Programmed Instruction Course



® SYSTEM/360 COBOL
Writing Programs in COBOL
Text
@
|
|
L

Programmed Instruction Course




Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

© International Business Machines Corporation, 1966




System/360 COBOL Writing Programs in COBOL

(3/66)

PREFACE

The general objective of this book is to teach
students to compose original programs in System/360
COBOL. The major topics discussed are: the COBOL
program sheet -- its format and the rules for

using it; the notation system used to describe
entry formats; the formats of the four divisions:;
file descriptions, record descriptions, and item
descriptions; ways of naming data items; and the
formats of the most commonly used procedural

words.

The student gets practice in recognizing correctly
written entries, recognizing faulty entries and
correcting them, and writing original entries.

He uses the entries in complete programs.

Not all possible entry formats are discussed;
rather, a selection of important entries is pre-
sented. Also, many of the formats have been
simplified or abbreviated to make them easy to
learn, and to spare the student from being buried
in a heap of details. For example, when arithmetic
verbs are discussed, considerations such as
truncation, rounding, size errors, etc. are not
mentioned; these topics are taken up in the next
course in this series.

Omitted, too, is a discussion of the entries that
are used for processing non-sequential (random)
files. This book concentrates on presenting a
subset of System/360 COBOL which is adequate for
processing sequential files.

This textbook is designed to be studied in
conjunction with the Writing Programs in COBOL
reference handbook (Form R29-0211l). This book
serves as a study guide, and is meant to be re-
used. All technical information is contained in
the reference handbook, which is kept by the
student when he completes the course.

The student is expected to have completed the
previous course in this series, COBOL Program
Fundamentals. The publications for that course

are a programmed instruction textbook (Form R29-0205)
and a reference handbook (Form R29-0206). The
student should have the reference handbook from

the previous course, and he must also be provided
with a pad of COBOL program sheets (Form X28-1464).




r

System/360 COBOL

Writing Programs in COBOL

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the Conference on Data Systems Languages (CODASYL),
and printed by the U. S. Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating

in the original development were:

Air Materiel Command,
United States Air Force
Bureau of Standards,
Department of Commerce
David Taylor Model Basin,
Bureau of Ships, U.S. Navy
Electronic Data Processing Divi-
sion, Minneapolis~Honeywell
Regulator Company
Burroughs Corporation
International Business Machines
Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand
Corporation

In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company

Bendix Corporation, Computer
Division

Control Data Corporation

DuPont Company

General Electric Company.

General Motors Corporation

Lockheed Aircraft Corporation

National Cash Register Company

Philco Corporation

Royal McBee Corporation

Standard 0il Company (N.J.)

United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations.

no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

(3/66)

It is reasonable to assume that a
number of improvements and addi-
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ-
ual implementors.

Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures

and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.

The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC ® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation;

IBM Commercial Translator, Form No.
F28-~-8013, copyrighted 1959 by IBM;
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell; have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro-
duction and use of COBOL specifi-
cations in programming manuals or
similar publications.

Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc-
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL" in
acknowledgement of the source, but
need not quote this entire section.




System/360 COBOL Writing Programs in COBOL

TABLE OF CONTENTS

Student Instructions vii
How to Study this Book ix
LESSON 1 1
LESSON 2 13
LESSON 3 27
LESSON 4 43
LESSON 5 ' 57
LESSON 6 71
LESSON 7 87
LESSON 8 103

(3/66) v







1.

3.

5.

(3/66)

System/360 COBOL Writing Programs in COBOL

STUDENT INSTRUCTIONS

This is the second in a series of programmed instruction courses
on System/360 COBOL. The previous course, entitled COBOL Program
Fundamentals, is a prerequisite to this course.

Be sure to read the Preface of this book, which explains the
overall goal of this course.

Besides this book, you must have:

° the reference handbook (Form R29-0211l) for this course.

° the reference handbook (Form R29-0206) from the previous
course in this series.

° a pad of COBOL program sheets (Form X28-1464).

All reading assignments given in this textbook are in reference
handbook R29-0211. However, you are expected to take the
initiative in reading reference handbook R29-0206 whenever you
need to review background information.

The reference handbook is yours to keep, and you can write notes
in it if you wish. The textbook, on the other hand, will be used
by other students, so you are not to fill in any of the blanks or
make any notes in this book.

The format of this book is exactly the same as that used in the
previous programmed textbook in this series. As before, topics
of study are presented in a series of frames, with most frames
requiring you to choose an answer or to formulate an answer
mentally. The correct answers are given right after each
question, and you should use a card or a sheet of paper to cover
up the correct answer until you have had a chance to formulate
your own response to the question.

If the meanings of symbols like bracket and braces (as they are

used in frames) are fresh in your mind, you may begin Lesson 1;
otherwise, read the information on the next page.

vii




System/360 COBOL Writing Programs in COBOL

7.

(3/66)

HOW TO STUDY THIS BOOK

Each lesson is broken up into a number of frames, which are
simply convenient instructional steps that are to be studied in
sequence. Most frames have two parts: the first part usually
asks a question or requires you to take some action; the second
part gives the correct answer to the question. The end of the
first part is marked by a group of three dots printed in the
center of the page. If the frame asks a question, the correct
answer is printed on the same page, below the three dots.

As you study each frame, you must use an ordinary sheet of paper
or a card to hide the correct answer from yourself. You will
learn the subject best by working out the answers, not by just
reading words.

Start each page by putting your "hider" sheet or card at the top.
Then slide your sheet down until you just uncover a group of
three dots. This will allow you to read the first part of a
frame, and to formulate your answer to the question or problem it
poses. When you have your answer clearly in mind, slide the
"hider" sheet down to the next group of three dots. This will
not only reveal the correct answer, but also uncover the first
part of the next frame.

Most frames require you to formulate an answer mentally. Your
answer may sometimes be different from the printed answer, but it
should mean the same. If your answer is wrong, study the question
again with the correct answer in mind.

On the whole, the course is composed of reading assignments and
questions. When a frame gives you a reading assignment, be sure
to complete the assignment before going on to the next frame.

The frames that follow a reading assignment may ask questions
about what you have read, or ask you to apply what you have read;
they may also provide additional information about the topic.
You will find instructions, remarks, and the author's opinions
printed in italics in a few frames.

Whenever a frame asks a question based on information in the
reference handbook, and you cannot remember the information, you
should reread that topic in the reference handbook.

When you come to a blank in a frame, you are to think of’
one or more words that complete the sentence. The length of the
blank space is always the same, so it is not a clue to the length
of the answer. Do not write your answer in the book.




System/360 COBOL Writing Programs in COBOL

8.

(3/66)

Some frames present a choice of answers, from which you are to
select the one best answer. The choices are stacked in

{} braces.

Other frames present a choice of answers, from which you are to
select all correct answers. All of the choices may be correct;
more than one, or just one may be correct; or none may be correct.
It is therefore necessary for you to examine every choice. Each
choice of this kind is enclosed in brackets [].




System/360 COBOL Writing Programs in COBOL

(3/66)

In the previous course (COBOL Program Fundamentals), you studied
many sample COBOL entries and programs, all of which were written
on program sheets. COBOL programs are normally written on such
sheets, which are sometimes called "coding sheets'; however, this
18 not absolutely necessary, since programs might be written on
just about anything -- even scratch paper. (Some companies that
use COBOL have printed their own special coding forms, and a few
companies have done away with coding forms altogether by punching
COBOL cards directly from flowcharts, decision tables, and record
layouts!) Most COBOL users write on the standard type of program
sheet, though, and you will be using the standard sheet through-
out thig course.

It will be worth your while to remember which columns of the
program gheet are used for program entries, and which columns are
uged for other purposes. Make sure that you learn what "margin A"
and "margin B" are.

Reading assignment: PROGRAM SHEET FORMAT

(XX
The program sheet has space for columns of information.
(XX
80
The program sheet has 80 columns because .
(XX )

it serves as an input document to a card punching operation




System/360 COBOL Writing Programs in COBOL

This is what the COBOL card looks like.

{ I I ]
1
| . |
PAGE [SERIAL|—[A iB COBOL STATEMENT | IDENT

PAGE |SERIAL|—]|A 18 COBOL STATEMENT
1

0Ull0:000000000000000000000000000000000000000000000000000000000000000000000

8910 “:l? 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3; 38 33 40 4142 43 44 45 46 47 48 49 50 5; 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 57 68 69 70 11 72|73 74 75 76 77 78 19 80

HlIlllllllllIIIIIIIIIIIIIIIIIIHIIIlllllIlllllIlllIHIIIIHIIHIHIIIHIII

00
12
[

)
—_
o
—_ o
— =

i
222222\1222222222222222222222222222222222222222222222222222222222222222222222221222

1

333)3333)33333333333333333333333333333333333333333333333333333333333333333(33333333
]

44444444444;444444444 COBOL SOURCE PROGRAM CARDI444444444448148444444

555/555/5/5555/5555555555655555555555555555555555555555555555555555555555555/55555555
1

666/666]6/6666%666666666666666666666666666666666666666666666666666666666666/66666666

77777171777?77777777777717777777777177777777177777777777777777777777777777777771

1BMC61897

88880888888;888888888888888888888888808888888888883888888888308808888888888888883

I]BMg999999:999999999999999999999999999999 999999999999999999999939999999(9 9
61718 8 45 56

9
10 11112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 11 72173 74 75 76 77 78 79 80

Although columns 8-72 have no title on the program sheet, the
corresponding field in the card is named .

COBOL STATEMENT

A separate card is punched for
each separate program sheet

each column on the program sheet .
each line on the program sheet

each line on the program sheet

Bl Information entered at the of the sheet is not punched into
cards.

top

(3/66) 2




System/360 COBOL Writing Programs in COBOL

(3/66)

Examine the illustration below, which sums up the information
that you read in the reference manual.

| OPTIONAL | [ CONTINUATION | | NOT PUNCHED INTO CARDS | OPTIONAL

IEM |, COBOL PROGRAM SHEET roaves 1 USA

- l Identification

73 80
b

SEQUENCE
| (PAGE) (SERIAL)|
\__3l4 6 28 32 36 40 44 48 52 56 60 64 68 72)

PROGRAM ENTRIES

: | S
LA ' | [

(‘/:\‘x B MARGIN
v\ |

L - - -t b=} -}

* A standard card form, IBM electro C61897, is ilable for hing source from this form.

N

Columns 1-6 and 73-80 are marked "optional", which means that

those columns are not printed on some program sheet forms
something must be written in one field or the other, but

not both ,

neither the identification nor the sequence number is
mandatory

the programmer can disregard his boss's orders to fill
them in

neither the identification nor the sequence number is mandatory

However, both of these fields are generally filled in, with each
computer installation setting its own standards for identification
ecodes and esquence numbers -- which means that the programmer
fills in thoee fields the way his boss wantg it done -- regardless
of the faect that the compiler technically doesn't require anything
in them. In this book, we will leave the optional columns blank,
in order to concentrate on program entries.




System/360 COBOL Writing Programs in COBOL

Bl 2 hyphen is written in column 7 to signify the continuation
of .

(XX
non-numeric literals

Complete rules for continuing non-numeric literals will be
discussed a little later in this lesson.

IJI COBOL entries are written in columns through .
(XX

8, 72

lﬁl The program entry columns of the program sheet are divided into
two "margins". Notice that a "margin" in this case is an area
that you are supposed to write in; a rather different use of the
word from the usual notion of a margin as a narrow border around
the edges of the paper -- a space that you are not supposed to
write in.

The names of the margins are certainly simple and easy to
remember -- they are margin and margin .

III A broken line has been printed between columns 11 and 12 to mark
the boundary between margin A and margin B, and little letters A
and B have been printed above columns 8 and 12 to identify the
margins.

Don't let those little letters mislead you. They are there to

remind you where each margin begins, and they do not mean that

each margin is just one column. Actually, margin A comprises

columns through , while margin B comprises columns
through .

L XX
8, 11; 12, 72

(3/66) 4




System/360 COBOL Writing Programs in COBOL

Suppose a rule states that a certain entry must "begin in the
B-margin". Following the rule, that entry

might be started in column 16
can be started in column 8, 9, 10, 11, or 12.

L]

{must be started in column 12

(XX}
might be started in column 16

We will see that the most likely starting point for such entries
18 column 12 -- but that this is not a "must"”.

ﬁ!ﬂ Suppose that the rule for another kind of entry states that the
entry must "begin in the A-margin". One such entry is the
paragraph header "REMARKS". If a programmer were to begin this
entry in column 8, he could only write REMA in the A-margin.

If he followed the rule, you would then expect him to

write RKS. in columns 12-15 of the B-margin

write RKS. in the A-margin of the next line

abbreviate the entry to RMK. so it would fit in the A-margin
omit the remainder of the entry

(XX
write RKS. in columns 12-15 of the B-margin

The rule specifies a beginning place, but does not require the
entry to be completely contained within the A-margin.

I There really are rules like those referred to above, and we will
turn our attention to them now. Firet, we will look at the rules
for writing elements in entries. From the previous courge, you
will recall that an "element" is the basic unit of the COBOL
language; regerved words, programmer-supplied names, symbols,
literals, level numbers, and pictures are the six "elements".

You will find that there are just two major rules for writing
elements in entries, but that each rule has an exception. You
will want to study the exception carefully, of course, but make
sure you understand the general rule first.

Reading assignment: HOW ELEMENTS ARE WRITTEN IN ENTRIES
Elements written on program sheets
Spacing between elements

(3/66) 5




System/360 COBOL Writing Programs in COBOL

The first rule that you have just read states that, except for

non-numeric literals, no {elemgnts} may be split or divided
i entries
between lines.

(Y X
elements

You will discover shortly that entries can be continued on more
than one line. The distinction between an element and an entry
should be clear in your mind. Remember that an "entry" consiets
of two or more elements, the last of which is a period.

BB coBor systems for some other computers do permit elements such as
names to be divided; however, experience has shown that this
makes a program harder to read, and makes errors more likely.

So the rule for System/360 COBOL is that no elements except non-
numeric literals can be divided.

Which is the correct way to write the name ACCOUNTS-RECEIVABLE
on a program sheet, if there are not enough spaces left on a line
to write out the whole name:

[The name may be broken at a syllable boundary, so ACCOUNTS-RECEIV
might be written on one line, and ABLE on the next line.]

(The name can be broken at the hyphen, so ACCOUNTS- would be
written on one line, and RECEIVABLE on the next line.]

NEITHER of these ways is correct.

The characters form one name (one element) and so they must not
be broken at any point. If there is not enough room left on a

line to write the entire name, then it must be written entirely
on the next line.

BEd There is a good reason for permitting non-numeric literals to be
divided. No matter how small you print, there are still only 61
spaces in the B-margin, and a non-numeric literal can be up to

characters long.

If you don't remember, look this imformation up in the COBOL
Program Fundamentals reference handbook (Form R29-0206).

120

(3/66) 6




System/360 COBOL Writing Programs in COBOL

BB} Doesn't this same reasoning apply to numeric literals? Shouldn't

it be permissible to divide a numeric literal that is, say, 80
digits long?

Numeric literals are limited to 18 digits, so they need not
(and must not) be divided.

I:I Which of the examples below is a correct way to divide the literal

(3/66)

LISTING OF DATA RECORDS IN FILE NUMBERS between two lines?

| 3l4 6]7]8 12 16 20 24 g 32 36 40 44 48 52 56 60 64 EE 7
T - i [ ! T !
oiz! | [Tt el.[ Pl 1]clTiulRlel al([3leD)].| MalLluel ["LliisIT!iNG] olF! IoaTiAl RECIOR ﬁ TR

= I el Le] INuMBER]" ] !

(=]
< |
3

i N|G! OF DIAIT RIECIOR
T 1
Tl el WuMsler!]. i l HEEN

[e]
)
-
-
r
m
|0 1
O |
=
E)
m
>
(]
@
—
q

<
>
r
(=
m
r
(2]
=

Lk -

iPICTdR AILUE! |'ILIIIS|T

Yolel | [l ilTiLle!, gl al(38h],l v iINle] lolF| IplaiTlal [RIEICloORIDIS] [1INI IF
n ! TiLE[ NuMBER!].| | il 11T

o2 | lilvide’, PlilciTiulrlE] [al(3l8], | VAlLUE Lils'Tliinfe] JolF] Iplaftlal IRElclolripls! 1IN
- VT TTTRLOdE. NuiBleR]. ! HENEN |

The third entry is the correct one. In it, the characters of the
literal are written all the way out to column 72, then an extra
quotation mark is written in the B-margin of the next 1line,
followed by the remaining characters of the literal.

The first entry contains two non-numeric literals instead of one,
which in this case, is an error; the mistake is the quotation
mark at the end of the first line. In the second entry, the
characters of the literal are not written to the end of the first
line, nor do they follow right after the extra quotation mark in
the second line; as a result, there would be four more spaces
than were wanted in the literal, and the compiler would take it
to be LISTING OF DATA RECORDS IN FILE NUMBER. In the fourth

entry, the quotation marks that must enclose the Lliteral have
been omitted.

Even though the third entry is correct, its awkward breaking of
the word FILE makes it hard to read. Actually, it would have
been possible to write this entry without dividing the literal at
all, as shown below. The "common sense"” rule is: Don't divide
non-numeric literals, 1f you can avoid it.

A NEREEN T

rilel,| 1Pli[clTiulrle] [a](380)],] ‘ i
LislT/inje] 'ofF| plalTiA ‘RIECOR[D'S! ([N [Fli|LlEl NuMBE[R]". 5

=
VAL UlE

102
L)
!

jEdN




System/360 COBOL Writing Programs in COBOL

20

(3/6¢)

You have also read that each element must be separated from the
next element by at least one space. The exception in this rule
applies to certain .

symbols

Specifically, the exception to the spacing rule applies to
parentheses, quotation marks, commas, semicolons, and periods.
This exception (which says that no spaces are to be left between
those symbols and other elements in some cases) should not seem
unreasonable to you; in fact, each 'exception' case can be found
in the punctuation of the sentence that you are now reading.

If the parallel between ordinary English punctuation and the
exceptions to the spacing rule did not occur to you before, it
would be wise for you to reread the rule and to look for this
parallel.

To be sure , a sentence ' punctuated ' like this ome ( I hope you
noticed that it ig different ) is not particularly hard for you
to read ; however , a program ' punctuated ' like this sentence
would not be acceptable to the COBOL compiler .

Keep in mind that the spacing exception applies only to certain
symbols. The remaining symbols follow the general rule -- that
is, they must be separated from neighboring elements by at least
one space.

The entry below violates this rule several times. See if you
can eliminate all the errors. Rewrite the entry on a COBOL
program sheet.

_ [ icompluTEE [aAVER|AGE ,IROUNDED=|(Xx+Y]) /2.

spaces are required here

/ RERTANN

_icompluTE [AVER[AGE .| ROUNDED| = ¢ 2.

\ fo 7 7

spaces are not allowed here




System/360 COBOL Writing Programs in COBOL

Iﬁﬂ Now that you know the rules regarding the division and spacing of
elements to make up entries, let's go one step further and look
at the rules for writing entries on the program sheet.

Reading assignment: RULES FOR PROGRAM ENTRIES
Entries that begin in margin A
Entries that begin in margin B
New line required
Spacing between entries
Continuation of entries

lﬂﬂ According to the rules for using the COBOL program sheet, it is
all right for a line of the form to be [filled in completely]
[left partly blank] [left entirely blank].

ALL of these possibilities are allowed. A line may be filled in
completely OR left partly blank OR left entirely blank.

Incidentally, if lines are given sequence numbers (columns 1l-6),
the blank lines are numbered too. There is a distinetion, of
course, between lines left entirely blank to improve the

readability of the program listing, and unused lines on the
program gsheet.

An entry may be continued on the next line or lines

whether or not it could be written on one line
only if it is too long to fit on one line *

whether or not it could be written on one line

Most entries are written entirely within margin .

(3/66) 9




System/360 COBOL Writing Programs in COBOL

A few entries are required to begin in margin A. What this
amounts to is that major headings are brought out to the left for
emphasis. Although these entries may start in columns 8, 9, 10,
or 11, it makes sense to make them stand out as far as allowed.

Accordingly, these entries are usually started in column {? } .

A division header (such as IDENTIFICATION DIVISION.) must begin
in the A-margin, and

no part of it may be written in the B-margin
most of it will be written in the B-margin :

most of it will be written in the B-margin

Iﬁ' Below is a sample file description entry. This entry serves to
illustrate that the continuation of an entry is written in

margin , even when the entry begins in margin .
[Flo] | islalLlelsl-MalsTeREFILEL [T [
IBLOCIK ICOINTA INS' 3|0/ REICORDIS ,

| LABE[L REICORDIs ARE STIANDAIRD, | |

| | IDATIA| REC|ORD |I'S S|ALES|-MAS|TER-[RECORD.'

B; A

lﬂﬂ In the sample entry given in the previous frame, two spaces were
left between FD and SALES-MASTER-FILE. Would it have been equally
correct to leave just one space, as shown below?

Fipl 's!ALEs-MA'SITER-IF 1 LE],

XX ‘

No, only the level indicator (FD) may appear in the A-margin; the
rest of the entry must be written in the B-margin.

(3/66) 10




System/360 COBOL Writing Programs in COBOL

You know that the elements in an entry must, generally, be
separated from each other by at least one space. A special case
i __3]4 6]7]8 2 (] 28 32

exists when an element ends in column 72, as shown below.
2 20 24 28 %2 40 44 48 S2 S6 60 64 __e8 72
MulT]i [Pl ivf [aMoluinT] fol] [cl]i [ElnfTi-PPlulRichials|Els| Bly] IT{RlaplEl-Ip]1 islclojuiNfT], [ f6fi Vi N6

Which of the lines below shows a correct way of completing this
entry?

28 32 36

1lolN].
1 Joln].

EblulclT!1oN].
1] QT | IRElpulciT/1/oln].

RIEID'Y

(XX
ONLY the third line

If an element ends in column 72, it is treated (by the compiler)
as 1f it were followed by a space. Therefore, the continuation

of such an entry may be written right at the beginning of the
B-margin.

The first two choices show the continuation of the entry written
in the A-margin, which is illegal. And the first and fourth
chotces have hyphens in column 7, also illegal. The fourth
choice is correct, except for the hyphen in column 7.

Here is another application of the "column 72" rule. On the
first line below, an entry goes all the way to the end of margin
B; on the second line, the next entry starts right at the
beginning of margin B. The requirement that the period ending
an entry must be followed by a space is satisfied by the'"assumed
gpace" after column 72.

l-qa: 6 7g H3 16 20 24 28 32 36 40 44 48 52 56 64 €8
puﬁﬂth TLASIT] ICHECl] INUMBIE R, UISEIDI] | IGHEICI-INUMBER] [P loN] [CONISIOLEL.
ciLlosle lplalyiRiojlI-F L], | IclHlElcik HE el [T [T 117 INIEREEN L

(3/66) 11




System/360 COBOL Writing Programs in COBOL

EEl You can see that, in most cases, the "column 72" rule works to
our advantage; in the case below, however, it does not. The
entry below is wrong. See if you can figure out why it is wrong, l
and what can be done to correct it.

L_sls elris e s 2o e e 3 36 _s0 e o _se__So_ 60 et o 71
E:R!EAD SIERRIVII|ICIE[=|CIAIL|L|3| A|T| EIN|D|, CLO{SE SIERIV| | |[CIE|—|CIALIL!SI-|F|1 |LIE|, STOPI RIUN
N il 7 [l
( X N )

The period used to end an entry must not be preceded by a space.
Since the reserved word RUN ends 1n column 72, it is treated as
if it were followed by a space -- and that space precedes the
period written on the next line. The simplest correction is to
write the word RUN on the second line instead of the first, and
write the period directly after it.

In some cases, programmers mistakenly assume that the "ecolumn 72"
rule applies, when it actually does not. The following is such
a case.

In this entry, the programmer thought he was writing this literal:
ORDER NUMBER IS NOT VALID. The word NUMBER ended in column
72, so he assumed that the compiler would insert a space after

it. However, when the program was compiled, the result was:

ORDER NUMBERIS NOT VALID.

% A‘ 6]7|8 M 16 Eﬂo 24 2=3 32 36 40 44 48 52 2 60 64 68 7;
i 13 NFXT—ITE 1s] Inlolr EqUAL 1o PREVIQFS 4] [11,] sItlole] [ TolRDIER] MuMelElR
= vils] INjolr] [viaiL[i]ol.]* L] L

What was the fallacy in this programmer's thinking? How can his
error be corrected?

The "column 72" rule applies only when an element ends in column
72. In this case, the word NUMBER is not an element; it is part
of an element -- part of a non-numeric literal. Correction is
easy; insert the desired space between the extra quotation mark
on the second line and the word IS, or preferably, write the
entire STOP statement on the second line, thereby avoiding the

problem of continuing the non-numeric literal.

Throughout the remainder of this book, you will be called upon
to apply the rules that you read in this lesson. Whenever you
are asked to write an entry, and there is any question in your
mind about how to enter it on the program sheet, be sure to
refer to the rules in your reference handbook.

(3/66) 12




System/360 COBOL Writing Programs in COBOL

LESSON 2
®

lﬂl Now that you know the rules for making entries, the next step is
to learn the formats of the entries. But there are scores of
possible entries -- too many to commit to memory; so, you will
have to resign yourself to making liberal use of reference
materials for a while, at least until writing some of the more
common entries becomes second nature to you.

In COBOL, there is a standard system of notation that is used to
deseribe entry formats in reference materials. The system is
ugsed in the reference handbook for this course, and it is also
used in reference manuals and other books about COBOL, so it is
important that you become familiar with it. We will now devote
a little time to the notation system, before continuing to study
the actual entry formats for the Identification division.

Reading assignment: SYSTEM OF NOTATION USED TO DESCRIBE
ENTRY FORMATS
Sample entry format

Iﬁ' One of the main distinctions that is made in this system of

‘ format notation is between words printed in capital letters and
words printed in small letters. What is the difference between
them?
(XX

Words printed in capital letters are reserved words; words
printed in small letters represent information to be supplied
by the programmer.

(3/66) 13




System/360 COBOL Writing Programs in COBOL

This distinction deserves a little further clarification. Words
in capital letters will actually be written as such within an
entry. Words in small letters will never be written as such
within an entry.

Now and then, a beginner misses the point when he reads an entry
format such as "GO TO procedure-name", and writes:

4

6ol Itlol IPiRloicEDlURIE-INAME]. ! !

<

Actually, the programmer was expected to write GO TO followed by
the programmer-supplied name of the to which the program
was to branch.

procedure

Technically, PROCEDURE-NAME is a valid programmer-supplied name,
even though it is not especially meaningful; this GO TO would
work i1f there were a procedure whose name was PROCEDURE-NAME.
But imagine the mess that results when a misguided programmer
writes PROCEDURE-NAME in every entry that calls for a procedure
name!

lﬁﬂ Here is a variation on the misunderstanding of format words
printed in small letters. Suppose that an entry had the format
"DISPLAY literal”, and a programmer wrote:

1R 1

| olilslplLlaly! [LliTiE[RIAL [''END] oF! [PHASIEl la'].! | |

If he was trying to display the message, END OF PHASE 4, the
programmer should have

written only DISPLAY LITERAL, and stored the message
as a constant

omitted the word LITERAL and written DISPLAY 'END OF PHASE 4'

written the word "literal" in small letters, as shown in .
the format

omitted the word DISPLAY, since the underline means it i
is optional

( X N i

omitted the word LITERAL and written DISPLAY 'END OF PHASE 4°'.

(9/66) 14




System/360 COBOL Writing Programs in COBOL

(3/66)

Reserved words are required in an entry when they are underlined.
However, the information represented by words printed in small
letters

may be omitted if the programmer is tired of writing

is optional regardless of whether the words are underlined
is required even though the words are never underlined

is never written as such within an entry

is required even though the words are never underlined

In certain cases, "required" words and information may be part of
an optional portion of an entry. Optional portions of a format
are enclosed in (what symbols?) .

[]1] (brackets)

The notion that some "required" parts of an entry can be
"optional" is not really as paradoxical as it sounds. What we
mean is that a portion of an entry must be included under certain
circumstances, and omitted under other circumstances; and that
portion is required to contain certain words and information
when it is included.

It's like saying that it is optional to rent a car to get where
you're going, but that if you decide to rent the car, you are
required to pay the rental charge.

Let's take a COBOL example. Here is an optional portion taken
from the item description entry format:

[VALUE IS literal]

This clause is used when you want to specify the initial value of
an item in working-storage. If you decide to use the clause,
what must you write?

You must write the word VALUE and a literal. (If you wish, you
may write the word IS after VALUE.)

15




-

System/360 COBOL Writing Programs in COBOL

EE] vhen an entry provides a choice of optional portions, they are
stacked within a pair of brackets, like this:

[UNIT ]
UNITS

In the above example, the programmer

must write either UNIT or UNITS in the entry

may write UNIT, or UNITS, or neither, in the entry
may write UNIT, or UNITS, or both, in the entry

may write UNIT, or UNITS, or neither, in the entry

Iﬂﬂ When an entry provides a choice of required portions, they are
stacked within a pair of braces, like this:

POSITIVE
NEGATIVE}

ZERO

In this case, the programmer

must write one, and only one, of the words
must write at least one of the words, and may write all three} .
may write one, or none, of the words

(XX

must write one, and only one, of the words

Iﬁ! This is the format of a class test, which is used in IF entries:

data-name IS [NOT] {gggiégnc}

Can you explain which parts of this format are always required?
Sometimes required? Never required?

A data name, and either NUMERIC or ALPHABETIC are always required.
The word NOT is sometimes required (when you want to test for the
opposite of NUMERIC or ALPHABETIC). The word IS is never

required. !

(3/6¢) 16




System/360 COBOL Writing Programs in COBOL

(3/66)

You will get plenty of additional practice on the COBOL format
notation system as we examine the entries, division by division,
beginning with the Identification division. Needless to say,
being able to interpret the format notation is just a small part
of the game. The larger part is knowing when and why to write

an entry in your program; sometimes the rules are clear-cut,
leaving you no choice in the matter, but most of the time (alas!)
you will be required to know what it is that you are trying to
accomplish.

To help you with the "whens" and "whys'", the reference handbook
summarizes the function of each entry or set of entries. And
because the notation system is not foolproof, and is sometimes
open to various interpretaions, examples of the entries, and
notes about the formats, are also given. Be sure to study the
funetion, example, and notes, in addition to the format.

Reading assignment: IDENTIFICATION DIVISION

Keep the reference handbook open to the page on the Identification
division while we examine the entries that make up the division.

How many required entries are there in the Identification
division?

Three (division header; Program-Id paragraph header; and program
name entry)

Each entry is required to end with (what symbol?) .

a period

What other punctuation is required in the division?
eoo
Quotation marks are required around the program name.
Remember that required symbols are printed in the format, though

not underlined. Optional symbols, such as commas, that may be
used in entries are not printed in the format at all.

17




System/360 COBOL Writing Programs in COBOL

Program name may be up to characters long.

(9/66)

eight

Programmers sometimee ask, "How will I know what the program name
18?" I suppose the best answer is that it all depends on the
type of job situation you are working in. If you are one of
several programmers who are implementing a large system, then

the system designer will probably have specified the name of each
program in the system. If you are working independently on a
projeet of your own, it will no doubt be up to you to invent a
name for your program; but be sure to find out whether standards
have been set up for classifying and naming programs in your
computer ingtallation. If you are a student, and the program is
a class exercise, you can most likely dream up any name you
please; or perhaps your teacher will come up with a choice name --
or two -- for your program.

The Program-Id paragraph is required in every program; all of the
other paragraphs are .

optional

Since the format for each optional paragraph is enclosed in a
separate pair of brackets, you can conclude that

you may choose to write one, or none, of the optional
paragraphs

you must write one or more of the optional paragraphs

you must write one, and only one, of the optional paragraphs

you may write any number, or none, of the optional
paragraphs

you may write any number, or none, of the optional paragraphs

The paragraphs are not stacked within brackets; each is a

separate option. Note, though, that your installation very likely
has firm standards for documentation that must be provided in the
Identification division. Obviously, such standards override the
faet that the compiler allows you to omit all of the optional
paragraphs.

18




System/360 COBOL Writing Programs in COBOL

(3/66)

Each optional paragraph consists of a paragraph header and

"entry...". What does "entry..." mean?

One entry is required, and additional entries are permitted.

Are there any restrictions on what may be written in the entries
in optional paragraphs?
(XX

No, except that each entry must be terminated by a period.

These entries are simply comments, and the compiler has been

programmed to ignore their contents. Therefore, you may write
anything -- reserved words, quotation marks, numbers, parentheses,
asterigsks -- you name it. Whatever you write will be printed in

the listing of the source program, so that your explanatory
comments will alwaye accompany the rest of the program. Needless
to say, your comments should be concise and pertinent; don't use
the Identification divison as a vehicle for getting your short
novels into print, or for publishing sonnets inspired by the

cute programmer in Dept. 983B.

You are supposed to have a pad of COBOL program sheets; if you
don't, get one at this time.

On a COBOL program sheet, write a complete Identification division
for a hypothetical program named EXPENSES. The program is
designed to produce a weekly listing of all operating expenses,

by department, of our mythical company, Dynamic Data Devices,

Inc. Naturally, the output and the program itself are strictly
company-confidential, and available only to authorized personnel.
The programmer, Charles Brown, himself an unauthorized person,
wrote the program on November 9, 1965; and compiled and tested

it, blindfolded, the very next day.

From this description, see if you can sort the pertinent
information into the proper paragraphs. Most important, be

certain that you observe the rules for making entries on the
program sheet.

The solution for this frame is printed on the next page.

19




System/360 COBOL Writing Programs in COBOL

The Identification division that you have written should
regemble this:

|DEN&1F|CAﬂ|dM%DHVIsr0N.
PRoGﬁANMID,f EEER
__VEXPENSE|s'. | |
AUTHpR.’ BRI EENE EEREEE
___ICHARILES [BROWN. |
INSTALLATI BERE
__DYNAMI
DATE-WRI[TT
B
|

___INOVEM
DATE.chk L |
| INovEMBER| 10, 196|5.
SECURITY. | | |- | | |
fi@OMPANY—CON%lDENTQ%l~5AVA|LABLE T0 | .
f%%mu1H0R|2gofPERs0NM£LEQNLY.ﬁ EREEEEEEE
IREMAIRK'S . EEEESEEEERENEEE RN EERENRRE NN
| | iPRoplulciE's| A WEEKLlY LilsTiNle oF| Avil | |
| loPERJATIING. EXIPENSIES, |BY Dl[EPAR[TMENT. |

s
C |DATA| DEV|IGES|, IN[C.
E

Rl 9, |1965|.

Check your work on each of the following points:

1, Did you begzn every header entry in margin A
(preferably in column 8)?

2. Did you keep all other entries within the B-margin?
3. Did you terminate every entry with a period?

4. Did you remember to enclose the program name in
quotation marks?

If you made any mistakes, take a moment to correct them.

(3/66) 20




System/360 COBOL Writing Programs in COBOL

Iiﬂ Paragraph header entries do not have to be written on separate
lines. Which line below shows another correct way in which the
Program-Id paragraph might have been written?

e - —

PROGRAM-[1|D| I'[EIXPEINISIES|'|. ERREEN HRER

PROGIRAM-|1 0. | [' EXPlENSE[S|']. 1iERERRENE

PROGIRAM-|I|D. | |'EXPENSEls/'|.| [ || il AL

— L * -

The first choice is incorrect because there is no period following
PROGRAM-ID. The third choice has a period, but the mandatory
space after the period has been forgotten. The fourth choice has
two mistakes; the hyphen in PROGRAM-ID is missing, and the period
has improperly been written inside the quotation marks.

Whether or not you will choose to have the paragraph headers on
separate lines is something for you or your company to decide.
Here are two arguments in favor of using separate lines:

(1) program listings are easier to read when all of the non-
header entries are aligned; (2) all fixed header entries can be
prepunched into cards, and the deck of header cards can be
reproduced as required, thereby eliminating all future writing
and keypunching of header entries.

B 7he Environment division is almost as easy as the Identification
division. Its format is a bit more rigid, though, since each
entry has a specific meaning for the compiler. (By contrast,
you will recall that the compiler ignores the contents of most
Identification division entries.)

You will first study the overall format of the Environment
division, and later study two particular entries in detail.
Don't read about the SELECT and APPLY entries yet.

Reading assignment: ENVIRONMENT DIVISION

(3/66) 21




System/360 COBOL Writing Programs in COBOL

B refer to your handbook to answer these questions.

What are the two sections of the Environment division?

Configuration section and Input-Output section

The Input-Output section is an optional portion of the division's
format. This section

must be included in any programs that process data

{may be included or omitted at the whim of the programmer}
must be included when there are input or output files

must be included when there are input or output files

Data "files" are defined and discussed in the reference handbook
for the previous course.

When an Input-Output section is written, the paragraph must
be included, but the paragraph may be omitted if no special
techniques or conditions are defined.

File-Control; I-O Control

23 The Configuration section, containing the Source-Computer and
Object-Computer paragraphs, is required in every program. Each
of these paragraphs may contain the reserved word and the

of the computer.

IBM-360; model number

(3/66) 22




)

—

System/360 COBOL Writing Programs in COBOL

65 ]

(3/66)

If your company has more than one System/360, you will probably
want to specify which computer will be used to compile and
execute your program. The model number that you write must
consist of a letter representing the storage size, followed by
the actual System/360 model number.

The letters that represent storage capacities are C for 8K; D for
16K; E for 32K; F for 64K; G for 128K; H for 256K; and I for 512K.
As was explained in the previous course, these "K" capacities are
only rough approximations of the number of bytes of storage;
exact figures are given in the previous reference handbook.

If your computer is a System/360 Model 30 with a storage capacity
of 128K, which of these would be the correct model number to
write in your COBOL program:

360/30G
30/G
30G

G30

G30

On a COBOL program sheet, write the first half of the Environment
division for the hypothetical "Expenses" program for which you
coded an Identification division earlier. That is, write the
division header and a complete Configuration section. The program
is to be executed on a 16K Model 30, but it will be compiled on

a 64K Model 40.

JENV I RONMENT. oN..
CONFIIGURIAT IOIN SE/CTION.
SOURICE-CIOMPUITER.| | =

_Yemseo lFao.] | [T
osvecT-clompulrer. | [T
_ liBM-js60 [p30. | 1T ]

23




System/360 COBOL Writing Programs in COBOL

B4 This system flowchart gives us additional information about the
computer enviromment in which the "Expenges" job is going to be
run.

INPUT FILE=EXPENSE-FILE
EXTERNAL NAME = EXPIN
DEVICE=2400-SERIES

MAGNETIC TAPE UNIT

JOB=EXPENSES
SYSTEM=1BM-360
MODEL 30,16K

OUTPUT FILE=EXPENSE-LIST
EXTERNAL NAME = EXPLIST
DEVICE=1443 PRINTER

\

From the flowchart, it i8 clear that the job involves data files;
therefore, an Input-Output section i8 required in the program,
and you will have to learn the format of SELECT entries for the
File-Control paragraph.

(Note that the printed report is treated as a file; each line
printed on the form constitutes one record of the file.)

Reading assignment: SELECT

IXJ 2pply the information that you have just read, by coding the first
part of the Input-Output section for the "Expenses" program
(section header and complete File-Control paragraph). The flow-
chart in the previous frame contains all of the programmer-
supplied information that you need. You may, of course, look
back at the "ENVIRONMENT DIVISION" page of the reference hand-
book, to see the overall format of the section.

[ X X )
INPUT-oU|TPUT| SECIT/I/ON. HEEEREER 17
FILE-CONTROL]. ' B |
| 'seiLElcT ElxPeENSE-F|IILE],] Ass[iieN [Tiol I'[EixP N,
{ Tty 2400 uNifT. | D
'seLElCIT EXPEN|SE-L{1sT .| Ass|iGN [T
)| "exPlL st ulN 1 T-RECIO|RD (1443 [UINiiT].

Pointe to check: (1) The input file must be assigned to a
UTILITY device, since it i8 a magnetic tape file. (2) The output
file must be assigned to a UNIT-RECORD device, since it is a
printed report. (3) External names must be enclosed in quotation
marks. (4) Make sure you have hyphens and periods where
required.

(3/66) 24




System/360 COBOL Writing Programs in COBOL

!:l The SELECT entries that you have coded may not be exactly the

(3/66)

game as the entries printed in the preceding frame. As you can
tell from the format, "device-number"” is optional (and so are the
wordeg TO and UNIT, and the commas).

Let's make this clear: you must let the computer know, sooner or
later, what specific devices are going to be used for input and
output. If the devices are not specified in the source program,
they will have to be specified on job control cards at the time
that the objeet program is executed. In some casesg, we may wish
to be able to change device assignments each time the job is run;
in such cases, we will make our program "device independent” by
not specifying devices in the SELECT entries.

In most cases, though, our programs are written with specific
devices in mind. Then, it 18 just as well to indicate the device
numbere right im the source program. Thig i8 true of our practice
problem; the system designer has definitely told us whieh input
and output devices are going to be used.

The rules for creating an external name for a file are the same
as the rules for creating a for the Identification division.

(XX
program name

The commentes dealing with "where program names come from" apply
equally to external file names.

The only thing needed to complete our practice Environment
division i8 an I-0-Control paragraph. You know that this
paragraph 18 omitted when no special techniques or conditions are
needed; however, we must include the paragraph in this program,
because we have a special condition that must be specified -- the
form overflow condition on the printed report. (Form-overflow

18 the only one of the "special techniquee and conditions"” that
will be discussed in this course.)

Reading assignment: APPLY

25




System/360 COBOL Writing Programs in COBOL

(3/66)

Keep in mind that the overflow condition name that ie defined in
the I-0-Control paragraph will be used in the Procedure division.
There we may write an entry such as:

ASTHL INE|, WR/ITE |[EXPEINSE-|L INE
AF TEIR SK|IPPIING-T|O-NE[X T-P|AGE!.

On your program sheet, finish the Environment division. Define
the name LAST-LINE to represent the form-overflow condition on
the printed report.

\—o—lcoNTRoLl.f |l
__APPLIY| LAST—L|IINE [TO FIORM—|OVER|FLOW ON | |
[ T BEEE

Py EXPEINSE-LI1IST]. || EEEEREER

Points to check: (1) Did you remember the paragraph header?
(2) The file name of the report is required in the format, not
the external name of the file; don't confuse the two.

It should be apparent to you that the "APPLY overflow-name"
entry 18 used only when you have printed output. If our job had
called for magnetic tape output as well as magnetic tape input,
this APPLY entry would have been omitted -- in faet, we would
have omitted the entire I-0-Control paragraph.

To conclude our look at Environment division entry formats, let's
make just one more point: when you write a division, you must
make your entries in the sequence in which they are indicated in
the format; and you are allowed to make only those entries shown
in the format. There is8 no provision, for ingtance, for making
explanatory comments in the Enviromment division. You are not
allowed to create a new paragraph, nor to "borrow"” the Remarks
paragraph from the Identification division.

The moral of the story ie: follow the formats religiously;
don't deviate or improvise. After all, when you write a source
program, you are preparing input to be processed by a computer
program (the compiler); hence, you must adhere to the specifi-
ecations for that program's input -- or else, your entries will
be diagnosed as errors, and rejected as non-processable.

26




System/360 COBOL Writing Programs in COBOL

LESSON 3

EB 45 you discovered in the previous course, the Data division is

(3/66)

probably the most complex of the four divisions. Certainly, it
demands much more of the programmer than the Identification and
Environment divieions do. To be sure, the complexity of the
coding depends on the complexity of the data itself; and the
programmer's job is easier if he is intimately familiar with the

layouts of the records and files which he is trying to describe
in COBOL.

Another thing that makes the job easier is that the programmer
can give his complete attention to deseribing files and records,
without being concerned with the procedures that will process the
data. That is, the task of describing the data has been logically
separated from the task of processing the data; this separation
i8 an important feature of COBOL. In practice, this means that
each record will be described once, and the same record
deseription will be used in every program that processes the
record. It also means that all programmers will use the same
nameg to refer to data items. And it means that we are justified
in studying about the Data division without worrying about the
Procedure division at the same time.

We have tried not to duplicate information that you studied in
the previous course. As a result, it i8 taken for granted that
you recall the bastic definitions and concepts; if you don't, you
will want to re-read the appropriate topice in the previous
reference handbook.

We will firet work on file descriptions, then on record structures
and descriptions, and lastly on item descriptions.

Reading assignment: FILE DESCRIPTION

27




System/360 COBOL Writing Programs in COBOL

iﬁ! The only portion of a file description entry that is written in
the A-margin is .

FD (the "level indicator")

Each clause of a file description

separate line.

must be
may be

} written on a

may be
Having each clause on a separate line makes the entry easier to

read and easier to correct or update.

Ef) Besides FD and the file name, which clauses are required in every
file description?

LABEL RECORD and DATA RECORD clauses

EE] The file name given in a file description must correspond to a
file name specified in a entry in the division.

SELECT; Environment

(3/66) 28




System/360 COBOL Writing Programs in COBOL

(3/66)

In the next five frames, we will deal with files of punched
cards.

The recording mode of a punched card file must be , because

F, because all records in the file are the same length
(80 characters), and there are no record-length control fields.

Recording modes are discussed in detail in the reference handbook
for the previous course.

For a card file, the BLOCK CONTAINS clause would be omitted,
because

each block contains only one record
there are no blocks in a card file °

each block contains only one record

By definition, all files contain blocks, since a "block"” is the
unit of data that is transferred to or from storage at one time
by the input-output device. A card file i8 read or punched one
eard at a time; hence each card is a bloek, and contains just
one record.

Every record in a card file contains 80 characters, regardless of
how many card columns are punched. (Unpunched columns contain
the character "blank".) Thus, each record description for a card
record must account for all 80 characters, and the file
description entry

[should state RECORD CONTAINS 80 CHARACTERS]
[should account for only the columns that are actually punched]
[may be omitted].

EITHER should state RECORD CONTAINS 80 CHARACTERS, OR may be
omitted

29




System/360 COBOL Writing Programs in COBOL

(3/66)

Every card in a file is a data record. This includes even those
cards, such as leader or trailer cards, which contain accounting
or control information about the file.

From this you can conclude that label records are {

standard}
in card files.

omitted

omitted

Let me restate the idea: all cards must be defined as data
records, even though certain cards in the file may serve the same
function as label recorde would in tape or disk files.

On a COBOL program sheet, write the file description entry for a
card file called MAILING-FILE. The file contains three types of
cards -- ACTIVE-CUSTOMER, INACTIVE-CUSTOMER, and PROSPECT cards.

%00
FD  MAILlING-FICE; || IRREERIR
___ _RECORD NG MOPE 'Ils F; EENREREEEEEE
_ILABE|L RE|cORD|s ARE oMiITTED; || | |
__IDATA| RECloRrDS| ARE| AGT|I VE-|cUST|OMER], ||
v linadrivel-cusitomeRR, PlrRosPlECT.] |||

You might also have written a BLOCK CONTAINS clause after the
RECORDING MODE clause: BLOCK CONTAINS 80 CHARACTERS. Make
certain that you wrote the entire FD-entry as one entry; that is,
make sure you have just one period -- at the very end. The other
punctu;tion shown above (gemicolong and commas) might have been
omitted.

30




System/360 COBOL Writing Programs in COBOL

lﬂi Files of records that are going to be printed are treated

(3/66)

exactly the same as files of cards. The recording mode is F,
since each output line has a fixed length equal to the capacity
of the printer. FEach block contains only one record, since lines
are printed one at a time. And there are no label records.

On another program sheet, write the FD-entry for the EXPENSE-LIST
file (the output file of the EXPENSES program). Two kinds of
lines are to be printed in the report; so there are two types of
data records in the file. The lines are named EXPENSE-DETAIL and
DEPARTMENT-TOTAL.

TTEXPEINS B B

FD  EXPENSE-|LIST]; |

_RecoRpiNe MopE s Fl [ [ ] ]

— Y —tr *
»t" : [ N B o i

L ABE|L RE|cORD|s AR oMiITTElD; | '« | | |}
___ IDATA| REC|IORDS| ARE| EXPIENSE|-DET|AIL,|

Lt pePARTMENT-TIoTAL[. | | |

Now let's turn to files recorded on tape or disk. Here the
recording mode can be V, F, or U. Each block generally contains
more than one record. Usually, the file contains label records.

On still another program sheet, write the file description of
EXPENSE-FILE (the input file of the EXPENSES program). You will
recall that this file is on magnetic tape. The file has standard
label records, and one type of data record, called EXPENSE-RECORD
All data records in the file are a fixed length, and each record
is preceded by a record-length control field. There are 20
records per block.

FD  EXPENSE-FILE, | [ T p ]
___REGORDING mope s v, | | 1 ']
__BLOGlK CONTAINS 2/0 RE[cORD[s, | | ARN

f?%LAB£h RECORDS‘ARE;STANDARD; B | %?)
| 'baTAl IRECIORD |I'S E|XPEN|SE-R|ECOR|D . EEEER

The recording mode mugt be V, because there are record-length
eontrol fields. (The RECORDING MODE clause might therefore have
been omitted.)

31




System/360 COBOL Writing Programs in COBOL

The format of the File section requires that each file description
must be followed by one or more record deseriptions -- one record
deseription for each type of record in the file. Record
descriptions were discussed in detail in the previous course, and
we will review them only briefly here. The important points are
that a record description is a set of item descriptions; that it
shows the sequence of items in a record; and that the items are
arranged into levels to show the structure of the record.

Reading assignment: RECORD STRUCTURE

An illustration of levels of data items
AN EXAMPLE OF A RECORD DESCRIPTION

Level number is always assigned to the record as a whole.

01l

B suppose that we have a tape record named STOCK-TRANSACTION, which
contains just three items, as pictured below.

STOCK- STOCK-

TRANSACTION | | NUMBER
QUANTITY
TRANSACTION-
CODE

What level number would you assign to:

STOCK-TRANSACTION?
STOCK-NUMBER?
QUANTITY?
TRANSACTION-CODE?

Level 01 must be assigned to STOCK-TRANSACTION, which is the
record as a whole. The other three.items would be assigned level

number 02 (or any number greater than 02, but not greater than
49).

Normally, the levels are numbered consecutively -- 01, 02, 03,
ete. -- and we will use this convention in this book. However,
your firm may have adopted another numbering convention. The
important thing to recognize about the record pictured in this
frame is that STOCK-NUMBER, QUANTITY, and TRANSACTION-CODE are
all at the same level; what the level number is doesn't matter --
as long as all three have the same level number.

" (3/66) 32




System/360 COBOL Writing Programs in COBOL

(3/66)

Now let's envision a slightly more complicated record, called
JOURNAL~-ENTRY. It consists of ENTRY-NUMBER, DATE, DESCRIPTION,
and AMOUNT, in that order. Some of these items are broken down
further: ENTRY-NUMBER is made up of PAGE-NUMBER and LINE-NUMBER
and DATE is made up of YEAR and DAY.

See if you can diagram the structure of this record. Also,
indicate the level numbers. (Just sketch this roughly on a piece
of scratch paper.)

o000
LEVEL— Ol 02 03
JOURNAL- ENTRY- PAGE-
ENTRY NUMBER NUMBER
LINE-
NUMBER
DATE YEAR
DAY
DESCRIPTION
AMOUNT

Next, check your understanding of the order in which items are

entered on the program sheet. Using a program sheet, write the
level number and name of each item in the record diagrammed in
the preceding frame.

Put each item on a separate line. (Don't be concerned about
making complete entries, with PICTURE clauses, and so on -- just
write the level numbers and names.)

( X X J
lo1! T WolURINAL-IENTRIY % ?
02 | [ENTRIY=NUMBER
P Jolsl | [paGE-NUMBIER HER
} | 103 ||LINEI-NUMBER | |
o2 i blaTEl ] | | |
vl ol Tvearl O [T ] |
vl loay | D
o2l | IplesiclrRipTlion | | B
o2 | lamMouNT || ]

33




System/360 COBOL Writing Programs in COBOL

Check these points on your program sheet: (1) Indenting is
highly desirable, but not required. The convention is to indent
each level to the next column whose number is a multiple of ¢
(these columns are marked by heavier lines on the program sheet).
So, if you began with level 01 in column 8, all level-02 entries
would begin in column 12, all level-03 entries would begin in 16,
and so on. (2) Remember this program sheet rule: Llevel numbers
may be written in the A-margin, but not data names or any other
elemente of an item description entry. This means that a level
number may be written in columns 8 and 9, but that the name of
the item must not start prior to column 12 -- the name must not
begin in column 11, (3) Did you enter the level numbers and
names in precisely the order shown? If you did, skip the next
two frames. If you did not, and you are puzzled about the order
in which items are to be entered in a record deseription, go
right on to the next frame.

This flowchart depicts the steps that a programmer follows when
making entries in a record deseription. Study it briefly and
then proceed to the next frame, in which we will apply this
procedure to the exercise that you just completed.

=) RS AL
START ITHE NEXT-LOWER
LEVEL

[

RECORD DESCRIPTION
IS COMPLETE

'

YOU ENTERED
ALL ITEMS IN THE
LAST PREVIOUS

GROUP

HAVE
YOU CHECKED
ALL PREVIOUS GROUP
ITEMS AT ALL

IS THE
ENTER THE
HIGHEST-LEVEL AN D
(LEVEL o1} ITEM X
?

CHECK THE
LAST PREVIOUS
GROUP ITEM AT
THE NEXT
HIGHER LEVEL

j
|
|

(3/66) 34




System/360 COBOL Writing Programs in COBOL

In order to understand this procedure, you must recognize that
the highest-level item has the smallest level number (01). And
that larger level numbers designate lower levels. With this in
mind, let's trace the steps taken in writing the record
deseription for the JOURNAL-ENTRY record.

(3/66)

1.

2.

3.

4.

5.

6.

7.

8.

9.

We start by entering the level-01 item:
01 NOURNAL-[ENTR]Y

JOURNAL-ENTRY i8 a group item, since it is subdivided into
smaller items; therefore, we enter the first item it contains
at the next-lower level:

1 A T P
o2/ | [ENTRlY-NUMBER

ENTRY-NUMBER is itself a group item, 8o we enter the first
item that it contains at the next-lower level:
i LR

1+ 'los  lPAGE|-NUMBER

PAGE-NUMBER i8 mot further subdivided; so it is an elementary
item, not a group item. But we have not yet entered all of
the items that are part of the last previous group item
(ENTRY-NUMBER); we now enter the next level-03 item that it
eontains:

T T sl T i Ne[-NuMBER
LINE-NUMBER i8 not a group item, and we have entered all of
the items that make up ENTRY-NUMBER. Now we must check to
see if we are finished with the last previous group item at
the next higher level; that would be level 01, and we have

not yet entered all of the iteme in JOURNAL-ENTRY. Its
second item at the next-lower level (02) is:

o2  loaTEl @ | [
Since DATE is a group item, we enter its first sub-item:
it o3 veaRrl 0T |

YEAR i8 not a group item, but there is another sub-item in
DATE:
H

L | k)3§§ Djyyf

We are through with DATE, but there are more items in
JOURNAL-ENTRY, and the next is:

o2 |pESicRIIPT/ION

DESCRIPTION i8 not a group item, so we enter the next
component of JOURNAL-ENTRY:

T2 JamodnT | [ T T T TTTTTT

1 B
[

Now that we have entered all items at all levels, the record
description ie complete.

35




System/360 COBOL Writing Programs in COBOL

The card record below offers a chance to draw up a record
description with several levels of items. As in the last
exercise, we are not concerned with the usage and pictures of
these items; only with their levels and names. While our
objective is to prepare a record deseription, we generally find
it easier to draw a schematic diagram of the record first. By
doing this, we can arrange items into their proper levels and
sequence before making entries on a program sheet.

On a piece of scratch paper, draw a schematic diagram of the
record below. Notice that the last portion of the record is
unused; you must consider these unused positions as an item in
the record -- you must assign the appropriate level number to it,
and call it FILLER.

— N\
STUDENT COURSE
ATTENDEE EMPLOYER RADES o NAME [CLA DURATION
z § [FINAL EXAM] 8| ¢ = START | FINISH
LAST-NAME % NUMBER| NAME Eg MD] DT:Y SCORE gg g sussecT|  TOPIC SERIAL ;| M I DI vImloly
Moowuuwunwnnuuuwoumuuuuuwuowunwuuwuuwuuwouwnﬂ%uuwnnwouwuowuu
123456789101 1213f1 15)i6 17 18 19 20[21 22 23 24 25 26 27 28p9 30 3132 33134 35036 37[38 39 40 41 42 43144 45M6 47 48 49150 51 52 53 54 55 56 57|58 59 60]61 /62 63164 65{66 6768 69[70 7172 73|74 15 76 77 78 79 80
ttrrrrrrrtnefrrrerrr et afregedepofeofeooerofr e eraferapfoofefogedi e

2222222222222

)
N

22222)1222222221222(22|122(22)2221222|22]12222{22222222{222|2(22|22|122]22]22]22]2222222
3333333333333

)
o

33333133323333(333(33(33)33/333333|33[333333333333)3333}33)33(33]33)33]333333333
4444444444444

>~
-~

444440444444 41444044(44/44/4841444{44144441444444241444(4144(44/44)48144/144]44444424
5555555555555

o
wn

55555/55555555{555{55/55[55[{555/555/55{5555(35555555[555(5/55/55/55[55[55{55[5555555

STUDENT-RECORD

6666666666666

2]
o

66666)666666606)666]63|66{56{666566|66{66686656666866/566/5/6666/66]66/66{66[6666666
1717111111111

]
~

TTTTI0 10T I I IpIp v ap 111 1a 1111 i r I ipip 111111

~

8888888888888/88/88888(88888868/888/85(88(88(288[858/68/8888[888838828/888/3/88(88/88[88(88/88[3888888
9999999999999[99]999 SSSSSSSSﬂ?SBSSBQESSBSEBS
\ 23456789

9
i 10 1112 1314 1516 17 18 18 20{21 22 23 24 25 26 27 7829 30 3|32 33|34 35| samausm‘uﬂuiuu 47 48 4950 51 52 53 34 5¢ 56 57|58 59 Anl61162 6364 65/68 67 B8 670 1§72 73|74 75 76 77 76 7

919999/99999899/999(9199[39{99[99(39/993/9999939
879

Y,

The correct solution for this frame is printed on the next page.

(3/66) 36

|




System/360 COBOL Writing Programs in COBOL

LEVELS
ol 02 03 04 05 06
STUDENT- STUDENT ATTENDEE LAST-NAME
RECORD
INITIALS
EMPLOYER NUMBER
NAME
GRADES APTITUDE-
TEST
FINAL-EXAM DATE MONTH
DAY
YEAR
SCORE
QUIZ-AVERAGE
DAYS-
ATTENDED
COURSE NAME SUBJECT
TOPIC
CLASS SERIAL
REGION
DURATION START MONTH
DAY
YEAR
FINISH MONTH
DAY
YEAR
FILLER

Check carefully to make certain that your diagram has all of the
iteme arranged into the same levels and sequence as shown above.
If you made any errors, correct your diagram.

(3/66) 37




System/360 COBOL Writing Programs in COBOL

EE vext, enter the level numbers and names for the record you just

(3/66)

diagrammed, on program sheets. Once again, these are not complete
entries; our objective right now is just to make partial entries
in the correct sequence.

pENT-HRECORD | | || EERE

ENT [ HEREREERREE
o3  |ATTENDEE[ | |
04  |LAST|-NAME ' | | ] ]
04 [iNiThars ] T TpREET
03 | |[EMPLIOYER| | & Bl
' |04 _|NUMBJER
loa  |NAME[
|03 |eRADES | | |
| |04  |APTITUDE|-TES|IT

O |
)
7}).
-
[

O
n
n
—
c
o

04 |FINAL-EX|AM
1 los lpaTEl
HERERE |06 IMONTIH
o | . loe |pAY | EREEE
Ll loe  |vEAR] | HENEE
LT T fois! | IsicloR]E! EEEERREN

| loa louiz-AvelRace| | | B
03 |DAYS|-ATTENDElD | | | |
SE MR EEEEREIEE
_ 03 INAME| | IR
| loa |susdect | | | 1

| loa |toPrijc EEEREEERREER
03 | |cLAS|s | AR 1EEE
| i loa [sERiAL [ | HEEEREE
loa REGUION | | ] ]
{03 [DURATION

|

> <]z

z
=
I

o
IS
OJOo [O]T |O IO IO

> 1< 1

T TTErrrorerororrerTree I N I -
N
Q
o
c
P

| i |
i i ¥ 1 : 1 Y y. H T
02 L IFLLUER '] 1 Pl i EEEE

38




System/360 COBOL Writing Programs in COBOL

If you have used programming languages in which every data item

(3/66)

must have a different name, you are probably wondering about
some of the data names in the record with which we have been
working. The names MONTH, DAY, and YEAR are used three times,
and NAME is used twice.

Duplicate names of this sort are permitted im COBOL. The
philosophy is that you should be able to use the most reasonable
names for your data items. If five of the items im a record are
addresses, for instance, then by all means call each one of them
ADDRESS. (The main restrictions,you will recall, are that a
name cannot exceed 30 characters and that no name can be spelled
the same as a reserved word.)

But when it comes to processing one of these data items, in the
Procedure division, there must be a method for specifying which
particular ADDRESS you want to process. In COBOL, the method is
called "qualification” of names.

Reading assignment: DATA NAMES

Two ways of naming data items
Qualification of names

Qualification is really quite simple. In our STUDENT-RECORD, we
could make unique reference to each of the NAMEs by calling one
NAME OF EMPLOYER, and calling the other NAME OF .

COURSE

Names are qualified in the [Data division] [Procedure division].
(XX

ONLY in the Procedure division

Of course, when we write the Data division, we must take care to

make it possible to qualify all duplicate names that we use.

When the two data items have the same name, ggnli one} must be
qualified. ot

both

39



System/360 COBOL Writing Programs in COBOL

(3/66)

There are two main requirements that qualifiers must meet:

1. A qualifier must be the name of a group item that
contains the item whose name is to be qualified.

2. A qualifier of one item's name must be different from
any possible qualifier of another item with the same
name.

Let's apply these requirements in the case of STUDENT-RECORD.

Close to the end of that record are two items named DAY. The

first is the day on which the class started; the second is the
day on which the class finished. Suppose that we qualify the

first DAY by referring to it as DAY OF START.

Now the second DAY must be qualified. Four ways of qualifying it
are listed below, only one of which meets the requirements. Pick
out the correct way, and explain why each of the other three ways
is not correct.

DAY OF COURSE
DAY OF CLASS
DAY OF FINISH
DAY OF DURATION

Only DAY OF FINISH is correct. COURSE and DURATION are also
possible qualifiers of the other DAY, so there would still be
doubt as to which one was being referred to. CLASS does not
contain DAY, so it is not a possible qualifier at all.

The third day in STUDENT-RECORD can be qualified by referring to
it as DAY OF [DATE] [GRADES] [FINAL-EXAM] [STUDENT-RECORD]
[STUDENT].

All of these, except STUDENT-RECORD, are acceptable qualifiers.
Some are better than others, though, from the standpoint of
"making sense". DAY OF GRADES or DAY OF STUDENT don't make as
much sense as DAY OF DATE or DAY OF FINAL-EXAM. More than one
qualifier may also be used; for instance, DAY OF DATE OF FINAL-
EXAM,

40




®

System/360 COBOL Writing Programs in COBOL

103

(3/66)

Sometimes it is absolutely necessary to use two or more qualifiers
for a name. Examine the excerpt from a record description, below.

We want to refer to the item marked by an arrow. Obviously, we
cannot refer to it merely as NUMBER, as there are four NUMBERs;
and we cannot refer to it as NUMBER OF SALES, as there are two
of those.

We must, therefore, go one step further, and refer to it as .

03  |LASTI-YEAR!' ' BN NEEEREREER

_|lo4 [sALEs ]| | v L
1l los INumeer | | ] ]
g‘f __los Jamount [ T TP rT]T

_loa RETURNs | | | | | |

05 INumBlerR | | | ]

| los jamouNT | | ]

03 | [THIS-YEAR | | | RENEE
o4 |sALEls | L i

| ]os NUMBER@(E—#- EEEERRENEE
| los |amounT || f o p
o4 |RETURNS | || BRI EEREE
o5 INumBlER | | |
o5  |amouNT [ |

R DR B I N ol e st el et naded ————-ﬁ

NUMBER OF SALES IN THIS-YEAR

The words IN and OF can be used interchangeably. Use whichever
word sounds "right" to you.

Since THIS-YEAR was the "unique" qualifier in the example above,
could we have referred to the item simply as NUMBER IN THIS-YEAR?

o000
No

Make sure that you see this point. There are two NUMBERs in
THIS-YEAR. Both qualifiers are definitely needed.

41




System/360 COBOL Writing Programs in COBOL

Keep in mind that the programmer makes qualifiecation of a name

(3/6¢)

posgible by the way he uses that name in the Data division. He
must be careful to avoid situations in whiek a name cannot be
uniquely qualified.

Examine this excerpt from a record description, paying particular
attention to the items marked by arrows. These items have the
same name, and because of their places in the structure of this
record, the name cannot be uniquely qualified.

02 | |saLEls-FLloor | | |

OS_?SQUARE—FOOTAGE‘(&‘**

|03  |cOUN|[TERS

]

]

]

!

|
[ .
| J' ; 104 LENGTH’ ;

!

]

| loa I|squalrRe-FlooTalGcE 43—-

The only possible qualifier for the first SQUARE-FOOTAGE is
SALES-FLOOR. But there are two SQUARE-FOOTAGEs in SALES-FLOOR,
so it is not a unique qualifier. (Note that it is incorrect to
name the items as shown, even though the second SQUARE-FOOTAGE
can be uniquely qualified.)

Can you think of an easy way to correct the error in this
example?

Simply change one of the names; for instance, the first SQUARE-
FOOTAGE might be renamed FLOOR-AREA. When this is done, no
qualification is needed for any of the names in this example.

To sum up, COBOL permits you to use duplicate names for data
items -- provided that each name can be qualified to make it
different from every other name.

This certainly applies to the name of records, as well as smaller
data items. The reference handbook states that it is permissible
for two (or more) records to have the same name, but that the
names of files must be unique.

It should now be clear to you that records with the same name

{must be in different files|
may be in the same file

must be in different files

42




System/360 COBOL Writing Programs in COBOL
LESSON ¢

So far, we have been dealing with the level numbers and names of
data items. In this lesson, we will add the PICTURE, VALUE, and
USAGE clauses, in order to construct complete item description
entries. These three clauses are the only ones needed for most
items, and our emphasig will be on learning to use them correctly.
(To avoid the confusion of too many facts and rules at one time,
we will omit the REDEFINES and OCCURS clauses for the time
being.)

The reference handbook for the previous course explains the
meanings of the more common picture characters (X, A, 9, S, V,
and P), and the significance of the usage words (DISPLAY,
COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, and
COMPUTATIONAL-3). If you have forgotten what these characters
and words mean, return to that handbook now, and refresh your
memory before you continue with this lesson; otherwise, go on to
study the format of item description entries.

Reading assignment: ITEM DESCRIPTION

EEX] An item description entry must contain at least a and a
s plus a period.

level number; data name (or FILLER)

Xl The reserved word FILLER is used for items that

[contain no information, or blank spaces]
[contain information that will not be processed].

EITHER contain no information, or blank spaces OR contain
information that will not be processed.

(3/66) 43




System/360 COBOL Writing Programs in COBOL

The picture of a data item may indicate several things about the

112

(3/68)

item. However, a picture will never indicate

[the location of an assumed decimal point]

[the presence of an operational sign in an item]

[the data code in which the item will be stored]

[the editing that is to be done to form the item]

[the initial value of the item]
[the class of the item: numeric, alphabetic, or alphanumeric].

the data code in which the item will be stored AND the initial
value of the item

The data code is given in the USAGE clause; the inttial value is
specified in the VALUE clause.

must have

Descriptions of elementary items {may have } PICTURE clauses.
must not have

must have
must have

Descriptions of group items {may have } PICTURE clauses.
must not have

must not have

VALUE clauses are allowed in item description entries only in the
section of the Data division.

Working-Storage

44

1
I




System/360 COBOL Writing Programs in COBOL

I} Descriptions of elementary items in the Working-Storage section

must have
need not have) VALUE clauses.
must not have

need not have

JAEl Descriptions of group items in the Working-Storage section
must have
need not have Y VALUE clauses.
must not have

must not have

IIEI USAGE clauses are allowed in [elementary items] [group items]
in the [File section] [Working-Storage section].

BOTH elementary items AND group items; BOTH File section AND
Working-Storage section

AP The USAGE clause may be omitted if the item's usage is .

DISPLAY

EEE] The USAGE clause may also be omitted for an item in a record
description, if usage has already been specified for .

a group item that contains this item

(3/66) 45




System/360 COBOL Writing Programs in COBOL

121

(3/66)

Let's apply these rules to a few sample data items, beginning with
independent items. You will recall that independent items are
entered 1n the [File section] ([Working-Storage section], and that
they are [elementary items] [group items].

Working-Storage section ONLY; elementary items ONLY

The level number of an independent item is required to be .

77

Since an independent item is an elementary item, its description
must contain a clause.

PICTURE

Suppose that we need a work area large enough to hold 20 alpha-
numeric characters. On a COBOL program sheet, write the item
description entry that is needed to set up such an area. Name
the item WORK-AREA,

77 woRk|-ARE[a, PlicTUrRE Xl(2o)]. | !0

The USAGE clause i8 omitted, because the usage of an alphanumeric
item must be display; however, you might have included the clause:
USAGE IS DISPLAY.

46




System/360 COBOL Writing Programs in COBOL

On the same program sheet, write the entry to define another

124

(3/66)

independent item, named DIFFERENCE. This item is to contain a
sign and five digits, stored in "packed decimal" (internal
decimal) form.

Note: The picture character S, which you will use to indicate
that this item contains an operational sign, must be written as
the left-most character of the picture -- even though the sign
wtll actually be stored in the right-most byte of the item in
gtorage.

77 'DiFFERENCE, |PiIcT|URE s9(5]),
' ICOMPIUTAT|I ONA|L-3.

Points to check: (1) The picture could also have been written
599999; however, the abbreviated form -- with a number enclosed
in parentheses -- is generally used whenever a picture character
18 to be repeated more than four times in succession. (2) The
usage word, COMPUTATIONAL-3, is mandatory in this case, to
indicate that the data is packed-decimal. (3) You might also have
used the words USAGE IS before COMPUTATIONAL-3.

COBOL students often wonder whether to include or omit optional
words in an entry -- for instance, the words USAGE IS in the entry
you just wrote. The best rule is to include these words when they
help the reader to understand an entry; otherwise, to omit them.

Congider the USAGE clause. If the reader doesn't know what
COMPUTATIONAL-3 meang, he will not know what USAGE IS
COMPUTATIONAL-3 means either. And, if he does know the meaning
of COMPUTATIONAL-3, the words USAGE IS are unnecessary. Here
the optional words don't clarify the meaning, so they might as
well be omitted.

Take another case: the 'greater than" relation test, in which it
i8 permigsible to use just the word GREATER, in place of IS
GREATER THAN. But the procedural statement IF BALANCE IS GREATER
THAN MINIMUM-LEVEL... i8 easier to read and understand than its
abbreviated equivalent, IF BALANCE GREATER MINIMUM-LEVEL ...

Here the optional words ought to be included.

47




System/360 COBOL Writing Programs in COBOL

125

126

(3/66)

For most items, you will not be concerned about initial values.
For example, when you describe the items that make up an input
record, you simply want to reserve an area in storage to receive
the record; specific values are going to be put into those items
when the data file 18 read.

In some instances, though, you may want to specify the initial
value of an item. For this, of course, you would use the VALUE
clause in the item description. One such instance is when you
want to set up a constant; another is when it is important for a
work area to have a certain value at the outset of program
execution.

Keep this faet in mind: Unless you specify a value, there is
no way of knowing what the initial contents of an item will be.
Storage is not cleared before your object program is loaded, so
you must not assume that items contain blanks or zeros at the
start of a run.

On your program sheet, write the entry to define a constant whose
value is 500. This number is to be stored in binary form, and
named LIMIT.

Note: Binary data ig always signed, so don't forget the S in
the picture.

77 jimir,’ PliGTURE s[999,| VAL|UE sloo, | |
| lcomPluratlionar. [ | BEERE

A non-numeric literal is used in the VALUE clause for alphabetic
and alphanumeric items. Aeccordingly, you will want to enter a
non-numeric literal in the next practice item.

Write the item description entry for an alphabetic constant which
is to serve as the title of a report. The contents of the item
are to be DEPRECIATION SCHEDULE and the item is to be named TITLE.

77 TITLE, PIGCTURE Aj(21)], | BARRR
1 vALUE 'DIEPRE|CIAT/ION |SCHEDULE['.

The usage of alphabetic data must be display (BCD), so the USAGE
elause may be omitted, as shown. It would also have been correct
to write DISPLAY or USAGE IS DISPLAY in the entry.

48




p

System/360 COBOL Writing Programs in COBOL

127 ]

(9/66)

Independent items, by definition, cannot be subdivided, nor can
they be combined into groups. If items are to be combined or
subdivided, they must be described as records.

The main reason for combining items into records is to make it
possible to refer to a group of items by one name, and therefore,
to process the entire group at one time. To illustrate, suppose
that we had defined three independent items, as follows:

77  DEPARTMENT, |PICTlUuRE |J999.] | | | |

77__EMPL|OYEE|-NUMBER,| PlIGITURE| 9(6| . !
77 SHIF[T, PlicTURE 9. L

Now, if the data in these three items were to be moved to some
other location, say to an output record, three MOVE statements
would have to be used. By combining the three items into a
record, as shown below, we could move the data in the complete
group item with just one MOVE statement.

CAT|IONI. R
|ICT|URE| |999.] ' |
ER,| PIC|ITURE| 9(6]).
E '

I H

A

01 EMPLIOYEE- 1 DENTIF[I
02 | [DEPARTMEINT, |P
02  [EMPL|oYEE[-NUMB
o2 IsHIF[T, PlICTUR

On your program sheet, write the entries that describe a record
named ADDRESS, composed of STREET (20 alphanumeric characters),
CITY (20 alphabetic characters ), STATE (5 alphabetic characters),
and ZIP-CODE (5 digits stored in external decimal --- BCD =---
form, with no sign).

o000
lo1  ADDRIES'S.] | | T |
o2 |sTRE[ET, |PilcTuRE [x(20h. | B
o2 ey, pilcTurlel A2oh ] 1] |
_ o2 | |STATIE, PlIGTURE Al(5).[
| o2 ! [zZir-copEl, PIlcTURE 9(|5).

Points to check: (1) ADDRESS must have level number 01,

(2) ADDRESS must not have a picture, since it i8 a group item.
All of the other items must have pictures. (3) Do you have a
period at the end of every entry?

49




System/360 COBOL Writing Programs in COBOL

(3/6¢6)

Combining two or more items to form a record does not affect your
ability to process each of the items separately; it simply adds
the capability of processing the whole group as a combined item.

Also, by combining items, you can sometimes take advantage of the
fact that the usage of a group item applies to all items in the
group. For example, if the usage of a group item is specified as
being COMPUTATIONAL, then every elementary item in that group is
taken to be binary -- and there is no need to repeat the usage
word. Apply this labor-saving fact to the following problem.

Write the entries needed to define a record named TOTALS, made up
of MINOR-TOTAL (5 digits), MAJOR-TOTAL (7-digits), and FINAL-TOTAL
(9 digits). Each elementary item is in packed decimal form, and
contains a sign.

01 _itotalls, |compluTaTlional -3,
o2 MINOR-TOTAL,| PIGITURE| s9(|5).
__lo2 MAJOR-TOTAL,| PIcTURE| s9(7).
o2 FINAL-TO[TAL,| PICITURE| s9¢(|9).

The idea was to write COMPUTATIONAL-3 in the description of the
group item only; however, you might have writtem COMPUTATIONAL-3
for each elementary item in the group, in which case you could
have omitted it at the 01 level.

Let's suppose that the record description you just wrote appears
in the Working-Storage section, and you want to specify an initial
value of zero for each of the three totals. Is the following an
acceptable way of setting the initial values? If not, why not?

O1i%h©TMLSQECOMPUWATIONAL—S, VAL|UE ZERO.f§
02  MINOR-TOTAL,| PICTURE| so(5). | | |
o2 | MaJoR-TOTAL | PioTURE] so(|rh. | | |

o2 [FliNAlL-TolTaL,]| PiiclTurRE] soideh’. | T ] T

No, because a VALUE clause is permitted for elementary items only.
In this case, a VALUE clause would have to be written in the
description of each level-02 item.

50




System/360 COBOL Writing Programs in COBOL

EEl] Records in the Working-Storage section are always group items,

131

(3/66)

but records in the File section can be elementary items. This
means that it is possible for a record description in the File
section to consist of only a level-01l entry; in that case, the
level-01 entry would contain a level number, a name, and

a VALUE clause

{a PICTURE clause
no descriptive clauses}

a PICTURE clause (Every elementary item description must contain
a PICTURE clause.)

Perhaps you will not have many opportunities to define a record
as an elementary item -- but you should be aware that it can be
done, in the File section. (The general practice, as you have
learned, is to define all of the items that make up a record.)
One fairly common situation in which you will probably want to
define a record as an elementary item is8 a job in whieh trans-
action records are processed against master records, and updated
master records are written out; the items that make up the output
master record are the same as those that make up the input master
record.

In this situation, an input master file must be described,
followed by the input master record description, in which the
complete record structure would be shown. An output master file
mugt also be described, followed by the output master record
description -- but no purpose would be served by duplicating the
deseriptions of the items that constitute a record; so the record
will be described as an elementary item whose size i8 equal to
the total length of the input record.

Items would then be processed -- updated -- in the input area;
and the completely updated record moved to the output area by a
procedural statement such as MOVE MASTER-RECORD OF INPUT-FILE TO
MASTER-RECORD OF OUTPUT-FILE.

Write the record description for the output MASTER~RECORD in the
situation discussed above. The total length of the record is
250 alphanumeric characters.

01 _MASTIER-RIECOR|D, PlICTURE x|[(250)). | '

—

51




System/360 COBOL Writing Programs in COBOL

The final Data division entry format is the "condition name"

(3/66)

entry. Thig entry closely resembles an item description entry,
but instead of describing an item, its function is to assign a
name to a particular value of an item. You can think of this
entry as being a supplement to an item desceription entry; the
item desceription entry says, in effect, "An item exists, and
these are its size, usage, and other characteristics'; the
condition name entry supplements this information by saying,
"Here 18 one specific value that might be found in the item, and
a name by which we ean refer to the condition that exists when
the item contains that value”.

Reading assignment: CONDITION-NAME

A condition name is useful only if you know which item it is
associated with. If you saw the following series of entries in a
program, you would know that MALFUNCTION is a condition name that
is associated with [SERVICE-HISTORY] [MACHINE-NUMBER]
[TYPE-OF~CALL] [PREVENTIVE-MAINTENANCE] [DOWN-TIME].

1 3
1 i

01! | 'seRv|icE-[HISTlORY.] | |
| lo2 | MAGHINE-|NUMBIER, |PIGT|URE [9(8)
| lo2 [TYPEl-OF-|cALL|, PICTURIE 9.] = | |

i | |88 |PREVIENTIIVE-MA INT[ENAN|CE, |[VALUE 7.
" maLFluncT|ion,] vaLlug 4l. | L

]
e
o2 | |plownNl-TiME, PlicTulRE 9lo9vsl.

o000
TYPE-OF-CALL

Condition name entries are required to follow the elementary item
with which they are assoctiated. In this example, two condition
names are associated with TYPE-OF-CALL.

Again referring to the example in the previous frame, we would
say that PREVENTIVE-MAINTENANCE is the name of the condition that

will exist during the execution of the program, whenever the
value of is .

TYPE-OF-CALL; 7

52




System/360 COBOL Writing Programs in COBOL

135

(3/66)

Condition names are used in IF sentences, and if they are used
properly, they make the sentences a lot more meaningful to the
reader.

Having defined a condition name as shown below, the programmer
can write a sentence such as: IF HIGHEST-PRIORITY, GO TO
FILL-ORDER-AT-ONCE. Without the condition name, the programmer
would have had to write: IF PRIORITY-CODE = 'G', GO TO
FILL-ORDER-AT-ONCE.

R o3 | [PRIORITY-cODE, PlicTUrRE X. |
! 88 | [HIGHEST-PRIORITYl, VALLUE |'6".

Condition names are defined in the division, and used in
the division.

Data; Procedure

As he writes the Data division, the programmer mugt try to
anticipate the need for condition names in the Procedure division.
As a general rule, condition name entriegs ghould be written for
any item that will assume a limited set of predictable values --
for instance, a record identification code.

Write the item description entry and condition name entries for
the following item: a level-02 item named MARITAL-STATUS
containing a single digit stored in BCD form (usage is DISPLAY) ;
if the digit is 0, it signifies that the person is SINGLE;

1l signifies MARRIED; 2 means DIVORCED; and 3 means WIDOWED.

t 000
02 | MaRITAL-]sTAT|US!,! [PlilcTluRE [o.) (| |
K g8l | [siNGlLE, IVaLule o.f | [ | |
RRER g8 | IMARR[IED,| VALUE [1]. u
aEN 88l | [DIVOIRGED|, VALUE |2, L |
BEE g8 | wipowep, vaALug 3]. || %

Points to check: (1) Make sure that you have five separate
entries, each terminated by a period. (2) Every condition name
entry must begin with level number 88. (3) You could have used
the figurative constant ZERO in place of the literal 0.

53




System/360 COBOL Writing Programs in COBOL

(3/66)

This lesson has given you some practice in writing entries for
individual items and small groups of items. To conclude the
legsson, take a new program sheet and write the complete record
desceription for the record diagrammed below.

All items in the SALESMAN group are in BCD (DISPLAY) mode; all
other items are packed decimal (COMPUTATIONAL-3). Actual values
are shown for REGION and INDUSTRY ~- write condition name entries
for these values; maximum values are shown for the remaining
items. Note that the dollar values are not actually punctuated
with symbols; for these items, the values let you know where the
assumed decimal points are located. All packed decimal items
have operational signs.

SALES-RECORD SALESMAN REGION

A=EASTERN
B=CENTRAL
C=WESTERN

OFFICE-NUMBER
999

BADGE -NUMBER
9999

INDUSTRY
20=PETROLEUM
21= METALS
26=CHEMICALS
32=UTILITIES

YEAR-TO-DATE QUOTA |
$99,999.99

SALES
$ 99,999.99

COMMISSION
$9,099.99

CURRENT-MONTH QUOTA
$9,999.99

SALES
$9,999.99

COMMISSION
$999.99

The correct solution for this frame is printed on the next page.

54




System/360 COBOL Writing Programs in COBOL

(3/66)

' _

lo1  isALEls-RE|lcoRD]. ' | '
02 |sALE|SMANl. | |
'+ o3 "IREGIoON, [PICT|URE |A.
e " |ss |EASTIERN,| VALlUE '|a‘.
L _|s8 |CENT|RAL,| VAL|UE '|B'.
B |88 |WEST|ERN,| VALJUE '[c'.
1 lo3  |oFFIlcE-NUMBER, P|IGCTURE 9|99.
| |03 | |BADGE-NUMBER|, P1|CTUR[E 9999.
't lo3  |iINDU[STRY|, PI|CTUR[E 99|, B
4 | |s8 |PETRlOLEUM, V|ALUE| 20.
4 | |8 IMETALS, |vALUE 21]|. L
i |88  |cHEMICAL|S, V|ALUE| 26.] |
T |s8 uTiL[iTIE[s, V|ALUE| 32.] |
102 |YEAR-TO-|DATE|, COMPUT|ATIONAL-3,
1 | Jo3 |euvoT|a, PlicTURE s|9(5)|v99.
1 o3 [|sALE|s, P|ICTURE S|9(5)|V99. |
1 ' 1lo3 ' |comMissilon, |PICTURE |s999ovesl.
‘02 | |CURRENT—MONT/H, GlOMPU|TATI[ONALI-3. s
! o3 IcTURE s|ogoolvee.] |
! 03 |GTURE s|lo9oolves.l | '
N 03 ON, |PICTIURE |s999lves.|

Points to check: (1) DISPLAY usage could have been specified for
the SALESMAN group; however, DISPLAY is assumed when no usage is
specified. (2) The picture of REGION can be either A or X.

(3) The literals in the condition name entries for REGION must be
non-numeric -- enclosed in quotation marks. (4) If you did not
write COMPUTATIONAL-3 at the 02 level for YEAR-TO-DATE and
CURRENT-MONTH, it would have been necessary to write
COMPUTATIONAL-3 for every 03 item in those groups; note that it
18 not sufficient to write COMPUTATIONAL-3 for YEAR-TO-DATE only,
since that applies only to the items in that group -- 8o
COMPUTATIONAL-3 must be written for CURRENT-MONTH also. (5) Did
you remember to use the picture character V to show the location
of assumed decimal points? (6) Because QUOTA, SALES, and
COMMISSION are duplicated names, they will have to be qualified
when they are used in the Procedure division; for instance,

SALES IN YEAR-TO-DATE and SALES IN CURRENT-MONTH.

55







System/360 COBOL Writing Programs in COBOL

(3/66)

LESSON 5

The Procedure division is the most loosely structured of the four
divisiong. The division header is the only fixed entry that you
are required to use in every program -- and from that point on,
you're on your own to construct whatever paragraphs you need and
to arrange them in any sequence that does the job.

We will begin this lesson with a quiek look at the overall format
of the division.

Reading assignment: PROCEDURE DIVISION

The Procedure division is required to contain at least

one paragraph
two paragraphs { °

one paragraph
The names of paragraphs (procedure names) are

reserved words
programmer-supplied names

(XX )
programmer-supplied names
Suppose that we have a very simple program that contains only one

paragraph in the Procedure division. Must that paragraph have a
name?

Yes

57




System/360 COBOL Writing Programs in COBOL

How many sentences must each paragraph contain?

One or more

IIEI What is the difference between a sentence and a statement?

A sentence is an entry; therefore, it must be terminated by a
period. A statement specifies an action to be taken, and is found
within a sentence. Each sentence contains at least one statement,
but it may contain more than one.

In the sample paragraph below, pick out the sentences and the
statements.

INITiIlAL I|ZE . AR
MOVE| SPA|ICES |TO ClONTR|OL—AJREA,
'MOVE| zERl0oS Tlo cONTROL-TO[TAL.
IACGEPT P|AGE-|NUMB|ER,, | |
'MOVE| PAGIE-NUMBER| TO [NUMBJER (|N HEJADING-1..

00
statements sentences

MOVE SPACE TO CONTROL-AREA, |
MOVE ZEROS TO CONTROL-TOTAL.|
- ~ACCEPT PAGE-NUMBER,

MOVE PAGE NUMBER TO NUMBER IN HEADING-1.

In most cases, it does not matter how many statements are written
in a sentence. All four of the statements above might have been
combined into one sentence, since that would have satisfied the
requirement for at least one sentence per paragraph. (Another
way of stating this rule is that every paragraph must end in a
period.) On the other hand, the statements might have been
written as four separate sentences -- a method preferred by many

programmers because it simplifies the insertion and deletion of
statements.

(3/66) 58




System/360 COBOL Writing Programs in COBOL

(3/66)

Each type of statement has a specific format. The remaining

pages of the reference handbook give the formats of the most
commonly used statements. In this lesson, and in the lessons that
follow, you will study all of the formats given in the reference
handbook.

In the handbook, the various verbs are arranged in alphabetical
order. Some verbs have more than one format, and are presented
on more than one page; for instance, ADD (1) and ADD (2). The
reading assignment will specify exactly which format you are to
study.

You will not study the statements in alphabetical order. Instead,
as you work on a programming problem, you will be assigned to
study only the statements that apply to the problem. And your
work will involve all four divisions, rather than just the
Procedure division -- so that you will get a good idea of the
relationship of procedural statements to the descriptions of

data items and files, assignments of input~output devices, and

8o on.

None of the procedural words should come as surprises. You were
introduced to them all in the previous course. But don't make
the mistake of thinking that this time you must memorize all of
the details about each entry -- just try to piek up only as much
information as you need to write the required entries for the
problem that you are working on.

The amount of practice that you will get with each verb will be
quite limited. There are literally hundreds of ways in which
most statements can be used; if we explored every one of them,
this course would never end! So, you will get practice in using
the statements in one or two typical ways, in simple problems.

Let's start with a really simple problem, involving three state-
ments. This problem doesn't represent a practical computer
application; on the contrary, it is just about the simplest
procedure imaginable.

The problem is to print the data punched in a single card. The
steps in the procedure are (1) to obtain the data from an input
device, (2) to transfer the data to an output device, and (3) to
stop the run. Because only one card is involved, we will treat
it as low-volume input, not ae an input file; likewise, only one
line 18 to be printed, so we will treat it as low-volume output,
rather than as an output file. The input-output verbs we will
use, therefore, are ACCEPT and DISPLAY, rather than READ and
WRITE.

59




System/360 COBOL Writing Programs in COBOL

ACCEPT and DISPLAY -- and STOP, also -- have more than one format.

You are to read about only the first format of each of these verbs
at this time.

Reading assignment: ACCEPT (1)
DISPLAY (1)
STOP (1)

EEE] An ACCEPT statement obtains up to 80 characters of data, and
moves them into a working-storage area. Suppose that, for our
problem, an 80-character item named CARD-DATA has already been
defined. Which of the entries below is the correct way to get
the data from our card into CARD-DATA?

ACCEPT DlaTA,| MOVIE INTO clarD-joaTal. [

'AGGEIPIT'; [MOVE] To [cARD|-DAT[A.

_AGGEIPT _cl[ARD-|DATA|.

ACCEPT CARD-DATA.

X} Now that we have the card's data in working storage, we want to
DISPLAY the data. 1In order to display the data,

we need only to write DISPLAY CARD-DATA

we must first move it from CARD-DATA to an output area
{we need to convert the data to DISPLAY usage }

we need only to write DISPLAY CARD-DATA

I our last step is to terminate the execution of the program. The

statement that we must write to accomplish this is .
(XX}
STOP RUN
(3/6¢6) 60

D



h' 151

152

(3/66)

System/360 COBOL Writing Programs in COBOL

Let's now write the complete COBOL program -- not just the
Procedure division -- for this problem. This will give you an
opportunity to tie together information that you studied in

previous lessons. Feel free to refer to any part of the reference
handbook.

Take a new program sheet, and write the Identification division.
Make only the required entries for the division. The name of our
program is ONECARD.

IDENTIFtcATIfoNn pliviisfion. ] T T [~ 7 "J7 |
PROGRAM-[ID. | —_— -
___'ONE|CARD|'l. ?

Next, the Environment division. In this division, the Configu-
ration section is always required, while the Input-Output section
is optional.

For our problem, the Input-Output Section {must be ingluded}
because . must be omitted

ooe
must be omitted, because there are no input or output files
Write the Environment division of our program. Enter just

IBM-360 in the Source-Computer and Object-Computer paragraphs,
omitting the model numbers.

000
ENV IIRONMENT [Divilsion. | RERRNEE
CONF,I GURAT IOIN SE|CTION. | B
SOURCE-ClOMPUITER.| | | |
l1BM-|3/6/0]. L |
losuElcT—CcloMPU[TER.
1IBM—|3l60l.f | | |
61




System/360 COBOL Writing Programs in COBOL

In the Data division, we must define the item we called CARD-DATA.
To do this, we need [a File section] [a Working-Storage section].

000
ONLY a Working-Storage section
We must omit the File section because we have no input or output

files.

We must describe CARD-DATA as an 80-character {inggsgndent item}_
e

(XX
independent item

Items in working storage are defined as records only if they are
subdivided into smaller items.

Write the Data division of the program. CARD-DATA is to
accommodate 80 alphanumeric characters.

DATAI DIVIISION. | |
WORKpNG-STORAGEﬁSECTnoN; REREE
77 (CARD|-DAT|A, P[ICTURE X[(80)|.

(3/66) 62




System/360 COBOL Writing Programs in COBOL

FYM Finally, write the Procedure division. To refresh your memory,
. here is a procedure flowchart for our little program.

ACCEPT

‘ STOP RUN ’

(X X J
[pRiolcEDURIE] [Dl1|v]1iS(1]OIN[.| HEEEREER BN
|PROCIE'SS-DATA. | | | ANRENERERERINED
'AcicEIPIT (clARD—{DATAl. i 1
| D 1SPLIAY| [CARD|-DATIA . | |
F’ [ isTioP| IRIUN. ! | ;
Did you remember that a paragraph name is required? If you

forgot, correct your work. The name does not have to be PROCESS-
DATA, of course. .

(3/66) 63




System/360 COBOL Writing Programs in COBOL

B} our second problem is a slight modification of the first one.

(3/66)

Instead of merely printing out the data in a card, in this problem
we will insert spaces between the fields on the output line.
Let's suppose that the card looks like this:

TION

(' . VEHICLE L?ENSE EXPIRA" \
IDENTIFICATION | NUMBER | DATE

00000000
123456738
(R RRRRR

10 11 12 13 14 15416 17 18 18 20 21 22 23424 25 26 27 28 2980 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 63 69 70 71 72 73 74 75 76 77 78 79 80

]
9
IRRRT RE! RRRRE Rl Bl ARIIRR R R R R R R R R R R R R R R R R R R R R R AR ERR R AR R

!ﬂﬂ0DEE00000Uﬂlﬂ00U0000000U0ﬂ0000000000D000ﬂﬂ00000000000000000000000000
2222220222222 2122022222(222222|1222222222222222222222222222222222222222222222222222
§33333333333333(13333333(3300333(333333333333333333333333333333333333333333333333333
GA4444 4444444441444 44844)844 4440 8444484484484 4444048484480424444444444404444444444414
55555555555 555/55555555/555555/555555555555555555555555555555555555555555555555555
66666666666666{6666666{66666|666666666666666666666666566G66666666666666666666666
IR 1711111111 QT TN 1111111717711717771711177177117777171717111171711117171111171

888[J688883808888/88888888/888688/8888088088553838883588888888588888888888888888888888838

011213 16 20 21 222374 25 26 27 78 79130 31 3? 33 34 35 36 37 38 39 4N 47 42 47 44 45 46 47 4849 50 51 52 53 54 5 56 57 58 59 # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 18 80

9999!999999999!9!9 999 99939959999999999999999999999999999999999999999999599999?4]
2345678291 "1 Twe

Our first program would have printed a solid line of characters:
37A8942G006512919BR6379013167
Thigs time we will leave five spaces between fields:

3748942G00665129 19BR6379 013167

The logic of this job is significantly different from the logic
of the first job. Before, a single area in working storage
served for both input and output. Now, we wtill set up two areas,
and move the data items from one area to the other.

input area VEHICLE LICENSE |EXPIRATION

L
R

output area SPACES SPACES

Before, we treated the data as a single (independent) item. Now,
we will treat it as a record, subdivided into three smaller items.

64




i’ 160

(3/66)

System/360 COBOL Writing Programs in COBOL

The Identification and Environment divisions that you wrote for
the first problem are suitable for the second problem, but we
will need different Data and Procedure divisions. We will define
our data items first.

On a fresh program sheet, write the division and section headers
for the Data division. (As before, we will use only the
Working-Storage section.) Then, write the record description for
the input record. Name the record CARD-DATA. Look back at the
preceding frames to see the card format.

Note that we will define only the first 29 positions of the card,
and ignore the blank positions (30-80). We are able to do this
because the ACCEPT statement lets us obtain only as many
characters as we want, beginning with position 1 (up to a maximum
of 80 characters).

o000
DIATA} ID/1V]1[silON . HERE TTT I
WORK!INlc—sITIORIAGE [SECT/ION.
01! | lclarblHolamlal. ([T T BB T
o2 | (EeHlcLE | PliciTurel xd1lsy. | !
o2 | ILlilcENSE,] IPliclTurE] (8. || ]
oi2l | ElxiPlilrRaT!oN .| [PlilcTlure ol¢eny]. (1] [ T] 1]

Next, write the record description of the output record. Name
the record OUTPUT-LINE. Name the three items that will receive
data AREAl, AREA2, and AREA3. Be sure to define filler areas
between the data areas, and to assign initial values to the
filler (each filler area is to contain 5 spaces).

000
01, OUTPUT -L{INE. ! | 11T T
1 lo2 | [aRrEAN, PlilcTuRE X[([1)5h]. EIEEEEE
L oe[ [ FhieRr!,! [PiiciTluRE! IXI(sh], | VAlLUE [sPAGES!.
1| joi2l | [AREA2,! PliicTIURRE x[(i8)!. | BERE
o2 | Filler, lPilcTURE |X (5], VALUE |SPIAGE'S..
02 | [AREA|3,! IPl[IICTUIRE 9{(6) . z




System/360 COBOL Writing Programs in COBOL

X} The logic of our procedure will be to accept the input record,
then to move data from the input record to the output record,
then to display the output record, and finally to stop the run.
Which one of the ACCEPT statements below will properly handle the
first step of the procedure?

[ [ |1 lclcelrlT] IclaiRipl-folalial. [ [ TTTTTT [T JP 0] [T]

'WolckelriT! VIEH! 1 CILE! .| ILl1icEINSE .| EXPliRIAT]IION.

‘AlclcElplT! Ic
! Elxleli[rlaT!1

x
2

>
]
o
|
=)
>
-
>
<
m
I
I (<)
=
m
C
(2
m
F4
)
m

(@)
Z

ACCEPT CARD-DATA.

Only one data name can be written in an ACCEPT statement, so it
mugt be the name of the record as a whole.

Which DISPLAY statement is the correct one for our problem?

:DISP]LAY AREA[|1,| AREAZ2],i ARIEA3.

bISHL EA1, FILQER, AIREAZ2|, F!ILILER

! AR

>
<
>
)

m
>
)

0 1islplLlaly! loluTlelulT-IL]iINEL.

DISPLAY OUTPUT-LINE.

This statement will cause the entire output record to be displayed,
tneluding the spaces between data characters. The first choice,
above, is a legitimate DISPLAY statement -- but it would cause

the three data items to be displayed with no spaces between them;
thereby undoing our careful insertion of filler items into the
record. The second DISPLAY statement is illegal, because the

word FILLER cannot be used in procedural statements.

(3/66) 66




System/360 COBOL Writing Programs in COBOL

(3/66)

The ACCEPT and DISPLAY statements are just as simple for this
problem as they were for the first problem. Before we display
the output line, though, we will have to move the input data to
the output area.

Reading assignment: MOVE

Which sentence is correct for our problem?

_ move| VEHIcLE| To [AREAN][; HERR HIEN
| MoVEE| IL[IICENSE| TO |AREA|2; i B
[ MoVl EXPliRAT|IION |TiOl AREAI3[, ||| |

|

| molve] clarRlb-palTAl Tlol IaREA1.] ARE[A2, |AREA[3.

[ [T movE] cARD-DA[TA ol oultPut—LiNE. [ 17 ]

MOVE VEHICLE TO AREAl;
MOVE LICENSE TO AREA2;
MOVE EXPIRATION TO AREA3,

The second sentence i8 incorrect for a couple of reasons. For
one, it tries to move data from a group item (CARD-DATA) to an
elementary numeric item (AREA3), which is a violation of the
rules; i1f you tried to do this in a program, the compiler would
detect your error and issue a diagnostic message informing you of
your goof. But suppose that the picture of AREA3 had been X(6)
instead of 9(6); now the MOVE statement would be legal, but it
would not give the desired result. It would cause the same data
to be moved to each of the receiving items, as diagrammed here:

)

3748942G0065129 | | 3748942¢| | 374894 |

3748942G006512919BR6379013167

The third sentence specifies a group item as the receiving item,
which is permigsible, but which causes the boundaries of
elementary items within the group to be ignored. The result
would be:

3748942G0066129BR6379013167 ]

67




System/360 COBOL Writing Programs in COBOL

I:EI It is often very desirable to write comments within a program to

(3/66)

explain what the program is supposed to do. You have seen that a
Remarks paragraph may be included in the Identification division,
allowing you to explain the purpose of the program. No remarks
are permitted in the Environment and Data division. In the

Procedure division, you may make any number of NOTE entries, to

explain the processing that is being done.

Reading assignment: NOTE (1)
NOTE (2)

Using the same program sheet on which you
wrote the Data division, now write the
complete Procedure division for the second
problem. Begin the division with a NOTE
paragraph that briefly explains the

procedure. Then write the procedural e
statements that correspond to the flow- INPUT ITEMS
chart at the right. AREA

DISPLAY
OUTPUT-
LINE

( STOP RUN )

000

PROGEDURIE] Dhlvilsifon. | T [ TTTT T |
ExpPLANATONL] T TTT T T T[T T

| NoTEe| {TiH[i[s. PRlocED|URE |READ|S ‘oNE| 'cAlRD!,

| | MovEls| ITHE' calrD blaTA [Tlol la[N| loulTlPulT| [AIRE[A,
| iPRINTS Al siNGLE [LtNE[, AN|D| 'sT/OP'S.
STARIT. || HENR BEER | RARN
| accelPlT _claro-paTAll | | | HEN |
| wmove| VEH[1cLE| [To |arEAl. ]! 1]
___ MoVE[ LlicENSE| To |aAREA[2. il

MovE| [EXP[I RAT]I ON [T0l AlREA3[. RINER

| ililslLialy! [ouTPluT-L|INE. | |

L srolp| [RIuN: T 17T ? H1NEE

68




wd

System/360 COBOL Writing Programs in COBOL

(9/66)

The third problem of this lesson ecalls for you to write a short
program on your own. The problem involves accepting, moving, and
displaying a few characters of data. This time, though, the input
will come from the console keyboard, rather than from a card; and
the output is to be punched into a card, rather than printed.
Before you start on the problem, study the slightly different
formats of ACCEPT and DISPLAY which you will uge in your program.

Reading assignment: ACCEPT (2)
DISPLAY (3)

Here is the problem: A console operator will type 15 characters,
which may be both letters and digits, on the console keyboard.
The first 10 of those characters are to be punched into columns
25-34 of a card; the remaining 5 characters are to be punched
into columns 1-5 of the same card. Only one card is to be
punched; then the run is to be stopped.

Write the Data and Procedure divisions for this problem.

(The Identification and Environment divisions required for this
problem are the same as those you wrote for the first problem.)
Invent your own names for data items and procedures.

[ X X )
RATA: pl1vli]s!ilofn]. ¥
WoRIKi I INiG-|s|TIOR|AGE! |SIElCIT|1ONI.
loi1! | NinPlulri-blalTiAa .
o2l | [Flilelo-1!,] PliiciTiulRE] X!(1]o]
o2l | [FlilELip—l2l,| PliiclTurRE|l x/(5])..
lol1] | louiTlPlulTi-DlATAl.
‘o2 | IFlileLloi-lal,] PlilclTiuRE] X (I5])!.
o2l | [FliiLieR!,| P ilcTluREl [X[(1l9l) !, VlaLUE| siPlalclE's
ool | [FlielLipl-B!,] Plilc|TiuRiEl IxI(l1]o)!. I
]
1
|PIRIOICIEDIURIE| ID{1]V!1iS|I|OINI.
_bgeuw.
lciclelpiT] 1|nPluiTl-IDlaT|Al iFIRIoM [cloNSlolLE!.
MoVEE| IFl1ElLiD-l1] [Tlol IFl1lElLip-BI.
MolViE| |FliE[LiD—2| To| |FlIlEIL|DI-lAl. |
D 1islPlLialy] |olulTiPluTi-IDlalTiAl JulPloiN| Islyis|PlunclH
| isiTiolp| [RIUIN]. ?
69




System/360 COBOL Writing Programs in COBOL

171

(3/66)

LESSON 6

Most computer problems involve more operations than the problems
you worked in Lesson §. To begin with, most problems involve
iteration or "looping"” -- in which a series of steps is executed
over and over until the result is obtained or until the end of a
file is reached. Logical decisions must be made to determine
when to exit from the loop. Also, most problems involve at least
a small amount of arithmetic.

In this lesson, you will study the arithmetic verbs, as well as
s8equence control words - IF, GO TO, and PERFORM. As in the last
lesson, you will read about these statements when they are needed
for a problem. Needless to say, you may also be called upon to
write statements whieh you studied in the last lesson.

Throughout this lesson, we will program just one problem, although
we will twist it around a bit and add things to it as we go along.
Here i8 the basic problem: Given two numbers, the first smaller
than the second, we want to get the sum of all the whole numbers
between the first number and the second number, inclusive.

For example, if the numbers are 45 and 52, we want to know what

45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 equals. To make the problem
as straightforward as possible, we will say that both numbers

must be unsigned (therefore regarded as positive). The numbers

are to be entered by way of the console, and the sum is to be
typed out on the console printer.

Let's develop a possible solution for this problem. We will get
the two numbers into storage by using an ACCEPT FROM CONSOLE
gstatement. Now we have to develop the sum. We can do that by
defining a work area with an initial value of zero, and adding
the smaller number into the area; after that, we ecan repeatedly
increase the smaller number by 1, and repeatedly add it to the
total, until the smaller number is equal to the larger number.
At this point, we have the sum we wanted; we can display it upon
the console, and stop the run.

71




System/360 COBOL Writing Programs in COBOL

This flowchart will help you to visualize the procedure.

ACCEPT
NUMBERS

FROM
CONSOLE

[EE— .

ADD
SMALLER
TO TOTAL

DISPL AY
TOTAL

UPON
CONSOLE

SMALLER =
LARGER
?

ADD 1 ( )
TO SMALLER STOP RUN

Of course, this 18 mot the only possible solution to this
problem, and a little later in this lesson, we will look at
another, gsomewhat different, solution. For the time being,
though, let's stick with this procedure, and write the COBOL
entries for it.

Before you proceed to the next frame, take a minute to satisfy
yourself that this procedure really will do the job. Take any
pair of numbers, the simpler the better, say 2 and 5; then go
through the procedure step by step, to see how the total of

2+ 3+ 4+ 5 is developed. Remember that the initial value of
the total is zero.

VLY Some new procedural words and formats are involved in this
problem.

Reading assignment: ADD (1)
IF (1)
IF (2)
TEST CONDITIONS
GO TO
DISPLAY (2)

(3/66) 72




b |

l (9/66)

System/360 COBOL ' Writing Programs in COBOL

As with our previous problems, the first step is to define the
data items in the Data division. On a program sheet, write the
necessary division and section headers, and then write the
descriptions of:

(1) the work area in which the sum will be developed,
named TOTAL, 8 digits in length; initial value is zero.

(2) the input record, named NUMBERS; subdivided into
SMALLER and LARGER, each 4 digits in length.

[pATAr Dliv[isliloN. | | EEREERERE
WORK}I NG—|STIORIAGE [SECT/ION|. 1

77 | TOTAL, Pl1cTURRE 9|(8),| VAL|UE z[ERO.] @

o1 INUMBIERIS!.| B AREERRENERERINRE
| lo2 | |SMAL|LER,| PICITURE| 999l9l. | [ ' '[]
| o2 | |LaRGER, |PicTlURE 999e].! ] ] 1]

Next, begin the Procedure division. Write the division header.
Name the first paragraph OBTAIN-DATA, and in it write the entry
required to accept the input numbers from the console.

The console operator will have been instructed to type two four-
digit numbers, with no spaces, and with the smaller number first.
So, if the input values are 45 and 52, the operator will type
00450052.

L X N ]
PROCIEDURIE| D/I[V IS 1|ON.| B |
oBTA}IN-DATAL| [ | ']
| || IAGIGE[PIT| NuMBEIR'S F[ROM |clON'S|OLE].

73




System/360 COBOL Writing Programs in COBOL

VM At this point, we must start a new paragraph, because we want to
be able to branch to the following statement. (Refer to the
flowchart of the solution in an earlier frame.)

Name the new paragraph COMPUTE-SUM; then write the first entry of
the paragraph -- to add SMALLER to TOTAL.

compure—sum. 1 1 1 1 1 L L
DD |sMALLLER [To TowaALl. | | ] 1]

V4l Now write the IF sentence to display the total and stop the run,
if SMALLER is equal to LARGER.

| F_SMALLIER I|s EQuAL [T0 L|ARGER, | = | '
i | IDISPLAY [TOTAlL UPION CIONSOLE, | | |
1 lsTtoPl RUNl. | | EERERRR NI NE

Finally, write the statements to add 1 to SMALLER, and to branch
back to the beginning of this paragraph. These will complete
the program.

__ADD |t To| SMAlLLER. |
160 Tlo comPuTlE-sum. [ |

(3/66) 74




System/360 COBOL Writing Programs in COBOL

IEXd since the format of IF sentences is fairly flexible, the decision
. in this procedure might have been programmed in several different
ways. Consider the three ways written below. For each one, figure
out whether or not it would be correct for our problem.

It will probably help you to refer to the flowchart of the job
(in an earlier frame). If you are not certain how to go about
evaluating IF sentences, it might be helpful to re-read the
section on FLOW OF CONTROL in the reference handbook for the
previous course.

_5iF sMaLLlErR 1ls EquAL [To L|ARGER,
| IpisplLay |toTal. uplon clonsolLE,
\ lstoPlRuN; | [T T
_OTHERwWIiSE, | | | |
| _lapp |1 TOl SMALLER, | | |
1+ ldo 7o computle-sum. | | |
_ hF smaLLER 1|s' NolT EQuAL [To L|ARGER,
o ADD [t TO| SMALLERl, | | |
+  leo Tlo compuTle-sum; | | |
FI OTHERWISE, | ' T
1 plisPlLAY |[ToTAlL UPlON ClONSOlLE,
i | |stop| Runf. | | L
Ui siMaLiLER 1ls’ INOJT! EQuAL [T0 LJARGER,
BN ADD |1 Tol sMALLER, = | T
I lso Tlo compuTlE-SUM. | |
DisPlLaY [ToTaAlL uPlon clonsolte. | 1]
_isToOP| RUN|. EEEEEREEREREEERERD |

All three of these ways of using the IF statement would get our
job done correctly.

(3/66) 75




System/360 COBOL Writing Programs in COBOL

Bl our first solution to the "sum-of-all-integers-between-two-

(3/6¢)

numbers" problem is not exactly the most efficient way of going
cbout it. If the numbers happened to be 0000 and 9999, we would
add to the total 10,000 times, add 1 to the smaller number 9,999
times, and test whether the numbers were equal 10,000 times!

There is an easier way. If we knew (1) how many numbers are in
the series, and (2) the average value of the numbers; we could
simply multiply the number of numbers by the average, and that
would give us the total! For instance, suppose that the numbers
are 1 and 5; there are five numbers and their average value is 3.
Multiplying 5§ times 3 gives 15, which is equal to 1 + 2 + 3 + 4
+ 5.

This method works for whatever numbers happen to be the input.

If the input numbers are 45 and 52, we can find out the number

of numbers in the series by subtracting the smaller number from
the larger, and adding 1; 52 - 45 + 1 = 8, We can get the average
value by adding the two numbers and dividing their sum by 2;

(45 + 52) / 2 = 48,5, (Note that we have to allow for one

decimal place in the average, in the event that the sum of the

two numbers tg odd.) Now we can get the sum of all numbers in

the series; 8 x 48.5 = 388.

A little later in this lesson, you will be writing the COBOL
arithmetie statements to obtain the desired result by this method,
so take a moment to study the outline below. Make certain that
you understand what operations are to be performed, and what
intermediate results are to be obtained.

A, To calculate the number of numbers in the series --
1, Subtract the smaller number from the larger, to get
the difference;
2. Add 1 to the difference, to get the number of numbers.

B. To calculate the average value of the numbers in the series --
1. Add the smaller and the larger numbers, to get a
temporary sum;
2. Divide the temporary sum by 2, to get the average.

C. To calculate the total (the sum of all numbers between

two numbers) --
1. Multiply the number of numbers by the average.

This program {Will

will not} involve a "loop", as the previous program
did.

will not

76




System/360 COBOL Writing Programs in COBOL

\EK} The problem, as you can see, requires all four arithmetic
operations -- addition, subtraction, multiplication, and division.
Study the formats of the arithmetic verbs, and decide which
formats you would use for the steps of calculating the total.

Pay particular attention to the fact that there are two formats
for each verb; in each case, the second format containg the word
GIVING. Learn the difference between arithmetic statements with
and without the GIVING clause.

Reading assignment: ADD (2)
DIVIDE (1)
DIVIDE (2)
MULTIPLY (1)
MULTIPLY (2)
SUBTRACT (1)
SUBTRACT (2)

I} Now take a COBOL program sheet, and write the entries needed to
calculate the TOTAL by the method outlined in an earlier frame.
Assume that the input area is called NUMBERS, and contains
SMALLER and LARGER, each four digits long. The output item is
named TOTAL. These items are already defined.

Take it from this point. Supply the statements that would fit
between ACCEPT NUMBERS FROM CONSOLE and DISPLAY TOTAL UPON
CONSOLE in the program. Define whatever working storage items
you need to calculate intermediate results. One restraint:

write your calculations in such a way that the original values of
SMALLER and LARGER are not changed.

77 _DIFFERENCE, [PIcTlURE [9(4nf. | | '
77  INTE|GERS|, PIGFURE:S(S)f BB BREER
77 _|TEMP|-'SUM, PICTURE 9¢(5). | | |
77 | 'AVERJAGE,| P1clTURE| 9 (4])Vve.

| isupTlRACT| sMAlLLER| FROM LAIRGER|, GI|VING
v+ lphiFFlERENCE. | ] SEEREEEEEE
DD 1 To| DIFIFEREINGE,| 61V|ING [INTE[GERS|. |
___IADD [SMAL|LER,| LAR|GER,| GIV|ING [TEMP-SUM. '@
D IVI|DE 2| INT|O TEMP-SlUM, [6IVIING AVERAGE .
_MULTHPLY] (NTIEGER|S BY| AVEIRAGE|, GIVING
] A ! : N R . N DR R

Vol ol LT

(3/66) 77




System/360 COBOL Writing Programs in COBOL

(3/66)

The statements for calculating the total may have been written in
gseveral different ways. Even though your work is not exactly like
the answer printed in the preceding frame, the printed answer
should help you in checking your own work. Also, make certain
that you understand every entry in the printed answer.

Points to check in your work: (1) Are your data items large
enough? The item that will hold the number of numbers must be
five digits long to allow for the extreme case in which the
numbers are 0000 and 9999. The "temporary sum" item must also be
five digits, to hold the sum of a pair of numbers such as 5000
and 6000. The average must be able to contain five digits,
ineluding one decimal. The items could be larger than this, but
must not be smaller.

(2) It is permissible for itemg to do "double duty”. For instance,
the item nmamed INTEGERS in the printed answer could have been

used to hold both the difference between the input numbers, and
the total number of numbers. If it were used in that way, the
following procedural entries would be used:

SUBT|RACT| SMALLER| FROM LA|RGER|, | '
i leiviNe iNTEGERS.| | | 1 |
_ aDD 1 TO| INTIEGERIS.. REEREERERERER N

You might also have used AVERAGE for both the temporary sum and
the average value of the numbers, provided that its picture were
9(5)V9. These procedural entries could then be used:

DD [SMALILER,| LAR|GER,| G1V|ING |AVERAGE.| | |
__DiVvipE 2] INTIo AVIERAGE, 6[IVIN|G AVIERAGIE!.!

Statements like these are correct COBOL, but sometimes seem like
double-talk to a reader.

(3) Above all, make sure that you have adhered closely to the
formats given in the reference handbook. Beginners sometimes get
the mistaken impression that they can make up any formats they
please, just as long as they use reserved words, and come up with
incorrect statements like DIVIDE A BY B (should be DIVIDE B INTO
A), or MULTIPLY A TIMES B (should be MULTIPLY A BY B).

78




System/360 COBOL Writing Programs in COBOL

187

(3/66)

The little series of statements which you have written to
calculate the total can be thought of as a subroutine. I'll
grant you that the title "subroutine” is8 a bit pretentious in
thig instance -- but the idea that you could treat these state-
ments as a subroutine is an important one.

The itdea goes like this: A program can be thought of as a set of
subroutines. Each subroutine (some people prefer to say "program
module") is a series of statements that produce a certain result.
Once a subroutine has been written, it can be "plugged into"
other programs where the same result ig desired.

In COBOL, it is espectially easy to "plug in" subroutines. We use
the verb PERFORM.

Reading assignment: PERFORM (1)
PERFORM (2)

What must we do in order to use our total-calculation entries as
a subroutine? First, we must change our work from just "a series
of entries" into a "procedure". We do that simply by adding a
paragraph name at the start of our entries, like this:

ToTAl -calLcuLiaTioN. | HEEERERE |
___!sUBTIRAGT| SMA|LLER| FROM LA[RGER|, GI|VING
\  IpiFFErReNGE. | | ] ]
__pD 1 TO| DIF|IFEREINGE,| GIV|ING |INTE|GERS|.

L — app loses L ABC gl e J=cypl- "

[

Second, we must insert our procedure into a program -- and here
we have a choice of two ways. One way would simply be to copy
the procedure at the appropriate point or points in the program.
Another way is to add the procedure to the end of the progranm,
and PERFORM the procedure at the appropriate point or points.

What statement would you write in order to PERFORM this
procedure?

_WPERFJORM [TOTA|L-CA[LCULIATIO|N.

79




System/360 COBOL Writing Programs in COBOL

B} 4ithough you will find many uses for the basic arithmetic verbs

(3/66)

(ADD, SUBTRACT, MULTIPLY, and DIVIDE) you may prefer to use the
all-purpose arithmetic verb, COMPUTE, much of the time. Among
the advantages of using COMPUTE are that you can specify more
than one operation in a statement, and that you do not have to
define intermediate work areas.

Reading assignment: COMPUTE
ARITHMETIC EXPRESSIONS

Two COMPUTE statements can serve the same purpose as the five
arithmetic statements you wrote earlier. First, write the
COMPUTE statement to find the AVERAGE of the two input numbers,
SMALLER and LARGER. (Your earlier data descriptions of these
items are just as appropriate for COMPUTE as for the other
arithmetic verbs.)

1T icoMPUTE! [AVER|AGE! [=! [('siMALLIER + LARIGER)| 7/ 2|,

Points to check: (1) Parentheses are necessary to cause the
addition to be done before the division. If the parentheses were
omitted in the solution above, the result would be equal to the
SMALLER plus one-half of the LARGER. (2) Did you leave spaces
before and after the equal sign, the plus sign, and the divided-
by sign?

Next, write a statement that computes the TOTAL. This statement
should subtract the SMALLER from the LARGER, and add 1, to get
the number of numbers in the series, and then multiply that by
the AVERAGE.

IcompluTE [ToTal = [(LAR[GER [- s
t b aAMERAGE. |1

4+ 1)
EEEERE

As before, the parentheses are absolutely necegsary, in order to
control the order in which operations ocecur.

80




System/360 COBOL Writing Programs in COBOL

I:ﬂl From this small amount of practice with arithmetic statements,
you can see that they are not at all difficult. Instead of
spending more time with arithmetic, then, let's turn to some
other topics that are related to our problem.

Up to now, the input has consisted of just one pair of numbers.
Now, we want to process more than one pair of numbers. This is
simple enough - we will ACCEPT a pair of numbers from the
console, COMPUTE the total, DISPLAY the total upon the console,
and then GO TO the beginning of the procedure to accept another
pair of numbers.

Needless to say, we must provide a way of getting out of this
loop. To do this, we will tell the operator to type 99999999
when he ie finished, and in our procedure we will test to see if
the firet number, SMALLER, i8 equal o 9999; if it is, we will
stop the run. Our new procedure looks like thies:

ACCEPT
NUMBEMRS

FRO
CONSOLE

STOP RUN

NO

COMPUTE
TOTAL

DISPLAY
TOTAL

UPON
CONSOLE

k¥4 On a program sheet, write the statement to stop the run if
SMALLER equals 9999.

T T : T ] 1R R R

 F sMaLLER =] 999l9, sitop [RuUN.| | [l

(3/66) 8




System/360 COBOL Writing Programs in COBOL

(3/66)

Another way of accomplishing the same end is by using a condition
name. Suppose that the input area had been described in this
way:

01 INuMBERS.| | | il
Edzf SMAL|LER,| PIC|TURE| 9(4]).
188 |FINI|SHED|, VAILUE |9999|.
02  |LARGER, |PICTIURE [9(4)].

This gives us a name, FINISHED, for the condition that exists
when the value of SMALLER is 9999. On your program sheet, write
an entry, using this condition name, which will have the same
effect as the last previous entry you have written.

i |

HFE F[iNIIsHED [ 'sTolP RUN.

Here is another aspect of our problem: Our solution assumes that
the first number is the smaller one. If the operator were to
make the mistake of typing the larger number first, we would get
the wrong result. To keep this from happening, we should check
the input to make sure that SMALLER is really smaller than
LARGER.

If SMALLER is not smaller, then what? Well, one possibility is
to stop the execution of the program temporarily, and type a
message to the operator telling him what is wrong.

Reading assignment: STOP (2)

82




System/360 COBOL Writing Programs in COBOL

The check on the validity of the input, and a stop when the data
was not valid, could be worked into the program like this:

ACCEPT
NUMBERS

FROM
CONSOLE

STOP RUN

SMALLER
< Lﬁ?GER

STOP
INVALID DATA

COMPUTE
TOTAL

DISPLAY
TOTAL

UPON
CONSOLE

Write the entry that is represented by the blocks circled in the
flowchart. The message we want to display before halting the

program is:
TYPE SMALLER NUMBER FIRST
The flowchart indicates that when execution of the program is
resumed, we want to branch back to the beginning of the procedure,
which is named GET-INPUT.
(X X
| 1F_sMALLIER [1s' NOT| LEls'S| TIHAN |LARGIER.,
! | IsToP 'TXPE5SWALLFR NuMBE[R FIRST'[s
I co To GElT-1INPUT.] B |
p
i (3/66) 83




System/360 COBOL Writing Programs in COBOL

EEA rke "sTop-literal” way of handling the invalid data situation
provided the ocecasion for introducing you to the second format of
the STOP verb -- but unfortunately, it demonstrated a poor
programming practice. It would not be wise to delay the execution
of a program in any situation that could be handled by the
computer itself. This ig certainly a situation that the computer
ean be programmed to take care of; in the event that SMALLER tis
actually the larger number, we can move the value of SMALLER into
LARGER, and move the value of LARGER into SMALLER.

SWITCH
YES VALUES
OF SMALLER
AND LARGER

SMALLER
>LARGER

Switehing the numbers requires not two, but three moves -- to
avoid destroying one of the values in the process. And it
requires a work area to hold one of the values temporarily. The
three moves are sketched below.

STORE

gt

SMALLER LARGER

On a program sheet, write (1) the Data division entry that
describes the item called STORE (this item must hold four digits);
and (2) the Procedure division entry that switches the values of
SMALLER and LARGER, if the original value of SMALLER is greater
than LARGER.

Data division entry:

77 ssTOoRE, PlicTture olca). ] T T T T 1]

Procedure division entry:

Tl

LF_sMALLIER 1ls' GREEATEIR TH|AN LJARGE[R],
| Imove| smalLLER] To [sTOR[E, 1

MOVE| LARIGER [T0 simaLL]ER,
MovEl sTORE Tlo LARGER[.

(3/6¢) 84




L J

System/360 COBOL Writing Programs in COBOL

(3/66)

Yet another approach to the difficulty of invalid input is to try
to prevent it by displaying clear-cut instructions to the
operator at the beginning of the run. The message might be:

TYPE TWO 4-DIGIT NUMBERS AS A STRING OF 8 DIGITS. NO SPACES.
SMALLER NUMBER MUST BE FIRST. TO STOP RUN, TYPE 99999999.

Which is correct:

The DISPLAY verb cannot be used, because the message is too
long.
Alphanumeric messages such as this one cannot be displayed.
Two DISPLAY statements can be used for the message, one
for each line.
The message is illegal because it contains reserved words.

Two DISPLAY statements can be used for the message, one for
each line.

Write the two statements to display the message in the preceding
frame. Treat each line of the message as a separate non-numeric
literal. (You will find that both literals are too long to be
written on a single line of a program sheet. If you have forgotten
how to continue non-numeric literals, refer to the PROGRAM SHEET
FORMAT AND RULES section of the reference handbook.)

000
SEQUENCE |2 1
(PAGE) ntnunlé A :9
1 3j4 6]7]8 12 16 Eg 24 28 32 52 56 60 64 68 7.
| o LsiPlLialy] |'iTlviple! [Tl la] Ip siTirIING! [olF] '8! blilaliiTls!.| Nio
| i '| Islplalciels]. ['] lulrloln] lc
bliFLAY 'stLLEh N%ﬁgv? T|o| sTIoiP| RIUINL, | |TIY/PE] 9191919
T T T T velelelel.I' T Tulploin Iclolns T

I suppose that we could go on forever, thinking up variations on
this basic problem. But it has already served its purpose as a
vehicle for learning to use several important COBOL statements.
Obviously, you have not learned everything there is to know about
every verb you have studied, but remember that our objective was
to see how various statements are used in procedures -- not to
study all of the "ifs, ands, and buts" of every statement.

85







. J

l (3/66)

System/360 COBOL Writing Programs in COBOL

N

LESSON 7

I have saved an important set of procedural verbs for last: the
input-output verbs used for files of data -- OPEN, READ, WRITE,
and CLOSE. Although these verbs are more simple to use than, say,
the arithmetic verbs, the verbs themselves are only one part of
the total requirement for processing files. The requirement
tnvolves:

A. Environment division entries --
1. an Input-Output section, containing at least a
File-Control paragraph, and sometimes an I-0-Control
paragraph.

2. a SELECT entry for each file, to assign the file to
an input-output device (SELECT entries are made in
the File-Control paragraph).

B. Data division entries --
1, a File section.
2. a file deseription (FD) entry for each file.

3. a record description of each record in a file,
following the FD entry for the file.

C. Procedure division entries --

1. an OPEN statement to make a file ready for reading
or writing.

2. a READ statement to obtain a record for processing,
or a WRITE statement to release an output record.

3. a CLOSE statement to terminate the processing of a file.

You have already written the Environment and Data division entries
in earlier lessons; in this lesson, you will combine them with

the Procedure division entries to produce two complete programs
for processing files.

Both of the problems you will work on stress the input and output
operations; for the sake of clarity and simplicity, no arithmetic
operations and very few sequence control operations have been
used. The first problem is a card-to-tape job -- a file of
punched cards is -to be writtenm on tape. The second problem is a
tape-to-print job -- the records in a tape file are to be

listed on continuous-form paper.

87




System/360 COBOL Writing Programs in COBOL

Il This is a system flowchart of the card-to-tape job.

JOB =CARDTAPE

INPUT FILE = CARD - FILE SYSTEM = IBM-360, OUTPUT FILE = TAPE-FILE
EXTERNAL NAME = CARDS 3 MODEL 30,64K EXTERNAL NAME = TAPE
DEVICE =2501 ( SAME SYSTEM WILL ) DEVICE32400-SERIES
CARD READER COMPILE AND MAGNETIC TAPE UNIT
EXECUTE PROGRAM

The flowchart provides the information that you need in order to
complete the Identification and Environment divisions. Take a
new COBOL program sheet, and write these two divisions.

For this problem, limit the Identification division to the o
required entries only. The program name is CARDTAPE. In the
Environment division, write both the Configuration section and

the Input-Output section; omit the I-O-Control paragraph of the
Input-Output section.

You may, of course, refer to the sections in your reference hand-

book that deal with IDENTIFICATION DIVISION ENTRY FORMATS and \
ENVIRONMENT DIVISION ENTRY FORMATS.
eoe ‘

IDENJIFICATIONiDIVTSION, HEEEEE EEEER
PROGRAM—ID. SR EEEEE HARERARERINRRE RN

’,* 'CARDTAPE'. | | HEEERSERENEERREE
ENVIRONMENT pivifsion. [ [ [ 7 1
CONEUGURATn@NiSECTmON.: B REENERE | |
SOURICE -CIOMPUITER.| ||

__iBM-j360,| F30l.| ||
oBJECT-clompulTerR.| [ | | [

__uBM-j3eo,| F30[. | || 0 | | ] i
INPUIT-OU[TPUT] SECITIONl. | | | = | W
IF.| LE—CONITROL|. L BREREE BRE |
:gsSELECTiCARDFFI&E,imssféNA'CARDS'

.t T lUNIT-REC|ORD |2)501] UNI|T. | ;

B SEiicTéTAPE%FwLE,émserN ' TAPE" NERE

U T Tty [2a00] uNilT. BEREE |

(3/66) 88




System/360 COBOL

Writing Programs in COBOL

Here are some additional specifications about this job, which you
need to write the Data division:

(3/66)

There is only one type of record, named CARD-RECORD,
in the input file; each CARD-RECORD contains 80

The data from each card is
to be moved to the output record, named TAPE-RECORD.
Output records are to be written in the output file
The output is to be recorded
in mode F, with standard label records.

alphanumeric

in blocks of

characters.

25 records.

In this job, we don't intend to process any of the items within
the records. Define the input record as an 80-character
elementary item, and define the output record in the same way.

Take another program sheet to write the Data division. For entry
formats, consult your reference handbook under DATA DIVISION

ENTRY FORMATS.

(X N
DATAI DIV[ISION. L
FILEI SECITION. B |
FD CARD|-F IL|E, RIECOR|DING| MOD|E F,
1 ILABE|L RE|CORD|S OMITTE|D, |

: DATA| REC|ORD |[IS CJARD-|RECORRD .
01 ICARD|-REC|ORD,| PICTURE| X(8|0).
FD \TAPE|-FILIE, RIECORDING| MOD|E F,

: BLOCIK COINTAIINS 2|5 RE|CORD|S,

! LLABE|L RE|CORD|S STIANDA|RD,

! IpATAl RECIORD |IS TAPE-|RECO[RD.
01 ITAPE[-REC|ORD,| PIC[TURE[ X(8[0).

Points to check:

(1) For punched card files, the recording mode
18 always F, and label records are always omitted. (2) The

deseription of a record (0l-entry) must follow the FD entry for
the file that contains that record.

89




System/360 COBOL Writing Programs in COBOL

)Ik] This procedure flowchart shows how the files will be processed.

OPEN
CARD-FILE
AND
\TAPE-FILE,

STOP RUN

CLOSE
CARD-FILE
AND
TAPE-FILE,

NO

MOVE
CARD-RECORD
TO

TAPE - RECORD

WRITE
TAPE -
RECORD

Notice, especially, that the files are opened at the beginning of
the run, and closed at the end of the run.

Reading assignment: OPEN (1)
OPEN (2)
OPEN (3)
CLOSE

PIZY Begin the Procedure division on the program sheet on which you
wrote the Data division. Name the first procedure OPEN-FILES,
and in it write the entry or entries to open both files.

lPROCIED

o

DURIE| DlilviisiijoN. ] |
Ni-FILES!. Bl
E

loPEN| IINPluT clarD-IF1LEl, oultPuT|l TAP[E-FIlLE.:

&=
m

It i8 also correct to write two OPEN statements.

(3/6¢) 90




System/360 COBOL Writing Programs in COBOL

205

206

(3/6¢)

The READ entry does double-duty. It not only makes a record
avatlable from an input file, but also determines when the end
of the file has been reached (that is, when all of the data
records have been read); on an end-of-file condition, it causes
other statements written in the entry to be acted on. The blocks
printed below represent the operations that will be done by
statements and clauses in the READ entry of our program.

CLOSE
CARD-FILE

AND
TAPE-FILE,

STOP RUN

Reading assignment: READ

Now, start a new procedure in the Procedure division; name it
READ-A-CARD. Write the READ entry that corresponds to the blocks
printed in the preceding frame.

IREAM-A-c@RDQ BB
____|READ| CAR|D-FI|LE; |AT ENND,
" ' ;

'  lcLosle TalPE-FliLe,| cARD-FILES
1 IsTOP| RUN|. ‘

Points to check: (1) Make sure that you wrote READ CARD-FILE,
not READ CARD-RECORD. (2) The commas and semicolons printed in
the answer above are not required, but the complete READ entry
must be ended by a period -- the CLOSE and STOP statements must
be part of the READ entry, not separate entries.

21




System/360 COBOL Writing Programs in COBOL

We are now at the point in the procedure where the input data is
to be moved into the output record and a record is to be written.

Reading assignment: WRITE (1)

B} complete the procedure named READ-A-CARD, by writing entries to:

1. move data into the output record.
2. write the output record.
3. branch back to the beginning of this procedure.

_MoVE| (caRp -RE|[cORD| To [TAPE[-REC|ORD.
WR{TE TAPE-RECORD. | | ,
"f?hﬂ Tlo. RE/AD - A-caRD..

Points to check: (1) The WRITE entry must speectfy TAPE-RECORD,
not TAPE-FILE; in COBOL, we read a file, but we write a record
(2) The three entries above mtght have been written as three
statements in one sentence; it 18 mot necessary for the WRITE
statement to be a separate entry.

The card-to-tape program is now complete. Before we turn to the
next problem, let's take a minute or two to look back over this
program. Here are a couple of points that should be emphasized:

First, it was necessary to split the Procedure division into two
procedures (paragraphs). This made it possible to branch back to
the READ statement. It would have been an error to branch to the
beginning of the first procedure, since you cannot open a file
that 18 already open. Note that the first procedure must be
given a name, even though it is executed only at the start of the
program, and we never branch back to it; there must be a header
entry for every paragraph.

Second, note parttcularly that it was not necessary to "asgemble”
a bZock of 25 records prior to writing. This is because a WRITE
entry does not cause data to be written on the tape; instead it
releases records, which are them handled by an input-output
eontrol program (part of the operating system). The control
program takes care of filling up a bloek. Each block is filled
with the number of records you specified in the FD entry for the
file. The actual transfer of data to an output device oeccurs when
a block is full, or when the file is closed; the COBOL programmer
doesn't have to worry about it.

(3/66) 92




System/360 COBOL Writing Programs in COBOL

211

'——

l (3/66)

Our second problem of this lesson is a tape-to-print job. The
input 18 a file of records on magnetic tape, and the output is a
listing of those records. One recowd is to be printed on each
line of the output form, until the bottom margin or "overflow
line" of the form has been reached; at that point, we want to
skip to the first printing line of the next form, and go on
printing line after line.

Each line that is printed 18 a record, so the output consists of
a series of related records. Hence, the output, like the input,
i8 a data file. Perhaps you, like so many other people, are not
accustomed to thinking of printed reports in these terms; however,
when you use COBOL, you must learn to think of your input and
output as being made up of records within files. (The only
exception 18 the low-volume input and output which you accept and
display.) For this problem, the complete printed report is a
file, and each line of the report is a record.

The logic of this program, then, is basically the same as that of
the last program. There is one input file and one output file.
These files must be opened at the beginning and closed at the
end. FEach time input is read, it is moved to form an output
record, which is then written.

Here i8 a procedure flowchart of the job. Observe the similarities
between it and the flowchart of the previous job.

\Vl

AT ENDN\_ ves ; cLose ;
<,. \ fiies / STOP RUN

NO

MOVE DATA
INTO PRINT
RECORD

WRITE WRITE
PRINT RECORD, NO FORM YeES RINT RECORD)

AFTER OVERFLOW AFTER _SKIP,

SINGLE ? TO NEXT
SPACING FORM

93




System/360 COBOL Writing Programs in COBOL

213

214

(3/66)

The main differences between this and the previous job are that
this time we must test for the form-overflow condition, and that
along with writing a record we must control form spacing and
skipping.

Testing for overflow is done by an IF statement. To do this, a
name must have been given to the overflow condition; this name 1is
defined in the I-0-Control paragraph of the Environment divigion.
Let's study this briefly, to get an idea of what we must do to
define such a name. (You will find this reading assignment back
in the reference handbook section titled ENVIRONMENT DIVISION
ENTRY FORMATS.)

Reading assignment: APPLY

Controlling form spacing and skipping is the function of one of
the formats of the WRITE verb. When you read about this format,
you will also learn some facts about how data items must be set
up when printing is done.

Incidentally, there is a close resemblance between the format of
WRITE for printing, and that for punching cards. You will
probably find it useful for your future work to read about the
format for punching, even though there is no problem in this
course that involves a punched card output file.

Reading assignment: WRITE (3)
WRITE (2)

We might use this statement in our program:

__WRITE

AC|COUN|T AFITER [sk1IP|- TO-INEXT[-FORM '

If this statement is actually to cause a skip to channel 1, the
value of the item named SKIP-TO-NEXT-FORM must be .

94




Writing Programs in COBOL

System/360 COBOL

The item named SKIP-TO-NEXT-FORM might be defined like this:
Tl- IFlolRiml, | [Pli IcTu[RE X[, T ValL ! T3]

section of the

INEIx

77 | s'k!Pl-ITlo

You would write this entry in the

division.
00

Working-Storage; Data

(Al The WRITE statement that appeared a couple of frames back was
taken from this IF sentence:

™
1B

I F_AT-BOTTOM-OF-[FORM, ' ' [ | = |
. WR!IITIEl AICICOUN|T AF|TER [SKI P[- TO-INEXT|- FORM._
This overflow test will work, provided that the name AT-BOTTOM-

section

OF~FORM has been defined in an entry, in the
of the division.
(X X

APPLY; I-O-Control; Environment

/A4 Let's modify the IF statement above, so that it meets the entire
writing and form-controlling needs of our problem:

o
[

FORM, | [
SKIP|- TO-INEXT]-FO

AFTEIR SIINGLE|-'S

‘v
3 )
o=
[m e

___nF_AT-BdrTOM-0F-[FOR
___WRITEl IACICOUN|[T AFITER
___ELSE[,l WRIITE |ACCOUNT

The value of the item named SINGLE-SPACE must be
XX

space (blank)

(3/66) 95




System/360 COBOL Writing Programs in COBOL

This has been a fast look at the entry that we may use in the
Procedure division to print a line and to control paper forms.
It shows us that we must anticipate the needs of this procedural
entry when we write the Environment and Data division of the
program.

yARA This system flowchart gives most of the information you need to
write the Identification and Environment divisions.

JOB = ACCTSREC
SYSTEM =1BM-360,
MODEL 30, 32K
( USED BOTH TO )

INPUT FILE = ACCOUNTS -RECEIVABLE
EXTERNAL NAME = RECVBLES
DEVICE=2400-SERIES

MAGNETIC TAPE UNIT

OUTPUT FILE = ACCOUNT-LIST
EXTERNAL NAME = ACCTLIST

COMPILE AND TO DEVICE=1403 PRINTER

EXECUTE PROGRAM

Take a new program sheet, and write these divisions. As before,
write just a "bare-bones" Identification division. (There is
simply no point in writing Author and Date-Written paragraphs,
and so on, for this exercise. However, those will undoubtedly be
required for the work you do on-the-job.)

While it is not mentioned in the flowchart above, remember that
we want to define an overflow name in the Environment division of
this program. Let's make that name AT-BOTTOM-OF-FORM, since that
was the name used in the procedural statements you looked at
earlier.

IDEMTIFICATION D[i VisS[iON.

PROGRAM-ID. | | '
V' AccltsreEc'. | |

The Environment division i8 printed at the top of the next page.

(3/66) 96




System/360 COBOL

Writing Programs in COBOL

ENV | RON

MENT [DivifsioN.

CONF}I GU

SOURICE-

RIATION SEICTION.
COMPUTER . |

__ 11BM-[360,| E30|.

IOBJEICT - CIOMPU[TER.| ﬁ , ERIERERRNA
___1IBM-|360,| E30. | AEEEEEEE
INPUT-OUTPUT| SECITION|. -
1 LE-CONTROL. | 11
. :SE:LEC%T: :ACCOUN‘TS'RE E/l VABILE, |ASS| GN.
1 |'RECVBLE|S' UTILI[TY 2400 uNITL. |
_SELECT ACCOUINT-LIIST,| ASS[IGN |'ACCITLISIT'
1 UNIT-RECIORD {1403 UNI|T. A RER
NP Iy r T B T ~
l-o-CONTROL.l | [ | |
___APPLIY AT-BOT[TOM-/OF-FORM |TO SENE
A | P ; | Jg ] : Lo I R i LI i
1 |FORM-OVEIRFLOW ON| ACCIOUNT[-LI S|T.. !
F EXL) 7o prepare the Data division, you will need detailed information
about the files and records.
_’i First, the input file, ACCOUNTS-RECEIVABLE:
(1) recorded in mode F
(2) all data is BCD (external decimal code)
(3) each record is 44 characters long
(4) 50 records per block
(5) no label records
Next, the output file, ACCOUNT-LIST:
(1) each record is 132 characters long (the capacity of
the printer)
(2) all data is BCD These characteristics apply
(3) recording mode ig F to all files assigned to
‘ (4) one record per block unit-record devices (card
i (5) no label records files and printed files).
(X X )
|
(3/66) 97




System/360 COBOL Writing Programs in COBOL

Each file contains just one type of record. The input record is
named RECEIVABLE, and the output record is named ACCOUNT. These
diagrams show the structures of the records:

RECEIVABLE CUSTOMER-NUMBER ACCOUNT CUSTOMER-NUMBER
(5 DIGITS) (5 DIGITS)
CUSTOMER-NAME FILLER
(20 LETTERS) (4 SPACES)
INVOICE-NUMBER CUSTOMER-NAME
(7 DIGITS) (20 LETTERS)
MOUNT FILLER
(6 DIGITS) (4 SPACES)
E-DATE ] INVOICE-NUMBER
(6 DIGITS) (7 DIGITS)
FILLER
(9 SPACES)
AMOUNT
(6 DIGITS)
FILLER
(9 SPACES)
DUE-DATE
(6 DIGITS)
FILLER
(62 SPACES)
o000

y¥¥3 From the information given in the last two frames, write the File
section of the Data division. It is not necessary to use the
same names for corresponding items in the two records; to do so
would require that each name be qualified each time it is used.
Try this method: write a "prefix" letter before each name, a
different prefix for input than for output. You might write I-
before input items, O- before output items -- for example,
I-DUE-DATE and O-DUE-DATE. ?

This 18 very important: You must add an additional item as the
first item of the ACCOUNT record -- for form-control purposes.
This item, technically, is not part of the 132-character output
record, so it is not shown in the record structure above; however,
this extra position must be accounted for im your record
degeription. (Remember that the extra position is added at the
beginning of only those records that are in files to be printed
or punched.)

The solution for this frame is printed at the top of the next page.

(3/66) 98




System/360 COBOL Writing Programs in COBOL

ATAI D
= | LIEy
D

D
[
IF

olN.. | B IR 17
NI.;‘ gg B o l;~;

s|-RECIE
ONTAINS.
.| DATIA

BILE. | HEERERER B
USTOMERFNUMBER'3P|chRE‘9(5) B
USTOMER-N|AME,| PICITURE| A(2[0).
NIV O I ClE - NmMBER,’P|CTURE*9(7q; Rl
MOUNT|, PilcTuRlE 9(l6). | [ |
UE-DAITE, [PICTlURE lo(e)|. [ |
-lL1ST|, REICORD|ING |[MODE| F, [LABEL |
om1 TTED,| DAT]A RE|cORD| IS |accounT.

_'_.

ABLE,| RECIORDING MODE |F,
5/0 RE|CORD|S, LIABEL| RECORDS]
EICORD| IS REUEIN%@LEQ L

BLE

_M,, o |-

) mildjolo]ol]<
C = l=I=l=—I—HI=Ic

1 =2

2]

O |
D
V= Zzol=z

o]
=
Ol— oo m|—

OO |0 |+ |0 |—

(2)
o

" REC

P

UlS TOME

dER Pl
E
P

m

01 __ACCOUNT.| REERREER REINER
o2 |FiLERrR, PieTRE XL )
102/ | o NlumB| il

F

R, P/l CTURE 9l(5).
x(ad). | |
.| PICITURE| A(2l0) .,
x(a)[. [ |
Ry P CETUREf 9 ( 7) B
x%g).§ﬁ EEENENEND

]

rlofrplrl—-lrjlorjolr|djoH|o|>]|—

c |mmimm

LER PH&%U
P1|C

[e)
N
Slmjom|[o
o
—
C c >
—[D|om|T[Z |

i

LER, PICTURE [x(9)]. EEEEEEEREN
|E - DATE,’PICTMRE oted. | |
LER, PICTURE x(62[). | '] |

c

.O:.
N

Mo m
1

e }i{)
N N
|

Finish the Data division by writing a short Working-Storage
section. In it, describe two independent items:
SKIP-TO-NEXT-FORM, with a value of 1, and SINGLE-SPACE, with a
value of space. These are the items that contain form-control

~ codes, and we will use their names in WRITE statements.

T ON.| |
T|- FIOR

woamﬁNG-s
| 77 fﬁKIP-TQ-
‘ 77 ISINGLE-s

=
o
)
>
(2)
m
w
m
®)

VALUE"4fﬂ
UE SIPACEl.

4
m
x

TU

2B ES
5
o
< {4
c
0
m
><

-o
>
o
m
O
o
m
-
:
<
>
-

(3/66) 99




System/360 COBOL Writing Programs in COBOL

Write the Procedure division. Invent your own names for
paragraphs (procedure names). You may turn back to take another
look at the procedure flowchart, printed in an earlier frame.
You may also re-read the frames in which we discussed the way to
program the WRITE statement to handle form-overflow.

Here's something to consider when you write the gtatements to
move data to the output record: Do not assume that the FILLER
items contain gpacee. (We could not give these items an initial
value of spaces, because the VALUE clause ig forbidden in item
description entries in the File section. And, as we pointed out
once before, the word FILLER cannot be used in procedural state-
ments ~-- so you must not write MOVE SPACES TO FILLER.) This
problem can be solved simply by moving spaces into the entire
record, as a whole, before moving any of the data items.

hROCEDURE DIVISION. |
BEG IIN-RUIN. SulEREEEREEE
OPEN| INPUT ACCOUNTS-RECE|I vAB
| loUTPIUT AICCOUNT-LlIST.| | B B
IPROCIESS -DATA|, | NN EEREN
___IREAD| ACClOUNT|S-RE|CEIVABLE|; ATl END[, | '
1 lcLoslE Ac|couNTs-RECEI|VABLIE, | |
| laccount-jusT ]
| IstoplRUNl. | |
MOVE|  SPIACES| TO |ACCOUNT.|
MOVE| I -CluSTOMER-NUMBIER Tlo
! lo-CUSTOMER-NUMBER. |
yoME?IgCUSTbMtR?WmNE 10 |o
MOVE| | = IINVOI[CE-NUMBER TO
i _lo-iNvoiclE-NUMBER. |
MOVE| | -~AMOUN|T TO okAMbvNTi‘
_MOVE| | -DUE-DATE [TO O-DUE|-DATIE .
WF AT-BOTTOM-OF-FORM, |
___WRITE ACICOUNIT AF[TER |
| IskiP-TO-NEXT|-FORM; NI EEE
_IELSE|» WRIITE JACCOUNT |AFTE|R SI|NGLE|-SP ACE
6o _Tlo pRrlocesls-pAlra. | | | |

T

Culs TOME R -N|AME!,

(3/66) 100




System/360 COBOL Writing Programs in COBOL

225

(9/66)

Just as with any problem you can name, this problem might have
been solved in various ways. The solution printed in this book
18 certainly not the only correct solution. Let me point out a
couple of things that might have been done differently.

(1) To control skipping and spacing, we have used the "data-name"
option of the AFTER clause in the WRITE statement. We might have
uged the "integer" option, and written this entry:

__1F_AT-BO[TTOM-0F-JFoRM, WR[ITE [ACCOUNT
IAFTEIR_AD[VANC|ING |0; O[THERWISE] WRITE | |
IACCOJUNT [AFTE[R AplvaNncliNg J1. || @ | ]

With this entry, the items we defined in Working-Storage would
have been omitted. And the entry could have been abbreviated even
more by dropping the word ADVANCING, which is optional. My
opinion i8 that the '"data-name" option is more easily understood
by someone reading your program -- provided that you create
sensible data names. Only another COBOL programmer would know

that the integer 0 in the above entry designates a skip to

channel 1. (Then again, you could write a NOTE entry to explain
it.)

(2) Some people object to the practice of blanking out the output
record each time, before moving new data into it. One way to
avoid this is to assemble the output in a work area, and then move
the complete record to the output area. What you could do is
define a record in the Working-Storage section, and in it describe
every item you want in the output record; the advantage is that

in this section, you can assign initial values of spaces to all
filler items. However, it would not be legal to WRITE a record
that is8 in working storage. Therefore, you would have to define

a separate output record, such as:

lo1  'accolunTt, Piclture x(alzsh) T TITT

And you would have to transfer data from working storage to the
output record, with an entry like MOVE WORK-RECORD TO ACCOUNT.

So that, in the end, you wind up moving 133 characters after all.
Whieh is not very different from filling the output area with
spaces at the outset.

The idea, as I stated at the beginning, is that both ways are
equally correct solutions. Use whichever method seems best, or
easiest, to you. Possibly when you become profiecient at COBOL,
you will begin to consider which solution requires the least
storage space when the object program is compiled, or which
solution gives the shortest run time. For now, take the approach
that any method is good, as long as it produces the desired
results!

101




System/360 COBOL Writing Programs in COBOL

LESSON 8

In this final lesson, you will not be given any reading assign-
ments. If you wish, you may coneider this lesson to be a test
of how well you can apply what you have learned in previous
lessons. However, don't think of it as a "recall” test -- you
may refer to your reference handbook as oftem as you like; so
this ie, in part, a tegt of how well you can figure out what

information you need and look up that imformation when you need
it.

The lesson covers just one problem. The problem puts greater
emphasis on tnput and output operations than the other problems
you have programmed. As a result, the Procedure division for
thigs problem will be somewhat longer. On the other hand, the
entries required in the Data division are held to a minimum --
you have already had sufficient practice in making lengthy data
degeription entries.

Y24 The problem ig to update a file of master records by inserting
the records for new accounts into their proper places in the file.
Both the master file and the insertion file are on magnetic tape,
and the updated file 18 also to be writtem on magnetie tape.

We have, then, two input files and one output file. The system
flowechart for the job looks like this:

INPUT FILE 1 =MASTERS
EXTERNAL NAME=INMAST
DEVICE = 2400-SERIES

MAGNETIC TAPE UNIT

JOB = UPDATE
SYSTEM:=IBM-360
MODEL 40-64K mm—
MODEL 30-16K
USED TO COMPILE

OUTPUT FILE =UPDATED -MASTERS
EXTERNAL NAME = OUTMAST
DEVICE = 2400~ SERIES

MAGNETIC TAPE UNIT

INPUT FILE 2= INSERTIONS
EXTERNAL NAME = INSERTS
DEVICE =2400 - SERIES

MAGNETIC TAPE UNIT

(3/66) 103




System/360 COBOL

Writing Programs in COBOL

Based on the information given in the system flowchart
(preceding frame), write the Identification and Environment
divisions for the UPDATE job.

I DENIT I F |

CATION D

D!

IVIS

|ON.

PROGIRAM-

iérurb

[ | [

ATE'.
BREEE

[ B

ENV LIRONME

NT [DIVI

ST

ON].

CONF}I GUR

ATION SE

SOURICE-C

OMPU|TER.

CTI10

- IBM-

60,

?p&m.éf

JoBUEICT-

MPU|TER.

__|1BM

60,

F40[.

I NPUIT -0

PUT| SEC

ROL LI

TION

FiLE}-CO

O[] ]O U

T MASTE

ASS |

. ISEL

i ] H

[}

TILITY

UNI

ST

1 ;
___ISELE

1INSER

S, A

MSE

1 H
| i i
v :

LTy

UN |

RT's"

tl

__ISELE
|

i

UPDAT

ED

-MASTE

i
:

;"":

cl|lOo|c O
e

ity

2400

UN |

GN 'louTMA

All three files are recorded with record-length control fields
(mode V); there are ten records per block, and standard labels.
Each file contains one type of record, with characters represented

(3/66)

by BCD (external decimal code) throughout.
three files all have exactly the same format:

The records in the
the first 15 digits

constitute an item called NUMBER, which is the identifying number
of the record; the remaining 135 characters make up various data
items, none of which are processed in this program.

Using the above information, write the Data divison.

Name the

input master record MASTER; the insertion record INSERT; and the
output master record OUT-RECORD.
descriptions for MASTER and INSERT, follow the description given
above; however,describe OUT-RECORD merely as a l150-character

elementary alphanumeric item.

When you write record

The solution for this frame is printed on the mnext page.

104




System/360 COBOL Writing Programs in COBOL

DIATIAr D)1 Iv][1|Sl1]ON.. |
FLILEl SECIT 1ION], HRENNERERD |
FD, | MAISTIER!S,| BLOJCK CIONTAlINS |10 RECOR[D'S
ILABE|L| RE|CORD|s ARE sTIANDA|IRD, [DATA| REC|ORD
s masTER. | | ) e
o1  masTER. | | | b
02 | INUMBIER, [PICTURE [9 (a5 .@ | = | = |°
o2 | [FiLLErR, [PicTURE [x (135). | | ]!
FD_ IINSERT1ONS, [BLOC|K cONTAI[NS 1o RE|C/ORD]S,
ILABE|L| RE|CORD|S ARE STIANDA|RD, [DATA REC|ORD |
s [IINSERT.. AEERNERENNESNERRINENE RN
01 | {INSERT.. AR NENREREEERE R
102 | Numeler,' [PlicTlure Jo (1sh . | ]
_ 02 | IFILLER, |PICTURE [X (135), | [ '
FD, MPDATEDjﬁAsrems,%Buoéﬁ%coNrArNS 10
| | REClORD/S|,| LABJEL RECOR|DS A|RE S[TANDARD,
| iDATA| REICIORD [I'S OUT—RIECORD . | |
h’ 01, | OUT-|RECIORD, |PICTURE [x (15l0).

¥l In the next few frames, we will discuss the processing logic of
this job, and develop the procedure flowchart from which you will
write the Procedure division.

The logic of the job boils down to a pair of conditional moves,

as shown in the diagram below. We want to compare the identifying
numbers of two records -- one from each of the input files. If
the number of INSERT is lower, the INSERT record is to be moved

to the output area; otherwise, the MASTER record is to be moved

to the output area. An output record can then be written.

[ INSERT | I MASTER |

] ]
]

IF INSERT NUMBER
IS NOT LESS THAN
MASTER NUMBER

IF INSERT NUMBER
IS LESS THAN
MASTER NUMBER

| \ )

N ->L OUT-RECORD |<— —_— -

(3/66) 105




System/360 COBOL Writing Programs in COBOL

232

(3/66)

The selection of the proper output data is the cructal decision
to be made, the "heart" of the processing to be done -- which is
always a good place to start developing a flowchart. We will
work backward and forward from here.

INSERT <\ YES MOVE WRITE
MASTER INSERT TO ouT -
? OUT -RECORD RECORD

NO

MOVE
MASTER TO
OUT - RECORD

WRITE
RECORD

(XX )
How can we get to the point where we can make this decision about

the first record from each input file? Clearly, we must read a
record from [the MASTERS file] [the INSERTIONS file].

BOTH the MASTERS and the INSERTIONS file

But before we can read records from the files, we must the
files.

OPEN

106




System/360 COBOL Writing Programs in COBOL

In congidering how to process the first record of each input
file, we have worked our way back to the beginning of the job.
Thig is what our flowchart looks like at this point. (I have

chosen the name BEGINNING-OF-JOB to be the name of the first
COBOL procedure.)

BEGINNING - OF - JOB

OPEN
FILES

g

AD
MASTERS

(% |
~

READ
INSERTION

INSERT YES MOVE WRITE
MASTER INSERT TO ouT-
? OUT - RECORD RECORD

NO

~

At the first step drawn on the flowchart above, we will open

the input and output master files

{the two input files }
both the two input files and the output file

both the two input files and the output file

(3/66) 107




System/360 COBOL Writing Programs in COBOL

Let's say that the first comparison showed that the number of the
insertion record was lower, so the INSERT record was moved to
OUT-RECORD, which was then written. In this event, the next
logical step would be to

move MASTER to OUT-RECORD, since it must be the next
output record.

go back and read both files again, to prepare for the
next comparison.

read only the INSERTIONS file again, and make another
comparison.

close the INSERTIONS file, and branch back to the
beginning of the job.

read only the INSERTIONS file again, and make another comparison

This flowchart segment shows the branch to read the INSERTIONS
file again.

INSERTION - INPUT

READ
INSERTIONS

INSERT <
MASTER
?

NO

MOVE WRITE
INSERT TO ouT-
OUT- RECORD RECORD

If the comparison of the first records had shown that the INSERT
record was not less than the MASTER, the other leg would have
been taken at the decision block -- that is, the MASTER record
would have been written out. And we would now have to obtain
another MASTER.

In order to get the next MASTER, we can

[write another READ MASTERS step]
[branch back to the original READ MASTERS step].

o000
ONLY write another READ MASTERS STEP
A simple branch back to the original READ MASTERS step would also

cause control to flow through the READ INSERTIONS step, which
would be an error.

(3/66) 108




System/360 COBOL Writing Programs in COBOL

We will insert a new READ MASTERS step into our flowchart. After
another MASTER record is read, we must go to the step where .

the INSERT number and the MASTER number are compared

We have now "elosed the loops" of our process. The flowchart has
developed to this point:

BEGINNING-OF-J0B

; OPEN ;
FILES
; READ ;
MASTERS

INSERTION- INPUT

READ ; .

INSERTIONS,

COMPARE-NUMBERS
INSERT <
MASTER

?
NO

MOVE
MASTER TO
OUT-RECORD

WRITE
ouT-
RECORD

READ
MASTERS

MOVE WRITE
INSERT TO ouT-
OUT-RECORD RECORD

; Notice that I have been supplying procedure names as we have gone
along. The names INSERTION-INPUT and COMPARE-NUMBERS will be
needed in GO TO statements.

b eoeo

(3/66) 109




System/360 COBOL Writing Programs in COBOL

241

242

(3/66)

If the input files were infinitely long, and processing went on
forever, our present flowchart would be adequate. The facts of
life, though, are that data files -- like all good things -- must
end. And we must test to find out when the end has come.

Let's be more specific. Every READ statement i8 required to
contain an AT END elause; we will show the AT END tests as
decision blocks in our flowchart. Furthermore, we will have to
consider that one file must necessarily run out before the other;
thus, at the moment that we find that there are no more records
in the INSERTIONS file, there must be at least one more MASTER
record that has not yet been written out, and vice versa.

Here the AT END test is shown in the INSERTION-INPUT procedure:

INSERTION - INPUT

READ .
INSERTIONS
AT END YES @

NO

At the end of the INSERTIONS file, we will branch to a procedure
named FINISH-MASTERS. When this branch occurs,

[a previously-read MASTER is waiting to be processed]
[the MASTERS file is ready to be closed]
[there may be more MASTER records that have not yet been read].

a previously-read MASTER is waiting to be processed, AND there
may be more MASTER records that have not yet been read

We will have to insert AT END decisions after both of the READ
MASTERS steps. Examine the flowchart on the preceding page.
Determine how often control will flow through the first READ
MASTERS step, following OPEN FILES.

Only once

110




System/360 COBOL Writing Programs in COBOL

244

(3/66)

Although this sort of duplication of steps is sometimes

eliminated by writing "program switches", we find that it is

often easier in COBOL to duplicate a step instead of fussing with
a switeh. So in this program, we have two READ MASTERS steps

(so far) -- the first of which is executed only at the very outset
of processing; an AT END branch cannot, under any circumstances,
occur after the first READ MASTERS step.

Nevertheless, the format of the READ statement insists that we
provide the AT END test. We will satisfy this requirement by
writing a branch to the next step, as diagrammed below.

BEGINNING-OF-J08

OPEN
FILES

READ
MASTERS

INSERTION-INPUT

READ
INSERTIONS,

The second READ MASTERS step presents an entirely different
sttuation. It i8 part of a loop that reads and writes MASTER
records, and it will be executed repeatedly during the running of
the program. If the MASTERS file runs out first, the end of file
condition will be detected at this step; therefore, this AT END
test i8 a real one.

At the end of the MASTERS file, we will branch to a procedure
named FINISH-INSERTIONS. If this branch is taken, we know that
a previously-read INSERT is waiting to be processed, and there
may be more INSERT records that have not yet been read.

111




.

245

(3/66)

System/360 COBOL Writing Programs in COBOL

Here is how we will finish up the remaining file after we have
reached the end of the other file: we know that one previously-
read record from the remaining file is waitting in the input area,
8o we will move it to OUT-RECORD, and write it out. Then,

because there may be more records in the remaining file, we will
read the file and test for the AT END condition. When we are at
the end of the remaining file, both files are finished, so we
branch to the end of job procedure -- close files and stop the
run.

It would be pointless to go back to the main routine and compare
the numbers of records. In fact, it would be an error, since
there are no more records in the other file. Besides, we know
that all of the records in the remaining file must be written
out, 8o all we have to do 18 read-move-write, until we come to
the end of the file.

Two "finishing-up" procedures have been diagrammed below -- one
for each input file. Two procedures are needed because we have
no way of knowing which file will run out first when they are
processed by the main routine. If the INSERTIONS file runs out
first, we will branch to FINISH-MASTERS; if the MASTERS file runs
out first, we will branch to FINISH-INSERTIONS.

FINISH-MASTERS FINISH-INSERTIONS END-OF-J0B
MOVE MOVE
3= MASTER TO 3 INSERT TO ‘;’;&535
OUT- RECORD OUT-RECORD

WO?JI:T‘.E WOTJI;-E STOP RUN
RECORD RECORD

112




4

System/360 COBOL Writing Programs in COBOL

This is the completed flowchart for the UPDATE job. Write the
Procedure division that corresponds to this flowchart. All of
the procedure names are shown, and many of the COBOL statements
can literally be copied from the flowchart. Be careful, though!
Some of the flowchart notes are like COBOL, but not exactly like
it -- for instance, OPEN FILES, INSERT<MASTER, and CLOSE FILES.
Use your reference handbook to find the actual formats.

(The correct solution for this frame is printed on the next
page.)

BEGINNING - OF - OB FINISH -MASTERS

MOVE
OPEN MASTER TO
FILES OUT - RECORD

WRITE
OuT-
RECORD
READ
MASTERS
INSERTION-INPUT
READ ; YES END-
-~ AT END OF -
;lNSERT NS/ ?
NO
FINISH- INSERTIONS

MOVE
—>{ INSERT TO
OUT - RECORD

MOVE WRITE
| INSERT TO OuT -
OUT - RECORD RECORD
WRITE
ouT
REC!

READ
MASTERS

COMPARE - NUMBERS

INSERT <
MASTER

ORD

MOVE
MASTER TO

OUT-RECORD
READ
INSERTIONS,
WRITE
OUT .
RECORD

END - OF - JOB

=
Com)

FILES

STOP RUN

(3/66) 113




System/360 COBOL Writing Programs in COBOL

PRbbkb%hF pilvisilon. |
EﬁGJMNjNG&bF-JOB.i AEERIEEEN ERE
_lopeN| INPUT MASTERS, |INSEIRTIONS;.
_t  louTPluT UPPDATED- MMSTERS. iR
___READ| MaS|TERS]; AT END[,
—+ ldo o inserTion-linpUlT.
INSERTION-INPUT.| REEEE
__IREAD| INSERTI|JONS;| AT |END,
1 lco To FINISH-MASITERS|.
COMPARE-INUMBERS.| | | 2 B
___1F NUMBE|R OF| INSERT |[< NUMBER| OF MASTEER,
1+ MOVE| INSERT |TO OUT-R|ECOR[D, i
__+  MWRITE OuT-REICORD], I
o T
' s

y

60 T0 INISERT/ION-[INPUIT .
__IMOVE| MA TinbebUT RECORD.
__WRITE ouT-RElcorpl. | |
"ﬁEADfMAsﬁERs;;AT?END;'f ,
1 |60 To FI|N1SH-INSERTI|ONS.
J____ 160 T|o COMPAR[E-NUMBER[S. | =

klNlﬁH —Mmla's
___MoVE|l m
_ WwriTE
__READ| M
0 'Tlo
FINISHFIWS
 MOVE] 11
fMR|ﬂE
IREAD| |1

—

SITER [TO OuT-RIECORID .

SERTﬁTOdeT—RECQRDQ‘

zlolzim[m > lo >
D
-|
o
1213
(28

SERTIONS;| AT [END,| | |
} |60 Tlo ENp-OF|-JOB|. | BRREEE
___ 60 Tlo FINISH-INSERTIlONS.] | | |
END-OF-JloB. | , B SENRERIRES |
__ icLoslE MAISTERIS, INSERTION|S, SINEREENE |
I bPDATED—mAs#gRs,EE' T
o sToplmRun. | | 1

(3/66) 114













R28-0210-0

PR S VU

)

i

iy,

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York




	‎\\OMV-TC\temp\Scan\IMG_0069.pdf‎
	‎\\OMV-TC\temp\Scan\R29-0210-0_S360_Writing_Programs_in_COBOL_Text1.pdf‎
	‎\\OMV-TC\temp\Scan\R29-0210-0_S360_Writing_Programs_in_COBOL_Text2.pdf‎

