


IBM
SYSTEM/360 COBOL 

COBOL Program Fundamentals 

Reference Handbook

Programmed Instruction Course



Minor Revision (July 1967)
This publication, R29-0206-1, is a reprint of 
Form R29-0206-0 incorporating minor editorial 
changes made on pages dated (7/67). The 
original publication is not obsoleted.

Copies of this publication can be obtained through IBM Branch Offices» 
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

©International Business Machines Corporation 1966



PREFACE

This reference handbook provides useful 
information for people who want to be 
able to read COBOL programs with a high 
degree of comprehension. It is designed 
to be studied in conjunction with the 
COBOL Program Fundamentals programmed 
instruction textbook [Form R29-0205).
The reader of these publications is 
expected to have prior experience in 
data processing and computer programming, 
as well as knowledge of System/360 
features, but no prior knowledge of 
COBOL.
This publication is not intended to 
provide all of the information a 
student needs in order to compose 
original COBOL programs. Additional 
information for that purpose is given 
in the next course of this series,
Writing Programs in COBOL. The 
publications that make up that course 
are a programmed instruction text 
(Form R29-0210) and a reference hand­
book (Form R29-0211).
Complete specifications for System/360 
COBOL may be found in the reference 
manual, IBM Operating System/360 COBOL 
Language (Form C28-6516), or the reference 
manual IBM System/360 Disk and Tape Operating 
Systems COBOL Language Specifications (Form 
C24-3433). The appropriate manual should be 
selected based on the operative system that 
you plan to use.



ACKNOWLEDGEMENT
1

The following information is reprinted from COBOL Edition 1965, 
published by the Conference on Data Systems Languages (CODASYL), 
and printed by the U. S. Government Printing Office.

"Any organization interested in reproducing the COBOL 
report and specifications in whole or in part, using 
ideas taken from this report as the basis for an 
instruction manual or for any other purpose is free to 
do so. However, all such organizations are requested to 
reproduce this section as part of the introduction to 
the document. Those using a short passage, as in a book 
review, are requested to mention "COBOL" in acknowledge­
ment of the source, but need not quote this entire 
section.
"COBOL is an industry language and is not the property 
of any company or group of companies, or of any 
organization or group of organizations.
"No warranty, expressed or implied, is made by any 
contributor or by the COBOL Committee as to the 
accuracy and functioning of the programming system 
and language. Moreover, no responsibility is assumed 
by any contributor, or by the committee, in connection 
therewith.
"Procedures have been established for the maintenance 
of COBOL. Inquiries concerning the procedures for 
proposing changes should be directed to the Executive 
Committee of the Conference on Data Systems Languages.
"The authors and copyright holders of the copyrighted 
material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), 
Programming for the Univac (R) I and II, Data 
Automation Systems copyrighted 1958, 1959, by 
Sperry Rand Corporation; IBM Commercial 
Translator Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of this material 
in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and 
use of COBOL specifications in programming manuals 
of similar publications".

in

A



TABLE OF CONTENTS

Introduction

Introduction to COBOL . . . .  3 
COBOL programming system

terms.....................4

Language Elements

Language elements ........
Reserved words............
Programmer-supplied names . 
Symbols . . ..............

. 7 Literals..................... 12
8-9 Level numbers............... 13
.10 Pictures..................... 14
.11

Program Structure and Contents

Program structure . . . .  16-17 
Program contents............ 18

Identification Division

Identification division 
entries ............ 21

Environment Division

Environment division 
entries ........ 25-26

Data Division

Data division entries . . 28-30 
System/360 COBOL terms

for units of d a t a ........ 31
File description entry. . 32-34 
Record descriptions . ... . .35 
Item description entries. 36-42

Procedure Division

Procedure division Procedural words........ 48-51
entries ..............  44-45 Test conditions ........  52-54

Procedures.................. 47 Flow of control.........55-57

Case Study

Case study.............. 61-67

v



Introduction



INTRODUCTION TO COBOL

Origins. COBOL (COmmon Business Oriented Language) is the result of 
an effort to establish a standard language for programming computers 
to do business data processing. The original specifications for COBOL 
were drawn up in 1959 by representatives of several computer manu­
facturers and users. The specifications have been revised and improved 
several times since 1959.
Aims. COBOL is designed for producing source programs that are
• standardized/ using standard language elements in standard 

entry formats within a standard program structure. COBOL 
endeavors to provide one common language for all computers/ 
regardless of make or model.

• easy to understand/ because they are written in English.
The bulk of every COBOL program is made up of English words 
in entries that resemble English sentences. Good COBOL 
programs are easy to read and comprehend, for non-programmers 
as well as for programmers.

• oriented to business procedures, not to the technology of 
computing machinery. This makes it possible for business 
people who are not computer experts to use COBOL.

Differences. In order to adjust to major differences in computers, 
certain language differences are allowed in COBOL for individual 
computer systems, within the framework of one common language. 
System/360 COBOL is different in some ways from COBOL for other 
computers. (This handbook is concerned only with System/360 COBOL.)



COBOL PROGRAMMING SYSTEM TERMS

COBOL program: a source program written in COBOL, from which an 
object program is compiled.
Object program: the machine language program compiled from a COBOL 
program.
Compile: to use a computer to produce an object program from a COBOL
program. During compilation, listings of the source and object programs 
are printed, as well as diagnostic messages that pinpoint errors the 
compiler has discovered in the COBOL program.
COBOL compiler: a program supplied by IBM that directs the computer 
during compilation.
Source computer: the computer used to compile the object program.
Object computer: the computer used to execute the object program.

4



Language Elements



1

LANGUAGE ELEMENTS
The COBOL language is made up of these elements:
• Reserved words
• Programmer-supplied names
• Symbols
• Literals
• Level numbers
• Pictures
Programmers compose programmer-supplied names, literals, and pictures. 
Of course, there are rules that govern the choice and arrangement of 
characters. Within the latitude permitted by the rules, however, 
programmers are free to compose an almost infinite number of names, 
literals, and pictures to suit particular needs in programs.
By contrast, the reserved words, symbols, and level numbers are 
provided in fixed sets, from which programmers select the ones they 
need. Programmers are not allowed to invent new reserved words, 
symbols, or level numbers. Even so, there are rules to follow —  
for example, in determining which reserved word to use for a particular 
entry.

Examples of elements. The sample COBOL program entry below contains 
all six elements.

programmer-supplied 
name

io2 ;o m o o R D - C 0 DE PIC

reserved
worde

X  X
literal

/
TURE XX J VALUE 2|7

level
number

/
picture eymbole

7
A



RESERVED WORDS

Approximately 250 English words and abbreviations have been set aside 
to be used only for certain purposes. Special meanings have been 
preassigned to the reserved words; therefore, the programmer
• does not define reserved words.
• has no way of changing the meanings of reserved words.
• cannot add words of his own to the reserved word list.
• cannot substitute other words for those on the list.
• must not alter or misspell reserved words.
• may use reserved words only for specified purposes.
Types of reserved words. Some of the main types of reserved words are:
• words that identify program units; for instance, SECTION, 

ENVIRONMENT, and WORKING-STORAGE.
• words that identify or explain parts of entries; for 

instance, BLOCK, PICTURE, and VALUE.
• words that specify actions to be taken, like READ, MOVE, 

and ADD.
• words with specific functional meanings, such as NEGATIVE, 

COMPUTATIONAL, and EQUAL.
• words that represent certain data values; for instance,

ZERO, SPACES, and HIGH-VALUE. (See "Figurative constants" below.)
Figurative constants. As a rule, it is up to the programmer to define 
data items and to supply names for them. However, a few data items 
with predefined values have been built right into the COBOL language. 
The names of these built-in data items are reserved words which are 
called "figurative constants".
The most frequently used figurative constants are ZERO and SPACE.
These reserved words (and their plural forms, ZEROS or ZEROES, and 
SPACES) represent the data characters zero and blank, respectively.
The programmer may use these words whenever zero or blank values are 
required in a program; for instance, he might write MOVE ZEROS TO 
TOTAL-WAGES in order to put all-zeros into a data item. Similarly, he 
might write MOVE SPACE TO CONTROL-CODE in order to blank-out a data 
item.

(Continued on next page)

8



RESERVED WORDS (continued)

Complete list of reserved words for System/360 COBOL»

ACCEPT DE INDEXED PAGE
ACCESS DECIMAL-POINT INDICATE PAGE-COUNTER
ACTUAL DECLARATIVES INITIATE PERFORM
ADD DEPENDING INPUT PF
ADVANCING DESCENDING INPUT-OUTPUT PH
AFTER DETAIL INSTALLATION PICTURE
ALL DIRECT INTO PLUS
ALPHABETIC DIRECT-ACCESS INVALID POSITIVE
ALTER DISPLAY 1-0 PRINT-SWITCH
ALTERNATE DISPLAY-ST I-O-CONTROL PROCEDURE
AND DIVIDE IS PROCEED
APPLY DIVISION PROCESS
ARE JUSTIFIED PROCESSING
AREA ELSE PROGRAM-ID
AREAS END KEY PROTECTION
ASCENDING ENDING
ASSIGN ENTER LABEL QUOTE
AT ENTRY LABELS QUOTES
AUTHOR ENVIRONMENT LAST

EQUAL LEADING RANDOM
BEFORE ERROR LESS RD
BEGINNING EVERY LINE READ
BLANK EXAMINE LINE-COUNTER READY
BLOCK EXHIBIT LINES RECORD
BY EXIT LINKAGE RECORDING

LOCK RECORDS
CALL FD LOW-VALUE REDEFINES
CF FILE LOW-VALUES REEL
CH FILES RELATIVE
CHANGED FILE-CONTROL MODE RELEASE
CHARACTERS FILE-LIMIT MORE-LABELS REMARKS
CHECKING FILLER MOVE REPLACING
CLOCK-UNITS FINAL MULTIPLY REPORT
CLOSE FIRST REPORTING
COBOL FOOTING NAMED REPORTS
CODE FOR NEGATIVE RERUN
COLUMN FORM-OVERFLOW NEXT RESERVE
COMMA FROM NO RESET
COMPUTATIONAL NOT RESTRICTED
COMPUTATIONAL-1 GENERATE NOTE RETURNCOMPUTATIONAL-2 GIVING NUMERIC REVERSED
COMPUTATIONAL-3 GO REWIND
COMPUTE GREATER OBJECT-COMPUTER REWRITE
CONFIGURATION GROUP OCCURS RF
CONSOLE OF RH
CONTAINS HEADING OH RIGHT
CONTROL HIGH-VALUE OMITTED ROUNDED
CONTROLS HIGH-VALUES ON RUN
COPY HOLD OPENCORRESPONDING OR SACREATING IBM-360 ORGANIZATION SAME
CYCLES IDENTIFICATION OTHERWISE SD

IF OUTPUT SEARCHDATA IN OV SECTIONDATE-COMPILED INCLUDE OVERFLOW SECURITY
DATE-WRITTEN

SELECT
SENTENCE
SEQUENTIAL
SIZE
SORT
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STOP
SUBTRACT
SUM
SYMBOLIC
SYSIN
SYSOUT
SYSPUNCH
TALLY
TALLYING
TERMINATE
THAN
THEN
THRU
TIMES
TO
TRACE
TRACK-AREA
TRACKS
TRANSFORM
TRY
TYPE
UNIT
UNIT-RECORD
UNITS
UNTIL
UPON
USAGE
USE
USINGUTILITY
VALUE
VARYING
WHEN
WITHWORKING-STORAGE
WRITE
WRITE-ONLY
ZERO
ZEROES
ZEROS

9



PROGRAMMER-SUPPLIED NAMES
Names for data items, data conditions, and procedures are supplied by
programmers. These names must be defined within the program in which
they are used, since, unlike reserved words, they do not have pre­
assigned meanings.
Rules governing programmer-supplied names.
• A name may be as many as 30 characters long.
• It may contain letters, digits, and hyphens.
• Names of procedures may be composed entirely of digits, but 

names of data items and data conditions must contain at least 
one letter.

• A name must not begin or end with a hyphen, although there may 
be hyphens anywhere else in the name.

• Spaces (blanks) must not appear within a name.
• No name may be spelled exactly the same as a reserved word.

Examples of prrograirrmer-supplied names in an <intry.

ADD REGU LAR- WAGE S_*_Q v e r t | i m e . G IV 1NG GROS S ’M e 'AR N 1 N GS .

\
programmer-supplied 

names

10



1

SYMBOLS
Symbols are special characters which, individually, have particular 
meanings for the compiler.
Punctuation symbols —  used to punctuate program entries.

• period used to terminate entries
9 comma used to separate operands or 

clauses in a series
t semicolon used to separate clauses in 

series
a

1 quotation mark used to enclose non-numeric literals
0 parentheses used to enclose subscripts

Arithmetic symbols —  found in arithmetic formulas.
+ plus addition; "plus"
- minus subtraction; "minus"
* asterisk multiplication; "times"
/ slash division; "divided by"
** two asterisks exponentiation; "raised to ■ 

power of"
the

= equal "make equal to"
0 parentheses used to enclose quantities, to 

control the sequence in which 
operations are performed

Condition symbols —  found 
data conditions.

in expressions which involve tests of

= equal "is equal to"
> greater than "is greater than"
< less than "is less than"
0 parentheses used to enclose expressions 9to control the sequence in which 

conditions are evaluated

11



LITERALS
A literal is an actual value used in a program. Literals are 
supplied by programmers; but unlike a programmer-supplied name, a 
literal describes itself and needs no separate definition in the program. 
The two main types of literals are "numeric" and "non-numeric" literals.
Rules governing numeric literals.
• A numeric literal may be made up of digits, a plus sign or a 

minus sign, and a decimal point.
m It may contain as many as 18 digits.
• If there is a sign, it must be the leftmost character of the 

literal.
• If there is no sign, the number is assumed to be positive.
• A decimal point may appear anywhere in the number, except as 

the rightmost character. Whole numbers are written without 
decimal points.

An example of a numeric literal in an entry,

L. i.PLY SAUe:s- bY .0 5:2'Si G IV n.Q b o!nulsj

numer%c
literal

Rules governing non-numeric literals»
m A non-numeric literal is always enclosed by quotation marks *

The quotation marks are not part of the literal®
# It may be as many as 120 characters long*
m It may contain any character except a quotation mark. So, digits*

letters * spaces * and all special characters except one* may be found in non-numeric literals.

An example of a non-numeric literal in an entry.

7  7  i M E S S A G E - 4 P I C T U R E A  (  1 2 ) : i
j |

1
V A L U E  '  0 U T  0 F  S T O C K  ' •

. ' ! |
! !

non-numeric
literal

12



1

LEVEL NUMBERS
Level numbers are found in entries that assign names to data items and 
data values. The major purpose of level numbers is to designate the 
levels of data items, in relation to each other. The numbers that may 
be used are 01 through 49; 77; and 88.
Level numbers 01 through 49 are used to designate the levels of data 
items that form records. Level nlimber 01 is always assigned to the 
record as a whole, while 02 through 49 are assigned to items that are 
parts of records.
Level number 77 is used in entries that describe independent data items, 
that is, items that are not records or parts of records.
Level number 88 is used, in entries that assign names to specific values 
that data items may assume.
When an entry contains a level number, the level number is always the 
first element of the entry. The level number is followed either by a 
programmer-supplied name or the reserved word FILLER.

Examples of level numbers in entries.

13



PICTURES
Pictures describe certain characteristics of data items, such as
• how many characters an item contains.
• whether the characters are numeric, alphabetic, or alphanumeric.
• whether the item has a sign.
• where an assumed decimal point is located.
• what editing (deletion, replacement, or insertion of characters) 

is to be done to form the item.
Each picture is a string of characters, and may be from 1 to 30 
characters long. Pictures are composed of one or more of the 
characters listed below. (Each character or pair of characters has a 
symbolic meaning; the meanings of some of these characters are 
explained later in this book.)

A B CR DB E K P S V X Z 0 9  + - , . $ * ( )
Pictures may also contain numeric literals (unsigned whole numbers 
only) enclosed in parentheses. The literals provide an abbreviated 
way of repeating a picture character; for instance, X(20) means the 
same as 20 Xs in a row.
In an entry, a picture is always preceded by the word PICTURE or by 
the words PICTURE IS.

Examples of pictures in entries.

piaturaa 
/  \

- rs Sod F 1 LL E R | f p 1 (:rr u R
—1—
El X( 81) • n  1 y  , t

!—4—< J o 2I S T 0C K - V A L UEu P 1C!—Tb

LÜ 
t£ $!${.|$ il !U 9& i

14



Program Structure and Contents



PROGRAM STRUCTURE

COBOL programs are composed of entries arranged in divisions, sections, 
and paragraphs. In general, a division is made up of sections, and a 
section is made up of paragraphs.

Divisions. All COBOL programs are divided into four separate divisions. 
TKe divisions have fixed names —  IDENTIFICATION, ENVIRONMENT, DATA, 
and PROCEDURE; and always appear in that order in a program.
The beginning of each division is marked by a division header entry, 
which consists of the name of the division followed by the word DIVISION 
and a period. A division header always appears on a line by itself.

Sections. Sections are not found in the Identification division.
The Environment and Data divisions always contain sections, and the 
sections in those divisions have fixed names. In the Procedure 
division, sections are optional; there programmers may, if they wish, 
create sections and supply names for them.
Each section is identified by a header entry which consists of the 
section name followed by the word SECTION and a period. A section 
header usually appears on a line by itself.

Paragraphs. All of the divisions except the Data division contain 
paragraphs. In the Identification and Environment divisions, the names 
of all paragraphs are fixed. In the Procedure division, paragraph 
names are supplied by programmers.
Paragraphs are identified by header entries which consist of a name 
followed by a period. Paragraph headers do not contain the word 
PARAGRAPH. Also, a paragraph header does not have to appear on a line 
by itself; it must be the first entry on a line, but it may be followed 
on the same line by other entries of that paragraph.

Entries. An entry can be defined as a series of two or more language 
elements, the last of which is a period. (However, the programmer 
cannot arbitrarily string together a bunch of elements, and call them 
an entry. The sequence of elements in each entry is dictated by 
precise format rules.)
A paragraph header is probably the simplest entry, since it consists of 
a reserved word or a programmer-supplied name, and a period. Likewise, 
division and section headers are relatively simple entries. Most 
entries, though, are longer and more complex.

(Continued on next page)

16



PROGRAM STRUCTURE (continued)

Sample division with structural units identified.

division entries

sections

paragraphs

ENV llRONM E NT D 1 V 1SI O N
-- --- -- 1—
• *

» • i ■ ; ;

c o n f Ii g u r AT 1 0 N SE C TI 0 N .

s o u r !c e -c OMP U TER .
!IBM- 36 0 G 40 .

__ 1

! ! ?

OBJ e !c t - c O M P U TER .

J 1 B M — 36 0 E 3 0 .
1
1

i n p u !t -o u TP U T SEC T 1 ON •

i

F 1 L E r C O N T R O L 9

ÏSELE CT 0 L D - M A S T E R - FI LE
I
s A S S  1GN T 0 ' S Y S O O 1 '

U T l L 1 TY 2 40 0 UNI TS .
-SELF CT N E W - M AS T E R -F 1LE
§ A S S  1GN T 0 ' S Y S O O

2  '

„4..... $__ __ U T I L 1 TY 2 400 U N 1TS .

(7/67) 17



PROGRAM CONTENTS

Identification division. The Identification division contains 
information that identifies the program. It is intended, for the most 
part, to inform people who read the program.
At the very least, the division states the name of the program.
Usually it contains further information about the program, such as 
when the program was written and who the programmers were. There may 
also be remarks that explain the data processing job for which the 
program was written.

Environment division. The Environment division contains information 
about the equipment that will be used when the object program is 
compiled and executed. Most importantly, it ties together the devices 
of the computer system and the data files that will be processed.
The model numbers of the System/360s on which the program will be 
compiled and run may be given. Each data file, by name, is assigned 
to an input-output device. Sometimes, special input-output 
techniques are specified.

Data division. The Data division describes the data to be processed 
by the object program. It describes the data items that make up each 
of the files named in the Environment division, and in addition, 
describes the data items that make up working-storage —  such as 
constants and work areas.
Entries in this division show how the data items are grouped and 
organized into records and files. Data names, pictures, and other 
information about the data items are given.

Procedure division. The Procedure division specifies the actions 
that are required to process the data. Also, it indicates the order 
in which the actions are to be carried out, and provides for alternate 
paths of action under given conditions.
The main types of actions that may be specified are input-output, 
arithmetic, data movement, and sequence control.

18



Identification Division



IDENTIFICATION DIVISION ENTRIES

Unquestionably the simplest division, the Identification division is 
only required to have the following three entries:
• Division header
• PROGRAM-ID paragraph header
• Program name, enclosed in quotation marks
The division may also contain up to six additional paragraphs. Fixed 
names are provided for these paragraphs(AUTHOR, INSTALLATION, DATE- 
WRITTEN, DATE-COMPILED, SECURITY, and REMARKS), but the programmer is 
free to write any number of entries in each paragraph, and to give any 
desired information in the entries. The entries may contain any 
characters and words, including reserved words.

Sample Identification division.

1 DENiT 1 F 1C A T  1ON D 1 V I'S ION.11
P R O G R A M - ID.

I'piulRC H A S E ' .
i I ' M: ; : i : ; ■

A u t h So r •
i '

!! !p A U L M e !l 1C HA R.
1

___ 1 !
1NS t Ja L L A T 10 N • -

|p U R C H A s 1NG R ECOR DS D EPAR TMEN T .
!•l .

DA T e !-w R 1T T E N l i ■

SoR 1G 1N AL PRO G R A M W R  1TTE N JUL Y . 1 9 62 .
i i It H 1S 1S REV 1S I ON 4» WR I T TEN SEPT EMB E R J1 9 65 .
' i ; 1 1 | j

r e m a !r K si.
* i \ ; ! ■ ; i 1 j ;

!out Ip U T to F !T!H IS P ROG R AM  <1 S A REP O RT 0 F■ ■ i 1 !
'a l l P U R

!
c H A S E S' FO R TH E PR E V 1 0 US M O N T H • ; ■

Ithei R EiPb RT 1S RE OU 1 R ED B Y TH E 5T H DA Y j < ! !

!o f  e A C H M O N T H. A N D 1S D 1 STR 1BUTE D TO ; I ’
!a l l P U RC HAS 1NG R EPRE SE N T ATI V ES . I N P'UT | ‘
!is T HE P UR C H AS I N G RE COR D S CA RD F ILE, ! ' ;

ISORT ED BY PU R C HA SE D ATE W I T H IN C O M M O D 1 TY •

21



Environment Division



ENVIRONMENT DIVISION ENTRIES

The Environment division may have two sections, the Configuration 
section and the Input-Output section. The Configuration section 
identifies the source and object computers. The Input-Output section 
(required in all programs that process input or output files) assigns 
files to input-output devices and may specify special input-output 
techniques.

Sample Environment division.

e n v i Ir o n  m ENT D 1 V 1SION 0

j i !

C ONFjl 6 UR AT 1 0 N SE CT 10 N .

SOURlCE-C O - W u T E R .
!l BM- 316 O- F 30 .
1..- 1 ...

o b j  e |g t  -C O M P U TER .
! 1 BM- 36 F 3 0 .
I

i n p u !t - o u TP U T S EC T 1 ON f
‘ 1 :

F I l e !-c o n TRO L m
ISELE CT P URCH AS 1N G-F 1LE

AS S 1GN T 0 'S Y S 0 1 5' U N I T- RECO RD 2 5 40R UN 1T .
ISELE CT P URC H ASE - R E P O RT-F I LE
1 A S S  1GN T 0 'S Y S 0 2 7' U NIT - R E C O RD 1 403 U N I T 0 :

' 1 .
1 -O-ICONT ROL .

Ia p p l Y LA ST-L I NE TO F ORM- OVER F LOW l !
ON P U R C H ASE - R E P O RT-F I LE .

(Continued on next page)

(7/67) 25



ENVIRONMENT DIVISION ENTRIES (continued)

System/360 model numbers. The Source-Computer and Object-Computer 
paragraphs may give a model number that consists of a letter followed 
by a number, for instance, F40. The letter designates the main core 
storage capacity of the computer, according to the following code:

C = 8,192 bytes G = 131,072 bytes
D = 16,384 H = 262,144
E = 32,768 I = 524,288
F = 65,536

The number that follows the letter designates the System/360 model. 
The ntimber 50, for example, means System/360 Model 50.

Assignment of files to input-output devices. Files are assigned to 
devices in the File-Control paragraph. For every file, there is an 
entry that selects the file by name, and assigns it to an "external" 
name and to a device.

JSELE CT P AYRO L L , AS S I GN T 0 S Y S 0 0 1 * u T 1 L I TY 2 31 1 UN I T . j

file
name

external
name

device device 
class number

• File name is the programmer-supplied name by which the file is 
referred to in the COBOL program.

• External name (always enclosed by quotation marks) is the name
by which the file will be identified on a job control card at the 
time that the object program is executed.

• Device class can be UTILITY, DIRECT-ACCESS, or UNIT-RECORD.
The UTILITY class is composed of machines that can read and write 
data sequentially —  magnetic tape, disk, drum, and data cell 
devices. The DIRECT-ACCESS class is composed of machines that can 
read and write data randomly —  disk, drum, and data cell devices. 
The UNIT-RECORD class is composed of printers and card read/punches.

• Device number is the IBM number of a specific device. For example, 
2311 means the IBM 2311 Disk Storage Drive. An exception to this 
rule is device number 2400, which stands for any of the magnetic 
tape units in the IBM 2400 series (2401, 2402, 2403, or 2404). 
Device number is sometimes omitted.

(7/67) 26



Data Division



DATA DIVISION ENTRIES

The most commonly used sections of the Data division are the File 
section and the Working-Storage section. The File section contains 
descriptions of the data files to be processed by the program, and 
descriptions of the data records in those files. The Working-Storage 
section contains descriptions of work areas and constants.

Sample Data division.

d a t a ! d i v 1 S 1 0 NY i !
11 : j

FI l e ! s e c T 1 ON . ; ! : |— -t! !
FD Ip u r c HAS 1NG-F 1 LE i j i ; ; i i j

Ir e c o RD 1 N G MO DE 1S F 1 i ; |: !
!l a b e L RE CORD S AR E OM 1 TTE D
Id a t a R EC ORD 1 S P URCH AS I N G-RE CORD • : j

i -_1 __ ! |
01 Ip u r c HAS 1NG-R ECOR D . ; 1

!02 COMM OD 1 T Y . f
1 03 NUMB ER P ICT URE 9(12 ) .

03 DESC R 1 PT 1 ON PICT URE X ( 30 );.
!02 PURC HASE * j I
11 03 NUMB ER PICT URE 9(8) # : s

03 DATE P 1 CT URE 9 ( 6 ) |
j02 UN 1 T S-PU RCHA SED P ICT URE 9(6) •
!o 2 UNIT -COS T P ICT URE 9(4) V9 9 . ] |
!02 TOTA L-CO ST P 1 CT URE 9(6) V99 . i ■ i | {
l02 CARD -COD E P ICT URE X ( 4 ) ' ! I 1 j

(Continued on next page)

28



!

DATA DIVISION ENTRIES (continued)

Sample Data division (continued).

FD Ip u r c h a s e -REP 0 R T - F I LE
Ir e c o RD 1 N G MO DE 1S F
Il a b e L RE CORD S AR E OM 1 TT E D
Ida t a REC ORD 1 S P URCH ASE- REPO RT-L 1 N E .
|

01 Sp u r c HA S E-REP ORT- L 1 NE
|02 F 1 LL ER P ICT URE X ( 1 0 ) .
|02 COMM OD 1 T Y-NU MB ER P 1 CT URE 9(5) B 99 B 9(5) .

|02 FILL ER P ICT URE X (6) •
|02 COMM OD 1 T Y-NA ME P 1 CT URE X { 30 ) .
!02 FILL ER P 1 CT URE X ( 6 ) •
!02 PURC HASE -DAT E P I CT URE 99B9 9 B 99 •
Ï02 F 1 LL ER P I CT URE X ( 4 )
|02 QUAN T 1 TY P ICT URE Z,ZZ z,zz 9 .
k)2 F 1 L LER P 1 CT URE X ( 6)
!02 COST -PER -UN 1T P 1 CT URE $ $ , $$$ . 9 9 .
!o 2 F 1 LL ER P 1 CT URE X ( 4) •

|02 PURC HASE -COS T P 1 CT URE $$ ,$ $$ , $ $$ .9 9 .
!0 2 F I LL ER P 1 CT URE X ( 14 ) .1. 1

w o r k !i n g - STOR AGE S ECT 1 ON .1
77 So l d -NUMB ER P ICT URE 9(12 ) .
77 1QUAN T 1 TY -TOT AL P 1 CT URE 9(7) » VA LUE ZERO •

77 Ip u r c HASE -COS T-TO TAL P ICT URE 9(7) V 9 9 .
VALU E ZE RO .

(Continued on next page)

(7/67) 29



DATA DIVISION ENTRIES (continued)

Another sample Data division/ with entry types identified.

fi le
description

entry

record
description

r
descriptions

of
independent

items

L

record
description

d a t a ! d i v IS 10N .

item
• description 
■ entries

^__I

^__ I
, 1

ii
f i l e ! s e c f 1 ON .

FD Is T O CK-TR ANSA CT 1 0N-F 1LE
Ire co RD ING MO DE 1S F
Jb l o c K CO NT A 1NS 40 RE CORD s
',L ABE L RE CORD S AR E ST AND A RD
‘DATA REC ORD 1 s sTOCK -TR A N SAC T 1 ON
i

01 ISTOC K-TR ANSA C T 10N.
|02 STOC K-NU MB ER .= 1 ! 1 0 3 D 1 ST R 1 BU T I ON -CEN TER , PIC TURE 99 ." 1 1 1 03 C ATA LOG- NUMB ER.1 0 4 CONT ROLL 1 N G - PART Y, P 1 CTU RE 99 9 .

: | M 04 ACCO UNT- NUMB ER, P 1 CT URE 9 (6)
0 4 SHIP PING -COD E , P 1 CTU RE 99.

!0 2 DATE •
03 YEAR , pi CTUR E 99

1 03 DAY, P 1 cTURE 999 /
|02 TRAN S ACT 1 ON- CODE , p| CTUR E X. ! ^— 1
,'0 2 QU AN T 1 TY , P 1CTUR E 9 (6 ) . -— 1
|0 2 UN 1 T -VAL UE , P 1 CT URE 9(4) V9( 3 ) . : ^-- 1
1
a

w o r k !i n g -STOR AGE SECT 1 ON .i
77 !p R 1 0 R 1 TY -LEV EL, PICT URE 999, VAL UE 401 . i ----1' : 1 1
7 7 IsUM- OF-U N I TS , PI CTUR E 9 ( 7 ), VALU E ZERO. ^-- 1
! 1 ;. i
7 7 ‘JOTA L" VA LU E , P 1 cTURE 9 ( 6 ) V9( 3) , VALU E ZE RO . ^--1

f
7 7 JPREV 10 US - STO CK - NUMBE R, P I.CTU RE 9( 1 3 ) ^--1

i :
0 1 !s UMM AR Y . i ^--1

10 2 STOC K-NU MB ER i pi CTUR E 99 B 9 99 B 9 ( 6 ) B 9 9 9 : ^--1
|02 FILL ER, PICT URE XXXX , VA LUE SPAC ES. --1
!02 TRAN SACT 1 0 N -TY PE , pi CTUR E A (20 ) . ^
!o 2 FILL ER, PICT URE XXXX , VA LUE SPAC ES . ◄-- 1
to 2 TO T AL-QU AN T 1TY , P I C T URE NNN z, zz Z . ^--1
to 2 F I L L ER, P 1 CT URE XXXX VA LUE SPAC ES . ◄--1
!o 2 TRAN SACT 1 ON- VALU .1.̂ p 1 CTU RE $ mNNN z z z .9 9 . --- 1

(7/67) 30



SYSTEM/360 COBOL TERMS FOR UNITS OF DATA

Item: an area used to contain data of a particular kind. (In general,
an "item" is the same as a "field".)
Group item: an item that is composed of smaller items.
Elementary1 item: an item that is not composed of smaller items.
Independent item: any item that is not a record and not a part of a 
record. Must be an elementary item. Used as a work area or to contain 
a constant.
Data record: the most inclusive item, usually (though not always) a 
group item comprising several related items. Sometimes spoken of as 
the "logical record". (Whenever the term "record" is used in COBOL, 
data record is implied —  unless label record is specified.)
Label record: a record that contains information about a file.
Label records are normally written in files stored on magnetic tape 
or direct-access devices. Some files (such as card files) do not have 
label records.
Block: a unit of data, containing one or more data records, that is 
transferred to or from main storage at one time by an input-output 
device. Sometimes spoken of as the "physical record". When data 
records are stored on magnetic tape or direct-access devices, each 
block generally contains more than one data record.
File: a collection of related data records. The records in a file 
may have the same or different lengths and formats.



PILE DESCRIPTION ENTRY

For each file, there is a file description entry in the File section 
of the Data division. The entry consists of a level indicator and the 
file name, plus clauses that describe how many records or characters a 
block contains, how many characters are in a record, what the recording 
mode is, whether there are label records, and what data records are in 
the file. The file description entry will be followed by a record 
description for each type of record in that file.

FD« JPRODuCT USA6rar lIe 1—“1 ! i 1 ! !. ii 1 |
1 1 ! iRIEiC0RD1N6 tooDE 1s V ! ' ! ! i j 1 ; • I

! i ! IbLIocK C0NtIa1NS ||8 REC0RDs ! \ ' ' ! f ! i | !1 i
i 1 : IreIc0RD CONTA1 NS 5(2 T̂0 1306' CHA RACteirIs 1 i 1 i ! iiIlab£L RECORIDS ARe! 's!tAN DARD ! • > ! : 1 iI ! 1 1f ; l

Id a t a RECORD 1 S PR 0 DUcM-uSAGE-RECORD . ITT ! : ;
Level indicator. File description entries always begin with a level 
indicator. A level indicator is a special, two-letter reserved word. 
The level indicator that is used most often is FD, which stands for 
File Description.
File name. The programmer-supplied name of the file always follows 
the level indicator.

(Continued on next page)

32



FILE DESCRIPTION ENTRY (continued)

RECORDING MODE clause. The RECORDING MODE clause specifies whether the 
recording mode in this file is V, F, or U. The clause may appear as 
RECORDING MODE IS U, but it can also be abbreviated to RECORDING MODE U, 
or simply RECORDING U. The clause may be omitted when the recording 
mode is V.
• "Recording mode" means the same as "data record format”. The 

three permissible recording modes are V (Variable length),
F (Fixed length), and U (Unspecified length).

• Recording mode V is the only mode in which blocks of two or more 
variable-length records can be handled. However, it is also 
possible to have just one record per block and to have fixed 
record lengths in this mode. The distinguishing feature of mode V 
is that each data record includes a record-length field and each 
block includes a block-length field. These fields are not 
described in the Data division, because provision is automatically 
made for them.

• In recording mode F, all of the records in a file are the same 
length. Blocks may contain more than one record, and there is 
generally a fixed number of records per block. In this mode, 
there are no record-length or block-length fields.

• Mode U records may be either fixed or variable in length; however, 
there is only one record per block. There are no record-length or 
block-length fields.

BLOCK CONTAINS clause. The BLOCK CONTAINS clause tells either how 
many records are in a block, or how many characters are in a block.
When the number of records per block is given, the clause may appear 
as BLOCK CONTAINS 25 RECORDS, or simply BLOCK 8 RECORDS. If the 
number of records in a block varies, the clause tells only how many of 
the longest records would form the longest possible block. The clause 
may be omitted when there is only one record per block.
When the number of characters per block is given, the clause specifies 
the number of bytes that the longest block will occupy in storage.

(Continued on next page)

33



f i l e DESCRIPTION ENTRY (continued)

RECORD CONTAINS clause. The RECORD CONTAINS clause specifies how many 
characters are in the longest data record in the file. More precisely, 
it specifies how many bytes the longest record will occupy in storage, 
for instance, RECORD CONTAINS 140 CHARACTERS. It may also give the 
range of record sizes, as RECORD CONTAINS 82 TO 540 CHARACTERS, or in 
abbreviated form RECORD 80 TO 160. This clause may be omitted, since 
the compiler can determine the size of records from the record 
descriptions.

LABEL RECORDS clause. A LABEL RECORDS clause is required to appear in 
every file description entry. The clause may indicate that label 
records are standard, it may give a name for label records, or it may 
state that label records are omijbted.
• When the clause states that LABEL RECORDS ARE STANDARD, it means 

that the labels have the standard System/360 label format. In this 
case, the labels are checked or created automatically, and the 
label records are not described in the COBOL program.

• When a name is given, for example, LABEL RECORDS ARE 
BALANCE-TOTALS, it means there are user labels in addition 
to standard labels. Such additional label records are 
described in the Linkage section of the Data division
(not in the Pile section), and are processed by "declarative" 
procedures (separate from the main body of the Procedure 
division).

• LABEL RECORDS ARE OMITTED means either that the file has no 
labels at all (as in the case of a card file), or that the 
file has non-standard labels. (As a rule, non-standard label 
records are treated as if they were data records. Each label 
is defined as a separate file, described as a record in the 
File section, and processed in the main body of the Procedure 
division.)

DATA RECORD clause. The DATA RECORD clause gives the name of each 
different kind o£ record in the file. For example, DATA RECORDS ARE 
SALES, RETURNS, PAYMENTS, CHARGES. There must be at least one kind of 
record in the file, and there may be several kinds, so this clause 
appears in every file description entry. Below the file description 
entry, there must appear a record description entry for every record 
that is named in this entry.

34



RECORD DESCRIPTIONS

At least one record description will be found below each file description 
entry. A record description is written for each type of record in the 
file; for example, if a file contains four types of records, there will 
be four record descriptions below the file description entry.
A record description shows the structure of the record: the order in 
which items appear in the record, and how the items are related to each 
other. For every item, there is an item description entry that begins 
with the level number of the item.

01 Ip u r c H A S  1NG .
— .. f—

!02 A C C O U N T  . ’ ; 1 * ! f
i . ; ;
i 03 C A T E GOR Y j j ! P ICT URE XX . j i I ; 1 j

03 N U M B ER PICT URE 9(6) •
!0 2 ! sIt a t U S - C ODE P'1ICT URE X . ; ■ ;

l l 1

102 T RAN S A C T 1 ON. ! < ! f j j
; u 0 3! i V E N D OR . i !!
i ■ j j 1 j

04 NAM E P 1 CT URE X ( 25 ).,! • : j
i j 04 NUMB ER PICT URE 9(6) • ! i j

0 3 P U R C HA S E • ‘ ’ 1
j J - ! S i ! 04 DATE • i J ;

: ! i j _ L ! 1 ! ! * ^ I ! 1 05 MONT H PICT URE 99 . i *
; ’ ; |

05 DAY P 1 CT URE 99 .
05 YEAR PICT URE 99 .

04 AM0U NT PICT URE 9(4) V99.
• Record descriptions always begin with an entry for the level 01 

item, which is the record as a whole. Usually, the record is 
subdivided, and entries for items that make up the record appear 
below the level 01 entry.

• The item description entries are made in the order in which 
items appear in the record.

• An entry for a group item is followed by entries for the items 
that make it up. A group item comprises all the items described 
under it, until a level number equal to or less than the level 
number of the group item is encountered.

• Item description entries are usually indented to help the reader 
comprehend the structure of the record. The entries for each 
level are indented more them the entries for the preceding 
level. Indenting is not required, however.

• Level 88 (condition name) entries may appear in a record 
description. These are not item description entries, and can 
be ignored when the structure of a record is being analyzed.

• Sometimes a record is treated as an elementary item, with no 
subdivisions. In such a case, the level 01 entry is the only 
item description entry in the record description.

35



ITEM DESCRIPTION ENTRIES

There is a separate item description entry for each item. An item 
description entry always begins with a level number, followed by 
either a name or the word FILLER, and usually includes one or more 
descriptive clauses that begin with words like USAGE, PICTURE, VALUE, 
OCCURS, or REDEFINES.

SALA rIyU P 1 CT UWE! S 9 ( 5 ) V 99 . COMPUt AT 10NAL-
V___________________________________________________________________ )

item description 
entry

Level number. A level number is always the first element found in an 
item description entry.
Level number 01 indicates that the item is a record. A record is 
generally a group of related items, but it may also be an elementary 
item.
Level numbers 02 through 49 are used for items that are subdivisions 
of records.
Level number 77 identifies an independent item, which is an elementary 
item that is not related to other items. An independent item is not 
a record, and not part of a record. Level 77 items are found only in 
the Working-Storage section.
Level number 88 designates a condition-name entry, which strictly 
speaking, is not an item description at all. Instead, a condition- 
name entry gives a name to one of the values that the preceding item 
can assume. Level 88 entries are found after elementary items only; 
however, sometimes there are two or more consecutive level 88 entries 
after one elementary item.

0l3i i s|h| 1 PMEINTS'—TI-( 1 Is—M ONTH .̂21 CT U!RE| !9![4]) .
leve l 
number

(Continued on next page)

36



ITEM DESCRIPTION ENTRIES (continued)

Name or FILLER. Every item description entry contains either a 
programmer-supplied name or the reserved word FILLER, following the 
level number.
A name is a data name if it follows level numbers 01-49 or 77; or it 
is a condition name if it follows level number 88.
FILLER may be found in place of a name, following level numbers 01-49. 
FILLER is not a name, and therefore, cannot be used to refer to an item 
in a procedure. It is used in descriptions of items that will not be 
referred to, usually because the items will not contain any information, 
or because the information will not be processed.

data
name

condition
names

\
i : \az' s!c !o 1r E 1 ƒ  j T I T P ICT URE 9 99 . I !

I !

—j— j -r ■
! j

1 : ; i 8 8 1' L O W — LI Ml t  1 i VALU E 06 0 . ! ! I 1 I \ \ \

J ' i i 8 8 HIGH - U 1 M IT i VA L U E TO 0 . i ! i 1 |

!02 F I L L ER 1 1 ! 1 i • PICT URE XX . ! 1 ! 
—,— j— u-

1 iH-i-
t

FILLER

(Continued on next page)

37



ITEM DESCRIPTION ENTRIES (continued)

USAGE clause. The USAGE clause indicates the code that will be used 
to represent data that is stored in the item. It may be found in 
descriptions of both elémentary and group items. The usage that is 
specified for a group item applies to all of the items in that group.
The words that specify usage are DISPLAY, COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, and COMPUTATIONAL-3. The word 
USAGE, or the words USAGE IS, may also appear in the clause, but these 
words are optional and generally not written. So if an item's usage 
is computational, the usage clause will probably consist of the single 
word, COMPUTATIONAL, but it may also be USAGE COMPUTATIONAL, or USAGE 
IS COMPUTATIONAL.
The word DISPLAY is also optional, and is often not written. The 
usage of an elementary item is assumed to be display if some other 
usage is not specified for it or for any group item that it is part of.

USAGE olauee
f---------  --------- 'V

I ; l a MINI MUM- BALA T "1 " NCE CioMPUTAT 1 0 N AL —3i ! 1 P 1 CT URE S 9 ( 5 ):. : i

What the usage words indicate:

If the usage is Then the data code is Which means that

display external decimal --
also called BCD (binary- 
coded decimal), or EBCDIC 
(extended binary coded 
decimal interchange code)

one character is stored in each byte of the 
item; if the item is used to store a number, 
the rightmost byte may contain an operation­
al sign in addition to a decimal digit

computational binary one binary digit is stored in each bit of 
the item, except the leftmost bit, in which 
the operational sign is stored

computational-1 internal floating-point, 
short (full word) format the item has a special format designed for 

floating-point arithmetic operations; 
part of the item is stored in binary code, 
and part in hexadecimal codecomputational-2 internal floating-point, 

long (double word) format

computational-3 internal decimal --
also called packed 
decimal

two decimal digits are stored in each byte 
of the item, except the rightmost byte, 
in which one digit and the operational sign 
are stored

(Continued on next page)

38



ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause. PICTURE clauses are found only in descriptions of 
elementary items. They are required for all elementary items except 
those whose usage is computational-1 or comput.ational-2. (These 
floating-point items are not given pictures because they have a definite 
storage format.)
A picture always tells how many characters will be stored and what 
kinds of characters they will be. The characters that an item will 
contain are represented by picture characters such as X, A, or 9.
The picture character 9, for example, represents one decimal digit; 
so, the picture 999 stands for three decimal digits.
In addition to characters with symbolic meanings, pictures often 
include numeric literals (unsigned whole numbers only) enclosed in 
parentheses. Such numbers are a shorthand way of repeating picture 
characters. The number in parentheses tells how many consecutive times 
the character in front of the parentheses is repeated; in other words, 
X(6) is another way of writing XXXXXX, and S9(9) means the same as 
S999999999.

PICTURE clause

So 2 Y - T - D - D E MAND CO MPUT AT I 0 N AL . P 1C TURE S 9 ( 6 ) V9 9 .

How to identify an item from its picture.

If the picture 
contains

and also 
(possibly) For example' • • • Then the item 

is called And will be used to store

one or more Xs V  V  Y alphanumeric characters of any kind;AAA letters, digits, special
characters, or spaces

one or more As A ( 35 ) alphabetic only letters or spaces

one or more 9s, S numeric only digits, and possiblybut no editing V S9 ( 7 ) V99 an operational signsymbols P

one or more 9 report numeric data that is
editing symbols; V $ z z ,Z Z Z .99 edited with spaces orZ * $ P certain special characters, DB CR when the data is moved+ i o w into the item

an E, + external a decimal quantity in an
in addition _ + . 9 ( +LÜoo 99 floating-point edited floating-point
to 9s # format that includes

V spaces or certain special
characters

Note: Pictures of all kinds of items may contain numbers in parentheses.

(Continued on next page)

39



ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause (continued)
What some common picture characters mean.

X Each X stands for one character of any kind —  a letter, digit, special character, 
or space. The picture X(12) indicates that the item will contain twelve characters, 
but gives no indication of what characters they will be? all twelve could be spaces, 
or all could be digits, or there could be a mixture of various kinds of characters.

A Each A stands for one letter or space.

9 Each 9 stands for one decimal digit. Numbers are always described in terms of the 
decimal digits they are the equivalent of - even when the data code is binary.

S S indicates that the number has an operational sign. An "operational" sign tells the 
computer that the number is negative or positive? it is not a separate character that 
will print as "+" or

V V shows the location of an assumed decimal point in the number. An "assumed" decimal 
point is not a separate character in storage.

P Each P stands for an assumed zero. Ps are used to position the assumed decimal point 
away from the actual number. For example, an item whose actual value is 25 will be 
treated as 25000 if its picture is 99PPPV? or as .00025 if its picture is VPPP99.

How picture and usage are related. Certain combinations of picture and 
usage are not compatible. For instance, an alphabetic item cannot 
possibly be computational, because letters cannot be represented in 
binary; this item —  in fact, any item that will store letters, spaces, 
or special characters —  must have display usage. Therefore, the 
following kinds of items can only have display usage: alphanumeric, 
alphabetic, report, and external floating-point.
Digits, on the other hand, can be stored in any data code; so numeric 
items can have any usage: display, computational, computational-1, 
computational-2, or computational-3.
Conversely, these rules mean that a display item might have any kind of 
picture; but-that an item with other than display usage can only have a 
numeric picture. (Except that computational-1 and computational-2 
items have no pictures at all.)

(Continued on next page)

40



ITEM DESCRIPTION ENTRIES (continued)

VALUE clause» The VALUE clause consists of the word VALUE, or the 
words VALUE IS, followed by a literal.
This clause is mainly used to assign initial values to certain 
elementary data items, in particular, to constants. The value assigned 
to an item remains constant during the execution of the object program, 
unless it is changed by a procedure in the program. (This use of the 
VALUE clause is permitted in the Working-Storage section, but not in 
the File section.)

77 T R T Sc0uNT 1 ] I
,! ,US

... »"
a'ge1 cO M putIat 1 ON Al J I T

i I iPI cTuRE SV99 ;va Lute • c>y. ! i ! ! !
'----- ~ '
VALUE clause

A different use of the VALUE clause is found in level 88 (condition- 
name) entries. There the clause specifies the data value which the 
condition name will represent. (This use of the VALUE clause is 
permitted in both the File section and the Working-Storage section.)

■ ■ 0
—i
3 SUBC R 1 PT 1 ON- BAS 1S, P 1 CTU RE XT 7 T• ’ j i i

i * i. . .. i..-L-
—T“88 REGULAR, VAL UE ' 1 \J ! - { j

VALUE clause

OCCURS clause. An OCCURS clause indicates that an item is repeated 
with no change in its usage or picture. It specifies the number of 
times the item is repeated, for instance, OCCURS 100 TIMES, or just, 
OCCURS 100. OCCURS clauses are used to define groups of identical 
items that will store related information, such as data tables.

!0 2 SCOR E, P 1 CTURE S9 99 t i i i i ; 1 i !
; 1 1 ; '' I t ' COMPUTAT IONA L —3  , OCCURS 50 T 1 MES • ; ( i j

V_________ _ __________ J
OCCURS clause

(Continued on next page)

41



ITEM DESCRIPTION ENTRIES (continued)

REDEFINES clause. A REDEFINES clause signifies that this entry gives 
another name and description to an item that was just previously 
described. The word REDEFINES is written right after the data name, 
and is followed by the name of the item that is being redefined.
When an item is redefined, a new area of storage is not set aside for 
it; instead, the same area of storage may be called by this name as 
well as by the previous name. Redefining is done when different names 
or descriptions are desired for the same item, for instance, when the 
item may hold different kinds of information, or may be processed in 
different ways, under different conditions.

"ACCOUNT" is being 
redefined.

/
: | !o2 | /\ c C0UNT 1 jP1CTURE 9

(17 )• —-]——i ;
; ' io2 l-EDGER REDEF 1 NES |A o o 0urJT fk cTURE_XL 7 )!.

V___________  ___________ )
REDEFINES clause

"LEDGER" will occupy the same 
storage area as "ACCOUNT"

42



Procedure Division



PROCEDURE DIVISION ENTRIES

The Procedure division generally consists of a series of paragraphs, 
which may optionally be grouped into sections. Each paragraph has 
a programmer-supplied name, and may contain a varying number of 
entries.

Sample Procedure division.

p r o c Je d u r
—1— f— f-
e; d iV 1 S 1oW.i. ] T r ! \ i ! — !— i—r-I i i —f.T 1

i • i 
1 ! * : ! 1 !j l \ i f 1 i 1 j 1 i T

BEG ||n N 1 N G-O F - J O B • • * \ \ !
IOPEN 1 N P UT P U R C H AS I N G-F 1LE.

- \ i ! 1 ! j

! iOPEN O UT PUT PURC H ASE -REP ORT- F 1 UE • ; * 1
iMOVE ISPA CES TO P UR C H A S E - REPO R T-L 1 NE .
Jr e  a d IpiU-RC HAS 1 NG- F 1 LE » .1

j 1 | \
1 : ! i A T 1 !e ND , GO T 0 EN D-OF -JOB • ;

; i i I l t j
j H  | ; \ \ l | | ■■t.rr ! ! ‘ ; ! j Ï  1

DETAll L-P r!o c e S S 1 N G . ! ! j 1 i | ; j | i j ! !

{m o v e N UM BER OF C O M M O D 1 TY TO OLD - N U M B ER,1 ! M
c o r n OD 1 T Y-NU M B ER • ; i 1 j

Im o 'vIe \p\ês CRIP T I ON OF COMM 0 D 1 T Y TO j | j 1

I • i ■ M  
: ' 1 - . : C O M M OD I T Y - N A ME . * '* i . !

|MOVE DAT E OF PUR CH A S E TO PUR CHAS E;-:DA T E •
IMOVE UN 1T S - P URCH AS ED TO QUAN T 1 T Y 1 ? 1

IMOVE UN 1T - C O ST T o o o S T - P ER-U NIT. ’ ; 1 j

{MOVE TOT A L-C OST TO P URCH ASE- COST 1 . !

Sa d d U*N 1 T S-P U R C H A SE D TO Q U ANT i t !y !-T O T A u.l
!a d d T O T A L - CO Sit- !t oi P U RCH A

a1UJ(/) O'STi-T O T  A l M
!l F L AjSiT:- L 1 NE J WR i W e I p|u!r c HASE -R E P O R T - L IN E

■ i : J s j ! a !f |t Ie R AD V AN C 1 N G ol si E iJsie WR 1T
! ! ' 

E : i "j |
: ! ! • ; 1 P-UiRiCH ASE - rIe p o Ir M - L* 1 NE AjFiT

<QCLÜ D VAN c i InG 1 9

(Continued on next page)

44



PROCEDURE DIVISION ENTRIES (continued)

Sample Procedure division (continued).

*
R E A d !-N E X T — CA R D7 i rr! —r-i—r—1 ! ! j i \ i > ! |

!r E A D P U R C H!A!S i 5n!g - f 'i'Ue t, ! :
]— p
: j 1

1
1 A T E ND , g W  t

I ! |
0 EN D-OF — jJOB • ! ‘ i * i ! i | j

;iF N U M B E R OF CON M'OD 1TY 1 s NO T EQ UAL T O |
l1 0 L D - N U M B ER j_ P E R F ORM TOTA L - R O UT 1 N E.

* | |
1

;g 0 T 0 D E •Ha i |l — PRO C E S S 1 NG . I I i 1 ! ] J
i
1

—i—\— s ; ; ; ? 1 ! S 1f 1 f j j

T 0 T AjL R 0 U T 1N E ; ; - : ; i i
JMoV E S PA CES ! TO i p U R C H A S E - REPO RT-L 1 NE . |
M 10V E Q U A NT 1T Y;j-Mo TAL TO Q U AN T 1 TY . j
MoV E P U R CHA S E -ScjoS T - T OTAL TO PU'R'C HA S E - C O S T v  :

I MoV E Z ER
1 ! 

o s ■T
-f
0* !q|u ANT 1TY-T OTAL 1 ! ; :

! M  ! | P u R C H A S E — iCOS t 1—|t|o TiAiLI. ! j : 1 ‘ . j
!wR 1T E P U RC-HA S;EHR E P O R t !H l! 1 NE A F TER ADV A NC ING 1

i(• *
1 J

i ! !
1; i

!!_1_ s i !! 1 ! ! s • < ! ! ; • ^ J ; : !

E N D - j o F— J 0 B • f } :i f ■; i  ̂Ï \ j } ! : 1 } 1 1

jpE R F 0 R M T O T  A L RO UT 1 N E . 1 * ' j > i 1 s

!cL 0 S E P U R C H A S I N G - F 1 L E, P URCH AS E- R E P O R T - F 1 LE ; • j
!d iS P L A Y 1P U R C H AS E RE POR T FIN 1 SHE D ' ! j i { j
11 U P 0 N c0 N S 0 ÜE J i 1 i 1 il f !
Ss T 0 P R U N • | i l l .

i I !
i 1 I .. ! | S i i ! ! | i 1

45





PROCEDURES

A procedure is a paragraph or section in the Procedure division. 
Procedurescontain two kinds of entries: header entries and sentences. 
Hence, any entry (in a procedure) that is not a header is a sentence.
A sentence, in turn, is composed of one or more statements that specify 
actions. Most statements begin with a verb that indicates the action 
to be taken (for instance, MOVE, ADD, READ, GO, or STOP); some 
statements begin with the word IF, which calls for the testing of a 
condition.
• The shortest procedure is a paragraph consisting of a header 

entry and one sentence.

I IN i hr! i Ia Il I i MlO'V E "z Ië Ir 0  iCIO nMrIoIü —It IöIï iL.

• A longer procedure may contain several sentences. The paragraph 
header may optionally appear on a line by itself.

1NS T —N EW R eio o Ir D ,. i 1 —r-1-i!
—r—f-i—

1 1 ! 1

0 V E CA R D - R E CORD T o oM lip U T - R e |c OR D .

. j 1 SW
i

i T E 0 UT’PUT - R E C O R D . i ; ] 1 1 i | j
!r e A D CAR D - F  1 L E \ 1 ! !

f ‘ 1 i
..; : i { . A T E ND U GO T 0 F I N 1 S H -RiUiN 1• ' i !

!©o T 0 T E S T - R ECOR D -C O O B  j "TIT | T—4—

• A sentence may contain only one statement (as in the above 
examples), or more than one statement (as shown below). •

Jmove > m !o EMPL b Y t eU m olvB f ; I ! i
!soc iA Lj- SECURI !T'Y!- NUMB „h-q:LÜ o! a!cclo UN IL L
!a d d | 1 T 0 NUMbIeIrI o!f! !tRANSaIcMi 0 N S; . [

• Every procedure has a programmer-supplied name, which is 
given in the header entry. This name is used to refer to 
the procedure, for instance, when specifying a branch to 
the procedure.

47



PROCEDURAL WORDS

The most commonly used actions are listed below, alphabetically.
The function of each word is summarized, and a sample sentence using 
the word is given.

ACCEPT. Input. Obtains up to 80 characters of data from the system 
input device (which might be a disk file, tape drive, card reader, etc.), 
or up to 72 characters from the console keyboard. Used to read low- 
volume data, such as information needed to initialize program switches, 
balance totals, or serial numbers. Not used to read files of data 
(see READ).

Ia c c e

i-CL C O N T R O L - 1N F OR
1

M A T 11ON. 1 ! 1 —,— ..-i— 1 il

ADD. Arithmetic. Adds two or more numbers. Puts the sum into the 
data item named after the word TO, unless there is a GIVING clause.
If GIVING is specified, the sum is put into the data item named after 
the word GIVING, and it is edited according to the item's picture; the 
value of this item is not added. (Numbers can also be added by using 
the verb COMPUTE.)

!a d d RE GU L A R - PAY , OVE R'T! 1 M E-PA Y|i| B O N U S
—1 
« 1 1

i > ;. .1-GIVI NG T OT A L -EA R NED . ; 1 S ! !1 ! 1 2 ! \ ! i ii j

CLOSE. Input-output. Terminates the processing of one or more data 
files. Such actions as checking and creating end-of-file labels are 
done automatically when a file is closed. Used after processing is 
finished for any file that was opened (see OPEN).

■CL OS E OL D - M A STER -F I L N EW-M AST E R - F  ILE

COMPUTE. Arithmetic. Computes the value of the data item, literal, 
or formula written to the right of the equal sign; and puts that value 
into the item named after the verb. Can add, subtract, multiply, 
divide, or exponentiate numbers; or combine these operations.
(May be used in place of the other arithmetic verbs: ADD, SUBTRACT, 
MULTIPLY, DIVIDE.) Edits the result according to the receiving item's 
picture.

i 1 ! IdoWpijt]e W i It |h HC) l |c) 1 tJG rAbc! =i .1 si M ( G RIC)S s

; ; 1 I.,! 1.1JUME) E rI-!o F--DE:pe:n DE: N TS to ;im i l T T  — > ■■■■*.

(Continued on next page)

48



PROCEDURAL WORDS (continued)

DISPLAY. Output. Puts data out on the system output device (which 
might be a disk file, tape drive, etc.), for printing later. Can also 
punch out data, or type it on the console typewriter. Data displayed 
cannot exceed 120 characters when put on the system output device, but 
cannot exceed 72 characters if punched or typed. Used for low-volume 
output, such as exception records or messages to the operator.
Not generally used to write files of data (see WRITE).

j 'D 1 Ispl Ia Iy I
, ■ ? ! REC o JO Ö nW bER •' J 1 1 ITE mhn u

— j—H-
MB'ER!

- U ' i l l  —u . - i U '1 Ills —!-1-1— OUT OF— 1— i— SEQU ENCE '! ulp— r->—i— o!n 1cONSOL E . —H

DIVIDE. Arithmetic. Divides one number into another. Puts the quotient 
into the data item named after the word INTO, unless there is a GIVING 
clause. If GIVING is specified, the quotient is put into the data item 
named after the word GIVING, and it is edited according to the item's 
picture? the value of this item is not used in the division.
(Numbers can also be divided by using the verb COMPUTE.)

j !d i v iDjE !NUNI BE R-OF - S TU D ENT S IN TO
1 ! ! j | j

| ! h s|um I-O F - A LL-G R A D E S . G IVIN G
! a|v e Ir A G E - GRAD E.

GO TO. Sequence control. Causes a branch to a procedure in the program 
The normal flow of control is resumed at the beginning of that procedure 
(Contrast with PERFORM, which causes a return branch as well.)

.610! ONGIE THRiE CORD

IF. Sequence control. Causes alternate paths of action to be taken, 
depending on whether it finds the description of a data condition to 
be true or false when it evaluates the data. The word IF is followed 
by the description of the condition, followed by the actions to be taken 
if the description of the condition is true. Then, optionally, may 
come to the word ELSE or OTHERWISE, followed by the actions to be taken 
if the description of the condition is false.

!iH d E M A N D 1 S GRE A T E R THA N ST OCK - O N - H AN D ,
; m  ;! A D D D E M A ND T 0 BA CK — 0 RDER s, ; l i I ; ;

; (I 1 j M 0 V E BAC K- O R D E R E D TO ACT ION- C O D E i 1 i •  :
! I ;

i i ! !o t  h E RW 1S Ei.i • ■ i i : : . 1 ;
1 j 1 1 I I S U BT RiAOT DEM A N D FROM STO C K — 0 N - H A n ;d ,( '

! 1
L MO V E ORD ER-F 1U l:e D TO ACT ION- C O D E .! | ! ; i 1

(Continued on next page)

49



PROCEDURAL WORDS (continued)

MOVE. Data movement. Moves data from one area of main storage to 
another. Converts the data (for instance, from decimal to binary) if 
required to fit the description of the receiving item. Edits the data 
(inserts, deletes, or replaces characters) if the picture of the 
receiving item calls for it.

1 W;0V E c u R R E NT _ B A L A N C E rb! AMOU NT - D
1 '!— r-

UE 1N
— ! 1.]

i n c u s T 0 Mf b — B 1L L • ! 1
! ’? ; | |

MULTIPLY. Arithmetic. Multiplies one number by another. Puts the 
product into the data item named after the word BY, unless there is a 
GIVING clause. If GIVING is specified, the product is put into the 
data item named after the word GIVING, and it is edited according to 
the item's picture; the value of this item is not multiplied.
(Numbers can also be multiplied by using the verb COMPUTE.)

W u L T 1P L Y q !u Ia n !t
•—i 
i
r-
T Y! >BY UN 1T-CO S;T;,i T T T 1

1
_L— G 1V 1N g I E x |t |e !In d e Id - c IossIt 1 \ j • - ; ! 1 1 ! i j

NOTE. Program comments. Allows programmers to write explanatory 
sentences which will be printed in the program listing, but which 
serve no other purpose during compilation. A note can be any length 
and can contain any words or characters. If NOTE is the first word of 
a paragraph, all of the sentences in the paragraph are treated as notes.

In0TE — — TH1S rIouT 1 N E :cdM PUTE S THE 1Q* 9j1
1| FUDGE FA o —r Ö RJ USED j 1N DEt:e-r|m 1N1NG 1
1—L— RE0RD---1ElR! PO 1 jNTS FO R YV1 D G 1tsT | |

OPEN. Input-output. Makes one or more data files ready for reading 
or writing. Input files are named after the word INPUT; output files 
after OUTPUT. Such actions as checking and creating beginning-of-file 
labels are done automatically when a file is opened. Opening does not 
make input records available for processing; a READ statement is 
required for that. A file must be open before a READ or WRITE 
statement can act on it. (See READ, WRITE, CLOSE.)

(Continued on next page)

50



PROCEDURAL WORDS (continued)

PERFORM. Sequence control. Causes a branch to a procedure or series of 
procedures, and following their execution, a return branch to the state­
ment after the PERFORM statement. Sets up the linkage for procedures to 
serve as closed subroutines. Also used to control the execution of 
loops. (Contrast with GO TO, which causes a branch but not a return.)

iPE r!f ►iR.M)
—t —r i I 
Pi I S C iuNET ■CAL UlLiA T I ON

READ. Input. Makes a data record from an input file available for 
processing. For sequential files, such as tape and card files, the 
READ statement contains an AT END clause, which specifies actions that 
are to be taken after the last record of the file has been processed.
A READ statement is valid only if the file is open (see OPEN).

1 A D B E A M — L 0 a !d IN G -IF iU e •v I |_1_ 1 j

! ! A T E ND . G O 1 T 0 !c L o CO E -
f 1 1

FillÜEs1 • 1 1 T !

STOP. Sequence control. Stops the execution of the object program, 
either permanently or temporarily. If STOP is followed by the word RUN, 
execution is stopped permanently; this would be done at the end of the 
job, or when a serious data error made it impossible to continue the 
run. If STOP is followed by a literal, such as a message to the 
operator, the literal is typed out and then execution is delayed until 
the operator takes required steps; execution is resumed at the statement 
after the STOP statement.

,'SlTi UN

SUBTRACT. Arithmetic. Subtracts one or more numbers from another 
number. Puts the difference into the data item named after the word 
FROM, unless there is a GIVING clause. If GIVING is specified, the 
difference is put into the data item named after the word GIVING, and 
it is edited according to the item's picture; the value of this item 
is not used in the subtraction. (Numbers can also be subtracted by 
using the verb COMPUTE.

IsUBT R A C T
— —— 
SAjV 1N GS —Ib|o1nDsl. Bli CL m — CR0S S • J — !—1

I1TTj C H A R 1 IT'Y!-c'on!tr! 1 BUT i!oN S FR 0M E A R N|l N GS •

WRITE. Output. Releases a record for an output file. The actual 
transfer of this record to an output device may not occur until sometime 
later; in particular, if there are to be two or more records per block, 
the record may be held until there are enough records to fill a block. 
When the record is to be printed or punched, the WRITE statement contains 
an AFTER or AFTER ADVANCING clause to specify carriage control or stacker 
selection. A WRITE statement is valid only if the file is open (see OPEN).

51



TEST-CONDITIONS

Types of conditions that can be tested in IF statements.
Relation test. Consists of two "operands" with relational words or 
symbols written between them. Compares the values of the operands to 
see if their relation is the same as specified.
Relations that can be specified: EQUAL TO [=3, NOT EQUAL TO [NOT =], 
GREATER [ >] , NOT GREATER [NOT >] , LESS [ <] , NOT LESS [NOT <] .
The operands may be data items, literals, and arithmetic expressions.
A data item may be compared with another data item, with a literal, or 
with an arithmetic expression. An arithmetic expression may also be 
compared with a literal, or with another arithmetic expression. Two 
literals may not be compared.
When an arithmetic expression is written in a conditional statement, 
the value of the expression is calculated first, before the comparison 
is made.

T H T F |p
1
A
C
Y
U
M
R
E
R
NT 1 
E N T -

S LE 
AM O U

SS T 
NT- D

HAN
UE -

PREV
0 ! S

1 OUS
COU N

- B A L
T , ‘ |

A N C E + :

rTT 1 r
1— l— j GO T O1 PA RT 1 A L-PA YMEN T .

Sign test. Consists of the name of a data item, or an arithmetic 
expression, followed by the specification of a sign condition. 
Determines whether the number, or the value of the arithmetic 
expression, matches the specified condition.
Sign conditions that can be specified: POSITIVE, NOT POSITIVE, 
NEGATIVE, NOT NEGATIVE, ZERO, NOT ZERO. The value zero is considered 
to be neither positive nor negative. (For a zero item in storage, 
the sign, if any, is ignored.)

i !' F D1f|fe: RE N CE its Ip0S 1 Tf I Ve y  ; T
1 6 j 1 Dl|V 11 DE D 1FfIe RENc|E 'IN TO Aecu m |u L AT ED-T OTAL m ■

Note: A sign test is another way of stating a relation test for numbers, 
since "positive" means greater than zero, "negative" means less than 
zero, and "zero" is, of course, equal to the literal "0".

(Continued on next page)

52



TEST-CONDITIONS (continued)

Condition-name test. Consists of a name called a "condition name". 
with no other words or symbols. Tests whether a data item has a 
specific value; however, neither the name of the data item nor the 
value are written in the IF statement.

T !i|f C0MP UTeIr — PjR0Gr|a MM | ■ f I ; | n r} i i!
-L i ih—!—i—< pERF0RM s|a LAR|Y- 1NCWE ASE . ! » 1 | !i

The condition name represents the condition that 
item has a specific value. It is defined in the 
the condition name and the value may be found in 
following the description of the data item which

exists when the data 
Data division, where 
a level-88 entry, 
is to be tested.

Here is how the condition name used in the above example might be 
defined:

P 2 wd- CÜfikS 1 FI CAT 1 01zÖ ODE , P ! CTURE ■— T — *9 f —9. :
1JU 8*81 COMPU TER- PROG R AMMk j L VALU E 712 i i ! \ \\ i i

Interpretation of this example: A job-classification code is one of 
the data items in the records that are to be processed. The name 
COMPUTER-PROGRAMMER represents the code value 72. Therefore, the IF 
sentence above means, "If the record contains job code 72, perform 
the salary-increase procedure."
Note: A condition-name test is another way of testing whether a data 
item is equal to a literal.

(Continued on next page)

53



TEST-CONDITIONS (continued)

Overflow test. A special type of condition-name test. Determines 
whether the forms in a printer are at the end of a page. (The end of 
a page is recognized when the printer senses a hole punched in channel 
12 of the carriage control tape.)

! ! ' Il F p A G E 1r r  s — F ULL |
: i *

T T
—1 f | n ~i

M  1 | ) W R 1T !m
_

jo < E R D U E - AC C OU'N t H U  »N El A F T E R
|

\ S K IIPP I N G H Ö 1 N E X T - PAG E jf| 1
\
i

u  i ; i| 0 T h|e RWl s E i; ?•RIT E ioivjE r |d|u E -|AC C oju NT - L 1N E
' M i l ! A F t |e r I IS[PA c| I N g!—y ~ l :i W e sj.j | |

The form-overflow condition name is defined in an APPLY entry in the 
Environment division. Here is how the name used in the above example 
might be defined:

r:
: * i !a!p p L 1( P/\G E — 1S — F U L L T 0 Fr0 R 0 V E r !f L 0 wi I
M i l !: 1 l ! ()N ()V E R1D U E — A C C 0 U N T--L 1SlT 1N G % , 1 1

Class test. Consists of the name of a data item followed by the 
specification of a class. Examines the item to see if the data it 
contains belongs to the specified class. Classes that can be specified 
ALPHABETIC, NOT ALPHABETIC, NUMERIC, NOT NUMERIC.

i 1 l !i!f A C T 1V 1T Y — RA T 1N G 1S A L P H/v|B E T tC - p

■ 1 ;  !j. G 0 T 0 H 1g |h - A C T 1V 1T Y - A N/\|l yIs— 1s *1 i !

An item is
• alphabetic if it consists only of letters, and possibly spaces.
• not alphabetic if it contains any digits or special characters.
• numeric if it "consists only of digits, and possibly an 

operational sign.
• not numeric if it contains any spaces, letters, or special 

characters.

54



FLOW OF CONTROL

The way in which control flows through procedures in a COBOL program 
represents the sequence in which instructions in the object program 
will be executed. How control will flow depends on the kinds of 
statements in the Procedure division, and their arrangement.

Starting point. Control starts at the first statement of the first 
procedure in the division, provided that there are no declaratives.
If there are any declaratives, control starts at the first procedure 
after the END DECLARATIVES entry.
• Declaratives are special, optional procedures that are grouped 

together at the beginning of the Procedure division. Declarative 
procedures are logically separate from the main body of the 
Procedure division; that is, they cannot be affected by the
flow of control through other procedures.

• If the program contains declaratives, a DECLARATIVES header 
will appear on the line after the PROCEDURE DIVISION header, 
and an END DECLARATIVES header will appear on the line after 
the last declarative procedure.

Sequence. Control automatically flows from one statement to the 
next statement in sequence, and from one paragraph to the next, except when
• a GO TO statement causes a branch.
• an IF sentence causes control to jump over certain statements.
• a PERFORM statement gives control temporarily to another 

procedure.
• a STOP statement causes a delay in execution, or terminates the run.

Branching. When a GO TO or PERFORM statement causes a branch to a 
procedure, control is transferred to the first statement of that 
procedure. It is permissible for a GO TO statement to send control 
back to the beginning of the procedure that the GO TO is part of.

(Continued on next page)

55



FLOW OF CONTROL (continued)

Flow of control through an IF sentence that does not contain ELSE or 
OTHERWISE.

DESCRIPTION OF 
DATA CONDITION 
IS FALSE

DESCRIPTION OF 
DATA CONDITION 

.IS TRUE

STATEMENTS UP TO THE 
PERIOD ARE ACTED ON

The data item (BALANCE) is evaluated to see if it is negative. If it 
is negative, the statements on lines 2-3 are acted on, and then control 
passes to the next sentence (line 4). If BALANCE is either positive 
or zero, control jumps directly to the next sentence (line 4).

(Continued on next page)

56



FLOW OF CONTROL (continued)

Flow of control through an IF sentence that contains ELSE or OTHERWISE»

DATA is 
EVALUATED

DESCRIPTION OF 
DATA CONDITION 
IS FALSE

DESCRIPTION OF 
DATA CONDITION 
IS TRUE

STATEMENTS UP TO 
ELSE OR OTHERWISE 

ARE ACTED ON

________ fl ,. —
STATEMENTS AFTER ELSE 

OR OTHERWISE, UP TO 
THE PERIOD, ARE ACTED ON

Example.

1 \ 1 | Il F |RE C 0 V ERY: IS N O K; CD r e a It E R iTh a !n
2 I • : ISCR A P — P0 1 NT. ; ; j i j !

T T
1 3 M i i - MM i l . : 0 V E 1 TE M - N U M B E R 't o 1 : 1 I 1
111 A i M  i : !! ! i ■ ! I S CR A P - 1T E M i!

! 1 
I i j ; | J 1 : j

! 5 :J !.! : ! A DID JO m o 0 ViERY T o! s O rIa p ; I * | i

! >6 !o t h E RW IS M !
| i ! : i 1 i

1 :
! :7 : ! ■ | ! | W R i |t E CÖ NS E R v !a T 1o n --R E C0 R dM  !

II Ü 
■ 8 Sa d d 1 TiO t IrIa N SA C Til 0 N -Icc>u NTt. ! 1!

RECOVERY is compared with SCRAP-POINT. If RECOVERY is equal to or less 
than SCRAP-POINT, the conditional description is true, so the statements 
on lines 3-5 are acted on, and then control jumps to the next sentence 
(line 8). If RECOVERY is greater than SCRAP-POINT, the conditional 
description is false, in which case control jumps to lines 6-7, and 
then passes to the next sentence (line 8).

57





Case Study





CASE STUDY Customer billing program

Input. Billing record.
ACCOUNT IDENTIFICATION CREDIT STATUS I

TYPE
OF

ACCOUNT

ACCOUNT
STORE

NUMBER

NUMBER
FILE

NUMBER

BILLING
CYCLE

CUSTOMER
NAME

STREET
ADDRESS

CITY-
STATE

RATING
CODE

PURCHASE
LIMIT

) ACCOUNT HISTORY LAST YEAR T
) YEAR YEAR

LAST
ACTIVE

HIGHEST MONTHS MONTHS
OVER

90

TOTAL TOTAL
\  OPENED BALANCE ACTIVE PURCHASES RETURNS J
( THIS YEAR TO DATE LAST MONTH 5
)  MONTHS 
(  ACTIVE

MONTHS
OVER

90

TOTAL
PURCHASES

TOTAL
RETURNS

NUMBER
OF

TRANSACTIONS

BALANCE
FORWARD

THIS MONTH

/ BILLING NUMBER CURRENT
PURCHASES PAYMENTS CREDITS 7

OF
TRANSACTIONS

j
) DATE BALANCE NUMBER AMOUNT NUMBER AMOUNT NUMBER AMOUNT (

COLLECTION HISTORY
) RETURNS OVERDUE BALANCES LAST PAYMENT

DUNNING
CODE^ NUMBER AMOUNT 30

DAY
60
DAY

90
DAY

120
DAY DATE AMOUNT

Output. Monthly statement.

(Continued on next page)

61



CASE STUDY (continued)

I d e n t i f i c a t i o n  d iv is io n .

i d e n It  I F 1 CAT 1 ON D 1 V 1 S I O N .
11 j S : : I 1

p r o g Ir a m - I D .
! | 1 I i ! ! i |

i ? 1

!* B 1 L L I NG 1
•

* ; i ! ! ! ! 1 1f

AUTHlOR . 1 ■ : i I ! !
s ; • ;

!p a u l 'm e l 1 CHA R t
| j 1 ' ? i | 1 ! ' '

1 ' ,
! ' ! i ! 1 1 ! 

j j i
d a t e I - w r i T T EK .

I 1 1 ! j : ;

ISEPT EM BE R , 1 9 6 5  .
1
1  ' 1 .

1 ; ' .

r e m a Ir k  s .
Is T A T EMEN T S  A RE N OT S ENT TO 1 NACT 1 VE ACCO UN TS . AN OTHE R PR OGRAM
Ih a n d LES ACCO UNTS WIT H NE G AT 1VE ( CRED I T ) BALA N C ES
Ifour :l 1 NES ARE PR 1 NT ED 0 N EA CH STATE MENT ,  u'n DER C ARR 1 AGE TAPE
ICONT RO L . L IN E 1 1 S PRINiT ED AFTER A SK IP TO C HANN EL 1 .  LI NE 2
Ia f t e R A SKIP TO CHAN n e l 2 . L 1 H E 'S 3 AND 4 ARE SI NGLE- SPAC ED .

(Continued on next page)

62



1

CASE STUDY (continued)

Environment division.

ENV 1ÏR OINMw D 1 V 1SION
T -]—|—! ! :

• M s m i I  ! ! 1 * ' i i I * . !
CONFll GiUiRa t ! i b N SE CT 10 N. • 1 ' j : ; :! ! i ■ M , 1 , , ! ' ! • 1
so ur !c e -'c oIm'pu TER . ! ; | ! I ! . i
: '.ib m - 3 6 0 G50 . ; | : ! ; : i

; i • M | | ! ; j i ; i
OBJ e!c t - c 0MPU TER. 1 1 ‘ : ' ! I j

!l BM- 360 F 3 0 .1 ': ■ i . : ; i ! i !
i n pu !t - ou TPUT SEC T I ON■ i ; ; !■ i ■ 1 ! ' • ! : 1 ; | ;
F I le!-c o n TROL ï j i i

is E L E o H OD 1 LL 1NG-F 1 LE, ASS 1 GN TO 'BILL FILE 1 UT 1 LITY .
iSELECT CUSTO MER- B 1 LL - F 1 L E . AS S 1 GN TO ' cu STB 1LL ' J

UN 1 T-REC ORD 1403 UNI T.

(Continued on next page)

63



CASE STUDY (continued)

Data division.

DATa! Id 1V 1S 10 N •
—r j !. ; 1 ! ! I i

I j I ; Ï : ' 1 ! i i i j ! i i 1 1
F  1Le| Is ECT 10 N j | ! i 1 i j i 1

1 1 1 J ! | ! : ;

| i ! ! i ! ii s j ! 1 1 1 i j | 1 ■ 1 :

FD |B 1LL 1NG- F 1LE ! i j | I | ' 1 | ;

|b L0 CK C0 NT A 1NS 5 REC0 RDS | j I I ! ! i '

!l ABEL REC 0 RDS ARE S T AN D ARD | j S ! 1
i i i | | 1 j 1

|DAT A REC 0 RD 1 S B 1 L L 1 NG R E C 0 RD ! |
j 1 1 i ! '

i
l

1 j 5 j 1 |

0 1 !b 1 L L 1 NG - REC 0 RD . j i j 1 s j ; j | : ;

j ! ! ° 2 AC C 0 UNT 1 DENT 1 F 1 C AT 1 0 N .
j | 1 I ! ! ! ! i : ; 1

j ! i
i 0 3 T Y P E - 0 F - AC C O UNT P 1 C T URE! x U  1

|
i
i 0 3 AC C 0 UNT - NUM BER . i i I i ! ! j , , i ' 1 ! ; ,

i
i
i 0 4 s T 0 RE— NUM BER | j ! P I C T URE 9 i 9  9 . I 1 1

i i
i 0 4 F E - NUM BER ! ! : P  1 C T u  rIeI 9 ( 4 ) 9 ! i 1 j | j

i l l ! 0 3 B 1 L L 1
!" 1 
NIG- C Y C L E P  1 C T uIrIe 9 ‘9 .1 \ , i ! | !

j j

1 l i
i 0 3 C US T 0 MjEiR - NAM E 1 1 ! ! | P I C T ur Ie X  ( 2 2 i |
i
f 0 3 S T REEt | -a DDRE slsl | p! i C T u RE X ( 2 2 >M i ! 1 ! 1 ! 1
i
1 0 3 C 1 TY - s t Ia T E ! j 1 j p l i C T u RE X ( 2 2 ) .  ; ! i 1 1 1

!o 2 0 RED 1 T - S T ATU S ! i !
r ri ) 11 ! i 1 ! ! I !

1
1 0 3 RA|T 1 N6 — C 0 Id E ! ; i < ! pi  i C T u RE X | i i iI ! ;

i !
t ! 1 ! '

0 3
1 PUR C HAi i -!l 1M 1

i 1
t! | 1 5

— i ; ' '1 ! P I C T u m . 9i(k ) . i f !
| i| ! j | s

!o 2 A c C 0 U N T - H 1S T 0 R Y • I 1 ! ! ! ! 1 I ! i ! T l ~T— !
V
1 0 3 Y E A R —0 P E N E D | i

l P 1eh" u r Ie 9 9 i ! ; I ! :
1
1 0 3 Y E A R _ L A S T _ A C T 1V E 1 i i i P I C T u r E 9 9 . i M  ' •
1
1 0 3 H 1 GH E S T —B A L A N CE i | I ] Pll CT u r E 9 ( 4 ) V 9 9 | 1 1 :

|o 2 L A S T - Y E A R[. | j 1 i
| 1 ; ! ’

1 !
1
| 0 3 MO n !t H S - A C T  1V E ! | | | i P |!c T u r E 9 9 . i ! 1 : '
1
| 0 3 m Iö n |t H S —0 V E R - 9 0 |

1 .
i ! 11' P I C T u R E 9 9 # i 1

1| 0 3 T b T iA L - P U R C HA SE s 1 : i ! ! P I C T b R E 9 ( 5 ) V 9 9 . i i I i !
1| 0 3 T  O T  A L —'r 'E T U R N s 1 1 1

1 ;
p.1 CT u R E 9 ( 5 ) V 9 9 m i ' !

io 2 f H 1 S - Y ? A R Tp D A T E
i i

tl 1 1 1 ! ! I ! M ! ! ! ' !
1 o 3 MojN T H s - | a C T i!v E

! |-1 ; j
P I C T U R E 9 9 i j ! ! ■ i

I 0 3 MQN T H $ - io VE R - 9 0 i T j 1 ■ 1 |
Pfl c T u RE 9 9 ! 1 i i ! !

1
1 0 3 T O T A L RU R C H A SE s | i i ! ! Pll c u R E 9 ( 5. ) V 9 9 # 1 1 ! | i 1 !
1
1 0 3 T OjT A L —RE T U R N s 1' : i 1 pll CTu R E 9 ( 5 ) V 9|9 # 1 r r M  ! 1

!q 2 A $ T MO N T H I• ! ,! ! 1 : ! ■ ! $ i ; j

1
1 0 3 N UM B E R - 0 F _ T R A N s A chrli 0 HS ph c t u R E 9 9 1

!
i m  ;

1
I 0 3 B a L A N C E - F 0 R WA R D j j I M  *Pi 1 c T u R E 9 ( 4 ) V 9 9 # i ■ M i
o 2 T H 1S vlo N T H . 1 i I ! ! 1 1 1 j ! i 1 i ' !

~~T~
1 0 3 B 1 iL L 1 N Gr D A T E : ! 1 P! HC T U R E 9 ( 6 ) j i i j  j !

M M
1
1 0 3 N UjMB E R - b F —T R A N SA C T  1 0 njs; s P I  CT U R E 9 9 . | !

j M i l
1
_L_ 0 3 C UlRR E N Ti- B A L A N C■e ! | | ! i | j pl ilc It u |r !e 9 ( 4 > V]9 9 j i i ! !

(Continued on next page)

64



CASE STUDY (continued)

Data division (continued).

(Continued on next page)

65



r

Data division (continued).

CASE STUDY (continued)

(Continued on next page)

66



CASE STUDY (continued)

Procedure division.

67





1

STUDENT’S COMMENT FORM

SYSTEM/360 COBOL - COBOL Program Fundamentals Reference Handbook
R29-0206-1

Your comments, as well as answers to the following questions, will 
help us design and administer programmed or self-study courses in a 
way that better suits your needs. If your answer to a question is 
"No", or needs further explanation, please use the space provided 
below.
Comments and suggestions become the property of IBM.

• What is your occupation? _________________________________________
• Why did you take this course? ___________________________________

• Did this course, in general, meet your needs?
• Did an IBM employee serve as your advisor?
• Did you receive a completion certificate?
• Did you find the material:

Easy to read and understand?

Yes No

□  □  
□  □  

□  □

□  □

Organized for convenient use? □ □
Well illustrated? □  □

• Did you feel that any particular topics should be □  □
added or emphasized?

• Did you feel that any particular topics should not □  □
have been included?

• If you found any technical errors, please list them below,
giving form number, page, and frame number.



S t a p l e
r 1— —--------------------------------------

Fold Fold--- 1
FIRST CLASS 

PERMIT NO. 10 
ENDICOTT, N. Y.

BUSI NESS REPLY M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY____

I BM C o r p o r a t i o n  
1701 N o r t h  St .  
E n d i c o t t ,  N . Y .  1 3 7 6 0

Attention: DP Education Development, Dept. 617

Fold Fold

•.$41191110103 | D u o j 4 j p p Y

C
ut

 A
lo

n
g 

Li
ne



STUDENT'S COMMENT FORM

SYSTEM/360 COBOL - COBOL Program Fundamentals Reference Handbook
R29-0206-1

Your comments, as well as answers to the following questions, will 
help us design and administer programmed or self-study courses in a 
way that better suits your needs. If your answer to a question is 
"No", or needs further explanation, please use the space provided 
below.
Comments and suggestions become the property of IBM.

• What is your occupation? ____
• Why did you take this course?

Yes
Did this course, in general, meet your needs?
Did an IBM employee serve as your advisor?
Did you receive a completion certificate?
Did you find the material:

Easy to read and understand?

Organized for convenient use?

Well illustrated?

Did you feel that any particular topics should be 
added or emphasized?

Did you feel that any particular topics should not 
have been included?

□
□
□
□
□
□
□
□

□
□
□
□
□
□
□
□

• If you found any technical errors, please list them below,
giving form number, page, and frame number.



S t a p l e
r-----— -------------------------------- -

Fold Fold--- 1
FIRST CLASS 

PERMIT NO. 10 
ENDICOTT, N. Y.

BUSI NESS REPLY M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY____

I BM C o r p o r a t i o n  
1701 N o r t h  St .  
E n d i c o t t ,  N . Y .  1 3 7 6 0

Attention: DP Education Development, Dept. 617

Fold Fold

S4 U9 UUUJ 03  | D U O I 4 I p p Y

C
ut

 A
lo

n
g 

Li
ne





International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New Yorkl0017 
[International]


	‎\\OMV-TC\temp\Scan\IMG_0067.pdf‎
	‎\\OMV-TC\temp\Scan\R29-0206-1_S360_COBOL_Program_Fundamentals.pdf‎

