

Principles of Time Sharing

Class Notes

PREFACE

These notes have evolved as a result of teaching a one-week

course entitled Principles of Time Sharing. This course is

designed to introduce IBM Marketing people to the fundamentals

of terminal oriented computing and to acquaint them with the

support offered by IBM in this area. Much of the value of the

course is derived from the actual hands-on terminal sessions

during the class. These notes are intended to document the

classroom lectures and provide background for analysis and

evaluation of the terminal sessions.

It is said that in the course of a lifetime one should plant a

tree, sire a child, and write a book. The authors have accom­

plished the first two of these life goals and now submit this

monograph in partial fulfillment of the third.

IBM Internal Use Only

C O N T E N T S

I What is "Time-Sharing" ? 1

II Why is "Time-Sharing"? 13

HI How is "Time-Sharing" Accomplished?
Implementation Techniques

17

IV Multi-Processing Systems 54

V Design of a Virtual Memory Based
Programming System

78

VI Remote Batch Computing 88

VH Communications for Terminal Based
Computing

92

Appendix A

Appendix B

Appendix C

Appendix D

Time-Sharing Acronym and Reference List

Time-Sharing Reading and Reference List

Glossary of Time-Sharing Terms

HYPERVISOR

IBM Internal Use Only

I. What is "tim e-sharing"?

A. Introduction

1. The term "time-sharing" was introduced in 1959 in a paper
delivered by a British mathematician, Christopher Strachey.
Almost at the same time, Professor John McCarthy, then of
MIT, produced independently an unpublished paper on the same
subject. In the intervening years, much discussion, development,
publicity, time, and money have been devoted to "time-sharing. "
The term has been applied broadly to include any system where
components are used in an interleaved manner. The term has
also been applied in a narrower sense to mean specific imple­
mentations of interactive data processing systems. As a result,
"time-sharing" has no universally accepted definition. Today
there are many and varied definitions in the data processing
industry. Like much of the jargon in our marketplace, "tim e­
sharing" has been overused and misunderstood. It is frequently
equated to multiprogramming, or to remote job entry, or to
"on-line" systems, or even to "real-tim e" systems. In IBM
particularly, "time-sharing" has meant TSS - the S/360 Model 67
hardware and software system. It is important to recognize
that there is no rigorous and widely accepted definition of
"time-sharing. " When you hear or speak of "time-sharing",
remember the scornful but dangerous counsel of HumptyDumpty
who said, "When I use a word, it means just what I choose it to
mean - neither more nor less. "

2. Time-sharing in the literal sense of the term refers to the allocation
of computer resources in a time dependent manner to the several
programs simultaneously core resident. In this general context
time-sharing is merely synonymous with multiprogramming. It
represents an attempt to maximize utilization of the collective
resources of a computing system. It was this concept of time­
sharing that was presented by Christopher Strachey at UNESCO1 s
International Conference on Information Processing in 1959.
Note that in this use of the term, "time-sharing" is not concerned,
at least not directly, with what an individual computer user wants
to do.

3. In the late 1950fs there existed a number of people with certain
computing requirements - requirements that were not being met
satisfactorily by the existing batch systems. For the most part
these people were located in the M. I. T. - Lincoln Laboratory
complex and the SAGE related activity at the RAND Corporation
and System Development Corporation. Their concern was the
efficiency of persons trying to use a computer facility. Their
objective was to provide a man-computer relationship to enhance

IBM Internal Use Only
1

man’s problem-solving ability. It is from this group that
a second ’’time-sharing” concept has evolved. It is this
concept of !,time-sharing” that we are concerned with in
these notes.

4. nTime-sharingn then is merely one way of using a computing
facility. It is "user oriented” in that it is intended to provide
convenient access to data processing capability. It is a
technique that accentuates the man-machine relationship in
the problem-solving environment. This technique permits
the user to deal ’’directly” with the system by means of a
terminal device. The user is on-line and interacts or en­
gages in a conversation with the computer system. Hence,
conversational and interactive computing are synonymous
terms with ’’time-sharing. ”

Before giving the definition of ’’time-sharing” to be used in this
class, let’ s look briefly at other techniques of computer usage.

B. Comparision of techniques of computer usage

1. Methods of computer use:

a. User at the console
b. Traditional Batch Computing System
c. Remote Computing

1) Remote Batch Processing
a) Remote Job Entry
b) Remote Job Output

2) ’’Time-Sharing”
d. Real Time Computing

2. Characteristics of ’’User at the console”

a. The user is in direct contact with a system via its console.
b. An interactive situation exists with minimum turnaround.

The degree of interaction depends on software.
c. Thruput is not a serious factor with the relatively low-

cost desk-type computer. However, as system size and
cost increase, direct access by single user at the console
cannot be justified.

d. The size and characteristics of problems are limited by the
following in desk size computers:
1) Core size
2) Programming Systems/Languages
3) I/O Capability

IBM Internal Use Only

2

3. Characteristics of traditional batch system:

a. Thruput has been the major consideration in the develop­
ment of the local or on-site batch system.

b. The jobs to be run are accumulated in batches.
c. The system depends on the queue of jobs to keep the system

busy.
d. The user is divorced from direct contact with the

computer. He may even be divorced from the program
where professional programmers operate in a " closed
shop" environment.

e. Turnaround time is a problem in the batch system.
f. Directly coupled systems such as ASP were developed

to reduce turnaround time.
g. Simple errors cause frustrating re-runs and the delay

of turnaround adds greatly to total problem solution time.
h. "Local" batch system jobs are submitted physically to

computer center.

4. Characteristics of remote batch:

a. Communication facilities are used in lieu of submitting
jobs physically to the computer center.

b. Jobs are submitted on-line into the normal batch
processing mode.

c. Response is a function of the design of the host batch
system. Job scheduling can be handled in a number
of ways. With priority scheduling, remote jobs can
be integrated into the local batch queue on an automatic
basis. On the other hand, a separate queue may be
used to accumulate remote jobs. The operator would
have to intervene to switch to this alternate input job
stream.

d. Remote batch processing does not necessarily mean
that results will be returned to the input station. Re­
mote job entry (RJE) does not imply remote job output
(RJO).

e’ Keydriven devices such as Teletype, 1050, and 2740/41
lend themselves to low speed remote job entry, but
are too slow for output listings and dumps, etc.

f* Higher speed devices such as the 2780 Data Trans­
mission Terminal provide both job input and output to
the remote station over communication facilities.

g* So-called "intelligent" terminals, i. e. the 1130,
Model 20, and other models of System/360 have the
speed, storage, and logic of stored programming
to enhance the input/output station capability. Pre­
editing, formatting, and data compaction are functions
possible with "intelligent" terminal stations.

IBM Internal Use Only
3

BATCH
USER'S LOOP

IBM Internal Use Only

h* Remote batch improves the access for remote users
and reduces turn-around time. The amount of improve­
ment is a function of the local batch performance and
the scheduling of remote jobs into the batch.

5. Characteristics of fftime-sharing:*1

a* "Time-sharing" is a system in which multiple users
concurrently engage in a series of interactions with
a system via terminal devices in order to develop
a program, solve a problem, or get information
from the system,

b. MSeries of interactions” is key. 11 Time-sharing" is
interactive - also called conversational. Users
engage in a direct and continuous dialogue - input,
"reject" response, corrected input, "accepted"
response, etc.

c. Multiple concurrent users are necessary to economically
justify a "time-sharing" system.

d. Each user appears to have the full resources of the system
at his disposal. Rapid multi-plexing from user to user
provides this illusion.

e. Although "time-sharing" is classified as remote computing,
a user of a "time-sharing" system is not necessarily located
very far from the host computer. User terminals could be
located in the same room with the computer. On the other
hand, the user may be located many miles away. Distance
is not a criteria for "time-sharing". Man-machine direct
interaction is key!

Characteristics of real-time computing:

a. A real-time system is one that controls an environment by
receiving data, processing it and taking action or returning
results fast enough to affect the functioning of the en­
vironment at that time.

b* Some definitions of real-time would put a limiting time
response as a criteria.

c. Time response is critical; the system cannot degrade or
defer. There is no second chance,

d. Since strict time dependency is the key, systems are often
dedicated, special purpose. Often one cannot afford the over­
head of a general purpose programming system in meeting
real time requirements.

7. Spectrum of computing:

a. The great bulk of computing is done today in the local batch
mode. Although terminal oriented systems will grow
significantly in the years ahead, batch processing will be
with us for a long time.

IBM Internal Use Only
5

-IBM Internal Use Only

SPECTRUM OF COMPUTING

REAL
TIME TERMINAL COMPUTINGm i---------------------

TIME-SHARING REMOTE BATCH

LOCAL
BATCH

INTER-
VIRTUAL PRETIVE COMPILE R JE /R JO

TSS
CP67/CMS

CPS
APL

QUIKTRAN2

RAX
BASIC

High
Speed

MAXIMUM
RESPONSE

RJE

Low
Speed

MAXIMUM
THRUPUT

bv The first steps in the development of programming systems
was to automate flow of work through the computer and make
it effeciently process work in the batch mode.

c. Emphasis has been on keeping the CPU busy and maximize
thruput.

d* At the other end of the spectrum, response is the critical
consideration in real time applications.

e. In between these extremes, terminal computing provides
improved service to the user,

f. * Terminal computing can be classified as remote batch or
" time-sharing" where ntime-sharing11 means interactive
or conversational computing.

g. The various techniques are highly inter-related.
h. It is possible to have the entire spectrum of techniques

employed concurrently in the same hardware software
system. Multiprogramming makes this possible.

C. Some Myths Exploded
1. Multi-programming and its relation to "time-sharing:11

a. Multi-programming takes place when two or more independent
programs reside in main storage at the same time and operate
in an inter-leaved manner. The programs time share the CPU
sequentially.

b. Local batch systems such as DOS, OS-MFT, and OS-MVT are
multi-programming systems.

c. In multi-programming, the highest priority program or task
demands the CPU and will always get it when it is ready.
Lower priority programs will only get the CPU resource when
no higher priority programs are ready to use the CPU, i. e, are
waiting for the completion of some event such as I/O activity.

d. In 11 time-sharing, M the CPU time is divided among the user
programs on a scheduled basis. All ready users will get a
"s lice " of the CPU time based upon some scheduling procedure.
This scheduling procedure, or scheduling algorithm, determines
which user gets the CPU next and for what length of time.

e- The attached chart compares multi-programming and "tim e-
sharing,f characteristics.

2. " Time-snaring" is not limited to the f,computingM applications:

a. The "time-sharing" technique applies equally well to the
applications that are data oriented.

b. The Spectrum of Applications diagram, shows on-line or
remote processing as well as the remote "computing"
requirements.

c. Computer Assisted Instruction (CAI) and Text Processing
(ATS and DATATEXT) are interactive applications that
are non-computing type.

d. Most applications of the on-line file maintenance/inquiry
type are non-conversational. Inputs are strictly formatted
and functions possible from the terminal are limited.

IBM Internal Use Only
7

MULTIPROGRAMING

Shares CPU time on
demand basis.

Prime Objective:
keep computer busy.

Little man/machine
interaction.

"Slow"
Response Time

Response implies
completion of comput­
ing requirements.

TIME SHARING

• Shares CPU time on
scheduled basis.

• Prime Objective:
keep user busy.

• Basic design philos­
ophy emphasizes
man/machine inter­
action.

• "Rapid"
Response Time

• Initial and successive
responses imply par­
tial completion of
computing require­
ments*

IBM Interne .1 Use Only

IBM Internal Use Only

SPECTRUM OF APPLICATIONS

REAL
TIME

II
TERMINAL BASED SYSTEMS

LOCAL
BATCH

REMOTE PROCESSING REMOTE COMPUTING

FILE INQUIRY 8
MAINTENANCE

REMOTE
TIME-SHARING OTHER TIME-SHARING BATCH

i------- ii— ii— ii— i

e. More flexibility and capability from the terminal will
be necessary to provide access to the on-line integrated
information systems required in the years ahead. The
time-sharing mode of operation can meet this require­
ment of Management Information Systems.

f. 11Time-sharing” is much more than just providing a
better slide rule for the engineer.

3, " Time-sharing” is not a meaningful term:

a. There is much more to time-sharing than just the
sharing of CPU time. Time-sharing involves sharing
resources of the entire hardware-software system.

b. Space-sharing is required in main core storage and
in direct access auxiliary storage. Storage allocation
is an important consideration in a time-sharing system.

c. Program sharing is a capability that makes time­
sharing particularly valuable and operationally efficient.

d. A program can be shared 11 externally'1 from a program
library when the ,! owner11 makes the program available
to other users. Each user granted access can have his
own copy to use or modify.

e. System programs, compilers for instance, can be
shared "internally" when the code is designed as
serially re-usuable or re-entrant. Each user executes
the same ,fpublic,f copy of read-only code.

f. Data sharing is very much like program sharing, and
is a facility of great value in a time-sharing system.
Security controls, as in program sharing, permit
limited or unlimited access to read or change datasets.

4. 11 Time-sharing11 is not a specific system:

a. The IBM System/360 Model 67 Time Sharing System
is only one specific "time-sharing" system.

b. RAX, CPS, APL, C ALL/360: BASIC, QUIKTRAN,
CP67/CMS, ATS, and TSS are all IBM 1ftime-sharing1f
systems.

c. No one specific system will satisfy the needs of all
our customers.

d. 11 Time-sharing11 can be provided by a customer "in -
house" system or he can buy service from a vendor
of 11 time-sharing.11

e. Purchasing of "time-sharing" service provides
capability with a minimum investment by the user.

IBM Internal Use Only
10

a. Time-sharing systems can be categorized by
several attributes:

1) Function provided to the user
2) Implementation technique
3) Environment

b. General purpose as opposed to special purpose or
limited function systems.

1) The definition of ntime-sharingf! given earlier
listed the following user functions:

a) Solve a problem
b) Create a program
c) Get information from a system

2) A general purpose system would permit the
terminal user to perform any of the above
functions.

3) A special purpose system might be limited to one
of the above functions. Airline Reservations, for
for example, can be considered a special purpose
"time-sharing" system because the terminal user
is limited to data entry or retrieval.

4) Generality in a "time-sharing" system is
determined to some extent by the number of
programming languages available, size of
programs and file space available. Certainly
a system that provides only one language is
limited.

5) Note that some people consider ntime-sharingn
as general purpose if batch processing takes
place concurrently.

c. Classification by implementation techniques
1) A ,ftime-sharing,f systems may use a traditional

batch compiler that produces object code from source
language entered at the terminal. RAX and C all/360:
BASIC are examples of such systems.

2) Interpretive systems or incremental compilers
provide another type of implementation for "tim e­
sharing" systems. QUIKTRAN, CPS, and APL
are examples of interpretive systems.

3) Virtual memory systems employ special hardware
for dynamic address translation and paging. TSS
and CP67 may be classified as such. Note that 1)
and 2) are concerned with a compiler technique
while 3) is a method of memory management. The
compilers used in virtual memory systems are
essentially batch compiler types but there is no
reason why an interpretive system could not be
incorporated into a virtual memory system.

5. Classification of "time-sharing" systems

IBM Internal Use Only

11

d. Classification by environment
1) A ’’time-sharing” system can be implemented

as a subsystem of an operating system such as
OS or DOS.

2) Conversely, a ’’time-sharing” system can be a
stand-alone variety. A stand-alone system is
dedicated to the time-sharing function. A s a
result, it has no background or batch capability.
On the other hand, the stand-alone version will
generally require less core, be easier to install
and maintain, and perform more reliably and
faster than its counterpart imbedded in an operating
system.

6, Characteristics of the Ideal Time-Sharing System:

a. From the standpoint of the user, the ideal system should
have unlimited function with instantaneous response®

b. Program development languages should fit the range of
problems to be solved: FORTRAN, COBOL, PL/I,
ASSEMBLER.

c. Application oriented languages for problem solving for
non-computer professionals: i. e. COGO, STRESS,
statistical packages, Simulators, and list processing
languages.

d. Full data management capabilities are necessary to
satisfy file maintenance and information retrieval re­
quirements. Program libraries are included®

e* No limit is placed on program size and number of users.
f. Debugging capability®
g. Simplicity of operation.
h. Optional help or prompting information when required.
i. Selection of terminal support - including keyboard,

card, paper tape, CRT display.
j. Language capability compatible with batch systems.
k. One must recognize that there is a trade-off in terms

of function and response. Clearly, as all the functions
of the ideal system are implemented, it becomes in­
creasingly difficult to maintain ideal performance.
More facility means more complex relationships and more
over head. As the capability offered at the terminal
grows, the language necessary to invoke the capability,
becomes more comprehensive. Simplicity of operation
gives way as capability grows.

L As of this time, no one has an ’’ideal time-sharing”
system as described above. All of the existing systems
have limited capability and features. The ’’ideal” may
never be achieved but sound, general-purpose time-sharing
systems are not far off as we approach the 1970s.

IBM Internal Use Only
12

II. Why is "time-sharing'1?

A. What motivates the growing desire to use computers interactively?

1. The frustration with delays involved in the batch
processing mode have generated a desire for a
more responsive and accessible mode of operation.

2. The shortage of trained and talented people make
it imperative that the available resources be used
to the best advantage.

3. The growth and diversification of computer usage
demands a man-computer relationship that enhances
man's problem solving ability.

B. Time-sharing offers the opportunity to improve performance in what
is currently being done with computers.

1. Interaction in program development has proven
very effective.

2. Elapsed time for program development has been
reduced and consequently lowered the total cost
of development.

3. Better utilization of a limited resource - qualified
people.

4. A time-sharing approach permits a user to concentrate on a
single job without fill-ins or additional programming tasks because
of "wait" periods. Immediate turnaround eliminates
need for Secondary tasks.

5. Management of programming development is
simplified where ntime-sharing" permits continuous,
dedicated effort to a single problem solution.

6. There are an estimated 100, 000 trained programmers
active at the present time. Another 50, 000 to 75, 000
are probably needed. Every programmer is a potential
"time-sharing" user for program creation.

7. Interactive development, debugging, and execution can
reduce some of the erroneous output and unnecessary
listings and voluminous dumps that frequent the batch
processing mode.

IBM Internal Use Only

13

8. If the user can interact, as the solution unfolds,
unproductive runs can be eliminated, exception
coding can be reduced simplifying program logic,
and the printing of repetitive listings, dumps,
and results can be avoided.

C. " Time-sharing" extends the range of computer usage to the problems
"too small" for traditional computer methods.

1. Small jobs presently done by slide rule, desk
calculator, "seat of the pants, " or not done at
all because of impracticality in batch mode are
made practical in "time-sharing mode. "

2. The experience of the Ford Motor Company with 16, 000
small jobs, cited in EDP Analyzer , showed that the
median user was on the terminal for 10 minutes.

3. In the university environment, student problem
solving can be best handled in the time-sharing
mode. There are nearly three million students
in the schools and universities of the United States.

D. "Time-sharing"extends the range of computer usage to the problems
"too complex" for traditional computer methods.

1. There is a whole span of problems that probably
cannot be solved except by a highly interactive man-
machine environment.

2. In problem solving, man excels in setting goals,
in laying down guide lines, choosing approaches,
following intuition, exercising judgement, and
evaluating results. These aspects are heuristic,
meaning that they lead toward or facilitate in­
vention or discovery.

3. The great value of computers lie in their ability
to execute very rapidly and very accurately, pro­
cedures that have been defined explicitly and in
detail. These procedures are called algorithms.

4. In batch mode processing, the heuristic contributions
are supplied by the user before the program gets into
the computer. The heuristic contribution then ceases
abruptly, and the execution of the algorithm begins.
This separation of the two aspects is a serious handicap
to the solution of the problems that face our customers
in the frontiers of computing.

IBM Internal Use Only
14

E. "Time-sharing" extends the range of computer usage by making the
computer more accessible to other professionals.

1. In addition to the 800, 000 to 1, 000, 000 scientists and
engineers at work in the United States, other non­
programmer professionals are potential users of
"time-sharing" systems.

2. Financial institutions are particularly active in
using and providing "time-sharing" service to their
customers. Investment analysis is the salient
application area.

3. Statisticians, actuaries, market-forecasters, and
analysts of every kind have need of the immediate
problem solving made possible by "time-sharing. "

4. Doctors, lawyers, accountants, brokers, credit
managers, real estate people, and legislators have
need of "data bank" access that "time-sharing"
can provide.

5. Authors, educators, and technical writers have
found text processing at the terminal to be an ex­
cellent tool to facilitate text-book and manual pre­
paration.

6. Application oriented languages are vital in extending
computer usage to non-computer professionals.
Conversational programs like COGO, STRESS, GPSS,
ECAP, PMS, STATPAK, MPS (LP), AND GIS will
pave the way for other professionals to avail them­
selves of computing or processing utility.

7. Professional users who are not programmers and
have no intention of becoming such are often motivated
or stimulated by "time-sharing" to incorporate additions
or modifications to packages or even write processors
of their own.

F. Expertise with attendant publicity, salesmanship, and financial support
have contributed significantly to "time-sharing" evolvement.

1. Acknowledged centers of computer technology have
been leaders in the development of "time-sharing"
systems. Our leading universities and the so-called
"think tanks" have contributed the expertise in the
early and continuing evolvement of " time-sharing. "

IBM Internal Use Only
15

2. Many respected and articulate proponents of
"time-sharing" have voiced their convictions
fervently and repeatedly. Computer conventions,
and journals have provided a continuing forum for
papers and presentations.

3. The United States government through ARPA of
Department of Defense (DOD), National Science
Foundation (NSF), Atomic Energy Commission
(AEC), and National Institutes of Health (NIH),
has contributed millions of dollars toward develop­
ment costs at the universities and "think tanks. "
ARPA spending reported at $12 million to $13 million
a year on "time-sharing" by FORTRAN article,
August, 1967.

4. IBM has contributed significantly to the "tim e­
sharing" development with internal experimental
systems, i. e. TSM, M44, CP40, and APL.
Many customer projects in "time-sharing" have
been jointly developed with IBM. IBM programs
in addition to TSS, include RAX, CPS, ATS,
QUIKTRAN, CALL/360: BASIC, CALL/360:
DATATEXT, and CP67.

5. First generation systems have proven the concept
to be workable. Satisfied users continue to promote
and extol the virtues of "time-sharing* " Demonstration
Is crucial in selling intefactive computing.

6. Although there are many statements about improved
productivity and efficiency of users, there are little
or no statistics to cost justify "time-sharing" facilities.

IBM Internal Use Only

16

A. Consideration of user environment

1. "Time-sharing" is defined as interactive or conversational
computing. The degree of interaction is highly variable.
Depending on design and implementation techniques, it is
possible to develop a wide range of conversational capability.

2. The degree of interaction can vary with the function being
performed. During program creation one level of interaction
may be possible, whereas program execution may have a
lesser degree of conversationality. Again, the type and
sophistication of the system implementation will determine
the amount of user interaction.

3. A very high degree of interaction may be achieved, but
only at the éxpense of some other desirable characteristic,
i. e. , response or execution speed. As in any system,
trade-offs between facility and performance must be
considered.

4. The user must have the capability to specify the "tim e­
sharing" system function to be used - whether program
creation, modification, execution, etc. A "Command
Language" is necessary to permit the user to direct
his activity.

5. Commands may be explicitly stated by key words or verbs in
the terminaluser *s language to select the mode of operation.

6. Some commands are administrative in nature. Other commands
allow the user to load, list, create, modify, execute a program,
list the program names in the library, interrupt a program, and
save a program in the library.

7. The concept of "time-sharing" works or is economically feasible
because at any instant of time, a large number of the terminal
users are making little or no demand on the system. So-called
"think" time and user typing time make no demand or very
little demand on the system. Output printing, likewise, requires
little system effort.

8. Users in "hard execution, " compilation for instance, do make heavy
demands on the system. Few of the total population of users are
in "hard execution" at the same time however.

B. Components of the "time-sharing" system.

1. Like the traditional batch system, the heart of a "time-sharing"
systemisthe supervisor. The normal functions of interrupt
handling, physical IOCS, communication region, etc., are
included in the "time-sharing" supervisor.

III. How is "time-sharing" accomplished? Implementation techniques.

IBM Internal Use Only
17

2. Additional capability required in the supervisor for
"time-sharing" is as follows:

a) Terminal Access Method
b) Command Language Interpreter
c) Storage management
d) Scheduler

3. On-line libraries, providing "private" and "public"
storage for programs are a must in "time-sharing"
systems. Data storage is also required on-line.

4. Language processors and application oriented programs
are a necessity.

5. Utility routines are generally included for house­
keeping functions in the "time-sharing" system. Source
program update, library purge, and accounting in­
formation processing routines are typical utility routines
required-

C. Batch Compiler Implementation.

1. One technique of developing a "time-sharing" system
is to use components originally developed for a batch
compiler system. A compiler, loader, basic super­
visor, and library facility provide the framework and
are modified and extended for "time-sharing. "

2. BPS FORTRAN provided the basis for RAX. Many
changes were required. Not the least of which was
a change of residence from tape to disk.

3. The user creates a source language data set from the
terminal. Each character of an input line is trans­
mitted to a terminal buffer in core storage. At the
end of the input line, the terminal buffer is transferred
to the input source data set on auxiliary storage.
Eventually, the complete source data set is processed
by the batch compiler when the appropriate command
is entered.

4. Diagnostic messages are returned to the terminal so
that input source language can be corrected - assuming
errors were detected. User then enters update mode
to make changes to the source program. When the
user finishes modifications, the changes are merged
into the source input data set. The compiler is again
invoked and the process is repeated.

IBM Internal Use Only
18

IBM Internal Use Only

BATCH-COMPILER IMPLEMENTATION
OF TIME-SHARING

Partition (s)
for Compiler,
Loader, Utility,
and User
Programs.

TAM
USER 1t USER 2

. USER 3

SUPERV

• •
• •

IS OR

SYSTEMS LIBRARY

(c o m p il e r T

[u t il it y ^

LOADER

SCRATCH SPACE

SOURCE LANGUAGE
DATA SETS

TERMINALS MAIN STORAGE AUXILIARY STORAGE

5. When a compiler run is without serious errors, the program
is loaded and executed. Execution is time-sliced.
Each user who is ready to execute will get an in­
crement of time. The time-slice can be a fixed
length of time set by a sysgen parameter.

6. Note that interaction is relatively limited in the
batch compiler implementation of "time-sharing. "
As each line is entered, there is generally no
response from the system. The user is informed
of detected errors only at the completion of the
compilation.

7. A pre-processor can be added to perform certain
analysis as each line is entered. This analysis is
called line-by-line syntax checking. It basically
examines the ordering or format of the input line.
A good example of something that can be checked
on an intra-line basis is a balanced number of
parentheses.

8. A line-by-line syntax check duplicates some compiler
function. Global checking, that is the inter-statement
consistency of the program, requires the compiler.

9. Adequate response from the batch-compiler time­
sharing system depends on the compiler performance.
Speed, efficiency and minimum overhead are obviously
required. The need for line-by-line syntax is negated
if the compiler performance is high.

10. Program modification permits program changes without
re-entering the entire program. Lines in error are
generally completely re-entered in the batch-compiler
system. More sophisticated editors permit "context
editing" whereby only the item in error in the line is
changed.

11. During program execution, conversational READ and
WRITE from and to the terminal allow the user to
interact. The running program can solicit input from
the terminal with prompting messages.

12. Conversational READ and WRITE are basic requirements
in order for the user to interact with a program during
execution. Additional capability for user interaction
can be added with a de-bug language for core "snap-shots".

IBM Internal Use Only

20

13. The batch compiler produces object code. Program
execution is direct without loss of speed. Given an
assignment statement:

Y = A + B

The possible symbolic code is as follows:

LD 8, A
AD 8, B
STD 8, Y

14. The CALL/360: BASIC system is a compile-type
time-sharing system. However, the compiler was
specifically designed for the time-sharing environ­
ment. It may or may not reside !,in-coreM depending
on the instantaneous load on the system.

D. Interpretive Time-Sharing Implementation:

1. One method of achieving a high degree of con­
vers ationality in a time-sharing system, is to
employ an interpretive system for program creation
and execution.

2. In the interpretive system, the source language is
converted to an internal tabular form instead of
being compiled to object code. The internal tabular
form must then be "interpreted" to be executed.

3. Each statement or line of the source language is
handled individually as entered. The program is
compiled incrementally into the internal tabular
form a statement at a time. Hence, the term
"incremental compiler" is inherent to an inter­
pretive system.

4. This mode of operation provides interaction on a
line-by-line basis. The user will know immediately
that a statement has been rejected or accepted since
each statement is compiled individually.

5. The internal form is generally a chained list structure.
Each statement represents an element in the chain.
The statements are chained together in statement
number order. Since each statement points to the
next one in the chain, variable length elements and
changes to elements are accommodated easily.

IBM Internal Use Only
21

IBM Internal Use Only

HEADER
LIST STRUCTURE

}
S '_____
ID LENGTH STRING \

V--------------------------' 1

ID LENGTH STRING S

6.

•
Each element of the chain includes a control portion
that contains the statement number or identity, the
length of the element, the forward pointer to the
next element, statement type, etc. In addition to
the control information, the element contains the
string representing the source language statement.

7. Generally, a form of Polish notation is used to
represent the source language in the Mstring. M
This string must be interpreted by an execution
monitor in order to run the program. A discussion
of Polish notation is included in the following section
of the outline.

8. Since a program is executed interpretively by
chaining through the statements of the program, it
is possible to limit execution to a range of the total
statements. The interpretive system provides 11 in­
cremental execution11 of the source program.

9.

•

A program can be partially executed, variables then
displayed, and then execution continued. The nature
of the interpretive system makes for a highly inter­
active mode of operation during both program creation
and execution.

10.

I

New statements are added and incorrect statements
are replaced by simply adding or replacing elements
in the chain. Except for changing the pointer in at
least one statement, the remaining statements are
unaffected. The complete program is not recompiled
each time a change is made. Only the new or corrected
statements are processed by the "incremental compiler."

11. The capability of incremental compilation and execution
provides a valuable feature in interpretive systems
called, "Desk Calculator" mode. The user can, in
effect, write a one statement program that is immediately
compiled and executed. Thus one-time slide rule or
desk calculator type computations can be performed at
the time-sharing terminal. This mode of operation must
be distinguished from the normal program creation mode.
A special character can be employed to indicate the mode
desired.

•
The interactive advantages cf the interpretive system are
obvious. Unfortunately, the gain in conversationality is
paid for in slower execution speed. Interpretive execution
is not efficient when compared to object code performance.

IBM Internal Use Only
23

13. This problem becomes acute with the "number cruncher"
type job. There is one line of reasoning that says that
"number crunchers” or "floating-point grinders” should
not be run from the time-sharing terminal. Develop the
program there, but run the production job in the traditional
batch environment. Several approaches have been tried to
improve execution speeds of the interpretive system.

14. Special hardware in the form of additional instructions to
process the list structures is one approach to solving the
performance problem. There is an RPQ for the Model 50 that will
increase execution speed on the order of 20 to 30 per cent for CPS
Versionlprograms, Later CPS versions no longer support the RPQ.

15. Another approach to increasing execution speed is to
provide an option to compile object code from the internal
tabular form. This technique was employed in QUIKTRAN^
to improve program execution performance. The following
figures provide some relative guide to execution performance:

Interpretive Execution 200 statements/sec
Compile from internal form to object code 8, 000 statements/sec
Compile from source language to object code 20, 000 statements/sec

NOTE: These are execution speeds, not compilation speeds!

16. In the interpretive system, the program is generally retained
only in the internal tabular form. The source language input
is discarded when the internal form is compiled. In order to
list a program, it is necessary to recompose the source
language from the internal tabular form.

17. The recomposition capability provides an interesting possibility
for interpretive systems. If multiple source language compilers
are available to produce the same internal form, the recomp-
capability could be used to translate one source language, i. e. ,
FORTRAN to PL/I or vise versa.

18. The first interpretive time-sharing system is credited to the
Rand Corp. The system was called JOSS (Johnniac Open-Shop
System) and provided an ALGOL dialect language called the
JOSS language. QUIKTRAN, CPS, and APL are inter­
pretive time-sharing systems.

E. What is Polish notation?

1. Polish notation is an alternate method of expressing the
relationship between an operator (in this instance arithmetic)
and the two operands (variables) which it binds. The notation
that all of us are familiar with and the one used in the Fortran
and PL/I languages is Infix, That is, the operator in question
lies between its operands; thus:

IBM Internal Use Only
24

A -f B is Infix notation whereas
AB + is one form of Polish notation

2. In Polish notation, if the operator lies to the right of its
operand pair, then the form is called reverse or suffix
Polish. However, sometimes a form of Polish called
prefix Polish is used, in which case the operator is placed to
the left of the operand pair that it binds; e. g. :

+ AB

3. Here are some examples of infix notation paired with the
corresponding reverse Polish form:

Infix

A + B - C
A + B x C
Z = A + B
Z = A x B + C
Z = (A + B) x C

Polish

AB + C -
ABC x +
Z A B + =
Z A B x C + =
Z A B + C x =

4. The advantage of Polish notation over the more familiar
infix notation lies in the fact that the order of the operators
in the Polish string reflects the order in which these operators
are to be executed. Consequently, in an interpretive mode of
program execution only a single scan is needed to convert the
Polish string into executable object code.

5. Operands, when encountered in the scan, are placed in a
push down stack. When an operator is met, the two top most
operands are accessed from the stack and combined with the
operator. The temporary operand representing the result
of the operation relative to the accessed operands is then
placed back in the stack and the scan continues as before.

6. Polish notation was developed by the Polish mathematician
J. Lukasewicz as a "normal form" for the representation of
formulae in logic. The notation permits an unambiguous
sequential specification of the order of evaluation of logical
and arithmetic expressions without requiring the use of
parentheses. For this reason it has been found useful as a
normal form for computer oriented mathematical languages.
The work by the above named mathematician was done in the
1920s in Warsaw an a broken typewriter, and thereby hangs a tale.

7. CPS uses reverse Polish notation to represent the PL/I statement
in the "L " string.

IBM Internal Use Only

25

8. Converting from Infix to Polish Form

a. The order of operands remains the same in both source and target
string. A push down stack is used to permute the operators so that
they occur in the target (Polish) string in the order in which they
are to be used. This order reflects the precedence hierarchy
given below.

low precedence (when in the stack

to + -
* /

high precedence (when outside the stack

b. The rules for manipulating the stack are as follows:

1. Source operands bypass the pushdown stack and enter the target
string directly.

2. If an operator in the source string has greater precedence than the
operator at the top of the stack, then enter the operator into the stack;
otherwise, remove the operator currently at the top of the stack, move
it to the target string and repeat this test.

3. A left parenthesis always enters the stack and is assigned lowest
precedence.

4. A right parenthesis always forces operators from the stack until
a left parenthesis is encountered.

c* The attached page contains an example which shows the intermediate
steps in forming a Polish string.

9. Converting from Polish Form to Object Code

a. Rules

1. An operand, when encountered in the scan of the Polish string is
entered into a pushdown stack.

2. When an operator is met, the two topmost operands are accessed
from the stack.

3. Object code with a temporary operand is outputted.

4. The temporary operand is placed in the stack.

b. Conversion of a Polish string to object code is illustrated on a
following page. IBM Internai Use Only

26

10. Summary

a. The order of operators in a Polish string reflects the order in which
these operations are to be executed. It is for this reason that the
original infix form of the arithmetic statement is converted to Polish
notation for the L string.

b. This conversion from infix to Polish form is done only once, namely
by the incremental compiler at the time the L string is formed.

c. The subsequent scan of the Polish string to produce object code is
done each time the original arithmetic statement is to be executed.
However, this scan is relatively fast because of the ordering of the
operators within the string.

IBM Internal Use Only

27

Source S tkinq

Y=A*(B+C-d)/£

Y»A*(B+C-D)/E
+
C YA BC

: \ ■
Y«A*(B+C-D)/E

Y*A*(B +C -
\

Y-A*(B+C-

Y*A*(B+C-D)/£

C
#

/

Y A BC +

-4 -

YABC+D-

YABC + D -*

YABC+D-*E/=
. 1. .

IBM Internal Use Only
28

YA6C+D-# E /

4
YABC+P-«E/*

I
Y A B C + D - * E / «

YABC+D-* E/*

Y A B C + D - * E / i

YA&C+D-* E/=

•-4-.-i-4-

—4
Tl

T2 - Tl-D

T3 « A*T2

4
YABC+D-*E/'

4
YABC+D-*E/®

Y A B C + D - * E /

T4
Y T 4 - T s / E

Y « T4

Polish Form to Object code
IBM Internal Use Only

29

1. Storage management is a fundamental consideration in the implementation
of time-sharing systems. As inany multi-programming environment,
storage allocation and management techniques are critical design
factors determining the number of users, system response, and
system thruput.

2 . One can conceive of unlimited main core storage in a time-sharing
system that would permit all users to reside in-core at all times.
This "infinite" size one-level store would accommodate programs
of any size for each user. If this main storage were combined
with an infinitely fast CPU, then the users could be serviced
instantaneously. An "ideal", time-sharing system wouldbe the result.

3. Of course, in practice the "ideal" time-sharing system does not
exist and various techniques attempt to simulate this "ideal"
system. The techniques of main storage management can be
classified as follows:

a) Segmented-core- resident
b) Swapping or Roll-in/Roll-out
c) Paging

4. In segmented -core-resident storage management, core storage
is divided into blocks. These blocks are assigned to users as
required from the pool of blocks made available when main core
was segmented. A user retains those blocks assigned to him as
long as he is logged-on at the terminal. When he logs-off, the
blocks are put back into the pool for subsequent use by others.
Note that for a given user, the program (s) and data remain in
the same blocks of core storage. They are not swapped-out to
a second level storage device while another user's program is
swapped-in.

5 . The advantages of the segmented-core-resident system are
obvious. It is the closest approach to the "ideal" system cited
above. System overhead is minimized since users1 programs
are not swapped between time-slices. It is not necessary to
wait for one program to be rolled-out before another can be
rolled-in for execution. Where programs remain in storage,
there is no contention for channel time and storage access cycles.

6 . Since the segmented -core-resident system uses standard size
blocks, it is impossible to have pieces of non-contiguous storage
wasted because they are too small.

F. Storage Management in Time-Sharing Systems:

IBM Internal Use Only
30

IBM Internal Use Only

SEGMENTED-CORE-RESIDENT
SYSTEM

7 . One disadvantage of this method of storage management is the
large core necessary to implement this technique» LCS is re­
quired in order to put a number of users in core and keep them
there» Even so, this implementation strategy limits program
size to the maximum number of blocks allowed each user.

8. From a practical standpoint, only the interpretive type system,
using list processing techniques can effectively use the non­
contiguous set of blocks that a user would acquire in the
fragmented system* CPS is an example of the segmented -core­
resident storage management method. The CPS Monitor program
and the user blocks make up a partition of MFT or a region of
MVT.

9. The most common method for storage management in time-sharing
systems is some form of swapping* Program swapping or roll-
out/roll-in is the technique whereby a user program, User A for
instance, at the end of its time slice is written out to an auxiliary
storage device. The necessary registers, etc., are saved and
written out with the program. Another program, User B, is then
read from the auxiliary storage into core storage. When the
loading is complete, User B!s program is executed. At the next
end of time slice, Program B is in turn swapped with the next
program in the ready queue, User C for instance.

10* Swapping techniques can use one or more partitions for swapping.
In the single partition swap, the CPU will have to "wait" while
one program is rolled-out and the next is rolled-in. In this
serial approach, necessary with one partition, the CPU will be
waiting 30 - 35 per cent of the time. Of course, the single
partition swap requires the least amount of memory to implement
time-sharing.

11 . Multiple partitions permit several user programs to be on their
way in or their way out to auxiliary storage at the same time.
Hence, roll-out/roll-in is overlapped with execution. The more
partitions, the more likelihood that the CPU will be executing a users
program. Of course, the more partitions there are, the greater the
core requirement. The housekeeping and overhead are also greater
because of the complexity of multiple partitions.

12. A slight variation of the single partition swap is the so-called
"onionskin" approach. In this technique, only enough of the first
program is rolled out to accommodate the next program in the
queue. Program A is npeeled back" just enough to make room
for program B. If program C is greater than B, additional
"peeling" will be required to accommodate C. The CTSS system
at MIT uses the onionskin approach.

IBM Internal Use Only
32

IBM Internal Use Only

EXTERNAL
STORAGE

USER
A

AUXILIARY
STORAGE

USER “A"
PROGRAM

CORE

USER
A

2

TIME SLICES

13. It is relatively easy to relocate a program when it is initially
loaded before execution begins. It is another matter to relocate
a program that has been partially executed during a previous
time slice. Consider the program that came to time-slice-end
when a base register had just been loaded. If this program is
saved and properly re-loaded to the same storage locations,
the program can be re-started without problem. However, to
move this program to another partition or set of locations
introduces some real complications---in base addressing, adcon
resolution, etc. Dynamic relocation generally requires some
hardware assist such as a relocation register to adjust addresses
by the relocation constant. It is possible to relocate dynamically
by programming if the user programs adhere to very strict,
perhaps intolerable, programming conventions.

14. In the single-partition swap, all programs are loaded into the
same starting locations. Hence, dynamic relocation is not necessary.
Dynamic relocation is also not necessary in the multiple -partition swap
if the programs are always rolled in to the same partition on each
time slice. Interpretive-type systems using list structures can be
easily relocated to different swapping partitions since address-
dependent information is either relative or nonexistent.

15. The problem of "Who's minding the store?" extends to auxiliary
storage also. Space for swapping, program libraries, scratch-work
areas, check point, and data file areas must be allocated on the direct-
access storage units of the time-sharing system.

16. Rolling out a program is essentially a check point operation. Certain
status information must be saved and written out with the program.
Contents of the general registers, floating-point registers, PSWs, etc. ,
are obviously required for the next time-slice. The simplest approach
is to allocate enough direct-access storage for each user to accommodate
the saved status information plus the entire swapping partition.

17. RAX uses this straightforward approach in rolling out its single swap
partition. A 2311 cylinder is used for each user-swap area. A simple
count of available cylinders is incremented and decremented as user
programs are rolled in and rolled out.

18. APL uses a sophisticated extension of the above approach in swapping
a "work space. " Only that portion of the "work space" that is occupied
is actually written to disk, thereby reducing I/O time and space required
on the disk. The swapped areas are no longer fixed-size blocks. Thus,
allocation and management of auxiliary storage space becomes more
complex as variable length blocks are accommodated.

IBM Internal Use Only

34

19. It should be noted that the complete program is rolled out at the end of
time slice and rolled in before the next time slice is started. No matter
how much of the code is actually executed during a time slice, all of
it is written out and subsequently read in. Obviously, a great deal of
code, especially exception routines, is repeatedly moved in and out but
never executed. This characteristic of swapping contributes to the over­
head and degrades performance. Time-sharing architects developed
new techniques in second generation systems to eliminate or reduce the
swapping of unnecessary code. Paging or page-turning is a refined
storage management technique intended to improve program swapping
time. Programs are developed in fixed-size blocks called pages. Only
those pages actually required or demanded are placed in core storage
during a time slice. At time-slice end only changed pages need be
written to auxiliary storage device. The subject of paging and virtual
memory is treated in a following section.

G. Paging--An Advanced Storage Management Technique

1. In a multiprogramming environment a job step generally is constrained
to execute in a contiguous area of core storage. This area of core may
be static and hence used sequentially by a succession of jobs. On the
other hand, an area may be dynamic in that its fences come down after
completion of the job step in order to release the core used. The static
area of core is called a partition and is representative of multiprogramming
under DOS or OS-MFT. In contrast, the region concept of OS-MVT rep­
resents a more general approach to storage management. A job step is
allowed to specify its core requirement on a control card. The operating
system will then attempt to satisfy this request from its pool of unassigned
core. However, in both the partition and region approach, all core re­
quests made by the job step during execution must be satisfied from the
partition or region. Both region and partition, to repeat, represent
contiguous areas of core storage.

2. When a time-sharing subsystem uses an existing operating system which
handles the multiprogramming by either a partition or region approach,
the time-sharing tasks roll out from and roll back into an assigned par­
tition or region. Furthermore, a module of code which is rolled out of
some core area prior to completion of execution must be rolled back into
its original core locations. This is the essence of static relocation. In
contrast, dynamic relocation implies the freedom of the system to move
code which has not completed execution to another set of core locations
before allowing execution to resume. To do this without restriction,
extra hardware is required.

IBM Internal Use Only

35

3. Consider the following example:

loc Instruction

100
104
108

L 15, X' 1081
BALR 14, 15
DC A (700)

This program loads register 15 with the address constant 700 at location
108 and then branches to location 700 within the program. If this code
is moved unaltered elsewhere we have, say:

In order for the relocated program to execute properly, the instruction
at location 1500 must generate address 1508 and the instruction at 1504
must cause a branch to location 2100 to take place. This can be accom­
plished by introducing a single hardware register. The content of this
relocation register is added to core addresses generated during instruc­
tion executions. It is these relocated core addresses that are sent to the
address register. In our example the relocation register should con­
tain, obviously, 1400. 4

4. It has long been thought that to support a large general purpose time­
sharing system, a less restrictive method of managing core is necessary.
Partitioned core, together with the absence of a dynamic relocation
facility, imposes many system constraints. In the following allocation
scheme real core is divided into standard-size units called blocks, whose
size depends upon system architecture and software design considerations
A given program can occupy several core blocks. These need not be
contiguous. Any available blocks may be assigned to a program. More­
over, if a core block is assigned to a section of a program, it is only
because that section is actually referenced during program execution.
This program section to which a block can be assigned is called a page?.
Page size and block size are the same. A page is referenced by execu­
tion of an RX, RS, or SS type instruction or by the instruction address in
the PSW. If the referenced page already has a core block assigned, in­
struction execution continues to completion. Otherwise an interrupt
occurs, and the supervisor assigns a core block to the offending page
within the program. Note that no unreferenced page can have a core
block assigned to it. Consequently, only the active portions of a
program will take up core.

loc Instruction

1500 L 15, X 1 108*
1504 BALR 14, 15
1508 DC A(700)

IBM Internal Use Only
36

5. With this introduction let us take another tack. Often a programmer is
forced to code an application in two phases. In phase one he constructs
an algorithm to implement the application. In phase two he faces up to
the fact that there is not sufficient core to execute his algorithm. That
is to say, the programmer structures the application as an overlay
module. Inasmuch as phase two coding is concerned with implementing
a strategy to execute the algorithm, it is evidently desirable to relieve
the programmer of this burden and place it on the system.

6 . This was first done on the ATLAS machine produced in 1961 by Ferranti
Ltd. in England. In this machine a program was spread out over core
and drum. During execution the program, of course, referenced code
not yet in core, hence an interrupt occurred. The page containing the
referenced item was assigned a block of core by the supervisor, and the
contents of that page was read from the drum into the newly assigned
block. When I/O was complete, the program was again given control,
and the instruction that caused the interrupt was re-executed. All of this
was entirely transparent to the programmer. He merely assumes that
he always has as much core as he needs for his application and hence
can dispense with creation of an overlay program structure.

7. The key to implementing such a scheme is recognition that a core
address represents two things: First, it represents the unique name
of some data item; and secondly, it also represents the core location of
the said item. The thought occurs of splitting apart these attributes.
Let what is ordinarily the address now represent only the name of the
data. Using this name as an argument, do a table look-up to determine
the location of the data. Thus, we now have the concept of a set of
names whose range is dependent only on the addressing capability of the
hardware. In contrast, the set of core locations has a range determined
by the amount of core possessed by the system. Inasmuch as System/360
works with a 24 bit effective address, names can range from 0 to
2^ - 1 = 16 million, whereas core locations range from 0 to typically
512K or 1M, depending upon how much core the machine possesses.
The programmer codes within this name space of 16 million bytes and
so can dispense with overlays. The memory corresponding to these
names is nonexistent. This conceptual memory within which the
programmer works is called a virtual memory. Only its addresses are
real* These addresses are generated in the usual fashion by adding a
12-bit displacement to the contents of the base register. However, this
virtual memory address provides an argument for a table look-up to
determine the corresponding real core address, if any. If the transla­
tion (look-up) process indicates that the referenced item is not in core,
an interrupt occurs. The supervisor assigns a core block to the virtual
memory page containing the referenced item. Then an I/O operation is
initiated to read the page contents (on drum or disk) into the assigned
core block. One can think of a typical translation table entry as

IBM Internal Use Only
37

consisting of the following fields:

Virtual Memory Page Address A F B

A , Core block address

F. Flag
Off--core block address is valid
On--core block address is invalid

(i. e. , no block is assigned)

B External page address =
Device address and relative
page number within the device

Upon completion of the read operation the program is eligible to resume
execution. The instruction which caused the original interrupt is re-
executed.

8 . Note that this method of memory management allows a program to execute
within core blocks which are scattered throughout memory. Any available
core block is eligible for assignment to any program. Moreover, if a
page is assigned at one time to some core block, later during execution
(say during a subsequent time slice) it is not necessary for that page to
be assigned to the same core block.

Thus, this fragmented approach to storage management offers dynamic
relocation. There is an obvious penalty in implementing this scheme,
and that is the increased instruction execution time resulting from the
need to translate the page address to the core block address. However,
typically extra hardware is introduced to minimize this overhead.
Finally, let it be emphasized that a virtual memory is unique to each
user. That is to say the system keeps a separate translation table for
each task in the system. Depending upon system architecture, the
translation may be accomplished completely by means of hardware
registers or by use of tables in core at time of use, together with
associative hardware to decrease most translation times. 9

9. Consider the following with reference to Figures 1, 2, 3, and 4. Figure 1
illustrates the situation extant after a programmer has caused a four-page
program to be "loaded" into his virtual memory. Since program execution
has not yet commenced, no portion of the program has been mapped into
core storage. "Loading" the program into virtual memory involves
essentially making entries in the user's translation table. These entries
relate the addresses of the "loaded" virtual memory pages to addresses
of program pages in some library on a direct access device.

IBM Internal Use Only
38

VIRTUAL MEMORY

ONE PAGE

REAL CORE STORAGE
ONE BLOCK {

SUPERVISOR

1. LOADED VIRTUAL MEMORY - NO REAL
CORE BLOCKS
ASSIGNED

IBM Internal Use Only
39

VIRTUAL MEMORY

77??.
,L4 .X ,

m
7 7 7 7 /
X Dc F Ï
/ / / / /
V///

REAL CORE STORAGE

>'////,;l4 ,x>

SUPERVISOR

? LOADED VIRTUAL MEMORY - ONE REAL
CORE BLOCK
ASSIGNED

IBM Internal Use Only

40

VIRTUAL MEMORY

LOADED VIRTUAL MEMORY- TWO REAL
CORE BLOCKS
ASSIGNED

IBM Internal Use Only
41

VIRTUAL MEMORY

LOADED VIRTUAL MEMORY- THREE
CORE BLOCKS
ASSIGNED

IBM Internal Use Only

42

In Figure 2 program execution has commenced. In the time span between
the snapshot represented by Figure 1 and that of Figure 2, the system has
assigned a core block to the initial virtual memory page. The content of
that page is read into the assigned core block. Note that during execution
within this page there is a reference to data item X located in another
page--one to which no core block has been assigned.

Figure 3 illustrates the correspondence between virtual memory pages
and core blocks as a result of execution of the L 4, X instruction in the
first page. In the process of translating the virtual memory address
corresponding to the symbol X, the hardware was signaled that no block
had been assigned to the page containing the data item X. The resulting
interrupt caused control of the system to pass to the supervisor. The
supervisor assigned a core block to the "offending" virtual memory
page and caused its content to be read into this block.

Figure 4 indicates that another block has been assigned to a page in
virtual memory. This assignment, for example, could have been
triggered by the instruction counter stepping across the boundary from
Page 1 to Page 2 in virtual memory. Dynamic address translation of
the instruction address would generate an interrupt to the supervisor.
Note that Page 5 in virtual memory, although a part of the program
under execution, does not have core block assigned to it. If during
program execution no reference is ever made to this page, no block
will be assigned at all.

10. The above discussion makes reference to a "loaded" virtual memory.
Since a virtual memory is one which the user has but the real system
does not, some remarks about "loading" a program module into
something purely conceptual are in order.

A program module to be loaded into virtual memory is located at load
time in some library on direct access storage. The loader of virtual
memory causes the module to oe loaded by making entries in the transla­
tion tables which exist for the user and his virtual memory. The loader
allocates a set of virtual memory addresses as yet unassigned and assigns
these to the module. Table entries are made to relate these allocated
virtual memory addresses to the symbolic device address and relative
page numbers used by the module on direct access storage. No text
ever moves.

Note that the loading of information into virtual memory is independent
of the contents of real core memory. Indeed, only the paging mechanism
of the system will cause a real core block to be assigned to a loaded
virtual memory page.

IBM Internal Use Only

43

IBM Internal Use Only

USER E
VIRTUAL MEMORY

USER F
VIRTUAL MEMORY

n
?vJv►JJvJ
►JvJv
JvJ<$

USER 6
VIRTUAL MEMORY

USER H
VIRTUAL MEMORY

#

IBM Internal Use Only

USER A's
VIR TU A L MEMORY

A's LOADED
VIRTUAL
MEMORY

C's LOADED
VIRTUAL
MEMORY

USER C's

USER B's
VIR TU A L MEMORY

B's LOADED
VIRTUAL
MEMORY

O's LOADED
VIRTUAL
MEMORY

USER D's
V IR TU A L MEMORY VIRTUAL MEMORY

The two accompanying figures each illustrate four users with
loaded virtual memories. In one case none of these users have real
core blocks assigned to the loaded portion of their virtual memories.
In the other illustration each user has a portion of his loaded virtual
memory mapped into real core.

H. Scheduling Techniques in Time-sharing Systems

1. "Who gets the CPU and for how long?" is the question addressed by the
scheduler. In managing this important resource, the scheduler is an
integral part of the time-sharing supervisor. It plays the role of time­
keeper, dispatcher, and housekeeper. Scheduler designs can range from
a very simple, straightforward approach to very complex algorithms to
multiplex user programs. The purpose of this section is to provide an
understanding of this range of scheduling techniques. Its activity affects
response and performance and is a key consideration in the design of the
system.

2. In a non multi-programming system the CPU scheduling problem does not
exist. There is only a single program in the user area of storage, and
this program is to run to completion prior to starting the next program.
Even in a multiprogrammed batch operating system, scheduling the CPU
is relatively minor in nature and is usually referred to as task switching.
In this latter case the supervisor contains a task switching routine. This
routine is entered when the supervisor has completed all the processing
it can do as the result of some interrupt. Task switching passes control
of the CPU to the highest priority ready task. In many instances de­
termination of this task can be made by comparing the dispatching pri­
ority of the task which was last in execution with the priority of the
task causing the interrupt. At worst only a partial scan of the chain of
task control blocks is necessary.

In contrast, scheduling the CPU in a time-sharing system is accomplished
in many ways--some simple, others highly sophisticated. Some of these
scheduling algorithms are discussed in the following paragraphs.

3. Simple Round Robin

This method is the most straightforward. All tasks are served on a first-
come-first-served basis and are ordered in a single queue. Whenever a
task reaches time slice end, its dispatching priority is lowered by one,
and those of all the tasks are raised by one. Note that these contending
tasks could be core resident or using storage on a roll-in, roll-out basis.
CPS tasks, for example, are core resident and use the terminal line
number instead of an internal priority as an ordering device for its queue.
The queue consists of commutator bytes, one for each terminal line in
the system. The dispatcher scans the queue in circular fashion. If a

IBM Internal Use Only

46

IBM

In
tern

al U
se

O
nly

OPERATION CYCLE TIME

100 100 100 100 100 100 100
ms ms ms ms ms ms ms

USER B
TIM E SLICE

OCT

100 100 100

oo

100
ms ms ms ms ms
B c D E F

USER A
TIME SLICE

given commutator byte indicates that the associated task is either not
l o g g e d on or is in head-scratching mode, then it is by-passed, and the
scan continues in its search for a task with processing requirements.

In this category of CPU scheduling algorithms, the time slice value
may be fixed or may be supplanted by a function work slice. In a
work slice approach, a task is allowed to hold the CPU, if possible,
until a compilation is completed or in the case of interpretive systems,
until a fixed number of statements have been executed.

TSS uses a variant of round robin with variable quanta. However, this
will be treated separately.

4, Multi-queued Exponential Scheduling

In this scheme used by MIT in its CTS System, a given task
is in one of several queues. Each queue has an assigned priority
(level number.) Choice of an initial queue for any task is dependent
on the core requirements of that task. The less core required, the
higher the priority of the queue to which it is assigned. All tasks are
handled FIFO within a queue. No queue is serviced unless all higher
priority queues are empty. Whenever a task makes a terminal I/O
request, it is placed at the end of the highest priority queue. But if
a task is in hard execution at the end of time slice, then it is placed
at the end of the next lower priority queue. Finally, let Q represent
the time slice value associated with the highest priority queue. Suc­
cessively lower priority queues are assigned time slice values of 2Q,
4Q, 8Q, 16 Q This scheme favors small short running
programs typical of a student environment. nGrindern type jobs
progress to successively lower priority queues, but once getting the
CPU, they receive longer and longer time slices. In the MIT CTS
System , storage is managed in a roll in- roll out basis.

5, Modified Round Robin with Variable Quanta

This system was used by IBM Model 67 TSS to schedule virtual memory
resident tasks for the CPU. Task control blocks representing users
belong to one of two queues. Those tasks in the Inactive Queue are
those waiting for a response from the terminal. This type response
is measured in seconds or longer. Such tasks have previously been
paged out of core storage and even from the paging drum to a slower
direct access device. The scheduler (task dispatcher) never searches
this queue of dormant tasks. Instead, it confines itself to a subset
of tasks in the Active Queue. This subset of tasks in the active queue
lies between two pointers, the Commutator, and the wall, as illus- É
trated in the accompanying figure. ^

IBM Internal Use Only

48

COMMUTATOR PW

ACTIVE QUEUE
OF USERS

R = READY
PW = PAGE WAIT

WALL PW

R t
CONVERSATIONAL TASKS

BATCH TASKS
R I

H R

IBM Internal Use Only
49

Those tasks above the Commutator are ready for their next time
slice. Those below the Wall are ready for their current time slice.
The tasks between the Commutator and the Wall pointers are cur­
rently undergoing their time slice. Their referenced virtual
memory pages have been assigned core blocks, to be held until
end of time slice. These are the tasks currently being multi-
programmed. The scheduler scans the tasks between the
Commutator and the Wall (i. e. scans the tasks Min the Wall11)
and gives the CPU to the first ready task encountered. If no
task in the wall is ready, then the wall pointer is moved down
to include a new task. At this time, the translation tables for
this task are paged in by the dispatcher.

When a task in the wall comes to time slice end, it is so flagged
and hence will no longer be considered for CPU control. When
the task pointed to by the Commutator reaches time slice end,
the Commutator moves down the active queue. It stops when
it finds a task is Ready or Page Wait status. Intervening tasks
in Time Slice End status are passed by and reset to Ready.
Thus, effectively all tasks in the active queue are treated in
round robin fashion. Those tasks in the Inactive Queue which
receive a terminal response are moved back to the Active Queue.
They are flagged "Ready" and placed just below the Wall pointer.

There is a refinement of the above scheduling algorithm which
reflects the use of demand paging as the basis of storage manage­
ment. It is evident that the ability of a task to hold the CPU improves
steadily during its time slice, i. e. during the period of time the
task resides in the wall. Each page exception causes another core
block to be assigned to the offending virtual memory page within
the task*s virtual memory. Unfortunately, at time slice end just
when the task has accumulated a number of core blocks, these core
blocks must be given up. Unchanged pages are immediately made
available for assignment to other tasks. Changed pages are scheduled
for writing to paging drum or disk then freed for use by other tasks.
In an attempt to keep the entire system in balance, the following
decision is made whenever a task reaches time slice end. If the
paging time during the time slice exceeds the CPU time accumulated
during the time slice (this latter is the time slice value), then the
task is flagged ready, hence stays within the wall and receives
another time slice. Thus the task does not relinquish its assigned
core blocks. It continues to accumulate them as paging exceptions
occur during the extended time. Additional time slice values called
quanta are made available to this task. However, for each N additional
quanta obtained while in the wall, tasks are penalized by being flagged

IBM Internal Use Only

50

Time Slice End the next N times they are included in the wall.
Thus, in the long run any task averages a single quantum per
time slice. The maximum number of successive quanta allowed
any task is set as a system parameter.

7. A Table Driven Scheduler

It is difficult to find two people with the same philosophy of CPU
scheduling in a time sharing environment. This arises, in part,
because the subject is not yet well understood. As yet, there is a
paucity of practical experience with large scale time-sharing
systems. In any event, there is ever present the desire of most
installations to tailor the algorithm to their job profile or at least
to adjust it according to the dynamic work load on the system.

In spite of the parameterization of key variables, such as length
of time slice, maximum number of quanta per time slice, opera­
tional cycle time, etc. , flexibility of CPU scheduling has been
very difficult to achieve. The most flexible method of implementing
a scheduler-dispatcher is to have the behavior of every task de­
pendent upon entries stored in a table. These entries can be easily
changed, perhaps even dynamically, in response to a changing
environment.

In one such system (TSS), each row in the table contains parameters
which become the scheduling attributes of any task assigned to it.
At all times each task in the system points to some row in the
table. The accompanying illustration shows a modified and incom­
plete version of the TSS scheduling table and suggests a few of the
entries relevant to task scheduling.

On the basis of parameters stored in a given table level (i. e. , row),
a task may subsequently be associated with the same or with a
different table level. Thus over the duration of a terminal session,
a task may be controlled in a variety of ways. A single table can
easily accommodate both exponential multi-queued scheduling and
the round robin variant originally implemented for TSS.

Each task in the table driven implementation is chained to one of
three lists:

Inactive List
Tasks are in delay status
An I/O interrupt will cause these tasks to be

moved to the Eligible List

IBM Internal Use Only

51

IBM

In
tern

a
l

U
se

O
nly

A SAMPLE SCHEDULING TABLE

Level No.

0

1

2

3

p _Q T/S DTR TSE Level1 TWAIT Level Max. Blocks

0 1 50 ms 0 ms 1 0 100%

0 10 100 ms 3400 ms 1 0 25%

1 10 100 ms 4200 ms 2 2 25%

2 3 100 ms 4200 ms 3 3 25%

9

10

11

9

10

32

64

100 ms 5000 ms

100 ms 6000 ms

100 ms 6800 ms

10

11

11

6

6

6

20%

20%

20%

P = Priority

Q = No. of successive quanta per time slice

T/S = Amount placed in timer at start of time slice

DTR = Relative length of interval at which a task wants to be given a time slice

TSE level = Scheduling table entry to be used when time slice end occurs

TWAIT level = Scheduling table entry to be used when a task leaves terminal wait status

Max. Blocks = Percentage of total core blocks a task may accumulate during a time slice

Eligible List
Tasks are Ready-
Tasks are waiting for a new time slice
Tasks are ordered by priority

Dispatchable List
Tasks are Ready or Page Wait or I/O Delay

or In Execution
Tasks are undergoing a time slice (i. e. , being

multi-programmed)
Tasks have core blocks assigned

Tasks move from the Dispatchable to the Inactive List when a
Delay condition occurs (terminal or I/O wait). Tasks move from
the Dispatchable List to the Eligible List at time slice end.
Tasks move from the Eligible List to the Dispatchable List
as long as there is deemed to be sufficient core to satisfy their
paging demands. At this time the tasks1 translation tables are
paged in.

It is expected that the table driven approach to CPU scheduling will
provide a flexibility not heretofore present in more conventional
approaches. Less of the algorithm is embodied in fixed coding
scattered throughout various modules of the supervisor. In
addition the table represents a single, easily modifiable entity
by means of which any installation may readily adapt to its unique
time sharing requirements.

IBM Internal Use Only

53

IV. Multi-Pr oc es sing Systems

A. Introduction:

1. The term multi-proces sing system literally designates any
computing complex formed by assembling together several
processors, presumably CPU’ s, Thus, such diverse systems
as ASP, SABRE, the QUIKTRAN configuration, the FAA 9020
complex should all qualify as multi-processors. However, there
is a strong tendency to restrict the term multi-proces sing system
to one which offers "availability” and which, in addition, provides
all CPU’ s a common jointly addressable memory.

2. Typical multi-CPU configurations tend to fall into one of several
categories.

Tandem In the 7740 - 7044 system used by QUIKTRAN
the 7740 pre-processes messages from the
communications network while the 7044 does
the main processing.

Sat ellit e - par ent (slave-master) The ASP system uses the parent
as a support processor (typically a model 50) to
handle SPOOLing and job scheduling. The slave(s)
(a model 75, say) executes the jobs in the input
queue. There is sufficient flexibility in this ar­
rangement to allow job executions to take place in
the satellite processor (as in version 2 of ASP).

Duplex The SABRE system uses two 7090fs to process
the American Airlines Reservation applications.
One 7090 handles on-line transactions from some
1400 terminals located throughout the USA. The
other performs in-house operations while serving
as a switchover backup in case of failure of the on­
line 7090.

IBM Internal Use Only

54

If system reliability is exceptionally critical,
as in manned spacecraft tracking, then the
duplex system may use both CPU's running in
lock step. In this case, inputs to each sub­
system are identical and all work is performed
in duplicate. The term dual is often used to
describe this mode of operation.

3. Do any of the above offer the ability to carry on when a system
component, including a CPU fails? If the answer is yes, then
such systems offer "availability" and can justify being called
multi-proces sing systems. However, some people require
the CPU's to address a common bank of memories to qualify
the system as multi-proces sing.

4. The multi-processing systems discussed below are those which
were designed expressly with "availability" as the prime objective.
This ability of a system to continue to perform even though at a
degraded level, is achieved through a redundancy of components.
Multiple channelsand control units provide alternate data _path,s.
Modular memory boxes and multiple CPU’ s complete the re­
dundancy requirements. In the case of processors which share
a common memory, there is in addition a flexibility gained from
use of a pool of system resources. Such systems operate under
a single control program in the common memory. All CPU's
have access to the single job queue and single set of system
libraries. 5

5. In summary, a multi-process or system in the context of this
monograph, embodies "availability" as its paramount objective.
As an additional benefit, the multi-proces sing system is more
flexible than two stand-alone systems. In the latter, all resources
of a failing system are lost. Furthermore, the resources of two stand­
alone systems cannot be pooled to rectify a temporary imbalance in
one of the systems. In contrast, "load leveling" is an automatic
by product of a true multi-process or design. It is impossible to
have a queue of work present for one CPU and have the other CPU
in WAIT state. In conclusion, let it be noted that computing power
is a secondary goal in multi-proces sing systems. Performance is
somewhat degraded because of contention. There is hardware con­
tention arising when two or more CPU’s attempt to access the same
memory box. There is software contention when two CPU's attempt
to access the same system data sets in main or in auxiliary storage.
Availability is the key word for multi-processing design.

IBM Internal Use Only
55

IBM Internal Use Only

CHANNEL CONTROLLERS

B. System Considerations

1. IBM currently markets commercially two multi-processing
systems in which the CPU’ s address a common memory. These
systems are Multiprocessor 65 using OS-MVT and the Model 67
using TSS. Before examining each system separately, features
common to both are treated below.

2. Multi-System CPU Signals

a. A CPU can receive an external interrupt for one of several
reasons. Its timer may have turned negative or some other
CPU may have executed a WRITE DIRECT instruction. In
addition, an external interrupt can be caused by a malfunction
alert signal which is automatically generated when another CPU
encounters a machine check.

b. Inter-CPU communication, known as shoulder tapping, is not
restricted to system recovery operations. The multi-process or

Model 65 makes use of the shoulder tapping ability of the system
to conform to the basic design standards of OS-MVT. This will
be discussed in more detail later.

3. Storage Areas for CPU Control

a. Every model in the System 360 line uses an area in low core which
contains machine oriented words Old and new Program Status
Words (PSW’s) the timer the Channel Status Word (CSW) and
Diagnostic Scan-out area are fixed fields in this area In a single
CPU system, this area encompasses addresses 0 to N where N is
less than 4096 The area is "owned” by the CPU in the sense that
it contains data used or generated by the CPU.

b. In a multi-processor environment each CPU must have its own "low
core" area. The area is a full 4096 bytes long and is called either
the Prefix Storage Area or Permanent Storage Area (PSA)# Each
CPU must have the ability to reference the PSA’s of the other CPU s
The PSA of a failing CPU contains information which would possibly
allow another CPU to "take over".

4. Floating Address Switches

Core storage in a multi-proces sing system is packaged in
modular units, typically 256 K bytes each. A system with
512 K bytes of storage has two memory boxes, whereas a
million byte system has four. The address range of each
memory box is controlled by the setting of a separate ad­
dress switch located on a configuration control console. If a
particular memory box fails, it can be varied off-line and the
floating address switches set to give the remaining on-line
boxes a continuous range from zero to the maximum now.

IBM Internal Use Only
57

possible. It is obviously desirable for an installation to
locate the various prefix storage areas in separate memory
boxes in the interest of availability.

5. Configuration Control Panel

A multi-proces sing system can be divided into two isolated
subsystems. Each subsystem will have a CPU, channels,
control units and memory boxes. Each processor can sense
the status of all.partitioning switches on the control panel
regardless of the partitioned status of the processor. Through
partitioning, a Model 67 system, for example, could run TSS
in one subsystem and run OS-MVT in the other with its CPU in
Model 65 mode.

The floating address switches on this panel are used to assign
memory addresses starting from zero for each partitioned sub­
system.

The panel is also used to reconfigure the system or subsystem by
isolating a failing component. Such reconfiguration is manual or
automatic depending upon the sophistication of the software.

6 . Operating System

When any CPU in the multi-process or system (assuming it
has not been partitioned) takes an interrupt, control passes
to the single supervisor. Therefore, it is possible to have
more than one CPU executing supervisor code at the same
time. To prevent two CPU's from simultaneously updating the
same supervisor table, test and set discipline is enforced.

At the beginning of any subroutine which modifies a table,
the TEST AND SET instruction is executed. The referenced
storage byte is called a lock byte. If the condition code in­
dicates that the lock byte is already set (all ones) then another
CPU is currently in the act of updating the table. The CPU
attempting to execute the subroutine will generally continue to
execute the TEST AND SET instruction. When the other CPU
completes the table update, it resets (zeros) the associated
lock byte and returns to the calling program. The CPU attempting
to enter the routine now generates a condition code from the TEST
AND SET which indicates the lock byte is reset. It now commences
execution of the routine. Use of test and set discipline forces
CPU's to queue for use of a serially reusable resource. Modules
of code which can be executed simultaneously by more than one
CPU are called parallel reenterable.

The TSS Resident Supervisor contains a separate lock byte for
each of its tables. OS-MVT as adapted for the M65 system
contains a single lock byte to control all supervisor updating.

IBM Internal Use Only
58

c. The Model 67 Multiprocessing System

1. Intr oduction:

Although IBM has developed systems with high availability in
the past, such systems were tailored to meet specialized customer
processing requirements. The Model 67 represents the first
IBM true multi-proces sing system available as a standard model
in the product line. Its basic design principles are derived from
the need for extensive nfail soft" capability and to explore the use
of dynamic address translation as an advanced method of core
storage management. The supporting operating system is TSS,
However, the CP 67 system is being used, for example, to use
the Dynamic Address Translation Unit as a means of exploring
the virtual machine concept.

2. Model 67 Configuration:

a. The System/360, Model 67 is a sophisticated extension of the
Model 65. There are three configurations possible. These are
simplex, half duplex and duplex.

b. The simplex system is not memory oriented. Thus it closely
resembles the Model 65 except for the addition of a Dynamic
Address Translation Unit to the CPU.

c. The half duplex configuration uses all components of the full
duplex system. These are multi-tailed memories, a con­
figuration console and Channel Controller Units. A memory
oriented computing system requires a different type of core
storage unit. This unit differs from that present on the simplex
system. For this reason, a simplex system cannot be field
upgraded to half duplex.

d. The duplex system contains multiple CPU's. A half duplex
system can be upgraded in the field to a full duplex configur­
ation by addition of another CPU and presumably more memory
boxes.

3. Features

a. Modular Memories

Each memory box has multiple connections for use by CPU's
and channels. Thus different core storage units can be accessed
simultaneously by multiple CPU's and channels. These multiple
direct connections are called tails, hence the term multi-tailed
memories.

A special hardware component called tie breaker is brought into
play when two accesses are made simultaneously on the same
multi-tailed memory. The tiebreaker makes its decision based
on predefined hardware priority levels.

IBM Internal Use Onlx
5H

b. Extended PSW

Power on brings up the Model 67 in Model 65 mode. In 65 mode
the system runs with a standard PSW controlling the CPU. The
change to 67 mode is made under program control. In this mode,
the CPU runs under control of an extended PSW. This PSW has a
completely different format from the standard PSW used by all
other System/360 models. In particular, the instruction counter
is 32 'bits long. There is a bit to indicate whether the Dynamic
Address Translation Unit is to be active or not. Fields in the
standard PSW set at time of interrupt have been relegated to
fixed locations in the prefix storage area of the CPU. A bit
in one of sixteen special hardware registers governs the mode
of operation of the system. "Extended PSW mode" is a term used
to indicate that the Model 67 is executing as a Model 67, not as a
Model 65.

c. Multi-Paths Between Devices and Memory

Access to a device from more than one control unit is accom­
plished by tape and disk switches. Access to a device through
one of several channels is accomplished by control unit switches.

Each channel in the duplex system is attached to the system via
a Channel Controller Unit (CCU). Channel addressing is defined
by the CCU to which a given channel is attached.

Channel addresses 0 - 6 , for example, can be assigned to either
CCU when the system is operating in the extended PSW mode.

d. Floating Address Switches

The position of a rotary switch gives the corresponding memory
box a particular 256K range of addresses. When a memory box
is undergoing maintenance, these switches are set to reflect the
reduced address range starting from zero. When the system is
partitioned, then the address switches are set to provide two
address ranges both starting at zero.

e. Configuration Unit Control Panel

This panel contains the following:

1) . The floating address switches
2) . A separate rotary switch operative when the system is running

in the standard PSW mode. There is one such switch for each
CPU, used to assign to that CPU either one of two Channel
Controller Units.

3) . Status switches to indicate the partitioned status of system
units. The settings of these switches can be accessed by a
CPU for sensing under program control . The status switches
also serve to rna j^ ^0pna^V6 se1̂ bfily

60

IBM Internal Use Only

SYSTEM /3 6 0 PSW

FORMAT:

SYSTEM MASK KEY AMWP INTERRUPTION CODE
0 7 8 1112 1516 31

ILC CC PROG. MASK INSTRUCTION ADDRESS
32 33 34 35 3 6 3 9 4 0

IBM Internal Use Only

MODEL 6 7
EXTENDED PSW MODE

REDEFINED FORMAT:

SPARE I / O
MASK

EXT
MASK

PROTECT
KEY AMWP ILC CC P R 0 6 .

MASK SPARE
0

2 4 - 3 2 BIT
ADDRESS MODE

1516 1718 19 2 0 2 3 2 4 31

INSTRUCTION ADDRESS

32 63

.f. High Resolution Timer

The interval timer has a resolution time of 13 microseconds. In
contrast, most interval timers "tick" once every so many milli­
seconds. For third generation systems which operate at nano­
second speeds, resolution on the order of milliseconds is not
fine enough. Time sharing systems, particularly, need high
resolution interval timers for accurate job accounting and task
dispatching.

g. Extended Storage Protect

The storage protect key is increased from four to seven bits.
In addition to the normal four bit storage key, there is a ref­
erence bit, change bit, and fetch protect bit. The change
bit is used by TSS to determine if a core block has been mod­
ified during a time slice. Changed blocks must be paged out
to auxiliary storage (drum or disk) before being made available
for reassignment. The fetch bit is used to implement read only
code. The reference bit together with the change bit is useful
to determine if a core block containing reenterable code and
shared by several users has been used recently. Unused
shared pages are merely occupying core storage and should
be paged out.

h. Direct Address Relocation

A Model 67 installation selects multiple 4K areas in core storage
for CPU Control. None of these can coincide with the true low core
area extending from 0 to 4095 in the common memory. The customer
engineer will establish hardware prefixing at the time of installation.
A CPU will reference its own pseudo low core area when an address
in the range 0 to 4095 is generated by that CPU. This is accomplished
by causing the hardware to monitor all addresses. Whenever an
effective address with twelve high order bits all zero is generated,
the prefix wiring will cause these zeros to be replaced by the 12 bit
block address of the prefix storage area for that CPU.

To access data within the PSA of another CPU, a CPU need only
execute an instruction whose operand generates the absolute address
of the desired data. Such an address does not lie in the range 0 to 4095,
hence does not contain twelve high order zeros. Prefixing does not
take place and so the desired location can be referenced. Each CPU
has a primary and alternate (back up) PSA. Note that the true low
core area in the common memory is not usable by the system since
prefixing prevents any CPU from accessing it.

IBM Internal Use Only

63

IBM Internal Use Only

MODEL 67 HIGH RESOLUTION
INTERVAL TIMER

BYTE 8 0 81_________8 2 8 3

NORMAL S/360
i

- 1 EVERY Z * / z M ILLX**SECOND

BYTE 8 0 81 8 2 8 3

MODEL 67

HARDWARE
REGISTER

s0
- 1 EVERY 13 usee

IBM Internal Use Only

MODEL 67 HIGH RESOLUTION
INTERVAL TIMER

BYTE 8 0 81_________8 2 8 3

NORMAL S/360
i

- 1 EVERY Z * / z M ILLX**SECOND

BYTE 8 0 81 8 2 8 3

MODEL 67

HARDWARE
REGISTER

s0
- 1 EVERY 13 usee

IBM Internal Use Only

MODEL 67
STORAGE PROTECTION EXTENSION

FORMAT of STORAGE PROTECT KEY:
0 1 2 3 4 5 6 7

REFERENCE AND CHANGE RECORDING IS ALWAYS ACTIVE \

IBM Internal Use Only

CPU PREFIX STORAGE AREAS
IN A MULTIPROCESSOR CONFIGURATION

532480
528384 PSA for CPU2

290816
286720

PSA for CPU1

4096
0

unused

4. Dynamic Address Translation

a. A Model 67 CPU contains a Dynamic Address Translation (D . A. T.)
Unit. This unit is never active when the CPU is executing in
standard PSW mode. When dynamic address translation is
active, all processor storage addresses that originate from the
processor (except for hardware generated addresses such as old
PSW store and new PSW fetch) are subject to translation. Storage
addresses originating from the channels are not subject to translation.

b. When an instruction referencing core storage is executed, an operand
is formed from the base register, index and displacement as determined
by the instruction format. When the D. A. T. unit is inactive, this
operand is an effective address, hence is sent to an address register.
When the extended PSW indicates that the D. A. T. unit is to be active,
then the operand is a virtual memory address and so undergoes
translation.

c. Translation is made by a double table look-up using a Segment Table
and a Page Table. There are separate segment and page tables for
each user in the system. A special hardware register called a Table
Register contains the location of the segment table belonging to the
user currently active. Within the virtual address being translated,
the left most twelve bits serve as an index to the segment table.
The corresponding segment table entry, if valid, points to the
core storage location of a page table. Bits 12 through 19 in the
virtual address serve as an index to this page table. The corresponding
entry, if valid, contains the core block number assigned to the page
in virtual memory being translated. The displacement is an invariant
under the translation process and serves to reduce the translated
entity to the byte level.

IBM Internal Use Only

67

RELOCATION ACTION
TABLE LOOKUP

TABLE REGISTER

SEGMENT TABLE

LOGICAL ADDRESS
^SEGMENT | PAGE | DISPLACEMENT |

PAGE
TABLE

MEMORY
ADDRESS
REGISTER

-►I ADD

PAGE
TABLE

PAGE TABLE

BLOCK NUMBER | DISPLACEMENT]

REAL CORE ADDRESS

IBM Internal Use Only

DYNAMIC ADDRESS TRANSLATION

TABLE REGISTER
VM ADDRESS

SE6 PAGE BYTE

d. When a user is undergoing a time slice, both his Segment Table
and Auxiliary Segment Table are in core. The latter table
contains entries in one to one correspondence with the entries ^
in the segment table. In the translation process, if the segment ■
table entry records an invalid status, then a special program
interrupt type 16 is generated. It indicates that the corresponding
page table is not in core storage. The system supervisor can
determine the page table location in auxiliary storage by accessing
the Auxiliary Segment Table.

If a user Page Table is in core storage, then so is a corresponding
External Page Table. Whenever dynamic address translation refer­
ences a page table entry recorded as invalid, then a program interrupt
type 17 is generated. The virtual memory page being translated does
not have a core block assigned. The interrupt causes the supervisor
to initiate page turning. After assignment of some available core
block to the offending virtual memory page, the supervisor accesses
the External Page Table to locate the contents of the virtual memory
Page in auxiliary or external storage. The assigned page frame
(core block) is then filled with the virtual memory page.

e. Program interrupts 16 and 17 also serve to indicate that the translation
process is attempting to index beyond the Segment Table and Page
Table respectively. This can take place when a user attempts to
make reference outside his "loaded" virtual memory.

f. To speed up the translation process, the Model 67 contains eight ^
associative registers per CPU. These contain for the user
currently executing, the segment and page number and corres­
ponding assigned core block number for the eight most recently
referenced pages. At the start of dynamic address translation
there is a compare in parallel on all eight associative registers.
The segment and page number (i. e. left most twenty bits in the
virtual memory operand) are the comparand. A match on one
of the associative registers causes the core block number to be
determined in 150 nanoseconds. At the same time the double
table look up as described above is started. This look up goes to
completion only if the associative register compare fails to gen­
erate a "hit". In this case, if the table look up produces a core
block number, this together with the segment and page fields from
the virtual memory address replaces the contents of one of the
associative registers.

g. There are two basic reasons for using a double index (segment and
page fields) in translating to a core block number. One, the entire
translation table for a user need not all be in core at one time.
The above discussion indicates that it is possible for one or more
page tables to be out of core while a user is in the midst of his time A
slice. Secondly, the double index provides a convenient mechanism ^
for implementing shared code.

IBM Internal Use Only
70

SEGMENT TABLE
24 BIT ADDRESSING

Each entry = 4 Bytes

AUXILIARY SEGMENT TABLE
0

= Each entry =
■= 8 Bytes

15

CNT CNT. CNT FLAG
EXTERNAL LOC. AST FORMAT

WITH 32 BIT ADDRESSING, THE SEGMENT TABLE
CONSISTS OF BLOCKS OF 6 4 CONTIGUOUS BYTES
FOLLOWED IMMEDIATELY BY THE AUXILIARY
SEGMENT TABLE CONSISTING OF BLOCKS OF 128
CONTIGUOUS BYTES.

IBM Internal Use Only

PAGE TABLE
EXTERNAL PAGE TABLE

PAGE TABLE NO. 1 (EACH ENTRY=2 BYTES)

= EXT. PG. TABLE NO. 1
PAGE TABLE NO. 2 (8 b y t e s / e n t r y)

PT NO. 3

PT NO. 4

EXT PG. TABLE NO. 2

XPT NO. 3

XPT NO. 4

y v / v

EXTERNAL LOC. FLAG FLAG V /// FLAG
XPT FORMAT

EACH PAGE TABLE OF 2-B YT ENTRIES IS FOLLOWED
IMMEDIATELY BY AN EXTERNAL PAGE TABLE WITH
A CORRESPONDING NUMBER OF 8 -B Y T E ENTRIES.

IBM Internal Use Only

IBM Internal Use Only

LOGICAL ADDRESS

1 SEGMENT j PAGE 1 BYTE
l------ ------ — i--------------- HI----------1---------- 1
TO
TABLE
LOOK-UP’
CIRCUITRY

©

DYNAMIC RELOCATION
ASSOCIATIVE REGISTER ARRAY

| COMPARE # 1 ?

| SEGMENT | PAGE | PHYSICAL BLOCK |

| COMPARE # 2 ? J—
1 SEGMENT | PAGE | PHYSICAL BLOCK

| COMPARE # 8 ? |---------►

| SEGMENT | PAGE | PHYSICAL BLOCK |

________r

©

i
BLOCK

©

I BYTE 1
PHYSICAL CORE ADDRESS

MEMORY
ADDRESS
REGISTER

D. The Multiprocessor 65 System

1. The Multiprocessor Model 65 fulfills all the requirements of
a true multi-processing system. Although this system is less
elaborate than a fully duplexed Model 67, nevertheless it offers
the features one expects of a multi-processor.

a. Availability arising from a redundancy of components
together with error detection and correction capability.

b. Pooling capabilities ensure:

1) , Better resource management through a single
supervisor and job queue

2) % Load levelingc
3) . Common program library
4) . Shared I/O and main storage

c. Increased CPU power

d. Configuration flexibility through the ability to partition

2. The configuration of an M65 multi-processor is symmetric as
shown by the accompanying diagram. Each channel in the system
is wedded to a particular CPU. In contrast, the Model 67 Channel
Controllers allow any channel to float from CPU to CPU as needed.

3* Inter-CPU communication is used in three different ways

a. Task Management under OS-MVT uses this facility to:

1. Insure that the two highest priority ready tasks are
being serviced.

2. Abend a subtask executing in one CPU when the mother
task terminates abnormally in the other.

3. Exit to a special processing routine when the interrupt is
detected by one CPU and the task is being executed by the other.

b. Alternate Path I/O Control also uses "shoulder tapping" when
a path to some device from one CPU is active or unavailable.
The supervisor Input-Output System (IOS) can request that
the other CPU perform the I/O operation. This function of
inter-CPU communication overcomes the inability of any
channel to float from CPU to CPU.

IBM Internal Use Only

74

M65 MULTIPROCESSING SYSTEM
IN MULTIPROCESSING MODE

75

c. Machine or channel malfunction control is entered when
the malfunction alert signal from a failing CPU triggers an
external interrupt in the other CPU.

4. Recovery Management Support provides the software needed to im­
plement the "fail soft" capability embodied in the hardware.

a. The Machine Check Handler allows recovery from many
CPU or main storage failures by retrying the failing
operation, correcting invalid data, or terminating the
failing job.

b. The Channel Check Handler provides recovery from many
intermittent channel malfunctions.

5. Direct Address Relocation

a. The MP65 system uses two Permanent Storage Areas (PSA s).
One occupies the area encompassing addresses 0 through 4095
and the other lies in the uppermost 4K bytes of core storage.

b. There is a toggle switch for each CPU on the Configuration
Control Panel. The setting of the switch controls whether
the corresponding CPU prefixes or not. The non-prefixing
CPU owns the PSA in low core.

c. The CPU which undergoes prefixing owns the high core PSA.
Prefixing implies reverse prefixing as explained below. When
the prefixing CPU generates an address in the range 0 to 4095,
hardware monitoring detects that the high order twelve bits
are zero. This address is mapped into a corresponding
address in the high PSA. Thus the prefixing CPU reterences
its own "low core" area. On the other hand when the prefixing
CPU generates an address in the range spanned by the uppermost
4K bytes of core storage in the system, reverse prefixing occurs.
This address is mapped by hardware onto a corresponding one
in the true low core area of the system. In this way a prefix­
ing CPU can access the PSA of the alternate CPU.

IBM Internal Use Only

76

MP65 STORAGE AREA

a PSA

LINK PACK AREA

MASTER SCHEDULER

DYNAMIC AREA

SQS

MVT NUCLEUS

a PSA

HIGH CORE

0

IBM Internal Use Only
77

V. Design of a Virtual Memory Based Programming System

A. Introduction:

1. Is the design of an operating system which controls many
users, each with their own virtual memory, like that of a
conventional system? Or is the design fundamentally
different? The answer lies below,

2. In a conventional system, core storage is divided into two
parts, each representing a separate level of control. Level
one provides a supervisor containing interrupt handling
routines, Input-Output Subsystem (IOS), task management
services and so forth. In level two, there resides at
execution time user written programs, language processors,
or utility routines. Control passes from level two to level
one by means of an interrupt.

3. The interruption is a request by the program in level two
for service on the part of the supervisor in level one. Even
in a multi-programming environment the design of the operating
system is still two level in nature. The overall user area
may contain more than one program competing for use of the
CPU. Nevertheless, when any given program is executing, the
supervisor in level one is the sole support for that program.
It therefore provides all the requisite services needed to
maintain any program executing in level two. 4

4. A virtual memory based programming system, like Caesar’s
Gaul, is divided into three parts. That is to say, it is a
tripartite structure in contrast to a conventional system which
is two level only.

B. Contemplation of the Trinity

1. Introduction:

a. In a virtual memory based programming system, there
are two storage areas to be considered - - core storage
and the virtual memory belonging to some user of the
system. Core storage is divided into standard size units
called core blocks. Each user virtual memory is divided
into units called pages.

IBM Internal Use Only

CORE STORAGE MAP

USER AREA

INTERRUPT

SUPERVISOR

LEVEL 2

LEVEL 1

A CONVENTIONAL PROGRAMMING
SYSTEM

b.

2.

Within core storage some core blocks are permanently-
assigned to the system supervisor. This supervisor
constitutes level one in the tripartite structure. The
remaining core blocks represent a resource ot core
storage available for allocation to the multi-users of
the system or even to.the supervisor itself. Typically
a core block is assigned to some user as tne result of
a paging demand. Occasionally the supervisor requires
a block to fashion temporary control blocks.

c. Each user's virtual memory is divided into two basic
area$, each constituting another level of control within
the overall programming system. Level two contains a
control program designed to provide the usual program
support services. Level three contains user written
programs, language processors, and utilities. Note
that each virtual memory presents to its user the ap­
pearance of a conventional (two level) programming system,,
Indeed, control passes from level three (the user area in vir­
tual memory) to level two (the control program within virtual
memory) by means of an interrupt - a virtual interrupt.

d. The extended PSW contains a bit to control the supervisor/
problem state and a separate bit to control the non-relocated
(D. A. T. unit inactive)/relocated mode of operation. In
the two IBM programming systems which exploit Model 67
technology, level one is assigned the supervisor state and
non-r elocated mode of operation. Levels two and three are
assigned the problem state and relocated mode. This choice
is purely one of software design.

Levels One and Two Compared

a. The overall programming system contains two control
programs. There is a system oriented supervisor resident
in core storage. In addition, there is a task oriented
supervisor resident in each user's virtual memory. In
what ways are these alike or different?

b. Level One Characteristics Level Two Characteristies

• one per system
• supervisor state
• non-r elocated mode
• not time sliced
• permanently core resident

. one per user
• problem state
o relocated mode
. time sliced
. pageable

c. All characteristics listed above for level two

IBM Internal Use Only
80

A VIRTUAL-MEMORY-BASED PROGRAMMING SYSTEM

cc)N1fRCIL
PROGRAM

A VIRTUAL MEMORY A VIRTUAL MEMORY

A VIRTUAL MEMORY

CC
_____ 1

)N1
1_____ 1

rRC
1_____ 1

)L
PROGRAM1 1 1

LEVEL 3

LEVEL 2

A VIRTUAL MEMORY

CC)N11_____ 1
rRC
1_____ l

>L
PROGRAM

IBM Internal Use Only

hold as well for level three. But the control pro­
gram in level two must be given a degree of privilege
denied to level three. Since both levels run in the
problem state, this "privilege" must be implemented by-
software. The method used depends upon the particular
programming system in question. In any case, only
modules executing in level two are privileged to make
certain service requests to the system supervisor in
level one. Such requests are monitored by level one
to ascertain that they were issued from level two within
the virtual system.

d. Level One Functions

1. Field, analyze, queue hardware interrupts.
2. Process system oriented interrupts

paging-in
paging-out
1 /O requests

3. Operate the system recovery nucleus and inter-CPU
communication routine.

e. Level Two Functions

All functions not specifically undertaken by the level one
supervisor default to the virtual system.

3. Interrupt Handling Examples

a. Floating Point Overflow

This program interrupt is recognized by level one as germane
to the originating task only. Therefore, the interrupt is re­
flected back to the task as a virtual program interrupt. Level
one merely fields the hardware interrupt and queues it on the
task for processing within the virtual system.

b. Timer Interrupt

If the interrupt results from a time slice end for some task,
processing is handled completely within level one. Unchanged
core blocks are made available immediately and changed
blocks are queued for writing to auxiliary storage. Upon
receipt of the subsequent I/O interrupt, these latter blocks
are also made available as a system resource.

On the other hand, if the interrupt represents a user timer
interrupt, then level one merely gives the relevant task a
pending virtual timer interrupt. All processing in this case
is done at a task (virtual system) level.

IBM Internal Use Only
82

c. I/O Interrupt From a User Device

A user read or write request emanates from an access
method within a task, but a Start I/O instruction executed
in level one implements the request. The subsequent
I/O interrupt is processed on two levels. The initial
processing of the I/O interrupt takes place in level one. The
remaining processing is handed over to the task as a pending
virtual I/O interrupt.

4. The Virtual Interrupt

a. When a hardware interrupt occurs, the current PSW is
stored as an old PSW and the corresponding new PSW is
made the current. This interrupt sequence is driven by
a micro-program resident in Read Only Storage. This
latter entity can be thought of as constituting a level zero in
support of level 1.

b. The new PSW contains the location of an entry point in level
one. Therefore, any hardware interrupt causes control to pass
initially to the system supervisor. The interrupt may possibly
be fully processed at this level. However, if level one deter­
mines that some or all processing is to take place in the
virtual system, then at this time the virtual system is given
a ffpendingn interrupt. That is to say, the control block
representing this processing is queued on the task as a future
interrupt of one of the types defined for the virtual system.

c. At the time of its dispatching, the task e. f,takesM one of its
pending interrupts. In this way, task oriented interrupts are
fielded by the system supervisor and reflected back to the
virtual system. All of this is transparent to the user. As
far as he is concerned, his control program has fielded an
interrupt originating from some point in his virtual memory.

d. The virtual interrupt procedure is completely software im­
plemented. Each virtual memory contains a ,flow core" area
in which are stored both old and new virtual PSW's. These
need not agree in number and type with those associated with
the hardware of the real system. In addition, each task
possesses a current PSW. This is nothing more than the old
PSW stored by the real interrupt mechanism at the instant
the task last Mlost the CPU. M

e. Recall that a micro-program in level zero causes the real
PSW*s in level one to be swapped when a CPU takes an in­
terrupt. By analogy, a routine in level one swaps the virtual
PSW's in level two when the corresponding task receives a
virtual interrupt.

IBM Internal Use Only
83

CORE STORAGE MAP

SVC PROG I / O EXT. MACH.M i l l
SYSTEM SUPERVISOR

OLD NEW
PSW's PSW's

LEVEL 1

ROS MICRO-PROGRAM I LEVEL 0

REAL INTERRUPTS

IBM Internal Uee Only

VIRTUAL MEMORY MAP

USER AREA

PROG SVC TIMER I /O

1

CONTROL PROGRAM

— — OLD
_ L _ V P S W 's

N E W — —

V P S W 's _ i _

LEVEL 3

LEVEL 2

VIRTUAL INTERRUPTS

IBM Internal Use Only

This routine is entered just after the task has been
selected by the scheduling algorithm to receive a CPU.
The routine checks the task for unmasked pending
interrupts. If one or more exist, the highest priority
such interrupt is taken. The current PSW for the task
is stored as an old virtual PSW and the corresponding
new virtual PSW is made the current PSW.

f. Each new virtual PSW contains the location of an entry
pöint in the control program comprising level two of a
virtual system. When a task is dispatched, its current
PSWlis loaded into the hardware register of the machine.
If a task interrupt has been taken, then execution within
the virtual system commences at an entry point in the
level two control program. To the user, control has
passed to one of the defined entry points in an interrupt
driven control program in the lower portion of his virtual
memory.

C. The Virtual Machine Concept

1. Introduction

a. The IBM Model 67 TSS provides each user with a virtual
memory containing a standard control program . At the time
of log-on, the newly defined task comes provided with trans-|
lation tables containing predefined entries to establish
addressability for this standard control program.

b. This control program can be modified by any user to
provide linkages to user written interrupt handling routines.
Such user written routines handle program interrupts caused

by arithmetic overflow and underflow conditions, user
written SVC's and user timer interrupts.

c. These linkages, needed to nboostn the task interrupt from
level two to level three, are inserted into the level two
control program by means of macro instructions. These
macros are issued by the user and represent a means of
tailoring the standard control program to suit his individual
needs.

2. The Virtual Machine

a. CP67 is another programming system based on the Model
67 technology. It was developed as an experimental system,
by the IBM Cambridge Scientific Center. It provides a
system supervisor resident in core storage and a separate
virtual memory for each user of the system. However, at

IBM Internal Use Only

86

log-on time, the system sets up a virtual machine
for the user based on his user identification. The
virtual machine is a functional simulation of a real
computer and its associated I/O devices. It is
indistinguishable from a real system but is really
one that the level one supervisor is managing. This
supervisor allocates the resources of the real machine
to each virtual machine, in turn, for a short time slice.

b. Since virtual machines are simulated, their
configurations differ from each other and from real
machines. Regardless of the configurations, each
user controls his virtual machine from his terminal,
which is, effectively, his console key-board.

c. Virtual machines, in common with real machines, will
operate most efficiently under an operating system.
One user may choose to ,floadM OS into his virtual
memory, whereas another may decide in favor of DOS.
In general, any system which does not contain either
time dependent code or self-modifying I/O sequences
can be used. In each such case, the user terminal
becomes the operator console for the system loaded.

d. Those users of the CP67 system who wish to engage in
conversational computing must ,!IPLn CMS into their re­
spective virtual memories. This system, the Cambridge
Monitor System, like OS and DOS, is a stand-alone
system. In addition, it is terminal oriented, and con­
versational, designed to handle a single user at his
terminal.

IBM Internal Use Only

87

VI. Remote Batch Computing

A. Background

1. The need for remote access to a computer facility is not a new
requirement. The need has existed from the time of the earliest
first-generation computer installations. For some fifteen years
various techniques have been employed to make the computer power
available to remotely-located users. Program decks and data
have been mailed or transported to the computer center by every
conceivable method. Likewise, computer output has been returned
to the remote user by a wide range of delivery schemes--some
informal and formal, internal and external, but generally slow.

2. As soon as remote access to a computer is established, the re­
quirement follows to improve or speed up the access. The need
to improve the service to the remote user by reducing his turn­
around time becomes immediately apparent. The time from
problem submission to receipt of results must be collapsed. Service
to the user must be timely in order to enhance problem-solving

capability.

3. It was natural and logical early to consider communication facilities
to help solve the remote input of work and output of results. The
first steps were off-line operations--teletype-to-teletype, card-to-
card, and eventually tape-to-tape. Program decks and data were
not physically transported to the computer center but transmitted
over communication facilities and recreated at the receiving end
in paper tape, cards, or magnetic tape. Later development permitted
remote terminals to go on-line to the host computing system. Program
decks and data were inputted directly into the computing system for
subsequent processing. 4 * *

4. Current operating systems that provide multiprogramming facility
are particularly suited to remote access processing. A partition
or region can be effectively used to interface remote terminals.
The jobs originating from remote stations are collected and fed
into the traditional local or on-site batch processing.

B. Remote Batch Entry Compared to "Time-sharing"

1. Terminal-based computing has been divided into two categories in
this document. The first category is interactive or conversational
computing, the generally accepted definition of "time-sharing. n The
second category is remote batch. Both categories can also be con­
sidered as "convenience computing" since the user benefits by having
improved access to the computing facility.

IBM Internal Use Only
88

2. In interactive computing, i. e . , "time-sharing, ” the user or
problem-solver uses a key-driven terminal to communicate
directly with the system. Although the degree of interaction will
vary with the implementation technique, the user will engage in a
continuous dialogue with the system. Responses from the system
are predictable and may be on a line-by-line basis.

3. Remote batch in its simplest form allows submission of the normal
preplanned job deck to the batch processing system by communication
facilities. It eliminates the need to deliver the program physically
to the computing center.

4. Remote batch, again in simplest form, responds only at the com­
pletion of the processing requirements. It does not provide the
interactive environment of "time-sharing. ” Errors in the preplanned
job deck are eliminated by the normal repetitive runs inherent in
batch processing.

5. Whereas the response from a "time-sharing" system is predictable,
such is not the case with remote batch entry. The program is
entered as an entity and is run to completion. The turn-around
time or response is a function of the system loading, job priority,
and maybe the whim of the computer operator.

6. A low-speed job entry system where the user types input at a
keyboard may have some of the features of an interactive system.
Selective program modification allows an RJE user to change or
edit a data set previously submitted. The entire program is not
resubmitted when alterations are required. Line-by-line syntax
analysis can also be incorporated to make a RJE more conversational. 7

7. A sophisticated remote batch entry system can approach the
capability of a simple "time-sharing" system. The distinction
between the two types of terminal computing methods becomes less
clear as the features of low-speed batch input are increased. Ex­
amples of such features would be on-line program modification,
line-by-line syntax analysis, and "desk calculator" capability.

C. Design Considerations in Remote Batch Systems

1. The response from a remote batch system (or job turn-around time)
depends upon system design. A complete remote batch computing
system allows remote job entry (RJE) and remote job output (RJO).
A limited system would allow RJE but require output--listings, dumps,
etc. , to be delivered to remote locations. Low-speed terminals in
particular might be used for RJE but are too slow for output printing
loads. Selective printing is sometimes implemented to provide limited
RJO at the low speed, i. e. , key-driven terminals.

IBM Internal Use Only
89

2 . Remote batch systems generally employ the higher-speed terminals,
such as the IBM 2780 and IBM 1130, Model 20, Model 25, and up,
to provide both RJE and RJO. The user or problem-solver does
not use a key-driven device to deal directly with the system. His
job is just one of the batch of job decks to be submitted at the remote
terminal.

3. One approach to integrating remote batch processing into the central
processing system is simply a job collection method. Remote jobs
are accumulated into a special queue on direct access storage allocated
for this purpose. The system operator is advised as to the status of
the queue as jobs are entered. The jobs collected from the remote
terminal are processed when the system operator takes the necessary
steps to switch to this special queue. Scheduling of the remote jobs
is dependent upon operator intervention. Response or job turn-around
time may be highly variable and unpredictable.

4. Automatic merging of remote jobs into the batch stream provides
significant improvement over the job collection method. Using a
standard priority scheme for both remote and local batch jobs,
an integrated job queue is created. Remote jobs are not segregated
but are processed on the basis of individual job priority. The turn­
around time for remote jobs is equivalent to the on-site batch
performance.

5. Remotely submitted jobs are subject to the same fate as any job
submitted to the batch processing system. An error--trivial
or otherwise--will frequently flush the job out of the system. It
is desirable to eliminate such errors in any system. Remote batch
provides potential processing points to reduce errors in JCL and
source language programs.

6. If the remote station is an intelligent terminal, processing can be
incorporated at the remote location to detect errors in the input job
decks. Processing at the remote station can also be used for data
compaction, i. e. , the elimination of blanks in the input job decks.
This technique permits efficient transmission where communication
costs are significant. Obviously, the central station has the additional
burden of converting the input back to the original job deck input. 7

7. The remote batch processing of the central station can also incorporate
preprocessing to catch errors prior to entry into the "batch. "
Syntax analysis for JOB Control Language and programming languages
can be performed on each line as received at the central station. This
technique makes sense in low-speed batch entry where a user is
entering a job directly from a terminal keyboard. Format errors
are detected and indicated to the user who corrects them immediately.

IBM Internal Use Only

90

8. A desk calculator capability is also a likely feature when the user
types input at a low-speed terminal,. The user can enter arithmetic
expressions for immediate evaluation. The terminal is used as
a desk calculator in this mode of operation to perform one-time
arithmetic computations, A third feature that can be provided is a
message facility. Remote stations can send messages to the central
station operator and other remote station-users.

9. The size of the partition or region that supports the remote batch
system is a function of the number and variety of terminals and the
features provided. Obviously, syntax analysis, Mdesk calculator11 mode,
and other features require additional core storage over and above the
terminal I/O buffers and access method. The trade-off between
space required and function must be considered in the evaluation of
remote batch entry systems.

IBM Internal Use Only

91

VII. Communications for Terminal Based Computing

A. Introduction

1. Terminal based computing encompasses both "time-sharing” , i. e.
interactive or conversational computing, and non-interactive remote computing.
"Time-sharing" generally involves the use of low-speed or key driven ter­
minals while remote computing spans the full spectrum of communications
capability from the low-speed to the highest speeds available. Hence,
Communications for Terminal Based Computing is a very broad subject
covering the full range of communications facilities. These notes are
provided as an introduction to the subject. They rely heavily on the def­
initions as given in the IBM Computer Description Manuals. The first
section deals with the definition of the key words used in the communications
aspect of terminal based computing.

2. What makes a terminal based computing system different from other
on-line systems ?

Terminal based computing systems are intended to give improved ser­
vice to the user--manifested in immediate access, rapid response or minimum
turn-around time. A time-sharing system will have a specific number of
connections available to the users of the system. At any point in time, the
number of terminal users on the system is limited to the number of connections
or lines into the system. Some users or terminal locations may have dedi­
cated lines. They have guaranteed access into the system. Other users
must contend for the remaining lines or connections. Obviously, a small
number of connections cannot serve a large population of active users without
excessive delays. Continuous dialing with busy signals mean frustration and
this defeats the intent of time-sharing systems.

Time-sharing, particularly, is based on the concept of one terminal
per line. One access to the system is dedicated to one user when the
connection is made. Multi-drop connections are not consistent with this
philosophy. There should be no controlled sharing of the line via addressing
or polling. There should be no time out. The terminal must remain active.

IBM Internal Use Only

92

In addition, the time-sharing enviroment requires full interactive
capability. The user must be able to signal the CPU while in either send
or receive mode. He must have the ability to abort execution, halt output,
or cancel familiar messages. In turn, the system should have the ability
to interrupt the user when required. Rapid line-turnaround from receive
to transmit and vice versa is necessary for rapid conversational computing.

Time-sharing systems generally permit the user greater capability
at the terminal compared to other on-line systems such as inquiry.
Program creation and modification are basic functions of a time-sharing
system. This greater capability could be used either ignorantly or
maliciously to injure the system. Hence, system integrity must be assured
in spite of the user!s capability. The security of program libraries and
data sets must be maintained as in any on-line system.

Telephone communication networks are designed to satisfy the demands
of normal telephone calls. Switching networks are designed to handle only
a small percentage of subscribers at any one tim e--say 20 percent for
instance with an average call considered to be on the order of two
minutes. In contrast, a user terminal session on a time-sharing
system has an unpredictable length. A typical session may tie up a
telephone circuit for hours. Thus the lfholding time” per call makes
terminal based computing a different ball game. A number of lines into
a time-sharing system can seriously impact the loading of a telephone
switching exchange and saturate the facilities. It is critical that the
telephone company be advised as soon as possible about the potential
loading caused by terminal based systems.

B. Telecommunications Definitions

Key words used in the communications side of time-sharing will be
discussed in this section.

1. Terminals A terminal refers to any device or collection of
components that is capable of sending and/or receiving information
over a communication channel. In a time-sharing enviroment, a
terminal does not necessarily have to be connected to a communication
channel. However, it must have the capability of such a connection.

A method for classifying the type of terminal support offered by a
time-sharing system is in relation to the speed of transmission of that
terminal. The unit of signaling speed is called a Baud. ,!The speed
in Bauds is the number of discrete conditions or signal events per
second. If each signal represents only one bit condition. Baud is the
same as Bits per second. ft(l) The classes of transmission speeds are
low, medium, and high. Low speed is defined as ’’usually, data

IBM Internal Use Only
93

BAUDS vs. BITS

— — 12 BITS

1 0 1 1 0 0 0 1 1 0 1 1

t l t2 13 t4 t5 t6 t7 t8 t9 tio t i l tl2

E2 E3 EO E l E2 E3

TIME

94

transmission speed of 600 bits per second or less", and medium speed
as "usually data transmission speed between 600 bps and the limit of
a voice grade’ s facility"* (2) High speed transmission is not defined
in the Glossary.

Because there does not seem to be an industry standard of what is
meant by the terms low, medium and high speed when used in connection
with data transmission, the time-sharing system portion of the CDM
will use the term "low speed" terminal and "high speed" terminal in
the following manner.

a. Low speed terminals will be the class of all keyboard-
driven terminals. Other devices such as paper tape readers
and card readers may be attached to the keyboard-driven,
device, but if the terminal may be keyboard-driven, it will
classed as a low speed terminal. If the terminal is a
computer system or a group of components which do not
possess the property of being keyboard-driven, this
terminal will be called

b. a high speed terminal. Therefore, the two definitions
are user oriented rather than transmission speed oriented.
In a low speed environment, a user may elect to communi­
cate with a system via a keyboard whereas in a high speed
environment, the only method of communication the user
has are through devices such as tapes and card readers.
(When analyzing individual terminals, it will be found that
most keyboard-driven devices transmit at less than 300
BAUD, and most high speed terminals at more than 600 BAUD.)

Co Remote/Local A local terminal is a terminal which
is connected directly to the computing system via its con-
control unit. A remote terminal is a terminal which is
connected to the computing system via communication lines.
The method of connection, and not the type of terminal denotes
the difference. For example, the IBM RAX System supports
local and remote IBM 1050 terminals, but only local
IBM 2260?s.

d. Home Loop/Line Loop Operation A home loop operation
is one which involves only those input/output units associated
with the local terminal. When local terminal is in home loop
operations, it is said to be "off-line". A line loop operation
takes place over a communication line between the input
units at one terminal and the output units of another terminal.
In both of these modes of operations, the resources of the
central computer system are used.

IBM Internal Use Only
95

IBM Internal Use Only

TERMINAL SPEEDS
LOW SPEED RANGE

(SUB-VOICE GRADE)

BPS (bits per second)

I
45
-H
A

83
83
WU

B2
B3
II5A

75

1050

110
+
A

2 7 4 0 -2 -----------------

KSR 33/35

134.5
H -
1050
1060
1070
2740
2741

CPS (CHARACTERS PER SECOND)

600

H
1030

-1 0 7 0
2740-2

8 .3 3 14.8 6 0 66

IBM Internal Use Only

TERMINAL SPEEDS
MEDIUM SPEED RANGE

BPS (BITS PER SECOND)

(VOICE GRADE)

600
h

1200
— I—

2000 2400
— I----- 1—

4800
H

2260/2648 2260/2846

2780 ----------------- — 2780 — - 2780

//JO ----------------- — /130 — - / 130

2020 BSC — — 2020 BSC — 2020 BSC

S/360/2703 — — 2703— — 2703

S/360/2701
- SO A M ---------

2020 BSC

CPS (characters per second)
150 250 3 0 0

IBM Internal Use Only

TERMINAL SPEEDS
HIGH SPEED RANGE

(M ULTI-VO ICE GRADE)

BPS (bits per second)

4800 19,200 40,800
I-------1----------H -»

(50 , 000)

2020 BSC — X — X

S/360/2701
■M ----------------------------SDA H — X — X

CPS (characters per second)

230,400

X

2 4 0 0 5100 6 2 5 0 2 8 ,8 0 0

2. Facilities

a. Simplex, Half-Duplex (HDX), Full-Duplex Lines (FDX)
A simplex line is a circuit capable of one-way operations only*
Communication may proceed in one direction only, with no

capability for reversing the direction. A half-duplexed (HDX)
circuit or line is capable of transmitting and receiving in
both directions, but is not capable of simultaneous and inde­
pendent transmission and reception. It cannot sent and receive
at the same time. A Full Duplexed (FDX) line or curcuit is capable
of the simultaneous and independent transmission and reception
between two points - - i n both directions.

b. A 11 private11 or leased-line network is a network reserved
for the exclusive use of one customer. A "public" network is
a network provided by a common carrier for use by many
customers, ’dialup" refers to the use of a dial or push­
button telephone to initiate a station-to-station telephone call.
The IBM RAX system provides the capability of handling
either leased or dialup connections between the terminal and
the CPU.

c. Telpak; Broadband communication channels for transmitting
data at rates greater than 60, 000 characters.

Voice-grade: a circuit of sufficient bandwith to permit a data
to transfer rate up to 2, 400 bits per second, generally with a
frequency range of 300 to 3, 000 cycles per second.

WATS: Wide Area Telephone Service* "A service provided
by telephone companies which permit a customer by use of an
access line to make calls to telephones in a specific zone on a
dial basis for a flat monthly charge. Monthly charges are
based on the size of the area in which the calls are placed,
not on the number or length of calls. Under the WATS
arrangement, the U. S. is divided into six zones to be called
on a fulltime or measured-time basis. (2)

d. Single-drop/Multidrop Lines In time-sharing systems,
the word ?lstationM and the word "terminal" may be used
synonomously. A drop refers to a station or terminal, and a
single-drop system is a system in which only one terminal
or station is connected to each communications line. A
multidrop system is one in which two or mo re stations or

terminals are connected to a single line. Both the programming
and the hardware features necessary to implement these two
types of systems are quite different. In a system which has
only single-drop facilities such as the IBM RAX System, the

IBM Internal Use Only
99

RAX program need only concern itself with processing
information from one terminal per line. It need not sort
out transmitted information, or direct information over
a single line to different terminals or stations on that line.
On the other hand, a multidrop system, such as the IBM
CCAP Message Switching System, must determine which
terminal on the line sent a message, and/or which terminal
on a line will receive a particular message. Most problem­
solving time-sharing systems of today have single-drop
capabilities only.

3. Modulation-Demodulation Techniques Modulation is the "process
by which some characteristic of an electrical wave is varied in accordance
with another wave or signal. "(1) In Data Processing, modulation is used
to make business machine signals compatible with communications facilities.
In a specific case, it is the conversion from digital signals to audio signals
for transmission over communication lines. Demodulation would then be
the conversion from audio signals from the communication lines to digital
signals for business machines. A data set is a device which performs
this modulation-demodulation and the control functions necessary to
provide compatibility between business machines and the communication
facilities. Another word used for this device is modem, which is the
contraction of modulator-demodulator.

4. Transmission Techniques

a. Asnychronous Transmission: In this type of transmission
each information character is individually synchronized and
is normally preceded by a Ma start signal, which serves to
prepare the receiving mechanism for the reception and regis­
tration of a character, and is followed by a stop signal, which
serves to bring the receiving mechanism to rest in preparation
for the reception of the next character.”

"Synchronizing each transmission independently permits
multipoint line operation, with each station sending with its
own bit and character phase. "

b. Synchronous: "having a constant time interval between
successive bits or characters. The term implies that all
equipment in a system is in step. n

1. Op. C it., C20-1666-1, page 15.

IBM Internal Use Only

100

MODULATION TECHNIQUES

DIGITAL SIGNAL:

CARRIER WAVE:

AMPLITUDE
MODULATION:

1 1 0 1 0

FREQUENCY SHIFT
MODULATION:

PHASE
MODULATION:

IBM Internal Use Only

101

Synchronous transmission is when the sending and receiving
devices are operating at the same frequency, and are maintained
in step with each other. Bit and character synchronization are
established at the beginning of each transmission by transmitting
a synchronizing pattern. This synchronization (sometimes called
character phase) is then maintained until the transmission stops,
signalled by line control characters. There are no "stop" and
"start" bits. The synchronization is controlled by a clock
located either within the station or the modem.

1) One group of IBM terminals use the fixed-count, four
of eight code in synchronous mode. These terminals are
called STR for Synchronous Transmitter/Receiver. The
IBM 1013, 7702, 1978, 1130, and S/360 Model 20 are included
in this class.

2) Binary Synchronous Communications (BSC)
BSC transmission or BISYNC provides for the transmission
of a variety of codes in the synchronous mode. EBCDIC
USASC II, Six-Bit Trancode are transmitted serial by
character and serial by bit over half duplex lines. A
transparency feature permits transmission of any combin­
ation of binary bits. The IBM 2780, 1130, S/360 Model 20
and any S/360 with the appropriate 2701 or 2703 are BSC
devices.

C. Modems

1. Data processing equipment is connected to a communications net­
work by the use of a device that goes by many names, including modulator
and demodulator unit, mod/demod/ modem, subset, and data set.
Certain trade names such as AT&T’ s Data-Phone (R), are also used.
Whatever the name of the device, its purpose is to provide an "interface"
or common boundary between data processing equipment and communica­
tions equipment. In this publication, the term "modem" is used.

Modems vary considerably according to the types of networks, data
rates, and forms of signalling employed. However, they all are designed
to perform conversions between the binary signals of business machines
and the transmission frequencies of communications equipment.

IBM Internal Use Only
102

2. C la s s e s of M odem s

M odel R ange Type T im in g

1 0 0 's Low Speed S e r ia l S ta r t-S to p
2 0 0 's M edium Speed S e r ia l Synchronous
3 0 0 's High Speed S e r ia l Synchronous
4 0 0 's Low & M edium

Speed P a r a l l e l -
5 0 0 's High Sp eed P a r a l le l -
6 0 0 's V oice B and A n alog -
7 0 0 's Wide B and A nalog -
8 0 0 's A u to -D ia l U nits

W estern Union m od el n u m b ers a r e u su a lly fou r d ig its but the
f i r s t s ig n if ie s ran ge ju s t a s n u m b ers shown above.

3. R a te s fo r M odem s

103
201
202
301
401A
40 IB
401E
401F
5 0 0 's
602A
7 0 0 's
801

2400B
1200B
40. 8KB
TRA N S
R E C V R
TRAN S
R E C V R

$2 5 /M onth
$7 0 /M onth
$40 /M onth
$2 50 /M onth
20 C h ar . /S e c .
20 C h ar . /S e c .
20 C h ar . /S e c .
20 C h ar . /S e c .

$ 5 /M onth
$ 40 / Month
$ 7 /M onth
$ 3 0 /M onth

Nothing A v a ilab le Y et
T /R Low Sp eed F a x . $ 3 0 /M onth
Nothing A v a ilab le
10 P u l s e s /S e c . No P r ic e s A v a ilab le

16 C h ar .
16 C h ar .
99 C h ar .
99 C h ar .

N ote; P r i c e s m ay v a ry with d iffe re n t o p eratin g co m p an ie s.

4. T y p ic a l M ODEM O p eratio n

a. The 100 s e r i e s A T & T M odem i s freq u en tly en cou n tered in t im e ­
sh ar in g co m m u n icatio n s. S p e c if ic a lly , the 103F i s u se d on a le a s e d
lin e , and the 103A i s u se d on the sw itched netw ork.

T h is m odem i s co m p atib le with lo w -sp e e d te r m in a ls such a s 2741
and 1050 that o p e ra te in the asy n ch ron o u s m ode - i. e. , with s t a r t / s t o p
technology. It p ro v id e s fo r t r a n s m is s io n of b in ary s e r i a l d ata up to
200 baud in e ith er o r both d ire c t io n s , s im u ltan e o u sly if d e s ir e d . Two
d iffe ren t freq u en cy ban d s a r e u se d , each c a r ry in g d ata in only one
d irec tio n . E a c h band c a r r i e s a s in g le c a r r i e r tone that i s sh ifted to
one of two fre q u e n c ie s , one re p re se n tin g the M A RK sta te (a b in ary one)
and one the SP A C E s ta te (b in ary z e ro). T h is technique i s c a lle d
F re q u e n cy Sh ift K eyin g (F SK).

IBM Internal Use Only
103

DATA S E T HANDSHAKING

Station A Station B Sequence

DIAL
TONE

°Q Q
Q* ve answered, stop

ringing

Q*
f2m (2025 cycles)

Q
ON

Q

f2m (2025 cycles)

flm (1070 cycles)

f2m

f lm

O

Q
V

ON ON

Station A lifts telephone handset, gets dial
tone and dials station B

Station B rings and is answered either
manually or automatically as soon as
station B answers, an OFF-HOOK signal
is sent to station A

Station B waits 1 second after answering and
then sends its marking frequency to station
A. This frequency disables any echo sup­
pressors which may be on the line. É

After station A receives f2m, it turns itself
on an sends its marking frequency (flm) to
station B

When station B receives flm, it turns itself
on and both machines are ready to
communicate. When not communicating,
each station sends a continous marking
frequency.

f2m«-f2s

flm — fls

ON

Station A transmits using low f requencies
flm (1070)and f ls (1270), Station B
transmits using high frequencies f2m (2025)
and f2 s (2225). Because of the different
frequencies, it is easy to see how full
duplex transmission can be made possible g

IBM Internal Use Only

104

b. P r io r to the t r a n s m is s io n of d ata , the two d ata s e t s m u st be p lac e d
in the d ata m ode and an exch an ge of c a r r i e r ton es c a lle d ’’d ata se t
h an d sh ak in g” p e rfo rm e d . T h is p r o c e s s fo llow s a s t r ic t p ro to co l
and is p e r fo rm e d each tim e the m od em s en ter the d ata m ode. The
attach ed fig u re i l lu s t r a te s the ’’h andshaking p r o c e s s . ”

c. A fte r the channel i s e s ta b lish e d , d ata t r a n s m is s io n can take p lac e
in the asy n ch ron ou s m ode. The attach ed fig u re i l lu s t r a te s the
t r a n s m is s io n of one c h a r a c te r , re p re se n tin g C a r r ie r R eturn (CR),
fro m the IBM 2741 to a S /3 6 0 . A fte r the C R key is d e p r e s se d , the
te rm in a l sen d s a seq u en ce of b its to the m odem or d ata se t . The
m odem , in turn c o n v erts (that i s m od u la tes) it to an equ ivalen t
sequ en ce of t r a n s m is s io n s ig n a ls by freq u en cy sh ift keying. At
the re c e iv in g com pu ter s ite , an oth er m odem re c o n v e r ts (d em od u lates)
th is s ig n a l sequ en ce to the sam e b it sequ en ce o r ig in a lly sen t by the
te rm in a l.

d. It should be noted that the m od u latio n /d em o d u latio n p r o c e s s is
’ ’t r a n sp a r e n t” to the te leco m m u n icatio n s equipm ent. It p e rm its
the d ig ita l s ig n a ls fro m the d a ta p r o c e s s in g equipm ent to be s u p e r ­
im p o se d upon a sy s te m d esig n ed fo r v o ice com m unication .

D. T e rm in a ls

1. IBM t im e -sh a r in g sy s te m s su p p ort a v a r ie ty of te rm in a ls fo r in te rac tiv e
com puting.

a . IBM 2741
b. IBM 1050
c. IBM 2260
d. IBM 2740
e. T TY 33 & 35

2. The IBM 2741 w as sp e c if ic a l ly d e sig n ed fo r t im e - sh a r in g ap p lic a tio n s .
It o p e ra te s only in o n e - te rm in a l-p e r line m ode. It cannot be p o lled or
a d d r e s s e d o r o th erw ise o p era te in a m u lti-d ro p environm ent. An in te rru p t
fe a tu re a llo w s the attention key to be u se d by the te rm in a l o p e ra to r to h alt
t r a n s m is s io n fro m the p r o c e s s o r .

3. A lthough the IBM s a le s m an u al in d ica te s th ere is only one m odel of the
2741, in e ffec t, th ere a r e two ty p e s . T h ere is a c o rre sp o n d e n ce ’’ty p e”
and a B C D ’’ty p e” . The typing e lem en t sp e c if ie d d e te rm in e s the k ey board
a rra n g e m e n t and the byte s tru c tu re tran sm itte d . S e p a ra te tr a n s la t io n
ta b le s a r e re q u ire d in the t im e - sh a r in g so ftw are to su p p ort both ty pes of
2741. A ll IBM t im e -sh a r in g sy s te m s do not su p p ort both ty p es. The
fo llow ing tab le in d ic a te s the su p p ort and the p a r t num ber of the typing e lem en t
re q u ired . The la s t th ree d ig its of the p a r t num ber a r e im p rin ted on the
typing e lem en t.

IBM Internal Use Only
105

IBM Internal Use Only

A
DEPRESS
CR KEY TRANSM IT CR CODE

Hr

4-- H Start 1 2 3 4 5 6 7 Stop

Start 8 A 8 4 2 1 C Stop ^ 2741 TO
^ OATA SET

^WW/\M\AMA/\AfV\fV S P
t2

AA/|TIJ1AAJWKW\AA
RECEIVING
DATA

’ SET

S *
Start B A 8 4 2 1 C Stop

Shift B A 8 4 2 l C

H I DATA SET
TO 2702

2702 TO
CHANNEL

D 1 2 3 4 5 6 7
SYSTEM/360
BYTE

2741
Correspondence

2741
EBCD

APL RPQ E62267 RPQ F24235

ATS Part No. 1167043
(w ithout Inte r r upt
Feature)

Not supported

CALL/360:
BASIC Part No. 1167087 Not supported

CALL/360:
DATATEXT Part No. 1167043 Not supported

CPS PartNo. 1167015
(translation req!d.
5 char.)

Part No. 1167963

CP67 PartNo. 1167015
(RPQ 40681) req'd.

Part No. 1167963
(RPQ 40681) req'd.

RAX PartNo. 1167015
(announced for
Version IV)

Not supported

TSS PartNo. 1167015
(support available)

PartNo. 1167963
(RPQ 40681) req'd.

With the 1167015 typing element on the 2741 correspondence, type
upper case 1 for ^ (greater than); type upper case 6 for ^ (less than);
type upper case 7 for AND symbol; type upper case (to the right of P on
second row) for "■* (NOT symbol); type lower case (to the right of P on
second row) for ((OR symbol).

4. There is a paper by Nat Rochester of the IBM FSD entitled, Type 2741
Typewriter Terminal Accessories for Time Sharing. This report con­
tains simple design specifications for a working surface, a paper supply
and stacker, and wheels to improve the utility of the IBM 2741.

5. From a human factors standpoint, the IBM 2741 has advantages in
appearance and simplicity of operation. Lack of paper tape or card
input is a handicap in some time-sharing/RJE applications. Some
additional nitty gritties for the IBM 2741 are contained in the attached
two pages.

IBM Internal Use Only

107

IBM 2741 PRINCIPLES OF OPERATION

MODES OF OPERATION

The 2741 Communications Terminal has two modes
of operation: communicate mode and local mode.
The mode of the terminal is controlled by terminal
mode switch which is located on the left side of the
typewriter stand (see Figure 3).

When in local mode, the terminal is disconnected
from the communication line to the computer. The
terminal can be used for typing, just as any other
Selectric typewriter. Nothing can be transmitted
or received.

When switched to communicate mode, the ter­
minal is in a control-receive state. Automatically,
the print element is shifted to lower case, if neces­
sary, and the terminal goes to the communicate-
transmit state. A (S) code is sent to the computer
and the keyboard unlocks. The operator may now
type whatever requests and text are desired.

The basic indication of the terminal state (trans­
mit or receive) is the keyboard. The keyboard is
locked whenever the terminal is not in transmit
state. Receive-control is a momentary state in
which the keyboard is locked and the terminal is
waiting for a (5) from the computer. The (B) code
places the terminal in a receive state. An automatic
lower case shift occurs in the receive-control state
if required.

Attention

This key performs two different functions, depending
upon the mode of the terminal. If the terminal is in
local mode, the attention key is used to test the ter­
minal. A separate test of each key may be made to
be sure the transmission circuits are operable.

When in communicate mode, this key causes a
(c) to be sent to the computer.

If the interrupt special feature is installed, the

attention key has a third function. This function is
active only in communicate mode and only in the
receive state. The operation of the attention key
under these conditions causes a 200 ms signal to be
transmitted, indicating that the operator wishes to
interrupt the computer. In the transmit state, this
key retains its standard function, sending a (5) to
the computer.

IBM 2741 LINE CONTROL

Line control becomes effective on the 2741 as soon
as the terminal power switch is turned on and the
terminal mode switch is set to communicate. The
terminal is automatically put in the transmit state
and a (5) code is sent. The operator may transmit
by keying as on a typewriter.

Terminal transmission ends when the terminal
transmits a (5) . When the attention key is operated,
a (5) is sent. When the carrier return key is pressed,
a carrier return code followed by a (c) code is sent.
The transmission of either code places the terminal
in the receive-control state. The keyboard is locked.

Wftien the computer transmits a (5) code, the
terminal is placed in the receive state. Any valid
character code received from the computer causes
printing.

The receipt of a (c) code from the computer
causes the terminal to switch to transmit mode. The
keyboard is unlocked and the terminal automatically
transmits a (5) .

Figure 5 shows a typical line control sequence.
The sequence may be ended only by the terminal.
The operator terminates line control by switching
to local mode or by turning the terminal power switch
off.

Terminal ® Te x t © ® Te x t CR © © Te x t CR © ®

Computer (D) Te xt © ® © ® Te x t ©

IBM Internal Use Only
108

IBM 2741 Line Control

CPS

2741 Break Feature

The 2741 break feature modifies the IBM Terminal Control, Type I. It
provides the control needed to operate the 2741 terminal in time-sharing applications.
When this feature is present, it must be considered independent from the IBM
Terminal Control, Type I for operation with 1050, 1060, 1070, 2740, and 2741
without the break feature. A different SAD command is required for 2741's with the
break feature.

There are two modifications required to the IBM Terminal Control, Type I;
they are:

1. Normally, the IBM Terminal Control, Type I, sets Channel End, Device
End, and Unit Exception status upon receiving a (^) character during a
Read or Inhibit command; with this feature, however, only Channel End
and Device End will be set in this situation, allowing command chaining
to occur.

2. The IBM Terminal Control, Type I, does not normally look at the Receive
Data lead from Data Set or Modem while transmitting, but, when the 2741
Break Feature is present, the Receive Data lead is monitored for Space
during a transmit operation. If a Space signal is detected at two successive
stop-strobe times, the write-type command is ended with Channel End,
Device End, and Unit Check status and the Intervention Required bit is set
in the sense byte. The Timeout Complete sense bit in the LCW is used to
store the fact that a Space was detected at the last stop-strobe time. With
this bit on and the Receive Data lead still a Space at the next stop-strobe
time, a Channel End, Device End, and Unit Check status is indicated.
The Time-out Complete sense bit is reset before the ending status is presented.

PROGRAMMING NOTE:
After receiving Intervention Required during a Write command, the program

may give a Prepare command, followed by a halt I/O . The 2702 presents Channel
End and Device End status as soon as the line returns to Mark. Return of the line
to Mark distinguishes the signal as Line Break and not as a nonoperational subset.
If the line does not return to Mark, a nonope rational subset is indicated and the
Prepare command ends immediately with Channel End, Device End, and Unit Check
status and with the Intervention Required sense bit on.

IBM Internal Use Only
109

6. The IBM 1050 is frequently supported in time-sharing systems although
it was not designed specifically for the interactive or one terminal per
line mode of operation. The 1050 system does provide the paper tape
and card read/punching capability required in some time-sharing/RJE
systems. The following features and RPQ!s are generally used to
modify the 1050 for the interactive environment of time-sharing.

a. The Automatic EOB after Carrier Return. This RPQ (E28235)
causes automatic transmission of an EOB character after the
carrier return has finished returning when the Return Key is
depressed.

b. The Text Time-Out Suppression is provided to suppress the
normal text time-out permitting an unlimited period of time for
transmitting. The normal 9 - 1 8 seconds text time-out is undesirable
when the 1050 is used as a time-sharing terminal.

c. Receive Interrupt Control. This RPQ (E27428) provides the
ability to send a 150 - 200 millisecond space signal to the 2702
to stop transmission. It is activated by depressing the Reset
Key when terminal is receiving. Equivalent to the Interrupt
feature on the 2741.

d. Transmit Interrupt Control. This RPQ (E26903) allows the 1051,
while transmitting, to recognize a 100 - 200 millisecond space
signal, stop transmitting and revert to control mode status. The
time-sharing system has the ability to interrupt the terminal. This
RPQ is supported by TSS and CP67.

IBM Internal Use Only
110

APPENDIX A

TIME-SHARING ACRONYM AND REFERENCE LIST

ACME - ADVANCED COMPUTER FOR MEDICAL EXPERIMENTATION

Provides interactive PL/1 (sub set) compiler for on-line
experiments at Stanford Medical School. S/360 50 with
LCS, 2701, 2702, 1800. Written by customer under
government contract.

ABC - ALLEN BABCOCK COMPUTING, INC.

Provides RUSH (REMOTE USERS SHARED HARDWARE)
on S/360 50 with LCS. Conversational PL/1. Developed
under contract with IBM. Now providing commercial
service. Los Angeles, California.

A PL - A PROGRAMMING LANGUAGE

APL/360 is a conversational implementation of Iverson's
language on S/360. Implemented at IBM Watson Research
Center on Model 50. Supports 1050 and 2741 terminals.
Available as Type III program - - file number is 360D-03. 3. 007.

APPLIED LOGIC CORP.

Provides service from Princeton, New Jersey on PDP-6
and 2 PDP-8.

ARPA - ADVANCED RESEARCH PROJECTS AGENCY

Department of Defense Agency that funded much of time-sharing
development at MAC, SDC and others. Sometimes called the
t-s Sugar Daddy to the tune of 12-13 million dollars per year.
Also asking those it has helped to form computer network of
some 16-17 installations.

ATLAS

First computer system built with paging mechanism. Designed
for multi-programming and not specifically time-sharing. Had
32 pages of 512 words each. Parallel page address register
compare included (associative registers). Jointly evolved at
University of Manchester and Ferranti, Ltd.

IBM Internal Use Only
-Al-

continue
APPENDIX A

ATS - ADMINISTRATIVE TERMINAL SYSTEM

Provides text processing including data entry. Type II
program available for 1460 and under DOS and OS for
S/360.

BASIC - BEGINNERS ALL-PURPOSE SYMBOLIC INSTRUCTION CODE

An algebraic language resembling simple Fortran II and
Algol. Originally developed at Dartmouth College for
GE 265. Subsequently marketed by G. E. and G. E. BULL
(overseas). Language has been extended and offered on
many t-s systems including SDS 940, B5500, and CALL/360.

BBN - BOLT BERANEK & NEWMAN, INC.

One of first time-sharing systems (1962). McCarthy and
Licklider of MIT were principals. Used DEC hardware
PDP-1. Now commercially available on latest PDP hard­
ware. Service is called TELCOMP.

BEST - BAYLOR EXECUTIVE SYSTEM FOR T /P

A system developed at Baylor Medical School provides t-s
under OS-MFT. Supports 2260 (local and remote) and 1050
and 2740 terminals.

BRUIN - BROWN UNIVERSITY INTERPRETER

An interpretive time-sharing system implemented at Brown University
onS/360 Model 50, modeled after PIL. Runs under BRUTUS (BROWN
UNIVERSITY TERMINAL SYSTEM). Supports 1050 Terminal. Lan­
guage is an ALGOL dialect.

BTSS - BERKELEY TIME-SHARING SYSTEM

Software system developed at University of California,
Berkeley for SDS 940. Offers six languages - CAL, BASIC,
QED, SNOBOL, ALGOL, FORTRAN IV, plus DDT (Debugging
System)

CAI - COMPUTER ASSISTED INSTRUCTION

General term for on-line computer assisted learning.IBM Internal Use Only
-A2-

continue
APPENDIX A

CAL - CONVERSATIONAL ALGEBRAIC LANGUAGE

An interpretive or incremental compiler system implementing
a JOSS-like language in the BTSS (SDS 940 TSS) at the
University of California, Berkeley.

CALL/360: BASIC

An IBM time sharing package providing BASIC, PL/I and
Direct Computation Capability (DCC). Implemented on Model
50 S/360 with 512K. Supports 2741 (Correspondence) and
TTY 33/35. Program available for dedicated t-s operation.

CCS - CONVERSATIONAL COMPILER SYSTEM

A subsystem of the TS monitor for SDS 940 developed at
University of California, Berkeley. Interpretive or
incremental system for ALGOL and FORTRAN IV. CCS
and its compilers were developed jointly by Corn-Share,
Inc. , Tym Share, Inc. , and SDS.

COMNET - COMPUTER NETWORK CORPORATION

Provides commercial service on B5500 in Washington, D. C.
Languages are FORTRAN IV, ALGOL, COBOL, and BASIC.
TTY Terminals.

COM-SHARE, INC.

Provides commercial service on SDS 940 via
headquarters in Ann Arbor, Michigan. Outgrowth of
University of California, Berkeley TS System.

CP40 - CONTROL PROGRAM 40

Experimental system developed at the IBM Scientific Center,
Cambridge, Mass, with special modifications to S/360
Model 40 hardware. Forerunner of CP67.

IBM Internal Use Only

-A3-

continue
APPENDIX A

CP67 - CONTROL PROGRAM 67

A time-sharing system developed at the Cambridge
Scientific Center for the S/360 Model 67. CMS
(Cambridge Monitor System) provides the conversational
capability in the framework of CP. Any S/360 Operating
System without time dependent code could work in this
framework, i. e. OS, DOS, etc. , of the virtual system
provided by CP67. Type III program number is 360D - 05. 2. 005.

CMS - CAMBRIDGE MONITOR SYSTEM

Conversational subsystem of CP67.

CPS - CONVERSATIONAL PROGRAMMING SYSTEM

A Type III Program (360 D - 3 .4 . 016) available from PID
to provide Conversational PL/I and BASIC under OS/360.
Interpretive System in Segmented Core. RJE capability
included. Also see Allen-Babcock Computing, Inc.

CRBE - CONVERSATIONAL REMOTE BATCH ENTRY

This package provides low speed (1050, 2740, 2741, 2260)
remote access to OS/360 for file creation and modification,
submission to batch, etc. FORTRAN syntax checking
is optional.

CS-I - CONVERSATIONAL SYSTEM/I

An experimental system providing PL/1 language on S/360 50.
Developed at the IBM Boston Programming Center.

CTSS - COMPATIBLE TIME-SHARING SYSTEM

MIT's System - generally conceded to be the first of the
time-sharing systems and most significant. Still in operation -
two systems 7090/7750 at MAC & MIT Computer Center.
Languages - FAP, MAD and FORTRAN and many others.

IBM Internal Use Only
-A4-

continue
APPENDIX A

DATATEXT

A terminal service provided via contract from Service
Bureau Corporation. Text processing capability (externally
compatible with ATS) from central computer.

DDT - DYNAMIC DEBUGGING TOOL

On-line debugging routine that permits modifications at
the symbolic language level for BTSS (SDS 940 TSS).
Acronym also used for debugging system on earlier systems.

DEC - DIGITAL EQUIPMENT CORP.

DIA MAG - MATHMATICAL APPLICATION GRENOBLE

ALGOL conversational compiler on 7044/PDP-8 hardware
configuration. Supports TTY. Implemented at Grenoble
Institute of Mathematics. Grenoble, France. Working for
two years.

DISPLAYTRAN

DROS - DISK REMOTE OPERATING SYSTEM

Type III program (360 D-05. 1. Oil) providing Remote Job
Entry under DOS/360 using 32 k foreground and BTAM and
STRAM to support 1050, 1978, and 1130 terminals. TIE
Paper (Z77-7286). Program file order number is 360D-05. 1. 001.

Computer manufacturer in Maynard, Mass, that has
developed and sold the PDP series.

A graphic (2250) system using interpretive FORTRAN under
OS-MFT. Developed jointly by IBM and U.S. Navy Weapons
Laboratory at Dahlgren, Va. Likened to QUIKTRAN with
special command language. TIE paper (Z77-7176).

IBM Internal Use Only

-A5-

continue
APPENDIX A

GENIE

Project GENIE is the name applied to the time-sharing
development at University of California, Berkeley
involving the SDS 940 and its TS monitor. Supported by
ARPA funds.

HASP - HOUSTON AUTOMATIC SPOOLING PRIORITY SYSTEM

An automatic SYS IN/SYSOUT/SYSPUNCH Spooling package
that performs peripheral functions with extensive buffering
and blocking to enhance performance of OS/360.
Includes RJE support of STR devices - 1978 and Model 20
with Communication Adapter feature.

HSRJE - HIGH SPEED REMOTE JOB ENTRY

Remote entry to on-line batch via synchronous communications
systems, i. e. STR or BSC above 600 baud. Generic term.

IBM - TSS - IBM SYSTEM/360 MODEL 67 TIME SHARING SYSTEM

General purpose time-sharing system providing FORTRAN IV
and Assembler languages, full data management capability,
and debugging system (PCS). Virtual memory and paging
implemented with Model 67 hardware - dynamic address
translation (DAT). Supports 1050, 2741 (BCD), and TTY
terminals. Master index (C28-2023), P L /I and 2780
Remote batch support announced for 1970 delivery.

IPL-V - INFORMATION PROCESSING LANGUAGE V

Language capability available on the SDC-TSS for character
string manipulation. Makes SDC-TSS "general purpose".

ITSS - INTERIM TIME-SHARING SYSTEM

A special system jointly developed by IBM and General Motors
Research under OS/PCP to provide multiple time-sliced
partitions for 2250 graphics support. Uses Model 67 DAT with
RPQ to retain S/360 normal PSW mode.

IBM Internal Use Only
-A6-

continue
APPENDIX A

JOSS - JOHNNIAC OPEN-SHOP SYSTEM

Early system on Johnniac hardware at RAND Corp. First with
interpretive technique. Language is algebraic, an ALGOL
dialect and forerunner of BASIC. ARPA sponsored.

JOVIAL - JULES' OWN VERSION OF AN INTERNATIONAL ALGEBRAIC
LANGUAGE

An ALGOL dialect developed at Systems Development Corp.
(SDC) by Jules Schwartz. Essentially aimed at Command
and Control applications. TINT is time-sharing version of
JOVIAL at SDC.

KEYDATA, INC.

First completely commercial TS service out of Cambridge,
Mass. On SR 491 hardware now after start on PDP equipment.

LAFFF - LANGUAGE FOR THE AID OF FINANCIAL FACT FINDERS

A subsystem of the Dartmouth Time-Sharing system used in
TUCK School (Business Administration) for analyzing data
on publicly traded companies. Data bank drawn from Standard
Statistics Corporation's COMPUSTAT tape. Price-earnings
ratios, dividends, closing price, etc.

LISP - LIST PROCESSING LANGUAGE

A list processing language modified from its batch-processing
counterpart to run on the CTSS/MAC system. Other LISP
implementations for time-sharing subsequently made at SDC,
BERKELEY, and BBN system.

LSRJE - LOW SPEED REMOTE JOB ENTRY

Remote job entry with low speed terminals, i. e. , TTY,
1050, 2741. Generic term.

IBM Internal Use Only
-A 7 -

continue
APPENDIX A

M44

An experimental system developed at the IBM Watson
Research Center to study virtual machines and paging.
Hardware is highly modified 7044. MOS is Modular
Operating System. Virtual machine is 44X. Fore­
runner of Model 67 to certain extent.

MAC - MULTIPLE ACCESS COMPUTER, MACHINE AIDED COGNITION

Project implemented upon second 7094 at MIT. See CTSS.
Funded by ARPA. $3 million budget. Presently installing
MULTICS.

MAD - MICHIGAN ALGORITHM DECODER

Language developed at University of Michigan based on
ALGOL for batch system and modified for CTSS at MIT,

MEDINET

A hospital and medical information system designed by
Bolt Beranek and Newman, Inc. and G. E. G, E. hardware.

MTS - MICHIGAN TIME-SHARING

Interim system implemented for Model 67 at University
of Michigan using relocation hardware. OS compatible,
FORTRAN G, ASSEMBLER F, File Maintenance, PIL,
SNOBOL IV and five other languages. Supports 1050, 2250,
2741, TTY and small computers on campus. Background
1-3 streams. Earlier MTS version ran on Model 50 without
relocation hardware.

MULTICS - MULTIPLEXED INFORMATION AND COMPUTING SERVICE

General purpose time-sharing system being developed jointly
by MIT (Project MAC), G. E, , and Bell Labs, Murray Hill
using the G. E. 645 computer.

PHONETRAN

An experimental calculator system designed in IBM
ASDD lab using a touch-tone pad for input and voice
answerback for output-

IBM Internal Use Only
-A8-

continue
APPENDIX A

PIL/L - PITTSBURGH INTERPRETIVE LANGUAGE

A conversational system on S/360 50 at University of
Pittsburgh. A JOSS-like language on a dedicated system.
Interpretive.

QED

A text editor with line organization and content addressing
characteristics in the Berkeley (University of California)
TS system on the SDS 940 using TTY terminals. Allows
generation and modification of coding at the symbolic
language level.

QUIKTRAN

Terminal service provided by contract with Service Bureau
Corporation. Hardware is 7740/7044. Supports
1050, 2741 (Courier Correspondence) and TTY. Interpretive
FORTRAN-like language available since 1965.

RAX - REMOTE ACCESS COMPUTING SYSTEM

A Type II program providing Basic FORTRAN IV and Basic
Assembler language in TS environment. Support 1050, 2741,
2260 (local) on Models 30, 40 and 50. Users Manual (H20-0354).
TIE paper (Z77-7222). Applications Description (H20-0353).

RITS - REMOTE INPUT TERMINAL SYSTEM

A low speed remote input package originally written by
SBC for NASA GODDARD under contract from GEMRO.
Interfaces to OS and used in the ASP configuration. Presently
used by Columbia University, Westinghouse and Combustion
Engineering. Forerunner of CRBE.

RTS - REACTIVE TERMINAL SYSTEM

Service provided by ITT data services on S/360.
Modified RAX with OS FORTRAN-G Compiler to provide
full FORTRAN. ERasC language to be added* Supports
variety of terminals.

IBM Internal Use Only
-A9-

continue
APPENDIX A

RUSH - REMOTE USERS SHARED HARDWARE

System commercially available from Allen-Babcock
Computing, Inc. Conversational PL/1. Similar to CPS.

SABRE

American Airlines reservation system developed jointly
by AA and IBM. System runs on duplexed 7090's and
supports over 1, 000 special terminals all over U. S.

SDC - TSS - - SYSTEM DEVELOPMENT CORPORATION - TIME-SHARING
SYSTEM

One of first TS systems. Developed at SDC with ARPA
funding on AN/FSQ 32 (transistorized SAGE computer)
with PDP-1 handling communications. Languages available
are TINT and IPL-V.

SDS 940 - SCIENTIFIC DATA SYSTEMS 940

A modified SDS 930, including a paging scheme, privileged
instructions, and overlapped I/O to secondary memory.
Changes specified at University of California, Berkeley by
Melvin Pirtle.

SHARER

A time-sharing system embedded within the SCOPE multi­
processing batch system for the CDC 6600. Developed at
NYU under AEC funding.

SNOBOL

A character string manipulative language for information
retrieval, linguistics, and compiler functions. Available
on BTSS (SDS 940 TSS) and CP67/CMS.

TELCOMP

Name given to the commercial service provided by Bolt
Beranek and Newman. Uses PDP-7 and 8 computers.
Described as a "derivative of the JOSS language".IBM Internal Use Only

-A10-

continue
APPENDIX A

TINT - TELETYPE INTERPRETER

Language capability available on the SDC-TSS system.
An interpretive system for JOVIAL (algebraic language
developed at SDC). See SDC-TSS.

TORTOS - TERMINAL ORIENTED REAL TIME OPERATING SYSTEM

Generalized TS system to provide full resources of OS/360
plus some special functions to terminal users at UCLA.
Four basic priority classes - batch, background, terminal,
and real time are provided. RJE or conversational Syntax for
FORTRAN, PL / 1 and JCL. TIE paper (Z77-7169).

TSM - TIME SHARING MONITOR SYSTEM

Experimental system developed in IBM ASDD on 7090 hardware.
Languages: FAP, FORTRAN, GPSS, and PAT (PERSONALIZED
ARRAY TRANSLATOR) an interpretive sub-system. 7281-11
Data Communications Channel for terminal multiplexing.

TÜCC - TRIANGLE UNIVERSITIES COMPUTING CENTER

Non-profit organization at Raleigh, North Carolina set up by
Duke, North Carolina, and North Carolina State to provide
computer facilities to universities in North Carolina. Model
30's and other terminals on campus on-line to Model 75 at
TUCC. Modified OS using LCS to provide batch service with
RJE/RJO via STR access method. CPS used for interactive
computing.

TYMSHARE, INC.

Offers TS service to subscribers in California on SDS 940
from headquarters in Palo Alto. Languages are CAL,
BASIC, FORTRAN, ALGOL and QED.

UCC - UNIVERSITY COMPUTING COMPANY

UCC operates a number of computing centers providing batch services
and RJE to 1108 and a variety of data processing services. Head­
quarters in Dallas, Texas.

IBM Internal Use Only
-All-

continue
APPENDIX A

WATFOR - WATERLOO FORTRAN

Compiler developed for S/360 at the University of
Waterloo, Waterloo, Ontario. Full FORTRAN IV,
core resident, and very fast compile. Particularly
suited to student jobs where fast compile is essential.
Will run under OS. Program tape provided with main­
tenance for $300.

WESTTVE 300

A time-sharing system offered for the IBM 1130 by Western
Telematic, Inc. of Arcadia, California. Supports 8 terminals
in 8K, single disc 1130. IBM 2741 and KSR 33 supported.
Conversational FORTRAN. Price of Multiplexor and software
not indicated in Datamation ad October 68.

WRAP - WAYNE REMOTE ACCESS PROCESSOR

TS system developed at Wayne State University at Detroit,
Michigan, It runs under OS/360 and makes available all
OS language, i. e. , P L /1, FORTRAN, COBOL, ASSEMBLER,
RPG. Uses multiple partition roll-in/roll-out. Supports
1050, 2741 and 2260.

WHITE WELD

New York based service company providing financial
information for banks, trusts, and mutual funds via SDS
940 hardware system. First Financial Language (FFL)
provides ability to manipulate data.

IBM Internal Use Only

-A12-

APPENDIX B

TIME-SHARING READING AND REFERENCE LIST

1. Arden, B. W ., Galler, B .A ., O'Brien, T. C. , Westervelt, F. H. ,

"Program and Addressing Structure in a Time-Sharing Environ­

ment", Journal of the ACM, (January, 1966).

2. Bairstow, J. N./'Time-Sharing: A Computer for Everyone",

Electronic Design, (April 25, 1968).

3. Bauer, W. F . , Hill, R. H ., "Economics of Time-Shared

Computing Systems", Datamation, (Part I - November, 1967)

(Part II - December, 1967).

4. Bleiweiss, L. S. , et al, "CPS Terminal User's Manual",

Technical Report TM 48. 67. 006, (September, 1967).

5. Castleman, P. A. , "An Evolving Special-Purpose Time-Sharing

System", Computers and Automation, (October, 1967).

6. Coleman, C. D. , "CS/I Primer", Technical Report BPC 1,

IBM Boston Programming Center.

Conover, J .W ., "TORTOS (Terminal-Oriented Real Time

Operating System)", Tie Paper Z77-7169, (July, 1967).

IBM Internal Use Only -Bl-

7 .

continue
APPENDIX B

8. Corbato, F .J ., Daggett, M. , Daley, R. C . , "An Experimental

Time-Sharing System", Proc. SJCC, (1962).

9. Corbato, F. J. , et al, "The Compatible Time-Sharing System -

A Programmers Guide", The M .I, T. Press, (1963).

10. Corbato, F. J. , Vyssotsky, V. A ,, "Introduction and Overview

of the Multics Systems", Proceedings, - Fall Joint Computer

Conference, (1965).

11. Critchlow, A. J. , "Generalized Multiprocessing and Multi­

programming Systems", Proceedings - Fall Joint Computer

Conference,

12. Deutsch, L. P. , Lampson, B. W, , "An Online Editor",

Communications of the ACM - Vol. 10, Number 12,

(December, 1967).

13. Devonald, C. H ,, Fotheringham, J .A . , "The Atlas Computer",

Datamation, (May, 1961).

14. Dunn, T. M. , Morrissey, J. H ., "Remote Computing - An

Experimental System Part I: External Specifications", Proc.

SJCC, (1964).

IBM Internal Use Only
-B2-

continue
APPENDIX B

15. Enslein, K. , et al, "The Rochester Direct-Access Time-Shared

System", Computers and Automation, (October 1967).

16. Evans, T. G. , Darley, D. L. , "On-Line Debugging Techniques:

A Survey", Proceedings-Fall Joint Computer Conf. , (1966).

17. Falkoff, A. D. , Iverson, K. E. , "APL/360 User's Manual",

(July, 1968).

18. Ga glia no, F. W. , "DISPLA YTRAN", Tie Paper Z77-7176,

(May, 1967).

19. Gallenson, L. , Weissman, C. , " Time-sharing Systems:

Real and Ideal", SDC Professional Paper SP-1872, (March, 1965).

20. Glaser, E. L. , Couleur, J. F. , Oliver, G. A. , "System Design

of a Computer for Time-Sharing Applications", Proceedings -

Fall Joint Computer Conference, (1965).

21. Glauthier, T. J. , "Computer Time-Sharing: Its Origins and

Development", Computers and Automation, (October, 1967).

IBM Internal Use Only
-B3-

continue
APPENDIX B

22. Harrison, M. C. , Schwartz, J. T. , "SHARER, a Time-Sharing

System for the CDC 6600", Communications of the ACM - Vol. 10,

Number 10, (October, 1967).

23. Hittel, L. A. , "Some Problems in Data Communications Between

The User and the Computer", Proceedings, Fall Joint Computer

Conf. , (1966).

24. Hobbs, W. F. , Levy, A. H. , McBride, J. , "The Baylor

Medical School Teleprocessing System - Operational Time-Sharing

on a System/360 Computer", Proc. SJCC, (1968).

25. Hyman, H. , "The Time-Sharing Business", Datamation,

(February, 1967).

26. Irwin, M. R. , "Government Policy Implications in Data

Management", Datamation, (June, 1968).

27. Keller, J. M. , Strum, E. C. , Young, G. H. , "Remote

Computing - An Experimental System Part 2: Internal

Design", Proc. SJCC, (1964).

28. Kemeny, J. G. , Kurtz, T. E. , "The Dartmouth Time-Sharing

Computing System}' Final Report under NSF Grant GE-3864,

(April, 1967). IBM Internal Use Only
-B 4-

continue
APPENDIX B

29. Kinslow, H. A. , "The Time-Sharing Monitor System",

Proceedings - Fall Joint Computer Conf. , (1964).

30. Lichtenberger, W. W. , Pirtle, M. W. , "A Facility for

Experimentation in Man-Machine Interaction", Proceedings -

Fall Joint Computer Conference, (1965).

31. Licklider, J. C. R. , "Man-Computer Symbiosis", IRE

Transactions on Human Factors in Electronics, Yol. H FE-1,4-11,

(March, I960).

32. Licklider, J. C. R. , "Man-Computer Partnership", International

Science and Technology, (May, 1965).

33. Main, J. , "Computer Time-Sharing-Everyman at the Console",

Fortune Magazine, (August, 1967).

34. McCarthy, J. , "Time-Sharing Computer Systems", Computers

and the World of the Future (ed) M. Greenberger, M. I. T. Press,

(1962).

35. McCarthy, J. , Boilen, S. , Fredkin, E. , Licklider, J. C. R. ,

"A Time-Sharing Debugging System for a Small Computer",

Proceedings-Spring Joint Computer Conf. , (1963).

I-BM Internal Use Only

-B5-

continue
APPENDIX B

36. McNamara, J. E. , "Data Communications Systems for Time-

Sharing Computers", Lincoln Lab Paper, (Date Unknown).

37. Mendelson, M. J. , England, A. W. , "The SDS Sigma 7: A

Real-Time Time-Sharing Computer", Proceedings - Fall

Joint Computer Conference, (1966).

38. Nelson, W. D. , "How to Pick a Time-Sharing Service",

Computer Design, (August, 1968).

39. No Author, "Adding Computers - Virtually", Computing

Report, (March, 1967).

40. No Author, "An Introduction to CP-67/CM S", IBM Cambridge

Scientific Center Paper, (August, 1968).

41. No Author, "Systems Development At TUCC: 1966-67",

Triangle Universities Computation Center Paper, (February, 1966).

42. No Author, "Time-Sharing Market Put At $2. 5 Billion in 1971

Software, Service Firms Riding Growth Boom", Electronic News,

(April 29, 1968).

43. No Author, "Time-Sharing: Who Pays How Much For What?",

Datamation, News Briefs, (February, 1967).
IBM Internal Use Only

-B6-

continue
APPENDIX B

44. No Author, "Wayne Remote Access Processor User's Guide",

Computing and Data Processing Center, Wayne State University,

(January, 1968).

45. Oestreicher, M. D. , Bailey, M. J. , Strauss, J. I. , "George 3 -

A General Purpose Time-Sharing and Operating System",

Communications of the ACM - Vol. 10/Number 11, (November, 1967).

46. O'Neill, R. W. , "Experience Using a Time-Shared Multi-Programming

System with Dynamic Address Relocation Hardware", Spring Joint

Computer Conference, (1967).

47. O'Rourke,T. J.,"The Many New Uses of Time Sharing", Computers

and Automation, (October, 1967).

48. O'Sullivan, T. C.,"Terminal Networks For Time-Sharing",

Datamation, (July, 1967).

49. Patrick,R. L.,"Time-Sharing Tally Sheet", Datamation,

(November, 1967).

50. Pointel, N., Cohen, D. , "Computer Time Sharing - A Review",

Computers and Automation, (October, 1967).

-IBM Internal Use Only
-B7 -

51. Rosenberg, A. M. , Colten, R. , Myles, S. B. , "How to Cash

in on the Computer Utility - Parts I and II", Data Processing

Magazine, (Part I - March, 1968, Part II - April, 1968).

52. Rosenberg, A. M. , "Time-Sharing: A Status Report",

Datamation, (1966).

53. Ryan, J. L. , Crandall, R. L. , Medwedeff, M. C. , "A

Conversational System for Incremental Compilation and

Execution in a Time-Sharing Environment", Proceedings -

Fall Joint Computer Conf. , (1966).

54. Schatzoff, M., Tsao, R. , Wiig, R. , "An Experimental

Comparison of Time-Sharing and Batch Processing",

Communications of the ACM Vol. 10, Number 5, (May, 1967).

55. Schwab, B. , "The Economics of Sharing Computers", Harvard

Business Review, (September-October, 1968).

56. Schwartz, J. I. , Coffman, E. G. , Weissman, C. , "A General

Purpose Time-sharing System", Proceedings - Spring Joint

Computer Conf. , (1964).

continue
APPENDIX B

IBM Internal Use Only
-B8-

continue
APPENDIX B

57. Shaw, J. C. , "JOSS: A Designer's View of an Experimental

On-Line Computing System", Proceedings - Fall Joint Computer

Conf. , (1964).

58. Theis, D. J. , Hobbs, L. C. , "Low-Cost Remote CRT Terminals".

Datamation, (June, 1968).

59. Tuttle, J. R. , et al, "The Brown University Interactive Language",

(September, 1968).

60. Wilkinson, B. , "Some Problems with Time-Sharing", Datamation,

(May, 1968).

Additions and Replacements

Seawright, L. H ,, Kelch, J. A ., "An Introduction to CP-6 7 /CM S",
IBM Cambridge Scientific Center Paper 320-2032, (Revised March
1969) replaces #40 above.

Allen, Brandt, "Time Sharing Takes Off", Harvard Business Review,
(March-April 1969).

No Author, "A New Industry's Wild Ride", Business Week,
May 24, 1969.

Weizer, N. , Oppenheimer G. , "Virtual Memory Management
in a Paging Environment, " Proceedings - 1969 SJCC.

Wilkes, M. V. , "A Model for Core Space Allocation in a Time-
Sharing System, " Proceedings - 1969 SJCC.

IBM Internal Use Only
-B9-

APPENDIX C

GLOSSARY OF TIME-SHARING TERMS

The following definitions with some exceptions were extracted from the

IBM Computer Description Manuals and arranged in alphabetic order to

facilitate reference.

ASNYCHRONOUS TRANSMISSION is the type of transmission where each

information character is individually synchronized and is normally pre­

ceded by a start signal, which serves to prepare the receiving mechanism

for the reception and registration of a character, and is followed by a stop

signal, which serves to bring the receiving mechanism to rest in preparation

for the reception of the next character.

BAUD is the number of discrete conditions or signal events per second.

If each signal represents only one bit condition, baud is the same as

bits per second.

BATCH PROCESSING is the processing of a stream or batch of tasks in

a generally sequential manner, by an operating system controlled by

commands supplied by the task originator prior to the commencement of

processing for the task.

BINARY SYNCHRONOUS COMMUNICATIONS (BSC) is transmission that

is serial-by-character and serial-by-bit, over half duplex lines, and at

a transmission rate which varies between medium and high (from 600 to

230,400 bits per second). Bit and character synchronization are established

at the beginning of each transmission by transmitting a synchronizing pattern.

This synchronization (sometimes called character phase) is then maintainedIBM Internal Use Only
- C l -

continue
APPENDIX C

until the transmission stops, signalled by line control characters. The

synchronization is controlled by a clock located either within the BSC station

or the modem.

COMMUTATOR - a table or chained queue in which each entry represents

a user logged-on the system. The scheduler steps around the commutator

to give a time-slice to each active user.

CONVERSATIONAL I/O - is the ability to write to the terminal and read

from the terminal during the execution of a user program. This facility

is basic to time-sharing and is one factor that distinguishes time-sharing

from remote batch entry.

A DATA SET is a device which performs the modulation-demodulation

and the control functions necessary to provide compatibility between

business machines and the communication facilities. Another word used

for this device is modem, which is the contraction of modulator-demodulator.

"DEMAND PAGING" is the allocation of storage to a segment, page or

procedure based upon the actual demand for storage space by that pro­

cedure, rather than the allocation of storage to a procedure based upon

its anticipated or predicted demand. The user's virtual page is not called

in to main memory until it is "demanded".

IBM Internal Use Only -C2-

continue
APPENDIX C

A DESK CALCULATOR facility offered by a time-sharing system is a

simple command or set of commands by which the user may operate

his terminal to perform those functions (such as addition, subtraction,

multiplication and division) that a desk calculator performs.

"DIALUP" refers to the use of a dial or push-button telephone to initiate

a station-to-station telephone call.

A DROP refers to a station or terminal.

DYNAMIC ADDRESS TRANSLATION is the process of converting virtual

addresses into actual processor storage addresses during instruction

execution. The translation feature is implemented in hardware in the

processor.

HEIRARCHIAL STORAGE is the grouping of storage by class or rank.

The ranking of such storage is normally determined by the access time

associated with it. Therefore, the storage would be ranked in the

following manner: internal storage; LCS (auxiliary storage); secondary

storage such as tapes, drums and disks.

DYNAMIC PROGRAM RELOCATION is the relocation of a program

before it has completed execution and without modification, to another

part of storage, in a manner that permits subsequently resuming its

IBM Internal Use Only
-C3-

continue
APPENDIX C

execution. This facility normally involves the use of a hardware

feature called a relocation register.

FAIL SAFE: A system that can perform its entire workload in the

presence of any single malfunction is said to be fail safe.

FAIL-SOFT: A fail-soft system performs only the essentials of its

workload in the presence of malfunction.

FILE I/O is the accessibility to the terminal user of data files stored on

devices such as drums, disks and tapes at the computer site, within a

problem-solving environment. These data files may have been entered

and saved by the terminal user, or created by an on-site computer user

under the time-sharing system, or under another program operating

independently of the time-sharing system.

A FULL DUPLEXED (FDX) line or circuit is capable of the simultaneous

and independent transmission and reception between two points--in both

directions.

A HALF-DUPLEXED (HDX) circuit or line is capable of transmitting and

receiving in both directions, but is not capable of simultaneous and

independent transmission and reception. It cannot send and receive at

the same time.

LBM Internal Use Only
-C4-

continue
APPENDIX C

A HIGH SPEED TERMINAL is a computer system or a group of

components (reader, punch, printer) that are not keyboard driven.

An IN-HOUSE TIME-SHARING SYSTEM is a nonproprietary system

which a customer may obtain from a vendor and install on his own

equipment, in his own " house".

INTELLIGENT TERMINAL - a terminal device that incorporates stored-

program logic such as the IBM 1130, Model 20, or other S/360 model.

An INTERPRETIVE compiler decodes user source statements into an

intermediate code (pseudocode) that it can execute without translating

the statement further into machine language.

A LOCAL terminal is a terminal which is connected directly to the

computing system via its control unit.

LOW SPEED terminals will be the class of all keyboard-driven terminals.

Other devices such as paper tape readers and card readers may be attached

to the keyboard-driven device, but if the terminal may be keyboard-driven,

it will be classed as a low speed terminal.

MODULATION is the process by which some characteristic of an electrical

wave is varied in accordance with another wave or signal. In Data

Processing, modulation is used to make business machine signals compatible
IBM Internal Use Only

-C5-

continue
APPENDIX C

with communications facilities. In a specific case, it is conversion from

digital signals to audio signals for transmission over communication lines.

A MULTIDROP system is one in which two or more stations or terminals

are connected to a single line. A multidrop system must determine which

terminal on the line sent a message, and/or which terminal on a line will

receive a particular message.

MULTIPROGRAMMING is a technique by which a computing system can

interleave the execution of two or more generally unrelated programs,

parts of which are residing together in main storage.

MULTI-PROCESSOR: A system consisting of two or more CPU's, ALU's

or processors that do communicate for the purpose of sharing a workload.

(Although shared main memory is sometimes considered to be a pre­

requisite, there are multi-processing systems without this facility.)

MULTIQUEUED EXPONENTIAL SCHEDULING is a technique where

different queue levels are established such that every terminal request

initially is placed on the first queue and is "pushed down" to lower queues

if the request becomes more compute bound.

MULTISYSTEM: A multisystem is composed of two or more computing

systems which may be the same or may be different models and which

IBM Internal Use Only
-C6-

continue
APPENDIX C

are capable of intercommunication between them in some manner.

A multiprocessing system may be said to a subset of a multisystem.

The multisystem approach was implemented primarily to provide high

availability to the installation.

OPERATIONAL CYCLE TIME - the time required to give one time

slice to all active users being multi-programmed in a time-sharing

system; the time required for one trip around the commutator.

PAGE: A program segment of fixed size. In the System/360 Model 67,

a page is a set of 4096 consecutive bytes. The size of a page will vary

between different systems.

PAGING or PAGE TURNING is a technique for locating/relocating and

swapping program sections (pages) to and from main memory, utilizing

both hardware and software assists.

A PRIVATE or leased-line network is a network reserved for the

exclusive use of one customer.

A PUBLIC network is a network provided by a common carrier for

use by many customers.

IBM Internal Use Only
-C7-

continue
APPENDIX C

PUSH-DOWN stack is a list of items where the last item entered becomes

the first item of the list and relative positions of the other items are

pushed back one.

QUANTUM - a specified unit of time allocated to a user program when it

gains the CPU for execution. A time slice may consist of a quantum or

multiple quanta.

RECURSION: the continued repetition of the same operation or group

of operations. "Recursive" pertains to a process that is inherently

repetitive. A recursive program or block of code can call or transfer

control to one of its own entry points.

REFRESHEABLE CODE - a program module containing appropriate

flag bits to indicate that a fresh copy of the code could be obtained from

the library during an attempt to recover from an error condition.

A REENTRANT PROGRAM is one which may be interrupted during the

execution of one user request, entered by another user and subsequently

be reentered at the point of interruption by the first user, producing the

desired results for all. Each user entering the code brings with him a

pointer to his own parameter list. All information relating to a particular

user is posted to (placed in) an external area in order for his processing

to resume at the proper place.

IBM Internal Use Only
-C8-

continue
APPENDIX C

RELOCATION REGISTER - a single hardware register used to dynamically

relocate code that has been partially executed. A relocation constant is

loaded into the register and subsequently added to the addresses generated

during program execution. The relocation constant is established as the

code is relocated in core storage on each time slice.

A REMOTE terminal is a terminal which is connected to the computing

system via communication lines.

ROLL-IN/ROLL-OUT - a memory management technique employed in

time-sharing systems whereby user programs are written to secondary

storage at time slice end and are retrieved from secondary storage

before starting the next time slice.

ROUND ROBIN - a simple scheduling technique whereby users are served

on a first come, first served basis.

SCHEDULING ALGORITHM - a scheduling algorithm is a series of rules

and decisions used to determine how central processing unit time (as well

as other system resources) is to be allocated among the tasks (jobs or

programs) contending for it.

IBM Internal Use Only
-C9-

continue
APPENDIX C

SERIALLY REUSABLE PROGRAM is a reusable program which may

be used more than once but which has the property that a user must

enter the code, complete his requirements, and exit before another

user may enter.

A SIMPLEX line is a circuit capable of one-way operations only.

Communication may proceed in one direction only, with no capability

for reversing the direction.

A SINGLE-DROP system is a system in which only one terminal or

station is connected to each communications line. Most problem solving

time-sharing systems of today have single-drop capabilities only.

SWAPPING - another name for ROLL-IN/ROLL-OUT technique of

memory management.

TELPAK: Broadband communication channels for transmitting data

at rates greater than 60, 000 characters.

TIME SLICE - the period of CPU time allocated to a user program by

the scheduler in a time-sharing system. A time slice can be a fixed

time unit or multiples thereof. (See Quantum) or a work slice to execute

a fixed number of program statements.

IBM Internal Use Only
-CIO-

VIRTUAL MEMORY - is a concept which describes an imaginary

memory whose extent covers the entire addresseable range of the

machine design and which appears to a programmer to have the

characteristics of real core storage.

VOICE-GRADE: a circuit of sufficient bandwith to permit a data transfer

rate up to 2,400 bits per second, generally with a frequency range of 300

to 3, 000 cycles per second.

WATS: Wide Area Telephone Service is a service provided by telephone

companies which permit a customer by use of an access line to make calls

to telephones in a specific zone on a dial basis for a flat monthly charge.

Monthly charges are based on the size of the area in which the calls are

placed, not on the number or length of calls. Under the WATS arrangement,

the U, S. is divided into six zones to be called on a fulltime or measured-time

basis.

continue
APPENDIX C

IBM Internal Use Only
-Cll-

HYPERVISOR

Purpose fc Usage

Hypervisor is a control program designed to provide the capability

to operate the Remote Access Computing System (RAX) concurrently

with the Operating System/360 (OS/360) in the background in a single-CPU

system. In this mode of operation, the core storage is partitioned, by

means of the program-controlled prefix switches provided by RPQ into

two equal areas, i. e. , high-core and low-core areas, and RAX operates

in the high-core area while OS/360 operates in the low-core area. The

two systems have separate work loads, and operate independently of each

other sharing the CPU. Hypervisor provides the interface between RAX

and OS/360 in order that the two autonomous systems may operate

without interference from each other.

Description

One part of Hypervisor is resident in the RAX partition with the core­

resident RAX programs, and another is in the OS/360 partition as an

OS/360 task. When Hypervisor gives control of the CPU to RAX, it

switches the CPU prefix to the high-core mode in which all core storage

references are statically relocated by hardware so that the core storage

area in the RAX domain, which is the upper half of the, say, 512K core

storage, can be accessed by addresses 0 through 256K. Thus, RAX

IBM Internal Use Only
-Dl-

APPENDIX D

is enabled to run without address modifications in the upper half of

the core storage. Whenever the CPU becomes free while operating

in the RAX mode, Hypervisor switches the CPU prefix to the low-

core mode and transfers control of the CPU, across the partitioning,

to OS/360. Hypervisor intercepts all I/O interrupts while the CPU

is operating in the OS/360 mode, and returns control of the CPU to

RAX upon an I/O interrupt from an I/O unit dedicated to RAX. In this

way, any CPU idle-time in the RAX operations is utilized to run OS/360

without degradation of response time in the RAX operations.

The sequence of operations to start up a Hypervisor system is as follows:

The operator IPLs OS/3 60 after manually setting the Bit 6 of the Prefix

Control Register (PCR) to 1 to limit the OS/3 60 core storage area to one

half of the total core storage in the system. (For a description of the

PCR, see Hardware Requirements below.) Upon completion of the IPL,

the Hypervisor Task, which contains the RAX IPL routine (described in

Step 2) and I/O Interrupt routine (described in Step 4), is read into

OS/360 as an OS/360 task. The Hypervisor routines perform the functions

described below:

1. When Hypervisor Task receives control from OS/360, it invokes the

OS/360 Type 1 SVC to put itself in the Supervisor state with interrupts

masked off and storage protection key of zero. The Hypervisor Task

saves OS/360fs I/O new PSW and replaces it with the Hypervisor’ s;

the instruction address of the I/O new PSW points to the Hypervisor’s

I/O Interrupt routine. It resets the PCR to all-zeros, by means of

the Set Prefix and Branch (SPB) instruction (for detail, see Hardware

IBM Internal Use Only
-D2-

APPENDIX D

Requirements below), to put the system into the non-partitioned
mode in which the CPU can access the entire core storage, and
moves the RAX IPL routine into the upper core. The Hypervisor
Task also sets up a return entry point at Location 8 of the OS/360
partition for the Hypervisor's Wait routine (Step 3) in the RAX
partition. Then, it sets the PCR Bit 7 and those for the I/O
channels dedicated to RAX to 1 and transfers control of the CPU
to the RAX IPL routine in the high-core mode. (Subsequent SPB
instructions alter the status of the PCR Bit 7 only, and these
I/O channel mask bits of the PCR remain unchanged until the
system is shut down.)

2. The RAX IPL routine simulates the IPL to load RAX containing the

Hypervisor's Wait routine into the upper half of the core storage.

The RAX IPL routine is overlayed: RAX, then, starts its operations

in the high-core area with the I/O channels dedicated to OS/360

disabled.

3. When RAX encounters a wait or a forced I/O loop condition, the

Hypervisor's Wait routine switches the CPU prefix to the low-core

mode and transfers control of the CPU, across the partitioning, to

the Hypervisor Task in the OS/360 domain (via Location 8). The

return address in the Hypervisor's Wait routine (Step 5) in the RAX

partition is passed to the Hypervisor's I/O Interrupt routine in the

OS/360 partition in a general register as a parameter. The Hyper­

visor Task issues the wait-macro instruction causing OS/360 to start

processing tasks in the OS/360 queue with all the I/O channels enabled.

4. The Hypervisor's I/O Interrupt routine intercepts all I/O interrupts

while the CPU is operating in the OS/360 mode. It determines if the

interrupt is caused by an I/O channel dedicated to RAX. If not, control

IBM Internal Use Only
-D3-

APPENDIX D

is relinquished to OS/360's I/O interrupt handling routine, if the

I/O interruption is caused by an I/O channel dedicated to RAX, it

switches the CPU prefix to the high-core mode after setting up the

return entry point at Location 8 for the Hypervisor's Wait routine

(Step 5), and returns control of the CPU to the Wait routine, which

fakes the I/O old PSW in the RAX partition so that it appears as

though an I/O interrupt occurred in the wait state in RAX, and trans­

fers control of the CPU to RAX I/O interrupt processor.

5. When a wait or a forced I/O loop condition is encountered in the RAX

mode, Hypervisor's Wait routine switches the CPU prefix to transfer

control of the CPU to the Hypervisor's I/O Interrupt routine (via

Location 8) in the low-core mode. The Hypervisor's I/O Interrupt

routine, in turn, returns control of the CPU to OS/360 at the point

of the last I/O interruption in the OS/360 domain. The procedure

now repeats itself at Step 4.

Hardware Requirements

1. RPQ Storage Shared Program, which provides the Prefix Control

Register and the Set Prefix and Branch instruction as described below:

a. Prefix Control Register

The Prefix Control Register (PCR) contains eight bits: Bits 0 to 6

of the PCR are assigned to the I/O channels 0 to 6 respectively,

and Bit 7 of the PCR is assigned to the CPU. When a bit in the

PCR is set to 1, all core storage requests by the associated unit

are prefixed to the upper half of the core storage by hardware.

Core storage accessible to a unit is limited to one half of the total

IBM Internal Use Only
-DH-

APPENDIX D

core storage of the system if any bit in the PCR is 1. For

example, if an address generated by the CPU is greater than

256K and the PCR Bit 5 is 1, a program interrupt (addressing

exception condition) will take place. (A system with 512K core

storage is assumed for the convenience of exposition.)

b. Set Prefix and Branch Instruction

The Set Prefix and Branch (SPB) instruction is privileged and

has the SI format with an op-code of A7. The SPB instruction

causes the bit pattern of the immediate data, field to be

moved into the PCR, and an unconditional branch to the address

specified by the Bl /Dl field of the instruction. The branch

address is prefixed to the upper-core if the bit 7 of the

immediate data field of the SPB instruction is 1. If the branch

address specified by the instruction is greater than 256K and

any bit in the immediate data field of the instruction is 1, a

program interrupt will occur.

c. At the I/O initiation (SIO) time, the CAW is prefixed (256K + 72)

if the PCR Bit 7 is 1, and CCW and data address are prefixed

if the PCR bit assigned to the channel referenced by the SIO

instruction is 1. Since a core storage request is made by the

channel for each unit of data transferred to or from the core

storage at the time of the data transfer, the status of the PCR

bit assigned to a channel cannot be changed while a data transfer

operation is in progress on the channel. Consequently, an I/O

channel cannot be concurrently shared by RAX and OS/360.

IBM Internal Use Only
-D5-

APPENDIX D

At the I/O interrupt time, the CSW is prefixed (256K + 64)

if the PCR bit associated with the channel is 1, and the I/O

old PSW and I/O new PSW are prefixed if the PCR Bit 7 is 1.

2. Since no I/O channel can be concurrently shared by the two systems,

the I/O configuration must contain sufficient I/O components to support

RAX and OS/360 at the same time, a minimum I/O configuration in­

cludes one multiplexor channel, two operator's consoles, and two

selector channels.

3. Two IBM 2365 Storage Units.

Comments

1. RAX and OS/360 will maintain separate timers.

2. The I/O channels dedicated to OS/360 will be so indicated to OS/360 at

System Generation time. The remaining I/O channels will be marked

non-existent in OS/360.

3. Recovery capabilities for a catastrophic error in either partition

will not be provided.

Restrictions

1. The I/O channels dedicated to OS/360 remain disabled while the CPU

is operating in the RAX domain, and the I/O channels dedicated to

RAX remain enabled while the CPU is operating in the OS/360 domain.

2. No program in RAX and OS/360 executes the Set Prefix and Branch

instruction in order that the partitioning may remain opaque to both

systems. Control of the CPU is transferred across the partitioning

from one system to another solely by Hypervisor.

IBM Internal Use Only
-D6-

APPENDIX D

3. The Hypervisor Task must be the first task of OS/360 after IPL.

References

1. RPQ Transmittal No. E48992, Storage Shared Program, dated

June 5, 1967.

2. Functional Specification, RPQ E48992, Storage Shared Program,

dated May 16, 1967, by Mr. Ray Newton.

IBM Internal Use Only
-D7-

I

	‎D:\Temp\Scan\IMG_0170.jpg‎
	‎D:\Temp\Scan\IMG_0173.jpg‎

