File No. S360-50
Form C28-2008-0 TSS

Systems Reference Library

IBM System/360 Time Sharing System

System Programmer’s Guide

IBM System/360 Time Sharing System (TSS/360) makes a
distinction between user and system programmers. This
publication is specifically intended‘ for persons
responsible for maintaining, wodifying, or extending
the system and discusses:

Operating environment

Program structure

Coding practices and conventions
Privileged supervisor call instructions
Serviceability aids

System macro definitions

Changing TSS/360

Privilege Class E

|
|
|

PREFACE

This publication will aid you -- as a
system programmer —- extend and modify IBM
System/360 Time Sharing System. We'll dis-
cuss the programming capabilities available
to you and the conventions followed in
developing the programs that are already
part of TSS/360. We'll also cover a number
of examples designed to give you a feeling
for what is involved in changing the
systen.

There are four sections to this publica-
tion. The Introduction, Section 1, con-
tains a reader's dgulde to help you find
your way through the publications devoted
to system programming. In Section 2, Resi-
dent Programs, we'll discuss some of the
factors that go into writing resident TSS/
360 programs. The same topics are dis-
cussed for Nonresident Programs in Section
3. Section 4, Defining Macro Instructions,

use in writing them. Section 5, Generating
and Maintaining TSS/360, shows some sample
changes to the system. Finally, in Section
6, Programming with Privileqe Class E, the
additional facilities that are available to
the System Monitor are discussed.

You may be reading this rublication just
for interest; you may have no intention to
modify TSS/360. If this is the case, ke
sure and see the reader's guide -- it will
help you in selecting those publications
most beneficial to you. If you plan to
change TSS/360, you should be an
experienced programmer who knows the over-
all design of the systewr. You should have
read -- or have handy -- most of the
user-programmexr publications. Finally, you
should thoroughly understand IBM System/360
Pxinciples of Operation, Form A22-6821, and

discusses the types of macro instrunctions
used in TSS/360 and the techniques you can

First Edition (October 1967)

IBM System/360 Model 67 Functional Charac-
teristics, Form A27-2719.

Significant changes or additions to the specifications contained in this

publication will be reported in

Newsletters.

subsequent revisions

or Technical

This publication was prepared for production using an IBM computer to

update the text and to control the and line
impressions for

Printer using a special print chain.

page

Requests for copies of IBM publications should be made

format.
photo-offset printing were obtained from an IBM 1403

Page

to your IBM

representative or to the IBM branch office serving your locality.

A form is at the
comments.

IBM Corporation,

provided

Time

Department 561, 2651 Strang Blvd., Yorktown Heights, N.Y.

© International Business Machines Corporation 1967

If the form has been removed, commwents may Le
Sharing System/360 Programming Publications,

back of this publication for reader's
addressed to

10598

SECTION 1: INTRODUCTION . o o «
Reader’s Guide « « « ¢ « o « « =«
Program Logic Manuals . . .
Assembler Language Manuals .
System Programming With TSS/360
Who . « « « ¢« « =
Why . . « o o
TSS/360 Organlzatlon
Format And Notation
Name Field . . .
Operation Field
Operand Field .
Notational Symbols

e o & ¢ s
¢ & o 0 & & s
s & 8 & & 3
s 8 8 0 0 o @
s 8 & 8 o 2 b @

SECTION 2: RESIDENT PRDGRAMS
Operating Environment .
Getting Started . . .
Normal Operation . . «
Extended Control PSW
The Prefixed Storage
SUMmary « « o« « « o «
Dummy Sections . . .
Purpose .« « « o o
USE e o o o o = =
Module Structure .
System Control Blocks -
Module Design Considerations

-
ea

DI SR S Y El ¢« 00

Enabling And Disabling Interrupts

Naming Conventions . « « « «
Program Module Names « . . .
System Control Block Names .
Secondary Entry Points . . .

Supervisor Linkage Conventions

Getting Resident Working Space .

Programming Convention Comments

t

SECTION 3: NONRESIDENT PROGRAMS

Virtual Machine Structure . .

Virtual Program Status Word
Interrupt Storage Area . .
Linkage Conventions
Type-I Linkage
Use of the Save Area . .

$ 8 8 s 2 0 8 0 @

Contents of the General Registers
Transfer of Control . . -
Type-II Linkage . « « « .
The Save Area . . . -
Content and Usage of the enera

Registers . o« o« o o o «
Transfer of Control
Type—-IM/II Linkage . .
Type-III Linkage . . .

The Save Area « « «
Content and Usage of
General-Purpose Registers .
Transfer of Control
Type-IV (Restricted) Linkage
Conventions .« « ¢ o ¢ o o « o
Use of the General Registers
Transfer of Control
Linkage Convention Comments -
Fence Straddlers o« o« « o o « «

LU T S T T B T SR T S T S Y

LI I T
o o o 3 &

s o 0 0

s 8 0 8 & 8 0 2 0 8 8 o s 0o o b & ¢ g s

[] LI N I} e 0 s o s 0 s b e

O 8 & 0 6 & & 0 2 b & b 2 8 0 ¢ b o b ¢ 2

. ¢ o 0 & 8 |
0-"’0

* s 0 0

@ 8 5 8 & 5 0 6 9 0 0 b s 8 2 0 g b o4

ww
N~

-
WOLOLWLWVWOOOONINNIN

N b od b od oud bl bk e
ocwVvwVvwwwo~NoOaOOO

NNNNMNN
WWWNN=

NNNN
oo E

WWWWWWWONNN
EEfWWNOOOD®O®

w W
v

www
SO

wwwww
OO 0o

System Programmer Authority Codes

CONT

Privileged SVCS .« o« « o o &«
Program Checkout System
Dynamic Loader . . .

Privileged Programs . .
I/0 Device Addressing
Storage Protection . .
Timekeeping . « « .
Initial Virtual Storage

s s 8 0 s

Privileged Supervisor Call

Instructions . . -

& & & 0 0 8 0

‘Il.l..!.l
e 3 & 5 & 8 0o e

CRTSI —- Create Task Status Index
(R) - - - - - - - - - - -
SCRTSI -- Special Create Task
Status Index (R) « « o « o « o -
DLTSI -- Delete Task Status Index
) - - - e o - -
SETUP -— Set Up Task Status Index
Field (R) - o
XTRCT -—- Extract Task Status Index
Field R) . - . « e e .
SETXTS —- Set Up Extended Task
Status Index Field (R) . . - -
XTRXTS —-- Extract Extended Task
Status Index Field (R) « « « « «
CHAP -- Change Task Priority (R) .
XTRTM -- Extfact Accumulated CPU

Time (nonstandard) . . . « -
SETSYS —- Set System Table Fleld
R) o o « o o o = .

XTRSYS -—- Extract System Table
Field (R) e o ®» . % ® ® @ = a @ a
RSTTIM —- Reset System Time
(nonstandard) e« o s & o s o - o
ALLTI -- Allow Task Inltlatlon (R)
SETYMD -- Set Year, Month, and Day
monstandard) . o < ¢ o o o o o e
SETTOD -- Set Time of Day
(nonstandard) e o @ o @ « o o @
RDI -- Reset Drum Interlock
(nonstandard) . -« . < « e o o o
SETTU -- Set User Timer (R) -
SETTR -- Set Real Time Interval
(nonstandaxrd) e o = - « o = e
REDTIM -- Read Elapsed Real Time
(nonstandard) .. « . o - - -
TSEND -- Force Time Sllce End (R)
AWAIT -- Wait for an Interrupt (R)
TWAIT -- Wait for Terminal I/O
Interrupt (R) . - “ o o =
ADDPG -- Add V1rtua1 Storage Pages
R) - . e o o =
ADSPG -- Add Shared V1rtua1
Storage Pages (R) « o - e
DELPG -- Delete Virtual Storage
Pages (R) e * o @
CNSEG —— Connect Segment to Shared
Page Table (R) o « ¢ « o = o o o «
DSSEG -- Disconnect Shared Page
Table From Segment (R) . . « . o
LSCHP -- List Changed Vlrtual
Storage Pages (R) e o o o o o o o

40
40
40
41
42
42

45
45

45
47
48
u8
48
50
51

52
52

53
53
54

55
56

56
56

57
57

58

58
58

" 59

59
60
61
63
63
64
65

CKCLS -- Check Protection Class (R)
ADDEV -- Add Device to Task
Symbolic Device List (R) « o « « « «

RMDEV -- Remove Device from Task
Symbolic Device List (R)
PURGE -- Purge I/0 Operations (R) -
RESET -- Reset Device Suppression
Flag (R) « o o o o o o = o o =« o a «
SPATH -- Set I/0 Device Path (R) . .
SETAE —-- Set Asynchronous Entry (R)

IOCAL —— I/0 Call (R) v o « o o o
PGOUT —- Write Virtual Storage

Pages to External Storage . . o o
SETXP —-- Set External Page Table
Entries (R) “« o e e o o o o = «
MOVXP -- Move Page Table Entrles

R o o o o « = « - e e e e e .
LVPSW -- Load V1rtua1 Program
Status Word (R) c @ o = « = = - .
VSEND -- Send Message to Another
Task (R) o o o o o o o o o o o o o @
ERROR -- Indicate Supervisor
Detected Exrror (nonstandard)
SYSER -- Indicate

Nonresident-Program Detected Error
(nonresident) e o ® ® = @ o s o o a
Privileged Program Naming Conventions
Writing Privileged System Programs . .
Nonprivileged Programs . « « « « « « o «
Operating Environment - . .
Program Design Considerations
Nonprivileged Supervisor Call
Instructions « « .« « o - - « e e e
ENTER -- Enter Pr1v1leged Serv1ce
Routine (R) e ® o o ® o @ ® e ® o
DLINK -- Transfer to Dynamic
Loader for External Symbol
Resolution (R) e o o a4 o o e o e @
DELET -- Enter Delete Program
(nonstandard) e o o e = o o e o
PCSVC —-- Enter Program Checkout
Subsystem (nonstandard) « e e e e o
CLIC -- Read Command From SYSIN
(conditional) (nonstandard) e o o o
CLIP —-- Read Command From SYSIN
(unconditional) (nonstandard) - o e
RTRN —-- Enter Command Language
Director to End RUN (R) e« o o o o =
RSPRV —-- Restore Privilege (R)

SECTION 4: DEFINING MACRO INSTRUCTICNS
R-Type Macro Definition . . . ¢« « « <. .
addrx . . . 4 . .
addx . . .
integer .
absexp . .
value . .
COGE e« o o e o o o o o o o = = = = @
text and characters . « « « « « . .
SYMDOLl o 4 o @ o 4 o o o o o o = o o
Linkage€ o o o '« o o o o o o o o « o o
S-Type Macro Defintions . . « « . « .+ «
Standard-form S-type macro definition
addr and releXp .« o« « o o « « o o o
integer, aksexp, and value
COdE 4 o« o o o = o o o o o = o = = &
text and characters . «
SYBPOL o« o 4 4 4 4 4 4 e e e e o o

65
66

67
67

68
69
70
71
75
77
77

78

89
89
90

90

L-form S-type macro definition . .
E-form S-type macro definitions
AAArX o o o = o © o 2 © o o =
integer, absexp, and value . .
code and symbol
Linkage o« ¢ o o o o o « o o o
Modified R-type macro definitions
Modified S-type macro definitions
Nonstandard macro definitions . .
Techniques used in writing macro
definitions <« ¢ ¢ ¢ 4 o o o o o o .
Register notation .+ . <« . o . & . .
Packing Parameters o « « o o o « o «
Defining Inner Macro Instructions .
Naming the First Executable
Instruction . ¢« « « ¢ ¢ o o < =
Setting the Sign Bit . . . <« . .
Processing a Single Apostrophe .
Referencing the DCB
Size Limitation < < <
Address Constants . ¢« & « « o« «
Terminal Apostrophe and Size
Limitation « o o ¢ o ¢ ¢ o & @ o o .
Keyword Operands and Standard Values
Substring Notation Processing . . .
N Attribute Usage .« « ¢« o« o « « « «
N'§SYSLIST Handling in Mixed Mode
Macro Instruction . . . «. ¢ ¢ « &
Subscripts and Sublists
SETC Symbol Length «
Logical Terms in Relational
EXPYeSSionsS .« o« o« o o o o o @« o o @
Inner Macro Instructions . . . o o
CHDINNRA -- Generate Type-1 or
Type-2 Linkage (nonstandard) . . .
CHDERMAC -- Generate Errxor Message
(nonstandard) « o o e o s o o o
CHDPSECT —-- Reserve Storage for
Parameter List (nonstandard) . . .

¢ & 8
s & & 2

SECTICN 5: GENERATING AND MAINTAINING
TSS/360 ¢ o o o o o o o o o o o o o =
Syster Generation . « « ¢ ¢ < & o .
Serviceability Aids .« o o o o o o o .

SYSER DUIND o o =« o o o o o « o « o

Program Checkout Subsystem (PCS) .
System Maintenance « . « o « o« o « o o

SECTICN 6: PROGRAMMING WITH PRIVILEGE
CLASS E . . - e o = s e e e = e o
Designating I/O Equlpment « o o o o
Symbolic Device Address . . . «
Designating Devlces for MSAM .
Designating Devices for TAM .
Controlling I/0 Devices For BSAM .
CNTRL —- Control On-Line
Input/Output Devices (R} « « . « «
PRTOV -- Test for Printer Carriage
Overflow (R} o o o o o o o o « o «
Multiple Sequential Access Method
(MSAM) v @ o o o o o o o o = « « « «
General Description . « « « . .+ «
DCB Options ¢ o o o o o o ¢ o « «
DDEF Command and Macro Instruction
General Service Macro Instructions
CPEN -- Prepare the Data Control
Block for Processing (S) « « o o« «

.« 99
.101
.101
.102
. 102
.102
. 104
. 104
. 104

. 104
.104
.105
-106

-107
. 107
.108
-109
.109
.109

.110
.110
.110
<111

111
<111
<111

<111
<112

<112
.113
116

.118
.118
-118
.118
. 121
. 122

. 125
125
. 125
. 125
.126
126

.126
. 128
.130
-130
.130
. 134
. 134

- 134

CLOSE -- Disconnect Data Set from
User's Problem Program (S) . « « .
Macro Instructions for MSAM . . .
Interrupt Entry Handling
SETUR - Unit Record Device Set Up
(R) o o ¢ o @« © o o = = o o = = =
GET —- Get a Record (R} o « « - »
PUT -- Put a Record (R) e o o o @
FINISH —-- End of Data Set (R) . .
Terminal Access Method Macro
INStructions ¢« v« « « o o ¢ o o = .
DCB —-— Set Up Data Control Block
(nonstandard) . - e o o @
DCBD -- Specify DCB DSECT
(nonstandard) e o o o o o s e o o
OPEN -- Prepare DCB for Processing
(S) o o o o o = o o = s o o o o =
CLOSE ——- Remeve Communication
Lines From Use (S) « « « o o e
READ —-— Read From Another Termlnal
(S) o o o o « o = e« o o o e o
WRITE —— Write a Message (S) - « «
CHECK -- Wait for and Test for
Conpletion of Read or Write
Operation (R) o s e ® ° s o = -
DFTRMENT —-- Define a Polling LlSt
(nonstandard) e e o o @ = s s o @

APPENDIX A: SYSTEM MACRO INSTRUCTIONS
ATPOL —-- Poll for Pending
Attention Interrupt (nonstandard)

.135
.136
. 136
137
. 141
. 144
. 146
. 148
. 148
. 149
. 149
.150
150
. 152
. 154
. 156
. 158

. 158

FINDDS -- Locate JFCB
Corresponding to Data Set Name (S)
FINDJFCB —-- Locate JFCB and Ensure
Volume Mounting (S) e e s e s = =
INVOKE -- Transfer Control
(nonstandard) e« e e e s o s o = @
ITI -- Inhibit Task Interrupts
(nonstandard) « e o o o o o o o
PTI —- Permit Task Interrupts
(nonstandard) e o o « o o
RESUME -- Return to Calllng
Program (nonstandard) c o o o @ o
STORE -- Store Register Contents
(nonstandard) e o e o o o e = ® @
VSENDR —-- Send Message to Task and
Await Response (nonstandard) . . .

-.158
. 159
. 159
. 159
.160
.160
. 160
.161
TIME CONVERSION ROUTINE .

APPENDIX B: . 162

APPENDIX C: ORGANIZATION OF DIRECT
ACCESS STORAGE ¢ « o o o o o = o o o

Drunm Storage Format . « « « o o «
Disk Storage Formats . . « « o« « <« «

-lel
-.164
.l64

APPENDIX.D: TS5S/360 EXTENDED PROGRAM
INTERRUPT CODES .« o o o « « o « = =« = 167
APPENDIX E: CODES FOR SYSER MACRC

INSTRUCTICN PARAMETERS « « « « « « - - 169

INAEX o o o« o o o o o o« o o o o o« o « <177

ILLUSTRATIONS

FIGURES

Figure 1. Extended Control
Program Status Word . . « « « « « .
Figure 2. Virtual Program Status
Word e 6 5 w o o ®© o e e o o e e @
Figure 3. Format of Standard

SaVe AYEA <« o o ¢ « o o o o o o o« @
Figure 4. Virtual Program

Linkage Conventions . . « « -« « « .
Figure 5. Format of Three-Part
Hash Table ©« o o o o 8 s e e e e @
Figure 6. Relationship of

TSS/360 Program Modules, CSECT,
CSECT Attributes, Sharakility, and
Storage Key Assignment « o e o o @
Figure 7. PSW and Storage
Protection Keys . .
Figure 8. Format of leed Area

of Input/Output Request Control
Block as Set Before IOCAL . o o« « .
Figure 9. Organization of a Page
List Entry e e e @ o o ® o e e « =
Figure 10. Channel Command Word
List Entry Before IOCAL is Issued .
Figure 11. Fixed Area of 1I/0
Request Control Block as Set by
TOCAL =« o« o o o = @« o o o o o « « =
Figure 12. Channel Command Word
List Entry After Task I/0 Interrupt
OCCUrS OCCUTS o o o o o o o o o o o

TABLES

Takle 1. Effect of Authority

Code in Dynamic Loader Processing .
Table 2. Main Storage Page Key
ASSIigNmENtS . o o o o o o o o * = o
Table 3. Processing Unit and

Data Channel Key Assignments
Table #4. Privileged Supervisor
Calls (SVC 128-255) (Part 1 of 2) -
Table 4. Privileged Supervisor
Calls (SVC 128-255) (Part 2 of 2) .
Table 5. System Error Codes . . .
Table 6. Dump Option Codes for
System Error ProCesSsSOY . « « « « o =
Table 7. Resident Supervisor
Module COACS o o o o o o = =« a = o =
Table 8. Nonprivileged

Supervisor Calls (SVC 64-127) « e e

17
29
31
32

41

43

44

73
73

T4

74

T4

42
4y
4y
u6

47
80

80
81

88

Figure 13. I/O Paging Control
BlOCK « o o o o o o o ¢ o o « « @
Figure 14. Coding addrx Operands
Figure 15. Determining the Length

of a Character String . . . « « «
Figure 16. Standard and L-form
S-type Macro Description . « . . .«
Figure 17. Parameter List
Generated by L-form o

Figure 18. E-form S-type Macro
Description . « o « o o o o -
Figure 19. Packing Two Halfword
Parameters Into Register 1 « o o
Figure 20. Complete Entry in

SYSUCS (5 l1line records, each 68
characters long, including KEYS)
Figure 21. Complete Entry in
SYSURS (4-1line record, each 68
characters long, including KEY) -

Figure 22. DECB Format . . -
Figure 23. Flag Field of the DECB
Figure 24. Organization of IBM

2301 DXYUN o o « « o o o = o o o =
Figure 25. Organization of IBM
2314 volume for VvaM o o
Figure 26. Format of IBM 2311
Volume for VAM e o © o @« o o o =

Table 9. Error Messages Issued
by CHDERMAC (Part 1 of 2) e o o e
Table 9. Error Messages Issued
by CHDERMAC (Part 2 of 2) « o o =

Table 10. Sources of DCB
Inforration for MSAM -
Table 11. Return Codes for SETUR
Macro . . - » -
Table 12. Return Codes for MSAM
GET Macro Instruction . -
Table 13. Return Codes for MSAM
PUT Macro Instruction . . . « « «
Table 14. Return Codes for MSAM
FINISH Macro Instruction« .
Table 15. Character Set Codes . .
Table 16. Input Formats Accepted

by Time Conversion Routine
Table 17. Results of Time
CONVEXSION o« o o o o o o o o« o o o

.« 76
. 93

- 99
. 101
.101
.103

.105

<141

141
- 155
156

.164

-165

.166

-115
.116
- 131
. 140
.143
. 145

<147
«152

.162

.163

SECTION 1: INTRODUCTION

READER'S GUIDE

Several publications concerned with System/360 Time Sharing System
are devoted to system programming; they describe how TSS/360 was
designed and constructed, how it can be wmodified, and how you can
construct programs that will become part of it. The following descrip-
tions will familiarize you with the purpose of the system programming
publications that are available to you; they stress the role of each
publication in presenting a complete picture of TSS/360, from the system
programmer's viewpoint.

e System Programmer's Guide, Form C28-2008, describes the facilities
available to system programmers in designing programs to ke a part
of TSS/360; also, it discusses the conventions used throughout the
system.

e System Generation and Maintenance, Form C28-2010, describes the
procedure for creating and maintaining the object and source forms
of TSS/360; specifically, the macro instructions and commands ycu
may use to add, delete, or modify system object program modules.

Program Logic Manuals

These TSS/360 publications describe the detailed design and implemen-
tation of specific groups of programs within the system:

e System Logic Summary PLM, Form Y28-2009

e Resident Supervisor PLM, Form Y28-2012

e Command Languaqe Subsystem PLM, Form Y28-2013

e Program Checkout Subsystem PLM, Form Y28-2014

e Access Methods PLM, Form ¥28-2016

e System Service Routines PLM, Form ¥Y28-2018

e Assembler PLM, Form Y28-2021

e FORTRAN IV PLM, Form Y28-2019

e Linkage Editor PLM, Form Y28-2030

e Dynamic Loader PLM, Form Y28-2031

e System Control Blocks PLM, Form Y28-2011

When [Fpossible, you should use the program logic manuals in conjuncticn
with a current assembly listing of the program modules of interest.

Assembléer Language Manuals

The manuals described herein represent the TSS/360 documentation
specifically intended for system programmers, who should, of course, ke
familiar with other IBM System/360 Time Sharing System publications,
such as:

Section 1: Introduction 7

e Assembler Programmer's Guide, Form C28-2032

e Assembler User Macro Instructions, Form C28-2004

System programmer publications need not be read in sequence since,
usually, each deals with a variety of TSS/360 considerations. As a
recommendation, however, depending on your experience with ,the design
and implementation of TSS/360, you probably will find it easier to read
System Programmer's Guide and System Generation and Maintenance after
you have read System Logic Summary. The program logic manuals should be
read only after you have acquired a thorough familiarity with System
Logic Summary. Finally, don't forget the program listings -- these
should always be carefully checked before you attempt a local modifica-
tion to TSS/360.

SYSTEM PROGRAMMING WITH TSS/360

Time Sharing System/360 1is a set of programs. Each program is
intended to perform a part of the overall job that the system as a whole
was designed and developed to do. Syster prograrming with TSS/360
involves adding to, deleting from, or wmodifying these programs. By
changing the function of the parts, the function of the whole is
changed. This is the purpose of system programming.

Who

As a system programmer, you are expected to be an experienced
programmer charged with the responsibility of modifying, extending, and
generally tailoring TSS/360 to suit the needs of your installation. To
do this you should be knowledgeable in two areas: the design and
construction of TSS/360 and the needs and capacity of your installation.
Within TSS/360 you will have greater authority than nonsystem program—
nmers. The power to create, however, is also the power to destroy.

Why

Any large, general-purpose programming system is a compromise of the
many conflicting demands of its prospective users. System designers
attempt to take these diverse derands and create a cohesive, efficient
programming system. All situations can never be anticipated. Generali-
ty must sometimes be sacrificed for efficiency. Realizing this, the
developers of TSS/360 have produced a modular system; this facilitates
change. The rules, suggestions, and operating considerations for making
these changes are described in the fcllowing pages.

TSS/360 ORGANIZATION

The programs that make up TSS/360 are of two types. The first tyre,
resident programs, are brought into main storage and 1left there,
basically, wuntil the machine is turned off. The second type, virtual
memory programs, are brought into main storage as required and are
removed from main storage when the space is needed. We call the first
kind of program resident; the second kind, nonresident. During the
operation of TSS/360, both kinds of programs "talk" to each other Ly
using a well defined interface. We will discuss this interface later
when we talk about wvirtual machines.

Resident programs generally have the responsibility of scheduling the
use of the system's resources. For this reason they take care of most
of the administration of the multiprogramming and multiprocessing going
on in TSS/360. Nonresident programs have the responsibility for
providing services to the user, making it easier for him to use the

system. An attempt has been made to separate these responsibilities as
much as possible. 1In this way, resident programs needn't "worry" about
providing user services, and nonresident programs needn't worry about
scheduling a polymorphic computing system. If you keep this division of
function in mind as you read this publication, you'll probakly find it
easier to understand the material. Sometimes you will think that we are
discussing two different machines. In a way, we are.

This publication is organized along the lines of TSS/360, itself. A
program that is part of TSS/360 resides in either main or virtual
storage. In other words, it runs with the address translator turned off
or on. This is the basic subdivision of the rerainder of the material
in this manual. No matter what area interests you, however, you should
read this entire publication.

FORMAT AND NOTATICN

The general format of the macro instructions and supervisor calls
represented in this publication is:

T T
Name | Cperation|Operand |
1!, i
|
I
1

[e o —

o e e]

Nare Field

The name field may contain a symbol or remain blank. Normally, this
symbol 1is the name associated with the first executable instruction of
the macro expansion.

Operation Field

The operation field contains the mneronic operation code of the macro
instruction or supervisor call. This code ray ke a string of not more
than eight alphameric characters, the first of which is alphaketic.

Operand Field

The operand field may contain no operands (in which case the word
"none" appears in the format illustration), or one or mwore operands
separated by commas; the two tyres of operands are positional and
keyword.

The user must supply positional orerands in the same order as that
shown in the format illustration. If a positional operand is omitted
(the rules about omission are explained 1later in this section) and
another positional operand 1is written to the right of the critted
operand, the comma that would have preceded the omitted operand must be
retained. For example, assume positional operands A, B, and C. These
may be written:

A,B,C

pro e m

T
>

b e —
~
w

i
a,,C [A,B
AL

I

Keyword operands can appear in any order after the positional
operands. Commas are not used to show omitted keyword operands. All
keyword operands have the general form: KEYWORD=value-mnemonic.

Section 1: Introduction 9

The terms and formats used to illustrate operands are defined below:

OPERAND NAME: This is a single word, usually a mmemonic, that
identifies the operand. Unless it is shown in upper-case letters in the
command format, operand name represents a variable for which +the user
must supply specific information. A typical operand name is started;
i.e., the address at which you are going to start.

VALUE MNEMONIC: This is a single word or mnemonic that tells how an
operand should be written. The value mnemonics used in this publicaticn
are:

absexp
An absolute expression may be an absolute term or any arithmetic
combination of absolute terms; an absolute term may be an atsclute
symbol or self-defining term. All arithmetic operations are
permitted between absolute terms.

In the following examples, ALAN and JAY are relocatable and defined
in the same control section; MARK and ERIC are absolute:

331

MARK

MARK+ERIC-2

ALAN-JAY

MARK*4-ERIC

addr

A relocatable expression or register mnotation. A relocatakle
expression 1is one whose value would change by n if the program in
which it appears is relocated n bytes away from its originally
assigned area of storage. A general-purpose register can be
written as an absolute expression enclosed in parentheses. When
evaluated, the absolute exrression must have a value between 0 and
15, corresponding to the designations of the general-purrose
registers. If, in the following examples, ALAN, GAIL, and JAY are
relocatable and defined in the same control section, and MARK and
ERIC are absolute, the following are relocatable expressions:

ALAN

ALAN+GAIL-JAY

GAIL-MARK#*5

JAY+3
and the following are valid uses for register notation:

(3)

(ALAN-GAIL)

(ERIC)

{MARK+2)

addrx

Register notation, an explicit address, or an implied address. The
valid forms of register notation are described above. An explicit
address is written in the same form as an assembler language
operand, that is , with a base, displacement, and index value. An
explicit address might be written as:

2(0,5)

0(2,4)

5 (3)
An implied address is written as a symbol, optionally indexed by a
specified index register. For example:

10

addx

LEE
CARL (2)

An explicit or implied address, as described above.

characters

The character operand is written as a character string. Embedded
commas or blanks are not permitted. Two apostrorhes or two
ampersands must be used to represent one apostrorhe or one
ampersand in the character string. The character string may not be
enclosed in apostrophes. For example:

2+SADORE*LANE"6H"
A value written exactly as indicated in the description beneath the

format illustration. Thus, LIEN would be written exactly that way
within the program.

hexinteger

A hexidecimal value, which can be written as one or more hexadeci-
mal characters from 0-F. The limit on the numker of hexadecimal
characters that are permitted is given under each format illustra-
tion in which this wvalue mnemonic afppeatrs. The following are
examples of hexintegers:

01
A2
ABC

integer

A decimal value, which can be written as one or more decimal digits
from 0-9. The 1limit on the number of decimal digits that are
rermitted is given under each format illustration in which this
value appears. The following are examples of integers:

0o6u452
100
2134

relexrp

A relocatable expression is cne whose value would change by n if
the program in which it appears is relccated n kytes away from its
originally assigned area of storage. BAll relocatable expressions
must have a positive value. A relocatable expression may ke a
relocatable term. A relocatable expression may contain relocatable
terms -- alone or in cowbination with absolute terms -- under the
following conditions:

1. There must be an odd number of relccatable terms.
2. All relocatabkle terms but one must be paired.

3. The unpaired term must not ke directly rreceded by a winus
sign.

4. A relocatable term must not enter into a multiply or divide
operation.

A relocatakle expression reduces to a single relocatakle value.
This value is the value of the o0dd relocatable terw, adjusted ky
the values represented by the aksolute terms and/or paired relocat-
akle terms associated with it. The relocatakility attrikute is
that of the odd relocatable term. Complex relocatable expressions

Section 1: Introduction 11

are also permitted. Refer to IBM System/360 Time Sharing System:
Assembler Lanquage, Form C28-2000.

In the following examgles of relocatable expressions, SAM, JOE, and
FRANK are in the same control section and are relocatable; PT is
absolute.

SAM
SAM-JOE+FRANK
JOE-PT*5
SAM+3

Note that SAM-JOE 1is not relocatable, because the difference
between two relocatable addresses is constant.

specsym
A special symbol that may consist of any mixture of alphaketic,
numeric, and/or special characters. For example,

1A370ABCD
OPENHOUSE+PARTY

symbol

Y A symbol may be a symbolic address (i.e., a single relocatable
term), such as the name of an instruction in an assembler-language
program, or it may merely be a character string used for identifi-
cation, not location (such as the ddname parameter of a DCB macro
instruction) .

In TSS/360, the alphabetic characters are the letters A-%, and 3§,
@, and #. The alphameric characters are the alphabetic characters
plus the digits 0-9.

The symbol is written as a string of up to eight alphameric
characters, the first of which is alphabetic. Embedded comras and
blanks are not permitted. Symbols beginning with the characters
CHD may not be used, since symbols beginning with those characters
are reserved for system use. Examples of symbols are:

DDNAME 1
LOOP 12
START
#1
text
A text operand is written as a string of alrhameric characters
enclosed in apostrophes. Embedded blanks and special characters
are permitted. Two apostrophes or two ampersands must be wused to
represent one apostrophe or one ampersand in the character string.
The text operand may not exceed 255 characters including the
enclosing apostrophes. For example:
'AREA, PCB, 132, ,1256"
value

A value may be written as an integer or as register notation. For
example of each, see above.

CODED VALUE: This is a string of characters that is to be written
exactly as shown. Coded values always appear in the command formats as
numbers of upper case letters.

Positional operands are therefore represented with these elements in
one of three ways, as shown below. The hyphen and the value mnemonic

12

are never writtem in the actual command. They serve only as a
convenience in displaying the command format.

Example From

Operand Command Format
operand name-value mnemonic action-code
TOD
operand name-coded value field -} YMD
TASKINIT
coded value EDIT

What the programmer actually writes for each kind of positional
operand is:

Positional Operand

Representation Progranmer Writes
action-code The arrropriate action. For example; OFF
TOD
field -} YMD The appropriate field. Either TOD, YMD, or
TASKINIT
TASKINIT
EDIT EDIT

The keyword operand consists of a keyword followed by an equal sign
and either a value mnemonic or a coded value. The programmer writes the
keyword, the equal sign, and, when indicated, the coded value exactly as
shown.

Notational Symkols

The symbols listed below are used in command formats to help the user
decide how and when to write certain orerands. None of these symkols is
written by the user.

]l Brackets are used to denote options. Anything enclosed
within brackets may be entered once or not at all. Stacked
jtems show alternatives within the optional syntactical
unit. For example:

[line-integer]
[E]
]
VS

{13 Braces are used to denote grouping. Stacked items within

the syntactical unit show alternatives. Examples:

*ALL

el

cee Three dots indicate the preceding syntactical unit may occur
one or more times in succession. For example:

2dsname—name

Section 1: Introduction 13

userid-alphname, ...

Underlining of a stacked item means it is the default value
of that syntactical wunit. (The system will assume the
underlined item is desired if nothing is entered for the
unit.) For example:

R

RO
[access-) RW\]

U

This means the user may enter any one of the four items or,
if RW (the underlined item) is his choice, he may default
the entire syntactical unit.

In addition to the notational symbols describted above, the comma and
the parentheses have a special significance in the command formats.

Commas must always be entered to separate operands. They may also be
used to show the omission of ofrtional positional operands. Those
operands may be omitted (i.e., defaulted) whenever their default values
are desired. Mandatory postional operands must always be given. The
rules for showing omission are as follows:

1. If another operand will be entered after the omitted operand(s), a
comma must be given for each omission. (Technically, this is the
comma that would have preceded the omitted operand.) The user will
not be prompted for omitted orerands in this case. For example,
this command shows three omitted operands:

PRINT MYDATA,,,,ERASE,SKIP, 1234

Note that a comma must follow the last omitted operand, to separate
it from the following operand.

But if initial operand (s) are omitted, only the separator comma (s)
are necessary. For example, when a command contains optional
operands A, B, and C, default of A is indicated as

+«B,C
and default of A and B would be indicated:
IIC

2. If no operand will be entered after the omitted operand (s) , commas
are optional. In nonconfirmation mode, the wuser will not ke
prompted for the omitted operands. In confirmation mode, he will
ke prompted unless he enters commas to show the omissions are
intentional. For example, a user in nonconfirmation mode omits the
last six operands of a command:

PRINT MYDATA
He is not prompted, and default values are assigned for the missing
operands. If he made the same entry in confirmation mode, he would
be prompted for each missing orerand. To avoid this, he can write
the command with commas to show that he wants the default values.
Thus he enters

PRINT MYDATA,,,ss»

There is no prompting, and default values are assigned.

14

Note: Commas may not be used to indicate the omission of keyword
operands.

The following table shows various ways of indicating default values
of a command with optional orerands A, B, C, D, and E. Assume
confirmation mode.

Contents of Operand Field System Response
A,B,C,D,E . No prompting; operand values are as given.
+,B8,C,D,E No prompting. Default value of A assumed;

other operand values are as given.

AypssE No prorpting. Default values assumed for
B, C, and D; A and E values are as given.

PR No prompting; default values assumed for
all operands.

A, Prompting messages issued for C, D, and E.
Default value assumed for B; A value is
as given.

A Promrting messages issued for B, C, D,
and E. A value is as given.

Ayvss No prompting. Default values assumed for
B, C, L, and E; A value is as given.

A,,, Prompting messages issued for E. Default
values assumed for B, C, and D; A value
is as given.

no operand entered Prompting messages issued for A, B, C, D,
E

Parentheses must be written by the usexr exactly as shown. They are
used to mark a group of similar itemws, such as a series of volume
numbers. They must be given even if there is only one item in the
group.

Section 1: Introduction 15

SECTION 2: RESIDENT PROGRAMS

This section discusses the characteristics of resident TSS/360
programs. These programs make up the resident supervisor. If ycu are
primarily interested in the scheduling and resource allocation done by
TSS/360, you will find this section of special interest. We will
discuss the facilities available to you, and the conventions that should
be followed in producing programs that are to be parts of TSS/360.

OPERATING ENVIRONMENT

GETTING STARTED

In TSS/360, a program called Startup has, as one of its duties, the
job of bringing into main storage all the modules that make ur the
resident supervisor. Resident programs have +the same physical
appearance as any other TSS/360 object prograr module; they have a
program module dictionary (PMD) and text. Startup acts as a limited-
purpose link-loader. It reads the various resident program modules frcm
a disk pack called the IPL volume, resolves the symbolic references
between these modules, assigns them main storage space, and resolves
address constants contained in them to appropriate values. Startup also
initializes prefixed storage areas (PSAs) and issues an external start
to a second processing unit, if one is attached.

Resident program modules are relocatakle; however, once Startup has
transferred control to the resident supervisor, the relocation of
resident programs is complete.

A number of tables, or system control blocks, are also initialized Ly
Startup. Basjically, these tables +tell the resident supervisor what
resources it has to work with. One of these resources is wmwain storage
space, which will be reserved for the resident supervisor's use. Space
not used for resident programs, or set aside for +their use, will ke
available for allocation to nonresident programs.

NORMAL OPERATICN

Extended Control PSW

Wwhen Startup transfers control to the resident supervisor, the IBM
2067 processing unit is in the extended control mode. The format of the
extended control program status word (XPSW) is shown in Figure 1.
Because resident programs operate unrelocated, bit 5 in the XPSW, the
relocation bit, is always 0. The XPSW is also 0, allowing resident
programs to access all available main storage. The problem state bit is
0, too, since resident programs orperate in the surervisor state. Any
program interrupt in the supervisor state is considered an errcr; to
allow detection of program interrurts, the four program mask bits are
1s. The second word of the XPSW contains +the instruction address.
Resident programs are responsible fcr controlling dynamic relocation of
programs; they do not, themselves, run with the address translator on.
Addresses used by resident programs are always real addresses, limited
by the storage physically available. The maximum allowable amount of
main storage is 2,097,151 bytes (221-1) (16 million for 32 bit
addressing) .

16

r T LI) i 1 L) Ll 1 1
| N | | | | | |
101 23 {4|5(6}71 0 1 2 3] 456 710 1|2 3|6 56 7] 01234567 |
L 111 L L 1 4 ' i 4
L] T 1 T T L) L) 1 T T 1
] R | | | | | I |
|00 0O |OjOjx]x] 0 0 0 O] O xx O]xx|xx|{1t111 00000O0O0O0 |
L [I] 1 1 { { L L |
¥ L] T v 1 T T T |
| 111 | | | ! !] |
| NU IM|IR[I|E|] XEY | A MW P|ILC|C C|P M S K| NU |
L L. i _1_1_1 L L A4 L i J
| |
f 0123 4567012345670 1234567012345¢67 I
i' *.
] 00000000000 XXSXXZXXXX XXX XXXXXXZIXIXZXZKX]
| |
| INSTRUCTION ALCDRESS |
! ’i
| M Mode, 24-bit (0) or 32-bit (1) |
| R Relocation, off (0) or on (1) |
I I I/0 interxrupt mask, disallowed (0) or allowed (1) |
| E External interrupt mask, disallowed (0) or allowed (1) |
| KEY Storage protection key |
| A Character code, EBCDIC (0) or ASCII (1) |
| M Machine check mask, disallowed (0) or allowed (1) |
| W Wait state, running (0) or waiting (1) |
| P Privileged state, supervisor (0) or proklem (1) |
| ILC Instruction length code |
| ccC Condition code |
| PMSK Program mask |
I [
| NOU Not used -- must be 0 |
L]

Figure 1. Extended Control Program Status Word

The Prefixed Storage Area

In a simplex or half-duplex System/360 Model 67 configuration, there
is only one processing unit. In addition to its general-rurrose and
floating-point registers, this processor has 16 extended-control regis-
ters, eight associative registers, an interval timer, a dynamic address
translation (DAT) unit, and other components necessary for fetching and
executing instructions. (For a description of the nature and the
function of the extended-control registers, refer to Functional Charac-—
teristics.) Associated with the CPU, and logically a part of it, is a
page (4096 bytes) of main storage called the prefixed storage area
(PSp) ; it 1is the main storage rage referenced by real addresses 0
through 4095. The processing unit uses the prefixed storage area for
fetching and storing new and old PSWs, for storing the interval timer
value, and for initial program load (IPL).

The PSA is a special page; the high-order 12 bits of its addresses
are always zero. Because of this, a PSA address can always ke detected
by the computing system; any real address whose 12 high-order bits are
zero is a PSA address. Prefixing involves substituting an alternate set
of bits for the 12 high-order zero bLkits in a PSA address before
accessing main storage. It permits the prefixed storage area to be
designated in any place in wmwain storage. The ability to vary the
location of the PSA gives us the flexibility of not having to rely on

Section 2: Resident Programs 17

the operation of a single main storage unit for the successful operation
of the system.

There are two prefix quantities availakle for changing PSA addresses:
the primary prefix and the alternate prefix. The selection of the
prefix quantity enables us to select which page of which storage wunit
will ke used to contain the PSA.

In a duplex System/360 Model 67 configuration, there are two
processing units; each has its own prefixed storage area, just as each
has its own set of general-purpose registers, floating-point registers,
extended-control registers, associative registers, and interval timer.
Each processing unit also has its own primary and alternate prefix
quantity.

It does not matter how a PSA address 1is produced; it may be the
result of normal program execution.

A PSA is addressable by two sets of (real) addresses. Clearly, the
PSA can be addressed by using 0 through #4095; this is why it is a PSA.
If we know what prefix quantity a processing unit is using to address
its PSA, we can use that prefix quantity ourselves to access the PSA -—-
without prefixing. This is like using "before" and "after" addresses.
Each PSA has a set of "before" addresses, 0 through 4095, and a set of
"after™ addresses, the addresses produced by substituting a processing
unit's prefix quantity for the 12 high-order Lkits of the "before"
addresses. A processing unit can use either set of addresses to access
its PSA; the first set involves prefixing, the second set does not.

The advantage of the second set of addresses, the "after®" addresses,
is mnot that a processing unit can address its own PSA. If rrocessor A
knows processor B's prefix quantity, then by using that quantity,
processor A can access processor B's PSA. Processor A cannot access
processor B's PSA in any other way, since the other set of addresses
(0-4095) causes processor A to access its own PSA Dbecause these
addresses are automatically prefixed. By knowing each other's rrefix
guantity, processors in a multirle processor system can fetch and store
from one another's PSAs. This is an important capability for errcr
recovery and reconfiguration. In a dual system, page zero in main
storage is not used since its actual and prefix addresses would ke the
same; this would prohibit one of the processing units from referencing
rage zero by using its actual (not prefix) addresses.

Even though we keep each processing wunit's PSA separate from the
other's, the PSAs are organized in the same way. This is somewhat
analogous to a processor's private registers. The PSAs, 1like the
registers, are physically separate but logically identical. A PSA may
be considered as a "socket"™ when a processing unit is "plugged®" into the
main storage of the systen.

The format of the prefixed storage area can be seen by copying the
DSECT. Bytes 0 through 327 are fixed by the design of the IBM 2067
processing unit. Bytes 328 through 4095 are not required for an
explicit 2067 processing unit function, such as interruption handling,
but are used as a special storage area by TSS/360. The PSA is used to
store data that relates to the processing unit in which the PSA belongs;
data that applies to the system as a whole is kept in common storage.

SUMMARY
Resident programs make up the part of TSS/360 known as the resident
supervisor. The extended control mode of operation is normal for

resident programs. These programs oferating in the supervisor state
with the address translator turned off, with an XPSW protection key of

18

zero, may execute any Model 67 instruction, and access all main storage
except page zero in a dual system. Although each processing unit in a
multiprocessor configuration shares common main storage, each also has a
single private page of main storage, the PSA. Each rrocessing unit also
has 16 general-purpose registers, four floating-point registers, 16
extended-control registers, eight associative registers, an interval
timer, an address translator, and other components for fetching and
executing instructions.

DUMMY SECTIONS

PURPOSE

The dummy section (DSECT) is used extensively throughout 1TSS/360 so
that parts of the system can refer to commonly used data items by
symbolic names. You can refer to a field in a system control block Ly
the mname assigned to that field in the dummy section; this frees you
from having to use the field's numeric location. (Actually, the dummy
section supplies a number of symbolic field names, lengths, and relative
positions which the assembler translates into numeric displacements.)
You needn't worry about the specific physical structure of the systern
control block to which you are referring if you use a DSECT to describe
the control block. All you need be concerned with 1is the field
structure (bit, byte, halfword, etc.). Essentially, you don't care
where the field is located within the system control block. Thus, if
the field position changes, but the field length, boundary alignmwent,
and the meaning of its contents don't change, your gprogram will still
run properly after it is reassembled. Reassembly is necessary since
displacement values may have changed as a result of using the new dunmy
section.

In TSS/360, the dummy section is more than a programmer convenience.
Dummy sections for system control blocks, obtained from the assembler
copy/macro library, ensure that all programs using the same system
control klock use the identical format. The set of 15SS/360 dumny
sections can be viewed as a central, current, assembler-oriented
description of all system control blocks.

USE

A typical TSS/360 dummy section is jillustrated in Figure 3. We use
several conventions when working with dummy sections. These conventicns
are intended to minimize the need for redesigning programs if the dummy
sections they use are changed. Dummy section fields that are integral
multiples of bytes in length are simply referred to in a program by
using the name of the field. Fields that are less than one byte 1long
are referred to by using a mask; we must do this since the IBM 2067
processing unit can directly address no field shorter than a kyte. The
name of the mask associated with a field that is less than one byte long
is obtained bty adding the character M to the field name. If we wanted
to determine whether the field VPSAI were a 1 we might write,

™ VPSAI,VPSAIM TEST UNDER MASK
BZ FIELDOFF BRANCH IF ZERC

Note that we don't have to know where +the field VPSAI 1is 1located
within the system control Llock or what bit pattern defines the mask
VPSAIM. This information is supplied by the dummy section which we
incorporate into our program from the assembler copy/rwacro likrary. The
field we are testing, with the test under mask (TM) instruction, need
not be restricted to a single bit. It can be any corbination of up to
eight bits, as 1long as all the &rkits fall within one byte. The

Section 2: Resident Programs 19

conditional branch instruction can be used to determine if the bits we
are testing are all 1s, all 0s, or mixed.

For bit fields, the field namwe is always the name of the byte in
which the bits appear. Since a single byte can have up to 256 different
conbinations of bits, a single byte could have up to 256 different bit
fields. We frequently find, therefore, that the names of different bit
fields are synonomous; that is, they roint to the same byte. The kit
mask corresponding to the field name must ke used to extract the proper
bits.

The dummy section itself does not take up program storage space; it
is used exclusively to describe a storage area to which it is applied.
To properly use a dummy section, we first load a general register with
an address constant, pointing to a storage area containing information
descriked by the dummy section. Then we issue a USING pseudc-operation
to tell the assembler that the corresponding dummy section format is to
be applied to the storage area pointed to by the general register given
in the USING statement. It locks like this:

L 5, ADCON
USING CHAVPS,5

assuming that ADCON has been defined as,
ADCCN DC V (WCRKARER)

This would apply the format given by CHAVPS to the storage area
beginning at the symbolic location wcrk area.

We can, of course, define our own dummy sections and use them as we
see fit. In most cases, thcugh, we will get the durmmy seetion from the
assemkler copy/macro library (see Section 4, "Generating and Maintaining
TSS/360") . We can do this simply by issuing a CCPFY pseudc-operation,
with the name of the dummy section we want, as the operand. Here is an
example:

COPY CHAVPS

The dummy section currently contained on the assembler copy macro-
library will be included in our program at the point of the COPY
statement. This will enable us to symbolically reference the system
control block CHAVPS, as it is currently defined (see IBM System/360
Time Sharing System: Syster Control Blocks, Formr ¥Y28-2011).

MODULE STRUCTURE

Like any other object module, resident object program modules consist
of a program module dictionary (PMD) and hexadeciral text. Usually,
resident programs contain a single read-only, nonprototype control
section. A resident program may contain address constants to ke
computed and placed into the text by startup. The read-only control
sections do not change; they are never wodified during EFregrar
execution.

In addition to read-only contrcl sections, the resident supervisor
contains takles or system control blccks. A syster control blcock is
nothing more than some data contained in main storage and organized in
some way known to the programs that use it. The system table, CHBSYS,
is an example of a syster contrcl block used by a number of resident
programs; it contains such informaticn as the size of the time slice,
the operational cycle tire, and other parameters affecting the cverall
operation of the systen.

20

If there is any possibility that one processor can change a system
control block at the same time another prccessor is working on it, the
control block must be protected, or interlocked, with a lock byte. A
lock byte 1is a single byte used to control the accessing c¢f variakle
information. The test and set instruction is used to find out if a lock
byte is on or off (and also to turn it on). For example:

TEST TS LOCK
BC 1,WAIT

tests a lock byte called LOCK; if LOCK is all 1s, control is transferred
to WAIT. A lock byte is set (or on) if it is all 1s (actually, cnly the
high-order bit is tested) ; it is reset (or off) if it is all Os.

Some programs do not need to test 1lock bytes, since they are
subroutines of programs that do test. Sorme control blocks are nct
individually tested (and do not contain a lock ktyte) but are gathered
into queues; the entire queue is interlocked instead of its members.

A 1lock byte is reset when the program that set it has finished using
the protected information. In most cases a second processing unit will
only wait a certain length of time for a lock byte to be reset: if the
lock byte is not reset within that time period, a minor system error is
recognized. When control 1is returned to the point of interrurtion ky
the ERROR routine, accessing the rrotected data proceeds.

In addition to read-only control sections and interlocked system
control blocks, the resident supervisor also ccntains a nurker of pages
or a "pool®" of wmain storage that may be used, as required, by resident
programs. The program controlling the use of this storage rool is the
supervisor core allocation module. Since the supervisor core allocaticn
module itself cannot require the allccation of storage space to free
working registers it saves the registers in a special area in the FSA.

Relatively few system control bklocks continuously require main
storage space; most have transient storage needs. Resident rrograns
usually obtain storage space for transient data from the supervisor core
allocation module. When the need for this data no longer exists, the
space is returned to the supervisor core release subroutine; this
dynamic allocation of main storage space ensures that the resident
supervisor doesn't tie up more storage space than it actually needs.
Most transient data areas cannot be accessed simultaneously ky multigle
processing units; these control blocks are not interlocked. However, a
few transient data areas can be accessed by multiple processing units
and are, therefore, interlocked.

Some data areas are known only to one processing unit because cone of
its registers points to the data area; other data areas are known tc all
processing units because the address of the data area is kept in comrmon
main storage.

SYSTEM CONTROL BLOCKS

The resident supervisor consists of three parts: read-only ccntrol
sections (resident) , mnontransient system control blocks, and a pool of
dynamically allocatable main storage. The resident superviscr uses the
storage pool to create transient syster control blocks such as the
generalized queue entry (GQE) and the page contrel klock (PCR). During
their "lifetimes" transient control klocks are resident in main storage.
Transient control blocks exist only as long as they are needed; this ray
be a few milliseconds or a few minutes. When they are no longer needed,
the main storage space they occupy is returned for reallocation.

Section 2: Resident Programs 21

The resident supervisor also creates nonresident system control
blocks. Nonresident system control btlocks are brought into main storage
only when needed. They exist on some storage device for a relatively
long time, for example, for an entire terminal session. However, their
time in main storage may represent only a swrall fraction of their
lifetime in the system. ‘

MODULE DESIGN CCNSIDERATIONS

Let's assume you have a change to TSS/360 in mind, and that you very
clearly understand the logic of the change you wish to make. The next
question is: How do you construct the program? Resident programs are
different from nonresident programs in one major way: Resident progrars
do not contain prototype control sections (PSECT). As you know, the
purpose of a prototype control section is to contain any part of a
program that changes as a result of relocation or execution. As pointed
out previously, resident programs never change during execution. The
address constants used by resident rrograms are resolved by startur;
they will not be changed after the system is initialized. The only
thing left in the resident supervisor that can change are the variakles
used by resident progranms. These variables are kept in general
registers, system control blocks, or working storage obtained from the
supervisor core allocation subroutine. Your program must be designed to
use one of these areas for holding variable information; which c¢ne you
use depends on what you are attempting to do. The key test of a
resident program's correct construction is that it be simultaneously
executable by multiple processing units. If the general registers are
used as working storage, multiple prccessors may simultanecusly execute
the program, since each processor supplies its own registers. If a
system control block is used, the lock byte controls the modification of
variable information. If storage oktained from +the supervisor core
allocation subroutine is used, each allocation of storage is kert
separate from the others to ensure the protection of variables.

ENABLING AND DISABLING INTERRUPTS

Because they operate in the surervisor state, resident programs can
enable and disable interrupts by setting and resetting the system mask
or by altering the contents of extended-control registers 4, 5, and 6.
The instruction

SSM =X'00"

will set Lkits 0 through 7 of the extended program status word to zero.
The processing unit affected will interpret these bits as: 24-bit
relocation mode, address translator off, and I/C and external interrupts
disabled. To restore interrupts,

SSM =X"0B'

will be interpreted by the frrocessor as: 32-bit relocation mode,
address translator off, and I/0 and external interrupts enakled. When
the address translator is turned off, the setting of the relocation mode
bit is academic; it 1is set to 32-bit wode here only for the sake cf
jllustration. If you wish to wodify the extended-control registers, the
instructions

STMC 4,4 ,SAVE

L 6, SAVE

N 6,=X"BFFFFFFF"
ST 6,SCRATCH

LMC 4, 4,SCRATCH

22

will save the contents of control register U4, and disable interrurts
from channel 1 (as viewed by the rrocessing unit issuing the LMC). The
instruction

LMC 4,4,SAVE
will restore the original contents of control register H. The work

areas for SAVE and SCRATCH would ke obtained from the surervisor ccre
allocation subroutine.

NAMING CONVENTIONS

PROGRAM MCDULE NAMES

All TSS/360 programs have standardized program module names, control
section names, and entry point names. When a program wodule tecomes
part of the system, any reference to it must use the module name, an
entry point name, or a control section name. TSS/360 prograr module
names consist of five characters; resident program module names have the
form:

CEAXX

where XX are alphameric characters that uniquely identify the module
within the resident supervisor. All TSS/360 rrograxr module names kegin
with C; the characters EA identify resident supervisor modules.

All entry point and control section nares begin with the frrogram
module name, like this:

CEAXXN

where N is a character that uniquely identifies the entry pcint cr
control section within the program mcdule. Note that special characters
are not used in TSS/360 names.

As an example, the pathfinder module has the name, CEAAS5; its entry
points are CEAA5P, CEAA5R, and CERAASS.

SYSTEM CONTROL BLCCK NAMES

In addition to program modules, the resident supervisor is made ur of
system control blocks. A system control klock usually requires two
names: the name of the dummy section (DSECT) that descrikes its format,
and the symbolic address that points to the informration described by the
dummy section. All TSS/360 programs, resident and nonresident, use the
same rules to nawe system control blocks. A dummy section name looks
like this,

CHAXXX

The characters XXX are assigned to uniquely identify +the dumny
section., All fields used within the dummy section look like this:

XXXFFF
The characters XXX are the same as the last three characters of the
dummy section name. The characters FFF are any three characters that

uniquely identify the field within the dummy section. For example,
these are the assembler statements for a typical dummy secticn:

Section 2: Resident Programs 23

CHAABC DSECT CONTRCL BLCCK NAME

ABCFCA DS 1F FIELLC NAME
ABCRJG DS 4F FIELC NAME
ABCXYZ DS 3c FIELD NAME
ABCFLG EQU ABCXYZ FLAG NAME
ABCFLGM EQU X'30°" FLAG MASK

Note that the field name, ABCFLG, is the name of a byte ¢ontaining a
flag Lkit. The field ABCFLGM can be used as a mask byte in a test under
mask instruction (TM) to test the condition of the flag. Mask names are
of the form,

XXXFFFM

where XXXFFF is the name of the dummy section field to which the mask is
applied. For more information on dummy section usage, see "Dummy
Sections" above.

The dummy section is, of course, only a description of information;
it does not supply anything more than the format of the information it
describes. Symbolic addresses that point to areas of storage described
by dummy sections are named like this:

CHBXXX

where the characters XXX are the same as the last three characters of
the dumrmy section name. For example,

DATA DC V (CHBABC)

is an address constant pointing to an area of storage organized as
described by the dummy section CHAABC.

Remember, CHAXXX says what the information looks 1like; CHBXXX says
where +the information is located. The DSECT can only be used for
nontransient system control tlocks. Symbols generated by macro instruc-
tions always begin with CHD. For examrle,

CHD103 MNOTE 3, *ERROR'

might ke found in a macro definition.

SECONDARY ENTRY POINTS

Resident modules with more than one entry point are designed sc that
their base register always points to the primary entry point, even if
control of the modules has been transferred to secondary point coding to
set up the module's base register to point to the primary entry point.
Sometimes its done like this:

BASE EQU 15

ENTRY 1 USING *, BASE
L]
L J
L]

ENTRY2 BASR BASE, 0
USING *,BASE
L BASE, ADCON
USING ENTRY1,BASE
*
[]
®

ADCON DC A (ENTRY1)

24

where ENTRY2, the secondary entry point, establishes its own addressabi-
lity and sets up BASE with the address of ENTRY1 (ADCON must be within
4096 bytes of BASE). If we don't do this, and try to use an address
"above"™ the secondary entry point, that address can't be reached; this
is why ADCON is "below" ENTRY2. Although we could have assumed that
register BASE contained +the address of the secondary entry point and
eliminated the BASR instruction at the secondary entry roint this
wouldn't allow us to proceed sequentially from the instruction immedi-
ately preceeding the BASR instruction. The secondary entry gcint,
ENTRY2, coded this way, will operate proprerly if control is transferred
to it, or if control passes to it sequentially; that is, withcut a
branch.

SUPERVISOR LINKAGE CONVENTICNS

Resident programs link to subroutines Ly wusing a V-type address
constant (V-con) or an A-type address constant and an EXTRN statement.
Startup will resolve all sywbolic references among resident programs,
and supply the correct values for the address constants. Resident
programs never use R-type address constants (they dJdo not contain
prototype control sections). One resident program transfers control to
another by a branch-and-store (BASR) instructicn. Any understanding
between the calling and the called programs concerning the contents of
the general registers is arbitrary and derends on the particular
programs involved. The calling program must know what register the
called program is using as a base register. To transfer control, the
calling program loads the address of the called program's entry point
into the called program's base register, like this,

L BASE ,=V (ENTRYPCINT)
Then the calling program branches to that entry point,

BASR 14,BASE
At the other end of +the 1line, the called program exrects its base
register to contain the address of its entry points. The called rrogram
usually begins like this:

USING * ,BASE

to tell the assembler that register EASE will contain the address of the
called program's entry point when control is transferred.

GETTING RESIDENT WORKING SPACE

We do not assemble working space into resident programs for twc
reasons: it is inefficient to assenmkle space that way not be used into
a program; it would require the resident program toc schedule the use cf
that space if the program were to be simultaneously executed by multiple
processing units. Resident programs use four wodules to oktain wcrking
space for their execution. These routines are supervisor core alloca-
tion (CEALO1), supervisor core release (CEALO2), user allccaticn
{CEANB) , and user core release (CEALOL4). User core is allocated frcm
one pool and supervisor core from another kut the supervisor pool mray be
replenished from the core released by user core release. The surerviscr
core allocation routine satisfies requests for resident working space
such as contrxol blocks like the generalized queue entry (GUE) and the
task status index (TSI) . The user core allocation routine satisfies
requests for storage for extended task status indexes (XTSI) and fcr
nonresident program pages.

Section 2: Resident Programs 25

The supervisor core allocation subroutine is a special program since
it has private space in the prefixed storage area (PSA), which it |uses
to store the contents of the general registers. It must use this area
since there is no sukroutine that it can call +to get working stgace.
Programs that call the supervisor core allocation subroutine must save
four registers (0, 1, 14, and 15) before transferring control. They
can't do this without working sgace, though, so four words in the
prefixed area (PSASCU) are set aside for programs calling the supervisor
core allocation sukroutine. This 1lets a called rrogram immediately
become a calling program without 1losing the contents of any of the
general registers that were supplied to it. Since a program calling
supervisor core allocation must use registers 0, 1, 14, and 15 to
transfer control (and parameters), it would lose the original contents
of these registers if it had no place to save them. A typical use of
the surervisor core allocation subroutine might lcok like this:

SUBR USING *,15 REGISTER 15 CCNTAINS BASE
CCPY CHAPSA GET THE DSECT
USING CHAPSA,O0 PSA CSECT NEEDS NO BASE
CSECT REESTABLISH CSECT
STM 14,1,PSASCU SAVE REGS 0, 1, 14, and 15 IN PSA
LA 0,128 REQUEST 128 BYTES
SR 1,1 CPTIONS ALL ZERO
L 15,ADCON POINTER TO SUPVR CORE ALLOC
BASR 14,15 TRANSFER CONTROL

RTRN LM 14,1, PSASCU RESTORE REGS 14, 15, 0, AND 1
[J
[]
L

ADCON DC V (CEALO1) ADDR SUPVR CORE ALLOC

In this example, when supervisor core allocation returns control,
register 1 points to a 128-Lyte area of main storage that can ke used
for any further transient storage needs this program may have. The
supervisor core allocation subroutine will not disturb the register
contents saved by this program in PSASCU since supervisor core alloca-
tion has its own private save area in the PSA (PSACAS).

In order to give this space back to the supervisor core release
module, the program might be coded like this:

DONE STM 14, 1,PSASCU SAVE REGS
L 1,SCAREA ACDRESS OF SPACE WE'RE RETURNING
LA 0,128 GIVE BACK 128 BYTES
L 15,ADCN2 PCINTER TO SUPVR CORE RETRN
BASR 14,15 TRANSFER CONTRCL
RTRN LM 14,1,PSASCU RESTCRE REGS
BR 14 RETURN TO ORIGINAL CALLER
ADCNZ2 DC V (CEALOZ2) ADDR SUPVR CCRE RELEASE

This will return for reallocation the 128 bytes obtained in the previous
example.

PROGRAMMING CONVENTION COMMENTS

There is no requirement for resident gprograms to use particular
registers as base registers, return registers, or parameter registers;
however, almost all resident programs use these registers,

register 0 -- parameter register

register 1 -- parameter register

register 14 -- return address of calling program
register 15 -- entry point of program being called

26

Because of these register assignments, most programs being called Ltegin
with,

USING *,15
and end with,
BR 14
or the equivalent.
A number of resident programs, such as SVC processing routines,
return control to a location pointed to by a V-type address constant

instead of branching to the address contained in register 14. For
example,

THRU L 14,ADCN3 GET RETURN ADDRESS
BR 14 TRANSFFR CONTROCL
ADCN3 DC V (CEAHND) ALDR SVC Q PROC RETURN

is the way that a SVC processing routine can transfer contrcl Fkack tc
the supervisor call gqueue processor. This is done because most SVC
processors require two common functions to ke performed and this rorticn
of the SVC queue processor provides them with the functions.

Section 2: Resident Programs 27

SECTION 3: NONRESIDENT PROGRAMS

Nonresident, or virtual storage, rrograms are programs that ogerate
with the address translation unit turned on; they do not permanently
reside in main storage. There are two kinds of wvirtual storage
programs: privileged and nonprivileged. For a conceptual understanding
of virtual storage, you should read System/360 Concepts and Facilities.

VIRTUAL MACHINE STRUCTURE

A virtual machine is a one level store achieved through the wuse of
the address translator. A virtual machine rumning in the problem state
is analogous to, though not identical with, one computer being emulated
by another. A virtual machine has storage and an instruction set. Just
as System/360 subdivides its instruction set intoc two states, supervisor
and problem, a virtual machine has a rrivileged and a ncnprivileged
supervisor call set.

The resident supervisor is responsible for scheduling and allocating
the computing system's resources to satisfy the collective demands
placed upon these resources by virtual machines. The resident supervi-
sor does this by parceling processing unit time, rain storage space, and
data channel time to the virtual machines it is surporting.

A wvirtual machine has a large virtual storage whose size is
essentially independent of the physical main storage availakle to the
resident supervisor. Virtual storage is thought of as being organized
into pages of 4096 bytes which are further collected into segments cf
256 pages. Depending on the type of address translator installed on the
IBM 2067 processing unit, virtual storage can consist of a maximum cf 16
segments (16,777,216 bytes) or 4096 segments (4,294,967,296 bytes).

A virtual machine appears to ke like any other machine to a user.
Its implementation, however, 1is different; it 1is implemented with
programming as Wwell as hard-wired cowponents. By "juggling" the
system's resources, the resident supervisor can sugport a numker of
virtual machines at the same time. Each of these machines appears to be
independent of the others. BAs we discuss virtual machines, we generally
will +talk about a single one for simplicity of discussion; what we say
about a single virtual machine applies to all. The fact that there may
be many virtual machines supported at the same time by the resident
supervisor - although it may cause problems of contention for resources
- does not affect the logical appearance of any of the virtual machines.

VIRTUAL PRCGRAM STATUS WORD

Each virtual machine has 16 general-purrose registers and four
floating—-point registers. The status of a virtual machine is described
by its virtual program status word (VPSW), which is shown in Figure 2.

INTERRUPT STORAGE AREA

Virtual machines can be interrugpted with a virtuwal, or task,
interrupt. When this occurs, the inforration comprising the current
VPSW 1is stored in a predetermined area of virtual storage; a new VPSHW,
obtained from another location in that area, becomes the current VPSW
(it is not apparent to the task that this 1is done by supervisor
progranming) . The area, called the interrupt storage area (ISA) is

28

analogous to the prefixed storage area (PSA) in the system's real main
storage. The interrupt storage area is bytes 0 through 4095 of wvirtual
storage. There are six different virtual, or task, interrupts: pro-
gram, supervisor call, external, asynchroncus I/0, task-timer, and
synchronous I/0. The occurrence of four of these interrupts is
controlled by the task mask in the VPSW, analogous to the system mask in
the PSW. If the mask bit corresponding to a given interrurt tyre is 0,
or if the interrupt storage area is locked, interrupts for that type
will be "stacked,"” i.e., saved by the resident supervisor, until the
mask bit is set to 1.

Each virtual machine has an instruction set consisting of all
System/360 problem state instructions and a nuwmber o¢f supervisor call
instructions. The supervisor call instructions are further divided into
SVCs that can be issued only by privileged programs, SVCs that can ke
issued only by nonprivileged programs, and SVCs that can be issued by
privileged or nonprivileged programs depending on the authority code of
the programmer. The privileged SVCs are analogous to System/360
supervisor state instructions. Each of these SVCs will be described in
detail later.

0|1 2 3|4|5[617]0 112 3|14|5]6|710 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

4 NU X|A|T I ILC CcC DOV} EU |SF INTERRUPT CODE

0 1 2 34 56 7 01 2 3 4 56 7 01 2 3 4 5 6 7 01 2 3 45 6 7
INSTRUCTION ADDRESS

Legend

P=Privilege. (0) privileged or (1) nonprivileged
NU=Not used

The next four bits are the task mask and are interpreted:
X=External interrupts

A= Asynchronous interrupts

T=Timer interrupts

|=Synchronous interrupts

In all coses, zero indicates interrupts disallowed and one indicates
interrupts allowed

ILC = Instruction length code

CC=Condition code

FO=Fixed point overflow mask

DO=Decimal overflow mask

EU=Exponential overflow mask

SF=Loss of significance mask

In each of the: above four bits, one pemits an interrupt on the
occurrance of the condition and zero inhibits the interrupt.

Figure 2. Virtual Program Status Word

The current VPSW includes the address of +the instruction fcllowing
the last instruction executed grior to the interrupt. While the
interrupt is being serviced or is waiting tc be serviced, this address
is significant in that it points to the instruction at which executicn
is to be resumed. Cnce execution is resumed, the current VPSW continues

Section 3: Nonresident Prograr:s 23

to point to the same dinstruction; it is not incremented as each
instruction is executed and, therefore, loses its significance.

LINKAGE CONVENTIONS

The purpose of a linkage convention is to standardize the method cf
transferring information and control from one rrogram (the calling
program) to another (the called program) . Standardization elirinates
redundant register usage and allows the use of system macro instructions
for the generation of program linkages. Any linkage conventicn is a
compromise between generality and efficiency - the most general linkage
convention is not the most efficient, and vice versa. Therefcre,
TSS/360 wuses a number of linkage ccnventicns designed to fit a variety
of situations while attempting toc keep the conventions as similar as
possible.

TSS/360 1linkage conventions require the calling prograw to surrly a
save area for use by the called program. A save area 1is an area cf
virtual storage, accessible to the called program, in which it can save
the contents of general-purpose registers, if necessary. Also, a save
area contains forward and backward address pointers to other save areas,
forming @ chain. If one program calls another, and the second grogram
calls a third, the address pointers relate the respective save areas.
Thus, if you know one save area is located, you can find the others.
The format used in TSS/360 is shown in Figure 3.

The four basic 1linkage conventions followed by TSS/360 programs
residing in virtual storage are summarized in Figure 4. Note that tyre
I has two variations; this yields five distinct linkage conventions;
these are the only 1linkage conventions in use among virtual storage
program in TSS/360. All TSS/360 programs are constructed to receive or
transfer control, using one of these linkage tyres. If you wish to add
or modify TSS/360 programs you must use these linkage conventions.

In general, TSS/360 system rrograms use macro instructions for
generating program linkages. You should take care, therefore, not to
confuse a linkage-producing macro instruction with the program linkage
itself. It is preferakle to wuse a macro instruction to generate a
program linkage. Some macro instructions generate more than one type of
program linkage; for example, GETMAIN can generate either a type-I or a
type-II linkage.

The called program frequently does not know which linkage type was
used to transfer control to it; generally, it does not need to know.
There are exceptions; we shall cover them later. The linkage type must
be known by the calling programs, since it is the calling prcgranm that
supplies the linkage instructions, save area, and proper register
contents.

TYPE-I LINKAGE

Type-I linkage is used for transfer of control and information
between two programs cf the same privilege. A nongprivileged rrogram may
never use type-I 1linkage to «call a privileged program; a privileged
program may never use type-I linkage to call a nonrrivileged rrogranm.
Type—-I Linkage involves these conventions:

1. Use of the standard save area.

2. Use of specific registers for designated functions.

3. Use of the branch-and-store instruction for the transfer of contrcl
from the calling program to the called.

4. Preservation of register integrity.

30

T T
CHASAV |DSECT| FORMAT OF STANDARD 19-WCRD SAVE AREA

T 1
I I
| I
| | DS | OF ALIGN ON WORD BOUNDARY |
I | | |
| SAVLEN |DS | 1F LENGTH OF SAVE AREA AND APPENDAGES IN BYTES |
I | | |
| SAVBPT |DS | 1F¥ BACKWARD PCINTER. ALDRESS CF SAVE AREA, IF ANY, |
| * | | USED BY CALLING ROUTINE |
| I | I
| SAVFPT |DS |1F FORWARD POINTER. ALLCRESS CF SAVE AREA, IF ANY, |
| * | | SUPPLIED BY USER CF THIS AREA TO PROGRAMS IT CALLS |
I I | |
|SAVR14 |DS | 1F USED BY CALLED PROGRAM TO SAVE GER 14 |

| | |
| SAVR15 |DS | 1F USE CALLED PROGRAM TC SAVE GPR15 |
I | | |
SAVRO	DS	1F USED BY CAILED PROGRAM TO SAVE GER 0
I		
SAVR1	DS	1F USED BY CALLED PROGRAM TO SAVE GPR 1
l		
SAVR2	DS	1F USED BY CALLED PROGRAM TO SAVE GPR 2
{	I I	
{SAVR3	DS	1F USED BY CAILED PROGRAM TO SAVE GFR 3
SAVR4	DS	1F USED BY CALLED PRCGRAM TO SAVE GER U4
I		I
SAVRS5	DS	1F USED BY CALLED PRCGRAM TO SAVE GER 5
I I I		
5AVR6	DS	1F USED BY CALLED PRCGRAM TO SAVE GER 6
I I		
SAVR7	DS	1F USED BY CALLED PROGRAM TC SAVE GPR 7
I I	’ I	
SAVRR®	DS	1F USED BY CAILED PRCGRAM TO SAVE GEFR 8
	I	
SAVRY	DS	1F USED BY CALLED PRCGRAM TC SAVE GPR 9
	I	
SAVR10	DS	1F USED BY CALLED PROGRAM TO SAVE GPR 10
I		
SAVR11	DS	1F USED BY CALLED PRCGRAM TO SAVE GPR 11
I I		
3AVR12	DS	1F USED BY CALLED PRCGRAM TO SAVE GPR 12
I		
SAVPCT	DS	1F R (ENTRY POINT) THIS IS SET BY THE CALLING]
*		PROGRAM REFCRE TRANSFERRING CCNTROL AND
*		POINTS TC THE CONTRCIL SECTION IN WHICH THE
*		ENTRY POINT IS DEFINED
t L 4 - 1		
Notes: I		
1. If a program is called and, in turn, calls another program, it		
rmust, upon receiving control, estaklish its own save area, save		
the address of the calling programs save area in the second wordj		
of its own save area and save the address of its own save area in}		
the third word of the calling program's save area.		
2. TField SAVPCT contains the R-con of the called program's entry]		
point. This R-con may or may not ke an address of a PSECT. If]		
the called program was assembled without prototype cecntrcelj		
sections (PSECTs), the control section containing the ENTRY		
statement for the entry point keing used by the calling rrcgranm		
will be the control section rointed to by SAVPCT. See System/360]		
Assempler Language for more details concerning R- and V-type]		
address constants.		
L _ 3
figure 3. Format of Standard Save Area

Section 3: Nonresident Prcgrams 31

Type Transfer Save-~area Parameter Entry-Point Return Save-Area PSECT
Control Format Registers Address in Address in Address in Address in
via (maximum) Register * Register Register Register **

I (normal) BASR Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
i} SVC 121 Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
(ENTER)
M/l BASR or Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
SvC 121
(ENTER)
1 SVC 254 Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
(LVPSW)
v BASR None GPR 0-6 GPR 15 GPR 14 None GPR 13
(restricted)
b Also used for return code, if any.

** Very often, but not always, the PSECT and the save-area address are the same.

Figure 4. Vvirtuwal Programr Linkage Conventions

Use of the Save Area

You will €find it helpful to refer +to Figure 3 for +the following
discussion. Whenever a program uses type-I linkage to call ancther
program, the calling program must surply a save area for wuse by the
called program. Prior to transferring control to the called rrograrm,
the calling program puts certain information, if applicable, into the
save area. The calling program is required to rreset some fields of the
save area; it may preset others. The first word of the save area
(SAVLEN) must contain the length, in bytes, of the save area (mwinimumr 76
bytes) and any appendages to it. The last, or 19th, word .of +the save
area (SAVPCT) must contain the R-type address constant (R-con) of the
entry point to which the calling prcgam is transferring control.

The R-value is the address of the control section in which the entry
point is defined. It is possible, however, that the called program
doesn't have any prototype control sections (PSECTs). In this case, the
R-con will be the address of the control section containing the ENTRY
statement for the entry point. In addition to naming an entry rcint,
and R-value can use a control-section name or a program—-module name. If
a control-section name is used, the R-value will point to the beginning
of the control section. If a rrogram-module name is used, the R-value
will point to the first prototype control section contained in the
program module. If the module does not have any prototype contrcl
sections, the R-value will roint tc the first nonprototype control
section.

One other field +that nmust be set ky the calling programw, prior to
transferring control to the called prcgram, is the second word (SAVBPT)
of the save-area. This field is an address pointer to a save area used
by the calling program when it was a called rrogram. The calling
program may not be using a save area, though, and this field may contain
Zero. If this field does not contain zerc, the called program nay
assume that it points to the save area being used by the calling
program.

All other fields of the save area way contain anything. The called
program should not assume that fields other than the length field, the
R-con field, and the backward-pointer field contain meaningful
information.

After receiving control, the called program must save the contents of
all the general registers, except register 13, in the save area. The
called program does not need to use the save area. If it does, it must
save the registers in the exact fields designated for those registers.

32

At the time the called rrogram receives control, register 13 will
contain the address of the save area. The other registers are stored in
the save area by using register 13 as a base address. For example, STM
14,12,12, (13) will save all the general registers, except 13, in the

proper locations of the save area rointed to by register 13. If the
called program wishes to use register 13 for its own purposes, it must
save register 13 in the backward pointer of its save area. If the

called program is going to call another program, and is going to’ provide
a save area for that program, it must store register 13 in the second
word of that save area. 1In this instance, register 13 serves as the
backward pointer. Optionally, the user can store register 13 somerlace
else; not in a save area. Rerember, if you save register 13 in a save
area that you make available to another program, say program A, ycu
depend on program A not to write over the save area you're 1letting it
use. If program A is unreliakle, you might want to save register 13 in
an area accessible to your program alone. That precaution will enable
you to restore the registers regardless of what the program you call
does to the save area you are providing.

The called program does not need to save and restore the floating-
point registers. If the contents of the floating-roint registers are to
be preserved, it is the responsibility of the calling program to save
their contents and the contents of its interrurt mask.

Contents of the General Registers

Registers 13, 14, and 15 must be preset by the calling program.
Register 13 must contain the address of the first byte of the save area
that the calling program is providing for the called program. This
address must be on a fullword boundary; i.e., the two low-order bits of
the address must be zero. Register 14 must contain the address to which
control is to be returned by the called program. Register 15 must bLe
set to contain the address of the entry point in the called program to
which control is being transferred.

A number of macro instructions can ke used to generate type-I linkage
to specific programs. Examples of these wmacro instructions are GET,
PUT, OPEN, and CLOSE. Note, in using CALL, you specify the nare of the
program to which you wish to transfer control; in wusing GET, however,
the name of the program +to which control is to be transferred is
supplied by the macro instruction.

The called program always uses register 15 as a return-code register,
if applicable. If a parameter list address is passed in register 1,
there must be an understanding between the called and calling programs
as to its content. 1In variable length 1lists, the first word of the
parameter list contains a count of the number of parameters in the list.
Each following entry is the address of a parameter which has been
prestored.

Transfer of Control

A type-I linkage always causes control to be transferred from the
calling program to the called program by using the branch-and-store
register (BASR) instruction. Specifically, the resident supervisor is
never used to assist in transferring control (no interrugt occurs),
since the calling and the called programs have the same privilege.

Register 1 may be preset by the calling prrogram with the address of a
parameter list. Register 1, 13, 14, and 15 are the only registers used
by type-I linkage..

The CALL macro instruction should be used to generate a normal tyre-I
linkage. The use of CALL is discussed in the Assembler User Macro
Instructions.

Section 3: Nonresident Programs 33

EXAMPLE: A program transferring control to another program via a type-I
linkage might use these instructions:

DEPART LR 6,13 MOVE SAVE AREA POINTER
L 13, =A (SAVEREA) LOCATICN OF SPACE FOR STANDARD
* SAVE AREA
USING CHASAV,13 INDICATE FCRMAT
ST 6, SAVBPT POINT TO CALLERS (OUR) SAVE AREA
L 6, =R (SUBR) GET R=CON CF CALLED PROGRAM
ST 6, SAVPCT STCRE R-CCK IN SAVE AREA
L 15, =V (SUER) GET ADDRESS CF ENTRY POINT
L 1,A (PARAMLIST) SET POINTER TO PARAMETER LIST
BASR 14,15 PUT RETURN ADDRESS IN GPR 14
* AND BRANCH

The program receiving control might use these instructions,

XYZ PSECT

ENTRY SUBR MAKE NAME SUBR EXTERNAL
ABC CSECT READONLY
SUBR STM 14,12,12(13) SAVE ALL REGISTERS

to save the general registers and establish definitions for the V-cons
and R-cons of the name SUBR. When its processing is finished, the
program SUBR might do this,

EXIT LM 14,12,12 (13) RESTORE REGISTERS

LA 15,4 SET RETURN CODE 4
BR 14 RETURN TO CALLING PROGRAM

TYPE-I1I LINKAGE

Type-II linkage is used when the calling program is ncnprivileged and
the called program is privileged. All programs designed to be called
via +type-II 1linkage run in the privileged rroblem state. Typre-II
linkage involves these conventions:

1. Use of the standard save area.

2. Standardizing the content and usage of the general rurpose
registers.

3. Standardizing the method of transferring control from the calling
to the called program.

4. Preservation of register integrity.

The Save Area

The standard format 19-word save area is used in type-II linkage (see
Figure 3) . Unlike type-I linkage, the calling program does nct rrovide
this save area. Instead, it is provided by the task monitor, which
translates type-II linkage into what arrears to the called grogram as
modified +type-I 1linkage. The transfer of control from the calling to
the called program is through the supervisor when type-II 1linkage is
used. Coding contained in the task monitcr is, therefore, an integral
part of the linkage process.

Prior to passing control to the called program, the task monitor
initializes a save area for the called rrogram's use. The length field
(SAVLEN) contains a byte count of 76 (decimwal); the backward rcinter
(SAVBPT) is zero. The last word of the save area (SAVPCT) contains the
R-con of the entry point of the called program. All other bytes cof the

34

save area are unpredictable. All rrograms designed to ke called via
type~-II linkage can assume that the save-area pointed to by register 13
is arranged in this way.

Content and Usage of the General Registers

Type-II linkage conventions assign special functions to registers 0,
1, 13, 14, and 15. The calling rrograwm is resronsible for presetting
registers 0, 1, and 15. The calling program loads registers 0 and 1
with parameters or address pointers +to parameter 1lists; it 1loads
register 15 with a code, called an ENTER code. The purpose of the ENTER
code is to identify the program to ke called. When control is returned
to the calling program, the contents of registers 2 through 14 will ke
unchanged. Registers 0 and 1 may be used by the called gprograr fcr
returning results; they do not need to be used, however, and may be
unchanged. If the called program supplies a return code, it must use
register 15; of course, the called program is not required to supply a
return code.

The task monitor saves all the general-purpose and floating-point
registers in its own save area; the task monitor builds a save area for
the called program's use, as described in the previous secticn. The
task monitor sets an address rointer to this save area in register 13.
The contents of registers 0 and 1 are set as received from the calling
program. Register 15 is set to the address in the called program to
which the +task monitor will transfer control. This address is deter-
nined by the task monitor, based on the ENTER code that was in register
15 when control was received by the task monitor. Register 14 is set to
the address in the task monitor to which control is to be transferred by
the called program when it has Lkeen completed. The contents of
registers 2 through 12 are arbitrary; they shculd not be assumed, Ly the
called program, to be significant.

The called program must save the contents of the general registers,
since the task monitor requires the contents of the registers rassed to
the called program to remain unchanged. The called rrogram mrust return
control to the address in register 14. The called programr mway rut a
return code in register 15; it way put results in registers 0 and 1.
Registers 0, 1, and 15 will be rassed back tc the calling progranm as
they are received from the called prcgram when it returns to the task
monitor.

Transfer of Control

The calling program transfers control tc the called prograr Ly
issuing this instruction, SVC 121.

An SVC 121 is also generated by issuing the mracro instruction ENTER.
SVC 121 passes control through the task mwonitor to the called rrcgran.
Most of the time ENTER is used as an inner wmwacro instructicn. For
example, the macro instruction GETMAIN generates an ENTER if the rrcgram
in which GETMAIN is issued has Lkeen declared by the programrer to be
nonprivileged (DCLASS USER) . All prcgrams that transfer control via SVC
121 must adhere to type-II linkage conventions.

EXAMPLE: Assume you want to get 76 tytes of virtual storage, pcssikly
for use as a save area; you might ccde it 1like this:

SR 1,1 SET OPTIONS: NONPRIVILEGED, VARIABLE, BYTE
LA 1,76 BYTE COUNT 76

LA 15,48 ENTER CODE 48 -- GETMAIN (BYTE)

svC 121 TRANSFER CONTROL

Section 3: Nonresident Programs 35

Control will be returned to the instruction following the SVC after
GETMAIN has been completed. If ycu had wanted to use the macro
instruction GETMAIN, you could have written, GETMAIN R,IV=76 which would
have generated equivalent instructions.

TYPE-IM/II LINKAGE

Tyre-IM/II* linkage applies only to called rgrograms that can ke
called via both type-I and type-II. Type-II called programs are always
privileged programs. The calling rrogram, however, may be privileged,
in which case a modified type-I linkage is used (with both registers 0
and 1 usable as parameter registers); or the calling program may be
nonprivileged, in which case type-II is used. Since the task wonitorx
makes all type-II linkages arpear, to the called program, like type-I,
the called program is, generally, not affected by the privilege of the
calling program.

If a privileged program is being called via type-IM/II, it may need
to determine the privilege of the caller. It can do this by comparing
the return address in register 14 to the address of the point in the
task mcnitor to which control is returned when a +type-II 1linkage has
been used; for example,

CL 14,=V (CZCJER) COMPARE GPR 14 TO TYPE-II RETURN
BE NPCLLR IF EQUAL, CALLER IS NCNPRIVILEGED

The call.ng program uses either a tyre-IM or a type-II linkage as
descriked previously; if the called grogram can be called by either of
these linkage types, it is using type-IM/II. The calling program treats
this linkage as described under type-II.

TYPE-III LINKAGE

Type-III linkage is used when the calling program is privileged and
the called program is nonprivileged. BAll programs designed to receive
type-IITI are designed to run in the nonprivileged state. Type-III
linkage involves standardizing

1. The save area

2. The content and usage of the general-purpose registers

3. The method of transferring control from calling to called program

The Save Area

Type-IITI linkage requires the standard format 19-word save area;
however, the save area is not supplied by the calling program. It is
supplied by the leave-privilege subroutine. The calling program calls
the leave-privilege subroutine, which sugpplies and initializes a save
area for use by the called program (see Figure 3). The leave-privilege
subroutine establishes a 19-word save area which is not read- cor
write-protected; the nonprivileged called program can access it. The
leave-privilege sukroutine sets the first word (SAVLEN) equal tc 76.
The last word of the save-area (SAVPCT) is loaded with the R-con of the
called program's entry point. The calling prrograr sugplies this R-con

*The wuse of M with type-I linkage indicates that register 1 may also be
used as a parameter register - in additicn to register 0. Register 1
may contain a parameter or a pointer to a parameter list.

36

to the leave-privilege subroutine which inserts it into the save area.
The remaining 17 words are left unchanged.

Content and Usage of General-Purpose Registers

Tyre-III 1linkage standardizes the use of registers 0, 1, 13, 14, and
15; the contents of the other registers are arbitrary. The contents of
the other registers will be returned, intact, to the calling rrograrm.
The leave-privilege subroutine will not pass to the called program the
original contents of registers 2 through 12. Registers 0 and 1 are used
for parameters or addresses of parameter lists. These registers are
passed to the called program as received by the leave-privilege
subroutine from the calling program. The leave-privilege subroutine
loads register 13 with a pointer to the save area it 1is surrlying fcr
the called program. It loads register 15 with the address of the entry
point in the called program to which it will transfer control. Then it
loads register 14 with the address of an SVC 120 (RSPRV) instruction,
which 1is in the part of the interrurt storage area (ISA) that
nonprivileged programs can read and write.

Transfer of Control

Control is transferred from the calling program to the leave-
privilege subroutine with the standard type-1I 1linkage. Control is
transferred from the leave-privilege subroutine to the called program by
an SVC 254 (LVPSW). The use of tyre-III linkage always results in an
SVC interrupt.

EXAMPLE: Within a privileged program, if you want to call a nonprivi-
leged subroutine, you might write:

L 13,=A (SAVEAREA) GET ADDRESS CF SAVE AREA FOR LVPRV
L A,=R (CZCILE) R-CCN OF LEAVF-PRIVILEGE SUBROUTINE
ST 14,72 (13) PUT R-CON IN 19TH WORD OF SAVE AREA
LA 1, PARAMTRS PARAMETER LIST INTC GPR 1
L 15,=V (CZCJILE) ENTRY PCINT OF LEAVE-PRIVILEGE
* SUBRCUTINE
BASR 14,15 TRANSFER TO LEAVE-PRIVILEGE SUBR
PARAMTRS DC A (ADCONS) ECINTER TO V- AND R-CONS
DC A (PARAM1) PCINTER TO PARAMETER 1
DC A (PARAM2) ECINTER TC PARAMETER 2
ADCONS DC V (CALLED) ENTRY POINT OF CALLED ROUTINE
DC R (CALLED) R-CCN CF ENTRY PCINT
PARAM1 DC F'P1' PARAMETER 1
PARAM2 DC F'P2" PARAMETER 2

The leave-privilege subroutine will get srace to set up a save area
for use by the called program. It will load parameters one and two into
general registers 0 and 1. It will set ur registers 13, 14, and 15, as
descriked previously, and transfer control to the called prograr via an
SVC 254 (LVPSW) .

When the called program is completed, it might return like this:

LA O,RESULT1 RETURK CF RESULTS
LA 1,RESULT2 TC CALLING FRCGRAM
BR 14 RETURN TO CALLER

General register 14 points to an SVC 120 (RSPRV) which will cause the
restore-privilege routine to be entered. The restore-privilege routine
will restore the calling routine's original register contents, without
disturbing registers 15 (the return code register), 0, and 1 (the result
registers).

Section 3: DNonresident EFrograms 37

TYPE-IV (RESTRICTED) LINKAGE CONVENTICNS

Type-IV linkage is used by TSS/360 rrograms under restricted circumr—
stances for the sake of 1linkage efficiency. Type-IV is much more
restricted general linkage than types I, II, and III. Type-IV 1linkage
is found principally in the coding of the language processors.

Type-IV 1linkage may be used between two rrograms if, and cnly if,
these conditions are met:

1. Both the called and the calling programs use the save prototyge
control section (PSECT) .

2. The values of address constants required for the linkage have
already been supplied by the dynamic loader.

3. The called program is not designed to accept type-I, -II, or -III
linkage at the same entry point to be used for type-IV.

4. Both the called and and the calling programs have the privileges.
Tyre-IV 1linkage conventions standardize the use of the general
registers and the method of transferring control from the calling to the

called program. No provision for a standard save area is included in
this convention.

Use of the General Registers

Registers 0 through 5 are wused by type-IV linkage as parameter
registers or as address pointers to rarameter 1lists. These registers
may be used by the calling program to supply information to the called
program, or by the called program to return information to the calling
program. In general, the calling program must not assume that the
contents of any of these registers will be returned intact by the called
program. It is the responsibility of the calling program to load the
address of the common PSECT into register 13 before transferring control
to the ralled program. The calling program must set, in register 15,
the address of the entry point to which it will +transfer control; the
address to which control is to be returned is set in register 14. The
called program uses register 15 as a return code register, if applic-
able. The contents of registers 6 and 7 are irmaterial; the called
program should not make assurprtions akout the contents of these
registers. Registers 6 and 7 need nct be saved by the called program.

The contents of registers 8 through 12 must be saved by the called
program if the called program changes themn. The calling program may
establish any of registers 8 through 12 as common registers; the calling
program may do this only if it has not been called via type-IV linkage.
A common register is a register whose function is wunderstood simrilarly
by the calling and the called programs. If the function performed by a
common register, such as pointing to a control block, is required Lky the
called program, the called program may assume the contents of the common
register can be used, as mutually understood between the calling and the
called programs. The function of common registers must remain constant
in all programs called, in turn, by the called program; their functicns
must be returned intact to the calling program. The designation of
common registers and the nature of their implied contents is not part cf
this convention; the nature of comrmon registers is as mutually under-
stood ketween the calling and the called rrogrars.

Transfer of Control

Control is transferred from the calling to the called grogram Ly
using the instruction

38

BASR 14,15
An interrupt must never take place because of a type-IV linkage.

EXAMPLE: Three macro instructions have been defined to assist your use
of type-IV linkage: INVOKE, STORE, and RESUME. 1In order to emrhasize
the linkage coding itself, we will not use these macro instructions in
this example. To transfer control using type-IV 1linkage, you might
write:

LM 0,5,PARAMS LOAD PARAMETERS INTC GPR 0-5
L 15,=A (ENTPOINT) ENTRY ECINT
BASR 14,15 TRANSFER CONTROL

The called program need, at wmost, save register 8 through 12 in any
manner it chooses. It must ensure that the contents of these registers
are returned intact to the calling prograw. The return wight be coded:

M 8,12,SCRATCH RESTORE REGISTERS FCR CALLER
LA 15,RETCOD RETURN CODE
BR 14 RETURN

LINKAGE CONVENTION COMMENTS

In this discussion, we'll exclude type-IV linkage, which is found
principally in the IBM-supplied aprlication programs: Asserbler, FOR-
TRAN, and Linkage Editor. Type-IV linkage is used to minimize the
overhead associated with program 1linkage by caritalizing on certain
situations that occur in those programs.

We can look at program linkages in two ways: the calling program is
the activator; it organizes the 1linkage information and transfers
control. The called program has a more passive role; it receives
control and assumes that the 1linkage inforration has been organized
according to the rules. For some linkage types, a program is inserted
between the calling and the called programs; this program perforns some
of the duties normally associated with the caller. In type-II 1linkage,
the task monitor's ENTER routine is interrosed tketween the calling and
the called programs; in type-III, the LVPRV sukroutine 1is between the
calling and called programs.

From the viewpoint of the called rrogram, most callers look the sare.
Type-I 1linkage doesn't use register 0; the other linkage types may.
This is the principal difference from the called rrogram®s viewrcint.
The called program may return the contents of register 0 to the caller
when type-I is used; for the others, the contents of register 0, if not
meaningful, can be ignored. Because of this similarity of aprearance tc
the called program, many called rrograms can be written in much the same
way. For instance, the SAVE macro instruction can ke used to save the
contents of the registers in the standard save area supplied by the
calling program, and the RETURN macro instruction can be used to restore
the registers, load a return ccde, and return control to the caller.
The macro instructions SAVE and RETURN, therefore, apply noct only tc
type-I 1linkage, with which they are most often associated, but alsc to
types IM, II, IM/II, and III.

FENCE STRADDLERS

There are a number of programs in TSS/360 that have no Fkuilt-in
privileges; these programs assume the privilege of the calling program.
Because these programs have no privileges, they are neither true
privileged nor true nonprivileged rrograms; they are "on the fence," so
to speak. We call them fence straddlers.

Section 3: ©Nonresident Programs 39

Fence straddlers must be constructed very carefully. If a nonprivi-
leged program is using a fence straddler and the straddler is inter-:
rupted, it is quite possible that a rrivileged rrogram will use the
straddler during the period of interruption. The fence straddler must,
therefore, be reenterable. This reenterability arplies within the task.
Programs may be reentered between tasks or within a task. The use of a
prototype control section (PSECT) enables different tasks to use the
same read-only control section. Within a task, however, a program is
generally made up of one nonprototype control section (which way ke
shared with other tasks), and one prototype control section (which is
never shared with other tasks).

Interruptable service routines, to be reenterable within a task, use
multiple save areas and dynamically allocated virtual storage (via
GETMAIN) .

Fence straddlers can use a number of techniques to prevent destruc-
tion of data if they are interrupted and reentered. Some straddlers do
not have a PSECT or, if they have one, never modify it. Other
straddlers require the calling program to supply working storage; still
others use GETMAIN to obtain working storage.

There are times when fence straddlers become calling programs. They
muast know their current privilege status so they can use the correct
linkage type. There is one set way to determine privilege status; that
is to check the privileged bit in the VPSW. The status depends on the
function a fence straddler is rerforring. Parameters can be supplied by
the «calling program to tell +the straddler what privilege it has.
Sometimes the fence straddler can determine the privilege of the calling
program by using information supplied by the calling program, such as
the data control block (DCB).

Fence straddlers are called either type-I or type-IM linkage. Since
the straddler assumes the privilege of the caller, there is nc change in
the privilege status. Thus, no interrugt 1is caused by calling a
straddler and no linkage-assisting program is required.

SYSTEM PROGRAMMER AUTHORITY CODES

A fprogrammer becomes known to TSS/360 as a system programrexr when he
is joined to the system by the systenr manager or one of the systen
administrators. The JOIN command contains an authority code which ray
have the values U (user), P (system rrogrammer), or C (privileged system
programmer) . When a user logs on, information is taken f£rom the user
table specified in the JOIN comrand processor and inserted into the
user's task status index and interrurt storage area. The SVC queue
processor controls what programs are allowed to issue privileged SVCs;
it uses the information LOGCN stores in the task status index (TSIFH)
for this purpose. The dynamic loader and program checkout syster use
information stored by LOGON in the interrurt stcrage area (ISAUTH) to
determine if the task may perform certain privileged operations.

Privileged SVCs

The SVC queue processor controls the execution of SVCs 128 through
255. System prograrmers (P or O) may issue all the resident supervisor
SVCs (128-255) . Any program operating in the privileged-prcgran state
(VPSW p-bit =0) -- even if being run by a user-programmer —— may 1issue
all the privileged SVCs.

Program Checkout System

The program checkout sub-system (FCS) is not, in general, arrlicatle
to system programs. The RUN comrand always transfers control in the

40

nonprivilege state and cannot be used to transfer to a privileged
program. PCS uses the user save area cf the task wmwcnitor and cannct,
therefore, be used to set oxr disrlay registers or VPSWs in use by
privileged programs. Nevertheless, PCS can be used ky privileged systen
programmers to modify (commands AT and SET) privileged, public control
sections; this is the only way that privileged, public control sections
can be changed from a terminal. (See the discussion of PCS in the
section on serviceability aids.)

Dynamic Loader

Every task has a task dictionary (ICY) which contains, in addition to
the PMDs, the hash tables used by the dynamic loader to process symkolic
definitions (DEFs) and references (REFs). The hash table is split into
three parts: privileged system, nonprivileged system, and user syrmkols.
(See Figure 5.) When the loader encounters a REF in a control section
with the attribute of PRVLGD, it searches the privileged systemr hash
table; if the attribute of the control section is nonprivileged SYSTEM,
the nonprivileged system hash table is searched; if the attribute of the
control section indicates that it is a user's, then the user hash takle
is searched. One exception to this rule 1is that case in which the
user's authority code 1is P or O. 1In this case the loader ignores the
user hash table and searches the two system tables. Table 1 sumrarizes
the actions of the loader in processing the REFs and DEFs.

Notice that +the loader erases the attributes of PUBLIC, READCNLY,
SYSTEM, and PRVLGD from any module 1loaded from any library for a
programmer with authority code O. The same attributes are erased fromr
any module loaded from JOBLIB or USERLIB for a programmer with authority
code P. If a programmer with authority code P 1loads a module from
SYSLIB, only the PUBLIC and READCNLY attributes are erased.

Remember, though, the 1loader does not load initial virtual memcry
(IVM) ; you will always get a public, read/write protected copy of IVPk.
The 1loader's action in assigning storage keys to contrcl sections is
governed by the attributes of those sections. (See Table 1 and Figure
6.)

— 1
LINK TC FIRST PMD GRCUP |

L
I i
| HASH TABLE LENGTH/DIVISOR (L) |

L
t -
r————1 ADDRESS CF SYSTEM HASH TABLE |
| k 9
r +] ADDRESS OF USER HASH TABLE |
| L >} -4
| SYSTEM | PRIVILEGED SYSTEM BASH TABLE |
[HASH | (PREFIXES CZ AND CHR) |
| TABLE | |
| | -
| | NONPRIVILECEL SYSTEM HASH TABLE |
| | (PREFEXES OTHFR THAN CZ OR CHB) |
L >4 |
USER | ALL USER SYMROILS |
HASH | |
TABLE | I
L 1

Figure 5. Format of Three—-Part Hash Takle

Section 3: Nonresident Programs 41

Table 1. Effect of Authority Code in Dynarmic Loader Processing

ISAUTH | If section Search If hash If section And Erase these | Consider Put valid
set fo: | containing this hash table yields containing attributes of attributes in | definitions definitions
reference is: | table to no definition, | definition section definition starting with in this
resolve search this is found in containing section : these characters | hash table:
reference: | library first: this library : definition are: invalid :
U nonsystem USER* JOBLIB JOB or USER any s, P SYS USER
U nonsystem USER* JOBLIB SYSLIB not S or P none SYS USER
u nonsystem USER* JOBLIB SYSLIB S none CZ or CHB SYSTEM**
U nonsystem USER* JOBLIB sysLis P none not CZ or CHB | SYSTEM**
u system SYSTEM SYSLIB SYsLIB not S or P none SYS USER
u system SYSTEM SYSLI8 SYsLiB S none CZ or CHB SYSTEM
U system SYSTEM SYSLIB SYSLIB P none not CZ or CHB | SYSTEM
P any SYSTEM JOBLIB JOB or USER any Pb,RO,S,P | CZ or CHB SYSTEM
P any SYSTEM JOBLIB SYSLIB any Pb,RO not CZ or CHB | SYSTEM
[e] any SYSTEM JOBLIB any any Pb,RO,S,P | none SYSTEM
Legend

PUBLIC control section attribute
READONLY control section attribute

SYSTEM control section attribute

U = User authority code Pb
PRVLGD control section attribute RO

S System programmer authority code
(o] Privileged system programmer
authority code

T wn

Notes
* Symbols starting with SYS are always defined in the system hash table; nonsystem programs are not pemmiited to define SYS
symbols. Any program can reference SYS symbols; the louder always looks for SYS symbols in the system hash table.

** A user causing a system program to be loaded will only be able to use the definitions supplied by a program that begins
with SYS. These two cases will result in the transmission of o diagnostic message if the REF doesn't begin with SYS
indicating an undefined symbol, even though the program supplying the proper definitions has had it's PMD hashed into
the system hash table.

PRIVILEGED PROGRAMS

Privileged programs are virtual rrograms recognized by having their
virtual program status word (VPSW) privilege bit (bit 0) set to O,
analogous to the problem bit (bit 15) in the real PSW. Privileged
programs differ fror nonprivileged user progrars in two principal ways:
they operate with a PSW protection key of zero and they ray issue most
supervisor call instructions. Privileged programs can access all
virtual storage in their own virtual machine; they cannot access private
virtual storage in other virtual machines.

Privileged programs exist to fprovide services to nonprivileged
programs. Privileged service routines that can be called by users are
"connected" +to the task monitor thrcugh a table, called the FNTER table
(see ENTER) ; other privileged service routines are closed sucrrcutines
used only by privileged callers.

170 DEVICE ADDRESSING

Generally, each I/0 device appears to have its own data channel. The
initiation of a virtual I/0 operation does not require the use of the
interrupt storage area in the way a real I/0 oreraticn requires the use
of the prefixed storage area tc start an I/C operation. Virtual channel
programs are constructed using I/C request control block (ICRCB) and
channel command words that are similar to real LCWs (see discussicn cf
IOCAL) . All 1I/C operations in a virtual machine needn't use IORCB

L2

channel command sequences, though. Some I/0O operations such as Vitual
Access Method (VAM) operations are pexrformed Ly using two special
supervisor call instructions which take advantage of the of the
characteristics of the address translator (see decriptions of PGCUT and
SETXP) .

r T T T 1
			Resultant Segment
{ i	Assignment		
			And Storage Key
Class of TSS/360} CSECT Types	t T 1		
Program Module	For Modules	Attributes	Public
' 1 = 1 1 {			
iSYSTEM	REENTERABLE	CSECT	C
PRIVILEGED	EXECUTABLE	SYSTEM, PRVLGD	
I	CODE	FXL, PUB, RDC :	
e.g., VAM OPEN	DATA, ADCONS,	PSECT -	C
	etc. } S¥S, FRVLGD,]	
		FXL	
b : : 1 1			
SYSTEM FENCE	REENTERABLE	CSECT	B (USER READ
SITTER	EXECUTABLE	SYS, PUB CNLY)	-

| CCDE _ | RDO, FXL I |
le-g., VAM GET | NONMODIFIABLE | PSECT { - |B (USER READ |
| |DATA, etc. |SYS, RCO,FXL | :ONLY) |
1 4 . 1 i |
r T T T H !
SYSTEM	REENTERABLE	CSECT	B (USER READ/	
NONPRIVILEGED {EXECUTABLE 1SYS, PUR	CNLY)	-		
	CODE	RDC, FXL		
le.g., ASSEMBLER	DATA, ADCONS,	PSECT		A (USER READ
LPC	etc.	SYS, FXL	-	NRITE)
'r 1 1 1 i _4				
2A=Key 1 B=Key 2 C=Key 2 with fetch protection				
L 3

Figure 6. Relationship of TSS/360 Program Modules, CSECT, CSECT Attri-
butes, Sharability, and Storage Key Assignment

Because most I/0 devices attached to the system have wore than one
path to storage, these devices have multiple real addresses. The
supervisor's pathfinding program has the responsibility of selecting the
address to be used to access an I/0 device. To distinguish an I/O
device from the path (i.e., address) used to access it, each device
attached to the system is given a unique number, called the symbolic
device address. The assignment of symbolic device numbers is unique at
each installation.

In addition to the symbolic device address, some I/0 operaticns
require the use of a relative page number. The relative rage numker is
a 16-rkit quantity allowing a device to have 65,536 pages. For certain
I/0 operations (for example PGCUT), each device is organized into rages;
since each page 1is 4096 Dbytes, the position of a given page on all
devices of the same type can be determined. Thus, page 136 begins at
the same c¢ylinder, +track, and record address for all IBM 2311s. 1In
other words, given a relative page nuwrber and a device type, it is
always possible tc figure out where, on that device, the page can be
found.

The system symbolic device address and the relative page number,
together, make up the external page address; they uniquely identify the
location of a page on external storage.

Figure 7 shows the significance of various combinations of PSW and
storage keys and the programs to which they may be assigned. Those
within the heavy line designate nonrrivileged user key combinations.
The other combinations are available cnly to privileged system programs.

Section 3: Nonresident Programs 43

Storage rprotect key 2F is the same as key 2 but with fetch protecticn
added.

PSwW Storage

Key Key 1 2 2F
. Read Read Privileged
0 Read -Write Write Write execution
. Read Not Nonprivileged
! Read - Write Only 1Jsed execution

Nonprivileged
User

Figure 7. PSW and Storage Protection Keys

STORAGE PROTECTION

Although the virtual progran status word doesn't contain a PSW key,
storage protection is in effect for virtual programs. The resident
supervisor assigns storage keys to virtual programs when it creates
external page table entries for them; it sets keys in the rain storage
pages it allocates (see ADDPG and ADSPG) . 2All main storage pages are
assigned a storage protection key; Table 2 illustrates these
assignments.

Table 2. Main Storage Page Key Assignments

r T
|Type of Page Key|Fetch Protection Bit
1

T 1

| |
k +-——1 i
| Nonprivileged read/write | 11| off i
|Nonprivileged read-only I 1] off |
|Privileged i 21 on |
Engaged in paging operation	3 1 off	
Storage obtained from supervisor	4	off
core allocation		
Resident supervisor	5	on]
L L i J

The ability of a processing unit or a data channel to access storage
is controlied by the protection key contained in storage and the key
used by the processing unit (PSW) or data channel (CAW) . The resident
supervisor assigns keys to programs and channel programs before starting
them; these assignments are shown in Takle 3.

Table 3. Processing Unit and Data Channel Key Assignments

Category Key

Processing Unit Programs
Nonprivileged
Privileged
Resident supervisor

Data Channel Programs
Nonprivileged 1I/0
Privileged 1I/0
Paging I/C
IORCB I/0
Sense Data 1I/C

D LT S ———

o e e e e e e e . e e e e]
EEWN = [=Ne R

S S S UI SpUISE |

=
=

TIMEKEEFPING

There are a number of different cells used by TSS/360 to store
information about elapsed time, estimated time, and related data. Data
concerning calendexr time is kert in several places.

The prefixed storage area of each processing unit includes a
double-word, called PSAETM, which contains the nuwmker of 13-wicrosecond
"ticks" that the processor's interval timer has been running since
PSAETM was last cleared to zero (see RSTTINM). Every time an interrurt
occurs, and every time a virtual task is restarted, the elapsed tirme
since the timer was previously loaded is added to the contents of this
cell.

The system table contains two double-words that record time for the
entire system. The calendar date (year, month, day), wmeasured in
microseconds from March 1, 1900 to midnight of the previous day, is
stored in a doukleword called SYSYMD. March 1, 1900 is chosen as the
starting date since, from that date, every year divisible by four is a
leap year (366 days); century years are not leap years. A dcuble word
called SYSTOD contains the time of day wmeasured in microseconds from
midnight. B8y adding SYSYMD, SYSTOD, and PSAETM we can obtain a current
value in microseconds from March 1, 1900.

Information concerning the elarsed time for individual tasks is kept
in each task's extended task status index (XTSI). The total numwker cf
microseconds of time quanta a task has received since LOGCN is stored in
a word called XTSATI. A word called XTSCTI contains the number cf
microseconds of time quanta a task has received since it's last
task-timer interrupt. The number of microseconds of time quanta that
must elapse before the next task-timer interrupt is stored in a worxd
called XTSUTI (see SETTU).

Appendix B describes a timwe conversion module that may be used Ly
svstem programmers.

INITIAL VIRTUAL STORAGE

The task monitor and a nurber of programs (both privileged and
nonprivileged) are collected into what is called initial wvirtual
storage, (IVS). Startup establishes initial wvirtual storage Lty ccn-
structing a standard set of segwent and rage tables to be used by newly
created virtual machines. Initial virtual storage programs are never
dynamically loaded; we think of them as being permanently resident in
virtual storage. Cf course, IVS prograwms are paged in and out of main

storage. All other privileged programs are Lrought into virtual
storage, as required, by the dynaric loader (which must be part of IVS).
Virtual storage is never "empty;" it always contains at least. the

programs that make up the IVS.

PRIVILEGED SUPERVISCR CALL INSTRUCTICNS

If a nonrrivileged program keing run by a user-programmer attempts to
issue a privileged supervisor call, the resident supervisor will create
a task program-interrupt (code hex 50 or hex 21 -- privileged opera-
ticn) . When the task monitor receives the interrupt, it calls DIAGNC.
Generally, supervisor calls that can disrupt the operation of TSS/360
are privileged. Supervisor calls that allow access to private informa-
tion are also privileged.

Usually, the operation requested by a privileged SVC is a synchronous

one which is conpleted by the resident supervisor before it returns
control +to the task which issued the SVC. The principal exception to

Section 3: Nonresident Programs U5

this is IQCAL, an asynchronous SVC, which is processed concurrently with
the issuing task. For simplicity of explanation, privileged sugervisor
calls are divided into nine groups (see Table 4). (Note: task program
interrupts, which may result from improrer use of these macrc instruc-
tions, can be found in Appendix D.)

Table 4. Privileged Supervisor Calls (SVC 128-255) (Part 1 of 2)

r 1
|MAINTENANCE OF TASK STATUS INDEX |
k 1 T 1
SVC 253	Create task status index	CRTSI
SVC 206)Special create task status index	SCRTSI	
SVC 252	Delete task status index	DLTST
SVC 235	Set up task status index field	SETUP
SVC 246	Extract task status index field	XTRCT
SVC 214	Set up extended task status index field	SETXTS
SVC 213	Extract extended task status index field	XTRXTS
SVC 230	Change task priority	CHAP
SVC 209	Extract accumulated CPU time	XTIRTM
i i L i		
[§ 1		
MAINTENANCE OF SYSTEM TABLE		
1 3		
r T T 1		
SVC 216	Set system table field	SETSYS]
SVC 215	Extract system table field	XTRSYS
SVC 212	Reset system time	RSTTIM
SVC 216	Allow task initiation	ALLTII
SVC 216	Set year, month, and day	SETYMC
SVC 216	Set time of day	SETTOD
SVC 201	Reset Drum Interlock	RDI

1 L L

r
| TASK SYNCHRONIZATION/TASK TIMER MAINTENANCE
L

L} T

|SVC 251]|Set user timer

[|SVC 217|Set real time interval

|SVC 218|Read elapsed real time

| SVC 243 |Force time slice end

|SVC 248|Wait for an interrupt

|SVC 229|Wait for terminal I/0 interrupt
L 4

SETTU
SETTR
REDTIM
TSEND
AWAIT
TWAIT

e e e e

r
|VIRTUAL STCRAGE ALLCCATION
1

1 T

|svC 250]add virtual storage pages

}SVC 236|Add shared virtual storage rages

| SVC 249|Delete virtual storage pages

| SVC 238|Connect segment to shared page takle

|SVC 237|Disconnect shared page table from segment
|SVC 247|List changed virtual stoxage rages

| SVC 241|Check protection class

L A

ADSPG
DELPG
CNSEG
DSSEG
Lscap
CKCLS

R ——

r
| DEVICE MANAGEMENT
i

r]

|SVC 234|Add device to task symbolic device list

|SVC 233|Remove device from task symkolic device list
|SVC 222|Purge I/0 operations

| SVC 221|Reset device suppression flag

|SVC 211|Set I/0 device path

|SVC 210]|Set asynchronous entry

L L

ADDEV
RMDEV
PURGE
RESET
SPATH

|
4
1
|
i |
1
I
|
|
|
|
I
1
I
1
ADDPG |
|
|
|
|
I
|
N |
1
|
i]
1
|
|
I
|
|
SETAE |
4

T ——

(Continued)

46

Takle 4. Privileged Supervisor Calls (SVC 128-255) (Part 2 of 2)

r 1
|1/0 OPERATIONS |
I T T 1
[SVC 231{I/C call | IOCAL |
SVC 242	Write virtual storage pages to external storage	PGCUT
SVC 244	Set external page table entries	SETXP
SVC 245	Move page table entries	MCVXP
{ 1 L

k 1
| STATUS SWITCHING |
t T T {
| SVC 254 |Load virtual program status word | LVPSW |
]] L .'
b

| INTERTASK COMMUNICATICN |
L 4
L T v 1
|SVC 240]|Send message to another task | VSEND |
1 1 A

F 1
| ERROR RECOVERY and RECCNFIGURATION |
L 4
r T T L]
|SVC 254})Indicate supervisor detected error | ERROR |
|SVC 228|Indicate nonresident-prograr detected error | SYSER |
L L L E]

CRTSI -— Create Task Status Index (R)

The CRTSI allocates storage for a TSI and initializes it for a new

task if the system limit on TSIs has not been reached.

— T ¥ 1
| Name |Cperation|Operand i
t + t i
| [symbol] JCRTSI | None]
L 4 i 1]

EXECUTION: A new task status index is created if the system TSI 1limit
has not been reached. The task identification is returned to the SVC
issuing program in register 1; if the system TSI limit has been reached,

register 1 is set to 0.
The TSI created is initialized like this:

1. XTSI page count set to 1 (TSINX)

2. XTSI pointer set to system skeleton (TSIXXIL)
3. All task-interrupt mask bits are set to 1
4, The conversational bit is set on (ISICV)

5. The XTSI swapped out bit is set on (TSIIXT)

6. The TSI internal priority is set to the highest possikle second-

level priority (TSIUPR)

7. The task identification number in the system table
incremented by 1 and is placed in the TSI as the task

tion (TSITID)
EXAMPLE: If you want to create a TSI, you might write:
XYZ CRTSI
This would generate,

XYZ SvC 253

(SYSTID) is
identifica-

Jdote: This SVC wmust be used in conjunction with VSEND. See IBM
System/360 Time Sharing System: Task Monitor (Form Y28-2041) for a
description of the action of the external interrupt processors (XIP).

Section 3: Nonresident Programs 47

SCRTSI -- Special Create Task Status Index (R)

The SCRTSI macro instruction allocates storage for and initializes a
TSI the same as does CRTSI, kut does so regardless of the nurker cf TSIs
presently in existence.

T 1
Name |Operation|jOperand |
4 [

[e ey e oy

T T
{symbol] |SCRTSI | None
L L

EXECUTION: A new task status index is created regardless of the numker
of TSIs currently in existence. The task identification is returmned to
the SVC issuing program in register 1; if the system TSI limit has been
reached, it is incremented until the new TSI will not exceed the lirit.
After the TSI has been created, the system limit value is restored.

The TSI created is initialized the same as in the CRTSI macro
instruction discussed above.

EXAMPLE: If you want to create a TSI, you might write:
ABC SCRTSI
This would generate,

ABC SvC 206

DLTSI -- Delete Task Status Index (R)

The DLTSI macro instruction deletes the specified TSI and removes its
associated task from the system.

1]
Name |Cperation]|Orerand
{ 4.

o e e e
e e ki e

T T
[symbel] |DLTSY | None
L L

EXECUTICN: The task issuing the SVC is eliminated from the system. 2All
nonshared pages of main storage and raging storage used ky the task are
returned for reallocation. A1l storage required for table entries
pertaining to the task in the resident supervisor is released.

EXAMPLE: If vyour program is comgleted and you wish to release all the
resources it is using -- logically eliminating the +task -- you wight
write:

RJG DLTSI
This would generate,
RJIG SvVC 252
Note: This SVC is the last ster in a sequence required for removing a

task. Other steps include closing data sets and releasing external
storage.

SETUP —-— Set Up Task Status Index Field (R)

The SETUP macro instruction permits you to alter cr set the ccntents
of a selected field in the TSI. <

48

L) T

{ 1
| Name |Cperation|Cperand |
1 4] "
L) T | R
| | | code value [
| [symbol] |SETUP || £field { } , register - } |
! ! | as)) |

field
specifies the field you want to set or alter and may be specified
as one of these codes:

USERID - set the user. identification field
SYSIN - set the input data set location field
SYSCUT - set the output data set location field
BSN - set the batch sequence number field

CONV - set the intertask message flag

ITMFLG - set the intertask message flag

XPR - set the external priority flag

AUTH - set the privilege field

If you choose to write the instruction as register notation you must
first select the proper value from the following list and place it in
register 15 in the low-order byte.

Field Value
USERID 1
SYSIN 3
SYSQouT 4
BSN 5
CONV 10
ITMFLG 12
XPR 13
AUTH 14
register

designates the even-odd register pair in which you have placed the
information you want put into the specified TSI field. The
register pair must be specified in terms of the odd register and
may not be an external symbol or an expression containing an
external symbol. If you wish to place this information in
registers 12 and 13 you would write:

SETUP USERID,DATA
where:

DATA EQU 13
or you could write:
SETUP (15) , (1)

where register 15 contained the value one and registers 1 and 0
contained the appropriate values.

EXECUTION: From one to eight bytes of registers 0 and 1 are inserted
into the task status index field srecified by the low-order byte of
register 15. The number of bytes to be inserted depends on the field
specified.

Field Code Implied length (bytes)
8

USERID 1

SYSIN 3 2
SYSOUT 4 2
BSN 5 1

Section 3: Nonresident Programs 49

CCNV 10
ITMFLG 12
XPR 13
AUTH 14

-—) -t

EXAMPLE: Assume that registers 12 and 13 contain an eight-character
user identification. The macro instruction

TEST SETUP USERID, (13)

causes this code to be generated

TEST DS 0H
LA 15,1
LR 0,13-1
LR 1,13
sSvC 235
XTRCT -—- Extract Task Status Index Field (R)

The XTRCT macro instruction permits you to extract and exawine one of
a selected number of fields from your TSI.

T

r T

| Name |Operation|Operand ‘
¥ t + 1
] | | code |
| [symkol] | XTRCT 1| £ield - |
| | I (L)) |
L i AL 4
field

designates the TSI field you want to extract and examine and may be
any one of these codes

USERID - extract the user ID field

PRICRITY - extract the priority field

SYSIN - extract the input data set symkolic device address
SYSCUT - extract the output data set sywbolic device address
BSN - extract the katch sequence number field

SOPRIV - operator privilege

SPRIV - system programmer, nonprivileged

SRPRIV - system programmer, privileged

UPRIV - user

CONV - extract the conversaticnal task flag

TASKID - extract the task ID field

XPR - extract the external priority flag

ITMFLG - extract the intertask message flag

AUTH - extract the privilege field

PENDIO - extract the pending I/C orperations count field

If you choose to write register notation, select the proper value
from the following list and place it in register 15 kefore issuing the
macro instruction.

Code Vi

USERID
PRIORITY
SYSIN
SYSCUT
BSN
SOPRIV
SPPRIV
SRPRIV
UPRIV
CONV

&
[
=}
o]

OVWONAAUNEWN=

—

50

TASKID 11

ITMFLG 12
XPR 13
AUTH 14
PENDIO 15

EXECUTION: The task status index field indicated by the code contained
in register 15 is extracted and returned +to the program issuing the
XTRCT. The extracted field is returned right-justified in registers 0
and 1. The number of kytes returned is:

Registexr 15 TSI Field Inglied Length (bytes)

1 TSIUID 8

2 TSIUPR 1

3 TSISIN 2

4 TSISOT 2

5 TSIBSN 1

6 TSIIOP (TSIFU4) 1 (kit 0)
7 TSIIPP (TSIF4) 1 (bit 1)
8 TSIISP (TSIFW4) 1 (kit 2)
9 TSIUP (TSIFY4) 1 (bit 3)
10 TSICV (TSIF2) 1 (bit 5)
11 TSITID 2
12 TSIMBE (TSIFWY) 1 (bit 6)
13 TSIXPR 2
14 TSIFY 1

15 TSICIO 15 1

The smallest field size extracted is one byte. If you are interested
in a particular bit within a byte, ycu must mask out the reraining Lkits.

EXAMPLE: Suppose you want to find out if your task is being run in the
conversational mode; you might write:

EXAMP XTRCT CONV

This would generate,

EXAMP DS 0H
LA 15,10
svC 246
SETXTS -- Set Up Extended Task Status Index Field (R)

The SETXTS macro instruction erables you to set the estimated run
time of your task in the XTSI.

T L]

Name |Cperation|Operand
{ {
]

[e T— .

|
b e s bt e o

T

| ESTIM

[symbol] | SETXTS || £ield-) (15)
A 1

field
specifies the XTSI field to be set by this macro instruction and
may ke coded: ESTIM - indicates that the estimated run time field
of the XTSI is to be set.

If you select the register notation, by design or by default,
register 15 must contain the value 1.

EXECUTION: The value contained in registers 0 and 1 when SETXTS was

issued is stored in the extended task status index field indicated by
the code contained in register 15. Cnly this code is defined,

Section 3: Nonresident Programs 51

Code Inplied Length (kbytes)
1 4

EXAMPLE: Suppose you wished to set the estimated run time field of the
extended task status index. You could write:

L 0,F'runtime"’
NAME SETXTS ESTIM

This would be produced,

NAME DS OH
LA 15,1
SvC 214
XTRXTS —-- Extract Extended Task Status Index Field (R)

The XTRXTS macro instruction enables you to extract and examine omne
of a selected set of XTSI fields.

2
)
=
]

T T
fOperation|Operand
[

T

UTIME ;.
field-<ATIME
as J

A ——
R

[symbol] | XTRXTS
|

L

b s e e ki s

field

designates the XTSI field you want to extract and examine and may
ke specified by one of these codes:

UTIME - extract the user time field
ATIME - extract the accumulated time field

If you choose to write register notation, select +the proper value
from the list below and place it in register 15 before issuing the macro
instruction

Code Value
UTIME 1
ATIME 2

EXECUTION: Register 0 is 1loaded with information extracted from the
issuing task's extended task status index. The field extracted depends
on the code contained in register 15. These codes are acceptable:

Code Implied Length (bytes)
1 4
2 1)

EXAMPLE: Suppose you want to find out how much time your task had used
since LOGON; you might write:

NAME XTRXTS ATIME

This will generate,

NAME DS OH
LA 15,2
SvC 213
CHAP —-- Change Task Priority (R)

The CHAP macro instruction lets you change the priority of your task.

52

r T T 1
|Name |Operation|Operand |
F + + :
| | value |
| [symbol] |CHAP |{ prior =} (Q) |
L] i []
prior

designates the new priority you want assigned to your task and wmay
be any value from 0 to 255. If you choose to write register
notation, place the new priority in register 0 kefore issuing the
macro instruction.

EXECUTION: The low-order byte of register 0 is stored in the task
status index's priority field. The TSI is removed from the TSI list and
restored to a position in the list corresponding to its new priority.
If the priority supplied in register 0 is equal to 0, the system default
priority is used.

EXAMPLE: Suppose you want to give your task maximwum priority; you might
write:
NEW CHAP 1

This would generate,

NEW DS oH
LA 0,1
svC 230
XTRTM —-- Extract Accumulated CPU Time (nonstandard)

The XTRTM macro instruction enables you to extract and examine the
total CPU time used by your task.

T T
Name |Operation|}Operand
[1

[~ e e
o e el e

T L]
(symbol] |XTRTM | None
i 1

EXECUTICN: The total accumulated CPU time of the issuing task is
computed and returned to the task in general register 1. The address of
the task's XTSI is passed to the SVC processor. The accumulated time is
computed by subtracting the current timer value from the last time slice
value and adding the accumulated time value to the difference.

EXAMPLE: If you want to extract your task's accumulated time, you might
write:

TIME XTRTM
This would generate:

TIME SvC 209

SETSYS —— Set System Table Field (R)

The SETSYS macro instruction allows you to set or alter one of a
selected set of system table fields.

Section 3: Nonresident Programs 53

r A T H
|Name |Operation|Operand |
F t 4 ¥
| | | TOD |
| [symbol] | SETSYS || £field-)YMD]
| | | TASKINIT |
| | | as |
L i 1 J
field

designates the system table field you wish to set or alter and may
be written:

TOD - set time of day field
YMD - set year, month, day field
TASKINIT - set task initiation status field

If you choose to write register notation, you must select the proper
value from the list below and place it in register 15 before you issue
the macro instruction.

Code Value
TOD 1
YMD 2
TASKINIT 3

EXECUTION: The contents of registers 0 and 1 are placed in the system
table field corresponding to the code contained in register 15. The
number of bytes to Le inserted into the system table depends on the
code:

Code Implied Length (bytes)
1 8
2 8
3 1

EXAMPLE: Suppose you wish to inhibit +the initiation of any further
tasks. This is controlled by a flag byte in the system table called
SYSTI; the appropriate bit mask (see dummy section wusage) is called
SYSTIM. The task initiation bit harpens to be bit 2 of the SYSTI byte.
SETSYS replaces the entire flag byte, so an XTRSYS should be used to
extract the flag byte. Then you might write:

DOUG SETSYS TASKINIT
This would generate
DOUG DS OH

LA 15,3
svCc 216

XTRSYS -- Extract System Table Field (R)

The XTRSYS macro instruction enakles you to extract and examine one
of a selected set of system table fields.

|

] k] T

| Name |Operation|Operand |
t { t -1
| | I TOD |
{ [symbol] | XTRSYS || £field-)YMD |
| 1 | TASKINIT |
i | | as) |
L 1 L 4

wu
E—

field
designates the system table field you wish to extract and examine
and must be one of these codes:

TOD - extract the time of day field
YMD - extract the year, month, day field
TASKINIT - extract the task initiation status field

If you choose to write register notation, you must select the proper
value from the list below and place it in register 15 before issuing the
macro instruction.

Code Value
TOD 1
YMD 2
TASKINIT 3

EXECUTION: A number of bytes are extracted from the system takble and
placed 1in registers zero and one. The number of bytes and the field to
be extracted is determined by the code contained in register 15.
Register 15 must contain one of these codes:

Code Implied Length (bytes)
1 8

2 8

3 1

EXAMPLE: Suppose you want to learn the time of day (in microseconds
from midnight to issuance of RSTTIN) .

You might write:
NAME XTRSYS TOD

The expansion would produce,

NAME LA 15,1
svC 215
RSTTIM —- Reset System Time (nonstandaxd)

The RSTTIM macro instruction enakles you to update the time of day
field, in the system table, to reflect additional elapsed time since the
last setting of that field.

T L)
Name |Operation|Operand
4 4

o — e -
(YR S

T §
[symbol] |RSTTIM | None
L L

EXECUTION: The supervisor adds the elapsed time cell (PSAETM) to the
system table field SYSTOD and then sets the elapsed time cells (PSAETM)
in each prefixed storage area to zero. If the resulting time of day
value exceeds 24 hours, one is added to the year-month-day cell (SYSYMD)
in the system table and a value equivalent to 24 hours is subtracted
from the time-of-day clock.

EXAMPLE: Suppose you want to reset all the elarsed time cells of all
processing units in the system, possibly as a restart procedure. You
might write:

BLAST RSTTIM

Section 3: Nonresident Programs 55

This would produce,

BLAST SvC 212

ALLTI -- Allow Task Initiation (R)

The AILTI macro instruction enakles you to allow or disallow task
initiation for your task.

r) T L)
| Name |Operation|Operand |
t i i {
| | | (OFF |
| [symbol] |ALLTI |action- |
| | | ON I
L | - J
action

indicates whether you wish task initiation allowed or disallcwed
and must be one of these codes:

ON - task interrupts are to ke enabled
OFF - task interrupts are to be disabled

EXECUTION: The ALLTI macro instruction examines the operand and
generates either

SR 1,1 if it is OFF or
LA 1,1 if it is ON
after generating SR 0,0 in either case. AIITI then invokes SETSYS as an
inner macro instruction, passing it the above code in registers 0 and 1
and TASKINIT as parameters.
EXAMPLE: If you want to enable task initiation you should write:

STOPME ALLTI OFF
This would generate:

STOPME SR 0,0

SR 1,1
SETSYS TOD

SETYMD —-- Set Year, Month, and Day (nonstandard)

The SETYMD macro instruction enakles you to set the year, month, and
day field of the system table.

T T
Name |Operation|Operand
i 1

P ey ——

1] [{
[symbol] {SETYMD | None
1 1

[p—"

EXECUTION: The SETYMD macro instruction invokes SETSYS as an inner
macro instruction and passes it YMD as a parameter. You nmust greload
registers 0 and 1 with the year, month, and day.

SETTOD ——- Set Time of Day (nonstandard)

The SETTOD macro instruction enables you to set the time of day field
in the system taktle.

56

T T
Name |Operation|Operand
L [

R N

[e oy

L] T
[symbol] | SETTOD | None
L L

EXECUTION: The SETTOD macro instruction is used to set the time of day
by issuing the SETSYS inner macro and specifying the TOD field. You
must preload registers 0 and 1 with the time of day.

RDI —-- Reset Drum Interlock (nonstandard)

The RDI macro instruction enables you to reset the task/task drum
interlock byte contained in the system table.

])
Name |Operation|Operand
4 4

e
e

|]
[symkcl] |RDI | None
L 1

EXECUTION: The task ID of the caller is matched against that of the
drum (TT) interlock and causes the PSW condition code (contained in the
XTSI) to be set as follows:

0 (the drum interlock is cleared)

1 (the drum interlock was not cleared because the task ID of the
issuing program did not match that of the TT interlock)

2 (the drum interlock was not found set)

The use of the RDI macro instruction results in the generation of SVC
201.

SETTU -— Set User Timer (R)

The SETTU macro instruction enables you to set the user timer field
in the XTSI thereby limiting your task's execution time.

r T T 1
| Name |Operation|Operand i
k t { 1
| |[{Value;] |
| ([symkol} | SETTU |Ltime—- M |
L 1 1 d
time

srecifies the time duration, expressed in milliseconds, which you
want placed in the user timer field. It may be any value from 0 to
55,364,812,

EXECUTION: The quantity contained in register 1 1is converted to a
multiple of 13-microsecond "ticks" and stored in the extended task
status index field called user timer value (XTSUTI).

EXAMPLE: Assume register 5 contains the number of milliseconds to which
you'd like to set the user timer. The macro instruction

NAME SETTU (5)

will produce

NAME DS on
LR 1,5
svC 251

Section 3: Nonresident Programs 57

SETTR -- Set Real Time Interval (ncnstandard)

SETTR enables you to set a time limit, in terms of a real time, o¢n
the execution of your task.

T T
Name |Operation |Operand
1 L

o= e e . =

T 1
[symbol] | SETTR | None
L i

b e iy s

EXECUTION: When the doubleword time-of-day cell in the syster takle
equals or exceeds the time, in wicroseconds, supplied in registers 0 and
1, a task-timer interrupt is generated for the task issuing the SETTR.
If the system 1limit for queuing real time interrurt requests has keen
reached, a condition code of X'10' is returned to the SVC issuing
programe.

EXAMPLE: Suppose you want to receive a task-timer interrupt at three
o'clock (54,000,000,000 microseconds after midnight) . You could write:
TIME DS (1))]
DC FL8EO9'54"
PROC LM 0,1, TIME

NAME SETTR
SETTR will generate:
NAME SvC 217

REDTIM —-- Read Elapsed Real Time (nonstandard)

The REDTIM macro instruction enables you to read the system time in
microseconds.

L) T
Name |Operation|Operand
1 (]

[o e
I L

L] 1
[symbol] |REDTIM | None
L 4

EXECUTION: The year, month, day cell (SYSYMD) in the system takle
(CHASYS) is added to the time-of-day cell (SYSTCD) in the system takle
and to the elapsed-time cell (PSAETM) in the prefixed storage area
giving the current instant in mwicroseconds. The resulting doukle-
precision fixed-point number is returned in registers 0 and 1.
EXAMPLE: Suppose you want to find the date and time. You might write:
NAME REDTIM
This will generate:
NAME SvC 218

TSEND -- Force Time Slice End (R)

The TSEND macro instruction enables you to impose a time slice end on
your task prematurely.

T 1
Name |Cperation|Cperand
1 1.

o e e e sy
el P SR

] 1
[symbol] | TSEND | None
1 4

58

EXECUTION: The current time slice of ‘the task issuing the SVC is
terminated. The task becomes a candidate for -another time slice in the
next operational cycle.

EXAMPLE: Suppose vyou want to cause your current time slice to come to
an end. You might write:

XYZ TSEND
This would generate:

XYZ SvC 243

AWAIT -- Wait for an Interrupt (R)

The AWAIT macro instruction enables you to check for the completicn
of an event and to enter your task into the delay state to await
completion.

T L]
Name | Operation|Operand
(] 4

fon e e e ey
b e b e

L]]
[symbol] |AWAIT | None
L L

EXECUTION: The AWAIT routine checks to see if the SVC was the subject
of an execute (ILC=2) and if the SVC lies on the second halfword of a
fullword (implying an event control block). If both these conditions
are satisfied, the event control block complete bit (bit 1 of the first
byte) is checked. If this bit is on, the event is complete, no waiting
is required, and control is returned to the issuing program. If this
bit is off, a wait is required; the task is put into the- delay state,

EXAMPLE: Suppose you want to place your task in the delay state
(inactive TSI 1l1list) until an I/C operation associated with amn event
control block is completed. You might write:

WAIT EX 0, ECB+2
B SOMEPLACE

ECB DS OF
DC H*'O* SECCND BIT IS CCMPLETE BIT
AWAIT AWAIT MUST BE SUBJECT OF EXECUTE

The AWAIT will generate the SVC 248.

TWAIT —— Wait for Terminal I/0 Interrxupt (R)

The TWAIT macro instruction enables you to check for a response to a
message you have sent and, pending its arrival, to enter the delay
state, which causes any pages for your task to be moved to auxiliary
storage.

L) T
Name |Operation|Operand
4 i

| PSS Wp—

o e e — oy

¥ T
[symbol] |TWAIT | None
4 L

EXECUTION: The SVC must be the subject of an execute instruction and
must occupy the second halfword of a fullword control block called an
event control block (ECB) . The supervisor checks the second bit of the
halfword preceding the supervisor call and interprets this bit as the
event complete bit. If this bit is one, the supervisor returns control
and the SVC has the effect of a NOP (no operation). If the bit is zero,
the supervisor will set the TWAIT flag in the task's TSI to one and put

Section 3: Nonresident Programs 59

the task in the delay state; this will cause time slice end to occur for
the task and cause any pages of the task occupying drum storage to be
moved to paging disk storage. The task will be removed from the delay
state when any task-interrupt -- if the task is enabled -- occurs.

EXAMPLE: Suppose you send a message to some terminal and are waiting a
response. The posting routine associated with the TIOCAL (see IOCAIL)
used +to transmit the message to the terminal is responsible for setting
the event-complete bit of an event control block to one. You have
reached a point in your program requiring completion of the IOCAL
activity; you do not wish to continue until the ICCAL posting routine
has been entered. You might write:

EX 0,TEST+2
B IOCOMPLETE
TEST DS OF ALIGN
DC H'O* ‘POSTING FLAGS
TWAIT

The TWAIT will generate an SVC 229,

ADDPG -- Add Virtual Storage Pages (R)

The ADDPG macro instruction enables you to add virtual storage pages
to your task.

r T T h)
| Name |Operation|Operand |
L 1 4 3
r T ~ 1
| i | value addrx |
| [symbol] |ADDPG || pgcnt- | | »{ Startad- |
: : = M)l © :
| | | ,protcls-codef] |
L L 1 4
pgcnt

indicates the number of virtual storage pages you want added to
your task.

startad
designates the address of the first page you want to add. This
address must be a multiple of 4096.

protcls
srecifies the protection class you want assigned to each halfpage
and may be coded:

A - both halfpages nonprivileged read/write.

AB - first halfpage nonprivileged read/write, second halfpage
nonprivileged read only. .

AC - first halfpage nonprivileged read, second halfpage
privileged.

BA - first halfpage nonprivileged read only, second halfpage
privileged.

B - both halfpages nonprivileged read only.

BC - first halfpage nonprivileged read only, second halfgage
privileged. '

CA - first halfpage privileged, second halfpage ncnprivileged
read/vrite.

CB - first halfpage privileged, second halfpage ncnrrivileged
read only.

C - both halfpages privileged.

60 .

If you choose to write register notation, you should load the actual
page count into register 1 and pack register 0 with the next two
parameters.

The start address must be left aligned and the rrotection class code,
selected from the list below, must be right aligned.

Code Value
A
BA
CA
AB
B
CB
AC
BC
C

LCoNaaEsWwN =

For example you might write:

L 0,STARTAD
SLL 0,8
IC 0,CODE

STARTAD DC XL4'4000°
CODE DC BL1'00000001°

EXECUTION: New page table entries and, if necessary, segment table
entries are constructed, corresponding to the virtual storage address
contained in register 0. The nunber of page table entries to be
constructed is determined by the page count contained in register 1.
The low-order byte of register 0 is used to determine the setting of the
storage keys for all the pages being added.

EXAMPLE: Assume you want to add 100 pages of virtual storage, starting
at location FFFF, with user read-only protection keys. You might code
it this way:

LABEL ADDPG 100,START,B
where START is a page boundary address.

This would generate,

LABEL Ds U:
LA 1,100
A 0, START
(o] 0,=F'5"
SvC 250

ADSPG -- Add Shared Virtual Storage Pages (R)

The ADSPG macro instruction enakles you to add shared pages to your
task's virtual storage.

Section 3: Nonresident Programs 61

r 1 L) B |
| Name |Operation|Operand |
b 1 : 1
| | | addrx value |
| [symbol] |ADSPG l[startad- } ,pgcnt—{ } |
e © |
|] | r»(Sptnbr- value ,protcls—code |
N | |
] | | as |
1 L i J
startad

specifies the virtual storage address at which you want to start
adding shared pages.

pgcnt
indicates the number of shared pages you want to add.

sptnbr
indicates the shared page tatle to which you are adding the shared
pages.

protcls

indicates the protection class you want assigned to each pair of
halfpages. The valid codes are the same as those for ADDPG.

CAUTION: Unlike the ADDPG macro instruction, the two parameters to te
packed into register 15 each occupy a halfword.

EXECUTION: The number contained in bytes two and three of register 15
is used to determine if pages are to be added to an existing shared page
table or if a new shared page table is to be constructed. If bytes two
and three of register 15 are zero, or if there are not enough pages
remaining in the shared page table indicated by bytes two and three, a
new shared page table is constructed. Once the shared page table is
selected or constructed, a number of page table entries corresponding to
the number contained in bytes zero and one of register 0 is added to it.
Storage protection keys are assigned as requested by the code in bytes
zero and one of register 15.

The parameters contained in registers 0, 1, and 15 are returned
intact to the program issuing the SVC unless a new shared page takle had
to be constructed; if that werxe the case, the new shared page takle
number and new starting virtual storage address rerlace the correspond-
ing input parameters.

EXAMPLE: Suppose you want to add two shared pages with key B, starting
at location RJG; assume the shared page table number is five. You might
do it 1like this:

NAME ADSPG RJG,2,5,B

where RJG is a page boundary address.

This would generate,

NAME DS OH
L 15,=F'5%65536"
LA 0,2
o) 15,=F'5%65536"
CHDINNRA RJG,2, (236) INNER MACRO INSTRUCTICN
L 1,=F'RJG" GENERATED INNER MACRO
sve 236 INSTRUCTICN GENFRATED

62

DELPG -- Delete virtual Storage Pages (R)

The DELPG macro instruction enables you to delete pages from your
task's virtual storage.

r T T H
| Name | Operation|Operand |
1 L ' 1
I 1} 1 1
[symbol]	DELPG		
] addrx value		
			startad- pPgcnt-
[))		
L AL L 4
startad

specifies the address of the first virtual storage page you want

deleted.
pgent

specifies the number of contiguous virtual storage pages you want

deleted.

EXECUTION: The contiguous pages, beginning at the address contained in
register 0 and equal to the count in register 1, are deleted from the
issuing task's virtual storage. Main storage and paging storage srpace
in use for the released pages are freed for reallocation. If an entire
segment is deleted, the auxiliary segment takle entry is marked
unassigned, the segment table entrxry is marked not available, and an
indicator is set to represent the deleted segment. If the page table
entries and external page table entries are not in the first XTSI page,
the space they occupied is returned for reallocation. If the auxiliary
segment table entry is marked shared, the entry corresponding to the
segment in the resident shared page index is deleted.

Note: DELPG can be used for deleting both unshared and shared pages.

EXAMPLE: Suppose you want to delete three pages of virtual storage,
starting at ABCXYZ. You might write:

TEST DELPG ABCXYZ,3

This would generate,

TEST DS 0H
LA 1,3
CHDINNRA,ABCXYZ, (249)
LA 0,ABCXYZ INNER MACRO GENERATED
sSvC249 INNER MACRO GENERATED
CNSEG -- Connect Segment to Shared Page Table (R)

The CNSEG macro instruction enables you to connect a new segment to
the shared rage takle.

] T 1 1
| Name | Operation|Operand |
L 1 { 4
r T] 1
{ [symbol] |CNSEG | segnbr-value, sptnbr-value |
| | | |
| I I a) I
L L L 1
segnbr

sprecifies the segment that you want connected to the shared page

table.

Section 3: Nonresident Programs 63

sptnbr
srecifies the number of the shared page takle to which the segment
is to be connected.

If you choose to write register notation, the segment nuwber should
occupy the high order halfword of the register 1 and the SPT number
should occupy the low order halfword.

EXECUTION: The shared page table number contained in the low-order
halfword of register 1 is used to search the task's auxiliary segment
table. If an auxiliary segment table entry is already connected to the
shared page table, its segment nunmber replaces the high-order halfwoxd
of register 1 and control is returned to the SVC-issuing program.

If no auxiliary segment table entry is already connected to the
specified shared page table, the segment table entry indicated &Ly the
high-order halfword of register 1 is set not available; its auxiliary
segment table entrxry is marked assigned and shared and the shared tage
table number in register 1 is inserted into the auxiliary segment table
entry.

EXAMPLE: Suppose you want to connect shared page table number 3 to
segment 12. You might write:

RJIG CNSEG 12,3

This would generate,

RJG DS OH

&§A3 SETA 3+12%65536
L 1,=F"6A3"
svC 238

Shared page table 3 1is connected to segment 12 and the high-order
halfword of register 1 is left unchanged (as 12) to indicate the actual
segment to which the shared page takle was connected.

DSSEG -—- Disconnect Shared Page Table From Segment (R)

The DSSEG macro instruction enakles you to disconnect a shared rage
table from its segment.

r T T |
| Name |Operation|Operand |
L 4 4 .'
1] T 1

| | {value} |
| [symkol] | DSSEG || sptnbr -1 (1) |
[AL L J
sptnbr

specifies the shared page table you want to disconnect.
EXECUTION: The shared page table number in the 1low-order halfword of
register 1 is used to search the auxiliary segment table. If a matching
auxiliary segment table entry is found, it is set not assigned; the
segment takle entry is set not availakle.

EXAMPLE: Suppose you want to remove shared page table number 23 from
the segment to which it is attached. You might write:

ANY DSSEG 23

This would generate,

6u

ANY DS OH

LA 1,23
SvC 237
LSCHP -- List Changed Virtual Storaqe Pages (R)

The LSCHP macro instruction enables you to obtain a listing of
virtual storage pages which have been changed.

T T k) 1
| Name |Operation|Operand |
3 } + , 1
		ddrx value	
[symkol]	LSCHP		startad sFgcnt-
)] ()}	
L A i E |
startad
specifies the virtual storage address of the first page you want
checked.
pgcnt

specifies the number of consecutive pages you want checked; the
maximum number of pages is 16.

EXECUTION: The number of pages specified by register 0 and starting at
the rpage address found in register 1 are checked. The results of this
check are stored in register 0. The condition of a given page, page n,
is found by checking bits 2n - 2 and 2n - 1 in register 0. The bit pair
is interpreted as follows.

Bit Pair Meaning
00 Page in core and changed
01 Page in core and unchanged
10 Page not in core and changed
1 Page not in core and unchanged

EXAMPLE: Suppose you wish +to find out if three pages, keginning at
location XYZ, have keen changed. You might write:

NAME LSCHP XYz,3

The macro expansion would produce,

NAME DS OH
1A 0,3
CHDINNRA XYZ,, (,247)
DS 0H INNER MACRC GENERATED
LS 1,=F*XYZ"* INNER MACRO GENERATED
SvC 247 INNER MACRO GENERATED
CKCLS —- Check Protection Class (R)

The CKCLS macro instruction enables you to check the most restrictive
protection class assigned to a grour of halfpages.

r T k] b
| Name | Operation|Operand |
% = + 4
		addrx value	
[symbol]	CRCLS		startad- hpgcnt-
) ©)	
L L 1 J

Section 3: Nonresident Programs 65

startad
srecifies the virtual storage address of the first halfpage you
want to check.

hpgcnt
specifies the number of consecutive halfpages you want to check.

EXECUTION: A code indicating the most restrictive protection class of
the pages checked is returned in the low-order byte of register O. One
of these codes will ke returned:

Code Protection Class
0 Page unassigned
1 User read/write (least restrictive)
3 User read only
7 User cannot read or write (most restrictive)

Consecutive halfpages starting at the address contained in register 1
and equal to the halfpage count contained in register 0 are checked.

EXAMPLE: Suppose you want to check the protection class of the five
halfpages beginning at RJG. You might write:

CKCLS RJG, 5

This would generate,

DS 0H

LA 0,5

CHDINNRA RJG,, (,241)

LA 1,RJG INNER MACRC GENERATED
svC 241 INNER MACRO GENERATED

ADDEV -- Add Device to Task Symbolic Device List (R)

The ADDEV macro instruction enakles you to add additional I/O devices
to your task. You may have up to 15 devices assigned to your task.

]
Operation|Operand

I L] 1
| Name | |
8 | 1 ¥ |
3 f T |
[| | value |
| [symbol} |ADDEV | | devnbr- |
| | I () |
L L L []
devnbr

specifies the symbolic device number of the I/0O device ycu want
added to your task's symbolic device list (TSDL).

EXECUTICN: The supervisor adds an entry corresponding to the symbolic
device number contained 1in register 0 to the task's symbolic device
list. If the device is already in the task's syrkolic device list, the
count of the number of times the device has keen added is increased by
one; if this count exceeds 15 an errcr is indicated. Before returning,
the supervisor will set the high-order bit of register 0 to one if the
count of the number of times the device has been added exceeds 15.

EXAMPLE: Suppose you want to add syrbolic device 17 to your symbolic
device list. You might write:

ADD ADDEV 17

This wculd generate,

66

ADD DS OH

LA 0,17
SvC 234
RMDEV —-— Remove Device from Task Symkolic Device List (R)

The RMDEV macro instruction enables you to remove an I/C device from
your task's list of available devices.

] R L) 1
| Name |Operation|Operand |
F + : !
		value
[symbol]	RMDEV	devnbr—{
		()]
L |]
devnbr

specifies the symbolic device nurxber of the 1I/0 device you want
removed from your task's symbolic device 1list (TSDL).

EXECUTION: The supervisor reduced the ADDEV count in +the task's
symbolic device list by one. If the count is reduced to =zero, the
device entry is removed from the task's symbolic device 1list.

If the symbolic device number is not found in the task's symbolic device
list, the supervisor sets the high-order bit of register 0 to 1.

EXAMPLE: Suppose you want to remove symbolic device 46 from your

symbolic device list; assuming no other part of your task had also added

device 46, the ADDEV count for device 46 would be one. You might write:
GONE RMDEV 46

This would generate,

GONE DS OH
LA 0,46
SvC 233

PURGE -—- Purge I/0 Operations (R)

The PURGE macro instruction allows you to suppress or to remove any
or all I/0 devices from your task's list of availakle devices.

] L] L] 1
| Name |Operation|Operand |
1 8 'R J
Ll v T 1
| |[gaction—code, Pevnbr—value]ﬂ[i, task- code]
| [symbol] |[PURGE | © -) [
| | | [, taskid-value] {] |
1 L 1 1
action
specifies the purging action you want and wmay be any one of these
codes:
AR - purge all devices immediately
AS - purge all devices but let the active ones quiesce
AL - purge all I/0 requests immediately, leave TSDL alaomne
AD - remove the TSDL
SR - purge the specified device after it quiesces
devnbr

specifies the symbolic device number of the device you want purged.

Section 3: Nonresident Programs 67

task
specifies the comkination of tasks from which you want, the device
purged and you may write:

AT - the purge is for all tasks
ST - the purge is only for
operand

the task specified in the next

taskid
is actual ID of the task for which the purge is to be effective.

EXECUTION: The I/C devices to Le purged are either suppressed or
removed from the task symbolic device 1list (TSDL) of the task or tasks
to which the purge is to apply. If a device is to be allowed to
quiesce, its task symbolic device list entry is merely suppressed, if a
device is to be purged immediately, its task symbolic device list entry
is removed from the task symbclic device list. The TSDLs to be used
depend on whether one or all tasks are to have their I/0 devices purged.

Z€erxro
Cepending on the request, this

General register 0 is returmed to the calling program with kit
containing an error flag, if agplicakle.
bit can have these interpretations:

For one device, one task -- device not assigned to task

For all devices, one task —— no task symbolic device list exists

For all tasks, one or all devices —- devices not assigned to any
task

If a task that does not have the systemr operator privilege issues SVC
222 for all devices and all tasks, a systemr error (SYSERR CCDE RSC
6101*) is generated.

EXAMPLE: Suppose you wish to purge the I/C device assigned sywrkolic
device number 357 for any tasks that might be using it, but you are
willing to wait for the device to quiesce. You might write:

NAME

PURGE SR,357,AT

The macro expansion would produce,

NAME DS 0H
L 0,=CL4"'SS00"*
o} 0,=F*357°
L 1,=CL4*ATOO*
SvC 222
*The zero in this character string is only for illustration; a
hexadecimal zero doesn't have an assigned graphic and must be punched

as 12-0-9-8-1.

RESET -— Reset Device Suppression Flag (R)

The RESET macro instruction allows you to cancel a previous PURGE Ly
resetting a device's surpression flag in the TSDL.

r
Name |
+

k)
Operation|Operand
1

[symkol] |RESET
]

oo s et e e o =

I value
|| devnbr- ‘ALL"
! ©

e e e s e comn <

(=)}
=]

devnbr
specifies the symbolic device address of the device whose flag you
wish reset. 'ALL' indicates all device surpression flags are to ke
reset.

EXECUTION: The supervisor clears the device suppression flag in the
task symbolic device 1list for the symbolic device number contained in
register 0. This has the effect of cancelling a previous PURGE for the
symbolic device.

Before control is returned, an error flag may be set in the
high-order bits of register 0; if this bit is set to one, it means that
the symbolic device is not contained in the task®'s symbolic device list.

EXAMPLE: Suppose you want to allow I/O operation to proceed on symbolic
device 25. You might write:
GO RESET 25

This would generate,

GO DS OH
LA 0,25
SvC 221
SPATH —-- Set I1/0 Device Path (R)

The SPATH macro instruction enables you to set flags indicating units
along a path are partitioned or malfunctioning.

L] T T 1
| Name |Operation| Operand {
F + + {
| | | code |
| [symkol] | SPATH || flag- } |
A :
| | |[,3comp—integer,devad—hexintegerf] 1
| | | W) |
L. L L 4
flgst

specifies the £flag and the setting you desire and must be one of
these codes:

POF - set unit's partitioned flag off (0)
PON set unit's partitioned flag on (1)
SOF set unit's malfunction flag off (0)
SON - set unit's malfunction flag on (1)

1

comp
indicates the component (channel, control unit, device) vyou want
set and may be coded:

- I/0 device only

- Control unit only

Control unit and I/0 device
- Channel only

- Channel and I/C device

NEWN=
[

Section 3: Nonresident Prcgrams 69

6 — Channel and control unit
7 - Channel, control unit, and I/0 device

devad
specifies the actual device address of the path you want set and
must ke a hexadecimal value less than X*2000°'.

EXECUTION: The aprropriate flag in the pathfinder's tables is set on cr
off according to the codes contained in registers 0 and 1 fcr the
device, control wunit, and/or channel rerresented by the actual device
address contained in bits 19-31 of register 1.

EXAMPLE: Suppose you wish to partition device A01 and its control unit.
You might write,

NAME SPATH PON,3,X"A01°"

This would produce,

NAME L 0,=X"40020000"
L 1,=X'00006201"
SvC 211
SETAE -— Set Asynchronous Entry ()

The SETAE macro instruction permits you to process your own asynch-
ronous interruptions by moving the device capable of producing such an
interruption to another task.

2
[
=]
[0}

P Np——

1
Operation|Cperand
4

| i value value
[symbol] | SETAE l[devad{ ,task—{ }J
| ! &) ©

i

el n
ol S |

device
specifies a symbolic device address whose value cannot ke greater
than 2%4-1.

task
specifies a task identification number whose value must be less
than 2%6-1. If task is null, the entry is restored to its neutral
state; otherwise, the entry 1is updated +to point to the task
specified.

EXECUTION: The entry in the asynchrcnous device group table (CHARDT)
corresponding to the symbolic device address is set to point to the task
status index of the task corresponding to the task ID supplied in
register 0. If task is zero, the symbolic device is marked unassigned.
An entry is also placed in the TSDL for the new task.

EXAMPLE: Suppose you want attention interrupts received from device 124
to be processed by the task, with task-identification 233. You might
write:
ESTAB SETAE 124,233
This would generate,
ESTAB DS 0H
LA 1,124

70

1A 0,233
svC 210

IOCAL -- I/Q Call (R)

The IOCAL macro instruction provides for the initiation and execution
of an I/0 operation.

1 T
Name |Operation|Operand
4 1

o v e —
b e ks o

L) T
[symkol] | IOCAL | None
4 L

EXECUTION: An IOCAL macro instruction must always be the subject of an
execute. The supervisor call is assumed to occupy the first halfwocrd cf
a variable-length parameter 1list called an I/0 request conitrol block
(IORCB) . The IORCB supplies the information necessary for the surervi-
sor to perform the requested I/0 oreration.

An IORCB consists of four parts: A fixed part of 10 doublewords; An
optional I/O data kuffer which cannot exceed 225 double words; An
optional page 1list which cannot exceed eight doublewords; A channel
command word (CCW) list. The entire IORCB cannot exceed 240 douklewords
and must be wholly contained within a single page.

When an IOCAL is executed, the supervisor - after some error
checking -- obtains main storage space for the ICRCB and corpies it intc
that space. Based on the options selected by the user and indicated in
the IORCB, the supervisor obtains a path to the requested I/0 device,
translates the virtual CCW addresses to real storage addressesi, brings
any required buffer pages into mrain storage, and starts the I/O
operation. After the I/O operation is comrlete, the supervisor releases
the device path, allows the data buffer pages to be paged out of storage
—-— if necessary —-- and queues a pending task-I/C interrupt for the task
associated with the ICRCB.

When (and if) +the pending interrupt is accepted by the task, the
supervisor copies the IORCB into the task's interrupt storage area
(ISA) . After the IORCR has been copied, the main storage space it
required is released for reallocation and the ICCAL oreraticn is
completed. A task may have more than one ICCAL in operation at one time
and may operate asynchronously with an active IOCAL.

Figure 8 shows the format of the fixed area of the IORCB as it is
viewed prior to issuing an IOCAL. Every ICCAL must have a 20 word fixed
area regardless of the fields used. You may use srace within the IORCEB
itself as a data buffer; you can do this if the data does not exceed 225
doublewords (or whatever space 1is left in the IORCB after the other
items you need are included) . You must include an IORCB data buffer if
you are using a direct access device and if you wish record zero to be
read into the IORCB by the supervisor if a unit check occurs. In this
case, the IORCB data buffer (the first 56 kytes) are used to hold reccrd
ZE€YXO. You may also use data buffers outside the ICORCB; if you do this,
you must include a page list. The page 1list contains one docukleword
entry for each virtual storage buffer rage; you may not have more than
eight rage-list entries. Figure 9 shows the format of a page-list
entry.

Section 3: Nonresident Programs 71

Each page-list entry is associated with a channel command word (CCW)
list entry; the CCW entry tells what operation is to be performed with
the data buffer. A CCW entry does not need to point to a page-list
entry; a page-list pointer of zero is assumed to mean the IORCB Lkuffer
is to be used. You can use any number of CCW entries as long as the
size limits of the IORCB are not exceeded. Figure 10 illustrates the
format of a CCW 1list entry. You always have at least one CCW entry,
since the CCW represents the work you want the supervisor to do.

If the software command chain flag is one (see Figure 11), the
supervisor will continue to reissue start-I/0 instructions at the
current point in the CCW list when a device-end interrupt is received.
This has the effect of making the CCW list appear chained, even though
the path to the I/0 device mway be free for certain periods during the
operation. The most common use of software command chaining is to chain
a seek to its read or write comrmand.

If the IORCB chain flag is 1 (see Figure 8), the supervisor will
change the last CCW entry to a transfer in channel (TIC) command if
another (second) IOCAL for the same device is received before the final
channel-end/device-end interrupt for the first ICRCB is received by the
supervisor. This TIC command will link the CCW lists of the two IORCBs.
The supervisor will also set the rrogram controlled interrupt (PCI) bit
on, in the start CCW of the second IORCB. The receipt of this PCI
signals the completion of activity for the first ICRCB; the surervisor
then enqueues a pending task-I/0 interrupt for that IORCB.

The IORCB received by the task monitor as a result of the task-I/0
interrupt has been changed by the supervisor; it is not identical to the
IORCB originally received by the supervisor. Figure 11 shows the fields
in the fixed area of the IORCB that may ke set by the supervisor.
Figure 12 shows the changes to the CCW list entry.

As part of its interrupt handling logic, the task monitor transfers
control to the posting routine pointed to by the IORCB it receives as a
by-product of the task-I/0 interrurt. This posting routine informs the
program originally issuing the ICCAL that the I/0 operation has been
conpleted.

72

0123456701234567/0123456701234567

IOCAL (SVC 231)

USED BY ACCESS METHODS -- NOT SET OR INTERROGATED BY IOCAL

0123456701234567012345670123456Q

length of IORCB|length of page |relative origin |storage start /O fail- | length of CCW | relative origin [relative origin

in 64-byte units|list in of page list in | protection key |ure count. list in of CCW list in |of starting CCW

(blocks) doublewords doublewords (1 or2) (note 1). doublewords doublewords in doublewords

length of IORCB|relative origin actual /O address to system symbolic device

data buffer in |of IORCB data be used for this not used address must be given if

doublewords Suffer in operation (note 2). actual path not supplied
oublewords

USED BY ACCESS METHODS -- NOT

SET OR INTERROGATED BY IOCAL

V-type address constant of posting routine to be transferred to
by the task monitor when the task-1/O interrupt associated with
this |ORCB occurs

R-type address constant of posting routine (see preceeding
word)

USED BY ACCESS METHODS -- MAY BE SET BY IOCAL

USED BY ACCESS METHODS -- NOT

SET OR INTERROGATED BY IOCAL

MAY BE SET BY IOCAL

USED BY ACCESS METHODS -- NOT SET OR CHECKED BY [OCAL

NOT USED

" f. .
users' options SET BY JOCAL options
sI1Trld H]ul] Tp T e

(note[3) note 4

USED BY IOCAL FOR PERFOI

RMING SENSE OPERATION

012345670123 45670123456701234567

012345670123456701234567012345467

Note 1.

Note 2.

Note 3.

Note 4.

If flag R (note 3) is one, the start |/O instruction is reissued the
number of times specified by this count, or until the start I/O
instruction is successfully initiated.

If flag S (note 3) is one, the |/O address contained in this halfword
is used and the symbolic device address is ignored.

S=specific |/O address; |=ignore device malfunctioning indicator in
pathfinder; R=if start |/O not accepted because device is busy,

reissue start /O (see Note 1.); C=Software command chain;

H=issue halt /O on"device before start /O; U=if unit check occurs,
read direct access device record zero into IORCB data buffer; P=treat PCl
as channel end/device end.

IORCB chaining flag; if another IOCAL is received for this device while
the channel program for this IORCB is running, the last CCW of this list

is TICed to the first CCW of the other IORCB.

8. Format of Fixed Area of

as Set Before IOCAL

Figure

Input/Output Request Control Block

012345670123456701234567

high-order 20 bits of virtual storage address; the flages

0[1234567[01 2345670123 456701 23456701234567
z

set to actual main storage location used for this

segment and page number of virtual buffer page A
(note 1)

UNUSED page -~ before IORCB is returned to task monitor

at task-1/O interrupt time

Note 1.

Figure 9.

Section 3:

A = (paging storage) copy of this page does not need to be used; use any core page and release paged copy

Organization of a Page List Entry

Nonresident Programs 73

0123456701234567(0123456701234567(01234567012345670(123456701234567
CCW Operation |position of page | flags |displacement within CCW flags as 0Os BYTE COUNT
code as in list entry | page buffer or from in S/360
05/360 1,2...8 (note 2){start of 1ORCB buffer | hardware

(note 1) or from start of CCW

list if T'C

Note 1. If this field is 0, the IORCB data buffer is assumed
Note 2. | = do not relocate CCW addresses

Figure 10. Channel Command Word List Entry Before IOCAL is Issued

01234567012 34567012345670123456701234567012345670123456701234567

UNCHANGED
UNCHANGED
set to actual /O address used
UNCHANGED for this operation, or left UNCHANGED
unchanged if user supplied
UNCHANGED
UNCHANGED
condition codes | real main storage address used for IORCB data
UNCHANGED I il clclsls| buffer. 1f no IORCB buffer used set to real
Note 1 address of IORCB itself
UNCHANGED
sense ¢ codes |sense CSW status placed here |[sense failed fg | halt 1/O retry
I1CCSS |if both requested operation and of count UNCHANGED
(Note 2) sense operation fail (Note 3) (Note 4)
flags
UNCHANGED [STPl I HIRINIWIT] xT <[] NOT USED
(Note 5)

CCW FOR PERFORMING SENSE OPERATION ON REQUESTED I/O DEVICE

0123456701234567012345670123456701234567012345670123456701234567

Note 1. If operation came to abnommal end, these condition codes are stored: I=test /O
condition code; C=test channel condition code; S=start /O or halt /O condition
code.

Note 2. If sense operation failed, these condition codes are stored for |/O instructions used
to attempt sense (see note 1).

Note 3. 0=a device other than the one requested has monopclized the control unit; sense
dgta applies to that device.

Note 4. If user requested both a retry of start 1/O and halt [/Os before each start /O,
this field is set equal to the user supplied start /O count,

Note 5. S=CCW specification error; P=no path exists to requested device; I=start /O
failed; H=halt /O failed; R=read record 0 (on direct access error) failed;
N =sense failed; W=CCW addresses are relocated (changed to real addr)
T=[ORCB aborted because previous (pending) IORCE for same task had abnormal
end; x=internal flag for IOCAL; C=interrupt code applies to device other
than one requested monopolizing control unit.

Figure 11. Fixed Area of I/0 Request Control Block as Set bv IOCAL
01234567012345670123456701234567/01234567012345670123456701234567

MAIN STORAGE ADDRESS

UNCHANGED USED FOR OPERATION UNCHANGED

Ffigure 12. Channel Command Word List Entry After Task I/O Interrurt
Occurs Occurs

EXAMPLE: Whenever you use an IOCAL, you should be sure to refer to the

current version of the IORCB. The format of the IORCB is described by a
dummy section in the system copy/macro library. You can get a copy Ly

74

assembling a program with this in it:

COPY CHAIOR

Suppose you want to read 120 bytes from symbolic device 85.

write,

BGN EX
B

TEST ICCAL

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC

ENDFIX DS
BUF DC

CCW CCwW

IOREND DS

READ EQU

0,TEST
AWAY

3H

C*' (TEST-IORENL) /64"

cL2'0’

Cl2l

Clol

C|1I

C*' (CCW-TEST) /8*
c'o*

c*'120/8"

C' (BUF-TEST) /8"

H'O*
H'0"
H'85"
D0’

A (POST)
R (POST)
7F'0"
3F'0°

oD

15D'0*
READ,0,X'20°',120
0D

194

You might

WE DCN'T USE THIS

NC FAGE LIST

WE'RE PRIVILEGED

DEVICE SHOULDN'T EE BUSY
CNLY CNE CCW

RELATIVE ORIGIN CF CCW LIST
START CCW IS FIRST

IORCB BUFFER LENGTH
RELATIVE ORIGIN OF IORCB
BUFFER

NCT GIVING ACTUAL ADDRESS
NOT USED

SYMBCLIC DEVICE ALDRESS

WE WON'T USE THIS

THE ADDRESS CF CUR

POSTING PROGRAM

WE WCN'T USE THIS

WE'LL ELECT "NO" ON THE
CPTICNS

END CF FIXED AREA OF ICRCB
120 BYTES OF BUFFER

END OF IORCB
COMMAND FOR 2540 BCD READ

Notice that the CCW page-list entry and displacement fields are Lkcth
zero; this causes the IORCB buffer to be used and the information to be

read into the

first byte of the

complete, the supervisor will cause a

store the IORCB
(POST) can, if it wishes, move the data out

time.

in the

buffer. After the oreration is
task-I/C interrupt which will
interrupt storage area. Our posting program

of ICRCB buffer at that

The macro instruction akove would generate:

CNOP 0,8 MAKE CERTAIN THAT THE EXECUTABLE
INSTRUCTICNS ARE DCUBLE-WCRD
ALIGNEL.
TEST SvC 231
PGQUT —-- Write Virtual Storage Pages to External Storage

The PGOUT macro

instruction enakles you to write from cne to eight

virtual storage pages to one or more external storage devices.

T T
Name |Operation|Operand
1 4

o — e —

1
[symbol] | PGOUT
A1

L]
| None
L.

- — b e wed

Section 3: Nonresident Programs 75

EXECUTION: The PGOUT macro instruction must be +the subject of an
execute instruction and must occupy the high-order halfword of the first
word of a ©parameter 1list called an 1I/0 paging control klock (IOPCB).
The IQPCB consists of a header and a number of external storage 1list
entries (see Figure 13).

The supervisor reads into main storage any pages in the list that
aren't already in main storage; when all pages are in, the supervisor
writes them out at the extermal storage locations supplied in the
external storage list. From one to eight consecutive virtual storage
pages may be transmitted; the destination external storage locations
need not be consecutive and may be on different devices.

Before returning, the supervisor puts information in register zerc to
describe the action with each rage in the external storage list. Four
bits of register 0 are assigned to each page; bits 0-3 for the first
page, bits U4-7 for the second, etc. The four bits are interpreted as
follows:

Value Meaning

0000 No error - page transmitted

0011 Virtual storage page not assigned to task
0100 Request for zero rages

0101 Symkolic device not assigned to task

0110 Page in -- bad device -- volume is movable
0111 Page in —— bad device -- volume is fixed
1000 Page in —— medium failure

1001 Page out —- bad device -- volume is movable
1010 Page out -- bad device -- volume is fixed
1011 Page out -- medium failure

EXAMPLE: Suppose you want to write virtual storage page RSLTS on the
127th page position of symbolic device 34. You might write,

ouT EX 0,MOVE
B SOMEPLACE
MOVE PGOUT
DC H'1' 1 PAGE TO BE TRANSMITTED
DC A (RSLTS) FXTERNAL STORAGE LIST ENTRY
DC H'34"* SYMBOLIC DEVICE NUMBER
DC H*127"* RELATIVE PAGE NUMBER

The macro instruction above would generate an SVC 242 to make certain
the executable instructions are full word aligned.

[Format of I/0 paging control block header ‘
{012345670123u567To123u567o123u5671
i PGOUT -- SVC 242 _1 nunmber of ESL entries]
i Virtual storage address of first of 1-8 pages to be transmitted]
i Format of external s;orage list entry (maximum of eight) 1
{ 0123456701234 5¢%617 I 01234567012345=%67]
{~ System symboli;_device nurber I relative page number j

#igure 13. I/C Paging Control Blcck

76

SETXP ~-— Set External Page Table Entries (R)

The SETXP macro instruction emables you to flag external page table
entries +that you are currently setting up as "unprocessed by dynaric
loader." The first reference to the page or pages indicated in those
entries will then cause control to be given to the dynamic loader.

L) . L)
Name |Operation|Operand
A1 4

o= o e o
S S—

T 1
[symbol] | SETXP | None
A L

EXECUTICN: The first bit of the halfword immediately following the SVC
is interpreted as a kit string flag. If this kit is omne, each
unprocessed-by-loader bit for each entry modified in the external rage
table must be on. The page count maximum is 1022. The 1low-order. 10
bits of the halfword following the SVC are interrreted as a rage count.
The first fullword following the SVC contains the virtual storage
address at which the external page table entries are to ke set. After
this word -- and depending on the page count —-- are a number of words;
each word contains an external page table entry that is to be set. If a
bit 1in the string is one, the corresponding page table entry is marked
"unprocessed by loader."™ If a bit is =zero, the unrrocessed-by-lcader
bit 1is not set for the external page table entry. If the unprocessed-
by-loadexr flag is set for a page, the first reference to that page by a
program will cause control to be given to the dynamic locader via a
task-program interrupt type 16 or 17.

The external page takle entries surrlied in the rarameter 1list are
set as indicated. The unrrocessed-by-lcader bit is set for each page
whose kit string flag is a one.

EXAMPLE: Suppose you want to set external page table entries for three
pages beginning at location NEW. You might write,

SAMPL EX SET
B SOMEPLACE
SET DS OF SVC MUST BE CN FULL WORD BOUNDARY
SETXP
DC H*'3° NC BIT STRING, THREE PAGES
DC A (NEW) ALCD EXTERNAL PAGE TABLE ENT AT NEW
DC F*1251" EXTERNAL PAGE ADDRESS
DC F'356" EXTERNAL PAGF ADDRESS
DC F*1234" EXTERNAL PAGE ADDRESS

The SETXP macro instruction generates an SVC 244.

MOVXP —- Move Page Table Entries (R)

The MOVXP macro instruction enables you to move page takle and
external page table entries from one table to another or from one part
of a table to another.

R
Name Cperation|Operand
[l

addrx addrx
startad- ,toad-
9)]

value
[,chnt‘ { }
53

Section 3: Ncnresident Programs 77

S S S "

[P s . s e i S S . 4y

T
|
L
i
[symbol] | MOVXP
]
|
|
|
|
L

e e e e e s e

startad
specifies the address of the first page takle or external page
table entry you want moved and must be a multiple of 4096. '

toad
specifies the address to which you want the first entry moved and
must ke a multiple of 4096.

pgcnt
specifies the number of consecutive entries you want mwoved.

EXECUTION: The page table and external page table entries beginning at
the page address contained in register =zero are moved +tc the rage
address contained 1in register 1; the number of entries to be moved is
contained in register 15. Each "from™ page takle entry is marked
assigned but unavailable; each from external page takle entry is cleared
to zero.

EXAMPLE: Suppose you want to move 300 pages located at IN to an area
beginning at OUT; both IN and CUT must be page boundary addresses. You
might write,

MOVE MOVXP IN,CUT, 300

This would generate,

MOVE DS 0H
LA 15,300
CHDINNRA OQUT,IN, (,245)
LA 1,0U0T INNER MACRC GENERATED
LA 0,IN INNFR MACRC GENERATED
SVC 245 INNER MACRC GENERATED
LVPSW —- ILoad Virtual Program Status Word (R)

The LVPSW macro instruction enables you to alter the flow of your
program by changing its PSW in virtual storage.

T L

Name [Operation|Crerand
4 41
|

addrx}]
 J

= — e e e g
b e s e e e

1

| I
[symbol}] |LVSPW || pswad-

| |

L

pswad
srecifies the virtual storage address at which the new VPSW is
presently stored.

EXECUTION: The virtual program status word whose address is in register
one Lkecomes the current virtual program status word. The previous
contents of the virtual prograr status word are lost.

EXAMPLE: Assume location NEWVPSW contains a new virtual program status
word that is to be loaded. The macro instruction

NAME LVPSW NEWVPSW

causes this to be generated,

CNOP 4,8

NAME TM 0(0),0
T™ NEWVPSW, 0
svC 254

78

VSEND -~ Send Message to Another Task (R)

The VSEND macro instruction enables you to send information to
another task.

L] T
Name | Operation|Operand
4 "y

P . s e
U S |

T]
[symbol] | VSEND | None
I R 1

EXECUTION: The SVC 240 resulting from a VSEND macro instruction must be
imbedded in a message control block (MCB) and be the subject of an
execute instruction. The format of a message control block can be fcund
in System Control Blocks PLM.

The receiving task is alerted to the message by a task-external
interrupt. When the external interrupt is accerted, the supervisor
moves the MCB into the recipient task's ISA. No more than 1904 bytes
can be transmitted. If the receiving task's intertask message flag
(FSIMB) is one, it does not wish to receive messages. If the sending
task's identification indicates that it is a system operator or the
batch monitor, the receiving task gets the message (i.e., the rending
task—-external interrupt) in any event. If the sender is neither the
batch monitor nor a system operator and the recipient's intertask
message flag is one, register 1 is set to four, telling the sender that
his message was not accepted. If the recipient task cannot be found,
register 1 is set to zero. If the message is sent, register 1 is set to
eight. If and when the message is accepted by the recipient task, and
if the reply flag in the senders MCB is one, the complete kit in the
event control block pointed to by the sender's MCB will be set to cne.

EXAMPLE: Suppose you want to send the message, "This is a test." to a
task whose task identification is 1273. You might write,

ANY EX 0,MCB+4
B UPUPAWAY
MCB DS oD DOUBLE WORD BOUNDARY
DC cr2' NUMBER OF COUBIE WCRDS OF MESSAGE TEXT
DC CL3'0" MESSAGE CODE FIELD
VSEND
DC H'0*
DC H'1234" OUR TASK ID
DC H'1273" TASK IC OF RECIPIENT
DC A (ECB) ADDR OF FVENT CCNTRCI BLOCK
DC CL15'THIS IS A TEST.'

The VSEND would generate an SVC 240. The remaining information
composes a message control block (MCB).

ERROR -—- Indicate Surervisor Detected Error (nonstandard)

The ERROR macro instruction provides the means by which the resident
supervisor reports the occurrence of a major or minor software error or
a hardware failure.

L T T 3
{Name jOperationjOperand j
¥] T

[symbol]	ERROR	errtype-integer, dump-integer, module-integer,
		idno—integer[,tskint—{integer}]
		0
L L 4 o}

Section 3: Nonresident Programs 79

errtype
specifies the type of error which has occurred. The codes are
given in Table 5.

dump
specifies the content of the dump you want surplied. The codes are
given in Takle 6.

Table 5. System Error Codes

LB

Type of Error Code

s

|
t
{Minor software error |
|Major software error |
|Hardware failure |
| Hardware failure -- generate task-program interrupt |
|Minor software error -- generate task-program interrupt|
L L

O N WN =
b e e e e e i e o

Table 6. Dump Option Codes for System Error Processor

Dump to be Taken Code

- e

|Basic output (error message, address of TSI, address of 00
|GQE, address of DCB, general-purpose and floating-point

lregisters, storage locations 0-127)
1

e e e e)

L)
|Basic output and all storage from 4096 02
1

1
|Basic output and all storage as srecified by storage

Jlist pointed to by register 1
[N

ou

)

|Basic output and

| TSI Of current processing
| XTSI unit task (PSATPT)
|Task interrupt log

|ISA 10
L

‘Y SRS S

20

——

L]

|Basic output and all virtual storage of processing
Junit's current task (PSATPT)

L

PRSP NPE A SRS S S ——" S ——

-

module
designates the supervisor module issuing the ERROR macro instruc-
tion (see Table 7).

idno
designates a specific ERROR call in modules which issue wmultirle
calls and must be in the range 0-99

taskint

task intexrupt code to ke used for error types 7 and 9 and must be
in the range of 0-9999

Note: Both LVPSW and ERROR use the same SVC code (254); an SVC 254
occurring in the probler state is considered LVPSW; an SVC 254 occurring
in the supervisor state is considered FRROR.

EXECUTION: FRROR is the only SVC that may be issued by the resident
supervisor. The processing unit receiving the ERRCR SVC will stop all
other processing units in the systew. The information to be dumped is
converted to heaxadecimal format and transmitted to the system errcr
output device.

80

Table 7. Resident Supervisor Module Codes

r T 1
| Code |Module Name |
5 t 1
01	Dispatcher
02	Queue scanner and Enqueue-dequeue
03	Timer interrupt queue processor
ou	Page turning
05	Core allocation and release
] 06	Program interrupt queue processor
07	Task initiation
08	XTSI overflow
09 Interrupt stacker (program, SVC)	
10 Page posting	
1	Activate and deactivate TSI
12 Supervisor call queue processor]	
13 Auxiliary storage allocation	
14	Interrupt stacker (external, I/C, machine check)
15 Inter-CPU communication	
16 -	TSS/360 recording
17	System inventory routine
18	Reconfiguration routine
19	Locate page
20	[Real core diagnostic and error recovery
21	{Data recording screen
22	Start recording SVC processor
23	Buffer packing for data recoxrding]
24-50	Unassigned
51	I/C call routine
] 52	I/0 device queue processox
53	Pathfinding
54]Channel interrupt queue processor
55	Page drum interrupt queue processor i
56 Page drum queue processor	
57 Page direct access request and interrupt queue processor	
} 58	Page out service routine
59 Task interrupt control	
} 60 Device allocation and release	
61	Purge
62 External page location address translator	
] 63 Queue GQE on TSI	
64	Dequeue I/C request
65	Start I/0
66	Paging I/C error recovery control i
67	Task communication contrcl]
68	Suppress auxiliary allccation routine
69	Paging path analysis]
70	Reinitialize operator task
jAlternate path retry]	
72	Standard area retry
73	Scan on task ID routine
74 Same path retry	
75 Standard area retry analysis	
70	Rebuild DAIB/SYSDIC and restart I/C
77 External machine check interrupt processor	
78 Locate outstanding CCU I/0 oreraticn	
79	Set asynchronous entry]
80 Data recording I/0	
81 Data recording error recovery	
82-99	Unassigned
L L |

If the error +type is wmwajor (2, 3, or 7), the SVC 254 routine
transfers control to the recovery nucleus; if the error type is minor (1
or 9), or if the recovery nucleus returns control +to the SVvC 254

Section 3: QfNonresident Programs 81

routine, all other processing units in the system are restarted. If a
task-interrupt has not been requested, control 1is returned to the
instruction following the ERROR rarameter list. Otherwise, a GQE is
constructed and enqueued on the TSI rointed to ky the prefixed storage
area field PSATPT, subsequently causing a task-program interrupt.

The ERROR code transmitted as part of the kasic output is of the
form:

mmnn

Where mm is the two-digit mwodule code and nn uniquely identifies
maltiple SVC 254s within the same module.

EXAMPLE: Suppose you detect a major error -- gquantity A was neither
less than, equal to, nor greater than gquantity B. You might write,

BLAST ERROCR 3,01,23,02

This would generate,

BLAST SVC 254
DC X*83*,X'01"
DC X'23°,X'02",X12'00"
SYSER —- Indicate Nonresident-Program Detected Error (nonresident)

The SYSER macro instruction is the means by which a nonresident task
reports errors it has detected.

r L] T k]
| Name | Operation | Operand |
L [} 1 |
T i] |
| [symbol] | SYSER |errtype-integer, dump-integer,opts-integer, |
| | |opt,-integer,ort;—-integer, idno-integer |
L i 1 1]

errtype
specifies the type of error the task has detected. The codes are
given in Table 5.

dump
specifies the dump output you wish to receive. The codes are given
in Takle 6.

opt,
sprecifies the first of three unique identifiers, in the range 1-83;
see Appendix E for values of this rarameter for specific modules.

opta
specifies the second of three unique identifiers, in the range
1-99; see Appendix E for values cf this parameter for specific
modules.

opts,
srecifies the third of three unique identifiers, in the range
1-999; see Arpendix E for values of this parameter for specific
modules.

idno

is a number from 1 to 99 which is used to uniquely identify one cf
several calls in a module.

32

EXECUTION: The processing unit receiving the SYSER SVC will stop all
other processing units in the system. The information to be dumped is
converted to hexadecimal format and transritted to the system errocr
output device.

If the error type is major (2, 3, or 7), the SVC 228 rcutine
transfers control to the recovery nucleus; if the error tyre is minor (1
or 9), or if the recovery nucleus returns control to the SVC 228
routine, all other processing units in the system are restarted. If a
task-interrupt has not been requested, control is returned to the
instruction following the SYSER paramweter list. Otherwise, a GQE is
constructed and enqueued on the TSI pointed to by the prefixed storage
area field PSATPT, subsequently causing a task-program interrupt.

The SYSER code transmitted as part of the Lkasic output 1is of the
form:

vvcesssnn
where vvccsss identify the ort, (vv), opt, (cc), and opts (sss) codes,
respectively, for the module issuing the SVC 228 and nn uniquely
identifies multiple SVC 228s within a single module.

EXAMPLE: Suppose your task detects a minor software error and you want
to get just the basic SYSER output. You might write,

BUG SYSER 1,00,2,0,23,01

This will produce

CNOP 0,8
BUG SVC 228
DC X'81°,X°00"
DC AL.1(1) ,AL.23 (*¥100000+0%1000+23) ,X" 01"

PRIVILEGED PRCGRAM NAMING CONVfNTIONS

As discussed in the section about resident supervisor naming conven-
tions, all TSS/360 prograr module names begin with the letter C. All
privileged program module names have the form:

CZxxxX

where the characters xxx are used +to uniquely identify all program
module names Leginning with CZ. All control section nawes and entry
point names of privileged virtual programs add a character to the end of
the module name to form a unique entry point or control section nawe.
This 1is analogous to the way entry proint and control section names are
formed for resident supervisor modules. For example, an entry goint cf
privileged module CZCJT might be CZCJTH.

Dummy sections for system control blocks are used by privileged
virtual programs in the same way that they are used Ly resident
supervisor programs. All system dummy section names begin with CHA; the
location of the first byte of data described by a syster dummy secticn
is named by a label beginning with CHB. CHAXYZ is a dummy section
descriking data located at virtual storage address equivalent to CHBXYZ.

The dynamic loader treats all external names (ENTRY, EXTRN, V-tyre
adcons, etc.) beginning with the characters SYS as system names. A
control section without the attribute PRVIGD cannot define system names
(externally) . (See Table 1 for the effect of authority code in dynamic
loader processsing.)

Section 3: Nonresident Prograns 83

WRITING PRIVILEGED SYSTEM PROGRAMS

Virtual system programs are divided into two classes: programs that
make up initial virtual storage and programs that are dynarically
loaded. Broadly speaking, initial virtual storage (IVS) is composed of
all those system programs (both privileged and nonprivileged) necessary
to dynamically load a program. An attempt to dynamically load a program
will not require or depend upon the prior dynamic loading of some other
program. This is another way of saying that the dynamic loader is not a
recursive program; it doesn't call itself. Privileged programs that are
not part of IVS are brought into virtual storage, as required, by the
dynamic loader and the miscellanous rrograms it uses for assistance.

In writing a system program, you must know whether it will ke
dynamically loaded or be part of IVS. Programs that are part of IVS
must not attempt to dynamically load other rrograms that are part of
IVS. If your program is not to be part of IVS, you needn't worry about
whether the programs you call are or are not part of IVS. For exangle,
if programs A and B are both in IVS, prrogram A might call program B like
this,

NAME CALL B,DATA,I IMPLICIT CALL

If program A were not in IVS, either this could have been written,
NAME CALL B,DATA,E EXPLICIT CALL

or this could have been written
NAME CALL B,DATA,I IMPLICIT CALL

regardless of where program B is.

The use of the E option in the CALL requires action by the dynamic
loader; this is not allowed for programs that are part of IVS -- unless
the program being called is outside of IVS.

Almost all TSS/360 programs can be shared by several users. When a
program is shareable, or public, it must be put together in a special
way. Each public program is thought of as consisting of two parts.

One part is made up of all the instructions and data in the program
that never change Lecause of relocation in virtual storage by the
dynamic loader or because of execution by a processing unit (variables).
This part of a public program is rure procedure; it is 1literally
constant —-- it never changes under any circumstances.

The second part of a public program consists of those parts of the
program that may change because of relocation or execution -- the
program's adcons and variables.

There 1is no requirement that each and every program have parts that
change and parts that don't change. Indeed, some programs don't contain
a single byte that ever changes; these programs keep all their variables
in the general registers.

The parts of a public program that may change, the adcons and
variables, are collected in a prototype control section (PSECT). All
other control sections of a public program should Lke given the
attribute, READONLY, since they can never be modified. As an exception
to this, there are a few tables, such as the syrbolic device alloccaticn
table (SDAT), that are protected with lock bytes and are shared
nonread-only control sections. The devision of a public program into
prototype control sections and read-only control sections allows a
number of different tasks to share the same program without destroying

84

one ancther's results. This is accomplished by giving each task that is
sharing the public program its own rprivate copy of the prototype contrcl
section, while allowing each task to share a single copy of the public
program's read-only control sections. In this way, each task has a
private copy of those parts of the prublic program that may change, thus
preventing tasks from destroying cne ancther's variables and allowing
each task to have its own adcon values.

You should take care not to confuse intertask rrogram reenterability
with intratask reenterability. The use of prototype and read-cnly
control sections permits frrograms to be shared among many different
tasks; this is intertask reenterability. The use of a prototyge control
section for storing variables does mnot automatically guarantee that,
within a single task, a program can be reentered. All proklem programs
are freely interruptable by any real (not virtual) interrupt. When such
an interrupt occurs, before control 1is returned to the interrupted
program in virtual storage, the resident surervisor checks to see if
there are any pending task-interrupts. If there are pending task-
interrupts, the corresponding task-mask bit in the virtual rrogram
status word is set to 1 (enabling task-interrupts) and the ISA lock byte
is zero; control is returned, not to the interrurted program, but to the
task monitor. The task monitor, after some housekeeping, transfers
control to the appropriate task-interrupt-handling routine. In some
instances, the interrupt handler may have tc use the interrurted preogram
as a subroutine; GET, for example. When this happens, the interrupted
program 1is being reentered. It is thus task-interrurt sensitive and it
must be constructed to allow for this sensitivity. The prototypre
control section is no help in permitting intratask program reenterakili-
ty, since, within this single task, there is only one prototype control
section for each puklic program and only c¢ne copy of variables and
adcons can be preserved in it.

Although address constants change as a result of program relocaticn
and are placed in a public program's prototype control secticn, and may
assume different values from task to task, they are not considered
variakles within a task. Once supprlied by the dynamic 1loader (or Ly
startup for IVS), an address constant within a given prototype control
section will not change. (The equivalent address constant in other
copies of the same prototype control section will, in all probability,
be different. 1In other words, if the only thing in a prototype control
section were a set of address cocnstants, then such a PSECT would ke
read-only since it would never change after dynamic loading.

Within a single task, we are concerned about those parts of a program
(public or otherwise) that change as a result of that program's
execution by a processing unit. If a program that stores variables in
fixed areas of virtual storage can ke called by a number of other
programs, it must protect itself against task-interrupts. If a program
must ke interruptakle (ky task-interrupts), it must use GETMAIN (cr
something equivalent) to dynamically allocate virtual storage and thus
prevent the accidental destruction of variables. GET and PUT are
examples of programs that can be in use by one prograr, interrupted, and
reentered for use by ancther program within the same task.

If vyou wish to disable task-interrupts during some processing, you
can use the macro instruction ITI (inhibit task interrupts); to enakle
task-interrupts, the macro instruction PTI (rermit task interrupts) may
be used (see Appendix A) . For example,

COPY CHAISA

LOCK ITI DISABLE TASK INTERRUPIS
. MISCELLANEOUS INTERRUPT-SENSITIVE CODING
PTI ENABLE TASK INTERRUPTS

' Section 3: Nonresident Programs 85

shows how task-interrupt might be disakled and restored in a prograr.
The COPY statement mwust be included, since it is needed to define a
field (ISALCK) used by the macro expansions of ITI and PTI.

Excluding dummy control sections, which are not true contrcl sections
(see discussion of dummy usage), you may have two kinds of control
sections in your program: prototyre (PSECT) and ncnprototype (CSECT).
From the standpoint of the dynamic 1loader, there is very 1little
difference between a PSECT without qualifying attributes and a CSECT
without qualifying attributes. Throughout TSS/360, however, PSECTs are
used in public programs to contain address constants and variables; you
should think of prototype control sections as the private part of shared
program modules.

Be careful not tc confuse the attributes PRIVLGD and SYSTEM. PRIVLGD
automatically includes SYSTEM; every privileged program is a system
program as far as the dynamic lcader is concerned. SYSTEM doces nct
automatically include PRVLGD, however; every system program 1is not
automatically privileged.

You might code a sample privileged program like this,

TITLE *SAMPLE PRIVILEGED PROGRAM®
DCLASS PRIVILEGED THIS ALLCWS PRIV
MACRC EXPANSICNS
COPY CHAISA GET FCRMAT CF
ISA
CZABP PSECT PRVLGD PUT ALL THE
ADCCNS AND
VARIABLES HERE
EXTRN CHBXYZ LOCATION CF
TABLE XYZ'S DATA
CACABC CSECT READONLY, PUELIC,PRVLGD PURE PROCEDURE
- SECTION ANYTHING
- HERE BUT ADCCNS
- AND VARIABLES
END CZARBC

NONPRIVILEGED PROGRAMS

We're not going to say a great deal about writing nonprivileged
system programs since most of the TSS/360 literature deals with writing
nonprivileged programs; it would be redundant to repeat it here. Of
particular interest to you, if you want to write nonprivileged systen
programs, 1is the information in Assembler User Macro Instructicns and
Assembler Programmer's Guide.

There isn't a great deal of difference between rprivileged and
nonprivileged system program; almost everything we've said about privi-
leged system programs applies to nonprivileged system fprograwrs. The
nost significant difference between them is that nonprivileged system
programs operate with a program status word protection key of 1; they
cannot read or write privileged contrxol sections.

OPERATING ENVIRONMENT

A nonprivileged program operates in a virtual machine. The storage
of this machine contains all the programs that make up IVS and any other
programs that have been brought into virtual stcrage by +the dynamic
loader. A nonprivileged system rrogram may be part of IVS; assembler is
an example of nonprivileged initial virtual stcrage rrograns.

86

A nonprivileged program may use any System/360 problem state instruc-
tion and any of the nonprivileged surervisor call instructions. Nonpri-
vileged system programs may not, in general, use the privileged
supervisor call instructions. (Remember, if the logged-on user is a
system programmer, any SVC that does not violate the privileged status
of the issuing program can be used. SVCs cannot be used indiscriminate-
ly, however. For example, privileged or not, you can't issue an SVC 121
(ENTER) if your program is running in the privileged state; this is
considered an error.

In essence, we're saying that a nonprivileged program cannot issue a
privileged SVC and vice versa. The resident supervisor will £find out
from the task status index that such a program cannot issue privileged
SVCs (whether or not the SVC was correctly used). On the other hand,
you, as a system programmer, are allowed Ly the supervisor to issue any
svc, privileged or otherwise, but there is no guarantee that you'll do
it correctly.

Since a number of SVC codes are used by the resident supervisor, a
kind of substitute SVC, called ENTER, is used for most transfers of
control from nonprivileged to privileged programs. A nonprivileged
program can't transfer to a privileged program via a branch instruction
since all privileged programs are fetch protected from all nonprivileged
programs (both system and user). ENTER codes, analogous to SVC codes,
are used by the task monitor to figure out where +to transfer control.
We'll have more to say about ENTER when we discuss it as a nonprivileged
SvC.

PROGRAM DESIGN CONSIDERATIONS

In thinking about nonprivileged programs, be careful not to confuse
the privilege of a program with the authority of the programmer who
directed that the program be loaded. Despite any declarations at
‘assembly time, you, as a system programmer, may always issue privileged
SVCs. Therefore, any problem you write is implicitly a system rrogram
as long as you LOGON using your S or O authority code. Remember that
all sections you 1load using your S or O authority code are private —--
the dynamic loader ignores the PUBLIC attribute.

In the section about conventions, we talked about fence straddlers.
A fence straddler should never be designed to issue privileged SVCs
based on the authority code of the user. If this were done, and a
programmer with a wuser authority code (U) attempted to use the fence
straddler, he wouldn't succeed. To ke on the safe side, when you write
system programs, you should always give the control sections the
attributes they need to be able to run; do not rely on your authority
code unless all intended users will have an equivalent authority code.

Nonprivileged system programs accessible by user programs have module
names that begin with SYS. BAnalogous to the resident supervisor and
privileged programs, control section and entry point names are formed Ly
adding a character to the end of the module name. For instance, SYSABC
is an entry point in the nonprivileged system program SYSAB. Names
beginning with SYS can be freely referenced by all programs, privileged
or otherwise; SYS names can only be defined by control sections with the
SYSTEM attribute.

Nonprivileged system programs not accessible by user programs gener-—
ally use symkols beginning with CE.

Section 3: Nonresident Programs 87

NONPRIVILEGED SUPERVISOR CALL INSTRUCTIONS

Nonprivileged supervisor calls are those whose processing programs
are in virtual storage; these SVCs use codes 64 through 127. When a
nonprivileged supervisor call is .issued, the surervisor simply passes it
back to the task monitor as a task-SVC; no task-program interrupts are
generated. The task monitor <fransfers to the arpropriate privileged
program for processing. Nonprivileged SVCs are used to rass control
from a nonprivileged program to a privileged program. Since nonprivi-
leged programs can neither read, write, nor transfer control to
privileged programs directly, some form of interrupt is required. The
nonprivileged SVCs described in this publication are listed in Table 8.

Table 8. Nonprivileged Supervisor Calls (SVC 64-127)

[3 T -r 1
| SVC 121 | Enter privileged service routine | ENTER |
| | | i
svCc 127	Transfer to dynamic loader for external	DLINK
	symbol resolution {	
]		
SvC 123	Enter delete program { DELET	
i		
SvC 125 Enter program checkout subsystem	PCSVC	
	I	
svec 119 Read command from SYSIN (conditiomnal)	CLIC	
	I	
SvC 118 Read command from SYSIN (unconditional)	CLIP	
svc 122 Enter comrand language director to end	RTRN	
RUN		
SvVC 120	Restore privilege	RSPRV
L i 1]		
ENTER -— Enter Privileged Serxrvice Routine (R)		
1]] 1		
Name	Operation	Operands (
b 1 F .		
[symkol}]	ENTER	None
L L L J
EXECUTION:
Supervisor

A task SVC interrupt 1is created to transfer control to the task

monitor.

Task Monitor

The enter routine (part of the task monitor) transfers control to a
privileged program using modified type-I linkage. The low-order byte of
register 15 contains a code, the enter code, that is used ky the enter
routine to determine which privileged program is to receive control.
Only the contents of registers 0 and 1 are passed to the privileged
program; registers 0 and 1 are the only registers the privileged program
can use to pass results back to the program issuing the ENTER.
Registers 2 through 15 are saved and restored by the enter routine for
the ENTER issuing program.

EXAMPLE: Suppose we want to get 256 bytes of working storage (without
using the GETMAIN macro instruction). We might write,

SR 1,1 CLEAR GP R1 TO SET OPTIONS
LA 0,256 SET BYTE COUNT
LA 15,48 SET ENTER CODE IN GP R15

NAME ENTER

88

The ENTER would generate:
NAME SvC VA

Note: For a list of the ENTER codes, see System Control Blocks PLM.

DLINK —-- Transfer to Dynamic Loader for External Symbol Resolution (R)

Name

Operation|Operands
[
D

[symbol]

._q__“_,
e e e o}
|
|
| IR S p———

1
LINK | None
i

EXECUTION:

Supervisor
The resident supervisor creates a task SVC for the task monitor.

Task Monitor

Control is transferred to the dynamic loader's dynaric-linkage
routine. DLINK can be used for explicit 1linking (external symbol
resolution and transfer of contrcl to 1loaded grogran) or explicit
loading (no transfer of control) . [CLINK must be the subject of an
execute instruction. (For usage of DLINK, see CALL, LCAD, ARM, and
ADCON in Assembler User Macro Instructions.)

EXAMPLE: Suppose you want to dynamrically load a program called HELP and
have control transferred to its entry point, BEGIN. You might write,

LOAD EX ADCNGRP
B AWAY
ADCNGRP DS OF
DLINK
DC X'0100" OPTICNS: ICAD AND TRANSFER
DC CL8'BEGIN'
DC 2F'0"

The DLINK would generate,
SvC 127

This will cause the dynamic loader to receive control from the task
monitor via the supervisor; it will then lcad HELP and transfer to

BEGIN.
DELET -- Enter Delete Program (nonstandard)
r T . T -1
| Name | Cperation|Operands |
b ¢ + -4
| [symkcl] | DELET | None |
[l i 4 —_ J
EXECUTION:
Supervisor
A task-SVC interrupt is created to transfer control to the task
monitor.

Task Monitor
Control is transfered to the dynamic loader's delete routine (see
Assemkler User Macro Instructions for a description of DELETE.)

Section 3: Nonresident Programs 89

EXAMPLE: If you want to cause your rrogram to enter the delete program
within the dynamic loader, you would nct use the ENTER mechanism; ycu
could write,

EX 0, NAME
B AWAY
NAME DELET
DC CL8'DESTRYME"
DC X'0000"

DELET would expand as,

NAME SVC 123

PCSVC -- Enter Program Checkout Subsystem (nonstandard)
r T A T Al
| Name |Operation|Operands |
I i L "}
1) L] T 1
| [symkcl] | PCSVC | None |
L L L J
EXECUTION:
Supervisor

A task-SVC interrupt is created to transfer control to the task

monitor.

Task Monitor
Control is transferred to the rrogram checkout subsystem (PCS).
This SVC is used by PCS to rerlace user instructions in response to
the AT command (see Command Language User's Guide) .

EXAMPLE: Suppose PCS wants to plant a transfer of control; it mright ke
coded z

MOVE MvVC NAME (2) ,PLANT
B AWAY
PLANT PCsvcC

‘The PCSVC would expand as an SVC 125.

CLIC —-- Read Cormand From SYSIN (ccnditional) (nonstandard)

T T
Name |Operation|Operand
1 I

[R

[e —

T 1
[symbol] |CLIC | None
L 1

EXECUTION:

Supervisor
The supervisor creates a task-SVC interrupt for the task monitor.

Task Monitor

The task monitor transfers ccntrol tc the command system, which
checks to see if the task issuing the SVC is conversational. If a
conversational task issued the SVC, the user at the SYSIN terminal
is given an orpportunity to enter a cowmand (underscore, backspace,
unlock keykoard). If a nonconversational task issued the SVC,
ncthing 1is done; i.e., the SVC has the effect of a NOP (no
oreration) .

90

EXAMPLE: SVC 119 is used by the FORTRAN pause routine. Suprose ycu
arrive at a point in your program where you want the terminal user
running your program to be able to enter commands. You might write,

JFB CLIC
This would generate,
JFB svc 119
If the SYSIN terminal user didn't want to enter any commands, he

would enter RUN, followed by carriage return. If the task issuing the
SVC 119 were being run nonconversationally, the SVC would be ignored.

CLIP -- Read Command From SYSIN (unconditional) (nonstandard)

r L] a k|
[I , [
| Name |Operation|Operands 1
F : + 1
| | |
| [symbol] |CLIP | None i
L | 4 ¥ |
EXECUTION:

Supervisor

The supervisor creates a task-SVC interrurt for the task monitor.

Task Monitor
The task monitor transfers control to the command system, which
attempts to read a command from the SYSIN device.

EXAMPLE: SvC 118 is used by the FORTRAN halt routine. Suppose your
program is finished and you want to return control to the terminal wuser
or cause the command director to read the next command from a
nonterminal input source. You might write,

DONE CLIP
This would produce:

DONE svcC 118

which would cause the command director to try to obtain a command from
the SYSIN device.

Note: The CLIP macro instruction reads from the SYSIN data set and does
not require a terminal; CLIC reads only from a terminal and must,
therefore, only be used in a conversational task.

RTRN -- Enter Command Language Director to End RUN (R)

r T T !
| Name | Operation|Operand |
1 1 1 g |
T L) 1) 1
| (symbol] |RTRN | None |
L | 1 J
EXECUTION:
Supervisor
A task-SVC interrupt is created to transfer control to the task
monitoxr.

Section 3: Nonresident Programs 91

Task Monitor

Control is transferred to the command language director (see
Assembler User Macro Instructions, EXIT macro instructions).

EXAMPLE: If the program you caused to the run is finished and you want

to

return control to the command 1language director for end-of-run

processing, you might write,

This

NAME RTRN
will produce,

NAME SVC 122

RSPRV =- Restore Privilege (R)

Task

r T L] 1
| Name |Operation|Operands |
L 4 4 4
] T T 1
| [symbol] |RSPRV | None |
L L L J
EXECUTION:

Supervisor

A task-SVC interrupt is created to transfer control +to the task
monitor.

Monitor

Control 1is transferred to the restore-privilege routine for the
purpose of completing type-III 1linkage. The restore-privilege
routine restores registers 2 through 14 +to +the values they
contained. when received from the privileged calling rgrograr.
Registers 0, 1, and 15 are left unchanged (see the section on
linkage conventions) .

EXAMPLE: Suppose you have written a type-III program which has received
control from the leave-privilege routine and is now ready to return
control to the privileged calling program. You might write,

DEPART RSPRV

which will expand as,

DEPART SVC 120

You could also write,

BR 14
since register 14 is set to point to an SVC 120 by the leave-privilege
routine.

92

SECTION 4: DEFINING MACRC INSTRUCTIONS

As a system programmer you are well aware of the convenience and the
power of +the macro instruction. You are also familiar with the
procedures for defining macro instructions that are outlined in Assenbl-
er Language. This section deals with the process of defining macro
instruction, concentrating on rprecautions you should observe and limita-
tions imposed by the various types of macro instructions.

This section has been organized around three kasic types of maczo
definition: the R-type, the S-type, and the mwodified R- and S-tyres
together with nonstandard.

R-TYPE MACRC DEFINITION

You may use the standard R-type macro instruction when all the
subparameters can be contained in the two parameter registers 0 and 1.
The R-type does not generate a parameter list but may generate constants
or addresses. You are also limited in your choice of value mwnencnics
from the available set described in the introductiom. We'll 1list the
acceptable ones and some examples +to illustrate the precautions you
should observe.

addrx

You must remember to cover (with a base register) the addresses that
may ke written for an operand having this value rnemonic. Figure 14
shows a portion of the coxrect coding of the STCRE macro definition.
Notice the use of the LA instruction to provide an overriding base
register for the STM instruction. You should not write

STM E®S (1) ,®S (2) ,EAREA

The value mnemonic of &AREA is addrx which permits the coding of indexed
addresses. But the STM instruction does not allow for indexing. In
general, you must employ addrx-type operands only in instructions which
are indexable. So, in the example, you would have used the orerand
§AREA in the LA instruction, which is indexable.

r |
| |
| & NAME STORE &£AREA, §REGS]
I i
| . |
| |
| o |
| |
| . |
| |
| & NAME LA 6,&8AREA |
| |
| STM E§REGS (1) ,EREGS (2) , 0 (6) |
L 4

Figure 14. Coding addrx Operands
addx
The value mnemonic addx imposes the same restrictions as does addrx.

This mnemonic, however, does not perrit register notation.

Section U4: Defining Macro Instructions 93

integex

If you select integer as the mnemonic of the operand §&INT several
alternatives must be considered.

If the operand will always be less than 4096, you may write
LA 1, &INT

If the possibility exists that &EINT will exceed 4095, you must first
test its mwagnitude and, in the cases in which it does exceed this value,
write

L 1,=F'¢INT"

The F-type literal is chosen, rather than the R-type, for invarient
data, to avoid organizing the 1literal in the user's first declared
PSECT.

You may choose the mnemonic integer for an orerand which is not a
parameter but serves to indicate the proper path through the macro
definition. This type of operand should be treated in conditional
assembly instructions.

absexp

If +the value of an absexp operand is less than 4096, you may use the
LA instruction. If this value is greater than 4095, you must take into
account the fact that the orerand may be of the form '5280°'. In this
case, the instruction L 1,=F'&INT' would generate the instruction L
1,=F*C*'5280". The apostrophes of the F-type constants argument, in the
second operand, would ke flagged as a syntax error.

You must first resolve the value of the operand ky placing it in the
operand field of a SETA instruction in this manner

LCLA §RIGHT INITIALIZE THE SETA VALUE
ERIGHT SETA EINT ASSIGN THE VALUE OF &INT TO &RIGHT
L 1,=F"'&RIGHT"

In this example the value of &INT is computed and the variable symbol
ERIGHT 1is assigned that value. The literal may then be loaded into the
parameter register.

The absexp operand may also be used as a path indicator and would be
treated by conditional assembly instructions.

value

This type of operand may ke written as an absolute expression or as
register notation. In this case, you must test for the type of notation
used as we have done in the general R-type example in Figure 16. Once
you have determined the operand format, your processing should follow
the aprropriate rules.

code

A coded value may be enclosed in arostrorhes or not. However, some
macro instructions offer code or some other wnemonic as alternate
choices for coding an cperand. In these cases, it would not be possible
to distinguish between the alternates without sore kind of test. The
simplest way to handle +this possibility is to require the use of
delimiting apostrophes and code your macro definition to test the
operand for a leading apostrophe.

94

If the coded value 1is to be passed in a register as a parameter,
restrict it to four characters; if two parameter registers can be used,
restrict it to eight.

You may choose a code to indicate the path to ke taken through the
macro expansion or to be passed as a parameter in some forwr other than
character string. In this latter case, you must provide a translation
algorithm through the use of conditional assembly instructions.

text and characters

You will rarely use thése mnemonics in an R-type macro instruction,
but might choose to pass a character string rarameter in one or a rair
of registers. If you choose to do so, be sure to limit the size of the
string to conform with the amount of available register space.

You may use a character, self-defining term as the displacement field
of an LA instruction if the string consists of one character. If the
string is longer than one character, your racro definition wmust employ
the L instruction toc load a literal.

symbol

You may specify this mnemonic if you want to force the writer of the
macro instruction to specify a character string which conforms to
assembly language conventions.

You may also permit the writer to provide a symbolic name for the
first executable instruction in the expansion. If so, ke sure to
provide for the inclusion of the name with each model statement which
rmay generate the first executable instruction. Figure 14 gives an
example of this.

LINKAGE

Nearly all the routines called by macro instructions are privileged.
If the module issuing the macro instruction is privileged, the macro
instruction must generate a +type-1 linkage; if the issuing module is
nonprivileged a type-2 linkage must be generated. If a macro instruc-
tion may be issued by either type of mecdule, then your macro definition
mast test for the privilege class.

The privilege class is set by the DCLASS macro instruction and is
contained in +the glokal SETB symbol &CHDCLS. If the DCLASS macro
instruction specifies USER class or is omitted, &CHDCLS is given a value
of 0; if PRIVILEGED is specified, &CHDCLS is given a value of 1.

Some macro instructions generate only tyre-1 1linkage regardless cf
the issuing module's rprivilege class. If you write omne of these
so-called "fence-straddlers®™, ke sure it's entry point name begins with
3Y¥S. These characters will be used to generate a type-1 linkage.

Finally, some macro definitions generate code without reference to
parameters. That is, the same code is generated every time +the macro
defintion prototype name appears in a source programe.

EXAMPLE: Here 1is an example of a typical R-type macro instruction and
it's associated macro definition which illustrates some of the points
just made. Your macro description would be

] 1
name |operator |operand
[l 1

[. e e

T 1
[symbol)] |RTYPE {loc-addrx, len-value
L L

(S S

Section 4: Defining Macro Instructions 95

and

(M
(2)
(3)

(%)
(5)
(6)

)]
(8)
9

(10.)

an

(12)
(13)
(18)
(15)
(16)

an

(18)
(19)
(20)
(21
(22)
(23)
(24)

(25)

In
and,
practice

96

your macro defintion might look like this

&§ NAME

&§ NAME

«RNOT

E§NAME

.0P2

LLIT

&EA

+RNOT2

+«LINK

-E1

<E2

this

you

MACRO

RTYPE

AIF

AIF

AGO

ANOP

LR

AIF

ATF

AIF

LA

AGO

ANOP

LCLA

SETA

L

AGO

LR

CHDINNRA

MEXIT

ANCP

ANOP

MEND

example,
if it is missing, kranches to an ANCP statement
rlace some error processing code at this

would

§L0OC, §LEN

(T*&LOC EQ "0') .E1

(*LOC" (1,1) EQ' (') .RNOT

1,8L0C

.CP2

1,8L0C

(T*ELEN EQ '0O") .E2

(*6LEN® (1, 1) EQ" (') .RNOT2

(§LEN GT 4095) .LLIT
0,&LEN

-LINK

§A

LEN§

0,=F'€A"
.LINK
0, &LEN (1)

s (CZCXYZ) ,X"FF'

line

want to

HEADER STATEMENT
PROTCTYPE STATEMENT

IF 1ST OPERAND IS
MISSING

GENERATE AN ERROR
STATEMENT

IS FIRST OPERAND
REGISTER NCTATION

FIRST GENERATED
STATEMENT

FIRST STATEMENT IF
REGISTER NOTATION

IF 2ND OPERAND IS
MISSING

IF 2ND OPERAND
REGISTER NOTATION

INITIALIZE SETA
SYMBOL

SET VALUE CF SETA
SYMBOL

TERMINATE PROCESSING
1ST OPERAND MISSING
2ND OPERAND MISSING™

TRAILER STATEMENT

3 tests for the presence of a first orerand

in 1line 23. In

point. We'll discuss error processing and the CHDERMAC macro instruc-
tion later.

Line 5 tests for register notation by determining if the first
character of the operand &§LOC is a left parenthesis.

Line 6 is the model statement which generates the first executakle
instruction for nonregister notation and would also generate the name
assigned to the macro instruction.

Line 9 would generate the first instruction in register notation and
also contains the symbolic parameter ENAME in the name field. Line 6
and line 9 would never be generated together.

Notice the technique employed in lines 5 and 8. Line 5 determines if
line 6 or line 9 should generate the first instruction and the syrkolic
name. In branching to line 9 the use of &NAME would be amrbiguous, so an
ANCP instruction, named .RNOT, is inserted in line 8 and a branch is
taken to it.

The second operand is processed in much the same way. Notice that
line 12 tests the wmagnitude of the orerand &§LEN and lines 15 through 18
cover the situation in which §LEN is greater than 4095.

Finally, line 21 generates the linkage by means of the CHDINNRA inner
macro instruction, which we'll also discuss later. The third ogerand,
(CZCXYZ) , represents the type-1 1linkage entry point and the fourth
operand represents the ENTER code for type-2 linkage. You will see that
CHDINNRA determines which type linkage to use.

S-TYPE MACRQO DEFINTIONS

You should employ the S-type macro definition when you wish to
generate a parameter 1list in storage because the fparameters cannot ke
contained in two registers. When writing an S-type macro definition,
bear in mind that, by convention, three forms of S-type definitions are
required.

The standard form, indicated by the keyword operand MF=I or by the
omission of the MF=operand, generates a parameter list and the required
linkage to the called routine.

The L-form, indicated by MF=L, only generates a parameter 1list; it
does not generate any executable code. For this reason, register
notation is not allowed in the L-form.

The E-form, indicated by MF=(E,parloc- addrx (1)) generates the
proper linkage and may also alter an existing parameter list.

This convention permits the programmer using your macro instructicn
to conserve space in storage by generating a parameter list by means of
the IL-form and the altering the same list, in subsequent calls, Ly means
of the E-Form.

The placement of the parameter list may be indirectly controlled by
the user of your macro instruction and he should ke advised about these
precautions:

1. The S-type macro instruction places the parameter list in the first
declared PSECT of the assembly module.

2. If this PSECT is declared by a macro instruction, then that

instruction must appear in the user's program before any macro
instructions which reference the list.

Section #: Defining Macro Instructions 97

3. If rule 2 is violated, or if no PSECT exists at all, the standard
form S-type macro instruction must place the parameter list in line
with the code it generates and insert a branch around the list.

§. I-form macro instructions always generate the parameter 1list in
line. Therefore, if the wuser 1is writing a reenterakle kody cf
code, he will want +the parameter 1list generated in the area
occupied by his working storage, presumably his PSECT. This is
done for him by the standard form S-type, kut the L-form may only
ke used in the PSECT.

STANDARD-FORM S-TYPE MACRO DEFINITION
As in the case of R-type racro definitions, the value mnemonics you
choose will dictate certain steps in your macro definition. Here are

some precautions for you to observe.

addr and relexp

Since relexp is implied by addr and, in turn, implies both relocat-
able and complex relocatable expressions, your macro definition must
treat such operands by using them in the argument of an A-type address
constant. This A-type address constant must be generated as a TC
statement or as an A-type address constant literal. You must_ also
include a test for register notation since this is allowed by the
mnemonic addr.

inteqger, absexp, and value

If the operand specified by one of these mnemonics is an actual
numeric value, it is only necessary to generate an A-type address
constant bearing in wmind any size constraints which might necessitate
the use of length modifiers.

The mnemonic value permits register notation, and you would have to
test for this. If register notation is used and the register contains
the parameter, the register contents may be placed into the 1list. If
the register points to a user supplied list, you must supply space and
move the data in. You may also choose one of these mnemonics for an
operand which is a path indicator.

code

If the coded value is to Dbe passed as a parameter or is to ke
translated to a value to be passed as a parameter, you must pass it in
the parameter 1list and not, as 1in the case of the R-type macro
instruction, in a register. Since the coded value may only be one term,
you may employ any type of constant to generate +the parameter in the
list. If the coded value is a character string which includes
apostrophes, you must pass it as a character constant and adhere to the
rules for writing such constants. Notice also that the TSS/360
Assembler will reduce all double apostrophes and double ampersands to
single apostrophes and ampersands.

Again, you may choose to use the coded value as a path indicator. If
you wish to pass a variable-length parameter list, you might use a coded
value to indicate the length of the list being passed.

text and characters

These types of operands may be used in two ways. You may chcose to
pass the operands to the called routines as character strings in the
parameter 1list or may choose to generate the character strings and then
enter a pointer to them in the parameter list. Since the parameter list

98

produced by the S-type macro instruction normally is a list of pointers,
you will, with few exceptions, use these operands in character constants
or character literals.

You are responsible for verifying the presence of a leading agos-
trophe in a text operand and for providing error processing in the event
that it is missing. The assembler rrogram checks for the terminal
apostrophe.

Two methods for checking the 1length of a character string are
availakle to you. As you can see in Figure 15, you may test for either
the K or the L attributes. The reason for subtracting two from the
count of &text before placing it in the SETA cell is that the assembler
will include the delimiting apostrophes in the count. If you choose to
ascertain the 1length attribute of the character string, bear in mind
that delimiting apostrophes will have been stripped and double agos-
trophes and ampersands will have been reduced. Thus, had the programmer
written the operand §TEXT

*USE THIS SYMBOL §&&'

you would find its K attribute to be 20 (including terminal apos-
trophes) . Statement 3 of the example would yield the value 18 in the
SETA cell. Statement 5 would yield a value of 17 in the SETA cell since
statement 4 would have generated §&TEXT stripped of its terminal
apostrophes and only one of the two arpersands.

|' 1
|

| ()] MACRO I
| (2) MACX ETEXT i
| . |
| . :
3) eAl SETA K*&TEXT-2 i

| . |
: }

| 4) CHDXX ©DC CETEXT |
. |

| : }
| (5) eal SETA L *CHDXX i
| . i
| MEND i
L J

Figure 15. Deterwmining the Length of a Character String

symbol

You may use this type of operand in any of several ways: in the name
field of a generated statement, as a character string to be rassed as a
parameter, or as an entry point or wodule mname to be used as the
argument of an address constant, usually R-type or V-type.

L-FORM S-TYPE MACRO DEFINITION
Register notation is not allowed in the IL-form of the S-type macro
instruction. The L-form is wused to generate a rarameter 1list cnly.

Since register notation would require the generation of executable code
to store the register contents, it is to be avoided.

Section 4: Defining Macro Instructions 99

EXAMPLE A: Coding an S-Type Macrc Instruction

§) MACRO HEADER STATEMENT
(2) €NAME STYPE &LENLOC, &PROC, &§SYM, §SYMLEN, FRCTOTYPE
EMF=1
(3) .LFORM AIF (*&NAME' EQ '') .E1 IS NAME FIELID OK
(4) AIF (R* ELENLOC EQ 0) .OMIT1 IS FIRST FIELD OK
(5) E€NAME DC A (§LENLOC) ENTER FIRST OPERAND
(6) .SYM AIF (*6SYM' EQ ') .E2 3RD OPERAND OK
(7 DC CL8'&SYM"* ENTER 3RD OPERAND
(8) AIF (K'€SYMLEN EQ 0) .El4 4TH OPERAND OK
(9) DC AL1 (§SYMLEN) ENTER U4TH OPERAND
(10) ICLB &B ESTABLISH SETB
(11) .PROC AIF (K*€PRCC EQ 0) .OMIT3 IS 2ND OPERAND PRESENT
(12) AIF (*6PROC*' NE "E' ANC IS 2ND OPERAND VALID
"¢PROC' NE 'P') .E3
(13) &k SETB ("6PROC' EQ 'F") SET CODE
(14) .OMIT3 DC ALL (&B) DEFAULT 2ND OPERAND
(15) MEXIT DEFAULT 2ND OPERAND
(16) .OMIT1 ANOP DEFAULT 1ST OPERAND
(17) &NAME DC A (0) RESUME PROCESSING
(18) AGO .SYM
(19) .E1 ANOP
(20) .E2 ANOP
(21 .E3 ANOP
(22) .E4 ANOP
(23) MEND

Exarple A points up this constraint in a subtle manner. If you
intend to permit the user of your macro instruction to employ the
L-type, you might want to highlight this point in your macro descrip-
tion. All other value mnemonics allowed in the standard forr are also
allowed in +the L-form. Although orerands in this form may be used as
path indicator, they are generally used as the arguments of DC
statements or are translated to values which are used as arguments.

Since the user has complete control of the placement of the parameter
iist, you needn't concern yourself with including a statement to
generate a control section; specifically, don't attempt to locate the
parameter list in the PSECT.

EXAMPLE: Notice that the L-form macro instruction shown in Figure 16
indicates the name field as being mandatory. This is a good general
rule to follow because most users will generate the parameter list and
later modify it with an E-forw. The name assigned is the only safe way
to identify the parameter 1list for later modification. Also take note
of the subtle changes in value mnemonics that elirinate the use cof
register notation.

The coding shown in Example A would generate the parameter list shown
in Figure 17. Statements 3, 4, 6, 8, 11, and 12 test for the existence
and the validity of each parameter. Statements 5, 7, 9, 14, and 17
generate the parameter list. Notice that lines 3 and 6 ermploy a null

100

test in verifying the presence of operands with a value mnemonic of

symbol.

Standard form

f T T -
|Name |Operation|Operand |
l[_ i } .'
I | | {F} I
| {(symbol] | STYPE |1lenloc—-addr,proc—-|PJ, |
| | | sym-symbol,symlen-value |
I | | [, MF=I] |
L L L |
L-form
r L] K] h
| Name |Operation|Operand |
I 4 41 4
r] 1 1
		F
symbol	STYPE	[Lenloc-relexp] [,proc{Ef,
		sym—symbol,symlen-absexp,
		MF=L]
L L L J

Figure 16. Standard and L-form S-tyre Macro Description

Default options have been provided in lines 14 and 17. If the second
operand is omitted, line 11 branches to line 14 which uses §&B as the
argument of the address constant. Since &B was initialized to zero by
the LCLB instruction, line 14 defaults to zero (indicating P) .

In your definition, lines 19 through 22 would be followed by error
processing.

symbol + 0 len
+ 4 sym
+12 symlen
+13 0
1

Figure 17. Parameter List Generated by L-form

E-FORM S—-TYPE MACRC DEFINITICNS

The E-form macro instruction may modify a parameter l1list and may
generate the linkage to the called routine. Since this requires the
generation of executable instructions, some changes must be made in the
value mnemonics.

addrx

This type of operand must be substituted wherever addr was srecified
in the standard form. The use of these operands will differ from their
use in the standard form in that you will wuse them to compute the
effective address and then store that address in the parareter list.
You should alert the user to the fact that base register coverage rmust
be provided.

Section 4: Defining Macro Instructions 101

By convention, general registers 14 and 15 are used as working
registers in the macro definition because the linkage you generate will
destroy their original contents anyway.

integer, aksexp, and value

Operands specified by these value mnemonics are treated much the same
as in the R-type. A Load or Lcad Address instruction is used to load
register 14 with the operand value. The choice of instructions again
depends on the magnitude of the orerand value.

Because register notation must be allowed in the MF= orerand, you
must include a test for it and prcvide for loading register 1 from the
register specified. If register notation is specified for other
operands, utilize the register srecified as a working register and
-generate an appropriate store instruction.

code and symkol

These operands may be used as path indicators and symbol may ke used
to name generated instructions. 21lthough operands of this type are
permitted in the E-form, you will seldor find them useful.

Linkage

When your macro definition is generating the linkage to the called
routine, you should generate the entry point in a V-type address
constant 1literal. Not only is this a convenient method, kut the
assembler program will place this constant in the proper control section
-— a PSECT, if one exists.

When generating a Type I linkage, your E-form macro definition must
generate both V-constant and R-constant literals. You can use the inner
macro instruction CHDINNRA, which we will discuss 1later, for this
purpose.

102

EXAMPLE B: Coding an E-form S-type Macro Instruction.

) MACRO HEADER STATEMENT

(2) &NAME STYPE £LENLCC, § PRCC , §MF=1I PROTCTYPE

(3) .EFORM ANOP ENTRY PCINT

(4) &NAME DS 0H ALIGNMENT

(5) CHDINNRA ENF (2) LIST ADDRESS IN
REGISTER 1

(6) AIF (K*§LENLOC EQ 0) .PROC IS THERE A 1ST
CPERAND

) AIF ("6LENLCC' (1,1) EQ' (') .RNOT1 IS IT REGISTER
NOTATICN

(8) 1A 14, §LENLOC

(9) ST 14,0 (0, 1) 1ST OPERAND TO LIST

(10) AGC . PROC

(11) .RNOT1 ST §LENLOC (1) ,0 (0, 1) 1ST OPERAND TC LIST

(12) .PROC AIF (K*§PROC EQ 0) .LINK IS THERE A 2ND
CPERAND

(13) AIF (*&€PROC' NE 'F' AND '&PROC' NCT EQ 'P').E1
IS IT VALID

(14) LCLB &B ESTABLISH SETB CELL

(15) &B SETB (*6PROC' EQ 'F') SET SETB CELL

(16) 1A 14,&B

7 STC 14,13 (0, 1) STORE CODE IN PARA
LIST

(18) .LINK CHDINNRA s (CZCXYZ) ,X"FF* GENERATE LINKAGE

(19) MEXIT

(20) .E1 ANOP

(21) MEXIT

Figure 18 demonstrates the E-form of the macro instruction descriked
in Figure 16 and the parameter list shown in Figure 17. The coding for
a typical E-form S-type macro instruction is shown in exarple B.

] T 1 1
| Name {Cperation|Operand |
4 + 1 1
I | | F |
| [symbol] | STYPE | [Lenloc-addr] [,groc— \Pf], |
] | | MF= (E,parloc- (addrx))]
| | { (m } |
L L L 3

Figure 18. E-form S-type Macro Description

The logic of this macro definition should be clear in the 1light cf
previous descriptions. Note that the only error test is for an invalid
second operand. All other parameters may be oritted if no change 1is
desired in that field of the parameter list.

Section 4: Defining Macrc Instructions 103

MOCIFIED R-TYPE MACRO DEFINITICNS

You may choose to pass parameters in registers other than 0 and 1;
this makes the definition a modified R-type. If your macro instruction
links to the called routine by means of an SVC, you may pass parameters
in registers 14 and 15.

Should you choose to pass parameters in other registers (i.e., 2
through 13) you must save and restore these registers for the user.

No change in value mnemcnics occurs between R-type and modified
R-type macro instructions.

MODIFIED S-TYPE MACRO DEFINITICNS

An S-type macro instruction may have no standard form and an E-form
that does not generate any linkage. These are modified S—tyre macro
instructions and they serve only to generate and to alter a parameter
list.

Another type of wodified S-type macro instruction is the type that
has only a standard form but neither an L-form nor an E-form.
NCNSTANDARD MACRO DEFINITICNS

These macro instructions generate a parameter list and/or inline code

but not a linkage. Your selecticn of value mnemonics is wunlimited in
this type.

TECHNIQUES USED IN WRITING MACRO DEFINITICNS

REGISTER NOTATION

Special register notation should ke specified when you wish to allow
the user to load parameters into the required registers before executicn
of the macro instruction. By convention, these registers are restricted
to 0 and 1 for standard R-type macro instructions. Registers 14 and 15
may also be used if the R-type macro instruction can be of the modified
tyre. Your method of linkage may place additional restrictions c¢n the
use of registers 14 and 15.

Register notation shall be limited to registers 2 through 12 in orxrder
tc avoid the 1loss of parameters. Let us assume that you want to pass
parameter P1 in register 0 and parameter P2 in register 1. Without this
restriction on register usage, the user might issue the HAVOC macro
instruction like this:

L RO,P2
L R1,P1
HAVOC (0) , (1)
Your macro expansion would then do this:

LR RO,R1 This is parameter P1
LR R1,RO This is not parameter P2

If you use registers other than the conventional ones for working

registers, and do not save and restore them, be sure to caution the user
that those registers are volatile.

104

PACKING PARAMETERS

If you wish to pass two parameters in one register, you must rack the

parameters.

each a half word long, into register 1.

Figure 19 shows the methods for packing two parameters,

Section 4: Defining Macro Instructions

§OPA is register ECEA is an
notation absolute expression
. r L) 1
EOPB is | | LCLEA |
register | IR 1,80pPA2 (1) | &A SET&0OPA*65536 i
notation | SLL 1,16 | L 1,=F'¢A" |
| OR 1,80PB (1) | CR 1,80PB (1) |
1] 4
r] 1
§OPB is | IR 1,80PA (1) | LCLEA |
an absolute| SLL 1,16 | &A SETEOPA*65536 |
expression | LCLA §&A | L 1,=F'é&A’ |
|éA SETA &OPB | &A SET&OPB |
| © 1,=H'&A" | C 1,=F'&A" |
L L 3
Figure 19. Packing Two Halfword Parameters Into Register 1
Similar techniques can be used for other cases. Here are twc
examples:
EXAMPLE C:
Parameter P1 - three bytes left aligned
Parameter P2 - one byte right aligned
Both parameters given in register notation
Procedure
LCLA &A
&A SETA §&P1%256
L 1,=F'&A"
&A SETA §&P2
0} =F'EA"
EXAMPLE D:
Parameter P1 - one byte left aligned
Parameter P2 - three bytes right aligned
Both parameters given as aksolute expressions.
Procedure
LCILA &A
EA SETA §&P1
L 0,=F'¢A"
&EA SETA §&P2%*256
L 1,=F'&A"
SRDL. 0,8

105

DEFINING INNER MACRO INSTRUCTIONS

We have already employed an inner macro instruction, CBDINNRA, in
previous examples. You will find the use of this type of instruction
not only convenient but also economical, in terms of 1l1lines of code
written, lines of code generated, and time expended in assembly.

The assembler retains a copy of the inner macro instruction in
virtual memory. Your first reference to the instruction will cause it
to be read into main storage from the library but successive references
will not require this delay.

You needn't write as much code in your outer macro definition since
the inner macro instruction will supply it for you. You may also reduce
the number of generated statements by the user of conditional calls.
You might, for example, write

ATIF ("80P' GT'5") .INR

« INR ANOP

The inner macro instruction would only be called if &0P were greater
than five. As you can see, the use of the inner macro instruction is
somewhat analogous to the use of a subroutine.

Basically, the same criteria should govern your use of inner macro
instructions as govern your use of subroutines. If time and space will
be saved, define and use an inner wacro instruction.

Dcn't nest more than three levels of macro definition. This
technique will keep the definition clean and intelligible.

Don't define an inner macro instruction for only one outer macro
instruction; use a conditional assembly subroutine instead. Let wus
assume you want to conditionally enter a subroutine from roints A, B,
and C. You must provide a means by which the subroutine can return to
the correct point after each of the three calls. You can do this Ly
establishing a SETC call and altering its contents prior +to each
conditional kranch. Example E illustrates this technique.

106

EXAMPLE E: Branching To and Returning From a Conditional Subroutine

MACRC

LCLC &ERTRN

ERTRN SETC ' .RTRN1"
ATIF ("&0P1* GT 10) .SR
-RTRN1 ANOP

ERTRN SETC' .RTRN2'
AIF (K*&0P2* EQ 0) .SR
«RTRN2 ANOP

ERTRN SETC * .RTRN3"
AIF (L*&0P2" IT 1) .SR
RTRN3 ANOP

«SR ANOP

AGO §RTRN (END OF SUBROUTINE)

MEND

NAMING THE FIRST EXECUTABLE INSTRUCTION

If a given instruction may ke conditionally assemkled as the first or
second executable instruction, you will find it convenient to generate
the statement

NAME DS 0H

this provides a vehicle for the symkol regardless of which .instruction
comes first.

SETTING THE SIGN BIT

If you define a macro instruction in which the user way specify the
sign of operand two by the presence (negative) or the absence (rositive)
of operand one, you may find it difficult to properly set the sign tit.
Examples F and G illustrate two techniques you might find helpful.

After establishing SETA and SETB cells, line 5 places the prorer kit
value in the SETB cell, based cn the rresence or the absence cf OP1.
Line 6 then generates the parameter in storage using the value in the
SETB cell for the sign. Notice that the 1length wrodifiers in line 6
specify the length in bits. You must use one line for the DC statement.
If you use two lines, the second line will ke aligned on a byte bcundary
and the sign bit will be lost.

Section 4: Cefining Macro Instructions 107

In the second example, line 7 tests for the absence of OP1. If it is
absent, the sign 1is to be positive and lines 15 and 16 generate a
positive value in register one.

If the sign is to be negative and OP2 is zero, line 12 generates a
negative zero in register one.

If OP2 is to be a negative numker other than zero, line 9 corgutes
the two's compliment of CP2 and places it in the SETA cell. Line 10
l1oads redister one with the negative SFTA symbol. The assembler will
ccnvert the value in €A to its negative twe's compliment. Since the
value in €&A is already the two's compliment of CP2, line 10 will load
the aksolute value of OP2 with the sign bit on.

EXAMPLE F:

(n MACRC

(2) ENAME MACEX &CP1,&CP2

(3) 1CLA &A

() LCLB &B

(5) &B SETB (K'60P1 NE 0O

(6) DC AL.1(&B) ,AL.31 (§CE2)
EXAMPLE G:

(N AIF (K*'60P1 EQ 0) .CMIT
(8) AIF §0P2 EC 0) .ZERC

(9) &A SETA X*7FFFFFFF "~ (§CP2-1)
(10) L 1,=F*-&A"

(11) AGO .DONE

(12) .ZERG L 1,=X'80000000"

(13) AGO .DONE

(14) .OMIT ANOP

(15) &A SETA £0P2

(16) L 1,=F'6a"

(17) .DONE ANOP

PROCESSING A SINGLE APOSTROPHE

You rust exercise caution in the treatment of operands which rmay
validly contain single agostrcghes. 1f, for example, a single apos-
trophe is found in a character relaticn in a character relaticn in an
AIF instruction, it will produce invalid syntax.

There 1is a special technique you can employ to test for single
apostrophes without violating syntax rules. You wmight write
AIF ('§OPND" (1,1) .*&OPND" (1,1} EQ '*'*') .TEXT
This use of sukstring notaticn ccncatenates the operand field vyou want
to test with itself, thereby generating a pair of the tested character.

Thus if the character tested is an apcstrorhe, vaired apostrophes will
be prcduced and no viclation of the rules of syntax will result.

108

It's worth noting here that there are three methods available tc yocu
to test for the presence of an orerand

1. AIF (K'6OPERAND EQ 0) .OMIT
2. AIF (T'SOPERAND EQ '0') .OMIT
3. AIF ('&OPERAND' EQ '') .CMIT

Method one tests for a count of =zero, two tests for a type of
"omitted", and three tests for a null character string. You should nct
use this latter method if it is possible for a single apostrophe to
appear in the operand. A test for the K attrikute is your best course.

REFERENCING THE DCB

If the macro instruction you define must reference the user's DCB,
express references to the wvarious fields in terms of actual byte
displacements from the origin of the LCCB. The use of symbolic field
names would require +the wuser +to have previously issued a DCBD macro
instruction or the macro instructicn currently being defined must issue
a DCBD inner macro instruction. The former requires an unwarranted
assumption on your part, while +the 1latter could result in multiply
defined terms if the user has issued a DCBD macro instruction.

SIZE LIMITATION

If the operand is not a sublist, it may contain no more than 255
characters. If the operand is a suklist and the only references are to
individual members of the sublist, each member may be up to 255
characters long. Ycu are not restricted in the number of operands or in
the number of sublist elements.

ADDRESS CONSTANTS

If a R—-type address constant refers to a sywrbol defined in a program
which has no PSECT, then the R-value defined is the origin of the
control section containing the ENTER statement whose operand field
contains the argument of the R-type constant. Thus, given R (X) , where X
is defined in an assembly module having no PSECT, the R-value is the
origin of the control section containing the statewent:

ENTRY X

If there is a PSECT, all address constant literals will be located in
it. If no PSECT exists, the constants will be gplaced in the fgrorer
literal pool.

V-type and R-type constants must have only a single relocatakle
symbol as an argument. If an orerand is to become the argument of such
an address constant, you should show its value mnemonic as "symbol".

A symbol X and a V-type constant with an argument of X may kcth ke
defined in one assembly module. Unless X is also defined as an ENTRY
point to the module, the V-type constant will be resolved by searching
for a definition of X’outside the current module.

Testing the type attribute of a sywkol for the wvalue T will only
indicate whether it is defined as the operand of an EXTRN statement in
the assembly. If a symbol is externally defined as the argument of a
V-type or R-type address constant, its attribute will be given as U fcr
undefined. This cannot be considered as a conclusive test, however,

Section U4: TCefining Macro Instructions 109

since U is also the attribute assigned to symbols internally defined by
an EQU statement. The test for a tyre attribute of T can only be used
to 1indicate a symbol externally defined by means of an EXTRN statement.

When establishing addresses for entry to a routine that may or may
not ke in the current assembly module, it is best to use a rair of
A-type constants and to require the wuser to define them with EXTRN
statements 1if the routine 1is not in the same module. The use of a
V-type and an R-type would require the use of ENTRY statements in the
defining module if the routine 1is internal to the current assemkly
module. Because this latter regquirement is so wunnatural, A-type
constants are better.

If your macro instruction generates an implicit adcon group and may
be called from a user written program, it is not safe to assume that he
has defined its entry points with either EXTRN or ENTRY statements. The
type of constants you generate should ke determined by testing for the
T-value of the type attribute. If it is present, you may generate a
V-type and R-type constant pair. If it is not present, generate an
A-type constant pair. Admittedly, the user may have defined the symbols
with ENTRY statements but, since there is nc way to test for them, this
is your only safe course.

Conventionally, the R-value of the A-type constant is assigned from
&§SYSPSCT (i.e., the first PSECT) . If this variable is null, indicating
that no PSECT exists, the R-value is assigned (from ESYSECT) the crigin
of the CSECT from which the macro instruction has been issued.

An exception to this convention occurs in the ADCON racro instruc-
tion. Since the wuser controls the rplacement of the ADCON macro
instruction and prokakly wishes the adcon group constructed in the same
PSECT, the R-value is always assigned the value fromr &§SYSECT. You
should employ this same technigque when you wish to allow the user the
flexibility of declaring wmwore than one PSECT and generating the adccn
group in a PSECT other than the first.

TERMINAL APCSTROPHE AND SIZE LIMITATICN

Assume that a user writes a text orerand which is 258 characters
long, including terminal apostrophes. After you have tested for the
initial apostrophe, you seek tc determine the K attribute. Since this
attribute operates modulo 256, you would receive a character count of 2:
the initial apostrophe and the first character. The terminal apostrophe
would be missing and an error message would Lke generated Ly the
assembler program.

KEYWORD OPERANDS AND STANDARL VALUES

If you write a macro definition and include a keyword operand to
which you assign a standard value, then the type attribute of the
standard value will be assigned to the orerand if it 1is completely
omitted by the user. If he writes KEYWORD=, and follows the equal sign
by a klank or a comma, the type attribute c¢f the operand will be O for
omitted, and the standard value is overridden by the explicitly
specified null string.

SUBSTRING NOTATION PROCESSING
If you employ substring notation to refer to a sukset of characters
in a character string, you must first ensure that the characters are

present. Assume, for example, that you want to test the first four
characters of an operand to see if they specified some srecific acticn

110

to be taken. You should write something like this:
AIF (K'§OP LT #) .ERROR
AIF ("60P' (1,4) EQ "REG1') .PROC

If you don't do this and the user codes some character string of less
than four characters, the assembler will produce error diagnostics.

This technique must be employed where register notation 1is allowed.
Since you will employ substring notation to test for the opening
parenthesis, you must first determine that the operand has been coded.
The user may have chosen a default ortion and omitted the operand.

Notice also that you can access a character subset in an element of a
sublist by writing something like this:

*§OPERAND (2) * (1, 1)

This refers to the first character of the second element in the
sublist &§OPERAND.

N ATTRIBUTE USAGE

The N attribute counts the number of operands or the number of
elements in a sublist by counting the number of commas and adding one.
As a result, the N attribute cannot be used +to count the numker cf
non-null operands or non-null elements in a sublist.

N'§SYSLIST HANDLING IN MIXED MCDE MACRO INSTRUCTION

Keyword operands are not included in the value of the N attrikute of
ESYSLIST in mixed mode operands. If there are no positional orerands,
N*ESYSLIST is zero.

SUBSCRIPTS AND SUBLISTS

If a subscripted reference is made to an operand which is not a
sublist, the whole operand will be used. Thus, if you write LC
A (0P (15)) and the operand 1is not a sublist, you will generate the
operand as the argument of the A-tyre constant just as if you had
written DC A (§0P) .

SETC SYMBOL LENGTH

The maximum length of a SETC symbol is eight characters. As a
result, you may not be able to use in its entirety the operand of a SETC
statement written as a relocatable symbol, absolute expression, text, cr
character string. Instead, it is better practice to use the operand in
groups of eight, being careful to test for the presence of characters
before attempting to use them.

LOGICAL TERMS IN RELATICNAL EXPRESSICNS

When a relational expression is used in the orerand of an AIF or SETB
statement, the terms on either side cf the relational operator must both
be arithmetic expressions or character expressicns; neither of the terrs
can be logical expressions. This is illustrated in the samples below,
only some of which are valid. EB (1), &B((2), and &B(3) are SETB
variables.

Section 4: Defining Macro Instructions 111

valid AIF ((§B (1) +6B(2) #6B(3)) NE 0) .ON
invalid AIF ((6B(1) OR §B(2) OR &B(3)) EQ 0) .ON
invalid AIF (8B (1) EQ 0) .CN

valid AIF ((6B (1) +0) 1EQ 0) .ON
valid AIF (§B (1)) .ON
valid AIF (§B(1) OR &B(2) OR &B(3)) .ON

INNER MACRO INSTRUCTICNS

We have spoken previously of inner macro instructions that could ke
used as closed subroutines in a macro definition. Three such inner
macro instructions exist and have been cited in previous examples. The
following paragrarhs are designed to describe these macro instructions
so that you may make use of them.

CHDINNRA —-- Generate Type-1 or Type-2 Linkage (nonstandard)

The primary function of the CHDINNRA macro instruction is to generate
a type-1 or a type-2 linkage or to generate a linkage by means of an
SVC. It may also be employed to furnish the limited services of loading
general registers 0 and 1 with specific parameters or loading the second
element of the MF sublist in the E-form of the S-type macro instruction.

]
Name Cperation|Operand
i

[addrx }] [addrx
paraone -] (1) ’ parazero—{ (0) .H,
symbol

[([sublista— integer}][,sublistb—integer]ﬁ

T T

| |

L 1

¥)

| |

| symbol |CHDINNRA
| |

| |

r

| | [entrcd-absexp,] [mcrcd-code]
1 A4

S —
R S

paraone
specifies a parameter to be loaded into register 1.

parazero
specifies a parameter to be loaded into register 0.

sublista
is the first element of a two element sublist. If specified by
itself, it designates the entry point for a type-1 1linkage. Iif
specified together with the second element, it indicates the
relative byte locaticin within the DCB at which OPEN has placed the
R-value. This parameter may be omitted. If it is, and sublistb is
also omitted no linkage is generated.

sublistb
is the second element in the sublist. If it is specified Ly
itself, it is interpreted as the integer specified in the operand
field of an SVC instruction. If specified together with sublista,
it is interpreted as the relative byte 1location of the V-value
within the DCB.

entrcd
specifies the enter code to be used in generating a type-2 linkage.

mcrcd
specifies a code to be stored in the macro code field of the DCB.

CAUTION: Since the omission of both elements of +the sublist in

parameter three will result in no linkage keing generated, you must nct
jeave this field klank when using CHCINNRA to generate a type-2 linkage.

112

In addition to providing an enter code in rarameter four, you must also
provide a dummy entry point in parameter three.

CAUTION: The mcrcd parameter must only ke used when the outer macro
instruction has a DCB operand whose address is to be placed in register
1. Also, paraone and parazero may be used only when the value tc ke
loaded into the appropriate register can be validly used as the second
operand of an LA or LR instruction.
EXAMPLE A: The macro instruction

.LINK CHDINNRA, , (CZCXYZ) ,X'FF'
will result in the generation of either a type 1 linkage to CZCXYZ or a
type-2 1linkage +to that routine with an enter code of 255 depending on
the privilege class of the issuing module. This determination is made
by testing the value in CHDCLS.
EXAMPLE B: The coding

EFORM CHDINNRA MF (2)

will result 1in the second element of the MF = operand being placed in
register 1.

EXAMPLE C: The macro instruction
ERROR CHDINNRA , , (,254)
will result in the generation of SVC 254.

CHDERMAC —— Generate Error Message (nonstandard)

This inner macro instruction is used to generate error messages
pertaining to errors encountered in macro expansions.

r T 1 1
| Name |OCperation|Operand |
1 (8 i 4
U T T 1
	CHDERMAC	mesno-integer, [opnm-characters],
		[opva—characters] , [opvb-characters],
		[opvc-characters] [,S=integer]
[| i 1 J
mesno

specifies a numerical code identifying the message to be generated.
The codes and the messages. issued by CHDERMAC can be found in Table
10.

opnm
srecifies the name of an outer macro instructicn operand, cr other
information as desired.

opva, opvb, opvc
specify operands of the outer wmwacro instruction. A maximum of
three operands can be specified in any one error message. These
operands may also be used for such other purposes as the programmer
may define.

specifies the severity code associated with the error. A systenm
default severity code exists and is shown in Table 9.
EXECUTION: For each value of the operand mesno, an MNCOTE instruction is
generated to produce an error message of this form

Section U4: Defining Macro Instructions 113

nnnnnn (B*sc+S) ¥***CHDmmm text

where (B*sc+S) is the severity code.
B is set equal to zero if the S operand is present or to
1 if it is null.

sc is the default severity code shown in Table 9.

S is the severity code operand; it has a default of 0.

nnnnnn is the six digit line number of the macro instruction
for which the MNCTE is generated

mmm is the error message number shown in Table 9.

The severity code algorithm, (B*sc S), is evaluated in the following
manner. If you specify an S operand, B is set to 0 and the severity
code 1is calculated as (0.sc) +S=S. If you omit the operand, B is
assigned a value of 1 and S a value of 0. The algorithm then becomes
(1.sc) +0=sc.

Table 9. Error Messages Issued by CHDERMAC (Part 1 of 2)
r T 1 T i
| mesno{sc|mmm|Message Text !
=ttt 1
| 1 |2 |O004{REQUIRED OPERAND (S) NOT SPECIFIED i
i 2 |2 |O0O1|FIRST OPERAND REQ'D-NOT SPECIFIED i
| 3 |2 |001|SECOND OPERAND REQ'D-NCT SPECIFIED ;
| 4 |2 |001|THIRD OPERAND REQ'D-NOT SPECIFIED ;
| 5 |2 |001|FOURTH OPERAND REQ'D-NCT SPECIFIED]
| 6 |2 |001|DCB OPERAND REQ'D-NOT SPECIFIED i
| 7 |2 |001|DECB OPERAND REQ'D-NOT SPECIFIED i
| 8 |2 |001|KEY OPERAND REQ'D-NOT SPECIFIED i
9 |2 |001|FIFTH OPERAND REQ'D-NOT SPECIFIED I
10 |2 |001|LOW. LIM. OPERANC REQ'L-NOT SPECIFIED |
13 |2 J001|AREA COPERAND REQ'D-NOT SPECIFIED i
14 |2 {001|LENGTH OPERAND REQ'D-NCT SPECIFIED |
| 15 |2 |001}VALUE OPERAND REQ'D-NOT SPECIFIFED |
| 17 |2 |001|MODE OPERAND REQ'D-NCT SPECIFIED]
18 |2 |001|REGISTER OPERAND REQ'D-NOT SPECIFIED |
19 |2 |001|MESSAGE OPERAND REQ'D-NCT SPECIFIED i
| 21 |2 |001|NAME COF DCB REQ'D-NOT SPECIFIED |
| 22 |2 |001|NAME OF ADCON REQ'D-NOT SPECIFIED I
| 23 |2 |001|NAME OF CSECT REQ'D-NOT SPECIFIED i
| 24 |2 {001|NAME COF L FORM REQ'D-NCT SPECIFIED I
| 25 |2 J001|TYPE OPERAND REQ'D-NCT SPECIFIED i
| 28 |2 |001|CODE CPERAND REQ'D-NCT SPECIFIED |
| 31 |2 JOO1|EP OR EPLOC OPERAND REC'D-NOT SPECIFIED |
| 35 |2 |002|INVALID MF OPERAND SPECIFIED-opva i
| 36 |2 |002|INVALID FIRST OPERAND SPECIFIED-cfpva]
| 37 |2 |002|INVALID SECOND OPERAND SFECIFIED-opva |
| 38 |2 |002|INVALID THIRD CPERAND SPECIFIED-opva]
| 39 |2 |002|INVALID FOURTH OPERAND SPECIFIED-opva |
| 40 |2 [002}INVALID FIFTH OPERAND SPECIFIED-opva]
| 42 |2 |002]INVALID EP OR EPLOC OPERAND SPECIFIED-opva i
| 44 |2 |002|INVALID LENGTH OPERAND SPECIFIED-opva i
| 45 |2 |002]INVALID MCDE OPERAND SPECIFIED-opva i
| 46 |2 |002]|INVALID REG (S) CPERAND SPECIFIED-opva I
47	2	002]INVALID AREA OPERAND SPECIFIED-opva	
48	2	002}invalid type operand specified-orva	
49	2	002	INVALID CPTION OPERAND SPECIFIED-ofva
50	2	O002	INVALID OPTION 1 OPERAND SPECIFIED-oOEva
] 51	2	002	INVALID OPTION 2 OPERAND SPECIFIED-opva
54	2	002]INVALID KEYWORD CPERANL SPECIFIELD-opva	
] 55	2	002	INVALID REGISTER NOTATICN SPECIFIED-opva
56	1 }	025	PACK OPERAND NCT ALLOWELC W/MODE=R
57	2	002]INVALID PR OPERAND SPECIFIED-opva]	
58	2	002	INVALID PACK OPERAND SPECIFIED-opva I
59	2	002	LV OPERAND REQ'D-NOT SPECIFIED
62	1	067	ADCOND MACRO PREVIOUSLY SPECIFIED
] 63	2	002	INVALID TAM CHARACTER CCDE OPERAND SPECIFIED-orva
69	2	006	REGISTER NOTATION INVALID W/MF=L
78	0	024	CSECT NAME BLANK. MACRO NAME OMITTED.
85]1	013	MESSAGE OPERAND NOT ALLCWED W/MF=E	
86	1	013	OPLIST OPERAND NCT ALLCWEL W/MF=F
87	2	014	DECB NOT SPECIFIED AS SYMBCL
88	1	015	MORE THAN CNE CF EP OR EPLOC PRESENT I
89	0	050]opnm OPERAND INCONSISTENT WITH TYPE=opvaopvb	
] 90	2	050	opnm INCONSISTENT W/opva CPERAND
147	0	050	opnm CPERAND INCONSISTENT-IGNORED
157	1 {051 INVALID CODE FCR ornm—IGNCRED-opva		
{ 159	1	053	{INVALID CODE FOR DSORG-IGNOREL-ogpva
162	1	056	MACRF INVALID WITH SPECIFIED DSCRG-IGNCRED-ofva
163	1 J056	EXLST INVALID WITH SPECIFIED DSORG-IGNCRED-opva	
L i__ 1 ____ %L |
(Continued)

Section 4: Defining Macro Instructions

115

Table 9. Error Messages Issued by CHDERMAC (Part 2 of 2)

r T T T 1
| mesno|sc |mmm|Message Text |
———4-—-—+ 1
| 166 |1 |060|INVALID CODE FOR DEVD WITH SEECIFIED DSORG- |
| || | IGNORED-opva |
i 167 |1 |065|MACRF INVALID-IGNCRED-orva |
| 169 |1 |067|DCBD MACRO PREVICUSLY USED |
| 173 |1 |062|DDNAME LCNG-TRUNCATED TC 8 CHAR i
174	1	070	devd=opvb IGNORES opnm=0Ofva
175	1	071	INVALID opnm OPERANDC SPECIFIED-IGNCRED-opva
176	1	072	MULTIPLE DEVICE-DEP. PARAM. 1 SPECIFIED-
			IGNORED-opva=ogvb
177	1	073	MULTIPLE DEVICE-DEP. PARAM. 2 SPECIFIED-
I 1	IGNORED TRTCH=opva		
178	0	074	PAD OPERANC GT 50-SPECIFIED VALUE USED-opva
179	0	101	CSECT ORIGIN USED FOR opnm RCCN
180	1		opnm CPERAND INVALID OR NOT SPECIFIED-SET
		_	TO opva
181	1	076	BPY CNTR INDICATES WEAP ARQUND TC TCP CF CRT
[182	1	077	BLC GREATER THAN OR EQUAL TO BLIM {
183	1	002	OPNM INVALID-SET TC opva
184	#*	078	* CURRENT BUFFER opnm=cCEva
185	*	079]	*% CURRENT BEAM POSITION CCUNTER IS l
			X=opnmr, Y-orva
186	1	080jopnm COUNTIER EXCEEDS CRT LIMITS	
187	1	081	LCAD VARIABLE SPACE ORCER MAY NCT HAVE
			BEEN SPECIFIED PRICR TC ENTERING STRCKE MODE
188	2	103jopnm MACRO NOT ALLOWED FOR PRIVILEGED USER	
200	1	101	ZERO USED FOR opnm RCON
201	1	075	VAR OPERAND NOT ALLCWED W/MODE=R
210	2	001	opnm OPERAND REQ'D-NCT SPECIFIED
211	2	002	invalid opnm OPERAND SPECIFIED-opva
L 1 L ! J

In general, you should attempt to continue processing a macro
expansion after detecting an error and generating a wessage. Hcwever,
although it is difficult to generalize, some errors should cause
termination of processing. An example is an invalid MF operand imn an
S—-type macro instruction, which wakes further processing impossible.
Another instance is the occurrance of an error that progogates othex
errors, thereby using up valuable time.

The termination of processing imrlies that you know the user has made
a mistake and cannot continue. It is better to give him the benefit of
the doubt and let him continue. When his program fails, it will fail in
his code and won't attempt to blame his problem on you.

CHDPSECT -- Reserve Storage for Parameter list (nonstandard)

The CHDPSECT macro instruction establishes the next available 1loca-
tion in +the wuser's PSECT as the location at which the parameter list
will ke located. If no PSECT exists when the racro instruction is keing
assembled, then the next available 1location in the current control
section is used, and CHDPSECT generates a branch around the list.

o

-
Name |Cperation|Operand
+
T

—_—

I
[symbol] |CHDPSECT |
| |

1

i

[— e e s s oy
e e e e ki e

oF
[loc—addr],[align—{ }] [,string- text]
OH

symbol
is the symbolic 1location of the first byte to be assigned to the
parameter list.

loc
specifies the location to which the branch instruction is to
transfer control. If this operand is omitted, CHDPSECT establishes
its own branch address. All symbols generated by the macro
instruction must be of the form CHD [X] &SYSNDX where x is an
optional letter used to distinguish symbols when more than one must
be generated. x must be unique for each symbol.
align
specifies the alignment you wish for the beginning of the parameter
list.
OF - specifies alignment on a full word boundry.
OH - specifies alignrent cn a half word
string

srecifies a character string, originally srecified as an operand in
the outer macro instruction, which is to be placed, as is, in the
parameter list. When the character string is used as an ogerand,
the CHDPSECT inner macro instruction generates X*27' to indicate
end of string.

PROGRAMMING NOTES: When the string operand is not specified, you must
specify the address for the branch instruction in the loc operand.

The use of a CNOP to force alignment will be generally ineffective
since the parameter list may be generated in another control secticn
(the PSECT). Placing the CNOP instruction before CHDPSECT will have no
effect other than to align the macro instruction.

Section 4: Defining Macro Instructions 117

SECTION 5: GENERATING AND MAINTAINING TSS/360

System programmers are responsible for generating the sgecific
version of TSS/360 used at each installation; and, they are responsible
for troubleshooting and maintaining that system once it is generated.
Maintenance involves analysis of any system problems that occur, design
of installation required changes (addition, deletions, etc), and the
incorporation of IBM-issued changes applicable to the installation.

SYSTEM GENERATICN

The system generation process consists basically of reassembling and
replacing system modules containing configuration-derendent tables and
other installation-option parameters. System generation macro instruc-
tions are used to control this operation. These macro instructions, as
well as the sysgen process, are described in detail in System Generation
and Maintenance.

SERVICEABILITY AIDS

You have the following facilities for monitoring system performance
and for analyzing sources of system errors once your system has been
generated:

e SYSER Dump: A system output which provides you with information
regarding system failure, and may enable you to pinpoint the source
of trouble in the system.

e Program Checkout Subsystem (PCS): A set of commands that enable you
to 1locate problem sources in nonprivileged, virtual storage pro-
grams. PCS also provides similar, but restricted, facilities for
troubleshooting privileged virtual storage programs. (In the ini-
tial release, no PCS facilities are available for resident
programs) .

SYSER DUMP

The supervisor will provide you with a dump, whenever it encounters
an error, by issuing the ERROR macro instruction. Dumps are also
provided by privileged programs; these are supplied by means of the
SYSER macro instruction. Both of these macro instructions produce
basically the same output.

When an ERROR macro instruction is issued, a message is printed at
the operator's console in this format:

CEAIS SYSERR CODE RSC mmnne t userid volid

where
mm = module ID assigned to the module issuing the call (see Takle
7 for a list of these codes)
nn = indicates the specific error which caused ERROR to be issued
e = error type code
t = time at which the error occurred
userid = user ID of the task in which error occurred
volid = volume identification of the output tape

ERRCR also causes the construction of one of these header records in
the output buffer:
RSC mmnnl t MINOR SYSTEM SOFTWARE ERRCR userid (for erxror tyrpes 1 or 9)

RSC mmnn 2 t MAJOR SYSTEM SOFTWARE ERROR USERID=userid (for error
type 2)

RSC mmnn 3 t SYSTEM HARDWARE ERRCR USERID=userid (for error types 3
or 7)

where mm, nn, t, and userid are as defined above.
When a SYSER macro instruction is issued, a wessage is printed at the
operator's console in this format:

CEAIS SYSERR CODE vvccesssnn t userid volid

where

v
a unique, two-digit identifier (see Appendix E, opt,)

cc

a unique, two-digit identifier (see Appendix E, opt,)
sss

a unique, three-digit identifier (see Appendix E, optas)
nn

indicates a specific error condition in the mcdule
t

time at which the error occurred
userid

user ID of the CPU's current task
volid

volume ID of the output tape

SYSER also constructs a header record in ome of these formats:
vvccesssnn t MINCR SYSTEM SOFTWARE ERROR userid (for error types 1 or 9)
vvcesssnn t MAJOR SYSTEM SOFTWARE ERROR USERID=userid (for error type 2)

vvcesssnn t SYSTEM HARDWARE ERROR userid (for error types 3 or 7)

After writing the message and constructing the header record, SYSER
and ERROR proceed to £ill the outrut buffers with the specified
information. (Refer to Table 6 for a list of the options availakle.)
As the buffers become filled, they will be written to the output tape to
form the SYSER dump. This tape is nine track with standard labels.

Retrieving Your Dump: When it becomes necessary to diagnose system cr
task errors, you will want to retrieve the dump data set and print it con
the system's high speed printer. You can do this by issuing the DEFINE
DATA and PRINT commands described below.

Section 5: Generating and Maintaining TSS/360 119

1 m 1
|Operation |Operand |
L 1 3
r T 1
QDEFINE DATA)| ddname—-alphname , dsorg-PS, DSNAME=SYSTEM. ERROR.DUMP, |
\DDEF UNIT=(TA,9) ,VOL= (,volserno-alphnum) , |
| |LABEL= (, SL) ,DISP= (OLD) |
L L]
ddname
specifies the symbolic data definition name associated with this
data set definition. It provides the link ketween the DCB in the
print program and the data set definition. It must contain from
one to eight alphameric characters, the first of which must ke
alphabetic. The ddname mway not begin with SYS since system
reserved names are prefixed with those characters.
dsorg
specifies PS because the data set is on magnetic tape and has a
BSAM organization.
DSNAME
specifies SYSTEM.ERROR.DUMP, the name of data set +to be printed.
Since the name has been specified by the system, no choices are
available.
UNIT
specifies that the dump is on nine track tape
VOL
specifies the volume serial number of the tape on which the dump is
recorded
LABEL
specifies that standard labels (SL) are used
DISP

specifies that the data set already exists (CLD). This parameter
must be included since the default option is NEW.

After defining your data set, you can obtain its printout by issuing
the following PRINT command.

T
Operation|Operand
(|

]
PRINT g | SYSTEM. ERROR. DUMP, ,
PR

' Hspacing"{é},[ﬂl,[lines—integer],[m}],,

|

|

i ACCEPT

|| exror—< SKIP s [fOorm--specsym]
I

L

END

[e et e st . g . st et g
b e e e e e e o e e =

SYSTEM.ERRCR.DUMP
srecifies the data set you want printed. You have no ortion in
this case.

spacing
specifies the number of spaces you want between lines and may ke
one, two, or three. If you omit this parameter your listing will
ke single spaced. Since the system error processor constructs the
data set without control characters, you cannot specify EDIT.

120

specifies that you want the first logical record in the data set
used as a header 1line on each page. BAs you recall, this first
logical record is supplied by SYSER or ERRCR processing and serves
to identify the dump that follows. You might find this header
misleading for all PAGES kut the first; if so, omit the parameter.

lines
srecifies the number of lines you want rrinted on each page. It
may consist of one or two decimal digits, but two digits are
preferred and 54 lines are standard.

P
specifies that you want the listing pages numkered.

error
specifies the action you want taken when an uncorrectable error
occurs while reading the data set. You might choose to:
ACCEPT - the error record,
SKIP - the exror record, or
END - the print operation.
This last option is not only the default option but possibly the
least desirarle. Since you are in the process of diagnosing rast
errors, it is doubtful that you would want your diagnostic tool
destroyed by the occurrence of another error. If this is the case,
don't omit this parameter.

form

specifies the form number of the paper you want used. Omission of
this parameter indicates that yocu want the installation's standard
form.

The output you receive will depend on the option that was specified
in the macro instruction. In general, storage locations are frinted
eight words to a 1line. Each line is preceeded by the address of the
first kyte in the line and each word consists of eight hexadeciral
digits.

PROGRAM CHECKOUT SUBSYSTEM (PCS)

The eight PCS commands and their function are discussed in detail in
the Command Language User's Guide. The following discussion covers the
precautions you must observe as a system prrogrammer while using PCS
commands because of the limitations imposed on their use by the acticn
of the dynamic loader.

Each D class user is assigned an authority code at JOIN time. Code
'P' specifies system programmer, code 'C"' specifies a master systen
programmer, and code 'U' specifies an ordinary user. When a user
logs—-on, this authority code is used to govern the operaticn cf the
dynamic loader and his use of PCS.

The dynamic loader ignores or overrides control secticn attributes
depending on the programmer's authority code and the library fror which
the module is loaded.

If you are a system programmer with authority code P, you can
checkout nonprivileged system prograns. These programs can be dynamic-
ally loaded from any one of the three major libraries. If the rrogram
is loaded from either JOBLIB or USERLIB, they are assigned +to private,
read/write storage. The attributes of public, read-only, system, cr
privileged are overridden. If it is loaded from SYSLIB, only the public
and read-only attributes are overridden. As a result, you will get a

Section 5: Generating and Maintaining TSS/360 121

private copy of any module dynamically loaded from SYSLIB. Nonprivi-
leged modules so loaded will be assigned writes/fetch protected. This
provides continued protection for the rrivileged routine.

This action of the dynamic loader on modules you invoke as a user
with authority code P has the following impact on your wuse of PCS
commands:

1. You may wutilize all PCS commands in testing your nonprivileged
programs,

2. You may utilize symbolic addressing to display or dump any
privileged CSECTs which have been dynamically loaded,

3. You may display or dump the contents of virtual memory.

If you are a master syster programmer (authority code 0) , any mwodule
you dynamically locad will be assigned to private read/write storage.
The attributes of public, read-only, system, and privileged are overrid-
den by the dynamic loader.

Your PCS capabilities with respect to ncnprivileged programs are the
same as they are for a nonprivileged system program. In addition, you
can display,dump, or set IVM. You must exercise extreme caution in
setting IVM, particularly in a multi-CPU environment, since other CPUs
may be accessing the code you are setting.

You cannot access other shared codes in the system for PCS testing,
since it is not part of your virtual memory.

You will also find that your ability to check dynamically loaded
privileged modules is quite limited due to several factors. Primarily,
the LOAD and RUN commands will not accept module names beginning with
CHB or CZ. These are the prefixes of the privileged routines.

You can, of course, load one of these modules under an alias. The
RUN command, however, activates with a nonprivileged PSW key of 1. If
you do manage to load the wmodule under an alias, it will manage to run
until it attempts to access or transfer control to another privileged
module. At that point, the disrarity in PSW keys will result in a
program iaterrupt.

PCS operates with nonprivileged save area one. As a result you

cannot display, dump, or set registers or PSW information relating to a
program executing in privileged mode.

SYSTEM MAINTENANCE

You should not attempt modificaticn of TSS/360 unless you are an
experienced system programmer who has a thorough knowledge of the
system®'s intermal specifications (in particular of the interfaces
involved in each modification). Detailed information akout system
modification may be found in System Generation and Maintenance.

In designing local changes to T$S/360 you will follow a procedure
something like this:

1. Define the function to be accomplished.
2. Identify the modules to be added, amended, or deleted.
3. Define the interface of these modules with all other TSS/360

modules. The control section dictionaries of modules currently in
the system provide you with a listing of all the module's REFs and

122

DEFs. This is a start in determining, for example, how an existing
module (that is to be changed) is currently “plugged into®™ the
system. However, care must be exercised, as this information may
be deceptive. For example, an external address can be loaded into
a register, and the register (instead of the external address) can
subsequently be referenced in the program. You might see this,

BOLD L 5,=V (CHBSYS) SYSTEM TABLE ADDRESS
USING CHASYS,5 FORMAT OF SYSTEM TABLE
SNEAKY L 6,SYSOCT EXTERNAL REFERENCE
L 7,60 (5) EXTERNAL REFERENCE

The symkol CHBSYS is an external sywmbol and would arpear in the
control section's dictionary as an external reference (REF). The
reference to SYSOCT would not appear as an externmal reference,
though, and the reference 60 (5) isn't even a symbolic reference.
The cross reference dictionary would show you that statement BOLD
references the externally defined symbol CHBSYS; you have to figure
out that its also referenced by SNEAKY.

Unfortunately, there's no convenient way to determrine what
programs actually do reference the external symbols defined in a
given program. The instruction,

ENTRY ABCRJG

allows other programs to reference the symbol ABCRJG. There is no
guarantee, however, that any other programs will actually reference
ABCRJG. Consequently, if you delete a program from TSS/360, you
have no systematic way to determine which programs reference cr
make use of the program you're deleting. You can determine such
referencing only by carefully studying the function of the frograr
being modified or replaced, and by understanding its role in the
overall design you’re trying to change.

You might be tempted to 1list all the external symbol dic-
tionaries of all the program modules that make up TSS/360, as a way
of determining their respective interdependencies. Although this
might prove helpful, it is not foolproof. Some programs set up
registers with external addresses for use by other fprograrms that
know what the registers are surposed to contain. A program using
registers set up by another program might not contain a single
explicit external reference. You might see this,

OBVIOUS L 6,=V (CHBSYS) LOAD EXTERNAL SYMBOL
L 15,=V (SNEAKY) LCAD ADDR CF SURROUTINE
BASR 14,15 TRANSFER

The sukroutine might look like this,

SNEAKY USING *,15 DECLARE BASE
L 8,12(6) - HICDEN EXTERNAL REFERENCE

The external reference to CHBSYS would never show ur in the
external dictionary of the program module containing SNEAKY. You
must, therefore, beware of this situation, as you will encounter it
often.

Write the necessary assembler statements.

Assemble and test the new or amended rodules and store ther in the
same library.

Section 5: Generating and Maintaining TSS/360 123

6. Update the TSS/360 system data sets using the system—-edit control
statements and procedures described in System Generation and
Maintenance.

124

o

SECTION 6: PROGRAMMING WITH PRIVILEGE CLASS E

As a system programmer, you may be joined to the system with combined
privilege classes D and E; each class is associated with a particular
set of facilities that is available for your use.

The assignment of privilege class D (along with your authority code
of P or S) designates you as a system programmer. This privilege class

‘provides you with the facilities described in Assembler User Macro

Instructions and Command Lanquage User's Guide; in conjunction with your

authority code, class D also provides you with the facilities discussed
earlier in this publication.

The assignment of privilege class E, which designates you as a system
monitor, extends the range of facilities availakle to you. Through
certain options that only the privilege class E programmer can use in
the DATA DEFINITION (DDEF) cormand and macro instruction, and in the DCB
macro instruction, you can designate specific I/C devices and directly
utilize unit record equipment. It also provides you with the ability to
use (for system routines) the multiple sequential access method (MSAM)
and the terminal access method (TAM), denied to ordinary users and to
system programmers who have not been assigned privilege class E in
addition to their privilege class L[C. It also provides you with the
ability -- denied to privilege class D programrmers -- to directly
control unit record equipment when using the basic sequential access
method (BSAM) .

DESIGNATING I/0 EQUIPMENT

When you have been joined with privilege class E, you have several
options in the operand field of the LATA DEFINITICN (DDEF) command and
macro instruction, and DCB macro instruction, that are not shown in the
detailed descriptions in Comrmand ILanguage User's Guide and Assembler
User Macro Instructions. Except for these options, which will be
described in detail here, the parameters you may use are those shown in
Appendix G of each of those puklications.

SYMBOLIC DEVICE ADDRESS

One of the options available to you, as a system programmer with
privilege class E, is to designate the I/0O device you want to use by its
symbolic address. This can be accomplished by entering

»UNIT= (SDA=code)

in the operand field of the DATA DEFINITION (DDEF) command or macro
instruction, where "code" is a one-to-four-hexadecimal-digit symkcl
(from 1 +to 1FFF) assigned at system generation to the desired I/O unit
as its symbolic address. By choosing this option, you can designate a
particular terminal (for TAM programming), a rarticular unit record
device (for MSAM, BSAM, or IOCREQ programming), or a particular tape
drive or direct access I/0 device (for BSANM, ICREC, or VAM rrogrammring) .

DESIGNATING DEVICES FOR MSAM
In addition to SDhA=integer, three other codes may be used with the

UNIT keyword parameter of the DDEF command and macro instruction, when
using MSAM. You may write

Section 6: Programming With Privilege Class E 125

SDA=code
UNIT=) PC

PR

RD

where SDA= is followed by the symbolic device address of the desired
unit record device, PC is a card punch, PR is a printer, and RD is a
card reader. If you use the wultirle sequential access method, one of
these options must ke specified.

When using MSAM, you must specify the code PS (rhysical sequential)
for the positional data set organization (dsorg) parameter of the DDEF
command and macro instruction, and the code MS (multiple sequential) for
the keyword data set organization (DSORG=) parameter of the DCB macro
instruction.

DESIGNATING DEVICES FOR TAM

When wusing TAM, you must denote the terminal with which you want to
communicate, by means of its symbolic device address. Hence, the only
permissible entry in the UNIT subparameter field of the DDEF command and
macro instruction is

+UNIT= (SDA=code)

In addition, when wusing TAM, you must specify the code CX in the
second -positional parameter (dsorg) of the DDEF command and macro
instruction. This code must alsc be used with the DSORG keyword
parameter of the DCB subparameter list of the DDEF command and macro
instruction and the DCB macro instruction.

CONTROLLING I/0 DEVICES FOR BSAM

In addition to those detailed in Assembler User Macro Instructions,
two macro instructions are available to you as a privilege class E
programmer when you are using the kasic sequential access method (BSAM).
These macro instructions provide you with the ability to exercise
greater control over the I/0 devices you are using.

CNTRL -- Control On-Line Input/Output Devices (R)

The CNTRL wacro instruction 1is used to perform operations on
magnetic-tape drives and on-line card readers and rrinters in which data
is not transferred. The following functions are provided: magnetic-
tape positioning, card-reader stacker selection, and printer carriage
control.

T T
Name |Operation|Operand
1 1

H L]
(symbol] |CNTRL l{dcb—addrx},faction-code[,number—value%

| ! Q) l (0)

L

o s e s —
b e e s s

dcb
specifies the address of the data control block opened for the data
set being processed. If you write (1), the address must be loaded
into general register 1 before execution of this macro instruction.

action
srpecifies, by a code, the service to be performed:

126

5SS

Sp

SK

BSR

BSM

FSR

FSM

FSF

BSF

WTM

REW

RUN

ERG

number

causes a stacker to be selected for a card reader (stacker 1
or 2).

causes a line space on a printer, space 1, 2, or 3 lines.

causes a skip on the carriage-control tape for a printer skip
to channels 1 through 12.

causes a backspace over a specified number of blocks c¢n
magnetic tape; one block is assumed if the nuwber operand is
omitted; BR is the abbreviated code.

causes a lkackward motion rast a wagnetic-tape mark and a
forward space over the tape mark; a number value of 1 is
assumed; BM is the abbreviated code.

causes a forward space over a specified number of blocks on
magnetic tape; one block is assumed if the number operand is
omitted; FR is the abbreviated code.

causes forward motion past a magnetic-tare mark and a Lacks-
pace over the tape mark; a number value of 1 is assumed; FM is
the akbreviated code.

causes forward motion past a magnetic-tape mark; a numker
value of 1 is assumed; FF is the abbreviated code.

causes backward motion past a mwagnetic-tape mark; a number
value of 1 is assumed; BF is the abbreviated code.

causes a tape mark to be written on magnetic tape; a number
value of 1 is assumed; WM is the abbreviated code.

rewinds magnetic tape; RW is the abbreviated code.

rewinds and unloads magnetic tape; RU is the abbreviated code.

causes an erase gap to be executed for magnetic tape; ER is
the abbreviated code.

If you write (0), the two—-character action code must be placed
in the +two high-order bytes of general register 0 before
execution of this macro instruction. In the case of three-
character action codes, the abbreviated code must be placed in
those bytes.

specifies a value for the stacker number, number of lines to be
skipped on the printer, printer carriage-tape channel, or nurber cf
blocks on magnetic tape to qualify the action orperand. The maximum
value is 32,767. If you write (0), the value must be placed in the

Section 6: Programmring With FPrivilege Class E 127

two low-order bytes of general register 0; value 1is a binary
integer.

CAUTICN: If magnetic-tape rositioning is performed, an uncorrectable
tape-sracing error results in linkage to the user's SYNAD routine; this
does not apply to action codes SS, SP, SK, REW, or RUN. See Arpendix B
of Assembler User Macro Instructions for a description of SYNAD.

Abnormal termination occurs if:

1. Action code is undefined or not applicable.

2. Number parameter is undefined for the action parameter.

3. A SYNAD-type error occurs and you have not provided a SYNAD
address.

4. The specified data control block has not been validly orened.

5. The outstanding read or write orerations have not been checked.

PROGRAMMING NQTES: For stacker selection, the DCBNCP field of the data
control block must be 1. Each READ macro instruction directed to a card
reader must be followed by a CHECK mwacro instruction and a stacker
selection CNTR macro instruction directed to the same device. Stacker
selection is not availakle for the card punch excert through changing,
in your program, the DCBSTA field in the data control block.

You must check READ and WRITE ogperations for completion Lbefore
issuing the CNTRL macrco instruction. If you are using the” mwacro
instruction to control stacker selection, you must issue it for each
read oreration except the last. The CNTRL macro instruction must not ke
issued for the last read operation (i.e., the READ macro instructicn
which, when checked, invokes EODAD) since no card was read.

For printers, a skip to a given channel results in no action if the
device is already at that channel.

Control is returned to you if a tape mark or a load point is
encountered while an attempt is being made to forward space or backspace
blocks (control is not given to +the SYNAD 1routine). Register 15
contains binary O0s if the operation is completed normally; otherwise, it
contains a count of the remaining numwber of forward sraces or backspaces
that were not completed in its low-order two bytes.

NOTE: The CNTRL macro instruction may also Lke used by a class D
programmer for magnetic-tape rositioning. However, use of the CNTRL
macro instruction for card-reader stacker selection and for printer
carriage control is restricted tc class E programmwers.

PRTOV —-- Test for Printer Carriace Ovexrflow (R)

The PRTCV macro instruction is used to control the page format for an
on-line printer. As a privilege class E programmer, you can test
channel 9 or 12 of the printer control tape to determine if an overflow
condition exists.

Before testing overflow indicators, PRTCV waits for completion of all
previously requested printing.

r T T

Name Operation|Operand
1 lp lp
[}
| [s
|
1

e P S

T
[.ymbol]iPRTOV |{dcb—addrx},number-{9|12}[, userrtn—addrx}
| ! M (0)

1

128

dcb
specifies the address of the data control block opened for the data
set being processed. If you write (1), the data control block
address must be loaded into general register 1 before execution of
this macro instruction.

number
specifies either 9 or 12 as the channel to be tested for an
overflow condition.

userrtn

specifies the address of a routine which is to be given control if
the appropriate program indicator (for channel 9 or 12) is on when
tested. If you write (0), the address must be loaded into general
register 0 before executicn of this macro instruction. If you omit
this operand, and if the overflow condition exists, an automatic
skip to channel 1 will be performed prior to +the next WRITE
oreration.

CAUTION: Abnormal termination occurs if the data control block you have
specified is not validly opened.

PROGRAMMING NOTES: This macro instruction causes no action if used for
a device other than a printer.

If a WRITE macro instruction is directed to the printer and a CHECK
macro instruction is not issued to verify its execution, the channel
overflow indicator may not have been set to produce the desired results
when the PRTOV macro instruction is issued.

If the wuser routine includes a PSECT, it must be the same PSECT as
the routine that issues the PRTOV macro instruction. To continue
processing at the point where the PRTOV macro instruction was issued,
the user routine must branch to the address that was contained in
general register 14 upon entry to the usexr routine. A RETURN macro
instruction cannot be used for this rurrose.

If no user routine is specified, execution of the problem rrogram
continues after a PRTOV macrc instruction is issued. When the line
associated with the first WRITE macro instruction issued after the PRTCV
is to ke printed, the appropriate rrogram indicator is tested. An
automatic skip to channel 1 is performed if an overflow has occurred.

If a user routine 1is specified, the control program waits after a
PRTOV macro instruction is issued. When all prior print orerations are
complete, the appropriate program indicator is tested.

The contents of the general registers upon entry to the user's
overflow routine are:

LJ
egister| Contents
4

1
|Unspecified
|Address of data control block

to 13 |Same as kefore macro instruction was executed
|Return address ’
|Address of userrtn routine
!

- N - O o

oo e e e . e e e
wn &

e U Sepi——

Section 6: Programming With Privilege Class E 129

EXAMPLES: In EX1, an overflow condition on channel 9 of the gprinter-
control tape results in an automatic skip to channel 1 since the
operand, userrtn, is omitted. 1In EX2, an overflow condition on channel
12 results in control being given to the user's overflow routine.

EX1 PRTOV OUTDCB, 9
EX2 PRTCV PRINTDCB, 12, OVERFLOW

MULTIPLE SEQUENTIAL ACCESS METHOD (MSAM)

The multiple sequential access method, MSAM, provides a fast and
efficient mechanism for simultanecusly driving, under the control of a
single task, several card readers, card punches, and printers. The
access method's macro instructicns provide automatic buffering and
automatic error retry options.

GENERAL DESCRIPTION

MSAM will support both fixed (F) and variable (V) format records.
MSAM routines buffer logical records into system-provided buffers, each
of which resides in a separate rage of virtual memory. The basic user
interface to MSAM is the GET, PUT, OPEN, CLOSE, SETUR, and FINISH macro
instructions.

MSAM also provides you with the capability of efficiently processing
data on multiple unit record devices within one task. While this is
possikle within other TSS/360 access methods, MSAM alone has defined its
user—interface (macro instructions) in such a manner that the system
service routines need not end the task's time-slice while waiting for
the occurrence of an event, such as I/C completion. This efficient
device utilization is accomplished by defining macro instructions which
provide a return code to inform the invoking routine that a delay is
necessary before the request, such as GET, PUT, or FINISH, can ke
completed. This transference of the resronsibility of waiting, from the
control rrogram +to the invoking routine, provides the akility for the
task to process all its opened DCEs until all DCBs accessed require
waiting. Then the task may wait for the first I/C interrupt for any DCB
in the task.

MSAM also differs from other sequential access methods in that each
MSAM I/0 request of the system processes a buffer group of physical
records. In the other methods, each I/C request cf the system is fcr
only one physical record. Considerakle processing is required in IOS
and the access mechanism for each I/C request of the system, regardless
of buffer size. Usually, MSAM will invoke an I/C request only once for
processing each tuffered page. However, some kuffers, such as the last
buffer in a data set, may contain fewer records.

DCB OPTIONS

You can reference the inforration stored in the data control block by
means of the DCBD macro instruction, which is described in Assermbler
User Macro Instructions. The options available to you may be selected
by correctly filling in the DCB fields described below. The sources of
this information are given in Table 10.

130

Table 10. Sources of DCB Information for MSAM

r Al
|DCB Field Alternate Sources i

L T L} T —‘|

|Your program |DDEF command and |DCB macro |Your rrogranm|

|prior to OPEN|macro instruction]|instruction|after OPEN
i L 4

e o — —

r
| *Only checked if DEVD specifies a printer (PR).

|

‘ll T T T <l'

| DSORG [X [| | |
| MACRF | X 1 X | X | i
| DDNAME | X | X I I
| DEVD 1 X X | X | I
| PRTSP? I X X I X | X2 1
| MODE3 | X X I X | X2 I
| STACK3 1 X X | X | X2 |
|RECFM [X I X | X | X2 I
| LRECL X X 1 X | X4 |
| POCKET X I | X2 I
5 L E
| INHMSG X X I X i X I
|FIP | | | | xe |
| COMBINE X I I |
| FORMTYPE X | | X2 |
L L | AL g %
]

|

20nly if a FINISH wmacro instruction has been executed and a return|
code other than 4 was provided, and if no GET or PUT macroj
instruction has been executed after the FINISH.

30nly checked if DEVD specifies a card punch (PC) or a card reader
(RD) .

SOnly if a SETUR macro instruction has been executed and a return code
of 4 was provided.

60nly if a FINISH macro instruction has been executed and a return

|
|
|
|
|
|
| #For format-F records, footnote 2 arrlies.
|
|
|
|
|
| code of 4 was provided.

L

e e s et i S i e et — — ——

DSORG
must be set to indicate MS.

MACRF
must specify only GET oxr PUT macro instruction (all other corxbina-
tions will cause abnormal termination of the task in OPEN).

DDNAME

must be three to eight alphameric characters.
DEVD

must be PR, PC, or RD.
PRTSP

srecifies the line spacing as 0, 1, 2, or 3 after printing. The
PRTSP field will be ignored if (A/M) is specified in the DCR RECFM
field. PRTSP may be used but cannot vary ketween each PUT. If the
field is not supplied in the DCBE at CPEN time, one line of sgacing
is assumed. If neither 2 nor M was specified in the DCB, and
channel 12 is sensed in the carriage control tape, an autcmatic
skip to channel 1 is performed by the system.

Section 6: Programming With Privilege Class E 131

MODE

must be C (column binary mode) or E (EBCDIC mode) . The value cf
the MODE field may not be modified after the LCB is opened except
ketween a completed FINISH and the next GET or PUT macro instruc-
tion. A binary value of 1 in this field specifies column binary
and binary value of 0 specifies EBCDIC. If the mwode is not
specified, EBCDIC is assured.

STACK

srecifies the stacker bin (1, 2, or 3); stacker bin 3 way be
srecified only if the punch (PC) is specified. The STACK field is
ignored if (A/M) was specified in RECFM at CPEN time. STACK may
not be changed for each GET or PUT to a card punch so that the
stacking of each card wvaries. If the field is not surrlied,
stacker bin 1 is assumed.

RECFM

LRECL

132

specifies the characteristics of the records in the data set.
Although any of the following order are valid

(F/7v) [B] [A/M]

B will be ignored. Any other record format designations will cause
CPEN to abnormally terminate the task.

Control Characters [A/M]: As an optional feature, records .may
include a control character in each logical record. This contrcl
character will be recognized and processed if a data set is Dbeing
written +to a printer or punch ky MSAM. This character is provided
by the user as the first byte of the logical record. Two options,
A and M, are availakle. TIf either option is specified in the data
control block, the character must appear in every record.

Machine Code (M) - The user may specify in the data control tlock
that the machine code control character has been rlaced in each
logical record. The byte supplied by the user must contain the bit
configuration specifying a write and the desired carriage- cx
stacker-select operation (this permits independent carriage- and
stacker-select operations).

Extended USASI Code (A) - The user may choose to specify this code
rather than the machine code; the control byte must appear in each
logical record if this option is chosen.

For format-F records, LRECL srecifies the length in bytes. This
length must include the control character for an output data set if
(&s/M) is specified in RECFM. LRECL may not exceed 80 bytes for
reading in EBCDIC mode, and 160 bytes for column binary mode. For
an output data set, on a printer, the maximur is 133 bytes; on a
card punch, 81 bytes for EBCDIC and 161 bytes for column binary -
the additional Lyte for output data sets is for the control byte
only if (A/M) is specified in the RECFM.

For format-V records, LRECL specifies the waximum length in bytes
of a logical record. LRECL may ke modified after the DCB is orened
at any time. LRECL for an input data set may not exceed 84 Lbytes
for reading in EBCDIC wmode and 164 bytes for column binary mode.
For an input data set, on a printer, the mwaximum is 137 bytes; for
a card punch, 85 bytes for a EBCDIC and 165 bytes for column
pinary. The additiconal byte for output data sets is for the
control byte only if (A/M) is specified in the RECFM. The four or
five control bytes of a format-V logical record are not punched crx
printed. A format-V logical record will have five control bytes
when a USASI or machine control character is specified.

BLKSIZE
this field is not referenced by MSAM routines, as only unit record
equipment is supported. Unit records (card images or print 1lines)
are considered to be unblocked. Unblocked is defined as one
logical record recorded on one rhysical record.

EODAD
not referenced by MSAM routines.

SYNAD :
not referenced by MSAM routines.

POCKET
a one-byte field to indicate error card stacker bin (for card
reader on 2540 only). Options are CRG, 1, or 2. ORG means stack
as if no error occurred, 1 means stacker bin 1, and 2 means stacker
kin 2.

RETRY
a one-byte field to indicate data check error retry for 2540
reader. The options are N or U, where N indicates no retry and U

indicates unlimited retry.

SUR

this bit will be set to 1 by the SETUR routine when the SETUR macro
instruction is issued. The bit is set to 0 when the SETUR routine
returns any return code other than 4. Thus the bit indicates that
the unit record setup is in progress. If a problem program has
issued a SETUR macro instruction and received a return code cf 4
and if, for any reason (such as an asynchronous operator message),
the problem program wants to suppress the completion of the SETUR,
it may do so by setting this bit "DCBSUR" to 0 and reissuing the
SETUR macro instruction.

INHMSG

this bit should be set to 1 if the proklem program wants to inhibit
messages to the operator, to remove the data group when a CLOSE or
FINISH macro instruction is issued. If this bit is set to 0, and
CLOSE or FINISH is issued, a message will be sent to the orerator
to remove the data grour from the device. When the operation
indicated by the WTO is comgplete, the operator will generate an
asynchronous interruption by changing the status of the device from
"not ready" to "ready". This bit "DCBINH" may be referenced Ly
users of the DCBD macro instruction.

FIP
this bit will be set to 1 when the FINISH macro instruction is
issued. The kit is set to 0 when the FINISH routine returns any
return code other than 4. Thus, the bit indicates that FINISH is
in progress. If a problem rprogram has issued a FINISH macro
instruction and received a return code of 4, and for any reascn
(such as an asynchronous operator message) the problem program
wants to suppress the completion of FINISH, it wmay do so by setting
this bit "DCBFIP" to 0 and reissuing the FINISH macro instruction.

COMBINE
if this bit is set to 1, both the card reader and the card punch on
the same 2540 will be assigned to the output operation. Each tirme
a FINISH or a CLOSE macro instruction is issued, a card will be
read from the reader and stacked in pocket 3.

FORMTYPE
specifies the print error retry. Normally, this parameter is
rrovided by SETUR's SYSURS specification. There are three ortions:
D, F, and S. The D, or dump-type, ofrtion specifies that after

Section 6: Programming With Privilege Class E 133

retry the line in error is to be struck out, one line space is to
be skipped, and the line is to be rewritten.

The F, or form-sensitive, option specifies that after retry the
entire page containing a line in error is to be reprinted; control
characters must be in wuse and at least three buffers must be
available. The S, or sequence-sensitive, option specifies that
after retry printing is to be continued with the next line afterx
the line in error. 1If SETUR is not called, the default value for
the option is D.

DDEF COMMAND AND MACRO INSTRUCTION

The general format of the DEFINE DATA (DDEF) command and macro
instruction are given in Appendix G of Command Lanquage User's Guide and
Appendix G of Assembler User Macro_ Instructions, respectively. When you
are using MSAM, you must specify the code PS as the dsorg positional
parameter. In addition, you can specify SDA=code, PC, PR, or RD with
the UNIT keyword parameter, as described in detail earlier wunder
"Designating I/0 Equipment,”™ and the DISP keyword parameter must be OLD
when using the card reader, and NEW when using the card punch or
printer.

GENERAL SERVICE MACRO INSTRUCTIONS

Two general service macro instructions, OPEN and CLOSE, are available
for use with MSAM routines.

OPEN -- Prepare the Data Control Block for Processing (S)

The OPEN macro instruction initializes one or more data control
blocks for processing of their associated data sets. During the
execution of OPEN, the user's DCB exit routine is given control if
supplied by the user.

r 1 T |
| Name |Operation|Operand |
1 [[4
r T L] 1
| [symbol] |OPEN | ({ dcb-addr, [(opt-code)] ,}...) |
L 1 1 J
dcb

specifies the address of the data control block to be initialized.

opt
specifies the intended method of input/output processing of the
associated data set. The codes and their meaning are:
INPUT Input data set; this value is assumed if opt is omitted.

OUTPUT Output data set.
CAUTION: The following errors cause the results indicated:

134

T

T
| Exrorx
L i

R
¥
jOpening data control block that is already open No action

|
] |
|
|

e s vkt <o vl

|Specifying address of invalid data control block ask terminatedl

T
!
Opening data control block when DDNAME has not been Task terminated|
| provided }
|
Opening data control block when corresponding DDEF |Task terminated|
Jmacro instruction or command has not been provided | (pxrompting will]
|be given if |
jtask is conver-|
i] sational) |
|
Opening data control block containing invalid DSORG {Task terminated]
|specification | |
[} 4

L

PROGRAMMING NOTES: You may specify any number of data control block
addresses and associated options in the OPEN macro instruction. This
facility allows parallel opening of the data control blocks and their
associated data sets.

OPEN initializes all the fields in the MSAM portion of the DCB, as
well as obtains all the pages necessary for MSAM operations.

If the DCB COMBINE flag is set, the reader is assumed to be on the
same 2540 frame as the punch and the symbclic device address of the
reader must be one greater than that of the punch.

A violation of any of the following restrictions will cause the OPEN
macro instruction to abnormally terminate the task.

1. The DCB MACRF field must specify only that GET or PUT macro
instructions will be issued.

2. The DCB DEVD field must specify (possibly from the DDEF command) a
card reader, card punch, or printer, and this device must corres-
pond to the device specified in the DDEF command.

3. If the device is a card reader, the data set must be opened for
input.

4. If the device 1is a card punch or printer, the data set must be
opened for output.

5. The DCB RECFM field must indicate fixed-format records or variable-
format records; A/M control characters may also be specified.

6. The DCB DEVD must specify the card punch, if the DCB COMBINE flag
is set.

USE OF I- AND E-FORM: You may use the L- and E-form of this macro
instruction. The E-form may specify any parameters. Furthermore, the
parameters specified in the E-form will overlay parameters specified in
the L-form. The E-form may not specify more DCB operands than are
specified in the L-form.

CLOSE —-— Disconnect Data Set from User's Problem Program (S)

The CLOSE macro instruction disconnects one or more data sets from
the user's problem program.

Section 6: Programming With Privilege Class E 135

r T T 1
| Name |Operation|Operand |
b + + {
| [symbol}] |CLOSE | (dcb-addr, ...) {
L L A 4
dcb

specifies the address of the data control block opened for the data
set whose processing is to terminate.

CAUTION: The following errors cause the results indicated:

Exrror

g s oy

Result
N

}JClosing data control block that is already closed o action

|data control block Task terminated

JClosing data control block containing invalid DSORG

|specification
L

1
[
}
L)
.'
{Closing when dcb operand does not specify address of |
[
|
| .
| Task terminated
L

b e oo cmsans 200 s e st sl e wd

PROGRAMMING NOTES: You may specify any number of data control block
addresses and associated options in the CLOSE macro instruction. This
facility makes it possible to close data control blocks and their
associated data sets in parallel.

In most instances, the FINISH macro instruction should precede CLOSE
(see the more detailed explanation of the FINISH macro instruction in
"Macro Istructions for MSAM") since you cannot be informed from CLOSE of
errors that may have occurred in processing the last output buffer page.
Additionally, the use of CLOSE without a preceding FINISH that returned
a normal completion code would cause the task to wait until the I/O
operation for that DCB is complete.

The CLOSE macro instruction for MSAM releases all the storage area
that was used for MSAM. The options of REREAD and LEAVE are ignored.
If the FINISH macro instruction did not precede the CLOSE, and if the
DCB INHMSG=0, a message will be written to the operator to remove the
data set from the device. If +the DCB COMBINE flag is set and if a
FINISH did not precede the CLOSE, a card will be read from the reader on
the same 2540 as the selected punch and stacked in pocket 3.

USE OF L- AND E- FORM: You may use the L- and E-forms of this macro
instruction. The E-form of the macro instruction may specify any
parameters. Furthermore, the parameters specified in the E-form will
overlay those specified in the L-form. The E-form may not specify more
dcb operands than are specified in the corresponding L-form.

MACRO INSTRUCTIONS FOR MSAM

There are four macro instructions that you may use in your MSAM
programs. One of these, SETUR, enakles you to specify the unit-record
configuration you desire for on-line printers and punches. Two of the
others, GET and PUT, access logical records and may be specified in
either a move mode or a locate mode; the third, FINISH, informs the MSAM
routines that a break point has been reached in processing a data set.

Interrupt Entry Handling

For each of the MSAM macro instructions (SETUR, GET, PUT, and
FINISH), a return code of 4 indicates that the operation has not yet

136

been completed. In each case, the macro should be reissued, until a
return code other than 4 is received. However, between repetitions of
the macro instruction, you should interrogate DCBICB and, if it is
non-zero, 1invoke the interrupt inquiry routine by issuing the INTINQ
macro instruction (which is described in Assembler Users Macro Instruc-—
tions) to determine whether an asynchronous interrupt is pending. If
you should find that this is indeed the case, you should give control to
the appropriate interrupt-handling routine and defer reissuing the MSAM
macro instruction until you have control returned to your program.

SETUR - Unit Record Device Set Up (R)

The SETUR macro instruction enables you to specify the unit record
configuration for on-line printers and card punches.

r T T H
| Name |Operation |Operand |
b 1 + {
| | | addr addr |
| symbol |SETUR jdcb- « Pparam- } |
L Lt © |
dcb

srecifies the address of the data control block opened for
processing a data set on a printer or card punch.

param
specifies the address of the unit reccrd device-setup parameter.
For card punches, the parameter is the desired form number and is
10 bytes in length. For printers, the parameter is a six-byte key
used to refer to a VISAM system data set (SYSURS).

PROGRAMMING NOTES: The SETUR macro instruction should be issued before
any I/0 operations are directed to a printer or punch, to ensure a valid
setup. This 1is done by issuing SETUR immediately after opening a data
set or after the FINISH macro instruction is executed and the 1I/0
operation completed.

Card Punch: The setup for a card punch is descriked by the form numbe
of the card that the operator is to load into the punch-feed hopper o:
the 2540. This form number is an installation-defined constant. When
the macro instruction is executed, the SETUR routine checks to see which
form is mounted in the punch (the currently mounted form number -- or
zeros if +the DCB was just opened -- is stored for each device in the
SDAT) . If the desired form is already mounted, control is returned tc
the invoking routine with a return code of 0. If the form is not
mounted, a message is written to the operator (WTO) to mount the desirecd
form number (10-byte parameter), and to ready the 2540 punch. A returr
code of 4 is provided to the calling task. When the operator indicates
the punch is properly loaded, by causing a not-ready to ready interrupt,
the SDAT is changed to reflect the new form number and on the next call
to SETUR control is returned to the invoking routine with a return code
of 0.

Printer: A maximum of nine variables can be used to describe the setugp
of a printer. The six-byte parameter whose address is specified in the
SETUR macro instruction is used as a key to read the VISAM syster data
set SYSURS. This data set, maintained by the installation, defines a
setup configuration for each KEY (rarameter). The following setup
variables are specified in the SYSURS data set and are stored in the
SDAT or DCB or DEB page.

1. Form Numker: the number of the form to be mounted; this number is
an installation-defined 10-byte EBCDIC constant.

Section 6: Programming With Privilege Class E 137

138

Carriage Tape Number: the number of the carriage control tape to
be mounted; this number is an installation-defined four-byte EBCBIC
constant.

Chain/Train Type Number: the number of the print chain or print
train to be mounted in the 1403; this number is an installation-
defined four-byte EBCDIC constant.

Density Number: the density of lines per inch to be selected for
the printer; this is a TSS/360-defined one-byte number, which must
be an EBCDIC '8' or EBCDIC ‘'6°'.

Form Type Code: specifies the error retry to be used with this
printer configuration; it is a TSS/360-defined one-byte code, which
must be an EBCDIC 'D', an EBCDIC *'F', or an EBCDIC 'S‘'.

D
designates a storage DUMP-tyre retry including striking over the
line in error, spacing one line, and rewriting the 1line. If
three such strike-out lines should appear on one page, an eject
to channel 1 is performed. The strike-over character for nonUCS
(universal character set) printers is an EBCDIC *X'.

designates a FORM-sensitive error retry including write-to-
operator (WTO) to mark the error form, eject to channel 1, and
rewrite the entire form (page). If a form-type F is specified,
the USASI or machine-type control characters must be used to
control the carriage and printer. Also, SDAMRB, the number of
buffers specified in the SDAT, must be at least 3 to ensure that
at least one page image is available for error retry.

Note: Buffers required to store page images reduce I/0 overlap.

designates a SEQUENCE-sensitive error retry including write-to-
operator (WTO) to mark the error form. The system completes the
error form and continues to the next form when a not-ready to
ready interrupt is received. ©No attempt is made to reprint the
error form. If a form-type S 1is specified, the USASI or
machine-type control characters must be wused to control the
carriage and printer.

UCS Folding Code: specifies whether the folding option of the
universal character set feature is desired. The code is not
referenced if the printer is not equipped with the UCS special
feature. This one-byte EBCDIC code 1is TSS/360-defined. The
possible codes are F (folding) and U (unfolded) .

UCS Strike-out Character Codle: determines the UCS strike-out
character to be used in connection with error retry. This code is
never referenced if the printer is not equipped with the universal-
character special feature, or if the form-type code is not D. The
code 1is a two-byte EBCDIC field; each of the bytes may be set to a
numeric 0-9 or a letter in the range A-F and represents one
hexadecimal digit. The two combined hexadecimal digits represent
the UCS strike-out character. For example, an EBCDIC two-byte code
of 'D8', when translated into hexadecimal, becomes *1101 1000*' in
binary, which is the graphic "Q" in EBCDIC. This may be printed
with UCS as another graphic.

UCS Buffer Load Key: a six-byte, installation-supplied constant
key used to read the VISAM system data set SYSUCS, which specifies
a 0UCS kuffer configuration. This key 1is not referenced if +the

printer is not equipped with the UCS special feature. SYSUCS also
contains a 40-byte verification message.

9. Printer Alignment Message: a message occupying one print 1line of
132 bytes, to be written on the printer so that longitudinal form
alignment may be accomplished.

EXECUTION: Upon completion of the SETUR macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All return codes are multiples of 4 and their
meanings are given in Table 11.

When the SETUR macro instruction is executed, the routine determines
if the present configuration of the printer, specified in SDAT, is the
configuration specified by the SETUR parameter. If the desired form,
carriage tape, chain/train, and/or density is already as required, the
operator is notified of the current configuration; control is returned
to the invoking routine. If +the desired setup configuration is not
present, the system initiates the action necessary to achieve the
desired setup. This may include:

1. A write-to-operator message to mount the desired form or carriage
tape or chain/train type; to select a different density; or any
combination of the above. When the message to the operator has
been written, a return to the invoking routine 1is made with a
return code of 4.

2. After an asynchronous interrupt is received from the device
indicating that the operator has hit the STOP button and then the
START button, subsequent issuance of the SETUR macro instruction
may cause the UCS buffer to be loaded.

3. For type-F and type-S forms, an eject to channel 1 is taken, and a
printer alignment message is written on the printer. A WTO message
is sent to the operator to align the printer, and control is
returned to the invoking routine with a return code of 4. (See the
section on "Interrupt Entry Handling," above, for a description of
the proper procedure to be followed.) The operator indicates that
alignment is complete by causing an asynchronous interruption. He
does this by hitting the STOP button and the START button on the
printer. When a SETUR is issued after the alignment is complete, a
return code of 0 is returned. If an unrecoverable error has
occured, a return code of 8 is returned.

If a routine wants to stop the SETUR procedures, the DCB field SUR
should be set to 0, and the SETUR macro instruction should be issued.
The SETUR routine sets the flag to ON when a code of 4 is returned, and
sets the flag to OFF when any other code is issued. If a return code of
4 is provided and the invoking routine wants to purge or discontinue the
SETUR procedures, the setting of DCBSUR flag should be changed from 1 to
0 before the next SETUR macro instruction is issued.

The following procedure is used when loading the UCS buffer. (The
carriage control tape, print chain/train, and density will have already
been selected and/or mounted at this tiwme.)

1. Eject to channel 1.
2. Write first 120 bytes of the 240-byte buffer on the printer.

3. Skip one line.

4, Write second 120 bytes of the 240-byte buffer on the printer.

Section 6: Programming With Privilege Class E 139

5. Skip two lines.

6. Write first 20 EBCDIC characters of verification message in SYSUCS
on the printer.

7. Eject to channel 1.

8. Write second 20 EBCDIC characters of verification message in
SYSUCS, on the console typewriter.

9. Write to operator (WTO) to verify that the same print 1line was
printed on the on-line printer and on the console. When the
orerator has completed this action, he replies by pressing the STOP
button followed by the START button.

NOTE: The printer output graphics must be the same as those writtenm on
the console typewriter. Therefore, the two 20-byte segments combined in
the verification message in SYSUCS may be different in storage. The
difference between these segments is determined by the UCS buffer load
and the print chain/train mounted.

Table 11. Return Codes for SETUR Macro

T T L]
|Return] {
|Code | Meaning |
¥ + f
0	Operation completed successfully
4	Operation mnot complete; SETUR macro instruction should bej
	reissued
{ 8	Unrecoverable error occurred in (1) reading SYSURS or SYSUCS,
jJor (2) attempting to write UCS buffer load or UCS verification]
	message, or (3) attempting to load UCS buffer

| 12 |Parameter specified in SETUR macro instruction is mnot valid]
| | SYSURS KEY

| 16 |SYSUCS buffer load key as specified in SYSURS is not valid |
L 1 3

All messages written to the operator are by WTO. If UCS is involved,
a command to unblock data check will always be issued.

SYSURS and SYSUCS are VISAM partitioned data sets, maintained and
created by each installation. The formats are shown in Figures 20 and
21.

140

0] 7 8 27 28 47 67
r T 7T . T T 1
Line 1 |xxxxxx1 | |Verification | Message | Reserved |
L 1 1 1 4
L} 1 1 v 1 |
		(printer)	(typewriter)	
		First 20 bytes	Second 20 bytes]	
	Jof verification	of verification]		
	Jmessage	message		
% L 1 4 L %
Line 2 |xXxxxxXx2 1st 60 bytes of 240-byte buffer load |
L 41
r 1
Line 3 [xxxxxx3 2nd 60 bytes of 240-byte buffer load |
L y)
r 1
Line 4§ |xxxxxxl 3rd 60 bytes of 240-byte buffer load |
[l ;]
¥ 1
Line 5 |xxxxxx5 4th 60 bytes of 240-byte buffer load |
L i

XXXXXx=6-byte parameter key provided by SETUR routine from
entry in SUSURS routine

Figure 20. Complete Entxry in SYSUCS (5 line records, each 68 characters
lona,., including KEYS)
0 56 7 8910 19 20 23 24 27 28 30 31 32 3435 36 38 39 40 41 42 43 44 49 50 55 56 67

XXXXXX i XXXRXXXX] XXXX XXXX X X XX XXXXXX
| Carriage| Chain form ucs ucs :JCZ bK\;ffer

Line 1 Key from |1 |R4—| Form No. | tope train R Density R type | R {folding | R |Strike| R oad N 4 " R
SETUR | No. No. No. code code out svsuce

XXXXXX

Line 2 Key from | 2 |R 1st 60 bytes of alignment message
SETUR

XXXXKXX

Line 3 3 |R 2nd 60 bytes of alignment message

XXXXXX

Line 4 ~ 4 |R last 12 bytes of alignment message

R = reserved
Byte 6 = line number

Figure 21. Complete Entry in SYSURS (4-1line record, each 68 characters
long, including KEY)

GET —-- Get a Record (R)

The GET macro instruction may ke specified in either the locate mode
or the move mode. When you specify the macro instruction in the locate
mode, GET locates the next sequential record in the specified input data
set and places its address in general register 1. When you specify the
macro instruction in +the move mode, GET locates the next sequential
record in the specified input data set and moves it to the work area you
have specified in virtual storage.

¥ T T 1
| Name | Operation|Operand]
t 1 t -4
| [symbol] |GET | addrx addrx |
| | |dcb—; E[,area—a g] |
I | I (n (0) I
L 1 1 -4
dcb

specifies the address of the data control block opened for the data

Section 6: Programming With Privilege Class E 141

set being processed. If (1) is written, you must load the address
of the DCB into general register 1 before execution of the macro
instruction.

area
srecifies the address of the work area into which you want the
record to be moved; hence, this operand is used only when the macro
instruction 1is specified in the move mode. If (0) is written, you
must load the address into general register 0 before execution of
the macro instruction.

PROGRAMMING NOTES: You must place the address of a save area in general
register 13 before executing the GET macro instruction.

Wwhen vyou are using MSAM, the GET wmacro instruction may only be
employed to obtain records from a card reader. Hence, the RECFM field
of the data control block must indicate format F, since format V is not
supported for the card reader. At OPEN time, the LRECL field of the
data control block should be set to a maximum of 80 bytes for EBCDIC, or
160 bytes for column binary. The mcde field in the data control block
must be set to a binary 0 for EBCDIC or to binary 1 for column binary.

CAUTICN: Should any field of the DCB be altered by an improper source,
the results are unpredictable when this macro instruction is executed.

EXECUTION: Upon completion of +the GET macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All return codes are multiples of 4; their
meanings are given in Table 12.

142

Table 12. Return Codes for MSAM GET Macro Instruction

r 1
[Return | Meaning |
|Code | |
1 1
0 | Cperation completed successfully. |
1 R 3
T 1
4 |I7/0 not complete; no record has been provided since next|
| sequential buffer has not yet been filled; GET macro 1instruc-|
{tion should be reissued. |
] -

b
8 |Unrecoverable I/0 error occurred in connection with recordl
|being read; normally, CLOSE macro instruction should be]
Jissued; however, a record has been provided, content of which|
{is buffer image. If I/O error was not permanent (DEBNF2 or]|
|DECG1 not on), you may accept record and continue processing, |
J]or you may skip record by issuing another GET macro)|
|instruction. |

i
+ -
|End-of-file; no record has been provided. The FINISH macro]
|instruction should be issued. |
1 —_—— 4

+
16 |Control card sensed; attempt to read an EBCDIC record resulted]

|in validity check; first four colummns of card contain same]
| predetermined control mark, a 12-11-3-4 punch. Record pro-—|
|vided is buffer image, control bytes of which should be tested]
| for such installation-defined codes as (a) change of mode from|
| EBCDIC to column binary or (b) change of data group without]
|end-of-file indicator. Depending on installation assignment |
|]and control code usage, processing may continue. Control card]
|will be stacked as if it were valid data card. If subsequent|
|GET macro instruction is issued, it will refer to next card in|
| reader, following control card. If any fields in data control]
|block are +to be changed, FINISH (or CLOSE and OPEN) macro]

|instructions must be issued kefore the next GET. |
L 4

i o e o " . s e e e S e S e S s e B e . S . S B . S o i e S e S
-
N

EXAMPLE: In the following example, which illustrates the wuse of both
the locate-mode and move-mode GET macro instructions, you want to read
65 EBCDIC bytes from the first 65 columns of the next sequential card,
in a 2540 reader. Any cards with errors will be stacked in bin 2, with
"no attempt to reread the record; cards containing no errors will ke
stacked in bin 1. Since the return codes rrovided from the macro
instruction are multiples of 4, it is possikle for you to set up a
branch table to provide proper contrcl of processing.

ADL DCB ,MACRF=G,DDNAME=MYDD, BUILD DCB
DEVD=RD, MODE=E,
STACK=1,RECFNM=F, LRECL=65

OPEN (ADL, (INPUT)) CPEN DCB
LA 3,RCTABLE SET UP BRANCH TABLE
LA 1,ADL LOAD ADDR OF DCB
MOVE GET (1) ,WORK MOVE-MODE GET MACRO
L 5,0 (15,3) BRANCH CN RC INDEX AND RCTABLE
AS BASE
BR 5
LOCATE GET ADL LOCATE-MODE GET MACRO
L 5,0(15,3) BRANCH CN RC INDEX AND
BR 5 RC TABLE AS BASE
WORK DC CL65 INPUT AREA FOR MOVE-MODE
GET MACRC

Section 6: Programming With Privilege Class E 143

RCTABLE DC A (NORM) ADDR FCR PROCESSING AFTER
RC OF O
DC A (PAUSE) ADDR FCR PROCESSING AFTER
RC OF 4
DC A (ERROR) ADDR FOR PROCESSING AFTER
RC OF 8
DC A (END) ADDR FCR PROCESSING AFTER
RC OF 12
DC A (CONTROL) ADDR FCR PROCESSING AFTER
RC OF 16

Both the move-mode and locate-mode GET mwacro instructions result in a
type-I linkage to the DOMSAM routine.

PUT -- Put a Record (R)

The PUT macro instruction may be specified in either the locate mode
or the move mode. When you specify the macro instruction in the 1locate
mode, PUT returns, in general register 1, the address within an output
buffer of an area large enough to contain an output record; you should
then construct, at that address, the next sequential logical record of
the output data set. When you specify the macro instruction in the move
mode, PUT moves the next seguential logical record of the output data
set, from the location you have specified into an output buffer.

r T T |
| Name |Operation|Operand |
.L 1 ¥ - -- - 1
|] | addrx addrx |
| [symkol] | PUT | dcb- sarea- |
1 | | (m (0 |
L 1 1 —_— —J
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, you must load the address
of the DCB into general register 1 before execution of the macro
instruction.

area
specifies +the address of the next lcgical record to be moved into
the output buffer; hence, this operand is used only when the macro
instruction is specified in the move mode. If (0) is written, you
must lcad the address intoc general register 0 before execution of
the macro instruction.

PROGRAMMING NOTES: The Llength of the logical record is determined Ly
the value of the LRECL field of the data control klock for fixed-length
(format-F) records and by the value of +the control bytes for

variakle-length (format-V) records. If you write format-V records, the
value of the LRECL field must be set equal to the maximum length of the
logical record prior to the locate-mode PUT mwacro instruction. The
value wmay be changed between executions of the PUT macro instruction and
will e wused to determine when to truncate the present buffer. The
control program uses the current value of the LRECL field +to determine
the amount of buffer space needed for the record, even though the actual
length is determined by the built by the user in the buffer area after
the completion of the locate-mode PUT macro instruction.

If you do not specify USASI or machine code in the RECFM field of the

data control block, the PRTSP and STACK fields of the DCB will be used
tc control line spacing and stacker selection, respectively.

144

Printer: The MODE field of the data control is not referenced for the
printer. The ILRECL field of the data control block must be set to a
value not exceeding 133 bytes for format-F records, and 137 bytes for
format-V records. These values are 132 bytes and 136 bytes, respective-
ly, if the USASI or machine code was not specified in the RECEM field of
the data control block. If you use control characters (A or M) for
carriage control, channel 12 is ignored (greater efficiency is achieved
by not having a channel 12 punched on the CC tape) . However, if you do
not use control characters and channel 12 is sensed, an immediate eject
to channel 1 is performed.

Card Punch: For format-F records, you must set the ILRECL field of the
data control block to a value not exceeding 81 bytes for EBCDIC, and 161
bytes for column binary. These values are 80 bytes and 160 bytes,
respectively, if +the USASI or mwmwachine code was not specified in the
RECFM field of the data control block. For format-V records, you must
set (for 1locate mode only) the LRECL field to a value not exceeding 85
bytes for EBCDIC or 165 bytes for column binary; these values are 84 and
164 bytes, respectively, if the USASI or machine code was not specified
in the RECFM field. The MODE field of the data control block must
contain a binary 0 for EBCDIC or a binary 1 for column binary.

CAUTION: If any field of the DCB is altered by an improper source, the
task may be abnormally terminated when a PUT macro instruction is
executed.

EXECUTION: Upon completion of +the PUT wacro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All codes are multiples of four, and their
meanings are given in Table 13.

Table 13. Return Codes for MSAM PUT Macro Instruction

|associated DECB. FINISH and/or CLOSE macro instructions may|
|be issued. However, if I/0 error was not permanent (DEBNF2 orj
|DECG1 not on) , you may continue processing records beyond thej

|one that failed by reissuing PUT. i
(R —

r T H
|Return | i
|Code | Meaning |
i i I
r T ; Bk
| 0 |Operation completed successfully.

1 } ;
r 1 5
| 4 |I70 not complete; the record has not been accepted as there is|
| [no room remaining in present buffer and next sequential kuffer|
| |has not yet been released from prior I/0 request. PUT macro|
| |instruction should be reissued. (See discussion of "Interrupt|
| |Entry Handling," above.) !
'r + i
| 8 |Unrecoverakle 1I/0 error occurred and record was not accepted.
| |General register 1 points to record on which I/0 error;
| {occurred -- in the case of an equipment check on card punch, !
| |general register 1 points to record immediately following that]
| lon which error occurred -- and general register 0 rfoints to|
|

|

|

|

1

EXAMPLE: In the following example, which illustrates the use of both
the locate-mode and move-mode PUT macro instructions, you want tc fprint
a file of 132-byte EBCDIC records. After each line is printed, one line
is spaced. Since the return codes provided by the macro instruction are
multiples of &4, it is possible for you to set up a branch table to
provide proper control of processing.

Section 6: Programming With Privilege Class E 145

JHL DCB ,MACRF=P, BUILD DCB
DDNAME=TODD, DEVD=PR,
PRTSP=1,RECFM=F,LRECL=132

OPEN (JHL, (OUTPUT)) OPEN DCB
1A 3,RCTABLE SET UP BRANCH TABLE
1A 1,JHL LOAD ADDR OF DCB
MOVE PUT (1) ,WORK MOVE-MODE PUT MACRO
L 5,0 (15, 3) BRANCH ON RC INDEX AND
BR 5 RCTABLE AS BASE
1A 1,JHL
LOCATE PUT (1) LOCATE-MODE PUT MACRO
L 5,0(15,3) BRANCH ON RC INDEX AND
RCTABLE AS BASE
BR 5
WORK DS CL132 OUTPUT AREA FOR MOVE-
MODE PUT MACRO
RCTABLE DC A (NORM) ACDR FOR PROCESSING
AFTER RC OF 0
DC A (PAUSE) ADDR FOR PROCESSING
AFTER RC OF 4
DC A (ERROR) ADDR FOR PROCESSING

AFTER RC CF 8

Both the move-mode and locate-mcde PUT macro instructions result in a
type-1I linkage to the DOMSAM routine.

FINISH —-- End of Data Set (R)

The FINISH macro instruction is used to inform the MSAM routines that
processing of the current d-.ta group (subsection of a data set) is at an
end. A task may process more than one data group (within the same data
set) with the same data control block, without closing and reopening the
DCB (and the assignment and release of the associated I/0 device)
between data groups.

r T i T - 1
| Name |Operation|Operand |
F + + 1
| | | addr |
| symbol |FINISH | dcb- |
| o | m I
L] 4 - J
dcb

specifies the address of the data control block opened for the data
set being processed.

PROGRAMMING NOTES: The FINISH macro instruction provides for

1. Initiating any necessary I/0 activity so that an output data set
may be closed;

2. Testing the results of all outstanding I/O on an output data set;
3. Awaiting completion of outstanding I/0 requests on an input data

set;

146

4., Notifying an operator to remove the data set from the device (under
control of the INHMSG flag of the data control block) ;

5. Reading a card from the card reader and stacking it in pocket 3 of
the same 2540 as the selected punch, if the COMBINE flag of the
data control klock is set.

You should precede the CLOSE macro instruction with the FINISH macro
instruction, if you want to avoid an automatic WAIT condition, which may
result from the access method CLOSE, or to receive notification of any
I/0 error. (CLOSE MSAM is the only MSAM routine to invoke AWAIT.)

CAUTICN: The FINISH macro instruction will cause the operator to be
notified to remove the data group from the device in use if the INHMSG
flag of the data ccntrol block is not set to 1.

EXECUTION: Upon completion of the FINISH macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All zreturn codes are multiples of 4; their
meanings are given in Table 14.

Table 14. Return Codes for MSAM FINISH Macro Instruction
] T 1
|Return | |
| Code | Meaning |
1 1
0 | Operation completed successfully. CLCSE macro instruction may|
|be issued or further processing may be 1initiated without]
| reopening data control block; the DCB parameters LRECL, MODE, |
| STACK, PRTSP, RECFM, PCCKET, FORMTYPE, and RETRY may be}
jaltered at this time.] |
1
¥
i |Operation was mnot completed since I/0 was not finished.
|FINISH macro instruction shculd be reissued later, until a|
Jreturn code other than 4 is received. (See discussion of|
|"Interrupt Entry Handling," above.)]
4

} -
8 | Operation was completed with I/0O error. If data control Eklock]
|was opened for input, description of GET macro instruction]
|return code of 8 (Table 12) applies; if data control block was|
|opened for output, description of PUT macro instruction return|
|]code of 8 (Table 13) apgplies. In order to flush remaining]|
|output buffers, if error was not permanent (DFEBNF2 oxr DECG1|

|not on), FINISH may be reissued. |
L —_ —4

[S S e S i — ————— —— —— s Sy — ——— — — ——

Example: The following example is Lkased upon the coding in the example
for the PUT macro instruction. It would follow the locate-mode PUT, L,
BR:

Section 6: Programming With Privilege Class E 147

LA 7,FINTAB SET UP BRANCH TABLE

REPEA FINISH JHL END CF DATA SET
L 5,0(15,7) BRANCH ON RC INDEX AND
BR 5 FINTAB AS BASE
HALT CLOSE JHL
FINTAB DC A (HALT) ACDR FOR PROCESSING AFTER
RC OF O
DC A (REPEAT) ADDR FOR PROCESSING AFTER
RC OF 4
DC A (ERROR) ADDR FCR PROCESSING AFTER
RC OF 8

TERMINAL ACCESS METHOD MACRO INSTRUCTIONS

This section provides vyou with a descriptiocn of the macro instruc-
tions you will need to make use of the Terminal Access Method (TAM)
routines. These routines comprise control unit and TERMINAL oriented
functions. The access method provides macro instructions which enable a
user to read messages 1into +the computer and to write messages to
terminals. The facilities provided include:

Terminal polling
Terminal addressing
Answering

Message receiving
Dynamic buffering
Message Transmitting
Dialing

Conversion

Interrupt Control
2702 Control Orders

DCB ——- Set Up Data Control Bliock (nonstandard)

The DCB macro instruction estaklishes a parameter list which provides
the interface between the user's program and data set and the system I/0
routines.

r T T - -
| Name |Operation|Operand |
L 4] .'
1) T Ll

symbol	DCB	(DDNAME=symbol] [, DSORG=CX]
I	(R)	
I	[,MACRF= (W) 1 [, BUFNO= absexp] [
I	I (R, V)	
I		
		[,BUFL=absexg] [,BFIEK=D]
		[,EXLST=relexp] [,SYNAD=relexp]
L i 1 3
DDNAME

designates the name of the DD statement associated with this DCB.

DSORG
specifies +the data set organization as being that of a communica-
tion line.
CX - specifies communication line.

148

MACRF
indicates that access to this data set is to be gained through this
DCB only by the specified macro instructions.

(R) - access can be gained o¢nly Ly wuse of the READ macro
instruction.

(W) - access can be gained only by use of the WRITE wmwacro
instruction.

(R,W) - access can be gained by use of either the READ or the WRITE
macro instruction.

BUFNO
specifies the number of buffers to be provided for the buffer pool.
The maximum you may specify is 255.

BUFL
specifies the byte length of each buffer in the pool or a standard
length for user provided buffer. The maximum length you can
specify is 32,767 bytes.

BFTEK
specifies that dynamic buffer allocation is to be provided. If you
omit this parameter the system assumes that you have provided for
your own buffer allocation.
D - dynamic allocation.

EXLST
specifies the symbolic address of the exit list.

SYNAD
specifies the address of the synchronous error routine.

PROGRAMMING NOTE: BUFNOC, BUFL, BFTEK, and SYNAD may be supplied at
execution time at any point up to OPEN time. BUFNC, BUFL, and BFTEK may
be specified in the DD staterent.

DCBD —- Specify DCB DSECT (nonstandazrd)

You may use the DCBD macro instruction to access the fields in the
DCB. See Assembler User Macro Instructions for a description of DCBD.

OPEN —-- Prepare DCB for Processing (S)

The OPEN macro instruction prepéres the DCB for use with a communica-
tion line. Each DCB must be opened before message transmission can
begin.

T L} T —/
| Name | Operation|Operand |
[l 1 I 1
I T 1 A
| [symbol] |OPEN | ({dcb-addr,}) |
I | | L I
[| | MF= , [
| I | (E,list- {addrx}) |
| | | (M [
L L L J
dcb

specifies the address of the DCB associated with the communication

line to be opened.
MF

specifies the form of the macro instruction. If this operand is

Section 6: Programming With Privilege Class E 149

omitted, the macro instruction is executed with all the parameters
specified in this issuance of the macro instruction.

L. - L-form. No execuiable code is generated and the DCB is
not actually opened. Only a parameter list is generated and
is assigned the name of the OPEN macro instruction.
E - E-form. The OPEN function is actually executed.

list
specifies a previously built parameter list. The OPEN function is
performed for each entry in the list.

CLOSE —- Remove Communication Lines From Use (S)

The CLOSE macro instruction is used to close a previously opened DCB
associated with a communication line. The CLCSE macro instruction can
be used in conjunction with the OPEN macro instruction to control data
set organization for communication lines in the system.

L T T - 1
| Name |Operation|Operand |
% 1 t 4
| [symkol] |CLOSE | (dcb-addr, ...) |
! I | L |
I I I [MF={ H I
| | | (E,list—faddrx} |
| [| LM) |
L 1 N J
dcb
specifies the DCB associated with a communication code to ke
closed.
MF
indicates the form in which this macro instruction is written. If
this parameter is omitted, the function is executed using the
parameters sugplied in the macro instruction.
L - L-form. ©No executable code is produced and the close
function 1is not actually rperformed. A parameter list is
generated using the parameters supplied in the first operand.
E - E-form. The CLOSE function is performed.
list
designates a previously generated parameter list. The close
function is performed for each entry in the list.
READ -- Read From Another Terminal (S)
The READ macro instruction causes contact to be established with a
terminal. If that terminal has a message to transmit, contact is
maintained until an EOT or FOB character is received. The message is

decoded from line code to EBCDIC and posted as complete in the DECB and
the READ operation 1is then considered complete. Although control
returns to vyou immediately upon initiation of the channel program, you
must test for the completicn of the event kefore issuing ancother READ or '
WRITE. The CHECK macro instruction is provided for this purrose. ‘

150

r T T k)
| Name |Operation|Operand |
L I | .‘
r ¥ T

| {(symbol] |READ | decb- [symbol} ,type-code, dcb-addr, |
l I |) I
] addr value	
		area- ,length-{ 'S’ v
		'S rce
I [L I	
{	largl1-addr], [arg2-code]	, MF=
L - | |
decb

type

specifies the address of the DECB in which you want completicn
information to be posted. If register notation is used, you must
place this address in register 1.

specifies the type of transmission you require and may be one of
six codes.

TID - read initial with dialing. This indicates that an
automatic dial connection is to ke made with the terminal.
The dialing digits must be specified in the terminal entry

list specified in "argl®. If the terminal type require
polling, the necessary polling sequence characters are
generated.

TIN - read initial. A previously established line connection
is assumed. If the terminal tyre requires polling, the
necessary polling sequence characters are generated.

TCN - read continue. When polling is not required, specify
this option. You may wuse this option when contacting a
terminal which was previously prolled and in a transmit state.

The next three options apply when automatic retransmission of
messages received in error is desired and the terminal is equipped
with error correction facilities. A rpredetermined number of
retries, specified by the terminal type, will be attempted for each
message received in error. The posting of uncorrectable errors
will include the appropriate error information. The basic types
are as above.

TDR - read initial with dialing/repeat.
TNR - read initial/repeat.

TCR - read continue/repeat.

dcb
specifies the DCB associated with the line.

area
specifies the address of the first byte of your input area. If you
write 'S' TAM will provide the kuffer area kased on the 1length
parameter.

length

specifies the byte length of the input area which will receive the

message.

Section 6: Programming With Privilege Class E 151

'S" - tells TAM to use the buffer length you have specified in

the DCB.

*C' - tells TAM to use a standard buffer length appropriate to

the type of terminal. A mode of operation will be started

which one line or record will be read from the terminal.

in

argl
specifies the address of the terminal entry list which contains the
dialing digits. If this parameter is omitted, a standard station
character is to be used.

arg?2
indicates the character set to be used in decoding the message. If
omitted the standard character set will be used. The permissable
codes and their meaning can be found in Table 15.

MF

specifies the form in which the macro instruction has been written.

L - L-form. Only a parameter 1list is generated. The read

function is not performed.

E - E-form. A rpreviously generated parameter 1list

is

accessed, may be changed, and is then used in performing the

read function. When either L or E is specified, the
parameters required are decb and type.

only

If the MF operand is omitted, a parameter list will be generated and

the executable form of the read function will be generated.

Table 15. Character Set Codes

r T 1
| | TERMINAL KEYBCARD TYPE I
I F T v T 1
| CODE | 1IBM 1050 | IBM 1052-7 | IBM 2741 | TELETYPE MODE 35 |
[l 1 1 1 1 4
v T T 1 1 1
l A | PTTC/8 I EBCDIC | PTTC/8 | GSA I
| B | PTTC/6 | - | | - |
| C | - | - | | - |
L 41 L AL L J
WRITE —— Write a Message (S)

The WRITE macro instruction cauases the transmission of a message to a

terminal and generates a contrcl order for the device control unit.

r T T |
| Name |Operation|Operand |
p—— - f - . -
| (symbol}] |WRITE jdecb- synboll, type-code, dcb-addr, |
| | | v |
|] | {area-addr] , length-value,]
| | | L |
|] | {axrgi1-addr] , [arg2-code] { s MF= |
] | I E |
1 L L 4

specifies the DECB in which you want completion information to

be

posted. You must CHECK for completion before issuing another READ
or WRITE. If register notation is used, this address must first ke

placed in register 1.

152

type
specifies the type of transmission you require or the type control
order you want generated. Any one of 18 codes may be specified in

this operand.

TID - write initial with dial. An automatic connection is
made with the terminal. The dialing digits should have been
specified by the DFTRMENT macro instruction and located in
terminal entry 1list specified by argl. If the terminal
requires addressing, the necessary addressing sequence charac-
ters will be generated.

TIN - write initial. This option assumes that you have
already made the 1line connection. The necessary addressing
sequence characters will be generated, if required.

TCN - write continue. Specify this option when addressing is
not required; 1if vyou have previously addressed the terminal
and it is in a receive state.

TIA - write with response. This option assumes that you have
previously made a line connection. If the terminal requires
polling and addressing, the necessary sequence characters are
generated. This option provides the ability to transmit a
message to a terminal and to receive its next output record or
line as a response. The maximum Size message you can transmit
is 32,767 bytes; the maximum size response you can receive is
one logical record or line as specified by terminal type.

The next four options apply to terminals equipped with error
correction facilities and automatically retransmit messages sent in
€rrore. A predetermined number of retries, depending on the
terminal type, will be attempted for each erroneous message. The
posting of uncorrectable errors will include appropriate error
information.

TDR — write initial with dialing/repeat.
TNR - write initial/repeat.

TCR - write continue/repeat.

TAR - write with response/repeat.

The remaining ten optional type parameters are used to issue
control orders.

AUTOWRAP - causes the transmission control unit to wrap the
output of the addressed line to the input of line zero. The
command within the channel operates as a write.

DISABLE - causes the transmission control unit to reset the
enable latch within the line adapter of the addressed communi-
cation line. No data transfer occurs.

ENBLASYN -~ causes the transmission control unit to set the
enable latch within the line adapter of the addressed cormuni-
cation line, with software providing the necessary interrupt
to invoke posting. No data transfer occurs.

ENBLSYN - causes the transmission control unit to set the
enable latch within the line adapter of the addressed communi-
cation line with hardware providing the necessary interrupt to
invoke posting.

Section 6: Programming With Privilege Class E 153

PREPARE - sets up the communication line to detect attention
signaling.

SADONE. - Onh: acceptance of this command, the 2702 will set the
TC field within the addressed LCW to one. This has the effect
of associating the termimal control with the 1line oscillator
with internal address of one with the addressed communication
line. No data transfer occurs.

SADTWO - Operates the same as SADONE except that terminal two
is associated with the addressed line.

SADTHREE - terminal three is associated with the addressed
line.

SADZER - terminal zero is associated with the addressed 1line.

BREAK - causes the addressed line to transmit a continuous
space signal. Bytes transferred from the <channel to the
addressed unit must be all zeros. To provide control over the
length- of space signal, a byte count must be specified in the
length field. If no count 1is given, a value of +two is

assumed.
dcb
specifies the address of the DCB for the line.
area
specifies the address of the first byte of your output area.
length
specifies the number of bytes in the output message.
argl
indicates the address of the terminal entry list. If you omit
this parameter, a standard status code will be used.
arg2
specifies the character set to be used to translate EBCDIC to
the proper line. The codes to be used are the same as those
used for READ and can be found in Table 8.
MF

specifies the forr in which the macro instruction is written.

If this parameter is omitted, standard form will be assumed.

The valid form codes are:

I. - L-form. A parameter list will be generated but the write
function will not be performed. '

E — E-form. A previously generated parameter 1l1list will be
accessed and the write function performed. The parameter
list may be altered with this formw.

Note: When using the E-form, the only parameters required are decb and
type.

CHECK -- Wait for and Test for Completion of Read or Write Operation (R)

The CHECK macro instruction tests for the completion of a read or
write operation. If not complete, CHECK waits for completion. CHECK
also detects errors and exceptional conditions.

154

r T T 1
| Name |Operation|Operand |
b $ } 1
| | | addrx |
| [symbol] |CHECK | decb- |
| |] m I
L L 1 . 1
decb

specifies the DECB created as part of the expansion of a READ or
WRITE macro instruction and in which completion information is
posted. If you write (1), you must first load the address of the
DECB into register 1.

PROGRAMMING NOTES: If an I/0O error occurs and the read or write
operation did not complete correctly, control will be given to your
SYNAD routine, if one exists. If you have not specified one your task
will be abnormally terminated. Your SYNAD routine may use the RETURN
macro instruction to resume processing.

Figure 22 shows the format of the DECB, with the flags field detailed
in Figure 23.

When the read or write function completes normally, byte zero of the
DECB is set to X'7F'. The CSW and sense information are also stored but
have no significance.

In posting the completion of a normal write operation (except Write
with Response - TIA) the write bit in the DECB flag field is set; all
other fields are undisturbed.

In posting the completion of a type TIA write operation, the data
area address field of the DECB will be changed to contain the address of
the input data and the length field will contain the input data length.
The read bit in the DECB flag field is set.

In posting the normal completion of a read operation, the data area
address field will contain the address of the edited data and the length
field will contain the number of bytes in the data area and the read bit
in the DECB flag field is set.

In posting a completion with exception conditions, byte zero of the
DECB is set to X'41' and appropriate flags are set in the DECB. (See
Figure 23.) '

7 8 15 16 31 32 39 40 47 48 55 56 63
r T -T T 1
|EVENT | | TYPE CODE [LENGTH I
0| CONTROL | I 1 I
| BLOCK | | | |
b 1 + : 1
1|DCB ADDRESS | DATA AREA ADDRESS |
1 1 4
) T 1
2| POINTER TO STATUS INDICATORS | TERMINAL ENTRY ADDRESS (arg 1) |
L 1
T q T T ¥ T T —"
3|LOGICAL |RESERVED| SENSE | SENSE | RESPONSE |CHARACTER | FLAGS |
| FUNCTION|FOR | BYTE | BYTE | FIELD | SET | |
1 |STATUS | 1 | 2 | | CODE arg2| I
} AL [l 1 1 1 4 _1
| CHANNEL STATUS WORD |
L J

Figure 22. DECB Format

Section 6: Programming With Privilege Class E 155

61 62 63

52 53 54 55 56 57 58 59 60
FLAGS

51

48 49 50

e o e S s —— —— — - vy S —— . — — T ———— — ———— — - —— S — S — —w————— -
%K B W A O Z W M i

|||||||||||| ot T i s iy U it T G S s S . T — — v W i St e S]
2 MM H B M

e e e — —— ———— — s S — ———oy— —— — — " — ——— T — T — ——— ————— -
H & 2w o Mm

o S sy S s — i — S o ———— —— O — T ——— g D e — o —p— — G W ———— -
rF B O D R\ 0 B w o H a2 & A

[s e i s s i e — c— ——— —— —— T ———— — ——t— SS—— ————— W—— — =

o e e e e o e o . S S o e S S o S . . e S . A . i e S i A S St it -4
< A =\ 2 A K =B o

||||||||||||||||||||||||||||| ——— ——]
H & B B > B & BH H O Z [e

[e e e e e S e T —————— ————— — ——T—— —— —————— ———— o
w X u B Rk = B &M m O m

lllllllllllllllllllllllllllllll -]
m DO K N B ™ ©c » B A O =

e i et s S i — i —— ————— .= — o— S—— S—— — Y — —— ———— — T — —— ———— t— — -
H Z AP < B A g c >» &K A O =

e s o s — — ————— —— ——— —— — T T— — —————— — — V——— — S G— — — e
D w A ® M M B O ™

and

addresses

and entering the physical

Flag Field of the DECB
The DFTRMENT macro instruction provides the capability for defining a

polling or addressing list

DFTRMENT -- Define a Polling List (nonstandard)

device specifications into the generated list.

Figure 23.

[e g S ————— v—

—

— L]

ey .

‘ 0

[] ~

. 2}

~]

7]]

[l +

[} O

+ o]

r— O)

-~]]

] =t S

. 0] ¢]

. = |

0] Lo}

~ | -

N T o~

Q el ~

o M Q

9] T Q

Lo © ~

=} ~ 1

) i A

R

© k g 4

H 1< A O

[H & [s%)

[o) [w) - -

O Snd —— s

e e ————

=]

o B
o =
+ =
o | X
]
Q B
Q)
ol A

pe o e e e e e e o
i
o
212
] 2]
N S

(T S ———

The number of addressing

the addressing character sets.

specifies the dial digits.

specifies

DIAL
ADRID
156

character sets cannot exceed four, but the number of characters per
set must be constant.

POLLID
specifies the polling character set. The number of polling
character sets cannot exceed four, but the number of characters per
set must be constant. The number of characters per rolling
character set need not be the same as the number of characters per
addressing .character set.

Section 6: Programming With Privilege Class E 157

APPENDIX A: SYSTEM MACRO INSTRUCTI.ONS

There are a number of macro instructions that, if they are to be
used, require system programmer privileges, but don't generate SVCs.
These macro instructions are simply used as an assembly language vehicle
to make it easier for you to produce code frequently used in system
programs. Some of these macro instructions require you to define
certain symbols in your program -- usually via a dummy section. We're
only going to discuss the external arrearance of these macro instruc-
tions in this appendix; if you want to see the macro definition, use the
system macro/copy library. The following macro instructions are listed
alphabetically by mnemonic:

Poll of pending attention interrupt ATPOL
Locate JFCB corresponding to data set name FINDDS
Locate JFCB and ensure volume mounting FINDJFCB
Transfer control INVOKE
Inhibit task interrupts ITI
Permit task interrupts PTI
Return to calling program RESUME
Store register contents STORE
Send message to task and await response VSENDR
ATPOL -- Poll for Pending Attention Interrupt (nonstandard)

ATPCL is used to find out if there is a pending attention (task-
asynchronous asynchronous I/0 interrupt; if there is, control is
transferred to the address specified by operand "pgmad." To use this
macro instruction, you must define the symbols ISAAT and ISAATM unless
you supply "switch"; these may be defined by copying the interrupt
storage dummy srction (CHAISA) from the system macro/copy library.

r T 1 R]
| Name |Operation|Operand |
S R— |
} [symbol} |ATPOL | pgmad-addx [, switch-addx] |
L L L ¥
pgmad

address of a program interested in a pending attention.

switch
address of byte whose contents are to ke tested.

FINDDS —-- Locate JFCB Corresponding to Data Set Name (S)

The FINDDS macro instruction is used to obtain the location of the
JFCB corresponding to a given data set name. If the data set name
specified is not in the task definition table (TDT), but is in the
catalog, the user can request that a JFCB be created.

r
| Name

l__

|
I |
| [symbcl} |FINDDS | dsname—-addr, kyte-addr, area-addr
L 1 L

1
Operation|Operand
[

—_——
R

dsname
specifies the address of a fully qualified data set name.

158

byte
specifies the address of a byte that the user has set to zero if he
wants a JFCB created for a catalogued data set, or to non-zero if
he does not want a JFCB created.

area
specifies the address of a word in which the pointer to the JFCB is
to be placed.

FINDJFCB —- Locate JFCB and Ensure Volume Mounting (S)

The FINDJFCB macro instruction is used to locate the JFCB for a given
data definition name and, optionally, to ensure the volumes specified in
that J¥FCB are mounted.

r T . T |
| Name |Operation|Operand |
b ¢ o 1
| | { I
| [symbol] |FINDJFCB |ddname-addr, byte-addr, area-addr |
L L L J
ddname
specifies the location of an 8-byte field containing the data
definition name. If the ddname has fewer than 8 characters, it
must be left-adjusted with trailing blanks.
byte
specifies the location of a 1-byte field containing a code.
area
specifies the location of a 4-byte field in which the address of
the JFCB is to be placed.
INVOKE -- Transfer Control (nonstandard)

INVOKE causes transfer of control from one program or routine tc
another by means of the BASR instruction.

T T -
Name |Operation|Operand |
]

1
T

o e et e 2y

L]
I

[symbol] | INVOKE |address-addrx |
i 1

address
specifies the address of a word that contains the address of the
program to be invoked.

ITI ~- Inhibit Task Interrupts (nonstandarxd)

ITI is used to prevent the occurrence of task interrupts; it does
this by setting the interrupt storage area lock byte (ISALCK) to 1s. To
use ITI, you must define the symbol ISALCK; you can do this by copying
the interrupt storage area dummy section (CHAISA) from the system
copy/macro librarye.

)

T
!

Name |Operation|Operands
4 4+
L

None

[o o o S
| ISR SRS ——

= e e]

|
[symbol] |ITI
1

Appendix A: System Macro Instructions 159

PTI —-- Permit Task Interrupts (nonstandard)

PTI is used to cancel the effect of an ITI macro instruction; it
allows pending task interrupts to occur (if the task-mask bits. in the
VPSW are 1s). You must define the symbol ISALCK to use PTI; you can do
this by copying the interrupt storage area dummy section (CHAISA) from
the system macro-copy library.

r T ¥ +
[| o |
| Name |Operation |Operands |
3 + } 1
| | f
| [symbol] |PTI | None §
] L 1 J
RESUME -- Return to Calling Program (nonstandard)

The RESUME macro instruction restores the specified registers from
the specified area and returns control to the calling program.

;' i i |
| Name |Operation|Operands |
[l 1 4 3
1) T) 1
| [symbol] |RESUME | [area~addrx, (regl-integer [,reg2-integer])] |
| | | {,RC=integer] |
L L L) |

area
specifies the address at which the data to be restored is located.

regl
specifies the first register to be restored from the specified area
and must be greater than 7 but less than 16.

reg2
specifies the last register to be restored from the specified area.
The restoration has the same wrap around feature as the STM or LM
instructions. If this operand is omitted only the first register
will be restored.

RC
sgpecifies a return code to be sent back to the calling routine.
This code must be less than 4092 and be a multiple of four.

STORE —-- Store Register Contents (nonstandard).

The STORE macro instruction stores the specified register or regis-
ters in a specified area.

r T T I -1
| | I |
| Name |Operation|Operand |
I +_,] — _.!
r T

| | | , _ [
| {(symkbol] | STORE | area-addrx, (reg,-integer [,reg;-integer]) |
| I, - R J
area

srecifies the address of the storage area in which the the
specified register or registers are to be saved.

160

reg, and reg,
specify the range of registers to be stored. If reg, 1is noct
specified, only reg, is stored.

PROGRAMMING NOTES: reg, must be specified as equal to or greater than 8
and not greater than 15.

The specified area must be large enough to contain the specified
range of registers.

VSENDR -- Send Message to Task and BAwait Response (nonstandard)

The VSENDR macro instruction is used to send a message +to another
task and to wait for a response from the receiving task.

Standard form

] T T I |
| Name |Operation|Operand |
t 1 1 _{
] T T

I | | |
| [symbol] |VSENDR |msg-text, radd-addr, rleng-value, mcode-value, |
|] jtid-addr |
L 1 L — ——d
L-form

T T] - - -1
| Name |Operation|Operand |
L 4 4 _.1
r’	'	
[symbol]}	VSENDR	msg-text, [radd-relexp] ([rleng-absexp],
	lmcode-aksexp] [,tid-relexp]l, MF = L	
L 1 i |
E-form

T T T |
| Name }Operation|Operand |
1 1)

T T 1 - “‘
| [symbol] }VSENDR | » [radd—-addrx] , {rleng-value] , [mcode-value] |
1 | | [,tid-addrx], MF=¢E,list—jaddrx[> i
| I | rm I
L L 4 _4
msg

specifies the text of the message, and must be enclosed in single
quotation marks.

radd
specifies the location into which the reply is to be placed.

specifies the length of the reply in bytes.

mcode
specifies the message code.

tid
specifies the ID of the sending task (i.e., the task to which the
reply is to be sent).

list
specifies the location of the L-form of the macro instruction to
which this E-form refers.

Appendix A: Syster Macro Instructions 161

APPENDIX B: TIME CCNVERSION RCUTINE

A number of privileged conversion routines are provided to enakle you
to convert time data, in any of several formats, into a form you can use
with macro instructions SETTR and SETTU. Two types of conversions are
performed: type-T; used for operations with the SETTU macro instruc-
tion, yields a 32-bit kinary time interval in ricroseccnds; type-R, used
for operations with the SETTR macro instruction, yields a 64-bit binary
time interval in microseconds elagsed since March 1, 1900 (see "Time-
keeping") . Two different forms of input data may ke used for type-T
conversion (0 and 1) ; six forms (C-5) may be used for type-R. Table 16
surmarizes the different input forms.

Takle 16. Input Formats Accepted ky Time Conversion Routine

T -
Input data code{Input form
T
0 :time interval in hours (h), wminutes (m), seconds (s),
=tenths (t) , and hundredths (h) of seconds; eight BCD
:characters: hhormssth
1 itime interval in milliseconds; 32-bit binary numker

|
|tenths (t), and hundredths (h) of seconds; eight BCD

| characters: hhmmssth

3 |day of week; four left-justified BCD characters:

| MOND, TUES, WEDN, THUR, FRID, SATU, SUND

4 |day of month; two left-justified BCD characters:

|
|00 through 31

5 |day of year; eight left-justified packed decimal

1}
|
|
k
|
|
|
l
[
|
|
}
[2 |tire of day in hours (h), mwinutes (m), seconds (s),
I
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
i

b s i s — — —— — — — — — — —_— —— ——— —— — — ———— — —— v— i m— ——

| characters: 00yyddd+

i —_ —_—

To use the time conversion routine, you must put a pointer to a
parameter list in register 1, the return address in register 14, and the
address of the time conversion routine in register 15. It loocks 1like
this:

LA 1,PARAM POINTER TO PARAMETER LIST IN
REGISTER 1

L 15,=V (CZ2CJXA) ADDRESS OF CONVERSION ROUTINE

BASR 14,15 GO THERE

RETURN

162

PARAM DC Clc' FORM OF INPUT DATA - 0,1,2,3,4,

or 5

DC c'tt TYPE OF CONVERSION — T OR R

DC H*'O? NOT USED

DC D'data’ INPUT DATA PLACED HERE - RESULTS
FOUND HERE

After completing the requested conversion, the time conversion
routine returns control to the address found in register 14. The
results are placed, right-justified, in the second and third wards of
the parameter list.

Note: The SETTU macro instruction expects a time value in milliseconds;
if you use the time conversion routine to get a time interval (type-T),
you must divide the result by 1000 to convert it to milliseconds.

Table 17 lists the meaning of the results obtained from the various
conversions.

Table 17. Results of Time Conversion

r T
| .
| Convexrsion|Result
I 4
] |
| TO |time interxrval in microseconds
T1 |time interval in microseconds
RO |Current time + input time interval in microseconds

| |from March 1, 1900
|

R1 |Current time + input time interval in microseconds

|from March 1, 1900
| |

| R2 | Next occurrence of input time in microseconds from

March 1, 1900
|

R3 Next occurrence of day of week in microseconds from

| [March 1, 1900

RY Next occurrence of day of month in microseconds from

|
|March 1, 1900

R5 | Next occurrence of day of year in microseconds from

i v e e A T — " S —— —— — — —— — S, Aok, i, St Mt s vt S Sy s eremas]

|
IMarch 1, 1900
L

Arpendix B: Time Conversion Routine 163

APPENDIX C: ORGANIZATICN OF DIRECT ACCESS STORAGE

DRUM STORAGE FORMAT

Each IBM 2301 drum contains 900 pages of U096 bytes. Dummy records
of 246 bytes separate each data page on the drum to allow data channels
to fetch and execute channel command words between pages. The 2301
contains 200 tracks; every even-odld pair of +tracks 1is organized to
contain 9 pages, with each track containing nine contiguous half pages.
Figure 24 shows the organization of a typical even-odd track pair.

r T T T 1
| Address |Record size|Gap size|Page number (within track pair) |
| cca 8 R | | i |
1 4 1 L 3
] T T T 1
| * I | I
| 000 2n 1] 4096 | 133 | 0 |
| 000 2n 2 | 246 | 133 |dummy record |
{ 000 2n 3] 4096 | 133 | 1 |
000 2n 4 246	133 }jdummy record		
000 2n 5	4096	133	2
000 2n 6	246	133	durmy record
000 2n 7 1 4096	133	3	
000 2n 8	2u6	133	dummy record
000 2n 9	2048	133	4 (first half)
			3 bytes are left over and unused
000 2n+1 1	2048	133	4 (second half)
000 2n+1 2	246	133	dummy record
000 2n+1 3	4096	133	5 i
000 2n+1 4 }§ 2L46	133	dummy record]	
000 2n+1 5	4096	133	6
000 2n+1 6	246	133	dummy record
000 2n+1 7	4096	133	7
000 2n+1 8	2bho	133	dummy record
000 2n+1 9	U096	133	8
		3 bytes, left over and unused	
.L DO 1			
*Each track begins with IBM standard record zero			
CCH is always zero for all 2301 tracks			
In is an integer between zero and 99 inclusive |
L N |

Figure 24. Organization of IBM 2301 Drum

The track pair (0-99) on which a drum page is contained wmay be
obtained by dividing the page number by 4.5. The quotient is the track
number; the remainder will be 0, 1, 2, 3, 4, .5, 1.5, 2.5, or 3.5;
these remainder values correspond to the page number (0-8) within the
track pair.

DISK STORAGE FCRMATS

These restrictions apply to the use of the IBM 2314 or 2311, when
formatted in pages:

1. Cylinder 199 is reserved for standard error-recovery retry.
2. Page 895 (2311) is not used because of overflow restriction.

Each IBM 2314 voliume contains 3600 pages of #4096 bytes (each 2314
DASD contains 28,3800 pages) . Pages 0 and 1 ccntain three IPL records

164

(records one, two, and the last record on track 0 -- after the volume
label and any user labels), and the IBM standard volume label (record
three) . Pages 0 and 1 are not available for VAM allocation.

Each 2314 disk pack has 200 cylinders with 18 tracks per cylinder,
each cylinder 1is organized to contain 30 pages. Figure 25 shows a
typical organization.

{ T T |
| Record Address | Record Size | Page Number |
| CC HH R | | |
F + + -4
I * I | I
nn 00 1	4096	0
nn 00 2	2790	1
nn 01 1	1306	1
i nn 01 2	4096	2
nn 01 3	1302	3]
nn 02 1	2794	3
nn 02 2	4096	u
nn 03 1	4096 { 5	
nn 03 2	2790	6 i
nn 04 1	1306] 6	
nn 04 2	4096	7
nn 04 3	1302	8
nn 05 1] 2794	8	
nn 05 2	4096	9
nn 06 1] 4096	10	
nn 06 2] 2790	1	
nn 07 1	1306 I 11	
nn 07 2	4096	12
nn 07 3] 1302	13	
nn 08 1] 2794	13	
nn 08 2	4096 [14 {	
] nn 09 1	4096	15 i
] nn 09 2 i 2790	16]	
nn 10 1	1306] 16	
i nn 10 2	4096 } 17	
i nn 10 3	1302	18
nn 11 1] 2794	18	
i nn 11 2	4096] 19 i	
nn 12 1	4096] 20 {	
nn 12 2 I 2790	21 !	
nn 13 1 { 1306 i 21		
nn 13 2	4096	22
nn 13 3	1302 ! 23	
nn 14 1	2794	23
nn 14 2	4096	24
nn 15 1	4096 i 25	
nn 15 2	2790	26
nn 16 1	1306	26 i
nn 16 2	4096 { 27	
nn 16 3	1302	28 i
nn 17 1	2794	28
nn 17 2	4096	29 i
— L ———i— - {		
*Each track begins with the IBM standaxd record zero		
L ———— -

Figure 25. Organization of IBM 2314 Voluwe for VAM

Each IBM 2311 volume contains 1616 rages of U096 Lytes. Pages 0 and
1 contain three IPL records (records one and two of track 0 and record
one of track 1, and the IBM standard volume label (record three); they

Appendix C: Organization Cf Direct Access Storage 165

are not available for

cylinders

pages each.

allocation.

A 2311 disk pack contains 202

of 10 tracks each; the cylinders are organized to contain 8
Figure 26 shows a typical cylinder organization.

T T h |
|Record Address | Record Size } Page Number |
| CC HH R | | |
I ¥ | i
{ nn 00 1 | 3625 I 0 |
non 01 1	471 f 0	
nn 01 2	3069	1
nn 02 1	1027 i 1	
nn 02 2	2486 [2	
nn 03 1	1610] 2	
nn 03 2	1875	3
nan 04 1	2221] 3	
	i 1234 unused bytes, track 4	
nn 05 1	3625] 4	
nn 06 1 [471	4	
nn 06 2	3069	5
nn 07 1	1027	5
nn 07 2	24386	6
nn 08 1	1610	6
nn 08 2	1875	7
nn 09 1] 2221	7	
		1234 unused bytes, track 9
L L L 2 -J
Figure 26. Format of IBM 2311 Volume for VAM

166

APPENDIX D: TSS/360 EXTENDED PROGRAM INTERRUPT CODES

The Supervisor must pass back to the virtual memory error processors
a code identifying the type of software error perpetrated by the task
and detected by the supervisor. To accomplish this, the Supervisor
Processor must enqueue a GQE on the appropriate task's TSI program
interrupt queue. The interrupt code in the GQE contains a value which
uniquely identifies the cause of the prrogram interrupt.

There are 17 interrupt codes used by the hardware. We reserve codes
18 thru 31 for future hardware interrupt expansion. This leaves codes
32 to 65535 for specifying software program interrupt errors. Further,
codes 65280 thru 65535 are reserved for those errors which are
temporary in nature.

The currently defined codes are:

Code :
Decimal Hexadecimal Exxoxr Type
0 0000
through

31 001F Per Principles of Operation Manual

32 0020 Not assigned

33 0021 Nonprivileged program issued IOCAL,
PGCUT

34 0022 JOPCB or IORCB page list too long

35 0023 Specified wvirtual address is not in
user's virtual memory (ICCAL)

36 0024 Program has no I/0 devices assigned
to it (IOCAL)

37 0025 IORCB size of zero

40 0028 TSI Service Call interrupt counter
overflow

41 0029 TSI External Interrupt counter
gverflow

42 002a TSI Asynchronous interrupt counter
overflow

43 002B TSI Timer Interrupt counter overflow

Ly 002C TSI Input/Output interrupt counter
overflow

45 002D GQE type code is in error

46 002E IORCB size exceeds 1920 bytes

47 002F IORCR or IOPCB crosses a page
koundary

48 0030 Device not assigned to task
(ICCAL, PGOUT)

50 0032 IOCAL or PGCUT SVC page address does
not exist in virtual memory

51 0033 IOCAL or PGOUT SVC page 1is not in
core

53 0035 Request to delete page from segment
not previously assigned

54 0036 Request to delete page not previously
assigned

61 003D Invalid Segment number given to ADSPG
SVC Processor

70 o046 User estimated time exceeded or user
timer value not reset within quantum

71 0047 SYSERR detected while processing pag-

ing I/0 error for this task

Appendix D: TSS/360 Extended Program Interrupt Codes 167

168

72
73

T4
75
76
80
81
82
83
85
86
93
94

96

97
98
99
100
101
102
103

108
109

124
125
145
146
147
148
149
150

151

oous
0049

ooua
oouB
oouc
0050
0051
0052
0053
0055
0056
005D
005E

0060

0061
0062
0063
(V)
0065
0066
0067

006C
006D

007cC
007D
0091
0092
0093
0094
0095
0096

0097

Illegal code given to SETUP/XTRCT SVC
Processor

AWAIT SVC not executed remotely or
else not on the last half word of an
ECB

Invalid Shared-Page Table number
given to ADSPG SVC Processor

Scftware has detected a possible har-
dware malfunction

A VSEND message 1is too 1long or
extends over a page boundary

User's task not of sufficient priori-
ty to issue SVC

SVC not on word koundary

Count of external addresses is zero
All parameters are not in one page
Page unassigned

Count exceeds 1022, bit string flag
not set SETXP

Illegal code given to SETSYS/XTRSYS
SVC Processor

Illegal code given to SETXTX/XTRXTS
SVC Processor

Enter SVC issued to interrupt table
tyre routine while Type III linkage
in effect and P1 flag on

Enter SVC issued with invalid enter
code-over 255, or not assigned

SVC issued on nonprivileged state and
no interrupt routine specified

No Asynchronous Error Routine defined
for device with error

Asynchronous Interrupt received but
no DE available for device

SETTR mnot accerted because System
Limit Reached in Table

Frogram Interrupt received while in
Type III linkage

SVC Interrupt received while in Type
I¥II linkage

PGOUT request for zero pages

hAttempt to add more than 256 shared
pages to a segmwent

Unsuccessful dequeue 1I/0 request

DRAM Flag illegally on '

Relocation page-in error (device
defective) -- permanent volume
Relocation page-in error (device
defective)

Relocation page-in error (medium
Jefective)

IOCAL page-in error (device defec-
tive) -- permanent volume

IOCAL page—-in error (device defec-
tive) -- moveable volume

IOCAL page-in error (medium
defective)

Cperator task has been reinitialized

APPENDIX E: CODES FOR SYSER MACRO INSTRUCTION PARAMETERS

I T L] T T)]
|Module |Name |Opt4|Opt2|Opta]
I 1 e e BT
CEARO	I/0 Call Routine	31 2	25
CEAAS	Pathfinding Subroutine I 31 2	27	
CEAA6	Page Direct Access Queue	31 21 31	
CEAAT7	Page Direct Access Interrupt	31 2	32
CEAAA Command Word Relocator I 31 2	35		
CEAAB Set Path SVC Routine	31 2] 36		
CEAAC	Queue Device on Task Routine I 31 21 37		
{CEAAD	Remove Device from Task	31 2	38
CEAAH	Reset Device Supression Flag I 31 21 42		
CEAAY Halt I/0	31 2	45	
CEAAW Data Recording I/O	31 2	55	
]CEAAX	Start Retry Operation	1 31 2	56
CEAAY Data Recording Error Recovery	31 2] 58		
CEABE External Machine Check Interrupt Processor	31 31	30	
CEABQ Generate and Enqueue Interrupt GQE I 31 31 31]			
CEAH2	Setup TSI Field Subroutine	31 1	42
CEAH3	Extract TSI Field SVC I 3§ 11 42		
CEAH4	Delete TSI SVC I 3 1] 82		
CEAHS5	Add Pages i 31 11 42		
CEAH8	List Changed Pages I 31 11 424		
CEAI1	Sense Partitioning Switches	3	1
CEAIM	Machine Check New PSW	31 3	26
]CEAIR	Recovery Nucleus I 31 31	25	
CEAIS	System Error Processor I 31 31 29		
CEAJE	Enqueue/Dequeue Routines	31 1] ue	
CEAJM	[Move GQE Routine I 31 1] 50		
JCEAJS	Set Suppress Flag _	31 1] 548	
CEAKR	Create Real Time Interrupt	3] 1] 57}	
{CEAL2	Supervisor Core Release I 31 11 33		
CEAL4	User Core Release I 31 11} 34"		
CEAMA	Activate TSI Routine	3] 1] uo	
JCEAMC	Create TSI Routine	31 11 42	
CEAMT	[Task Initiation Routine I 31 11 36		
CEAMX	XTSI Overflow Routine i 31 11 37		
CEAP6	Add Shared Pages	3} 11 842	
CEAP8	Move Real Core SVC I 31 1] 82		
CEAPY9	Time Slice End SVC f 31 1 1 42}		
CEAQ7	Connect Segment to Shared Page Table I 31 1] 42}		
CEAQ8	Disconnect Segment from Shared Page Table I 31 1] 42		
CEAS2	Setup System Table Field i 3 { 1] 42		
CEAS3	Extract System Table Field	31 1] 42	
]CEAS4	Setup XTSI Field I 31 1	62	
CEAS5	Extract TSI Field	31 1] 82	
CEAS8	Restore Time Subroutine I 31 1	42	
JCEATO0	Cancel Recording	3	1 1] 42
CEAT1	Extract Accumulated Time I 31 1] 42		
CEAT2	Special Create TSI Routine	3	1] 42
CFADA	LPC MAIN Il 51 4] 25		
CFADB	LPC GETLINE I 51 4	26	
CFADC	LPC PUT DIAG Il 51 4	27	
CFAMA	PCS INPUT PHASE 1 Il 51 9] 28		
CFAMB	PHASE 1 RUN I 51 9] 28		
CFAMC	PHASE 1 STOP Il 51 9	28	
{CFAMD |FORMLIST (Form Parameter List) b 51 91 28 |
[| L | 1 1 J
Part 1 of 8

Appendix E: Codes for SYSFR Macro Instruction Parameters 169

r T L) Ll L) 1
| Module |Name | Opt, | Opt. |Opta|
L i] [4 K |
1) T T LB T I
CFAME	PHASE 1 IF	51 91 28		
CFAMF	PHASE 1 AT	51 91} 28		
CFAMH	EXPSCAN (Expression Scan) I 51 91 28			
CFAMJ	SUBPOL (Subscript to Polish)	51 9] 28		
CFAMM	INSTLOC (Form Instruction Location Definition)	5	9	28
CFAMR	Qualify Directive I 51 9	28		
CFAMS	Remove Directive	S 1 9] 28		
CFANA	PCS Input PHASE-II	51 9] 28		
CFAND	PHASE II AT I 51 9	28		
CFANE	PHASE II LIST2 I 51 91	28		
]CFANF	CODEGEN (Code Generator)	51 91	28	
CFANH	COMCON (Combine Constants) I 51 91 28			
CFANV	GETBASE (Base Register Assignment)	51 9} 28		
]CFANW	DIAGNO (Issue Diagnostic) I 51 9	28		
[CFANX	Prompt	51 91 28		
JCFAOA	VALMOD (Evaluate Module Name)	51 9] 28		
CFACB	VALSYM (Evaluate Internal Symbol) I S	9] 28		
JCFAOD	GETREG (Register Assignment)	51 9] 28		
CFAPA	PCS Output Overall I 51 91 29			
CFAPB	PCS Output Control	S1 91} 29		
CFAPH [LINE (Output Line Routine)	51 91 29			
CFAPK	SAVIX (Saved Instruction Execution)	5%t 91 29		
CFAQA	Display/Dump Control I 51 9	30		
CFAQB	NEXTLIST (Process Parameter List) l 51 9	30}		
CFAQC	NEXTITEM (Process Display List)	51 91 30		
CFAQD	NEXTISD (Process Next ISD Entry)	51 91 30		
]CFAQF	DISREG (Display Registers) I 51 91 30			
J]CFAQG	SIMVAR (Display Simple Variatle)	51 9] 30		
CFAQH	ADDITEM (Convert an Item by Data Type)	51 91 30		
CFAQI	DISINST (Display an Instruction) I 51 91 30			
CFAQJ	DISARAY (Display an Array) I 5S¢ 91 30			
JCFAQK	DISALINE (Display a Line of an Array)	51 91	30	
CFAQM	DISHEX (Display a Range in Hexadecimal) I 51 91 30			
CFAQN	DISHLINE (Display a Hexadecimal Line)	51 91 30		
CFAQR	DISYM (Display Symbol) l 51 9] 30			
]CFAQU	DISOUT (Cutput a Line) I 51 91 30			
[CFAQV	REALCON (Real Number Conversion)	51 92	30	
CFAQOW	SUBERR (Output Subscipt Diagnostic) I 51 91 30			
CFAUC	Cancel Data Recording	8	14	27
jCGCCA	Allocate Module I 8	2	28	
CGCCB	Select Hash	811 2	28	
CGCCE	Resolve Synbol I 8	2	28	
cGCcH	Load PMD	81 2	28	
CGCCIJ	Fix PMD	8	8] 28	
]CGCCK	Attach Text I 81 2	28		
CGCCL	Fix	81	2	28
]CGCCN	Add PMD I 81 2	28		
]CGCCO	Drop PMD I 81 2	30		
CGCCP	Reject Diag	811 2} 28		
]CGCCR	Bisearch	81 2	28	
jcGCCT	PCSA	81 2] 28		
CGCCU	Check DEF Legal	8	2	28
CGCCV	Link DEFS	81 2	28	
CGCCW	Get Storage	81 2	28	
CGCCY	Define REF I 81 2	28		
]CGCDA	[Modify MUT Counts	8	2	30]
CGCDB	Delete Caller Mutes	81 2	30}	
CGCDC	Delete Selected Mutes	8} 2	30	
J]CGCDD	Modify Use Counts	81 2	30	
CGCDE	Test User Counts	81 21	30	
L L 1 L i P |

Part 2 of 8

170

4

r T T T b}
|Module |Name | Opt4 |Opt2 | Optal
k i 1 1 + 1
|CGCDG |Add Mute | 8] 2| 28 |
|CGCDPR |Loader Gate | 81 2] 28]
]CGCKA	Symbolic Library Index1ng Routine	81 10	25	
CGCKB	SYSXBLD (Build Symbolic Library Index)	8	10	26
CGCKC	SYSEARCH (Symbolic Library Search Routine)	8	10	27
CGCKZ	Control Section Store Routine	8	11	25
CGCMA	Reconfiguration I 31 31	28]		
CHCAA	SQRT (Single-Precision Square Root Subroutine)	9	9	25
CHCAB	DSQRT (Double-Precision Square Root Subroutine)	9	9	26
CHCAC	EXP (Single-Precision Exponential Subroutine)	9	9	27
CHCAD	DEXP (Double-Precision Exponential -Subroutine)	9	9	28
CHCAE	LOG and LOG10 (Single-Precision Logarithm Sub-]		
	routine)		6	29
CHCAF	DLOG and DLOG10 (Double-Precision Logarithm	i		
	Subroutine)	91 9] 30		
CHCAI	SIN and COS (Single-Precisicn Sine and Cosine			
	Subroutine) I 91 91	31		
CHCAJ	DSIN and DCOS (Double-Precision Sine and Cosine			
	Subroutine)	21 91 32}		
CHCAK	TANH (Single-Precision Hyperbolic Tangent			
	Subroutine) I 91 91 33			
CHCAL	DTANH (Double-Precision Hyperbolic Tangent			{
	Subroutine)	91 9	34	}
jCHCAM	CEXP (Single-Precision Complex Exponential			
	Subroutine) I 91 9] 35}			
]CHCAN	CDEXP (Double-Precision Complex Exponential			
	Subroutine)	91 91	36	
CHCAO	CLOG and CLOG10 (Single-Precision Complex			
	Logarithm)] 91 91 37			
CHCAP	CDLOG and CDLOG10 (Double-Precision Complex			
	Logarithm) I 91 91 38			
CHCAQ	CSIN and CCOS (Single-Precision Complex Sine			}
	and Cosine) I 91 91 391			
CHCAR	CDSIN and CDCOS (Double-Precision Complex Sine]	I	
	and Cosine) Il 91 9] 80			
JCHCAS	CSQORT (Single-Precision Complex Square Root			
	Subroutine) 91 9	41		
CHCAT	CDSQRT (Double-Precision Complex Square Root			
	Subroutine) I 91 9	42		
CHCAU	CABS (Single—-Precision Complex Absolute Value]
{Subroutine) I 91 9	43			
CHCAV	CDABS (Double-Precision Complex Absclute Value			{
	Subroutine) Il 91 9	44		
]CHCAW	ARCSIN and ARCCOS (Single-Precision Arcsine and			
	Arccosine) I 91 9] 45			
CHCAX	DARSIN and DARCOS (Double-Precision Arcsine]	
	and Arccosine) I 91 9	u6		
CHCAY	TAN and COTAN (Single-Precision Tangent			
	and Cotangent)	91 9	47	
CHCAZ	DTAN and DCOTAN (Doukle-Precision Tangent]		
	and Cotangent)	9	9	48
CHCBA	SINH and COSH (Single-Precision Hyperbolic Sine			
jand Cosine ' 91 91	49			
CHCBB	DSINH and DCOSH (Single-Precision Hyperbolic i]			
	Sine and Cosine	21 91 50		
CHCBC	Eight-Byte Complex Number to Integer Power			
i	Exponentiation] 91 921 51]			
CHCBD	Interrupt and Machine Indicator	91 9	52	
]CHCBE	Specification Interrupt Program	91 9] 53]		
L A L 1 4L J

Part 3 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters

171

] L} T t ¥ 1
| Module |Name |Opt4 | Opt2|Optal
: } R i S
CHCBG	FJXPJ,FJXPI,FIXPJ,FIXPI (Base to Integer			
	Integer Power)			
CZAAB	Gate Subroutine I 51 11} 26			
{CHCBH	FRXPJ,FRXPI (Real Four-Byte Base to Integer		i	
	Power) I 21 9	55		
CHCBI	FDXPJ,FDXPI (Real Eight-Byte Base to Integer i			
	Power) I 941 9	56		
JCHCBJ	FJXPR,FIXPR,FRXPR (Integer and Four-Byte Real			
	Base to four-Byte Real Power	91 91	57	
CHCBK	FJXPD,FICPD,FRXPD,FDXPR,FDXPD (Real Eight-Byte			
	Base or Power to Real Power)	91 9	58	
[CHCBM	Sixteen-Byte Complex Number to Integer Power			
	Exponentiation I 91 91 59			
CHCBQ	ATAN and ATAN2 (Single-Precision Arctangent) I 91 91 60			
CHCBR	DATAN and DATAN2 (Double-Precision Arctangent)	9	9	61
CHCBT	GAMMA and ALGAMA (Single-Precision Ganma			
	Function)	91 9	61	
CHCBU	ERF and ERFC (Single-Precision Error Integral		i	
	Function) I 91 91 61			
CHCBV	DGAMMA and DLGAMA (Double-Precision Gamma			
	Function) I 91 91 65			
CHCBW	DERF and DERFC (Double-Precision Error Integral]
	Function)	91 9] 61		
CHCBZ	LIBER (Library Program Error Handling Routine)	9	9	62
CHCIA	Initialization i 91 8	25		
JCHCIB	DCB Maintenance I 91 8	26		
CHCIC	I/0 Control	9	8	27
]CHCID	Namelist Processor I 91 8] 28			
JCHCIE	List Item Processor	91 8	29	
CHCIF	Format Processor I 91 81 30			
CHCIG	Integer Input Conversion I 91 81 31			
]CHCIH	Integer Output Conversion I 91 8	32		
CHCII	[Real Input Conversion (No Exponent)	1 91 8] 33		
CHCIJ	Real Output Conversion (No Exponent)	91 8	34	
CHCIK	Real Input Conversion (Exponent)	91 8	35	
CHCIL	Real Output Conversion (Exponent)	21 8	36	
CHCIM	Complex Input Conversion	91 81 37		
CHCIN	Complex Output Conversion { 91 8	38		
JCHCIO	Alphameric Input Conversion	91 81 39		
{CHCIP	Alphameric Output Conversion I 91 8	40		
CHCIQ	Logical Input Conversion	91 8	41	
CHCIR	Logical Output Conversion I 91 8	42		
]CHCIS	General Input Conversion	91 8	43	
CHCIT	General Output Conversion	91 8	uu	
CHCIU	List Termination	91 8	u5	
]CHCIV	Dump Module	91 8	46	
CHCIW	Exit Module	91 8] 47		
CHCIX	I/O Error Message Control] 91 8	u8		
CHCIY	I/O Psect Module I 91 8	49		
CMAGA	Option Selection Routine	81 91 29		
CMASA	SERR Bootstrap	31	31	27
CMASB	Environment Recording	31 31 27		
{CMASC	Immediate Print i 31 31 27			
CMASD	Checker I 31 31 27			
CMASE	Pointer I 31 31	27		
CMASF	Restore and Validate I 31 31 27			
CMASG	Instruction Retry Execution f 31 31	27 §		
CMASH	CPU/Memory Checkout-1 I 31 31 27			
]CMASI	CPU/Memory Checkout-2 I 31 31 27			
[1 1 1 L 1

Part 4 of 8

172

(@]
o)

&
N

f T
| Module |Name
| B |8

T

|

F 1 i
jCMASJ |CPU/Memory Checkout-3 |
|CMASK | DUM-1 i
|CMASL | DUM-2 |
|CMASM |DUM-3 |
|CMASN |Environment Recording Edit and Print]
{CMATC |OLTS Print : |
| CMATD OLTS Utilities-Compare |
|]CMATE |OLTS Convexrsion |
|CMATF |Setup Control Routine |
|CZAAA Director |
| CZAAB GATE Subroutine |
CZAAC	Scan
CZAAD	MSGWR
CZAAE	Gatex
CZAAF VMTI (Virtual Memory Task Initiation) i	
CZzABA Batch Monitor	
CZABB	Execute Command Routine j
CZABC	Background Command Routine
CZABD	[Bulkio Preprocessor i
CZABE	[Batch (Read Cards)]
CZABF	RTAPE (Read Tape)
CZABG	List (Print)
CZABH	Card (Punch Cards)
CZABI	Tape (Write Tape) l
CZABJ	Cancel
CZABQ	XWTO
CZACA	MOCP (Main Operator Control Program)
]CZACB	MOHR (Main Operator Housekeeping Routine)

I

|

|

I

|

I

|

I

|

|

]

|

!

I

]

|

|

|

|

|

|

|

I

|

|

|

|

i

|

|

|

1

|CZACC |OXIP (Operator External Interrupt Processor)
|CZACD |[Reply

|CZACE |Message/Announce
|CZACF |Braodcast

|CZACG |Force Command Routine
|CZACN |Shutdown

|CZACQ |ABEND Processor
|CZACR |ABEND Frocessor
|CZACP |ABEND

|CZACS |Pair Table

| CZADF |Data

|CZAEA |Datadef

|CZAEB |Findjfchb

|CZAEC |Findds

|CZAED |Load

|CZAEG |Modify

|CZAEH |LOCFQN

|CZAEI |Catalog

|CZAEJ |Erase/Uncatalog
[CZAERK |[Present Director
|CZAEL |Present Data Set Status
| CZAEM |Present Line
|]CZAEN |Present VTOC
|CZAFG |Unload

|CZAFH |Permit

| CZAFI |Share

|CZAFJ |Release

|CZAFK | Join

|CZAFL |Quit

|CZAFM |Logon

|CZAFN |Logoff

|CZAFS |Ddcall

L 4

oL OUOUOULEVNLOLULOUUOUNUNEEOEWWWWW

e e o e e e i e A o A i o o S . i i S o S S . S S S S e O . . s . B S o i S o o gt . S, S S _— — ——— — ———— G —— T 22w, o]
QUL WWEWWWWWONNNNNNNNNNNNN@G e aada =220 wwwww

(Ut o s e e ot i e s o o o S i s e i S . S S S . — —— — T T o oo . f— it e o it S - — i A o — e W — i, ot S, o S . " ot S g st
N
~

0 et e e e e et e e e e i e

as]
]
~
r+

Appendix E: Codes for SYSER Macrc Instruction Parameters 173

r T T T T 1
|Module |Name |Opt4 |Opt,|Opta]
k = t————————1
CZAFU	Reserve { 51 51 70	
CZAFV	Dscopy	51 51} 71
CZAGA	Accounting Routine { 51 6	25
CZAHA	Diagno	51 71 25
jCzaHB	IAIP (Initial Attention Interrupt Processor)	51 71 26
CZAHC	XIP/XIIS (External Interrupt Processor)	51 71 27
CZAHD	External Interrupt Subprocessor (message/Error)	I
CZAMA	Dump	51 9
jCZAMI	DATAFLD (Form Data Field Definition)	51 9
CZAML	DATALOC (Form Data Location Definition)	51 9] 28
JCZAMN	INTERNAL (Foxrm Internal Symkol Definition) I 51 9	28
CZAMO	EXTERNAL (Form Extermnal Symkolic Definition) I 51 9	28
jCzAMP	Offset	51 9} 28
CZAMQ	SCANFLD (Scan Field tc Delimiter)	5
CZAMT	PCS Unload	51 9] 28
] CZANG	SUBGEN (Subscript Computation)	51 9
CZANI	OPGEN (Operator Code Generation)	51 9] 28
CZANT	LOADOP (Load Operand) I 51 91 28	
CZAPC	FINDLOC (Location Table Scan)	51 91 29
CZAPG	SYMGEN (Symbol Generator)	51 91 29
CZAPL	FINDREAL (Find Real Address)	51 9] 29
{CZzAQA	PCS Debug I S 1 9	26
CZASE	VMEREP (Virtual Memory Environment Recording	
	Edit and Print)	4
CZASX	Error Control	4
jCZ2ASY	Drum Access Module	4
CZATA	OLTAM Execute 1I/0	81
CZzATB	OLTAM Posting	81 91
CZATG	Device Allocation	81 9
CZAUC	Data Recording Cancel	8
CZCAA	MTREQ Routine I 81 5	25
CZCAB	Bump Routine	81 5
CZCAC	Pause Routine	8} 51 28
CZCAD	Release Routine	8
CZCCD	Loader Logoff	8} 2] 31]
CZCDE	LIBE Maintenance i 81 2] 32	
CZCDL1	Explicit Linkage	81 2
C2CDL2	Hash Search	8
czCDL3	LIBE Search	81 2
CZCDL4	Page Relocation	81 2
CZCDL5	[Map Search	8
CZCDL6	Set Search Flags	811 2
JCZCDU1	Explicit Unlinking	81 2} 30
CZCDU2	Delete Module	81 2} 30
CZCEA	Allocate	8} 3] 25
CZCEB	VAM Search I 8	3
CZCEC	SAM Search { 81 31 29	
CZCED	VAM Merge i 81 3	30
CZCEE	SAM Merge	81 3] 33
CZCEG	Give Back SAM Storage (GIVBKVS)	81 3] 31
CZCES	Scratch Data Set	8 31
CZCEV	Give Back VAM Storage (GIVBKV)	81 3] 26
CXCEX	Extend	81 3
CXCFA	Addcat { 81 1] 27	
CZCFD	Delcat I 81 11 29	
CZCFG	Get SBLOCK { 81 1] 35	
CZCFH	Search SBLCCK	81 1] 36
CZCFI	Index	811 11 26
CZCFL	Locate I 81 1	25
{CZCFO | Obtain | 8 1] 32 |
L 1 L 1 L i

Part 6 of 8

174

v Ly LE A T 1
{Module |Name |Opt 4 |Opt2 | Optal
F T =t
|CZCFR |Retain I 8} 1]} 33|
| CZCFS Share | 81 1] 30
CZCFU Shareup	81 1] 28			
CZCFV	Unshare	8	1 1] 31	
CZCF% Rename I 81 1	34			
CZCGA	Virtual Memory Allocation	81 6	15	
]CZCIA	Stimer Routine	8	13	32
CZCIC	Cleanup] 8} 13	36		
CZCID	Delete Interrupt Routine (DIR)	8	13	30
CZCIX Interrupt Inquiry (INTINQ)] 8	13	31		
CZCIK Task Monitor Scanner and Dispatcher	31 13] 28			
CZCJL.	Leave Privilage (LVPRV)	8	13	27
C2CIQ Queue Linkage Entry	8	13	26	
Cz2CIs Specify Interrupt Routine (SIR)	81 13	29		
CZCIT	Task Monitor Interrupt Processor] 8	13 } 25		
JCZCIX	Time Conversion Package	8 { 13	33	
CZCIY	Set Clock Routine	8	13	34
CZCJZ	[Cancel Clock Routine	81 13	35	
CZCLA	Open (Common) I 4	1] 25		
JCZCLB	Close (Common)	4} 1] 27		
CZCLD	Force End of Volume	4} 1} 30}		
]CZCMA	GETBUF I 4] 1] 31			
CzCMB	GETPOOL	41 1	34]	
]CZCMO	Configuration Console System Sequence Control)			
CzZCNA	Freebuf	41 1] 32		
CZCNB	FREEPOOL		1] 35	
CzCOA	VAM Open	41 5	28	
CZCOB	VAM Close	41 5 29		
CzZCOC	VAM Move Page	41 5] 30		
czCcOD	VAM Insert/Delete Data Set Pages	4] 5] 31		
CZCOE	VAM Regpage (Assign External Entries in RESTBL)	4	5	32
CZCOF	VAM Insert (Insert Page Entries in RESTBL)	&1 51	33	
CZCOG	VAM RECLAIM (Delete Data Set Pages and Make			
	External Pages Available) I 4] 5	34		
CZCOH	VAM INTLK (Routine for Imposing Interlocks)	81 51	35	
CZCOI	VAM RLINTLK (Routine for Releasing Interlock)	4	5	36
CzCc0J	VPAM Find Macro Instruction and Routine	4] 8] 27		
CZCOK	VPAM Stow Macro Instruction and Routine	4} 8	28	
CZCOL	VPAM Search	4] 81 29		
CZCOM	VPAM Extpod (Extend POD)	4] 8	30	
CzCON	VPAM RELMBRS (Relocate Partitioned Data Set			
	Members by POD)	4] 81 31		
CZCOO	VPAM GETNUMBER	4	8] 32	
CZCOP	VSAM OPEN	4] 6] 30		
[CZCOQ	VSAM CLOSE	4} 6] 31		
CZCOR	GET LOC	4] 61 26		
[CzZCOS	VSAM PUT LOC	4	6] 27	
]CZCOT	VSAM SETL	4] 6] 28		
CZCOU	VSAM PUTX	8] 6	29	
CZCOV	VSAM FLUSHBUF	4] 6] 32		
jCZCPA	VISAM PUT MV	4	7] 30	
CZCPB	VISAM GET MV	4	7	32
CzZCPC	VISAM SETL	4] 71	33	
CZCPE	VISAM Read/Write	4	7	37
CZCPI	VISAM Get Page	6] 7	54	
CZCPL	VISAM ADE (Add Directory Entry)	4	7	47
czCcPZ	VISAM Open	4	7	4o
CZCQA	VISAM Close	4] 7] 81		
CZCQE	SRCHSDST (Shared Data Set Table Manipulation			
jRoutine) } 4] 5] 38				
L 1 L L 1 d

Part 7 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters 175

r 1] T 1
{Module 1Name !Opt1 Optleptsj
¥ L 1 | 1
CZCQF GETSDST and RELSDST	4 5 39			
CZCQI	EXP RESTBL { o 5] 50			
C2CQQ	VAM ABEND INTLK	4 5 40		
CZCRA BSAM Read/Write	4 2 25			
CZCRB BSAM Control Routine	4 2	32		
CZCRC	BSAM Check	& 2	26	
CZCRF BSAM Prtov	4 2 31			
CZCRG BSAM Backspace a Block	o1 2 30			
]CZCRH	SAM Direct Access Error Retry Routine	41 214§ 36		
CZCRM	BSAM Point Position to a Block	4	2	28
CZCRN	BSAM Note Address of Last Block Processed	81 2	27	
CZCRP	BSAM Posting and Error Retry	4} 2	36	
CZCRQ	BSAM Determines Records per Track	4 2	37	
CZCRR	BSAM RELFUL] 41 2] 38			
CZCRS	BSAM FULREL	41 2] 29		
CZCRX	VMER (Virtual Memory Error Recording)	4	10	26
CZCRY	VMSDR (Virtual Memory Statistical Data Reco- } 4} 10	25		
	rding)	[[
CZCSB	IOREQ (I/0 Request	4	11	25
JCZCSC	IOREQ open	41 11] 26		
]CZCSD	IOREQ close	4	1 27	
CZCSE	IOREQ Posting	4] 11	28	
JCzCWB	Build Common Portion of Data Extent Block	4 21 41		
J]CZCWC	BSAM Close Mainline	4} 2	34	
]CZCWD	Direct-Access Open	41 2 33		
CZCWF	Tape Input Trailer lLabel Processor	4} 2 43		
]CZCWH	Tape Input Header Label Processor	4} 2 43		
CZCWL	Build Direct-Access Data Extent Block	41 2 41		
JCZCWM	SAM Shared Routines Message Processor	4	2	42
CZCWO	BSAM Open Mainline I 41 21 33			
CZCWP	Tape Positioning	4	2	42
]CZCWR	Read Format-3 DSCB I 4	2	41	
CZCWT	SAM Open Tape	41 2	33	
CZCWV	SAM Shared Routines Volume Sequence Convert	4	2	42
CZCWX	Volume-Label Reader	4	2	4o
CZCXC	Tape Output-Label Creator	4	2	43]
CZCXD	Direct Access Output End-of-Volume Processor	4] 21	35	
]CZCXE	SAM End-of-Volume Mainline	4	2	35
CZCXF	Tape Output Trailer-Label Processor	4} 2] 43		
CZCXH	Tape Output Header-Label Processor	41 2	43	
CZ2CXI	BSAM Direct-Access Input EOV	4 2	35}	
]CZCXK	Check for Tape Read/Write	4	2	43]
CZ2CXN	Direct-Access Input-Label Processor	4 2	43	
CZCX0	Tape Output End-of-Volume I 4 21 35			
]CZCXS	Set DSCB	&	2} 35	
CZCXT	Tape Input End-of-Volume	4] 2] 35		
C2CXU	Direct-Access Output-Label Processor	4	2	43
CZCXX	Concatenation Processor i 4	2] 35		
CZCYA	TAM Open	4] 4] 25		
CZCYG	TAM Close	41 4] 26]		
CZCYM	TAM Read/Write	4	4] 27	
CzCzA	Tam Posting] 4	o	28	
EAINV	System Inventory Program	3} 1] 53		
SYSKA	Systime Conversion -1 8	15	25	
L 1 L 1 XL i]

Part 8 of 8

176

Absexp, value mnemonic 10,94,98,102
Add device to task symbolic device list
(see ADDEV macro instruction)
Add shared virtual storage pages
(see ADSPG macro instruction)
Add virtual storage pages
(see ADDPG macro instruction)
ADDEV macro instruction (SVC 234) 66
example 66
ADDPG macro instruction (SVC 250)
exanple 61
Addr, value mnemonic
Address translation
(see dvnamic address translation)
ADDRX, value mnemonic 10,93,101
Addx, value mnemonic 11,93
ADSPG macro instruction (SVC 236)
example 62
Allow task initiation
(see ALLTI macro instruction)
ALLTI macro instruction (SVC 216) 56
example 56
Alternate prefix 18
Apostrophe, in macro instructions
ATPOL macro instruction 158
Authority codes 40
AWAIT macro instruction (SVC 248) 59
exanple 59

44,60

10,98

44,61

108,110

Basic sequential access method (BSAM)
controlling I/C devices 126-130
symbolic device address 125
(see CNTRL macro instruction, PRTOV

macro instruction)

BSAM
(see basic sequential access method)

CALL macro instruction, in type-I linkage
33
Change task priority
(see CHAP macro instruction)
CHAP macro instruction (SVC 230) 52
example 53
Characters, value mnemonic 11,95,98
CHDERMAC macro instruction 113
error messages 115,116
severity code 113
severity code algorithm 114
CHDINNRA macro instruction 112
examples 113
CHDPSECT macro instruction 116
CHECK racro instruction 154-155
Check protection class
(see CKCLS macro instruction)
CKCLS macro instruction (SVC 241) 65
example 66
CLIC macro instruction (SVC 119) 90
example 91
versus CLIP macro 91
CLIP macro instruction (SVC 118) 91
exarple 91
versus CLIC macro 91

INDEX

CLOSE macro instruction
for MSAM 135,147
for TAM 150
CNSEG macro instruction (SVC 238) 63
example ol
CNTRL macro instruction 126-128
Code, value mnemonic 94,98,102
Coded value 12
Comma, as delimiter 9,13,14
Connect segment to shared page table
(see CNSEG macro instruction)
Control on-line input/output devices
(see CNTRL macro instruction)
COPY instruction, pseudo—-operation 20
Core allocation 25
example 26
Core release 25
example 26
Create task status index
(see CRTSI macro instruction)
CRSTI macro instruction (SVC 253) 47
example 47

DAT
(see dynamic address translation)
Data channel key 44
Data control block
(see MSAM DCB fields, DCB macro
instruction)
Data event control block
flag field 156
format 155
(see also DECB macro instruction)
CCB macro instruction
for MSAM 130
for TAM 148
DCBD macro instruction
for MSAM 130
for TAM 149
DECR
(see data event contrcl block)
DEF
(see symbolic definition)
DELET macro instruction (SVC 123) 89
example 90
LCelete task status index
(see DLTSI macro instruction)
Delete virtual storage pages
(see DELPG macro instruction)
DFLPG macro instruction (SVC 249) 63
example 63

DFTRMENT mwacro instruction 156-157
Direct access storage 164-166
disk storage format 16L-166

drum storage format 164

Disconnect shared page table from segment
(see DSSEG macro instruction)

Disk storage format 164-166

DLINK macro instruction (SVC 127) 89
exanple 89

DLTSI macro instruction (SVC 252) 48
example U8

Index 177

Drum storage format 164
DSECT
(see dummy sections)
DSSEG macro instruction (SVC 237) o4
exanmple 64
Dummy section (DSECT) 19
naming conventions 23
Dynamic address translation
Dynamic loader 41
effect of authority code 42
hash. table 41
task dictionary 41

17,18

Enter command language director to end RUN
(see RTRN macro instruction)
Enter delete program
(see DELET macro instruction)
ENTER macro instruction (SVC 121)
example 88
Enter privileged service routine
(see ENTER macro instruction)
Enter program checkout subsystem
(see PCSVC macro instruction)
Entry recint
macro instructions 107
program module names 23
secondary entry points 24
system control blocks 23
ERROR macro instruction (SVC 254)
dumg option codes 80
example 82
serviceability aid 118
system error codes 80
Extended control program status word
(XPSW) 16,17
Extended program interrupt codes
Extract accumulated CPU time
(see XTRTNM macro instruction)
Extract extended task status index field
(see XTRXTS macro instruction)
Extract system table field
(see XTRSYS macro instruction)
Extract task status index field
(see XTRCT macro instruction)

35,88

79-82

167-168

Fence straddlers
(see linkage conventions)
Field name 19
bit fields 20
FINDDS macro instruction 158
FINDJFCB macro instruction 159
FINISH macro instruction 146-148
exarple 147
interrupt entry handling 136
return codes 147
Force time slice end
(see TSEND macro instruction)
GET macro instruction 141-144
example 143
interrupt entry handling 136
return codes 143

Hexinteger, value mnemonic 11
Indicate nonresident-program detected

error
(see SYSER macro instruction)

178

Indicate supervisor detected error
(see ERROR macro instruction)

Inhikbit task interrupts
see ITI macro instruction)

Inner macro instructions 112-117
CHDERMAC error messages 115
defining 106
nesting 106
severity code 113,115
(see also CHDERMAC, CHDINNRA and

CHDPSECT macro instructions)

Integer, value mnemonic 11,94,98,102

Interrupt entry handling 136

Interrupt storage area (ISA) 28

Interrupts
disabling 22
enabling 22

INVOKE macro instruction 159

I/0 call
(see ICCALL macro instruction)

TOCAL macro instruction (SVC 231)

42,46,71-75
example 74

Isa
(see interrupt storage area)

ITI macro instruction 159

Keyword operand
(see operand field)

Linkage conventions 30,39
fence straddlers 39
general-register use 33,35,37,38
nonresident programs 30
resident programs 25
type-I linkage 30
type-IM/II linkage 36
type-II linkage 34
type-III linkage 36
type-IV (restricted) linkage 38
List changed virtual storage pages
see LSCHP macro instruction)
Load virtual program status word
(see LVPSW macro instruction)
Locate JFCB
(see FINDJFCB macro instruction)
Locate JFCB corresponding to data set name
(see FINLDS macro instruction)
Lock byte 21
LSCHP macro instruction (SVC 247) 65
example 65

LVPSW macro instruction (SVC 254) 37,78,80
example 78
Macro instructions
defining 93-117
defining nonstandard 104
defining R-type 93-97,104
defining S-type 97-103,104
error messages 115
generating nonprivileged SVCs 88-92
generating privileged SVCs #45-83

inner macro instructions 106,112-114
operand size 109,110

packing parameters 105

register notation 104

setting sign bit 107

severity code 113,115

sublists 111
subscripts 111
Message
CHDERMAC 115-116
send to task 161
system error processor 79,82
Move page table entries
(see MOVXP macro instruction)
MOVXP macro instruction (SVC 245) 77
example 78
MSAM
(see multiple sequential access method)
MSAM DCB fields 131-134
alternate sources 131
COMBINE 133
DDNAME 131

DEVD 131
DSORG 131
FIP 133

FORMTYPE 133
INHMSG 133

LRECL 132
MACRF 131
MODE 132
POCKET 133
PRTSP 131
RECFM 132
RETRY 133
STACK 132
SUR 133

Multiple sequential access method (MSAM)
130-148
DCB options 130-134
DDEF command 134
DDEF macro instruction 134
designating devices 125
interrupt entry handling 136
symbolic device address 125,126
(see also CLOSE, FINISH, GET, OPEN, PUT,
and SETUR macro instructions)

Naming conventions
dummy sections 23
fields 24
nonprivileged programs 87
privileged programs 83
resident program modules 23
secondary entry points 24
system control blocks 23
Nonprivileged programs 86-92
design 87
Nonprivileged supervisor call instructions
88-92
(see also CLIC, CLIP, DELET, DLINK,
ENTER, PCSVC, RSPRV, and RTRN macro
instructions)
Nonresident programs 28-92
definition 8
linkage conventions 30-40
privileged SVCs U45,46-83
system control blocks 22
Nonstandard macro instructions, defining
104

OPEN macro instruction
for MSAM 134
for TAM 149
Operand field 9

keyword operands 9,13,1
positional operands 9,1
use of comma 9,133,184
use of parentheses 14

10
2

writing positional operands

Parentheses, in operand field 1

PCS

13

4y

(see program checkout subsystem)
PCSVC macro instruction (SVC 125) 90

example 90
Permit task interrupts
(see PTI macro instructi

on)

PGOUT macro instruction (SVC 242) 43,75

example 76

Poll for pending attention interrupt
(see ATPOL macro instruction)

Positional operand
(see operand field)
Prefixed storage area (PSA)
addressing 18
definition 17
Prefixing 17
Primary prefix 18
Privilege class E 125

16,

17,18

Privileged supervisor call instructions

40,45,46-83

(see also ADDEV, ADDPG, ADSPG, ALLTI,
AWAIT, CHAP, CKCLS, CNSEG, CRTSI,
DELPG, DLISI, DSSEG, ERROR,

LSCHP, LVPSW, MOVXP, P
RDI, REDTIM, RESET, RM
SCRTSI, SETAE, SETSYS,

XTRCT, XTRSYS, XTRTM,
instructions)
Privileged SVC

GouT,
DEV,
SETT

IOCAL,
PURGE,
RSTTIM,

OD, SETTR,
SETTU, SETUP, SETXP, SETXTS, SETYMD,
SPATH, SYSER, TSEND, TWAIT,
and XTRXTS macro

VSEND,

(see privileged supervisor call

instruction)
Program checkout subsystem
40,121-122
definition 118
Protection key
data channel key 44
processing unit key 44
PSW key 43
storage page key U4

(PCS)

Prototype control section (PSECT) 84-86

address constants 85
attributes 84,86
purpose 22

PRTOV macro instruction 12
examples 130

PSA
(see prefixed storage ar

PSAETM 45,55,58

PSECT

8-130

ea)

(see prototype control section)

PTI macro instruction 160
Purge I/0 operations
(see PURGE macro instruc

tion)

PURGE macro instruction (SVC 222) 67

example 68
PUT macro instruction 144-
card punch 145
example 145
interrupt entry handling

146

136

Index

179

printer 145
return codes 145

R-type macro instructions
definition 93-97
example 95
linkage 95
modified R-type 104
RDI macro instruction (SVC 201) 57
Read command from SYSIN (conditiomnal)
(see CLIC macro instruction)
Read command from SYSIN (unconditional)
see CLIP macro instruction)
Read elapsed real time
(see REDTIM macro instruction)
READ macro instruction 150-152
character set codes 152
REDTIM macro instruction (SVC 218) 45,58
example 58
REF
(see symbolic reference)
Relexp, value mnemonic 11,98
Remove device from task symbolic device
list
(see RMDEV macro instruction)
Reset device suppression flag
see RESET macro instruction)
Reset drum interlock
(see RDI macro instruction)
RESET macro instruction (SVC 221) 28
exampie 69
Reset system time
(see RSTTIM macro instruction)
Resident programs 16-27
definition 8
dummy sections 19
linkage conventions 25
module design considerations 22
module structure 20
naming conventions 23
use of registers 26
Resident supervisor 16
Restore privilege
(see RSPRV macro instruction)
RESUME macro instruction 160
Return to calling program
{see RESUME macro instruction)
RMDEV macro instruction (SVC 233) 67
example 67
RSPRV mwacro instruction (SVC 120) 37,92
example 92
RSTTIM macro instruction (SVC 212) 45,55
exarple 55
RTRN macro instruction (SVC 122) 91
example 92

S-type macro instructions
definition 97-103
E-form 101
exarnple 100,102
L-form 99,101
linkage 102
modified S-type 104
standard form 98,101

Save area 30,31
type-I linkage 32
type-II linkage 34
type-III linkage 36

180

(see also STORE macro instruction)
SCRTSI macro instructijion (SVC 206) 48
SDA

(see symbolic device address)
Secondary entry point

(see entry point)

Send message to another task

(see VSEND macro instruction)
Set asynchronous entry

(see SETAE macro instruction)
Set external page table entries

(see SETXP macro instruction)
Set I/0 device path

(see SPATH macro instruction)
Set real time interval

(see SETTR macro instruction)
Set system table field

(see SETSYS macro instruction)
Set time of day

(see SETTOD macro instruction)

Set up extended task status index field

(see SETXTS macro instruction)

Set up task status index field

(see SETUP macro instruction)
Set user timer

(see SETTU macro instruction)
Set year, month, and day

(see SETYMD macro instruction)
SETAE macro instruction (SVC 210) 70

example 70
SETSYS macro instruction (SVC 216) 53

example 54
SETTOD macro instruction (SVC 216) 56
SETTR macro instruction (SVC 217) 45,58

example 58

time conversion 162
SETTU macro instruction (SVC 251) 45,57

example 57

time conversion 162,163
SETUP macro instruction (SVC 235) 48

example 50
SETUR macro instruction 137-141

card punch 137

interrupt entry handling 136

printer 137-139

return codes 140

sSysucs 138,139, 140,141

SYSURS 140,141
SETXP macro instruction (SVC 244) 43,77

example 77
SETXTS macro instruction (SVC 214) 51

example 52
SETYMD macro instruction (SVC 216) 56
SPATH macro instruction (SVC 211) 69

example 70
Special create task status index

(see SCRTSI macro instruction)
Specsym, value mmemonic 12
Startup 16
Storage page key u4i4
Storage protection 44

PSW key 43
STORE macro instruction 160
SvC 118

(see CLIP macro instruction)
svec 119

(see CLIC macro instruction)
svec 120

(see RSPRV macro instruction)
sSvC 121

(see ENTER macro instruction)
SVC 122

(see RTRN macro instruction)
SvC 123

(see DELET macro instruction)
SvC 125

(see PCSVC macro instruction)
svCc 127

(see DLINK macro instruction)
svc 201

(see RDI macro instruction)
SVC 206

(see SCRTSI macro instruction)
SvC 209

(see XTRTM macro instruction)
SvC 210

(see SETAE macro instruction)
svCc 211

(see SPATH macro instruction)
SvVC 212

(see RSTTIM macro instruction)
svc 213

(see XTRXTS macro instruction)
SvC 214

(see SETXTS macro instruction)
SvC 215

see XTRSYS macro instruction)
SVC 216

(see ALLTI, SETSYS, SETTOD, and SETYMD

macro instructions)

svCc 217

(see SETTR macro instruction)
SvVC 218

(see REDTIM macro instructionm)
SvC 221

(see RESET macro instruction)
SVC 222

(see PURGE macro instruction)
SvVC 228

(see SYSER macro instruction)

SvC 229

(see TWAIT macro instruction)
SvC 230

(see CHAP macro instruction)
svCc 231

(see IOCAL macro instruction)
SvC 233

(see RMDEV macro instruction)
SVC 234

(see ADDEV macro instruction)
SvC 235

{see SETUP macro instruction)
SvC 236

(see ADSPG macro instruction)
SvC 237

(see DSSEG macro instruction)
SVC 238

(see CNSEG macro instruction)
SvC 240

(see VSEND macro instruction)
SVC 241

(see CKCLS macro instruction)
SvC 242

{see PGOUT macro instruction)
SvC 243

(see TSEND macro instruction)
SVC 244

(see SETXP macro instruction)
SvVC 245

(see MOVXP macro instruction)
SVC 246

(see XTRCT macro instruction)
SVC 247

(see LSCHP macro instruction)
SVC 248

(see AWAIT macro instruction)
SVC 249

(see DELPG macro instruction)
SVC 250

(see ADDPG macro instruction)
SvC 251

(see SETTU macro instruction)
SVC 252

(see DLTSI macro instruction)
SVC 254

(see ERROR and LVPSW macro

instructions)

Symbol, value mnemonic 12,95,99,102
Symbolic definition (DEF) 41
Symbolic device address (SDA) 43

in DDEF command 125

for MSAM 133
Symbolic device 1list

(see task symbolic device list)
Symbolic reference (REF) 41

SYSER dump 118-121

definition 118
header record 119
message format 118,119
retrieval 119-121
use of DDEF command 119
use of PRINT command 120
(see also ERROR and SYSER macro
instructions)
SYSER macro linstruction (SVC 228) 82
dump option codes 80
example 83
option parameters 169-177
serviceability aid 119
system erroxr codes 80
Syscem control block 21
definition 20
naming conventions 23
System monitor 125
SYSTOD 45,55,58
Sysucs, for MSAM 138,139,140, 141
SYSURS, for MSAM 140,141
SYSYMD 45,55,58

TAM
(see terminal access method)
Task dictionary (TDY) 41
hash table 41
Task interrupts
inhibiting 159
permitting 160
Task status index (TSI)
alter 48-50
creation 47,48
deiletion 48
extract 50-51
setting estimated task time 51-52
TWAIT flag 59

Index

181

Task symbolic device list (TSDL)
67,68,69,70
TDY
(see task dictionary)

Terminal access method (TAM) 148-157
character set codes 152
designating devices 126
symbolic device address 125,126

(see also CHECK, CLOSE, DCB, DCBD,
DFTRMENT, READ, and WRITE macro
instructions)

Test for printer carriage overflow

(see PRTOV macro instruction)

Text, value mnemonic 12,95,98
Time conversion 162-163
Timekeeping 45

time conversion routine 162-163

(see also REDTIM, RSTTIM, SETTR, SETTU,
and XTRTM macro instructions)

Transfer to dynamic loader for external
symbol resolution

(see DLINK macro instruction)

TSDL
(see task symbol device list)
TSEND macro instruction (SVC 243) 58
example 59
TSI

(see task status index)

TWAIT macro instruction (SVC 229) 59
example 60
type-I linkage
(see linkage conventions)
Type-IM/II linkage

(see linkage conventions)
Type-I1II linkage

(see linkage conventions)
Type-III linkage

(see linkage conventions)
Type-IV (restricted) linkage

(see linkage conventions)

Unit record device set up

(see SETUR macro instruction)
USING instruction

182

linkage convention 25
pseudo-operation 20

Value, value mnemonic
Value mnemonic
(see absexp, addr, addrx, addx,
characters, hexinteger, integer,
relexp, specsym, symbol, text, value)
Virtual remory programs
(see nonresident programs)
Virtual program status word (VPSW)
privilege bit 42
storage protection U4
Virtual storage program
(see nonresident program)
VPSW
(see virtual program status word)
VSEND macro instruction (SVC 240) 47,49
example 79
VSENDR macro instruction 161

10,12,94,98,102

28,29

Wait for an interrupt
(see AWAIT macro instruction)
Wait for termimal I/0 interrupt
(see TWAIT macro instruction)
WRITE macro instruction 152-154
Write virtual storage pages to external
storage .
(see PGOUT macro instruction)

XPSW

(see extended control program status
word)

XTRCT macro instruction (SVC 246) 50
example 51

XTRSYS macro instruction (SVC 215) 54
example 55

XTRTM macro instruction (SVC 209)
example 53

XTRXTS macro instruction (SVC 213) 52
example 52

45,53

XTSATI 45
XTSCTI 45
XTSUTI 45,57

READER'S COMMENT FORM

IBM System/360 Time Sharing System C28-2008-0
System Programmer's Guide

e Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

e
a

e Does this publication meet your needs?
¢ Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

OOooo o
OOoooo Oz

e What is your occupation?
e How do you use this publication?

| Asan instructor in a class? [
For advanced knowledge of the subject? I As a student in a class? [
- For information about operating procedures? O

As an introduction to the subject?

As a reference manual? []

Other
¢ Please give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

COMMENTS:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-2008-0

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 34

YORKTOWN HTS., NY

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A.

IBM Corporation

PO Box 344

2651 Strang Boulevard

Yorktown Heights, N.Y. 10598

ATTN: Time Sharing System/360
Programming Publications Dept. 561

JBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

teeseveren

s esecssessenrans

ecsvsaseecvecsnerasse

srsae

09¢/sS1

*¥*5°N Ul posulg

0-8002-820 w04

C28-2008-0

BBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International}

09e/ss1

V5N U1 pajuLy

a

0-800Z-62D W4

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	replyA
	replyB
	xBack

