
IBM Programmed Instruction Course

System/360 Assembler Language Coding Appendix

Education Development — Endicott, New York

IBM Programmed Instruction Course

System/360 Assembler Language Coding Appendix

Education Development — Endicott, New York

ACKNOWLEDGEMENT

We wish to express our appreciation to the Field
Engineering Division for providing most of the frames
and illustrations used in this course.

In addition, we want to thank the Detroit and Los Angeles
DP Education Centers for the frames and problem
statements they provided.

Minor Revision (November 1968)This publication is a reprint o f Form R29-0233-2 incorporating minor editorial changes. The original publication is not obsoleted.
Copies of this publication can be obtained through IBM Branch Offices.Address comments concerning the contents of this publication to:IBM DPD Education Development, Education Center, Endicott, New York 13760
© Copyright International Business Machines Corporation 1966

PREFACE

This is the Appendix to the ALC P. I. Course.

There is just one section in this volume. It deals with
instructions related to those which were introduced in
the previous volumes. As in the previous volumes,
sometimes the instructions will be presented individually
and sometimes they will be grouped because of their
close logical resemblance.

The information presented in this volume is intended to
complement and expand the instructions introduced in
the first volumes to cover the complete Standard
Instruction Set and the Decimal Feature Instructions of
the System/360. The table of contents contains both
the name of the instruction and its mnemonic to facilitate
reference.

TABLE OF CONTENTS

Branch On Count
Branch on Index High
Branch on Index Low or Equal
Store Multiple
Add and Subtract Logical
Load, Special
Load Address
Load Multiple
Edit and Mark
Compare Logical
Translate
Translate and Test
Insert and Store Character
Execute
Shift Algebraic
Shift Logical

BCT,BCTR 1
BXH 2
BXLE 4
STM 6
AL, ALR,SL, SLR 7
LTR, LCR, LPR, LNR 10
LA 12
LM 13
EDMK 15
CLR, CL, CLI, CLC 16
TR 21
TRT 28
IC, STC 31
EX 33
SLA, SRA, SLDA, SRDA 36
SLL, SRL, SLDL, SRDL 41

BRANCH ON COUNT INSTRUCTION

The ’’branch on count” is related to the ’’branch and link”
instruction. It is used principally to control the number
of times that a program loop is executed. Note
particularly, that a branch will result each time the first
operand has not been reduced to zero, and when the first
operand has been reduced to zero, the next sequential
instruction will be processed.

Branch On Count
BCTR R„ R2 [ftft]

06 R , R2
0 7 8 11 12 15

BCT R,, D2(X2, Bz) l*X]

46 R , X2 B2 °2
0 7 8 11 12 15 16 19 20 31

• The digit one is subtracted from the register
specified in the first operand (Rl).

• The register is then tested for a result of zero.
• If the result is zero, no branch is taken and the

next sequential instruction (nsi) is executed.
• If the result is non-zero, a branch is taken to the

address specified in the second operand.

Condition Code: The code remains unchanged.
Program Interruptions: None

• • •
1. Just like the ’ ’branch and link” instruction, the

’ ’branch on count” instruction can be in two
formats. List them:
— 5 .i i •

• • •

RR; RX

2. BCT is the mnemonic for the RX format of ’ ’branch
on count” . The mnemonic for the RR format
is______.

• • •

BCTR

3. Like the BALR instruction, the BCTR instruction
will not result in a branch if the R2 field contains

• • •

zero

4. The ’’branch on count" instruction (either BCT or
BCTR) will always reduce the 1st operand (Rl) by
a value o f______.

• • •

one

5. The ’’branch on count" instruction will result in a
branch if the 1st operand (R l)______(has/has not)
been reduced to zero.

• • •

has not

6. The reduction of the 1st operand occurs________
(before/after) deciding whether to branch.

• • •

before

7. BCTR 7,3

Assuming that register 7 contains a value of +1,
the above "branch on count” instruction_________
(will/will not) result in a branch.

• • •

will not; This is because the BCT instruction will
reduce register 7 by 1 before deciding whether or
not to branch. This will bring the contents of
register 7 to zero.

8. BCTR 7,3

Assuming that register 7 contains a value of zero,
the above "branch on count” instruction__________
(will/will not) result in a branch.

• • •

will; Since the register is reduced by 1 before
testing for a branch, register 7 was reduced to a
value of -1 and the branch did occur. In this case,
the preceding instruction would have to be
executed 23 ̂ times before register 7 could be
reduced to zero.

1

9. Examine the following program.

LOOP______ _______

BCT 5, LOOP
nsi

Assuming that GR 5 is initialized with a value of 5.
How many times will the routine be executed before
the next sequential instruction (nsi) is processed?

• • •

5 times. Programming note: All program loops
have 4 major characteristics. These are:
1. Initialize
2. Increment
3. Test
4. Branch

Notice that the T!branch on count” instruction
incorporates three of these characteristics within
its own internal operation.
1. It increments by reducing the value of the

general register by one.
2. It tests by testing for zero after incrementing.
3. It branches if a non-zero value is found in the

register tested.
It must, however, be initialized externally.

BRANCH ON INDEX HIGH INSTRUCTION

The "branch on index high” instruction is similar to the
"branch on count” instruction except that the increment
and the limit (comparand) are explicitly initialized by
the programmer.

Branch On Index High
BXH Ru Rv D2(B2) [RS]

86 R, «3 B2 D2
0 7 8 11 12 15 16 19 20 31

• An increment amount is added to the first operand
(Rl).

• The sum (index) is placed in the first operand.
• The sum is compared algebraically to the comparand

amount.
• If the sum is greater than the comparand, a branch

is taken to the address specified in the second
operand.

• If the sum is equal to or less than the comparand,
the next sequential instruction (nsi) is executed.

• The increment is stored in the register specified
by R3.

• If R3 is an even numbered register, the comparand
will be located in the next higher register.

• If R3 is an odd numbered register, the comparand
will be located in the register specified by R3 and
is equal to the increment.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Name Operation Operand
j ________________________________ 8 10________________14 16________________20_____________________25•' |r i :-| •

B X H 2 # 6 * B R A N C;H
i • |- :

In the above example,
Register 2 contains the index,
Register 6 contains the increment,
Register 7 contains the comparand (R3 is even),
BRANCH is the branch to address.

• • •

1. The "branch on index high” instruction has a
mnemonic o f ______

• • •

BXH

2. The BXH instruction uses the RS format. Label the
fields of the RS format.

«► • •

OP CODE R 1 R3 B2 D2

3. As with the other "branch" instructions you have
learned, the generated storage address (B2 and
D2 fields) is the_________________ .

• • •

"branch to" location

2

4. The HI field in the BXH instruction is the address
of the.. operand.

Normally the number in an instruction field
specifies which operand it is. For example, R1
specifies the 1st operand. However, in the case
of the BXH instruction, the H3 field is used to
specify the______operand.

• • •

first; second

5. The second operand is the R3 field register.

The third operand of a BXH instruction is also in a
register. If the R3 field is even, the third operand
is in the next odd-numbered register. That is, if
the R3 field is 4, the second operand is in register
_____ and the third operand is in register______.

• • •

4; 5

6. If the R3 field of a BXH instruction is odd, the
second and third operands are in the same register.
That is, if the R3 field is 5, the second operand is
in register_____and the third operand is also in
register_____ .

• • •

5; 5

7. Given the following "branch on index high"
instruction, indicate the locations of the three
operands.
BXH 4, 6, BRANCH2

1st operand is in register_____ .
2nd operand is in register______
3rd operand is in register______

• • •

4; 6; 7

8. Given the following "branch on index high"
instruction, indicate the locations of the three
operands.

BXH 3, 5, BRANCH2

1st operand is in register_____ .
2nd operand is in register______
3rd operand is in register___ ___ . •

• • •

3; 5; 5

9. BXH 7,4, BRANCH2

In the BXH instruction, the second operand is added
to the 1st operand and the sum is algebraically
compared to the 3rd operand. Given the above
instruction, register_____ will be added to register
_____ and the sum will be compared algebraically
to register_____ .

• • •

4; 7; 5

10. In the BXH instruction, the resulting sum replaces
the first operand after being compared with the
_____ (lst/2nd/3rd) operand.

• • •

3rd

11. Regardless of whether a branch does or does not
occur, the sum of the 1st and 2nd operands always
replaces the_____ (lst/2nd/3rd) operand.

• • •

1st

12. Given the following, indicate (in hex) the contents of
the registers after execution of the BXH instruction.

BXH 4, 6, BRANCH2

Everything in hex

Register 4
Before

+16
Register 6 -1
Register 7 +8

Register 4

• • •

+15
Register 6 Unchanged
Register 7 Unchanged

After

In the preceding problem, a value of -1 was added to a
value of +16 and the sum of +15 replaced the 1st
operand.

13. The sum of the 1st and 2nd operands is
algebraically compared with the_____ operand.

• • •

3rd

3

20. BXH 3, 5, BRANCH214. In an algebraic comparison, positive numbers are
 (lower/higher) than negative numbers.

• • •

higher

15. In the ’’branch on index high” instruction, the
branch occurs if the sum is higher than the____
(lst/2nd/3rd) operand.

• • •

3rd

16. BXH 4,6, BRANCH2

Register 4 00000000
Register 6 00000001 In Hex
Register 7 00000010

In the above BXH instruction, a branch________
(will/will not) occur.

• • •
will not

17. BXH 4, 8, BRANCH2

Register 4 0
Register 8 +16
Register 9 +16

In the above BXH instruction, a branch________
(will/will not) occur.

• • •

will not; This is because the sum is equal to but not
higher than the third operand.

18. BXH 3,6, BRANCH2

Register 3 +16
Register 6 + 1
Register 7 +16

In the above BXH instruction, a branch________
(will/will not) occur.

• • •
will

19. BXH 3, 8, BRANCH2

Register 3 -1
Register 8 -1 In Hex
Register 9 +1

In the above BXH instruction, a branch________
(will/will not) occur.

will not; The sum of registers 8 and 3 is a value of
-2. This is less than the +1 in register 9.

Register 3 +1
Register 5 +1 In Hex
Register 6 +2

In the above BXH instruction, a branc h ____________
(will/will not) occur.

• • •

will; Register 6 is not used in the preceding problem
The R3 field is odd. As a result, register 5 is used
for both the 2nd and 3rd operands. The sum of
registers 5 and 3 is a value of +2, which, of course,
is higher than the contents of register 5.

21. BXH 3,5, BRANCH2

Register 3 +16
Register 5 - 1 In Hex
Register 6 +511

In the above BXH instruction, a branch_________
(will/will not) occur.

• • •

will; A 2nd operand of -1 is being added to a 1st
operand value of +16 and the sum of +15 is high
compared to the 3rd operand value of -1. (GR5 is
the third operand)

BRANCH ON INDEX LOW OR EQUAL INSTRUCTION •

The ’’branch on index low or equal” instruction is very
similar to the ’ ’branch on index high” (BXH) instruction,
Here, however, the branch is taken if the value of the
first operand is less than or equal to the third operand
(the comparand).

Branch On Index Low or Equal
BXLE Rlt R3, D2(B2) [RS]

87 R, R3 B2 . D2
0 7 8 11 12 15 16 19 20 31

• An increment amount is added to the first operand
(Rl).

• The sum is placed in the first operand.
• The sum is compared algebraically to the

comparand amount.
• If the sum is equal to or less than the comparand,

a branch is taken to the address specified in the
second operand.

• If the sum is greater than the comparand, the next
sequential instruction (nsi) is executed.

4

• The increment is stored in the register specified
by R3.

• If R3 is an even numbered register, the comparand
will be located in the next higher register.

• If R3 is an odd numbered register, the comparand
will be located in the register specified by R3 and
is equal to the increment.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Name Operation Operand
?__________________________ 8 10 ____________14 ?6_____________20_________________ 25

" T * IN

’« p B X ê Ë L,’ ; 3 t 4 4# B R A N C H
': | L I i .{

'

In the above example,
Register 3 contains the index,
Register 4 contains the increment,
Register 5 contains the comparand (R3 is even),
BRANCH is the branch to address.

• • •
1. BXLE is the mnemonic for the "______on_______

_____ o r ______" instruction.

• • •

"branch on index low or equal"

2. The BXLE instruction is similar to the BXH
instruction in that the_____ operand is added to the
______operand and the sum is algebraically
compared to the_____ operand.

2nd; 1st; 3rd

3. Indicate the location of the operands in the following
BXLE instruction.

BXLE 3, 6, BRANCH2

1st operand is in register_____ .
2nd operand is in register______ _
3rd operand is in register______ .

• • •

3; 6; 7

4. When the sum of 1st and 2nd operands is higher than
the 3rd operand, the BXLE instruction differs from
the BXH instruction in that a branch____________
(does/does not) occur.

• • •

does not

5. With the BXLE instruction, a branch only occurs
when the sum of 1st and 2nd operands is________
o r _____ compared with the 3rd operand.

• • •

low; equal

6. BXLE 4, 6, BRANCH2

Register 4 +8
Register 6 +1
Register 7 +16

In the above BXLE instruction, a branch_________
(will/will not) occur.

• • •

wül; The sum is lower than the contents of register
7.

7. BXLE 5, 5, BRANCH2

Register 5 +1

When the same register is used for both the 1st and
3rd operands, the sum is compared with the
original contents of the register. In the above
BXLE instruction, a branch_____ (wiH/will not)
occur.

• • •

will not; In this case, the same register is used for
all three operands. The 3rd operand is the original
contents of reg 5. Obviously, then the System/360
will have to bring the contents of this register into
ALU (Arithmetic and Logic Unit) and store it in some
register so its original contents wül not be lost
when the 1st and 2nd operands are added together.
If at a later time, this instruction is executed again,
the sum from the first execution would be used as
the 3rd operand.

5

STORE MULTIPLE INSTRUCTION

The "store multiple" instruction is similar to the
"store" (ST) instruction except that more than one
consecutive register may be stored in consecutive
fullword storage locations.

Store Multiple
STM Rlt R3t D2(B2) [RS]

90 Ri R3 B2
0 7 8 11 12 15 16 1920 31

The data in a set of general registers starting with the
register specified by R^ and ending with the register
specified by R3 inclusive, are stored in a corresponding
number of fullword storage locations beginning at the
address specified by the second operand.

• The second operand must be on a fullword integral
boundary.

• The general registers are stored in ascending order
of their addresses starting with R^.

• Register 0 follows register 15 as a "wraparound"
condition is permitted.

• The contents of the general registers is not
changed.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection
Addressing
Specification

Name Operation Operand
J___________________________8 10_____________ 14 16_____________ 20_________________ 25

111 j nr
I 111

i
| : s T M 6 i j S I « 1 S S

U
U

!H s
1__ ! i

Seven full words will be stored starting at storage
location ISSUES from general registers 6 through 12
respectively.

• ••
1. The STM instruction uses the RS format. Label the

fields of the RS format.

r

• • •

1 OP CODE R l R3 B2 D2

2. Like the ST instruction, STM___________________
(changes/does not change) the condition code.

• • •

does not change

3. STM 0,15,2000(0)

In the above STM instruction, register 0 through
_____ will be stored in byte locations 2000 through

• • •

15; 2063

4. STM 0,15,2002(0)

The above STM instruction will result in a
s_______ exception.

• • •

specification; Address 2002 is okay for halfwords
but not for fullwords. The STM instruction uses
the entire contents (fullword) of the registers.

ADD AND SUBTRACT LOGICAL INSTRUCTIONS

The "add and subtract logical" instructions are similar
to the "add" (A) and "subtract" (S) instructions except
that no overflow exception occurs (a "carry" is
indicated by the condition code) and all 32 bits
(unsigned) take part in the operation. This instruction
may be used to perform binary addition and subtraction
of numbers greater than 31 bits in length.

Add Logical
ALR Rlf R2 [RR]

IE R , R2
0 7 8 11 12 15

AL Rl f D2(X2fB2) ["*]

5E R , X2 B2 °2
0 7 8 11 12 1516 1920 31

The fullword second operand is added to the first
operand (Rl) and the sum is placed in the first operand
location.

6

AL and ALR:
• The first and second operands and the sum are 32

bit unsigned integers.
• This operation differs from the algebraic add in

that no program interruption occurs on an overflow.
Here an overflow is called a "carry” .

AL only:
• The second operand must be on a fullword integral

boundary.

Condition Code:
0 Sum is zero (no carry)
1 Sum is not zero (no carry)
2 Sum is zero (carry)
3 Sum is not zero (carry)

Program Interruptions:
Addressing (AL Only)
Specification (AL Only)

Subtract Logical
SLR RIf R2 [RR]

IF Ri R2
0 7 8 11 12 15

SL Ru D2(X2,B 2) m

5F R , X2 B2 °2
0 7 8 11 12 1516 1920 31

The fullword second operand is subtracted from the
first operand (Rl) and the difference is placed in the
first operand location.

SL and SLR:
• The first and second operands and the difference are

32 bit unsigned integers.
• This operation differs from the algebraic subtract

in that no program interruption occurs on an
overflow. Here an overflow is called a "carry".

SL only:
• The second operand must be on a fullword integral

boundary.

Condition Code:
0 —
1 Difference is not zero (no carry)
2 Difference is zero (carry)
3 Difference is not zero (carry)

Program Interruptions:
Addressing (SL only)
Specification (SL only)

Logical Add and Subtract

Mnemonic
Hex Op

Code Data Flow

A L 5 E Fullword storage to register
A L R 1 E Fullword register to register
S L 5 P Fullword storage from register
S L R 1 F Fullword register from register

• • •

1. To differentiate the "logical add/subtract"
instructions from the "algebraic add/subtract"
instructions, which you previously learned, the
logical instructions include the letter_____ in their
mnemonics.

• • •

L

2. Just like the algebraic instructions, the logical
instructions denote the RR format by the ending
letter o f _____.

• • •

R

3. The length of both operands in the "logical add/
subtract" instructions is always a _____ .
Therefore, these instructions do not use the
mnemonic, _____ _

• • •

fullword; H

7

The instruction AH calls for an algebraic add (signed
numbers) while the ALR instruction calls for a logical
add (unsigned numbers). Actually, the arithmetic
results are the same for both algebraic add/subtract
and logical add/subtract.

The resulting condition code of the following
Mlogical addn would be_____ .

1 0 0 1 0 0 0 1 + 1 1 0 1 0 0 0 1

• • •
Algebraic Add

0 1 1 0 1 1 0 1
0 0 1 1 1 0 0 0
1 0 1 0 0 1 0 1

Logical Add

0 1
0 0

0 1
0 0

1 0 1 0 0 1 0 1

3 (carry)

In summary then:

1.

Notice that the arithmetic results of the previous
example are the same. The operands shown were
8 bits in length for purposes of simplicity. If the
arithmetic results of algebraic and logical addition
are the same, what is the difference between the
two types of instructions ?

• • •

The difference is in the consideration of the sign
bit (Logical has none).

2.

The arithmetic results of "logical" and
"algebraic" addition of binary operands are
_____ (identical/ different).
The "logical add/subtract" instructions use
_____ (halfword/fullword) operand only.

3. A "logical add/subtract" instruction.

Algebraic Add Logical Add 1
Condition

Code Algebraic Logical
0 1 1 0 1 1 0 1+ 0 1 1 0 1 1 0 1 0 Zero Result No carry, zero
0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 Negative

Result
Positive

No carry, non-zero

Carry, zero
' 10 1 0 0 1 0 1

Condition Code = 3

1 0 1 0 0 1 0 1

Condition Code = 1 2

In the preceding example of an algebraic add, a fixed 3
Result
Overflow Carry, non-zero

point overflow resulted because of a carry into the sign
position without a carry out of it. This overflow was
indicated by a condition code of 3.

In the case of the preceding logical add instruction, a
fixed point overflow cannot possibly occur because there
is no sign bit to consider. All that can be indicated is:

Condition Code

0
1

Meaning

No carry and zero result
No carry and a non-zero
result
Carry and zero result
Carry and a non-zero
result

5. The resulting condition code of the following
"logical add" would be_______

1 0 0 1 1 1 0 0 + 0 1 0 0 1 1 0 0
1 1 1 0 1 0 0 0
• •

1 (no carry)

4.

5.

(can/cannot) result in a fixed point overflow.
The "logical add/subtract" instructions use
the letter_____ in their mnemonic.
The condition code settings and their meanings
are as follows:

• • •

identical; fullword; cannot; L

Before going on to more instructions, let’s consider one
use of the "logical add/subtract" instructions.

As you learned in the beginning of the "add" instruction
section, only words and halfwords can be added. What
happens when a programmer desires to add two
doublewords ? What he can do is place the high-order
word of the 1st operand in one register and the low-
order word in another. Then he can logically add the
low-order word of the 2nd operand to the low-order
word of the 1st operand. There is no fixed point
overflow possible. He can then test the condition code
for a carry. If a carry resulted, he can add a value of
+1 to the high-order word of the 1st operand. In any
case, the last step would be to algebraically add the
high-order word of the 2nd operand to the high-order
word of the 1st operand. The following flowchart and
sample program should illustrate this more clearly.

8

F L O W C H A R T O P E R A N D S

1ST OPERAND
(DOUBLEWORD IN TWO REGISTERS)

0 31 0 31-------------------------------------- |---

REG. 2 REG. 3

/
SIGN\

2ND OPERAND
(DOUBLEWORD IN STORAGE)

SIGN

/

t \
BYTE BYTE BYTE

LOCATION LOCATION LOCATION
2048 2052 2056

(DOUBLE) (HALF)

PROGRAM

Assume: HALF is the address of a halfword containing a value of + 1.

AL 3, DOUBLE+ 4 Add logical DOUBLE*4 (location 2052) to Reg. 3.

BC 12, NOCARRY Branch if there is no carry to the algebraic add.

AH 2, HALF Add + 1 to Reg. 2.

NOCARRY A 2, DOUBLE Add algebraic DOUBLE (location 2048) to Reg. 2.

SPECIAL LOAD INSTRUCTIONS Load Positive

In addition to the "load" instructions previously covered
(LR, L, LH) there are several special purpose load
instructions. These are special in the manner in which
they affect the condition code and how they may also
change the data as it is loaded. These instructions are
all register to register operations.

Load and Test

ITR Rlf R2 [RR]

0 7 8 11 12 15

• The second operand is placed in the first operand
location.

• The second operand is tested for sign and magnitude
and the condition code is set accordingly.

Condition Code:
0 R2 is zero
1 R2 is less than zero
2 R2 is greater than zero
3 —

Program Interruptions:
None

Name O peration Operand
J____________________________________8 10__________________14 16_________________ 20__________ 25

•MI , jS; j LTR 3..121 '
'

\ j
L . .Li.. i j !

Load Complement
LCR Rlf R2 [RR]

1 3 R j R2

0 7 8 1 1 1 2 1 5

The twofs complement of the second operand is placed in
the first operand location.

• Positive numbers are made negative.
• Negative numbers are made positive.

Condition Code: (The condition code is set after the
operation is completed.)

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed point overflow.

Name O peration Operand
1____________________________________8 10__________________14 16_________________ 20_______________________ 25

r - * ;|
i LCR to • <

.IO.

LPR R„ R2 [RR]

io | ~ R2
0 7 8 1112 15

The absolute value of the second operand is placed in the
first operand location.

• Positive numbers remain unchanged.
• Negative numbers are made positive.

Condition Code: (The condition code is set after the
operation is completed.)

0 Result is zero
1 —
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed point overflow.

Name O peration O perand
J____________________________________8 10__________________14 16_________________ 20_______________________ 25i 1 ! i ; • | j Hi j i 1 ! ! LPR 7,1 0i■ I ! ■ ' * : 1 j i j

Load Negative

LNR Rj, R2 [RR]

0 7 8 11 12 15

The twoTs complement of the absolute value of the second
operand is placed in the first operand location.

• Positive numbers are made negative.
• Negative numbers remain unchanged.

Condition Code: (The condition code is set after the
operation is completed.)

0 Result is zero
1 Result is less than zero
2 ~
3 —

Program Interruptions:
None

Name O peratio n O perand
8 10 14 16 20 25’—p—I—~r—— T " —r—i—!————|—1—|——i—■>...... I -""Ii. i i j -j—P-p—■..1 . 1 . j : j

LNR 9, 4 1 j
1 [. i ' |

10

Hex Op
nemonic Code Data Flow

LTR 12 Load and test (only sets condition
code)

LCR 13 Load complement (complements
the data)

LPR 10 Load positive (complements
negative data)

LNR 11 Load negative (complements
positive data)

1. As indicated by the last letter of their mnemonics,
the four instructions you just read about use the
_____ format. All four of these instructions can
change the c _______c_______ .

• • •

RR; condition code

2. The only difference between the LR instruction and
the "load and test" (LTR) instruction is the effect on
the________________________.

• • •

condition code; By specifying the same register in
the R1 and R2 fields, the LTR instruction can be
used to test the contents of a register.

3. The "Load Complement" (LCR) instruction will
change the condition code and will a lso___________
data.

6. The "Load Negative" (LNR) instruction
complements_____ numbers.

• • •

positive; The LNR instruction Loads Negative
numbers into the register regardless of the
original sign of the numbers.

7. The only positive number that cannot be
complemented by either the LCR or the LNR
instruction is z______.

• • •

zero

8. Given the following list of mnemonics, indicate the
effect (changed/unchanged) on the condition code and
on the data as it is loaded.

Mnemonic Condition Code Data

LR _______________ _______________
L _______________ _______________
LH _______________ ________________
LTR _______________ ________________
LCR _______________ _______________
LPR _______________ _______________
LNR _______________ _______________

• • •

Mnemonic Condition Code Data
• • •

complement

4. With the LCR instruction, the condition code shows
the status of the data_____ (before/after) it was
complemented.

• • •

after

5. The "Load Positive" (LPR) instruction only
complements_____ (positive/negative) numbers.

• • •

negative; The LPR instruction loads .Positive
numbers into the register regardless of the
original sign of the numbers.

LR Unchanged Unchanged
L Unchanged Unchanged
LH Unchanged Unchanged
LTR Changed Unchanged
LCR Changed ♦All data is

LPR Changed
complemented

Negative data is

LNR Changed
complemented

♦Positive data is

*With the Exception of Zero

complemented

11

LOAD ADDRESS INSTRUCTION

The "load address" instruction is another of the special
purpose instructions. It is ordinarily used to load into
a general register, for later usage or modification, the
actual value of a symbolic address.

Load Address
LA Rlf D2(X2, B2) [RX]

41 R, X2 B2 D2
0 7 8 11 12 15 16 1920 31

• The address of the second operand is stored in bits
8 - 31 of the general register specified by the first
operand.

• Bits 0 - 7 of the register are set at zero.

Condition Code:
The code remains unchanged.

Program Interruptions:
None.

Operation
10 14 16

Operand
25-

L A 9 f t a A R ** N
.... L—

* * *

1. LA is the mnemonic for the
instruction.

• • •
"load address"

format.2. The LA instruction uses the
• • •

RX

The "load address" instruction will place in the
specified register: (Circle one of the following.)
a. A word from main storage.
b. The generated storage address.

• • •

4. The generated 24-bit storage address will be placed
in bits______through_____ of the specified register.

• • •

8; 31

As a result of an LA instruction, bits 0-7 of the
specified register: (Circle one of the following.)
a. Remain unchanged.
b. Are zeroed out.

• • •

Given the following "load address" instruction,
show the resulting contents of the specified register.

LA 1,800(0,0)

• • •
800 (decimal)

Given the following "load address" instruction,
show the resulting contents of the register.

LA 1,800(0,1)

0 0 0 0 0 8 0 0

• • •

1600; In the preceding problem, the contents of
register 1 were used as a base address in
generating an effective storage address:

Base Address 8 0 0
+ Displacement 8 0 0

Effective Address 16 0 0

The effective address was then placed in register 1.

Given the following "load address" instruction,
show the resulting contents of the register.

LA 2,0 (1, 1)

BEFORE REG. 2

8 7 4 6 A F 1 7
REG.1

OOOOI OOO

AFTER

• • •

0 0 0 0 2 0 0 0

12 (11/68)

9. Given the following ’’ load address” instruction,
show the resulting contents of the register.

LA 3,0(2,1) >

BEFORE REG.3 ______________ REG.2 ______________ REG.1 [r

F F F F F F F F 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 4

AFTER t _________ I

• • •
0 0 0 0 3 0 0 0 *

V
The preceding instructions show how successive base !
addresses could be loaded into general registers f
(although it is not usually done this way). Let’s take |
another look at these instructions in a symbolic program. \

LA 1,2048 (0,0) NOTE: Refer to System/360
ji
1

LA 1, 2048 (0,1) Reference Data Card (X20-1703) iLA 2, 0 (1, 1) for meaning and sequence of
LA 3, 0 (2 ,1) symbolic notation. See the

Operand column under Standard
Instruction Set.

10. Examine the preceding program. Then indicate
below (decimally) the base address that will be in
each register at the completion of the program.

Register 1___________
Register 2___________
Register 3 ______

• • •

Reg. 1 4096
Reg. 2 8192
Reg. 3 12288

The ’ ’load multiple" instruction is closely associated
with the "store multiple" instruction as well as the
"load" (L) instruction. The "load multiple" instructions
load more than one consecutive general registers with
data from consecutive fullword storage locations.

Load Multiple

LM Rlt *3, D2(B2) [RS]

LOAD MULTIPLE INSTRUCTION

98 R, R3 B2 °2
0 7 8 11 12 15 16 1920 31

The data in a set of consecutive fullword storage
locations starting at the address specified by the
second operand, are placed in consecutive general
registers starting at the register specified by Ri and
ending at the register specified by R3.

• The second operand must be on a fullword integral
boundary.

• The general registers are loaded in ascending
order of their addresses starting with R l.

• Register 0 follows register 15 as a "wraparound"
condition is permitted.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing
Specification

Note: The storage location specified by the second
operand (QUANT in the above example) must be on a
fullword integral boundary.

(11/68) 13

1. The LM instruction uses the RS format. Label the
fields of the RS format.

• • •

OP CODE R 1 R3 B2 D2

2. Like the L instruction, the LM_______________
(changes/does not change) the condition code.

• • •

does not change

4. LM 2,4,2004(0)

In the above LM instruction, register 3 will be
loaded with the contents of byte locations______
through^_____

• • •

2008; 2011

5. LM 0,15,2002(0)

The above LM instruction will result in a _____
exception.

• • •

specification; Address 2002 is okay for halfwords
but not for fullwords. The LM instruction uses the
entire contents (fullword) of the registers.

3. LM 2,4,2004(0)

In the above LM instruction, byte locations 2004
through 2015 will be loaded into registers______
through_____ .

• • •

2; 4

14

EDIT AND MARK INSTRUCTION

The "edit and mark" instruction is identical to the
"edit" (ED) instruction except that provision is made in
the "edit and mark" instruction for insertion of the
dollar sign in a "floating dollar sign" operation. The
"floating dollar sign" operation permits placing the
dollar sign immediately to the left of the first
significant digit in the edited result.

Edit and Mark
EDMK Dj(L, Bj), D2(B2) [SS]

DF L Bi I K B2)1J *
0 7 8 15 16 19 20 31 32 35 36 47

The format of the second operand is changed from
packed to zoned and edited under the control of the edit
pattern (the first operand).

• The address of the first significant digit
encountered prior to a significance-start character
is stored in bits 8-31 of general register 1.

• The address is not inserted in GR1 when significance
is forced by the significance-start character.

• Bits 0-7 of GR1 are not changed.
• This instruction facilitates the programming of the

floating dollar sign.

Condition Code:
0 Edited result is zero
1 Edited result is less than zero
2 Edited result is greater than zero
3 —

Program Interruptions:
Operation (If decimal feature is not installed)
Protection
Addressing
Data

Name Operation Operand
1 8 10 14 16 20 25 30 35 40 45 50■—p—-.f----! —»ir*,""!'"v- i -■ ---- -—-r--- - 'xv""f —."r11...T"1111 '? rr*..... 1 n.....—!--- ---- r ...-v ■ s-------- r—r1— ----r— --- f".'""T—-
i j... ; ! , 1 i ; mm111 [iliiiii I ; “ • " ~ 7

1 , > : 1. ! ■ \ ■. -.I : v i : :: M$ c WORK!. pAt It Ir N11f i i l i 0 V i P ATTERn; \ I i0
* , : 1 . 1 • .. . 1 . ; • j : ■ ; ■ i W1 RK i i

LA 1 . W 0 RK + 6 STORE ADDRESS OF •
* S 1 6N 1 F 1 CANCE- START + 1

EDMK WORK . DATA e D 1 T DAT A
* ——T- " . i : i

. Bm R i Ü RIDUc Ai 1 R £ S S B Y fi
Mi l l : i) .0 OIL L A R M0 V E $Lj s 1GN T0

* ■ ; A DDRES S
* :
P ATT R N DC X ' 402 06B20 202 14B 2 0 2 040C3D9 1
d |o i i A R D c ® i l ■■ : * ! l l i i

-1- | ’'ö iii.„«mm

15

1. ED is the mnemonic for the "edit” instruction
while EDMK is the mnemonic for the

___________ _______” instruction.

• • •

’’edit and mark”

2. Is there anything that the ED instruction can do that
the EDMK instruction can’t do?_____ (Yes/No)

• • •

No

3. What, then, is the difference between the ED and
EDMK instructions?________________________________

• • •

The EDMK instruction causes the address of the 1st
significant digit of the result to be placed in
general register 1.

4. What happens on an EDMK instruction when
significance is started by a significant start
character ? _____________________________________

• • •

No address is placed in register 1

5. Does the EDMK instruction insert the floating
currency sym bol?__________________________________

• • •

no; the symbol must be inserted by subsequent
instructions.

6. The address placed in register 1 is: (Circle one of
the following.) fj 1.
a. The location where the currency symbol (such as

$) should be inserted.
b. The location +1 where the currency symbol

should be inserted.

• • •

b; Register 1 has the address of the 1st significant
digit. The currency symbol (such as $) should be
placed just to the left of this digit.

By using the RR format and an R2 field of zero,
register 1 can be reduced. For example:

BCTR 1,0

After the BCTR instruction, the ’’move character”
instruction (MVC) can use register 1 as a as register
and move a dollar sign (currency symbol) into the
desired location. (See example presented with the
description of the EDMK instruction.)

COMPARE LOGICAL INSTRUCTIONS

You learned three ’ ’compare” instructions when you
were studying the fixed point instructions. Their
mnemonics are:

CR Compare, RR format
C Compare, RX format
CH Compare Halfword, RX format

These three ’ ’compare” instructions compared on an
algebraic basis. In other words, they treated the
operands as signed binary integers. The operands
were either positive or negative numbers. The
’’compare logical” instructions you will now learn also
treat the operands as binary information. However,
they will be considered as unsigned binary fields. For
example, consider the comparison of the following
binary fields on an algebraic basis.

Sign Integer
— v

Compare 0 0 0 0 0 0 0 1 1st Operand

Algebraic 1 1 1 1 1 1 1 1 2nd Operand

Because the 1st operand is a positive number (+1)
and the 2nd operand is a negative number (-1), the
1st operand is high and the condition code would be
set to____ .

• • •
2

2. If the same fields were compared on a logical basis
they would be treated as unsigned integers and the
absolute values would be compared as follows:

7. What instruction can be used to reduce the address
in register 1 by one ? _____ ________________________

• • •

Branch and Count; without a branch.

Compare 0 0 0 0 0 0 0 1 1st Operand

Logical 1 1 1 1 1 1 1 1 2nd Operand

In the above example, the 1st operand would
compare low and the condition code would be set
to______ This occurs because an unsigned value of
1 is being compared with an unsigned value of 255.

16

The programmer must know what format his data is in
before he can compare it. If his data consists of signed
binary words or halfwords, he would use his three
"algebraic” instructions: CR, C, CH. If his data
consists of unsigned binary fields, he would use the
"logical” instructions. As a point of interest, the
EBCDIC code is so arranged that the special and
alphameric characters will collate on a binary basis.
That is, the "compare logical" instructions are used to
compare EBCDIC characters.

Let!s look at the coding for some EBCDIC characters.

"A" 11000001
"Z " 11101001

3. On a compare logical basis, which is low?_________
("A" or "Z ")

• • •

"A"

4. " 1" 11110001
"Z " 11101001

On a compare logical basis, which is low?_________
("1" or "Z ")

• • •

"Z "

5. "#" 01111011
"A " 11000001

On a compare logical basis, which is low ?_________
("#" or "A")

• • •

The preceding examples should agree with the collating
sequence you may be familiar with in your past
experience with punched card equipment or equipment
which used the standard BCD code (BA 8421). This is
illustrated as follows:

l o w I 4 I
I f 1-4----S P E C IA L CH A R A CTER S
L i l

-4----A LP H A B ET IC CH A R A CTER S

> f
HIGH

N UM ERIC CH A R A CTER S

You now have an idea of the difference between
algebraic and logical comparisons.

Mnemonic Format Comparison
Length of
Operands

CLR RR Register vs. Register Fullwords
CL RX Storage vs. Register Fullwords
CLI SI Immediate vs. Storage One byte
CLC SS Storage vs. Storage 1-256 bytei

Compare Logical
Ci* ft;, R2 [RR]

15 Ri R2
0 7 3 1112 15

a A„ D2(X2, b2) [AX]

55 X2 B2^1
0 7 3 11 12 1516 1920 31

CLI D M) , l2

95 !2 B, D1
0 7 I 1516 19 20 31

CLC Oj(L, Bj), D^B2) [SS]

D5 L B , I f l B2 IK
0 7 5 1516 17 20 3132 35 30 47

All:
The first operand is compared with the second operand
and the result is indicated in the condition code.
• Comparison is binary (that is bit by bit).
• Comparison proceeds from left to right.
• Comparison ends as soon as inequality is found.

CL only:
• The fullword second operand must be on a fullword

integral boundary.

CLI only:
• One byte at the storage location specified by the

first operand is compared with one byte of
immediate data.

CLC only:
• The number of bytes to be compared is specified by

the implicit or explicit length of the first operand.

17

Condition Code:
0 Operands are equal
1 First operand is low
2 First operand is high
3 —

Program Interruptions:
Addressing
Specification (CL only)

O peratio i Operand“ T X T .F
CLR 2 , 3 j 1

CL 4.TES T

CLI CODE , C ' E '

CLC NAME , = C ' SM1 TH '
•••

1. In both the CL and CLR instruction, the 1st operand
is the register specified by the_____ field. The
instructions cause a_____ (logical/algebraic)
comparison. As a result of the comparison, the
____________ is set.

• • •

HI; logical; condition code

2. The condition code settings of 0, 1 , 2 indicate that
the_____ (ls t /2nd) operand is equal, low, or high
compared to the_____ (lst/2nd) operand. After a
compare operation, it is impossible to have a
condition code o f _____.

• • •

1st; 2nd; 3

3. Given the following CLR instruction, indicate the
resulting condition code bits in the PSW.

GR2

CLR 2,3

GR3
o o o o o o o o F F F F F F F F

Condition Code =_

• • •

1; if the CR (compare algebraic) instruction had
been used, the 1st operand would have been high.

I 4. Given the following CL instruction, indicate the
I resulting condition code.
I CL 2,800(0,0)

GR2
8 0 0 0 0 0 0 0 F F

Condition Code

• • •

2; By examining the four high-order bits, you can
see that the 1st operand is high.

1st operand - 1000
2nd operand - 0111

Besides the CLR and CL instructions, System/360
can also compare logical using the SI and SS
formats. CLI is the mnemonic for the
" ______________________ " instruction.

• • •

"compare logical immediate"

The "compare logical immediate" instruction uses
the SI format. In this format, the 1st operand is in
______________ (main storage/the instruction).

main storage

7. The CLI instruction compares on a(n)_
(algebraic/logical) basis. The comparison is
between one byte in storage and one byte in the

logical; instruction

• • •

18

8. CLI 2048(0),X !AF

LOCATION 2 0 4 8

In the above CLI instruction, the 1st operand is___
(low/high) and the resulting condition code is_____ ,

• • •

low; 1; In the SI format, the 1st operand is in main
storage.

9. CLI 2048(0), X T07f

Q
LOCATION 2 0 4 8

In the above CLI instruction, the 1st operand is___
(low/high) and the resulting condition code is_____

• • •

high; 2

10. The CLR and CL instructions compare one________
(byte/word/halfword) of data with another.

The CLI instruction compares one____________
(byte/word/halfword) of data with another.

• • •

word; byte

11. The compare logical operation can also be done
with the________ (SS/RS) format.

• • •

SS

12. CLC is the mnemonic for the "compare logical"
instruction which uses the______ format.

• # •

SS

13. CLC means Compare Logical Characters. This
instruction has an 8-bit length code and can
compare up to______characters.

• • •

256

14. The name of the CLC instruction indicates that
characters are being compared. Actually, bytes
are being compared on an unsigned binary (logical)
basis. As was previously pointed out, however, the
EBCDIC code assigned to characters is arranged so
that they will collate on a binary basis.

CLC 2048(1,0), 2050(0)

C7 D4 E 7 F 4
2 0 4 8

In the above CLC instruction,_____ character(s)
will be compared and the condition code will be set
to_____ .

• • •

two (one from each operand) 1

15. The coding of the byte at location 2048 above could
represent the EBCDIC character ’!______Use
your System/360 Reference Data Card (X20-1703)
to answer these questions.

• • •

"G"; Because hex C7 equals the EBCDIC "G"

16. The coding of the byte at location 2049 could
represent the EBCDIC character "______" .

• • •

"M "

17. The coding of the byte at location 2050 could
represent the EBCDIC character "______" .

• • •

"X"

18. The coding of the byte at location 2051 could
represent the character ______".

• • •

(11/68) 19

19. CLC 2048(4,0), 2052(0)

LO C A T IO N S 2 0 4 8 - 2 0 5 1 JOHN

LO C A T IO N S 2 0 5 2 - 2 0 5 5 LU K E

Given the above characters and CLC instruction,
the condition code will be set to______.

• • •

1; In the preceding problem, JOHN was the 1st
operand and LUKE was the 2nd operand. The high-
order character (J) of the 1st operand was lower than
the high-order character (L) of the 2nd operand.

"J" - 11010001
"L" - 11010011

20. CLC 2048(8,0), 3840(0)

LO C A T IO N S 2 0 4 8 - 5 5 - JOHNSTON

LO C A T IO N S 3 8 4 0 - 4 7 - JOH AN SEN

Given the above characters and CLC instruction,
the condition code will be set to______.

• • •

2; On the first three high-order characters (JOH),
both operands are equal. On the fourth character,
the 1st operand will compare high as follows:

1st operand - MNM - 11010101
2nd operand - "A” - 11000001

21. You should now realize that the comparing is done
for all practical purposes from ____________ (left to
right/right to left).

• • •

left to right

■ 23. List the mnemonics and the instruction formats of
the four " compare logical" instructions.

Mnemonic Instruction Format

Mnemonic Instruction Format
CLR HR
CL RX
CLI SI
CLC SS

24. List the mnemonics and formats of the three
"compare algebraic" instructions.

Mnemonic Instruction Format

• • •

Mnemonic Instruction Format
CR RR
C RX
CH RX

25. What is the main difference between the CR and
CLR instructions?

• • •

The CR instruction will treat the contents of a
particular register as a signed integer (sign and 31
bits). The CLR instruction treats the contents of
the same register as an unsigned 32-bit integer. As
a result, the condition code setting may vary,
depending on the instruction used.

22. As a result of comparing the bytes from left to
right, it is not necessary to examine the entire field.
The compare operation assumes that the fields are
equal to begin with. In examining the bytes from
left to right, the system can end the compare
operation as soon as it finds an u______ condition.

• • •
unequal

20

26. Given the contents of the following two registers,
indicate the resulting condition code for the
instructions shown,

REG 2______________________

8 0 0 0 0 0 0 1

CONDITION CODE

a. CR 2,3 _____________

b. CLR 2,3 ______________

• • •

a. 1 - Reg 2 has a negative number.
b. 2 - Reg 2 has a higher value.

27. Assume that a card record punched in standard card
code has been read in main storage. The record
contained alphabetic characters. To compare two
fields in this record, which would you d o?_________
_________ (compare logical/compare algebraic).

• • •

REG 3

0 0 0 0 0 0 0 1

compare logical

TRANSLATE INSTRUCTION

1. The "translate” instruction will allow us to
translate bytes of data: (Choose one of the following.)
a. From one character code to any other

character code.
b. Only from EBCDIC to some other character

code.
c . Only to EBCDIC from some other character

code.
d. Only from EBCDIC to ASCII.

• • •

a; The bytes to be translated can be in any character
code. These bytes can be translated to any other
desired code.

LetTs look at this concept of translating from a program­
m er^ viewpoint and see how he would handle a simplified
translating problem.

—
Card Input — ► Computer — ►Printed Output

2. The basic job that is to be accomplished is the
printing of a report. Input to the system is in the
form o f_______________.

• • •

Two "logical" instructions for you to study are the
"translate" instruction and the "translate and test"
instruction. If you do not have systems experience and
are unfamiliar with the terms translate or table look up,
these instructions may be among the most difficult of
those you have encountered. Therefore, letTs examine
the concept of translating before reading the description
of these instructions.

- 8
First of all, there is data to be translated. This data
may be in any code form we wish. The only code you 1
have studied in the System/360 is EBCDIC. There are, |
of course, other codes in use with computers. For
instance, there is an 8-bit paper tape code and the 8-bit
ASCÜ code. The "translate" instruction will allow us to
translate data from one code to another, byte by byte. %

IBM punched cards

Assume that the cards were punched on a card punch
that did not have special character keys. The machine
could only punch numeric and alphabetic characters.

The operator who punched the cards used alphabetic
symbols to represent the special characters. For
example, the character P was used to represent a + sign.

Special Characters Alphabetic Symbol
+ p
- M
N
$ D
i C
& A

The chart shows how each of the special characters was
represented by an alphabetic character.

(11/68) 21

3. Argument TableGiven the following listings on a source document,
indicate the characters that one operator actually
punched in the cards.

Source Document IBM Card

-79ft __________
$120+ ______________
E & F & # 3 ___________

• • •

M79C; D120P; EAFAN3

4. The input cards that are used in our simplified
application________(do/do not) contain special
character punching.

• • •

do not

5. The output of this simplified application is to be in
______form. It is desired to have the listings on the
printed report contain the special characters rather
than the alphabetic symbols. Therefore, the
computer must convert or t ________ the input data
before sending it to the printer.

• • •

printed; translate

Now, let's see how the programmer can use the
"translate” instruction to solve the problem just
discussed.

First, two tables must be established. They are
the function table and the argument table.

6. The f _ ______table consists of the desired
characters. In our application, the function table
will consist of the___________ (special/alphabetic)
characters.

• • •

function; special

7. The a _ _______ table consists of all the data that may
have to be converted. In our application, the
argument table will consist of the___________
symbols.

• • •

argument; alphabetic

8. In the next step, the programmer writes down all
the possible data to be converted. Then he
arranges it in binary bit sequence and forms the
a__________ table.

A 1100 0001
US (Unused Symbol) 1100 0010

C 1100 0011
D 1100 0100

US 1100 0101
US 1100 0110
US 1100 0111
US 1100 1000
US 1100 1001

M
N

P

US
US
US

US

1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111

argument
• t t

9. Now the programmer can make up the f _______
table. The table will indicate where the s _____
characters should be stored so that they can be
easily located and used in place of the a _______
symbols (argument table).

• • •
function; special; alphabetic

10. Argument Table Function Table
(Table address is 6807)

Argument Function Storage
Bytes Bytes Locations

A 1100 0001 & 7000
US 1100 0010 7001

C 1100 0011 i 7002
D 1100 0100 $ 7003

US 1100 0101 7004
US 1100 0110 7005
US 1100 0111 7006
US 1100 1000 7007
us_ 1100 1001 7008

US 1101 0001 7016
US 1101 0010 7017
US 1101 0011 7018

M 1101 0100 - 7019
N 1101 0101 # 7020

US 1101 0110 7021
P 1101 0111 + 7022

The function table is actually located in s

The argument table is made up on paper by the
programmer. Its only use is to create the f __
table in__________ .

• • •
storage; function; storage

22

Translate
TR D,(L, B,), D2(B2) [SS]

DC L Bi r r B2
i l K

0 7 8 15 Id 19 20 31 32 35 35 47

The value of the eight bit bytes of the first operand
(arguments) are added to the address of the table speci­
fied by the second operand (functions) and the function
byte at the effective address location replaces the
corresponding argument byte.

• The argument bytes are translated one at a time.
• Translation proceeds from left to right.
• The number of bytes to be translated is determined

by the implied or explicit length of the first
operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection.
Addressing.

• • •
11. The byte or bytes in the first operand are the

characters that are to be converted or t__________ .
They are called a _________ bytes. In the simplified
application that you just studied, a first operand
argument byte could be a _________ (D/$). Note that
the bytes in the first operand are converted one byte
at a time.

• • •
translated; argument; D

12. The second operand is the f_______ .table. In the
simplified application, the address of the second
operand would be_______ .

• • •
function; 6807

13. The fTtranslate,r instruction does the following:
1. Takes the binary bit value of an argument byte

and adds it to the second operands address.
2. The resulting address is used to locate a

function byte.
3. The function byte replaces the argument byte

(1st operand).

The binary bit value of the first argument byte (A)
is______in decimal.

• • •
193

14. The addition of this value to the decimal value of
the function table address (6807 in our example)
results in the storage location address of the
desired function byte. The address of the function
byte corresponding with M is____ ^in decimal.

• • •
7019; M=11010100 binary=212 decimal
212+6807=7019

15. The function byte will then replace the argument
byte in storage.

TR LETTER(l), FUNCTAB
If LETTER is the address of the letter M to be
translated

M

I33 PSw w
£ ['-4 I

\'-4 i■H
s w w
ï ■A

Before
I
A After?

What will the storage location LETTER contain
after the execution of the instruction?

• • •

«w

M=1101 0100 =212 decimal
FUNCTAB =6807 decimal
Function =7019 decimal
Function charaeter=0110 0000 = —

The execution of the TR instruction is completed
when — replaces M at the storage location LETTER.

16. Note that more than one character may be translated
by a single TR instruction but the characters will
be handled one at a time. The number of characters
may be explicit or implied. The instruction
TR LETTERS(7), FUNCTAB will translate_________
characters each time it is executed.

• • •
7

23(11/68)

TRANS TR A R GUME NT , F UNC T A B
----------------O R ----------
T R ANS TR 300(1),6807 (Decimal Numbers)

Argument
’’Character D” 1 1 0 0 0 1 0 0 FUNCTAB j o j j o i 1 0 1 0 1 001 0 1 1 1

ADD -— -----------------------► 1 1 0 0 0 1 0 0

6807

196

01 1011 0101 1011 7003

Resulting Address of Function Byte

(Location in Decimal = 7003)

17. The above instruction will translate___byte (s). The
character to be translated is a____. The instruction Ij
goes to location 7003 in the function table (refer to
the preceding simplified function table) and finds
a____ character. It takes this character and puts
it in location,__ where it replaces the D.

19.

• • •
1; D; $; 0300 , 2 0.

18. Now, let’s go back and review the entire concept of
translating and use a more typical application.

To translate, a table of the desired code must be
available. For instance, assume that we wished to
translate from EBCDIC to the 8-bit ASCII code.
For simplicity we will only deal with the characters
A-H. As a result our table will be only 8 bytes
long.

Function
Bytes

1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 1 1
1 0 1 0 1 0 0 0

The above table is located in main storage in 8
successive byte locations As you can see, the
bytes in the table are called_____ bytes.

-A 1
-B 1
- c Table of 8 II
-D Bit ASCII ti

I-E
-F
—G

(A to H)

-H 1

21.

22.
• • •

function

The function bytes represent: (Choose one of the
following.)
a. The bytes to be translated.
b. The desired character code.

• • •

b; The desired character code.

Besides the table of function bytes, which
represent the desired code, there must also be
data bytes which need translation. The following is
a five-character record which needs translating.

Argument
Bytes

1 1 0 0 0 1 1 0
1 1 0 0 0 0 0 1
1 1 0 0 0 1 0 0
1 1 0 0 0 1 0 1
1 1 0 0 0 1 0 0

-F
-A
-D
-E
-D

Data to be
Translated

The bytes to be translated are called_____ bytes.

• • •

argument

The above record of five EBCDIC characters is to
be translated by using a table of f ________ bytes.

• • •

function

The ’’translate” instructions consist of replacing
the characters to be translated with the characters
of the desired code. In other words, the_________
bytes are replaced with the correct_____ bytes.

• • •

argument; function

24 (11/68)

23. The "translate” instruction will replace all of the
argument bytes with the desired characters from
the function table.

Given the following function table and argument
bytes, show the resulting contents of the argument
field.

The table of FUNCTION bytes in storage is
arranged so that: (Choose one of the following*)
a. The function bytes are in binary sequence.
b. The binary sequence of the argument bytes

determines the sequence of FUNCTION bytes.

• • •

1 0 1 0 0 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 1 1
1 0 1 0 1 0 0 0

Before After

1 1 0 0 0 1 1 0
1 1 0 0 0 0 0 1
1 1 0 0 0 1 0 0
1 1 0 0 0 1 0 1
1 1 0 0 0 1 0 0
Argument Field of Five
EBCDIC Characters

Function Table of ASCII Bytes

1 0 1 0 0 1 1 0
1 0 1 0 0 0 0 1

F
I 0 1 0 0 1 0 0

1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 0

24. You should now know what is meant by a function
byte or an argument byte. You should also realize
that the argument bytes are to be replaced by the
desired function bytes. We can review the
translating concept by asking ourselves "How does
the machine know which function bytes to se lect?"
The answer lies in the organization of the function
table. This table must be arranged so that the
desired characters match the binary sequence of the
argument table. This is shown as follows:

EBCDIC_________ ASCII
1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0
1 1 0.0 0 0J. 1 1 0 1 0 0 0 1 1

rT T T T o T T T ^ ^ f T o l o i i i
1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0
1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1

t t
Table of all possible
argument bytes is
arranged on paper, in
binary bit sequence.
The table is used to
develop the correct
sequence for the

Table of function
bytes is arranged
to match the
respective
argument bytes.

function table.

b

Translate
TR DJL, BJ, D2(B2) [SS]

DC L B1 E B2 n r
0 7 8 15 16 19 20 31 32 35 36 47

The value of the eight bit bytes of the first operand
(arguments) are added to the address of the table
specified by the second operand (functions) and the
function byte at the effective address location replaces
the corresponding argument byte.
• The argument bytes are translated one at a time.
• Translation proceeds from left to right.
• The number of bytes to be translated is determined

by the implied or explicit length of the first
operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

*
I
Ü
A

• • •

25. TR is the mnemonic for the U-------------- "
instruction.

• • •

"translate"

26. The "translate" instruction uses the_____ format.

• • •

SS

Name Operation Operand
1 8 10 14 16 20 25
............ f " 111'! 1 — |— p" " — 1 — p - - t— — — ------------;— "T 'f "i i 1 . 1 1j « ! ; :

j T fR * 1 1 NPUTtXAl•01t-:d~~r~ 1_uJ —

> t f : i

(11/68) 25

27. The 1st operand of the TR instruction represents:
(Choose one of the following.)
a. The bytes to be translated.
b. The desired coded bytes.

• • •

a

28. The 2nd operand of the TR instruction represents:
(Choose one of the following.)
a. The function bytes.
b. The argument bytes.

• • •

a

31. You should now understand why the function table
must be arranged according to the binary sequence
of the argument bytes. This is because the
argument byte is added to the initial table address.
The coded character at that location then replaces
the argument byte.

REPLCE2 TR ARGUMENT(24), FUNCTION

Given the above "translate” instruction, how many
arguments bytes will be translated?___________

• • •
24

32. REPLCE5 TR ARGUMENT, FUNCTION

29. The function table must be long enough to take care
of all expected bit combinations of the argument
bytes.

The length code refers to: (Choose one of the
following.)
a. The argument bytes.
b. The function bytes.
c. Both argument and function bytes.

• • •

30. To find the desired character in the function table,
the numeric value of the argument byte is added to
the address at the beginning of the table.

Given the following argument byte, what bit
combination will replace it?

R E P L C E 1 TR ARGUMENT(l), FUNCTION

Argument
(Before)

Argument
(After)

Argument located at 2048
Function located at 3840

Function In Decimal

0 0 1 0 1 1 0 0 3840
1 0 1 1 0 0 0 1 3841
1 0 1 0 1 1 1 1 3842
1 1 1 1 0 0 1 1 3843
1 0 1 0 0 1 0 1 3844
1 1 0 0 0 0 0 1 3845

I 1 1 1 0 1 0 0 0 I xxxx

Given the above "translate" instruction, how many
bytes are in the function table?________ This
question can be tricky, so answer carefully.

• • •

Unknown; the proper function byte is selected from
the table by adding the argument byte to the starting
address of the table. As a result, the table might
contain a maximum of 256 bytes. This would
depend on the total number of characters in the
codes involved.

33. Argument Byte — 00110001 numeric value =________

REPLCE6 TR ARGUMENT, FUNCTION

Given the above "translate" instruction, show the
address of the character that will replace the
argument byte.

Value of argument byte = 49, Address of
FUNCTION = 3840

• • •

49; 3889; as shown below

The numeric value of the byte is added to the
starting address of the function table:

3840 - Table Address
49 - Argument Byte Value

3889 - Address of function byte selected to replace
the argument byte.

34. Function table address - 3840

Argument Byte - 11001001 Numeric value = 201

• • • REPLCE7 TR ARGUMENT, FUNCTION

10101111; The 1st operand’s numeric value
(decimal 2) was added to the 2nd operand’s address
(decimal 3840). The byte at location 3842 replaced
the 1st operand.

Given the above "translate" instruction and one of
the argument bytes, show the address of the function
byte that will be selected.

• • •

26 (11/68)

4041; as shown below.

3840 - Table Address
201 - Argument Byte Value

4041 - Address of function byte selected to
replace the argument byte

35. Argument Byte - 11110111 numeric value = _____

Function = 3840

REPLCE8 TR ARGUMENT, FUNCTION

Given the above, show the address of the selected
function byte.

Location After

2048 07 Effective
Argument D ecim al Function

2049 02 Hex Value Value Address Function

2050 11 F7 = 247 4087 07
F2 s 242 4082 02

2051 02 61 = 97 3937 11
F2 = 242 4082 02

2052 05 F5 ~ 245 4085 05
61 = 97 3937 11

2053 11 F3 = 243 4083 03
F2 = 242 4082 02

2054 03

2055 02

• • •

247; 4087

36. Given the following data, show the contents of the
argument field after the "translate” instruction is
executed.

Locations

R EP LC E 9

Argument
Field

2048

2049

2050

2051

2052

2053

2054

2055

TR

Argument
Data Before

F7

F2

61

F2

F5

61

F3

F2

ARGUMENT,FUNCTION

Argument
Data After

t Lin decimal 1---------- in hex -

Locations

Function Table

3840 0A

in decimal

3937 11

3938 00

4080 0A

4081 01

4082 02

4083 03

4084 04

4085 05

4086 06

4087 07

4088 08

L 4089 09

J L in hex

• • •

The "translate" instruction can be summarized as
follows:
• The translation will be done by replacing an

argument byte with a function byte from a table.
• The address of the 1st operand is the address of the

argument bytes (those to be translated).
• The address of the 2nd operand is the address of

the function table (those bytes which will be used to
replace or translate the argument bytes).

• In order to obtain the proper function bytes, the
table must be arranged according to the binary bit
sequence of the argument byte.

• The argument byte is added to the function table
address. The resulting address is used to select a
byte from the function table and replace the argument
byte with it.

• The "translate" instruction continues until all the
argument bytes (determined by the length code)
have been translated.

(11/68) 27

TRANSLATE AND TEST INSTRUCTION

The ’’translate and test” (TRT) instruction is similar to
the ’ ’translate” (TR) instruction in the manner in which
a function byte is located within a table from its
corresponding argument byte. However, from there the
operation changes. The ’’translate and test” instruction
does not replace the argument byte with the function byte
but tests the function byte for a non-zero condition and
responds to the result of this test.

Translate and Test
TRT D jd , B2), D2(Bo) [55]

DD L B2
0 7 8 15 16 19 20 31 32 35 36 47

The value of the eight bit bytes of the first operand
(arguments) are added to the address of the table
specified in the second operand (functions) and the
function bytes at the effective address location are
tested for a non-zero value.
• If the function byte is zero, the operation continues

to the next argument byte.
• If all the argument bytes result in a zero function

byte, a condition code of zero is set.
• If a function byte is non-zero:

a. The address of the related argument byte is
stored in bits 8-31 of General Register 1. Bits
0-7 of GR1 are unchanged.

b. The function byte is stored in bits 24-31 of
General Register 2.

• If the non-zero function byte is not related to the *
last argument byte of the first operand, a
condition code of 1 is set.

• If the non-zero function byte is related to the last
argument byte of the first operand, a condition
code of 2 is set.

Condition Code:
0 All function bytes are zero.
1 Non-zero function byte before first operand

field is exhausted.
2 Last function byte is non-zero.
3 —

Program Interruptions:
Addressing

Upon finding a non-zero function in TABLE,
GR1 contains the address of the corresponding byte
of the argument INPUT.
GR2 contains the non-zero function.
The Condition Code will be set to 1 or 2 as required.

• • •
1. In the ’’translate” instruction, the argument bytes

are replaced with function bytes. In the ’’translate
and test” instruction, the argument by tes________
______(are replaced with function bytes/remain
unchanged).

• • •

remain unchanged

2. Is any translation actually done by the ’ ’translate
and test” instruction?______ .

• • •

no

3. The "translate and test” instruction tests the
argument bytes by selecting the corresponding
function bytes. The test results are recorded by
changing the_______________________.

• • •

condition code

4. How does the machine know which function bytes are
to be selected ? _________________________________

• • •

It adds the numeric value of the argument byte to
the starting address of the function table. The
function byte at the resulting address is then tested.

5. The selected function byte is tested to see if it
is_______ .

• • •

zero

6. What happens if the function byte is zero?

Name Operation Operand
1 ___________ _________ 8 10_____________U 16 ________20_________________25

T ~ t n r j • • •
' | T i i n t o T * T Aj&jUE} The operation continues with the numeric value of

'. 'j * I I t fY; the next argument byte being added to the table
1 address and another function byte being selected.

28

7. If all of the function bytes selected by the argument
bytes are zero, the operation is completed by
setting the condition code to_____ .

• • •

0

8. After a f’translate and test” instruction, a condition
code of 0 would indicate: (Choose on e.)
a. That one of the selected function bytes was

zero.
b. That all of the selected function bytes were

zero.
c . That none of the selected function bytes were

zero.
d. That all of the argument bytes were zero.

• • •

b; A condition code of 0 would indicate that all of the
argument bytes has been used in selecting function
bytes. It would also mean that all of the selected
function bytes were zero. It does not mean that all
of the function bytes in the table are zero. It means
that the selected ones were zero.

The ’ ’translate and test” instruction is used to examine
a data field (the argument bytes) for characters with
special meaning. The function table would again be
arranged (as in the ’ ’translate” instruction) according
to the binary sequence of the data code.

For all characters that do not have a special meaning
(nonsignificant characters), the function byte location
would contain zero.

For all characters that do have a special meaning
(significant characters), the function byte location
would contain some non-zero bit configuration.

A resulting condition code of 0 would then indicate that
the entire data field had been examined and that no
significant characters were found. By significant
characters, we mean those with special meaning in a
data field.

9. If a character with special meaning (significant
character) is found, the instruction is terminated.
A significant character would be indicated by
selecting a function byte that was___________ (zero,
non-zero).

non-zero

• • •

10. If a significant character is found before the entire
data field is examined, the resulting code is 1 and
the operation_______________ (continues/is
terminated).

• • •

is terminated

11. After a TRT instruction, a condition code of 1
would mean: (Choose one of the following.)
a. No significant character was found.
b. All the argument bytes were used and a

- significant character was found.
c. A significant character was found.
d. One or more significant characters were found.

• • •

c; As soon as a significant character is found, the
operation is terminated without testing any more
bytes.

A condition of 1 then means that a significant character
was found and some argument bytes haven’t been tested.
If the last argument byte is significant, the condition
code is set to 2.

12. After a TRT instruction, a condition of 2 would
mean: (Choose one of the following.)
a. All argument bytes were used and none located

a non-zero function.
b. All of the argument bytes were not used. One

of them was significant.
c. The last argument byte located a non-zero

function byte.
d. All the argument bytes were used. One or

more were significant.

• • •

c

13. After a ’ ’translate and test” instruction, which of
the following condition codes would indicate that the
entire field of argument bytes hasn’t been examined?
(Choose one of the following.)
0
1
2

• • •

1

(11/68) 29

14. Which of the following condition codes would indicate
that none of the argument bytes had special
meaning? (Choose one of the following.)
0
1
2

• • •

0

15. Either a condition code of 1 or 2 will indicate that a
significant character was found. Why then does the
programmer need both settings?___________ ;________

• • •

If the code were 1, the programmer would have to
execute the TRT instruction again to see if the
remaining argument bytes contained any characters
with special meaning.

Decimal Data Field in Storage (Composed of Argument
Bytes)

A 1 B 9 3 9 6 X

The purpose of the TRT instruction is to find significant
characters in a data field. In the example above, the
instruction could be used to find the location of commas
in a decimal field. It would not make sense to know that
there is a significant character without knowing where it
is located. As a result, the TRT does more than just
set the condition code. The address of the significant
argument byte is placed in general register 1. The rest
of general register 1 is left unchanged.

16. When a TRT instruction results in a condition code of
1 or 2, general register 1 will contain: (Choose one
of the following.)

a. The address of a function byte.
b. A function byte.
c. The address of an argument byte.
d. An argument.

• • •

c; When an argument byte which contains a sig ­
nificant character is found, its address is placed in
general register 1. If the condition code is 0,
general register 1 is unchanged.

Besides placing the address of the significant argument
byte in register 1, the TRT instruction will also place
the non-zero function byte in bits 24-31 of general
register 2. The rest of general register 2 remains
unchanged.

17. Given the following TRT instructions, show the re­
sulting condition code and the contents of general
registers 1 and 2.

DD 800 (6,0) 1000 (0) In hex

Table of Function Bytes

• • •

Register 1 FF000801; Register 2 0000F00F;
Condition Code 1

In the preceding problem:

The 1st argument byte pointed to a zero function byte (the
second byte in the function table).

The second argument byte pointed to a non-zero function
byte (the first byte in the table).

The non-zero function byte is placed in the low order
byte of register 2.

The address of the argument byte is placed in the low
order 24 positions of register 1. The rest of registers
1 and 2 remains unchanged.

The length code indicates a total of 7 bytes. Since a
significant character was detected prior to using all argu­
ment bytes, the condition code is 1.

30 (11/68)

The "translate and test" instruction can be summarized
as follows:
• The TRT instruction uses the SS format in which the

length code gives the number of argument bytes less
one.

• The 1st operand consists of the argument bytes (the
field that is to be searched for characters that have
special meaning).

• The 2nd operand consists of function bytes. These
function bytes are pre-arranged according to the
binary sequence of the argument bytes. The locations
in this table that match the special meaning argument
bytes have non-zero bit configurations.

• A numeric value of the argument byte is added to
the starting address of the function bytes. The
function byte at the resulting address is tested for a
non-zero bit configuration. If it is non-zero, the
operation is terminated. The address of the argu­
ment byte is put into register 1 and the correspond­
ing non-zero function byte is placed in register 2.
The condition code is set to 1 or 2, depending on
whether or not the last argument byte has been
translated.

• If all tested function bytes are zero, the operation is
terminated by setting the condition code to 0.
Registers 1 and 2 remain unchanged.

INSERT CHARACTER AND STORE CHARACTER
INSTRUCTIONS * •

The "insert character" and "store character" are
essentially one byte extensions of the fullword "load" (L)
and "store" (ST) instructions.

Insert Character
1C Rlf D2(X2, B2) [RX]

43 Ri X2 B2 °2
0 7 8 11 12 15 16 1920 31

The eight bit byte at the second operand location is
loaded into bits 24-31 of the general register specified
in the first operand.
• Bits 0-23 of the register remain unchanged.

Condition Code:
The code remains unchanged.

Program Interruptions:
Addressing

Name Operation Operand

Store Character
STC R„ D^X2, B2) [RX]

42 R, X2 B2 °2
0 7 8 11 12 1516 1920 31

Bits 24-31 of the register specified in the first operand
are placed at the storage location specified in the second
operand.

Condition Code:
The code remains unchanged.

Program Interruptions:
Protection
Addressing

Name Operation Operand
1 8 10__________________14 16_________________ 20_______________________ 25

'1 y\ '. f 1 .1 1 '
■ i s T c 4 . C O D E! I !

1 L ! : __1__;__ 1 :

• • •
1. IC is the mnemonic for the "____________ _________"

instruction.

• • •

"insert character"

2. STC is the mnemonic for the 1L____ ______ _________"
instruction.

• • •

"store character"

3. Both the IC and STC instructions use the_____ instruc­
tion format. These instructions_____________
(change/do not change) the condition code.

• • •

RX; do not change

4. The "insert character" instruction will place the
storage operand in the______ bvte of the
specified register.

• • •

low order

5. The "insert character" instruction will place the
storage operand in b its________through__________
of the specified register.

• • •
24; 31; the low-order byte.

31

6. The remaining bits (0-23) of the specified register:
(Choose one.)

a. Are zeroed out.
b. Remain unchanged.

• • •

b

7. Given the following IC instruction, show the result­
ing contents of the specified register.

D E P O S I T IC 1, MASK1 A 6

MASK1

8. Was the condition code changed by the preceding
instruction ? _ ________

• • •

No

v 10. Given the following STC instruction, show the
resulting contents of the storage location.

PERM
(Before)

R E P LA C STC 1, PERM

4 7 A B 0 F 1 7

A 6
X

(After)

• • •

17

11. If the address of the storage operand is not available
on the particular installation, an____________________
exception will be recognized.

• • •

addressing

I

12. Any instruction that changes the contents of main
storage is subject to the storage protection feature.
As a result, the_______ (IC/STC) instruction can
cause a protection exception.

• • •

STC

9. The "store character" instruction will place in the
storage operand the contents of the_______________
byte from the specified register.

• • •

low order

32 (11/68)

EXECUTE INSTRUCTION

The "branch on condition, branch and link, branch on
count, branch on index high, branch on index low or
equal" instructions are the only actual "branch" instruc­
tions in the System/360. There is, however, another
instruction called "execute" which does not change the
instruction address in the PSW. However, it does cause
one instruction in main storage to be executed out of
sequence. That i s , instead of branching from one routine
to another, the "execute" instruction will cause one
instruction in another routine to be executed without
leaving the original routine.

Execute
E X R lr D2(X 2f B 2) [RX]

44 R, X2 B2 D2
0 7 8 11 12 15 18 1920 31

This instruction operates in the following manner.
• Modify the instruction at the address specified in the

second operand by the contents of the register
specified in the first operand.

a. OR bits 8-15 of the addressed instruction with
bits 24-31 of the general register.

b. The instruction in storage is not changed and the
modification is effective only in the interpretation
of the instruction.

• Execute the modified instruction addressed by the
second operand.

• Return to and execute the next sequential instruction
following the EX instruction.

• If the R1 field is zero, the instruction at the second
operand location is executed without modification.

Condition Code:
The code may be set by the branch to instruction.

Program Interruptions:
Execute
Addressing
Specification

Name Operation Operand
J___________________________8 10 14 16_____________20_________________ 25_________________ 30_________________35___________ 40_________________ 45_________________ 50i | .1' 1... t .!... 6 X 5]f m |v c H A Rj 1 N S E R T L E N 6 't H C 0 D Eft F R 0 M R E 6 1 S T E R 5 1 N T H EM V C 1 N S T R U C T 1 O N A TM V C H A R ' . E X E C U T E T H E* M V C 1 N S T R U C T 1 O N .r j i g _ u _ •

(11/68) 33

1. EX is the mnemonic for the "_________ ” instruction.

• • •

"execute"

In the previous program example, the "execute" instruc­
tion at 2052 caused the instruction at 8500 to be executed.
The normal sequence of instruction execution continued
with the instruction at 2056.

2. Without branching, the "execute" instruction will
cause another instruction to be executed. Given the
following EX instruction, indicate the address of the
instruction to be executed.

8. If the HI field of the "execute" instruction is other
than zero, the low-order byte of the specified
register will be ORed with the_________(lst/2nd) byte
of the instruction to be executed.

D0001 EX 0,4095 • • •
Address of instruction to be executed=

• • •
2nd; The first byte of an instruction always contains
the operation code.

4095

3. The instruction to be executed will be executed as it
is if the R1 field of the EX instruction is___________.

• • •

zero

9. Given the following, write the instruction that is
actually executed.

L A B E L E X 1,100(2)

►l a b e l T a r / 0,0

4. Assuming that the effective generated storage ad­
dress from the "execute" instruction is location
8500, write the addresses of the instructions in the
sequence in which they will be executed. (GR2 is
the base register and contains the base address 6500.)

- The instruction referenced

L A B E L 1 _?_ ?_

■ The instruction that is actually executed

Location Instruction Actual Sequence

2048 LH 1,1000(0,2) ________________

2052 EX 0,2000(0,2) ________________

2056 STH 1,1002(0,2) ________________

8500 MVI 1025, X f 00» ________________

• • •

Reg 1 contains 00 FF 00 FA (in hex)
• • •

L A B E L 1 AR

of the instruction AR R, R_1 2

15,10; Only the second byte

was effectively

modified.

2048; 2052; 8500; 2056

5. Was the instruction at location 8500 modified in any
way prior to being executed?______

• • •
No

6. Why not ? _____________________________________
• • •

The R1 field of the "execute" instruction was zero.

7. Was the address of the instruction at location 8500
placed in the instruction address portion of the
PSW?______

• • •

10. The instruction that was actually executed causes
the contents of register______ to be algebraically
added to the contents of register_______.

• • •

10; 15

11. The ORing of the 2nd byte of the instruction with the
low-order byte from the register is done in the ALU.
As a result, the instruction in storage______________
__________ (remains the sam e/is changed.)

remains the same
• • •

No; The "execute" instruction is not a "branch" in­
struction. Instead, it causes an instruction to be
executed that is not in the sequence presently being
executed.

34

12. Given the following, write the instruction that will
be executed in ALU. Remember that the bytes are
ORed!

L A B E L 2 EX 1,100(2)

L A B E L 2 AR 2,3

This instruction was actually executed,

Reg 1 contains 00 00 F0 A8

• • •

AR B

Bits 24-31 of register 1 are ORed with bits 8-15 of
the AR instruction as shown below.

Reg 1
0 0 0 0 F 0 A 8 | AR 2 3

or, j 0 0 1 0 0 0 1 1>
g L l o i o i o o o

1 0 1 0 1 0 1 1
V ■ ^ ^ i H.— *

B

13. As a result of the instruction shown in the previous
example, the "execute" instruction would cause (via
the "add" instruction) the contents of register______
to be added to contents of register_______ .

11; 10

14. Write the AR instruction that remains in storage as
a result of the instruction in the preceding example.

AR

AR 2 3

• • •

The instruction in storage is not

changed.

There are three programming interrupts possible with
an "execute" instruction.
• Specification exception
• Addressing exception
• Execute exception

15. A specification exception can occur on an "execute"
instruction if the generated effective address of the
instruction to be executed is___________ (odd/even).

• • •
odd; Remember that all instructions must start on
an even address.

16. An addressing exception can occur on an "execute"
instruction if the generated effective address of the
instruction to be executed (is /is not) available
on the particular System/360 installation.

• • •

is not

17. An execute exception can occur on an "execute"
instruction if the system is directed to another
"___________[1 instruction.

• • •

execute

18. L A B E L EX

A R

1 ,X TEF1!

2,3

The above "execute" instruction will result in a(n)
_____________________ exception.

• • •

specification; The generated address is odd.

19. L A B E L EX l , X TFFAf

L A B E L 1 EX 1,0

The above "execute" instruction will result in a(n)
__ __________________ exception.

• • •

20.
execute

Reg 1

EX 0 , 0(1)

F F F F F F F E

The above "execute" instruction will probably result
in a(n)__________________ exception.

• • •

addressing

(11/68) 35

SHIFT INSTRUCTIONS, ALGEBRAIC

The "shift" instructions involve only the general registers
and operate in the binary mode. Data in main storage
cannot be shifted. The condition code is set after the
operation.

The System/360 can shift a register or a pair of registers
either to the left or to the right. Furthermore, its
"shift" instructions fall into two categories: algebraic
and logical.

What do we mean by shifting? Shifting basically is mov­
ing the contents of the register to the right or to the left.
For instance, assuming we have a theoretical 8-bit
register, shifting would take place as follows:

0 0 0 0 1 0 1 0

If this register were shifted one place to the right it
would look like this:

0 0 0 0 0 1 0 1

Notice that the low-order bit was shifted out. The
resulting number (5) in the register is 1/2 the original
number (10). Right shifting is similar to dividing by
powers of 2.

1. A right shift of two places is similar to dividing by
4; a right shift of three places is similar to dividing
by____________(6/ 8).

2, If the same theoretical 8-bit register shown below
were shifted one place to the left, what would the
resulting register look like ?

Before

After

0 0 0 1 0 i

3. Notice that the result (20) of the preceding problem
is twice that of the original number (10). Left shift­
ing is similar to_____________by the powers of two.

0 0 0 0 1 0 1 0 ______ i______

• • •

1 0 0

• • •
multiplying

4. All of the "shift" instructions use the RS format.
Label the fields of the RS format.

• # •

Op code R1 R3 B2 D2

Shift Left Single
SLA Rj, D2(B2) [RS]

8B R, D2
0 7 • 11 12 15 16 1920 31

Bits 1-31 of the register specified in the first operand
are shifted to the left the number of positions specified
by the low-order six bits of the second operand.
• Bit 0 is the sign bit and is not shifted.
• Zeros are supplied to fill the vacated low order

positions.
• If a significant bit is shifted out of the register,

an overflow occurs.

Condition code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow

Name O peration O perand
J____________________________________8 10__________________14 16_________________ 20 ____________ 25

] | . | j j j -n— 1
.

n ---r—

1 1 s I s U a I 1 2 -»J 0
! : i I l ' 1 ■; .1 j t. .} !■ j :V j

36

Shift Right Single
SRA Rlf D^Bg) [RS]

8A Ri m r r °2
0 7 * 11 12 15 46 19 20 31

Bits 1-31 of the register specified in the first operand
are shifted to the right the number of positions specified
by the low-order six bits of the second operand.
• Bit 0 is the sign bit and is not shifted.
• Bits equal to the sign bit are supplied to fill the

vacated high-order positions.
• There is no overflow.

Condition code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3

8. The maximum number of positions that can be
shifted is_________.

• • •

63; 111111 = 63

9. If the generated address is zero, the condition code
will be set and the register____________ (will/will
not) be shifted.

• • •

will not

10. The letter A in the mnemonics (SLA, SRA) indicates
that the shift is______________(algebraic/logical). In
an algebraic shift, the sign b it________(is /is not)
shifted.

• • •

algebraic; is not

Name Operation Operand
J ________________________________ 8 10__________________14 16_________________ 2 0 ______________________25

r.: ! ! ! ! ..\.j i i { j, (III s RA 3jj8_
: ! ■

Mnemonic Hex Op Code Data Flow

SLA 8B Shift register to the left

SRA 8A Shift register to the right
• • •

5. In the SLA instruction as in all "shift" instructions,
the RS format is used but the_______field is ignored.
The register to be shifted by an SLA or SRA instruc­
tion is indicated by the _______ field.

• • •

R3; R1

6. The address generated by adding the base register
contents and the displacement is used to___________
________________________ (address data/indicate num­
ber of positions to be shifted).

• • •

indicate number of positions to be shifted.

11. In the SLA instruction, the shifting is out of bit

0 1 30 31

S Integer f>
• • i

1; As shown below

>

0 1 30 31

S Integer \

Shift out from here I

In the SRA instruction, the sign bit
(shifted/propagated) to the right.

• •
propagated; As shown below

0 1 30 31

S
■A

Integer $

Put zero bits here

Propagated "Shift out from here

7. The number of places to shift the register is
indicated by the______ low-order bits of the
generated address.

• • •

6

37

SLA 2,8

13. Given the following SLA instruction, show (in hex)
the contents of the shifted register.

Before

After

• • •

The generated address was 0008. As a result, register 2
was shifted eight places to the left. Let!s take a look at
the preceding example again. This time, we?ll show the
binary contents.

Reg 2

oiooo'oooo’om'mi'oooo'ioio'om'ooioJ —i_______ i_________I________ i-------1—
O '

Shift out 8 bits

Before

Shift in
8 zero bits

Reg 2

oMi'im'oooo'ioio'om'ooio'oooo'oooo» » »____ I____ I_____I__ ;__I_____ After

Notice that no significant bits were shifted out in the
preceding example. If the register had been shifted 9
places, a significant bit would have been lost.

14. When a bit is shifted out (SLA only) that is different
than the sign bit, a significant bit is lost. A _______
_________________________________ exception will
result and a program interrupt may occur.

• • •

fixed point overflow; Notice that a program inter­
rupt may occur. Remember that the fixed point
overflow interrupt can be prevented by use of the
program mask (bits 36-39 of the PSW).

15. Given the following SLA instruction, indicate the
contents of the shifted register and the condition
code.

SLA 3,15

0111 0000 1111 0000 1111 0000 1111 0000 -------1--------1_____i____ i_____» «
------- ,--------,------- ,-------1------- 1------- 1------- 1-------
------- 1--------1------- 1-------1_____I_____I_____l____

Before

After

Condition code

• • •

oiii'iooo'oin'iooo^oooo'ooooooooooooI_____I____ I_____I_____I_____I____ I____

3 Fixed point overflow

Notice that even though the fixed point overflow
occurs with the 1st bit shifted, the entire shift of
15 places still occurs.

Letfs move on to the "shift right algebraic" instruction.

16. Given the following SRA instruction, show the con­
tents o f the shifted register.

SRA 3,15

Reg 3

Before

After

• • •

llll'llll'llll^lll^llio'oooi'llio'oooi« «____ I_____I_____I_____I_____I_____

Notice the propagation of the sign bit.

17. The condition code setting for the preceding problem
would b e________ .

1111 0000 1111 0000 1111 0000 1111 0000 . i......... i_____i____ » » » .
-------1--------,------- 1-------1------- 1------- 1------- 1------
-------1--------1------- 1-------1------- 1_____i_____i____

• • •

1; This condition code reflects a negative result.
Notice that a fixed point overflow cannot occur on a
right shift operation no matter what bits are shifted.

38

SRA 3,63

18. Given the following SRA instruction, show the con­
tents of the shifted register and the condition code.

Reg 3

o i i o 'm i ' ï o i o ’ ooii^iio 'oooi n i i 'o o o i■_____ i_____ i____ i-------1-------1------ 1-------
------ ---- ,----------- |----------- ,----------|----------|----------|---------1----------

» » *____ I____ I____ I____ I_____

Before

After

□ Condition code

• • •

Condition code

Notice that a right shift of 31 or greater of a positive
number will zero out a register, because the sign bit
of 0 is propagated to the right.

19. Given the following SRA instruction, show the con­
tents of the shifted register and the resulting con­
dition code.

SRA 4,63

Reg 4

looo'oooo'oooo’oooo "oooo'oooo'oooo'oooo____ i_____i_____I_____i_____i____ i_____ i____
------------1-------------,------------ ,------------ ,------------ ,-----------,-------------- ,----------

* « »_____i_____i____ « *

Before

After

Condition code

• • •

l l l l ' l l l l l l l l l l l l l l l l l l l l l l l l l l l l____ i____ i_____i_____i____ i____ i_____i____ Reg 4

Condition code

Besides shifting a single register, the System/360 also
has the ability to shift a doubleword that resides in an
even-odd pair of registers (remember the doubleword
product as a result of a multiply).

Shift Left Double
SLDA Rlf D2(B2) [RS]

Bits 1-63 of an even-odd pair of general registers
specified in the first operand are shifted to the left the
number of positions specified by the low order six bits
of the second operand.
• Bit 0 of the even register is the sign bit and is not

shifted.
• Zeros are supplied to fill the vacated low order

positions.
• If a significant bit is shifted out of the register, an

overflow occurs.
• The register specified in the first operand must be

the even register of an even-odd pair.

Condition Code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Specification
Fixed-point overflow

Name Operation Operand
J___________________________ 8 10_____________ 14 16_____________ 20_________________ 25i l l ; |. 1 ! |i i 1 ■! . s LDA 4,ii 4 !}1 1_L- 1 ! ' !. _i_r

Notice that a right shift of 31 or greater of a negative
number will result in a - 1, because the sign bit of 1
is propagated to the right.

39

Shift Right Double
SRDA R „ D2(B2) [RS]

8E R! * B2 D2
O 7 8 11 12 15 16 1920 31

Bits 1-63 of an even-odd pair of general registers
specified in the first operand are shifted to the right the
number of positions specified by the low order six bits
of the second operand.
• Bit 0 of the even register is the sign bit and is not

shifted.
• Bits equal to the sign bit are supplied to fill the

vacated high order positions.
• There is no overflow.
• The register specified in the first operand must be

the even register of an even-odd pair.

22. In both the SLDA and SRDA instructions, the R1
field must have the address of an______________

• f t
even-numbered register

23. S L D A 3,1

The above SLDA instruction would result in a
__________________exception.

• • •

specification; Because the R1 field has an odd
address,

24. S L D A 4,6

Condition Code:
0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Specification

Mnemonic Hex Op Codes Data Flow

SLDA 8F Shift double reg to left

SRDA 8E Shift double reg to right
• • •

20. The SLDA and SRDA instructions are also of the]
format. The SLDA and SRDA instructions are
similar to the SLA and SRA instructions in that the
________is ignored.

• • t
R3

21. The SLDA, SRDA, SLA and SRA are also similar in
that the.number of shifts is determined by__________ •

• • •

Only the low-order six bits of the generated
address.

In the above SLDA instruction, registers_______ and
_______ will be shifted together.

• • •
4; 5

25. In the preceding example the sign of the doubleword
is in bit position_______ of register________.

• • •

0; 4; as shown below

0 1 31 0 31

Integer

Reg 4 Reg 5

Doubleword

26. Given the following SLDA instruction, show (in hex)
the contents of the shifted registers.

SLD A 4,16

Reg 4 Reg 5

0000 0010 1
----------- 1 ■ ..

F0F0 FFFF_______ i________

______ 1______
i

_______ i________

• • •
Reg 4 Reg 5

0010 ' F0F0
______ i_______

FFFF 0000

Before

After

A shift of 16 places was specified.

40

27. Given the following SRDA instruction, show (in hex)
the contents of the shifted registers and the result­
ing condition code.

SRDA 4,16

Reg 4 Reg 5

| 0000 ’ 0010 F0F0 FFFF
_______ i________

| | Condition code

• • •

Reg 4 Reg 5

I 0000 0000
1______ i______

1
0010 F0F0

______ l_______

2

SHIFT INSTRUCTIONS - LOGICAL

Shift Right Single
SRL Rlf D2(B2) [RS]

88 R! m B2 ° 2
0 7 8 11 12 1516 1920 31

All the bits of the general register specified in the first
operand are shifted to the right the number of positions
specified by the low-order six bits of the second operand.
• Zeros are supplied to fill the vacated high-order

positions.

Condition Code:
The code remains unchanged.

Program Interruptions:
None

You have finished the four "algebraic shift" instructions
and are now ready to study the four " logical shift" in­
structions. The "logical shifts" differ from the "alge­
braic shifts" in that the entire register participates in
the shift, the condition code is unchanged and a fixed
point overflow cannot occur.

Shift Left Single
5LL Rlf D2(B2) [RS]

89 Ri m B2 °2
0 7 8 11 12 15 16 1920 31

All the bits of the general register specified in the first
operand are shifted to the left the number of positions
specified by the low-order six bits of the second operand.
• Zeros are supplied to fill the vacated low-order

positions.
• Significant bits which are shifted out are lost.

Condition Code:
The code remains unchanged.

Program Interruptions:
None

Name Operation Operand
1 8 10 14 16 20 25F T k -

w^W-IgljS

■' .. ' !£ Li L 5 fi|§5 k
■ : - ;;; ! | | $__

Shift Left Double
5LDL Rlf D2(B2) [RS]

8D R! m B2 °2
0 7 8 11 12 15 16 1920 31

All the bits of an even-odd pair of general registers
specified in the first operand are shifted to the left the
number of positions specified by the low-order six bits
of the second operand.
• Zeros are supplied to fill the vacated low-order

positions.
• Significant bits which are shifted out are lost.
• The register specified in the first operand must be

the even register of an even-odd pair.

Condition Code:
The code remains unchanged.

Program Interruptions:
Specification

41

Shift Right Double
SRDL Rlf D2(B2) [*S]8 C R , m B 2

11 12 1516 1920

All the bits of an even-odd pair of general registers
specified in the first operand are shifted to the right the
number of positions specified in the low-order six bits of
the second operand.
• Zeros are supplied to fill the created high-order

positions.
• The register specified in the first operand must be

the even register of an even-odd pair.

Condition Code:
The code remains unchanged.

Program Interruptions:
Specification

Operation
8 10 14 16

Operand' ! > | : s j i
. i

v V f . : I. s R D L M j 3 l L..... 1. -ni l lfc“ " . T " ■' f 1 \ ■]V j ; . . f J : j ; . . . 1 l

• • •

Mnemonic
SLL

Hex Op Code

89

Data Flow

Shift register left

• • •

0; 31 as shown below

SRL 88 Shift register right Logical Left Shift 0 1 « 30 31
SLDL

SRDL

8D Shift double reg left

8C Shift double reg right

1. The " shift logical" instructions are of the RS format
and just like the "algebraic shifts", the "logical
shift" instructions ignore the_______ field.

• • •

R3

2. The number of logical shifts taken is determined by
the___ .

• • •

Low-order six bits of the generated address.

3. Unlike the "algebraic shifts", the "logical shifts"
 (do/do not) change the condition code.

• • •

do not

4. In a "logical right shift", the sign bit is not propa­
gated. Instead, it is shifted and zeroes are inserted
in the bit position_______________ .

• • •

0 as shown below

Logical Right Shift 0 1 ZJL 30 31

Zeros shifted in here Shift out
from here

Algebraic Right
Shift

0
L- Asd

1 _ _ _ _ _ _ _ I L 30 31
..Nr

This bit is
propagated to the right

Shift out
from here

5>. In a "logical left shift" such as SLL, shifting is done
out of bit position______and zeros are inserted into
bit position__________.

Shift out from here Zeros put
in here

Algebraic Left
Shift

0 1 u c 30 31

Shift out from here Zeros put
in here

42

6. 7FFF FFFF

7FFF FF 00

Reg Before

Reg After

Which of the following mnemonics. JSLA,
SRA, SLL, SRL) would have produced the results
indicated above ?

• • •

SLA; In this example, the condition code would have
been set to 3 and a fixed point overflow occurs. If
the SLL instruction had been used, shifting would
have been done out of position 0 and the sign bit
would have changed.0111 1111

31

7.
A 000 1 F 000

0F00 ' 0000
1_______

Reg Before

Reg After

Which of the following mnemonics^ (SLA,
SRA, SLL, SRL) would have produced the results
indicated above ?

• • •

SLL; In this example, bit position 0 is changed.

43

STUDENT'S COMMENT FORM
System/360 Assember Language Coding — Appendix R29-0233-3

Your comments, as well as answers to the following questions, will help us design and administer programmed or self-study courses in a way that better suits your needs. If your answer to a question is "No", or needs further explanation, please use the space provided below.Comments and suggestions become the property of IBM.

* What is your occupation?
• Why did you take this course?

Yes No
• Did this course, in general, meet your needs? □ □
• Did an IBM employee serve as your advisor? n □
• Did you find the material:

Easy to read and understand? □ □
Organized for convenient use? □ □
Well illustrated? □ □

• Did you feel that any particular topic should be added or emphasized? □ □
• Did you feel that any particular topic should not have been included? □ □
• We would appreciate your other comments; please give specific page and line references where appropriate.

S t a p l e

Fold Fold
------------ 1

FIRST CLASS
PERMIT NO. 10
ENDICOTT, N. Y.

B U S I NE S S REPLY MAI L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY____

I BM Cor por at i on
1701 North St .
E nd i c ot t , N . Y . 13760

Attention: DP Education Development, Dept. 617

Fold Fold

s j u a u i u i o ; } | D u o j j j p p y

C
ut

 A
lo

n
g

Li
ne

R 29-0233-3

International B usin ess M achines Corporation Data P rocessin g Division 112 East Post Road, W hite Plain s, N Y. 106D1 (USA Only]

Printed in U
.S

.A
.

R
29-0233-3

	‎S:\Temp\Scan\SR29-0233-3 front.pdf‎
	‎S:\Temp\Scan\SR29-0233-3 System360 Assembler Language Coding Appendix 196811.pdf‎
	‎S:\Temp\Scan\SR29-0233-3 back.pdf‎

