
Systems Reference Library

System/360 Model 67

Time Sharing System

Preliminary Technical Summary

File Number S/360-00
Form C20-1647-0

This document is being furnished for System/360 plmming
use only. It contains preliminary technical information,
and the contents are subject to change. The content
represents "best available information" as of the publication
date. This material is to be considered automatically
replaced by the normal SRL publication upon its release.

The System/360 Model 67 Technical Summary is a sel£­
contained description of the system, its components, and
the Time-Sharing System programming support. The
objective of the document is to provide consistent material
to support branch office preparation of customer proposals.
Performance information unique to the Model 67 is provided.
A brief section on reliability and maintainability is ineluded.

Copies of this and other IBM publications can be obtained through IBM branch

offices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

@ International Business Machines Corporation, 1966

CONTENTS

SYSTEM SUMMARY ..••......•........
System Features ••......
System Components ...•..
Programming System ...

SYSTEM PHILOSOPHY ••••.•
General Concepts . • • • . . . •

5
5
5
6
8
9

Processing Unit Features •• • • . • . • . • . •• 12
Multiprocessing. • • • . . • • • • • • • • • • • • .• 13
Systems Data Flow. • • • • . . • • • . • . • • • •• 19

SYSTEM COMPONENTS . • • . • • . . • • • • • . •• 21
IBM 2067 Processing Unit. • • • • • • • . • • •• 21
IBM 2365 Processor storage • • • • • • • • • •. 28
Chann els .•.••••••..•...•.•..•... 28
I/O Control Units. • • • • • • • • . • • • • • • • •• 30
I/O Devices •••.••••••..•••••••... 31
Graphic and Display Terminals ••••..••• 33
Remote Transmission. • . . . • . • • • • • • • •• 35
Remote Computer Systems or

High-Volume Terminals • • • • • • • • . • .• 36
PROGRAMMING SYSTEMS ••.••••••••••• 38

General Description. • . • • . • . • • . • . • . .. 38
Supervisor • . . • • . • . . • • . • • • • • • • • • •• 38
Command System. • • • . • • • • • . • • • • • • •. 38
Data Management •••.•••••.•••..••• 38
Growth. • . • . • • • • • • • • • • • • • • •• 38
Inte rfaces • • • • • • • • . • • • • • • • . • .. a 9
The Command Language . • • • . • • • . • • • .. 39
Language Processors. • • • • • • • • • • • • • •• 41
Data Management ••••••••• ,........ 43

Identifying and Locating Data ..•••••.•••
Organizing Data •••.••••••••.••••• , •
Storing and Retrieving Data ••.•••••••••
System Facilities for Program

Construction •••••..•.•••••••••••
Use of the Language Processors ••••••••.
Linkage Editor •••.••••••••.•••••••
Dynanlic Loader •••••••••••••••••••
Program Checkout System •••••••••••••
System Design Considerations ..•.•••

PERFORMANCE ANALYSIS •••••••••••
Relocation Timing ••••..••••••••.
Shared Storage Interference and

Delays ••.•.•.•••.•.•.•.••
RELIABILITY AND MAINTAINABILITY.

Introducti on-.
Facili ti es . • . • • • . • • • • • • • • • • • • .
Maintenance Programming ..• • . • . . • • • .
Built-in Diagnostics and Checking

Features ••..•••..••..•••••.•..•
Power and Thermal Malfunctions •...•.•.
Packaging .••.•.••••••..••••..••••

EXTENDED DYNAMIC ADDRESS
TRANSLATION •.•••.••••••••••••••
Address Translation (32-Bit Version) ••.••
Relocation Mode ., ..•.••..•••••••••
Extended Control (32-Bit Version) •..••.•
New Instructions (32-Bit Version) ..•..••

44
45
46

46
48
49
50
50
51
55
5;")

57
59
59
59
60

61
61
61

62
62
63
64
66

SYSTEM SUMMARY

SYSTEM FEATURES

The basic architecture of the IBM System/360
makes it ideally suited to processing in a multi­
programming and multiprocessing envirorunent.
The Model 67 extends this basic architecture to
provide the additional capabilities of an advanced
time-sharing system, offers multiple users
real-time processing, efficient conversational-mode
operation, and almost instantaneous turnaround.
The Model 67 is designed to:

• Enable all processors in a system to access
directly or to control all components of the
system, including core storage units, I/O
channels, and I/O control units. The facil­
ities of the system can be dynamically allo­
cated to meet changing job requirements.

• Allow direct connection of channels to the
processor storage units. Thus, I/O trans­
fers to storage are independent of the
processor.

• Enable each processor of a multiprocessor
system to operate:
1. As a single processor with its own I/O

subsystem.
2. Jointly with other processors in a sym­

metric multiprocessing configuration.
• Allow extensive growth without impacting pro­

gramming support or programming com­
patibility, and without disrupting the total
system operation. For example:
1. For additional computing power growth, a

total of four processors can be attached.
2. For additional core storage requirements,

up to eight processor storage units can be
attached to provide more than 2 million
bytes of physical core storage.

3. To gain additional system throughput, many
channels, channel controllers, and hundreds
of I/o devices can readily be added.

• Enable system components to be physically
partitioned from the rest of the system by
centrally-located switches. Multiple com­
puting systems can therefore operate
independently.

SYSTEM COMPONENTS

Processor

The System/360 Model 67 time-sharing processor
has the full capabilities of the System/360 processor

plus additional features to strengthen its capabilities
for time sharing. Some of these features are:

• Extended control capability. Masking facilities
are extended so that a processor can control
all channels in a system. The system can
address up to 28 channels.

• Dynamic address translation (dynamic re­
location). Special hardware and associated
support programming permit each user to
program as though he had sole use of a large,
contiguously addressable virtual memory,
which may be very much larger than the size
of the physical core memory present. The
programmer need not be concerned with the
size of physical memory or with other users
who have simultaneous claims on memory.
Only active blocks (pages) of each program
reSide in physical memory. They may be
placed temporarily on a secondary storage
device and returned to different areas of
core storage regardless of their execution
status. Without this feature, it is very costly
in time and space to activate many programs
simultaneously as is necessary in a true time­
sharing environment. The address translate
feature eliminates the need for the programmer
to organize large programs into overlays and
allows simultaneous responses to a large
number of users even though their total memory
demands far exceed actual memory.

• Extended storage protection. The System/360
provides protection of storage from erroneous
updating. This is especially important in a
time-sharing mode. The Model 67 has ex­
tended protection so that even unauthorized
reading of storage is prevented. Two bits are
added to the store and fetch protect feature
which monitor the use of blocks of memory
(reference and change).

• High-resolution timer. A timer is provided
with a 13-microsecond interval. Automatic
interruption occurs on clock runout to permit
control to be transferred rapidly between pro­
grams. Only with this feature can the monitor
effectively assign resources in a time-sharing
environment.

Processor storage.

The Model 67 utilizes core storage units with a
cycle time of 750 nanoseconds per doubleword (64
bits + 8 parity). These units are available with a
capacity of 2u2. 000 bytes. The total core storage
capacity supported ranges from 262,000 bytes to

5

over 2 million bytes. References within each unit
can be interleaved to obtain effective storage cycles
approaching one-half the cycle time of the unit.
Although there are delays caused by storage access
conflicts and cable length considerations, these
storage units are capable of supplying the demands
of multiprocessor configurations with large amounts
of I/O activity without serious system performance
degradation.

I/O Components

Increase in system throughput is highly dependent
upon the ability of the system to increase the number
of channels and I/O devices. The Model 67, with its
powerful I/o control element (channel controller),
provides the ability to greatly increase system
throughput and offers maximum flexibility in system
configuration.

Some of the I/O highlights are:
• Channel controller provides for maximum data

rates up to 6,400,000 bytes per second
• Four channel controllers can be attached to a

system
• As many as 28 channels in a system (7 per channel

controller)
• I/O data transfer proceeds concurrently with

processor operation
• Each processor in a system can address all

channels in the system (addressing capability
provided for 28 channels)

• I/O devices can be shared by the intercon­
necting channels or device

Remote Devices

A wide range of terminals for both low-volume and
high-volume jobs can be remotely attached to the
System/360 Time-Sharing System. The terminals
include manual keyboards, printers, and visual
displays.

In addition, smaller computers, such as the IBM
1800 Data Acquisition and Control System and the
Models 20 and 30 of the System/360, can be re­
motely attached through the IBM 2701 Data Adapter
Unit.

PROGRAMMING SYSTEM

A fundamental of IBM programming systems support
has always been to furnish a computer system with
in-depth programming systems so that the computer
is used not only effiCiently but also conveniently.

This becomes increasingly important with a
time-sharing system that offers its full facilities to
a large number of users.

6

The Time-Sharing System (TSS) employs new con­
cepts, such as dynamic relocation, multiple access
to system components, and extended storage pro­
tection, and furnishes a wide range of remote ter­
minals.

To give users fast, efficient service the operating
system must be designed to take full advantage of
these features. Also, to permit easy, remote use
of the computing system, the supervisor incorporates
a wide range of user-oriented programs and
languages. Close man-machine relationship is
essential.

IBM is furnishing such a supervisor with the
Time-Sharing System--a time-sharing, multi­
programming supervisor with assemblers, compilers,
and debugging facilities designed specifically for it.

The new Time-Sharing System contains many of
the features found in Operating System/360. Much
of the task scheduling and interrupt handling is
similar to Operating System/360. In addition, TSS
contains special features specifically designed for
efficient use of terminals, multiple processors,
and virtual storage.

The system features a flexible and powerful
command set for remote terminal users and a con­
versational mode of operation with terminals to
perform line-by-line editing during input. With
minor exceptions, the system is source-language­
compatible with Operating System/360 language
processors.

The Time-Sharing System includes:
• Time-sharing control program for efficient

facilities scheduling
• A mnemonic assembly language compiler with

macro capability -- batch and conversational
syntax analysis modes

• A FORTRAN IV compiler -- batch and con­
versational syntax analysis modes

• A Programming Language One (PL/I)
compiler -- batch and conversational syntax
analysis modes

• COBOL compiler -- batch mode
• A sort/merge program
• A terminal command language to remotely

process and manipulate data and programs
• A library of mathematical and utility programs,

open-ended so that user-developed programs
and routines can be added easily

• Data management and catalOging facilities

The Monitor

The Time-Sharing System is the interface between
the equipment and the users. Many of the functions
traditionally considered part of the supervisory
system are implemented in TSS as service routines
subject to relocation in user's memory. For this

purpose, the system is structured into two principal
subsystems: a supervisor that supervises and allo­
cates the equipment configuration, and command
programs that enable remote users to process and
manipulate data and programs. The programming
design is organized to separate machine-oriented
functions from user-oriented functions. This
results in a compact monitor that:

1. Maintains status indices of system facilities
(attachments, aSSignments, and usages), processing
times, storages (primary core units and secondary
drums), I/O devices (tapes, peripheral equipment,
and terminals), and files (disks).

2. Supervises all interrupts.

3. Records basic data for job scheduling and for
determining individual user system charges.

4. Allocates the resources of the system to
achieve short response times to the users of the
system. To meet this requirement, the time­
sharing monitor responds rapidly to all interrupts
and has an efficient processing scheduling algorithm
that controls the processing time-slice allotted to
active programs. The monitor is designed so that
this scheduling algorithm can be modified to meet
any changing requirements of the operating environ­
ment.

5. Achieves high utilization of core storage
through the use of reentrant coding that allows
multiple independent programs to use the same copy
of a subroutine, compiler, etc.

6. Provides the nucleus of a recovery program
so that when some portion of the system malfunc­
tions, the rest of the system can keep operating.
This function may be expanded by the user at his
option so that, for example, the system can main­
tain a fast response time for high-priority users,
or retain the same number of terminal users with
a slower response time.

Other functions, such as error routines, check­
points, and restarts, are separated from the moni­
tor and are performed by a modular set of routines
that are:

• Independent of the monitor.
• Not necessarily permanently resident in core.
• Capable of shared usage -- that is, they are

reentrant.
• Identical with the problem programs written

by system users except for priority (for
processor time and space) and for a
privileged authorization to use and change the
status indices.

This approach is used because:
1. Core space for system reSidence is kept to a

minimum.
2. The startup-shutdown, checkpOint-recovery,

and reconfiguration procedures are simplified,

since a minimum of information must be periodically
recorded.

3. Complete flexibility is provided for the in­
stallation to revise or write its own routines.

Program Support

Development of the supervisor is only one step in the
development of a practical real-time, time-sharing
system. To be convenient to use, the system must
also have conventional program support such as
compilers and utility routines. This support must
be capable of conversational use with remote
terminals.

A number of programs are designed speCifically
for support of remote terminals or consoles:

• An assembly program is designed to operate
under the time-sharing monitor. The
mnemonics, data definitions, macros, etc.,
are for the most part similar to those of
Operating System/360. However, this as­
sembly program is reentrant and allows for
entry through a terminal of source language
programs with editing and diagnostic checking
in a conversational mode. Symbolic updating
of the program is possible at any time after
initial entry of the program into the program
library; symbolic listings are available at any
time. Storage is allocated at execute time
instead of during assembly time.

• The FORTHAN IV provided with TSS is
designed to be reentrant and to produce re­
entrant code. The FORTRAN IV system may
be used in either batch or conversational
syntax analysis mode, and is source-language­
compatible with the OS/360 FORTRAN IV.
Some debugging commands of the QUIKTRAN
type are provided.

• TSS includes a PL/I compiler, designed for
use in batch and conversational syntax
analysis modes. The compiler is reentrant
and produces reentrant code.

• The COBOL may be used in batch/background
mode only and is similar to OS/360 COBOL.

• The sort/merge program provides a capability
for this function under the time-sharing mode
of operation.

• The provided terminal command language is
open-ended and may be extended indefinitely.
It provides online functions for program or
data manipulations and program debugging
facilities, and offers the user tremendous
flexibility in working with the time-sharing
system.

The time-sharing supervisor and the programming
systems provided with it constitute an effective
means of utilizing the data processing power of the
System/360 Model 67 multiprocessor system.

7

SYSTEM PHILOSOPHY

IBM's Model 67 Time-Sharing System provides a
solution to the problem of optimizing the relation­
ship of the man and his problem to the computer
and its facilities. Through a combination of machine
and program features, the system described ap­
pears to everyone using it during the same time
period as a complete computing system. These
users present a wide variety of applications to the
system, ranging from conversational compiling to
conventional batch-processing jobs. Since each ap­
plication receives a share of the available time,
many jobs are performed simultaneously within a
given time period.

Using TSS, the individual job may take more
time than if it occupied the entire computer facil­
ities exclUSively until completion, but far more use
of the computing system is made. The major
saving of time sharing, however, is in the reduction
of the overall time between problem definition and
solution (turnaround time). The use of terminals at
remote locations permits the person defining a
problem to call in the facilities of a complete com­
puting system to his desk (the terminal). Thus
time sharing eliminates much of the normal delay
in human effort associated with the turnaround
time problem of a batch system.

The Model 67 system is characterized by a
close interaction of machine and program features.
The objective is a time-sharing, multiple-access,
multiprocessor, general purpose, online computing
system. A description of these various character­
istics follows.

• Time sharing. This technique interleaves
many different tasks in a computer system by using
a timing mechanism, in conjunction with a supervisor
program's scheduling and dispatching routines, to
signal the end of the time interval given to one task
and permit the transfer of a processor to another
task. Although it is analogous to the communications
technique of time-division multiplexing, computer
time sharing makes use of hundreds of thousands of
instruction executions per time division, whereas
communication multiplexing is at the bit level, per
time division. It differs, also, in that communica­
tions multiplexing is for fixed intervals over a
fixed number of channels, whereas time sharing is
for varying intervals over a varying number of
tasks. In conventional multiprogramming, control
is taken from one task and given to another only
when the first task is incapable of using, or in­
dicates that it does not wish to use, a processor.
Time sharing also uses this means of task switch­
ing. By additionally using the interval timer to
transfer control from one executing task to another,
however, time sharing provides a service that

8

generally makes the most efficient use of the total
computer facility and also facilitates the online
multiple-access nature of the system by providing
response times compatible with human reaction
times.

• Multiple access. In contrast to conventional
computing systems, where only one task is per­
formed in a specific period of time and only one
system input and system output device need be
defined, many such devices are defined in a
multiple-access system at anyone time, one for
each task currently being performed in the system.
A multiple-access system allows many users to
share the total system facility concurrently, as if
each had sole use of the system. It also permits
terminal intercommunication, making possible
several new ways of using computer systems, such
as gaming situations, multiconsole teaching
Situations, and design team computer systems.
One reason for providing multiple access in online
systems is that one user does not usually require
the total system facility on a continuous basis. If,
in such a case, multiple access is not provided, a
brief pause by a user idles the entire system and
its capability to serve. This unused capability can
be profitably deployed to serve some other user at
the same time, the cost of doing this being small
compared with the facility time recovered.

• Multiprocessor. The number of jobs that can
be handled in a time-sharing system is increased
by adding processors in parallel. The operation of
processors in parallel is the mode normal to the
system described in this manual. other modes,
such as partitioned systems and direct-coupled
master-slave systems, are possible. In the
parallel processor operation, the same monitor
can be executed Simultaneously by each of several
processors independently executing programs, ac­
cessing memory, and controlling input/output.
Programmed and wired-in interlocks are provided
to prevent interference between processors. The
mOnitor itself is reentrant (not changed by execution),
and simultaneous usage presents no problems.
Some sections of the monitor must modify tables
of system data. To prevent confuSion, these
modifications must be made sequentially, rather
than in parallel. In these circumstances, the first
processor to begin modifying such tables will lock
out all others until its modification has been safely
completed. These lockout procedures are inserted
only when necessary, and the lockout time is held
to a minimum.

• General purpose. This system is not limited
to operating in just one mode, such as online inter­
pretive FORTRAN systems, QUIKTRAN, or "desk

calculator" systems. The system is capable of
performing in every way as conventional batch­
processing operating systems, and yet can do much
more. Teleprocessing, real-time monitoring and
multiprocessing types of jobs can be handled by the
time-sharing system as by-products of its extremely
versatile basic design.

• On line. This system was designed primarily
to couple users of computation facilities more
closely to computer systems. This close user­
system contact is provided at several levels within
the system described in this manual. For example,
it is possible not only to economically employ
console-type debugging techniques at a terminal,
but also to employ interpretive and conversational
modes of operation that may considerably shorten
the overall time to complete the user's job.
Furthermore, the immediate access time enables a
great many relatively short jobs to be performed in
a reasonably short period of time without incurring
Significant delays. In addition, by employing large,
direct-access storage devices (typical of the sys­
tem described here), users may gain access to the
data and programs of interest without losing time
because of operator intervention. Also, the online
situation does not require physical proximity of the
attached terminals. All the apparatus of com­
munications technology (communication lines, dial
connections, etc.) may be used to convey computa­
tional power over any distance.

GENERAL CONCEPTS

The IBM Model 67 Time-Sharing System is a gen­
eral purpose, remote computing system. A remote
computing system enables a terminal operator to
use computing equipment at his own convenience,
that is, at the times and places of his own choosing.
A general purpose, remote computing system is one
that will accommodate a wide variety of problems,
expressed in a variety of computing languages
(including the lanb'Uage of the computer itself) 'intro­
duced from several different types of sources.

The user of a remote computing system operates
an input/output device called a terminal. The ter­
minal may be adjacent to the computer itself, or it
may be hundreds of miles from the computer. In
either case, communication between computer and
terminal occurs via standard communication
devices or direct cabling.

The simplest kind of terminal is a typewriter­
like device, with the keyboard serving as the input
unit to the system, and the printing mechanism as
the output unit. More complex terminals, such as
the IBM 2250 Display Unit, contain both a keyboard
and a cathode ray tube display. These displays are
powerful tools for the generation and control of
graphic material.

Any remote computing system is capable of
handling many terminals. The time-sharing type of
remote computing system is designed to provide
each user at each terminal with essentially immediate
response. It does so by taking advantage of the fact
that a modern computer can generate responses
much faster than the terminal user can ask questions.

Time sliCing is a technique used in remote
computing systems to provide equal response to a
number of simultaneous computer users. In a
time-sharing system utilizing time sliCing, the
many programs that may be executed are (1)
swapped successively into high-speed core storage
from some auxiliary device, usually a drum, (2)
executed for fixed periods of time, and (3) swapped
out again. Each program thus gets a slice of
computer time periodically. Within a short cycle of
time, all programs are in some sense responded to.

Paging

The 24-bit addressing capability of the standard
System/360 allows a maximum of 16 million ad­
dressable bytes. In practice, however, the pro­
grammer is restricted to using addresses that
represent the actual physical storage on his machine.
Thus. the programmer does not have the ability to
write a program addressing 16 million contiguous
bytes. If his total program size exceeds the
physical core available, he must overlay his pro­
gram. The System/360 Model 67 processors re­
move this restriction by allowing the problem
program to address a virtual memory limited only
by the page table handling capacity of the memory
system.

The installation may establish the maximum
number of addressable bytes that each programmer/
user may address, representing his virtual
memory. (Virtual memory is defined as the maxi­
mum addressing capability of a computer system.)
A program's demand on virtual memory is a subset
defined as logical memory, that is, the total claim
actually made on virtual memory by a program.

In a multitasking environment, the supervisor
has the job of placing active programs into whatever
actual core storage is available. The program runs
in core storage, but because of space limitations or
relocation of programs, the logical program may be
scattered throughout core storage. The execution of
programs requires that this physical fragmenting of
programs be transparent to the user, so he can
think of his program as being in contiguous logical
memory locations. Indeed, his listings depict these
logical addresses to him.

The more users that are in core storage, the
faster the control can be transferred to another
waiting user and the lower the resulting overhead

9

cost. In Model 67 systems, the basic element for
relocation (and fragmentation) is a 4096-byte unit
called a page. By breaking programs up into pages,
core memory may be allocated in page increments.
Only the actively used pages of a program are
brought into core storage. At execution time, core
memory holds only a small part of a user's pro­
gram, but, more important, it holds only the active
parts.

The heart of the paging technique is a hardware
development called dynamic address translation.
It involves the transformation of one address into
another by means of a table-lookup procedure
implemented in hardware. The tables provide
mapping of the task's virtual memory into core
memory. Each task in the system requires, for its
operation, one segment table and a page table for
each segment used. These tables are developed by
the supervisor, as the task is created and as new
page requirements are made by the task. As a
required page is fetched into core storage, the
supervisor enters in the page table the actual
location of the logical page.

During program execution, the equipment auto­
matically does a table lookup on each address as it
is referenced by the user, and the actual address is
chosen for each logical address reference. If the
user references a location in a page that is not in
core storage, the supervisor receives an automatic
interrupt; the supervisor then sets up a "page-turning-"
routine to fetch the missing page, and assigns the
processor to another task in the queue. The waiting
program is held in the wait status until its required
page has been assigned and fetched somewhere in
core storage. It is then retumed to the queue of
active users sharing processor time. This activity is
not apparent to the user, being performed without
his know ledge.

10

"Page turning" has the following effects:
• The entire program need not be in core stor­

age to operate. Bits and pieces of many
programs may be present, and several may be
in operating condition. The system, there­
fore, has many opportunities to do useful
work while swapping a page.

• Program "swap time" is greatly reduced as
an overhead factor, since only a9tive pages
of a program ever require movement between
core storage and auxiliary storage.

• The size of core storage ceases to have any
significance to a programmer. Although
written and executed as a classical set of
contiguous instructions and working space, a
program may exist in the machine as scattered
pages. The programmer's concept of the
program in execution becomes "virtual
memory" rather than actual core storage.

• With so much virtual memory space available,
it becomes possible to extend the page­
turning concept to input/output operations
upon prestored data files. If a program in
virtual memory is operating upon a data sct
in the system 1 s bulk files, the file space
which the data set occupies can be treated as
an extension of the virtual memory, and can
be operated upon directly without explicit
Read or Write commands. Ag1lin, as each
"page" of the data set is referred to, it will
be page-turned into core storage by the sys­
tem. The effect, to the programmer, is the
same as if the entire file were ahvays present
in high-speed memory.

The page-turning concept (Figure 1) provides for
efficient use of the equipment, while allowing the
system to handle many programs in rapid ::;ucl,ession.
In addition, it frees the computer user from
arbitrary bounds of core memory size.

Segmentation

Just as space need not be allocated in core memory
for currently inactive portions of a user's IJ rogram,
auxiliary storage space need exist only for portions
of the user's virtual memory actually used by his
program, that is, his logical memory. The user
can take advantage of this in setting aside areas of
virtual memory large enough to hold data sets or
tables of very large size, without tying up storage
for such tables except to the extent that they arc
actually used.

Such use of virtual memory is facilitated in the
Model 67 by dividing virtual memory into
1, 048, 576-byte units (256 page::;) called segments.
Virtual memory consists of 16 (or optionally 4096)
segments depending on whether 24- or 32-bit ad­
dreSSing is utilized, and logical memory thus can
consist of up to 16 (or optionally 4096) segments,
each of which can contain from 1 to 256 pages. A
segment can contain programs and data, or can
constitute a million-byte area for working space.

Segmentation is implemented by making the
table lookup of address translation a hvo-stage

SWAPPING DRUM

WORKING
STORAGE

PHYSICAL CORE

Figure 10 Page-turning concept

PAGING
AREA

FILE STORAGE

process. Instead of a single page table for the
task, there exists a page table for each segment.
The high-order bits of the page number are inter­
preted as a segment number, and a segment table
entry is accessed to obtain the address of the page
table to be used in the second stage of translation.

The advantage of implementing segnlentation in
the hardware is that it is possible to load virtual
memory sparsely (thereby leaving room for data
sets to grow), without requiring page table entries
for unused pages.

Reentrant Code

The time-sharing system is based on reentrant
coding. A reentrant program is one that is not in
any way modified by execution. Such a program
can be shared by several other time-shared pro­
grams that can be executed by one or more proces­
sors. All parameters, data locations, and working
storage spaces are passed to the reentrant program.
The integrity of each user's data is maintained re­
gardless of the number of users who have entered
the program.

Reentrant coding of programs enhances system
efficiency. In situations where there is multiple
usage of a single program or subroutine, only one
copy need be present in memory or on the paging
drum. It also reduces overhead for paging because
of the read-only nature of the coding.

Data Set Management

To the user, a remote computing system can be a file
space as well as a computing device. The user
need not keep programs (that is, problem state­
ments) or data files on his own premises. They
can be introduced to the system, left within it, and
recalled and manipulated at will.

Therefore the system must maintain large sets
of files with complete safety and security. To this
end, the system eontains a catalog of all data files
within its storage devices, and provides many
modes of protection for these files. A user can
specify that his files be accessible to himself only
or to specific individuals or groups other than him­
self. VariOUS modes of access can be specified.
Some accesses may be for read-only purposes,
others for both reading and writing.

The system can also regulate the location of
files in accordance with the activity against them.
In general, storage devices range from small­
volume, fast-access units to large-volume, slow­
access units. The large units store information at
a lower unit cost, but usually at the price of in­
creased access time. Files also vary in terms of
the activity rate against them. It is generally

desirable to keep frequently used files in a storage
device that can deliver them quickly. Files that
are used less frequently can be kept more econom­
ically in larger storage devices. The system is
designed to keep the content of a storage device at
some level sli ghtly below its capacity. If this con­
tent builds up to the point where the device might
"overflow", the system automatically scans the
deVice "table of contents" for low-activity files.
Such files are then moved out of the loaded device,
and are rewritten into a larger, slower-access
unit. Subsequent references to the same file will
again cause it to be brought back to a faster-access
device. Thus, the data files are dynamically ad­
justed to the proper class of storage.

User Commands

The user at a terminal can request that the system
take certain actions in his behalf. Each action that
he can specify is a command, which in the case of
a typewriter-like terminal is a one-line message.
Commands are always acted upon by the command­
language interpreter. This system program re­
ceives the incoming message, scans it to determine
the nature of the action requested, and fetches from
the system files the command program that will
carry out the action.

The command system (the set of actions that the
command-language interpreter can recognize) pro­
vides the capability for a program to be:

• Entered from the terminal, line by line, with
immediate diagnostic feedback from the sys­
tem after each line

• Cataloged, stored permanently in the system
for later manipulation, then made part of the
user's prestored library

• Compiled or assembled
• Executed
To the system, the user is an active terminal

and is presenting a series of tasks to be performed.
As long as these tasks are system commands, the
system is fetching its own programs and executing
them on behalf of the user. In most cases, these
command programs are in one part of the user's
"virtual memory", operating upon the user's pro­
gram (or data file), which is in another part of the
"virtual memory". System commands are not very
different from user programs; they are time­
shared, multiprogrammed, and page-turned as they
execute. When the user initiates execution of his
own program he retains complete control over it.
Thus the command system also allows a program
to be:

• Stopped
• Modified or displayed -- for debugging

purposes

11

• Checkpointed (this will create a new file for
later use)

• Restarted
• Terminated
The program as entered may be in a variety of

source languages. Initially the system will accept
FORTRAN IV and an assembly language, and will
accept PL/I when it becomes available.

Beyond these basic capabilities of entering,
executing, and controlling programs from terminals,
the command system provides for:

1. System accounting. A user must LOGON at a
terminal before any other action can be taken, and
LOGOFF when his terminal operations are com­
plete. These commands initiate time charges to
the user for use of the terminal itself and of other
hardware facilities as required. They also serve
to identify the user to the system. If, in succeeding
commands, he requests access to files, his identity
will be matched against the file-protection and
security data.

2. File maintenance. A user can request that
his files be moved from one storage unit to another,
or be removed from the system. He can also
modify them, combine them, or change their pro­
tection status.

Commands can be initiated from terminals, as
previously described, or they can in most cases be
embedded in programs as the equivalent of sub­
routine calls. They can also be included as "control
card" functions to specify the type of processing to
be applied to batch jobs entering the system. The
command functions are, in essence, the verbs of a
terminal control language. All instructions to the
system are intercepted by the command language
interpreter.

The command system has been discussed thus
far in terms of its appearance to the remote
computer user. ThiS, of course, is its primary
orientation. It allows the user to direct the system
in its manipulation of files and the solution to prob­
lems. More than this, however, it is the universal
interface between the system and the outside world.
From the machine-room console, for example,
installation personnel control the partitioning and
recovery functions of the system, using special
commands reserved only for their use. Batch jobs
entering the system from peripheral equipment or
tape drives are controlled by the command system.
And finally, since commands are programs in the
system files, the command system itself can be
augmented or modified by terminal action.

This general concepts discussion has been pre­
sented from a remote-computing point of view. It
is, however, a system capable of performing batch­
processing operations introduced both locally and

12

remotely -- as well as of providing immediate re­
sponse to terminals. It is expected that any given
installation workload will be a blend of batch­
proceSSing work (where response is not necessarily
critical) and conversational computing (where re­
sponse is often basic to the operation).

PROCESSING UNIT FEATURES

Program Swi tching

Switching between programs may be (I) initiated by
the program (as when a problem program calls the
supervisor or a supervisor returns control to a
problem program), or (2) caused by a condition
external to the currently operating program (as
when the completion of an I/O operation is signaled
by an interruption, or a timer interrupt).

Rapid program switching is facilitated by the
program status word (PSW). This word contains all
information required for proper execution of a
given program. It contains the instruction address,
condition code, mask and status bits, and other
fields indicating the status of the program at the
time of interruption. The current PSW is automat­
ically stored during an interruption; thus the status
of the processor is preserved for subsequent in­
spection and resumption.

Interruption and Priority

An interruption consists of the automatic storing of
the current PSW and the fetching of a new PSW.
Processing resumes in the state and at the location
indicated by the new PSW. To permit proper pro­
gram action following an interruption, the cause of
the interruption is identified and provision is made
to locate the last instruction executed under control
of the old PSW.

The five classes of interruption conditions are:
Input/ output
Program
Supervisor call
External
Machine check

The mask bits make it possible to assign relative
priorities to the various interruption sources. The
processor accepts interruptions only when they come
from a specific interruption source, as determined
by the mask. When masked off, an interruption
either remains pending or is ignored, depending on
the type of interrupt. Input/output and external
interruptions may be kept pending by the system
mask. Four of the standard 15 program interrup­
tions may be masked off by the program mask. The
machine-check interruption may be masked by the
machine-check mask. If, for example, the external

interruption has a higher priority than an I/O inter­
ruption, the mask bits can be set up so that an
external interruption will come in while an I/O in­
terruption is being processed; an I/o interruption
would not be allowed to come in while an external
interruption is being processed. The mask bits may
also be set to cause a reverse of priority between
external and I/O interruptions.

Storage Protection

The basic design of the System/360 includes a
flexible memory protection system. Complete mem-­
ory protection is essential for time sharing.

For the time-sharing system, the storage protec­
tion feature is augmented by fetch protection and
two indicators that indicate whether a block of
storage has been referenced and whether the block
has been changed. Three bits have been added to
the storage key for this purpose. The protection
keys, however, in the PSW and channel address'
word (CAW) remain unchanged.

DynamiC Relocation

To explain the operation of dynamic relocation,
consider a specific instruction.

Within this instruction, the logical storage ad­
dress is represented by the sum of the displacement,
the index register, and the base register. Before
the supervisor begins processing a task, the location
of a table, called a segment table, is loaded into a
special register called the table register.

The segment table contains an entry for each seg­
ment called for by the task. Each segment entry
contains the location of a page table. The page table
contains the physical address of the 4096-byte block
(page) in which the data or instruction is located.
There may be more than one page entry in the page
table for anyone entry in the segment table.

The page tables referred to by one segment table
need not be contiguous; however, the page entries of
each page table must be contiguous.

The supervisor loads the location of the particular
task's segment table into the table register. The
logical address is broken into segment, page, and
byte portions. To call the proper element from the
segment table, the segment portion of the logical
address is added to the segment table origin. This
entry, located in the segment table, contains a page
table origin which, when combined with the page
portion of the logical address. selects the proper
entry in the page table. The page entry contains the
core storage address of a 4096-byte block which,
when combined with the byte portion of the logical
address, produces the core storage address of the
operand.

While the logical addresses would be sequential,
the operands could spill over from one page to the
next. Since a new page would be referred to, a
different entry in the page table would produce a dif­
ferent core storage block address. Consequently,
the use of randomly located blocks does not affect
program operation.

To speed up the operation when constant refer­
ence to a specific page or group of pages is occur­
ring, a group of eight associative registers is
added. These registers are transparent to the pro­
gram, and affect only the rate at which the program
runs. A register is loaded with the logical and
core storage page addresses each time a new page
not already in the associative register is referred
to. The registers may contain up to eight entries.
A high-speed parallel search is made for the seg­
ment and page in the associative register. If the
desired segment and page values are found in one
of the associaHve registers, the core storage ad­
dress portion is routed to replace that which would
otherwise have been supplied by the page table.

If the logical page address were not found in an
associative register, the original translation oper­
ation would be performed and an entry made in an
associative register that had probably not been
referenced recently.

There is another register that contains the in­
struction counter in relocated form. Sequenti al
instructions are referenced using this register
instruction by instruction . Should a page boundary
be crossed, or a branch out of this page occur, the
conversion of [] logical address to a core storage
address is performed and the new relocated address
is entered into this register.

MUL TIPROCESSL~G

The multiprocessing capability of the system pro­
vides reliability and continuity of operation and
provides as well for growth in throughput capability.
It is truly a polymorphic system that can ensure a
single multiprocessing configuration or a symmetric
multiprocessing relationship between two or more
subsystems. The power, reliability, and flexibility
of the system can be increased by expanding up to
four computing units and up to 2 million bytes of
actual core storage. It must be possible to inter­
connect the system components so that they may
interact with one another. It must also be possible
to partition a system, that is, to operate a selected
processor plus storage and certain I/O devices as
an autonomous unit.

Interconnection of System Components

The Simplest interconnecting structure for a series
of processing units and associated storage units is
the crossbar switch arrangement shown in Figure 2.

13

STORAGE SmRAGE SmRAGE

r­
I
I

- -,
I
I

L __ _

Figure 2. Crossbar interconnections of system
cOlnponents

CHANNELS

CHANNELS

Figure 3. Distributed-switching interconnection of
system components

...J

For the time-sharing system, however, the
switching arrangement is not a centralized switching
point, but has been distributed among the various
components that form the system (see Figure 3).

The reasons for adopting the distributed approach
are improved availability and flexibility. A cen­
tralized piece of equipment represents a crucial
link within the system, since its failure would cause
the enti re system to fail; it would be more costly to
remedy this by duplicating equipment. The distrib­
uted approach is more flexible and facilitates exten­
sion of the system by addition of more processors
or storage units.

The interconnecting structure shown in Figure 3
shows that the necessary switching equipment is
distributed among the system components, central

14

processor, channel controller, and core storage
units. Drivers are added to the processors as re­
quired, and the equipment needed for selection of
any of the processor bus systems is added to the
core storage units. Instead of the single bus con­
nection or tail of the simplex system, multiple tails
are provided for a multiprocessing system. The
design of the circuits that select from among the
tails is such that if a storage unit should fail (in­
cluding power failure), the other storage units con­
nected to the storage bus would remain operative.
When the bus control unit wi thin a processor fails,
the entire bus driven by this unit is, of course,
inoperative. This bus will not, however, prevent
proper functioning of the storage units with the
remaining processors.

I/o channels within a multiprocessor system are
flexible in the System/360 design. The channels
perform the transmission function. All controlling
functions for I/O devices have been placed within
the control units for these devices. Thus, the
channel design is general and applies to all I/O
devices.

As with the processors and core storage units, a
control unit can be attached to more than one channel
by means of multiple tails. The Switching equip­
ment is modular, a design that avoids the problems
of cost and poor reliability of centralized switches.

A channel operates concurrently with the process­
ing unit and may be treated as an independent entity
within the system. As shown in Figure 3, the chan­
nels are grouped into two sets, each provided with
its own channel controller; thus there are two sys­
tems for I/O operations. Storage units are equipped
with the necessary tails to accommodate the
additional buses. Channels are addressable by
either processor and can return their interruptions
to either unit.

Sharing of external storage media can be achieved
by interconnecting their channels, their control
units, or the devices themselves. Special attention
has been given to availability conSiderations, with
minimal duplication of equipment.

System Partitioning

A system with sufficient elements may, in effect,
be divided or partitioned into at least two systems
that can operate independently as single systems.
This type of partitioning can be achieved by relying
on the programs in each system to refer only to
those components that have been assigned for their
use. This approach can be enforced by a program
that supervises storage assignment and protection
and assigns I/O devices. System/360 was designed
for operation with such a supervisory program.
Where it is desirable to experiment with new and as

yet undebugged supervisors, however, a more ab­
solute means of partitioning may be required. Such
a means is provided in the Model 67 by manual
partitioning switches.

Partitioning is detected dynamically by sampling
a single wire -- the availability signal. When the
signal is up, the unit is available to the processor;
when the signal is down, the unit is unavailable.

An availability signal is provided for each
processor bus system from each storage unit within
the multiprocessing system. Absolute partitioning
is achieved by making these lines manually switch­
able. One storage array, therefore, may be avail­
able to one part of the system and unavailable to

PROCESSOR STORAGE

PROCESSOR

CHANNELS

DRUMS
DISKS

TAPES

CARD READERS

PUNCHES
PRINTERS

TERMINALS

2870
MULTI PLEXOR

CHANNEL

M S

2365
PROCESSOR
STORAGE

another part of the system. An invalid address
indication results if the system attempts to address
an array designated as not available,

Partitioning of the control units and channels is
similar. The control units can be selected from
the multiple interface tails; this selection can be
overridden by manual switches.

Partitioning, therefore, makes it possible to
operate the processors within the multisystem as
single processors, as independent processors
sharing common storage facilities, and as part of a
multiprocessing system.

Figure 4 shows a representative multiprocessor
configuration. Each circled X denotes a partition

2860
SELECTOR
CHANNEL

Figure 4A. Small, single-processor IBM System/360 time-sharing system

15

2365 - lZ 2365-12 2365-12

PROCESSOR STORAGE

PROCESSORS

CHANNELS

DRUMS

DISKS

CARD
READERS/
PUNCHES
TAPES
PRINTERS

TERMINALS
AND
REMOTE
COMPUTERS

PROCESSOR PROCESSOR PROCESSOR
STORAGE

2067 - Z
STORAGE

f'052-7 17 2067- 2 STORAGE

PROCESSOR ~'052[l PROCESSOR
262,144 PRINTER 262,144 PRINTER 262,144
BYrES , KEYBOARD BYTES KEYBOARO r BYTES

I

+++ 1 I Pff+ I I Iff' I I

~ _____ - _____ ------1-,
-- - -- -- ~2:-~ ------1+

2846 - I
DISPLAY UNIT 1

AND OPERATORS 2846 - I 2167-2 I CHANNEL CONTROLLER PANEL CHANNEL CONTROLLER CONFIG

2810 2B60-3 2860-3 2B70
CONSOLE

MUL TI- SELECTOR I SELECTOR MULTI-
PLEXOR

CHANNEL 281. PLEXOR
CHANNEL

SWITCHING
CHANNEL CHANNEL

M 11 0 3 12 I' UNIT
I I 2 13 011 M

+ I I l
+

I 2820 2820 I
STORAGE STORAGE
CONTROL CONTROL

) 2301) 2301
DRUM DRUM
STORE STORE

2i;4'
DtRECT
ACCESS
STORAGE

~

g U
23i.i 23i4
DIRECT DIRECT
ACCESS ACCESS

STORAGE STORAGE
FACILITY FACILITY

"--'"

+ +t ~ +
2821-5 2803 2821 -5 I CONTROL TAPE I CONTROL
UNIT

r "" ,I S 1403-NI
CARD READ PRINTER PRINTER ® PUNCH

TAPE
UNITS

r
I
1
L

2;-0-;--l
DATA

ADAPTER I --,--...1 ,
J-,
STEM/3601

MODEL 20 I

r
ISY
I
L ___ ..J

I 2814 I SWITCHING
UNIT

I
I 2848 I

DISPLAY
CONTROL

J;I~
1053 ~

PRINTER ~
'\\. OISPL AY

STATION ----

CONTROL

1

D ® ® PRINTER
TAPE TAPE
UNITS UNITS

I 2702
TRANSMISSION

CONTROL

UNfT

1403-NI CARD READ C3 (""I PRINTER PUNCH

j
----,
~~ t ,

OA

L~~ TER I
_.-J

I

I
r--1

~~
180

I OAT
IAQUISI COMMUNI- COMMUNI- L_ CATIONS CATIONS

ERMINAL RMINAL

Figure 4B. Typical IBM system/360 model 67 dual-processor, time-sharing system with
manual partitioning switches

16

point. Each storage unit can be assigned to all
processors and channel controllers in any desired
configuration.

Each channel controller may be controlled by any
processor in the system via buses connecting the
two. A partitioning switch either permits this con­
trol or causes the channel controller to ignore any
attempt by this CPU to initiate an I/O function.
When the processor-to-channel controller path is
inactive, commands to the channels and devices
attached to that channel controller are not executed
and cause condition code 3 to be set in the PSW.
This indicates to the processor that the channel is
not operational.

The control units for the high-speed drum and
disk files can have two interface connections
(tails) each, thus permitting each control unit to be
physically attached to two channels. The logical
connection between the control units and the chan­
nels is under program control, thus providing the
program with the facility to connect the control unit
to any of its channels. Once a connection is estab­
lished, it is preserved until the control unit is re­
leased by a command from the connected channel.
Release causes the control unit to assume the
neutral state in which it is available to any channel.

In the IBM 2702 Transmission Control Unit,
which provides for attachment of communication
lines to the multiplexor channel, the switch con­
necting the control unit with either of the channels
is placed in the neutral position upon resetting the
control unit. The first programmed selection of a
communication line subsequently causes the control
unit and all associated communication lines to be
switched to the selecting channel. This connection
is maintained until the control unit is reset or a
release function is performed.

When a control unit has been disconnected from a
channel by the partitioning switch, that channel does
not have access to the control unit and all devices on
the control unit appear to the channel to be not oper­
ational. The not-operational state of a control unit
or device is indicated by setting condition code 3 in
the PSW. To restore switching under program con­
trol, the control unit must be reconnected to the
system by the partitioning switch.

The condition of all partitioning switches can be
sensed by the store Multiple Control instruction.

Aids to Intrasystem Communication

Communication between the processors of a multi­
processing system is supplemented with means for:

• Signaling that a message has been or is to be
transmitted

• Interlocking the use of storage to prevent
conflict

• Requesting intervention in case of malfunction
• Permitting initialization to attempt recovery

from malfunction

Signaling

For communications through a common storage
facility, a processor must be alerted when a message
has been prepared for it by another processor. The
extended direct-control feature and external inter­
rupt lines of the Model 67 perform this function.

Associated with the direct-control instructions is
an interface at which eight signals are made avail­
able. A signal from one processor is connected to
one of the external interruption lines of another
processor. By means of the Read Direct or Write
Direct instruction, the program in one processor
causes an external interruption in another processor.

Interlocking

When shared storage is used as a common medium
for data, restart information, programs, or results
that are updated by different process ors, interlocks
must be provided to prevent mutual interference.
The inte:docks are provided within the device when
I/o devices are the common storage media. The
operating nature of devices that can maintain only
one data transfer operation to or from the storage
medium at a time, provides the desired interlock.

A longer interlocking period is required during
the time between the physical arm movement in
disk files and the read or write command. Addi­
tional controls can therefore be supplied so that a
program can reserve an access mechanism.

The requirement for interlocking is apparent in
cases where each processor Simultaneously attempts
to update a single record. One processor could
read the record to perform the updating and the
other processor could immediately attempt to read
the same record. Processor 1 performs the up­
dating and writes back the record, and processor 2
updates and writes back the record. Without inter­
locking, a complete transaction could have been
lost. With interlocking, processor 1 would have
reserved the file during an update and then released
it, at which time processor 2 could have performed
its updating without any chance of interference.

When main storage is the means of communica­
tion, electrical interlocks are provided for the
period of one storage cycle. When two processors
Simultaneously request access to storage, a tie­
breaking priority circuit grants access to one
processor, then gives the next cycle to the other
processor. This simple rule prevents one processor
from locking out and therefore effectively halting

17

another processor. I/O is always granted higher
priority than a processor.

Access to storage is granted for the duration of
one storage cycle, not for the duration of an entire
instruction. Since, as a rule, information is
processed in internal registers, a typical procedure
is to fetch data from storage, process the data in
registers, and place the results in storage. The
storage-interlocking mechanism, unaware of the
relationship between successive storage accesses,
makes it possible for one processor to store results
in a location after the second processor has fetched
its operands from that location, but before the
second processor stores the results. This possi­
bility necessitates a programmed interlock in the
use of core storage as a shared medium. This re­
quirement becomes even stronger when one proc­
essor is to use an entire storage area before per­
mitting a second processor to use it.

The Test and Set instruction is designed
specifically for this requirement. When this in­
struction is performed, a bit is tested and subse­
quently changed to 1 without access to the particular
bit by any other processor in the intervening period;
the instruction is available to the problem program
and supervisor program alike. By means of the
protection feature, testing and setting of particular
control bits can be reserved for the supervisor
program. A concise description of the Test and
Set instruction is included under "System Compo­
nents" •

Malfunction Alert

In a multiprocessing system designed for high avail­
ability, the system should be alerted when a mal­
function occurs in one of the components. A mal­
function signal, similar to the direct control signal,
is issued as soon as a machine malfunction is de­
tected. This signal may be transmitted to other
processors in the system, using the external inter­
ruption inputs of those processors.

The extensive checking included in all System/360
equipment is useful not only in error detection but in
the improvement of fault location. A high degree of
checking makes it possible to recognize malfunctions
on short notice and thus preserve the state of the
CPU for later diagnosis. Furthermore, the detailed
error infor'mation made available to the customer
engineer reduces the repair time and contributes to
the overall system availability.

Programmed Initialization

Each IBM System/360 processor uses permanently
assigned storage locations (0-127) for program
status words, channel address and status words, the

18

timer, and initial program loading. If these loca­
tions were common, they would be shared by several
processors and interference among processors
would result. To provide each processor with sepa­
rate assigned storage, a quantity called a prefix is
used for dynamiC relocation of all addresses
referring to the first 4096 storage locations. In a
multiprocessor system each processor is normally
assigned a different prefix, and the sharing of these
preferred locations is therefore avoided.

The prefix relocates all locations that can be
directly addressed (using zero-index specifications)
by the displacement. During program switching,
such direct addressing is necessary when the super­
visor must store the general purpose registers.
The prefix makes this programming technique pos­
sible even if locations 0-4095 are not available to
the system.

When a malfunction occurs only in storage, a
system can resume operation immediately by elimi­
nating the faulty storage unit. If the faulty storage
contains the permanently assigned storage locations
for the processor, new locations can be provided by
introducing an alternate prefix. For this reason, a
second prefix quantity is provided for a CPU as part
of the System/360 multisystem feature.

Normally, the two prefix quantities relocate the
preferred storage locations to different storage
units; the processor therefore becomes independent
of the specific storage unit for its operation.

The identity of the processor executing a program
may be determined by setting apart one of the ad­
dresses in the range 0-4095 as the address of an
identifying location, and loading identifying quanti­
ties in each of the corresponding physical locations.
Since the physical location actually selected is deter­
mined by the prefix number, inspection of the
addressed location identifies the processor and
prefix currently used.

When a processor is reintroduced into a multi­
processor system, it is deSirable to minimize
operator action. Introduction of a new program
status word and the corresponding instructions may
best be performed by the still-operating part of the
multiprocessor system. For this reason, means
are provided for one processor to start another
processor. This Signaling again has been defined
consistent with the signals of the direct-control
circuits. Two signal inputs are provided, each of
which causes an action similar to initial program
loading. The choice between the two signals deter­
mines which prefix is used, and hence, the location
of the permanently assigned storage addresses. In
this case, the external start consists of loading an
initial PSW from location 0 and performing the
necessary system reset. Before the external start,

the necessary PSW's should have been established
by the active part of the system.

SYSTEMS DATA FLOW

General Information

Data is transmitted throughout the system along
paths whose number, width, and data-rate capabili­
ties are designed for efficient information flow and
minimum interference.

In general, paths are widest where data rates
are highest. The number of paths between major
elements of the system is a fWlCtion of the require­
ment for simultaneous operation and availability.

Data is transmitted eight bytes at a time between
main storage and the processors and channels. It
is transmitted one byte at a time between chann~ls
and I/O control units. Parity checking throughout
the system is at the byte level.

Storage Bus

Each processor and each channel controller has a
separate bus connecting it to each storage unit in
the system. A system having two processors and
two channel controllers has four buses. Expansion
facilities provide for a total of eight buses, divided
among processors and channel controllers. Each
bus is connectable to as many as eight storage units.

Conflicts that occur among the several buses con­
nected to each storage unit are resolved at the
storage unit. Thi.s conflict resolution adds 150
nanoseconds to storage access time. Channel con­
troller requests for storage cycles are given
priority over processor requests.

Each processor has a bus control unit (BCU) that
controls the storage bus associated with it. The
processor can place data in core storage selectively
by bytes. To initiate a store-type reference, the
processor requests a storage cycle by providing to
the BCU the address of a doubleword, accompanied
by one or more mark signals. There is one mark
line for each of the eight bytes that can be stored in
a single cycle, and presence of signals on these
lines indicates which bytes are to be replaced in the
storage unit. Bytes that are not replaced remain
unchanged. When the BCU indicates that the ad­
dressed storage unit has been selected and is avail­
able, data is provided to the storage unit.

When the processor requests a storage cycle
without any signals on the mark lines, a fetch oper­
ation is initiated. The IBM 2067 processor expects
data in a fetch operation to be available a fixed time
after the initiation of the request. If the storage

unit does not provide the data at the antiCipated
instant, operation of the processor is inhibited until
data is available. During fetching, storage always
provides full doublewords of data.

When a storage unit is shared by multiple proc­
essors or among processors and channel controllers,
multiple concurrent references to the storage unit
are possible. As far as the BCU and the channel
controller are concerned, execution of storage cycles
is the same as in a nonshared storage unit, except
that the time interval between the initiation of a
storage request and the acceptance of the request by
the storage unit is variable. Whenever the storage
unit is busy with the execution of a request from
another bus, the new request remains pending on its
bus until accepted by the storage unit. The storage
units execute references in a fixed priority, estab­
lished among those references that are pending at
the instant of sampling. When multiple requests are
pending, establislunent of the priority is overlapped
with the execution of the preceding cycle.

In the data transfer function, the channel con­
troller performs two types of tasks: it communi­
cates with the storage units and it serves the
requests from its channels.

Channel servicing consists of establishing priority
among the channel requests and initiating storage
references in response to these requests. Channel
priority is established by a priority network on the
basis of requests from the channels. When more
than one request signal is present at time of
sampling, the channel controller establishes priority
among the requests in the order of ascending chan­
nel addresses. Establishment of priority is over­
lapped with the execution of the preceding storage
cycle to make maximum use of the storage bus.

When priority has been established for a partic­
ular channel, the channel controller requests the
storage address and mark signals from the channel
and initiates a storage cycle. Communication be­
tween the channel controller and the storage units is
identical to that between the BCU and the storage
units.

Channel Data Path

The channel data path provides for the transfer of
data between the channel controller and the attached
channels. This path is eight bytes wide, including
the associated parity bits. All data transfer be­
tween the channel controller and the attached chan­
nels takes place over a single path; the time sharing
of the path is under the control of the channel con­
troller. The definition of signals on this path, other
than those required for establishing priority among
channels, is the same as for signals on the storage
bus.

19

Input/Output Interface Data Path

All communication between channels and I/o control
units is via I/O interface data buses (one in each
direction), which are one byte wide (eight data bits
and one parity bit). The connection between channels
and control units is standardized. Further informa­
tion is given in IBM System/360 I/O Interface -­
Channel to Control Unit OEMI (A22-6843).

Data Path Bandwidth

A channel controller can achieve a maximum data
rate of 800,000 doublewords or 6,400,000 bytes per
second.

Two types of channels can be attached to a chan­
nel controller: the IBM 2860 Selector Channel and
the IBM 2870 Multiplexor Channel. The 2860 Se­
lector Channel can sustain data rates of 1,300, 000
bytes per second. The basic interface of the IBM
2870 Multiplexor Channel can handle an aggregate
rate of 110,000 bytes per second, when no medium­
speed interfaces are provided. Table 1 illustrates
the data rates that can be sustained by the baSic
interface and the selector subchannels of the IBM
2870 Multiplexor Channel:

20

Table 1: Selector Subchannels

Basic 1st 2nd 3rd 4th

110 x x x x
88 180 x x x
66 180 180 x x
44 180 180 180 x
30 180 180 180 100

Data rates are in kilobytes per second.

Nonstandard Component Interfaces

IBM System/360 is designed to permit attachment of
special as well as non- IBM components. This ver­
satility is achieved by providing well defined inter­
faces for certain components of the system. Many
non-IBM components, such as processors, core
storage units, control units, or LlO devices, may be
incorporated in the system by designing to the inter­
face specifications.

Detailed descriptions of these interfaces \vill be
published as Original Equipment Manufacturers
Information (OEMI) manuals. These descriptions
will be made available upon request.

SYSTEM COMPONENTS

The IBM System/360 is a versatile, all-purpose
system that can accommodate all applications which
may be encountered in a diversified computing
activity. The system is unique in its capability to
grow easily with increasing needs for computational
capability. If the particular 1/0 equipment is out­
grown, more or faster I/O can be added. Core
storage can also easily grow in capacity. The im­
portant point, however, is that any or all of this
growth can be accomplished with no changes in sys­
tem programming or in problem programming.

This section briefly outlines most of the compo­
nents in the System/360. Specific emphasis has
been placed on those devices and features which are
unique to the time-sharing, multiaccess, and
multiprocessing aspects of the system.

mM 2067 PROCESSING UNIT

General Information

The 2067 Processing Unit provides the necessary
arithmetic, logical, and control functions for the
System/360.

The processor contains the facilities for ad­
dreSSing core storage, for fetching and storing
information across the storage bus to which it is
connected, for arithmetic and logical processing of
data, for instruction sequencing, and for initiating
the communication between core storage and ex­
ternal devices.

Information is transmitted between the proces­
sor and core storage across a storage bus 72 bits
wide. These 72 bits constitute a doubleword of
eight 8-bit bytes plus eight parity bits. Byte manip­
ulations are pOSSible, and any number of bytes up
to a maximum of eight can be transferred in a single
cycle.

The processor operates with a basic internal
cycle time of 200 nanoseconds. A 60-bit parallel
adder handles the full-length fraction in floating­
point operations. An eight-bit adder handles simul­
taneous exponent arithmetic in floating-pOint oper­
ations, and is also used in serial variable-field­
length decimal arithmetic.

The processor contains 16 general registers
for fixed-point binary arithmetiC, address manipu­
lations, and indexing purposes. Each has a capacity
of 32 bits (one word) and may be addressed by four
bits in the instruction. For certain operations,
pairs of registers may be coupled to form single
64-bit registers. Four additional registers each
contain a 64 data-bit doubleword. They can be used
for both short (one word) or long (doubleword)
floating-point arithmetic.

A capacitor read-only storage (ROS) etched on a
glass substrate provides logical control for the
processor. The flexibility of ROS control permits
incorporation of speCialized instructions or functions
into the processors. The readout time of this stor­
age is 140 nanoseconds. Sixteen planes, of 176
words each, provide an ROS capacity of 2816
hundred-bit words.

In addition to the above, the processor incor­
porates several features that provide dynamiC
address translation, protection, extended I/O con­
trol capability, communication between multiple
processors, a high-resolution interval timer, and
facilities for the programmed inspection of parti­
tioning switches.

Dynamic Relocation

By its very nature, time sharing requires extremely
large storage capacity. Not all information needs
to be immediately available in core storage, how­
ever, since all programs and data sets are not
Simultaneously active. When programs or data
sets or portions thereof become active, they must
be quickly moved into core storage so that delays
seen by the users are minimized. The dynamic
relocation feature on the Model 2067 provides a
means of doing this quickly and efficiently.

The dynamiC relocation feature permits the use
of a "virtual store" concept, whereby the total mem­
ory addressed is far larger than the actual core
storage. The virtual addresses are translated to
actual addresses by relocation tables that are set
up and changed on a continuing basis by the super­
visory program as information is moved back and
forth between core storage and drums or other
slower, larger-capacity storage devices.

This moving of information is done by the con­
trol program to satisfy user demands. The unit of
information moved is 4096 bytes, commonly refer­
red to as a page of information -- hence the term
"page turning" to refer to this process of dynam­
ically relocating information.

A set of eight associative registers is provided
to minimize the effect that repeated references to
relocation tables in core storage would have on
processor performance. These registers are
called associative registers Since, in a translation
process, a register is referenced by its contents
rather than its physical location.

One other feature provided to minimize delays
due to address translation is storage of the instruc­
tion address (that is, the instruction counter) in the
translated or relocated form. This feature obviates

21

the need for instruction address translation until a
branch occurs or a page boundary is crossed.

The 2067 processor uses 24-bit addressing for
the time-sharing system; in this mode of operation,
a program may have up to 16 segments of 256 pages
each. TSS also permits an extension of this ad­
dressing scheme to 32 bits, allowing the use of up
to 4096 segments of 256 pages each. The dynamic
relocation extension feature permits both 24- and
32-bit addressing.

The processor recognizes the relocation mode
only when it has previously been switched into the
extended control mode (see" Extended Control" later
in this section). In the extended control mode, bit
4 of the PSW specifies the extent of logical address­
ing. That is, when bit 4 is a zero, 24-bit logical
addressing takes place, and when bit 4 is a one,
32-bit logical addressing takes place. Bit 5 of the
PSW (in extended control mode) specifies relocation
vs nonrelocation mode. When bit 5 is a one, relo­
cation takes place, and when bit 5 is a zero, no
relocation takes place. When bit 4 is a one, bit 5
must be a one; otherwise, a specification exception
is recognized.

The following table summarizes the modes of
operation specified by bits 4-5 of the PSW (in ex­
tended control mode):

Bit 4

o

o

1

1

Bit 5

o

1

o
1

Mode of Operation

No relocation, 24-bit address
arithmetic

Relocation, 24-bit address
arithmetic

Specification exception

Relocation, 32-bit address
arithmetic (specification exception
if 32-bit addressing option is not
provided)

Address Translation (24-Bit Version)

The relocation tables used to translate a logical
address into an actual address consist of "segment"
tables and "page" tables. These tables are placed
in main storage at the "segment table origin" and
"page table origin" respectively. Each table
occupies the number of storage locations speCified
by the respective "table length" amount.

Segment table origin is specified by the contents
of bit positions 8-31 of the "table register" (control
register 0). The length is always 64 bytes or one
group of entries (16 entries per group, four bytes
per entry). The address of the table origin must be
a multiple of 64; hence, bits 26-31 of the table
register must be zeros or a data exception is
recognized.

22

Each four-byte entry in the segment table defines
a page table. The first byte (bits 0-7) defines the
length of the page table, and the remaining three
bytes (bits 8-31) define the page table origin. The
unit of length for a page table is a two-byte entry.
Thus, the table is variable in multiples of two bytes.
Each page table's origin is located at a byte address
that is a multiple of two. Thus, bit 31 of each seg­
ment table entry that defines a page table is zero.
If bit 31 is one, no translation takes place and a
segment relocation exception is recognized (program
interruption with interruption code 16).

Figure 5 illustrates the translation action when
the 24-bit addreSSing mode is used. Bits 8-19 of
the "logical" (or virtual) address are first compared
with the corresponding bits of each associative
register having bit 36 set to one. If a match is
found, bits 20-31 of that register are used as bits
8-19 of the actual address and bit 37 at the as­
sociative register is set to one. Bits 20-31 of the
logical address are used directly as bits 20-31 of
the actual address.

If no match is found, or if no register in the as­
sociative array has bit 36 set to one, the logical
address must be translated by means of the segment
and page tables. This translation proceeds as in­

dicated by the dotted lines in Figure 5. The seg­
ment field of the logical address (bits 8-11) is first
added to the origin address portion of the table
register (bits 8-31). (For this addition, the segment
field of the logical address is aligned with bits
26-29 of the table register since the entry to be
fetched is four bytes long and has a byte address
that is a multiple of 5.) The quantity obtained by
this addition is the address of the segment table
entry.

The segment table entry is used with the page
field of the logical address in much the same man­
ner as the table register contents were used with
the segment field (see Figure 5.) Bits 12-19 of the
logical address are aligned with bits 23-30 of the
origin portion of the segment table entry (bits 8-31),
and the two quantities are added. The resultant
24-bit quantity is used as the address of a two-byte
page table entry that is subsequently fetched from
storage. As described earlier, if bit 31 of the seg­
ment table entry is one, a segment relocation
exception is recognized. In addition, bits 12-19 of
the logical address are compared with the page
table length (bits 0-7 of the segment table entry),
and, if the former is greater than the latter, a page
relocation exception is recognized (progrmn inter­
ruption with interruption code 17).

The two-byte table entry consists of a physical
page address portion (bits 0-11) and control bits
(bits 12-15). Bits 13-15 must be zeros 01' a spec­
ification exception is recognized and the instruction

is suppressed. Bit 12 defines the status of the page
address portion of the entry. If bit 12 is zero, the
page address is used as bits 8-19 of the physical
address as shown in Figure 5. If bit 12 is one, a
page relocation exception is recognized. Bit 12
thus serves to indicate whether the page referenced
is actually available in core storage. The other
three bits (bits 13-15) are reserved for future use.

The page address obtained by the translation
method described above is not only used to address
memory but is also loaded into an associative
register along with the segment and page fields of

TABLE REGISTER

18
ORIGIN

<0

the logical address. Thus, it is made available for
future use without the need for repeating the trans­
lation process. When an associative register is so
loaded, its bit positions 36 and 37 are set to one.
(Selection of the registers to be loaded is under
control of a usage algorithm which uses in sequence
the registers with bit 37 set to zero. When bit 37
is one in all registers, this bit is reset to zero in
each register.) Bit 36 is used to indicate the
presence of a valid entry in the associative register.
It is reset to zero each time the contents of the
table register are changed.

LOGICAL ADDRESS

------~----
.... """- --r­

"'-SEGMENT PAGE
I

I

BYTE

PAGE TABLE

o 78

LENGTH

SEGMENT TABLE

ORIGIN

\ , ,
'-

29 III

"-

/

I
I

I

I I

....
----f/

CORE STORAGE
ADDRESS

PAGE TABLE

PAGE TABLE

INSTR. COUNTER
RELOCATED FORMAT

CORE STORAGE
~--.- ADDRESS

24= BIT ADDRESS TRANSLATION

Figure 5. Simplified data flow for dynamic relocation

23

Relocation Mode

Relocation of addresses provided by the processor
is specified by bit 5 of the PSW (in extended control
mode). When the bit is a one, relocation takes
place; when the bit is a zero, the logical address is
used as the actual core storage address.

All main-storage locations where information is
stored in the course of an operation are subject to
relocation.

Addresses provided by the channels, either for
fetching channel control words from main storage
or for fetching data from (or storing data into) main
storage, are never relocated regardless of the
setting of bit 5 in the PSW.

Locations whose addresses are generated by the
processor or channels for updating or interruption
purposes (equipment generated addresses), such as
the timer, channel status words, or PSW addresses,
are not relocated via the relocation tables. How­
ever, when the program specifies these locations,
they are subject to relocation as defined above.

Actual core storage addresses in the range 0-4095
(including the above-mentioned equipment-generated
addresses) are relocated by means of the primary
or alternate prefix, as defined in System/360
Principles of Operation (A22-6821), unless the pre­
fix is disabled by means of the prefix deactivation
switch. Consequently, the prefix is applied when the
address (either the logical address when no relo­
cation takes place or the translated address obtained
via the relocation tables) falls within the range 0-
4095.

When relocation is specified, the storage pro­
tection, by means of the protection keys, is still
active.

Whenever access to main storage is made by the
equipment for the purpose of fetching an entry from
a relocation table in the course of an address
translation process, storage protection is ignored;
that is, the equipment acts as if the block of storage
containing the relocation tables was not fetch­
protected during the memory cycle in which the re­
location table entry is fetched. However, if the
addresses at which the relocation tables are located
are generated by the program, they are subject to
storage and fetch protection in the normal manner.

If the storage address, generated in the address
translation process for fetching a relocation table
entry, exceeds the storage capacity of the instal­
lation, an addressing exception is recognized,
resulting in a program interruption (interruption
code 5).

24

Extended Control (24-Bit Version)

PSW Format

The system can operate under the control of a PSW
in the following two modes:

• Standard PSW format as defined in ~ystem/
360 Principles of Operation (A22-6821)

• Extended control PSW format, as defined in
this section

Switching between these two modes is under control
of bit 8 of control register 6. When this bit is one,
extended control PSW format is used. Upon system
reset resulting from a power-on sequence, manual
system reset, manual IPL, or external start (elec­
tronic IPL), this bit is set to zero. If it is changed
by a Load Multiple Control instruction, the resulting
PSW mode change becomes effective upon completion
of that instruction. (If other bits are changed by the
Load Multiple Control instruction, the exact moment
when the new settings take effect is unpredictable.)

The follOWing are bit aSSignments of the PSW
format for extended control:

Bits

0-4

5

6

7

8-11

12-15

16-17

18-19

Must be zeros. Otherwise, a spec­
ification exception is recognized when­
ever the PSW containing a nonzero bit
in these positions is used (that is,
during the fetching of the first instruc­
tion under the control of this PSW,
similar to the specification exception
caused by a nonzero bit in position 63
of the PSW).

Relocation mode bit. \Vh.en this bit is a
zero, no relocation takes place; when
it is a one, relocation takes place.

I/O mask bit, controls the masking of
all I/O channels. When this bit is a
zero, all I/o channels are masked
off; when it is a one, the masking of
the individual channels is contained in
control register 4-5.

External mask bit. When this bit is
zero, all extended interruptions are
masked off; when it is one, masking of
external interruptions is controlled by
control register 6.

Protection key (same as standard PSW
format)

AMWP (same as standard PSW format)

Instruction length code

Condition code

20-23

24-29

40-63

Program mask

Must be zeros. Otherwise, a spec­
ification exception is recognized.

Logical instruction address

In addition to storing the above fields of the PSW
as an "old PSW", the 16-bit interruption code field
generated as a result of an interruption is stored as
a halfword in storage in the following byte location.

Interruption Type

External

SVC

Program

Machine check

I/o

Control Registers

Storage byte location

14-15

16-17

18-19

20-21

22-23

A set of control register positions is provided as
part of various features. Up to 16 registers of
32-bit positions each may be prOVided. The bit
position assignments for the control registers are
shown below. Some of the bit positions are assigned
for the purpose of senSing the settings of manual
switches, and are therefore not implemented as
registers. These bit positions can only be stored
into main storage, but cannot be loaded from main
storage. The control registers are not part of
addressable storage. They are changed by Load
Multiple Control and inspected by store Multiple
Control instructions.

Bit positions of the control registers are as-
signed as follows.

Control
Register

o Table register (for dynamic relocation)

1 Unassigned

2 Relocation exception address register

3 Unassigned

4-5 Extended mask registers. The bit
assignment is as follows:

6

Bit 0-63: I/o channel mask for
channels 0-63

Bits 0-3: machine check mask ex­
tensions for channel controllers. Bit
8: extended control mode. Bit 9:
configuration control. Bits 24-31:
external interruption masking as de­
fined in the following table.

7

8-9

10

11

12-13

14

Interruption Source Bit Position*

Timer
Interrupt key
External signal 2
External signal 3
External signal 4
External signal 5
External signal 6
External signal 7

*Bit position applies to:

24
25
26
27
28
29
30
31

(1) PSW for interruption code
(2) Control register 6 for masking

Unassigned

States of core storage partitioning
Switches, one eight-bit byte for each
logical processor storage unit. The
bits in the byte correspond to the eight
tails of the logical processor storage
units, with "one" indicating that con­
nection is established over the tail.

Bits 0-31: Core storage address as­
Signment, one four-bit field for each
of the maximum of eight logical
processor storage units. The four­
bit field contains bits 11-14 of the
assigned core storage address.

Bi ts 0-15: States of channel controller
partitioning switches with one four-bit
field for each channel controller. The
bits in the field correspond to the
four tails of each channel controller,
with "one" indicating that connection
is established.

Bits 16-31: Channel address assign­
ment (as viewed from the processor
executing the STMC instruction), one
four-bit field for each of the maximum
of four processors. A field containing
three zeros and a one indicates that
for the particular processor, only the
charmel controller corresponding to
the bit position that is "1" is address­
able and its channels are 0-6. No
other bit combinations are possible in
these four-bit fields.

States of control-unit partitioning
switches, with at least two bit positions
assigned to each control unit. "One"
indicates that connection is established.
The particular assignment of bit
positions is presently left open.

Bits 0-23; Unassigned

25

15

Bits 24-27: States of direct-control
partitioning switches, one bit for each
processor. "One" indicates that the
direct-control interface of the cor­
responding processor is connected to
the other CPU's; zero indicates that
the direct-control interface is dis­
connected from the other processors.

Bits 28-31: States of prefix deactiva­
tion switches, one bit for each
processor.

Unassigned

New Instructions (24-Bit Version)

The following new instructions are included in the
instruction set of the Model 67: Branch and Store,
Load Real Address, Load Multiple Control, and
Store Multiple Control; discussion of these new
instructions follows.

Mnemonic Type Code

BRANCH AND STORE

BRANCH Ar-.'D STORE

BASR

BAS

RR

RX

OD

4D

The updated logical instruction address, consisting
of the rightmost 24 bits of the PSW, are stored as
link information in the general register speCified by
Rl (in bit pOSitions 8 to 21). Zeros are stored in
bit posi tions 0-7 of the general register specified
by Rl- Subsequently, the logical instruction ad­
dress is replaced by the logical branch address.

Condition code:

Program interruptions:

The code remains
unchanged.

None.

Programming note: The link information is
stored without branching when in the RR format
and the R2 field contains zeros.

When Branch and Store is the subject instruction
of Execute, the instruction length code is 2.

LOAD REAL
ADDRESS

Mnemonic Type Exceptions Code

LRA RX M,S Bl

The translated address of the second operand is
inserted in the low-order 24 bits of the general
register speCified by the Rl field. The remaining
bits of the general register are made zero.

The address specified by the X2 , B2, and D2
fields is translated through the dynamic relocation
feature (regardless of whether the relocation mode
bit is a zero or a one), and the translated address is

26

inserted in bits 8-31 of the general register spec­
ified by Rl' Bits 0-7 are set to zero. The trans­
lated address is not inspected for protection or
resolution.

During the address translation process, no re­
location exceptions are recognized. Instead, the
condition code is used to indicate successful trans­
lation or the reason for its failure. If the trans­
lation was unsuccessful, the contents of Rl are re­
placed by the table entry, leaving its availability bit
set to one; and the logical address that was to be
translated is stored in control register 2.

Excep-
Mnemonic Type tions Code

LOAD MULTIPLE
CONTROL LMC RS

M,A,
S,D B8

The set of control registers starting with the con­
trol register specified by R3 is loaded from the lo­
cations deSignated by the second operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
deSignated by the second operand address and con­
tinues through as many storage words as needed.
The control registers are loaded in the ascending
order of their addresses, starting with the control
registers specified by Rl and continuing up to and
including the control register specified by R 3 , with
control register 0 following control register 15.
The second operand remains unchanged.

If any of the bits loaded into positions 26-31 of
control register 0 are ones, a data exception is
recognized.

Condition code: The code remains unchanged.
Program interruptions: Privileged operation,

addreSSing, specification, data

Excep-
Mnemonic Type tions Code

STORE MULTIPLE M,P,
CONTROL STMC RS A,S BO

The set of control registers starting with the
control register specified by R3 stored at the lo­
cations designated by the second operand address.

The storage area where the contents of the con­
trol registers are placed starts at the location
deSignated by the second operand address and con­
tinues through as many storage words as needed.
The control words are stored in the ascending order
of their addresses, starting with the control register
specified by RI and continuing up to and including
the control register speCified by R3, with control
register 0 following control register 15. The con­
trol registers remain unchanged.

Condition code: The code remains unchanged.
Program interruptions: Privileged operation,

protection, addreSSing, speCification

Storage Protection Extensions

The advanced storage protection features of the
IBM System/360 have been made still more useful
and flexible in the IBM 2067 processor and core
storage units. Although the storage protection keys
are functionally a part of core storage, they are
discussed here because they are logically related
to the new and expanded features of the processor.

Storage protection is achieved in System/360 by
dividing main storage into blocks of 2048 bytes. A
four-bit key is associated with each block. When
storing of data is specified by an instruction from
the processor or a channel, this storage protection
key is matched with another key supplied by the cur­
rent or channel address word (CAW). When a mis­
match is detected, storing is suspended and a pro­
cessor interrupt occurs. The protected storage
location remains unchanged.

The four-bit storage protection keys have been
extended to seven bits. Bits 0-3 are the standard
four-bit storage protection keys. Bit 4 is the fetch
protection bit, bit 5 is the reference bit, and bit 6
is the change bit. The protection keys in the PSW
and CAW remain unchanged at four bits in length.

Fetch Protection

When the fetch protection bit is 0, no protection
against fetching by either a processor or a channel
is indicated, regardless of the value of the four-bit
storage protection key in the PSW or CAW, or the
value of bits 0-3 of the storage key.

When the fetch protection bit is 1, the data or
instructions in the corresponding storage block are
protected against fetching whenever they are pro­
tected for storing.

When an instruction causes a fetch protection
violation, execution of the instruction is terminated,
a program interruption occurs, and a protection ex­
ception is indicated in the old PSW. The protected
information is never loaded into a register or moved
to another location.

Fetch protection violations caused by a channel
result in a termination of data transmission; thus
the protected information is never transferred to
any output medium. The violation is indicated in
the channel status word (CSW), which is stored as
a result of the channel operation.

Locations whose addresses are generated by the
processor for updating or interruption purposes,
such as the timer, CAW, and PSW, are not fetch­
protected. When a program specifies these locations,
however, they are subject to protections.

Reference and Change

Bit 5 of the storage key (the reference bit) is set to
one each time the corresponding storage block is

accessed for storing or fetching by a processor or
channel. Bit 6 (the change bit) is set to one each
time data is stored in the corresponding storage
block by a processor or channel.

The storage key is not part of addressable stor­
age. The key is changed by the Set Storage Key
instruction, and is inspected by the Insert Storage
Key instruction. In these instructions, bits 0-6 of
the storage key correspond to bits 24-30 of the reg­
ister designated by the Rl field.

The reference and change recording is always
active. It is independent of (1) the problem super­
visor, or masked state of the processor, (2) the
type instruction of I/o command being executed,
and (3) the manner in which the address is gener­
ated. Hence, references for updating or interrup­
tion purposes, such as the timer, CSW, or PSW
locations, are included in the reference and change
recording.

Test and Set

When two processors Simultaneously request access
to storage, access is granted for the duration of one
storage cycle, not for the duration of an entire in­
struction. Since, as a rule, information is processed
in internal registers, a typical procedure is to fetch
data from storage, process the data in registers,
and place the re,mlts in storage. The storage­
interlocking mechanism, unaware of the relation-
ship between successive storage accesses, makes
it possible for one processor to store results in a
location after the second processor has fetched its
operands from that location, but before the second
processor has stored the results. This possibility
necessitates a programmed interlock in the use of
core storage as a shared medium. This require­
ment becomes even stronger when one processor is
to operate upon an entire storage area, before per­
mitting a second processor to operate upon it. The
Test and Set instruction was designed speCifically
for this requirement. \-Vhen this instruction is per­
formed, a bit is tested and later changed to 1 with­
out access to the particular bit by any other proces­
sor in the intervening period; the instruction is
available to the Jlroblem program and supervisor
alike. By means of the protection feature, testing
and setting of particular control bits can be reserved
for the supervisory program. A concise description
for the Test and Set instruction follows.

Mnemonic TS Format S1

93 B1 D1

The leftmost bit of the byte at the first operand
address is used to set the condition code, and the
entire byte is set to all l's.

27

The byte in storage is set to all l' s as it is fetched
for the bit test. No other access to this location is
permitted between the moment of fetching and the
moment of storing all 1 's.

Resulting condition code:
o Leftmost bit 0
1 Leftmost bit 1
2
3

Program interruptions: Protection (termination­
storage remains unchanged upon protection viola­
tion, but the condition code is unpredictable) and
addressing (suppression)

High-Resolution Interval Timer

Each processor in the system is equipped with a
program-resettable interval timer having 13-
microsecond resolution. Actual implementation
includes the use of an internal register to reduce
storage interference to the level of the standard
60-cycle timer on the Model 65. Automatic inter­
rupt occurs when the interval set is completed.
The time remaining in the interval may be read
under program control at any time.

IBM 2365 PROCESSOR STORAGE

The time-sharing systems utilize the IBM 2365
Processor Storage, Models 2 and 12. The speCific
model chosen for a system depends upon the num­
ber of processors and channel controllers that must
communicate with it.

For all models the storage cycle time for eight­
byte access is 750 nanoseconds. References to even­
numbered and odd-numbered doublewords are inter­
leaved within each unit for an effective storage rate
as high as eight bytes every two cycles of the proc­
essor (400 nanoseconds).

Models 2 and 12 have a capacity of 262, 144
(256K) bytes.

Model 12 provides the capability of communica­
ting with multiple processors and channel control­
lers, and is therefore used in multiprocessor con­
figurations. For simplex systems up to four Model
2s are available, providing a maximum of over 1
million bytes of processor storage. In multiproc­
essing systems up to eight Model 12s are available,
providing a maximum capacity of over 2 million
bytes.

In multiprocessor configuration, each storage
unit can be separately partitioned for diagnostic
purposes or to partition the system. System par­
titioning does not in itself affect the addresses as­
signed to the storage unit. When the processor

28

refers to a storage location that is not available to
it, the reference is suppressed and the program is
alerted by means of an interruption condition.

Each processor in the system is provided with a
separate bus connecting it to each storage unit in
the system. Each bus can be connected to as many
as eight storage units.

CHANNELS

General Information

The I/o control element permits I/O data transfer
to proceed concurrently with processor operation.
It provides for the attachment of a wide range of
devices, from a manual keyboard to an I/O device
having a data rate exceeding 1 million bytes per
second.

The I/o control element consists of an IBM 2846
Channel Controller, 2870 Multiplexor Channels, and
2860 Selector Channels. A multiprocessor config­
uration can include four I/O control elements, each
independently controllable by the processors. The
I/O transmission capability of the system can be
readily expanded by adding more channel controllers,
more channels to a channel controller, or more
subchannels on the multiplexor channel.

IBM 2846 Channel Controller

The IBM 2846 Channel Controller is contained in a
single stand-alone frame and has its own power
supply. It permits interconnection of multiple I/O
channels to multiple processors and multiple core
storage units. Seven I/O channels, four processors,
and eight storage units may be interconnected by
one channel controller. Four controllers can be
attached to a System/360 Model 67. The I/O chan­
nels attached to the channel controller are the 2860
and 2870. Since a total of seven channels can be
attached to one controller, TSS can have as many
as 28 channels.

The channel controller provides for concurrent
operations of all channels attached to it.

The two main functions of the 2846 controller
are to:

• Control communication among attached proc­
essors and attached channels.

• Control communication and data flow among
attached storage units and attached channels

The channel controller provides the operational
control signals to perform the functions described
above during normal program operation. The sig­
nals include those necessary to start and terminate
I/O operations, perform addreSSing, establish
processor channel and storage unit priorities, and

to respond to I/O interrupts. Signals are also pro­
vided to perform checking and maintenance opera­
tions such as channel checking, fault locating tests
(FLT's), and other diagnostic functions.

In order to direct interruption conditions from
the various channels to the processors, mask bits
are accepted from each processor to indicate the
interrupt status for each of the attached channels.
When a channel signals an interruption condition,
the channel controller directs the interruption to
the appropriate processor as controlled by the
mask bits.

The priority of the processors having access to
the I/O channels is dynamically determined by the
time-sharing supervisor. The priority of the I/O
channels requesting storage units is assigned in the
following manner: Each channel sends a "storage
request" signal to the storage selection element
(SSE) in the channel controller when needing a stor­
age cycle. The SSE continually scans these lines.
Upon reaching a channel requesting service, the
SSE establishes priority for that channel. Once
this occurs, priority will not be established again
until the SSE processes the current request. At
this point the scanning resumes at the highest­
priority channel. This enables the SSE to respond
quickly to the higher-speed devices.

Each channel controller in the system has its
own unique interface with each of the storage units,
therefore allowing simultaneous storage unit/ chan­
nel controller operations. Conflicts arise only if
two or more channel controllers and/or processors
reference the same storage unit at the same time.
If a conflict does arise, it is resolved by the stor­
age unit.

In order to select the proper storage unit, the
SSE must take into account:

• The value of each processor's current prefix
• The state of the "floating address II switches,

whereby any storage unit can be assigned any
address increment, if the feature is installed

• The state of the partitioning switches if the
feature is installed

Using the above information, the SSE matches
the decoded address to the proper physical storage
unit and performs the gating of control and data
lines.

IBM 2860 Selector Channel

The 2860 provides high-speed data transfer to or
from I/O devices. It is capable of handling data
rates up to 1,300,000 bytes per second. Each se­
lector channel attaches up to eight I/O control units
and can address as many as 256 I/O devices. Only
one I/O device per selector channel can transmit
data at any given time; other devices attached to the

channel can, meanwhile, perform operations that
do not involve data transfer, such as positiOning a
disk access mechanism.

Up to seven selector channels can be attached to
each channel controller. All channels can operate
concurrently if the aggregate data rate does not ex­
ceed the capacity of the channel controller.

IBM 2870 Multiplexor Channel

The 2870 provides for economical operation of
multiple low-speed or medium-speed devices,
neither of which justifies independent channel
equipment. The multiplexor channel achieves
economy of operation by sharing equipment among
concurrent operations. The channel dwells on any
one operation only for the time required to re­
spond to a request for service from a device.

An I/O device on the multiplexor channel can
operate in either the multiplex or burst mode. In
the multiplex mode a single I/O interface can be
time-shared by multiple low-speed I/O devices.
In this mode the device remains connected to the
channel only for the time required to accept or
present a byte of data or to exchange status or con­
trol information. When this sequence is completed,
the device disconnects and another device can be
serviced. In the burst mode the device remains
logically connected to the channel for the duration
of a sequence of Signals, tlms monopolizing the
I/o interface.

The logical entity capable of sustaining an inde­
pendent I/O operation on the multiplexor channel is
referred to as a "subchannel". Except for address­
ing and the control of interruption, each subchannel
on the multiplexor channel appears to the program
as an independent channel. Each subchannel is
capable of executing its own chain of commands and
of preserving the information associated with an
I/O operation.

The 2870 is equipped with two types of subchan­
nel and two types of interface for connected I/O
devices. For the purposes of addressing and mask­
ing interruption conditions, the 2870 is considered
a single channel.

The basic interface on the 2870 can accommodate
operations in either the multiplex or burst mode.
It provides for attaching up to eight control units
and addreSSing up to 192 I/O devices. The basic
interface can be aSSOCiated with up to 192 subchan­
nels, each of which is related to a unique I/O device.

A medium-speed interface can accommodate
eight control units and provides for addressing up
to 16 devices on the interface. It is associated with
a single subchannel and, hence, can sustain only one
operation at a time. Whenever the program ad­
dresses a device on that medium-speed interface,

29

the channel refers to the common subchannel. When
the subchannel is already involved in an operation,
the channel causes the busy condition to be signaled.
The medium-speed interface is designed to operate
only in the burst mode.

The 2870 can have one basic multiplexor inter­
face and up to four medium-speed interfaces. The
basic interface can handle an aggregate rate of
110,000 bytes per second when no medium-speed
interfaces are provided. Table 1 (refer back to
"Systems Data Flow") illustrates the data rates
that can be sustained by the basic interface and the
selector subchannels of the IBM 2870 multiplexor
channel.

I/O CONTROL UNITS

The following is a brief deSCription of the control
units that may be attached to a time-sharing sys­
tem. Where appropriate, control units may be
equipped with a two-channel switch that permits
the control unit, under program control, to be
available to either of two channels. (Refer to the
section entitled "Programming Systems" to deter­
mine the support being provided for each unit.)

IBM 2803 Tape Control

The 2803 Tape Control unit is a stand-alone unit
capable of controlling up to eight tape drives in any
combination of IBM 2400 series tape units.

The seven-track compatibility feature permits
any attached drive with a seven-track read/write
head to read or write tape in seven-track fonnat
compatible with tape generated on an IBM 729 or
7330 MagnetiC Tape Unit.

In addition, a 2803 may address up to 16 tape
drives with two IBM 2816 Switching Units. The
2816 provides switching between two to four 2803s
and IBM 2400 series tape units. Switching is on a
per-record basis under program control. The abil­
ity to manually isolate any tape drive or drives from
the control of one or more tape controls is provided.

IBM 2820 Storage Control

The 2820 Storage Control unit provides the capabil­
ity for controlling up to four IBM 2301 Drum Storage
units for a total data capacity of up to 16,360,000
bytes. Data is transferred to and from a selector
channel at a rate of 1,200,000 bytes per second.
The 2820 provides file protection for each attached
drum. The ability to protect a logical file is pro­
vided by the combination of commands in the unit
and by checks within the control program servicing
the file system.

30

Automatic data checking on reading is provided
by means of a pattern of 16 check bits that are re­
corded on the drum after each count, key, and data
area. Checking is accomplished by comparing the
recorded check bits with bits generated while
reading.

The 2820 is program-compatible with the IBM 2841
Storage Control unit. File organization and format
are under program control, allowing each data and
key field to be indiVidually variable in length.

The two-channel switch feature provides facili­
ties for programmed switching of the 2820 to either
of two channels, only one of which can at any time
be communicating with the 2820. TIle two channels
can be on the same channel controller or on differ­
ent channel controllers.

IBM 2821 Control Unit

The 2821 Control Unit provides a control and buffer
storage unit for card readers, punches, and printers.
The 2821 Model 1 controls one IBM 2540 Card Read
Punch and one IBM 1403 Printer, and the 2821
Model 2 controls a 1403 Printer.

IBM 2822 Paper Tape Reader Control

The 2822 Paper Tape Reader Control unit provides
status and data information from the IBM 2671
Paper Tape Reader to the processing unit. In ad­
dition, the 2822 checks for parity and signals end
of record and end of tape. The unit uses an avail­
able control unit position on a system selector chan­
nel or a subchannel on the 2870.

IBM 2841 Storage Control

The 2841 Storage Control unit provides a means for
attaching random access storage devices to the var­
ious models of the System/360. The IBM storage
devices that can be attached to the 2841 are:

2302 disk storage, Models 3 and 4
2311 disk storage drive
2321 data cell drive, Model 1
7320 drum storage
The 2302 Model 3 has two access mechanisms;

the 2302 Model 4 has four. The 2311 and 2321 each
have one access mechanism. The 7320, although a
drum unit, is considered to have one access mechan­
ism. The 2841 can handle a maximum of eight access
mechanisms in any combination of the abov-e-named units.

The 2841 performs the following functions:
• Interprets and executes commands
• Translates data as it moves to and from the

serial-by-bit storage units to the parallel-by­
bit interface

• Checks the validity of the information as it is
transmitted to and from the storage unit

• Furnishes status information to the system

The basic unit of information recorded on storage
devices attached to the 2841 is eight bits (one byte).

As each byte of information is transferred from
core storage to the file, the parity bit associated
with the byte is removed by the 2841. This results
in a substantial improvement in storage capacity.
When data is returned to the system, the control
unit assembles the serial-by-bit file data into the
eight-bit bytes complete with the necessary parity
bit.

The validity of the information recorded by the
2841 is checked automatically by appending a string
of 16 bits to the end of each count, key, and data
area. This type of checking is called cyclic code
checking. During a write operation, an arithmetic
operation is performed on the data as it is being
written. The remainder generated by this operation
forms the 16-bit check code, which is appended to
the data train. During reading, the data train and
its appended remainder are again operated upon
arithmetically. If there are no errors, the remain­
der consists of all zeros.

Information written by the 2841 can be verified by
executing the appropriate read command (for ex­
ample, read-data, read-key and data, read-count
key and data). Execution of any read command
causes the contents of the count, key, and data areas
to be operated upon arithmetically. The read com­
mand used for verification can be given in such a way
that no core storage is required for this operation.

Single-record or multiple-record verification is
possible. Multiple-record verification is accom­
plished by arranging channel commands in a chain.
Once the verify operation is initiated, verification
continues until the command chain is exhausted or
until the end-of-cylinder is reached.

The ability to protect logical files is provided by
the combination of commands in the 2841 and by
checks within the control programs servicing the
file system. Optional features of the 2841 are as
follows:

• A scan function permits searching through
random access storage for a speCific record
or condition.

• An additional storage feature enables a 2841
to control and address eight additional IBM
2302 access mechanisms (four more modules),
thus doubling the total online capacity.

• The record overflow feature provides greater
utilization of the available storage capacity by
allOwing a record to overflow from one track
to another.

I/O DEVICES

Operator's Console

The IBM 1052 Printer-Keyboard operating with or
without the IBM 2150 Console forms the operator's
console. By using this console, operator-to-program
and program-to-operator communication such as
program checking, program correction, and job
logging can be performed. SpeCifically, the opera­
tor's console, lmder the control of a supervisor pro­
gram, provides facilities by which:

• The operator can enter data into the time­
sharing system

• The system can give printed output
• The system can give an audible alarm to the

operator
• The operator can present an attention signal

to the system

Functionally, the operator's console consists of a
1052 Printer-Keyboard as the console I/O device and
a control unit that communicates between the I/O
channel and the printer-keyboard. The control unit
is housed in the processor or the 2150.

In addition to containing the control unit for the
1052, the 2150 console has provisions for mounting
two remote operator control panels (ROCP's). The
ROCP, with the exception of the emergency pull
switch, duplicates the control in the operator control
section of the System/360 system panel. The pur­
pose of this ROCP is to enable the operator to con­
trol the power-on, power-off, and other conditions
of the CPU associated with the system panel. There
is no connection between the ROCP and the console
control unit, other than that they share the same
physical box.

IBM 1403 Printer

The IBM 1403 Printer is controlled, buffered, and
attached to the System/360 channel by the 2821 Con­
trol Unit. The 1403 Printer, Model Nl, prints 132
characters per line at a rated speed of 1100 lines
per minute (lpm). Equally important is the dual­
speed carriage, which permits skipping at about 75
inches per second on skips over eight lines.

The 1403 Model Nl uses an IBM 1416 Interchange­
able Train Cartridge, ·which enables quick and easy
changing of type fonts, styles, or character ar­
rangements.

A significant new feature, the Universal Charac­
ter Set, provides for printing any set of 240 charac­
ters in any desired sequence on the 1416. Six new
trains are provided as standard for optimizing var­
ious applications. One train, which includes all
alphameric characters and three special characters,
will provide printing rates of 1400 lpm maximum,
1158 lpm minimum, and a nominal rate of 1250 lpm.

31

IBM 2301 Drwn Storage

The 2301 Drum storage provides direct-access stor­
age of approximately 4,000,000 bytes at a data rate
of 1.2 megabytes per second. The data rate is
achieved by accessing four bits of information in
parallel. Data is recorded on 800 tracks, divided
into 200 addressable groups of four tracks read in
parallel. Average access time is 8.6 milliseconds
(ms). Data records can be of variable length.

Additional 2301s may be attached to the System/
360 Model 67. Thus, transfer rates in multiples of
1,200, 000 bytes per second are attainable.

IBM 2302 Disk Storage

The 2302 Disk storage is a large-scale, high-speed
direct access storage device for the System/360.
The 2302 Model 4 has two storage modules with a
total storage capacity of 224,280,000 bytes. Each
storage module has two independent access mechan­
isms, each of which can access approximately 56
million bytes. The cylinder concept is used with
comb-type access mechanisms containing vertically
aligned heads for each disk surface.

Access times vary from 50 ms for a minimum
track-to-track access. to 180 ms maximum for ac­
cess to any track.

The high-speed sequential reading and writing rate
of 156,000 bytes per second permits efficient sequen­
tial processing in addition to random processing.

IBM 2311 Disk Storage Drive

The 2311 Disk Storage Drive provides random ac­
cess storage for 7,250,000 eight-bit bytes in each
disk pack. In the packed decimal mode, the capac­
ity is 14,500,000 numeric characters. Eight disk
storage drives can be attached to each storage con­
trol unit.

In addition to this online capacity of 58, 000, 000
alphameric or 116,000,000 numeric characters per
control unit, virtually unlimited data storage capac­
ity is possible because the operator can exchange
disk packs on a drive within one minute.

The 2311 provides a data rate of 156, 000 bytes
per second or 312,000 digits per second. Average
access time is 85 ms, with track-to-track access
time of 30 ms.

IDM 2314 Direct Acces s Storage Facility

The 2314 Direct Access Storage Facility consists of
eight independent modules, each storing up to
25,870,000 eight-bit bytes or 51. 75 million digits in
packed decimal mode in an IBM 2316 Disk Pack. The

32

eight removable and interchangeable disk packs pro­
vide a total of 207 million bytes of online storage and
virtually unlimited offline storage. The average ac­
cess is 75 ms, and the maximum access is 140 ms.
File Scan, which performs a comparison on selected
bytes of file information, and Record Overflow, for
greater utilization of storage, are standard features.
Enhanced system reliability and performance is
achieved by providing a ninth "spare" drive for use
if one of the eight normally addressed drives be­
comes inoperable. Data is transmitted at the rate
of 312,000 bytes per second. The 2314 is equipped
with an integrated control unit having characteris­
tics similar to those of the 2841.

IBM 2321 Data Cell Drive

The 2321 Data Cell Drive provides very large­
capacity direct-access storage for System/360.
Each 2321 accommodates up to ten removable and
interchangeable data cells. Each data cell contains
200 strips, which are the basic recording medium.

The 2321 has a storage capacity of 400 million
bytes or 800 million decimal digits. Up to eight
2321s may be attached to a single IBM 2841. Thus,
one 2841 may control over 3 billion bytes of infor­
mation.

The cylinder concept is used for the 2321, as it is
for the 2311. The 2321 may store variable record
lengths of up to 2000 bytes.

Average access time for selection of a strip
ranges from 175 to 600 ms; average rotational de­
lay, once a strip is on the drwn, is 25 ms; and ac­
cess time to another cylinder averages 95 ms.

Reading and writing is done at the rate of 55,000
bytes per second.

IBM 2400 Series Magnetic Tape Units

The 2400 series magnetic tape units use a two-gap,
nine-track (eight data tracks and one check track)
read-write head, with the first gap used for writing
and the second for reading. The two-gap head al­
lows automatic error checking of the. tape While it is
being written. As an optional feature, a seven-track
head is available. The seven-track head allows the
2400 tape unit to read or write BCD tape characters
at densities of 200, 556, or 800 bits per inch. This
feature permits reading and writing of tape compati­
ble with current IBM 729 tape.

The 2400 tape units use the non-return-to-zero
(NRZI) method of recording data on tape. In the
NRZI system of recording information, tape is
continuously saturated in either the positive or neg­
ative direction. A change in saturation polarity is
called a one, and no change is called a zero.

The 2400 tape units read or write in true binary
form, or in the System/360 eight-bit code. How­
ever, the 2400 tape units can read or write BCD
data if a seven-track feature is installed. To in­
crease reliability, the bit positions experiencing
the most frequent reversals of the polarity of sat­
uration are arranged on the center track of the tape.
The ability to read backward is a standard feature
on all 2400 tape units. Recording density is 800
bytes per inch.

Error correction on a reread of a record con­
taining one or more errors in the nine-track format
is a standard feature. Another standard feature is
tape-in column load, whereby tape automatically
enters the tape columns after a reel is mounted and
threaded and the load key is pressed. Each drive
has a quick-release latch that facilities mounting
and removing tape reels.

The 2400 tape units are available as single tape
units (ffiM 2401) similar in appearance to the ffiM
729 magnetic tape units, as two units housed in a
common frame (ffiM 2402), or as a single tape unit
combined with a tape control unit (ffiM 2403). The
2400 tape units are available in three models, pro­
viding for data rates of 30,000, 60,000 and 90,000
bytes per second.

It should be noted that these data rates are given
as bytes per second. The System/360 has the ability
to pack two decimal digits in an eight-bit byte. Thus,
if one had a 90, OOO-byte-per-second tape drive trans­
ferring entirely numeric data, the effective transfer
rate would be 180,000 decimal digits per second.

The 2400 Model 3 tape drive operates at a tape
speed of 112.5 inches per second, and a density of
800 bits per inch. The nominal interrecord gap is
• 016 inch, with a nominal gap time of 5.3 ms. Re­
wind time is one minute, and rewind unload time is
1. 1 minutes.

IBM 2540 Card Read Punch

The 2540 Card Read Punch reads cards at a rate of
1000 per minute, and punches cards at a rate of 300
per minute. The read and punch sections are sep­
arate entities, except for one common pocket out of
the five; reading and punching can take place
simultaneously.

ffiM 2671 Paper Tape Reader

The 2671 Paper Tape Reader has the capability of
reading five-, six-, seven-, or eight-track codes.
The tape can be 11/16 inch (five-track telegraphic
code), 7/8 inch (six- and seven-track codes), or
one inch (eight-track code). The type of tape used
in the 2671 is chad tape. Up to 1000 characters per
second can be read from the chad tape.

Optional spooling features are available that pro­
vide for center roll or reel feeding, and reel re­
winding. Buttons and switches are provided that
can be used to set particular end-of-record codes,
tape codes and widths, parity. and deletion recogni­
tion. Lights are also provided that signal the opera­
tor concerning the status of the reader. The 2671
requires an IBM 2822 Paper Tape Reader Control.
The 2671 can be placed on the 2822 as a table-top
reader.

GRAPHIC AND DISPLAY TERMINALS

ffiM 2840 Display Control

The 2840 Display Control unit performs the functions
of communicating with the CPU channel via the Sys­
tem/360 interface and provides buffer storage, re­
generation, and character generation for the 2250
Display Unit, Model 2, and the 2280 Film Recorder
and 2282 Film Recorder/Scanner. Connection of
the 2840 can be either through a multiplexor or se­
lector channel.

The basic 2840 can initially accommodate two
displays. An additional feature is attached to ac­
commodate two more display units. Three features
may be added to bring the number of attached con­
soles to a total of eight when the application makes
this desirable.

ffiM 2848 Display Control

The 2848 Display Control unit provides the interface
control, character generator, buffer storage, and
timing and control logic for the 2260 Display Station •
The interface control provides the communication
path between the data processing system and the
2260 display consoles. The data being transmitted
along this communication path is translated by the
character generator into the appropriate display
characters. The buffer storage holds the data in the
normal System/360 eight-bit-byte mode for cathode
ray tube regeneration. This 2848 attaches to a
System/360 selector or multiplexor channel. It is
also possible to attach this unit remotely through a
1200- or 2400-baud communication lines and the
proper subsets to an IBM 2701 Data Adapter Unit,
which in tum is attached to the System/360 via
either the selector or multiplexor channel.

IBM 2250 Display Unit

The 2250 Display Unit provides System/360 with the
capability of visually displaying tables, graphs,
charts, and alphameric characters. The display is
made within a 12 x 12-inch area on the face of a 21-
inch cathode ray tube. Data can be accepted from

33

the processing unit at a rate of 238,000 bytes per
second for the 2250 Model!. Over 1 million display
points can be addressed by X and Y coordinates on
each display.

This I/o unit provides broad man-machine com­
munication capability and offers increased speed and
flexibility for dynamic monitoring of computer oper­
ations, including current status of active system
users and all queue lengths.

The 2250 can be used as a system operator con­
sole or a programmer console. In either case, it
can be used for data retrieval and updating of moni­
tor records from storage.

The 2250 Modell has a self-contained control and
is used in applications where a single console is re­
quired. The 2250 Model 2 is used in combination
with the 2840 for multiple displays. Up to eight
2250s may be attached to a 2840.

The following optional features are available for
the 2250:

• Light pen. This is a pen-like deVice used by
the operator to identify to the program a par­
ticular point or character on the display
screen. The light pen can be used in conjunc­
tion with a keyboard and appropriate pro­
gramming to rearrange, delete, highlight, or
edit information.

• Programmed function keyboard. This is a 32-
key general purpose keyboard. Interchange­
able overlays define the key functions to the
operator.

• Alphameric keyboard. This is a typewriter
keyboard for alphameriC data entry. This key­
board permits the entry of letters, numbers,
and symbols into the display unit.

• Character generator. The character generator
translates a byte into analog signals for tracing
alphameric characters and symbols on the face
of the tube.

• Absolute vectors. These enable the drawing of
a straight line between any two points on the
2250 display.

• Operator control panels. Up to two operator
control panels may be duplicated at the 2250
operator's console.

• Buffer. The buffer, which is internal to Model
I, provides the display unit with a choice of
4096 of 8192 bytes of internal storage. Addi­
tional buffer capacity is available for the Model
2 through the 2840 display control.

IBM 2260 Display station

The 2260 Display Station is a compact cathode ray
tube (CR T) display similar in technology to a tele­
vision monitor. An optional keyboard feature pro­
vides for man-machine communication at the display

34

station. This keyboard can be either numeric or
alphameric. The 2260 can display up to 960 char­
acters on the face of the CRT, arranged as twelve
lines of 80 characters each. A maximum of eight
displays of this type can be attached to a single 2840

Display Control. By reducing the total number of
display characters per CRT from 960 to 480, it is
possible to attach up to 16 display stations to a 2848
Display Control; a further reduction of 240 charac­
ters permits the attachnlent of 24 display stations.

The initial condition of the display station is a
clear CRT except for a cursor in the upper left cor­
ner of the display. As the operator enters a mes­
sage via the keyboard, each character enters the
buffer in the 2848 associated with the display. The
buffer then regenerates a flicker-free image on the
CRT, permitting the operator to verify the message
as it is being composed. At the completion of the
message, the ENTER key is depressed and the CPU
is signaled so that the message can be read out of
the buffer and processed. As each character is
entered by the operator, the cursor moves over one
character position on the screen. Replies from the
CPU are sent to the buffer, starting at the last
cursor position and advancing the cursor to the end
of the message. Thus, messages to and from the
CPU may be intermixed and displayed as contiguous
lines of text on the CRT.

Characters may be erased from the buffer by
means of backspacing the cursor. An optional non­
destructive cursor feature permits rapid movement
of the cursor horizontally and vertically to any
character pOSition on the screen without erasing
data.

An optional line-addressing feature permits CPU
messages to be addressed specifically to any line on
the CRT screen.

An optional IBM 1053 Printer adapter unit may be
attached to the 2848, permitting the contents of a
display station buffer to be printed as hard copy.
Messages from the CPU may also be directed to the
1053.

IBM 2280 Film Recorder

The 2280 Film Recorder provides a high-speed out­
put capability for recording System/360 output, both
graphic and alphameric, on microfilm. Film re­
cording is done with a CRT electron beam. A com­
puter program directs the CRT beam motion, turning
it off and on to trace the desired image in a serial
manner on the film. The character generator in the
2840 control unit provides appropriate signals to the
recorder/CRT for up to 40,000-character-per­
second film exposure of standard alphameric and
special characters. These standard alphamerics
can be recorded on the film in anyone of three

sizes, all under program control; the current capac­
ity is 150 lines, with up to 204 characters to a line.

In addition to the alphamerics, straight lines may
be drawn from any point to any other point of the
4096 x 4096 reference coordinate grid. The drawing
speed is a function of the line length. The basic

line drawing speed for line lengths up to one quarter
of the maximum frame size is 102 microseconds.
These lines can be drawn either by an absolute or
relative addressing of points on the reference grid.

An exposed image can be developed and projected
on the rear projection screen within 48 seconds after
exposure. The film at the projection station can be
advanced or backspaced manually. It is also pos­
sible for the operator to bypass the internal film
processor.

IBM 2282 Film Recorder/Scanner

The 2282 Film Recorder/Scanner combines the
functions of the 2280 Film Recorder and the 2281
Film Scanner into one unit. The recorder portion
of the 2282 has therefore been included with the
description of the 2280. The 2282 has a single film
transport; therefore, only one function, recording
or scanning, can operate at a time.

The scanner portion is a high-speed input device
for digitizing negative microfilm images such as
drawings, charts, maps, and graphs for direct input
to System/360. Images are scanned by moving a
CRT electron beam across the face of the film in a
pattern specified by a computer program. A digital
reading occurs when light transmission through the
film meets or exceeds the program-selected thresh­
old sensitivity. Anyone of 63 levels of threshold
sensitivity can be program-selected. Scan vectors
can be drawn from any point to any other point of
the 4096 x 4096 coordinate grid. As in the case of
the recorder, this scan speed is a function of the
line length. The basic line-scanning speed, for line
lengths up to one quarter of the maximum frame
size, is 102 microseconds. For small area scan­
ning, a scan stroke mode is provided. These scan
strokes are short vectors drawn at a 20-microsecond
rate.

REMOTE TRANSMISSION

Introduction

One of the basic functions of the System/360 TSS is
to provide easy access to all the facilities of the
central data processing system, especially its com-

puting power and large core storage.
The units described in this section provide re­

mote users with this capability via either private or
common-carrier transmission systems.

Of particular importance in this section is the
description of remote low-speed conversational con­
soles or terminals, such as the IBM 1050 and IBM
2741 communicati.on terminals, which will satisfy
the I/O computing requirements of many research
scientists. Also, these devices will supply many
administrative departments with the ability to re­
motely access or maintain a central data base.

IBM 2701 Data Adapter Unit

The 2701 Data Adapter Unit greatly expands the I/O
capabilities of System/360. The 2701 provides for
the connection and control of the information flow of
a variety of remote and local external devices with
System/360.

IBM 1013 Card Transmission Terminal at 50 to
400 cards per minute

IBM 7702 Magnetic Tape Transmission Tenninal
at 250 to 300 characters per second

IBM 7711 Data Communication Unit at 250 to
28,000 characters per second

IBM 7740 Communication Control System
*IBM System/360s with Similarly equipped 2701s
*IBM System/360 Model 20 with communication

adapter feature
*IBM 1800 Data Acquisition and Control System

The 2701 can he attached to either the multiplexor
or selector channel of the System/360.

IBM 2702 Transmission Control

The 2702 Transmission Control unit allows attach­
ment of multiple communication circuits to System/
360. It directs and controls information flow be­
tween the system and a variety of remote communi­
cation terminals, over private and commercial
common-carrier transmission systems. Some of
the terminals and systems that may be attached are:

IBM 1030 Data Collection System
*IBM 1050 Data Communication System

IBM 1070 Process Communication System
*IBM 2741 Communication Terminal

AT&T 83B2 selective calling stations
Western Union Plan 115A outstations

*Model 35 Teletype terminal

*TSS will provide the necessary program control to
facilitate transmitting to and from this remote
device.

35

The 2702 is modular and flexible in line capacity,
transmission code, and speed. As many as 15 half­
duplex lines, operating at speeds of up to 180 bits
per second, may be attached to a basic 2702. Addi­
tional line capacity and higher speeds of operation
can be attained by adding optional features. Line
adapters may be of different types, allowing a mix­
ture of terminal types of various speeds to be con­
nected to one 2702.

Optional terminal controls and line adapters can
be specified to match system requirements. Also
available are:

• Speed extension features, which increase the
line speed capability to 600 bits per second on
all 15 lines of the basic 2702.

• 31-line expansion feature, which increases
the line attachment capacity of the 2702 to 31
half-duplex lines at speeds up to 200 bits per
second. Inclusion of this feature excludes the
speed extension features.

• Automatic call feature, which provides (with
automatic call adapters) automatic capabilities
for up to eight common-carrier switched tele­
phone or 150-bit-per-second teletypewriter
(TWX) attachments.

IBM 1050 Data CommWlication System

The 1050 Data Communication System provides a
low-cost, conversation-oriented terminal. It is a
modular system that permits a variety of configura­
tions according to specific application requirements.
Each system can include as many as one keyboard,
two printers, two pWlches (paper tape and/or card
pWlch) and two readers (paper tape and/or card
pWlch reader).

The system's outstanding features are:
• Reading, punching, and printing at 14.8 char­

acters per second.
• Parity and longitudinal data checking during

transmission.
• Input -- pilllched cards, paper tape, or

keyboard.
• Output -- printed or pWlched on cards or

paper tape.
• Ability to create pilllched output in an offline

mode for later transmission to the central
processor in the online mode.

The 1050 may consist of the following units:
1051 Control Unit
1052 Printer-Keyboard for printed output or

keyed input

36

1053 Printer for receive-only capability
1054 Paper Tape Reader
1055 Paper Tape PWlch
1056 Card Reader
1057 Card Punch

The minimum terminal would be a 1051 Control
Unit, 1052 Printer-Keyboard, and an RPQ break
feature. Input to the central processor would be
through the keyboard similar to that of a typewriter.
Output from the central processor would be in the
form of printed copy on the printer at 14.8 charac­
ters per second.

IBM 1070 Process Communication System

The 1070 Process Communication System is a tele­
processing system designed specifically to meet
requirements for a two-way data communication
between remote process locations and a central data
processing facility. It provides real-time, online
control and data collection when attached to the
System/360.

The system is highly modular in design and per­
mits a variety of configurations to meet specific
application requirements. Each IBM 1071 Terminal
Control unit can have up to 300 points of I/O. This
I/O can consist of analog, contact sense, decimal,
and BCD input as well as contact operate, decimal,
and alphameric output. Random and sequential
scanning is pOSSible, and all data transmission is
completely checked.

Depending on the model of the 1071 used, the
system can send the received data at 14.8 or 66.6
characters per second. This is equivalent to 5 or
21 analog conversions per second. Each system
may include manual input units, dis play units, and
output pOinters as well as process I/O signals.

IBM 2741 Communication Terminal

The 2741 Communications Terminal looks and acts
much like an IBM SELECTRIC @'!Ypewriter. The
only terminal controls located in the keyboard area
are the on/off switch and the Attention key. The
keyboard is that of the standard SELECTRIC '!Ype­
writer 01 or 1052 arrangement with a selection of
printing elements. Code and systems compatibility
provides for transmission to System/360 via
2702s. The interrupt feature, permitting trans­
mission from the processor to be halted at the
operator's convenience, is required for time­
sharing systems use.

REMOTE COMPUTER SYSTEMS OR HIGH-VOLUME
TERMINALS

Introduction

As indicated in the previous section, low-speed
conversational consoles meet the needs of many
research scientists to remotely access the central
facility.

There are, however, many research projects or
administrative applications that require high-volwne
input and output from the central computer. Also,
there are projects that require a small independent
computer system on the project location, for ex­
ample, controlling or gathering data from an experi­
ment on a real-time basis.

It is important, therefore, that smaller computing
systems be able to communicate directly with the
System/360 TSS when an application requires larger
memory, additional I/O facilities, or data from a
centrally located pool.

The time-sharing supervisor will provide the
necessary program control to facilitate transmitting
to and from the remote systems on high-volume
terminals.

IBM 1800 Data Acquisition and Control System

The 1800 Data Acquisition and Control System is
designed to handle a wide variety of real-time
applications, including process control, high-speed
data acquisition, and direct digital control. The
1800 consists of a family of real-time I/O devices
including an analog input, analog output, contact
sense, and contact: operate, as well as data proc­
essing I/O devices including graph plotters, line
printers, magnetic tapes, random access files, and
card and paper tape input and output.

The 1800 processor-controller may be attached
directly to System/360 processors via the System/
360 selector and multiplexor channels and the 1800
data channels. Also, the 1800 can be remotely
attached via the 2701 Data Adapter Unit, utilizing
common-carrier facilities.

The specific technique for attaching the 1800
system to the time-sharing system is to attach one
2701 to the 1800, and one 2701 to the time-sharing

system. Data is then transferred from one 2701 to
the other 2701 via the synchronous communication
lines and the common-carrier facilities. The data
is transferred between processors (2701 to 2701) at
a rate of up to 40.8 kilobauds per second or 5100
bytes per second. A data channel, an I/O channel
adapter, and a 2701 attachment to the I/O channel
adapter are needed to attach a 2701 to an 1800
system (RPQ reference numbers C08041 and
C08037).

System/360 Model 20

A synchronous transmit/receive (STH.) feature is
available on the processor of the ~ystem/360 Model
20. This feature permits data to be transmitted
across customer or common-carrier facilities at a
rate of 300 characters per second. In addition, an
HPQ is available that increases the transmission
rate to 5100 characters per second for transmission
over 40.8-kilobaud service. It is also possible with
a second RPQ to select either 300 or 5100 charac­
ters per second as an operating speed.

Other System/360s

IBM System/360s equipped with 2701s can be con­
nected from a remote location to the central facility.
The IBM 2701 permits data to be transmitted be­
tween the two systems via private or common­
carrier communication lines. The remote System/
360 could operate under Operating System/360 and
perform jobs autonomously, as well as communicate
with the central facility by either sending or re­
ceiving data as programs. Thus, the autonomous
remote system is able to access a central data base
and is able to make use of the central system's
larger I/O devices and expanded memory.

37

PROGRAMMING SYSTEMS

GENERAL DESCRIPTION

Many of the hardware characteristics of the
System/360 have been designed with multipro­
gramming in mind. Storage protection to prevent
interaction between different jobs residing in core
at the same time is an example. Privileged instruc­
tions, such as those that control I/O operations and
manipulate storage protection keys, are another.
The interval timer and supervisor states are further
examples. All of these system facilities are used
to facilitate multiprogramming. Multiprogramming,
in turn, is used to achieve maximum throughput
from a given system.

Maximum systems throughput does not neces­
sarily provide maximum service to each individual
user of the system. Even in an efficient batch­
processing shop, the time span between submission
of a job and the return of the results is such that
users generally work on more than one job at a
time. It is much easier for the computer, however,
to switch rapidly from one task to another than it is
for the human using the computer to switch from
one task to another.

To provide efficient service to all users, the
System/360 TSS allows users easy and open access
to the central data processing facility. Multiple
remote consoles provide many simultaneous users
with a direct means of monitoring and controlling
the computers that are servicing their needs. These
users at remote consoles can, if they desire, limit
themselves to the batch-processing environment.
Experience has indicated, however, that users will
take advantage of the broader range of services that
can be part of a time-sharing system. These serv­
ices include online debugging, a mode of operation
that can be very useful to the programmer but
anathema to the machine room supervisor in a batch­
proceSSing system. The inefficiencies of system
utilization during console debugging largely dis­
appear in a time-sharing environment.

System/36G TSS, designed to operate in this type
of multiple console environment, takes advantage of
systems features specifically designed for time
sharing. These features include multi tailed storage
units, multiple central processing units (CPU's),
dynamic relocation devices, high-speed multiplexor
channels, dual I/O paths, store and fetch protection,
and system partitioning capabilities.

38

TSS includes:
• A time-sharing supervisor with a time-slicing

capability
• A command language for communication be­

tween user and system in both conversational
and batch modes

• Data management and cataloging facilities
• A mnemonic assembly language compiler with

macro capability -- batch and conversational
syntax analysis modes

• A FORTRAN IV compiler -- batch and con­
versational syntax analysis modes

• A Programming Language/One (PL/I) com­
piler -- batch and conversational syntax
analysis modes

• COBOL compiler -- batch mode
• A sort/merge program, oriented to the disk

file
• Linkage Editor and Dynamic Loader -- batch

and conversational syntax analysis modes
• Program checkout system -- batch and con­

versational modes
• A library of mathematical and utility programs,

open-ended so that user-developed programs
and routines can be added easily.

SUPERVISOR

The supervisor manages the system, resides in core
storage, is nonrelocatable, and will be used in
parallel by each CPU. The supervisor handles all
interrupts: asynchronous interrupts caused by I/o
devices, hardware malfunction, and program checks;
synchronous interrupts arising from the Supervisor
Call (SVC) instruction, which allows programs to
request service from the system.

COMMAND SYSTEM

The command system is the interface between user
and system. It enables users to enter, manipulate,
and control the running of programs; and it enables
operators to control the operation of the system.

DATA MANAGEMENT

Data management facilities control input/output
devices and provide device-independent operation
for system programs and problem programs. The
command system interfaces with the data manage­
ment system through macro instructions. Both the
data management system and the command system
are relocatable, and required routines are loaded
into the user's virtual memory.

GROWTH

System/360 TSS, like the System/360 itself, is
designed to make growth and change logical and
nondestructive. The supervisor is designed to
handle multiple processors, multiple core modules,

and multiple channels and I/O devices. The logical
partitioning capability in the supervisor can be
extended in the opposite manner so that additional
system components can be added in the future to
take care of heavier system loads.

INTERFACES

The interfaces between the various modules of the
System/360 TSS will be defined so that modifications
and additions can be easily made to the system.
IBM-supplied programs, such as the compilers,
utility programs, etc., are treated no differently by
the supervisor than user-supplied programs. This
permits easy additions to the program libraries by
both IBM and the user.

THE COMMAND LANGUAGE

TSS is a powerful tool that makes available a wide
variety of program services. The user calls for
these services through commands that he directs to
the system through a terminal consisting of a key­
board, a printer, and perhaps a card reader or
paper tape reader. These commands call into action
a wide variety of systems programs. The user can
enter and construct programs, debug these programs
in conversation with the system, and request execu­
tion of these programs using specified data sets.
Several commands provide for manipulation of data
sets to permit additions, deletions, or modifica­
tions, to make duplicate copies, and to move them
from and to I/O units as required.

The user is in constant communication with the
system and is aware of the functions being per­
formed by it. The system informs the user of
action it has taken, of additional information re­
quired, and of mistakes in the request.

System Control Functions

The command language includes facilities that
can be requested by the system operator, who moni­
tors the performance of the entire system. The
system operator may be directed to mount or de­
mount volumes on tape drives, or direct access
devices, as required by problem programs being
rllll by different users. The system operator is
also responsible for remOVing failing equipment
from the system when hardware errors of certain
types have been detected.

Although one terminal is suffiCient, several ter­
minals can be used for 'system control fllllctions.
For example, one terminal might be used to monitor
the system operation and perform the functions of
system startup and shutdown, and of attaching and
detaching devices. A second terminal might be

used to communicate instructions to an operator
whose specific responsibility is mounting and de­
mOllllting tape volumes as required by problem
programs. A third terminal might be used for
direct access devices.

Interpretive Execution

Interpretive execution means that when a command
is entered into the system it is analyzed and the
programs and services requested are executed
immediately. When a command is issued, the sys­
tem locates it in a list of permissible commands.
When found, the parameters are analyzed and pro­
vided to the program, which performs the action
required by the command. All of the fllllctions per­
formed by a command are completed before a new
command is requested. After a command has been
interpreted and executed, it is forgotten by the
system and the next command is requested. The
results of any action taken by the command are
retained in the system, however, in the sense that
data sets may have been loaded or modified, pro­
grams executed, etc.

Commands may be issued by a user at a termi­
nal or they may be issued internally as prestored
sequences. In either case, the command is inter­
pretively executed before the next command is
accepted.

System Communication

Commllllication within the system consists of four
principal types of messages. The system operator
may request that a specific message be directed to
a specific user. Also, the system operator can
direct a message to all users Simultaneously,
through a broadcast technique. In both of these
types of message there is no restriction on the con­
tent of the message other than the acceptable char­
acters for the terminals involved. Another form of
communication is messages to the system operator
to perform specIfic functions, such as mOllllting
and demounting volumes on I/O devices. The final
form of communication is from the system operator
in response to a specifically requested action. For
example, when the operator has mounted a tape on
a specific drive, he must inform the task so that
the task can continue.

System Input and System Output

As far as a user at a particular terminal is con­
cerned, he has full access to the system and its
services without regard to any other user who may
be Simultaneously using the system. When a user
initially logs on at a terminal, a task is established

39

to service him for the duration of his stay at the
terminal. The input expected from the user at the
terminal consists of commands that specify which
progTams are to be executed. The source of these
input commands is defined to be SYSIN. Similarly,
messages sent from the task to the user who is
directing or commanding it are sent via SYSOUT.
In a conversational mode of operation, SYSIN is the
key boa rd or possi bly a card reader or paper tape
reader; SYSOUT is the printer, associated with the
terminal that the user is using.

Conversational vs Nonconversational Tasks

In a conversational mode, the user gives commands
to the system and analyzes the responses before
issuing additional commands. The user can direct
the system as he proceeds and may change his
tactics in solving the problem or modify his ap­
proach as he examines the results of his action. By
conversing in this manner, the system can be used
as a powerful tool to aid in the solution of the user's
problem.

In many situations, procedures can be defined
ahead of time. There is no variation as execution
of the problem proceeds. In this case, a user can
establish a sequence of commands and store these
commands in the system as a data set. The user
can then establish a nonconversational task to
execute these commands in the background. The
SYSL~ associated with this nonconversational task
is not a terminal but a data set stored on a direct
access device or tape or some other storage
medium internal to the system. When a noncon­
versationa1 task has been established, commands
are taken one at a time from this data set to direct
the program execution required. Similarly,
SYSOUT for a nonconversational task is not a ter­
minal but a data set that may eventually be printed
on a system's printer. The originating user can
examine the output at his convenience to determine
how the execution of his nonconversational task
proceeded.

Nonconversational tasks would include such
things as compilation of large programs, execution
of lengthy object programs, or manipulation of data
sets in such operations as file maintenance or up­
dating procedures.

Data Management

The command language provides the user with
access to all the data management facilities of the
time-sharing system: automatic program loading
and linkage, the catalog system, control of direct
access storage allocation, and a variety of data
access methods. Commands may be issued to edit,

40

update, or delete a data set, establish sharing pro­
cedures for cataloged data sets, request an I/o
device, or resume running of an interrupted
program.

The catalog is a list of the names and locations
of all the data sets in the system that are accessible
to the user. To access a data set, the user must
give a name to it and use this name to reeall it when
necessary. One of the parameters that must be
supplied in most of the commands available to the
user is the name of the data set associated with the
operations performed by that command.

There are three attributes of data sets with re­
spect to a user:

1. Private. The first attribute indicates a pri­
vate data set that is cataloged lU1der a user's identi­
fication and is accessible only to him.

2. System. A second indicates systems pro­
grams, such as compilers, which are public and
can be accessed by any user.

3. Shared. In addition, the system permits
sharing of data sets. An individual user ean specify
other individuals who may have access to his data
sets. The owner of the data set can restrict the
sharing users' access as follows:

a. Unlimited access to the data set
b. READ-only access
c. READ and WRITE access but erasing or

replacing entries is prohibited.
Another service provides for program libraries.

A program library is a partitioned data set whose
members are object program modules. When a
user joins the system, two libraries are cataloged
for him: a system library containing standard pro­
grams, and a new user library containing his own
programs. A program library list is created with
entries for the user library and the system library.

The user may add a job library to the list by
issuing a command that places this newest library at
the top of the current list. As many job libraries as
desired may be subsequently added. The list is
used to store a new object module and to determine
which libraries are to be searched, and in what
sequence, to find a needed program module.

"Line" Data Set Attribute

Commands are available to create and manipulate
"line" data sets in different ways. A "line" data
set is composed of records that are fixed in length.
Although the length of the record is fixed for an
individual "line" data set, the length of the records
may vary from one "line" data set to another.

Each record of a "line" data set represents a
single line of information. The record is composed
of two parts, the first being a line number and the
second being the line of information itself. The

line number is an index by which the user can identify
and reference a specific line within the data set.

When the user manipulates the data set, he can
refer to a specific line or group of lines in such
operations as deletion, insertion, or replacement.
Similarly, he can print selected lines of the data set
by specifying in a command the appropriate line
numbers.

Commands entered by a user at a terminal can
themselves be a "line" data set.

Prompting, Confirmation, Responses, and
Diagnostics

A conversational task may require that considerable
information be communicated to the user at the ter­
minal in order that he may be informed of the status
of the system, or of additional information required
for performance of the requested action.

Each command contains two types of parameters:
required and optional. Required parameters are
those that must be supplied for the execution of that
command. When a user gives the command he may
not always specify all of the required parameters.
In this case the system "prompts" him by printing
a message requesting that he supply the specific
parameters required. The user need not know
precisely the format and order in which all of the
parameters must be supplied with the command. If
he has forgotten any of the parameters for a par­
ticular command, the system simply asks that he
supply these parameters by sending him the appro­
priate prompting message.

An extension of prompting results in diagnostic
messages in certain error conditions. For example,
a value for a required parameter may be incorrect
and not acceptable to the system. In this case, the
user has not forgotten the parameter but instead has
made a mistake. The system prints a diagnostic
message to request that he supply the correct
parameter. This form of prompting teaches the
user how to use the system.

Optional parameters are those that the user may
specify if he so desires. If he does not specify
them, the system automatically selects a predefined
value called a "default" condition. The system
simply assumes the default value if the user has not
supplied a value.

Confirmation is provided by the system, if the
user requests it, in order to inform the user of
action taken. Thus, a positive response is given to
the user for each of the commands that he enters.
This response may be a message to the effect that
the command has been accepted or executed. How­
ever, when the user has speCified that he wishes
confirmation, the system prompts the user for op­
tional parameters for which he did not specify a value.

In certain situations the system responds to the
user whether he has requested confirmation or not.
For example, when a user logs on, the system
prints the time and date at which he logs on. When
a user is removed from the system, some disposition
must be made of his data sets. In this case the sys­
tem prints the name of each data set, and requests
instructions regarding the disposition to be made of
each data set. In this situation a conversation be­
tween the user and the system exists in which the.
system asks the user what action must be taken.

In order that the system may inform the user
that it is ready to accept a new command or a new
statement, a special character is printed at the
beginning of each line.

Expansion of BaSic Command Language

Even though a basiC set of commands is provided
with the system. an authorized user may wish to
add new commands. The program implementing a
new command must be written to conform to the
interface requirements of the command language
system.

The name of the command must be put in the
verb table, which is used to identify commands and
to link to command programs. Once a user adds
commands, he may at some point want to remove
a command. To do this, the entry for the particular
command must be removed from the verb table.
Furthermore, the command program should be
removed.

LANGUAGE PROCESSORS

The language processors have the following
characteristi cs:

• They must either reside in core storage for
substantial time periods or else be continually
swapped from auxiliary storage. To achieve
this, larger compilers are segmented into
independent phases.

• The compilers are reentrant so that numer­
ous users may utilize them. Work areas are
associated with the source programs and
never shared among users.

• The compilers use only direct access storage
for scratch purposes: no sequential storage
devices (such as tapes) are used.

• A common output format is produced by the
assembler and compilers, and is structured
to be further processed by the link editor
and/or dynamic loader. Executable pro­
grams may be composed of se<.:tions of pro­
grams independently compiled or assembled.

• Special output options assist in checking out
programs.

41

• Most language processors operate in both
conversational syntax analysis and background
modes.

TSS/360 Assembler

A relocatable reentrant assembler with marco
capability will be available with TSS. Like the
other language translators, it is treated logically
as any problem program and, therefore, has all of
the monitor facilities available to it. It is available
in both conversational syntax analysis and back­
ground modes.

The assembler program provides auxiliary func­
tions that assist the programmer in checking and
documenting programs, in controlling address
assignment, in sectioning a program, in data and
symbol definition, in generating macro instructions,
and in controlling the assembly program itself.
Mnemonic codes specifying these functions are pro­
vided in the language.

The address translation feature of the IBM 2067
Processing Unit eliminates the need for overlays in
the design of the assembler itself. Except for this
facility, the characteristics of the assembler are
Similar to the Operating System/360 assembler.
Where differences between TSS and OS/360 are
required, they will be defined in a future SRL.
(See IBM Operating System/360 Assembler
Language, C28-6514.)

FORTRAN IV Compiler

A FORTRAN IV compiler is also available with
TSS. It is a relocatable, reentrant routine designed
in accordance with the conventions and requirements
for systems programs in the System/360 TSS envi­
ronment. It is treated logically as a problem pro­
gram and has all the facilities of the supervisor
available to it. The FORTRAN IV compiler may be
used in either conversational syntax analysis mode
or background mode.

Inputs to the compiler are source programs
written in the FORTRAN language. The language
is compatible with the FORTRAN IV (H-Ievel)
language supported under OS/360 and described in
IBM Operating System/360 FORTRAN IV
(C28-6515).

The compiler organization and information
flow are designed for fast, efficient processing.
In addition to the production of executable pro­
grams, the compiler detects and gives notification
of source program errors and produces a variety
of documentation describing the object program.

42

Programming Language/One (PL/I) Compiler

A reentrant Programming Language/One (PL/I)
compiler is being implemented for TSS. It is avail­
able in conversational syntax analysis mode or non­
conversational mode. The PL/I language combines
the computational ability of FORTRAN with char­
acter handling and logical statement manipulations
to permit the solving of problems of great diversity
and scope. Several applications for which PL/I is
especially suited are real-time command and con­
trol, systems programming, and problems of
management science. The PL/I language is com­
patible at the source level with the H-Ievel support
under OS/360, as documented in IBM Operating
System/360 PL/I: Language Specifications
(C28-6571).

Output will be the same form as that produced by
the assembler and other language compilers, and
will be suitable for further processing by the linkage
editor and/or the dynamic loader.

COBOL Compiler

A COBOL compiler is also available under TSS. It
is nonconversational and operates in the background
mode only. Output will be in the same form as that
produced by the assembler, and will be suitable for
further processing by the linkage editor and/ or the
dynamic loader.

The COBOL language is compatible at the source
level with the F-Ievel support under OS/360, with
the exception of the SOR T verb. See IBM Operating
System/360 COBOL Language (C28-6516) for a
description of the language.

Sort/Merge

A sort/merge program oriented to the disk drives
will be provided for operation in a time-sharing
environment. Its design goal is to minimize re­
quirements on memory and VO channels consistent
with efficient operation.

In a time-sharing environment the complete
facilities of the computing system are not available
for storage and channel optimization; therefore, a
high-volume sort will probably not run as effiCiently
as in a batch-processing environment. The re­
quirement for extensive sorting can be minimized
by the use of indexed sequential and partitioned data
organizations supported under TSS.

Use of the SORT/MERGE program requires one
additional disk drive over the minimum required
for operation of TSS.

DATA MANAGEMENT

Introduction

The management of data in a time-sharing system
poses many problems that either do not exist or can
be ignored with less severe consequences in a more
conventional batch-processing system. All data in
the entire installation must be available to each
terminal user within a "reasonable" time span; this
capability should not be restricted by the data
management system. Any restrictions on the un­
limited accessibility of data should be imposed only
by the users themselves, for security reasons for
example. The size of the data sets may require
large amounts of storage online and accessible
within a matter of milliseconds. IBM supplies this
magnitude of storage in a wide range of devices
having large capacity and various degrees of
accessibility.

Generally speaking, the cost of online storage
devices varies inversely with the time required to
gain access to data stored within them. The prob­
lem facing the designers of a time-sharing system
is: How can the necessary secoodary storage
capacity commensurate with the required acces­
sibility be provided at the lowest possible cost?
This question must be asked by the designers of any
data processing system, but the question is vastly
more significant in a time-sharing system.

If the total data requirements could be deter­
mined, and if the activity could be accurately
measured, the system designer's job would be
fairly easy. This is almost never the case.

Secondary Storage Allocation

Data storage within the time-sharing system is
organized into a hierarchy that might be described
as constituting a triangle of variable dimensions
(Figure 6).

storage media closer to the base of the triangle
store data at a lower unit cost but require longer
access time. Storage media closer to the apex
permit fast access at a higher cost per unit. The
total area of the triangle corresponds to the total
data capacity of the system. Response time can be
improved by increasing the number and capacity
of the devices with faster accessibility. The design
of the data management system within the time­
sharing monitor permits this fleXibility without
raquiring recompilation of programs or reformatting
of data.

Data Flow

Data flow through the system is from any auxiliary
storage device into core and, if necessary, back

"Online"
Storage

Active
Storage

~-----j--2321
Data Cells

Passive Storage

Magnetic
Tape Archi val Storage

Figure 6. Storage allocation

into auxiliary storage as processing is completed.
The data management routines within the time­
sharing monitor maintain statistics on activity of
each data set and assign them to storage levels
within the hierarchy on the basis of activity. As
a data set is used frequently, it will move upward
within the storage hierarchy to devices of faster
accessibility, and thus "closer" to core storage.
As activity diminishes, it will tend to drift lower
in the hierarchy to devices of less cost per unit of
storage capacity,

The method of data management and flow has
several advantages:

• The monitor achieves an automatic balance
between the activity of data and the storage
level to which the data is allocated.

• The bulk of the data and programs is kept in
devices of lowest cost per unit of storage
capacity, without compromising response
time.

• The system capacity and response can be
matched to the user's requirements without
program modification.

• The ultimate in "fail-soft" capability can be
achieved at the lowest cost. Duplexing of
secondary storage is kept to the minimum
commensurate with total capacity and re­
sponse time.

The entire system philosophy of program and
data set manipulation is based on the page, the
baSic unit of data in the system. A page may con­
tain either a program or data. Pages are ordinarily
the units extracted from cataloged locations within
secondary storage and loaded into core. In a time­
sharing system, they are then copied into a paging
area on drum or, occasionally, on disk. The page
flow then is from drum to core and back as deter­
mined by the task-scheduling and core-allocation
routines within the monitor.

Each program or data set resident in the system
is cataloged in an index maintained on one or more
cylinders of a 2314 or 2311 disk file. Information
concerning the size and location of the data set is

43

contained within the index, thus enabling the system
to gain access to the data set itself, or any page
within it.

When a page is brought into core storage, its
availability is recorded in the appropriate page
table entry.

Programs and data sets are introduced into the
system in several ways. Certain tasks may create
them, as is the case with compilers. Users may
create them by requesting the system to save, under
a new name, a data set with which they have been
working. Data may enter the system from a wide
variety of sources:

Keyboard input
Low-speed and high-speed card readers
Paper tape readers
Tape units
Disk packs
Satellite computers, local or remote
Remote data links
Data, by whatever means it arrives, must be

cataloged, and storage of the required size must be
aSSigned. Control information may govern the
device type into which it is loaded, but not the spe­
cific I/O device. It need not remain in the device

into which it was originally loaded. Depending on
its activity, it may rise within the hierarchy of
storage to a device with faster access speeds, or,
if comparatively inactive, sink to a device of slower
accessibility.

Lacking any other specification, it will be loaded
into a 2314 or 2311 disk file. It may be loaded with
control information specifying that it is to be kept
in the load location, or it may be left to the system's
regulatory ability to locate it in the device most
suited to its usage and system storage capacity.

There are two levels at which data flow can be
considered within the time-sharing system.

The first is the flow of pages from a cataloged
storage location within the storage hierarchy, into
working core storage in response to calls. Modified
pages flow back to the cataloged secondary storage.

The second is a vertical movement between
devices within different levels of the storage
hierarchy. The system maintains the density of
each storage device and brings programs and data
sets into a level of storage accessibility commen­
surate with their activity. The most active of these
will be found on the nonpaging drums and the least
active on the 2321 data cells.

As additional programs and data sets are intro­
duced into the system, provision must be made for
a periodic purging of the lowest or most passive
level of online storage to some type of archival
storage. The archival storage may be tape, re­
movable disk packs, or removable data cells. The
purged programs and data sets are those of lowest

44

activity in the system. The system keeps a record of
the purged items and the tape reels, disk packs, or
cells they are on, so that they can be reintroduced
as necessary. Calls to purged programs and data
sets are commtmicated to the operator's console
so that the proper tape reels, disk packs, or cells
can be identified.

One of the most intriguing concepts of data
management that become feaSible in a time-sharing
environment is that of "percolate and trickle ".
"Percolate" implies the bringing up to higher-activity
devices the more active data sets, while "tri ckle "
implies the reverse ability of moving data sets
down to the lowest storage device identified with a
data set activity.

Vertical flow is expected to trigger automatically
at preset intervals if there is idle time on mly CPU
and when core space and channel time are available.
If any device has a density above an installation­
deSignated "normal" level, a task will be created to
reduce the denSity. The activity of each program
or data set can be determined mId, when an im­
balance is indicated, a task can be invoked by the
system to schedule an interchange from device to
device, as space permits, interchanging higher-rate
sets from devices lower in the hierarchy with 10wer­
rate sets from devices higher in the hierarchy.

The object of this data flow activity is twofold:
to use the various I/O devices in the most efficient
manner, and to have files located as c lose in the
hierarchy to core storage as their usage requires
and storage capacity permits.

An additional advantage of this dynamic method
of storage allocation is the minimizing of the cost
of fail-soft capability. Ideally, the failure of any
I/O device in the system should not be noticed by
the terminal user. Duplexing of all I/o devices
provides the ultimate in fail-soft capability. How­
ever, full duplexing of large numbers of fast­
access storage devices may be prohibitively expen­
sive. This automatic method of keeping only the
high-activity files in the fast-access devices tends
to reduce the total cost of secondary storage,
therefore making full duplexing more attractive.

The basic storage may be duplexed very economi­
cally on low-cost, direct access devices such as the
2321. Only the active files are nmv located in the
fast access 2314 or 2311. On the basis of the appli­
cation characteristics and the installation! s desires
for rapid response, only a small percentage of the
system's storage capacity may be on disk, and it
may be quite feasible to duplex these files from an
economic standpOint.

IDENTIFYING AND LOCATING DATA

Whenever a user indicates that a new data set is to
be created and placed on auxiliary storage, he must

give the data set a name. The name is used when
the data is to be retrieved.

In some cases, the name assigned to a data set
must be qualified to avoid ambiguity. For example,
the qualified names COLOR. CHERRY and
TREE. CHERRY describe two different data sets
having the simple name CHERRY.

A standard unit of auxiliary storage is called a
volume. A volume may be:

A reel of tape
A disk pack
A data cell
A drum

A direct access volume (every one of the above
except the tape reel) has a volume label in a stand­
ard location. The label specifies the location of a
volume table of contents. Each data set stored on
the volume has its name, location, organization,
and other control information stored in the table of
contents. (Similar information is stored in labels
of data sets stored on tape.) Thus, if the name of
a data set and the volume on which it is stored are
made known to the control program, a complete
description of the data set, including its location
on the volume, can be retrieved. Following this,
the data itself can be retrieved, or new data can be
added to the data set.

However, keeping track of the volmne on which a
particular data set resides is a burden, and often a
source of error. A provision for cataloging data
sets allows the system to do this for the user.

A cataloged data set can be located by the control
program, if given only its name. The catalog con­
sists of a series of indexes stored on direct access
devices. Each qualifier of a data set name corre­
sponds to one of the indexes in the series. For
example, the data set TREE. FRUIT .APPLE is
found by searching an index to obtain the location of
the index named TREE. The TREE index is
searched to find the location of the index named
FRUIT. Lastly, this index is searched for APPLE
to find the identification of the volume containing
the required data set.

The highest level of index in the catalog is trans­
parent to the user. This results from the fact that
the system automatically concatenates the user
identification to the left of every data set name pro­
Vided by the user. This highest-level index is
referred to as the master index. Using the user
identification as the highest index level ensures that
each index below the master index can be identified
with a user. The collection of indexes below a user
identification is called a user catalog. The fully
qualified data set name may occupy 44 characters
(including periods), of which the user specifies a
maximum of 35 characters.

By use of thE, catalog, collections of data sets
that are related by a common external name and the
time sequence in which they were cataloged (that is,
their generation) can be identified, and are called
generation data groups. Thus LAB. PAYROLL (0)
refers to the most recent data set of the group,
LAB. PAYROLL (-1) refers to the second most
recent data set, and so on. In applications that, for
example, regularly use the two most recent genera­
tions of a group to produce a new generation, the
same collection of data set names can be repeatedly
used -- with no requirement to know or keep track
of the serial numbers of the volumes used.

ORGANIZING DATA

System/360 TSS data sets can be organized in five
ways:

• Sequential. This is the familiar tape-like
structure, in which records are placed in
sequence. Thus, given one record, the "next"
record is uniquely determined. The sequential
organization is used for all magnetic tapes,
and may be selected for direct access devices.
Punched tape, punched cards, and printed out­
put are considered to be sequentially organized.

• Indexed sequential. Records are arranged in
logical sequence (according to a key that is
part of every record) on the tracks of a direct
access deVIce. In addition, a separate index
or set of indexes maintained by the system
gives the location of certain principal records.
This permits direct as well as sequential
access to any record. Records may be added
to and deleted from the data set as required,
with appropriate updating of the index.

• Partitioned. This structure has character­
istics of both the sequential and indexed
sequential organizations. Independent groups
of sequentially organized data, each called a
member, are in direct access storage. Each
member has a simple name stored in a direc­
tory that is part of the data set and contains
the location of that member's starting point.
An example of partitioned data set use is the
storage of programs; as a result, partitioned
data sets are often referred to as libraries.

• Telecommunications. This organization deals
exclusively with data going to or coming from
remote online terminals. Such data (mes­
sages) may be processed directly from main
storage or from queues in direct access
storage.

• Graphics. This organization is oriented to
data going to or coming from online graphic
display units.

45

STORING AND RETRIEVING DA TA

Data management includes the following access
methods to simplify storing and retrieving data:

46

• Sequential access methods. Basic Sequential
Access Method (BSAM) and Queued Sequential
Access Method (QSAM) are compatible at the
source language level with OS/360. The inter­
change of data between OS/360 and TSS/360 is
facilitated by this compatibility.

BSAM furnishes device control without
automatic buffering and blocking. I/o opera­
tions are scheduled at the time they are
requested. Characteristically, the macro
instructions READ and WRITE retrieve and
store entire phYSical blocks of data.

QSAM is designed to furnish a full range of
buffering and blocking facilities with maxi­
mum programming simplicity. It applies
only to organizations with sequential character­
istics. The macro instructions GET and PUT
are used for retrieval and storage of logical
records. Records may be fb.:ed length (blocked
or unblocked), variable length (blocked or
unblocked) or unspecified.

• Terminal access method. TAM provides the
necessary communication to be established
with a terminal. Routines are included to
cause the proper action to be taken upon the
termination of any channel program operating
a low-speed terminal device.

• Virtual access method. VAM is specially
designed for TSS/360, and it effects the inter­
mediate input/output of data by interfacing
with the paging supervisor. VAM data sets
are limited to direct access devices. Although
physical blocks are in units of pages, the
logical record length can be as long as 2 20
bytes, and records will be packed into and
across "pages" as required. VAM allows the
user to treat a direct access data set, or any
portion of it, as part of his virtual memory.
Three data set organization methods are
available under VAM: sequential, indexed
sequential, and partitioned. Record formats
are fixed length, variable length, or
unspecified.

• Graphic access method. GAM provides soft­
ware services for the 2250, 2280, 2281, and
2282. It generates graphic orders for the
control of these graphic devices, facilitates
data handling both in main storage and in the
graphic device buffer, accomplishes I/O con­
trol functions, and controls the dispatching of
asynchronous light pen, alphameric keyboard,
program function keyboard, attention and
error interrupts. Embodied in GAM is a

graphic interrupt supervisor, which queues
and distributes graphic interrupt conditions.
GAM is also responsible for the management
of graphic device buffer storage.

SYSTEM FACILITIES FOR PROGRAM
CONSTRUCTION

Virtual Memory Concept

The 24-bit addressing capability of the System/360
permits twelve-bit base addressing (4096 base
addresses) and twelve-bit byte addressing (4096
byte addresses) -- a maximum of 16 million ad­
dressable bytes. In programming, however, the
user is generally restricted to addresses that repre­
sent physical storage on his machine. Such a pro­
gram cannot address 16 million contiguous bytes
directly, but must be structured as a series of
overlays.

TSS/360 permits the concept of a "virtual mem­
ory" whose size is the maximum addreSSing capa­
bility of the computer system. For the System/360
Model 67, which has been modified for 32-bit
addressing, the capacity of virtual memory is over
4 billion bytes.

The time-sharing supervisor has the job of as­
signing active programs to whatever physical storage
is available. Automatic relocation techniques are
used to associate the logical program (after proc­
essing by the dynamic loader) with physical locations
consistent with the efficient operation of the system.
This physical fragmentation need never concern the
programmer. He may write his program as if
contiguous bytes of storage were available for each
assembly.

Basic Functions

Processing by the language processors involves the
translation of source statements into machine lan­
guage, the assignment of virtual memory locations
to instructions and other elements of the program,
and the performance of amdliary functions deSig­
nated by the programmer. Output of the language
processors is the object program module, a
machine language equivalent of the source program.
The program furnishes a printed listing of the source
statements and object program statements and addi­
tional information useful to the programmer in
analyzing his program, such as error indications.
The object program is in the format required by the
linkage and loading components of TSS/360.

The language processors use virtual memory for
the allocation of working storage. Thus, language
elements customarily limited by the capacity of
internal tables are, in effect, without limits in TSS.

Program Sectioning and Linking

It is often convenient, or necessary, to write a
large program in sections. The sections may be
separately assembled or compiled, then combined
subsequently into one object program. The language
translators provide facilities for creating multi­
sectioned programs and symbolically referencing
separately compiled programs or program sections.

The concept of program sectioning is a consider­
ation at coding time, compile time, and load time.
To the programmer, a program is a logical unit.
He may want to divide it into sections called control
sections; if so, he writes it in such a way that con­
trol passes properly from one section to another
regardless of the relative physical position of the
sections in storage. A control section is a block of
coding whose virtual memory location assignments
can be adjusted, independently of other coding, at
linkage or load time without altering or impairing
the operating logic of the program. A control sec­
tion is normally identified by the CSECT, PSECT,
or COM assembler instructions. An unsectioned
program is treated as a single control section. To
the dynamic loader, there are no programs, only
control sections that must be fashioned into an object
program. The linkage editor may be used to com­
bine separately produced modules, if desired, before
dynamic loading.

The output of a language translation is an object
program module, consisting of one or more control
sections and a control dictionary. The control
dictionary contains information that the linkage
editor and the loader need in order to complete
cross-referencing between control sections. The
linkage editor and the loader can take control sec­
tions from various assemblies and compilations and
combine them properly with the help of the corre­
sponding control dictionaries. Successful combina­
tion of separately produced control sections depends
on the techniques used to provide symbolic linkages
between the control sections.

Regardless of the degree to which his program is
sectioned, the programmer still knows the elements
that make up his virtual memory, because he has
described them symbolically. He cannot, however,
make any assumptions about the position or ordering
of control sections, since their virtual memory
location aSSignments may have been adjusted by the
linkage editor and! or the loader, and thei r physical
storage addresses may be constantly changing within
the time-sharing environment.

Control Sections

CSECT -- Control Section

The CSEC T identifies the beginning of a control
section. If a symbol names the CSECT instruction,

the symbol is established as the name of the control
section; otherwise the section is considered to be
unnamed. All statements follOwing the CSECT are
assembled as part of that control section until a
statement identifying a different control section is
encountered. The text of each control section starts
on a page boun(iary ,arid"avirl'ual memory page

-~-table"is' constructed as the text is produced.

PSECT -- Prototype Control Section

Within TSS a single copy of a commonly used re­
entrant routine appears to have different virtual
memory location assignments to different users,
although its actual disposition in storage remains
unchanged. When control is transferred to a re­
entrant routine, the calling program must supply
an address constant that reflects the virtual memory
assignments of the calling program in order that
the reentrant routine may obtain data storage unique
to the user.

This would ordinarily imply that a program which
calls a reentrant routine be knowledgeable about all
address constants that might be required within the
hierarchy of reentrant programs. To minimize this
clerical burden, a prototype control section is de­
fined for use by reentrant programs to simplify the
handling of address constants and working storage.

On linkage to the reentrant routine, a copy of the
contents of the prototype section is made and as­
signed virtual memory locations ·within the domain
of the calling program.

In reentrant program all working storage and
address constants are assembled within a prototype
section; the user need not know any of the internal
requirements of the routine he calls.

Communication of prototype section information
is accomplished through the use of the R-type
address constant. This supplies the location of the
control section that is required by the reentrant
program for working storage and address constants
unique to the calling program. Use of the R-type
address constant causes the loader to supply the
location of the prototype section as a function of the
entry point name.

COM -- Common Control Sections

The COM assembler instruction identifies and re­
serves common areas of storage that may be re­
ferred to by independent assemblies or compilations
that have been linked and/or loaded for execution as
one overall program.

One blank common section and any number of
named common control sections can be designated
in an assembly or compilation.

No instructions or constants are assembled in the
"blank" common control section. Data can be

47

placed there only through execution of the program.
Instructions and constants, however, can be as­
sembled in "named" common control sections. The
rules governing the final structure of common con­
trol sections are described in the linkage editor
section.

Attributes of Control Sections

To facilitate dynamic linkage and loading within
TSS, it is often necessary to indicate that certain
attributes are characteristic of the data or instruc­
tions within a control section. One or more of the
following operands may be used in CSECT, PSECT,
or COM statements to indicate which attributes are
to be assigned to the section:

PUBLIC - Indicates that the section con-
tains shared, public data or
instructions.

READ-ONLY - Indicates that the section con­
tains instructions or data which
are never modified.

VARIABLE - Indicates that the length of the
section may vary during pro­
gram execution.

REENTRANT - Indicates that the section con-
tains instructions that may be
reexecuted at any point through
interruption procedures.

Attributes may be specified singly or in combina­
tion, where meaningful.

Symbolic Linkages

Symbols may be defined in one program and referred
to in another, thus effecting symbolic linkages be­
tween independently assembled programs. The
linkages can be effected only if the language proc­
essor is able to provide infon-nation about the linkage
symbols to the dynamic loader that resolves these
linkage references at load time. The assembler or
compiler places the necessary information in the
control dictionary on the basis of the linkage sym­
bols identified by the ENTRY and EXTRN statements.
Note that these symbolic linkages describe linkages
between independently compiled control sections.

In the program where the linkage symbol is de­
fined (that is, used as a name), it must also be
identified to the language processor by means of an
ENTRY statement. It is identified as a symbol that
names an entry point, which means that another
program will use that symbol in order to effect a
branch operation or a data reference. This infor­
mation is placed in the control dictionary.

Similarly, the program that uses a symbol de­
fined in some other program must identify it by an
EXTRN statement. It is identified as an externally

48

defined symbol (that is, a symbol defined in another
program) that is used to effect linkage to the point
of definition. This kind of information is also in the
control dictionary.

USE OF THE LANGUAGE PROCESSORS

Invoking the Language Processor

The desired language processor is called by a
Language Processor Control (LPC) program, which
functions as intermediary between the language proc­
essor and the remainder of the system. Its princi­
pal duties are to invoke the appropriate program,
receive source language statements from the ter­
minal (or other system input device), and route
diagnostic messages from the language processor
to the terminal (or other system output device).
Thus the Assembler FORTRAN IV or PL/I may be
used in either conversational or nonconversational
mode.

Source statements for the processors are con­
tained in a line data set with each item sequentially
numbered. Such a data set may be cataloged from
an external source by a service routine, or may be
entered directly at a terminal keyboard. It is the
function of LPC to supply line-image items to the
language processor, one at a time, upon request.
The source language line itself remains in the
virtual memory assigned to the LPC for the duration
of the translation process. Note that both the LPC
program and the language processor are part of the
user's virtual memory.

The sequence order of the lines is maintained
through a series of address linkages that permit the
accommodation of any additions, deletions, or
changes that the terminal user may introduce. In
supplying source lines to the language processor,
LPC follows the address linkages to ensure that the
processor receives the statements in sequential
order. This order forms the basis for all subse­
quent processing.

Output from the Assembler

The machine-language output produced by the
Assembler is distributed between a text module and
a control module; together they make up the object
program module. The text module contains
machine language instructions; the virtual memory
pages in the text module will ultimately map onto
pages in the target virtual memory of the assembled
program.

The control module contains information about
external symbol definitions, external symbol refer­
ences, and the relocation properties of the text, all
organized by control section.

The listing module contains a line-image listing
suitable for printing on an external device.

Two optional facilities are available. One of
these prepares a cross-reference listing from in­
formation generated for this purpose. The other
collects information from the internal symbol and
using-register tables and constructs an output data
set suitable for later use by the program checkout
system. This module contains a symbol table for
all pertinent internal symbols, in addition to infor­
mation about the ranges of virtual locations over
which specified using-registers are effective.
Preparation of this module and the cross-reference
listing is controlled by user-supplied parameters.

Output from the FORTRAN IV Compiler

The FORTRAN IV compiler is designed to produce
compact, efficient object programs in a form suit­
able for loading and executing by the TSS/360 sys­
tem. All object program modules (including "main"
programs) are relocatable, reentrant subroutines,
which may optionally be processed by the linkage
editor or loaded directly through the facilities of the
dynamic loader. The output module is organized
into several control sections, each of which has a
dictionary part and an optional text part. The text
of each control section starts on a page boundary,
and a virtual memory page table is constructed as
the text is edited.

Each output module contains at least two control
sections. A prototype control section (PSECT) is
always present. Other control sections, their
presence determined by the categories of source
statements, may be:

1. Code control section (CSECT)
2. Control section for blank COMMON
3. A number of control sections representing

named COMMON areas
The PSECT is a fixed length, prototype control

section required by reentrant routines that contains
all the address constants in the module. The dic­
tionary part includes external references and defi­
nitions as well as relocation information for address
constants.

The CSECT is a fixed length, read-only, re­
entrant control section. Its text part consists of the
object code, including numeric and alphameric con­
stants. The single exception is a module that
represents a BLOCK DATA subprogram, where text
may be generated. Named COMMON sections are
fixed length, but blank COMMON is a variable length
control section.

Documentation of Object Programs

A program list data set is generated whenever the
listing is requested. This listing is a representation,

in Assembler-like form, of storage classes within
the object program module.

The user may also request optional output in the
form of a memory map, a symbol table, or a cross­
reference symbol table. These will appear on the
same data set generated when the object program
listing is specified.

These optional outputs may provide static infor­
mation useful in analyzing the source program. For
dynamic information regarding the flow of the pro­
gram, the user has access to FORTRAN facilities
and may also request the services of the program
checkout system, described elsewhere in this section
of the manual.

LINKAGE EDITOR

The linkage editor is a service program, optionally
used in association with the language translators.

The object program output of a Single compilation
or assembly is called a program module or simply a
module. Normally, this single module is input
directly to the dynamic linkage loader, and all other
modules necessary to form a total program are
dynamically linked together. However, the user
may find it desirable to process one or more pro­
gram modules through the linkage editor before
employing the loader.

The linkage editor performs the following nmc­
tions as specified by the user:

1. Two or more program modules, created by
the same or different language processors, may be
statically linked together to form one program
module. A statically linked program requires
somewhat less loader proceSSing time and makes
more efficient use of virtual memory (at the cost of
linkage editor processing time).

2. Control sections within modules may be re­
placed, deleted, or renamed.

3. Entry names and external references may be
renamed.

4. Entry names may be deleted.
5. A new module entry point (transfer point) may

be defined.
6. The attributes of control sections may be

changed.
7. Two or more control sections may be com­

bined into a single control section.
The output module from the linkage editor may be

executed or may be cataloged for later use. (Also,
the output module may later be processed again as
input to the linkag;e editor.)

ProceSSing by the linkage editor is governed by
statements arriving from a remote terminal device
(conversational mode) or the primary input device
(nonconversational mode). Users at the terminals
may correct control statement errors detected by
the linkage editor.

49

Subroutines from a user library or the system
library can be included in the output module at a
specified point in the program. However, if it is
desirable that this type of routine be included dynam­
ically at execution time, a LIBRARY statement to
the linkage editor creates tables for the dynamic
loader, facilitating the loading of these routines at
execution time. Thus, user libraries need not
contain standard system subroutines, and if the
routine is sharable, it is possible that the copy
linked to is already in core storage.

Output from the linkage editor is the same as the
output from any language processor and is in a form
processable by the dynamic loader. The output
module consists of two parts: the dictionary and the
text. The dictionary contains all the information
necessary to process and load the text, including
information about all control sections within the
module, relocation information, and the initial entry
point to the program. Also supplied is information
pertaining to user library requirements and the total
blank COMMON requirements of the output module.
If desired, the output module may be cataloged for
continued usage or may optionally be link-edited
with additional program modules.

DYNAMIC LOADER

The dynamiC loader allocates storage and links ex­
ternal symbols among various separately assembled
or compiled program modules on a dynamic basis.
A module is only linked into the user's executing
program when a need for it becomes apparent.

The dynamiC loader consists of three independent
routines:

1. The explicit linkage routine is called by the
user through a Supervisor Call (SVC). The user
provides a name as input to the routine. The loader
finds the module containing that name either as the
module name or external definition. If the module
has not already been processed, information about
the module is placed in the loader tables, virtual
memory addresses are assigned to its various con­
trol sections, and page tables are constructed for
the module. If any relocation is necessary, the
pages are marked "unavailable" and "unprocessed
by loader".

2. The impliCit linkage routine is called when a
"page unavailable" interrupt occurs because of a
user program reference to a page for which the
loader has constructed a page table entry but has not
performed the relocation of address constants. This
routine relocates the address constants in the refer­
enced page. External references to new modules
from the page cause the loader to "link" them in a
manner Similar to that described above for an
explicit linkage call.

50

3. The explicit unlinkage routine, a facility that
is made available for the unlinking of modules, is
entered through an SVC, which causes the loader
to delete all table entries for the module specified
by name.

Control sections are allocated virtual memory in
the following way: Standard control sections of
specified length are allocated a fixed number of
pages. To handle facilities like blank COMMON,
where the length depends on the longest length de­
clared in any module already loaded, a variable
number of pages are made available as required.
Prototype control sections are handled Similarly to
standard control sections. However, when the pro­
totype section is associated with a shared public ~i ..
routine, its external page table is saved, and a fresh·~
copy made for each user of the routine.

The dynamic loader is one of a subset of service
routines initialized into the user's virtual memory
at LOGON time. It is available for use by other
system routines and by the user, in either conversa­
tional or nonconversational mode. With this facility
the user need not use the linkage editor's services
between creation of program modules by a language
translator and execution of the job. This is espe­
cially appealing when a given run of a program may
cause only one of a number of independent routines
to be required. That particular routine may then
be explicitly called at execution time, eliminating
the requirement for linking the unused routines.

PROGRAM CHECKOUT SYSTEM

The program checkout system is an extension of the
command language system. The command language
recognizes program checkout statements and passes
them on to the appropriate subroutines for interpre­
tation and response. These routines are reentrant
(and are part of the user's virtual memory). Under
PCS the user can display and change the value of a
variable, alter the normal sequence of program
execution, terminate execution, dump, etc. These
facilities are available in conversational mode as
well as nonconversational mode.

The complete services of the program checkout
system are available after the user program is
loaded. After the command for loading is recognized
by the command language, any PCS statement may be
input to set up debugging conditions before control is
transferred to the program. During execution of
the program, the user may dynamically interact
with his program by depressing the attention mech­
anism, which causes the object program to stop and
terminal communication to revert to command
mode. The user may input program checkout and/or
command statements as required, and then cause
the program to resume execution.

At termination of the object program, the terminal
is again returned to command mode, and again, pro­
gram checkout statements or commands are recog­
nized. Program checkout operations, including a
restart of the program from a specified entry point,
can be continued as desired.

The utility of the program checkout system is
maximized when a complete symbolic description of
the object program, expressed in source language
symbols, is available. This is possible by retaining
the Internal Symbol Dictionary provided optionally
by the Assembler and FORTRAN compiler. If this
dictionary is not available, the user is restricted to
referencing hardware registers and external sym­
bols in his debugging statements.

SYSTEM DESIGN CONSIDERATIONS

Supervisor Functions

The time-sharing supervisor controls the exe cution
of jobs entering the system and the hardware environ­
ment in which they operate. Many features of TSS
have been specially designed to facilitate multipro­
gramming, time sharing, and multiprocessing.
These special features are fully exploited by the
time-sharing supervisor to increase system through­
put, minimize response time, and efficiently utilize
available system components.

Basically, it can be said that the supervisor's
flIDction is to respond to interrupts. These inter­
rupts must then be sorted as to type and function
and a program must be executed to respond to them.

When an interrupt occurs, it is processed before
control is returned to the interrupted program.
Since the System/360 has facilities for masking or
allowing different types of interrupts, however, and
differentiates among five different classes of inter­
rupts, each interrupt routine is normally disabled
only for an interrupt of its own class. If a second
interrupt of the same class occurs before process­
ing of the first is complete, the second (and all later
interrupts) will be stacked. As one is completed,
another is removed from the stack and processed.

It is possible to define levels of priority between
interrupts and allocate portions of storage to certain
interrupt routines in such a way as to ensure that
specified terminal actions receive the quickest pos­
sible response.

The supervisor programs that respond to inter­
rupts can be claSSified into four general categories:

• Processor control -- the scheduling of proc­
essor time to user programs and supervisor
flID c ti ons

• Storage control -- the allocation of both pri­
mary and secondary storage space, including
address translation and storage protection

• I/O control -- the assignment of I/O devices
to both user programs and supervisor func­
tions, and the scheduling of data paths between
storage and I/O devices

• System control -- the logical control of all of
the above functions together with operator
communication, partitiOning, and recovery
functions

All of these supervisor programs use status data
organized into tables or indices that are continuously
sampled, changed, and recorded by the control pro­
grams.

Task Status Index

The most important index in the supervisor is the
task status index. (TSI). There is a separate TSI
for each unit of work or task in the system. TSI's
may be either dormant or active. Dormant TSI's
are in this state when there is no user currently at
the particular terminal, or when the terminal has an
exceptionally long wait. Active TSI's contain status
information on jobs currently in some state of exe­
cution.

Because of the magnitude of information that it
must contain, the TSI is split into two sections. The
resident TSI contains the user-oriented information,
which must be in core at all times. The rest of the
information is kept in an extended TSI and is eligible
to be swapped out of core along with its associated
user programs and data.

Multiprogramming

The basic purpoEe of a time-sharing system is to
provide rapid and complete service to a number of
users concurrently. One of the chief functions of the
time-sharing monitor is the rapid assignment of the
processor facilities on a rotating basis to all active
users in the system. Ideally this commutating of
processor facilities is so rapid that it appears to
each user as though he has all the facilities of the
system at his complete disposal, and that he is the
sole user of the entire system.

The large storage capacity of System/360. both
in terms of physical storage capacity and direct
addressing capability, is an obviOUS aid to efficient
time sharing. The more users' programs that can
be held in directly addressable core, the less system
time required in transferring to them, and the more
immediate the response.

When the number of users and the size of their
jobs expand, the capacity of directly addressable
core is exceeded. The monitor must then resort to
paging or storing portions of momentarily inactive
users' programs and data on a secondary storage
device to make room for the loading of program and
data for a currently active user. The high data rate

51

(1. 2 megabytes per second) and the low access time
of the IBM 2301 drum make it particularly desirable
for this purpose.

This access time, while extremely low for a
secondary storage device, is nonetheless several
orders of magnitude greater than the time to access
core storage. Efficient utilization of the processor
requires the supervisor to multiprogram among a
subset of active users' programs that are already
resident in core during the time a requested non­
resident program segment is retrieved. Therefore,
the time-sharing' supervisor fully supports multipro­
gramming. Advanced methods of storage allocation,
storage utilization, and statistical data gathering'
teclmiques are used to this end.

Multiprocessing

The time-sharing supervisor also supports multi­
processing. The addition of more processors, as
well as multiple data paths between many I/O devices
,md multiple core storage units, requires an added
dimension of control within the supervisor. This
added control capability is of a very general nature
so that additional processors, channels, I/O devices,
and primary storage units can be easily added to the
system.

Dynarnic Program Linkage

The dynamic linkage of programs and subroutines is
permitted by the time-sharing supervisor. Imple­
mentation of this powerful programming aid is
greatly simplified by the address translation feature
of the IBM 2067 Processing Unit. This allows the
dynamic loading of program or data ,,'lth minimal
viriual address modification and facilitates shared
use of program and data segments. The supervisor
identifies a progTam module by name and resolves
symbolic linkages on call. Subsequent references
to the progTam are fast and direct. The net result
is an ability to dynamically call programs and sub­
routines and, once loaded, have them tightly and
efficiently linked.

Scheduling

The scheduling of jobs in a time-sharing system is
somewhat more complex than in a simple batch­
processing system. Many good arguments can be
advanced for various scheduling algorithms. Ulti­
mately, only continued usage of the time-sharing
system in the user's own environment will deter­
mine what scheduling algorithm is best adapted to
the particular user. For this reason the scheduling
routines in the time-sharing monitor are both flexi­
ble and replaceable. Experience is likely to dictate
modifications.

52

The scheduling algorithm to be supplied by IBM
is planned as follows:

Assume that there are no interrupts to be
processed. Core storage contains a chain of TSI's
representing the current set of tasks that are at­
temping to time-share the system. The simple,
straightforward approach would be to assign each
task a quantum of time on a processor. Scheduling
then reduces to a simple commutating around the
TSI chain, allotting each TSI its full quantwll of
time. This would work well if all users' progTams
could be kept in core at one time and if each user
could effectively use the processor £01' his full
quantum.

Actually, however, this ideal situation is rarely
encountered. Users may request I/O operations
during their time-slice (quantum) and then await
their completion. Core storage limitations may
force the supervisor to roll out portions of core to
make room for another user's program and data
(page turning). A task may terminate. Efficient
utilization of the processor dictates that some of
these conditions terminate execution of a task before
expiration of its time-slice. Page turning' and its
associated delays in gaining access to secondary
storage force the supervisor into a situation of
multiprogramming among a small subset of TSI's.
To provide better orderly procession around the
TSI chain (and thereby, reasonably proportionate
distribution of system capabilities among TS1's), a
commutator is defined, marking the TSI that should
be executed next if at all possible. When this TSI's
time-slice ends (for any reason), the commutator
moves on to the next TSI.

Since multiprogramming within the time-sharing
supervisor is required to properly utilize the system,
a dispatcher is defined. Whenever a processor needs
work, it goes to the dispatcher. The dispatcher then
looks at the TSI currently pointed to by the commu­
tator. If the TSI is in a ready state, it is dispatched
to the currently available processor for execution; if
not, the dispatcher searches through the TSl chain
for the next ready TSI. This task (which is not
pointed to by the commutator) is executed until an
interrupt occurs.

Since the dispatcher always starts looking for
work at the commutator, the general effect will be
a procession of the commutator around the TSI
chain, with the dispatcher frequently scampering
ahead of the commutator and then returning' in an
attempt to keep the processor busy.

The system may be regarded conceptually as a
set of facilities to which tasks are queued for
service. As a task is processed by the system, It
moves from facility to facility.

Thus, the active list of 1'81' s is a task queue for
the CPU facility. In a multiprocessed configuration,
this facility may consist of several CPU' is. {To the

time-sharing monitor, tlns presents no serious
problem; an interlock mechanism, using Test and
Set instructions, prevents a task from being given
control by two or more CPU's simultaneously.)

In a given time-slice when a task program
reaches a "page wait", it is necessary to enter a
task in a queue in order to obtain an area of core
storage that will contain the page currently residing
on a storage medium (2301, 2311, 2314). When this
request for core storage has been serviced, the
task is moved to a queue on the appropriate paging
device to read the page into core. After the page
read service is completed, the task is moved back
to the CPU facility queue.

It is quite possible, and probably desirable, to
maintain more than one TSI chain. Many tasks may
be completed in a short quantum of time. other
tasks may require much longer execution periods.
To best service the varied requirements of terminal
users, it may be desirable to allot frequent time­
slices of short duration to the shorter-duration
users, while allotting less frequent slices of longer
duration to the users of larger amounts of processor
time. The commutator can then work its way
around the short-duration chain with less frequent
excursions to a chain or chains of slower-duration
users.

The quanta of time allotted to longer- or shorter­
duration TSI's is an installation option, as is the
number of TSI chains. It can be varied by the user
to tailor the system response as required. Indeed,
the whole scheduling algorithm can be replaced by
one that best serves the user's needs.

Storage Allocation

The supervisor permanently occupies about lOOK
bytes of physical core and runs nonrelocated. The
balance of memory serves as a pool of 4096-byte
blocks (called pages) for those tasks currently being
multiprogrammed .

An index withln the supervisor shows the current
allocation of each block of core storage. Every
block is either free or assigned to an actual job.
Since every job has known priorities and core re­
quirements, the algorithms for primary (core) and
secondary (drum and disk) storage allocation and
swapping can be designed to meet specific user
requi rements.

When a new user is logged on to the system, he
is given a minimal set of "system service routines"
in his otherwise empty virtual memory, so that he
can strike up an effective conversation. Thls set
includes:

1. The command language interpreter to interpret
users' commands

2. The dynanlic loader to load requested programs
(and, if required, to unload them)

3. Catalog services, to locate data sets
4. Virtual memory allocation, for assigning space

in the task's virtual memory to programs and data
As programs and data are dynamically called

from secondary storage, the supervisor must allo­
cate space for them within core and on the swapping
drum. A request may have come from the user at
a terminal, from a user's program, or through the
address translation process finding a page that is
not in core. The supervisor then must choose a
block in primary storage to receive the block from
secondary storage. 'The chosen primary block may
be empty, either because it has not been allocated
or because the task to whlch it had previously been
allocated has terminated. Alternatively, it may
contain valid data. If so, one of two conditions may
occur: the contents may have been changed since
the block was last fetched from secondary storage,
or they may not have changed. If the contents have
changed, the block must be swapped out to the drum.
If not, the block may be overwritten with impunity,
since a copy of it is available from secondary stor­
age. Deternlination of usage and change can be
made from the reference and change bits in the
storage protection key.

The first choice of the allocation routine is from
a list of free blocks. The second choice is from a
list of blocks currently assigned to tasks that are
for the moment inactive (for example, waiting for a
user response). The third choice is from a set of
blocks currently assigned to tasks having a lower
priority than that of the task making the storage
claim.

If all core storage blocks are assigned to tasks
of higher priority than the task making the claim,
allocation is deferred until a lligher-priority task
ternlinates or is removed from the top of the queue
for other reasons.

If the claiming task is the highest-priority task
in the queue and storage is still not available, it will
need to overwrite itself. In this case, blocks will be
assigned which have not been recently used and which
do not contain the currently executed instructions.
Program index blocks and I/o blocks currently
queued for service will not be overwritten.

Normally, the demands of core storage can be
satisfied by the first two choices made by the alloca­
tion routine. Severe partitioning, together with hlgh
terminal activity can, of course, combine to force
the allocation routine into further choices and lengthen
the time devoted to allocation.

Reentrant Coding

Efficient utilization of primary storage is further
enhanced by the supervisor's use and management of

53

reentrant code. Blocks of reentrant code are so in­
dicated in the storage dictionary. Additional copies,
with their attendant waste of core storage, are no
longer required. Since reentrant blocks are also
read only, they do not have to be written out on the
drum when page swapping occurs, thus reducing
system overhead.

Statistical Data Gathering

The statistical data-gathering capabilities of the
time-sharing supervisor include both job accounting
and system performance information. Job account­
ing information includes such items as name, pro­
ject number, subproject number, number of times
the job entered and exited from the system, elapsed
time, total processor time, and space utilized. Sys­
tem statistics are gathered on an optional perform­
ance baSiS, since the data produced is so volumi­
nous. These statistics include data on utilization of
system components and data paths. It is anticipated
that this type of statistical data gathering will be
done on a less frequent basis to optimize the storage
allocation and job scheduling algOrithms.

From an accounting viewpoint, a table of statistics
is established for the user at "log on" time and
transferred at "log off" to a master set of accumu­
lated statistics for the particular user within the
charge number under which he is working. The user
may command the system to display his accumulated
charge.

Static statistics are also maintained for each data
set cataloged in the system -- for example, length
of data set and length of time during which the data
set is cataloged. These statistics are accumulated
under the charge number of the creating user.

Standard I/O Retry Routines

When a machine error is determined by CPU hard­
ware, a machine check interrupt occurs in that CPU
and this same signal is broadcast to all other CPU's
in the system, which receive such indications as
malfunction (external) interrupts.

The original CPU is put in "wait state", with
interrupts masked, thus preventing it from disrupt­
ing the total system. One of the other CPU's in the
system accepts the associated malfunction alert, the
others going into the wait state. It is the function of
the active CPU via the "recovery nucleus" to identify
the failing unit in order to remove it from the active
system.

When a less disastrous fault occurs in the sys­
tem, such as failure to read a record correctly
from a storage device, the time-sharing supervisor
invokes a standard retry routine. This routine re­
peats the operation a predetermined number of times
to attempt to read the record. If this retry routine
fails to read the record correctly, it reports this

54

information to the time-sharing supervisor. The
supervisor logs this information and then calls for
a system error analysis program. This program,
which is treated by the supervisor as a user pro­
gram, decides which units are to be eliminated from
the resource table in the supervisor.

The decision as to which unit or units to drop
from the resource table is made by examining the
recorded error environment information, then deter­
mining the logical partitioning that would have the
least impact on system performance. For example,
when a fault occurs in a unit that has two data paths,
the system error analysis program analyzes the
fault to determine whether one of the data paths or
the unit itself should be eliminated from the re­
source table. The program does not eliminate an
operational unit from a resource table if there is at
least one data path to that unit.

Messages are sent to the operator when a data
path is eliminated from the resource table, but no
maintenance action is taken until all data paths to
the unit are out or until the customer engineer and
operator decide that maintenance is required. At
this time, the customer engineer calls for the diag­
nostic monitor and begins the diagnostic procedures.

Partitioning

The logical control of the system configuration is
the responsibility of the time-sharing supervisor.
System components are allocated by the supervisor
to the proceSSing of tasks as they are required.
When a task is completed, the components that were
assigned to that task are returned to the supervisor
for use in the proceSSing of other tasks.

In addition to this logical assignment of system
components, the supervisor also considers physical
partitioning. A component may be physically de­
tached from the supervisor by means of switches, in
order that the component may become part of another
system or be made available for maintenance. Re­
gardless of the type of partitioning required, the
supervisor maintains control so that system opera­
tion is not disrupted. To accomplish this, the
supervisor keeps track of the condition of the system
components.

At any time, the machine room operator can enter
a privileged command that will add or delete a unit
from the device index. When equipment is leaving a
partition, the supervisor examines the circumstances
with regard to potential conflict or interferences.
The supervisor must not, for example, release the
core that is taking processor interrupts, until an
alternate area has been initialized.

In general, when a device is to be subtracted
from a list, the supervisor must arrange to with­
draw from that unit.

PERFORMANCE ANALYSIS

In nonrelocation mode the Model 67 behaves like a
standard System/360 and will run any programs
that will run on a standard System/360 having the
same storage and I/O complement available on the
Model 67 (or that portion of a dual system that is
partitioned to operate as a non-time-shared system).
System performance in nonrelocation mode will
approximate that of a Model 65 degraded only by
storage priority and cable-length delays present
in the particular system.

A quantitative measure of systems performance
is always a function of the application environment
within which the system is operating. There are
several factors which must be given consideration
when the system is operating in relocate mode
under TSS.

In conventional operating systems a certain
amount of time is lost because of inability to
completely overlap I/O and computing. While the
same situation may exist in a system operating
with a page-oriented virtual memory concept, the
probability of having a program ready to run is
higher - hence a greater potential for overlapping
I/O and computing.

A time-shared system spends a certain fraction
of its time in the function of page turning, which is
nonproductive systems time. The analogous function
in conventional operating systems is that of pro­
grammed overlay. Overlaying, while it is potentially
more efficient, suffers from the fact that it imposes
an additional chore on the programmer; in addition,
it is frequently inefficient because of insufficient
detailed knowledge of how the program will actually
run.

The performance improvement to be gained
from the functional characteristics of the system
must be estimated for each individual environment
and are not included in this section.

Specific hardware performance factors, on the
other hand, tend to be less application-dependent.
Relocation timing and shared storage interference
and delays can be estimated with reasonable
precision without specific knowledge of the environ­
ment. These timings are included, but, unless
balanced by the associated functional performance
improvements, do not present an accurate appraisal
of the IBM Model 67 Time Sharing System.

RELOCA TION TIMING

The basic processor operates at a five-megacycle
(200-nanosecond cycle) rate. When the relocation
action is active for each memory reference, the
clock is stopped for 150 nanoseconds to allow for the
associative compare. When the relocation action is

active and no valid associative compare occurs, the
processor clock remains blocked until the 16-bit
page table entry is fetched from main storage and
loaded into one of the associative registers. The
length of time the processor clock is blocked depends
on the storage speed. Using the IBM 2365 Processor
Storage (750 nanoseconds), the total elapsed time is
2. 1 microseconds.

An IBM 7090 program has been written that inter­
pretively executes 7090 problem programs. Each
effective address generated by the problem program
is explicitly computed and examined in a model as­
sociative register (AR)/ storage address list facility.
Various parameters are possible -- for example,
the number of words in the AR, the size of the block,
and the replacement algorithm. The program counts
the number of times the model AR's must be loaded
and the number of references made. It makes two
additional measurements: (1) the total number of
blocks claimed by the problem program, and (2) the
number of blocks actually used by the problem pro­
gram. Among many replacement algorithms tested
is one similar to that implemented in the System/360
hardware. A variety of Significantly different pro­
grams were processed repeatedly, with variation in
the parameters.

All the following remarks must be considered
when applying the results to System/360 operation.

The problem program and the simulation program
must fit in the 32K 7090 store. The simulator pro­
gram is approximately 4K words long, so that no
problem program claiming more than 28K words of
store would be run. In particular, no program
equivalent to a compiler is processed.

The ratio of AR loads to AR references is called
activity. The accuracy of the reference count is
important, but can be extrapolated only to System/
360 counts. In the load count, the simulator pro­
gram does not retain the physical store instruction
counter location in a separate register. It is treated
like other references so that, in fact, there are only
seven registers available for data coverage. More­
over, the reference count includes all instruction
fetches. The data fetches reflected in the results
are IBM 7094 fetches, and 7094 code produces sig­
nificantly more data fetches than System/360 code.
It is felt that these two factors are inaccurate in
approximately the same proportion, and tend to
balance out.

At any instant in time, a processor may be in
one of three states:

1. Running in a relocation mode
2. Running out of the relocation mode
3. Idle (awaiting I/O. no work, etc.)
The estimated overhead applies only to state 1.

55

It is here that processor work is done for users.
There should be a disproportionate and favorable
decrease in time spent in states 2 and 3 above, which,
to a great degree, reflect system overhead and swap
time.

With an eight-register AR using the indicated re­
placement algorithm, and block size of 4096 bytes,
the activity was approximately zero (see Figure 7
which shows activity versus block size). However,
an activity of 5% is assumed in the following calcu­
lation, since program analysis was restricted to
progTams of less than 28K and there will probably

~ 0

z

>-
t-
>
t-
u «

25 I I I
4 REGISTERS

20

15

10

25

20

~ o

z 15

>­
t-
>
t; 10
«

5 5

o 0

I

8

be a tendency to utilize more shared routines in
time-sharing problem programs.

A scientific mix of instructions whose run time
on the Model 67 in unrelocated mode is H,O micro­
seconds required 110 storage references. Of the
110 storage references, 25 were branches. 50 were
operand fetches, and 35 were other types.

The following calculation provides us with the run
time of this mix on the Model 67:

140 + [75J [.15 + (.05) 2 .IJ = 160 microseconds

I I I

REGISTERS

64 128 512 2048 8192 64 128 512 2048 8192

25

20

~ o

z 15

>­
t-
>
tJ (0
«

5

o

BLOCK SIZE

I I I I

12 REGISTERS

64 128 512 2048
BLOCK SIZE

8192

25

20

~ o

z 15

>­
t-
>
tJ 10
«

5

a

Figure 7. Activity vs block size (in bytes) for 4, 8.
12, and 16 registers

56

BLOCK SIZE

I I I I

16 REGISTERS
I

64 128 512 2048 8192

BLOCK SIZE

The resulting run time has been extended by about
14%. However, if the activity is zero, the run time
is increased by only 8%.

SHARED STORAGE INTERFERENCF~ AND DELAYS

This section deals with the effect on internal proc­
essor performance of those interferences and delays
characteristic of multiprocessor shared multiple
storage configurations.

A timing diagram was generated that shows the
storage reference demand made by a Model 67 when
executing what is considered a typical scientific mix
of instructions. From the timing diagram a cycle
demand distribution was obtained and used in gener­
ating the cycle demand for the simulated lJrocessors
modeled in G PSS III.

A simulation run was made with only one proc­
essor executing the instruction mix and without any
cable or priority determination delay. This run was
used as the base run to which all other modeled con­
figurations are compared. System degradation is
defined as 1 minus system effiCiency, where system
efficiency equals the ratio of job nm time in the base
system to job run time in a processor of the system
to be compared. Job run time was chosen to be that
time required for the CPU to obtain 20,000 memory
cycles executing the instruction mix.

For each processor in the model, one transaction
is generated which flows through the model at a
rate that is a function of its unrestricted (desired)
memory cycle demand and the delay encountered be­
cause of interference by memory demands from
other devices, as well as the cable and priority scan
delay. All memories in the model have an equal
chance of being selected, regardless of the device
making the request or the number of other devices
contending for the storage unit at that time.

The resulting degradation under these circum­
stances should correspond to the real situation where
no attempt has been made to reduce memory bus
contention. It is obvious that the contention will be
reduced with the addition of memory units, and some
reduction should be realized by careful consideration

of core mapping. Houtines that reside permanently
should be distributed in such a way as to evenly dis­
tribute the demand between physical storage units.

The following charts show the various storage­
processor configurations as well as tables containing
data related to those configurations, showing the in­
crease in storage access time caused by priority
determination and cable delay. Simulation results
related to the configurations are presented, showing
the relationship between the I/O data rate and the
system degradation. This system degradation re­
sults from the priority determination and cable delay
as well as from conflicting requests for memory
cycles between CPU's and between I/O units and
CPU's.

.- ro-
S S
T T
0 0
R R
A A
G G
E E

I 2

I I I J I I
i 1

P
R
0
C
E
S
S
0
R
~

Simulation Results

I/O Rate in Me',abytcs System Degradation

0 0

.8 1.1%

1.6 3.2'%

57

r- r-

S S
T T
0 0
R R
A A
G G
E E
I 2

I I I
I

I I I :
p p
R R
0 0
C C
E E
S S
S S
0 0
R R

A B
- -

Storage access time increase in nanoseconds caused
by priority determination and cable length:

58

Storage Storage
Unit 1 Unit 2

Processor
A 150 200

Processor
B 200 150

Simulation Results (including priority
determination and cable length)

I/O Rate in System
Megabytes Degradation

o 0 8.8%

1.6 9.7%

3.2 10.8%

r--- - r-
S S S
T T T
0 0 0
R R R
A A A
G G G
E E E
I 2 3

I I
I I I I I I

I I I

P P
R R
0 0
c C
E E
S S
S S
0 0
R R

A B
'--- '---

Storage access time increase in nanoseconds caused
by priority determination and cable length

Storage Storage Storage
Unit 1 Unit 2 Unit 3

Processor
A 150 150 200

Processor
B 250 200 150

Simulation Results (including priority
determination and cable length)

I

I/O Rate in
Megabytes

o
1.6

3.2

r- ;----

S S
T T
0 0
R R
A A
G G
E E

I 2

I I
I I

P
R
0
C
E
S
S
0
R

A

-

I I
I I

System
Degradation

9.1%

10.6%

11. 9%

-
S
T
0
R
A
G
E

3

I
I I
I I

P
R
0
C
E
S
S
0
R

B

-

-
S
T
0
R
A
G
E

4

I

Storage access time increase in nanoseconds caused
by priority determination and cable length

Storage Storage Storage Storage
Unit 1 Unit 2 Unit 3 Unit 4

Processor
A

Processor
B

150

250

150 200

200 150

Simulation Results (including priority
determination and cable length)

I/O Rate in
Megabytes

o
1.6
3.2

System
Degradation

10.8%
12.7%
14.

250

150

RELIABILITY AND MAINTAINABILITY

INTRODUCTION

Two major factors considered in the design of
System/360 were reliability and maintainability,
which includes the ability to prevent, detect, and
correct hardware malfunctions. The maintainability
plan developed during the conceptual phase of System/
360 and incorporated into the design provides oper­
ating and maintenance personnel with improved and
expanded facilities. These facilities include exten­
sive checking, automatic interrupts, log-out, and
maintenance programs. Thus, isolation time (the
time needed to identify a malfunctioning component
assembly, such as a logic card) has been significantly
reduced.

Throughout the engineering, manufacture, as­
sembly, and test of the System/360, there is a con­
tinuing effort to achieve the highest standards of
quality. The basic elements, Solid Logic Technology
(SLT) modules, are designed and manufactured by
IBM to exacting standards. The glass-encapsulated
solid-state components are mounted on ceramic sub­
strates and then sealed to form a circuit module that
is impervious to contamination. This reliable
module forms the base for System/360 and its reli­
ability and maintainability.

A reliability and maintainability design review is
incorporated in the design program to minimize re­
liability and maintainability problems caused by im­
proper use of circuit and manufacturing ground
rules. IBM provides this review function through
"automated logic design" (ALD) techniques, which
include:

• Verifying logic and circuit rules
• Generating etched-board layouts
• Generating logic diagrams directly from layout

inputs
• Preparing maintenance diagrams that reflect

actual wiring
• Providing engineering-level control
In addition, all IBM systems must be reviewed

before and during development by a competent IBM
speCialist in reliability and maintainability, human
factors engineering, industrial deSign, acoustics,
etc., for agreement with IBM-recommended prac­
tice and policy.

IBM Product Test reviews the objectives and
specifications of all IBM systems for measurability,
and then actually evaluates initial systems relative
to these specifications.

IBM Quality Control exercises in-process and
final-review control of all manufactured systems,
thus providing a continuing check that the system
conforms to its specifications.

Furthermore, the outputs generated during the
process of correlating information received from
design, manufacturing, testing, and Field Engi­
neering sources are utilized to improve reliability
and maintainability. In this way a rapid and accurate
exchange of information brings to each System/360
user the benefit of knowledge gained in all areas of
the IBM Corporation.

An important function in any system capable of
expansion is to maintain an effective maintenance
concept throughout its growth. As it increases in
size and complexity, the system must be capable of
being maintained without increasing the operator's
maintenance workload. For example, in a complex
system, each piece of equipment should contain
sufficient checking circuitry to enable a program to
identify a malfunctioning data path, rather than
depend totally upon the operator to identify such a
data path. Also, the testing capabilities must be
able to minimize the effect of maintenance upon the
remainder of the system. Therefore, a decision
must be made whether to provide initially for inde­
pendent maintenance (computer use is excluded) or
dependent maintenance (the computer is always
required). A single approach is insufficient when
minimum mean time to restore and impact upon the
system must bE' considered. Therefore, IBM
utilizes a combination of the two approaches:
(1) fault isolation and unit checkout, utilizing the in­
dependent unit-testing capabilities, and (2) computer­
controlled maintenance programs for isolating the
more difficult malfunctions.

FACILITIES

Extensive Checking

Movement of data through the system is checked on
a byte basis through parity checking. Checks for
control failures are also made at strategiC locations.
Other modes of checking used in the system are
comparisons and detection of invalid operations,
addressing, data formats, speCifications, and pro­
gram rules. The details of an equipment malfunction
are made available for analysis by a log-out process,
which is a combination of hardware and a program.
The log-out to core storage for the CPU is by means
of circuitry, whereas the I/O units transfer the log­
out information to storage upon demand by means of
sense bytes. After the log-out is placed in core
storage, the CPU can be programmed to relocate
the log-out for eventual analysis and/or editing.
Thus, as a by-product, the error environment and
related statistics can be made available to mainte­
nance personnel in printout or display form.

59

The purpose of this extensive checking is to pro­
vide an indication when data is inadvertently altered
because of a machine malfunction or illegal opera­
tion, and to reduce dO'wntime by helping to identify
the malfunctioning data path. The machine-check
(error) indication can be utilized as the basis for
programmed-task retry or switchover in place of
extensive redundant programming. Thus, the
traditional problem with unchecked machines--that
of not being able to recognize when a machine mal­
function invalidated a task--is largely, if not com­
pletely, eliminated.

Automatic Interrupts

An automatic program-controlled interrupt system
causes a hardware branch to a predetermined loca­
tion for five types of interrupts: I/O. prograrn
check, machine check, monitor call, and external.
Status indicators further define causes of interrupts
within each type. Undesired interrupts can be
masked out. The interruption system classifies
errors as machine or program-check so that errors
and causes of malfunction can be separated. The
automatic machine-check interrupts and I/O mal­
function checks also provide the initiating impetus
for log-out and programmed-recovery procedures.

Log-Out

The log-out facility enables pertinent unit-environ­
ment conditions to be recorded for eventual output
to a printer and/or a maintenance-history tape.
The advantages of this concept allow a program to
provide:

• A record of intermittent malfunctions that can
lead to recognition of a degrading component
(the analysis can be performed offline)

• A detailed record of malfunctions, thus vi 1'­

tually eliminating the need for maintenance
personnel to depend on the operator for
symptom information

• The details of an equipment malfunction, thus
facilitating reconstruction of the error
enviromnent

• Data to support the process of analysis and
localization of a malfunction

In addition, an increase in "uptime" (avaIlability)
will be realized by minimizing the necessity for
maintenance personnel to gain direct access to the
equipment for occurrences of an intermittent
(tranSient) type malfunction.

MAINTENANCE PROGRAMMING

The primary method of localizing system malfunc­
tions is through the use of diagnostic computer

60

programs. The utilization of diagnostic pro­
gramming ensures thorough and rapid fault localiza­
tion with minimum reliance on the individual. Since
these programs exercise the system units in non­
functional ways and create abnormal conditions,
they operate in a subsystem that has been partitioned
using the configuration console.

Maintenance programs in this system fall into
three categories:

• Online Test System - operating unde r TSS
• Multiprogrammed programs, which operate

under control of a Diagnostic Monitor (I)M)
• Hard-core programs, which dia.gnosc failures

in critical areas of thc processor or system
The Online Test System operates as a spric's of

problem programs under the Time Sharin!!: System
supervisol' enabling maintenance of devices while
continuing system service to users not directly
affected by the device under test. The following
devices are supported by the Online Test S~stem:

2702 with 1052, 1051, and 2741 attached
2840 with 2250 Model 2 attached
2848 with 2260 attached
2701 with parallel data adapter, serial data

adapter. and Type III adapter
2841 with 2311 attached
2:n4 disk system
MOnitor-controlled mainten[llce programs usually

test control units, I/O devices, and certain aspects
of the terminals in the system. other areas that
they may test are storage if there are multiple
storage units, and even channels and the proce8S0r
if the program can conform to the restrictions im­
posed by the monitor. They perform checks of
timing, error-checking cireuiby, and ftmctional.
operation. Hunning time of these programs is
appropriate to the mode of testing and the unit
involved.

Hard-core programs normally do not operate
''lith a monitor, because they arc not able to adhere
to restrictions a monitor imposes. There wi 11 be
cases where more than hard-core units are required
to be tested in this mode, they are considered the
exception rather than the rule. The types of pro­
grams operated or the units tested under these con­
ditions are such that the processor cannot Ix; reli­
ably used to operate a monitor program and obtain
necessary malfunction diagnosis.

The actual decisions as to the mode in which
maintenance programs and maintenance actions will
tal{e place depend on the type of malfunction and the
jOint agreement of both the system operator and IBM
Field Engineering.

Diagnostic Monitor (DM)

The diagnostic programs for a unit are run under
control of a DM program. The DM provides a num­
ber of facilities that can be used by all of the device
programs. Among these are program and data
loading, interruption handling, code conversion,
and commlmication to and from maintenance per­
sunnel or other operational monitor programs.

The diagnostic programs for a device communi­
cate with the DM, using a well defined set of pro­
gramming conventions called the "diagnostic
interface". Thus, the diagnostic library can be
augmented as needed. New programs can become a
part of the standard library, provided that they con­
form to the specifications of the diagnostic interface.
Another advantage here is that the DM exerts a
normalizing influence that screens individual diag­
nostic progTam differences from the view of the
user. Output messages are produced in standard
formats.

Programmed Error Recovery

A set of program elements, which are an integral
part of the TSM, is provided to utilize the failure­
detection circuitry in the system. The purpose of
these programs is to provide identification of the
suspect lillit and a complete, detailed, chronological
system history of equipment malfunctions. This
information would be made available to maintenance
personnel to permit a detailed analysis of troubles
before a subsystem is taken over for repair. It
would also be used as the source of detailed and
accurate symptom information on intermittent
failures.

The programmed error recove1Y package con­
sists of a set of modular elements, only one of
which resides permanently in main storage. When
a recordable incident occurs, the resident elernent
causes the other necessary elements to be fetched
into main storage. These other elements occupy
part of the area on the peripheral storage device
that is used to hold other operation monitor­
program components. This area on the peripheral
storage device is called "systems residence".

The programmed error recovery element that is
permanently resident in main storage receives con­
trol of a CPU from two sources: the recovery
nucleus and the I/o supervisor of the TSM.

Hecovery Nucleus

In a multiple-processor system, a part of the resi­
dent supervisor is called the "recovery nucleus"

(in fact, there is one copy in main storage for each
active CPU in the system). Its primary function is
to respond to machine checks and to locate a non­
failing CPU plus some nonfailing main storage, so
that the TSM can continue operation. The processor
that registered the machine check is then turned
over to a program that records the failure informa­
tion and retries the operation if feasible.

In the case of machine-check interruptions, the
appropriate program element gets control after
completion of the logging out of the processor status
into main storage. The program adds other data
to this logged-out information in order to complete
the record of the error environment. The program
then causes this record to be added to previous such
records in an area reserved for this pUl1Jose on
systems residence. The recovery nucleus then
calls in the necessary service routines to restart
the TSIVI supervisor. This may be an unsuccessful
attempt to reread magnetic tape or an equipment­
detected failure in the I/o channel device.

Utility programs are provided to process the
environment records and to edit them into a form
that is convenient for mail1tenance penwnnel.

BUILT-IN DIAGNOSTICS ANTI CHECKING
FEATURES

In addition to the maintenance programs and the
programmed error recovery package, other diag­
nostic provisions are made for most units. These
provisions vary from manual controls and il1dicaiors
for insertions, control, and observation of test data
to built-in diagnostics initiated from the test panel.
The remaining lmits utilize their control units or
external testen; for offline diagnostic purposes.

POWER AND THEI~MAL MALFUNCTIO:-.:S

Malfunctions in the power and therrnal area are
identified by indicators as to type and location.
Manual intervention by maintenance personnel is
required to correct such conditions.

PACKAGING

The components are packaged for ease of acces­
sibility and replacement; in addition, functional
packag'ing' that ;3implifies troubleshooting is incor­
porated. Exarr'ples of fUllctional packaging are:

• One complete register byte on a logic card
• One complete nine-bit parity-checking circuit

on a logic card
• Two com,)lete adder positions on a logic card

61

EXTEND ED DYNAMIC ADDRESS TRANSLA TION

ADDRESS TRANSLATION (32-BIT VERSION)

The relocation tables used to translate a logical ad­
dress into a physical address consist of "segment"
tables and "page" tables. These tables are placed
in main storage at the "segment table origin" and
"page table origin" respectively. Each table oc­
cupies the number of storage locations specified by
the respective "table length" amount.

Segment table origin and segment table length are
specified by the contents of the "table register"
(control register 0). The length is specified by bits
0-7 of this register, the origin by bits 8-31. The
uni t of length for the segment table is a group of
entries (16 entries per group, four bytes per entry).
Thus, the table length is variable in multiples of 64
bytes. Further, the address of the table origin
must be a multiple of 64; hence, bits 26-31 of the
table register must be zeros or a data exception is
recognized.

In the 32-bit addressing mode, a segment table
length of up to 256 groups of entries (pages) is pos­
sible. The actual table length is one more than the
quantity specified by bits 0-7 of the table register.
In the 24-bit addressing mode, the segment table
length is always one group of entries, and bits 0-7
of the table register must be zero.

Each four-byte entry in the segment table de­
fines a page table. The first byte (bits 0-7) defines
the length of the page table; the remaining three
bytes (bits 8-31) define the page table origin. The
unit of length for a page table is a two-byte entry.
Thus, the table is variable in multiples of two
bytes. Each page table's origin is located at a byte
address that is a multiple of two. Thus, bit 31 of
each segment table entry that defines a page table
is zero. If bit 31 is one, no translation takes place
and a segment relocation exception is recognized
(program interruption with interruption code 16).

Figure 8 illustrates the translation action when
the 32-bit addressing mode is used. Bits 0-19 of
the "logical" (or virtual) address are first com­
pared with the corresponding bits of each associa­
tive register having bit 36 set to one. If a match is
found, bits 20-31 of that register are used as bits
8-19 of the physical address, and bit 37 at the asso­
ciative register is set to one. Bits 20-31 of the
logical address are used directly as bits 20-31 of
the physical address.

If no match is found, or if no register in the
associative array has bit 36 set to one, the logical
address must be translated by means of the segment
and page tables. This translation proceeds as in­
dicated by the dotted lines in Figure 8. The segment

62

field of the logical address (bits 0-11) is first added
to the origin address portion of the table register
(bits 8-31). (For this addition the segment field of
the logical address is aligned with bits 18-29 of the
table register, since the entry to be fetched is four
bytes long and has a byte address which is a mul­
tiple of four.) As part of the process of fetching the
segment table entry, bits 0-7 of the logical address
are compared with the segment table length (bits 0-7
of the table register). If the latter is less than the
former, a segment relocation exception is recog­
nized (program interruption with interruption code
16). The quantity obtained by this addition is the
address of the segment table entry.

The segment table entry is used with the page
field of the logical address in much the same manner
as the table register contents were used with the
segment field (see Figure 8). Bits 12-19 of the
logical address are aligned with bits 23-30 of the
origin portion of the segment table entry (bits 8-31)
and the two quantities are added. The resultant 2'1-
bit quantity is used as the address of a two-byte page
table entry, which is subsequently fetched from
storage. As described earlier, if bit 31 of the
segment table entry is one, a segment relocation
exception is recognized. In addition, bits 12-19 of
the logical address are compared with the page
table length (bits 0-7 of the segment table entry),
and, if the former is greater than the latter, a page
relocation exception is recognized (program inter­
ruption with interruption code 17).

The two-byte table entry consists of a physical
page address portion (bits 0-11) and control bits
(bits 12-15). Bits 13-15 must be zeros or a speci­
fication exception is recognized and the instruction
is suppressed. Bit 12 defines the status of the page
address portion of the entry. If bit 12 is zero, the
page address is used as bits 8-19 of the physical
add res s as shown in Figure 8. If bit 12 is one, a
page relocation exception is recognized. Bit 12 thus
serves to indicate whether the page referenced is
actually available in core storage. The other three
bits (bits 13-15) are reserved for future use.

The actual page address obtained by the transla­
tion method described above is not only used to
address memory but is also loaded into an asso­
ciative register along with the segment and page
fields of the logical address. Thus, it is made
available for future use without the need for repeat­
ing the translation process. When an ass ociati ve
register is so loaded, its bit positions 36 and 37 are
set to one. (Selection of the registers to be loaded
is under control of a usage algorithm that uses in
sequence the registers with bit 37 set to zero.

When bit 37 is one in all registers, this bit is
reset to zero in each register.) Bit 36 is used
to indicate the presence of a valid entry in the
associative register. It is reset to zero each
time the contents of the table register are
changed.

The translation process described above applies
in all respects when 24-bit addressing is used, with
the provision that bits 0-7 of the logical address
are always zero.

TABLE REGISTER

E~I. ORIGIN 281~-- ~I

RELOCATION MODE

Relocation of addresses provided by the processor
is specified by bit 5 of the PSW (in extended control
mode). When the bit is a one, relocation takes
place; when the bit is a zero, the logical address is
used as the actual address.

All main storage locations where information is
stored in the course of an operation are subject to
relocation.

LOGICAL ADDRESS

...... ,
-- - - - __ -E9-- .-SEGMENT

I

PAGE BYTE

PAGE TABLE

SEGMENT TABLE

0 7 • 29 ~!l1

00

LENGTH ORIGIN

\

"
" "- --

I

/

~

/

I
/

I

I
I

,-

/
/

/

---~
CORE STORAGE

ADDRESS

PAGE TABLE

PAGE TABLE

I ___ r-__ CORE STORAGE

l===::t:=~--......... 4:::::::J ADDRESS

" 12 IS 20

INSTR. COUNTER
RELOCATED FORMAT

32 BIT ADDRESS TRANSLATION

Figure 8. Simplified data flow for dynamic relocation

63

Addresses provided by the channels, either for
fetching channel control words from main storage
or for fetching data from (or storing data into) main
storage, are never relocated regardless of the
setting of bit 5 in the PSW.

Locations whose addresses are generated by the
processor or channels for updating or interruption
purposes (equipment-generated addresses), such as
the timer, channel status words, or PSW addresses,
are not relocated via the relocation tables. How­
ever, when the program specifies these locations,
they are subject to relocation as defined above.

Core storage addresses in the range 0-4095
(including the above-mentioned equipment-generated
addresses) are relocated by means of the primary
or alternate prefix, as defined in System/360
Principles of Operation (A22-6821), unless the
prefix is disabled by means of the prefix deactiva­
tion switch. Consequently, the prefix is applied
when the address (either the logical address when
no relocation takes place or the translated address
obtained via the relocation tables) falls within the
range 0-4095.

When relocation is specified, the storage pro­
tection, by means of the protection keys. is still
active.

Whenever access to main storage is made by the
equipment for the purpose of fetching an entry from
a relocation table in the course of an address trans­
lation process, storage protection is ignored; that
is. the equipment acts as if the block of storage
containing the relocation tables was not fetch­
protected during the memory cycle i.n which the
relocation table entry is fetched. However, if the
addresses at which the relocation tables are located
are generated by the program, they are subject to
storage and fetch protection in the normal manner.

If the storage address. generated in the address
translation process for fetching a relocation table
entry, exceeds the storage capacity of the installa­
tion, an addressing exception is recognized, result­
ing in a program interruption (interruption code 5).

EXTEl\i'DED CONTROL (32-BIT VERSION)

PSW Format

The system can operate under the control of a PSW
in the following two modes:

• Standard PSW format as defined in System/360
Principles of Operation (A22-6821)

• Extended control PSW format, as defined in
this section

Switching between these two modes is under con­
trol of bit 8 of control register 6. \Vhen this bit is
one, extended control PSW format is used. Upon
system reset resulting from a power-on sequence,

64

manual system reset, manual IPL, or external
start (electronic IPL), this bit is set to zero. If it
is changed by a Load Multiple Control instruction,
the resulting PSW mode change becomes effective
upon completion of that instruction. (If other bits
are changed by the Load Multiple Control instruc­
tion, the exact moment when the new settings take
effect is unpredictable.)

The following are bit assignments of the Ps\V
format for extended control:

Bits

0-3

4

5

6

7

8-11

12-15

16-17

18-19

20-23

24-31

32-63

Must be zeros. Otherwise, a specifi­
cation exception is recognized when­
ever the PSW containing a nonzero bit
in these positions is used (that is,
during the fetching of the first instruc­
tion under the control of this PSW,
similar to the specification exception
caused by a nonzero bit in position 63
of the PSW).

24/32-bit virtual addressing mode bits.
When this bit is a zero, 24-bit address
arithmetic applies. When this bit is a
one, 32-bit address arithmetic applies.

Relocation mode bit. When this bit is
a zero, no relocation takes place.
When this bit is a one, relocation takes
place.

I/O mask bit, controls the masking of
all I/O channels. When this bit is a
zero, all I/O channels are masked off.
When this bit is a one, the masking of
the individual channels is contained in
control register 4-5.

External mask bit. When this bit is
zero, all extended interruptions are
masked off. When this bit is one,
masking of external interruptions is
controlled by control register 6.

Protection key (same as standard PSW
format)

AMWP (same as standard PSW format)

fustruction length code

Condition code

Program mask

Must be zeros. Otherwise, a speCifica­
tion exception is recognized.

Logical instruction address (Note:
When bit 4 is zero, bits 32-39 must be
zero or a specification exception is
recognized.)

In addition to storing the above fields of the PSW
as an "old PSW", the 16-bit interruption code field
generated as a result of an interruption is stored as
a halfword in storage in the following byte location.

Interruption 1Ype

External

Storage byte location

14-15

16-17

18-19

20-21

22-23

SVC

Program

Machine check

I/O

Control Registers

A set of control register positions is provided as
part of various features. Up to 16 registers of 32-
bit positions each may be provided. The bit position
assignments for the control registers are shown
below. Some of the bit positions are assigned for
the purpose of sensing the settings of manual
switches, and are therefore not implemented as
registers. These bit positions can only be stored
into main storage, but cannot be loaded from main
storage. The control registers are not part of
addressable storage. They are changed by Load
Multiple Control and inspected by Store Multiple
Control instructions.

Bit positions of the control registers are as­
signed as follows.

Control
Register

o Table register (for dynamic relocation)

1 Unassigned

2 Relocation exception address register

3 Unassigned

4-5 Extended mask registers. The bit as­
signment is as follows:

6

Bit 0-63: I/O channel mask for chan­
nels 0-63

Bits 0-3: machine check mask exten­
sions for channel controllers. Bit 8:
extended control mode. Bit 9: con­
figuration control. Bits 24-31: exter­
nal interruption masking as defined in
the following table.

Interruption Bit
Source Position*

Timer 24
Interrupt key 25
External signal 2 26
External signal 3 27
External signal 4 28
External signal 5 29
External signal 6 30
External signal 7 31

*Bit position applies to:
(1) PSW for interruption code
(2) Control register 6 for masking

7 Unassigned

8-9

10

11

States of core storage partitioning
switches, one eight-bit byte for each
logical processor storage unit. The
bi ts in the byte correspond to the
eight tails of the logical processor
storage units, with "one" indicating
that connection is established over the
tail.

BIts 0-31: Core storage address as­
signment, one four-bit field for each of
the maximum of eight logical processor
storage units. The four-bit field con­
tains bits 11-14 of the assigned core
storage address.

Bits 0-15: states of channel controller
partitioning switches with one four-bit
field for each channel controller. The
bits in the field correspond to the four
tails of each channel controller, with
"one" indicating that connection is
established.

Bits 16-31: Channel address assign­
ment (as viewed from the processor
executing the STMC instruction), one
four-bit field for each of the maximum
of four processors. A field containing
three zeros and a one indicates that
for the particular processor, only the
channel controller corresponding to
the bit position that is "1" is address­
able and its channels are 0-6. No
other bit combinations are possible in
these four-bit fields.

12-13 states of control-unit partitiOning
SWitches, with at least two bit posi­
tions assigned to each control unit.
"One" indicates that connection is
{'stablished. The particular assign­
ment of bit positions is presently left
open.

65

14 Bits 0-23: Unassigned

Bits 24-27: States of direct-control
partitioning switches, one bit for each
processor. "One" indicates that the
direct control interface of the corre­
sponding processor is connected to the
other CPU's; zero indicates that the
direct-control interface is disconnected
from the other processors.

Bits 28-31: States of prefix deactiva­
tion switches, one bit for each
processor.

15 Unassigned

NEW INSTRUCTIONS (32-BIT VERSION)

The following new instructions are included in the
instruction set of the Model 67: Branch and Store,
Load Real Address, Load Multiple Control, and
Store Multiple Control; discussion of these new
instructions follows.

Mnenomic Type Code

BRANCH AND STORE

BRANCH AND STORE

BASR

BAS

RR

RX

OD

4D

In the 32-bit addressing mode, the updated lOgi­
cal instruction address is stored as link information
in the general register specified by Rl (in bit posi­
tions 0 to 7, and 8 to 31 respectively). Subse­
quently, the logical instruction address is replaced
by the logical branch address.

The branch address is determined before the link
information is stored. The instruction length code
is 1 or 2, depending on the format of the Branch and
store.

In the 24-bit addressing mode, zeros are stored
in bit positiOns 0-7 of the general register speCified
by Rl.

Condition code: The code remains
unchanged.

Program interruptions: None.

Programming note: The link information is
stored without branching when in the RR format
and the R2 field contains zeros.

When Branch and Store is the subject instruction
of Execute, the instruction-length code is 2.

LOAD REAL
ADDRESS

66

Excep­
Mnemonic Type tions

LRA RX M,S

Code

B1

The translated address of the second operand is
inserted in the low-order 24 bits of the general
register specified by the R1 field. The remaining
bits of the general register are made zero.

The address specified by the X2' B2, and D2
fields is translated through the dynamic relocation
features (regardless of whether the relocation mode
bit is a zero or a one), and the translated address
is inserted in bits 8-31 of the general register
specified by Rl' Bits 0-7 are set to zero. The
translated address is not inspected for protection or
resolution.

During the address translation process, no relo­
cation exceptions are recognized. Instead, the con­
dition code is used to indicate successful translation
or the reason for its failure. If the translation was
unsuccessful, the contents of R1 are replaced by the
table entry, leaving its availability bit set to one;
and the logical address that was to be translated is
stored in control register 2.

LOAD MULTIPLE
CONTROL

Excep­
Mnemonic Type tions

LMC RS M.A,
S, D

Code

B8

The set of control registers starting with the con­
trol register specified by R3 is loaded from the
locations deSignated by the second operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
deSignated by the second operand address and con­
tinues through as many storage words as needed.
The control registers are loaded in the ascending
order of their addresses, starting with the control
registers specified by R 1 and continuing up to and
including the control register specified by R3, with
control register 0 following control register 15.
The second operand remains unchanged.

If any of the bits loaded into positions 26-31 of
control register 0 are ones. a data exception is
recognized.

Condition code: The code remains
unchanged.

Program interruptions: Privileged operation,
addreSSing, speCifi­
cation, data

STORE MULTIPLE
CONTROL

Excep-
Mnemonic Type tions Code

STMC RS M,P, BO
A, S

The set of control registers starting with the con­
trol register specified by R3 stored at the locations
designated by the second operand address.

The storage area where the contents of the con­
trol registers are placed starts at the location
deSignated by the second operand address and con­
tinues through as many storage words as needed.
The control words are stored in the ascending
order of their addresses, starting with the control
register specified by Rl and continuing up to and

including the control register specified by R3, with
control register 0 following control register 15.
The control register remains unchanged.

Condition code: The code remains
unchanged.

Program interruptions: Privileged operation,
protection, addreSSing,
specification

67

C20-1647-O

International Business Machines Corporation

Data Procesdng Division

112 East Post Road, White Plains, New York 10601

." ,.

	Cover
	Table of Contents
	System Summary
	System Features
	System Components
	Programming System

	System Philosophy
	General Concepts
	Processing Unit Features
	Multiprocessing
	Systems Data Flow

	System Components
	IBM 2067 Processing Unit
	IBM 2365 Processor Storage
	Channels
	I/O Control Units
	I/O Devices
	Graphic and Display Terminals
	Remote Transmission
	Remote Computer Systems or High-Volume Terminals

	Programming Systems
	General Description
	Supervisor
	Command System
	Data Management
	Growth
	Interfaces
	The Command Language
	Language Processors
	Data Management
	Identifying and Locating Data
	Orgainizing Data
	Storing and Retrieving Data
	System Facilities for Program Construction
	Use of the Language Processors
	Linkage Editor
	Dynamic Loader
	Program Checkout System
	System Design Considerations

	Performance Analysis
	Relocation Timing
	Shared Storage Interference and Delays

	Reliability and Maintainability
	Introduction
	Facilities
	Maintenance Programming
	Built-in Diagnostics and Checking Features
	Power and Thermal Malfunctions
	Packaging

	Extended Dynamic Address Translation
	Address Translation (32-Bit Version)
	Relocation Mode
	Extended Control (32-Bit Version)
	New Instructions (32-Bit Version)

