
Programmed Instruction Course

IBM
SYSTEM /3B0 COBOL W riting Programs in COBOLText

Programmed Instruction Course

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

©International Business Machines Corporation, 1966

System/360 COBOL Writing Programs in COBOL
PREFACE

The general objective of this book is to teach
students to compose original programs in System/360
COBOL. The major topics discussed are: the COBOL
program sheet — its format and the rules for
using it; the notation system used to describe
entry formats; the formats of the four divisions;
file descriptions, record descriptions, and item
descriptions; ways of naming data items; and the
formats of the most commonly used procedural
words.
The student gets practice in recognizing correctly
written entries, recognizing faulty entries and
correcting them, and writing original entries.
He uses the entries in complete programs.
Not all possible entry formats are discussed;
rather, a selection of important entries is pre­
sented. Also, many of the formats have been
simplified or abbreviated to make them easy to
learn, and to spare the student from being buried
in a heap of details. For example, when arithmetic
verbs are discussed, considerations such as
truncation, rounding, size errors, etc. are not
mentioned; these topics are taken up in the next
course in this series.
Omitted, too, is a discussion of the entries that
are used for processing non-sequential (random)
files. This book concentrates on presenting a
subset of System/360 COBOL which is adequate for
processing sequential files.
This textbook is designed to be studied in
conjunction with the Writing Programs in COBOL
reference handbook (Form R29-0211). This book
serves as a study guide, and is meant to be re­
used. All technical information is contained in
the reference handbook, which is kept by the
student when he completes the course.
The student is expected to have completed the
previous course in this series, COBOL Program
Fundamentals. The publications for that course
are a programmed instruction textbook (Form R29-0205)
and a reference handbook (Form R29-0206). The
student should have the reference handbook from
the previous course, and he must also be provided
with a pad of COBOL program sheets(Form X28-1464).

(3/66) 1

System/360 COBOL Writing Programs in COBOL
ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the Conference on Data Systems Languages (CODASYL),
and printed by the U# S# Government Printing Office#

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating
in the original development were:

Air Materiel Command,
United States Air Force

Bureau of Standards,
Department of Commerce

David Taylor Model Basin,
Bureau of Ships, U.S. Navy

Electronic Data Processing Divi­
sion, Minneapolis-Honeywell
Regulator Company

Burroughs Corporation
International Business Machines
Corporation

Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand

Corporation
In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer

Division
Control Data Corporation
DuPont Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organi zations.
no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

It is reasonable to assume that a
number of improvements and addi­
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ­
ual implementors.
Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.
The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC (g) I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation;
IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell; have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro­
duction and use of COBOL specifi­
cations in programming manuals or
similar publications.
Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc­
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL” in
acknowledgement of the source, but
need not quote this entire section.

(3/66) i i i

System/360 COBOL Writing Programs in COBOL

TABLE OF CONTENTS

Student Instructions vii

How to Study this Book ix

LESSON 1 1

LESSON 2 13

LESSON 3 27

LESSON 4 43

LESSON 5 57

LESSON 6 71

LESSON 7 87

LESSON 8 103

(3/66) V

1

System/360 COBOL Writing Programs in COBOL
STUDENT INSTRUCTIONS

1. This is the second in a series of programmed instruction courses
on System/360 COBOL. The previous course, entitled COBOL Program
Fundamentals, is a prerequisite to this course.

2. Be sure to read the Preface of this book, which explains the
overall goal of this course.

3. Besides this book, you must have:
• the reference handbook (Form R29-0211) for this course.
• the reference handbook (Form R29-0206) from the previous

course in this series.
• a pad of COBOL program sheets (Form X28-1464).

4. All reading assignments given in this textbook are in reference
handbook R29-0211. However, you are expected to take the
initiative in reading reference handbook R29-0206 whenever you
need to review background information.

5. The reference handbook is yours to keep, and you can write notes
in it if you wish. The textbook, on the other hand, will be used
by other students, so you are not to fill in any of the blanks or
make any notes in this book.

6. The format of this book is exactly the same as that used in the
previous programmed textbook in this series. As before, topics
of study are presented in a series of frames, with most frames
requiring you to choose an answer or to formulate an answer
mentally. The correct answers are given right after each
question, and you should use a card or a sheet of paper to cover
up the correct answer until you have had a chance to formulate
your own response to the question.

7. If the meanings of symbols like bracket and braces (as they are
used in frames) are fresh in your mind, you may begin Lesson 1;
otherwise, read the information on the next page.

(3/66) v i i

System/360 COBOL Writing Programs in COBOL
HOW TO STUDY THIS BOOK

1. Each lesson is broken up into a number of frames, which are
simply convenient instructional steps that are to be studied in
sequence. Most frames have two parts: the first part usually
asks a question or requires you to take some action; the second
part gives the correct answer to the question. The end of the
first part is marked by a group of three dots printed in the
center of the page. If the frame asks a question, the correct
answer is printed on the same page, below the three dots.

2. As you study each frame, you must use an ordinary sheet of paper
or a card to hide the correct answer from yourself. You will
learn the subject best by working out the answers, not by just
reading words.

3. Start each page by putting your "hider" sheet or card at the top.
Then slide your sheet down until you just uncover a group of
three dots. This will allow you to read the first part of a
frame, and to formulate your answer to the question or problem it
poses. When you have your answer clearly in mind, slide the
"hider" sheet down to the next group of three dots. This will
not only reveal the correct answer, but also uncover the first
part of the next frame.

4. Most frames require you to formulate an answer mentally. Your
answer may sometimes be different from the printed answer, but it
should mean the same. If your answer is wrong, study the question
again with the correct answer in mind.

5. On the whole, the course is composed of reading assignments and
questions. When a frame gives you a reading assignment, be sure
to complete the assignment before going on to the next frame.
The frames that follow a reading assignment may ask questions
about what you have read, or ask you to apply what you have read;
they may also provide additional information about the topic.
You will find instructions, remarks, and the author's opinions
printed in italics in a few frames.

6. Whenever a frame asks a question based on information in the
reference handbook, and you cannot remember the information, you
should reread that topic in the reference handbook.

7. When you come to a blank _____ in a frame, you are to think of
one or more words that complete the sentence. The length of tfte
blank space is always the same, so it is not a clue to the length
of the answer. Do not write your answer in the book.

(3/66) ix

System/360 COBOL Writing Programs in COBOL
8. Some frames present a choice of answers, from which you are to

select the one best answer. The choices are stacked in
| | braces.

9. Other frames present a choice of answers, from which you are to
select all correct answers. All of the choices may be correct;
more than one, or just one may be correct; or none may be correct.
It is therefore necessary for you to examine every choice. Each
choice of this kind is enclosed in brackets [].

(3/66) x

System/360 COBOL Writing Programs in COBOL
L E S S O N 1

In the previous course (COBOL Program Fundamentals), you studied
many sample COBOL entries and programs, all of which were written
on program sheets. COBOL programs are normally written on such
sheets, which are sometimes called "coding sheets"; however, this
is not absolutely necessary, since programs might be written on
gust about anything -- even scratch paper. (Some companies that
use COBOL have printed their own special coding forms, and a few
companies have done away with coding forms altogether by punching
COBOL cards directly from flowcharts, decision tables, and record
layouts!) Most COBOL users write on the standard type of program
sheet, though, and you will be using the standard sheet through­
out this course.

It will be worth your while to remember which columns of the
program sheet are used for program entries, and which columns are
used for other purposes. Make sure that you learn what "margin A"
and "margin B" are.

Reading assignment: PROGRAM SHEET FORMAT
• • •

2 The program sheet has space for
• • •

columns of information.

80

3 The program sheet has 80 columns because
• • •

it serves as an input document to a card punching operation

(3/66) 1

D This is what the COBOL card looks like.

System/360 COBOL Writing Programs in COBOL
r ~ 1

i

P A 6 E SERIAL - A |B C O B O L S T A T E M E N T IDENT.

PAG E SE Rl,AL - A JB C O B O L S T A T E M E N T

000
1 2 31 1 1
2 2 2
3 3 3

4 4 4

5 5 5

6 66
7 7 7

4 5 6 1 1 1
2 2 2
3 3 3

4 4 4

5 5 5

6 6 6
7 7 7

8 8 8

IBM

0 0 0 OlO 0
8 9 10 11J 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 57 68 69 70 71 72

1 1 1 1 jl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1

2 2 2 2|2 2i
3 3 3 3|3 3i
4 4 4 4l4 4 4 4 4 4 4 4 4 C O B O L S O U R C E : P R O G R A M C A R D 14 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5;5 5

6 6 6 6|6 6

7 7 7 7i7 7

9 9 9 9!9 9
8 9 10 11112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4'J 46 47 48 49 50 51 52 53 54 55 56 5 / 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

00000000
73 74 75 76 77 78 79 80

11111111

2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6
77777777
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
73 74 75 76 77 78 79 80

Although columns 8-72 have no title on the program sheet, the
corresponding field in the card is named _____ .

• ••
COBOL STATEMENT

A separate card is punched for

{each separate program sheet each column on the program sheet
each line on the program sheet

• • •
each line on the program sheet

Information entered at the
cards.

of the sheet is not punched into

• • •
top

System/360 COBOL Writing Programs in COBOL
| Q Examine the illustration below, which sums up the information

that you read in the reference manual.

| OPTIONAL CONTINUATION NOT PUNCHED INTO CARDS] OPTIONAL I

A standard card form, IBM electro C61897, is available for punching source statements from this form.
Columns 1-6 and 73-80 are marked "optional", which means that

(those columns are not printed on some program sheet forms V
something must be written in one field or the other, but J

not both i

neither the identification nor the sequence number is /
mandatory V

the programmer can disregard his boss's orders to fill I
them in ƒ

• • •
neither the identification nor the sequence number is mandatory
ffoiieuer, both of these fields are generally filled in, with each
computer installation setting its own standards for identification
codes and sequence numbers — which means that the programmer
fills in those fields the way his boss wants it done — regardless
of the fact that the compiler technically doesn't require anything
in them. In this book, we will leave the optional columns blank,
in order to concentrate on program entries.

(3/66) 3

System/360 COBOL Writing Programs in COBOL
8 A hyphen is written in column 7 to signify the continuation

of
• • •

non-numeric literals
Complete rules for continuing non-numeric literals will be
discussed a little later in this lesson.

9 COBOL entries are written in columns
• • •

through

8, 72

10 The program entry columns of the program sheet are divided into
two "margins". Notice that a "margin" in this case is an area
that you are supposed to write in; a rather different use of the
word from the usual notion of a margin as a narrow border around
the edges of the paper — a space that you are not supposed to
write in.
The names of the margins are certainly simple and easy to
remember — they are margin _____ and margin _____ .

• • •
A, B,

1 1 A broken line has been printed between columns 11 and 12 to mark
the boundary between margin A and margin B, and little letters A
and B have been printed above columns 8 and 12 to identify the
margins.
Don't let those little letters mislead you. They are there to
remind you where each margin begins, and they do not mean that
each margin is just one column. Actually, margin A comprises
columns _____ through _____ , while margin B comprises columns
_____ through _____ .

• • •
8, 11; 12, 72

(3/66) 4

System/360 COBOL Writing Programs in COBOL
12 Suppose a rule states that a certain entry must "begin in the

B-margin”. Following the rule, that entry

(must be started in column 12 might be started in column 16
can be started in column 8, 9, 10, 11, or 12.

• • •
might be started in column 16
We will see that the most likely starting point for such entries
is column 12 -- hut that this is not a "must".

1 3 Suppose that the rule for another kind of entry states that the
entry must "begin in the A-margin". One such entry is the
paragraph header "REMARKS". If a programmer were to begin this
entry in column 8, he could only write REMA in the A-margin.
If he followed the rule, you would then expect him to

write RKS. in columns 12-15 of the B-margin
write RKS. in the A-margin of the next line
abbreviate the entry to RMK. so it would fit in the A-margin
omit the remainder of the entry

• • •
write RKS. in columns 12-15 of the B-margin
The rule specifies a beginning place, hut does not require the
entry to be completely contained within the A-margin.

14 There really are rules like those referred to above, and we will
turn our attention to them now. First, we will look at the rules
for writing elements in entries. From the previous course, you
will recall that an "element" is the basic unit of the COBOL
language; reserved words, programmer-supplied names, symbols,
literals, level numbers, and pictures are the six "elements".
You will find that there are just two major rules for writing
elements in entries, but that each rule has an exception. You
will want to study the exception carefully, of course, but make
sure you understand the general rule first.

Reading assignment: HOW ELEMENTS ARE WRITTEN IN ENTRIES
Elements written on program sheets
Spacing between elements

• • •

(3/66) 5

System/360 COBOL Writing Programs in COBOL
The first rule that you have just read states that, except for
non-numeric literals, no (elements) may be spiit or divided(entries (between lines.

• • •
elements
You will discover shortly that entries can be continued on more
than one line. The distinction between an element and an entry
should be clear in your mind. Remember that an "entry" consists
of two or more elements, the last of which is a period.

16 COBOL systems for some other computers do permit elements such as
names to be divided; however, experience has shown that this
makes a program harder to read, and makes errors more likely.
So the rule for System/360 COBOL is that no elements except non­
numeric literals can be divided.

Which is the correct way to write the name ACCOUNTS-RECEIVABLE
on a program sheet, if there are not enough spaces left on a line
to write out the whole name:
[The name may be broken at a syllable boundary, so ACCOUNTS-RECEIV
might be written on one line, and ABLE on the next line.]
[The name can be broken at the hyphen, so ACCOUNTS- would be
written on one line, and RECEIVABLE on the next line.]

e e e

NEITHER of these ways is correct.
The characters form one name (one element) and so they must not
be broken at any point. If there is not enough room left on a
line to write the entire name, then it must be written entirely
on the next line.

17 There is a good reason for permitting non-numeric literals to be
divided. No matter how small you print, there are still only 61
spaces in the B-margin, and a non-numeric literal can be up to
_____ characters long.
If you don't remember, look this information up in the COBOL
Program Fundamentals reference handbook (Form R29-0206).

e • •120

(3/66) 6

System/360 COBOL Writing Programs in COBOL
1 8 Doesn't this same reasoning apply to numeric literals? Shouldn't

it be permissible to divide a numeric literal that is, say, 80
digits long?

• • •
Numeric literals are limited to 18 digits, so they need not
(and must not) be divided.

19 Which of the examples below is a correct way to divide the literal
LISTING OF DATA RECORDS IN FILE NUMBERS between two lines?

1 3 4 6 7 8
t - P1

16 zct Z4 zei X .

i

«HJ) •Ki 90

!o 2 T 1 T L E P 1 C T U R E A (3 8) Lf A L U E • L 1 S T 1 N G 0 F D A TA R E £ Q R n £ 1 N '
_ ii 1 F 1 L E NU M B E R i . T T

1 io 2 T 1ST L
1 1 "T~

E! J P 1 CiT U R E A (3 8) ^ _G/!a L U E i L 1 S T ji N G 0 F 0 A TAk R E C 0 R D S 1 N I
_ 11 i F 1 L E In Up/ B E!R !' I

Jo 2 T 1 T L E l, If► ilc T u R
f ! A (3 8) /A L u iE ' L 1 s T 1 N G 0 F D A T /\ R E C 0 R D S 1 N F

11 • 1 L E N m \ B E R • . “f 1

!° 2 T 1 T L d j 'f> 1 C Tju R E A (3 8) 1 |>/ Ia L u E 1 L 1 S T 1 N G Of D A !r a R E c 0 R D S| 1 N
- i

__ i_ • F 1 L E N l JM B E R . 1
| | | , |

• ••
The third entry is the correct one. In it, the characters of the
literal are written all the way out to column 72, then an extra
quotation mark is written in the B-margin of the next line,
followed by the remaining characters of the literal.
The first entry contains two non-numerio literals instead of one3
which in this caset is an error; the mistake is the quotation
mark at the end of the first line. In the second entry, the
characters of the literal are not written to the end of the first
linet nor do they follow right after the extra quotation mark in
the second line; as a result, there would he four more spaces
than were wanted in the literal, and the compiler would take it
to be LISTING OF DATA RECORDS IN FILE NUMBER. In the fourth
entry3 the quotation marks that must enclose the literal have
been omitted.

Even though the third entry is correct, its awkward breaking of
the word FILE makes it hard to read. Actually, it would have
been possible to write this entry without dividing the literal at
all, as shown below. The "common sense" rule is: Don't divide
non-numeric literals, if you can avoid it.

lo 2 T 1 T L E P 1 C T |u R E A 3 8) T H 1 T T T | —p t " t ..Hj j 1
1i 1 V A L U E i L 1 S T \ \ N G 0 F D A t |a | R E! C O R D S h N F̂ i L E r M RF R • . 1 i 1

(3/66) 7
L.

System/360 COBOL Writing Programs in COBOL
20 You have also read that each element must be separated from the

next element by at least one space. The exception in this rule
applies to certain _____ .

• • •
symbols

21 Specifically, the exception to the spacing pule applies to
parentheses, quotation marks> commas, semicolons, and periods.
This exception (which says that no spaces are to be left between
those symbols and other elements in some cases) should not seem
unreasonable to you; in fact, each 'exception' case can be found
in the punctuation of the sentence that you are now reading.

If the parallel between ordinary English punctuation and the
exceptions to the spacing rule did not occur to you before, it
would be wise for you to reread the rule and to look for this
parallel.

To be sure , a sentence ' punctuated ' like this one (I hope you
noticed that it is different) is not particularly hard fort you
to read ; however , a program ’ punctuated ' like this sentence
would not be acceptable to the COBOL compiler .

• • •

22 Keep in mind that the spacing exception applies only to certain
symbols. The remaining symbols follow the general rule — that
is, they must be separated from neighboring elements by at least
one space.
The entry below violates this rule several times. See if you
can eliminate all the errors. Rewrite the entry on a COBOL
program sheet.

IdOM lP UlTiEI A V E R A G E R O U N D E D = (X + Y)/2

• • •
spaces are required here/ u \ \ \ \

IC O M P U T e ! A V E R A G E .1 R O U n d e d | = (l x + |y) / 2 .

\
spaces i / / /

are not allowed here ^

(3/66) 8

System/360 COBOL Writing Programs in COBOL
23 Now that you know the rules regarding the division and spacing of

elements to make up entries, let's go one step further and look
at the rules for writing entries on the program sheet.

Reading assignment: RULES FOR PROGRAM ENTRIES
Entries that begin in margin A
Entries that begin in margin B
New line required
Spacing between entries
Continuation of entries

• • •

24 According to the rules for using the COBOL program sheet, it is
all right for a line of the form to be [filled in completely]
[left partly blank] [left entirely blank].

• • •
ALL of these possibilities are allowed. A line may be filled in
completely OR left partly blank OR left entirely blank.
Incidentally, if lines are given sequence numbers (columns 1-6)t
the blank lines are numbered too. There is a distinctiont of
courset between lines left entirely blank to improve the
readability of the program listing, and unused lines on the
program sheet.

25 An entry may be continued on the next line or lines
whether or’not it could be written on one line
only if it is too long to fit on one line

• • •
whether or not it could be written on one line

26 Most entries are written entirely within margin

B

(3/66) 9

System/360 COBOL Writing Programs in COBOL
27 A few entries are required to begin in margin A. What this

amounts to is that major headings are brought out to the left for
emphasis. Although these entries may start in columns 8, 9, 10,
or 11, it makes sense to make them stand out as far as allowed.
Accordingly, these entries are usually started in column

• • •
8

28 A division header (such as IDENTIFICATION DIVISION.) must begin
in the A-margin, and
(no part of it may be written in the B-margin
(most of it will be written in the B-margin

• • •
most of it will be written in the B-margin

29 Below is a sample file description entry. This entry serves to
illustrate that the continuation of an entry is written in
margin _____ , even when the entry begins in margin _____ .

F b ' !s a L E Sl-lM lA S T E R H F i 1L
f 'T T " FI !«i .

' ' 1" I ' ’

: ! ! iB L jo ic
op

N T A 1 W S! ‘3
1 ! i

0 ’ !R E C 0'R D s 1,
: j ; !u a |B|E

' ! I D A T A
U R E

!r -e *c
C O R D
O R D

S A R
1 S S

I 1 1
E S T
A L E S

A N D A
- M A S

R D ,
T E R - R E C O R D .

• • •
B; A

30 In the sample entry given in the previous frame, two spaces were
left between FD and SALES-MASTER-FILE. Would it have been equally
correct to leave just one space, as shown below?

1— r
F1DI ISiALiE MIAS T E R - F I L E

• • •
No, only the level indicator (FD) may appear in the A-margin? the
rest of the entry must be written in the B-margin.

(3/66) 1 0

System/360 COBOL Writing Programs in COBOL
31 You know that the elements in an entry must, generally, be

separated from each other by at least one space. A special case
exists when an element ends in column 72, as shown below.

1 11 11 1 I I I 11 W I t Ii Ip Il IyI IaMoM nIt I IoH |c|u|i lE|NlT!-|plu|RlcjHlAls|E|s| |b|y| |t |r|a|dIe|-|d|i IsIc IoIuNIt U IgIi Iv Ii InTcI

Which of the lines below shows a correct way of completing this
entry?

• • •
ONLY the third line
If an element ends -in column 72, it is treated (by the compiler)
as if it were followed by a space. Therefore, the continuation
of such an entry may be written right at the beginning of the
B-margin.

The first two choices show the continuation of the entry written
in the A-margin, which is illegal. And the first and fourth
choices have hyphens in column 7, also illegal. The fourth
choice is correct, except for the hyphen in column 7.

32 Here is another application of the "column 72" rule. On the
first line below, an entry goes all the way to the end of margin
B; on the second line, the next entry starts right at the
beginning of margin B. The requirement that the period ending
an entry must be followed by a space is satisfied by the"assumed
space" after column 72.13% eU-l!1_i!g 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

IT n iDis)Pl
M M ■It Ü !cyc)iiïjPMvH°MLhNM. M+c k MiTT TT T

• ••

(3/66) 11

System/360 COBOL Writing Programs in COBOL
33 You can see that, in most cases, the "column 72" rule works to

our advantage; in the case below, however, it does not. The
entry below is wrong. See if you can figure out why it is wrong,
and what can be done to correct it.

H ”1 ! 1 IrIe Ia DSERV1CE_ CALL AT ENDi CL0 SE Se |r vll c E_ c a|ll!s_ FILE |ST 0 pj RUN-4—
Ml U _ X 1 1 1

The period used to end an entry must not be preceded by a space.
Since the reserved word RUN ends in column 72, it is treated as
if it were followed by a space — and that space precedes the
period written on the next line. The simplest correction is to
write the word RUN on the second line instead of the first, and
write the period directly after it.

34 In some cases, programmers mistakenly assume that the "column 72"
rule applies, when it actually does not. The following is such
a case.

In this entry, the programmer thought he was writing this literal:
ORDER NUMBER IS NOT VALID. The word NUMBER ended in column
72, so he assumed that the compiler would insert a space after
it. However, when the program was compiled, the result was:
ORDER NUMBERIS NOT VALID.1 o t O 1r o - t ;: NIVEXT- 1 Tem(1 S n|ot EQUAL’V. T TV0 P ■f"REV*

1 olutosl H 94h 1■T30TO ovp '/or|dor»e|r NOOuImIbe!' iS NOT VAL l|D• -1 1 1 1X XLJ
What was the fallacy in this programmer's thinking? How can his
error be corrected?

• • •

The "column 72" rule applies only when an element ends in column
72. In this case, the word NUMBER is not an element; it is part
of an element — part of a non-numeric literal. Correction is
easy; insert the desired space between the extra quotation mark
on the second line and the word IS, or preferably, write the
entire STOP statement on the second line, thereby avoiding the
problem of continuing the non-numeric literal.

35 Throughout the remainder of this bookt you will be called upon
to apply the rules that you read in this lesson. Whenever you
are asked to write an entry, and there is any question in your
mind about how to enter it on the program sheet, be sure to
refer to the rules in your reference handbook.

• • •

(3/66) 12

System/360 COBOL Writing Programs in COBOL
LESSON 2

36 Now that you know the rules for making entries, the next step is
to learn the formats of the entries. But there are scores of
possible entries -- too many to commit to memory; so, you will
have to resign yourself to making liberal use of reference
materials for a while, at least until writing some of the more
common entries becomes second nature to you.

In COBOL, there is a standard system of notation that is used to
describe entry formats in reference materials. The system is
used in the reference handbook for this course, and it is also
used in reference manuals and other books about COBOL, so it is
important that you become familiar with it. We will now devote
a little time to the notation system, before continuing to study
the actual entry formats for the Identification division.

Reading assignment: SYSTEM OF NOTATION USED TO DESCRIBE
ENTRY FORMATS
Sample entry format

• • •

37 One of the main distinctions that is made in this system of
format notation is between words printed in capital letters and
words printed in small letters. What is the difference between
them?

• • •
Words printed in capital letters are reserved words; words
printed in small letters represent information to be supplied
by the programmer.

(3/66) 13

System/360 COBOL Writing Programs in COBOL
38 This distinction deserves a little further clarification. Words

in capital letters will actually be written as such within an
entry. Words in small letters will never be written as such
within an entry.
Now and then, a beginner misses the point when he reads an entry
format such as "GO TO procedure-name", and writes:

J6 C1ED UIR N M

Actually, the programmer was expected to write GO TO followed by
the programmer-supplied name of the _____ to which the program
was to branch.

• • •

procedure
Technically, PROCEDURE-NAME is a valid programmer-supplied namet
even though it is not especially meaningful; this GO TO would
work if there were a procedure whose name was PROCEDURE-NAME.
But imagine the mess that results when a misguided programmer
writes PROCEDURE-NAME in every entry that calls for a procedure
name !

39 Here is a variation on the misunderstanding of format words
printed in small letters. Suppose that an entry had the format
"DISPLAY literal", and a programmer wrote:

JD A Y L 11 TIE R A L E N D M l PIHIAS El !4

If he was trying to display the message, END OF PHASE 4, the
programmer should have

written only DISPLAY LITERAL, and stored the message
as a constant

omitted the word LITERAL and written DISPLAY 'END OF PHASE 4'
written the word "literal" in small letters, as shown in

the format
omitted the word DISPLAY, since the underline means it

is optional
• • •

omitted the word LITERAL and written DISPLAY 'END OF PHASE 4'.

(9/66) 14

System/360 COBOL Writing Programs in COBOL
40 Reserved words are required in an entry when they are underlined.

However, the information represented by words printed in small
letters
l may be omitted if the programmer is tired of writing
) is optional regardless of whether the words are underlined
\ is required even though the words are never underlined
(is never written as such within an entry

• • •

is required even though the words are never underlined

41 In certain cases, "required" words and information may be part of
an optional portion of an entry. Optional portions of a format
are enclosed in (what symbols?) _____ .

• • •

[] (brackets)

42 The notion that some "required" parts of an entry can be
"optional" is not really as paradoxical as it sounds. What we
mean is that a portion of an entry must be included under certain
circumstances, and omitted under other circumstances; and that
portion is required to contain certain words and information
when it is included.
It's like saying that it is optional to rent a car to get where
you're going, but that if you decide to rent the car, you are
required to pay the rental charge.
Let's take a COBOL example. Here is an optional portion taken
from the item description entry format:

[VALUE IS literal]
This clause is used when you want to specify the initial value of
an item in working-storage. If you decide to use the clause,
what must you write?

• • •

You must write the word VALUE and a literal. (If you wish, you
may write the word IS after VALUE.)

(3/66) 15

System/360 COBOL Writing Programs in COBOL
43 When an entry provides a choice of optional portions,

stacked within a pair of brackets, like this:
they are

[UNIT 1
LUNITsJ

In the above example, the programmer

!may write UNIT, or UNITS, or neither, in the entry
must write either UNIT or UNITS in the entry
may write UNIT, or UNITS, or both, in the entry

• • •
may write UNIT, or UNITS, or neither, in the entry

44 When an entry provides a choice of required portions,
stacked within a pair of braces, like this:

they are

POSITIVE
NEGATIVE
ZERO

In this case, the programmer

{must write one, and only one, of the words }
must write at least one of the words, and may write all three> .
may write one, or none, of the words)

• • •

must write one, and only one, of the words

45 This is the format of a class test, which is used in IF entries:

data-name IS [NOT] f NUMERIC 1Ijwxj j ALPHABETIC (

Can you explain which parts of this format are always required?
Sometimes required? Never required?

• • •
A data name, and either NUMERIC or ALPHABETIC are always required.
The word NOT is sometimes required (when you want to test for the
opposite of NUMERIC or ALPHABETIC). The word IS is never
required.

(3/66) 16

System/360 COBOL Writing Programs in COBOL
46 You will get plenty of additional practice on the COBOL format

notation system as we examine the entries, division by division,
beginning with the Identification division. Needless to say,
being able to interpret the format notation is just a small part
of the game. The larger part is knowing when and why to write
an entry in your program; sometimes the rules are clear-cut,
leaving you no choice in the matter, but most of the time (alas!)
you will be required to know what it is that you are trying to
accomplish.

To help you with the "whens" and nwhysn, the reference handbook
summarizes the function of each entry or set of entries. And
because the notation system is not foolproof, and is sometimes
open to various interpretaions, examples of the entries, and
notes about the formats, are also given. Be sure to study the
function, example, and notes, in addition to the format.

Reading assignment: IDENTIFICATION DIVISION
• • •

47 Keep the reference handbook open to the page on the Identification
division while we examine the entries that make up the division.

How many required entries are there in the Identification
division?

• • •

Three (division header; Program-Id paragraph header; and program
name entry)

48 Each entry is required to end with (what symbol?)
• • •

a period

49 What other punctuation is required in the division?
• • •

Quotation marks are required around the program name.
Remember that required symbols are printed in the format, though
not underlined. Optional symbols, such as commas, that may be
used in entries are not printed in the format at all.

(3/66) 17

System/360 COBOL Writing Programs in COBOL
50 Program name may be up to __ characters long.

• • •
eight

51 Programmers sometimes ask, "How will I know what the program name
is?" I suppose the best answer is that it all depends on the
type of job situation you are working in. If you are one of
several programmers who are implementing a large system, then
the system designer will probably have specified the name of each
program in the system. If you are working independently on a
project of your own, it will no doubt be up to you to invent a
name for your program; but be sure to find out whether standards
have been set up for classifying and naming programs in your
computer installation. If you are a student, and the program is
a class exercise, you can most likely dream up any name you
please; or perhaps your teacher will come up with a choice name --
or two -- for your program.

• • •

52 The Program-Id paragraph is required in every program; all of the
other paragraphs are _____ .

• • •

optional

53 Since the format for each optional paragraph is enclosed in a
separate pair of brackets, you can conclude that

you may choose to write one, or none, of the optional
paragraphs

you must write one or more of the optional paragraphs
you must write one, and only one, of the optional paragraphs
you may write any number, or none, of the optional

paragraphs
• • •

you may write any number, or none, of the optional paragraphs
The paragraphs are not stacked within brackets; each is a
separate option. Note, though, that your installation very likely
has firm standards for documentation that must be provided in the
Identification division. Obviously, such standards override the
fact that the compiler allows you to omit all of the optional
paragraphs.

(9/66) 18

System/360 COBOL Writing Programs in COBOL
54 Each optional paragraph consists of a paragraph header and

"entry...". What does "entry..." mean?
• • •

One entry is required, and additional entries are permitted.

55 Are there any restrictions on what may be written in the entries
in optional paragraphs?

• • •

No, except that each entry must be terminated by a period.
These entries are simply comments, and the compiler has heen
programmed to ignore their contents. Therefore, you may write
anything -- reserved words, quotation marks, numbers, parentheses,
asterisks -- you name it. Whatever you write wilt be printed in
the listing of the source program, so that your explanatory
comments will always accompany the rest of the program. Needless
to say, your comments should be concise and pertinent; don’t use
the Identification divison as a vehicle for getting your short
novels into print, or for publishing sonnets inspired by the
cute programmer in Dept. 983B.

56 You are supposed to have a pad of COBOL program sheets; if you
don’t, get one at this time.

On a COBOL program sheet, write a complete Identification division
for a hypothetical program named EXPENSES. The program is
designed to produce a weekly listing of all operating expenses,
by department, of our mythical company, Dynamic Data Devices,
Inc. Naturally, the output and the program itself are strictly
company-confidential, and available only to authorized personnel.
The programmer, Charles Brown, himself an unauthorized person,
wrote the program on November 9, 1965; and compiled and tested
it, blindfolded, the very next day.
From this description, see if you can sort the pertinent
information into the proper paragraphs. Most important, be
certain that you observe the rules for making entries on the
program sheet.

The solution for this frame is printed on the next page.

(3/66) 19

System/360 COBOL Writing Programs in COBOL
5 7 The Identification division that you have written should

resemble this:

i d e n !t I F 1 c !a !t ! i
—r-r-'T".
O N D i M i I s

"~"f1 r 1"
I O N •

"" [""I......I I
p r o g Ir a m - 1 D \

I 1 1is :
!' E X P E ;N S E S ‘ .

! | : ' ;
a u t h !o r . j ; i § .

: ' I‘ = I

I C H A R L E S B R O W N .
j i : ■ j
t j

i n s t !a l l a TM ON •
: ; 1

Id y n a M: 1 C; D A T A D E V 1 C E S i I N C . ' 1 ! ̂ i
D A T E l - W R 1 T I T E N • j ! ' !

!n o !v e M fBE R 9 , 1 9 6 5 - ; j 1 : ’ '

d a t e ! - c o m p ! 1 L E D . f

In o v e m Ib e r 1 0 , 1 9 6 5 . 1
S E C U 'R 1 T Y • 1 • ■ i i j

•CO M P A N Y - C O N F I O E N T 1 A L ; A V A 1 L A B L E T O
i

I a u t h 0 R 1 z E D P E R S O N N E L O N L Y . : j
r e n i a I r k s .

1 \ \ ! ! ■
:

: ' ! i j

; i ! p ! r | o (d

; ' I o I p I e I r

u

A

c
T

e | s

I N

A W

G t x

E E K L

P E N S

Y L I

E 9 ,

S T 1 N

B Y ' D

g : O F

E P A R

A L L

T M E N T .

! 1 S |

i !

Check your work on each of the following points:

1. Did you begin every header entry in margin A
(preferably in column 8)?

2. Did you keep all other entries within the B-margin?

3. Did you terminate every entry with a period?

4. Did you remember to enclose the program name in
quotation marks?

If you made any mistakes, take a moment to correct them.

• • •

(3/66) 2 0

System/360 COBOL Writing Programs in COBOL
58 Paragraph header entries do not have to be written on separate

lines. Which line below shows another correct way in which the
Program-Id paragraph might have been written?

p r W g Ir / ŝ m |-E b l 3 Efx| p !e |n |s Ei f f a n ' H R : . T - M u n r :
___ J

p r -0:g |r !/3(M - • ' I d M ' Ie i x Ip iE N Ï » e |$% i » " T T__1__i__ | | j i 1 1
1 1 1 I I 1i i i1 ! r—f— 1__L_

p r i o Ig Ir !/? ? ! i (M - - 11
1
D L ' ie |x |p E l M S E S 'i ! » 1 T m

4 - U - h _______ 1_L i—L M i l l_j__i__i____1__1 . i. i. \.
p r o g !r /

1
t|M 1 d | . *]e N p |lE NSs e Is U ' I 1 ! | | | I

1 i i
1 |

1

• • •

_i_i___ :____LJL_1__ 2_-J£__i_
p r o g !r a m - - 1 1D .—1—H+ ' e !x |p iE N S—i—H > '1 4—

i —I -
1—f+ J —--- !—j—f-! (■ .1 I n ■— !— i1— —1—1—4—?

The first choice is incorrect because there is no period following
PROGRAM-ID. The third choice has a periodt but the mandatory
space after the period has been forgotten. The fourth choice has
two mistakes; the hyphen in PROGRAM-ID is missings and the period
has improperly been written inside the quotation marks.

59 Whether or not you will choose to have the paragraph headers on
separate lines is something for you or your company to decide.
Here are two arguments in favor of using separate lines:
(1) program listings are easier to read when all of the non­
header entries are aligned; (2) all fixed header entries can be
prepunched into cards, and the deck of header cards can be
reproduced as requiredy thereby eliminating all future writing
and keypunching of header entries.

• • •

60 The Environment division is almost as easy as the Identification
division. Its format is a bit more rigidt though, since each
entry has a specific meaning for the compiler. (By contrasta
you will recall that the compiler ignores the contents of most
Identification division entries.)

You will first study the overall format of the Environment
divisiont and later study two particular entries in detail.
Don't read about the SELECT and APPLY entries yet.

Reading assignments ENVIRONMENT DIVISION
• • •

(3/66) 21

System/360 COBOL Writing Programs in COBOL
61 Refer to your handbook to answer these questions.

What are the two sections of the Environment division?
• • •

Configuration section and Input-Output section

62 The Input-Output section is an optional portion of the division's
format. This section

{may be included or omitted at the whim of the programmer must be included in any programs that process data
must be included when there are input or output files

• • •
must be included when there are input or output files
Data "files" are defined and discussed in the reference handbook
for the previous course.

63 When an Input-Output section is written, the ___ paragraph must
be included, but the _____ paragraph may be omitted if no special
techniques or conditions are defined.

• • •
File-Control; 1-0 Control

64 The Configuration section, containing the Source-Computer and
Object-Computer paragraphs, is required in every program. Each
of these paragraphs may contain the reserved word _____ and the
_____ of the computer.

• • •
IBM-360; model number

(3/66) 22

System/360 COBOL Writing Programs in COBOL
If your company has more than one System/360, you will probably
want to specify which computer will be used to compile and
execute your program. The model number that you write must
consist of a letter representing the storage size, followed by
the actual System/360 model number.
The letters that represent storage capacities are C for 8K; D for
16K; E for 32K; F for 64K; G for 128K; H for 256K; and I for 512K.
As was explained in the previous course, these "K" capacities are
only rough approximations of the number of bytes of storage;
exact figures are given in the previous reference handbook.
If your computer is a System/360 Model 30 with a storage capacity
of 128K, which of these would be the correct model number to
write in your COBOL program:
/ 360/30G \
) 30/G f
) 3°G (
(G30 J

• • •
G30

On a COBOL program sheet, write the first half of the Environment
division for the hypothetical "Expenses” program for which you
coded an Identification division earlier. That is, write the
division header and a complete Configuration section. The program
is to be executed on a 16K Model 30, but it will be compiled on
a 64K Model 40.

• • •

E N V MR. 0NM E N T D 1 V 1 S I ON
5 1

• • .. Ï
c o n f Ii .g u r A T I 0 N S E c r r o ' 1

N .
s o u r !c £ - c O M P U T E R . ; i

l l . B M - 3 6 0 F 4 0 . i ;
O B J E j C T - C O M P U T E R . : 5

!l B M - 3 6 0 D 3 0 .
1 : j

(3/66) 23

System/360 COBOL Writing Programs in COBOL
67 This system flowchart gives us additional information about the

computer environment in which the 'Expenses" job is going to be
run.

INPUT PILE = EXPENSE- F ILE
EXTER N A L N A M E -E X P IN

DEVICE^ 2 4 0 0 - SERIES
MAGNETIC TAPE U NIT

JOB=EXPENSES
S Y S T E M = IBM -3 6 0

OUTPUT FILE s EXPENSE - LI ST
CV TC DU A I IdAkir • CVD I IC Tw 1 w 1 bin — IBM uO V

MODEL 3 0 ,1 6 K
t X T c R N A L N A M E * E X P L I5 1

DEVICE = 1 4 4 3 PRINTER

From the flowchart, it is clear that the gob involves data files;
therefore, an Input-Output section is required in the program,
and you will have to learn the format of SELECT entries for the
File-Control paragraph.

(Note that the printed report is treated as a filej each line
printed on the form constitutes one record of the file.)

Reading assignment: SELECT
• • •

68 Apply the information that you have just read, by coding the first
part of the Input-Output section for the "Expenses" program
(section header and complete Pile-Control paragraph). The flow­
chart in the previous frame contains all of the programmer-
supplied information that you need. You may, of course, look
back at the "ENVIRONMENT DIVISION" page of the reference hand­
book, to see the overall format of the section.

• e e

1 N P O l f - b u T P U T S E C T i b N T T ^ ...j""!.. : ..r ' H " '
F 1 l e I - c o n T R!O L i i 1 i 1 ! ! ! 1 :

! ? T• - } i , ; f ! [

i ! I SE U E C
! ! '
T E X P E N

1 i
S E - F 1 !l ! e »

! 1 s
i a 's s 1 6 N t o ! !• E X P I N 1

1
« i l l ' l l. ,. ; i l . ; ; u T 1 l_ 1 T Y 2 4 0 0 U N I T . j ' ' i ! !

i i : ! s E LIE c t ; e X P E N S E - L 1 S T . A S S 1 GNi TlO j
1 1 ; l > i j

■ ' »___LJL_
1 E X P L 1 S T N 1 T - R E C O R D' !l 4 4 3! U N I T •

Foints to check: (1) The input file must be assigned to a
UTILITY device, since it is a magnetic tape file. (2) The output
file must be assigned to a UNIT-RECORD device, since it is a
printed report. (3) External names must be enclosed in quotation
marks. (4) Make sure you have hyphens and periods where
required.

(3/66) 24

System/360 COBOL Writing Programs in COBOL
69 The SELECT entries that you have coded, may not he exactly the

same as the entries printed in the preceding frame. As you can
tell from the format, "device-number" is optional (and so are the
words TO and UNIT, and the commas).

Let's make this clear: you must let the computer know, sooner or
later, what specific devices are going to be used for input and
output. If the devices are not specified in the source program,
they will have to be specified on job control cards at the time
that the object program is executed. In some cases, we may wish
to be able to change device assignments each time the job is run;
in such cases, we will make our program "device independent" by
not specifying devices in the SELECT entries.

In most cases, though, our programs are written with specific
devices in mind. Then, it is just as well to indicate the device
numbers right in the source program. This is true of our practice
problem; the system designer has definitely told us which input
and output devices are going to be used.

• • •

70 The rules for creating an external name for a file are the same
as the rules for creating a _____ for the Identification division.

• • •
program name
The comments dealing with "where program names come from" apply
equally to external file names.

71 The only thing needed to complete our practice Environment
division is an 1-0-Control paragraph. You know that this
paragraph is omitted when no special techniques or conditions are
needed; however, we must include the paragraph in this program,
because we have a special condition that must be specified -- the
form overflow condition on the printed report. (Form-overflow
is the only one of the "special techniques and conditions" that
will be discussed in this course.)

Reading assignment: APPLY
• • •

(3/66) 25

System/360 COBOL Writing Programs in COBOL
72 Keep in mind that the overflow condition name that ie defined in

the I-O-Control paragraph will he used in the Procedure division.
There we may write an entry such as:

! i f L A j S T l - L 1 N E , W R 1 T E E X P E N S E - L 1 N E —I ---!---
j

11 a If t Ie R* S K 1 P P 1 N G - T 0 —N E X T - P > CD TI
L

• !

On your program sheet, finish the Environment division. Define
the name LAST-LINE to represent the form-overflow condition on
the printed report.

e e e

1 - O - l C O N h - R 0 L • ? J '
1 3r - —?—i—n~ ..j"'" ! ; j

!a P P L Y L A S T — L 1 NÏE T!0! F 0 RM — 0<VE!R F L o b v O NJ i l l E X P E N S E L i j s T S i :• ’ \
i s (1 » : 1 ! M 1

Points to check: (1) Did you remember the paragraph header?
(2) The file name of the report is required in the format, not
the external name of the file; don't confuse the two.

73 It should be apparent to you that the "APPLY overflow-name"
entry is used only when you have printed output. If our ,job had
called for magnetic tape output as well as magnetic tape input,
this APPLY entry would have been omitted -- in fact, we would
have omitted the entire I-O-Control paragraph.

• ••

74 To conclude our look at Environment division entry formats, let's
make fust one more point: when you write a division, you must
make your entries in the sequence in which they are indicated in
the format; and you are allowed to make only those entries shown
in the format. There is no provision, for instance, for making
explanatory comments in the Environment division. You are not
allowed to create a new paragraph, nor to "borrow" the Remarks
paragraph from the Identification division.

The moral of the story is: follow the formats religiously;
don't deviate or improvise. After all, when you write a source
program, you are preparing input to be processed by a computer
program (the compiler); hence, you must adhere to the specifi­
cations for that program'8 input -- or else, your entries will
be diagnosed as errors, and refected as non-processable.

e e e

(3/66) 26

System/360 COBOL Writing Programs in COBOL
LESSON 3

75 As you discovered in the previous course, the Data division is
probably the most complex of the four divisions. Certainly, it
demands much more of the programmer than the Identification and
Environment divisions do. To be sure, the complexity of the
coding depends on the complexity of the data itself; and the
programmer's fob is easier if he is intimately familiar with the
layouts of the records and files which he is trying to describe
in COBOL.

Another thing that makes the fob easier is that the programmer
can give his complete attention to describing files and records,
without being concerned with the procedures that will process the
data. That is, the task of describing the data has been logically
separated from the task of processing the data; this separation
is an important feature of COBOL. In practice, this means that
each record will be described once, and the same record
description will be used in every program that processes the
record. It also means that all programmers will use the same
names to refer to data items. And it means that we are fustified
in studying about the Data division without worrying about the
Procedure division at the same time.

He have tried not to duplicate information that you studied in
the previous course. As a result, it is taken for granted that
you recall the basic definitions and concepts; if you don't, you
will want to re-read the appropriate topics in the previous
reference handbook.

We will first work on file descriptions, then on record structures
and descriptions, and lastly on item descriptions.

Reading assignment: FILE DESCRIPTION

System/360 COBOL Writing Programs in COBOL
76 The only portion of a file description entry that is written in

the A-margin is _____ .
• • •

FD (the "level indicator")

77 (mus t be)Each clause of a file description j ma | written on a
separate line. ' y ‘

• • •

may be
Having each clause on a separate line makes the entry easier to
read and easier to correct or update.

78 Besides FD and the file name, which clauses are required in every
file description?

• • •
LABEL RECORD and DATA RECORD clauses

79 The file name given in a file description must correspond to a
file name specified in a _____ entry in the _____ division.

• • •
SELECT; Environment

(3/66) 2 8

System/360 COBOL Writing Programs in COBOL
80 In the next five frames, we will deal with files of punched

cards.

The recording mode of a punched card file must be _____ , because

• • •
F , because all records in the file are the same length
(80 characters), and there are no record-length control fields.
Recording modes are discussed in detail in the reference handbook
for the previous course.

81 For a card file, the BLOCK CONTAINS clause would be omitted,
because
(each block contains only one record 1
(there are no blocks in a card file)

• • •
each block contains only one record
By definitiont all files contain blocks, since a "block” is the
unit of data that is transferred to or from storage at one time
by the input-output device. A card file is read or punched one
card at a time; hence each card is a block, and contains just
one record.

82 Every record in a card file contains 80 characters, regardless of
how many card columns are punched. (Unpunched columns contain
the character "blank".) Thus, each record description for a card
record must account for all 80 characters, and the file
description entry
[should state RECORD CONTAINS 80 CHARACTERS]
[should account for only the columns that are actually punched]
[may be omitted].

• • •
EITHER should State RECORD CONTAINS 80 CHARACTERS, OR may be
omitted

(3/66) 29

System/360 COBOL Writing Programs in COBOL
83 Every card in a file is a data record. This includes even those

cards, such as leader or trailer cards, which contain accounting
or control information about the file.
From this you can conclude that label records are
in card files.

(standard)
(omitted }

• • •
omitted
Let me restate the idea: all cards must be defined as data
records, even though certain cards in the file may serve the same
function as label records would in tape or disk files.

84 On a COBOL program sheet, write the file description entry for a
card file called MAILING-FILE. The file contains three types of
cards — ACTIVE-CUSTOMER, INACTIVE-CUSTOMER, and PROSPECT cards.

F D IMA 1 L I N G - F I L E •* T
T T " I '! : ' ; i) ; ' 8 v

1 ! : |
!r oÖLÜ R D 1 N G MO D E 1 S H i

I 1 !1 ! 1 1 ! 1 1 ! i :

Il a b e L R E C O R D S A R E OM 1 T T E D ; ! ; ; . 1

Id A T A R E C O R D S A R E A C T I V e : - O U S T O M E R ; ! !
j

1
i 1 N A C T 1 V E - C U S l ! o ME r .,; ;p R OS P E C T . i : !

You might also have written a BLOCK CONTAINS clause after the
RECORDING MODE clause: BLOCK CONTAINS 80 CHARACTERS. Make
certain that you wrote the entire FD-entry as one entry; that is,
make sure you have just one period — at the very end. The other
punctuation shown above (semicolons and commas) might have been
omitted.

(3/66) 30

System/360 COBOL Writing Programs in COBOL
85 Fites of records that are going to be printed are treated

exactly the same as files of cards. The recording mode is Ft
since each output line has a fixed length equal to the capacity
of the printer. Each block contains only one recordt since lines
are printed one at a time. And there are no label records.

On another program sheet, write the FD-entry for the EXPENSE-LIST
file (the output file of the EXPENSES program). Two kinds of
lines are to be printed in the report; so there are two types of
data records in the file. The lines are named EXPENSE-DETAIL and
DEPARTMENT-TOTAL.

• ••

f d Se x p e 1ÜJCD L I S T
' 1 ! .1• : I ■% , j j :..r - r - f

Sr e c o R D 1 N G MO D E 1 S F ;
; ; Il a b e L R E C O R D S AR E OM 1 T T E D v : ,

r------ ?------ !
So A T A R E C O R D S A R E E X P E N S E - D E T A 1 J . 5 1 j

1 - ! ■ 1 ! D E P A R T M E N T - T O T A L • i
{ 1 j \

86 Now let's turn to files recorded on tape or disk. Here the
recording mode can be Vt Ft or U. Each block generally contains
more than one record. Usually, the file contains label records.

On still another program sheet, write the file description of
EXPENSE-FILE (the input file of the EXPENSES program). You will
recall that this file is on magnetic tape. The file has standard
label records, and one type of data record, called EXPENSE-RECORD
All data records in the file are a fixed length, and each record
is preceded by a record-length control field. There are 20
records per block.

e • •

F D SEXiPE n |s Je —F I L E i
1 i..1: i M i

Ir e c o r Id - i N G MO D E 1 S V i : 1 ! 1 i
= Ib l o c

oo!
__1 N T A 1 N S !2 0 R E C O R D s | I ; ! : !

Il a b e Ü R E C O R D S AR E S T A N D A R D . ; ; j I ! j

! Id a t a Ir 'e o O R D I S E X P E N S E - R E C O R D . ; \ ; -

The recording mode must be V, because there are record-length
control fields. (The RECORDING MODE clause might therefore have
been omitted.)

(3/66) 31

System/360 COBOL Writing Programs in COBOL
87 The format of the File section requires that eaoh file description

must be followed by one or more record descriptions — one record
description for each type of record in the file. Record
descriptions were discussed in detail in the previous course, and
we will review them only briefly here. The important points are
that a record description is a set of item descriptions; that it
shows the sequence of items in a record; and that the items are
arranged into levels to show the structure of the record.

Reading assignment: RECORD STRUCTURE
An illustration of levels of data items

AN EXAMPLE OF A RECORD DESCRIPTION
• • •

88 Level number is always assigned to the record as a whole.
• • •

01

89 Suppose that we have a tape record named STOCK-TRANSACTION, which
contains just three items, as pictured below.

STOCK-
TRANSACTION

STOCK-
NUMBER
QUANTITY

TRANSACTION-
CODE

What level number would you assign to:
STOCK-TRANSACTION?
STOCK-NUMBER?
QUANTITY?
TRANSACTION-CODE?

• • •

Level 01 must be assigned to STOCK-TRANSACTION, which is the
record as a whole. The other three.items would be assigned level
number 02 (or any number greater than 02, but not greater than
49).
Normally, the levels are numbered consecutively -- 01, 02, 03,
etc. -- and we will use this convention in this book. However,
your firm may have adopted another numbering convention. The
important thing to recognize about the record pictured in this
frame is that STOCK-NUMBER, QUANTITY, and TRANSACTION-CODE are
all at the same level; what the level number is doesn't matter --
as long as all three have the same level number.

(3/66) 32

System/360 COBOL Writing Programs in COBOL
90 Now let's envision a slightly more complicated record, called

JOURNAL-ENTRY. It consists of ENTRY-NUMBER, DATE, DESCRIPTION,
and AMOUNT, in that order. Some of these items are broken down
further: ENTRY-NUMBER is made up of PAGE-NUMBER and LINE-NUMBER
and DATE is made up of YEAR and DAY.
See if you can diagram the structure of this record. Also,
indicate the level numbers. (Just sketch this roughly on a piece
of scratch paper.)

• • •
LEVEL- 01

JOURNAL-
ENTRY

02
ENTRY-
NUMBER

DATE

DESCRIPTION

AMOUNT

03
PAGE-
NUMBER
LINE-
NUMBER
YEAR

DAY

91 Next, check your understanding of the order in which items are
entered on the program sheet. Using a program sheet, write the
level number and name of each item in the record diagrammed in
the preceding frame.
Put each item on a separate line. (Don't be concerned about
making complete entries, with PICTURE clauses, and so on -- just
write the level numbers and names.)

• • •

0 1 ; !j o !u r N A !l —E - N T R y | | T 1 I (1 ! ! !i | ?

' : ; N E N T R Y - N U
■ M i
M!BE;R ! 1 1 ■ i * [

i I f | \ 1 l! ! ! 1 • 1 ;; . : I i : 0 3 P A G E - N U M B Ef t
l 1 ! j ! ! ! ! !; t ; ! I i

--1
|

i | ! . ; ! i_!__;_1_i_i_i_ 0 3 L 1 N E - N U M B E R l i i 1 i 5 ' !' 1 "i i ;
1

i So 2 ! D A T E ; i i l i)
j ! |

i j ’ | ; 0 3 Y E A R ■ : I ‘ |

M l j i 0 3i D A Y i 1 : ; ; i
. M l | 0 2 0 E S C R 1 P T I O N - j ! , ! 1

1 1 !o 2 L A M 0 U N T • ! ‘ 1 ! ! l ! 1
: I ! i !i

(3/66) 33

System/360 COBOL Writing Programs in COBOL
92 Check these points on your program sheet: (1) Indenting is

highly desirable> but not required. The convention is to indent
each level to the next column whose number is a multiple of 4
(these columns are marked by heavier lines on the program sheet).
So, if you began with level 01 in column 8, all level-02 entries
would begin in column 12, all level-OZ entries would begin in 16,
and so on. (2) Remember this program sheet rule: level numbers
may be written in the A-margin, but not data names or any other
elements of an item description entry. This means that a level
number may be written in columns 8 and 9, but that the name of
the item must not start prior to column 12 — the name must not
begin in column 11. (2) Did you enter the level numbers and
names in precisely the order shown? If you did, skip the next
two frames. If you did not, and you are puzzled about the order
in which items are to be entered in a record description, go
right on to the next frame.

• • •

93 This flowchart depicts the steps that a programmer follows when
making entries in a record description. Study it briefly and
then proceed to the next frame, in which we will apply this
procedure to the exercise that you fust completed.

• ••

(3/66) 34

System/360 COBOL Writing Programs in COBOL
94 In order to understand this procedure, you must recognize that

the highest-level item has the smallest level number (01). And
that larger level numbers designate lower levels. With this in
mind, let's trace the steps taken in writing the record
description for the JOURNAL-ENTRY record.

1. We start by entering the level-01 item:
.... :.!.r
0 1 !j OjUlR N a (l — E N T R Y

JOURNAL-ENTRY is a group item,
smaller items; therefore, we
at the next-lower level:

, since it is subdivided into
enter the first item it contains

I I
i ! !o «2

n
!

uJ E N T R -< 1 z

c
 '

MB E R . (

3. ENTRY-NUMBER is itself a group item, so we enter the first
item that it contains at the next-lower level:

Ö 3 P A G E - N U M B E R -
4. PAGE-NUMBER is not further subdivided; so it is an elementary

item, not a group item. But we have not yet entered all of
the items that are part of the last previous group item
(ENTRY-NUMBER); we now enter the next level-03 item that it
oontaine:

0 3| L 1 N E - N U M CD m

S. LINE-NUMBER is not a group item, and we have entered all of
the items that make up ENTRY-NUMBER. Now we must check to
see if we are finished with the last previous group item at
the next higher level; that would be level 01, and we have
not yet entered all of the items in JOURNAL-ENTRY. Its
second item at the next-lower level (02) is:

! SO 2 ^ D A T E |

Since DATE is a group item, we enter its first sub-item:

I M S . 1 ; o(3i ! Y E A R ! i I !__1_!_ |

YEAR ie not a group item, but there is another
DATE:

sub-item in

1 ! ;
.. : i_____ j o b i 1 D A Y j

We are through with DATE, but there are more items in
JOURNAL-ENTRY, and the next is:

! SO 2

OCOLÜQ

R 1 P T 1 ON

DESCRIPTION is not a group item, so we enter the next
component of JOURNAL-ENTRY:

CVI
o

A M O U N T ï ; i

Now that we have entered all items at all levels, the record
description is complete. • • •

(3/66) 35

System/360 COBOL Writing Programs in COBOL
The card record below offers a ahanoe to draw up a record
description with several levels of items. As in the last
exercise, we are not concerned with the usage and pictures of
these items; only with their levels and names. While our
objective is to prepare a record description, we generally find
it easier to draw a schematic diagram of the record first. By
doing thist we can arrange items into their proper levels and
sequence before making entries on a program sheet.

On a piece of scratch paper, draw a schematic diagram of the
record below. Notice that the last portion of the record is
unused; you must consider these unused positions as an item in
the record — you must assign the appropriate level number to it,
and call it FILLER.

ATTENDEE

L A S T - N A M E

0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 G 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7

8888888888888
9 9 9 9 9 9 9 9 9 9 9 9 9
1 2 3 4 5 6 7 8 9 10 11 12 t3

0 0
14 15

1 1 1

9 9
15 11

NUMBER

0 0 0 0 0
17 18 19 20 1111

2 2 2 2 2
3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6
7 7 7 7 7

8 8 8 8

9 9 9 9 9
IS 17 18 19 20

NAME

00000000
21 22 23 24 25 26 27 28

11111111

2 2 2 2 2 2 2 2
33333333
4 4 4 4 4 4 4 4

55555555
6 6 6 6 6 6 6 6
77777777
88888888
9 9 9 9 9 9 9 9
21 22 23 24 25 26 2 ̂ ?8

000
29 30 31

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6
7 7 7

9 9 9
'9 30

Gr a d e s
FINAL EXAM
DATI

M D Y
00 0 0 0 0
32 33 34 35 36 37

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 55

6 6 6 6 66

77 7 7 77

8 8 8 8 8 8

9 9 9 S 99
3? 33 34 35 36 37

111
2 2 2 2

3 3 3 3

0 0 0
41 42 43 1 1 1

5 5 5 5

6 6 6

7 7 7 7

8 8 8

9 9 9
38 38 40

4 4 4 4 4 4

5 5

6 6 6

7 7

8 8
9 9 9
♦1 4? 43

Na m e

SUBJECT

0 0 0 0
46 47 48 49 1111
2 2 2 2
3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 5

7 7 7 7

9 9 9 9
46 47 48 49 51

TOPIC

00000000
50 51 52 53 54 55 56 57 11111111
2 2 2 2 2 2 2 2
33333333
4 4 4 4 4 4 M

55555555
6 6 6 6 6 6 6 6
77777777
88888883
9 9 9 9 9 9 9 9
iO 51 52 53 54 55 56 57

0 0 0
58 59 60 1111
2 2 2
3 3 3

4 4 4

5 5 5

o 6 6

7 7 7

8 8 8 8

9 9 9
58 59 80

bURAi
START

0 0
64 65 111111

0
66 67|68 69

00
62 63

1 1

22
3 3

4 4

55

6 6

7 7

8 8

9 9
62 £3)64 65|6c 67|S8 69

IQN

2 2 2 2
3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

NISH

0 0
72 731 1
2 2
3 3

4 4

5 5

6 6
7 7

8 8

9 9
72 73 74 75 76 77 78 79 80

0000000
74 75 76 77 78 79 80 1111111
2 2 2 2 2 2 2
3333333
4 4 4 4 4 4 4

5 5 5 5 5 5 5

6666666
7 7 7 7 7 7 7

9999999

• • •

The correct solution for this frame is printed on the next page.

(3/66) 36

System/360 COBOL Writing Programs in COBOL
01 02

STUDENT-
RECORD

STUDENT

COURSE

FILLER

LEVELS03 04
ATTENDEE LAST-NAME

INITIALS

FINISH

05 06

EMPLOYER NUMBER

NAME

GRADES APTITUDE-
TEST
FINAL-EXAM

QUIZ-AVERAGE

DAYS-
ATTENDED
NAME SUBJECT

TOPIC

CLASS SERIAL

REGION

DURATION START

DATE

SCORE

MONTH

DAY

YEAR

MONTH

DAY

YEAR

MONTH

DAY

YEAR

Check carefully to make certain that your diagram has all of the
iteme arranged into the same levels and sequence as shown above.
If you made any errorst correct your diagram.

(3/66) 37

System/360 COBOL Writing Programs in COBOL
95 Next, enter the level numbers and names for the record you just

diagrammed, on program sheets. Once again, these are not complete
entries; our objective right now is just to make partial entries
in the correct sequence.

• • •

Oil! 1 ISjTiU D E n !t —R ECO RD : ; j ! I I 1 j j
! 1 ; Sotei ! s T'U'D e n t ' 1 j ; 1 i i! 1 S

!
i

iJ j . 0 3 A T T E N D E E
; ! i j |

I ; j j ; I j (
0 4 L A S T - N A M E ’ ; ;) !

\ [1 t 1 \ 1 \1 0 4 1 N 1 T 1 A L S
j 1 ! {

0 3' EM P L O Y E R
■ ; M ' M j j !j ! ! 0 4 NUMB ER ! : *

i ' : ! i M j : 0 4 N AM E
• i : j j 0 3 G R A D E S ! ' : i

j ! (
0 4 A P T 1 t ‘u d e - T E S T

j J : 0 4 F 1 N A L - E X AM i S I
! : : 0 5 D A T E ! :

1 : ! i 0 6 M O N T H
0 6 DAY

1 0 6 Y E A R ; ! I
r r j

■ ! 1 0 ‘5* 1 s b b 'R E
; . ; » ; , , 0 4 Q U 1 Z - A V E RAG E

. : i ! M 0 3 D A Y S - A T T E N D E D t • iI) 1 ! | !
| 02 CO UR SE

! 1 j

■ i 1 i J M 0 3 N A M E i ; i

j ; ■ 0 4
0 4

S U B J
T O P 1

E C T
C 1 i

! i i
T T T

1 0i3 ! C L A S S ! ! i ; , 1
i ; i 0 4 S E R 1 AL J ’ « ' 1 ; s

i , , i ! !1 ̂ 1 0 4 R E G 1 ON ; \

0I3 D U R A T 1 ON ' 1 —1— —
■ 1 \

: S

’ 7 1 * ; j ; \ ‘ ' 0 4 ! S T A R T
j j s 0 5 M O N T H : > j 1 - 1 1

; ’ • 1 1 | | i 5 ; : ; 0 5 D A Y ! * ’ ■ i
! ! | } l , i *1 i I j 0 5 j Y E A R

| j

: ; ! M i
i

1 0 4 F 1 N 1 S H !
!1 ! ! 1 1 ' ! \

■ ■ i ! m 1 0 5 i m Io -n It H ! 1 i i i : ■ ;
. . 1 • ! ! Ï ! j ; ; | 0 5 D A Y

1 jS I ; ! ! Ï i i : Ï {
i j i 1 M.; ; ; i . : ! : i 0 5 Y E A R i i ! ! ! : j |

; ' So 2! ! F 1 L|l E R ‘ | ! .j"! S 1 ! 1 ■ ” ! " 4 ..|
!- i !

(3/66) 38

System/360 COBOL Writing Programs in COBOL
97 If you have used programming languages in which every data item

must have a different name, you are probably wondering about
some of the data names in the record with which we have been
working. The names MONTH, DAY, and YEAR are used three times,
and NAME is used twice.

Duplicate names of this sort are permitted in COBOL. The
philosophy is that you should be able to use the most reasonable
names for your data items. If five of the items in a record are
addresses, for instance, then by all means call each one of them
ADDRESS. (The main restrictions,you will recall, are that a
name cannot exceed 30 characters and that no name can be spelled
the same as a reserved word.)

But when it comes to processing one of these data items, in the
Procedure division, there must be a method for specifying which
particular ADDRESS you want to process. In COBOL, the method is
called "qualification" of names.

Reading assignment: DATA NAMES
Two ways of naming data items
Qualification of names

• • •

98 Qualification is really quite simple. In our STUDENT-RECORD, we
could make unique reference to each of the NAMES by calling one
NAME OF EMPLOYER, and calling the other NAME OF _____ .

• • •
COURSE

99 Names are qualified in the [Data division] [Procedure division].
• • •

ONLY in the Procedure division
Of course, when we write the Data division, we must take care to
make it possible to qualify all duplicate names that we use.

100 When the two data items have the same name,
qualified.

only one
both must be

• • •
both

(3/66) 39

System/360 COBOL Writing Programs in COBOL
101 There are two main requirements that qualifiers must meet:

1. A qualifier must be the name of a group item that
contains the item whose name is to be qualified.

2. A qualifier of one item's name must be different from
any possible qualifier of another item with the same
name.

Let's apply these requirements in the case of STUDENT-RECORD.
Close to the end of that record are two items named DAY. The
first is the day on which the class started; the second is the
day on which the class finished. Suppose that we qualify the
first DAY by referring to it as DAY OF START.
Now the second DAY must be qualified. Four ways of qualifying it
are listed below, only one of which meets the requirements. Pick
out the correct way, and explain why each of the other three ways
is not correct.

DAY OF COURSE
DAY OF CLASS
DAY OF FINISH
DAY OF DURATION

• • •

Only DAY OF FINISH is correct. COURSE and DURATION are also
possible qualifiers of the other DAY, so there would still be
doubt as to which one was being referred to. CLASS does not
contain DAY, so it is not a possible qualifier at all.

102 The third day in STUDENT-RECORD can be qualified by referring to
it as DAY OF [DATE] [GRADES] [FINAL-EXAM] [STUDENT-RECORD]
[STUDENT].

• • •
All of these, except STUDENT-RECORD, are acceptable qualifiers.
Some are better than others, though, from the standpoint of
••making sense". DAY OF GRADES or DAY OF STUDENT don't make as
much sense as DAY OF DATE or DAY OF FINAL-EXAM. More than one
qualifier may also be used; for instance, DAY OF DATE OF FINAL-
EXAM.

(3/66) 40

System/360 COBOL Writing Programs in COBOL
103

104

Sometimes it is absolutely necessary to use two or more qualifiers
for a name. Examine the excerpt from a record description, below.
We want to refer to the item marked by an arrow. Obviously, we
cannot refer to it merely as NUMBER, as there are four NUMBERS;
and we cannot refer to it as NUMBER OF SALES, as there are two
of those.
We must, therefore, go one step further, and refer to it as ______.

0 3 L A S T - Y E A —i—i—f—R| ! ; '

0 4 S A L E
! 1 1

S- ; ;i ! '
0 5 n u W b E R

i i 1 i 0 5 A M O U N T ' ! !
\ i 1 i

i i 0 4 R E T U R N S ; : 1 ! : i

i ; | 1 < 0 5 N U M B E R . : ?

_______i_
1 ! '
! i ; 0 5 A M O U N T

' , ! ; * | 1 ! !

0 3 T H 1 S - Y E A R ; i 1 !

_______i . , . ,
. - . i . , ,

j 1 :
: : I

0 4 S A L E
0 5

S
N U MB E R <

j l

! ‘ { i 0 5 A M O U N T |
^ ' ; ; 1

S s ; 0 4 R E T U R N S ? * \ * !: * l } ! : | J
| ; \ i

0 5 N U M B E R j
! > ! ; ; i i i i * ' 1

i
-- ------- -̂-i ï I 0 5 A M O U N T i ; ! j

• • •
NUMBER OF SALES IN THIS-YEAR

The words IS and OF can he used interchangeably. Use whichever
word sounds "right" to you.

Since THIS-YEAR was the "unique" qualifier in the example above,
could we have referred to the item simply as NUMBER IN THIS-YEAR?

• • •
No
Make sure that you see this point. There are two NUMBERS in
THIS-YEAR. Both qualifiers are definitely needed.

(3/66) 41

System/360 COBOL Writing Programs in COBOL
105

106

Keep in mind that the programmer* makes qualification of a name
possible by the way he uses that name in the Data division. He
must be careful to avoid situations in which a name cannot be
uniquely qualified.

Examine this excerpt from a record description, paying particular
attention to the items marked by arrows. These items have the
same name, and because of their places in the structure of this
record, the name cannot be uniquely qualified.

! 0 2 É S A L E S - F L 0 0 R
0 3 S Q U A R E - F O O T A g e 4 r — r

0 3 C O U N T E R S
M i ; ! j

i ^ 0 4 L E N G T H
! 1

-1_______
0 4 S Q U A R E - F O O T A G E (-

The only possible qualifier for the first SQUARE-FOOTAGE is
SALES-FLOOR. But there are two SQUARE-FOOTAGEs in SALES-FLOOR,
so it is not a unique qualifier. (Note that it is incorrect to
name the items as shown, even though the second SQUARE-FOOTAGE
can be uniquely qualified.)
Can you think of an easy way to correct the error in this
example?

• • •
Simply change one of the names; for instance, the first SQUARE-
FOOTAGE might be renamed FLOOR-AREA. When this is done, no
qualification is needed for any of the names in this example.

To sum up, COBOL permits you to use duplicate names for data
items -- provided that each name can be qualified to make it
different from every other name.

This certainly applies to the name of records, as well as smaller
data items. The reference handbook states that it is permissible
for two (or more) records to have the same name, but that the
names of files must be unique.
It should now be clear to you that records with the same name
(must be in different files)
(may be in the same file J

• • •
must be in different files

(3/66) 42

System/360 COBOL Writing Programs in COBOL
107

108

109

LESSON 4

So far, we have been dealing with the level numbers and names of
data items. In this lesson, we will add the PICTURE, VALUE, and
USAGE clauses, in order to construct complete item description
entries. These three clauses are the only ones needed for most
items, and our emphasis will be on learning to use them correctly.
(To avoid the confusion of too many facts and rules at one time,
we will omit the REDEFINES and OCCURS clauses for the time
being.)

The reference handbook for the previous course explains the
meanings of the more common picture characters (X, A, 9, S, V3
and P), and the significance of the usage words (DISPLAY,
COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, and
COMPUTATIONAL-Z). If you have forgotten what these characters
and words mean, return to that handbook now, and refresh your
memory before you continue with this lesson; otherwise, go on to
study the format of item description entries.

Reading assignment: ITEM DESCRIPTION
• • •

An item description entry must contain at least a _____ and a
_____ , plus a period.

• • •
level number; data name (or FILLER)

The reserved word FILLER is used for items that
[contain no information, or blank spaces]
[contain information that will not be processed].

• • •
EITHER contain no information, or blank spaces OR contain
information that will not be processed.

(3/66) 43

System/360 COBOL Writing Programs in COBOL
110

111

112

113

The picture of a data item may indicate several things about the
item. However# a picture will never indicate
[the location of an assumed decimal point]
[the presence of an operational sign in an item]
[the data code in which the item will be stored]
[the editing that is to be done to form the item]
[the initial value of the item]
[the class of the item: numeric, alphabetic, or alphanumeric] .

• • •
the data code in which the item will be stored AND the initial
value of the item
The data code is given in the USAGE clause; the initial value is
specified in the VALUE clause.

imust have }
may have > PICTURE clauses,
must not have)

• • •
must have

{must have \
may have > PICTURE clauses,
must not have)

• • •
must not have

VALUE clauses are allowed in item description entries only in the
____ _ section of the Data division.

• • •

Working-Storage

(3/66) 44

System/360 COBOL Writing Programs in COBOL
114

115

116

117

11 8

Descriptions of elementary items in the Working-Storage section

(must have ï
need not have> VALUE clauses,
must not have)

• • •
need not have

Descriptions of group items in the Working-Storage section

!must have \
need not have> VALUE clauses,
must not have)

• • •
must not have

USAGE clauses are allowed in [elementary items] [group items]
in the [File section] [Working-Storage section].

• • •
BOTH elementary items AND group items; BOTH File secti'on AND
Working-Storage section

The USAGE clause may be omitted if the item's usage is
• • •

DISPLAY

The USAGE clause may also be omitted for an item in a record
description, if usage has already been specified for _____ .

• • •
a group item that contains this item

(3/66) 45

System/360 COBOL Writing Programs in COBOL
| | y Let's apply these rules to a few sample data items, beginning with

independent items. You will recall that independent items are
entered in the [File section] [Working-Storage section], and that
they are [elementary items] [group items].

• • •

Working-Storage section ONLY; elementary items ONLY

120 The level number of an independent item is required to be
• • •

77

121 Since an independent item is an elementary item, its description
must contain a clause.

• • •
PICTURE

122 Suppose that we need a work area large enough to hold 20 alpha­
numeric characters. On a COBOL program sheet, write the item
description entry that is needed to set up such an area. Name
the item WORK-AREA.

• • •

7 7 W O R K A R E I C l T U R E X 20) .

The USAGE clause ie omitted, because the usage of an alphanumeric
item must be display; however, you might have included the clause:
USAGE IS DISPLAY.

(3/66) 46

System/360 COBOL Writing Programs in COBOL
123 On the same program sheet, write the entry to define another

independent item, named DIFFERENCE. This item is to contain a
sign and five digits, stored in "packed decimal" (internal
decimal) form.
Note: The picture character S, which you wilt use to indicate
that this item contains an operational sign, must he written as
the left-most character of the picture -- even though the sign
will actually be stored in the right-most byte of the item in
storage.

• • •

7 7 !d 1 F F E R E N C E , P 1 C T U R E S 9 (5) ,
1...-......... 1 ■ ■ , C O M P U T A T 1 O N A L — 3 .

Points to check: (1) The picture could also have been written
S99999; however, the abbreviated form -- with a number enclosed
in parentheses -- is generally used whenever a picture character
is to be repeated more than four times in succession. (2) The
usage word, COMPUTATIONAL-3, is mandatory in this case, to
indicate that the data is packed-decimal. (3) You might also have
used the words USAGE IS before COMPUTATIONAL-3.

124 COBOL students often wonder whether to include or omit optional
words in an entry -- for instance, the words USAGE IS in the entry
you just wrote. The best rule is to include these words when they
help the reader to understand an entry; otherwise, to omit them.

Consider the USAGE clause. If the reader doesn’t know what
COMPUTATIONAL-3 means, he will not know what USAGE IS
COMPUTATIONAL-3 means either. And, if he does know the meaning
of COMPUTATIONAL-3, the words USAGE IS are unnecessary. Here
the optional words don’t clarify the meaning, so they might as
well be omitted.

Take another case: the "greater than" relation test, in which it
is permissible to use gust the word GREATER, in place of IS
GREATER THAN. But the procedural statement IF BALANCE IS GREATER
THAN MINIMUM-LEVEL... is easier to read and understand than its
abbreviated equivalent, IF BALANCE GREATER MINIMUM-LEVEL ...
Here the optional words ought to be included.

• • •

(3/66) 47

System/360 COBOL Writing Programs in COBOL
125

126

For most items, you will not be concerned about initial values.
For example, when you describe the items that make up an input
record, you simply want to reserve an area in storage to receive
the record; specific values are going to be put into those items
when the data file is read.

In some instances, though, you may want to specify the initial
value of an item. For this, of course, you would use the VALUE
clause in the item description. One such instance is when you
want to set up a constant; another is when it is important for a
work area to have a certain value at the outset of program
execution.

Keep this fact in mind: Unless you specify a value, there is
no way of knowing what the initial contents of an item will be.
Storage is not cleared before your object program is loaded, so
you must not assume that items contain blanks or zeros at the
start of a run.

On your program sheet, write the entry to define a constant whose
value is 500. This number is to be stored in binary form, and
named LIMIT.
Note: Binary data is always signed, so don’t forget the S in
the picture.

• • •

7 7 i L l M l T J J p 1 C T U R E S 9 9 9 , V A L U E 5 0 0 ,
;... ;

i .. ; ;
_______i - ; ! d o M P U T A T 1 ON A L .

A non-numeric literal is used in the VALUE clause for alphabetic
and alphanumeric items. Accordingly, you will want to enter a
non-numeric literal in the next practice item.

Write the item description entry for an alphabetic constant which
is to serve as the title of a report. The contents of the item
are to be DEPRECIATION SCHEDULE and the item is to be named TITLE.

• • •

7 7 IT 1 T L E | , : P 1 C T U R E A ro * .
....... , , 1_______ V A L U E ' D E P R E C 1 A T 1 ON S C H E D U L E 1 •

The usage of alphabetic data must be display (BCD), so the USAGE
clause may be omitted, as shown. It would also have been correct
to write DISPLAY or USAGE IS DISPLAY in the entry.

(3/66) 48

System/360 COBOL Writing Programs in COBOL
127 Independent items, by definition, cannot be subdivided, nor can

they be combined into groups. If items are to be combined or
subdivided, they must be described as records.
The main reason for combining items into records is to make it
possible to refer to a group of items by one name, and therefore,
to process the entire group at one time. To illustrate, suppose
that we had defined three independent items, as follows:

77 Id e p a R;T ME N T , j P I C T U R E 9 9 9 . ; '

77 Je m p l o !y |e e - n u !m b ;e r , iP‘ 1 C T U R E 9 (6) j . | !
1 { 1
1 ■' * ; I | 1j

7 7 I S H I F t I J !p i c d u R E 9 . i nr I ! |
1 1 | ! j ! |

Now, if the data in these three items were to be moved to some
other location, say to an output record, three MOVE statements
would have to be used. By combining the three items into a
record, as shown below, we could move the data in the complete
group item with just one MOVE statement.

o i Ie m p l O Y E E - I D E N T I F I C A T I O Ni . : I ;
jo 2 D E P A R T M E N T , ; P I C T u W r i 9 9 9 • * . t ’ i j

| 0 2 E M P L O Y E E - N U M B E R . P I C T U R E 9 (6) ! • ; ; I 1

|0 2 S H I F T v ;P I C T U R E 9 __i—___
- ! ; i |

——;_i—

On your program sheet, write the entries that describe a record
named ADDRESS, composed of STREET (20 alphanumeric characters),
CITY (20 alphabetic characters), STATE (5 alphabetic characters),
and ZIP-CODE (5 digits stored in external decimal --- BCD ---
form, with no sign).

• • •

0 1 Ia d d r E S S • : i ■ ii
; i

i0 2 , S T R E E T ; , ' P I 'C T u R E X (2 0) " * , !
• 1 T }j

! o 2 : C I T Y i P 1 c t 'u r E jA (2 0) ,
; ! ! 1 - i 1 -

: | 0 2 I S ! TA T E , P 1 C T U R E A (5) .
I ■ j t ■ ! i i \

|0 2 ■ Z l P CO D E * P I C T U R E 9 (5) . ’ i j ! I iI

Points to cheek: (1) ADDRESS must have level number 01.
(2) ADDRESS must not have a picture, since it is a group item.
All of the other items must have pictures. (3) Do you have a
period at the end of every entry?

(9/66) 49

System/360 COBOL Writing Programs in COBOL
128

129

Combining two or more items to form a record does not affect your
ability to process each of the items separately; it simply adds
the capability of processing the whole group as a combined item.
Also, by combining items, you can sometimes take advantage of the
fact that the usage of a group item applies to all items in the
group. For example, if the usage of a group item is specified as
being COMPUTATIONAL, then every elementary item in that group is
taken to be binary — and there is no need to repeat the usage
word. Apply this labor-saving fact to the following problem.
Write the entries needed to define a record named TOTALS, made up
O f MINOR-TOTAL (5 digits), MAJOR-TOTAL (7-digits), and FINAL-TOTAL
(9 digits). Each elementary item is in packed decimal form, and
contains a sign.

o 1 It o T A
"T"""; ; •
MS: , ; C O M P U T A T I O N A L - 3 .

lO 2 Mi I NO R - T O T A L , P I C T U R E S 9 (5) .
| 0 2 M A J O R - T O T A L , P I C T U R E S 9 (7) .
|0 2 F I N A L - T O T A L , P I C T U R E S 9 (9) .

The idea was to write COMPUTATIONAL-3 in the description of the
group item only; however, you might have written COMPUTATIONAL-3
for each elementary item in the groupt in which case you could
have omitted it at the 01 level.

Let's suppose that the record description you just wrote appears
in the Working-Storage section, and you want to specify an initial
value of zero for each of the three totals. Is the following an
acceptable way of setting the initial values? If not, why not?

o i It O t a L S , C O M P U T A T I O N A L - 3 , V A L U E Z E R O .lo 2' 1 M l NO R - T O T A L , P I C T U R E S 9 (5) , . : ! 1

| 0 2 ! Mi A J O R - T O T A L , P I C T U R E S 9 (7) . ! -
' !o 2 F! 1 *N A L - T O T A L . P 1C t !u !r !e Is l9 j { 9 -1 ,—

i (i
■ i i

• • •

No, because a VALUE clause is permitted for elementary items only.
In this case, a VALUE clause would have to he written in the
description of each level-02 item.

(3/66) 50

System/360 COBOL Writing Programs in COBOL
130 Records in the Working-Storage section are always group items,

but records in the Pile section can be elementary items. This
means that it is possible for a record description in the Pile
section to consist of only a level-01 entry; in that case, the
level-01 entry would contain a level number, a name, and

a PICTURE clause
a VALUE clause
no descriptive clauses

• • •

a PICTURE clause (Every elementary item description must contain
a PICTURE clause.)

131 Perhaps you will not have many opportunities to define a record
as an elementary item -- but you should be aware that it can be
done, in the File section. (The general practice, as you have
learned, is to define all of the items that make up a record.)
One fairly common situation in which you will probably want to
define a record as an elementary item is a fob in which trans­
action records are processed against master records, and updated
master records are written out; the items that make up the output
master record are the same as those that make up the input master
record.
In this situation, an input master file must be described,
followed by the input master record description, in which the
complete record structure would be shown. An output master file
must also be described, followed by the output master record
description -- but no purpose would be served by duplicating the
descriptions of the items that constitute a record; so the record
will be described as an elementary item whose size is equal to
the total length of the input record.

Items would then be processed -- updated -- in the input area;
and the completely updated record moved to the output area by a
procedural statement such as MOVE MASTER-RECORD OF INPUT-FILE TO
MASTER-RECORD OF OUTPUT-FILE.

Write the record description for the output MASTER-RECORD in the
situation discussed above. The total length of the record is
250 alphanumeric characters.

• • •

0 1 iM A S T E IR H R IE C 0 R D , PI I C T U R E X (2 5 0 ■ U —

(3/66) 51

System/360 COBOL Writing Programs in COBOL
132 The final Data division entry format is the ”condition name”

entry. This entry olosely resembles an item description entry,
but instead of describing an item, its function is to assign a
name to a particular value of an item. You can think of this
entry as being a supplement to an item description entry; the
item description entry says, in effect, ”An item exists, and
these are its size, usage, and other characteristics”; the
condition name entry supplements this information by saying,
"Here is one specific value that might be found in the item, and
a name by which we can refer to the condition that exists when
the item contains that value”.

Reading assignment: CONDITION-NAME
• • •

133 A condition name is useful only if you know which item it is
associated with. If you saw the following series of entries in a
program, you would know that MALFUNCTION is a condition name that
is associated with [SERVICE-HISTORY] [MACHINE-NUMBER]
[TYPE-OF-CALL] [PREVENTIVE-MAINTENANCE] [DOWN-TIME],

0 1 ’ : S s E f t V I C E - H I S T 0 R Y .
..... . !

' ',02 m U c !h I N E - N U M B E R ; , ’ P I C T U R E 9 (8) •
; So 2 T Y P E - O F - C A L L , P I C T U R E 9 .

- I ..M ! | 8)8 ' P R E V E N T I V E - M A I N T E N A N C E v V A L U E 7 .
8 l8 ' ! M A L F U N C T I O N , V A L U E 4 • '

SO 2 d |o W n - T I M E , P I C T U R E 9 9 9 V 9 •

• • •
TYPE-OF-CALL
Condition name entries are required to follow the elementary item
with which they are associated. In this example, two condition
names are associated with TYPE-OF-CALL.

134 Again referring to the example in the previous frame, we would
say that PREVENTIVE-MAINTENANCE is the name of the condition that
will exist during the execution of the program, whenever the
value of is

• • •
TYPE-OF-CALL; 7

(3/66) 52

System/360 COBOL Writing Programs in COBOL
135

136

Condition names are used in IF sentences, and if they are used
properly, they make the sentences a lot more meaningful to the
reader.
Having defined a condition name as shown below, the programmer
can write a sentence such as: IF HIGHEST-PRIORITY, GO TO
FILL-ORDER-AT-ONCE. Without the condition name, the programmer
would have had to write: IF PRIORITY-CODE » 'G', GO TO
FILL-ORDER-AT-ONCE.

M M ! 0 3'l 1 P R 1 0 R 1 T Y - C O D E , p 1 C T U R E X • ? -
- : ! i i

...».. i -L -l -L ! i 8 8 H I GH E S T - P R 1 0 R 1 T Y - a- V A L U E * G

Condition names are defined in the _____ division, and used in
the division.

• • •
f

Data; Procedure

As he writes the Data division, the programmer must try to
anticipate the need for condition names in the Procedure division,
As a general rule, condition name entries should be written for
any item that will assume a limited set of predictable values --
for instance, a record identification code.

Write the item description entry and condition name entries for
the following item: a level-02 item named MARITAL-STATUS
containing a single digit stored in BCD form (usage is DISPLAY);
if the digit is 0, it signifies that the person is SINGLE;
1 signifies MARRIED; 2 means DIVORCED; and 3 means WIDOWED.

• • •

M i W M A R 1 T A ';L b S T A T u ' sU P 1 C T U R E 9 .
.... """"1; •, ?

l 1 1 1
{ J j 1 i; 8 8 S I N G L E , V A L U E ;0 '.

1

~ i ! 1 i : ! ! 1 8 8 M A R R 1 E D , V A'L U,E| |1 j j ;
• - ! S ! ' 1 i

> ; ! 1 i- s 1 1 8 8 D 1 V O R C E D

<>

L U ;e I 2 . : i : ; 1 : i
• ; ! !

8 8 j W 1 DO W E D , V A L U E 3 • : : ! ; 1 \ !> \

Points to check: (1) Make sure that you have five separate
entries, each terminated by a period. (2) Every condition name
entry must begin with level number 88. (3) You could have used
the figurative constant ZERO in place of the literal 0.

(3/66) 53

System/360 COBOL Writing Programs in COBOL
137 This lesson has given you some practice in writing entries for

individual items and small groups of items. To conclude the
lessona take a new program sheet and write the complete record
description for the record diagrammed below.

All items in the SALESMAN group are in BCD (DISPLAY) mode; all
other items are packed decimal (COMPUTATIONAL-3). Actual values
are shown for REGION and INDUSTRY — write condition name entries
for these values; maximum values are shown for the remaining
items. Note that the dollar values are not actually punctuated
with symbols; for these items, the values let you know where the
assumed decimal points are located. All packed decimal items
have operational signs.

SALES-RECORD SALESMAN

YEAR-TO-DATE

CURRENT-MONTH

REGION
A=EASTERN
B =CENTRAL
C = WESTERN

OFFICE-NUMBER
999

BADGE-NUMBER
9999

INDUSTRY
20=PETR0LEUM
21= METALS
26 = CHEMICALS
32= UTILITIES

QUOTA '
$99,999.99

SALES
$ 99,999.99

COMMISSION
* 9,999.99

QUOTA
$ 9,999.99

SALES
$ 9,999-99

COMMISSION
* 999.99

• • •
The correct solution for this frame is printed on the next page.

(3/66) 54

System/360 COBOL Writing Programs in COBOL
01 Is A L E S - R E C O R D

..r | "i
• i T T

; lo 2 S A L E S M A N • ■
0 3 R E G 1 O N , P 1 C T U R E A .

8 8 E A S T E R N , V A L U E ' A ' .
i f i 8 8 C E N T R A L , V A L U E ' B ' .

• , ' i ; I j .
8 8 W E S T E R N , V A L U E ’ C ' .

I 0 3 : O F F 1 C E - N U M B E R . P I C T U R E 9 9 9 .
! ! 1 i ! ! ; 0 3 i B A D G E - N U MB E R , P I C T U R E 9 9 9 9 .

0 3 1 1 N DU S T R Y , P I C T U R E 9 9 0

1 ! ; 8 8 P E T R O L E U M , V A L U E 2 0 .
| 8 8 M E T A L - S , V A L U E 2 1 •

8 8 * OH E M 1 C A L S . V A L U E 2 6 .
M ! i : H 8 8 U T 1 L 1 T 1 E S , V A LU E1 3 2 .

* 0 2 Y E A R - T O - D A T E , CO M P U T A T I 0 N A L - 3 .
1 ■ : ; 0 3 Q U O T A , P 1 C T U R E S 9 (5) V 9 9 .
1 0 3 1 S A L E S , P 1 C T U R E S 9 (5) V 9 9 .
\ ' \ 0 3 : C O M M 1 S S 1 O N , P I C T U RE S 9 9 9 9 V 9 9 •

; ! | 0 2 i C U R R E N T - M O N T H,1 9
O M P U T A T 1 O N A L - 3 .

M i l 1 ; ! 0 3 j Q U O T A , P I C T U R E S 9 9 9 9 V 9 9 .
j i t i • j ! 0 3

1
S A L E S v P I C T U R E S 9 9 9 9 V 9 9 . - .=

’ M i 1 ! 1
t i l l 0 3 C O M M 1 S S I ON , P I C T U R E S 9 9 9 V 9 9 .

Points to oheok: (1) DISPLAY usage oould have been specified for
the SALESMAN group; howevert DISPLAY is assumed when no usage is
specified. (2) The picture of REGION can be either A or X.
(3) The literals in the condition name entries for REGION must be
non-numeric -- enclosed in quotation marks. (4) If you did not
write COMPUTATIONAL-3 at the 02 level for YEAR-TO-DATE and
CURRENT-MONTHt it would have been necessary to write
COMPUTATIONAL-3 for every 03 item in those groups; note that it
is not sufficient to write COMPUTATIONAL-3 for YEAR-TO-DATE onlyt
since that applies only to the items in that group — so
COMPUTATIONAL-3 must be written for CURRENT-MONTH also. (5) Did
you remember to use the picture character V to show the location
of assumed decimal points? (6) Because QUOTA, SALES, and
COMMISSION are duplicated names, they will have to be qualified
when they are used in the Procedure division; for instance,
SALES IN YEAR-TO-DATE and SALES IN CURRENT-MONTH.

(3/66) 55

System/360 COBOL Writing Programs in COBOL
LESSON 5

138 The Procedure division is the most loosely structured of the four
divisions. The division header is the only fixed entry that you
are required to use in every program -- and from that point ont
you're on your own to construct whatever paragraphs you need and
to arrange them in any sequence that does the fob.

We will begin this lesson with a quick look at the overall format
of the division.

Reading assignment: PROCEDURE DIVISION
• • •

139 The Procedure division is required to contain at least
(one paragraph 1
|two paragraphs j *

• • •
one paragraph

The names of paragraphs (procedure names) are
reserved words
programmer-supplied names

• • •
programmer-supplied names

141 Suppose that we have a very simple program that contains only one
paragraph in the Procedure division. Must that paragraph have a
name?

Yes
• • •

(3/66) 57

System/360 COBOL Writing Programs in COBOL
142

143

144

How many sentences must each,paragraph contain?
• • •

One or more

What is the difference between a sentence and a statement?
• • •

A sentence is an entry; therefore# it must be terminated by a
period. A statement specifies an action to be taken, and is found
within a sentence. Each sentence contains at least one statement,
but it may contain more than one.

In the sample paragraph below, pick out the sentences and the
statements.

I N I Tl I A L I z e .
Im o v e S P A C E S T O C O N T R O L - A R E A .
Im o v e Z E R O S T O o o N T R O L - T O T A L .
l A C C E P T P A G E - N U M B E R ,
Im o v e P A G E - N U M B E R T O N U M B E R I N H E A D I N G - T .

statements sentences

--------- ►M 0 V E S P A C E T O C O N T R O L - A R E A ,
--------- ►M O V E Z E R O S T O C ON T R 0 L - T O T A L .
--------- ► A C C E P T P A G E - N U M B E R ,
--------- ►MOV E P A G E N U M B E R T O N U M B E R I N H E A D I N G - 1 .

In most cases, it does not matter how many statements are written
in a sentence. All four of the statements above might have been
combined into one sentence, since that would have satisfied the
requirement for at least one sentence per paragraph. (Another
way of stating this rule is that every paragraph must end in a
period.) On the other hand, the statements might have been
written as four separate sentences -- a method preferred by many
programmers because it simplifies the insertion and deletion of
statements.

(3/66) 58

System/360 COBOL Writing Programs in COBOL
145 Each type of statement has a specific format. The remaining

pages of the reference handbook give the formats of the most
aommonZy used statements. In this lesson, and in the lessons that
follow, you will study all of the formats given in the reference
handbook.

In the handbook, the various verbs are arranged in alphabetical
order. Some verbs have more than one format, and are presented
on more than one page; for instance, ADD (1) and ADD (2). The
reading assignment will specify exactly which format you are to
study.

You will not study the statements in alphabetical order. Instead,
as you work on a programming problem, you will be assigned to
study only the statements that apply to the problem. And your
work will involve all four divisions, rather than gust the
Procedure division — so that you will get a good idea of the
relationship of procedural statements to the descriptions of
data items and files, assignments of input-output devices, and
so on.

None of the procedural words should come as surprises. You were
introduced to them all in the previous course. But don't make
the mistake of thinking that this time you must memorize all of
the details about each entry -- gust try to pick up only as much
information as you need to write the required entries for the
problem that you are working on.

The amount of practice that you will get with each verb will be
quite limited. There are literally hundreds of ways in which
most statements can be used; if we explored every one of them,
this course would never end! So, you will get practice in using
the statements in one or two typical ways, in simple problems.

• • •

146 Let's start with a really simple problem, involving three state­
ments. This problem doesn't represent a practical computer
application; on the contrary, it is gust about the simplest
procedure imaginable.

The problem is to print the data punched in a single card. The
steps in the procedure are (1) to obtain the data from an input
device, (2) to transfer the data to an output device, and (3) to
8top the run. Because only one card is involved, we will treat
it as low-volume input, not as an input file; likewise, only one
line is to be printed, so we will treat it as low-volume output,
rather than as an output file. The input-output verbs we will
use, therefore, are ACCEPT and DISPLAY, rather than BEAD and
WRITE. • • •

(3/66) 59

System/360 COBOL Writing Programs ia COBOL
147

148

149

150

ACCEPT and DISPLAY -- and STOPs also -- have move than one format.
You ave to read about only the first format of each of these verbs
at this time.

Reading assignment: ACCEPT (1)
DISPLAY (1)
STOP (1)

• • •

An ACCEPT statement obtains up to 80 characters of data, and
moves them into a working-storage area. Suppose that, for our
problem, an 80-character item named CARD-DATA has already been
defined. Which of the entries below is the correct way to get
the data from our card into CARD-DATA?

ÜJOo-<

p t ! b A T Al . M O V E 1 N T O C A R D - D A T A * * |

!a c !c e p |t :! M O V E T O C A R D - D A T A . 1 ! ; i

> O O m P'T C A R D - D A T A •

? i

• • •
ACCEPT CARD-DATA.

Now that we have the card's data in working storage, we want to
DISPLAY the data. In order to display the data,

{we must first move it from CARD-DATA to an output area) we need only to write DISPLAY CARD-DATA V .
we need to convert the data to DISPLAY usage)

• • •
we need only to write DISPLAY CARD-DATA
Our last step is to terminate the execution of the program. The
statement that we must write to accomplish this is _____ .

• • •
STOP RUN

(3/66) 60

System/360 COBOL Writing Programs in COBOL
Let'8 now write the complete COBOL program -- not gust the
Procedure division — for this problem. This will give you an
opportunity to tie together information that you studied in
previous lessons. Feel free to refer to any part of the reference
handbook.

Take a new program sheet, and write the Identification division.
Make only the required entries for the division. The name of our
program is ONECARD.

• • •

1 d e n !t 1 F I C A T 1 O N D 1 V 1 is i l o W •
"T 1 ’

i s . r ! •

P R O G R A M - 1 D . j | \ i * i ï \

! ' O N E C A R D i ;
; • ; 1 1 ! _1_1_

i j i j 1 !
_ L ± i_ j ; i i i ■

i i r 1 I 1

152 Next, the Environment division. In this division, the Configu­
ration section is always required, while the Input-Output section
is optional.
For our problem, the Input-Output Section
because

(must be included)
(must be omitted j

• • •
must be omitted, because there are no input or output files

153 Write the Environment division of our program. Enter just
IBM-360 in the Source-Computer and Object-Computer paragraphs,
omitting the model numbers.

• • •

E N V l l R O N M e !n !t I D 1 V 1 S 1 ON • ■ : ; ’ i ! i 1? * i i ! ;

C O N F l l G j U R A V 1 0

LUCOz

C T 1 0 N .
' : i

f
\ ‘ !
f ! j ; I ! ! i |

s o u r !c e | - C 0 M P U T E R ! . ; ; ; 1 :
I 5 1 n

! i b 'm — 3 6 0 •
i
j

i ! ; j ; i i i ! | j

o b j e Jc t - C 0 M P u t Ie r̂ ' . j : ! i ï i
Ï \ j j ! 1 !

: i 1 ! i b m — 3 6 0 • I i s I j
___1J.... l—

j j ; ii

(3/66) 61

System/360 COBOL Writing Programs in COBOL
154

155

In the Data division, we must define the item we called CARD-DATA.
To do this, we need [a File section] [a Working-Storage section].

• • •
ONLY a Working-Storage section
We must omit the File section because we have no input or output
files.

We must describe CARD-DATA as an 80-character

• • •

independent item
record

independent item
Items in working storage are defined as records only if they are
subdivided into smaller items.

Write the Data division of the program. CARD-DATA is to
accommodate 80 alphanumeric characters.

• • •

d a t a ! d i v 1 S 1 0 N .
w o r k I i n g - S T O R A G E S E C T 1 ON .
7 7 I c A R D - D A T A , P 1 C T U R E X (8 0) • ■

(3/66) 62

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

157 Finally# write the Procedure division. To refresh your memory#
here is a procedure flowchart for our little program.

ACCEPT
CARD-
DATA

• • •

p [r |o |c !e D U R E D 1 V 1 s il 0 N 4
: i : j i ; ! .

P ttidciE S S —D A T A • 1I_ j 1 1 \

i j ; 1

m ; :a C c E P T C A R D - D A T A •

i 1 ;
' i i I :

ï
I | |D 1 s P L A Y C A R D - D A T A • j : ; i !j I 1 ! |

1 -j
..L..Jte T 0 P R U N * 1 ,1 I * *_Lj_i_ ! s i---—.—i— 1L j

Did you remember that a paragraph name is required? If you
forgott oorreot your work. The name does not have to be PROCESS-
DATA, of oour8e.

(3/66) 63

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

1 5 8

1 5 9

Our second problem is a slight modification of the first one•
Instead of merely printing out the data in a card, in this problem
we will insert spaces between the fields on the output line.
Let98 suppose that the card looks like this:

VEHICLEI I
IDENTIFICATION

LICENSEI
NUMBER

EXPIRA­
TION
DATE

0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 22 23

000000000000000000900000000000000000000000000000000
24 25 26 27 28 29fe0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80iii11ii1111iii ii11111111

2 2 (2 2 2 2 2
3 3 3 3 3 | 3 3

4 4 4 4 4 4 4 4

222222|222222|2
| 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 | 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5

6666666666|66666666|666
71 7 7 7 7 7 § 7 7 7 7 7 7 7

888|88888888888
9 9 9 9 1 9 9 9 9 9 9 9 9 9

! 3 4 5 6 7 8 9 10 11 12 13 1 4 '

7 7 7 7 7 7

88883888
I 9 1 9 1 9 9 9 1
15 16 " 18 " 20 21 2? 23 ?

1|11

2 2 2 2 2 2

3 3 1 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 | 6

7777771
8 8 8 8 8 8
9 9 9 9 9 9
24 25 26 V ’ 8 74

1 11 11 1 1
2

3

4 ^ 4

5

6 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 C 6

7

8 8 8 8 8 8 8 8 8 8 3 8 8 8 8 8 8 3 8

S 9 9 9 9 9 9 9 9 9 9 9 3 9 9 3 9
30 31 3? 33 34 35 3S 37 38 39 *0 41 4? 4144 45 46 47 4849 50 51 52 53 54 5f 56 57 58 59 *0 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Our first program would have printed a solid line of characters:
37A8942G006 512919BR6379013167

This time we will leave five spaces between fields:
37A8942G006S129 19BR6379 013167

• • #

m

The logic of this fob is significantly different from the logic
of the first fob. Beforet a single area in working storage
served for both input and output. Now, we will set up two areast
and move the data items from one area to the other.

input area

output area

VEH IC LE LICENSE EXPIRATION

[i

SPACES SPACES

Before> we treated the data as a single (independent) item. Now,
we will treat it as a recordt subdivided into three smaller items.

• • •

(3/66) 64

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

160 The Identification and Environment divisions that you wrote for
the first problem are suitable for the second problemt but we
will need different Data and Procedure divisions. We will define
our data items first.
On a fresh program sheet, write the division and section headers
for the Data division. (As before, we will use only the
Working-Storage section.) Then, write the record description for
the input record. Name the record CARD-DATA. Look back at the
preceding frames to see the card format.
Note that we will define only the first 29 positions of the card,
and ignore the blank positions (30-80). We are able to do this
because the ACCEPT statement lets us obtain only as many
characters as we wantt beginning with position 1 (up to a maximum
of 80 characters).

• ••

0 A T a ! D l V I S I 0
---\---?---j--
N U I

i "j i! ! ! r 1-».T - I t i 1 . 1 ; ; I l ! I
! (!

w 0 R k | i NIG — s T 0 R A G € ! S E C T i O N . ! ; i ' I :• I [j

0 1 [c AJR 0 D A T
j ! !

A . i I : j ! J
, I 1 \ 1 ; i ; ' i I: !

jo 2| V E H I C U E , |P I c T u i r ;e lx j (| l 5) .
\ i i

[0 2 L I C E N SjE , IP I c T U R E X (8 j ! \

io 2 E X P I R A T I o In J P 1 ' C T U R E ?SÉ1 \ ! !•
i|

Next, write the record description of the output record. Name
the record OUTPUT-LINE. Name the three items that will receive
data AREA1, AREA2, and AREA3. Be sure to define filler areas
between the data areas, and to assign initial values to the
filler (each filler area is to contain 5 spaces).

e e e

0 1 !o u T P U T — L I N E : . | I
—1—

1
— !—

i t ;

n jo2 j A R E A 1 , Ip 1 C T U R E X 1 5) •
t

1 1 1
i i i

!o2 F I L L
i ! '

E R i t ! P 1 C T U R E X (5) | V A U u e ! S P A C E S •

: : !o2 A R E A 2 U !p 1C T U R E X (8) •
1 ; ! :

!o2 F I L L E iR j.i P 1 C T U R E X (5) 1 V A L U E s p |a c E S •

I i I jo g A R E A 3 i . | IP 1 c T U R E 9 1 6) • 1_ i

(3/66) 65

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

162 The logic of our procedure will be to accept the input record,
then to move data from the input record to the output record,
then to display the output record, and finally to stop the run.
Which one of the ACCEPT statements below will properly handle the
first step of the procedure?

!a c C E P 3 " C A R di - d A T A . i n M i [7 . i 1 ! . !

J J a c C E P T |v e !h (i |c l E k 1 C E NS i L !e !x !p Hr a It 1 jo n . ! !

i'A c c E P T c a Ir Id !— d !a M a
I l 1

jv;E H i l c L
1 * I

e u ; |l i c !e N S E 1
1 i

i E X P 1 r Ia It ! i O N . 1! ! i i _1_i_ L— L-

• • •
ACCEPT CARD-DATA.
Only one data name can be written in an ACCEPT statement, so it
must be the name of the record as a whole.

163 Which DISPLAY statement is the correct one for our problem?

• • •
DISPLAY OUTPUT-LINE.
This statement will cause the entire output record to be displayeds
including the spaces between data characters. The first choicet
abovet is a legitimate DISPLAY statement -- but it would cause
the three data items to be displayed with no spaces between them;
thereby undoing our careful insertion of filler items into the
record. The second DISPLAY statement is illegal, because the
word FILLER cannot be used in procedural statements.

(3/66) 66

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

164 The ACCEPT and DISPLAY statements are just as simple for this
problem as they were for the first problem. Before we display
the output line, though, we will have to move the input data to
the output area.

Reading assignment: MOVE
• • •

165 Which sentence is correct for our problem?

Im o v e | v E H 1 C L E

r~r " |
T O l A R E A 1 •

1
■ ■ " T " ! !...... ; [;

! : ■ I !

* M o Iv Ie | l 1 C E N S E T O A R E A 2
• ! i i ! * t

> * 1 i i

Im o v ' e | e X P j j g l A j j , i o In T 0 A R E A 3
i i I

m
; I ; * 1 1 \

C A R D - D A T A L i 0 (AIR Ah i . A 2 « IA R EIAI3

Sm Io v e I Ic a r Id - d a It a M o ! o u It p u t i - l i n Ie

• • •
MOVE VEHICLE TO AREAl;
MOVE LICENSE TO AREA2;
MOVE EXPIRATION TO AREA3.
The second sentence is incorrect for a couple of reasons. For
one, it tries to move data from a group item (CARD-DATA) to an
elementary numeric item (AREAS), which is a violation of the
rules; if you tried to do this in a program, the compiler would
detect your error and issue a diagnostic message informing you of
your goof. But suppose that the picture of AREAS had been X(6)
instead of 9(6); now the MOVE statement would be legal, but it
would not give the desired result. It would cause the same data
to be moved to each of the receiving items, as diagrammed here:

37A8942G006512919BR637901316?

37A 89 42G0065129 37A8942G
1
S7A894

The third sentence specifies a group item as the receiving item,
which is permissible, but which causes the boundaries of
elementary items within the group to be ignored. The result
would be:

S7 A 89 4 2G0 0 6 S129BR637 9 01S16 7

(3/66) 67

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

166

167

It is often very desirable to write comments within a program to
explain what the program is supposed to do. You have seen that a
Remarks paragraph may be included in the Identification division,
allowing you to explain the purpose of the program. No remarks
are permitted in the Environment and Data division. In the
Procedure division, you may make any number of NOTE entries, to
explain the processing that is being done.

Reading assignment: NOTE (1)
NOTE (2)

Using the same program sheet on which you
wrote the Data division, now write the
complete Procedure division for the second
problem. Begin the division with a NOTE
paragraph that briefly explains the
procedure. Then write the procedural
statements that correspond to the flow­
chart at the right.

ACCEPT
CARD-
DATA

MO
INPUT 1
TO 01

AR

VE
ITEMS
JTPUT
EA

DISPLAY
OUTPUT-

LINE

CSTOP RUN)

• • •

N r o c Ie d ju IR E D i V I S 1
---1—!—P—
O N . • ! ! i “ T I T |

e !x ;P l !a n |a T 1 0 N • ! ! i i 1 ’ ! 8 j i * Ii ! I |

i 'n o t E T H i S P R O C E D U R E R E A iD S 'ÖN E c A R D 1
! i ‘ iMOV E S T H E C A R b 1 D A!T;A| t 'o ! !a n ! b u T p u T A R E A 1
j 1 i i 1 < 1
• I !p r i n T S A S I N G L E L 1 N E J a |n

i j
D! !s!T 0 p s • >

s t a r It J i i- i | ’ : ! ! i ! <
! ! ? | i f

! Ia c c e P V C A R D — D A T A
; * | t

! ! ! i i 1 1
; M o v e v |e H 1 C L E It;0 a |r !e (a 1 •

1 j J v r o v t LLL C E N S E T O a !r 'e !a 2 • !
1 ! !m o v e E xlp 1 R A T 1 ON

! ! |
T O ! A R E A 3 • ! ! !

! i i Sdiisjp L A y ! O U T P U T - 'L 1 N E ;. iI I 1
< i ! Is t o Ip R u |n 1 j i• : { ' i * . I i | ! T T j i i

68

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

168 The third problem of this lesson oalls for you to write a short
prog.ram on your own. The problem involves accepting, moving, and
displaying a few characters of data. This time, though, the input
will come from the console keyboard, rather than from a card; and
the output is to be punched into a card, rather than printed.
Before you start on the problem, study the slightly different
formats of ACCEPT and DISPLAY which you will use in your program.

Reading assignment: ACCEPT (2)
DISPLAY (3)

• • •

169 Here is the problem: A console operator will type 15 characters/
which may be both letters and digits, on the console keyboard.
The first 10 of those characters are to be punched into columns
25-34 of a card; the remaining 5 characters are to be punched
into columns 1-5 of the same card. Only one card is to be
punched; then the run is to be stopped.
Write the Data and Procedure divisions for this problem.
(The Identification and Environment divisions required for this
problem are the same as those you wrote for the first problem.)
Invent your own names for data items and procedures.

• • •

0 A I A r D i V i S T jo N • L i ! m
w 0 R k ! i N G — s T O p A G E S E C T x0 k •

-------!----- 1-----J-----

j

0 1 J l N P y I D A I a ; • i \ ! !
: 1 | ;

_ io 2 F x I I
I

21
— i
1 !J L

lP 1 C T U R E X Ix0 !1; i• i
r™

lo 2 F 1 E L D ■ — 2 jjL ¥ i b
------ -̂-----s------1—

T:U!R!E t i iX (5 1
ïii •

0 1 io y T p u T - I d A T A • ; •

lo2 F 1 e |l D — A J L PxC T|U;R;E X (5 I
io2 F T j L L E R

JL p 1 c T
1 !

U|RE! x j
— 1

I X . 9 1 J L V A L y E s PjA C E s •

lo2 F i E lL D — B J L P xC T y R E X l l x0 i •

1 I

Ë R 0 c !e D u R E D 1 V 1 S i 0 N •
!

B E G i !n • 1 1
1a c c E P T ll N P U T — D A T A F R i M c 0 N s 0 L 1Ë •

I S 0 V E F l k L D — 1 T 0 F T E L D — B • r
1m 0 V E F T e L 2 — 2 T 0 F xE L D — A •

! i
1___1___

Id X s p L A y [0 u T P y T — D A T A yp 0 N S Y S P U N C H
1 1 1

_ . i i

r
j

Isx 0 p R UIN • J 1 1 1
------1— —

i j < \ ‘ ' i
|

(9/66) 69

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

LESSON 6

170 Most computer problems involve more operations than the problems
you worked in Lesson 5. To begin with, most problems involve
iteration or "looping" -- in which a series of steps is executed
over and over until the result is obtained or until the end of a
file is reached. Logical decisions must be made to determine
when to exit from the loop. Also, most problems involve at least
a small amount of arithmetic.

In this lesson, you will study the arithmetic verbs, as well as
sequence control words - IFt GO TO, and PERFORM. As in the last
lesson, you will read about these statements when they are needed
for a problem. Needless to say, you may also be called upon to
write statements which you studied in the last lesson.

171 Throughout this lesson, we will program fust one problem, although
we will twist it around a bit and add things to it as we go along.
Here is the basic problem: Given two numbers, the first smaller
than the second, we want to get the sum of all the whole numbers
between the first number and the second number, inclusive.
For example, if the numbers are 45 and 52, we want to know what
45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 equals. To make the problem
as straightforward as possible, we will say that both numbers
must be unsigned (therefore regarded as positive). The numbers
are to be entered by way of the console, and the sum is to be
typed out on the console printer.

• • •

172 Let's develop a possible solution for this problem. We will get
the two numbers into storage by using an ACCEPT FROM CONSOLE
statement. Now we have to develop the sum. We can do that by
defining a work area with an initial value of zero, and adding
the smaller number into the area; after that, we can repeatedly
increase the smaller number by 1, and repeatedly add it to the
total, until the smaller number is equal to the larger number.
At this point, we have the sum we wanted; we can display it upon
the console, and stop the run.

• • •

(3/66) 71

S y s te m /3 6 0 COBOL W riting P ro g ra m s in COBOL

173

174

This flowchart will help you to visualize the procedure.

Of course, this is not the only possible solution to this
problem, and a little later in this lesson, we will look at
another, somewhat different, solution. For the time being,
though, let's stick with this procedure, and write the COBOL
entries for it.

Before you proceed to the next frame, take a minute to satisfy
yourself that this procedure really will do the job. Take any
pair of numbers, the simpler the better, say 2 and 5; then go
through the procedure step by step, to see how the total of
2 + 3 + 4 + 5 i s developed. Remember that the initial value of
the total is zero.

• • •

Some new procedural words and formats are involved in this
problem.

Reading assignment: ADD (1)
IF (1)
IF (2)
TEST CONDITIONS
GO TO
DISPLAY (2)

• • •

(3/66) 72

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

175

176

As with our previous problems, the first step is to define the
data items in the Data division. On a program sheet, write the
necessary division and section headers, and then write the
descriptions of:

(1) the work area in which the sum will be developed,
named TOTAL, 8 digits in length; initial value is zero.

(2) the input record, named NUMBERS; subdivided into
SMALLER and LARGER, each 4 digits in length.

• • •

d a t a ! d i v i ! s ! i o N . ; t t t
T T

r i ' ' j

W O R K ! 1 N G - S T O R A G E S E C T l iO 'N •
! j 1
i 5 S ? 1 ! ; 1

7 7 !t o ;T:A
! I 1

M v ;p 1 C T U r W 9
1 !

(181) L S _ M a l U E Z E R O . - i i 1 1

o r !n u WiIb E f t S 1. ; - :
! ; !

s ’ i ! 1 - : ! ! ! ! !l |

CMa
_ s !m !a L L E R . P 1 C T U R E

! j
9 9 9 9 . 5 S ! ! i i j 1 j

',0 2 i U A R G e W ^ P 1 C T U R E 9 9 9 9 ! : !
• i

1 ! ! !•: 1 f r_i_

Next, begin the Procedure division. Write the division header.
Name the first paragraph OBTAIN-DATA, and in it write the entry
required to accept the input numbers from the console.
The console operator will have been instructed to type two four­
digit numbers, with no spaces, and with the smaller number first.
So, if the input values are 45 and 52, the operator will type
00450052.

• • •

p r o c Ie d Iu R E 1 D 1 V I S 1 O N J
" ' I T '1 5 ’ — 1—

1
o ib It a ! i n ! - D A T A •

! \ '
l ? *

1 1 j ! | 1 1! !
! ï ! * ! 1

: ! !a c c E P T N U M B E R!Si ¥ R O M CIO N S 0 L E •

(9/66) 73

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

177

178

1 7 9

At this point, we must start a new paragraph, because we want to
be able to branch to the following statement. (Refer to the
flowchart of the solution in an earlier frame.)
Name the new paragraph COMPUTE-SUM; then write the first entry of
the paragraph — to add SMALLER to TOTAL.

• • •

C O M P i U T E —S U M .
! ! *
! : : •

!a d d 1 S M ;A L L E R ’ T O T O T A L • ::
1 j • ■

; 1

Now write the IF sentence to display the total and stop the run,
if SMALLER is equal to LARGER.

• • •

! 1 F S M A L L E R 1 (/> m o U A L T O L A R G E R , i
J | ; ; D I S P L A Y T O T A L U P ON C O N S O L E i1 j S T O P R U N • 5

: ! !
i : ! : l i 1

Finally, write the statements to add 1 to SMALLER, and to branch
back to the beginning of this paragraph. These will complete
the program.

• • •

!a d d 1 T O S M A L L E R •

!g o t 0 C O M P U T E - S U M .

(3/66) 74

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

180 Since the format of IF sentences is fairly flexible, the decision
in this procedure might have been programmed in several different
ways. Consider the three ways written below. For each one, figure
out whether or not it would be correct for our problem.
It will probably help you to refer to the flowchart of the job
(in an earlier frame). If you are not certain how to go about
evaluating IF sentences t it might be helpful to re-read the
section on FLOW OF CONTROL in the reference handbook for the
previous course.

Si f sM A L L E R 1 S E Q U A L T O L A R G E R,
D I S P L A Y T O T A L U P O N C O N S O L E - ,
S T O P R U N m1

So t h e RW 1 S E ,1 i1 .A D D 1 T O S M A L L E R % \ ___i_1_ G' 0 T 0 C O M P U T E - S U M .

Ü F S M A U L E R 1 S N O T E Q U A L T O L A R G E R i

j A D D 1 T O S M A L L E R % . . .
M i l , :

i : 1 : G O T 0 C O M P U T E - S U M ;
j

S O T H E R W 1 S E ,
*

D 1 S P L A Y T O T A L U P O N c O N S O L E .

S T O P R U N j | | I i i

j Si f 1 s M A l !l E-R 1 S -NO T ‘E Q U A L T O L A R G E R i
I I A D D; 1 T O S M A L L E R t , t

■ ; ; i ' ! G 0 T 0 C O M P U T E - S U M . '
Id i ®s !p L A Y T O T A L U P O N C O N S O L E .

! Is T 0>P R UN • :
• ••

All three of these ways of using the IF statement would get our
job done correctly.

(3/66) 75

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

Our first solution to the "sum-of-all-integers-between-two-
numbers" problem is not exactly the most efficient way of going
about it. If the numbers happened to be 0000 and 9999, we would
add to the total 10,000 times, add 1 to the smaller number 9,999
times, and test whether the numbers were equal 10,000 times!

There is an easier way. If we knew (1) how many numbers are in
the series, and (2) the average value of the numbers; we could
simply multiply the number of numbers by the average, and that
would give us the total! For instance, suppose that the numbers
are 1 and 5; there are five numbers and their average value is 3.
Multiplying S times 3 gives 15, which is equal to 1 + 2 + 3 + 4
+ 5.

This method works for whatever numbers happen to be the input.
If the input numbers are 45 and 52, we can find out the number
of numbers in the series by subtracting the smaller number from
the larger, and adding 1; 52 - 45 + 1 = 8. We can get the average
value by adding the two numbers and dividing their sum by 2;
(45 + 52) / 2 = 48.5. (Note that we have to allow for one
decimal place in the average, in the event that the sum of the
two numbers is odd.) Now we can get the sum of all numbers in
the series; 8 x 48. 5 = 388.

A little later in this lesson, you will be writing the COBOL
arithmetic statements to obtain the desired result by this method,
so take a moment to study the outline below. Make certain that
you understand what operations are to be performed, and what
intermediate results are to be obtained.

A. To calculate the number of numbers in the series --
1. Subtract the smaller number from the larger, to get

the difference;
2. Add 1 to the difference, to get the number of numbers.

B. To calculate the average value of the numbers in the series --
1. Add the smaller and the larger numbers, to get a

temporary sum;
2. Divide the temporary sum by 2, to get the average.

C. To calculate the total (the sum of all numbers between
two numbers) --
1. Multiply the number of numbers by the average.

• • •

This program
did.

will
will not | involve a "loop", as the previous program

• • •
will not

(3/66) 76

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

183

184

The problemt as you aan see, requires all four arithmetic
operations -- addition3 subtraction, multiplication> and division.
Study the formats of the arithmetic verbs, and decide which
formats you would use for the steps of calculating the total.
Pay particular attention to the fact that there are two formats
for each verb; in each case, the second format contains the word
GIVING. Learn the difference between arithmetic statements with
and without the GIVING clause.

Reading assignment: ADD (2)
DIVIDE (1)
DIVIDE (2)
MULTIPLY (1)
MULTIPLY (2)
SUBTRACT (1)
SUBTRACT (2)

• • •

Now take a COBOL program sheet, and write the entries needed to
calculate the TOTAL by the method outlined in an earlier frame.
Assume that the input area is called NUMBERS, and contains
SMALLER and LARGER, each four digits long. The output item is
named TOTAL. These items are already defined.
Take it from this point. Supply the statements that would fit
between ACCEPT NUMBERS PROM CONSOLE and DISPLAY TOTAL UPON
CONSOLE in the program. Define whatever working storage items
you need to calculate intermediate results. One restraint:
write your calculations in such a way that the original values of
SMALLER and LARGER are not changed.

• • •

7 7 i DI I Fl F e]r E N C E . P 1 C T U R E 9 (4) ! ' : • ? = i i i i

7 7 ! 1 N T E g]e r ;s 1 P I C T UR E 9 (5) . * >
7 7 It e m p - I s u m 1, p I C T U R E 9 (5) . |

7 7 1 | A V E R a Ig Ie L P 1 c T U R E 9 (4) V 9 .
1 1 :

i !s u ;b !t r Ia c t S M A U Ü E R F R O M L A R G E R 1 <51 V I NG • ; -
! • • 1 j '

D 1 F F E R E N C |E '. S ; 1 : 1 !

Sa d d 1 T O D I F F E R E N C E , G I V I NG 1 N T E G E R S • ’
Ia d d S M A L L E R ; , L A R G E R , G I V I NG T E M P - S U M
Id i M i D E| !2 I N T 0 T E M P - S U M . G I V I N G A V E R A G E .
Im u l t I P;l_ Y I N T E G E R S B Y A V E R A G E t <5 1 V 1 NG : 1

’] i • T o !t :a L . | I i ! ; ___—
: i ; i \ ? : ;

(3/66) 77

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

K1£É The statements for calculating the total may have heen written in
several different ways. Even though your work is not exactly like
the answer printed in the preceding framet the printed answer
should help you in checking your own work. Also, make certain
that you understand every entry in the printed answer.

Points to check in your work: (1) Are your data items large
enough? The item that will hold the number of numbers must be
five digits long to allow for the extreme case in which the
numbers are 0000 and 9999. The "temporary sum" item must also be
five digitst to hold the sum of a pair of numbers such as 5000
and 6000. The average must be able to contain five digitst
including one decimal. The items could be larger than this, but
must not be smaller.

(2) It is permissible for items to do "double duty". For instancet
the item named INTEGERS in the printed answer could have been
used to hold both the difference between the input numbers, and
the total number of numbers. If it were used in that way, the
following procedural entries would be used:

' iS U B T R A C T S M A L L E R F R O M L A R G E R V , \ ;

j i j , , . G I V I N G I N T E G E R S .
!a d d V T O I N T E G E R

! ! I
s . ï I 1 : ! .

You might also have used AVERAGE for both the temporary sum and
the average value of the numbers, provided that its picture were
9(5)V9. These procedural entries could then be used:

Ia d d S M A L L E R ; , L A R G E R . G I V I NG A V E jR A G E . I ; !
Id i v i DIES 2 I N T 0 A V E R A G -E t . G I V' I N G A V E R A G e I.I !

Statements like these are correct COBOL, but sometimes seem like
double-talk to a reader.

(3) Above all, make sure that you have adhered closely to the
formats given in the reference handbook. Beginners sometimes get
the mistaken impression that they can make up any formats they
please, gust as long as they use reserved words, and come up with
incorrect statements like DIVIDE A BY B (should be DIVIDE B INTO
A), or MULTIPLY A TIMES B (should be MULTIPLY A BY B).

• • •

(3/66) 78

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

186 The little series of statements which you have written to
calculate the total can be thought of as a subroutine. I'll
grant you that the title "subroutine" is a bit pretentious in
this instance -- but the idea that you could treat these state­
ments as a subroutine is an important one.

The idea goes like this: A program can be thought of as a set of
subroutines. Each subroutine (some people prefer to say "program
module") is a series of statements that produce a certain result.
Once a subroutine has been written, it can be "plugged into"
other programs where the same result is desired.

In COBOLs it is especially easy to "plug in" subroutines. We use
the verb PERFORM.

Reading assignment: PERFORM (1)
PERFORM (2)

• • •

187 What must we do in order to use our total-calculation entries as
a subroutine? First, we must change our work from just "a series
of entries" into a "procedure". We do that simply by adding a
paragraph name at the start of ou? entries, like this:

t o t a !l - c a L C U L A T I 0 N .
I S U B T R A C T S M A L L E R F R O M L A R G E R . G I V I NG

D' 1 F F E R E N C E .
!a d d T T O D I F F E R E N C E . G I V I NG I N T E G E R S •

_ ft ^ Af * »

Second, we must insert our procedure into a program — and here
we have a choice of two ways. One way would simply be to copy
the procedure at the appropriate point or points in the program.
Another way is to add the procedure to the end of the program,
and PERFORM the procedure at the appropriate point or points.
What statement would you write in order to PERFORM this
procedure?

• • •

Ip e r f O R M T O T A L - C A L C U L A T I 0 N .

(3/66) 79

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

188

1 8 9

1 9 0

Although you will find many uses for the basic arithmetic verbs
(ADD, SUBTRACT, MULTIPLY, and DIVIDE) you may prefer to use the
all-purpose arithmetic verb, COMPUTE, much of the time. Among
the advantages of using COMPUTE are that you can specify more
than one operation in a statement, and that you do not have to
define intermediate work areas.

Reading assignment: COMPUTE
ARITHMETIC EXPRESSIONS

• • •

Two COMPUTE statements can serve the same purpose as the five
arithmetic statements you wrote earlier. First, write the
COMPUTE statement to find the AVERAGE of the two input numbers,
SMALLER and LARGER. (Your earlier data descriptions of these
items are just as appropriate for COMPUTE as for the other
arithmetic verbs.)

• • •

(sImallIer!c!oMp|u|t !e1 IaMe r Ia Ige + LARGER) / 2
Points to check: (1) Parentheses are necessary to cause the
addition to be done before the division. If the parentheses were
omitted in the solution above, the result would be equal to the
SMALLER plus one-half of the LARGER. (2) Did you leave spaces
before and after the equal sign, the plus sign, and the divided-
by sign?

Next, write a statement that computes the TOTAL. This statement
should subtract the SMALLER from the LARGER, and add 1, to get
the number of numbers in the series, and then multiply that by
the AVERAGE.

IC O M P U T E T O T A L = (L A R G E R - S M A L L E R + 1)- < , i ' * i __; ii*! av E R A G E .

As before, the parentheses are absolutely necessary, in order to
oontrol the order in which operations occur.

(3/66) 80

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

191 From this small amount of practice with arithmetic statements,
you oan see that they are not at all difficult. Instead of
spending more time with arithmstica then, let's turn to some
other topics that are related to our problem.

Up to nowt the input has consisted of fust one pair of numbers.
Nowt we want to process more than'one pair of numbers. This is
simple enough - we will ACCEPT a pair of numbers from the
console, COMPUTE the totals DISPLAY the total upon the console,
and then GO TO the beginning of the procedure to accept another
pair of numbers.

Needless to sayt we must provide a way of getting out of this
loop. To do this3 we will tell the operator to type 99999999
when he is finishedt and in our procedure we will test to see if
the first number, SMALLERt is equal to 9999; if it ist we will
stop the run. Our new procedure looks like this:

• • •

192 On a program sheet/ write the statement to stop the run if
SMALLER equals 9999.

• • •

f :s U I­ E R - 9 9 9 9 U S T O P R U N :.

(3/66) 81

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

193 Another way of accomplishing the same end is by using a condition
name. Suppose that the input area had been described in this
way:

0 1 'n u m b E R S . , '
!o 2 S M A L L E R . P 1 C T U R E 9 (4) . ! I
i 1 ' : 1 8 8 F 1 N 1 S H E D i V A L U E 9 9 9 9
l 0 2 L A R G E R , P 1 C T U R E 9 (4) •

This gives us a name, FINISHED, for the condition that exists
when the value of SMALLER is 9999. On your program sheet, write
an entry, using this condition name, which will have the same
effect as the last previous entry you have written.

• • •
11 F IF 1 N 1 i s H E D , S T O P R U N .

194 Here is another aspect of our problem: Our solution assumes that
the first number is the smaller one. If the operator were to
make the mistake of typing the larger number first, we would get
the wrong result. To keep this from happening, we should check
the input to make sure that SMALLER is really smaller than
LARGER.

If SMALLER is not smaller, then what? Veil, one possibility is
to 8top the execution of the program temporarily, and type a
message to the operator telling him what is wrong.

Reading assignment: STOP (2)
• • •

(3/66) 82

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

195 The check on the validity of the inputt and a stop when the data
was not valid> could be worked into the program like this:

Write the entry that is represented by the blocks circled in the
flowchart. The message we want to display before halting the
program is:

TYPE SMALLER NUMBER FIRST
The flowchart indicates that when execution of the program is
resumed, we want to branch back to the beginning of the procedure,
which is named GET-INPUT.

• ••
; ; , ! i f S M A L L E*R: -1 S N O T L; E S S 1 T h !a !n ! l |a RG E R ,

! 1 S T O P . T y P E S M A L L E R N U M B E r : F 1 R S T ' * j ;..
: ! G O T 0 GE T - 1 N P U T • 1 ! i \ 1 —*—1—1— - i ! 5 j

> ? i1 i l ‘ ?

(3/66) 83

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

196 The "STOP-literal" way of handling the invalid data situation
provided the occasion for introducing you to the second format of
the STOP verb — but unfortunately, it demonstrated a poor
programming practice. It would not be wise to delay the execution
of a program in any situation that could be handled by the
computer itself. This is certainly a situation that the computer
can be programmed to take care of; in the event that SMALLER is
actually the larger number, we can move the value of SMALLER into
LARGER, and move the value of LARGER into SMALLER.

Switching the numbers requires not two, but three moves -- to
avoid destroying one of the values in the process. And it
requires a work area to hold one of the values temporarily. The
three moves are sketched below.

On a program sheet, write (1) the Data division entry that
describes the item called STORE (this item must hold four digits);
and (2) the Procedure division entry that switches the values of
SMALLER and LARGER, if the original value of SMALLER is greater
than LARGER.

• • •
Data division entry:

is T orIe ,7*7' P l l C T U I R E 9 1 (4)

Procedure division entry:

: ! i !f ! ’s M iA L L e R 1 S 1 'GR E
1 i

A t e R T H A N L A R G E R »t i l l
■ , » j ; M o v e S M A L L E R to S T O R E , ,1 MI > 1 ! ! — t ■ 1 . j j m |o v e L A R G E R

! !—r—
T O S M A L L E R |

• ; . ■ M M o v e S T O R E T 0 L A R G E R • ; :

(3/66) 84

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

197

198

199

Yet another approach to the difficulty of invalid input is to try
to prevent it by displaying clear-cut instructions to the
operator at the beginning of the run. The message might be:

TYPE TWO 4-DIGIT NUMBERS AS A STRING OF 8 DIGITS. NO SPACES.
SMALLER NUMBER MUST BE FIRST. TO STOP RUN, TYPE 99999999.

Which is correct:

I The DISPLAY verb cannot be used, because the message is too long.

Alphanumeric messages such as this one cannot be displayed.
Two DISPLAY statements can be used for the message, one

for each line.
The message is illegal because it contains reserved words.

• • •
Two DISPLAY statements can be used for the message, one for
each line.Write the two statements to display the message in the preceding
frame. Treat each line of the message as a separate non-numeric
literal. (You will find that both literals are too long to be
written on a single line of a program sheet. If you have forgotten
how to continue non-numeric literals, refer to the PROGRAM SHEET
FORMAT AND RULES section of the reference handbook.)

• • •
SEOU

(PAG E)
1 3

ENCE
(SERIAL)
4 6

H
§
7

A !b
8 *12 16 20 24 28 32 36 40 44 41i 52 56 60 64 68 72

I “T~
ID i s|p L A Y i T Y P E T i/vlo 4 I D i G 1 t U n u M B Eft Sj A S a ! s T R I N G 0 F 8 D 1 G 1 T S . r i f 0

i - i
i • S P A C E S i U p 0 N C 0 NS o Ue . 11 i 1 i

T Id i S P L A Y i S M A L L E R N u U b E R m U s !t B E F 1 R S T T Q S T 0 P R U N i T Y P E 9 99 9
- i__

i i 9 9 9 9 i U P E C oUs 0 LE . i l l 1 1
11
j

I suppose that we oould go on forever> thinking up variations on
this basic problem. But it has already served its purpose as a
vehicle for learning to use several important COBOL statements.
Obviously> you have not learned everything there is to know about
every verb you have studied, but remernber that our objective was
to see how various statements are used in procedures — not to
study all of the "ifst ands, and buts" of every statement.

• • •

(3/66) 85

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

LESSON 7

2ÓO I have saved an important set of procedural verbs for last: the
input-output verbs used for files of data -- OPEN, READ, WRITE,
and CLOSE. Although these verbs are more simple to use than, say,
the arithmetic verbs, the verbs themselves are only one part of
the total requirement for processing files. The requirement
involves:

A. Environment division entries --

1. an Input-Output section, containing at least a
File-Control paragraph, and sometimes an I-0-Control
paragraph.

2. a SELECT entry for each file, to assign the file to
an input-output device (SELECT entries are made in
the File-Control paragraph).

B. Data division entries --

1. a File section.

2. a file description (FD) entry for each file.

3. a record description of each record in a file,
following the FD entry for the file.

C. Procedure division entries --

1. an OPEN statement to make a file ready for reading
or writing.

2. a READ statement to obtain a record for processing,
or a WRITE statement to release an output record.

3. a CLOSE statement to terminate the processing of a file.

You have already written the Environment and Data division entries
in earlier lessons; in this lesson, you will combine them with
the Procedure division entries to produce two complete programs
for processing files.

Both of the problems you will work on stress the input and output
operations; for the sake of clarity and simplicity, no arithmetic
operations and very few sequence control operations have been
used. The first problem is a card-to-tape fob -- a file of
punched cards is ~&o be written on tape. The second problem is a
tape-to-print fob -- the records in a tape file are to be
listed on continuous-form paper.

• • •

(3/66) 87

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

The flowchart provides the information that you need in order to
complete the Identification and Environment divisions. Take a
new COBOL program sheet, and write these two divisions.
For this problem, limit the Identification division to the
required entries only. The program name is CARDTAPE. In the
Environment division, write both the Configuration section and
the Input-Output section; omit the 1-0-Control paragraph of the
Input-Output section.
You may, of course, refer to the sections in your reference hand­
book that deal with IDENTIFICATION DIVISION ENTRY FORMATS and
ENVIRONMENT DIVISION ENTRY FORMATS.

• • •
i b k - N lT i H i c a !t | i 0 N D 1 V 1 S 1 O N .

1 j j
J : '

p r o g Ir a i m - 1 d U
11 ' *

1

! ' C A R D t !a !p E 1 . : • }

' 1 : 1 ! i 1
: ; : i ; ; ; l

I i 1

E N V llR O N M E Ü T D 1 V 1 S 1 O N
;

i } I

C ON F l l G U R A T 1 0 N S E C T 1 0 N .
S O U R lC E - C OiM P U T E R .

Ï I B M - 3 6 0 , F 3 0 • i
f » 1 \ | ■*

o b j e Ic t - c O M P U T E R . i • * !
■

« I B M - 3 6 0 , F 3 0 ♦ >
1 ! ,

’ l

1 N P u !t - iO!u T p W t S E C T 1 O N ! | ! ; ■

f i l e ! - c o n T 'R b iL • ' ! i - ’ j

I s e l Ie C T iC A R D - F I L E J A S S 1 G N ' C A R D S '
I f: \

; 1 ! i i f UN 1 T - R E C O RD 2 5 0 1 UN 1 T .
i

I S E L E C T T A P E - F I L E J AS S 1 GN ' T A P E '
1

' 1 U T I L 1 T Y 2 4 0 0 UN I T . •
| ;

(3/66) 88

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

202 Here are some additional specifications about this job, which you
need to write the Data divisions

There is only one type of record, named CARD-RECORD,
in the input file; each CARD-RECORD contains 80
alphanumeric characters. The data from each card is
to be moved to the output record, named TAPE-RECORD.
Output records are to be written in the output file
in blocks of 25 records. The output is to be recorded
in mode F, with standard label records.

In this job, we don't intend to process any of the items within
the records. Define the input record as an 80-character
elementary item, and define the output record in the same way.
Take another program sheet to write the Data division. For entry
formats, consult your reference handbook under DATA DIVISION
ENTRY FORMATS.

• • •
d a t a ! d i v I S I 0 N .
f i l e ! s e c T I O N • -
F D I C A R D - F I L E , R E C O R D I N G M O D E F ,

1 .L A B E L R E C O R D

So<f> I T T E D,

1 D A T A R E C O R D I s c A R D - R E C O R D .
0 1 IC A R D - R E C O R D , P I C T U R E X (8 0) . !

F D iT A P E - F I L E , R E C O R D I NG M O D E F ,
I B L 0 C K C O N T A I N S 2 5 R E C O R D s i|
1 L A B E L R E C O R D S S T A N D A R D ,
1
1 D A T A R E C O R D I S T A P E - R E C 0 R D .

0 1 I T A P E - R E C O R O ^ . P I C T U R E X (8 0) .

Points to check: (1) For punched card files, the recording mode
is always F, and label records are always omitted. (2) The
description of a record (01-entry) must follow the FD entry for
the file that contains that record.

(3/66) 89

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

2 0 3

2 0 4

This procedure flowchart shows how the files will be processed.

Noticet especially > that the files are opened at the beginning of
the runt and dosed at the end of the run.

Reading assignment: OPEN (1)
OPEN (2)
OPEN (3)
CLOSE

• • •
Begin the Procedure division on the program sheet on which you
wrote the Data division. Name the first procedure OPEN-FILES,
and in it write the entry or entries to open both files.

• • •
p |R b c !e d |u 'R E Djlvjljsilo |n * !■ r~TT~■1 i 1' 1— ? '• ;
0 P E n ! - F * l jL ES• 1 it ! I I

Io p IEIN 1n !p U T C
!

AjR d | -
' ' FILE . ou T P U T T A P

Li.1LJ LE .
It is also correct to write two OPEN statements.

(3/66) 90

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

205

206

The READ entry does double-duty. It not only makes a record
available from an input file, but also determines when the end
of the file has been reached (that is, when all of the data
records have been read); on an end-of-file condition, it causes
other statements written in the entry to be acted on. The blocks
printed below represent the operations that will be done by
statements and clauses in the READ entry of our program.

Reading assignment: READ
• • •

Now/ start a new procedure in the Procedure division; name it
READ-A-CARD. Write the READ entry that corresponds to the blocks
printed in the preceding frame.• • •
R E A D I- A - C A R D .

Ir e a d C A R D - F 1 L E i A T E N D .
; i : C L O S E T A P E - F 1 L E , C A R D - F 1 L E ;

...i.. i l......i, S T O P R U N •

Points to check: (1) Make sure that you wrote READ CARD-FILE,
not READ CARD-RECORD. (2) The commas and semicolons printed in
the answer above are not required, but the complete READ entry
must be ended by a period -- the CLOSE and STOP statements must
be part of the READ entry, not separate entries.

(3/66) 91

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

207

208

209

We are now at the point in the procedure where the input data is
to be moved into the output record and a record is to be written.

Reading assignment: WRITE (1)
• • •

Complete the procedure named READ-A-CARD, by writing entries to:
1. move data into the output record.
2. write the output record.
3. branch back to the beginning of this procedure.

• • •
i MOV E I C A R D - R E C O R D T O T A P E - R E C O R D .
!w r 1 T Ei T A P E - R E C O R D •

\ 'g o i t 0! R E > 0 1 > - C A R D . i i

Points to check: (1) The WRITE entry must specify TAPE-RECORD,
not TAPE-FILE; in COBOL, we read a file, but we write a record.
(2) The three entries above might have been written as three
statements in one sentence; it is not necessary for the WRITE
statement to be a separate entry.

The card-to-tape program is now complete. Before we turn to the
next problem, let's take a minute or two to look back over this
program. Here are a couple of points that should be emphasized:

First, it was necessary to split the Procedure division into two
procedures (paragraphs). This made it possible to branch back to
the READ statement. It would have been an error to branch to the
beginning of the first procedure, since you cannot open a file
that is already open. Note that the first procedure must be
given a name, even though it is executed only at the start of the
program, and we never branch back to it; there must be a header
entry for every paragraph.

Second, note particularly that it was not necessary to "assemble"
a block of 25 records prior to writing. This is because a WRITE
entry does not cause data to be written on the tape; instead it
releases records, which are then handled by an input-output
control program (part of the operating system). The control
program takes care of filling up a block. Each block is filled
with the number of records you specified in the FD entry for the
file. The actual transfer of data to an output device occurs when
a block is full, or when the file is closed; the COBOL programmer
doesn't have to worry about it.

• • •

(3/66) 92

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

210 Our second problem of this lesson is a tape-to-print cob. The
input is a file of records on magnetic tape, and the output is a
listing of those records. One record is to be printed on each
line of the output form, until the bottom margin or "overflow
line" of the form has been reached; at that pointy we want to
skip to the first printing line of the next form, and go on
printing line after line.

Each line that is printed is a record, so the output consists of
a series of related records. Hence, the output, like the inputs
is a data file. Perhaps you, like so many other people, are not
accustomed to thinking of printed reports in these terms; however,
when you use COBOL, you must learn to think of your input and
output as being made up of records within files. (The only
exception is the low-volume input and output which you accept and
display.) For this problem, the complete printed report is a
file, and each line of the report is a record.

• • •

211 The logic of this program, then, is basically the same as that of
the last program. There is one input file and one output file.
These files must be opened at the beginning and closed at the
end. Each time input is read, it is moved to form an output
record, which is then written.

Here is a procedure flowchart of the gob. Observe the similarities
between it and the flowchart of the previous gob.

(3/66) 93

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

212

2 1 3

214

The main differences between this and the previous job are that
this time we must test for the form-overflow condition, and that
along with writing a record we must control form spacing and
skipping.

Testing for overflow is done by an IF statement. To do this, a
name must have been given to the overflow condition; this name is
defined in the I-O-Control paragraph of the Environment division.
Let’8 study this briefly, to get an idea of what we must do to
define such a name. (You will find this reading assignment back
in the reference handbook section titled ENVIRONMENT DIVISION
ENTRY FORMATS.)

Reading assignment: APPLY
• • •

Controlling form spacing and skipping is the function of one of
the formats of the WRITE verb. When you read about this format,
you will also learn some facts about how data items must be set
up when printing is done.

Incidentally, there is a close resemblance between the format of
WRITE for printing, and that for punching cards. You will
probably find it useful for your future work to read about the
format for punching, even though there is no problem in this
course that involves a punched card output file.

Reading assignment: WRITE (3)
WRITE (2)

• • •
We might use this statement in our program:

Iw R T T

O<ÜJ C O U N T A F T E R S K 1 P - T O - N E X T - F O R M

If this statement is actually to cause a skip to channel 1, the
value of the item named SKIP-TO-NEXT-FORM must be _____ .

• • •
1

(3/66) 94

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

The item named SKIP-TO-NEXT-FORM might be defined like this:

7 7' I iSIK I Ip - t o!- NEIXIT- FORM e m u RE X IV! AD u ll
You would write this entry in the _____ section of the
division.

• • •
Working-Storage; Data

216 The WRITE statement that appeared a couple of frames back was
taken from this IF sentence:

: ; ; :> f AT - BO TTOM 1u
.
Ö F*0!RlM l)

|WRITE a|c COUN T AF TER SKI P -TO- NEXT - FO R ! ̂! M1. !
This overflow test will work, provided that the name AT-BOTTOM-
OF-FORM has been defined in an _____ entry, in the _____ section
of the division.

• • •
APPLY; I-O-Control; Environment

217 Let's modify the IF statement above, so that it meets the entire
writing and form-controlling needs of our problem:

Si f a r - B O T T O M - O F - F O R M ■ 1 ! |
n r

W r i t El A C C O U N T A F T E R S K I P - T O - N E X T - F O R s___

______ Ie l s e J W r 1 T E A C C O U N T A F T E R S I N G L E - S P A •

LÜO

The value of the item named SINGLE-SPACE must be
• • •

space (blank)

(3/66) 95

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

218

2 1 9

(3/66)

This has been a fast look at the entry that we may use in the
Procedure division to print a line and to control paper forms.
It shows us that we must anticipate the needs of this procedural
entry when we write the Environment and data division of the
program.

• • •

This system flowchart gives most of the information you need to
write the Identification and Environment divisions.

INPUT FILE - ACCOUNTS - RECEIVABLE
EXTERNAL NAME = RECVBLES

DEVICE-2400 -SERIES
MAGNETIC TAPE UNIT

JOB = ACCTSREC
SYSTEM = IBM-360,

MODEL 30,32K OUTPUT FILE = ACCOUNT- LIST
PVTPRMAI MAIIF - APrTI ICT/ USED BOTH TO \

(COMPILE AND TO I
L A 1 C n l l M L N M IvI L - M v v 1 L I O 1

DEVICE = 1403 PRINTER
\EXECUTE PROGRAM/

Take a new program sheet, and write these divisions. As before,
write just a "bare-bones" Identification division. (There is
simply no point in writing Author and Date-Written paragraphs,
and so on, for this exercise. However, those will undoubtedly be
required for the work you do on-the-job.)
While it is not mentioned in the flowchart above, remember that
we want to define an overflow name in the Environment division of
this program. Let's make that name AT-B0TT0M-0F-F0RM, since that
was the name used in the procedural statements you looked at
earlier.

• ••

1 D E N l T i F 1 C A T 1 O N D 1 V I S 1 O N .
'

p r o g Ir a m - 1 D . ' ! • , !
! ' A C C T S R E C ' .

The Environment division is printed at the top of the next page.

96

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

E N V N R O N M E N T D 1 V 1 S I O N
—*..—
• .

c o n f Si g u r A T 1 0 N S E C T I 0 N .
s o u r Ic e - c O M P U T E R .

Si b m - 3 6 0 , E 3 0 •
o b j e !c t - c O M P U T E R .

Si b m - 3 6 0 , E 3 0 • •

i n p u St - o u T P U T S E C T 1 ON • . - ; ? i
F 1 l e ! - c o n T R O L •

Ss E L E C T A c c o u N T S - R E C E I V A B L E , A S S I G N
1- . . I ; , , ' R E C V B L E S ' U T 1 L I T Y 2 4 0 0 U N I T •
S S E L E o H > C C O U N T - L 1 S T . A S S I GN ' A C C T L I S T '
1M ! 1 M j U N 1 T - R E C O R D 1 4 0 3 U N I T .

i - o - ! c o n t R O L . ’ : \

Sa p p l Y A T - B O T T O M - O F - F 0 RM T O
M 1 M
M 1 M F O R M - O V E R F L O W O N A C C O U N T - L I S T .

220 To prepare the Data division, you will need detailed information
about the files and records.

First, the input file, ACCOUNTS-RECEIVABLE:

(1) recorded in mode F
(2) all data is BCD (external decimal code)
(3) each record is 44 characters long
(4) SO records per block
(5) no label records

Next, the output file, ACCOUNT-LIST:

(1) each record is 132 characters long (the capawty of
the printer)

(2) all data is BCD
(3) recording mode is F
(4) one record per block
(5) no label records

These characteristics apply
to all files assigned to
unit-record devices (card
files and printed files).

• • •

(3/66) 97

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

221

222

Each file contains sust one type of record. The input record is
named RECEIVABLEt and the output record is named ACCOUNT. These
diagrams show the structures of the records:

RECEIVABLE CUSTOMER-NUMBER
(5 DIGITS)

CUSTOMER-NAME
(20 LETTERS)

INVOICE-NUMBER
(7 DIGITS)

AMOUNT
(6 DIGITS)

DUE-DATE
(6 DIGITS)

ACCOUNT CUSTOMER-NUMBER
(5 DIGITS)

FILLER
(4 SPACES)

CUSTOMER-NAME
(2 0 LETTERS)

FILLER
(4 SPACES)

INVOICE-NUMBER
(7 DIGITS)

FILLER
_____ (9 SPACES)
AMOUNT

(6 DIGITS)
FILLER

(9 SPACES)
DUE-DATE

(6 DIGITS)
FILLER

(6 2 SPACES)

• • •
«

From the information given in the last two frames, write the File
section of the Data division. It is not necessary to use the
same names for corresponding items in the two records; to do so
would require that each name be qualified each time it is used.
Try this method: write a "prefix" letter before each name, a
different prefix for input than for output. You might write I-
before input items, 0- before output items — for example,
I-DUE-DATE and 0-DUE-DATE.
This is very important: You must add an additional item as the
first item of the ACCOUNT record -- for form-control purposes.
This item, technically, is not part of the 132-character output
record, so it is not shown in the record structure above; howevert
this extra position must be accounted for in your record
description. (Remember that the extra position is added at the
beginning of only those records that are in files to be printed
or punched.)

• • •
The solution for this frame is printed at the top of the next page.

(3/66) 98

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

d a t a ! b m v i jsj i b
—r.*
N . • j i j r r_!_ i *

f i l e ! s !e i c T I ON
f I

• I * ïi i f
] i j! i ;

f d ’ Ia c c i o U N T S - R E C E I V A B L E , R E C O R D 1 N 6 M O D E F Ü I
i 1 1 SB L 0! c K C O N T A I N S 5 0 R E C O R D S , L A B E L R E C O R D S
! i : b M I T T E | D, D A T A R E C O R D I S R E C E 1 V A B L E .

o h ! ■ Sr e Ic i e I V A B L E . ! i !

; : t e l i I - j c b S T O M E R - N U M B E R , P 1 C T U R E 9 (5) .
I ! !0 2 j _ I - | c !u S T O M E R - N A M E , P I c T U R E A (2 0) . !

!o 2 ! : I - I ;N V O I C E - NU M B E R 1 P I C T U R E 9 (7) .
i So 2 i I - A M O U N T t P I C T U R E 9 (6) .

So 2 I - DU E - D A T E , P I C T U R E 9 (6) •
F d ! Sa c c Io U N T - L I S T T R E C O R D 1 N G M O D E F , L A B E L

!r E C O R D S O M I T T E D t D A T A R E C O R D 1 S A C C O U N T .
0 1 Sa c c o U N T . ; i - * -

!o 2 F I L L E R , ! P;l C T U R E X • .
: : !0!2i ! o H c lu S T O M Ë R - N U M B E R • ■ ïPj 1 C T U R E 9 (5) .

!0 2 ! F I L L E R , P I C T U R E X (4) • ; |
!o 2 i o - C U S T O M E R - N A M E , P I c T U R E A (2 0) .

! 0 2 F I L L E R t ; P I C T U R E X (4) | 1 l
• J , s !

| 0 2 0 - I N V O I C E - N U MB E R , , P I C T U R E 9 (7) .
’ f 1

i . ! 0 2 IFh Ü L E R , P I C T U R E X (9) • ^

l S S02j ! 0 |-:A iM O U N T t P I C T U R E 9 (6) .
! !o 2 I F! I L L E R _ P I C T U R E X (9) • 1

So 2 Oi - D U E - D A T E , P I C T U R E 9 (6) •

, ! p > : ; , F ; I . L L E R ; J p ln c T USRfe X (6 2) .
: •• i : ;

2 2 3 Finish the Data division by writing a short Working-Storage
section. In it, describe two independent items:
SKIP-TO-NEXT-FORM, with a value of 1, and SINGLE-SPACE, with a
value of space. These are the items that contain form-control
codes, and we will use their names in WRITE statements.

• • •

w o r 'k Si n g I- s t T b h a g Ie S E iC T 1 ON .
—|— l

7 7 !s K I P - T b ! - N E X T - I f Io Ir M j.i p i ic T b R E X , V A L UE ' 1 '
7 7 5S 1 N G L E - S P A C T p i C T U R e ! V A L U E S P A C E •

(3/66) 99

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

224 Write the Procedure division. Invent your own names for
paragraphs (procedure names). You may turn back to take another
look at the procedure flowchart, printed in an earlier frame.
You may also re-read the frames in which we discussed the way to
program the WRITE statement to handle form-overflow.
Here'8 something to consider when you write the statements to
move data to the output record: Do not assume that the FILLER
items contain spaces. (We could not give these items an initial
value of spaces, because the VALUE clause is forbidden in item
description entries in the File section. And, as we pointed out
once before, the word FILLER cannot be used in procedural state­
ments -- so you must not write MOVE SPACES TO FILLER.) This
problem can be solved simply by moving spaces into the entire
record, as a whole, before moving any of the data items.

• • •

pR O iOIedur E D 1VI SION.BEG 1In - r uN .loPEN 1 NPUT Accou TS-RECE 1 VABLE,
1 OU TPUT AccouNT-L1 ST .

PROCIess-DA(T A ■ :Iread A(,CCOUNTS-RECE1 VABLE •1 AT END1 , 1 1 11 c!l.OSE ACCOUNTS-RECE 1VABLE 9
! 1 |

1 ACCOUNT-L1ST*• j1 .. STOP RUN
Imove SPACES TO ACCOUN|t!.Imove \ -cUSTOMER-NuMBER! !t0: 1 M s i : 0-• CUSTOMER-NUMBÈR .
Imove 1 -cUSTOMER-NAME Tlo; 0-CUST0MER -NA M E;.Imove 1 -1N VO 1C E-NUMBER TO11 0:-- 1 NVO 1 CE -NUMBER •

Imove 1 - AMO UNT TO 0-AMOUNTImove 11 - DUE-DATE T0 0-DUE—DATE»
ll f aT ■-BOTTOM-OF-FPRMA-_____WR 1 TE ACCOUNT AFTERl . SKIP-TO-NEXT-FORM: • ; *Ielse t WR 1 TE ACCOUNT AFTER S 1NGLE- SPACE •
Igo t0 PROCESS- DATA: #

(3/66) 100

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

225 Just as with any problem you can name, this problem might have
been solved in various ways. The solution printed in this book
is certainly not the only correct solution. Let me point out a
couple of things that might have been done differently.

(1) To control skipping and spacing, we have used the "data-name
option of the AFTER clause in the WRITE statement. We might have
used the "integer" option, and written this entry:

! l F A T - B O T T O M - O F - F O R M t WR 1 T E A C CO U N T
!a f t e R A D V A N C 1 N G 0 ;; jo T H E R W I S E WR I T E * ‘ :
Ia c c o U N T A F T E R A D V A N C 1 NG 1 .

With this entry, the items we defined in Working-Storage would
have been omitted. And the entry could have been abbreviated even
more by dropping the word ADVANCING, which is optional. My
opinion is that the "data-name" option is more easily understood
by someone reading your program — provided that you create
sensible data names. Only another COBOL programmer would know
that the integer 0 in the above entry designates a skip to
channel 1. (Then again, you could write a NOTE entry to explain
it.)

(2) Some people object to the practice of blanking out the output
record each time, before moving new data into it. One way to
avoid this is to assemble the output in a work area, and then move
the complete record to the output area. What you could do is
define a record in the Working-Storage section, and in it describe
every item you want in the output record; the advantage is that
in this section, you can assign initial values of spaces to all
filler items. However, it would not be legal to WRITE a record
that is in working storage. Therefore, you would have to define
a separate output record, such as:

o i Ia c c o u |n
—r“
T i , P I C T U R E X (1 3 3) .

- - - - ; J :- - - - - - - - j - - - 1- - - j- - - - - - - ;- - - [- - -

And you would have to transfer data from working storage to the
output record, with an entry like MOVE WORK-RECORD TO ACCOUNT.
So that, in the end, you wind up moving 133 characters after all.
Which is not very different from filling the output area with
spaces at the outset.

The idea, as I stated at the beginning, is that both ways are
equally correct solutions. Use whichever method seems best, or
easiest, to you. Possibly when you become proficient at COBOL,
you will begin to consider which solution requires the least
storage space when the object program is compiled, or which
solution gives the shortest run time. For now, take the approach
that any method is good, as long as it produces the desired
results!

• • •

(9/66) 101

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

LESSON 8

In this final lesson, you will not be given any reading assign­
ments. If you wish, you may consider this lesson to be a test
of how well you can apply what you have learned in previous
lessons. However, don't think of it as a "recall" test -- you
may refer to your reference handbook as often as you like; so
this is, in part, a test of how well you can figure out what
information you need and look up that information when you need
it.

The lesson covers just one problem. The problem puts greater
emphasis on input and output operations than the other problems
you have programmed. As a result, the Procedure division for
this problem will be somewhat longer. On the other hand, the
entries required in the Data division are held to a minimum --
you have already had sufficient practice in making lengthy data
description entries.

The problem is to update a file of master records by inserting
the records for new accounts into their proper places in the file.
Both the master file and the insertion file are on magnetic tape,
and the updated file is also to be written on magnetic tape.

We have, then, two input files and one output file. The system
flowchart for the job looks like this:

• • •

EXTERNAL I
INPUT FILE 1

DEVICE * 2
MAGNETIC

JOB*UPDATE
SYSTEM * IBM -360

MODEL 40-64K 4 (MODEL 30-I6K '
l USED TO COMPILE ;

OUTPUT FILE * UPDATED -MASTERS
EXTERNAL NAME * OUTMAST

DEVICE * 2400- SERIES
MAGNETIC TAPE UNIT()

INPUT FILE 2= INSERTIONS
EXTERNAL NAME = INSERTS

DEVICE =2400-SER IES
MAGNETIC TAPE UNIT

(3/66) 103

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

228

229

Based on the information given in the system flowchart
(preceding frame), write the Identification and Environment
divisions for the UPDATE job.

• • •

I denIt 1 F 1CiAT-lON D1 V 1 SION. |
PROG'.RAM-ID .

' : 1 ! | |
!' UPDATE' •)

i i i

i : ! ; ; ;) j ï 1 1 : ' j : i
e n v i Jr o n mENT D 1 V 1S11 ON ï " s

•
i ' 1 ! 1 l s'

(■ :

confJi gur AT 1 0N SEC T 1 0N. j 1 ! ï
t i

sourIc e-cOMPUTER .11 B M*-36 0 , D 3 0 • ■
i ! ! ! ! j i

objeIc t-cO'MP UTER . i i J
t ! t i 1 !

|l BM-3! 6 o', F 40 •
■ ! : '• ï

1

i npu|t-ouTP U T SECT 1 ON r ; li i * ' ' : : : i : ! !
F i LEj- CO NT i ROi L •

. ! i j ...T
i
1

Is E L E C T M A S T E R S , A S S 1 G N ' 1 N M A S T ' 1 | ! s
M —

l

1 J '
— ___ »_________ _ UIT' 1 L 1 T Y 2400 U N 1 T; . | ! j 1 i

!se L E C T 1 N S E R T 1 ON S , A S S I G N ' 1 N S E R T S 1
1
i ; U|T 1 L 1 T Y 2400 U N 1 T . T
!se L E C T U P D A T E D - M A S T E R S V A S S 1 GN ' O U T M A;S T 1
1 ; :
1 : U T 1 L 1 T Y 2400 UN 1 T . ! i : s '

All three files are recorded with record-length control fields
(mode V); there are teri records per block, and standard labels.
Each file contains one type of record, with characters represented
by BCD (external decimal code) throughout. The records in the
three files all have exactly the same format: the first 15 digits
constitute an item called NUMBER, which is the identifying number
of the record; the remaining 135 characters make up various data
items, none of which are processed in this program.
Using the above information, write the Data divison. Name the
input master record MASTER; the insertion record INSERT; and the
output master record OUT-RECORD. When you write record
descriptions for MASTER and INSERT, follow the description given
above; however,describe OUT-RECORD merely as a 150-character
elementary alphanumeric item.

• • •
The solution for this frame is printed on the next page.

(3/66) 104

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

230

D A T a ! D I V I S I 0 N M i 1 ! i ! ; 1 | 1 — —r -
: •(:

F 1 L eS S E C T I 0 N «
| ! | ! ! ' - i : *

F D |m A S T E R S f B L O C k ! c O N T A 1 N S 1 0 R E C O R Dl Sl ,; T J T
|l A B E L R E C O R D S A R E S T A N D A R D , D A T A R E C o r b i
|i S M A S T E R . ’ : • ' - ; i .

0 1 J M A S t E R •
! 1 1.

: 1 1
U I t o 2 N U M B E R , P I C T U R E 9 (1 5) !
j : | 0 2 F I L L E R fl P 1 C T U R E X (1 3 5) . 1

i_i 1 .
FID! i l N S E R T MO N S , B L O C K CO N T A 1 N S 1 0 R E C O R D

* ? i
s ,

T j A B E L RiE C O R D S A R E S T A N D A RD . D A T A R E C O R D
| | ! i S I N S E R T . I t ' ' - 1 ! i

0 1 i Si N S E R T «
* i ; : ! j i i ? . |

1 f 1 ■
!o 2 N U M B E;R; , ! P I C T U R E 9 (1 5) . j | 1 ; ‘ i i
So 2 FI L L E R , , ! P I C T U R E X (1 3 5) . ! | ! f: t

f d : Sup D A T E D —M A S T E R S . B L O
; i ;

C K C O N T A 1 N S 1 0 ! 1
U Sr E C 0 R D S t L A B E L R E C O R D S A R E S T A N D A R D ,

m I |d A T A R E 'C O R D 1 S 0 U T - R E C O R D .
0 1 I H o U T - R E cjo R D M P l ;C|T U R E X (1 5 0) .

In the next few frames, we will discuss the processing logic of
this jobt and develop the procedure flowchart from which you will
write the Procedure division.
The logic of the job boils down to a pair of conditional moves,
as shown in the diagram below. We want to compare the identifying
numbers of two records — one from each of the input files. If
the number of INSERT is lowert the INSERT record is to be moved
to the output area; otherwiset the MASTER record is to be moved
to the output area. An output record can then be written.

INSERT MASTER
1 1

IF INSERT NUMBER
IS LESS THAN

MASTER NUMBER

T---
\

___ __ OUT-RECORD

IF INSERT NUMBER
IS NOT LESS THAN
MASTER NUMBER

• • •

(3/66) 105

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

2 31 The selection of the proper output data is the crucial decision
to be madet the nheart" of the processing to be done -- which is
always a good place to start developing a flowchart. We will
work backward and forward from here.

• • •

2 3 2 How can we get to the point where we can make this decision about
the first record from each input file? Clearly, we must read a
record from [the MASTERS file] [the INSERTIONS file].

• • •
BOTH the MASTERS and the INSERTIONS file

2 3 3 But before we can read records from the files, we must
files.

the

e e e

OPEN

(3/66) 106

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

234 In considering how to process the first record of each input
filet we have worked our way back to the beginning of the gob.
This is what our flowchart looks like at this point. (I have
chosen the name BEGINNING-OF-JOB to be the name of the first
COBOL procedure.)

B E G IN N IN G -O F . JOB

• • •

235 At the first step drawn on the flowchart above, we will open

Ithe two input files the input and output master files
both the two input files and the output file

• ••
both the two input files and the output file

(3/66) 107

S y s te m /3 6 0 COBOL W riting P ro g ra m s in COBOL

236

237

238

Let's say that the first comparison showed that the number of the
insertion record was lower, so the INSERT record was moved to
OUT-RECORD, which was then written. In this event, the next
logical step would be to

I move MASTER to OUT-RECORD, since it must be the next l
output record. \

go back and read both files again, to prepare for the I
next comparison. (

read only the INSERTIONS file again, and make another (
comparison. |

close the INSERTIONS file, and branch back to the ƒ
beginning of the job. I

• • •
read only the INSERTIONS file again, and make another comparison

This flowchart segment shows the branch to read the INSERTIONS
file again.

If the comparison of the first records had shown that the INSERT
record was not less than the MASTER, the other leg would have
been taken at the decision block — that is, the MASTER record
would have been written out. And we would now have to obtain
another MASTER.
In order to get the next MASTER, we can
[write another READ MASTERS step]
[branch back to the original READ MASTERS step].

• • •
ONLY write another READ MASTERS STEP
A simple branch back to the original READ MASTERS step would also
cause control to flow through the READ INSERTIONS step, which
would be an error.

(3/66) 108

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

239

240

We will insert a new READ MASTERS step into our flowchart. After
another MASTER record is read, we must go to the step where _____

• • •
the INSERT number and the MASTER number are compared

We have now "closed the loops" of our process. The flowchart has
developed to this point:

BEGINNING-OF-JOB

Notice that I have been supplying procedure names as we have gone
along. The names INSERTION-INPUT and COMPARE-NUMBERS will be
needed in GO TO statements.

• • •

(3/66) 109

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

241 If the input files were infinitely longt and processing went on
forevert our present flowchart would be adequate. The facts of
lifet thought are that data files -- like all good things -- must
end. And we must test to find out when the end has come.

Let's be more specific. Every READ statement is required to
contain an AT END clause; we will show the AT END tests as
decision blocks in our flowchart. Furthermore, we will have to
consider that one file must necessarily run out before the other;
thust at the moment that we find that there are no more records
in the INSERTIONS filet there must be at least one more MASTER
record that has not yet been written out, and vice versa.
Here the AT END test is shown in the INSERTION-INPUT procedure:

At the end of the INSERTIONS file, we will branch to a procedure
named FINISH-MASTERS. When this branch occurs,
[a previously-read MASTER is waiting to be processed]
[the MASTERS file is ready to be closed]
[there may be more MASTER records that have not yet been read].

• • •
a previously-read MASTER is waiting to be processed, AND there
may be more MASTER records that have not yet been read

242 We will have to insert AT END decisions after both of the READ
MASTERS steps. Examine the flowchart on the preceding page.
Determine how often control will flow through the first READ
MASTERS Step, following OPEN FILES.

• • •

i

Only once

4

(3/66) 110

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

243

244

(3/66)

Although this sort of duplication of steps is sometimes
eliminated by writing "program switches"t we find that it is
often easier in COBOL to duplicate a step instead of fussing with
a switch. So in this program, we have two READ MASTERS steps
(so far) -- the first of which is executed only at the very outset
of processing; an AT END branch cannot, under any circumstances,
occur after the first READ MASTERS step.

Neverthelesst the format of the READ statement insists that we
provide the AT END test. We will satisfy this requirement by
writing a branch to the next step> as diagrammed below.

B EG INNING -O F-JO B___

OPEN
F ILE S

READ
M ASTERS ,

IN S E R T IO N -IN P U T

V READ /
IN S E R T IO N S /

• • •

The second READ MASTERS step presents an entirely different
situation. It is part of a loop that reads and writes MASTER
recordst and it will be executed repeatedly during the running of
the program. If the MASTERS file runs out first, the end of file
condition will be detected at this step; there fore t this AT END
test is a real one.

At the end of the MASTERS file, we will branch to a procedure
named FINISH-INSERTIONS. If this branch is taken> we know that
a previously-read INSERT is waiting to be processed, and there
may be more INSERT records that have not yet been read.

• • •

111

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

245 Here is how we wilt finish up the remaining file after we have
reached the end of the other file: we know that one previously-
read record from the remaining file is waiting in the input areat
so we will move it to OUT-RECORD, and write it out. Thens
because there may be more records in the remaining filet we will
read the file and test for the AT END condition. When we are at
the end of the remaining filet both files are finished3 so we
branch to the end of job procedure -- close files and stop the
run.

It would be pointless to go back to the main routine and compare
the numbers of records. In fact, it would be an errort since
there are no more records in the other file. Besides, we know
that all of the records in the remaining file must be written
outs so all we have to do is read-move-writes until we come to
the end of the file.

Two "finishing-up" procedures have been diagrammed below — one
for each input file. Two procedures are needed because we have
no way of knowing which file will run out first when they are
processed by the main routine. If the INSERTIONS file runs out
first, we will branch to FINISH-MASTERS; if the MASTERS file runs
out first, we will branch to FINISH-INSERTIONS.

FIN IS H -M A S T E R S FIN IS H -IN S E R TIO N S

CLOSE
FILES

JC

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

246 This is the completed flowchart for the UPDATE job. Write the
Procedure division that corresponds to this flowchart. All of
the procedure names are shown, and many of the COBOL statements
can literally be copied from the flowchart. Be careful, though!
Sane of the flowchart notes are like COBOL, but not exactly like
it — for instance, OPEN FILES, INSERT<MASTER, and CLOSE FILES.
Use your reference handbook to find the actual formats.
(The correct solution for this frame is printed on the next
page.)

(3/66) 113

S y s te m /3 6 0 COBOL W ritin g P ro g ra m s in COBOL

P R O C ' i E D U R E D l V 1 S 1 ON .
B E G 1SNN 1 N G - O F - J O B • .

l o P E N 1 NP U T MA S T E R S . 1 N S E R T I 0 NS :
OU T P U T U P D A T E D - M A S T E R S .

!r e a d M A S T E R S ; a t E N D a
GO T 0 1 N S E R T 1 O N - 1 N P U T .

! NSE' i RT 1 0 N - 1 N P U T .
Sr e a d 1 NS E R T 1 O N S ; A T E N D .
1 GO T 0 F 1 N 1 S H - M A S T E R S

c o m p Ia r e - NUMB E R S .
!l F N U M B E R O F 1 NS E R T < NU M B E R O F M A S T E R .
11 M O V E 1 NS E R T T O 0 U T - R E C O R D .
1
1 W R I T E OU T - R E C O R D tI
1 GO T 0 1 N S E R T 1 O N - 1 N P U T .
Im o v e M A S T E R T O 0 U T - R E C O R D .
Iw r .i t E OU T - R E C O R D
Ir e a d M A S T E R S i A T E N D 1
1 GO T 0 F 1 NT S H - I N S E R T 1 O N S .

---------- '|G0 T
Ooo MP A R E - NU MB E R S .

F I N I Is H - M A S T E R S . •

Im o v e M A S T E R T 0 0 U T - R E C O R D .
W r i t E OU T - R E C O R D
Ir e a d M A S T E R S i a t E N D , GO TO E N D - O F - J O B .
Ig o t 0 F 1 N 1 S H - M A S T E R S •

F i n i Is H - 1 N S E R T I ON S .
Im o v e ! 1 N S E R T T O 0 U T - R E C O R D . ;
Sw r 1 T E* OU T - R E C O R D % ■ i
Ir e a d ! 1 NS E R T 1 O N S ; A T E N D , 1

GO T 0 E N D - O F - J O B • ;
Ig o t 0 F 1 N 1 S H - 1 NS E R T 1 O N S .

E N D - l O F — J O B . 1 1 | i 1 1! ! I S l 1

I C L O S E MA S T E R s , 'l N S E R T l ON S .
: : • 1 : ;. . , : i . ; ; U P DA T E D - M A S T E R S . :

Is T O P R U N • *

(3/66) 114

p

4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

	‎\\OMV-TC\temp\Scan\IMG_0069.pdf‎
	‎\\OMV-TC\temp\Scan\R29-0210-0_S360_Writing_Programs_in_COBOL_Text1.pdf‎
	‎\\OMV-TC\temp\Scan\R29-0210-0_S360_Writing_Programs_in_COBOL_Text2.pdf‎

