
Systems Reference Library

IBM System/360 Time Sharing System

Command System User's Guide

The command system in Time Sharing System/360
gives to the user the facilities he needs for
constructing, executing, and debugging his
programs; also, he can create, modify, share,
and copy data sets; he can move them to or from
input/output devices. The user can modify and
add to the IBM-supplied command system to meet
his specific requirements.

File No. S360-36
Form C28-200.l-2 TSS

Third Edition (September 1968)

This is a major revision of, and makes obsolete, Form
C28-200l-l and Technical Newsletters N28-3003, N28-30l3, and
N28-3027.

This publication reflects extensive changes made to the
command system. The user has broader and more flexible means
of creating and editing VISAM data sets with 16 new text edit­
ing commands. Furthermore, the user can alter the IBM­
supplied command system to suit his own needs and even write
his own commands.

'l'his edition is current with Version 3, Modification 0, and
remains in effect for all subsequent versions or modifications
of IBM System/360 Time Sharing System unless otherwise indi­
cated. Significant changes or additions to this publication
will be provided in new editions or Technical Newsletters.
Before using this publication in connection with the operation
of IBM systems, refer to the latest edition of IBM s*stem/360
Time Sharing System: Addendum, Form C28-2043, for t e ed~­
tions of publ~cations that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for read­
er's comments. If the form has been removed, comments may be
addressed to IBM Corporation, System/360 Time Sharing System
programming publications, Department 561, 2651 Strang Boule­
vard, Yorktown Heights, N. Y. 10598.

@ Copyright International Business Machines Corporation 1966,
1967, 1968

PREFACE

The IBM System/360 Time Sharing System, TSS/360, provides specific
facilities for each class of system-user. One set of facilities, reserved
for the system manager and his administrators, is described in IBM System/
360 Time Sharing System: Managers and Administrators Guide, Form C28-
2024. Another set, reserved for the system operator, is described in
IBM System/360 Time Sharing System: Operator's Guide, Form C28-2033-2.

A third set of facilities, reserved for those who are concerned with
using the system is described in this publication. In TSS/360, this type
of individual is called a "user," whether he is a system programmer, an
applications programmer, or someone who uses the system only on an in­
quiry basis.

Part I of this publication deals with the basic command system and
how to write commands. The following parts describe the specific commands
in functional groups. Each command is described under seven points:
introductory statement, format illustration, operand descriptions, func­
tional description, programming notes, cautions, and examples.

The appendixes contain reference material such as command formats,
printer- and punch-control codes, user-profile tables, and how to sub­
mit bulk input to the system.

PREREQUISITE PUBLICATIONS

Effective use of this manual requires an understanding of TSS/360 and
the relationships that exist among the individuals who use the system.
See IBM System/360 Time Sharing System: Concepts and Facilities, Form
C28-2003.

Use of this manual at a terminal requires knowledge of the instructions
for operating the IBM 2741 and IBM 1052 terminals in the TSS/360 environ­
ment. These are given in IBM System/360 Time Sharing System: Terminal
User's Guide, Form C28-2017.

PUBLICATIONS CHECK LIST

IBM System/360 Time Sharing System: System Messages, Form C28-2037

IBM System /360 Time Sharing System: Concepts and Facilities, Form
C28-2003

IBM S~stem/360 Time Sharing S~stem: Terminal User's Guide, Form
C28-2017

IBM S~stemL360 Time Sharing S~stem: Assembler User Macro Instructions.,
Form C28-2004

IBM S~stem/360 Time Sharing S~stem: Assembler Programmer's Guide,
Form C28-2032

IBM S~stem/360 Time Sharing S~stem: FORTRAN Programmer's Guide,
Form C28-2025

IBM S~stem/360 Time Sharing S~stem: Linkage Editor, Form C28-2005

IBM S~stem/360 Time Sharing S~stem: S~stem Programmer's Guide,
Form C28-2008

PART I: INTRODUCTION
Conunands
Command Format and
Notation . . • • •

Conunand statement
Operand Representation •

Format Illustrations
Use of Metasymbols • .
Operation Format. .
Operand Format. • .
Operand Descriptions • .
Function and Use • • •

PART II: TASK MANAGEMENT
Section 1: Conununicating
with the System. . . .
Conversational Task
Ini tiation • • . • •

Conversational Task
Execution. .

Conversational Task
Interruption • . • .

Conversational Task
Termination • . . • •

Conversational Task
Output .

Nonconversational Mode .
Nonconversational SYSIN

Data Set • •
Nonconversational Task
Initiation • • . . •

Nonconversational Task
Execution. • • • • . .

Nonconversational Task
Termination • • . • • .

Nonconversational Task
Output • . • • .

switching Modes
Section 2: Command
Descriptions

LOGON Command
ZLOGON Command • .
TIME Command .
LOGOFF Conunand
BACK Command •
EXECUTE Command
SECURE Conunand
CANCEL Command
ABEND Command

PART III: DATA MANAGEMENT
Section 1: Data Set

Management • . • •
CATALOG Command
DDEF Conunand • •
RELEASE Conunand
CDD Conunand
DELETE Command . . . • .
ERASE Command • • • .
PERMIT Command • .
SHARE Conunand
DSS? Command • .

7
7

7
8
9

10
10
10
11
11
11

14

14

14

15

17

19

19
19

19

20

20

20

21
21

22
22
23
24
24
26
27
28
29
30

31

32
32
36
38
39
41
42
43
46
47

CONTENTS

POD? Conunand . .
VT Command ..
TV Conunand .
VV Command ..
CDS Command . . .

section 2: Text Editing.
Region Data Set ...
Line Data Set. . . .
Reg ion • . . • .
Current Line Pointer • .
Line Number ...•••
String Constants • . .
Hexadecimal Constants •.
Break Characters . . .
Normal Commands ...•
Conunand Descriptions

EDIT Command. .
END Command • . • . .
REGION Conunand ...
DISABLE, ENABLE, and

STET Commands.
CONTEXT Command .
CORRECT Conunand .
REVISE Command.
UPDATE Conunand. •
EXCERPT Conunand •
EXCISE Command. .
INSERT Command.
NUMBER Command.
LIST Conunand. .
LOCATE Command.

Section 3: Data Editing.
Conunand Descriptions

DATA Command. . . . • .
MODIFY Conunand.
LINE? Command •..•

Section 4: Bulk Output ..
Conunand Descriptions

PRINT Conunand
PUNCH Command • . . .
WT Command ...•..

PART IV: PROGRAM MANAGEMENT •
Section 1: Language Processing

Command Descriptions
ASM Command .
FTN Command . . • .
LNK Conunand • •
General Notes for Language
Processing Commands .•..

Section 2: Program Control ..
Use of Command Statements.
Program Control
Applications •....

Types of Address
Specification .

Operand Definitions.
Synonyms•.
Command Descriptions

LOAD Command. . ..
UNLOAD Command.
CALL Command.

48
50
51
52
53
57
58
58
58
59
59
60
60
60
61

62
63
64

66
67
69
72
73
74
76
77
78
81
82
84

84
87
92
94

94
97
99

103
103

103
107
109

111
115
116

117

117
126
132

133
134
135

Direct Call . . · . 136
136

· . . 137
· • 138

• 138
· 139

· . . 140
· 140

RUN Command . • .
GO Command. • • •
REPEAT Command. .
BRANCH Command. . .
AT Command. . . .
REMOVE Command. .
IF Command. . . .
SET Conunand . •
DISPLAY Command .
DUMP Conunand. . .

· . 141
• 143

144
QUALIFY Conunand • .
STOP Conunand. • .
Program Control Examples.

· 145
• 146
· 147

PART V: USER PROFILE
MANAGEMENT •.. 148

User Profile. • • 148
Conunand Descriptions

DEFAULT Conunand. 149
SYNONYM Command. • . 150
PROFILE Conunand. • . . • . • 151

PART VI: COMMAND CREATION .•. 153
Conunand Procedure. •. .. 153

Section 1: Conunand
Procedure Definition -

PROCDEF • . . • • . • 154
Specifying Dununy Operands. . . 154
Entering Procedure Text. • . . 155
Terminating Procedure
Definition. • • . • . • 156

Nested PROCDEFs. . . • 157
Nested Procedures.. ..• 158
Sharing User-Written Commands. 159
Editing Procedures . 160
Interrupting Procedure
Definition. • 161

Prompting During Execution • . 162

TABLES

1. Task Management Commands
and Their Functions · · · · 14

2. Conunands for SYSIN Device
and Character Set
Selection · · · · · · · 16

3. Effect of Attention
Interrupt · · · · · · · 17

4. Data Set Management
Conunands and Their
Functions · · · · 32

5. CDS Facilities and
Requirements. · · · · 54

6. Text Editing Commands
and Their Functions · · 57

7. System Defaults for NUMBER
Command Operands. · · · · · 79

8. Data Editing Commands and
Their Functions · · · · · · 84

Diagnostic Messages During
Execution . . •• 162

Section 2: Object Program
Definition - BUILTIN . •. 163

Section 3: Operand
Resolution and Substitution. • 164
Analyses of Calling and

Procedure Operands • •. 164
Generation of Operand
Equivalences . . • . . 169

Operand Substitution. . • • • 171
Section 4: PROCDEF Examples .• 174

PART VII: MESSAGE HANDLING 177
User Prompter •.•.•...• 177
Message Files. . . . 177
Message Generation. 177
EXPLAIN Conunand •••..••. 177
Message Filtering. • . .. 179
Message File Construction. 180
Message Types and Format . 181
Word Explanation Scope . • • . 182

Appendixes:
A. BULK INPUT FROM MAGNETIC

TAPE. . • • . • • • • • • 184
B. BULK INPUT FROM CARD

DECKS • • • • . •. • 186
C. PROTOTYPE PROFILE •..•• 190
D. PRINTER CARRIAGE

CONTROL CODES • • 199
E. READER and PUNCH

CONTROL CODES . . . 201
F. DETAILEDDESCRIPTION

OF DDEF COMMAND • • • . . 202
G. CURRENT LINE POINTER . 211
H. EBCDIC CHARTS. • 212
I. COMMAND FORMAT

DESCRIPTORS . 214

9. Bulk Output Commands and
Their Functions · · · . 94

10. Language Processing
Conunands. . · · · · · · · .103

11. Program Control Conunands
and Their Functions · · · .115

12. User Profile Management
Conunands and Their
Functions . · · · · · · · .148

13. Source of Input: Terminal
or SYSIN Data Set · · .162

14. Generation of Operand
Equivalences. · · · · · · .170

15. Indication of Operand
Resolution. · · · · · · · .170

16. Filter Codes · · · · · · · .180
17. Message-Line Format. · .182

PART I: INTRODUCTION

The command system is the principal medium of communication between
the user and IBM System/360 Time Sharing System (TSS/360). The facili­
ties of the command system permit the user to construct, execute, and
debug his programs; to manipulate his data sets; to modify the IBM­
supplied command system, and to write his own commands. He can use the
command system in two modes of operation: In conversational mode, the
user communicates with the system while it is executing operations for
him; he remains on-line to the system and maintains a dialogue with it.
In nonconversational mode, the user does not maintain a dialogue with
the system; the command system serves as a form of job control language,
since the user's requests are submitted for execution without his moni­
toring. Unless otherwise noted in the command descriptions, detailed in
this publication, commands may be used in both conversational and non­
conversational mode.

COMMANDS

Two types of commands are available to the user: IBM-supplied and
user-written. System-supplied commands group functionally in six
categories:

Task management
Data management
Program management
Command creation
User profile management
Message handling

The command-creation commands (PROCDEF and BUILTIN) enable the user
to augment IBM-supplied command facilities by designing and implementing
his own (user-written) commands. PROCDEF creates new commands from a
combination of commands; BUILTIN creates new commands from assembler
language object code. Once created, user-written commands are specified
in the same way as IBM-supplied commands; to the user, there is no dif­
ference in the manner of execution.

Note: This publication describes the IBM-supplied command system and
the facilities available to the user. Part of these facilities enables
the user to alter the command system to suit his needs. The user (and
the installation) can define synonyms for IBM-supplied command names,
operand names, and variables; he can specify his own default values to
overlay system defaults; and he can replace symbols that indicate system
requests with other symbols. How this is accomplished is described in
Part V, "User Profile Management."

COMMAND FORMAT AND NOTATION

The basic format of a command is:

,----------------------.--
Operation Operand
r----------------------r--.------

one or more operands, delimited by
command name commas; field may be blank

Part I: Introduction 7

The operation field contains a conunand name, such as CANCEL or EXE­
CUTE, that identifies the command and its requested action. The command
name may not exceed eight characters or contain an embedded blank. The
operand field contains any information required by the command.

While the operation field specifies the action to be performed, the
operand field indicates the elements upon which the command is to act.
The operand field may be blank or may contain several operands, depending
on the requirements of the operation. Multiple operands in an operand
field must be separated by commas. Blank and/or tab characters may also
be used between operands, but they are ignored by the system. For example,
specifying the operands a, b, and c in the operand field of a command as:

a,b,c

a ,b ,c

ora , (tab) b , c

will yield identical results when the command is executed. The operand
field is separated from the operation field by either a tab character,
or one or more blanks.

Command Statement

A command statement is one command or a series of commands that the
system recognizes as one SYSIN record. Normally, command statements are
written one on a line, unless the last character of the previous line is
a continuation character. When a command statement contains more than
one command, the commands must be separated by semicolons. The user may
add a comment clause, in the form of a quoted string, to a command state­
ment. A comment, which must be separated from the commands in the com­
mand statement by a semicolon, has no effect on execution. A comment
clause may also begin after a system underscore:

'this is a comment'

The three types of command statements are: dynamic, immediate, and
conditional. A dynamic statement contains an AT command, which specifies
the location where the subsequent commands in the statement will be exe­
cuted. An immediate statement is any command statement that does not
contain an AT command and will be executed when it is entered. A condi­
tional statement is any command statement (dynamic or immediate) that
contains an IF command; the part of the statement following IF will be
executed only when the condition stipulated by IF is true.

Here are examples of command statements:

8

1. delete myds; 'erase the catalog entry for myds'; cancel 3912;­
'eliminate print task'

2. execute datal; catalog data2,u,u;logoff

3. wt dsname=abcd, dsname2=xyz,volume=1233,factor=3,startno=6,­
endno=35,prtsp=edit; 'output data set'

4. at pgm.a; display x

5. if x~O; display x

Operand Representation

Command operands are represented in two ways: by position and by key­
word. The system can determine the value of a specific operand from
either the relative position of that operand within a series of operands,
or from a descriptive keyword preceding the operand value.

When positional operands are used, they must be supplied by the user
in the same order that was shown in the command format illustration. If
a positional operand is omitted, and another positional operand is written
following the omitted operand, the comma that would have followed the
omitted operand must be retained to indicate the relative position of the
operand that is included. For example, positional. operands a, b, and c
may be written as:

a,b,c a, ,c a,b a ,b,c ,b , ,c (blank)

Keywords may appear in any order, in the general form: KEYWORD=value,
where KEYWORD is the name of the operand, and value is the actual value
of the operand. This value is the one that would be specified for the
operand in positional representation. Commas are not required to indicate
ommitted keyword operands.

Keyword and positional representation of operands may be used simul­
taneously in the same operand field. Where one operand is expressed in
both manners, the last in the series is assumed to be the value. For ex­
ample, assuming three operands with keyword representations expressed
as A=x, B=y, and C=z, the operand field may be represented as:

A=x,y,z A=x,B=y,z x,C=z,B=y x,C=Z x,y,A=d,C=z B=y

Note that in the fifth operand field (x,y,A=d,C=z,), the keyword form of
representation for the operand specifying "A=d" contains the value that
is assumed, since the last value encountered for each operand, from left
to right, is assumed by the system. The examples are a guide; they do
not contain all possible permutations for these three operands.

This is the sequence of events that the system goes through to resolve
the operands:

1. The list of synonym values is searched for equivalent terms;

2. If synonym values exist, they are inserted; if not,

3. The user-supplied explicit value is used; if it is not given,

4. The list of user default values is searched;

5. If default values exist, they are inserted; if not,

6. Available system default values are inserted; if there are none,

7. The operand is not filled in; it is given a null string
value.

Here are examples of the sequence:

1. If a SYNONYN A=B command has been given previously, for this
operand list (keywords of A,B,C)

,B=b,c

the values generated are

A=b, B=b, C=c

Part I: Introduction 9

2. If a SYNONYM command has not been given, but a DEFAULT A=5 has been
entered, the operands above would be resolved as

A=5, B=b, C=c

3. If neither SYNONYM nor DEFAULT has been entered, the values that
would. apply are

B=b, C=c

A would have a null string value.

FORMAT ILLUSTRATIONS

The notational conventions described in the paragraphs following are
used in the command format illustrations to explain to the user how an
operand is to be written.

Use of Metasymbols

To facilitate the representation of the statements in the format illus­
trations, four metasymbols will be used, each in the specified context:

Name

braces

brackets

vertical
stroke

ellipses

Symbol

{ }

[]

Operation Format

Use

(a) to enclose and thus delimit syntactical
units (one or more operands) that may
be repeated;

(b) to enclose and thus delimit alternatives,
to enclose and thus delimit optional
names and/or operands within the appro­
priate fields.

represents "exclusive or" and separates
alternative representations of operands;
for example, AlB denotes that for the
syntactical unit enclosed within the
braces, either alternative A or alterna­
tive B, but not both A and B, may be
chosen; AlBic denotes that a choice may
be made between alternatives A, B, or C.
Alternatives may also be indicated by
aligning the choices vertically within
the braces: { ~ }

to indicate that the preceding syntactical
unit may be repeated one or more times.
Should there be a system limit to the
number of repetitions permitted, this
will be given in the operand list that
follows the format illustration.

To distinguish command names in the format illustrations, upper-case
letters are used. The user may enter command names in either upper- or
lower-case letters, depending on his mode of input. In folded mode
(i.e., upper-case letters and lower-case letters are equivalent), he may
use both. Unless specified by the user, this is the normal mode of key­
board input. In full EBCDIC mode (i.e., upper- and lower-case letters

10

are differentiated by the system), he must use upper-case letters. A
detailed description of how to enter commands is given in Part II, under
"Communicating with the System."

Operand Format

Within the operand field of the format illustration, the word or phrase
that will be used to identify each operand will be written entirely in
lower-case letters. For positional operands, only the lower-case word
or phrase will appear; for keyword operands, the keyword (to the left of
the equal sign) will be in upper-case letters and the keyword descriptor
(to the right of the equal sign) will be in lower-case letters.

Note: Unless otherwise note~ (in the operand descriptions), all operands
shown in keyword format may be specified positionally. The converse is
not true; operands shown in positional format must be specified in posi­
tional notation.

CODED VALUE: This is a character or string of characters that is to be
written exactly as shown in the format illustration. Coded values always
appear in format illustrations as numbers or upper-case letters, either
to the right of the equal sign or standing alone.

The comma, the period, and the parentheses have, special significance
in format illustrations. Commas must always be written to separate
operands, or to show the omission of positional operands, unless no
other operand follows the omission. Parentheses and periods must be writ­
ten as shown in the illustrations.

Operand Descriptions

Detailed information about writing each operand will be given in a
list following every format illustration. Every operand description will
conclude with two headings: "Specified as," which describes the valid
specifications for the operand, and "System default," which describes
the system action if the operand is omitted. System default is not
shown if the system's default value is null.

Function and Use

Following the operand description, the command is discussed under
"Functional Description," "Programming Notes," and "Cautions."

IIFunctional Description" describes the action of the system when the
command is received. "Programming notes" contains information on how
to use the command; if none of this information is pertinent to the
particular command, the subheading for these notes will be omitted.
"Cautions" are statements of warning to the user about difficulties he
may have in using the command. "Cautions" will appear only where appli­
cable.

One or more examples of command usage follow the command description;
a brief description of what the user might want to do is followed by
his input and the system's response.

Part I: Introduction 11

These general terms are used in many of the command descriptions (more
specific terms, referring to a specific functional group of commands, are
defined in the introduction preceding the functional group) :

data definition name

data set name

default value

dE~fined

diagnostic messages

12

The name assigned to the data set definition
for a given data set by DDEF. This name
consists of one to eight alphameric char­
acters, the first of which must be alpha­
betic.

The name used to identify a data set. A
data set name consists of one or more simple
names, each simple name having one to eight
alphameric characters, the first of which
must be alphabetic. A period is used as
the separator between simple names. Example:

GOAT
GOAT.WINNER9
GOAT.RALPHR.S66.Pl.A

The maximum number of characters, including
periods, is 35; thus, the maximum number of
simple names is 18.

Fully qualified data set name: identifies
one specific data set; it includes all
simple names (i.e., qualifiers or index
levels) of that data set name.

Partially qualified data set name: identi­
fies two or more data sets by omitting the
rightmost simple names of their fully quali­
fied data set names. For example, the
partially qualified data set name GO.AB14
identifies data sets GO.AB14.Pl and
GO.AB14.P2.

The value that the system or user assigns
to an operand that has been omitted.

A data set is defined when its character­
istics are described to the system. Every
uncataloged data set referred to in a task
must be defined within that task; the defi­
nition must precede the first reference.
A data set may be defined by means of a
DDEF command or macro instruction, or by a
CDD command that results in execution of a
prestored DDEF command.

Messages issued by the system to inform
the user of an error made in entering a
command statement. These messages usually
indicate the next action expected.

generation data group

generation names

line

member name

volume identifications

A collection of successive, historically
related data sets called generations. The
entire group is referred to by a single
partially qualified data set name, limited
to 26 characters to allow for appending ab­
solute generation numbers.

Specific generations of a generation data
group are referred to by appending an ab­
solute or relative number to the generation
data group name.

Absolute generation number: has the form
GxxxxVyy, where xxxx is a four-digit decimal
generation number and yy is a two-digit
decimal version number. Example:

HURST.LINER4.TT.G0002VOl
HARZ.G0452V23

A period must separate the absolute genera­
tion number from the generation data group
name to which it is appended.

Relative generation number: a plus or
minus decimal number. The relative genera­
tion number of the most recently cataloged
generation is (0); the generation just prior
to that is (-1) and the one just prior to
(-1) is (-2); a new generation is (+1).
Example:

GOST.YZ(O)
GOST.FF.PKJ(+l)

A physical record in a line or region data
set. Also, line may refer to a unit of in­
formation entered from a terminal, consist­
ing of the string of characters (including
blanks) typed in before the RETURN key is
pressed.

Identifies a member of a VPAM data set. The
member name consists of one to eight alpha­
meric characters, the first of which must be
alphabetic. Example:

FRH.T4(SWING8)

The member name is enclosed in parentheses
and immediately follows the VPAM data set
name.

The identification assigned to a specific
volume. The volume identification consists
of one to six alphameric characters.

Part I: Introduction 13

PART 2: TASK MANAGEMENT

Task management commands allow the user to initiate, terminate, or
change the system's operation in his behalf. The term "task" describes
any discrete sequence of the system's operations for the user.

In conversational mode, the user's task is the operations performed by
the system, including the communication between system and user during any
period of continuous operation. In nonconversational mode, although the
same definition of task applies, communication is one-way because the user
has predefined the operations to be performed by the system. The user
may have more than one task in the system at a time, but these tasks are
independent of each other.

The task management commands and the system functions they request are
shown in Table 1.

Table 1. Task Management Commands and Their Functions
(The commands are listed in the same order as
the command descriptions that follow in Sec­
tion 2.)

Command Function

LOGON Identify user to system for initiation of his task.

ZLOGON Perform user-defined function.

TIME Establish time limit for execution of task.

LOGOFF Notify system that user wants to terminate his task.

BACK Shift user's conversational task to nonconversational.

EXECUTE Initiate previously defined nonconversational task.

SECURE Identify types of I/O devices needed for private data
sets in nonconversational task.

CANCEL Terminate execution of nonconversational task prior to
its normal end.

ABEND Eliminate current task; start new task.

SECTION 1: COMMUNICATING WITH THE SYSTEM

The user is known to the system by his user identification, which was
assigned to him at JOIN time by an installation administrator. All the
user's data is stored in the system under his identification. Thus, when
the user enters the system, the minimum data required to initiate communi­
cation is his user identification.

Conversational Task Initiation

The user initiates his conversational task by turning on his terminal
and dialing the system. His conversational task is initiated; the system
assumes that the user wants to log on. After issuing the ~OGON com-
mand and its operands successfully, the user enters his command state­
ments through his terminal keyboard, or card reader, to direct the
execution of his task.

14

SYSIN: This name designates the input stream, which contains the series
of command statements that direct the user's task, and may include source
language statements and data. In conversational mode, this input stream
is entered through the user's terminal. The executable command state­
ments within a conversational SYSIN are recorded only as the printed
listing at the terminal; the exceptions ar~ the DATA, MODIFY, and text­
editing commands, which are used to build a data set that is recorded
within the system.

TIME: As a part of the initialization (LOGON) process, the system auto­
matically invokes the TIME command, establishing a CPU time limit for
execution of the user's task. The user may specify a time limit, not
exceeding 7-1/2 hours, by issuing the TIME command at any time during his
task.

Conversational Task Execution

After the initialization process has been completed, the system asks
the user to enter his next command statement (see "Request for Next
Command Statement," below) and engages in a conversation with him. The
user's part of this dialogue consists of any command and source language
statements that he enters during execution of his task, and his replies
to the messages issued by the system. The system's part of this dialogue
consists of messages to the user, responses to his command statements,
and requests for next command statements. The user has control over the
length and type of messages he will receive. Details will be presented
in Part VII,"Message Handling."

The system issues general information messages and messages informing
the user of error conditions.

INFORMATION MESSAGES: These messages prompt the conversational user to sup­
ply certain information when a mandatory operand has been omitted, or
inform the user of the actions the system has taken in executing a com­
mand statement.

DIAGNOSTIC MESSAGES: These messages warn the user of errors that he has
made in entering a command name or operands; some messages request the
user to correct his errors.

REQUEST FOR NEXT COMMAND STATEMENT: The system informs the user, at his
keyboard, that it is ready to accept his next command statement by
printing an underscore character (_) in the first character position of
a new line. (The same indication is given when the user is entering his
command statements through the terminal card reader.)

ENTERING COMMAND STATEMENTS: Command statements may be entered into the
system from the user's terminal, the system card reader, or a magnetic
input device in which the information is stored in card-image format.

The end of a command statement entered from the terminal keyboard is
indicated by pressing the RETURN key. If a command statement requires
more than one line, one hyphen must be typed at the end of the line before
the RETURN key is pressed; the hyphen signals that the statement is not
complete, and will be continued on the next line. Upper- and lower-case
notations in this publication are illustrative; command statements may
be entered in either form.

Command statements that are entered through the terminal card reader
can utilize free-form format (i.e., input is not restricted to particular
card fields). The 11-5-9 punch, following the command operands is used
to signify end of block (EOB) for command statements. For statements
longer than 80 characters, wit.h.the terminal EOB switch 'on, the continua­
tion character may appear in any available column. If the EOB switch is
off, the continuation character is not needed unless the statement
exceeds 260 characters.

Part II: Task Management 15

Note: Nonconversational input through a computer center's high-speed
card reader does not require the 11-5-9 punch to signify EOB; its inclu­
sion will have no effect. A semicolon is a valid command separator. An
EOB is automatically inserted by the card reader at the end of every
card. A continuation character must appear (in any column) for command
statements that require more than one card.

caution: In most cases, tab characters are treated as spaces and are
valid characters in the command system. However, because of physical
limitations in terminal devices, displaying tabs of more than 65 consecu­
tive spaces at the terminal printer might cause the next character to be
lost. Furthermore, when two or more consecutive tabs are entered through
the terminal card reader, they might not be printed correctly at the
terminal printer, even through they will be correctly transmitted to the
system.

SYSIN DEVICE AND CHARACTER CONTROL: The user has six commands (listed in
Table 2) with which he can select the SYSIN device or the character set he
wants to use for communication with the system.

Table 2. Commands for SYSIN Device and Character Set Selection

Command Function

K Transfer control to keyboard; if character set used during
card reader input was CA, KA will be new mode; if CB was card
reader mode, KB will be new mode.

KA Transfer control to keyboard and use full EBCDIC character
set.

KB Transfer control to keyboard and use folded character set.

C Transfer control to card reader; if keyboard mode was KA, CA
will be new mode; if KB was keyboard mode CB will be new mode.

CA Transfer control to card reader and convert card input from
1057 card-punch code to EBCDIC.

CB Transfer control to card reader and convert card input from
029 punch code to EBCDIC.

When the user initiates a conversational task, the system automati­
cally assumes folded mode. The user can type any lower-case letter and
¢, ", and! which will be converted to their upper-case equivalents and
@, #, and $ respectively. The system will accept the full EBCDIC char­
acter set when the user enters KA. To initiate card reading, the user
emters the C, CA, or CB command at the keyboard and presses the RETURN
key. The system will then read all the cards, or will read until the
user presses the ATTENTION key, or until a K, KA, or KB command is read.
After any of these conditions, the system requests the next input from
t:he keyboard.

For further instructions on SYSIN device selection and character con­
trol, refer to Terminal User's Guide.

COMMAND STATEMENT EXECUTION: First, every command statement entered by
the user is analyzed to determine if it is valid; then, if it is, the
actions requested by the command statement are performed before the
user is prompted to enter the next statement. If a command in a command
statement is not valid, the system issues a diagnostic message which may
request the user's corrections. If the invalid command is canceled, the

16

rest of the command statement is executed before the system invites the
user to enter his correction or next statement. Prompting messages are
issued as each command in a statement is analyzed, and the user can
supply requested information when the message is issued.

Correctly entered commands will have the same effect whether they are
entered in one statement or in individual statements. Example:

call abc; print resultds",edit; delete gh.k

will produce the same result when executed as

call abc
print resultds, , ,edit
delete gh.k

The first example (three' commands in one command statement) is more
convenient for the user, since he does not have to wait for the execution
of each command before he can enter the next command. If, however, the
CALL command was entered incorrectly and was canceled by the system, the
user would not be able to correct his error in the first case, until the
other two commands were executed. In the second case, he would be able
to' correct his error before PRINT and DELETE were executed.

Conversational Tas~ Interruption

The user can interrupt execution of his conversational task by pressing
the ATTENTION key at his terminal. When the attention intervention pre­
vention switch is disabled, the system's normal response depends on when
the interruption occurs. This information is described in Table 3.

Table 3. Effect of Attention Interruption

When ATTENTION
Key Is Pressed

Command statement
being entered
(RETURN key not
pressed)

Command in command
statement, or pro­
gram being executed

Message being
printed at
terminal

Prompting or diag­
nostic message
requests informa­
tion from user

Effect of Interruption

Command statement ignored; system responds with
logical NOT symbol (~); user can enter any
command.

In most cases (exceptions are noted in command
descriptions), command or program is interrupted
and system responds with logical NOT symbol (if
I/O operation was interrupted) or,with exclama­
tion point. User can enter GO to resume pro­
cessing, ABEND to cancel statement or program,
or any other command; if he enters other com­
mands, he can return to interrupted command or
program with GO.

Remainder of message is not issued; system re­
sponds with logical NOT symbol. User can enter
REPEAT to have last nonprompting message
printed, or he can enter any other command.

Execution of command that caused message is can­
celled; system issues logical NOT symbol. User
can enter any command or return to command fol­
lowing cancelled command by responding to NOT
symbol with carriage return. If he issues other
commands, user can return to interrupted com­
mand stream with GO command.

Part II: Task Management 17

When the user responds to an ATTENTION interrupt with a GO command or
a carriage return (i.e., null command), processing of the interrupted
program (i.e., command or user's problem program) is resumed.

When the user responds with the REPEAT command, the last nonprompting
message will be displayed at his terminal, and the interrupted processing
will be resumed. After an ABEND response, the interrupted program is
cancelled, the system is returned to its state immediately after the LOGON
process, and the user is again prompted for input of new command state­
ments.

When the user responds with a command other than ABEND, GO, or
REPEAT., a special intervention routine saves the interrupted program,
and the new command statements are honored. These command statements
may also be interrupted. The number of routines a user can interrupt and
save by the special intervention routine is limited only by the amount of
space in his virtual storage that can be allocated for save areas.

Whenever the user issues a GO command, the system will return control
to the most recently interrupted program.

Example: The user wants to display part of his virtual storage after
his object program, ABC, is running:

User:

System:

User:
system:

abc
(presses ATTENTION key) , .
displayabc2:abc2.(x'200')
(displays requested data field)

Syp,User: _go
After system completes execution of DISPLAY, it types underscore;
GO returns control to ABC.

Sometimes, the system may not open the terminal keyboard immediately
after the ATTENTION key is pressed; this will happen if the system is
either executing a privileged routine or the user has inhibited attention
interruptions. Normally, the terminal will be opened upon completion of
the privileged routine. However, if the user wants immediate access to
the keyboard while he has inhibited attention interruptions, he may press
the ATTENTION key a second time; then the terminal will be opened.

Often, the user will want to complete execution of short sequences of
code in his own program before allowing an attention interruption. He
can set the attention interruption prevention switch (AIPSL which will
prevent the first attention interruption that is attempted. When one is
attempted, the system tests the AlPS; when that switch is set, the sys­
tem informs the user that the system is busy in the routine and the
interruption is ignored.

However, the system does make a simulated attention interruption
en~ry. Then, when the switch is turned off, the user can execute the
AlPS to determine whether an attention interrupt has occurred. If an
interruption had occurred while the AlPS was on, the attention-handling
routine will be effected. If no interruption had occurred, the execution
of AlPS is ignored. This facility is available only to users of the
assembler language; FORTRAN is self-protecting and will allow attention
interruptions at any time without damage to the execution of the program.
For a more detailed description of this facility, refer to Assembler
Programmer's Guide.

Macro instructions in the assembler language enable the user to sup­
ply his own attention interruption-handling routines; this facility is
also described in Assembler Programmer's Guide.

18

Conversational Task Termination

The user ends his conversational task by entering a LOGOFF command at
his terminal; or he may switch his conversational execution to non­
conversational (see "Switching Modes," later in this section).

Conversational Task Output

The messages produced by the system during execution of conversational
tasks and the responses to command statement execution are printed at the
user's terminal. The results of processing during execution of his task
may be held in data sets within the system. When the user wants to ex­
amine these results, he can issue the LIST command (if the data set con­
taining the results is a line data set) to obtain a listing at his
terminal. Or he may issue one of the bulk output commands (see "Bulk
Output Commands" in Part III) to print or punch the results in nonconver­
sational mode. Also, the user can use dynamic I/O facilities in his
FORTRAN and assembler language programs to obtain these results.

SYSOUT: This name designates the main task output, which includes the
system messages, the responses to command execution, and the optional
problem program output that are produced during execution of a user's
task. In conversational mode, the information that is included in
SYSOUT will be delivered at the user's terminal. The SYSOUT for a con­
versational task will not normally be recorded by the system in any form.
Since SYSIN (see "SYSIN," above) enters and is recorded at the user's
terminal, these two information streams are interspersed on the terminal
listing.

Nonconversational Mode

The nonconversational mode of operation is most useful for tasks that
do not require the user's presence at the terminal to resolve any
problems that may arise during task execution. In this mode, there is
no direct communication between the system and the user. The command
statements that direct the system must have been furnished previously as
a complete sequence, called a nonconversational SYSIN data set. Any
system messages resulting from the execution of the task will be r~­
ceived by the user as printout from the central computer installation.

Nonconversational SYSIN Data Set

A nonconversational SYSIN data set is a series of command statements
and associated data that are to be acted upon in the sequence in which
they are presented to the system; they inform the system of the actions
the user wants performed during execution of his nonconversational task.
The user creates his nonconversational SYSIN data set in the same way he
creates any other type of data set. He can construct it at his terminal
by using the text editing commands (or DATA or MODIFY), or he can submit
it on punched cards to the system operator for entry into the system via
the installation's high-speed card reader. The data set must be VSAM
or VISAM line, and it must be cataloged before it can be executed.

Each nonconversational SYSIN data set begins with a LOGON command and
ends with a LOGOFF command, unless the mode of the task is being switched
(see "Switching Modes," below). If any private input/output devices are
to be used by the task, the SECURE command must immediately follow the
LOGON command, preceding all requests for those devices.

Data that is to be read by the user's program during execution may be
included in the SYSIN data set; this data must immediately follow the
RUN command that starts execution of the user's program. For FORTRAN
data sets the end-of-data record (%END) must follow the last data record.

Part II: Task Management 19

Nonconversational Task Initiat~on

As in conversational mode, the user must be granted access to the sys­
tem by his system administrator before attempting to communicate with the
system. Then, the user can initiate his nonconversational tasks by one
of these methods:

1. When the nonconversational SYSIN data set is cataloged, the user
initiates his task by issuing the EXECUTE command, which must be
entered from the terminal as part of his conversational task; how­
ever, EXECUTE can be given within the SYSIN data set of a noncon­
versational task to initiate another nonconversational task.

2. The user may start his task conversationally and then switch the
mode to nonconversational, by using the BACK command (see "Switching
Modes," below.)

3. By preparing his nonconversational SYSIN data set on punched cards,
the user can submit it to the system operator for processing. The
data set will be cataloged and execution will be requested when it
is read in by the system. The user must make certain that any data
sets referred to by his nonconversational task are submitted to the
system before the SYSIN data set itself (see Appendix B) .

Regardless of which method of nonconversational task initiation is
used, the user's task is assigned a batch sequence number by the system
and is executed as soon thereafter as space is available for it. The
results are unpredictable if a data set affected by the nonconversational
task is used before that task is finished.

The batch sequence number is a four-digit decimal number that identi­
fies the user's nonconversational task. The user must use this number
when he wants to cancel (via the CANCEL command) a previously initiated
nonconversational task.

Nonconversational Task Execution

During execution of a nonconversational task, there is no comrnunic~­
tion between the system and the user. The system analyzes, in the order
presented, each command of the nonconversational SYSIN data set and
executes every valid command. If a command is invalid, the system will
ignore it, and continue reading the SYSIN until either a valid command
is read or the task is abnormally terminated. After reading and
executing a valid command, the system proceeds to process the next com­
mand, continuing until it processes LOGOFF, which completes the task.

Nonconversatiqnal Task Termination

20

A nonconversational task is terminated in one of four ways:

1. When LOGOFF is read, normal termination occurs.

2. When the user issues the CANCEL command, specifying one of his
previously initiated nonconversational tasks, that task is elimi­
nated; a task awaiting execution can be cancelled.

3. The system terminates a nonconversational task when it encounters
a situation requiring resolution by the user. Typically, such a
situation arises when the system must prompt for an omitted operand
in a command, or must issue a diagnostic message that requires a
user response. Whenever abnormal termination of the user's task
occurs, a diagnostic message that indicates the reason, will be
printed as a part of SYSOUT for the task. The user may provide a
special data set, identified by the DDEF command with a data defi­
nition name TSKABEND, which contains a sequence of commands to be
executed if his task is abnormally terminated.

4. A system shutdown terminates all nonconversational tasks. Those
initiated by PUNCH, PRINT, or WT will be automatically restarted
when the system resumes operation; no restart will be attempted for
other nonconversational tasks.

Nonconversational Task Output

The user specifies, by commands in~his nonconversational SYSIN data
set, the output expected from his nonconversational task.· He must define
the data sets that are to be generated and indicate how they are to be
output. Other output includes printout of the SYSOUT data set, which is
printed automatically by the system. This data set contains any messages
issued by the system, interspersed in a listing of the commands for the
task, and may also contain printable data generated by problem programs
during execution of the task. All tapes, punched cards, and listings
resulting from the nonconversational task are produced only at the com­
puter center.

Note: Each SYSOUT data set begins with a message, identifying the non­
conversational task and its originator.

Switching Modes

The user can use the BACK command to switch a conversational task to
nonconversational task. But there is no way for him to switch from the
nonconversational to conversational mode.

The user can switch his conversational task to nonconversational if
all three of these conditions exist:

1. He has entered a nonconversational SYSIN data set and defined it to
the system. This data set may, be uncataloged; it must not begin
with a LOGON command.

2. The system has space for another nonconversational task (see "Non­
conversational Task Initiation," above). If not, the user will
be informed and he may then try, later, to switch the mode of
operation.

3. The 1;.lser enters a BACK command at his terminal, requesting non­
conversational continuation of ,'his task. '

~f the eystem accepts the user's request, it will establish the non­
conversational task, assign it abat~h sequence number, and will elimi­
nate the conversational task from the system. The user's terminal is
then available to him for a new conversational task.

Part II: Task Management 21

SECTION 2: COMMAND DESCRIPTIONS

LOGON Conunand

This conunand validates the user to the system and creates the environ­
ment in which he may operate.

Operation Operand

LOGON user identification, [charge number] , [confirmation] ,
ressage option], [password]

Note: Keyword operand format is not valid.

user identification

identifies the user to the system.

Specified as: the user identification assigned to the user at
JOIN time.

charge number

specifies the user's assigned charge number.

Specified as: the charge number assigned to the user at JOIN time.
System default: the first number found in the user table for the

specified user identification will be used for accounting
purposes.

confirmation

this operand is included only for compatibility and has no function.

Specified as: Y or N
System default: N is assumed (even if Y is specified).

message option

this operand is included only for compatibility and has no function.

Specified as: M or C
System default: M is assumed (even if C is specified).

password

specifies the user's assigned password.

Specified as: the password ass~gned to the user at JOIN time.
System default: none in conversational mode if the user has been

assigned a password; nonconversationally, password will not be
verified.

Functional Description: The credentials the user enters (user identifi­
cation, and where applicable, charge number, password) are compared with
the authorization data that identify him to the system. When any or all
are not valid, the user is prompted to enter all operands again. When
these credentials are valid, the task continues. LOGON calls ZLOGON
before control is given to the user.

22

Programmi~g Notes: LOGON must precede any commands the user intends to
issue. For a conversational task the LOGON command name is not entered.
When the user turns on his terminal and dials the system, the sygtem
assumes a LOGON operation and immediately unlocks the keyboard for the
first operand. Subsequent attempts to enter LOGON prior to LOGOFF have
no effect.

If the user's permit to use the system has been withdrawn (he has
been "quit") he will be advised of this via a message and his LOGON will
be terminated.

Examples:

1. FRANKDOE dials up at his terminal; the system assumes that he wants
to, begin a conversational task.

User: frankdoe""mars7**
S'YStem: (acknowledges that user has successfully logged on)

2. A nonconversational task is being started; the first prestored
command is:

LOGON, , , ,

ZLOGON Command

This command is automatically invoked after the LOGON command is exe­
cuted but before control is passed to the user. Initially ZLOGON performs
no function; it allows the user to augment the initialization process.

I Operation Operand

ZLOGON

Note: There are no operands.

Functional Description: After the task initialization process (via
LOGON) is completed, ZLOGON is invoked. If the user (or the installation)
has defined a procedure with the name ZLOGON, it is executed before con­
trol is passed to the user. Otherwise, ZLOGON is ignored and control is
passed to the user.

Programming Notes: When the user wants some procedure to occur auto­
matically when he logs on, he can define a procedure (via PROCDEF or
BUILTIN) with the name ZLOGON or he can equate (via SYNONYM) the name
ZLOGON to the name of any other command or procedure. The user can also
enter ZLOGON, after it has been defined, at any time during his task.

Examples:

1. The user wants to execute program PGMA every time he initiates a
task. He defines this command procedure:

procdef zlogon
call pgma

During the LOGON process, procedure ZLOGON is invoked before the
user receives control.

2. The user always wants to use the terminal card reader after initiat­
ing his conversational task. He issues:

synonym zlogon=cb

Part II: Task Management 23

During the LOGON process, the CB command is issued before the user
gets control. CB is ignored during initiation of a nonconversational
task.

TIME Command

This command establishes the time during which a task will be executed.
At the end of that time, if the task is conversational, a message will be
issued and control will return to the user in command mode. If the task
is nonconversational, ·the task will be abnormally terminated.

Ioperation

~IME
Operand

[MINs=minutes]

MINS

specifies the number of minutes of execution time before the timer
will interrupt the task.

Specified as: a decimal number greater than 0 and less than 451.
System default: the value assigned at system generation time is

assumed.

Functional Description: TIME is invoked automatically as a part of the
initialization of the user's task, when a time specified at system gener­
ation is used to set the timer. When the TIME command is issued by the
user, the value of the timer is reset. The value of the timer will
ahvays be that of the last issued TIME command. Time is only accumulated
against this interval while the user's task is actually executing. When
the task is in a wait state or time-sliced out, no time is charged.

Programming Notes: The user may issue the TIME command at any time. The
maximum value he can specify is 450 (7 1/2 hours).

Example: The user wants to set a four minute time limit for execution
of his task.

User: time 4
system: (resets timer)

LOGOFF Command

This command notifies the system that the user wants to end his
task.

~eration Operand

LOGOFF

Note: There are no operands.

Functional Description: LOGOFF removes the user's task from the sys"t7¢m
and releases any I/O devices used by the task. LOGOFF disposes any un­
cataloged data sets generated during execution of the task; disposition
depends on whether the data sets reside on private storage and whether
the task is in conversational or nonconversational mode.

24

In nonconve~sational mode there is no choice in the disposition. In
conversational mode the user is prompted to choose the disposition. He
may choose the same disposition for all his uncataloged data sets, or to
have the data set names presented to him one at a time for individual
disposition.

When individual disposition is selected, the user indicates his choice
by entering, after the data set name is printed,

I no action to be taken,

E the data set is to be erased,

C [,data set name] the data set is to be cataloged as a new
data set with unlimited access (see the
CATALOG command, in next section).

data set name

specifies the data set that is to be cataloged.

Specified as: a fully qualified data set name, and (optionally) a
member name of a VPAM data set; when specified, the member name
is enclosed in parentheses and immediately follows the VPAM data
set name.

System default: the data set will be cataloged under the name just
printed to identify it to the user.

When the user chooses no action for a new private data set, the sys­
tem will print a list of the volumes on which the data set resides.
When the user requests that a private data set be erased, the erasure
will be performed only if the data set resides on a direct-access vol­
ume; otherwise, the request is ignored.

When LOGOFF is given in a nonconversational task, an automatic PRINT
is issued by the system for the SYSOUT data set.

Programming Notes: LOGOFF must be the last command in every task. If
no LOGOFF appears at the end of a nonconversational task, a diagnostic
message is issued and the task is terminated; SYSOUT will be printed.
If no LOGOFF appears at the end of a conversational task, the task will
not be terminated.

Examples:

1. The user wants to end his conversational task, erase data set
ARWORK2, and catalog data sets ARWORKI and ARWORK3, all of which
are uncataloged and reside on private storage.

User:
system:

User:
SyStem:

User:
system:

logoff
(asks user to enter disposition option)

(presses RETURN key, requesting individual disposition)
ARWORKI

c
(catalogs ARWORKl)

ARWORK2

Part II: Task Management 25

User:
sys:tem:

User:
system:

e
(erases ARWORK2)

ARWORK3

c,arwork2
(catalogs ARWORK3 as ARWORK2 and terminates task)

2. This is the user's last command in the SYSIN data set of a noncon­
versational task:

LOGOFF

All his uncataloged private data sets are ignored, his SYSOUT is
printed, and his task is terminated.

BACK Command

This command converts the user's conversational task to a nonconver­
sational task, which takes its subsequent commands from the data set
named in the command.

I Operation

BACK

Operand

DSNAME=data set name

DSN.AME

identifies the data set (new SYSIN) containing the series of com­
mands that completes the current task in nonconversational mode.
This data set must be cataloged or defined within the current task
and currently available to the system.

Specified as: a fully qualified data set name.

Functional Description: If space for a nonconversational task is avail­
able, the user's task is accepted for execution and a batch sequence
number (BSN) is assigned as soon as tne BACK command is issued. Control
of the task is then passed to a new SYSIN, effectively logging-off the
user at the terminal. The nonconversational task takes its commands
from the SYSIN data set named in the BACK operand field. The SYSIN data
set should conclude with LOGOFF; if not, the system performs the LOGOFF
operation and issues a diagnostic message.

If space for a nonconversational task is not available for the user's
task, the BACK command is rejected, allowing the user to continue his
task in conversational mode, as though he had not issued the BACK
command.

A BACK command will not be accepted if the system is being shut down.

Caution: All devices needed for private volumes in a nonconversational
task must be allocated via SECURE before BACK is issued.

Programming Notes: The BACK command is meaningful only in a conversa­
tional task; in a nonconversational task BACK is ignored by the system .

. After issuing the BACK command, the user must go through the normal
task initiation process to begin a new conversational task.

26

When BACK is rejected, the user may reissue it at some later time
during his terminal session, but he must be aware of the necessity for
modifying the new SYSIN data set to reflect his conversational processing
subsequent to his first BACK command.

If the user, when he issues the BACK command, interrupts a program
that is being executed, the first command in his SYSIN data set should be
GO, which will cause program execution to resume at the point of inter­
ruption.

When the user wants to initiate a nonconversational task that does
not require a prior conversational phase, he should use the EXECUTE com­
mand. The data set named as SYSIN in the EXECUTE command, unlike that
named in the BACK command, must begin with LOGON and conclude with LOGOFF,
and must be on public storage.

Example: The user wants to change his conversational task to nonconver­
sational, using data set ALPHA as SYSIN for his nonconversational task.

User: back alpha
System: (accepts task and assigns batch sequence number)

EXECUTE Command

This command introduces a nonconversational task into the system.

Operation Operand

EXECUTE DSNAME=data set name

DSNAME

identifies the data set which resides on public storage and which
contains a series of commands that start with LOGON and end with
LOGOFF; this data set becomes the SYSIN of the nonconversational
task.

Specified as: a fully qualified data set name.

Functional Description: EXECUTE requests creation of a nonconversational
task that is independent of the user's current tasks. A batch sequence
number is assigned and the task is created when task space becomes avail­
able.

Programming Notes: The nonconversational task is controlled by the com­
mands in the SYSIN data set, starting with LOGON and ending with LOGOFF.
Each SYSIN data set represents one task only.

The EXECUTE command differs from the BACK command:

1. EXECUTE requests an independent nonconversational task, rather
than changing the user's conversational task to nonconversational
mode.

2. The data set named in the EXECUTE command must contain LOGON and
LOGOFF commands; the data set specified in the BACK command need
only conclude with a LOGOFF command.

3. EXECUTE is accepted by the system even if no task space is currently
available; the task will be created later. If task space is not
available when the BACK command is issued, the command is ignored
and the user continues conversational processing as though he had
not issued the command.

Part II: Task Management 27

Example: The user wants to create a nonconversational task; the commands
for the task are stored as a data set named NEWTASK.

User:
system:

execute newtask
(accepts task and assigns a batch sequence number)

SECURE Command

This command reserves all devices that will be required for private
volumes during the execution of a nonconversational task.

Operation Operand

SECURE { (TA = number of devices [,type of device] :} (DA = number of devices [,type of device]
[, ...]

Note: TA and DA must be specified in keyword format.

TA

DA

designates the number of tape devices requested.

Specified as: a one- or two-digit number.

identifies the type of tape device requested.

Specified as:

7 -- seven-track tape

7DC -- seven-track tape with data converter feature

9 -- nine-track tape

System default: the type of tape specified at system generation
time is assumed.

System default: no tape devices are reserved.

designates the number of direct-access devices requested.

Specified as: a one- or two-digit number.

identifies the type of direct-access device.

Specified as:

2311 disk

2314 disk

System default: the type of direct-access device specified at
system generation time is assumed.

System default: no direct-access devices are reserved.

Note: One of the operands (TA or DA) must be specified.

28

Functional Description: SECURE reserves the specified devices as a group
so that the task can proceed, without pause, when the entire group is
available. Any waiting for devices occurs when the SECURE command is
being executed.

cautions: If SECURE is not given where required, or an error exists in
the command itself, the user's task is terminated.

The user must provide a SECURE command immediately after the LOGON
command in every data set that is to be executed as a separate noncon­
versational task and that refers to one or more private volumes.

Programming Notes: SECURE applies to nonconversational tasks only;
it is never executed in a conversational task.

Examples:

1. The user has prepared a task for nonconversational execution that
includes references to private volumes. For these, one 2311 disk
drive and three tape units, all for 9-track tape, are necessary.
He prepares this SECURE command for insertion immediately after
the LOGON command:

secure (ta=3, 9) , (da=l, 2311)

2. The user's nonconversational task requires three 2311 disk drives
and seven tape units, three of them 7-track and the remainder 9-
track. He prepares this SECURE command:

secure (da=3,2311), (ta=3,7), (ta=4,9)

CANCEL Command

This command eliminates a nonconversational task or job that is
either waiting for task space or is currently being executed.

r-0_p __ e_r_a_t_l_'o __ n __________ +-_o_p_e_r_._a_n_d __________________________ --------------------------J
CANCEL BSN=batch sequence number

BSN

identifies the nonconversational task to be canceled.

Specified as: the one- to four-digit batch sequence number as­
signed by the system when the nonconversational task was
established.

Functional Description: When a task is canceled during its execution,
the devices reserved for its use are released, and the pages of storage
it was using are freed; the SYSOUT, although probably incomplete, will
be printed and will include a message indicating the reason for task
termination.

A task canceled before it starts execution receives no explicit sign
of cancellation.

The user will be informed if the task designated in the operand field
cannot be found.

Programming Notes: The user may cancel any of his nonconversational
tasks including those initiated through the bulk output commands.

Part II: Task Management 29

Example: The user wants to cancel a nonconversational task {before exe­
cutionl with a batch sequence number of 1214.

User:
system:

ABEND Command

cancel bsn = 1214
(cancels nonconversational task)

This command returns the user's task to a status that existed after
the LOGON process.

I Operation

ABEND
l

I Operand

Note: There are no operands.

Functional Description: When ABEND is executed, the user's current task
is terminated and a new task is created, as if the user had logged on
again. All data set definitions, open data sets, and session variables
are eliminated.

Programming Notes: The ABEND command can either be entered from the
terminal or automatically induced by the user pressing the ATTENTION key
on his terminal five consecutive times with no intervening activity on
his part.

This command is-intended for use in situations where other recovery
procedures are not adequate, and the user must get out of an unresolvable
situation.

Example: The user, while executing a program, is in an unrecoverable
situation:

30

User:
system:

User:
system:

(presses ATTENTION key once) , .
abend
("cleans up" virtual storage)

PART III: DATA MANAGEMENT

The facilities available through commands, which provide the user with
convenient means to manage his data sets, are:

• Data set management
• Text editing
• Data editing
• Bulk output

The data set management commands provide for identifying data sets;
for efficiently storing them within the system and retrieving them; for
sharing them with other users; for copying and erasing them; and for de­
fining them and their use in the system. These commands are described
in section 1.

The text editing commands enable the user to create and edit VISAM
line and VISAM region data sets. The text editor and its commands are
described in Section 2.

The data editing commands are used to build and edit VSAM and VISAM
data sets, although these facilities are less flexible than those of the
text editor. These commands are described in Section 3.

The bulk output commands allow the user to establish independent non­
conversational tasks, to efficiently output his data sets. These com­
mands are described in Section 4.

Part III: Data Management 31

SECTION 1: DATA SET MANAGEMENT

The data set management commands and the system functions they re­
quest are shown in Table 4.

Table 4. Data Set Management Commands and Their Functions
(The commands are listed in the same order as the
command descriptions that follow.)

Command Function

CATALOG Create or alter catalog entry for data set; create
catalog index for generation data group; or catalog data
set as new generation of existing generation data group.

DDEF Define data set and describe its characteristics to
system.

RELEASE Delete data definition established by previous DDEF
command.

CDD

DELETE

ERASE

PERMIT

SHARE

DSS?

POD?

VT

TV

vv

CDS

CATALOG Command

Retrieve DDEF commands, which have been prestored in
cataloged or defined line data set, and process them.

Delete one data set entry from user's catalog.

Free direct-access storage assigned to private data set
and remove its catalog entry from user's catalog.

Authorize or withdraw authorization of other users to
access user's specified data set.

Allow user to share data sets belonging to another user
who has granted authorization with PERMIT command.

Present status of cataloged data sets.

Display information about members of VPAM data set.

Copy VAM data set onto tape as physical sequential data
set.

Retrieve data set that was written onto tape via VT
command and write data set into VAM volume.

Copy VAM data set on direct-access storage.

Duplicate data set or member of VPAM data set.

This command creates or alters the catalog entry for a data set,
creates a catalog index for a generation data group, or catalogs a data
set as a new generation of an existing generation data group.

The CATALOG command, depending on the objective, takes one of two
forms:

Form 1

peration

tTALOG

32

Operand

DSNAME=data set name [,STATE={Nlu}] [,ACC={Rlu}]

[,NEWNAME=data set name]

Form 2

Operation Operand

GDG=data set name,GNO=number of generations
CATALOG

[,ACTION={A lo}] [,DISP={E Is}]
DSNAME

STATE

ACC

identifies the data set which must be already defined by a DDEF
command within the current task or must be cataloged, and which
resides on a direct-access or magnetic-tape volume.

Specified as: a fully qualified data set name, which must not have
an absolute generation number appended.

specifies whether this is the updating of an existing catalog
entry or the creation of a new catalog entry.

Specified as: N - new
U - update

System default: N is assumed.

specifies the access qualification for the data set.

Specified as: R - read-only
U - unlimited

System default: U is assumed if the catalog entry is new; other­
wise, no change will be made to the access qualification.

NEWNAME

GDG

GNO

designates the new name for the data set.

Specified as: a fully qualified data set name.
System default: the data set name is unchanged.

identifies a new generation data group.

Specified as: a generation data group name; maximum number of
characters, 26.

Note: This operand must be given in keyword format.

indicates the number of generations to be maintained in the gener~­
tion data group.

Specified as: a one- to three-digit decimal number; maximum
value, 255.

Part III: Data Management 33

ACTION

DISP

specifies the action to be taken when the GNO value plus one
generation is being cataloged in the generation data group.

Specified as: A - all previous generations to be removed from
catalog.

o - only oldest generation to be removed.
System default: 0 is assumed.

designates the disposition of old generations deleted from the
catalog. Disposition applies to private volumes only; public data
sets are always erased when uncataloged.

Specified as: E - old generation data sets to be erased from
storage.

S - old generation data sets to be saved.
System default: S is assumed.

Functional Description: CATALOG offers two options: (1) to create a
catalog entry for a data set (Form 1) or a generation data group
(Form 2), or (2) to update the catalog entry for a data set (Form 1).

When the user wants to catalog a data set, the system enters the
specified data set name into the user's catalog, and assigns to the data
set the access qualification specified by the user. If a data set name
is specified with a member name, the data set name, not the appended
member name, is cataloged.

When the user wants to catalog a generation data group, the system
enters the generation data group name into the user's catalog, and
stores information pertaining to the maximum number of generations to be
maintained, what is to happen when that number is exceeded, and the dis­
position of deleted generations.

The user can catalog a generation to the generation data group with
either an absolute or relative generation number. When the relative
nunlber is used, the system automatically assigns the proper absolute
generation number to the generation and prints that number. When the
user catalogs a generation to a generation data group and exceeds the
maximum number of generations maintained, the system removes all, or the
oldest generation, depending on the option selected by the user.

To update a catalog entry, the user specifies as DSNAME, the name by
which the data set is currently defined (or cataloged). If NEWNAME is
specified, the system changes the data set labels (DSCBs) of the direct­
access volumes containing the data set, thus carrying through the name
change.

Caution: The user should not rename data sets that reside on magnetic­
tape volumes; the user may lose data sets that reside on magnetic tape
if he renames them in his catalog.

Programming Notes: The access qualification that the user specifies in
creating or updating a catalog entry for a data set applies only to his
own access to his data set; it has no effect on the sharing or per­
mitting of that data set. Furthermore, read-only qualification does not
hinder the user from erasing his own data sets whenever he chooses.

34

All VSAM, VISAM, and VPAM data sets in public storage are immediately
cataloged when a DDEF command is initially issued for the data set. At
initial DDEF time, the system creates a catalog entry and provides the
user with read/write access.

Once a generation data group has been cataloged, the user can add
generations to the group. When he builds the data set, the initial DDEF
command will automatically catalog the data set as a new generation of
the specified generation data group.

-A CATALOG command cannot be used to update the entry for a generation
data 9rouP. CATALOG can, however, update a generation of a generation
data group. Example: To change the version portion of an absolute
generation number, the user may issue a CATALOG command, giving the cur­
rent name of the generation (including its relative or absolute genera­
tion number) as DSNAME. He then specifies the new generation name, with
its updated absolute generation number, as NEWNAME.

The user can catalog a new generation of a generation data group with
either an absolute or relative generation number; any cataloged genera­
tion can be referred to by either generation number. When using relative
numbers, the user must be responsible for knowing the actual generation
being referenced. The newest generation is relative generation number O.

Only the owner of a generation data group is allowed to catalog
generations of that group. Sharers, regardless of their level of access,
are not permitted to do this.

A user who has been granted unlimited sharing access to another's
catalog may add entries to that catalog. When naming such entries, the
user must include qualifiers with the same names that he assigned in
his SHARE command for that catalog. Similarly, if he wants to rename
such an entry, he must include the SHARE qualifier as a part of the new
name. If the user does not give the SHARE qualifier, the system cannot
tell which catalog is desired and issues a diagnostic message.

When cataloging a new data set, the user can specify a second name
(NEWNAME) and that name is assigned to the catalog entry. For example,
a data set created under System/360 Operating System may bear an over­
length name; by means of NEWNAME, the user can rename it to suit TSS/360
requirements.

Examples:

1. The user wants to recatalog direct-access data set X.X2 under the
new name SMK.SIMUL with read-only access:

User:
system:

catalog x.x2,u,r,smk.simul
(changes catalog entry and DSCB name to SMK.SIMUL)

2. The user wants to catalog ASET as a new lO-generation data group.
By defaults, he also wants the new group operands to indicate
that only the oldest generation is to be removed and saved when
the eleventh (i.e., GNO+l) generation is cataloged:

User:
system:

catalog gno=lO,gdg=aset
(creates catalog entry)

Part III: Data Management 35

3. The user now wants to catalog a new generation of generation data
group ASET. It is assumed that the generation has been previously
defined:

User:
system:

catalog xgz,u,u,aset(+l)
(creates catalog entry for generation)

Note: The system automatically issues the absolute generation num­
ber assigned to the generation. The user may then refer to that
generation by absolute generation number or by relative generation
number. The relative generation number of the most recently cata­
loged generation is always O.

4. In a subsequent task, the user wants to catalog another new genera­
tion of generation data group ASET. The new generation is assumed
to have been defined:

User:
system:

catalog abc,u,u,aset(+l)
(creates catalog entry for generation)

Note: The relative generation number correlates with the next­
available absolute generation number. The user must know the re­
lationship between relative and absolute generation numbers when­
ever he uses relative generation numbers. However, he can always
refer to generations by relative generation numbers.

5. The user wants to catalog another new generation of generation data
group ASET. This new generation has been created and defined as
LATE 3 :

User:
system:

catalog late3,n,u,aset.g0003vOO
(creates catalog entry for generation)

Note: The user now must issue a DDEF command to define the new
generation before he can refer to it. This DDEF command defines
either ASET.G0003VOO or ASET(O) .

6. A user (User 2) wants to add the previously defined private data
set DO.FILE.B4 from the owner's (Userl) catalog. Userl issues a
PERMIT command to grant User2 unlimited access to the entire cata­
log. User2 in a SHARE command, assigns the name DO to this
catalog; he catalogs the new data set with unlimited access.

Userl:
~:

System:

permit *all,n,u,user2
share do,userl,ownerds=*all
ddef ddni,dsname=do.fire.b4,disp=new
catalog do.fire.b4,n,u
(creates catalog entry for DO.FIRE.B4 in User2's catalog)

DDEF (Data Set Definition)Command

This command defines a data set and describes its characteristics to
the system; and catalogs public VSAM, VISAM, and VPAM data sets. In
general, any data set that will be referenced by an object program dur­
ing execution must be defined by a DDEF command.

Note: The operand list for the DDEF command is extensive; the complete
list is in Appendix F. The DDEF command is shown below in its expected
normal form for typical public VAM data sets; in this normal usage it is
expected that most or all of the other operands will be defaulted.

36

Operation Operand

DDNAME=data definition name, [DSORG={VI/Vslvp}],
DDEF

DSNAME=data set name

DDNAME

specifies the symbolic data definiton name that is associated with
the data set, and which provides a link between the data control
block (DCB) in the user's program and the data set definition.

DSORG

Specified as: one-to-eight alphameric characters, the first of
which must be alphabetic.

indicates the organization of the data set being defined.

Specified as: VI - VISAM
VS - VSAM
VP - VPAM

System default: VI is assumed.

DSNAME

specifies the name by which the data set will be cataloged and re­
ferred to during the current task.

--

Specified as: a fully qualified data set name and. (optionally) a
member name of VPAM data set; when specified, the member name is
enclosed in parentheses and immediately follows the VPAM data set
name.

Functional Description: The DDEF command establishes a system entry for
the data set definition that can be referenced by allocation routines
and access methods. This link between the data set definition and the
problem program's reference to the data set (i.e., the data control
block) is the data definition name. The entry containing the data set
definition is maintained until the task is concluded or the definition
is deleted via the RELEASE command.

All VSAM, VISAM, and VPAM data sets in public storage are immediately
cataloged when initially referenced by a DDEF command. At initial
DDEF time, the system creates the catalog entry and provides the user
with read/write access.

When a member name is specified as DSNAME, DDEF defines the VPAM
data set, not the member.

Caution: If a user's program is executing in conversational mode and
refers to an undefined data definition name, a diagnostic message will
be issued; in nonconversational mode, the task will be abnormally
terminated. A FORTRAN user can default his terminal as the "undefined"
data source or destination.

Programming Notes: Each DDEF command is valid only during the session
in which it was issued; previously defined data sets must be tedefined
in each new session that references them.

Part III: Data Management 37

The user can change the data definition name assigned in a previous
DDEF command by issuing DDEF with the new data definition name; the only
operands required are data definition name and data set name. The new
data definition name will then be assigned; the old one will be
eliminated.

Examples:

1. The user wants to define a VPAM data set.

User:
system:

ddef ddnl,vp,dsname=group(meml)
(establishes entry for data set definition)

This command defines the VPAM data set GROUP, not thE~ member (MEMI).
A DDEF for GROUP (MEM2) will not create a new data SE~t definition,
but will only replace the data definition name in the previous DDEF
for GROUP (MEMI).

2. The user wants to define a new VISAM public data set.

User:
system:

ddef ddn2"t.trip3
(establishes entry for data set definition)

RELEASE Command

This command deletes the data set definition established by a pre­
viously issued DDEF command. RELEASE will cancel a preceding DDEF
command for either a public or private data set; also, it will release
the I/O devices associated with a private data set. It may also be
used to deconcatenate and release one or all data sets of a given con­
catenation (see detailed description of DDEF in Appendix F for concatena­
tion), or to remove JOBLIBs from the user's program library list.

Operation Operand

RELEASE DDNAME=data definition name[,DSNAME=data set name]

DDNAME

identifies the data set definition created by a DDEF command that
was issued earlier in the current task. The name either identifies
the data set definition to be released or identifies the concatena­
tion from which one or all data sets are to be deconcatenated and
released.

Specified as: the data definition name specified in a previous
DDEF command.

DSNAME

38

identifies one data set in a concatenated series. Only this data
set is to be released; the remainder of the concatenation is not
affected.

Specified as: a fully qualified data set name.
System default: all data sets concatenated with the specified

data definition name are released.

Note: This operand is used only for concatenated data sets, and has
noJmeaning in any other situation.

Functional Description: RELEASE deletes the information defining the
data set and frees for other use all I/O devices currently assigned to
the specified private data set. If the data set is open, it will be
closed before the defining information is deleted.

When the specified data definition name applies to the data set
definition of a JOBLIB, the JOBLIB is removed from the program library
list, the definition of the data set is deleted, and any associated I/O
devices are released.

When the data set name of a concatenated data set is specified, that
data set is released and dropped from the concatenation. The rest of the
concatenation remains unchanged and may still be referenced by its data
definition name. If DDNAME refers to a concatenation and DSNAME is not
specified, all data sets in the concatenation are released.

When there is more than one data set on the private volume being re­
leased, the device that contains the volume is not released until a
RELEASE command has been issued for the last data set on that volume.

When the user specifies DDNAME for a data set on a public volume, the
definition of the data set is deleted, but the device is not released.

Programming Notes: The RELEASE command does not erase or uncatalog; it
deletes the current definition of a data set and frees any I/O devices
assigned to the private volume on which that data set resides. The
user, therefore, should issue a RELEASE command when a data set is no
longer needed in a task. He must redefine the released data set when he
wishes to refer to it again.

Examples:

1. The user wants to release a private data set identified by DDNAME
INGO.

User:
system:

release ingo
(deletes the current definition of the data set and
frees the I/O devices assigned to the private volume)

2. The user wants to release a concatenated data set (with DDNAME
TABLES) that has three data sets (DTABl, DTAB2, and DTAB3).

User:
system:

release tables
(releases the concatenation)

3. The user wants to release a concatenated data set (TURN9) from a
concatenation with DDNAME OVERT.

User:
system:

release overt, turn9
(releases TURN9 from the concatenation)

4. The user wants to release a job library, PROGTEST.

release progtest User:
system: (removes the JOBLIB from the program library list)

CDD (Call Data Set Definition) Command

This command retrieves one or more DDEF commands that have been pre­
stored in a cataloged or defined line data set and then processes those
commands.

Part III: Data Management 39

~operation

lCDD

Operand

DSNAME=data set name [{
data definition name }]

, (data definition name, ...)

DSNAME

identifies the line data set, which contains prestored DDEF com­
mands, and which must be defined by a DDEF command within the
current task or must be cataloged.

Specified as: a fully qualified data set name.

data definition name

identifies the particular DDEF commands to be retrieved in the
referenced data set.

Specified as: the data definition name or names of the DDEF com­
mands to be retrieved. When two or more data definition names
are entered, they must be enclosed in parentheses.

System default: all DDEF commands in the referenced data set are
to be retrieved.

Note: This operand must be specified by position.

Functional Description: the CDD command retrieves one or more DDEF
commands from the specified data set and then processes them. The user
can thus create a cataloged line data set of commonly used DDEF com­
mands and refer to them by the CDD command, thereby relieving himself of
direct DDEF command entry. Each DDEF command that is executed is
printed out in full. Any incorrect DDEF commands are also printed.

Cautions: Each data definition name must be unique within the task.
The prestored data set must contain DDEF commands only. A diagnostic
message is issued if data or any other command appears in the data set.
The conversat~onal user has the option of either skipping the erroneous
records in the data set or cancelling the CDD command; a nonconversa­
tional task is terminated.

The user must verify that the prestored DDEF commands are correct;
when these commands are executed via the CDD command, the messages
normally issued to the user for DDEF will not be issued.

Programming Notes: The user can retrieve and enter all prestored DDEF
commands in the data set by omitting the data definition name operand.
If the user wants to retrieve a selected set of these commands, he must
supply the data definition names of the selected DDEF commands when he
enters the CDD command.

Examples:

40

1. The user wants to execute three DDEF commands stored in cataloged
line data set PAYROLL.DD. The three DDEF commands with data
definition names NOWl, NOW2, and NOW3, are assumed to be in the
data set.

User:
system:

cdd payroll.dd, (nowl,now2,now3)
(processes DDEF commands in data set; then
prints information similar to)
DDEF NOWl,VI,DSN~E=WINDUP,DISP=OLD
DDEF NOW2,VI,DSNAME=GOONNU,DISP=OLD
DDEF NOW3,VS,DSNAME=STAR,DISP=OLD

2. The user wants to execute the DDEF command with DDNAME JBACCT in
data set PAYROLL.P.

User:
system:

DELETE Command

cdd payroll.p,jbacct
(processes specified DDEF command, then prints information
similar to)
DDEF JBACCT,PS,DSNAME=LEAD.T,DCB=(DEN=2),
UNIT=(TA,9) ,VOLUME=(,04359l) ,LABEL=(2,SL,RETPD=2),
DISP=OLD

This command deletes a data set entry from the user's catalog.
DELETE is intended primarily for data sets on private volumes, but the
user may use it to remove from his catalog entries for any public data
sets that he is sharing.

Operation Operand

'DELETE DSNAME=data set name

DSNAME

identifies the data set which resides on a private volume, or the
shared data set owned by another user, which is to be deleted.

Specified as: a fully qualified data set name, a name of a
. generation data group, or a partially qualified data set name.

Functional Description: When the data set name specified is partially
qualified, all data sets indexed under that name are found in the
catalog. In conversational mode, these names are listed at the terminal,
and the names of private data sets are deleted; the names of public data
sets are not deleted, and a diagnostic message is issued. In nonconver­
sational mode, the catalog entries of all specified data sets on private
volumes are deleted.

Programming Notes: When the user wants to delete the catalog entry for
a public data set and free the space a data set occupies, he must use
the ERASE command.

To delete a generation data group, each of its members must be re­
cataloged as a nonmember of the group prior to execution of the DELETE
command.

Examples:

1. The user wants to delete data set R.RECORD.

User:
system:

delete r.record
(informs the user that the catalog entry for R.RECORD
has been deleted)

2. The user wants to delete three data sets (A.B.Y, A.B.Z, and A.B.X),
using the partially qualified data set name A.B:

User:
system:

delete a.b
(informs the user that the catalog entries for
A.B.Y, A.B.Z, and A.B.X have been deleted)

Part III: Data Management 41

3. The user attempts to delete his data set WEARLON, which resides on
a public volume.

User:
SyStem:

delete wear Ion
(responds by informing the user that WEARLON resides on
public storage and cannot be deleted, and suggests the
user use the ERASE command)

ERASE Command

This command frees the direct-access storage assigned to a data set.
Also the entry for a cataloged data set is removed from the user's
catalog.

I Operation

ERASE

Operand

DSNAME=data set name

DSNAME

identifies the data set to be erased; this data set, which must
reside on direct-access storage, must already be defined by a DDEF
command within the current task, or must be cataloged.

Specified as: a partially qualified data set name, or a fully
qualified data set name and (optionally) a member name of a
VPAM data set; when specified, the member name is enclosed in
parentheses and immediately follows the VPAM data set name.

Functional Description: When the DSNAME operand is not a member name,
the direct-access storage occupied by that data set is freed (i.e.,
released for other use), and the data set name is removed from the
catalog.

When the DSNAME operand specifies a member name of a VPAM data set,
the member name is deleted from the partitioned organization directory
(POD) and the storage occupied by the member is freed.

When the DSNAME operand specifies a partially qualified data set name,
all data sets indexed under that name are found in the catalog. Storage
space for these data sets is freed and their catalog entries are re­
moved. When a VPAM data set name is supplied without a member name, the
storage for the entire data set is freed and its name is removed from
the catalog.

In conversational mode, the names of erased data sets are displayed
at the terminal.

Any previous DDEF command, issued on a data set that is erased, is
also erased.

When a user attempts to erase a shared VISAM or VPAM data set, the
system checks for any active users (including the one who issued ERASE)
of that data set .

• If there are active users, the system issues a diagnostic message
and disregards the ERASE command. In conversational mode, the
diagnostic message appears at the terminal, followed by an under­
score requesting the next command. In nonconversational mode, the
new command is retrieved from the task's SYSIN after the diagnostic
message is sent to SYSOUT .

• If there are no active users, the ERASE command is executed.

42

Cautions: The ERASE command cannot be used for data sets on magnetic
tape; it applies only to data sets on direct-access storage.

The user should not issue an ERASE command for a loaded module; the
module should be unloaded first.

In nonconversational mode, the SYSIN data set cannot contain an
ERASE of itself.

Examples:

1. The user wants to free the storage occupied by data sets whose
names begin with the components A.B.

User:
sys:Eem:

erase a.b
(frees the storage space, removes the catalog entries,
and displays a list of the names of the erased data sets)

2. The user wants to free the storage occupied by data set GN.PYKKI
GN.PHLLI.

User:
sys:Eem:

erase gn.pykkl
(frees the storage allotted to GN.PYKKl, removes its
entry from the catalog, and displays the name of the
erased data set)

3. The nonconversational user wants to free the storage occupied by
member EXPON002 of VPAM data set LIBPROG.

User:
sys:Eem:

erase libprog(expon002)
(frees the storage occupied by the member and erases
its name from the POD)

PERMIT Command

This command allows the user to permit or restrict sharing of his
cataloged data sets by other users.

Operation Operand

DSNAME={data set namel*ALL}[,STATE={N/U}],

PERMIT [,ACCESS=access qualification]

[, USERID= {(user identification [, ...]) I *ALL}]

DSNAME

STATE

identifies the cataloged data set for which sharing is being per­
mitted or restricted.

Specified as: a partially or fully qualified data set name.
*ALL - all cataloged data sets of the user are to be shared.
(This is referred to as sharing of the catalog.)

specifies whether this is a new list of sharers or an update of a
previously issued list.

Specified as: N - new list (i.e., no previous PERMIT for this data
set)

U - update of existing list
System default: N is assumed.

Part III: Data Management 43

ACCESS

designates the access qualification for users sharing the data
sets.

Specified as:

R - restricts (i.e., withdraws) sharing access that was pre­
viously permitted.

RO - read-only access; sharers may only read the data set.
RW - read-and-write access; sharers may both read from and write

to the specified data set but may not erase it.
U - unlimited access; sharers may read, write, and erase the

data set.
System default: when STATE = N is specified, U is assumed;

when STATE = U is specified, the existing
qualifier as supplied in the previous PERMIT is assumed.

USERID

identifies the user being permitted or restricted sharing of the
specified data set.

Specified as: the user identification of one or more permitted or
restricted users.

*ALL -- all users of the system are permitted or restricted
sharing.

System default: *ALL is assumed.

Functional Description: When PERMIT is issued to permit sharing, the
system either (1) enters the list of sharing - user identifications,
and the associated access qualifiers, in the owner's catalog entry that
was specified by the DSNAME operand, or (2) marks that catalog entry
for universal sharing. These notations are made only in the owner's
catalog; sharers' catalogs are unaffected by the PERMIT command.

When PERMIT is issued to restrict sharing, entries for sharers are
removed from the owner's catalog entry.

If a PERMIT command is repeated, with identical information, the
repetition is ignored.

Cautions: If a sharer erases a data set to which he has been given
unlimited access, the entry for that data set is also removed from the
owner's catalog. Thus, the owner's catalog can be changed without his
knowledge.

The owner of a shared data set cannot withdraw sharing privilege from
an active user of that data set.

After a PERMIT command is issued for a data set (or a job library) ,
the original data set definition is not changed (i.e., it indicates
private ownership). If the permitted data set is to be processed in the
same session in which PERMIT was issued, the owner should release the
existing data set definition and issue a new one. If the name of the
original data set definition is known, he can use the RELEASE command
to release the data set definition; otherwise, he can use LOGOFF. The
new data set definition is created with DDEF.

Programming Notes: After a PERMIT command is issued, the designated
sharers must issue SHARE commands to link their catalog entries to the
owner's. Only then can sharers reference the data set under the
owner's catalog entry.

44

Once the owner grants access to all other users, he must also restrict
all users before he can selectively change the access qualification for
a specific user. Example: If all users have previously been granted
access to catalog entry MB.C and the owner now wants to restrict every

-user, except SSIMON and LAF29, he must first restrict all users:

permit mb.c,u,r,*all

This marks catalog entry MB.C as private. Since the entry is now
private, the PERMIT command to grant SSIMON and LAF29 access creates a
new list of sharers and, therefore, must specify the N state:

permit mb.c,n,rw,(ssimon,laf29)

Similarly, to grant a sharer access to a lower-level catalog entry
than he was previously permitted, the owner must restrict the sharer from
the level now permitted him. For instance, user JOE7 was allowed access
to catalog entry BOOK.A and the owner now wants to change this level so
that JOE7 can refer only to the lower-level catalog entry BOOK.A.F.X.
Then the first PERMIT command must be issued to restrict JOE7 from his
present level:

permit book.a,u,r, (joe7)

This removes JOE7 from the sharer list for catalog entry BOOK.A. To
allow JOE7 to share the lower-level catalog entry, the owner now issues:

permit book.a.f.x,n,ro, (joe7)

The access qualification granted to a sharer is not limited by the
access level established for the owner during cataloging. For instance,
the owner can catalog a data set with read-only access for himself and
still assign unlimited access to a sharer in a PERMIT command.

Examples:

1. The user wants to allow users JOSEPH24 and HENRY24A to share his
cataloged data set AD.ATl with read-only access. These are the only
sharers in the sharer list.

User:
SyStem:

permit ad.atl,n,ro,(joseph24,henry24a)
(enters list of sharers in owner's catalog)

2. The user now wants to update the list created in Example 1 by
changing the access of users JOSEPH24 and HENRY24A to read/write.

User:
SyStem:

permit ad.atl,u,rw(joseph24,henry24a)
(updates sharing list)

3. A user wants to restrict all users from all of his cataloged data
sets.

User: permit *all,n,r
SyStem: (removes sharing list from owner's catalog)

Note: Each data set is automatically restricted from all other
users until the owner grants access, through a PERMIT command, to
one or more sharers.

4. A user wants to share his object modules in his user library with
JBROWN#l.

User:
SyStem:

permit userlib,n,ro, (JBROWN#l)
(enters sharing list in owner's catalog)

Part III: Data Management 45

SHARE Command

This command allows the user to share another user's (the owner) data
sets. The data set owner must previously have granted the user permis­
sion, by a PERMIT command, to share the data set.

Operation Operand

SHARE DSNAME=data set name, USERID = owner's user identification

[,OWNERDS= {owner's data set name I *ALL}]

DSNAME

specifies the name by which the sharing user refers to the data set
or data sets to which he has been granted access by a PERMIT com­
mand. This data set name becomes an entry in the sharer's catalog.

Specified as: a fully or partially qualified data set name.

USERID

identifies the data set owner (i.e., the user who issued the PERMIT
command) .

Specified as: the owner's user identification.

OWNERDS

identifies the data sets to which the user wants access.

Specified as: the fully or partially qualified data set name assigned
by the owner;

*AII - the user wants access to all the owner's cataloged data
sets.

System default: *ALL is assumed.

Functional Description: The owner's catalog is searched to determine
whether the entry given in the OWNERDS operand can be shared by the user
who initiated the SHARE command. If so, an entry is made in the sharer's
catalog, under the data set name specified by DSNAME, pointing to the
owner's catalog entry for OWNERDS. The pointer is to the initial entry
in the owner's catalog if n*ALL n is specified.

If the user cannot share the owner's catalog entry (i.e., the owner
did not issue a PERMIT command for him), the SHARE command is ignored and
a diagnostic message is issued.

Cautions: The OWNERDS operand must have the same value as the DSNAME
operand the owner used when issuing his PERMIT command.

To avoid the possibility of violating the length restriction for data
set names, the sharer should not enter a DSNAME operand that is longer
than the OWNERDS operand. Similarly, if n*ALL" is used, the sharer must
be certain that the total number of characters for DSNAME plus any data
set name in the owner's catalog does not exceed 35.

Programming Notes: When OWNERDS in the owner's catalog is a partially
qualified data set name, the sharer refers to each shared data set by
appending to the data set name, specified by DSNAME, the same rightmost
name or names that the owner assigned (in his catalog) to that data set.
Example: If OWNERDS specifies a catalog entry for the partially quali­
fied data set name A.B, and the sharer gives W.X in the DSNAME operand,
he refers to the owner's data set A.B.C.D as W.X.C.D.

46

The sharer's catalog entry for a shared data set is not removed when
the owner erases or deletes that data set from his own catalog. Sharers
must update their own catalogs by using the DELETE command.

Examples:

1. The user wants to reference, by means of the name GREYX, the catalog
entry for data set M.LOG1, to which he has been granted access by
owner MICHAEL2.

User:
system:

share greyx, michae12, m.logl
(makes entry in sharer's catalog)

2. The user has been granted access to all of owner JOSEPH24's
cataloged data sets. He wants to use the name Z to link his catalog
to the initial entry in JOSEPH24's catalog.

User:
system:

share z,joseph24, *all
(makes entry in sharer's catalog)

The user rrow can reference specific data sets belonging to JOSEPH24.
For instance, if JOSEPH24's catalog has data sets named A.A, A.B,
and A.C, the user refers to them as Z.A.A, Z.A.B, and Z.A.C, re­
spectively.

DSS? (Data Set Status) Command

This command presents the status of one or more cataloged data sets to
the user.

Operation
Operand J

DSS? [
NAMES {data set name }]

= (data set name, ...)
'-----------'-------
NAMES

identifies one or more cataloged data sets for which status infor­
mation is to be presented.

Specified as: one or more fully or partially qualified data set
names.

System default: the status of every data set in user's catalog is
presented.

Note: When this operand specifies a VPAM data set, only the status
of the VPAM data set is given, not that of each member.

Functional Description: DSS? provides the user with this information
about a data set:

Sharing status - ownership and shareability

Access status - read-only, read-write, or unlimited

Device type and volume number

Creation and expiration dates

Organization

For VAM data sets only, the date last used and the length of the data
set

Part III: Data Management 47

If a partially qualified data set name is specified, the status of
each data set with the specified qualifiers is presented.

Sharing status is given only for those data sets that are permitted
(via the PERMIT command) under their fully qualified names; no sharing
status is given if a partially qualified data set name or the user's
entire catalog is permitted. In nonconversational tasks, the status in­
formation is recorded on SYSOUT; in conversational tasks, the informa­
tion is printed on the user's keyboard, but the user can terminate the
printing at any time by pressing the ATTENTION key.

Examples:

1. The user wants to present the status of data set DATAR.

User: dss? names=datar
System: (presents status information)

2. The user wants to present the status of all data sets qualified
by D.A.

User:
system:

dss? d.a.
(presents status information)

POD? Command

This command places on SYSOUT a list of the member names and
(optionally) the alias names and other information pertaining to
individual members of cataloged VPAM data sets.

Operation Operand

POD? DSNAME=data set name [,H] [,A]

Note: H and A are not positional operands; they may be specified in
either order.

DSNAME

H

48

identifies the cataloged VPAM data set for which member informa­
tion is to be presented.

Specified as: the fully qualified name of a VPAM data set, or
the absolute or relative generation name of a VPAM member of a
generation data group.

specifies that any system and user data associated with each
member is to be printed in hexadecimal. Only the first 21 bytes
(42 hexadecimal digits) of user data are printed. The format and
content of this data is user-defined. Similarly only certain
system data (25 hexadecimal digits) can be printed.

Specified as: H
System default: the system and the user data associated with each

member is not printed.

A

specifies that any aliases of each member are to be printed. An
alias is another name by which a member of a VPAM data set can be
identified.

Specified as: A
System default: the members' aliases are not listed.

Functional Description: If a VPAM data set is a program library (e.g.,
USERLIB or a job library), its members are object program modules. Each
member has a name that was assigned by the user during compilation,
assembly, or link editing. This name is used by the system as the basis
for stowing the module in the library, and it is recorded in the program
library's directory (POD). To make each module available on the basis
of other names (e.g., entry point names), the system also defines a
number of aliases for the module (e.g., all external symbol definitions
except named COMMON are defined as aliases). The alias names are also
stored in the POD by the system. The user can thus invoke a module
based on its member name or any of its aliases.

If a VPAM data set is not a program library, each of its member names
is defined in the STOW macro instruction or in a command (as CDS) that
was used when the member was added to the VPAM data set.

Programming Notes: The POD? command can be used to examine information
pertaining to the members of any cataloged VPAM data set that a. user
owns or shares.

When the H operand is specified, the printout of system data is
interpreted as:

bytes ~ 3 2

digits x xxtxx xxlxx XX xxlxxlxx XX XX xx\xx
Ignored

Maximum No.of % No. of Flags 1st page Tota1.No. Key
relative of pages Length logical ovf1w Pad index

Hashing chain to data in member record pages direc-
Pointer set length tory

pages

The format of the information sent to SYSOUT after the POD? command is
executed is:

Per
Member

Member
Name

I+-" 8 bytes"

System-supplied
Member Data

r- 25 digits ~
(Hex data)

~ 4 bytes+a bytes--l I-a byt e s.oI

User-supplied
Member Data

42 digits--.J
(Hex data)

j.a bytes ~ ~8 bytes-l

Additional aliases if required (8 per line).

(~ denotes a blank space).

Part III: Data Management 49

Example: The user wants to obtain a listing of the modules presently in
his user library.

User:
system:

pod? userlib,a
(presents module names and aliases)

VT (VAM To Tape) Conunand

This conunand copies a VAM data set to magnetic tape as a physical
sequential data set. Used with the TV(TAPE TO VAM) conunand, VT allows
the user to store VAM data sets on magnetic tape and retrieve them at a
later time.

Operation Operand

VT DSNAMEl=vam data set name[,DSNAME2=tape data set name]

DSNAMEI

identifies the existing VAM data set, which is to be written on
magnetic tape and which must already be defined by a DDEF conunand
in the current task, or must be cataloged.

Specified as: a fully qualified data set name.

DSNAME2

specifies the name to be assigned to the magnetic-tape copy of the
data set. If not specified, this data set name must be previously
specified in a DDEF conunand with the DDNAME operand specified as
DDVTOUT.

Specified as: a fully qualified data set name; if the name is
preceded inunediately by an asterisk, the tape data set will not
be cataloged.

System default:
conunand, with
The name will

the data set name given in the preceding DDEF
the data definition name of DDVTOUT is assumed.
be modified to the form of

TAnnnnnn.dsnamel

and used as the tape data set name. Truncation of the given
name to allow the insertion of TAnnnnnn (where nnnnnn is a
unique number assigned by the system to assure data set unique­
ness) will be from left to right.

Functional Description: The VT conunand may be used to copy data sets
serially on tape without issuing a new DDEF conunand each time. Once the
user has identified the first output data set name (DSNAME2) in a DDEF
conunand with DDNAME of DDVTOUT, VT will accept each new request, update
the required control information, and copy the specified data set
(DSNAMEl) as the next sequential file of the existing tape. The data
set written out will be cataloged, if indicated, as though a new DDEF
had been issued for each data set copied.

Labels are written on the magnetic tape as specified in the user's
DDEF for DDVTOUT. If the current file is to be placed on an existing
tape, the labeling must be consistent with the previous contents of the
tape.

50

For each successfully copied data set, the user will receive a
message indicating the names of the input and output data sets, and file
sequence and volume serial numbers used. Any failure to copy success­
fully will result in a diagnostic message and cancellation of the
comma.nd.

Programming Notes: The DDEF command describing the DDNAME of DDVTOUT
must specify PS as the data set organization (DSORG) and a nine-track
tape as the residence volume under the UNIT option.

Example:

1. The user wants to write his private uncataloged VAM data set,
MYDS, on a private tape volume as ABC.

User:
sys:E"em:

ddef ddvtout,ps,abc,unit=(ta,9) ,volume=(private); vt myds
(copies MYDS on tape; the name assigned to the data set
on tape is TAOOOOOl.ABC)

2. The user wants to write his public VAM data set, WN3, on a private
tape volume as TAPEDS2.

User:
sys:E"em:

vt dsnamel=wn3,dsname2=tapeds2
(copies WN3 on tape with data set name TAPEDS2)

TV (Tape To VAM) Command

This command retrieves and writes into a VAM volume, a data set pre­
viously written on magnetic tape by the VT command.

Operation Operand

TV DSNAMEl=tape data set name [,DSNAME2=vam data set name]

DSNAMEI

identifies the existing physical sequential data set residing on a
nine-track tape that is to be restored to VAM on direct-access
storage. The data set must already be defined by a DDEF command
in the current task or must be cataloged.

Specified as: the fully qualified name with which the data set
was defined or cataloged; if, when using the VT command this
name was preceded with an asterisk, this data set name must be
preceded with an asterisk here.

DSNAME2

specifies the name under which the data set will be cataloged.
This data set does not have to be defined in the current task
unless the data set is to be restored to a private VAM volume.

Specified as: a fully qualified data set name.
System default: a name will be generated by the system in the

form:

DAnnnnnn.dsnamel

and used as the VAM data set name. Truncation, if required,
will be performed from left to right to allow the insertion
of DAnnnnnn.

Part III: Data Management 51

Functional Description: For each successfully copied data set, the user
will be informed of the names of the input and output data sets, and the
file sequence and volume serial numbers used. Any failure to copy
successfully will result in a d£agnostic message and cancellation of the
command.

Examples:

1. The usex wants to retrieve data set ABC, which was written on tape
with the VT command, and write the data set into a public VAM
volume as XYZ.

User:
system:

tv abc,xyz
(retrieves data set ABC from tape and writes it onto
public VAM storage as XYZ)

2. The user wants to restore data set ABC into a private VAM volume
(MYVOLl) .

User:

System:

ddef dummy,vp,xyz,unit=(da,23l4) ,volume=(,myvol)
tv abc,xyz
(copies ABC onto private volume MYVOL)

W (VAM To VAM) Command

This command copies a VAM data set (or program library) in direct­
access storage.

Operation Operand

VV DSNAMEl=current data set name[,DSNAME2=new data set name]

DSNAMEI

identifies the existing data set, which is to be copied, and which
must be defined within the current task or must be cataloged.

Specified as: a fully qualified data set name.

DSNAME2

specifies the name to be assigned to the data set copy; if the
copy is to reside on a private VAM volume, the data set name must
be previously defined by a DDEF command.

Specified as: a fully qualified data set name
System default: the new data set will be named in the form

DAnnnnnn.dsnamel

where nnnnnn is a unique number assigned to assure uniqueness
of data set names.

Functional Description: For each successful copy, the user is informed
of the input and output data set names. Any failure to copy success­
fully results in a diagnostic message and cancellation of the command.

52

Examples:

1. The ~ser wants to copy data set XYZ into public storage.

User:
system:

vv xyz
(copies XYZ with the name DA000001.XYZ)

2. The user wants to copy data set GH2 on private VAM volume
MYVOLl and name the data set ABC.

User:

System:

ddef dummy,vi,abc,unit=(da,2311) ,volume=(,myvol)
vv gh2,abc
(copies GH2 onto MYVOLl with name ABC)

CDS (Copy Data Set) Command

This command duplicates a data set or a member of a VPAM data set.

Operation Operand

CDS DSNAMEl = current data set name,

DSNAME2 = new data set name [,DISP ={ Els}]

[,BASE = first line number,INCR = increment]

DSNAMEl

identifies the data set, which is to be copied, and which must
already be defined by a DDEF command within the current task, or
must be cataloged.

Specified as: a fully qualified data set name, and (optionally) a
member name of a VPAM data set; when specified, the member name
is enclosed in parentheses and immediately follows the VPAM
data set name.

DSNAME2

DISP

specifies the data set name, which is to be assigned to the copy
of the data set, and which must be already defined by a DDEF com­
mand ·within the current task, or must be cataloged. When a new
member of a VPAM data set is specified, a DDEF command is not
necessary if the VPAM set is already defined.

Specified as: a fully qualified ,data set name, and (optionally)
a member name of a VPAM data set; when specified, the member
name is enclosed in parentheses and immediately follows the
VPAM data set name.

specifies whether the original data set or data set member residing
on direct-access storage is to be erased after it has been copied.

Specified as: E - data set to be erased
S - data set to be saved

System default: S is assumed.

Note: If the user shares, but does not own, the data set being copied,
he cannot specify its erasure unless his access is unlimited; if he has
read-only access, this operand will be ignored.

Part III: Data Management 53

BASE

INCR

identifies the starting line number of the data set copy, when re­
numbering is desired.

Specified as: one-to-seven decimal digits; an all-O starting line
number is invalid.

System default: no renumbering occurs; INCR must also be de­
faulted.

designates the value by which line numbers in the data set copy
are to be incremented when renumbering.

Specified as: one-to-seven decimal digits; an all-O increment is
invalid.

System default: 100, when renumbering.

Note: BASE and INCR may not be specified if the data set being
copied contains regions.

Functional Description: The CDS command makes a copy of the specified
data set or VPAM data set member and assigns the data set name furnished
by the user. When a starting line number and increment value are in­
cluded in the CDS command, the lines of the data set copy are numbered
accordingly, without effecting the line numbering within the original
data set.

Cautions: The CDS command is restricted to data sets on direct-access
or magnetic-tape volumes. CDS cannot be used to change record formats.

When CDS is used to copy object module programs, all entry points
to the object program will be lost; only the module (member) name is
preserved.

Before issuing the CDS command, the user must define the data set
that will result and specify its organization.

Programming Notes: The rules of CDS organization are summarized in
Table 5.

Table 5. CDS Facilities and Requirements

Data Organization Residence Definition Requirements

Source Copy Source and Copy Source Copy

PS PS On either Must be cata- Must be defined
direct-access loged, or de- by previous DDEF
or magnetic- fined by in current task
tape volume previous DDEF

in current
task

VI VI Must be stored
on direct-

VS VS access volume

VI VS

VS VI

54

Table 5. CDS Facilities and Requirements (cont'd)

Data Organization Residence Definition Requirements

Source Copy Source and Copy Source Copy

VS VS or VI Source data set Must be cata- Must be defined by
member of and VPAM data loged, or de- previous DDEF in
VPAM data set receiving fined by current task, un-set member must be previous DDEF less new member of

VI VS or VI on direct- in current existing cataloged
member of access vol- task data set VPAM data
set umes

VS member VS VPAM data set VPAM data set Must be defined by
of VPAM provides source must be cata- previous DDEF in
data set VI and copy data loged, or pre- current task

set, stored on viously
VI member VI direct-access defined by
of VPAM volumes DDEF in cur-
data set VS rent task

VS member VS or VI VPAM data sets VPAM data sets must already be
of VPAM member of stored on defined by DDEF within current
data set VPAM data direct-access task, or must be cataloged

set volumes

VI member VS or VI
of VPAM member of
data set VPAM data

set

The copy of a member may be specified as either a new member of an
existing VPAM data set that the user owns or shares with access for
writing, or as a new data set. Conversely, the copy of a nonpartitioned
data set may be specified as a new member of a VPAM data set.

A copy of a member of a partitioned data set may have VISAM or VSAM
organization. The user should specify, in the DSORG subfield of the
DCB operand field in the DDEF command, the organization that is wanted
for the data set copy. If he does not, and his task is conversational,
he is prompted for the DCB values; if his task is nonconversational, the
data set is copied with the original data set's organization.

The user may specify a VISAM organization in the DDEF command for a
data set copy, even though the original set organization is VSAM, but
each record of the original data set must contain a key. Also, the user
should define, in the DDEF command, key length (KEYLEN), padding (PAD),
and record key displacement (RKP) values. If he does not provide these
values, and his task is conversational, he will be prompted for them;
if the task is nonconversational, no copy is made.

An entire partitioned data set cannot be copied with one CDS com­
mand; each member must be copied individually. Separate DDEF and CDS
commands, specifying the names of the data set and the member, must be
issued for each member. However, the user may copy an entire library
by utilizing the linkage editor to link all members of the library,
effectively forming one data set.

Part III: Data Management 55

Examples:

1. The user wants to copy cataloged VISAM data set FIRSTL, which will
be a VSAM data set named TWIN.FIRSTL. He does not want to erase
the original data set.

User:

System:

ddef ddnz,dsname=twin.firstl
cds firstl,twin.firstl
(copie~ data set)

2. The user wants to copy VPAM line data set member SECOND (TRY). He
defines this data set and its copy with DDEF commands, specifying
the copy as a nonpartitioned line data set named TRYACCT. He wants
to erase the original data set.

User:

System:

ddef textl,vi,dsname=tryacct
cds second (try) ,tryacct,e
(copies data set)

3. The user wants to copy line data set GOOR7, and name the copy
GOOR7A. Its lines are to be numbered in increments of 200, starting
with 1000. The original data set is not to be erased.

User:

System:

ddef ddn2,vi,dsname=gOOr7a
cds gOOr7,gOOr7a,,1000,200
(copies data set)

4. The user wants to copy VSAM data set SEQ.DATA as a VISAM data set
named VI.DATA, using a unique man number as a key in the fourth
through sixth bytes of each record. The original data set contains
fixed-length records, 512 bytes long.

User:

System:

ddef dd2,vi,dsname=vi.data,­
dcb=(recfm=f,lrecl=5l2,rkp=3,­
keylen=3)
cds seq.data,vi.data
(copies data set)

5. The user has a nine-track tape (volume serial number 000126) con­
taining BSAM data sets and wants to copy the third file on the
tape on a scratch tape whose serial number will be supplied to the
system by the operator.

User:

System:

56

ddef tapel,ps,dsname=source.run,disp=old,unit=(ta,9),­
volume=(,000126) ,label=3
ddef tape2,ps,dsname=source.copy,disp=new,unit=(ta,9),­
volume=(private)
cds source.run,source.copy
(copies data set)

SECTION 2: TEXT EDITING

Text is edited by using the text-editing commands, which manipulate
lines of information, either within an existing re~ion or line data set,
or as they are being entered into a region or line data set. with the
text editing commands, the user can simultaneously create and edit data
sets; he can correct, insert, and delete lines; he can segment a data
set; and he can transfer lines from one data set to another. Also, the
user can display lines of a data set at his terminal, and nullify pre­
vious changes that were made by the text editing commands.

The text editing commands and the system functions they request are
shown in Table 6.

Table 6. Test Editing Commands and Their Functions
(The commands are listed in the same order as the
command descriptions that follow later in this
section.)

Command Function

EDIT Invoke facilities of text editor; this command must
precede the other text editing commands.

END Terminate processing by PROCDEF and/or text editor.

REGION Create subset of specified lines of data set, to be
located as an entity known as a region.

DISABLE Remember all modifications made in a data set in order to
restore original state if requested.

ENABLE Remember only the most recent modification made in a data
set in order to restore the data set to its state before
the preceding command.

STET Delete changes to data set by previous editing command or
commands; restore data set to previous condition.

CONTEXT Replace specified string of characters within line, or
range of lines, with another specified character string.

CORRECT Change or insert characters in one or more specified
lines.

REVISE Replace specified line, or group of lines, with those
entered following command.

UPDATE Add or insert lines to current region.

EXCERPT Insert specified region, or range of lines, from the
same or another data set into current data set.

EXCISE Delete specified line or range of lines from current data
set

INSERT Insert following lines into current data set.

NUMBER Renumber specified line, or range of lines.

LIST Display specified line or range of lines on user's
SYSOUT.

LOCATE Search current region for specified character string.

Part III: Data Management 57

The user should be familiar with the terms and concepts that follow,
before attempting to utilize the facilities of the text editor.

Region Data Set

a specialized VISAM data set with this record format:

~14'-----------------------------256 bytes maximum----------------------------~~~I

record
length
4 bytes

region
name

line
number

~ ___________ ~~-----------~J
key

flag
data

The region name is any string of 247 or fewer characters (possibly,
none); the line number is a seven-digit decimal integer. The maxi­
mum record length is 256 characters. When a member of a VPAM data
set is to be created and the DCB operands were not specified in the
preceding DDEF comm.and, the system-supplied DCB operand will be:
LRECL=256, RECFM=V, RKP=4, and KEYLEN=15 (i.e., an eight-character
region name) .

Line Data Set

a specialized VISAM data set with this record format:

~14~---------------------132 bytes maximum----------------------------------~.~I

~:~~~~ n~~~:r I flag I
~ 4 bytes ---11 -7 bytes +- 1 byte -..j

data

The line number is a seven-dig~t decimal integer; the maximum record
length is 132 bytes. Line data sets are used mainly with the MODIFY
command, but the text editor recognizes them as region data sets with
zero-length regions.

Region

58

a line, or contiguous group of lines, whose numbers are prefixed by
the same region name. The region of a data set is treated by the
text editor as an entity; region names label a continuous subset of
lines for identification purposes.

The size of the first specified region name in a data set will
determine the size of all succeeding region names, which will be
padded with blanks or truncated to fit the region field. The text
editor automatically reorganizes the regions of a data set into an
alphabetically ascending order, by region name.

This is a sample data set that was created by the text editor:

REGION LINE NO. Data Line

a 0000100 Text of line number 1 of REGION "a"

a 0000200 and this is next line of region "a";

a 0000300 this is end of region "a".

almost

almost

almost

nextcase

nextcase

nextcase

nextcase

nextcase

nextcase

nextcase

nextcase

ofcourse

ofc;:::ourse

swan

swan

Current Line

0000100

0000600

0001100

0000100

0000200

0000300

0000400

0000500

0000600

0000700

0000800

0000100

0000200

0000100

0000200

Pointer

This line starts new region, "almost"

where increment has been specified as 500

so line numbers advance by 500s.

Regions in this data set can never exceed

8 characters since creator started with

new data set and region "nextcase." This

first region, specified in data set, will

set size of region for entire data set.

Thereafter, regions added will be truncated

or padded with blanks to fit region fields.

Initial·al~owable range of region length

is from 0 to 247 characters.

Within command system, data sets maintained

by text editor, standard length of 8 has

been used for regions.

maintained by the text editor, the current line pointer (CLP) is set
initially to 100 for empty regions and to the first line number in an
existing region. The CLP is advanced through the data set as text
editing commands are executed, always pointing to the next line to be
processed. For further information, refer to Appendix G.

In all text editing commands, where Nl is an operand, except as indi­
cated in the operand descriptions, the current value of the CLP may
be specified by defaulting Nl.

Line Number

an absolute number or a relative (plus or minus) value that indicates
a number of lines away from the CLP. Example: 200 specifies line
0000200; +2 identifies the second line after the CLP; -1 designates
the line preceding the CLP.

The values specified for Nl and N2 (the keyword names of the line
number operands) for all text editing commands in which both operands
appear are resolved by the system according to these rules:

1. When Nl and/or N2 are in the range of line numbers in current
region, the system assumes the specified values.

2. If Nl is larger than the last line in the current region and/or
N2 is less than the first line in the current region, a diagnos­
tic message is issued.

3. If Nl and/or N2 fall within the range of lines in the current
region, but that line number does not exist, the system assumes
the next higher line number for Nl and the next lower line num­
ber for N2.

Part III: Data Management 59

4. If Nl is not an existing line number in the current region and
N2 is the same as Nl, a diagnostic message results.

String Constants

are either normal or quoted. A normal string is a contiguous group
of characters that begins with any nonblank character, except an
apostrophe, and ends with the last nonblank character prior to either
a comma, equal sign, or semicolon that is external to all pairs of
parentheses in the string. A normal string may also end with the last
nonblank character prior -to the end of a line that does not have a
continuation character. For normal strings, all System/360 charac­
ters are valid, except a comma, equal sign, or semicolon that is
external to all pairs of parentheses in the string. Example:

A + B; (C, D), A' BC' 'D', C=D, A B

contains these normal strings:

A+B
(C,D)
A'BC' 'D'
C
D
A B

A quoted string is any character string that is enclosed in apostro­
phes, and within which all other apostrophes are doubled. All
System/360 characters are valid. The internal representation of a
quoted string (i.e., after it is processed by the system) does not
have the terminal apostrophes; doubled apostrophes are replaced by
single apostrophes. Example:

External Representation Internal Representation

'$3.80' $3.80

'HOW ARE YOU' HOW ARE YOU

'I' 'M FINE' I'M FINE

Hexadecimal Constant

has the form of an X followed by a string that is enclosed within
apostrophes; the characters in the quoted string must be a digit
or A, B, C, D, E, or F. Some examples are:

X'Ol'

X'ABC02'

A null character has the form of hexadecimal Os; a null string has
the form of a zero-length character string.

Break Characters

60

when the underscore (or any other break character selected by the
user) is the first character of a line, it ensures that the statement
starting on that line will be interpreted immediately as a command
statement. However, when the first- and -second characters of the
line are break characters, the usual break-character action will not
take place. Instead, the system replaces the pair of break charac­
ters with a single break character, and processes the line as if no
break character had been seen. Thus, lines starting with break

characters can be put into procedures or data sets. Use of break
characters enables the user to enter commands when the system expects
data.

When the vertical ba~ (or any other character selected by the user)
is the first character of a line, it ensures that the statement start­
ing on this line will be interpreted immediately as a language pro­
cessor control statement. The rules for break-character duplication
apply.

Normal Command

a command that is expected by the system and is not preceded by a
break character.

Examples:

1. One of the most important applications of the text editor is to
create and edit data sets. This capability is illustrated by:

User: ddef ddname=ddl,dsorg=vi,­
dsname=dsample,dcb=­
(keylen=12, rkp=4, recfm=­
v, lrecl=2S6)

Sys,User: edit ddl

User:

Eegion rname=first

0000100 these are lines
0000200 of sample data
0000300 for dsample

0000400 _update

ISO new line

Sys,User: insert 400
0000400 last line

User: end

(User defines new data set;
key length of 12 indicates
five-character region name
since line numbers are seven
characters)

(He invokes text editor; sys­
tem responds with underscore;
user specifies region name;
text editor invites him to
enter line by issuing line
number)

(User enters data; each time
he presses carriage return,
text editor prompts with next
line number)

(User wants to make change in
previous entries; by preceding
UPDATE with break character
(underscore) text editor im­
mediately executes command)

(User wants line ISO inserted
between lines 100 and 200i

(User now wants to continue
entering data at point where
he left off; INSERT is pre­
ceded by underscore, since
system expects data, not com­
mand, following UPDATE)

(Terminates text editor proc­
essing; END is preceded by
underscore since system ex­
pects data, and not command
after INSERT)

Part III: Data Management 61

2. The user wants to create a nonconversational SYSIN data set that,
when executed as a nonconversational task, will create a data set.
He uses nested editing statements.

User:

Sys,User:

ddef ddname=dcat,dsname=­
boo,dcb=(keylen=12, rkp=-
4,recfm=v,lrecl=256)
edit dcat
£egion erb

Sys,User: 0000100 logon p3946
0000200 ddef ddxc, vp, jsb
0000300 edit ddxc, mem2
0000400 region onlyone
0000500 sample data 1
0000600 data line 2
0000700 last sample data

0000800 end

0000900 logoff

0001000 end

(First EDIT invokes text edi­
tor; REGION prompts user to
enter data lines)

(Lines 100 through 900 are
text or region ERBi lines 300,
400, and 800 are nested edit­
ing command statements--they
are entered as data here, but
when SYSIN data set is execu­
ted, they will be executed)

(END in line 800 is preceded
by two underscores; one will
be removed when END is ac­
cepted as data; when executed,
END will terminate processing
of nested editing statements)

(END here terminates process­
ing of current editing state­
ments)

When the nonconversational task is executed, member MEM2 of data
set JSB will be created.

EDIT Command

This command invokes the facilities of the text editor.

Operation Operand

EDIT [SOURCE=data definition name]

[,MNAME=member name]

Note: The user may omit either operand, but he cannot omit both.

SOURCE

MNAME

62

identifies the data set definition associated with the data set
which is to be edited.

Specified as: the data definition name specified in the previous
DDEF command for the data set to be edited.

System default: SYSULIB (i.e., the data definition name of USERLIB)
is assumed.

identifies a member of a VPAM data set or library (referenced by the
SOURCE operand). If the member is part of USERLIB, no prior DDEF
command is necessary, and the SOURCE operand is the data definition
name of USERLIB.

Specified as: the name of the member to be edited.
System default: data set is not member of a VPAM data set.

Functional Description: EDIT acts as a CALL command to the text editor.
When SOURCE is omitted, the user must designate in MNAME which member of
USERLIB he wants to edit; EDIT will access this member. Since it is
difficult for the user to modify the existing DDEF for USERLIB, the text
editor generates these DCB operand values: KEYLEN=15 (i.e., an eight­
character region name), RKP=4, RECFM=V, LRECL=256.

Example: The user has defined a data set, DATAMY, that he wants to
create using the text editor. The data definition name is DDNU:

User: edit ddnu

System: (informs user that text editor has been invoked and
gives CLP value)

END Command

This command terminates processing of the text editor or PROCDEF
command.

I ~:_:_: __ r_a_t_i_o_n ____________ ~o_p_e_r_a __ n_d __ ~
Note: There are no operands.

Functional Description: END denotes the completion of editing initiated
by an EDIT command, or terminates execution of the PROCDEF command. The
command is not mandatory_in either case but serves to close the data
set (the user-written command is considered a data set) and to relinquish
control to the associated processor.

Programming Notes: Separate EDIT and END commands as well as inter­
vening editing commands must be issued for each data set edited.

This is not the END statement for the assembler or the FORTRAN com­
piler. This command may be preceded by an underscore, depending on
whether it is an unexpected or an expected (i.e., normal) command; a
command is unexpected when the system expects data (e.g., following an
INSERT command) .

Examples:

1. The user wants to terminate this editing procedure:

edit myprog
context 700,900,lm,stm
number 200,last

After execution of the NUMBER command, he enters

end

Note: END, here, is a normal command (i.e., it is expected by the
system) and is not preceded by an underscore.

Part III: Data Management 63

2. The user creates this data set.

User: edit mydd
region one

Sys,User: 0000100 line one
0000200 line two
0000300 end

Note: END, here, is not expected; so it is preceded by an
underscore.

REGION Command

This command prefixes a region name to a line number or series of line
numbers, designating the line or lines as an entity. REGION also posi­
tions the data set so that editing commands can be entered.

loperation

REGION

I Operand

RNAME

identifies an existing region or specifies the region name to be
assigned to a line or range of lines. The size of the first region
name specified in a data set will determine the size of all succeed­
ing region names, which will be padded with blanks or truncated to
fit that region field.

Specified as: an existing region name or as a string of one to
247 characters.

System default: a null (blank) string is assumed.

Functional Description: When the user enters a region name that does not
exist in the data set, the system responds with line number 100, inviting
the user to enter data. The lines of data entered are prefixed by the
system with the specified region name.

When the user specifies a region name that already exists, the sys­
tem positions the data set to a line number 100 higher than the last line
in the specified region.

When REGION is not specified and the data set contains mUltiple
regions, specifying a line number will result in a diagnostic message.

Caution: The system automatically reorganizes the regions of a data set
into an alphabetically ascending order.

Programming Notes: If editing commands with Nl and/or N2 operands are
not preceded by a REGION command, the system will assume the current
region name, if one exists, or a blank region name. After entering
REGION, the user can reference any line in the region or enter new lines
in the region by giving only the numeric line number for the line.

When an entire data set contains only one region, REGION is not neces­
sary for enter~ng editing statements.

To create a data set with a region name of length n, the user must
precede the REGION command with a DDEF command. The region name and the
line number compose the VISAM key for the record, so the user must specify
a value of n+7 for the KEYLEN operand. RKP must be specified as a 4
and RECFM as V. The LRECL operand should be specified as a value

64

large enough to include the key length and data (maximum for LRECL is
256 characters). Example: create a data set with a region name of 35
characters.

ddef ddreg,vi,dsname=xyz,dcb=(keylen=43,rkp=4,recfm=v,lrecl=256).

The user may create or edit a member of a VPAM data set without a
preceding DDEF command. The DCB operands issued by the system will be

KEYLEN=15,RKP=4,RECFM=V,LRECL=256

The user is then limited to an eight-character region name.

Examples:

1. A region XYZ has been created with lines 100 to 500 in increments
of 100. The user wants to position the data set so that he can
enter editing commands.

2.

3.

User:
"§'yStem:

region xyz
0000600

The system positions the data set at XYZ600 and awaits either a new
data line or reference elsewhere in region XYZ by use of the Nl or
N2 operands of another editing command.

This is

Re9: ion

a

a

a

next

next

next

next

Create

User:

System:

User:
system:

a sample data set created with text editing commands.

Line No. Data Line

0000100 Text of line number one of region 'A'

0000200 and this is next line of region 'A' •

0000300 This is last line of region 'A' •

0000100 This line starts new region called NEXT.

0000300 Its line increments are specified as 200,

0000500 so line numbers advance by 200.

0000700 This ends region "next."

a data set, with a region name of nine characters.

ddef ddl, vi,dsdat,dcb=(keylen=16,rkp=4,recfm=v,lrecl=256)
edit ddl
(indicates position of CLP)

region rname=firstname
0000100 (user can now enter data)

4. Generate a region with a blank name in an existing data set.

User:
'S'YSfem:

User:
'S'YSfem:

edit mydd
(indicates position of CLP)

region
0000100

Part III: Data Management 65

DISABLE, ENABLE, and STET Commands

These commands eliminate or make permanent previous changes to a data
set.

~eration Operand

DISABLE

I Operation Operand

ENABLE

I Operation Operand

STET

Note: There are no operands in these commands.

Functional Description: The text editor maintains a transaction table
where changes to a data set are recorded. Additions to the data set are
noted in one column; deletions in the other. When a text editing com­
mand alters data, the change is made to the data set, and a record of
that change is entered in the table. Editing commands other than
ENABLE, DISABLE, STET, LIST, and LOCATE (which do not alter data) result
in changes to a data set and entries in the transaction table.

The ENABLE command causes the text editor to remove previous table
entries when a new command is executed; only the effect of the last­
issued text editing command is present in the table while the text editor
is enabled. When it is disabled (i.e., as the result of a DISABLE com­
mand) , previous table entries are not removed as each new command is
executed; records of all changes to a data set after DISABLE (with no
intervening ENABLE) remain in the table.

Changes to a data set that are listed in the transaction table can be
canceled. The STET command reverses the transaction table entries (i.e.,
additions are placed in the deletions column; similarly, deletions are
placed in the additions column); and, at the same time, restores the
data set to the status which is now indicated by the transaction table.
When the text editor is disabled, all changes to a data set since the
DISABLE command was issued will be in the table and will be canceled if
STET is entered. When the text editor is enabled, only the last change
is reversible (since it is the only change listed in the table).

When invoked, the text editor is enabled and will be until a DISABLE
command is issued. The disabled text editor is enabled when the ENABLE
command is entered. Execution of STET does not affect either the dis­
abled or enabled state of the text editor. The CLP is not changed by
DISABLE, ENABLE, or STET.

Cautions: The ENABLE command does not affect the transaction table until
after the next text editing command that alters data. When the text
editor has been disabled and ENABLE is issued, the table entries for the
commands subsequent to DISABLE are not removed until after the first
table entry following the ENABLE command. Thus, STET immediately follow­
ing ENABLE may cause undesired results.

When multiple changes are made to a line by more than one editing
command, only the last change is reversible.

66

Programming Notes: For efficient use of the STET command, DISABLE and
ENABLE allow the user to enter all or part of his revisions before they
are made permanent. When the text editor is enabled, only the last
data-set change is not permanent; when disabled, all changes are tempo­
rary; they can be removed with STET.

Examples:

1. The user issues a series of commands.

edit myprog
region abc

number 100,600
aisable
excise
excerpt
context
enable
number
list
end

620
yourprog,rname=pgr,200,400
700,900,joe,bob

100,last

In this series of commands, the effects of the EXCISE, EXCERPT, and
CONTEXT commands are entered in the data set, and a record of these
changes are collected in the transaction table. These changes be­
come permanent when the NUMBER command, which follows ENABLE, is
executed, since the entry for NUMBER in the table replaces the
previous entries.

2. In example 1, assume a STET command is given between the CONTEXT
command and the ENABLE command. STET cancels the effects of EXCISE,
EXCERPT, and CONTEXT, since their effects were listed in the trans­
action table.

3. A STET command appears between the second NUMBER command and the
LIST command. Since the text editor is enabled, only the effect of
the NUMBER command is canceled.

4. A STET command appears between the EXCERPT and CONTEXT commands.
The effects of the commands between DISABLE and STET are canceled.

5. A STET command appears between the LIST and END commands. The ef­
fect of the second NUMBER command is canceled, since the execution
of LIST did not result in a transaction table entry.

6. A STET command appears between ENABLE and the second NUMBER command.
STET cancels the effects of EXCISE, EXCERPT, and CONTEXT.
Note: Although the text editor was enabled, the transaction table en­
tries for EXCISE, EXCERPT, and CONTEXT remained; they will be removed
when a table entry, following ENABLE, is made.

CONTEXT Command

This command replaces a string of characters within a line, range of
lines, or region of a region data set with another character string.

Operation Operand

CONTEXT ~l= starting positio~ ~N2=ending position] ,
STRING1=search string ~STRING2=replacement strin~

Part III: Data Management 67

NI

N2

identifies the line or first of a range of lines in the current
region to be searched for STRINGI.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST last line in the current region.

Note: When the user wants to start the search at a character posi­
tion other than the first (position 0) in the specified line, he
can specify the starting position as an absolute one-to-four digit
decimal number, enclosed in parentheses and immediately following
the line number.

System default: when N2 is specified, the value of the CLP is as­
sumed; otherwise, the entire data is searched from the beginning.

identifies the last of a range of lines in the current region to be
searched for STRINGI.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST last line in the current region.

Note: When the user wants to end the search at any character posi­
----tion other than the last in the specified line, he can specify

the ending position as an absolute one-to-four digit decimal num­
ber, enclosed in parentheses and immediately following the line
number.

System default: when NI is specified, it is the only line searched;
otherwise, the entire data is searched from the beginning.

STRINGI

designates the character string that is to be searched for within the
range NI to N2 (i.e., the "search argument"). Any occurrence of
STRINGI that crosses a logical line boundary is not identified.

Specified as: a normal or quoted string.

STRING2

designates the character string that is to replace all occurrences
of STRINGI in the range NI to N2.

Specified as: a normal or quoted string.
System default: each occurrence of STRINGI is deleted.

Functional Description: Whenever STRINGI is found, the system replaces
it with STRING2. STRINGI and STRING2 need not be the same length. If
the replacement string is longer than the search string, the line will
be extended to cmake room for the replacement string; if the replacement
string is shorter, the line will be processed so that no extra spaces
remain in the line after the command is executed.

If STRINGI is not specified, the user is prompted and the command is
ignored. If STRINGI and STRING2 are enclosed in apostrophes (i.e.,
quoted strings), the apostrophes are stripped before execution of CONTEXT.

68

After execution, the CLP is set to the line following the last line
processed or the next line location within the region.

Programming Notes: One use of the CONTEXT command is for symbol re­
placement in source language modules; STRINGI is the original symbol
and STRING2 is its replacement. This command can be used for any source
language data set, if the data set is formatted for the text editor (i.e.,
region or line data set).

Examples: A data set contains 20 lines, numbered in increments of 100,
from 100 through 2000. The user wants to replace the string ABCDEF with
UVWXYZ. Assume the CLP is 1000.

1. The user knows only that ABCDEF exists somewhere in the data set.

User:
S"YStem:

context "abcdef,uvwxyz
(searches entire data set, replacing ABCDEF with UVWXYZ)

2. The user wants to replace occurrences of ABCDEF that appear only
in lines 500 through 1000.

User:
S'YStem:

context 500,1000,abcdef,uvwxyz
(searches lines 500 through 1000, replacing ABCDEF with

UVWXYZ)

3. The user wants to replace ABCDEF only in the first 50 character
positions of the line 1200.

User:
S'YStem:

context +2,+2(50) ,abcdef,uvwxyz
(searches first 50 characters of line 1200 and replaces

ABCDEF with UVWXYZ)

4. The user wants to delete ABCDEFi he specifies an explicit null
.string.

User: context -3,last,abcdef
S'YStem: (searches lines 700 through 2000 and deletes ABCDEF)

5. The user wants to replace the quoted string 'JOHN"S HOUSE' with
another string.

User:
S'YStem:

context O,last,'john"s house','*!@/#$'
(searches entire region and replaces JOHN'S HOUSE with

*~@/#$)

CORRECT Command

This command changes or inserts characters in one or more lines of
the current region. The corrections are made as indicated by the lines
that follow this command from the terminal. CORRECT defines the format
and range of correction which is performed by a left to right scan.

Operation Operand

CORRECT [Nl=starting line] [, N2=ending line]
&SCOL=first COlumn] & *$@%=replacement correction

characters]

Nl

identifies the line or first of a range of lines to be corrected.

Part III: Data Management 69

N2

SCOL

*$@%

Specified as: a one- to seven-decimal-digit line number that may be
absolute or relative.

LAST -- last line in the current region.
System default: the current line location within the region is

assumed.

identifies the line or last of a range of lines to be corrected.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST -- last line in the current region.
System default: Nl is assumed if specified; otherwise, the current

line location within the region is assumed.

specifies the character position within the lines (excluding line
number), from Nl to N2, at which correction is to begin. All
characters to the left of this position are ignored. The line to
be corrected is displayed, starting at the SCOL position, and if
the logical line length exceeds the physical line length capacity
of the output terminal, only the physical line containing the
character specified by SCOL is displayed.

Note: The first character position after the line number is
--p-osi tion O.
Specified as: one-to-four decimal digits.
System default: the first character position in the line (follow­

ing line number) is assumed (i.e., position 0).

identifies the correction characters, which will be followed by
correction input from the terminal. The standard correction
characters (*$@%) are replaced from the left by a direct sub­
stitution.

Specified as: a normal or quoted string.
System default: the standard correction characters are assumed.

The CORRECT command displays the designated line that is to be cor­
rected. The standard corection characters, or the corresponding re­
placement correction characters, and their functions are:

* -- duplicates the character directly above the * and also all char­
acters to the right of that first character -- until the next cor­
rection character or end of line is encountered.

$ -- duplicates the character directly above the $; all other characters
on the correction line replace the corresponding characters on the
original line -- until the next correction character 'or end of line
is encountered.

@ -- duplicates the character directly above the @; all other characters
in the corresponding fields in the replacement line (which follows
the correction line) replace the corresponding characters in the

70

original line -- until the next correction character or end of line
is encountered. The fields in the replacement line are terminated
by @.

% -- removes the character directly above the %, i.e., all positions to
the right are shifted left one position; all other characters to
the right of that first character are duplicated -- until the next
correction character or end of line is encountered.

Functional Description: The system displays the line to be corrected
and the correction is specified by the next line (i.e., correction line)
input from the terminal after issuance of the CORRECT command. The
particular operations desired are indicated by the use of the correction
characters. until a correction character is detected, it is assumed
that all nonblank characters in the correction line replace the cor­
responding characters in the line to be corrected. The replacement line,
if required, follows the correction line from the terminal.

The user is prompted if the replacement line ends before the replace­
ment field is flagged by the @ character. Correction continues accord­
ing to the correction-character line.

An end of line in a field marked by * or % causes the remainder of
the line to be duplicated; an end of line in a field marked by $ ter­
minates the line.

Examples:

1. User:
system:

User:

correct 400
STEMS3660

@* $ *%*
ys@

(displays line to be corrected)

(SYSTEM 360 is resultant line)

In example 1, the first @ in the correction line caused the YS from
the replacement line to be inserted; the $ followed by a blank
caused the blank to replace the character above it (S); and the %
caused the character above it to be deleted and all following
char~cters to be shifted to the left.

2. User:
system:

User:

3. User:

System:

User:

correct 104
COMPVTE Xl (Displays line to be corrected)

* $U* (Correction line; this re-
places V in line to be cor­
rected with U from the cor­
rection line, and duplicates
all following characters)

(COMPUTE Xl is resultant line)

correct 15, 16, pgrs

L 1 4 , X
S T 1 4 , Y

P Q 5S

(L 5,X and ST 5,Y are

(pqrs replaces standard cor­
rection characters)

(Displays lines to be corrected)
(These are not automatically
displayed, but are shown here
for clarity.)

(Correction line; duplicates
to blank before 14, replaces
1 by 5, deletes 4, and shifts
X and Y one space to left.)

resultant lines)

Part III: Data Management 71

4. User: correct 27

System:

User:

CONTNUE

* @*

(Displays line to be corrected)

(Correction line; * duplicates
through CONTi @ indicates that field
from next line is to be inserted
after CONT and before N; * duplicates
remainder of line from N.)

i@ (Replacement line; I is value of
replacement field)

(CONTINUE is resultant line)

5. User: correct 15

System:

User:

xyz 1345 co mpte x

abc @ * %@ *
L3, 4, 5@ u@

(Displays line to be corrected)

(Correction and replacement lines;
XYZ is replaced by ABC automatical­
ly, 1345 is replaced by L3, 4, 5
from following line; space between
o and M is deleted; U is inserted
from following line)

(ABC L 3,4,5 COMPUTE X is resultant line)

REVISE Command

This command specifies the point or range in a data set at which the
lines following this command may be inserted.

Operation Operand

REVISE [Nl=-starting line] [, N2=ending line

Nl

N2

INCR

72

[,INCR=increment]

identifies the line or first of a range of lines to be referenced,
or deleted and subsequently replaced.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST -- last line in the current region.
System default: the value of the CLP is assumed.

identifies the last in a range of lines to be deleted and sub­
sequently replaced.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST -- last line in the current region.
System default: the value of Nl is assumed.

designates the increment of the newly assigned line numbers.

Specified as: one-to-seven decimal digits; an all-zero increment
is not valid.

System default: 100 is assumed.

Functional Description: WBen REVISE is not followed immediately by
EXCERPT or a data line or lines, the command deletes the specified lines
and sets the CLP to Nl. When REVISE is followed by EXCERPT or data
lines, all lines specified by REVISE are deleted and the new lines are
inserted and line numbers are assigned; the CLP is set to the number of
the last data line entered plus the current increment. REVISE deletes
the specified lines first, then inserts the data lines.

The user is prompted if the number of insertion lines exceeds the
upper limit specified by N2.

Programming Notes: REVISE is functionally equivalent to an EXCISE com­
mand followed by an INSERT or EXCERPT command.

Examples:

1. Replace line 300 with data lines in increments of 10.

User:
system:

revise 300, incr=lO
(deletes line 300 and waits for user to enter data lines

or next command)

2. Replace lines 200 through 550 with data lines in increments of 100.

User:
system:

revise 200, 550
(deletes lines 200 through 550 and waits for user to enter

data lines or next command)

Note: The increment of 100 is the default value of INCR. If more
than four lines are inserted, the fifth line number will exceed the
N2 value (assuming the next higher line number, if 600 or less) and
cause a diagnostic message to be displayed before insertion.

UPDATE Command

This command adds or inserts the data lines entered at the terminal
into the current region.

~~peration I Operand --J
_ UPDATE _

Note: There are no operands.

Functional description: The lines of data entered by the user following
this command are inserted in the current region at the specified line
number. If the user specifies a line number that already exists in the
region, a message is displayed; the new line will overlay the old line.

UPDATE is terminated when a text editing command preceded by an under­
score is issued. The status of the CLP does not change during execution
of UPDATE.

Caution: When issuing insertion lines, a space must appear between the
line number and the text of the line.

Part III: Data Management 73

Programming Notes: UPDATE is equivalent to a series of INSERT or REVISE
commands. UPDATE is intenqed primarily to allow the insertion of ar­
bitrary line numbers; INSERT and REVISE are designed for consecutive
line insertions.

Example: Assume the current line location is in the region ABC, which
contains 10 lines, numbered 100 through 1000 in increments of 100. The
user wants to insert a line between lines 200 and 300 and one between
lines 600 and 700. He also wants to replace line 500 with a new line.

User:
SyStem:

User:
System:

User:
System:

User:
system:

User:
SyStem:

User:

update
(prompts user to enter data line)

250 datal
(inserts line 250 between 200 and 300; prompts user to

enter data line)

650 text
(inserts line 650 between 600 and 700; prompts user to

enter data line)

500 more data
(replaces old line 500 with new line and issues message;

prompts user to enter data line)

insert 1100
(terminates execution of UPDATE, positions CLP to line

1100) 0001100

(enters data line)

EXCERPT Command

This command inserts a region or range of lines from another data set
into the current data set. EXCERPT, following a REVISE command, replaces
a range of lines in the current data set; following an INSERT command, it
adds to lines being typed in from the terminal.

Operation Operand

EXCERPT DDNAME = data definition name [. member name]
[, RNAME = region name]
[,Nl = starting line [, N2 = ending line]]

DDNAME

RNAME

74

identifies the data set definition of the data set from which the
region, line, or range of lines is to be taken. This data set
must already be defined by a DDEF command within the current task.
When DDNAME refers to a VPAM data set, a member name must also be
specified.

Specified as: the data definition name, specified in a previous
DDEF command, of the referenced data set; when a member of a
VPAM data set is referenced, the member name is preceded by a
period and immediately follows the data definition name.

identifies the region, previously defined in a REGION command, from
which data is to be inserted into the current data set, either in
its entirety, or within the range specified by Nl and N2.

Specified as: the name of the region, expressed as a normal or
quoted string, from which data is to be copied.

Nl

N2

System default: when Nl and N2 are specified, it is assumed that
the data set named in DDNAME contains only one region; when Nl
and N2 are both omitted, the entire data set named in DDNAME is
inserted as a single region; when only N2 is omitted, the line
designated by Nl is inserted.

specifies the line or the first of a range of lines that is to be
inserted in the current region.

Specified as: an absolute one- to seven-decimal-digit number.
System default: N2 must also be omitted; the entire region

specified in RNAME is inserted.

specifies the last in a range of lines that is to be inserted in
the current region.

Specified as: an absolute one- to seven-decimal-digit number.
System default: the entire data set is inserted when Nl and RNAME

are omitted; when only N2 is omitted, only the line specified
by Nl is inserted.

Note: This operand cannot be specified unless Nl is used.

Functional Description: Upon completion of this command, the current
line pointer is unchanged. Insertion is always made immediately after
the data line that was the current line location at the time the com­
mand is issued. The system automatically renumbers the inserted lines.
If the existing line numbers do not accomodate the number of lines to be
inserted (e.g., trying to insert more than 99 lines between line numbers
400 and 500), the command is not executed and a diagnostic message is
issued.

The user is prompted when these exception conditions occur:

• Renumbered lines would overflow the interval between lines.

• The data set and region to be excerpted could not be found.

• The line number within the region could not be found.

• The end of the region was reached before any of the requested lines
could be excerpted.

Examples: Assume a data set with DDNAME=ABC has four regions, ABCl,
ABC2, ABC3, and ABC4; region ABCl has lines numbered from 100 through
1000 in increments of 100.

1. Excerpt the entire data set.

User:
SyStem:

excerpt abc
(inserts data set with data definition name ABC into

current data set)

2. Excerpt only lines 300 through 500 from region ABCl.

User:
system:

excerpt abc,abcl,nl=300,n2=500
(inserts lines 300 through 500 of region ABCl into cur­

rent data set)

Part III: Data Management 75

3. Excerpt lines from a member of a VPAM data set.

User: excerpt abc.mem,reg,99,1000
S;YStem: (inserts lines 99 through 1000 from member MEM or VPAM

data set with data set definition name ABC into cur­
rent data set)

EXCISE Command

This command deletes a line or a group of lines from a region.

Operation Operand

EXCISE [Nl = starting line] [,N2 = ending line]

Nl

N2

designates the line or first of a series of lines to be deleted
from the current region.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST
System default:

last line in the current region.
the value of the CLP is assumed.

designates the last line in a series of lines to be deleted from the
current region.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST
System default:

last line in the current region.
only line specified in Nl is deleted.

Functional Description: After EXCISE is executed the CLP is set to the
first line deleted or, if no lines were deleted, to the value specified
in Nl.

Programming Notes: Since the CLP is set to the first line deleted, or
the value of Nl, the user may conveniently follow this command with
either an INSERT or EXCERPT command.

Examples:

1. Delete line 113.

User:
sys:tem:

excise 113
(deletes line 113)

2. Delete the next 10 lines beyond the current position in the data
set.

User:
system:

excise nl=+1,n2=+10
(deletes the 10 lines beyond CLP)

3. Delete any lines between 100 and 300.

76

User:
~stem:

excise 101,299
(deletes all lines between 100 and 300)

INSERT Command

This command places the data lines entered at the terminal in the cur­
rent region.

Operation Operand

INSERT [Nl = preceding line] [, INCR = increment]

Nl

INCR

identifies the line that is to precede the inclusion of the follow­
ing data lines in the current region of a data set or member.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST
System default:

last line in the current region.
the value of the CLP is assumed.

specifies the value by which line numbers assigned to the new data
lines are incremented. The value of Nl is the base against which
the line numbers are incremented.

Specified as: one-to-seven decimal digits; an all-zero increment
is not allowed.

System default: an increment of 100 is assumed.

Functional Description: If there is not adequate space between existing
line numbers for the specified insertions, the user is prompted with a
message. If there is adequate space, line numbering of the inserted
lines is done by the system.

Examples:

1. Insert data lines following line 600 in increments of 10.

User:
system:

insert 600,10
0000610

Note: Assuming the line following 600 is 700, nine lines can be
InSerted before overflowing the space.

2. Insert lines in the data set 10 lines beyond the current position
with an increment of 100.

User:
sys:Eem:

insert nl=+lO
(issues line number prompting user to enter data line)

3. position the CLP following the last line or insert lines at this
point.

User:
sys:Eem:

insert last
(issues line number prompting user to enter data line)

4. Generate a region with a blank name in a new data set.

user:
sys:Eem:

User:
sys:Eem:

edit mydd
(indicates the position of the ~LP)

insert
0000100

Part III: Data Management 77

Note: REGION must be used to generate a region with a blank name
in an existing data set. EDIT automatically positions the CLP at the
end of the last region in an existing data set and INSERT, without
operands, assumes this value for the CLP.

NUMBER Command

This command renumbers a line or a range of lines within a region or
contiguous regions.

Operation Operand

NUMBER [Nl = starting line] [, N2 = ending line]

Nl

N2

BASE

INCR

78

[,BASE = base number] [, INCR = increment]

identifies the line or first of a range of lines to be renumbered.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST -- last line in the current region.
System default: see Table 7 below.

identifies the last of a range of lines to be renumbered.

Specified as: a one- to seven-decimal-digit line number that may be
absolute or relative.

LAST -- last line in the current region.
System default: see Table 7 below.

indicates the number from which the renumbering is to be incremented.

Specified as: one-to-seven decimal digits; it must not be less
than Nl.

System default: see table 7 below.

specifies the increment between the lines to be renumbered.

Specified as: one-to-seven decimal digits; if the increment causes
renumbering to overlap the number of the line following N2, the
increment is computed as though it were defaulted, and the user
is prompted with a message informing him that the increment has
been furnished by the system.

System default: the system computes the increment as follows: the
difference between the base and the line number following N2 is

divided by the number of lines to be renumbered, plus one. The
increment is then determined in this manner:

If the quotient is

100 or greater
50-99
20-49
10-19

5-9
2-4

1

Then the increment will be

100
50
20
10

5
2
1

Table 7. System Defaults for NUMBER Command Operands

These are the system defaults and the results expected for the NUMBER
command (an X indicates that the specific operand has been explicitly
given or there is a default for it in the user's profile). Other
combinations can be derived from the table.

Case Nl N2 BASE INCR Comment

1 X Nl Nl 100- Only line specified by Nl is re-
numbered

2 CLP X Nl 100- Lines from CLP to N2 are renumbered

3 CLP CLP X 100- Only line specified by CLP is re-
numbered

4 CLP CLP CLP X Only line specified by CLP is re-
numbered

5 X X Nl 100-

6 If no operands are specified, en-
0 LAST 100 100 tire region is renumbered

Functional Description: Nl and N2 must be numbers within the same region.
Renumbering does not affect the region name prefixed to line numbers.

When all operands are defaulted, the entire data set is renumbered;
renumbering will occur across region boundaries.

Upon completion of this command, the CLP is positioned to the line
following N2.

If the BASE is specified as less than Nl, a diagnostic message is is­
sued. If the value of INCR causes the renumbering to overlap the line
number specified in N2, the system computes the increment as if it were
defaulted, and notifies the user by a message; renumbering with the new
increment then occurs.

Part III: Data Management 79

Examples:

1. number 103, 290

Original Sequence

XYZOOOOIOO
XYZOOOOl03
XYZOOOOl07
XYZOOOOl08
XYZOOOOl09
XYZOOOOlll
XYZOOOOl14
XYZOOOOl16
XYZ0000169
XYZ0000290
XYZ0000400

Resulting Sequence

XYZOOOOIOO
XYZ0000123
XYZ0000143
XYZ0000163
XYZ0000183
XYZ0000203
XYZ0000223
XYZ0000243
XYZ0000263
XYZ0000283
XYZ0000400

Since BASE is defaulted, it is assumed to be 103 (Nl). The dif­
ference between the base and the line following N2 (400) is 297,
which is divided by the number of lines plus one. Since the
quotient is 29.7 (297 + 10 = 29.7) the increment is 20.

2. number 17

Original Sequence

AROOOOOIO
AR0000017
AR0000035

3. number 912, 1000

Original Sequence

AR0000900
AR00009l2
AR00009l5
AR00009l6
AR00009l7
AR00009l8
AROOOlOOO
AROOOl050

4. number 5,12,base=6,incr=13

Original Sequence

MOOOOOOI
M0000005
M0000008
M0000009
MOOOOIOO

5. number 100,200

80

Original Sequence

100
125
150
200
250

Resulting Sequence

AROOOOOIO
AR0000022
AR0000035

Resulting Sequence

AR0000900
AR0000932
AR0000952
AR0000972
AR0000992
AROOOl012
AROOOl032
AROOOl050

Resulting Sequence

MOOOOOOI
M0000019
M0000032
M0000045
MOOOOIOO

Resulting Sequence

120
140
160
180
250

LIST Command

This command displays the value of the CLP, or a line or range of
lines at the user's terminal or SYSOUT. LIST does not alter the ref­
erenced data.

operation Operand

LIST [Nl = starting position] [,N2 = ending position]

Nl

N2

identifies the line or first of a range of lines in the current
region to be displayed, or specifies that the value of the CLP is
requested.

Specified as: one- to seven-decimal-digit line number that may be
absolute or relative.

LAST -- last line in the current region.
CLP -- value of current line pointer.

Note: If the user wants to start the listing at a character posi­
tion other than the first (position 0) in the specified line, he
can specify the starting position as an absolute one-to-four-digit
decimal number, enclosed in parentheses and immediately following
the line number.

System default: when N2 is specified, the value of the CLP is as­
sumed; otherwise, the entire data set is listed.

identifies the last line in a range of lines of the current region
to be displayed.

Specified as: one- to seven-decimal-digit line number that may be
absolute or relative.

LAST -- last line in the current region.

Note: If the user wants to end the listing at any character posi­
tion other than the last in the specified line, he can specify the
ending position as an absolute one- to-four-digit decimal number,
enclosed in parentheses and immediately following the line number.

System default: when Nl is specified, it is the only line listed;
otherwise, the entire data set is listed.

Functional Description: After LIST is executed the CLP is set to the
next line number after N2. If N2 is the last line of the data set, the
CLP is set to N2+100 and the last two digits are set to 00.

Examples: The user has previously issued a REGION command to create
this data set.

User: region anyregn

Sys,User: 000100 line 1
000200 line 2
000300 line 3

Part III: Data Management 81

1. Assuming the CLP is 300, the user can issue any of these LIST com­
mands to display the entire data set.

User:

or
or

System:

list 100,300

list -2,last
list -5,+1
(Note: When Nl and N2 exceed the limits of the data set,
the lowest and highest line numbers are assumed)

ANYREGN0000100 LINE 1
ANYREGN0000200 LINE 2
ANYREGN0000300 LINE 3

2. Display all but the first two characters of line 200 and the first
four characters of line 300.

User:
sys:tem:

list 200(2) ,300(4)
YREGN0000200
ANYR

LINE 2

3. Display the value of the CLP.

User: list CLP
S"YSfem: (displays value of CLP)

4. List the second character of line 100.

User:
System:

list 100 (1) ,100 (2)
N

LOCATE Command

This command searches a region for a specified character string.

Operation Operand

LOCATE [Nl = starting position] [, N2 = ending position

Nl

N2

82

[,STRING = character string]

identifies a line or first of a series of lines in the current
region to be searched for STRING.

Specified as: a one- to seven-decimal-digit line number that may
be absolute or relative.

LAST last line in the current region.

Note: If the user wants to start the search at a character posi­
tion other than the first (position 0) in the specified line, he
can specify the starting position as an absolute one-to-four-digit
decimal number, enclosed in parentheses and immediately following
the line number.

System default: when N2 is specified, the value of the CLP is as­
sumed; otherwise, the entire data set is searched.

identifies the last of a series of lines to be searched for
STRING.

Specified as: a one- to seven-decimal digit line number that may
be absolute or relative.

LAST last line in the current region.

Note: If the user wants to end the search at any character posi­
tion other than the last in the specified linet he can specify the
ending position as an absolute one-to-four-digit d~cimal number,
enclosed in parentheses and immediately following the line number.

System default: when Nl is specified it is the only line searched;
otherwise, the entire data set is searched.

STRING

designates the character string that is to be searched for (i.e.,
the string is the "search argument"). Strings that cross logical
line boundaries are not recognized.

Specified as: normal or quoted string.
System default: the CLP is set to the next available line number

in the current region.

Functional Description: LOCATE searches the specified lines for the
string; when the string is found, the first line containing it is dis­
played and the CLP is set to that line number; when the string is not
found, or LOCATE was issued without operands, the CLP is set to the
last line in the range specified in the region, current plus 100.

Examples:

1. The user has issued a previous REGION command and wants to search
the entire region for the string ABC.

User:
sys:E"em:

locate ,,' abc'
(displays physical line in which ABC was first found)

2. The user narrows the search to lines 200 through 500.

User:
sys:E"em

locate 200,500,abc
(displays physical line in which ABC was first found)

3. The user restricts the search in Example 2, to character-position
3 of line 200 through character-position 26 of line 500.

User:
sys:E"em:

locate 200(3} ,500(26) ,abc
(displays physical line in which ABC was first found)

Part III: Data Management 83

SECTION 3: DATA EDITING

Three commands, used to build and edit VSAM and VISAM data sets, are
shown in Table 8.

Table 8. Data Editing Commands and Their Functions (The commands
are listed in the same order as the command descriptions
that follow.)

Command Function

DATA Build VSAM or VISAM line data set.

MODIFY Insert, delete, and/or replace lines in VISAM
data set.

LINE? Obtain lines from line data set or from language
processor listing data set.

DATA Command

This command creates either a line data set or a VSAM data set.

Operation Operand

DATA DSNAME=data set name [,RTYPE=I

&BASE=first line number, INCR=incrementJ]

DSNAME

identifies a new data set or a new member of a partitioned data
set. The data set must be defined within the current task by a

-DDEF command unless it is to reside on public storage.

Specified as: a fully qualified data set name, and (optionally) the
member name of a VPAM data set; when specified, the member name
must be enclosed in parentheses and immediately follow the VPAM
data set name.

RTYPE

BASE

INCR

84

indicates that the data set is in line organization.

Specified as: I
System default: VSAM is assumed.

identifies the starting line number of the line data set being
created.

Specified as: three-to-seven decimal digits, the last two of which
should be as; an all-zero starting line number is invalid.

System default: 100 is assumed.

specifies the value by which the line numbers in the data set are
to be incremented.

Specified as: three-to-seven decimal digits, the last two of which
should be Os; an all-zero increment in invalid.

System default: 100 is assumed.

Note: The specification of BASE and INCR is invalid for a sequential
data set (indicated by defaulting RTYPE) .

Functional Description: Either a line data set (the I option is selected)
or a VSAM data set is created. The user can modify, correct, insert, and
delete lines only in a line data set.

When the DATA command is used to insert data into public storage, the
system issues the DDEF command on the user's behalf; the newly created
data set is automatically cataloged for him. (But the user must issue
a DDEF command if his data s~t is to reside on private storage.)

In conversational mode, if indexing is specified, the system requests
each line by issuing the current line number; if indexing is not speci­
fied, the system prompts for each line by issuing the number sign (#).
When the user has entered all of his input source data, he must indicate
this to the system by entering the end record. %E.

Lines of a line data set being entered with the DATA command can be
modified, corrected, or deleted, and new lines can be inserted, by fol­
lowing these conventions:

1. Modify or correct a line of a line data set.

%line number, data

line number

data

identifies the line to be replaced by a modified or correct
line.

the replacement line of input data.

2. Insert a new line into a line data set.

%line number, data

line number

identifies the new line to be inserted. It may be any one- to
seven-digit integer whose value specifies the location of the
new line within the data set; this value must not exceed the
last existing line number.

3. Delete a line or a series of lines from a line data set.

%D,line number [,last line number]

line number

identifies the line to be deleted.

last line number

identifies the last line to be deleted, if a sequence of lines
is being deleted, starting with "line number;" "last line
number" must be higher in value than "line number."

If the ATTENTION key is pressed while a DATA command is in operation,
the action taken depends on the type of data set being created. If the
data set being created is VSAM, it is eliminated when the ATTENTION key
is pressed. If a line data set is being created, all that has been
entered, before the attention interruption, is saved. In either case,
the system asks the user for his next command. The user then has the
option, for a line data set only, of entering a MODIFY command and con­
tinuing to create his line data set.

Part III: Data Management 85

Cautions: The DATA or MODIFY command names must not be included in
records entered with a DATA command. The text editor does permit this
type of nesting. The first %E found is interpreted as the end-of-input
record for the current DATA command. Therefore no record starting with
% (except %END) may be entered into a line data set.

When the user references an empty data set that was created in a pre­
vious task with DATA or the text editing commands, his current task may
be abnormally terminated. This is a VAM limitation which will eventually
be removed.

Programming Notes: The maximum line length is 120 characters of text
(not counting line number) for either a line data set or a VSAM data set.

When records are being entered via the IBM 1056 Card Reader with the
AUTO EOB switch on, the maximum record length is 80 characters; with the
switch off, the maximum length is 79.

When there is a continuation, the continuation character is not in-
cluded in the record placed in the data set. Each continuation line
(i.e., a line that continues the statement initiated in a preceding line)
is accepted as if it is a new and independent line that forms a complete
statement by itself.

DATA normally puts a new data set on a public volume. If a private
volume is desired, a DDEF command must be issued for a data set before
the DATA command is issued.

When a data set is being created to serve as SYSIN for a task, it
may include data that is to be read by the user's object program at
execution time. In this case, the data must follow immediately after
the command that is to start user program execution. An end-of-data
line, %END, must follow the last data line.

Examples:

1. The user is attempting to construct a line data set named ROVERI.

86

User: data roverl,i,100,200

Sys, User: 100 subroutine alpha (beta)

300 common gamma(3,5) ,delta(lO) ,epsilon

500 param=beta

700 %350,common theta

700 %35G,integer beta

System: (informs user that %35G is an invalid correction number -­
line is ignored)

User: %355,integer beta

Sys, User: 700 10 format(5x,I7)

900 %700,10 format (5x,I8)

900 %d,350,355

900 do 25 i=1,3

1100 do 25 j=1,5

1300 %950,gamma(1,1)=param

1300 gamma (i+l,j)=gamma(i,j)*param

1500 %E

2. The user wants to construct a VSAM data set made up of a sequence
of commands to be used in a BACK command; the data set is to be
named COMSET.

User: data comset
sys; User: #ftn raader,n",y,y,y,y

logoff

%e

MODIFY Command

This command inserts, deletes, replaces, or reviews lines of a VISAM
line data set or a VISAM member of a VPAM data set; or creates a VISAM
data set or member.

Operation Operand

SETNAME=data set name [, CONF=R]

MODIFY ~LRECL=record length,KEYLEN=key length

RKP=key displacement,RECFM= {vIF}]

SETNAME

CONF

identifies a VISAM data set. If the data set already exists, it
must have been defined previously by a DDEF command within the cur­
rent task or must have been cataloged; the data set to be created
by MODIFY need not be defined or cataloged.

Specified as: a fully qualified data set name, and (optionally)
member of a VPAM data set; when specified, the member name is
enclosed in parentheses and immediately follows the VPAM data
set name.

specifies that review of modifications is requested; each line of
the data set that was changed is presented to the user in its
original form.

Specified as: R
System default: no review of lines.

Note: The next four operands must all be explicitly specified or all
be defaulted.

LRECL

designates the length, in bytes, of each fixed-length logical
record.

Specified as: a decimal number; maximum length for VISAM, ·4000 bytes.
System default: line data set is assumed.

Part III: Data Management 87

KEYLEN

RKP

designates the length, in bytes, of the key associated with each
physical record. When a record is read or written, the number of
bytes transmitted equals the key length plus the record length.

Specified as: a decimal number; maximum key length, 244 bytes.
System default: line data set is assumed.

specifies the displacement of the key field from the first byte of
each logical record. If the record is variable length, the first
byte of the record is at RKP=4.

Specified as: a decimal number.
System default: 0 is assumed.

RECFM

indicates the format of the data set records.

Specified as: V - variable-length records
F - fixed-length records­

System default: V is assumed.

Functional Description: The system asks the UBer for the line modifica­
tions by issuing a number sign (#). The user indicates his modifications
~y following these conventions:

I., Insert or replace a line of data.

line ,data

line

the line number or key of the line of data to be inserted or
replaced.

Specified as: one-to-seven digits.

data

the new data of the replacement or insertion line; a maximum of
120 characters is permitted in a line data set~

2. Delete a line or a range of lines.

88

D,line [,last line]

line

the line number (or key) of a single line to be deleted or the
first line number (or key) of a range of lines to be deleted.

last line

the final line number (or key) of a range of lines to be deleted.

3. Review a line or range of lines (whether or not the review option
is specified) without taking any other action with the lines.

R,line ~last line]

line

the line number (or key) of a single line to be reviewed or the
first line number (or key) of a range of lines for review.

last line

the final line number (or key) of a range of lines to be
reviewed.

The user indicates that he has completed his modifications by
entering %E.

When the review option is requested, the line deleted or replaced, is
presented after each modification.

If the ATTENTION key is pressed while the MODIFY command is in opera­
tion, it does not affect the modifications that have been entered up to
the moment of interruption. Those modifications are made in the user's
data set. The MODIFY command operation is terminated, however, and the
system requests the user's next command. If desired, he may then enter
a new MODIFY command and continue making modifications to his data set.

The MODIFY command will accept strings of EBCDIC representations of
hexadecimal digits, convert them into machine representations of hexa­
decimal digits, and insert them in a data set as directed by the user.

The EBCDIC string representing the hexadecimal data is entered in
this format:

X%EBCDIC string (any non-EBCDIC character ends hexadecimal
data)

When the system encounters the X and the immediately following %, it
enters hexadecimal mode. It then assumes that an EBCDIC string follows
and proceeds to convert each character in the string to a hexadecimal
digit, until the first nonhexadecimal character is encountered.

In performing the required conversion, the system checks that each
input character represents a valid hexadecimal digit; that there is an
even number of input characters in the string; and, that there are no
incomplete inserts in any input line (more than one insert may be made
in any input line; however, one insert may not be entered across input
lines) .

When characters, not in hexadecimal format, are written at the termi­
nal, they will be lost in the transmission and will not be marked, even
by a space.

Caution: The DATA or MODIFY command names should not be included in the
records entered under a MODIFY command. The first%Eis interpreted as
the end-of-input record for the current MODIFY command.

Programming Notes: The user, to save processing time, should enter his
modifications in sequence, starting with the lowest line number.

By making a series of insertions, the user can use the MODIFY command
to create a new VISAM data set.

Part III: Data Management 89

When a data set that is to serve as SYSIN is being built from records
entered via the card reader, the maximum record length must be 80 char­
acters. In this case, continuation conventions must agree with those
specified for card input (see Part II, "Entering Command Statements").

When the data set being created or modified is to serve as SYSIN for
a task, it may include data that is to be read by the user's object pro­
gram at execution time. In this case, the data must follow immediately
after the command that is to start the user's program execution. An end­
of-data line with %END must follow the last data line.

The user may create a VISAM data set, other than a line data set, that
includes his own keys. If so, he must give the key position and length
within the record. These key values may then be used to insert, replace,
delete, or review lines while the data set is being built: For example,
if the user enters

AB14000 link, upper arm

he must have previously specified, in the MODIFY command, KEYLEN=5 and
RKP=3. Thus 14000 is the indexing key to his record.

When creating a record that is longer than one line, the user must
enter a hyphen at the end of the line to signal that the next line is a
continuation. The hyphen does not become part of the record itself; the
continuation line is not prefixed with a key.

Note: MODIFY, although much less flexible than the text editing com­
mands, does permit use of a VISAM key anywhere in the record; the text
editor works only with line and region data sets (i.e., key in first
position) . .

Examples:

1. The user wants to delete lines 107 through 195 and replace line 107
in data set ASET. Review is not requested.

User:
sys:Eem:

Sys, User:

modify aset
(requests modifications)

#d,107,195

#107,x=a**2.0

#%E

System: (verifies that modification is complete)

2. The user wants to delete line 4900 and insert a new line at line
number 5450 in his partitioned data set AB12.CA(V8). He requests
review.

90

User:
sys:Eem:

modify ab12.ca(v8),r
(requests modifications)

Sys,User: #d,4900
System: 4900,X=(X=C) (reviews deleted line)

Sys,User: #5450,j=j+l

System: 5400,K=J(reviews line that precedes insertion)

Sys,User: #%e

System: (verifies that modification is complete)

3. The user wants to replace line 12300 and insert a new line at 14350
in his data set DAT.C. He requests review.

User:
system:

modify dat.c,r
(requests modifications)

Sys,User: #12300,somer=b/c
System: 12300,SOMER=B-C (reviews old line)

Sys,User: #14j50,i=12
System: 14300,PARAMB=0 (reviews line that precedes insertion)

Sys,User: #%e
System: (verifies that modification is complete)

4. The user wants to create a new non-line VISAM data set named QUIK4.
Records are to be SO bytes, fixed-length; the key is a five-digit
part number, displaced two characters from the start of the record.
Review is not wanted.

User:
system:

modify quik4,lrecl=SO,keylen=5,rkp=3,recfm=f
(requests modifications)

Sys,User: #ab00411 spring,retaining

#ab00412 spring,guide

#ab00413 clip,retaining spring

#ab00414 widget,silverplated

#%e

System: (verifies that modification is complete)

5. The user wants to create a new line data set, named DISSMAL. Re­
view is not wanted.

User:
system:

modify dissmal
(requests modification and informs user that new data
set will be created)

Sys,User: #lOO,ald dc f'S75'

#200,smel dc f'52S0'

#300,dc f'6793'

#400, dc f'557'

#%e

System: (verifies that modification is complete)

LINE? Command

This command presents one or more lines from a line data set to
SYSOUT. A maximum of ten line-number ranges may be specified in a
single execution.

Part III: Data Management 91

Operation Operand

DSNAME=data set name

LINE? [tne number
last line number} [, ... J] (first line number,

Note: Only DSNAME may be specified in keyword format.

DSNAME

identifies a line data set, which must be defined by a DDEF com­
mand within the current task, or must be cataloged, and from which
a line is to be displayed.

Specified as: a fully qualified data set name.

line number

identifies a single line to be displayed.

Specified as: a one- to seven-decimal-digit number.
System default: if first line number, last line number operand is

specified, that range of lines is displayed; otherwise, entire
contents of data set are displayed.

first line number, last line number

identifies a range of lines to be displayed.

Specified as: two one- to seven-decimal-digit numbers, separated
by a comma, and enclosed in parentheses.

System default: If line number operand is specified, that line is
displayed; otherwise, the entire contents of the data set are
displayed.

Functional Description: When the user specifies a line number or a
beginning-of-range line number that does not exist but is within the
bounds of the data set, the next higher line is presented.

If the line number is greater than the highest (or lower than the
lowest) line number in the data set, the user is informed of the highest
(lowest) line.

If the user specifies a range of line numbers that in some way over­
laps the boundaries of the data set, all lines in the data set within
the specified range are presented. If the range overlaps the end of
the data set, the user is informed when the end of the data set is
reached.

92

Format of output for line data set:

Byte Position

1-7

8

9

Content

line number

blank if line was created from terminal
keyboard; C if line was created from card
reader

text

Format of output for language processor listing data set:

Byte Position Content

1-130 text (record positions 2 through 131)

Caution: In the specification of a range of line numbers, the beginning­
of-range line number must be less than or equal to the end-of-range line
number.

Programming Notes: In conversational mode, the user can terminate the
presentation at any point by pressing his ATTENTION key.

The user can present lines only from a data set that belongs to him
or that he is now sharing. He may request the lines in any numerical
sequence.

Examples:

1. The user wants lines 800 through 1100 and line 1400 of data set
NAM3 to be presented.

User:
sys:E"em:

line? nam3, (800,1100) ,1400
(presents lines 800-1100 and 1400)

2. The user want lines 900 through 2400 and lines 4400 through 16000
of member ABI of VPAM data set REPLAY to be. presented.

User:
sys:E"em:

line? replay (abl) ,(900,2400), (4400,16000)
(presents lines 900-2400 and 4400-16000)

3. The user wants his entire data set, LIST.PLAYER, to be presented.

User: line? list.player
System: (presents contents or entire data set)

Part III: Data Management 93

SECTION 4: BULK OUTPUT

The bulk output commands, given in Table 9, allow the user to transfer
data sets from his virtual storage to output devices other than the term­
inal he uses in conversational mode. The output printer, at the central
computer installation, can write data sets more rapidly than at the user '.s
terminal. WT and PUNCH put data sets on cards and tape, which are not
available at the user's terminal. Each command in this group initiates
action in a nonconversational task to accomplish the data transfer, there­
by freeing the user from the need to monitor bulk output.

Table 9. Bulk Output Commands and Their Functions
(The commands are listed in the same order as the command
descriptions that follow.)

Command Function

PRINT Initiate printout of specified data set on high-
speed printer.

PUNCH Initiate transfer of specified data set to
punched cards.

WT Initiate writing of specified data set on mag-
netic tape,
printing.

with tape in format for offline

PRINT Command

This command prints a data set on a high-speed line printer. The
actual printing operation is not a part of the user's task but is per­
formed nonconversationally by a bUlk-output processor task.

Operation Operand

PRINT DSNAME=date set name [,STARTNO=first byte Position]

[,ENDNO=last byte Position]

[

'PRTSP={{E~I}T
~ [, HEADER=H] [LINES=lines per page]

[,ERASE=ERASE J [,ERROROPT = { ACCEPT / SKIP/ END}]

[,FORM=paper form]

['PAGE=P~ 1

DSNAME

identifies the data set that is to be printed, and which must be
defined within the current task by a DDEF command or must be cata­
loged.

Specified as: a fully qualified data set name.

STARTNO

94

specifies the byte position at which printing is to start for each
data set record.

Specified as: one-to-six decimal digits.
System default: printing will start with the first byte of each

record.

ENDNO

PRTSP

specifies the byte position at which printing is to stop for each
data set record; this end byte will be printed.

Specified as: one-to-six decimal digits; must have a value greater
than the STARTNO operand.

System default: printing will continue to the last byte of each
logical record or until the printer line length is reached, which­
ever occurs first.

specifies the number of spaces to be skipped between lines.

Specified as: EDIT -- line spacing will be controlled by a char­
acter in the first byte position of each
data set logical record. The control char­
acters may be USASI or machine code (see
Appendix H), but must be of the same type
throughout the data set. The control char­
acter in each record is user-supplied.

lone space between lines
2 two spaces between lines
3 three spaces between lines

Note: When EDIT is specified, the HEADER, LINES, and PAGE operands
must hot be specified.

System default: 1 is assumed.

HEADER

LINES

PAGE

ERASE

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the entire first record, whichever is smaller, will be used as
the header.

Specified as: H
System default: no header will be printed.

indicates the number of lines to be printed on a page.

Specified as: one-to-four decimal digits; 9999 is the maximum
System default: 54 lines will be printed on each page.

specifies that pages are to be numbered.

Specified as: P
System default: no page numbers will be assigned.

specifies that the cataloged data set is to be erased from the
catalog after the printing operation is finished.

Specified as: ERASE
System default: no erasure will be made.

Part III: Data Management 95

ERROROPT

FORM

designates the action to be taken when an uncorrectable error is
found while reading a data set record. This option applies only if
the data set to be printed is on tape.

Specified as: ACCEPT error record will be accepted
SKIP -- error record will be skipped
END -- print operation will be terminated

System default: END is assumed.

designates the form number of the printer paper to be used.

Specified as: one-to-six alphameric characters.
System default: the installation's standard printer form will be

used.

Functional Description: PRINT creates an independent nonconversational
task, to which the system assigns a batch sequence number for possible
reference by the user. The specified data set is printed as it appears.
Invalid print characters will appear as blanks in the output. Data set
records containing a read error (or an invalid control character, when
the EDIT option is used) will be printed in hexadecimal on SYSOUT. When
the data set resides on seven-track tape, the system makes the character
adjustments required to ensure data validity.

If the user specifies a form number, the system will include that
number in its instructions to the system operator when the printer is
readied for operation.

The data set name specified mayor may not be cataloged. If not, it
is placed in the catalog until printing is completed and then erased,
regardless of the ERASE option; if the data set name is cataloged, the
ERASE option can be used to erase after printing is completed.

When EDIT is specified, the first byte of each logical record is
assumed to be the byte following the control character, which is not
printed and is not counted when determining where to begin printing a
recbrd.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator of the origin of the
record. PRINT translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the
keyboard. Unless the STARTNO operand is specified, this byte is printed
as part of the record. If STARTNO is specified as 2, this byte is by­
passed.

Cautions: If a data set that is affected by the task created by PRINT
is used before the task is finished, the results will be unpredictable.

The PRINT command is valid for BSAM, VSAM, and VISAM data sets only.
It cannot be used to print a member of a VPAM data set. However, a
VPAM member can be copied with the CDS command and then the copy can be
printed.

A BSAM data set must reside on magnetic tape; a VSAM or VISAM data
set must not have undefined format records.

PRINT should not be used for an uncataloged data set that is awaiting
bulk I/O, since PRINT automatically erases an uncataloged data set.

96

Programming Notes: The user may use the batch sequence number to identify
his task when using the CANCEL command.

The user can also obtain a data set suitable for printing by using the
WT command.

Example: The user, wants data set T44.REMOVE to be printed single spaced.
The entire logical record is to be printed; no header or page numbers are
wanted; 54 lines per page are wanted on standard printer forms; and the
data set's catalog entry is not to be erased.

User: print t44.remove
system: (accepts task and assigns batch sequence number)

PUNCH Command

This command punches a previously created, public VAM data set into
cards on a high-speed punch.

Operation Operand

PUNCH DSNAME=data set name [,CBIN=BINARY]

[,STARTNO=first byte Position] [,ENDNO=last byte Position]

[,STACK={112/3/ EDIT}] [,ERASE=ERASE] [,FORM= paper form]

DSNAME

CBIN

identifies the data set, which is to be punched and which must be
defined within the current task by a DDEF command or must be
cataloged.

Specified as: a fully qualified data set name.

specifies punching in column binary format.

Specified as: BINARY
System default: punching will be in EBCDIC.

STARTNO

ENDNO

specifies the byte position at which punching is to start for each
data set record.

Specified as: one-to-six decimal digits.
System default: punching will,start with the first byte of each

record.

specifies the byte position at which punching is to stop for each
data set record; this end byte will be punched.

Specified as: one-to-six decimal-digits, and must be a value
greater than the STARTNO operand.

System default: punching will continue to byte 80 (or, if in
binary, to byte 160) or end of record, whichever occurs first.

Part III: Data Management 97

STACK

ERASE

FORM

specified the stacker select or edit option:

Specified as: 1 - pocket number PI
2 - pocket number P2
3 - pocket number P3

EDIT - the first byte of each data set logical record
contains a control character for stacker selec­
tion. This control character may be either
USASI or machine code (see Appendix H), but must
be of the same type throughout the data set.
The control character in each record is user­
supplied.

specifies that the cataloged data set is to be erased from the
catalog after the punch operation is finished.

Specified as: ERASE
System default: no erasure will be made.

designates the card form number of the cards to be used for punch­
ing.

Specified as: one-to-six alphameric characters.
System d~fault: installation's standard card form will be used.

Functional description: This command results in the creation of an in­
dependent nonconversational task, to which the system assigns a batch
sequence number for possible reference by the user.

The specified data set is punched as it stands, with no code con­
versions. The STARTNO and ENDO options allow selection of any con­
tiguous field of up to 80 bytes of EBCDIC (or 160 bytes of binary) data
from each record of the data set.

Input records containing an invalid control character, when the EDIT
option is used, will be printed in hexadecimal form on system output
(SYSOUT) .

If the user specifies a form number, the system will include that
number in its instructions to the system operator when the card punch
is readied for operation.

The data set name mayor may not be in the catalog. If not, it
is placed in the catalog until punching is completed and it is then
erased, regardless of the ERASE option. If the data set name is already
in the catalog, the ERASE option can be used to erase the data set after
punching is completed.

When EDIT is specified, the first byte of each logical record is
assumed to be the byte following the control character, which is not
punched and is not counted"when determining where to begin punching
the record.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator of the origin of the
record. PUNCH translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the
keyboard. Unless the STARTNO operand is specified, this byte is
printed as part of the record. If STARTNO is specified as 2, this
byte is bypassed.

98

Cautions: If a data set, affected by the task created by PUNCH, is
used before that task is finished, the results will be unpredictable.

The PUNCH command is valid for VSAM and VISAM data sets only. It
cannot be used to punch a member of a VPAM data set. (In the latter
case, the member can be copied via the CDS command and the copy can
then be punched.)

Programming Notes: The user may use the batch sequence number to
identify his task when entering CANCEL command.

When the PUNCH command is used to punch a line data set, and the
punched deck will subsequently be used as card-reader input to the RC
command (issued by the operator) to recreate that line data set, the
line numbers in the original data set should not be punched out. The RC
command always prefixes a line number to each record of a line data set
(see Appendix B).

Example: The user wants to punch characters 24 through 56 of each
EBCDIC record in a data set GHOOTS9 and selects pocket 2. After comple­
tion of punching, the data set is to be saved. The usual card form is to
be used.

User: punch ghoots9,,24,56,2
system: (accepts task and assigns batch sequence number)

WT (WRITE TAPE) Command

This command writes a data set on tape for eventual printing on a
high-speed printer.

Operation Operand

WT DSNAME=current data set name, DSNAME2=tape data set name

[,VOLUME=tape volume nUmber] [,FACTOR=bloCking factor]

[,STARTNO=first byte position] [,ENDNO=last byte position]

[PRTSP= {~r['HEADER=H 1 [,LINEs=lines per page 1 [,PAGE=Pl)]

~ERASE=ERASE]

DSNAME

identifies the data set that is to be written on tape in print for­
mat, and which must already be defined within the current task by a
DDEF command or must be cataloged.

Specified as: a fully qualified data set name.

DSNAME2

specifies the data set name under which the data set is to be cata­
loged while it resides on the output tape.

Specified as: a fully qualified data set name.

VOLUME

specifies the volume identification number of the output tape.

Part III: Data Management 99

Specified as: one-to-six alphameric characters.
System default: scratch tape will be used.

FACTOR

designates the blocking factqr for records of the output tape.

Specified as: one-to-three decimal digits; the maximum blocking
factor is 246.

System default: 30 is assumed

STARTNO

specifies, for each record, the byte position at which writing onto
tape is to start.

Specified as: on-to-six decimal digits.
System default: writing will start with the first byte of each

record.

ENDNO

PRTSP

specifies, for each record, the byte position at which writing onto
tape is to stop. This end byte will be written.

Specified as: one-to-six decimal digits; value must be greater than
the startno operand.

System default: writing will continue to the last byte of each
logical record or until the printer line length (132 characters)
is reached, whichever occurs first.

designates the number of spaces to be skipped between lines.

Specified as: EDIT -- line spacing will be controlled by a char­
acter in the first byte position of each
data set logical record. The control
characters may be USASI or machine code
(see Appendix H), but must be of the same
type throughout the data set. The control
character in each record is user-supplied.

lone space between lines
2 two spaces between lines
3 three spaces between lines

Note: When EDIT is specified, the HEADER, LINES, and PAGE
operands must not be specified.

HEADER

100

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the entire first record, whichever is smaller, will be used as
the header.

Specified as: H
System default: no header will be printed.

LINES

PAGE

designates the number of lines to be printed on a page.

Specified as: one-to-four decimal digits (maximum 9999) .
System default: 54 lines will be printed on each page.

specifies that pages are to be numbered.

Specified as: P
System default: no pages will be numbered.

ERASE

specifies that the cataloged data set is to be erased from the
catalog after the tape operation is finished.

Specified as: ERASE
System default: no erasure will be made.

Functional Description: WT results in the creation of an independent
nonconversational task, to which the system assigns a batch sequence
number for possible reference by the user.

The WT command processes input data sets that were created by using
either VSAM or VISAM access methods. The tape data set, created by
using the BSAM access method, is written in odd-parity with standard
TSS/360 labels.

The selected field in each input data record is written on tape as a
logical record or print line, in proper format for high-speed printing.
Records will be blocked, if requested. The maximum blocked record length
is 32,767 bytes. Input records containing a read-error (or an invalid
control character when the EDIT option is used), are printed on SYSOUT,
in hexadecimal form.

The input data set mayor may not be cataloged. If not, it is placed
in the catalog until writing is completed; then it will be erased, re­
gardless of the ERASE option. If the data set was cataloged, the ERASE
option can be used to erase the data set after writing is completed.

When EDIT is specified, the first byte in each logical record is
assumed to be the byte following the control character, which is not
printed or counted when the system determines where to begin printing a
record.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator of the origin of the
record. PRINT translates the byte to a C if the record was entered
through a card reader, and to a blank if it was entered through the key­
board. Unless the STARTNO operand is specified, this byte is printed as
part of the record. If startno is specified as 2, this byte is by­
passed.

Cautions: If a data set, affected by the task created by WT, is used
before that task is finished, the results will be unpredictable.

WT is valid for VSAM and VISAM data sets only. It cannot be used
for a member of a VPAM data set. However, a VPAM member can be copied
via the CDS command and then the copy can be written onto tape.

Programming Notes: The user can use the batch sequence number to iden­
tify his task when entering the CANCEL command.

Part III: Data Management 101

The user can also have a data set printed on-line by using the PRINT
command.

Example: The user wants to create a tape, for off-line printing, that
is double-spaced and uses the first record as a header. Bytes 20 to 130
of each record of data set RT.WINDER are to be printed on scratch tape.
Pages are to be numbered and contain 60 lines, and the input data set is
to be erased after it is written on tape. The tape data set is not to
be cataloged and will be system blocked.

102

User:
system

wt rt.winder",,20,130,2,h,60,p,erase
(accepts task and assigns batch sequence number)

PART IV: PROGRAM MANAGEMENT

The user can manage his programs with these facilities, available
through commands:

• Language processing
• Program control

The language processing commands enable the user to enter his source
language data sets and have them processed into object modules. He can
change and correct source language statements during processing. The
language processing commands are described in Section 1.

The program control commands enable the user to call and initiate ex­
ecution of object modules stored within the system, alter the paths of
their execution, check their progress at any state of execution, modify
them during execution, and pinpoint errors. These commands are described
in Section 2.

SECTION 1: LANGUAGE PROCESSING

The user initiates source language processing by issuing one of three
commands, listed in Table 10, for the desired language type.

Table 10. Language Processing Commands

Command

ASM

FTN

LNK

ASM Command

(The commands are listed in the same order as the command
descriptions that follow.)

Language Type

assembler language

FORTRAN compiler language

linkage editor

This command invokes the assembler to assemble a source program module.

Operation

ASM

Operand

NAME=module name

[,STORED={ ~ [,LINCR= (first line number ,increment)]}]

[,MACROLIB=<{data definition name of symbolic portion,

data definition name of index portion}[, ...]}]

[,VERID=version identification] [,Isp={YIN}l

[,SYMLIST={Y IN}] [,ASMLIST={Y IN}] [,CRLIST={yIN}l

[,STEDIT={Y/N}l [,lSDLIST={yIN}] [,PMDLIST={yIN}]

Part IV: Program Management 103

NAME
identifies the object module to be
module (i.e., source language data
have named it SOURCE.name
If it is not prestored, the system
to the source program module name.
matically be named LIST.name(O)

created. If the source program
set) is prestored, the user must

will automatically prefix SOURCE.
The listing data set will auto-

Specified as: the part of the source program module name that
follows SOURCE., if the source program is prestored; otherwise,
anyone to eight alphameric characters, the first of which must
be alphabetic. The object module name must be unique to the
library in which it is stored; i.e., the module name must not be
identical to other external entry points in that library.

STORED
specifies whether or not the source program module is prestored.

Specified as: Y - source program is prestored.
N - source program is not prestored.

System default: N is assumed.
When N is specified or STORED is defaulted, the user can specify

the LINCR operand.

LINCR
specifies the line number to be assigned to the first line of the
source language data set and the increment to be applied to suc­
ceeding line numbers.

Specified as: two three- to seven-decimal-digit numbers, sep­
arated by a comma and enclosed in parentheses; the last two
digits in each number must be Os.

System default: (100,100) is assumed.

MACROLIB

VERID

ISD

104

specifies the data definition name of the symbolic portion of the
supplementary macro library to be used, and the data definition
name of the index portion of that library. Both names must have
been defined by a DDEF command within the current task. The user
can specify a maximum of six libraries (i.e., six pairs of data
definition names) which are searched in the opposite order in which
they were specified; the system macro library is automatically made
available to the user and is searched last.

Specified as: the data definition names defined in the previous
DDEF commands.

System default: only the system macro library is used.

specifies the version identification to be assigned to the object
program.

Specified as: one- to eight-alphameric characters, the first of
which is alphabetic.

System default: the listing and the object modules are time stamped.

specifies whether an internal symbol dictionary (ISD) is to be
produced.

Specified as: Y - ISD is produced.
N - no ISD is produced.

System default: Y is assumed.

SYMLIST
specifies whether a symbolic source program listing is to be
produced.

Specified as: Y - listing is produced.
N - listing is not produced.

System default: N is assumed.

ASMLIST
specifies whether an object program listing is to be produced.

Specified as: Y - listing is produced.
N - listing is not produced.

System default: Y is assumed.

CRLIST
specifies whether a cross-reference listing is to be produced

Specified as: Y - cross-reference listing is produced.
N - cross-reference listing is not produced.

System default: N is assumed.

STEDIT
specifies whether the edited symbol table is to be listed.

Specified as: Y - edited symbol table is listed.
N - edited symbol table is not listed.

System default: N is assumed.

ISDLIST
specifies whether an ISD listing is to be produced.

Specified as: Y - ISD listing is produced.
N - ISD listing is not produced.

System default: N is assumed.

PMDLIST
specifies whether a program module dictionary (PMD) listing is to be
produced.

Specified as: Y - PMD listing is produced.
N - PMD listing is not produced.

System default: N is assumed.

Functional Description: See "General Notes for Language Processing
Commands," later in this section.

Examples:

1. The user wants a prestored source program (named SOURCE.TIP9)
assembled, and he wants the ISD and a source program listing. The
system macro instruction library is to be used:

User:
system:

User:
system:

asm tip9, Y , , ,y
(acknowledges receipt of the command; asks if modifica­
tions will be made)

n
(initiates language processing)

Part IV: Program Management 105

2. The user wants to process a prestored source program (named SOURCE.
SRC) that is written in assembly language. He wants to make correc­
tions, where required, and wants only a source program listing. The
system macro instruction library is used:

User:
system:

User:
system:

asm src,y,symlist=y,asmlist=n,isd=n
(asks if modifications will be made)

y
(types # to invite the user's corrections)

Sys,User: # 900,namea 1 14,asymb
820, bc 15, namea

User:
system:

User:
sy5;"user:

System:

User:
system:

User:
system:

(presses RETURN key to end corrections)
(inquires if there are further modifications)

y
800, be namea
1025, dc a (namea)
1025, anamea dc a (namea) (corrects above insertion)
(user presses RETURN key)
(requests further modifications)

n
(inquires whether to continue processing)

y
(informs user of processing results)

.3. The user wants to create his own macro instruction library for use
with the assembler. The data definition name of the macro instruc­
tion library VISAM data set must be SOURCE; the data definition
name of the macro instruction library index VSAM data set must be
INDEX. The index is created to facilitate reference to the library
by use of an IBM-utility program, SYSINDEX.

106

User: ddef source,vi,mylib
data mylib,i

Sys,User: 100)macrol

User:

System:

User:

700)macro2

1600 %e

ddef index,vs,myndx

call sysindex

(asks user to submit control
statements)

header=) ,length=8
asm myprog, macrolib=­
(source, index)

(User creates a VISAM
data set; will use) as
header flag character)

(line 100 is header of
macrol; lines 200
through 600, which are
the text of macrol, are
not shown)

(line 700 is header of
macro2; lines 800
through 1500, which are
text of macro2, are not
shown)

(User defines macro
instruction library
index and calls SYSINDEX)

(User assembles his
program)

FTN Command

This command invokes the FORTRAN compiler and compiles a source pro­
gram module.

Operation Operand

FTN

NAME

NAME=module name

(,STOREO={~ [,LINCR=(first line number, increment)]}]

[, VERIO=version identification] [, ISO= {Y\ N}]

['SLIST={Y\N}] [,OBLIST={yIN}] ['CRLISTi Y N}]

[,STEOIT={Y IN}] [,MMAP= {Y IN}] [BCO= {Y IN}] [,PUBLIC= {Y IN}]

identifies the obj¥ct module to be
module (i.e., source language data
have named it SOURCE.name
If it is not prestored, the system
to the source program module name.
matically be named LIST.name(O)

created. If the source program
set} is prestored, the user must

will automatically prefix SOURCE.
The listing data set will auto-

Specified as: the part of the source program module name that
follows SOURCE., if the source program is prestored; otherwise,
anyone to eight alphameric characters, the first of which must
be alphabetic. The object module name must be unique to the
library in which it is stored; i.e., the module name must not be
identical to other external entry points in that library.

STORED

VERIO

ISO

specifies whether or not the source program module is prestored.

Specified as: Y - source program is prestored.
N - source program is not prestored.

System default: N is assumed.
When N is specified or STORED is defaulted, the user can specify

the LINCR operand.

LINCR
specifies the line number to be assigned to the first line of
the source language data set and the increment to be applied to
succeeding line numbers.

Specified as: two three- to seven-decimal-digit numbers separ­
ated by a comma and enclosed in parentheses; the last two
digits in each number must be Os.

System default: (100,100) is assumed.

specifies the version identification to be assigned to the object
program module.

Specified as: one-to-eight alphameric characters, the first of
which is alphabetic

System default: the listing and the object modules are time-stamped.

specifies whether an internal symbol dictionary (ISO) is to be
produced.

Part IV: Program Management 107

Specified as: Y - ISD is produced.
N - ISD is not produced.

System default: Y is assumed.

SLIST
specifies whether a source program listing is to be produced.

Specified as: Y - source program listing is produced.
N - source program listing is not produced.

System default: Y is assumed.

OBLIST
specifies whether an object program listing is to be produced.

Specified as: Y - object program listing is produced.
N - object program listing is not produced.

System default: N is assumed.

CRLIST
specifies whether a cross-reference listing is to be produced.

Specified as: Y - cross-reference listing is produced.
N - cross-reference listing is not produced.

System default: N is assumed.

STEDIT

MMAP

BCD

specifies whether the edited symbol table is to be listed.

Specified as: Y - edited symbol table is produced.
N - edited symbol table is not produced.

System default: N is assumed.

specifies whether a memory map is to be produced.

Specified as: Y - memory map is produced.
N - memory map is not produced.

System default: N is assumed.

specifies whether input contains the BCD (binary coded decimal)
form of special characters.

Specified as: Y - input contains BCD form of special characters.
N - input does not contain BCD form of special

characters.

System default: N is assumed.

PUBLIC
specifies whether the object module created has a public (rather
than private) CSECT attribute.

Specified as: Y - module has public CSECT attribute.
N - module does not have public CSECT attribute.

System default: N is assumed.

Functional Description: See "General Notes for Language Processing
Commands," later in this section.

108

Example:

The user wants to enter FORTRAN source language statements from his
terminal. The object module is to be named RAADER; the starting line
number and the increment are 100. Source program, object program, and
cross-reference listings are requested.

User:

System:

ftn raader,oblist=y,crlist=y,isd=n

(requests each line by typing line number at the terminal,
starting with 100)

Sys',User: 100 (10,5) a

System:

User:
sys:E"em:

User:
sys:E"em:

200 5 format (F6,2)
300 b=atl
400 write (20,5)b
500 stop
600 end

(inquires if there are further modifications)

n
(inquires if processing is to continue)

y
(continues compilation)

LNK Command

This command invokes the linkage editor to link edit one or more
object modules.

Operation Operand

LNK

NAME

NAME=module name

[,STORED={~[,LINCR=(first line number, increment)]}]

[,LIB=data definition{name of library] [,~RID=verSion
identification] [,ISD= YIN}] [,PMDLIST={yIN]

identifies the object module to be created. If the source program,
consisting of the control statements that direct the linkage editor,
is prestored, the user must have named it SOURCE.name
If it is not prestored, the system will automatically prefix SOURCE.
to the source program module name. The listing data set will auto­
matically be named LIST.name(O)

Specified as: the part of the source program module name that fol­
lows SOURCE., if the source program is prestored; otherwise,
anyone to eight alphameric characters, the first of which must
be alphabetic. The object module name must be unique to the
library in which it is stored;'i.e., the module name must not be
identical to other external entry points in that library.

STORED
specifies whether or not the source program is prestored.

Specified as: Y - source program is prestored.
N - source program is not prestored.

System default: N is assumed.

When N is specified or STORED is defaulted, the user can specify
the LINCR operand.

Part IV: Program Management 109

LIB

VERID

ISD

LINCR
specifies the line number to be assigned to the first line of
the source language data set and the increment to be applied to
succeeding line numbers.

Specified as: two three- to seven-decimal-digit numbers separated
by a comma and enclosed in parentheses. The last two digits
in each number must be Os.

System default: (100,100) is assumed.

identifies the library in which the new object module is to be in­
cluded.

Specified as: the data definition name of the library.

System default: The last-mentioned library is assumed (i.e., the
user library or a job library) .

specifies the version identification to be assigned to the object
program.

Specified as: one-to-eight alphameric characters, the first of
which is alphabetic.

System default: the listing and the created modules are time­
stamped.

specifies whether an internal symbol dictionary (ISD) is to be
produced.

Specified as: Y - ISD is produced.
N - ISD is not produced.

System default: Y is assumed.

PMDLIST

specifies whether a program module dictionary (PMD) listing is to be
produced.

Specified as: .Y - PMD listing is produced.
N - PMD listing is not produced.

System default: N is assumed.

Functional Description: See "General Notes for Language Processing
Commands," below.

Examples:

1. lnk abcd,n

110

The user wants to link edit modules into an object module named
ABCD. Conversationally, he will enter all LNK operands and linkage
editor control statements from the terminal. The linkage editor
takes default values for the last five operands, which designate a
starting line number and increment of 100, the module to be placed
in the library currently at the top of the user's program library
list, the listing to be time-stamped, an lSD, and no PMD listing.

2. lnk abcd,y,lincr=(lOOO,500) ,wxyz,verid=qxr,y

The task described in example 1 is run conversationally with a
prestored set of linkage editor control statements. He wants the
object module placed in his own library named WXYZ.

General Notes for Language Processing Commands: The operands to be en­
tered for each of the language processing commands are dependent upon
whether the source program module (i.e., the data set containing source
language statements) is prestored, and on the options selected by the
user.

To be acceptable for language processing, a prestored source program
must have line organization and must have been named SOURCE.name
Source programs are automatically cataloged and retained by the system.

When source statements are submitted conversationally, or when they
form part of the prestored SYSIN of a task, a source program will be
constructed with line organization. Each physical line input to the
system, either as a single card or as a single record of the line data
set, becomes a physical record of the line data set (input length is
limited to 120 characters). Continuation conventions for combining two
or more physical records into a single logical statement for a language
processor are specified by that processor.

From the user's standpoint, source language processing proceeds in
one of four ways:

1. The task is nonconversational and the source program is prestored.
The language processor picks up the source statements, line by line,
and processes them. No corrections are made; any diagnostic mes­
sages are written for later reference by the user.

2. The task is nonconversational and the source program and the com­
mands governing language processing appear, line by line, on SYSIN.
In this case, a new source program is created as lines are read
from SYSIN. A line number is prefixed to each line to serve as the
key by which the line can later be identified. Any diagnostic mes­
sages are written for later reference by the user. The new program
can be modified later.

3. The task is conversational, with a prestored source program. Suc­
cessive lines from the source program are read and processed by the
language processor. After all diagnostic messages for a single
statement are available, they are written at the terminal and the
user is invited to enter corrections. To indicate to the user that
he can enter corrections, the system types a number sign (#) at the
beginning of a new line and the keyboard is unlocked. The user may
then enter a correction line, the first part of which is the line
number that identifies the line being corrected, followed by a comma
and the contents of the line:

#500, DC A (EXAMPLE)

This correction line is stored in the program, either as an inser­
tion line or as a replacement line, and the system requests the next
correction line by issuing #. To delete one or more lines, the user
types, following #:

D, line number

or

D, first line number, last line number

Part IV: Program Management 111

Such corrections change the source program permanently. To end cor­
rections, the user presses the RETURN key in response to #. The
correction lines are then processed by the language processor, and
if no corrections are required for these, the next line is taken
from the source program for processing.

4. The task is conversational and. the user enters his source state­
ments from the terminal (i.e., the source program is not prestored).
The language processor, when ready for a source language line,
writes a line number at the terminal, inviting the user to enter a
line. The line the user types is stored in the source program being
created, and is also passed to the language processor. The user can
modify previously entered statements by typing after the system­
issued line number:

% line number

and then continuing with the contents of his insertion or replace­
ment line. He can delete a line or lines by typing after the sys­
tem-issued line number:

% D, line number
% D, first line number, last line number

The % identifies the line as a correction or deletion. When the
user enters the next normal line (i.e., not prefixed by #), the
previously collected modifications are sent to the language proc­
essor, and the normal line is stored in the source program. This
line will then be picked up when the language processor has finished
working on the modifications.

If the user modifies a statement that has already been handled by
the language processor, compilation will restart automatically.
For a more detailed description refer to Assembler Programmer's
Guide, FORTRAN Programmer's Guide and Linkage Editor.

When the language processor issues a diagnostic message, the con­
versational user will be prompted with # to enter corrections. He
can then enter insertions, replacements, and deletions as described
for a conversational task with a prestored source program. He will
continue to be prompted for corrections until he presses the RETURN
key as the response to the # request; at that point he will be in­
vited to enter his next source statement line.

The language processors indicate the number of a line that is in
error, but do not issue the line itself. If the user wants to see the
actual content of the line, he

1. Presses the ATTENTION key to interrupt source language processing,
2. Invokes the text editor and accesses the line in question,
3. Reissues the language processor command and resumes processing.

When the entire source program has been collected, the language proc­
essor finishes its analyses of source statements and may issue more
diagnostic messages. In FORTRAN or assembler language and linkage editor
processing, the processor asks the user (if he is in conversational mode)
whether he wants to make modifications and restart, continue processing,
or terminate processing.

When the user wants to continue, the next phase of the language proc­
essor is executed. The user is then informed, if no errors were found
that prevented the processor from producing an object program module.

Finally, the object module is stored in the user's library (USERLIB),
unless he has defined a job library. If the object module is to be
stored in a library other than USERLIB, this library must be defined by

112

the user in his current task before he initiates source language proc­
essing. For the FORTRAN or assembler user, this library must be his
most recently defined library. Supplementary macro instruction libraries,
used during assembly, must also be defined before language processing is
initiated. For additional information concerning definition of these
libraries see the Assembler Programmers Guide or FORTRAN Programmers
Guide.

If the linkage editor is the language processor, it places the object
module in the library specified in its input operands. (Listing formats
are shown in the Linkage Editor manual.)

The user has complete control of the listings that are printed. The
system action for the listing data set varies, depending on whether or
not the symbol given as the module name has been previously used or not.
When this assembly, compilation, or link edit is the first one in which
the symbol is used, the system establishes, in the user's catalog, a gen­
eration data group, called LIST.symbol, which will maintain two genera­
tions. The system also specifies that when the number of generations
exceeds two, the oldest generation is to be erased. When the listing
data set for the current run has been produced, the system catalogs it
and makes it a new generation of the LIST.symbol generation data group.

When the symbol has been used previously as a module name, the system
determines this and, knowing that a generation data group already exists,
adds the listing as a new generation to the existing generation data
group. Example: The third listing data set for a given symbol would
become the latest generation (0); the second listing would become the
(-1) generation; and the first listing would be erased.

Programming Notes: The user can change the number of generations main­
tained in the generation data group associated with a given symbol.
Assume he has been working with a module called MYPROG, and that he cur­
rently has two generations in his LIST.MYPROG generation data group. He
could then change the number of generations maintained in LIST.MYPROG.

1. Temporarily catalog the two generations as separate data sets (for
this example MYPROGl and MYPROG2) .

catalog list.myprog(O) ,u"myprogl
catalog list.myprog2(-1) ,u"myprog2

2. Delete the system-defined generation data group, LIST.MYPROG.

delete list.myprog

3. Define a new generation data group called LIST.MYPROG with, for
example, five generations.

catalog gdg=list.myprog,5,o,e

4. Add the two temporarily cataloged generations to the new
LIST.MYPROG generation data group.

catalog myprog2,u"list.myprog(+1)
catalog myprogl,u"list.myprog(+l)

After the second CATALOG command is issued, MYPROGl becomes the latest
(0) generation and MYPROG2 becomes the (-1) generation; three more gen­
erations can be stored before MYPROG2 will be erased.

To obtain a printout of the desired listings after language processing,
the user issues a PRINT command with a data set name

LIST.symbol(O) for the latest listing, or

LIST.symbol (-1) for the last previous listing, if two generations
were specified.

Part IV: Program Management 113

The user can let the automatic erase logic associated with the gen­
eration data groups remove his unwanted listings. Or, he can issue the
ERASE command or the ERASE option in the PRINT command to remove one or
more generations.

114

SECTION 2: PROGRAM CONTROL

Program control commands provide the user with great flexibility for
interacting directly with the execution of his programs. These commands,
and the system functions they request, are shown in Table 11.

Table 11. Program Control Commands and Their Functions
(The commands are listed in the same order as the
command descriptions that follow later in this section.)

Command

LOAD

UNLOAD

CALL

RUN

GO

REPEAT

BRANCH

AT

REMOVE

IF

SET

DISPLAY

DUMP

QUALIFY

STOP

Function

Place an object module in user's virtual storage
without initiating execution.

Remove specified object module from user's virtual
storage.

Load and pass parameters to an object module and
execute.

Initiate execution of loaded object module, resume
execution of interrupted program; load and initiate
execution of object module. (Restrictions on use of
RUN will be given in its co.mmand description.)

Resume execution of previously interrupted program.

After attention interruption, repeat last nonprompt­
ing message.

Dynamically change control path of program or re­
sume execution at different location.

Inform user when execution of program has reached
designated instruction location; or make follow­
ing statement dynamic.

Selectively delete previously entered dynamic
statements (i.e., those that include AT).

Make following statement conditional.

Change contents of machine registers, values of
program variables, virtual storage locations, or
command symbols.

Present values of variables, contents of machine
registers and specified virtual storage locations
to user's SYSOUT.

Present values of variables, contents of machine
registers and specified virtual storage locations
to task's PCSOUT data set.

Allow user to designate, before referring to group
of internal symbols, program in which specified
symbols are defined; thereafter, no need to ex­
plicitly qualify symbols.

Interrupt execution of user's program and display
instruction location or FORTRAN statement number
where interruption was handled.

Part IV: Program Management 115

Caution: Some of these commands are restrictive in the class of virtual
storage they reference. The user may use all of these commands to refer­
ence his control sections that have been assigned to private read/write
storage. However, a control section that has the read-only attribute,
may be referenced in all the commands except SET. Public nonprivileged
CSECTs may be displayed (via DISPLAY) or dumped (via DUMP), but the user
cannot reference a public CSECT in a SET or AT command. A user may
never symbolically access nonprivileged or privileged system CSECTs. Any
violation of these restrictions will result in a diagnostic message and
rejection of the command.

However, if a CSECT having a system or privileged attribute is loaded
from the user library (USERLIB) or a job library (JOBLIB), all attributes
are ignored. Private read/write storage will be assigned to the CSECT,
and the system will not recognize any of the above restrictions.

The user can employ program control commands to:

• Explicitly and implicitly load and unload his programs;

• Initiate execution of his programs;

• Request output of the contents of data fields, instruction loca­
tions, and registers at any time during execution of his program;

• Modify instructions and variables within his program, at any stage
of execution;

• Specify locations within his program where execution is to be
stopped or started; when execution has been stopped, the user can
issue additional commands before he resumes execution;

• Establish logical (i.e., true or false) conditions that allow or
inhibit execution of other commands;

• Perform arithmetic computations.

Use of Command Statements

Program control commands are often conveniently expressed in command
statements. For purposes of this discussion, three types of command
statements will be considered: dynamic, immediate, and conditional
statements.

Dynamic Statement: This is a command statement that contains an AT,
which should appear first in the statement and should be the only one
in the statement. Commands that precede AT in the statement are executed
immediately; commands that follow AT are not executed until control
arrives at the instruction location designated by the AT command. Only
these commands can follow AT in a dynamic statement:

BRANCH GO

CALL IF

DISPLAY SET

DUMP STOP

If any other command appears in a dynamic statement, a diagnostic
message is issued. Several dynamic statements can be effective at the
same instruction location; the statements are processed in the order in
which they were issued.

116

Immediate Statement: This is a command statement that does not contain an
AT. Immediate statements are executed when they are entered. Any com­
mand, except AT, may appear in an immediate statement.

Conditional Statement: This is a command statement that contains an IF.
Both immediate and dynamic statements can be conditional. The condition
that IF specifies must be satisfied before the commands that follow are
executed. Commands preceding the first IF command are executed without
regard to IF. When more than one IF appears in a conditional statement,
they will be evaluated as if they were joined by a logical AND. Any
command may appear in a conditional statement.

Program Control Applications

To load an object module, the user can issue a LOAD or CALL command,
or he can issue a direct call. The loading of one module may cause
another module, which is implicitly referenced by the first module, to
be loaded. Example: When a LOAD command is issued for module PGMA, which
implicitly references module PGMB, PGMB is also loaded.

Following LOAD, the user may enter immediate command statements to
alter the program before execution begins, or dynamic statements to alter
the program during execution. The CALL command or direct call initiates
execution for a loaded module, or loads and executes an unloaded module.
To modify a program after it has been called (via CALL or direct call) ,
the user presses the ATTENTION key and then enters his command state­
ments. This procedure is not recommended for use of dynamic statements,
since execution may have progressed past the point referenced by the AT
command. He resumes execution with the GO or BRANCH commands.

When the user references an external symbol in a program that is not
loaded, the program is loaded and the user can proceed as if he had
entered the LOAD command. When the user references an external symbol
that is not in any of the programs in the libraries available to him, the
symbol is assumed to be a command symbol, which was defined via the SET
command. A command symbol referenced in any other command is treated as
a data reference to the last definition of the command symbol.

After execution has ended, the user can again issue command state­
ments, or restart execution from a specified entry point, by using the
CALL command.

The user can refer to internal program symbols in any loaded object
module for which he requested an internal symbol dictionary (ISD) when
that module was compiled or assembled; otherwise, he can reference only
external symbols.

Dynamic statements remain enforced until a REMOVE command deletes
them or until a program referenced by a dynamic statement is unloaded.
A program is unloaded by an UNLOAD command, or when the only program that
references it is unloaded. For example, if the loading of PGMA caused
PGMB to be loaded, unloading PGMA would cause PGMB to be unloaded if
PGMA was the only loaded module that referenced PGMB.

Note: If PGMA was referenced in any program control command, unloading
PGMA would remove all dynamic statements that referred to it during the
session. If PGMA is not referenced in a program control command, but
PGMB is, all dynamic statements referencing PGMA are removed only if
PGMA is also unloaded. A diagnostic message is issued when dynamic
statements are removed becauSe a module is unloaded.

Types of Address Specification

The user has broad addressing capabilities for referencing his pro­
grams by using variables and constants as operands for the program con­
trol commands.

Part IV: Program Management 117

VARIABLES: These are designated by their symbolic names, hexadecimal
locations, or by register numbers.

1. Symbols: Program control commands use either external, internal, or
command symbols •

118

• External Symbols are defined within a program for reference at
load or execution time. 'FORTRAN COMMON block names, function
names, subroutine names, and the names of assembler language
ENTRY and CSECT statements are external symbols. Example: An
assembler program named PGM has these characteristics:

2 control sections, named PGMCS and PGMPS

2 ENTRY statements, named PGMEP and PGMEX. Then, these are
valid external symbols:

PGM
PGMCS
PGMPS
PGMEP
PGMEX

Four external symbols are assigned to every FORTRAN object module:

module name
CSECT name
PSECT name
module entry point

(e.g., FTNPGM)
(e.g., FTNPGM#C)
(e.g., FTNPGM#P)
(e.g., FTNPGM#E)

In program control commands, any of the external symbols may be
referenced and, also, any function, subroutine, or COMMON block
names. Variables referenced by external symbols have undefined
type attributes .

• Internal symbols are defined within a single assembly or com­
pilation; FORTRAN statement numbers, FORTRAN data names, and sym­
bols defined by the assembler statements are internal symbols.
However, symbols defined by the assembler SET statement may not
be used in program control commands.

The user may refer to internal symbols only if he requested an
internal symbol dictionary (ISD) when his program was assembled
or compiled. Also, he must qualify each internal symbol to
specify the program in which the symbol was defined.

Note: When an ISD is requested for a FORTRAN compilation,
optimum code is not generated.

An internal symbol is qualified explicitly by preceding it with
the name of the program in which it was defined and by following
the program name with a period. When the defining program has
not been processed by the linkage editor, only one level of
qualification is required. Thus, for internal symbol IOSR de­
fined in program PGM, the qualified symbol is:

PGM.IOSR

When the defining program has been processed by the linkage
editor, two levels of qualification are required. The name of
the program output by the linkage editor (first level) is fol­
lowed by a period, the original name of the defining program
(second level), and the internal symbol. Thus, for internal
symbol IOSR, defined in program PGM, which has been processed by

the .linkage editor into new program LEPGM, the qualified symbol
is:

LEPGM. PGM. IOSR

An internal symbol may also be qualified implicitly, if its
reference has been preceded by a QUALIFY command containing the
necessary qualification. If internal symbol ABX has been de­
fined in program PGMA, and a QUALIFY PGMA command has been
entered, the internal symbol may be implicitly qualified only by
ABX.

Note: If a program processed by the linkage editor contained
an-Internal symbol which was identical to an external symbol
in another program, explicit qualification is necessary to
reference the internal symbol.

• Command Symbols are independent of the user's program and are
defined by a SET command, which designates a symbol that the
system cannot recognize as either an internal or external sym­
bol. For example, in the command SET R = 5, if R is neither an
external or internal symbol, the system designates R as a com­
mand symbol with a value of 5. The command symbol may now be
referenced or modified by subsequent program control commands.

When a command symbol has been defined, it is addressable for
the user's entire terminal session; it will not be affected by
unloading one of his programs. The command symbol may be re­
tained for future terminal sessions by using the PROFILE command
(see Part V, "User Profile Management") .

Note: If a program is loaded after a command symbol is defined,
and the command symbol is identical to an internal or external
symbol in the program, the command symbol is not recognized
until that program is unloaded.

• %CSECT and %COM are two special symbols that may be used to refer
to the unnamed assembler language control section and the FORTRAN
blank COMMON, respectively. %CSECT may be used only as an inter­
nal symbol; %COM, as either an internal or external symbol.

• FORTRAN Statement Numbers are written by the user in the original
source program, and should not be confused with the line numbers
that are assigned to each source line by the compiler. State­
ments must be referred to by their numbers, not by line numbers.
Executable statement numbers, used as internal symbols, can be
incremented to refer to unnumbered statements. The increment
must be an integer greater than 0, enclosed in parentheses, that
immediately follows the statement number. The increment desig­
nated by (1) refers to the numbered statement itself. Therefore,
86(1) refers to numbered statement 86; 86(2) refers to the next
executable statement following statement 86.

Executable statements are arithmetic and logical assignment state­
ments, control statements, and input/output statements. Non­
executable statements are specification statements and subpro­
gram statements; they should not be incremented.

Examples of FORTRAN statements:

10
20

READ (1,20)A
FORMAT (F6.2)
B = A*3.14
WRITE (2,20)A,B
GO TO 10

Part IV: Program Management 119

120

The third statement (B = A*3.l4) is referenced by using 10(2).
The FORMAT statement cannot be incremented since it is not exe­
cutable.

Statement numbers refer to a statement's first line and any of
its continuation lines; continuation lines should not be desig­
nated when using incremented statement numbers.

The integer 0 may be used to refer to a program's first executa­
ble statement when that is unnumbered. In the preceding example,
if the READ statement were unnumbered, 0 could be used to refer
to it; 0(2) would then refer to the second executable statement
(B = A*3.l4) .

• Subscripted Symbols are internal symbols that refer to elements
with an array. A subscript to an internal symbol must be one of
these:

• integer constants
• integer variables
• integer arithmetic expressions

Symbols used in subscripts may also contain subscripts; and sub­
script symbols may also contain offsets. However, the data ulti­
mately referenced by the subscript symbol must be an integer.
Five levels of nesting (subscript and subscript, subscript and
offset, offset and offset) are allowed.

The subscript is enclosed in parentheses, following the internal
symbol naming the array. One subscript may be used for each
dimension of the array; multiple subscripts are separated by
commas. A diagnostic message is issued if an evaluated subscript
is not positive, an integer, 0, or is larger than the dimensions
defined for the array.

Examples:

1. This two-dimension array contains three rows and five col­
umns, and is defined by the internal symbol ARRAY.

2 0 -7 5 13

-2 1 15 -6 8

0 1 3 9 -5

ARRAY (2,4) refers to the array element at the intersection
of row 2 and column 4 .

ARRAY (2,4) -6

ARRAY (4,4) would be invalid since it is outside the array.

2. Consider this subscripted symbol:

ARRAY (ARRAY (l,l),ARRAY (3,3))

The subscript contains subscripted symbols that must be re­
solved first.

ARRAY (1,1) 2
ARRAY (3,3) 3

When these values are substituted in the original expression,

ARRAY (2,3) 15

3. Assume this table is defined by the symbol TABLE, and each
item in the table contains a length attribute of 1.

TABLE 5
TABLE+l 3
TABLE+2 1
TABLE+3 4
TABLE+4 2

Now consider:

ARRAY (ARRAY (TABLE. (1) ,TABLE. (4»,ARRAY(TABLE. (2) ,TABLE. (3»)

This subscripted symbol has a subscript with an offset,
nested within the subscript. Evaluation of the subscripted
symbol starts inside the nesting and works outward.

substituting:

TABLE. (1)=3
TABLE. (4)=2
TABLE. (2)=1
TABLE. (3)=4

ARRAY(ARRAY(3,2) ,ARRAY(1,4»

reduces the expression to one similar to Example 3. The
final value is determined by continuing the process,

ARRAY (1,5) = 13

4. The subscripted symbol to be evaluated is

ARRAY (l+X/Z,X-Y*Y)

Assume that X=6, Y=2, Z=4.

The arithmetic expressions must be evaluated first.

l+X/Z 1+6/4 1 + 1 2

X-y*y 6-2*2 6 - 4 2

Therefore the expression reduces to

ARRAY (2,2) 1

Note: FORTRAN dimension variables and symbols, defined by assembler
language DC or OS statements with duplication factors or multiple
constants, are arrays. An array that is a dummy argument to a
FORTRAN subprogram may be subscripted; the dimension of the array
is defined in the subprogram. When an array has an adjustable
dimension value, the value established at the latest execution of
the subprogram is used. Assembler arrays are limited to a single
dimension that is equal to the duplication factor multiplied by the
number of multiple constants •

• Offsets reference a specific byte following a symbolic address.
An offset of 1 references the next byte beyond the symbolic ad­
dress. The number of bytes that constitute the offset is writ­
ten after the symbol and its offset. The form is symbol, period,
left parenthesis, offset, comma, number of bytes, right paren­
thesis:

SYMBOL. (OFFSET,LENGTH)

Part IV: Program Management 121

122

Length must be a positive integer. An offset may be one of the
following:

• integer, hexadecimal or address constant
• integer or hexadecimal variable
• integer or hexadecimal arithmetic expression

The rules for nesting offsets are the same as for subscripts.
However, a symbol cannot have both a subscript and an offset.

Thus

TAG. (ARRAY (2 , 3))

is a symbol with offset and is legal, but

TAG. (4) (ARRA Y (2 , 3))

describes an invalid symbol that has both a subscript and an
offset at the same nesting level.

Examples:

1. The 27th byte beyond DATA would be expressed as

DATA. (27)

or

DATA. (X'lB')

If four bytes are to be attributed to the data at the 27th
byte from DATA

DATA. (27,4) or DATA. (X'lB',4)

2. The user may readily reference data in a dummy control sec­
tion (DSECT) by using the register offset. Assume general
register 5 contains the address of the DSECT, and the field
to be referenced has the symbol DATA associated with it in
the DSECTi the location desired is

DATA. (5R)

Again, explicit length may be supplied

DATA. (5R, 8)

3. A four-byte field that is the 20th fullword field in a table
whose address is A'DATA' .

• (A'DATA'+20*4,4)

Note that the symbol to the left of the period is not re­
guired and is assumed to be location 0 if unspecified.

4. Assume the user's CSECT has address constant X that is the
address of an entry in table Y, which contains a table-Z
address that has the address of data D. The user can ac­
cess D directly:

• (. (. (. (X) ,4) ,4) ,8)

The sequence of events, from inside to outside of the ex­
pression, is shown in this schematic:

X DC A'Y'

~le y Table Z Data

:1 : :
1: L8l~:

Thus

• (X) is the A'y'

and the expression becomes

• (• (• (A' y' ,4) , 4) , 8)

xxxxxxxx

xxxxxxxx

xxxxxxxx

12345678 (D)

and. (A'Y',4) has a value equivalent to A'Z+8'

· (. (A' Z+8 ' ,4) ,8)

and at . (A'Z+8',4) assume a pointer to D, say A'D'

• (A' D' ,8)

and the final step yields the data

12345678

Note: When offsets are used with internal symbols, the referenced
data has an undefined type attribute. A length attribute of one
byte is assumed if an explicit length is not specified. The offset,
when added to the location of an external symbol, must not refer­
ence a control section other than the one to which the symbol be­
longs.

5. It is possible to achieve a full virtual storage dump by
specifying the range from location 0 to FFFFFF as offsets in
the operand field of the DUMP command. Example:

dum p . (x ' 0 ') : • (x ' f f f f f f ')

or

dump. (a'chbisa'):. (a'cevpas')

2. Hexadecimal Locations: These may be used in program control commands
to refer to the contents of locations. The hexadecimal address of
the location referred to is enclosed in apostrophes and preceded by
L. The referenced virtual storage location must have been assigned
to the user's storage.

Examples of hexadecimal addresses:

L'BOOO'
L' 9FECO'
L'9l00'
L'8A36C2l4'

Part IV: Program Management 123

3. Registers: The user can use program control commands to refer to any
of the general or floating-point registers. A reference to a gen­
eral register is written as nR; n is a positive integer, less than
16, that identifies the register.

A reference to a single-precision floating-point register is written
as nE, n = 0, 2, 4, or 6 .. A double-precision floating-point regis­
ter is referenced by writing nD; n=O, 2, 4, or 6.

Examples of register references:

3R general-purpose register 3
2E floating-point register 2, single-precision
6D floating-point register 6, double-precision

4. Counter: A counter, associated with each dynamic statement, is in­
cremented by 1 for each occurrence of the events specified in the
statement. This counter must be referenced by the special char­
acter %. The value of the counter may be displayed or dumped; and
can be used in forming expressions. The counter referred to must
be the one associated with the statement in which it is referenced.
Since % is not a user's variable, it cannot be changed by a SET
command.

CONSTANTS: Five classes of constants are used in program control com­
mands: integer, character, hexadecimal, floating-point, and address
constants.

1. Integer Constant may be written as an optionally signed decimal
integer. The length of an integer constant i~ not explicitly de­
fined, but is determined from the expression in which the constant
occurs. If the value of the number exceeds the permissible size,
as determined by context,the number is truncated on the left.

Examples of integer constants:

9327
-641
+1066
-67

2. Character Constant consists of letters, decimal digits, and special
characters, enclosed in apostrophes. Also, any remaining unused
combinations of the 256 valid card-punch combinations may be desig­
nated as a character constant. An apostrophe, used as a character
in a character constant, must be represented by two apostrophes,
even though only one will be put in storage. If the length of the
constant is not appropriate, in the context used, the constant is
truncated or filled with blanks on the right.

Examples of character constants:

'$3.98'
'HOW ARE YOU?'
'I' 'M FINE'

3. Hexadecimal Constant is one or more hexadecimal digits (0 through 9,
and A through F) preceded by an X and enclosed in apostrophes. A
hexadecimal constant is either truncated or filled with Os at the
left, if its length is inappropriate for the context.

124

Examples of hexadecimal constants:

X'765432l0'
X'FFFFFFFF'
X'ACE'
X'9FEC3'

4. Floating-Point Constant is a signed or unsigned decimal number in
the pr1nc1paI part of the constant, which can be written with or
without a decimal point. The decimal point can be at the beginning,
end, or in any position within the decimal number, as appropriate.

An exponent specifies a power of 10 by which the principal part will
be multiplied during conversion. The decimal point may be omitted
if an exponent is specified, in which case it is assumed to be lo­
cated at the right-hand end of the decimal number. The exponent of
a floating-point constant is either an E or a D, followed by a
signed or unsigned decimal integer. An E indicates a single­
precision floating-point number; a D indicates double-precision.

The exponent may be omitted if the principal part contains a decimal
point. When used, the exponent must follow the principal part of
the constant. The magnitude of the exponent must be within the range
of approximately 10- 75 to 10 75 . If the exponent exceeds the maximum,
1075 will be assumed; if it exceeds the minimum, 0 will be assumed.

A floating-point constant will be converted to a normalized floating­
point number. If the exponent of a floating-point number is omitted,
the floating-point number is assumed to be single-precision.

All of the following floating-point numbers are equivalent and will
be converted to the same floating-point binary number:

3.14159
31.4l59E-l
3l4159.E-5
314159E-5
.314159El

5. Address Constant consists of the character A followed by a symbol
enclosed in apostrophes. The allowable symbols are: external symbol
with or without offset, internal symbol with or without offset, and
subscripted variable.

The length of an address constant is always four bytes; its value
is the address assigned to the symbol. Address constants are
evaluated at the time they are used. The current value of any
variable referenced in a subscript or offset is used in computing
the value of the address constant. As a result, the value of an
address constant that contains a subscripted or offset symbol
may vary during program execution.

Examples of address constants:

A'PMG.TAG'
A'NAME'
A'ARRAY(I,J) ,
A'FTNPGM.IOO(36) ,
A'X. (4096)'

Part IV: Program Management 125

operand Definitions

The terms used to describe the operands of program control commands
are data location, data field, expressions (arithmetic and logical), in­
struction location, link-edited module name, object module name, and
statement number.

1. Data Location may be specified as a symbol, a hexadecimal location,
a reglster, or the special counter (%).

Both fully and incompletely defined data locations may be ref­
erenced. Fully defined data locations have type and length attri­
butes. Such locations include internal symbols without offsets,
subscripted symbols, and floating-point registers.

Incompletely defined data locations lack either the type or length
attribute. A length attribute can be assigned to a symbol with
offset; the offset following the period and left parenthesis is
followed by a comma and a length specified as an integer or a hexa­
decimal constant that is greater than 0; then, the right parenthe­
sis.

Examples of symbols with offset and explicit length:

Y . (X' EDC ' , 4)
z. (12,8)
A. (2,X'AF')

Note that the offset may be defaulted and a length specified:

Y.(,24)

A length attribute may be assigned to a hexadecimal location by
writing a colon that is followed by another, larger hexadecimal
location. A diagnostic message is produced if any locations within
the range have not been allocated to the user's virtual storage.

Examples of hexadecimal data locations with explicit length attri­
butes:

L'9FECO':L'9FEC7'
L'9100' :L'9103'

2. Data Field is a contiguous group of storage locations whose contents
are to be displayed or dumped. These locations may be in the user~s
virtual storage or in registers. A data field may be a data loca­
tion, an array, a control section, a symbolic range, a quoted string,
or an arithmetic expression.

126

An entire array is specified as a data field for display or dumping,
if its name is written as an internal symbol without subscripting.
Similarly, a control section name, written as an internal symbol
without an offset, specifies the entire control section as a data
field; so does a control section name written as an external symbol
without an offset.

A range of registers is specified as a data field by writing the
numbers of the first and last registers to be displayed or dumped,
separated by a colon, and followed by the character that identifies
the register type:

R general registers
E floating-point registers with single-word form
D floating-point registers with double-word form

In specifying a range, general register 0 follows general register
15, just as floating-point register 0 follows floating-point regis­
ter 6.

Examples of register-range specifications:

0:4R

l4:3R

2:6E

6:2D

general registers 0 - 4

general registers 14 and 15, then registers 0 - 3

floating-point registers 2, 4, and 6 in single-word
format

floating-point registers 6, 0, and 2 in double-word
format

A data field may be specified by a symbolic range, which is written
as two symbols separated by a colon. The storage location of the
symbol to the right of the colon must be greater than the location
of the symbol on the left; if not, a diagnostic message will be
issued. Both symbols used to specify a data field must be either
external symbols or internal symbols; one range may not be speci­
fied by an internal and an external symbol. When two internal
symbols are used to specify a data field, both must have been de­
fined within the same control section. External symbol ranges
must be contained within user-assigned storage. Either or both of
the symbols used to specify a data field may be offset, but may not
have explicit lengths.

Examples of data fields specified by symbolic ranges:

A.BY:A.BX
PGM.LSF:PGM.LSA
LSF:LSA (if preceded by QUALIFY command)
ABX:ABX. (X'FFFF')
ABY : AB Y . (256)
ABY: (24) : ABY . (256)

3. Expressions used in program control commands are either arithmetic
or logical; they are formed by using these operators:

Operator Meaning

Arithmetic + Addition

Subtraction

* Multiplication

/ Division

Logical Logical inversion or negation

& Logical intersection

Logical union

Relational > Greater than

< Less than

Equal to

>= Greater than or equal to

Part IV: Program Management 127

128

~ °Eerator Meaning

Relational < = Less than or equal to
(cont.)

1= Not equal to

I> Not greater than

1< Not less than

• Arithmetic EXEressions may be used as subscripts or offsets, as
values to which variables are to be set, as values to be com­
pared in relational expressions, or as values to be computed and
displayed.

The least complex arithmetic expression is a single constant or
data location. However, an arithmetic expression may include any
number of constants, data locations, and simpler arithmetic ex­
pressions that are related by arithmetic operators. The special
character % may be used in an arithmetic expression to reference
the dynamic statement counter.

These rules must be followed in the formation of arithmetic ex­
pressions:

1. Any arithmetic expression may be enclosed in parentheses.

2. Arithmetic elements or expressions may be connected by
arithmetic operators to form other arithmetic expressions,
provided that no two arithmetic operators appear in sequence
and no arithmetic operator is assumed to be present.

3. An arithmetic element or expression preceded by a sign
(+ or -) is permitted; the operators * and / must be preceded
and followed by elements and/or expressions.

4. All data locations connected by arithmetic operators must
have 256 bytes or less and be aligned on the appropriate
boundary.

Arithmetic expressions that do not contain parenthesized terms
are evaluated, left to right, in this order: (1) multiplication
or division; (2) addition or SUbtraction. For example, the
arithmetic expression

is evaluated as

PGM.B * PGM.C
PGM.A + X
Y - PGM.D

PGM.A + PGM.B * PGM.C - PGM.D

(denote result by X)
(denote result by Y)

Arithmetic expressions that contain parenthesized terms are eval­
uated by treating the innermost parenthesized term first. After
all parenthesized terms have been evaluated, the remaining opera­
tions are performed as for nonparenthesized expressions. For
example, the arithmetic expression

PGM.A + (PGM.B - PGM.C) * PGM.D/PGM.E

is evaluated as

PGM.B - PGM.C
X * PGM.D
Y/PGM.E

(denote result by X)
(denote result by Y)
(denote result by Z)

PGM.A + Z

When division is performed in an integer arithmetic expression,
the integer part of the quotient is retained and the fraction
is discarded; thus, 13 / 2 = 6. The expression A*B/C may yield
a different result than the expression

B/C*A

For example,

8 * 6 / 4 12

but

6/4 * 8 = 8

Examples of valid arithmetic expressions:

1.E-5
PGM.X. (4)
PGM.X/PGM.Y - 1
L'EOOO':L'E003' + 3
PGM.I * (PGM.J + PGM.K)
-Z. (,4)/%

The arithmetic method used to perform the operation is based on
the type of the variables in the expression. Integer, floating­
point, or logical arithmetic can be used in evaluation.

An undefined expression contains all undefined variables (e.g.,
external symbols and hexadecimal locations) or it contains two
variables of different types.

If an undefined expression is used in a subscript, it is assumed
to be integer. If an undefined expression has a variable that
is longer than four bytes, the expression is assumed to be
floating-point. The user is prompted in all other cases to pro­
vide the type of arithmetic to be performed.

An expression containing a constant can never be undefined.
The data type of the constant is used to define the expression .

• Logical Expressions are used in a conditional statement, and take
any of these forms:

1. A single logical variable.

2. Two or more logical variables connected by the logical opera­
tors & and/or I ' denoting logical AND and logical OR, re­
spectively.

3. Two arithmetic expressions of the same type, connected by a
relational operator.

'Part IV: Program Management 129

130

A logical expression that contains a relational operator will
have the logic value "true" if the condition expressed by the op­
erator is met when the expression is evaluated. Otherwise, the
expression will have the value "false."

The logical operator must be followed by a logical expression or
term. Similarly, the operators & and I must be preceded and
followed by logical expressions to form compound expressions.

Any logical expression may be enclosed in parentheses. Any com­
pound logical expression to which the 1 operator is to apply
must be enclosed in parentheses.

Logical expressions that do not contain parenthesized terms are
evaluated in this order:

1. Multiplication and division (* and /)

2. Addition and subtraction (+ and -)

3. Relational operations (> , < , =, > =,< =,""1 =, -,< ,-, »

4. Logical negation (1)

S. Logical intersection (&)

6. Logical union (I)

When there is more than one operation of the same level, the opera·
tions are performed from left to right. For example, the expres­
sion

PGM. X/PGM. Y < 1. E-S & PGM.Z 4

is evaluated as

PGM.X / PGM.Y (denote result by A)
A<l.E-S (denote result by B)
PGM. Z = 4 (denote result by C)
B & C

This example would be evaluated as being "true" only ifsthe data
at PGM.X divided by the data at PGM.Y was less than 10- and the
data at PGM.Z was the integer 4. The variables at PGM.X and
PGM.Y must be floating-point data and the variable at PGM.Z must
be integer data, to have the logical expression evaluated.

Parenthesized terms within logical expressions are evaluated in
the same order. Then, when the expressions have been reduced
(i.e., a single logical value has been assigned to each paren­
thesized term), evaluation is again performed in the order indi­
cated. For example, the logical expression

(PGM.B = 2 & PGM.C = 3) I PGM.A = 1

is evaluated as

PGM.B
PGM.C
W & X
PGM.A
ylz

2
3

1

(denote result by W)
(denote result by x)
(denote result by y)
(denote result by Z)

In this example, the variable referenced must be integer data.
The expression is "true" when the data at PGM.B = 2 and the data
at PGM.C = 3, or when the data at PGM.A = 1.

Logical negation, indicated by the operatorl, can be used pre­
ceding:

1. The relational operators =,>,<

2. A single logical variable, in which case the variable need
not be enclosed in parentheses.

3. A compound logical expression, in which case the expression
must be enclosed in parentheses.

Assuming both implicitly qualified symbols A and B are logical
variables, and both C and D are arithmetic expressions, then the
following are valid uses of the i operator:

lA
lC = D & 1 A
lA I B
1 (A I B)

The last two expressions are not equivalent. In the first case,
the 1 operator applies to the logical variable A; in the other
case, the 1 operator applies to the evaluated result A I B (i.e.,
if A is false and B is true, then A I B is true, and (A I B) is
false) .

4. Instruction Location refers to a statement within the user's source
program. An instruction location is expressed either as the state­
ment number of an executable FORTRAN statement or as an internal
symbol in a source program written in assembler language. In either
case, the user can apply an offset to the primary location designa­
tor. An explicit length will be ignored. When an internal symbol
is used, it does not have to reference a location defined in the
internal symbol dictionary (ISD) as an instruction or as a control
section name.

The user can express instruction locations as internal symbols
within his program only if he requested an ISD when his program
was last compiled or assembled. Otherwise, he must express them
as external symbols (with or without offset) or as hexadecimal
locations. In either case, the instructions must be on halfword
boundaries.

The ISD supplies the system with information concerning internal
symbols. However, an ISD which is produced may not contain all of
the information about the source program. For example, in assembler
language usage, overlays caused by the ORG statement are not re­
flected in the ISD. If the user displays (via DISPLAY command) the
storage locations affected by ORG statements, the contents will be
correct but the assigned symbolic names will be misleading.

5. Link-Edited Module Name must precede the original program name,
when qualifying internal symbols in a program that has been pro­
cessed by the linkage editor.

Part IV: Program Management 131

6. Object Module Name is always the one assigned when the source mod­
ule was compiled or assembled. When internal symbols are refer­
enced, the object module name must always qualify the symbol. This
name must be further qualified if the original program module was
processed by the link editor.

7. Statement Number is assigned by the system to each statement con­
taining an AT command. This number may be referenced in a REMOVE
command.

Synonyms

Synonyms for program control command names and operands may be used.
Examples of valid synonyms:

XYZ
ABC
X = A
ABY
ABX

LEPGM.PGM.IOSR
XYZ. (X' 4C ') (where
+ B * C
L'EF246'
ARRAY (I,J)

XYZ is a synonym)

Whenever the system is processing an operand (such as a data location or
a data field), and a synonym is recognized, the synonym is substituted.
The operand derived by the substitution may also contain synonyms, which
will be SUbstituted one at a time. This procedure continues until all
synonyms are resolved.

Synonym SUbstitution occurs only for the first character string en­
countered when processing such operands as data location and data field.
For example, for a data location defined by LEPGM.PGM.IOSR, synonyms
would be SUbstituted for LEPGM, but not PGM or IOSR.

Examples:

1. Assume the user has link-edited programs PGMA, PGMB, and PGMC that
form a new program, LEPGM. Now the user wants to concurrently ref­
erence internal symbols within PGMA, PGMB, and PGMC with program
control commands. Since only one qualification is allowed at one
time, the user will be required to fully qualify all symbols in two
of the three program modules involved.

132

Suppose he now says:

SYNONYM A = LEPGM.PGMB
SYNONYM B = LEPGM.PGMC
QUALIFY LEPGM.PGMA

Now explicit qualification is much simplified; the user can reference
symbols in PGMC merely by using B. as the qualifier. Thus the sym­
bol X in PGMC can be referenced as

SET B.X = X'OOOOOOOO'

this is much simpler than

SET LEPGM.PGMC.X = X'OOOOOOOO'

which would otherwise be required. Now, an expression such as

SET LEPGM.PGMA.Z = LEPGM.PGMB.Y + LEPGM.PGMC.X

can be stated as

SET Z +A.Y + B.X

2. The user has entered a QUALIFY command so that explicit qualification
of external symbols is unnecessary. He then defines:

SYNONYM ARRAY=TABLE.
SYNONYM I=X' 4C'
SYNONYM J=4

Then the expression:

DISPLAY ARRAY (I,J)

which would normally show an element of the array, is interpreted as

DISPLAY TABLE. (X'4C' ,4)

which will, instead, display an element of the table.

Note: substitution is made for ARRAY, I, and J since each is a
data location. Had ARRAY been explicitly qualified (PGM.ARRAY)
then TABLE. would not have been substituted, since ARRAY was the
second character string in the data location PGM. ARRAY.

LOAD Command

This command loads an object module, and all other object modules to
which that module implicitly refers, into virtual storage, but does not
initiate program execution.

Operation Operand

LOAD

NAME

[NAME = entry point name]

identifies the module to be loaded.

Specified as: a module name or external entry point without offset.
System default: the last module referenced by the system is loaded.

Functional Description: When the LOAD command is executed, the system
first searches the libraries on the task's current program library list
to find the specified object module and allocates space for it in the
user's virtual storage (i.e., loads the module). If that module is not im­
plicitly linked to other modules, no further loading takes place. If
that module is implicitly linked to one or more other modules, those
modules and any other modules to which they are implicitly linked, are
loaded ~y a similar search-and-allocate procedure. When a module to be
lo~ded cannot be found, a diagnostic message is issued.

In the case of FORTRAN-written programs, a LOAD command specifying the
main (or root) program causes the entire program to be loaded, because all
FORTRAN subprogram modules are implicitly linked to the main module.

Part IV: Program Management 133

Assembler-written modules can be implicitly or explicitly linked to
other modules. Explicitly linked object modules (e.g., explicitly called
or loaded subroutines of a program's main module) are not loaded when a
LOAD command is executed; they are loaded one at a time during execution
as each explicit linkage is processed.

Caution: A FORTRAN COMMON BLOCK program must be loaded by module name,
not COMMON BLOCK NAME, since only the module name can be found by the
dynamic loader.

Programming Notes: The LOAD command can be used to load object modules
so that dynamic statements can be inserted prior to execution.

Example: Load module ABC, and all modules to which it implicitly refers.

User: load abc
System: (loads ABC and all implicitly linked modules into virtual

storage)

UNLOAD Command

This command removes a module, and all other modules to which it (and
only it) implicitly or explicitly refers, from virtual storage.

Operation Operand

UNLOAD [NAME = entry point name]

NAME

identifies the module to be unloaded.

Specified as: a module name or external entry point without offset.
System default: the last module referenced by the system is un­

loaded (i.e., the current module).

Functional description: The UNLOAD command invokes the dynamic loader,
specifying the explicit symbol that is specified in the NAME operand of
the command. If NAME is not specified, the last module loaded or called
by the command system is unloaded.

The specified object module is unloaded from virtual storage; any ob­
ject modules that are referred to only by that specified module are
also unloaded.

The specified module is not unloaded if other object modules are
currently referring to it. The user is informed of this in a system
message, so he can reissue the UNLOAD command later, if desired.

Programming Notes: Ordinarily, an object module that is called by a
direct call is not automatically unloaded upon exit. The UNLOAD com­
mand can be used to remove these modules from virtual storage.

Example: Unload a module named ABC.

134

User: unload abc
system: (unloads ABC and all modules that only ABC implicitly

refers)

CALL Conunand

This conunand invokes an object module (or a procedure) .

Operation Operand

CALL

NAME

[NAME=entry point name [,module parameter~]

identifies the module to be invoked.

Specified as: a module name or external entry point without offset.
System default: the last module referenced by the system is called.

module parameter

specifies the parameters associated with the module being called;
when a module expects parameters, all parameters must be specified,
including the conunas representing null values, whether or not the
parameters are normally defaultable.

Specified as: the parameters, separated by conunas, expected by the
module.

System default: the module called does not expect parameters.

Functional Description: CALL invokes the dynamic loader and passes to
it the name of the module specified; if a module was not specified, CALL
passes the module name most recently referenced by the system. Modules
implicitly referenced by the specified module are also loaded; the called
module is invoked via standard type-l linkage. CALL passes control to a
module that is already loaded. When the specified module cannot be found,
a diagnostic message is issued.

caution: If the module called during the execution of a dynamic state­
ment has dynamic statements embedded in it, the results are unpredictable.

Progranuning Notes: A module can be invoked by either the CALL conunand
or a direct call. A direct call follows the command system symbol­
resolution process in which procedures take precedence over modules. If
a module and a procedure have the same name, the procedure is invoked by
a direct call. In this case, a CALL conunand must be used to invoke the
module.

CALL may be used to initiate execution of a module that is already
loaded.

Examples:

1. The user wants to compile and then execute program MYPRG.

User: ftn myprg
system: (compiles and stores myprg)

User: call
system: (invokes MYPRG)

2. The user wants to call module XYZ and pass five parameters.

User: call xyz, parl",par4,
SfStem: (invokes XYZ and places a pointer to the parameter list

in register 1)

Part IV: Program Management 135

3. The user wants to call module XYZ and pass one real-value parameter.

User: call xyz '$$*#@%'
system: (invokes XYZ and places a pointer to the parameter list' in

register 1).

Direct Call

When the user wants to load and immediately execute an object program
(or procedure), he may do so by entering the module name and the operands
expected as parameters.by the module. The system then loads the module,
also loading any implicitly referenced modules, and passes control to
the explicitly loaded module.

When a procedure and a module have the same name, the procedure is
called. The CALL command would invoke the module.

When the specified module or procedure cannot be found, a diagnostic
message is issued.

When a module expects parameters, all parameters must be specified,
including commas for null values, whether or not the parameters are
normally defaultable.

Caution: A direct call is not permitted in a dynamic statement.

Examples:

1. Load and execute module ABC.

User: abc
system: (invokes ABC)

2. Load module ABC, pass parameters X, Y, and Z, and execute.

User: abc x, y, z
system: (invokes ABC and places a pointer to the parameter list

in register 1)

RUN Command

This command initiates or resumes object program execution, or causes
a standard call to another object program. RUN is interpreted by the
system as a CALL or GO command. In every instance where RUN might be
used, GO or CALL is recommended.

Operation Operand

RUN

LOC

[LOC = entry point name]

specifies the location at which execution is to begin or resume.

Specified as: a module name or external entry point without offset.
System default: RUN performs as GO, and resumes execution from the

point at which the program was last interrupted or stopped.

Functional Description: RUN is a procedure which breaks down into a GO
or a CALL command. When RUN is specified with an operand, the system
executes a CALL command; without an operand, the system executes a GO
command.

136

Examples:

1. The user wants to load and execute his FORTRAN program named FTNPGM.

User: run ftnpgm (CALL would be equivalent and is recommended)
system: (verifies that the object module is running)

2. The user wants to load and execute an object program, but wants to
enter some dynamic statements prior to initiating execution.

User: load pgm
system: (verifies loading of PGM)

User: (enters dynamic statements followed by RUN pgm; CALL would
----be equivalent and is recommended)
System: (verifies that PGM is running)

3. The user has interrupted his program and wants to resume execution.

User: run (GO would be equivalent and is recommended)
system: (resumes execution of interrupted program)

GO Command

This command resumes execution of a previously interrupted object pro­
gram (or command).

~:eration I Operand J
Note: There are no operands.

Functional Description: GO gives control to the most recently interrupted
object program or command. When GO is followed by other commands in a
command statement, the succeeding commands are ignored after GO is exe­
cuted.

Caution: GO in a dynamic statement is meaningless; a diagnostic message
will be issued. In an immediate statement, GO must appear last since the
commands following are ignored; no diagnostic message will be issued.

Programming Notes: GO is meaningful only when it follows an attention
interruption; otherwise it is ignored.

Example: In executing his program ABC, the user wants to interrupt
execution and modify his program.

User: call abc
system: (invokes ABC)

User: (presses ATTENTION key)
system:

User: set Sr=6;go
system: (resumes executing ABC from point of interruption)

Part IV: Program Management 137

REPEAT Conunand

This conunand requests the system to display the last-issued non­
prompting message following an attention interrupt.

I Operation I Operand

REPEAT

Note: There are no operands.

Functional Description: REPEAT displays the last nonprompting message
issued to the user's terminal; the interrupted program is then resumed.

Progranuning Notes: REPEAT is useful when the user interrupts his task
while a message is being output to his terminal. This conunand is mean­
ingful only following an attention interruption; otherwise, it is ignored.

Example: The user has interrupted his conversational task while a mes­
sage was being displayed, and he wants to see the entire message.

User: repeat
system: (displays last-issued nonprompting message and resumes

execution of the interrupted program)

BRANCH Conunand

This conunand changes the control path of a program or resumes execu­
tion of a program at a different location.

Operation Operand

BRANCH INSTLOC=instruction location

INSTLOC

specifies the location of an instruction within an object module
at which execution is to resume.

Specified as: an explicitly or implicitly qualified internal sym­
bol, with or without offset; an external symbol, with or without
offset; or a hexadecimal address.

Functional Description: BRANCH resumes execution, at the specified loca­
tion, of a program that has been stopped; or initiates execution, as
part of a dynamic statement, at the specified location.

Cautions: In a conunand statement containing more than one command,
BRANCH should be the last command, since any subsequent commands will be
ignored and no diagnostic will be issued.

BRANCH cannot be used as a means of invoking a program.

Progranuning Notes: When the user wants to use internal symbols in the
INSTLOC operand, he must have requested an ISO when assembling or com­
piling his program.

Examples:

1. The user, having stopped execution of his program (which has an ISO),
wants to resume execution at an instruction location labeled with
the internal symbol LOCA.

User: branch pgm.loca
system: (resumes execution at LOCA)

138

2. The user wants to alter the execution path of his program (PROG)
from location PTA to PTC.

User: qualify x
at ai branch c
x

System: (passes control to C when execution reaches A)

AT Command

This command requests notification when execution of an object pro­
gram reaches specific instruction locations. AT also designates the
object program instruction locations at which the commands following
AT in the dynamic statement are to be executed.

Operation Operand

AT instruction location [, ...]
Note: Keyword operand format is not valid.

instruction location

specifies the location of an instruction within an object module.

Specified as: an internal or external symbol with or without offset
or subscript, or a hexadecimal address.

Functional Description: AT becomes effective when control arrives at
the instruction location specified in the operand, but before the in­
struction at that location is executed. The system assigns, to each
dynamic statement, a number, which may be referenced by REMOVE.

When an AT command becomes effective, a standard output, which includes
the instruction location where the command became effective, program
status information, and the statement number, is presented to the user.
The program status information includes the virtual storage location of
the instruction being executed, the instruction length code, the condition
code, and the program mask. If the user refers to an instruction loca­
tion in a shared program or a system program, a diagnostic message is
issued and the command is ignored for that location. A diagnostic is
also issued if the instruction location contains a supervisor call op­
eration requiring parameters that must follow the SVC.

The counter, referred to by the special character %, is assigned to
a dynamic statement and is incremented by 1, when the program arrives at
an instruction location designated in the AT command. The counter is
incremented even when the dynamic statement is conditional. The counter
may be used as an operand in the other program control commands within
the statement. The AT command alone will interrupt but not stop pro­
gram execution.

Caution: The user should not designate an instruc'tion location that was
modified by program execution; if he does, the results are unpredictable.

Programming Notes: If AT specifies FORTRAN statement numbers as instruc­
tion locations, the numbers must designate executable FORTRAN statements
and not format statements.

Example: The user wants to be informed when his program reaches speci­
fied locations.

PGM.Sl
PGM. S3. (4)
FTNPGM.98
FTNPGM . 9 8 (5)

Part IV: Program Management 139

To accomplish this,

User:
system:

at pgm.sl,pgm.s3. (4) ,ftnpgm.98 (5) ,ftnpgm.98
00001

Assuming execution of the program is initiated, when control arrives at
any of the instruction locations, the user is notified.

System: AT FTNPGM.98 PSW 1 3 a 0003F076 0001

where:

FTNPGM.98 = instruction location

PSW 1 3 a 003F076 = program status

00001 = statement number assigned by the system.

REMOVE Command

This command deletes previously issued AT commands or dynamic state­
ments.

Operation Operand

REMOVE statement number [, ...]
Note: Keyword operand format is not valid.

statement number

identifies an AT command or a dynamic statement that is to be
deleted.

Specified as: the number assigned by the system when the AT com­
mand or dynamic statement was entered.

Functional Description: REMOVE permanently cancels all dynamic state­
ments or AT commands whose numbers are specified as operands.

Caution: A REMOVE command may not appear in a dynamic statement.

Example: The user wants to remove dynamic statements 10, 2, and 4.

User:
system:

IF Command

remove 10,2,4
(deletes dynamic statements)

This command, included in a command statement, creates a condition
that must be satisfied if the remaining commands in the statement are
to be executed. IF can be combined with any other command or commands
in a conditional statement to establish any valid condition.

I::eration I Operand

Note: Keyword operand format is invalid.

140

condition

specifies a condition that must be true to allow execution of com­
mands that follow the IF command in the conditional statement.

Specified as: a logical expression.

Functional Description: If the command statement containing the IF com­
mand also contains an AT command, the logical expression is evaluated
only when the instruction locations specified in the AT command are
reached. The counter associated with each dynamic statement containing
an AT command, referred to by the special character %, is incremented
by 1, when the specified instruction location is reached, whether or not
the IF condition is true. When more than one IF command appears in the
same conditional statement, the IF commands will be evaluated as if they
were joined by a logical AND. Example:

if X < 0; display X; if Y< 0; display Y

(Y will only be displayed when both X and Yare less than 0.)

Programming Notes: An IF command may stand alone, but it performs no
useful purpose. If the condition is true, there are no further actions
to be performed. If the condition is false, the remainder of the
statement would have been ignored. In either case, the results appear
to be the same. The dynamic statement counter can be used in forming
a logical expression for the IF command. The counter, referred to
by %, may be used to control the frequency at which, or the interval
through which, the statement containing IF is effective. In nondynamic
statements the counter has a constant value of 1.

Examples:

1. The user wants to test a logical condition and, if that condition
is true, to issue other program control commands. The condition is
true only when the value of his internal symbol variable PGM.NUM
is less than or equal to 14.

User:
system:

if pgm.num ~ 14; display pcm
(evaluates the logical expression and executes DISPLAY
only if the condition is true)

2. The user wants to execute more program control commands every
fifth time.

User:
system:

SET Command

at p.x; if % = (%/5) *5; ...
(assigns a number to the dynamic statement)

This command changes the contents of a data location.

Operation Operand

SET {data location = value} [, ... J
Note: Keyword operand format is not valid.

data location

identifies a location whose value is to be changed.

Specified as: a symbol, hexadecimal location, register, or
command symbol.

Part IV: Program Management 141

value

specifies the value to which the data location is to be set.

Specified as: an arithmetic expression, a character string,
or the name of a data location.

Functional Description: The SET command changes the contents of each
specified data location to the value specified on the right of the cor­
responding equal sign.

The expression is evaluated using integer, floating-point, or logical
arithmetic. All constants in an expression must agree in type. All
variables should agree in type but, if they do not, the type is assumed
by the system to be an integer (1,2, or 4 bytes), floating-point
(8 bytes), or hexadecimal (length defined implicitly or explicitlly).
After SET is executed, a data reference in a subsequent command results
in obtaining the new value.

Cautions: Although the user may set one complex variable to the value
of another complex variable, no arithmetic can be performed between two
complex variables. This restriction also applies to variables in
packed decimal number format.

The operand of the SET command may never reference read-only or
privileged storage. Since the FORTRAN compiler automatically assigns
the read-only attribute to the control section containing instructions
and constants, the FORTRAN user can not reference the CSECT as the data
location of the SET command. When the expression contains more than one
operand, the lengths of the operands must be compatible (i.e., floating­
point variables must be 4 or 8 bytes; integer and logical variables must
be 1,2, or 4 bytes). The length of the result of the expression should
agree with the length of the data location to the left of the equal
sign.

The format =X'CIC2C3' is acceptable for hexadecimal representation;
the format ='ABC' will give the same result. However =C'ABC' will re­
sult in a diagnostic message.

Examples:

1. The user wants to set two 4-byte variables with qualified internal
symbols of I and K to the values of 33 and 176, respectively.

User: set i 33, k = 176
S;tstem: (sets values)

2. The user wants to set a 6-byte field to read 'system' .

User: set field = 'system'
S;tstem: (sets value at FIELD to E2E8E2E3CSD4)

3. The user has two variables that he wants to add, placing the result
in general register 8. Both variables were assigned hexadecimal
types in the assembly program. Variable X was defined as two

142

bytes in length; variable Y as eight bytes. The user wants to
refer only to the first two bytes of Y.

User:
SyStem:

set 8r = x + y. (0,2)
(sets value)

DISPLAY COllUUand

This cOllUUand prints the contents and names of specified data fields
on SYSOUT.

Operation Operand

DISPLAY data field name [, ...]
Note: Keyword operand format is not valid.

data field name

identifies one or more data fieldS to be displayed.

Specified as: the name of a data location, an array, a control
section, or a symbolic range; an arithmetic expression or a
quoted string.

Functional Description: The contents of each specified data field,
identified by the name entered in the operand field, are printed. The
format of this printout is established by the system, according to the
type and length attributes of the data field. If the data field type
is not defined, it is assumed to be hexadecimal. If the user's task is
conversational, the data field is printed at the terminal; if the task
is nonconversational, it is entered on SYSOUT. When a control section
name, used as an internal symbol, is entered as an operand of DISPLAY,
the entire control section is automatically formatted in accordance
with information in the internal symbol dictionary and is printed in
symbolic form in assembler language. When a control section name is
used as an external symbol in DISPLAY, the entire control section is
printed in hexadecimal.

When a symbolic range of internal symbols, without offsets, is
entered as an operand of DISPLAY, the specified range is automatically
formatted and printed in symbolic form. If either internal symbol in a
symbolic range has an offset, the output is in hexadecimal.

PrograllUUing Notes: Arithmetic operations may be executed with the DIS­
PLAY cOllUUand if the user does not want to have the result saved in
storage. The type and length of the operands must be compatible.

When the user is in conversational mode, he can terminate the print­
out by pressing the ATTENTION button at his terminal. If more than one
data field had been specified in one DISPLAY cOllUUand, the next data
field is displayed; otherwise, control is passed to the terminal.

Examples

1. The user wants to print a header and the contents of register 6E.

User:
system:

display c'register 6', 6e
REGISTER 6 .27182818E + 01

2. The user has a 5 x 5 integer array and wants to have the first ten
elements displayed, as well as the elements referenced by the sub­
scripts I and K.

Part IV: Program Management 143

User:

System:

display pgm.array (1,1): pgm.array (5,2) ,pgm.array­
(pgm. I ,pgm.K)

PGM.ARRAY (1,1): PGM.ARRAY (5,2) =
(1,1) 4 5 -8 1 6
(1,2) 9 -6 3 22 7

PGM.ARRAY (4,5) = -16

Note: The elements may be referenced symbolically, but the system
produces the actual subscript values.

DUMP Command

This command places the contents and names of specified data fields
in the data set with a data definition name of PCSOUT.

Operation Operand

DUMP data field name [, ... J
Note: Keyword operand format is not valid.

data field name

identifies one or more data fields to be placed in the PCSOUT
data set.

Specified as: the name of a data location, array, control section,
symbolic range; a quoted string or an arithmetic expression.

Functional Description: The contents of the specified data fields are
output to the PCSOUT data set. The format of the results is the same
as for DISPLAY.

Programming Notes: DUMP should be used for large amounts of data.

There is only one PCSOUT data set per task. It is organized as a
line data set. The user has facilities for printout control of the data
produced by the DUMP command. This procedure is recommended:

DDEF PCSOUT,VI,DSNAME = name

DUMP data field name

RELEASE PCSOUT

PRINT name, , , EDIT

The DDEF command (or macro instruction) must be used to define and
catalog the PCSOUT data set (i.e., specify PCSOUT as the data definition
name) before DUMP is issued. If no definition has been given, the user
is prompted to issue one. Refer to Appendix F for a detailed descrip­
tion of the DDEF command.

The user can specify the ERASE option in the PRINT command to remove
the PCSOUT data set from his catalog.

Examples:

1. The user wants to output the contents of an entire control section
to his PCSOUT data set; assume this is the first use of DUMP in
this task.

User:

System:

144

ddef pcsout, vi,dsname
dump pgm.csectl
(outputs data)

list.pcsout

2. The user wants to see the contents of a control section, but does
not have an ISD for the program module. He issues a DUMP, using
the control section name as an external symbol; however, he fails
to issue a LOAD command for the object mod~le.

User:
system:

dump csect
(loads the module and outputs data)

QUALIFY Command

This command allows the user to reference the internal symbols within
a loaded object module, without requiring use of the fully qualified
name. Internal symbols may be designated as either implicit (qualifying
prefix is omitted, but value is assumed) or as explicit (entire value,
including prefix is named).

Operation Operand

QUALIFY MNAME=[link-edited module name.]object module name

MNAME

identifies an assembled or compiled program (object module); and,
optionally, a module processed by the linkage editor.

Specified as: an object module name and, optionally, a link­
edited module name; the module names must be separated by a
period.

Functional Description: An ISD must have been requested when the
original program was assembled, compiled, and (if applicable) processed
by the linkage editor. QUALIFY enables the user to reference,
implicitly, the program's qualified internal symbols in the ensuing
commands or statements.

caution: Only one QUALIFY command can be in effect at one time; each
QUALIFY command overrides any previous ones.

Examples:

1. The user wants to reference, implicitly, the qualified internal
symbols in the program named PGMF, which is a part of the link­
edited program named PGML.

User:
system:

qualify pgml. pgmf
(accepts command)

Note: The user may, thereafter, reference internal symbols in
this program in implicitly qualified form.

2. The user wants to qualify his internal symbols in program PGMF,
but he failed to request an ISD with his assembly or compilation.

User:
system:

qualify pgmf
(informs user that the module has no ISD; the user must
use external symbols in his references to program PGMF)

3. The user wants to qualify his internal symbols defined in program
PGMF, which is part of the link-edited program named PGML. How­
ever, in entering the QUALIFY command, he neglects to specify the
name of the original assembly or compiler module.

Part IV: Program Management 145

User:
system:

User:
system:

STOP Command

qualify pgml
(informs user he needs two levels of qualification)

qualify pgml.pgmf
(accepts command)

This command stops execution of an object program and prints out the
current instruction location and program status information.

I ::::ation I Operand
Note: There are no operands.

Functional Description: The STOP command causes the output of two
units of information at the user's terminal.

1. Current location in the object program; i.e., the instruction loca­
tion, expressed symbolically, at which execution is stopped.

2. Program status information (e.g., the condition code, program
mask, and instruction length code).

If the internal symbol dictionary (ISD) is not available, the
symbolic instruction location is expressed in terms of the control sec­
tion name and a hexadecimal offset. If the ISD is available, the loca­
tion is expressed in terms of an internal symbol plus hexadecimal offset.
The nearest internal symbol, plus an offset (in bytes) is output for
assembly language programs. For FORTRAN programs, it is the nearest
statement number, with an increment to indicate which statement, follow­
ing the numbered statement, has control.

Caution: STOP should appear last in a dynamic statement since any sub­
sequent commands are ignored and no diagnostic is issued.

Programming Notes: After an object program has been halted, the user
can cause resumption of execution with the GO command.

Examples:

1. The user wants to learn the status of his program when execution
reaches a specified point.

User:
system:

at ftnpgm.lOO(4); stop
(when execution reaches FTNPGM.lOO(4) , system replies by
giving statement number assigned to above statement;
also gives program status information)

2. The user interrupted his FORTRAN object program during execution,
by pressing the ATTENTION key at his terminal. He wants to know
which statement is currently being executed. The user requested
an ISD as an option during compilation.

146

User:
system:

stop
STOP AT FTNPGM.lOO(4) PSW 1 1 0 0003EOF4

Program Control Examples

The internal symbols in all the following examples are implicitly
qualified, since a QUALIFY command was entered with the name of the de­
fining program.

1. The user wants to display the contents of all general registers and
floating-point registers in doubleword format, when his program
reaches the instruction location ERREXT. He also wants the con­
tents of the virtual storage locations, in the range from TOP to
BOT, to be put into his PCSOUT data set, when program control
reaches the ERREXT location.

at errext; display 0:15r, 0:6D; dump top:bot

2. The user wants to change the value of variable POINT to the
address of the external symbol DATA, when his program arrives at
instruction location TAGA.

at taga; set point = a'data'

3. The user wants to display a table, TAB, every tenth time through
the loop ENTAB. When the loop is executed 100 times, he wants to
dump control section BLDTAB.

at entab; if % = (%/10) *10; display tab; -
if % = (%/100)*100; dump bldtab

4. The user wants to use program control commands to produce input and
output to his program. He wants to make some computations, using
the sequential numbers 50 to 500. At statement number 10 he sets
up a constant, INPUT, using the variable A, which was previously
initialized at O. At the end of each computation, which is state­
ment number 80, he wants to see the result, OUTPUT.

at 10; set input = a + 50; set a = a + 1; -
if input = 500; stop

at 80; display output; branch 10

5. The user has assembled his program and discovered that he has for­
gotten to provide a label (TAGA) for the instruction

L 2,XYZ

which is located at hexadecimal location 124 and referenced by

B TAGA

which is at hexadecimal location 176. By using program control
commands he can fix his program temporarily without reassembling.

at csect. (x'124') i. branch csect.(x'176')

Part IV: Program Management 147

PART V: USER PROFILE MANAGEMENT

The user-p~ofile management commands, which enable the user to adapt
or match the system to his needs during a terminal se-ssion, provide
faster and easier setup of problems, and easier definition and entry of
commands, operands, values, or expressions. The commands and the system
functions they request are shown in Table 12.

Table 12. User-Profile Management Commands and Their Functions
(The commands are listed in the same order as the
command descriptions that follow later in this section.)

Command Function

DEFAULT Add, replace, or delete entries in default table.

SYNONYM Rename specified command, operand, value, or
expression.

PROFILE Replace user profile in USERLIB with se·ssion profile.

SET can also be used to establish command symbol values that are part of
the session profile.

User Profile

The user profile is a
pertinent to each user.
regarding the values the
(optionally) his command
user library (USERLIB).

specialized data set containing information
Stored within this data set is information
user generates for defaults and synonyms, and
symbols. The user profile is a member of the

Initially, the system provides the user with a prototype user profile
(in SYSLIB) that contains the default values for system-supplied com­

mands and any initial synonym values. The user can make changes to the
prototype copy of the profile, when it is in storage; he can add to it
during a terminal session by issuing a SYNONYM or DEFAULT command, or by
using the SET command to establish command symbols. Such changes affect
only the session profile, unless followed by the PROFILE command, which
permanently changes the user's profile.

When the prototype profile is not permanently changed during a session,
the copy in storage is erased when LOGOFF is issued. When, during a
session, the user issues a PROFILE command, the entire profile copy in
storage is written into USERLIB, and given the member name of SYSPRX.

When the user initiates his task, the system generates a search
through USERLIB to locate the user's profile. If the profile is not
found (i.e., the user has erased it or he did not create it), the sys­
tem copies the prototype profile from SYSLIB into storage, where it may
be accessed and used. Unless preserved via PROFILE, this storage copy
of the prototype profile is erased at LOGOFF.

The user profile can be, concurrently, on three levels: the proto­
type profile in SYSLIB, the user's profile in USERLIB, and the session
profile in storage.

148

Prototype profile resides in SYSLIB as member SYSPRX. It
SYSLIB is copied into storage if there is no user profile in

USERLIB • ..
User's profile (member SYSP,RX) is copied into storage
from USERLIB every time LOGON command 1S issued. USERLIB

1 LOGON (every session) r PROFILE (whenever user wishes)

Changes made during session are entered on this copy; VIRTUAL
STORAGE

PROFILE command causes session profile to replace the one
in USERLIB.

At the user's first LOGON, the system provides initial default values
for most operands. When the user does not explicity define operand
values while he is entering a command requiring these values, the system
will default to the initial value that it has provided. If the initial
value is null, the user must specify a value. A list of default values,
supplied by the system, is shown in Appendix C.

A user can specify his own default values, to be used in place of or
in addition to the system-supplied default values, by using the DEFAULT
command. Any changes become a part of his user profile for the session
involved and may, of course, be saved for later sessions by issuing a
PROFILE command.

Each user has a separate user library and, therefore, a separate user
profile. Sometimes the user may find it desirable to share the copy of
the profile in his user library. Since his copy is addressable as a
normal member, it can be shared by making USERLIB shareable. Normal
sharing precuations and procedures should be used.

The user may erase his copy of the user profile by using the normal
erasing procedure.

DEFAULT Command

This command changes default values supplied by the system. Also,
since some operands have the same value during one session or during
successive sessions, the DEFAULT command minimizes the necessity of
entering the same value several times, by assigning a value to an
operand in advance of its use.

Operation Operand

DEFAUI~T {operand= [value] } [, . . .J

Note: Keyword operand format is not valid.

operand

designates the operand whose default value the user wants to alter
or establish.

Specified as: an operand name (i.e. keyword).

Part V: User Profile Management 149

value

specifies the value to be assumed whenever the specified operand is
omitted in a command. This value does not apply when an operand
value is explicitly given for the operand in a command in which it
appears. This value overrides any previous default assigned to the
operand during the task.

Specified as: a normal or quoted string.
System default: any previously assigned default value for the

specified operand is omitted.

Functional Description: The system will add, replace, or delete entries
in the user's default table, according to the specifications of the com­
mand. When the user has assigned a value to an operand by issuing DE­
FAULT, he can enter commands without explicit statement of the operand;
the system will use the value he assigns.

Programming Notes: The DEFAULT command can be used to delete default
entries previously defined. The user enters the DEFAULT command, and
specifies a null string to be assigned to the operand name he wants to
delete.

Example: The user wants to change the default value for DSNAME to A.B,
which is a partially qualified data set name.

User:

System:

default dsname=a.b
delete

(deletes data sets with names starting with A.B and dis­
plays deleted names)

SYNONYM Command

This command renames commands, operands, values, or expressions. The
renaming is valid for the remainder of the task in which it is established
and can be made permanent by using the PROFILE command.

Operation Operand

SYNONYM {term = [character string]} [, ..•]

Note: Keyword operand format is not valid.

term

designates the new name of a command, operand, value, or expression.

Specified as: a normal or quoted string.

character string

150

specifies the value of the term that is to be used when the term is
referenced; this value overrides any string value previously equated
to the term.

Specified as: a normal or quoted string; maximum length, 244 bytes.
System default: any previously assigned synonym term is deleted.

Functional Description: Synonyms may be equated to other synonyms. The
final line processed by the command system is the net result of all com­
mands that might change its contents, such as SYNONYM, DEFAULT, or a
procedure call.

caution: The user should be careful to avoid excessive nesting of syno­
nyms.

Examples:

1. The user issues a SYNONYM command.

User:
system:

synonym a=b, b=c, c=d, d=e; a
(calls procedure or program E)

Note: Value of last SYNONYM issued overrides previous values.
2. The user executes a series of commands.

builtin progra
synonym pgapars
synonym x=m
progra pgapars

'x,y,z'

BUILTIN defines programPROGRA; the first SYNONYM command defines its
operands. The second SYNONYM equates X and M. When the procedure
is called, synonym substitution occurs, and this command is executed:

progra m,y,z

PROFILE Command

This command causes the session profile to replace the user profile
in USERLIB, which will be automatically invoked whenever a task is
initiated.

CSW

Operation Operand

PROFILE

specifies whether the command symbols are to be saved with the
profile.

Specified as: Y - yes
N - no

System default: N is assumed.

Functional Description: When a PROFILE command is issued, the virtual
storage profile is read into the user library, replacing the previous
version, and remains unchanged until another PROFILE command is issued.
As a result, values entered by DEFAULT or SYNONYM, and (optionally) SET
commands are made parts of the user profile that is in USERLIB.

Programming Notes: This command is used when the user wants his current
session profile to be used for all subsequent sessions.

Part V: User Profile Management 151

Examples:

1. Save a profile with no command symbol definitions.

User:
system:

profile
(reads virtual storage profile into USERLIB)

2. Save a profile with command symbol definitions:

152

User:
sys:Eem:

profile csw=y
(reads virtual storage profile into USERLIB and saves
command symbols)

PART VI: COMMAND CREATION

The user can alter command names, redefine system-supplied commands,
and create new commands from a combination of system-supplied commands
and/or assembler object coding. In creating a new command, the user can
also define his own operands and establish the desired defaults for these
operands.

To create commands, the user has two system-supplied commands, PROCDEF
and BUILTIN .

• PROCDEF defines a command procedure, consisting of a combination of
other commands that the user can invoke as a command .

• BUILTIN defines an object program that the user can invoke as a
command.

User-written commands offer advantages to the user.

1. Although it is possible to store a series of commands (e.g., a non­
conversational SYSIN data set) and then execute them via the
EXECUTE command, this process has limitations in its flexibility.
PROCDEF is easier to use; it does not require the user to explicitly
define a data set when the commands are to be stored, and it allows
easier modification of the commands.

A user may have a series of commands that he issues many times
during a session, or several sessions. He can collect these com­
mands in sequence as a procedure, assign a name to this procedure
via PROCDEF, and subsequently invoke this procedure simply by
issuing the name. Since some of the commands in the procedure may
require operands, provision is made by the system to associate the
operands with the name of the command procedure. After the pro­
cedure has been defined and named, it may be executed by entering
its name and the necessary operands during a session, just as any
system-supplied command is entered. Defining a command procedure
is analagous to writing a computer program; that is, a set of com­
mands is established at one time, to be executed at a later time,
by issuing its name.

2. The user may require an entirely new command which invokes actions
unlike those provided by any current system-supplied commands. He
creates an object program and, by using the BUILTIN command, defines
his object code as a user-written command. This procedure is
called by its name in the same way a system-supplied command calls
a procedure. It differs from a normal object module call, however,
in that operands may be supplied according to command-operand rules,
rather than program-call rules.

Command Procedure

A command procedure is a prestored, parameterized sequence of com­
mand statements and other input material necessary for the execution of
the statements. The user calls the procedure by issuing the procedure
name as a command. For example, if he has defined a command procedure
by using PROCDEF and has specified ABC as the procedure name, he may
call his procedure simply by issuing ABC. The procedure call is a two­
stage process. In the first stage, operand substitution is made where
specified; in the second, lines of the procedure, consisting of commands,
are scanned and executed in the same manner as a system-supplied command
entered at fue terminal.

Part VI: Command Creation 153

SECTION 1: COMMAND PROCEDURE DEFINITION---PROCDEF

The PROCDEF command defines a command procedure that consists of other
commands. In issuing PROCDEF, the user must specify, as an operand, the
name to be assigned to the new user-written command procedure. This pro­
cedure name ~ the command that invokes the procedure.

Operation Operand

PROCDEF NAME=procedure name

name

designates the name to be assigned to the command procedure.

Specified as: one-to-eight characters; must not contain imbedded
blanks, commas, semicolons, equal signs, or apostrophes.

Specifying Dummy Operands

After the user enters the PROCDEF command name and operand, the sys­
tem prompts him to enter the first line by printing line number 100. For
example, if COPYCAT is the name of the command procedure the user wants
to define, he enters:

procdef copycat

and the system replies:

100 (the system assigns line number a to the procedure header)

When the user wants to build his command procedure so that he can
substitute values for the operands of the constituent commands when he
calls the ~ocedure, he can assign dummy names to these operands by
means of the PARAM line. When he subsequently calls his procedure, he
specifies, in the operand field of his user-written command, the value
for each of these dummy operands.

A dummy operand name may be specified in either of two ways.

1. A character string, which defines a positional operand, is (a) the
keyword name of the dummy operand used for association with the
calling parameter (the value specified in the operand field of the
command calling the procedure) and is (b) the internal string for
which there will be a substitution in the procedure text. The
actual character string specified as the calling parameter will re­
place all occurrences of the dummy operand in the procedure text.
Example:

param dsname

When the procedure is called, the value of the first positional
operand or the operand value of the keyword DSNAME in the calling
command will replace the occurrences of DSNAME in the procedure text.

2. An external character string (keyword) and an internal character
string. The external string is the keyword name of the dummy
operand used for association with the calling parameter (the value
specified in the operand field of the command calling the procedure) .
The internal string (to the right of the equal sign) will be re­
placed by a SUbstitute in the procedure text, when the procedure
is called. Example:

param dsname=$l

154

DSNAME is the external string and $1 is the internal string. When
the procedure is called, the value of the first positional operand
or the ~perand value of the keyword DSNAME in the command calling
the procedure will replace $1 in the procedure text. Operand
resolution is discussed in detail in Section 3, "Operand Resolution
and Substitution."

The user may specify dummy operands as normal or quoted strings. A
normal string is a continuous group of characters that begins with any
nonblank character, except an apostrophe, and ends with the last non­
blank character that is prior to a comma, equal sign, or semicolon and
that is external to all pairs of parentheses in the string. A normal
string may also end with the last nonblank character prior to the end of
the line, if there is no continuation character. All System/360 charac­
ters are valid except commas, equal signs, or semicolons that are ex­
ternal to parentheses pairs in the string. For example, PARAM A+B: (C,
D), A'BC' 'D, C, D, E contains these normal strings:

A + B
(C, D)

A'BC' 'D
C
D
E

A quoted string is any character string enclosed by apostrophes and
within which all other apostrophes are doubled. This form provides the
user with the facility to employ special characters and blanks in the
dummy operand. All System/360 characters are valid. When the string is
processed by the system, the terminal apostrophes are removed and the
double apostrophes are replaced by single apostrophes. For example,

PARAM ' ABC', , CD' 'D', '$ 2 • 95 " , A=B', 'GO JOE'

Quoted String

'ABC'
'BC' 'D'
'$2.95'
'A=B'
'GO JOE'

Entering Procedure Text

Internal Representation

ABC
BC'D
$2.95
A=B
GO JOE

After the user issues the PROCDEF command name and operand, and
(optionally) the PARAM line, all subsequent lines issued without a pre­
ceding underscore character will be included in the procedure text. The
system prompts for each line with a line number, and there is no apparent
limit on the number of lines the user may enter.

The user can enter system-supplied commands (including PROCDEF and/or
BUILTIN) or other user-written commands. The commands entered need not
include all the operands associated with them, but only those necessary
for the successful performance of the functions requested. These
operands may remain variable, by specifying dummy names which also appear
in the PARAM line, or may be fixed with explicit values. Fixed operand
values are not included in the PARAM line and will be acted upon as
specified in the text when the procedure is called.

A direct call to an object module may be entered by using the name of
the module in the procedure text.

Commands preceded by an underscore are executed immediately and do not
become part of the procedure text.

Part VI: Command Creation 155

Terminating Procedure Definition

The user terminates PROCDEF processing by entering an underscore
followed by either an END command, another PROCDEF command, or an EDIT
command. When the user enters another PROCDEF command, the same options
for terminating its processing are applicable; the last PROCDEF will have
to be terminated with either an END or EDIT command.

Here are examples of PROCDEF usage and format.

Example 1:

procdef copycat
100 param ddname=alphname,dsname=namel,volume=any,$n,state=$1,$2
200 ddef ddname=alphname,dsorg=vi,dsname=namel,volume=any,$n
300 catalog dsname=namel,state=$1,$2
400 end

In the PARAM line, DDNAME, DSNAME, VOLUME and STATE are external
strings (keywords) that associate the calling parameters with the internal
strings (in the PARAM line): ALPHNAME, NAME1, ANY and $1, respectively.
These internal strings will be replaced in the procedure text by the
calling parameter values. $N and $2, represented positionally in the
PARAM line, will also be replaced by a substitute in the text.

DDEF, on line 200, is a system-supplied command, with the variable
operands DDNAME, DSORG, DSNAME, VOLUME and DISP. The keyword DISP is
omitted and fue dummy operand $N is supplied positionally. DSORG=VI is
a fixed operand value and will be acted upon as specified. Values for
the other variable operands will be supplied when the procedure is called.

CATALOG, on line 300, is also a system-supplied command. Its operands
are variable and will be replaced by substitutes when the pro~edure is
called. When END is entered, the definition of this procedure is
terminated.

Example 2:

procdef dmprog
100 param $1, 'here: there'
200 if '$l'='yes'; display 'success'
300 if '$l'l='yes'; dump here: there
400 _edit xyz

The quoted string 'HERE: THERE' is given as a dummy operand in the
PARAM line. The apostrophes permit the use of the colon within the
character string, although the apostrophes will be removed when the
string associated with this dummy operand is substituted in the procedure
text.

In lines 200 and 300, IF is a system-supplied command; the apostrophes
enclosing its operands will not be removed when the substitution is
effected.

_EDIT xyz, in line 400, is used to terminate the PROCDEF.

Example 3:

procdef diff

156

100 param alphname, $1, namel
200 ddef ddname=alphname,dsorg=$l,dsname=namel
300 procdef callme
100 param alphname,$A, $1, $2, '$3', $4
200 asm name=alphname, macrolib=$a,y,y,y,y

300 copycat alphname, $1,$2,$3,$4
400 _procdef ditto
100 param myprog
200 myprog
300 end

The underscore character preceding each PROCDEF command (after the
first) indicates that a series of procedures are defined. Each suc­
ceeding PROCDEF terminates the execution of the PROCDEF preceding it. To
end the series of PROCDEFs, END is used. within CALLME (line 300), the
user-written command COPYCAT-is used, since it was defined by a PROCDEF.
In the last PROCDEF, MYPROG will be executed as a direct call when DITTO
is invoked and the name of MYPROG is supplied.

Nested PROCDEFs

The text of a procedure, defined by PROCDEF, may contain other PROCDEF
commands, entered as any other system-supplied command (i.e., without a
preceding underscore). These are termed nested PROCDEFs. Here are some
of the uses of nested PROCDEFs.

Example 1:

procdef abc
100 param $l,alphname,dsname=namel
200 ddef alphname,vi,nameldisp=new
300 catalog dsname=namel,state=u,newname=alphname
400 procdef $1
500 param $2, name2, dsname=name3
600 ddef name2,vs,dsname=name3
700 default sysinx=e
800 procdef $2
900 myprog

1000 end
1100 -end
1200 end

In defining procedure ABC, lines 100 through 1100 are treated as text
of ABC. When END, preceded by three underscores' on line 1000, and END,
preceded by two underscores on line 1100, are entered, the first under­
score in each case is ignored and dropped since it is immediately followed
by another underscore. The remaining underscores are entered as text of
the line. The END preceded by a single underscore on line 1200 terminates
the execution of PROCDEF ABC.

When the command ABC is entered, the values of the calling parameters
are substituted for the occurrences of the dummy operands throughout the
procedure. The procedure is then executed so that the commands DDEF and
CATALOG ,will be executed. When the first PROCDEF command is encountered
(as the third command of procedure ABC) a new procedure is defined. For
example, suppose command ABC is entered like this:

abc one, myprog, dsname=mylib

Then the new PROCDEF becomes

PROCDEF ONE

The remaining lines of ABC (500-1000) form the text of the procedure called
ONE, which now appears as:

PROCDEF ONE
100 PARAM $2,NAME2, DSNAME=NAME3
200 DDEF NAME2, VS,DSNAME=NAME3
300 DEFAULT SYSINX=E
400 PROCDEF $2

Part VI: Command Creation 157

500 MYPROG
600 END
700 END

To effect the entry of the data for the PROCDEF in line 400, from the
procedure defined above, SYSINX must have a value of E.

The first underscore in line 600 is ignored and the text for line 600
is stored by the system as END. The END in line 700, preceded by one
underscore, terminates the execution of PROCDEF ONE. When procedure ONE
is called (and, of course, it cannot be called before ABC is called) the
DDEF command will be executed and then a third procedure will be created
with a name given by the first supplied operand in command ONE (i.e., the
call to procedure ONE).

Note: When command ABC is subsequently entered with the first operand of
ONE, procedure ONE will not be recreated since it is already in the pro­
cedure library. Instead, the text editor (which is invoked by the
PROCDEF processor) will start adding lines at the end of the old procedure
(see "Edi ting Procedures, II below).

Example 2:

procdef def
100 param $1,$2 alphname,dsname=$3
200 ddef alphname, vi, dshame=$3
300 default sysinx=e
400 procdef $1
500 param dsname=$3,$4
600 catalog dsname=$3,state=u, newname=$4
700 procdef $2
800 param $a,$b,$c
900 if '$a'='yes'i display loc$b

1000 if' $a' l =' yes' i display loc$c
1100 end
1200 end

The first underscore on line 1100 is ignored and the second is entered
as text. PROCDEF $1 and PROCDEF $2 are both nested within procedure DEF,
not one within the other as in the example 1. When DEF is called, both
PROCDEFs ($1 and $2) will be executed and the two resulting procedures
will be stored. For example, DEF is called:

def two,four,myprog,dsname=myjob

The substitution of the values that are passed as the calling parameters
is made for the dummy operands, and the commands are executed. PROCDEF
TWO is executed and is terminated by PROCDEF FOUR, which is terminated
by END. The resulting text is: -

PROCDEF TWO
100 PARAM DSNAME=$3,$3
200 CATALOG DSNAME=$3,STATE=U,NEWNAME=$4
300 PROCDEF FOUR
100 PARAM $A,$B,$C
200 IF '$A'='YES'i DISPLAY LOC$B
300 IF '$A'l ='YES'i DISPLAY LOC$C
400 END

Nested Procedures

Nested procedures are user-written commands that call procedures
(defined by either PROCDEF or BUILTIN) within the text of a procedure.

158

A nested procedure may include another user-written command that calls a
procedure. In each case, when a new procedure is called, it is processed
before returning to the procedure from which the call was made. For
example,

procdef tab
100 param alphname, $n, myprog, $a,$b,$c,$1,$2
200 ddef alphname, $n, dsname=myprog
300 one $a,$b,$c
400 two dsname = $1, $2
500 end

TAB is then called:

tab datadfOl, vi, dataOl, mycall, data03, dat03, newone, n

The text of the procedure then looks like this:

DDEF DATADF01, VI, DSNAME = DATAOl

ONE MYCALL, DATA03, DAT03

TWO DSNAME=NEWONE, N

When TAB is executed, the DDEF command is executed and ONE is recog­
nized as a user-written command, with MYCALL, DATA03, and DAT03 as its
operands. ONE invokes its procedure and if it, in turn, calls another
procedure, that call is processed before returning to process TWO, also
a user-written command.

Sharing User-written Commands

User-written commands can be shared, when the owner makes his user
library available to other users via the PERMIT command. The prospective
sharer issues the SHARE command, with these operands: the name by which
he will refer to the owner's user library, the owner's user identifica­
tion, and the name of the data set to be shared (i.e., USERLIB). For
example:

share lib,user345,userlib

is the command issued where LIB is the name by which the sharer will
refer to the owner's user library. Then the sharer issues a PROCDEF
command, with the name of the command he wants to share as the operand.
When the system prompts with line 100, he enters an underscore character
followed by the EXCERPT command. He specifies, as operands, the name by
which he refers to the owner's user library (in the above example, LIB),
the member name SYSPRO, and 'the range of lines from 100 to the last line
in the owner's procedure. The entire text of the procedure will be
inserted into the sharer's user library.

For example, a user wants to share a command, ABC, from a user library
to which he has been granted access.

After issuing the SHARE command, as above, this PROCDEF is entered:

User: procdef abc

Sys,User: 100_excerpt lib.syspro,100,700

User: end

ABC will now be defined as a command in the sharer's user library and
may subsequently be called by him.

Part VI: Command Creation 159

Editing Procedures

The PROCDEF command invokes the text editor, enabling the user to use
any of the text editing commands, while he is defining a procedure or
after he has defined it, by entering an underscore character, followed by
the command. He does not need to use the EDIT command.

The CORRECT command can be used within a line to respecify characters
which the user may want to insert, replace, or delete. Other commands,
such as INSERT, EXCISE, and REVISE, can be used to insert, replace, or
delete complete lines in the procedure text. (See the commands in Part
III, Section 2, "Text Editing" for a full explanation of their usage.)

This example shows how editing commands can be used during the pro­
cess of defining a procedure:

User:

Sys,User:

System:

User:

Sys,User:

procdef

100
200
300
400
500

param
ddef
ddef
data log
correct

changeit

namel, vi, old, name3
ddname=namel, dsorg=vi, name2, disp=old
name3,vi,name4,disp=01d
name2, state=n, access=u
100

PARAM NAMEl, VI, OLD, NAME3

*
excise 300

-insert 400
500 default sysinx=e
600 edit namel
700 end

$2

While defining CHANGEIT, the user enters text on lines 100, 200, 300,
and 400. When the system prompts with line 500, the user decides to make
a correction in the PARAM line. He enters an underscore character
followed by the CORRECT command and the number of the line (100) he wants
to modify. The system responds with the line text and the user now can
enter the necessary correction characters, which specify the modifica­
tions he wants to make. The asterisk in the first column duplicates that
column and all following columns until another correction character ($)
is encountered. The user wants to change NAME3 in the PARAM statement to
NAME 2 , and so, he places a $2 under the last two characters in the line.
This duplicates the column above the $ and replaces the 3 with a 2.

Then, the system prompts with an underscore (rather than a line num­
ber) indicating that another command statement must be given, if pro­
cessing is to continue. The user wants to delete line 300 from the pro­
cedure text. He enters the EXCISE command and line number 300. Once
again, the system prompts with an underscore, indicating the completion
of the command's execution and requesting the next statement.

To continue entering text, the user enters an INSERT command followed
by the number of the last line entered as text, which, in this example,
was line 400. Then the system prompts with line number 500 and the user
enters two additional statements in lines 500 and 600. The procedure
definition is terminated with the END command.

Another use of the INSERT command is shown in this procedure
definition:

procdef pdef
100 param alphname, vi, namel, old, name2, name3

160

200 ddef dsname = alphname, vi, ddname = namel, old
300 ddef dsname = myprog, vs, ddname = test, disp = new

-insert
300 dde'f dsname = name2, vi, name3, old
400 end

The user, after entering line 200, decides to issue a command state­
ment to the command system. When the system prompts with line 300, the
user enters an underscore character followed by a DDEF command, which
will not become a part of the procedure. When the DDEF is completed, the
system prompts with an underscore character, requesting the next command
statement. The user enters an INSERT command with no line number speci­
fied; and the system prompts with the line number specified by the cur­
rent line pointer, in this case line 300. This use of the INSERT command
is possible because the current line pointer was not changed by the
issuance of an editing command for a previous line number. The user
continues to add to the procedure text before terminating PROCDEF pro­
cessing with the END command.

When a procedure has been defined, the user may enter the PROCDEF
command followed by the name of the procedure he wants to modify. The
text editor is invoked and the system responds by prompting with the next
available line number in the procedure.

For example, the user again wants to modify the procedure CHANGEIT,
which he has previously defined. He enters:

procdef changeit

and the system prompts with the next available line number in the pro­
cedure; in this case, line 700. The user may now enter any of the text
editing commands, preceded by an underscore character, or he may add to
the procedure text by entering the desired text.

To delete a procedure that has been defined, the user enters the
PROCDEF command followed by the name of the procedure; then he issues the
EXCISE command, specifying the range of lines of the procedure as
operands. For example, to delete the previously defined procedure,
CHANGEIT:

User: procdef changeit
SYS;User: 700 excise 0, last

EXCISE deletes the entire procedure from line 0 to the last line.

Note: Line 0 must be specified, since it is the line number assigned by
the PROCDEF command to the procedure header.

Interrupting Procedure Definition

When the user is defining a procedure and wants temporarily to inter­
rupt PROCDEF execution to invoke the command system, he may do so by
pressing the ATTENTION key at his terminal. The system responds with an
exclamation point or a logical-NOT sign. At this time the user may issue
any commands except PROCDEF and EDIT. When he has completed his inter­
ruption process and wants execution to continue, he must issue the GO
command. The text editor positions itself to the beginning of the last
line interrupted, no matter at what position within that line the inter­
ruption was acknowledged. Any data entered on this line, before the
attention interruption, is lost; only the line number is saved.

Caution: If PROCDEF or EDIT are issued during the interval after the
attention interruption and before the GO command, the partially com­
pleted procedure is stored in its current state.

Part VI: Command Creation 161

Prompting During Execution

During a procedure call, the system may have to prompt for information;
the system will expect a reply from the source of input. In conversa­
tional mode, the system will go to the terminal or the PROCDEF data set
for the reply; in nonconversational mode, the system will go to the
SYSIN data set or PROCDEF data set. Table 13 lists the commands for
which the system will go to the terminal or the card reader for the reply.
For all others, the SYSIN macro instruction is the source of input. For
example, if the user were to stipulate in a PROCDEF that he wanted to
assemble a data set that is not stored, the system would go to the termi­
nal or card reader for the source data set, not to the procedure. In
conversational mode, when using the assembler, the system would also
issue prompting messages to the terminal.

Table 13. Source of Input: Terminal or SYSIN

ASM DATA FTN
BACK DDEF LINE?
CANCEL DELETE LNK
CATALOG DSS? LOGOFF
CDD ERASE LOGON
CDS EXECUTE MODIFY

Diagnostic Message~ During Execution

Data Set

PERMIT
POD?
PRINT
PUNCH
RELEASE
SECURE

SHARE
TIME
TV
VT
VV
WT

Diagnostic messages that occur during the execution of a command pro­
cedure will be output to SYSOUT, which may be a data set or terminal
depending on the mode of operation. When the diagnostic message requests
the user to repair an error condition, the user can make the correction
at his terminal and the procedure will continue executing. If the error
is nonrecoverable, the diagnostic message will be output to SYSOUT. In
nonconversational mode, the task will be terminated; in conversational
mode, the user will be queried for a new command.

162

SECTION 2: OBJECT PROGRAM DEFINITION---BUILTIN

This command defines an object program that the user can invoke as a
command. It is useful for accomplishing actions not achieved by any cur­
rent system-supplied commands or combination of them. The user creates
an object program and defines it as a command by use of BUILTIN.

Operation Operand

BUILTIN NAME=command name [,EXTNAME=BPKD macro name]

NME

designates the name of the command that calls the object program.

Specified as: one-io-eight characters, not containing imbedded
blanks, commas, semicolons, equal signs, or apostrophes.

EXTNAME

the external symbol assigned as the name of the BPKD macro instruc­
tion (BUILTIN procedure key definer) i see Assembler User Macro In­
structions. This name becomes the external name of the called
program and is the link needed between the command and the routine
to be called.

Specified as: one-to-eight alphameric characters, the first of
which must be alphabetic.

System default: value given in NME is assumed.

The user, as with a PROCDEF, can define operands and supply operand
values when hi~ user-written command is issued.

If the user wants to define operands for his command, he must supply
the coding within his module to handle the parameter values supplied when
the module is called. The BPKD macro instruction must be supplied in the
object code as part of the PSECT and must include the definitions of the
expected parameters. The macro instruction must also supply the names
needed to provide linkage between the module and the BUILTIN command that
defines that module. Refer to Assembler Programmer's Guide for a further
description.

Part VI: Command Creation 163

SECTION 3: OPERAND RESOLUTION AND SUBSTITUTION

The user can specify operands for user-written commands, created with
either the PROCDEF or BUILTIN commands. With PROCDEF, the user is pri­
marily establishing the operand values that are required as parameters
by the commands that constitute the command procedure. He specifies
these parameters by entering, on the line following the PROCDEF command,
the word PARAM followed by the dummy names he wants to specify for the
operands within the commands that constitute his procedure.

When the user wants to define parameters for a BUILTIN procedure, he
must supply the coding within his module to handle the parameter values
supplied as operands. He must also provide a BPKD macro instruction
within the module to generate the linkage to the object program defined
by BUILTIN. Pointers are then generated to specify the address within
the module where the operand names are stored. When the user issues
the command, any operand value given with the command is passed to the
module by pointers in the locations provided by the BPKD macro instruction.

With both types of user-written commands, the parameters supplied as
operands are resolved at the time the user-written commands are issued.
The resolution is identical to that given parameters for system-supplied
commands.

For commands created with PROCDEF, the system goes through a proced­
ure-expander routine that performs two functions: operand resolution and
operand substitution. Operand resolution consists of:

1. Analyses of calling operands
2. Analyses of procedure operands
3. Generation of operand equivalences

Operand substitution, as performed in the expansion of a procedure,
has no counterpart in operand resolution of a command created with
BUILTIN, and has a significant effect on the final evaluation of a pro­
cedure. Operand substitution is explained later in this section.

Analyses of Calling and Procedure Operands

When the user calls a procedure, he enters the command (the procedure
name) followed by the operand valu~s he wants assigned to the dummy
operands of the procedure. As with system-supplied commands, operands
may be represented either positionally or by means of a keyword.

positional notation: positional calling operands must be supplied by
the user in the same order as that given in the procedure parameter list
(PARAM line) or the BPKD parameter list. When a positional operand is
omitted and another positional operand is written following the omitted
operand, the comma that would have followed the omitted operand must be
retained to indicate the relative position of the operand that is
included.

Assume this command procedure defines a new or existing data set
whose organization is always VISAM.

164

PROCDEF VIDDEF
100 PARAM DDNAME, DSNAME, DISP=NEW
200 DDEF DDNAME, VI, DSNAME, DISP=NEW
300 END

This procedure call might be used:

viddef mybest, testl, old

VIDDEF is the command that calls the procedure. The first positional
operand in the calling sequence is MYBEST, which is the value assumed
by the first positional dummy operand (DDNAME) in the PARAM list. TESTI
is the value assumed by DSNAME, both being positionally related, (i.e.,
second position). The third positional operand in the calling sequence
is OLD, which is the value assumed by the third positional operand in the
PARAM line, even though this dummy operand is shown in keyword notation.
OLD replaces the dummy value NEW in the keyword notation. The result of
the above procedure call is:

DDEF MYBEST, VI, TESTl, DISP=OLD

For the same procedure, assume this procedure call:

viddef mybest, vs, testl, old

This procedure call is erroneous. The user wanted to specify operands
to be inserted directly in the DDEF command in the procedure, to change
the data set organization to VSAM. However, by positional association
of the calling operands and the PROCDEF PARAM line, these associations
are made:

DDNAME = MYBEST
DSNAME = VS
DISP = TESTI

OLD, which has no positional relationship, is ignored and a diagnostic
message may be issued to SYSOUT.

The result of the above procedure call is:

DDEF MYBEST, VI, VS, TESTI

MYBEST is the data definition name, VI is still the data set organiza­
tion, VS is the data set name, and TESTI is the disposition. There
could be a data set whose name is VI, but DISP must be OLD or NEW, not
TESTI.

Keyword notation: Keywords of calling operands may appear in any order;
of course, each keyword has an associated positional notation. Keywords
have the general form: KEYWORD=value, where KEYWORD is the name of the
operand, followed by an equal sign, and value is the actual value of the
operand.

Keyword and positional representation may be used simultaneously in a
string of operands. When one operand is expressed in both manners, the
occurrence that appears last (left to right) in the string is assumed
for the value.

Assume this procedure has been defined to define a data set to dump
one or more data locations or expressions:

PROCDEF AUTODUMP
100 PARAM DSNAME = ALPHNAME,DISP = NEW, DATA
200 DDEF DDNAME = PCSOUT, DSORG = VI, DSNAME
300 DUMP HERE:THERE
400 END

This procedure call might be used:

'HERE:THERE'
ALPHNAME, DISP

autodump data = '0:15r, 0:6d, top: middle', old, dsname myprog

NEW

Part VI: Command Creation 165

This call has a combination of keyword and positional notation, and the
keyword notation does not coincide with the corresponding positional
notation in the PARAM line of the procedure. The result of 'the above
procedure call is:

DDEF DDNAME=PCSOUT, -DSORG = VI, DSNAME
DUMP 0:15R, 0:6D, TOP:MIDDLE

MYPROG, DISP OLD

The above example shows how a quoted string may be used to define
several operands within a single operand field. Although an operand in
the DUMP command is not shown in keyword notation, it may be designated
as keyword notation in the PARAM line and calling sequence. The keyword
value 'HERE:THERE' in the PARAM line must be identical to the value ex­
pressed as an operand in the DUMP command (i.e., HERE:THERE). The user
could have used FROM:TO or FIRST:LAST or any expression as an operand
of the DUMP command, but the keyword value in the PARAM list must be
identical to the DUMP operand expression. The apostrophes are needed in
the keyword expression only if embedded blanks or special characters
are used within the keyword expression.

Defaults: The user can specify, alter, or delete default values for the
operands of a user-written command in the same way as with a system­
supplied command. The operands to be specified with the command are
mandatory, unless the user has provided defaults; he must supply manda­
tory operands every time he issues his command. The user creates a
default value by issuing the DEFAULT command (see Part V, "User Profile
Management"), specifying the dummy operand name in the operand field.

If the user invokes his command procedure and omits operands, the
system either obtains the default value (if one exists) from the user
library, or substitutes a null string for the missing value.

For an object program defined with BUILTIN, the user can write a rou­
tine to either generate a message or supply a fixed value when a manda­
tory operand is omitted. For example, this command procedure has been
defined:

procdef defcat
100 param ddname = datname, dsname = alphname, dsorg = vp
200 ddef ddname = datname, dsorg = vp, dsname = alphname
300 end

DEFCAT is used to define a data set. This information should be
noted about the DDEF command:

1. The default value for DISP will be assumed, since this operand is
not given.

2. A keyword value of VP, which is not the default value of DSORG (VI),
is assigned to keyword DSORG.

166

Assume this sequence of c~mmands:

default disp = old, dsorg = vs
defcat textx, dsname = progl, ddname

The result of that sequence is:

textxy

DDEF DDNAME = TESTXY, DSORG = VS, DSNAME PROGl, DISP OLD

Explanation: ,
1. DDNAME = TESTXY

Although the dummy operand DDNAME = DATNAME is in keyword notation,
it can also be considered positionally (i.e., first operand in the
PARAM line). The system resolves TESTX as a possibility of being
the value for DATNAME. However, DDNAME = TESTXY is specified else­
where in the calling sequence and the system now has another possi­
bility (TESTXY) for a value of DATNAME. The system always assumes
the last appearance, from left to right, of a multispecified
operand.

2. DSORG = VS

The system-supplied default value for DSORG is VI. DSORG = VP is
given as an operand in the DDEF command, and in the PARAM line. The
DEFAULT command defaults DSORG to VS. As a result of the procedure
call, no indication is given for the value to be substituted for
VP, either in positional or in keyword notation. The system searches
for a default value: It checks the user default table first, then
the system-supplied default table. The user has given a default
value for DSORG and this value (VS) is assigned by the system as a
string to be substituted for VP in the PARAM line. Eventually the
system will substitute VS for the DDEF operand keyword value, VP.

3. DSNAME = PROGI

This operand is given in the procedure call in keyword format. The
keyword value PROGI replaces the keyword value ALPHNAME in the
PARAM line; also, PROGI is substituted as the keyword value for
every occurrence of ALPHNAME in the body of the procedure.

4. DISP = OLD

In the DDEF command in the procedure text, the dummy operand DISP
has been defaulted, so it does not appear in the PARAM line. The
system default for DISP is NEW; however, the user has issued his
own default for DISP (i.e., DISP = OLD), which takes precedence
over the system default.

Any other mandatory operands that were omitted would assume
system default values.

Nulls: The user can specify a null value (absence of a value) for the
operand of a user-written command; a null value is a quoted string of
a-length. Indicating a null value for an operand has an effect that is
different from indicating a default value (i.e., absence of an operand).
A null value for an operand can be achieved in these ways:

Assume operands A=x, B=y, C=z

1. By omitting keyword operand A=x and specifying another operand in
its position, a default value will be assumed for A. If there is
no default value, a null value is assumed.

B=y, C=z

2. A null value for A can be expressed by the use of two successive
apostrophes in the position of operand A.

, " B=y, C=z

Part VI: Command Creation 167

3. Keyword notation can be used to indicate a null value for A.

A=' , ,B=y ,C=z

Here is an example of the use of a null value:

procdef copy
100 param dsnamel, dsname2, base, incr
200 if 'base' = "; cds dsnamel, dsname2
300 if 'base', = 'I; cds dsnamel, dsname2, base, incr
400 end

Calling sequence 1:

copy orig, dupe, base = "

Assume the user has previously specified a default value of 300 for
BASE. The data set names ORIG and DUPE will be substituted in lines
200 and 300 of COPY. BASE is indicated with a null value, which is as­
signed to the dummy BASE operand in the PARAM line. The null value will
also be substituted wherever the character string BASE appears in the
text of COPY, as shown below.

200 IF
300 IF

" =
, '-,=

, , . ,
, '. ,

CDS ORIG, DUPE
CDS ORIG, DUPE, ", 100

After substitution, the quoted string 'BASE' becomes a quoted string
with no space between the apostrophes since a null value is actually a
quoted string of O-length. The system default value of 100 is assumed
for the operand INCR, in line 300, since INCR was defaulted in the call­
ing sequence.

For calling sequence 1, therefore, the conditions are met in the
conditional statement in line 200; the associated CDS command will be
invoked.

Calling sequence 2:

copy orig, dupe

Assume, again, that the user has previously specified a default value
of 300 for BASE. BASE and INCR are defaulted in the calling sequence.
The user-supplied default value of 300 for BASE and the system-supplied
default value of 100 for INCR will be the values assigned to the oper­
ands BASE and INCR in the PARAM line. The result of the substitution
process is:

200 IF '300' = "; CDS ORIG, DUPE
300 IF '300'1 = "; CDS ORIG, DUPE, 300,100

The conditions for the conditional statement in line 200 are not met
(i.e. '300' does not equal 'I) but the conditions for the conditional
statement in line 300 are met, so that CDS command will be executed.

~onyms: The user can specify synonyms for his dummy operand names
by using the SYNONYM command (see Part V, "User Profile Management").

Since the user can specify synonyms, defaults, and nulls for operands,
the system must have a sequence for resolving these values.

1. Synonyms are checked first. For example, if this series of synonyms
has been set up:

168

A B
B C
C D

then the final value for either A, B, or C is D. Operands are
searched from left to right until the operand list is exhausted.
For a given synonym, the value is the total string read to the next
semicolon or to the end of an unhyphenated line.

2. If an operand has no synonym, the 'system searches both the user­
and system-default tables. If no default value has been assigned,
the value of the assumed operand is null.

,Example: This procedure has been defined.

procdef example
100 param Sa, $b, $c, $d, $e, $4
200 if $a = $b; display $c, $d, $e, $4
300 end

Later, the user issues a command statement.

default $d = 'Ol:Sr', $e = '0:6d', $4
synonym $c=$b, $a=$b

Then, he calls his procedure.

example $b=locSO

'top:bot'

The following steps, taken by the system, are internal and are shown
here for clarification only. Each operand is checked first for synonyms
and then for defaults.

$A $B (SYN) = LaC so (value in calling parameter list)
$B LOCSO (value in calling parameter list)
$C $B (SYN) = LaC so (value in calling parameter list)
$D O:lSR (default value)
$E 0:6D (default value)
$4 TOP: BOT (default value)

After final resolution and substitution, a new procedure is produced.

IF LOCSO = LOCSO; DISPLAY LOCSO, O:lSR, 0:6D, TOP: BOT

Generation of Operand Equivalences

The system establishes a table of dummy operands and their corres­
ponding specifications, and accounts for positional and keyword operands
and dummy operands. Also, when the system recognizes that two specifica­
tions are made for the same operand, a diagnostic message will be issued.

The result generated is shown in Table 14. The first column, INTERNAL
STRING, contains the character string that is the dummy operand keyword
or positional value in the PARAM line, which will be substituted within
the body of the text wherever an identical string occurs. The second
column, KEYWORD, contains the dummy keyword operand in the PARAM line.
The third column, VALUE, contains either the keyword or positional value
expressed in the calling sequence. When a call is made on a procedure,
the keyword column is searched for each calling parameter keyword. If
one is found, th& value associated with the calling keyword is placed in
the VALUE column; this value will be substituted later for the associ­
ated string in the INTERNAL STRING column.

Part VIi Command Creation 169

Table 14. Generation of Operand Equivalences

INTERNAL STRING KEYWORD VALUE

Substitute Keyword in Keyword

string in PARAM list value in

body of text calling

sequence

Here is an example of how resolution of operands occurs, based on the
process shown in Table 14.

Assume this procedure has been defined:

procdef asmwlist

100 param alphname, stored = $n, lincr = (first,last),­
version, symlist = $y

200 asm alphname, stored $n, lincr = (first, list)

300 verid
crlist

400 end

version, isd y, symlist = $y, asmlist
y, stedit = y, isdlist = y, pmdlist = y

This procedure call is then made:

asmwlist myprog, stored = y, version = today, now,­
alphname =- myprog 1, symlist = n

The effect of operand resolution is indicated in Table 15.

Table 15. Indication of Operand Resolution

~OSITION 1 2 3 4

PARAM

y,-

5

string ALPHNAME STORED=$N LINCR=(FIRST,LAST) VERSION SYMLIST=$Y

Calling
values MYPROGI STORED=Y NOW SYMLIST=N

String
for which
substitu- ALPHNAME $N (FIRST, LAST) VERSION $Y tion will
take
place

For each string named, a value will be ascertained.

170

Internal String

ALPHNAME

$N

(FIRST ,LAST)

VERSION

$Y

Ke~word

ALPHNAME

STORED

LINCR

VERSION

SYMLIST

Substitute Values

MYPROG/MYPROGI

Y

null

TODAY/NOW

N

The last value in each line will be taken, so that the system's table
of operand equivalences would look like this:

Internal String Keyword Value

ALPHNAME ALPHNAME MYPROGI

$N STORED Y

(FIRST,LAST) LINCR null

VERSION VERSION NOW

$Y SYMLIST N

Operand Substitution

After resolution of operands, as described above, a substitution
process occurs.

The result of the procedure expansion, after operand substitution,
would be:

ASM NAME MYPROGl, STORED = Y, LINCR = , VERID
SYMLIST N, ASMLIST = Y, CRLIST = Y, STEDIT
PMDLIST = Y

NOW, ISD = Y,
Y, ISDLIST = Y,

Note: In the PARAM line, the keyword value of SYMLIST was specified as
$Yi the $ ensures that the calling sequence keyword value (N) associated
with SYMLIST would be substituted only where the/string $Y occurs in the
body of the text. For example, if the dummy operand were SYMLIST = Y,
then, for every occurence of string Y, string N would be substituted.

The first letters of each dummy operand keyword value name in the
PARAM line, beginning with the last operand, are gathered into a string.
Every character of the procedure text is compared with the characterq in
this string. If a matching character is found, the remaining characters
of the particular dummy operand, of which the matching character was the
first, are compared with the succeeding characters of the procedure line.
Note that the "characters of the procedure line" include all characters,
whether they are characters of a command, operand, or comment within the
body of the procedure.

When a full match (i.e., an entire dummy operand is matched) is found,
the characters of the procedure line are replaced by the calling param­
eter keyword value. If not found, the remaining characters of the
string, consisting of the other first letters of dummy operands, are
compared with the procedure line, as above. If a character in the pro­
cedure text is not the same as the starting character of any of the
operands, no substitution is made for that character. The comparison
continues with the next character in the procedure text until all
characters in the procedure have been compared.

If there are no variable operands, the procedure text remains intact
and no substitution will take place.

Examples:

1. Assume a user has defined three procedures, PROCLOAD, PROCRUN, and
PROCTEST, to perform three different functions. Each has its own
set of operands, which mayor may not be similar in both name and
number. The user would like to be able to call any of these pro­
cedures by use of a single name, using a new procedure.

Part VI: Command Creation 171

procdef procall
100 param op, funct, 'pi = list
200 opfunct list
300 end

Later, he issues this procedure call to invoke PROCLOAD.

procall proc, load, 'my progx, 1.0, h' '50'"

After operand resolution occurs, substitution takes place. The first
letters of the dummy operand string are gathered into a string (LFO);
every character in this string is compared with the characters in the
procedure text. The characters in the string LFO are first compared
with line 200. When the L is matched in line 200, the "remainder of
the dummy operand, of which L was the first letter, is compared with
the characters following the L in line 200. A full match is found.
The same results occur when F and 0 are compared with line 200. For
every full match, the calling sequence keyword value replaces the
corresponding set of character strings in the procedure text.

OP FUNCT LIST

are replaced by PROC LOAD MYPROGX, 1.0,H'50'

Following this substitution, the procedure is executed and the re­
sult is a new procedure call to PROCLOAD, with the calling param­
eters: MYPROGX,1.0,H'50'.

2. This example will show the effects if dummy operand names are care­
lessly selected. Assume this procedure has been defined:

172

procdef starter
100 param progname, pari=a, b, c, r
200 abacus, name=progname, a, b, c, r
300 end

Later, a procedure call is issued.

starter zap, 1.0, c=first, r=loca

After operand resolution and substitution, the result is undesirable.

1.01.OFIRSTUS NLOME=ZAP,l.O"FIRSTLOCA

The PARAM line should have unique character strings for dummy
operands. The result of substitution would have been correct if
the procedure had been written like this:

procdef starter
100 param progname, par=$a, $b, $c, $r
200 abacus name=progname, a, b, c, r
300 end

The procedure call is issued as before.

starter zap, 1.0, c=first, r=loca

The result would now be

ABACUS ZAP, 1.0, FIRST, LOCA

3. This example will illustrate that substitution occurs on complete
matches with operands in a right-to-left occurrence. Assume that
two procedures have been defined.

PROCDEF FAKEI

100 PARAM AB,ABC,ABCE,
C,E

200 IF 'AB'='ABC'i
DISPLAY ABCE

300 END

The calls made are

PROCDEF FAKE2

100 PARAM ABCE,ABC,AB,C,E

200 IF 'AB'='ABC' iDISPLAY ABCE

300 END

fakel loca, no, cond,- fake2 loca,no,cond,c=' ',e=code
c=' , , e=code

After operand resolution and substitution,

FAKE 1

IF'LOCA'='NO'iDISPLAY
COND

FAKE2

IF'COND'='COND 'iDISPLAY COND
CODE

Note that these two procedures differ only in the order in which
the dummy operands are specified. In FAKEI the system found a
match for ABC before it found one for AB; the situation is reversed
in FAKE 2 .

Part VI: Command Creation 173

SECTION 4: PROCDEF EXAMPLES

The user is expected to make extensive use of the facilities with
which he can create his own commands, primarily by the use of the
PROCDEF command. The user can save time by combining a frequently used
series of commands into one command. The series of examples, below,
illustrate PROCDEF usage and applications that achieve greater efficiency.

1. The user wants to combine the DISPLAY and DUMP commands so that he
has only one command, with the option of displaying data at the
user's terminal or at the printer. Also, if DUMP is used, an auto­
matic DDEF command is generated, defining the data set to be dumped.

PROCDEF OUTPUT

100 PARAM ALTER, DATAl, DATA 2 , DATA 3 , DSNAME

200 IF 'ALTER' = " I 'ALTER'='Y'; DISPLAY DATAl, DATA2, DATA3

300 IF 'ALTER'='N'; DDEF PCSOUT, VI, DSNAME: DUMP DATAl­
DATA2, DATA3

400 END

ALTER serves as a switch; if 'Y' is sp~cified or ALTER is omitted,
DISPLAY is executed; if 'N' is specified, DUMP is executed. The
user may execute a DUMP to display two data fields at the printer
with this calling procedure:

output alter=n, datal=fieldl, data2=field2, dsname=data set name

Only line 200, in the above procedure, is executed; this causes a
DDEF to be issued and the two fields to be dumped.

To display one data field, the user issues

output datal=fieldl

Only line 100 is executed. DSNAME need not be specified since the
DDEF is not executed.

2. The user wants to have EDIT and REGION issued automatically every
time he uses a text editing command. As a result, the user does not
have to invoke the editing facilities by issuing an EDIT command
each time, nor does he need to issue separate REGION commands. He
also wants to retain the names of the editing commands. He must
define a procedure for each command involved but, for illustrative
purposes, only the UPDATE command is shown.

174

PROCDEF CHANGE
100 PARAM DDNAME,RNAME
200 EDIT DDNAME
300 REGION RNAME
400 UPDATE
500 END

If the user wants to update a region in a data set, and the text
editor is not invoked, he issues the CHANGE command. For example,
to update a data set with a DDNAME of MYDATA in the region XYZ, the
user enters

change ddname=mydata, rname=xyz

3. Rather than issue a separate PROFILE command whenever he wants a
synonym or default to be made part of his user library, the user
causes the PROFILE command to be an option of either SYNONYM or
DEFAULT.

and

PROCDEF DEF
100 PARAM PAR, SPEC, CSW, SAVE
200 DEFAULT PAR=SPEC
300 IF'SAVE'='y': PROFILE CSW
400 END

PROCDEF SYN
100 PARAM TERM, STRING, CSW, SAVE
200 SYNONYM TERM=STRING
300 IF'SAVE'='Y' ; PROFILE CSW
400 END

The user can now issue SYN or DEF; however, if he wants to retain
the synonym or default value, he enters SAVE='Y' as an operand of
these two commands. When the save option is selected, the user can
also enter CSW='Y' if he wants to retain command symbols.

4. The user wants to define a procedure to facilitate editing his
message file.

procdef msgedit
100 param msgid
200 edit sysulib,sysmlf
300 region msgid
400 end

Since the EDIT command is included in this procedure, with a data
set name of SYSMLF, the user always gains access to the message file
by issuing MSGEDIT. The only operand required is the value of
MSGID (i.e., the message identification) with which the message
is associated.

5. The user wants to eliminate the PARAM line from the PROCDEF
command.

PROCDEF PRCDEF
100 PARAM PNAME, DPARl, DPAR2, DPAR3, DPAR4
200 DEFAULT SYSINX=E
300 PROCDEF PNAME
400 PARAM DPARl, DPAR2, DPAR3, DPAR4
500 DEFAULT SYSINX=G
600 INSERT
700 END

The user can then issue a PROCDEF and PARAM on one line.

prcdef pname, dparl, dpar2, dpar3, dpar4

and then enter the lines that constitute the body of the procedure.

6. The user wants to generate a command to eliminate previously de­
fined procedures; he uses PRCDEF defined in Example 5.

PRCDEF EXPUNGE, PNAME
200 EDIT SYSULIB,SYSPRO
300 REGION PNAME
400 EXCISE 0, LAST
500 -END

Part VI: Command Creation 175

To eliminate the PROCDEF-defined command called OUTPUT that was de­
fined in Example 1, the user issues

expunge output

and the procedure shown in Example 1 is eliminated.

7. The command system is provided with a procedure called ZLOGON,

176

which is automatically invoked when a user logs-on. Each user may
define the actions he wants performed by ZLOGON with either PROCDEF,
BUILTIN, or SYNONYM. For example, a user who uses only one program
might create this procedure:

procdef zlogon
100 qualify mname=pyroll
200 pyroll
300 end

Now, every time he initiates a task, the system qualifies all intern­
al symbols implicitly, loads his program, and causes the program to
start execution.

PART VII: MESSAGE HANDLING

User Prompter

The user prompter is a message-handling facility that allows the sys­
tem or the users to locate and display messages, responses, or explana­
tions from one of two message files via the PRMPT macro instruction.

The user can augment these capabilities through the facilities of
the command system.

1. Request, via the EXPLAIN command, explanations of entire messages
or words from the system.

2. Specify the appropriate filter option in his user profile to indi­
cate the classification of messages he wants to receive during
execution of a task.

3. utilize the text editor to construct a user-message file that will
generate specific user-written messages in lieu of system-issued
messages.

4. The assembler user may utilize the PRMPT and MCAST macro instruc­
tions within his coding to communicate directly with the user
prompter. (For detailed descriptions of these macros, refer to
Assembler User Macro Instructions.)

Message Files

The system message file is a VISAM member of the VPAM data set SYSLIB
and is accessible only to system programmers. The user-message file is
a VISAM member of the VPAM data set USERLIB. A user may construct a
message with the same identification code as for a system message, but
with different text, and then put the new message into the user's mes­
sage file. For a specific message-identification code, the system
searches USERLIB first and then SYSLIB. This allows each user to have
his own messages overlaying system messages.

Message Generation

A message is generated to the user by a call on the user prompter
with the PRMPT macro instruction that is issued by either the system or
the assembler user. The message-identification code in the operand of
the PRMPT macro instruction points to a specific message in the message
file. The prompter will then display the message on SYSOUT when the
PRMPT macro instruction is executed.

EXPLAIN Command

This command allows the user to obtain explanations of entire mes­
sages, or of designated words within a message, that the system has
generated.

Operation Operand

EXPLAIN [~~ord
identificati°:fl

ORIGIN

TEXT ,message

RESPONSE

Part VII: Message Handling 177

Note: Keyword operand format is invalid.

word

specifies that a word prefixed with an underline, within the text
of the last message, is to be explained.

Specified as: a normal or quoted string.

ORIGIN

specifies that the user wants to have displayed the location of the
program (the system's or the user's) that caused the message to be
generated. Every message has an identification code, which is also
displayed.

Specified as: ORIGIN

Note: This form of EXPLAIN assists the user in isolating the
module that caused the message generation, and is intended pri­
marily for systems programmers.

TEXT, message identification

specifies that any code-identified message with an underscore
preceding its first character position can be displayed in full
text.

Specified as: TEXT followed by a comma and the message identifica­
tion.

Note: The TEXT option is not required for an explanation of
the most recently issued message.

RESPONSE

specifies that the possible responses to the last message are to
be displayed.

Specified as: RESPONSE

Functional Description: If no operand is used with the EXPLAIN command,
the preceding message, if explainable (and that is indicated by an under­
score in the character posit~on preceding the message text), is restated
more explicitly. If the message is not explainable but contains explain­
able words (identified by an underscore in the first character position
preceding the word) these words are elaborated; otherwise, the system's
reply is "no explanation. II Two underscores before the first word of an
explainable message indicate that the first word can be explained in­
dividually.

Programming Notes: The user may use anyone, but only one, of the five
optional ways of presenting EXPLAIN in one use of the command. If the
user wants to use more than one option, he must give additional EXPLAIN
commands, in succession, each one containing the single option desired.

Except for the "TEXT,message identification code" form of EXPLAIN,
this command must immediately follow the message that is to be explained.

Example: A user is executing a module named UPTCM as a part of his con­
versational task. This module prompts for the data set organization and
this message is displayed at the user's terminal:

UPTCM170 ENTER VAM DS. ORG.

178

The user does not understand what is required. Since the message text
is prefixed with an underscore, the message has an explanation, which the
user requests:

explain

The explanation for the current message UPTCM170 is displayed:

UPTCM170 A VAM DATA SET'S ORGANIZATION DEFINES THE
OVERALL RELATIONSHIPS OF THE LOGICAL RECORDS MAKING
UP THE DATA SET.ENTER ... VP ... OR ... VS ... OR ... VI ...

After reading the message explanation, the user wants more inform­
ation about the explainable word, VAM, (it is preceded by an underscore) :

explain vam

A definition of VAM is displayed at his terminal. An explanation mes­
sage can, in turn, contain explainable words for which further clarifi­
cation can be requested. Word explanations can continue to any number
of levels.

The user eventually understands the message, but now he is uncertain
of the form he should use in a valid response; he enters:

explain response

NOW, all possible responses to the message identified by UPTCM170 are
displayed:

VALID RESPONSES ARE: VP, VI, VS

Later in nis terminal session, the user again needs the explanation
of UPTCM170; he enters:

explain text, uptcm170

The TEXT option is necessary here since the explanation requested is
not for the most-recently issued message.

Message Filtering

When messages are defined, they are classified as to type, and the
user can specify in his user profile, which types he wants displayed.
Messages are classified by severity, lengtti, and mode of user's task
(conversational or nonconversational, or both). A three-byte field,
one byte for each classification, contains the classification codes for
each message in the message files. Table 16 shows the message types
for each of the three classifications and their corresponding codes.
The default codes, established by the system, are underlined.

Severity levels are arranged in increasing order. The user prompter
will filter (i.e., block off) messages with a lower severity code (i.e.,
less severe) than the severity filter code. For example, if the filter
code is N, all N, X, and T messages that are requested for normal errors
will be displayed; I and W messages will not be displayed.

LIMEN is the default name in the user profile for severity codes. To
change the system default for severity, the user issues a DEFAULT com­
mand, specifying LIMEN and the desired default value in the operand.
For a description of DEFAULT, refer to Part V "User Profile Manageme'nt."

BREVITY, message length, classifies four different lengths of mes­
sages. The shortest message is the message-identification code. The
standard message is a short message; the extended message is an amplified
version of the standard message. A reference message points to another
message that contains the length code. The user prompter will display
a message with the same length code as that specified in the user profile.

Part VII: Message Handling 179

To alter the system default for message length, the user should specify
BREVITY with the desired default value as the operand of a DEFAULT
command.

Filtering, based on user's mode of operation, cannot be modified by
the user. C messages are displayed only for conversational tasks; B
messages only for nonconversational tasks; and A messages for all tasks,
regardless of mode.

Table 16. Filter Codes

Severity of Message Length of Message Mode of Task
(LIMEN) (BREVITY)

Type Code Type Code Type Code

Information I Message ID M Conversational C

Warning W Standard S NQnconversational B - -
Normal error N Extended E All A -
Serious error X Reference R

Terminate error T

Notes: All severity codes and length-code Sand E are applicable for
both message-classification and filtering options; only length codes M, E
and S are applicable as filtering options; messages with length code R
have their length codes in the referenced message; mode codes are appli­
cable only for message classification.

Message File Construction

The user message file is a member of the user library (USERLIB) called
SYSMLF. The user message file is constructed and maintained by using
the facilities of the text editor. New messages that the user prompter
can access must be constructed by the text editor in SYSMLFi to initi­
ate this process:

edit sysulib,sysmlf

The text editor constructs VISAM records from its input commands and
data lines. The message-identification code comes from the region speci­
fication. The input line number is right-justified in a seven-byte un­
signed decimal field and padded with leading Os. The line text is
unchanged from the input data line.

When reference line numbers are entered, their format must match the
internal format of the referenced original line number. For example,
an original line number entered as 200 will be stored internally in
bytes 12-18 of a VISAM record as 0000200. If this line is referenced
by another message, the reference field, bytes 12-18 of the line, must
contain 0000200.

Many messages require that operands (in most cases, user-defined
names) be inserted in specified positions in the message. These posi­
tions are indicated in the body of the message by the elements $N, where
N can assume the integer values 1 through 20, and denotes the Nth ele­
ment of the parameter sublist in the calling sequence. The text of
explainable-message records, when output, begins with an underscore.
Similarly, explainable words in a message body are preceded by the under­
score character. All explainable words and messages must have corres­
ponding explanation messages. This example illustrates the procedure
for entering a message in the user message file:

180

edit sysulib,sysmlf
region czatplOl
100 update
o isa name unknown
end

The text editor was invoked with the EDIT command. The REGION com­
mand specified the message identification code and the system provided
the next available line number (100). The user entered an UPDATE com­
mand preceded by an underscore, requesting the system to act on this
command immediately. He then entered line O. The END command signals
the text editor to discontinue entry in the message file. ISA is the
message classification code.

The user prompter has a reference capability that allows the system
and the user to reduce the number of times and identibal message might
appear in the message file; yet, maintain unique message identification
codes for every distinct call to a message. For example, if system
message ABC has a desired text and a user message XYZ is established
with identical text, message XYZ can point to ABC, rather than repeat
the text of ABC. Message XYZ, a reference message, has an R in the
second position of the classification field."

By calling identical messages with more than one message-identifica­
tion code, reference messages permit a message's identification to con­
vey information as to its source.

Message Types and Format

There are five types of messages in the system message file.

Standard message

Extended message

a brief communication from an object module to
the user; begins at line O.

a lengthier, more detailed communication from
an object module to the user, begins at line
100

Response a set of words, each with a unique code identi­
fying the response expected from the user; it
begins at line 200.

Explanation
message

Word explanation

an explanation of the standard message; it
begins at line 300.

an explanation of an explainable word in a
message; it begins at any line above 399.

The VISAM variable length record format is:

o 4 12 19 20
record message line not message
length identification number used

code

~~~---VISAM key----------------------~.~ 

J 
~~~--------------------------record length------------------------------------__ ~ 

The line format varies with the type of line (see Table 17).

Part VII: Message Handling 181

Table 17. Message-Line Format

Message Classification Message Text
Message Types Bytes 20 - 22 Byte 23 Bytes 24-end of line

Message Text
Standard 3-byte classification Underscore for Reference MSG ID,

I
Reference-

Message code explainable bytes 24 - 31 line number,
message bytes 32-38

Message Text
Extended 3-byte classification Underscore for Reference Msg ID,

I
Reference-

Message code explainable bytes 24 - 31 line number,
message bytes 32-38

Message Text
Response 3-byte classification Not used word l=code 1, word 2=code 2,etc

code Reference msg ID,

I
Reference-

bytes 24 - 31 line number,
bytes 32-38

Message Explanation Text
Message 3-byte classification Not used Reference msg ID,

I
Reference-

Explanation code bytes 24 - 31 line number,
bytes 32-38

Explain word, Word Explanation
Word 3-byte classification Not used bytes 24-31 Text
Explanation code Refer- Reference-

ence line number
scope, bytes,
bytes 40-46; refer-
32-39 ence w.ord,
(not bytes 48-55
used)

Word Explanation Scope

The scope of word explanations vary, depending on the word. For ex­
ample, some word explanations will be universal in scope. Other word ex­
planations might be universal within a major component of TSS/360, such
as the Command System. Still others will have a scope limited to the
particular message in which they appear. Broad scopes are an advantage
because fewer explanation records are needed and the size of the message
file can be minimized. The user prompter enables the user to regulate
the scopes of word explanations to favor his particular operation.

The scope of a word explanation is indicated by its eight-byte message
identification code. Explanations with universal scope have an all­
blank identification code. For scopes restricted to a single message,
the full eight-byte message-identification code is used. Identification
codes can be assigned in a pattern to allow various levels of scope, be­
tween universal and fully restrictive. For example, assume the command
system divides into three main modules: CZASA, CZATE, and CZATP. All
command-system-message identification codes start with CZA, followed by
a three-digit sequential message number within the module. As an ex­
ample, five messages in module CZATP could be identified:

182

CZATP10l
CZATP102
CZATP103
CZATP104
CZATP105

Words whose meaning is universal in scope within the command system
would have an identification code of CZA. If the scope were limited to
a particular module, say CZATP, the identification code would be CZATP.
The scope is further restricted to a particular message by adding the
final three digits.

The user prompter provides two one-byte masks, one for the system­
message file and one for the user-message file, to allow users to con­
trol the user prompter's search for word explanations. Each bit position
in the mask corresponds to a byte in the identification code of the
message that contains the explainable word. The correspondence is from
left to right, positions 0 through 7, respectively. Bits are turned on
to indicate how many bytes of the current message-identification code
are to be compared in searching for a word-explanation record. The user
prompter scans the mask, starting on the right with bit 7, looking for
I-bits. Each I-bit causes an access to the message file, using as a
search argument the current message-identification bytes, from position
o through the position corresponding to the mask bit.

Both system and user masks are located in the profile character and
switch table, a section of the user profile (see Appendix C). The values
may be changed by using the MCAST macro instruction (refer to Assembler
User Macro Instructions). The system and user masks will be initially
set as a part of the prototype profile, but may be changed by a user.

Part VII: Message Handling 183

APPENDIX A: BULK INPUT FROM MAGNETIC TAPE

The user can enter his data sets that are on tape into the system.
The way described here is the only direct means of reading a data set
from tape, and then converting to VAM organization, writing onto public
storage, and cataloging. The user must send information, indicated be­
low, with his tape, to the system operator. He must also ensure that his
tape format meets system requirements, defined later in this appendix.
The data set that will be stored and cataloged has a different organiza­
tion from that residing on the tape (i.e., the input data set) and must,
therefore, have its own data set name. When the new data s~t has been
cataloged, the user can refer to it just as he would to any other cata­
loged data set belonging to him.

Information Needed by System Operator

The user must send this information with his tape to the system op­
erator, for every data set that is to be read and cataloged:

Operands

{

volume identification,[tape typeJ }

CTLG , user identification,

input data set name, cataloged data set name, [LINE] ,[error]

volum'e identification

volume identification of the user's tape

Specified as: one-to-six alphameric characters

tape type

CTLG

type of tape

- seven-track
- seven-track with data converter feature
- nine-track

Specified as: 7
7DC
9

System default:
assumed

tape type specified at system generation time is

input data set has previously been cataloged

Specified as: CTLG

user identification

identification of user to whom the data set belongs

Specified as: three-to-eight alphameric characters; the first must
be alphabetic

input data set name

name of the input data set

Specified as: fully qualified data set name

184

cataloged data set name

LINE

error

name under which the data set is to be cataloged

Specified as: a fully qualified data set name

lines are t~ be numbered. Each logical record in the VISAM data set
that is created will be prefixed by a seven-character line number of
the form xxxxxOO, and by a byte of binary Os that is reserved for
system use. The result will be a line data set with variable format
records.

Specified as: LINE
System default: no line numbering; organization, VSAM

specifies the action to be taken if an uncorrectable read-error
occurs; one of three options may be selected.

Specified as: ACCEPT - error record will be accepted
SKIP - error record will be skipped
END - read operation will be terminated

System default: END is assumed

Functional Description: The system will read the input data set, con­
vert it to VAM organization, store it on public storage, and catalog it
in the user's catalog under the name specified in the cataloged data
set name operand. If the input tape contains more than one data set,
the system will read the specified input data set only.

The data set that is stored on public storage has either VSAM or
VISAM organization, depending on whether the LINE option was selected.
If line numbering was requested, the system will generate line numbers
using an increment value of 100. The maximum number of logical records
permitted, therefore, is 100,000. The input data set record length
must not exceed 120 bytes if line numbering is requested.

The system does not perform code conversions. However, if the data
set is on seven-track tape, the system will make any character adjust­
ments required for data validity.

Programming Notes: When the user wants to submit a data set on seven­
track tape (with or without data converter feature), he must first con­
sider tape characteristics. He merely enters the tape-type operand, as
shown in the preceding format, if characteristics such as density and
parity, match the standards set by the installation. But, if he wants
other characteristics, he must:

1. Issue a DDEF command for the data set, specifying the tape char­
acteristics,

2. Issue a CATALOG command to catalog the data set.

3. Specify the CTLG operand before sending the tape to be read.

The system operator will use the information supplied by the user to
enter an RT command that causes execution of a system-provided task to
handle the tape input. The SYSOUT listing of that task, which is re­
turned to the user, may contain messages.

Tape Format Requirements

The magnetic tape must have the standard TSS/360 label. Physical
records must be of fixed length and no longer than 32,767 bytes.

Appendix A: Bulk Input From Magnetic Tape 185

APPENDIX B: BULK INPUT FROM CARD DECKS

The user can submit his data sets on punched cards to the system op­
erator, who will then enter them into the system via a high-speed card
reader. Two types of input data sets are permitted: nonconversational
SYSIN data sets and data-card data sets. The two types may be inter­
spersed, one following another, in any order within a batch of cards.
The rules for setting up these data sets are given below.

Note: When the user wants to enter a nonconversational SYSIN data set
together with the data sets it references, he must be certain that the
data sets precede the SYSIN data set. The system, generally, will try
to execute the SYSIN data set as soon as it has been read.

The acceptable character set for punched cards is described in
Terminal User's Guide.

Nonconversational SYSIN Data Set

A nonconversational data set contains all commands needed to run a
nonconversational task. These commands are punched, each starting in
column 3 of a new card, in exactly the format used to enter commands
from a terminal (see Part I, "Command Format and Notation"). The first
card must be a LOGON command; the last, LOGOFF. Other commands are as
required for the particular task.

When the data set is read in, it becomes the SYSIN data set of a
nonconversational task; it is executed as soon as space is available.
After execution, the SYSIN data set is eliminated; it does not remain
in the catalog or in system storage.

The card-deck format is:

LOGOFF

The SYSIN data set may include data that is to be read by the user's
object program at execution time. If so, the data to be read must appear
immediately after the command that will start execution of the user's
program. (Unlike commands, card data may start in column 1.) Also, the
end-of-data card, with %END starting in column 3, must follow the last
data card, as in this example:

186

Data-Card Data Set

This type of data set contains any information the user wants to put
into public storag~ as a cataloged data set; it may include commands.
When this type of data set is read, a VAM data set is created and cata­
loged in public storage. This VAM data set will continue to reside in
storage until it is specifically erased. Unlike the nonconversational
SYSIN data set, it is not executed upon being read.

The first card of the data set must be LOGON; the last, LOGOFF. Two
control cards are also mandatory: a data descriptor card, immediately
after LOGON, and %ENDDS card, just before LOGOFF, as in the card deck
format:

Appendix B: Bulk Input From Card Decks 187

Data Descriptor Card

This card, which provides information needed by the system to create
the desired data set, is in this format:

Col.
3

Operanqs

DATASET, data set name, [format] ,[starting number], [ending nUmber],

[LINE] ,[error]

DATASET

indicates that data descriptor information follows

Specified as: DATASET

data set name

name under which the new data set is to be cataloged

Specified as: a fully qualified data set name

format

the class of card punching to be used

Specified as: EBCDIC - extended binary coded decimal interchange
code

BCD - binary coded decimal
System default: EBCDIC is assumed

starting number

the first card column to be read when creating a data set record

Specified as: decimal number from 1 to 79
System default: column 1 is assumed

ending number

LINE

188

last column to be read when creating the data set records

Specified as: decimal number; maximum, 80

indicates that line numbering is requested. Each record in the
data set will be prefixed by a seven-character line number of the
form XXXXXOO, and by a byte of binary Os that is reserved for sys­
tem use. The resulting data set will be a line data set with vari­
able format records.

Specified as: LINE
System default: no line-numbering organization, VSAM

error

indicates the action to be taken if an uncorrectable read-error
occurs

Specified as: ACCEPT - accept the record in error
SKIP - skip the entire logical record if any card

in it is in error
END - terminate reading of the data set

System default: END is assumed

Functional Description: The operator issues an RC command and the sys­
tem will read the input data set, convert it to VAM organization, put
it in public storage, and catalog it in the user's catalog under the
data set name provided. The stored data set has either VSAM or VISAM
organization, depending on whether the line option was selected. If
line numbering was requested, the system will generate line numbers,
using an increment value of 100. The maximum number of lines permitted
in such a data set is, therefore, 100,000. When line numbering is re­
quested, the new data set record length must not exceed 120 bytes.

cautions: Data cards may be punched beginning in column 1. LOGON and
LOGOFF, beginning in column 3, delimit successive input jobs. Therefore,
they should not begin in column 3 when used in a data set created by the
DATA command.

%ENDDS Card

This card, with %ENDDS starting in column 3, marks the end of a data
set that is to be cataloged.

Note: Submitting cards for bulk input results in a system-provided
task being executed to handle the card input. The SYSOUT listing of
that system task may contain messages.

Appendix B: Bulk Input From Card Decks 189

APPENDIX C: PROTOTYPE PROFILE

Listed below are the IBM system-supplied values contained in the
prototype profile. These values are principally the keywords and values
used by the system and the initial character-translation table used by
GATE.

COMMAND SYSTEM DEFAULTS

OPERAND
NAME

ACC
ACCESS
ACTION
ASMLIST
AUTH

BASE
BCD
BREVITY
BSN
CBIN

CHARGE
CONF
COUNT
CRLIST
CSW

CTLG
DCB
DDNAME
DISP
DSNAME

DSNAMEl
DSNAME2
DSORG
EMPTY
ENDNO

ERASE
ERROROPT
EXTNAME
FACTOR
FORM

GDG
GNO
HEADER
INCR
INSTLOC

ISD
ISDLIST
KEYLEN
LABEL
LIB

190

DEFAULT
VALUE

o
Y
U

N
S

E

30000
N
N

VI

END

Y
N

PURPOSE OR USERS

CATALOG
PERMIT
CATALOG
ASM
JOIN

CDS, DATA, NUMBER
FTN
Message Length Filter
CANCEL
PUNCH

JOIN, LOGON
MODIFY
Number of Lines for Bulk Output
ASM, FTN
PROFILE

RT
DDEF
DDEF, EDIT, EXCERPT, RELEASE
CATALOG, CDS, DDEF
BACK, CATALOG, CDD, DATA, DDEF, DELETE, DSS?,
ERASE, EXECUTE, LINE?, MODIFY, PERMIT, POD?,
PRINT, PUNCH, SHARE, WT

CDS, RT, TV, VT, VV
CDS, RT, TV, VT, VV, WT
DDEF
RC, S HUT DOWN
PRINT, PUNCH, WT

PRINT, PUNCH, WT
PRINT, PUNCH, WT
BUILTIN
WT
PRINT, PUNCH

CATALOG
CATALOG
PRINT, WT
CDS, DATA, INSERT, NUMBER, REVISE,
BRANCH

ASM, FTN, LNK
ASM
MODIFY
MODIFY
LNK

COMMAND SYSTEM DEFAULTS (Cont'd.)

OPERAND
NAME

LIMEN
LINCR
LINE
LOC
LRECL

MACRO LIB
MINS
MMAP
MNAME
MSGNO

Nl

N2

NAME

NAMES
NEWNAME

OBLIST
OPTION
OWNERDS
PAGE
PASSWORD

PMDLIST
PREXPAND
PRIORITY
PRIV
PRTSP

PUBLIC
RECFM
RKP
RNAME
RSVP

RTYPE
SCOL
SETNAME
SLIST
SOURCE

SPACE
STACK
STARTNO
STATE
STEDIT

STORED
STRING
STRINGI
STRING2
SYMBOL

DEFAULT
VALUE

W
(100,100)

N

N

*ALL

N
X
9
D
1

N
V
a

a

Y

1

N
N

N

PURPOSE OR USERS

Message Severity-Filter
ASM, FTN
LINE?, RT
RUN
MODIFY

ASM
TIME
FTN
EDIT, QUALIFY
REPLY

CONTEXT, CORRECT, EXCERPT, EXCISE, INSERT, LIST,
LOCATE, NUMBER, REVISE
CONTEXT, CORRECT, EXCERPT, EXCISE, LIST, LOCATE,
NUMBE R, REVI SE
ASM, BUILTIN, CALL, FTN, LNK, LOAD, PROCDEF,
UNLOAD
DSS?
CATALOG

FTN
DDEF
SHARE
PRINT, WT
JOIN

ASM, FTN, LNK
Controls Procedure Expansion Error Anaiysis
JOIN
JOIN
PRINT, WT

FTN
MODIFY
MODIFY
EXCERPT, REGION
Controls Responses in GATE

DATA
CORRECT
MODIFY
FTN
EDIT

DDEF
PUNCH
PRINT, PUNCH, WT
CATALOG, PERMIT
ASM, FTN

ASM, FTN, LNK
LOCATE
CONTEXT
CONTEXT
RUN

Appendix C: Prototype Profile 191

COMMAND SYSTEM DEFAULTS (Cont'd.)

OPERAND DEFAULT
NAME VALUE PURPOSE OR USERS

SYMLIST N ASM
SYSIN K Controls GATE's Access to SYSIN Data Set
SYSINX G Controls Command Analyzer's Access to GATE
TEXT BCST, MSG, REPLY
UNIT DDEF

USERID FORCE, JOIN, MSG, QUIT, PERMIT, RT, SHARE
VERID ASM, FTN, LNK
VOLUME DDEF, RT, WT
*$@% *$@% CORRECT

Character and Switch Table, primary Dictionary

The user profile contains two additional tables, the Profile Charac­
ter and Switch Table and the Primary Dictionary. The primary dictionary
contains commands written by both the system and the user. Command
procedures were discussed in Part VI. The profile character and switch
table is made up of two parts, a character-translation table and a table
of miscellaneous control characters.

The character-translation table is a list of all characters recog­
nized by the system, each with its internal code and a function code.
Function codes available are:

1. Code 00 - Translate only. When this code is specified for a char­
acter, the system picks up the internal code of that character.

2. Code 04 - Character kill. Every time it encounters a character
with this function code, the system deletes that character and the
one preceding it. The system-supplied value is backspace.

3. Code 08 - End-of-block or new line. When the system encounters a
character with this code, it recognizes it as the end of an input
stream and appends at that point an EOB character from the miscel­
laneous control-character table. Any characters beyond the EOB
character are ignored.

4. Code DC - Cancel. If the last character in the line has this code
the system deletes the character and the entire line that precedes
it. The system supplied value is #.

5. Code 10 - Terminal null. If this code is assigned to the last
character before the end-of-block, the system will ignore the char­
acter. The system supplied value is a new line.

6. Code 14 - Null. Any character to which this code is assigned will
be ignored as input to the system.

The user who wants to modify this table must build his own charac­
ter-translation table in memory, assigning function codes to whatever
character he wants. For example, he might assign code 14 (null) to all
nonprinting characters. He would then use an MCAST macro instruction in
his object program; MCAST is described in Assembler Users Macro Instruc­
tions.

192

PROTOTYPE CHARACTERTRANSLATTON TABLE

Translation Character Function Character
Byte Byte
Position Code Cha:racter position Code

0 0 256 0
1 1 257 0
2 2 258 0
3 3 259 0
4 4 PF 260 0
5 5 HT 261 0
6 6 LC 262 0
7 7 DEL 263 0
8 8 264 0
9 9 265 0

10 A 266 0
11 B 267 0
12 C 268 0
13 D 269 0
14 E 270 0
15 F 271 10
16 10 272 4
17 11 273 0
18 12 274 0
19 13 275 0
20 14 RES 276 0
21 15 NL 277 0
22 16 BS 278 0
23 17 IL 279 0
24 18 280 0
25 19 281 0
26 lA 282 0
27 1B 283 0
28 1C 284 0
29 1D 285 0
30 1E 286 0
31 1F 287 0
32 20 288 0
33 21 289 0
34 22 290 0
35 23 291 0
36 24 BYP 292 0
37 25 LF 293 0
38 26 EOB 294 8
39 27 PRE 295 0
40 28 296 0
41 29 297 0
42 2A SM 298 0
43 2B 299 0
44 2C 300 0
45 2D 301 0
46 2E 302 0
47 2F 303 0
48 30 304 0
49 31 305 0
50 32 306 0
51 33 307 0
52 34 PN 308 0
53 35 RS 309 0
54 36 UC 310 0
55 37 EOT 311 0

Appendix C: Prototype Profile 193

PROTOTYPE CHARACTER TRANSLATION TABLE (Cont' d.)

Translation Character Function Character
Byte Byte
Position Code Character Position Code

56 38 312 0
57 39 313 0
58 3A 314 0
59 3B 315 0
60 3C 316 0
61 30 317 0
62 3E 318 0
63 3F 319 0
64 40 320 0
65 41 321 0
66 42 322 0
67 43 323 0
68 44 324 0
69 45 325 0
70 46 326 0
71 47 327 0
72 48 328 0
73 49 329 0
74 4A 330 8
75 4B 331 0
76 4C 332 0
77 40 333 0
78 4E 334 0
79 4F 335 0
80 50 & 336 0
81 51 337 0
82 52 338 0
83 53 339 0
84 54 340 0
85 55 341 0
86 56 342 0
87 57 343 0
88 58 344 0
89 59 345 0
90 SA 346 0
91 5B $ 347 0
92 5C * 348 0
9-3 50 349 0
94 5E 350 0
95 SF 351 0
96 60 352 0
97 61 / 353 0
98 62 354 0
99 63 355 0

100 64 356 0
101 65 357 0
102 66 358 0
103 67 359 0
104 68 360 0
105 69 361 0
106 6A 362 0
107 6B , 363 0
108 6C % 364 0
109 60 365 0
110 6E 366 0

194

PROTOTYPE "CHARACTER 'TRANSLATTON TABLE (Cont'd.)

Translation Character Function Character
Byte Byte
position Code Character Position Code

III 6F ? 367 0
112 70 368 0
113 71 369 0
114 72 370 0
115 73 371 0
116 74 372 0
117 75 373 0
118 76 374 0
119 77 375 0
120 78 376 0
121 79 377 0
122 7A : 378 0
123 7B # 379 C
124 7C @ 380 0
125 7D 381 0
126 7E 382 0
127 7F " 383 0
128 80 384 0
129 81 a 385 0
130 82 b 386 0
131 83 c 387 0
132 84 d 388 0
133 85 e 389 0
134 86 f 390 0
135 87 g 391 0
136 88 h 392 0
137 89 i 393 0
138 8A 394 0
139 8B 395 0
140 8C 396 0
141 8D 397 0
142 8E 398 0
143 8F 399 0
144 90 400 0
145 91 j 401 0
146 92 k 402 0
147 93 1 403 0
148 94 m 404 0
149 95 n 405 0
150 96 0 406 0
151 97 P 407 0
152 98 q 408 0
153 99 r 409 0
154 9A 410 0
155 9B 411 0
156 9C 412 0
157 9D 413 0
158 9E 414 0
159 9F 415 0
160 AO 416 0
161 Al 417 0
162 A2 s 418 0
163 A3 t 419 0
164 A4 u 420 0
165 AS v 421 0

Appendix C: Prototype Profile 195

PROTOTYPE CHARACTER TRANSLATION TABLE (Cont'd.)

Translation Character Function Character
Byte Byte
Position Code Character Position Code

166 A6 w 422 0
167 A7 x 423 0
168 A8 Y 424 0
196 A9 z 425 0
170 AA 426 0
171 AB 427 0
172 AC 428 0
173 AD 429 0
174 AE 430 0
175 AF 431 0
176 BO 432 0
177 B1 433 0
178 B2 434 0
179 B3 435 0
180 B4 436 0
181 B5 437 0
182 B6 438 0
183 B7 439 0
184 B8 440 0
185 B9 441 0
186 BA 442 0
187 BB 443 0
188 BC 444 0
189 BD 445 0
190 BE 446 0
191 BF 447 0
192 CO 448 0
193 C1 A 449 0
194 C2 B 450 0
195 C3 C 451 0
196 C4 D 452 0
197 C5 E 453 0
198 C6 F 454 0
199 C7 G 455 0
200 C8 H 456 0
201 C9 I 457 0
202 CA 458 0
203 CB 459 0
204 CC 460 0
205 CD 461 0
206 CE 462 0
207 CF 463 0
208 DO 464 0
209 D1 J 465 0
210 D2 K 466 0
211 D3 L 467 0
212 D4 M 468 0
213 D5 N 469 0
214 D6 0 470 0
215 D7 P 471 0
216 D8 Q 472 0
217 D9 R 473 0
218 DA 474 0
219 DB 475 0
220 DC 476 0
221 DD 477 0
222 DE 478 0

196

PROTOTYPE CHARACTER TRANSLATION TABLE (Cont 'd.)

Translation Character Function Character
Byte Byte
position Code Character position Code

223 DF 479 0
224 EO 480 0
225 El 481 0
226 E2 S 482 0
227 E3 T 483 0
228 E4 U 484 0
229 E5 V 485 0
230 E6 W 486 0
231 E7 X 487 0
232 E8 Y 488 0
233 E9 Z 489 0
234 EA 490 0
235 EB 491 0
236 EC 492 0
237 ED 493 0
238 EE 494 0
239 EF 495 0
240 FO 0 496 0
241 Fl 1 497 0
242 F2 2 498 0
243 F3 3 499 0
244 F4 4 500 0
245 F5 5 501 0
246 F6 6 502 0
247 F7 7 503 0
248 F8 8 504 0
249 F9 9 505 0
250 FA 506 0
251 FB 507 0
252 FC 508 0
253 FD 509 0
254 FE 510 0
256 FF 511 0

512 0

The table of miscellaneous control characters includes:

1. Source list EOB character; defines the end of an input block. Its
initial value is X'26'.

2. Command system continuation character. Normally, an EOB occurs when
the carriage is returned. If the last character before a carriage
return is a command system continuation character, the line input
is continued past the carriage return. The intial representation
of the default for this character is a hyphen (X'60).

3. Command system prefix character. Entry of this character requires
the system to execute immediately the command following the charac­
ter. Initially this character is defined as an underscore (X'6D').

4. Transient statement prefix character. This character is included
for future use with advanced language processors. When the pro­
cessor encounters the character, it ceases processing the input
string as data and sends whatever follows to a predetermined entry
point for execution. The system initially defines this character
as a vertical stroke (X'4F').

Appendix C: Prototype Profile 197

5. Preferred line-break indicator. With varying line-length capa­
bilities of different devices, it may become necessary to divide a
line of input. A user can enter this character to indicate when he
would prefer to have a line broken if it becomes necessary to do so.
For ordinary printed text he might make the character a space. The
initial character is X'72'.

6. System scope mask. This character controls searches for explana­
tory messages issued by the user prompter. Its default value is
X'29' (00101001). Using this mask, a search for a particular ex­
planatory message would b~gin with a search of the messages that
have eight-character identifications. If none is found, messages
with five-character identifications would be searched, then three­
character identifications. As the identifications get shorter, the
messages become more general in scope. The system scope mask is
used only with the system-messages file on SYSLIBi the mask may not
be changed by the user.

7. User scope mask. This character works like the system scope mask,
but on user-created messages in the USERLIB. The user may set this
mask according to his own search logic. The default value is
00101001.

8. Command prompter. This may be a string of up to eight characters.
Initial default is an underscore followed by a backspace. The
system uses this string to prompt for a command.

9. SYSIN keyboard/card reader switch. This switch indicates the type
of device from which input will be accepted by the system. It may
be set with a K for a terminal keyboard, or with an E to indicate
either the keyboard or the card reader~ If a user specifies K as
the switch setting, the system will not recognize his subsequent
specification of a card reader as the input device. Initial value
is E.

10. Carriage-return suppression character. When this character is the
last in a message being written to SYSOUT by the command system, the
character is suppressed and the system does not add a new line
character to the text. The system-supplied value is colon (X'7A').

198

APPENDIX D: PRINTER CARRIAGE CONTROL CODES

MACHINE CODES

Function Byte Value (hexadecimal)

Write (no automatic space) 01

Write and space 1 line after printing 09

Write and space 2 lines after printing 11

Write and space 3 lines after printing 19

Write and skip to channel 1 after printing 89

Write and skip to channel 2 after printing 91

Write and skip to channel 3 after printing 99

Write and skip to channel 4 after printing Al

write and skip to channel 5 after printing A9

Write and skip to channel 6 after printing Bl

Write and skip to channel 7 after printing B9

Write and skip to channel 8 after printing Cl

write and skip to channel 9 after printing C9

Write and skip to channel 10 after printing Dl

Write and skip to channel 11 after printing D9

Write and skip to channel 12 after printing El

Note: To obtain the corresponding carriage-control operations (space
or skip to channel N) without printing, increase the value of the low­
order digit by hexadecimal 2. Example:

space two lines 13

skip to channel 5 AB

skip to channel 9 CB

EXTENDED USASI CODES

Function Character

Skip no line before printing +

Skip 1 line before printing blank

Skip 2 lines before printing 0

Appendix D: Printer Carriage Control Codes 199

EXTENDED USASI CODES (cont'd)

Function Character

Skip 3 lines before printing -

Skip to channel 1 before printing 1

Skip to channel 2 before printing 2

Skip to channel 3 before printing 3

Skip to channel 4 before printing 4

Skip to channel 5 before printing 5

Skip to channel 6 before printing 6

Skip to channel 7 before printing 7

Skip to channel 8 before printing 8

Skip to channel 9 before printing 9

Skip to channel 10 before printing A

Skip to channel 11 before printing B

Skip to channel 12 before printing C

200

APPENDIX E: PUNCH CONTROL CODES

IBM 2540 PUNCH MACHINE CODES

Data Mode 1 Data Mode 2
Function (byte value) (hexadecimal)

TYPE AA

Read, feed, and select stacker Rl 02 22

Read, feed, and select stacker R2 42 62

Read, feed, and select stacker RP3 82 A2

TYPE AB

Read and no feed or stacker selection C2 E2

Read, feed, and no stacker selection D2 F2

TYPE BA

Feed and select stacker Rl 23 23

Feed and select stacker R2 63 63

Feed and select stacker RP3 A3 A3

PFR write, feed, and select stacker Pl 09 29

PFR write, feed, and select stacker P2 49 69

PFR write, feed, and select stacker RP3 89 A9

TYPE BB

Write, feed, and select stacker Pl 01 21

Write, feed, and select stacker P2 41 61

Write, feed, and select stacker RP3 81 Al

EXTENDED USASI CODES

Function Character

Select punch pocket 1 v

Select punch pocket 2 W

Appendix E: Punch Control Codes 201

APPENDIX F: DETAILED DESCRIPTION OF DDEF COMMAND

This appendix describes the DDEF command as used to define any pri­
vate, or atypical public, data sets. To define typical public data
sets (i.e., those with virtual access method (VAM) sequentialorganiza­
tion on direct-access public storage, arranged in pages and having
standard labels), see the DDEF command description in Part III.

Table F-l lists the required and optional fields of the DDEF command
for various types of data sets. The complete command format illustra­
tion of the DDEF command is:

Operation Operand

DDEF DDNAME=data definition name [,DSORG={MS/CS/PsIRX/VIlvp/vs}]

,DSNAME=data set name

202

r-- -

,DCB=([data definition name] [,DSORG=data set organization]

[,MACRF=type of macros] [,BUFL=buffer length]

[,DEVD=device type] [,BUFNO=number of buffers]

[,BFTEK=buffer technique] [,NCP=consecutive macro
number]

[,RECFM=record format] [,OPTCD=W] [,LRECL=record length]

[,BLKSIZE=block length] [,KEYLEN=key length]

[,PRTSP=spacing] [,STACK=stacker selection]

[,DEN=tape density]

[,MODE=mode of operation] [,TRTCH=data conversion]

[,EROPT=error option] [,PAD=padding]

[,RKP=key displacement] [,IMSK=error recovery
procedures]

[{
AFF=data definition name}]

,UNIT=(DA[,data type])
TA [, tape type]

-

[,SPACE=({CYL/TRK/record length},primary[,SeCOndary] [,HOLD]JJ

[,VOLUME=([{PRIVATE/vO!Ume sequence}] [,volume serial
number [, ...]]-)]

[,LABEL=([file sequence number] [,{WL/SL/SUL}]
[,RETPD=retention period])]

[,DISP={MOD/OLDINEW}]

[, OPTION= {CONC I JOBLIB}]

DDNAME

specifies the symbolic data definition name that is associated
with the data set, and which provides a link between the data con­
trol block (DeB) in the user's program and the data set definition.

Specified as: one-to-eight alphameric characters, the first must
be alphabetic; DDNAME may not begin with SYS, since these
characters are used to prefix system-reserved data definition
names.

Note: When this command is utilized by an assembler language user,
the value specified for this operand must be the value specified for
the DDNAME operand in the DeB macro instruction. When this command
is employ~d by a FORTRAN user, the value specified for this operand
must be "fTNFOOxx" where "xx" is the two-digit device address used
to refererce the data set in his FORTRAN program.

DSORG

indicatesithe organization of the data set being defined.

Specified I as:
\

System default:

MS - MSAM (multiple sequential access method)
ex - TAM (terminal access method)
PS - QSAM or BSAM (physical sequential access

methods)
RX - IOREQ (I/O request)
VI - VISAM (virtual indexed sequential access

method)
VP - VPAM (virtual partitioned access method)
VS - VSAM (virtual sequential access method)

VI is assumed

DSNAME

DeB

specifies the name under which the data set may be cataloged or
referred to for temporary reference.

Specified as: a fully qualified data set name or member name of
VPAM data set; when specified, the member name is enclosed in
parentheses and immediately follows the VPAM data set name.

Note: When a data set created under System/360 Operating System
is introduced to TSS/360 for the first time, the value specified
for DSNAME must be preceded by an asterisk (*). Subsequent refer­
ences to this data set are not prefixed by the asterisk. The data
set name preceded by an asterisk may have a maximum of 44 characters.

specifies data control block information.

Specified as: the data definition name, preceded by an asterisk
(*), is the data definition name of a previously issued DDEF
command. This indicates that the data control block of the
preceding DDEF command is to be duplicated for the current DDEF
command.

Detailed descriptions of the DeB suboperands are given in
Assembler Programmer's Guide and FORTRAN Programmer's Guide.

Note: If the data set is or will be on tape, the DEN suboperand
must be furnished to specify tape density, unless the tape conforms
to the DEN default value, which is set at system generation time.

Appendix F: Detailed Description of DDEF Command 203

UNIT

SPACE

204

specifies the type of device required by the data set. Direct­
access devices may be specified for either public or private
volumes. The other types of devices and unit affinity may be
specified for private volumes only. Allowable kinds of devices are
specified at system generation time, and therefore may be changed.

Specified as:

AFF=data definition name -- unit affinity. The data set being de­
fined is to be assigned the same device reserved for the data
set identified by a data definition name, which is the defini­
tion name of a previously issued DDEF command. This subfield
is unacceptable if the data set being defined is new and is to
be on a direct-access device.

DA[,datatype] -- a direct-access device is required for the data
set. When entered, data type specifies the type of direct­
access device being specified, as expressed in a four-digit
number.

System default: the type of direct-access device specified at
system generation time is assumed.

TA[,tape type] -- a magnetic tape device is required for the data
set.

Specified as: 7 -- seven-track tape
7DC -- seven-track tape with data converter

feature
9 -- nine-track tape

System default: the type of tape device specified at system
generation time is assumed.

indicates the direct-access storage allocation for the data set.

Specified as:

TRK - space requirements are expressed in terms of tracks.
CYL - space requirements are expressed in terms of cylinders.
(record length) a decimal number not exceeding 32,767, specifying

the average length of the physical records.

System default: If the data set organization is SAM, the space
requirements are assumed to be expressed in terms of cylinders.
If the data set organization is VAM, the space requirements are
assumed to be in pages (of 4096 bytes).

(primary) a one-to-three-digit decimal number specifying the amount
of space in terms of tracks or cylinders.

(secondary) a one-to-three-digit decimal number specifying the amount
of additional space to be allocated each time the space allocated to
the data set, as specified in "primary," has been exhausted and more
data is to be written.

System default: the secondary space allocation specified at system
generation time is assumed.

HOLD

the unused storage assigned to the data set being defined is not to
be released when the data set is closed.

Specified as: HOLD

System default: the unused storage will be released when the data
set is closed.

Note: If the SPACE operand is not specified, the direct-access
storage allocation specified at system generation time is assigned.

LABEL

specifies the labeling conventions.

Specified as: (file sequence number) a one-or-two-digit decimal
number specifying the file sequence number of a data set
residing on a tape and that has multiple data sets on a tape
volume.

System default: the data set is assumed to be the first (or only)
one on the tape volume.

These three suboperands specify either the type of labeling desired or
the absence of labeling:

RETPD

NL - no labels
SL - standard labels (as specified at system generation time)
SUL - standard and user labels

System default: SL is assumed

retention period

Specified as: a four-digit decimal number specifying the number
of days the data set is to be retained by the system; this sub­
operand is applicable for data sets on direct-access volumes or
labeled tapes.

System default: the retention period is assumed to be O-days,
allowing immediate rewriting.

Note: If the entire LABEL operand is defaulted, the labeling conven­
tions specified at ·system generation time are assumed, unless the data
set being defined is already cataloged, in which case, label information
is retrieved from the catalog.

VOLUME

the volume on which the data set resides. Normally, this field
is used for an uncataloged data set that resides on a private
volume.

Specified as:

PRIVATE - specifies that volumes are to be allocated from the
system pool (i.e., the scratch or disk available to
the operator). Once assigned, the volume remains the
user's, exclusively, until he notifies the operator
that it may be returned to the pool.

Appendix F: Detailed Description of DDEF Command 205

DISP

(volume sequence number) a one-to-four-digit number specifying
the first volume of the data set to be read or
written. It is meaningful only if the data set has
SAM organization, is cataloged, and its earlier vol­
umes are to be skipped.

(volume serial number) one-to-six alphameric characters specify­
ing the volume serial numbers that identify the vol­
umes on which the data set resides. This suboperand
is required for old, uncataloged data sets that reside
on private volumes; it may be supplied for new data
sets that will reside on private volumes.

System default: If volume sequence number is specified, the data
set is cataloged and the serial numbers are retrieved from the
catalog. If PRIVATE is specified, this suboperand must be
omitted and a volume serial number will be assigned by the
system.

Note: the entire operand may be defaulted if a new data set is
to be created on a public volume or if an old cataloged data set
is being defined.

specifies whether the data set already exists or is to be created.

Specified as:

OLD - data set being defined exists
NEW - data set being defined is new; has not yet been created
MOD - data set being defined exists; an addition to it is being

made

Note: MOD, which applies only to SAM data sets on private volumes,
causes logical positioning after the last record of the data set.

System default: If the data set is cataloged, OLD is assumed;
if not cataloged, NEW is assumed.

Note: If the user specifies DISP as OLD, NEW, or MOD and this does not
agree with the actual state of the data set, then:

In conversational mode, the user receives a diagnostic message so
that he can correct this error.

In nonconversational mode, the task is abnormally terminated.

OPTION

206

specifies that either a job library is being defined or a data set
is being added to the concatentated data set named in the DDNAME
operand.

Specified as:

CONC - Only SAM data sets that are not job libraries can be
concatenated and with one or more data sets having the
same data definition names. The order of concatenated
data sets is the same as the order in which they are
defined.

JOBLIB - specifies that the data set being defined is to be
used as a job library. The data set name specified in
the DSNAME operand is entered into the program library
list.

Functional Description: The DDEF command causes a system entry to be
established for the data set definition that can be referenced by allo­
cation routines and access methods. The link between this definition
and the problem program's reference to the data set (i.e., the data con­
trol block) is the data definition name. The entry containing the
definition is maintained until the user logs off or until, through the
RELEASE command, the data set definition is deleted.

The DDEF command also results in a request, when necessary, for de­
vice allocation and volume mounting, when the defined data set is
private and resides on a demountable volume as a reel of tape or a disk
pack.

Programming Notes: The DDEF command that defines a cataloged data set
is brief and simple. The only required operands are DDNAME, DSNAME,
and DISP. Other operands are unnecessary since the organization of the
data set is described in its catalog entry.

DDEF commands that define uncataloged data sets may be divided into
two groups: those defining new data sets (i.e., data sets that are
generated during execution of the program, but do not yet exist) and
those defining old (existing) data sets. Old uncataloged data sets can
exist only on private volumes.

To define a new data set that is to be written on a public volume,
the user may use the DDNAME, DSNAME, SPACE, DSORG, and LABEL operands.
Exactly which fields he uses, other than DDNAME and DSNAME (which are
required), depends on the character of the particular data set to be
defined.

To define a new data set that is to be written on a private volume,
the user must give the DDNAME, DSNAME, UNIT and VOLUME operands. If de­
sired, he may also furnish the DSORG, DISP, SPACE and LABEL operands.

The user defines an old, uncataloged data set as it exists on his
private volume. He must use the DDNAME, DSNAME, DISP, VOLUME, and UNIT
operands; he may also use the DSORG and LABEL operands. The DCB operand
is required to specify tape density for any data set on tape, unless the
tape density matches that established at system generation time.

Table F-l. Typical Use of DDEF Operands

Read cataloged data set

Read uncataloged data set

Write data set on public
volume

D
D
N
A
M
E

x

D
S
o
R
G

x [Xl

X [Xl

D
S
N
A
M
E

X

X

X

D
I D
S C
P B

[Xl

X

[Xl

U
N
I
T

X

S
P
A
C
E

[Xl

V
o
L
U
M
E

L
A
B
E
L

X [Xl

o
P
T
I
o
N

Appendix F: Detailed Description of DDEF Command 207

Table F-l. Typical Use of DDEF Operands (cont'd)

D D V 0
D D S S 0 L P
N S N D U P L A T
A 0 A I D N A U B I
M R M S C I C M E 0
E G E P B T E E L N

Write data set on private X [Xl X X X [Xl X [Xl
volume

Modify data sets on private X [Xl X X X X [Xl
volumes

Concatenate cataloged data sets X X X X [Xl [Xl [X 1 X
while reading private volumes
(for each concatentated data KEY: [1 indicates that operand may be
set except the first in conca- used, but is not mandatory.
tentation)

Exam12les:

1. Read a cataloged data set.

ddef ddn,dsname=testl,disp=old

2. Read an uncataloged data set.

ddef ddnl,vi,dsname=test2,disp=new,unit=(da,23ll) ,volume=(,012300)

3. write a data set on a public volume.

ddef ddnz,vp,dsname=test3

4. write a data set on a private volume.

ddef ddn3,ps,dsname=test4,unit=(ta,9) ,volume=(private) or volume=(,00S43l)

5. Modify any data set of a private volume.

ddef ddn4,ps,dsname=testS,disp=mod,unit=(ta,9) ,volume=(,01230l)

6. Concatentate cataloged data sets while reading private volumes.

208

ddef ddn6,ps,dsname=test6,disp=old
ddef ddn6,ps,dsname=test7,disp=old,option=conc
ddef ddn6,ps,dSname=test8,disp=old,option=conc

The DDEF command also has several special uses .

• To define an existing job library, the following operands are
required:

DDNAME=data definition name,DSORG=VP,DSNAME=data set name,
DISP=OLD,OPTION=JOBLIB

No other operands are required.

• To define a new job library, mandatory operands must be given.

DDNAME=data definition name,DSORG=VP,DSNAME=data set name,
OPTION=JOBLIB

No other operands are necessary.

• To define a data set for dumps, mandatory operands must be given.

DDNAME=PCSOUT,DSORG=VI,DSNAME=data set name

• To complete the data control block of a data set at execution time,
the DCB operand is included. Other operands are included as needed
for the particular data set.

• To concatenate data sets (i.e., to define them so that several data
sets may be read as if they formed a single data set), the OPTION =
CONC operand is included. Other operands are provided by the user
as needed for a particular data set. The OPTION = CONC operand must
be given in the DDEF command for data sets, except the first-defined
member of the concatentation. Each of the remaining data sets in the
concatenation must have the same DDNAME as the first-defined data set.

Appendix F: Detailed Description of DDEF Command 209

Table F-2. Data Set Organization Requirements
r----------------------T-------------------T---------------------------,
I I Data set I I
I I Organization I I
I Data set I (dsorg) I Comments I
I ~----T----T----~----i I
I I PS I vs I V I I VP I I
~----------------------+----+----+----+----+---------------------------i
IAny data set on publici I x I x I x I I
I volume I I I I I I
~----------------------+----+----+----+----+---------------------------i
IAny data 'set on I x I x I x I x IPS applies to tape or I
Iprivate volume I I I I Idirect-access volumes; VS,I
I I I ~ I lVI, and VP apply only tol
I I I I I I volumes on direct-access I
I I I I I Idevices. I
~----------------------+----+----+----+----+---------------------------i
IAny member of parti- I I x I x I ISame partitioned data set I
Itioned data set I I I I Imay include both VS and VII
I I I I I I members, (member must bel
I I I I I leither VS or VI). I
~----------------------+----+----+----+----+---------------------------i
I SYSIN da ta set I I x I x I I I
~----------------------+----+----+----+----+---------------------------i
ILanguage processing I I I I I I
I I I I I I I
ISource data set for I I I x I ILine data set only; if I
Ilanguage processing I I I I I source data sets arel
I I I I I lentered from terminal, linel
I I I I I Idata set is automatically I
I I I I , Ibuilt. ,
~----------------------+----+----+----+----+---------------------------i
I Source statements , I x I x, ,Line data set will be built I
I stored as part of I I I , IfroIT source statements. I
ISYSIN data set I I I I I I
~----------------------+----+----+----+----+---------------------------i
IObject module produced I I x I I IObject module automatically'
Iby language processor I I I I I becomes member of mostl
, I I I I I recently defined jobl
I I I I I Ilibrary, if any, or ofl
I I I , , luser's library (USERLIB) I
~----------------------+----+----+----+----+---------------------------i
IJob library I I , 'x I I
~---------------------~+----+----+----+----+---------------------------i
,Listing data set pro- I I I x, I I
Iduced by language pro-I I I I I I
I cessor I I I I I I
~----------------------+----+----+----+----+---------------------------i
I Input/Output I I I I , ,
I I I I , I I
IPCSOUT data set 'I I x I , ,
~----------------------+----+----+----+----+---------------------------i
I Input to WT I I x I x I I I
~----------------------+----+----+----+----+---------------------------i
I Input to P~UNT I x I x I x I I I
~----------------------+----+----+----+----+---------------------------i
I Input to PUNCH I I x I x I I I
~----------------------+----+----+----+----+---------------------------i
Ispecial Command Usage I I I I I I
I I I , I I I
IData set for CDD I I I x I ILine data set only. I
I I I I I I I
f----------------------T----T----T----T----T---------------------------i
IData set for LINE? I I I x I ILine or language processor I
I I I I I Ilisting data set only. I
~----------------------+----+----+----+----+---------------------------i
IData set created by I I x I x I IUser option; if VI, must bel
I DATA I I I I Iline data set. I
~----------------------+----+----+----+----+---------------------------i
IData set created by I I I x I IUser option determines I
I MODIFY I I I I Iwhether VI is line datal
I I I I I IsetJ • I L ______________________ ~ ____ ~ ____ ~ ____ ~ ____ ~ ___________________________ J

210

APPENDIX G: CURRENT LINE POINTER

The status of the current line pointer (CLP), upon completion of the
text editing commands is:

1. LOCATE - If the input string is found in a line, the CLP is set to
that line's key; if not found, the CLP is set to the last line in
the data set plus 100. If no arguments are given, the latter also
occurs.

2. CORRECT - The CLP is set to the next line after N2, or to N2 if
that is the last line in the data set.

3. NUMBER - The CLP is set to the limiting line key (i.e., the line
after N2, or to N2's key plus 100 if that is the last line in the
region) .

4. STET - Not changed.

5. LIST - The CLP is set to the line number after N2. If N2 is last
line in data set, the CLP is set to N2 plus 100 and the last two
digits are set to o.

6. EXCISE - The CLP is set to the first line deleted; if no lines are
deleted, to the value specified in Nl.

7. REVISE - The CLP is set to the number of the last data line entered
plus the current increment (if not input, defaulted to 100).

8. EDIT - The CLP is set to last line number in data set plus 100.

9. UPDATE - Not changed.

10. REGION - The CLP is set to last line in region plus 100. If region
name is not in data set, the CLP is set to the new region name with
a line number of 100.

11. INSERT - The CLP is set to Nl plus increment (defaulted to 100).
If Nl is defaulted, the CLP is updated by the increment.

12. CONTEXT - The CLP points to the line following the last line
searched (N2).

13. EXCERPT - The CLP points to the next unused line number following
the last-included line.

Appendix G: Current Line Pointer 211

....
<0

'"
;!J
~

~
~

APPENDIX H: EBCDIC CHARTS

The numbering convention for the bit positions within a byte is:
01234567.

The chart below shows bit positions, bit patterns, hole patterns
(card), graphic characters, and control characters.

Bit Position O. 1
00 10

Bit Positions 2. 3
00 11 01 10 00 10 11 01

CD ® CD CD ® ® G) ® ® @
0000 DS SP & - 0000

0001 SOS / @ 1 0001 a j A J

0010 FS 2
CIl E"- 0010 b k s B K

-
0011 3

-
0100 PF RES BYP PN 4

-
0101 HT NL LF RS 5

-
0110 LC BS EOB UC 6

-

O> <0 .s::: g '" Ii: ..;

'6'0 ~

is ~
&
~

0011 c 1 t C L

0100 d m u D M

0101 e n v E N

0110 f 0 w F 0

0111 DEL IL PRE EQT 7 0111 g P x G P
-

1000 8 1000 h q Y H Q
-

I I I I I

9 9 9 9 9 9 9 9
12 12 12 12

11 11 11 i1
0 0 0 0

f-ool <E-------- Zone Punches ----------'~

1001 i r z I R

12 12 11 12

I
12

I
11 0 11 11

0 0

@ @
0

Q] 1

S 2

T 3

U 4

V 5

W 6

X 7

Y 8

Z 9

I 0 I I
I I"" O(!;-------- Zone Punches --------:;oo~1

00
Bit Positions O. 1

10

00 01 10 11
Bit Positions 2. 3

00 01 10 11

-
1001 8-1

-
1010 SM

1011

1100 <
-

1101

1110

@ 8-2
CIl

<-

8-3 1l .;
g '"

% @ 8-4 Ii: ..;

~
;!J

8-5 :§
is

~ > 8-6

1010

1011

1100

1101

1110

1111 8-7
~

1111

I

9

I

9

I

9

I

9

II I I I I
12 12

11 11

9 9 9 9
12 12 12 12 12 12

11 11 11 11 11 11
0 0 0 0 0 0

IE Zone Punches ~I 1""1 E!;--------- Zone Punches --------:;oolOoil

CD 12 - 0 - 9 - 8 - 1 ® No Punches ® 12 - 0 @ 0- 1

® 12 - 11 - 9 - 8 - 1 ® 12 @ 11- 0 Q] 11- 0-9-1

CD 11-0-9-8-1 G) 11 @ 0-8-2 @ 12-11

@ 12 - 11 - 0 - 9 - 8 - 1 ® 12 - 11 - 0 @

212

Bit Positions O. 1

Bit Positions 2. 3

8-1

1

2

3

4

5

6

7

8

9

Bit Positions O. 1

Bit Positions 2. 3

.---
8-2

I---
8-3

I---
8-4

I---
8-5

I---
8-6

I---
8-7

'----

CONTROL CHARACTERS

PF Punch off

HT Horizontal tab

LC Lower case

DEL Delete

RES Restore

NL New line

DS Digit select

SPECIAL GRAPHIC CHARACTERS

¢

<

+

&

$

Cent sign

Period, decimal
point

Less-than sign

Left parenthesis

Plus sign

Vertical bar,
logical OR

Ampersand

Exclamation point

Dollar sign

Examples Type

PF Control character

% Special graphic

R Upper case

a Lower case

Control character,
function not yet
assigned

BS Backspa.ce

IL Idle

BYP Bypass

LF Line feed

EOB End of block

PRE Prefix

SOS Start of
significance

*

/

%

Asterisk

Right paren­
thesis

Semicolon

Logical NOT

Minus sign,
hyphen

Slash

Comma

Percent sign

Underscore

Bit Pattern
Bit positions
01 23 45 67

00 00 01 00

01 10 11 00

11 01 10 01

10 00 00 01

00 11 00 00

PN Punch on

RS Reader stop

UC Upper case

EOT End of trans­
mission

SM Set mode

SP Space

FS

>

?

@

"

Hole
Zone
Punches

Field
separator

Greater-than
sign

Question mark

Colon

Number sign

"At" sign

Prime, apos­
trophe

Equal sign

Quotation Mark

Pattern
D~g~t

Punches

12-9-4

0-8-4

11-9

12-0-1

12-11-0-9-8-1

-

Appendix H: EBCDIC Charts 213

APPENDIX I: COMMAND FORMATS

I}?peration loperandS

~BEND _

Operation Operand

ASM NAME = module name

Operation

AT

Operation

BACK

Operation

BRANCH

214

[,STORED= {~ [,LINeR= (f ir S t 1 ine number, increment)]}]

[,MACROLIB=<{data definition name of symbolic portion,

data definition name of index portion} [, ...] >J

[, VERID=version identification] [, ISD={ yiN}!]

[,SYMLIST={YIN}] [,ASMLIST={yIN}] [,CRLIST={yIN}]

[,STEDIT={Y/N}] [,ISDLIST={yIN}] [,PMDLIST={yIN}]

Operands

instruction location [, ...]

Operands

DSNAME = data set name

Operands

INSTLOC = instruction location

Operation Operands

BUILTIN NAME = command name ~EXTNAME=bPkd macro name]

Operation Operands

CALL [NAME = en try point name ~modu1e pararneter~]

Operation Operands

CANCEL BSN = batch sequence number

Form 1

Operation Operands

CATALOG DSNAME = current data set name [, STATE = { N I U }]

[,ACC={ RI u} l [,NEWNAME = new data set name]

Form 2
Operation Operands

CATALOG GDG = generation data group name,

GNO = number of generations [, ACTION= {A I O}]

[,DISP={EI s}]

Appendix I: Command Formats 215

Operation Operands

CDD

DSNAME = data set name [{data definition name } J
, (data definition name, ...)

Operation Operands

CDS DSNAMEl = current data set name,

DSNAME2 = new data set name [, DISP={ E Is}]
[,BASE = first line number, INCR = increment]

Operation Operands

CONTEXT [Nl = starting Position] ~N2 = ending position] ,
STRING 1 = search string [,STRING2=rep lacement string]

Operand Operands

CORRECT fNl = starting line] ~N2 = ending line]

, SCOL = first cOlumn]

[,*S@% = replacement correction characters]

216

Operation Operands

DATA DSNAME = data set name [,RTYPE = I

[,BASE = first line number,INCR = increment]]

DATA Descriptor Card

Col.
3

Operands

DATASET, data set name, [format] ,[starting number] ,[ending number],

[LINE], [{::::PT} J

Operation Operands

DDEF DDNAME = data definition name [,DSORG ={VI I VS I vp}]
,DSNAME = data set name

Operation Operands

DEFAULT {operand = [value]} [, ...]

Operation Operands

DELETE DSNAME = data set name

I Operation

DISABLE

I Operands

Operation Operands

DISPLAY data field name [, ...]

Operation Operands

DSS? [NAMES = { data set name } J
(data set name, ...)

Appendix I: Command Formats 217

Operation Operands

DUMP data field name [, ...]

Operation Operands

EDIT [SOURCE = data definition name] [,MNAME = member name]

I Operation

ENABLE

I Operands

I Operation

END

I Operands

Operation Operands

ERASE DSNAME = data set name

Operation Operands

EXCERPT DDNAME = data definition name [.member name]

[,RNAME = region name]

[,Nl = starting line [,N2 = ending line]]

Operation Operands

EXCISE [Nl = starting line] [,N2 = ending line]

Operation Operands

EXECUTE DSNAME = data set name

218

Operation Operands
r

identification}

EXPLAIN word

ORIGIN

TEXT,message

RESPONSE

Operation Operands

FTN NAME = module name

[[,STORED = {~ [,LINCR = (first line number, increment) 1 }]
[,VERIO = version identification] [,ISO = {Y t N}]

[,SLIST = {Y IN}] [,OBLIST = { yiN}] [,CRLIST = { YIN}]

[,STEDIT = tY IN} 1 [,MMAP = { yiN} 1 [,BCD = { YIN} 1
[, PUBLIC = . yiN}]

I ::eration I Operands

I ::eration I Operands

: condition ~I

Operation Operands

INSERT [N1 = preceding line] [, INCR = increment]

Operation Operands

LINE? DSNAME=data set name
[{line number

last line nUmber>} [, ...]] , (first line number,

Operation Operands

LIST [N1 = starting posi tiort] [, N2 - ending position]

Appendix I: Command Formats 219

Operation Operands

LNK NAME = module name

[, STORED = { ~ [,LINCR = (first line nUrnber,increment)]}]

[,LIB = data definition name of library] [,VERID = version
identification] [,ISO = {Y I N}] [,PMDLIST = { Y I NJ]

Operation Operands

LOAD [NAME = en try point name]

Operation Operands

LOCATE [Nl = starting position] [,N2 = ending position]

[,STRING = character string]

LOGOFF

I Operands

Operation Operands

LOGON user identification, [charge number] , [confirmation] ,

[message option] , [password]

Operation Operands

MODIFY SETNAME = data set name [,CONF = R]

[,LRECL = record length,KEYLEN = key length,RKP = key
displacement,RECFM = {v I F}]

Operation Operands

NUMBER [Nl = starting line] [,N2 = ending line]

[,BASE = base number] [, INCR = increment]

220

Operation Operands

PERMIT DSNAME ;: {data set name I *ALL} [,STATE ={Nlu}]

[,ACCESS = access qualification]

[, USERID = {(user identification[, ..•]) I *ALL}]

Operation Operands

POD? DSNAME = data set name [,H] [,A]

Operation Operands

PRINT DSNAME = data set name [,STARTNO = first byte position]

[,ENDNO = last byte position]

[,PRTSP {EDIT

= (!} [,HEADER=H] [,LINES=lines per page] [PAGE=P~
[,ERASE = ERASE] [,ERROROPT= { ACCEPT I SKIP I END}]

-

[,FORM = paper form]

Operation Operands

PROCDEF NAME = procedure name

Operation Operands

PROFILE [CSW = { N I Y}]

Operation Operands

PUNCH DSNAME = data set name [,CBIN = BINARX]

[,STARTNO=first byte position] [,ENDNO=last byte position]

[,STACK={1/213} EDIT] [,ERASE=ERASE] [,FORM=paper form]

Appendix I: Command Formats 221

Operation Operands

QUALIFY MNAME=[link-edited module name.] object-module name

Operation Operands

REGION [RNAME = region name]

Operation Operands

RELEASE DDNAME=data definition name[,DSNAME=data set name]

Operation Operands

REMOVE statement number [, ...]

I Operation Operands

REPEAT

Operation Operands

REVISE [Nl = starting line] [,N2 = ending line]

[,INCR = increment]

Operation Operands

RUN [LOC = entry point name]

Operation Operands

SECURE {CTA = number of devices [I type of device]) } [, ...] (DA = number of devices [I type of device])

222

Operation Operands

SET {data location = value}[, ...]

Operation Operands

SHARE DSNAME = data set name, USERID = owner's user identifi-:-.

= { owner's data set name I *ALL}]
cation

[,OWNERDS

I Operation Operands j STET

I Operation Operands -J
STOP

Operation Operands

SYNONYM {term = [character string]} [, .••]

Operation Operands

TIME [MINS = minutes]

Operation Operands

TV DSNAMEI = tape data set name

[,DSNAME2 = vam data set name]

--
Operation Operands

UNLOAD [NAME = entry point name]

Appendix I: Command Formats 223

I Operation

UPDATE

I Operands

Operation Operands

VT DSNAMEl = vam data set name [, DSNAME2 = tape data set name]

Operation Operands

W DSNAMEl = current data set name [,DSNAME2 = new data set name]

Operation Operands

WT DSNAME = current data set name,DSNAME2 = tape data set name

[, VOLUME = tape volume number] [,FACTOR = blocking factor]

[,STARTNO = first byte position] [,ENDNO = last byte position]

['PRTSP =l{~r [,HEADER=H] [;LINES=lines per pagel [,PAGE=Pl}]

[,ERASE = ERASE]

I Operation

ZLOGON

I Operands

224

%CSECT and %COM 119

ABEND command 30
absolute generation number 13
absolute line number 59
address constant 125
arithmetic expression 128
arithmetic operators 127
assembler, how to invoke 103
ASM command 103
AT command 139
attention interruption

display last message after 138
effect of 17
example of 18
resume execution after 137
system response to 17

attention interruption prevention
switch 18

BACK command 26
batch sequence number 21, 26, 27,

29
BPKD macro instruction 163
braces (notational symbol) 10
brackets (notational symbol) 10
BRANCH command 138
break characters 60
BSN (see batch sequence number)
BUILTIN command 163
bulk input from card decks 186
bulk input from magnetic tape 184
bulk output commands 94

C command 16
CA commanc;l 16
CALL command 135
call object module 135
calling operand

analysi~ of 163
defaults 166
nulls 167
specification of 164
synonyms 168

calling parameter 154
CANCEL command 29
cancel nonconversational task 29
catalog

create entry for data set in 34
create entry for generation

data group in 34
create entry for generation

member .in 34
delete entry in 41
update entry in 34

CATALOG command 32
CB command 16
CDS command 53

facilities and requirements
for 54

character constant 124

character set control 16
and SYSIN device control 16

CLP (see current line pointer)
coded value 11
comma, use in commands 11
command creation commands 153
command format

descriptions of 214
operand field 8
operation field 8

command procedure 153
to define as command with

PROCDEF 154
to delete 161
to edit 160
to enter text of 155

INDEX

to interrupt execution of 161
messages during execution of 162
to terminate execution of 156

command statement 8
conditional 8, 117

specification of 140
dynamic 8, 116

specification of 139
entering 8
example of 8
execution of 16
immediate 8, 117
system request for next 15

command symbols 119
commands

functional groups of system­
supplied 7

general format 7
conditional statement 8, 117
constants

address 125
character 124
floating-point 125
hexadecimals 53, 60, 124
integer 124
string 60

CONTEXT command 67
continuation line 15
conversational task (see task,

conversational)
CORRECT command 69
correction characters 70
counter 124
current line pointer 59, 211

to display value of 81

187
12
188

84

DATA command 84
data-card data set
data definition name
data descriptor card
data editing commands
data field

definition of 126
to dump contents of
to print on SYSOUT

144
143

Index 225

data location
to change contents of 141
definition of 126

data set
automatic cataloging of 37
to control changes to 66
to copy VAM 52
to copy VAM on tape 50
to copy VISAM or VSAM 54
to copy VPAM member 55
to create line 57
to create region 57
to create VISAM 87
to create VSAM 84
to define public VAM 36
to delete catalog entry for

private or shared 41
to edit line 57, 84
to edit region 57
to edit VISAM 87
to edit VSAM 84
to erase 42
lines of (see lines of data set)
to manipulate lines of (see

lines of data set)
to permit sharing of 43
to print 94
to release definition of 38
to request sharing of 46
to request status of 47
to restrict sharing of 44
to retrieve from tape 51
to share 43, 46
to write on tape 100

data set definition
definition of 36
deletion of 38

data set management commands 32
data set name 12
DCB 203
DDEF command

for atypical data sets 202
retrieval of stored 39
for typical public VAM

data sets 36
DEFAULT command 149
default value

to change 149
definition 12
system-supplied, list of 190

defined 12
DELETE command 41
delete data set 41
diagnostic message 12, 15
direct call 136
DISABLE command 66
DISPLAY command 143
DSS? command 40
dummy operand

definition of
external string
internal string
specification of

154
154
154

154
DUMP command 44

226

dynamic statement
definition of 8, 116
removal of 140
specification of 139

dynamic statement counter 139

EBCDIC charts 212
EBCDIC mode 10, 16
EDIT command 62
ENABLE command 66
END command 63
ERASE command 42
EXCERPT command 74
EXCISE command 76
EXECUTE command 27
EXPLAIN command 177
explanation message 181
expression, arithmetic 128
expression, logical 129
extended message 181
external symbol 118

filter codes, message 179
floating-point constant 125
folded mode 10, 16
FORTRAN compiler, how to invoke 100
FORTRAN statement number 112
FTN command 107
function codes 192

generation data group
definition 13
how to catalog 34

generation member, how to
catalog 34

generation names 13
GO command 137

hexadecimal constant 60, 124
hexadecimal location 123

IF command 140
immediate statement 8, 117
information message 15
INSERT command 77
instruction location 131
integer constant 124
internal symbol dictionary 117, 131
internal symbol 118

qualification of 118
reference in loaded program 145

interruption, attention (see
attention interruption)

ISD (see internal symbol dictionary)

job library
to define and enter in program
library 207

to remove from program
library 39

JOBLIB (see job library)

K command 16
KA command 16

KB corrunand 16
keyword, operand 9

language processing commands 103
library, how to copy 52, 53
line 13
LINE? corrunand 92
line data set

to create and edit 57
definition 58

line number
absolute 59
relative 59
resolution of 59

lines of data set, to
add or insert from terminal 73
delete 73, 85
delete and insert 73
display at terminal 81, 92
insert or change
characters in 69

renumber 78
replace character string in 67

link-edit modules, how to 109
link-edited module name 131
LIST command 81
listing data sets, control of 113
LNK command 109
LOAD command 133
LOCATE command 82
logical expression 129
logical operators 127
LOGOFF command 24
LOGON command 22

member name 13
message classification and
filter codes 180

message file
to construct 180
system's 177
user's 177

message filtering 179
message generation 177
messages

diagnostic 12, 15
information 15
to obtain explanation of 177
formats

explanation 181
extended 181
response 181
standard 181

metasymbols 10
miscellaneous control

characters 197
MODIFY command 87

nested PROCDEFs 157
nested procedures 158
nonconversational mode 19
nonconversational SYSIN
data set 19, 26, 27

nonconversationa1 task (see
task, nonconversational)

61 normal command
normal string
NUMBER command

53, 60, 155
78

object module (object program), to
change execution path of 138
define as corrunand 163
execute 135, 136, 137
load 133
load and execute 135, 136
resume execution of 137

at different location 138
stop execution of 146
unload 134

object module name 132
offset 121
operand field 8
operand format 11
operand representation

keyword 9
positional 9

operand resolution
for system-supplied corrunands 9
for user-written corrunands 164
generation of operand
equivalences 169

operand specification
by keyword 9, 165
by position 9, 164

operand substitution 171
operation field 8
operation format 10
operators

arithmetic 127
logical 127
relational 127

PCSOUT data set 144
PERMIT command 43
POD? command 48
positional operand 9
PRINT command 94
printer carriage control codes 199
PROCDEF command 54

to enter text 155
examples of 174
to terminate processing 156

procedure call 153
procedure, command (see command
procedure)

profile, user (see user profile)
PROFILE command 151
program control commands 115

applications of 117
examples of 147

prototype character-translation
table 193

prototype user profile 148
to change 148

PUNCH command 97
punch control codes 201

QUALIFY command 145
quoted string 60, 155

Index 227

region
definition of 58
to insert 74
to specify name of 64

REGION command 64
region data set

to create and edit 57
definition of 58

region name 58
registers 124
relational operators 127
relative generation number 13
relative line number 59
RELEASE command 38
REMOVE command 140
REPEAT command 138
resolution of operands

for system-supplied commands 9
for user-written commands 164

response message 181
RETURN key 15
REVISE command 72
RUN command 136

SECURE command 28
SET command 141
SHARE command 46
source language processing, to

assemble 103
compile 107
control listing data sets 113
correct statements III
enter statements III
link edit 109

source language processors 103
source program module

assemble, how to 103
compile, how to 107

standard message 181
statement number 132
STET command 66
STOP command 146
string constants

normal 60, 155
quoted 60, 155

subscripted symbol 120
substitution of operands 171
switching modes 21, 26
symbol

command 119
external 118
internal 118

reference within loaded
module 145

subscripted 120
SYNONYM command 150
SYSIN 15
SYSIN device control 16

and character set control 16
SYSOUT 19
system default values, list of 190
system scope mask 183, 198
system-supplied commands,
functional groups of 7

228

task, definition of 14
task, conversational 14

device and character set
control 16

entering command statements 15
execution 15
initiation 14
input stream 15
interruption 17
messages 15
output stream 19
termination 19, 24, 30
time limit 15

task initiation 14, 22
task management commands 14
task, nonconversational 12

cancellation 29
execution 20
initiation 20, 22, 26, 27
output 21
switching modes 21, 26
SYSIN data set 19
termination 20, 24, 30

task termination 19, 20, 24, 30
text editing commands 57
text editing examples 61, 62
text editor processing, to

invoke 62
terminate 63

TIME command 24
time-limit for task 15, 24
transaction table 66
TV command 51

UNLOAD command 134
UPDATE command 73
user profile

definition of 148
to erase 149
to share 149

user profile management
commands 148

user prompter 177
user scope mask 183, 198
user-written commands, to

create 154
share 159

VISAM data set, create and edit 87
volume identification 13
VPAM member

request information about 48
copy 53

VSAM data set, create and edit 84
VT command 50
VV command 52

word explanation message 181
word explanation scope 182
WT command 99

ZLOGON command 23

..

READER'S COMMENT FORM

IBM System/360 Time Sharing System
Command System User's Guide

C28-2001-2

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of

IBM.

Yes No
• Does this publication meet your needs? 0 0
• Did you find the material:

Easy to read and understand? 0 D
Organized for convenient use? 0 0
Complete? 0 0
Well illustrated? 0 D
Written for your technical level? 0 0

• What is your occupation?

• How do you use this publication?

As an introduction to the subject? 0 As an instructor in a class? 0
For advanced knowledge of the subject? 0 As a student in a class? D
For information about operating procedures? 0 As a reference manual? D

Other

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

C28-2001-2

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
............. - .. " :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

ATTN: Ti me Sharing System/360
Programming Publications Dept. 561

POSTAGE WILL BE PAID BY

IBM Corporation
PO Box 344
2651 Strang Bou levard
Yorktown Heights, N.Y. 10598

FIRST CLASS
PERMIT NO. 34

YORKTOWN HTS., NY

.............. , .. :
Fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

C28-2001-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

:::p
5·
CiT
a..

51.
c
Vl

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	replyA
	replyB
	xBack

