scanning sales for unusual
quantities or amounts such as a sale of 50 mink coats,
or a $1000 charge from a cosmetics department. An­
other possible check would be testing a discount per­
centage to see that it does not exceed 15%. Then again,
the check may be more complex and require first that
an extrapolation of previous data be made, and then
that a test be made to ensure that the new data does
not vary by more than a given percentage from the
computed expectation.

These examples are obvious, but in practice it may
be difficult to determine correct limits on reasonable­
ness; the best solution is to experiment. A constant can
be set up for each limit; then as experience is gained
or as the situation changes, the appropriate constant
can be changed to reflect the new test.

Sometimes data will be entered which is known to
be exceptional. In order to process this type of data,
the program must include provisions for omitting cer­
tain tests or negating their results.

Consistency Check. A check for consistency means
that two or more pieces of data are considered in rela­
tion to each other. For example, the classification and
credit rating of a customer may indicate that he is eli­
gible for discounts on merchandise up to a certain per­
centage, that his total order may not exceed a specified
dollar value, and that he must pay for merchandise on
a COD basis. An order from this customer must be
checked against these three requirements to ensure
that it is consistent with specified credit terms.

Range Check. A range check is usually applied to a
code in order to verify that it falls within a given set
of characters or numbers.

Special care must be taken if alphabetic, signed and
unsigned numeric, and special characters fall within
the standard collating sequence of this range. In this
case the collating sequence of all possible good and
error combinations must be considered. Tables can be
used effectively in many range checks.

Limit Check. A limit check places either upper or
lower quantitative limits on a field. For example, net
pay on a payroll check may be limited to $250; or a
total order to be delivered must amount to a minimum
of $10 to avoid a delivery charge.

Limits may also be set according to a percentage
of a previously used figure. For instance, in updating
a master product file on prices, a check can be made

that the new price is 10% plus or minus the old price.
Checking That a Code Exists. It is often necessary

to verify that a code is valid for a program and does
exist. Tables are used for this purpose. The size of the
table depends upon the number of valid codes against
which a check is made. Various programming tech­
niques are used to search the table for the code and
thus determine its existence or nonexistence.

It is possible that a code shown to be nonexistent
is a new addition to the valid list, and one that will
be included in the future. \\Then tables are originally
set up, therefore, some memory space should be re­
served for expansion.

Completeness Check. A completeness check verifies
that no fields are missing and that no part of the record
has been skipped in sequence. In discussion of checks
thus far, a one-card record has been assumed. Since
each field was checked, a completeness check was
implied. The new consideration here is for multiple­
card records that constitute a single transaction.

If all cards in the record are present and in se­
quence, the program continues making the remaining
checks. If an error in number is found in the group of
cards making up the transaction, the entire group is
rejected.

The group sequence check depends upon how many
of the sequenced records appear in memory at one
time. If one record at a time comes in, and there is
an out-of-sequence condition, the entire batch is re­
jected. However, if several cards, say three or four,
are in memory at the same time, and they are out of
sequence within the group, this condition can be pro­
gram-corrected by selecting the coded records in se­
quence.

Date Check. A date check on incoming records is
done primarily to ensure that the record date is ac­
ceptable.

Date is carried on records in various formats. The
usual ones are two digits for month, day and year, as
in 12 31 66, or a three-character representation of
month, as in OCT 12 66. A one-position code for
month can be used, such as 1-9 for January to Septem­
ber, and 0, -, + for October, November and Decem­
ber. Day can be compressed from the two digits re­
quired for 01-31 to one position by using alphabetic
characters A-Z plus 0-4. Year can be carried as either
one or two positions - that is, 66, 67, or 6, 7.

Another more concise method of carrying date is
to number the working days. This number can start
with the first working day the system is operative and
continue indefinitely, or it can restart each year, in
which case it would contain a digit designating year.

The checks made on date verify that month falls
between 01 and 12, day between 01 and 31, and year
according to actual year.

Chapter 9: System Design Considerations 55

In addition, limits are checked for dates in the fu­
ture or in the past. In order to do this, a decision is
made as to how far in the future a record may be
dated, or how late the record may be on entering the
system. An arbitrary length of time may be used, such
as five days, or six months, in either direction. If these
limits are exceeded, a message is put out to signal an
investigation.

Records with old dates can be reentries to the pro­
gram and should be distinguished from records that
might be rejected as too late.

Self-Checking Number. A self-checking number is
one that has a precalculated digit appended to the
basic number for the purpose of catching keypunch or
transmission errors. Any size number can be checked.
For instance, a five-digit code with the self-checking
digit would be carried as a six-position code. Normal­
ly, the self-checking digit is used with identification
codes, such as part number, customer number, or em­
ployee number.

There are two techniques for calculating a self­
checking digit: the modulus 10 and modulus 11 meth­
ods. In both methods the digit is originated by a spe­
cial device on the IBM 24 Card Punch, 26 Printing
Card Punch, or 29 Card Punch, or by an initial calcu­
lation operation.

• Modulus 10 Method
The modulus 10 method, which is completely de­
scribed in Self-Checking Number Feature (G24-
1057), is as follows:

1. The units position and every alternate posi­
tion of the basic code number are multiplied by 2.

2. The digits in the product and the digits in
the basic code number not multiplied by 2 are
crossfooted.

3. The crossfooted total is subtracted from the
next-higher number ending in zero.

4. The difference is the check digit.
Example:

Basic code number: 6 1 2 4 8
Units and every alternate position
of basic code number:
Multiply by 2:

6 2 8
x2

Product: 1 2 5 6
Digits not multiplied by 2: 1 4
Cross-add: 1+2+1+5+4+6=19
Next-higher number ending in zero: 20
Subtract crossfooted total: -19
Check digit: 1
Self-checking number: 6 1 2 4 8 1

Other examples:
Basic code number Self-checking number
-~45::-:6:-::2-=-6------+------'456269

30759 307595
73074 730747

56

• Modulus 11 Method
The modulus 11 method, which is covered in
Self-Checking Number Feature, Modulus 11, and
Its Associated Self-Checking-Number Generator,

Modulus 11 (G24-1022), is as follows: Each digit
position of any basic number is assigned a
"weight" (checking factor). These factors are 2,
3, 4, 5, 6, 7, 2, 3, 4, 5, ... , starting with the units
position of the number and progressing toward
the high-order digit. Any size field may be con­
verted into a self-checking number.

1. Write the number, as illustrated below, leav­
ing space between the digits.

2. Below each digit, starting at the right and
working left, place the corresponding checking
("weighting") factor.

3. Multiply each digit by its checking factor
and add the products.

4. Since this is a modulus 11 system, divide the
sum of the products by 11, and subtract the re­
mainder from 11.

5. The result is the check digit.

Example:
Basic number: 9 4 3 4 5 7 8 4 2
From right to
left, the check-
ing factors: 4 3 2 7 6 5 4 3 2
Mutiply
and add
the products: 36+12+ 6+28+30+35+32+12+ 4=195
Divide total by 11: 195-;.-11 = 17, remainder 8
Subtract: 11-8 = 3 (the check digit)
Self-checking number: 9434578423

The self-checking digit is used to verify the cor­
rectness of a code by recalculating the check digit
and comparing the result with the digit in the rec­
ord. An equal condition signals that the code is
correct.

This type of check catches about 97% of trans­
position and substitution errors, which are the
most common type of keypunch and clerical er­
rors.

The fact that the check digit is the same on
recalculation does not mean that the code does
in fact exist as a valid code, but only that the
combination of digits in the code field is correct.
For instance, it is possible for an employee num­
ber to check out correctly, but for that employee
to be no longer on the payroll.

Borderline Tests. There will be cases when the data
in a record just passes the acceptance test - that is,
when a particular field is borderline but does not in-

-

-.

validate the record. If, however, several fields in the
record are borderline cases, their cumulative effect
may cause the record to be unacceptable. This situa­
tion should be considered and such records put out for
investigation.

Methods for Processing Records Containing Field
Errors. In some types of applications it is possible to
process records even though they contain erroneous
data. Some techniques for dealing with such condi­
tions are:

• Use of Approximations. It is often possible, when
data is either omitted, unavailable or unreasonable,
to use an approximate figure and process the record.
A common example of this technique is the use of
a minimum charge on utility bills. If a meter cannot
be read for a certain billing date, either a standard
minimum billing figure is used, or a figure is com­
puted on the basis of average past usage. The rec­
ord can then be completely processed.

In some circumstances a special listing must be
kept of records that use approximations, and the
necessary follow-up must be maintained to replace
the approximations with actual figures when they
become available. In other situations no special rec­
ord is necessary since the condition will be self-cor­
recting. Such is the case for utility minimum charges.

Another use of approximations occurs when cer­
tain information is not presently available and a
dummy number is used to process the record. For
instance, an order received from a new customer
who has not yet been assigned a customer number
could be processed by using a constant customer
number and by putting out a message for follow-up.
In cases such as this, a fixed constant is used which
is recognizable as an unreal code, quantity, or
amount.
• Invalidating Part of a Record. In order to con­
tinue processing automatically under all conditions,
the technique of invalidating or disabling part of a
record may be employed. This means that a signifi­
cant code is inserted in the record to prevent proc­
essing of a portion of the input data. Follow-up
would, of course, be necessary.

Another use of this technique is in the updating of
a master file. It is possible to include new data in
the master which is not valid until a certain date.
Before the conversion date it is coded as invalid,
and at the proper date it is made available to the
program.
• Unscrambling. Programs to unscramble data are
used in many instances. Unscrambling means re­
arranging the data by character or digit. This tech­
nique can be used in relation to a multicharacter
code or an entire record including the quantitative
data.

The unscrambling technique is generally used on
data that has originated from paper tape or some
other data transmission medium. In the case of
paper tape, it is possible that an operator may have
put the tape on backwards when converting to mag­
netic tape, so that all records are reversed.

The procedure for unscrambling is to read the rec­
ord in the usual manner and check it. If it is in error,
the fields are then checked backwards - that is, from
right to left; if still in error, the record is offset one
position to the left and checked; if still in error, it
is offset one position to the right and checked; and
so on. This type of check has innumerable combi­
nations that can be tried. The most successful re­
arrangements result from experiment.

Batch or Level Checking

A batch or level is a subgroup of a logical file of in­
formation. Input data is batched for the purpose of
balancing small groups of data to control totals. If an
error is discovered, the erroneous batch can be re­
jected without the loss of the entire run. Also, the error
can be located more quickly and easily in a small sec­
tion of a file.

A batch may be made up of groups of records hav­
ing a common identity, such as department or branch,
or it may be made up of a specified number of rec­
ords, say 500.

The type of batch is generally based on the man­
ner in which the data arrives at the data processing
department. If it arrives by department, or location,
these would seem to be logical groups despite volume.
If, however, data is to be batched in size groupings,
the only consideration is convenience in error track­
down. The smaller the batch, the easier it is to find
the errors, but since more totals are required, addi­
tional clerical and machine time is necessary.

Each batch of input data includes as a first or last
record a batch control card, which is created either
in the originating department or by a control group
within the data processing department. The batch con­
trol record contains batch number, date, originating
source, record count, hash totals of identifying infor­
mation, and control totals of quantities and amounts.

As the batch is processed through the edit program,
totals of the detail records are accumulated for both
accepted and rejected records. If all control totals bal­
ance, the batch is accepted; if any do not balance, it
is rejected. Complete lists of rejected batches are main­
tained for follow-up purposes.

The detail records mayor may not contain all the
information in the batch control card. If the informa­
tion is present in the detail record, it is checked;
otherwise, only record count and control totals checks
are made.

Chapter 9: System Design Considerations 57

If the batch balances, but certain records in it are
rejected on other tests, such as reasonableness, the
batch may be (1) rejected until the error record is
corrected, or (2) reentered with new batch control
totals from which the error records have been deleted.

Batch Number Check. A check is made that the
batch number in the control card matches the batch
number in all the detail records. If any record in the
group does not contain the same batch number, it is
investigated. If the batch is rejected for this reason,
and if the totals for the batch balance, the error is
probably a keypunch error in batch number and can
be easily corrected.

Batch Record Count. A count is made of all detail
records in each batch. This count must balance to the
record count in the batch card. An out-of-balance con­
dition indicates missing, additional, or duplicate rec­
ords that must be checked.

A simultaneous error in record count and in batch
number would indicate that an additional record has
been picked up in the batch and is probably a record
that is missing from another batch.

Batch Control Totals. All quantitative fields in the
detail records are accumulated and checked against
the batch totals. Any error causes the batch to be re­
jected. This is the classic check that has always been
made on data as it is processed through any data
processing system. Except for compensating errors, a
balance here is proof that the batch is complete and
correct on quantity and amount fields.

Batch Hash Totals. A hash total is an accumulation
of digits generally taken from an identification or con­
trol field. This type of total is taken solely for checking
purposes, since the actual total has no quantitative
significance.

Hash totals enable the user to positively identify
an added or missing record. For instance, if a record
in the amount of $25 were missing from one batch
and appeared in another batch where there was also
one for $25, it would be difficult to determine on the
basis of the amount field which of the two was out
of place. However, if the control fields were different,
the out-of-place record could be easily identified.

Control Field Checking

The control field check is not normally made during
the edit program. Rather, it is included in the first
processing run against the master file. At that time,
each detail record is compared with the master on
the appropriate control field. Nonmatches must be
investigated further - either in the program or manu­
ally. The program can, for example, interrogate a code
to determine whether the nonmatch is a new product
that has not yet been added to the master file. If the
nonmatch cannot be resolved by the program, it is

58

put out as an error for follow-up.
Sometimes the job is such that the check must be

made during the edit run. If this is the case, it can be
done in several ways. A short master record contain­
ing only the code numbers can be used for comparison.
Or, if the number of codes is small enough, a table
can be created in memory and a table lookup done on
the code.

Once an error has been found during the edit pro­
gram, its cause must be determined and the error cor­
rected. The usual procedure for correction is to route
the listing of error records and related messages to
someone who investigates each record and makes the
proper correction. If the errors have resulted from a
new application just put on the computer, or if the
data has originated at a remote location, the process
of tracking down the error is more involved. With a
new application, it may be necessary for several ex­
perienced people to review the error records.

After the cause of each error has been found and
the correction made, the record is reentered into the
edit program. The rules for reentries may be different
from those for original data. For example, reentered
records may be 10 to 30 days late, whereas current
records may be a maximum of 5 days late.

In handling errors:
1. Overall control of good data plus error data must

be maintained.
2. Reconstruction of the error record from the source

data must be possible.
3. The rules on resubmission of corrected records

must be clearly defined.
4. Overall controls must be reestablished after cor­

rection runs.

Often, input data is edited at more frequent inter­
vals than it is processed. For instance, in a weekly
processing run, the input data might be edited daily,
while in a daily run of, say, invoices, the input order
data might be edited in several batches throughout the
day. Thus peak loads on corrections are avoided.

Systems or Internal Controls
An external control on all records is established as
close to the originating source as possible. This means
that as soon as the data is keypunched or received over
transmission media, control totals are established
which balance back to accompanying group totals.

A record is also kept as to exactly what data has
been received. This may be a manually filled-in form
referencing the source department and the number
of records, or it may be as elaborate as a machine
listing of all incoming records. The point is that the
records must be controlled from the moment they

-

come in the door of the data processing department
until processing is completed.

The internal controls to be discussed here are
directly related to the external controls and must tie
back to them.

Systems or internal controls include the checks
incorporated into a programmed system, exclusive of
the validation checks on input data, for controlling
the number of records being processed and the cor­
rectness of the machine calculations. Even though in­
put data is acceptable on range and limit checks, cal­
culated results using these factors may be outside an
accepted limit and should also be checked. For in­
stance, factors A and B may satisfy the validation tests
made, but A times B, or A divided by B, may be out
of range.

Control Totals. Control totals can be taken on
amount fields, or quantity fields of like sizes, such as
units, dozens, or cases. These totals are added alge­
braically.

Batch control totals on input data have already been
discussed. In addition, overall control totals are used
which include totals by various groupings, such as
department, branch, or total file. These totals gener­
ally are of interest in themselves, since they represent
specific control groups.

A balance on all control totals can usually be in­
terpreted as proof that a file is complete and has been
processed correctly.

A programming consideration worth noting in re­
gard to control totals concerns the memory space re­
served for these totals. It is wise to reserve enough
memory positions to accommodate totals for two to
four times the normal volume of records going through
each program. This is because two days' work may be
put through the machine at one time, or volume may
suddenly spurt as a result of a current advertising
campaign.

Hash Totals. Hash totals have also been mentioned
under batch hash totals. A hash total is the sum of the
digits of an identifying field. On some machines, hash
totals may be taken of the numeric part of alphabetic
fields. A hash total is unlike a control total in that the
sign is ignored and carries are dropped.

Quantity totals may also be hash totals if all quantity
sizes are added together - for instance, units, dozens,
and packages.

Hash totals are used for checking purposes only,
and are of no interest in themselves.

Cross/ooting Checks. Crossfooting, in the checking
sense, means cross-adding or subtracting two or more
fields and zero-balancing the result against the original
result. This is an effective control when total debits,

total credits, and a balance-forward amount are main­
tained in each account; total debits and total credits
can be crossfooted to prove that the difference equals
the balance forward.

For discussion purposes, assume an accounts re­
ceivable application. In posting to accounts in disk
storage, the stored program must select for each trans­
action the proper account record, read it into a working
storage area, update it there, and, if posting is correct,
write it back in the same disk storage location. In the
final phase of posting, the old account record is re­
placed by the updated one.

The accuracy of posting should be proved between
the last two steps; this is the last point at which the
old account record is still available. For proof, total
debits and total credits are crossfooted and the net re­
sult compared with the new balance-forward. amount;
they should be equal. If they are not, the last step is
skipped and the updated record is not returned to
disk storage until the error is corrected.

Crossfoot checking can also be used on a recalcu­
late basis by reversing the additions and subtractions.
For example, the original calculation would be:

+A+B+C+D+E = F
and the recalculate:

-A-B-C-D-E+F = 0

Balancing Partially Processed Data Files. When
random transactions or batches are processed against
records in disk storage, only the active records are
consulted. Since the inactive records are not read, the
balancing procedure must depend upon the assump­
tion that they are correct. This assumption is proved
by trial-balancing all accounts on some cyclic basis
that is frequent enough to enable corrective action.

The remaining control problem rests upon assur­
ance that the active records are processed correctly
and that a record which is in error can be detected
within the system.

The means for detecting errors with this technique
is provided by establishing balance fields in addition
to detailed item fields. For accounts receivable records,
a total-amount-due field is established which is the
crossfoot total of the gross amounts of the individual
(invoice) items.

All processing of those records includes crossfooting
the record before and after processing to ensure that
the record was and remains in a balanced condition.
A total of all balances of the affected records "before"
is reconciled with the changes and the total of the
balances "after". When this is done, the total of the
changes may be posted to the total control records,
which will then reflect the correct total of all record
balances. An example is shown below.

Chapter 9: System Design Considerations 59

Accounts before processing:
Item Item Balance

Account A 50.00 00.00 50.00
Account D 75.00 75.00 150.00
Total old balance of all accounts 10,000.00

Two cash receipts to be processed:
Transaction A for 40.00
Transaction B for 75.00

Accounts after processing:
Item Item Balance

Account A 10.00 00.00 10.00
Account D 00.00 75.00 75.00
Total balance of affected accounts "before " 200.00
Total transactions 115.00
Total balance of affected accounts "after" 85.00

Since 200.00-115.00=85.00, the procedure checks, and
the new control balance of all accounts is reduced
from $10,000.00 to $9,885.00.

Such a balancing procedure is no different from
that used in manual bookkeeping systems where the
total main file is split into daily cycles and a total con­
trol covers all cycles.

If subledger controls are used for controlling smaller
groups of records, they should be reconciled to the
grand total before and after processing runs or at
periodic intervals during processing. Provision must be
made for restoring changed subledger totals to the last
previous reconciled figures, but otherwise changes are
made as posting is accomplished. The general philoso­
phy is that if the changes balance in detail, they may
be used in the total subledger. If the subledger totals
balance similarly, the change may be posted to the
grand total.

If they do not balance, the detail records are trial­
balanced to the subledger and the subledger to the
grand total.

It is noted that if an account which is inactive is
out of balance, it will go undetected. However, the
procedure outlined guarantees that the last time it
was legitimately processed, the record was correct, and
that the next time it is processed or trial-balanced,
the error will be detected.

Multiplication Checking. Multiplication checking
can be done in a variety of ways, depending upon the
format of the record.

One of the simplest methods of multiplication veri­
fication is to reextend with the multiplier and multi­
plicand reversed, and zero-balance the products. An­
other method is to obtain one of the factors from a
different source, such as a table lookup based upon
an identification code, and zero-balance the recalcu­
lation with the original product. Still another method
is to total the quantities to be multiplied by the same
multiplicand and then do one multiplication per multi­
plicand instead of several. The product would then be
zero-balanced with the total of the individual products.

60

If the machine time required for multiplication
checking is excessive, a check on every hundredth or
five-hundredth record may be considered. This check,
however, will catch only a consistent machine failure.

Rounding Considerations. Error conditions can be
incorrectly signaled as a result of attempting to balance
the multiplication of a total against the sum of its
parts which have been individually extended and half­
adjusted.

In order to avoid error signals on such conditions,
it is possible to use a group half-adjustment in the
individual extensions. This method requires that an
artificial five be introduced only once per group cal­
culation (vs. each calculation) and that the adjustment
position be cumulative until the end of the group. The
following example illustrates this case:

,I Decimal
1 Time Individually Actual Accumulated Accumulated
(Hours) Rate Adjusted Calculation Decimals Adjustment

half adj. /0:5
....)(I

2.5 1.25 3.13 3.125~::_ 1:0 3.13
I

2.5 1.25 3.13 3.125 0:5 3.12
I

2.5 1.25 3.13 3.125 1:0 3.13
I

0.5 1.25 .63 0.625 15 0.62
I

Total 8.0 10.02 10.000 15 10.00
Daily 8.0 1.25 10.00 10.000

In this example, the individually adjusted extensions
of hours times rate add up to .02 more than the group
total extension. It can be readily seen that this type
of discrepancy could grow substantially if perpetuated
through an entire program.

Another method of dealing with the rounding situa­
tion is to use a limit on the amount of tolerable error
and consider the amount as correct if under the limit.
If this method is used, it is preferable that the limit be
tested on as small a group of calculations as possible,
since it is very difficult to determine whether an error
of a fairly large amount is due to thousands of round­
ing errors or is in fact one large error.

Division Checking. Division is usually checked by
multiplication. This is done by multiplying the quo­
tient by the divisor, adding the remainder, and zero­
balancing the result against the original dividend. For
example, if the original calculation is:

A+B=Q+R
the verification is:

(QxB) +R-A=O

The remainder situation may be handled by the
use of formulas that test for successive plus or minus
conditions. Examples of such formulas are available
in the 602 and 604 reference manuals.

Another possibility for division checking is a multi­
plication of the dividend by the reciprocal of the

--

divisor and a comparison of this result with the origi­
nal quotient.

Negative Amount Considerations. Control totals
have been defined as being algebraic additions. This
recognizes the fact the credit items occur and also that
reversing entries are possible for every plus entry.

Because of these negative entries, it is possible to
develop totals that bear a strange relationship to each
other. For example, consider the case of two sales
transactions, one of which paid a commission to a
salesman while the other, a credit item, did not:

Net Sales Commission

+100.00 +6.00
- 500.00

-400.00 +6.00

If these two transactions were the only two proc­
essed for this salesman on this day, it would appear
that a commission was paid for credit business. Also,
if a reasonableness check were applied to the totals,
for instance to determine that the commission per­
centage ranged from 4% to 10%, an error condition
would be Signaled.

Unexpected results like the above do occur when
negative numbers are being processed. Consideration
should be given to such possibilities, and procedures
should be developed to handle them properly.

Processing Nonstandard Input and Output. Process­
ing programs that are run after the edit program do
not include editing as such. However, they do incor­
porate a similar principle, in that they must provide
a programming path for nonstandard conditions. For
instance, a program may be set up to expect three
types of input per transaction. If one type is missing,
it may be desirable to have the program skip that
transaction, continue processing other transactions,
and send out a message about the transaction and the
missing data.

The point is that programs should be written to
continue to run under as many conditions as possible.
Error messages would, of course, be put out on every
error or nonstandard operation. In programming, one
should never decide that a condition will not occur.
Experience shows that if it can happen, it will happen.

Record Coding. File data destruction, when it does
occur, is often the result of programming error. Some
of the causes have been (1) attempting to run a pro­
gram before thorough testing, (2) entering incorrect
beginning or ending addresses for sequential file
changes, and (3) blanking records. To avoid having
such incidents occur unnecessarily, a code can be
placed in each data record and matched against a con-

stant associated with the proper program. This estab­
lishes the fact that the program has the right to work
with the given record. Although not foolproof, it will
prevent a large percentage of accidental program
errors. It requires few instructions and little storage
space.

Messages. Messages are usually associated with error
conditions, but they are also used with control totals.
The principal rule in regard to messages is that they
should be clear, complete, and concise.

An error message should identify the error record,
specify what is wrong with it, and use as few memory
positions as possible. For example, a message such as:

INVOICE 12345 AMOUNT OVER LIMIT

is not sufficient to describe the actual case. A better
message would be:

INVOICE 12345 PROD 6789 AMT OVER $500.

QUANTITY 25 PRICE $100.00 AMT $2500.00

This message enables the control clerk to determine
that if a quantity of 25 is reasonable, the error con­
dition is in the price. In this example, it is probable
that the price is incorrect in the master record and
should be $10 rather than $100.

Message standards can be set up that will aid in
proper format and content.

If a sufficient amount of memory is not available
for the necessary error messages, a coding system can
be used. The original program detecting the error
would then put out an error code and the identifying
information. When the error message tape is printed,
the codes can be translated into English and the identi­
fying information inserted into the message format.

Undetectable Errors. In input data, errors can occur
which defy detection. They result from human mis­
takes and can be in detail transactions or, worse yet,
in data used to update a master file.

An example of an undetectable error in a detail
transaction is the case where a customer phones an
order for twelve pieces of an item and the order
clerk writes down 11. The quantity is punched as 11,
and since 11 is as valid to the program as 12, it is proc­
essed as 11. Not until the customer receives only 11
pieces is the error found.

While it should be realized that human errors un­
detected by the program can occur, this should in no
way detract from the use of a comprehensive set of
checks. The vast majority of error conditions are de­
tectable and can be discovered by a complete check­
ing operation.

Chapter 9: System Design Considerations 61

divisor and a comparison of this result with the origi­
nal quotient.

Negative Amount Considerations. Control totals
have been defined as being algebraic additions. This
recognizes the fact the credit items occur and also that
reversing entries are possible for every plus entry.

Because of these negative entries, it is possible to
develop totals that bear a strange relationship to each
other. For example, consider the case of two sales
transactions, one of which paid a commission to a
salesman while the other, a credit item, did not:

Net Sales Commission

+100.00 +6.00
- 500.00

-400.00 +6.00

If these two transactions were the only two proc­
essed for this salesman on this day, it would appear
that a commission was paid for credit business. Also,
if a reasonableness check were applied to the totals,
for instance to determine that the commission per­
centage ranged from 4% to 10%, an error condition
would be signaled.

Unexpected results like the above do occur when
negative numbers are being processed. Consideration
should be given to such possibilities, and procedures
should be developed to handle them properly.

Processing Nonstandard Input and Output. Process­
ing programs that are run after the edit program do
not include editing as such. However, they do incor­
porate a similar principle, in that they must provide
a programming path for nonstandard conditions. For
instance, a program may be set up to expect three
types of input per transaction. If one type is missing,
it may be desirable to have the program skip that
transaction, continue processing other transactions,
and send out a message about the transaction and the
missing data.

The point is that programs should be written to
continue to run under as many conditions as possible.
Error messages would, of course, be put out on every
error or nonstandard operation. In programming, one
should never decide that a condition will not occur.
Experience shows that if it can happen, it will happen.

Record Coding. File data destruction, when it does
occur, is often the result of programming error. Some
of the causes have been (1) attempting to run a pro­
gram before thorough testing, (2) entering incorrect
beginning or ending addresses for sequential file
changes, and (3) blanking records. To avoid having
such incidents occur unnecessarily, a code can be
placed in each data record and matched against a con-

stant associated with the proper program. This estab­
lishes the fact that the program has the right to work
with the given record. Although not foolproof, it will
prevent a large percentage of accidental program
errors. It requires few instructions and little storage
space.

Messages. Messages are usually associated with error
conditions, but they are also used with control totals.
The principal rule in regard to messages is that they
should be clear, complete, and concise.

An error message should identify the error record,
specify what is wrong with it, and use as few memory
positions as possible. For example, a message such as:

INVOICE 12345 AMOUNT OVER LIMIT

is not sufficient to describe the actual case. A better
message would be:

INVOICE 12345 PROD 6789 AMT OVER $500.

QUANTITY 25 PRICE $100.00 AMT $2500.00

This message enables the control clerk to determine
that if a quantity of 25 is reasonable, the error con­
dition is in the price. In this example, it is probable
that the price is incorrect in the master record and
should be $10 rather than $100.

Message standards can be set up that will aid in
proper format and content.

If a sufficient amount of memory is not available
for the necessary error messages, a coding system can
be used. The original program detecting the error
would then put out an error code and the identifying
information. When the error message tape is printed,
the codes can be translated into English and the identi­
fying information inserted into the message format.

Undetectable Errors. In input data, errors can occur
which defy detection. They result from human mis­
takes and can be in detail transactions or, worse yet,
in data used to update a master file.

An example of an undetectable error in a detail
transaction is the case where a customer phones an
order for twelve pieces of an item and the order
clerk writes down 11. The quantity is punched as 11,
and since 11 is as valid to the program as 12, it is proc­
essed as 11. Not until the customer receives only 11
pieces is the error found.

While it should be realized that human errors un­
detected by the program can occur, this should in no
way detract from the use of a comprehensive set of
checks. The vast majority of error conditions are de­
tectable and can be discovered by a complete check­
ing operation.

Chapter 9: System Design Considerations 61

areas (extents) used by the file. The operating system
writes file labels for new files. It also checks the file
labels for existing files to ensure that the correct file
is online and that a new file being created will not
destroy an unexpired file.

The Audit Trail
The audit trail must provide the detailed business in­
formation for the period of time that will satisfy legal,
accounting, and practical requirements. It must also
provide a method of extracting the information tbat
is most economically consistent with the requirements.

In some computer runs, there are no audit trails;
such is the case with engineering problems having
variables that are entered for trial fits. There will also
be runs where added procedures are unnecessary as
well as uneconomical because the amount of source
data is small and readily available for checking and
rerun purposes. Most commercial applications, how­
ever, require audit trails - for several reasons:

1. The audit trail is the means for checking any dis­
crepancies that occur.

2. Business has legal requirements to provide this
information.

3. The audit trail is necessary for the accountant to
perform a valid audit.

4. It is a means of updating master records in a file
reconstruction procedure.

Before establishing an audit trail, the length of time
that the detail documents are to be retained must be
determined. This will be based upon:

1. Legal requirements.
2. The auditor's needs for annual or semiannual

audits.
3. The operational requirements of the business.
4. The operational requirements of the data proc­

essing department.
The degree of detail required for anyone of these

may vary over a long period of time, and the source
document, depending on the length of time it is re­
quired, may remain intact or be microfilmed for con­
densed storage. Because of storage expense, cost of
tapes, maintenance, etc., management should try to
condense or summarize the necessary data as much
as possible.

There are various ways to establish a good audit
trail for data processing systems having direct access
storage. In the discussion that follows, the availability
of tape is a basic assumption. It does not preclude the
use of cards or other files to accomplish the same
results.

The one basic method of creating an audit trail is
through a file dump. By reading the file and writing
it on tape, a correct master file is always available as

of a given point in time. To make it current, all trans­
actions since the dump must be passed against it for
updating. The dump to tape may be the entire file,
only the portions used, or only the groups of records
affected by a day's runs. In many cases, the speed of
files and tapes makes it feasible to perform a file dump
on a daily basis.

Where many master records are involved and the
transaction volume is low, another method should be
investigated. This approach requires a complete file
dump less frequently. For example, if an inventory
record is used today, a tag is placed in the record and
its address is written out on tape. Each successive item
going to that same record will find the tag present and
not write the address. At the end of the day the ad­
dress tape is used to read the corresponding file rec­
ords. Each is dated and written on tape. When needed,
these tape records are sorted and merged; the merged
records, along with those on the master tape file, are
read into the processor, where the record with the
latest date is used in reconstructing the disk file. This
approach has the advantage of taking less daily time
than a full dump, and requires further processing only
when it is necessary to reconstruct the file. File recon­
struction will take longer when it occurs. The user
should be cautioned against letting too much time
elapse between complete file dumps; sorting and merg­
ing them can become quite time-consuming.

A way to create an audit trail when processing at
random is by having a program "sign" each record
that it updates. An example of this is shown in Figure
38. Each record contains a field for the date and source
of the last update. As the field is changed, the previous
reference can be printed. In the example shown, the
reference field will be updated to 0731 CASH. If every
update does not result in printed output, an additional
field can be included which contains the number of
times the record has been updated since the last print­
out. This information can be useful in tracing errors
or unusual conditions.

In most applications there are transactions that re­
quire special handling and therefore cannot be proc­
essed with the others. A record of these must be kept
to avoid creating gaps in control and audit procedures.
Processing can be monitored by the stored program
and these transactions handled as exceptions. The sys­
tem can be programmed to notify the operator of them
and expedite their handling. Such transactions are held
in a pending file and accounted for until completed.
Thus they are readily available when an out-of-balance
condition occurs or when information about them is
needed.

Additional discussion of controls as they are related
to data processing systems is found in Management
Control of Electronic Data Processing (F20-0006).

Chapter 9: System Design Considerations 63

DASD RECORD:

Acct. No. Name Last Reference

L-_12_~_7_6-L_S_J_W_I_LS_O_N ____ ~\\~ ___ 0_62_5_J_R_N_L ____ ~\

CASH JOURNAL JULY 31, 1966

Account Last Reference Amount Balance
Number Name Date Run Paid Due

12~76 S. J. Wilson 06-25 JRNL 250.00 182.94

L----....

-------'--

Figure 38. Audit trail

Reconstruction Procedures

It is necessary to fully plan the type of action to be
taken under all conditions that might arise which
would prevent normal execution of data processing
procedures. Each type of unit making up the system
should be considered as nonoperational, and an alter­
nate plan should be devised for each specific unit (as
well as combinations of units) in order to continue
processing in some manner. These plans should be
devised and adhered to in all cases.

The need for reconstruction arises when information
in the file is destroyed. Reconstruction methods used
will vary depending on job priority, time considera­
tions, processing time necessary to provide reconstruc­
tion data, etc.

The first requirement for a file reconstruction pro­
cedure is that the data in the file be dumped periodi­
cally. The dump can be made either to cards or tape
(the latter is the basis for this discussion). The time
required for the dump and the frequency with which
it is done will vary. In cases where reports are pre­
pared periodically, the file dump can probably be ob­
tained as a by-product.

The feasibility of a daily file dump should be inves­
tigated as a starting point. With a daily dump, file re­
construction is greatly simplified in that the file as of
yesterday can be loaded into the direct access storage
device and today's transactions reprocessed. This ap­
proach can, of course, be used even though the file

64

--

is not dumped every day. The deciding factor is
whether another method might cost less or perhaps be
more timely.

As the number of direct access storage modules in­
creases, a daily dump of all modules will probably
become less desirable unless an auxiliary processor is
available.

If it is not feasible to reprocess all transactions that
occur in the interval between file dumps, the approach
outlined under "The Audit Trail" might be applicable.
With it, as each record is updated in the file, the up­
dated record was written on tape. When it becomes
necessary to reconstruct a file, the latest status of each
active record affected can be selected from this tape
and merged with the previous dump tape to provide
a current file status as of the last processing cycle.
Current date should be included in the record to facili­
tate selection of the most current record. An advan­
tage of this over-reprocessing is that program changes
will have no effect, whereas they could cause different
action to be taken if reprocessing were attempted.

It should be recognized that program storage is con­
sidered in the same manner as data storage. Each
time a program change is made, it must be reflected
on a tape record or some other medium to ensure re­
trieval capability, should reconstruction become neces­
sary.

The method used for reconstruction should be well
planned, well documented, thoroughly checked out,
and then followed when reconstruction is necessary.

-

Bypass Procedures
In the event of machine nonavailability during critical
time periods, a method of alternate processing must
be designed to allow the major portion or most critical
portion of the job to continue.

If the computer produces output that governs the
immediate action of another part of the operation
(stockpicking, for example), the decision may be made
to institute the prescribed bypass procedure immedi­
ately upon encountering an unusual condition in order
to keep this function operational. On the other hand,
applications that have a critical period once a month
might be able to wait a considerably longer period of
time before a bypass operation is begun.

Probably one of the most difficult decisions to make
in a multifile application is when to go into a bypass
mode of operation. One way to determine the amount
of time that can elapse is shown below:

Critical time period:

Reconstruction time:

Process time:

Total wait time possible:

Possible
wait time

2 hrs.

1 hr.

Critical time period

o 1 2 3 4

6 hrs.

-3 hrs.

3 hrs.

Process
time

5 6

The critical time period consists of that time which
can elapse without disrupting another operation.

The possibility that each unit in the machine con­
figuration, as well as combinations of units, may be
unavailable must be considered in order to establish
adequate bypass procedures. One DASD may contain
an index to the files on other DASD's, making normal
processing impossible when it is inoperative. In such
a case, partial processing may be accomplished by
dumping the contents of another direct access storage
unit and loading the index in its place.

Another approach that might be considered is to
have duplicate critical content files, or to dump only
these files daily to minimize reconstruction time.

Every application should be designed to maintain
at least a partial processing capability as long as possi­
ble before initiating a bypass operation.

Some applications demand assurance that downtime
be virtually impossible, and go so far as to require
duplexed processors.

For applications reqmrmg fast response, one ap­
proach to maintaining operational status when the
system is down is to utilize the previous dump tapes
and daily action tapes to create a printout which
could then be used in a manual operation. Such is the
case when there are priority transactions that must
be handled immediately. The file contents are printed
by using the last dump tape, merging in the action
tapes and providing a printout which can then be
utilized by clerks to process the priority transactions
manually. The results of the clerical processing are fed
back to the computer when operational status is re­
stored and post-posting updates the file to reflect the
manual action taken.

If once-a-day processing is adequate, the tapes
created above could be used to perform tape process­
ing of the application. In considering a tape bypass
operation, tape unit availability must be ensured.

In cases where an alternate processor is available,
its use for bypass should be considered.

The major factor for satisfactory bypass operation
is to have a definite procedure.

Restart Procedures
The theory behind restart is that if for any reason
operation is interrupted, there is a time advantage in
being able to resume processing without having to
start at the beginning of the run.

To accomplish this, a system of checkpoints must
be developed whereby the contents of memory are
dumped at specified intervals. In many cases a check­
point occurs at the end of an input or output tape.

The checkpoint routine will dump not only the con­
tents of memory, but also the contents of accumulators
and registers, indicators, and input and output records
in process.

When a restart is initiated in a tape system, the
tapes are repositioned, the contents of memory, regis­
ters, etc., are reestablished, and processing then con­
tinues.

When direct access media are employed, a new con­
sideration arises, since each updated record has de­
stroyed the prior status of the records. In order to
restart, the file must be reestablished as of the last
checkpoint. This can be done by dumping an image
of the direct access record on tape as soon as it has
been read. When a restart is initiated, these records
can be used to rewrite the file and establish the status
that existed when the corresponding checkpoint was
taken. When this is completed, normal restart pro­
cedures can be accomplished and reprocessing begun.

Chapter 9: System Design Considerations 65

Bibliography

IBM System/360 Component Descriptions - 2841,
2302,2311,2321,2303 (A26-5988) - includes a de­
tailed description of the I/O instructions and file
commands available for the System/360 DASD.

IBM System/360 Component Description-2314 Direct
Access Storage Facility (A26-3599) - describes the
2314 and presents its functional and operating char­
acteristics.

IBM 2301 Drum Storage Reference Card (X20-1717)

IBM 2302 Disk Storage Reference Card (X20-1706)

IBM 2303 Drum Storage Reference Card (X20-1718)
IBM 2311 Disk Storage Drive Reference Card (X20-

1705)
IBM 2314 Direct Access Storage Facility Reference

Card (X20-1710)
IBM 2321 Data Cell Drive Reference Card (X20-1704)

These reference cards contain the capacity formulas,
a table of bytes per record depending on records per
track (down to a data length of five bytes), and a
table of transmission time depending on record length.
IBM System/360 Operating System: Supervisor and

I Data Management Services (C28-6646) - includes

66

a discussion of the file organization and access
methods supported by OS.

IBM System/360 Operating System: Supervisor and
Data Management Macro Instructions (C28-6647)
- describes in detail the OS macro instructions.

IBM System/360 Basic Operating System: Program­
mer's Guide (C24-3372) - includes a detailed de­
scription of the file organization and processing
methods supported by BOS.

IBM System/360 Basic Operating System: Assembler
with Input/Output Macros (C24-3361) - includes a
detailed description of the BOS macro instructions.

IBM System/360 Disk Operating System Data Man­
agement Concepts (C24-3427) - includes an in­
troduction to the file organization methods and ac­
cess methods supported by DOS.

IBM System/360 Disk Operating System Supervisor
and Input/Output Macros (C24-5037) - describes
the DOS macro instructions.

Management Control of Electronic Data Processing
(F20-0006) - discusses methods for controlling
data processing procedures.

--..

Answers to Exercises

Chapters 1 and 2

Bytes per Access Motion (MS)
Tracks Rotation Transfer

Storage per Device (ms) Rate
Device Medium Cylinders Cylinder Track Cylinder (Million) Min. Max. Avg. (Full) (KB)

23U Disk 200 10 3625 36,250 7.25 25 135 75 25 156

Pack: 200 Pack: 29.17
2314 Disk Model Al 20 7294 145,880 Model Al 25 130 60 25 312

Total: 1600 Total: 233.408
Model A2 Model A2
Total: 1000 Total: 145.880

Model 3: Model 3:
2302 Disk 492 46 4984 229,264 112.79 50 180 165 34 156

Model 4: Model 4:
984 225.59

2303 Drum 80 10 4892 48,920 3.9 0 0 0 17.5 303.8

2301 Drum 1 200 20,483 4.09 4.09 0 0 0 17.5 1200
(Million)

Strip Strip:
2321 of 5 20 2000 40,000 400 95 600 350* 50 55

Tape Array:
10,000

*Assuming that the previously addressed strip has already been restored. If this assumption cannot be made,
average access time is 550 ms.

2. Although the rotation speed is the same, a 2314
track contains approximately twice as many bytes
as a 2311 track.

3. With the 2301, data is transferred four bits in
parallel rather than one bit at a time, as with the
other devices.

4. 2311, 2314, 2321

5. a. 2311, 2314, 2303
b. 2302, access group

2321, subcell

6. a. 120 ms (same area, different group)
b. 180 ms (different area)
c. 50 ms (same group)

7. a. 10,000/13 = 770 tracks/lO = 77 cylinders
b. 10,000/23 = 435 tracks/20 = 22 cylinders
c. 10,000/18 = 556 tracks/46 = 13 cylinders
d. 10,000/16 = 625 tracks/lO = 63 cylinders
e. 10,000/61 = 164 tracks
f. 10,000/7 = 1429 tracks/20 = 72 cylinders/5

= 15 strips (two cylinders will be used on the
15th strip)

8. a. 77 out of 200 cylinders = 39%
b. 22 out of 1600 cylinders = 1.4% of the total

facility
c. 13 out of 492 cylinders = 2.6%
d. 63 out of 80 cylinders = 79%
e. 164 out of 200 tracks = 82%
f. 72 out of 10,000 cylinders = .7%

Answers to Exercises 67 •

9. The only access motion time is from cylinder to
cylinder.
a. 76 moves @ 25 ms = 1900 ms
b. 21 moves @ 25 ms = 525 ms
c. 1 move @ 120 ms + 11 moves @ 50 ms

670 ms
d. none
e. none
f. The 15 strips occupy two subcells, so there is

one access to the second subcell at 450 ms
(200 + 75 + 175). This leaves 13 strips to be
accessed from the same sub cell @ 375 ms each
(200 + 175) for a total of 4875 ms. The bar of
heads moves four times for each of the first 14
strips and once for the last strip for a total of
57 times @ 95 ms per move for a total of
541.5 ms.

450 + 4,875 + 5,415 = 10,740 ms
lO. a. (lO,OOO x 25) /60,000 = 4.2 min

b. (10,000 x 25) /60,000 = 4.2 min
c. (lO,OOO x 34) /60,000 = 5.7 min
d. (lO,OOO x 17.5)/60,000 = 2.9 min
e. (lO,OOO x 17.5) /60,000 = 2.9 min
f. (lO,OOO x 50) /60,000 = 8.4 min

11. All except the name should be recorded in packed
decimal format to conserve storage and to provide
the proper format for arithmetic and editing oper­
ations.

Char-
acters Format Bytes

a. Employee number 6 Packed 4

b. Name 18 Zoned 18

c. Number of dependents 2 Packed 2

d. Social Security number 9 Packed 5

e. Salary 6 Packed 4

f. YTD gross earnings 7 Packed 4

g. YTD withholding tax 6 Packed 4

h. YTD FICA 5 Packed 3

Total 59 44

Chapter 3
12. a. OK - total of eight access mechanisms.

b. Impossible. No 2311s may be attached with
two 2303s.

c. OK - total of seven access mechanisms.
d. Requires additional storage feature - total of 13

access mechanisms.

13. a. parity bit, byte
b. Cyclic Check, area

14. Count Area and Data Area, Key Area

68

15. a. each Count Area
b. Home Address, each Count Area
c. Home Address, each Count Area, each Key

Area, each Data Area
d. Home Address, each Count Area
e. Key Area and/or Data Area
f. eacp. Count Area
g. each Count Area

16. a. 6
b.15
c. 14 (KL + DL = 160)

17. a. 22
b. 26 (13 blocks of 2 logical records each)
c. 30 (6 blocks of 5 logical records each)
d. 32 (4 blocks of 8 logical records each)

18. A blocking factor of 6 will allow 36 logical records
per track.

19. 24 of the 75-byte records can be written on a
track.
The 200 character record requires 270 bytes.

61 + 537 (200) 270
512

The last 75-byte record requires 75 bytes.
Each of the other 75-byte records requires 139
bytes:

61 + 537 (75) 139
512

Number of records = 1 + 3625 - 270 -75 = 24
139

Chapter 5
20. A blocking factor of either 4 or 5 will allow for 20

logical records per track.
A blocking factor of 5 provides a timing advantage
for sequential processing, since fewer file oper­
ations will be required. Five, then, is the optimum
blocking factor.

21. 10000/20 = 500 tracks/lO = 50 cylinders

22. .9 minutes
Seek 50 times @ 25 ms = 1250
Read 2000 blocks @ 25 ms = 50000

51250 ms/60000
.9 min.

23. 35.6 hours
On the average, half the file must be read to lo­
cate each record.

51250/2 = 25625 ms/record
x5000

128125 seconds/5000 records
128125/60 = 2135 min/60 = 35.6 hours

Chapter 7
24. Minimum is 1 seek and 1~ rotations.

Additional time required if:
File has a master index.
Highest-level index is not searched in core.
Specified record is a non-first overflow.
Specified record is in the independent overflow

area.

25. 20 logical records per prime track - 4 blocks, each
consisting of 5 logical records.
Length of each block is 5 x 160 + 7 for key = 807.

26. 13 logical records per overflow track.
Overflow records are always unblocked. Length of
each record is:

160 + 10 (link field) + 7 (Key Length) = 177

27. 8 full tracks for prime records.

28. 19 entries per track index - 2 for the prime records
on the index track, 2 for each of the 8 prime tracks,
plus the dummy entry.

29. 1862 bytes
Index entries have KL = 7 and DL = 10.

Index entry = 81 + 537 (17) 98
512

19 x 98 = 1862

30. 10 prime records (two blocks) on each index
track. 3625 (track capacity) - 1862 (used for
index) = 1763 bytes.
Two blocks would require 1754 bytes: 827 for the
last one and 927 for the other one.

.'31. 59 cylinders'"
(20 x 8) + 10 = 170 prime records per cylinder
10,000/170 = 59 cylinders

-Note that the same file required 50 cylinders with sequential
organization (question 21).

32. 60 entries in the cylinder index.
One for each prime cylinder plus the dummy en­
try.

. '3.'3. Cylinder index requires two tracks (actually about
12/3).

Index entry = 81 + 537 (17) 98
512

Last entry = 20 + 7 + 10 = 37
3625- 37

Entries per track = 1 + = 1 + 36 = 37
98

34. 1020 bytes required in core for cylinder index.
Cyclic Checks, gaps, and Address Markers are
never read into core; the Count Areas are not re­
quired for the logic of searching the index.

Therefore the number of bytes required is enough
to hold the Key Area and Data Area of each entry.
60 (7 + 10) = 1020.

35. No, a master index should not be specified.
It would take just as long to search the master
index and then one track of the cylinder index
as it does to search the two-track cylinder index.

36. 1.15 minutes'"
Read - blocks of prime

records: 2000
overflow records: 400 (approx.)

2400 @ 25 = 60000 ms
Search for and read each pair

of track index entries
(10 x 59) 590 @ 12.5 = 7375 ms

Seek each prime cylinder 59 @ 25 = 1475 ms

68850 ms

68850/60000 = 1.15 minutes

I °The same file required .9 minutes if sequentially organized
(question 22).
''''Minimum access time was used, since the file is located on
adjacent cylinders.

37. 16.6 minutes

38 .

39.

Seek - cylinder index:
prime cylinder:

Read - per pair of track index entries:
pair of cylinder index entries:
data record:

200 ms x 5000/60000 = 16.6 minutes
Additional considerations:

75 ms
75 ms
12.5ms
12.5ms
25 ms

200 ms

1. Non-fin;t overflows would take additional reads.
2. Since the cylinder index occupies two tracks, a

a more accurate average would be one rotation
rather than half a rotation per read of the cyl­
inder index. This would add about ore minute.

3. Since the file occupies about 61 cylinders, an
average seek time of about 65 milliseconds is
more realistic (see Figure 11). This would re­
duce the time by 1.7 minutes.

10.4 minutes
Seek - prime cylinder: 75 ms
Read - pair of track index entries: 12.5ms

pair of cylinder index entries: 12.5ms
data record: 25 ms

125 ms
125 ms x 5000/60000 = 10.4 minutes

9.38 minutes
Seek - prime cylinder: 75 ms
Read - each pair of track index

records: 12.5 ms
data record: 25 ms

112.5ms
112.5 ms x 5000/60000 = 9.38 minutes

Answers to Exercises 69 •

Chapter 8
40. 84 cylinders·

With 85% packing, approximately 11765 locations
are required. Can write 14 data records per track,
so 11765/14 = 841 tracks/10 = 85 cylinders.

0Note that the same file required 50 cylinders with sequential
organization (question 21) and 59 cylinders with indexed se­
quential (question 31).

41. 17.5 minutes·
Seek once

@75ms = 75
Read 1.2 times

@25ms = 30
105 ms x 10000/60000 = 17.5 min

0Note that the same job required .9 minutes with sequential
organization (question 22) and 1.15 minutes with indexed
sequential (question 36).

42. 8.75 minutes·
105 ms x 5000/60000 = 8.75 min

0Note that the same job required from 9.38 to 16.6 minutes
of disk time with indexed sequential (questions 37, 38, and
39). The difference in total job times between direct and in­
dexed sequential may not be of great importance. If the time
required to access and process one record is the most important
consideration, the difference in timing may be critical, particu­
larly in a teleprocessing system. Consider the disk times re­
quired to access one record for the two different organization
methods:

Indexed sequential: 112.5, 125, or 200 ms
Direct: 105 ms

Note, however, that timing may not be the only consideration.
The preinstallation planning and programming effort required,
the frequency with which reorganization is required, and device
independence are some other factors that will influence the
choice of an organization method.

70

,.

READER'S COMMENT FORM

Introduction to mM System/360 Direct Access Storage

Devices and Organization Methods C20-1649-3

1. What is your occupation? ______________________________ _

2. How did you initially use this pUblication?
o as a classroom tex t
o as a self-study text
Dother ___ ___

3. After your initial use of this publication, how frequently did you
refer to it?
o never
o seldom
o frequently

fold

4. Do you keep this publication in a looseleaf binder?
Dyes
Dno

We would appreciate your other comments; please give specific page and line
references where appropriate. All comments and suggestions become the
property of IBM. If you wish a reply, be sure to include your name and
address.

fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

C20-1649-3

fold

fold

C20-1649-3

YOUR COMMENTS PLEASE .•.

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your mM

system should be directed to your IBM representative or the IBM branch office serving your

locality.

fold fold

...

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: DP Education Development, Dept. 617

POSTAGE WILL BE PAID BY ...

IBM Corporation

1701 North Street

Endicott, N. Y. 13760

FIRST CLASS

PERMIT NO. 10

ENDICOTT, N. Y.

.. :

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

'-

